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Preface to ”Computational Methods for Fracture”

The prediction of fracture and material failure is of major importance for the safety and reliability

of engineering structures and the efficient design of novel materials. Experimental testing is often

cumbersome, expensive, and in certain cases unfeasible (as in civil engineering, when it is not possible

to test the structures in the laboratory). Therefore, computational modeling of fracture and failure of

engineering systems and materials has been the focus of research for many years, and there has been

tremendous advancement in the past two decades with methods such as the Extended Finite Element

Method (XFEM) developed in 1999, peridynamics (2000), the cracking particles method (2004) or

phase field models (2009). There has been also a great deal of effort in developing multiscale

methods for the design of new materials, such as the Extended Bridging Domain Method or the

MAD method. The main focus of this book is on computational methods for fracture. However,

research related to validation, uncertainty quantification, large-scale engineering applications, and

constitutive modeling are also addressed.

Timon Rabczuk

Special Issue Editor
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The prediction of fracture and material failure is of major importance for the safety and reliability
of engineering structures and the efficient design of novel materials. Experimental testing is often
cumbersome, expensive and, in certain cases, unfeasible, for instance in civil engineering when it is
not possible to test the structures in the laboratory. Therefore, computational modeling of fracture
and failure of engineering systems and materials has been the focus of research for many years, and
there has been tremendous advancements in the past two decades with methods such as the Extended
Finite Element Method (XFEM) developed in 1999, peridynamics (2000), the cracking particles method
(2004) and phase field models (2009). There has also been a great deal of effort made in developing
multiscale methods for the design of new materials, such as the Extended Bridging Domain Method
or the MAD method. The main focus of this book is computational methods for fracture. However,
articles concerning issues related to validation, uncertainty quantification, large-scale engineering
applications and constitutive modeling are also addressed.

This book offers a collection of 17 scientific papers about computational modeling of fracture [1–17].
Some manuscripts propose new computational methods or the improvement of existing cutting-edge
methods for fracture. Other manuscripts apply state-of-the-art methods to challenging problems in
engineering and materials science.

These contributions can be classified into two categories:

1. Methods which treat the crack as strong discontinuity, such as peridynamics, scaled boundary
elements or specific versions of the smoothed finite element methods applied to fracture;

2. Continuous approaches to fracture based on, for instance, phase field models or continuum
damage mechanics. On the other hand, this book also offers a wide application range where
state-of-the-art techniques are employed to solve challenging engineering problems including
fractures in rock, glass, and concrete. Larger systems are also studied, including subway stations
due to fire, arch dams and concrete decks.
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Featured Application: Due to the mathematical complexity raised by a high continuity

requirement, developing simple/efficient standard finite elements with general polynomial

approximations applicable for arbitrary HSDTs seems to be a difficult task at the present

theoretical level. In this article, a series of High-order Shear Deformation Triangular Plate

Elements (HSDTPEs) are developed using polynomial approximation for the analysis of

isotropic thick-thin plates, through-thickness functionally graded plates, and cracked plates.

The HSDTPEs have the advantage of simplicity in formulation, are free from shear locking,

avoid using a shear correction factor and reduced integration, and provide stable solutions for

thick and thin plates. The work can be further applied to plates and shells analysis with arbitrary

shapes of elements, as well as more general problems related to the shear deformable effect, such

as fracture and functionally graded plates.

Abstract: The High-order Shear Deformation Theories (HSDTs) which can avoid the use of a shear
correction factor and better predict the shear behavior of plates have gained extensive recognition
and made quite great progress in recent years, but the general requirement of C1 continuity in
approximation fields in HSDTs brings difficulties for the numerical implementation of the standard
finite element method which is similar to that of the classic Kirchhoff-Love plate theory. As a strong
complement to HSDTs, in this work, a series of simple High-order Shear Deformation Triangular Plate
Elements (HSDTPEs) using incompatible polynomial approximation are developed for the analysis
of isotropic thick-thin plates, cracked plates, and through-thickness functionally graded plates.
The elements employ incompatible polynomials to define the element approximation functions
u/v/w, and a fictitious thin layer to enforce the displacement continuity among the adjacent plate
elements. The HSDTPEs are free from shear-locking, avoid the use of a shear correction factor, and
provide stable solutions for thick and thin plates. A variety of numerical examples are solved to
demonstrate the convergence, accuracy, and robustness of the present HSDTPEs.

Keywords: plate; FSDT; HSDT; Mindlin; incompatible approximation; fracture

1. Introduction

The classic Kirchhoff-Love plate theory based on the assumption that a plane section
perpendicular to the mid-plane of the plate before deformation remains plane and perpendicular to the
deformed mid-plane after deformation is the simplest plate theory in engineering analysis. However,
the Kirchhoff-Love plate theory is only applicable for thin plates due to the neglecting of the shear
deformation effects. The most well-known and earliest plate theories that take into account the shear
deformation effects were proposed by Reissner [1] and Mindlin [2], in which the Mindlin plate theory

Appl. Sci. 2018, 8, 975; doi:10.3390/app8060975 www.mdpi.com/journal/applsci3
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was based on an assumption of a linear variation of in-plane displacements through the thickness of
the plate, referred to as the First-order Shear Deformation Theory (FSDT). The plate elements derived
from the FSDT only require C0 continuity in approximation fields, have the advantages of physical
clarity and simplicity of application [3], and hence were widely accepted and used to model thick-thin
plates by scientists and engineers. Unfortunately, the FSDT elements suffer from the shear-locking
problem when the thickness to length ration of the plate becomes very small, due to inadequate
dependence among transverse deflection and rotations using an ordinary low-order finite element [4].
Quite a large number of techniques have been developed to overcome this problem, such as the
assumed shear strain approach, the discrete Kirchhoff/Mindlin representation, the mixed/hybrid
formulation, and the reduced/selected integration [5–15]. These formulations are free from shear
locking and are applicable to a wide range of practical engineering problems, but in general, it is rather
complex and time consuming to include the transverse shear effects for thick plates, which would
also lead to complexity and difficulty in the programming. Moreover, the assumption of FSDT causes
constant transverse shear strains and stresses across the thickness, which violates the conditions of
zero transverse shear stresses on the top and bottom surfaces of plates. A shear correction factor is
therefore required to properly compute the transverse shear stiffness. The finding of such a shear
correction factor in FSDT is difficult since it depends on geometric parameters, material, loading and
boundary conditions, etc. [16].

In recent years, High-order Shear Deformation Theories (HSDTs) have gained extensive
recognition and made quite great progress [4,16–43]. Based on polynomial or non-polynomial
transverse shear functions, various HSDTs have been proposed to avoid the use of a shear correction
factor, and to better predict the shear behavior of the plate, for instance, the third-order shear
deformation theory [17,18], the fifth-order shear deformation theory [19], the exponential shear
deformation theory [20], the hyperbolic shear deformation theory [21], and the combined or mixed
HSDTs [22,23]. Please see Thai and Kim [16] and Caliri et al. [24] for a comprehensive review of HSDTs.
In HSDTs, the bending angles of rotation and shear angles can be treated as independent variables,
and the shear-locking problem encountered in FSDT can be well-solved [4]. In [30–43], two well-know
HSDTs named as equivalent single layer (ESL) and layer-wise (LW) models are developed to evaluate
the effective mechanical behavior of composite structures correctly. The accuracy and reliability of
HSDTs have been illustrated by numerous examples in the literature [4,17,25–43]. However, the general
requirement of C1 continuity in approximation fields in HSDTs brings difficulties for the numerical
implementation of the standard Finite Element Method (FEM), which is similar to that of the classic
Kirchhoff-Love plate theory. Most examples in the literature are focused on the analytical/numerical
solutions of simple Navier-type or Levy-type square plates. The numerical examples reported for
the C1 rectangular finite element using Lagrange interpolation and Hermite interpolation proposed
by Reddy [25] and the C0 continuous isoparametric Lagrangian finite element with 63 Degrees Of
Freedom (DOFs) per element proposed by Gulshan et al. [44] are also limited to the rectangular plate
or skew plate. Owing to the striking feature of capturing the high-order continuity well, the Meshless
Methods (MM) and IsoGeometric Analysis methods (IGA) appear to be suitable potential methods to
construct the numerical formulations for the plate based on HSDTs. The successful implementation of
MM [45–48] and IGA [19,23,49–54] in a number of thick-thin plates with arbitrary geometries can be
found in the literature.

From the above literature review, it is observed that, due to the mathematical complexity
raised by the high continuity requirement, developing simple/efficient standard finite elements
with general polynomial approximations applicable for arbitrary HSDTs seems to be a difficult and
unreachable task at the present theoretical level. In Cai and Zhu [55], a locking-free MTP9 (Mindlin type
Triangular Plate element with nine degrees of freedom) using incompatible polynomial approximation
is proposed. It also provides a new way and methodology to develop simple and efficient plate/shell
elements based on HSDTs. In this work, with a similar procedure as the MTP9, a series of simple
High-order Shear Deformation Triangular Plate Elements (HSDTPEs) using incompatible polynomial
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approximation are developed for the analysis of isotropic thick-thin plates and through-thickness
functionally graded plates. In the HSDTPEs, different orders of general polynomials can be easily
employed as element approximation functions, the displacement continuity among the adjacent plate
elements can be equivalently enforced by a fictitious thin layer which has a definite physical meaning,
and consequently, there are no extra continuity requirements under the theoretical framework of the
present HSDTPEs. The HSDTPEs avoid the shear-locking problem and the use of a shear correction
factor, and have a good convergence rate and high accuracy for both thick and thin plates. Several
representative numerical examples are solved and compared to validate the performance of the
present HSDTPEs.

2. Basic Theory of HSDTPEs

2.1. Incompatible Polynomial Approximation over Each Triangular Element

Consider a linear elastic plate with a length a, width b, and thickness h undergoing infinitesimal
deformation, as illustrated in Figure 1. The mid-plane of the plate is divided into arbitrary triangular
elements, as shown in Figure 2. The displacement function of the most well-known HSDTs [17] for
each triangular element ei is generally defined by:⎧⎪⎪⎨⎪⎪⎩

u(x, y, z) = u0(x, y)− zθx + g(z)
(

∂w0
∂x − θx

)
v(x, y, z) = v0(x, y)− zθy + g(z)

(
∂w0
∂y − θy

)
w(x, y, z) = w0(x, y)

(1)

where u0, v0 and w0 are the in-plane and transverse displacements at the mid-plane, respectively;
u = [u, v, w]T denotes the displacements of a point x on the plate; θx and θy are the rotations of
the normal to the cross section; z is the coordinate in the transverse direction; and g(z) describes the
distribution of shear effect in the thickness direction. A review of transverse shear functions g(z) can be
found in Nguyen et al. [56]. For isotropic plates with infinitesimal strains, the in-plane displacements
u0(x, y) and v0(x, y) can be neglected because the thickness h is much smaller than the characteristic
length a and b, and the transverse displacement is much smaller than the thickness h, which leads
to u0(x, y) ≈ 0 and v0(x, y) ≈ 0 at the mid-plane. The transverse normal displacement w can also be
assumed as w = w(x, y, z), which is not a constant along the z axis, and can be defined by the ESL
or LW models [30–43] to capture the effective mechanical behavior along the thickness of composite
structures well.

Figure 1. A linear elastic plate.
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Figure 2. Triangular elements for the mid-plane of the plate.

To demonstrate the performance of the present theory for various transverse shear functions,
the third-order shear function g(z) = − 4z3

3h2 [17] and the fifth-order shear function g(z) = − z
8 −

2z3

h2 + 2z5

h4 [19] are used to develop the Third-order Shear Deformation Triangular Plate Element
(TrSDTPE) and Fifth-order Shear Deformation Triangular Plate Element (FfSDTPE), respectively.
For the special case g(z) = 0, Equation (1) is actually the expression of Mindlin plate theory (or FSDT).
The corresponding plate element is referred to as FiSDTPE (First-order Shear Deformation Triangular
Plate Element) for comparison in the paper.

We assume that: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u0 = P2au0

v0 = P2av0

θx = P2aθx

θy = P2aθy

w0 = P3aw

(2)

where au0 =
[

a1 a2 · · · a6

]T
, av0 =

[
a7 a8 · · · a12

]T
, aθx =

[
a13 a14 · · · a18

]T
,

aθy =
[

a19 a20 · · · a24

]T
, aw =

[
a25 a26 · · · a34

]T
are the vector of generalized

approximation DOFs (degrees of freedom) of the triangular element ei, P2 is the second-order
polynomial basis function, and P3 is the third-order polynomial basis function in which:

P2(x) =
[

1 x0 y0 x2
0 x0y0 y2

0

]
(3)

P3(x) =
[

1 x0 y0 x2
0 x0y0 y2

0 x3
0 x2

0y0 y2
0x0 y3

0

]
(4)

where x0 = x − xi, y0 = y− yi, (xi, yi) are the coordinates of the central point of element ei. It should be
noted that only triangular elements, as well as second-order and third-order polynomial functions, are
implemented in the paper, but actually, arbitrary shape of elements and arbitrary orders of polynomials
can also be easily employed to derive high-order shear deformation plate elements in the present work.
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Substituting Equation (2) into Equation (1), the displacement approximation over element ei can
be further expressed as:

ue =

⎧⎪⎨⎪⎩
u
v
w

⎫⎪⎬⎪⎭ =

⎡⎢⎣ P2 0 αzP2 0 g(z)P3
,x

0 P2 0 αzP2 g(z)P3
,y

0 0 0 0 P3

⎤⎥⎦
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

au0

av0

aθx

aθy

aw

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
= N ea e (5)

where αz = −z − g(z), P3
,x = ∂P3

∂x , P3
,y = ∂P3

∂y ,

Ne =

⎧⎪⎨⎪⎩
N u

N v

N w

⎫⎪⎬⎪⎭ =

⎡⎢⎣ P2 0 αzP2 0 g(z)P3
,x

0 P2 0 αzP2 g(z)P3
,y

0 0 0 0 P3

⎤⎥⎦ (6)

ae =
[

a1 a2 · · · a34

]T
(7)

The strain–displacement relations of the linear elastic problem are given by:

εx =
∂u
∂x

, εy =
∂v
∂y

, εz =
∂w
∂z

≈ 0, γxy =
∂u
∂y

+
∂v
∂x

, γyz =
∂w
∂y

+
∂v
∂z

, γxz =
∂u
∂z

+
∂w
∂x

(8)

Substituting Equation (5) into Equation (8), we have:

ε = Lue= LNeae= Bae (9)

where ε =
[
εx, εy, γxy, γyz, γxz

]T is the strain vector and B is the strain matrix, where:

B = LNe (10)

L is a differential operator where:

L =

⎡⎢⎢⎢⎢⎢⎢⎣

∂
∂x 0 0
0 ∂

∂y 0
∂

∂y
∂

∂x 0
0 ∂

∂z
∂

∂y
∂
∂z 0 ∂

∂x

⎤⎥⎥⎥⎥⎥⎥⎦ (11)

For an isotropic linear elastic material, the stress–strain relations in element ei are given by:

σ = DBae (12)

where σ =
[
σx, σy, τxy, τyz, τxz

]T, the transverse stress σz is assumed to be ignored for plate structures,
and the elasticity matrix is:

D = D0

⎡⎢⎢⎢⎢⎢⎣
1 v 0 0 0
v 1 0 0 0
0 0 1−v

2 0 0
0 0 0 1−v

2k 0
0 0 0 0 1−v

2k

⎤⎥⎥⎥⎥⎥⎦ (13)

7
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where D0 = E
1−v2 , E is the elastic modulus and v is the Poisson ratio. As mentioned above, a shear

correction factor k is required to properly compute the transverse shear stiffness in the FiSDTPE
with the assumption of FSDT, which causes constant transverse shear strains and stresses across the
thickness and violates the conditions of zero transverse shear stresses on the top and bottom surfaces
of plates [16]. Usually, k is taken as k = 1.2 for the special case of FiSDTPE in Equation (13) according
to the principle of the equivalence of strain energy. However, the high-order shear deformation theory
gives a parabolic distribution of the transverse stresses/strains directly and avoids the use of a shear
correction factor, and thus k is taken as k = 1.0 in Equation (13) for the rest of the HSDTPEs.

Therefore, the strain energy of element ei can be derived as:

Πe =
1
2
(ae)T

∫ h/2

−h/2

⎛⎝�
Δei

BTDBdxdy

⎞⎠dz ae (14)

For the plate made of Functionally Graded (FG) materials which is created by mixing two distinct
material phases, the composition of the FG materials is in general assumed to be varied continuously
from the top to the bottom surface. There are many kinds of FG materials made from all classes of solids.
But for the sake of simplicity and convenience, only a ceramic-metal composite is considered and
implemented to test the performance of the HSDTPEs in the present study, and the power-law [25,32,45]
is used to describe the through-the-thickness distribution of FG materials, which is expressed as:

Vc(z) =
(

1
2
+

z
2

)n
(0 ≤ n ≤ ∞) (15)

P(z) = (Pc − Pm)Vc + Pm (16)

where n is the volume fraction exponent, Vc is the volume fraction of the ceramic, Pm represents the
material property of the metal, Pc represents the material property of the ceramic, and P denotes the
effective material property. In this work, the Young’s modulus E in Equation (13) varies according
to Equation (16) and the Poisson ratio v is assumed to be constant for the analysis of functionally
graded plates.

2.2. Fictitious Thin Layer between Adjacent Triangular Elements

According to the definition of the displacement approximation in Equation (5), the deformation
along the share boundary of the adjacent elements ei and ej is discontinuous, which means that
uei

(
xp, yp, zp

) �= uej
(

xp, yp, zp
)

for an arbitrary point p along the share boundary shown in Figure 2,
where point p has local coordinates

(
sp, np, zp

)
and global coordinates

(
xp, yp, zp

)
. Here, we introduce

a fictitious thin layer el shown in Figure 3 to enforce the continuous condition over the share boundary
of the elements. The geometry dimensions of el are the length l, width d, and height h, where d � l,
d � h, and h is the thickness of the plate in the transverse direction.

8
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Figure 3. A fictitious thin layer between adjacent triangular elements.

Because d � l and d � h, the strain–displacement relations εl = [γns, εn, γnz]
T in thin layer el

can be simplified as:

γns =
∂u
∂n

≈ upj − upi

d
, εn =

∂v
∂n

≈ vpj − vpi

d
, γnz =

∂w
∂n

≈ wpj − wpi

d
(17)

where upi
=

[
upi

, vpi
, wpi

]T
is the displacement of point p in the local coordinate (s, n, z) computed by

the approximation of triangular element ei, and upj
=

[
upj

, vpj
, wpj

]T
is the displacement of point p in

local coordinate (s, n, z) computed by the approximation of triangular element ej. upi
and upj

can be
calculated using Equation (5).

Substitution of Equation (5) into Equation (17) yields:

εl =
1
d

Nlal (18)

where
Nl = λl[−Nei

(
xp, yp, zp

)
Nej

(
xp, yp, zp

)]
(19)

where Nei
(
xp, yp, zp

)
is the shape function of point p in triangular element ei and Nej

(
xp, yp, zp

)
is the shape function of point p in triangular element ej. λl is the transformation matrix of point p from
the global coordinate

(
xp, yp, zp

)
to the local coordinate

(
sp, np, zp

)
, where:

λl =

⎡⎢⎣ cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎤⎥⎦ (20)

and

al =

[
aei

aej

]
(21)

where aei is the DOFs of element ei and aej is the DOFs of element ej.
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The stress–strain relations in fictitious thin layer el are then given by:

σl = Dlεl (22)

where σl = [τns, σn, τnz]
T and

Dl =

⎡⎢⎣ G0 0 0
0 E0 0
0 0 G0/k

⎤⎥⎦ (23)

where G0 = E
2(1+v) and E0 = E

1−v2 . Similar to Equation (13), the shear correction factor k is taken as
k = 1.2 for the special case of FiSDTPE, and k = 1.0 for the rest of the high-order shear deformation
plate elements, including the TrSDTPE and FfSDTPE, without the need to use a shear correction factor.

The width d of fictitious thin layer el is an important artificial parameter for the present HSDTPEs,
but it is easy to select a reasonable d to satisfy d � l and d � h for simplifying the strain–displacement
relations of thin layer el in Equation (17). Numerical studies show that the variation of d in a large
range has little effect on the accuracy of the calculation results. In this paper, width d is taken as
d = 0.0001l.

Thus, the strain energy of thin layer el can be derived as:

Πl =
1

2d

(
al
)T ∫ h/2

−h/2

(∫ l/2

−l/2

(
Nl

)T
DlNlds

)
dz al (24)

2.3. Imposing Displacement Boundary Condition

As illustrated in Figure 4, along boundary 1–2 of element ek, rotations
(
θs, θn

)
in the local

coordinate (s, n, z) or the displacements (u0, v0, w0) in the local coordinate (s, n, z) are fixed, where
(u0, v0, w0) represents the in-plane and transverse displacements at the mid-plane. A fictitious thin
layer eb over boundary 1–2 shown in Figure 4 is also introduced to enforce the displacement boundary
condition. We divide the displacement approximation in Equation (5) into two parts to the follow to
separately enforce the rotation and mid-plane displacement boundaries.

upr
(
sp, np, zp

) ≈ λbNr(xp, yp, zp
)
ar (25)

upt
(
sp, np, zp

) ≈ λbNt(xp, yp, zp
)
at (26)

where upr represents the displacement function of point p for rotations in triangular element ek, upt

represents the displacement function of point p for mid-plane displacements in triangular element ek,
and ar and at are the corresponding DOFs of element ek.

Nr =

⎡⎢⎣ 0 0 αzP2 0 g(z)P3
,x

0 0 0 αzP2 g(z)P3
,y

0 0 0 0 0

⎤⎥⎦ (27)

Nt =

⎡⎢⎣ P2 0 0 0 0

0 P2 0 0 0

0 0 0 0 P3

⎤⎥⎦ (28)

where “0” in bold in Equations (27) and (28) represents zero matrix , and λb is the transformation
matrix similar to Equation (20) where

λb =

⎡⎢⎣ cos ω sin ω 0
− sin ω cos ω 0

0 0 1

⎤⎥⎦ (29)

10
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Using the same derivation process as in Equation (24), the strain energy of the thin layer eb is
derived as:

Πb =
1

2d

∫ h/2

−h/2

∫ l/2

−l/2
[(ar)T(N

r
)

T
DrN

r
ar +

(
at)T

(N
t
)

T
DtN

t
at]dsdz (30)

where Db is calculated using Equation (23), N
r
= λbNr, and N

t
= λbNt.

Please refer to Cai and Zhu [55] for the detailed derivation of the displacement boundary condition
fixed at a point or the given displacement boundary condition.

Figure 4. Fixed displacement boundary condition.

2.4. Load Boundary Condition

A distributed force f0 =
[

0 0 fz (x, y)
]T

along the transverse direction z is applied at element
ed, as illustrated in Figure 5. By using Equation (5), the external force potential energy of element ed is
written as:

Π f = −(aed)T
�
Δed

(Ned)Tf0 dx dy (31)

where Ned is the shape function of element ed calculated by Equation (5), and aed is the DOFs of element ed.

Figure 5. Distributed transverse force.

11
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Similarly, a distributed resultant moment M0 =
[

Ms Msn 0
]T

is applied to the edge of
element em, as illustrated in Figure 6. By using Equation (5), the external force potential energy of
element em is written as:

Πm = −(aem)T
∫ l/2

−l/2

(
λmÑem

)T
M0 ds (32)

where aem is the DOFs of element em, and Ñem is the shape function of element em corresponding to the
moment, where:

Ñem =

⎡⎢⎣ 0 0 P2 0 0

0 0 0 P2 0

0 0 0 0 0

⎤⎥⎦ (33)

and the transformation matrix

λm =

⎡⎢⎣ cos β sin β 0
− sin β cos β 0

0 0 1

⎤⎥⎦ (34)

Figure 6. Moment boundary condition.

2.5. Equilibrium Equation

From Equations (14), (24), (30), (31), and (32), the total potential energy of a plate is obtained as:

Π = ∑
(

Πe+Πl + Πb + Π f + Πm
)

(35)

The variation of total potential energy Π results in the following discrete equation:

∂Π
∂a

= ∑
(

Keae + Klal + Kbab − Fed − Fem
)
= 0 (36)

where

Ke =
∫ h/2

−h/2

⎛⎝�
Δei

BTDBdx dy

⎞⎠dz (37)

12
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Kl =
1
d

∫ h/2

−h/2

(∫ l/2

−l/2

(
Nl

)T
DlNl ds

)
dz (38)

Kb =
1
d

∫ h/2

−h/2

∫ l/2

−l/2

[(
N

r
)T

DbN
r
+
(

N
t
)T

DbN
t
]

ds dz (39)

Fed =
�
Δem

(
N̂ed

)T
f0 dx dy (40)

Fem =
∫ l/2

−l/2

(
λmÑem

)T
M0 ds (41)

Assembling the above stiffness matrix and force vector, the equilibrium equation for a plate is
then obtained as:

K·U = F (42)

where K is the global stiffness matrix, F is the force vector, and U is the vector of DOFs to be solved.
As described in Senjanović et al. [4], the shear-locking problem could be well and naturally solved

because the bending angles of rotation and shear angles are treated as independent variables in HSDTs.
The regular full integration can be applied to make HSDTPEs valid for the thick-thin plates for the
computation of Equation (42), for instance, seven quadrature points for each triangular element [57],
four Gauss quadrature points for transverse direction z (where the analytical integration can also be
applied for the direction z), and four Gauss quadrature points for the local direction s of each fictitious
layer are used for the integration of the TrSDTPE using the third-order shear function g(z) [58–60].

3. Analysis of Cracked Plates

The present HSDTPEs are also applied to the calculation of Stress Intensity Factors (SIFs) of
cracked thick-thin plates. As illustrated in Figure 7, the mid plane of a cracked plate is taken as the
x-y plane and is divided into arbitrary triangular elements. Accurate computation of SIFs remains
challenging in the field of fracture mechanics. For plates loaded by a combination of bending and
tension, the SIFs can also be computed by the Virtual Crack Closure Technique (VCCT) [61–63], the
path-independent J-integral technique or interaction integral [64,65], and the stiffness derivative
method [66]. In this paper, the Virtual Crack Closure Technique (VCCT) [61–63] is employed to
calculate the SIFs of the cracked plate. For the convenience of implementing the VCCT, point T2 shown
in Figures 7 and 8 is temporarily moved to T3 along the extended line direction of T1 − T. In the
local coordinates (s, n, z) shown in Figure 9, the relative displacements [Δu(s, z), Δv(s, z), Δw(s, z)] of
T1 − T and the stresses [τns(s, z), σn(s, z), τnz(s, z)] of T − T1 can be easily calculated using Equations
(18) and (22) for the fictitious thin layer el . For example, assuming that the T1 − T is simulated by a
fictitious thin layer with width d shown in Figure 3, the relative displacements can be evaluated by
Δu(s, z) = γnsd, Δv(s, z) = εnd and Δw(s, z) = γnzd. Then, the energy release rate at crack tip T is
obtained by the VCCT as:⎧⎪⎪⎨⎪⎪⎩

GI ∼= 1
2hr0

∫ h/2
−h/2

∫ r0
0 σn(s, z)Δv(s − r0, z)ds dz

GII ∼= 1
2hr0

∫ h/2
−h/2

∫ r0
0 τns(s, z)Δu(s − r0, z)ds dz

GIII ∼= 1
2hr0

∫ h/2
−h/2

∫ r0
0 τnz(s, z)Δw(s − r0, z)ds dz

(43)

where GI is the energy release rate of crack mode I, GII is that of crack mode II, and GIII is that of crack
mode III. Then, the SIFs of the crack tip can be computed by means of the relations between the energy
release rate and SIFs for the plate theory, for instance, K1 =

√
3EGI [63].
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Figure 7. Triangular elements for a cracked plate.

Figure 8. Minor movement for the implementation of VCCT.

Figure 9. Calculating SIFs by VCCT.

4. Numerical Examples

4.1. Simply Supported Square Plate Subjected to Uniform Load

A simply supported square plate subjected to a uniform load q is tested to show the reliability
and convergence of the present elements. The side length of the plate is L, and the thickness of the
plate is h. A quarter of the plate is modeled as a result of symmetry, as illustrated in Figure 10. For the
isotropic plates, the in-plane displacements (u0, v0) and their DOFs in Equations (1), (2), and (5) are
neglected in the following analyses. The displacement boundary conditions of the present theory
along the simply supported edges in local coordinates are θs = 0 and w = 0. The n × n regular mesh
and irregular mesh illustrated in Figures 11 and 12 are employed for convergence studies.
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Figure 10. A quarter model of the square plate.

Figure 11. Regular 16 × 16 mesh for the square plate.

The elements DST-BL (Discrete Mindlin triangular plate element) [7] and RDKTM (Re-constituting
discrete Kirchhoff triangular plate element) [14] have been selected for comparison with the present
elements based on HSDTs. The reference solutions in the following Tables 1–6 are taken from
Long et al. [67], which are also labeled as analytical solutions in [67]. Table 1 lists the normalized

defection W0 = Wc/ qL4

100Db
of the simply supported square plate, where Wc is the central deflection of

the plate and Db = Eh3

12(1−v2)
. Table 2 reports the normalized bending moment M0 = Mc/ qL2

10 of the
simply supported square plate, where Mc is the central bending moment of the plate. The convergence
of the deflection for the simply supported square plate using different elements when the aspect ratio
h/L = 0.1 is shown in Figure 13. It is observed that all the present TrSDTPE, FfSDTPE, and FiSDTPE
shows a good convergence rate and high accuracy, and avoids the shear-locking problem. The results
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also indicate that the present elements are insensitive to element distortions of the irregular mesh
shown in Figure 12.

Figure 12. Irregular mesh for the square plate.

Table 1. Normalized deflection for the simply supported square plate.

h/L 0.001 0.01 0.10 0.15 0.20 0.25 0.30

TrSDTPE (4 × 4) 0.4027 0.4050 0.4266 0.4529 0.4897 0.5367 0.5941
TrSDTPE (8 × 8) 0.4058 0.4064 0.4273 0.4536 0.4903 0.5375 0.5949

TrSDTPE (16 × 16) 0.4063 0.4065 0.4274 0.4536 0.4904 0.5375 0.5950
TrSDTPE (Figure 12) 0.4063 0.4066 0.4274 0.4537 0.4904 0.5375 0.5950
FfSDTPE (16 × 16) 0.4063 0.4065 0.427 0.4528 0.4888 0.5350 0.5911
FiSDTPE (16 × 16) 0.4063 0.4065 0.4274 0.4537 0.4905 0.5379 0.5958
DST-BL (16 × 16) 0.4057 0.4059 0.4267 0.4529 0.4896 0.5367 0.5944
RDKTM (16 × 16) 0.4057 0.4059 0.4270 0.4532 0.4899 0.5371 0.5847

Ref. [67] 0.4064 0.4064 0.4273 0.4536 0.4906 0.5379 0.5956

Table 2. Normalized bending moment for the simply supported square plate.

h/L 0.001 0.01 0.10 0.15 0.20 0.25 0.30

TrSDTPE (4 × 4) 0.4266 0.4531 0.4741 0.4771 0.4785 0.4791 0.4794
TrSDTPE (8 × 8) 0.4633 0.4734 0.4786 0.4789 0.4791 0.4791 0.4791

TrSDTPE(16 × 16) 0.4759 0.4778 0.4788 0.4789 0.4789 0.4789 0.4789
TrSDTPE (Figure 12) 0.4807 0.4806 0.4807 0.4807 0.4807 0.4807 0.4807
FfSDTPE (16 × 16) 0.4757 0.4775 0.4788 0.4788 0.4788 0.4788 0.4788
FiSDTPE (16 × 16) 0.4762 0.4789 0.479 0.4790 0.4790 0.4790 0.4790
DST-BL (16 × 16) 0.4792 0.4788 0.4773 0.4770 0.4768 0.4767 0.4767
RDKTM (16 × 16) 0.4792 0.4790 0.4789 0.4790 0. 4790 0.4790 0.4790

Ref. [67] 0.4789

Table 3. Convergence of normalized deflection with different width-to-length ratios.

d/l 0.1 0.01 0.001 0.0001 0.00001 0.000001 0.0000001

TrSDTPE 0.5235 0.4371 0.4283 0.4274 0.4273 0.4273 0.4273
FfSDTPE 0.5229 0.4367 0.4279 0.4270 0.4269 0.4269 0.4269
FiSDTPE 0.5247 0.4372 0.4283 0.4274 0.4273 0.4273 0.4273
Ref. [67] 0.4273
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Table 4. Normalized deflection for the clamped square plate.

h/L 0.001 0.01 0.10 0.15 0.20 0.25 0.30

TrSDTPE (4 × 4) 0.1171 0.1241 0.1459 0.1708 0.2044 0.2463 0.2962
TrSDTPE (8 × 8) 0.1255 0.1266 0.1491 0.1757 0.2112 0.2553 0.3077

TrSDTPE (16 × 16) 0.1265 0.1268 0.1497 0.1766 0.2124 0.2569 0.3097
TrSDTPE (Figure 12) 0.1266 0.1268 0.1496 0.1764 0.2122 0.2567 0.3095
FfSDTPE (16 × 16) 0.1265 0.1268 0.1491 0.1750 0.2093 0.2516 0.3013
FiSDTPE (16 × 16) 0.1265 0.1268 0.1505 0.1788 0.2173 0.2659 0.3247
DST-BL (16 × 16) 0.1265 0.1267 0.1488 0.1756 0.2127 0.2601 0.3179
RDKTM (16 × 16) 0.1265 0.1267 0.1502 0.1784 0.2167 0.2650 0.3236

Ref. [67] 0.1265 0.1265 0.1499 0.1798 0.2167 0.2675 0.3227

Table 5. Comparisons of the normalized deflections with 3D FEM solutions for thick plates.

h/L 0.20 0.25 0.30

TrSDTPE (16 × 16) 0.2124(0.19%) 0.2569(−0.42%) 0.3097(−1.02%)
FfSDTPE (16 × 16) 0.2093(−1.27%) 0.2516(−2.48%) 0.3013(−3.71%)
FiSDTPE (16 × 16) 0.2173(2.50%) 0.2659(3.06%) 0.3247(3.77%)
DST-BL (16 × 16) 0.2127(0.33%) 0.2601(0.81%) 0.3179(1.60%)
RDKTM (16 × 16) 0.2167(2.22%) 0.2650(2.71%) 0.3236(3.42%)

3D FEM 0.2120 0.2580 0.3129

Note: Value in parentheses is the relative error with respect to 3D FEM.

Figure 13. Convergence of normalized deflection for the simply supported square plate.

The width-to-length ratio d/l of the fictitious thin layer el plays an important role in the present
formulations. Table 3 reports the effect of the ratio d/l on the normalized defection W0 for the simply
supported square plate, where 16 × 16 regular mesh and an aspect ratio of h/L = 0.1 are employed.
The results in Table 3 indicate that the artificial parameter d/l has little effect on the solution accuracy
when d/l ≤ 0.001, and it is easy to select a reasonable d in the current formulation. In this work,
width d is taken as d = 0.0001l. The condition numbers of the global stiffness matrices of the simply
supported square plate using the present elements are also computed and reported in Figure 14.
As seen, the variation of the condition number in Figure 14 reflects that the present elements show a
good conditioning and stability in the case of mesh refinement.
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Figure 14. Variation of condition number versus number of elements.

Table 6. Normalized deflection for the clamped circular plate.

h/L 0.001 0.01 0.10 0.15 0.20 0.25 0.30

TrSDTPE (32) 1.3964 1.5225 1.6029 1.6846 1.798 1.9428 2.1187
TrSDTPE (128) 1.5441 1.5572 1.6262 1.7119 1.8312 1.9835 2.1682
TrSDTPE (512) 1.5607 1.5622 1.6316 1.7186 1.8394 1.9935 2.1801

TrSDTPE (2048) 1.5626 1.5632 1.6330 1.7203 1.8414 1.9957 2.1825
FfSDTPE (2048) 1.5620 1.5632 1.6315 1.7166 1.8343 1.9836 2.1637
FiSDTPE (2048) 1.5623 1.5633 1.6340 1.7233 1.8483 2.0090 2.2054
DST-BL (2048) 1.5634 1.5642 1.6452 1.7385 1.8665 2.0293 2.2273
RDKTM (2048) 1.5634 1.5640 1.6346 1.7239 1.8490 2.0098 2.2063

Ref. [67] 1.5625 1.5632 1.6339 1.7232 1.8482 2.0089 2.2054

4.2. Clamped Square Plate Subjected to Uniform Load

A clamped square plate subjected to a uniformly distributed load q is further investigated to
test the performance of the present elements for clamp boundary conditions. The geometry and
material parameters of the clamped plate are the same as those of the above simply supported plate.
The displacement boundary conditions of the present theory along the clamped edges in Figure 10 in
local coordinates are θs = 0, θn = 0 and w = 0.

The results for the normalized central deflection W0 of the clamped square plate are compared in
Table 4. It is seen that, for the plate with the clamped boundary conditions, the predictions of FiSDTPE,
DST-BL, and RDKTM based on FSDT agree well with the reference solutions [67] for plates, but the
TrSDTPE and FfSDTPE based on HSDTs seem to underestimate the deflections compared with the
reference solutions [67] for thick plates of h/L ≥ 0.2. To further illustrate the accuracy of the present
shear elements, the comparisons of the predictions by different elements and the solutions by 3D
elasticity FEM software ANSYS using 20-nodes hexahedron isoparametric element and an element
side length of 0.05 are listed in Table 5. By taking the 3D FEM solutions as the benchmark, Table 5
indicates that the present TrSDTPE and FfSDTPE show better solution accuracy than the elements
DST-BL, RDKTM, and FiSDTPE based on FSDT for the plates involving clamp boundaries. Moreover,
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the TrSDTPE with a third-order shear function g(z) shows the best solution accuracy among all the
elements for the clamped plate.

The DOFs of the different methods employed in Table 5 are compared by taking the case of
h/L = 0.3 for the clamped plate. Assuming that a 16 × 16 regular mesh is employed for the plate
element discretization and a 16 × 16 × 9 regular mesh for the 20-nodes hexahedron 3D element
discretization, we can see that the total DOFs of the DST-BL/RDKTM element, HSDTs, and 3D
20-nodes hexahedron element are 867, 17408, and 41337, respectively. It is seen that the total DOFs
and the efficiency of HSDTs are between the DST-BL/RDKTM and the 3D FEM. Although the number
of DOFs only decreases to 42% of the 3D FEM method, the present 2D HSDTs have the advantage of
simplicity and flexibility in the mesh generation compared with 3D FEM for the plates with different
thicknesses. Compared with other 2D plate elements such as DST-BL and RDKTM, the computational
DOFs of the present 2D HSDTs seem to be relatively higher, but the formulation and the numerical
implementation of the high-order shear deformation theory in the present HSDTs are much simpler
than those of the DST-BL/RDKTM. From the point of view of the 2D analysis, the total computational
cost of the present elements is bearable and worthy in terms of its advantages in formulation and
implementation. HSDTs which have almost the same computational efficiency of DST-BL/RDKTM
could also be constructed using the reduced integral method similar to our previous work [55], but
the present HSDTs avoiding the reduced integration by paying a certain computational cost are more
practicable in engineering analysis.

4.3. Clamped Circular Plate Subjected to Uniform Load

A clamped circular plate subjected to a uniformly distributed load q is taken into consideration in
this section. The thickness of the plate is h. The radius of the plate is r = 100. A quarter of the plate with
symmetry conditions on axes x and y is modeled in Figure 15. The displacement boundary conditions
of the present theory along the clamped edges in local coordinates are θs = 0, θn = 0, and w = 0.
Divisions of 32, 128, 512, and 2048 triangular elements are employed for the convergence studies.
Typical meshes of 512 and 2048 triangular elements for the circular plate are shown in Figure 16.

The results for normalized deflection W0 = Wc/ qr4

100Db
of the clamped circular plate are listed in Table 6,

where Wc is the central deflection of the circular plate. Again, an excellent agreement between the
present solutions and the reference solutions is observed for this problem.

Figure 15. Model of the circular plate.
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Figure 16. Typical meshes for the circular plate.

4.4. Rectangular Plate Involving a Center Crack

Consider a rectangular plate involving a center crack as shown in Figure 17. The material
properties are E = 1.0 × 106 Pa and v = 0.3. The width and length are 2b = 1m and 2c = 2m,
respectively. The crack length is 2a and the plate thickness is h. Divisions of 2728 and 7338 triangular
elements are employed for the calculation of SIFs of the center crack plate. The displacement and
moment boundary conditions are also illustrated in Figure 17. The numerical results obtained by
TrSDTPE, FfSDTPE, and FiSDTPE for different a/h values are reported in Table 7, along with the
reference solutions by Tanaka et al. [68] and Boduroglu et al. [69] based on FSDT for comparison.
In Tanaka et al. [68], a cracked plate is analyzed by employing the mesh-free reproducing kernel
approximation formulated by Mindlin-Reissner plate theory, and the moment intensity factor is
evaluated by the J-integral with the aid of nodal integration. In Boduroglu et al. [69], the crack problem
is solved by the dual boundary element method based on Reissner plate formulation, and the stress
resultant intensity factor is calculated by employing the J-integral techniques. The SIFs in Table 7 are

normalized by F1 = h2K1
6M

√
πa . It is observed that the present elements show a high solution accuracy for

the calculation of the SIFs.

Table 7. Normalized SIFs F1 for the center cracked plate.

a/h 0.8 (0.2/0.25) 1.0 (0.25/0.25) 4.0 (0.2/0.05) 5.0 (0.25/0.05)

TrSDTPE (2728) 0.8577 0.8981 0.7235 0.7602
TrSDTPE (7338) 0.8589 0.9005 0.7243 0.7622
FfSDTPE (7338) 0.8548 0.8968 0.7224 0.7610
FiSDTPE (7338) 0.8627 0.9036 0.7266 0.7633

Tanaka [68] 0.8683 0.9096 0.7287 0.7663
Boduroglu [69] 0.8694 0.9094 0.7347 0.7702
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Figure 17. Model of the center cracked plate.

4.5. Symmetric Edge Cracks in a Rectangular Plate

As illustrated in Figure 18, a rectangular plate with symmetric double edge cracks is analyzed
in this example. The geometry dimensions, material properties, and boundary conditions are the
same as those of the center cracked problem described in Section 4.4. The crack length is a and the
plate thickness is h. Division of 2728 triangular elements shown in Figure 17 is also employed for this
analysis. The normalized SIFs obtained by the present elements for different values of d/b and b/h
are presented in Tables 8 and 9, along with reference solutions [68,69]. The numerical methods and
plate theories for solving the problem are the same as the above rectangular plate problem involving a
center crack. As expected, the present results are in good agreement with the reference solutions.

Table 8. Normalized SIFs F1 for the symmetric edge cracks problem (b/h = 2.0).

d/b 0.2 0.3 0.4 0.5 0.6

TrSDTPE 1.3429 1.1024 0.9739 0.9016 0.8601
FfSDTPE 1.3353 1.0971 0.9697 0.8990 0.8568
FiSDTPE 1.3502 1.1070 0.9776 0.9028 0.8629

Tanaka [68] 1.3719 1.1201 0.9886 0.9110 0.8706
Boduroglu [69] 1.3689 1.1174 0.9844 0.9086 0.8673
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Figure 18. Model of symmetric edge cracks.

Table 9. Normalized SIFs F1 for the symmetric edge cracks problem (b/h = 10.0).

d/b 0.2 0.3 0.4 0.5 0.6

TrSDTPE 1.0966 0.9156 0.8201 0.7687 0.7317
FfSDTPE 1.0941 0.9140 0.8187 0.7690 0.7306
FiSDTPE 1.0995 0.9173 0.8218 0.7656 0.7328

Tanaka [68] 1.1144 0.9225 0.8246 0.7697 0.7377
Boduroglu [69] 1.1140 0.9250 0.8268 0.7692 0.7351

4.6. Simply Supported FG Plate

In this section, a simply supported FG plate subjected to a uniformly distributed load q is
analyzed and compared. The FG plate is comprised of aluminum (Em = 70 GPa, vm = 0.3) and ceramic
(Ec = 151 GPa, vc = 0.3). The side length of the plate is L = 1m, and the thickness of the plate is h.
A quarter of the FG plate is modeled as a result of symmetry, as shown in Figure 19. The displacement
boundary conditions for the symmetric and simply supported sides in local coordinates are also
illustrated in Figure 19. The 16 × 16 regular mesh similar to Section 4.1 is employed for computation.
Tables 10 and 11 list the normalized defection W0 of the FG plate for different aspect ratios h/L and

different exponents n in Equation (15), where W0 = Wc/ qL4

Emh3 and Wc is the central deflection of the
plate. In Ferreira et al. [45], the FG plate is solved by the meshless collocation method with multiquadric
radial basis functions and a third-order shear deformation theory. The problem is also solved by Talha
and Singh [70] using the C0 isoparametric finite element with 13 degrees of freedom per node, and the
power-law similar to Equations (15) and (16) is used to describe the through-the-thickness distribution
of FG materials in the HSDT model. The results obtained by the present TrSDTPE, FfSDTPE, and
FiSDTPE are in good agreement with the meshless solutions of Ferreira et al. [45], which compute the
effective elastic moduli by the rule of mixture.

22



Appl. Sci. 2018, 8, 975

Figure 19. Modal of the FG plate.

Table 10. Normalized deflection for the FG plate (h/L = 0.2).

Exponent n TrSDTPE FfSDTPE FiSDTPE Ferreira et al. [45] Talha & Singh [70]

0.0 (ceramic) 0.0248 0.0247 0.0248 0.0248 0.0250
0.5 0.0314 0.0313 0.0315 0.0314 0.0319
1.0 0.0352 0.0351 0.0353 0.0352 0.0358
2.0 0.0389 0.0388 0.0387 0.0388 0.0393

Metal 0.0535 0.0534 0.0536 0.0534 0.0541

Table 11. Normalized deflection for the FG plate (h/L = 0.05).

Exponent n TrSDTPE FfSDTPE FiSDTPE Ferreira et al. [45]

0.0 (ceramic) 0.0208 0.0208 0.0208 0.0208
0.5 0.0266 0.0266 0.0266 0.0265
1.0 0.0298 0.0298 0.0298 0.0297
2.0 0.0325 0.0325 0.0325 0.0324

Metal 0.0449 0.0449 0.0449 0.0448

5. Conclusions

In this work, a series of novel HSDTPEs using incompatible polynomial approximation are
developed for the analysis of isotropic thick-thin plates and through-thickness functionally graded
plates. The HSDTPEs are free from shear-locking, avoid the use of a shear correction factor, and
provide stable solutions for thick and thin plates. The present formulation, which defines the element
approach with incompatible polynomials and avoids the need to satisfy the requirement of high-order
continuity in approximation fields in HSDTs, also provides a new way and methodology to develop
simple plate/shell elements based on HSDTs. The accuracy and robustness of the present elements are
well demonstrated through various numerical examples.

Only two types of HSDTPEs including TrSDTPE and FfSDTPE, and one special type of first-order
shear deformation triangular plate element FiSDTPE, have been studied and discussed in the paper.
The present formulation can be further extended to plates and shells with arbitrary shapes of
elements, and further applied to more general problems related to the shear deformable effect
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such as the thermomechanical, vibration, and buckling analysis of functionally graded plates and
laminated/sandwich structures.
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Abstract: In the present publication, the performance of an implicit gradient-enhanced damage-plasticity
model is evaluated with special focus on the prediction of complex failure modes such as shear failure.
Hence, it complements studies on predominant mode I failure frequently found in the literature. To this
end, an implicit gradient-enhanced damage-plasticity rock model is presented and validated by
means of 2D and 3D finite element simulations of both laboratory tests on intact rock specimens as
well as a large-scale structural benchmark related to failure of rock mass. Thereby, a wide range of
loading conditions comprising unconfined and/or confined, tensile and/or compressive stress states
is considered. The capability of the gradient-enhanced rock model for representing the mechanical
response objectively with respect to the finite element discretization and realistically compared
to measurement data is assessed. It is shown that complex failure modes and the respective
load–displacement curves are predicted in a mesh-insensitive manner.

Keywords: screened-Poisson model; gradient-enhanced model; damage-plasticity model; implicit
gradient-enhancement; rock; shear failure

1. Introduction

The appropriate representation of complex failure modes of cohesive-frictional materials in
numerical simulations is of great interest for many engineering applications, which include, among
others, geotechnical applications characterized by material failure playing a dominant role in the
overall structural response [1,2]. A prominent example of material failure under highly confined stress
states is given in the context of tunnel construction: During the construction of deep tunnels, high
geostatic stresses in the surrounding rock mass are redistributed in consequence of the excavation
process [3,4]. Depending on the quality of the surrounding rock mass, the installed supporting
measures, and the type of excavation process, those stress redistributions can lead to damage in
the rock mass, often accompanied by the transition from the rock mass as a continuum to rock blocks
moving towards the tunnel center with localized shear bands indicating the sliding interfaces. It follows
that an adequate representation of such failure phenomena by means of advanced constitutive models
is of great importance and a prerequisite for the risk assessment of potential structural collapse.

Constitutive models based on the combination of the theory of plasticity and continuum damage
mechanics, simply denoted as damage-plasticity models, provide a powerful framework for describing
inelastic deformations, hardening and softening material behavior, as well as stiffness degradation
due to damage. They are well suited for the description of cohesive-frictional materials such as
concrete, rock, and soils, since different types of material failure, e.g., cracking in tension, crushing in
compression, or failure under mixed stress states, can be described in a realistic manner [5]. On the
basis of damage-plasticity models, the material behavior is described in terms of mere continuum
relations, i.e., constitutive relations describing the behavior of an infinitesimal material point. However,
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softening material behavior, described in terms of continuum models, exhibits several theoretical
deficiencies, as reported and summarized in [6]:

• the softening process zone is infinitesimally small;
• at structural level, snapback behavior due to the infinitesimally small softening zone is observed;
• the dissipated energy during the failure process is zero due to the infinitesimal zone in which

energy is dissipated.

In a mathematical sense, those issues are related to the loss of ellipticity of the initial boundary
value problem (IBVP) in static and quasi-static analyses. In finite element analyses, those deficiencies
lead to mesh-dependent results, commonly referred to as a pathological mesh sensitivity. Failure patterns
like cracks tend to localize into the smallest possible bandwidth, i.e., usually a single layer of finite
elements, and upon mesh refinement the localization zone is decreasing to an arbitrarily small domain.
Accordingly, the obtained results are not objective with respect to the finite element mesh, i.e., the results
are sensitive with respect to the numerical discretization scheme. In the past decades, several techniques
to overcome these deficiencies in numerical simulations have been proposed, for instance the crack
band approach based on a mesh-adjusted softening modulus [7], nonlocal approaches of the integral
type [8], models based on the Cosserat continuum [9], viscoplastic formulations [10], phase field
models [11], and explicit and implicit gradient-enhanced formulations [12].

Among these approaches, models based on implicit gradient-enhanced formulations by now
form a well-established branch in the literature due to their computational efficiency and numerical
stability [12]. Numerous implicit gradient-enhanced damage and plasticity models have been proposed
in recent years [13–21], and their performance has been demonstrated based on different examples of
material failure. In particular, many gradient-enhanced models have been developed explicitly for
concrete [13,16,17,21], and special attention has been paid to the proper representation of cracking
under predominantly tensile stress states [17,22]. However, while cracking in tension (cf. Figure 1 left)
is an important failure mode for concrete structures, considerably less attention was paid to shear
failure (cf. Figure 1 right), i.e., pure mode II failure, or mixed failure under confined stress states. In fact,
many of the available models have been validated based on examples of mode I failure, and often it is
tacitly assumed that they perform equally well for more complex failure modes.

Figure 1. Schematic illustration of two characteristic failure modes (according to [23]): tensile failure
(opening mode, left) and shear failure (sliding mode, right).

The apparent gap in the literature on the assessment of gradient-enhanced models for describing
such complex failure modes motivates a systematic investigation of a gradient-enhanced constitutive
model applied to different types of material failure. To this end, in the present contribution,
a gradient-enhanced damage-plasticity model for rock is proposed and evaluated. This model is
considered as a representative for a wide class of gradient-enhanced damage-plasticity models.
The model is based on the damage-plasticity model by Unteregger et al. [24], and its damage
formulation is extended following the implicit gradient-enhanced approach proposed by Poh and
Swaddiwudhipong [17]. Based on numerical examples involving complex failure modes, the capability
of the model to capture different types of material failure in a realistic and objective manner in finite
element simulations will be demonstrated.

The remainder of the paper is organized as follows: In Section 2, the original damage-plasticity
model for intact rock and rock mass, proposed in [24,25], is briefly summarized. In Section 3, the implicit
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gradient-enhancement of the rock model is presented, and the numerical implementation into a finite
element framework is discussed. Section 4 covers numerical simulations of laboratory tests including
wedge splitting tests as well as triaxial compression tests and triaxial extension tests with various levels
of confining pressure. Additionally, a benchmark example of tunnel excavation will be presented,
and the representation of complex failure modes in an objective manner with respect to the employed
finite element mesh will be demonstrated. Finally, in Section 5, the paper is closed with a summary
and a discussion on recommended future research activities.

2. Damage-Plasticity Model for Intact Rock and Rock Mass

The damage-plasticity model for intact rock and rock mass, denoted as RDP model in the
following, was proposed originally for intact rock in [24] and was further extended to rock mass
in [25] by incorporating empirical down-scaling factors to account for the influence of discontinuities
according to [26–28].

The RDP model is based on the theory of plasticity formulated in the effective stress space
combined with continuum damage mechanics. The stress-strain relation is expressed as

σ = (1 − ω)C : (ε − εp) (1)

in which σ describes the nominal Cauchy stress tensor (force per total area), ω the scalar isotropic
damage parameter ranging from 0 (undamaged material) to 1 (fully damaged material), C the fourth
order elastic stiffness tensor, ε the total strain tensor, and εp the plastic strain tensor. The effective stress
tensor σ̄ (force per undamaged area) is linked to the nominal stress tensor by

σ = (1 − ω) σ̄ (2)

The elastic domain is bounded by the smooth Hoek–Brown yield criterion [29,30] formulated in
the Haigh–Westergaard coordinates of the effective stress tensor, i.e., the mean stress σ̄m, the deviatoric
radius ρ̄, and the Lode angle in the deviatoric plane θ. In addition, a stress-like hardening variable
qh(αp) is incorporated leading to the definition of the yield function fp as

fp(σ̄, qh(αp)) =

(
1 − qh(αp)

f 2
cu

(
σ̄m +

ρ̄√
6

)2
+

√
3
2

ρ̄

fcu

)2

+
q2

h(αp)

fcu

mb

m0
m0

(
σ̄m + r(θ, e)

ρ̄√
6

)
− s q2

h(αp) (3)

Therein, fcu is the uniaxial compressive strength, m0 is the friction parameter, r(θ, e) is the
Willam–Warnke function to describe the shape of the yield surface in deviatoric planes, and parameters
mb/m0 and s are empirical down-scaling factors to account for discontinuities in rock mass, the latter
depending on the geological strength index GSI and the disturbance factor D according to [26].
A default value for the eccentricity e of 0.51 is proposed in [24]. For representing material behavior of
intact rock, mb/m0 and s are equal to 1.

The flow rule for describing the evolution of plastic strains is defined in the effective stress space as

ε̇p = λ̇
∂gp(σ̄, qh(αp))

∂σ̄
(4)

with λ̇ denoting the consistency parameter and gp(σ̄, qh(αp)) the non-associated plastic potential
function expressed as

gp(σ̄, qh(αp)) =

(
1 − qh(αp)

f 2
cu

(
σ̄m +

ρ̄√
6

)2
+

√
3
2

ρ̄

fcu

)2

+
q2

h(αp)

fcu

(
mg1,rm σ̄m + mg2,rm

ρ̄√
6

)
(5)

Therein, volumetric plastic flow is controlled by dilatancy parameters mg1,rm and mg2,rm.
In the expression for mg1,rm = (mb/m0)mg1, mg1 is calibrated from experimental results (uniaxial
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tension, uniaxial compression, and triaxial compression tests) of intact rock specimens and mg2,rm is
determined from

mg2,rm = 2 mg1,rm − 6 ftu/ fcu (6)

such that the lateral plastic strain rate in uniaxial tension is zero. Uniaxial tensile strength ftu is
calculated from (3) as

ftu = −mb/m0 m0 fcu (e + 1)
6e

+

√(
mb/m0 m0 fcu (e + 1)

6e

)2

+ s f 2
cu (7)

Hardening material behavior is described by means of the stress-like internal variable

qh(αp) =

{
fcy/ fcu + (1 − fcy/ fcu) αp (α2

p − 3 αp + 3) if αp < 1

1 if αp ≥ 1
, (8)

which is conjugate to the strain-like hardening variable αp and contains the yield stress in uniaxial
compression fcy. The evolution law for the strain-like hardening variable αp is given as

α̇p = λ̇
Erm

Ei

1
xh(σ̄m)

(
1 + 3

ρ̄2

ρ̄2 + f 2
cu · 10−8 cos2(3 θ/2)

) ∥∥∥∥∂gp(σ̄, qh(αp))

∂σ̄

∥∥∥∥ (9)

in which
∥∥∂gp(σ̄, qh(αp))/∂σ̄

∥∥ is the norm of the gradient of the plastic potential function with respect
to effective stress, Erm/Ei denotes the reduction of the Young’s modulus of rock mass compared to
intact rock [26] ranging from 0 (completely disintegrated) to 1 (intact rock), and xh(σ̄m) is a measure
for describing hardening ductility, defined as

xh(σ̄m) =

⎧⎨⎩(Bh − Dh) exp
(

Rh (Ah−Bh)
Ch (Bh−Dh)

)
+ Dh if Rh < 0

Ah − (Ah − Bh) exp (−Rh/Ch) if Rh ≥ 0
(10)

with Rh = −σ̄m/ fcu − Gh. In (10), model parameters Ah, Bh, Ch, Dh, and Gh control the hardening
behavior. They are calibrated by experimental data from uniaxial tension, uniaxial compression,
and triaxial compression tests. In [24,25], default values of Bh = 10−5, Dh = 10−6 and Gh = 0 are
suggested in absence of respective experimental data.

Damage is provoked when the hardening variable qh(αp) attains its maximum value of 1. At this
stage, the scalar isotropic damage parameter ω starts evolving dependent on the strain-like internal
softening variable αd. This relation is described by means of an exponential softening law as

ω(αd) = 1 − exp(−αd/εf) (11)

with the softening modulus εf controlling the slope of the softening curve. The rate of the strain-like
internal softening variable αd is computed from the volumetric part of the plastic strain rate
ε̇p,vol = tr(ε̇p) as

α̇d =

{
0 if αp < 1

ε̇p,vol/xs(ε̇p,vol) if αp ≥ 1
(12)

Therein, the softening ductility measure

xs(ε̇
p,vol) = 1 + As

(
ε̇

p,vol
� /ε̇p,vol

)Bs
(13)
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accounts for the influence of multi-axial stress states on the softening behavior, with ε̇
p,vol
� = tr(〈−ε̇p〉)

describing the compressive part of the volumetric plastic strain rate. Model parameters As and Bs

are calibrated from experimental data of uniaxial compression and triaxial compression tests. Again,
in absence of respective experimental data for parameters As and Bs, default values of As = 15 and
Bs = 2 are proposed in [24].

3. Implicit Gradient-Enhancement of the Damage-Plasticity Model for Intact Rock and Rock Mass

Softening material behavior leads to an ill-posed initial boundary value problem and consequently
to pathological mesh-sensitivity in finite element simulations. As a remedy, in [24], the crack band
approach was employed for the RDP model. While the crack band approach is a rather simple
regularization technique, it is also characterized by a number of shortcomings, which are addressed
in [31]. Motivated by those deficiencies, in the following, a more sophisticated regularization technique
based on the implicit gradient-enhanced formulation [32] is presented. To this end, the approach by
Poh and Swaddiwudhipong [17] proposed for a damage-plasticity model for concrete and based on
the gradient of the internal softening variable, is adopted. By incorporating the gradient of an internal
variable into the constitutive relations, nonlocality is introduced. Thus, the mechanical response of
a material point does not exclusively depend on its local state, but is also influenced by the state in
its neighborhood.

Nonlocality is incorporated by replacing the local softening variable αd by a weighted softening
variable α̂d in the exponential damage law (11), which is expressed as

ω(α̂d) = 1 − exp(−α̂d/εf) (14)

Therein, the softening modulus εf is a material parameter. The weighted softening variable α̂d is
calculated from a combination of the local softening variable αd and its nonlocal counterpart ᾱd as

α̂d = m ᾱd + (1 − m) αd (15)

in which m denotes a weighting parameter. Choosing m larger than 1 yields the over-nonlocal
formulation [33] to achieve full regularization of the problem, as proven in [34]. Furthermore,
by ensuring that α̂d can only increase, damage is considered as an irreversible process [35].

According to the implicit approach, the field of the nonlocal softening variable ᾱd, henceforth
simply denoted as the nonlocal field, is defined implicitly as the solution of a higher-order partial
differential equation. Adopting the formulation by Poh and Swaddiwudhipong [17], for the description
of the nonlocal field a second order partial differential equation is employed as

ᾱd − l2 Δᾱd = αd in Ω (16)

in which l denotes a length scale parameter defining the radius of nonlocal interaction, Δ is the Laplace
operator and αd represents the local softening variable of (12), and Ω is the spatial domain occupied by
the body under consideration. Equation (16) is a screened-Poisson equation, commonly denoted as the
Helmholtz equation in the context of implicit gradient-enhanced formulations [12,36]. It is apparent
that nonlocality affects only the damage part of the model and the plasticity part of the RDP model
remains local.

As suggested in [32,37], homogeneous Neumann boundary conditions are assumed as ∇ᾱd ·n = 0
on the entire boundary Γ of the domain with the normal vector to the boundary n. This boundary
condition was interpreted in [38] in the context of phase-field models enforcing cracks to occur
perpendicular to the boundary.

The set of governing equations is completed by the equilibrium equation

∇ · σ + f̄ = 0 in Ω (17)
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in which f̄ is the vector of body forces. For the boundary conditions, the surface traction vector t̄ = σ · n

on Γt and prescribed displacements u = ū on Γu are assumed.
Partial differential Equations (16) and (17) form a fully coupled system with the unknown

displacement vector u and the nonlocal field ᾱd, which is solved by means of the finite element
method. To this end, the weak form is formulated, which is subsequently discretized in space and in
time. To obtain the weak form, the set of partial differential equations is multiplied by test functions
δu for the displacement field and δᾱd for the nonlocal field. Integration over the domain, application
of the divergence theorem, incorporation of the infinitesimal strain ε, and consideration of δu = 0 on
Γu yields the weak form of the IBVP expressed in Voigt notation as∫

Ω
δεᵀσ dΩ −

∫
Γt

δuᵀ t̄ dΓ −
∫

Ω
δuᵀ f̄ dΩ = 0 , (18)∫

Ω
δᾱd ᾱd dΩ +

∫
Ω

l2 (∇δᾱd)
ᵀ ∇ᾱd dΩ −

∫
Ω

δᾱd αd dΩ = 0 . (19)

The displacement field u and the nonlocal field ᾱd are approximated over the domain using a
Bubnov-Galerkin approach as

u = Nu qu (20)

ᾱd = Nᾱd qᾱd (21)

in which N(•) contains the shape functions and q(•) are column vectors of the nodal unknown
parameters, both expressed in the global form employing the standard assembly procedure, with (•)
standing for the displacement field u and the nonlocal field ᾱd, respectively. The infinitesimal strain ε

and the gradient of the nonlocal field ∇ᾱd are discretized as

ε = Bu qu (22)

∇ᾱd = Bᾱd qᾱd (23)

with the strain-displacement matrix Bu and the row vector of the spatial derivatives of the shape
functions for the field of the nonlocal softening variable Bᾱd , again both expressed in the global form
employing the standard assembly procedure. It follows that the shape functions for both fields must
meet the requirement of C0-continuity.

Due to the nonlinear and path-dependent character of the IBVP, an incremental solution procedure
is employed. For the incremental solution procedure, a discrete (pseudo-)time interval [t(n−1), t(n)] is
considered such that the body under consideration is in equilibrium at time t(n−1). At this time,
the nodal values q(n−1)

u and q(n−1)
ᾱd

, the stress σ(n−1) and the internal variables α(n−1)
p and α(n−1)

d are known.
An incremental load is applied such that the traction vector and the vector of body forces at time t(n)

are prescribed as t̄(n) = t̄(n−1) + Δt̄(n) and f̄(n) = f̄(n−1) + Δf̄(n). The updated variables of the constitutive
relations at time t(n), i.e., σ(n), α(n)

p , α(n)
d , are evaluated by means of a stress-update algorithm, employing

an implicit integration scheme following the return-mapping approach [39] for the plastic regime and
a subsequent explicit evaluation of the damage part. Finally, the incremental discretized weak form is
obtained as ∫

Ω

(
δq(n)

u

)ᵀ
B
ᵀ
u σ(n) dΩ︸ ︷︷ ︸

(δq(n)
u )

ᵀ
fu

int(q
(n)
u ,q(n)

ᾱd
)

−
∫

Γt

(
δq(n)

u

)ᵀ
N

ᵀ
u t̄(n) dΓ −

∫
Ω

(
δq(n)

u

)ᵀ
N

ᵀ
u f̄(n) dΩ︸ ︷︷ ︸

(δq(n)
u )

ᵀ
fu,(n)

ext

= 0 , (24)

∫
Ω

(
δq(n)

ᾱd

)ᵀ
N

ᵀ
ᾱd

Nᾱd q(n)
ᾱd

dΩ +
∫

Ω
l2
(

δq(n)
ᾱd

)ᵀ
B
ᵀ
ᾱd

Bᾱd q(n)
ᾱd

dΩ −
∫

Ω

(
δq(n)

ᾱd

)ᵀ
N

ᵀ
ᾱd

α(n)
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(δq(n)
ᾱd
)
ᵀ

Rᾱd(q(n)
u ,q(n)

ᾱd
)

= 0 . (25)
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Since Equations (24) and (25) must hold for arbitrary kinematically admissible test functions δq(n)
u

and δq(n)
ᾱd

, they can be recast into the residual format as

Ru

(
q(n)

u , q(n)
ᾱd

)
= fu

int

(
q(n)

u , q(n)
ᾱd

)
− fu,(n)

ext = 0 (26)

Rᾱd

(
q(n)

u , q(n)
ᾱd

)
= 0 (27)

with fu
int and fu,(n)

ext denoting internal and external force vectors related to the displacement field, and
Rᾱd is the residual vector for the nonlocal field. Due to the nonlinear dependence of the system of
Equations (26) and (27) on the unknown nodal solution vector

q(n) =
[
q(n)

u q(n)
ᾱd

]ᵀ
, (28)

an iterative Newton–Raphson solution procedure is employed. The nodal unknowns at time t(n)

in the i-th iteration step are composed of q(n,i) = q(n−1) + Δq(n,i), where Δq(n,i) has to be determined.
Linearization of Equations (26) and (27) at the state q(n,i−1) with the initial guess of the nodal unknowns
q(n,0) = q(n−1) yields the iterative procedure for the correction of the nodal unknowns ΔΔq(n,i) for time
t(n) after the i-th iteration step

[
K(n,i−1)

uu K(n,i−1)
uᾱd

K(n,i−1)
ᾱdu K(n,i−1)

ᾱdᾱd

] [
ΔΔq(n,i)

u
ΔΔq(n,i)

ᾱd

]
=

⎡⎣−Ru

(
q(n,i−1)

u , q(n,i−1)
ᾱd

)
−Rᾱd

(
q(n,i−1)

u , q(n,i−1)
ᾱd

)⎤⎦ , (29)

with the submatrices of the system matrix given as

K(n,i−1)
uu =

∂Ru

∂q(n)
u

∣∣∣∣∣
q(n,i−1)

u

=
∫

Ω
B
ᵀ
u

∂σ(n)

∂ε(n)

∣∣∣∣
ε(n,i−1)

Bu dΩ (30)

K(n,i−1)
uᾱd

=
∂Ru

∂q(n)
ᾱd

∣∣∣∣∣
q(n,i−1)

ᾱd

=
∫

Ω
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ᵀ
u

∂σ(n)

∂ᾱ(n)
d

∣∣∣∣∣
ᾱ(n,i−1)

d

Nᾱd dΩ (31)

K(n,i−1)
ᾱdu =

∂Rᾱd

∂q(n)
u

∣∣∣∣∣
q(n,i−1)

u

= −
∫

Ω
N

ᵀ
ᾱd

∂α(n)
d

∂ε(n)

∣∣∣∣∣
ε(n,i−1)

Bu dΩ (32)

K(n,i−1)
ᾱdᾱd

=
∂Rᾱd

∂q(n)
ᾱd

∣∣∣∣∣
q(n,i−1)

ᾱd

=
∫

Ω
l2 B

ᵀ
ᾱd

Bᾱd dΩ +
∫

Ω
N

ᵀ
ᾱd

Nᾱd dΩ (33)

in which ∂σ(n)/∂ε(n), ∂σ(n)/∂ᾱ(n)
d , and ∂α(n)

d /∂ε(n) are the consistent tangent stiffness submatrices.
They represent the derivatives of the constitutive relations consistent with the numerical algorithm
for integrating the path-dependent rate constitutive equations, which is essential for the full
Newton–Raphson scheme in order to preserve a quadratic rate of convergence. Due to the
non-associated plastic flow rule of the RDP model and the coupling of the displacement field and the
nonlocal field, the system matrix is unsymmetric. From the computed correction of the nodal unknowns
ΔΔq(n,i), the updated solutions of the incremental nodal unknowns, Δq(n,i) = Δq(n,i−1) + ΔΔq(n,i) and
the total nodal unknowns q(n,i) = q(n−1) + Δq(n,i) are obtained.

4. Numerical Study

The aim of the present numerical study is to evaluate the performance of the implicit
gradient-enhanced RDP model for predicting the mechanical response of structures, involving the
softening behavior of rock in a realistic and mesh-insensitive manner for a wide range of loading
conditions. To this end, a numerical study is presented, related to both laboratory tests and practical
applications. It consists of the following parts:

34



Appl. Sci. 2018, 8, 1004

1. 2D modeling of mode I failure in wedge splitting tests on Indiana limestone performed by
Brühwiler and Saouma [40],

2. 3D modeling of shear failure in triaxial compression tests performed by Blümel [41] on specimens
of Innsbruck quartz phyllite, considering the influence of confined stress states attaining the
compressive meridian of the yield surface,

3. 3D numerical simulations of triaxial extension tests performed on the same type of specimens,
investigating the influence of confined stress states attaining the tensile meridian of the
yield surface, and

4. 2D numerical simulations of the excavation of a deep tunnel in Innsbruck quartz phyllite rock
mass leading to the formation of shear bands in the vicinity of the tunnel for demonstrating the
capability of the gradient-enhanced RDP model to predict failure of a complex structure.

4.1. Modeling of Mode I Failure, Demonstrated by Analyzing Wedge Splitting Tests on Indiana Limestone

In a first step, the capability of the gradient-enhanced RDP model for predicting mode I failure is
assessed. To this end, the experimental study of wedge splitting tests on Indiana limestone performed
by Brühwiler and Saouma [40] is considered. The investigated specimen is illustrated in Figure 2.

300 mm

thickness 100 mm

40 mm

110 mm

150 mm

psp

notch 2 mm

125 mm 40 mm 125 mm

10 mm

(a) (b)

Figure 2. Geometry and boundary conditions of the numerical model of the specimen for the wedge
splitting test.

During the experimental test, the splitting force was applied by a vertically driven wedge, exerting
a pressure against roller bearings that were mounted on both sides of the groove in the specimen.
The vertical (machine) force and the crack mouth opening displacement (CMOD) were recorded,
and the latter was controlled during the experimental test. The energy conjugate force to the CMOD,
the splitting force Fsp, was calculated from the vertical force considering the geometry of the wedge and
neglecting any frictional effects. In total, 5 tests were performed, but in [40] detailed load–displacement
curves were presented only for Test 3. To investigate the degradation of the stiffness of the specimen
during crack propagation, several loading/unloading cycles were performed.

The experimental test is simulated by means of a two-dimensional finite element model assuming
plane stress conditions. According to Figure 2, the specimen is supported in the vertical direction at the
bottom center over a width of 10 mm and in the horizontal direction at midpoint. The splitting force
Fsp, transmitted by the wedge, is approximated by the pressure psp acting on the lateral groove faces.
The simulation is performed in a displacement-driven manner by controlling the CMOD (i.e., the
relative horizontal displacement between points (a) and (b) in Figure 2) during the loading and
unloading cycles. The material parameters for representing the Indiana limestone were determined
by a best fit with the recorded experimental results. In the present example of mode I failure, only
few parameters have a significant influence on the results: E = 22000 MPa, ν = 0.15, fcu = 20 MPa,
fcy = 2/3 fcu = 13.33 MPa, m0 = 6.5, mg1 = 5, Ah = 5 × 10−3, Ch = 20, εf = 8 × 10−4, m = 1.05,
and l = 4 mm. For the weighting parameter m, any value larger than 1 is sufficient to ensure full
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regularization of the problem by avoiding spurious localization of plastic strain [33]. A discussion
on the influence of the weighting parameter m may be found in [42] for an integral-type nonlocal
model, where, however, for parameter m = 2, an overestimation of the energy dissipation close to a
notch was demonstrated. This non-physical effect was also observed by the authors with increasing
influence for larger values of m. Thus, parameter m is chosen just slightly larger than 1, in accordance
with proposed values from the literature [17,43]. For the remaining model parameters e, Bh, Dh, Gh,
As, and Bs, the default values summarized in Section 2 are employed. From Equation (7), the uniaxial
tensile strength is calculated as ftu = 3 MPa.

To investigate the influence of the finite element discretization on the predicted results,
different meshes are employed: Three structured meshes with fully integrated 4-node quadrilateral
elements and element sizes of 5 mm, 1 mm, and 0.5 mm in the vicinity of the expected crack path,
as well as one unstructured mesh with the same element type and an element size of 1 mm along
the crack path. Accordingly, the element size of 5 mm is slightly larger compared to the assumed
length scale l of 4 mm for the coarse mesh and considerably smaller for the medium and fine mesh.
The purpose of the unstructured mesh is to investigate a potential bias of the crack pattern by following
the grid lines of the finite element mesh, since mesh-biased crack paths have been observed for smeared
crack models based on the crack band approach [44].

In Figure 3, the resulting load–displacement curves, i.e., splitting force Fsp versus CMOD,
are shown for the considered experimental test and the numerical simulations. It can be concluded
that the qualitative shape of the experimentally obtained curve is approximated quite well in the
numerical simulations.
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Figure 3. Splitting force vs. crack mouth opening displacement (CMOD) for the wedge splitting test:
experimental results (data taken from [40]) and numerical results.

Regarding the influence of the finite element mesh on the computed load–displacement curves,
a slight difference between the predicted response based on the structured coarse mesh and the one
based on the structured medium mesh is visible. This is explained by the rough approximation of
the gradient of the nonlocal field by the coarse mesh. In contrast, almost identical load–displacement
curves are obtained for the structured medium and the structured fine mesh, confirming that the
gradient of the nonlocal field can be resolved sufficiently by those meshes. The unstructured mesh
results in a similar load–displacement curve, demonstrating that the gradient-enhanced approach is
not biased by the orientation of the finite element mesh.

The computed deformation of the specimen is depicted in Figure 4 for the three structured meshes.
By increasing the splitting force during the numerical simulations, the tensile strength of the material is
attained at first in the elements directly below the notch; consequently, damage is initiated. This leads
to large, localized deformations in this region. Upon further loading, the increase of these deformations
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reflects the opening of a crack, propagating towards the bottom of the specimen. This is represented
by the gradient-enhanced damage-plasticity approach in a smeared manner. The width of the damage
zone is related to the length scale parameter l (cf. (16)). Furthermore, it can be seen that an identical
symmetrical response with respect to the vertical axis of symmetry is obtained for all three structured
meshes.

Figure 4. Deformed specimen at CMOD = 0.3 mm with a displacement scale factor of 100 for the three
structured finite element meshes: coarse—3580 elements (left), medium—6940 elements (center), and
fine—15430 elements (right).

In Figure 5, the distribution of the damage variable ω computed for the three structured meshes is
plotted at a CMOD = 0.3 mm. It is visible that damage is also accumulated slightly above the notch tip.
This is a consequence of the diffusive character of the gradient-enhanced formulation. Furthermore,
the present gradient-enhanced RDP model with the constant length scale l predicts a rather broad zone
of complete damage (red region in Figure 5). In fact, this behavior does not represent damage localizing
into a discrete macrocrack, and has been addressed in [45,46]. However, comparison of the predicted
damage distributions for the different meshes demonstrates mesh-insensitivity of the obtained failure
patterns. Figures 3 and 6 show an identical load–displacement curve and identical deformation
pattern and damage distribution computed by means of the unstructured mesh, which underlines the
capability of the gradient approach to produce mesh-insensitive results.
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Figure 5. Distribution of the damage variable ω at CMOD = 0.3 mm for the three structured finite
element meshes: coarse (left), medium (center), and fine (right).
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Figure 6. Deformed specimen with a displacement scale factor of 100 (left) and distribution of the
damage variable ω (right) for the unstructured mesh (9504 elements) at a CMOD of 0.3 mm.

4.2. Modeling of Shear Failure, Demonstrated by Analyzing Triaxial Compression Tests on Innsbruck
Quartz Phyllite

In a second step, the performance of the gradient-enhanced RDP model for predicting shear
failure under confined stress states attaining the compressive meridian of the yield surface is assessed.
To this end, numerical simulations of triaxial compression tests on specimens of Innsbruck quartz
phyllite performed by Blümel [41] are conducted.

For the experimental program, intact rock specimens with a diameter of 35 mm and a height
of 70 mm were taken from drill cores sampled at the construction site of the Brenner Base Tunnel.
A series of triaxial compression tests with different levels of confining pressures p(0) = 0 MPa (uniaxial
compression), 12.5 MPa, 25.0 MPa, and 37.5 MPa was conducted. The experiments were performed
in a sequential manner: Firstly, the confining pressure was applied, resulting in an initial hydrostatic
stress state in the specimen, and subsequently, an axial pressure was applied displacement-driven up
to failure. The mechanical response in the post-peak regime was also recorded.

Finite element simulations of triaxial compression tests are often performed in an approximate
manner. Commonly, such tests are simplified as single element tests in which the non-homogeneous
deformation of the specimen observed in the experiments cannot be captured, or by two-dimensional
models in which three-dimensional effects are neglected, e.g., [24,47–49]. By contrast, in the present
study, a three-dimensional finite element model is employed in order to capture the three-dimensional
deformations in a realistic manner. The numerical model with the prescribed boundary conditions and
loads is illustrated in Figure 7. Since the failure mode is expected to be symmetric with respect to a
vertical plane through the center axis of the specimen, symmetry is exploited by considering only one
half of the specimen. By analogy to the experimental tests, the numerical simulations are performed in
two sequential steps: firstly, the specimen is supported vertically at the bottom face and the confining
pressure is applied; secondly, the axial loading is applied by imposing a uniform vertical displacement
at the top of the specimen.

The specimens are discretized with 20-node hexahedral elements employing reduced numerical
integration. For both the displacement field and the nonlocal field, quadratic shape functions are
used. To analyze potential mesh-sensitivity of the gradient-enhanced RDP model, three different
structured finite element meshes are examined. A coarse mesh with 828 elements (an element size
of 4 mm), a medium mesh with 5950 elements (an element size of 2 mm), and a fine mesh with
13,160 elements (element size of 1.5 mm) are employed. To trigger localized failure, at the center of the
specimen, a small zone of slightly weakened elements is introduced, as indicated in Figure 7. In the
numerical simulations, snapback behavior may occur, i.e., a simultaneous decrease of the load and
the displacement after attaining the peak load. At this stage, displacement-controlled experiments
become unstable. To overcome potential snapback behavior in the numerical simulations, the indirect

38



Appl. Sci. 2018, 8, 1004

displacement control technique [50,51] is employed. For the present example, this technique can be
applied by enforcing a monotonic decrease of the vertical distance between two nodes, with each node
located at one boundary of the expected shear band.

p(0)

x

y
zH

=
70

m
m utop

weakened zone

D = 35 mm

Figure 7. Geometry and boundary conditions of the specimen for the triaxial compression test.

The material parameters required for the elastic-plastic part of the RDP model were identified
from single element simulations, as discussed in [52]. The additional parameters for the softening
regime As, εf, l, and m are calibrated from the present numerical simulations for a best fit with the
experimental results for the confining pressure of p(0) = 37.5 MPa. The employed parameters for
Innsbruck quartz phyllite are E = 56670 MPa, ν = 0.2, fcu = 42 MPa, fcy = 29.5 MPa, m0 = 12.0,
mg1 = 9.9, Ah = 0.0045, Ch = 8.8, As = 4, εf = 4 × 10−4, m = 1.05, l = 2 mm. For the remaining
model parameters e, Bh, Dh, Gh, and Bs, the default values summarized in Section 2 are employed.
The experimental results for confining pressures of p(0) = 0 MPa, 12.5 MPa, and 25 MPa, which have
not been used for calibration, serve for validation of the numerical model.

Figure 8 shows the load–displacement curves obtained from the experiments and the numerical
simulations for the different confining pressures. Note that the non-zero axial force at the beginning is
the consequence of the initial hydrostatic stress state due to the applied confining pressure. Expectedly,
for p(0) = 37.5 MPa and for the uniaxial compression test (p(0) = 0 MPa), the experimentally obtained
peak load is represented very well since the test results were used for calibration. For p(0) = 12.5 MPa
and 25 MPa, the peak loads are predicted satisfactorily, slightly underestimating the experimental
results. The qualitative shape of the softening branch is also represented quite well. For the uniaxial
compression test, no meaningful experimental results after the peak stress were recorded during the
experiments. This unstable behavior is also manifested in the numerical simulations, for which strong
snapback behavior is observed. The numerical results computed on the basis of the different finite
element meshes reveal the capability of the gradient-enhanced RDP model to regularize the underlying
IBVP: Once the mesh is sufficiently fine, mesh-insensitive load–displacement curves are obtained.

Figure 9a shows the deformed specimen with the confining pressure p(0) = 37.5 MPa in the final
stage of the triaxial compression tests, computed by means of the three different meshes. While the
displacements in the lower and the upper part of the specimen are almost uniform, the displacements
localize into a single inclined shear band in the center part of the specimen. In the experiments,
localization into a shear band was found to be the dominant failure mode, as shown in Figure 9b
for a specimen tested with p(0) = 37.5 MPa. The formation of the shear band is also reflected by
the distribution of the damage variable ω shown in Figure 10. Comparing the predicted damage
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distributions for the medium and the fine mesh confirms this distribution as insensitive with respect to
the discretization.
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Figure 8. Load–displacement curves (axial force versus axial displacement) for triaxial compression
tests: experimental and numerical results for different levels of confining pressures p(0).
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Figure 9. (a) Distribution of the vertical displacement uz (scale factor 5) in the final stage of the triaxial
compression test with p(0) = 37.5 MPa for the three finite element meshes: coarse (left), medium
(center), and fine (right). (b) Corresponding deformed rock specimen after a triaxial compression test
with p(0) = 37.5 MPa, reproduced with permission from M. Bluemel taken from the report [41].
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Figure 10. Distribution of the damage variable ω in the final stage of the triaxial compression test with
p(0) = 37.5 MPa for the three finite element meshes: coarse (left), medium (center), and fine (right).

The influence of the level of confining pressure on the inclination of the shearing zone is
demonstrated in Figure 11 based on the predicted distribution of the vertical displacement for
p(0) = 0 MPa, 12.5 MPa, 25 MPa, and 37.5 MPa, respectively. For the uniaxial compression test
(p(0) = 0 MPa), the zone of localized displacements is strongly inclined. With increasing confining
pressure, the inclination angle of the shear band is decreasing, which is best visible by comparing
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the results for p(0) = 0 MPa and p(0) = 12.5 MPa. Upon further increase of the confining pressure,
the inclination of the shear band becomes slightly smaller. The represented dependence of the
inclination angle on the level of confining pressure is explained by the curvature of the compressive
meridian of the yield surface and of the employed plastic potential function of the RDP model.
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Figure 11. Triaxial compression tests: distribution of the vertical displacement uz in the symmetry
plane for the four different levels of confining pressure.

4.3. Modeling of Shear Failure, Demonstrated by Analyzing Triaxial Extension Tests on Innsbruck
Quartz Phyllite

In a third step, the ability of the model for predicting shear failure under confined stress states
attaining the tensile meridian of the yield surface is demonstrated. To this end, numerical simulations
of triaxial extension tests on specimens with geometric and material properties identical to those of the
previously presented triaxial compression tests are performed. Similar to the triaxial compression tests,
confining pressures p(0) of 0 MPa, 12.5 MPa, 25 MPa, and 37.5 MPa are investigated. The same finite
element meshes are employed for investigating the influence of the discretization. In contrast to the
triaxial compression tests, subsequent to the application of the initial hydrostatic stress state, generated
by the confining pressure, a displacement in positive vertical direction is applied at the top surface
of the specimens. Since for triaxial extension tests experimental results are not available, the present
study focuses on the assessment of the influence of the finite element mesh on the obtained results and
serves as further verification of the gradient-enhanced RDP model.

The predicted load–displacement curves are shown in Figure 12. While nearly identical results
are obtained for the medium mesh and the fine mesh, the load–displacement curves for the coarse
mesh are somewhat more ductile. This discrepancy indicates the coarse mesh as insufficiently fine
for the accurate resolution of the gradient of the nonlocal field. Compared to the results from the
triaxial compression tests, a more brittle structural response is predicted, resulting in strong snapback
behavior in the post-peak regime for all three confining pressures and, in particular, for the uniaxial
tension test. In contrast to the triaxial compression tests, the structural response becomes increasingly
brittle as confining pressure increases, and the peak load decreases gradually. This phenomenon
was also observed in experiments on Berea sandstone in [53], and it is characteristic of brittle and
quasi-brittle materials.

Figure 13 shows the computed deformation of the specimen for an applied axial displacement
of 0.1 mm and a confining pressure of 37.5 MPa. Compared to the triaxial compression tests,
a smaller inclination angle of the shear band is predicted for the medium mesh and the fine mesh,
whereas for the coarse mesh a considerably steeper inclination angle of the shear band is obtained.
Again, this discrepancy indicates the insufficient representation of the gradient of the nonlocal field by
the coarse mesh.
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Figure 12. Computed load–displacement curves for triaxial extension tests for different levels of
confining pressure p(0).
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Figure 13. Distribution of the vertical displacement uz (deformation scale factor 10) at an applied top
displacement of 0.1 mm in the triaxial extension test with p(0) = 37.5 MPa for the three finite element
meshes: coarse (left), medium (center), and fine (right).

4.4. Numerical Simulation of Localizing Deformations in Deep Tunnel Excavation

Finally, the performance of the gradient-enhanced RDP model for predicting the formation of
multiple shear bands during the excavation of a deep tunnel is assessed. This benchmark is derived
from a stretch of the Brenner Base Tunnel constructed by the drill, blast, and secure procedure,
which has already been the subject of investigations in previous publications [52,54]. An analogy to
the present problem can be found in the context of petrol engineering, where the formation of shear
bands has been observed and reported for borehole breakout [47,55,56].

Since in this contribution the major focus is on the assessment of the gradient-enhanced
rock model, the tunnel excavation is approximated by means of a simplified two-dimensional model.
Supporting measures like a shotcrete shell or rock anchors are neglected. Potential time-dependent
effects of the mechanical behavior of rock mass due to the excavation procedure are not considered.
For the excavation of the tunnel profile by means of drill and blast, either a full-face or a sequential
excavation procedure can be employed. The chosen excavation sequence may have a considerable
impact on the stability of the tunnel. In this numerical model, the worst case scenario is considered
by assuming full-face excavation of the circular tunnel profile without any supporting measures,
which results in the maximum loading of the rock mass in the vicinity of the tunnel.

The IBVP of tunnel excavation with its geometry, initial conditions, and boundary conditions
is illustrated in Figure 14. Within the discretized domain of rock mass, a hydrostatic geostatic stress
state characterized by a pressure of p(0)

i = 25.7 MPa is assumed, corresponding to the overburden at
the tunnel axis of 950 m. In the numerical simulations, initial equilibrium is established by applying
the geostatic stress state together with the internal pressure p(0)

i acting on the excavation boundary.
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The excavation procedure is simulated by gradually decreasing the internal pressure p(0)
i to zero.

Since the analyzed tunnel section is located in Innsbruck quartz phyllite rock mass, most of the
material parameters of Section 4.2 are adopted. The material behavior of rock mass in contrast to intact
rock is considered by empirical down-scaling factors based on the geological strength index GSI and
the disturbance factor D proposed by Hoek and Brown [27] accounting for the influence of distributed
discontinuities. They are taken from the geological survey, reported in [52]. The additional material
parameters for Innsbruck quartz phyllite rock mass are GSI = 40, D = 0, As = 15, εf = 7 × 10−4,
and l = 50 mm. To trigger the formation of shear bands in spite of the axisymmetric problem,
non-uniformly distributed rock mass properties are employed by introducing zones in which the
strength of the rock mass is slightly weakened (indicated in Figure 14). It was verified that these
weakened zones do not affect the predicted mechanical response before the onset of strain softening.
For investigating the influence of the finite element mesh on the predicted results, three structured
meshes with fully integrated and reduced integrated 8-node quadrilateral elements with element sizes
of 300 mm (8078 elements), 140 mm (21,414 elements), and 70 mm (55828 elements) in the close vicinity
of the tunnel are employed. Both the displacement field and the nonlocal field are approximated by
quadratic shape functions.
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-950 m
pi

weakened zones

8.5 m

Figure 14. 2D initial boundary value problem of deep tunnel excavation: full model (left) and the
detail center view (right).

Upon decreasing the internal pressure, initially the rock mass behavior remains in the linear elastic
regime, followed by the formation of plastic zones emerging from the excavation boundary. Once the
strength of the rock mass is attained, strain softening is initiated. From the onset of strain softening,
the strains are localizing into narrow zones of the rock mass, and, eventually, large displacements
accumulate. Finally, at a certain release level of the internal pressure, equilibrium is lost.

Figure 15 shows the deformed rock mass at the level of 12% of the internal pressure for the three
meshes with fully integrated elements. For the medium and the fine mesh, the localization of
displacements into narrow zones has already reached a very progressed stage close to failure, and the
formation of shear bands is clearly visible. The non-axisymmetric displacement field indicates the
transition from an initially quasi-continuous rock mass to quasi-discontinuous rock mass. The latter
is characterized by blocks of rock mass moving towards the tunnel center, so potential failure of the
tunnel is imminent. Concerning the influence of the finite element discretization, for the medium and
the fine mesh, an almost identical displacement field is obtained. Slight differences between those two
solutions can be observed only for the upper right quadrant.
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Figure 15. Distribution of the magnitude of the displacement vector in the vicinity of the tunnel surface
at the level of 12 % of the initial internal pressure with a displacement scale factor of 10 for the three
finite element meshes with full numerical integration: coarse (left), medium (center), and fine (right).

Figure 16 shows the load–displacement curves, i.e., the normalized internal pressure versus
the mean displacement magnitude along the excavation boundary computed for each mesh.
The load–displacement curves predicted by the three meshes are very close to each other, and,
in particular, the results for the medium and the fine mesh are almost identical. The results for
the coarse mesh are slightly different due to the already discussed required mesh size for a sufficient
resolution of the gradient of the nonlocal field.
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Figure 16. Load–displacement curves: normalized internal pressure versus the mean displacement
magnitude at the tunnel surface for the three finite element meshes with full and reduced numerical
integration: total view (left), detailed view (right).

Figure 17 depicts the damaged zones in the rock mass at the level of 12% of the initial internal
pressure for the three meshes employing full numerical integration. The highly damaged zones
correspond to large shear deformations, which were shown previously in Figure 15. A similar shape of
failure zones was obtained by Addis et al. [57] in laboratory tests on a bore hole in weak sandstone.
Hence, the potential of the gradient-enhanced approach to predict the onset of failure of a structure
was demonstrated in spite of the rather complex failure mode.
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Figure 17. Distribution of the damage variable ω in the rock mass in the vicinity of the tunnel surface
at the level of 12 % of the internal pressure for the three finite element meshes employing full numerical
integration: coarse (left), medium (center), and fine (right).

5. Conclusions

The present contribution addressed the prediction of complex failure modes in numerical
simulations by means of a new implicit gradient-enhanced damage-plasticity model for intact rock and
rock mass. It was derived from the damage-plasticity rock model presented by Unteregger et al. [24,25]
and extended by adopting the implicit gradient-enhancement proposed in [17]. For the assessment
of the model, a comprehensive numerical study was presented. In particular, numerical simulations
of wedge splitting tests for evaluating the representation of mode I failure, simulations of triaxial
compression and extension tests for evaluating the representation of shear failure under confined stress
states, and finally simulations of deep tunneling for examining the prediction of failure mechanisms of
a complex structure were performed. From the obtained results of the numerical study, the following
conclusions can be drawn:

• In numerical simulations of wedge splitting tests, the formation of a crack propagating from the
notch is modeled by the implicit gradient-enhancement in a smeared manner over a width related
to the assumed length scale parameter. The capability of the gradient-enhanced damage-plasticity
rock model of representing the experimentally observed material behavior was realistically
demonstrated.

• Finite element analyses with both structured and unstructured meshes confirmed the regularizing
effect of the implicit gradient-enhancement in mode I failure and thus revealed mesh-insensitive
results. In particular, it was demonstrated that the crack direction is not biased by the orientation
of the finite element mesh.

• Regarding the simulations of triaxial compression tests, a proper representation of shear failure
under confined stress states, attaining the compressive meridian of the yield surface, was shown.
After attaining peak strength upon initiation of damage, localization into a distinct shear band
was observed. Furthermore, reasonable agreement with experimental results, and in particular
the experimentally observed increasingly ductile material behavior with increasing confining
pressure was obtained.

• The simulations of triaxial extension tests demonstrated that failure under confined stress states
attaining the tensile meridian of the yield surface is represented reasonably well, i.e., the
localization of damage into a distinct shear band is predicted. In contrast to the triaxial
compression tests, a more brittle structural response was observed.

• For both the triaxial compression and extension tests, a mesh study confirmed mesh-insensitive
results for shear failure under confined stress states.

• In the numerical simulations of deep tunnel excavation, the rock mass was subjected to softening
material behavior due to the excavation procedure, which leads to localization of strains into
multiple distinct shear bands. In spite of the complex structural failure mechanism involving the
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formation of multiple shear bands, mesh insensitive load–displacement curves were obtained.
By analyzing the convergence of the damage patterns upon mesh refinement, only slight
differences were recognized.

• For the adopted formulation of the implicit gradient-enhanced rock model, the length scale l is
assumed as a constant parameter. Thus, a rather broad zone of completely damaged material is
predicted by the model. Possible remedies were proposed in the literature, for instance, based on
variable length scale parameters [58,59] or the so-called concept of decreasing interactions [45],
which is motivated by a physically based micromechanical homogenization theory [60], cf. [46]
for a discussion of these approaches. For a more realistic representation of sharp cracks within the
present gradient-enhanced rock model, further investigations of these concepts are recommended.

• Regarding the identification of the parameters controlling the gradient-enhanced softening part of
the model, i.e., softening modulus εf, length scale parameter l, and weighting parameter m, an ad
hoc approach was employed: While the length scale parameter l was treated as a model parameter
conforming to the size of the employed finite element mesh to ensure a sufficient resolution of the
nonlocal gradient, εf was identified by a best fit with experimental results for a chosen l and m.
A more systematic approach for identifying these parameters based on experimental results is an
open issue. In particular, a scheme to compute εf based on a prescribed value of l and a typical
material parameter, such as the specific mode I fracture energy, is desirable.

Summarizing, it can be concluded that the presented damage-plasticity model is capable
of representing a wide range of failure mechanisms in numerical simulations in a realistic and
objective manner.
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Abstract: Fracture mechanics is one of the most important approaches to structural safety analysis.
Modeling the fracture process zone (FPZ) is critical to understand the nonlinear cracking behavior
of heterogeneous quasi-brittle materials such as concrete. In this work, a nonlinear extended scaled
boundary finite element method (X-SBFEM) was developed incorporating the cohesive fracture
behavior of concrete. This newly developed model consists of an iterative procedure to accurately
model the traction distribution within the FPZ accounting for the cohesive interactions between crack
surfaces. Numerical validations were conducted on both of the concrete beam and dam structures
with various loading conditions. The results show that the proposed nonlinear X-SBFEM is capable of
modeling the nonlinear fracture propagation process considering the effect of cohesive interactions,
thereby yielding higher precisions than the linear X-SBFEM approach.

Keywords: elastoplastic behavior; extended scaled boundary finite element method (X-SBFEM);
stress intensity factors; fracture process zone (FPZ)

1. Introduction

With the development of numerical analysis technology, structural fracture mechanics is
an important approach to structural safety evaluation. Fracture process zone (FPZ) is defined as
the intermediate space between cracked and uncracked portions of concrete [1]. Different from real
cracks, the FPZ can still transmit stress, and the stress, σ, that FPZ transmits decreases with increasing
crack open displacement, w. When the crack open displacement reaches a certain critical value, wc,
the surface force of the crack surface becomes zero, as illustrated in Figure 1. The FPZ consists of
microcracks, which are minute individual cracks; this gives rises to the cohesive tractions ahead of the
crack tip, which comes from the aggregate interlocking and surface friction. Therefore, a nonlinear
fracture-mechanics-based method needs to be applied to account for the effect of cohesive tractions
during the fracture propagations.
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Figure 1. Fracture process zone (FPZ) in concrete.

Two main approaches are often taken to model the FPZ, which are: the smeared crack models
and the discrete crack models. The smeared crack models proposed by Rashid [2] are based on the
continuum approach, where the computational mesh of the FPZ remains constant while the fracture
propagation is modeled by the growth of a number of parallel cracks smeared over the elements
within the FPZ. Using this approach, Bhattacharjee et al. [3] and Calayir et al. [4] successfully carried
out dynamic cracking analyses of the Koyna gravity dam under the influence of nonorthogonal
cracks. Cai et al. [5] also follow a similar approach incorporating the linear or bilinear softening
dispersion crack models to predict the crack response of concrete gravity dams. The damage-based
fracture mechanics was also developed sharing the similar concept by Bazant [6]. These methods have
shown tremendous success in modeling concrete fractures under complex loading and boundary
conditions. However, the strong mesh dependency often causes complications in determining
the characteristic length scale, fracture strength, and fracture toughness to accurately describe the
fracturing propagation process. The smeared crack models mainly combine with damage mechanics
for crack propagation studies.

On the other hand, the discrete crack model proposed by Dugdale [7] and Barenblatt [8] utilizes
a predefined fracture path as a part of the computational domain boundary, which reduces the mesh
dependency comparing to the smeared crack model. Hillerborg et al. [9] firstly implemented the
cohesive zone model (CZM) to describe the FPZ based on the discrete crack approach. Following this
approach, numerous scholars have improved and implemented the cohesive zone method to model
the fracture propagation process (Skrikerud et al. [10], Ayari et al. [11], Xie et al. and Yang et al. [12–14]).
Among these improvements, the scaled boundary element method (SBFEM) was developed to model
the complex fracture growth in terms of fracture branching and coalescing under complex loading
conditions. However, the SBFEM fails to capture the nonlinearity brought by the cohesive interactions
within the FPZ. Therefore, the mesoscale and atomic-scale-inserted CZMs were developed to model
the FPZ [15–18]. However, the predetermined fracture paths often cause computational complexities
and inaccuracies.

Recently, the extended scaled boundary finite element method (X-SBFEM) based on the level
set method was developed on the basis of both the SBFEM [19,20] and the extended finite elements
(XFEM) [21,22]. Capitalizing on the advantages of both methods, X-SBFEM [23,24] can make full use
of XFEM to describe the discontinuous displacement field and SBFEM to solve the problem of the
stress singularity with higher precision. Simulating the crack body section using XFEM and the crack
tip using SBFEM, the method finally establishes the total equilibrium equation of the crack body and
solves the equation, thereby overcoming the disadvantages of XFEM, such as obtaining the analytical
form of the displacement and the stress asymptotic fields of the crack tip in advance and constructing
the complex enhanced functions, which can express nonsmooth behaviors near the crack tip. In some
special circumstances, the enrichment functions are discontinuous or have nonpolynomial forms to
specially address the issue when the stiffness matrix is constructed using numerical integration.
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Currently, the application of X-SBFEM in fractures [23] based on linear elastic fracture mechanics
(LEFM) mainly focuses on the linear fracture. Due to the complexity of the three-dimensional analysis
model, the theoretical researches of fracture mechanics still focus on the state of the two-dimensional
analysis model. Therefore, based on the X-SBFEM algorithm, this paper introduces a nonlinear
crack model which adopts the linear superposition of iterative methods to incorporate the cohesive
interactions within the FPZ. The proposed approach was then implemented to model mixed-mode
fracture of concrete beam and gravity dam structures. The results show improvements comparing to
other methods. Close agreements were found between the numerical and experimental results.

The contents of this paper are arranged as follows. In Section 2, we explain the principle of
X-SBFEM. In Section 3, a nonlinear crack model with iterative method for cohesive interactions in
the FPZ is introduced and a flowchart for solving the cohesion is given. In Section 4, four numerical
simulations (a three-point bending beam, a four-point shear beam, an experimental concrete gravity
dam with single crack expansion, and a static cohesive crack propagation simulation of Koyna Dam)
are modeled to validate the nonlinear model. In Section 5, we conclude that this paper has developed
the X-SBFEM with the nonlinear model to improve the modeling of crack propagation.

2. Extended Scaled Boundary Finite Element Method

The core content of X-SBFEM based on the level set method focuses on the simulation of the
nonsmooth behavior near the crack tip using semianalytical SBFEM in the form of super-elements
and the simulation of the crack body using XFEM. The key lies in the way the algorithm addresses
the boundary conditions at the joint. Figure 2 below shows the topological relationship in the model
domain including a crack based on X-SBFEM.

 

Figure 2. Topological relation in the domain including a crack based on X-SBFEM.

2.1. Extended Finite Element Method

Based on the partition of unity methods simulating the crack body by XFEM, the general formula
of a displacement field [25,26] is

uh(x) = ∑
I∈Nfem

NI(x)qI + ∑
J∈Ne

NJ(x)ϑ(x)aJ (1)
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where Nfem and Ne respectively represent a node in a general element and an enriched node in
an internal split crack. Correspondingly, qI is a normal degree-of-freedom, aJ is a generalized
degree-of-freedom related to ϑ (as shown in the square node in Figure 2), and ϑ(x) is the Heaviside
step function.

The equilibrium equation is[
Ke

aa Ke
ab

Ke
ba Ke

bb

]{
qI
aJ

}
=

{
Pa

Pb

}
Pb =

�
Ω/Γd

(H·N)T ·pvdΩ +
∫

Γt
(H·N)T ·tdΓ +

∫
Γd
(H·N)T ·pdΓ (2)

where Ke
aa and Ke

bb represent the stress matrix respectively related to a normal degree-of-freedom
and a generalized degree-of-freedom. Moreover, Ke

ab and Ke
ba are the coupling matrices, and Pa

and Pb are the equivalent nodal forces in accordance to general degrees-of-freedom and generalized
degrees-of-freedom, respectively.

Ke
aa =

�
Ω/Γd

BTDBdΩ (3)

Ke
ab = (Ke

ba)
T =

�
Ω/Γd

BTD(HB)dΩ (4)

Ke
bb =

�
Ω/Γd

(HB)TD(HB)dΩ (5)

Pa =
�

Ω/Γd

NT ·pvdΩ +
∫

Γt
NT ·tdΓ (6)

Pb =
�

Ω/Γd

(H·N)T ·pvdΩ +
∫

Γt
(H·N)T ·tdΓ +

∫
Γd
(H·N)T ·pdΓ (7)

where Γd and Γt respectively represent the crack face and the force interface. Moreover, pv and t
respectively represent the body force in computational domain and the surface force on the force
interface.

According to the advantage of the description of discontinuous displacement field description,
XFEM is used to simulate the main body of the crack.

2.2. Scaled Boundary Finite Element Method

X-SBFEM is used to simulate the crack tip for the high efficiency and high precision of stress
singular field simulations. As shown in Figure 3, there are side-face forces at the face of the
super-element at the crack tip in the case of SBFEM. Without taking the body force into account,
the displacement field and the stress field given by the SBFEM are [21]

{u(ξ, η)} = [N(η)]{u(ξ)} =
n

∑
i=1

ciξ
λi [N(λ)]{ϕi} (8)

{σ(ξ, η)} = [D][L][N(η)]{u(ξ)} = [D]
[
B1(η)

]
{u(ξ)},ξ +

1
ξ
[D]

[
B2(η)

]
{u(ξ)} (9)

where N(η) is the interpolation shape function for one-dimensional line elements and {ϕi} and λi
are the displacement modes and the eigenvalues, respectively. Furthermore, [B1(η)] and [B2(η)] are
determined by the geometric shape of the boundary of the element. The formulas calculated by the
virtual work principle are

{P} = [K]{uh} =
[
E0
]
[Φ][λ][Φ]−1 +

[
E1
]T{uh} (10)
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[
E0
]
ξ2{u(ξ)},ξξ +

([
E0
]
+
[
E1
]T −

[
E1
])

{u(ξ)},ξ −
[
E2
]
{u(ξ)} = 0 (11)

where {P} is the equivalent boundary nodal force and
[
E0], [E1], and

[
E2] are the coefficient matrices

of the SBFEM governing equations.

x̂

ŷ
0 0ˆ ˆ( , )x y

0L

0r

1
ξ =

0.5
ξ =

y
x

ξ

η

Figure 3. Discretization on boundary with element and scaled transformation of coordinates of
bounded media.

Equation (11) is a second-order homogeneous ordinary differential equation and its solution is

{u(ξ)} = [ϕ]ξλ{c} =
n

∑
i=1

ciξ
λi ϕi (12)

where ci is the weight of this mode.
Substitute Equation (12) into Equation (10) and get a quadratic eigenvalue problem.

[λ2
i

[
E0
]
+ λi

([
E1
]T −

[
E1
])

−
[
E2
]
]ϕi = 0 (13)

Substitute Equation (12) into Equation (10) and get the equivalent node force qi on the boundary
corresponding to the displacement mode.

qi =

([
E1
]T

+ λi

[
E0
])

∅i (14)

Combining Equations (13) and (14) and introducing auxiliary variables can transform quadratic
eigenvalue problems into standard linear eigenvalue problems.[

−[
E0]−1[E1]T [

E0]−1

−[
E1][E0]−1[E1]T

+
[
E2] [

E1][E0]−1

][
Φ
Q

]
= λ

[
Φ
Q

]
(15)

where [Φ] and [Q] are modal matrices of the displacement modal matrix and the force modal matrix.
For the square root singular problem for homogeneous materials, the stress intensity factors can

be defined as {
KI
KI I

}
=

√
2πL0 = ∑

i=1,2

(
ci

{
ψyy(η = ηA)

ψxy(η = ηA)

}
i

)
(16)

where L0 is the distance between the scaling center and the point of the crack surface (the segment OA
in Figure 3). From Equation (8), it can be deduced that if λi ≥ 1, the distribution of the stress mode
tends to 0 when ξ → 0 [27].
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2.3. Force Balance and Displacement Coordination

Figure 4 shows a typical method simulating the crack with the coupling of the XFEM and the
SBFEM [28] domain. In the process of XFEM and X-SBFEM coupling, there is a problem of the balance
of virtual and real freedom, continuous displacement, and force. To solve the problem, the SBFEM
simulates the crack surface using the boundary of the element, while the XFEM introduces an additional
degree-of-freedom based on the use of the step function to describe the discontinuous displacement
field. To coordinate the displacement of the two types of elements along the boundary, a transition
matrix T is used to match the nodal displacements in SBFEM with those in XFEM. A transformation
matrix, which can be derived from the previous equations that translates the unknown SBFEM nodal
displacements (uE, uF, uA, and uB) to the unknown XFEM nodal displacements (q2, q3, a2, and a3) can
be described as ⎧⎪⎪⎪⎨⎪⎪⎪⎩

uB
uE
uA
uF

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =

⎡⎢⎢⎢⎣
I 0 0 0
0 I 0 0

N2(xA) N3(xA) 0 −2N3(xA)

N2(xF) N3(xF) 2N2(xF) 0

⎤⎥⎥⎥⎦
⎧⎪⎪⎪⎨⎪⎪⎪⎩

q2
q3
a2

a3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (17)

where I is a unit matrix. In order to ensure the compatibility of the displacement and to integrate the
element stiffness matrix, it is necessary to rearrange the column displacement vectors of the SBFEM
and the stiffness matrix according to whether the nodes are on the common boundary,[

Kaa Kab
TTKba TTKbbT

]{
uqS
uxF

}
=

{
Fa

TTFb

}
(18)

where the subscript a represents the nodes on the common boundary of SBFEM and XFEM and
subscript b represents the nodal degree-of-freedom of the noncommon boundary. The transformation
matrix T is only related to the interpolation shape function at the crack opening at the common
boundary of the SBFEM and the XFEM.

n m

n

i j

+

i j

m

Figure 4. Coupling the XFEM and the SBFEM domains.

3. A Nonlinear Crack Model with Iterative Method for Cohesive Interactions in the FPZ

The relative displacement of the crack surface, including the opening displacement (COD) and
the sliding displacement (CSD) of the crack surface, does not exceed the limits shown in Figure 5.
When the COD and CSD of the crack surface are not beyond the limits shown in Figure 5, the total
loads generated by the structure include the external loads and the cohesive forces at the virtual
crack surfaces. However, if the load exceeds the limit, the cohesive force is 0. In the case of cohesive
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forces, considering the stress intensity factor I as an example, the stress intensity factor consists of two
parts [29],

KI = KP
I + KC

I (19)

where KI is the total stress intensity factor and KP
I and KC

I are the components related to the external
and cohesive forces, respectively. All three stress intensity factors can be calculated by the standard
SBFEM solution stress intensity factor formula. Thus, KP

I > 0 when the crack opens as a result of
the external force of the model, while KC

I < 0 when the crack tends to close owing to the cohesive
force. Equivalently, KI = 0 when force balance is achieved as a result of the roles of the external and
cohesive forces. Therefore, KI ≥ 0 can be used as the criterion for judging whether the crack will
continue to propagate or not [15].

Unloading

Loading/ 3tf

tf

O 2 / 9 cw cw COD

σ
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cτ  
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Figure 5. Relations between the relative displacements of crack and cohesive tractions: (a) σ = COD
bilinear curve; (b) σ = COD linear curve; and (c) τ = CSD curve.

The positive component of the cohesive tractions in the fracture process zone is determined by
the bilinear softening curve [30] of Figure 5a or the linear softening curve of Figure 5b. The tangential
component is determined by the curve of Figure 5c. The areas below the curve of Figure 5a,b are the
mode I fracture energy, G f I . The area between the curves in Figure 5c is twice that of the mode II
fracture energy, G f I I [30]. The key concept of this method is based on the relative displacement of
the crack surface and its application to the linear superposition of an iterative scheme to solve and
estimate the cohesive tractions on the crack surface. Specifically,

A. Assume that the structure is only affected by the external force so that the relative displacement
Δu1 of the super-element crack surface Δu1 can be obtained based on the linear elastic
assumptions of X-SBFEM, and that the corresponding cohesive traction t1 can be obtained
according to Figure 5.
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B. As shown in Figure 6, the external force and the cohesive force obtained in the previous step are
applied to the structure, wherein the cohesive traction t1 is applied in the form of a side-face
force, formulated in accordance to the following equation:

∫
S
{δu(ξ, η)}T{pn(ξ, η)}dS =

∫ 1

0
{δu(ξ)}T{pn(ξ)}

√
x′(ξ)2

+ y′(ξ)2
dξ

=
∫ 1

0
{δu(ξ)}TFt(ξ)dξ

(20)

where
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⎧⎪⎪⎨⎪⎪⎩
√

x2
1 + y2

1{pn(ξ)}
∣∣∣
η=−1√

x2
1 + y2

1{pn(ξ)}
∣∣∣
η=1

⎫⎪⎪⎬⎪⎪⎭ (21)

,
F
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Figure 6. Superposition method for calculating KI,I I : (a) external traction only; (b) cohesive tractions
only; (c) superposition of external traction and cohesive tractions.

The SBFEM nonhomogeneous control equation can be easily obtained in accordance to

[
E0
]
ξ2{u(ξ)},ξξ +

([
E0
]
+
[
E1
]T −

[
E1
])

{u(ξ)},ξ −
[
E2
]
{u(ξ)}+ ξ{Ft(ξ)} = 0 (22)

Assume that the load can be expressed by the power series,

{Ft(ξ)} =
n

∑
i=1

ξti{Fti} (23)
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The corresponding displacement mode is

{ut(ξ)} =
n

∑
i=1

ξti{Φti} (24)

Substituting Equation (24) into Equations (23) and (11) results in

{Φti} =

[
(ti + 1)2

[
E0
]
+ (ti + 1)

[[
E1
]T −

[
E1
]]

−
[
E2
]]−1

{Fti} (25)

{
qti

}
=

[
(ti + 1)

[
E0
]
+
[
E1
]T
]
{Φti} (26)

Thus, the complete displacement of the boundary nodes and the equivalent nodal force
are respectively,

{uh} =
n

∑
i=1

{Φti}+ [Φ]{c} (27)

{P} =
n

∑
i=1

{
qti

}
+ [Q]{c} (28)

[Φ] and [Q] are modal matrices of the displacement modal matrix and the force modal matrix
solved by Equation (15), respectively. The following equation can be obtained using Equations (27)
and (28):

[K]{uh} = {P} −
n

∑
i=1

{
qti

}
+ [K]

n

∑
i=1

{Φti} (29)

The equivalent nodal force of the super-element boundary node generated by the distributed load
of the crack surface is

RF = −
n

∑
i=1

{
qti

}
+ [K]

n

∑
i=1

{Φti} (30)

When the crack tip is solved characteristically,
{

uh
sb

}
and

{
ux f

}
can be obtained after solving

the linear equations. Substituting
{

ux f

}
into Equation (17), the displacement of all nodes in the crack

tip of the super-element
{

uh
sb

}
can be obtained. Substituting

{
uh

sb

}
into Equation (27) yields

{c} = [Φ]−1
({

uh
sb

}
− {Φt}

)
(31)

The displacement field of the crack tip element is

{u(ξ, η)} = N(η)

(
n

∑
i=1

ciξ
λi{ϕi} − ξt+1{Φt}

)
(32)

where {ψi} is the stress mode solved based on SBFEM. The relative displacement Δui+1 is solved
using Equation (32).

C. Repeat the steps until the relationship between ti and Δui+1 becomes consistent with the pattern
of variation plotted in Figure 5.

A simplified flowchart of the solution of the cohesive tractions is shown in Figure 7.
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Apply load F

Obtain the cohesive traction ti

Apply load F and ti

Estimate the relative displacement 

Judge the relationships of ti
with ui+1 in Fig. 5

Determine cohesive traction

Yes

No

Next    Step 

Obtain the relative displacement u1

Figure 7. Key steps of the solution of cohesion.

4. Numerical Examples

4.1. A Three-Point Bending Beam

This model was first studied by Petersson (1981) as an experimental study of the mode I fracture
propagation problem [31]. The geometry, boundary conditions, and material parameters of the beam
are shown in Figure 8. The tensile strength ft is 3.33 MPa and the mode I fracture energy G f I is
137 N/m. The present example predicts the crack propagation path based on the LEFM maximum
circumferential tensile stress criterion. Analyzing the single linear softening curve (Figure 5b) and
based on the mode I fracture energy G f I , the limit value of the linear softening curve wc is 0.0823 mm.
The results of three crack propagation steps a = 10 mm, 20 mm, and 30 mm, for a 20 × 200 grid density,
are calculated and compared with the results based on the linear elasticity method [24].

Figure 8. Three-point bending beam for crack propagation (unit: mm).

Figure 9a depicts the relationship of the load for three different crack propagation steps and
load point displacements (Load–LPD) based on LEFM work. The results are compared with Yang’s
work based on the linear elasticity method [12] and experimental results published by Petersson [27],
as shown in Figure 9. We can see that the elicited results based on LEFM are very different from
the experimental data. This is particularly evident for the peak load, which is much higher than the
experimental peak. This is because the LEFM-based method is incapable of simulating the energy
dissipation of the fracture zone. Based on X-SBFEM, this study has used different methodologies to
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solve the cohesive tractions based on the iterative method of linear superposition by simulating the
energy dissipation of FPZ. Figure 9b shows the Load–LPD curves for three different crack propagation
steps considering FPZ nonlinearities. It can be seen from Figure 9 that the calculated results are in
good agreement with the experimental results of Petersson, which shows that the method used in
this study can simulate the energy dissipation of FPZ. Moreover, it can be seen from Figure 9 that
the results of the three crack propagation steps are in good agreement with the experimental curve,
which shows that different steps have minor effects on the calculated results.
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Figure 9. Load–LPD curves for different crack increment lengths: (a) LEFM-based and (b) NFM-based.

4.2. A Four-Point Shear Beam

Arrea and Ingraffea first tested and analyzed the four-point unilateral shear beam [28].
The geometry and boundary conditions of the beam are shown in Figure 10. Assuming that the
structure is in the plane stress state, the Young’s modulus E is 24.8 GPa, Poisson’s ratio υ is 0.18, tensile
strength ft is 3.0 MPa, mode I fracture energy G f I is 100 N/m, and mode II fracture energy G f I I is
10 N/m. The crack path is also predicted by using the LEFM-based maximum circumferential stress
criterion. Analyzing the linear softening curve of Figure 5b, the limit value of CODs wc obtained by
the mode I fracture energy G f I is 0.067 mm and the limit value of CSDs sc obtained by the mode II
fracture energy G f I I is 0.02 mm. The results of the three crack propagation steps a = 10 mm, 20 mm,
and 30 mm, using a 20 × 200 grid density, are calculated and compared with the results based on the
linear elasticity method [24].

Figures 11a and 12a show the relationship between the load calculated by LEFM, the crack mouth
sliding displacement (Load–CMSD), and the relationship between the load and the loading point
displacement (Load–LPD). It can be seen from the figure that the calculated results are close to the
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numerical solutions of Yang et al. [12] and the effect of different steps on the calculation results is not
considerable, which proves the applicability of the X-SBFEM algorithm to complex crack propagation
problems. However, the FPZ energy dissipation of the crack tip makes the LEFM-based method slightly
different compared to previous calculations and experimental data [15]. In this study, the iterative
method used to simulate the cohesive tractions is used to simulate the energy dissipation of the FPZ.
The linear softening curve in Figure 5b and the curve of Figure 5c are used to solve the cohesive
tractions of the vertical crack surface and the parallel crack surface. As shown in Figure 11b, it can
be seen that the Load–CMSD curve calculated herein is in good agreement with Yang’s experimental
data (NFM-based). Figure 12b shows that the method considered herein can describe the snap-back
phenomenon of the Load–LPD curve. It can be concluded that the iterative, linear superposition
method based on X-SBFEM can yield high-precision results without coupling the interface unit (CIEs)
near the crack tip.

Δ
Δ
Δ

Figure 10. Four-point notched shear beam for crack propagation (unit: mm).
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Figure 11. Load-CMSD curves as a function of changes of the crack increment length: (a) LEFM-based
and (b) NFM-based.

61



Appl. Sci. 2018, 8, 1067

Δ
Δ
Δ

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

20

40

60

80

100

120

140

160

180

Lo
ad

 F
 (K

N
)

Deflection at loading point (mm)

  Δa = 20mm
  Δa = 30mm
  Δa = 40mm
 Yang(LEFM-based)

(a) 

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

20

40

60

80

100

120

140

160

180

L
oa

d 
F 

(K
N

)

Deflection at loading point (mm)

  Δa = 20mm
  Δa = 30mm
  Δa = 40mm
 Yang(NFM-based)

 
(b) 

Figure 12. LEFM-based Load–LPD curves with respect to the crack increment length changes:
(a) LEFM-based and (b) NFM-based.

4.3. An Experimental Concrete Gravity Dam with Single-Crack Expansion

Carpinteri [32], Barpi [33], and Shi [34] tested and analyzed the single-crack expansion gravity
dam. A 1:40 scale concrete gravity dam model is used herein. The geometry, boundary conditions,
and material parameters of the gravity dam are shown in Figure 13. Consisting of concrete, the gravity dam
is analyzed based on a plane strain assumption and on the bilinear softening curve, where ωc = 0.256 mm,
Gf = 184 N/m, and ft = 3.6 MPa. Suppose that the indentation length is 1/10 W (0.15 m), where W is
the width of the dam at the elevation of the indentation. Hydrostatic pressure exists in the upstream
face of the dam. This hydrostatic pressure acts on the upstream face and can be equivalently replaced by
four concentrated loads, as shown in Figure 13. The hydrostatic pressure gradually increases until the
dam breaks.

Figure 13. Dam model with single-crack propagation (unit: mm).
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In Figure 14, the results of the Load–COD curve in this study are compared with reference
solutions, the experimental data of Carpinteri et al. [32], and the numerical simulation data of Barpi
et al. [33] and Shi et al. [34]. It can be seen that the elicited results before the peak, load peak, and
experimental data obtained by this method are in good agreement with all the other numerically
elicited data. It can also be seen that the post-peak curve of the experiment was significantly higher
than the numerical results, which means that the crack opening displacement (COD) of the experiment
was greater under the same loading conditions. This phenomenon may be owing to the unanticipated
rigid rotation in the experiment of Carpinteri et al. [32] which results in premature failure of the
prefabricated crack. Compared with other numerical results shown in Figure 14a, the initial stiffness
obtained by the X-SBFEM method in this study is the closest to that obtained from the results of
Carpinteri et al. [32]. The results obtained by Barpi et al. [34] were smoothened before the peak,
while the large stiffness elicited in the pre-peak response obtained by Shi et al. [35] resulted in a crack
opening displacement (COD) that was smaller in value compared to the experimental results.

(a) 

(b) 

Figure 14. Comparison with reference solutions: (a) Load–COD curves and (b) crack paths.

The crack trajectories obtained by the above experiment and numerical method are shown in
Figure 14b. The crack trajectory obtained by the X-SBFEM method in this study is better matched
with the experimental and with all the other numerical results. Among them, the crack trajectory
obtained from the experiment directly developed towards the dam site before the dam ruptured. At the
same time, the trajectories obtained by the numerical simulations of Barpi et al. [33] and Shi et al. [34]
horizontally penetrated the dam body, which is quite different compared to the experimental results.
The results generated in this study obviously match more closely the experimental results.

Figure 15 shows the variation of the crack opening displacement and the distribution of cohesive
traction with the crack path in this example model, based on the X-SBFEM method.
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Figure 15. Variation of crack opening displacement and distribution of cohesive traction: (a) crack
opening displacement and (b) the distribution of cohesive traction.

4.4. Static Cohesive Crack Propagation Simulation of Koyna Dam

After a severe earthquake in 1967, the neck of the Koyna Dam suffered serious damages.
Gioia et al. [35] (1992) simulated the generated crack based on linear elastic fracture mechanics and
Bhattacharjee et al. [36] applied the smeared model to analyze the crack propagation. The geometry
and material parameters of the Koyna Dam are shown in Figure 16. The dam concrete was assumed
to be homogeneous and the Koyna Dam was analyzed based on the planar strain assumption and
the bilinear softening curve, where ωc = 0.256 mm, ω0 = 0.04 mm, ω1 = 0.075 mm, ft = 1 MPa,
Gf = 100 N/m, and ft = 0.25 MPa. A crack was set at a horizontal orientation at an elevation of 66.5 m
on the upstream face of the dam in advance. The initial length of the crack was 1.93 m, which equaled
1/10 of the width of the dam at an elevation of 66.5 m. The loads considered included the body load
of the dam, hydrostatic pressure of the full reservoir, and the overloading head load applied at the
ultimate fracture of the dam. The crack expansion step assumed that Δa = 2 m.

Figure 16. The geometry and material parameters of the Koyna Dam.
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During the numerical simulation, the crack initially expanded horizontally. When the overflow
increased gradually, the crack trajectory gradually expanded downward owing to the increase of
the compressive stress in the downstream area of the dam. Figure 17 is the schematic diagram
of the ultimate crack propagation path and corresponding cohesive tractions when the overflow
reached 10.35 m.

Figure 17. Ultimate crack propagation path and corresponding cohesive tractions for the Koyna Dam
(step 11, overflow = 10.35 m).

Figure 18 compares the crack paths corresponding to an overflow of 10.35 m using the present
method with the results of Zhong [34], Bhattacharjee and Léger [36], and Gioia and Bazant [35]. In the
results reported in these published studies, the overflow was approximately 10.2 m, 10 m, and 14 m,
respectively. The crack path predicted by Bhattacharjee and Léger [36] was initially nearly horizontal.
It then turned downwards when the crack became equal to half of the width of the dam neck. The crack
path based on X-SBFEM in this study is consistent with those predicted by Zhong [34] and Gioia and
Bazant [35]. These studies reported the formation of very short horizontal extensions that initially
curved downwards and towards the dam’s heel.

Figure 18. Comparison of crack paths with existing results.
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Figure 19 shows the relationships between the overflow and the crest displacement obtained
herein and four previously published numerical simulations [34–36]. It can be seen from Figure 19
that the results of Gioia et al. [35] are consistent with those of Zhong et al. [34], Bhattacharjee and
Leger et al. [36], and Li et al. [23] and the method presented herein during the initial loading, before
the obvious nonlinearity took place. Subsequently, the results obtained by the method presented
in this study are comparatively different from those reported by Gioia et al. [34] and Li et al. [23]
based on the linear elastic fracture mechanics method. Nevertheless, they match closely to the results
of Zhong et al. [35] and Bhattacharjee and Leger et al. [36]. In Figure 19, the resistance of the dam
increases as a function of the crack length and there is no postpeak region owing to the stabilization
effect of the self-weight of the dam. The results from these examples also reveal the minor difference
encountered between the numerical simulation of the scaled-down dam model and the actual dam.

Figure 19. Plots of overflow as a function of crest displacement.

Meanwhile, it can be noted that the extended scaled boundary finite (NFEM-based) method is
numerically stable and robust in modeling the nonlinear postpeak response of the dam up to a state
where severe fractures and significant deformation start to occur.

5. Conclusions

The following conclusions are drawn based on the presented results:

(1) A nonlinear X-SBFEM model using the linear superposition of the iterative method was developed
and validated to include the cohesive tractions and the fracture energy from FPZ.

(2) The proposed model can be applied to complex structures without inserting CIEs.
(3) The accuracy of the proposed model was in close agreement with the experiments showing

improvement over the linear SBFEM method.
(4) The numerical procedure is easily implemented within the finite element method software and

can be compatible with various nonlinear constitutive relations.
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Abstract: A 1:4 scaled fire test of a segment of a subway station is analyzed by means of
three-dimensional Finite Element simulations. The first 30 min of the test are considered to be
representative of a moderate fire. Numerical sensitivity analyses are performed. As regards
the thermal boundary conditions, a spatially uniform surface temperature history and three
different piecewise uniform surface temperature histories are used. As regards the material
behavior of concrete, a temperature-independent linear-elastic model and a temperature-dependent
elasto-plastic model are used. Heat transfer within the reinforced concrete structure is simulated first.
The computed temperature evolutions serve as input for thermomechanical simulations of the fire
test. Numerical results are compared with experimental measurements. It is concluded that three
sources of uncertainties render the numerical simulation of fire tests challenging: possible damage of
the structure prior to testing, the actual distribution of the surface temperature during the test and the
time-dependent high-temperature behavior of concrete. In addition, the simulations underline that
even a moderate fire represents a severe load case, threatening the integrity of the reinforced concrete
structure. Tensile cracking is likely to happen at the inaccessible outer surface of the underground
structure. Thus, careful inspection is recommended even after non-catastrophic fires.

Keywords: thermomechanical analysis; moderate fire; finite element simulations

1. Introduction

Structural engineers are interested in the load-carrying behavior of reinforced concrete (RC)
structures exposed to fires. Research on the high-temperature performance of RC structures involves
the entire field of engineering sciences, dealing with the thermal degradation of concrete [1–3],
the underlying hygro-thermo-chemo-mechanical couplings [4,5], transport of heat and moisture [6–8],
the transient thermal strain of concrete [9–11], also referred to as load-induced thermal strains [12],
spalling of concrete [13–15], the interaction between concrete and steel rebars [16–18] and the
interaction between different RC elements that are connected to form RC structures.

These interactions were studied by means of experiments and/or numerical analyses. As for
structural elements, related studies have been devoted to normal-strength concrete columns with
circular cross-sections [19], high-strength concrete columns with quadratic cross-sections [20–22],
RC beams, either unprotected [23] or protected by fiber-reinforced polymer laminates [24],
high-performance self-compacting concrete slabs with superabsorbent polymers and polypropylene
fibers [25], T-shaped beams, made of high-strength reinforced concrete [26] and prefabricated RC
segments for linings of shield tunnels [27]. As for entire RC structures, testing and/or simulations
were carried out for RC slabs resting on steel frames [28], slab-column connections, made of
reinforced concrete [29], composite slabs with, as well as without a supporting secondary beam [30],
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RC frame structures [31–33], the Channel Tunnel between France and the United Kingdom [2,13],
other monolithic tunnel linings with cross-sections in the form of a segment of a circle [34,35] , of an
ellipse [36] and in the form of a double box [37], a segmental tunnel ring of a metro tunnel [38] and the
twin-tube cross-section of the immersed tunnel of the Hong Kong-Zhuhai-Macao-Bridge [39].

The present study refers to another interesting structure: a segment of a subway station.
It represents a statically indeterminate RC structure, consisting of a top slab, a bottom slab, two lateral
walls and two columns connecting the top and bottom slabs. A 1:4-scale model of this structure was
tested by Lu et al. [40]. Before the fire test, the structure was subjected to mechanical loads, simulating
a combination of in situ ground pressure, water pressure, as well as dead and live loads that occur in
the tunnel under service conditions. These loads were kept constant throughout the subsequent fire
test. During this test, the temperature of the air in the interior of the tested structure was increased
according to a prespecified temperature history. The performance of the structure was monitored
during the test by means of temperature sensors (“thermocouples”) and strain gauges.

The aforementioned studies refer to catastrophic fire scenarios with maximum temperatures
typically larger than 1000 ◦C. Such disasters are fortunately rare events, whereas moderate fires
happen much more frequently [41]. Thereby, the expression “moderate fire” refers to a scenario that
develops initially like a catastrophic fire disaster, but is stopped by fire fighters early enough so that
the structure is not damaged severely. Consequently, moderate fires are, at least from the structural
viewpoint, non-catastrophic events. Because of their frequency, however, they deserve more attention
from structural engineers. This is setting the scene for the present study.

Here, the first 30 min of the fire test by Lu et al. [40] are analyzed, based on three-dimensional
Finite Element simulations using the commercial software Abaqus FEA 2016 [42]. This period of time
is chosen since it is representative of a moderate fire. Heat transfer in the analyzed reinforced concrete
structure is simulated first. The obtained temperature field histories are subsequently used as the basis
for thermomechanical analyses of the load-carrying behavior of the tested structure during the fire test.
The specific challenges of these two types of simulations refer to:

• the boundary conditions required for the analysis of the heat transfer problem and
• the material behavior of concrete, subjected to both mechanical loading and elevated temperatures.

Both items involve significant uncertainties. This provides the motivation for corresponding
sensitivity analyses. They are described in the following.

Regarding the thermal boundary conditions, the first approach is based on prescribing one specific
temperature history at the entire interior surface of the structure. The prescribed temperature evolution
is set equal to the average of the readings of two temperature sensors, which were positioned at a
distance of 2 mm from the heated surface. One sensor was located inside the top slab and the other one
inside the right wall. In the second approach, the heated inner surface of the structure is subdivided
into three sub-regions. Each of them is subjected to a uniform distribution of a specific temperature
history. The three required temperature histories are selected, in the context of model updating, such
that satisfactory agreement between simulation results and temperature measurements is obtained.

The material behavior of concrete is simulated as either temperature-independent and
linear-elastic or temperature-dependent and elasto-plastic. For the latter simulation, the Concrete
Damaged Plasticity (CDP) model of Abaqus FEA is used [42]. Thereby, the nonlinear constitutive
behavior of concrete and steel, including their temperature-induced degradation, agree with the
recommendations by the Eurocode 2 [43] and the fib Model Code [44].

Results obtained from the described structural sensitivity analyses will allow for an assessment of
the relative importance of thermal boundary conditions and the material behavior of concrete. This is
important for structural engineers whose research efforts are devoted to dealing with large uncertainties
that still exist in this research area. In addition, the simulation results will allow for providing
recommendations regarding the inspection of RC structures after non-catastrophic fire events.

The present paper is organized as follows. In Section 2, experimental data from the scaled fire test
of an underground reinforced concrete structure are presented. In Section 3, transient simulations of the
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non-stationary heat transfer in the reinforced concrete structure are described. This includes sensitivity
analyses with two different types of thermal boundary conditions. In Section 4, the load-carrying
behavior of the structure during the fire test is analyzed, based on thermomechanical numerical
simulations. This includes sensitivity analyses with two different types of material models for
concrete. In addition, the two temperature field histories of Section 3 serve as input. Thus, altogether,
four structural simulations are described. The comparison of simulation results and experimental
measurements focuses on two time instants: (i) the time instant right before the fire test (at that time,
the structure was already subjected to mechanical loading) and (ii) 30 min after the start of the fire test.
Finally, Section 5 contains a summary and conclusions.

2. Experimental Results from a Scaled Fire Test

The tested structure was inspired by a three-span two-floor reinforced concrete frame, as is
frequently used in China for subway lines; see Figure 1. The height of the floors amounts to 5950 mm
and 6190 mm, respectively, the total internal span to 20, 700 mm and the cross-sectional area of the
columns, which subdivide the frame into three cells, to 1200 mm × 800 mm. In the real structure,
the distance of neighboring columns in the axial direction of the tunnel amounts to 7500 mm.

Figure 1. Cross-sectional view (vertical cut through the structure, normal to the axis of the tunnel) of a
three-span two-floor reinforced concrete frame, providing the inspiration for fire testing in [40].

2.1. Production of the Tested Structure

Inspired by the structure illustrated in Figure 1, a model of the upper floor was tested at a scale of
1:4; see Figure 2 and [40] . The width of the tested structure was 5260 mm; its height was 1880 mm; and
its axial length was 1200 mm; see Figure 3.
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Figure 2. Setup of the large-scale fire test, taken from [40]. The specimen was placed sidelong on top of
the furnace and closed with a fire-resistant cover.

(a)

(b)

Figure 3. Geometric dimensions of the tested structure (mm): (a) cross-section and (b) perspective
representation; adapted from [40].
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The dimensions of the top slab and the lateral walls amounted to one fourth of the real dimensions.
The total length of the inner span of the structure amounted to 20.7 m/4 = 5.175 m. However, it had
to be slightly adjusted to fit the dimensions of the furnace. Thus, the inner span of the model is
4.91 m, which is equal to that of the furnace. The design of the columns was the result of the following
considerations: The scaled distance of neighboring columns in the axial direction of the tunnel
amounted to 7.5 m/4 = 1.875 m. This is by a factor of 1.5652 larger than the axial length of the tested
structure. Thus, the 1:4 scaled cross-sectional area of the columns, amounting to 300 mm × 200 mm,
had to be divided by a factor of 1.5652; see [40] for details. In order to obtain a geometrically similar
cross-section, both scaled dimensions were divided by

√
1.5652 = 1.25. Therefore, the cross-sectional

area of the columns of the tested structure amounted to 240 mm × 160 mm. Finally, the thickness of
the bottom slab was set equal to 190 mm, in order to account for the influence of the lower floor on the
stiffness of the modeled upper floor; see [40] for details.

The reinforcement ratio of the top slab, the bottom slab, the columns and the walls amounted,
by analogy to the real structure, to 1.22%, 1.19%, 2.95% and 1.76%, respectively. The reinforcement
bars had diameters of 10 mm, 12 mm and 14 mm, respectively; see Figure 4.

Figure 4. Reinforcement drawing of the tested structure (mm), taken from [40].

Temperature and strain sensors were put in place already before casting of the concrete. In this way,
the sensors were finally embedded inside the tested structure. As to be expected in fire testing [45],
some of the sensors failed during the experiment. Therefore, the following description is limited to
measurement equipment, the readings of which are considered in the present work. Thermocouples
were placed at six positions within the tested structure (Figure 5): three in the top slab (one at the
midspan of each one of the three cells), one in the right column, one in the right wall and one in the
middle cell of the bottom slab. At the selected positions, several sensors were placed at different
distances from the heated inner surface, in order to monitor the ingress of heat into the structure;
see Figure 5. The minimum cover depth of the thermocouples amounted to 2 mm.

Strain gauges were mounted to steel bars of the inner and the outer reinforcement layer.
Measurement positions were located at the top slab, at the midspan of the left cell and at the center of
the right wall; see Figure 5.

Normal concrete “C40”, with a mass density of 2373 kg/m3, was used for the production of the
tested structure; see Table 1 for the composition of the material. The stiffness and the strength of both
concrete and steel were quantified before the test, following protocols from the Chinese Standard for
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Test Method of Mechanical Properties on Ordinary Concrete [46]; see Table 2. Notably, the concrete
was tested at an age of 28 days.

Figure 5. Elements of the tested structure and positions of thermocouples and strain gauges.

Table 1. Composition of the concrete used for the tested structure.

Raw Material Content (kg/m3)

Cement (42.5 PO) 249
Tap water 176

Sand 1 (middle size) 306
Sand 2 (middle size) 458

Gravel (5–25 mm) 1013
Fly ash (Level II) 70

Admixture (ZK 904-3) 6
Blast furnace slag S95 95

Table 2. Stiffness and strength properties of concrete (age = 28 days) and steel at room temperature.

Material Compressive Strength (MPa) Yield Stress (MPa)

Concrete 36.5 –
Steel (diameter = 12 mm) – 531.9
Steel (diameter = 14 mm) – 530.2

As for the fire experiment, the tested structure was rotated by 90◦ and placed in the furnace,
such that the axial direction of the modeled tunnel segment was equal to the vertical direction.
Additional supports were used to avoid rigid body motions in horizontal planes. Four supports
prevented the displacements of the bottom ends of the walls and of the columns; see Figure 6. As for
the displacements in the horizontal direction, orthogonal to the axes of the columns, two supports
were positioned at the left wall; see Figure 6.
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Figure 6. Support and loading conditions of the tested structure, adapted from [40].

2.2. Mechanical and Thermal Loading

In order to simulate service conditions, the structure was mechanically loaded in both horizontal
directions according to the recommendations by the Chinese Standard for Metro Design [47] and
Eurocode 2 [48]. The imposed loads accounted for the effective traffic load at the surface above the
real structure (20 kN/m), the pedestrian load on both stories (4 kN/m), the earth pressure resulting
from a 3.5 m-thick layer of covering soil (specific gravity = 19 kN/m3), and the water pressure
resulting from a 0.5 m-thick layer of groundwater (specific gravity = 9.8 kN/m3). These loads were
combined, using safety factors for dead load and live loads, amounting to 1.35 and 1.40, respectively.
The resulting loading scenario was simulated by three sets of concentrated loads, referred to as P1,
P2 and P3; see Figure 6 and Table 3. They were applied in nine steps. This took 70 min. Subsequently,
the fire test was started.

Table 3. Applied mechanical loads.

P1 P2 P3

Load (kN) 192.0 151.2 120.0

During the fire test, the temperature of the air inside the cross-section was increased according
to a time-dependent temperature history (Figure 7). The latter was the result of a statistical analysis
of documented fire accidents. Within 25 min, the temperature was increased to a target value of
approximately 525 ◦C. It was kept constant thereafter. The prescribed fire load accounted for the
ventilation of the real structure, with a speed of 2.5 m/s, automatic sprinkler devices and a heat release
rate of 5 MW [40], in accordance with the Chinese Standard for Metro Design [47]. Two controlled
heat sources of the furnace were used to produce the thermal loading. The heat was transferred to the
tested structure by means of natural (unforced) convection.
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Figure 7. Temperature history of the air inside the tested structure.

2.3. Results from Structural Monitoring

The thermocouples and the strain gauges undertook readings every 20 s. Thus, the first 30 min of
the fire test were documented by 90 readings of each sensor.

The temperature close to the inner surface of the top slab, at the midspan of the right cell,
rose by approximately 90 ◦C during the first 30 min of the fire test; see Figure 8a. The temperature
decreased with increasing distance from the heated inner surface (see the four graphs in Figure 8a),
which shows the measured evolutions of temperature changes at distances of 2 mm, 30 mm, 68 mm and
106 mm from the heated inner surface. At a depth equal to or greater than 106 mm, the temperature
remained practically constant throughout the analyzed part of the fire test. A qualitatively similar,
but quantitatively different behavior was measured at the other measurement positions of the top slab,
the right wall and the bottom slab; see Figure 8d,e. At the center of the right wall, e.g., the temperature
close to the inner surface rose by about 80 ◦C, while no temperature increase was measured at depths
equal to or greater than 105 mm. The temperature of the right column was measured at its core,
at a distance of 80 mm to the nearest heated surface. Notably, the core temperature of the column
rose significantly more than that at the same depth in the slabs and the right wall. The measured
temperature evolution is, in fact, comparable with that at a depth of some 30 mm in the top slab.

The strain gauges measured deformations resulting from the mechanical loading (see the values
labeled as 0-min readings in Figure 9) and the progressive thermomechanical loading (see the evolution
of the total strains after 0 min in Figure 9). For instance, at the outer reinforcement layer of the top slab,
the strains resulting from the mechanical loading amounted to approximately −50 × 10−6; see the
ordinate of the dash-dotted curve at t = 0 min. During the subsequent 30 min of the fire test, the reading
increased by approximately 150 × 10−6 to approximately 100 × 10−6; see the dashed-dotted graph in
Figure 9. This underlines that strains resulting from the thermal loading became the dominant part of
the total strains soon after the start of the fire test. Notably, strain changes of the inner rebar resulted
from both the eigenstrains, caused by the temperature increase, and the structural load redistributions,
induced by the thermal loading. The strain changes of the outer rebar, where the temperature remained
constant throughout the analyzed part of the fire test, resulted exclusively from redistribution of the
structural load.
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Figure 8. Measured evolutions of temperature changes: (a) top slab, at the midspan of the right cell,
(b) top slab, at the midspan of the middle cell, (c) top slab, at the midspan of the left cell, (d) center of
the right wall, (e) bottom slab, at the midspan of the middle cell, and (f) core of the right column.
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Figure 9. Measured evolutions of total strains of steel rebar: (a) top slab, at the midspan of the left cell,
and (b) center of the right wall.

3. Transient Simulation of Non-Stationary Heat Conduction

Heat conduction within the tested structure was simulated by means of three-dimensional
non-stationary Finite Element simulations using the commercial software Abaqus FEA 2016. The Finite
Element mesh (Figure 10) was the result of a convergence study. It was a satisfactory trade-off
between simulation accuracy and computational effort [49]. The mesh consisted of 139,040 linear
hexahedral brick finite elements, with eight nodes and one temperature degree of freedom per node.
These elements are referred to as “DC3D8” by Abaqus [42]. The characteristic size of the finite elements
amounted to 3 cm. Notably, there are studies [23,50] showing that the steel bars have an insignificant
influence on the heat conduction problem. For this reason, the thermal properties of concrete were
assigned to all finite elements for the simulation of the non-stationary heat conduction problem.
This analysis was only made for the analysis of heat conduction. For the subsequent thermomechanical
analysis, the specific properties of concrete and steel were assigned to the corresponding elements.

Figure 10. Three-dimensional Finite Element mesh of the analyzed structure and the Cartesian
coordinate system used.

The thermal properties of the concrete of the tested structure were unknown. As a remedy,
the values of the specific heat capacity and the thermal conductivity were estimated in accordance
with building codes [43,44,51,52] and scientific studies [53–55]; see Table 4. These values refer to
room temperature. Notably, the experimental measurements suggest that the temperature of the
structure remained below 100 ◦C during the first 30 min of the fire test (see Figure 8) and, thus, that the
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evaporable water of the concrete was not released [53,56]. This served as a motivation to assume,
in the spirit of a reductionist approach, that the thermal properties of concrete at room temperature
are a reasonable approximation throughout the entire analysis, although the thermal conductivity of
concrete decreases to some 90% of its room-temperature value, provided that the material is heated up
to 100 ◦C; see the building codes [43,44,52] and the scientific studies [1,53,55,57,58].

Table 4. Thermal properties of concrete at room temperature.

Property Value

Specific heat capacity (J/(kgK)) 900
Thermal conductivity (W/(mK)) 1.6

As regards the boundary conditions, the simulations were based on histories of temperature fields
that were prescribed at the inner and outer surfaces of the simulated structure. This approach was
appealing as it rendered a computational fluid dynamics simulation of heat transfer from the hot air
to the simulated structure dispensable. Such simulations are rather challenging, because of thermal
instabilities occurring inside the highly turbulent air flow [34,59,60]. Herein, the temperature at the
outer surface of the simulated structure was set equal to the initial temperature, Tini = 10 ◦C, throughout
the entire simulation. This agrees with the experimental measurements. As for the time-dependent
temperature field prescribed at the heated inner surface, two different strategies were implemented
within the framework of a sensitivity analysis: (i) spatially-uniform heating of the entire inner surface
of the structure and (ii) piecewise spatially-uniform heating of three sub-regions of the inner surface.

3.1. Uniform Prescription of One Temperature History

At the entire inner surface of the simulated structure, the same temperature history was prescribed;
see the blue dotted graphs, labeled “BC”, in Figure 11. The prescribed evolution of the surface
temperature was obtained by averaging the readings of the two thermocouples that were positioned at
a distance of 2 mm from the heated inner surface; see the dotted black lines in Figure 11a,d. The other
graphs shown in Figure 11a refer to the simulated (label “Sim”) or measured (label “Meas”) evolutions
of temperature changes at positions 30 mm, 68 mm and 105 mm away from the heated inner surface;
see also Figure 5.

The results of the numerical simulations (Figures 12 and 13) overestimated the experimentally
measured temperatures at the right wall, while underestimations were obtained at all other positions
that were equipped with thermocouples; see Figure 11. The largest percent underestimation, obtained
30 min after the start of the fire test, amounted to some 70% and referred to the temperature evolution
of the column; see Figure 11f. This was the motivation to refine the numerical simulations by means of
updating of the model.

0 5 10 15 20 25 30

0

20

40

60

80

100

(a)

0 5 10 15 20 25 30

0

20

40

60

80

100

(b)

Figure 11. Cont.
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Figure 11. Comparison of simulated evolutions of the temperature inside the analyzed structure,
obtained by prescribing a spatially-uniform temperature history along the entire inner surface,
with experimental data: (a) top slab, at the midspan of the right cell, (b) top slab, at the midspan of
the middle cell, (c) top slab, at the midspan of the left cell, (d) center of the right wall (e) bottom slab,
at the midspan of the middle cell, and (f) core of the right column. Sim, simulated; Meas, measured.

Figure 12. Temperature distribution obtained by prescribing a uniform surface temperature history,
30 min after the start of the thermal loading: detail showing the connection of the left wall to the
top slab.
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Figure 13. Temperature distribution obtained by prescribing a uniform surface temperature history,
30 min after the start of the thermal loading: detail showing the central cross-section of the right column.

3.2. Piecewise Uniform Prescription of Three Specific Temperature Histories

The results of the preceding section suggested that the right column was exposed to higher surface
temperatures compared to the near-surface-measurements at the top slab and the right wall. In order
to improve the agreement between simulation results and experimental measurements, the inner
surface of the analyzed structure was subdivided into three sub-regions. In each of them, a specific
temperature history was prescribed at the inner surface in a spatially-uniform fashion. This was done
such that the symmetry of the simulated heat conduction problem was preserved.

1. The top and bottom slabs were subjected to the temperature history, measured at the midspan of
the left cell of the top slab, at a depth of 2 mm from the heated surface.

2. Both walls were subjected to the temperature history, measured at the center of the right wall, at a
depth of 2 mm from the heated surface.

3. Both columns were subjected to the temperature history imposed on the top and bottom
slabs, amplified by a fitting-factor. This was done, noting that the temperature was not
measured near the surface of the columns and that, because of their position and their larger
exposed-surface-to-volume ratio, the columns were expected to heat up faster than the slabs and
the walls. This was confirmed by the results from the previous section. Furthermore, since the
same source that heated the slabs also heated the columns, similar qualitative temperature
evolutions were assumed to occur at both positions. Setting the amplifying factor equal to 3.2
provided satisfactory agreement between the simulated and the measured temperature evolutions.

The three different prescribed temperature histories are shown as blue dotted graphs, labeled
“BC”, in Figure 14.

The simulated and measured temperatures agree well at the positions where near-surface-
measurements are available, provided that the temperature history measured at a depth of 2 mm is
prescribed as the boundary condition at the surface; see Figure 14a,d. At these positions, the maximum
difference between the simulated and the measured temperatures amounts to 3.6 ◦C and 1.4 ◦C,
respectively. This underlines the fact that the heat transfer was predominantly one-dimensional at
these positions and took place in the direction orthogonal to the heated surface.

The simulated and measured temperatures also agree well at the middle cell of the bottom
slab. Here, the maximum difference between the simulated and the measured temperatures is 2.5 ◦C.
This suggests that the two surfaces at the midspan positions of the right cell of the top slab and of the
middle cell of the bottom slab were exposed to very similar temperature histories; see Figure 14a,e.

The updated simulation (Figure 15) suggests that the temperature increase at the surface of the
right column was significantly larger than the available near-surface-measurements at the top slab and
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the right wall. In the updated simulation, the maximum surface temperature of the columns amounts
to 284 ◦C, and the difference between the simulated and the measured temperatures amounts to 3.1 ◦C.
In this context, it is emphasized that the updated simulation was simply based on constant thermal
properties of concrete (Table 4).

As for the top slab, at the midspan positions both in the middle and the left cell, also the updated
simulation does not deliver satisfactory results; see Figure 14b,c. This underlines the fact that the
thermal loading of the top slab was characterized by significant gradients of the surface temperature
across the three cells.

Good agreement between simulated and measured temperatures would likely be achieved by
amplifying, separately for the middle and the left cell, the history of the surface temperature that was
so far prescribed. The corresponding subdivision of the heated surface of the simulated structure into
five sub-regions, with a specific temperature history for each of them, could be the target of another
refinement step. Still, temperature measurements remain unavailable for the right and the left cell
of the bottom slab, the left wall and the left column. Thus, the re-analysis of the fire test inevitably
requires assumptions concerning the specific histories of the surface temperature in these regions.
Alternatively, one could fit them such that the subsequent thermomechanical simulations deliver
strains that agree well with the available strain measurements. This would result in the best-possible
reproduction of the available experimental data. However, the involved fitting process would render
the assessment of the sensitivity of simulation results with respect to the simulated material behavior
of concrete very difficult. Since this sensitivity is a central focus of the present contribution, it was
decided to stay with the two described strategies of prescribing thermal boundary conditions along the
heated inner surface of the analyzed structure and to combine them with two strategies of accounting
for the material behavior of concrete. A discussion of the simulation results in the regions of the
structure that were not equipped with thermocouples is given in Appendix A.
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Figure 14. Cont.
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Figure 14. Comparison of the simulated evolutions of the temperature inside the analyzed structure,
obtained by prescribing three piecewise spatially-uniform temperature histories along the inner surface,
with experimental data: (a) top slab, at the midspan of the middle cell, (b) top slab, at the midspan
of the right cell, (c) top slab, at the midspan of the left cell, (d) center of the right wall (e) bottom slab,
at the midspan of the middle cell, and (f) core of the right column.

Figure 15. Temperature distribution obtained by prescribing three piecewise uniform surface
temperature histories, 30 min after the start of the thermal loading: detail showing the central
cross-section of the right column.

4. Thermomechanical Simulation at Selected Time Instants

The load-carrying behavior of the tested structure was analyzed by means of three-dimensional
Finite Element simulations, using Abaqus FEA 2016. The chosen Finite Element mesh was similar
to the one used for the thermal simulations; see Figure 10. The concrete structure was modeled
by 139,040 hexahedral elements of type “C3D8R”, i.e., eight-node linear elements with reduced
integration and hourglass control, with three translational degrees of freedom per node. The steel
rebar was considered by 18,035 line elements of type “T3D2”, i.e., two-node linear three-dimensional
truss elements, with an axial displacement degree of freedom per node. Perfect bond between
concrete and steel rebar was assumed by attaching the nodes of the steel elements to the nodes of the
concrete elements.

The supports of the structure were accounted for by means of prescribing displacement boundary
conditions. Four sets of such boundary conditions were prescribed in order to prevent displacements
of the bottom ends of the walls and of the columns, in the direction of the axes of the columns;
see Figure 6. Two additional sets of displacement boundary conditions were prescribed in order to
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prevent horizontal displacements of the left wall, in the direction orthogonal to the axes of the columns;
see Figure 6.

The external mechanical loads, imposed on the structure, were accounted for by means of
prescribing traction boundary conditions. The six concentrated forces, acting on the top slab, and two
loads, acting on the right wall (Figure 6), were prescribed by means of equivalent pressures amounting
to 13.3 MPa.

The thermomechanical simulation was organized by analogy to the sequence of actions during
the analysis of the experiment. At first, the external forces were applied. While they were kept constant
thereafter, the temperature fields, computed in Section 3, were prescribed as a time-dependent input,
resulting in a transient thermomechanical loading of the structure.

Combined sensitivity analyses were carried out, in order to study the sensitivity of simulation
results with respect to uncertainties regarding the thermal loading and the material behavior of
concrete. As for the first type of sensitivity analysis, the two different temperature field histories,
computed in Section 3, were imposed on the structure, by way of two different simulations. As for the
second type of sensitivity analysis, two different types of material models were used for the simulation
of concrete. It was either modeled as a linear-elastic material with temperature-independent material
properties or as an elasto-plastic material with temperature-dependent material properties, as described
in the following.

4.1. Material Behavior of Concrete and Steel

4.1.1. Thermoelastic Properties at Room Temperature

The expected value of Young’s modulus of concrete, Ec, was estimated based on the mean value
of the experimentally-determined values of the compressive strength, fc,p = 36.5 MPa; see Table 2.
Notably, these strength values were obtained by crushing prismatic specimens with the following
dimensions: 150 mm × 150 mm × 300 mm. The corresponding mean value of the cube compressive
strength (referring to specimens with dimensions 150 mm × 150 mm × 150 mm), fc,cu, was estimated,
based on the following regulation of the Chinese Practice Manual for Design of Concrete Structures [61],

fc,cu =
fc,p

α1 α2
= 48.03 MPa , (1)

where α1 = 0.76 and α2 = 1 for the investigated concrete.
The corresponding mean value of the cylinder strength, fc,cy, was estimated, following

Eurocode 2 [48]:

fc,cy =
fc,cu

1.2
= 40.03 MPa . (2)

The sought value of Ec follows from [48] as:

Ec = 22 GPa ×
(

fc,cy

10 MPa

)0.3

= 33.35 GPa . (3)

Poisson’s ratio of the concrete was set equal to 0.2, and the coefficient of thermal expansion
of concrete was chosen as 9.03 × 10−6/◦C; see also Table 5. This value was obtained as follows:
The Eurocode [43] provides formulae for the thermal strain as a function of the temperature for
different types of concrete. The considered thermal expansion coefficient refers to concrete made of
siliceous aggregates, and it was computed as the slope of the described function, evaluated at room
temperature Troom = 20 ◦C.

The values of the thermomechanical properties of steel were taken from [40]. Young’s modulus,
Poisson’s ratio and the coefficient of thermal expansion amount to 195 GPa, 0.3 and 12.2 × 10−6/◦C,
respectively; see Table 5.
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Table 5. Mechanical properties of concrete and steel at room temperature.

Property Concrete Steel

Young’s modulus (GPa) 33.4 195
Poisson’s ratio (-) 0.2 0.3
Thermal expansion coefficient (◦C−1) 9.03 × 10−6 12.2 × 10−6

4.1.2. Evolution of Thermoelastic Properties resulting from Thermal Loading

The evolution of the elastic stiffness, the strength and the coefficient of thermal expansion
of both concrete and steel, resulting from thermal loading up to 300 ◦C, are discussed, based on
regulations of the Eurocode [43], recommendations of the fib Model Code 2010 [44] and the results
from scientific studies [53]. This was motivated by results from the thermal simulation with piecewise
spatially-uniform histories of surface temperatures, which suggests that the maximum temperature of
the columns rose up to 280 ◦C; see Figure 14f. As regards the thermal degradation of Young’s modulus
of concrete and steel, scientific results from Bažant et al. [53] and regulations of the Eurocode [43]
were used. The reductions of Young’s modulus of concrete and steel are expressed relative to their
reference values at room temperature; see the first two columns of Tables 6 and 7, respectively.
Linear interpolation was used to quantify these moduli between the listed values. Poisson’s ratio of
concrete and steel were assumed to be temperature-independent. Thus, they are set equal to the values
listed in Table 5.

Table 6. Temperature-dependent thermoelastic properties of concrete.

Temperature Young’s Modulus Compressive Strength Coefficient of Thermal

T (◦C) Ec(T)/Ec(Troom) (−) fc(T)/ fc(Troom) (−) Expansion αT (◦C−1)

20 1.00 1.00 9.03 × 10−6

100 0.85 1.00 9.70 × 10−6

200 0.72 0.95 11.7 × 10−6

300 0.60 0.85 15.2 × 10−6

Table 7. Temperature-dependent thermoelastic properties of steel.

Temperature Young’s Modulus Yield Stress Coefficient of Thermal

T (◦C) Es(T)/Es(Troom) (−) fy(T)/ fy(Troom) (−) Expansion αT (◦C−1)

20 1.00 1.00 12.2 × 10−6

100 1.00 1.00 12.8 × 10−6

200 0.90 1.00 13.6 × 10−6

300 0.80 1.00 14.4 × 10−6

As for the thermal degradation of the uniaxial compressive strength of concrete and the yield
stress of hot rolled steel, regulations of the Eurocode [43] were used. The reduction of the compressive
strength of concrete relative to its reference values at room temperature is listed in the first and the
third columns of Table 6. Linear interpolation was used to quantify the compressive strength between
the listed values.

The temperature-dependent coefficients of thermal expansion of both concrete and steel were
chosen according to the regulations of the Eurocode 2 [43]; see Tables 6 and 7 for specific values at
characteristic temperatures. The continuous representations of the underlying nonlinear evolutions
are illustrated in Figure 16.
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Figure 16. Coefficients of thermal expansion as a function of the temperature, according to
Eurocode 2 [43], for: (a) concrete and (b) steel.

4.1.3. Constitutive Behavior: Elasto-Plastic Material Models for Concrete and Steel

The multiaxial elasto-plastic constitutive behavior of concrete was accounted for by means of the
“Concrete Damaged Plasticity” model of Abaqus [42]; see Appendix B for more information regarding
the model and the specific input parameters. As for uniaxial compression, stress-strain relations based
on the regulations of the Eurocode were used; see Figure 17a. As for uniaxial tension, the stress-strain
relations are based on trilinear behavior including a linear-elastic loading branch, a linear softening
branch and a residual stress plateau, required for the stability of the numerical solution; see Figure 17b.
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Figure 17. Temperature-dependent stress-strain relations recommended by Eurocode 2 for concrete
subjected to uniaxial (a) compression and (b) tension.

As for the steel rebar, the employed Finite Element program requires specification of the material
behavior under uniaxial tension. Up to a temperature of 100 ◦C, the material is linear-elastic and
ideal-plastic; see Figure 18. At higher temperatures, the elastic limit of steel is decreasing, resulting
in a trilinear stress-strain curve [43], representing linear-elastic, linear-hardening and ideal-plastic
behavior; see Figure 18. The behavior of steel in compression is obtained by multiplying the numbers
on the ordinate in Figure 18 by −1.
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Figure 18. Temperature-dependent behavior of steel rebar subjected to uniaxial tension, as recommended
by Eurocode 2.

4.2. Simulation Results and Comparison with Experimental Data

The comparison of experimental data and simulation results concerns the total strains at the inner
and the outer reinforcement at the midspan of the left cell of the top slab and at the outer reinforcement
at the center of the right wall; see Figure 19.

(a)
(b)

Figure 19. Positions at which measurements of strains were carried out during testing: (a) perspective
representation and (b) cross-section, coinciding with the plane of symmetry of the structure that
contains the columns.

4.3. Structural Response under Mechanical Loading

Experimental data and simulation results referring to the state after the application of the external
loading, but before the application of the thermal loading are compared in the following. As regards
the numerical results, there are strains from two simulations: one is based on the linear-elastic (label:
LE) and the other one on the elasto-plastic (label: EP) material behavior of concrete.

The two simulations produce similar results; see Table 8. The EP simulation delivers strains that
are by less than 3.5% larger than the strains from the LE simulation. This indicates that linear-elastic
behavior of concrete governed the structural performance during and right after the application of the
external loading, while inelastic effects played a significantly less important role.

Both types of simulations delivered strains that agree with the measurements in terms of the
mathematical sign, referring to tensile and compressive strains, respectively; see Table 8. Satisfactory
agreement between simulation results and experimental data was obtained for the right wall. There,
the difference between simulated and measured strains amounted to 3.0 × 10−6 (LE simulation) and
1.4 × 10−6 (EP simulation). This is equivalent to prediction errors of 6.1% and 2.8%, respectively.
The absolute and relative differences at the other two positions, however, were significantly larger;
see the last two columns of Table 8. These differences could be the result either of inaccurate
measurements or of damage of the structure prior to testing. The latter could have resulted from
restrained shrinkage of concrete or from the transport and maneuvering of the structure.
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Table 8. Measured and simulated strains of steel rebar, positioned at the inner and the outer
reinforcement at midspan of the left cell of the top slab and at the outer reinforcement at the center of
the right wall: additional strains, resulting from application of the mechanical loading, considering
linear-elastic (LE) or elasto-plastic (EP) material behavior of concrete.

Analysis Type RW Outer Layer (10−6) TS Outer Layer (10−6) TS Inner Layer (10−6)

Measured −48.9 −49.4 3.72
LE −45.9 −68.9 29.2
EP −47.6 −69.4 30.1

4.4. Structural Response under Thermomechanical Loading

The comparison of experimental data and simulation results refers to the strain increments caused
by the application of the thermal loading. As regards the numerical results, there are strain increments
from four different simulations. They refer either to the linear-elastic (label: LE) or to the elasto-plastic
(label: EP) material behavior of concrete and either to a spatially-uniform prescription of one surface
temperature history (label: U) or to a piecewise spatially-uniform prescription of three different surface
temperature histories (label: P).

As regards the outer reinforcement both at the midspan of the left cell of the top slab and at the
center of the right wall, the two different types of thermal boundary conditions have little influence
on the simulation results; see Figure 20a,c. This follows from the fact that the outer reinforcement
layers were not experiencing a temperature change during the experiment. The material model used
for concrete, in turn, has a much larger influence. The linear-elastic model results in larger strain
increments as compared to the elasto-plastic model. The differences increase with increasing duration
of the thermal loading, and they are larger at the top slab as compared to the right wall; compare
Figure 20a,c. In addition, both types of simulations underestimate the measured strain increments.

In this context, the uncertainties regarding the thermal boundary conditions and the material
behavior of concrete must be mentioned. On the one hand, there are strong indications that the inner
surface of the tested structure was exposed to significant temperature gradients. Given that there were
only two thermocouples positioned very close to the heated surface, the thermal boundary conditions
are affected by considerable uncertainties. On the other hand, the material behavior of concrete was
accounted for as suggested by current standards and pertinent guidelines. Nevertheless, some aspects
deserve special attention. It is likely that concrete was damaged prior to testing because of restrained
shrinkage. Moreover, time-dependent viscous material behavior in the form of creep and load
induced-thermal strains (LITS) could also have influenced the structural performance considerably.

As regards the inner reinforcement at the midspan of the left cell of the top slab, the differences
of the strain increments obtained with different thermal boundary conditions are significantly larger
than described above; compare Figure 20b with Figure 20a,c. This follows from the fact that the inner
reinforcement layers were experiencing a significant temperature change during the experiment. It is
also interesting to note that the elasto-plastic simulations deliver larger strains than the linear-elastic
simulations. This indicates that inelastic material behavior of concrete, in particular tensile cracking,
had a significant influence on the structural performance during the fire test.
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Figure 20. Measured and simulated strains of steel rebar: (a) outer and (b) inner reinforcement at
the midspan of the left cell of the top slab, and (c) outer reinforcement at the center of the right wall:
strain increments, resulting from application of the thermal loading, considering linear-elastic (LE) or
elasto-plastic (EP) material behavior of concrete and a prescription of one uniform surface temperature
history (U) or of three different piecewise uniform surface temperature histories (P).

The elasto-plastic material model for concrete improved the quality of the simulations, albeit with
a significant increase in computational effort. The brittle nature of the structure caused abrupt
local failures in specific regions where the tensile stresses were particularly large; see Figures 21–26.
The figures show states of the structure separated by less than 0.2 s. This sudden loss of strength
caused numerical problems. In order to overcome these problems by means of numerical simulations,
fictitious stabilizing viscous forces were introduced, following the recommendations of Abaqus FEA,
in order to redistribute the stresses near the affected regions smoothly. The quality of the results was
nevertheless verified by comparing the magnitude of these fictitious viscous forces with the total
magnitude of the acting forces. Additionally, the ratio of the energy introduced by these forces (also
referred to as “static dissipation energy” [42]) to the total internal energy was verified as remaining
below 5% at all times.
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Figure 21. Plastic strains, developed on the outer surface of the top slab at its connection to the lateral
wall right before the onset of cracking, as obtained from a thermomechanical simulation based on
temperature-dependent and elasto-plastic material behavior, as well as on the prescription of one
uniform surface temperature history; the results refer to the time instant six minutes and 3.4 s after the
beginning of the fire test.

Figure 22. Plastic strains, developed on the outer surface of the top slab at its connection to the lateral
wall right after the onset of cracking, as obtained from a thermomechanical simulation based on
temperature-dependent and elasto-plastic material behavior, as well as on the prescription of one
uniform surface temperature history; the results refer to the time instant 6 min and 3.6 s after the
beginning of the fire test.

90



Appl. Sci. 2018, 8, 2116

Figure 23. Plastic strains, developed on the outer surface of the top slab at its connection to the
column right before the onset of cracking, as obtained from a thermomechanical simulation based
on temperature-dependent and elasto-plastic material behavior, as well as on the prescription of one
uniform surface temperature history; the results refer to the time instant 13 min and 50.5 s after the
beginning of the fire test.

Figure 24. Plastic strains, developed on the outer surface of the top slab at its connection to the
column right after the onset of cracking, as obtained from a thermomechanical simulation based on
temperature-dependent and elasto-plastic material behavior, as well as on the prescription of one
uniform surface temperature history; the results refer to the time instant 13 min and 50.7 s after the
beginning of the fire test.
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Figure 25. Plastic strains, developed on the outer surface of the top slab at its connection to the column
right before the onset of cracking, as obtained from a thermomechanical simulation based on the
temperature-dependent and elasto-plastic material behavior, as well as on the prescription of one
uniform surface temperature history; the results refer to the time instant 25 min and 1.0 s after the
beginning of the fire test.

Figure 26. Plastic strains, developed on the outer surface of the top slab at its connection to the
column right after the onset of cracking, as obtained from a thermomechanical simulation based on
temperature-dependent and elasto-plastic material behavior, as well as on the prescription of one
uniform surface temperature history; the results refer to the time instant 25 min and 1.2 s after the
beginning of the fire test.

5. Conclusions

Because moderate fires happen much more frequently than fire disasters [41], the first 30 min of a
fire test were analyzed. Sensitivity analyses by means of three-dimensional Finite Element simulations
were used to address two specific challenges related to the prediction of the structural performance of
a reinforced concrete segment of a subway station. These challenges are:

1. the estimation of the spatial and temporal development of the temperature within the reinforced
concrete structure and
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2. the choice of a suitable material model for concrete subjected to mechanical loads and elevated
temperatures.

Experimental data from a scaled fire test of an underground substructure by Lu et al. [40] were
used as the reference for comparison with the numerical results. From these results, the following
conclusions and remarks may be extracted:

• Even under controlled laboratory conditions, different temperatures were measured at equal
depths, but at different positions of the tested structure. This underlines significant uncertainties
related to the interaction of the hot gas and the surface of the exposed structure. As emphasized
by Achenbach et al. [62], these uncertainties can hardly be reduced.

• The temperature within the concrete and the steel elements at all positions at which thermocouples
were placed, both in the slabs and the walls, remained below 100 ◦C during the first 30 min
of the fire test. Thus, the material properties of concrete and steel remained approximately
constant at these positions. This was the motivation to consider the temperature-independent
and linear-elastic material behavior of concrete.

• The numerical simulations clarified that the monitored column was exposed to significantly
higher temperatures than the slabs and the walls. This was probably a result of the fact that the
columns were positioned above the two heat sources of the furnace. Because of the elevated
temperatures, a considerable thermal degradation of the material properties of concrete and steel
took place in the columns.

• The strain measurements clarified that strains resulting from the thermal loading dominate the
total strains soon after the beginning of the fire. This underlines that even moderate fires do
represent a considerable threat to the integrity and durability of RC structures.

The challenge of the three-dimensional simulation was met in two parts. At first, the non-stationary
heat transfer inside the reinforced concrete structure was simulated. The obtained temperature field
histories were used as input for subsequent simulations of the load-carrying behavior of the reinforced
concrete structure. Two types of thermal boundary conditions were combined with two types of
material models for concrete.

The following conclusions are drawn from the two different types of heat transfer simulations:

• The prescription of one uniform temperature history at all exposed surfaces does not produce
convincing results. Temperature measurements are particularly underestimated inside the right
column and at the midspan of the left cell of the top slab.

• The prescription of three different piecewise uniform temperature histories showed that, provided
the temperature history at a specific surface is known and used as the local thermal boundary
condition, the ingress of heat at that position of the structure is predicted accurately.

• The surface temperature histories were only measured at two positions of the tested structure.
Thus, assumptions concerning the thermal boundary conditions were indispensable for the
numerical simulations. They are anyway questionable, because the unsolved problem of
the dynamics of flames remains an important source of uncertainty; see, e.g., the study by
Blanchard et al. [34].

• The simulation with the improved thermal boundary conditions underlined that the temperature
increase at the surface of the columns is expected to be larger than 280 ◦C. Thus, thermal
degradation of the mechanical properties of concrete and steel occurs. This was the motivation to
consider the temperature-dependent and elasto-plastic material behavior of concrete.

The following conclusions are drawn from the four different types of thermomechanical
simulations of the load-carrying behavior of the analyzed structure:

• The load-carrying behavior of the structure, when subjected to mechanical loads only,
was governed by linear-elastic material behavior. Although tensile cracking took place at several
positions of the structure, inelastic material behavior did not play an important role.
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• The numerical simulations referring to the mechanical loading reproduced strain measurements
that were only reliable at the right wall, whereas the absolute values of the strains at midspan
of the left cell of the top slab were overestimated significantly. This has revealed two additional
sources of uncertainty, namely the reliability of measurements and the initial state of the structure.
It is likely that the highly statically indeterminate structure was damaged already before the test,
by restrained shrinkage of concrete and by the transport of the structure from the production site
to the test furnace.

• The numerical simulations referring to the mechanical and the thermal loading reproduced
strain measurements that were only reliable at the inner reinforcement at the midspan of the
left cell of the top slab, whereas the absolute values of the strains at the other two positions
at which strain measurements were available were underestimated significantly. The best
results were obtained from the most realistic simulation, based on the prescription of three
different piecewise uniform surface temperature histories, as well as on temperature-dependent
elasto-plastic behavior of concrete.

The Finite Element simulations provide insight into the structural behavior of the tested segment
of a subway station. From the numerical results obtained with the nonlinear material model for
concrete, the following conclusions are drawn:

• Already moderate fires threaten the integrity of RC structures. As for the analyzed structure,
the Finite Element simulations indicate localized tensile cracking at the outer surface of
the structure, in regions where the top and the bottom slabs are connected to the walls
and the columns; see Figures 21–26. In more detail, the Finite Element simulations indicate
that the corners, i.e., the connections between the walls and the slabs, were damaged first
(Figures 21 and 22), followed by a localized damage of the slabs, in the immediate vicinity of the
connections to the columns (Figures 23–26).

• Tensile cracking of concrete and the associated redistribution of stresses within the RC structure
take place in a quasi-instantaneous fashion. This renders numerical stabilization approaches
indispensable in order to achieve convergence in nonlinear Finite Element simulations.

• Careful inspection of RC structures is strongly recommended also after moderate fire events
(see, e.g., the methods proposed by Felicetti [63]), even if the accessible interior surface of an
underground structure appears to be undamaged.

• Connections between structural elements with strong differences regarding the ratio between
their heat-exposed surface and their volume are prone to suffer from localized damage. Notably,
columns tend to exhibit larger surface-to-volume ratios than slabs and walls. Thus, connections
between columns and slabs should be thoroughly inspected.

• Tensile cracking of the inaccessible exterior surface of an underground structure is a serious threat
for the long-term durability of the structure after the fire, because the cracks represent pathways
for substances that promote the corrosion risk/rate of the steel rebar.

As for future fire tests, the following recommendations can be made based on the results of the
present study:

• It is recommended to carry out test repetitions, also in the context of structural experiments,
even though such tests are time-consuming and expensive. Test repetitions render the desirable
assessment of the experimental scatter associated with the chosen testing method possible; see,
e.g., the experimental approach by Schlappal et al. [64].

• It is recommended to carry out redundant measurements of key quantities. This implies that key
quantities shall be measured by two independent test methods. The availability of redundant
measurements allows for the assessment of the reliability of the used measurement equipment;
see, e.g., the experimental approach by Wyrzykowski et al. [65].

• When it comes to the design of a large fire test, it is recommended to position many
thermocouples close to the heated surface in order to gain access to the spatial distribution
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of the surface temperature histories. This way, the uncertainties of the actual fire load can be
reduced significantly.

• It is recommended to produce test structures at the place and in the position of subsequent fire
testing, such that possible damage associated with the transport and the maneuvering of the
structure can be excluded.

• It is recommended to equip the tested reinforced concrete structure with embedded sensors that
allow for quantification of possible damage of the structure resulting from restrained shrinkage.
As for the design of such embedded sensors, multi-physics simulations of the structure, providing
insight into the performance of the structure from its production, throughout all early-age stages,
all the way up to the time of testing, are needed. This requires a strong investment of the global
scientific community into basic research, aimed at a better understanding of structures made from
modern concretes.
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Appendix A. Temperature Distribution Inside the Concrete Structure

Simulation results in regions of the structure which were not equipped with thermocouples are
presented and discussed in the following. As regards the heat transfer in the analyzed structure, it can
be noted that:

• During the first 30 min of the fire test, the temperature of the reinforced concrete structure
increased up to a distance of some 10 cm from the heated surface, see Figures A1–A3.

• One-dimensional heat conduction occurs in the top slab, the bottom slab, and the lateral walls,
except in the immediate vicinity of the columns and the walls, see Figures A1 and A2. Notably,
the one-dimensional heat transfer problems could also be solved in a semi-analytical fashion,
following e.g., Wang et al. [66].

• Two-dimensional heat conduction occurs in the columns (Figures 13 and 15) and in the vicinity of
the connections of the slabs with the columns and the walls. As for studying the heat transfer in
these regions, Finite Element simulations are indispensable for reliable results.

Figure A1. Temperature distribution obtained by prescribing a uniform surface temperature history,
30 min after the start of the thermal loading: overview over the whole structure.
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Figure A2. Temperature distribution obtained by prescribing three piecewise uniform surface
temperature histories, 30 min after the start of the thermal loading: overview over the whole structure.

Figure A3. Temperature distribution obtained by prescribing three piecewise uniform surface
temperature histories, 30 min after the start of the thermal loading: detail showing the connection of
the left wall to the top slab.

Appendix B. Elasto-Plastic Material Model for Concrete

The “Concrete Damaged Plasticity” model of Abaqus [42] was used. A theoretical description
of the model is presented in this appendix. The terms used by Abaqus are adopted in order to
facilitate the application of this computer program. The constitutive model is essentially based on
work by Lubliner at al. [67]. The plasticity part of the model controls the evolution of the yield stress
of concrete. Thus, it refers to the strength of concrete. The damage part refers to the stiffness of
concrete. It is designed to model the degradation of Young’s modulus, resulting from mechanical
loading. This is particularly important if concrete is unloaded in the process of softening. In this
context, it is noteworthy that the challenge of the present simulation refers to an experiment, in which
an increase of mechanical loading is followed by an increase of thermal loading. Thus, the damage
part of the model remains inactive without reduction of the informative content of the simulation.
Additionally, because the damage part is not used, there is no need to distinguish between Cauchy
stresses and “effective stresses”, between the “tensile cracking strain” and the plastic strain, as well as
the “compressive inelastic strain” and the plastic strain, mentioned in the manual of Abaqus FEA.

The employed material model accounts for two failure mechanisms: tensile cracking and
compressive crushing. As input, it requires the definition of stress-strain relationships for uniaxial
compression and uniaxial tension, respectively.

As for uniaxial compression, the input required by Abaqus FEA consists of look-up tables that
list pairs of values of the “yield stress” and the “inelastic strain”, and these listings are specified for
different temperatures. The “yield stress” is equal to (i) the imposed stress, in the region of initial
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elastic loading, (ii) the uniaxial elastic-limit stress, in the region of pre-peak hardening, (iii) the uniaxial
compressive strength, at the peak, and (iv) the residual uniaxial compressive strength, in the region
of post-peak softening. In the present context, the “inelastic strain” is simply equal to the plastic
strain, given that the damage part remains unused. The used look-up tables are based on stress-strain
regulations of the Eurocode, see Figure 17a. Thereby, the term “strain” refers to the total strain, ε,
which is the sum of the elastic strain εel , and the plastic strain, εpl :

ε = εel + εpl . (A1)

The elastic strain follows from Hooke’s law as:

εel =
σ

Ec(T)
, (A2)

where Ec(T) denotes the temperature-dependent Young’s modulus of concrete. The plastic strains,
required for the look-up tables, result from inserting Equation (A2) into Equation (A1), and solving the
resulting expression for ε

pl
c as:

εpl = ε − σ

Ec(T)
, (A3)

see Table A1.
As for uniaxial tension, the used look-up tables are based on trilinear stress-strain behavior

including a linear-elastic loading branch, a linear softening branch, and a residual stress plateau,
required for the stability of the numerical simulation, see Figure 17b. Thereby, the term “strain”
refers to the total strain. By analogy to the previously described procedure for uniaxial compression,
the plastic tensile strains required for the look-up tables results from Equation (A3).

Table A1. Input values for compressive behavior at (a) room temperature, (b) 100 ◦C, (c) 200 ◦C,
(d) 300 ◦C.

Yield Stress (MPa) Inelastic Strain (10−3)

a

23.6 0.0
32.5 0.5
38.2 0.9
39.4 1.0
40.0 1.3
38.6 1.8
31.5 3.1
20.9 4.9
14.3 6.6
7.3 9.8

b

21.9 0.7
28.2 1.0
30.5 1.1
33.4 1.3
37.1 1.7
40.0 2.6
35.9 4.2
28.5 6.0
17.0 9.4
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Table A1. Cont.

Yield Stress (MPa) Inelastic Strain (10−3)

c

10.3 0.0
15.4 0.9
20.2 1.2
22.1 1.3
24.7 1.5
28.8 1.8
34.8 2.6
38.0 3.9
35.7 5.5
25.9 8.9

d

7.3 0.0
10.9 1.0
14.4 1.3
15.8 1.4
17.8 1.6
21.0 1.9
26.7 2.7
32.2 3.9
34.0 5.3
29.6 8.5

Table A2. Input values for tensile behavior at a) room temperature, (b) 100 ◦C, (c) 200 ◦C, (d) 300 ◦C.

Yield Stress (MPa) Cracking Strain (10−3)

a

3.41 0.0
0.34 1.02
0.34 10

b

3.41 0.0
0.34 1.20
0.34 10

c

2.73 0.0
0.27 1.14
0.27 10

d

2.05 0.0
0.21 1.02
0.21 10

The elasto-plastic classification of multiaxial stress states, defined in terms of Cauchy stress tensors
σ, is based on the failure surface F, reading as [42]:

F(σ) =
1

1 − α

[
q − 3 α p + β(ε

pl
c , ε

pl
t ) · 〈σmax〉 − γ 〈σmax〉

]
− σc(ε

pl
c ) ≤ 0 . (A4)

98



Appl. Sci. 2018, 8, 2116

In Equation (A4) p denotes the hydrostatic pressure:

p = − trσ

3
, (A5)

where the symbol “tr” stands for the “trace”-function; q denotes the von Mises stress, given as:

q =

√
3
2
(s : s) , (A6)

where s denotes the stress deviator:
s = σ + p 1 , (A7)

with 1 as the second-order identity tensor. σmax is the maximum principal normal stress. σc(ε
pl
c ) is

the current value of the “compressive cohesion stress” [42], i.e., the current value of the uniaxial
compressive strength. The brackets 〈 〉 stand for the Macaulay brackets, defined as:

〈x〉 = 1
2

(
|x|+ x

)
. (A8)

The dimensionless constant α is related to the ratio of the elastic limit stresses under symmetric
biaxial and uniaxial compressive loading:

α =
(σb0/σc0)− 1

2(σb0/σc0)− 1
, (A9)

The default value of σb0/σc0 amounts to 1.16, such that α = 0.12. The dimensionless parameter
β(ε

pl
c , ε

pl
t ) is defined as:

β(ε
pl
c , ε

pl
t ) = (1 − α)

σc(ε
pl
c )

σt(ε
pl
t )

− (1 + α) , (A10)

where σt(ε
pl
t ) is the current value of the “tensile cohesion stress” [42], i.e., the current value of the

uniaxial tensile strength. γ is a constant, controlling the anisotropy of the failure surface in the
deviatoric planes:

γ =
3 (1 − Kc)

2 Kc − 1
, (A11)

where Kc denotes a dimensionless parameter. Its default value for concrete amounts to 0.67, such that
γ = 3 .

The flow rule represents the evolution law for the plastic strains:

ε̇pl = λ̇
∂ G
∂ σ

, (A12)

where ε̇pl is the rate of the plastic strain tensor, G is the plastic potential function, and λ is the
consistency factor. The plastic potential G of the non-associated plasticity approach reads as [42]:

G(σ) =
√
(ε σt0 tan ψ)2 + q2 − p tan ψ , (A13)

where ψ is the dilatation angle, σt0 is the initial value of the uniaxial tensile strength, and ε is an
“eccentricity” parameter. The default values of ψ and ε amount to 30◦ and 0.10, respectively. The present
simulations are based on the described default input values, recommended by Lubliner et al. [67],
Abaqus FEA [42], and others [68,69], see Table A3.
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Table A3. Values used for the Concrete Damaged Plasticity model from Abaqus FEA [42].

ψ ε σb0/σc0 Kc α γ

30◦ 0.10 1.16 0.67 0.12 3
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Abstract: The influence of particle shape, orientation, and volume fractions, as well as loading
conditions, on the mechanical behavior of Ta particles reinforced with bulk metallic glass matrix
composite is investigated in this work. A Matlab program is developed to output the MSC.Patran
Command Language (PCL) in order to generate automatically two-dimensional (2D) micromechanical
finite element (FE) models, in which particle shapes, locations, orientations, and dimensions are
determined through a few random number generators. With the help of the user-defined material
subroutine (UMAT) in ABAQUS, an implicit numerical method based on the free volume model
has been implemented to describe the mechanical response of bulk metallic glass. A series of
computational experiments are performed to study the influence of particle shapes, orientations,
volume fractions, and loading conditions of the representative volume cell (RVC) on its composite
mechanical properties.

Keywords: metallic glass matrix composite; finite element analysis; shear band; microstructure;
ductility

1. Introduction

Bulk metallic glass (BMG) as an amorphous alloy has attracted much attention due to its extreme
high strengths, superior elastic limits, etc. [1]. Although there has been much progress in the
development of metallic glass with the development of manufacturing technologies, unlike common
alloy, BMGs show nearly no ductility under loading at room temperature, which severely limits
their structural application [2,3]. The micromechanical research shows that the plastic deformation
localization is the main reason for brittle failure [4,5].

In order to avoid the brittle failure and improve the ultimate plastic extensibility of BMGs, metallic
glass matrix composites (MGMCs) were firstly synthesized at the California Institute of Technology
(Caltech) in the United States (USA) in 1998 [6,7]. A “soft” second phase, which has lower yield
stress than BMGs, has been introduced for particle-reinforced composite [8]. Unlike pure BMGs, the
second reinforced phase can block the propagation of the main shear band and generate a few of
minor shear deformation zone, which can make the plastic deformation be distributed widely instead
of the localization that is seen in pure BMGs [9,10]. The secondary phases themselves can absorb
the plasticity, and profuse shear bands induced by the secondary phases can accommodate more
plasticity [11].

Generally, the macroscopic response of MGMCs is some kind of statistical average of the
microstructural factors, such as particle volume fraction, shape, orientation, and spatial spacing,
as well as interface strength and residual stress, etc. It is extremely expensive and time-consuming,
if it is not impossible, to establish the relationship between the macroscale mechanical properties
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of MGMCs and their microscale structures through either the experimental method or theoretical
analysis. A number of computational models have been developed to predict the MGMCs’ mechanical
behaviors. Different numerical methods, including the molecular dynamics method [12–14] and
phase-field method [15,16], as well as the finite element method (FEM) [17–23] are utilized to reveal
the deformation mechanisms at the microscale.

Shi and Falk [12] identified the location of the plastic deformation, the deformation mechanism
of the crystallites, and the interaction between the shear band and the crystalline inclusions
through the molecular dynamics method. Albe et al. [13] applied the molecular dynamics method
to study the shear band formation in homogenous bulk metallic glasses, nanocomposites, and
nanoglasses. Zhou et al. performed a comprehensive study of the structural evolution of MGMCs
through large-scale atomistic simulations [14]. The simulation results showed that slender crystalline
second phases are better at suppressing shear band propagation than those with spherical shapes, and
that increasing the volume fraction of the crystalline second phase will enhance the global plasticity.
Abdeljawad et al. applied a two-dimensional (2D) phase-field model to examine the effects of BMG
composite microstructures, e.g., the area fraction and the characteristic length scale of the ductile
dendritic particles, on the mechanical properties of MGMCs [15]. Zhang and Zheng applied the
phase-field simulation approach to investigate the formation mechanisms of shear bands in MGMCs
containing dendrite particles [16].

Compared with molecular dynamics and phased field approaches, finite element analysis
is more widely employed to investigate the mechanical behavior of MGMCs. Ott et al. [17]
examined the microscale deformation mechanisms of MGMCs under uniaxial compression, combining
high-energy X-ray scattering and finite element modeling. Lee et al. [18] investigated the effect
of the crystalline phase on shear band initiation, interaction, and propagation in MGMCs with a
unit finite element model. Biner [19] studied the influences of the mechanical properties, volume
fraction, and morphology of ductile reinforcements on the ductility of MGMCs. Wu et al. [20] studied
the influence of sample dimension on the toughness of MGMCs through scaling a microscale finite
element model. Zhu et al. revealed that the plastic deformation of reinforced particles creates a shear
stress concentration on the interface, and shear stress distribution leads to the formation of multiple
shear bands through a combination of in situ SEM observations and finite element simulation [21].
Qiao et al. [22] quantitatively described the macroscopic MGMC deformation mechanics through a
two-phase finite element model. The simulation of Hardin and Homer [23] showed that increasing the
volume fraction alone is insufficient to promote strain delocalization in the case of a crystalline phase
with a high relative yield stress, which is different from the results of Zhou et al. [14]. Jiang et al. [24,25]
applied finite element methods to analyze the shear banding evolution and elucidate the relationship
between the microstructure and ductility of MGMCs subjected to uniaxial tension. Unlike the results of
Zhou et al. [14], they found that the particle shape has almost no effect in improving the tensile ductility
of MGMCs. In addition, network second-phase was reported to be more efficient in improving the
extensibility of composites [26].

Although there are many studies on the microscale deformation mechanism of MGMCs, it is
still far away from a complete and thorough understanding of fundamental synergic mechanisms.
For example, there are two contradictions in the literature about the influence of particle volume
fraction and shape on the toughening mechanism of MGMCs [14,22,25]. Therefore, more detailed
study is necessary in order to clarify the effect of the microstructure on the mechanical response
of MGMCs. In this work, we study the influence of the microstructures and loading conditions on
the mechanical properties of MGMCs through the periodic boundary conditions, which are realized
with a multi-point constraint subroutine MPC in ABAQUS. The different kinds of shapes have been
simplified to ellipses with different respect ratios. A program based on Matlab has been developed to
generate ellipses with a random distribution of locations and orientations. The nodes and elements are
generated with MSC.Patran and a free volume constitutive model for bulk metallic glasses is implied
with the user-defined material (UMAT) in ABAQUS. A series of numerical studies are performed to
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analyze the influence of particle volume, shape, and orientation, as well as the loading conditions on
the macroscopic stress–strain relationships and damage evolution in MGMCs.

2. Micromechanical Finite Element Model

2.1. Automatic Generation of the Representative Elementary Cell (RVC)

It is commonly recognized that the microstructure of the composite plays an important role
in the macroscale response. Therefore, in order to study the effect of the microstructure on its
deformation and failure process, the microstructure of the composite material under consideration
should be able to vary according to the requirement. Here, the microstructure contains the randomly
distributed elliptic particles with different shapes, but the same area is controlled through a few
random number generators.

It’s assumed that the RVC of the composite microstructure is a square with length of L0, and the
particle number and area fraction are np and vp, respectively. Therefore, the area of each particle Ae

can be expresses as:
Ae = L2

0 vp/np (1)

Notice that the area of ellipse Ae with the lengths of the semi-major and semi-minor axes (ai and
bi, i = 1, 2, . . . , np) can be expressed as:

Ae = πaibi (2)

A random number stream Rand1 controlled by the generator seed s1 is introduced to define the
shape ratio between the lengths of two semi-axes:

ri = ai/bi = 1 + r0Rand1i (3)

Meanwhile, another random number stream Rand2 controlled by random number generator seed
s2 is applied to define the alignment of each particle:

θi = π Rand2i (4)

The particle centers are determined independently and sequentially with two random number
streams (Rand3 and Rand4) that are controlled by two random number generator seeds (s3 and s4).
If an introduced particle cuts any of the RVC boundaries, the particle is copied to the opposite side of
the square unit, as shown in Figure 1. Furthermore, the introduced particle should not be too close to
the square boundaries or the existing particles. An iteration algorithm [27] is applied to calculate the
distance between two elliptic particles, and is schematically shown in Figure 2. If any condition above
is not met, the location of the new particle is determined by the next random number.

A Matlab program is developed to realize the above algorithm, and after running the Matlab
program, a command file for the commercial software MSC/Patran can be obtained. A 2D
microstructural finite element model with predefined parameters, such as the volume fraction and
number of particles, mesh dimension, and so on, can be obtained through playing the command
file with MSC/Patran. A multi-point constraint subroutine MPC in ABAQUS is developed to apply
periodic boundary conditions (PBC) [28,29].
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Figure 1. A representative cell (RVC) for two-dimensional (2D) particle-reinforced composites.

O

Figure 2. Process of the iteration to calculate the distance between two ellipses on a plane.

2.2. Constitutive Response of Ta Particles and BMGs

So far, several constitutive models are developed to describe the deformation of the BMGs.
Argon proposed the shear transformation model using Eshelby’s insightful theory, in which he
assumes that the plastic deformation only occurs in the region called the shear transformation zone [30].
Furthermore, Jiang et al. developed a tension transformation zone model to describe the quasi-brittle
dilatation deformation in metallic glass [31]. Viewing the basic “flow event” as an individual atom
jump driven by the shear stress, Spaepem [32] developed the free volume model to analyze the plastic
deformation in the BMGs. Compared other constitutive models, the free volume model has a clear
physical meaning, and has been widely used to evaluate the mechanical properties of the BMGs.

According to Spaepem, the general free volume model flow equation is written as:

∂γp

∂t
= 2 f exp

(
−αv∗

v f

)
exp

(
−ΔGm

kBT

)
sinh

(
τ Ω

2kBT

)
(5)

where f is the frequency of atomic vibration, α is a geometrical factor, v∗ is the critical volume, v f is
the average free volume per atom, ΔGm is the activation energy, Ω is the atomic volume, τ is the shear
stress, kB is the Boltzmann constant, and T is the absolute temperature. Unlike the equivalent plastic
strain in the usual metal plastic model, the free volume is used as a parameter to describe plastic
deformation. The net rate of the free-volume increase is:

∂v f

∂t
= v∗ f exp

(
−αv∗

v f

)
exp

(
−ΔGm

kBT

){
2αkBT
v f Ce f f

(
cosh

(
τ Ω

2kBT
− 1

))
− 1

nD

}
(6)

Here nD is a constant varying from three to 10. Ce f f =
E

3(1−υ)
is the effective elastic module for

isotropic materials with Young’s modulus E and Poisson’s ratio υ.
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According to the flow rule, the strain can be decomposed into elastic and plastic parts:

.
εij =

.
ε

e
ij +

.
ε

p
ij (7)

Moreover, the elastic and plastic strain rate can be expressed as follows:

.
ε

e
ij =

1+υ
E
( .
σij − υ

1+υ

.
σkkδij

)
.
ε

p
ij = exp

(
− 1

v f

)
sinh

(
σe
σ0

) Sij
σe

(8)

where Sij is the deviatoric stress tensor, and σe is the equivalent stress. According to the J2 flow rule,
the evolution of plastic strain is a function depending on the deviatoric stress. So, the flow equation
can be written as follows:

.
v f =

1
α

exp

(
− 1

v f

){
3(1 − υ)

E

(
σ0

βv f

)[
cosh

(
σe

σ0

)
− 1

]
− 1

nd

}
(9)

in which, σ0 = 2kBT
Ω is the reference stress, and β = v∗

Ω and v f =
v f

αv∗ are the normalized free
volume. A user-defined material subroutine (UMAT) in ABAQUS code is developed to implement the
free-volume model [33].

For reinforcing Ta particles, an exponentiation isotropic hardening relationship according to
Zhang et al. [16] has been used to describe the plastic deformation in the crystal metal here:

g(εp) = σy

(
1 +

εp

ε
p
0

) 1
n

(10)

where ε
p
o is the reference plastic strain, n is the hardening exponent, and σy is the yield stress under

uniaxial loading. εp is the equivalent strain, and is defined by:

εp =
∫ t

0
dεp =

∫ t

0

√
2
3

ε
p
ijε

p
ijdt (11)

3. Simulation Results and Discussion

3.1. Verification of Numerical Model

To verify the basic property of mechanics, a RVC reinforced by a 10% volume fraction of identical
circle particles is generated through the developed Matlab program. The uniaxial compressive load
along the y-axis is applied, and the strain rate of applied load in this paper is fixed to be 0.0005/s.
Figure 3A shows the nominal stress–strain response of the MGMC and pure BMG model, and Figure 3B
show the distribution of equivalent plastic strain in BMG corresponding to point (I–IV) in Figure 3A.
It can be seen from Figure 3 that the stiffness of the MGMC is a bit higher than that of the BMG,
and obviously, the MGMC has better ductile property than pure BMG. Furthermore, there are four
distinguishable stages in the process of the composite deformation, which is different from that of the
BMGs. In first stage from the loading start to point (I), there is only elastic deformation in both the
BGM matrix and Ta particles. In the second stage from point (I) to point (II), Ta particles enter the
plastic deformation, while BMG is still in an elastic state. In the third stage from point (II) to point
(III), both the matrix and particles deform with plastic strain. However, the response compressive
stress is kept nearly as a constant, which is different from the steep descent of a pure BMG specimen.
The main shear band in BMG is blocked by soft particles because plastic deformation is “absorbed” by
them. The steep stress fall occurs in the fourth stage from point (III) to point (IV). The main shear band
penetrates whole RVC, and both the particles and the matrix slide along it. As a result, the MGMC
loses the load capacity.
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Figure 3. Simulation results of model with 100 identical circular particles under uniaxial compress
loading. (A) Nominal stress–strain relations of bulk metallic glass composite (BMGC) and bulk
metallic glass (BMG). (B) (a–d) equivalent plastic strain distributions in BMG corresponding to the
positions (I–IV).

3.2. Effects of Particle Orientation

In this subsection, the influence of particle orientation varying between 0 degrees, 22.5 degrees,
and 45 degrees related to the x-axis on the mechanical properties of MGMCs with a 25% particle volume
fraction is studied under uniaxial compressive loading along the y-axis. Five different microstructural
finite element models with a constant particle shape ratio of two are generated through the developed
program for different particle orientations, respectively. It can be seen from Figure 4 that the particle
orientation plays a small role on the stiffness of the MGMC, while the strength of the MGMCs
increases with the increase of particle orientation. Meanwhile, when MGMCs enter the yield stages, the
hardening stages increase with the increase of the particle orientation angle. Zero-degree orientation
will cause biggest stress concentration among the three different orientations; thus, there is much more
plastic deformation in MGMCs with zero-degree particle arrangement than those with 45 degrees, as
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shown in Figure 5. From Figure 5, one can also see that the particles in MGMCs block the propagation
of shear bands in BMG.

Figure 4. The influence of particle orientation on the stress-strain curves of MGMCs (metallic glass
matrix composites).

 
(a) (b) (c) 

Figure 5. The influence of particle orientations on normalized free volume in BMG. (a) α = 0◦;
(b) α = 22.5◦; (c) α = 45◦.

3.3. Effects of Particle Shape

In this subsection, the influence of particle shape varying between one (circular particle), two, and
three on the mechanical properties of MGMCs with a 25% particle volume fraction is studied under
uniaxial compressive loading along the y-axis. Five different microstructural finite element models
containing ellipse particles with random orientation are generated through the developed program for
different particle shapes, respectively. It can be seen from Figure 6 that particle shape plays a small
role on the stiffness and strength of MGMCs. However, circle particles can bring more ductility than
ellipse particles. The extensibility brought by particles decreases with the increasing aspect ratio of the
particle. In Figure 7, it can be seen that the shear band is always generated from the tips of ellipses.
Particles that have a large respect ratio may have more stress concentration and stress misfit, which
will promote the generation of shear bands.
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Figure 6. The influence of particle shape on the stress–strain curves of metallic glass matrix
composites (MGMCs).

 
(a) (b) (c) 

Figure 7. The influence of particle shapes on normalized free volume in BMG: (a) ri = 1; (b) ri = 2 and
(c) ri = 3.

3.4. Effects of Volume Fraction

In this subsection, the influence of particle volume fraction ranging between 15%, 25%, and 35%
on the mechanical properties of MGMCs is studied under uniaxial compressive loading along the
y-axis. Five different microstructural finite element models containing ellipse particles with random
orientations and shapes are generated through the developed program for different particle volume
fractions, respectively. It can be seen from Figure 8 that the volume fraction of the particle plays a
small role on the stiffness of MGMCs, because the Ta particle and BMG have almost the same stiffness.
When an MGMC containing 15% particles reaches the yield stress, the nominal stress decreases slowly
for about 4% strain, and then loses its carrying capacity rapidly. In other words, the yield stress of
an MGMC with 15% particles is also its strength. When an MGMC containing 35% particles reaches
the yield stress, a hardening stage can be clearly seen with the increase of the loading. Shear bands
intersect with each other and generate major and minor bands. The composites with 15 vol.% particles
have the same shear band direction with pure BMGs due to the scale limitation of the particles in them.
Nevertheless, the existing minor shear bands share plastic deformation with the major band. As a
result, there will be no obvious difference between the different shear bands, which will improve the
macroscopic ductility of the composites. Furthermore, with the increase of the particle volume fraction,
shear bands cannot propagate in original direction because of the particle block. Ultimate shear bands
are wavy, as shown in Figure 9.
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Figure 8. The influence of particle volume fractions on the stress–strain curves of MGMCs.

(a) (b) (c) 

Figure 9. The influence of particle volume fractions on normalized free volume in BMG. (a) Vf = 15%;
(b) Vf = 25%; (c) Vf = 35%.

3.5. Effects of Load Condition

The real shear band directions of propagation are determined by local stress. Therefore, unlike
uniaxial compress, different load cases coupling compression and shear loading have been tested.
The ratio between two kinds of loads is defined as k = |ε12/ε22|. Here, the MGMC models with
25 vol.% particles that were generated in the previous subsection are adopted to study the influence
of loading condition on the mechanical properties of MGMCs. The equivalent stress and strain are
respectively defined as:

σ =

√
(σ11−σ22)

2+σ2
11+σ2

22+6τ2
12

2

ε = 2
3

√
ε2

11 + ε2
22 − ε11ε22 + 3ε2

12

(12)

Figure 10 illustrates the relationship between equivalent stress and strain under different load
conditions. Similarly, the load condition almost plays no role on the stress–strain relationship in the
elastic stage. Nevertheless, the yield strengths decease with the increase of the shear part in the applied
load. In addition, the ductility of MGMCs decreases with the increase of the shear part in the applied
load. Figure 11 shows the plastic distribution of BMG in MGMCs under different load conditions.
It can be seen from Figure 11 that with the decrease of the compressive part in the load, the direction
of the main shear band approaches the y-axis.

111



Appl. Sci. 2018, 8, 2192

Figure 10. The influence of particle shape on the stress–strain curves of MGMCs.

 
Figure 11. The influence of load conditions on the normalized free volume in BMG.

4. Conclusions

A new method and a software code are developed for the automatic generation of
two-dimensional (2D) micromechanical FE models of Ta particle-reinforced metallic glass matrix
composite with a random distribution of elliptic shape and orientation, as well as location arrangement.
A series of computational experiments are performed to study the influence of the microstructure of
MGMC on its stiffness and strength properties. Four deformation stages can be distinguished during
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the external load: both particles and BMG are in elastic states, particles are in a plastic-hardening state
while BMG is still in an elastic state, both particles and BMG are in plastic deformation states, and the
diffuse shear band in BMG emerges into a main shear band, and MGMC loses its carrying capability.
The following conclusions can be obtained from the computational experiments:

• A larger angle between the load axis and the particle orientation leads to better ductile properties
for MGMCs.

• The extensibility of MGMCs decreases with the increase of the respect ratio of the particle.
Meanwhile, particle shapes play a small role in the ultimate strength of MGMCs.

• Particles with higher volume fraction can bring a greater improvement of ductility, but less
ultimate strength.

• The yield strengths decease with the increase of the shear part in the combined tensile and
shear loading.
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Featured Application: This study highlights a novel application of peridynamics to rail surface

defects by improving the computational method for fracture mechanics. Rail squats is a rail

surface defect that can consume over 70% of track maintenance budget. This novel application

of peridynamics will enable a better preventative and predictive track maintenance strategy,

enhancing public safety while saving hundreds of million euros annually.

Abstract: Rail surface defects are a serious concern for railway infrastructure managers all around
the world. They lead to poor ride quality due to excess vibration and noise; in rare cases, they can
result in a broken rail and a train derailment. Defects are typically classified as ‘rail studs’ when
they initiate from the white etching layer, and ‘rail squats’ when they initiate from rolling contact
fatigue. This paper presents a novel investigation into rail squat initiation and growth simulations
using peridynamic theory. To the best of the authors’ knowledge, no other comprehensive study
of rail squats has been carried out using this approach. Peridynamics are well-suited for fracture
problems, because, contrary to continuum mechanics, they do not use partial-differential equations.
Instead, peridynamics use integral equations that are defined even when discontinuities (cracks,
etc.) are present in the displacement field. In this study, a novel application of peridynamics to
rail squats is verified against a finite element solution, and the obtained simulation results are
compared with in situ rail squat measurements. Some new insights can be drawn from the results.
The outcome exhibits that the simulated cracks initiate and grow unsymmetrically, as expected
and reported in the field. Based on this new insight, it is apparent that peridynamic modelling
is well-applicable to fatigue crack modeling in rails. Surprisingly, limitations to the peridynamic
analysis code have also been discovered. Future work requires finding an adequate solution to the
matter-interpenetration problem.

Keywords: peridynamics; fatigue; rolling contact; damage; rail squats; cracks

1. Introduction

Rail surface defects are a critical safety concern for railway infrastructure owners and operators
all over the world. They undermine the safety and operational reliability of both moderate- and
high-speed trains in passenger suburban, metro, urban, mixed-traffic, and freight rail systems.
Furthermore, the cost of rail replacements due to such defects has become a significant portion of the
whole track maintenance costs, especially in European countries, e.g., Austria, Germany, and France [1].

Traditionally, two different defects are classified: rail studs and rail squats [2]. Rail studs initiate
from the white etching layer (WEL) due to wheel slides or excessive traction and grow horizontally
3–6 mm below the rail surface. Rail squats propagate from surface cracks initiated by rolling contact
fatigue (RCF), and grow at similar depth of 3–6 mm below the rail surface. Both defects are shown in
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Figure 1. As a result, the rail surface becomes depressed and passing wheels create excess vibration,
noise, and impact loads. This leads to uncomfortable rides for passengers [3], and in cases where
impact forces exceed acceptable limits the safety of track components can be compromised [3–7]. Rail
squats and studs have been observed in all arrays of track geometries and gradients, in all types of
track structures, and in all operational rail traffics. Squats are often found in tangent tracks, in high rails
of moderate-radius curves, and in turnouts with vertical, unground rails. Due to the high potential
damage caused by rail squats and studs, several research and development projects have been initiated
around the world to investigate the causes of, and feasible solutions to, these defects.

  
(a) (b) 

Figure 1. Rail surface defects: (a) white etching layer (WEL)-related rail studs (multiple studs);
(b) a rolling contact fatigue (RCF)-related rail squat (single squat).

Computational rail squat and stud modeling has been the topic of several studies. A finite-element
(FE) analysis with a two-dimensional (2D) elastic-plastic model under the assumption of plane strain
was used to investigate crack growth from the WEL in [8]. The researchers found that the crack growth
direction in the interface between the base material and the WEL is determined by the discontinuity
of a material rather than the stress state, and that cracks tend to grow along the interface between
the WEL and the rail material, because it is comparatively hard for a crack to propagate into the rail
material. Field observations and a numerical analysis in [9] showed that squats initiate as a result of
differential wear and differential plastic deformation. Numerical simulations in [10] have also shown
that the growth of squats is related to some eigenmodes of the wheel–track interaction system and
the high-frequency vibration at wheel–rail contact plays an important role. The probability of rail
squat initiation from surface defects based on a transient stress analysis was studied in [11] using an
FE model of the vehicle–track interaction. The results showed that when a defect is smaller than 6
mm, its chance to grow into a squat is very small, and when it is larger than 8 mm and in the middle
of the running band, the chance is large. RCF occurring on Chinese high-speed rails and wheels
was investigated in [12]. Based on field observations and a numerical simulation, it was concluded
that indentations seem to be the main cause of RCF. If relatively small but deep indentations exist,
then peak von Mises stress can occur both on the surface and at the bottom of the crack, but stress at
the bottom is likelier to create RCF cracks [13,14].

The development of rail squats is most commonly studied using the finite-element method,
which is based on the classical continuum mechanics theory. It uses spatial derivatives, which do
not exist when the displacement field is discontinuous, i.e., when cracks are present. So, as a remedy,
techniques of fracture mechanics must be used; however, their major drawback is that the crack path
must be known a priori. Due to such limitations, independent crack branching is difficult to implement.

Peridynamic (PD) theory [15,16] was created as an alternative to continuum mechanics for
problems with cracks, voids, and other discontinuities. PD uses integral, not partial-differential,
equations and deformation instead of strain to compute internal forces. Since integral equations are
defined even when the displacement field is discontinuous, this theory is well-suited for fracture
studies. Contrary to FE analysis, in PD cracks initiate automatically and grow according to some
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prescribed damage law. The crack path does not have to be set at the beginning of a simulation,
resulting in a more natural crack growth with branching. This theory has a large potential in fracture
problems, and has been used to study damage in fiber-reinforced laminated composites [17–19],
glass [20,21], wood [22], concrete [23–25], and steel [26].

In this study, rail squats are simulated using ordinary state-based peridynamic theory (PD).
This technique is the recent fundamental development from the original bond-based PD theory.
The state-based PD has made a significant advancement in capturing sufficient behaviors of real
materials. To the best of the authors’ knowledge, and based on a critical review of the open literature,
this paper is the first to present a comprehensive study of rail squat initiation and growth using
peridynamic theory. We have presented some initial findings in [13], but this paper describes the full
development of the model, the calibration of its parameters, and an application of coordinate-variable
loads. Simulation results are compared to field measurements from [14]. The insight from this study is
novel and can help further improve the technique for applications of the new theory of peridynamics
to real-world problems, and help to enhance better prognostics of rail squats. Overall, the insight
enhances an alternative computational method for fracture mechanics.

2. Methods

2.1. State-Based Peridynamic Theory

A brief overview of state-based peridynamic theory is presented in the following paragraphs. An
extended overview can be found in [27–29]. A peridynamic body consists of some number of nodes
each uniquely described by its volume Vi, density ρi, and position vector in the reference configuration
xi. An example of a 2D body is shown in Figure 2. Node xi interacts with other nodes xj through
bonds (relative position vectors) ξ ij = xj − xi. These interactions are limited to a range called the
horizon δ. Nodes xj that are connected to xi are called the family of xi, Hxi . When a body deforms,
node xi experiences displacement ui and moves to its deformed position yi = xi + ui. The bond in
the deformed configuration is yj − yi. This deformation creates a bond force density vector tij that
depends on the collective deformation of all nodes in Hxi and an opposite bond force density vector tji
that depends on the collective deformation of Hxj . Bond forces are force densities (force per volume),
not stresses (force per area), because each node describes some volume. The bond deformation vectors
are stored in an array called the deformation state

Yxi =

⎧⎪⎨⎪⎩
y1 − yi

...
yn − yi

⎫⎪⎬⎪⎭, (1)

similarly, the force density vectors are stored in an array called the force state

Txi =

⎧⎪⎨⎪⎩
ti1
...

tin

⎫⎪⎬⎪⎭. (2)
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Figure 2. The most conservative two-dimensional (2D) case when it could be thought that a crack has
appeared. Some bonds are drawn curved to avoid overlapping.

The bond force density vectors are computed using bond deformations:

T(xi) = T(Y(xi)), (3)

where the function T(xi) is a material model. It is common to state T(xi)
〈
xj − xi

〉
or T(xi)

〈
ξ ij
〉

and
when referring to the force density vector tij in a bond ξ ij = xj − xi, and similarly for deformation state
and deformed bond vectors. The peridynamic equation of motion in the integral form is

ρ(xi)
..
u(xi, t) =

∫
Hxi

(
T(xi)

〈
xj − xi

〉− T
(
xj
)〈

xi − xj
〉)

dVxj + b(xi) (4)

where ρ(xi) is the density,
..
u(xi, t) is the acceleration, and b(xi) is the external force density.

The contribution of a bond to the force density at a node can be weighed using an influence
function ω(xi). They have been introduced in [16], and their role is further explored in [30]. The value
of an influence function can depend on the length, direction, or other bond properties. It can also be
used to introduce damage; remove the interaction between two nodes by setting the influence function
to 0, i.e., break the bond, when some damage criterion is reached. The simplest damage criterion could
be the critical stretch, in which a bond breaks when it is stretched past some critical value sc:

ω(xi) =

⎧⎨⎩ 1, i f sij < sc

0, i f sij ≥ sc
, sij =

∣∣∣yj − yi

∣∣∣− ∣∣xj − xi
∣∣∣∣xj − xi

∣∣ =

∣∣Y〈ξ ij
〉∣∣− ∣∣ξ ij

∣∣∣∣ξ ij
∣∣ , (5)

where sij is the bond stretch. Then, the damage at a node can be defined as a ratio between the broken
and the initial number of bonds [31]:

φ(xi) = 1 −
∫

Hxi
ω(xi)dVxj∫

Hxi
dVxj

. (6)

The PD fatigue damage model used in this study was introduced in [32] and used in [33–35].
Other researchers have also developed fatigue damage models [36,37]; however, these models use
bond-based peridynamic theory and simulate only the crack growth phase. A small overview of the
model is given here for completeness; Equations (7) through (11) were first presented in [32].
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A body undergoes some cyclic deformation between two extremes + and −, then bond strains at
each extreme are s+ij , s−ij and the cyclic bond strain εij is:

s+ij =

∣∣Y+
〈
ξ ij
〉∣∣− ∣∣ξ ij

∣∣∣∣ξ ij
∣∣ , s−ij =

∣∣Y−〈ξij
〉∣∣− ∣∣ξ ij

∣∣∣∣ξ ij
∣∣ , εij =

∣∣∣s+ij − s−ij
∣∣∣. (7)

For each bond, a variable called the “remaining life” λij
(
xi, ξ ij, N

)
is defined. It degrades at each

loading cycle N, and a bond breaks when the remaining life is reduced to zero:

λij(N) ≤ 0. (8)

At the beginning, when N = 0:
λij(0) = 1, (9)

at each cycle in the crack nucleation phase (phase I), the change of λ is given by

dλij

dN
(N) =

{
−AI

(
εij − ε∞

)mI , i f εij > ε∞

0 , i f εij ≤ ε∞
, (10)

where ε∞ is the fatigue limit under which no fatigue damage occurs, and AI , mI are parameters for
phase I. In phase II, the remaining life changes according to:

dλij

dN
(N) = −AIIε

mII
ij , (11)

where AII , mII are parameters for phase II.
The transition from phase I to phase II is handled by applying the phase I model to bonds

connected to xi until there is a node xj in Hxi with damage

φ
(
xj
) ≥ φc, (12)

where φc is the damage at which phase II begins. Then, reset the remaining life of bonds connected to
xi to 1 and switch to the phase II model.

2.2. Computational Model

The fatigue damage model was implemented in the open-source PD program Peridigm [38,39].
If the quasi-static analysis acceleration term in (4) is zero, then the peridynamic equation of motion in
the discreet form is approximated as:

∑
Hxi

(
T[xi, t]

〈
xj − xi

〉− T
[
xj, t

]〈
xi − xj

〉)
ΔVxj + b(xi, t) = 0. (13)

Two techniques introduced in [32], including implicit strain simulation and time mapping, have
been used to speed up the simulations. They are illustrated in Equations (14) through (17). In the case
of high-cycle fatigue, the bond strains are below the elastic limit, so an elastic material model can be
used. In such cases, the strain in a bond would change linearly between + and − loading conditions,
so it is possible to simulate only the + loading condition and compute

s− = Rs+, R =
P−

P+
, (14)

where R is the loading ratio, and P is the applied load at each extreme. Then, the cyclic strain is
given by:

ε =
∣∣s+ − s−

∣∣ = ∣∣(1 − R)s+
∣∣. (15)
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The loading ratio R = 0 was used for all simulations. Using linear time mapping ([32] also
introduces exponential time mapping, but it was not used in this study), the simulation time t relates
to the current cycle through

N =
t
τ

, (16)

where τ is a constant. Then, the remaining life at step n in a bond ξ ij is given by

λn−λn−1

Δt = −A
(

εn
ij

)m

Δλ
Δt = Δλ

ΔN
ΔN
Δt

→ λn = λn−1 − tn − tn−1

τ
A
(

εn
ij

)m
. (17)

In PD, unlike in a fracture mechanics model with a pre-crack, it is almost impossible to develop
a sharp crack surface; instead, a damaged zone is developed. For example, if damage at a node is 0.5,
it could mean that 25% of the bonds on the opposite sides of a node are broken, and it could also mean
that 15% are broken on one side and 35% on the other.

Crack growth in phase II is faster than that in phase I, so switching to phase II sooner would
lead to faster crack growth and more conservative results. In this study, the emphasis is placed on the
consideration of the most conservative case, i.e., switching to phase II at the lowest damage when it
can be thought that a crack has appeared. Such a situation would happen when all of the bonds on
one side of a node are broken, but other bonds remain intact. The 2D case, if the horizon is 3 times
the distance between the nodes, is shown in Figure 2. An equivalent case in three dimensions (3D)
would have 47 broken bonds and 75 unbroken bonds, i.e., damage of 0.385. Therefore, the fatigue
model transitions from phase I to phase II when the damage at a node reaches φc = 0.385.

2.3. Model of a Rail

Initially, a model of a whole UIC60 rail head had been developed. However, due to the required
fine discretization, computational resources, and time constraints, only a part of the rail head
has been modeled. Mesh was firstly created in the Ansys FE program using 3D eight-node solid
elements. Afterwards, element centroid coordinates and their volumes were exported and converted
to Peridigm’s mesh file, and both models are shown in Figure 3. The dimensions of the model were
0.03 × 0.024 × 0.03 m with a node size of h = 0.0005 m and the horizon of δ = 0.0015 m. The load
area, see Section 2.5. Boundary conditions, was about 0.013 × 0.013 m, which means that the distance
between the edge of the model and the load area was about 8δ. A cartesian left-handed coordinate
system was used, and the center of the model’s bottom face was located at the origin. The top face was
made of R = 300 mm and R = 80 mm arcs, as in the specifications of the UIC60 rail.

Since the top surface was curved and mapped meshing was used, the nodes were not perfectly
cubic. However, the difference between the average node volume and the volume of a cubic node
is only 1.17% (see Table 1). This is relevant when converting the applied loads from stress to force
density, but since the difference is small, the impact is negligible.

A Linear Peridynamic Solid (LPS) [16] material model was used. The material properties were:
density 7850 kg/m3, Poisson’s ratio 0.3, and Young’s modulus 189.9 GPa, obtained from [40]. The LPS
model is the peridynamic equivalent to the elastic material model in continuum mechanics. It has been
selected because the applied loads do not cause the material to exceed its yield strength.
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(a) (b) 

Figure 3. A model of a rail: (a) an Ansys model with solid elements; (b) peridynamic (PD) mesh-free
discretization with the load area highlighted.

Table 1. The cubic versus the smallest, largest, and average node volume.

Parameter Volume, m3 % Difference

Cubic 1.25000 × 10−10 0.00%
Min 1.18960 × 10−10 −4.83%
Max 1.29750 × 10−10 3.80%

Average 1.26464 × 10−10 1.17%

To verify the peridynamic model, the displacement in the X and Y directions in an undamaged
state has been compared against an FE model. The same model was used for verification of the
Peridigm’s mesh creation. Movements are restricted in all directions for all nodes within 1δ from the
bottom. Two loadings—vertical pressure and surface shear traction—are applied to the load area at
the top of the rail head. Both loadings are applied as functions in terms of node x and z coordinates;
for the exact functions, please see Section 2.5 Boundary conditions. In the FE model, the pressure has
been applied as distributed pressure on the top face of solid elements in the load area, and traction has
been applied as horizontal forces acting on the top three layers of nodes within the load area.

Figure 4 shows the X and Y displacement in the cross-section along the centerline of the rail,
and Table 2 presents the maximum and minimum displacement values. It is clear that a very good
agreement between models can be found. In fact, if the difference in extreme displacement values
would be within ±10%, the displacements would be similar in the cross-sections. Figure 4 definitely
shows a similar displacement distribution between the FE and PD models. The maximum displacement
values between the FE and PD models are −6.95% and 7.92% for the X and Y directions, respectively.
The difference in the minimum Y displacement is 7.48%. In the X displacement, however, it is 20.61%,
which is more than what should be considered a good agreement. Though the relative difference in the
X displacement is large, it should not negatively influence the simulation results, because the region
with low X displacement is far from the load area, and, therefore, far from the area of interest with the
growing cracks. Additionally, the absolute difference is very small, i.e., only 1.71 × 10−7 m. It should
have no effect on the PD model’s accuracy.
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. The displacement in the cross-section of an undamaged model: (a) the Y displacement finite
element (FE) model; (b) the Y displacement PD model; (c) the X displacement FE model; (d) the X
displacement PD model. Deformations are increased 50 times.

Table 2. Maximum and minimum displacement values in the X and Y directions from the finite-element
(FE) and Peridynamic (PD) simulations.

Value
X Y

FE, m PD, m Difference FE, m PD, m Difference

Max 2.03 × 10−5 1.90 × 10−5 −6.95% 2.35 × 10−6 2.55 × 10−6 7.92%
Min −6.59 × 10−7 −8.30 × 10−7 20.61% −4.69 × 10−5 −5.07 × 10−5 7.48%

2.4. Fatigue Damage Model Parameters

This study adopts the rail steel data from Figures 4 and 5 in [40], and follows the procedure
to obtain damage model parameters in [32]. Although [40] presents quite old data, it contains ε-N
(strain-life), K-da/dN (Paris law), and material properties data. This is beneficial, because it assures
that the data are for the same material. Other fatigue data sources have been considered [41–46],
but either have only the S-N curves available, contain less data points, or do not have both ε-N and
K-da/dN plots. The fatigue damage model parameters are shown in Table 3.

Table 3. Fatigue damage model parameters.

Phase I Phase II

A 426.00 25,237.48
m 2.77 4.00
ε∞ 0.00186 –
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The parameters for phase I (AI , mI , ε∞) are found from functions fitted to the ε-N plot (see
Figure 5). The fitted power law function takes the same form, y = axb, as the phase I damage model in
(10). So, parameter mI is the inverse of slope b:

b = − 1
mI

(18)

and parameter AI is calculated from the value of intercept:

a =
−logAI

mI
⇒ AI =

1
amI

. (19)

The fatigue limit of rail steel was determined from the function:(
Δε

2
− ε∞

)ξ

N = C, (20)

where Δε
2 is the strain amplitude, ε∞ is the fatigue limit, N is the number of cycles, and ξ, C

are constants.

Figure 5. The ε-N data, fitted functions, and damage model parameters for phase I.

A Paris law plot is required to find the parameters for phase II. In this study, R = 0.05, and moist
air data from Figure 5 in [40] were used. The plot is replicated in Figure 6. The fatigue damage model
in (11) has the same form as the Paris law for crack growth:

da
dN = cΔKM, (21)

where da
dN is the crack growth speed, c, M are constants, and ΔK is the cyclic stress intensity factor.

ΔK is proportional to the bond strain at the crack tip (in [32] called εcore); therefore, mII = M, so this
parameter can be obtained directly from a Paris law plot. The remaining parameter AII , however,
cannot. Instead, a simulation with some trial value A′

I I has to be run to obtain the trial crack growth

speed
(

da
dN

)′
. Then, the real AII value can be found from [32]:

AII = A′
I I

da
dN

( da
dN )

′ . (22)
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To find AII , a single edge notch (SEN) specimen with a pre-crack in uniaxial tension is simulated.
The stress intensity at a crack tip is given by:

KI = σ
√

πaF
( a

b

)
, (23)

F
( a

b

)
= 1.122 − 0.231

( a
b

)
+ 10.550

( a
b

)2 − 21.710
( a

b

)3
+ 30.382

( a
b

)4
, (24)

where σ is the applied stress, a is the crack length, and b is the specimen width. The crack tip’s location
was defined as the maximum x coordinate at which all nodes through the depth of the model have
damage of at least 0.385.

Figure 6. The experimental and simulated crack speed growth data and phase II parameters.

The model’s size is 0.05 × 0.008 × 0.003 m. It has been discretized with 150,000 nodes with
a spacing of 0.0002 m using the mesh-free method described in [31]. The horizon is set to a little over
3 times the nodal spacing: 0.0006001. The model has a 0.005-m-long pre-crack on the left side to ensure
that Equation (23) is applicable. A force density of 6.25 × 1010 N/m3 (equivalent to 50 MPa) has
been applied to nodes within one δ of both the top and bottom, and damage is disabled for nodes
within 3δ from the top and bottom, to avoid unphysical behavior near the boundary conditions. Crack
growth speed data only from phase II are required, so switching to phase II at low damage reduces
the simulation time. The damage required for transition from phase I to phase II has been, therefore,
set to 0.017. For the trial simulation, A′

I I = 1e6 and mII = 4.00. An LPS material model with the same
parameters as for the rail head simulation is used. The first simulation (with A′

I I) ran for 163,100 cycles,
after which the crack turned upward, so Equation (23) is no longer accurate; the second simulation
runs for 13,275,999 cycles until the crack splits in two. Figure 7 shows the simulation with AII at cycle
309,999 (top) and step 13,275,999 (bottom). The number of cycles is large because a low applied stress
causes fatigue damage to increase slowly.

Since a crack grows in discrete jumps between nodes, the crack growth speed between two cycles
m and n with such jumps has been calculated as the difference in crack length divided by the difference
between the current cycle and the cycle at which the previous jump occurred:(

da
dN

)′
=

an − am

Nn − Nm
, (25)

where a is the crack length, and N is the number of cycles. Then, the
(

da
dN

)′
values are interpolated to

match the ΔK values from the experimental data and AII is calculated using Equation (22). In total,
22 AII values have been calculated. These values vary greatly, and the coefficient of variation is 0.7134;
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therefore, an average value has been used. A repeated simulation with AII and not A′
I I (see Figure 6)

exhibits a very good agreement with the first part of the experimental data. It was not possible to
determine agreement with the latter part of the data, because the simulated crack splits into two and
Equation (18) could no longer be used. A better approach (with less variance between the calculated
AII values) might be to use the real crack growth rate da

dN not from experimental data, but from the
fitted Paris Law function. This approach will be explored in future research.

The model of a rail head uses coarser discretization than the model of an SEN specimen. Since
the horizon has been kept at three node spacings for both, the actual value of the horizon is different
in both simulations: 0.0015001 and 0.0006001, respectively. A change in horizon does not change the
AI , mI , mII parameters (see chapter 4.3 in [32] for details), but AII has to be scaled with the horizon.
Equation (29) in [32] provides the means to do that:

AII(δ) = ÂI Iδ
mII−2

2 → AII(δ) = 16, 823, 863 × 0.0015001
4−2

2 = 25, 237.48, (26)

where ÂI I is independent of δ.

(a) 

Figure 7. A single edge notch (SEN) specimen at: (a) 3,099,999 cycles; (b) 13,275,999 cycles. Displacements
are increased 10 times.

2.5. Boundary Conditions

Since nodes describe some volume, boundary conditions (BCs) must also be applied to some
volumes. A BC layer thickness equal to the horizon was recommended in [47]. In [13], the researchers
similarly applied loads only to a single layer of nodes on top of the rail head, and such an approach
lead to poor results. BC nodes separated from the rest just after 26 thousand cycles, due to the low
number of bonds over which the applied loads were distributed.

Displacement in all directions was fixed for nodes within one δ from the bottom. Additionally,
damage was disabled for nodes within 3δ from the bottom to avoid the concentration of unphysical
damage near the BC layer.

Train wheel load data from [48] have been used in this study. The wheel–rail contact area (Figure 4f
in [48]) is centered at the coordinate origin, see Figure 3b, and approximated with an ellipse with
a half-axis a = 0.0066 m, c = 0.006386 m. Two different train wheel loadings are used: vertical pressure
and surface shear traction. They are applied to a 1δ thick layer on top of the rail head.

125



Appl. Sci. 2018, 8, 2299

The vertical force density, in N/m3, from the elastic pressure (data from Figure 5f in [48]) can be
computed from a modified ellipsoid’s formula:

p =
1.116 × 109

h

√
1 − x2

0.00662 − z2

0.0063862 , (27)

where p is the force density (N/m3), x, z are node coordinates (m), and h is the node size (m). Since
loads are applied to a 1δ (three node spacings) thick layer, the computed value at a position (x, z) has
been divided by 3 and applied to each of three nodes under this position.

Shear traction forces are taken from Figures 5 and 6 in [48], where they are given as a stress
distribution over an area. Mesh-free discretization requires that loads are applied to discrete nodes,
so the shear traction data over the whole load area had to be described by some function from which an
exact value at a node could be calculated. Only half of the load area is considered, because the traction
data were symmetric. Half of the load area is divided into four parts along the z axis, see Figure 8,
and the shear traction values in each part are described by a tri-linear function, see Figures 8 and 9.
Stress values from [48] can be plotted with symbols in Figure 8 and fitted with tri-linear functions from
which the exact shear traction force value at each node could be calculated. Since loads are applied to
a three-node-thick layer, the calculated stress values must be converted to force density and divided
by 3 before being applied to nodes.

 

Figure 8. Half of the load area divided into four parts with a tri-linear function for each part. Functions
describe the shear traction stress values in the load area. The other half of the load area is a mirror
image. The axis directions and node size are the same as in the rail head’s model.

 
Figure 9. Surface shear traction data from [48] (shown with symbols) and the tri-linear functions used
to describe the shear traction values in the load area.
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3. Results

This problem has been simulated on a computing cluster at Riga Technical University using
4 × 36 cores. Each simulation was run for 42,884 cycles, after which the solver failed to converge.
The results are shown in Figure 10 (cross-section in the longitudinal direction) and Figure 11
(cross-section in the transversal direction).

The simulation results are compared with the rail squat field measurements in [14]. Cracks have
been measured at specified grid points on a tangent rail over a span of 3 years using a handheld
ultrasonic testing device with the accuracy range of ±0.1 mm. The field measurement results can be
seen in Figures 12 and 13.

 
(a) (b) 

 
(c) (d) 

Figure 10. The cross-section (x-y plane) along the middle of the rail head in the longitudinal
direction. Damage is shown in the top part of the model after: (a) 37,000; (b) 42,500; (c) 42,850;
and (d) 42,884 cycles.

Two loadings—pressure and shear traction—have been applied to the model. The magnitude
of the shear traction is not symmetric around the coordinate origin, even although the load area is.
Traction is then applied in the positive x direction, and the values change as shown in Figures 8 and 9.
This can cause damage to develop slightly asymmetrically against the y-z plane, which is best seen
in Figure 10a. Damage develops faster on the positive side of the x axis (the right side in Figure 10).
Against the x-z plane, in Figure 11, damage developed symmetrically, because both the pressure and
the shear traction are symmetric. The same asymmetric crack growth has been observed in the field
measurements (see Figure 13). In reality, such asymmetry happens because the shear traction from
a wheel rolling forward is applied in the rolling direction.

Figure 11a clearly shows that damage first develops close to the location of maximum pressure
(the middle of the rail in transversal direction). In addition, the maximum damage remains under
the same area (see Figure 11b–d). This is consistent with the field measurements shown in Figure 12.
Cracks are deeper closer to the center of the rail head and shallower closer to the sides. This shows
that they first initiated and have been growing for longer under the rolling surface.

The simulation ended unexpectedly quickly, because the fatigue resistance of a rail without
any defects should definitely be above 42,884 cycles. Loads have thus been applied to a three node
(one horizon) thick layer on top of the rail head. As bonds extending to nodes below this layer are
broken, the applied loads are no longer transferred downwards and the loaded nodes simply moved
through the layers below them; this can be seen in the c and d parts of Figures 10 and 11. This is the
so-called “matter-interpenetration” problem, and usually it is solved through different contact models.
The simplest model—short-range force—was introduced in [31], and a better description is available
in [39,49]. Other contact models and properties are presented in [50–53].
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 11. The cross-section (x-z plane) along the middle of the rail head in the transversal direction.
Damage is shown in the top half of the model after: (a) 37,000; (b) 42,500; (c) 42,850; and (d) 42,884 cycles.

 
 

 

(a) 

(b) 

Figure 12. An ultrasonic rail squat measurement: (a) crack depths at each grid point; (b) top view of
the rail surface.
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While a shot-range force contact mode is available in Peridigm, it has been implemented only
for explicit and not quasi-static simulations and it does not consider contact between nodes that are
bonded initially. As damage develops, it is important that the contact model reconsiders the contact
between two nodes that were bonded initially but are not anymore. This limitation has been explored,
and it is possible to resolve it. Future work will concentrate on how to efficiently pass data between
Peridigm’s damage and contact models.

Figure 13. Rail squat growth.

4. Discussion and Concluding Remarks

This study used a new approach to rail squat simulation: the peridynamic theory. It describes the
derivation of model’s parameters, and illustrates how to apply a variable loading that is dependent on
a node’s location. The simulation successfully captures the initiation of, and initial, rail squat growth.
Due to limitations of the simulation, a larger crack at this stage could not be simulated. However,
the simulation results are in excellent agreement with field measurements for the crack initiation phase.

Damage initiates and grows faster close to the location of maximum pressure; similar crack
growth has been measured in the field. Additionally, the computational model reveals that the squat
damage first grows in the direction of the applied shear traction, and the same has been shown in
field measurements.

The computational model experiences a matter-interpenetration problem, where damaged nodes,
no longer connected with bonds, move freely through each other, without considering possible contacts.
This problem can be solved by applying a contact model; however, contact models in Peridigm do
not consider the contact between nodes that were bonded initially. To solve this problem, bond
damage data needs to be passed between the damage model and the contact model. Future work will
focus on re-developing parts of Peridigm’s code, so that data can be passed between its damage and
contact models.
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Abstract: Steel reinforced concrete (SRC) frame-reinforced concrete (RC) core tube hybrid structures
are widely used in high-rise buildings. Focusing on the progressive collapse behavior of this structural
system, this paper presents an experiment and analysis on a 1/5 scaled, 10-story SRC frame-RC
core tube structural model. The finite element (FE) model developed for the purpose of progressive
collapse analysis was validated by comparing the test results and simulation results. The alternate
load path method (APM) was applied in conducting nonlinear static and dynamic analyses, in which
key components including columns and shear walls were removed. The stress state of the beams
adjacent to the removed component, the structural behavior including inter-story drift ratio and
shear distribution between frame and tube were investigated. The demand capacity ratio (DCR)
was applied to evaluate the progressive collapse resistance under loss of key components scenarios.
The results indicate that the frame and the tube cooperate in a certain way to resist progressive
collapse. The core tube plays a role as the first line of defense against progressive collapse, and the
frame plays a role as the second line of defense against progressive collapse. It is also found that the
shear distribution is related to the location of the component removed, especially the corner column
and shear walls.

Keywords: steel reinforced concrete frame; reinforced concrete core tube; progressive collapse analysis;
loss of key components

1. Introduction

Compared with traditional structural systems composed of steel or reinforced concrete members,
steel reinforced concrete (SRC) frame-reinforced concrete (RC) core tube hybrid structure has a better
combination of small sectional dimensions, higher strength, higher rigidity and resistance to corrosion,
abrasion and fire. The SRC columns and RC core tube are rigidly connected by steel beams and
composite floors. Benefiting from this connection and high stiffness of the core tube, most of the
shear force caused by the horizontal load is assumed to be resisted by the core tube, and the lateral
deformation can be restricted to an acceptable level. The vertical load of the building and partial
overturning moment aroused by horizontal load is undertaken by the frame. Moreover, with the
stiffness and resistance degeneration of the core tube under a strong earthquake, the frame will play
the role of the second line of defence to resist shear force and avoid collapse. Hence, as a suitable and
economical structure form of high-rise buildings, it is widely applied in the US, China, and Japan,
especially in earthquake prone regions.

Due to the advantages of concrete-encased composite structure [1], there are extensive
studies [2–6] focusing on its seismic performance. The research on progressive collapse has become of
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increasing interest in recent years, especially since the World Trade Center towers collapse following
the terrorist attacks of 11 September 2001. The progressive collapse of a structure can be caused by
the failure of structural components under unexpected loads including, car accidents, earthquakes,
or explosions and so on. [7]. To study the response of structures under extreme conditions such as
explosions and fire, some research has been carried out. A new analysis method for the progressive
collapse analysis of a structure with consideration of both the non-zero initial condition and existing
damage in structural members [8], and a new finite element model was proposed as a feasible tool
to evaluate the fire response of composite floor systems [9]. Recently, the alternate load path method
(APM) recommended by the current codes and manuals of practice [10,11] for anti-collapse design
and analysis has been popular. The alternate load path method is easy to implement. In this method,
the robustness of a structure is evaluated through removal of the key vertical components to determine
whether the local damage may be absorbed by the remaining structural members and whether the
structural system can bridge over the removed components.

In the literature, there have been extensive experimental studies focusing on progressive
collapse behavior of reinforced concrete frame and steel frame structures subjected to the loss of
key components [12–17]. The compressive arch action and catenary action were clearly observed
in the experiments. Due to exorbitant cost and safety issues, numerical simulations are preferred
for studying the progressive collapse resistance of structures [18–23], in which nonlinear static and
dynamic analyses had been conducted [24–29].

As the two main components resisting the horizontal force aroused by earthquake, the frame and
the core tube operate cooperatively with different stiffness. An unequal distribution of shear in the
two components is produced and will affect the behavior of building structures against progressive
collapse. To effectively prevent earthquake-induced structural collapse it is necessary to study a widely
used structural system in high-rise buildings, SRC frame-RC core tube hybrid structures, focusing on
progressive collapse behavior. Nevertheless, to date, limited related experimental and analysis work
has been carried out on this particular structural system.

Based on the experiment recommend by reference [6], using the general purpose finite element
package OpenSees [30,31], a numerical model is first developed in this paper which enables the
non-linear progressive collapse analysis of high rise building. The proposed numerical model was
validated by a pseudo-static test. The alternate load path method was applied in conducting nonlinear
static and dynamic analyses, and robustness was studied under column and shear wall removal
scenarios. The model accurately displayed the overall behavior, including inter-story drift ratio and
shear distribution under sudden loss of key components and seismic waves input, which provided
important information for additional design guidance on progressive collapse for the SRC frame-RC
core tube hybrid structures.

2. Experiment Program

2.1. Details of Specimen

Based on the currently design codes and specifications in China [32–34], a 1/5 scaled, 10-story
prototype building was designed and built [6]. The plane layout is shown in Figure 1, the dimension
and reinforcement of core tube, columns and beams is shown in Figures 2 and 3. The properties of
concrete and steel are listed in Tables 1 and 2. The similarity ratios of properties (elastic modulus,
stress and strain) of concrete and steel are 1, which means the specimen and the prototype are in an
equal strain state. So, the failure mode of specimen can truly reflect that of the prototype.
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Figure 1. Plan arrangement (units: mm).

Figure 2. Details of core tube: (a) the south and north shear wall, (b) the west and east shear wall,
(c) the reinforcement in the shear wall and (d) the reinforcement in the opening. (units: mm).

Figure 3. Details of components: (a) steel reinforced concrete (SRC) column and (b) steel beam. (units: mm).
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Table 1. Properties of Concrete.

Concrete Strength Grade
Concrete Compressive

Strength/MPa
Elastic Modulus/MPa

C40 41.5 3.03 × 104

Table 2. Properties of steel.

Material Yield Strength/MPa Ultimate Strength/MPa Elastic Modulus/MPa

Φ4 bar 305 424 2.1 × 105

Steel plate 327 463 2.0 × 105

2.2. Test Setup and Procedure

The test setup is shown in Figure 4. By controlling displacement, a pseudo static horizontal
cyclic loading scheme was implemented in this test. The lateral load was applied by two hydraulic
servo actuators at 4th and 9th floor respectively. Mode-superposition response spectrum method was
adopted to control the amplitude of displacement and finally Δ9/Δ4 = 1.5:1. The vertical load was
applied by sandbags on the floors. Based on the Load Code for the Design of Building Structures
(GB50009-2012) [35], it was necessary to take the weight of infill walls into account, and the live load
and dead load were taken as 2.0 kN/m2 and 1.6 kN/m2 respectively. The history of the loading
program is shown in Figure 5.

Figure 4. Test setup: (a) Test specimen and (b) Arrangement of instruments.

Figure 5. History of loading program.
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2.3. Test Results

Figure 6a shows the hysteretic curve of the test results, which is the relationship of the building
base shear and the displacement at the top loading point. The curve is full and in a spindle shape,
the yielding, limiting and failure stages are obvious. Figure 6b shows the test value of lateral
displacement at the 1st, 2nd, 3rd, 4th, 5th, 6th and 9th floor when the top displacements are 8 mm,
24 mm, 56 mm, 88 mm and 136 mm respectively. During the experiment, the dynamic characteristics
were measured and the details were introduced in reference [6]. Table 3 shows the test value of
frequencies of the first five vibration modes at the initial and failure states.

Figure 6. Test results: (a) The hysteretic curve and (b) lateral displacement.

Table 3. Test value of frequencies.

Vibration Modes
Initial State Failure State

Test Value/Hz Test Value/Hz

1 5.94 3.26
2 18.98 6.22
3 25.13 15.96
4 37.93 31.82
5 50.03 42.01

3. Finite Element Model

3.1. Constitutive Model of Materials

In general, bilinear stiffness degeneration behavior is employed to simulate the cumulative
damage of structure [36,37]. In this paper, stiffness degeneration of materials are defined in the finite
element (FE) model to simulate the cumulative damage of structure. Constitutive model curves of steel
and concrete are shown in Figure 7a,b [6], respectively. In Figure 7a, the stress–strain curve exhibits two
stages, including elastic and hardening stages. Es is modulus of elasticity, f y is yield strength, and Ep

is hardening modulus. In Figure 7b, the constitutive model of concrete is based on the Kent-Park
model [38], both unconfined and confined concrete fibers in this constitutive model consider tensile
strength with linear degeneration. f c, Et, f t, and Eu are ultimate compressive strength, rigidity after
cracking, ultimate tensile strength, unloading rigidity. The calculating formula is expressed as below:

σ =

⎛⎜⎝ fc

[
2ε

0.002 − (
ε

0.002
)2
]

ε ≤ 0.002

fc[1 − Z(ε − 0.002)] 0.002 ≤ ε ≤ ε20

0.2 fc ε ≥ ε20

(1)

Z =
0.5

ε50u + ε50h − 0.002
(2)
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ε50u =
3 + 0.002 fc

0.002 fc − 1000
(3)

ε50h =
3
4

ρs

√
B
sh

(4)

where, ε, Z, ε50u, ε50h, ρs, B and Sh are the concrete strain, the slope of the descending branch of the
stain-stress curve, the stain at 0.5f c, the strain increase of confined concrete over unconfined concrete
at 0.5f c, the ratio of stirrup, width of concrete core area and the spacing of stirrup, respectively.

Figure 7. Constitutive model of materials: (a) constitutive model of steel and (b) constitutive model
of concrete.

3.2. Elements and Boundary Condition

The element types “dispBeamColumn” and “LayeredShell” are employed to divide the cross
section of members into units with a certain number. According to the variation positions of
concrete and steel in the specimen, the fibers at corresponding positions can be defined with different
constitutive models. The cross sections of different members are shown in Figure 8. And the view of
the FE model is shown in Figure 9.

Figure 8. Fiber sections: (a) beam, (b) column and (c) wall and floor.
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Figure 9. The finite element (FE) model.

Vertical load was applied to the corresponding node. Horizontal load was controlled by
displacement referring to the experiment. Based on the experimental conditions, the bottom of
the tube and column were defined as fixed, and displacement of nodes on the other same floor was
defined as coupled. The mass proportional damping was defined as 0.05.

3.3. Validation of the FE Model

The model size, section dimensions, loading and boundary conditions are exactly replicated in
the experiment [6]. The test results are provided in this section. To validate the proposed FE model,
simulation and test results are compared focusing on hysteretic curve, skeleton curve, bearing capacity,
deformation and dynamic characteristics.

In Figure 10a, the calculating and the test curves are both full and in spindle shaped, the yielding,
limiting and failure stages are obvious. In Figure 10b, the calculating and the test curves are consistent
in elastic-plastic segment and degenerate segment. Table 4 shows the characteristic values at yielding,
limiting, and failure stages. It can be seen that the calculation results are consistent with the test.

Figure 10. Comparison of hysteretic and skeleton curves: (a) Hysteretic curve and (b) Skeleton curve.

139



Appl. Sci. 2018, 8, 2316

Table 4. Comparison of characteristic value.

Load Direction Test Value/kN
Calculating
Value/kN

Absolute Error/%

Py
Positive 238.49 256.72 7.64

Negative −243.52 −251.89 3.43

Pmax
Positive 351.72 373.69 6.24

Negative −356.12 −333.91 6.23

Pu
Positive 308.47 338.44 9.72

Negative −304.96 −300.55 1.44

where, Py, Pmax and Pu are yield strength, ultimate strength and failure strength respectively.

Figure 11 shows a comparison of lateral displacement at the 1st, 2nd, 3rd, 4th, 5th, 6th and 9th
floors resulting from test and simulation. The dotted line is the test value and the solid line is the
simulation value. It can be seen that structural deformation resulting from the two approaches are in a
good agreement when the top displacements are 8 mm, 24 mm, 56 mm, 88 mm and 136 mm respectively.

Figure 11. Comparison of lateral displacement.

Table 5 shows the frequencies of the first five vibration modes at the initial and failure state. It can
be seen that the natural frequency of structure decreases along with damage accumulation, and that
the absolute errors between calculating results and test results is within 5%.

Table 5. Comparison of frequencies.

Vibration
Modes

Initial State Failure State

Test
Value/Hz

Calculating
Value/Hz

Absolute
Error/%

Test
Value/Hz

Calculating
Value/Hz

Absolute
Error/%

1 5.94 5.86 1.31 3.26 3.35 2.73
2 18.98 18.13 4.50 6.22 6.01 3.23
3 25.13 23.97 4.60 15.96 15.25 4.47
4 37.93 36.47 3.87 31.82 32.47 2.06
5 50.03 48.43 3.20 42.01 40.85 2.76
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4. Progressive Collapse Analysis

4.1. Basic Principle

As stated above, the alternate path method (APM) proposed by General Services Administration
(GSA) [10] is applied to assess the potential for progressive collapse by a certain acceptance criteria.
As stated in GSA, the demand-capacity ratio (DCR) of adjacent components is applied to evaluate
whether progressive collapse occurs as after the failure of critical component.

The component removal is conducted using element-killing technology. The DCR under various
cases is assessed using nonlinear static and dynamic analysis. The nonlinear static analysis can be
used to simulate the removal scenario induced by triggering events, such as explosions and vehicle
accidents. The nonlinear dynamic analysis can be used to simulate the building subjected to an
earthquake with failure of critical components. The maximum forces and displacements for each
member are recorded. In static analysis, the critical component is removed primarily, and then the
analysis goes on to evaluate the structural performance. If the structure is stable, the dynamic analysis
will continue based on the static analysis, a seismic wave will be input to the model with critical
component removal. The dynamic effects are considered through load-increase factors. For the ground
key components loss, load combination was employed as follows:

Load = 2(DL + 0.25 LL) (5)

Load = DL + 0.25 LL (6)

where Equation (5) is for nonlinear static analysis, Equation (6) is for nonlinear dynamic analysis.
DL and LL are dead load and live load respectively.

Based on GSA, DCR is a ratio defined as internal force QUD of a component after the removal of
key component to the ultimate internal force QCE of the component. The DCR values are calculated as
Equation (7). As specified by GSA, the progressive collapse would not occur, as the DCR is smaller
than 2; besides the progressive collapse of the structure will occur.

DCR =
QUD

QCE
(7)

4.2. Seismic Input for Nonlinear Dynamic Analysis

To assure the accuracy of numerical analysis, the HOLLYWOOD, ELCENTRO and NRIGDE
seismic waves are selected to represent the various level of earthquake intensity, including frequent
earthquake, fortification earthquake and rare earthquake. Moreover, an artificial wave is also selected.
The peak ground acceleration (PGA) of each seismic wave is listed in Table 6, and acceleration-time
curves are shown in Figure 12.

Table 6. PGA of seismic waves.

Number Seismic Wave PGA/g

1 HOLLYWOOD 0.041
2 ELCENTRO 0.278
3 NRIGDE 0.603
4 Artificial wave 0.540
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Figure 12. Acceleration-time curves: (a) HOLLYWOOD, (b) ELCENTRO, (c) NRIGDE and (d) artificial wave.

Figure 13 shows response spectra of these seismic waves and design response spectrum specified
by Chinese code (GB 50011-2001) [33]. When the PGA does not meet the specification, modification
should be performed by the equation given below:

a′(t) =
A′

max
|A|max

a(t) (8)

where, a(t) is initial time-history relationship of acceleration, |A|max is PGA of seismic wave, a′(t) is
modified time-history relationship of acceleration, A′

max is the modified result, taken as Table 7.

Figure 13. Response spectra of seismic waves.
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Table 7. A′
max/Gal of seismic waves.

Earthquake Intensity 7 8 9

Frequently occurring 35 70 140
Moderate 107 215 429

Rarely expected 220 400 620

4.3. Progressive Collapse Cases

Table 8 shows the list of analysis cases considered together with the components that are forcibly
removed. Due to the symmetry of the cross section of the structure, 5 key components were assumed
to be removed. These critical components are side columns C1 and C3, corner column C2, shear walls
W1 and W2 at the first floor. Figure 14a,b show the location of these critical components and adjacent
beams. To illustrate the analysis method clearly and facilitate analysis of data, case 1 is discussed in
detail while discussion of the other cases is relatively concise.

Table 8. Progressive analysis cases.

Case 1 2 3 4 5

Removed
component C1 C2 C3 W1 W2

Figure 14. Location of members at the first floor: (a) location of key components and (b) location of the
adjacent beams.

4.4. Nonlinear Static Analysis

4.4.1. Case 1—Column C1 at Ground Floor Removed

For case 1, the ground columns C1 as shown in Figure 14 were suddenly removed (Case 1 in
Table 8). Table 9 shows force condition of beams adjacent to C1. It can be seen that the maximum DCR
value is 0.86, far less than 2.0. The DCRs of B8 and B10 are larger than the DCR of B4. This result may
be caused by the different locations. Compared with the locations of B4, B8 and B10 are closer to the
core tube. When column C1 is removed, the load is transferred to B4 by the portion of 20.06%, to B8 by
the portion of 45.23% and to B10 by the portion of 34.71%.

Figure 15 shows the lateral displacement of the structure. X-axis is west-east direction, Y-axis is
south-north direction. It can be seen that the lateral displacement along the X-axis is larger, and the
maximum displacement is 24.5 mm. Moreover, the maximum inter-story displacement angle θmax is
far smaller than the limited value 1/800 in Chinese specification (GB50009-2001) [35]. These results
indicate that the progressive collapse will not occur under the loss of C1 scenario.
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Table 9. Force condition of beams in case 1.

Case
Beam

Number
Direction

Bending
Moment/kN·m Portion (%)

Average
Value (%)

DCR

1 (C1)

B4
Positive 110.00 15.69

20.06
0.23

Negative −202.50 24.43 0.42

B8
Positive 280.00 39.92

45.23
0.58

Negative −418.75 50.53 0.86

B10
Positive 311.25 44.39

34.71
0.64

Negative −207.50 25.04 0.43

Figure 15. Displacement of structure in case 1.

4.4.2. The Results from Case 2 to Case 5

Table 10 shows the force condition of beams under the other cases. It can be seen that the DCRs
are less than 2.0. Due to the structural symmetry, the difference between the DCRs of B1 and B4 is
small in case 2. In case 3, the DCR of B5 is larger than the DCRs of B1 and B2. Similar to the case 1,
B5 is closer to the core tube than B1 and B2, and the more load is transferred to B5 by the portion of
48.77% while the load is transferred to B1 and B2 by the portion of 20.02% and 32.21% respectively.
In case 4 and case 5, B5 and B8 are directly linked to the core tube. Due to the structural symmetry,
there is a small difference between the DCRs of B5 and B8, and the DCR of B5 is larger than the DCR
of B8 in case 4, but the relationship is reversed in case 5. From the results of the above cases, it can be
seen that the closer to the core tube, the more affected the beam gets.

Figure 16 shows the lateral displacement of the structure in different case. The maximum
displacements are 22.5 mm, 12.50 mm, 7.80, 5.70 mm respectively. Moreover, the θmax is still smaller
than the specified limitation. From case 1 to case 5, in terms of the number, the displacements of
9th floor are the maximum, the maximum displacements and the difference between the maximum
value in X-axis and Y-axis showing a decreasing trend. In cases 1, 2 and 4, the maximum values on
the X-axis are larger than that on the Y-axis. This means that the removal of C1, C2 and W1 make
the ability of structure to resist deformation weaker mostly in X direction. On the contrary, in cases 3
and 5, the removal of C3 and W2 make the ability of structure to resist deformation weaker mostly in
Y direction.

Table 10. Force condition of beams in cases 2, 3, 4 and 5.

Case
Beam

Number
Direction

Bending
Moment/kN·m Portion (%)

Average
Value (%)

DCR

2 (C2)
B1

Positive 213.75 33.79
50

0.44
Negative −428.75 66.21 0.88

B4
Positive 418.75 67.39

50
0.86

Negative −207.50 32.61 0.43

144



Appl. Sci. 2018, 8, 2316

Table 10. Cont.

Case
Beam

Number
Direction

Bending
Moment/kN·m Portion (%)

Average
Value (%)

DCR

3 (C3)

B1
Positive 206.25 22.39

20.02
0.42

Negative −88.75 17.66 0.18

B2
Positive 313.75 34.06

32.21
0.64

Negative −142.50 28.36 0.29

B5
Positive 401.25 43.55

48.77
0.82

Negative −271.25 53.98 0.55

4 (W1)
B5

Positive 347.50 46.41
47.10

0.71
Negative −380.00 47.80 0.78

B8
Positive 401.25 53.59

52.90
0.82

Negative −415.00 52.20 0.85

5 (W2)
B5

Positive 497.50 55.43
56.59

1.02
Negative −440.00 57.74 0.90

B8
Positive 400.00 44.57

43.41
0.82

Negative −322.50 42.26 0.66

Figure 16. Displacement of structure in (a) case 2, (b) case 3, (c) case 4 and (d) case 5.

4.5. Nonlinear Dynamic Analysis

4.5.1. Case 1—Column C1 at Ground Floor Removed

The nonlinear dynamic analysis is to simulate the structure under earthquake action with critical
component removal. Under the influences of different seismic waves, the displacement-time curves of
the top floor are shown in Figure 17, the inter-story displacement angles θ of structure are shown in
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Figure 18. It can be seen the maximum inter-story displacement angle θmax is located at the 6th floor
when subjected to HOLLYWOOD and ELCENTRO waves, and the value is within the code limitation.
When subjected to NRIDGE and artificial waves, the value reached 0.0016 and 0.0022, which exceed
the specified limitation.

Figure 17. Displacement-time curve of top under different seismic wave in case 1: (a) HOLLYWOOD,
(b) ELCENTRO, (c) NRIGDE and (d) Artificial wave.

Figure 18. Inter-story displacement angle in case 1.

Figure 19 shows shear distribution between the ground frame and core tube. At the initial stage,
the shear ratios of frame to core tube under HOLLYWOOD, ELCENTRO, NRIGDE and artificial
seismic waves are 1:3.29, 1:3.17, 1:3.01, and 1:2.96 respectively. The core tube is responsible for the
majority of the lateral load. With the stiffness degradation of the core tube, the shear ratios of frame
to core tube change to 1: 2.35, 1:2.28, 1:2.18, and 1:2.14 respectively. It means that the core tube plays
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a role as the first line of defense against lateral load, and the frame plays a role as the second line of
defense against lateral load.

Figure 19. Shear distribution of bottom under different seismic wave in case 1: (a) HOLLYWOOD,
(b) ELCENTRO, (c) NRIGDE and (d) Artificial wave.

Table 11 shows force condition of beams adjacent to C1 after the sudden failure of C1 under
earthquake action. The maximum DCR value of the beams is smaller than 2.0 in the cases of
HOLLYWOOD and ELCENTRO seismic waves. In the cases of NRIGDE and Artificial seismic wave,
the maximum DCR value of B8 and B10 are 2.92 and 3.04, greater than 2.0. That is to say, the progressive
collapse will not occur under the failure of the C1 scenario when subjected to the frequent earthquake
or fortification earthquake, but it will occur when subjected to the rare earthquake. Compared to
Table 9 in nonlinear static analysis, the loads transferred to B4 and B10 are increased while the load
transferred to B8 is reduced. The reason for these changes is the frame has played a greater role of
defense against the earthquake load.

Table 11. Force condition of beams in case 1.

Case Beam Number Seismic Wave Average Bending Moment/kN·m Portion (%) DCR

1 (C1)

B4

HOLLYWOOD 457.50 27.98 0.94
ELCENTRO 558.75 23.99 1.15

NRIGDE 885.00 23.30 1.82
Artificial wave 763.75 22.36 1.57

B8

HOLLYWOOD 555.00 33.95 1.14
ELCENTRO 900.00 38.65 1.79

NRIGDE 1440.00 37.91 2.92
Artificial wave 1347.50 39.46 2.77

B10

HOLLYWOOD 622.50 38.07 1.28
ELCENTRO 870.00 37.36 1.87

NRIGDE 1473.75 38.79 3.04
Artificial wave 1303.75 38.18 2.68
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4.5.2. The Results from Cases 2 to Case 5

Table 12 shows the θmax of structure. It can be seen, when the structure is subjected to the same
seismic wave, the θmax in case 3 is smaller than other cases. Compared to case 4, the horizontal
displacement of structure becomes obviously smaller in case 5.

Table 13 shows the shear distribution between the frame and core tube. It is obvious that the core
tube is responsible for more shear than the frame. It obviously increases the shear the frame bears in
the cases of shear wall removal. That means the shear is redistributed, the core tube plays a role as the
first line of defense against lateral load, and the frame plays a role as the second line of defense against
lateral load. Compared to the shear distribution between the ground frame and core tube in case 1,
it can be found that the portion of shear assumed by the frame in case 5 is more than double of it in
case 1.

Table 14 shows force condition of beams. Compared to Table 10 in nonlinear static analysis,
DCRs of the corresponding component in nonlinear dynamic analysis become obviously larger.
With increasing earthquake intensity, the DCR under the failure of W2 is larger than 2.0, even in
the frequent earthquake. DCR under the failure of W1 and W2 is larger than DCR under the failure of
columns. Compared to the failure of C1, the DCR of adjacent beams becomes obviously larger under
the failure of C2. That is to say, the failure of the corner column is more likely to cause progressive
collapse of the structure than failure of side column. Moreover, the DCRs of adjacent beams under
the failure of C1 are obviously larger than that under the failure of C3. That is to say, the failure of
side columns is more likely to cause progressive collapse of structure. Compared to the failure of W1,
DCRs of adjacent beams become obviously larger under the failure of W2. The failure of shear wall
without opening is more likely to cause progressive collapse. Compared to Table 10 in nonlinear static
analysis, in terms of cases 2, 4 and 5, due to the structural symmetry, the change of load transfer is
not obvious. However, it is obvious for case 3, similar to case 1, the loads transferred to B1 and B2 are
increased while the load transferred to B5 is reduced.

Table 12. The maximum inter-story displacement angle in cases 2, 3, 4 and 5.

Case Seismic Wave θmax

2 (C2)

HOLLYWOOD 0.00078
ELCENTRO 0.00108

NRIGDE 0.00206
Artificial wave 0.00149

3 (C3)

HOLLYWOOD 0.00076
ELCENTRO 0.00105

NRIGDE 0.00199
Artificial wave 0.00142

4 (W1)

HOLLYWOOD 0.00077
ELCENTRO 0.00101

NRIGDE 0.00209
Artificial wave 0.00151

5 (W2)

HOLLYWOOD 0.00074
ELCENTRO 0.00093

NRIGDE 0.00192
Artificial wave 0.00136
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Table 13. Shear distribution in cases 2, 3, 4 and 5.

Case Seismic Wave Shear Distribution

2 (C2)

HOLLYWOOD 1:1.76
ELCENTRO 1:2.19

NRIGDE 1:2.01
Artificial wave 1:2.17

3 (C3)

HOLLYWOOD 1:1.81
ELCENTRO 1:2.03

NRIGDE 1:2.05
Artificial wave 1:2.19

4 (W1)

HOLLYWOOD 1:1.37
ELCENTRO 1:1.61

NRIGDE 1:1.47
Artificial wave 1:1.59

5 (W2)

HOLLYWOOD 1:1.23
ELCENTRO 1:1.58

NRIGDE 1:1.44
Artificial wave 1:1.56

Table 14. Force condition of beams in cases 2, 3, 4 and 5.

Case Beam Number Seismic Wave
Average Bending
Moment/kN·m Portion (%) DCR

2 (C2)

B1

HOLLYWOOD 748.75 48.74 1.54
ELCENTRO 885.00 51.12 1.82

NRIGDE 1576.25 49.03 3.24
Artificial wave 1445.00 48.31 2.97

B4

HOLLYWOOD 787.50 51.26 1.62
ELCENTRO 846.25 48.88 1.74

NRIGDE 1638.75 50.97 3.37
Artificial wave 1546.25 51.69 3.18

3 (C3)

B1

HOLLYWOOD 365.00 25.44 0.75
ELCENTRO 447.50 22.13 0.92

NRIGDE 730.00 23.86 1.5
Artificial wave 627.50 22.70 1.29

B2

HOLLYWOOD 622.50 43.38 1.28
ELCENTRO 870.00 43.02 1.79

NRIGDE 1245.00 40.69 2.56
Artificial wave 1090.00 39.44 2.24

B5

HOLLYWOOD 447.50 31.18 0.92
ELCENTRO 705.00 34.86 1.45

NRIGDE 1085.00 35.46 2.23
Artificial wave 1046.25 37.86 2.15

4 (W1)

B5

HOLLYWOOD 602.50 48.20 1.24
ELCENTRO 782.50 40.94 1.61

NRIGDE 1426.25 47.90 2.93
Artificial wave 1196.25 46.68 2.46

B8

HOLLYWOOD 647.50 51.80 1.33
ELCENTRO 1128.75 59.06 2.32

NRIGDE 1551.25 52.10 3.19
Artificial wave 1366.25 53.32 2.81
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Table 14. Cont.

Case Beam Number Seismic Wave
Average Bending
Moment/kN·m Portion (%) DCR

5 (W2)

B5

HOLLYWOOD 715.00 47.59 1.47
ELCENTRO 1026.25 44.52 2.11

NRIGDE 1502.50 46.33 3.09
Artificial wave 1430.00 50.87 2.94

B8

HOLLYWOOD 787.50 52.41 1.62
ELCENTRO 1278.75 55.48 2.63

NRIGDE 1740.00 53.67 3.58
Artificial wave 1381.25 49.13 2.84

5. Conclusions

In this paper, a 3-D finite element model was first built with the OpenSees software to simulate the
behavior of SRC frame-RC core tube hybrid buildings under sudden component removal. The method
and principle for the modeling techniques and progressive analysis are described in detail. The model
also incorporates non-linear material characteristics and non-linear geometric behavior. A 1/5 scaled,
10-story 3-bay model was built for the validation of the proposed modeling method. The numerical
results are presented and compared to experimental data, a good agreement is obtained. Using the
proposed model, the progressive collapse analysis under loss of key components and seismic waves
input were conducted. The following conclusions can be drawn within the limitation of the current
study presented in this paper.

Even though the progressive collapse is a rare event when subjected to only the loss of a column
or shear wall, the possibility of progressive collapse should not be neglected. When the seismic wave
was entered into the component removed model, especially the model under the loss of shear wall
scenario, DCR of the adjacent beams significantly increased. For the SRC frame-RC core tube hybrid
structure, the possibility of progressive collapse increases with the increase of earthquake intensity,
especially under the loss of shear wall scenario.

In this paper, the portion of shear assumed by the frame in case 5 is more than double of that
in case 1 under a seismic wave. A loss of the W5 seriously weakened the carrying capacity of the
core tube. Under the same general conditions, removal of a shear wall is the most likely to cause
progressive collapse, and then next likely is removal of a corner column, and lastly removal of a side
column. In addition, removal of a shear wall without opening is more likely to cause progressive
collapse than the shear wall with opening.

When subjected to the loss of component and earthquake, the internal forces will be redistributed
between the frame and core tube and the frame is responsible for more load. The concept of multi-lines
of seismic defense is reflected in SRC frame-RC core tube hybrid buildings. The core tube plays a
role as the first line of defense against progressive collapse, the second line of collapse resistance is
provided by the frame.
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Abstract: Over the last several years, self-healing materials have become more and more popular in
terms of damage reparation. Moreover, a recent theoretical investigation of super healing materials
that aims at repairing and strengthening itself was also developed. This research area is well
known by the rich experimental studies compared to the numerical investigations. This paper
provides a review of the literature of continuum damage-healing and super healing mechanics
of brittle materials based on continuum damage and healing mechanics. This review includes
various damage-healing models, methodologies, hypotheses and advances in continuum damage
and healing mechanics. The anisotropic formulations of damage and healing mechanics are also
highlighted. The objective of this paper is also to review the super healing theory based on continuum
damage-healing mechanics and its role in material and structure strengthening. Finally, a conclusion
of the reviewed damage-healing models is pointed out and future perspectives are given.

Keywords: self-healing; damage-healing mechanics; super healing; anisotropic; brittle material

1. Introduction

Brittle materials are subjected to microstructural degradations that lead to their failure.
The material degradation is the result of the nucleation and growth of microvoids and microcracks.
This phenomenon is expressed and termed by damage. In recent years, self healing materials have
been used to repair damage in materials. Therefore, many investigations are conducted on self-healing
materials. French Academy of Science discovered the self-healing theory in 1836. They found
that calcium carbonate results from cement hydration on exposure to atmosphere that concerns
the autogenous self-healing mechanism [1,2]. This is due to hydration of cement or carbonation
of calcium hydroxide [3]. The second category, called autonomous self-healing, was first proposed
in [4]. The self-healing concept aims at automatically repairing the damages occurring in the material.
Inspired from this idea, Barbero et al. [5] developed the continuum damage-healing mechanics
(CDHM) for composited materials. CDHM represents the extension of the continuum damage
mechanics (CDM) in which the healing effect is introduced into the constitutive equations. Furthermore,
many investigations based on fracture mechanics and advanced finite element methods such as discrete
particle/element method [6] and smooth particle hydrodynamics (SPH) [7] were also carried out on
self-healing materials. For more details on these methods, the reader can refer to Refs. [8–13] for
the discrete particle/element method, Refs. [14–17] for the SPH method, Refs. [18–24] for meshfree
method, [25–30] for the multiscale method, Refs. [31–35] for the phase field method, and Refs. [36–42]
for advances in fracture mechanics.
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The presentation of CDM was first given by Kachanov [43] in which the continuum damage
mechanics framework was originally applied to handle the response of the creep failure of metal alloys.
This framework was further developed by Rabotnov [44] in which the damage factor concept was
introduced. CDM framework was further extended by many researchers who aimed at describing the
process of damage [45,46] where it was assumed that the material starts to rupture once the damage
variable reaches a critical level. At the beginning of the application of CDM, much attention was
given to the analysis of damage due to creep [47–50]. Later on, further developments were carried
out using the principles of continuum damage mechanics [51–66]. In general, damage mechanics
interests in the study of the material in different scales, namely, microscopic, mesoscopic, macroscopic,
and mixed scale (statistical method), in which the damage models are applied to describe the variation
of the material properties and material failure due to crack initiation and propagation. The basic issue
of CDM is to quantify the damage in the material. Many researchers defined the damage variable
as the ratio of the number of damaged and total cross-section [67,68], while other researchers used
the concept of the effective stress to define the damage variable [69,70]. Another method used to
calculate the damage variable which is based on the elastic stiffness reduction was also proposed
by Lemaitre [71], and investigated further by many researchers [72,73]. The damage variable can be
expressed as a scalar variable in the case of isotropic material and as a tensor in the case of anisotropic
material [74,75].

The description of the quasi-static behavior of ductile and brittle materials came subsequently
on [76–80]. Application of conventional local damage models results in ill-posedness problems and
strain localization due to the softening behavior of brittle materials which can be avoided using
particular a simulation. This simulation can be performed using the developed nonlocal damage
models of integral and gradient types [81–83]. A large range of applicability of the nonlocal theories
can be found in literature, which can simulate the crack initiation and propagation based on continuum
mechanics. The nonlocal damage models raised some limitations which are still not completely
resolved [84,85]. The characteristic length is a parameter intrinsic to the material whose characterization
as well as the physical sense strongly depends on the material model chosen. Whatever the non-local
method chosen, it enriches the description of the classical continuum mechanics.

Comparing to the investigations that carried out on continuum damage mechanics, the focus on
the continuum damage healing mechanics is still in its infancy. In the present work, an overview of
continuum damage-healing and super healing mechanics and their applicability is provided. Review of
different aspects of damage and healing measures based on cross-sectional area and elastic stiffness
reduction is given. Afterwards, advances of damage-healing models applied on brittle materials are
discussed. The anisotropic formulation of damage and healing and some advances are also reviewed.
Finally, the super healing theory that aims at strengthening of materials and structures is given and
discussed in detail.

2. Damage and Healing Configurations

In this section, review of damage and healing variables is presented based on CDHM. According to
CDM, the undamaged, damaged and effective material states defined by the undamaged cross-section
S0, damaged cross-section Sϕ and effective cross-section S̄ are respectively illustrated in Figure 1.
The initial, damaged and effective configurations are also represented by their elastic modulus E0, Eϕ

and Ē, respectively. The damage variable can mostly be defined based on either cross-sectional or
elastic stiffness reduction. The expressions of the damage variable based on cross-sectional reduction
and elastic stiffness reduction are expressed as follows [86]:

ϕ =
Sϕ

S0
with 0 ≤ ϕ ≤ 1, (1)

ϕ =
Ē − Eϕ

E
, (2)
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where ϕ is the damage variable and it takes the value ϕ = 0 when the material is undamaged and the
value ϕ = 1 when the material is totally damaged. In [87], the authors defined the damage variable
based on shear modulus G, Poisson’s ratio ν and the bulk modulus K reduction respectively as follows:

ϕ =
Ḡ − G

G
, (3)

ϕ =
ν̄ − ν

ν
, (4)

ϕ =
K̄ − K

K
, (5)

where Ḡ, ν̄ and K̄ are, respectively, the effective shear modulus, effective Poisson’s ratio and the
effective bulk modulus. As the damage is well-known to reduce the cross-section and material
stiffness, the healing takes an opposite role of the recovering of the cross-section and material stiffness
(see Figure 2). Then, the healing variable can be defined respectively as a function of the cross-section
and material stiffness recovery follows [86]:

h =
Sh
Sϕ

with 0 ≤ h ≤ 1, (6)

h = 1 − Ē − Eh
ϕE

, (7)

where h, Sh and Eh represent the healing variable, healed cross-section and elastic stiffness, respectively.
The values of h = 0, 0 < h < 1, and h = 1 represent the unhealed, partially healed, and fully healed
material states, respectively. In [88], the authors defined two healing variables that reflect the healing
effect in the case of coupled and uncoupled self-healing mechanics. The former mechanism assumes
that the healing and damage occur simultaneously, while the latter one assumes that the healing is
introduced when damage is constant (more details are given in Section 3.6). The expression of the
healing variable in the case of coupled self-healing mechanism (hc) is similar to Equation (7), while, for
the uncoupled self-healing mechanism (hu), it is written as follows [88]:

hu =
Sh − Sϕ

Sh
with 0 ≤ hu ≤ 1. (8)

Figure 1. Undamaged, damaged and effective material states [89]. (Copyright, 2018, Journal of
engineering mechanics).

When damages are removed from (Figure 1c), the relationship between the nominal stress σ and
effective stress σ̄ becomes as follows [43,66,76]:

σ̄ =
σ

1 − ϕ
. (9)
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Figure 2. Damaged, partially healed, and effective material states [89]. (Copyright, 2018, Journal of
engineering mechanics).

According to CDHM and following the configurations in Figure 2, Equation (9) becomes in the
case of self-healing materials as follows [88,90]:

σ̄ =
σ

1 − ϕ (1 − h)
. (10)

Another relation of the nominal stress and effective stress was proposed in [91]. The authors
assume that the material is totally healed when h = 0 and it is totally damaged when h = 1.
This proposition takes the following expression:

σ̄ =
σ

((1 − ϕ) + ϕ (1 − h))
. (11)

It is clear from Equation (10) that the effective stress is equal to the nominal stress when the
material is fully healed (h = 1 & ϕ = 0), while it approaches infinity when the material is totally
damaged (h = 0 & ϕ = 1).

3. Damage-Healing Formulations

In this section, review of proposed formulations of healing laws applied on brittle materials are
discussed. Some of them are not based on CDHM, but they are highlighted in this section in order to
provide the reader an overall idea of mathematical, mechanical and phenomenological propositions of
healing laws. Next, the damage-healing models that have been developed since 2005 and applied on
different materials based on CDHM are also reviewed. The main differences and limitations between
these models are also discussed.

3.1. Healing Model Based on Parameter Recovery

A theory of crack healing of polymers was developed by Wool and O’Connor [92] based on a
recovery parameter R which is defined as a convolution product. According to this theory, the healing
is defined in terms of five stages of healing: (a) surface rearrangement, (b) surface approach, (c) wetting,
(d) diffusion and (e) randomization (Figure 3). Different mechanical properties of the material
were considered in the intact state of the material such as fracture stress σ∞, strain at failure ε∞,
tensile modulus Y∞ and fracture energy E∞ when the healing history is subjected. The healing history
was measured such that the five stages of healing occur simultaneously and the mechanical properties
of the material represent the sum of wetting and diffusion process initiated at different times. Based on
this assumption, the healing variable was defined as follows:

R =
∫ τ=t

τ=∞
Rh (t − τ)

dφ (τ, X)

dτ
dτ, (12)
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where Rh(t) is the intrinsic healing function, φ(τ, X) is the wetting diffusion function and τ is the
nucleation time and represents the running variable of the time axis. The intrinsic healing function was
related to the wetting and diffusion for the measure of recovery based on stress or energy consideration.
The wetting is obtained when two free surfaces touch each other in which the time is controlled by
self-diffusion of the overlapping free surfaces. The diffusion is controlled by the stage of surface
rearrangement. When the material is damaged and the cracks appear, the molecular ends start to
be able to move on the surface following the wetting stage. When two surfaces start to come into
contact, their diffusion across the interface results in the healing and recovery of part of the initial
strength. Two cases of wetting diffusion function are considered, namely instant wetting and constant
rate wetting. In the case of instant wetting, the two surfaces wet instantaneously at time t = 0 and the
wetting diffusion function is expressed as follows:

dφ

dt
= δ (t) , (13)

where δ(t) is the Dirac-delta function. Consequently, the healing variable in Equation (12) and the
intrinsic healing function become similar, as follows:

R = Rh (t) = R0 + Kt1/4/σ∞, (14)

where K and σ∞ are the material constant and the fracture strength of the intact material, respectively.
On the other hand, in the case of constant rate wetting, the wetting diffusion function is written as:

dφ (t)
dt

= kdU (t) , (15)

where kd and U(t) are the wetting rate and the Heaviside step function, respectively. Thus, the healing
variable is expressed as follows:

R = R0kdt + 4kdKt5/4/5σ∞. (16)

According to Equations (14) and (16), it is observed that the wetting components of the healing
variable is time-independent in the case of instant wetting, while it is time-dependent in the case of
constant wetting rate. In addition, it is concluded that Equations (14) and (16) are defined based on
empirical assumption using large number of material parameters. Figure 4 shows the plot R − R0 with
respect to the crack healing.

3.2. Fracture Mechanics Based Healing Model

A crack closing model applied on linear and isotropic viscoelastic materials was developed by
Schapery [93]. Time-dependent constitutive equations based on continuum mechanics were proposed
in which the crack length and contact size are predicted, and the whole healing process is considered.
The crack healing model was based on crack area reduction ȧb, which is related to the Poisson’s ratio,
fracture process zone, effective bond energy and the tensile bond force. ȧb is expressed as follows:

ȧb = π
[
4Γ

′
b

](2+1)/m [(
1 − υ2D+

1 γm/Cm

)]1/m [
E+

R /
(

1 − υ2
)

KR
I

]2(1+1/m)
/8σ2

b C2
m, (17)

where Γ
′
b, E+

R , σb, υ and KR
I are the effective bond energy, elastic modulus, tensile bond force,

Poisson’s ratio and mode I stress intensity factor. γm, Cm, D+
1 and m are material constants. The crack

closing model is known by the fact that there is no difference between the crack closing based on
wetting and on diffusion. Moreover, the model is formulated based on different materials that make it
difficult to be realized in the case of anisotropic material.
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Figure 3. Five stages of healing of two random-coil chains on opposite crack surfaces [92]. (Copyright,
1981, Journal of Applied Physics)

Figure 4. Log of healing based on fracture load recovery [92]. (Copyright, 1981, Journal of
Applied Physics).
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Based on the healing variable proposed in [92] and the crack area reduction in Equation (17) [93],
a new formulation was proposed in [94,95] in which they used the variable R to simulate the healing
effect in bituminous materials as follows:

dφ (t, X)

dt
= ȧb = β

[
1

D1km

{
πWc

4 (1 − υ2) σ2
b β

}]−1/m

, (18)

where Wc, β and km are the work of cohesion, the healing process zone and material constant,
respectively. The rest of the parameters are defined previously in Equation (17). It should be noted
that the parameters related to the proposed Equation (18) are difficult to be identified due to the lack
of enough experimental data.

3.3. Creep Damage-Healing Model for Salt Rock

Rock salt is generally subjected to creep damage and cracks that result in the increase of the
permeability of the material. Because damage results in inelastic flow in rock salt under hydrostatic
compression, an extension of continuum damage approach to the healing of creep damage was
developed in [96]. It was assumed that the macroscopic strain rate is influenced by the healing
mechanism along with damage and creep. Anisotropic healing was also considered such that the
conjugate stress measure for healing can be expressed as

σh
eq =

1
3
(I1 − x10σ1) , (19)

where I1, x10 and σ1 are the first invariant of the Cauchy stress, material constant and the maximum
principal stress, respectively. It is considered that the healing is isotropic when x10 = 0 and anisotropic
when x10 �= 0. The kinetic equations of the healing were formulated based on an experimental
observation that suggests two healing mechanisms can be activated in (Waste Isolation Pilot Plant)
WIPP salt. The first mechanism assumes that the healing is present in a much smaller time period
which results in unchanged damage variable, while the second mechanism assumes that the healing is
present in a larger time period which reduces the damage variable. The healing variable proposed
in [96] is considered to be the first-order kinetic equation expressed as

h =
ωσh2

eq H
(

σh2
eq

)
τ2μ

(20)

where ω, H, τ2, μ are the damage variable, Heaviside function, time characteristic constant and the
shear modulus, respectively. h2 describes the removal of damage. The healing variable defined in
Equation (20) is characterized by the fact that only an individual healing mechanism can be simulated.
This leads to the difficulty of finite element implementation of the healing model due to the challenging
identification of the healing time involving non-relative loading histories. Thus, the starting time and
the period of the healing become ambiguous.

A simplified version of the healing model proposed in [96] was further developed in [97].
Instead of defining two separate healing mechanisms, a single healing mechanism based on damage,
kinetic equation and equivalent stress was proposed. The simplified healing variable was defined
with only one kinetic equation for one healing mechanism in contrast to the previous investigation in
which one kinetic equation for each healing mechanism was defined. After modification of the kinetic
equation, the following healing variable was obtained:

h =
ω
(

σh
eq − σb

)
H
(

σh
eq − σb

)
τμ

(21)
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with
σb = x7|σ1 − σ3

x2x7
|1/x6 , (22)

where σ1, σ3 and σeq are principal stresses and equivalent stress, respectively. x2, x6 and x7 are material
constants. According to Equation (21), healing can be activated only when σeq > σb. In addition,
the healing reduces the volumetric strain to zero. The axial and lateral strains are also recovered under
hydrostatic compression. In [98], a thermodynamic framework of CDHM was proposed in which
the concept of healing surface and loading-unloading conditions were used. Rate-dependent and
rate-independent formulations were also given and applied in the case of isotropic healing. The general
thermodynamic framework was applied to study the healing crushed rock salt. The surface-based
healing function takes the following expression:

F = s : s − cB

[
(Bsp)2 +

(
Bd
)2
]
+ cS (ω)2 − F0, (23)

where s, B, ω and F0 are the Cauchy stress tensor, constrained modulus, surface energy per unit area,
and the material positive constant, respectively. cB and cS are positive material parameters related
to the changes in material parameters and surface area. If the healing surface F < 0, the material is
supposed unhealed, while the healing is occurring when F = 0. The simulation of the densification of
crushed rock salt revealed that the healing model is able to describe the healing mechanism in terms of
Young’s modulus and inelastic strain recovery, even though the formulation was limited to isotropic
material behavior.

Further investigations of damage-healing of salt rock were undertaken. Based on the formulation
in [97], the authors in [99] proposed an anisotropic damage-healing formulation for the modeling of
creep process in salt rock. The healing process was defined with respect to a viscoplastic scalar healing
variable, and the healing strain component was used to account for the reduction of the deformation.
However, it was assumed that the healing compensates deformation only in the lateral directions.
In addition, the crack healing was assumed to result in an instant reduction of deformation in which
τ represents the characteristic time needed to close the cracks of the material subject to salt creep.
The simplified healing variable that accounts only for diffusion subject to compressive mean stress
was expressed as

ḣ =
tr (A) pH (p)

τG
, (24)

where A, p, H and G are the new damage variable, first stress invariant, Heaviside function, and the
shear modulus, respectively. For more details of the formulation and application of Equation (24),
the reader can refer to [100–104]. Xu et al. [105] implemented an elastoplastic damage healing model
of mudstone and defined the healing variable as function of the non-associated dissipation criterion.
Unlike the expression of the healing variables defined in Equations (6) and (8), a new healing variable
equation is expressed as

h =
Ah
Aud

, (25)

where Ah and Aud are the healed and undamaged cross-section areas, respectively. It was assumed
that the undamaged cross-section area of the healed cross-section area carries the loads. Following this
assumption, the effective stress was expressed as follows:

σ̄ =
σ

(1 − d) (1 + h)
. (26)

According to this formulation, the cross-section area of the material is divided into three regions:
undamaged Aud, unhealed Auh and healed Ah cross-section areas. The damages in the mudstone
cannot be fully healed, which results in the unhealed cross-section area being greater than zero.
Therefore, it was assumed for simplicity that the healed cross-section area exhibits similar mechanical
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behavior to that of the original material. However, the boundary conditions of the healing and damage
of Equation (26) was unclear. For further self-healing investigations on geomaterials, the reader can
refer to [106–114].

3.4. Micro-Damage Healing Models for Asphalt Mixtures

In [115], an elastic-viscoelastic model with healing for asphalt concrete subjected to fatigue loading
was proposed. The model was extended from the work presented in [116] in which the pseudo-strain
variables are given in [117] and adopted to eliminate the dependency of the stress–strain material
behavior to time. The irreversible thermodynamic framework was used to simulate the healing of
micro-damage. Growing damage was simulated using uniaxial viscoelastic constitutive equations
that are extended to account for the micro-damage healing. Uniaxial tensile tests under cyclic loading
were conducted under controlled-strain and controlled-stress models with rest periods. In order to
induce damage in the specimens, two stress–strain levels were used in the tests. The rest periods
introduced during each test vary from 0.5 to 32 min. The variation of the material stiffness before
and after the rest period was studied as a function of the number of cycles (Figure 5). Region I in
Figure 5 depicts the reduction of the stiffness due to the damage evolution without a rest period,
while region II depicts the reduction of the stiffness due to the damage evolution after rest period.
After the introduction of the rest period, it was shown that the stiffness increases from point B to
point A due to micro-damage-healing and decreases after damage of the healed material. Based on
the experimental results and stiffness variation in regions I and II, the following healing function
was proposed:

H =
[
SR

B,i + C2 (S2,i)
]

C3 (S3,i)− C1 (S1n)−
i−1

∑
j=1

(
SR

B,j − SR
C,j

)
, (27)

when SR > SR
B,i (region I),

H =
i

∑
j=1

(
SR

B,j − SR
C,j

)
, (28)

when SR < SR
B,i,

where (S2,i) represents the healing evolution during the ith rest period and (S3,i) represents the
damage evolution after the ith rest period. C1(S1n) and (S1n) are the material function and the
normalized damage variable. Several experimental investigations were carried out for the study
of the micro-damage healing of asphalt mixtures (e.g., [118–124]). Although the implemented
micro-damage-healing model was able to describe the hysteretic behavior under controlled-strain and
controlled-stress modes, the identification of the experimental data to simulate the healing behavior is
not an easy task.

Another micro-damage-healing model applied to asphalt mixtures subjected to fatigue loads was
proposed in [125]. The damage healing model was extended from the viscoelastic, viscoplastic and
viscodamage model. The authors defined a healing variable which is a function of the healing time and
history, damage level and temperature. The proposed healing variable takes the following expression:

ḣ = Γh (T) (1 − φ̄)b1 (1 − h)b2 , (29)

where ḣ is the rate of the healing variable, Γh is the healing viscosity parameter and b1 and b2 are
material constants. Γh(T) is a function of temperature and is the parameter that determines the speed
of the healing. It is expressed as

7Γh(T) = Γh
0exp[−δ3(1 − T

T0
)], (30)
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where Γh
0 and δ3 are the healing viscosity parameter at temperature T0 and the healing-temperature

coupling parameter, respectively. According to Equation (29), it was assumed that the healing starts to
evolve once the temperature reaches a certain reference level (temperature threshold) and decreases
when the temperature is less than the reference level. The model was applied to predict the behavior
of creep-recovery tests in compression and in tension. An example of the results of the evolution
of the creep strain and the effective damage density as function of time in compression is shown
in Figure 6. From Figure 6a, it is shown that the introduction of the healing improves the material
behavior compared to the model without healing. On the other hand, one can see from Figure 6b that
the effective damage increases during loading and decreases during the rest period, while it remains
stable during unloading.

Figure 5. Variation of the stiffness before and after the rest period [115]. (Copyright, 1998, Journal of
engineering mechanics).

Figure 6. Results of repeated recovery test in compression with 120 s loading time and 100 s of rest
period. (a) compared creep strain; (b) evolution of the effective damage density [125]. (Copyright, 2010,
International Journal of Engineering Science).
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The micro-damage healing law proposed in [125] was further investigated in [90,126–128]. In [90],
a continuum damage mechanics framework was proposed to simulate the micro-damage-healing of
materials subjected to cyclic loading. The hypotheses’ strain, elastic energy and power equivalence
were used to relate the strain tensor and tangent stiffness in the damage and healing configurations.
The authors worked on the update of the current stress tensors in the damaged and healing
configurations. Examples of the uniaxial constant strain and stress rates were applied. The results
revealed that the hypotheses of strain equivalence and power equivalences overestimate the elastic
strain energy in the healing configuration compared to the one in the damaged configuration. On the
other hand, the strain equivalence hypothesis overestimates the expanded power in the healing
configuration compared to the one in the damaged configuration, while the elastic energy equivalence
hypothesis underestimates the expanded power in the healing configuration compared to the one in
the damaged configuration. It should be noted that these results apply to both strain-controlled and
stress-controlled uniaxial tests. The same authors used the micro-damage healing model to simulate
fatigue damage of asphalt concrete [126]. They also studied the effect of compressive stresses on the
crack closure. This phenomenon is called the “unilateral effect” and is discussed in more detail in
Section 3.7. Based on the formulation presented in [125], a theoretical framework of cohesive zone
healing model was proposed in [127] and implemented into a finite element code in [128]. The effect of
different parameters such as damage history, healing history and resting time were studies. For further
investigations on the visco-damage-healing models, the reader can refer to [129–133].

3.5. Curing-Based Damage Healing Law

In [134], the authors proposed a new phenomenological damage-healing model applied to
polymers. The proposed healing variable concerned the autonomous self-healing concept and was
associated with the curing mechanism of the healing agent and the catalyst. In a microcapsules-based
self-healing concept, the propagated cracks break the microcapsules, which results in the release of
the healing agent. This latter fills the crack, reacts with the catalyst and they form a solid material in
the crack area (Figure 7). It was assumed in this work that the process of cure leads to the mechanical
properties variation and stiffness recovery [135]. The formulation was not limited to the healed
material, re-damage of the healed material was also considered. The same equations of healing,
damage and effective stress in Equations (1), (6) and (10), respectively, were used. As previously shown
in Equation (12) [92], the convolution integral was used to define the healing as follows:

h(t) =
∫ t

s=tc
d(s)ηhexp(−ηh[t − s])ds, (31)

where d(s), ηh are the damage variable during the healing period and the parameter that determines
the speed of the healing process, respectively. tc and t are the initial time of the healing and the
healing time, respectively. It was assumed that the damage threshold decreases by the introduction
of the healing as it is increased due to damage. Therefore, a damage threshold equation was defined
which assumes that the behavior of the fully healed material is similar to the original material and
the evolution of the healing variable does not affect the increase of the damage variable at constant
deformations. The healing was introduced in three cases. The first one concerns the introduction of the
healing during the rest period. When the material is loaded and unloaded, the healing variable evolves
during a rest period. Afterwards, the material is reloaded and comparison of the stress–strain response
of the healed and original materials is carried out. Figure 8 elucidates the stress–strain response of the
healed material when the healing is introduced during different rest periods.
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Figure 7. Microcapsules-based self-healing mechanism: (i) crack formation; (ii) the crack breaks the
microcapsules and the healing agent releases into the crack area; (iii) solidification of healing agent in
contact with the catalyst [136]. (Copyright, 2012, Construction and Building Materials).

Figure 8. Stress–strain response of the healed material with different rest periods [134]. (Copyright,
2013, Computational Mechanics).

In the second example, the healing is introduced when the material is partially damaged while
the assumption of its evolution during a required recovery time is kept. It should be noted that, in
this example, the strain is released before the evolution of the healing, which means that damage is
constant in this phase. The third example concerns the introduction of the healing during a rest period
while the strain is assumed to be constant. For further works on modeling of self-healing polymers
and microcapsules-based self-healing, the reader can refer to [137–141].

3.6. Damage-Healing Law for Concrete

In the previous work [88], a continuum damage-healing model for autonomous and autogenous
self-healing concrete was proposed. In this model, a time-dependent healing variable representing the
opposite of the damage variable was proposed. Isotropic material was considered at macroscale
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subjected to tensile load. The concept of coupled and uncoupled self-healing mechanism was
introduced. The uncoupled self-healing mechanism represents the autogenous self-healing, and
the coupled mechanism represents the the autonomous self-healing. In addition, both mechanisms
were applied in the case of the so-called nonlinear self-healing theory, and comparison with the linear
self-healing theory was performed. The authors in [142] proposed the nonlinear self-healing theory.
It concerns the generalized nonlinear and quadratic self-healing theories. It should be noted that the
classical (linear) self-healing theory is represented in Equation (10). It is called linear because the
equation is linear in h. It was revealed that, in the case of small damage, the linear healing theory
is a special case of the nonlinear healing theory. The configuration of the nonlinear healing theory
is illustrated in Figure 9. Classical damage variable ϕ is used to describe the damaged material
state in Figure 9a, while the healing variable h is used to describe the partially healed material state
in Figure 9b. According to the nonlinear healing theory, a partial area of damage is subjected to
healing as clearly shown in Figure 9b in which the healed area Sh is less than the damaged area Sϕ.
The theory of decomposition of the damage variable was used to obtain the combined healing/damage
variable ϕhd. For more details on the decomposition theory, the reader can refer to [75,143]. It should
be noted that the combined healing/damage variable of the classical self-healing theory takes the
following expression:

ϕhd = ϕ (1 − h) . (32)

Figure 9. Configuration of the nonlinear self-healing theory [89].

According to the nonlinear self-healing theory, Equation (32) becomes respectively in the case of
generalized nonlinear and quadratic self-healing theories as follows:

ϕhd =
ϕ (1 − h)
1 − hϕ

, (33)

ϕhd = ϕ (1 − h) (1 + ϕh) . (34)

Equations (33) and (34) represent the expression of the nonlinear healing the generalization of
Equation (32) in the case of generalized nonlinear and quadratic self-healing theories, respectively.
Following the expressions in Equations (33) and (34), the equations of the effective stress of the
generalized nonlinear and quadratic self-healing healing models are respectively expressed as follows:

σ =
σ (1 − hϕ)

1 − ϕ
, (35)

σ =
σ

1 − (ϕ − hϕ) (1 + ϕh)
. (36)
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The damage healing model proposed in [88] was formulated based on the introduction of the
healing variable into the damage model. When Mazars damage model for concrete material was
adapted, the damage variable was expressed as [143]{

ϕ = 1 − (1−A)k0
εu

− A exp[β(εu − k0)], i f εu > k0,
ϕ = 0, i f εu < k0,

(37)

where A and β are material parameters and k0 is the strain threshold of damage. εu is the unidirectional
strain. It was assumed that the healing is introduced during loading, unloading, and rest period phases;
deformed and undeformed material states. The deformed state represents the coupled self-healing
mechanism, while the undeformed state represents the uncoupled self-healing mechanism. In the first
case, damage and healing evolve simultaneously, and, in the second case, the healing is introduced
during unloading or rest periods. In addition, the generalized nonlinear self-healing formulation was
applied in the case of coupled self-healing mechanism, and the quadratic self-healing theory was
applied in the case of uncoupled self-healing mechanism. The influence of several parameters on the
healing efficiency was studied. It concerns the damage history, rest period and material characteristics.
The material characteristics were defined mathematically using the parameter γ. The proposed healing
variable was expressed in two cases; uncoupled and coupled self-healing mechanisms as follows:{

hu (t) = 1 − exp
[
−γϕ (th)

(
th f − thi

)]
, i f ϕ̇ = 0,

hu (t) = 0, i f ϕ̇ > 0,
(38)

{
hc (t) = 1 − exp

[
−γϕ (th)

(
th f − thi

)]
, i f ϕ̇ > 0 & ϕ ≥ ϕcr,

hc (t) = 0, i f ϕ̇ > 0 & ϕ < ϕcr,
(39)

where hu, hc γ are the uncoupled healing variable, uncoupled healing variable and the material
parameter, respectively. ϕ(th) is the damage variable during the healing period th and ϕcr represents
the critical damage that induces the healing process. ϕ(th) is constant after unloading phase (ϕ = 0).
In this model, the healing efficiency is described during loading in which damage and healing evolve
simultaneously. In this case, damage evolves until failure. The healing is assumed to start at time thi
and stops at time th f . The healing period is defined by th. The material paramaters influencing the
healing efficiency considered in this work were the following:

• History of loading and damage;
• Rest period;
• Material characteristics that were reflected mathematically in this present work represented by

the parameter γ.

Figure 10 shows the stress–time response of the damage healing model in the case of uncoupled
self-healing mechanism according to the classical self-healing theory. It is clear that the stiffness
recovery is partially recovered for a short period of healing, while it is fully recovered with
30,000 s of rest period. Figure 11 shows the stress–time response of the model in the case of
coupled self-healing mechanism. In this example, different values of the material parameter γ were
considered. It is shown that small value of the parameter γ results in partial stiffness recovery of the
material, and γ = 0.02 results in complete stiffness recovery. The coupled and uncoupled self-healing
mechanisms were also applied using the nonlinear self-healing theory. It was found that the healing
efficiency is underestimated using both coupled and uncoupled nonlinear self-healing compared to the
linear self-healing theory. Further investigations on self-healing concrete and cementitious materials
can be found in [144–150].
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Figure 10. Stress–time response of the uncoupled damage healing model with various rest periods [88].
(Copyright, 2018, Theoretical and Applied Fracture Mechanics).

Figure 11. Stress–time response of the coupled damage healing model with different values of the
material parameter [88]. (Copyright, 2018, Theoretical and Applied Fracture Mechanics).

3.7. Unilateral-Effects-Based Models

Damage material weakens the mechanical properties of the material. These properties can be
recovered if the cracks close again. When the material is subjected to tensile loads and followed by
compressive loads in the same direction, the cracks close in the compression domain and the material
recovers its stiffness. This is known by the unilateral effects. The unilateral effect is simulated with
the distinguishment between damage in tension and damage in compression using two damage
variables. Using damage variable in tension and damage variable in compression, the loading mode
for a diffuse network of identical microcracks is defined. The unilateral effect can be classified as a
healing process due to its effect of crack closure. Many authors pointed out that taking into account the
unilateral effect often leads to ambiguity in the computational analysis [151,152]. In [153], the authors
developed an isotropic 3D damage model for quasi-brittle materials that accounts for the microcracks
closure. An anisotropic continuum damage framework accounting for the unilateral effect was
proposed in [154]. In [155], the crack closure was simulated through the decomposition of the stress
and strain tensors into positive and negative projection operators. Zhu and Arson [156] proposed a
thermodynamic framework to study the effect of the mechanical stress and temperature on the crack
opening and closing in rocks, and crack closure was simulated through unilateral effect. The authors
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in [157] proposed a micro-macro chemo-mechanical damage-healing model to simulate the evolution
of the salt stiffness due to microcracks opening, closing and propagation. A unilateral effect was taken
into account to simulate the crack closure and stiffness recovery under compression. The proposed
model was found to be able to predict the stiffness recovery by the unilateral effect of crack closure.
In [158], a nonlocal formulation of concrete damage model with unilateral effects. Unlike the use of
spectral decomposition of stress or strain, the unilateral effect was simulated using the trace of the
strain tensor. Matallah and La Borderie [159] developed an inelastic-damage model that simulates the
crack opening due to inelasticity and elastic modulus recovery due to crack closure. The crack closure
was described using a scalar damage variable that is coupled with the Unitary Crack Opening (UCO).
UCO is the internal variable that describes the inelastic strain. A function S called Cracks Opening
Indicator was introduced in order to control the vanishing of the inelastic strain effect in the material
when it is loaded under compression. It was assumed that the function S takes the value zero when
the cracks are completely closed and takes the value of 1 when the cracks are completely opened.
The expression of the function S was defined as

S = 1 − Fac
t

Fσc
t

, (40)

where Fac
t is the actual tension yield function value and Fσc

t is the tension yield function value
corresponding to the crack closure stress σc. It was also assumed that the material recovers its
initial stiffness when F(σij) = Fσc

t . It should be noted that the proposed model was not able to simulate
complex problems that occur during complex unloading phase because the function S represents a
scalar variable.

4. Anisotropic Damage-Healing Formulations

Damage and healing of brittle materials are generally simulated by conventional continuum
damage-healing mechanics in which scalar damage and healing variables are used to describe the
relationship between nominal stress and effective stress; isotropic damage models. In addition,
anisotropic damage-healing formulations were also recently proposed and studied using second-order
and fourth-order damage and healing tensors. Murakami [160] was the first who generalized the
multi-axial anisotropic formulation of the description of the material degradation. Although most of
the works conducted on CDHM are based on isotropic presentation, an anisotropic CDHM was also
investigated by the introduction of a healing tensor. According to the formulation [161], the damage
variable tensor is expressed as

φijni =

(
dAnj − dĀn̄j

)
dA

; 0 ≤ (
φijφij

)1/2 ≤ 1, (41)

where dAnj and dĀn̄j are the damage and effective fictitious area vectors, respectively. When the
healing is introduced into the material, the effective area increases. Figure 12 shows the anisotropic
damage and healing configurations [161]. According to the presentation in Figure 12, the authors
in [161] proposed a second rank anisotropic healing variable tensor as follows:

hijnd
i =

(
φjkdAnk − dAhnh

j

)
dAd ; 0 ≤ (

hijh
)1/2 ≤ 1, (42)

where hij describes the relationship between the damaged area vector dAni and the effective healed
area vector. In the same paper, kijkl is denoted the fourth-order anisotropic damage variable tensor and
describes the elastic modulus degradation as follows:
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⎧⎨⎩ k(1)ijkl =
(

Ēijmn − Ed
ijmn

)
Ē−1

mnkl ,

k(2)ijkl =
(

Ēmnkl − Ed
mnkl

)
Ē−1

ijmn,
(43)

where Ēijkl and Ed
ijkl are the undamaged and damaged elastic tensors. The subscripts in Equation (43)

represent the two different mathematical tensorial expressions of the damage tensor. In addition, a new
fourth rank healing tensor h

′
ijkl was also defined to measure the elastic modulus recovery as follows:⎧⎨⎩ h

′(1)
ijkl =

(
Eh

ijmn − Ed
ijmn

)
Ed−1

mnkl ,

h
′(2)
ijkl =

(
Eh

mnkl − Ed
mnkl

)
Ed−1

ijmn,
(44)

where Eh
ijkl is the healed elastic modulus. It was assumed that the material is undamaged when

h
′
ijkl = 0ijkl is the fourth rank zero tensor) and is fully healed when h

′max
ijkl = kmax

ijkl .
The generalization of the relational between the effective stress and nominal stress of Equation (9)

is expressed in the case of anisotropic materials as follows [64,74]:

σ̄ij = Mijklσkl , (45)

where Mijkl represents the fourth-rank damage effect tensor. σ̄ij and σkl are the effective and
Cauchy stress tensors, respectively. The relationship between M and ϕ was investigated in the
literature [66,87,162] and expressed as

M =
1

1 − ϕ
. (46)

In the case of anisotropic damage-healing mechanics, Equations (35) and (36) become

σ̄ij =
[

M−1
ijkl +

(
Iijmn − M−1

ijmn

)
: H−1

mnkl

]−1
σkl , (47)

σ̄ij =

[
Iijmn −

(
Iijmn − M−1

ijmn

) (
Imnlp − (n + 1) H−1

mnlp

) (
Ilpkl + (n + 1)

(
Imns f − M−1

mns f

)
H−1

s f kl

]−1
σkl , (48)

where Iijmn is the fourth-rank identity tensor and H is the fourth-rank healing tensor. This equation
was obtained by assuming that the tensor H corresponds to 1/h [66,87,162]. Based on CDHM,
it can be observed from Equation (47) that the parameter ϕ(1 − h) is generalized to become
(Iijmn − M−1

ijmn)(Imnkl − H−1
mnkl).

Figure 12. (a) fictitious damaged state; (b) fictitious healed state; (c) fictitious effective healed material
state; and (d) fictitious damaged state [161]. (Copyright, 2012, The Royal Society).
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The proposed healing tensor was later decomposed to healing tensor for cracks and healing
tensor for voids in [163] along the lines of the decomposition theory applied on scalar based healing
definition in [73,163]. For more details on the definition of the anisotropic damage variable tensors
that were defined based on cross-section area reduction and elastic stiffness degradation, the reader
can refer to [75,143]. The same authors proposed an anisotropic presentation of new damage variables
that are called Fabric Tensors [74,87,162]. Later on, the same authors of [161] extended their work
and proposed a coupled viscoplastic-viscodamage-viscohealing model to study the irregular behavior
of glassy polymers [129]. Power function was added to the Frederick–Armstong–Philips–Chaboche
(FAPC) model in the expression of the dynamic recovery of the hardening function. This latter results
in increase of back stress evolution that cannot describe the irregular responses associated with the
inelastic responses of glassy polymers. A thermodynamic viscoplastic-viscodamage-viscohealing
framework was presented where the healing was assumed to be coupled or uncoupled. The same
coupled and uncoupled healing systems were investigated previously using a thermodynamic
framework of elasto-plastic-damage-healing problems [164].

Asphalt concrete is a multiphased material and exhibits complicated mechanical behavior and
multiple modes of degradation. In [165], the authors developed a viscoelastic-viscoplastic model
coupled to anisotropic damage in which a second-order tensor damage tensor was introduced in
order to relate the nominal and effective stresses. The damage tensor was divided into permanent and
non-permanent parts. The first part represents the classical damage process, while the second part
represents the self-healing during unloading and rest period. A creep recovery test was simulated
using the healing model. The rest concerns the application of a pressure of 1 MPa during 800 s.
Afterwards, unloading period of 50 s and rest period of 3000 s were imposed. A reduction of the
degradation was observed during the unloading and rest period (Figure 13). Some investigations
were also carried out in which anisotropic damage is coupled with a scalar healing variable. In this
regard, the authors in [99,156] developed a thermodynamic damage healing model applied to salt
rock with alternative fabric descriptors. Later on, the anisotropy induced by the healing was also
modeled in [103]. The effect of crack opening, closure and healing on the stiffness evolution was
described by means of a multiscale model. Fabric tensors are used to relate the microcrack evolution
with the macroscopic deformation rate. In [25,145], the anisotropic Cosserat continuum model was
used to simulate the damage, healing and plastic of granular materials. Combination of damage and
healing was defined in terms of undamaged and damaged elastic moduli tensors. Other investigations
on the anisotropic definition of damage variable based on elastic modulus tensor degradation were
undertaken. This concerns the decomposition of the stiffness [73], definition of anisotropic damage
tensors based on Poisson’s ratio, shear modulus and bulk modulus degradation [87], and description
of damage in series and damage in parallel [166].

Figure 13. Effect of creep recovery load on evolution of degradation (left); evolution of axial strain
due to healing parameter effect resulting from the creep-recovery test (right) [165]. (Copyright, 2016,
Springer Nature).
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5. Super Healing Theory

Recent research investigation reveals that self-healing presents a crucial solution for the
strengthening of the materials. This solution is termed as Super Healing. Super healing theory was first
proposed in [167]. Once the stiffness of the material is recovered due to self-healing, further healing
can result as a strengthening material. In this section, we present the theory of the super healing model
within the framework of continuum damage mechanics.

The super healing process comes into play after complete healing of the material (h = 1) in which
the healing mechanism continues beyond its limit h = 1. After this limit, the strengthening and
enhancing of the material properties takes place instead of healing, and the material will be able to
heal and strengthen itself. A refined theory of super healing was proposed in [89]. According to the
theory, the same healing material is assumed to be used as super healing material (Figure 14). In this
case, the value of the healing variable can increase beyond what is necessary to recover the initial
stiffness of material.

From Equation (10) of the self-healing theory, it can be observed that, when the material is
fully healed, the healing variable h takes the value of 1. In the theory of super healing, once the
material recovers its initial stiffness (E0), the healing is supposed to be continued (h > 1). In this
case, the healing will act as a strengthening material. In Figure 13, the super healing configuration is
illustrated. The super healed material is characterized by its higher elastic modulus Esh which is higher
than the elastic modulus of the healed and original material (Esh > Ē). In Figure 15, the variation of
the elastic modulus of the material in different configurations is illustrated. The material is undamaged
in the initial state and its stiffness is represented by the initial elastic modulus E0. When the material is
subjected to external loading and after the energy exceeds the material threshold, damage accumulates
via the variable ϕ. In this case, the material is damaged and its stiffness is represented by the elastic
modulus Eϕ, which is inferior to the initial stiffness. The material can be partially or fully healed.
Thus, the elastic moduli Eph and Ef h represent the stiffness of the partially and fully healed material,
respectively. Introducing the super healing material leads to the enhancing and strengthening of the
material stiffness in which the elastic modulus of the super-healed/strengthened material is higher
than the elastic modulus of the fully healed and original material.

Figure 14. Damaged, healed, and super healed material states [89]. (Copyright, 2018, Journal of
engineering mechanics).

According to the super healing theory, it is supposed that the healing continues beyond its limit
after the material recovers its initial stiffness. In this phase, the healing variable will reach large values
such as 2, 3, 4, . . . , x. x represents the maximal value of super healing hs that can be applied. The super
healing theory is categorized into two mechanisms: single and multiple super healing mechanisms.
In the first mechanism, the variable hs is defined by a large value at one single point of the material.
This mechanism can be found in reality for example in the case of microcapsules-based self-healing
concrete [4,168,169]. In this case, when only one single crack appears in the material and is healed
further due to self-healing, the strengthening of this material due to super healing material should
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take one large single value of hs that enhances the stiffness of the material in the area of the single
crack. In the second mechanism, the value hs (hs ≥ 1) is defined by small values different points of
the material. This case can be found for example when the concrete is damaged in different points
(multiple cracks) in which the super healing acts with small values of hs different points. The values
of hs depends in this case on the number of healed cracks. The number of super healing variables is
called n. The limitation of the second mechanism is that the variable hs is able to take only one value
that is constant at every point of the material. Unlike the super healing theory proposed in [167], in the
refined super healing theory [89], the super healing variable hs is not restricted to only integer values.
It can also take non-integer values. According to the refined super healing theory, the relation of the
nominal and effective stresses is expressed as

σ̄ =
σ

1 + [hs (n + 1)− 1] ϕ
. (49)

Equation (49) represents the main result governing the super healing theory. From Equation (49),
when the number of super healing parameter n approaches infinity, the effective stress vanishes,
which is irrespective of the damage and super healing variables. In addition, when the damage
variable ϕ = 1, the effective stress retains a finite value. This is explained by the fact that the material
will not rupture even though the damage is high. Equation (49) of the super healing theory was also
generalized to anisotropic formulation as follows:

σ̄ij =
[

M−1
ijkl + (n + 1) Hs−1

ijmn :
(

Imnkl − M−1
mnkl

)]−1
σkl , (50)

where Hs is the fourth-rank super healing tensor corresponding to the super healing variables hs

defined in Equation (49). In addition, examples of one-dimensional and plane stress were applied.
It was shown that the proposed super healing theory is applicable in the case of plane stress. Figure 15
shows the effects of the self-healing and super healing mechanisms. From Figure 16b, it is seen that the
material enhances its stiffness when the super healing effect is introduced. Generalized nonlinear and
quadratic super healing formulation was also presented along the lines of the nonlinear self-healing
theory previously presented, and comparison of super healing models was given (Table 1).

Figure 15. Variation of material stiffness from initial to super healed state [89]. (Copyright, 2018,
Journal of engineering mechanics).
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Figure 16. Effects of (a) healing and (b) super healing mechanisms [89]. (Copyright, 2018, Journal of
engineering mechanics).

Table 1. Comparison between super healing models.

Super Healing Model Equation of the Ratio ϕsd/ϕ Equation of the Ratio σ̄/σ

Linear super healing
(LSH)

ϕsd
ϕ = 1 − hs (n + 1) σ̄

σ = 1
1−[1−hs(n+1)]ϕ

Generalized nonlinear
super healing (NSH)

ϕsd
ϕ = 1−hs(n+1)

1−ϕhs(n+1)
σ̄
σ = 1−hs(n+1)ϕ

1−ϕ

Quadratic super healing
(QSH)

ϕsd
ϕ = 1− hs (n + 1) + ϕhs (n + 1)− ϕh2

s (n + 1)2 σ̄
σ = 1

1−[1−hs(n+1)+ϕhs(n+1)−ϕh2
s (n+1)2]ϕ

Figure 17 shows the comparison of the super healing models. The results revealed that the
generalized nonlinear super healing model is the most appropriate to describe the super healing
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concept. In addition, the link between the proposed theory and the theory of undamageable
materials [162,170–172] has been studied. It was found that both theories lead to a material that
undergoes zero damage during the deformation process. Later on, an investigation of the super
healing theory in terms of the elastic stiffness variation was performed in which the hypotheses of
elastic strain and elastic energy equivalence were used [86]. Using the hypothesis of elastic strain
equivalence, the following expressions of damage, healing and super healing elastic stiffness are
respectively expressed as

Eϕ = Ē (1 − ϕ) , (51)

Eh = Ē [1 − ϕ (1 − h)] , (52)

Esh = Ē [1 + (R − 1) ϕ] . (53)

From Equation (53), it can be seen that, with R > 1, the healed elastic modulus Esh is greater
than the effective elastic modulus Ē, while they become equal when R = hs. On the other hand,
when R = hs = 0, it becomes equal to the damaged elastic modulus. Using the hypothesis of elastic
energy equivalence, the following expressions of damage, healing and super healing elastic stiffness
are respectively expressed as

Eϕ = Ē (1 − ϕ)2 , (54)

Eh = Ē [1 − ϕ (1 − h)]2 , (55)

Esh = Ē [1 + (R − 1) ϕ]2 . (56)

Figure 17. Comparison between linear, generalized nonlinear and quadratic models: (a) self-healing
models; (b) super healing models [89]. (Copyright, 2018, Journal of engineering mechanics).
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Equation (56) of the super healing can represent Equation (55) when the healing is introduced
and can represent Equation (54) when the material is only damaged. If the material is undamaged
and unhealed, the super healing elastic modulus becomes similar to the initial elastic modulus,
while, when the material is fully healed, the super healing modulus becomes similar to the effective
elastic modulus. On the other hand, when super healing is introduced, the super healing elastic
modulus becomes greater than the effective elastic modulus. Table 2 presents a summary of the elastic
moduli, damage, healing and super healing variables in the case of elastic strain equivalence and elastic
energy equivalence. It should be noted that R represents the super healing variable (R = hs(n + 1)).

Table 2. Elastic modulus in the damaged, healed, and super healed material states using the hypotheses
of elastic strain equivalence and elastic energy equivalence.

Elastic Strain Equivalence Elastic Energy Equivalence

Phase Elastic Modulus Variable Elastic Modulus Variable

Damage Eϕ = Ē (1 − ϕ) ϕ = Ē−Ed
E Eϕ = Ē (1 − ϕ)2 ϕ = 1 −

√
Eϕ

Ē

Healing Eh = Ē [1 − ϕ (1 − h)] h = 1 − Ē−Eh
ϕE Eh = Ē [1 − ϕ (1 − h)]2 h = 1 −

√
Ē−√Eh

ϕ
√

Ē

Super healing Esh = Ē [1 + (R − 1) ϕ] R = Esh−Ē
ϕĒ + 1 Esh = Ē [1 + (R − 1) ϕ]2 R =

√
Eh−

√
Ē

ϕ
√

Ē
+ 1

6. Self-Healing Metals

In this section, a brief review of different mechanisms of self-healing of ductile materials such as
metals is presented. The self-healing concept was widely exploited on polymer, concrete, and ceramic
materials; however, few investigations were carried out on self-healing of metals due to the nature
of the healing of each material. Metals are known by their high melting temperature, which leads to
a challenging process of the healing. There are two mechanisms of self-healing metals: liquid state
mechanism and solid state mechanism. The first one is based on adding shape memory alloys (SMA)
to the metal matrix that represents a liquid at high temperature. The second one is based on diffusion
of solute into the cracks and voids.

6.1. Liquid State Healing Mechanism

The most commonly method for self-healing of metals is the embedding of healing agent into
the metal matrix [173]. When the metal is subjected to heating, the matrix becomes liquid, and thus
the healing agent becomes able to heal the damage. In addition, damage can be healed in different
lifetimes of metals due to the availability of the liquid healing agent. Many investigations were
carried out on self-healing mechanisms using SMA [174–176]. Figure 18 illustrates the liquid state
healing mechanism. When the metal composite is subjected to tensile stress resulting in crack
formation, interfacial debonding will occur by crack due to the low strength at the interface of
and high strength of SMA. The crack in the metal composite is supposed to heal when the SMA is
subjected to high temperature.

Several numerical models were developed to predict the behavior of liquid state healing
mechanism. In [177], the authors developed a numerical model to describe the thermomechanical
behavior in the interface SMA-matrix. Two-dimensional elasto-plastic model was applied on the
matrix and one-dimensional material model was applied on the SMA wires using material subroutine
implemented in the software package Abaqus (Version 6.3, 2002, Pawtucket, RI, USA, Hibbitt, Karlsson
& Sorensen, Inc., 7.9.3–3). The model shows its ability to describe the behavior of SMA wires at different
temperature levels. The authors in [175,176] developed a model that analyzes the relationship between
the strength of matrix, stress of SMA wires, and volume fraction of reinforcement. In [178], Zhu et al.
developed a three-dimensional model of metal-matrix composites reinforced by SMA. The self-healing
mechanism was modelled based on pre-strained SMA wires. In addition, micromechanical approaches
were also proposed by many researchers in order to demonstrate the healing efficiency of SMA-based
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composite structures [179–181]. The effectiveness of the description of the microstructure behavior is
high. Nonetheless, it is not an easy task to be applied at the specimen level. For more information on
the different mechanisms of self-healing metals in fine scale and structural scale, the reader can refer
to [182].

Figure 18. Schematic of liquid state healing mechanism [173]. (Copyright, 2009, John Wiley & Sons).

6.2. Solid State Healing Mechanism (Precipitation Healing)

This method of healing is based on the minimization of the energy system and decreasing the
solubility of the element when the material is subjected to a decreasing temperature. In this case,
the alloy changes its phase from liquid to solid upon solidification. The nucleation of precipitation
occurs at unstable phases, high energy defect in grain boundaries and free surfaces. Figure 19 illustrates
the solute migration along a high diffusion path and precipitation on high energy surfaces. In [183],
the authors revealed that aluminium alloys are subjected to healing mechanisms by solute precipitation
during creep and fatigue loading. Moreover, in [184], the authors revealed that this mechanism is
similar to a precipitation mechanism in powder alloys. Steel material is found to be the material that
most demonstrates the efficiency of self-healing cavities. However, creep strength and ductility of
the steels can graduate when subjected to high temperatures. In [185,186], it was found that sulfur
accelerates creep cavitation. For more information on the healing mechanism of solid state healing,
the reader can refer to [173].

Several numerical models were developed to predict the behavior of solid state healing
mechanisms. In [187–189], molecular dynamic modelings were developed to describe the behavior
of solid state healing of microcracks in aluminium and copper. It was shown that dislocation around
the microcrack induces healing. In [190], Wei et al. used the same concept to study the crack healing
in iron along the lines of the theory applied on aluminium and copper. Based on a finite element
method, Huang et al. [191] showed that there are two stages of healing of cracks in the form of ellipsoid
subjected to high pressure. The first stage concerns the shrinkage of microcracks and the second one
concerns the splitting microcracks. Later on, in [192,193], the authors presented a thermodynamic
approach to study the void shrinkage rate considering the void surface, grain boundary and elastic
energy. In [194], the impact of high energy electromagnetic field on the elasto-plastic damage material
was modelled. The influence of different parameters such as melting and evaporation of metal was
considered. The authors in [195] developed a numerical model to describe the creep cavity growth and
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strain rates in metals through self-healing. It was found that Fe-W alloys represents a good alternative
to be used for self-healing at high temperature.

Figure 19. (a) solute diffusion along grain boundary and (b) mobile dislocation moving solutes to a
pore [173]. (Copyright, 2009, John Wiley & Sons).

7. Conclusions and Perspectives

A state-of-the-art review of continuum damage-healing and super healing mechanics applied on
brittle materials was presented in the present paper. The main features of damage-healing and super
healing mechanics considered are as follows:

• The measure and presentation of the healing variable in both autonomous and autogenous
self-healing mechanisms.

• The evolution equations of the healing models based on CDHM.
• The influence of different mechanical and environmental parameters on the healing efficiency.
• The effect of the self-healing and super healing on the mechanical behavior of the material.
• The anisotropic presentation of damage-healing and super healing with tensorial formulation.
• The effect of the new strengthening theory based on the super healing and CDHM.

The CDHM represents an extension of the CDM. Based on it, the initial stiffness recovery and
enhancing of the mechanical properties of the materials while taking into account many parameters
(e.g., microcapsule percentage, temperature, healing time, damage history, . . . etc.) is described.
In addition, two self-healing mechanisms are mechanically studied: autonomous and autogenous. They
are also termed respectively by coupled and uncoupled healing mechanisms. Each damage-healing
formulation proposed in literature is based on the experimental data of self-healing materials while
considering some assumptions for simplicity of the computational analysis (e.g., isotropy of the
material instead of anisotropy). This is due to the heterogeneity of the brittle materials. For instance,
concrete is an heterogeneous material that has a complex fracture behavior. Taking into account
the complexity nature of concrete material in the healing analysis is not an easy task. Moreover,
the softening behavior of brittle materials leads to mesh-dependence of their responses due to strain
localization when local damage-healing models are used. This issue was thoroughly addressed
in CDM using non-conventional damage models (e.g., gradient and nonlocal damage models),
while non-conventional damage-healing model is not yet addressed except for a short explanation
given in [88].

To the best knowledge of the authors, the healing can regularize the problem of strain localization
and mesh-dependency provided damage/healing in the time range it is applied if it is rate-dependent.
This regularization happens in the suitable range of time that recovers the original stiffness of
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the material; minimization and elimination of damage, especially in the case coupled self-healing
mechanism in which damage and healing evolve simultaneously. In this case, when one point of
material is damaged, the microcapsules (or hollow fibers) are broken and the healing agents are
released from the microcapsules. The damage evolves first and the healing agent evolves after it
is released, which leads to the deactivation and elimination of the damage evolution. Therefore,
it is highly necessary to develop some non-conventional damage-healing models using nonlocal
healing variables coupled to local or nonlocal damage variables. In addition, further investigation
of anisotropic damage-healing mechanics is needed in which new healing tensors can be proposed.
Finally, further studies on the super healing theory will be an interesting task in terms of focusing
on some limitations of the theoretical framework (e.g., plasticity, assumption that hs takes only one
constant value at every point of the material). It is hoped that future studies will be carried out in the
manufacturing technology along the lines of the super healing theory.
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Abstract: The cell based smoothed finite element method (CS-FEM) was integrated with the
phase-field technique to model brittle fracture in 3D elastic solids. The CS-FEM was used to model
the mechanics behavior and the phase-field method was used for diffuse fracture modeling technique
where the damage in a system was quantified by a scalar variable. The integrated CS-FEM phase-field
approach provides an efficient technique to model complex crack topologies in three dimensions.
The detailed formulation of our combined method is provided. It was implemented in the commercial
software ABAQUS using its user-element (UEL) and user-material (UMAT) subroutines. The coupled
system of equations were solved in a staggered fashion using the in-built non-linear Newton–Raphson
solver in ABAQUS. Eight node hexahedral (H8) elements with eight smoothing domains were coded
in CS-FEM. Several representative numerical examples are presented to demonstrate the capability of
the method. We also discuss some of its limitations.

Keywords: Brittle Fracture; cell-based smoothed-finite element method (CS-FEM); Phase-field model;
ABAQUS UEL

1. Introduction

In the past decade, Liu et al. [1,2] generalized the gradient smoothing approach in meshfree
method [3] and proposed the smoothed finite element method(S-FEM) to overcome some of the
inherent shortcomings of the classical finite element method(FEM) such as overly stiff behavior,
sensitivity to mesh distortions, and stress inaccuracy. The SFEM combines the FEM with the traditional
meshfree methods in producing more accurate results with higher efficiency [1,2]. It uses the base
mesh of the FEM and reconstructs the strain field using the gradient smoothing technique. Thus,
in contrast to the weak formulations of the FEM [4], the weakened weak formulation used here [1,2]
further softens the model [5], giving it a closer to exact stiffness [6]. The gradient smoothing operation
facilitates creation of various smoothing domains based on elements, nodes, edges (2D), and faces (3D)
over which the stress/strain is evaluated [1]. This, in turn, produces a wide variety of results and gives
the analyst much needed freedom to design models as per the requirement. For example, the node
based smoothing domains (NS-FEM) produce upper bound solutions for force driven problems [7].
The edge/face based smoothing domains (ES/FS-FEM) produce very accurate results using even
triangular and tetrahedral mesh [8]. A combination of the NS-FEM and the ES-FEM produces very
accurate close to exact solutions in the error norm [6,9]. Amongst other applications [10–14], the S-FEM
has been effectively applied to fracture problems for quasi-static crack propagation [15], anisotropic
materials [16], dynamic fracture [1] and for singular geometries of arbitrary order [17,18]. Although
these studies have proven to be quite accurate and efficient when compared to the FEM, they treat the
crack as an discrete entity, a formulation which has its own inherent problems.

Fracture is the primary cause of failure in the majority of engineering structures. An initially
existing small crack often leads to catastrophic failures by propagation under external loads. Over the
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past few decades, several theories and computational techniques have been developed to accurately
model fracture and predict crack propagation in engineering systems. Classically, cracks are dealt with
discretely in theoretical/computational fracture mechanics. The discontinuities have been separately
modeled and special methodologies have been developed to accurately model the singular stress field
near the crack tip. The collapsed quadrilateral or triangular element in the FEM [4] is the most widely
used, however several other methods such as the boundary element method (BEM) [19], mesh-free
methods [3,20], the extended finite element method [21], and SFEM [18,22,23] have proven to be equally
efficient. BEM uses a mesh only on the boundaries, thereby reducing the computational complexity by
one order, but is unable to treat material non-linearities. S-FEM uses a base mesh of linear elements
with an enrichment only around the crack-tip, thereby mitigating the computational cost of using a
quadratic mesh throughout the domain [18]. However, in S-FEM, as in the classical FEM, the crack
path is mesh dependent; cracks can only propagate along edges of elements and the tracking of crack
front for three-dimensional problems is computationally very expensive. The X-FEM overcomes
this mesh dependency but uses additional degrees of freedom and the integration in the weak
form for the elements containing the crack becomes particularly very complex in three-dimensional
fracture problems.

An alternate way of modeling fracture has gained popularity in the computational community
in the past decade or two. In this method, the crack is modeled as a diffused entity and represented
by a continuous scalar variable called the phase-field [24]. This variable differentiates between the
broken and intact material phases and, contrary to the discrete approach, provides a smooth transition
between them [25–28]. This method is based on the variational theory of fracture [24] addressing the
shortcomings of the original Griffith’s theory, which could not predict crack nucleation or complex
crack paths. The elegance of this method lies in the fact that it can successfully predict complex crack
behaviors such as crack branching, curved crack paths, and crack merging even in three dimensions
without any ad-hoc criterion. This gives it an immediate advantage over the traditional methods where
the prediction of such phenomenons is quite complex. Apart from the primary applications of brittle
fracture [28], the phase-field approach has been developed and applied to many complex fracture
mechanics problems including large deformations [29], plasticity [30], multiphysics [31,32], and
dynamics [33,34]. It has also been previously implemented in the commercial code ABAQUS by using
its user subroutine features [27,28]. The phase-field model, however, is not without its disadvantages,
including having a very refined mesh in the expected crack propagation region. Advanced fracture
algorithms such as the screened Poisson’s equations [35–37] for crack propagation are developed to
overcome such shortcomings. However, here we limit ourselves to the application of the phase-field
method and discuss its useful features as well as disadvantages.

In this work, we integrate the cell based S-FEM with phase-field model to simulate 3-D crack
propagation. This integration is done on the commercial platform of ABAQUS. ABAQUS is one of the
most widely used commercial codes and its excellent inbuilt solvers and sophisticated visualization
tools are particularly attractive for implementing user developed element formulations. A CS-FEM
formulation for the eight-node hexahedral elements (3D-CS-FEM-H8) is used, similar to the one used
in Xuan et al. [38]. We consider each node to have an additional degree of freedom (phase-field) in
addition to the standard displacements. The phase-field and the displacement variables are solved
in a staggered fashion to attenuate instability [27]. The 3D CS-FEM-H8 has already been proven
to have faster convergence rate and better accuracy than the standard FEM, thus its assimilation
with the phase-field method which computes complex crack topologies without any ad-hoc criterion,
produces another efficient technique to model crack propagation. One of the significant disadvantages
of implementing this method in ABAQUS is that the software does not let users access data for
any surrounding elements, thus we deviate from the classical way of calculating strains/stresses in
CS-FEM [1,38], and develop another novel, simple yet quite effective approach. It is noteworthy that
this is also the reason for our inability to implement S-FEM models of higher accuracy into the software.
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However, with all these shortcomings, as demonstrated by a number of examples, this method proves
to be quite an effective tool to predict complex crack behaviors.

This paper is outlined as follows: In Section 2, we outline the phase-field model of fracture and
the 3D-CS-FEM-H8, and discuss the implementation details of the combined method into ABAQUS.
In Section 3, we provide numerical examples to validate our method. In Section 4, we conclude the
paper with a summary of our findings and proposed future works.

2. Methods

2.1. Governing Equations of a 3D Elastic Solid with Discontinuity

Consider a three-dimensional (3D) arbitrary, homogeneous, linear elastic domain Ω bounded
by Γ such that Γ = Γu ∪ Γt, Γu ∩ Γt = 0 and an internal traction free crack Γc, as shown in Figure 1,
where Γu and Γt are the displacement and traction boundary surfaces, respectively. The equilibrium
equations are given as [1,4]:

∇ · σ + f b = 0 (1)

where ∇ is the divergence operator, σ is the Cauchy stress tensor and f b is the body force.
The Dirichlet and Neumann boundary conditions are given as:

u(x, t) = ū(x, t) on Γu (2)

σ · n = f t on Γt (3)

σ · n = 0 on Γc (4)

where n is the outward unit normal vector on the boundary area Γ and ū is the prescribed displacement
on the boundary Γu.

Figure 1. An arbitrary discontinuous three-dimensional body.

The stress–strain relation is given by the constitutive equation

σ = C · ε (5)

where C is the matrix of elastic constants.
Assuming small displacements and strain, we can define the compatibility relation between strain

and displacement as:
ε = ∇su(x) (6)

189



Appl. Sci. 2018, 8, 2488

The elastic strain energy density is given by

ψe(ε) =
1
2

λεiiεjj + μεijεij (7)

where λ and μ are the Lamé constants.

2.2. Review of Phase-Field Model for Brittle Fracture

Following the derivations in [25,27,39], we discuss briefly about the formulations of phase-field
approximations for diffuse fracture modeling.

According to the variational theory of fracture, the crack propagates in such a way the total energy
of a system is always minimized. Thus, we approach by minimizing the energy functional. The total
energy of a discontinuous system is given by

Π = ψe(ε)+ ψ f − ψext(u) (8)

where ψe(ε) is the elastic strain energy as given in Equation (7) integrated over the entire volume Ω,
ψ f is the fracture surface energy and ψext(u) is the external potential energy.

The fracture surface energy ψ f is given by

ψ f = Gc

∫
Ω

γ(c)dΩ (9)

where Gc is the critical energy release rate proposed by Griffith, c is the phase-field parameter and γ(c)
is the density function which was calculated to be [28]

γ(c) =
1
2
[

1
lc

c2 +
lc
2
|∇c|2] (10)

where lc is the length scale parameter.
The external potential energy is given by the summation of the body force b and the surface

traction tΓ:

Ψext(u) =
∫

Ω
b · udV +

∫
Γ

tΓ · udA (11)

The total internal potential energy of a system can be written as the summation of the bulk energy
and the energy required for the formation of crack [24,28,39]

Ψ(u, c) =
∫

Ω
[(1 − c)2 + d]ψ(ε)dΩ +

∫
Ω

Gc

2
[lc∇c · ∇c +

1
lc

c2]dΩ (12)

where d is a numerical stabilization parameter.
By variation of the external and internal energy potentials (using Equations (8)–(12)) and thereby

imposing the principal of virtual displacements we obtain the governing equations of the model:

[(1 − c)2 + d]
∂σij

∂xi
+ bj = 0 in Ω (13)

[(1 − c)2 + d]niσij = tj in Γt (14)

uj = ūj in Γu (15)

− Gclc
∂2c

∂xi∂xi
+ [

Gc

lc
+ 2ψ(ε)]c = 2ψ(ε) in Ω (16)

∂c
∂xi

ni = 0 in Γ (17)
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2.3. Three-Dimensional Cell Based Smoothed-Finite Elements

In S-FEM, the idea of strain smoothing is combined with the standard underlying mesh of FEA
by dividing each element into a number of sub-cells [1]. We use the eight-noded hexahedral elements
with eight smoothing cells (Figure 2). They have already been proven to have a better accuracy
than the standard eight-noded hexahedral element used in FEA with eight Gaussian points [38]
using the same set of elements. Classical FEM involves isoparametric transformation for every
element, making the problem very much mesh dependent because it involves inverting the Jacobian
matrix. The solutions tend to vary with minor mesh distortions and for better modeling of certain
topological features one needs mesh refinement or higher order elements, which makes the problem
computationally expensive. The S-FEM can solve majority of computational problems using a base of
linear triangular/tetrahedral mesh, which can be generated automatically. Since the shape functions are
created on the basis of radial point interpolation, creating special elements to treat special topological
features [18] is of minor hassle and does not need any transition or patch elements. In S-FEM,
a smoothing operation is performed on the gradient of the displacement field for each smoothing cell
in an element. Subsequently, the interior integration on each of the smoothing cell is transferred to
the boundary surface area using the divergence theorem. Herein lies one of the biggest advantages of
the S-FEM. This feature makes the solution pretty impervious to mesh distortion since we can avoid
the isoparametric transformation and also contributes in saving computational cost. In this case, the
gradient smoothing is the spatial average of the strain, over a smoothing hexahedral cell. A smoothing
operation is performed to the gradient of displacement for each smoothing cell in an element:

∇uh(xC) =
∫

Ω
∇uh(x)Φ(x − xC)dΩ (18)

where xC and Ω represent the center and volume of the smoothing domain, respectively, and Φ is a
smoothing function.

Integration by parts on Equation (18) yields:

∇uh(xC) =
∫

Γ
uh(x)n(x)Φ(x − xC)dΓ −

∫
Ω

uh(x)∇Φ(x − xC)dΩ (19)

For simplicity, a piecewise constant smoothing function is applied, which is assumed to be
constant within ΩC and vanish everywhere else,

Φ(x − xC) =

⎧⎨⎩
1
Vc

for x ∈ Ωc

0 for x /∈ Ωc

(20)

where VC =
∫ d

Ωc
Ω and Ωc is the smoothing cell.

Substituting Equation (20) into Equation (18), we can get the smoothed gradient or strain field

∇̃uh(xC) =
∫

ΓC

uh(x)n(x)Φ(x − xC)dΓ =
1
Vc

∫
Γc

uh(x)n(x)dΓ (21)

with dΓc denoting the boundary of the smoothing cell. It is noteworthy that the choice of the smoothing
function makes the second term of Equation (19) vanish and the area integration is thus converted to
line integration along the boundary of the smoothing cell.

The smoothed strain can be obtained as

ε̃h(xC) =
n

∑
I=1

B̃I(xC)dI (22)

where B̃I is the smoothed strain gradient matrix given by
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B̃I =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

b̃I1(xC) 0 0
0 b̃I2(xC) 0
0 0 b̃I3(xC)

b̃I2(xC) b̃I1(xC) 0
0 b̃I2(xC) b̃I3(xC)

b̃I1(xC) 0 b̃I3(xC)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(23)

where

b̃I1(xC) =
1

VC

∫
ΓC

NI(x)nk(x)dΓ (24)

NI is the regular shape functions for a eight-node hexahedral finite element. Since we are using
eight-noded hexahedral elements, one Gauss point at the center is sufficient to integrate along each
surface boundary. The above equation then reduces to

b̃I1(xC) =
1

VC

M

∑
I=1

NI(xGP
i )nC

ki A
C
i (25)

where xi is the midpoint or the intersection of the diagonals of the boundary segment and ni and Ai
are the corresponding outward unit normal and surface area, respectively.

The smoothed stiffness matrix of an element is thus given by the assembly of the stiffness of each
smoothing cell

K̃e = ∑
C

B̃T
CCB̃CVC (26)

The overall smoothed stiffness matrix of the domain is calculated by the summation of
sub-stiffness matrices for nodes I in relation to node J as in FEM, except that the summation here is
performed over the smoothing domains, not elements:

K̃CS−FEM
I J =

Ne

∑
i=1

Nc

∑
m=1

∫
Ωs

i,m

B̃T
I CB̃JdΩ =

Ne

∑
i=1

Nc

∑
m=1

B̃T
I CB̃JVs

i,m =
Ne

∑
k=1

B̃T
I CB̃JVs

k (27)

Thus, it is an algebraic summation over the stiffness of each element and the equations required
to calculate the stiffness matrix of an element are the Equations (23) and (24) where we do not need the
spatial derivative of the shape functions, thereby eliminating the Jacobian inversion problem. Only the
values of shape function at certain points (Gauss point/center of each surface of a smoothing cell) are
needed (Figure 2).

The calculation of displacements or force vector, based on the nature of the problem is similar to
classical FEM, by solving the following algebraic equation

K̃CS−FEMd̄ = f̄ (28)

Once the displacements are calculated, we deviate from the standard stress/strain calculations
used in [1,2,38]. This is because ABAQUS does not let users obtain information from surrounding
elements; the user element (UEL) is written such that it only specifies the formulation of a single
element. In a typical CS-FEM setting [1,2], the stress/strains at a node is calculated by the weighted
average of the values of the surrounding smoothing domains of the node. In this case, due to our
inability to access data from surrounding elements and because of the way the UEL is formulated, we
calculate the elemental strains as

ε = B̃U (29)
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where B̃ is the smoothed strain displacement matrix obtained at the center of the smoothing cell. The
corresponding elemental stress is given by

σij = Cijklεkl (30)

ABAQUS then allows its internal algorithms to calculate the nodal stress/strain values. Similarly,
the elemental displacement values are given as

ui = NijUj (31)

where Uj is the 24 × 1 nodal displacement vector and ui is the 3 × 1 elemental displacement vector.

Figure 2. A 3D H8 element subdivided into eight smoothing cells: (a) subdivision into smoothing cells
by joining the midpoints of the edges and the faces; (b) face area of a smoothing cell with its outward
normal and length; and (c) entire face of the element containing surfaces of the four smoothing cells.

2.4. Implementation in ABAQUS UEL

We implemented the PhaseField-CSFEM in ABAQUS (ABAQUS 2017, Dassault Systemes,
Providence, RI, USA) and solved it using a staggered scheme. Equations (13)–(17) contain the coupled
phase and displacement fields which can be solved using a monolithic approach [26,28], however
we decoupled and solved them separately using the SFEM in ABAQUS UEL. In the literature, the
staggered scheme has presented quite a few stability advantages over the monolithic solution [25,27].

The decoupled governing equations are:

rc =
∫

Ω
([

gc

lc
c − 2(1 − c)H](Nc)T + gclc(Bc)T∇c)dΩ (32)

where rc is the residual force vector and Nc and Bc are the shape function and the strain gradient
matrix for 3D eight-node hexahedral elements, respectively.
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The phase-field component in the decoupled stiffness matrix is given by:

Kc =
∫

Ω
([

Gc

lc
+ 2H](Nc)T(Nc) + Gclc(Bc)T(Bc))dΩ (33)

Similarly, the displacement-field contribution in the stiffness matrix is given by Bu matrix
calculated from Equation (23),

Ku =
∫

Ω
[(1 − c)2 + d](Bu)TC(Bu)dΩ (34)

and the internal force(residual) vector is

ru =
∫

Ω
[(1 − c)2 + d](Bu)Tσ0dΩ (35)

where σ0 is the stress calculated by Equation (30).
Thus, the following equation is solved using the modified Newton–Raphson scheme[

u
c

]
t+δt

=

[
u
c

]
t

−
[

Ku 0
0 Kc

]
t

[
ru

rc

]
t

(36)

The term H in Equations (32) and (33) is a history field which is equal to the strain energy from
the previous step. In the staggered scheme, in the first iteration of every load step, the history variable
is updated via Hn+1 = ψn and the displacement field (Equations (34) and (35)) is solved by updating
the value of the phase-field from the previous load step (cn). The history variable satisfies certain
properties [25] and ensures that no penalty term is necessary to enforce the irreversibility of the
crack field.

In this formulation, the Bu matrix in Equations (34) and (35) is calculated based on the smoothing
cells, using CS-FEM-H8.

The non-linear system of equations (Equation (36)) is solved via an incremental iterative approach
using a Newton–Raphson scheme. The continuum mechanics equations are solved by the more
accurate CS-FEM [2] and the phase-field equations are solved by the standard FEM. In the UEL,
the user needs to specify the tangent stiffness matrix AMATRX and the internal force vector RHS,
which the solver calls for each element. The properties are calculated at the center of the smoothing
domain for each subcell. In the staggered scheme of solutions [27], we use the common block in the
UEL to facilitate the transfer of variables. Through the common block, the UEL allows a user to write
formulations of multiple elements in a single code. We define three elements, the first two being
the phase-field and the displacement elements and the third a dummy element written to facilitate
post-processing in the ABAQUS viewer. ABAQUS is unaware of the inherent shape functions used in
the element formulation(UEL) and thus is unable to extrapolate the results on its own. We write a user
material (UMAT), where the results stored as solution variables STATEV are transferred from the UEL.
This is possible because the element connectivity and the shape function of the elements are exactly
the same as the C3D8 elements in ABAQUS library. Thus, we imply that there is a dummy mesh of H8
elements whose material properties, chosen such that there is no resistance to strain, are provided to
the UMAT. The corresponding variables are stored as SVARS in the UEL and transferred to the UMAT
via the common statement.

3. Numerical Modeling

We present several numerical examples in this section to validate the accuracy of the 3D-CS-
FEM-phase field method for linear elastic brittle fracture and also to discuss some shortcomings of
the implementation in ABAQUS. First, three benchmark examples were tested and subsequently we
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simulated comparatively complex models. All models were meshed using eight-node hexahedral
elements and eight smoothing domains were used for CS-FEM formulations. Since the phase-field
represents a diffused fracture representation, no special crack-tip element was necessary for capturing
the crack path. The mesh size was significantly reduced to successfully resolve the length
scale parameter near the expected crack propagation zone. As discussed by Borden et al. [34],
the approximate element size should be less than half of the corresponding length scale parameter.
Contour plots representing the phase-field variable which signifies the crack path are presented for
all examples.

3.1. Single Edge Notched Tensile Sample

We simulated crack propagation in a rectangular bar, with a finite opening, under far-field tension.
The bottom surface was fixed and a tensile pull was applied on the top surface of the rectangular block
(Figure 3). The crack was located at an edge and the material parameters were: E = 210 kN/mm2,
ν = 0.3, and Gc = 5 × 10−4 kN/mm. The length scale parameter was lc = 0.08 mm. We used a uniform
mesh of 45,000 hexahedral elements, which was refined near the expected crack propagation zone
(edge side of 0.02 mm) to successfully resolve the length scale parameter for better reproduction of the
ultimate strength of the sample [25,39]. Since this was a diffused fracture representation, we did not
need to use any special crack-tip elements; the length scale parameter provided the transition from
the damaged to intact zone. As expected, we saw the contour plot of crack evolution; it propagated
along the straight path (Figure 4). We also studied the influence of the Griffith’s energy release rate
parameter Gc on the crack pattern. We tested the model for Gc = 5 × 10−4, 4 × 10−4, 2 ×10−4,
and 1 × 10−4 kN/mm, and observd that this parameter had no influence on the ultimate crack path.
The resultant load–displacement curve is presented in Figure 5. It shows that the slope of the curve is
same for small displacements for different energy release rates. However, as displacement increased,
the force reduced before it reached the ultimate load, which itself increased with Gc. There was a
sudden drop of the load after the crack initiation, which signified decrease in strength and ultimate
failure. We also performed experiments with further reduction of mesh size near the expected crack
path, however that did not affect crack pattern and the force–displacement curve, thereby proving that
the damage pattern was convergent.

Figure 3. A single edge notched tensile specimen: (a) representational 2D geometry; thickness = 2.0 mm;
and (b) hexahedral mesh with smaller element size near the expected propagation zone.
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Figure 4. Crack path with increasing time steps.

Figure 5. Load–displacement curves for varying Gc.

3.2. Single Edge Notched Shear Sample

We next considered a similar example, to simulate crack propagation in a rectangular bar, with a
finite opening, under shear loading. The crack was located at an edge and the material and length
scale parameters were: E = 210 kN/mm2, ν = 0.2, lc = 0.2 mm, and Gc = 2.7 × 10−3 kN/mm. We used
a hexahedral mesh of 49,000 elements, refined with elements of edge size about 0.03 mm, near the
expected crack path (Figure 6). The simulation used displacement controlled boundary condition, with
the bottom surface fixed and a horizontal displacement acting on the top surface. We noticed a hint
of damage originating from the side, after the deformation due to the crack beginning to propagate.
The observed crack path was similar to the results obtained in Zeng et al. [22] who used ES-FEM-T3
to simulate crack propagation. We performed a similar mesh size reduction study as in Section 3.1,
where our findings corroborated that the predicted crack patterns were convergent.
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Figure 6. A single edge notched sample under shear loading: (a) panel geometry; (b) crack initiation;
(c) crack path after 300 step-times; (d) crack path after 500 step-times; and (e) final crack path.

3.3. Double Edge Notched Tensile Sample

A doubly notched symmetric rectangular bar, subjected to uniaxial tension was tested in this
example (Figure 7). The material and length scale parameters were: E = 210 kN/mm2, ν = 0.3, lc =
0.1 mm, and Gc = 2.7 × 10−3 kN/mm. The model had approximately 35,000 H8 elements with reduced
element size near the expected crack path and the boundary conditions were the same as presented
in Section 3.1. The crack paths obtained by this code are presented in Figure 8, and were in excellent
agreement with Msekh et al. [40].

Figure 7. A double edge notched tensile sample: (a) 2D Geometric representation of the structure;
thickness = 2.0 mm; and (b) biased hexahedral mesh.
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Figure 8. Crack path at different time steps: (a) initial damage after 100 time steps; (b) initial damage
after 100 time steps; (c) initial damage after 100 time steps; and (d) final crack path.

3.4. 3D Specimen with Notch and Three Openings

In this example, we tested a relatively difficult problem to solve with traditional discrete fracture
modeling techniques. In coordination with [40], we had a geometry with three openings and an
initial notch under tensile pull (Figure 9). Initially, an incremental displacement of Δu = 10−3 mm
was applied. The relative positions of the openings and the notch were altered to see the difference in
fracture pattern. The material and length scale parameters were: E = 210 kN/mm2, ν = 0.2, lc = 0.02
mm, and Gc = 5.0 × 10−3 kN/mm. Here, we observed two different crack paths: when the openings
were aligned, in the same line, the fracture zone from the notch merged with the one originating
from the nearest opening and the crack then propagated through the openings. This is basically
a phenomenon of crack arrest which comes into existence due to the merging of damaged zones.
Although the stress field near the notch was singular, the field near the openings also suffered from
the effect of stress concentration [4], which further led to damage. The beauty of this method lies in
the fact that it can also elegantly capture the damage initiation from the openings without any ad-hoc
criterion. Our results conformed with the findings of Msekh [40] (Figure 10). However, when the
openings are not aligned symmetrically, we saw a difference in crack path behavior. The usual crack
arrest phenomenon occurred as in the previous case, but, unlike in [40] (Figure 11), where the crack
propagates through the first two holes and merges with the third hole and then continues, we saw that
the crack propagation continued along the same line, with a slight deflection towards the damaged
zone of the third opening. Additionally, another crack propagation started from the damaged zone
of the third opening. We believe this is just a by-product of using different displacement increments
for the simulation. When the step size of our displacement increments were reduced, Δu = 10−5 mm,
we observed a different crack path, as shown, in Figure 12 which was much closer to the reference
results. This indicates a drawback of the method, where the size of each displacement increment has
to be suitably chosen to simulate the correct phenomenon.
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(a) (b)

Figure 9. Geometry with notch and openings (in x-y plane): (a) openings are aligned along a
straight-line; and (b) openings are aligned haphazardly.

Figure 10. Crack propagation steps: (a) crack propagation begins (b) crack arrest due to damage from
opening; (c) crack propagates through the openings; and (d) crack continues in the previous path.
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Figure 11. Crack propagation steps for higher incremental step size: (a) crack propagation after
100 steps (b) crack propagation through holes; (c) slight bend in path due to damage zone influence of
hole below; and (d) propagates along straight path.

Figure 12. Crack propagation steps for lower incremental step size: (a) crack propagation after 100 steps
(b) crack propagation through holes; (c) deflected path due to damage zone influence of hole below;
and (d) crack initiates at the stress concentration zone and propagates.
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3.5. 3D Bi-Material Notched Specimen

This example highlighted one of the advantages of the phase-field method, where we reproduced
the phenomenon of crack branching. The geometry and material parameters were chosen similar
to those in [27], where we had a notch in the the softer material region with specifications given in
Figure 13. The surface on the right was fixed while an incremental displacement pull was applied
on the left. The plate had a thickness of 5 mm. We observed that the damage initiation and crack
propagation occurred as usual in any edge-notched specimen but, as soon as the crack reached the
stiffer material, it branched. This is because the energy required to propagate through the stiff material
is higher than the energy required to branch and continue along the material boundaries. The resultant
crack path was in pretty good agreement with the available result in [27].

Figure 13. Crack propagation in a bi-material specimen: (a) representational 2-D geometry; thickness =
5 mm; (b) crack initiation; (c) crack propagation through the soft material; (d) crack reaches the material
discontinuity junction; and (e) crack branching.

3.6. Crack Propagation in Thick Walled Cylinder

We performed another numerical example to demonstrate the advantages of using the phase-field
method to simulate crack propagation. We modeled two parallel cracks at different elevations in a
thick walled cylinder under uni-axial tension. The dimensions were: t = 0.1 mm, r = 1 mm, a = 0.2 mm,
and h = 1 mm (Figure 14). The material and length scale parameters were: E = 210 kN/mm2, ν = 0.2,
lc = 0.075 mm, and Gc = 2.7 × 10−3 kN/mm. We observed the crack merging phenomenon in this case.
The cracks initiated from the respective notches but, when the damage zones were influenced by each
other, the two cracks merged (Figure 15). This phenomenon was simulated based on the physics of the
system without any ad-hoc criterion set up for the crack propagation path, thereby restating that the
phase-field technique can be used to simulate many such cases that would traditionally be a bit more
complex using discrete treatment.
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Figure 14. Crack propagation in a thick-walled cylinder: (a) isometric view of the cylinder; and (b)
relative position of the two Cracks.

Figure 15. Crack propagation in a thick-walled cylinder: (a) crack initiation; (b) pattern of the two
cracks propagating; and (c) final crack merging.

4. Discussion

The primary objective of this study was to predict realistic crack paths in three-dimensional solids.
The CS-FEM-H8 element is implemented in the commercial platform of ABAQUS. The element was
already proven to have a very good accuracy in displacement norm [38]; here, we combined it with
the phase-field model for diffuse fracture to simulate crack propagation in 3D linear elastic brittle
solids. ABAQUS user elements (UEL) has its inherent limitations in not letting the user access data
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from surrounding elements, thus we developed a much simpler technique to calculate stress/strain
for smoothing domains instead of the traditional weighted average approach. We sacrificed the stress
convergence rate due to this new formulation, however still obtained accurate results that predict
complex crack topologies such as crack branching and curved crack paths. Several drawbacks of the
method were observed during the simulations: the phase-field variable propagation is very much mesh
dependent, thus one needs to have a very fine mesh (approximate characteristic element size of (1/2)
the length scale parameter, or less [24,25,28]) near the expected crack propagation zone to efficiently
resolve the length-scale parameter. This is not an issue for geometries where experimentally obtained
crack paths are already known, however, for complex geometries and unknown crack paths, we needed
to have a very fine mesh throughout the domain to facilitate independent crack propagation which
increases the computational cost. Once the length scale parameter has been successfully resolved,
further reduction of the mesh size does not alter the crack path. We also observed that the selection
of displacement increment step size affects the resultant crack path. The final fracture pattern is
not dependent on the Griffith’s energy release rate parameter, however the ultimate strength of the
sample decreases with decreasing Gc. Implementation in ABAQUS, as already discussed, has its own
drawbacks in not letting the user implement more accurate S-FEM models such as ES-FEM/α-FEM [18].
This formulation was developed based on the H8 element with eight smoothing cells, which was
not generated automatically for complex geometries. Analysts probably need to resort to the use of
tetrahedral (T4) elements in cases of complex topologies. This in turn affects the accuracy because the
formulations of the T4 elements are the same for both CS-FEM and FEM [1]. However, this opens up
an avenue for future research in this domain, where in-house codes can be used to solve the same
problem using a much more accurate ES-FEM/FS-FEM and a base mesh of T3/T4 elements, which are
very easily generated for complex geometries. Moreover, adaptive meshing schemes designed based
on values of the phase-field parameter can be utilized to reduce the computational cost of having
very fine mesh. In 2D cases, CS-FEM is slightly more efficient than FEM [39]. However, in this 3D
setting, the computational cost is similar (quantitative difference of around 1%) for both FEM and
CS-FEM formulations. This is due to the assembly process of the stiffness matrix for each smoothing
domain which involves integration over each surface of the cell. However, the better accuracy in the
displacement norm and the comparative “soft” property in stiffness matrix with respect to FEM gives
CS-FEM an advantage.

Thus, it can be concluded that this method is another efficient and novel computational technique
to model crack propagation in 3D structures.
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Featured Application: The cracking risk, the overall stability, and the reinforcement measures

are directly related to the long-term stability of arch dams. The three safety factors and five stress

zones have a great significance for arch dam-foundation design of cracking control and overall

stability evaluation.

Abstract: It is of great significance to study the cracking risk, the overall stability, and the reinforcement
measures of arch dams for ensuring long-term safety. In this study, the cracking types and factors of
arch dams are summarized. By employing a nonlinear constitutive model relating to the yielding
region, a fine three-dimensional finite element simulation of the Xulong arch dam is conducted.
The results show that the dam cracking risk is localized around the outlets, the dam heel, and the
left abutment. Five dam stress zones are proposed to analysis dam cracking state base of numerical
results. It is recommended to use a shearing-resistance wall in the fault f57, replace the biotite
enrichment zone with concrete and perform consolidation grouting or anchoring on the excavated
exposed weak structural zone. Three safety factors of the Xulong arch dam are obtained, K_1 =
2~2.5; K_2 = 5; K_3 = 8.5, and the overall stability of the Xulong arch dam is guaranteed. This study
demonstrates the significance of the cracking control of similar high arch dams.

Keywords: the Xulong arch dam; yielding region; cracking risk; overall stability; dam stress zones

1. Introduction

A series of super-high arch dams (height over 200 m) have been constructed or are being planned
in China. Most of them are distributed in the mountainous areas in southwest China (Figure 1),
and therefore are subject to complex engineering challenges, such as high seismic intensity, high
slope, huge water thrust, and so forth. The geological conditions are also very complex, for example,
the deep-cutting valley, high ground stress, and some unfavorable geological conditions, such as
atypical faults, dislocation interfaces, altered rock masses, and weak rock masses [1–3]. The complex
geological conditions may lead to the crack of dam concrete or foundation, which eventually leads to
dam failure [4]. Therefore, the construction of super-high arch dams still faces many challenges. Cracks
may initiate in the outlets [5], heel [6], surface, and interior of dam concrete blocks [2], then propagate
and coalescence along horizontal or vertical directions in concrete blocks. The main cracking factors
include temperature variations, heat from concrete hydration, shrinkage and creep, dam foundation
uncoordinated deformation, earthquake, and seepage effect [4].

Some research studies have been done related to the cracking mechanism on concrete blocks of
dams experimentally and theoretically. Study on thermal mechanics of the concrete dam includes
the temperature variation of the external environment and heat from concrete hydration. When the
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temperature gradient changes dramatically inside the dam, the thermal stresses will concentrate
and cause the cracks to initiate under cold wave conditions [7], in cold areas [8], under unfavorable
solar radiation [9], and in dry, hot valley regions [10]. Temperature load is the main cracking factor
of the Karaj arch dam [11]. The nonlinear analysis of concrete arch dams is necessary to check
the stability of cracks in high tensile stress areas. Maken et al. [12] investigated the mechanical
properties and showed that stress relaxation is affected by the concrete temperature. They used a
finite-element modeling procedure for assessing the thermal mechanical behaviors of concrete dams,
and successfully reproduced the oblique cracks present on the downstream face of Daniel Johnson dam.
The distribution of stresses in roller-compacted concrete dams is greatly affected by the starting date
of the roller-compacted concrete placement schedule [13]. Self-weight and weak foundation [14,15],
uneven settlement of arch dam foundation, and earthquake [16,17] can also lead to the cracking of
arch dams. Hariri-Ardebili et al. [18] assessed seismic cracks in three types of concrete dams, namely
gravity, buttress, and arch, using an improved 3D coaxial rotating smeared crack model. The cracking
factors of arch dams often interact with each other in a nonlinear manner, and therefore cannot be
considered separately.
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Figure 1. Distribution of hydropower resources and super-high arch dams in China.

The concrete dam cracking problems have been studied by different methods in the past 30 years
as follows. (1) The finite element method (FEM) is widely used in the numerical simulation of
dam cracking, including the FEM based on elastoplastic mechanics, the FEM based on fracture
mechanics [19,20], and the FEM based on damage mechanics [21,22]. Based on linear elastic crack
mechanics and three-dimensional boundary element modeling, Feng et al. [23] presented a procedure
to analyze the cracks in arch dams. Chen et al. [24] introduced the existing constitutive model of
large, light, reinforced concrete structures and the deficiency of the design procedure, and they also
presented a three-dimensional nonlinear cracking response simulation procedure for outlet structures.
The overall stability of arch dams is analyzed by the three-dimensional numerical simulation [25].
Sato et al. [26] simulated the thermal stress of a concrete dam by three-dimensional linear elastic
FEM, and the autogenous shrinkage strain was added to the thermal strain. (2) Dam geomechanical
model tests were widely carried out in the United States, Switzerland, Yugoslavia, Russia, Germany,
Italy, Japan, and Sweden in the 1970s and 1980s [27]. The geomechanical model mainly refers to the
model that reflects the specific engineering geological structure in a small range, such as the faults,
fractures, and weak zones in the dam foundation, and it follows the similarity theory [28]. Lin et al. [2]
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analyzed the cracking characteristics of the Xiaowan arch dam surfaces and rock mass failure process
of the abutments. They judged the alteration zones, weak rock masses, and other faults in the
abutments that caused the arch dam to crack and proposed the method of foundation reinforcement.
(3) Many scholars also focus on different numerical methods to simulate dam cracking processes,
for example, element-free method [29], interface stress element method, and boundary element
method [30]. Prototype monitoring is also widely used in arch dam cracking analysis. However,
there are still many areas for improvement in the analysis of cracking of arch dams. Linear finite
element is not capable of revealing the actual state of the structure. As a popular simulation method,
the nonlinear numerical method has no uniform standard for the selection of material constitutive
models and parameters and the setting of boundary conditions. Although the geomechanical model of
rupture test is straightforward, the loading control, boundary condition simulation, and error analysis
of measurement data need to be further investigated. The cracking theory of arch dams has not been
fully studied, especially for the location and propagation of cracks.

This study first summarizes the main analysis methods, cracking types, and factors of arch dams
according to the cracking cases. In order to analyze the cracking and overall stability of the Xulong high
arch dam, a nonlinear constitutive model and overall stability criterion are employed, and numerical
simulation on the overall stability, cracking analysis of dam outlets, and arch abutments are performed.
This study aims at proposing effective reinforcement methods and prevention methods for arch dam
cracking. Through the analysis of the yielding region and stress before and after the reinforcement,
the reinforcement methods of the Xulong arch dam are determined. Based on the analysis of the first
and third principal stresses and yielding region of the arch dam, a method for crack prevention based
on five stress zones of arch dams is proposed.

2. Summary of Cracking Types and Effect Factors of High Arch Dams

2.1. Cracking Types

Concrete arch dams are generally constructed of massive plain concrete with almost no tensile
resistance. Tensile stress can occur due to concrete shrinkage, temperature variations, rigidity
weakening due to seepage effects, and other factors like earthquake and large deformation of the
dam abutments due to a weak foundation. The tensile stress often leads to cracking of arch dams,
which affects the safety and stable operation of arch dams.

Table 1 summarizes the completed time, dam height, cracking position, and cracking reason of
the main arch dams in the world. The crack types of arch dams are illustrated in Figure 2 according to
the common cracking positions of arch dams.

   
(a) (b) (c) 

   
(d) (e) (f) 

Cracking zone

Upstream

Cracking zone

Downstream Downstream

Cracking zone

Upstream

Cracking zone

Downstream

Figure 2. Cracking type of arch dam: (a) dam heel crack; (b) dam toe crack; (c) transverse joint open;
(d) horizontal cracks at the upstream surface; (e) cracks at the downstream surface; (f) internal cracks.
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Table 1. Summary of cracking types in high arch dams.

Dam Name Country Operation Year Height (m) Cracking Description Main Cracking Causes

Buffalo Bill Arch Dam America 1910 107.0 Vertical cracks at
downstream surface

Temperature (extreme
thermal gradients)

Packard Sama Dam America 1928 113.0 Different settlement Earthquake

Stewart Mountain Dam [31] America 1930 64.6 Visible surface, mainly
upstream surface

Alkali–silica reactions
and expansions

Zeuzier Dam Switzerland 1956 156.0

Transverse joints open at
upstream
Peripheral joints form
downstream

Foundation

Sardine Dam Italy 1957 115.0 Horizontal cracks at
upstream surface Temperature

Santa Maria Dam Switzerland 1968 117.0 Leakage in dam
foundation upstream Foundation

Daniel Johnson Dam [12] Canada 1968 214.0
Oblique cracks at
downstream surface Seasonal temperature

Plunging cracks at the
heel of the dam

Geometric
discontinuities

Kolnbrein Dam [6,14] Austria 1977 200.0
Horizontal construction
joints open Cracking at
dam heel

Foundation

Zillergrundl Dam [14] Austria 1985 186
Horizontal cracks at
heelVertical cracks in the
elevator shaft

Concrete hydration heat

Sayano-Shushenskaya
Dam [14]

Former Soviet
Union 1989 242.0

Vertical cracks in the
gallery Horizontal cracks
at upstream surface

Concrete hydration heat
and temperature

Shuanghe Arch Dam [15] China 1991 82.3 Seven vertical cracks at
downstream surface

Self-weight and weak
foundation

Ertan Dam China 2000 240.0 Cracking at downstream
surface Foundation Temperature

Xiaowan Dam [2] China 2010 294.5 Internal cracking Temperature

Goupitan Dam China 2011 232.5 Cracking around the
bottom outlets

Concrete hydration heat
and temperature

2.2. Cracking Factors

Many factors lead to the cracking of super-high arch dams, including different concrete materials,
concrete temperature control measures, geological condition of dam foundation, seepage, geological
exploration, arch dam profile, and so forth. The cracking factors of arch dams are summarized
as follows.

(1) Concrete materials. Different concrete materials have different properties such as hydration heat
and tensile strength. High-strength concrete generally has a large content of cement, leading
to high hydration heat. When the external temperature changes sharply or the temperature
control measures are not appropriate, high-strength concrete can easily crack. Concrete materials
should be selected according to different dam structures and high-strength concrete should not
be used blindly.

(2) Site selection of the arch dam. The complex geological conditions of the dam foundation directly
affect the stress and deformation distribution of the arch dam. The uneven deformation of both
abutments and different stiffness between arch dam and foundation can easily lead to arch dam
cracking. Appropriate reinforcement methods are important for reducing the cracking risk of
arch dams.

(3) Temperature control and maintenance. Concrete temperature control measures are directly
related to concrete thermal stress. The sharp increase or decrease of the external temperature
has more influence on the dam abutment, heel, and outlets. The temperature control methods
should be designed and implemented before the arch dam is built. For the special structures such
as outlets, it is necessary to consider the cracking caused by the cavern drafts flowing and the
outlets should be closed.
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(4) Dam profile design. Profile design needs to consider specific geological conditions. Arch dam
profile is directly related to the stress distribution of the dam body. Outlets and dam heel should
be considered especially. The effects of different profiles on the stress, deformation, overall
stability, and cracking of the arch dam can be comprehensively compared by using the method of
dividing load of the arch beam, FEM, and geomechanical model.

3. Numerical Modeling of the Xulong High Arch Dam

3.1. Numerical Method

Using a 3D nonlinear finite element analysis, the convergence of elastoplastic analysis solution
shows the stability of the structure. The yielding condition of the ideal elastoplastic model adopts
Drucker–Prager (D-P) yielding criterion [5].

(1) Safety factors of the arch dam

Both in the geomechanical model experiment and 3D nonlinear numerical simulation, overloading,
strength reduction, and comprehensive method are main methods to analyze the ultimate state and
safety factors of arch dams [2,32], as illustrated in Figure 3. According to different overloading
ways, overloading method includes increasing the bulk density of the upstream water and upstream
water level (Figure 3a,b). The comprehensive method combines the overloading and strength
reduction method.

 
(a) (b) 

 
(c) 

Figure 3. Overloading and strength reduction method. (a) Increasing the bulk density of the upstream
water; (b) increasing the upstream water level; (c) strength reduction method.
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The arch dam is a high-order statically indeterminate structure. In the process of overloading
or strength reduction, the deformation of arch dams can be divided into three stages, namely the
elastic deformation stage, plastic deformation stage, and total failure stage. Corresponding to three
deformation stages, three safety factors, K1, K2, K3, are employed to evaluate the overall stability of
the dam [2].

K1 represents the safety factor of crack initiation of the arch dam. A crack is generally initiated at
the dam heel. As shown in Figure 3a, K1 = γ1

γ0
; in Figure 3b, K1 = h1

h0
.

K2 represents the safety factor of structural nonlinear behavior initiation. The dam has a large
displacement due to nonlinear deformation. Dam cracks rapidly propagate and coalesce with each
other. As shown in Figure 3a, K2 = γ2

γ0
; in Figure 3b, K2 = h2

h0
.

K3 represents the safety factor of the maximum loading of the dam–foundation system.
The yielding regions connect. The dam foundation is totally destroyed and the undertaking capacity is
lost. As shown in Figure 3a, K3 = γ3

γ0
; in Figure 3b, K3 = h3

h0
.

(2) Evaluation of connection of yielding region

Adopting to increase the bulk density of the upstream water (Figure 3a), the yielding region of
dam and foundation is simulated under overloading condition. The connection of the yielding region
means that it connects piece by piece and forms movement mechanism so that the integrity stiffness of
arch dam–foundation is weakened. The cracking or yielding caused by excessive local stress reduces
the constraint to adjust the internal stress. If the yielding region is not fully connected, the structure
can still provide support. This method can fully reflect the adjustment process of nonlinear stresses
and exert the bearing capacity of the high-order statically indeterminate arch dam.

Failure criterion can be defined as Equation (1), that is, iteration does not converge.

∅(Ai) ≥ 0. (1)

where ∅ is yielding surface. Ai is a mechanism composed of local yielding regions, that is, formed by
the connection of the local yielding regions. Ai can be expressed as: Ai = ϕj ∪ ϕm ∪ . . . ∪ ϕn. When
any Ai is formed, the structure loses its integral stability. In addition, det[K] ≤ 0, where [K] is the
integral stiffness matrix in FEM analysis.

3.2. Brief Introduction of Xulong Super-High Arch Dam

The Xulong hydropower station is located on the main stream of Jinsha River, juncture of the
Deqin county, Yunnan Province and Derong county, Sichuan Province. The total storage capacity of
it is 829 million m3, and it has an installed capacity of 2220 MW. The principal structures consist of
a double-curvature arch dam with a height of 213 m, underground powerhouse, diversion tunnel,
and plunge pool. There are 3 upper outlets and 4 middle outlets placed in the numbers 9~12 dam
monoliths. The entrances of the upper outlets are at elevation level (EL) 2286 m. The size of the middle
outlets is 8 m × 6 m (height × width) at the entrances and 5 m × 7.2 m (height × width) at the exit.
The entrances of the middle outlets are at EL 2222 m. The ratio of thickness and height of the arch dam
is 0.217 and the length of the crest on the upper surface is 482.9 m.

The dam site is deep canyon topography with an aspect ratio of 1.8. The Triassic Indosinian
granite dike at the dam site slopes into the riverbed. The left bank is Mesoproterozoic Xiongsong
Group plagioclase amphibole schist and the right bank is Mesoproterozoic Xiongsong Group
migmatite. According to the double-hole acoustic testing results, the fresh granite, migmatite, and
plagioclase amphibole schist have longitudinal wave velocities of 4300~5900 m/s, 4000~5600 m/s, and
3000~5800 m/s, respectively. The average longitudinal wave velocities of the fresh granite, migmatite,
and plagioclase amphibole schist are 5100 m/s, 5000 m/s, and 4600 m/s, respectively, which can
mainly be classified as the type II rock mass. The type II rock masses have an acoustic velocity of
4800~5500 m/s, weak permeability, and good uniformity. The width of strongly unloading zones due
to the dam construction is generally less than 30 m. The strongly unloading rocks are only at the EL
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2300 and 2308 m, which can be classified as the type IV rock mass. The width of weakly unloading
zones is between 15 and 35 m with the type III1 rock masses and III2 rock masses. A total of 70 faults
are found on the surface of the dam site, of which the statistics are shown in Figure 4. Ten of them
are low-angle faults. The width of the faults is 0.20~0.50 m, and the length of the faults is usually
less than 100 m. The fault strikes can be divided into 4 groups: NE~NEE group, NWW group, NNE
group, and NNW~NW group. F1, f3, f10, f11, f26, f57, f74, and f75 are relatively large faults. Figure 5
illustrates the bedrock distribution of the dam–foundation interface.

 
 

 

(a) (b) (c) 

Figure 4. Surface fault statistics in dam site area. (a) Rose of the strike; (b) rose of dip; (c) dip
angle histogram.

 

Left arch abutmentRight arch abutment

Figure 5. Bedrock distribution of the foundation surface.

3.3. Numerical Model and Analysis Cases

Figure 6 illustrates the 3D numerical model of the Xulong high arch dam and foundation,
and the distribution of main faults including F1, f3, f10, f11, f26, f57, f74, and f75. In this 3D model,
the simulation range is 840 m × 800 m × 553 m (length × width × height). The numerical model
adopts 8-node hexahedral elements, with the total number of 129,241 elements and 147,331 nodes.
There are 34,284 elements and 41,204 nodes for the dam.

Based on laboratory testing, the main physical–mechanical parameters of the rock masses and
dam concrete are listed in Table 2. Considering the influence of temperature and complex geological
conditions on the cracking of arch dams, this study uses the overloading method to judge the overall
stability of the arch dam and foundation. Temperature load, self-weights of the dam and foundation,
water pressure, and silt pressure are considered in the ten analysis cases as follows.

In order to compare the effect of temperature rise and drop loading on the stress and displacement
of the arch dam during the construction period after arch closure, temperature drop loading is applied
in cases 1 and 10, and the other loads in cases 1 and 10 are the same. In order to obtain the three
safety factors to evaluate the dam overall stability, cases 1–9 correspond to 1–9 times of overloading,
respectively, and the other loads in cases 1 and 9 are the same.
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The influence of temperature loading on cracking of the arch dam during operation period is
analyzed. Under the long-term external temperature variation, the temperature loading can be divided
into mean and linear temperature difference. The mean and linear temperature difference under
normal water level is illustrated in Table 3.

 

 
(a) (b) 

Figure 6. The 3D numerical model. (a) dam-foundation overall model; (b) main faults distribution.

Table 2. Physical–mechanical parameters of the rock masses and dam materials.

Materials Bulk Density (t/m3) Deformation Modulus (GPa) Poisson’s Ratio
Shear Strength

C
′

(MPa) F
′

Dam concrete 2.40 25.0 0.167 5.0 1.7
Rock of type II 2.70 24.0 0.22 1.2 1.1

Rock of type III1 2.60 17.5 0.24 1.05 1.0
Rock of type III2 2.55 12.5 0.26 1.0 0.95
Rock of type IV 2.50 6.0 0.30 0.65 0.60

Table 3. The mean and linear temperature difference under normal water level.

Normal Water Level + Temperature Rise Normal Water Level + Temperature Drop

EL (m)
Mean Temperature

Difference
Linear Temperature

Difference
Mean Temperature

Difference
Linear Temperature

Difference

2308 9.40 0.00 2.65 0.00
2302 7.67 3.09 3.22 −0.49
2290 4.75 8.65 2.06 2.06
2270 2.42 12.54 0.68 5.67
2245 2.24 14.18 0.92 7.99
2220 2.79 14.66 1.67 8.98
2195 3.60 14.85 2.62 9.29
2170 3.58 14.72 2.65 9.45
2145 1.43 9.96 0.83 6.53
2120 −0.97 4.74 −1.35 2.60
2095 −1.88 2.66 −2.12 1.32

4. Cracking Analysis of the Xulong High Arch Dam

4.1. Effect of Temperature Load on Stress and Displacement of the Xulong Arch Dam

For the analysis cases 1 and 10, the displacement and stress distribution of the dam (Figure 7),
characteristic stresses (Table 4), and maximum displacement along river direction at different key
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locations (Table 5) are obtained. The maximum displacement along river direction is 32.9 mm near the
EL 2189–2226 m (case 1) and 20.2 mm at the dam crest (case 10). The dam tensile stress of case 1 is
slightly greater than that of case 10. The maximum tensile stress near the left arch abutment is bigger
than that of the right arch abutment. This is related to different geological conditions on the left and
right bank of the arch dam.

The sudden drop in temperature has a greater impact on the tensile stress and the displacement
of the arch dam, which increases the possibility of dam cracking. This is why the temperature drop
loads are applied to the arch dam in cases 1 to 9. The insulation work of the arch dam should be done
in February and March, especially at the crest and outlets of the dam.

  
(a) (b) 

  
(c) (d) 

Figure 7. The first principal stress and the displacement along the river direction distribution under
analysis cases 1 & 10. (a) The first principal stress distribution under analysis case 1 (Unit: Pa);
(b) the displacement along the river distribution under analysis case 1 (Unit: mm); (c) the first principal
stress distribution under analysis case 10 (Unit: Pa); (d) the displacement along the river distribution
under analysis case 10 (Unit: mm).

Table 4. Characteristic stresses at different key locations under analysis cases 1 & 10 (unit: MPa).

Location Content Case 1 Case 2

Upstream surface
Maximum tensile stress of dam heel 0.9 0.89

Maximum tensile stress near left arch abutment 1.18 1.17
Maximum tensile stress near right arch abutment 0.97 0.94

Downstream surface
Maximum compression stress of dam toe 6.93 7.35

Maximum compression stress near left arch abutment 8.76 8.88
Maximum compression stress near right arch abutment 8.53 8.49

Table 5. Maximum displacement along river direction at different key locations under analysis cases 1
& 10.

Case 1 Case 10

Left Arch
Abutment

Arch Crown
Right Arch
Abutment

Left Arch
Abutment

Arch Crown
Right Arch
Abutment

Maximum (mm) 6.55 32.9 5.04 8.29 20.2 5.98
EL (m) 2167.3 2308 2153 2167.3 2263 2153
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4.2. Cracking Analysis of Dam Outlets

The outlets affect the stress continuity of the dam. The large tensile stress near the upstream
surface may be the main cause of the outlets cracking. The maximum tensile stress of the upper and
middle outlets is about 0.9 and 0.48 MPa, respectively (Figure 8a,e). Therefore, the upper outlets
should have a larger cracking risk than the middle outlets. In particular, the tensile stress of the left
and right upper outlets are relatively large due to the pier. Figure 8c,d illustrates the possible cracking
positions of the outlets.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 8. The first and third principal stress distribution and possible cracking positions of outlets
under analysis case (Unit: Pa). (a) The first principal stress distribution of upper outlets; (b) the third
principal stress distribution of upper outlets; (c) possible crack positions of the middle upper outlet;
(d) possible crack positions of the side upper outlet; (e) the first principal stress distribution of middle
outlets; (f) the third principal stress distribution of middle outlets.

Cracks may continue to propagate if the pore water pressure in the crack reaches 0.5 MPa [5].
Therefore, it is necessary to strictly control the cracks at the outlets, especially the possible cracking
positions predicted in Figure 8c,d. More attention should be paid to the reinforcement bars of
the pier and outlets to prevent tension cracks. Appropriate concrete materials which have the
abrasion-resistance capacity may be used around the outlets. The concrete strength should be selected
according to the discharge flow and velocity.

4.3. Cracking Analysis of the Dam Heel and the Dam Abutments

There are always stress concentrations near the upper dam heel. The maximum tensile stress of
the Xulong arch dam heel is 0.9 MPa under the analysis case 1 (Figure 7). The yielding region and
crack usually first appear at the dam heel and abutments as the load gradually increases. It is related
to the discontinuous geometric shape and stiffness.

The stress change law of the dam heel is analyzed without considering the seepage pressure. It is
assumed that the crack depth is 7.7 m, 15.4 m, and 23.1 m, respectively, that is, 1/6, 1/3, and 1/2
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of the dam bottom thickness. The maximum tensile stress of the dam heel is 0.875 MPa, 0.796 MPa,
and 0.874 MPa. With the increase of crack depth, the tensile stress decreases first due to the increase of
gravity stress at the crack and then increases due to the increase of shear stress.

The geological condition of both abutments are complicated (Figure 9). In particular, the fault f57
and xenolith of the left abutment, the fault f26 and biotite enrichment zone of the right bank have a
great influence on the stress distribution of the arch dam abutments.

  
(a) (b) 

  
(c) (d) 

Figure 9. Complex geological condition of the Xulong arch abutments. (a) Left arch abutment of the
model; (b) right arch abutment of the model; (c) left arch abutment of the site (the foundation face has
not been excavated); (d) right arch abutment of the site (the foundation face has not been excavated).

5. Overall Stability and Reinforcement Analysis of Xulong Arch Dam

5.1. Overall Stability Analysis

The overall stability analysis of the Xulong arch dam adopts the methods in Section 3.1 and obtains
three safety factors, K1 = 2~2.5; K2 = 5; K3 = 8.5. The capacity curve of the maximum displacement
along river direction of the arch crown is illustrated in Figure 10. With 2 to 2.5 times overloading,
cracks initiate at the dam heel. At the bottom of the dam to EL 2220 m, local yielding occurs on the
upstream of the left and right abutments. Therefore, the safety factor of crack initiation is estimated to
be 2~2.5.

When five times overloading, cracks initiate at the foundation surface and propagate from the
upstream to the downstream between EL 2095 m and EL 2258 m. The maximum crack depth is about
0.5 times the thickness of the dam. The local region of the dam toe and the outlets of the downstream
begin to yield and gradually propagate to the surrounding region. The yield region of the foundation
surface between the dam heel and toe tends to coalesce and the capacity curve starts to be nonlinear
at five times overloading (Figure 10). Therefore, the safety factor of structural nonlinear behavior
initiation of the dam is judged as 5.
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When eight times overloading, the yielding region is not fully connected to form a movement
mechanism, so the structure can still provide support (Figure 11a,b). When nine times overloading,
the foundation surface forms two connected yielding regions and a movement mechanism
(Figure 11c,d). The displacement along river direction of the arch crown increases faster at eight
and nine times overloading (Figure 10). The overall stability of arch dam–foundation is lost. Therefore,
the ultimate undertaking coefficient of the arch dam is judged as 8.5.
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Figure 10. The capacity curve of the maximum displacement along river direction of the arch crown.

  
(a) (b) 

 
(c) (d) 

Figure 11. The yielding region under different analysis cases (PEMAG: plastic strain magnitude).
(a) Downstream surface under case 8; (b) foundation surface under case 8; (c) downstream surface
under case 9; (d) foundation surface under case 9.

The displacement distributions of the dam are basically consistent in different overloading times
(Figure 12). The maximum displacement along the river direction of the arch crown is around the dam
crest and increases with the increase of overloading.
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Figure 12. Crown displacement under various analysis cases 1 to 6. (a) Crown displacement along
river direction; (b) crown displacement cross river direction.

The arch thrust distribution characteristics of several high arch dams are compared in Figure 13.
The middle and lower elevation arch thrusts of the dam are huge and the upper elevation arch thrust
is small. The Xulong and other arch dams have the same thrust distribution characteristic. The large
arch thrust region is consistent with the large yielding region. The distribution characteristics of the
yielding region and arch thrust can be used as a validation of the five stress zones in Section 5.2.
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Figure 13. The distribution characteristics of arch thrust of several high arch dams. (a) Right arch
abutment thrust; (b) left arch abutment thrust.

5.2. Discussion on Dam Stress Zones

Based on past analytical experience and the analysis of the stress, displacement, and yielding
region of the Xulong arch dam, five stress zones of the arch dam are proposed as follows. Figure 14 is a
schematic diagram of the five stress zones. The five stress zones can better guide the crack prevention
of the arch dam.
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(a) (b) 

Figure 14. Five stress zones of high arch dam. (a) Upstream surface; (b) Downstream surface. Note:
The number 1–5 represents compression zone of upstream surface, tensile and compressive zone
of upstream arch abutment, tensile stress zone of upstream dam heel, compression stress zone of
downstream arch abutment, and tensile stress zone of downstream surface, respectively.

(1) Three-way compression zone of upstream surface

This zone ranges from about 1/5 to 4/5 dam height, and the zone width is close to the height.
The stress state in this zone indicates the structural state of the arch dam and it is important to control
the compression stress in this zone. In general, the maximum compression stress is around the arch
crown beam at 1/3 elevation of the arch dam. The compression stress results of the finite element
analysis are around 6.2~8.0 MPa.

(2) Tensile and compressive zone of upstream arch abutment

The stress state may be tensile stress in the direction of both beam and arch or one of the
directions is tensile stress. When upstream water pressure is considered, it is the state of double-tension
single-compression or double-compression single-tension. More attention should be paid to control
the tensile stress of this area to prevent cracking. The calculation results show that the tensile stress
of the left arch abutment of the Xulong dam reaches 1.18 MPa of case 1. It is suggested to control the
tensile stress of this area to less than 1.5 MPa when the FEM is adopted.

(3) Tensile stress zone of upstream dam heel

Based on the analysis of several super-high arch dams in China, it is suggested that the tensile
stress should be strictly controlled within 1.4 MPa if the tensile stress of arch dams is based on FEM
simulation. The dam heel tensile stress of the Xulong arch dam is 0.9 MPa. Although the upstream
bottom joint can reduce the tensile stress of the dam heel, attention should be paid to the effect
of hydraulic fracturing. The upstream bottom joint cannot affect the construction of the curtain
grouting. The high tensile stress is related to the discontinuous geometric shape of the arch dam heel.
The cracking of the dam heel should be paid more attention to.

(4) Compression stress zone of downstream arch abutment

This zone ranges from the bottom to the middle height of the dam. Normally, the largest
compression stress is in this zone and it is important to control it. The compression stress of the
left arch abutment of the Xulong dam reaches 8.88 MPa of case 10. It is suggested to control the
compression stress of this zone to less than 14 MPa when the FEM is adopted.

(5) Tensile stress zone of downstream surface

The arch dam’s downstream surface between the upper to middle elevation is a tensile zone,
and the tensile stress is in the direction of the beam. The tensile stress may be large here due to the
pier. When the upstream water level is low, this tensile stress zone will shift to the left and right arch
abutments. The results of the geomechanical model test also show that the cracking of the downstream
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arch abutment basically extends to the center of the dam along the normal of the foundation surface,
which is the failure of the tension and shear [2].

5.3. Abutment Reinforcement Suggestion

Based on the analysis of the overall stability, stress, and displacement of the arch dam, it is
considered that the fault f57, xenolith, fault f26, and biotite enrichment zone have a great effect on the
stress distribution of the arch abutments.

In order to improve the stress state of the dam abutments and decrease the cracking risk during
long-term operation, it is recommended to use a shearing-resistance wall in the fault f57, to replace
the biotite enrichment zone with concrete, and to perform consolidation grouting or anchoring on the
excavated exposed weak structural zone. Figure 15 illustrates the shearing-resistance tunnel for the
left arch abutment and the concrete replacement for the right arch abutment.

 
(a) 

(b) 

Figure 15. The abutments reinforcement method of the Xulong arch dam. (a) Shearing-resistance
tunnel for the left abutment; (b) concrete replacement for the right abutment.
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Through numerical simulation, the tensile stress and yielding zone changes of the arch abutments
are obtained before and after reinforcement (Figures 16 and 17). The first principal stresses of the left
and right arch abutments decrease by about 0.13 and 0.17 MPa, respectively. The reinforcement of the
abutments reduces the first principal stress and improves the stress state of the arch abutments, thereby
reducing the cracking risk. The reinforcement method also improves the comprehensive shear strength
of the side-slip surface and ensures a certain safety margin for the anti-sliding of the arch abutments.

  
(a) (b) 

Figure 16. The first principal stress at the right arch abutment from EL 2264 m to 2281 m (Unit: Pa).
(a) Before reinforcement; (b) after reinforcement.

 
 

(a) (b) 

 
(c) 

 
(d) 

Figure 17. The first principal stress and yielding region distribution of the left abutment (Stress unit:
Pa. PEMAG: plastic strain magnitude). (a) before concrete replacement; (b) after concrete replacement;
(c) before concrete replacement; (d) after concrete replacement.
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6. Conclusions

In this paper, the different cracking types and effect factors are summarized. The cracking risk,
overall stability, and abutment reinforcement of the Xulong arch dam are analyzed through numerical
simulation. The following conclusions can be drawn:

(1) A nonlinear constitutive model relating to the yielding region is proposed to evaluate dam
cracking risk and overall stability. The temperature gradient change has a greater impact on the
tensile stress and displacement of the arch dam, which increases dam cracking risk. In particular,
the tensile stress of the left and right upper outlets are relatively large due to the pier.

(2) The three safety factors of the Xulong arch dam are obtained, K1 = 2~2.5; K2 = 5; K3 = 8.5, and the
dam overall stability is guaranteed.

(3) The five dam stress zones are proposed to analyze the dam cracking base of numerical results.
It is recommended to use a shearing-resistance wall in the fault f57, replace the biotite enrichment
zone with concrete, and perform consolidation grouting or anchoring on the excavated exposed
weak structural zone. With optimal design of the dam structure according to the different stress
characteristics of the five stress zones, the cracking risk and overall stability of the Xulong arch
dam can be better controlled.
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Abstract: Twin-I girder bridge systems composite with precast concrete deck have advantages
including construction simplification and improved concrete strength compared with traditional
multi-I girder bridge systems with cast-in-place concrete deck. But the cracking is still a big issue at
interior support for continuous span bridges using twin-I girders. To reduce cracks occurrence in the
hogging regions subject to negative moments and to guarantee the durability of bridges, the most
essential way is to reduce the tensile stress of concrete deck within the hogging regions. In this paper,
the prestressed tendons are arranged to prestress the precast concrete deck before it is connected
with the steel girders. In this way, the initial compressive stress induced by the prestressed tendons
in the concrete deck within the hogging region is much higher than that in regular concrete deck
without prestressed tendons. A finite element analysis is developed to study the long-term behaviour
of prestressed concrete deck for a twin-I girder bridge. The results show that the prestressed tendons
induce large compressive stresses in the concrete deck but the compressive stresses are reduced due
to concrete creep. The final compressive stresses in the concrete deck are about half of the initial
compressive stresses. Additionally, parametric study is conducted to find the effect to the long-term
behaviour of concrete deck including girder depth, deck size, prestressing stress and additional
imposed load. The results show that the prestressing compressive stress in precast concrete deck is
transferred to steel girders due to concrete creep. The prestressed forces transfer between the concrete
deck and steel girder cause the loss of compressive stresses in precast concrete deck. The prestressed
tendons can introduce some compressive stress in the concrete deck to overcome the tensile stress
induced by the live load but the force transfer due to concrete creep needs be considered. The concrete
creep makes the compressive stress loss and the force redistribution in the hogging regions, which
should be considered in the design the twin-I girder bridge composite with prestressed precast
concrete deck.

Keywords: concrete creep; prestressing stress; compressive stress; FE analysis; force transfer

1. Introduction

A two or multiple-I girder system has two or more steel I girders connected with diaphragms and
composite with a concrete deck using shear studs. The steel girders are in tension and the concrete
deck is in compression in the regions of positive moments (i.e., the sagging region) under vertical
loads, which makes good use of material advantages of steel and concrete. While within the regions
of negative moments (i.e., the hogging regions), the concrete deck is in tension under vertical loads
and the tensile stress may increase due to concrete shrinkage and creep. Concrete cracking is a big
issue for the hogging regions [1–5]. High performance concrete with larger tension strength can be
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used [6] but the cost is substantial. One common way to make concrete deck in compression with
initial compressive stress to overcome the tensile stress induced by live load.

One way is to arrange prestressed tendons in the concrete deck in the hogging regions.
The prestressing compressive stress in the concrete is to overcome any additional tensile stress induced
by vertical loads and additional second order effect of shrinkage and creep. Miyamoto et al. found that
using external tendons could be considered an effective method of strengthening bridges deteriorating
due to overloading [7]. Deng and Morcous proposed a new prestressed concrete-steel composite girder,
which uses pretensioned concrete bottom flange to provide initial compressive stress in the concrete
deck [8,9]. Wang et al. investigated the behaviour of reinforced concrete strengthened with externally
prestressed tendons and they found that the basalt fibre reinforced polymer (BFRP) was feasible to
strengthen the beam behaviour [10].

Except using tendons to introduce compressive stress in concrete deck, some construction
strategies are used. Temporary loads are sometimes applied to the sagging regions (the regions
of positive moment) before the concrete cast in the hogging regions. In this way, the compressive stress
is induced in the hogging regions after the hogging region concrete is hardened and the temporary
loads are removed. Marí et al. and Dezi et al. studied the behaviour of composite bridges considering
different construction processes and they found that the construction sequence could affect the tension
stress in concrete deck in the hogging regions [11,12]. Liu et al. analysed the jacking-up method
to prestress the concrete deck and they found that jacking-up the interior support could efficiently
introduce compressive stress in the concrete deck in the hogging regions to overcome the tensile
stresses induced by shrinkage and live load [13].

Either prestressed tendons or construction strategies can introduce initial compressive stress
in the concrete deck to avoid or reduce concrete cracking in the hogging regions. However, for the
preconnected composite girder systems, the prestressed forces are applied to the whole composite
section and mostly are applied to the steel section. Kwon et al. and Hällmark et al. studied the
behaviour of steel-concrete composite girders with prestressing tendons before concrete deck connected
to steel girders [14,15]. Su et al. studied the behaviour of a continuous composite box girder with
prefabricated prestressed concrete slab in the hogging region [16]. Tong et al. studied the long-term
behaviour of the composite box girders with post connected prestressed concrete deck and the research
shows the prestressed concrete deck before connected with steel box girders can improve concrete
shrinkage [17].

In recent years, a significant amount of continuous twin-I girders with precast concrete deck
are built in China. The cracks in the hogging regions are usually controlled by the crack width
control [18–20]. However, crack width control is not an efficient way to improve the behaviour in the
hogging regions. The way to arrange prestressed tendons in concrete deck in the hogging regions
is used for twin-I girders with post connected prestressed precast concrete deck. In the paper, the
long-term behaviour of a continuous twin-I girder bridge is investigated to find the creep effect on the
compressive stresses induced by the prestressed tendons. Additionally, parametric study is developed
to find the creep effect on the prestressing the concrete deck and the force transfer between steel girders
and concrete deck.

2. Case of a Twin-I Girder Composite with Precast Deck

The bridge is composed of steel two-I girders with precast concrete deck and the steel girders
and precast concrete deck are composite with shear studs within the voids. The span arrangement is
4 × 35 m. The girder spacing is 8.95 m. The steel girder depth is 1.7 m. Cross beams are arranged with
a spacing of 7 m. Interior cross beams are not connected with the concrete deck and end cross beams at
the ends of bridge are connected with the concrete deck through the shear studs. The width of the
precast concrete deck is 16.75 m. For the concrete deck, the prestressed tendons are arranged in the
hogging regions. Figure 1 presents the structure components in the hogging regions of the bridge.
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Cross beam 

Precast concrete deck 

I girder 

Void Prestressed tendons 

Joint between 
deck segments 

Figure 1. A continuous twin-I girder with prestressed precast concrete deck in the hogging region.

As shown in Figure 2, the construction procedure including five steps:

(1) The steel girders are lifted and connected to be a four-span continuous system.
(2) All the precast concrete segments are lifted to the steel girders and the concrete deck and the steel

girders are not composite (the concrete in the voids are not casted).
(3) Only the precast concrete deck segments within the hogging regions (e.g., within the regions at

interior supports) are prestressed and the steel girders are not composite with the concrete deck
at this time.

(4) The joints and voids are casted with concrete to make the concrete deck composite with the
steel girders.

(5) The transverse tendons are prestressed and the bridge is constructed with the wearing surface
and the attached appurtenances (barriers, railings, lights, etc.).

(b) 

(a) 

(c) 

(d) 

(e) 

P1 P2 P3 P4 P5 

Figure 2. Construction sequence of the twin-I girder bridge: (a) Steel girder erection; (b) Precast
concrete deck segments erection; (c) Prestressing concrete deck in the hogging regions; (d) Cast-in-place
joints and void to connect girders and deck; (e) Constructed condition with the wearing surface and
the attached appurtenance.
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3. Finite Element Model

3.1. Elements and Meshes

The software ANSYS is used to develop analysis in the paper [21,22]. FE analyses can predict and
analyse the behaviour of steel-composite bridges [1,9,16,23]. Solid elements (element type of solid 45)
are used to model a concrete deck and shell elements (element type of shell 43) are used to model steel
girders and stiffeners. Spring element (element type of combine14) is used to model shear studs to
connect the concrete deck and steel girders. The concrete deck and the steel girders are assumed fully
connected by the shear studs. Link elements (element type of link 8) are used to model prestressed
tendons. The prestress forces in the tendons are applied with temperature. Figure 3 shows the finite
element model of the bridge. The default convergence criteria are used in the analyses.

Vertical 

1 3 

2 

Longitudinal 
Lateral 

Figure 3. Finite element model of a twin-I girder bridge with precast concrete deck.

3.2. Material Models

The steel material of the girders is modelled using an elastic isotropic material in the elastic range
with an elastic modulus of 200 GPa and Poisson’s ratio of 0.3 and a perfectly plastic isotropic material
in the inelastic range. The yield strength of the steel material is 345 MPa. The deck concrete has
23.1 MPa compressive strength (Ministry of Transport of the People’s Republic of China) [19,22,23].
An empirical stress-strain model for unconfined concrete proposed by Oh and Sause is used for the
uniaxial stress-strain relationship of concrete [24].

The creep and shrinkage are included in the model based on the equations from Ministry of
Transport of the People’s Republic of China [25]. The shrinkage effect is applied to the models through
temperature decrease in the concrete material. ANSYS does not have direct method to calculate the
creep effect. It gives metal creep model to model the creep in concrete. There are 13 creep equations in
ANSYS and one used often is as follows:

.
εcr = C1σ

C2εcr
C3 e−C4/T (1)

where, εcr is creep strain;
.
εcr is creep variance ratio of time; σ is stress; T is absolute temperature; C1

through C4 is parameters to be calculated. Usually, there are two ways to simplify the equation. One
is to assume that creep variance ratio of time is only related to stress with C2 = 1 and C3 = C4 = 0
(Method A). Thus the equations is simplified as follows:

Δεcr = C1σΔt (2)

For concrete with constant stress, the creep strains satisfy:
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εcr = ε0φ(t, t0) =
σ0

E
φ(t, t0) (3)

Equation (3) is changed with time of Δt:

Δεcr

Δt
= ε0φ(t, t0) =

σ0

E
Δφ(t, t0)

Δt
(4)

Within the time of Δt, C1 is calculated as follows:

Ci =
Δφ(ti, ti−1)

Δt
1
E

(5)

Another way is assuming there is linear relationship between creep variation rate and strain with
C2 = C4 = 0, C3 = 1 (Method B), which is denoted as follows:

Δεcr = C1εΔt (6)

For concrete with constant stress, the creep strains satisfy:

ε(t) = εe + εc(t) = (1 +φ(t, t0))εe (7)

Thus within the time of Δt, C1 is calculated as follows:

C1 =
Δφ(ti, ti−1)

Δt(1 +φ(ti, ti−1))
(8)

Figure 4 presents the validation of these two ways to analyse the creep effect for a column applied
with a vertical constant force (denoted as P) and shows that the ways agree with the results using
theoretical analysis.
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Figure 4. Finite element analysis using metal creep model for creep effect: (a) Method A; (b) Method B.

228



Appl. Sci. 2018, 8, 2598

3.3. Boundary Conditions

Continuously supported boundary conditions are used for the bridge model. The vertical
displacements (U2) at the bottom of the flange nodes are restrained at each support. At each support,
the lateral displacements (U1) of the bottom flange nodes at the bottom of the flange nodes are
restrained. The longitudinal displacements (U3) of the bottom flange nodes at the middle support are
only restrained.

4. Long-Term Behaviour Analysis

4.1. Prestressed Concrete Deck Condition

Table 1 gives the induced compressive stresses in the precast concrete deck within the hogging
regions. After the tendons prestressed, the compressive stresses on the deck top surface are from
−6 Mpa to −7 Mpa (negative value denotes compression) and are from −7 Mpa to −8 Mpa on the
deck bottom surface. The tendons are not located at the neutral axis of the deck cross-section and cause
the difference between the top surface and the bottom surface.

Table 1. Stress and deformation analysis results.

Analysis Result
Prestressed Concrete

Deck Condition
Constructed
Condition

10,000-Day Creep

Concrete deck
Bottom surface −7~−8 MPa −4.4~−6.2 MPa −2.3 MPa~−3.3 MPa

Top surface −6~−7 MPa −4.7~−5.6 MPa −2.6 MPa~−3.5 MPa

Steel girder Top flange 135 Mpa 165 MPa 10–20 MPa
Bottom flange 143 MPa 167 MPa 155–165 MPa

Tendons - 1135–1175 MPa 1115–1180 MPa
Deflection 0.066 m 0.074 m 0.040 m

4.2. Constructed Condition

Figures 5 and 6 present the normal stress variation in the concrete deck and the steel girders under
the bridge constructed condition. Within the hogging regions, the compressive stresses vary from
−5.6 MPa to −6.4 MPa at middle interior support (P3) and vary from −4.7~−5.6 MPa at the other
interior supports (P2 and P4). The maximum tension stresses in the steel girders are about 165 MPa
at P2. After the bridge constructed, the compressive stresses in the concrete deck within the hogging
regions are not small.

Figure 5. Stress at the top surface of the concrete deck under the constructed condition in the hogging region (Pa).
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Figure 6. Stress at the top flange of the steel girders under the constructed condition in the hogging region (Pa).

4.3. Long-Term Behaviour

Figure 7 shows the normal stress variation on the concrete deck top surface after 10,000 days creep
near P2. Compared with the stresses under the constructed condition, the stresses in the concrete deck
change due to the concrete creep, especially in the hogging regions. The compressive stresses decrease
to −2.6~−3.5 MPa, with a decrease of about 3 MPa from the constructed condition. Figure 8 presents
the stress variation in the steel girder. The flange stresses in the girder change a lot compared with
the constructed condition that top flange stress is in compression with stress from −10 to −20 MPa.
The stresses in the tendons are checked and it is found that no changes occur for the tendons. The results
show that the concrete creep reduces the initial compressive stress in the concrete deck and causes
force transfer between the concrete deck and the steel girders.

Figure 7. Stress at the top surface of the concrete deck in the hogging region after 10,000-day creep (Pa).

Table 1 summarizes the stress change in the bridge due to the concrete creep. The results show
that the stresses in the concrete deck and the steel girders change due to the concrete creep. The force
transfer occurs between the concrete deck and the steel girders and it mostly occurs within the
hogging regions.
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Figure 8. Stress at the top flange of the steel girders in the hogging region after 10000-day creep (Pa).

5. Parametric Studies

To study the effects of different parameters on the prestressing the concrete deck and the force
transfer between the concrete deck and steel girders, a simplified two-span I girder is conducted.
The continuous girder has two spans of 3 m + 3 m. The precast concrete deck has width of 0.5 m.
The parameters include girder depth, concrete deck thickness, prestressed compressive stress in
concrete deck and additional imposed vertical load. The additional imposed load is to model the
condition that long-term load applied on the bridge system. Note that 10,000 days creep is considered
in the analyses.

5.1. Girder Depth

Different girder depths are analysed and discussed to find the effect of girder stiffness on the
creep effect. Figure 9 gives the stress variation in the hogging region. The initial prestressing stress
is 10 MPa. Along with the increase of girder depth, the stress variations due to shrinkage and creep
decrease slightly, which indicates that the girder stiffness has little effect on the creep effect. The results
also show that the stress loss due to creep is over than 50% of the initial prestressing stress. The stresses
in the tendons do not change and the stress loss in the concrete deck is transferred to steel girders.

Figure 9. Stress variation in the concrete deck in the hogging region due to different effects for different
girder depths.
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5.2. Deck Thickness

Different deck thickness are analysed and discussed to find the effect of deck size on the creep
effect. Figure 10 presents the stress variation in the hogging region. The initial prestressing stress
is 10 MPa. The results show that the stresses due to shrinkage have no change with the increase of
deck thickness. Along with the increase of deck thickness, the stress variations due to creep varies but
the variation is not linear. The stress variation induced by creep increases with the increase the deck
thickness up to 180 mm thickness and then decreases. With the thickness of 180 mm, the stress loss is
the biggest one. But the difference is not big and the difference between the thickness of 180 mm and
160 mm is 6%. The results also show that the stress loss due to creep is over than 50% of the initial
prestressing stress.

Figure 10. Stress variation in the concrete deck in the hogging region due to different effects for
different deck thicknesses.

5.3. Prestressing Stress

Figure 11 presents the results to analyse the initial prestressing stress applied to concrete deck.
The stress due to shrinkage has no change with the increase of prestressing stress. Along with the
increase of the initial prestressing stress, the stress loss due to creep increases. The ratio between
the stress loss due to creep to the initial prestressing stress is larger for smaller prestressing stress
(e.g., 67% for 5 MPa prestressing stress and 49% for 10 MPa prestressing stress). The results show that
the prestressing stress is decreased in the concrete deck due to creep and the loss mostly is larger than
50% of the initial prestressing stress.

Figure 11. Stress variation in the concrete deck in the hogging region due to different effects for
different prestressing stress by tendons.
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5.4. Additional Imposed Load

Additional imposed load is to model the condition under long-term dead load and live load,
which induces tension in the concrete deck in the hogging regions. The tension stress induced by the
additional imposed load is used to denote the value of the imposed load. Figure 12 presents the results
to analyse the effect of additional imposed load to the creep effect. In the figure, “shrinkage” denotes
the stress variation induced by the concrete shrinkage, “creep” denotes the stress variation induced by
the concrete creep considering 10,000 days and “prestressing stress” denotes the initial compressive
stress introduced by the prestressed tendons. The initial prestressing stress is 10 MPa. The stress due
to shrinkage has no change with the increase of additional imposed load. With the increase of imposed
load, the stress loss due to creep increase, which shows that the additional imposed load have a big
effect on the creep effect.

Figure 12. Stress variation in the concrete deck in the hogging region due to different effects for
different additional imposed load.

6. Conclusions

The paper investigated the behaviour of a four-span continuous twin-I girder bridge using
prestressed precast concrete deck due to concrete creep. Simplified two-span I girder models are
analysed to find the effect on the prestressed compression and force transfer between concrete deck
and steel girders. Major findings are summarized as follows:

(1) For the continuous twin-I girder bridge, the prestressed tendons introduce compressive stress
in the concrete deck and the compressive stress under constructed condition is big and it can
overcome the tensile stress induced by shrinkage and live load.

(2) In the hogging regions, the prestressed stresses in the concrete deck are reduced due to the
concrete creep effect and the decrease is up to 50% of the initial prestressing stress.

(3) The stresses in the steel girders in the hogging regions vary big, especially for girder flange in
tension and the changes are due to force transfer from compressive stress in concrete deck.

(4) The stresses in the tendons have almost no change and the prestressed force transfers from
concrete deck to steel girders in the hogging regions.

(5) The steel girder stiffness has no effect on the prestressing stress loss in the concrete deck.
(6) The concrete deck, initial prestressing stress and additional imposed load have an effect on the

initial prestressing stress loss in the concrete deck due to concrete creep.
(7) The prestressing stress loss in the concrete due to creep mostly is over 50% and it is transferred to

steel girders to change the stress distribution of composite section in the hogging regions.
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Abstract: Grouting has always been the main engineering measure of ground improvement and
foundation remediation of hydraulic structures. Due to complex geological conditions and the
interactions between the grout and the fractured rock mass, which poses a serious challenge to the
grouting diffusion mechanism analysis, fracture grouting has been a research hotspot for a long time.
In order to throw light on the grout diffusion process in the fractured rock mass and the influence of
grout on the fracture network, and to achieve more realistic grouting numerical simulation, in this
paper a grouting process simulation approach considering fluid–structure interaction is developed
based on the 3D fractured network model. Firstly, the relationship between fracture apertures and
trace lengths is used to obtain a more realistic value of fracture aperture; then a more reliable model
is established; subsequently, based on the 3D fracture network model, different numerical models are
established to calculate fluid dynamics (grout) and structure deformation (fractured rock mass), and
the results are exchanged at the fluid–structure interface to realize the grouting process simulation
using two-way fluid-structure interaction method. Finally, the approach is applied to analyze the
grouting performance of a hydropower station X, and the results show that the grouting simulation
considering fluid–structure interaction are more realistic and can simultaneously reveal the diffusion
of grout and the deformation of fracture, which indicates that it is necessary to consider the effect of
fluid–structure interaction in grouting simulation. The results can provide more valuable information
for grouting construction.

Keywords: grouting; fracture network modeling; numerical simulation; fluid–structure interaction

1. Introduction

Many high dams are built in areas with complicated geological conditions, and the numerous
fractures and voids will increase the permeability and decrease the strength of the rock mass, which
affect the stability and safety of the dam’s foundations. As a common and effective measure to
improve the geological conditions of dam foundations, grouting is used to fill up the joints and
fractures in the rock mass so as to prevent seepage and improve the bearing capacity and deformation
resistance [1–4]. However, fracture grouting is still a difficult issue due to complicated fracture
distribution, complex fluid–structure interaction effects, and incomplete information on grout diffusion
behavior and corresponding fracture deformation. In order to reveal the grouting mechanisms in
the fractured rock mass, it is necessary to select an effective tool for studying the grouting process,
especially for considering the fluid–structure interaction.

Computational fluid dynamics (CFD) is an effective tool used to simulate fracture grouting, which
can partly overcome some limitations of experiments. In recent years, various researchers have carried
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out an abundance of research. Saeidi et al. [5] established a numerical model to study the effect
of fracture properties on grout flow and penetration length in fractured rock mass using Universal
Distinct Element Code (UDEC). Yang et al. [6] simulated the cement grout diffusion process in a
single rough fracture by the finite element method. Fu et al. [7] performed numerical simulation on
the diffusion process of cement grouting in the fractures of the rock mass to determine reasonable
hole spacing and other parameters. Hao et al. [8] developed a numerical simulation of polymer
grout diffusion in a single fracture to analyze the pressure distribution. Deng et al. [4] proposed
a CFD simulation approach based on 3D fracture network model to study the grouting process of
a dam’s foundation. Kim et al. [9] used UDEC to simulate the flow of Bingham grout in a single
joint with smooth parallel surfaces and considered the hydromechanical coupling to study its effect
on grouting performance. Ao et al. [10] simulated the grouting process in underground goaf and
analyzed the stability by applying one-way fluid–structure interaction. Liu et al. [11] combined a
finite-discrete element method (FDEM) and a grouting flow simulator to consider the hydromechanical
coupling effect in the parallel-plate model. The review of previous studies reveals that most of the
aforementioned approaches simulated the grouting process in a single fracture, 2D fracture network or
simplified rock mass, which cannot reflect the actual diffusion of grout flow in complex fractured rock
mass completely. Furthermore, these studies only studied the diffusion of grout in fractures or the
effect of grout on the rock mass, without taking the complex fluid–structure interaction between grout
flow and rock mass into account, which were different from the actual conditions.

In order to obtain a more realistic simulation of grouting process, the establishment of a precise and
reliable three-dimensional fracture network model is an important prerequisite [4]. Since deterministic
data of the fracture aperture are not available, in current studies of fracture network modeling and its
application the fracture aperture is usually ignored [12–14], reduced to a given value [15], or randomly
generated from a given range or geologically conditioned statistical distributions [4,16]. The fracture
aperture significant influence the permeability of the fractured rock masses, so it is necessary to
establish a fracture network model with a more authentic and accurate fracture aperture to simulate
the grouting process. For fractured rock mass, fractures are usually random and complex which are
fractal structure with self-similarity; according to this characteristic of a fracture, some scholars have
put forward the formula for the relationship between fracture apertures and trace lengths, and this
relationship has been widely investigated [17–20]. In this study, this relationship will be introduced
into the fracture network modeling to make up for the deficiency of the existing research.

As the pressurized grout penetrates the fractures inside the rock mass, the grout will separate
the fracture surfaces from each other, causing an interaction between the grout and the rock mass [21].
Tsang et al. [22] indicated the coupling of processes implies that the both interact in the initiation
and progress of each other. On the one hand, the grout pressure induces stresses on the surfaces
of the fracture, this will lead to the deformation of the fractures. On the other hand, the change
of the fracture aperture will affect the fracture permeability, and then results in the variation of
grout performance. So the grouting performance cannot be determined by considering each process
independently. Some theoretical studies on the interaction between grout and rock mass have been
carried out. GothäLl and Stille [21] analyzed the interaction of two parallel fracture during high
pressure grouting and discussed the effect of fracture dilation on the penetrability of fine fractures.
Rafi and Stille [23] proposed a procedure for optimizing grouting pressure based on the estimation of
grout spread and the identification of jacking of the fracture. Rafi and Stille [24] described the basic
mechanism of elastic deformation during grouting and discussed its impact on the spread of grout.
In literature [9], the authors strongly recommended that the interaction between the grout flow and
fractured rock mass should be included in the grouting analysis in order to have a precise prediction
of grout performance. With this in mind, the fluid–structure interaction (FSI) method as a numerical
technique is used to solve problems that involve the mutual interaction of fluid and structure. In
recent years, with the development of computer performance and increasing interest in more realistic
modeling, FSI has attracted extensive attention in the computational field [25]. For instance, this
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technique has been applied in the problem of internal slip during the operation of progressive cavity
pump (PCP)s in oilfield production [26], biomedical problems where blood flow interacts with blood
vessel walls [27], and the fluid–structure interaction problem of fracturing structures under impulsive
loads [28]. Of interest from a fractured grouting perspective, there is still much work to do in the
grouting simulation considering fluid–structure interaction to capture the interaction between grout
flow characteristics and deformation of the fractures.

In summary, most of the existing studies simulated the grouting process in a single fracture, 2D
fracture network or simplified rock mass, which is inconsistent with actual fractures under complex
geological conditions. Moreover, the value of fracture aperture is usually ignored or inaccurate in the
fracture network modeling, which will affect the authenticity of grouting simulation. Additionally, rich
theoretical research achievements have proposed on the interaction between grout and fracture, and
some of the grouting simulations considering fluid-structure interaction are based on single-fracture
or just using one-way fluid–solid coupling. Therefore, based on the 3D fractured network model the
numerical simulation of the grouting process considering two-way fluid-structure interaction still
needs further study.

In this study, a grouting simulation approach considering fluid–structure interaction is developed
based on the 3D fractured network model. Firstly, fracture parameters are randomly simulated by the
Latin hypercube sampling (LHS) method based on the statistical information from fracture survey
and borehole imaging of the exposed surface, the relationship between fracture apertures and trace
lengths is used to obtain the value of fracture aperture, then a more reliable 3D fracture network model
for dam foundation rock mass is established with VisualGeo software [29]. Next, the CFD simulation
model of grout (fluid) and the finite element model of fractured rock mass (structure) are established
respectively, and their governing equations are solved in different ways, with the results exchanged
through the fluid–structure interface to realize the two-way fluid-structure interaction simulation of
the grouting process. Finally, the approach is used in a case study to analyze the dam foundation
grouting to investigate the effects of fluid-structure interaction on grouting processes; the results
show that the grouting simulation considering fluid–structure interaction are more realistic and can
simultaneously reveal the grout diffusion and fracture deformation under the interaction of grout and
rock mass, which can provide more valuable information for optimizing the grouting process.

The remaining parts of this paper are organized as follows: the methodology of 3D fracture
network modeling and fluid–structure interaction simulation are introduced in Section 2. In Section 3,
the approach is applied to analysis of the grouting performance of hydropower station X and the
studies on the grouting characteristics are given in this section. Finally, the conclusions are provided in
Section 4.

2. Methodology

2.1. Modeling of 3D Fracture Network

2.1.1. Modeling Process of 3D Fracture Network

Due to the large amount of complex fractures in the rock mass of a dam’s foundations, it is difficult
to determine the exact position and occurrence of each fracture by using a deterministic model. A large
number of engineering practices and studies have shown that the fractures have obvious statistical
distribution rules and characteristics, so we established the 3D fracture network model which is close
to the real fracture conditions in a statistical sense.

The modeling process (Figure 1) mainly includes the following steps: (1) the statistical
homogeneous zone is divided firstly, then the fractures in the statistical homogeneous zone are
divided into dominant sets and the cracks with similar properties are clustered; (2) the fracture space
density and the distributions of the geometry parameters could be obtained based on the statistical
analysis; (3) the fracturing parameters are randomly simulated by the LHS method; and (4) a 3D
fracture network model is constructed in VisualGeo software.
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Figure 1. Modeling process of 3D fracture network.

2.1.2. Statistical Analysis of Fracture Geometric Characteristic Parameters

In this study, the fracture was simulated by the Baecher disc model [30] which assumed every
fracture as a thin disc (Figure 2). The fracture disc model can be defined by the following formula:

C = c(O, V, R, A) (1)

the formula defines a fracture disc with center point O, occurrence V, radius R and aperture A. Where
O = (x0, y0, z0), V = (α, β), α and β are the dip direction and dip angle of the fracture disc respectively,
and n is the normal vector of the fracture disc.

Figure 2. Baecher disc model.

The relationship between the various parameters can be expressed as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
a(x−x0)+b(y−y0)+c(z−z0)= 0
(x−x0)

2 + (y−y0)
2 + (z−z0)

2 ≤ R2

a = sinβsinα, b = sinβcosα, c = cosβ

A = f (R)

(2)

According to the exposed surface fracture catalog data and digital borehole data, the distributions
of fracture geometric characteristic parameters can be determined.

(1) Fracture space location

The Poisson process [31] is widely used to describe fracture location. The fractures are mutually
independent and the uniform distribution function are adopted to obtain the coordinates (x0, y0,
z0) of the fracture center point.

(2) Fracture density
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The Mauldon method [32] is adopted to estimate the fracture volume density. The following
equation is used to estimate the trace area density:

λa =
n1+2n2

2WH
(3)

where λa is the trace area density, n1 is the number of traces which one end can be observed, n2 is
the number of traces which both end can be observed, W is the width of rectangular window,
H is the height of rectangular window. Then, Equation (4) is adopted to obtain the fracture
volume density:

E(λv) =
E(λa)

E(D)E|sinν| (4)

where λv is the fracture volume density, D is the fracture diameter, sinν is the sine value of the dip.
(3) Fracture size

To simulate the size of the fracture surface, statistical analysis of the fracture trace length is needed
first. Huang et al. [33] put forward the estimation formula of trace length:

l =
n1+2n0

2N
πWH

W + H
(5)

where l is the fracture trace length in the window, n0 is the number of traces which neither
end can be observed, n1 is the number of traces which one end can be observed, N is the total
number of fracture traces in the window, W is the width of rectangular window, H is the height
of rectangular window. When the disc model is used to simulate the fracture, the fracture size
is expressed by its diameter. the fracture diameter distribution can be confirmed based on the
distribution of trace length.

(4) Fracture occurrence

According to Kemeny and Post [34], the fisher distribution can be used to fit fracture occurrence
and obtained relatively better results.

(5) Fracture aperture

Schultz et al. [17,18] conducted a lot of statistical studies and obtained the expression of the
relation between fracture aperture and fracture trace length:

A =βln (6)

where A is the fracture aperture, l is the fracture trace length, β and n are constants related to the
properties of fractured rock mass.

In this study, the value of n = 1 is chosen to reflect the self-similarity and fractal of the fracture
network [35–37], and then the relationship between fracture aperture and fracture trace length is linear;
based on this relationship, the existing survey data are linearly fitted to get the value of γ. Finally, the
fracture aperture can be obtained by Equation (6) based on the data of trace length.

2.1.3. Latin Hypercube Sampling (LHS) Random Sampling

After obtaining the determined probability distribution model of each fracture parameter, random
sampling of parameters is needed. The essence of the LHS method is to divide the sampling interval
according to the sampling times, and then random sampling is carried out from each subinterval. This
method avoids the collapse of the sample data and the simulation results are more stable. Therefore,
the LHS method is adopted to randomly simulate the fracture parameters in this study.

Then, taking the center point coordinates, diameters, aperture, dip direction and dip angle of
fractures simulated by LHS method as input parameters, a three-dimensional model of rock mass
fracture network is established by using VisualGeo software.
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2.2. Fluid–Structure Interaction Model

The fluid–structure interaction model mainly consists of two parts: computational fluid dynamics
(CFD) and computational structure dynamics (CSD). The grouting process is simulated by CFD and
the deformation of fractures is calculated by CSD.

The solution of fluid-structure interaction includes a directly coupled solution and partitioned
solution. The first one solves the governing equations of fluid and structure simultaneously in the same
solver by coupling the governing equations of fluid and structure to the same equation matrix, so its
advantage is that there is no time lag problem. However, a direct coupling solution may result in poor
convergence and huge computational cost. As a consequence, it is difficult to realize in fact [38]. On the
contrary, the second one solves the fluid governing equations and the structure governing equations in
different solvers, and the results are exchanged and transmitted through the fluid-structure interface.
In this study, we choose the partitioned solution to solve the fluid–structure interaction between grout
and fractures.

2.2.1. Computational Fluid Dynamics (CFD) Grouting Numerical Model

The governing equations of the grouting can be described by the continuity equation, momentum
equation, two-phase volume of fluid (VOF) equation and Papanastasiou regularized equation.

(1) The two-phase VOF equation

In the process of grouting, the grout drives out air or groundwater, which should be treated
as a two-phase flow [4]. The accurate description of the interface between two kinds of
incompatible and incompressible fluids is one of the most important issues in multi-fluid flow
computations [39], this can be solved by the VOF method which is proposed by Hirt and
Nichols [40] to track free fluid surfaces under fixed grid condition. Therefore, the VOF method is
used to keep track of the grout-air interface in this paper. In this method, a volume fractional
variable F = F (x, y, z, t) for each phase of the model in the computational domain is introduced.
Fg = 1 indicates that the volume is occupied by grout while Fg = 0 indicates that the volume
contains no grout and is in the air phase, and 0 < Fg < 1 stands for the volume that contains both
grout and air. Equation (7) is used to describe the motion of the grout-air interface:

∂Fg

∂t
+ρν∇Fg= 0 (7)

where Fg is the volume fraction of grout; ρ is the density of fluid in kg/m3; ν is the kinematic
viscosity of fluid in m2/s.

(2) The continuity equation:
∂ρ

∂t
+∇(ρu)= 0 (8)

where ρ is the density of fluid in kg/m3; t is the time in s; u is the velocity of the unit section
in m/s.

(3) The momentum equation:

ρ
du
dt

= −∇p + ρg+∇(
η

.
γ
)
+ Fst+S (9)

where p is the pressure on the fluid micro-unit in Pa, g is the acceleration of gravity in m/s2; η is
the apparent viscosity of fluid in Pa·s; the relationship between ν and η is ν = η/ρ;

.
γ is the shear

rate in 1/s, Fst is the surface tension force in N/m3 and is presented as Equation (10) [41]; and S
is the momentum resistance source term in N/m3, including inertia loss term Si and viscosity
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loss term Sν; in this paper, Si can be neglected because of the low velocity of the grout and S = Sν.
Equation (11) is the expression of the viscosity loss term Sν:

Fst= −σ∇·
( ∇Fi
|∇Fi|

)
∇Fi (10)

where Fi is the volume fraction of phases; σ is the surface tension coefficient in N/m.

Sν= −ρν

α
u (11)

where 1
α is the viscous drag coefficient and its expression is as follows:

1
α
=

g
Kν

(12)

where K is the permeability coefficient. In order to obtain single set of equations, ρ and ν in
Equations (7)–(12) are no longer constants but are variables weighted by the volume fraction of
fluid [42]:

ρ =Fgρg +
(
1−Fg

)
ρa (13)

ν =Fgνg +
(
1−Fg

)
νa (14)

where ρg, ρa, νg, νa are the density of grout, the density of air, the kinematic viscosity of grout
and the kinematic viscosity of air, respectively.

(4) The Papanastasiou regularized equation

The cement grout with a w/c ratio of less than 1 is usually described by the Bingham model.
However, in the Bingham constitutive equation, when the shear rate is close to zero, the apparent
viscosity will become infinite, which causes problems in numerical simulation. In order to solve
this problem, the Papanastasiou regularized model is used to describe the rheological properties
of cement grout [4], as shown in Equation (15):

η =

{
mτ0

.
γ = 0

η0 +
τ0.
γ

[
1−e−m

.
γ
] .

γ �= 0
(15)

where η is the apparent viscosity of fluid in Pa·s; m is the stress growth parameter in s; τ0 is the
yield stress in Pa;

.
γ is the shear rate in 1/s; η0 represents the plastic viscosity in Pa·s; and e is

a natural constant. From our previous research [4], it is considered that m = 100 can meet the
research needs and can make the numerical model effectively express the rheological properties
of cement grout.

2.2.2. Computational Structure Dynamics (CSD) Model

The rock mass is elastoplastic materials, since the objective has been to establish a model applicable
for grouting problems, the Mohr–Coulomb (M-C) shear yield criterion which is comparable to actual
rock was applied to the rock mass. The expressions of the criterion are shown as follows:

τn= C+σntanφ (16)

if τ <τn, the rock mass is linear elastic material, if τ ≥ τn, the rock mass become yield.
The linear elastic model is based on the generalized Hooke law, and the constitutive equation is

as follows:
{ε} = [D]{σ} (17)

where ε is the strain, D is the elastic matrix, and σ is the stress component.
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In the stress space, the form of the yield function is as follows:

f =
1
2
(σ1 − σ3)− 1

2
(σ1 + σ3)sinφ − Ccosφ (18)

where σ1 and σ2 are the maximum and minimum principal stresses of material damage, respectively;
C is the cohesion; and ϕ is the internal friction angle. When f ≥ 0, shear failure will occur in the material.

2.2.3. Fluid–Structure Interaction Analysis Solution

In this paper, Finite Element Analysis (FEA) software solves the structural domain (fractured rock
mass) and CFD software solves the fluid domain (grout). The two domains are interconnected on the
fluid–structure interface using the SIMULIA Co-Simulation Engine (CSE) [41] which is widely used to
couple CFD software and FEA software for fluid–structure interaction simulation [43–45].

As show in Figure 3, in the fluid-structure interaction solving process, CFD software initializes the
fluid field and passes loads to the FEA software (pressure + wall shear stress), and the deformations in
the structure can be computed by FEA software and passes displacements back to CFD software; this
can provide a new deformed geometry for the CFD software to solve the fluid field. This iteration can
be repeated until the end of the coupling process.

Figure 3. The principle of fluid–structure interaction.

On the fluid–structure interface, the stress (τ) and the displacement (d) of the fluid and structure
should be equal:

τgng = τf n f (19)

dg = d f (20)

where the subscript g and f represent grout and fractured rock mass.

2.2.4. Boundary Conditions

(1) Inlet boundary conditions: according to the data of grouting pressure measured by grouting
recorder and taking the mean value of grouting pressure during grouting period, pressure inlet is
set at the boundary of grouting borehole interval. The corresponding grout VOF at the inlet is
set to 1.

(2) Outlet boundary conditions: the pressure outlet is set at the end boundary of the fracture, and
the pressure satisfies the second boundary condition.

(3) Initial conditions: assuming that there is no groundwater during grouting, the fractures are filled
with air before grouting, and the initial air VOF in the fracture is set to 1.

(4) Displacement boundary conditions: the bottom boundary of the computational domain is the
z-axis constraint, the lateral boundaries are the x- and y-axis constraints.

3. Case Study

Hydropower station X is located in the upper reaches of Lancang River. It is a large-scale
hydropower project which mainly generates electricity and takes into account the comprehensive
utilization benefits of irrigation and water supply. The hydropower project is mainly composed of a
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gravelly soil core rockfill dam, left bank slope spillway, water diversion and power generation system,
ground workshop, and so on. The installed capacity of the hydropower station is 1400 MW, the
maximum dam height is 139.80 m, and total dam crest length is 576.68 m. The dam area exposed strata
are mainly from the Middle Jurassic flower group (J2h) and Quaternary strata (Q). The layout of the
dam’s foundation grouting curtain and the project profile are shown in Figure 4. The dam foundation
curtain grouting project is divided into several continuous grouting units. In this study, a typical
grouting unit is taken as a case study to simulate a three-dimensional random fracture network. The
location of the study area is shown in the red wireframe in Figure 4b. This area is the foundation
curtain grouting unit of the river bed dam section and is also the main area of the dam foundation
seepage control of this project. In the study area, there are 41 grouting boreholes including 21 in the
upstream row and 20 in the downstream row with the hole spacing of 1.5 m, the diameter of the
grouting borehole is 75 mm, and the total depth is 60 m.

Figure 4. The project profile: (a) the layout of project and (b) the study area.

3.1. Simulation of 3D Fracture Network

According to the size of the exposed surface and the depth of the grouting hole, the study area is
30 m × 16 m × 60 m (length × width × depth). In the study area, a total of 83 fractures were recorded
on the exposure surface, the fracture sketch picture and the fracture dominant sets diagram are shown
in Figure 5. The fractures were divided into 3 sets based on the occurrence.

Figure 5. The fracture sketch picture and the fracture dominant sets diagram of the fracture network in
the exposed surface: (a) Fracture sketch picture and (b) Fracture dominant sets diagram.
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The distribution of fracture parameters in each set is fitted according to mathematical statistics,
the results shows that the trace lengths of the three sets of fractures obey the logarithmic normal
distribution and the occurrences obey the Fisher distribution. The statistical results of the fracture
parameters of the dam foundation are shown in Table 1 (Taking first set fractures as an example).

Table 1. Statistical results of fracture parameters.

Set
Fracture
Number

Regional
Volume (m3)

Parameter Mean Minimum Maximum Distribution

1 2587 28,800

Coordinate X/m 15 0 30
UniformCoordinate Y/m 8 0 16

Coordinate Z/m 30 0 60
Diameter/m 1.93 0.31 2.89 Lognormal

Dip direction/degree 345.00 340.00 349.98
FisherDip angle/degree 15 10.00 19.98

According to the statistical results of fracture parameters of the dam foundation rock mass, the
fracturing parameters are randomly simulated 10 times by the LHS method and the optimal results
were obtained. Then, the 3D fracture network models are constructed in VisualGeo software. The
effect drawing of the final 3D fracture network model for the study area is shown in Figure 6.

Figure 6. Final 3D fracture network model.

3.2. Grouting Simulation Considering Fluid–Structure Interaction

In this study, the second stage (3–6 m) of the grouting borehole 3-LR1-33 is selected from the
established 3D fracture network model as the simulation object, the selected model is a cylindrical
area centered on the grouting borehole with the radius of 1.5 m, which contains 20 fractures, including
7 fractures in the first set, 4 fractures in the second set and 9 fractures in the third set (Figure 7). There
are 9 independent fractures which are not connected to the existing hydraulic fracture network and
removed from the model. Hence, as shown in Figure 8a, the fracture model for fluid computation
contains 11 fractures, of which 5 fractures are the primary fractures intersecting with the grouting
borehole and the parameters of each fractures are arranged in Table 2. Figure 8b shows the fracture
grid model, and the number of cell meshes is 2,319,281. Figure 8c is the rock mass geometrical model
and Figure 8d is its grid model with 34,346 elements. The conditions of the simulated calculation
are as follows: the water–cement ratio of cement grout is 1:1, the grouting pressure is 1.0 MPa, and
the permeability rate is 7.23 Lu. and the physical mechanical parameters of rock masses is shown in
Table 3.
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Figure 7. Selected grouting simulation area.

 
Figure 8. Fluid calculation model: (a) fracture geometrical model, (b) fracture grid model, and
structural calculation model: (c) rock mass geometrical model, (d) rock mass grid model.

Table 2. Geometric parameters of the computation fracture mode.

Fracture
Coordinate/m

Radius/m
Dip

Direction/Deg
Dip

Angle/Deg
Aperture/m

X Y Z

1-1724 19.874 9.182 56.403 0.835 344.432 18.027 0.0089
1-1647 19.053 9.902 55.445 1.213 347.699 13.503 0.0129
1-872 19.157 8.701 55.255 0.726 347.079 14.107 0.0077
1-952 17.818 10.036 52.685 0.543 349.080 15.092 0.0058
2-220 20.193 7.555 57.400 1.246 41.687 80.996 0.0132
2-562 18.444 14.515 54.789 0.755 41.635 86.409 0.0080
2-121 17.862 13.714 51.170 1.162 39.079 85.291 0.0124
3-1755 18.708 7.543 56.899 1.150 9.167 14.944 0.0122
3-2007 16.190 8.332 56.259 1.099 13.901 11.962 0.0117
3-2881 19.736 7.530 55.015 0.784 7.736 10.360 0.0083
3-699 19.515 9.665 54.138 1.035 9.766 19.581 0.0110

1 The primary fractures are marked in bold in the table.

Table 3. Physical mechanical parameters of rock masses.

Medium
Density
(kg/m3)

Elastic Modulus
(MPa)

Poisson Ratio
μ

Cohesion C
(MPa)

Internal Friction
Angle ϕ (◦)

Slate 2690 4000 0.25 9.5 37.7

3.2.1. Analysis of Fluid Calculation

1. Analysis of Grout Diffusion Process

Driven by grouting pressure, the injected grout penetrates into the primary fractures intersecting
with grouting borehole and then migrates into the fracture network. As shown in Figure 9, the grout
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diffusion length increases gradually over time. After 60 s, most of the primary fractures have been
filled with grout except primary fracture 1-1647; this is because the radius of fracture 1-1647 is larger
and there are two secondary fractures intersecting with it, which hinders the further diffusion of grout
in it. After grouting, primary fractures are completely filled with grout, secondary fractures are mostly
filled, and other fractures are filled with a little grout.

Figure 9. Grouting diffusion process.

For details, five primary fractures (1-1724, 1-1647, 1-872, 3-2881, 1-952) intersecting directly with
the grouting borehole are the main passages of the grout, and then the grout diffuses from the primary
fracture to the secondary fractures. From Figure 9, it can be seen that there are secondary fractures
intersecting with primary fractures, and the grout diffusion at the intersection presents a non-uniform
spread shape. Thus, the filling of the primary fractures is influenced by the number of intersecting
secondary fractures. As shown in Figure 9, the filling rate of secondary fracture 2-220 is 100%, this
is due to the aperture of fracture 2-220 being 13.2 mm, which is bigger than other fractures, and it
intersects with two primary fractures, of which the intersecting length with primary fractures 1-1647 is
relatively large, reaching 1.6447 m. Secondary fracture 2-562 is basically filled with grout because it
intersects with three primary fractures (1-1647, 1-872, 3-2881), but the length of intersection is short, and
its aperture is 0.8 mm which is relatively small resulting in incomplete grout filling. Secondary fracture
2-121 is not fully filled with grout due to the hindrance of fracture 3-699 and the small intersections
with fracture 3-2881 and 1-952. In summary, the filling of the secondary fractures is related to the
fracture aperture and the intersection length between secondary facture and primary fracture. For
other fractures (3-1755, 3-699), the grout comes from secondary fractures and they are far from the
grouting borehole, so the filling rate is low.

In the actual project, the grout borehole spacing is 1.5 m, and thus the fractures that are not fully
filled will be grouted by adjacent grouting boreholes. In addition, the real cement consumption is
244.74 kg, and the simulated cement consumption is 278.41 kg with an error of 13.76% compared to
the real cement consumption. Therefore, considering the complexity of geological conditions, there is
a good agreement between the simulated and actual values, and this approach can be used effectively
to determine the grouting effect.

The maximum radial diffusion length variation of the primary fractures is analyzed and compared
in Figure 10. At the beginning of grouting, there is no significant difference in the variation of grout
diffusion length with time in each fracture, after 10 s, the difference of diffusion rate in each fracture
gradually appeared. The diffusion rate in fracture 1-952 is the lowest because its aperture is the
smallest with 5.8 mm and the diffusion rate in fracture 1-1647 is the fastest because its aperture is the
biggest with 12.9 mm. As for the other three fractures (1-1724, 1-872, 3-2881), they have similar fracture
apertures, but their grout diffusion rate is different, this is due to their different dip angles, and the
grout diffusion rate increases with the dip angle. In summary, fracture aperture and dip angle will
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affect grout diffusion rate and the grout diffusion rate is proportional to them. Besides, fracture 1-1647
with the biggest aperture but smaller dip angle, and the maximum grout diffusion rate indicates that
the fracture aperture is the main effect factor.

Figure 10. Variation of grouting diffusion length with time.

2. Comparison Analysis

In order to further analyze the simulation results, the effects of fluid–structure interaction in
the grouting process are investigated through a comparison with the conventional CFD simulation
neglecting these effects.

It can be seen from Figure 10 that the variation trend of the grout diffusion length in each fracture
obtained by conventional CFD simulation is same as that obtained by fluid–structure interaction
simulation. However, at the same grouting time, the fluid–structure interaction simulation results
display a larger grouting diffusion length than the conventional CFD simulation results, that is, the
grouting diffusion rate is faster. This can be explained thus: when considering the fluid–structure
interaction effect, the fracture deformation occurs due to the grout pressure induces stresses on
the surface of the fracture during the grouting process, which will improve the grout penetrability
because the grout will diffuse more easily in a fracture with larger aperture. Therefore, ignoring the
fluid–structure interaction effects in the simulation of grouting will lead to an underestimation of the
grout diffusion ability.

3.2.2. Analysis of Structural Calculation

In this section, the fractured rock mass in the study area is analyzed to explore the effects of
fluid–structure interaction on the rock mass. The maximum and minimum principal stresses of rock
mass are shown in Figure 11, which indicates that during the grouting process, most of the rock mass
is subjected to compressive stress and the maximum compressive stress is 4.936 MPa. The area near the
grouting borehole, the local boundary of the rock mass and fractures are partially subjected to tensile
stress, and the maximum tensile stress is 3.361 MPa. The maximum tensile stress and the maximum
compressive stress of the rock mass during grouting are less than the tensile strength (45.56 MPa) and
the compressive strength (6.32 MPa) of the rock mass. Therefore, the rock mass of the grouting area
will not generate new fractures or lifting deformation.

In order to understand the influence of grout on the fracture aperture during grouting process,
the aperture variation of fracture 1-1724 is analyzed at 50 s and 100 s. As shown in Figure 12, the
maximum aperture increment happens at the intersection of grouting holes and fracture, and when at
50 s, the minimum aperture increment occurs at about 0.6 m where the grout front diffuses to. Then at
100 s, the grout diffusion length increases, the minimum aperture increment occurs at about 1.0 m, and
the increment of the aperture along the grout diffusion distance is larger than that at 50 s. In summary,
the aperture increment decreases non-linearly along the grout diffusion length and as the grouting
time increases, the increment of aperture increases and the fracture deformation range expands.
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Figure 11. The principal stress contours. (a) The first principal stress contours, (b) the third principal
stress contours.

Figure 12. Fracture aperture variation along the grout diffusion length.

Figure 13 shows the displacement vectorgraph of fractured rock mass, it can be seen that the
aperture variation trend of primary fractures is approximately the same, for each fracture, the largest
displacement occurs at the intersection of the fracture and grouting borehole, and the smallest at the
end of the fracture. For secondary fractures, the displacement happens at the intersection of primary
and secondary fractures. As shown in Figure 13, the maximum displacement of the whole area occurs
at the lower fracture surface of fracture 1-1647, i.e., the region 2©. This is because that the distance
between fracture 1-1647 and fracture 1-872 is 0.43 m which is relatively close, fracture 2-220 intersects
with fracture 1-1647 and inserts into the rock mass between fracture 1-1647 and 1-872, so the rock mass
in this region is the most vulnerable and prone to deformation. Similarly, the region 1© is also the case
where the fracture 2-220 intersects the fracture 1-1724, so that the rock mass in the region 1© becomes
less rigid, but the fracture 1-1724 is farther from the surrounding fractures, so the deformation of the
region 1© is smaller than the region 2©. For fracture 1-872, we can see that the displacement of its upper
surface is small. This is because the grouting process is conducted from top to bottom, so the fracture
1-1647 is grouted and deformation occurred before fracture 1-872, which offsets most deformation of
the upper surface of the fracture 1-872. As for region 3©, the distance between the fracture 3-2881 and
the fracture 1-872 is small with 0.293 m, but the rock mass is still relatively rigid due to only a small
portion of fracture 2-562 being inserted in the rock mass of this region, so that region 3 does not have
large displacement. Overall, the maximum displacement of the entire area is 0.1181 mm, which is very
small, so there will be no generation of new fractures and other adverse conditions in this area under
the action of grouting.
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Figure 13. Vectorgraph of fracture displacement.

In summary, the effects of fluid–structure interaction between the grout and the rock mass
will affect the grout diffusion process and the rock mass deformation. Therefore, grouting process
simulation considering the fluid–structure interaction can better reproduce the grout diffusion and
rock deformation process and explore the grouting mechanism under real conditions.

3.3. Parameter Analysis

The parameters affecting the grouting process include grouting pressure, water–cement ratio
and elastic modulus of rock mass. In order to discuss the influence of different parameters on the
grouting process, the diffusion length of fracture 1-1724 at 20 s is analyzed at different grouting
pressures (0.5 MPa, 1.0 MPa, 1.5 MPa) and different water-cement ratio grouts (0.7, 1.0, 2.0), and the
maximum displacement of the rock mass is analyzed at different grouting pressure (0.5 MPa, 1.0 MPa,
1.5 MPa) and different elastic modulus (4 GPa, 10 GPa, 20 GPa, 40 GPa). The results are shown in
Figures 14 and 15, respectively.

Figure 14. The grout diffusion length at different grouting pressures and different water–cement
ratios (20 s).

Figure 15. The maximum displacement of rock mass at different grouting pressures and different
elastic modulus.
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As shown in Figure 14, under the same grouting pressure, the grout diffusion length increases
with the water–cement ratio due to the larger the water-cement ratio, the smaller the density, and the
yield stress and plastic viscosity of the grout increasing with the decrease of density, which results
in a faster grout flow rate. In addition, in the case of the same grout water–cement ratio, the grout
diffusion length increases as the grouting pressure increases. Furthermore, as shown in Figure 15,
under the same grouting pressure, with the increase in elastic module, the maximum displacement
of the rock mass decreases, and with the increase in grouting pressure, the maximum displacement
of the rock mass increases accordingly. The maximum displacement under 1.5 MPa is small with
0.1391 mm, indicating that the grouting pressure can be appropriately increased to 1.5 MPa to improve
the grouting efficiency without causing adverse conditions.

4. Conclusions

The purpose of this study is to investigate the grouting process in fractured rock mass and
the influence of grout on the fracture network; thus, a grouting simulation approach considering
fluid–structure interaction based on the 3D fractured network model is developed, and the hydropower
station X is taken as a case study to do some in-depth analysis using the proposed approach. The
results show that the grouting simulation considering fluid–structure interaction is more realistic
and can simultaneously reveal the grout diffusion and fracture deformation, which indicated that
it is necessary to consider the effect of fluid–structure interaction in grouting simulation. The main
conclusions of this study are as follows:

(1) In fracture network modeling studies, fracture aperture values are often ignored or inaccurate,
which will affect the authenticity of grout simulation. Combined with the exposed surface fracture
catalog data, we use the relationship between fracture apertures and trace lengths to obtain a
more realistic value of fracture aperture and to establish a more reliable model for numerical
simulation of grouting.

(2) During the grouting process, the filling of the primary fractures is influenced by the number
of intersecting secondary fractures, whilst the filling of the secondary fractures is related to
the fracture aperture, and the length of the intersection between the secondary facture and
the primary fracture. Fracture aperture and dip angle have a significant effect on the grout
diffusion rate, while the fracture aperture is the major influencing factor. Moreover, the effect
of fluid–structure interaction between the grout flow and the rock mass has a certain influence
on the grout diffusion length and neglecting this effect will cause an underestimation of the
grouting performance.

(3) When the fractures in a certain region intersect with each other and are close to other fractures in
the surrounding area, the rock mass between such fractures will be the least rigid and prone to
deformation during the grouting process.

(4) Grouting pressure, grout water–cement ratio and rock mass elastic module all have effects
on the grouting process. Therefore, in the grouting construction process, the appropriate
grouting pressure and grout water–cement ratio should be selected according to different
geological conditions.

(5) The effects of fluid–structure interaction between the grout and the rock mass will affect
the grout diffusion process and the rock mass deformation. Therefore, the grouting process
simulation considering the fluid–structure interaction can better analyze grout diffusion and rock
deformation, and hence explore the grouting mechanism under real conditions.

These results can provide an important theoretical basis and valuable information for grouting
construction, and in future research the grouting performance considering the effect of underground
water can be further studied.
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Abstract: We present a stochastic bulk damage model for rock fracture. The decomposition
of strain or stress tensor to its negative and positive parts is often used to drive damage and
evaluate the effective stress tensor. However, they typically fail to correctly model rock fracture in
compression. We propose a damage force model based on the Mohr-Coulomb failure criterion and
an effective stress relation that remedy this problem. An evolution equation specifies the rate at
which damage tends to its quasi-static limit. The relaxation time of the model introduces an intrinsic
length scale for dynamic fracture and addresses the mesh sensitivity problem of earlier damage
models. The ordinary differential form of the damage equation makes this remedy quite simple and
enables capturing the loading rate sensitivity of strain-stress response. The asynchronous Spacetime
Discontinuous Galerkin (aSDG) method is used for macroscopic simulations. To study the effect of
rock inhomogeneity, the Karhunen-Loeve method is used to realize random fields for rock cohesion.
It is shown that inhomogeneity greatly differentiates fracture patterns from those of a homogeneous
rock, including the location of zones with maximum damage. Moreover, as the correlation length
of the random field decreases, fracture patterns resemble angled-cracks observed in compressive
rock fracture.

Keywords: bulk damage; brittle fracture; rock fracture; random fracture; Mohr-Coulomb;
Discontinuous Galerkin

1. Introduction

Interfacial, particle, and bulk or continuum models form the majority of approaches used for
failure analysis of quasi-brittle materials at continuum level. Interfacial models directly represent
sharp fractures in the computational domain. Some examples are Linear Elastic Fracture Mechanics
(LFEM), cohesive models [1,2], and interfacial damage models [3–7]. Since cracks are explicitly
represented, interfacial methods are deemed accurate when crack propagation is the main mechanism
of material failure. However, external criteria are needed for crack nucleation and propagation
(direction and extension). Moreover, accurate representation of arbitrary crack directions can be
cumbersome in computational settings. Mesh adaptive schemes [8–10], eXtended Finite Element Methods
(XFEMs) [11–13], and Generalized Finite Element Methods (GFEMs) [14,15] address this problem to some
extend. However, for highly dynamic fracture simulations and fragmentation studies, even these
methods have challenges in accurate modeling of the fracture pattern. Particle methods such as
Peridynamics [16–18] have been successfully used to model highly complex fracture patterns that are
encountered in dynamic (rock) fracture. They model continua as a collection of interacting particles.

Bulk or continuum damage models approximate the effect of material microstructural defects and
their evolution, e.g., microcrack nucleation, propagation, and coalescence, through the evolution
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of a damage parameter. Due to the implicit representation of microcracks and other defects,
bulk damage models are more efficient than interfacial and especially particle methods. In addition,
damage pattern is obtained as a part of the solution and no external criteria are needed for crack
nucleation and propagation. Finally, since damage is a smooth field interpolated within finite elements,
complex fracture patterns can be easily modeled by damage models, wherein the thickness of cracks is
effectively regularized by the damage field.

Earlier bulk damage models, however, suffered from mesh sensitivity problem where the width of
the localization and damaged region was proportional to element size; as a result, finer meshes resulted
in a more brittle fracture response. This problem is related to the loss of ellipticity/hyperbolicity of
the (initial) boundary value problem for the earlier formulations [19,20], and can be resolved by
the introduction of an intrinsic length scale to the damage evolution formulation. In gradient-based
models, this is achieved by adding higher order derivatives of the damage or strain fields to the damage
evolution equation [21,22]. In nonlocal approaches, strain or damage field employed in a local damage
formulation, is in turn computed over a neighborhood of finite size [23,24]. Finally, time-relaxed
damage formulations possess an internal time parameter which through its interaction with elastic
wave speeds introduce a finite length scale for the damage model in transient settings [25–28].
Related to these remedies is the phase field method which closely resembles a gradient-based damage
model [29]. The sharper approximation of crack width is one of the main advantages of the phase field
methods to gradient-based damage models [30].

We have presented a time-delay damage model for dynamic brittle fracture in [31]. The coupled
elastodynamic-damage problem is solved by the asynchronous spacetime Discontinuous Galerkin (aSDG)
method [32,33]. This damage model addresses the mesh sensitivity problem of the earlier damage
models by the third approach discussed above, in that, damage evolution is governed by a time-delay
model. In addition, the existence of a maximum damage evolution rate results in an increase in
both the maximum attainable stress and toughness as the loading rate increases. This loading rate
dependency of strength and toughness is experimentally verified; see for example [24,34]. Finally,
the damage evolution law is an Ordinary Differential Equation in time. This greatly simplifies the
damage model formulation and lends itself to the aSDG method; the aSDG method directly discretizes
spacetime by elements that satisfy the causality constraint of the underlying hyperbolic problem
being solved. The nonlocal damage models violate this causality constraint, whereas the majority
of gradient-based damage models are not hyperbolic. In contrast, the time-delay damage model
maintains the hyperbolicity of the elastodynamic problem. Besides, the ODE form of the governing
equation greatly simplifies the application of initial and boundary conditions for the coupled problem.

The distribution of material defects at microstructure can have a great effect on macroscopic
fracture response, particularly for quasi-brittle materials. Some examples are high variability
in fracture pattern for samples with the same loading and geometry [35], high sensitivity of
macroscopic strength and fracture toughness to microstructural variations [36], and the so-called
size effect [37–39], i.e., the decrease of the mean and variations of fracture strength for larger
samples. Weibull model [40,41] is one of the popular approaches for modeling the effect of defects in
quasi-brittle fracture, particularly the size effect. We have used the Weibull model in the context of an
interfacial damage model to capture statistical fracture response of rock, in hydraulic fracturing [42],
fracture under dynamic compressive loading [43], and in fragmentation studies [44,45]. However,
these models are computationally expensive due to the use of a sharp interfacial damage model.

In this manuscript, we propose a stochastic bulk damage model for rock fracture. There are two
main differences to the damage model presented in [31]. First, in damage mechanics often only the
spectral positive part of either strain or elastic stress tensor is used to drive damage accumulation.
Moreover, upon full damage, only the negative part of the stress tensor is maintained in forming the
effective stress. While these choices are appropriate for tensile-dominant fracture, they have some
shortcomings for rock fracture under compressive loading. Specifically, using these models damage
does not accumulate under compressive loading; even if it could, it would not have modeled the
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failure process as the effective stress remains the same as the elastic stress of the intact rock. Herein,
we propose a new damage model based on the Mohr-Coulomb failure criterion and an effective
stress that correctly represents rock failure in compression. Second, we employ a stochastic damage
model wherein rock cohesion is treated as a random field. This aspect is important for the uniaxial
compression examples considered, as due to the lack of macroscopic stress concentration points highly
unrealistic fracture patterns will be obtained by using a homogeneous rock mass model. We note that
the use of a bulk damage model makes the proposed approach significantly more efficient than the
stochastic fracture problems [42–45] studies by the authors using an interfacial damage model.

The outline of the manuscript is as follows. The formulation of the stochastic damage model,
its coupling to elastodynamic problem, and the aSDG method are discussed in Section 2. We use
a dynamic uniaxial compressive example to demonstrate the effect of material inhomogeneity on
fracture response in Section 3. Final conclusions are drawn in Section 4.

2. Formulation

The first three subsections are pertained to the formulation of damage model. In Section 2.1 the
formulation of the damage force parameter based on the Mohr-Coulomb (MC) failure criterion and the
damage evolution equation are provided. In Section 2.2 the coupling of elasticity and damage problems
through the effective stress is described. Certain properties of the damage model are discussed in
Section 2.3. A brief description of the aSDG method and the implementation of the damage model is
provided in Section 2.4. Finally, the stochastic aspects of the damage model are explained in Section 2.5.

2.1. Bulk Damage Problem Description

2.1.1. Damage Driving Force

As will be discussed in Section 2.2, the damage parameter D ∈ [0, 1] gradually reduces the
elasticity stiffness in the process of material degradation. Damage evolution if generally driven by
the strain field ε. For the remainder of the manuscript, we assume that the spatial dimension is two.
The symmetric elastic stress tensor σ is defined as,

σ = Cε, where σ =

[
σxx σxy

σyx σyy

]
and ε =

[
εxx εxy

εyx εyy

]
(1)

are the expressions of stress and strain tensors in global coordinate system (x, y) and C is the elasticity
tensor. Instead of ε, damage evolution can be expressed in terms of σ. This is more suitable for rock
fracture given that many known failure criteria such as Mohr-Coulomb (MC) or Hoek-Brown [46] are
expressed in terms of the stress tensor. Figure 1 shows the Mohr-Coulomb failure criterion in terms
of normal σ and shear τ traction components on a fracture surface. We employ the tensile positive
convention for σ. The failure criterion is determined by the cohesion c and friction angle φ = tan−1(k),
where k is the friction coefficient. In the figure, the Mohr circle for a stress tensor A (red semi-circle)
corresponding to principal stresses σ2 < σ1 is shown. Since only isotropic rocks are considered herein,
c and φ are assumed to be constant with respect to the orientation of principal stresses (with respect to
the global coordinate system axes). We define the scalar stress as,

c(σ, φ) :=
R

cos φ
+ σave tan φ (2)

where as shown in Figure 1, c is the ordinate of the tangent line on the Mohr-circle with angle φ,
and the radius R and average normal stress σave are given by,
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R :=
σ1 − σ2

2
=

√
(σxx − σyy)2

4
+ σxy2, (3a)

σave :=
σ1 + σ2

2
=

σxx + σyy

2
, (3b)

Figure 1. Mohr-Coulomb failure criterion and scalar stress c for a given stress state.

Figure 1 shows two stress states. For the stress state B, the entire Mohr circle is below the failure
criterion curve, thus no degradation is expected. For the stress state A, the Mohr circle expands
beyond the failure criterion curve; in a binary intact and failed classification, this stress state would be
considered failed. These stages correspond to c(σ, φ) < c and c(σ, φ) ≥ c, respectively. Some specific
strengths corresponding to the MC criterion c(σ, φ) = c are shown in Figure 2 and are given by,

sht =
c

tan φ
Hydrostatic tensile strength (4a)

sat =
2c cos φ

1 + sin φ
Uniaxial tensile strength (4b)

ss = c cos φ Shear strength (4c)

sac =
2c cos φ

1 − sin φ
Uniaxial compressive strength (4d)

Figure 2. Relation of different fracture strengths, sht, sat, ss, and sac to cohesion c.

258



Appl. Sci. 2019, 9, 830

As will become clear later, the damage model, regularizes the process of failure. Otherwise,
failure for a stress state occurs instantaneously once MC criterion c(σ, φ) = c is satisfied; for example,
when σxx = σyy > 0 reaches sht (σxy = 0). To facilitate this, the damage force is defined as,

Df (c, c, c) :=

⎧⎪⎪⎨⎪⎪⎩
0 c ≤ c
c−c
c−c c < c < c

1 c ≤ c

(5)

where c corresponds to the ordinate of the upper MC line shown in dashed line in Figure 1.
The brittleness factor β defines a relation between the two MC lines through c = βc. In the absence of
the damage model, complete failure occurs for any positive value of Df as the Mohr circle expands over
the failure criterion. However, in the context of the damage model, Df corresponds to the quasi-static
damage value for a given strain ε, which through (1) and (2) defines c. For example, for the strain
(elastic stress) state A in Figure 1, Df = 0.5.

2.1.2. Damage Evolution Law

The damage value can be taken to be equal to the damage force. However, this local definition of
D has several shortcomings, as will be discussed below and in Section 2.3.2. We employ the time-delay
model in [3,25] for damage evolution. The rate of damage evolution, Ḋ, is given by,

Ḋ =

{
Dsrc(D, Df ) =

1
τc
(1 − e−a〈Df −D〉) D < 1

0 D = 1
(6)

where Dsrc(D, Df ) is a general source term for the evolution equation Ḋ = Dsrc(D, Df ). This function
can be calibrated from experimental strain-stress results, for example, for uniaxial tensile/compressive
loading. The specific form of Dsrc(D, Df ) is taken from [3,47] as it is claimed to accurately model
materials’ rate effect; cf. Section 2.3.2. In addition, τc is the relaxation time, a is the brittleness exponent,
and 〈.〉 is the Macaulay positive operator.

Albeit its simplicity, this evolution model incorporates several essential characteristics of real
materials. First, we observe that the damage evolution is governed by the difference of damage D and
damage force Df . The higher the difference, the higher the damage rate. Moreover, when D = Df ,
damage evolution terminates. That is, Df is the target damage value; if D is smaller than the target
value, it evolves until it reaches Df . Second, damage cannot instantaneously reach Df given that Ḋ
is bound by the maximum damage rate 1/τc. As will be discussed in Section 2.3.2, this results in
the rate-sensitivity of strain-stress response. Third, the positive operator ensures that damage is a
nondecreasing function in time (no material healing processes). Finally, Figure 3 shows the effect of a;
for higher values of a, even small differences between Df and D, quickly jumps up the damage rate
close to its maximum value of 1/τc; implying a more brittle response.

2.2. Coupling of Damage and Elastodynamic Problems

The equation of motion, corresponding to strong satisfaction of the balance of linear momentum
for elastodynamic problem, reads as,

∇ · σeff + ρb = ṗ, (7)

where σeff, b, and p are the effective stress tensor, body force, and linear momentum density,
respectively. The linear momentum density is defined as p = ρu̇, where ρ is the mass density.
This equation is augmented by the compatibility equations between displacement, velocity, and strain,
and initial/boundary conditions to form the elastodynamic initial boundary value problem.
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Figure 3. The effect of brittleness exponent a on the rate of damage evolution.

The coupling between damage and elastodynamic problems is through the effective stress tensor
σeff. In the simplest form, the scalar damage parameter D linearly degrades the elasticity stiffness
tensor, that is σeff = (1 − D)σ = (1 − D)Cε [21]. However, in more advanced damage-elasticity
constitutive equations, only certain parts of the elastic stress (or elastic strain) are degraded by
D [48]. By inspecting Figures 1 and 2, it is observed that damage is induced by high tensile and
shear stresses and no damage is induced by a hydrostatic compressive stress state (σ1 = σ2 < 0).
Accordingly, we define a consistent damage-elasticity constitutive equation in which the entire elastic
stress, except its hydrostatic compressive part, are degraded by D. That is,

σeff = (1 − D)σd + (1 − D)〈σh〉+ 〈σh〉− (8)

where σh and σd are hydrostatic and deviatoric parts of σ. The positive and negative (〈σh〉− =

σh − 〈σh〉) parts of σh correspond to the hydrostatic tensile and compressive stresses of σ.
For example, if σ2 ≤ σ1 are the principal values of σ, σd, 〈σh〉, and 〈σh〉− have the principal values
of [(σ2 − σ1)/2, (σ1 − σ2)/2], [〈(σ2 + σ1)/2〉, 〈(σ2 + σ1)/2〉], and [〈(σ2 + σ1)/2〉−, 〈(σ2 + σ1)/2〉−],
respectively, all with the same principal directions. Clearly, they correspond to the pure shear, tensile,
and compressive parts of σ.

2.3. Properties of the Damage Model

We first discuss the properties of the damage force and effective stress models, concerning the
mechanisms that drive damage and lead to the stress state at full damage. Next, we discuss how the
damage evolution law captures material’s stress rate effect and alleviates the mesh sensitivity problem
of local damage models.

2.3.1. Damage Force and Effective Stress

Equations (5) and (8) determine under what strain (elastic stress) conditions damage initiates
and how the effective stress evolves as D tends to unity. A common approach in continuum damage
mechanics is to break the elastic stress tensor into its spectral positive and negative parts, and to
express Df and σeff as,
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Df (σ) = Df (σ+) (9a)

σeff = (1 − D)σ+ + σ− (9b)

We note that alternative expressions exist where instead of σ, the spectral decomposition of strain
is considered [21,49–51]; however, due to the use of σ in (5) and (8), the form (9) is preferred for the
discussion in this section.

Rock fracture is often under compressive stress state. The shortcomings of (9) can be illustrated
by referring to Figure 1. First, as can be seen a large difference between the principal stresses σ1 and σ2

corresponds to a large enough shear stress τ that can initiate damage evolution; see for example the
stress state A. However, if (9a) is used, Df (and damage) remain zero, since σ+ = 0. Second, even if
damage could evolve by an equation other than (9a), the stress would not degrade using (9b); that is,
σeff = σ− = σ at D = 1. In contrast, stress state A induces a Df = 0.5; cf. (5). Moreover, Df is sensitive
to the hydrostatic stress. For example, for the same maximum shear τ and higher compressive σave,
no damage occurs for the stress state B. Finally, through damage evolution, σeff tends to the hydrostatic
compressive stress 〈σh〉− as D → 1. This can be seen for stress state A and D = 0.5. In damage reaches
unity, the effective stress state will correspond to the point σave in the figure.

The two sets of equations for Df and σeff predict a similar response for tensile dominant loading,
i.e., when σave > 0; while there are some differences in the details of damage evolution, in both cases
σeff → 0 as strain (proportionally) increases. There are, however, some differences in the failure
damage state, σeff(D = 1), for pure shear and compressive dominant mixed loading (σ2 < 0 < σ1 and
|σ2| > σ1). In short, the proposed damage model based on the Mohr-Coulomb failure criterion is more
appropriate for rock fracture, especially when compressive mode failure is concerned.

2.3.2. Damage Evolution: Rate Effects and Mesh Sensitivity

Figure 4 compares strain stress responses for three different model and loading scenarios.
The loading considered can correspond to any of the strengths in (4). The nondimensional scalar
elastic stress, strain, and effective stress are defined as σ′ = σ/σ, ε′ = σ′ = Cε/σ, and σ′

eff = σeff/σ,
respectively, where σ, ε, and σeff are the scalar elastic stress, strain, and effective stress. (Note that
the scalar elastic stress measure σ in this section is different from the normal stress component in
the Mohr-Coulomb criterion; cf. Figure 1.) These scalar values, σ, and stiffness C correspond to a
particular loading condition; for example for uniaxial tensile loading σ = σxx, ε = εxx, σ = sat, (cf. (4b)).
The corresponding stiffness is C = E and E/(1 − ν2), for plane stress and plane strain conditions,
respectively, where E and ν are the elastic modulus and Poisson ratio.

As loading (ε′) increases, the scalar stress c increases until c = c in Figure 2 for the given loading
condition. This corresponds to ε′ = 1. For the MC model, material is deemed to fail instantaneously,
for σ′

eff = σ′ = 1. This sudden failure is shown by the green circle in the figure. The damage model
regularizes the MC failure criterion. For the quasi-static loading Ḋ ≈ 0, thus D ≈ Df throughout the
loading. Given the linear dependence of Df on c in (5), σeff linearly decreases from unity to zero as ε′

increases from unity to c/c = 1/β. As, β → 1 the response of the damage model tends to that of the
un-regularized MC model, clarifying why β is called the brittleness factor. Regardless of the rate of
loading for ε′, Ḋ remains bounded by 1/τc; cf. (6). This results in a delayed damage response where D
falls far behind its quasi-static limit Df for higher rates of loading for ε′. This, in turn, increases the
maximum effective stress, max(σeff′), failure strain, ε′(D = 1), and toughness, i.e., the area under
the strain-stress curve. That is, the time-delay evolution law (6) can qualitatively model material’s
well-known stress rate effect. The dynamic solution in Figure 4 corresponds to a nondimensional strain
rate of 3. For lower and higher nondimensional loading rates, the stress response gets closer to the
quasi-static response and further expands, respectively.
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Figure 4. Sample quasi-static and dynamic strain versus stress responses.

If the quasi-static damage model D = Df where to be used, it would suffer the mesh-sensitivity
problem of the early damage models. The introduction of an intrinsic length scale addresses this issue.
The length scale ld is either used in conjunction of added higher spatial order derivative terms in a
local damage model [21,22] or by nonlocal integration of certain fields, e.g., strain, over neighborhoods
of size ld. However, both approaches are computationally expensive. The proposed damage model is
much easier to implement, since it is simply an ODE in time. It also maintains the hyperbolicity of the
elastodynamic problem which is critical for the solution of the coupled problem by the aSDG problem.
Finally, the interaction of elastic wave speeds with the intrinsic time scale τc indirectly introduces a
length scale ld for the damage problem. While this length scale is not relevant for very low rate loading
problems [52], at moderate to high loading rates it is expected to resolve the mesh sensitivity problem
of local damage models.

2.4. aSDG Method

The asynchronous Spacetime Discontinuous Galerkin (aSDG) method, formulated for elastodynamic
problem in [32], is use for dynamic fracture analysis. The Tent Pitching algorithm [53] is used to
advance the solution in time by continuous erection of patches of elements whose exterior patch
boundaries satisfy a special causality constraint. This results in a local and asynchronous solution
process. In addition, since spacetime is directly discretized by finite elements, the order of accuracy can
be arbitrarily high both in space and time directions. This is in contrast to conventional finite element
plus time marching algorithms where increasing the order of accuracy in time is not straightforward.

In addition to the displacement field for the elastodynamic problem, the damage field D is
discretized in spacetime. The finite elements solve the weak form of elastodynamic balance laws,
cf. Section 2.2, and the damage evolution Equation (6), Ḋ − Dsrc(D, Df ) = 0. Since the damage
evolution is simply an ODE and maintains the hyperbolicity of the problem, the solution of the coupled
elastodynamic-damage problem lends itself to the aSDG method. In addition, the satisfaction of
balance laws per element for discontinuous Galerkin methods results in a very accurate discrete
solution of the damage evolution equation. We refer the reader to [31] for more details on the aSDG
implementation of the problem, including the specification of jump conditions, and initial/boundary
conditions for the damage evolution equation.
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2.5. Realization of Stochastic Damage Model Parameters

As discussed in Section 1, incorporating material inhomogeneity is quite important to capture
realistic failure response of quasi-brittle materials. The inhomogeneity is both in elastic and fracture
properties. If an isotropic material model is assumed at the mesoscale, often only the elastic modulus
is deemed to be a random field as in [54]. However, in general the entire elasticity tensor should be
considered as a tensorial random field. However, often due to the higher effect that fracture properties
have on macroscopic failure response, only they are considered to be random and inhomogeneous.

For a general fracture model, strength, energy, and initial damage state are the main model
parameters. For the MC model, the friction angle φ (or friction coefficient k) and cohesion c are the
model parameters used to determine c and Df from (2) and (5), respectively. Cohesion is the parameter
that is associated with fracture strength. The relaxation time τc in (6) and brittleness factor β determine
the area under the strain-stress curve for different loading rates in Figure 4. That is, they determine the
fracture energy of the damage model. Finally, the initial condition for damage parameter, D(x, t = 0),
corresponds to the initial state of material. In the present work, among strength, energy, and initial
damage parameters, we consider inhomogeneity only in the strength property. This is in accord with a
majority of similar studies in the literature such as [55–60].

Accordingly, the only random field in the present study is cohesion c. For a macroscopically
homogeneous material, the point-wise and two-point statistics of the random field are spatially
uniform. For the point-wise statistics, the mean and standard deviation of the random field are the
main parameters. For the two-point statistics the form of the correlation function and the correlation
length, i.e., the length scale at which the field spatially varies are the main parameters. In [54], where the
elastic modulus is considered to a random field, standard deviation and correlation length of the
random field are considered as the main parameters that impact fracture response. The realization of
random fields for fracture strength and the subsequent fracture analysis becomes more expensive as the
correlation length tends to zero. In [54] it is shown that certain macroscopic fracture statistics converge
as the correlation length tends to zero. That is, by maintaining sufficient level of material inhomogeneity
through using a small enough correlation length, accurate representation of macroscopic fracture
response can be obtained.

We treat cohesion as a stationary random field with certain standard deviation ςc and correlation
length lc. The statistics of this random field can be systematically obtained by using Statistical Volume
Elements (SVEs), as shown in [60,61]. However, for simplicity and better control on the effect of these
parameters, we artificially manufacture random fields with certain ςc and lc. The distribution of c
is assumed to follow a Lognormal(μc, ςc) probability structure where μc and ςc are the mean and
standard deviation of the normal field. The corresponding mean and standard deviation of the log

normal field for c are Mc = exp
(

μc + ς2
c/2

)
and Σc = exp(μc + ς2

c/2)
√

exp(ς2
c)− 1.

Once the underlying correlation function form and length, and point-wise Probability Distribution
Function (PDF) are specified, there are a number of statistical methods to realize consistent random
fields. We use the Karhunen-Loéve (KL) method [62,63] to realize a random field ξ = ξ(x, ω) by an
expansion of its covariance kernel; the field is described by the series,

ξ(x, ω) = μξ(x) +
∞

∑
i=1

√
λibi(x)Yi(ω), (10)

where the denumerable set of eigenvalues λi and eigenfunctions bi(x) are obtained as solutions of
the Fredholm equation, i.e., the generalized eigenvalue problem (EVP), as detailed [64]. Since the
eigenvalues monotonically decrease, the truncated series with an appropriate value of the upper limit n
instead of ∞ in (10), can precisely represent the statics of the underlying random field. For practical use
of the KL method, random variables Yi should be statistically unrelated. This condition is automatically
satisfied for Gaussian fields. Thus, we sample Gaussian random fields with the mean μc and standard
deviation ςc. To obtain the final random field for c, we need to take the exponent of the realized

263



Appl. Sci. 2019, 9, 830

Gaussian random field. There are some technical challenges for using two distinct grids for the aSDG
finite element solution in spacetime and the realized random field for c in a material grid. For more
discussion on the use of KL method for fracture analysis and aSDG analysis of domains with random
properties, we refer the reader to [65].

3. Numerical Results

We consider rock failure under dynamic compressive loading, and study the effect of mesh
size, load amplitude, and material inhomogeneity on damage pattern. The geometry and loading
description are shown in Figure 5, where a rectangular domain of width w = 0.08 mm and height
l = 2w = 0.16 mm is subject to compressive loading P(t) on top and bottom faces. The traction P(t)
ramps up from zero to the sustained value of Ppeak in ramp time tramp. Zero tangential traction is
applied on these faces to model a frictionless loading interface. A traction free boundary condition
is applied on the vertical sides of the domain. We assume a 2D plain-strain condition with material
properties reported in Table 1.

For this 2D problem, the spacetime mesh corresponds to a 2D× time grid of tetrahedron elements.
The solution is advanced to the final time by an asynchronous patch-by-patch solution algorithm.
The time increment of a pitched vertex is calculated based on the wave speed, spatial geometry,
and sizes of elements around; cf. Section 2.4 and [32,53] for more details. We use third order polynomial
basis functions for damage and displacement fields in space and time.

Figure 5. Problem description for a rectangle subject to a vertical compressive loading.

Table 1. Material properties.

Properties Units Values

E GPa 65
ρ kg/m3 2650
τc μs 30

tramp μs 10
ν - 0.27
c MPa 4.7
φ ◦ 17
a - 10

As shown in Figure 6, we use three different structured grids of 8 × 16, 16 × 32, and 32 × 64
squares, where each square is divided into two triangles. These are labeled as coarse, medium,
and fine meshes, respectively. One of the numerical challenges in damage mechanics that affects the
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convergence of the Newton-Raphson method is the zero stiffness issue when damage is equal to unity.
One way to avoid this problem is multiplying the damage value used in (8) by a positive reduction
factor less than unity. Herein, we select a reduction factor of 93%.

Figure 6. Initial meshes used for the simulations: (a) Coarse, (b) Medium, and (c) Fine.

3.1. Homogeneous Material

3.1.1. Mesh Sensitivity

The dependence of damage response on the resolution of the underlying discrete grid is a
well-known problem for non-regularized continuum damage models. As described in Section 2.3.2,
the proposed time-delay damage model introduces an inherent length scale proportional to the
relaxation time and longitudinal elastic wave speed, i.e., ld ∝ cdτc. To show mesh-objectivity of
the results, we compare the damage evolution for coarse and medium meshes in Figure 7. For this
numerical example, material properties are homogeneous and listed in Table 1, and the loading
magnitude is Ppeak = 13.5 MPa.

Figure 7. Damage responses at different times for two different meshes. Figures (a,b) correspond to the
coarse mesh and figures (c,d) correspond to the medium mesh. The results are shown on the deformed
mesh with a magnification factor of 300.
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Figure 7 shows an excellent agreement between the solutions of the two meshes at early and
evolved stages of damage evolution. We also refer the reader to [31] for a more detailed study of mesh
objectivity for a tensile fracture problem where damage localization zone converges to a region of
finite width. We reiterate that the time-delay formulation addresses the mesh-objectivity problem with
much less computational difficulty than the non-local integration-based and gradient-based damage
models. Moreover, it does not violate the hyperbolicity of the problem. This facilitates the use of the
aSDG method and is consistent with the physical observation that damage propagates with a finite
speed [66].

3.1.2. The Effect of Load Amplitude

In the previous example, the stress level was sufficiently high to initiate damage near the loading
edges, from the early stages of the solution. The stress state in the middle of top and bottom faces is
approximately similar to bi-axial compressive condition; material tends to expand in the horizontal
direction because of the Poisson effect while the surrounding material prevents its deformation.
However, the stress state around the corners is close to an unconfined uni-axial compressive condition
because of the stress-free conditions at left and right boundaries. The higher differences between
compressive stresses in the Mohr circle results in a higher value for c; cf. (2). Thus according to the MC
failure criterion, the corner zones are more susceptible to an earlier time for damage initiation and
higher damage values. This is verified by the higher damage values around the corners in Figure 7a,b.
After the initiation of damage at corners, damage diffuses towards the middle of the domain.

To study the effect of load amplitude, we reduce the peak stress such that damage initiates in the
middle of the domain. The vertical normal stress magnitude roughly doubles across the entire width
when the stress waves collide in the middle of the domain. The load for this problem is chosen such
that it is not large enough to initiate damage when the stress wave enters from the top and bottom
edges, but is sufficient to cause damage in the middle of domain due to the doubling effect. We call
this condition the low amplitude case, corresponding to Ppeak = 6 MPa, and refer to the previous peak
stress problem as the high amplitude case. As shown in Figure 8a, the initial damage occurs when
the peak stress reaches the middle of the domain; i.e., at tcollision ≈ tramp + l

2cd
≈ 24 μs which is well

predicted by the numerical result. After the collision, the magnified reflected waves are sufficiently
high to overcome the cohesion of rock. Thereafter, damage diffuses toward boundaries where the
waves are propagating to; see Figure 8b–d. This failure mechanism is completely different from that
of the high amplitude case where the damage initiates in a shear dominated regime at the corners.
Therefore, load amplitude has a significant impact on damage pattern and failure mechanism. For a
better comparison, we provide the damage response at various times for the high amplitude case in
Figure 9.

Figure 8. Damage evolution for the medium mesh and low amplitude load at times: (a) 24.7 μs,
(b) 36.1 μs, (c) 42.2 μs, and (d) 48.2 μs. The results are shown on the deformed meshes with a
magnification factor of 1000.
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Figure 9. Damage evolution for the medium mesh and high amplitude load at times: (a) 13.9 μs,
(b) 21.1 μs, (c) 33.2 μs, and (d) 37.4 μs. The results are shown on the deformed meshes with a
magnification factor of 300.

3.2. Heterogeneous Material

As detailed in Section 2.5, for the analysis of inhomogeneous rock masses, we assume that
cohesion is a random field. This analysis expands our preliminary comparison of the response of
homogeneous and heterogeneous rock in [67]. We construct four random fields using the KL method
with the mean cohesion value of Mc = 4.7 MPa, similar to the spatially uniform c used in the preceding
examples for homogeneous rock. The standard deviation is set to Σc = 2.35 MPa. The correlation
lengths of lc = 5 mm, 10 mm, 20 mm, and 40 mm are used, where for each correlation length one
random field realization is generated by the KL method. These random fields are shown in Figure 10.
A smaller correlation length indicates faster variations in cohesion from one spatial point to another,
so it corresponds to a more locally heterogeneous field. These random fields are constructed with the
first 2000 terms of the KL series. For the following results, we use the fine mesh to have an adequate
resolution for capturing the underlying inhomogeneity.

Figure 10. Random field realizations for cohesion with different correlation lengths, lc, equal to:
(a) 40 mm, (b) 20 mm, (c) 10 mm, and (d) 5 mm.

3.2.1. Low Amplitude Load

In this section, we study the effect of heterogeneity on damage response for the low amplitude
condition. Figure 11 shows the damage response for lc = 40 mm at various times. From the cohesion
map in Figure 10a, we observe that c varies very slowly in space. It takes the highest values near the
top boundary and the lowest ones at three spots close to the left and right boundaries; weak zones
are colored by blue. In Figure 8a, the initial damage zone begins when the stress waves collide
in the middle of the domain. The particular form of this realization for c actually favors damage
accumulation in the center, given that a higher strength zone is near the top boundary in Figure 10a.
As shown in Figure 11, damage initiates and accumulates both in this center location and in the three
aforementioned weak sites close to the boundaries. Thus, the form of the failure pattern follows both
the weak points in the material and locations with higher stress values in general. By comparison
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of Figures 8 and 11, we also observe that the earlier initiation of damage in weaker sites results in
a response with more concentrated damage zones. Finally, the damage initiation time is almost the
same as that for the homogeneous rock, and in both cases it is right after the collision of the waves at
tcollision ≈ 24.

Figure 11. The evolution of damage field for the low amplitude load and cohesion realization with
lc = 40 mm at times: (a) 25 μs, (b) 34 μs, (c) 42 μs, and (d) 53 μs.

Figures 12–14 show the damage evolution for heterogeneous cohesion fields with correlation
lengths equal to 20 mm, 10 mm, and 5 mm, respectively. According to Figures 12a–14a, the time
for damage initiation decreases as the correlation length gets smaller, i.e., when the heterogeneity
is increasing.

It is well accepted in the literature that one of the main reasons for localization and softening
behavior in brittle materials is their heterogeneous structure at microscale [68–70]; the weaker points
in material begin to fail earlier. This results in an increased stress concentration in the damaging zones
and the shielding of the surrounding areas. That is, the inhomogeneity in material properties promotes
inhomogeneity and localization in the stress field. Unlike ductile materials, there are not much energy
dissipative reserves, for example from plasticity, to balance the stress field. Figures 11d–14d reveal
a crucial impact of the correlation length on failure mechanism; this is a transition from diffusive
damage propagation to a more localized response as the correlation length gets smaller. This agrees
with the preceding discussion on the promotion of damage localization by material inhomogeneity.
In fact, for the solutions with the lowest correlation length, even the mode and propagation of failure
is significantly different than that of a homogenous material; in Figures 8d and 14d, the effect of the
weakest point of the material is high to an extent that damage initiates and accumulates in a more
distributed sense, as opposed to the damage accumulation in the central zone in Figure 8.

Figure 12. The evolution of damage field for the low amplitude load and cohesion realization with
lc = 20 mm at times: (a) 21 μs, (b) 31 μs, (c) 41 μs, and (d) 51 μs.
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Figure 13. The evolution of damage field for the low amplitude load and cohesion realization with
lc = 10 mm at times: (a) 16 μs, (b) 26 μs, (c) 36 μs, and (d) 46 μs.

Figure 14. The evolution of damage field for the low amplitude load and cohesion realization with
lc = 5 mm at times: (a) 10 μs, (b) 20 μs, (c) 30 μs, and (d) 40 μs.

3.2.2. High Amplitude Load

Figures 15–18 show the evolution of the damage field for correlation lengths lc = 40 mm to
lc = 5 mm. We observe a very good match between damage localization sites and the locations of
material weak points in Figure 10b–d. Moreover, as we decrease the correlation length, the time of
damage initiation decreases; cf. Figures 15a–18a.

From the final damage pattern in Figure 9d for the homogeneous domain, one observes that
for high amplitude loading extensive damage is experienced almost everywhere, especially close to
the top and bottom boundaries. There is little resemblance between this solution and those for high
correlation random fields in Figures15d and 16d. Similarly for the low amplitude load, high differences
are observed between the solutions of homogeneous, Figure 8d, and inhomogeneous domains with
high correlation lengths, Figures 11d and 12d. This is due to the fact that for such large correlation
lengths, the large islands of low strength greatly impact the response.

In contrast, as the correlation length decreases, the overall material properties are almost the
same in all areas, except the inhomogeneities that are observed at smaller length scales. Consequently,
in comparison of damage patterns for the homogeneous rock in Figure 9d and rocks with small
correlation length for c in Figures 17d and 18d, a very similar overall response is observed; in all
cases, damage is widespread in the domain, with the top and bottom sides experiencing the highest
damage. In contrast, there is no resemblance between the damage patterns of homogeneous domain in
Figure 8d and those for low correlation length fields in Figures 13d and 14d. The reason is that for
this low amplitude of load, damage can only accumulate in the center of the homogeneous domain,
whereas for inhomogeneous domains damage can accumulate from weak points outside of this zone;
this greatly affect the final damage pattern.
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Figure 15. The evolution of damage field for the high amplitude load and cohesion realization with
lc = 40 mm at times: (a) 13 μs, (b) 23 μs, (c) 33 μs, and (d) 43 μs. The results are shown on the deformed
mesh with a magnification factor of 100.

Figure 16. The evolution of damage field for the high amplitude load and cohesion realization with
lc = 20 mm at times: (a) 10 μs, (b) 20 μs, (c) 30 μs, and (d) 40 μs. The results are shown on the deformed
mesh with a magnification factor of 100.

Figure 17. The evolution of damage field for the high amplitude load and cohesion realization with
lc = 10 mm at times: (a) 8 μs, (b) 18 μs, (c) 28 μs, and (d) 38 μs. The results are shown on the deformed
mesh with a magnification factor of 100.

Figure 18. The evolution of damage field for the high amplitude load and cohesion realization with
lc = 5 mm at times: (a) 7 μs, (b) 17 μs, (c) 27 μs, and (d) 37 μs. The results are shown on the deformed
mesh with a magnification factor of 100.
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The statistical continuum damage model enhances the accuracy of conventional continuum
damage models, and its solutions are more consistent with sharp interface fracture models. The reason
are as follows. First, damage initiation zones from material weak points are more concentrated and
better resemble crack nucleation events. Second, damaged zones tend to propagate in crack-like
features with specific inclined directions rather than the diffuse response around the initiation
points. For example, in Figure 18d, many localized zones resemble cracks at 45 degree and steeper
relative to the vertical direction. This features qualitatively match other numerical and experimental
observations [71–75]. Specifically, based on the MC failure criterion, cracks are formed at angles
±(45◦ + φ/2) with respect to the compressive loading direction. This example demonstrates that a
damage model based on uniform material properties not only misses crack-like damage localization
features, but can also incorrectly predict the location of zones with the maximum overall damage
accumulation (low load example).

3.2.3. Mesh Sensitivity

The mesh sensitivity of diffusive damage response for the sample with homogeneous properties
was presented in Section 3.1.1. Here, we study the effect of mesh size for domains with heterogeneous
cohesion that result in a localized damage response. Figure 19 compares damage responses for the
domain with lc = 40 mm at t = 43 μs. The results are presented for different load amplitudes and
mesh sizes. The same results are presented in Figure 20 for the smallest correlation length lc = 5 mm
at t = 36 μs. While, there is a good agreement between the results obtained by medium and coarse
meshes for both load conditions, the solutions for the largest correlation length in Figure 19 show a
better agreement. This is due to the fact that the details of the solution are at the scale of the correlation
length; thus, as smaller correlation lengths are used for material properties, finer finite elements should
be used to accurately capture the details of the solution.

Figure 19. Damage responses at t = 43 μs for the domain with lc = 40 mm with different meshes
and load amplitudes: (a) low amplitude-medium mesh, (b) low amplitude-fine mesh, (c) high
amplitude-medium mesh, and (c) high amplitude-fine mesh.

Figure 20. Damage responses at t = 36 μs for the domain with lc = 5 mm with different meshes
and load amplitudes: (a) low amplitude-medium mesh, (b) low amplitude-fine mesh, (c) high
amplitude-medium mesh, and (c) high amplitude-fine mesh.
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4. Conclusions

We presented a dynamic bulk damage model, based on the time-delay evolution law in [3].
The relaxation time τc indirectly introduces an intrinsic length scale for dynamic fracture problems.
This resolves the mesh sensitivity problem of early local damage models. Moreover, by limiting
the maximum damage rate, the model qualitatively captures stress rate effect, in that, both strength
and toughness increase when the loading rate increases. The ODE form of the evolution model
greatly simplifies the implementation of the damage model and maintains the hyperbolicity of the
elastodynamic problem.

The coupled elastodynamic-damage problem was implemented by the aSDG method to solve
a uniaxial compressive fracture problem for rock. The MC model is used to formulate a damage
force model. In the process of damage accumulation, the effective stress tends from the initial elastic
limit at D = 0 to its hydrostatic compressive value at D = 1. The MC model also captures rock
strengthening effect as hydrostatic pressure increases. In contrast, damage models that are based on
spectral positive and negative decomposition of strain (or stress) tensor, fail to model failure under
compressive response.

To model the effect of material inhomogeneity, cohesion was assumed to be a random field.
Two different macroscopic compressive load amplitudes were used for this study. For a homogeneous
material, the higher load amplitude initiates damage as the compressive wave enters the domain,
whereas for the lower load damage initiates only in the center of the domain where stress doubling
effect occurs upon the intersection of compressive waves. Four lognormal fields with different
correlation lengths lc were generated for c. It was shown that inhomogeneity could significantly alter
the failure response of an otherwise homogeneous rock. For example, for the higher load amplitude,
unlike the homogeneous case, damage initiates in the center of the domain. This is due to the particular
form of the realized random field where a large zone of low c is sampled in the center of the domain.
Moreover, for the lower load amplitude damage can initiate everywhere in the domain as the waves
travel toward the center of the domain. This is due to the weaker sampled c at these locations,
which does not require the stress wave doubling effect to initiate damage. Moreover, even the zones
that eventually accumulate the highest damage can be significantly different between models with
homogeneous and inhomogeneous properties, even as the correlation length tends to zero (low load
amplitude example).

Another problem of using a homogeneous material model is the inability or difficulty of bulk
damage models to capture sharp localization zones. In contrast, as lower correlation lengths were used
for inhomogeneous domains, the fracture pattern became more realistic and resembled the results
that are obtained by more accurate sharp interface models [43]. In particular, the MC model predicts
fractures at ±(45 + φ/2) degree angles with respect to the compressive load direction. For the lowest
correlation lengths, localized damage zones with angles roughly in the range ±45 to ±(45 + φ/2)
are observed. These features are better resolved with the higher resolution finite element mesh,
confirming that finer meshes are required for the solution of problems with more rapid variation of
material properties.

There are several extensions to the present work. First, the form of effective stress (8) implies
that friction coefficient is zero at complete damage (D = 1), whereas jointed (damaged) rock may
still possess some residual friction coefficient. This will enhance the angle of localized regions in
Figure 18d. Second, MC criterion is not appropriate for rock tensile fracture analysis and the damage
force can be formulated by Hoek-Brown [76] and other more accurate models. Third, as shown
in [77], rock anisotropy, for example induced by the existence of bedding planes, can affect fracture
angle under compressive loading. Anisotropic failure criteria such as those in [78,79] can be used to
formulate the damage force. Finally, mesh adaptive operations in spacetime [33] can drastically reduce
the computational cost of the formulated aSDG method for this bulk damage model.
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Abstract: When a shield tunneling machine based on earth pressure balance (EPB) bores through
the sandy pebble stratum, the conditioned sandy pebble inside the soil cabin of shield machine is
an aggregation of numerous granules with pebble grains as skeleton. It is essential to construct
a reasonable particle element model of the conditioned sandy pebble before carrying out discrete
element simulation of the soil cabin system. Sandy pebble belongs to a kind of frictional material, the
friction behavior of which is highly sensitive to the angularity of the grains. In order to take the shape
effect into account, two particle element models—single sphere with rolling resistance and cluster of
particles—were attempted in this paper. The undetermined contact parameters in two models were
calibrated by virtue of least squares support vector regression machine (LS-SVR). With the purpose of
making both the flow behavior and mechanical properties of the modeled soil consistent with reality,
the calibration targets the result of laboratory test of slump test and large-scale triaxial test as goals.
The presented comparative analysis indicates that the two established particle models both can well
describe the strength property and fluidity of the actual soil due to properly calibrated parameters.
So, the rolling resistance and cluster models are two effective ways to incorporate the shape effect.
Besides, because of the angularity of the nonspherical grains, there exists strong interlocking between
clusters. So, in the cluster model, relatively smaller rolling friction coefficient and surface energy are
required. It is also concluded that the single sphere model is more computationally efficient than the
cluster model.

Keywords: EPB shield machine; conditioned sandy pebble; particle element model; parameters calibration

1. Introduction

Shield tunneling machines based on earth pressure balance (EPB) have been widely used in
the construction of tunnels in urban areas. It is quite common that EPB type shield machines go
through heterogeneous ground conditions, typically the sandy pebble stratum. In China, a total
of 23 cities have constructed or to build metro tunnels in sandy pebble stratum, such as Chengdu,
Beijing, Shenyang [1]. Japan also encountered sandy pebble in the construction of the Hiroshima
Metro. Sandy pebble has attracted great interest among geotechnical researchers. Sandy pebble is
a special type of geomaterial, a mixture of hard gravel and soft sand. The weakly weathered pebble
grains, with high compressive strength and large grain size, are intermingled with soft and flowable
sands. With pebble blocks as skeleton and weakly bonded interface, sandy pebble is a kind of loose
and highly discrete noncontinuum material. Besides, it is sensitive to the external disturbance since the
point-to-point contact between grains [2]. Obviously, sandy pebble soil cannot satisfy the requirements
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of EPB tunneling and it is essential to perform soil conditioning. Conditioned soil, which presents
good fluidity and plasticity, can flow as well as form certain shape. So it is in a transient state between
solid and fluid, and more like a solid-like material.

The soil cabin system of EPB shield machine is in charge of several important tasks, such as
soil excavation and tunnel face stabilization, so its performance to a large degree determines the
construction efficiency and safety. However, under the complex interaction between the soil and
shield machine, the soil cabin system shows both time dependency and randomness. Therefore, it is
challenging to investigate the dynamic behavior of the whole system. Classical computational methods
for modeling such type of systems include the discrete element method (DEM) [1–3], meshless and
particle methods [4–9], efficient remeshing techniques in the context of FEM [10–14], DH-PD [15,16]
and specific multiscale methods [17–20].

In the DEM simulation, one of the difficult tasks is to construct the equivalent DEM model of
the conditioned sandy pebble. Several types of particle are available in DEM simulation, typically
single sphere, cluster of particles and bonded particles. Wherein, the single sphere is used for globular
particles, while the other two for particles with irregular shape. In addition, the bonds within a
cluster are impossible to break and the particles comprising the cluster remain at a fixed distance
from each other, while the bonded particles are liable to separate once the suffered force exceeds
its bonding strength. In reality, the grain shape of geomaterial is generally irregular. Especially for
sandy pebble, which is a kind of frictional material, its friction behavior is highly sensitive to the
angularity of the grains. Adopting single sphere, which is easy to roll without rolling resistance,
the simulation may result in a deviation from the actuality. In contrast, the other two types can
better characterize the microscopic shape of actual geomaterial. However, reconstructing the actual
shape of all particles will make the complexity increase greatly; it is also impractical. Rahul et al.
pointed out that nonspherical particles are more accurate than spherical particles. However, for
nonspherical particles, when the sphericity is decreased to a certain value, the simulation results
are similar. So there is no need to adopt highly precise particle shape. However, determining
the parameters for discrete element model is another tricky task. Presently, there are mainly three
approaches, namely analytical solution, experimental measurement and inverse analysis. Due to
various simplifications of substantial material, the analytical solution proposed by Mindlin can only
provide a rough estimation and qualitative analysis [21], which remains distant for engineering
application. The relevant experiments include impact test [22,23], tribometer test [24,25], and drop
particle test [26]. Besides, a set of device for calibrating contact parameters has been developed
in Chalmers, Sweden [27]. However these experiments are usually applicable to large-size grains;
these test devices are not widely available. The mostly employed method is inverse analysis method,
which includes trial-and-error, fitting relation of macroscopic and mesoscopic parameters, and machine
learning [28]. The trial-and-error is time-consuming due to repeated simulations and it is somewhat
unreliable with strong subjective factors involved. Additionally, since highly nonlinear relationship
exists between the macroscopic and mesoscopic parameters of the granular material, it is difficult to
describe the relationship with explicit expressions. In the inverse analysis, the parameters are usually
calibrated solely according to the macroscopic mechanical properties. Whereas, since the obtained
parameters are not the unique solution, the strength-desired parameters can not necessarily meet the
requirement of fluidity.

In this paper, the conditioned soil mixture of middle fine sand and pebble obtained from Beijing
region is selected to construct its equivalent DEM model for further DEM simulation of soil cabin
system within EDEM. The shape effects are considered by two approaches, namely defining rolling
resistance and adopting cluster model. The machine learning method as adopted to determine the
mesoscopic parameters in accordance to both the flow behavior and mechanical properties of the
actual soil.
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2. Properties of Conditioned Sandy Pebble

2.1. Conditioner Constituents

Based on the findings from slump tests in laboratory and tentative tunneling on site, the optimum
injection ratio of foam (with expansion ratio of 15) was found to be approximately 45–60% subject to
the condition that the addition ratio of bentonite slurry (with mass concentration of 12.5%) was 7%.

2.2. Grain Size Distribution

The granulometric curves of natural soil and conditioned soil are plotted in Figure 1. It can be
found that the cumulative mass percentage corresponding to the grain size within the range between
0.32 mm and 5 mm is larger for the conditioned soil, which indicates the increase of fine-sized grains.

Figure 1. Granulometric curves of natural soil and conditioned soil.

2.3. Fluidity

During tunneling, the slump of soil in the discharging vehicle was tested at the interval of
3–5 rings of shield tunneling construction. Figure 2 shows the photo of slump test at the scene. It can
be seen that the soil was transformed into a plastic paste with good fluidity and the fine particles wrap
the larger grains completely due to enhanced viscosity. As shown in Figure 3, most of the measured
slump magnitude ranges from 175 to 180 mm.

 

Figure 2. Slump test at the construction site.
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Figure 3. The slump value of soil from muck discharging vehicle.

2.4. Shear Strength

The triaxial shear tests under unconsolidated and undrained conditions for conditioned sandy
pebble were conducted by using large triaxial shear apparatus (SJ-70, China Institute of Water Resources
and Hydropower Research, Beijing, China), as shown in Figure 4. When making test samples,
the prepared conditioned soil was compacted by means of vibration by five layers. The molded
sample has a diameter of 300 mm, height of 700 mm, and wet density of 2 g/cm3. During tests,
the confining pressure was set to 0.4 MPa, 0.6 MPa, and 0.8 MPa, successively, and the shear rate was
maintained at 1 mm/min. Figure 5 records the measured stress–strain curves. Since no peak can be
seen in the stress–strain curve, the corresponding point with strain of 15% is treated as failure point.
Subsequently, Morh’s circles and their enveloping line are plotted in Figure 6, from which the total
shear strength indexes are determined as cohesion cu = 26kPa and internal friction angle ϕu = 34.57

◦
.

 

Figure 4. Large-scale triaxial shear test.
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Figure 5. Stress–strain curves.

σ

τ

Figure 6. Morh’s circles and enveloping line of conditioned sandy pebble.

3. Geometric Model of the Particle Element

The particle element model mainly involves geometric model and physical model. As for the
geometric model, it includes three aspects: particle shape, particle size distribution, and particle
spatial arrangement.

3.1. Particle Shape

To take into consideration the angularity effect induced by irregular shape, the alternative
approaches include exerting rolling resistance on single sphere and adopting nonspherical particles.
So this paper involves two types of shape—basic sphere and cluster of particles—furthermore,
the simulation result and computational cost of the two established models can be comparatively
analyzed. Figure 7 shows the adopted geometry template of cluster, which is randomly selected for
the irregular pebble. And the template is fitted with four same spheres (see Figure 7). It can be seen
that the constructed cluster is nearly an ellipsoid, and the ratio of its polar radius, short equatorial
radius, and long equatorial radius is 1:1.19:1.69.
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Figure 7. 3D geometry of realistic irregular pebble to the left and cluster model to the right.

3.2. Particle Size Distribution

Particle size distribution has certain effect on the macroscopic deformation and strength of bulk
materials. Ideally, the particle size should be consistent with the substantial material. However, since
the actual soil grains are generally too small, which will result in huge amount of particle elements
and hence unacceptable computational cost, proper handling of the particle size is therefore necessary.
It is generally accepted in the community that the simulation is aimed to investigate the macroscopic
behavior of bulk materials instead of detailed interactions between particles. Thus, the particles of
soil can be upscaled into surrogate particles which are much larger than the physical sizes of the
grains in order to reduce the computational cost as long as a proper surrogate model can be found
and validated.

From granulometric curve in Figure 1, it can be seen that the conditioned soil contains large
amount of fine grains and are continuously distributed in numerous sizes. In order to reduce the
particle number, the particle size is amplified here. Besides, since it is hardly possible to involve all
particle sizes, only a few representative sizes are selected and herein the aperture diameters of the sieve
meshes used in the sieving test are designated. Moreover, the large grains act as the main medium for
force transmission in the soil mass, while most of the small grains only act as filler to fill the porous
space. It can be concluded that omitting small particles has slight effect on the resultant mechanical
response. So the original particle size is not only multiplied and discretized, but also truncated.

However, the determination of particle sizes and amplification factor should take into account
computational cost, simulation accuracy, as well as opening size of shield machine. According to
relevant experience, the number of particles should be controlled within 300,000. With single sphere
model as example, Table 1 presents the particle number required for a soil box (24 m × 8 m × 2m)
when adopting different size combinations and the corresponding minimum amplification factor to
ensure an acceptable particle number. Additionally, the throughput capacity of the cutterhead and
screw conveyor is also considerable. In view of the inner diameter of screw conveyor only 770 mm, the
particle size cannot be too large: otherwise clogging and jamming accidents are easy to occur. On the
premise of meeting the above two requirements and to model the material as realistically as possible,
it is decided to magnify the particle 6 times and to select the size combination of 40 mm, 25 mm, and
20 mm. And, the particles of 240 mm, 150 mm, and 120 mm account for 10.82%, 9.02%, and 80.16% of
the total mass, respectively.

Table 1. The required particle number when adopting different size combinations.

Combination of Particle
Size (mm)

Particle Number
(×106)

Minimum
Amplification Factor

Particle Number after
Amplification

40-25-20-16-10-5 2219 20 277,375
40-25-20-16-10 358.4 11 269,271

40-25-20-16 107.1 8 209,180
40-25-20 58.487 6 270,773

40-25 31.924 5 255,392
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3.3. Particle Arrangement

In order to embody the significant anisotropy and spatial variability of soil mass, the particles in
this simulation are arranged by random function, and they are oriented randomly when generated.

4. Physical Model between Particles

4.1. Contact Components

Compared with the natural sandy pebble, the cohesion among conditioned grains has been greatly
enhanced under the action of foam and bentonite slurry. Thus cementitious interaction should be
introduced in the contact model in addition to the standard contact action. In this study, the sphere and
cluster employ the Hertz–Mindlin model (H-M) with the Johnson–Kendall–Roberts (JKR) cohesion
model. The physical analogue characterized by several contact components for H-M with JKR cohesion
model can be seen in Figure 8. Among them, the spring is used to simulate the elastic contact force
between particles Pi and Pj The damper is a description of energy dissipation in the process of imperfect
elastic collision. The frictional components include resistance devices to relative slide and rotation.
The viscous components mainly provide resistance to tension, shear and torsion severally in the
direction of normal, tangential and rotation. Those viscous components can simulate the viscous force
exerted on pebble grains by foam and bentonite slurry. While the breaker implies the tension vanishes
once the bonding between particles breaks.

 
Figure 8. Physical contact models of conditioned soil.

4.2. Contact Constitutive Relation

A schematic diagram of contact vectors in the H-M model can be found in Figure 9. In the model,
the calculation of normal elastic force Fnij

e is based on Hertzian contact theory [29], while the tangential
elastic force Ftij

e was derived by Mindlin and Deresiewicz [21,30]. As for the energy dissipation in
the contact process, Tsuji et al. [31] proposed a nonlinear normal damping force Fnij

d and tangential
damping force Ftij

d. Hence, the contact action exerted on particle i by particle j can be expressed
as follows ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Fnij
e = 4

3 E∗√R∗un
3
2

Ftij
e = −ktut

Fnij
d = −2

√
5
6 β

√
m∗kn∗vn

rel

Ftij
d = −2

√
5
6 β

√
m∗ktvt

rel

(1)

where, un and ut denote the normal and tangential overlap of particle i and particle j, respectively;
kt is shear stiffness, kt = 8G∗√R∗un; kn

∗ denotes equivalent normal stiffness, kn
∗ = 2E∗√R∗un; E∗,

R∗, m∗, and G∗ denote Young’s modulus, radius, mass, and shear modulus of particles in contact,
respectively; β denotes damping coefficient, which is associated to the restitution coefficient e by
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β = ln e√
ln2 e+π2

; and vn
rel and vt

rel denote the normal and tangential components of relative speed of

two particles, respectively.
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Figure 9. Schematic representation of Hertz–Mindlin contact model.

The tangential force obeys Coulomb law of friction [32], that is to say if
∣∣∣∣→F tij

e +
→
F tij

d
∣∣∣∣ >

Fμ = μs

∣∣∣∣→F nij

∣∣∣∣ (Fμ is friction force and μs denotes the coefficient of sliding friction), then slip

occurs. While the rolling friction is accounted for by applying directional constant torque model [33],

namely Tμ = −μr

∣∣∣∣→F nij

∣∣∣∣ri
→
ωi, where μr is the coefficient of rolling friction, ri is the distance from the

mass center of particle i to the contact point, ωi denotes the unit vector of angular velocity.
To describe adhesive action, JKR theory enriched the Hertz–Mindlin model with normal cohesion

force, and the normal elastic force Fnij
e is revised to [34]

Fnij
JKR = −4

√
πkE∗α

3
2 +

4E∗

3R∗ α3 (2)

where, k denotes surface energy per unit of contact area, measured in J/m2; the relationship between

coefficient α and normal overlap un can be expressed as un = α2

R∗ −
√

4πkα
E∗ .

5. Calibration of Model Parameters

5.1. Undetermined Parameters

The macroscopic and mesoscopic parameters in DEM model can be subdivided into three
categories. The intrinsic parameters, including shear modulus G, Poisson’s ratio ν, and density
ρ, are inherent attribute of material itself and irrelevant to the external factors. The H-M contact
parameters include restitution coefficient e, static friction coefficient μs, and rolling friction coefficient
μr. The third category is about cohesion parameter and different model involves different cohesion
parameters. JKR cohesion model only contains surface energy k. Table 2 lists all of the involved
materials and contact parameters. Among them, some are either measured or obtained from literature
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and the others need to be calibrated. So there are altogether three undetermined parameters (e, μr,
and k) in the H-M with JKR cohesion model.

Table 2. The input parameters for the simulation model.

Input Parameter Unit Value Comment

Material Parameter

Density ρ kg/m3 2700 Measured by overflow method
Poisson’s ratio ν n/a 0.15 Hu et al. (2013) [35]

Yong’s modulus E MPa 5 × 104 Hu et al. (2013) [35]
Shear modulus G MPa 2.17 × 104 G = E

2(1+ν)

H-M Contact parameter

Restitution coefficient e n/a To be calibrated
Static friction coefficient μs n/a 0.6891 μs ≈ tan ϕu

Rolling friction coefficient μr n/a To be calibrated

Cohesion parameter (JKR model)

Surface energy k J/m2 To be calibrated

5.2. Method

With the purpose of making the flow behavior and mechanical properties of the modeled soil
consistent with the reality, the calibration procedures are as follows. First of all, we established the
least squares support vector machine (LS-SVM) with unknown parameters as input variables and the
slump value as output variable. Then generate 10,000 parameter combinations at random and predict
their corresponding slump value with the constructed LS-SVM. Subsequently, use the parameters that
can turn out a desired slump value to simulate the large-scale triaxial shear test. Among all the triaxial
tests, the one resulting in smallest deviation of stress–strain curve from measured curve in laboratory
is regarded as calibration result.

5.3. Calibration Process

5.3.1. Range of Parameters

Before the establishment of LS-SVM, the correlations between the slump value and three
undetermined parameters, as well as the value range of each parameter are analyzed by single-variable
method. Figure 10 shows the established discrete element models for slump test. Similarly, the slump
cone has been enlarged 6 times with top diameter of 600 mm, bottom diameter of 1200 mm, and height
of 1800 mm. In the simulation, the lifting speed is 0.36 m/s and the whole lifting process is completed
in 5 s.

  
(a) (b) 

Figure 10. Slump test model of sphere (a) and cluster (b).
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Figure 11 records the slump value against the surface energy k in the cases of single sphere (a) and
cluster (b) when e = 0.15 and μr = 0.02, 0.05, 0.1, 0.15, 0.2, successively. As is indicated in the figures,
the slump value is in negative correlation to k. It can be explained by (1) low surface energy: the mutual
cohesion is rather weak and the interparticle forces cannot resist the particle weight, therefore the
aggregation is easy to scatter into single particles, which makes for a large slump value (Figure 12a,e).
(2) When the surface energy improves, the internal contact force is strong enough to resist gravity,
thus the aggregation can deform continuously and displays good fluidity and plasticity as the actual
conditioned soil. Consequently, the slump value is reduced (Figure 12b,f). (3) If the surface energy is
excessively high, the soil presents poor fluidity thus leading to a small slump (Figure 12c,g). In addition,
it can be seen from Figure 11 that the slump value is also negatively correlated to μr. This is because
the strong rolling friction contributes to a strong interlocking action and makes it harder to deform.

 
(a) (b) 

rμ =

rμ =

rμ = rμ =

rμ =

k k 

rμ =

rμ =

rμ =

rμ =

rμ =

Figure 11. The variation of slump value versus surface energy: (a) sphere model and (b) cluster model.

Figure 12. The simulation result of slump test: (a–c) sphere model and (e–g) cluster model.

Figure 13 shows the variation of slump value versus e in six different scenarios of μr and k
(taking sphere model as example). It is obvious that no strict correlation exists between slump value
and restitution coefficient e. On the whole, the slump value increases as e improves.
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e

            k rμ

Figure 13. The slump value against restitution coefficient.

On the basis of literature research, the range of the restitution coefficient is set as 0 < e ≤ 0.6,
while the scope of the other two parameters are determined according to their correlation with the
slump value. Figure 14a,b shows the slump value against rolling friction coefficient when k = 0
respectively in the case of sphere and cluster. It can be concluded that once μr > 0.22 for sphere
or μr > 0.15 for cluster, the slump value is less than 160mm regardless of the value of e. It means
even without cohesive force between particles, the frictional interaction is strong enough to resist
the flow of soil. In such a situation, the slump value can no more meet the requirements. Therefore,
the rolling friction coefficient should be set within 0.22 and 0.15, respectively, for sphere and cluster.
Similarly, as shown in Figure 15, when μr = 0 and k > 19, 500 for sphere (k > 2660 for cluster),
the slump value cannot fall into the satisfactory range. So the reasonable scope of surface energy is
0 < k < 19, 500 for sphere and 0 < k < 2660 for cluster.

  
(a) (b) 

rμ

e e

rμ

Figure 14. The slump value against rolling friction coefficient (k = 0): (a) sphere model and (b)
cluster model.
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(a) (b) 
k 

e

k  

Figure 15. The slump value against surface energy (μr = 0): (a) sphere model and (b) cluster model.

5.3.2. Parameter Sets with Satisfactory Fluidity

Then the LS-SVM that reflects the nonlinear relationship of slump value and three undetermined
parameters can be established. As for training samples, some sets of unknown parameters are
randomly generated within their respective range and the corresponding slumps are obtained through
discrete element simulation. LS-SVR adopts a RBF kernel and its parameters are tuned by the GA-PSO
collaborative algorithm. In the tuning process, the n-fold cross-validation error is chosen as a fitness
function. For the sphere model, 440 training samples are collected altogether and n = 5. The parameters
of LS-SVM are optimized as penalty parameter γ = 281.87 and kernel parameter σ2 = 0.824. While in
the cluster model, only 99 samples are collected and n is set as 9. And the optimization result is
γ = 7.3544, σ2 = 0.1905. For the two cases, the comparison between the fitted values and numerically
calculated values can be seen in Figure 16a,b. The resultant root mean square errors (RMSE) are 12.53
and 9.68, respectively, indicating a satisfactory degree of accuracy.

  
(a) (b) 

Figure 16. Comparison of fitted values and discrete element method (DEM) result: (a) sphere model
and (b) cluster model.

Based on the established slump prediction model, the parameter sets that can result in a desired
slump can be found. Firstly, randomly generate 10,000 parameter sets and predict their corresponding
slump value by the established LS-SVM. Since the on-site measured slump ranges from 175 mm to
180 mm, and with a consideration of fitting error, the samples resulting in a slump between 170 mm
and 185 mm are further checked by discrete element simulation. If the simulated slump can fall into
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the range of 175 to 180 mm, the corresponding parameter set is considered to be able to meet the
requirement for fluidity. By regression analysis with LS-SVM, 86 (72) out of 10,000 sets of parameters
get a satisfactory slump value in the case of sphere (cluster); Figure 17 shows comparison between
fitted values and numerically calculated values of the 86 (72) sets, among which 22 (26) calculated
values range from 175 mm to 180 mm. In addition, Figure 17 also indicates that the constructed
LS-SVMs have satisfactory generalization ability and prediction accuracy.

  
(a) (b) 

Figure 17. Comparison of fitted values and numerically calculated values: (a) sphere model; and (b)
cluster model.

5.3.3. Strength Required Parameter Set

DE simulations of triaxial shear test are carried out successively with previously found parameter
sets adopted, and the one with result closest to the experimental result is regarded as desired parameter
set. Since the calculated static earth pressure at tunnel face ranges from 66.39 kPa to 92.98 kPa,
and measured soil pressure at the bulkhead fluctuates between 30 kPa and 80 kPa, the soil inside
shield chamber works in a low-pressure state. Therefore, the parameter sets are evaluated by the
stress–strain curve measured under confining pressure of 0.4 MPa. Figure 18 presents the established
discrete element models for the simulation of triaxial test. In the simulation, the confining pressure is
realized by exerting body force on peripheral particles via developing custom plugin programmed
in C++; the body force equals to the product of confining pressure and contact area between particle
and boundary. According to Hu [7], the contact radius of particle and geometry can be approximately
taken as particle radius.

   

Figure 18. Discrete element models for triaxial test.

In the single sphere case, the 22 test specimens fall into three groups according to simulation
result. The first group involves the 12th, 14th, 19th, 20th, 21st, and 22nd specimens. As for the six
specimens, the measured stresses constantly remain zero except for the beginning of loading. This is
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because their surface energy is too low. With weak cohesive force between particles, the soil specimens
have insufficient strength and self-stability. Therefore collapse occurs under the disturbance of axial
load. The evolution of the 12th specimen along with loading can be seen in Figure 19.

Figure 19. The evolution of the 12th specimen as loading.

Whereas, the second group consists of the 2nd, 3rd, 4th, 6th, 9th, 11th, 15th, 16th, and 18th
specimens. Compared with the first group, the nine soil specimens have developed some intensity
because of the improved cohesive force between particles. Their stress–strain curves measured under
the confining pressure of 0.4 MPa are shown in Figure 20. It can be seen that both the shape and
value of the curves deviate greatly from the result of laboratory test (see Figure 4). Figure 21 records
the evolution of the 2nd specimen during shear process. Obviously, the soil specimen expands
continuously, leading to an ongoing reduce in interlocking induced shear resistance. Once the cohesive
force and friction force are not enough to resist external force, local damage begins to occur on the
specimen. Along with loading, the damage area gradually gets larger and only a part of soil specimen
works in the end.

 
Figure 20. The stress–strain curve of specimens in the second group.

 
Figure 21. The evolution of the 2nd specimen as loading.
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The third group, including the 1st, 5th, 7th, 8th, 10th, 13th, and 17th specimens, behaves similarly
with the actual soil in laboratory. The stress–strain curves of the seven specimens (see Figure 22)
generally experience three stages, namely initial stage, strain hardening stage and strain softening
stage (or constant strain stage). At the beginning of the second stage, the deviatoric stress rises
rapidly because the closely packed particles must overcome a strong interlocking resistance for shear
dislocation, but the duration is short before shear dilation occurs. When the volume of specimen
increases, the soil becomes loose, resulting in weakened interlocking effect between particles and
thus a reduction in growth speed of stress. Then a peak, namely peak strength, can be seen in the
curve with certain expanded specimen volume. Along with the increasing shear load, the curve turns
into the third stage. In this stage, the specimen keeps expanding, but the shear strength decreases.
Finally, the curve fluctuates at residual strength as a result of continuous stress relaxation. The residual
strength is mainly shear resistance provided by sliding friction and rolling friction. Figure 23 shows the
variation of the first specimen in the shear process. As the shear load increases, the specimen appears
to undergo bulging deformation. It can be concluded from Figure 22; Figure 23 that discrete element
simulation can embody the nonlinearity, plasticity, strain softening, and shear dilatancy of granular
material. There are two possible reasons why the laboratory test cannot reflect the strain softening and
shear dilatancy: (1) With improved gradation and vibration method adopted when making sample,
the conditioned soil grains are closely arranged, therefore strong interlocking exists among grains.
(2) Besides, the sample was wrapped with a rubber film when testing. Constrained by the rubber film,
the soil cannot deform easily. Moreover, Figure 22 also shows that the 13th simulation has the most
similar stress–strain curve to the laboratory test. Therefore, a decent set of parameters is found as
e = 0.3234, μr = 0.0359, and k = 4523J/m2. In this way, the established discrete element model is
almost consistent with the actual soil both with respect to strength property and fluidity.

 
Figure 22. The stress–strain curve of specimens in the third group.

Figure 23. The evolution of the 1st specimen.
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Similarly, the 26 cluster specimens fall into three groups. Figure 24 shows the stress–strain curves
of the specimens in the third group, and Figure 25 presents the evolution of the 2nd specimen. So for
the cluster model, the desired parameters are e = 0.2569, μr = 0.0249, and k = 1845J/m2.

 
Figure 24. The stress–strain curve of cluster specimens.

 

Figure 25. The evolution of the 2nd specimen.

From the above analysis it is notable that when cluster is adopted, lower values for rolling friction
coefficient μr and surface energy k are required to obtain a good match between the experiment and
DEM simulation. This is because there exists additional strength gained from interlocking action due
to the irregular shape of the cluster. Besides, in the cluster case the CPU processing time for slump
test and triaxial shear test are respectively 144 min and 1235 min, which are 4.97 times and 3.68 times
higher than that in the sphere case.

6. Conclusions

This paper constructed two particle element models for conditioned sandy pebble. To take the
shape effect into account, rolling resistance was exerted on the single sphere or the single sphere was
replaced by the cluster of particles. Based on a laboratory test and DEM simulation of the slump test
and large-scale triaxial test, the undetermined contact parameters in two models were calibrated by
virtue of LS-SVR. Through comparative analysis, the following conclusions have been obtained.

(1) Because of the angularity of the nonspherical grains, there exists strong interlocking between
clusters. So in the cluster model, relatively smaller rolling friction coefficient and surface energy
are required.

(2) Since the model parameters are properly calibrated, the two established particle models both can
well describe the strength property and fluidity of the actual soil. However, the cluster model
takes ~4 times longer than the sphere model to execute the simulation.
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It is worth noting that calibrating parameters by intelligent algorithm is still a time consuming
task. There is an urgent need to conduct further research into multifunctional testing device for direct
measurement of material parameters. An uncertainty analysis as done in [36–38] might be helpful.
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Abstract: This study aims to present a theoretical investigation of a feasible electromagnetic wavepacket
with toroidal-type dual vortices. The paper begins with a discussion on geometric phases and angular
momenta of electromagnetic vortices in free space and periodic structures, and introduces topological
photonic media with a review on topological phenomena of electron systems in solids, such as quantum
Hall systems and topological insulators. Representative simulations demonstrate both the characteristics
of electromagnetic vortices in a periodic structure and of exotic boundary modes of a topological photonic
crystal, on a Y-shaped waveguide configuration. Those boundary modes stem from photonic helical
surface modes, i.e., a photonic analog of electronic helical surface states of topological insulators. Then,
we discuss the possibility of toroidal electromagnetic wavepackets via topological photonic media,
based on the dynamics of an electronic wavepacket around the boundary of a topological insulator
and a correspondence relation between electronic helical surface states and photonic helical surface
modes. Finally, after introducing a simple algorithm for the construction of wavepacket solutions to
Maxwell’s equations with multiple types of vortices, we examine the stability of a toroidal electromagnetic
wavepacket against reflection and refraction, and further discuss the transformation laws of its topological
properties in the corresponding processes.

Keywords: geometric phase; photonic orbital angular momentum; topological insulator; topological
photonic crystal

1. Introduction

Physical concepts proposed for a system are sometimes applicable to other systems that initially looks
considerably different from the original system. Such concepts can be used to predict novel phenomena
in the latter system and to explain a mechanism governing the phenomena. Such a mechanism could be
conversely applied to the original system and predict similar phenomena in it. Finally, we come to realize
their universality. Here we discuss about some interconnection among such concepts and mechanisms, e.g.,
band theory, geometric phase, Hall effect, topological phase and so on. “Energy bands” and “band gaps”
were originally cultivated in the field of condensed matter theory which concerns electron systems in
solids, e.g., natural crystals or artificial periodic structures. These concepts were applied to the old research
theme [1] on electromagnetic waves in periodic structures composed of different kinds of dielectrics
and magnetic materials, consequently establishing the concept of “photonic crystals” [2–4], which plays
an important role in the realization and extension of “metamaterials” [5–8]. The concept of “geometric
phase” was initially introduced in an electromagnetic system [9], and became clearly recognized in a
quantum system with spin degrees-of-freedom (DOF) for electron systems in solids [10]. Interestingly, this
clear-cut recognition was reapplied to an electromagnetic system, i.e., a photon system, and its validity

Appl. Sci. 2019, 9, 1468; doi:10.3390/app9071468 www.mdpi.com/journal/applsci

295



Appl. Sci. 2019, 9, 1468

became clear in a photon system than in electron systems [11]. On the contrary, the vortex structure of an
electromagnetic wave became widely recognized to closely relate with the orbital angular momentum of
photons [12], a view currently being implemented in the optical and quantum information communication
technology [13–15]. Moreover, electromagnetic vortices can appear in periodic structures, such as photonic
crystals [16]. This suggests a new kind of internal orbital angular momenta of photon in such systems.
These internal orbital angular momenta may be interpreted as quasi-spin DOF and potentially cause a
variety of geometric phase effects. Specifically, an electromagnetic wavepacket composed from wave
modes with such vortices can have orbital angular momentum perpendicular to its propagation direction.
This relation between angular momentum and propagation direction for such a wavepacket is similar to
that for an atmospheric tornado which shows unexpected exotic motions.

Herein, we theoretically investigate a possible electromagnetic wavepacket with toroidal-type
dual vortices, i.e., having a ring vortex inside the wavepacket and a line vortex along its propagation
direction. The line vortex resembles that of a Laguerre-Gaussian beam and suggests a finite orbital angular
momentum of the wavepacket. This paper is organized as follows. In Section 2, we review the relation
between geometric phases and angular momenta, followed by the discussion on electromagnetic vortices
in periodic structures in Section 3, which further demonstrates the propagation characteristics of such
electromagnetic vortices by conducting numerical simulations on Y-shaped waveguides. In Section 4, we
introduce the topological photonic media, while reviewing topological phenomena of electron systems in
solids, such as quantum Hall systems and topological insulators. Herein, a class of topological photonic
media is interpreted as a photonic version of topological insulator and can be realized as an extension of
photonic crystals accompanying the electromagnetic vortices. Moreover, we present another simulation
of waveguide propagation via exotic boundary modes of such a medium. In Section 5, referring to the
dynamics of an electronic wavepacket around the boundary between a topological insulator and conductor,
we consider the possibility of toroidal electromagnetic wavepackets with an argument on a correspondence
relation between electronic helical surface states of topological insulator and photonic helical surface
modes of topological photonic media. In Section 6, we present an algorithm for constructing wavepacket
solutions of Maxwell’s equations with multiple types of vortices. Next, we numerically investigate the
stability of the toroidal electromagnetic wavepacket in reflection and refraction at interfaces between
homogeneous isotropic dielectrics, and reveal the transformation laws of topological charges of line and
ring vortices.

In the next section and beyond, we adopt the natural system of units as h̄ = 1 (h̄: Dirac constant
or reduced Planck constant) and c = 1 (c: speed of light), unless those symbols are explicitly stated.
We will not distinguish between the wavevector k of a plane wave and the momentum h̄k of a quantum
particle derived from second quantization of the wave. Likewise, the frequency ω of a harmonic wave and
the energy h̄ω of a corresponding quantum particle will not be distinguished. For convenience on later
discussions, we introduce a spherical basis {ek, eθ , eφ} (ek = k/k) in wavevector space.

2. Geometric Phases and Angular Momenta of Electromagnetic Vortices

In this section, we first review the relation that exists between the spin angular momentum and
geometric phase of an electromagnetic wavepacket, following those between polarization state and
spin angular momentum and between polarization vector and geometric phase. Figure 1 describes the
relation between polarization state and angular momentum [17] of a right circularly polarized wavepacket
propagating in the z-direction (upward in the drawing). The arrows represent the deviation of the
wavepacket energy flux density from the product of the energy density and the averaged velocity vector,
whereas the hue represents the energy density (cold color < warm color). For simplicity, we considered
the situation wherein the wavepacket spread is sufficiently large with respect to its central wavelength

296



Appl. Sci. 2019, 9, 1468

so that its deformation can be ignored. In Figure 1, we can find a clockwise vortex in the view facing
the propagation direction (z-direction) of the wavepacket, indicating that the right circularly polarized
wavepacket has a spin angular momentum in the propagation direction. By contrast, we could not find
such structure of energy flux density in a similar plot of a linearly polarized wavepacket in the same scale
as Figure 1.

(a) (b)

Figure 1. (a) xy- and (b) yz-cross-sections of a right circularly polarized Gaussian wavepacket.

Furthermore, once the well-known indications, i.e., the geometric phase appearing due to the change
in polarization state [9] and the geometric phase due to orbital change of polarized beam [18], are accepted,
the relation between spin and geometric phase looms into view. Herein, by specifically looking at the
relation between polarization vector and geometric phase, we confirm the relation between the three
concepts more explicitly. For that purpose, we introduce two quantities, the Berry connection and
curvature, defined as

[Λk]αβ =

⎛⎜⎝ −ie†
kα · ∂

∂k1 ekβ

−ie†
kα · ∂

∂k2 ekβ

−ie†
kα · ∂

∂k3 ekβ

⎞⎟⎠ = −ie†
kα ·∇kekβ, Ωk = ∇k × Λk + iΛk × Λk, (1)

where {ekα} is an orthonormal basis of polarization vectors normal to the wavevector k (e†
kα · ekβ = δαβ,

and e†
kα · ek = 0); the symbol α is an indicator of polarization state; and e†

kα is the complex conjugate
transpose (the Hermitian conjugate) of ekα. Herein, we also introduce the Jones vector corresponding to this
orthonormal basis as |zk). With (zk| as the Hermitian conjugate of |zk), they satisfy (zk|zk) = ∑α |zkα|2 = 1.
Although representations of Λk and Ωk depend on how the basis is selected, (zk|Ωk|zk) is uniquely
determined once a state is given. On the basis of right and left circular polarizations, the Berry curvature
is represented as k/k3σ3, where σ3 is the third component of Pauli matrices σ = (σ1, σ2, σ3)

� and is
diagonal in the standard representation. On the contrary, (zk|Ωk|zk) can be expressed as (|zkR|2 −
|zkL|2)/k2ek using the corresponding representation [zkR, zkL]

� of |zk). Since the expected value of the
spin angular momentum per photon 〈sk〉 is evaluated as 〈sk〉 = (|zkR|2 − |zkL|2)k/k, a close relation,
〈sk〉 = k2(zk|Ωk|zk), exists between the two quantities.

We can extend the above discussion to a case accompanied by orbital angular momentum. A close
relation between the internal orbital angular momentum and Berry curvature is derived in the same way
as above, while its discussion gets a little bit complex. Herein, we consider a beam of a central wavevector
kc and introduce the extension
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ekα → exp (ilα ϕk;kc) ekα, ϕk;kc = arctan
eφc · k
eθc · k

, (2)

where lα corresponds to the vorticity of the α-polarized component and is an integer number, i.e., lα ∈ Z.
For simplicity, we consider only a class of beams that are a superposition of a given polarization component
with the vorticity l and its orthogonal component with l′. In other words, we restrict ourselves to a finite
subspace of infinite whole space of states. On the basis of right and left circular polarizations, the Berry
connection and curvature of this subspace are represented as,

Λk = − cos θ

k sin θ
(lOAM + σ3)eφ, Ωk =

1
k2 (lOAM + σ3)ek, (3)

where lOAM is a 2 × 2 Hermitian matrix with a pair of integer eigenvalues (l, l′). On the other hand, the
expected value of the total angular momentum per photon 〈jk〉 is evaluated as 〈jk〉 = (zk|lOAM + σ3|zk)ek.
We can find a close relation 〈jk〉 = k2(zk|Ωk|zk) again.

Next, we consider the meaning of the form of the Berry curvature, k/k3σ3, on the basis of circular
polarizations which we shall call helicity basis hereafter. As we shall see, this form reflects the photon
characteristics of a spin-1 gauge symmetric massless boson. To this end, we introduced a degenerate
two-band model of a spin-1/2 fermion system with conical dispersions, similar to relativistic electrons.
The Hamiltonian of this model and its projection to the subspace of definite wavevector k are given by

H = −iv∇r · α + Δ β → Hk = vk · α + Δ β, (4)

where α and β are Dirac matrices and v and Δ are parameters of effective phase velocity and band gap,
respectively. The band gap of this model plays a similar role as the mass gaps in relativistic theories; hence,
we shall refer to the limit Δ → 0 as massless limit. The eigenvalue problem of Hk can be easily solved.
The eigenvalues of the upper and lower bands are obtained as ±√

v2k2 + Δ2; only the upper bands will
be considered hereafter. The degenerate eigenstates of the upper band |ukλ〉 in terms of the spherical
coordinate of wavevector space (k, θ, φ) are expressed as

|uk±〉 = 1√
2Ek

( √
Ek + Δχk±

±√
Ek − Δχk±

)
, χk+ =

(
e−i φ

2 cos θ
2

ei φ
2 sin θ

2

)
, χk− = −iσ2χk+, (5)

where Ek =
√

v2k2 + Δ2 and the index λ corresponds to the degrees of helicity, i.e., spin component in the
direction of k. Note that the above expressions are well-defined only in regions excluding the points θ = 0
and π. However, we shall not step into regularization at these points but only mention that expressions
valid at θ = 0 or π are obtained by some gauge transformations of the above expressions. One can easily
confirm that the above expressions satisfy the time-independent Schrödinger equation in k-subspace,

Ek|ukλ〉 = Hk|ukλ〉. (6)

At this point, we would like to mention that the electromagnetic polarization vectors ekλ can be interpreted
as solutions of a similar Schrödinger-type matrix equation, which is a transcription of Maxwell’s equations.
The correspondence relation is confirmed by the replacements, Ek = k/(

√
ε
√

μ), and

Hk =

(
0 iε− 1

2 k · Sμ− 1
2

−iμ− 1
2 k · Sε− 1

2 0

)
, [Si]jk = −iεijk, |ukλ〉 = 1√

2

(
ekλ

ek × ekλ

)
, (7)
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where ε, μ, and εijk are the relative permittivity, relative permeability, and the Levi-Civita symbol,
respectively. For simplicity, we assumed a homogeneous and isotropic background medium here.
Therefore, by means of the state vectors |ukλ〉, we can define the Berry connection in a form common in
electronic and electromagnetic systems,

[Λk]αβ = −i〈ukα|∇k|ukβ〉. (8)

Now, let us get back to the degenerate two-band model. On the helicity basis, the Berry connection and
curvature of the upper band are expressed by

Λk = 1
2k

{
Δ
Ek
(−σ2eθ + σ1eφ)− cos θ

sin θ σ3eφ

}
, Ωk = v2

2E2
k

{
Δ
Ek

(
σ1eθ + σ2eφ

)
+ σ3ek

}
. (9)

In the massless limit Δ → 0, this coincides with the Berry curvature of photons except for the overall
coefficient due to a different spin magnitude. In the non-relativistic limit, i.e., an increasing |Δ| for a fixed
k, the Berry curvature decreases in the form 1/Δ2, similar to the scale of the spin-orbit interaction. Next,
let us consider the relation between the spin angular momentum and the geometric phase in this spin-1/2
massive fermionic system. The spin operator s and its projection to the upper band sk are given as follows:

s =

(
σ 0
0 σ

)
→ [sk]αβ = 〈ukα|s|ukβ〉, sk =

1
2

{
Δ
Ek

(
σ1eθ + σ2eφ

)
+ σ3ek

}
. (10)

In the massless limit Δ → 0, sk matches its photonic version except for the coefficient 1/2 that comes from
the spin-1/2 nature of the present fermionic system. We can again find the simple relation between the
Berry curvature and the spin angular momentum, sk = (E2

k/v2)Ωk.
As for the electromagnetic waves in periodic structures, we can develop the same discussion by

replacing the polarization vectors with eigenstate vectors expressed using Bloch wave functions, as in the
example of a spin-1/2 fermion system discussed above [19,20]. We do not intend to have an unnecessary
abstract debate using “Berry connection” and “Berry curvature”. Thus, whereas they were introduced
in a way that makes the theories under consideration abstract, we can use a common principle that is
independent of the details of electron or photon systems for better understanding. Although the definition
of angular momentum in a periodic system is accompanied by ambiguity, the Berry curvature can be
uniquely defined apart from the freedom-of-choice of basis. Our knowledge of phenomena or effects
in a given system are easily applicable to the realization of analogous phenomena or effects in other
systems. From this viewpoint, information on the Berry curvature of each band helps us organize the
relation between photonic bands in wavevector space and vortices in real space, and serves as guide for
controlling vortices.

3. Electromagnetic Vortices in Periodic Systems

The spin DOF of photon is no longer well-defined in the presence of periodic structure, while we
shall need an alternative concept of photonic spin to discuss the possibility of toroidal electromagnetic
wavepackets in Section 5, based on an electron dynamics around the interface of a topological insulator
where the concept of electronic spin still works well. (The photonic version of topological insulator
will be introduced in Section 4.) One possibility of the alternative is the internal rotational motion of
electromagnetic Bloch modes with vortices. In this section, we step further into electromagnetic vortices
in periodic structures such as photonic crystals. After looking back briefly on the relation between the
Berry curvature and real-space vortex structure in periodic systems, we present a numerical simulation
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on propagation modes around a standing vortex mode in a photonic crystal, indicating the effect of the
internal rotation in the propagation process.

Useful functionalities of a photonic crystal, such as light confinement and waveguide, are realized
by adjusting energy (frequency) dispersion relations and forbidden bands by the periodic structure and
symmetry design of the system. The required design procedures stem from the band theory common
to wave phenomena in periodic structures. Moreover, based on the studies of geometric Hall effect in
electron systems [21,22], we can also use such design to control the Berry curvature of each band [23,24].
For instance, by employing a two-dimensional (2D) periodic system in the xy direction, we can consider
a situation where two bands are immediately prior to touching each other at a point k0 in a wavevector
space. Given an approximate description, fk ±√

v2|k − k0|2 + Δ2 ( fk: a function of wavevector k) for
the local energy dispersion of each, the z-component of the Berry curvature of each band is estimated as
Ωz

k± = ±v2Δ/{2(v2|k − k0|2 + Δ2)} 3
2 . In other words, we can control the Berry curvature by adjusting

the level repulsion Δ. We confirmed this mechanism in a more strict theory exactly treating the periodic
structure, as well as the relation among the Berry curvature, the angular momentum [19,20] and the
real-space vortex structure [16,25]. The electromagnetic vortex can be also controlled through the
adjustment of Δ. Figure 2 shows an example of a set of such periodic structure, band diagram, and
electromagnetic vortex. As for the 2D photonic crystals, we considered only photonic modes of two
distinct polarizations, i.e., transverse-electric (TE) and transverse-magnetic (TM), which propagate strictly
parallel to the plane with a 2D periodicity. Herein, we adopted this definition: TE modes have magnetic
fields normal to the plane and electric fields in the plane; conversely, TM modes have electric fields normal
to the plane and magnetic fields in the plane.

(a)
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Figure 2. (a) A sample inversion asymmetric 2D photonic crystal for relative permittivity of 1, 3, and 12 in
white, gray, and black regions, respectively. (b) Band diagram of TE modes for (a). Dotted lines show the
case where the relative permittivity of gray rods is set to one. The vertical axis represents the dimensionless
frequency ωa/(2πc) (a: lattice constant; c: speed of light). (c) A sample optical tornado: energy flux density
of a state at a K-point of the TE 2nd band.

The electromagnetic vortex shown in Figure 2c corresponds to a standing wave mode of a zero
group velocity. On the other hand, modes around it have finite group velocities in addition to the vortex
structure, and can propagate through the crystal with rotational motion. Next, we describe the propagation
characteristics of such modes in a Y-shaped waveguide in Figure 3a composed of the crystal in Figure 2a
and a block layer with a sufficiently large band gap covering the relevant frequency range. Since it was
not easy to excite a specific electromagnetic vortex mode in a real-time-and-space simulation, we adopted
an excitation using a linear source with a line width of a few percent around the central frequency of
the targeted vortex modes. Moreover, the linear source was set at the left end of the left branch of the
waveguide and the vortex modes were excited by electric field oscillations along the source. Figure 3b
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shows the z-component of the magnetic field Hz and Figure 3c displays the transmission spectra measured
at the ends of the upper right and lower right branches. As the vertical axis is in arbitrary unit, we also
plotted the spectrum (blue and red broken lines) of the case where the Y-shaped region is replaced by
vacuum, for comparison. Two broken lines overlapped each other, and only the blue broken line is visible.
The transmission spectra of the target system in Figure 3c is extremely asymmetric, whereas we find only
weak asymmetry in the real-space image of Figure 3b. Figure 3b also shows that this system contains
accidental edge modes localized around interfaces aside from bulk vortices; therefore, the asymmetry
could not be attributed solely to the bulk vortex modes. An additional simulation (not shown here)
confirmed that the edge modes in this system are strongly reflected at the bents of the Y-shaped waveguide;
therefore, we conclude that the bulk vortex modes contribute primarily to the asymmetric propagation.

(a) (b)

0.39 0.395 0.4

ar
b.

 u
ni

t

ωa/(2πc)

(c)

Figure 3. (a) Y-shaped waveguide composed of the photonic crystal in Figure 2. The relative permittivity
of the gray region of block layer around the waveguide is set to be 9. (b) z-component of magnetic field
Hz. (c) Spectra of the transmissions to the upper right (blue line) and to the lower right (red line) branches.
The broken lines represent the transmission spectra for a vacuum Y-shaped region.

4. Topological Photonic Media

Based on the pioneering studies on quantum Hall effect in 2D electron systems [26–28], a topological
invariant, known as Chern number or index, is assigned to an isolated band via integration of its Berry
curvature over the entire first Brillouin zone. Depending on total Chern numbers of bulk bands below a
bulk gap, exotic states localize at the edge of a finite system and form edge bands traversing over the bulk
gap [29,30]. Furthermore, each state works a one-way waveguide; therefore, is called a chiral edge state.
For a Chern number of an isolated band to be nonzero, time-reversal symmetry breaking is necessary. This
symmetry may be broken not only by an externally applied magnetic field but also by a spontaneously
induced magnetic order [28]. When the quantum Hall effect is induced by the latter mechanism, it is
sometimes called the spontaneous quantum Hall effect, as distinguished from the original one. To realize a
similar situation in photon systems, the above mechanism requires isolated bands to form with band gaps
stemming from time-reversal symmetry breaking. For instance, a magnetic body of a complex permittivity
tensor with imaginary off-diagonal components breaks time-reversal symmetry for the photon system.
At least the necessary conditions are satisfied by designing a 2D periodic structure made of such a material
to form isolated photonic bands. This analogy was the basis for a photonic version of the quantum
Hall system theoretically proposed [31–33] and experimentally confirmed [34,35]. Presently, a clear-cut
demonstration has also been made on nonreciprocal lasing from chiral edge modes surrounding a network
of topological cavities in arbitrary geometry [36].

In reverse, a one-way propagation of a chiral edge mode inevitably breaks the time-reversal symmetry.
(Time-reversal symmetry breaking is a necessary condition for the presence of a single chiral edge state;
conversely, the presence of a single chiral edge state is a sufficient condition for the symmetry breaking.)
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Fortunately, however, chiral edge states and their time-reversal partners can simultaneously exist in a single
system preserving time-reversal symmetry in its entirety [37]. As an extension of quantum Hall system
to the case with time-reversal symmetry, an insulator with a topologically-protected pair of edge states
has been proposed [38]. Such insulator and edge states are respectively called topological insulator and
helical edge states [39]. The propagation direction of a helical edge state is selectively governed by its spin
polarization. In a naive picture, topological insulator is understood as a superposition of a spontaneous
quantum Hall system spin-polarized in a specific direction and its time-reversal partner spin-polarized in
the opposite direction which is necessary to maintain time-reversal symmetry. Based on this situation,
it was initially called quantum spin Hall system. More precisely, the parity of the numbers of Kramers
pairs of helical edge states is critical [38] and corresponds to the topological invariant called Z2 index.
As the index can be calculated by means of the bulk states of a system with periodic boundary conditions,
topological insulators can be distinguished from non-topological insulators even with bulk information
alone. Furthermore, topological crystalline insulators were proposed by introducing combinations of
crystalline symmetries and time-reversal symmetry [40], extending to their photonic version [41–43].
A wider range of topological materials, including superconductors, have been systematically classified
based on symmetry and dimensionality [44,45].

Typical physical conditions under which topological insulators emerge are as follows: (1) two pairs of
bands with different parities opposite to each pair, which are energetically close to each other, hybridize
with each other through a strong spin-orbit interaction and; (2) the resultant level repulsion forms an
enough sized bulk gap [46]. By contrast, for photon systems in periodic structures, what kind of DOF
should be regarded as spin DOF remains unclear. Nevertheless, if the difference between certain degenerate
modes is approximately regarded as pseudo-spin DOF and the coupling between electric and magnetic
fields introduced by an artificial chiral medium are regarded as effective spin-orbit interaction of photon,
then a similar mechanism could be applied to photon systems in periodic structures. Photonic versions of
topological crystalline insulator using metamaterials as artificial chiral media have been proposed [41,42].
After such proposals, it has been pointed out that those topological photonic media could be realized
even by photonic crystals composed of only ordinary dielectrics [43], whereas such systems needed to
introduce some complication to the unit cell of the crystal. Therefore, we should regard the chiral medium
as an example of effective spin-orbit interaction implementation, and not an item of necessity. Figure 4a,b
show examples closely related to the all-dielectric topological photonic crystals in Ref. [43]. The structure
of Figure 4a is an inversion asymmetric deformation of a topological photonic crystal; hence, we shall
call it a quasi-topological photonic crystal for convenience. Compared to the case of Figure 2a, the degree
of the symmetry breaking is so weak that it is not easy to distinguish two kinds of rods colored by dark
gray and black. The bulk bands are almost unchanged from the symmetric case as depicted in Figure 4c.
However, as we shall see below, this symmetry breaking clearly resolves the degeneracy of edge modes
and opens a recognizable gap in edge bands. The crystal comes into the topological phase when the
inversion symmetry is restored by setting the same values of relative permittivity, i.e., 10, in the dark
gray and black regions. Contrastingly, the crystal of Figure 4b is in non-topological phase. Figure 4c is
the band diagram of the TM modes of the quasi-topological photonic crystal in Figure 4a. We can find
sufficiently-sized band gap at approximately 0.5 in the unit ωa/(2πc). Figure 5a displays the unit cell
of the superlattice composed of the crystals of Figure 4a,b. Figure 5b is a closeup of the projected band
diagram of TM modes in the superlattice. The edge modes are emphasized in red. The red-dotted lines
are the edge modes when the inversion symmetry of the middle part is restored. In this superlattice, the
structure around the edge part also breaks the inversion symmetry of the whole system, as evidenced by a
small gap in the edge band modes even when the middle part is in the topological phase. The explicit
breaking of the inversion symmetry in the middle part increases the size of this gap as well as resolves
the degeneracy of the edge modes. Figure 5c gives the energy flux density of an edge mode belonging
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to the lowest branch. We can see that the mode is well confined around the boundary and accompanies
some eddies.
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Figure 4. (a) A sample inversion asymmetric 2D quasi-topological photonic crystal for relative permittivity
of 1, 9, and 11 in white, dark gray, and black regions, respectively. When the inversion symmetry is restored,
the crystal can be in the topological phase. (b) A sample 2D photonic crystal in non-topological phase for
relative permittivity of 1 and 10 in white and black regions, respectively. (c) Band diagram of TM modes of
the photonic crystal in (a); dotted lines show the case where the relative permittivities of the gray and black
rods are set to 10. The vertical axis represents the dimensionless frequency ωa/(2πc). (a: lattice constant
and c: speed of light).
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Figure 5. (a) Unit cell of a 2D superlattice composed of quasi-topological and non-topological photonic
crystals in Figure 4. (b) Projected band diagram of TM modes of (a). Edge modes are emphasized in red.
The red-dotted lines show the edge modes where the relative permittivities of the dark gray and black rods
in the middle part are set to 10. The vertical axis represents dimensionless frequency ωa/(2πc). (a: lattice
constant and, c: speed of light) (c) Energy flux density of an edge mode (ωa/(2πc) = 0.455) belonging to
the lowest branch (the lowest red curve) in (b).

The propagation characteristics of the edge modes were demonstrated in a Y-shaped waveguide in
Figure 6a, where the Y-shaped part is composed of the crystal in Figure 4a, whereas the block layer is
composed of the crystal in Figure 4b with a sufficiently large band gap to cover the relevant frequency
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range. The linear source was set at the left end of the left branch of the waveguide, and the vortex modes
were excited by electric field oscillations along the rods, or specifically, in the vertical direction to the
page. Figure 6b shows the z-component of electric field Ez. Here, we can see an extremely anisotropic
propagation through helical edge channels. Figure 6c shows the transmission spectra (blue and red solid
lines) measured at the ends of the upper and lower right branches along with the spectra (blue and red
broken lines) of the case where the Y-shaped region is replaced by vacuum, for comparison. The blue and
red broken lines should overlap for the idealistic simulation treating each rod as a material with an exactly
sharp boundary. However, smearing each boundary was introduced in the real simulation and the order
of introducing the parts influenced the actually simulated structure. For the present case, the simulated
structure of the block layer weakly broke the space inversion symmetry; hence, a small discrepancy
appeared between the blue and red broken lines. By contrast, a large difference appeared between the blue
and red solid lines: the transmission characteristics of the target system were quite asymmetric.
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Figure 6. (a) Y-shaped waveguide composed of quasi-topological and non-topological photonic crystals
in Figure 4. (b) z-component of electric field Ez. (c) Spectra of the transmissions to the upper right (blue
line) and lower right (red line) branches. The broken lines represent the transmission spectra for a vacuum
Y-shaped region.

5. Electronic State with Twisted Spin-polarization

Focusing on the highly-resolved spin selectivity of helical edge states of topological insulators, we
proposed a spin filter using one of the edge states as a conduction channel and a spin control method
using hybridization between the edge states and conduction electrons in References [47,48]. For example,
we simulated the reflection of an electronic wavepacket at a boundary between the 2D conductor (left
side) and topological insulator (right side), as shown in Figure 7, using an effective tight-binding lattice
model. For the convenience of numerical treatment, the model was constructed on a simple square lattice,
r = n1a1 + n2a2, where n1 and n2 are integers and a1 and a2 are primitive lattice vectors of the square
lattice. As our focus was on a single-particle state, in principle the first quantization formalism is sufficient.
Nevertheless, we introduced the second quantized formalism as a convenient representation method,
which enables us to represent operators in compact forms. The Hamiltonian of the conductor part was
modeled following a simple tight-binding model,

H2DC = ∑
r

[{
−t0

(
c†

r+a1
cr + c†

r+a2
cr

)
+ H.c.

}
+ 4t0c†

r cr

]
, (11)

where c†
r and cr are the creation and annihilation operators at a lattice site, and H.c. is Hermitian

conjugate. Here, cr is a spinor operator consisting of up and down spin components, i.e., cr = (cr↑, cr↓)�.
We introduced the last term to adjust the bottom of the conduction band to the origin of energy Ek=0 = 0.
Under periodic boundary conditions, the energy dispersion of this model is derived as Ek = 2t0[2− cos(k ·
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a1)− cos(k · a2)], and which mimics a conventional k-square dispersion around the origin of k-space,
i.e., Ek

∼= k2/(2m∗) (m∗ = 2t0a2). In modeling the topological insulator, we introduced a spin-dependent
π-flux per square plaquette by the nearest-neighbor hopping of the magnitude |tn| and classified all the
lattice points alternatively to the sub-lattices, A (n1 + n2 ∈ even) and B (n1 + n2 ∈ odd). (The unit cell
is doubled, and the primitive vectors of each sub-lattice are given by a1 + a2 and −a1 + a2.) Next, we
introduced the next-nearest-neighbor hopping of the magnitude |tnn| with alternating signs depending on
the sub-lattices and a staggered potential of magnitude |vs|. The Hamiltonian of the topological insulator
part is represented by

H2DTI = ∑
r
(−1)rtn

[(
c†

r+a1
ei π

4 (−1)rσ3 cr − c†
r+a2

e−i π
4 (−1)rσ3 cr

)
+ H.c.

]
+∑

r
(−1)rtnn

[(
c†

r+a1+a2
cr + c†

r−a1+a2
cr

)
+ H.c.

]
+ ∑

r
(−1)rvsc†

r cr , (12)

where (−1)r = (−1)n1+n2 = ±1 for A and B sub-lattices, respectively. The Hamiltonian H2DTI is
time-reversal invariant as a whole as well as H2DC, because each of the spin sectors is a time-reversal
partner of the other. In the parameter range 4|tnn| > |vs|, each of the spin sectors comes in a quantum Hall
phase. The spin-resolved quantized Hall conductances have a common absolute value and different signs.
They cancel each other so as to preserve time-reversal symmetry. A homogeneously spin-polarized incident
wavepacket is illustrated in Figure 7a. The packet is incident from the conductor (left) perpendicularly to
the boundary (red vertical line); its spin polarization is uniformly pointing in the incident direction. On the
other hand, the spin-polarization state of the reflected wavepacket is depicted in Figure 7b. The spin
density of the top white area faces in this side of the page, whereas that of the bottom black area faces
the back. Polarization in the vicinity of the wavepacket center has the same state as the pre-incidence.
(See Figure 7c for details about the correspondence between spin density and color space.) These results
suggest that an electronic state with twisted spin-polarization can be generated from a homogeneously
spin-polarized state via topological interface between a conductor and a topological insulator, where
helical edge states run along the boundary.

(a) (b) (c)

Sx Sy

Sz

Figure 7. (a) An incident wavepacket with homogeneous polarization along the x-direction and
(b) a reflected wavepacket with twisted spin texture. (c) Relative correspondence between spin density S
and hue, lightness, and saturation (HLS) color space. Approximately, HLS correspond to the azimuth angle,
polar angle, and magnitude of spin density, respectively.

The concept of topological insulator extends to the three-dimensional (3D) system, where helical
surface/interface states traversing bulk band gaps emerge [49,50]. Figure 8a shows a conceptual diagram
of idealistic helical surface states. The green balls depict the electrons, whose propagation direction and
spin angular momentum are indicated by each set of green and black arrows, respectively. For example,
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the 2D topological insulator model in Equation (12) can also be extended to 3D versions with some
generalizations. A sequence of 3D models is constructed on a simple cubic lattice r = ∑μ nμaμ (nμ ∈ Z)
with an orthogonal set of unit lattice vectors aμ (μ = 1, 2, 3). Every site is classified into either A or B
sub-lattice as r ∈ A(B) when ∑μ nμ = even(odd), in which a sign symbol (−1)r can be introduced as

(−1)r = (−1)∑μ nμ . Moreover, each sub-lattice forms a face-centered cubic lattice. The sequence of 3D
models is characterized by three types of parameters tμ, tμν(= tνμ), and vs, along with SU(2) matrices {Uμ}
(μ, ν = 1, 2, 3) representing the spin-precession processes in the μ-directional nearest-neighbor hoppings.
The Hamiltonian of the sequence is given by

Ĥ3DTI = ∑
r

∑
μ

(−1)r tμ

[
ĉ†

r+aμ
U(−1)r

μ ĉr + H.c.
]

+∑
r

∑
μ<ν

(−1)r tμν

[(
ĉ†

r+aμ+aν
ĉr + ĉ†

r−aμ+aν
ĉr

)
+ H.c.

]
+ ∑

r
(−1)r vs ĉ†

r ĉr . (13)

This sequence is advantageous in that the edge states of a member with open boundary condition can
be analytically investigated in some parameter regions, provided that {Uμ} satisfies the conditions
U†

μUν + U†
ν Uμ = 2δμνσ0 and σ2Uμσ2 = Uμ. Here, U†

μ and Uμ are Hermitian and complex conjugates of Uμ,
respectively. The symbol σ0 stands for the 2 × 2 unit matrix in the spin space. Unfortunately, there remain
unresolved issues in plausible modeling of the interface between a member of this sequence and conductor.
The analysis also accompanies technical complications and will be given elsewhere. Besides, 3D versions
of topological photonic crystals have also been proposed [51,52]. Although the relation between a photon’s
pseudo-spin and actual angular momentum in a periodic structure remains ambiguous currently, examples
of energy flux densities of photonic chiral edge modes in References [25,33] and photonic helical edge
modes in Figure 5 suggest that the former corresponds to a vortex structure stemming from the latter.
A schematic of the ideal photonic helical surface modes is shown in Figure 8b. Here, each set of yellow
and black arrows represent the propagation direction and local angular momentum density of a photonic
helical surface mode, respectively, whereas the yellow circles containing arrows represent the local vortex
structures of the modes.

(a) (b)

Figure 8. Conceptual diagrams of (a) electronic helical surface states and (b) photonic helical surface modes.

Let us look back to the electronic wavepacket with a twisted spin structure in Figure 7b and consider
its 3D extension. Suppose a case exists where a wavepacket homogeneously polarized in the propagation
direction is perpendicularly incident on the surface of an idealistic 3D topological insulator depicted
in Figure 8a. Since in this case we can find the rotational symmetry around the incident axis, the
reflected wavepacket is expected to accompany a toroidally-twisted spin texture derived by rotating
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Figure 7b around the incident axis. Therefore, the question that arises is how do we extend the above
discussion of electoronic wavepacket to its photonic version. Section 4 argues that various types of
topological photonic media can be proposed based on the same idea in electron systems. As speculated in
Figure 8b, the electronic spin would be replaced by a photonic vortex structure. It is reasonable to replace
the incident electronic wavepacket homogeneously spin-polarized to the propagation direction by an
electromagnetic wavepacket with photonic orbital angular momentum in the propagation direction, i.e., by
that as depicted in Figure 9. Similarly, a simple thinking on the reflected wavepacket would suggest that a
toroidally-twisted spin structure can be replaced by a toroidal vortex structure, as depicted in Figure 10.
(The hue and the arrows in Figures 9 and 10 represent the energy density and the deviation of energy flux
density, respectively, as in Figure 1.) This speculation appears to be extremely naive, because in general, the
vortex structure of a photonic helical surface mode is complicated, as displayed in Figure 5c. Nevertheless,
as long as the focus is on the topological information of wavepackets, e.g., a set of topological charges of
multiple-vortex structure, some realistic vortices are very likely to belong to the same topological class as
in Figure 5c, as was the case for Laguerre-Gaussian beams. Therefore, studying the possibility and stability
of a photonic/electromagnetic wavepacket with such toroidal vortex structure is worthwhile, not only
from an academic point-of-view but also from an application perspective.

(a) (b)

Figure 9. (a) xy- and (b) yz-cross-sections of a linearly polarized Laguerre-Gaussian wavepacket with
orbital angular momentum directed to the positive z-axis.

(a) (b) (c)

Figure 10. (a) xy- and (b) yz-cross-sections, and (c) isosurface of the energy density of a linearly polarized
toroidal wavepacket with orbital angular momentum directed to the positive z-axis.

6. Propagation Characteristics of Toroidal Electromagnetic Wavepacket

The electromagnetic vortices shown in Figure 9 can be implemented into a quantum digit for
information communication [13] and mode division multiplexing in telecommunication technology [14,15].
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These applications use the fact that there are multiple quasi-orthogonal modes in a narrow frequency band.
Hence, it is a meaningful task to devise various extensions of such electromagnetic vortices. This section
brings up the toroidal vortex structure in Figure 10 as one of those extensions. Moreover, it aims to answer
questions such as whether the electromagnetic wavepacket with a toroidal vortex can exist as a solution to
Maxwell’s equations and how stable it is when it can be present.

To answer the initial question, we shall present a procedure to construct wavepacket solutions with
generic vortex structures. In the process, we assume that we already have the information of Fourier
components ekα of plane wave solutions of mode α with eigenfrequency ωkα, and that the set {ekα}
(α = 1, 2, · · · ) constitutes a perfect orthonormal system, at least at a practical approximation level. The
construction procedure consists of four steps as follows:

1. Construct normalized scalar wavepackets { fα(r)} with trial vortex structures for mode α.
2. Calculate the Fourier transform { f̃kα} of { fα(r)}.
3. Construct the solution of electromagnetic field Ẽ(k, t) in k-space by

Ẽ(k, t) = ∑α f̃kαzkαekα exp (iωkαt) , (14)

where the set of parameters {zkα} reduces to Jones vector in simple cases.
4. Calculate the inverse Fourier transform of Ẽ(k, t), and take its real part as the solution E(r, t).

Generally, the above procedure can contain numerical calculations and is inevitably accompanied
by approximation due to discretization of both real and wavevector spaces. Nonetheless, in principle the
obtained solution converges to an exact solution in the continuous limit. Electromagnetic wavepackets
with any vortex structure can actually exist, whereas the stability remains uncertain. In other words, this
procedure is applicable as long as the quasi-complete set of {ekα} is obtained by either an analytical or
numerical method. For instance, a typical case for the former may include the reflection and refraction of
linearly polarized plane waves at a flat interface between two different media of homogeneous isotropic
permittivity ε and permeability μ. Analytical expressions of {ekα} are given by Fresnel’s equations, where
the index α stands for either P- or S-polarization, while the index k can represent the wavevector of an
incident plane wave. As for the latter, we can consider an extension to periodic systems by replacing
momentum k by crystal momentum and making mode index α include a band index, along with a
degenerate mode index, as in α → nλ (n: band index and λ: degenerate mode index). Finally, note that the
center of a wavepacket can be easily shifted by r0 through the replacement { fα(r)} → { fα(r − r0)}.

To simplify the discussion, we shall omit the mode dependence of trial functions introduced above,
and pick up only linearly-polarized wavepackets here. Figure 10 provides a sample electromagnetic
wavepacket constructed from the procedure above, and which propagates at a positive z-direction.
The wavepacket has an energy density distributed in a hollow torus-shape, and the wavepacket has
a ring-shaped vortex along the internal hollow part of the torus, in addition to a line-shaped vortex
associated with the orbital angular momentum directed to positive z-direction, which penetrates through
the central hole of the torus. Figure 10a represents the xy-cross-section of the wavepacket, where we can
find the eddy structure of energy flux density corresponding to the orbital angular momentum. On the
other hand, Figure 10b represents the yz-cross-section of the wavepacket, where we can find another
vortex structure whose core corresponds to the hollow part inside the torus. Let us take a closer look at a
trial scalar wavepacket with toroidal-type vortex structure, fTWP(r). This function contains seven types of
parameters, namely mline: vorticity of line vortex; mring: vorticity of ring vortex; kc: central wavevector; �R:
radius of the central ring inside the hollow region; �r: radius of torus-type tube; �Δ: thickness of surface
layer of hollow torus and; �v: size of vortex core, where we set the core sizes of two kinds of vortices to be
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the same. By introducing a right-handed basis set {e1, e2, e3} with the condition e3 = kc/|kc|, we can give
an example such as

fTWP (r) = N
(

zline

|zline|
)mline

(
zring∣∣zring

∣∣
)mring

tanh
( |zline|

�v

)
tanh

(∣∣zring
∣∣

�v

)

× exp

{
− 1

2�2
Δ

(∣∣zring
∣∣− �r

)2
+ ikc · r

}
, (15)

zline = (e1 + ie2) · r, zring = (|zline| − �R) + ie3 · r, (16)

where N is a normalization factor. Figure 10 corresponds to the case where mline = 1, mring = −1,
λ = 2π/|kc| = 0.445�0, �R = 6�0, �r = 3�0, �Δ = �0, and �v = 0.25�0 where �0 is a unit of length scale.
Herein, we shall consider only this set of parameters for toroidal wavepackets, as our focus is limited on the
topological properties of toroidal wavepackets, and does not extend to details of their shape deformations.
For better understanding by way of comparison, we present trial scalar functions fGWP(r) and fLGWP(r)
for Gaussian and Laguerre-Gaussian wavepackets, respectively, defined by

fGWP (r) = N exp

(
− r2

2�2
R
+ ikc · r

)
, (17)

fLGWP (r) = N
(

zline

|zline|
)mline

tanh
( |zline|

�v

)
exp

(
−
∣∣zring

∣∣2
2�2

r
+ ikc · r

)
, (18)

The Gaussian wavepacket in Figure 1 and the Laguerre-Gaussian wavepacket in Figure 9 correspond to
the cases with �R = 6�0 and with mline = 1, �R = 6�0, �r = 2�0, �v = 0.25�0, respectively. In both cases, the
wavelength is set at λ = 2π/|kc| = 0.445�0.

For the second question, we shall consider the stability of the toroidal wavepacket against reflection
and refraction on flat interfaces between different kinds of homogeneous isotropic media. The dielectric
constants on the lower and upper sides are represented by the symbols ε1 and ε2, respectively.
Figures 11–13 show the time lapses for cases with ε2/ε1 = 0.40, 0.75, and 2.50, respectively. The incident
angle is set at 45◦. The time is measured in units of �0

√
ε1μ0. The dimensionless time τ of each frame is

τ = −16,−8, 0,+8,+16 from left to right. Figure 14 shows the incident-angle dependence for ε2/ε1 = 2.50.
The incident angle θ of each frame is θ = 0◦, 15◦, 30◦, 45◦, 60◦ from left to right, and the dimensionless
time τ is τ = +16 in every frame. In all cases, the magnetic permeability is set at μ = μ0 everywhere, and
only the xz-cross-sections are depicted. (x- and z-axes correspond to horizontal and vertical directions,
respectively.) We adopt quasi-P-type configuration for the polarization state of every incident wavepacket.
(The mean magnetic field of every incident wavepacket is parallel to the interface and normal to the
quasi-incident-plane.) From the result in Figure 11, we can presume that the toroidal vortex is stable
against reflection. On the other hand, two cases for refraction emerge. First, as the refractive index at the
transmission side (Figure 12) decreases, the wavepacket shape stretches in a similar manner to its central
wavelength, leading to an unstable ring vortex. Second, as the refractive index at the transmission side
(Figure 13) increases, the wavepacket compresses in a similar manner to its central wavelength, resulting
in a stable ring vortex at least up to θ = 60◦ (Figure 14).

Finally, we would like to mention the transformation laws of the wavepacket topological properties.
The vorticity mline of the linear vortex corresponding to the orbital angular momentum changes as mline →
−mline in reflection, while it does not in refraction, suggested by our analogy with the Laguerre-Gaussian
beam with an orbital angular momentum. By contrast, the vorticity mring of the ring vortex does not change
in both reflection and refraction. In general, recognizing a wavepacket as a particle-like object may give
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odd results at first glance. However, the wavepacket is actually a wave phenomenon, and it transforms
to get turned inside out in reflection. Since both the rotational flow stemming from the ring vortex and
the propagation direction change, the vorticity mring defined based on the propagation direction remains
unchanged. We would like to conclude this section with a note. As for the cases of partial reflection in
Figures 12 and 13, it is not easy to identify reflected wavepackets in the present color contrast due to their
weak intensities. Vague reflected wavepackets should appear after extremely increasing the contrast of
these figures. On the other hand, in the incident-angle dependence of Figure 14, it becomes possible to
recognize reflected wave packets as the incident angle gets away from Brewster’s angle for ε2/ε1 = 2.50
(∼57.7◦).

Figure 11. Reflection of a toroidal-vortex at the interface of ε2/ε1 = 0.40 with the incident angle of 45◦.

Figure 12. Refraction of a toroidal-vortex at the interface of ε2/ε1 = 0.75 with the incident angle of 45◦.

Figure 13. Refraction of a toroidal-vortex at the interface of ε2/ε1 = 2.50 with the incident angle of 45◦.

(a) (b) (c) (d) (e)

Figure 14. Incident-angle dependence of refracted and reflected toroidal-vortices for ε2/ε1 = 2.50.
The incident angle is (a) 0◦, (b) 15◦, (c) 30◦, (d) 45◦ and (e) 60◦ from left to right.

7. Discussion

Inspired by electromagnetic vortices in free space and periodic structures, and by exotic boundary
modes of topological photonic media, we theoretically investigated the topological characteristics and
feasibility of a toroidal electromagnetic wavepacket. Our proposal was also based on the numerical analysis
of an electronic wavepacket with toroidally-twisted spin structure, generated by a reflection at the interface
between an electronic topological insulator and a conductor. We recognized a class of topological photonic
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media as the photonic version of the electronic topological insulator and further interpreted it as an
extension of a class of photonic crystals where various types of electromagnetic vortex modes emerge with
their time-reversal partners. Furthermore, we referred to the fact that modern information transmission
technology via electromagnetic waves started to pay attention to photonic orbital angular momentum in
a unique way. For instance, optically-based communication technologies have demonstrated the use of
photonic orbital angular momentum in the realization of quantum digits for single-photon communication
and in the development of a new scheme for multiplexing signals in telecommunications. A key concept
common in both examples is the presence of multiple nearly-orthogonal modes within a narrow range of
frequencies. From this point of view, we stressed the meaningful benefits of investigating the extensions of
this concept, and proposed the toroidal electromagnetic wavepacket as a fusional application with the
exotic surface modes of topological photonic media. The electromagnetic wavepacket with toroidal-type
dual vortices is an extension of the Laguerre-Gaussian wavepacket whose line vortex corresponds to the
photonic orbital angular momentum. Herein, we presented the procedure to construct the solutions of
Maxwell’s equations with multiple types of vortices. Afterward, we numerically examined the stability of
the toroidal electromagnetic wavepacket against reflection and refraction at flat interfaces between the
homogeneous isotropic media. Finally, we derived the transformation laws of topological charges of line
and ring vortices in these processes.
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Abstract: The conventional method for predicting the shape change of a surface crack in a round bar
simply utilizes the Paris-Erdogan law with the least squares method using a certain shape assumption
with excessive constraints. In this paper, a three-parameter model for a round bar subjected to tension
is developed with fewer shape assumption restraints by employing a fatigue crack growth circles
method. The equivalent stress intensity factor ΔKe based on both stress intensity factors along the
current and new crack front is used to reduce the total number of increments. The results show
that the proposed method has a good convergence speed and accurate prediction of crack shapes.
The present method is validated by comparing the solution with other simulation solutions and
experimental data.

Keywords: fatigue crack growth; surface crack; crack shape change; three-parameter model

1. Introduction

The propagation analysis of a surface crack is a critical capability for structural integrity prediction
of cylindrical metallic components (bolts, screws, shafts, etc.) Part-through flaws appear on the free
surface of a smooth round bar and the front of a growing crack can be considered as a so-called ‘almond’
shape by extensive experimental works [1–6].

Attempts to predict fatigue growth of a surface crack in a round bar have been reported. Some
investigators have employed a circular arc to describe the crack front [5,7,8], then the hypothesis that
an actual part-through crack can be replaced by an equivalent elliptical arc edge flaw has been widely
applied. A. Carpinteri [9–13], as one of the most representative researchers on this topic, conducted
extensive studies related to this configuration. However, regardless of whether they used a circular
arc or elliptical arc, most researchers employed a certain shape with a fixed center, which reduced
the fatigue calculations to one-or two-dimensional problems. Few efforts have been made utilizing a
three-parameter model. Although A. Carpinteri [14] mentioned the three-parameter model previously,
the fatigue crack propagation was simply examined by applying the Paris-Erdogan law with the least
square method as in almost all previous studies [15–17]. In addition to experimental backtracking
technique [18,19] and normalized area-compliance method [20], there is no further research regarding
the method of surface crack prediction.

The objective of this paper was to predict the shape change of a fatigue crack in a round bar
subjected to tension by employing fatigue crack growth circles, based on a three-parameter model
using finite element analysis. In this paper, a fewer shape restraints model with part-elliptical cracks
whose center was allowed to move along the vertical axis was built, which could be more precise
for expressing the actual crack shape front. The nominal aspect ratio of an ellipse, which is more

Appl. Sci. 2019, 9, 1751; doi:10.3390/app9091751 www.mdpi.com/journal/applsci314



Appl. Sci. 2019, 9, 1751

meaningful, is proposed for the three-parameter model. Meanwhile, the fatigue crack growth circles,
which are on a tangent to both current and new crack fronts, were developed to predict the crack
path. The equivalent stress intensity factor ΔKe based on both stress intensity factors along the current
and new crack fronts was proposed to reduce the number of modeling computations with only a few
iterations. The validity of the present method will be shown by comparing its results with a simulation
solution and experimental results.

2. Numerical Propagation Process

2.1. Three-Parameter Model

A surface crack in a smooth round bar with diameter D0 subjected to fatigue tension are taken
into consideration. A part-elliptical surface flaw is defined by three parameters: (1) major axis of an
ellipse a, (2) minor axis of an ellipse b, and (3) center of ellipse Oy (Figure 1).

 

(a) A round bar (b) A surface crack 

Figure 1. Definition of the geometrical parameters for a surface crack in a round bar.

2.2. Fatigue Crack Propagation

The propagation of a surface crack in a round bar under cyclic tension is predicted by employing
fatigue crack growth circles [21] (Figure 2). If the crack presents an ellipse shape up to the i-th loading
step, the initial ellipse whose center is located on the surface of the specimen can be defined with given
ai and bi, as represented by the following equation

x2

ai2
+

y2

bi2
= 1. (1)

Points O, A, B, C and D in Figure 2 with coordinates (xji, yji) are deployed equidistantly along the
current crack front, where the subscript j refers to the points O, A, B, C and D.

The growth of a new crack front lying on an ellipse with semi-axes ai+1, bi+1, and Oi+1 after one
cyclic loading step to a new configuration can be described by the following equation

x2

(ai+1)
2 +

(
y−Oy,i+1

)2
(bi+1)

2 = 1. (2)

The assumed crack growth circles, which pass points O, A, B, C and D, respectively, are tangent to
both current and new crack fronts. The new crack front points O′, A′, B′, C′ and D′ with coordinates
(xj,(i+1), yj,(i+1)) are the points of tangency between crack growth circles and the new crack front.
Meanwhile the centers of crack growth circles can be determined as (xj,c, yj,c).

315



Appl. Sci. 2019, 9, 1751

Figure 2. Determination of a new crack front by fatigue crack growth circles.

The crack growth increment among these points can be determined by applying the
Paris-Erdogan law

da
dN

= C(ΔK)m, (3)

where da/dN is crack growth rate, ΔK is the stress intensity factor range, and C and m are material
constants.

After each computed crack configuration, an increment of crack growth at the interior point O′ is
given. The crack growth length of other points A′, B′, C′, and D′ can be determined

Δl j = (yO,i+1 − yO,i)

(
ΔKej
)m

(ΔKeO)
m . (4)

Here, ΔKe stands for the equivalent stress intensity factor related to the stress intensity factors of
both current and new crack fronts.

The stress intensity factor K is assumed to be a liner function of crack growth increment. An
arbitrary number of crack growth steps can be assumed. Using

da = C(ΔK)mdN, (5)

the crack growth length is increased to a + da repeatedly in each step to the last step by adjusting
material constant C. The equivalent stress intensity factor ΔKe with stepping coefficient μ can be
obtained appropriately through the crack growth plot of da/dN vs. N.

ΔKej = μ
(
Kij
)m

+ (
1
2

(
Ki, j + K(i+1), j

)
)

m
+ (1− μ)

(
K(i+1), j

)m
0 < μ < 1 (6)

At the beginning of iteration, sometimes a relatively large value of μ can be used to avoid diverging.
The distance from the center of crack growth circles to points O′, A′, B′, C′ and D′ along the new

crack front are calculated using the geometrical relationship

Δdj =

√(
xj,(i+1) − xj,c

)2
+
(
yj,(i+1) − xj,c

)2
. (7)
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An error equation can be derived as

Error =
∑∣∣∣Δdj − Δl j/2

∣∣∣. (8)

The values of ai+1 and Oi+1, which minimize the error equation, are based on iterative methods
and repeat all of the above steps based on the obtained crack front. The parameters of the ellipse for
each new crack front can be determined until the results converge.

2.3. Numerical Simulation

The typical model of a round bar with diameter D0 and length L that contains a surface crack
in its median cross section has been used in many experimental tests and numerical simulations.
F.P. Yang [19] presented the experimental results of fatigue crack growth for a straight-fronted edge
crack in an elastic bar under axial loading with a diameter of 12 mm, a length of 90 mm, and carbon
steel S45 as the material. Table 1 lists material parameters for steel S45. A. Carpinteri [11,12] calculated
the surface cracks in round bars with 50 mm diameters through finite-element analysis. Since the
propagation of crack shape is defined by the crack configuration for a given loading type [15], in the
present paper, the models are established for different values of these initial parameters to compare
the fatigue crack propagation with the experimental and simulation results from F.P. Yang [19] and
A. Carpinteri [11,12].

Table 1. Material parameters for steel S45.

Monotonic Tensile
Yield Strength σ0

Nominal Ultimate
Tensile Strength σm

True Ultimate
Tensile Strength σf

Young’s
Modulus E

Poisson’s
Ratio v

Crack Growth
Parameter m

635.07 MPa 775.65 MPa 2101.65 MPa 2.06 × 105 MPa 0.33 3

The finite element analysis software AbaqusTM (France) is used to simulate the scenario. Since
the bar geometry and applied loads present two planes of symmetry, 3D finite element analysis was
performed by modeling a quarter of the round bar, as shown in Figure 3. About 350,000–380,000
quadratic hexahedral elements have been employed in each model. The 1/4-node displacement method
and fine meshing with a 0.02 mm mesh size has been used around the crack front to model the stress
field singularity and improve the accuracy of the contour integral calculation.

Figure 3. The finite element models of a surface-cracked round bar.

For each crack configuration defined by parameters b/D0 and b/a, the stress-intensity factor
Kj( j = O, A, B, C, D) along the crack front is obtained through the above described finite-element
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analysis. The fatigue growth for the initial defects with b/D0 = 0.05, 0.08, 0.1 and b/a = 0, 1 is
considered in this paper.

3. Results and Discussion

3.1. Evolution of the Crack Shape

Figure 4 illustrates the fatigue shape evolution by the crack growth circles in a round bar subjected
to tension. The seven crack front profiles displayed are deduced from roughly 30 crack growth circles in
less than 20 iterations. The outermost crack growth circle rolls along the internal profile of the round bar
in an approximate manner. When the point of tangency between crack growth circle with crack front
approaches very closely to the surface of the bar, such as crack front 6 in Figure 4, the outermost crack
growth circle will disappear in the next propagation. The rate of crack propagation can be observed
intuitionally by the size of crack growth circles. As shown in Figure 5, the optimum simulation result
for the center of an ellipse is not fixed on the surface of the bar, but is reciprocating along the y-axis.
Therefore, the actual crack shape can be accurately expressed by the three-parameter model.

In the simulation process, notice that several different ellipses with the same chord length can be
replaced to describe one actual crack front, since only part of an ellipse is used, once the center is not
fixed (Figure 6). A large variation of ellipse actual aspect ratio is obtained with undifferentiated iteration
error, as shown in Figure 7. Hence, the actual aspect ratio of the ellipse semi-axis is meaningless for the
three-parameter model to describe the crack front.

Figure 4. Successive determination of crack fronts by the crack growth circles with initial crack
b0/a0 = 1, b0/D0 = 0.1, m = 2.
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Figure 5. Ellipses used to determine crack fronts when initial crack b0/a0 = 0, b0/D0 = 0.08, m = 2.

Figure 6. Crack front as a part of an ellipse.
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Figure 7. Change of actual aspect ratio with the same chord length c.

Figure 8 illustrates the fatigue shape evolution for five cases. The aspect ratio of initial ellipses
b0/a0 = 0, 1, and relative crack depth bn/D0 = 0.05, 0.08, and 0.1, while the material constants
in the Paris-Erdogan law are assumed to be m = 2, 3, and 4. The trends of crack propagation are
adequately demonstrated.

As mentioned previously, the nominal aspect ratio of an ellipse, which is the ratio of the maximum
crack depth to the chord length c, bn/c can be considered here. It is noteworthy that, as shown in
Figure 9, both initial crack dimensions and Paris law exponent m have an effect on the evolution of
different parameters. The crack propagation trends are consistent with the same initial crack aspect
ratio when using the same material, although the beginning propagation is affected by the crack depth
provisionally. Meanwhile a difference of transition can be noticed between the crack propagation with
different Paris law exponent m values. In Figure 9, it can be found that the nominal aspect ratio change
is very sensitive to the initial crack geometry during early growth, and then the nominal aspect ratios
for all cases are converged and become constant around bn/D0 ≈ 0.4. It shows the flaws tend to follow
preferential propagation paths that flatten gradually when the crack depth become larger.
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Figure 8. Shape change of different initial crack for different fatigue crack growth exponent m values.
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Figure 9. Nominal aspect ratio vs. relative crack depth.

The fatigue crack developments bn/D0 with c/D0 under cyclic for different initial parameters
are shown in Figure 10. It can be seen that the crack propagation paths differ with different initial
flaws, but will converge asymptotically. Furthermore, in the process of expansion, the crack growth
rate for center and outermost points are variable, which is deduced from the gradient of two type
lines with initial flaws b0/a0 = 0, 1. This can be seen more precisely in Figure 11. For the case of an
initial crack b0/a0 = 1 shown in Figure 11a, the ratio of crack growth (db/dc) is always less than 1 for
most propagation processes, which means the crack growth rate for the central point is always slower
than the outermost point until the relative crack depth bn/D0 ≈ 0.6. However, the change in growth
ratio will slow down from the beginning to the stage of bn/D0 ≈ 0.6 for all the cases with initial flaws
b0/a0 = 1, and then increase distinctly. For the case of an initial crack with b0/a0 = 0, as shown in
Figure 11b, the crack growth along the vertical central line is always greater than the growth adjacent
to the horizontal surface until the relative crack depth satisfies bn/D0 ≈ 0.4, since the gradient line
exceeds 1. Furthermore, the rate decreases sharply at the beginning propagation, especially for m = 3.
Larger values of Paris law exponent m convey more drastic changes. It can be deduced that in the
early propagation stage, the exponent m in the Paris law have a distinct effect on the evolution of the
crack. The change of crack growth rate for central point is bigger for large value of m. It is considered
to be related to plasticity which suppress the crack propagation on the outermost surface.
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Figure 10. Relative crack depth vs. relative chord length with different initial parameters.
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Figure 11. Ratio of crack growth along the vertical central line and toward the horizontal surface.

3.2. Comparison with Other Numerical Solutions and Experimental Results

In Figure 12, the fatigue propagation of the initial crack b0/a0 = 1, b0/D0 = 0.05 and 1 is compared
with numerical solutions by A. Carpinteri [11,12]. The curves in the present results are similar for all
cases. However, some discrepancy between the present result and Carpinteri can be seen, especially
for the initial crack b0/a0 = 1, b0/D0 = 0.05. It should be pointed out that in the above comparison,
the deviation is mainly due to the difference in the crack growth method adopted and the idealized crack
front geometry. A two-parameter elliptical-arc shape with fixed center is assumed only by employing
the Paris-Erdogan law ordinarily by Carpinteri [11,12]. The two-parameter shape assumption method
mentioned above can simplify the fatigue calculations, but it is also clear that better predications should
be obtained if the shape restraint can be reduced, such as those generated by the present method.
Moreover, the crack growth circles, which are tangent to the new crack front as well as to the current
crack front, can accurately represent the real path of the fatigue crack and thus yield more accurate
results. In addition, the better mesh refinement demonstrated in this paper also leads to improved
prediction accuracy.
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Figure 12. Crack propagation patterns compared with numerical solutions.

Figures 13 and 14 compare the crack propagation result with the experimental data deduced
from F.P. Yang [19]. It is shown that the present results agree well with the experimental data.
The experimental result deviates abnormally around the relative crack depth of bn/D0 = 0.4 in
Figure 14. The maximum discrepancies are approximately 12%. The deviation of the two solutions are
acceptable since as the fracture begins to happen in the experimental method approach, the relative
crack depth bn/D0 = 0.4. It is confirmed that the present method could provide more accurate results.
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Figure 13. Relationship of crack propagation with depth and chord length compared with
experimental data.
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Figure 14. Crack propagation patterns compared with experimental data.

4. Conclusions

The fatigue propagation of a surface crack in a round bar subjected to tension loads has been
investigated by using crack growth circles. The present results demonstrate that the experimental
method had good convergence speed and accurate prediction of crack shape patterns. The following
conclusions can be drawn:

• The crack growth circles method is developed for the surface cracks of a round bar, and the circles
are tangent to both current and new crack fronts. In this way, good simulation accuracy can be
achieved with fewer iterations.

• A three-parameter model with fewer shape restraints whose center is allowed to move along
the vertical axis is built, and the shape change of a fatigue crack is predicted more precisely.
The nominal aspect ratio of an ellipse, which is the ratio of the maximum crack depth to the chord
length c, bn/c, is considered, instead of the actual aspect ratio of an ellipse semi-axis.

• A relatively large crack growth increment can be used by adopting the equivalent stress intensity
factor ΔKe based on the stress intensity factors along the current and new crack fronts.

• The crack propagation process is described accurately based on the ratio of vertical growth toward
the horizontal surface. It can be seen that the crack propagation paths differ with different initial
flaws, but will converge asymptotically. The ratio of crack growth is always less than 1 for the case
of initial crack b0/a0 = 1, and the crack growth along the vertical central line is always greater
than the growth toward the horizontal surface. For the case of an initial crack b0/a0 = 0, a greater
Paris law exponent m value generates more drastic change.

• The present solutions are compared with other numerical solutions and experimental data.
Comparison shows that the present solutions agree well with the experimental data and are better
than other numerical solutions.
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Nomenclature

D0 Diameter of round bar ΔK Stress intensity factor range
a Major axis of an ellipse ΔKe Equivalent stress intensity factor
b Minor axis of an ellipse μ Stepping coefficient
Oy Center of ellipse Δl j Crack growth length in Equation (4)
c Chord length of an ellipse Δdj Distance in Equation (7)
ai, bi Semi-axes of ellipse for i-th loading step b/a Actual aspect ratio
ai+1, bi+1 Semi-axes of ellipse for i + 1-th loading step bn/c Nominal aspect ratio
Oy,i+1 Center of ellipse for i + 1-th loading step bn/D0 Relative crack depth
xji, yji Coordinate for points O, A, B, C and D c/D0 Relative chord length
da/dN Crack growth rate db/dc Ratio of growth
C, m Constants of the Paris–Erdogan law
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Abstract: Three alternative approaches, namely the extended/generalized finite element method
(XFEM/GFEM), the scaled boundary finite element method (SBFEM) and phase field methods, are
surveyed and compared in the context of linear elastic fracture mechanics (LEFM). The purpose of
the study is to provide a critical literature review, emphasizing on the mathematical, conceptual and
implementation particularities that lead to the specific advantages and disadvantages of each method,
as well as to offer numerical examples that help illustrate these features.
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1. Introduction

The need for lighter, stronger, and resilient structures across multiple engineering domains,
e.g., the aerospace, automotive, and construction industries, necessitates a robust, economical and
high-fidelity simulation of failure processes [1–3]. Failure in structural components subjected to static
and/or dynamic loading is commonly associated with complex phenomena, i.e., crack nucleation,
propagation, branching, merging and arrest [4,5]. These phenomena emerge from micro-material
discontinuities, which under the action of external stimuli accumulate to cracks and evolve across
several length scales eventually leading to structural failure. From a computational standpoint, these
physics of damage evolution have proven challenging to resolve.

Over the past 20 years, the eXtended Finite Element method (XFEM), the Scaled Boundary Finite
Element method (SBFEM) and most recently the Phase Field method (PFM), have emerged as distinct
methodologies with the common objective of resolving fracture propagation. In this work, we provide
a comparative platform for these methodologies pertinent to both the mathematical treatment of
damage evolution and the corresponding algorithmic implications within the framework of Linear
Elastic Fracture Mechanics (LEFM).

LEFM methods describe damage initiation and propagation within the remit of brittle and
quasi-brittle material response. LEFM has been traditionally treated within two distinct methodological
frameworks, i.e., computational fracture mechanics (see, e.g., [6]) and continuum damage mechanics
(see, e.g., [7]). In the former, damage is explicitly defined as a discrete topological discontinuity. In the
latter, damage is effectively homogenised over a representative volume. Diffuse crack approaches
effectively lie in the boundary of the two aforementioned methods. The need to predict damage related
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phenomena precisely, accurately, and economically within the context of LEFM has spurred research
into an extensive suite of alternative methodologies.

The finite element method (FEM), a representative of the discrete methods class, has reached a
mature development status, effectively becoming the industry standard in numerical methods. Yet,
challenges remain when characterizing singularities or propagation due to discrete cracks. This is
a direct consequence of the following, select FEM shortcomings. The first four challenges primarily
originate from the discretization method itself, while the remaining two pertain to difficulties associated
with integration of LEFM into the discretization process:

1. A conforming mesh topology is required to represent the associated crack.
2. The typical polynomial-based interpolation functions cannot reproduce the singular stress field.
3. Tracking crack paths and incorporating branching and merging behaviour is

algorithmically challenging.
4. Mesh dependant projection errors arise within the context of nonlinear and dynamic analyses.
5. Nucleation, branching and merging of cracks cannot be treated in a uniform and theoretically

sound manner.
6. Calculation of the stress intensity factors (SIFs) requires additional post-processing methods.

Several techniques have been developed to tackle the aforementioned issues. First, sophisticated
remeshing algorithms [8–10] and tools [11,12] have been introduced to model the singular stress field.
The utilization of special element types or the introduction of a fine mesh around crack tips contribute
to tackling this challenge. Second, specially developed quarter-point elements [13], which are placed
around the crack tip, to accurately capture the crack tip singularity. Third, diverse techniques have
been proposed to determine the fracture parameters, such as the SIFs. This includes path-independent
integrals [14–17], the virtual crack closure technique [18–20], the hybrid-element approach [21,22],
and the Irwin’s crack closure integral [23]. The computational toll for such analyses is significant,
with the majority of the effort stemming from the remeshing algorithm and the need for a fine mesh in
the vicinity of the crack tip. Due to these limitations several novel numerical methods treating discrete
cracks, such as meshless methods (MM), material point methods (MPM), boundary element methods
(BEM), the extended/generalized finite element method (XFEM/GFEM), and the scaled boundary
finite element method (SBFEM) have been applied, all distancing themselves from FEM in the way
they define their support.

MM [24–26] were conceived with the aim of eliminating difficulties associated with the reliance on
a mesh. Hence, the interpolation in MMs is solely based on a set of distributed nodes, thus eliminating
FEM issues commonly associated with mesh distortion and remeshing. Crack path extensions are
effortlessly accounted for by introducing additional nodes. However, certain drawbacks remain.
The MM shape functions require higher order integration and the treatment of essential boundary
conditions is intricate, since the shape functions do not necessarily satisfy the Kronecker delta property.
Generally, the computational toll of MMs results higher to that of the FEM [27].

MPM [28] is an extension to Particle-In-Cell methods [29], which efficiently treat history-dependent
variables. In MPM, the continuum is represented by a set of material points that are moving within a
non-deformable (Eulerian) computational grid where contrary to MM, solution of the governing equations
is performed. Treatment of discrete cracks is accounted for by the introduction of multiple velocity
fields [30] or more recently phase fields [31–33]. MPM has been found to offer significant computational
advantages when compared to purely meshless methods since it does not require time-consuming
neighbour searching.

The BEM [34] solves initial value problems described as boundary integral equations hence
reducing dimensionality by one. This significantly reduces the complexity of mesh generation,
since only the boundary and the crack front need be discretised. Furthermore, compared to the
FEM, BEM can often achieve greater accuracy, due to the nature of integrals used in the problem
description. However, this is simultaneously the source of disadvantages. This formulation results in
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fully populated, dense matrices necessitating tailored numerical methods [35,36] to efficiently solve the
resulting discrete equations. The introduction of isogeometric analysis (IGA) [37,38] suggests profound
implications on practical engineering design. The key concept entails employing the Non-Uniform
Rational B-spline (NURBS) not only for the geometric representation, but also for the discretization
employed in the subsequent analysis. NURBS substitute standard FEM shape functions with the
solution obtained on their support. A hybrid isogeometric boundary element method has been
proposed [39–41] coupling many of the advantages of its parent methods. The direct adoption of
the geometry representation as given by CAD software, greatly facilitates the integration of design
and analysis, since no volume parametrization is required for crack propagation. Additionally,
when applied to fracture [42,43], the delivered higher-continuity can increase the accuracy of the
stress field around the crack tip.

An effective means of tackling the issues of mesh dependency and treatment of singularities,
is provided by the extended/generalized [44,45] finite element method (XFEM/GFEM), whose use
is wide spread both in academia and industry. The most characteristic trait of this method is the use
of partition of unity (PU) enrichment [46–48], to incorporate known features of the solution in the
finite element approximation space through appropriate enrichment functions. For fracture mechanics
problems, discontinuous and singular enrichment functions are employed locally, i.e., in the vicinity
of the crack, to allow the representation of discrete cracks independently of the underlying mesh.
This in turn significantly decreases or even removes the remeshing burden, while also increasing
the accuracy with which asymptotic fields are represented. Alternatively, the scaled boundary finite
element method (SBFEM) [49] naturally incorporates the singular stress field, providing an elegant
extraction of the generalized stress intensity factors (gSIFs) in post-processing at negligible additional
computational cost [50]. This is a consequence of SBFEM retaining an analytical solution in the radial
direction, while only requiring discretization along the tangential boundary in the standard FEM
sense. However, double nodes are introduced to accommodate strong discontinuities. This is partially
mitigated due to the polytope nature of SBFEM, which only imposes the condition of star-convexity on
elements. Exploiting balanced quadtrees as hierarchical meshes in conjunction with polygon clipping
the majority of meshing effort is circumvented [51]. XFEM and SBFEM receive in-depth treatment in
Sections 3 and 4.

Alternative discrete fracture methods based on cohesive theories have been utilized to
overcome stress singularities in LEFM also accounting for the nonlinear separation phenomena [6].
Barenblatt [52] originally introduced the cohesive zone method (CZM) to model fracture in brittle
materials. Later, Dugdale [53] extended the CZM to simulate the plastic fracture process zone around
the crack tips. In cohesive fracture theory, the material is not considered perfectly brittle as in Griffith’s
theory. Rather, there is a small zone in front of the crack that can exhibit some ductility. The fracture
energy is gradually released at the crack tip based on the crack opening and equals the critical fracture
energy at full crack opening. If the cohesive zone is sufficiently small, the ductility zone becomes
unimportant and the theory of LEFM can be applied. The CZM has been employed within a FEM, see,
e.g., [54,55] and a BEM, see, e.g., [56] setting, also in conjunction with a partition of unity approach [47].
Furthermore, CZM has been introduced within a particle based approach as in the case of SPH [57],
reproducing kernel particles [58], and the Element-Free Galerkin method [59].

A popular partition of unity approach and a reasonable extension of the CZM is the Cohesive
Segments Method (CSM) [60]. The CSM introduces arbitrary cohesive segments within the finite
elements that act as discontinuities in the displacement field hence alleviating the CZM requirement
for the definition of cohesive elements at the finite element interface. In CSM, the cracks are modelled
as a set of overlapping cohesive segments with their support nodes being enriched with jump and tip
enrichment functions similar to the XFEM. A combination of overlapping crack cohesive segments
results in a continuous crack. Remmers et al. [60] originally applied the CSM in quasi-static brittle
fracture problems mainly focused on mode I separation problems and further extended the method
for the simulation of dynamic crack propagation problems [61]. Using the CSM as point of departure,
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various PUM with cohesive theories have been successfully introduced with a meshless discritization
approach, see, e.g., [62,63].

Rather than attempting to model the actual, discrete crack topology, either as a strong discontinuity
in the displacement field (e.g., XFEM) or an explicitly defined boundary (e.g., SBFEM), diffuse
approximations of cracks incorporate the effects associated with the crack formation, e.g., the stress
release or the stiffness degradation into the constitutive model [64]. Such approaches initiated with the
pioneering work of Rashid [65], who defined a cracking criterion for pre-stressed concrete pressure
vessels on the basis of loss of material stiffness in the direction normal to a crack as this evolves. In the
past 10 years, several methodologies pertinent to diffuse crack models emerged, such as gradient
enhanced damage methods [66,67], Thick Level Set methods [68], and Phase field methods [69]. In the
taxonomy of damage theories, diffuse crack approximations fall within the family of Continuum
Damage Mechanics, where however particular treatment of strain localisation is implicitly performed.
de Borst and Verhoosel [70], see, also Mandal et al. [71] highlighted the similarities between gradient
enhanced damage methods and phase field methods. An insightful discussion on the similarities and
differences between thick level sets and phase fields is provided in [72].

Phase field methods (PFM) for brittle fracture arose from the pioneering work
of Francfort and Marigo [73], who treated elastic fracture as an energy minimization problem
within a robust variational setting. Bourdin et al. [69] used the Mumford-Shah potential [74] to provide a
regularization of this variational formulation. In this, brittle fracture is numerically treated as a coupled,
i.e., displacement and phase field problem; the latter accounts for the crack interface geometry. To this
point, finite element-based phase field formulations have been introduced to treat brittle/fatigue [75–78],
ductile [79,80], and hydraulic fracture [81–85]. Very recently, the phase field method has been introduced
within an MPM [32] and a Virtual Element framework [75].

This paper delivers a critical comparison among numerical methods relying on discretisation,
namely XFEM/GFEM and SBFEM, and the PFM, which belongs in the class of diffuse methods.
The latter has as of late garnered much attention, not only limited to the field of LEFM. Specifically,
we compare the potential of these methods in accurately and efficiently predicting crack propagation,
paths and arrest. Additionally, we remark on the overall computational effort involved in the analysis
and the inherent capabilities/limitations of each method within the LEFM context.

The manuscript is organized as follows. In Section 2 the LEFM problem statement is introduced.
Subsequently, methods relying on discretisation are discussed, with the XFEM/GFEM variants
over-viewed in Section 3, and the SBFEM treated in Section 4. Section 5 offers an overview of phase
field methods, as a salient representative of the diffuse methods class. The workings of the methods
are illustrated by means of four numerical examples, described in Section 6, while Section 7 provides a
methodological comparison and concluding remarks.

2. LEFM Problem Statement

To formulate the linear elastic fracture mechanics (LEFM) problem, we consider the two
dimensional cracked domain Ω shown in Figure 1. The boundary Γ consists of the parts Γ0, where
free surface boundary conditions apply, Γu, where displacements ū are prescribed and Γt where
the surface tractions t̄ are applied as Neumann conditions. The domain includes a crack under the
assumption of free surface conditions Γc. As depicted in Figure 1, the domain boundary is decomposed
as Γ = Γ0 ∪ Γu ∪ Γt ∪ Γc . Then, the elasticity equations shown in Equation (1) with their corresponding
boundary conditions hold:

∇ · σ + b = 0 in Ω (1a)

u = ū on Γu (1b)

σ · n = t̄ on Γt (1c)

σ · n = 0 on Γ0 (1d)
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where σ is the Cauchy stress tensor, n is the unit outward normal to the boundary, b is the applied
body force per unit volume, u is the displacement field and ∇ is the gradient operator.

Figure 1. Cracked Body and boundary conditions.

If small deformations are assumed, then the strain field ε can be described as as the symmetric
gradient of the displacement field:

ε = ∇su (2)

Furthermore, if linear elastic material behavior is assumed, stresses can be obtained from strains
through Hooke’s law:

σ = D : ε (3)

where D is the elasticity tensor, which in case of two dimensional problems assumes the following form:

D =
E

1 − ν2

⎡⎢⎢⎣
1 ν 0
ν 1 0

0 0
1 − ν

2

⎤⎥⎥⎦ , for plane stress (4a)

D =
E

(1 + ν) (1 − 2ν)

⎡⎢⎢⎣
1 − ν ν 0

ν 1 − ν 0

0 0
1 − 2ν

2

⎤⎥⎥⎦ , for plane strain (4b)

with E and ν denoting Young’s modulus and Poisson’s ratio respectively.
A decisive quantity in classic fracture mechanics [86] is the energy release rate, defined as:

G = −∂Π
∂a

(5)

where Π is the total potential energy and a is the crack length (or area for three dimensional problems).
Then, based on the energy release rate criterion, crack propagation will occur when:

G ≥ Gc (6)

where Gc is the critical energy release rate or fracture toughness, which can be considered as a
material parameter.

For a pure mode I problem, the mode I stress intensity factor (SIF) is related to the energy release
rate as follows:

G =
K2

I
E′ (7)

where KI is the stress intensity factor and E′ is the effective elastic modulus:

E′ =

⎧⎨⎩ E for plane stress
E

1 − ν2 for plane strain
(8)

332



Appl. Sci. 2019, 9, 2436

Based on this, the critical stress intensity factor is defined as:

Kc =
√

E′Gc (9)

The corresponding relation for mixed mode planar problems is:

G =
1
E′

(
K2

I + K2
I I

)
(10)

where KII is the mode II SIF. The square root of the quantity
(
K2

I + K2
I I
)

can be considered as an
equivalent SIF:

Keq =
√

K2
I + K2

I I (11)

Then, the energy release rate criterion of Equation (6) can be written in terms of the SIFs as:

Keq ≥ Kc (12)

Several criteria have been proposed to determine the direction of crack propagation, such as
the maximum circumferential stress or maximum hoop-stress criterion [87], the maximum energy
release rate criterion [88] and the minimum strain energy density criterion [89]. To what concerns the
XFEM/SBFEM analyses carried out in this work, we adopt the latter criterion, which results in the
following expression for the angle of crack propagation:

θc = 2 tan−1

[
−2KI/KII

1 +
√

1 + 8(KI/KII)2

]
(13)

3. The Extended/Generalized Finite Element Methods (XFEM/GFEM)

As further mentioned in Section 1, one of the main difficulties associated with the modeling of
fracture by means of conventional finite element methods lies in the fact that a new mesh is needed
at each propagation step. This, apart from increasing the computational cost, significantly limits the
degree of automation that can be achieved in such simulations. The introduction of the partition
of unity method (PUM) [46–48] has provided the background for the subsequent development of a
suite of methods, including the extended [44] and generalized [45] finite element methods that have
managed to overcome, to a large extent, this difficulty. In the following subsections, we provide a
brief overview of these methods with the focus shed onto the methodological and implementational
aspects relating to crack propagation problems. For a more detailed exposition of the methods and
their applications we refer the reader to the several review papers available in existing literature, as for
instance References [90–92] and more recently [93], as well as the references therein.

3.1. Partition of Unity Enrichment

Partition of unity enrichment, in general, allows the incorporation of known features of the
solution in the numerical approximation in the form of enrichment functions. If finite elements are
used as the basis for the numerical approximation, then partition of unity enrichment can be realized
as follows:

u (x) = ∑
∀I

NI (x)uI︸ ︷︷ ︸
FE approximation

+∑
∀I

N∗
I (x)Φ (x)bI︸ ︷︷ ︸

enriched part

(14)

where NI (x) are the FE interpolation functions, uI are FE degrees of freedom (dofs), N∗
I (x) is a basis

of functions that form a partition of unity, Φ (x) is the enrichment function and bI are the enriched
degrees of freedom.
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Most commonly, finite element shape functions are employed to form the partition of unity basis:

N∗
I (x) ≡ NI (x) (15)

Alternative PU bases have can also be found in the literature Zhang et al. [94], Griebel and
Schweitzer [95], Hong and Lee [96], aiming mostly at improving specific aspects of the method, such as
conditioning of the resulting system matrices.

3.2. XFEM/GFEM Enrichment Functions for LEFM

In the original partition of unity finite element method (PU-FEM) [48], enrichment functions
were used as a means of improving the overall accuracy of the approximation, thus enrichment was
applied globally, i.e., for all nodes of the FE mesh. For problems involving localized phenomena,
such as fracture, enrichment functions are only needed locally, thus, in the XFEM [44,97] only a
subset of the nodes is enriched to increase the efficiency of the method. This type of enrichment was
subsequently also adopted in the GFEM rendering the two methods almost identical. In fact, in more
recent publications [92] almost no distinction is made between the two methods.

For LEFM problems, two types of enrichment functions, i.e., specializations of function Φ (x),
are most commonly used to represent the discontinuities and singularities introduced in the solution by
the crack. In the following, these enrichment functions are presented along with possible alternatives
from the literature. Furthermore, some common problems, associated with their use, are identified
and possible remedies discussed.

3.2.1. Jump Enrichment

The first type of enrichment functions consists of modified Heaviside step functions, usually
referred to as jump enrichment functions, which allow representing the displacement jump along the
crack surface:

H(x) =

{
1 above the crack
−1 below the crack

(16)

These functions were introduced in the work of Moës et al. [44], and constitute perhaps the most
distinctive feature of XFEM. Enrichment with these functions is realized locally, only for nodes whose
nodal support is completely split in two by the crack.

Other types of discontinuous enrichment include the alternative formulation of Hansbo and
Hansbo [98] and higher order discontinuous enrichment functions found both in the XFEM [99–101]
and GFEM [102] literature. In the context of fracture mechanics, special discontinuous functions have
also been proposed to handle branched and intersecting cracks [103].

3.2.2. Tip Enrichment

The second type of enrichment functions is a set of asymptotic functions, also referred to as tip
enrichment functions, that allow representing the discontinuity at the crack tip or front:

Fj (r, θ) =

{√
r sin

θ

2
,
√

r cos
θ

2
,
√

r sin
θ

2
sin θ,

√
r cos

θ

2
sin θ

}
(17)

where r, θ are spatial coordinates of a polar system with its origin at the crack tip/front. These functions
were introduced by Belytschko and Black [97] and form a basis that can exactly represent the analytical
solution of the Westergaard problem.

Initially [44], the use of asymptotic enrichment was limited to elements containing the crack
tip/front, however in the works of Stazi et al. [104] and Laborde et al. [105] it was shown that this
would lead to suboptimal convergence rates. In order to obtain the same rate of convergence as for
smooth problems, the use of asymptotic enrichment in a domain of fixed size around the crack front is
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necessary [105,106]. This alternative enrichment scheme was termed “geometrical enrichment” while
the initial scheme is referred to as “topological enrichment”. Usually, the domain where asymptotic
enrichment is used is defined as the set of points whose distance from the crack tip/front is smaller
that a predefined length re, called the enrichment radius.

An alternative to the enrichment functions of Equation (17) consists of using the displacement
expression of the Westergaard solution directly as an enrichment function. This approach was
introduced by Duarte et al. [107] and subsequently adopted in several works in the XFEM [108–110]
and GFEM [111,112] literature. This kind of enrichment results in different enrichment functions in
each spatial dimension, thus in some works [113,114] it was termed “vector enrichment” as opposed
to “scalar enrichment” where the same enrichment functions are used in all spatial dimensions. As a
disadvantage of this approach it is mentioned that it could complicate the implementation, especially
in existing codes. On the other hand it leads to a decreased number of degrees of freedom compared
to scalar enrichment and it can allow the direct estimation of stress intensity factors. Typically,
to increase the accuracy of this estimation, higher order terms of the asymptotic expansion are also
used as enrichment.

3.2.3. Kronecker Delta Property

From Equation (14) it can be easily deduced that for enriched nodes, the FE degrees of freedom
will no longer correspond to displacements at the nodes. To restore this desirable property, enrichment
functions can be modified such that they vanish at nodal points. A simple way to accomplish that
is through enrichment function “shifting” [115], which consists of subtracting from the enrichment
functions, their values at the nodal points:

ΦI (x) = Φ (x)− Φ (xI) (18)

where ΦI (x) is the modified enrichment function and xI are the spatial coordinates of nodal point I.
From the above, it becomes clear that shifting results in a different enrichment function for each

node. Furthermore, when applied to the jump enrichment functions of Equation (16), it causes the
functions to vanish for elements that do not contain the crack, thus simplifying the implementation.

The Kronecker delta property can also be preserved by employing the stable GFEM [111,112,116],
a technique where the FE interpolant of the enrichment functions is subtracted from the enrichment
functions themselves. The main advantage of this technique however, lies in the fact that it can
considerably improve the conditioning of the resulting stiffness matrices.

3.2.4. Blending

As already mentioned, enrichment in the XFEM and GFEM is mostly performed locally to increase
efficiency. This leads to situations where only some of the nodes of an element are enriched with a
specific enrichment function and the remaining nodes are either not enriched at all or enriched with a
different enrichment function. In these elements, the shape functions pre-multiplying the enrichment
functions no longer form a partition of unity leading to increased errors, also called “blending” errors.
For the enrichment functions used in LEFM, these errors only result in some loss of accuracy, leaving
the convergence rates unaffected. For other types of enrichment functions however, the convergence
rate can also be affected [117].

Due to the above reasons, the “blending” problem has been extensively studied and several
solutions have been proposed involving a variety of techniques such as assumed/enhanced strain
formulations [117–119], directly matching displacements between the enriched and non enriched
part of the approximation [105,120,121] and the use of weight functions [122–124] to smoothly blend
different parts of the approximation. The later approach, also known as the corrected XFEM, is likely
the most successful due to its relative simplicity and effectiveness.
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3.2.5. Ill-Conditioning

An additional problem related to enrichment is the linear dependence between the enriched and
standard part of the approximation. As far as jump enrichment is concerned, linear dependence may
arise if the crack either intersects, or lies very close to a node. Then, the enriched shape function of this
node is identical or very close to its standard FE shape function leading to linear dependence problems.
A commonly used technique to avoid this problem is “snapping”, which consists of not enriching nodes
if they are very close to the crack surface [103]. Other approaches involve pre-conditioning [125,126]
and stabilization in the element [127] or global equilibrium equations [128] level.

With respect to tip enrichment, ill-conditioning can arise when geometrical enrichment is used
due to the fact that away from the singularity the tip enrichment functions tend to become linearly
dependent both with respect to the FE part of the approximation and each other [101,129]. To overcome
this issue several alternatives have been proposed such as altering the partition of unity basis used to
pre-multiply the tip enrichment functions [105,121,130], preconditioners [106,125], stabilization [127]
and enrichment function orthogonalization [101,129]. Moreover, vector enrichment functions have been
shown to lead to improved conditioning [114], and if further combined to the stable GFEM [111,112]
they can lead to optimal growth rates of the scaled condition number.

3.3. Displacement Approximation

Using the enrichment functions of the previous subsection, the XFEM/GFEM displacement
approximation can be obtained:

u (x) = ∑
I∈N

NI (x)uI︸ ︷︷ ︸
FE approximation

+ ∑
J∈N j

NJ (x) H (x)bJ︸ ︷︷ ︸
jump enriched part

+ ∑
T∈N t

∑
j

NT (x) Fj (x) cTj︸ ︷︷ ︸
tip enriched part

(19)

where bJ , cTJ are enriched degrees of freedom.
The nodal sets of Equation (19) are defined as follows:

N is the set of all nodes in the FE mesh.
N j is the set of jump enriched nodes. This nodal set includes all nodes whose support is split in two

by the crack.
N t is the set of tip enriched nodes. This nodal set includes all nodes whose support includes the

crack front.

The method resulting from the above approximation does not involve any modifications,
for instance dealing with blending or conditioning issues, and is thus often referred to as the
“standard XFEM”.

3.4. Weak Form and Discretised Equilibrium Equations

For LEFM problems, the standard weak formulation for linear elasticity is typically used:

Find u ∈ U such that ∀v ∈ V0∫
Ω

σ(u) : ε(v) dΩ =
∫

Ω
b · v dΩ +

∫
Γt

t̄ · v dΓ (20)

where :

U =

{
u|u ∈

(
H1 (Ω)

)3
, u = ū on Γu

}
(21)

and

V0 =

{
v|v ∈

(
H1 (Ω)

)3
, v = 0 on Γu

}
(22)
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Functions of H1 (Ω) are implicitly discontinuous along the crack surface.
By introducing the constitutive relationship of Equation (3), the problem can be written as:

Find u ∈ U such that ∀v ∈ V0:∫
Ω

ε(u) : D : ε(v) dΩ =
∫

Ω
b · v dΩ +

∫
Γt

t̄ · v dΓ (23)

The above equation can be discretised using the approximation of Equation (19) to produce the
discretised equilibrium equations.

3.5. Crack Representation

To allow the evaluation of the enrichment functions as well as the definition of the nodal sets
involved in the enriched approximation, some kind of geometrical representation of the crack is
necessary. In early XFEM works, as well as some GFEM publications, crack surfaces were explicitly
represented as a series of linear segments (2D) or triangles (3D) [44,131,132]. However, the combination
of this kind of representation to the XFEM can render the implementation quite involved by requiring
for instance the computation of intersections of the crack with elements of the FE mesh.

3.5.1. The Level Set Method

An approach that is much better suited for combination to the XFEM, is the implicit representation
of cracks using the level set method [133,134]. Due to this fact, the method has been extensively used
in the XFEM framework in 2D [135] and 3D [136–138] applications.

To implicitly represent closed surfaces, such as cracks, two level set functions are needed:

• The normal level set φ, defined as the signed distance from the crack surface.
• The tangent level set ψ, defined as the signed distance from a surface that is normal to the crack

surface and intersects the crack surface at the crack tip/front.

The crack surface is then defined as the set of points for which the normal level set is equal to
zero and the tangent level set assumes negative values.

Typically, these level set functions are only computed at nodal points and interpolated for the rest
of the domain using the FE shape functions:

φ = φ (x) = ∑
∀I

NI (x) φI , ψ = ψ (x) = ∑
∀I

NI (x)ψI (24)

where φI , ψI are the nodal values of the level set functions.
From the above expressions, spatial derivatives of the level set functions can be conveniently

obtained through the spatial derivatives of the FE shape functions. Also evaluation of the enrichment
functions can be significantly simplified. More specifically, jump enrichment functions can be directly
computed as functions of the first level set, while the polar coordinates of Equation (17), needed for
the tip enrichment functions, can be computed as:

r =
√

φ2 + ψ2, θ = arctan
(

φ

ψ

)
(25)

For the general case of evolving surfaces, level sets are usually updated based on some velocity
field by integrating the Hamilton-Jacobi equation. The case of propagating cracks however, requires
several additional steps due to the nature of the problem and the fact that cracks are closed surfaces.
Firstly, the velocity field, needed to update the crack, is only known at the crack tip/front, thus an
additional step is required to extend the field to the whole domain. Then, the crack surface that has
already formed should remain unaffected by the level set update, thus the velocity field should be
appropriately modified. Finally, an orthogonalization step is necessary to ensure that the two level sets
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are normal after the update. To simplify the above procedure, several approaches were proposed in
the work of Duflot [139] that allowed the update of level set descriptions for cracks without requiring
the integration of evolution equations. In Elguedj et al. [140] a similar approach was proposed and
applied to dynamic 3D crack propagation. It should be noted that both of these simplified methods
rely on some geometric operations and are in fact very similar to methods from the category of the
following paragraph.

3.5.2. Hybrid Implicit/Explicit Methods

As an alternative, aiming at combining advantages of both explicit and implicit representations,
Fries and Baydoun [141] proposed a method where level set functions were directly computed from
explicit crack representations using linear segments (2D) or triangles (3D). Similarly, in the vector
level set method [142–144] linear segments (2D) or quadrilaterals (3D) are used to update the level set
description of the crack and are subsequently discarded. Another instance of a method combining
elements from both types of representations is the method of Sadeghirad et al. [145], where an explicit
representation is constructed in order to correct the level set representation by removing disconnected
parts of the crack.

3.6. Numerical Integration

Another challenge, associated with the use of discontinuous and singular enrichment functions,
lies in the numerical integration of the weak form of Equation (23). Since the functions to be integrated
are not smooth, standard Gauss quadrature cannot be used and more sophisticated tools need to
be employed.

For the discontinuous jump enrichment functions, the most common approach would be element
partitioning where elements are divided into integration sub-cells based on the crack geometry [44,132].
Extensions of this technique have also been proposed for higher order elements [100,146,147].
Alternatively, other works completely avoid the use of element partitioning by employing either
equivalent polynomials [148,149], or the Schwarz–Christoffel conformal mapping [150].

As far as asymptotic enrichment functions are concerned, the most widely used solution
would involve element partitioning combined with some transformation aiming at removing the
singularity. Several such transformations have been proposed, e.g., the almost polar mapping of
Laborde et al. [105], the parabolic transformation of Béchet et al. [106], and the Duffy transformation
by Mousavi and Sukumar [151]. Element partitioning is used to divide the element containing the
crack tip in triangles with one node lying on the singularity, thus also accounting for the discontinuity
present in this element. Subsequently, the transformation is used to map quadrilateral elements to the
constructed triangles leading to an accumulation of Gauss points around the crack tip and additionally
removing the singularity. A promising solution, also including the above steps, is the algorithm
introduced in Chevaugeon et al. [114], where a mapping is used for all asymptotically enriched
elements, rather than just the ones containing the crack tip, and an adaptive strategy is devised
to determine the number of Gauss points required for each element. Similar element partitioning
algorithms [152] and mappings [153] have also been introduced for the three dimensional case.

3.7. Crack Propagation

The methods presented so far in this section mainly deal with discretising cracked domains
using fixed meshes. For propagating cracks, principles of classic linear elastic fracture mechanics,
as presented in Section 2, can be applied. Within this framework, stress intensity factors (SIFs) are the
main tool used to both indicate the occurrence and determine the direction of crack propagation under
certain loading conditions.

338



Appl. Sci. 2019, 9, 2436

3.7.1. Stress Intensity Factors

One of the most widely used techniques for the extraction of SIFs in extended, generalized or
standard finite element simulations, involves the use of the interaction integral. This can be derived by
initially converting the J integral in a domain form and subsequently evaluating it for a stress state
resulting from the superposition of an auxiliary stress state and the computed numerical solution.
Then the interaction term of the integral, for two dimensional problems, assumes the form:

I = −
∫

V
q,j

(
σklε

aux
kl δ1j − σaux

kj uk,1 − σkjuaux
k,1

)
dV (26)

where εaux, σaux and uaux are the auxiliary stress, strain and displacement fields respectively which
can be defined as in Moës et al. [44] and q is a virtual velocity field. Typically, q is chosen to assume
a value of one for nodes within a disc of radius rd around the crack tip and a value of zero for the
remaining nodes.

In the interior of the elements, the values of q are interpolated using the FE basis functions. As a
result, the expression of Equation (26) needs to be evaluated only in a “ring” or layer of elements
around the crack tip. The components of the tensors of Equation (26), refer to a basis aligned with the
crack, which for implicit crack representations can be conveniently defined using the level sets [136,137].
By considering the relation between the J integral and the SIFs it is straightforward to show that with
an appropriate selection of the SIF values of the auxiliary state, the SIFs can be directly obtained from
the interaction integral.

It should be noted that in the derivation of Equation (26) it has been assumed that the crack
is straight. Of course, the expression can also be used for curved cracks, perhaps with some loss
of accuracy, provided that the curvature of the crack is not very pronounced within the interaction
integral domain. Alternatively, a more complicated formulation can be used [154], leading to more
accurate results.

For three dimensional problems a more complicated expression for the interaction integral needs
to be used as, for instance, in Gosz and Moran [15]. Furthermore, different alternatives exist for the
definition of the virtual velocity field and the domain of integration [121,132,155] as well as the basis
on which the tensor components refer to [154,155].

Alternative methods of SIF extraction, employed in the XFEM/GFEM context, include direct
extraction based on the enriched degree of freedom values [108–110,114], Irwin’s integral [23,156–159],
and extraction through crack opening displacements [160]. The former technique relies on the fact
that when vector enrichment is used, the physical meaning of the enriched degrees of freedom
corresponding to the tip enriched nodes is by definition equivalent to the SIFs.

In several works [108–110], the technique is combined to degree of freedom gathering and the use
of higher order terms of the Williams expansion to increase the accuracy of the extracted SIFs. Similarly,
extraction using Irwin’s integral also requires higher order enrichment. A relative advantage of both of
these methods is their low computational cost and the fact that they do not require the use of auxiliary
fields as in the interaction integral method. Extraction through crack opening displacements [160] does
not require the use of higher order enrichment functions and is computationally inexpensive, it does
however employ auxiliary fields. Finally, it should be mentioned that even though some of the above
methods might be advantageous for certain problems, the interaction integral method is in general
more accurate and has in general a wider field of applicability since domain integral formulations are
available also for problems outside the LEFM domain.

3.7.2. Determination of the Crack Propagation Increment

While the direction of crack propagation can be obtained using the SIFs through one of the
available criteria, as mentioned in Section 2, the length of the propagation increment is typically
predefined and constant during the simulation. Nevertheless, this length is probably the parameter
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with the more pronounced effect on the crack paths obtained and should be set as small as possible.
On the other hand, the length of this increment Δa is subject to the following constraint [161,162]:

Δa > rd > 1.5h (27)

where h is the mesh size. This constraint is necessary to ensure that the crack will be indeed straight
within the domain of integration, whose radius in turn needs to be larger than 1.5h in order to include a
ring of elements around the crack tip. Thus, the length of the crack increment is essentially determined
by the mesh size. Nonetheless, if an alternative interaction integral formulation or extraction method is
used, as discussed in the previous section, the constraint could be removed or at least relaxed allowing
reducing the length of the crack increments without refining the mesh.

For the case of multiple cracks [163], a stability analysis is usually conducted to determine active
cracks at each step, while in the three dimensional case, Paris’s law is a common choice [137] for
determining the propagation increment for different points along the crack front.

3.8. Applications in Fracture Mechanics and Extensions

As a result of the extensive research conducted in almost two decades, the method has reached a
level of maturity that allows its application in a wide range of problems of both academic and industrial
interest. Some representative applications would include damage tolerance assessment of aerospace
structures [164] and hydraulic fracturing [165]. Significant research effort has also been devoted in
implementing the method both in a procedural [161,166] and object oriented framework [167,168].
Thus, implementations of the method can be found in several open source libraries and commercial
software packages such as Ansys and Abaqus.

The range of possible applications includes problems far more challenging than two-dimensional linear
elastic crack propagation. For instance, the method can be extended to three dimensions in a straightforward
way [132,136,137], while the treatment of problems involving multiple cracks [163,166,169,170] is also
possible. The extension to dynamic crack propagation can be challenging, it is however possible and has
been studied in several works, for instance references [171–173]. The method’s flexibility also allows for
application to problems involving different types of material models, for instance orthotropic [174], or in the
nonlinear domain hyperelastic [175] and elastic-plastic [176]. Finally, other models for fracture, such as the
cohesive zone model [115,177], can also be incorporated with relative ease.

4. The Scaled Boundary Finite Element Method (SBFEM)

4.1. An Abridged Literature Review of Advancements in SBFEM Fracture Modeling

The SBFEM belongs to the class of semi-analytical methods and is therefore related to the
thin layer method [178], the Trefftz method [179], the BEM [34], Spectral elements [180] and the
semi-analytical finite elements [181]. SBFEM’s key feature lie in introduction of a scaling center,
which has been pioneered in the context of different domains, such as the solution of electric field
problems [182]. Dasgupta et al. [183] refined and tailored the approach, which they termed the “cloning
algorithm”, to solid mechanics of unbounded media. Wolf and Song [184] subsequently adopted a
similar formulation, which they termed the “consistent infinitesimal finite-element cell method”. They
later developed a standardized derivation relying on use of a weighted residual method [185,186],
and first coined the term “SBFEM”. Later work by Deeks and Wolf [187] enabled broader adoption of
the SBFEM method by introducing a virtual work based formulation.

Although much of the early research focused on the treatment of unbounded domains, it was
soon discovered that SBFEM is more effective at modelling bounded domains [186], particularly in
the context of LEFM. This is apparent, since the fracture parameters, e.g., SIFs, T-stress as well as
the coefficients of higher order terms, can be directly extracted from the singular components of the
stress field [188,189]. The method is able to robustly transition between power and power-logarithmic
singularities [189]. It has thus been applied for computing the order of singularity and SIFs in
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multi-material plates under both static and dynamic loading [190], for predicting the crack propagation
direction at bi-material notches [191], and for determining the free-edge stresses about holes in
laminated composites [192].

Yang et al. [193] first modelled crack propagation via use of SBFEM and a few large sized
subdomains, whose initial meshes were manually specified. This approach was extended to model
nonlinear cohesive fracture in concrete [194–198], dynamic fracture [199,200] and crack propagation
in reinforced concrete [201]. Reaching the limits of the laborious meshing approach, fully automated
modelling of crack propagation was achieved by repurposing newly proposed meshers [202] for
polygonal elements [203]. Currently, the most widely adopted meshing procedure combines the use of
a quadtree decomposition with polygon clipping, to accurately represent curved geometries [51] with
coarser meshes. The advantage of adopting balanced quadtree meshes as a basis lies in the limited
amount of possible element realizations, whose pre-computation greatly enhances computational
efficiency. Having resolved most mesh related issues, SBFEM was most recently extended to treat
functionally graded materials [204,205] and non-local damage [206,207].

An interesting development pertains to fusion of scaled boundary principles with IGA (SBIGA),
which is shown to provide lower error in displacement and energy norm per degree of freedom.
The method ensures exact treatment of curved boundaries [208,209], delivers additional refinement
possibilities and the ability to adjust continuity as required. However, the computational costs
increased as compared against the standard SBFEM due to the integration procedure associated with
IGA [210] partially due to the NURBS basis forming a larger support for the calculation of element
related quantities [211]. When contrasted to established methods (e.g., FEM, IGA), this draw-back is
negated as only the boundary need be discretised.

4.2. Principles of the Scaled Boundary Finite Element Method

The characteristic trait of SBFEM, setting it apart from other numerical methods, and enabling
an elegant computation of the gSIFs, is the introduction of a scaling center. Each polygonal SBFEM
element, referred to as a subdomain, may only contain one scaling center, from which the whole
boundary must be visible. By consequence, a new reference system is introduced with a radial
coordinate ξ and a local tangential coordinate η (Figure 2a). These resembles a polar reference frame,
and are termed the scaled boundary coordinates.

The theoretical basis of the SBFEM is summarized in [186] and more recently and extensively
in [212]. In this work, only the fundamental features are discussed. A thorough and more extensive
treatment of the latest SBFEM-advancements in the context of LEFM can be found in the recent review
paper by Song et al. [213].
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Figure 2. Domain discretisation, scaling center O and introduction of scaled boundary coordinates.
(a) Polygon domain with scaled boundary coordinates; (b) Transformation of singular stress field
around crack tip to polar coordinates.
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Considering 2D bounded domains, the radial coordinate ranges from 0 < ξ < 1, initiating at
the scaling center and ending on the boundary. This component is kept analytical throughout the
analysis, thereby reducing the dimensionality of the problem by one. Hence, only the boundary of the
subdomain requires discretization, in the finite element sense, into independent line elements. For each
line element, a separate local coordinate η is introduced with −1 < η < 1. The mapping between
Cartesian (x, y) and scaled boundary coordinates (x(ξ, η), y(ξ, η)) is achieved by scaling points (xb, yb)

on the boundary: For a given set of nodal coordinates xb, yb and conventional finite element shape
functions N(η) the below mapping results in:

x(ξ, η) = ξxb(η) = ξN(η)xb (28)

y(ξ, η) = ξyb(η) = ξN(η)yb (29)

which employs ξ as a scalar.
Similarly the displacements contain an analytical and an interpolatory component:

u(ξ, η) = Nu(η)u(ξ) = (N1(η)I, ..., Nn(η)I)u(ξ) (30)

The subscript n, denotes the degrees of freedom (DOF) present in the line element. In 2D, I is a
2 × 2 identity matrix and u(ξ) are nodal displacement functions along a line connecting the scaling
center and the boundary. Consequently, the displacements on the boundary are synonymous with
u = u(ξ = 1). The expression of the stress follows as [214]:

σ(ξ, η) = D(B1(η)u(ξ),ξ +B2(η)u(ξ)/ξ) (31)

D represents the constitutive matrix. B1(η) and B2(η) together describe the strain-displacement
relation [212]. Once the governing differential equation is rewritten in scaled boundary coordinates,
standard techniques such the Galerkin’s weighted residual method [186], the principle of virtual
work [187] or the Hamiltonian principle [215] may be applied in the circumferential direction η giving
rise to the two governing equations of SBFEM, i.e., Equations (32) and (33).

E0ξ2u(ξ),ξξ +(E0 − E1 + E1T
)ξu(ξ),ξ −E2u(ξ) = 0 (32)

P = E0ξu,ξ +E1T
u or in modal form q = E0ξu(ξ),ξ +E1T

u(ξ) (33)

Equation (32), termed the scaled boundary finite element equation in displacement describes the
behavior within the domain. Equation (33) expresses the behavior on the boundary, where P comprises
the vector of nodal forces.

The coefficient matrices E0, E1, E2 are conceptually analogous to a subdomain stiffness matrix
in the FEM: They are calculated for each element individually and then assembled. A general
solution to the scaled boundary finite element equation in displacements, i.e., the homogeneous
set of Euler-Cauchy differential equations in ξ, is sought in its simplest form as a power series:

u(ξ) = c1ξ−λ1 φ1 + ... + cnξ−λn φn = φξ−λc (34)

The calculation of the eigenvalues, λi, and eigen-vectors, φi, by means of eigen-decomposition
can result in numerical errors, when near parallel eigen-vector pairs are present [216]. To alleviate
this, the block-diagonal Schur decomposition may be adopted [217]. The displacement solution is
obtained as a superposition (Figure 3) of the modes, with associated scaling values, and constrained
by integration constants ci, as obtained from the imposed boundary conditions.

u(ξ) = Ψ(u)ξ−Sc =
n

∑
i=1

Ψ
(u)
i ξ−Si ci (35)
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Figure 3. Graphical representation of modes. In black the original domain with linear elements and in
gray the modes with corresponding values.

The transformation matrix Ψ and block diagonal real Schur form S are derived from recasting the
system of first order differential equations (Equations (32) and (33)) as:

ξ

{
u(ξ)

q(ξ)

}
,ξ = −Z

{
u(ξ)

q(ξ)

}
(36)

with the Hamiltonian coefficient matrix Z defined by

Z =

[
E0−1

E1T −E0−1

−E2 + E1E0−1
E1T −E1E0−1

]
(37)

so that Equation (36) is decoupled by the block-diagonal Schur decomposition.

ZΨ = ΨS (38)

The columns of the transformation matrix contain the modes, whereas the diagonal blocks of the
real Schur form contain the corresponding eigenvalues. However, Equation (36) results in doubling the
amount of DOFs present in the solution, which can be shown to contain a bounded response (0 < ξ < 1
and negative eigenvalues) and an unbounded response (1 < ξ < ∞ and positive eigenvalues). S and
Ψ are sorted in ascending order and partitioned accordingly.

S = diag(Sneg , Spos) (39)

Ψ =

[
Ψ
(u)
neg Ψ

(u)
pos

Ψ
(q)
neg Ψ

(q)
pos

]
(40)

By expressing the nodal forces on the boundary with enforced integration constants (Equation (35)
in Equation (33)), an expression for the stiffness matrix of the subdomain is obtained and a displacement
solution is calculated analogous to FEM:

Kbounded = Ψ
(q)
posΨ

(u)−1

neg (41)

Finally, the stresses are obtained by substituting Equation (35) into Equation (31):

σ(ξ, η) = Ψσ(η)ξ−Sneg−Ic (42)

where [Ψσi(η)] is the stress mode of the corresponding displacement mode [Ψ(u)
i ].

Ψσ(η) = D(−B1(η)Ψ
(u)
negSneg + B2(η)Ψ

(u)
neg) (43)
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The calculation of the stress on the domain boundary (ξ = 1) does not require the evaluation
of the matrix exponential ξ−S−I . This is beneficial when sufficient discretisation of the domain is
achieved, e.g., via use of quadtree meshes. However, in case the complete domain is represented by
a single large-sized SBFEM cell, the evaluation of displacements and stresses at internal points can
become computationally intensive.

4.3. Calculation of SIFs

Since the general solution to the SBFEM equation is extracted as a power series, the singular
modes are readily identified: By inspection of Si any −1 < real(λ) < 0 will result in a singularity at
ξ = 0. Placement of the scaling center at a crack tip may be exploited to calculate the generalized SIFs
(Figure 2a). By including a double node at the crack mouth, two additional modes, the singular modes,
arise (Figure 3), whose eigen-vectors resemble the mode I and mode II fracture cases. The singular
stress field is extracted from the general solution (Equation (42)), where the superscript (s) denotes the
singular quantities:

σ(s)(ξ, η) = Ψ
(s)
σ (η)ξ−S(s)−Ic(s) (44)

For consistency with other numerical methods and experimental reporting, a characteristic length
L is introduced and a transformation to polar coordinates is sought (Figure 2b):

ξ =
r

rb(θ)
=

L
rb(θ)

× r
L

(45)

The singular stress field is equivalently expressed in polar coordinates as:

σ(s)(r, θ) = Ψ
(s)
L (θ)(

r
L
)−S(s)−Ic(s) (46)

implying the corresponding stress modes Ψ
(s)
L (θ) given by:

Ψ
(s)
L (θ) = Ψ

(s)
σ (η(θ))(

L
rb(θ)

)−S(s)−I (47)

For the case of 2D elastostatics, two singular stress modes exist. Hence, S(s) and Ψ
(s)
L (θ) reduce

to matrices of size (2 × 2), while both c(s) and σ(s)(r, θ) form vectors of size (2 × 1). More specifically,
only the components of σ(s)(r, θ) = (σ

(s)
θ (r, θ), τ

(s)
rθ (r, θ))T are retained, which correspond to mode I

and II cracks, for which the formal definition of the gSIFs at angle θ is given as [50]:{
σ
(s)
θ (r, θ)

τ
(s)
rθ (r, θ)

}
=

1√
2πL

(
r
L
)−S̃(s)(θ)

{
KI(θ)

KII(θ)

}
(48)

The matrix of orders of singularity S̃(s)(θ) is introduced such that:

S̃(s)(θ) = Ψ
(s)
L (θ)(S(s) + I)Ψ(s)

L (θ)−1 (49){
σ
(s)
θ (r, θ)

τ
(s)
rθ (r, θ)

}
= (

r
L
)−S̃(s)(θ)Ψ

(s)
L (θ)c(s) (50)

Comparing Equation (48) with Equation (50) permits the evaluation of the gSIFs as:{
KI(θ)

KII(θ)

}
=

√
2πLΨ

(s)
L (θ)c(s) (51)
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The use of the matrix order of singularity automatically accounts for special cases in material
interfaces. This is achieved by its off-diagonal terms [50]. Consequently, the SBFEM does not pose
any a priori assumption on the type of singularity, which greatly facilitates the simulation of crack
propagation through heterogeneous media.

Enhancing SIFs

Since the SIFs are directly evaluated using singular stress modes, standard recovery techniques
may be applied, in order to improve on the solution during post-processing. Two pertinent methods
are the Superconvergent patch recovery (SPR) theory [218–220] and curve fitting by splines [221]. In the
former, an improved estimation of the singular stresses is obtained by smoothing the singular stress
modes by means of SPR theory. The main benefit originates in the availability of error estimators [217]
and the theoretical underpinning of the method. The latter is highly pragmatic and empirically offers
comparable accuracy at reduced computational cost. Differing from the SPR method, the singular
stresses computed at the Gauss points are fitted using a spline.

4.4. Balanced Hybrid-Polygon Quadtrees

Early efforts in SBFEM were limited due to the lack of specialized meshers. With the advent of
polygon and virtual finite element methods [203,222,223], this was partially remedied, allowing for
treatment of more involved and practical numerical examples. Specifically the use of the quadtree
decomposition [51] has established itself as the predominant mesh choice [205,224,225], since it
elegantly complements SBFEM’s polygon underpinnings. By restricting the differences in cell sizes
between neighbors to a ratio of 2:1, i.e., by enforcing balanced quadtrees (Figure 4b), it suffices to
precompute only 16 realizations of SBFEM subdomains, while issues commonly associated with
hanging nodes are alleviated.

Boundary

Constraint

(a)

Boundary

Balancing

(b)

Boundary

Polygons

(c)

Figure 4. Polygon clipping operating on a balanced quadtree decomposition enables accurate geometry
representation with coarser meshes. (a) Conventional FEM-based quadtree decomposition; (b) Balanced
quadtree decomposition; (c) Balanced hybrid-polygon quadtree decomposition.

Features which do not align with the square grid of the quadtree decomposition require
special treatment. In the standard FEM, this is achieved by mans of refinement near boundaries,
until the lower threshold to a user-specified block size is reached. Generally, this results in step-like
boundaries (Figure 4a) and excessively fine meshes. This is mitigated in SBFEM by employing polygon
clipping. Consequently, the mesh consists of (a) standard square cells and (b) clipped polygon cells
(Figure 4c). So-called hybrid quadtree meshes combine both types of cells, with the benefit of improved
approximation of the geometry, at coarser discretisation levels. Standard FEM quadtree decompositions
are nonetheless also adopted in SBFEM analyses, mostly in the context of automated image-based
stress analysis [226], where the input data (pixel information) is inherently jagged by nature.
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In conclusion, balanced quadtree meshes are economical to construct, automatically provide a
certain degree of adaptivity around changing domain features and permit efficient analysis using the
SBFEM by exploiting precomputation.

Crack Propagation

Cracks are introduced into the hybrid balanced quadtree mesh by polygon clipping [51]. Traversed
blocks are split into two parts, by introducing a double node. Blocks containing a crack tip are
augmented with an additional node, where the crack enters, and the scaling center is placed to coincide
with the crack tip (Figure 5a). Discretisation of the crack tip segment is not required, since its solution is
included in the radial and therefore analytic portion of the SBFEM solution. Specifically, discretisation
of the crack tip segment is not permitted, due to the Jacobian of the respective element becoming zero.

In the case of crack propagation, the SIFs have to be calculated with sufficient accuracy. Since
a simply cracked block does not permit sufficient resolution of the singular stress field or its radial
distribution, a region surrounding the crack tip is homogenized (Figure 5b,c). The crack is then
propagated by imposing a suitable criterion, e.g., Equation (13), with which the new crack tip is then
projected (Figure 5d).

(a)

Refinement
Balancing

(b)

Homogenization

(c) (d)

Figure 5. Main steps in SBFEM crack propagation scheme. (a) Crack entering existing balanced
quadtree region.; (b) Refinement and balancing around crack tip; (c) Unifying cells into SBFEM macro
element around crack tip; (d) New crack tip projected by gSIFs and Δa.

5. Phase Field Methods

5.1. Overview

PFM emerged as an alternative to discrete fracture aiming to address some of the challenges of
computational fracture mechanics, e.g., automatic crack initiation, robust resolution of branching and
merging and also the treatment of curved crack paths. The PFM diffusive crack interface is represented
by a scalar variable, i.e., the phase field. The latter evolves according to a set of governing equations
arising from a robust variational structure. As a result, the method does not require numerical tracking
of the evolving discrete crack topologies and complex problems as in the case of 3D crack paths (see,
e.g., [227–230]) and dynamic fragmentation are naturally resolved [231].

PFM emerged from the pioneering work of Francfort and Marigo [73] who proposed a variational
theory of fracture based on energy minimization principles. Bourdin et al. [69] provided a regularised
formulation by introducing a length scale parameter that rendered the approach more suitable
for numerical approximations. The variational formulation was further modified and extended
to multi-dimensional mixed-mode dynamic brittle fractures [228,232,233] also targeting the response
of high performance composites [234–236]. The PFM for brittle fracture has been implemented in the
commercial software Abaqus [237] via a User Element subroutine by Msekh et al. [64], which was later
extended by Liu et al. [227]. Li et al. [238], see also [239], combined the variational phase field model
of brittle fracture with an extended Cahn-Hilliard model [240,241], and formulated a fourth-order
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phase field model suitable resolving crack propagation in anisotropic materials. Rate-dependent PFM
models for modelling fracture in visco-elastic solids [242] have also been established.

The phase field representation of fracture has been extended to the ductile regime [79,80,243,244]
also within the context finite strains. The PFM has found application in the simulation of fractures in
plates and shells [245–247], which involve a 3-D degradation of induced stresses whereas the element
kinematics and damage are defined at the mid-surface. Attempts to experimentally validate the
method have also been provided (see, e.g., [79]).

Verhoosel and de Borst [248] attempted to model cohesive fractures in composite materials using
PFM by casting the cohesive zone approach in an energetic framework and introducing an auxiliary
field in addition to the displacement and phase field which represents the jump in displacement
across the cracked domain. The motivation to use an auxiliary field is to define the crack opening in
cohesive fracture as a properly defined kinematic quantity, rather than an internal discontinuity as in
the case of brittle fracture. Vignollet et al. [249] further extended the phase field-based cohesive fracture
formulation for the case of propagating cracks. This approach succeeds in achieving convergence
with lesser number of elements and in contrast to brittle fracture, confines the length scale parameter
only to topological approximations hence rendering it uninfluential for the mechanical behaviour
of the structure. Nguyen et al. [42] proposed a new phase field formulation which could model the
interaction between interfacial damage and bulk brittle damage for complex topologies arising from
voxel-based models of microtomography images. The formulation used a level-set method to describe
the diffused jump in displacement field and used the phase field variable, instead of an additional
internal variable as in [248], to model crack opening and reclosure during cohesive fractures.

There have been several recent efforts emphasizing the requirement of a generalized cohesive
description of fracture using the phase field method [250,251], see, also Lorentz [252]. More specifically,
Wu and Nguyen [251] proposed a unified phase field theory, namely the PF-CZM, for brittle and
quasi-brittle fractures which converges to a cohesive zone model within the limits of a vanishing
length-scale parameter. More importantly, the authors provided a method for the precise fitting of
linear, exponential, and hyperbolic softening laws. PF-CZM was compared to the XFEM in [253] and
further extended to the case of dynamic fracture in [254]. Furthermore, Geelen et al. [250] extended the
work introduced in [255] to a dynamic cohesive fracture model incorporating phase field formulations.

The fundamental features of the phase field method are discussed in the following section.

5.2. PFM Variational Formulation

Griffith [86] postulated that the total potential energy Π of an elastic body undergoing elastic
fracture comprises the contributions of the elastic strain energy Πe and the fracture energy Π f

Π (u, Γ) = Πe + Π f + Wext =
∫
Ω

ψedΩ +
∫
Γ

GcdΓ + Wext (52)

where ψe is the elastic energy density and Gc is the critical fracture energy density, and Wext is the work
done by the external forces. The elastic energy density for the case of an isotropic medium is defined as

ψe (ε) =
1
2

λ[Tr (ε)]2 + μ
[
Tr
(

ε2
)]

(53)

where λ and μ are the Lamé constants.
Phase field modelling of fracture approximates the fracture surface integral expression introduced

in Equation (52) with a volume integral defined over the entire deformable domain Ω according to
Equation (54) below. ∫

Γ

GcdΓ ≈
∫
Ω

GcFΓ (c,∇c) dΩ (54)

where c = c (x) ∈ [0, 1] ∀x ∈ Ω is the scalar phase field representing crack.
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Using Equation (54), the expression of the potential energy of the elastic deformable body
introduced in Equation (52) can be modified into the following form

Π ≈
∫
Ω

ψedΩ +

Fracture Energy Approximation︷ ︸︸ ︷∫
Ω

GcFΓdΩ −

⎛⎜⎝∫
Ω

uibidΩ +
∫

∂Ωt̄

uit̄idΩt̄

⎞⎟⎠ (55)

The functional FΓ assumes the following generic form

FΓ =
1

cw

(
1

2l0
ω(c) + 2l0|∇c|2

)
, (56)

where l0 ∈ R is a length scale parameter and ω(c) and cw are the generic crack geometric function and
associated constant; these assume different expressions based on the type of fracture surface energy
approximation used.

With the introduction of the crack surface density function in Equation (56), the discrete
description of a sharp crack Γc in Figure 1 is transformed onto a diffused crack description as shown
in Figure 6 via the regularized crack functional Γl0(c) which is scaled by the length-scale parameter
l0 (57).

Γl0(c) =
∫
Ω

FΓ (c,∇c) dΩ (57)

The length scale parameter l0 is the regularisation length over which damage diffuses as shown
in Figure 6. In the conventional phase field formulation, originally presented in Bourdin et al. [69],
the peak force reached before the onset of fracture depends on the value of length-scale parameter
l0. Higher values of the length-scale parameter lead to lower peak forces and vice versa. In recent
formulations, see, e.g., Wu and Nguyen [251] and Geelen et al. [250] this is alleviated, hence providing
a significant advantage in enhancing the critical-stress predicting capabilities of the phase field method.
In Miehe et al. [256], generalized crack-driving forces with a failure criteria based on the maximum
principal stress were introduced which also succeeded in predicting critical fracture loads unaffected
by the length-scale parameter. However in notched structures, a crack nucleation principle based
purely on the maximum principal stress criteria suffers from the curse of stress singularity at the
notch-tip as also highlighted in [257].

Providing different expressions for ω(c) and cw results in variants of the phase field approximation;
key variants, i.e., the second and fourth order quadratic approximations and the second order linear
phase field approximation are discussed in Sections 5.2.1, 5.2.2 , and 5.2.3, respectively. A schematic of
the variation of the phase field c in the direction normal to the crack surface for all phase field variants
considered as compared to the discrete fracture case is provided in Figure 7. In all cases, the phase
field value c = 1 corresponds to an un-cracked region, whereas c = 0 corresponds to a cracked region.

Figure 6. Description of diffused crack scaled by the length-scale parameter l0 and boundary conditions.
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(a) (b) (c) (d)

Figure 7. 1-D spatial variation of phase-field c(x) for (a) Discrete crack (b) Diffused crack with
second-order quadratic approximation (c) Diffused crack with fourth-order quadratic approximation,
and (d) Diffused crack with second-order linear approximation.

Remark 1. From a geometric standpoint, the length scale parameter regularises the width of the crack as shown
in Figure 6 in accordance with [69], see, also Borden et al. [229]. It is of interest to note that the length scale
considered in Miehe et al. [232] (see, also, [228,258]) is double the size of the one adopted in [69,229]. Of course,
both implementations are equivalent; one however should be careful to appropriately adapt the length scale
parameter when comparing between the two. In this work, we comply with the former definitions.

5.2.1. Second-Order Quadratic Approximation

For the second-order quadratic approximation, the 1-D spatial variation of phase-field variable
c(x) can be expressed as (Figure 7b):

c(x) = 1 − e−|x|/2l0 (58)

It is straight-forward to show that the width of diffusion zone decreases with decreasing the value
of length-scale parameter l0, which can also be seen in Figure 8.

x

-40 -20 0 20 40

c
(x

)

0

0.2

0.4

0.6

0.8

1

l
0
=1

l
0
=2

l
0
=4

Figure 8. Second-order quadratic approximation: Effect on length-scale parameter l0 on the width
of diffusion.

The specific second order functional proposed in Bourdin et al. [69] can be retrieved by modifying
the general form of Equations (54)–(56) and considering the following definitions in Equation (59)

cw = 2

ω(c) = (c − 1)2. (59)

Hence, the crack surface energy approximation assumes the following form
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FΓ =

[
(c − 1)2

4l0
+ l0|∇c|2

]
∫
Γ

GcdΓ ≈
∫
Ω

Gc

[
(c − 1)2

4l0
+ l0|∇c|2

]
dΩ

(60)

5.2.2. Fourth-Order Quadratic Approximation

A fourth-order quadratic approximation is established considering the definition introduced
in [259], i.e., ∫

Γ

GcdΓ ≈
∫
Ω

Gc

[
(c − 1)2

4l0
+

l0
2
|∇c|2 + l3

0
4
(Δc)2

]
dΩ (61)

The expression for c(x) for the fourth-order quadratic approximation can be given as (also shown
in Figure 7c):

c(x) = 1 − e−|x|/l0
(

1 +
|x|
l0

)
(62)

The effect of the length-scale parameter on the diffusion width is illustrated in Figure 9.
The higher-order term introduced in Equation (61) leads to greater regularity of the phase-field solution,
and improves its convergence rate and accuracy. However due to increased continuity requirements
of the solution, the basis functions used for numerical interpolation must be at least (C1) continuous,
for e.g., hierarchically refined B-splines used within an isogeometric analysis framework [259].
It should also be noted that the use of 4th-order model leads to a more accurate approximation
of stresses, which in turn facilitates higher rates of crack growth. More applications of higher-order
phase-field models can be found in [259–261].
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Figure 9. Fourth-order quadratic approximation: Effect of the length-scale parameter l0 on the width
of diffusion.

5.2.3. Linear Approximation

In the quadratic approximations shown in Sections 5.2.1 and 5.2.2, the phase field variable and
therefore the degradation function evolve as soon as the structure is loaded. This is clearly not the case
in purely elastic brittle materials that demonstrate a linear elastic behavior until a crack initiates.

Pham et al. [262] addressed this issue by employing a linear approximation of the surface energy
integral to achieve a diffused localization band and a purely elastic global response until the onset
of damage. The 1-D expression for c(x) in this case can be given as in Equation (63), which is also
illustrated in Figure 7d (See also Figure 10).
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c(x) = 1 −
( |x|

2l0
− 1

)2

(63)
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Figure 10. Second-order linear approximation: Effect of the length-scale parameter l0 on the width
of diffusion.

More recently, Geelen et al. [250] provided an analogous linear approximation based on the
following expressions for cw and ω(c)

cw =
16
3

ω(c) = 4(1 − c)
, (64)

which result in the following definition of the crack functional

FΓ =
3

8l0

[
1 − c + l2

0 |∇c|2
]

. (65)

In view of Equation (66), the approximation of the surface energy integral in Equation (54)
assumes the following form

∫
Γ

GcdΓ ≈
∫
Ω

3Gc

8l0

[
1 − c + l2

0 |∇c|2
]

dΩ (66)

The linear approximation in Equation (66) differs from the corresponding formulation in [250] in
the sense that a fully cracked-state in the current study is represented by c = 0 in the current study,
as opposed to c = 1 in [250]. In addition, the total diffusion width in the current model (Equation (66)
and Figure 7d) is twice the diffusion width in [250] to maintain consistency with other models.

It is of interest to note that the quadratic form (Equations (60) and (61)) implicitly guarantees
the boundedness of the phase field variable c within the limits [0, 1]. However, the solution obtained
by Equation (65) is not intrinsically bounded within this interval, and additional constraints must be
imposed to ensure boundedness.

This is achieved by employing a Penalty (see, e.g., [263]) or a Lagrange multiplier method (see,
e.g., [250]). In both methods, a staggered iterative scheme is required for the solution of the resulting
constrained system of governing phase-field equation. To guarantee both the boundedness and
irreversibility of the phase field variable, Gerasimov and De Lorenzis [263] proposed a method to
choose the value of an optimal or lower bound of the penalty parameter beyond which adequate
constraint enforcement can be ensured.

351



Appl. Sci. 2019, 9, 2436

5.3. Material Degradation

The expression of the potential energy introduced in Equation (52) implies that in a given
conservative system, any increase in the fracture energy due to a unit increase in the fracture surface
has to be compensated by a corresponding decrease in the elastic strain energy. Hence, the expression
of the elastic energy must be coupled to the evolution of the phase field c as the latter dictates the value
of the fracture energy. In physical terms, the phase field has to account for the gradual degradation of
material stiffness as cracks propagate through the medium.

Mathematically, this has been expressed through the definition of a degradation function, g (c),
which is then used to reduce the value material elastic energy density giving rise to the so-called
isotropic phase field methods. Driven from the fact that such an approach led to unrealistic and in
cases erroneous results, e.g., cracks initiating and propagating due to pure compression later attempts
postulated material degradation on the basis of an energy split, i.e.,

ψe = g (c)ψ+
e + ψ−

e (67)

where ψ+
e and ψ−

e are the elastic strain energy densities whose expressions are specific to the type of
energy split adopted, see, e.g., Miehe et al. [228] for an energy decomposition based on the spectral
decomposition of the strain tensor and Amor et al. [264] for a volumetric/deviatoric decomposition
giving rise to the so-called anisotropic degradation models. It is of interest to note that although
anisotropic models mitigated the unrealistic crack patterns derived from the isotropic ones for most
typical stress states, the problem is not yet fully resolved. The volumetric split defined in [264] may still
result in degradation under a pure compressive stress state. The spectral decomposition model defined
in [228] leads to a strongly non-linear stress-strain relation that has been shown to be computationally
taxing (see e.g. [265] for a detailed comparison of these two models).

The expression of the degradation function g(c) is not unique see, e.g., [80,250,255,266–271].
A widely used definition for the degradation function that is compatible with the first and second
order quadratic approximations provided in Equations (60) and (61), respectively is

g (c) =
[
(1 − k) c2 + k

]
(68)

where k in Equation (68) is a model parameter utilized in several applications, see, e.g., [264,272] as a
way to avoid ill-posedness. Geelen et al. [250] introduced a quasi-quadratic definition of g(c) to be
employed in conjuction with the linear approximation defined in Equation (65) that is defined as

g(c) =
c2

c2 + m(1 − c)[1 + p(1 − c)]
with p ≥ 1 and l0 <

3EGc

4(p + 2)σ2
c

(69)

where m = (3Gc)/(8l0ψc) = g′(c0) is the initial slope of the degradation function g(c) and p provides
the initial slope and shape parameters for the softening curve assuming c0 = 1 as the initial phase-field.
Here, ψc = (σ2

c )/(2E) is the critical fracture energy per unit volume of the material, in which σc and E
represent the critical tensile strength and Young’s modulus of the material respectively. This definition,
however, comes with an additional upper bound restriction on the value of length-scale parameter l0
which is necessary to achieve optimal convergence. The upper bound on the regularization length
is related to the characteristic length of the fracture process zone lFPZ = (EGc)/(σ2

c ), see [250,273]
for details.

Substituting Equation (67) in Equation (55), the expression for the brittle fracture potential energy
assumes the following form

Π ≈
∫
Ω

g(c)ψ+
e dΩ +

∫
Ω

ψ−
e dΩ +

∫
Ω

GcFΓdΩ −

⎛⎜⎝∫
Ω

uibidΩ +
∫

∂Ωt̄

uit̄idΩt̄

⎞⎟⎠ (70)
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where definitions of ψ+
e and ψ−

e are specific to the energy split adopted and g(c), FΓ may be chosen
based on the Table 1.

Table 1. Definition variants for the degradation function g (c) and the functional FΓ.

g(c) FΓ Reference[
(1 − k) c2 + k

]
Equation (68)

[
(c−1)2

4l0
+ l0|∇c|2

]
Equation (60) Borden et al. [229]

c2

c2 + m(1 − c)[1 + p(1 − c)]
Equation (69)

3
8l0

[
1 − c + l2

0 |∇c|2
]

Equation (65) Geelen et al. [250]

5.4. PFM Strong Form

The Euler-Lagrange equations of the displacement u (x, t) and phase field c (x, t) coupled
formulation of the Lagrangian functional are employed to derive the strong form of the quasi-static
brittle-fracture phase field formulation. The latter assumes the following general form:

∇σ + b = 0, on Ω (71)

Gcδc(FΓ) = −g′(c)D̃, on Ω (72)

where δc(FΓ) denotes the derivative of surface energy approximation function FΓ with respect to the
phase field variable c, and D̃ is the energetic crack-driving force which depends on the phase field
formulation used. A detailed description on the different crack-driving forces that can be employed in
conjuction with Equation (72) is provided in Miehe et al. [256].

The coupled field Equations (71) and (72) are subject to the boundary conditions introduced in
Equation (1) supplemented by

∂c
∂xi

ni = 0 on Γt
c. (73)

where ni, i = 1 . . . r is the outward-pointing normal vector to the crack boundary. The Cauchy stress
tensor σ ∈ Rr×r is defined as

σij,e =
∂ψe

∂εij
(74)

Hence, substituting Equation (67) into Equation (74) gives rise to the degraded Cauchy
stress tensor

σ = σij = g(c)
∂ψ+

e
∂εij

+
∂ψ−

e
∂εij

= g(c)σ+ + σ− (75)

where g(c) takes one of the forms shown in Equations (68) and (69) depending upon the formulation.

5.5. Derivation of the Phase Field Evolution Equation in from the General Form

The phase field evolution equation employed in Borden et al. [229] can be obtained from the
general expression of the strong form (Equations (71) and (72)), considering the expressions for FΓ and
g(c) from Equation (60) and (68), i.e.,

FΓ =

[
(c − 1)2

4l0
+ l0|∇c|2

]
; δc(FΓ) =

[
(c − 1)

2l0
− 2l0Δc

]
g(c) = (1 − k)c2 + k ; g′(c) = 2(1 − k)c

(76)

In the original formulations of Miehe et al. [232], which is later also adopted in [229], the crack
driving force D̃ was the positive part of the elastic strain energy density, i.e.,

D̃ = ψ+
e (77)
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where ψ+
e is the tensile part of strain energy density taken from [228].

Substituting Equation (77) in Equation (72) and considering also Equation (76) the following
evolution equation is derived, i.e.,(

4l0 (1 − k)ψ+
e

Gc
+ 1

)
c − 4l2

0Δc = 1, on Ω (78)

which is a linear differential equation with respect to c. It is of interest to note that the Laplacian of
the phase field in Equation (78) is scaled by the squared value of the length scale parameter hence it
rapidly vanishes for small values of l0 compared to the c.

5.6. Derivation of the Cohesive Phase Field Evolution Equation in from the General Form

The phase field evolution equation presented in Geelen et al. [250] can be obtained from the
general expression of the coupled strong form considering the following expressions for FΓ, δc(FΓ),
and g(c)

FΓ =
3

8l0

[
1 − c + l2

0 |∇c|2
]

; δc(FΓ) =
3

8l0

[
− 1 − 2l2

0Δc

]

g(c) =
c2

c2 + m(1 − c)[1 + p(1 − c)]
with p ≥ 1 and l0 <

3EGc

4(p + 2)σ2
c

(79)

Substituting Equation (79) into Equation (72) and performing the necessary algebraic manipulations
results in the following expression Geelen et al. [250].

3Gc

8l0

[
2l2

0Δc + 1

]
− g′(c)D̃ = 0, on Ω (80)

where
D̃ = max(ψc, ψ+

e ) (81)

and ψc = σ2
c /2E. Specific to this formulation, an additional augmented Lagrange constraint is

incorporated to ensure the smooth monotonic evolution of the phase field variable c, such that ċ ≤ 0.
In view of this, Equation (80) transforms into the following expression:

3Gc

8l0

[
2l2

0
∂2c
∂x2

i
+ 1

]
− g′(c)D̃ + 〈λ + γ(c − cn−1)〉+ = 0, on Ω (82)

where λ ∈ L2(Ω) are Lagrange multipliers and γ ∈ R>0 is the penalty kernel. cn−1 is the value of
phase field at preceding (n − 1)th time-increment.

5.7. Irreversibility Conditions

The expression of the potential energy defined in Equation (70) implies that regardless of the
value of the degradation function, the fracture energy would need to further increase in the case
of unloading to compensate for the corresponding elastic energy decrease. This is also derived on
the basis of Equations (78), i.e., the strong form of the coupled system. In particular, the second of
Equations (78) would result in an increasing value of the phase field for decreasing values of the elastic
energy potential in the case of unloading. This would correspond to a reduction in the crack length,
thus negating the irreversibility condition

Γ(t+Δt) ⊇ Γ(t) (83)
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Among the various irreversibility constraints proposed within the phase field literature, the history
variable approach given by Miehe et al. [232] is most widely applied. Based on the theoretical
arguments provided in [232], irreversibility is enforced by introducing a so-called history variable such
that the following Kuhn-Tucker conditions hold

ψ+
e −H ≤ 0 Ḣ ≥ 0 Ḣ (ψ+

e −H) = 0 (84)

where H is a history field.
Some other recent works have also proposed penalty and augmented Lagrange methods for

imposing the irreversibility constraints on the phase field equations, see e.g., [250,263], so that the
monotonicity of the phase field variable constantly holds. It is to be noted that these methods provide
a more natural way of imposing the constraints, and do not disrupt the original variational nature of
the phase field equations. Equation (82) employs such an augmented Lagrange constraint to ensure
the monotonic evolution of phase field variable.

5.8. Effective Critical Energy Release-Rate

In the original variational formulation proposed by Bourdin et al. [69], it was shown that the
fracture energy is slightly overestimated during simulations and the amount of this amplification
depends upon the size of elements in the overall finite-element discretization. This amplification
effect must be compensated by defining an effective critical energy release rate Ge f f

c for the purpose of
phase-field simulation (see also [274]).

Ge f f
c =

Gactual
c

1 + (h/4l0)
(85)

where Gactual
c and Ge f f

c are the actual and effective critical energy release rates respectively. It must be
emphasized that using the amplified value of material fracture energy Gactual

c leads to overestimation of
critical fracture loads in comparison to discrete fracture methods, and hence for all practical purposes
Ge f f

c must be used while solving the phase-field evolution equation. This would also be highlighted in
detail in the numerical examples section.

5.9. Galerkin Approximation

The strong form of the coupled governing Equations (78) and (82) are set in a discrete form
following standard Galerkin approximation. In this setting, the trial solution spaces are defined as

Su =

{
u ∈

(
H1 (Ω)

)d
∣∣∣∣u = ū on ∂Ωb

}
(86)

and
Sc =

{
c ∈ H1 (Ω)

}
(87)

for the displacement field and the phase field respectively. Corresponding weighting functions spaces
are further defined as

Wu =

{
wu ∈

(
H1 (Ω)

)d
∣∣∣∣wu = w̄u on ∂Ωb

}
(88)

and
Wc =

{
wc ∈ H1 (Ω)

}
(89)
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Multiplying Equation (71) with the weighting functions (88) and performing the necessary
integration by parts leads to the standard weak form of the equilibrium equation∫

Ω

σ · ∇wudΩ −
∫
Ω

b · wudΩ −
∫

∂Ωt̄

t̄ · wud∂Ωt̄ = 0 (90)

Multiplying Equation (78) with the weighting functions (89) and performing the necessary
algebraic manipulation gives rise to the phase field weak form employed in [229]

∫
Ω

([
4l0 (1 − k)H

Gc
+ 1

]
c, wc

)
dΩ +

∫
Ω

(
4l2

0∇c,∇wc
)

dΩ −
∫
Ω

(1, wc) dΩ = 0 (91)

Similarly, the cohesive phase field weak form derived from Equation (82) assumes the following form

∫
Ω

(g′(c)D̃, wc) dΩ +
∫
Ω

3Gc

8l0

[
− (1, wc) +

(
2l2

0∇c,∇wc

)]
dΩ

+
∫
Ω

(〈λ + γ(c − cn−1)〉+, wc) dΩ = 0
(92)

The weak forms introduced in Equation (91) or (92) can be further discretised employing either
mesh-based, i.e., the FEM, mesh-less methods, see, e.g., [275] or MPM [32]. The resulting discrete
equations are then solved in an incremental fashion. Due to the nonlinear nature of g(c), the resulting
discrete problem is a nonlinear one, even for the case of elastic fracture, hence necessitating the use of
iterative solvers.

6. Numerical Examples

In this section, four numerical examples are presented, allowing for a comparison in terms of the
modeling capabilities of the investigated methods. The first two examples consider a square plate, first
under tension, then under shear loading, with both setups having been studied extensively in existing
literature. Although analytical solutions for these two setups do not exists, the geometry can be
modelled by one SBFEM subdomain and therefore a high-fidelity reference solution can be constructed
for the peak load and displacements following the first crack increment. For the last two examples,
the notched plate with hole and L-shaped panel, respectively, there exist experimentally obtained crack
paths to compare against. Furthermore, the test setups closely mimic crack propagation scenarios
under real world conditions. For the former numerical example, modelling the complete crack path by
discrete crack methods is particularly challenging, since they do not provide the capability to nucleate
cracks. The later numerical example presents a similar issue, however, modelling by discrete crack
methods is achieved by placing the crack tip at the re-entrant corner, effectively circumventing the
nucleation issue manually. To this end, we first outline the implementation details adopted for each
numerical method, then proceed to the numerical examples.

6.1. Implemented Variants

For the numerical examples presented in this section, the standard XFEM with shifted enrichment
functions is employed. The enrichment radius assumes a value equal to re = 3.5 h, with h denoting
the element size, while the radius used for the interaction integral is rd = 1.5 h. Element partitioning
and almost polar integration are employed for the integration of jump and tip enriched elements
respectively. Finally, levels sets are updated using the φψrθ method from the work of Duflot [139].

The specific realization of SBFEM employed in the presented examples is based on balanced
hybrid-polygon quadtrees, unless otherwise explicitly stated, and thus discretises the boundary with
linear line elements. The Gauss-Lobotto integration scheme is employed, to offset computational
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effort for the numerical examples where hp-refinement is introduced (Section 6.2). Decoupling of the
linear system of ordinary differential equations (Equation (36)) is performed by block diagonal Schur
decomposition. The gSIFs are estimated by means of the spline fitting approach. For the case of the
tension test, the domain is approximated via use of a single subdomain with hp-refinement on the
boundary to produce gSIFs of highest possible accuracy. Results obtained by this variant are termed
SBFEM hi-fi, acknowledging the high fidelity solutions they produce [276].

For the PF-FEM case, 4-noded quadrilateral plane strain/stress elements with bilinear basis
functions and based on a full integration technique have been adopted. A displacement-controlled
nonlinear static analysis scheme is utilized with constant displacement increments. Displacement is
monitored and controlled at any single node on the loading edge, to which all other nodes on the
edge are kinematically coupled in the direction of loading. Unless explicitly stated, the solution is
implemented within a stagger phase-field solution algorithm with a single prediction step (Nstaggs = 1)
and a displacement norm convergence tolerance tolu = 10−5. In all the numerical experiments
conducted in this work, the mesh size is consistently smaller than the length scale, i.e., h ≤ l0 to
accurately resolve the crack path.

Remark 2. In case the phase field functional definition and associated length scale parameter initially adopted
by [232] is employed (see, also Remark 1), then the corresponding mesh size inequality becomes h ≤ l0/2.

6.2. Numerical Example 1: Single Edge-Notched Tension Test

This example considers mode-I fracture behavior of a square panel, with geometric description of
the domain, boundary conditions and material parameters as defined in Figure 11. A state of plane
strain is assumed, the specimen thickness is t = 1 mm. The Young’s modulus, Poisson’s ratio, length
scale, fracture energy density and crack propagation length are chosen as E = 210 kN/mm2, v = 0.30,
l0 = 0.0075 mm, Gc = 0.0027 kN/mm, σc = 2.5 kN/mm2 and Δa = 0.02 mm, where applicable.
The bottom edge of the specimen is clamped in both x and y directions, such that ux = 0; uy = 0.
The loads and boundary conditions of the top edge by discrete and PFM are enforced differently,
yet with equivalent outcome; for XFEM and SBFEM a prescribed displacement of u = uy ≥ 0 is
imposed on the top edge, while for PFM, a quasi-static displacement control analysis procedure is
implemented considering a concentrated load applied at point C and kinematic coupling of the vertical
displacement DOF along the top edge, such that u = uy ≥ 0 is obtained. The analysis procedures for
each approach as described in Section 6.1 apply. Two different solution procedures based on standard
and cohesive phase field approaches, as described in Sections 5.5 and 5.6 respectively, are studied
within this example. The resulting load deflection paths for all methods are shown in Figure 12; the
standard SBFEM and XFEM implementations match the deflections and peak load, while the phase
field method with Ge f f

c approximates only the peak load closely.
The nucleation and propagation of the crack at successive time-increments is shown in Figure 13.

The nucleation of the crack automatically occurs at the notch-tip, and then this propagates linearly
in the direction perpendicular to the applied load. It is known that the value of the length scale
parameter lo not only controls the width of the phase field diffusion zone, but also affects the peak
fracture force values. This is illustrated in Figures 14 and 15, where a decreasing the value of lo leads to
sharper crack topologies and higher peak fracture forces, thus showcasing a more brittle-like fracture
behaviour. It can be inferred from Figure 15 that if lo is chosen sufficiently small, i.e., in the limit lo → 0,
the force-displacement curves converge towards the discrete solution, i.e., Griffith’s description of
brittle fracture; a property well-known as Γ-convergence of regularized phase field fractures. However,
an important point to note is that a formal proof of Γ-convergence of anisotropic strain-energy splits
(detailed in [232,264]) towards Griffith’s theory is not available yet, as also stated in [277].
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Figure 11. Tension test geometry, material parameters, loading and boundary conditions.

It is evident from Figure 12 that both discrete crack methods, i.e., XFEM/SBFEM, predict similar
fracture characteristics, whereas the critical fracture force obtained from phase-field method is slightly
overestimated when the actual value of Gactual

c = 0.0027 kN/mm is used. Considering hPFM =

0.005 mm and l0 = 0.0075 mm which have been used for the current analysis, an effective fracture
energy Ge f f

c = 0.00231 kN/mm can be calculated based on Equation (85). The critical fracture load
thus obtained using Ge f f

c shows very good agreement with those predicted by discrete methods
XFEM/SBFEM. The difference in the elastic stiffness of the material between XFEM/SBFEM and
PF-FEM cases is due the fact that in conventional PF-FEM formulations, as in [69], the phase-field
variable evolution and consequently stress degradation start as soon as the material is loaded and
hence, prevents recovery of a pure linear elastic limit. The crack paths, however, coalign as expected,
although for the PF-FEM the resulting displacements are over-estimated as the fracture must initiate
at the same critical load for a given value of Gc. An alternate approach, which is highly effective in
determining accurate gSIFs [276], may be applied when the domain is star convex with regards to
the crack tip, and is introduced here as a high fidelity reference solution (SBFEM hi-fi). Although by
hp-refinement on the boundary, the gSIFs are accurately determined utilizing only a few DOFs,
and thus minimal computational resources, this approach is only applicable to crack propagation in a
select few cases, such as in this symmetric tension test, where the crack path remains straight. The SIFs
obtained by discrete crack methods coincide to the fourth significant figure.

For comparison purposes, the tension test is also performed using the cohesive phase field method
shown in Equation (92). The fracture response in this case depends on the shape parameter p, which
controls the shape of cohesive stress-crack opening curve. Increasing the value of p enables faster
degradation of stresses as soon as the critical stress limit is reached, however, too large p may lead to
poor convergence. Figure 16 shows the dependence of load-displacement responses and critical loads
on the choice of shape parameter p. The length-scale parameter lo for each case is chosen based on its
upper bound value in Equation (69). A cohesive phase-field model is highly useful when the size of
fracture process zone (FPZ) is large enough, and the Griffith’s description of purely brittle fracture
becomes inadequate [250]. In such cases, the numerical phase-field model can be calibrated with the
specific material responses by making an optimal choice for the parameter p.
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Figure 12. Tension test load-deflection curves.

(a) (b) (c)
Figure 13. Tension test phase field evolution for (a) u = 0.0057 mm (b) u = 0.00585 mm (c) u = 0.00595
mm, with displacement increment Δu = 1 × 10−6 mm.

(a) (b) (c)
Figure 14. Tension test comparison of phase field diffusion widths employing (a) lo = 0.015 mm (b)
lo = 0.0075 mm (c) lo = 0.00375 mm.
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Figure 15. Tension test effect of length-scale parameter variation on load displacement curves.
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Figure 16. Tension test with cohesive phase field formulation studying effect of shape parameter p on
the peak fracture loads

6.3. Numerical Example 2: Single Edge-Notched Shear Test

In the present example, the mode-II fracture behavior of a square panel is examined,
with geometric description of the domain and boundary conditions as shown in Figure 17. This
is a standard benchmark test to evaluate damage characteristics under shear loads, and has been
analyzed extensively in the literature, see for e.g., [229,232]. The specimen thickness is t = 1 mm and a
state of plane-strain is assumed. The material parameters are chosen as E = 210 kN/mm2, v = 0.30,
l0 = 0.0075 mm, Gc = 0.0027 kN/mm with crack propagation increment Δa = 0.02 mm, in accordance
with [232]. For the phase-field analysis, the mesh is refined with hPFM = 0.005 mm in the regions
where the crack is expected to propagate. Zero y-displacement boundary conditions are enforced
(uy = 0, Figure 17) on all outer edges of the plate. Furthermore, the bottom edge of the specimen is
retrained in the horizontal direction (ux = 0). For the discrete crack methods, a horizontal displacement
u = ux ≥ 0 is imposed on the top edge of the specimen, while the PFM applies a concentrated load P
at point C, kinematically couples the horizontal DOF on the top edge and solves enforcing quasi static
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displacement control. The second order quadratic phase field formulation described in Section 5.2.1 is
employed in this example. The analysis procedures for each approach are as described in Section 6.1.
The corresponding load-deflection paths are shown in Figure 18.

The shear test results in a biaxial stress state developed at the notch-tip which leads to an inclined
crack propagation at an angle 45◦ to the horizontal.

The crack paths are closely aligned (Figure 19), however, the origin of the discontinuity differs
slightly between the PFM and the discrete crack methods, resulting in a slight differentiation of the
crack paths upon crack propagation. Such behaviour is a consequence of the discrete crack methods
mandating the crack propagate starting from the proceeding crack tip, whereas the PFM permits the
evolution along the notch. Various stages of the phase field evolution are shown in Figure 20.

Further discrepancy is also observed in the significantly differentiated behaviour of the associated
load-deflection curve. The higher peak load obtained by discrete crack methods and the snap back
behaviour is not mirrored in the PFM result. The difference in snap back behaviour between the
SBFEM and XFEM is attributed to the adaptivity of the SBFEM mesh about the crack tip, while the
XFEM relies on the initial mesh topology. After this oscillatory step, the respective load deflection
curves coincide closely.

Contrary to the discrete methods where the equilibrium path is derived from sequential
linear solutions, PFM relies on incremental iterative solvers; hence the snap back response would
not be captured with a displacement control nonlinear analysis procedure; rather, a generalized,
e.g., arc-length, analysis is required. Eventhough the PFM results shown in Figure 19 are identical to
the results provided in the literature (see, e.g., [232,265]), the 8% difference in the peak load compared
to discrete methods highlights the importance of the length scale parameter on the solution. The effect
of the length scale l0 on the crack topology and the peak fracture loads is shown in Figures 21 and 22,
respectively. It can be noted that the shear crack paths and load-displacement curves show a similar
trend as already seen in Section 6.2, wherein decreasing l0 leads to sharper and more brittle cracks
with higher peak fracture forces which converge to the discrete fracture solution.
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Figure 17. Shear test geometry, material parameters, loading and boundary conditions.
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Figure 18. Load-deflection curves of the shear test.

Figure 19. Shear test crack-paths obtained from SBFEM, XFEM and PFM-based crack propagation analysis.

(a) (b) (c)
Figure 20. Shear test phase field evolution at (a) u = 0.009 mm (b) u = 0.011 mm (c) u = 0.013 mm,
with displacement increment Δu = 1e−6 mm.
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(a) (b) (c)
Figure 21. Shear test comparison of phase field diffusion widths with respect to decreasing lo, where
(a) lo = 0.015 mm (b) lo = 0.0075 mm (c) lo = 0.00375 mm.

Figure 22. Shear test effect of length-scale parameter lo variation on load displacement curves

6.4. Numerical Example 3: Notched Plate with Hole (NPwH)

A notched plate containing a hole is considered with geometric description of the domain,
boundary conditions and material parameters as defined in Figure 23. In [32,243], a similar example
has been analyzed previously. The specimen thickness is t = 15 mm and a state of plane-stress
is treated. The Young’s modulus, Poisson’s ratio, length scale, fracture energy density and crack
propagation length are chosen as E = 5.98 kN/mm2, v = 0.221, l0 = 0.35 mm, Gc = 0.00228 kN/mm
and Δa = 2 mm, where applicable. For the PFM, the mesh-size is kept at a value of hPFM ≈ 0.34
mm in the crack propagation region. A zero displacement boundary condition (ux = 0; uy = 0) is
enforced on the bottom pin, whereas a vertical displacement u = uy ≥ 0 is imposed on the top pin.
The numerically predicted crack path is compared with the experimental results presented in [265].

Comparing PFM to discrete crack methods, the obtained peak load is similar (Figure 24), however,
the crack paths differ significantly (Figures 25 and 26). Since the discrete methods do not possess an
intrinsic method to nucleate cracks, once the crack tip has propagated into the hole, the algorithm
terminates. This is apparent, since both XFEM and SBFEM report a final vertical displacement of
approximately 0.33 mm. Due to this inherent limitation, expert judgment is required to interpret crack
propagation results stemming from discrete crack methods as their termination is indistinguishable
from crack arrest, when inspecting conventional results. The phase field methods circumvent these
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issues resulting in a highly flexible and generalized method, at the cost of significantly increased
computational effort.

For the PF-FEM case, the effect of the number of staggered phase field iterations on the accuracy
of the predicted peak fracture loads is examined. Four different cases with constant displacement
increments Δu = 10−2, Δu = 5 × 10−3 mm, Δu = 10−3 mm and Δu = 5 × 10−4 mm are considered
and the corresponding load-deflection paths are shown in Figure 27a. In all cases, the phase-field
solution is predicted using a single staggered iteration step Nstaggs = 1 and a tolerance of tolu = 10−5

is maintained. It can be seen that solution accuracy improves when the size of displacement increments
Δu is sufficiently small, and convergence is achieved for Δu = 1 × 10−3mm. Further reduction of Δu
marginally affects the results at the cost of increased number of calculations, with Δu = 5 × 10−4 mm
and Δu = 1 × 10−3mm yielding almost similar load-displacement curves.

In Figure 27b the converged solution of Figure 27 is compared against the solution with Δu =

5 × 10−3mm when (i) only a single staggered iteration is performed and (ii) staggered iterations are
performed until the phase field solution converges. It is evident that the peak fracture loads obtained
in converged staggered iteration case is lower as compared to the Nstaggs = 1 case, and are actually
closer to the converged solution shown in Figure 27a. The evolution of phase field at successive
monitored displacements is shown in Figure 28; results are obtained using single staggered iteration
Nstaggs = 1 and a constant displacement increment Δu = 10−3 mm. The crack paths obtained from
phase field calculations (Figure 29) show good agreement with the experimental fracture results
presented from [265].

Furthermore, the analysis has been conducted using two different anisotropic strain energy splits
widely used within the phase field literature (Figure 30):

1. Spectral decomposition of strains proposed in [232]
2. Volumetric Deviatoric strain split proposed in [264]

The crack path predicted via the spectral strain decomposition [232] appears closer to the
experimentally observed crack than the volumetric-deviatoric strain split [264] (Figure 30a,b). These
minor differences are also reflected to the equilibrium paths shown in Figure 30c. Since, contrary to the
spectral strain decomposition split, the volumetric-deviatoric split only partially prohibits degradation
due to purely compressive stresses, a higher amount of material is overall degraded in the latter case;
hence the peak force is indeed expected to be lower. However, the spectral strain decomposition leads
to a highly nonlinear formulation and therefore increased computational costs—see also [265] for a
hybrid procedure to alleviate these. This highlights the significance of choosing the appropriate split
and hence the level of expert judgment required when employing PFM for LEFM.
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Figure 23. NPwH geometry, material parameters, loading and boundary conditions.
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Figure 24. NPwH load-deflection curves.

Figure 25. NPwH crack-paths obtained from SBFEM, XFEM and PFM-based crack
propagation analysis.
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Figure 26. NPwH meshes for SBFEM (top) and XFEM (bottom), with focus on crack path region.
The last crack propagation step prior to the cracks reaching the hole is depicted.
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(b)
Figure 27. NPwH PFM force displacement response illustrating the dependence of peak fracture force
on (a) Δu for Nstaggs = 1 (b) the number of staggered iterations.
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(a) (b) (c)
Figure 28. NPwH phase field at monitored displacement (a) u = 0.35 mm (b) u = 0.96 mm (c) u = 1.20
mm, with a displacement increment Δu = 1e−3 mm and a single stagger iteration.

(a) (b)
Figure 29. NPwH comparison of crack topologies depicting experiments from (a) [243] vs. (b) phase
field simulations.

6.5. Numerical Example 4: L-Shaped Panel (LSP) Test with Crack at Re-Entrant Corner

Figure 31b depicts the geometric description of the domain, boundary conditions and material
parameters for an L-shaped panel. A state of plane stress is considered with specimen thickness
t = 100 mm. The Young’s modulus, Poisson’s ratio, length scale, fracture energy density and crack
propagation length are chosen as E = 5.98 kN/mm2, v = 0.2, l0 = 2.5 mm, Gc = 0.0089 kN/mm,
hPFM ≈ 1.4 mm and Δa = 10 mm, where applicable. A zero displacement boundary condition
(ux = 0; uy = 0) is enforced on the bottom side, while a cyclic imposed displacement envelope is
considered at a distance dl = 30 mm from the rightmost edge of the panel with a constant displacement
increment Δu = 10−3 mm and the load history as shown in Figure 31a. The analysis procedures
described in Section 6.1 for each method apply. Through this application, we simulate the experimental
program undertaken in [278] which has also been investigated in previous publications pertinent to
computational fracture mechanics [265]. Since the discrete crack methods do not intrinsically posses the
capability to avoid crack over-closure and interpenetration, without introducing contact, the numerical
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simulations employing XFEM and SBFEM follow a modified loading path (Figure 31 left) starting from
time step 1000.
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(c)
Figure 30. NPwH comparison between anisotropic phase field models with strain energy splits
proposed in [232,264]. (a) Crack path from analysis implementing the anisotropic split proposed in [232];
(b) Crack path from analysis implementing the anisotropic split proposed [264]; (c) Force-displacement
response comparison between the anisotropic phase field models.

The load-displacement curve and the peak fracture force (Figure 32) are in accordance with
existing literature [265] and a good agreement is observed between all methods. The crack paths
obtained from all methods remain within the envelope of the experimental results (Figures 33 and 34).
Furthermore, the crack path obtained in Figure 35 coincides with the experimentally observed crack
in [278]. For the case of SBFEM, the crack tip does not coincide with the re-entrant corner, since the
implementation requires the crack tip to reside within the domain and not on the boundary. Hence,
the crack tip was perturbed by a small value and thus the peak load is slightly overestimated.

Furthermore, a comparison is drawn between the load-displacement curves obtained using the
spectral strain decomposition [232] and the constrained hybrid phase field model proposed in [265].
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The resulting load-deflection curves are shown in Figure 36. It is of interest to note that the anisotropic
spectral split [232] naturally avoids crack face overlapping during crack closure when cyclic loads are
considered. On the other hand, the hybrid phase-field model in [265] requires an additional constraint
to prohibit interpenetration of crack faces during compression phase.
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Figure 31. (a) LSP geometry, material parameters, loading and boundary conditions (b) Cyclic envelope
of monitored displacement.

0 0.2 0.4 0.6 0.8 1 1.2

0

5

10

15

20

Figure 32. LSP load-deflection curves.
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Figure 33. LSP meshes for SBFEM (top) and XFEM (bottom), with focus on crack path region.

Figure 34. LSP crack paths for SBFEM, XFEM and PFM.
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Figure 35. (a) LSP phase field (b) load-deflection response under the cyclic loading defined in
Figure 31b.
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Figure 36. LSP comparison of load-displacement curves implementing the anisotropic spectral split vs.
hybrid phase field models.

6.6. Numerical Example 5: Plate with Two Holes and Edge Cracks (PwHC)

The case of the plate shown in Figure 37 is considered here. This numerical example is studied,
since it poses challenges for both diffuse and discrete methods as discussed in [277]. The boundary
conditions and material parameters are also shown in Figure 37 according to [9].

A state of plane strain is considered. The Young’s modulus, Poisson’s ratio, length scale, fracture
energy density and crack propagation length are E = 210 kN/mm2, v = 0.3, l0 = 0.1 mm, Gc =

1.0 N/mm, hPFM ≈ 0.06 mm, and Δa ≤ 1 mm, where applicable. Furthermore, for the phase-field
analysis, a volumetric-deviatoric strain decomposition (similar to Amor et al. [264]) is employed.
The bottom edge of the plate is clamped, while on the top edge a prescribed displacement is applied in
the vertical direction and displacements in the horizontal direction are prohibited (ux = 0; uy > 0).
The specimen thickness is t = 1 mm.
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Figure 37. PwHC geometry, material parameters, loading and boundary conditions.
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In the presence of multiple cracks inside a domain, methods employing discrete crack representations
typically implement a stability analysis [163] to ascertain the propagating cracks at each step. However,
in this specific case, this involved procedure can be circumvented, due to the symmetric test setup.
Nevertheless, the naive approach of simply running the analysis will result in an undesirable outcome,
since slight numerical imbalances can result in asymmetric and erroneous results. To counteract these
effects, symmetric meshes are employed in the XFEM analysis, while the SBFEM analysis enforces
symmetric gSIFs about the diagonal. An average of the gSIFs is calculated to determine the crack
propagation angle.

Solving this example using the phase-field method produces interesting characteristics with
respect to the crack initiation location and crack-paths. It is observed that when there is no restriction
imposed on the crack from initiating near the holes, the phase-field initiates simultaneously and
symmetrically at the top and bottom hole edges and then propagates almost horizontally as if no
notches were present in the structure (Figure 38). However, when the crack evolution is restricted near
the hole boundary, e.g., by imposing a very high Gc in the surrounding region, the crack initiates at
both notch tips and propagates towards the hole edges simultaneously (Figure 39a). Further loading
leads to evolution of multiple cracks initiating at the edges of holes which ultimately merge in the
centre of the structure (Figure 39d). This observation is similar to what has been previously reported
in [277]. However in the absence of experimental results for this problem, it is currently difficult to
deduce which method predicts a realistic crack pattern. Hence, we refrain from reporting the typical
load-deflection curves and focus only on the crack paths.

(a) (b)

(c) (d)

Figure 38. PFM crack path without restricting nucleation at the holes. (a) Cracks initiating at the
holes; (b) Growth of cracks originating from the holes; (c) Additional cracks nucleate at the holes;
(d) Nucleated cracks reach the domain boundary.
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(a) (b)

(c) (d)

Figure 39. PFM crack path when restricting the nucleation at the holes. (a) Crack growth at the notches;
(b) Crack nucleation and growth at the holes; (c) Joining of nucleated cracks at the holes; (d) Merging
of notch and hole cracks.

Since the crack paths derived from XFEM/SBFEM have been shown to coincide very well
when employing similar discretization levels and crack propagation increments, modified mesh
discretizations and crack propagation increments are sampled (Figure 40). The crack paths for all three
variants align very well for the initial portion, while separating slightly as they approach the holes due
to the crack propagation increment and mesh density variations.
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(b)

Figure 40. Crack path overlay for three variants: XFEM employing a fine mesh with Δa = 0.25 mm
(pink), a coarse mesh with Δa = 0.50 mm (green) and SBFEM employing an adaptive mesh with
Δa = 1.00 mm (orange). (a) Prior to crack nucleation at the holes; (b) After crack merging.
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7. Discussion and Conclusions

This section initiates by detailing the steps involved in a crack propagation analysis, attempted
by each of the described methods. Emphasis is placed on identifying sources of computational effort,
while illustrative flowcharts are provided for each method. This visual representation of the methods
then serves as a basis for the discussion on the merits and drawbacks of each individual method within
the context of LEFM.

7.1. Crack Propagation by XFEM/GFEM

A conceptual representation of the steps involved in a typical crack propagation analysis with
the XFEM/GFEM is provided in Figure 41. As should be obvious based on Section 3, enriched finite
element methods are essentially discretisation schemes and, as such, require coupling to appropriate
criteria in order to model crack propagation. In the present case these are provided by the LEFM
framework. The flowchart of Figure 41 involves elastic solution steps followed by the evaluation of a
crack propagation criterion. This is common for most LEFM schemes relying on discretizstion, such
as for instance FEM or SBFEM. The coupling to further schemes for crack propagation, such as the
cohesive zone model, is also possible, in which case the steps of Figure 41 would have to be modified.

The enriched finite element schemes contained within the XFEM/GFEM family of numerical
methods permit the treatment of discontinuities and singularities independently of the mesh, while
preserving the convergence rates of the underlying FE method. Hence, conventional meshers are
employed, yet enriched node and element sets need to be specified and their contributions to the
equilibrium equations need to be assembled. This, apart from introducing additional DOFs associated
with the enrichment functions (Equation (19)) and potential conditioning problems, requires the use of
more involved numerical integration schemes leading to an increased computational toll. Nevertheless,
these operations are only performed on a small part of the domain, thus minimizing this additional
cost. As mentioned in Section 3, several techniques are available that allow performing the required
tasks in a robust and automated manner.

For the calculation of the SIFs, elements within the interaction integral domain are identified
and their contributions are assembled. A suitable crack propagation criterion is applied in order to
evaluate the propagation direction, and together with a user-specified crack propagation increment Δa
determine the new crack tip location. Since implicit crack representation has become an almost integral
part of enriched finite element methods, the next step would involve the update of this representation.
This task might introduce additional challenges, however, significant work has been carried out in this
direction, with several methods available for tackling this issue in a simplified manner.
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Figure 41. Steps comprising an XFEM/GFEM crack propagation analysis.

7.2. Crack Propagation by SBFEM

The crack propagation process by SBFEM, enhanced via hybrid balanced quadtree polygon
meshes, requires the polygon representation of domain features as input, including the crack.
The points comprising the polygons constitute the subdivision criterion for the quadtree decomposition.
If more than a user-specified number of points fall within a quadrant, this is subdivided. Together
with the balancing operation, these steps entail minimal computational effort. The explicit neighbours
of each cell do not need to be calculated, but simply the size of its neighbour. This is efficiently
achieved by querying the center of each element, offsetting them by the element size in all four
cardinal directions, passing them through the tree structure, and finally returning the size of the
final cell. Assuming a balanced mesh, all possible element realizations are precomputable. When
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the domain features, such as the boundary and strong & weak discontinuities do not align with the
Cartesian axes, polygon clipping algorithms are required. Although efficient algorithms exist for
polygon clipping, the resulting polygonal elements are no longer precomputable and must therefore be
calculated individually. In order to construct the stiffness matrix of an SBFEM element, a Hamiltonian
eigen-problem must be solved. This entails a real Schur decomposition, sorting of the eigenvalue blocks
and subsequent block-diagonalization, as well as the inversion of the matrix [E0] and the evaluation
of a matrix exponential, if quantities of interest inside the SBFEM element need be determined.
For smaller elements, commonly employed on quadtree meshes, this additional step when compared
to the standard FEM procedure, does not generate a significant computational overhead. Specifically,
Ooi et al. [51] report a reduction of computational effort close to 50% on typical analysis domains,
when employing precomputable alongside clipped elements. When larger domains are investigated by
using a single SBFEM element for the whole domain and hp-refinement is employed, determining the
stiffness matrix dominates the computational effort of the analysis. Unfortunately, the stiffness matrix
is fully populated, yet symmetric. Hence, this type of analysis is best suited for problems with small
boundary to domain ratios. Determining the gSIFs entails post-processing calculations localized to the
element containing the crack tip. The singular modes are identified according to Equation (44) and the
gSIFs are calculated by evaluating the components of the stress tensor σ(s) in crack extension direction
(Figure 2b). The crack propagation angle is selected based on a suitable criterion (Equation (13)), while
the crack propagation increment Δa is user specified. After definition of the updated crack tip location,
the crack path polyline is updated accordingly and provided as input to the meshing phase of the next
iteration. The steps to a standard SBFEM analysis are summarized in Figure 42.

7.3. Crack Propagation by PFM

In PFM fracture is not introduced as an explicit or implicit discontinuity in the displacement field.
Rather, it is associated with the evolution of a continuous field, i.e., the phase field. The governing
equations of the crack propagation problem emerge through the minimization of the total potential
energy established in Equation (70), see, e.g., [69]. This gives rise to the coupled system of equilibrium
and phase field governing equations established in Equations (71) and (72). The crack is not explicitly
represented but derived from the solution of the coupled system as the region where c = 0 (typically
values of c < 10e − 3). Within the setting of an incremental solution procedure, the phase field is
updated at each time step and with it the crack topology. Nucleation, merging, branching and arrest of
cracks as well as the associated crack propagation increment is a natural byproduct of the phase field
evolution. The mechanical/phase field coupling is enforced by introducing a material degradation
function that is dependent on the phase field. The evolution of fracture follows through the solution of
this coupled strong form. Existing discontinuities may be introduced into the domain by providing
initial values to the phase field. Mesh density is contingent on sufficient resolution of the fracture
process zone, mandating a highly refined mesh in its vicinity. The combination of length scale and
level of mesh refinement interact and affect the estimation of the fracture energy hence necessitating
the scaling of the critical energy release rate. The numerical solution of the PFM-coupled governing
equations is performed using either monolithic or staggered solvers. Monolithic solvers are typically
based on the Newton-Raphson solution procedure and have been proven to provide accurate fracture
paths. However, they have been shown to suffer from poor convergence due to the non-convex
nature of the underlying energy functional [277]. Yet, the accuracy provided by monolithic solvers
renders them a favourable solution, especially in the case of dynamic fracture problems and several
attempts have been suggested in the literature to improve the robustness of monolithic procedures
(see, e.g., [279–281]). In staggered methods the displacement and phase field equations are decoupled
and solved separately within each load increment. In principle, a staggered algorithm for coupled
field problems is based on freezing one field variable at a constant value, solving for the other until
convergence is achieved. The staggered approach (also known as alternate minimization approach)
provides better convergence rates than the monolithic due to the convexity of the energy functional
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(Equation (70)) with respect to the two unknown fields {u, φ} separately. However, its accuracy is
dependent on the incremental step unless stagger iterations are performed; these however increase the
computational burden of the analysis. Very recent developments aim towards providing more robust
staggered solvers, (see, e.g., [282]). The steps to a typical PFM solution procedure with a staggered
solution scheme are summarized in Figure 43.
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Figure 42. Steps comprising SBFEM analysis.

7.4. Contrasting Discrete and PFM Crack Representation Approaches

The merits of each method within the LEFM setting are discussed by contrasting key features and
analysis steps.

For the discrete methods, the representation of the crack is typically available in explicit form.
Crack propagation analysis yields a polyline description of the crack topology. Since SBFEM employs
polygon clipping, it does not require further information. XFEM, if chosen to employ an implicit
enrichment representation, models the crack additionally by associated level sets. Crack path extraction
is not necessary, since it is already given as a polyline. A crack consisting of a one-segment polyline
is usually provided as input. For the PFM, the crack is represented by a scalar phase-field, with the
phase-field variable directly embedded into the constitutive equations. The crack is represented as the
region of fully degraded material with c = 0. Hence, no explicit crack representation is required during
the analysis, albeit readily available in post-processing, if required. Initial defects are introduced in the
system by specifying sets of points with corresponding phase field values.

Meshing requirements for analysis by XFEM are largely decoupled due to the level set
representation, yet substituted by more involved numerical integration procedures. This permits the
use of a constant mesh during crack propagation analysis. This is contrary to analysis by SBFEM,
where the initial quadtree decomposition, i.e., the mesh, is updated during each step incrementally.
Discontinuities introduced by polygon clipping result in double nodes, such that the nDOF of the
system increase gradually as the analysis proceeds. Furthermore, in select cases, clipping can result
in non star-convex elements, which the method cannot treat. Delaunay triangulation of the element
is required in such instances. Furthermore, due to clipping, elements with poor aspect ratios, in the
conventional FEM sense, may arise. Empirically, this does not seem to be as severe an issue manifesting
itself in erroneous numerical integration results, when employing SBFEM. In order to adequately
represent the fracture process zone, the PFM requires a highly refined mesh in the regions of expected
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crack propagation as well as at the crack tip, rendering the phase-field method computationally
expensive for solving large-scale problems, especially when compared to discrete fracture approaches.
It is now accepted that an element size h ≤ l0 is required to accurately resolve the crack path.
However, this computational burden is effectively addressed using parallel solvers, adaptive mesh
refinement [229,283], multiscale computation techniques [284] also within a local/global solution
context [285].

Figure 43. Steps comprising Phase field analysis.

The methods further differ in the hyper-parameters that ought to be specified by the analyst.
XFEM requires the specification of crack tip enrichment type and radius, as well as the region where
the interaction integral is to be calculated. Special care must be taken to exclude blending elements
from the calculation of the SIFs, which may affect final results. SBFEM similarly requires the analyst
to specify the homogenization region about the crack tip. With the exception of the cohesive phase
field model, in the PFM implementations discussed in Section 5.2 the specification of the length scale
regulates the response, imposing guidelines on mesh discretization and scaling of the critical fracture
energy. As further discussed in Section 5.2, early efforts to treat this regulatory effect by introducing
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stress-based crack-driving forces have been reported in [256] whereas, and most notably, Wu and
Nguyen [251] provided length-scale insensitive formulations that also preserve Γ-convergence.

The solution process for both XFEM and SBFEM involves a single elastic solution step. The PFM,
as previously described in Section 7.3, comprises either monolithic or staggered approaches within
an iterative solution scheme. In the quasi-static regime, displacement or generalised control solution
procedures are typically employed. This however necessitates that either Equations (71) and (72)
must be solved with very small time-increments (typically 10−5–10−6), or stagger iterations must be
performed between both equations to ensure energy convergence. Often both of these options lead to
high computational cost.

Therefore, the corresponding load-deflection curve follows from the solution at every time step.
In such quasi-static analyses, displacement controlled analysis automatically yields the load-deflection
curve along with the softening branch. The discrete crack methods derive the load deflection curve
in back-calculation. To this end, an arbitrary loading, e.g., force- or displacement-based, is applied.
The resulting equivalent SIF is compared to the critical stress intensity factor. Hence, a scaling factor
is derived for the loads and displacements at which crack propagation is initiated. This implies that
recovery of the linear branch is a one-step process. Recovering an explicit linear elastic branch with
the PFM requires either a linear phase field approximation as in Section 5.2.3 or cubic degradation
functions [80]. Absence of these approaches will yield deviations from the linear elastic behaviour
contingent on the evolution of material degradation in the process zone. Since the overall system
stiffness is underestimated, the associated displacements are overestimated accordingly.

In the PFM a crack is never explicitly propagated, but associated with the evolution of the phase
field that emerges from the solution of the phase field governing equation. This is driven by the
definition of the crack driving force as discussed in Section 5.2. Depending on the PFM formulation
employed, the crack driving force can be established on the basis of either energy or limit-stress
criteria. The discrete crack methods, within the LEFM framework, require the calculation of the
crack propagation angle and some crack propagation increment. Examples of the later are either
user specified or provided by Paris’ equation. The crack is assumed to propagate in a straight line,
originating from the crack tip determined in the previous analysis step. Hence, the history variables
required are none other than the polyline for SBFEM, while XFEM propagates the associated level sets
as well. PFM require updating the scalar phase field and specific realization of the PFM require further
history variables to impose the crack-irreversibility condition, preventing the crack from healing
during cyclic loading.

The fact that the solution of the phase field governing equations emerge from an energy minimization
problem, opposite to discrete fracture approaches, enables the resolution of crack initiation without
the requirement for a crack path to be defined a priori. Furthermore, crack nucleation, growth
and coalescence happen automatically; this results in a robust method with enormous flexibility
to model complex cracking patterns including the simulation of curvillinear cracks, crack merging,
and crack branching without the need for ad-hoc crack tracking methods. Finally, the method is
naturally extended to 3D [229], considering also the case of fracture under multi-physics scenaria,
e.g., temperature induced fracture [256,286], hydraulic fracturing [81,82,84,287,288], and diffusion
[289]. These advantages, render the phase-field approach a robust crack prediction method. Compared
to discrete fracture approaches, the variational structure upon which the phase field theory emerges,
equips it with significant capabilities for modelling diverse and complex fracture problems in a unified
and consistent manner.

The major advantage of the diffuse crack methods and the PFM specifically lies in their generality.
Extending the discrete crack methods to exhibit similar capabilities involves significant algorithmic
changes, as these codes are custom and not readily extendable to further types of analysis. Furthermore,
extension to 3D problems is not straightforward, in addition, the definition of crack propagation
increment in 3D is difficult to specify. Furthermore, judging if a crack arrests or the method simply
does not permit continuation across obstacles, requires expert knowledge.
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