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Abstract: In the current contribution, prismatic and hexahedral quadratic solid–shell (SHB) finite
elements are proposed for the geometrically nonlinear analysis of thin structures made of functionally
graded material (FGM). The proposed SHB finite elements are developed within a purely 3D
framework, with displacements as the only degrees of freedom. Also, the in-plane reduced-integration
technique is combined with the assumed-strain method to alleviate various locking phenomena.
Furthermore, an arbitrary number of integration points are placed along a special direction,
which represents the thickness. The developed elements are coupled with functionally graded
behavior for the modeling of thin FGM plates. To this end, the Young modulus of the FGM plate is
assumed to vary gradually in the thickness direction, according to a volume fraction distribution.
The resulting formulations are implemented into the quasi-static ABAQUS/Standard finite element
software in the framework of large displacements and rotations. Popular nonlinear benchmark
problems are considered to assess the performance and accuracy of the proposed SHB elements.
Comparisons with reference solutions from the literature demonstrate the good capabilities of the
developed SHB elements for the 3D simulation of thin FGM plates.

Keywords: quadratic solid–shell elements; finite elements; functionally graded materials; thin structures;
geometrically nonlinear analysis

1. Introduction

Over the last decades, the concept of functionally graded materials (FGMs) has emerged,
and FGMs were introduced in the industrial environment due to their excellent performance compared
to conventional materials. This new class of materials was first introduced in 1984 by a Japanese
research group, who made a new class of composite materials (i.e., FGMs) for aerospace applications
dealing with very high temperature gradients [1,2]. These heterogeneous materials are made from
several isotropic material constituents, which are usually ceramic and metal. Among the many
advantages of FGMs, their mechanical and thermal properties change gradually and continuously
from one surface to the other, which allows for overcoming delamination between interfaces as
compared to conventional composite materials. In addition, FGMs can resist severe environment
conditions (e.g., very high temperatures), while maintaining structural integrity.

Thin structures are widely used in the automotive industry, especially through sheet metal
forming into automotive components. In this context, the finite element (FE) method is considered
nowadays as a practical numerical tool for the simulation of thin structures. Traditionally, shell and
solid elements are used in the simulation of linear and nonlinear problems. However, the simulation
results require very fine meshes to obtain accurate solutions due to the various locking phenomena
that are inherent to these elements, which lead to high computational costs. To overcome these
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issues, many researchers have devoted their works to the development of locking-free finite elements.
More specifically, the technology of solid–shell elements has become an interesting alternative to
traditional solid and shell elements for the efficient modeling of thin structures (see, e.g., [3–8]).
Solid-shell elements are based on a fully 3D formulation with only nodal displacements as degrees of
freedom. They can be easily combined with various fully 3D constitutive models (e.g., orthotropic
elastic behavior, plastic behavior), without any further assumptions, such as plane-stress assumptions.
Based on the reduced-integration technique (see, e.g., [9]), they are often combined with advanced
strategies to alleviate locking phenomena, such as the assumed-strain method (ASM) (see, e.g., [4]),
the enhanced assumed strain (EAS) formulation (see, e.g., [10]), and the assumed natural strain (ANS)
approach (see, e.g., [11]). Several FE formulations for the analysis of thin FGM structures have been
developed in the literature. They can be classified into three main formulations: The shell-based
FGM FE formulation, the solid-based FGM FE formulation, and the solid–shell-based FE formulation.
The first formulation is considered as the most widely adopted approach for the modeling of 2D thin
FGM structures. However, this approach requires specific kinematic assumptions in the FE formulation,
such as the classical Kirchhoff plate theory, first and high-order shear theories, plane-stress assumption
(see, e.g., [12–15]). The second approach is based on a 3D formulation of solid elements, in which a fully
3D elastic behavior for FGMs is adopted. In such an approach, some specific kinematic assumptions
for thin plates, such as the classical Kirchhoff plate theory and the von Karman theory, are also adopted
in the FE formulation (see, e.g., [16–18]). The third approach is based on the concept of solid–shell
elements, which are combined with FGM behavior. Few works in the literature have investigated
the behavior of thin FGM plates with this approach. Among them, the work of Zhang et al. [19],
who investigated the piezo-thermo-elastic behavior of FGM shells with EAS-ANS solid–shell elements.
Recently, Hajlaoui et al. [20,21] studied the buckling and nonlinear dynamic analysis of FGM shells
using an EAS solid–shell element based on the first-order shear deformation concept.

In this work, quadratic prismatic and hexahedral shell-based (SHB) continuum elements, namely
SHB15 and SHB20, respectively, are proposed for the modeling of thin FGM plates. SHB15 is a
fifteen-node prismatic solid-shell element with a user-defined number of through-thickness integration
points, while SHB20 is a twenty-node hexahedral solid-shell element with a user-defined number
of through-thickness integration points. These solid-shell elements have been first developed in
the framework of isotropic elastic materials and small strains (see [22]), and recently coupled with
anisotropic elastic–plastic behavior models within the framework of large strains for the modeling
of sheet metal forming processes [23]. In this paper, the formulations of the quadratic SHB15 and
SHB20 elements are combined with functionally graded behavior for the modeling of thin FGM plates.
To achieve this, the elastic properties of the proposed elements are assumed to vary gradually in
the thickness direction according to a power-law volume fraction. The resulting formulations are
implemented into the quasi-static ABAQUS/Standard software. The performance of the proposed
elements is assessed through the simulation of various nonlinear benchmark problems taken from
the literature.

2. SHB15 and SHB20 Solid-Shell Elements

2.1. Element Reference Geometries

The proposed SHB elements are based on a 3D formulation, with displacements as the only
degrees of freedom. Figure 1 shows the reference geometry of the quadratic prismatic SHB15 and
quadratic hexahedral SHB20 elements and the position of the associated integration points. Within the
reference frame of each element, direction ζ represents the thickness, along which several integration
points can be arranged.
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(a) SHB15 (b) SHB20 

ε

Figure 1. Reference geometry of (a) quadratic prismatic SHB15 element and (b) quadratic hexahedral
SHB20 element, and position of the associated integration points.

2.2. Quadratic Approximation for the SHB Elements

Conventional quadratic interpolation functions for traditional continuum prismatic and
hexahedral elements are used in the formulation of the SHB elements. According to this formulation,
the spatial coordinates xi and the displacement field ui are approximated using the following
interpolation functions:

xi = xiI NI(ξ, η, ζ) =
K

∑
I=1

xiI NI(ξ, η, ζ), (1)

ui = diI NI(ξ, η, ζ) =
K

∑
I=1

diI NI(ξ, η, ζ), (2)

where diI are the nodal displacements, i = 1, 2, 3 correspond to the spatial coordinate directions, and I
varies from 1 to K, with K being the number of nodes per element, which is equal to 15 for the SHB15
element and 20 for the SHB20 element.

2.3. Strain Field and Gradient Operator

Using the above approximation for the displacement within the element, the linearized strain
tensor ε can be derived as:

εij =
1
2
(
ui, j + uj, i

)
=

1
2
(
diI NI, j + djI NI, i

)
. (3)

By combining Equations (1) and (2) with the help of the interpolation functions, the nodal
displacement vectors di write:

di = a0is + a1ix1 + a2ix2 + a3ix3 + ∑
α

cαihα, i = 1, 2, 3, (4)

where xT
i = (xi1, xi2, xi3, · · · , xiK) are the nodal coordinate vectors. In Equation (4), index α goes

from 1 to 11 for the SHB15 element, and from 1 to 16 for the SHB20 element. In addition, vector
sT = (1, 1, · · · , 1) has fifteen constant components in the case of the SHB15 element, and twenty
constant components vector for the SHB20 element. Vectors hα are composed of hα functions, which
are evaluated at the element nodes, and the full details of their expressions can be found in [23].

With the help of some well-known orthogonality conditions and of the Hallquist [24] vectors
bi =

∂N
∂xi |ξ=η=ζ=0

, where vector N contains the expressions of the interpolation functions NI ,

the unknown constants aji and cαi in Equation (4) can be derived as:

3
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aji = bT
j · di, cαi = γT

α · di, (5)

where the complete details on the expressions of vectors γα can be found in [22].
By introducing the discrete gradient operator B, the strain field in Equation (3) writes:

∇s(u) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ux,x

uy,y

uz,z

ux,y + uy,x

uy,z + uz,y

ux,z + uz,x

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= B · d = B ·

⎡
⎢⎣ dx

dy

dz

⎤
⎥⎦, (6)

where the expression of the discrete gradient operator B is:

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

bT
x + hα,xγT

α 0 0

0 bT
y + hα,yγT

α 0

0 0 bT
z + hα,zγT

α

bT
y + hα,yγT

α bT
x + hα,xγT

α 0

0 bT
z + hα,zγT

α bT
y + hα,yγT

α

bT
z + hα,zγT

α 0 bT
x + hα,xγT

α

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

2.4. Hu–Washizu Variational Principle

The SHB solid-shell elements are based on the assumed-strain method, which is derived from
the simplified form of the Hu–Washizu variational principle [25]. In terms of assumed-strain rate

.
ε,

interpolated stress σ, nodal velocities
.
d, and external nodal forces fext, this principle writes

π
( .
ε
)
=
∫

Ωe

δ
.
ε

T ·σ dΩ − δ
.
d

T · fext = 0. (8)

The assumed-strain rate is expressed in terms of the discrete gradient operator B as:

.
ε(x, t) = B ·

.
d. (9)

Substituting the expression of the assumed-strain rate given by Equation (9) into the variational
principle (Equation (8)), the expressions of the stiffness matrix Ke and the internal forces fint for the
SHB elements are

Ke =
∫

Ωe

BT · Ce(ζ) · B dΩ + KGEOM, (10)

fint =
∫

Ωe

BT ·σ dΩ, (11)

where KGEOM is the geometric stiffness matrix. As to the fourth-order tensor Ce(ζ), it describes the
functionally graded elastic behavior of the FGM material. Its expression is given hereafter.

2.5. Description of Functionally Graded Elastic Behavior

In the framework of large displacements and rotations, the formulation of the SHB elements
requires the definition of a local frame with respect to the global coordinate system, as illustrated in
Figure 2. The local frame, which is designated as the “element frame” in Figure 2, is defined for each
element using the associated nodal coordinates. In such an element frame, where the ζ-coordinate
represents the thickness direction, the fourth-order elasticity tensor Ce(ζ) for the FGM is specified.

4
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z

y
x “global frame”

thickness direction
integration points 

Figure 2. Element frame and global frame for the proposed SHB elements.

In this work, a two-phase FGM is considered, which consists of two constituent mixtures of
ceramic and metal. The ceramic phase of the FGM can sustain very high temperature gradients,
while the ductility of the metal phase prevents the onset of fracture due to the cyclic thermal loading.
In such FGMs, the material at the bottom surface of the plate is fully metal and at the top surface of
the plate is fully ceramic, as illustrated in Figure 3. Between these bottom and top surfaces, the elastic
properties vary continuously through the thickness from metal to ceramic properties, respectively,
according to a power-law volume fraction. The corresponding volume fractions for the ceramic phase
fc and the metal phase fm are expressed as (see, e.g., [26,27]):

fc =

(
z
t
+

1
2

)n
and fm = 1 − fc, (12)

where n is the power-law exponent, which is greater than or equal to zero, and z ∈ [−t/2, t/2], with t the
thickness of the plate. For n = 0, the material is fully ceramic, while when n → ∞ the material is fully
metal (see Figure 4).

y
x

z
Ceramic surface

Metal surface

SHB 
element

Figure 3. Schematic representation of the functionally graded thin plate.
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Figure 4. Volume fraction distribution of the ceramic phase as function of the power-law exponent n.
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For an isotropic elastic behavior, the constitutive equations are governed by the Hooke elasticity
law, which is expressed by the following relationship:

σ = λtr(ε)1 + 2με, (13)

where 1 denotes the second-order unit tensor, λ and μ are the Lamé constants given by:

λ =
νE

(1 − 2ν)(1 + ν)
and μ =

E
2(1 + ν)

, (14)

with E and ν the Young modulus and the Poisson ratio, respectively.
For FGMs that are made of ceramic and metal constituents, it is commonly assumed that only the

Young modulus E varies in the thickness direction, while the Poisson ratio ν is kept constant. Therefore,
the constant Young modulus in Equation (14) is replaced by E(z), whose value evolves according to
the following power-law distribution:

E(z) = (Ec − Em) fc + Em, (15)

where Ec and Em are the Young modulus of the ceramic and metal, respectively.

3. Nonlinear Benchmark Problems

In this section, the performance of the proposed elements is assessed through the simulation of
several popular nonlinear benchmark problems. The static ABAQUS/Standard solver has been used
to solve the following static benchmark problems. More specifically, the classical Newton method is
considered for most benchmark problems, aside from limit-point buckling problems for which the
Riks arc-length method is used.

To accurately describe the variation of the Young modulus through the thickness of the FGM
plates, only five integration points within a single element layer is used in the simulations. For each
benchmark problem, the simulation results given by the proposed elements are compared to the
reference solutions taken from the literature. In the subsequent simulations, it is worth noting that
the elastic properties of the metal and ceramic constituents of the FGM plates do not reflect a real
metallic or ceramic material. Indeed, the terms metal and ceramic are commonly used in the literature
to emphasize the difference between the properties of the FGM constituents (see, e.g., [15,26,27]).

Regarding the meshes used in the simulations, the following mesh strategy is adopted:
(N1 × N2) × N3 for the hexahedral SHB20 element, where N1 is the number of elements along
the length, N2 is the number of elements along the width, and N3 is the number of elements
along the thickness direction. As to the prismatic SHB15 element, the mesh strategy consists of
(N1 × N2 × 2) × N3, due to the in-plane subdivision of a rectangular element into two triangles.

3.1. Cantilever Beam Sujected to End Shear Force

Figure 5a shows a simple cantilever FGM beam with a bending load at its free end. This is a
classical popular benchmark problem, which has been widely considered in many works for the
analysis of cantilever beams with isotropic material (see, e.g., [28,29]). The Poisson ratio of the FGM
beam is assumed to be ν = 0.3, while the Young modulus of the metal and ceramic constituents are
Em = 2.1 × 105 Mpa and Ec = 3.8 × 105 Mpa, respectively. Figure 5b illustrates the final deformed
shape of the cantilever beam with respect to its undeformed shape, as discretized with SHB20 elements,
in the case of fully metallic material. Figure 6 shows the load–deflection curves obtained with the
quadratic SHB elements, along with the reference solutions taken from [15], for various values of the
power-law exponent n. One recalls that fully metallic material is obtained when n → ∞ , and fully
ceramic material for n = 0. Overall, the SHB elements show excellent agreement with the reference
solutions corresponding to the various values of exponent n. More specifically, it can be observed

6
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that the bending behavior of the FGM beam lies between that of the fully ceramic and fully metal
beam, which is consistent with the power-law distribution of the Young modulus in the thickness
direction. Another advantage of the proposed SHB elements is that, using the same in-plane mesh
discretization as in reference [15], only five integration points through the thickness are sufficient
for the SHB elements, while ten integration points have been considered in [15] to simulate this
benchmark problem.

 

 
(a) (b) 

Figure 5. Cantilever beam: (a) geometry and (b) undeformed and deformed configurations.
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Figure 6. Load–deflection curves for the cantilever beam. (a) Prismatic SHB15 element; (b) hexahedral
SHB20 element.

3.2. Slit Annular Plate

In this section, the well-known slit annular plate problem is considered (see, e.g., [29–31]).
The annular plate is clamped at one end and loaded by a line shear force P, as illustrated in Figure 7a.
The inner and outer radius of the annular plate are Ri = 6 m and Ro = 10 m, respectively, while the
thickness is t = 0.03 m. The Poisson ratio of the annular plate is ν = 0.3, while the Young modulus of
the metal and ceramic constituents are Em = 21 Gpa and Ec = 38 Gpa, respectively. Figure 7b illustrates
the undeformed and deformed shapes of the annular plate, as discretized with SHB20 elements, in the
case of fully metallic material. Figure 8 reports the load–out-of-plane vertical deflection curves at
the outer point A of the annular plate as obtained with the SHB elements, along with the reference
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solutions taken from [15]. One can observe that the SHB elements perform very well with respect to
the reference solutions for all considered values of exponent n. Similar to the previous benchmark
problem, the same in-plane mesh discretization as in [15] with only five integration points through the
thickness has been adopted by the proposed SHB elements for this nonlinear test, while ten integration
points have been considered in [15].

 

(a) (b) 

Figure 7. Slit annular plate: (a) geometry and (b) undeformed and deformed configurations.
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Figure 8. Load–deflection curves at the outer point A for the slit annular plate. (a) Prismatic SHB15
element; (b) hexahedral SHB20 element.

3.3. Clamped Square Plate under Pressure

Figure 9a illustrates a fully clamped square plate, which is loaded by a uniformly distributed
pressure. The length and thickness of the square plate are L = 1000 mm and t = 2 mm, respectively.
The Poisson ratio is ν = 0.3, while the Young modulus of the metal and ceramic constituents are
Em = 2× 105 Mpa and Ec = 3.8× 105 MPa, respectively. Considering the problem symmetry, a quarter
of the plate is discretized. Figure 9b illustrates the undeformed and deformed shapes of the square plate,
as discretized with SHB20 elements, in the case of fully metallic material. The pressure–displacement
curves for the SHB elements (where the displacement is computed at the center of the plate), along with
the reference solutions taken from [15], are all depicted in Figure 10. The results obtained with the SHB
elements, by adopting only five integration points in the thickness direction and the same in-plane
mesh discretization as in [15], are in excellent agreement with the reference solutions that required ten
through-thickness integration points.
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(a) (b) 

Figure 9. Clamped square plate: (a) geometry and (b) undeformed and deformed configurations.
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Figure 10. Load–deflection curves at the center point for the square plate. (a) Prismatic SHB15 element;
(b) hexahedral SHB20 element.

3.4. Hinged Cylindrical Roof

Figure 11a shows a hinged cylindrical roof subjected to a concentrated force at its center. Two types
of roofs are considered, thick and thin, with thicknesses t = 12.7 mm and t = 6.35 mm, respectively.
Because this nonlinear benchmark test involves geometric-type instabilities (limit-point buckling),
the Riks path-following method is used to follow the load–displacement curves beyond the limit points.
The Poisson ratio of the cylindrical roof is ν = 0.3, while the Young modulus of the metal and ceramic
constituents are Em = 70 × 103 Mpa and Ec = 151 × 103 Mpa, respectively. Owing to the symmetry,
only one quarter of the cylindrical roof is modeled. Figure 11b illustrates the undeformed and deformed
shapes of the hinged cylindrical roof, as discretized with SHB20 elements, in the case of fully metallic
material. The load–vertical displacement curves at the central point A of the thick and thin hinged
cylindrical roofs are shown in Figures 12 and 13, and compared with the reference solutions taken
from [30]. From these figures, it can be seen that the results obtained with the proposed quadratic
SHB elements are in good agreement with the reference solutions for the different values of exponent
n, corresponding to different volume fractions (from fully metal to fully ceramic). More specifically,
the snap-through and snap-back phenomena, which are typically exhibited in such limit-point buckling
problems, are very well reproduced by the proposed SHB elements. Note that, for the thick roof
(i.e., t = 12.7 mm), the converged solutions in Figure 12 are obtained by using a mesh of (8 × 8 × 2) × 1
in the case of prismatic SHB15 elements, and a mesh of 8 × 8 × 1 with hexahedral SHB20 elements.
As to the thin roof (i.e., t = 6.35 mm), finer meshes of (16 × 16 × 2) × 1 for the prismatic SHB15
elements, and 16 × 16 × 1 for the hexahedral SHB20 elements are required to obtain converged results
(see Figure 13). These mesh refinements are similar to those used by Sze et al. [29] for the thick and thin
roof in the case of an isotropic material as well as for multilayered composite materials.
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Figure 11. Hinged cylindrical roof: (a) geometry and (b) undeformed and deformed configurations.
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Figure 12. Deflection at the central point A under concentrated force for the thick hinged roof.
(a) prismatic SHB15 element; (b) hexahedral SHB20 element.
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Figure 13. Deflection at the central point A under concentrated force for the thin hinged roof.
(a) prismatic SHB15 element; (b) hexahedral SHB20 element.
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3.5. Pull-Out of an Open-Ended Cylinder

The well-known pull-out test for an open-ended cylinder is considered in this section.
As illustrated in Figure 14a, the cylinder is pulled by two opposite radial forces, which results in the
deformed shape shown in Figure 14b. The isotropic material case as well as the laminated composite
material case have been considered by many authors in the literature (see, e.g., [29,30,32]). The Poisson
ratio of the cylinder is ν = 0.3, while the Young modulus of the metal and ceramic constituents are
Em = 0.7 × 109 Pa and Ec = 1.51 × 109 Pa, respectively. Owing to the symmetry of the problem,
only one eighth of the cylinder is modeled. The force–radial displacement curves at points A, B and C
(as depicted in Figure 14a), obtained with the SHB elements, are shown in Figures 15–17, respectively,
along with the reference solutions taken from [13]. It can be observed that the developed SHB elements
successfully pass this benchmark test as compared to the reference solutions. More specifically, the
transition zone in the load–radial displacement curves, which is marked by the snap-through point,
is well reproduced by both prismatic and hexahedral SHB elements for the various values of the
power-law exponent n. Note that the converged solutions in Figures 15–17 are obtained with the
proposed elements by using only five integration points in the thickness direction, and meshes of
(24 × 36 × 2) × 1 and 12 × 18 × 1 in the case of the prismatic SHB15 element and hexahedral SHB20
element, respectively. Hence, the required meshes for convergence are coarser than those used by
Sze et al. [29] in the case of an isotropic material.
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Figure 14. Pull-out of an open-ended cylinder: (a) geometry and (b) undeformed and
deformed configurations.
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Figure 15. Radial displacement at point A under concentrated force for the open-ended cylinder.
(a) Prismatic SHB15 element; (b) hexahedral SHB20 element.
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Figure 16. Radial displacement at point B under concentrated force for the open-ended cylinder.
(a) prismatic SHB15 element; (b) hexahedral SHB20 element.
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Figure 17. Radial displacement at point C under concentrated force for the open-ended cylinder.
(a) prismatic SHB15 element; (b) hexahedral SHB20 element.

3.6. Pinched Hemispherical Shell

It is worth noting that although the performance of the prismatic SHB15 element is similar to that
of the hexahedral SHB20 element, as demonstrated in the above nonlinear benchmark problems,
the main motivation in developing the prismatic solid–shell element is to use it for the mesh
discretization of complex geometries. Indeed, it is well-known that complex geometries cannot
be discretized with only hexahedral elements, and require either an irregular mesh with prismatic
elements, or a mixture based on a combination of prismatic and hexahedral elements. In this section,
a hemispherical shell is loaded by alternating radial forces as shown in Figure 18a. Note that this
benchmark problem has been considered in the literature for an isotropic material as well as a laminated
composite material (see, e.g., [30]), while the case of FGMs has not been considered yet. Consequently,
only the simulation results obtained with the proposed SHB elements corresponding to the fully
metallic shell can be compared to the reference solution taken from [30].
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Figure 18. Pinched hemisphere: (a) geometry and (b) undeformed and deformed configurations.

The radius and thickness of the hemispherical shell are R = 10 m and t = 0.04 m, respectively.
The Poisson ratio of the hemispherical shell is ν = 0.3, while the Young modulus of the metal and
ceramic constituents are Em = 6.825 × 107 Pa and Ec = 1.46 × 108 Pa, respectively. Due to the
symmetry, a quarter of the structure is discretized. The hemispherical shell is discretized with a
mixture of prismatic and hexahedral elements, which consists of 90 SHB15 elements located at the
top of the hemisphere (far from the load points, see Figure 18b) and 110 SHB20 elements for the
remaining area.

The simulation results in terms of force–radial deflection at point A, for various values of the
power-law exponent n, are plotted in Figure 19. This figure shows that the results corresponding to
a fully metallic shell (i.e., n → ∞ ), obtained by the combination of prismatic and hexahedral SHB
elements, are in excellent agreement with those provided in [30] for an isotropic shell. Note that an
equivalent in-plane mesh discretization has been used in [30], where a fully integrated shell element
with several integration points has been considered. Moreover, Figure 19 reveals that for all values of
the exponent n, the simulated load–radial deflection curves lie between that of the fully ceramic shell
and that of the fully metal shell, which is consistent with the numerical results found in the previous
benchmark problems.
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Figure 19. Load–displacement curves at point A for the pinched hemispherical shell, obtained with a
mixture of prismatic SHB15 and hexahedral SHB20 elements.

4. Conclusions

In this work, quadratic prismatic and hexahedral solid–shell SHB elements have been proposed
for the 3D modeling of thin FGM structures. The formulation of the SHB elements adopts the in-plane
reduced-integration technique along with the assumed-strain method to alleviate various locking
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phenomena. A local (element) frame has been defined for each element, in which the thickness
direction is specified. In this local frame, elastic properties of the thin structure are assumed to vary
gradually through the thickness according to a power-law volume fraction distribution. The resulting
formulations are implemented into the finite element software ABAQUS/Standard in the framework
of large displacements and rotations. A series of selective and representative benchmark problems,
involving FGM thin structures, has been performed to evaluate the performance of the SHB elements
in geometrically nonlinear analysis. The results obtained with the SHB elements have been compared
with reference solutions. Note that the state-of-the-art ABAQUS solid and shell elements have not been
considered in the simulations, because these elements do not allow modeling of FGM behavior with
only a single layer of elements. Overall, the numerical results obtained with the SHB elements showed
excellent agreement with the available reference solutions. More specifically, the load–displacement
curves for each benchmark test lie between that of the fully ceramic and fully metal behavior, which is
consistent with the power-law distribution of the Young modulus in the thickness direction of the FGM
plates. This good performance of the proposed SHB elements only requires a few integration points in
the thickness direction (i.e., only five integration points), as compared to the number of integration
points used in the literature to model thin FGM structures. Furthermore, it has been shown that the
prismatic SHB15 element can be naturally combined with the hexahedral SHB20 element, within the
same simulation, to help discretize complex geometries. Overall, the proposed SHB elements showed
good capabilities in 3D modeling of thin FGM structures with only a single layer of elements and few
integration points, which is not the case of traditional solid and shell elements.
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Abstract: We investigate the numerical implementation of functionally graded properties in the
context of the finite element method. The macroscopic variation of elastic properties inherent
to functionally graded materials (FGMs) is introduced at the element level by means of the two
most commonly used schemes: (i) nodal based gradation, often via an auxiliary (non-physical)
temperature-dependence, and (ii) Gauss integration point based gradation. These formulations are
extensively compared by solving a number of paradigmatic boundary value problems for which
analytical solutions can be obtained. The nature of the notable differences revealed by the results
is investigated in detail. We provide a user subroutine for the finite element package ABAQUS
to overcome the limitations of the most popular approach for implementing FGMs in commercial
software. The use of reliable, element-based formulations to define the material property variation
could be key in fracture assessment of FGMs and other non-homogeneous materials.

Keywords: functionally graded materials; finite element analysis; graded finite elements

1. Introduction

There is an emerging interest in the analysis of the mechanical response of materials with spatially
varying properties. New manufacturing technologies make it possible to engineer materials with
functionally graded microstructures, so-called functionally graded materials (FGMs). The resulting
spatial variation of material properties eliminates stress discontinuities at material interfaces and
optimizes material performance under non-uniform service conditions. For example, the performance
of coatings subjected to large thermal gradients can be significantly improved by using metal-ceramic
FGMs [1], which combine the thermal and corrosive resistance of ceramics with the mechanical strength
and high tenacity of metals. In addition, FGMs are now employed in a host of commercial applications,
ranging from cutting tools to biomedical devices [2]. This widespread use of FGMs is largely due
to their capacity to reduce residual stresses [3], increase the strength of joints [4], and tailor material
microstructure to specific service requirements [5].

The complexity and cost associated with the manufacture and testing of functionally graded
specimens has intensified the use of numerical tools to analyse their mechanical response. Although a
variety of numerical techniques have been used, including mesh-free methods [6,7] and enriched
formulations [8,9], the finite element method is by far the most popular approach [10–15].
Several formulations have been proposed to accurately capture a smooth material gradient by defining
the material property variation at the element level [11–13]. While these formulations are been widely
and indistinctly used, a performance assessment of the different types of graded elements has not been
conducted yet. We investigate the performance of different types of functionally graded elements by
comparing with analytical solutions of paradigmatic boundary value problems. We show that notable
differences can be attained and that the most common approach in commercial software entails a
number of limitations. An alternative implementation is presented in the context of the commercial
finite element package ABAQUS.

Materials 2019, 12, 287; doi:10.3390/ma12020287 www.mdpi.com/journal/materials16
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2. Numerical Formulation

The assignment of material properties in the numerical model must reflect the material property
distribution in the functionally graded specimen under consideration. However, an accurate
characterization of the material gradient is not a straightforward task. Typically, the information
available is the spatial variation of the volume fractions of constituent materials, which is provided
as input to the production technique [16]. The macroscopic material property variation does not
tend to mirror the volume fraction profile, but one can estimate the former from the latter by using
homogenization laws [17]. However, the micromechanical assumptions upon which these theoretical
mixing laws are built may hinder an accurate characterization of the macroscopic variation of material
properties. An alternative approach is to determine the material property variation directly by
experimentation. For example, by producing and testing individual homogeneous specimens with
a range of volume fractions [18], by testing the graded material through indentation or ultrasonic
techniques [19], or by cutting and testing small samples from a larger graded specimen [20]. Capturing
this material gradation profile in the numerical model is key to designing optimal FGM specimens,
as well as reproducing and gaining insight into experimental results.

From the numerical perspective, material properties can vary between elements or between nodes
and integration points. Numerical works in the mechanics of functionally graded materials can be
classified into two large groups depending on their approach to the implementation of the material
gradient, see Figure 1, using either homogeneous elements (see, e.g., [10]) or graded elements (see [15]
and references therein). The former is appropriate for layered functionally graded composites, but it
constitutes a poor approximation otherwise. Assuming constant material properties within each
element leads to a discontinuous step-type variation and requires uniform meshing along the material
gradation direction. A material property variation at the element level is generally more appropriate
and different graded elements formulations have been proposed.

Figure 1. Sketch outlining the (a) gradual variation of Young’s modulus E along the y-coordinate,
as captured by (b) homogeneous elements and (c) graded elements.

2.1. Gauss Integration Point-Based Variation

Consider an isoparametric finite element with n number of nodes, the displacement field u(x) is
interpolated from the nodal values ûi as

u =
n

∑
i=1

Ni(ξ, η, ζ) ûi, (1)

where i is a given node and Ni are the shape functions. For example, in an eight-node quadrilateral
element, the shape functions read, for the corner nodes

Ni =
1
4
(1 + ξξi) (1 + ηηi) (ξξi + ηηi − 1) (2)
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and for the mid-side nodes,

Ni =
1
2

(
1 − ξ2

)
(1 + ηηi) , for ξi = 0, (3)

Ni =
1
2
(1 + ξξi)

(
1 − η2

)
, for ηi = 0, (4)

with (ξ, η) denoting the intrinsic coordinates in the interval [−1, 1], and (ξi, ηi) denoting the local
coordinates of node i. Accordingly, the strain field ε(x) is computed from the nodal displacements by
means of the strain-displacement matrix

ε =
n

∑
i=1

Bi (ξ, η, ζ) ûi (5)

with the matrix Bi containing the appropriate derivatives of the shape functions Ni. For example, in a
plane strain element, the strain-displacement matrix for a node i reads

Bi (ξ, η) =

⎡
⎢⎢⎢⎣

∂Ni (ξ, η) /∂x 0
0 ∂Ni (ξ, η) /∂y
0 0

∂Ni (ξ, η) /∂y ∂Ni (ξ, η) /∂x

⎤
⎥⎥⎥⎦ (6)

so as to compute the strain components εxx, εyy, εzz, γxy from the nodal displacements.
Let us assume linear elastic behaviour, which is arguably appropriate for ceramic-based FGMs.

The Cauchy stress field σ is related to the strain tensor ε through a spatially varying constitutive matrix
C (x) as

σ = C (x) ε. (7)

The principle of virtual work yields the relation between the deformation work given by the
element and the elemental nodal force vector Fe as

Keûi = Fe, (8)

where Ke is the element strain-displacement matrix—see, for example, Ref. [21]. Accordingly,
the element stiffness matrix over the volume of the element Ve reads

Ke =
∫

Ve
BeTC (x) Be dV, (9)

where Be is the element stiffness matrix, given by the assembly of Bi over n nodes. Therefore, the linear
elastic stiffness matrix is defined to match the material gradation profile at the Gauss integration points.
This basic finite element formulation for functionally graded solids was presented by Santare and
Lambros [12].

2.2. Nodal-Based Variation via Temperature Dependence

An alternative approach to develop a formulation for graded finite elements was proposed by
Kim and Paulino [13]. They propose a generalized isoparametric finite element formulation where
the same shape functions are employed to interpolate the nodal displacements, the geometry, and the
material properties. Thus, consider a standard isoparametric formulation where the spatial coordinates
(x, y, z) are interpolated as

x =
n

∑
i=1

Nixi, y =
n

∑
i=1

Niyi, z =
n

∑
i=1

Nizi. (10)
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The isoparametric concept can be generalized to interpolate the spatially varying Young’s modulus
E (x) and Poisson’s ratio ν (x) as

E =
n

∑
i=1

NiEi, ν =
n

∑
i=1

Niνi, (11)

where Ei and νi are the elastic properties defined at each node i. Hence, the material gradient is defined
precisely at the nodes and subsequently interpolated to the Gauss integration points to compute the
stresses through Equation (7).

A generalized isoparametric graded finite element can be easily implemented into a commercial
finite element package by taking advantage of the possibility of defining temperature-dependent
material properties [11,15]. For example, one can define E as a function of the temperature and
provide the specimen with an initial temperature distribution that matches the Young’s modulus
variation desired. Here, the temperature has no physical meaning and unwanted thermal strains
are suppressed by assigning a zero thermal expansion coefficient. Since the temperature field is
defined at the nodes and subsequently interpolated to the Gauss integration points, this technique
constitutes a straightforward implementation of a generalized isoparametric graded element, enjoying
great popularity. Evident drawbacks are the inability to (i) model thermomechanical problems,
and (ii) define different profiles for Poisson’s ratio and Young’s modulus. Furthermore, to obtain a
consistent variation of mechanical and thermal strains, many commercial codes interpolate nodal
temperature values using shape functions one order lower than those used for the nodal displacements.
Consequently, there is an inherent error in the presence of a nonlinear material gradation profile,
as sketched in Figure 2. The implications of adopting this technique, relative to the Gauss-based
approach defined in Section 2.1, are explored here.

Figure 2. Sketch outlining the gradual variation of Young’s modulus E and its associated interpolation
by means of temperature-based generalized isoparametric graded element for an equivalent
interpolation of thermal and mechanical strains.

3. Results

The variation in elastic properties inherent to FGMs is implemented at the element level by
making use of user subroutines within the commercial finite element package ABAQUS. The graded
elements described in Section 2 can be readily implemented by using a USDFLD subroutine, for a Gauss
points-based implementation, or a UFIELD subroutine, for a nodal-based graded element. In addition,
as discussed above, the temperature can be used as an auxiliary field to effectively implement a
generalized isoparametric graded element. The user must provide the material properties as a function
of a user defined field (or temperature). Then, a suitable field (or temperature distribution) is defined
to match the material property variation desired. A direct comparison between the two approaches in
terms of computational time is hindered by their different implementations; nevertheless, the sampling
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of material properties at integration points or nodes is achieved at a negligible computational cost.
The performance of different types of graded elements will be benchmarked by considering a Gauss
point-based implementation (Section 2.1) and, via temperature dependent properties, a generalized
isoparametric approach (Section 2.2). For the sake of simplicity, we will consider bi-dimensional
problems and four quadrilateral element types (see Figure 3): linear elements with reduced integration
(Q4R), linear elements with full integration (Q4), quadratic elements with reduced integration (Q8R),
and quadratic elements with full integration (Q8).

Figure 3. Graded finite elements employed and notation used.

Three plane problems for which analytical solutions can be obtained will be addressed, as shown
in Figure 4. Young’s modulus will be varied along the x-direction and Poisson’s ratio will be assumed
to be constant. We assume plane stress conditions. As sketched in Figure 4, the three boundary value
problems considered involve a functionally graded plate being subjected to (i) uniform displacement
perpendicular to the material gradient direction, (ii) uniform traction perpendicular to the material
gradient direction, and (iii) uniform traction in the direction parallel to material gradation.

(a) (b) (c) (d)

Figure 4. Boundary value problems under consideration: (a) functionally graded plate with spatially
varying Young’s modulus subjected to (b) uniform displacement perpendicular to the material gradient
direction, (c) uniform traction perpendicular to the material gradient direction, and (d) uniform traction
in the direction parallel to material gradation—consistent units.

In all cases, we assume that the Young’s modulus varies exponentially as

E(x) = E0 exp (βx) (12)

with E0 and β being material constants. This choice is motivated by the existence of analytical
solutions for functionally graded solids exhibiting an exponential variation of the elastic properties;
see, for example, Refs. [13,22]. Many other functions have been employed in the literature (see Ref. [23]
for a review), but our choice is appropriate for our aim: comparing on equal footing different graded
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finite element implementations. Consistent units are throughout the manuscript and, therefore, units
will be omitted subsequently. We consider a width w = 1, a total height of 2h = 3, and choose E0 = 1
and β = ln 8 so as to vary E gradually in the x-direction from E(0) = 1 to E(w) = 8.

3.1. Uniform Displacement Perpendicular to the Material Gradient Direction

Consider first the case of an FGM plate subjected to a remote strain ε0 = u0/h, where u0 denotes
the displacement in the remote boundary and h denotes half the height of the plate. A constant
Poisson’s ratio of ν = 0.3 throughout the plate is assumed. The relevant stress component is given by

σyy (x, y) = E(x)u0/h. (13)

This analytical solution is compared in Figure 5 with the finite element results obtained for the
element types and graded element formulations described above. A remote displacement of u0 = 0.2
is prescribed in all cases. As shown in the insets of Figure 5, a uniform mesh of 4 by 12 elements
is employed.

(a) (b)

(c) (d)
Figure 5. Uniform displacement perpendicular to the material gradient for different kinds of elements:
(a) Q4; (b) Q4R; (c) Q8; and (d) Q8R—consistent units.

Results reveal differences between the different types of graded elements. Consider first the case
of the linear element with full integration Q4—see Figure 5a. The Gauss integration point-based
approach accurately captures the material gradient depicted by the analytical solution. In fact,
the numerical result is exact at the integration points since the displacement field is linear; a single Q4
element will suffice to capture the FGM response. However, the generalized isoparametric formulation

21



Materials 2019, 12, 287

(via temperature-dependent properties) exhibits a step-type variation with constant stress in each
element. This behaviour is inherently related to how ABAQUS interpolates nodal temperature values.
As many other finite element packages, ABAQUS interpolates nodal temperatures with shape functions
that are one order lower than those used for the displacements, so as to obtain an equivalent distribution
of mechanical and thermal strains. An average value of the temperature in the nodes is passed to the
integration points when using linear elements and a linear variation is assumed in quadratic elements.
In agreement with expectations, the use of linear elements with reduced integration (Q4R, see Figure 5b)
exhibits the response inherent to homogeneous elements for both cases. However, the constant value
of σyy attained in each element depends on the implementation approach. The integration point-based
scheme computes the exact σyy at the element centroid, where E is sampled. On the other hand,
the nodal-based approach averages nodal temperatures, introducing a source of error when the elastic
properties vary in a nonlinear manner. The use of quadratic elements leads to a good agreement with
the analytical solution for both schemes, although differences are observed (Figure 5c,d). We plot the
error obtained with both schemes for the element Q8 in Figure 6. It is evident that the integration
point-based approach reproduces the analytical result more accurately.

Figure 6. Uniform displacement perpendicular to the material gradient. Error analysis for the Q8
element. Consistent units.

Further insight is gained by reproducing the analysis with a single element in the x-direction—see
Figure 7. Inspection of Figure 7a reveals substantial differences between Gauss points-based and
nodal-based implementations. The former reproduces precisely the analytical stress distribution,
with the exact result being obtained at the integration points. Contrarily, the approximation is much
poorer when the material gradient is implemented via the temperature. Differences are particularly
significant at the left side of the specimen, where the error is on the order of 50%.
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(a) (b)

(c)
Figure 7. Uniform displacement perpendicular to the material gradient, (a) tensile stress for one
Q8 element in the x-direction; (b) Young’s modulus interpolation through different schemes; and (c)
mesh-sensitivity error analysis—consistent units.

Remarkably, negative stresses are predicted for x = 0. These non-physical compressive stresses
arise as a consequence of the particularities of ABAQUS’ criterion for interpolating nodal temperatures,
which does not correspond to the linear interpolation outlined in Figure 2. In ABAQUS, the nodal
temperature values are multiplied by certain weights, such that the temperature T at an integration
point i is given by

Ti =
m

∑
j=1

TjWij with i = 1, · · · , n. (14)

Here, Tj is the temperature in node j, Wij the weight associated with the nodal temperature j
and integration point i, and n and m respectively denote the total number of nodes and integration
points. The specific values of Wij depend on a number of numerical considerations and can be easily
obtained by means of a one-element model. This criterion is motivated by numerical convergence in
thermomechanical problems, as it smoothens localized temperature peaks. The resulting variation
in the elastic properties within the element is shown in Figure 7b. Differences with a direct linear
interpolation are evident. The weighting procedure implemented in ABAQUS brings non-physical
values of E, but it shows a better agreement with the material gradation profile at the Gauss integration
points. In turn, this better approximation of E(x) reduces the error in the computation of the stresses,
as quantified in Figure 7c as a function of the number of elements. The log–log plot of Figure 7c shows
that the weighted interpolation of ABAQUS exhibits a smaller maximum error in the computation
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of σyy at the Gauss points, as well as a faster convergence rate. Consequently, the error intrinsic to a
temperature-based graded element is magnified if a standard linear interpolation is used and, therefore,
the conclusions of the present study are even more relevant to finite element codes that employ
non-weighted interpolations of nodal temperatures. Recall that the integration point-based scheme
presented in Section 2.1 captures the analytical solution at the Gauss points with a single element.

3.2. Uniform Traction Perpendicular to the Material Gradient Direction

Consider now the case where the remote load is prescribed as a traction perpendicular to the
elastic gradient—see Figure 4c. The Dirichlet boundary conditions of the problem read

ux(0, 0) = 0, (15)

uy(x, 0) = 0. (16)

In the case of a plate with infinite height, the only non-zero component of the Cauchy stress tensor
is σyy. Following Refs. [13,22], a membrane resultant N along the x = w/2 line can be defined as a
function of the remote stress σ0 and the width,

N = σ0w. (17)

The compatibility condition ∂2εyy/∂x2 = 0 requires the strain component to be of the form

εyy(x) = Ax + B, (18)

and, consequently, one can readily obtain the stress field by considering the exponential elastic modulus
variation assumed (12) and making use of Hooke’s law as

σyy(x) = E0eβx(Ax + B). (19)

The coefficients A and B are obtained by solving

∫ w

0
σyy(x)dx = N, (20)

∫ w

0
σyy(x)xdx = N

w
2

, (21)

such that

A =
βN
2E0

(
wβ2eβw − 2βeβw + wβ2 + 2β

eβwβ2w2 − e2βw + 2eβw − 1

)
, (22)

B =
βN
2E0

· eβw[eβw(−w2β2 + 3βw − 4) + w2β2 − 2βw + 8]− βw − 4
(eβw − 1)(eβwβ2w2 − e2βw + 2eβw − 1)

. (23)

The displacement solution can be readily obtained by making use of the strain-displacement
relations and applying the boundary conditions (15) and (16),

ux(x, y) = ν

(
A
2

x2 + Bx
)
− A

2
y2, (24)

uy(x, y) = (Ax + B) y. (25)

The analytical solution in the middle line y = h/2 is compared with the numerical predictions for
σ0 = 2. Results are shown in Figure 8 for a uniform mesh of 48 plane stress elements.
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(a) (b)

(c) (d)
Figure 8. Uniform traction perpendicular to the material gradient for different kinds of elements:
(a) Q4; (b) Q4R; (c) Q8; and (d) Q8R—consistent units.

Differences between the integration point-based scheme and the nodal/temperature-based
implementation are particularly significant for the case of linear elements with full integration
(Q4, Figure 8a). Sampling the material gradient directly at the Gauss points leads to a good agreement
with the analytical solution. However, using temperature-based properties renders the homogeneous
element solution. Both the analytical and Gauss point-based solutions show an increasing σyy along
x within those elements close to the left edge. Contrarily, the inverse response is observed when
using temperature-dependent properties, as the strain field decreases with x and E is constant
element-wise. The Q4 element predicts in all cases a linear variation of σyy within each element
for the quadratic displacement solution under consideration. On the other hand, identical predictions
between graded element schemes are obtained when using linear elements with reduced integration
(Q4R, Figure 8b). This is unlike the case of a prescribed displacement (see Figure 5b), as the error
in the approximation of the strain field εyy (exact at the integration points only for the Gauss
points-based scheme) is compensated. Quadratic elements (Q8 and Q8R) introduce an element-wise
variation of E in both approaches and, therefore, differences appear to be smaller than in linear
elements—see Figure 8c,d. The error in the approximation is shown in Figure 9 for the Q8 element case.
When using full integration, the Gauss point-based approach outperforms the temperature-based,
generalized isoparameteric graded element.
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Figure 9. Uniform traction perpendicular to the material gradient. Error analysis for the Q8
element—consistent units.

Further insight is gained by analysing a very coarse mesh with a single element in the x-direction;
results are shown in Figure 10. Regarding the stress (Figure 10a), the prediction obtained from
the integration point-based implementation of graded elements agrees well with the analytical
solution, being exact at the Gauss points (symbols). On the other hand, the approximation via a
nodal/temperature-based approach introduces a significant source of error (larger than 20% in all
the integration points). Moreover, when the load is prescribed as a traction, the approximation of the
material gradient also influences the strain field, see Equations (8) and (9). As shown in Figure 10b,
a better approximation is attained if the material properties are sampled directly at the Gauss points.
Both schemes differ at the edges with the analytical solution for a plate of infinite height.

(a) (b)
Figure 10. Uniform traction perpendicular to the material gradient, tensile (a) stress and (b) strain for
one Q8 element in the x-direction—consistent units.

26



Materials 2019, 12, 287

3.3. Uniform Traction Parallel to the Material Gradient Direction

The last case study involves a functionally graded plate subjected to traction in the x-direction,
parallel to the elastic gradient, see Figure 4d. Under those conditions, the normal stress component
equals the applied stress

σxx(x, y) = σ0 (26)

if Poisson’s ratio is made equal to zero, ν = 0. The results obtained for a uniform mesh of 75 plane
stress elements are shown in Figure 11.

(a) (b)

Figure 11. Uniform traction parallel to the material gradient for different kinds of elements: (a) Q4 and
(b) Q8—consistent units.

Contrarily to what has been observed so far, the Q4 results (Figure 11a) show that the
nodal/temperature-based approach outperforms the integration point-based counterpart. Hooke’s
law requires the strains to vary according to an inverse exponential distribution to obtain a constant
stress for an exponentially varying E. However, linear elements predict a constant strain field and,
consequently, an effectively homogeneous element will predict a constant stress. This trend is inverted
for the case of a quadratic element with full integration (Q8). As shown in Figure 11b, again the use of a
Gauss point-based graded element formulation approximates the analytical solution better. The results
pertaining to reduced integration elements (Q4R and Q8R), not shown for brevity, reveal a perfect
agreement with the analytical solution in all cases. Thus, reduced integration improves precision in
this specific case study as the resulting stress is constant—either because there is a single integration
point (Q4R), leading to a constant εxx and E, or because both εxx and E are element-wise linear (Q8R).

4. Conclusions

We have explored the influence of element order, integration scheme and graded element
formulation in the finite element analysis of functionally graded materials (FGMs). Two graded
element formulations are presented to account for the variation in space of material properties: nodal
and integration point based gradations. The nodal based variation is implemented by defining
temperature-dependent properties with a zero thermal expansion coefficient, a simple approach that
enables the use of this scheme in commercial finite element packages. Important insight is gained by
solving, analytically and numerically, three boundary value problems involving remote tractions and
displacements, applied parallel and perpendicular to the material gradation direction.

Results reveal that integration point-based graded elements generally outperform a nodal-based
implementation through temperature-dependent properties. The former approximates better the
analytical solution in all the boundary value problems considered if quadratic shape functions are
used. A much finer mesh is needed to attain a similar degree of precision with a nodal-based approach.
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However, the temperature-based generalized isoparametric graded element is more accurate when
linear elements are employed and the traction is applied parallel to the direction of material gradation.
These observations are inherent to the interpolation of nodal temperatures with shape functions that
are one order lower than those employed for the displacement field, as done in most finite element
codes to ensure an equivalent variation of thermal and mechanical strains. In addition, in the case of
the commercial package ABAQUS, the nodal temperature averaging criterion employed can lead to
non-physical results.

The results presented have implications in the analysis of functionally graded structures, both
in terms of computation time and local precision, particularly relevant for fracture studies. A user
subroutine for ABAQUS is presented to overcome the number of drawbacks identified with the
most popular graded finite element implementation. The user subroutine can be downloaded from
www.empaneda.com/codes.
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Abstract: Elastic/plastic stress and strain fields are obtained in a functionally graded annular disc
of constant thickness subject to external pressure, followed by unloading. The elastic modulus and
tensile yield stress of the disc are assumed to vary along the radius whereas the Poisson’s ratio is
kept constant. The flow theory of plasticity is employed. However, it is shown that the equations of
the associated flow rule, which are originally written in terms of plastic strain rate, can be integrated
with respect to the time giving the corresponding equations in terms of plastic strain. This feature of
the solution significantly facilitates the solution. The general solution is given for arbitrary variations
of the elastic modulus and tensile yield stress along the radial coordinate. However, it is assumed
that plastic yielding is initiated at the inner radius of the disc and that no other plastic region appears
in the course of deformation. The solution in the plastic region at loading reduces to two ordinary
differential equations. These equations are solved one by one. Unloading is assumed to be purely
elastic. This assumption should be verified a posteriori. An illustrative example demonstrates
the effect of the variation of the elastic modulus and tensile yield stress along the radius on the
distribution of stresses and strains at the end of loading and after unloading. In this case, it is
assumed that the material properties vary according to power-law functions.

Keywords: hollow disc; external pressure; residual stress; residual strain; flow theory of plasticity

1. Introduction

Stress and strain analyses of solid and hollow circular discs have long been an important topic
in the mechanics of solids. The motivation of doing such analyses is that circular discs subject to
mechanical, thermal, and inertial loading are used in many sectors of industry. The performance of such
discs under service conditions can be improved by using functionally graded materials. The material
may be continuously graded or be piecewise homogeneous. It is assumed in the present paper that
the distribution of all material properties is axisymmetric. Discs made of homogeneous materials
are not discussed. Discs made of functionally graded materials have been the subject of intense
research. A linearly elastic solution under plane stress and plane strain conditions has been given
in [1], assuming that the disc is loaded by external or internal pressure. It has been concluded that the
stress response of the functionally graded disc is significantly different from that of the homogeneous
disc. Another plane stress solution of this boundary value problem has been obtained in [2] and
another plane strain solution in [3]. A thermoelastic stress solution for a disc of variable thickness has
been found in [2]. A thermoelastic analysis of a disc subject to a steady-state temperature distribution
together with external and internal pressures has been provided in [4]. It has been assumed in this
work that the material properties are arbitrary smooth functions of the radial coordinate. A similar
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boundary value problem for a multilayered hollow cylinder has been solved in [5]. A design driven
by the minimization of induced stresses in elastic multilayer cylinders under plane stress conditions
has been proposed in [6]. All of the solutions above are purely elastic or thermoelastic. The process
of autofrettage of a functionally graded cylinder has been studied in [7]. The analysis of this process
requires the use of an elastic/plastic model. In [7], the deformation theory of plasticity together with
the von Mises yield criterion has been employed. Another elastic/plastic plane strain solution for a
functionally graded cylinder has been given in [8]. The solution is based on Tresca’s yield criterion,
which significantly simplifies the analysis even in the case of the flow theory of plasticity.

There is a vast amount of literature on functionally graded rotating discs. The elastic response of
an arbitrary functionally graded polar orthotropic disc has been investigated in [9]. Another purely
elastic solution has been given in [10], using the finite difference method. Thermoelastic analyses
have been presented in [11–14]. The effect of a non-uniform heat source on thermoelastic behavior
of a functionally graded rotating disc has been investigated in [15]. The effect of viscosity on the
response of a functionally graded rotating disc of variable thickness has been studied in [16]. The limit
of elastic angular velocity has been determined in [17]. The effect of variable angular velocity on the
elastic response of a functionally graded rotating disc has been analyzed in [18]. A design driven
by weight optimization of a disc subject to thermomechanical loading has been proposed in [19].
Most of the available elastic/plastic solutions fall into three categories. A series of solutions is devoted
to discs obeying Tresca’s yield criteria [20,21]. As it has been mentioned before, the use of Tresca’s
yield criterion significantly simplifies the solution. Another category includes the solutions for the
deformation theory of plasticity [22–25]. In some cases, using deformation theories of plasticity is
justified since the stress path is nearly proportional. However, it has been shown in [26] that it may
not be so in thin discs. The third category includes stress solutions [27,28]. In this case, no flow rule is
necessary to find the solution.

An advantage of the present elastic/plastic solution is that the flow theory of plasticity in
conjunction with the von Mises yield criterion is employed. It is assumed that a hollow disc is subject
to external pressure, followed by unloading. First, the general solution is derived under plane stress
conditions assuming that the elastic modulus and tensile yield stress are arbitrary smooth functions of
the radial coordinate. It is, however, assumed that plastic yielding initiates at the inner radius of the
disc and that there is one plastic region throughout the process of deformation. The Poisson’s ratio is
supposed to be constant. This is a typical assumption for functionally graded discs [1,3,10,19]. Second,
a numerical example is given assuming that the material properties vary according to power-law
functions. This is also a typical assumption for functionally graded discs [1,9–13]. The solution found
can be considered as an extension of the solution provided in [1] to the plastic range.

2. Statement of the Problem

Consider a thin hollow disc of functionally graded material subject to uniform pressure p0 over
its outer radius b0, followed by unloading. The inner radius of the disc is denoted as a0. The thickness
of the disc is constant. The mechanical properties of the disc are classified in terms of the yield stress
tension σY, Poisson’s ratio ν, and Young’s modulus E. It is assumed that the Poisson’s ratio is constant,
whereas the value of both σY and E vary with radius. It is convenient to use a cylindrical coordinate
system (r, θ, z) whose z-axis coincides with the axis of symmetry of the disc. The normal stresses in
this coordinate system are the principal stresses. The state of stress is plane (i.e., the axial stress in the
cylindrical coordinate system vanishes). Therefore, Hooke’s law can be written as

εe
r =

σr − νσθ

E
, εe

θ =
σθ − νσr

E
, εe

z = −ν(σr + σθ)

E
(1)
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here σr is the radial stress, σθ is the circumferential stress, εe
r, εe

θ , and εe
z are the elastic strains referred to

the cylindrical coordinate system. Plastic yielding is controlled by the von Mises yield criterion. Under
a plane stress condition, this criterion reads

σ2
r + σ2

θ − σrσθ = σ2
Y (2)

The flow theory of plasticity is adopted. The flow rule associated with the yield criterion (2) is

ξ
p
r = λ(2σr − σθ), ξ

p
θ = λ(2σθ − σr), ξ

p
z = −λ(σr + σθ) (3)

here ξ
p
r , ξ

p
θ , and ξ

p
z are the plastic strain rates referred to the cylindrical coordinate system and λ is a

non-negative multiplier. The total strain components in the cylindrical coordinate system are given by

εr = εe
r + ε

p
r , εθ = εe

θ + ε
p
θ , εz = εe

z + ε
p
z (4)

here ε
p
r , ε

p
θ , and ε

p
z are the plastic strains referred to the cylindrical coordinate system. The constitutive

equations should be complemented with the equilibrium equation

∂σr

∂r
+

σr − σθ

r
= 0 (5)

and the equation of strain compatibility of the form

r
∂εθ

∂r
= εr − εθ (6)

The boundary conditions at the stage of loading are

σr = −p0 (7)

for r = b0 and
σr = 0 (8)

for r = a0. The boundary conditions at the stage of unloading will be formulated in Section 6.
It is convenient to introduce the following dimensionless quantities:

ρ =
r
b0

, a =
a0

b0
, k =

σ0

E0
, p =

p0

σ0
(9)

here σ0 is the value of σY at r = b0 and E0 is the value of E at r = b0. Then, the variation of σY and E
with ρ can be represented as

σY = σ0Φ(ρ) and E = E0η(ρ) (10)

where Φ(ρ) and η(ρ) are arbitrary functions of ρ satisfying the conditions Φ(ρ) = 1 and η(ρ) = 1 at
ρ = 1. In what follows, it is assumed that these functions are such that plastic yielding initiates at the
inner radius of the disc and no other plastic region appears in continued deformation.

3. Purely Elastic Solution

When p is small enough, the entire disc is elastic. In this case, the total strains are equal to the
elastic strains. The system of equations comprises Hooke’ law, the equilibrium equation, and the
equation of strain compatibility. Using (9) it is possible to rewrite Equations (5) and (6) as

∂σr

∂ρ
+

σr − σθ

ρ
= 0 (11)
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and

ρ
∂εe

θ

∂ρ
= εe

r − εe
θ (12)

Eliminating the strains in this equation by means of (1) and using (9) results in

∂σθ

∂ρ
+

ν

ρ
(σr − σθ) +

η

ρ
(σθ − νσr)

∂(ρ/η)

∂ρ
− (σr − νσθ)

ρ
= 0 (13)

Equations (11) and (13) comprise the system for determining the distribution of stresses in the
purely elastic disc. Then, the distribution of strains can be readily found from (1) and (9). However,
the purely elastic solution is not of interest in the case under consideration. Therefore, the solution
to Equations (11) and (13) is only necessary to determine the value of p at which plastic yielding is
initiated. This value of p is denoted as pe. By assumption, plastic yielding is initiated at ρ = a. It follows
from the boundary condition (8) and the yield criterion (2) that σθ = −σY at ρ = a at the initiation of
plastic yielding. Using (10), this condition can be rewritten as σθ = −σ0Φ(a) at ρ = a. This is one of
the boundary conditions of the boundary value problem to be solved. The other boundary condition
is given by (8). Equations (11) and (13) should be solved together with these boundary conditions.
The value of pe is readily found from this solution as pe = −σr(1)/σ0. In what follows, it is assumed
that p > pe.

4. Elastic/Plastic Stress Solution

If p > pe, then the disc consists of two regions, elastic and plastic. The elastic region occupies
the domain ρc ≤ ρ ≤ 1 and the plastic region the domain a ≤ ρ ≤ ρc. Here, ρc is the elastic/plastic
boundary. Consider the plastic region. The yield criterion (2) is satisfied by the following substitution:

σr

σ0
=

2Φ(ρ) sin ψ√
3

and
σθ

σ0
= Φ(ρ)

(
sin ψ√

3
+ cos ψ

)
(14)

here ψ is a new function of ρ. This function should be found from the solution. Substituting (14) into
(11) yields

dψ

dρ
+

tan ψ

Φ
dΦ
dρ

+

(
tan ψ −√

3
)

2ρ
= 0 (15)

The boundary condition to this equation follows from (8) and (14). In particular, σr = 0 if ψ = 0 or
ψ = π. It is evident that σθ < 0 at ρ = a. Then, the boundary condition to Equation (15) is

ψ = π (16)

for ρ = a. Solving Equation (15) together with this boundary condition supplies the variation of ψ

with ρ. This solution and (14) determine the distribution of the stresses in the plastic region. Let pp

be the value of p at which the entire disc becomes plastic. Putting in the solution for the radial stress
ρ = 1 gives the value of pp as pp = −σr(1)/σ0. In what follows, it is assumed that p < pp. In this case,
a < ρc < 1. The value of σr on the plastic side of the elastic/plastic boundary is denoted as σc

r and the
value of σθ on the plastic side of the elastic/plastic boundary as σc

θ . These values are readily found
from the solution of (15) and (14). Equations (11) and (13) are valid in the elastic region. The radial
and circumferential stresses must be continuous across the elastic/plastic boundary. Therefore, the
boundary conditions to Equations (11) and (13) are

σr = σc
r and σθ = σc

θ (17)

for ρ = ρc. Solving Equations (11) and (13) together with these boundary conditions supplies the
distribution of the radial and circumferential stresses in the elastic region. In particular, the value of p

33



Materials 2019, 12, 440

involved in (7) is determined from the equation p = −σr(1)/σ0. Therefore, the solution found connects
p and ρc. One of these parameters should be prescribed. Then, the other parameter is determined from
the solution.

5. Elastic/Plastic Strain Solution

Consider the plastic region, a ≤ ρ ≤ ρc. Eliminating λ between the equations in (3) gives

ξ
p
r

ξ
p
θ

=
(2σr − σθ)

(2σθ − σr)
,

ξ
p
z

ξ
p
θ

= − (σr + σθ)

(2σθ − σr)
(18)

Using (14), the stresses in these equations can be expressed in terms of ψ. Then, taking into
account that ξ

p
r = ∂ε

p
r /∂t, ξ

p
θ = ∂ε

p
θ /∂t, and ξ

p
z = ∂ε

p
z /∂t Equation (18) is transformed to

∂ε
p
r

∂t
=

(√
3 tan ψ − 1

)
2

∂ε
p
θ

∂t
,

∂ε
p
z

∂t
= −

(√
3 tan ψ + 1

)
2

∂ε
p
θ

∂t
(19)

here t is the time. It is seen from the structure of Equation (15) and the boundary condition (16) that
ψ is independent of t. Therefore, the coefficients of ∂ε

p
θ /∂t in (19) are also independent of t, and the

equations in (19) can be immediately integrated with respect to the time to give

ε
p
r =

(√
3 tan ψ − 1

)
2

ε
p
θ , ε

p
z = −

(√
3 tan ψ + 1

)
2

ε
p
θ (20)

It has been taken into account here that ε
p
r = ε

p
θ = ε

p
z = 0 at the elastic/plastic boundary.

The elastic strains in the plastic region, ε
ep
r , ε

ep
θ and ε

ep
z , are determined from (1) and (14) with the use

of (9) and (10). As a result,

ε
ep
r = kΛ

[
(2−ν)√

3
sin ψ − ν cos ψ

]
, ε

ep
θ = kΛ

[
(1−2ν)√

3
sin ψ + cos ψ

]
,

ε
ep
z = −νkΛ

(√
3 sin ψ + cos ψ

) (21)

here Λ = Φ/η. The total strains are found from (4), (20), and (21) as

εr = kΛ
[
(2−ν)√

3
sin ψ − ν cos ψ

]
+

(
√

3 tan ψ−1)
2 ε

p
θ ,

εθ = kΛ
[
(1−2ν)√

3
sin ψ + cos ψ

]
+ ε

p
θ ,

εz = −νkΛ
(√

3 sin ψ + cos ψ
)
− (

√
3 tan ψ+1)

2 ε
p
θ

(22)

It follows from these equations that

εr − εθ =
(

tan ψ −√
3
)[

k(1+ν) cos ψ√
3

Λ +
√

3
2 ε

p
θ

]
,

∂εθ
∂ρ = k dΛ

dρ

[
(1−2ν)√

3
sin ψ + cos ψ

]
+ kΛ

[
(1−2ν)√

3
cos ψ − sin ψ

]
dψ
dρ +

∂ε
p
θ

∂ρ .

.
These equations and Equation (6), in which r should be replaced with ρ by means of (9), combine

to give
∂ε

p
θ

∂ρ −
√

3
2
(tan ψ−√

3)
ρ ε

p
θ + k dΛ

dρ

[
(1−2ν)√

3
sin ψ + cos ψ

]
+

kΛ
[
(1−2ν)√

3
cos ψ − sin ψ

]
dψ
dρ − k(1+ν)Λ(sin ψ−√

3 cos ψ)√
3ρ

= 0.
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The derivative dψ/dρ in this equation can be eliminated by means of (15). Then,

∂ε
p
θ

∂ρ −
√

3
2
(tan ψ−√

3)
ρ ε

p
θ + k dΛ

dρ

[
(1−2ν)√

3
sin ψ + cos ψ

]
−

kΛ
[
(1−2ν)√

3
cos ψ − sin ψ

][
tan ψ

Φ
dΦ
dρ +

(tan ψ−√
3)

2ρ

]
−

k(1+ν)Λ(sin ψ−√
3 cos ψ)√

3ρ
= 0

(23)

Since ψ has already been determined as a function of ρ in Section 4, (23) is a linear differential
equation for ε

p
θ . The boundary condition to this equation is

ε
p
θ = 0 (24)

for ρ = ρc. Once Equation (23) has been solved, the distribution of ε
p
r and ε

p
z in the plastic region is

found from (20) and the distribution of the total strains from (22).
The distribution of strains in the elastic region is determined from the solution for stress found in

Section 4 and Hooke’s law.

6. Unloading

Let p f be the value of p at the end of loading. Then, the boundary conditions for the stage of
unloading are

Δσr = 0 (25)

for ρ = a and
Δσr = σ0 p f (26)

for ρ = 1. Here, Δσr is the increment of the radial stress after unloading (Δσθ will stand for the
increment of the circumferential stress). It is assumed that unloading is purely elastic. This assumption
should be verified a posteriori. Equations (11) and (13), in which σr should be replaced with Δσr and
σθ with Δσθ , are valid. An iterative procedure should be used for solving this system of equations
together with the boundary conditions (25) and (26). Once this boundary value problem has been
solved, the increment of strains is determined from Hooke’s law as

Δεr =
Δσr − νΔσθ

E
, Δεθ =

Δσθ − νΔσr

E
, Δεz = −ν(Δσr + Δσθ)

E
(27)

The distribution of residual stresses, σres
r and σres

θ , is given by

σres
r = σ

( f )
r + Δσr, σres

θ = σ
( f )
θ + Δσθ (28)

Here, σ
( f )
r is the distribution of the radial stress and σ

( f )
θ is the distribution of the circumferential

stress at the end of loading. These distributions have been found in Section 4. Substituting (28) into (2)
provides the condition to verify that the process of unloading is purely elastic in the form

(σres
r )2 + (σres

θ )2 − σres
r σres

θ − σ2
0 Φ2 ≤ 0 (29)

Here, Equation (10) has been taken into account.
The distribution of residual strains, εres

r , εres
θ and εres

z , is given by

εres
r = ε

( f )
r + Δεr, εres

θ = ε
( f )
θ + Δεθ , εres

z = ε
( f )
z + Δεz (30)
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Here, ε
( f )
r is the distribution of the radial strain, ε

( f )
θ is the distribution of the circumferential strain

and ε
( f )
z is the distribution of the axial strain at the end of loading. These distributions have been found

in Section 5.

7. Illustrative Example

It is often assumed that material properties vary according to a power law along the radius of the
disc [1,9–13]. In the case under consideration one possible variant of this law reads

Φ(ρ) = ρm and η(ρ) = ρn (31)

In all calculations, ν = 0.3, a = 0.3, and n = 0.3. The value of m varies in the range 0 ≤ m ≤ 0.3. It
is worthy of note that there is no need to prescribe the values of σ0 and E0 for numerical analysis since
the stress components are proportional to σ0, and the strain components are proportional to k. It is
assumed that ρc = 0.8. Then, the value of p f has been found from the stress solution given in Section 4.
The dependence of p f on m is presented in Table 1. The variation of the radial and circumferential
stresses with ρ at p = p f is depicted in Figures 1 and 2, respectively. It has been verified that the yield
criterion (2) is not violated in the elastic region. The variation of the radial, circumferential, and axial
strains with ρ at p = p f is depicted in Figures 3–5, respectively.

Using the values of p f found (Table 1) the system of Equations (11) and (13) together with the
boundary conditions (25) and (26) has been solved for Δσr/σ0 and Δσθ/σ0. Having this solution and
the radial distribution of the radial and circumferential stresses at the end of loading (Figures 1 and 2)
the radial distribution of the residual stresses is determined from (28). The variation of the residual
radial and circumferential stresses with ρ is shown in Figures 6 and 7, respectively. Then, it has been
verified that the inequality (29) is satisfied in the range a ≤ ρ ≤ 1. Having the solution for Δσr/σ0 and
Δσθ/σ0, the increment of the strains is determined from (27). It is evident from (10) and (27) that these
increments are proportional to k introduced in (9). The radial distribution of the residual strains is
determined from (30). The variation of the residual radial, circumferential, and axial strains with ρ is
shown in Figures 8–10, respectively.

Table 1. Dependence of the value of pressure at the end of loading on the value of m introduced in (31).

m pf

0 0.79
0.1 0.75
0.2 0.71
0.3 0.68
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Figure 1. Variation of the radial stress, σr, with the dimensionless radius, ρ, at p = p f .

Figure 2. Variation of the circumferential stress, σθ , with the dimensionless radius, ρ, at p = p f .

Figure 3. Variation of the radial strain, εr, with the dimensionless radius, ρ, at p = p f .
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Figure 4. Variation of the circumferential strain, εθ , with the dimensionless radius, ρ, at p = p f .

Figure 5. Variation of the axial strain, εz, with the dimensionless radius, ρ, at p = p f .

Figure 6. Variation of the residual radial stress, σres
r , with the dimensionless radius, ρ.
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Figure 7. Variation of the residual circumferential stress, σres
θ , with the dimensionless radius, ρ.

Figure 8. Variation of the residual radial strain, εres
r , with the dimensionless radius, ρ.

Figure 9. Variation of the residual circumferential strain, εres
θ , with the dimensionless radius, ρ.
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Figure 10. Variation of the residual axial strain, εres
z , with the dimensionless radius, ρ.

8. Discussion

The paper presents a general solution for the distribution of stress and strain in an functionally
graded hollow disc subject to external pressure, followed by unloading. The solution is valid for
any variation of the yield stress and Young’s modulus with radius if the plastic region initiates at,
and then propagates from, the inner radius of the disc. The purely elastic solution is valid if p ≤ pe.
This solution is known, and therefore is not considered in the present paper. However, the general
elastic solution is used in the elastic region, ρc ≤ ρ ≤ 1. The stress solution follows from the solution
of Equation (13). Then, the distribution of strains is determined from Hooke’s law shown in (1).

The constitutive equations of the classical flow theory of plasticity are adopted. In particular,
Hooke’s law shown in (1) is used to connect the stress components and the elastic strain components.
This law is valid in the elastic region. The von Mises yield criterion (2) is adopted in the plastic region.
In this region, the stress components are connected to the strain rate components rather than to the
strain components. The corresponding constitutive equation is the associated flow rule (3). The total
strain components in the plastic region are given by (4). A detailed description of this material model
can be found in any textbook on plasticity theory (for example, [29,30]).

For any given functions Φ(ρ) and η(ρ) involved in (10), the distribution of stress and strain in
the plastic region, a ≤ ρ ≤ ρc, can be calculated as follows. Two ordinary differential equations,
Equations (15) and (23), should be solved numerically. These equations can be solved one by one.
In particular, the dependence of ψ on ρ is found from (15). Then, this numerical function is substituted
into (23). As a result, a linear differential equation for the circumferential plastic strain, ε

p
θ , is obtained.

The solution of Equation (15) supplies the distribution of stresses in the plastic region according to (14).
A remarkable feature of the strain solution is that the equations in (18), which are derived from the
associated flow rule written in terms of plastic strain rates, can be immediately integrated with respect
to the time to result in the equations in terms of plastic strains (Equation (20)). This feature of the
solution significantly facilitates the solution. Another remarkable feature of the strain solution is that
all strain components are proportional to k introduced in (9). It is seen from Equations (22) and (23).
Therefore, simple scaling of any strain solution provides the strain solution for similar discs of material
with the same other properties and geometry, but any value of k. To calculate the distribution of strains,
it is first necessary to solve Equation (23) for the circumferential plastic strain. Then, the radial and
axial plastic strains are readily found from (20) and the solution of (15). The elastic portions of strain in
the plastic region are determined from (14) and Hooke’s law shown in (1). Finally, the total strains
follow from (4).
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The general solution found is used to find a numerical solution, assuming that the power laws
shown in (31) are valid. The effect on m-value on the radial and circumferential stresses in an a = 0.3
disc at ν = 0.3, n = 0.3, and ρc = 0.8 is illustrated in Figures 1 and 2, respectively. The corresponding
values of the external pressure are depicted in Table 1. It is seen from these figures that this effect
is quite significant, especially on the circumferential stress. The associated distribution of strains is
illustrated in Figures 3–5 (the radial strain is depicted in Figure 3, the circumferential strain in Figure 4
and the axial strain in Figure 5). The effect of m-value on these distributions is not so pronounced as
compared to the stress distributions. This is associated with the imposed condition that ρc = 0.8 in
all cases. If the value of p f were fixed, then the effect of m-value on the strain distributions would be
more significant as compared to its effect on the stress distribution. In particular, it is seen from Table 1
that the value of p f is quite sensitive to the value of m.

Residual stress and strain fields after purely elastic unloading are also obtained.
These distributions are given by Equations (28) and (30). The validity of the pure elastic solution
at unloading should be verified by means of Equation (29). The distribution of residual radial and
circumferential stresses is illustrated in Figures 6 and 7, respectively. As in the case of the stress
distributions at the end of loading, the effect of m-value is most significant on the circumferential stress.
The effect of this value on the distribution of the residual radial strain is small (Figure 8). It is moderate
in the case of the residual circumferential strain (Figure 9) and large in the case of the residual axial
strain (Figure 10).

9. Conclusions

Stress and strain fields in an elastic/plastic functionally graded annular disc of constant thickness
subject to external pressure are obtained under plane stress conditions. Residual stress and strain
fields after purely elastic unloading are also obtained. From this work, the following conclusions can
be drawn.

1. A remarkable feature of the strain solution is that the equations in (18), which are derived from
the associated flow rule written in terms of plastic strain rates, can be immediately integrated
with respect to the time to result in the equations in terms of plastic strains (Equation (20)).
This significantly facilitates the solution.

2. Another remarkable feature of the strain solution is that all strain components are proportional to
k introduced in (9). Therefore, simple scaling of any strain solution provides the strain solution
for similar discs of material with the same other properties and geometry, but any value of k.

3. In the case of the stress solution, the effect of m-value involved in (31) is most significant on the
distribution of the circumferential stress and the residual circumferential stress.

4. In the case of the strain solution, the effect of m-value is most significant on the distribution of
the axial strain and the residual axial strain.

The method used in the present paper is a generalization of the method developed in [31] for
homogeneous discs. It is evident from the solutions provided in [31] that the method can be more
successfully adopted for disc subject to other loading conditions than those used in the present
paper. In particular, the basic equations derived are independent of boundary conditions. Therefore,
the solution of these equations used in conjunction with any other boundary conditions (of course,
the boundary value problem should be axisymmetric) supplies the distribution of stress and strain.
This will be the subject of a subsequent investigation.
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Abstract: The material considered in this study not only has a functionally graded characteristic
but also exhibits different tensile and compressive moduli of elasticity. One-dimensional and
two-dimensional mechanical models for a functionally graded beam with a bimodular effect
were established first. By taking the grade function as an exponential expression, the analytical
solutions of a bimodular functionally graded beam under pure bending and lateral-force bending
were obtained. The regression from a two-dimensional solution to a one-dimensional solution
is verified. The physical quantities in a bimodular functionally graded beam are compared with
their counterparts in a classical problem and a functionally graded beam without a bimodular effect.
The validity of the plane section assumption under pure bending and lateral-force bending is analyzed.
Three typical cases that the tensile modulus is greater than, equal to, or less than the compressive
modulus are discussed. The result indicates that due to the introduction of the bimodular functionally
graded effect of the materials, the maximum tensile and compressive bending stresses may not take
place at the bottom and top of the beam. The real location at which the maximum bending stress
takes place is determined via the extreme condition for the analytical solution.

Keywords: functionally graded beams; different moduli in tension and compression; bimodulus;
analytical solution; neutral layer

1. Introduction

Most materials may exhibit different elastic responses in a state of tension and compression,
but these characteristics are often neglected due to the complexity of their analysis. Materials that
have apparently different moduli in tension and compression are known as bimodular materials [1],
for example, ceramics, graphite, concrete, and some biological materials (nacre, for example [2]).
During recent decades, many studies have described useful material models for studying bimodular
materials. One is Bert’s model [3] based on the criterion of positive-negative signs of the strains
in longitudinal fibers. This model is widely used in laminated composites [4–8]. Another is
Ambartsumyan’s bimodular model [9] for isotropic materials, which has attracted the most attention in
the engineering community. This model assesses different moduli in terms of tension and compression
based on the positive-negative signs of principal stresses, which is especially important for the
analysis and design of structures. It is well-known that the cracking direction of a concrete beam is
always normal to the direction of principal tensile stresses in the beam. The difficulty in applying
Ambartsumyan’s bimodular model is that the stress state of a point must be known in advance.
However, with the exception of some fundamental problems, we must resort to finite element analysis
to acquire the states of the stresses in a structure [10–14].

Materials 2018, 11, 830; doi:10.3390/ma11050830 www.mdpi.com/journal/materials44
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In addition to the bimodular effect in materials, it is also interesting to consider the functionally
graded characteristic of materials. Functionally graded materials (FGMs) possess properties that
vary gradually with the location within the material. The use of FGMs has many advantages in
aerospace, automotive, and biomedical applications. There are many approximations that may be
used to model the variation of properties in FGMs. One is the exponential variation, where the elastic
constants vary according to the form of the exponential function. Many researchers have found this
functional form to be convenient in solving elasticity problems. Sankar [15] obtained an elasticity
solution for a functionally graded beam subjected to transverse loads in which the Young’s modulus is
assumed to vary exponentially through the thickness and the Poisson ratio is held constant. Sankar and
co-workers studied the relative issues of functionally graded beams, including thermal stresses [16],
a sandwich beam with a functionally graded core [17], and a combined Fourier series–Galerkin
method [18]. Without specifying the gradient variations of a material property, Zhong and co-workers
presented a general solution of a functionally graded beam by the Airy stress function method [19]
and a displacement function approach [20]. Daouadji et al. [21] employed the stress function approach
to study the problem of a functionally graded cantilever beam subjected to a linearly distributed load,
in which the Young’s modulus along the thickness direction varies with power-law functions or with
exponential functions. Considering that there are many research works in this field, we do not review
them in detail.

Recently, analytical studies of bimodular beams and plates have been performed. Among these
works, the determination of the unknown neutral layer is a key issue because it opens up the possibility
for the establishment of a mechanical model based on a subarea in tension and compression. Under the
assumption that shearing stresses have no contribution to the neutral axis, Yao and Ye [22] obtained
a one-dimensional analytical solution of a bimodular shallow beam. He et al. adopted the stress
function method to find the elasticity solution of a bimodular straight beam [23] and curved beams [24].
Later, the classical Kirchhoff hypothesis was used to assess the existence of the elastic neutral layers of
a thin plate during bending with a small deflection [25]. Consequently, a series of analytical solutions
of plates is derived in rectangular and polar coordinate systems. More recently, He et al. [26] presented
an elasticity solution of a bimodular FGM beam under uniformly distributed loads and discussed
several concrete numerical examples. However, some basic problems are still unclear, which include
the consistency between a one-dimensional solution and a two-dimensional solution, the validity of
the plane section assumption, the corresponding relation among a classical beam, a standard FGM
beam, and a bimodular FGM beam, as well as the bimodular effect on stresses and deformations in
a general sense.

In this study, we will adopt a bimodular FGM beam theory to derive the one-dimensional and
two-dimensional solutions. Theoretically speaking, any FGM beams may be suitable for this theory
provided that the bimodular effect in tension and compression needs to be emphasized for a refined
analysis; or, in other words, a certain constituent that forms functionally graded materials presents
a relatively obvious bimodular effect which can not be ignored otherwise it will introduce much error
into the analysis. The article is organized as follows. The corresponding analytical solutions under
pure bending and lateral-force bending will be obtained in Sections 2 and 3, respectively. Specifically,
a perturbation method is adopted to solve the transcendental equation for the determination of the
unknown neutral layer. The validity of the plane section assumption is discussed and some important
physical quantities among a classical beam, a standard FGM beam, and a bimodular FGM beam are
compared in Section 4. Besides this, without specifying the real magnitude of the external load and the
geometrical dimension of the beam, the bimodular effect on the stress and deformation in a general
sense will be investigated in Section 4. Some important conclusions and subsequent studies are given
in the concluding remarks.
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2. Functionally Graded Beams under Pure Bending

2.1. One-Dimensional Solution

2.1.1. Bending Stress

A bimodular functionally graded beam with a rectangular section dimension of h × b is subjected
to a bending moment M alone as shown in Figure 1. This causes a bending of the beam in the plane
coordinate system xoz. Note that due to the introduction of the bimodular effect in tension and
compression as well as the functionally graded characteristic of the material, the neutral layer of
the beam generally does not locate on the half height of the section. The x axis is established on the
unknown neutral layer as shown in Figure 1. It is obvious that the zone below the neutral layer is in
tension while the zone up the layer is in compression. Let the tensile and compressive section heights
of the beam be h1 and h2, respectively. Also, let the modulus of elasticity of the material in the tensile
and compressive zones be E+(z) and E−(z), respectively, while the Poisson’s ratios remain the same.

Figure 1. Scheme of a bimodular functionally graded material (FGM) beam under pure bending.

If an exponential function is used to express the function grade of the material, E+(z) and E−(z)
may be expressed as

E+(z) = E0eα1z/h, E−(z) = E0eα2z/h, (1)

where α1 and α2 are two grade indexes. E+(z) = E−(z) = E0 when z = 0, that is, at the neutral layer
the tensile modulus is equal to the compressive one. Let the curvature radius of the neutral layer be ρ;
then, the bending strain along the x axis in the whole beam will be the uniform expression εx = z/ρ

if the plane section assumption holds. Thus, according to Ambartsumyan’s bimodular model the
bending stress in the tensile and compressive zones, σ+

x and σ−
x , are also the tensile and compressive

principal stress and they are, respectively,

σ+
x =

E+(z)
ρ

z, for 0 ≤ z ≤ h1, (2)

and

σ−
x =

E−(z)
ρ

z, for − h2 ≤ z ≤ 0. (3)

Let the normal resultant at any section be N, thus N = 0 yields

∫ h1

0
σ+

x bdz +
∫ 0

−h2

σ−
x bdz = 0. (4)
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Substituting Equations (2) and (3) into Equation (4), we have

∫ h1

0

E0eα1z/hzb
ρ

dz +
∫ 0

−h2

E0eα2z/hzb
ρ

dz = 0. (5)

If we let ∫ h1
0 eα1z/hzdz =

(
hh1
α1

− h2

α2
1

)
eα1h1/h + h2

α2
1
= A+

1∫ 0
−h2

eα2z/hzdz =

(
hh2
α2

+ h2

α2
2

)
e−α2h2/h − h2

α2
2
= A−

1

, (6)

Equation (4) will lead to the following relation

A+
1 + A−

1 = 0, (7)

which is used for the determination of the unknown neutral layer later.
Similarly, the bending moment at any section will give

∫ h1

0
σ+

x bzdz +
∫ 0

−h2

σ−
x bzdz = M. (8)

Substituting Equations (2) and (3) into Equation (8), we have

∫ h1

0

E0eα1z/hz2b
ρ

dz +
∫ 0

−h2

E0eα2z/hz2b
ρ

dz = M. (9)

If we let ∫ h1
0 eα1z/hz2dz =

(
hh2

1
α1

− 2 h2h1
α2

1
+ 2 h3

α3
1

)
eα1h1/h − 2 h3

α3
1
= A+

2∫ 0
−h2

eα2z/hz2dz = −
(

hh2
2

α2
+ 2 h2h2

α2
2

+ 2 h3

α3
2

)
e−α2h2/h + 2 h3

α3
2
= A−

2

, (10)

Equation (8) will yield
1
ρ
=

M
E0b(A+

2 + A−
2 )

. (11)

If D∗ is introduced to denote the flexural stiffness of the bimodular functionally graded beam,
that is,

D∗ = E0b(A+
2 + A−

2 ), (12)

the deformation of the beam will follow the familiar form

1
ρ
=

M
D∗ . (13)

Substituting the relation (11) into Equations (2) and (3), we obtain the one-dimensional solution
of the bending stress in the tensile and compressive zones, respectively,

σ+
x =

Meα1z/hz
b(A+

2 + A−
2 )

, for 0 ≤ z ≤ h1, (14)

and

σ−
x =

Meα2z/hz
b(A+

2 + A−
2 )

, for − h2 ≤ z ≤ 0. (15)

It should be noted here that due to this being the pure bending case, only the bending stress may
be obtained and the shearing stress can be derived in the lateral-force bending case, which will be
discussed in Section 3.
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2.1.2. Deflection Curve

Let the vertical displacement of any point on the neutral layer be w; then, Equation (11) may be
expressed in terms of the second-order derivative of w to x as follows

1
ρ
= −d2w

dx2 =
M

E0b(A+
2 + A−

2 )
. (16)

Integrating twice with respect to x, we have

w = − Mx2

2E0b(A+
2 + A−

2 )
+ cx + d, (17)

where c and d are two undetermined constants. If a simply-supported beam is considered, the boundary
conditions give

w = 0, while x = 0 or l, (18)

where l is the span length of the beam. Thus, the deflection curve of the neutral axis is

w =
M(l − x)x

2E0b(A+
2 + A−

2 )
. (19)

If a cantilever beam with the right end fixed is considered, as shown in Figure 1, the displacement
restriction is

w =
dw
dx

= 0, while x = l, (20)

and the deflection curve of the neutral axis will be

w = − M(x − l)2

2E0b(A+
2 + A−

2 )
. (21)

2.1.3. Determination of the Neutral Layer

It should be noted here that the two important parameters h1 and h2 have still not been determined.
From Equations (6) and (7), we may have(

h1

α1
− h

α2
1

)
eα1h1/h +

(
h2

α2
+

h
α2

2

)
e−α2h2/h =

h
α2

2
− h

α2
1

, (22)

where α1 and α2 are two indexes concerning the grade function as indicated above. If we introduce the
following dimensionless variables

H1 =
h1

h
, H2 =

h2

h
, (23)

and also multiply the two ends of the equation by α2
1α2

2, Equation (22) may be transformed into
a dimensionless form, such that

(α1H1 − 1)α2
2eα1 H1 + (α2H2 + 1)α2

1e−α2 H2 = α2
1 − α2

2, (24)

in which H1 and H2 are the basic variables and satisfy H1 + H2 = 1. It is a transcendental equation and
is hard to solve analytically to some extent due to the existence of an exponential function. Next, we will
adopt the perturbation idea to solve the transcendental equation.
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The exponential items eα1 H1 and e−α2 H2 may be spread with respect to H1 and H2, respectively,

eα1 H1 = 1 + α1H1 +
1
2 α2

1H2
1 + · · ·+ 1

n! (α1H1)
n + · · · ,

e−α2 H2 = 1 − α2H2 +
1
2 α2

2H2
2 + · · ·+ 1

n! (−α2H2)
n + · · · .

(25)

If the linear approximation is adopted, such that

eα1 H1 = 1 + α1H1, e−α2 H2 = 1 − α2H2, (26)

substituting it into Equation (24) will yield

H1 = H2 =
1
2

, (27)

which is exactly the solution of a classical problem without considering the functionally graded
property and bimodular effect of the material. We call it the first-order approximation solution of the
problem. If the second-order approximation is adopted, such that

eα1 H1 = 1 + α1H1 +
1
2

α2
1H2

1 , e−α2 H2 = 1 − α2H2 +
1
2

α2
2H2

2 , (28)

substituting it into Equation (24) and considering H2 = 1 − H1 yields

(α1 − α2)H3
1 + 3α2H2

1 + (2 − 3α2)H1 + α2 − 1 = 0, (29)

which is an algebra equation of H1 and is easily solved either by an analytical method or by a numerical
technique once the numerical values of α1 and α2 are known. The solution of Equation (29) may be
called the second-order approximation solution. Similarly, if more items in Equation (25) are taken,
we will obtain a high-order approximation solution according to the procedure indicated above.
Thus, based on the perturbation idea, the transcendental equation may be gradually transformed
into a nonlinear algebra equation of H1 and the position of the unknown neutral layer is determined
analytically.

2.2. Two-Dimensional Solution

2.2.1. Stress

Let the stress components in the two-dimensional beam problem shown in Figure 1 be σx,
σz, and τxz, let the strain components be εx, εz, and γxz, and also let the displacement components
in the same problem be u and w. Then, in the differential equation of equilibrium in which the body
forces are neglected, the geometrical relation as well as the consistency equation are the same as those
in the classical problem, and they are, respectively,

∂σx

∂x
+

∂τxz

∂z
= 0,

∂τzx

∂x
+

∂σx

∂z
= 0, (30)

and {
εx = ∂u

∂x , εz =
∂w
∂z , γxz =

∂w
∂x + ∂u

∂z
∂2εx
∂z2 + ∂2εz

∂x2 = ∂2γxz
∂x∂z

. (31)

The physical equation gives ⎧⎪⎨
⎪⎩

εx = s11σx + s13σz

εz = s13σx + s33σz

γzx = s44τzx

. (32)
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After considering the different moduli in tension and compression as well as the functional grade
of the material, the physical equation may take the following form

⎧⎪⎪⎨
⎪⎪⎩

ε+/−
x = 1

E0eαi z/h (σ
+/−
x − μσ+/−

z )

ε+/−
z = 1

E0eαi z/h (σ
+/−
z − μσ+/−

x )

γ+/−
zx = 2(1+μ)

E0eαi z/h τ+/−
zx

, (33)

where a superscript “+/−” denotes a tensile (compressive) quantity and αi(i = 1, 2) correspond to
the cases of tension and compression, respectively. Equation (33) is in essence two sets of equations
concerning tension and compression.

Next, the stress function method will be adopted to obtain the solution of this two-dimensional
problem. Due to pure bending, here we still consider that the stress function ϕ+/−(x, z) depends only
on z, that is

ϕ+/−(x, z) = f+/−(z), (34)

where f+/−(z) is an unknown function and “+/−” still denotes a tensile (compressive) quantity.
According to the relation between the stress function and the stress components,

σ+/−
x =

∂2 ϕ+/−

∂z2 , σ+/−
z =

∂2 ϕ+/−

∂x2 , τ+/−
xz = −∂2 ϕ+/−

∂x∂z
. (35)

Equation (33) may be changed as

⎧⎪⎪⎨
⎪⎪⎩

ε+/−
x = 1

E0eαi z/h
d2 f+/−(z)

dz2

ε+/−
z = −μ

E0eαi z/h
d2 f+/−(z)

dz2

γ+/−
zx = 0

. (36)

Letting Equation (36) satisfy the consistency relation, we obtain

d2

dz2

[
1

E0eαiz/h
d2 f+/−(z)

dz2

]
= 0. (37)

Integrating twice with respect to z, we have

d2 f+/−(z)
dz2 = (C+/−

1 z + C+/−
2 )E0eαiz/h, (38)

where C+/−
1 and C+/−

2 are four undetermined constants. Continuously integrating with respect to z,
we obtain

f+/−(z) =
(

z − 2h
αi

)
E0C+/−

1 h2eαiz/h

α2
i

+
E0C+/−

2 h2eαiz/h

α2
i

+ C+/−
3 z + C+/−

4 , (39)

where C+/−
3 and C+/−

4 are four undetermined constants and may be neglected. The stress function is
simplified as

ϕ+/−(x, z) =
(

z − 2h
αi

)
E0C+/−

1 h2eαiz/h

α2
i

+
E0C+/−

2 h2eαiz/h

α2
i

. (40)

Correspondingly, the stress expressions are

σ+/−
x = (C+/−

1 z + C+/−
2 )E0eαiz/h, σ+/−

z = 0, τ+/−
zx = 0. (41)
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Next, we will use the boundary conditions as well as the continuity condition of stress to determine
the four unknown constants C+/−

1 and C+/−
2 .

First, the continuity conditions of the stresses on the neutral layer give

σ+
x = σ−

x = 0, σ+
z = σ−

z , τ+
xz = τ−

xz at z = 0. (42)

According to Equation (41), it is easily found that the last two conditions are surely satisfied and
the first condition yields

C+
2 = C−

2 = 0. (43)

The stress boundary conditions on the two main sides of the beam are, respectively,{
σ+

z = 0, τ+
xz = 0 at z = h1

σ−
z = 0, τ−

xz = 0 at z = −h2
, (44)

which are surely satisfied due to pure bending. At the left end of the beam, the application of
Saint-Venant’s Principle gives⎧⎪⎪⎨

⎪⎪⎩
∫ h1

0 σ+
x bdz +

∫ 0
−h2

σ−
x bdz = 0,∫ h1

0 σ+
x zbdz +

∫ 0
−h2

σ−
x zbdz = M∫ h1

0 τ+
xzbdz +

∫ 0
−h2

τ−
xzbdz = 0,

, at x = 0. (45)

It is easily found that the last condition is satisfied and the first two conditions will
yield, respectively,

C+
1

∫ h1

0
zeα1z/hdz + C−

1

∫ 0

−h2

zeα2z/hdz = 0, (46)

and

C+
1

∫ h1

0
z2eα1z/hdz + C−

1

∫ 0

−h2

z2eα2z/hdz =
M

E0b
. (47)

Considering the Equations (6), (7), and (10), we solve

C+
1 = C−

1 =
M

E0b(A+
2 + A−

2 )
. (48)

Thus, the final stress components are

σ+/−
x =

M
b(A+

2 + A−
2 )

zeαiz/h, σ+/−
z = 0, τ+/−

zx = 0, (49)

which is the same as the one-dimensional solution obtained in Section 2.1.1.

2.2.2. Displacement

After the determination of the stress components, the combination of the physical equations and
the geometrical equations will give⎧⎪⎪⎨

⎪⎪⎩
ε+/−

x = M
E0b(A+

2 +A−
2 )

z = ∂u
∂x

ε+/−
z = −μM

E0b(A+
2 +A−

2 )
z = ∂w

∂z

γ+/−
zx = 0 = ∂u

∂z + ∂w
∂x

. (50)
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Integrating the first two expressions with respect to x and z, we have, respectively,

u =
M

E0b(A+
2 + A−

2 )
zx + g1(z), (51)

and
w =

−μM
2E0b(A+

2 + A−
2 )

z2 + g2(x), (52)

where g1(z) and g2(x) are two undermined functions. Substituting u and w into the third expression
in Equation (50), we have

M
E0b(A+

2 + A−
2 )

x +
dg2(x)

dx
= −dg1(z)

dz
= a, (53)

where a is a rigid displacement item. Integrating the above expression with respect to z and x, we have,
respectively,

g1(z) = −az + c, (54)

and
g2(x) = − M

2E0b(A+
2 + A−

2 )
x2 + ax + d, (55)

where and d are still rigid displacement items. Now, the displacement may be expressed as

u =
M

E0b(A+
2 + A−

2 )
zx − az + c, (56)

and
w = − M

2E0b(A+
2 + A−

2 )
(x2 + μz2) + ax + d. (57)

If we consider here a simply-supported beam, the corresponding boundary conditions give{
u = w = 0, while x = 0, z = 0
w = 0, while x = l, z = 0

, (58)

where l is the span length of the beam. Thus, the last displacement components are⎧⎨
⎩

u(x, z) = M
2E0b(A+

2 +A−
2 )
(2x − l)z

w(x, z) = − M
2E0b(A+

2 +A−
2 )
(x2 + μz2 − lx)

. (59)

The deflection curve of the neutral layer may be obtained by w(x, z)|z=0, which is the same as the
one-dimensional solution, i.e., Equation (19). If a cantilever beam with the right end fixed is considered,
the restriction conditions yield

u = w =
∂w
∂x

= 0, while x = l, z = 0, (60)

the last displacement components will be⎧⎨
⎩

u(x, z) = M
E0b(A+

2 +A−
2 )
(x − l)z

w(x, z) = − M
2E0b(A+

2 +A−
2 )
(x2 + μz2 − 2lx + l2)

. (61)

Similarly, the deflection curve of the neutral layer is consistent with the result presented in
Equation (21).
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3. Bimodular Functionally Graded Beams under Latera-Force Bending

Let us consider the lateral-force bending problem of a bimodular functionally graded beam,
as shown in Figure 2, in which the left end of the beam is subjected to the action of a concentrated
force P and the right end is fixed. Due to the combined action of the bending moment and the shearing
force, any point in the beam is in diagonal tension or diagonal compression; so, it is very difficult to
determine the position and shape of the unknown neutral layer if the constitutive law defined in the
principal stress direction is strictly followed. For this purpose, an important assumption that shearing
stresses have no contribution to the neutral axis [22] is used to establish the simplified mechanical
model. In the light of the assumption, the beam will deflect and develop a so-called tensile zone
and compressive zone under the external load. The tension and compression of any point in the
beam depend only on the direction of the bending stress and are independent of the shearing stress.
Thus, similar to the case of pure bending shown in Figure 1, the mechanical model based on a subarea
in tension and compression is still established in the case of lateral-force bending as shown in Figure 2.
The basic equations of the problem are the same as those in Section 2.2.1, that is, Equations (30)–(33).
According to the loading conditions, the stress function may be assumed to be

ϕ+/− = x f+/−(z), (62)

where f+/−(z) is an unknown function, and it may be determined by satisfying the consistency
relation. The strain components expressed in term of f+/−(z) are

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε+/−
x = x

E0eαi z/h
d2 f+/−(z)

dz2

ε+/−
z = −μx

E0eαi z/h
d2 f+/−(z)

dz2

γ+/−
zx = −2(1+μ)

E0eαi z/h
d f+/−(z)

dz

. (63)

Figure 2. Scheme of a bimodular FGM beam under lateral-force bending.

Satisfying the consistency relation for any x gives

d2

dz2

[
1

E0eαiz/h
d2 f+/−(z)

dz2

]
= 0. (64)

Continuously integrating with respect to z, we have

f+/−(z) =
(

z − 2h
αi

)
E0C+/−

1 h2eαiz/h

α2
i

+
E0C+/−

2 h2eαiz/h

α2
i

+ C+/−
3 z, (65)
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where C+/−
1 , C+/−

2 and C+/−
3 are six undetermined constants; the constant item has been neglected.

Thus, the stress function now has the following form

ϕ+/− = x

[(
z − 2h

αi

)
E0C+/−

1 h2eαiz/h

α2
i

+
E0C+/−

2 h2eαiz/h

α2
i

+ C+/−
3 z

]
. (66)

The stress components expressed in terms of the undetermined constants are⎧⎨
⎩

σ+/−
x = x(C+/−

1 z + C+/−
2 )E0eαiz/h, σ+/−

z = 0

τ+/−
zx = −(αiz − h) E0C+/−

1 heαi z/h

α2
i

− E0C+/−
2 heαi z/h

αi
− C+/−

3
. (67)

The continuity conditions of the stresses on the neutral layer under lateral-force bending are the
same as those under pure bending; thus, applying Equation (42) yields

C+
2 = C−

2 = 0, (68)

and
E0C+

1 h2

α2
1

− C+
3 =

E0C−
1 h2

α2
2

− C−
3 . (69)

Similarly, the stress boundary conditions on the two main sides of the beam are the same as those
in Equation (44). Satisfying the conditions in the tensile and compressive zones yields, respectively,

τ+
zx = −(α1h1 − h)

E0C+
1 heα1h1/h

α2
1

− C+
3 = 0, (70)

and

τ−
zx = −(−α2h2 − h)

E0C−
1 he−α2h2/h

α2
2

− C−
3 = 0. (71)

At the left end of the beam, the application of Saint-Venant’s Principle gives⎧⎪⎪⎨
⎪⎪⎩
∫ h1

0 σ+
x bdz +

∫ 0
−h2

σ−
x bdz = 0,∫ h1

0 σ+
x zbdz +

∫ 0
−h2

σ−
x zbdz = 0∫ h1

0 τ+
xzbdz +

∫ 0
−h2

τ−
xzbdz = P,

, at x = 0. (72)

It is easily found that the first two conditions are satisfied and the last condition gives

∫ h1

0

[
(α1z − h)

E0C+
1 heα1z/h

α2
1

+ C+
3

]
dz +

∫ 0

−h2

[
(α2z − h)

E0C−
1 heα2z/h

α2
2

+ C−
3

]
dz = −P

b
. (73)

Equations (69), (70), (71), and (73) may be used for the solution of C+/−
1 and C+/−

3 .
First, substituting Equations (70) and (71) into Equation (69) and also considering A+

1 and A+
1

introduced beforehand, we have a simple expression

A+
1 C+

1 + A−
1 C−

1 = 0, (74)

which gives C+
1 = C−

1 due to A+
1 + A−

1 = 0. Second, integrating Equation (73), substituting Equations
(70) and (71) into it, and also considering A+

2 and A−
2 introduced beforehand, Equation (73) may be

simplified as

A+
2 C+

1 + A−
2 C−

1 =
P

E0b
. (75)

54



Materials 2018, 11, 830

Combining Equations (74) and (75) will solve C+
1 and C−

1 , and substituting them into
Equations (70) and (71), we finally obtain⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C+
1 = C−

1 = P
E0b(A+

2 +A−
2 )

C+
3 = Peα1h1/h

b(A+
2 +A−

2 )

(
h2

α2
1
− hh1

α1

)
,

C−
3 = Pe−α2h2/h

b(A+
2 +A−

2 )

(
h2

α2
2
+ hh2

α2

) (76)

Substituting the determined C+/−
1 , C+/−

2 and C+/−
3 into Equation (67), the stress components are

obtained as follows⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σ+/−
x = Px

b(A+
2 +A−

2 )
zeαiz/h, σ+/−

z = 0

τ+
zx = P

b(A+
2 +A−

2 )

[(
h2

α2
1
− hz

α1

)
eα1z/h −

(
h2

α2
1
− hh1

α1

)
eα1h1/h

]
τ−

zx = P
b(A+

2 +A−
2 )

[(
h2

α2
2
− hz

α2

)
eα2z/h −

(
h2

α2
2
+ hh2

α2

)
e−α2h2/h

] . (77)

It is easily found that the item Px in σ+/−
x is exactly the magnitude of the bending moment, which

is consistent with Equations (14) and (15).
By use of the physical equation and the geometrical equation, the displacement components may

be determined as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u+ =
P[(1+μ)h(12hα1z−6α2

1z2)+μα3
1z3+3α3

1x2z+12(1+μ)h2eα1(h1−z)/h(h−h1α1)]

6E0bα3
1(A+

2 +A−
2 )

− a+z − c+

u− =
P[(1+μ)h(12hα2z−6α2

2z2)+μα3
2z3+3α3

2x2z+12(1+μ)h2e−α2(h2+z)/h(h+h2α2)]

6E0bα3
2(A+

2 +A−
2 )

− a−z − c−

w+/− = P
6E0b(A+

2 +A−
2 )
(−3μxz2 − x3) + a+/−x + d+/−

, (78)

where a, d, and c are the items concerning rigid displacement. Using the boundary condition u = w =

∂w/∂x = 0 at x = l, z = 0, we have⎧⎨
⎩

a+/− = Pl2

2E0b(A+
2 +A−

2 )
, d+/− = − Pl3

3E0b(A+
2 +A−

2 )
,

c+ = 2(1+μ)h2(h−h1α1)Peα1h1/h

E0bα3
1(A+

2 +A−
2 )

, c− = 2(1+μ)h2(h+h2α2)Pe−α2h2/h

E0bα3
2(A+

2 +A−
2 )

. (79)

Thus, the final displacements are determined.

4. Results and Discussions

4.1. Comparision among Three Types of Beam

As indicated before, the material considered in this study not only has a functionally graded
characteristic but also presents different mechanical properties in tension and compression. It is
valuable to compare physical quantities in a bimodular FGM beam and a standard FGM beam
(without bimodular effect) with their counterparts in a classical problem. We should note that
in a classical problem, there is no variation of material properties along the thickness direction;
thus, the relevant integrals are usually done over the whole section height. The comparisons among
the three types of beams are listed in Table 1. It is easily found that when the grade indexes α1 = α2,
the quantities in a bimodular FGM beam regress to the corresponding quantities in a standard FGM
beam; when α1 = α2 = 0, the regression continues up to the classical problem.
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Table 1. Comparisons among a classical beam, an FGM beam, and a bimodular FGM beam.

Quantities A Classical Beam A FGM Beam A Bimodular FGM Beam

Modulus of elasticity

E E = Const. E(z) = E0eαz/h E+(z) = E0eα1z/h, E−(z) = E0eα2z/h

Moment of inertia

Iy bh3

12

∫
A eαz/hz2dA

∫ h1
0 eα1z/hz2bdz +

∫ 0
−h2

eα2z/hz2bdz
= b(A+

2 + A−
2 )

Bending stiffness

D EIy E0
∫

A eαz/hz2dA E0b(A+
2 + A−

2 )

Curvature

1
ρ

M
EIy

M
E0
∫

A eαz/hz2dA
M

E0b(A+
2 +A−

2 )

Bending stress

σx
M
Iy

z Mz∫
A eαz/hz2dA

σ+
x = M

b(A+
2 +A−

2 )
zeα1z/h

σ−
x = M

b(A+
2 +A−

2 )
zeα2z/h

Static moment when computing shearing stress

Sy
b
2

(
h2

4 − z2
) ∫

A eαz/hzdA

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

S+ =
∫ h1

z ea1z/hzbdz for 0 ≤ z ≤ h1

= b
[(

h2

a2
1
− hz

a1

)
ea1z/h −

(
h2

a2
1
− hh1

a1

)
ea1h1/h

]
S− =

∫ −h1
z ea2z/hzbdz for − h2 ≤ z ≤ 0

= b
[(

h2

a2
2
− hz

a2

)
ea2z/h −

(
h2

a2
2
+ hh2

a2

)
ea2h2/h

]
Shearing stress

τxz
PSy
Iyb

P
∫

A eαz/hzdA
b
∫

A eαz/hz2dA

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τ+
zx = for 0 ≤ z ≤ h1

P
b(A+

2 +A−
2 )

[(
h2

a2
1
− hz

a1

)
ea1z/h −

(
h2

a2
1
− hh1

a1

)
ea1h1/h

]
,

τ+
zx = for − h2 ≤ z ≤ 0

P
b(A+

2 +A−
2 )

[(
h2

a2
2
− hz

a2

)
ea2z/h −

(
h2

a2
2
− hh2

a2

)
ea2h2/h

]
,

4.2. Plane Section Assumption

For the pure bending problem, the rotation of a vertical element of the cross section, β, may be
obtained from Equation (61),

β =
∂u
∂z

=
M

E0b(A+
2 + A−

2 )
(x − l). (80)

It is obvious that the rotation is not dependent on z, which shows that for the pure bending
problem, the plane section assumption is surely satisfied. However, for the lateral-force bending
problem, the rotation may be obtained from Equation (78), respectively, for the tensile area

β = ∂u+

∂z =
P[(1+μ)h(12hα1−12α2

1z)+3μα3
1z2+3α3

1x2−12(1+μ)α1heα1(h1−z)/h(h−h1α1)]

6E0bα3
1(A+

2 +A−
2 )

− a+, (81)

and for the compressive area

β = ∂u−
∂z =

P[(1+μ)h(12hα2−12α2
2z)+3μα3

2z2+3α3
2x2−12(1+μ)α2he−α2(h2+z)/h(h+h2α2)]

6E0bα3
2(A+

2 +A−
2 )

− a−. (82)

It is readily seen that the rotation is now the function of z. This means that on any cross section,
a vertical element under bending will deviate from the original vertical direction and the deviated
value varies with the distance from the neutral layer, i.e., z. Consequently, for the lateral-force
bending problem the plane section assumption no longer holds. Moreover, unlike the pure bending
problem, the rotation will not continuously develop at the neutral layer due to the difference in tension
and compression.
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4.3. Bimodular Effect on Stress and Displacement

The bimodular effect on stress and displacement may be analyzed by the use of the analytical
results obtained. To avoid the inconvenience introduced by the dimension of physical quantities,
besides Equation (23), we adopt the following dimensionless manner:

m = M
E0h3 , p = P

E0h2 , a =
A+

2 +A−
2

h3 , ζ = z
h , η = x

l ,

s+/− = σ+/−
x b
E0h , t+/− = τ+/−

zx b
E0h , u∗ = ub

l2 , w∗ = wb
l2 ,

. (83)

The two-dimensional solution for stress and displacement under pure bending,
i.e., Equations (49) and (61), may be changed as, respectively,

s+ =
m
a

ζeα1ζ , for 0 ≤ ζ ≤ H1; s− =
m
a

ζeα2ζ , for − H2 ≤ ζ ≤ 0, (84)

and

u∗ = m
a

h
l
(η − 1)ζ, w∗ = − m

2a
[η2 + μ(

h
l
)

2
ζ2 − 2η + 1]. (85)

The above dimensionless displacement is helpful for analyzing the approximation degree from
a two-dimensional solution to a one-dimensional one. We note that there exists a common factor h/l in
the expressions of u∗ and w∗. If a typical shallow beam is considered here, the ratio of the beam height
to span length will be much less than 1, i.e., h/l 	 1; this makes the magnitude of the u∗ value much
less than the value of w∗. Thus, in one-dimensional beam theory the horizontal displacement u∗ is
generally neglected without much error. On the other hand, if h/l 	 1, also the term (h/l)2 	 1 and
0 < μ < 0.5 for common materials; thus, the second term μ(h/l)2ζ2 in w∗ may be neglected comparing
to other items. This yields

u∗ = 0, w∗ = − m
2a

(η − 1)2, (86)

which is exactly the dimensionless one-dimensional solution for displacement.
Similarly, the two-dimensional solution for stress under lateral-force bending, i.e., Equation (77),

may be changed as

s+ = p
a

l
h ηζeα1ζ , for 0 ≤ ζ ≤ H1; s− = p

a
l
h ηζeα2ζ , for − H2 ≤ ζ ≤ 0 (87)

t+ = p
a

[(
1
α2

1
− ζ

α1

)
eα1ζ −

(
1
α2

1
− H1

α1

)
eα1 H1

]
, for 0 ≤ ζ ≤ H1

t− = p
a

[(
1
α2

2
− ζ

α2

)
eα2ζ −

(
1
α2

2
+ H2

α2

)
e−α2 H2

]
, for − H2 ≤ ζ ≤ 0

. (88)

Considering the characteristics of the grade function E+(ζ) = E0eα1ζ where 0 ≤ ζ ≤ H1 and
E−(ζ) = E0eα2ζ where −H2 ≤ ζ ≤ 0, it is easily found from Figure 3 that if the grade indexes α1 > 0
and α2 > 0, E+(ζ) > E−(ζ) holds; if α1 < 0 and α2 < 0, E+(ζ) < E−(ζ) holds; obviously, α1 = α2 = 0
corresponds to the classical problem. Therefore, 13 representative examples concerning the taken
values of α1 and α2 are selected, including ±0.5, ±1.0, and ±2.0. Some relative parameters, including
H1 and H2 (from Equation (24)) and a (from Equation (83)), are computed and listed in Table 2.
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(a) (b) 

Figure 3. Variation of E(ζ) with the thickness direction. (a) α1 > 0 and α2 > 0; (b) α1 < 0 and α2 < 0.

From Table 2, it is easily found that for E+(ζ) > E−(ζ), as the values of α1 and α2 increase,
the tensile height decreases while the compressive height increases, which means that the neutral axis
is tending downward (see Figures 1 and 2, z axis is down); for E+(ζ) < E−(ζ), as the absolute values
of α1 and α2 increase, the tensile height increases while the compressive height decreases, which means
the neutral axis is tending upward. Besides this, we also note another interesting phenomenon, which
is that due to the characteristic of an exponential function, the heights in tension and compression H1

and H2 are exactly reversed in some cases, including groups (a) and (g), (b) and (h), (c) and (i), and (e)
and (k). For the values of a, they are the same as in the combinations above.

If the midspan displacement (i.e., x = l/2 or η = 0.5) of a beam under pure bending is considered,
u∗ in Equation (85) may be changed as

u∗

m
= − ζ

20a
, (89)

where h/l is taken as 1/10. For the main three types of cases listed in Table 2, i.e., the representative
groups (d), (f), and (j), the varying curves of u∗/m with ζ(= z/h) as well as the deflection curve of
the neutral layer (ζ = 0, see w∗/m in Equation (86)) with η(= x/l) are plotted in Figures 4 and 5,
respectively, in which the solid lines correspond to the case of E+(ζ) > E−(ζ), the dashed
lines correspond to the case of E+(ζ) = E−(ζ), and the dotted lines correspond to the case of
E+(ζ) < E−(ζ).

Table 2. Numerical values of H1, H2, and a in different cases.

Cases Groups ff1 ff2 H1 H2 a

E+(ζ) > E−(ζ)

(a) 1.0 2.0 0.3725 0.6275 0.0560
(b) 2.0 1.0 0.3859 0.6141 0.0836
(c) 1.0 1.0 0.4180 0.5820 0.0762
(d) 1.0 0.5 0.4399 0.5601 0.0872
(e) 0.5 0.5 0.4585 0.5415 0.0815

E+(ζ) = E−(ζ) (f) 0 0 1/2 1/2 1/12

E+(ζ) < E−(ζ)

(g) −2.0 −1.0 0.6275 0.3725 0.0560
(h) −1.0 −2.0 0.6141 0.3859 0.0836
(i) −1.0 −1.0 0.5820 0.4180 0.0762
(j) −1.0 −0.5 0.5638 0.4362 0.0720
(k) −0.5 −0.5 0.5415 0.4585 0.0815

Similarly, we may use the midspan stress formulas (η = 0.5) of a beam under lateral-force bending
to analyze the bimodular effect on the bending stress and shearing stress. Thus, Equation (87) is
changed as

s+

p
=

5
a

ζeα1ζ , for 0 ≤ ζ ≤ H1;
s−

p
=

5
a

ζeα2ζ , for − H2 ≤ ζ ≤ 0 (90)
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where l/h = 10. For the main three cases listed in Table 2, the variation of stresses with ζ(= z/h) are
plotted in Figures 6 and 7, in which the shearing stress curve t/p is directly from Equation (88).

We should note such a fact that since the neutral layer is established on the x axis beforehand,
the dividing line between tension and compression is always on ζ = 0, which may be easily seen from
Figures 4, 6 and 7. Figure 4 shows that the horizontal displacement varies in a linear relation along the
direction of the beam thickness as indicated in Equation (89). The maximum horizontal displacement
takes place at the edge of the compressive area for E+(ζ) > E−(ζ) and at the edge of the tensile area
for E+(ζ) < E−(ζ), while the maximum displacement is equal for E+(ζ) = E−(ζ). Figure 5 shows
that, for any point on the neutral layer, the deflection value when E+(ζ) > E−(ζ) is always less than
the corresponding value when E+(ζ) < E−(ζ).

 

Figure 4. Variation of displacement u∗ at midspan (η = 0.5) with ζ(= z/h) in three cases.

 

Figure 5. Variation of deflection w∗ of the neutral layer (ζ = 0) with η(= x/l) in three cases.
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Figure 6. Variation of bending stress s at midspan (η = 0.5) with ζ(= z/h) in three cases.

 

Figure 7. Variation of shearing stress t with ζ(= z/h) in three cases.

Figure 6 presents a typical exponent relation of bending stress varying along the direction of the
beam thickness. Due to the variation of elastic modulus with the thickness direction, the location at
which the maximum stress takes place may be changed. For E+(ζ) > E−(ζ), the maximum tensile
stress still takes place at the tensile edge of the beam while the maximum compressive stress will
take place on a certain level between the compressive edge and the neutral layer; for E+(ζ) < E−(ζ),
the maximum compressive stress still takes place at the compressive edge of the beam while the
maximum tensile stress will take place on a certain level between the tensile edge and the neutral
layer; for E+(ζ) = E−(ζ), the maximum tensile and compressive stress are equal and take place at
the tensile and compressive edges of the beam, respectively, as we expected. This conclusion may be
proved by the use of the extreme condition for an analytical solution of bending stress. We take the
first-order derivative of bending stress with respect to the thickness direction, z, such that,

∂σ+/−
x
∂z

=
∂

∂z
M(x)

b(A+
2 + A−

2 )
zeαiz/h =

M(x)
b(A+

2 + A−
2 )

(eαiz/h + z
αi
h

eαiz/h), (91)
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where M(x) = M for pure bending and M(x) = Px for lateral bending. Via extreme conditions
∂σ+/−

x /∂z = 0, we have
eαiz/h(1 + z

αi
h
) = 0, (92)

eαiz/h > 0 permanently holds true, we have

z = − h
αi

, (93)

which determines the location at which the maximum tensile or compression stress takes place.
By referring to Figure 3, it is obvious that for E+(ζ) > E−(ζ), the maximum compressive stress
takes place at z = −h/α2; for E+(ζ) < E−(ζ), the maximum tensile stress takes place at z = −h/α1.
This phenomenon is quite different from the classical problem.

For the three cases of different moduli in tension and compression, Figure 7 uniformly indicates
that the maximum shearing stress takes place at the neutral layer (ζ = 0) and takes zero at the top
and bottom of the beam. For E+(ζ) = E−(ζ), the shearing stress in tension and compression is
symmetrical with respect to ζ = 0, while for the other two cases the rule does not hold. Moreover,
the maximum shearing stress in the case of E+(ζ) > E−(ζ) is less than the maximum stress in the case
of E+(ζ) < E−(ζ).

5. Concluding Remarks

In this study, one-dimensional and two-dimensional mechanical models for a functionally graded
beam with different moduli in tension and compression were established. The corresponding analytical
solutions under pure bending and lateral-force bending were obtained. The following three conclusions
can be drawn.

(1) The mechanical models established on the one-dimensional and two-dimensional theory are
consistent; the two-dimensional solution may regress to the corresponding one-dimensional solution.

(2) For pure bending problems, the plane section assumption still holds for a bimodular
functionally graded beam; for lateral-force bending problems, the plane section assumption holds only
in the case of a shallow beam.

(3) The introduction of the bimodular effect and functionally graded characteristic of materials
will change the stress and deformation of the structure to some extent. Specifically, the maximum
bending stress may take place at a certain level between the neutral layer and edge fibers of the beam,
which should be given more attention in the analysis and design of similar structures.

The material considered in this study not only has a functionally graded characteristic but also
exhibits different tensile and compressive moduli of elasticity, which further complicates the analysis
of similar structures made from these materials. It will be worthwhile considering the plate model
adopting classical plate theory for laminate (or higher order theory) to discretize the material properties
along the direction of the plate thickness (or here along the beam height).

Moreover, since beams, plates, and shells can all be attributed to, from the point of view of loading
and deformation, bending elements under external loads, this work may be extended to the static and
dynamic responses of functionally graded beams [27], of functionally graded plates [28], as well as of
functionally graded shells [29], in which the bimodular effect of the materials will be incorporated.
At the same time, this work may also be extended to an investigation on the existing capabilities and
limitations in numerical modeling of fracture problems in functionally graded materials by means of
the well-known finite element code ABAQUS [30]. We will study these interesting issues in the future.
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Abstract: In this study, we obtained an electroelastic solution for functionally graded piezoelectric
circular plates under the action of combined mechanical loads which include the uniformly distributed
loads on the upper surface of the plate and the radial force and bending moment at the periphery of
the plate. All electroelastic materials parameters are assumed to vary according to the same gradient
function along the thickness direction. The influence of different functionally graded parameters on
the elastic displacement and elastic stress, as well as the electric displacement and electric potential,
was discussed by a numerical example. The solution presented in this study is not only applicable to
the case of combined loads, but also to the case of a single mechanical load. In addition, this solution
reflects the influence of the function gradient on the pure piezoelectric plate, which is helpful to the
refined analysis and optimization design of similar structures.

Keywords: functionally graded piezoelectric materials; circular plate; combined mechanical loads;
electroelastic solution

1. Introduction

The concept of functionally graded materials (FGMs) can be traced back to the eighties and
nineties of last century, and at that time, to eliminate interface problems and relieve thermal stress
concentrations in conventional laminated materials, a group of Japanese scientists suggested using
this material as thermal barrier materials for aerospace structural applications and fusion reactors [1].
Generally, FGMs are a kind of inhomogeneous composite from the point of macroscopic view that are
typically made from a mixture of two materials. This mixture can be obtained by gradually changing
the composition of the constituent materials (along the thickness direction of components in most
cases). The characteristics of FGMs vary gradually with the thickness direction within the structure,
which eliminates interface problems, and thus the stress distributions are smooth. Moreover, FGMs
possess many new properties that most traditional laminated materials do not have, which gives the
use of FGMs many advantages in aerospace, automotive, and biomedical applications. During the
past decades, FGMs have received a significant amount of attention from the academic community
and engineering field, and many scholars have carried out research on functionally graded materials
and structures [2–12].

On the other hand, piezoelectric materials have been used extensively in the design of sensors and
actuators due to their high efficiency in electromechanical conversion [13–15]. Piezoelectric sensors
are usually a laminated original made by ceramic slice. However, on this kind of laminated original,
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it is easy to cause stress concentration and promote the growth of interfacial microcracks which
limit the application and development of the piezoelectric original. In order to solve this problem,
functionally graded piezoelectric materials (FGPMs), whose material properties change continuously
in one direction, were developed [16–19]. Because there is no obvious interface in this material,
the damage caused by the stress concentration at the interface can be avoided.

With the increasing application of functionally graded piezoelectric materials, precise
characterization of their mechanical properties is urgently needed. A great deal of research has been
done on the mechanical properties of functionally graded piezoelectric materials. Dineva et al. [20]
evaluated the stress and electric field concentrations around a circular hole in a functionally graded
piezoelectric plane subjected to antiplane elastic SH-wave and in-plane, time-harmonic electric load.
Chen and Ding [21] investigated the bending problem of a simply supported rectangular plate by
introducing two displacement functions and stress functions and combining the state space method.
Zhang et al. [22] studied the behavior of four parallel nonsymmetric permeable cracks with different
lengths in a functionally graded piezoelectric material plane subjected to antiplane shear stress loading
by the Schmidt method. Wu et al. [23] analyzed the electromechanical coupling effect for functionally
graded piezoelectric plates. The coupled static analysis of thermal power and electricity for functionally
graded piezoelectric rectangular plates was carried out by Zhong and Shang [24,25]. Based on the
generalized Mindlin plate theory, Zhu et al. [26] derived the finite element equations of functionally
graded material plates by using the variation principle and investigated and calculated the deflection
and potential of a simply supported functionally graded piezoelectric square plate with linear gradient
under uniformly distributed loads. Lu et al. [27,28] studied the bending problem of a simply supported
functionally gradient piezoelectric plate and a cylindrical plate under mechanical load separately
by using the similar Stroh equation. The exact solution of free vibration of functionally graded
piezoelectric circular plates was studied by Zhang and Zhong [29]. Recently, Liu et al. [30] presented
transient thermal dynamic analysis of stationary cracks in functionally graded piezoelectric materials
based on the extended finite element method (X-FEM). Yu et al. [31] analyzed interfacial dynamic
impermeable cracks in dissimilar piezoelectric materials under coupled electromechanical loading
with the extended finite element method. Given that there are many studies in this field, here we do
not review them in detail.

Among the studies above, we note that since the materials parameters vary with a certain direction
and the electromechanical coupling effect exists, the obtainment of an analytical solution is relatively
difficult. The basic equations of functionally graded piezoelectric structures are generally expressed
in the form of partial differential equations except for the physical equations. The general practice is
still the so-called separation of variables. According to the specific problem, for example, a spatial
axisymmetric deformation problem in [32,33], the unknown stress or displacement function and the
unknown electrical potential function are expressed as a polynomial with respect to two variables, i.e.,
F(r, z) = ∑ rn fn(z), in which r is the radial coordinate and z is the transverse coordinate along the
thickness direction. By continuous substitution and integration, the partial differential equations are
transformed into ordinary differential equations, and the integral constants may be determined
by boundary conditions, thus obtaining the final solution. Besides, to the authors’ knowledge,
the existing work of functionally graded piezoelectric plates focused mostly on the problem of the
plate subjected to a single load, and the problem under the action of combined mechanical loads seems
to be relatively less.

In this study, we will analyze the axisymmetric deformation problem of functionally graded
piezoelectric circular plates under the action of combined mechanical loads (i.e., uniformly distributed
loads on the upper surface of the plate and radial force and bending moment at the periphery of the
plate). The basic equations and their electroelastic solution are presented in Section 2. In Section 3,
the influence of different functionally graded parameters on the elastic displacement and stress, as well
as the electric displacement and electric potential, are discussed by a numerical example. Section 4 is
the concluding remarks.
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2. Basic Equations and Their Electroelastic Solution

Considering a simply supported functionally graded piezoelectric circular plate with radius a
and thickness h, a uniformly distributed load q is applied on the upper surface of the plate and a radial
force N and a bending moment M are applied at the periphery of the plate, as shown in Figure 1.

 

Figure 1. Sketch of a functionally graded piezoelectric circular plate.

Here, we introduce the cylindrical coordinate system (r, θ, z), where the upper and lower surfaces
of the plate are z = −h/2 and z = h/2, respectively, the center of the plate is r = 0, and the periphery
of the plate is r = a. The physical parameters of functionally graded piezoelectric materials are usually
the functions of coordinates, and in many practical situations, the physical parameters change only
in one direction. In this study, we assumed that the material parameters vary according to the same
function along the thickness direction,

cij = c0
ij f (z), eij = e0

ij f (z), λij = λ0
ij f (z), (1)

in which f (z) = eαz/h is the gradient function, α is the functional gradient parameter, cij, eij, λij
are elastic, piezoelectric, and dielectric parameters, respectively, and c0

ij, e0
ij, λ0

ij are the values of the
corresponding material parameters at z = 0. Supposing that the polarization direction is the forward
direction of the z axis, let us take a microelement in the circular plate, and from the balance of the force,
we can obtain

∂σr
∂r + σr−σθ

r + ∂τzr
∂z = 0

∂τrz
∂r + ∂σz

∂z + τrz
r = 0

}
, (2)

in which σr is the radial stress, σθ is the circumferential stress, σz is the stress in the thickness direction,
and τrz, τzr are the tangential stress. The equation of Maxwell electric displacement conservation is

∂Dr

∂r
+

∂Dz

∂z
+

Dr

r
= 0, (3)

in which Dr and Dz are the electric displacement components, respectively. In the cylindrical coordinate
system (r, θ, z), the physical equations of transversely isotropic, functionally graded piezoelectric
materials with the z axis being normal to the plane of isotropy read

σr = c11εr + c12εθ + c13εz − e31Ez

σθ = c12εr + c11εθ + c13εz − e31Ez

σz = c13εr + c13εθ + c33εz − e33Ez

τzr = c44γzr − e15Er

Dr = e15γzr + λ11Er

Dz = e31(εr + εθ) + e33εz + λ33Ez

, (4)

66



Materials 2018, 11, 1168

in which εr, εθ , εz, γzr are strain components, and Er, Ez are the electric field in r and z directions,
respectively. The geometric equations are

εr =
∂ur
∂r , εθ = ur

r
εz =

∂uz
∂z , γrz =

∂uz
∂r + ∂ur

∂z

}
, (5)

in which ur, uz are the displacement in r and z directions, respectively. The relation of electric field and
electric potential is

Er = −∂φ

∂r
, Ez = −∂φ

∂z
, (6)

in which φ is the electric potential. Those equations shown above are the basic equations of the problem
presented here. The boundary conditions, which can be used for the solution of those basic equations,
are shown as follows:

σz = −q, τrz = 0, Dz = 0 at z = −h/2, (7a)

σz = 0, τrz = 0, Dz = 0 at z = h/2, (7b)

N(r) = N, M(r) = M, uz(r, 0) = 0,
∫ h/2

−h/2
Drdz = 0, τrz = 0 at r = a. (7c)

Suppose that [32,33]

ur(r, z) = ru1(z) + r3u3(z)
uz(r, z) = w0(z) + r2w2(z) + r4w4(z)
φ(r, z) = φ0(z) + r2φ2(z) + r4φ4(z)

⎫⎪⎬
⎪⎭, (8)

in which ui(z) and wi(z) are also looked at as the displacement functions, φi(z) is also looked at as the
potential functions, and they depend only on z. The detailed reason for the assumption of Equation (8)
is shown in the Appendix A, which includes some results from functionally graded piezoelectric
beams [34,35]. Substituting Equation (8) into Equation (5), it gives

εr = u1(z) + 3r2u3(z), εθ = u1(z) + r2u3(z)
εz = w′

0(z) + r2w′
2(z) + r4w′

4(z), γrz = 2rw2(z) + 4r3w4(z) + ru′
1(z) + r3u′

3(z)

}
. (9)

Substituting Equations (6), (8), and (9) into Equation (4), we can obtain

σr = [e31φ′
4(z) + c13w′

4(z)]r
4 + [3c11u3(z) + c12u3(z) + c13w′

2(z) + e31φ′
2(z)]r

2

+ [c11u1(z) + c12u1(z) + c13w′
0(z) + e31φ′

0(z)]
σθ = [c13w′

4(z) + e31φ′
4(z)]r

4 + [3c12u3(z) + c11u3(z) + c13w′
2(z) + e31φ′

2(z)]r
2

+ [c12u1(z) + c11u1(z) + c13w′
0(z) + e31φ′

0(z)]
σz = [c33w′

4(z) + e33φ′
4(z)]r

4 + [4c13u3(z) + c33w′
2(z) + e33φ′

2(z)]r
2

+ [2c13u1(z) + c33w′
0(z) + e33φ′

0(z)]
τzr = [2c44w2(z) + c44u′

1(z) + 2e15φ2(z)]r + [4c44w4(z) + c44u′
3(z) + 4e15φ4(z)]r3

Dr = [2e15w2(z) + e15u′
1(z)− 2λ11φ2(z)]r + [4e15w4(z) + e15u′

3(z)− 4λ11φ4(z)]r3

Dz = [2e31u1(z) + e33w′
0(z)− λ33φ′

0(z)] + [4e31u3(z) + e33w′
2(z)− λ33φ′

2(z)]r
2

+ [e33w′
4(z)− λ33φ′

4(z)]r
4

(10)

Then, substituting Equation (10) into Equations (2) and (3), respectively, we can also obtain{
[8c11u3(z) + 2e31φ′

2(z) + 2c13w′
2(z)] + [2c44w2(z) + c44u′

1(z) + 2e15φ2(z)],z
}

r

+
{
[4c13w′

4(z) + 4e31φ′
4(z)] + [4c44w4(z) + c44u′

3(z) + 4e15φ4(z)],z
}

r3 = 0
, (11)
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{
[4c44w2(z) + 2c44u′

1(z) + 4e15φ2(z)] + [2c13u1(z) + c33w′
0(z) + e33φ′

0(z)],z
}

+
{
[16c44w4(z) + 4c44u′

3(z) + 16e15φ4(z)] + [4c13u3(z) + c33w′
2(z) + e33φ′

2(z)],z
}

r2

+[e33φ′
4(z) + c33w′

4(z)],zr4 = 0

, (12)

{
[4e15w2(z) + 2e15u′

1(z)− 4λ11φ2(z)] + [2e31u1(z) + e33w′
0(z)− λ33φ′

0(z)],z
}

+
{
[16e15w4(z) + 4e15u′

3(z)− 16λ11φ4(z)] + [4e31u3(z) + e33w′
2(z)− λ33φ′

2(z)],z
}

r2

+[e33w′
4(z)− λ33φ′

4(z)],zr4 = 0

. (13)

From Equations (11)–(13), we can obtain

[e33φ′
4(z) + c33w′

4(z)],z = 0, (14)

[e33w′
4(z)− λ33φ′

4(z)],z = 0, (15)

[4c13w′
4(z) + 4e31φ′

4(z)] + [4c44w4(z) + c44u′
3(z) + 4e15φ4(z)],z = 0, (16)

[16c44w4(z) + 4c44u′
3(z) + 16e15φ4(z)] + [4c13u3(z) + c33w′

2(z) + e33φ′
2(z)],z = 0, (17)

[16e15w4(z) + 4e15u′
3(z)− 16λ11φ4(z)] + [4e31u3(z) + e33w′

2(z)− λ33φ′
2(z)],z = 0, (18)

[8c11u3(z) + 2e31φ′
2(z) + 2c13w′

2(z)] + [2c44w2(z) + c44u′
1(z) + 2e15φ2(z)],z = 0, (19)

[4c44w2(z) + 2c44u′
1(z) + 4e15φ2(z)] + [2c13u1(z) + c33w′

0(z) + e33φ′
0(z)],z = 0, (20)

[4e15w2(z) + 2e15u′
1(z)− 4λ11φ2(z)] + [2e31u1(z) + e33w′

0(z)− λ33φ′
0(z)],z = 0. (21)

Substituting Equation (10) into Equation (7a,b), respectively, we can obtain

[c33w′
4(z) + e33φ′

4(z)] |z=±h/2 = 0
[e33w′

4(z)− λ33φ′
4(z)] |z=±h/2 = 0

[4c44w4(z) + c44u′
3(z) + 4e15φ4(z)] |z=±h/2 = 0

[4c13u3(z) + c33w′
2(z) + e33φ′

2(z)] |z=±h/2 = 0
[4e31u3(z) + e33w′

2(z)− λ33φ′
2(z)] |z=±h/2 = 0

[2c44w2(z) + c44u′
1(z) + 2e15φ2(z)] |z=±h/2 = 0

[2e31u1(z) + e33w′
0(z)− λ33φ′

0(z)] |z=±h/2 = 0
[2c13u1(z) + c33w′

0(z) + e33φ′
0(z)] |z=−h/2 = −q

[2c13u1(z) + c33w′
0(z) + e33φ′

0(z)] |z=h/2 = 0

(22)

We can obtain from the integration of Equations (14) and (15), respectively,

e33φ′
4(z) + c33w′

4(z) = b0, (23a)

e33w′
4(z)− λ33φ′

4(z) = b1. (23b)

Substituting Equation (23a,b) into the first and second ones of Equation (22), we can obtain

b0 = 0, b1 = 0. (24)

From Equations (23a,b) and (24), we can obtain

(e2
33 + λ33c33)w′

4(z) = 0, (25a)

(e2
33 + λ33c33)φ

′
4(z) = 0. (25b)
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As we all know, (e2
33 + λ33c33) �= 0, thus

w′
4(z) = 0, (26a)

φ′
4(z) = 0. (26b)

We can obtain from the integration of Equation (26a,b), respectively,

w4(z) = a0, (27a)

φ4(z) = a1, (27b)

in which, a0, a1 are integration constants. Substituting Equation (27a,b) into Equation (16), we can
obtain

[4c44a0 + c44u′
3(z) + 4e15a1],z = 0. (28)

From the integration of Equation (28), one has

4c44a0 + c44u′
3(z) + 4e15a1 = b2. (29)

Then, substituting Equation (29) into the third one of Equation (22), we can obtain

b2 = 0. (30)

Substituting Equation (30) into Equation (29) and integrating the two sides of Equation (29), it gives

u3(z) = −(4a0 + 4
e15

c44
a1)z + a2, (31)

in which a2 is an integration constant. Substituting Equations (27a,b) and (31) into Equations (17) and
(18), respectively, we can obtain

[4c13u3(z) + c33w′
2(z) + e33φ′

2(z)],z = 0, (32)

[4e31u3(z) + e33w′
2(z)− λ33φ′

2(z)],z = (16e15
e15

c44
+ 16λ11)a1. (33)

Integrating the two sides of Equations (32) and (33), we can obtain

4c13u3(z) + c33w′
2(z) + e33φ′

2(z) = b3, (34)

4e31u3(z) + e33w′
2(z)− λ33φ′

2(z) = (16
(e0

15)
2

c0
44

+ 16λ0
11)a1

∫ z

−h/2
f (z)dz + b4. (35)

Then, substituting Equations (34) and (35) into the fourth and fifth ones of Equation (22), we
can obtain

b3 = 0, b4 = 0, a1 = 0. (36)

Substituting Equation (36) into Equations (34) and (35), respectively, we can obtain

4c13u3(z) + c33w′
2(z) + e33φ′

2(z) = 0, (37)

4e31u3(z) + e33w′
2(z)− λ33φ′

2(z) = 0. (38)

From Equations (31), (37), and (38), we have

w′
2(z) =

(4λ33c13 + 4e33e31)

(λ33c33 + e2
33)

(4a0z − a2), (39)
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φ′
2(z) =

(4e33c13 − 4c33e31)

(λ33c33 + e2
33)

(4a0z − a2). (40)

Integrating the two sides of Equations (32) and (33), we can obtain

w2(z) =
(4λ33c13 + 4e33e31)

(λ33c33 + e2
33)

(2a0z2 − a2z) + a3, (41)

φ2(z) =
(4e33c13 − 4c33e31)

(λ33c33 + e2
33)

(2a0z2 − a2z) + a4, (42)

in which a3, a4 are integration constants. From Equations (31), (41), and (42), Equation (19) gives

[2c44w2(z) + c44u′
1(z) + 2e15φ2(z)],z = (8c11λ33c33 + 8c11e2

33 + 8c33e2
31

−8e31e33c13 − 8λ33c2
13 − 8c13e33e31)

(4a0z−a2)

λ33c33+e2
33

. (43)

Integrating the two sides of Equation (43), we can obtain

[2c44w2(z) + c44u′
1(z) + 2e15φ2(z)] = 4a0K0F1(z)− a2K0F0(z) + b5, (44)

in which K0 = 8 (c0
11λ0

33c0
33+c0

11e0
33e0

33+c0
33e0

31e0
31−e0

31e0
33c0

13−λ0
33c0

13c0
13−c0

13e0
33e0

31)

λ0
33c0

33+e0
33e0

33
, F0(z) =

∫ z
−h/2 f (z)dz, F1(z) =∫ z

−h/2 z f (z)dz. Substituting Equation (44) into the sixth one of Equation (22), we can obtain

b5 = 0, 4a0F1(h/2)− a2F0(h/2) = 0. (45)

From the second one of Equation (45), we can obtain

a2 = 4
F1(h/2)
F0(h/2)

a0. (46)

Substituting Equations (41) and (42) into Equation (44) and with the help of Equations (45) and
(46), we get

u′
1(z) = 4a0

K0

c0
44

F1(z)
f (z)

− a2
K0

c0
44

F0(z)
f (z)

− K1(2a0z2 − a2z)− 2a3 − 2
e15

c44
a4, (47)

in which K1 = (8c44λ33c13+8c44e33e31+8e15e33c13−8e15c33e31)

c44(λ33c33+e2
33)

. Integrating the two sides of Equation (47), one

has

u1(z) = 4a0
K0

c0
44

H1(z)− a2
K0

c0
44

H0(z)− 2
3

K1a0z3 + K1a2
z2

2
− (2a3 + 2

e15

c44
a4)z + a5, (48)

in which H0(z) =
∫ z
−h/2

F0(z)
f (z) dz, H1(z) =

∫ z
−h/2

F1(z)
f (z) dz. Substituting Equations (41), (42), and (48) into

Equations (20) and (21), respectively, we can obtain

[2c13u1(z) + c33w′
0(z) + e33φ′

0(z)],z = 2a2K0F0(z)− 8a0K0F1(z), (49)

[2e31u1(z) + e33w′
0(z)− λ33φ′

0(z)],z = 2a2K0
e15
c44

F0(z)− 8a0K0
e15
c44

F1(z)
−(4e15

e15
c44

+ 4λ11)(8K2a0z2 − 4K2a2z − a4)
, (50)

in which K2 = c33e31−e33c13
λ33c33+e2

33
. Integrating the two sides of Equations (49) and (50), respectively, we get

[2c13u1(z) + c33w′
0(z) + e33φ′

0(z)] = 2a2K0G0(z)− 8a0K0G1(z) + b6, (51)
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[2e31u1(z) + e33w′
0(z)− λ33φ′

0(z)] = 2a2K0
e15
c44

G0(z)− 8a0K0
e15
c44

G1(z)
−(4e0

15
e15
c44

+ 4λ0
11)[8K2a0F2(z)− 4K2a2F1(z)− a4F0(z)] + b7

, (52)

in which G0(z) =
∫ z
−h/2 F0(z)dz, G1(z) =

∫ z
−h/2 F1(z)dz, F2(z) =

∫ z
−h/2 z2 f (z)dz. Substituting

Equations (51) and (52) into the seventh, eighth, and ninth ones of Equation (22), respectively, we
obtain the following

b7 = 0, (53)

a4 = K3a0, (54)

b6 = −q, (55)

a0 = K4q, (56)

in which

K3 = 8K2
F2(h/2)
F0(h/2)

− 16K2
F2

1 (h/2)
F2

0 (h/2)
− 2

e0
15K0G0(h/2)F1(h/2)

(e0
15e0

15 + c0
44λ0

11)F2
0 (h/2)

+ 2
e0

15K0G1(h/2)
(e0

15e0
15 + c0

44λ0
11)F0(h/2)

K4 =
F0(h/2)

[8F1(h/2)K0G0(h/2)− 8F0(h/2)K0G1(h/2)]

Substituting Equation (48) into Equations (51) and (52), respectively, we get

c33w′
0(z) + e33φ′

0(z) = 2a2K0G0(z)− 8a0K0G1(z)− q − 8c13a0
K0
c0

44
H1(z)

+2c13a2
K0
c0

44
H0(z) + 4

3 c13K1a0z3 − c13K1a2z2 + (4a3c13 + 4c13
e15
c44

a4)z − 2c13a5
, (57)

e33w′
0(z)− λ33φ′

0(z) = −(4e0
15

e15
c44

+ 4λ0
11)[8K2a0F2(z)− 4K2a2F1(z)− a4F0(z)]

+2a2K0
e15
c44

G0(z)− 8a0K0
e15
c44

G1(z)− 8e31a0
K0
c0

44
H1(z) + 2e31a2

K0
c0

44
H0(z)

+ 4
3 e31K1a0z3 − e31K1a2z2 + (4a3e31 + 4e31

e15
c44

a4)z − 2e31a5

, (58)

From Equations (57) and (58), we can obtain

w′
0(z) = J0(z)a0 + J1(z)a2 + J2(z)a3 + J3(z)a4 + J4(z)a5 + J5(z)q, (59)

φ′
0(z) = L0(z)a0 + L1(z)a2 + L2(z)a3 + L3(z)a4 + L4(z)a5 + L5(z)q, (60)

in which

J0(z) = 1
(λ0

33c0
33+e0

33e0
33)

[−8K0
G1(z)
f (z) (λ

0
33 + e0

33
e15
c44

)− 8(λ0
33c0

13 + e0
33e0

31)
K0
c0

44
H1(z)

+ 4
3 (λ

0
33c0

13 + e0
33e0

31)K1z3 − 32e0
33(e

0
15

e15
c44

+ λ0
11)K2

F2(z)
f (z) ]

,

J1(z) = 1
(λ0

33c0
33+e0

33e0
33)

[2(λ0
33 + e0

33
e15
c44

)K0
G0(z)
f (z) + 2(λ0

33c0
13 + e0

33e0
31)

K0
c0

44
H0(z)

−(λ0
33c0

13 + e0
33e0

31)K1z2 + 16e0
33(e

0
15

e15
c44

+ λ0
11)K2

F1(z)
f (z) ]

,

J2(z) = 4
(λ0

33c0
13 + e0

33e0
31)

(λ0
33c0

33 + e0
33e0

33)
z,

J3(z) =
1

(λ0
33c0

33 + e0
33e0

33)
[4(λ0

33c0
13 + e0

33e0
31)

e15

c44
z + 4e0

33(e
0
15

e15

c44
+ λ0

11)
F0(z)
f (z)

],

J4(z) = −2
(λ0

33c0
13 + e0

33e0
31)

(λ0
33c0

33 + e0
33e0

33)
,
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J5(z) = − λ0
33

(λ0
33c0

33 + e0
33e0

33)

1
f (z)

,

L0(z) = 1
(e0

33e0
33+λ0

33c0
33)

[8(c0
33

e15
c44

− e0
33)K0

G1(z)
f (z) + 8(c0

33e0
31 − e0

33c0
13)

K0
c0

44
H1(z)

+ 4
3 (e

0
33c0

13 − c0
33e0

31)K1z3 + 32c0
33(e

0
15

e15
c44

+ λ0
11)K2

F2(z)
f (z) ]

,

L1(z) = 1
(e0

33e0
33+λ0

33c0
33)

[2(e0
33 − c0

33
e15
c44

)K0
G0(z)
f (z) + 2(e0

33c0
13 − c0

33e0
31)

K0
c0

44
H0(z)

+(c0
33e0

31 − e0
33c0

13)K1z2 − 16c0
33(e

0
15

e15
c44

+ λ0
11)K2

F1(z)
f (z) ]

,

L2(z) = 4
(e0

33c0
13 − c0

33e0
31)

(e0
33e0

33 + λ0
33c0

33)
z,

L3(z) =
1

(e0
33e0

33 + λ0
33c0

33)
[4(e0

33c0
13 − c0

33e0
31)

e15

c44
z − 4c0

33(e
0
15

e15

c44
+ λ0

11)
F0(z)
f (z)

],

L4(z) = 2
(c0

33e0
31 − e0

33c0
13)

(e0
33e0

33 + λ0
33c0

33)
,

L5(z) = − e0
33

(e0
33e0

33 + λ0
33c0

33)

1
f (z)

.

Integrating the two sides of Equations (59) and (60), respectively, we can obtain

w0(z) = j0(z)a0 + j1(z)a2 + j2(z)a3 + j3(z)a4 + j4(z)a5 + j5(z)q + a6, (61)

φ0(z) = l0(z)a0 + l1(z)a2 + l2(z)a3 + l3(z)a4 + l4(z)a5 + l5(z)q + a7, (62)

in which ji(z) =
∫ z
−h/2 Ji(z)dz, li(z) =

∫ z
−h/2 Li(z)dz, (i = 0, 1, . . . , 5).

From the above process, it can be seen that there are 8 integration constants ai(i = 0, 1, . . . , 7) in
total, in which a0, a1, a2, a4 have been determined and a3, a5, a6, a7 can be determined by the boundary
conditions at r = a.

Substituting the displacement functions ui(z), wi(z), and the electric potential function φ(z) into
Equation (10), the expressions of elastic stress and electric displacement components of the circular
plate can be obtained

σr = (c11 + c12)[4a0
K0
c0

44
H1(z)− a2

K0
c0

44
H0(z)− 2

3 K1a0z3 + K1a2
z2

2 − (2a3 + 2 e15
c44

a4)z + a5]

+K5 f (z)(4a0z − a2)r2 + c13[J0(z)a0 + J1(z)a2 + J2(z)a3 + J3(z)a4 + J4(z)a5 + J5(z)q]
+e31[L0(z)a0 + L1(z)a2 + L2(z)a3 + L3(z)a4 + L4(z)a5 + L5(z)q]

, (63)

σθ = (c12 + c11)[4a0
K0
c0

44
H1(z)− a2

K0
c0

44
H0(z)− 2

3 K1a0z3 + K1a2
z2

2 − (2a3 + 2 e15
c44

a4)z + a5]

+K6 f (z)(4a0z − a2)r2 + c13[J0(z)a0 + J1(z)a2 + J2(z)a3 + J3(z)a4 + J4(z)a5 + J5(z)q]
+e31[L0(z)a0 + L1(z)a2 + L2(z)a3 + L3(z)a4 + L4(z)a5 + L5(z)q]

, (64)

σz = 2c13[4a0
K0
c0

44
H1(z)− a2

K0
c0

44
H0(z)− 2

3 K1a0z3 + K1a2
z2

2 − (2a3 + 2 e15
c44

a4)z + a5]

+c33[J0(z)a0 + J1(z)a2 + J2(z)a3 + J3(z)a4 + J4(z)a5 + J5(z)q]
+e33[L0(z)a0 + L1(z)a2 + L2(z)a3 + L3(z)a4 + L4(z)a5 + L5(z)q]

, (65)

τzr = [4a0K0F1(z)− a2K0F0(z)]r, (66)

Dr = [8 (c44λ11c33e31−c44λ11e33c13+e15e15c33e31−e15e15e33c13)

c44(λ33c33+e2
33)

(2a0z2 − a2z)

+4e15a0
K0
c0

44

F1(z)
f (z) − e15a2

K0
c0

44

F0(z)
f (z) − 2(λ11 + e15

e15
c44

)a4]r
, (67)
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Dz = 8e31a0
K0
c0

44
H1(z)− 2e31a2

K0
c0

44
H0(z)− 4

3 e31K1a0z3 + e31K1a2z2 − 4e31a3z

−4e31
e15
c44

a4z + 2e31a5 + e33[J0(z)a0 + J1(z)a2 + J2(z)a3 + J3(z)a4 + J4(z)a5

+J5(z)q]− λ33[L0(z)a0 + L1(z)a2 + L2(z)a3 + L3(z)a4 + L4(z)a5 + L5(z)q]

, (68)

in which

K5 =
(4c13λ33c13 + 4c13e33e31 + 4e31e33c13 − 4e31c33e31 − 3c11λ33c33 − 3c11e2

33 − c12λ33c33 − c12e2
33)

(λ33c33 + e2
33)

,

K6 =
(4c13λ33c13 + 4c13e33e31 + 4e31e33c13 − 4e31c33e31)

(λ33c33 + e2
33)

− (3c12 + c11).

The expressions of the radial force and bending moment are

N(r) =
∫ h/2

−h/2
σrdz, (69)

M(r) =
∫ h/2

−h/2
zσrdz, (70)

and the expressions of the elastic displacement and electric potential are

ur(r, z) = [4a0
K0
c0

44
H1(z)− a2

K0
c0

44
H0(z)− 2

3 K1a0z3 + K1a2
z2

2

−(2a3 + 2 e15
c44

a4)z + a5]r + (a2 − 4a0z)r3
, (71)

uz(r, z) = j0(z)a0 + j1(z)a2 + j2(z)a3 + j3(z)a4 + j4(z)a5 + j5(z)q + a6

+[ (4λ33c13+4e33e31)

(λ33c33+e2
33)

(2a0z2 − a2z) + a3]r2 + a0r4 , (72)

φ(r, z) = l0(z)a0 + l1(z)a2 + l2(z)a3 + l3(z)a4 + l4(z)a5 + l5(z)q + a7

+[ (4e33c13−4c33e31)

(λ33c33+e2
33)

(2a0z2 − a2z) + a4]r2 . (73)

From Equation (7c), we can obtain

N(a) =
∫ h/2

−h/2
σrdz = N, (74)

M(a) =
∫ h/2

−h/2
zσrdz = M. (75)

There contain only two undetermined constants, a3 and a5, thus, from Equations (74) and (75), a3

and a5 can be determined. Then, from Equation (7c), one has

uz(a, 0) = 0. (76)

With the help of determined a3 and a5, the undetermined constants a6 can also be determined by
Equation (76). Thus, we obtain the electroelastic solution of the axisymmetric deformation problem
of simply supported functionally graded piezoelectric circular plates under the action of combined
mechanical loads.

3. Comparisons and Discussions

3.1. Comparisions with Existing Result

Here, we use a numerical example to verify the results presented in this paper. Since there is
no electroelastic solution for functionally graded piezoelectric circular plates under the action of
combined mechanical loads, only the solution under a single load [32] is available, and we verify the
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correctness of the results presented in this paper according to the regression. That is, let the radial
force and bending moment in this study be zero; the circular plate is now subjected to uniformly
distributed loads only, thus the obtained result may be compared with the solution presented in [32]
(subjected to uniformly distributed loads only). For this purpose, we consider a simply supported
functionally graded piezoelectric circular plate with a = 1 m, h = 0.1 m and subjected to the action of
uniformly-distributed loads q = 1 KPa on the upper surface of the plate, in which N = 0 and M at
the periphery of the plate. We here use two solutions, the solution presented in this study (denoted
by I) and the solution presented in [32] (denoted by II), to conduct the numerical comparisons. In the
comparisons, the functional gradient parameter α takes 2 and the material constants at z are listed in
Table 1. The comparison results are shown in Figures 2–5, in which Figures 2 and 3 show the elastic
displacement and stress, respectively; Figures 4 and 5 show the electric displacement and the electric
potential, respectively. From Figures 2–5, it can be found that the solution presented in this study (I)
and the solution presented in the previous study (II) are very close to each other, which demonstrates
the validity of the results presented in this study.

Table 1. Material constants.

Property Constants

Elastic(109N/m2)
c0

11 = c0
22 = 74.1, c0

33 = 83.6, c0
12 = 45.2,

c0
13 = c0

23 = 39.3, c0
44 = c0

55 = 13.17, c0
66 = 14.45

Piezoelectric(C/m2) e0
31 = e0

32 = −0.16, e0
33 = 0.347, e0

15 = −0.138, e0
24 = 0

Dielectric(F/m) λ0
11 = λ0

22 = 8.25 × 10−11, λ0
33 = 9.02 × 10−11

 
(a) 

 
(b) 

Figure 2. Variation of elastic displacements with coordinates z, where I denotes the solution presented
in this study; II denotes the solution presented in [32]. (a) z-direction displacement at the center of
plate uz(0, z); (b) radial displacement at the periphery of plate ur(1, z).
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(a) 

 
(b) 

Figure 3. Variation of elastic stress with coordinates z, where I denotes the solution presented in this
study; II denotes the solution presented in [32]. (a) z-direction stress at the periphery of plate σz(1, z);
(b) radial stress at the periphery of plate σr(1, z).

 
(a) 

 
(b) 

Figure 4. Variation of electric displacement with coordinates z, where I denotes the solution presented
in this study; II denotes the solution presented in [32]. (a) Electric displacement at the periphery of
plate Dz(1, z); (b) electric displacement at the periphery of plate Dr(1, z).
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Figure 5. Variation of electric potential at the periphery of plate φ(1, z), where I denotes the solution
presented in this study; II denotes the solution presented in [32].

3.2. Influences of Functionally Graded Parameters

Let us consider another numerical example of a simply supported functionally graded
piezoelectric circular plate with a = 1 m, h = 0.1 m and subjected to the action of uniformly distributed
loads q = 1 KPa on the upper surface of the plate and the action of the radial force N = 6 kN/m and
the bending moment M = 6 kN at the periphery of the plate, to investigate the influence of different
functionally graded parameters on the elastic displacement and elastic stress, as well as the electric
displacement and electric potential of the circular plate. Suppose the functional gradient parameter
α takes 0, 1, and 2, respectively. Besides, in the computation we still adopt the material constants at
z = 0 in Table 1.

Figures 6–9, show the variation of the elastic displacement and stress, as well as the electric
displacement and electric potential with the coordinate z. From Figures 6–9 it can be found that the
variation curves of all physical quantities of the functionally graded piezoelectric circular plate (α �= 0)
are deviated from the uniform piezoelectric plate (α = 0), and the degree of deviation increases with
the increase of functional gradient parameter α, in which the change of uz, σz, Dr, Dz, φ are obvious, the
change of σr is relatively small, and ur has almost no change. For the functionally graded piezoelectric
circular plate, ur and σr change linearly along the thickness direction and uz, σz, Dr, Dz and φ change
nonlinearly along the thickness direction.
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(a) 

 
(b) 

Figure 6. Variation of elastic displacements with coordinates z. (a) z-direction displacement at the
center of plate uz(0, z); (b) radial displacement at the periphery of plate ur(1, z).
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(a) 

(b) 

Figure 7. Variation of elastic stress with coordinates z. (a) z-direction stress at the periphery of plate
σz(1, z); (b) radial stress at the periphery of plate σr(1, z).

 
(a) 

Figure 8. Cont.
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(b) 

Figure 8. Variation of electric displacement with coordinates z. (a) Electric displacement at the
periphery of plate Dz(1, z); (b) electric displacement at the periphery of plate Dr(1, z).

 

Figure 9. Variation of electric potential at the periphery of plate φ(1, z) with coordinates z.

Figures 10–13 show the variation of the elastic displacement and stress, as well as the electric
displacement and electric potential with the coordinate r at z = h/4. From Figure 10, it can be found
that the elastic displacements change linearly along r direction, and they have almost no change with
the increases of functional gradient parameter α. From Figures 11–13, we can know that the variation
curves of the elastic stress, electric displacement, and electric potential of the functionally graded
piezoelectric circular plate (α �= 0) are deviated from the uniform piezoelectric plate (α = 0) and the
degree of deviation increases with the increase of functional gradient parameter α, in which Dr and φ

increase from center to edge of the plate and σr decreases along the same direction while Dz and σz

remain unchanged from center to edge of the plate. In addition, σz, Dr, and Dz change almost linearly
along the r direction, and σr and φ change nonlinearly along the r direction. These characteristics can
be used as a reference for the analysis and design of functionally gradient piezoelectric plates.
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(a) 

(b) 

Figure 10. Variation of elastic displacement with coordinates r at z = h/4. (a) z-direction displacement
uz(r, h/4) at z = h/4; (b) radial displacement ur(r, h/4) at z = h/4.

 
(a) 

Figure 11. Cont.
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(b) 

Figure 11. Variation of elastic stress with coordinates r at z = h/4. (a) z-direction stress σz(r, h/4) at
z = h/4; (b) radial stress σr(r, h/4) at z = h/4.

 
(a) 

 
(b) 

Figure 12. Variation of electric displacement with coordinates r at z = h/4. (a) Electric displacement
Dz(r, h/4) at z = h/4; (b) electric displacement Dr(r, h/4) at z = h/4.
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Figure 13. Variation of electric potential φ(r, h/4) with coordinates r at z = h/4.

4. Conclusions

In this study, the electroelastic solution of the axisymmetric deformation problem of functionally
graded piezoelectric circular plates under the action of combined mechanical loads was derived by
supposing the variable separation form of the displacement function and electrical potential function.
Assuming that all the electroelastic materials parameters vary according to the same gradient function
along the thickness direction, the electromechanical coupling effect of functionally graded piezoelectric
circular plates under the combined mechanical loads was analyzed.

This work may be regarded as a theoretical reference for the analysis of functionally graded
piezoelectric materials and structures. Specially, the solving method presented here can also be
conveniently applied to other cases under the action of a single mechanical load or under different
boundary conditions. Moreover, this work may be extended into the other problem under external
electrical loads; in this case, the displacement function used for the solution needs to be modified to
some extent. This work may also be extended to functionally graded beams and plates with different
properties in tension and compression [36,37]. Obviously, the introduction of different moduli in
tension and compression may bring some new issues, which will further complicate the solving of the
problem. We will carry out these interesting works in the future.
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Appendix A

Let us introduce two stress functions F(r, z) and ψ(r, z)

σr = F,zz + r−1ψ,r, σθ = F,zz + ψ,rr, σz = r−1(rF,r),r, τrz = −F,rz. (A1)

In this way, the Equation (2) is satisfied automatically. Then, suppose that the stress functions
have the following form [32]

F(r, z) =
n

∑
i=0

riFi(z), ψ(r, z) =
n

∑
i=0

riψi(z), (n = 0, 1, 2 . . .), (A2)
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in which Fi(z) and ψi(z) are undetermined functions. Substituting Equation (A2) into Equation (A1),
we can obtain

σz =
F1
r +

n
∑

i=0
(i + 2)2riFi+2, σr =

ψ1
r +

n
∑

i=0
ri[Fi,zz + (i + 2)ψi+2],

σθ =
n
∑

i=0
ri[Fi,zz + (i + 2)(i + 1)ψi+2], τrz = − n

∑
i=0

(i + 1)riFi+1,z, (n = 0, 1, 2 . . .)
. (A3)

The stress components σz and σr are limited values at r = 0, thus we have

F1(z) = 0, ψ1(z) = 0. (A4)

From Equation (A4), we may infer that all the odd terms of r in Equation (A2) could be zero. From
Equations (4) and (6) we can know the electric potential ∂φ/∂z corresponds to the stresses σz, σθ , and
σr. So, we can see that all the odd terms of r in the expression of electric potential φ are also equal to
zero. Thus, the electric potential φ can be expressed as

φ(r, z) =
n

∑
i=0

riφi(z), (n = 0, 2, 4 . . .). (A5)

Moreover, the Equation (4) can be transformed into

εr = s11σr + s12σθ + s13σz + d31Ez

εθ = s12σr + s11σθ + s13σz + d31Ez

εz = s13σr + s13σθ + s33σz + d33Ez

, (A6)

in which sij are the flexibility coefficients and dij are the piezoelectric constants. Substituting Equations
(5), (6), and (A3) into (A6), we get

ur
r = s12

n
∑

i=0
ri[Fi,zz + (i + 2)ψi+2] + s11

n
∑

i=0
ri[Fi,zz + (i + 2)(i + 1)ψi+2]

+ s13
n
∑

i=0
(i + 2)2riFi+2 − d31

n
∑

i=0
ri ∂φi(z)

∂z , (n = 0, 2, 4 . . .)

∂uz
∂z = s13

n
∑

i=0
ri[Fi,zz + (i + 2)ψi+2] + s13

n
∑

i=0
ri[Fi,zz + (i + 2)(i + 1)ψi+2]

+ s33
n
∑

i=0
(i + 2)2riFi+2 − d33

n
∑

i=0
ri ∂φi(z)

∂z , (n = 0, 2, 4 . . .)

. (A7)

From Equation (A7), we can obtain

ur = s12[
n
∑

i=0
ri+1[Fi,zz + (i + 2)ψi+2]] + s11[

n
∑

i=0
ri+1[Fi,zz + (i + 2)(i + 1)ψi+2]]

+s13[
n
∑

i=0
(i + 2)2ri+1Fi+2]− d31

n
∑

i=0
ri+1 ∂φi(z)

∂z , (n = 0, 2, 4 . . .)

uz = s13[
n
∑

i=0
ri∫ z

0 [Fi,zz + (i + 2)ψi+2]dz] + s13[
n
∑

i=0
ri∫ z

0 [Fi,zz + (i + 2)(i + 1)ψi+2]dz]

+s33[
n
∑

i=0
(i + 2)2ri∫ z

0 Fi+2dz]− d33
n
∑

i=0
riφi(z), (n = 0, 2, 4 . . .)

. (A8)

From Equation (A8) we can see that all the even items of r in the expression of ur are zero and
all the odd items of r in the expression of uz are zero. Then, according to the boundary conditions
of simply supported circular plates, we can finally get the forms of the displacement and the electric
potential as follows (i.e., Equation (8); the more detailed derivation can be found in [32]):
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ur(r, z) = ru1(z) + r3u3(z)
uz(r, z) = w0(z) + r2w2(z) + r4w4(z)
φ(r, z) = φ0(z) + r2φ2(z) + r4φ4(z)

⎫⎪⎬
⎪⎭. (A9)

In addition, similar expressions for displacement and potential function may be found in the
analysis of functionally graded piezoelectric beams [34,35], in which the stress function U and the
potential functions Φ were expressed in the form

U(x, z) = x2

2 f (z) + x f1(z) + f2(z)
Φ(x, z) = x2 f3(z) + x f4(z) + f5(z)

}
(A10)

in which x represents the longitudinal direction of the beam (similar to the radial direction r in the
plate problem) and z stands for the thickness direction (similar to the transverse direction z in the
plate problem). From the similarities of two sets of expression of beams and plates, we may find some
consistencies in the analyses of beams and plates. For example, the derived analytical solutions both
satisfy exactly the boundary conditions on the upper and lower surfaces of beams and plates (main
boundary), while both satisfy approximately, in the Saint Venant sense, the end conditions for beams
and the circumferential boundary conditions for plates (local boundary).
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Abstract: This paper analyzes the nonlinear buckling and post-buckling characteristics of the porous
eccentrically stiffened functionally graded sandwich truncated conical shells resting on the Pasternak
elastic foundation subjected to axial compressive loads. The core layer is made of a porous material
(metal foam) characterized by a porosity coefficient which influences the physical properties of the
shells in the form of a harmonic function in the shell’s thickness direction. The physical properties
of the functionally graded (FG) coatings and stiffeners depend on the volume fractions of the
constituents which play the role of the exponent in the exponential function of the thickness direction
coordinate axis. The classical shell theory and the smeared stiffeners technique are applied to
derive the governing equations taking the von Kármán geometrical nonlinearity into account.
Based on the displacement approach, the explicit expressions of the critical buckling load and the
post-buckling load-deflection curves for the sandwich truncated conical shells with simply supported
edge conditions are obtained by applying the Galerkin method. The effects of material properties,
core layer thickness, number of stiffeners, dimensional parameters, semi vertex angle and elastic
foundation on buckling and post-buckling behaviors of the shell are investigated. The obtained
results are validated by comparing with those in the literature.

Keywords: porous materials; truncated conical sandwich shell; metal foam core layer; non-linear
buckling analysis; orthogonal stiffener; elastic foundation

1. Introduction

Functionally graded (FG) materials are microscopically nonhomogeneous materials with smoothly
and continuously varying mechanical properties in the preferred directions. The advantages of
functionally graded material (FGM) include avoiding crack, avoiding delamination and eliminating
residual stress. In micromechanics, FGM is considered to contain porosity during the production
process, these porosities could be characterized to obtain the expected material properties such as the
local density and to obtain the expected structural performance. Furthermore, porous materials such as
metal foams have excellent energy-absorbing capability forming an important category of lightweight
materials. As a result, porous materials have been considered in a wide range of application in practice
for structures subjected to dynamic or impact loadings.

Truncated conical shells have been utilized in various engineering activities such as aerospace
engineering, marine and ocean engineering structures, components of missiles and spacecrafts and
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nuclear reactors. Metallic sandwich structures are widely used in the aviation industry as well as
in ship and railway engineering because of their low density, high specific strength, and effective
energy absorption. The buckling and post-buckling behaviors of FG shells in cylindrical and conical
forms under mechanical and thermal loads are prominent topics, drawing the considerable attention
of many researchers. Huang and Han [1] used Donell shell theory to study the stability characteristics
of functionally graded shells in cylindrical forms subjected to axially compressive loads employing
the Ritz energy method. Naj et al. [2] analyze the instability of FG truncated conical shells under
the coupling of thermal and mechanical loadings using the first-order shell theory. Sofiyev and
his colleagues [3–10] published many studies on linear and nonlinear buckling of FG cylindrical
and conical shells. By applying the Galerkin method and smeared stiffeners technique, Duc and his
colleagues [11–17] investigated buckling and post-buckling behaviors of FG cylindrical and conical
shells reinforced by eccentrically stiffeners (ES). Using the same approach, Bich et al. [18–20] examined
the buckling behaviors and dynamic stability characteristics of eccentrically stiffened FG cylindrical
shells and panels. Recently, Dung et al. [21,22] presented the theoretical solution for the buckling
behaviors of FG truncated conical shells under different of mechanical loadings such as uniformly
distributed loads and axially compressive loads. Dung and Chan [23] analyzed the orthogonally
stiffened FG truncated conical shells in terms of the mechanical stability. Dung et al. [24] analyzed the
nonlinear post-buckling behaviors of the eccentrically orthogonal stiffened FG truncated conical shells.

There are a few studies on the buckling of FG porous plates and beams in the available literature.
Magnucki and Stasiewicz [25] examined the buckling features of beams with porosity considering
the total potential energy using elastic formulations. Magnucka-Blandzi [26,27] mathematically
modeled a porous sandwich plate to determine critical in-plane compressed loads. The work of
Magnucka-Blandzi [28] focused on axis-symmetrical deflection and buckling of simply supported
circular porous–cellular plates under lateral uniformly distributed pressures and compressive pressures
in the radial direction uniform. Static buckling and bending features of FG beams with porosity
taking the shear deformation into account are studied by Chen et al. in [29]. Kitipornchai et al. [30]
studied elastic buckling and free vibration behaviors of closed-cell beams made of metal foam and
reinforced by graphene platelets. Jabbari et al. [31] examined the buckling behaviors of an FG thin
circle-shaped plate made of saturated porous materials. In another study, he also examined the
buckling behaviors of a porous circular plate subjected to radial loadings employing the higher-order
shear deformation theory [32]. To control the formation of porous structures, fabrication parameters
need to be managed. In microelectromechanical systems (MEMS) and nanoelectromechanical systems
(NEMS), we can improve the physical characteristic of micro/nano-scale structures by tailoring the
architecture of porous materials. Examination and assessment of size-effects in NEMs structural
problems, many researchers have been focused on size-dependent mechanical models [33–36].
Size effect plays important role in micron and sub-micron scales of metallic materials. Size effects in
elastic-plastic functionally graded materials (FGMs) have been reported in work of Mathew et al. [37],
Martínez-Paneda et al. [38,39].

From the above-mentioned literature context, it can be seen that there are very few studies focused
on linear and non-linear stability of eccentrically stiffened FGM truncated conical shells. To the best
of our knowledge, there are no publications on the nonlinear stability behaviors of the eccentrically
stiffened functionally graded truncated conical sandwich shells with the porous core layer. The aim
of the present paper is to meet this demand. The porous material core layer of the shell is made of
metal foam. The outer and inner layers, eccentrically orthogonal stiffener systems are made of FGM.
The shell is supported by Pasternak elastic foundation and subjected to the axial compressive load.
The classical shell theory, the smeared stiffener technique, and the Galerkin method are applied to
come up with explicit expressions of the critical buckling load and the post-buckling load-deflection
curves for sandwich truncated conical shells with simply supported edge conditions. The effects of
material properties, the number of stiffeners, geometry parameters, and elastic foundation on stability
behaviors of the shell are also examined.
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2. Model Configurations and Elastic Foundations

A porous eccentrically stiffened functionally graded truncated conical sandwich shells (PSTC)
is considered with the geometry configurations and the coordinate system being shown in Figure 1.
In which, α denotes the semi-vertex angle, R denotes the small base radius of the shell, L denotes the
slant height and h denotes the shell thickness.

The shell consists of inner and outer layers (layers 1 and 3) made of FGM of the thickness hFG, and
the porous core layer (layer 2) of the thickness hcore. The PSTC is located in a curvilinear coordinate
(x, θ, z) in which x and z axis share the origin at the vertex of the conical shell and together form a
plane through the symmetry line of the shell. x axis exists along the shell slant and z axis is at right
angles to the slant line. It is noted that the origin is located in the mid-surface of the shell and x0

denotes the virtual slant height from the vertex to the adjacent base of the shell. Corresponding to
x, θ and z axes, there are three displacements components u, v, and w of a point in the mid-surface,
respectively. The displacement along the z axis (w) is also called the deflection of the PSTC which is
also the primary variable of this work.

Figure 1. Geometry configurations and coordinates of the PSTC.

The space between FG stiffeners is assumed to be constant and closely spaced in the outer face
of the PSTC. The Young moduli of FG cover layers and stiffeners vary according to a simple power
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distribution through the z direction with the exponent is the volume fraction of the constituents, and
the Young moduli of the core follow a simple cosine rule of a symmetric distribution defined as follows:

Esh =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ec + Emc

(
2z+hFG+hcore

hFG

)k
at − h

2 ≤ z ≤ − hcore
2

Em

[
1 − e0 cos

(
πz

hcore

)]
at − hcore

2 ≤ z ≤ hcore
2

Ec + Emc

(−2z+hFG+hcore
hFG

)k
at hcore

2 ≤ z ≤ h
2

(1a)

{
h = hcore + hFG

0 < e0 < 1
(1b)

Reinforced stiffeners are considered in two following cases.

Case 1: Inside FGM stiffener

Es = Ec + Emc

(
2z−h
2hs

)k2
at h

2 ≤ z ≤ h
2 + hs

Er = Ec + Emc

(
2z−h
2hr

)k3
at h

2 ≤ z ≤ h
2 + hr

(2a)

Case 2: Outside FGM stiffener

Es = Ec + Emc

(
− 2z+h

2hs

)k2
at − h

2 − hs ≤ z ≤ − h
2

Er = Ec + Emc

(
− 2z+h

2hr

)k3
at − h

2 − hr ≤ z ≤ − h
2

(2b)

where:
hFG/2 is the FG coating thickness,

Emc = Em − Ec, Ecm = Ec − Em,
hcore is the core layer thickness,
hs, hr denote stringers and rings thickness respectively,
e0 is the porosity coefficient of the core layer,
k, k2, and k3 are the shell, stringers, and rings volume fraction indexes respectively.
sh, m, c, r, and s denote shell, metal, ceramic, ring, and stringer respectively.
st denotes stiffeners in general, stiffeners are stringers and rings.
Ec, Em are Young’s moduli of ceramic and metal.
Esh, Es, and Er are the Young moduli of shell, stringer, and ring of materials respectively.

The Poisson’s ratios v of the shell and stiffeners materials are assumed to be independent of
thickness coordinate [6].

It is noted from Equations (1) and (2) that the continuous variations of the material properties are
satisfied between layers of the PSTC. From Equation (1), we can obtain equations for these different
cases, namely the FG sigmoid sandwich shell with (hcore = 0), the metal foam sandwich shell with FG
face sheets (e0 = 0), or the full metal shell (e0 = k = 0).

The reaction of the elastic foundation on the conical shell is described by using the Pasternak
model. The shell-foundation interaction may be expressed as [40]

q f = K1w − K2

(
∂2w
∂x2 +

1
x

∂w
∂x

+
1

x2 sin2 α

∂2w
∂θ2

)
(3)

where K1 (N/m3) and K2 (N/m) respectively are the Winkler foundation stiffness and the shear
subgrade modulus of the foundation.
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3. Theoretical Formulations

From the Donnell shell theory, at a distance z from the mid-surface of the shell, the normal and
shear strains are given as follows [41]:

εx = εxm + zkx, εθ = εθm + zkθ , γxθ = γxθm + 2zkxθ (4)

in which εxm and εθm are the normal strains γxθm is the shear strain at a point on the shell mid-surface,
and kx, kθ , kxθ are bending and twisting curvatures with respect to the x−axis, θ−axis, and the plane
(x, θ), respectively. Considering the von Karman geometrical nonlinearity, the strain–displacement
relations are defined as [41]

εxm = ∂u
∂x + 1

2

(
∂w
∂x

)2
, εθm = 1

x sin α
∂v
∂θ + u

x + w
x cot α + 1

2x2 sin2 α

(
∂w
∂θ

)2
,

γxθm = 1
x sin α

∂u
∂θ − v

x + ∂v
∂x + 1

x sin α
∂w
∂x

∂w
∂θ ,

kx = − ∂2w
∂x2 , kθ = − 1

x2 sin2 α
∂2w
∂θ2 − 1

x
∂w
∂x , kxθ = − 1

x sin α
∂2w
∂x∂θ +

1
x2 sin α

∂w
∂θ

(5)

The generalized Hooke law for the conical shell is presented as follows:

σsh
x =

E(z)
1 − ν2 (εx + νεθ), σsh

θ =
E(z)

1 − ν2 (εθ + νεx), σsh
xθ =

E(z)
2(1 + ν)

γxθ (6)

and for the stringer and ring stiffeners,

σst
x = Esεx, σst

θ = Erεθ (7)

The material of the stiffeners is similar to the material of the FG coating at the outer surface. If the
outside surface of the FG coating is ceramic-rich, the material of the stiffeners is ceramic, and vice versa.

Considering the change of stringers spacing, applying the Lekhnitskii smeared stiffener technique,
and omitting the twisting effects of the stiffeners, we can define the force and moment resultants of the
PSTC as follows:

Nx =
h/2∫

−h/2
σsh

x dz + bs
d1(x)

h/2+hs∫
h/2

σs
xdz, Nθ =

h/2∫
−h/2

σsh
θ dz + br

d2

h/2+hr∫
h/2

σs
θ dz, Nxθ =

h/2∫
−h/2

σxθdz

Mx =
h/2∫

−h/2
zσsh

x dz + bs
d1(x)

h/2+hs∫
h/2

zσs
xdz, Mθ =

h/2∫
−h/2

zσsh
θ dz + br

d2

h/2+hr∫
h/2

zσs
θ dz, Mxθ =

h/2∫
−h/2

zσxθdz
(8)

Introducing Equations (6) and (7) into Equation (8) we obtain [22]

⎧⎪⎨
⎪⎩

Nx

Nθ

Nxθ

⎫⎪⎬
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⎡
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0

0 0 A66

⎤
⎥⎦
⎧⎪⎨
⎪⎩

εxm

εθm
γxθm

⎫⎪⎬
⎪⎭+

⎡
⎢⎣ B11 + C1(x) B12 0

B12 B22 + C2 0
0 0 2B66

⎤
⎥⎦
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⎡
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0 0 B66
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εxm

εθm
γxθm

⎫⎪⎬
⎪⎭+

⎡
⎢⎣ D11 +

E3sbs
d1(x) D12 0

D12 D22 +
E3rbr
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0 0 2D66

⎤
⎥⎦
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kx

kθ

kxθ

⎫⎪⎬
⎪⎭

(9)

in which the coefficients are presented in Appendix A.
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The nonlinear equations of equilibrium of the PSTC resting on Pasternak foundation using the
Donnell shell theory are given as follows [22]:

xNx,x +
1

sin α Nxθ,θ + Nx − Nθ = 0
1

sin α Nθ,θ + xNxθ,x + 2Nxθ = 0

xMx,xx + 2Mx,x +
2

sin α

(
Mxθ,xθ +

1
x Mxθ,θ

)
+ 1

x sin2 α
Mθ,θθ − Mθ,x − Nθ cot α

+
(

xNxw,x +
1

sin α Nxθw,θ

)
,x
+ 1

sin α

(
Nxθw,x +

1
x sin α Nθw,θ

)
,θ
+ (xNo

xw,x),x

−xK1w + xK2

(
∂2w
∂x2 + 1

x
∂w
∂x + 1

x2 sin2 α
∂2w
∂θ2

)
= 0

(10)

where x, z and θ following the comma symbol (, ) indicates the partial derivative with respect to x, z
and θ, respectively.

4. Prebuckling State Analysis

In this section, the PSTC is considered solely exposed to an axial compression P at the small base
x = x0. The equilibrium equations of the PSTC in the membrane-like form is derived from Equation
(10) taking the symmetry of geometry and loading characteristics into account as follows:

x
dN0

x
dx

+ N0
x − N0

θ = 0, N0
xθ = 0, −N0

θ cot α = 0 (11)

Solving this system with condition

N0
x = − P

cos α
(12)

We obtain the prebuckling force resultants

No
x = − pxo

x cos α
, N0

θ = 0, N0
xθ = 0 (13)

or in another form

No
x = − P

πx sin 2α
, where P = 2πpxo sin α (14)

5. Nonlinear Stability Formulations

Introducing Equation (4) into Equation (9) we obtain the force and moment resultants in term of
displacements. The results are then substituted into Equation (10) in conjunction with Equation (14),
and we have the stability equations as follows:

�11(u) +�12(v) +�13(w) + G14 = 0 (15)

�21(u) +�22(v) +�23(w) + G24 = 0 (16)

�31(u) +�32(v) +�33(w) + P�34(w) + G34 = 0 (17)

where �ij with i = (1 − 3) and j = (1 − 4) are linear differential operators and Gij with i = (1 − 3)
and j = 4 are nonlinear components, these values are listed in Appendix B. Equations (15)–(17) are
employed to compute the critical buckling load and analyze post-buckling behavior of the PSTC.
However, these equations are the coupling nonlinear partial differential equations whose difficulty
would be overcome in the following section.

6. Buckling and Post-Buckling Analysis

The PSTC is considered simply supported at two bases such that
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v = w = 0, Mx = 0 at x = xo, xo + L (18)

The solution approximately satisfying Equation (18) are chosen as [22,24]

u = U cos mπ(x−x0)
L sin nθ

2
v = V sin mπ(x−x0)

L cos nθ
2

w = W sin mπ(x−x0)
L sin nθ

2

(19)

where n is the quantity of full-waves in the circumferential direction of the shell, and m is the number
of half-waves along x axis. U, V and W are the corresponding displacement amplitudes which would
be determined by then. In the integration domain given as x0 ≤ x ≤ x0 + L and 0 ≤ θ ≤ 2π,
Equations (15) and (16) are weighted by x and Equation (17) is weighted by x2 before employing the
Galerkin method to the obtained results. We have

J1 =
xo+L∫
xo

2π∫
0

Ω1 sin nθ
2 cos mπ(x−x0)

L sinαdθdx

J2 =
xo+L∫
xo

2π∫
0

Ω2 cos nθ
2 sin mπ(x−x0)

L sinαdθdx

J3 =
xo+L∫
xo

2π∫
0

Ω3 sin nθ
2 sin mπ(x−x0)

L sinαdθdx

(20)

where

Ω1 = x[�11(u) +�12(v) +�13(w) + G14]

Ω2 = x[�21(u) +�22(v) +�23(w) + G24]

Ω3 = x2[�31(u) +�32(v) +�33(w) + P�34(w) + G34]

(21)

Introducing Equation (19) into Equation (21) and then the results into Equation (20), after
integrations and other manipulations, we obtain

H11U + H12V + H13W + L14W2 = 0 (22)

H21U + H22V + H23W + L24W2 = 0 (23)

H31U + H32V + (H33 + H34P)W + L34W2 + L35VW + L36UW + L37W3 = 0 (24)

where Hij and Lij are given in Appendix C.
We obtain the expression for U and V from Equations (22) and (23) as follows:

U = H13 H22−H12 H23
H12 H21−H11 H22

W + L14 H22−L24 H12
H12 H21−H11 H22

W2

V = H11 H23−H13 H21
H12 H21−H11 H22

W + L24 H11−L14 H21
H12 H21−H11 H22

W2

Substituting U and V into Equation (24) we obtain the following equation.(
L35L24 H11−L35L14 H21−L36L24 H12+L36L14 H22

H12 H21−H11 H22
+ L37

)
W3

+

( −H31L24 H12+H31L14 H22+H32L24 H11−H32L14 H21
H12 H21−H11 H22

+ L34
−L35 H13 H21+L35 H11 H23−L36 H12 H23+L36 H13 H22

H12 H21−H11 H22

)
W2

+
(

H31 H13 H22−H31 H12 H23−H32 H13 H21+H32 H11 H23
H12 H21−H11 H22

+ H33

)
W + H34PW = 0

(25)
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Solving the Equation (25), the analytical expression of P is obtained as follows:

P = 1
H34

(
L35L14 H21−L35L24 H11+L36L24 H12−L36L14 H22

H12 H21−H11 H22
− L37

)
W2

+ 1
H34

(
H31L24 H12−H31L14 H22+H32L14 H21−H32L24 H11

H12 H21−H11 H22
− L34

+ L35 H13 H21−L35 H11 H23+L36 H12 H23−L36 H13 H22
H12 H21−H11 H22

)
W

+ 1
H34

(
H31 H12 H23−H31 H13 H22+H32 H13 H21−H32 H11 H23

H12 H21−H11 H22
− H33

) (26)

By then, the critical buckling load and the post-buckling load-deflection curve of the PSTC
subjected to axial compressive loads could be obtained from Equation (26).

Setting W → 0 , Equation (26) yields the upper buckling compressive load as follows:

P = Pupper =
1

H34

(
H31H12H23 − H31H13H22 + H32H13H21 − H32H11H23

H12H21 − H11H22
− H33

)
(27)

It is clear from Equation (26) and (27) that, the value of the buckling loads depends on m and n, as a
result, it is worth considering the values of m and n in making these loads reaches the minimum values.

7. Numerical Results and Discussion

The geometric parameters of various model of truncated conical shell and stiffeners used in the
present study are listed in Table 1.

Table 1. The geometric properties for the stiffened (un-stiffenedt) truncated conical shells.

Model L/R R/h h (m) α (
◦
) hcore/hFG br=bs (m) hr=hs (m) nr ns

M1 0.2; 0.5 100 0.01 1 to 80 - - - - -
M2 2 150 0.05 30 0 to 5 0.02 0.03 50 30
M3 2 150 0.01 45 0 to 8 - - - -
M4 2 80 0.012 30 3 0.02 0.012 35 25

7.1. Verification Study

To verify the present study, firstly, the dimensionless buckling axial compressive loads P∗ of
single layer pure isotropic (Stainless steel—SUS304) un-stiffened truncated conical shell by setting
(hFG = 0, e0 = 0) are compared with the results of Naj et al. [2] and Baruch et al. [42]. The results are
presented in Table 2, and in this particular case, the circular cylindrical shell of model M1 without
elastic foundation is considered. The material properties are ν = 0.3, Em = 200 GPa. We determine
P∗ = Pcr/Pcl with Pcl =

2πEh2 cos2 α√
3(1−ν2)

[2] and is found from Equation (27).

Table 2. Dimensionless buckling axial compressive loads of un-stiffened isotropic truncated conical
shells without elastic foundation.

α
L/R = 0.2 L/R = 0.5

Naj et al. [2] Baruch et al. [42] Present (P*) Naj et al. [2] Baruch et al. [42] Present (P*)

1◦ 1.005 (7) 1.005 (7) 1.0002 (1,12) a 1.0017 (8) 1.002 (8) 1.0001 (2,17)
5◦ 1.006 (7) 1.006 (7) 1.0001 (1,12) 1.001 (8) 1.002 (8) 1.0002 (2,17)

10◦ 1.007 (7) 1.007 (7) 1.0002 (1,12) 1.000 (8) 1.002 (8) 1.0005 (2,17)
30◦ 1.0171 (5) 1.017 (5) 1.0017 (1,7) 0.987 (7) 1.001 (7) 1.0023 (2,15)
60◦ 1.148 (0) 1.144 (0) 1.1299 (1,1) 1.045 (7) 1.044 (7) 1.0150 (1,14)
80◦ 2.492 (0) 2.477 (0) 2.5091 (1,1) 1.004 (5) 1.015 (5) 1.0266 (1,4)

a Buckling mode (m,n).

The next verification is performed for stiffened FGM sandwich truncated conical shells with metal
core (e0 = 0), FG faces, and FG stiffeners (Model M2) resting on Pasternak’s foundation. The obtained
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results are presented in Table 3 and are compared with the linear critical loads Pcr of Dung et al. [21].
In which, the Alumina has Ec = 380 GPa, Aluminum has Em = 70 GPa, and ν = 0.3 for both
constituents. k2 = k3 = k = 1, K1 = 5 × 105 N/m3, and K2 = 3 × 104 N/m. The expression Pcr is
taken from Equation (27).

Table 3. Linear critical load of stiffened FG sandwich truncated conical shells.

Pcr (MN) Case 1 (Outside Stiffeners) Case 2 (Inside Stiffeners)

hcore/hFG Dung et al. [21] Present Dung et al. [21] Present

0 19.46667 (8,18) 19.4667 (8,18) a 19.14549 (7,21) 19.1455 (7,21)
0.5 16.12768 (8,16) 16.1277 (8,16) 15.79773 (6,22) 15.7977 (6,22)
1 14.09267 (8,16) 14.0927 (8,16) 13.76594 (6,22) 13.7659 (6,22)
2 11.74586 (8,15) 11.7459 (8,15) 11.42875 (6,22) 11.4288 (6,22)
3 10.43697 (8,16) 10.4370 (8,16) 10.12653 (6,22) 10.1265 (6,22)
4 9.60325 (8,16) 9.6033 (8,16) 9.29804 (6,22) 9.2980 (6,22)
5 9.02635 (8,16) 9.0264 (8,16) 8.72504 (6,22) 8.7250 (6,22)

a Buckling mode (m,n).

Finally, Table 4 compares the present results with those of Deniz [43] for un-stiffened three-layered
FG/Metal/FG truncated conical shells (Model M3) subjected to an axial load without elastic foundation.
The database is used in this example: Ec = 348.43 GPa; Em = 201.04 GPa; h = 0.01 m; α = 45◦; L/R = 2;
R/h = 150; K1 = K2 = 0; e0 = 0. The author analyzed non-linear stability based on the Donnell shell
theory with von Karman-type of kinematic non-linearity. Using stress approach and approximated
solution with two terms may cause the considerable discrepancy between two results.

Table 4. Comparisons of nondimensional critical axial loads (calculated by Equation (27)) for
un-stiffened three-layered FG/Metal/FG truncated conical shells with various ratio hcore/hFG.

Pcr (GN)
k = 1 k = 2 k = 5

Deniz [43] Present Error Deniz [43] Present Error Deniz [43] Present Error

hcore/hFG = 0 1.244 1.2914 (6,22) a 3.7% 1.314 1.3605 (6.22) 3.4% 1.390 1.4392 (6,22) 3.4%
hcore/hFG = 2 1.190 1.1459 (6,22) −3.8% 1.246 1.2021 (6,22) −3.7% 1.297 1.2649 (6,22) −3.8%
hcore/hFG = 4 1.135 1.0915 (6,22) −3.8% 1.178 1.1321 (6,22) −3.5% 1.217 1.1713 (6,22) −3.9%
hcore/hFG = 6 1.105 1.0654 (6,23) −3.6% 1.139 1.1086 (6,22) −2.7% 1.171 1.1307 (6,22) −3.6%
hcore/hFG = 8 1.085 1.0502 (6,23) −3.2% 1.113 1.0887 (6,22) −2.2% 1.140 1.0968 (6,22) −3.9%

a Buckling mode (m,n).

From above three verifications, we can conclude that the results of the present study agree well
with the existing results in the available literature.

7.2. The PSTC on Pasternak Elastic Foundations

In the following subsections, the PSTC resting on Pasternak elastic foundations are considered.
FG materials of the coatings are a blend of Si3N4 (Silicon nitride-ceramic) and SUS304 (Stainless
steel-metal) with Ec = 348.43 GPa and with Em = 201.04 GPa and the metal foam of the core layer
has Em = 201.04 GPa. The PSTC’s model is M3 with volume fraction indices k2 = k3 = k = 1,
and foundation parameters K1 = 6 × 107 N/m3, K2 = 4 × 105 N/m.

7.2.1. Effect of Porosity Coefficients e0 and Thickness of Core Layer hcore

Table 5 presents the critical buckling loads of the PSTC with different degrees of porosity, hcore/hFG
ratios, and the buckling mode parameters (m,n). Furthermore, two cases of stiffeners arrangement,
namely outside and inside eccentrically FG stiffeners are considered. Figures 2 and 3 illustrate the
ratio hcore/hFG effect on the critical buckling loads and post-buckling load-deflection paths of the
shell, respectively.

From the figures, it can be seen that when hcore/hFG ratios increase, the buckling loads decrease for
both cases of arranging stiffeners. Taking case 1, e0 = 0.5 as an example, the critical load decreases by
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about 43% from Pcr = 161.4554 MN (with hcore/hFG = 0) to Pcr = 112.5450 MN (with hcore/hFG = 20).
The stiffener arrangement has considerable influence on the critical buckling loads. Indeed, the Pcr

value of the PSTC reinforced by inside stiffeners is always smaller than that by outside stiffeners.
Figure 4 depicts the influence of porosity coefficients on the behaviors of the PSTC in the

post-buckling phase. From the figure, the loading capacity of the shell decreases when e0 increases.
Figure 5 examines the relation between the critical buckling loads of the PSTC and the porosity
coefficients existed in the shell. It is found that with the increment of e0, the critical buckling load Pcr

of the PSTC decreases. Indeed, the porosity affects the Young modulus of porous shells significantly as
can be seen from Equation (1).

Table 5. The critical buckling load Pcr of the PSTC for various ratios hcore/hFG.

Pcr (MN)
Case 1: Outside Stiffener Case 2: Inside Stiffener

e0=0.2 e0=0.5 e0=0.8 e0=0.2 e0=0.5 e0=0.8

hcore/hFG = 0 161.4554 (7,1) 161.4554 (7,1) 161.4554 (7,1) 142.5447 (5,16) 142.5447 (5,16) 142.5447 (5,16)
hcore/hFG = 0.5 152.0344 (7,1) 148.6324 (7,1) 145.2239 (7,1) 133.1968 (5,15) 129.6503 (5,15) 126.1000 (5,18)
hcore/hFG = 1 146.3406 (7,1) 140.9428 (7,1) 135.5258 (7,1) 127.5050 (5,15) 121.9165 (5,15) 116.3167 (5,15)
hcore/hFG = 2 139.6989 (7,1) 131.9538 (7,1) 124.1623 (7,1) 120.9373 (5,15) 112.9854 (5,15) 105.0065 (5,15)
hcore/hFG = 3 135.9469 (7,1) 126.8605 (7,1) 117.7094 (7,1) 117.3071 (5,15) 108.0130 (5,15) 98.6459 (5,15)
hcore/hFG = 4 133.5555 (7,1) 123.5999 (7,1) 113.5562 (7,1) 114.9159 (5,15) 104.7698 (5,15) 94.5725 (5,15)
hcore/hFG = 5 131.8897 (7,1) 121.3272 (7,1) 110.6618 (7,1) 113.2905 (5,15) 102.5464 (5,15) 91.7425 (5,15)
hcore/hFG = 10 127.8946 (7,1) 115.8633 (7,1) 103.6858 (7,1) 109.4029 (5,15) 97.2183 (5,15) 84.9488 (5,15)
hcore/hFG = 20 125.4750 (7,1) 112.5450 (7,1) 99.4363 (7,1) 107.0552 (5,15) 93.9934 (5,15) 80.8281 (5,15)

Figure 2. Effects of hcore/hFG and e0 on critical load Pcr (k2 = k3 = k = 1). Case 1: Outside stiffener; Case 2:
Inside stiffener.
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Figure 3. Effects of hcore/hFG on postbuckling load—deflection curves (Case 1, k2 = k3 = k = 1).

Figure 4. Effects of e0 on postbuckling load—deflection curves (Outside stiffener, k2 = k3 = k = 1).

7.2.2. Effect of Semi-Vertex Angle α

The buckling loads of the PSTC in relation with the semi-vertex angle α are presented in Table 6.
It could be noted from the table that when α increases, the critical buckling load of the PSTC decreases
remarkably. Indeed, with e0 = 0.5 in case 1, the value of Pcr experiences a reduction from 171.8857 MN
to 10.9997 MN (93.6%) when the value varies from 50◦ to 80◦. This observation has also been
mentioned in Ref. [11,18]. The variation of critical axial compressive loads in relation with the
semi-vertex angle is plotted in Figure 6 for various porosity coefficients and both cases of stiffener
arrangements. Also, the influence of angle α on the equilibrium behaviors of the PSTC with outer
stiffeners in the post-buckling phase is presented in Figure 7. The figure also shows that, when the
value of angle α increases, Pcr decreases.
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Figure 5. Effects of e0 on critical load Pcr (k2 = k3 = k = 1).

Table 6. Critical compression load Pcr for various semi-vertex angles α.

Pcr (MN)
Case 1: Outside Stiffener Case 2: Inside Stiffener

e0=0.2 e0=0.5 e0=0.2 e0=0.5

α = 5◦ 184.2470 (9,1) 171.8857 (9,1) 149.3844 (6,14) 136.8875 (6,14)
α = 10◦ 178.8700 (8,5) 166.0860 (8,3) 146.9110 (6,14) 133.9463 (5,14)
α = 20◦ 160.5859 (8,1) 150.1258 (8,1) 135.1141 (5,15) 123.7183 (5,15)
α = 30◦ 135.9469 (7,1) 126.8605 (7,1) 117.3071 (5,15) 108.0130 (5,15)
α = 45◦ 92.8172 (6,1) 86.9674 (6,1) 84.0426 (5,14) 78.3735 (5,14)
α = 60◦ 50.6289 (5,1) 47.8436 (5,1) 48.4738 (4,13) 45.6781 (4,12)
α = 70◦ 28.1649 (4,1) 26.8487 (4,1) 27.7523 (4,10) 26.5536 (4,9)
α = 80◦ 11.2994 (4,1) 10.9997 (4,1) 11.6098 (4,1) 11.3076 (4,2)

Figure 6. Effects of semi-vertex angle α on critical load Pcr (k2 = k3 = k = 1). Case 1: Outside stiffener;
Case 2: Inside stiffener.
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Figure 7. Effects of semi-vertex angle α on postbuckling load—deflection curves (Outside stiffener,
mboxemphk2 = k3 = k = 1).

7.2.3. Effect of Geometrical Ratios

Effects of geometrical ratios L/R and R/h, on the buckling load Pcr of the PSTC are presented
in Table 7 and graphically illustrated in Figure 8. When L/R and R/h ratios increase, Pcr decreases
significantly. It is clear from the actual mechanical behavior of the structure that, in case of the shell
structure, the thinner or the longer the shell, the smaller the value Pcr. Indeed, in Table 7, in the
case of outside stiffeners, drawing the comparison between Pcr = 684.7950 MN (when R/h = 60,
L/R = 1) and Pcr = 197.9920 MN (when R/h = 60, L/R = 2), the value of Pcr decreases by approximately
71.1%. This trend is also depicted in Figure 9 for the effect of R/h and L/R ratios on the post-buckling
equilibrium paths of the PSTC in the case 1. Thus, the bearing capacity of the shell is quite sensitive to
the variation of L/R and R/h ratios.

Table 7. Critical compression load Pcr for various values of L/R and R/h ratios.

Pcr (MN) R/h = 60 R/h = 80 R/h = 100 R/h = 200 R/h = 300

Case 1: Outside stiffeners

L/R = 1 684.7950 (3,9) 398.8262 (4,1) 272.3611 (5,1) 93.1743 (6,1) 58.5103 (7,1)
L/R = 1.5 320.8777 (5,1) 197.8373 (6,1) 139.0107 (6,1) 58.4647 (8,1) 42.7500 (9,1)
L/R = 2 197.9920 (6,1) 126.8605 (7,1) 94.1463 (8,1) 47.0167 (9,1) 37.0240 (9,7)
L/R = 3 109.9757 (8,1) 77.4973 (8,6) 61.4766 (9,1) 37.9004 (9,10) 30.9346 (8,13)

Case 2: Inside stiffeners

L/R = 1 648.9722 (3,11) 379.1878 (3,14) 255.0781 (4,14) 82.7254 (5,20) 50.4788 (6,23)
L/R = 1.5 297.5119 (4,12) 177.0668 (4,15) 122.2705 (5,16) 47.5955 (6,20) 33.5999 (7,21)
L/R = 2 175.2790 (4,14) 108.0130 (5,15) 77.5981 (5,16) 35.7277 (6,18) 26.9945 (7,19)
L/R = 3 89.9204 (5,14) 60.0620 (6,15) 46.3523 (6,15) 26.2785 (7,16) 21.2033 (7,16)
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Figure 8. Effects of R/h and L/R on critical load Pcr (Case 1, k2 = k3 = k = 1).

Figure 9. Effects of R/h and L/R on postbuckling load—deflection curves (Case 1, k2 = k3 = k = 1).

7.2.4. Effects of Volume Fraction Index

The critical buckling loads affected by the parameters k, k2 and k3 are shown in Table 8. The critical
buckling loads vary according to the volume fraction index for two different values of the hcore/hFG
ratio depicted in Figure 10. From the figure, when the value of k increases, the critical loads Pcr increase.
The reason is that the portion of the ceramic constituent in shell structure increase when the value of k
increase. This is also confirmed by observing Figure 11, which depicts the load-deflection curves of the
PSTC with outside stiffeners in relation to the volume fraction index in the post-buckling phase.

99



Materials 2018, 11, 2200

Table 8. Critical compression load Pcr for different values of volume fraction indexes.

Pcr (MN)
Case 1: Outside Stiffener (k2 = k3 = 1/k) Case 2: Inside Stiffener (k2 = k3 = k)

e0=0.2 e0=0.5 e0=0.2 e0=0.5

k = 0 135.4442 (7,1) 126.2111 (7,1) 105.4436 (5,16) 96.2521 (5,15)
k = 1 135.9469 (7,1) 126.8605 (7,1) 117.3071 (5,15) 108.0130 (5,15)
k = 5 137.5855 (7,1) 128.5525 (7,1) 125.4939 (5,15) 116.1792 (5,15)
k = 10 137.9374 (7,1) 128.9140 (7,1) 127.4802 (5,15) 118.1596 (5,15)
k = ∞ 138.3158 (7,1) 129.3029 (7,1) 130.0065 (5,15) 120.6781 (5,15)

Figure 10. Effects of volume fraction indexes on critical load Pcr (k2, k3 = 1/k).

Figure 11. Effects of volume fraction indexes on postbuckling load—deflection curves (Case 1).
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7.2.5. Effect of Stiffeners and Foundation

The effects of stiffeners and elastic foundations on the buckling loads Pcr of the PSTC are presented
in Table 9. It is noted that the higher the number of stiffeners being used, the higher the buckling load.
Indeed, for case 1 with K1 = 6 × 107 N/m3, K2 = 4 × 105 N/m, drawing the comparison between
Pcr = 90.1237 MN (ns = nr = 0) and Pcr = 161.2914 MN (ns = nr = 50), we could recognize the
increment in the value of critical compressive load by about 79%. Furthermore, the critical compressive
loads Pcr of the PSTC stiffened by rings are higher than that of the PSTC stiffened by stringers.

Table 9. Effects of stiffeners and foundation on buckling loads Pcr.

Pcr (MN)
K1=0
K2=0

K1=3×107 N/m3

K2=2×105 N/m
K1=6×107 N/m3

K2=4×105 N/m
K1=9×107 N/m3

K2=6×105 N/m

Case 1: Conical Shell Reinforced by Outside Stiffener

ns = 0, nr = 0 81.8418 (5,16) 86.4019 (7,4) 90.1237 (7,4) 93.8390 (7,3)
ns = 50, nr = 0 96.7739 (2,16) 110.7194 (4,17) 118.5695 (5,14) 124.6769 (5,14)
ns = 0, nr = 50 111.2085 (8,1) 114.4478 (8,1) 117.6871 (8,1) 120.9264 (8,1)
ns = 25, nr = 25 119.4573 (7,1) 123.1589 (7,1) 126.8605 (7,1) 130.5622 (7,1)
ns = 50, nr = 50 153.6013 (6,9) 157.5907 (7,1) 161.2924 (7,1) 164.9940 (7,1)

Case 2: Conical Shell Reinforced by Inside Stiffener

ns = 0, nr = 0 81.8418 (5,16) 86.4019 (7,4) 90.1237 (7,4) 93.8390 (7,3)
ns = 50, nr = 0 85.6480 (2,16) 101.4708 (3,17) 111.2717 (4,17) 120.2202 (4,17)
ns = 0, nr = 50 84.7967 (6,15) 89.6205 (6,15) 94.4443 (6,15) 99.2681 (6,15)
ns = 25, nr = 25 94.3881 (4,15) 101.8290 (5,15) 108.0130 (5,15) 114.1970 (5,15)
ns = 50, nr = 50 103.4412 (4,14) 112.0060 (4,14) 120.2306 (5,15) 126.4147 (5,15)

It is also noted that the presence of elastic foundations enhances the buckling loads. The buckling
load of the PSTC increases according to the increment of the foundation parameters. Indeed, for the
PSTC with orthogonal stiffeners with (ns = nr = 50) the value of Pcr rises by about 9.3% from
119.4573MN with the absence of elastic foundation to 130.5622MN with the presence of elastic
foundation: K1 = 9 × 107 N/m3; K2 = 6 × 105 N/m).

Figure 12 depicts the effect of stiffeners quantity on the post-buckling equilibrium path P − W/h
of the PSTC. The value of the buckling loads is in a proportional relation with the quantity of the
stiffeners. The curve for the stiffeners-free case and ns = nr = 25 case bottoms and tops the graph,
respectively. The curves for ns = nr = 15 and ns = nr = 10 locate in the middle range. The effect of
foundation parameters on the post-buckling equilibrium paths P − W/h of the PSTC is also shown in
Figure 13. It is observed that when the foundation parameters K1, K2 increases, the curves gradually
rise, in other words, the post-buckling equilibrium loads increase. From the figure, the curve for
K1 = 9× 107 N/m3; K2 = 6× 105 N/m peaks, in other words, in this case, the buckling load at specific
deflection value W/h is the highest among all the cases considered. The buckling load for the case
with K1 = 6 × 107 N/m3; K2 = 4 × 105 N/m is greater than that for the case with K1 = 3 × 107 N/m3;
K2 = 2 × 105 N/m in the post-buckling phase of the PSTC.
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Figure 12. Effects of stiffeners on postbuckling load—deflection curves (Case 1, k2 = k3 = k = 1).

Figure 13. Effects of foundation on postbuckling load—deflection curves (Case 1, k2 = k3 = k = 1).

8. Conclusions

The paper produces an analytical procedure to analyze the nonlinear instability of the porous
eccentrically stiffened functionally graded sandwich truncated conical shells surrounded by Pasternak
elastic foundations using displacement approach. The core is made of a porous material (metal foam)
with properties varying across its thickness according to a simple cosine law in term of a coefficient
related to plate’s porosity. The material properties of FG coatings and stiffeners are assumed to be
graded through the thickness direction according to a simple power law distribution in terms of
the volume fractions of the constituents. Two cases of stiffener arrangement: outside and inside
stiffened are considered. The smeared stiffeners technique with von Karman geometrical nonlinearity
and the classical shell theory are employed to bring about the governing equations. The Galerkin
method is employed to obtain theoretical expressions of load-deflection curves or the post-buckling
equilibrium paths. The numerical results show that the reinforced stiffeners, with volume fraction
index k, the length-to-radius ratio L/R, the radius-to-thickness ratio R/h, and foundation parameters
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K1, K2 significantly influence the buckling and post-buckling behaviors of the porous eccentrically
stiffened functionally graded truncated conical sandwich shells. The study also shows the profound
effects of the porosity coefficient e0 and the core layer thickness on the critical buckling compressive
loads and load-deflection curves in the post-buckling phase of the shell. Moreover, the stiffener
arrangement has considerable influence on the critical buckling loads, the PSTC reinforced by outside
stiffeners is always stiffer than that reinforced by inside stiffeners.
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In Equation (9), A11 = A22 = E1
1−ν2 , A12 = νA11; A66 = 1−ν

2 A11; B11 = B22 = E2
1−ν2 , B12 = νB11;

B66 = 1−ν
2 B11; D11 = D22 = E3

1−ν2 , D12 = νD11; D66 = 1−ν
2 D11; d1(x) = λ0x, d2 = L

nr
, es = h+hs

2 ,

er =
h+hr

2 , C1(x) = C0
1

x , C0
1 = E2sbs

λ0
, C2 = E2rbr

d2
, λ0 = 2π sin α

ns
, in which ns is the number of stringers, nr

is the number of rings; br are the width of rings, bs is the width of stringers; d1 = d1(x) is the span
between stringers; d2 is the span between rings as shown in Figure 2; es is the eccentricities of the
stringers, er is the eccentricities of the rings to the mid-surface of the shell as shown in Figure 1.
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In Equation (9), A11 = A22 = E1
1−ν2 , A12 = νA11; A66 = 1−ν
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, in which ns is the number of stringers, nr

is the number of rings; br are the width of rings, bs is the width of stringers; d1 = d1(x) is the span
between stringers; d2 is the span between rings as shown in Figure 2; es is the eccentricities of the
stringers, er is the eccentricities of the rings to the mid-surface of the shell as shown in Figure 1.
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1

x sin α
∂2

∂x∂θ+

+
[
(B22 + C2)

1
x2 sin α

−
(

A22 +
E1rbr

d2

)
1

x sin α cot α
]

∂
∂θ

F33 = −
[

xD11 +
E3sbs

λo

]
∂4

∂x4 −
[

D22 +
E3rbr

d2

]
1

x3 sin4 α
∂4

∂θ4 − 2
x sin2 α

[D12 + 2D66]
∂4

∂x2∂θ2

+ 2
x2 sin2 α

[D12 + 2D66]
∂3

∂x∂θ2 − 2D11
∂3

∂x3 +
[

1
x

(
D22 +

E3rbr
d2

)
+ 2B12 cot α

]
∂2

∂x2

+ 2
x2 sin2 α

cot α(B22 + C2)
∂2

∂θ2 − 2
x3 sin2 α

[
D12 + 2D66 + D22 +

E3rbr
d2

]
∂2

∂θ2

− 1
x2

[
D22 +

E3rbr
d2

]
∂

∂x + [B22 + C2]
1
x2 cot α − 1

x

[
A22 +

E1rbr
d2

]
cot2 α

−xK1 + xK2

(
∂2

∂x2 +
1
x

∂
∂x + 1

x2 sin2 α
∂2

∂θ2

)
F34 = − P

π sin 2α

∂2

∂x2

G14 =
[

xA11 +
E1sbs

λo

]
∂w
∂x

∂2w
∂x2 + 1

2 [A11 − A12]
(

∂w
∂x

)2
+ A12

2x sin2 α
∂

∂x

(
∂w
∂θ

)2

− 1
2x2 sin2 α

(
A12 + A22 +

E1rbr
d2

)(
∂w
∂θ

)2
+ 1

x sin2 α
A66

∂2w
∂x∂θ

∂w
∂θ + 1

x sin2 α
A66

∂w
∂x

∂2w
∂θ2

G24 = 1
2 sin α A12

∂
∂θ

(
∂w
∂x

)2
+ 1

x2 sin3 α

[
A22 +

E1rbr
d2

]
∂w
∂θ

∂2w
∂θ2 + A66

1
sin α

∂2w
∂x2

∂w
∂θ

+A66
1

sin α
∂w
∂x

∂2w
∂x∂θ + A66

1
x sin α

∂w
∂x

∂w
∂θ
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G34 =B11
∂w
∂x

∂2w
∂x2 +

1
x3 sin2 α

B12

(
∂w
∂θ

)2
− 2

x2 sin2 α
B12

∂2w
∂x∂θ

∂w
∂θ

+
2

x sin2 α
B12

(
∂2w
∂x∂θ

)2

+2B66
1

x sin2 α

∂2w
∂x2

∂2w
∂θ2 − 3B12

∂w
∂x

∂2w
∂x2 + [B22 + C2]

1
x3 sin2 α

(
∂w
∂θ

)2

−[B22 + C2]
2

x2 sin2 α

∂w
∂θ

∂2w
∂x∂θ

+
1
2

A12

(
∂w
∂x

)2
cot α +

[
A22 +

E1rbr

d2

]
1

2x2 sin2 α

(
∂w
∂θ

)2
cot α

+

[
xA11 +

E1sbs

λo

]
∂2u
∂x2

∂w
∂x

+

[
xA11 +

E1sbs

λo

]
∂u
∂x

∂2w
∂x2 + A11

∂u
∂x

∂w
∂x

+ A12
∂u
∂x

∂w
∂x

+ A12u
∂2w
∂x2

+A12
1

sin α

∂2v
∂x∂θ

∂w
∂x

+ A12
1

sin α

∂v
∂θ

∂2w
∂x2 +

3
2

[
xA11 +

E1sbs

λo

](
∂w
∂x

)2 ∂2w
∂x2 +

1
2

A11

(
∂w
∂x

)3

+A12w
∂2w
∂x2 cot α − A12

1
2x2 sin2 α

∂w
∂x

(
∂w
∂θ

)2
+ A12

1
2x sin2 α

∂2w
∂x2

(
∂w
∂θ

)2
+ A12

2
x sin2 α

∂w
∂x

∂w
∂θ

∂2w
∂x∂θ

+B12
1

x2 sin2 α

∂w
∂x

∂2w
∂θ2 − B12

2
x sin2 α

∂2w
∂x2

∂2w
∂θ2 − A66

1
x2 sin2 α

∂u
∂θ

∂w
∂θ

+ A66
1

x sin2 α

∂2u
∂x∂θ

∂w
∂θ

+A66
2

x sin2 α

∂u
∂θ

∂2w
∂x∂θ

+ A66
1

sin α

∂2v
∂x2

∂w
∂θ

+ A66
2

sin α

∂v
∂x

∂2w
∂x∂θ

− A66
1

x sin α

∂v
∂x

∂w
∂θ

+A66
1

x2 sin α
v

∂w
∂θ

−A66
2

x sin α
v

∂2w
∂x∂θ

− A66
2

x2 sin2 α

∂w
∂θ

∂2w
∂x∂θ

+ A66
1

x sin2 α

∂2w
∂x2

(
∂w
∂θ

)2

+A66
4

x sin2 α

∂w
∂x

∂w
∂θ

∂2w
∂x∂θ

+ B66
8

x2 sin2 α

∂2w
∂x∂θ

∂w
∂θ

− B66
4

x3 sin2 α

(
∂w
∂θ

)2
+ A66

1
x sin2 α

∂2u
∂θ2

∂w
∂x

+A66
1

sin α

∂2v
∂x∂θ

∂w
∂x

− A66
1

x sin α

∂v
∂θ

∂w
∂x

+ A66
1

x sin2 α

(
∂w
∂x

)2 ∂2w
∂θ2 − 2B66

1
x sin2 α

(
∂2w
∂x∂θ

)2

+2B66
1

x2 sin2 α

∂2w
∂θ2

∂w
∂x

+ A12
1

x sin2 α

∂2u
∂x∂θ

∂w
∂θ

+ A12
1

x sin2 α

∂u
∂x

∂2w
∂θ2

+

[
A22 +

E1rbr

d2

]
1

x2 sin2 α

∂u
∂θ

∂w
∂θ

+

[
A22 +

E1rbr

d2

]
1

x2 sin2 α
u

∂2w
∂θ2 +

[
A22 +

E1rbr

d2

]
1

x2 sin3 α

∂2v
∂θ2

∂w
∂θ

+

[
A22 +

E1rbr

d2

]
1

x2 sin3 α

∂v
∂θ

∂2w
∂θ2 +

1
2

A12
1

x sin2 α

(
∂w
∂x

)2 ∂2w
∂θ2 +

[
A22 +

E1rbr

d2

]
1

x2 sin2 α
w

∂2w
∂θ2 cot α

+

[
A22 +

E1rbr

d2

]
3

2x3 sin4 α

(
∂w
∂θ

)2 ∂2w
∂θ2

−[B22 + C2]
1

x2 sin2 α

∂w
∂x

∂2w
∂θ2

Appendix C

In Equations (22)–(24)

H11 = −
(

J11 A11 + J12
E1sbs

λo

)
m2π2

L2 sin α − J13 A66
1

sin α
n2

4 − J13

(
A22 +

E1rbr
d2

)
sin α − J14 A11

mπ
L sin α

H12 = −J12(A12 + A66)
nmπ
2L + J15

(
A22 + A66 +

E1rbr
d2

)
n
2

H13 =
(

J11B11 + J12Co
1
)m3π3

L3 sin α + J13
1

sin α (B12 + 2B66)
n2mπ

4L + J12 A12
mπ
L sin α cot α

+J13(B22 + C2)
mπ
L sin α − J15

(
A22 +

E1rbr
d2

)
sin α cot α + J14B11

m2π2

L2 sin α

L14 = −
(

J18 A11 + J19
E1sbs

λo

)
m3π3

L3 sin α + (J112 A12 + J112 A66 − J110 A66)
n2mπ

4L sin α + J111(A11 − A12)
m2π2

2L2 sin α

H21 = −J22(A12 + A66)
nmπ
2L + J26

(
A22 + A66 +

E1rbr
d2

)
n
2

H22 = −J23

(
A22 +

E1rbr
d2

)
1

sin α
n2

4 − J21 A66
m2π2

L2 sin α − J23 A66 sin α + J25 A66
mπ
L sin α

H23 = J23

(
A22 +

E1rbr
d2

)
n
2 cot α + J22(B12 + 2B66)

nm2π2

2L2 + J24
sin2 α

(B22 + C2)
n3

8 − J26(B22 + C2)
nmπ
2L
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L24 = J27(A66 + A12)
nm2π2

2L2 − J29

sin2 α

(
A22 +

E1rbr

d2

)
n3

8
− J28 A66

nm2π2

2L2 + J210 A66
nmπ

2L

H31 =
(

J32B11 + J33Co
1
)m3π3

L3 sin α + J34
sin α (B12 + 2B66)

n2mπ
4L + J34(B22 + C2)

mπ
L sin α + J33 A12

mπ
L sin α cot α

−2J38B11
m2π2

L2 sin α − J310
sin α (B22 + C2)

n2

4 + J310(B22 + C2) sin α − J39

(
A22 +

E1rbr
d2

)
sin α cot α

H32 = J33(B12 + 2B66)
nm2π2

2L2 + J35
sin2 α

(B22 + C2)
n3

8 − J35(B22 + C2)
n
2

+J34

(
A22 +

E1rbr
d2

)
n
2 cot α + J39(B22 + C2)

nmπ
2L

H33 = −
(

J32D11 + J33
E3sbs

λo

)
m4π4

L4 sin α − J36

(
D22 +

E3rbr
d2

)
1

sin3 α
n4

16 − 2J34
sin α (D12 + 2D66)

n2m2π2

4L2

−J34

(
D22 +

E3rbr
d2

)
m2π2

L2 sin α − 2J33B12
m2π2

L2 sin α cot α − 2J35
sin α cot α(B22 + C2)

n2

4

+ 2J36
sin α

(
D12 + 2D66 + D22 +

E3rbr
d2

)
n2

4 + J35(B22 + C2) sin α cot α − J34

(
A22 +

E1rbr
d2

)
sin α cot2 α

−J32K1 sin α − K2 J32
m2π2

L2 sin α − K2
J34

sin α
n2

4 − 2J310
sin α (D12 + 2D66)

n2mπ
4L

+2J38D11
m3π3

L3 sin α − J310

(
D22 +

E3rbr
d2

)
mπ
L sin α + J38K2

mπ
L sin α

H34 =
J33m2π

2L2 cos α

L34 = J314
1

sin α B12
n2

4 + J314(B22 + C2)
1

sin α
n2

4 + J313

(
A22 +

E1rbr
d2

)
1

2 sin α
n2

4 cot α − J314B66
1

sin α n2

+ 1
2 J316 A12

m2π2

L2 sin α cot α − J319B11
m3π3

L3 sin α + 3J319B12
m3π3

L3 sin α − J320B12
1

sin α
n2mπ

4L
−2J320B66

1
sin α

n2mπ
4L + J320(B22 + C2)

1
sin α

n2mπ
4L + 2J322B66

1
sin α

n2m2π2

4L2 − J322 A12
m2π2

L2 sin α cot α

−J324

(
A22 +

E1rbr
d2

)
cot α
sin α

n2

4 − 2J323B12
1

sin α
n2m2π2

4L2 − J333
sin α B12

n2mπ
2L − (B22 + C2)

J333
sin α

n2mπ
2L

−J333 A66
1

sin α
n2mπ

2L + 2B66
J333

sin α
n2mπ

L + J336
sin α B12

n2m2π2

2L2 − J336
sin α B66

n2m2π2

2L2

L35 = −A66 J311
nm2π2

2L2 + J313 A66
n
2 − J313

(
A22 +

E1rbr
d2

)
1

sin2 α
n3

8 − J316 A12
nm2π2

2L2 − J316 A66
nm2π2

2L2

+J319 A66
nmπ
2L + J322 A12

nm2π2

2L2 + J324

(
A22 +

E1rbr
d2

)
1

sin2 α
n3

8 − 3
2 J332 A66

nmπ
L + J335 A66

nm2π2

L2

L36 = −J312 A66
1

sin α
n2mπ

4L − J312 A12
1

sin α
n2mπ

4L −
(

J315 A11 + J316
E1sbs

λo

)
m3π3

L3 sin α

−J317 A66
1

sin α
n2mπ

4L − J319 A11
m2π2

L2 sin α − 2J318 A12
m2π2

L2 sin α − J320

(
A22 +

E1rbr
d2

)
1

sin α
n2

4

+
(

J321 A11 + J322
E1sbs

λo

)
m3π3

L3 sin α + J323 A12
1

sin α
n2mπ

4L − A66
J333

sin α
n2

4 + J333
sin α

(
A22 +

E1rbr
d2

)
n2

4

+J336 A66
1

sin α
n2mπ

2L

L37 = − 3
2

(
J325 A11 + J326

E1sbs
λ0

)
m4π4

L4 sin α − A66
J326

sin α
n2m2π2

4L2 − A12
J327

2 sin α
n2m2π2

4L2

−A12
J328

2 sin α
n2mπ

4L + 1
2 J329 A11

m3π3

L3 sin α − J330
sin α A66

n2m2π2

4L − J330
2 sin α A12

n2m2π2

4L2

−J331

(
A22 +

E1rbr
d2

)
3

2 sin3 α
n4

16 + A12
J334

sin α
n2m3π3

2L3 + J334 A66
1

sin α
n2m3π3

L3

J11 = π
[

(L+xo)
4

8 − x4
o

8 − 3L2x2
o

8π2m2 +
3L2(L+xo)

2

8π2m2

]

J12 = π

[
(L + xo)

3

6
− x3

o
6

+
L3

4π2m2

]
,

J13 = π

(
L2

4
+

Lxo

2

)

J14 = − L2(L + 2xo)

4m
,

J15 = − L2

4m

J18 =
4 − 4(−1)n

3n

[
− L(L + xo)

3(−1)m

3πm
+

Lx3
o

3πm
− 14L3xo

9π3m3 +
14L3(L + xo)(−1)m

9π3m3

]
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J19 =
4 − 4(−1)n

3n

[
− 14L3

27π3m3 +
Lx2

o
3πm

− L(L + xo)
2(−1)m

3πm
+

14L3(−1)m

27π3m3

]

J110 =
4 − 4(−1)n

3n

[
− L(L + xo)(−1)m

3πm
+

Lxo

3πm

]

J111 = −56(−1)n − 56
27π2m2n

[
L3(−1)m − L2xo + L2xo(−1)m

]
J112 =

2
9πmn

[
L2(−1)m+n − L2(−1)m + Lxo(−1)m+n − xoL(−1)m − xoL(−1)n + xoL

]

J21 = π

[
(L + xo)

4

8
− x4

o
8

+
3L2x2

o
8π2m2 − 3L2(L + xo)

2

8π2m2

]
,

J22 = π
[

(L+xo)
3

6 − x3
o

6 − L3

4π2m2

]
J23 = π

(
L2

4
+

Lxo

2

)
,

J24 =
Lπ

2
,

J25 = − L2(L + 2xo)

4m
,

J26 = − L2

4m

J27 =
1

81π3m3n

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

18π2L3m2 cos3(πm) cos3(πn) −18π2L3m2 cos3(πm)− 4L3 cos3(πm) cos3(πn)
+4L3 cos3(πm)− 72L3 cos(πm) cos(πn) + 72L3 cos(πm)

+48L3 cos3(πn) sin2(πm
2
)
+ 4L3 cos3(πn)− 144L3 cos(πn) sin2(πm

2
)

+72L3 cos(πn) + 96L3 sin2(πm
2
)− 76L3 + 36π2L2m2xo cos3(πm) cos3(πn)

−36π2L2m2xo cos3(πm) + 18π2Lm2x2
o cos3(πm) cos3(πn)

−18π2Lm2x2
o cos3(πm)− 18π2Lm2x2

o cos3(πn) + 18π2Lm2x2
o

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

J28 =
2 − 2(−1)n

3n

[
− 40L3

27π3m3 +
2Lxo

2

3πm
− 2L(L + xo)

2(−1)m

3πm
+

40L3(−1)m

27π3m3

]

J29 =
4L

9πmn

[
−(−1)n + 1 + (−1)m+n − (−1)m

]

J210 =
4L2

27π2m2n

[
(−1)m − 1 + (−1)n − (−1)m+n

]

J31 = π

⎡
⎣ (L + xo)

6 − x6
o

12
+

5L2
(

x4
o − (L + xo)

4
)

8π2m2 +
15L4

(
(L + xo)

2 − x2
o

)
8π4m4

⎤
⎦

J32 = π

⎡
⎣ (L + xo)

5 − x5
o

10
+

3L5

4π4m4 +
L2
(

x3
o − (L + xo)

3
)

2π2m2

⎤
⎦

J33 = π

[
(L + xo)

4 − x4
o

8
− 3L3(L + 2xo)

8π2m2

]
,

J34 = J22,

J35 = J23,

J36 = J24
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J37 = π

⎡
⎣ L
(

x4
o − (L + xo)

4
)

4πm
+

3L4(L + 2xo)

4π3m3

⎤
⎦,

J38 = π

⎡
⎣ L
(

x3
o − (L + xo)

3
)

4πm
+

3L4

8π3m3

⎤
⎦

J39 =
−L2(L + 2xo)

4m
,

J310 = − L2

4m

J311 =
2 − 2(−1)n

3n

[
−2L(L + xo)

3(−1)m

3πm
+

40L3(L + xo)(−1)m

9π3m3 +
2Lx3

o
3mπ

− 40L3xo

9π3m3

]
,

J312 = J28

J313 =
2 − 2(−1)n

3n

[
2Lxo

3πm
− 2L(L + xo)(−1)m

3πm

]
,

J314 =
4L

9πmn

[
−(−1)n + 1 + (−1)m+n − (−1)m

]
J315 = 4(−1)n−4

3n

{
L(L+xo)

4(−1)m−Lx4
o

3πm +
488L5[(−1)m−1]

81π5m5 + 28L3x2
o−28L3(L+xo)

2(−1)m

9π3m3

}

J316 =
4 − 4(−1)n

3n

[
− L(L+xo)

3(−1)m

3πm + 14L3(L+xo)(−1)m

9π3m3 + Lx3
o

3πm − 14L3xo
9π3m3

]

J317 =
4 − 4(−1)n

3n

[
− L(L + xo)

2(−1)m

3πm
+

14L3(−1)m

27π3m3 +
Lx2

o
3πm

− 14L3

27π3m3

]

J318 =
1 − (−1)n

3n

[
160L4 − 160L4(−1)m

27π4m4 +
8L2(L + xo)

2(−1)m

3π2m2 − 8L2x2
o

3π2m2

]

J319 =
1 − (−1)n

3n

(
16L2(L + xo)(−1)m

9π2m2 − 16L2xo

9π2m2

)

J320 =
8L2

27π2m2n

[
−1 + (−1)n + (−1)m − (−1)m+n

]

J321 =
4 − 4(−1)n

3n

{
2L
[

x4
o−(L+xo)

4(−1)m
]

3πm +
1456L5[1−(−1)m]

81π5m5 +
80L3[(L+xo)

2(−1)m−x2
o ]

9π3m3

}

J322 =
4 − 4(−1)n

3n

[
−2L(L + xo)

3(−1)m

3πm
+

40L3(L + xo)(−1)m

9π3m3 +
2Lx3

o
3πm

− 40L3xo

9π3m3

]
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3n

[
−2L(L + xo)

2(−1)m

3πm
+

40L3(−1)m

27π3m3 +
2Lx2

o
3πm

− 40L3

27π3m3

]

J324 =
4 − 4(−1)n

3n

[
2Lxo

3πm
− 2L(L + xo)(−1)m

3πm

]

J325 = −3π

4

⎡
⎣ x5

o − (L + xo)
5

40
− 3L5

256π4m4 +
L2
(
(L + xo)

3 − x3
o

)
32π2m2

⎤
⎦

J326 = −3π

4

[
(L + xo)

4

32
− x4

o
32

− 3L3(L + 2xo)

128π2m2

]
,
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J327 = −3π

4

[
(L + xo)

3

24
− x3

o
24

− L3

64π2m2

]

J328 =
π

4

[
3Lxo

32πm
− 3L(L + xo)

32πm

]
,

J329 = −3π

4

[
− 51L4

256π3m3 +
5L((L+xo)

3−x3
o)

32πm

]

J330 =
π

4

(
(L + xo)

3

8
− x3

o
8

− 15L3

64π2m2

)
,

J331 =
3Lπ

32πm
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51π2m2n

[
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]
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4
27π2m2n

[
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]
,
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π

4

[
(L + xo)

3

24
− x3

o
24

+
L2xo

64π2m2

]

J335 =
−1

81π3m3n
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[
1 − (−1)n − (−1)m + (−1)m+n

]
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[
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]
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o

[
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]
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[
L2x2
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]
+54π2m2

[
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]
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⎪⎪⎪⎪⎪⎪⎭

J336 =
1

81π3m3n

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

18π2m2L3
[
(−1)m+n − (−1)m

]
+ 76L3

[
−1 − (−1)m+n + (−1)m + (−1)n

]
+18π2m2Lx2

o

[
(−1)m+n − (−1)m − (−1)n + 1

]
−96L3(−1)n sin2(πm

2
)
+ 96L3 sin2(πm

2
)
+ 36π2m2L2xo

[
(−1)m+n − (−1)m
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⎫⎪⎪⎪⎬
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Abstract: The bending analysis of thick and moderately thick functionally graded square and
rectangular plates as well as plates on Winkler–Pasternak elastic foundation subjected to sinusoidal
transverse load is presented in this paper. The plates are assumed to have isotropic, two-constituent
material distribution through the thickness, and the modulus of elasticity of the plate is assumed
to vary according to a power-law distribution in terms of the volume fractions of the constituents.
This paper presents the methodology of the application of the high order shear deformation theory
based on the shape functions. A new shape function has been developed and the obtained results
are compared to the results obtained with 13 different shape functions presented in the literature.
Also, the validity and accuracy of the developed theory was verified by comparing those results
with the results obtained using the third order shear deformation theory and 3D theories. In order
to determine the procedure for the analysis and the prediction of behavior of functionally graded
plates, the new program code in the software package MATLAB has been developed based on the
theories studied in this paper. The effects of transversal shear deformation, side-to-thickness ratio,
and volume fraction distributions are studied and appropriate conclusions are given.

Keywords: functionally graded plate; power-law distribution; high order shear deformation theory;
elastic foundation

1. Introduction

Failure and delamination at the border between two layers are the biggest and the most frequently
studied problem of the conventional composite laminates. Delamination of layers due to high local
inter-laminar stresses causes a reduction of stiffness and a loss of structural integrity of a construction.
In order to eliminate these problems, improved materials such as functionally graded materials (FGM),
which are getting more and more popular, are used for innovative engineering constructions.

FGM is a composite material consisting of two or more constituents with the continuous change
of properties in a certain direction. In other words, these materials can also be defined as materials
which possess a gradient change of properties due to material heterogeneity. A gradient property can
go in one or more directions and it can also be continuous or discontinuous from one surface to another
depending on the production technique [1–3]. One of the most common uses of FGM materials is found
in thermal barriers, one surface of which is in contact with high temperatures and is made of ceramic
which can provide adequate thermal stability, low thermal conductivity, and fine antioxidant properties.
The low-temperature side of the barrier is made of metal, which is superior in terms of mechanical
strength, toughness, and high thermal conductivity. Functionally graded materials, which contain
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metal and ceramic constituents, improve thermo-mechanical properties between layers, because of
which delamination of layers should be avoided due to continuous change between properties of
the constituents. By varying the percentage of volume fraction content of the two or more materials,
FGM can be formed so that it achieves a desired gradient property in specific directions. Figure 1 shows
schematic of continuously graded microstructure with metal-ceramic constituents [4].

 
(a) (b) (c) 

Figure 1. Schematic of continuously graded microstructure with metal-ceramic constituents: (a) smoothly
graded microstructure; (b) enlarged view; (c) ceramic-metal functionally graded materials (FGM).

Depending on the nature of gradient, functionally graded materials may be grouped into fraction
gradient type, shape gradient type, orientation gradient type and size gradient type (Figure 2) [5].

 
(a) (b) (c) (d) 

Figure 2. Different types of functionally graded materials based on nature of gradients: (a) fraction
gradient type; (b) shape gradient type; (c) orientation gradient type; (d) size gradient type.

With the expansion of the FGM material application area, it was necessary to improve fabrication
methods for mentioned materials. Various fabrication methods have been developed for the
preparation of bulk FGMs and graded thin films. The processing methods are commonly classified
into four groups like powder technology methods (dry powder processing, slip vesting, tape casting,
infiltration process or electrochemical gradation, powder injection molding and self-propagating
high temperature synthesis, etc.), deposition methods (chemical vapor deposition, physical vapor
deposition, electrophoretic deposition, slurry deposition, pulsed laser deposition, plasma spraying,
etc.), in-situ processing methods (laser cladding, spray forming, sedimentation and solidification,
centrifugal casting, etc.), and rapid prototyping processes (multiphase jet solidification, 3D-printing,
laser printing, laser sintering, etc.) [6]. The basic difference between the mentioned production methods
can be made according to whether the obtained materials have a stepwise or continuous structure.
The main disadvantage of the methods based on powder metallurgy is that it is very difficult to obtain
FGM with a continuous change in properties. Continuous graded structures are produced by methods
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based on casting. Taking this fact into consideration, it was necessary to develop functions which
would, with a smaller degree of approximation and in the best way possible, describe a gradient
change of properties in a desired direction [7,8].

The majority of already existing software for the analysis of the composite materials are based
on the classical plate theory (CPT) [9] and first-order shear deformation theories (FSDT), which were
developed by Mindlin [10] and, in a similar way, by Reissner [11,12]. Although classical theory does
not consider the effect of transverse shear stresses, it can provide acceptable predictions of the behavior
and the results for thin FGM plates where the effects of shear and normal strains across the thickness
of the plate are negligible.

Static problems of buckling and bending of FGM plates by using the CPT for different cases of
boundary conditions were studied by the authors of the following papers [13–15]. Considering von
Karman’s type of geometric nonlinearity, FGM behavior was analyzed in [16,17]. The effect of
a gradient distribution of materials in thin square and rectangular FGM plates was studied in terms of
different cases of dynamic load. The papers [18,19] analyze free vibrations of the FGM plates using CPT
for different boundary conditions in the area of geometric linearity. Von Karman’s type of nonlinearity
has been used in the papers [20,21].

Mindlin’s and Reissner’s theories take into consideration the effect of shear stresses across the
thickness of the plate and require the use of correctional factors which generally depend on the shape
and geometry. FSDT theory has been widely used in numerous papers mainly for solving nonlinear
problems [22,23]. Static problems due to introducing geometric nonlinearity have been studied in [24],
using Green’s strain tensor, and in [25] using von Karman’s strain tensor.

In order to avoid the use of shear correctional factors, high-order shear deformation theories
(HSDT) have been introduced. HSDT theories can be developed by developing displacement
components into power series at the coordinate of thickness. Generally, in the theories developed
in this way, desired precision of the analysis can be achieved by introducing a sufficient number
of terms in the power series. The most frequently used HSDT theory is the third-order shear
deformation theory (TSDT) developed for composite laminates [26,27], which takes into consideration
the effects of shear strains by satisfying the condition of keeping the upper and lower surface of
the laminates free of stresses. Later, that theory was used in the analysis of FGM plates [28,29] for
solving buckling problems [30,31], free vibrations and dynamic stability [32,33]. In addition to TSDT,
there are HSDT theories based on the shape functions which represent a special group of HSDT
theories introduced in order to eliminate the need for correctional factors [34,35]. Contrary to CPT
and FSDT, the supposed displacement shapes in this theory do not foresee that the normal to the
middle plane of the laminate plate remain a straight line, but that during deformation the normal will
become curved. Generally, shape functions can be polynomial, hyperbolic, exponential, parabolic etc.
Polynomial HSDTs usually diverge from other types of these theories and in accordance to the order
of a polynomial at the thickness coordinate they are categorized into the group of second-order
shear deformation theories (SSDT) or third-order shear deformation theories. Polynomial theories
are those that are most common in the articles, which deal with FG plates’ analysis using HSDT.
According to [36,37] all polynomial HSDT of third order can be classified so that the supposed
displacement fields contain eleven unknowns. The above-mentioned formulation has been expanded
in [38,39] by supposing that the displacements are cubic functions of the thickness coordinate of
the plate, that is, the supposed displacements contain twelve independent variables. In [40–42] the
authors have proposed a shear deformation theory of n-series, which was obtained by modifying
the displacement field of TSDT, in order to explain polynomial elements of n-series. Unlike HSDT
based on polynomial shape functions, some authors have dealt with researching and introducing
different hyperbolic, exponential, parabolic, and other shape functions [43–51]. Proposed functions
were applied in the analysis of conventional laminate composites with the aim to describe the behavior
of moderately thick and thick under different static and dynamic loads.
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On the other hand, continuum-based 3D elasticity theory could be used for the analysis of these
plates. However, 3D solution methods are mathematically complex which consequently results in
prolonged calculation time and the need for high performance hardware. Taking the aforementioned
into consideration, developing and using 2D shear deformation plate theories, which consider the
effects of previously mentioned shear and normal strains and provide the precision in the same way as
3D models do, represents a trend in the process of analysis of FGM plates.

This paper presents, in detail, the methodology of the application of the HSDT theory based on
the shape functions. A new shape function has been developed and the obtained results are compared
to the results obtained with 13 different shape functions presented in the papers from the reference
list. Also, the results have been verified through comparison with the results obtained with TSDT
and 3D theories. In order to determine a procedure for the analysis and the prediction of behavior of
FGM plates, the new program code in the software package MATLAB (MATrix LABoratory) has been
developed based on theories studied in this paper.

Finally, the ultimate goal and the purpose of all the previously mentioned studies and analyses
is the application of FGM in different areas of engineering and branches of industry. Although FGM
were initially used as materials for thermal barrier in space shuttles, today they are becoming widely
used in the field of medicine, dentistry, energy and nuclear sector, automotive industry, military,
optoelectronics etc.

2. Description of the Problem

The subject of the analysis in this paper are FGM plate (Figure 3a) and FGM plate on elastic
foundation (Figure 3b). The plate (length a, width b and height h) is made of functionally graded
material consisting of the two constituents, namely, metal and ceramics.

 
(a) 

 
(b) 

Figure 3. Geometry of the plate: (a) FGM plate; (b) FGM plate on elastic foundation.

It is assumed that mechanical properties of the FGM in the thickness direction of the plate change
according to the power law distribution (Figure 4a):

P(z) = Pm + Pcm

(
1
2
+

z
h

)p
, Pcm = Pc − Pm. (1)
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(a) 

 
(b) 

Figure 4. The comparison of homogenous plates (ceramic or metal) and FGM plates: (a) volume
fraction of the material; (b) homogenous and FGM plates.

This law defines the change of the mechanical properties as the function of the volume fraction of
the FGM constituents in the thickness direction of the plate.

In the Equation (1), h represents total thickness of the plate, and P(z) represents a material
property in an arbitrary cross-section z, −h/2 < z < h/2. Pc represents the material property at the
top of the plate z = h/2 − ceramic, and Pm represents the material property at the bottom of the plate
z = −h/2 − metal. Index p is the exponent of the equation which defines the volume fraction of the
constituents in FGM. Practically, by varying the index p, homogenous plates as well as FGM plate with
precisely determined gradient structure could be obtained, as it is presented in Figure 4b:

• when p = 0 the plate is homogenous, made of ceramics,
• when 0 < p < ∞ the plate has a gradient structure,
• theoretically, when p = ∞ the plate becomes homogenous again, made of metal, although the plate

can be considered homogenous even when p > 20.

3. Kinematic Displacement-Strain Relations and Constitutive Equation of Elasticity for FGM

According to HSDT based on the shape functions, displacements could be presented in the
following way:

u(x, y, z, t) = u0(x, y, t)− z ∂w0(x,y,t)
∂x + f (z)θx,

v(x, y, z, t) = v0(x, y, t)− z ∂w0(x,y,t)
∂y + f (z)θy,

w(x, y, z, t) = w0(x, y, t),

(2)

where: u0, v0, w0 are displacement components in the middle plane of the plate, ∂w0
∂x , ∂w0

∂y are rotation
angles of transverse normal in relation to x and y axes, respectively, θx, θy are rotations of the transverse
normal due to transverse shear and f (z) is the shape function.

In the reference literature there are many shape functions which can be polynomial, trigonometric,
exponential, hyperbolic. Some examples of the shape functions are given in Table 1.
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Table 1. Shear deformation shape functions.

Number of Shape
Function (SF)

Names of Authors Shape Function f (z)

SF 1 Ambartsumain [52] (z/2)
(
h2/4 − z2/3

)
SF 2 Kaczkowski, Panc and

Reissner [53] (5z/4)
(
1 − 4z2/3h2)

SF 3 Levy, Stein, Touratier [54] (h/π) sin(πz/h)
SF 4 Mantari et al. [55] sin(πz/h)ecos (πz/h)/2 + (πz/2h)

SF 5–6 Mantari et al. [45] tan(mz)− zm sec2(mh/2), m = {1/5h, π/2h}
SF 7 Karama et al. [56],

Aydogdu [44] z exp
(
−2(z/h)2

)
, z exp

(
−2(z/h)2/ ln α

)
, ∀α> 0

SF 8 Mantari et al. [46] z · 2.85−2(z/h)2
+ 0.028z

SF 9 El Meiche et al. [47] ξ[(h/π) sin(πz/h)− z], ξ = {1, 1/ cosh(π/2)− 1}
SF 10 Soldatos [43] hsinh(z/h)− z cosh(1/2)
SF 11 Akavci and Tanrikulu [49] z sec h

(
z2/h2)− z sec h(π/4)[1 − (π/2)tanh(π/4)]

SF 12 Akavci and Tanrikulu [49] (3π/2)htanh(z/h)− (3π/2)z sec h2(1/2)
SF 13 Mechab et al. [48] z cos(1/2)

−1+cos(1/2) −
h sin(z/h)

−1+cos(1/2)

This paper proposes a new shape function as follows:

f (z) = z
(

cosh
( z

h

)
− 1.388

)
(3)

The introduced shape function is an odd function of the thickness coordinate z and satisfies zero
stress conditions for out of plane shear stresses. Observing the shape functions in the Table 1, may see
that the proposed function belongs to the group of simple mathematic functions. This fact makes the
integration process easier and thus reduces considerably the calculation time. Having in mind that the
function is analytically integrable, there is no need to switch to numeric integration, which additionally
increases the precision of the obtained results. The verification of the above claims is shown in the
comparative diagrams (Figure 5) of the newly introduced shape function and the shape functions
given in the Table 1. These shape functions’ diagrams can be categorized into two groups of functions.
In both cases it can be seen in the diagram that, in the case of the ratio z/h = 0.5, all shape functions
have extreme values, which are different (Figure 5a). The proposed new shape function (3) belongs
to the second group (Figure 5b), together with the functions of Soldatos and Mechab which are also
analytically integrable functions.

(a) (b) 

Figure 5. Shape function diagrams: (a) shape function from literature; (b) new proposed shape function.

For small displacements and moderate rotations of a transverse normal in relation to x axis and
y axis, normal and shear strain components are obtained by well-known relations in linear elasticity
between displacements and strains:

ε = ε(0) + zk(0) + f (z)k(1), γ = f ′(z)k(2), (4)
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where:

ε =

⎧⎪⎨
⎪⎩

εxx

εyy

γxy

⎫⎪⎬
⎪⎭, γ =

{
γxz

γyz

}
, ε(0) =

⎧⎪⎨
⎪⎩

ε
(0)
xx

ε
(0)
yy

γ
(0)
xy

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

u0,x
v0,y
u0,y + v0,x

⎫⎪⎬
⎪⎭,

k(0) =

⎧⎪⎨
⎪⎩

k(0)xx

k(0)yy

k(0)xy

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

−w0,xx
−w0,yy
−2w0,xy

⎫⎪⎬
⎪⎭, k(1) =

⎧⎪⎨
⎪⎩

k(1)xx

k(1)yy

k(1)xy

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

θx,x

θy,y

θx,y + θy,x

⎫⎪⎬
⎪⎭, k(2) =

{
k(2)xz

k(2)yz

}
=

{
θx

θy

}
,

(5)

where f ′(z) = d f (z)
dz is the first derivative of the shape function in the thickness direction of the plate.

The elastic constitutive relations for FGM are given as follows:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σxx

σyy

τxz

τyz

τxy

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

C11(z) C12(z) 0 0 0
C12(z) C22(z) 0 0 0

0 0 C44(z) 0 0
0 0 0 C55(z) 0
0 0 0 0 C66(z)

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

εxx

εyy

γxz

γyz

γxy

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (6)

where the coefficients of the constitutive elasticity tensor could be defined through engineering constants:

C11(z) = C22(z) =
E(z)

1 − ν2 , C44(z) = C55(z) = C66(z) =
E(z)

2(1 + ν)
, C12(z) =

νE(z)
1 − ν2 . (7)

Due to the gradient change of the plate structure in the direction of the z coordinate, based on (1),
the modulus of elasticity could be defined as:

E(z) = Em + Ecm

(
1
2
+

z
h

)p
, Ecm = Ec − Em, (8)

while Poisson’s ratio ν is considered constant due to a small value variation in the thickness direction
of the plate, ν = const.

As it could be seen, the coefficients of the constitutive tensor are functionally dependent on the
z coordinate which practically means that for p �= 0 there is a finite number of planes parallel to the
middle plane, where each of these planes has different values of the constitutive tensor Cij.

4. Bending of FGM Plates and FGM Plates on Elastic Foundation

It is assumed that the plate is loaded with an arbitrary transverse load q(x, y). Work under
external load is defined as:

V = −1
2

∫
A

qwdA, (9)

where:
q(x, y) = q0 sin

(πx
a

)
sin
(πy

b

)
, (10)

is the sinusoidal transverse load with an amplitude q0.
Plate strain energy is defined as:

U =
∫
A
(Nxxε

(0)
xx + Nyyε

(0)
yy + Nxyγ

(0)
xy + Mxxk(0)xx + Myyk(0)yy + Mxyk(0)xy

+ Pxxk(1)xx + Pyyk(1)yy + Pxyk(1)xy + Rxk(2)xz + Ryk(2)yz )dA,
(11)
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where force, moments and higher order moments vectors are obtained in the following form:

N =
h/2∫

−h/2
σdz =

h/2∫
−h/2

CPεdz =
h/2∫

−h/2
CPε

(0)dz +
h/2∫

−h/2
CPk(0)zdz +

h/2∫
−h/2

CPk(1) f (z)dz,

M =
h/2∫

−h/2
σzdz =

h/2∫
−h/2

CPεzdz =
h/2∫

−h/2
CPε

(0)zdz +
h/2∫

−h/2
CPk(0)z2dz +

h/2∫
−h/2

CPk(1)z f (z)dz,

P =
h/2∫

−h/2
σ f (z)dz =

h/2∫
−h/2

CPε f (z)dz =
h/2∫

−h/2
CPε

(0) f (z)dz +
h/2∫

−h/2
CPk(0)z f (z)dz +

h/2∫
−h/2

CPk(1)( f (z))2dz,

R =
h/2∫

−h/2
τ f ′(z)dz =

h/2∫
−h/2

CSk(2)( f ′(z))2dz,

(12)

Matrices in the developed form could be presented in the following way:

N =

⎧⎪⎨
⎪⎩

Nxx

Nyy

Nxy

⎫⎪⎬
⎪⎭, M =

⎧⎪⎨
⎪⎩

Mxx

Myy

Mxy

⎫⎪⎬
⎪⎭, P =

⎧⎪⎨
⎪⎩

Pxx

Pyy

Pxy

⎫⎪⎬
⎪⎭, R =

{
Rx

Ry

}
,

CP =

⎡
⎢⎣ C11 C12 0

C12 C22 0
0 0 C66

⎤
⎥⎦, CS =

[
C44 0

0 C55

]
, σ =

⎧⎪⎨
⎪⎩

σxx

σyy

τxy

⎫⎪⎬
⎪⎭, τ =

{
τxz

τyz

}
.

(13)

In the Equation (12) by grouping the terms with the elements of constitutive tensor, new matrices
with the following components could be defined:

Aij =
h/2∫

−h/2
Cijdz, Bij =

h/2∫
−h/2

Cijzdz,

Dij =
h/2∫

−h/2
Cij f (z)dz, Eij =

h/2∫
−h/2

Cijz2dz, (i, j) = (1, 2, 6),

Fij =
h/2∫

−h/2
Cijz f (z)dz, Gij =

h/2∫
−h/2

Cij( f (z))2dz,

Hlr =
h+∫

h−
Clr( f ′(z))2dz, (l, r) = (4, 5),

(14)

Therefore, load vectors could now be defined in the following form:⎧⎪⎨
⎪⎩

N

M

P

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣ Aij Bij Dij

Bij Eij Fij
Dij Fij Gij

⎤
⎥⎦
⎧⎪⎨
⎪⎩

ε(0)

k(0)

k(1)

⎫⎪⎬
⎪⎭, {R} = [Hlr]

{
k(2)
}

, (15)

By exchanging plate strain energy (11) and work under external load (9) into the equation which
defines the minimum total potential energy principle:

δU + δV = δ(U + V) ≡ δΠ = 0, (16)

The following form is obtained:

δΠ =
∫
A
(Nxxδε

(0)
xx + Nyyδε

(0)
yy + Nxyδγ

(0)
xy + Mxxδk(0)xx + Myyδk(0)yy + Mxyδk(0)xy

+Pxxδk(1)xx + Pyyδk(1)yy + Pxyδk(1)xy + Rxδk(2)xz + Ryδk(2)yz )dA − ∫
A

qδwdA = 0.
(17)
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By exchanging the strain components (5) and by applying the calculus of variations, the following
equilibrium equations are obtained:

δu0 : Nxx,x + Nxy,y = 0,
δv0 : Nyy,y + Nxy,x = 0,
δw0 : Mxx,xx + 2Mxy,xy + Myy,yy + q = 0,
δθx : Pxx,x + Pxy,y − Rx = 0,
δθy : Pxy,x + Pyy,y − Ry = 0.

(18)

which could be further solved through analytical and numerical methods.
In the case of a plate on elastic foundation, in the Equation (16) deformation energy of the elastic

foundation should be taken into consideration, which is defined using Winkler–Pasternak model in
the following way:

Ue =
1
2

∫
A

{
k0w2 + k1

[(
∂w
∂x

)2
+

(
∂w
∂x

)2
]}

dA. (19)

Using the previously mentioned the minimum total potential energy principle, the equilibrium
equations of the plate on elastic foundation are the following:

δu0 : Nxx,x + Nxy,y = 0,
δv0 : Nyy,y + Nxy,x = 0,
δw0 : Mxx,xx + 2Mxy,xy + Myy,yy + Nxxw0,xx + 2Nxyw0,xy + Nyyw0,yy

+ q − k0w0 + k1
(
w0,xx + w0,yy

)
= 0,

δθx : Pxx,x + Pxy,y − Rx = 0,
δθy : Pxy,x + Pyy,y − Ry = 0.

(20)

5. Analytical Solution of the Equilibrium Equations

Although analytical solution methods are limited to simple geometrical problems,
boundary conditions and loads, they can provide a clear understanding of the physical aspect of
the problem and its solutions are very precise. Since analytical solutions are extremely important
for developing new theoretical models, primarily due to their understanding of the physical aspects
of the problem, and considering that a new HSDT theory based on a new shape function has been
developed in this paper, the analytical solution of the equilibrium equations for a rectangular plate will
be presented in the following part of the paper. For complex engineering calculations, which include
solving the system of a large number of equations, it is necessary to use numerical methods which
provide approximate, but satisfactory results.

For a simply supported rectangular FGM plate, boundary conditions are defined based on [57] as:

v0 = w0 = θy = Nxx = Mxx = Pxx = 0, on the edges where x = 0 or x = a,
u0 = w0 = θx = Nyy = Myy = Pyy = 0, on the edges where y = 0 or y = b.

(21)

In order to satisfy these kinematic boundary conditions, assumed forms of Navier’s solutions are introduced:

u0(x, y, t) =
∞
∑

m=1

∞
∑

n=1
Umn cos mπx

a sin nπy
b , v0(x, y, t) =

∞
∑

m=1

∞
∑

n=1
Vmn sin mπx

a cos nπy
b ,

w0(x, y, t) =
∞
∑

m=1

∞
∑

n=1
Wmn sin mπx

a sin nπy
b ,

θx(x, y, t) =
∞
∑

m=1

∞
∑

n=1
Txmn cos mπx

a sin nπy
b , θy(x, y, t) =

∞
∑

m=1

∞
∑

n=1
Tymn sin mπx

a cos nπy
b .

(22)
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The equilibrium equation is further developed into:⎡
⎢⎢⎢⎢⎢⎣

L11 L12 L13 L14 L15

L12 L22 L23 L24 L25

L13 L23 L33 L34 L35

L14 L24 L34 L44 L45

L15 L25 L35 L45 L55

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
L

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Umn

Vmn

Wmn

Txmn

Tymn

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸

U

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0
0
q0

0
0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸

Pp

(23)

or:
LU = PP (24)

Through the matrix multiplication of the Equation (24) with L−1, the following is obtained:

L−1L︸ ︷︷ ︸
I

U = L−1PP → U = L−1PP. (25)

The Equation (25) fully defines the amplitudes of the assumed displacement components.
The displacement components are obtained if the displacement amplitude matrix is multiplied with
the vector from trigonometric functions which depend on x and y.

6. Numerical Results

In order to apply the previously obtained theoretical results to a simulation of real problems,
a new program code for static analysis of FGM plates has been developed within the software package
MATLAB. Material properties of the used materials are shown in Table 2 [58].

Table 2. Material properties of FGM constituents.

Material
Material Properties

Elasticity Modulus, E[GPa] Poisson’s Ratio, ν

Aluminum (Al) Em = 70 ν = 0.3
Alumina (Al2O3) Ec = 380 ν = 0.3

Normalized values of a vertical displacement w (deflection), normal stresses σxx and σyy, shear stress
τxy, and transverse shear stresses τxz and τyz are given by using HSDT theory based on the new shape
function. Normalization of the aforementioned values has been conducted according to (26) as:

w = 10Ech3

q0a4 w
(

a
2 , b

2

)
, σxx(z) = h

q0a σxx

(
a
2 , b

2 , z
)

, σyy(z) = h
q0a σyy

(
a
2 , b

2 , z
)

,

τxy(z) = h
q0a τxy(0, 0, z), τxz(z) = h

q0a τxz

(
0, b

2 , z
)

, τyz(z) = h
q0a τyz

( a
2 , 0, z

)
.

(26)

Table 3 shows comparative results of the normalized values of displacement and stresses of
square plate for two different ratios of length and thickness of the plate (a/h = 5 and a/h = 10) and for
different values of the index p. Verification of the results obtained in this paper has been conducted
by comparing them to the results from the reference papers when a/h = 10. Based on that, the results
when a/h = 5 are provided for different values of the index p, i.e., different volume fraction of the
constituents in FGM. Using HSDT theory with the new shape function, the obtained results are
compared to the results obtained using 13 different shape functions as well as to the results obtained
using quasi 3D theory of elasticity [59] and TSDT theory [58]. The results based on the CPT theory
are also presented [60] in order to find certain disadvantages of the theory. Based on the comparative
results of displacement and stresses, which are provided in this paper and in previously mentioned
theories, it could be seen that there is a match with both TSDT theory and quasi 3D theory of elasticity.
On the other hand, it is clearly seen that there are some significant differences in the results obtained
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by CPT theory, especially related to the stress σxx which shows that CPT theory does not provide
satisfying results in the analysis of thick and moderately thick FGM plates. A comparative review of
these results with the results obtained using 13 different shape functions shows that the newly given
shape function provides almost identical results. However, since these results are given for the plane
on a certain height z (for example, stress σxx on the height of h/3 etc.), a real insight into the values
obtained by varying the new function could be offered by presenting stress distribution across the
thickness of the plate, which is done through appropriate diagrams.

Figure 6 shows the distribution of normal stresses σxx and σyy across the thickness of the plate
for different values of the index p. By analyzing the diagrams, it could be noticed that the curves
representing both stresses are identical. Also, the basic property of FGM could be noticed, namely, the
shift of a neutral plane in relation to the plane z/h = 0. It can also be seen that for the planes at the
height z/h = 0.1–0.15 (depending on the chosen value of the index p) normal stresses have a positive
sign which clearly indicates extension, and then they change the sign. In case when p = 0, (homogenous
material made of ceramics) stress distribution is a familiar linear function with the neutral plane when
z/h = 0. Maximum values of normal stresses due to compression are on the lower edge of the plate
while the maximum values of normal stresses due to extension are on the upper edge of the plate.
It could be noticed that with the increase of the index p value, maximum values of stresses due to
extension are significantly increased.

 
(a) 

 
(b) 

Figure 6. Distribution of the normalized values of the normal stresses σxx and σyy across the thickness
of the plate for different values of the index p: (a) a/h = 10, a/b = 1; (b) a/h = 10, a/b = 1.
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Figure 7 shows the distribution of the shear stress τxy across the thickness of the plate for different
values of the index p (Figure 7a) and for different shape functions (Figure 7b), but for the unchanging
values of a/h = 10 and a/b = 1. While analyzing the diagrams, it should be considered that when p = 0
the plate is homogenous made of ceramics, when p = 20 the plate is homogenous made of metal,
and when 0 < p < 20 the plate is made of FGM. By analyzing the diagram in the Figure 7a, it could be
noticed that for all values of the index p, the stress τxy achieves the maximum value on the upper edge
of the plate. Ceramic plate has the lowest maximum value. Therefore, with an increase of the metal
volume fraction when p = 1, maximum stress value also increases and the highest value is achieved
when the plate is homogenous made of metal. Moreover, apart from affecting the maximum stress
values, the variation of the index p value also affects the shape of the τxy stress distribution curve
across the thickness of the plate.

 
(a) 

 
(b) 

Figure 7. Distribution of the normalized values of the shear stress τxy across the thickness of the plate for
different values of the index p and different shape function: (a) a/h = 10, a/b = 1; (b) a/h = 10, a/b = 1, p = 5.

In order to conduct a comparative analysis of the results for different shape functions and to
estimate the application of the new shape function to the given problems, Figure 7b shows the
distribution of the shear stress τxy by using newly developed shape function and the shape functions
given in Table 1. It is clearly seen that all the previously mentioned shape functions give identical
results to the results obtained with the new shape function.

Figure 8 shows the distribution of transverse shear stresses τxz and τyz across the thickness of
the plate for different values of the index p and for different shape functions. By analyzing transverse
shear stresses in Figure 8a,c, a basic distinction between homogenous and FGM plates can be noticed.
When plates are made of ceramics (p = 0) or metal (p = 20), it can be noticed that both stresses achieve
maximum values in the plane at the height z/h = 0, due to the homogeneity of the material. On the
other hand, when FGM plates are considered, there is an asymmetry in relation to the plane z/h = 0,
therefore, when p = 1 stresses achieve maximum values in the plane z/h = 0.15, and when p = 5 stresses
achieve maximum values when z/h = 0.3. In contrast to the homogenous ceramic plate, where stress
distribution curve is a parabola with the maximum value in the plane z/h = 0, plates with the larger
volume fraction of metal (p = 10) also achieve the maximum value of stress when z/h = 0, but the
distribution curve is not a parabola. With the further increase of the metal volume fraction (p = 20),
and although the plate can be practically considered homogenous, the diagram still shows the curve
which is not a parabola. Generally, due to insignificant but still present ceramic fractions in the upper
part of the plate, there is a slight deformity of the curve.
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8. Distribution of the normalized values of the transverse shear stresses τxz and τyz across the
thickness of the plate for different values of the index p and different shape functions: (a) a/h = 10, a/b = 1;
(b) a/h = 10, a/b = 1, p = 5; (c) a/h = 10, a/b = 1; (d) a/h = 10, a/b = 1, p = 5.

By conducting comparative analysis of the stresses τxz and τyz for different shape functions,
and with fixed values of a/h = 10, a/b = 1 and p = 5, it could be seen in Figure 8b,d that, unlike the
stress τxy, the results do not match for all the shape functions. The most significant deviation could
be noticed in the results for the El Meiche’s and Karama’s shape functions. The Akavci’s function
also shows a slight deviation and it achieves maximum stress value at the height z/h = 0.25, while the
results for all the other shape functions are almost identical, achieving the maximum stress value in
the plane z/h = 0.25.

In order to understand the effects of increasing the index p as well as the effect of the thickness
and geometry, Figure 9 shows the diagram of the normalized values of the displacement w for different
a/h and a/b ratios and values of the index p. By analyzing Figure 9a,b, it could be noticed that
the displacement values w for the metal plate (p = 20) are the highest, for the ceramic plate they
are the lowest, and for the FGM plate they are somewhere in between. Moreover, by varying the
volume fraction of metal or ceramics, a desired bending rigidity of the plate could be achieved.
In Figure 9a, it could be seen that the curves gradually become closer when a/b > 4. In contrast
to that, Figure 9b shows that with an increase of the ratio a/h the curves do not become closer,
namely, the difference of the displacement ratio remains constant regardless of the index p change.
This conclusion comes from the fact that in thin plates it is less possible to vary the volume fraction of
the FGM constituents in the thickness direction of the plate and, thus, the index p has no effects.
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(a) 

 
(b) 

Figure 9. Normalized values of the displacement w for different a/h and a/b ratios and the values of
the index p: (a) a/h = 10; (b) a/b = 1.

In order to determine the effect of the elastic foundation on the displacements and stresses of the
FGM plate, the results of different combinations of the FGM constituents have been presented, as well
as different combinations of the Winkler (k0) and Pasternak (k1) coefficient of the elastic foundation.
Apart from the normalization given in (26), it is necessary to apply the normalization of the coefficients
k0 and k1, in the following form:

k0 = k0
a4

D
i k1 = k1

a2

D
, (27)

where the bending stiffness of the plate is D = Ech3

12(1−ν2)
.

The Tables 4 and 5 show the results of the normalized values of displacements and stresses of
the square plate on elastic foundation for p = 5, and p = 10, different values of k0 and k1 coefficients,
as well as for two different ratios length/thickness of the plate (a/h = 10 and a/h = 5). In order to
determine the effect of the elastic foundation on the displacements and stresses of the plate, the values
of displacements and stresses for k0 = 0 and k1 = 0 are first shown, which practically matches the case
of the plate without the elastic foundation. Afterwards, the values of the given coefficients are varied
in order to conclude which of the two has greater influence. Based on the results, it is concluded
that the introduction of the coefficient k0 has less influence on the change of the displacements
and stresses values then when only k1 coefficient is introduced. By introducing k0 and k1 coefficients,
bending stiffness of the plate increases, i.e., displacement and stresses values decrease and the influence
of the Winkler coefficient is smaller than the influence of the Pasternak coefficient. This phenomenon
is especially noticeable in the diagram dependency which is to be shown later.
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Figure 10 shows the effect of the Winkler coefficient k0 on the distribution of the normal stress
σxx, shear stress τxy and transversal shear stresses τxz and τyz across the thickness of the plate on the
elastic foundation. By analyzing the diagram, it can be seen that the value of the stresses σxx and
τxy equals zero for z/h = 0.15. On the other hand, the maximum values of τxz and τyz stresses are at
z/h = 0.2 when the new proposed shape function is applied, while the maximum values of mentioned
stresses is respectively at z/h = 0.15 i.e., z/h = 0.25 for Karama’s shape function.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 10. Distribution of the normalized values of the normal stresses σxx, the shear stress τxy and
the transverse shear stresses τxz and τyz across the thickness of the plate on elastic foundation for
different values of the coefficients k0: (a) a/h = 10, a/b = 1, p = 2, k1 = 10; (b) a/h = 10, a/b = 1,
p = 2, k1 = 10; (c) a/h = 10, a/b = 1, p = 2, k1 = 10; (d) a/h = 10, a/b = 1, p = 2, k1 = 10.

Figure 11 shows a comparative review of shear transversal stresses τxz and τyz distribution
across the thickness of the plate on elastic foundation for different shape functions. As in the case of
bending the plate without the elastic foundation, the shape functions do not give the same results.
Therefore, it can be seen that for the Mantari’s and Akavci’s shape functions, stresses achieve their
maximum values in the plane z/h = 0.25, and for El Meiche’s function in the plane z/h = 0.15, while for
all the other shape functions as well as new proposed function, maximum values of the stresses are in
the plane z/h = 0.2.
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(a) (b) 

Figure 11. Distribution of the normalized values of the transverse shear stresses τxz and τyz across the
thickness of the plate on elastic foundation for different shape functions: (a) a/h = 10, a/b = 1, p = 2,
k0 = 100, k1 = 10; (b) a/h = 10, a/b = 1, p = 2, k0 = 100, k1 = 10.

In order to get a clear insight on the effect of Winkler and Pasternak coefficients of the elastic
foundation, Figure 12 shows the diagram of the normalized values of the displacement w plate on
the elastic foundation for different values of the index p and coefficients k0 and k1. By comparing the
two diagrams, it can be seen that the change of the displacement value w is higher with the increase
of the coefficient k1 value than with the increase of the coefficient k0. For example, for the FGM plate
when p = 5, and the increase of the coefficient from k0 = 0 to k0 = 100, the value of deflection changes
twice its value. In the other case, with the change of the coefficient from k1 = 0 to k1 = 100, the value of
deflection changes 8 times its value.

(a) (b) 

Figure 12. Normalized values of the displacement w of plate on elastic foundation for different values
index p and coefficients k0 and k1: (a) a/h = 10, a/b = 0.2, k1 = 10; (b) a/h = 10, a/b = 0.2, k0 = 10.

7. Conclusions

The results obtained in the previously published papers have been a starting point for developing
and applying the new shape function. They have emphasized the importance and topicality of the
research on the application of the functionally graded materials. A thorough and comprehensive
systematization and investigation of the literature on the matter have been conducted according to
the problem type which authors tried to solve during FGM plate analysis. Special attention and focus
have been given to different deformation theories which authors had used in their analyses. The new
shape function has been presented along with the comparative review of it with 13 different shape
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functions which were primarily developed by different authors for the analysis of composite laminates
but, in this paper, they have been adjusted and implemented in appropriate relations for the analysis
of FGM plates. Based on the obtained results of the static analysis of moderately thick and thick
plates, it can be concluded that the newly developed shape function could be applied in the analysis of
FGM plates.

By analyzing the obtained results, the following could be concluded:

• the values of the vertical displacement w (deflection) and the corresponding stresses, which were
obtained in this paper by using HSDT theory based on the new shape function, match the results
of the same values obtained in the reference papers by using TSDT theory [58], quasi 3D theory
of elasticity [59] and HSDT theories based on 13 different shape functions. However, in contrast
to that, there are significant deviations of the results obtained for the values of the vertical
displacement, especially for stresses σxx, from the results obtained by CPT theory from the
reference papers [60].

• the diagram of the distribution of transverse shear stresses τxz and τyz across the thickness of
the plate shows the difference in behavior between a homogenous, ceramic or metal, plate and
FGM plate. A basic property of FGM can be clearly seen, and that is the asymmetry of the stress
distribution in relation to the middle plane of the plate (z = 0). The maximum values of stresses,
depending on the volume fraction of certain constituents, are shifted in relation to the plane z = 0,
which represents a neutral plane in homogenous plates.

• the highest values of the displacement w are obtained in a metal plate, the lowest in a ceramic
plate and in an FGM plate, the values are somewhere in between and they depend on the volume
fraction of the constituents. Based on that, it can be concluded that by varying the volume fraction
of metal and ceramic, a desired bending rigidity of the plate can be achieved.

• a comparative analysis of the change of transverse shear stresses τxz and τyz across the thickness
of the plate shows that, unlike the stress τxy, their values do not match for all the shape functions.

• by introducing FG plate on Winkler–Pasternak model of elastic foundation is shown that the influence
of the Winkler coefficient (k0) is smaller than the influence of the Pasternak coefficient (k1).
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Abstract: The paper introduces a semi-analytical approach to analyze free vibration characteristics of
stepped functionally graded (FG) paraboloidal shell with general edge conditions. The analytical
model is established based on multi-segment partitioning strategy and first-order shear deformation
theory. The displacement components along axial direction are represented by Jacobi polynomials,
and the Fourier series are utilized to express displacement components in circumferential direction.
Based on penalty method about spring stiffness technique, the general edge conditions of doubly
curved paraboloidal shell can be easily simulated. The solutions about doubly curved paraboloidal
shell were solved by approach of Rayleigh–Ritz. Convergence study about boundary parameters,
Jacobi parameters et al. are carried out, respectively. The comparison with published literatures,
FEM and experiment results show that the present method has good convergence ability and
excellent accuracy.

Keywords: stepped FG paraboloidal shell; general edge conditions; spring stiffness technique; free
vibration characteristics

1. Introduction

The stepped FG paraboloidal shells are very useful in the engineering. The vibration problems
of the structures have always been the concern of the research: Fantuzzi et al. [1] investigated free
vibration behavior of FG cylindrical and spherical shells. On the base of FSDT, Tornabene and Reddy [2]
used the GDQ approach to investigate the vibration behavior of FGM shells and panels. Based
on higher-order finite element method, Pradyumna and Bandyopadhyay [3] studied the vibration
behavior of FG structures. Jouneghani et al. [4] also investigated the characteristics of FG doubly
curved shells. Chen et al. [5] obtained the vibration characteristics of FG sandwich structure based
on shear deformation theory. Wang et al. [6–9] investigated the approach of Improved Fourier to
study vibration phenomenon of various structures. Tornabene et al. [10–12] used the GDQ method
to research four parameter FG composite structures. Fazzolari and Carrera [13] solved the vibration
issues of FG structures based on Ritz minimum energy approach. Kar and Panda [14] studied vibration
characteristics of FG spherical shell by FEM. Tornabene [15] focused on the dynamic behavior of FG
structures. Zghal [16] investigated the vibration characteristics of FG shells. Kulikov et al. [17] dealt
with a recently developed approach to analyze free vibration behavior of FG plates by the formulations
of sampling surfaces. Kapuria et al. [18] developed a four-node quadrilateral element method to
analyze dynamic vibration of FGM shallow shells.
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Materials 2019, 12, 69

In field of FG stepped shells, Hosseini-Hashemi et al. [19] proposed an accurate solution to study
vibration characteristics of stepped FG plates. Bambill et al. [20] solved vibrations behavior of axially
FG beams with stepped changes in geometry. Vinyas and Kattimani [21,22] carried out the static
analysis of stepped FG beam and plates with various loads. Su et al. [23] presented an effective method
to study free vibration of stepped FG beams.

From literatures reviewed, we can find that many scholars applied Rayleigh Ritz method, GDQ
method, Improved Fourier series method, FEM and Haar Wavelet Discretization method etc. to study
vibration characteristics of FG doubly curved structures. There are no literatures put attentions on
free vibration problems of stepped FG paraboloidal shell. So, it is very important to propose a unified
formulation to study free vibration behaviors of stepped FG paraboloidal shell subject to general
edge conditions.

2. Fundamental Theory

2.1. The Description of the Model

The model of stepped FG paraboloidal shell is described in Figure 1. hi represents the thickness of
the structure. The stepped structure is obtained by the curve c1c2. The model is established on the basis
of orthogonal coordinate system (ϕ, θ, z), which represent axial, circumferential and normal directions,
respectively. The displacements are represented by u, v and w, respectively.

Figure 1. Geometry notations and coordinate system of stepped FG paraboloidal shell. (a) Geometric
relationship; (b) cross-section; (c) coordinate system.
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The doubly-curved paraboloidal shell is shown in Figure 2. The displacement components
of stepped FG paraboloidal shell are represented by U, V and W. In addition, the doubly curved
paraboloidal shell is divided into H shell segments along axial direction [24,25].

xo

z

L

R0

R  

C  
RC  

R1

Figure 2. The geometric of doubly curved paraboloidal shell.

The Young’s modulus E, Poisson’s ratios ν and mass density ρ of two typical FG models are
shown as follow [26–32]:

E(z) = (Ec − Em)Vc + Em (1a)

ρ(z) = (ρc − ρm)Vc + ρm (1b)

ν(z) = (νc − νm)Vc + νm (1c)

where c and m denote the ceramic and metallic constituents, respectively. The volume fractions Vc are
shown as follow [33]:

FGMI(a/b/c/p) : Vc =

[
1 − a

(
1
2
+

z
h

)
+ b
(

1
2
+

z
h

)c]p

(2a)

FGMII(a/b/c/p) : Vc =

[
1 − a

(
1
2
− z

h

)
+ b
(

1
2
− z

h

)c]p

(2b)

where z and p represent the thickness and power law exponent of the structure, respectively. We should
note that the value of parameter p takes only positive values. The symbols a, b and c are the key
parameters which affect the property of FG material largely. As the volume fraction, the total value
of which should be the one. From Equations (1) and (2), we can easily get that the functionally
graded material will be the isotropic material when the power law exponent equal to infinity or
zero. The variations Vc about various values of a, b, c and p are showed in Figure 3. In addition,
we should note that the distributions of volume fraction (2a) and (2b) are mirror reflections. Thus,
the Variations Vc of FGMII are ignored in Figure 3. The detailed descriptions of FG material are
reported in Refs. [34–36].

140



Materials 2019, 12, 69

 

 

 

p

p
p

p

p

p

p

Vc

z/h

p

p

p

p

p
p

p

Vc

z/h

Figure 3. The variations Vc about various values of a, b, c and p: (a) FGMI (a = 0; b = 0.5; c = 2; p);
(b) FGMI (a = 1; b = 0.5; c = 0.8; p); (c) FGMI (a = 0; b = −0.5; c = 1; p).

2.2. Energy Equations of Stepped FG Paraboloidal Shell

The displacements of ith segment in stepped FG paraboloidal shell are shown as below:

Ui
(ϕ, θ, z, t) = ui(ϕ, θ, t) + zψi

ϕ(ϕ, θ, t) (3a)
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Vi
(ϕ, θ, z, t) = vi(ϕ, θ, t) + zψi

θ(ϕ, θ, t) (3b)

Wi
(ϕ, θ, z, t) = wi(ϕ, θ, t) (3c)

The strains of stepped FG paraboloidal shell are shown as follow

εi
ϕ = ε0,i

ϕ + zκ0,i
ϕ εi

θ = ε0,i
θ + zκ0,i

θ (4a)

γi
ϕθ = γ0,i

ϕθ + zκ0,i
ϕθγi

ϕz = γ0,i
ϕzγi

θz = γ0,i
θz (4b)

where εi
ϕ, εi

θ , εi
ϕθ , γ0,i

ϕz, γ0,i
θz , ki

ϕ, ki
θ and ki

ϕθ are given as:

ε0,i
ϕ =

1
A

∂ui

∂ϕ
+

vi

AB
∂A
∂θ

+
wi

Rϕ
(5a)

ε0,i
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B

∂vi

∂θ
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ui

AB
∂B
∂ϕ

+
wi

Rθ
(5b)

γ0,i
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B
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∂θ

(
ui

A

)
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∂
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(
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B

)
(5c)
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ψi
θ

AB
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κi
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AB
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κi
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A
B

∂

∂θ

(
ψi

ϕ

A
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θ
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γ0,i
ϕz =

1
A

∂wi

∂ϕ
− ui

Rϕ
+ ψi

ϕ (5g)

γ0,i
θz =

1
B

∂wi

∂θ
− vi

Rθ
+ ψi

θ (5h)

For doubly curved paraboloidal shell, the symbols A and B are shown as below [37,38]:

A = Rϕ, B = Rθ sin ϕ (6)

Based on Hooke’s law, the stresses corresponding to strains can be expressed as:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σi
ϕ

σi
θ

τi
ϕθ

τi
ϕz

τi
θz

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

Q11(z) Q12(z) 0 0 0
Q12(z) Q11(z) 0 0 0

0 0 Q66(z) 0 0
0 0 0 Q66(z) 0
0 0 0 0 Q66(z)

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

εi
ϕ

εi
θ

γi
ϕθ

γi
ϕz

γi
θz

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(7)

where σi
ϕ and σi

θ are normal stresses; τi
ϕθ , τi

ϕz and τi
θz are shear stresses. The Qij(z) are defined as follows:

Q11(z) =
E(z)

1 − ν2(z)
, Q12(z) =

ν(z)E(z)
1 − ν2(z)

, Q66(z) =
E(z)

2[1 + ν(z)]
(8)
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The force and moment resultants can be obtained as follow:⎧⎪⎨
⎪⎩

Ni
ϕ

Ni
θ

Ni
ϕθ

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣ A11 A12 0

A12 A22 0
0 0 A66

⎤
⎥⎦
⎧⎪⎨
⎪⎩

ε0,i
ϕ

ε0,i
θ

γ0,i
ϕθ

⎫⎪⎬
⎪⎭+

⎡
⎢⎣ B11 B12 0

B12 B22 0
0 0 B66

⎤
⎥⎦
⎧⎪⎨
⎪⎩

ε0,i
ϕ

ε0,i
θ

γ0,i
ϕθ

⎫⎪⎬
⎪⎭ (9a)

⎧⎪⎨
⎪⎩

Mi
ϕ

Mi
θ

Mi
ϕθ

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣ B11 B12 0

B12 B22 0
0 0 B66

⎤
⎥⎦
⎧⎪⎨
⎪⎩

ε0,i
ϕ

ε0,i
θ

γ0,i
ϕθ

⎫⎪⎬
⎪⎭+

⎡
⎢⎣ D11 D12 0

D12 D22 0
0 0 D66

⎤
⎥⎦
⎧⎪⎨
⎪⎩

κi
ϕ

κi
θ

κi
ϕθ

⎫⎪⎬
⎪⎭ (9b)

{
Qi

ϕ

Qi
θ

}
= κ

[
A66 0
0 A66

][
γ0,i

ϕz

γ0,i
θz

]
(9c)

where κ is shear correction factor. Aij, Bij and Dij are obtained by following integral:

(Aij, Bij, Dij) =
∫ h/2

−h/2
Qij(z)(1, z, z2)dz (10)

The strain energy of the select segment can be expressed from Equation (11) as shown:

Ui =
1
2

�
V

(
Ni

ϕε0,i
ϕ + Ni

θε0,i
θ + Ni

ϕθγ0,i
ϕθ + Mi

ϕki
ϕ+

Mi
θki

θ + Mi
ϕθki

ϕθ + Qi
ϕγ0,i

ϕz + Qi
θγ0,i

θz

)
ABdϕdθdz (11)

To save the space of this paper, the Equation (11) can be expressed as Ui = Ui
S + Ui

B + Ui
BC.

The detailed description of Ui
S, Ui

B and Ui
BC are shown in Appendix A.

The maximum kinetic energy of the select segment can be obtained from Equation (12) as shown:

Ti = 1
2
�

V ρ(z)

[( .
U

i)2

+

( .
V

i)2

+

( .
W

i)2](
1 + z

Rϕ

)(
1 + z

Rθ

)
ABdϕdθdz = [ ]

= 1
2

ϕ1∫
ϕ0

2π∫
0

{
I0

[(
ui
)2

+
(

vi
)2

+
(

wi
)2
]
+ 2I1

(
uiψ

i
ϕ + viψ

i
θ

)
+ I2

[(
ψ

i
ϕ

)2
+
(

ψ
i
θ

)2
]}

ABdϕdθ

(12)

where the dot denotes the differentiation about time, whereas three integrals are defined as follows:

(I0, I1, I2) =

h/2∫
−h/2

ρ(z)
(

1 +
z

Rϕ

)(
1 +

z
Rθ

)(
1, z, z2

)
dz (13)

The energy in two sides of boundary springs can be expressed as:

Ub = 1
2

2π∫
0

h/2∫
−h/2

{
ku,0u2 + kv,0v2 + kw,0w2 + kϕ,0ψ2

ϕ + kθ,0ψ2
θ

}
ϕ=ϕr,0

Bdθdz

+ 1
2

2π∫
0

h/2∫
−h/2

{
ku,1u2 + kv,1v2 + kw,1w2 + kϕ,1ψ2

ϕ + kθ,1ψ2
θ

}
ϕ=ϕr,1

Bdθdz
(14)

where kt,0 (t = u, v, w, ϕ, θ) and kt,1 denote the value of springs at two sides.
The energy in connective springs of two neighbor segments is expressed as:

Ui
s =

1
2

2π∫
0

h/2∫
−h/2

⎧⎨
⎩ ku

(
ui − ui+1)2

+ kv
(
vi − vi+1)2

+ kw
(
wi − wi+1)2

+kϕ

(
ψi

ϕ − ψi+1
ϕ

)2
+ kθ

(
ψi

θ − ψi+1
θ

)2

⎫⎬
⎭

i,i+1

Bdθdz (15)
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The total energy of the constraint conditions can be expressed as:

UBC = Ub +
H−1

∑
i=1

Ui
s (16)

2.3. Displacement Functions and Solution

Proper selection of the admissible displacement function is a critical factor for the accuracy of final
solution [39–43]. As displayed in literatures [44,45], classical Jacobi polynomials are valued in range of
φ ∈ [−1, 1]. Typical Jacobi polynomials P(α,β)

i (φ) of degree i are shown as below in present method.

P(α,β)
0 (φ) = 1 (17a)

P(α,β)
1 (φ) =

α + β + 2
2

φ − α − β

2
(17b)

P(α,β)
i (φ) =

(α+β+2i−1){α2−β2+φ(α+β+2i)(α+β+2i−2)}
2i(α+β+i)(α+β+2i−2) P(α,β)

i−1 (φ)

− (α+i−1)(β+i−1)(α+β+2i)
i(α+β+i)(α+β+2i−2) P(α,β)

i−2 (φ)
(17c)

where α, β > −1 and i = 2, 3, . . .
Thus, the displacement functions of shell segments can be written in form of Equation (18)

as shown:

u =
M

∑
m=0

UmP(α,β)
m (φ) cos(nθ)eiωt (18a)

v =
M

∑
m=0

VmP(α,β)
m (φ) sin(nθ)eiωt (18b)

w =
M

∑
m=0

WmP(α,β)
m (φ) cos(nθ)eiωt (18c)

ψϕ =
M

∑
m=0

ψϕmP(α,β)
m (φ) cos(nθ)eiωt (18d)

ψθ =
M

∑
m=0

ψθmP(α,β)
m (φ) cos(nθ)eiωt (18e)

where Um, Vm, Wm, ψϕm and ψθm are unknown coefficients. n and m denote the semi wave number
in axial and circumferential direction, respectively. M is highest degrees of semi wave number m.
The total Lagrangian energy functions L can be obtained as it is shown in Equation (19):

L =
H

∑
i=1

(
Ti − Ui

)
− UBC (19)

The total Lagrangian energy function L is shown in Equation (20):

∂L
∂ϑ

= 0 ϑ = Um, Vm, Wm, ψϕm, ψθm (20)

Substituting Equations (11), (12), (16), (18), (19) into Equation (20), then Equation (21) can be
obtained as: (

K − ω2M
)

Q = 0 (21)

where K and M denote stiffness and mass matrixes, respectively. Q is unknown coefficient matrix.
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3. Analysis of Examples

The general boundary conditions are denoted by the abbreviations. Thus the abbreviations F, C, SD,
SS and Ei respectively represent free, clamped, shear diaphragm, shear support and elastic boundary
conditions. The material properties are chosen as: Em = 70 GPa, Ec = 168 GPa, ρc = 5700 kg/m3,
ρm = 2707 kg/m3, νm = νc = 0.3, M = 8, α = 0, β = −0.5, H = 5. The geometrical dimensions are
chosen as follows: R0 = 0.2 m, R1 = 1 m, Lp = 1 m, h1:h2:h3:h4:h5 = 0.04:0.045:0.05:0.055:0.06 . The results
of this paper are handle by: Ω = ωR1

√
ρc/Ec.

3.1. Convergence Analysis

Figure 4 shows the frequency parameter of stepped FGMI (a = 1; b = −0.5; c = 2; p = 2) doubly
curved paraboloidal shell with different boundary parameters. We can get that the spring stiffness
values in range of 10–1010 Ec can converge to stable, regardless of the kinds of spring. In other words,
for clamped boundary condition, the spring stiffness can be assigned within the range of 10–1010 Ec.
Based on the boundary parameters analysis, the general edge constraints are be provided as shown
Table 1.

Table 1. Spring stiffness values.

BC ku,0, ku,1 kv,0, kv,1 kw,0, kw,1 kϕ,0, kϕ,1 kθ,0, kθ,1

F 0 0 0 0 0
SD 0 103 Ec 103 Ec 0 0
SS 103 Ec 103 Ec 103 Ec 0 103 Ec
C 103 Ec 103 Ec 103 Ec 103 Ec 103 Ec
E1 10−3 Ec 103 Ec 103 Ec 103 Ec 103 Ec
E2 103 Ec 10−3 Ec 103 Ec 103 Ec 103 Ec
E3 10−3 Ec 10−3 Ec 103 Ec 103 Ec 103 Ec

The relative percentage errors of stepped FGMI (a = 1; b = −0.5; c = 2; p = 2) paraboloidal shell
with various Jacobi parameters are presented in Figure 5. The results of α = β = 0 are selected as the
reference values. We can easily conclude from Figure 5 that different Jacobi parameters will lead to
almost the same results when n is a fixed value. The maximum relative error is less than 8 × 10−8.
Thus, we can conclude that displacement functions consisting with Jacobi polynomial and Fourier
series are perfectly appropriate. The most advantages of proposed method are the unified Jacobi
polynomials, which make the displacement functions easier to select in contrast with other approaches.
Figure 6 exhibits the results of stepped FG paraboloidal shell about truncation. We can get that the
convergent results can be guaranteed when M is higher than 5. M is defined as the value of eight in
this paper.
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Figure 4. Frequency parameters Ω of stepped FG paraboloidal shell with various boundary parameters.

Table 2 exhibits the frequency parameter Ω of FGMI (a = 1; b = 0; c; p) about the value of H, and
the verification model is a spherical shell. The results are compared with those in literature [46]. From
Table 2, we can conclude that the results will converge quickly as the value of H increase. We can also
conclude that very high value of M is unnecessary. In addition, it can be obtained from Table 2 that the
present method is strongly agreed with reference data.

Table 2. Frequency parameter Ω of the FGMI (a = 1; b = 0; c; p) spherical shell structure (BC; C–C, m = 1).

Power-Law
Exponent

Number of the Segment (He)
Ref [46]

n 2 3 4 5 6 7 8

p = 0.6

1 1.0569 1.0569 1.0568 1.0568 1.0568 1.0568 1.0568 1.0538
2 1.0379 1.0376 1.0374 1.0372 1.0371 1.0371 1.0370 1.0354
3 1.0319 1.0317 1.0314 1.0312 1.0312 1.0310 1.0310 1.0294
4 1.0760 1.0757 1.0755 1.0752 1.0751 1.0750 1.0749 1.0733
5 1.1588 1.1586 1.1584 1.1581 1.1581 1.1580 1.1580 1.1559
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Table 2. Cont.

Power-Law
Exponent

Number of the Segment (He)
Ref [46]

n 2 3 4 5 6 7 8

p = 5

1 1.0446 1.0446 1.0446 1.0445 1.0445 1.0445 1.0445 1.0411
2 1.0116 1.0115 1.0113 1.0111 1.0110 1.0109 1.0108 1.0085
3 1.0085 1.0083 1.0082 1.0080 1.0079 1.0079 1.0078 1.0053
4 1.0572 1.0571 1.0569 1.0568 1.0566 1.0565 1.0563 1.0539
5 1.1470 1.1468 1.1467 1.1465 1.1464 1.1464 1.1463 1.1433

p = 20

1 1.0282 1.0282 1.0281 1.0281 1.0281 1.0281 1.0281 1.0266
2 0.9958 0.9957 0.9956 0.9954 0.9953 0.9953 0.9952 0.9945
3 0.9927 0.9926 0.9924 0.9923 0.9922 0.9921 0.9920 0.9913
4 1.0407 1.0405 1.0404 1.0403 1.0403 1.0402 1.0399 1.0392
5 1.1290 1.1289 1.1287 1.1286 1.1285 1.1284 1.1284 1.1273
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Figure 5. Relative error of frequency parameters Ω in stepped FG paraboloidal shell (BC: C–C).
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Figure 6. Frequency parameters Ω for various truncation in stepped FG paraboloidal shell.

3.2. Free vibration Behavior of Stepped FG Paraboloidal Shell

Table 3 shows the precision of the approach in solving free vibration behavior of stepped FG
paraboloidal shell with clamed boundary condition, and all the FEM commercial program ABAQUS
(S4R model) results have converged to stable when the element size is chosen as 0.03 m. In addition,
it should be note that the homogeneous elements not graded elements [47] were used in this paper.
From the comparison study, we can conclude that the present method is capable to analyze the
vibration behaviors of stepped doubly curved paraboloidal shell with general boundary conditions.

Table 3. Comparison of frequency parameter Ω for stepped doubly curved paraboloidal shell (FGMI

(a, b, c, p = 0)).

n m Proposed Method FEM

0

1 1.2139 1.2144
2 1.3579 1.3586
3 1.5621 1.5645
4 1.6154 1.6183

1

1 0.9499 0.9504
2 1.2605 1.2615
3 1.6030 1.6070
4 1.9770 1.9725

2

1 0.7521 0.7524
2 1.1907 1.1924
3 1.6002 1.6056
4 2.1071 2.1083

3

1 0.7171 0.7176
2 1.1811 1.1835
3 1.6590 1.6566
4 2.2217 2.2251

To further prove the effectiveness of this method, the experiment test focused on free vibration of
cylindrical shell was carried out. It should be note that the cylindrical shell is isotropic. The material
properties and geometrical parameters are chosen as: E = 210 GPa, ρ = 7850 kg/m3, ν = 0.3, R = 0.06 m,
L = 0.3 m, h = 0.005 m. The boundary condition is free for isotropic cylindrical shell due to the
of the restraints test environment. Figure 7 shows the test instrument and model. In experiment,
the hammer was used to strike different positions of cylindrical shells in turn, and acceleration sensors
with sensitivity of 100 mv/g were used to collect the vibration response at the same point. Then the
time domain signals obtained by test were transformed into frequency domain signals by Fourier
transform. The final results of frequencies are shown in Table 4. For natural frequencies obtained
by FEM commercial program ABAQUS (S4R model), it is obvious that the structure and material
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parameters are the same as the experiment, and it should be note that the results have converge to
stable when the mesh size is 0.03 m. From Table 4, it is easy to find that the present results closely
agreed with experiment and FEM. For selected five modes, the maximum error of present method and
experiment is 2.35%, and the maximum error of present method and FEM is 0.38%. The reason for the
large error of present method with the test results are mainly the influence of elastic hoisting boundary
and random error. The mode shapes obtained by three different methods are presented in Figure 8.

   
(a) (b) 

Figure 7. Testing instruments and model. (a) The test system; (b) the test model.

Table 4. Comparison study of the frequencies for cylindrical shell.

n, m Present Experimental Error (%) FEM Error (%)

0, 1 545.89 551.97 1.11 547.49 0.29
2, 2 582.13 588.39 1.08 581.98 0.03
0, 3 1561.93 1572.53 0.68 1567.90 0.38
2, 3 1618.37 1656.42 2.35 1613.70 0.29
3, 3 2143.98 2169.05 1.17 2150.70 0.31

  

(a1) FEM (a2) Present (a3) Experiment 
(a) The first mode shape 

  

(b1) FEM (b2) Present (b3) Experiment 
(b) The second mode shape 

Figure 8. The selected mode shapes of three kinds of method.
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Table 5 exhibits the results of free vibration behaviors for stepped FG paraboloidal shell with
various boundary conditions. From Table 5, it is easy to find that the free vibration characteristics are
not only influence by boundary conditions, but material parameters. To better reveal the vibration
characteristics of the shell, some mode shapes are given in Figure 9.

Table 5. Frequency parameters Ω of stepped paraboloidal shell.

Type n m
Boundary Restraints

F–C C–C SD–SD SS–SS E1–E1 E2–E2 E3–E3 F–E1 F–E2 F–SS

FGMI
(a = 1;

b = −0.5;
c = 2; p = 2)

1

1 0.7470 0.9238 0.6151 0.8886 0.6736 0.5307 0.2076 0.2171 0.4519 0.7301
2 1.1767 1.2318 0.8874 1.1522 0.9171 1.2104 0.5468 0.8334 1.1066 1.0967
3 1.4199 1.5746 1.1503 1.4582 1.2343 1.4709 1.1710 1.1866 1.4113 1.3661
4 1.6262 1.9378 1.4683 1.8208 1.5746 1.7016 1.4638 1.4535 1.4271 1.6000
5 1.7717 2.0975 1.8376 2.0156 2.0259 1.9062 1.5645 1.7696 1.7209 1.6947

2

1 0.5453 0.7334 0.6855 0.6973 0.7196 0.6154 0.5819 0.4742 0.4983 0.5329
2 0.9432 1.1666 1.0460 1.0800 1.1426 1.1078 0.9250 0.9212 0.8446 0.8894
3 1.3195 1.5767 1.3190 1.4539 1.3368 1.5389 1.3106 1.3023 1.3013 1.2305
4 1.7651 2.0848 1.4434 1.9063 1.5690 2.0412 1.4790 1.3588 1.7237 1.6529
5 2.2154 2.5207 1.8933 2.4718 2.0823 2.2287 1.9788 1.7737 2.1426 2.1436

3

1 0.6918 0.7037 0.6469 0.6597 0.6939 0.6630 0.6588 0.6816 0.6549 0.6516
2 1.1043 1.1629 1.0674 1.0763 1.1594 1.1255 1.0998 1.1029 1.0725 1.0362
3 1.4964 1.6405 1.5063 1.5173 1.6362 1.6151 1.5855 1.4963 1.4798 1.4098
4 1.9638 2.2032 1.9827 2.0370 2.0021 2.1782 1.8904 1.9536 1.9463 1.8532
5 2.5376 2.8897 2.0261 2.6731 2.1986 2.8331 2.1627 2.0105 2.5267 2.4127

FGMII
(a = 1;

b = −0.5;
c = 2; p = 2)

1

1 0.7418 0.9171 0.6086 0.8875 0.6689 0.5274 0.2064 0.2161 0.4491 0.7153
2 1.1663 1.2205 0.8821 1.1388 0.9110 1.1991 0.5427 0.8263 1.0974 1.1007
3 1.4059 1.5589 1.1408 1.4569 1.2232 1.4590 1.1604 1.1759 1.4010 1.3328
4 1.6117 1.9209 1.4556 1.7561 1.5588 1.6896 1.4532 1.4381 1.4141 1.6112
5 1.7523 2.0820 1.8189 2.0554 2.0045 1.8919 1.5520 1.7494 1.7022 1.6794

2

1 0.5378 0.7271 0.6821 0.6895 0.7136 0.6103 0.5768 0.4670 0.4920 0.5171
2 0.9331 1.1553 1.0399 1.0802 1.1315 1.0968 0.9159 0.9117 0.8351 0.8909
3 1.3062 1.5593 1.3101 1.4468 1.3285 1.5218 1.3017 1.2916 1.2878 1.2172
4 1.7468 2.0615 1.4329 1.8881 1.5518 2.0196 1.4630 1.3468 1.7066 1.6445
5 2.1931 2.5059 1.8788 2.4820 2.0593 2.2170 1.9600 1.7554 2.1281 2.0916

3

1 0.6846 0.6968 0.6436 0.6477 0.6872 0.6566 0.6524 0.6746 0.6482 0.6389
2 1.0906 1.1506 1.0609 1.0731 1.1471 1.1136 1.0877 1.0892 1.0592 1.0300
3 1.4762 1.6214 1.4944 1.5073 1.6171 1.5961 1.5665 1.4761 1.4597 1.3933
4 1.9404 2.1772 1.9727 2.0216 1.9913 2.1526 1.8796 1.9316 1.9231 1.8339
5 2.5057 2.8601 2.0097 2.6553 2.1728 2.8113 2.1386 1.9983 2.4952 2.3801

Table 6 shows the results of stepped FG paraboloidal shell with different power-law exponents,
in which four values are included. From Table 6, we can get that the boundary conditions and power-law
exponents all will have important impact on the results of the structure.

Table 7 shows the results of stepped FG paraboloidal shell with different thickness distributions.
Four kinds of thickness distributions, i.e., h1:h2:h3:h4:h5 = 0.04:0.045:0.05:0.055:0.06 are included. It is
obvious that the thickness distributions affect the vibration behavior of stepped FG paraboloidal
shell largely.

Figures 10–12 exhibit the frequency parameters Ω of stepped FG paraboloidal shell with various
parameters a, b, c and p. From selected data, it could be found that a, b and c have a great deal of
impact on the results of Ω. In addition, for parameters a and c, the smaller value will obtain the larger
results. Figure 13 exhibits the results of stepped FG paraboloidal shell with various stiffness ratios and
parameter p. It can be seen that no matter what value of parameter p, the vibration characteristics will
decrease with Ec/Em increasing.
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n = 1; m = 1 n = 1; m = 2 n = 1; m = 3 

   
n = 2; m = 1 n = 2; m = 2 n =2; m = 3 

   

n = 3; m = 1 n = 3; m = 2 n = 3; m = 3 

Figure 9. Mode shapes of stepped FG paraboloidal shell (BC: SS–SS).

Table 6. Frequency parameters Ω for stepped FGMI (a = 1; b = 0.5; c = 2; p) shell with different
power-law exponents.

Power-Law Exponents n m C–C SD–SD F–SS

p = 0.2

1
1 0.9480 0.6315 0.7461
2 1.2583 0.9133 1.1301
3 1.6007 1.1769 1.3859

2
1 0.7507 0.7047 0.5374
2 1.1888 1.0703 0.9119
3 1.5983 1.3557 1.2499

3
1 0.7161 0.6612 0.6606
2 1.1796 1.0868 1.0534
3 1.6574 1.5264 1.4231

p = 0.5

1
1 0.9451 0.6297 0.7444
2 1.2550 0.9104 1.1259
3 1.5971 1.1737 1.3836

2
1 0.7486 0.7025 0.5369
2 1.1859 1.0673 0.9090
3 1.5951 1.3514 1.2472

3
1 0.7144 0.6593 0.6595
2 1.1772 1.0841 1.0508
3 1.6545 1.5232 1.4207
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Table 6. Cont.

Power-Law Exponents n m C–C SD–SD F–SS

p = 2

1
1 0.9321 0.6210 0.7359
2 1.2395 0.8969 1.1078
3 1.5796 1.1585 1.3711

2
1 0.7389 0.6922 0.5332
2 1.1721 1.0532 0.8959
3 1.5789 1.3322 1.2339

3
1 0.7064 0.6508 0.6534
2 1.1650 1.0712 1.0389
3 1.6394 1.5074 1.4081

p = 5

1
1 0.9164 0.6103 0.7236
2 1.2221 0.8807 1.0892
3 1.5625 1.1413 1.3542

2
1 0.7276 0.6803 0.5280
2 1.1575 1.0383 0.8832
3 1.5646 1.3084 1.2210

3
1 0.6983 0.6422 0.6460
2 1.1540 1.0597 1.0285
3 1.6282 1.4954 1.3991

Table 7. Frequency parameters Ω for stepped FGMI (a = 1; b = 0.5; c = 2; p = 2) shell with different
thickness distributions.

h1:h2:h3:h4:h5 n m C–C SD–SD F–SS

0.04:0.05:0.06:0.07:0.08

1
1 0.9579 0.5884 0.7655
2 1.3085 0.9008 1.1470
3 1.6903 1.2140 1.4461

2
1 0.7667 0.6952 0.5476
2 1.2454 1.1009 0.9267
3 1.7064 1.2969 1.3145

3
1 0.7590 0.6841 0.6925
2 1.2600 1.1513 1.1067
3 1.7917 1.6410 1.5140

0.08:0.07:0.06:0.05:0.04

1
1 0.8600 0.6915 0.6176
2 1.1979 0.9477 1.0841
3 1.6283 1.1045 1.2400

2
1 0.7026 0.6680 0.5916
2 1.1782 1.0529 0.9674
3 1.6697 1.4977 1.3075

3
1 0.6992 0.6584 0.6578
2 1.2297 1.1176 1.1192
3 1.8009 1.6410 1.6103

0.04:0.06:0.08:0.07:0.05

1
1 0.8483 0.5982 0.6988
2 1.2766 0.8162 1.1448
3 1.6965 1.1861 1.3817

2
1 0.6747 0.6343 0.5059
2 1.2266 1.0603 0.9036
3 1.7104 1.4039 1.2943

3
1 0.6993 0.6493 0.6457
2 1.2530 1.1403 1.1109
3 1.8046 1.6523 1.5196

152



Materials 2019, 12, 69

Table 7. Cont.

h1:h2:h3:h4:h5 n m C–C SD–SD F–SS

0.07:0.05:0.04:0.06:0.08

1
1 1.0086 0.6664 0.7052
2 1.2356 0.9912 1.0789
3 1.6421 1.1382 1.4098

2
1 0.8278 0.7647 0.6457
2 1.1948 1.0710 0.9595
3 1.6748 1.2893 1.3483

3
1 0.8000 0.7185 0.7324
2 1.2351 1.1212 1.1102
3 1.7878 1.6336 1.5970
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Figure 10. Results about different p and a of stepped FGMI (a, b = 0.5; c = 2; p) paraboloidal shell.
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Figure 11. Results about different p and b of stepped FGMI (a = 1; b, c = 2; p) paraboloidal shell.
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Figure 12. Results about different p and c of stepped FGMI (a = 1; b = 0.5; c; p) paraboloidal shell.
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Figure 13. Results about different Ec/Em and p of stepped FGMI (a = 1; b = 0.5; c = 2; p)
paraboloidal shell.

4. Conclusions

The paper proposed a solving formulation to investigate the free vibration behaviors of stepped
FG paraboloidal shell with general boundary conditions. The paper is based on multi-segment
strategy and FSDT. The displacement functions are simulated by Jacobi polynomials and Fourier series.
To obtain the general boundary conditions of stepped FG paraboloidal shell, the penalty method was
adopted. The final modes solutions about FG paraboloidal shell were obtained by Rayleigh–Ritz
method. The most discoveries of proposed method are unified Jacobi polynomials, which make
the displacement functions easier to select. For convergence analysis, the influence of boundary
parameters, numbers of shell segments etc. are examined. The accuracy of this method was verified
by the comparison study with those obtained by published literature, FEM, and the experiment. The
results of this paper can provide the reference data for future research.
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Appendix A

M = diag
[
M1, M2, · · · , MH

]
(A1)

Mi =

ϕi+1∫
ϕi

2π∫
0

⎡
⎢⎢⎢⎢⎢⎣

Muu 0 0 Muϕ 0
0 Mvv 0 0 Mvθ

0 0 Mww 0 0
Muϕ 0 0 Mϕϕ 0

0 Mvθ 0 0 Mθθ

⎤
⎥⎥⎥⎥⎥⎦ABdϕdθ (A2)

Muu = I0UTU, Mvv = I0VTV, Mww = I0WTW, Mϕϕ = I2ΦTΦ (A3)

Mθθ = I2ΘTΘ, Muϕ = I1UTΦ, Mvθ = I1VTΘ (A4)

U = Pm ⊗ Cn, V = Pm ⊗ Sn, W = Pm ⊗ Cn, Φ = Pm ⊗ Cn, Θ = Pm ⊗ Sn (A5)

Pm = [P(α,β)
0 (φ), P(α,β)

1 (φ), · · · , P(α,β)
m (φ), · · · , P(α,β)

M (φ)] (A6)

Cn = [cos(0θ), cos(1θ), · · · cos(nθ), · · · , cos(Nθ)] (A7)

Sn = [sin(0θ), sin(1θ), · · · sin(nθ), · · · , sin(Nθ)] (A8)

K = Kξ + Kb + Ks (A9)

Kξ = diag
[
K1

ξ , K2
ξ , · · · , KH

ξ

]
(A10)

Ki
ξ =

ϕξ,i+1∫
ϕξ,i

2π∫
0

⎡
⎢⎢⎢⎢⎢⎢⎣

Kξ,uu Kξ,uv Kξ,uw Kξ,uϕ Kξ,uθ

KT
ξ,uv Kξ,vv Kξ,vw Kξ,vϕ Kξ,vθ

KT
ξ,uw KT

ξ,vw Kξ,ww Kξ,wϕ Kξ,wθ

KT
ξ,uϕ KT

ξ,vϕ KT
ξ,wϕ Kξ,ϕϕ Kξ,ϕθ

KT
ξ,uθ KT

ξ,vθ KT
ξ,wθ KT

ξ,ϕθ Kξ,θθ

⎤
⎥⎥⎥⎥⎥⎥⎦ABdϕdθ (A11)

Kb = diag[Kbl , 0, · · · , Kbr] (A12)

Kbl =

2π∫
0

diag
[
Kbl,uu, Kbl,vv, Kbl,ww, Kbl,ϕϕ, Kbl,θθ

]
ϕ=ϕ0

Bdθ (A13)

Kbr =

2π∫
0

diag
[
Kbr,uu, Kbr,vv, Kbr,ww, Kbr,ϕϕ, Kbr,θθ

]
ϕ=ϕ1

Bdθ (A14)

Ks = diag
[
K1

s , K2
s , · · · , KH

s

]
(A15)

Ki
s =

2π∫
0

[
Ks0 Ks1

KT
s1 Ks2

]
Bdθ (A16)

Ks0 = diag
[
Kuiui , Kvivi , Kwiwi , Kϕi ϕi , Kϕi ϕi

]
(A17)

Ks1 = diag
[
Kuiui+1 , Kvivi+1 , Kwiwi+1 , Kϕi ϕi+1 , Kϕi ϕi+1

]
(A18)

Ks2 = diag
[
Kui+1ui+1 , Kvi+1vi+1 , Kwi+1wi+1 , Kϕi+1 ϕi+1 , Kϕi+1 ϕi+1

]
(A19)
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Ui
S =

1
2

�
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A11

(
1
A

∂ui

∂ϕ + vi

AB
∂A
∂θ + wi

Rϕ

)2
+ A22

(
1
B

∂vi

∂θ + ui

AB
∂B
∂ϕ + wi

Rθ

)2

+A66

(
A
B

∂
∂θ

(
ui

A

)
+ B

A
∂

∂ϕ

(
vi

B

))2
+

2A12

(
1
A

∂ui

∂ϕ + vi

AB
∂A
∂θ + wi

Rϕ

)(
1
B

∂vi

∂θ + ui

AB
∂B
∂ϕ + wi

Rθ

)
+

+κA66

(
1
A

∂wi

∂ϕ − ui

Rϕ
+ ψi

ϕ

)2
+ κA66

(
1
B

∂wi

∂θ − vi

Rθ
+ ψi

θ

)2

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

ABdϕdθdz (A20)

Ui
B =

1
2

�
⎧⎪⎪⎪⎪⎪⎪⎨
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D11

(
1
A

∂ψi
ϕ

∂ϕ +
ψi

θ
AB

∂A
∂θ

)2
+ D22

(
1
B

∂ψi
θ
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ψi

ϕ

AB
∂B
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)2

+D66

(
A
B

∂
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(
ψi

ϕ

A

)
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A
∂
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(
ψi

θ
B

))2

+2D12

(
1
A

∂ψi
ϕ
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θ
AB
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)(
1
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∂ψi
θ
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ψi

ϕ

AB
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∂ϕ

)
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ABdϕdθdz (A21)

Ui
BS =

�
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B11

(
1
A
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∂A
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ϕ
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θ
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(
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B

∂vi
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1
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Abstract: An efficient analytical/numerical method has been developed and programmed to predict
the distribution of residual stresses and springback in plane strain pure bending of functionally
graded sheets at large strain, followed by unloading. The solution is facilitated by using a Lagrangian
coordinate system. The study is concentrated on a power law through thickness distribution of
material properties. However, the general method can be used in conjunction with any other through
thickness distributions assuming that plastic yielding initiates at one of the surfaces of the sheet.
Effects of material properties on the distribution of residual stresses are investigated.
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1. Introduction

Structures made of functionally graded materials (FGM) are advantageous for many applications.
A difficulty with theoretical analysis and design is that structures made of FGM are classified by a
much greater number of parameters than similar structures made of homogeneous materials. For
this reason, it is desirable to perform parametric studies by analytic or semi-analytic methods as
much as possible. A review of results related to the analysis of FGM and published before 2007
is presented in [1]. This review focuses on structures with through-thickness variation of material
properties. Analytic solutions derived in [1–5] belong to this class of FGM as well. In [2–4], elastic and
elastic/plastic spherical vessels subjected to various loading conditions are considered. Thermo-elastic
simply supported and clamped circular plates are studied in [5]. Many analytic and semi-analytic
solutions are available for FGM discs and cylinders assuming that material properties vary in the
radial direction but are independent of the circumferential and axial directions. Purely elastic solutions
for a hollow disc or cylinder subjected to internal or/and external pressure are derived in [6–8].
An axisymmetric thermo-elastic solution for a hollow cylinder subjected quite a general system of
thermo-mechanical loading is presented in [9]. It is assumed that the temperature varies along the
radial coordinate. A plane strain analytic elastic/plastic solution for pressurized tubes is found in [10].
The solution is based on the Tresca yield criterion. Many solutions are proposed for functionally
graded solid and hollow rotating discs. Purely elastic solutions for solid discs of constant thickness are
given in [11,12], a purely elastic solution for a hollow disc of variable thickness in [13], a purely elastic
solution for hollow polar orthotropic discs in [14], and a solution for hollow cylinders using the theory
of electrothermoelasticity in [15]. An elastic perfectly plastic stress solution for hollow discs is derived
in [16] using the von Mises yield criterion.

All of the aforementioned solutions deal with infinitesimal strain. A distinguished feature of
the solution provided in the present paper is that strains are large. The process considered is pure
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bending of a FGM sheet under plane strain conditions. A review on bending of functionally graded
sheets and beams at infinitesimal strains is given in [17]. The present solution is based on the approach
proposed in [18]. It is shown in this paper that the use of Lagrangian coordinates facilitates the solution.
Moreover, the equations describing kinematics can be solved independently of stress equations in the
case of isotropic incompressible material. This is an advantage as compared to the classic approach
developed in [19] where the stress equations are solved first. The classic approach is restricted to
perfectly plastic materials, whereas the mapping in Equation (1) is valid for a large class of constitutive
equations. The approach proposed in [18] has already been successfully extended to more general
constitutive equations in [20–23]. It is shown in the present paper that the approach is also efficient
for FGM sheets. It is worth noting that a rigid plastic solution for pure bending of laminated sheets
(such sheets can also be referred to as functionally graded sheets) at large strain is given in [24].

2. Basic Equations

The process of plane strain pure bending is illustrated in Figure 1. The approach proposed
in [18] for solving the corresponding boundary value problem is based on the following
transformation equations:

x
H

=

√
ζ

a
+

s
a2 cos (2aη)−

√
s

a
,

y
H

=

√
ζ

a
+

s
a2 sin (2aη) . (1)

where (x, y) is an Eulerian–Cartesian coordinate system and (ζ, η) is a Lagrangian coordinate system.
Without loss of generality, it is possible to assume that the origin of the Cartesian coordinate system is
located at the intersection of the axis of symmetry of the process and the outer surface AB and that the
x-axis coincides with the axis of symmetry. The Lagrangian coordinate system is chosen such that

ζ = x/H and η = y/H (2)

at the initial instant where H is the initial thickness of the sheet. It is evident from these relations and
the geometry in Figure 1 that ζ = 0 on AB, ζ = −1 on CD, η = L/H on CB and η = −L/H on AD
throughout the process of deformation. Here, L is the initial width of the sheet. In Equation (1), a is a
time-like variable. In particular, a = 0 at the initial instant. In Equation (1), s is a function of a. This
function should be found from the stress solution and therefore depends on constitutive equations.
The condition in Equation (2) is satisfied if

s =
1
4

(3)

at a = 0. It is possible to verify by inspection that the mapping in Equation (1) satisfies the equation
of incompressibility. Moreover, this mapping transforms initially straight lines A1B1 and C1D1 into
circular arcs AB and CD and initially straight lines C1B1 and A1D1 into circular arcs CB and AD after
any amount of deformation (Figure 1). Furthermore, coordinate curves of the Lagrangian coordinate
system coincide with trajectories of the principal strain rates and, for coaxial models, with trajectories
of the principal stresses. Thus, the shear stress vanishes in the Lagrangian coordinates. In particular,
the contour ABCD is free of shear stresses. Let σζ and ση be the physical stress components referred to
the Lagrangian coordinates. The stress solution should satisfy the boundary conditions

σζ = 0 (4)

for ζ = −1 and ζ = 0. The only non-trivial equilibrium equation in the Lagrangian coordinates has
been derived in [18] as

∂σζ

∂ζ
+

a
(
σζ − ση

)
2 (ζa + s)

= 0. (5)
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The initial plane strain yield criterion of the functionally graded sheet is supposed to be

∣∣σζ − ση

∣∣ = 2√
3

σ0β
( x

H

)
. (6)

where σ0 is a material constant and β(x/H) is an arbitrary function of its argument. It is assumed that
material properties are not affected by plastic deformation. Therefore, Equation (6) can be rewritten in
the form

∣∣σζ − ση

∣∣ = 2√
3

σ0β (ζ) . (7)

In this case, the yield locus is invariant along the motion. The importance of this property of
material models has been emphasized in [25]. Let τζ and τη be the deviatoric portions of σζ and ση ,
respectively. Since the material is incompressible, τζ + τη = 0 under plane strain conditions. Then, the
yield criterion in Equation (7) is equivalent to

∣∣τζ

∣∣ = ∣∣τη

∣∣ = σ0β (ζ)√
3

. (8)

Hooke’s law generalized on functionally graded materials reads

τζ = 2G0g (ζ) εe
ζ , τη = 2G0g (ζ) εe

η . (9)

It has been taken into account here that Poisson’s ratio is equal to 1/2 for incompressible materials.
In addition, εe

ζ and εe
η are the total strain components in elastic regions and the elastic portions of

the total strain components in plastic regions referred to the Lagrangian coordinate system, G0 is a
material constant and g(ζ) is an arbitrary function of its argument.

Figure 1. Geometric configuration of the bending problem: (a) before deformation; and
(b) after deformation.

Geometric parameters shown in Figure 1 depend on a and are expressed as [18]

rAB

H
=

√
s

a
,

rCD

H
=

√
s − a
a

, θ0 =
2aL
H

,
h
H

=

√
s −√

s − a
a

. (10)
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Once s has been found as a function of a, these parameters are immediate from Equation (10).

3. Stress Solution at Loading

It is assumed that the functions β(ζ) and g(ζ) involved in Equations (7) and (9) are such that
plastic yielding can only initiate at ζ = 0 or ζ = −1. This assumption can be verified using the purely
elastic solution with no difficulty. At the very beginning of the process, the entire sheet is elastic.
As deformation proceeds, one of the following three cases arises: (i) plastic yielding initiates at the
surface ζ = −1; (ii) plastic yielding initiates at the surface ζ = 0; and (iii) plastic yielding initiates
simultaneously at the surfaces ζ = −1 and ζ = 0. These cases should be treated separately. In the
following, ζ1 is the elastic/plastic boundary between the plastic region that propagates from the
surface ζ = 0 and the elastic region and ζ2 is the elastic/plastic boundary between the plastic region
that propagates from the surface ζ = −1 and the elastic region. It is evident that both ζ1 and ζ2 depend
on a. The general structure of the solution with two plastic regions is illustrated in Figure 2. Let M be
the bending moment. Then, its dimensionless representation is in terms of the Lagrangian coordinates
given by [18]

m =
2
√

3M
σ0H2 =

√
3

a

0∫
−1

ση

σ0
dζ. (11)

Figure 2. Schematics of elastic and plastic zones.

In the elastic region, the whole strain is elastic. Therefore, it follows from Equation (1) that the
principal logarithmic strains are

2εe
ζ = −2εe

η = − ln [4 (ζa + s)] . (12)

Since σζ − ση = τζ − τη , Equations (5) and (9) combine to give

∂σζ

∂ζ
+

G0ag (ζ)
(ζa + s)

(
εe

ζ − εe
η

)
= 0. (13)

Eliminating the strain components in Equation (13) by means of Equation (12) results in

∂σζ

∂ζ
− G0ag (ζ)

(ζa + s)
ln [4 (ζa + s)] = 0. (14)
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Integrating this equation with respect to ζ and using the boundary condition in Equation (4) at
ζ = 0 leads to

σζ

σ0
=

a
3k

ζ∫
0

g (χ) ln [4 (χa + s)]
(χa + s)

dχ,
ση

σ0
=

σζ

σ0
+

2
3k

g (ζ) ln [4 (ζa + s)] , (15)

where k = σ0/(3G0) and χ is a dummy variable of integration. The expression for ση in Equation (15)
has been derived using the identity ση = σζ − τζ + τη , and Equations (9) and (12). In the case of the
purely elastic solution, Equation (15) must satisfy the boundary condition in Equation (4) at ζ = −1.
Then, the equation for the function s(a) is

0∫
−1

g (χ) ln [4 (χa + s)]
(χa + s)

dχ = 0. (16)

Using Equation (15), in which s should be eliminated by means of the solution of Equation (16),
and the yield criterion in Equation (8), it is possible to determine which of the three cases mentioned
above occurs for given material properties. Simultaneously, the value of a at which plastic yielding
initiates is determined. This value of a is denoted as ae. In the following, it is assumed that a ≥ ae. It is
now necessary to consider Cases (i), (ii) and (iii) separately.

Case (i). There are two regions. A plastic region occupies the domain −1 ≤ ζ ≤ ζ2 and an elastic
region the domain ζ2 ≤ ζ ≤ 0. Equation (15) is valid in the elastic region. However, the function s(a)
is not determined from Equation (16). It is reasonable to assume that ση < σζ in the plastic region.
Therefore, the yield criterion in Equation (7) becomes

σζ − ση =
2√
3

σ0β (ζ) . (17)

Substituting Equation (17) into Equation (5) and integrating yields the dependence of the stress σζ

on ζ. Using Equation (17) again provides the dependence of the stress ση on ζ. As a result,

σζ

σ0
= − a√

3

ζ∫
−1

β (χ)

(χa + s)
dχ,

ση

σ0
=

σζ

σ0
− 2√

3
β (ζ) . (18)

It is evident that this solution satisfies the boundary condition in Equation (4) at ζ = −1. Both
σζ and ση should be continuous across ζ = ζ2. Consequently, τζ is continuous across ζ = ζ2. The
stress τζ on the elastic side of the elastic/plastic boundary is determined from Equation (15) and on
the plastic side from Equation (8). Then, the condition of continuity of τζ across the surface ζ = ζ2 is
represented as

g (ζ2) ln [4 (ζ2a + s)] = −
√

3kβ (ζ2) . (19)

Solving this equation for s yields

s =
1
4

exp

[
−
√

3kβ (ζ2)

g (ζ2)

]
− ζ2a. (20)
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Using Equations (15) and (18), the condition of continuity of σζ across the surface ζ = ζ2 is
represented as

ζ2∫
0

g (χ) ln [4 (χa + s)]
(χa + s)

dχ = −
√

3k
ζ2∫

−1

β (χ)

(χa + s)
dχ. (21)

In this equation, s can be eliminated by means of Equation (20). The resulting equation should
be solved numerically to find ζ2 as a function of a. Then, s as a function of a is readily found from
Equation (20). The yield criterion should be checked in the elastic region using the solution in
Equation (15). The calculation should be stopped when the yield condition is satisfied at one point of
the elastic region. Denote the corresponding value of a as a2.

In Case (i), Equation (11) becomes

m =

√
3

a

ζ2∫
−1

(
ση

σ0

)
dζ +

√
3

a

0∫
ζ2

(
ση

σ0

)
dζ. (22)

In the first integrand, ση/σ0 should be eliminated by means of Equation (18) and in the second by
means of Equation (15).

Case (ii). There are two regions. A plastic region occupies the domain ζ1 ≤ ζ ≤ 0 and an elastic
region the domain −1 ≤ ζ ≤ ζ1. The elastic solution in Equation (15) satisfies the boundary condition
in Equation (4) at ζ = 0. Therefore, it is convenient to rewrite this solution as

σζ

σ0
=

a
3k

ζ∫
−1

g (χ) ln [4 (χa + s)]
(χa + s)

dχ,
ση

σ0
=

σζ

σ0
+

2
3k

g (ζ) ln [4 (ζa + s)] . (23)

The elastic solution in this form satisfies the boundary condition in Equation (4) at ζ = −1.
It is reasonable to assume that ση > σζ in the plastic region. Therefore, the yield criterion in
Equation (7) becomes

σζ − ση = − 2√
3

σ0β (ζ) . (24)

Substituting Equation (24) into Equation (5) and integrating yields the dependence of the stress σζ

on ζ. Using Equation (24) again provides the dependence of the stress ση on ζ. As a result,

σζ

σ0
=

a√
3

ζ∫
0

β (χ)

(χa + s)
dχ,

ση

σ0
=

σζ

σ0
+

2√
3

β (ζ) . (25)

It is evident that this solution satisfies the boundary condition in Equation (4) at ζ = 0. Both
σζ and ση should be continuous across ζ = ζ1. Consequently, τζ is continuous across ζ = ζ1. The
stress τζ on the elastic side of the elastic/plastic boundary is determined from Equation (23) and on
the plastic side from Equation (8). Then, the condition of continuity of τζ across the surface ζ = ζ1 is
represented as

g (ζ1) ln [4 (ζ1a + s)] =
√

3kβ (ζ1) . (26)

Solving this equation for s yields

s =
1
4

exp

[
−
√

3kβ (ζ1)

g (ζ1)

]
− ζ1a. (27)
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Using Equations (23) and (25), the condition of continuity of σζ across the surface ζ = ζ1 is
represented as

ζ1∫
−1

g (χ) ln [4 (χa + s)]
(χa + s)

dχ =
√

3k
ζ1∫

0

β (χ)

(χa + s)
dχ. (28)

In this equation, s can be eliminated by means of Equation (27). The resulting equation should be
solved numerically to find ζ1 as a function of a. Then, s as a function of a is readily found from Equation
(27). The yield criterion should be checked in the elastic region using the solution in Equation (23). The
calculation should be stopped when the yield condition is satisfied at one point of the elastic region.
Denote the corresponding value of a as a1.

In Case (ii), Equation (11) becomes

m =

√
3

a

ζ1∫
−1

(
ση

σ0

)
dζ +

√
3

a

0∫
ζ1

(
ση

σ0

)
dζ. (29)

In the first integrand, ση/σ0 should be eliminated by means of Equation (23) and in the second by
means of Equation (25).

Case (iii). In this case, there are two plastic regions, −1 ≤ ζ ≤ ζ2 and ζ1 ≤ ζ ≤ 0, and one elastic
region, ζ1 ≤ ζ ≤ ζ2. At the beginning of this stage of the process, a = a1 and ζ2 = −1 or a = a2 and
ζ1 = 0. Let σn1 be the value of σζ at ζ = ζ1 and σn2 be the value of σζ at ζ = ζ2. Then, the elastic
solution in Equation (15) can be rewritten as

σζ

σ0
=

a
3k

ζ∫
ζ1

g (χ) ln [4 (χa + s)]
(χa + s)

dχ +
σn1

σ0
,

ση

σ0
=

σζ

σ0
+

2
3k

g (ζ) ln [4 (ζa + s)] . (30)

It follows from this solution that

σn2

σ0
=

a
3k

ζ2∫
ζ1

g (χ) ln [4 (χa + s)]
(χa + s)

dχ +
σn1

σ0
. (31)

The solution in Equation (18) is valid in the plastic region −1 ≤ ζ ≤ ζ2 and the solution in
Equation (25) in the plastic region ζ1 ≤ ζ ≤ 0 . Then,

σn2

σ0
= − a√

3

ζ2∫
−1

β (χ)

(χa + s)
dχ, (32)

and

σn1

σ0
=

a√
3

ζ1∫
0

β (χ)

(χa + s)
dχ. (33)

Equations (20) and (27) are valid. Therefore,

exp

[√
3kβ (ζ1)

g (ζ1)

]
− 4ζ1a = exp

[
−
√

3kβ (ζ2)

g (ζ2)

]
− 4ζ2a, (34)
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and

a =
1

4 (ζ2 − ζ1)

{
exp

[
−
√

3kβ (ζ2)

g (ζ2)

]
− exp

[√
3kβ (ζ1)

g (ζ1)

]}
. (35)

Equations (31)–(33) combine to give

ζ2∫
−1

β (χ)

(χa + s)
dχ +

1√
3k

ζ2∫
ζ1

g (χ) ln [4 (χa + s)]
(χa + s)

dχ +

ζ1∫
0

β (χ)

(χa + s)
dχ = 0. (36)

Eliminating in this equation s by means of Equation (20) or Equation (27) and then a by means of
Equation (35) supplies the equation to find ζ1 as a function of ζ2 (or ζ2 as a function of ζ1). Then, a as a
function of ζ1 (or ζ2) is found from Equation (35) and s as a function of ζ1 (or ζ2) from Equation (20)
or (27). The distribution of the stresses is determined from Equation (30) with the use of Equations (32)
and (33) in the elastic region, from Equation (18) in the region −1 ≤ ζ ≤ ζ2 and from Equation (25) in
the region ζ1 ≤ ζ ≤ 0.

In Case (iii), Equation (11) becomes

m =

√
3

a

ζ2∫
−1

ση

σ0
dζ +

√
3

a

ζ1∫
ζ2

ση

σ0
dζ +

√
3

a

0∫
ζ1

ση

σ0
dζ. (37)

In the first integrand, ση/σ0 should be eliminated by means of Equation (18), in the second by
means of Equation (30) and the third by means of Equation (25). As usual, it is necessary to verify that
the yield criterion is not violated in the elastic region.

4. Unloading

It is assumed that unloading is purely elastic. This assumption should be verified a posteriori.
At this stage of the process, the strains can be considered as infinitesimal. Let a f and s f be the values
of a and s, respectively, at the end of loading. These values are known from the solution given in the
previous section. Using Equation (10), the values of rCD and rAB at the end of loading, r f

CD and r f
AB,

are determined as

r f
CD
H

=

√
s f

a2
f
− 1

a f
≡ R f ,

r f
AB
H

=

√s f

a f
= r f . (38)

It is convenient to introduce a polar coordinate system (r, θ) with the origin at x = −H√s f /a f
and y = 0 (point O1 in Figure 1). The coordinate curves of this coordinate system coincide with the
coordinate curves of the (ζ, η)-coordinate system. Therefore, σζ = σr and ση = σθ where σr and σθ are
the normal stresses in the polar coordinate system. Moreover, r = R f H at ζ = 0 and r = r f H at ζ = −1.
The equilibrium equation for the increment of the stresses, Δσζ and Δση , in the polar coordinate system
can be written as

∂
(
Δσζ

)
∂ρ

=
Δση − Δσζ

ρ
, (39)

where ρ = r/H. Since σζ = 0 at ζ = 0 and ζ = −1 at any stage of the process, the increment of this
stress should satisfy the conditions

Δσζ = 0, (40)

for ζ = 0 and ζ = −1.
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The displacement components from the configuration corresponding to the end of loading in the
polar coordinate system are supposed to be

ur = H

(
U0R2

f

ρ
− ρV0

2

)
and uθ = HρθV0, (41)

where U0 and V0 are dimensionless constants. Using Equation (41), the increment of the normal strains
in the polar coordinate system is determined as

Δεr = −V0

2
−

U0R2
f

ρ2 , Δεθ =
V0

2
+

U0R2
f

ρ2 . (42)

The increment of the deviatoric stresses is found from Equation (42) and the Hooke’s
law (Equation (9)) where the stresses and strains should be replaced with the corresponding
increments. Then,

Δτr = −G0g (ζ)

(
V0 + 2U0

R2
f

ρ2

)
, Δτθ = G0g (ζ)

(
V0 + 2U0

R2
f

ρ2

)
. (43)

Using this solution, the right hand side of Equation (36) can be rewritten as

Δση − Δσζ

ρ
=

Δσθ − Δσr

ρ
=

Δτθ − Δτr

ρ
= 2G0g (ζ)

(
V0 + 2U0

R2
f

ρ2

)
. (44)

The Lagrangian coordinate ζ at the end of loading is expressed in terms of ρ as [18]

ζ =

(
ρ2a f − s f

)
a f

. (45)

Using this equation, it is possible to eliminate ζ in Equation (44). Then, substituting Equation (44)
into Equation (39) and integrating gives

Δσζ

σ0
=

2
3k

ρ∫
r f

g (ζ)
χ

(
V0 + 2U0

R2
f

χ2

)
dχ. (46)

It is evident that this solution satisfies the boundary condition in Equation (40) at ζ = −1
(or ρ = r f ). The other boundary conditions in Equations (40) and (46) combine to yield

V0

R f∫
r f

g (ζ)
ρ

dρ + 2U0R2
f

R f∫
r f

g (ζ)
ρ3 dρ = 0. (47)

Solving this equation for V0 results in

V0 = −2U0R2
f

R f∫
r f

g (ζ)
ρ3 dρ

⎡
⎢⎣

R f∫
r f

g (ζ)
ρ

dρ

⎤
⎥⎦
−1

. (48)
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Using Equations (43) and (46), it is possible to represent the distribution of Δση as

Δση

σ0
=

Δσζ

σ0
− 2Δτr

σ0
=

2
3k

ρ∫
r f

g (ζ)
χ

(
V0 + 2U0

R2
f

χ2

)
dχ +

2
3k

g (ζ)

(
V0 + 2U0

R2
f

ρ2

)
. (49)

The constant V0 can be eliminated in Equations (46) and (49) by means of Equation (48). It is then
obvious that both Δσζ and Δση are proportional to U0. The distribution of the residual stresses follows
from Equations (46) and (49) in the form

σres
ζ

σ0
=

σ
f
ζ

σ0
+

2
3k

ρ∫
r f

g (ζ)
μ

(
V0 + 2U0

R2
f

χ2

)
dχ,

σres
η

σ0
=

σ
f
η

σ0
+

2
3k

ρ∫
r f

g (ζ)
χ

(
V0 + 2U0

R2
f

χ2

)
dχ +

2
3k

g (ζ)

(
V0 + 2U0

R2
f

ρ2

)
.

(50)

As before, ζ should be eliminated by means of Equation (45) and V0 by means of Equation (48).
The constant U0 remains to be found. To this end, it is necessary to use the condition that the bending
moment vanishes at the end of unloading. Using Equations (11) and (45), this condition can be
represented as

r f∫
R f

(
σres

η

σ0

)
ρdρ = 0. (51)

This equation should be solved for U0 numerically. Then, Equation (50) supplies the distribution of
the residual stresses. To verify that the solution given in Section 4 is valid, this distribution should be
substituted into the yield criterion in Equation (7) where σζ and ση should be replaced with σres

ζ and

σres
η , respectively. The left-hand side of Equation (7) should be less than or equal to

(
2/

√
3
)

σ0β(ζ) in
the range −1 ≤ ζ ≤ 0 .

5. Numerical Examples

Several numerical examples are presented in this section, based on the analytical solutions
developed in the previous sections. Our chosen modulus gradient function is g(ζ) = 1 + (G1/G0 −
1)(−ζ)N , and yield stress gradient function β(ζ) = 1 + (σ1/σ0 − 1)(−ζ)N . The power law exponent
N controls the functional distribution of material properties along the thickness coordinate ζ. The
power law distributions in modulus and yield stress with the same N have been proposed in the
literature [26,27]. The material parameters used in our numerical calculations are listed in Table 1.

Table 1. Material parameters used in the numerical examples.

G0, GPa G1, GPa σ0, GPa σ1, GPa N

Homogeneous 30 30 1 1 0.0001

FGM Case (i) 30 10 1 0.1 1

FGM Case (i) 30 10 1 0.1 3

FGM Case (ii) 10 30 0.1 1 1

FGM Case (ii) 10 30 0.1 1 3
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5.1. Homogeneous Sheet under Bending

When the homogenous sheet is under bending, both edges will simultaneously develop plastic
zones. Figure 3a shows the movement of the two elastic-plastic boundaries toward the centerline of
the sheet, as deformation magnitude increases. The deformation magnitude is measured by parameter
a. The applied bending moment is a function of a, as shown in Figure 3b. As an illustration of the
developed analytical solutions in previous sections, Figure 4 shows the stress distributions along the
sheet under two different deformation magnitudes. As can be seen, the plastic zones increase with a
for ση , while σζ remains in elastic regime. The reason for ση is not perfectly horizontal in the plastic
zone is because our numerical codes do not allow N set equal to zero, hence a very small N is chosen,
as shown in Table 1. After unloading, Figure 5a,b shows the residual stress distributions under two
different as. Larger a increases the magnitude of residual stresses after unloading. Moreover, the
residual stress σζ is zero at the left and right edges, as indicated by the red short-dashed line.

(a) (b)

Figure 3. For the homogeneous sheet under bending: (a) ζ1 or ζ2 vs. a; and (b) applied bending
moment m vs. a.

Figure 4. Stress distributions for the bent homogenous sheet with two different loading conditions
a = ah

1 = 0.0121 and a = ah
2 = 0.0775. Two plastic zones, one developed from the left edge and the

other from the right edge, increase their size as a increases for ση .
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(a) (b)

Figure 5. Residual stress distribution along the homogeneous sheet for: (a) a = ah
r1 = 0.0096; and

(b) a = ah
r1 = 0.0295. Solid line is for residual ση and dashed line for residual σζ . Zeros of σres

η and σres
ζ

are indicated by orange solid line and red dashed line, respectively.

5.2. FGM Sheet Belonged to Case (i) under Bending

In Case (i), the left edge (ζ = −1) of the sheet has smaller yield stress, hence a plastic zone will
start on the left edge first. Figure 6 shows the relationship between the applied bending moment and
deformation magnitude a with the gradient function exponent N = 1 and 3. As can be seen, larger m is
required for N = 3 than that for N = 1, as a increases. Under given deformation magnitudes, Figure 7
shows the stress distributions in the Case (i) FGM under plastic deformation. Larger plastic zone is
developed at the left edge as deformation increases. After unloading, residual stress distributions
are shown in Figures 8 and 9 for the N = 1 and N = 3 FGM, respectively. Residual stresses are more
predominant at the left edge. In addition, the residual stress σζ is zero at the left and right edges, as
indicated by the red short-dashed line.

Figure 6. Bending moment m vs. a for Case (i) with N = 1 and N = 3. With sufficiently large
deformation, i.e. large a, Case (iii) is automatically developed, hence both edges are plastically deformed.
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(a) (b)

Figure 7. Stress distributions for Case (i) with N = 1 with two different deformation magnitudes, i.e.,
two different as, for: (a) N = 1; and (b) N = 3. Two plastic zones, one developed from the left edge
and the other from the right edge, increase their size as a increases for ση .

(a) (b)

Figure 8. Residual stress distributions for Case (i) with N = 1 under deformation: (a) a = a(i)r1 =

0.011785065; and (b) a = a(i)r1 = 0.074421129. Solid line is for residual ση and dashed line for residual
σζ . Zeros of σres

η and σres
ζ are indicated by orange solid line and red dashed line, respectively.

(a) (b)

Figure 9. Residual stress distributions for Case (i) with N = 3 under deformation: (a) a = a(i)r3 =

0.011023776; and (b) a = a(i)r4 = 0.051782217. Solid line is for residual ση and dashed line for residual
σζ . Zeros of σres

η and σres
ζ are indicated by orange solid line and red dashed line, respectively.

5.3. FGM Sheet Belonged to Case (ii) under Bending

In Case (ii), the right edge (ζ = 0) of the sheet has smaller yield stress, hence a plastic zone will
start on the right edge first. Figure 10 shows the relationship between the applied bending moment and
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deformation magnitude a with the gradient function exponent N = 1 and 3. As can be seen, larger m is
required for N = 1 than that for N = 3, as a increases. Under given deformation magnitudes, Figure 11
shows the stress distributions in the Case (ii) FGM under plastic deformation. Larger plastic zone is
developed at the right edge as deformation increases. After unloading, residual stress distributions are
shown in Figures 12 and 13 for the N = 1 and N = 3 FGM, respectively. Residual stresses are more
predominant at the right edge. The residual stress σζ is zero at the left and right edges, as indicated
by the red short-dashed line. The results from the illustrative examples solved here may serve as
benchmark solutions for data obtained from numerical or experimental methods.

Figure 10. Bending moment m vs. a for Case (ii) with N = 1 and N = 3. With sufficiently large
deformation, i.e., large a, Case (iii) is developed, hence both edges are plastically deformed.

(a) (b)

Figure 11. Stress distributions for Case (ii) with two different deformation magnitudes, i.e., two
different as, for: (a) N = 1; and (b) N = 3. Two plastic zones, one developed from the left edge and the
other from the right edge, increase their size as a increases for ση .

172



Materials 2019, 12, 456

(a) (b)

Figure 12. Residual stress distributions for Case (ii) with N = 1 under deformation: (a) a = a(ii)r1 =

0.004915193; and (b) a = a(ii)r1 = 0.019238382. Solid curve is for residual ση and dashed curve for
residual σζ . Zeros of σres

η and σres
ζ are indicated by orange solid line and red dashed line, respectively.

(a) (b)

Figure 13. Residual stress distributions for Case (ii) with N = 3 under deformation: (a) a = a(ii)r3 =

0.005565273; and (b) a = a(ii)r4 = 0.016428139. Solid curve is for residual ση and dashed curve for
residual σζ . Zeros of σres

η and σres
ζ are indicated by orange solid line and red dashed line, respectively.

6. Conclusions

Efficient analytical and numerical methods and procedures have been developed and
programmed to predict the distribution of stresses in a sheet of incompressible material subject to
plane strain pure bending at large strain and then the distribution of residual stresses after unloading.
Springback is also predicted. It has been assumed that the sheet is made of functionally graded
material. The general theory has been developed for an arbitrary through thickness distribution of
material properties assuming that the initiation of plastic yielding occurs at one of the surfaces of the
sheet. This assumption can be verified using the purely elastic solution (Equation (15)) and the yield
criterion (Equation (7)). It is possible to use the general solutions (Equations (15), (18) and (25)) even
if the assumption is not satisfied but constants of integration should be added. Then, these general
solutions should be combined to satisfy the boundary conditions and the conditions at elastic/plastic
boundaries. An illustrative example is concentrated on power law distributions of material properties.
Using the numerical code developed in this work enables the effect of parameters involved in these
laws to be predicted effectively. The calculated examples show the analytical solutions derived here
can systematically treat the plastic problems of the homogenous or functionally graded sheet. The
magnitudes of applied moment may be strongly influenced by the power law exponent as deformation
increases, which provides an effective way to design the functionally graded sheets.
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The method employed to derive the solution in this paper can be extended to cyclic loading.
This new solution may be useful for the interpretation of experimental data from the reverse bending
fatigue test (for example, [28]).
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Abstract: Functionally graded material (FGM) can optimize the mechanical properties of composites
by designing the spatial variation of material properties. In this paper, the stress distribution of
functionally graded panel with a central elliptical hole under uniaxial tensile load is analyzed.
Based on the inhomogeneity variation and three different gradient directions, the effects of the
inhomogeneity on the stress concentration factor and damage factor are discussed. The study results
show that when Young’s modulus increases with the distance from the hole, the stress concentration
factor decreases compared with that of homogeneous material, and the optimal design of r-FGM
is better than that of x-FGM and y-FGM when the tensile load. In addition, when the associated
variation of ultimate stress is considered, the choice of scheme to reduce the failure index is related to
the strength-modulus exponent ratio. When the strength-modulus exponent ratio is small, the failure
index changes with the index of power-law, which means there is an optimal FGM design. But when
the strength-modulus exponent ratio is large, the optimal design modulus design is to select a uniform
material that maximizes the modulus at each point. These research results have a certain reference
value for further in-depth understanding of the inhomogeneous design for FGM.

Keywords: functionally graded materials; inhomogeneous composite materials; material design;
stress concentration factor; failure and damage; elliptical hole; finite element method

1. Introduction

Functionally graded materials (FGM) are a class of composite materials that have smooth and
continuous changes in material properties, thus reducing the stress concentrations in the conventional
composite materials [1]. Since the concept of FGM was proposed by researchers in the late 1980s [2],
extensive research works have been carried out on it. Many review papers have systematically
introduced and forecasted the different progress of FGM researches. Recently, Zhang et al. [3]
introduced the development of the emerging additive manufacturing research on FGM. Xu et al. [4]
reviewed the state of the art of energy absorption of FGM, and discussed the effects of the graded
properties on the crashworthiness. Cramer et al. [5] proposed a review of functionally graded
thermoelectric generators, which is considered to be an effective solution for the temperature
bandwidth, current output range, and lifetime. Petit et al. [6] introduced the rationale for using
FGM in the biomedical field, and reviewed the three main types of graded materials (eg., composition,
porosity and microstructural graded ceramics). The mechanical problems of the FGM have also
drawn much attention. The progress of the resistance of FGM to contact deformation and damage is
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reviewed by Suresh [7]. Birman [8] outlined the steps of thermoelastic analysis of FGM, from their
micromechanical characterization to the structural response. The fracture studies for FGM continuum
can be found in the survey by Shanmugavel et al. [9]. In addition, Jha et al. [10] published another
detailed overview focused on the thermoelastic statics, vibration and stability analysis of FGM plates.
Some comprehensive reviews of the developments, applications, various mathematical idealizations of
materials, temperature profiles, modeling techniques and solutions methods for the thermal analysis of
FGM plates are presented by Swaminathan et al [11,12]. Some scholars applied the FGM concept to the
elastostatic problems and obtained some exact solutions of orthotropic inhomogeneous Saint-Venant
beams and isotropic Kirchhoff plates [13,14]. In addition, some scholars applied the concept of FGM
to the study of mechanical behavior of nanomaterials by using nonlocal model or gradient elasticity
model [15,16].

Due to the specific functional requirements, the influences of inhomogeneous variation on
the FGM properties are studied, which has an important reference value for the preparation,
performance and use of FGM. Since holes or inclusions are common defects in materials, the stress
concentration of FGM has been extensively studied by finite element method and analytical method.
Mohammadi et al. [17] used the Frobenius series solution to analyze the effect of inhomogeneous
stiffness and Poisson’s ratio on the stress concentration factor around the circular holes of infinite
plates. Based on the complex function method and the conformal mapping technique, Yang and
Gao [18] solved the stress concentration problem of FGM infinite plates with elliptic holes. Dave and
Sharma [19] also used the complex variable function method to solve the problem of the FGM plate
with rectangular holes. Based on the variable separation method, the analytical solutions of stress
and strain distribution around the circular elastic inclusion and elliptical nano-fiber inclusion are
obtained by Shi [20,21]. Goyat, et al [22] used the extended finite element method to analyze the
stress concentration of the FGM layer in an infinite plate with a pair of circular holes under different
loads. Based on the first-order shear deformation theory and Von-Karman hypothesis, Mehrparvar
and Ghannadpour [23] analyzed the non-linear behavior of FGM plates with square and rectangular
notches. In addition, Shi et al. [24–27] used the integral equation method to study the influence of
the existence of the central circular hole on the interface fracture behavior of the FGM composite
cylindrical structure.

To reduce the stress concentration factor, Sburlati [28] studied the effect of an inhomogeneous
annular made of FGM on the stress distribution around a hole in a homogeneous plate. Aiming
to reduce the stress concentration factor around the notch, Gouasmi, et al. [29] used the finite
element method to study the performance of the FGM layer near the notch of the ceramic plate.
Sburlati, et al. [30] analyzed the effect of FGM layers on the stress concentration factor in a homogeneous
plate with holes based on the finite element method. Hsu and Chien [31] combined the finite
element method and image processing technology to evaluate the influence of electronic discharge
machining parameters on the surface quality of the plate with holes, which can quickly evaluate
the stress concentration factor. Based on the finite element method and U-transform method,
Yang, et al. [32] analyzed and studied the three-dimensional stress concentration of rectangular
holes. Kubair and Bhanu-Chandar [33] investigated the FGM with the elastic modulus of power law
and exponential variation, and simulated the FGM plates with circular holes under uniaxial tension
by the multi-parameter finite element method. Nie, at al. [34] analyzed the stress concentration of
FGM plates with Young’s modulus of radial variation and Poisson’s ratio under uniaxial tension.
Kim and Paulino [35] analyzed the effects of elastic modulus and Poisson’s ratio on the properties of
isotropic and orthotropic FGM plates by isoparametric gradient finite element method. In addition,
with consideration of the associated variation of ultimate stress, the combined optimization using both
moduli and ultimate stress is studied by Huang et al. [36], and the optimization for the full spatial
variation is completed by Chen et al. [37].
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In this paper, the stress distribution of FGM panels with a central elliptical hole under uniaxial
tension load is analyzed, and the effects of the inhomogeneous properties on the stress concentration
factor (SCF), failure index and damage factor are discussed. In Section 2, the problem description
is given. Two inhomogeneous variations and three different gradient directions are proposed here.
In Section 3, the stress problems due to a central elliptical hole for FGM with different forms of elastic
modulus and different gradient direction are calculated, and the influences of the inhomogeneous
characteristics of FGM on stress concentration, failure index and damage factor are analyzed in detail.
The conclusion for this paper is given in Section 4.

2. Problem Description

2.1. Problem Description

We consider an isotropic and linearly elastic FGM panel with a central elliptical hole subjected to
a uniform tensile traction, as shown in Figure 1a. The length and width of the rectangular panel are L
and W, respectively, and the semi-major/semi-minor axes of the ellipse hole are a and b, respectively.
In this paper, a finite-size rectangular panel is selected, and the left and right end are subjected to a
tensile load σ0 = P/(tW), where P is the value of the force, t is the thickness of the panel. Here, we use
cylindrical coordinates (r, θ) and Cartesian coordinates (x, y) with origin at the hole center to describe
this problem.

  
(a) (b) 

Figure 1. Schematic sketch of boundary value problem (a) a rectangle panel with an elliptical hole
subjected to a uniform tensile traction; (b) three different gradient directions. The origin of the Cartesian
and polar coordinates coincides with the center of the elliptical hole. In the case of the r-, x- and y-FGM
symmetric property variations are shown.

2.2. Inhomogeneity Variation

Previous studies show that the effect of varying Poisson ratio on the stress distribution is
negligible [34]. In this paper, we assume Poisson’s ratio to be constant and set to be v = 0.25.

In the study of mechanical problems of FGM, the problem is often analyzed by assuming that the
material parameters satisfy a certain function form, which can simplify the complexity of the problem.
In order to discuss the effect of the inhomogeneity of the FGM, we assume that the nodal values of
Young’s modulus satisfies the power-law inhomogeneous variation:

E(φ) = Ere f
[
1 + γ(φ/Lg)c], (1)

where Ere f is the reference value of Young’s modulus, γ is the modulus ratio, c is the index of power-law
variation, Lg is the inhomogeneity length scale, φ is a simple function of (x, y).
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In order to study the effect of different gradient directions, we assume the following forms for the
function φ.

φ =

⎧⎪⎨
⎪⎩
√

x2 + y2

x or |x|
y or |y|

, (2)

and three different gradient directions of FGM are shown in Figure 1b.
For the power-law inhomogeneous variation, the gradient variation reflected by Equation (1)

can be divided into the following two cases according to the different values of parameter c.
Case 1: When c > 0, for a finite panel problem, Lg can be set to half length of the rectangular

panel. The material parameters at the center of the circle are satisfied:

E0 = E(0) = Ere f , (3)

and:
E(φ) = E0

[
1 + γ(φ/Lg)c] (4)

This gradient variation Equation (4) is consistent with the power-law gradient variation given
in [33].

Case 2: When c < 0, Lg can be set to be the semi-minor axis of the elliptical hole. For an infinite
panel problem, the material parameters at infinity point satisfies:

E∞ = E(∞) = Ere f , (5)

and:
E(φ) = E∞

[
1 + γ(φ/a)c], (6)

when φ = r, this proposed gradient variation is consistent with that given in [34].
The above analysis shows that the gradient variation given in Refs. [33,34] can be unified by the

gradient variant expressed by Equation (1) in this paper.

2.3. Stress Concentration and Damage Factor

Here, we calculate the stress concentration of FGM with a central elliptical hole under uniaxial
tension with different inhomogeneous parameters. Stress concentration factor K is defined as
K = σmax/σnom, where σmax is the maximum value of stress component along the x direction in
a panel, and σnom = P

t(W−2r) =
σ0W

t(W−2r) is the reference of stress value.
For some materials, its elastic modulus and strength change with varying porosity and

material density [36]. Among them, the strength and elastic modulus of the material satisfy the
following relationship.

σallow = C0Eδ, (7)

where factor δ is called the strength-modulus exponent ratio, and σallow is the limit strength or
maximum allowable stress at that point.

By considering the associated variation of ultimate stress, a failure index Φ that accounts for both
strength and stress is used for design purposes. Referring to the results of Ref. [36], the failure index
can be defined as follows:

Φ = max{ψ(x, y)}, (x, y) ∈ Ω, (8)

where:

ψ =
max(|σ1|, |σ2|)
σ0

(
E/Ere f

)δ
, (9)

where σ1 and σ2 are the principal stresses at an arbitrary point in the panel, and σ0 = P/(tW) is the
value of the tensile stress.
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3. Results and Discussions

In this paper, the finite element method is introduced for the mechanical analysis of FGM.
In order to describe the numerical simulations clearer, the parameter values used for in the following
numerical simulations are given in Table 1.

Table 1. The values of simulation parameters.

Values

Simulations
Parameters

Width of Rectangle
Panel W

Length of
Rectangle Panel L

Semi-Major Axis of
Elliptical Hole a

Semi-Minor Axis of
Elliptical Hole b

Figure 2 200 mm L/W changes
from 1 to 5

a/W changes
from 0.05 to 0.4 b = a

Figure 3 200 mm 200 mm Case for no hole, b = a = 0 mm
Figure 4 200 mm 200 mm 10 mm b = a

Figures 5–12 200 mm 300 mm 60 mm 40 mm

3.1. Verification

Here, the comparisons between the proposed results and other results obtained in the previous
researches are given to verify the correctness of the calculation program used in this paper.

3.1.1. Verification 1: Analysis of Homogeneous Rectangular Panel with a Circular Hole

The stress concentration factors of the homogeneous rectangular panel with a central circular
hole are analyzed. The stress concentration factors of a central single circular hole in finite width and
infinite length panel can be calculated for tension load by the following theoretical formula [38]:

K = 3 − 3.14 × 2a/W + 3.667 × (2a/W)2 − 1.527 × (2a/W)3. (10)

Figure 2a shows the comparison between the results from finite element method and the analytical
results. It can be seen that as the length of the rectangular panel increases, the result of stress
concentration factors gradually decrease and tend to be stable. When L/W exceeds 3, the results from
finite element method for the finite-length rectangular panel are equal to the analytical results for the
infinite length rectangular panel. In particular, the numerical solution of the rectangular panel with
L/W = 5 and the square panel with L/W = 1 are given in Figure 2b. It can be seen that the numerical
solution of the rectangular panel with L/W = 5 is consistent with the analytical result of the infinite
length rectangular panel. The results of the square panel decrease first and then increase as the width
increases, which has the difference between the results of the finite-size square panel and the results of
the infinite rectangular panels. In general, this comparison can prove the correctness of the present
calculation program.

 
(a) (b) 

Figure 2. Variation of stress concentration factors for a central circular hole in a rectangular panel (a)
rectangular panels with different lengths, (b) rectangular and square panels.
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3.1.2. Stress Analysis of FGM Panel without Hole

Based on the triangular element, the stress concentration problem of an FGM square panel,
without a hole, is solved under uniaxial tension along the y-direction, and then the normal stress
distribution is calculated. As shown in Figure 3, the stress results are normalized by referring to the
value of external tension load σ0 along the x-direction. The normalized normal stress for the two
configurations is shown in Figure 3. Firstly, the problems raised by Ref. [35] is recalculated and the
results are shown in Figure 3a. Here, a softening material means that Young’s modulus is progressively
decreasing away from the origin of the coordinates, and the hardening material means that Young’s
modulus gradually increases away from the origin of the coordinates. In this problem, the origin is
located at the left or right end of the panel, Young’s modulus adopts the exponentially variation and
makes it varies along the x direction. The expression of Young’s modulus is E(x) = E0 exp

(
x/Lg

)
and the size of the panel satisfies w/Lg = ±2.08. When the origin is located at the center of the panel,
the problem proposed in Ref. [33] is resolved in Figure 3b. The expression of Young’s modulus is
E(x) = E0 exp(|x|/Lg) and the size of the panel satisfies w/Lg = ±2.08. As can be seen from Figure 3,
the normal stress of the homogeneous panel without hole hardly changes with the change of the
position of the x. For FGM panel, even if there is no circular hole defect, there is an inhomogeneous
stress distribution in the panel. In Figure 3a, as Young’s modulus varies monotonously along x,
the stress first increases and then decreases, or first decreases and then increases. Young’s modulus
discussed in Figure 3b is symmetrical with respect to x = 0, so the distribution of normal stress is
symmetrical along the x-axis and the maximum/minimum normal stress appears in the center of
the panel. Moreover, the stress variation shown in Figure 3 varies smoothly and satisfies the global
equilibrium in an integral sense as

∫
(σ22/w)dx = σ0. In general, the results in this paper are consistent

with those in Refs [33,35], which proves the feasibility of the present calculation program.

 
(a) (b) 

Figure 3. Variation of the normal stress in a uniform FGM panel without hole under tension load along
the y-direction. (a) x-FGM changes monotonously along x-direction; (b) x-FGM symmetrical about
x = 0.

3.1.3. Stress Analysis of FGM Panel with a Circular Hole

The stress distribution near the hole of FGM panel with a circular hole under tension load
along the x-direction are recalculated which is given in Ref. [34]. Young’s modulus in this analysis
is E(r) = Ere f

[
1 + γ1(r/a)c], Poisson ratio is v(r) = vre f

[
1 + γ2(r/a)c], and c = −5. Figure 4 shows

that when the value of γ1 is positive, the hoop stress on the hole surface reaches the maximum value

181



Materials 2019, 12, 422

at the point of x = a. Correspondingly, when the value of γ1 is negative, the hoop stress on the hole
surface reaches the minimum value at the point of x = a. However, the values of γ2 have little influence
on the stress results. In addition, the hoop stress decreases gradually as it moves away from the circular
hole. When the value of y/a is close to 5, the stress reaches a stable value. As shown in Figure 4,
the new calculation results in this paper are in good agreement with those given in Ref. [34], which
confirms the reliability of the present calculation program.

 
(a) (b) 

Figure 4. Variation of the (a) radial stress on the line y = 0, (b) the hoop stress on the line x = 0 in a
uniform FGM panel with a circular hole under tension load along the x-direction.

3.2. Stress Concentration Factor

3.2.1. The Power-Law Inhomogeneous Variation When c > 0

Here, we calculate the stress concentration of FGM with a circular hole under uniaxial tension.
Young’s modulus varies in the power-law form as E(φ) = E0

[
1 + γ(φ/Lg)c], where c > 0. By changing

the values of c and γ, the variation trend of stress concentration factor is obtained. Figure 5a depicts
the variations of Young’s modulus E/Ere f with φ/Lg under different gradient control parameters
where γ = −0.5,−0.25, 0, 0.5, 1 and c = 1, 2, 3. When γ = 0, it satisfies E = E0, which corresponds a
homogeneous panel. When γ > 0, E/Ere f gradually increases with the increase of φ/Lg. When γ < 0,
E/Ere f gradually decreases with the increase of φ/Lg. Figure 5b–d gives the stress concentration
factor when the elastic modulus changes along the directions of r, x and y, respectively. As shown in
Figure 5b–d, when γ > 0, the stress concentration factor K decreases first and then increases with the
increase of c, and when γ < 0, the stress concentration factor K increases first and then decreases with
the increase of c. In addition, it can be seen that when γ > 0, the stress concentration factor can be
reduced compared with that of homogeneous materials. Since the corresponding stress concentration
factor becomes minimum when γ = 1, the dimensionless Von Mises stress distribution are given in
Figure 6. It can be seen that the maximum value of the dimensionless Mises stress first decreases and
then increases with the increase of c. The means there exists an optimal value of power law index
because the stress distribution does not change monotonously with the increasing power law index.
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(a) (b) 

 
(c) (d) 

Figure 5. Variation of stress concentration factor K for power-law inhomogeneous variation when c > 0.
(a) variation of Young modulus; (b) results for r-FGM; (c) results for x-FGM; (d) results for y-FGM.

(a) (b) (c) 

(d) (e) (f) 

Figure 6. Variation of dimensionless Von Mises stress distribution for r-FGM when γ = 1;
The power-law inhomogeneous variation when c < 0. γ = −0.5. (a) γ = 1, c = 0.1; (b) γ = 1, c = 0.5; (c)
γ = 1, c = 1; (d) γ = 1, c = 1.5; (e) γ = 1, c = 2.0; (f) γ = 1, c = 3.
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3.2.2. The Power-Law Inhomogeneous Variation When c < 0

The stress concentration factor of FGM are given in Figure 7 when Young’s modulus varies in
form of power-law E(φ) = E0

[
1 + γ(φ/a)c], where c < 0. Figure 7a depicts the variation of Young’s

modulus E/Ere f with φ/a under different gradient control parameters where γ = −0.5, 0, 1.0 and
c = 1, 2, 3. When γ = 0, it corresponds a homogeneous panel. When γ > 0, with the increase of
φ/a, E/Ere f gradually decreases and finally tends to 1. When γ < 0, with the increase of φ/a, E/Ere f
gradually increases and finally tends to 1. It can be seen that when φ/a is large enough, the γ and c
have little influence on E/Ere f . Figure 7b shows the curve of stress concentration factor K for the r-FGM.
As shown in Figure 7b, when the value of γ is positive, K increases significantly with the increase of
the absolute value of c. When the value of γ is negative, K first decreases and then increases with the
increase of the absolute value of c. The analysis shows that when γ < 0, the stress concentration factor
can be reduced compared with that of homogeneous materials. Figure 8 shows the dimensionless Von
Mises stress distribution when γ = −0.5 which corresponds to the smallest optimal value of the stress
concentration factor. It can be seen that the maximum value of the dimensionless Von Mises stress
shows a significant decrease with the increase of c.

 
(a) (b) 

Figure 7. Variation of stress concentration factor K for power-law inhomogeneous variation of r-FGM
when c < 0; (a) variation of Young’s modulus; (b) results for r-FGM.

(a) (b) (c) 

(d) (e) (f) 

Figure 8. Variation of dimensionless Von Mises stress distribution for r-FGM when γ = −0.5.
(a) γ = −0.5, c = 0.0; (b) γ = −0.5, c = −0.2; (c) γ = −0.5, c = −0.5; (d) γ = −0.5, c = −0.8; (e) γ = −0.5,
c = −1.2; (f) γ = −0.5, c = −1.8.
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3.3. Failure Index and Damage Factor

3.3.1. The Power-Law Inhomogeneous Variation When c > 0

Figure 9 shows the calculation results of the failure index of r-FGM with hole under uniaxial
tension with different strength-modulus exponent ratio when Young’s modulus varies in the power-law
form as E(φ) = E0

[
1 + γ(φ/Lg)c], where c > 0, and γ = −0.5,−0.3,−0.1, 0.2, 0.5, 1.0. When this

parameters are selected, the modulus of each point of the FGM satisfies E(φ) ∈ [E0(1 + γ), E0] when
γ < 0, and E(φ) ∈ [E0, E0(1 + γ)] when γ > 0. As can be seen from Figure 9, the failure index Φ, which
is the maximum value of the damage factor, always decreases with the increasing modulus ratio γ.
In addition, when δ < 0.2, for the case of γ = 1, the failure index Φ decreases rapidly and then tends
to stabilize as the index of power-law increases. However, when δ > 0.3, for the situation of γ = 1, the
failure index Φ shows a monotonously increasing trend as the index of power-law increases. Figure 10
shows the trend of the dimensional damage factor ψ with the index of power-law under optimal
condition of γ = 1. It can be clearly seen that when δ = 0, the area of the FGM panel susceptible to
damage (corresponding to the area shown by red in Figure 10a increases first and then decreases as
the index of power-law increases, which is consistent with the result of γ = 1 in Figure 9a. And the
value of the dimensional damage factor is minimized when c = 1.5, which means that the optimal
anti-failure performance of FGM is achieved. When δ = 0.5, the damage factor increases slightly with
the increasing power-law index, which is consistent with the result of γ = 1 in Figure 9f.

(a) (b) (c) 

(d) (e) (f) 

Figure 9. Variation of the failure index with different strength-modulus exponent ratio for the
power-law inhomogeneous variation when c > 0. (a) δ = 0; (b) δ = 0.1; (c) δ = 0.2; (d) δ = 0.3;
(e) δ = 0.4; (f) δ = 0.5.
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(a) (b) (c) 

(d) (e) (f) 

Figure 10. Variation of the damage factor ψ with power-law index under optimal condition of γ = 1.
(a) δ = 0.0, γ = 1, c = 0.0; (b) δ = 0.0, γ = 1, c = 1.5; (c) δ = 0.0, γ = 1, c = 3.0; (d) δ = 0.5, γ = 1, c = 0.0;
(e) δ = 0.5, γ = 1, c = 1.5; (f) δ = 0.5, γ = 1, c = 3.0.

Similarly, the variations of the failure index with different strength-modulus exponent ratio for
the x-FGM and y-FGM are given in Figure 11. Here we still choose γ = −0.5,−0.3,−0.1, 0.2, 0.5, 1.0,
which makes the material modulus at each point satisfy max{E(φ)}/min{E(φ)} < 2. From Figure 11,
it can be seen that, for the elliptical hole, the trend curves of r-FGM and y-FGM are basically the same.
In addition, it can be seen that when δ = 0, the failure index changes with the index of power-law,
there is an optimal functional gradient design function. When δ > 0.2, the failure index increases with
the index of power-law, which means that the optimal design modulus design is to select a uniform
material that maximizes the modulus at each point. This phenomenon is because the maximum
allowable stress of the material is a function of strength-modulus exponent ratio and modulus. When
the strength-modulus exponent ratio is small, the change of the material modulus has little effect on
the limit strength. The optimal design is to reduce the absolute stress at each point by adjusting the
material modulus distribution. When the strength-modulus exponent ratio is large, increasing the
material modulus causes the corresponding limit strength to increase rapidly, and then the damage
factor at each point can be rapidly reduced. So, when δ > 0.2 the solution is to select a uniform material
that maximizes the modulus at each point.

(a) (b) (c) 

Figure 11. Cont.
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(d) (e) (f) 

Figure 11. Variation of the failure index with different strength-modulus exponent ratio for the
power-law inhomogeneous variation of x-FGM and y-FGM when c > 0. x-FGM: (a) δ = 0.0; (b) δ = 0.2;
(c) δ = 0.4; y-FGM: (d) δ = 0.0; (e) δ = 0.2; (f) δ = 0.4.

3.3.2. The Power-Law Inhomogeneous Variation When c < 0

Here, the failure index of FGM is calculated when Young’s modulus varies in form of
power-law as E(φ) = E0

[
1 + γ(φ/a)c], where c < 0. Here we still choose the parameter

γ = −0.5,−0.3,−0.1, 0.2, 0.5, 1.0, because this makes the material modulus at each point satisfy
max{E(φ)}/min{E(φ)} < 2. From Figure 12a–d, when δ < 0.3 the failure index reaches a minimum
value when γ = −0.5, and the material damage resistance is maximized. However, from Figure 12e,f,
when δ > 0.3, the failure index reaches a minimum at γ = 1, where the material damage resistance is
maximized. This optimization result can still be interpreted as the result of competition between
the reduced stress value and the increase of the limit strength value. As shown in Figure 7a,
this optimization result still shows that when δ < 0.3, the optimal design is the modulus increasing
with distance from the hole, and when δ > 0.3, the optimal design is to maximize the modulus at
each point.

(a) (b) (c) 

(d) (e) (f) 

Figure 12. Variation of the failure index with different strength-modulus exponent ratio for the
power-law inhomogeneous variation of r-FGM when c < 0. (a) δ = 0; (b) δ = 0.1; (c) δ = 0.2; (d) δ = 0.3;
(e) δ = 0.4; (f) δ = 0.5.

4. Conclusions

In this paper, the effect of the inhomogeneous variation and gradient directions on stress
concentration caused by a central elliptical hole in FGM panel under uniaxial tension load is analyzed.
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The effects of inhomogeneous characteristic control parameters, such as modulus ratio, the index of
power-law variation is considered. The conclusions can be given as follows: (1) When the index of
power-law variation is positive, the stress concentration factor of FGM can be reduced compared with
that of homogeneous materials. (2) When the tensile load is along the x axis, the optimal designs of
r-FGM significantly better than that of x-FGM and y-FGM. (3) When the associated variation of ultimate
stress is considered, the choice of scheme to reduce the failure index is related to the strength-modulus
exponent ratio. When the strength-modulus exponent ratio is small, the failure index changes with the
index of power-law, which means there is an optimal FGM design. But when the strength-modulus
exponent ratio is large, the optimal design modulus design is to select a uniform material that
maximizes the modulus at each point. These research results have a certain reference value for
further in-depth understanding of the inhomogeneous design for FGM.
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Abstract: This paper presents the modelling of wear data resulting from linear dry contact using
artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) with the
aim of constructing predictor models for the depth and volume of the wear scar, with great impact
in the characterization of new industrial processes utilizing existing materials. The dataset is the
result of laboratory testing, presenting both numerical and categorical variables whose inclusion
into the model allows for a number of possibilities. The width of the wear scar was measured
on a microscope, and its depth was calculated. A multitude of experimental tests was performed
with normal loads and different speeds, which led to some conclusive results, but in some cases,
with relatively high variance. Various options for the automatic generation of fuzzy inference systems
were also approached (genfis2). The innovative approach was compared with a baseline model
featuring multivariate linear regression optimized using gradient descent, drawing on previous
experimentation on the same dataset. The models developed can be implemented in future research
and in practical applications under similar conditions, aiming to optimize performance by applying
Computer Science. The obtained results lead to highly accurate prediction models which are further
integrated into various metallic surface characterizations in the wear process for tribological and
robotics research in new industrial processes using short glass fiber reinforced polymers.

Keywords: ANFIS; fuzzy logic; clustering; neural networks; robotics and contact wear

1. Introduction

The paper presents new intelligent analytical methods for the characterization of wear in
thermoplastic materials armed with short glass fibers (SGF) and steel in a dry contact wear scenario,
applied to new industrial processes using existing materials.

Wear phenomena are very complex within injection or extrusion machine cylinders. The tribological
hostile environment, high temperature, and corrosive chemical compounds increase this complexity.
In the case of processing thermoplastic materials with short glass fiber fillings, complexity is further
increased because of their significant abrasion.

The mechanical interaction in the form of wear, which always appears between two or multiple
bodies when there are relative speeds, sliding, rolling, pivoting, and so on, defines friction wear.
The process complexity is determined by the wear indicators, among which are the linear wear
intensity, volumetric wear intensity, gravimetric wear intensity, wear coefficient, wear sensibility
coefficient, and apparent energy density.
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Previous studies on friction couples with linear contact on thermoplastic material armed with
short glass fibers (SGF) and steel in a dry friction context have shown in experiments that even under
normal, relatively small loads, large contact pressures and therefore very high contact temperatures
may appear, which are close or may even exceed the transformation temperature of the plastic material.

These lead to the need to approach modelling as a dependency between the various variables of
interest involved in the friction process and metallic surface characterization in the wear process using
advanced statistical and optimization algorithms on a dataset obtained from hardware simulation.
The subject draws from growing interest from the research community with the advent of highly
advanced, intelligent classification; optimization and regression algorithms; and the wide impact of
metallic surface characterization applications in the wear process, emphasizing the abrasive, adhesive,
and corrosive wear.

Zhang et al. [1] analyzed the artificial neural network prediction of erosion wear of the polymer.
Three independent sets of measurement data were used and the characteristic properties of erosive
wear of these polymers to prepare and test the neural networks were explored. For the first two
examples of materials, the angle of impact of solid particle erosion and some characteristic properties
were selected as the input variables of the ANN.

Similar directions were investigated in Panda et al. and Flepp [2,3] regarding the potential of
supervised or unsupervised learning and modelling the results of friction, while surveys by Ripa and
Frangu [4] dealt with the various possibilities for undertaking this task. Finally, the paper builds upon
previous work done by authors Rus et al. [5]. The importance of the subject matter is illustrated by its
use in building artificial joints and prosthesis—Căpitanu et al., Al-Zubaidi et al. [6,7], among others.
Căpitanu et al. [6] presented an analytical qualitative–quantitative correlation of friction and wear
processes of steel surfaces in linear dry contact with SGF that reveals the nonlinearity of tribological
processes in this case.

Wear processes, similar to fabrication processes, involve very complex and nonlinear phenomena.
Consequently, analytical models are difficult or impossible to come by. However, improvements in
the performance and reliability of mechanical equipment and production instruments require precise
modelling and prediction of the wear phenomenon. Artificial neural networks (ANNs) and the related
methods investigated in this paper, such as neuro-fuzzy inference systems, possess many desirable
properties for modelling systems and processes: the ability to approximate universal functions, learning
from experimental data, high tolerance for lacking or noisy data, and good capacity for generalization.

Artificial neural networks are the driving force behind the current advances in artificial
intelligence, with useful applications in virtually every computational field. They rely on successively
improving a network of weights attached to hidden units called neurons. Neural networks work by
solving for the best dynamic weights of a hidden layer of neurons, which determine the strength with
which these are fired [8]. While solving for a linear or polynomial regression model provides an explicit
relationship between dependent and independent variables, it may be that an implicit representation
model such as a neural network would yield better results.

Shukla [9] reported an overview of the applications of artificial neural networks in the processing
domain. The property of learning and nonlinear behavior makes them useful for complex nonlinear
process modelling, better than analytical methods. They are useful in some specific points in the
field: Processes and wear particles, manufacturing, friction parameters, and defects in mechanical
structures. Rao et al. [10] worked with rolling element bearings, which are widely used in almost all
global industries. Their proactive strategy was to minimize the imminent failures in real time and
at minimal cost. Innovative developments have been recorded in the technology of artificial neural
networks (ANN). Chen and Savage [11] described an approach to fuzzy networks for a recognition
system of multilevel surface roughness (FN-M-ISRR), whose aim was to predict the surface roughness
(Ra) under multiple cutting condition, determined by the material of the tool, the tool size, etc.
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The same nonlinearity was found by Căpitanu et al. [12] in the behavior of the UHMWPE tibia
insert of the total knee prostheses, and Vlădăreanu et al. [13] applied ANN to a versatile intelligent
portable robot control platform based on cyber physical systems principles.

The baseline model considered for expressing a dependency between the various variables of
interest involved in the friction process and metallic surface characterization in the wear process is a
multivariate linear regression. The first step in a multiple variable regression model is to normalize the
features and then run a batch gradient descent algorithm on the data, where each iteration minimizes
the cost function by simultaneously updating all variable coefficients [14]. The linear regression model
also includes regularization factors to prevent over-fitting. The regularization component is included in
the cost function and provides a penalty for the data being fitted too closely using polynomial variables.

The resulting dataset is then used to train a linear regression model for each of the two considered
dependent variables: Wear depth and wear volume. This model assumes the dependent variables to
be a linear combination of the considered independent variables, speed and pressure, and an intercept
term, which does not vary with the independent variables. The intercept term is added only for the
linear regression problem since the neural network algorithm will do the same on its own.

The optimization problem is then to find the best coefficients that minimize the cost function,
which gives a measurement of the difference between the empirical values of the two dependent
variables and their estimates obtained through linear regression. Gradient descent is the algorithm
used to iteratively arrive at the best possible set of variable coefficients. The learning rate for this
version of gradient descent is set to 1.

For each dependent variable, the prediction is a dot-product of the independent variable values
and its respective coefficient vector. The linear regression coefficients show the relative influence a
certain independent variable has on the prediction of a dependent variable. The intercept term is a
baseline starting point for the prediction models, being an aggregation of all the other factors not
considered and the inherent randomness of the model.

Fuzzy logic and fuzzy inference systems extend regular logic systems by assigning a degree of
membership to elements within sets, which proves to be a very useful ability for modelling complex,
unknown, or dynamic systems. Fuzzy Logic has long been used in academia and in industry and is one
of the more palpable staples of artificial intelligence in the world today. Fuzzy logic controllers have
proven to be robust and relatively easy to design [15]. They seem to suffer from no one major flaw while
providing a number of important benefits such as expert knowledge emulation. There are various
algorithms for the optimization of fuzzy inference systems’ parameters such as genetic algorithms and
neural networks. Neuro-fuzzy modelling (ANFIS) attempts to model the behavior of a given system
for which arrays of input and output values are provided by creating a fuzzy inference system to
produce similar results. The fuzzy inference system is then learned (i.e., its parameters are optimized)
using an artificial neural network algorithm. This is a very convenient tool for simulating systems
whose mathematical formulae are unknown or very complex. The overall concept is explained in
further detail in [15,16], which are part of the authors’ previous work on the topic.

ANFIS implementations in the context of wear prediction deals mainly with fault prevention
and monitoring. Zuperl and Cus [17] construct a tool monitoring system using a merged neural
decision network and wear predictor for tool maintenance, while Lo [18] uses ANFIS and the grey
system method for tool failure detection in single point turning operations. As relates to contact wear,
Aliman et al. [19] investigate wear rate on a coated aluminum alloy. Shabani et al. [20] also obtained
interesting results by combining ANFIS with particle swarm optimization in manufacturing wear
resistant nano-composites.

The provenance of the initial fuzzy inference system is of great significance in designing an ANFIS
algorithm. Fuzzy inference systems may be automatically obtained from the available data through a
number of algorithms, which mainly attempt to group the available data-points into equivalent fuzzy
sets and then deduce relations between them, which turn into a set of fuzzy rules. The resulting fuzzy
inference systems (FIS) can be used to seed an ANFIS algorithm, that is, to have it start optimization
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from the previously obtained FIS. In fact, if no seed is specified, the ANFIS algorithm will itself use
one of the methods, namely grid partitioning, to generate its starting FIS. As is traditional with ANFIS,
all of the FISs investigated were of the Sugeno type due to complexity and computational constraints.
In addition, because of the limited amount of data, the generated fuzzy inference systems themselves
are considered as possible solutions for the proposed model, since ANFIS models are very susceptible
to over-fitting the data in the present context.

The authors have had previous contributions to this and related topics in [5,6,11,12,15,16],
among others. The original contribution of the current paper stems from implementing the proposed
models on a recently obtained dataset, evaluating the different results and providing a comparison
of the effect of the various algorithms. This entails a comprehensive comparative study on the same
dataset, while varying the learning algorithm hyper-parameters and associated options, such as
investigating the various methods used for fuzzy inference system generation. Finally, the successful
models are to be chosen for future implementation in real world applications in the fields of Tribology
and Robotics.

The remainder of this paper is divided as follows. Section 2 will discuss the experimental data,
the type of considered variables, how the data is processed for the learning application, the procedures
for the automatic generation of fuzzy inference systems from the available data, the neural networks,
and the adaptive neuro fuzzy inference systems. Section 3 compares the results of the various model
solutions on the test sets. Section 4 discusses these results and Section 5 draws conclusions on this and
possible future work.

2. Materials and Methods

The study of injection and extruding processes for thermoplastic materials is a complex
process due to the phenomena existing inside injection and extruding machines with a permanent
interconnection of the influencing factors.

Starting from the material selection stage, either fine dust, or the quantity of short glass fibers
(SGF) used, adding materials such as TiO2 (titanium dioxide) or graphite fibers, the technological
process implies transforming the material from a solid to a plastic/liquid phase, which is achieved at
temperatures above 1600 ◦C, with the material suffering deformation, pressing, and heating depending
on the machine and the technological process.

In addition to the material complexity and the preparation for injection, an important part is
played by determining a predictive model for the wear process in order to increase wear resistance of
the work surfaces of the injection and extruding machines.

These are some of the considerations for the neuro-fuzzy modelling of wear data resulting from
linear dry contact using artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems
(ANFIS).

Wear performance of the two steel alloys, C120 and Rp3, has been previously studied in the case
of linear dry contact with each polymer (polyamide and polycarbonate) reinforced with different
percentages of short glass fibers (SGF). The functional diagram of the friction couple is presented in
Figure 1, from Căpitanu et al. (2014), where it looks at the linear contact. The friction couple comprises
a cylindrical plastic liner and a flat polished steel hardened sample.
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(a) (b) (c) 

Figure 1. The functional diagram of the friction couple (a) the coupling elements (b) mounting the
coupling to experimental equipment (c) movement of the bush against the disc, where 1—cylindrical
thimble; 2—steel disc sample; 3—fastening nut; 4—carrier; 5—prism to ensure parallel contact.

The wear scar occurs by penetration of the cylindrical liner, under the influence of the normal
load, in the flat sample material. In theory, the holding thimble is considered as rigid and relatively
small in view of the backside imprint, so it can be considered as made up of a sum of cylinder areas.
This is illustrated schematically in Căpitanu et al. [11].

We considered the following three polymers:

A. Nylonplast AVE Polyamide + 30% glass fibres; E2A = 40.25 MPa.
B. Noryl Polyamide + 20% glass fibres; E2B = 31.76 MPa.
C. Lexan Polycarbonate + 20% glass fibres; E2C = 42.08 MPa.

Numerical values were determined by the elasticity modules (E) listed above, and the deformed
liner radii (r2), imposing pmax is provided as pmax < 0.5 H, where H is the Brinell hardness for the
plastic liner, enough so that it will not be crushed. The approximate depth of the wear scar is calculated
with the relation: h ≈ l2/8r2.

The imposed condition allows the following values of the maximum contact pressure of the dry
linear couplings contact to be established, in the case of three plastic materials (A, B, C) reinforced with
SGF, the five normal loads (contact pressures), indexes 1 to 5 of notations of the pressures that have
been subjected to tests, for each of the seven relative sliding speeds used (18.56; 27.85; 37.13; 46.41;
55.70, 111.4; and 153.57 cm/s):

pA1 = 16.3 MPa; pA2 = 23.5 MPa; pA3 = 28.2 MPa; pA4 = 32.6 MPa; pA5 = 36.4 MPa

pB1 = 12.3 MPa; pB2 = 17.4 MPa; pB3 = 21.4 MPa; pB4 = 24.6 MPa; pB5 = 27.6 MPa

pC1 = 16.9 MPa; pC2 = 23.9 MPa: pC3 = 29.3 MPa; pC4 = 33.8 MPa; pC5 = 37.8 MPa

After inspecting and measuring the wear scars of the metal surfaces, the widths of each wear
scar were measured and their volume was calculated (the amount of material lost through wear).
Their variation curves were also traced depending on the applied load (contact pressure), the relative
speed of sliding contact with the temperature specification of the optical image and the presentation of
the scar. This quantitative–qualitative assessment was presented in Căpitanu et al. [11]. All tests took
place for 60 min, so that the calculated wear volumes are actually wear rates.

The increased friction coefficient entails increasing the wear rate and contact temperature, but after
our data, it has not yet been possible to establish a mathematical relationship between the two sizes,
which is widely recognized. This is why a suggestive graphical representation was sought to provide a
qualitative correlation between the two sizes that relates them to the contact temperature and based on
which to determine a quantitative correlation.

All the variation curves of the output parameter of the frictional system (amount of wear, depth
of wear, friction coefficient, contact temperature) depending on input parameters, normal load (contact
pressure), the sliding speed while maintaining the steady state surface (roughness Ra), shows a strong
nonlinearity due to the behavior of the elastic-plastic polymers tested. In this situation, we tried an
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approach to model metal surface wear through advanced data fitting algorithms, because of their ability
to model very complex and strongly nonlinear phenomena. This was the qualitative–quantitative
analytical approach previously achieved. The graphic processing of these results was presented in
Căpitanu et al. [5].

The data for metallic surface characterization on linear dry contact between plastic material
reinforced with SGF and alloyed steel was obtained through experiments run on friction couples
with linear contact using three different types of polymers on two different types of steel variants.
Aside from alternating the materials used, the speed and pressure applied to them were varied
under the same operating conditions. This was done with regard to the particulars of each material
combination and the levels of speed and pressure.

The method used approaches of the study of wear on a metallic surface in the case of dry linear
contact, plastic reinforced with SGF on surfaces of alloyed steel, C120 and Rp3, through the method
of artificial neural networks. This is necessary because the wear processes involve very complex
and powerfully nonlinear phenomena, and analytic models are difficult or impossible to obtain.
Furthermore, the multiple inputs (normal load, contact pressure, sliding speed, measured contact
temperature, materials properties) and outputs (width and depth of the wear scar, contact temperature)
influence each other continually.

The resulting dataset includes the following information, seen in Table 1.

Table 1. Dataset.

Variable Mode Type Range Unit

Material Independent Categorical N/A N/A
Numerical - -

Speed Independent Numerical 18.56–153.55 cm/s
Pressure Independent Numerical 10–50 N

Depth Dependent Numerical 0.9–9.1 10−4 mm3

Volume Dependent Numerical 0.13–3.48 10−4 mm3

For each of the variables considered, the table describes the following characteristics:

• Mode is whether the variable is treated as a dependent or an independent variable. The contention
of any modelling technique is that the dependent variables can be represented as some relation,
whether explicit or implicit, of the independent variables. In the present context, the paper
investigates the effect of various materials, speeds, and pressures on the depth and volume of the
wear scar.

• Range shows the numerical limits of each considered variable.
• Unit displays the unit of measurement for each variable.
• Type is one of three possibilities for the nature of the variable: Numerical, categorical, or ordinal [21].

The latter is not present in the experimental dataset. Speed and pressure are obviously numerical.

For the material type, there are three possible options since a fitting application cannot work with
simple labels as inputs. The first is not considered proper, and is only shown as a comparison to the
other two. The second and third options lead to separate optimization problems, both of which are
considered in parallel for each of the models involved. Figure 2 shows a graphical representation of
the options available in the current context, while Table 2 briefly outlines the benefits and drawbacks
of each option.
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Figure 2. Flowchart for using available data.

Table 2. Comparison of coding options.

Option No. Coding Benefits Disadvantages

1 Simple Numerical Coding Simplest implementation Implicitly orders labels,
introducing bias.

2 Binary Coding Easy to implement. Translates
naturally to actual context.

Introduces multiple new variables.
May cause rank deficiencies when

working with matrices.

3 Replace with numerical
Leads to a completely numerical
problem. Eliminates the issues in

simple and binary coding.

Introduces many new variables.
May cause dimensionality

problems with small datasets.

The first is coding the categorical variable as a simple numerical variable, with different integer
numbers for each of the labels. For example, each of the material combinations used in the experiments
can be assigned an integer, transforming it into a discrete numerical variable and allowing it to interact
with the rest of the independent numerical variables.

AVE + 30% SGF; C120 steel

AVE + 30% SGF; Rp3 steel

Lexan + 20% SGF; C120 steel

Noryl + 20% SGF; C120 steel

However, this suffers from implicitly ordering the labels, which would negatively impact the
model and possibly introduce hidden biases, since the assigned numbers have no mathematical
meaning [21].

The second option is coding the categorical variable into multiple binary variables, one for each
of the material labels. This is especially advantageous in the present context, since each value of the
categorical variable is logically a combination of two materials, the scratched surface and the object
used for scratching. As an aside, this was also possible for the first representation, but it further
increased the danger of misrepresentation through the interaction of numerical labels. The second
representation is shown in Table 3.

Each of the materials that make up the labels of the categorical variable will be binary variables
themselves. The binary representation translates naturally to whether that particular material is present
or not. This is the standard representation and is implemented in some of the models. The main
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drawback is that the scarcity of the resulting matrices may lead to rank deficiency in some of the
methods for automatically generating fuzzy inference systems (genfis). Table 4 shows an excerpt of the
available date for training, using this coding option.

Table 3. Binary coding of variables.

Material AVE Lexan Noryl C120 Rp3

AVE + 30% SGF with C120 steel 1 0 0 1 0
AVE + 30% SGF with Rp3 steel 1 0 0 0 1

Lexan + 20% SGF with C120 steel 0 1 0 1 0
Noryl + 20% SGF with C120 steel 0 0 1 1 0

Table 4. Dataset excerpt using binary coding.

Independent Dependent

Material Speed Pressure A C R L N Depth Volume

AVE + 30% SGF/C120 18.56 20 1 1 0 0 0 2.4798 0.4404
AVE + 30% SGF/C120 27.85 20 1 1 0 0 0 3.7076 0.5338
AVE + 30% SGF/C120 37.13 30 1 1 0 0 0 5.1336 0.9418
AVE + 30% SGF/C120 46.41 10 1 1 0 0 0 3.8871 0.2714
AVE + 30% SGF/C120 111.4 10 1 1 0 0 0 4.9482 0.283
AVE + 30% SGF/Rp3 18.56 40 1 0 1 0 0 3.9708 1.1247
AVE + 30% SGF/Rp3 27.85 20 1 0 1 0 0 3.4464 0.5164
AVE + 30% SGF/Rp3 37.13 30 1 0 1 0 0 4.2392 0.8627
AVE + 30% SGF/Rp3 46.41 20 1 0 1 0 0 4.5242 0.5833
AVE + 30% SGF/Rp3 46.41 30 1 0 1 0 0 5.0392 0.9377

Lexan + 20% SGF/C120 27.85 40 0 1 0 1 0 4.9169 1.1594
Lexan + 20% SGF/C120 46.41 10 0 1 0 1 0 4.0361 0.2582
Noryl + 20% SGF/C120 46.41 40 0 1 0 0 1 6.3271 2.4946
Noryl + 20% SGF/C120 55.7 20 0 1 0 0 1 4.3885 1.0289
Noryl + 20% SGF/C120 55.7 30 0 1 0 0 1 4.9133 1.6474

The third option is replacing the categorical variable altogether. Instead of using the material
labels, the model will introduce, as independent variables, the numerical characteristics of the various
materials. To this end, five new variables for the polymers—specific weight, water absorption,
elasticity, thermal conductivity and linear dilation—and three for the steel—Smax, Pmax and Nimax—are
introduced. The chosen variables have a full complement of values for each of the materials used in
the experiment. The eight new variables are shown in Tables 5 and 6.

Table 5. Polyamide characteristics.

Polyamide Weight Absorption Elasticity Conductivity Dilation

AVE 1.35 0.8 80 0.34 3.3
Noryl 1.27 0.06 84 0.196 2.5
Lexan 1.35 0.16 86 0.5 2.68

Table 6. Steel characteristics.

Steel Smax Pmax Nimax

Rp3 0.02 0.025 0.4
C120 0.025 0.03 0.35

This gives the dataset eight independent variables that describe the variation in material on both
sides of the experiment. The higher dimensionality is a slight disadvantage, but the representation
is more natural due to them being actual numerical variables. An excerpt of the dataset is shown in
Table 7 (numbers and labels are heavily truncated to allow representation).

In conclusion, the first coding option—simple numerical coding—is not suited to the task,
while the second and third options are both used. This will create two distinct learning problems,
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which will be called the binary coding problem (option 2) and the numerical coding problem (option 3),
on which the various algorithms are run. The results are shown and discussed for both cases in the
appropriate sections.

Table 7. Dataset excerpt using numerical coding.

Independent Dependent

Material Sp Pr Wgt Abs Els Cd Dil S P Ni Dpt Vol

A/C120 18.5 40 1.35 0.8 80 0.34 3.3 0.025 0.03 0.35 5.48 1.30
A/C120 27.8 10 1.35 0.8 80 0.34 3.3 0.025 0.03 0.35 2.91 0.23
A/C120 27.8 40 1.35 0.8 80 0.34 3.3 0.025 0.03 0.35 6.13 1.37
A/C120 37.1 10 1.35 0.8 80 0.34 3.3 0.025 0.03 0.35 3.68 0.29
A/C120 46.4 40 1.35 0.8 80 0.34 3.3 0.025 0.03 0.35 8.54 1.62
A/C120 57.7 10 1.35 0.8 80 0.34 3.3 0.025 0.03 0.35 4.47 0.29
A/C120 111 30 1.35 0.8 80 0.34 3.3 0.025 0.03 0.35 8.00 1.17
A/C120 153 10 1.35 0.8 80 0.34 3.3 0.025 0.03 0.35 5.17 0.31
A/Rp3 18.5 40 1.35 0.8 80 0.34 3.3 0.02 0.025 0.4 3.97 1.12
A/Rp3 27.8 20 1.35 0.8 80 0.34 3.3 0.02 0.025 0.4 3.44 0.51
A/Rp3 37.1 30 1.35 0.8 80 0.34 3.3 0.02 0.025 0.4 4.23 0.86
A/Rp3 46.4 20 1.35 0.8 80 0.34 3.3 0.02 0.025 0.4 4.52 0.58
L/C120 27.8 40 1.35 0.16 86 0.5 2.6 0.025 0.03 0.35 4.91 1.15
L/C120 46.4 10 1.35 0.16 86 0.5 2.6 0.025 0.03 0.35 4.03 0.25
N/C120 46.4 40 1.27 0.06 84 0.19 2.5 0.025 0.03 0.35 6.32 2.49
N/C120 55.7 20 1.27 0.06 84 0.19 2.5 0.025 0.03 0.35 4.38 1.02

An example of plotted data is shown in Figure 3. Due to the increased dimensionality, the data
cannot be plotted as a graph dependent on the independent variables. Therefore, a two-dimensional
graph based on the index was chosen instead. For the same reason, the data now has no discernible
outliers, as can be seen in the figure, so all pre-processing conditions were eliminated.

 
(a) (b) 

Figure 3. Dependent variables plotted on index for (a) wear depth and (b) wear volume.

The available data-points were randomly divided into a training set and a test set, with ratios
of 70% of the total and 30% of the total, respectively. This is done by constructing a random index of
70% true values on a vector with the same length as the number of lines (i.e., samples) in the dataset.
The training and test sets are then easily separated based on this index. The training test is used for
optimizing the parameters of the various models including hyper-parameters (i.e., cross-validation).
The test set is not available to any algorithm until the model is complete, when it is used to evaluate
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its performance on a heretofore unseen set of data belonging to the same phenomenon. Therefore,
the evaluation of each model will take place both on the training set as well as on the test set.

3. Results

For metallic surface characterization on linear dry contact between the plastic material reinforced
with SGF and alloyed steel, a multitude of experimental tests was performed with normal loads and
different speeds, which led to the modelling of the metallic surface characterization on linear dry
contact between the plastic material reinforced with SGF and alloyed steel using four predictor models
presented below.

3.1. Linear Regression

The first model is a first-order multivariate linear regression optimized using batch gradient
descent. The results obtained here will be used as a baseline for all other models. The optimization
problem is described as Y = θ̂ ∗ X, where X is the input data, namely the dependent variables,
containing all data-points, plus an intercept term. Y is the output data, alternatively the wear speed or
wear volume, that the algorithm is trying to learn, and θ is the matrix of coefficients used to estimate Y
from X. The challenge is finding the best coefficients, which minimizes the error between the actual Y
and the estimate. This is obtained from Ŷ = θLR ∗ X, or, in extended form:⎡

⎢⎢⎢⎢⎢⎢⎣

ŷ1

ŷ2

ŷ3
...

ŷn

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎣

θ11 · · · θ1(m+1)
...

. . .
...

θn1 · · · θn(m+1)

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

x2
...

xm

int

⎤
⎥⎥⎥⎥⎥⎥⎦ (1)

There will be m features and an intercept term, which helps prevent over-fitting. The total sum of
all errors, across all values, is defined as the cost function. It is this cost function that the optimization
algorithms attempt to minimize.

Gradient descent is an optimization algorithm where the potential solution is improved each
iteration by moving along the feature gradient in the variable space. While it requires that the target
function be differentiable and it is somewhat susceptible to local minima, gradient descent provides a
stable and computationally inexpensive algorithm for function optimization.

As noted in the previous chapter, both representations of the dataset, using the two options for
coding the categorical variable, were investigated in parallel. After running the gradient descent
algorithm, the following coefficients were obtained, as shown in Table 8. Running the algorithm takes
between 1 and 2 s for each of the dependent variables—the last run was timed internally at 1.174 s.

Table 8. Coefficient values from the linear regression algorithm.

Binary Coding Numerical Coding

Features
Thetas

Features
Thetas

Depth Volume Depth Volume

Intercept 0.5470 −0.1621 Intercept 0.1632 4.5657
Speed 0.0339 0.0015 Speed 0.0313 0.0035

Pressure 0.0961 0.0391 Pressure 0.1095 0.0450
AVE 0.2615 −0.1706 Weight 0.0252 −0.1091

Lexan 0.3347 0.1097 Absorption 0.0826 −0.3794
Noryl −0.3257 −0.1250 Elasticity −0.0004 −0.0373
C120 0.0184 −0.2411 Conductivity 0.0394 −0.4060
Rp3 −0.2729 0.3989 Dilation 0.1059 −0.4695

Smax 0.0197 0.0072
Pmax 0.0188 0.0062

Nimax −0.1858 −0.0552
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The obtained models will now predict the depth and volume of the wear scar as the linear
combination of the vector of thetas and the value of a given feature set.

For example, using binary coding, the wear depth will be predicted as

D = 0.547 + 0.034Sp + 0.096P + 0.261A + 0.335L − 0.326N + 0.018C − 0.273R (2)

Figures 4 and 5 show the training fits for wear and volume, with both coding options, using
linear regression.

 
(a) (b) 

Figure 4. Linear regression fit for (a) wear depth and (b) wear volume in binary coding.

(a) (b) 

Figure 5. Linear regression fit for (a) wear depth and (b) wear volume in numerical coding.

The blue points represent the actual experimental data available for training, while the red points
are the estimates that the model would obtain for the same input data.

The linear regression model has a decent performance of fitting the training data, but is obviously
at a disadvantage because of the non-linearity present in the dataset. One interesting point of note
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is that the relative influence of the various features can be directly ascertained from the theta values,
which shows both the magnitude and the direction of the dependency.

3.2. Neural Networks

Neural network models are centered on a layer of hidden features (i.e., neurons) which control the
prediction. Neural networks have an input layer that matches the considered independent variables
and an output layer which matches the dependent variable. The model is optimized by successively
tuning the weights associated to these neurons as well as their activation functions. A standard neural
network is exemplified in Figure 6 [22].

 

Figure 6. Artificial Neural Network with one hidden layer.

The most important hyper-parameter of a neural network model is the number of neurons in the
hidden layer. For the purposes of this application, all models contain 25 hidden neurons. This number
was selected after running the algorithm with various levels of neurons and settling on the best
performance in terms of the correlation coefficient for both the training and test sets. The training time
varies greatly with the choice of training algorithm selected: Some may require only 1–2 s, while some
configurations can take up to 30 s. The neural network selected here was timed at 12 s.

The weights of the selected neural networks are far too numerous to display in the paper.
For example, to pass from the input layer of 10 neurons (10 features in the numerical coding case) to
the hidden layer of 25 neurons, a matrix of 25 lines and 10 columns is required. Figures 7 and 8 show
the training fits for wear and volume with both coding options using a neural network model.

 
(a) (b) 

Figure 7. Neural Network fit for (a) wear depth and (b) wear volume in binary coding.
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(a) (b) 

Figure 8. Neural network fit for (a) wear depth and (b) wear volume in numerical coding.

As with the linear regression figures, the blue points are the empirical data and the red points the
estimates. It should be noted that perfectly correct estimates (red points) will overwrite the empirical
data representation (blue points) where they coincide.

Neural networks give a very good fit of the training data. For example, notice how virtually all
empirical points in the lower half of the volume fit, as seen in the graphical representation, have been
overwritten by their estimates. Such good behavior on the training set, however, always raises
suspicions of over-fitting, which will be verified or invalidated when the model is used on the
training set.

3.3. Generated Fuzzy Inference System

Fuzzy inference systems can be automatically generated and then used as actual models for
predicting the future behavior of a system. The generated FIS can then be deployed either as such, or
further optimized using an ANFIS algorithm, which will be discussed in the next section. As these tend
to be computationally intensive models, the FIS is of the Sugeno type, which employs linear or constant
functions as outputs, as opposed to the Mamdani type FIS, whose outputs are also fuzzy membership
functions. This type of FIS has fewer parameters and is therefore somewhat less computationally
intensive. As will be discussed in the final results section, there is also the danger of over-fitting since
there are so many parameters and comparatively few data-points.

Given a set of raw data, there are three options for obtaining a working FIS: Grid partitioning
(genfis1), subtractive clustering (genfis2), and fuzzy c-means clustering (genfis3). There are a number
of hyper-parameters to be tuned such as the number of membership functions per input and the shape
of each membership functions. These were chosen after some trials to be four membership functions
per numerical variable and two per binary variable, when dealing with the binary coding option.
The shape of the membership functions was kept as standard bell curves (Gaussian distributions).
Generating fuzzy inference systems is performed quickly, usually within a second. The last run
yielding internal timings of 0.177 s for genfis1, 0.153 s for genfis2, and 0.248 s for genfis3.

Grid partitioning is really only used as a benchmark, since it is commonly held that its performance
is unsatisfactory unless further developed with ANFIS [23–25]. However, because it is such a
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rudimentary starting point for the ANFIS algorithm, it will actually not work on the numerical
coding options, as there are simply too few data-points, too many parameters and too computationally
intensive a task. Therefore, ANFIS starting from grid partitioning is only investigated for the binary
coding problem. The other two options are, however, valid possible solutions both on their own, as
well as after further optimization. Figures 9 and 10 show a sample of the fuzzy inference spaces of the
FISs obtained through automatic generation. Since it is impossible to show the n-dimensional graph of
the FIS, the first two inputs are chosen as the independent variable axis.

(a) (b) (c) 

Figure 9. Fuzzy inference systems generated through (a) grid partitioning; (b) sub-clustering; and (c)
Fuzzy c-Means (FCM) clustering for wear depth in numerical coding.

(a) (b) (c) 

Figure 10. Fuzzy inference systems generated through (a) grid partitioning; (b) sub-clustering; and (c)
FCM clustering for wear volume in numerical coding.

As can be seen from Figures 9 and 10, grid partitioning provides a simple starting point for further
optimization, while sub-clustering and FCM clustering present very interesting fuzzy inference spaces.
Figures 11 and 12 show a selection of the fit obtained using the generated fuzzy inference systems.

(a) (b) (c) 

Figure 11. Fuzzy interference systems (FIS) fit generated through (a) grid partitioning; (b) sub-clustering;
and (c) FCM clustering for wear depth in binary coding.
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(a) (b) (c) 

Figure 12. FIS fit generated through (a) grid partitioning; (b) sub-clustering; and (c) FCM clustering for
wear volume in numerical coding.

From the spread of the empirical and estimated data, some early conclusions can be drawn about
generated fuzzy inference systems. As already discussed, grid partitioning is simply an empty form for
a FIS, which is the starting point of an ANFIS algorithm, as no attempt is made to fit the experimental
data. The FIS obtained through subtractive clustering has near perfect performance on the training set,
which naturally raises concerns about the possibility of over-fitting the data. These will be addressed
when performing on the test set. The third method, fuzzy c-means clustering, obtains good, if not
great, performance and is a very good start for further optimization.

3.4. Adaptive Neuro-Fuzzy Inference Systems

ANFIS uses back propagation to determine the premise parameters of each rule. The consequent
parameters are then determined using a least mean squares algorithm. An iteration of the learning
algorithm consists of two passes: In the forward pass, the premise parameters are fixed and the
consequent parameters are optimized through an iterative least squares approach, while going through
the rule base system. In the backward pass, the consequent parameters are fixed, while the premise
parameters are modified using back propagation. This algorithm continues until the target error is met
or the number of iterations exceeds a predetermined threshold. An excellent description of the ANFIS
architecture and learning procedure is given by Denai et al. [26].

Adaptive neuro-fuzzy inference systems construct a FIS capable of predicting the values of the
dependent variables through further optimization of a generated FIS structure. If no initial FIS is
specified, one is created through a genfis1 (grid partitioning) algorithm. With the exception of grid
partitioning in the case of numerical coding, as discussed previously, all generated FISs were run
through an ANFIS algorithm in the hopes of improving performance. The algorithm is relatively fast,
usually lasting a few seconds. It will take longer when starting from a FIS obtained through grid
partitioning (genfis1), since it requires more optimization. The inference systems discussed in the
paper were timed at 4.987 s for ANFIS 1, 1.019 s for ANFIS 2, and 1.866 s for ANFIS 3.

The algorithm was used with a standard set of hyper-parameters such as 50 generations and the
inherited FISs obtained at the previous step. Figures 13 and 14 show a selection of the resulting fuzzy
inference spaces.

The fuzzy inference spaces obtained after running the algorithm have a very interesting
configuration. The resulting rule base spaces are clearly nonlinear, which should lead to a good
ability to fit the present dataset. Figures 15 and 16 show a selection of the resulting performance when
fitting the training set data.
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(a) (b) (c) 

Figure 13. Fuzzy inference systems generated through adaptive neuro-fuzzy inference systems (ANFIS)
with (a) grid partitioning; (b) sub-clustering; and (c) FCM clustering for wear depth in binary coding.

(a) (b) (c) 

Figure 14. Fuzzy inference systems generated through ANFIS with (a) grid partitioning; (b)
sub-clustering; and (c) FCM clustering for wear volume in binary coding.

(a) (b) (c) 

Figure 15. ANFIS fit generated through (a) grid partitioning; (b) sub-clustering; and (c) FCM clustering
for wear depth in binary coding.

(a) (b) (c) 

Figure 16. ANFIS fit generated through (a) grid partitioning; (b) sub-clustering; and (c) FCM clustering
for wear volume in binary coding.
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The performance shown by all ANFISs is very encouraging as the spreads shown above seem
to reveal very good behavior from all systems. Pending the requisite investigation on the test sets,
the ANFISs appear to be the frontrunners for fitting the experimental dataset. Of particular note is the
near perfect performance obtained in fitting the wear volume.

3.5. Model Results

While the figures provide a good overview of the models’ behavior, they fail to give an analytical
measure of model performance. For this, two metrics were used, both of which gave a numerical
measure of the error: The mean square error (MSE) and the mean absolute error (MAE). Since these
are metrics for the error of the model, lower values correlate to better performance. The mathematical
expressions are shown below:

MSE =
1
n ∑

i=1...n

(Xi ∗ θ − Yi)
2 (3)

MAE =
1
n ∑

i=1...n

|Xi ∗ θ − Yi| (4)

These two error functions should provide the definitive information on which model best fits
the available experimental data. The results are put together into Tables 9 and 10 below, one for each
dependent variable.

Table 9. Wear depth fitting metrics.

Model

Binary Coding Numerical Coding

Train Suite Test Suite Train Suite Test Suite

MSE MAE MSE MAE MSE MAE MSE MAE

Linear 0.38528 0.46629 0.64289 0.54639 0.54483 0.53454 0.49382 0.50348
Neural 0.07182 0.18512 0.29991 0.30002 0.52048 0.55583 0.19614 0.33355
Genfis1 26.306 4.92209 27.094 4.93573 29.5935 5.19193 19.64452 4.32411
Genfis2 0.01578 0.07577 0.19928 0.33022 0.02053 0.09137 0.27421 0.41283
Genfis3 0.38405 0.47340 0.56615 0.59409 0.40373 0.47233 0.51991 0.59842
ANFIS1 0.02162 0.10473 2.98506 0.78510
ANFIS2 0.02265 0.11829 0.30524 0.43454 0.04433 0.15980 0.16904 0.35767
ANFIS3 0.19765 0.34180 0.42079 0.49680 0.11747 0.29467 0.50163 0.62247

Table 10. Wear volume fitting metrics.

Model

Binary Coding Numerical Coding

Train Suite Test Suite Train Suite Test Suite

MSE MAE MSE MAE MSE MAE MSE MAE

Linear 0.06750 0.15916 0.09580 0.17017 0.11225 0.20713 0.08110 0.19386
Neural 0.02062 0.10657 0.01620 0.10758 0.08371 0.17435 0.04756 0.14160
Genfis1 1.09606 0.86541 1.45574 0.93736 1.49774 0.98549 1.37690 0.91272
Genfis2 0.00000 0.00000 1435 10.48023 0.00965 0.03834 1.82954 0.56139
Genfis3 0.06648 0.15842 0.03457 0.11739 0.07857 0.19069 0.04393 0.16326
ANFIS1 0.00000 0.00017 1.63150 0.47196
ANFIS2 0.00441 0.03373 0.02079 0.11009 0.00965 0.03821 0.00435 0.04772
ANFIS3 0.02919 0.11852 0.05496 0.20210 0.00002 0.00182 0.00043 0.01699

It should first be noted that there is a random element to the above results. No two algorithm
runs result in exactly the same models, hence there is some variation in the implementation of the
simulation. However, the algorithms have been run multiple times and each set of results supports the
general conclusions which are to be drawn from the above tables.
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The obtained prediction function provides a good fit of the model, with little error and no
over-fitting, as can be concluded from the testing phase of the algorithm. Once trained, the predictive
model can be used instead of the actual analytical approach in any application where the dependent
variables are needed and the independent variable values are available, within a similar context.
This reduces the mathematical complexity of the overall application and could find use in a range
of computationally intensive models. It is these functions that will be further improved through the
addition of more data as it becomes available, and will be used to predict the future behavior of
the experiment.

4. Discussion

The discussion of results revolves around the test scores for the two types of error functions
obtained by each model.

In judging the various algorithms, a lower value for MSE and MAE norms are preferable since
these represent errors in fitting. For example, in modelling the wear volume with binary coding,
the ANFIS2 model is preferable to the linear regression as it achieves lower error grades in both MSE
and MSE for the training suite (0.004 < 0.067 and 0.033 < 0.159) as well as the test suite (0.02 < 0.095 and
0.11 < 0.17). Furthermore, it is relatively easy to spot an over-fitting model as it will have good to great
performance on the training suite, but poor performance on the test suite. This means it fits the available
training data too closely and is ill-equipped to handle new incoming data from the same experiment.
As an example, Genfis2 fits the training data for wear volume in binary coding perfectly—the errors
are actually zero, but it has very large errors when used on the test data (MSE = 1453 and MAE = 10.48).

As relates to the coding option being used, the variation in results from binary to numerical
coding has generally been minimal. While the numbers are obviously different, the same tendencies
exist in both representations of the problem.

Linear regression actually performs very well on the test set and in fact overall, suggesting there
may be some linear dependencies between the dependent and independent variables after all. It does
not provide the level of performance of the neural network or ANFIS models, but as a baseline model,
it does very well.

The neural network models have the best overall performance in terms of being the most balanced.
While occasionally overtaken by some of the ANFIS or even Genfis algorithms, the neural network
models always give very good performance, significantly overtaking the baseline models (i.e., the
linear regression models).

The Genfis models achieved mixed results. While sometimes showing superb performance,
overtaking even the neural networks or some ANFIS models, they are susceptible to dangerous levels
of over-fitting. When that happens, the model is virtually useless as it achieves disproportionate error
levels on the test sets—see Genfis2 for wear volume fitting in binary coding. Genfis1 was never meant
to be an actual fitting model and of course performs the most poorly, although it does have a few
instances when it is workable. However, these should be seen as chance encounters with a low-value
dataset, rather than indicative of possible improved performance. As has been mentioned, Genfis1
is only meant to provide a starting point for further optimization. Genfis2 and 3 perform very well,
sometimes challenging the performance of NN or ANFIS algorithms, with the aforementioned caveat
of possibly disastrous over-fitting. It should also be noted that, in the binary case, Genfis is greatly
helped by being able to declare two, membership, function variables, which very nicely model the
binary ones.

ANFIS models performed very well throughout all tests and are the main contender of the neural
network algorithms, which they oftentimes outperformed. The variation of their results was slightly
higher than that of the neural networks, which is their only real disadvantage. However, given the
inherent variation of results from different runs of the algorithms, it can be said that their performance
is comparable and, in some instances, preferable, to that of the neural networks. Additionally, similar
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to neural networks and in contrast to some of the Genfis models, they do not seem to be significantly
affected by over-fitting, even though they are constructed on rather complex structures.

The elapsed times of the various algorithms are generally comparable, lasting in the range of
a few seconds, with the exception of training neural networks under certain configurations. While
less training time is always preferable, it is not a major factor for the selection of this model, since the
envisioned applications do not require real-time performance. As more experimental data becomes
available, the elapsed times will likely increase and future work will deal with improving the speed of
all the algorithms discussed in the paper. As a final recommendation and conclusion of the results
presented, both neural networks and ANFIS (type 2 and 3) models perform very well on both the
training and test sets and could be used for implementation. Any further choice between these two
architectures would have more to do with either personal preference or external requirements for an
eventual expanded application.

5. Conclusions

The studies on modelling the friction and wear of metallic surfaces for friction couples with linear
contact between a thermoplastic material armed with short glass fibers (SGF) and steel are complex
and outline the influence of input parameters specific to the tribological system (normal load: contact
pressure, the relative sliding speed, the friction type, and the characteristics of the materials in contact)
on the output parameters of the tribological system: The wear volume of metallic material and the
depth of the wear material.

Neuro-fuzzy modelling of the metallic surface characterization on linear dry contact between
plastic material reinforced with SGF and alloyed steel proves that the friction force is not only
dependent on the friction coefficient and normal load, as previously thought, but also on the sliding
speed and the physical and mechanical properties of the materials, which has significant impact in the
characterization of new industrial processes utilizing short glass fiber reinforced polymers.

Using advanced statistical and optimization algorithms on a dataset obtained from the hardware
simulation, the results of the research led to modelling a dependency between the various variables
of interest involved in the friction process. The subject draws a growing interest from the research
community with the advent of highly advanced, intelligent classification, and optimization and
regression algorithms.

This research focused on processing an experimental dataset on contact wear, with the aim of
obtaining prediction models for the two variables of interest, wear depth, and wear volume. The data
was obtained through experiments run on friction couples with linear contact using three different
types of polymers on two different types of steel variants. Aside from alternating the materials used,
the speed and pressure applied to them were varied under the same operating conditions. The data
was pre-processed and coded for use with numerical learning algorithms. Since two viable coding
options were found, both resulting numerical problems were treated separately. Various possible data
fitting models were then investigated, including a baseline model for reference (linear regression)
and different variation of possible considered structures (Genfis and ANFIS models). These models
were then judged on their ability to fit the available data, as quantified by two standard error norms,
calculated for each model. The end result is a comparison of the performance of the multiple prediction
systems and a discussion of the various factors that influence these numerical results.

The chosen models are to be implemented in future work and in any practical implementation in
similar conditions for metallic surface characterization within the field of tribology, robotics, and with
wide impact metallic surface characterization applications in the wear process, emphasizing the
abrasive, adhesive, and corrosive wear. It will be of great interest to investigate the interaction of the
current prediction models with real world applications for which there are many options [6,11,12,27].

Another very important direction for further research focuses on gathering more experimental
data to allow the development of even more complex enhanced models, either pertaining to new
developments in the state of the art, or for retraining the current architectures. Over-fitting, an issue
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present and discussed throughout the work, should be greatly diminished with training on more
available data. This is because most of the models do not over-fit out of design or implementation
reasons, but simply because some are too complex (i.e., including too many parameters) for the
current dataset.
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Abstract: Functionally graded piezoelectric-piezomagnetic material (FGPPM), with a gradual
variation of the material properties in the desired direction(s), can improve the conversion of
energy among mechanical, electric, and magnetic fields. Full dispersion relations and wave mode
shapes are vital to understanding dynamic behaviors of structures made of FGPPM. In this paper,
an analytic method based on polynomial expansions is proposed to investigate the complex-valued
dispersion and the evanescent Lamb wave in FGPPM plates. Comparisons with other related studies
are conducted to validate the correctness of the presented method. Characteristics of the guided
wave, including propagating modes and evanescent modes, in various FGPPM plates are studied,
and three-dimensional full dispersion and attenuation curves are plotted to gain a deeper insight into
the nature of the evanescent wave. The influences of the gradient variation on the dispersion and the
magneto-electromechanical coupling factor are illustrated. The displacement amplitude and electric
potential and magnetic potential distributions are also discussed in detail. The obtained numerical
results could be useful to design and optimize different sensors and transducers made of smart
piezoelectric and piezomagnetic materials with high performance by adjusting the gradient property.

Keywords: evanescent wave; polynomial approach; functionally graded piezoelectric-piezomagnetic
material; dispersion; attenuation

1. Introduction

Due to the excellent coupling behavior among mechanical, electric, and magnetic fields,
piezoelectric-piezomagnetic composites (or magneto-electro-elastic material) composed of piezoelectric
and piezomagnetic phases have been increasingly applied to different engineering structures,
especially to the smart or intelligent systems as intelligent sensors, damage detectors, etc. [1]. It is
found that the smart structures made of functionally graded materials (FGM) possess a better
structural performance than traditional composite materials. The concept of FGM has been extended
to the development of new piezoelectric-piezomagnetic materials appointed functionally graded
piezoelectric-piezomagnetic materials, which can realize the smooth transition of the physical
constitutive parameters of the piezoelectric and piezomagnetic materials. FGPPMs have been used in
some devices to improve their efficiency and other features. Many applications are closely connected
with the vibration and wave propagation of FGM and FGPPM [2–5]. Dispersion relations and wave
mode shapes are very important for understanding dynamic behaviors of structures. Wave propagation
features in FGPPM plates could be also useful in designing and optimizing the high-accuracy sensors
and transducers [6,7].

With the remarkable achievements in fabrication of FGPPM during the decades, many investigators
have turned attention to the study of wave propagation in such materials. Wang and Rokhlin [8]
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presented the differential equations governing the transfer and stiffness matrices for a functionally graded
generally anisotropic magneto-electro-elastic medium and calculated the surface wave velocity dispersion.
Pan et al. [9] derived an exact solution for the multilayered plate made of functionally graded, anisotropic
and linear magneto-electro-elastic materials based on Pseudo-Stroh formalism. Bhangale et al. [10] carried
out the free vibration studies on the simply supported functionally graded magneto-electro-elastic
plate by semi-analytical finite element method. Wu et al. [11] investigated the wave propagating
characteristics in the non-homogeneous magneto-electro-elastic plates by using orthogonal polynomial
approach. By employing the power series technique, Cao [12] investigated the Lamb wave propagation
in FGPPM plates. Singh and Rokne [13] investigated the SH wave propagating in FGPPM structures.
Xiao et al. [14] investigated the dispersion properties of wave propagation in the functionally graded
magneto-electro-elastic plate by the Chebyshev spectral element method.

As is reviewed above, so far, studies on the guided wave in FGPPM structures are limited to the
propagating waves, but the evanescent waves have not been investigated. Recently, some studies on
pseudo surface acoustic waves (PSAW) in piezoelectric half-spaces find that the PSAW modes have
higher velocities and lower attenuations, compared to the classical surface acoustic waves [15,16].
Such modes make the piezoelectric device possess higher resolution. Evanescent wave modes also
have the similar features. According to the classification of Auld [17], the complete wave modes
consist of propagating modes with real wave number and evanescent modes with complex or purely
imaginary wave number. Note that evanescent modes represent local modes that would exist at
discontinuities and decay with propagating distance (so referred to as evanescent or non-propagating
wave). As early as 1955, Lyon [18] obtained the purely imaginary roots of the dispersion equation
for an elastic plate. Remarkable is the work done by Mindlin who demonstrated the presence of
complex roots of the Rayleigh-Lamb equation [19]. Freedman [20] studied the imaginary valued
Lamb mode spectra covering virtually the full range of the Poisson ratio. Quintanilla et al. [21]
calculated the full spectrum for guided wave problems in plates and layered cylinders using a spectral
collocation method. More recently, Yan and Yuan [22,23] discussed the potential application of
evanescent waves in structural health monitoring and investigated the conversion of evanescent SH
and Lamb waves into propagating waves using a semi-analytical approach. Chen et al. [24] studied
theoretically the real-valued and imaginary-valued SH waves in a piezoelectric plate of cubic crystals.
These researches focused on the simple material and purely imaginary modes. In fact, the search of
complex roots corresponding to evanescent waves is a difficult task for FGM with material properties
of variable coefficients. To the best of the authors’ knowledge, the evanescent waves in FGM or
piezoelectric-piezomagnetic composite have not been studied before, which is the motivation of
this study.

In this paper, an analytic method based on polynomial expansions is proposed to calculate guided
waves in FGPPM plates. The presented method can replace the problem of computing a transcendental
dispersion equation by a general eigenvalue problem in wave number. The complete solutions of
the dispersion equation, including the purely real, purely imaginary and complex solutions, can be
obtained. We plot the full dispersion curves in three dimensional (3D) frequency-complex wave number
space to gain a better and deeper insight into the characteristics of evanescent waves. Two known
cases are given to validate this approach. The characteristics of evanescent guided waves in various
FGPPM plates are illustrated. The effects of different graded fields on the dispersion curves and the
coupled electromechanical factor are investigated. The displacement amplitude and electric potential
and magnetic potential distributions are also discussed in detail.

2. Mathematics and Formulation of the Problem

Consider a FGPPM plate with varying material properties with regard to thickness (the z-axis).
The plate described in Cartesian coordinate system (x, y, z), is infinite horizontally but finite in the
z direction with a thickness h, occupies the region 0 ≤ z ≤ h, as shown in Figure 1. The wave propagates
along the x direction, and the upper and bottom surface of the plate are traction free.
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Figure 1. Geometry of the problem.

For the piezoelectric-piezomagnetic medium, the governing field equations (Equation (1)) and
the generalized constitutive relations (Equation (2)) can be expressed as [12]:

σij,j = ρ
..
ui, Di,i = 0, Bi,i = 0 (1)

σij = Cijklεkl − ekijEk − qijk Hk, Di = eiklεkl+ ∈ik Ek + gik Hk, Bi = qijkε jk + gikEk + μik Hk (2)

εij =
1
2
(
ui,j + uj,i

)
, Ei = −ϕ,i, Hi = −ψ,i (3)

Generalized geometric equations under a rectangular coordinates system are in the above
Equations (1)–(3), σij is the stress tensor, Di is the electric displacement and Bi is the magnetic induction
Cijkl , ekij, qijk, ∈ik, gik and μik are the elastic, piezoelectric, piezomagnetic, dielectric, magnetic,
and magnetoelectric parameters of the FGPPM, respectively, while all of them, including the mass
density ρ, are functions of z. According to Einstein summation convention, where i, j, k and l = 1, 2, 3
corresponding to x, y, z directions, respectively. εkl , Ek and Hk are the strain tensor, the electric field,
and magnetic field, respectively. ui (i = x, y, z) denotes the mechanical displacement component in
the ith direction. ϕ and ψ are the electric potential and magnetic potential. Comma in subscripts and
superposed dot denote spatial and time derivatives, respectively.

For Lamb waves propagating along the x direction, the displacement components,
electric potential and magnetic potential can be expressed as

ui(x, z, t) = exp(ikx − iωt)Ui(z), ϕ(x, z, t) = exp(ikx − iωt)X(z), ψ(x, z, t) = exp(ikx − iωt)Y(z) (4)

where Ui (i = x, z) represents the amplitude of the displacements in the ith directions, X and Y represent
the amplitude of electric potential and magnetic potential, respectively. k is the wave number, ω is the
angular frequency, and i is the imaginary number.

Since the material properties change gradually with thickness and are the functions of z, they can
be fitted into the following form:

f (z) = f (l)(z/h)l , l = 0, 1, 2 . . . , L (5)

where f (f = ρ, C, e, ∈, q, g and μ) denotes material parameters, l is the order number, f (l) is the coefficient.
For homogeneous material, f (z) = C(0), and when l > 0, f (l) is zero.

The following boundary and continuous conditions should be satisfied as follows. For the
traction-free boundary condition, it requires that σzz

∣∣z=0,h = 0, σxz
∣∣z=0,h = 0, σyz

∣∣z=0,h = 0.
For electric and magnetic open circuit, Dz

∣∣z=0,h = 0, Bz
∣∣z=0,h = 0, and for electric and magnetic

shorted circuit, ϕ
∣∣z=0,h = 0, ψ

∣∣z=0,h = 0.
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Then take the traction-free and electrical and magnetic open-circuit boundary conditions as an example.
Considering the boundary of material, the position-dependent material parameters are given by:

f (z) = f (z)π(z) (6)

where π(z) is a rectangular window function defined by π(z) =

{
1, 0 ≤ z ≤ h
0, elsewhere

, whose derivative

is a Dirac’s delta function, δ(z − h) − δ(z). Then the boundary conditions can be automatically
incorporated in the constitutive relations [25].

To reduce the number of resolving equations, we substitute Equations (3)–(6) into Equation (2)
with following substitution into Equation (1). Consequently, the governing differential equations in
terms of the displacement, electric potential and magnetic potential components can be obtained. Here,
the case of an orthotropic FGPPM plate with the z direction polarization is given:

( z
h
)l
[
C(l)

55 U′′ + lz−1C(l)
55 U′ + ik

(
C(l)

13 + C(l)
55

)
W ′ + ik

(
e(l)15 + e(l)31

)
X′ + ik

(
q(l)15 + q(l)31

)
Y′

−k2C(l)
11 U + likz−1

(
C(l)

55 W + e(l)15 X + q(l)15 Y
)]

π(z) + (δ(z − 0)− δ(z − h))
( z

h
)l
(

C(l)
55 U′

+ikC(l)
55 W + ike(l)15 X + ikq(l)15 Y

)
= − ρ(l)zlω2

hl Uπ(z)

(7a)

( z
h
)l
[
C(l)

33 W ′′ + e(l)33 X′′ + q(l)33 Y′′ + ik
(

C(l)
13 + C(l)

55

)
U′ + lz−1

(
C(l)

33 W ′ + e(l)33 X′ + q(l)33 Y′
)

+likz−1C(l)
13 U−k2

(
C(l)

55 W + e(l)15 X + q(l)15 Y
)]

π(z) + (δ(z − 0)− δ(z − h))
( z

h
)l
(

C(l)
33 W ′

+e(l)33 X′ + q(l)33 Y′ + ikC(l)
13 U

)
= − ρ(l)zl ω2

hl Wπ(z)

(7b)

( z
h
)l
[
e(l)33 W ′′ − ∈(l)

33 X′′ − g(l)33 Y′′ + ik
(

e(l)15 + e(l)31

)
U′ + lz−1

(
e(l)33 W ′− ∈(l)

33 X′ − g(l)33 Y′
)

+likz−1e(l)31 U−k2e(l)15 W + k2 ∈(l)
11 X + k2g(l)11 Y

]
π(z)

+(δ(z − 0)− δ(z − h))
( z

h
)l
(

e(l)33 W ′ − ∈(l)
33 X′ − g(l)33 Y′ + ike(l)31 U

)
= 0

(7c)

( z
h
)l
[
q(l)33 W ′′ − g(l)33 X′′ − μ

(l)
33 Y′′ + ik

(
q(l)15 + q(l)31

)
U′ + likz−1q(l)31 U

+lz−1
(

q(l)33 W ′ − g(l)33 X′ − μ
(l)
33 Y′

)
−k2q(l)15 W + k2g(l)11 X + k2μ

(l)
11 Y
]
π(z)

+(δ(z − 0)− δ(z − h))
( z

h
)l
(

q(l)33 W ′ − g(l)33 X′ − μ
(l)
33 Y′ + ikq(l)31 U

)
= 0

(7d)

where U and W respectively represent the amplitude of vibration in the x and z directions.
The superscript (’) is the derivative with respect to z.

The four amplitudes can be expanded into Legendre orthogonal polynomial series as:

U(z) =
∞

∑
m=0

p1
mQm(z), W(z) =

∞

∑
m=0

p2
mQm(z), X(z) =

∞

∑
m=0

p3
mQm(z), Y(z) =

∞

∑
m=0

p4
mQm(z) (8)

where pα
m(α = 1, 2, 3, 4) are the expansion coefficients, Qm(r) are an orthonormal set of polynomials in

the interval [0,h].

Qm(z) =

√
2m + 1

h
Pm(

2z − h
h

) (9)

where Pm is the Legendre polynomial of order m.
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Substituting Equations (8) and (9) into Equation (7), then multiplying both sides of the modified
Equation (7) by the complex conjugate Q∗

j (z) with j running from 0 to M, integrating over z from 0 to
h, taking advantage of the orthonormality of the polynomial, yields:

k2

⎡
⎢⎢⎢⎢⎣

l Aj,m
11

l Aj,m
12

l Aj,m
13

l Aj,m
14

l Aj,m
21

l Aj,m
22

l Aj,m
23

l Aj,m
24

l Aj,m
31

l Aj,m
32

l Aj,m
33

l Aj,m
34

l Aj,m
41

l Aj,m
42

l Aj,m
43

l Aj,m
44

⎤
⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p1
m

p2
m

p3
m

p4
m

⎫⎪⎪⎪⎬
⎪⎪⎪⎭+ k

⎡
⎢⎢⎢⎢⎣

l B j,m
11

l B j,m
12

l B j,m
13

l B j,m
14

l B j,m
21

l B j,m
22

l B j,m
23

l B j,m
24

l B j,m
31

l B j,m
32

l B j,m
33

l B j,m
34

l B j,m
41

l B j,m
42

l B j,m
43

l B j,m
44

⎤
⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p1
m

p2
m

p3
m

p4
m

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+

⎡
⎢⎢⎢⎢⎣

lC j,m
11

lC j,m
12

lC j,m
13

lC j,m
14

lC j,m
21

lC j,m
22

lC j,m
23

lC j,m
24

lC j,m
31

lC j,m
32

lC j,m
33

lC j,m
34

lC j,m
41

lC j,m
42

lC j,m
43

lC j,m
44

⎤
⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p1
m

p2
m

p3
m

p4
m

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ = −ω2

⎡
⎢⎢⎢⎣

l Mj
m 0 0 0

0 l Mj
m 0 0

0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎦
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p1
m

p2
m

p3
m

p4
m

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(10)

or is abbreviated as
k2A · p + k1B · p + C · p = −ω2M · p (11)

where A, B, C and M are matrices of order 4(M + 1)·(M + 1), p =
[
p1

m p2
m p3

m p4
m
]T , the elements of the

matrices are as following,

l Aj,m
11 = − 1

hl C(l)
11 β(m, l, 0, j)l Aj,m

22 = − 1
hl C(l)

55 β(m, l, 0, j)l Aj,m
23 = − 1

hl e(l)15 β(m, l, 0, j)
l Aj,m

24 = − 1
hl q(l)15 β(m, l, 0, j)l Aj,m

32 = − 1
hl e(l)15 β(m, l, 0, j)l Aj,m

33 = 1
hl ∈(l)

11 β(m, l, 0, j)
l Aj,m

34 = 1
hl g(l)11 β(m, l, 0, j)l Aj,m

42 = − 1
hl q(l)15 β(m, l, 0, j)l Aj,m

43 = 1
hl g(l)11 β(m, l, 0, j)

l Aj,m
44 = 1

hl μ
(l)
11 β(m, l, 0, j)l Aj,m

12 = l Aj,m
21 = 0l Aj,m

13 = l Aj,m
31 = 0l Aj,m

14 = l Aj,m
41 = 0;

l B j,m
12 = 1

hl {i
(

C(l)
13 + C(l)

55

)
β(m, l, 1, j) + liC(l)

55 β(m, l − 1, 0, j) + iC(l)
55 γ(m, l, 0, j)},

l B j,m
13 = 1

hl {i
(

e(l)15 + e(l)31

)
β(m, l, 1, j) + lie(l)15 β(m, l − 1, 0, j) + ie(l)15 γ(m, l, 0, j)}

l B j,m
14 = 1

hl {i
(

q(l)15 + q(l)31

)
β(m, l, 1, j) + liq(l)15 β(m, l − 1, 0, j) + iq(l)15 γ(m, l, 0, j)}

l B j,m
21 = 1

hl {i
(

C(l)
13 + C(l)

55

)
β(m, l, 1, j) + liC(l)

13 β(m, l − 1, 0, j) + iC(l)
13 γ(m, l, 0, j)}

l B j,m
31 = 1

hl {i
(

e(l)15 + e(l)31

)
β(m, l, 1, j) + lie(l)31 β(m, l − 1, 0, j) + ie(l)31 γ(m, l, 0, j)}

l B j,m
41 = 1

hl {i
(

q(l)15 + q(l)31

)
β(m, l, 1, j) + liq(l)31 β(m, l − 1, 0, j) + iq(l)31 γ(m, l, 0, j)},

l B j,m
11 = l B j,m

22 = l B j,m
33 = l B j,m

44 = 0l B j,m
23 = l B j,m

32 = 0l B j,m
24 = l B j,m

42 = 0l B j,m
34 = l B j,m

43 = 0;
lC j,m

11 = 1
hl

{
C(l)

55 β(m, l, 2, j) + lC(l)
55 β(m, l − 1, 1, j) + C(l)

55 γ(m, l, 1, j)
}

lC j,m
22 = 1

hl

{
C(l)

33 β(m, l, 2, j) + lC(l)
33 β(m, l − 1, 1, j) + C(l)

33 γ(m, l, 1, j)
}

lC j,m
23 = 1

hl

{
e(l)33 β(m, l, 2, j) + le(l)33 β(m, l − 1, 1, j) + e(l)33 γ(m, l, 1, j)

}
lC j,m

24 = 1
hl

{
q(l)33 β(m, l, 2, j) + lq(l)33 β(m, l − 1, 1, j) + q(l)33 γ(m, l, 1, j)

}
,

lC j,m
32 = 1

hl

{
e(l)33 β(m, l, 2, j) + le(l)33 β(m, l − 1, 1, j) + e(l)33 γ(m, l, 1, j)

}
lC j,m

33 = 1
hl {− ∈(l)

33 β(m, l, 2, j)− l ∈(l)
33 β(m, l − 1, 1, j)− ∈(l)

33 γ(m, l, 1, j)}
lC j,m

34 = 1
hl {− g(l)33 β(m, l, 2, j)− lg(l)33 β(m, l − 1, 1, j)− g(l)33 γ(m, l, 1, j)}

lC j,m
42 = 1

hl

{
q(l)33 β(m, l, 2, j) + lq(l)33 β(m, l − 1, 1, j) + q(l)33 γ(m, l, 1, j)

}
lC j,m

43 = 1
hl {−g

(l)
33 β(m, l, 2, j)− lg(l)33 β(m, l − 1, 1, j)− g(l)33 γ(m, l, 1, j)}

lC j,m
44 = 1

hl {−μ
(l)
33 β(m, l, 2, j)− lμ(l)

33 β(m, l − 1, 1, j)− μ
(l)
33 γ(m, l, 1, j)},

lC j,m
12 = lC j,m

21 = 0lC j,m
13 = lC j,m

31 = 0lC j,m
14 = lC j,m

41 = 0l Mj
m = 1

hl ρ(l)β(m, l, 0, j);

with β(m, l, n, j) =
∫ h

0 Q∗
j (z)z

l ∂nQm(z)
∂zn dz, γ(m, l, n, j) =

∫ h
0 Q∗

j (z)z
l ∂π(z)

∂z
∂nQm(z)

∂zn dz.
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The objective is to find wave numbers k that satisfy the Equation (11). It is simple and useful for
propagating wave, by specifying real k and then solving for ω. But if interest is the evanescent wave,
the approach is useless because k is complex and the solving of Equation (11) involves a multivariable
search. In order to overcome this difficulty, we develop a new solution procedure as shown below.

We introduce two new vectors:

q = k · p, N = −ω2M. (12)

Substitution Equation (12) into Equation (11), and then multiplying both sides of the modified
Equation (11) by inverse matrix A−1, yields

A−1(N − C)p − (A−1B)q = k · q. (13)

Combining Equation (13) and the above vector q = k · p, we obtain[
Z I4(M+1)

A−1(N − C) −A−1B

][
p

q

]
= k

[
p

q

]
. (14)

where I is the identity matrix and Z is a zero matrix.
If we define R = [pq]T , then Equation (14) can be written as[

Z I4(M+1)
A−1(N − C) −A−1B

]
R = kR. (15)

Up to this stage, the problem is reduced to a typical eigenvalue problem, which can be easily
solved using an eigensolver routine that yields the complex eigenvalues k. All the developments
performed in this paper were implemented in Mathematica software (version 8.0, Wolfram company,
Champaign, IL, USA). The calculation technique in the short-circuit case is similar to that which is
used in the open-circuit case. The deduction process is not shown to save space.

3. Numerical Results and Discussion

Based on the previous formulations, the computer program in terms of the presented method has
been written using Mathematica software to calculate the dispersion and phase velocity curves for the
FGPPM plate composed of CoFe2O4 (top) and Ba2TiO3 (bottom), h = 1 mm. The material parameters
are from literature [26] and are listed in Table 1.

Table 1. Material parameters of two piezoelectric-piezomagnetic materials.

Materials
Property

C11 C12 C13 C22 C23 C33 C44 C55 C66

Ba2TiO3 166 77 78 166 78 162 43 43 44.6
CoFe2O4 286 173 170 286 170 269 45.3 45.3 46.5

Property

e15 e24 e31 e32 e33 ∈11 ∈22 ∈33 ρ

Ba2TiO3 11.6 11.6 −4.4 −4.3 18.6 196 201 28 5.8
CoFe2O4 0 0 0 0 0 0.8 0.8 0.93 5.3

Property

q15 q24 q31 q32 q33 μ11 μ22 μ33

Ba2TiO3 0 0 0 0 0 5 5 10
CoFe2O4 550 550 580.3 580.3 699.7 −590 −590 157

Units: Cij (109 N/m2), ∈ij (10−10 F/m), eij (C/m2), qij (N/Am), μij (10−6 Ns2/C2), ρ (103 kg/m3).
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We use the Voigt-type model, as described in the literature [27], to calculate the effective material
property of the FGPPM plate:

F(z) = FBVB(z) + FCVC(z), VB(z) + VC(z) = 1 (16)

where FB and FC respectively represent the material property of the Ba2TiO3 and CoFe2O4 materials,
and VB and VC are volume fraction.

Equation (16) can be rewritten as

F(z) = FB + (FC − FB)VC(z) (17)

Similar to Equation (5), VC(z) can be expressed as a power expansion, Here we consider four
different gradient fields, VC(z) = (z/h)n, n = 1, 2 and 3, namely linear, quadratic and cubic graded
fields, and sinusoidal graded field VC(z) = sin(0.5πz/h).

3.1. Approach Validation and Convergence of the Problem

To check the validity and the efficiency of our approach, we make a comparison between our
results and the literature results. Because there is no investigation on the evanescent waves in FGPPM
so far, we compute the full spectrum of Lamb wave in a steel plate and make a comparison with the
available results in literature [17] from a spectral collocation method. The calculating parameters
are ρ = 7932 kg/m3, C11 = 281.757 GPa, C12 = 113.161 GPa, C44 = 84.298 GPa, and h = 10 mm.
The non-dimensional frequency and wave number are defined as Ω = (ωh

√
ρ/C44)/π, Ψ = kh/π,

respectively. The resulting dispersion curves are given in Figure 2. It clearly shows that the numerical
results obtained by the present polynomial approach agree well with those obtained by the spectral
collocation method, which validates our approach and program.

 

Figure 2. Dispersion curves of Lamb wave in a steel plate; hollow dots-our results, solid lines-literature
results from the spectral collocation method; real branch in blue, purely imaginary branch in black,
complex branch in red.
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The material in the above verification example is isotropic. We calculate the dispersion curves of
Lamb wave in an orthotropic plate and make a comparison with the available results in literature [28]
from the reverberation-ray matrix method, which serves as a further validation of our approach.
The material is PZT-4, and the material parameters are listed in Table 2. Figure 3 shows the obtained
frequency spectra. Here again, the agreement is quite good between our results and those from the
reverberation ray matrix method.

Table 2. Material parameters.

Material
Property

C11 C12 C13 C22 C23 C33 C44 C55 C66

PZT-4 139 78 74 139 74 115 25.6 25.6 30.5

Property

e15 e24 e31 e32 e33 ∈11 ∈22 ∈33 ρ

PZT-4 12.7 12.7 −5.2 −5.2 15.1 65 65 56 7.5

Units: Cij (109 N/m2), ∈ij (10−10 F/m), eij (C/m2), ρ (103 kg/m3).

Figure 3. Dispersion curves of Lamb wave in a PZT-4 plate; red dots—our results, black dotted
lines—literature results from the reverberation-ray matrix method.

Then we discuss the convergence of the present polynomial approach. We present dispersion
curves of propagating Lamb-like wave in a linear FGPPM plate with electric and magnetic open circuit
and h = 1 mm, when the truncation order M takes 7, 8, 9 and 15, respectively, as shown in Figure 4.
It can be seen that more and more order modes converge as M increases. When M = 7, the first three
modes are convergent. The first four when M = 8, and the first seven when M = 9. So, we can think
that at least the first (M − 1)/2 modes are convergent. Similarly, this can be concluded for the purely
imaginary modes, and we don’t present the dispersion curves of purely imaginary branches for saving
space. For evanescent Lamb-like waves, we tabulate the results in Table 3 since graph is not convenient
for comparison. These numerical results also show that the complex solutions are convergent as
M increases. When M = 10 and M = 11, the first three modes are convergent. The first four when
M = 12, the first five when M = 13, and the first six when M = 14. Obviously, the real solution is easier
to converge than the complex one. From these results, good convergence of the present approach can
be observed. We take M = 30 in this paper.
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Figure 4. Dispersion curves of propagating Lamb-like wave in a linear functionally graded
piezoelectric-piezomagnetic material (FGPPM) plate with various “M”.

Table 3. Convergence of complex wave numbers of the first six modes (Ω = 0.1).

M
Mode

1 2 3 4 5 6

10 0.31308
+0.67653i

0.32055
+1.23591i ™

0.16593
+1.87713i ™

0.33292
+2.58928i ™

0.34536
+3.14395i ™

0.24222
+3.74226i ™

11 0.31308
+0.67653i

0.32055
+1.23591i ™

0.16593
+1.87713i ™

0.33184
+2.59041i

0.34722
+3.14407i ™

0.24481
+3.73460i ™

12 0.31308
+0.67653i

0.32055
+1.23591i ™

0.16593
+1.87713i ™

0.33063
+2.59061i

0.35203
+3.14418i ™

0.25047
+3.72524i

13 0.31308
+0.67653i

0.32055
+1.23591i ™

0.16593
+1.87713i ™

0.33063
+2.59061i

0.35211
+3.14436i ™

0.25504
+3.72496i ™

14 0.31308
+0.67653i

0.32055
+1.23591i ™

0.16593
+1.87713i ™

0.33063
+2.59061i

0.35211
+3.14436i ™

0.25561
+3.72471i ™

20 0.31308
+0.67653i

0.32055
+1.23591i ™

0.16593
+1.87713i ™

0.33063
+2.59061i

0.35211
+3.14436i ™

0.25561
+3.72471i ™

3.2. Full Dispersion Curves of Lamb Wave

Propagating waves have received a lot of attention, and here we put the emphasis on evanescent
waves. We plot the full dispersion curves in 3D frequency-complex wave number space for a clearer
visualization of the solutions and a better understanding of the nature of the modes, when necessary,
with a different color for clarity. Figure 5a plots the full dispersion curves of Lamb wave for a linear
FGPPM plate with electric and magnetic open circuit. Since the eigenvalues are computed for one ω

at a time, the dispersion curves are constructed of unconnected dots and the points near the cut-off
frequencies become sparse. We can observe that purely real and purely imaginary solutions appear
in pairs of opposite signs and the complex ones appear in quadruples of complex conjugates and
opposite signs. Purely real wave numbers correspond to the propagating wave, and purely imaginary
and complex wave numbers correspond to the evanescent wave. For a given frequency, a certain small
number of real branches exist together with an infinite number of complex and purely imaginary
branches (mostly imaginary with few complexes in the given range). For clarity, Figure 5b shows
one quadrant dispersion curves in a small range. For complex branches, most of them start from
0 frequency and end at the minima of the purely real branches. Occasionally, one connecting two
purely imaginary branches appears. The real part of the complex branches is usually small. For purely
imaginary branches, most of them start from 0 frequency and end at cut-off frequencies with increasing
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frequency, and some with small wave numbers start from one cut-off frequency and terminate the
other one.

  
(a) (b) 

Figure 5. 3D dispersion curves of Lamb wave: (a) four quadrants, (b) one quadrant; blue—real solutions,
green—imaginary solutions, red—complex solutions.

Figure 6 shows the phase velocity dispersion and attenuation curves of the first three propagating
and complex branches. The dimensionless phase velocity and frequency and attenuation are defined
by Vp = ω/(Re(k) ·√C55/ρ), fh = ωh/(2π

√
C55/ρ) and Im(kh). We can find from these curves that

the phase velocity of a propagating mode is decreased and gradually tends to a steady value with
increasing frequency, but the velocity of an evanescent mode becomes bigger as well as the attenuation
decreases. At high frequency, the evanescent mode has a very small attenuation, and its phase velocity
is noticeably bigger than that of a propagating mode. For example, at fh = 2–3, the phase velocity of
the second evanescent mode is about 8, but that of the propagating mode is below 2. Also, the wave
dispersion is quite weak in this frequency range.

 

Figure 6. The phase velocity dispersion and attenuation curves; propagating wave in blue, evanescent
wave in red.
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3.3. Influences of Graded Field on Dispersion Curves and the Electromechanical Coupling Factor

Considering two graded shapes, cubic and sinusoidal graded fields. Figure 7 shows their
dispersion curves of Lamb wave. The results show that the effect of the graded field on dispersion
characteristics of Lamb wave is significant, including the propagating modes and evanescent modes.
Comparison between Figures 7 and 5b, we can notice that the imaginary part of the complex branches
for the sinusoidal graded case, at Ω = 0 plane, is bigger than that for the linear and cubic cases.
Interestingly, for the cubic graded cases, the complex branch connecting two purely imaginary branches
disappears and turns into a different one connecting a purely imaginary branch and a real branch.
For clarity, Figure 8 shows the frequency spectra and phase velocity spectra of Lamb propagating
wave for the three graded fields. Obviously, the effect of the graded field is little on the low mode,
but becomes significant with increasing the mode order and wave number. The phase velocity for
the sinusoidal graded field is bigger than that for the linear graded field, while the linear bigger
than the cubic. The reason lies in that the different graded fields result in different material volume
distributions, and the wave velocity depends on the material properties. Figure 9 gives the variation
curves of the three gradient fields in the z direction. The CoFe2O4 content for the sinusoidal graded
field is the highest, and the wave velocity of Ba2TiO3 is slower than that of CoFe2O4.

  
(a) (b) 

Figure 7. 3D dispersion curves of Lamb wave: (a) cubic graded field, (b) sinusoidal graded field.
blue—real branches, green—purely imaginary branches, red—complex branches.

  
(a) (b) 

Figure 8. Dispersion curves of propagating Lamb wave for FGPPM plates with different graded fields;
(a) Frequency spectra; (b) Phase velocity spectra.
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Figure 9. Variation curves of the three graded functions.

The magneto-electromechanical coupling factor K2 is an important parameter for designing
acoustic wave devices. A high magneto-electromechanical coupling factor is expected in engineering
applications. It is defined as [29]

K2 =
2|Voc − Vsc|

Voc
(18)

where Voc and Vsc are the phase velocities for the electric and magnetic open circuit and short
circuit, respectively.

To illustrate the effect of graded field on the K2, we calculate the K2 for S0 modes of four different
FGPPM plates, as shown in Figure 10. We can find that the K2 reaches a maximum at a certain wave
number and tend to the same little value with increasing wave number, which implies the influence
of the graded field on the energy propagation of Lamb wave in high-frequency zone is insignificant.
It reaches a maximum from 4.4% for the sinusoidal graded field to 9.5% for the cubic graded field.
They are located near kh = 2 and kh = 1.5 respectively. The K2 for the cubic graded field is always bigger
than that of the other three graded cases. Also the maximum of K2 shifts to the smaller wave number
when the graded power exponent is increasing.

Figure 10. Effect of graded field on magneto-electromechanical coupling factor for S0 mode.

3.4. Wave Structure Analysis

The distributions of displacement and electric potential and magnetic potential fields can be
obtained according to Equations (4) and (8). Considering a special position where the complex
branch firstly collapses onto the real branch at about Ω = 1.0, as marked with a circle in Figure 5b.
Figures 11 and 12 present the distributions of the physical quantities in the z and x directions when
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Ω = 1.01115, Ψ = 0.23216 − 0.04612i, and Ω = 1.01911, Ψ = 0.17938, respectively. As seen in these figures,
the real branch propagates without any attenuation, and the complex branch exhibits an oscillatory
distribution and propagates a very long distance, about a few tens of thicknesses of the plate.
The displacement uz and electric potential and magnetic potential distributions change along the
z direction in a nearly anti-symmetric manner. The displacement ux exhibits a nearly symmetric
manner. The distribution of displacement uz of the complex branch is very similar to that of the real
branch, implying the evanescent wave mode converts into the propagating wave mode.

 
(a) 

(b) 

Figure 11. Distributions of the physical quantities when Ω = 1.01115, Ψ = 0.23216 − 0.04612i.
(a) displacement distribution, (b) electric potential and magnetic potential distribution.

 
(a) 

(b) 

Figure 12. Distributions of the physical quantities when Ω = 1.01911, Ψ = 0.17938. (a) displacement
distribution, (b) electric potential and magnetic potential distribution.
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3.5. Merits of the Presented Method

Based on the above calculation of wave propagation in a FGPPM plate, we can summarize the
following advantages of the presented method, which makes the method attractive.

(1) The complex mathematical issue is reduced to solve an eigenvalue problem, which is capable
of accurately determining all the real, imaginary and complex solutions of a transcendental
dispersion equation.

(2) The conventional approaches (root-finding routines or finite element simulations) require
an iterative search procedure or a far greater coding effort, to find complex roots. The present
method can avoid tedious iterative two-variable search and is simple to program. It needs to
take a larger polynomial order to obtain solutions of the higher modes, which will cause more
computer memory and long time.

(3) The method is easy to implement and can be extended to complex structures such as multilayered
or curved structures.

4. Conclusions

This paper presents an analytic method based on polynomial expansions for the determination
of the full dispersion spectrum of the guided waves in the FGPPM plate. The correctness of the
present method is verified via numerical comparison with available reference results. For the first time,
the complete 3D dispersion curves of Lamb wave in a FGPPM plate are illustrated in a wide frequency
range. The characteristics of the Lamb waves including the propagating and evanescent modes in
various FGPPM plates are investigated. The emphasis on evanescent waves makes this work relevant
for applications in the nondestructive evaluation of material or structural properties. Based on the
above numerical results, some interesting conclusions can be drawn:

(1) Superior to the conventional methods that necessitate an iterative search procedure to solve the
complex roots of a dispersion equation, the presented analytic method can transform the set of
differential equations for the acoustic waves into an eigenvalue problem in the form AX = kX to
find the complex solutions.

(2) Complex branches of the Lamb wave usually collapse onto the extremum of the real branches.
They exhibit both local vibration and local propagation, and some can propagate a quite long
distance (more than ten times of the plate thickness). They will turn into the propagating modes
with increasing frequency.

(3) Some evanescent modes have a noticeably higher phase velocity than the propagating modes.
The phase velocity of the low order evanescent modes is more than four times larger than that
of the propagating modes. Also, the wave dispersion of the evanescent mode is quite weak in
a certain frequency range.

(4) The magneto-electromechanical coupling factor of the guided wave in a FGPPM plate may
be improved by adjusting the graded field. The coupling factor reaches a maximum from
4.4% for the sinusoidal graded field to 9.5% for the cubic graded field. The maximum of the
magneto-electromechanical coupling factor for the S0 mode shifts to lower frequencies with
increasing the gradient index.

Author Contributions: X.Z. and J.Y. proposed the studied problem and the corresponding solving method;
X.Z. and Z.L. conducted the theoretical derivation and the computation; X.Z. and J.Y. analyzed and discussed the
results; X.Z. and J.Y. wrote the paper.

Funding: This research was funded by the National Natural Science Foundation of China (No. U1504106),
the fundamental research funds for the national outstanding youth project of Henan Polytechnic University
(No. NSFRF140301), and the Program for Innovative Research Team of Henan Polytechnic University (T2017-3).

Conflicts of Interest: The authors declare no conflict of interest.

224



Materials 2018, 11, 1186

References

1. Wang, J.G.; Chen, L.F.; Fang, S.S. State vector approach to analysis of multilayered magneto-electro-elastic
plates. Int. J. Solids Struct. 2003, 40, 1669–1680. [CrossRef]

2. Tornabene, F. Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures
with a four-parameter power-law distribution. Comput. Methods Appl. Mech. Eng. 2009, 198, 2911–2935. [CrossRef]

3. Kandasamy, R.; Dimitri, R.; Tornabene, F. Numerical study on the free vibration and thermal buckling
behavior of moderately thick functionally graded structures in thermal environments. Compos. Struct. 2016,
157, 207–221. [CrossRef]
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Abstract: In the present study, the propagation of Love waves is investigated in a layered structure
with two different homogeneity saturated materials based on Biot’s theory. The upper layer is
a transversely isotropic functional graded saturated layer, and the substrate is a saturated semi-space.
The inhomogeneity of the functional graded layer is taken into account. Furthermore, the gradient
coefficient is employed as the representation of the relation with the layer thickness and the material
parameters, and the power series method is applied to solve the variable coefficients governing
the equations. In this regard, the influence of the gradient coefficients of saturated material on the
dispersion relations, and the attenuation of Love waves in this structure are explored, and the results
of the present study can provide theoretical guidance for the non-destructive evaluation of functional
graded saturated material.

Keywords: functional graded saturated material; inhomogeneity; Love wave; dispersion; attenuation

1. Introduction

The research of the propagation characteristics of Love waves have been found in a wide range
of engineering applications, such as seismic engineering, geotechnical engineering, and geophysics.
Studies based on the elastic hypothesis have been sufficiently carried out. Since 1956, Biot [1–3]
established the constitutive relation and the motion equation of saturated porous media. Based on
Biot’s work, fruitful results have been yielded thereafter. Deresiewics et al. [4–6] derived the dispersion
and attenuation equations of Love waves in the porous media. Wang, Tong, and Santos et al. [7–9] used
the iteration method to solve the dispersion equation of porous materials. In addition, Konezak [10]
and Ba et al. [11] gave a solution to the propagation of waves in porous layered half-space.

However, the research, which we have mentioned above, mainly focused on the homogeneous
hypothesis of media. In the real situation, some saturated materials are always regarded as a layered
and inhomogeneous medium, in which the material parameters vary continuously with the medium
thickness. On this basis, how to explain the influence of homogeneity on wave propagation
characteristics has become a crucial problem. In the recent years, some researchers use analytical
methods to solve this problem. For example, Ke et al. [12] and Qian et al. [13] used the iterative
method and Wentzel-Kramers-Brillouin (WKB) method, respectively, to deal with the inhomogeneity
of materials, but have some limitations. In Ke’s work, the inhomogeneity of materials was described
just as an exponential function, which we do not think is sufficient. The WKB method is too complicated
for calculation. Cao et al. [14–16] used the power series method to solve Love wave and Rayleigh wave
propagation problems in the FGM layered composite system.

In this study, the inhomogeneity of the saturated material and solid skeleton is supposed to
be transversely isotropic. In addition, the assumption is made concerning the relationship between

Materials 2018, 11, 2165; doi:10.3390/ma11112165 www.mdpi.com/journal/materials227
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material thickness and material parameters, of which the latter vary continuously along the depth.
Then, the dispersion relations and the attenuation of Love waves are investigated.

2. Statement of the Problem and Governing Equations

The propagation of Love waves in a functional graded saturated media structure is shown in
Figure 1. The upper layer is a transversely isotropic inhomogeneous saturated layer with the thickness
of H. The surface of this layer is traction free, and the substrate is a homogeneous saturated half-space.
Based on the Biot’s model of the homogeneous anisotropic saturated porous media, the soil skeleton
is considered as a transversely isotropic medium. In terms of the Love waves propagation in the
structure shown in Figure 1, the expressions of displacement are given as follows:{

ux = uy = 0, uz = uz(x, y, t),
wx = wy = 0, wz = wz(x, y, t).

(1)

Based on the motion equations, presented by Biot [3] in porous media, namely:{
σij,j = ρ

..
ui + ρ f

..
wi,

−p f ,j = ρ f
..
ui + mii

..
wi + rii

.
wi,

(2)

where p f is the fluid pressure, and ρ is the density of saturated material, which can be expressed
as ρ = (1 − φ)ρs + φρ f . ρs is the density of solid skeleton, ρ f is the fluid density, and φ is the
porosity of the solid. The ui in the equation is the component of the solid skeleton, and in terms of
wi = −φ(ui − Ui), Ui is the displacement of fluid. The comma followed by the subscript i indicates the
space differentiation with respect to the corresponding coordinate x, y, and z, the dot “•” represents
time differentiation, and the repeated index is the means to summation related to that index. The
parameter mii = Re[αi(ω)]ρ f /φ and rii = η/Re[Ki(ω)] are Biot’s coefficients put forward by Biot. They
are the functions of angular frequency ω and ω = ck. C and k are the velocity and numbers of the
waves. Where η is the viscosity of the fluid, and αi(ω) and Ki(ω) are the dynamic tortuosity and
permeability. Let ux, uy, uz and wx, wy, wz denote the displacement of the medium. The governing
equations for the displacement of medium can be obtained.

Let ui, wi denote the displacement in the substrate layer. The expression of the governing equations
for the Love waves propagating in the substrate layer (x > 0) are given as follows.⎧⎨

⎩ C44
∂2uz
∂x2 + C44

∂2uz
∂y2 = ρ ∂2uz

∂t2 + ρ f
∂2wz
∂t2 ,

ρ f
∂2uz
∂t2 + m1

∂2wz
∂t2 + r1

∂wz
∂t = 0,

(3)

where C44 is the coefficient of material parameters. The “¯” symbol is used to denote the parameters in
the substrate layer.

Similarly, we use ûi, ŵi denote the displacement in the upper layer. The governing equations for
the Love waves propagating in the upper layer (−H < x < 0) can be expressed as follows:

{
Ĉ44

∂2ûz
∂x2 + Ĉ′

44
∂ûz
∂x + Ĉ44

∂2ûz
∂y2 = ρ̂ ∂2ûz

∂t2 + ρ̂ f
∂2ŵz
∂t2 ,

ρ̂ f
∂2ûz
∂t2 + m̂1

∂2ŵz
∂t2 + r̂1

∂ŵz
∂t = 0,

(4)

where the superscript “′” indicates the space differentiation with respect to the x− coordinate. The “ˆ”
symbol is used to denote the parameters in the upper layer, and these parameters are the functions of
the x − axis, which needs to be emphasized.

The boundary condition of the present problem should be satisfied as follows: (a) the traction free
boundary condition is τ̂xz(−H, y) = 0 at x = −H; (b) the stress and displacement are all continuous,
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τxz(0, y) = τ̂xz(0, y), uz(0, y) = ûz(0, y), wz(0, y) = ŵz(0, y); and (c) the attenuation conditions for
Love waves are uz → 0 at x → ∞ .

Figure 1. The functional graded saturated material layered structure.

3. Solution of the Problem

In light of the present Love waves propagation problem we have discussed above, the solutions
of the governing equations can be supposed as follows:{

uz(x, y, t) = Az(x) exp[ik(y − ct)],
wz(x, y, t) = Wz(x) exp[ik(y − ct)],

(5)

where i =
√−1, k = 2π/λ is the wave number, and c is the phase velocity. Az(x) and Wz(x) are

the amplitudes of the displacement, which will be solved. Furthermore, the “¯” symbol and the
“ˆ” symbol are used to denote the substrate layer and the upper layer, respectively, so Az(x) is the
amplitudes of the displacement of the substrate layer, and Âz(x) refers to the amplitudes of the upper
layer, respectively.

Firstly, in order to solve the problem in the substrate layer, we combine Equation (5) with
Equation (3), and the governing equations can be modified as follows:{

C44
(

A′′
z − k2 Az

)
= −ρc2k2 Az − ρ f c2k2Wz,

ρ f c2k2 Az + m1c2k2Wz + r1ickWz = 0 .
(6)

Then, the Love waves in the substrate layer can be expressed as follows:{
uz(x, y, t) = [C1 exp(iγx) + C2 exp(−iγx)] exp[ik(y − ct)],

wz(x, y, t) = − ρ f ck
m1ck+r1i uz(x, y, t),

(7)

For the radiation condition of the Love waves, we must have Im(γ) > 0 and Re(γ) > 0. And, when
integrating Equation (7) into the attenuation conditions, we can easily find that C2 = 0.

Secondly, the governing equations in the upper layer can be solved by combing Equation (5) with
Equation (4), and the governing equation can be modified as follows:{

Ĉ44 Â′′
z + Ĉ′

44 Â′
z − Ĉ44k2 Âz = −ρ̂c2k2 Âz − ρ̂ f c2k2Ŵz,

ρ̂ f c2k2 Âz + m̂1ckŴz + r̂1ickŴz = 0,
(8)
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In order to solve the variable coefficient Equation (8), we assume the material parameters of the
upper layer as the following functional form:

Ĉ44 =
∞
∑

n=0
a1

n
( x

H
)n, ρ̂ =

∞
∑

n=0
a2

n
( x

H
)n, ρ̂ f =

∞
∑

n=0
a3

n
( x

H
)n,

m̂1 =
∞
∑

n=0
a4

n
( x

H
)n, r̂1 =

∞
∑

n=0
a5

n
( x

H
)n,

(9)

where the coefficients ai
n can be determined by the relations between the functions and their Taylor

expansions. Then, the solutions of Equation (8) can be assumed to take the similar forms, as follows:

Âz =
∞

∑
n=0

sn

( x
H

)n
, Ŵz =

∞

∑
n=0

tn

( x
H

)n
. (10)

According to the integration of Equations (9) and (10) into Equation (8), the two recursive
equations for sn and tn are presented as follows:

n
∑

i=0
(i + 2)(i + 1)a1

n−isi+2 +
n
∑

i=0
(n − i + 1)(i + 1)a1

n−i+1si+1 − (kH)2 n
∑

i=0
a1

n−isi

+c2(kH)2 n
∑

i=0
a2

n−isi + c2(kH)2 n
∑

i=0
a4

n−iti = 0 ,
(11)

c2k2
n

∑
i=0

a3
n−isi + c2k2

n

∑
i=0

a4
n−iti + ick

n

∑
i=0

a5
n−iti = 0 . (12)

We can calculate the coefficients of (x/H)n, sn, and tn with n from zero to infinity, using Equations
(11) and (12). On this basis, a matrix is described to solve these coefficients.

(
s0j, s1j

)
= I, (13)

where j = 3~4 and I is a 2 × 2 unit matrix. The solution of Equation (8) can be rewritten as follows:

Âz =
4

∑
j=3

Cj

∞

∑
n=0

snj

( x
H

)n
,Ŵz =

∞

∑
n=0

tn

( x
H

)n
. (14)

According to the discussion we have made above, the solution of Equation (4) can be described as
follows: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ûz(x, y, t) =

[
4
∑

j=3
Cj

∞
∑

n=0
Snj
( x

H
)n
]

exp[ik(y − ct)],

ŵz(x, y, t) =
[

∞
∑

n=0
tn
( x

H
)n
]

exp[ik(y − ct)],

(15)

Then, we apply Equations (15) and (7) to the boundary condition of the present problem, and there
are a set of homogeneous linear algebraic equations of unknown coefficients Ci,i = 1, 3, 4 obtained.
According to the condition for the existence of a non-trivial solution, the determinant of the coefficients
matrix Q must be vanished.

|Q| = 0. (16)

4. Numerical Results and Discussion

The numerical examples will be given to illustrate the propagation characters of Love waves in
the functional graded saturated layer, which are lying on a homogeneous saturated soil half-space.
First and foremost, some important hypotheses must be introduced. In light of our problem, we used
the following expression [7] to calculate the α(ω) and K(ω).
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η[ωKi(ω)]−1 = iφ−1ρ f αi(ω) = iφ−1ρ f αi(∞)

[
1 +

4i fci
3 f

×
(

1 − 3i
8

f
fci

)1/2
]

, (17)

where f = ω/2π is the wave frequency. fci = ωci/2π = 3ηφ
[
8πKi(0)αi(∞)ρ f

]−1
is a critical

frequency, which was reported by Sharma in 1991 [17]. At the functional graded layer, the material
parameters are functions of layer thickness, and these functions can be assumed as follows:

g = 1 − exp(px/H) , (18)

where the parameter p is the gradient coefficient, which refers to the level of layer inhomogeneity. On
this basis, the parameter function of soil thickness can be described as follows:

Ĉ44 = C44 · g, (19)

and the other parameters in the upper layer have the similar forms.
In the present paper, the influence of the gradient coefficient on the Love waves dispersion

relations and attenuation will be discussed. In detail, from the governing Equation (3), Equation (4),
and dispersion relations Equation (16), the wave number k in our problem is a complex k = k1 + k2.
Then, the dispersion relation curves will be drawn as the relation between the phase velocities c
and k1 in convenient, and we designate δ = k2/k1 as the attenuation coefficient to evaluate the Love
wave attenuation in our problem. In order to solve the complex dispersion equation, we used the
method called the minimum modulus value approximation, in order to approximate the suitable
solution. The theme of this method is described below. We assume the material parameter of the
homogeneous saturated media as follows: C44 = 4 Gpa, φ = 0.2, K1(0) = 1, α1(∞) = 1, η = 10−3 pa · s,
ρs = 30 kN/m3, ρl = 10 kN/m3, ρg = 1.2 kN/m3.

4.1. Influence of the Gradient Coefficient on Love Wave Dispersion

In order to describe the influence of the gradient coefficient on the Love wave dispersion, it is
necessary to give a solution to the complex Equation (16). First of all, according to the research
conducted by Sharma [17] and Wang [7], the Love wave speed has a range in the porous medium that
is determined by a critical frequency, fci. In this paper, we also chose them as the method to calculate
the range of the Love wave speed for specific gradient coefficients. Secondly, based on the range
of speed, we employed the minimum modulus value approximation method to obtain the suitable
solution of Equation (16). The theme of this method should be given as follows: (a) for a given speed
range of the specific gradient coefficient p and nth modes of Love wave, we choose four values of
(k1H,k2H) from k1H = 0, and made them as a square; (b) calculate the determinant of Equation (16);
(c) choose the values (k1H,k2H), which have the minimum value of determinant and use (k1H,k2H) as
an angular point to make the new square, which has a half-length of the side of the previous square;
(d) repeat the step (c) until the value of determinant reaches zero; and (e) give an increment of k1H,
and repeat the whole procedures. Then, we can draw a dispersion curve of the nth mode of the Love
wave. At the same time, the attenuation coefficient log[k2/k1] can also be calculated in the given
gradient coefficient p and nth modes of wave.

Figure 2 presents the Love wave dispersion curve of 1st and 2nd modes with the gradient p = 0.6.
The comparison of the different gradient coefficients (p = 0.2, 0.6, 0.8) is shown in Figure 3. The results
in Figure 3 suggest that the gradient coefficient p gives a conspicuous impact of Love wave dispersion.
And Figure 4 shows the material parameter distributions. With the increase of the gradient coefficient
p, the phase velocity of the Love wave decreases obviously, and the influence of the gradient coefficient
on the first mode is more intense than that on the second mode. For the first mode of the Love wave,
with the increase of dimensionless wave numbers k1H, the influence of gradient coefficients on phase
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velocity gradually increases. In terms of the second mode of the Love wave, the influence is smoother
than that on the first mode.

Figure 2. The dispersion curve of the Love wave in the inhomogeneous unsaturated layer lies on
homogeneous saturated half-space.

Figure 3. The comparison of the dispersion relation of the Love wave with the different gradient
parameter p.

Figure 4. The material parameter distributions.

4.2. Influence of the Gradient Coefficient on Love Wave Attenuation

The attenuation of the Love wave is shown in Figure 5. The solid line denotes the first mode
attenuation, and the second mode is expressed by the dashed line. As the two modes indicate,
the attenuation rapidly increases at first, and then becomes smoother with the increase of dimensionless
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wave numbers, k1H. The investigating results of the influence of the gradient coefficient on the
attenuation of the Love wave are plotted in Figure 6. In the current study, the discussion mainly
focuses on the situation of the Love wave attenuation in the first mode. The solid line refers to the
situation of p = 0.2, the dashed line describes the p = 0.6, and the case of p = 0.8 is plotted as the dotted
line. It is easily seen that the change of gradient coefficient almost exerts no effect on the Love wave
attenuation, and the influence of material inhomogeneity on the attenuation of wave is very little.
In this regard, great interest is entailed in the comparison with the rapid influence of inhomogeneity
on the dispersion of the Love wave.

Figure 5. The attenuation curve of the Love wave in the inhomogeneous saturated layer lies on
homogeneous saturated half-space.

Figure 6. The comparison of the attenuation of the Love wave with the different gradient parameter p.

5. Conclusions

In this paper, based on the Biot’s saturated porous medium theory, the influence of inhomogeneity
has been theoretically analyzed on the propagation character of the Love wave in a transversely
isotropic inhomogeneous saturated layer lying on a saturated half-space. The governing equations
of the problem have been solved by the power series method, and the minimum modulus value
approximation method is employed to discuss the dispersion equation of the Love wave. The gradient
coefficient p has been introduced to describe the inhomogeneity of the saturated media, and we
obtained the dispersion and attenuation curve of the Love wave with different gradient coefficients.
It is important to note that the gradient coefficient has a great influence on the dispersion of the Love
wave, but the effect of the gradient coefficient on the attenuation is less significant.
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Abstract: To investigate Lamb waves in thin films made of functionally graded viscoelastic material,
we deduce the governing equation with respect to the displacement component and solve these
partial differential equations with complex variable coefficients based on a power series method.
To solve the transcendental equations in the form of a series with complex coefficients, we propose
and optimize the minimum module approximation (MMA) method. The power series solution agrees
well with the exact analytical solution when the material varies along its thickness following the same
exponential function. When material parameters vary with thickness with the same function, the effect
of the gradient properties on the wave velocity is limited and that on the wave structure is obvious.
The influence of the gradient parameter on the dispersion property and the damping coefficient are
discussed. The results should provide nondestructive evaluation for viscoelastic material and the
MMA method is suggested for obtaining numerical results of the asymptotic solution for attenuated
waves, including waves in viscoelastic structures, piezoelectric semiconductor structures, and so on.

Keywords: Lamb wave; functionally graded viscoelastic material; minimum module approximation
method; damping coefficient

1. Introduction

Lamb waves, which are a type of plain strain wave in a thin film or a plate with a traction-free
boundary, are widely used in nondestructive evaluation. Early research reported on Lamb waves
focused on isotropic elastic plates [1]. Since then, scientists have directed more attention to Lamb waves
in plates made of various materials, including viscoelastic materials [2], functionally graded materials
(FGMs) [3], piezoelectric materials [4], and piezoelectric–piezomagnetic materials [5]. To detect material
properties or damage to the structures, much research has been focused on guided waves in composite
structures based on numerical and experimental methods [6,7].

FGMs were proposed by scientists as a kind of thermal-protection material in the 1990s [8].
In FGM structures, the material parameters are not constant and vary along one direction continuously.
With the development of material technology, the FGM technique has been used not only for
common elastic material but also for some smart materials, including piezoelectric [9,10] and
piezoelectric–piezomagnetic materials [11]. To evaluate the mechanical properties of FGM structures,
researchers have investigated various elastic waves in FGM structures, such as Lamb waves, horizontal
shear (SH) waves [12], Love waves [13], and Rayleigh waves [14].

To address wave propagation problems in heterogeneous media, both numerical and analytical
methods are employed for solving the wave-governing differential equations with variable coefficients.
The main idea of numerical methods is to divide the functionally graded material into multilayer
models and to simplify each sublayer as a homogenous layer [15–18]. Scientists have also proposed
some analytical solutions for wave propagation problems in different heterogeneous structures. These
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methods include exact analytical expressions for material parameters following the same exponential
function [19], the Wentzel–Kramers–Brillouin (WKB) method for large-wave-number [20] or cutoff
problems [21,22], and the special function method for material parameters following some special
function [23]. In recent decades, researchers suggested that these equations can be solved by using a
power series method [11,24] and a Legendre polynomial method [25,26], which are fit for solving the
wave propagation problem in heterogeneous structures in arbitrary cases in which material parameters
vary continuously and slowly. The form of the dispersion equations based on these two methods
contains series items. Therefore, these dispersion equations should be solved numerically.

It is found that not only elastic materials but also viscoelastic materials in nature have gradient
properties. For example, when a material undergoes subsurface aging or subsurface damage, the
elastic modulus varies along the thickness of the damaged subsurface region and mechanical gradient
characteristics appear [27]. This should also occur for viscoelastic materials. For the wave propagation
problem in viscoelastic structures, Lu et al. [28] found that the attenuation of Lamb waves increases
with the increase of the thickness of the viscoelastic layer and that the mode is transformed as well.
Compared with the propagation characteristics of Love waves in an elastic medium, the energy of Love
waves in a Kelvin–Voigt viscoelastic medium is obviously attenuated, as shown by Zhang et al. [29].
SH waves have one displacement component. Yu et al. [30] deduced the dispersion equations for SH
waves in orthotropic viscoelastic hollow cylinders. There are few studies on the propagation of Lamb
waves with two displacement components in viscoelastic complex structures, and most of them use
the Legendre polynomial method [31].

The dispersion equations for wave propagation in a viscoelastic material comprise a set of complex
coefficient transcendental equations. To solve the transcendental equations with complex variables,
Qian et al. [32] comprehensively analyzed the applicability of the parabolic Newton iteration method,
the binary dichotomy method, and the modulus value convergence method. However, when the
power series method is employed to solve the wave propagation problem in a functionally graded
viscoelastic material (FGVM) structure, the dispersion equation, which is a transcendental equation
with complex numbers in series form, is difficult to solve based on the above numerical simulation
method. For example, the Newton iteration method requires that the solution be in the form of a
display function rather than a series, while the binary dichotomy method and the modulus value
convergence method might lead to the existence of spurious solutions.

In this study, we investigate the dispersion and attenuation characteristics of Lamb wave
propagation in a thin film made of FGVM, which follows the Kelvin–Voigt model [33]. The governing
equations with a displacement function are deduced and the power series asymptotic solution is
obtained by using the power series method. Because the series has no explicit expression for the
function, we propose the minimum module approximation (MMA) method for solving the complex
coefficient dispersion equation. The detailed process of the MMA method, the existence analysis of
its solution, and its optimization are given. The reliability of the power series solution is verified by
comparison with the exact analytical solution for Lamb wave propagation in a functionally graded
viscoelastic film. The dispersion and attenuation characteristics of Lamb wave propagation under
different gradient parameters are discussed, and the damping coefficients are analyzed. Conclusions
based on these results can provide a theoretical basis for nonhomogeneous viscoelastic structure
nondestructive testing.

2. Basic Equation for Lamb Waves in FGVM Film

Consider Lamb waves propagating in an isotropic functionally graded viscoelastic film along the
x direction, as shown in Figure 1. The thickness of the film is h. The z direction is along the thickness
direction. Let u, v, and w represent the displacement in the x, y, and z directions, respectively. For
Lamb waves propagating is this structure, the displacement should satisfy:

u = u(x, z, t), v = 0, w = w(x, z, t) (1)
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Figure 1. Functionally graded viscoelastic film and coordinate system.

If we let subscripts 1, 2, and 3 represent x, y, and z, respectively, then the stress tensor σi j,
i, j = 1− 3, can be divided into two parts: the deviation stress σi j and the spherical stress tensor σm,
where σm = σkk/3, k = 1− 3, and the repeated index in the subscript implies summation with respect
to that index.

In the Kelvin model, the constitutive equation can be expressed as:

σi j = 2GSij + 2η
∂Sij

∂t
, σm = σkk/3 = KSkk (2)

where i, j, k, l = 1 − 3, Skl is the strain tensor, η represents the viscosity coefficient, G is the shear
modulus, and K is the bulk modulus.

Equation (2) can be rewritten as:

σi j = cijklSkl + cijkl
∂Skl
∂t

(3)

where cijkl and cijkl are components of the elastic tensor and viscosity tensor, respectively. In an FGVM,
both these elastic parameters as well as the mass density ρ are not constants but are functions of z.

The motion equations have the following form:

∂σx

∂x
+
∂σxz

∂z
= ρ
∂2u
∂t2 ,

∂σxz

∂x
+
∂σz

∂z
= ρ
∂2w
∂t2 (4)

The relation between the strain and the displacement deduced from Equation (1) is:

εx =
∂u
∂x

, εz =
∂w
∂z

, γxz =
∂u
∂z

+
∂w
∂x

, εy = γxy = γyz = 0 (5)

By using index reduction, the original fourth-order elastic parameters can be rewritten to
second-order elastic parameters. By substituting Equation (5) into the constitutive Equation (3), we
obtain the following component forms of the stress:

σx = c11
∂u
∂x + c13

∂w
∂z + c11

∂2u
∂x∂t + c13

∂2w
∂z∂t

σxz = c44
(
∂u
∂z + ∂w

∂x

)
+ c44

(
∂2u
∂z∂t +

∂2w
∂x∂t

)
σz = c13

∂u
∂x + c11

∂w
∂z + c13

∂2u
∂x∂t + c11

∂2w
∂z∂t

(6)

where the parameters in isotropic materials satisfy c11 − c13 = 2c44 and c11 − c13 = 2c44.
Substitution of Equation (6) into Equation (4) leads to the following governing equations with

respect to the displacement components:

c11
∂2u
∂x2 + c13

∂2w
∂x∂z + c11

∂3u
∂x2∂t + c13

∂3w
∂x∂z∂t + c44

(
∂2u
∂z2 + ∂2w

∂x∂z

)
+ c44

(
∂3u
∂z2∂t +

∂3w
∂x∂z∂t

)
+dc44

dz

(
∂u
∂z + ∂w

∂x

)
+ dc44

dz

(
∂2u
∂z∂t +

∂2w
∂x∂t

)
= ρ∂

2u
∂t2

c44
(
∂2u
∂x∂z +

∂2w
∂x2

)
+ c44

(
∂3u
∂x∂z∂t +

∂3w
∂x2∂t

)
+ c13

∂2u
∂x∂z + c11

∂2w
∂z2 + c13

∂3u
∂x∂z∂t + c11

∂3w
∂z2∂t

+
dc13
dz
∂u
∂x + dc11

dz
∂w
∂z +

dc13
dz
∂2u
∂x∂t +

dc11
dz
∂2w
∂z∂t = ρ

∂2w
∂t2

(7)
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Lamb waves propagating in a functionally graded viscoelastic film must satisfy not only the
governing equations but also the traction-free conditions of the film, which are expressed as:

σz(x, 0) = 0, σxz(x, 0) = 0, σz(x, h) = 0, σxz(x, h) = 0 (8)

3. Power Series Solution

The solutions of the governing equations can be expressed as:

u = U(z) exp[ik(x− ct)], w = −iW(z) exp[ik(x− ct)] (9)

where i is the imaginary unit, k and c are the wave number and wave velocity, respectively, and U(z)
and W(z) are the unknown amplitudes of the displacement.

Substitution of Equation (9) into Equation (7) leads to:

ĉ44U′′ + ĉ′44U′ +
(
ρΩ2 − ĉ11k2

)
U + k(ĉ11 − ĉ44)W′ + ĉ′44kW = 0

ĉ11W′′ + ĉ′11W′ +
(
ρΩ2 − ĉ44k2

)
W − k(ĉ11 − ĉ44)U′ −

(
ĉ′11 − 2ĉ′44

)
kU = 0

(10)

where ĉ44 = c44 − iΩc44, ĉ11 = c11 − iΩc11, Ω = ck is the frequency, and the prime symbol (′) represents
differentiation with respect to thickness z. Both ĉ44 and ĉ11 are functions of z and Ω. Suppose that the
material parameters vary along the thickness direction slowly, so that, for a certain Ω, the material
parameters of the isotropic FGVM film can be expressed as follows:

ĉ11 = f1
( z

h

)
, ĉ44 = f2

( z
h

)
, ρ = f3

( z
h

)
(11)

Suppose that the material parameters can be expressed in the power series form:

fi
( z

h

)
=
∞∑

n=0

a〈i〉n

( z
h

)n
(i = 1, 2, 3) (12)

Therefore, the solutions of Equation (10) can also be expressed in a power series form as:

U(z) =
∞∑

n=0

sn

( z
h

)n
, W(z) =

∞∑
n=0

tn

( z
h

)n
(13)

By substituting Equations (11)–(13) into Equation (10) and equating the coefficient of (z/h)n to zero,
the following recursive equations can be obtained:

n∑
l=0

(l + 2)(l + 1)a〈2〉n−lsl+2+
n∑

l=0
(n− l + 1)(l + 1)a〈2〉n−l+1sl+1 + (kh)2 n∑

l=0

(
a〈3〉n−lc

2 − a〈1〉n−l

)
sl

+(kh)
n∑

l=0
(l + 1)

(
a〈1〉n−l − a〈2〉n−l

)
tl+1 + (kh)

n∑
l=0

(n− l + 1)a〈2〉n−l+1tl = 0
n∑

l=0
(l + 2)(l + 1)a〈1〉n−ltl+2+

n∑
l=0

(n− l + 1)(l + 1)a〈1〉n−l+1tl+1 + (kh)2 n∑
l=0

(
a〈3〉n−lc

2 − a〈2〉n−l

)
tl

−(kh)
n∑

l=0
(l + 1)

(
a〈1〉n−l − a〈2〉n−l

)
sl+1 − (kh)

n∑
l=0

(n− l + 1)
(
a〈1〉n−l+1 − 2a〈2〉n−l+1

)
sl = 0

(14)

where s0, s1, t0, and t1 are undetermined coefficients. For l ≥ 2, all of the sl and tl are linear functions of
s0, s1, t0, and t1.

To simplify calculating the relation between sl, tl and s0, s1, t0, t1, let:(
s0 j, s1 j, t0 j, t1 j

)
= I (15)
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where j = 1–4 and I is a 4 × 4 unit matrix. Therefore, the solution of Equation (10) can be rewritten as:

U(z) =
4∑

j=1

Cj

∞∑
n=0

snj

( z
h

)n
, W(z) =

4∑
j=1

Cj

∞∑
n=0

tnj

( z
h

)n
(16)

where the constants Cj (j = 1–4) are to be determined. For n = 0 and 1, snj and tnj are defined by
expression (15); for other values of n, snj, and tnj can be determined by solving Equation (14).

By substituting (16) into the boundary conditions, we then obtain the following linear algebraic
equations for determining constants Cj (j = 1–4):

−
(
ĉ0

11 − 2ĉ0
44

)
khxC1 + ĉ0

11C4 = 0
ĉ0

44C2 + khĉ0
44C3 = 0

4∑
j=1

{ ∞∑
n=0

[
−kh
(
ĉh

11 − 2ĉh
44

)
snj + ĉh

11(n + 1)t(n+1) j

]}
Cj = 0

4∑
j=1

{ ∞∑
n=0

[
ĉh

44(n + 1)s(n+1) j + ĉh
44khtnj

]}
Cj = 0

(17)

The sufficient and necessary condition for the existence of a nontrivial solution is that the
determinant of the coefficient matrix must vanish. Therefore, for the dispersion relation for Lamb
waves, there exists: ∣∣∣Tij

∣∣∣ = 0 (18)

where

T11 = −kh
(
ĉ0

11 − 2ĉ0
44

)
, T14 = ĉ0

11, T22 = 1, T23 = kh,

T3 j =
∞∑

n=0

[
−kh
(
ĉh

11 − 2ĉh
44

)
snj + ĉh

11(n + 1)t(n+1) j

]
, T4 j =

∞∑
n=0

[
(n + 1)s(n+1) j + khtnj

]
where j = 1–4, and other items of Tij equal zero. The superscripts 0 and h represent the material
parameters at the bottom and upper surfaces, respectively.

Owing to the existence of the complex relation, Equation (18) is a complex coefficient transcendental
equation. In this paper, we suppose that k and the wavelength λ are both real numbers. The wave
velocity c contains both real and imaginary parts. The real part of the wave velocity represents the
phase velocity, and the imaginary part is related to the attenuation characteristic of the wave.

4. MMA Method and Optimization

4.1. MMA Method

For solving an equation with a complex variable, we should obtain a solution for which both the
real part and the imaginary part of the equation should be zero. Consider the complex equation:

f (z) = 0⇒ f (x, y) = 0, (19)

where x and y are the real and imaginary parts, respectively, of the complex variable z, and f, which is a
function of z, is also complex. We suppose z = a + ib is the solution of Equation (19). It should satisfy
the conditions:

Re[ f (a, b)] = 0 and Im[ f (a, b)] = 0, (20)

where Re[ f (x, y)] and Im[ f (x, y)] represent the real and imaginary parts of the function f (x, y).
Let

G(x, y) =
{
Mod[ f (x, y)]

}2 =
{
Re[ f (x, y)]

}2 + {Im[ f (x, y)]
}2, (21)
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where Mod[ f (x, y)] is the module of the function f (x, y) and the square of the module is expressed by
the function G(x, y).

Suppose that the solution of Equation (19) exists and is unique in the region (x0, x0),
(
y0, y0

)
.

The model in Figure 2 is used to illustrate the solution steps. The first loop step is shown in Figure 2a:
We divide the solution region into n × n grids, obtaining (n + 1)2 nodes in total, and calculate the
module of each node by using Equation (21) and find the node (a1, b1) satisfying:

G(a1, b1) = min
{
G(x0, y0), G(x0 + iΔx0, y0 + jΔy0)

}
(i, j = 1, . . . , n). (22)

where

Δx0 =
x0 − x0

n
, Δy0 =

y0 − y0

n
.

n

n

x y

x n x ,y n y

x n x ,y

x ,y n y

a b

  
       (a)                   (b)  

Figure 2. Steps of the MMA method. (a) First loop step, (b) Nth loop step.

For the second loop step, based on n, we obtain the four points (a1−Δx0,b1−y0), (a1+Δx0,b1−y0),
(a1+Δx0,b1+y0), and (a1−Δx0,b1+y0), remesh the square determined by the four points as the vertices
into n × n grids once again, and also calculate the module of each node to find the minimum.

For the Nth loop step (Figure 2b), we repeat the above step, obtaining:

G(aN, bN) = min
{
G(xN−1, yN−1), G(xN−1 + iΔxN−1, yN−1 + jΔyN−1)

}
(i, j = 1, . . . , n) (23)

where (aN, bN) is the node with the minimum module after N time steps. The approximate solution of
Equation (19) z = aN + ibN, can then be obtained.

4.2. Optimization of the MMA Method

The MMA method can be applied to solve equations with complex variables. To optimize the
method, the following function q is introduced:

q =
( 4

n2

) 1
(n+1)2 (24)

where q represents the average percentage of solution area reduction with each calculation and n2 and
(n + 1)2 are the number of grids and nodes of the solution region, respectively.

To optimize the MMA method, we should find the n value needed to satisfy that q reaches its
minimum. In other words, ln q should also be the minimum. Therefore, n should satisfy:

d ln q
dn

= 0 (25)
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The solution of Equation (25) is n = 3.77. Because the number of grids needs to satisfy the condition
of positive integers, we take the approximate solution at n = 4.

In practical numerical analysis, we always predict with a certain level of uncertainly the region
over which the equation with complex variables has a solution. If, in the first step, (a1, b1) lies on
the boundary of the region, (x0, x0),

(
y0, y0

)
, the solution might not lie in the region. In this case, n

should be selected to be a larger number to certify the existence of the solution. However, a spurious
solution might exist if the calculation region is too large. Normally, the solutions of these problems
are always irrational. This means that we can find the solution as the module infinites approaches
zero. We should check for the convergence of solution by testing the ratio of the module reduction in
several continuous steps. For example, we can calculate the ratio of the module for every three loops
and judge the convergence to avoid a spurious solution.

It is worth noting that, if the minimum modulus is located at the boundary in the first calculation,
there might be no solution in the computational domain. If the minimum modulus is not at the
boundary after mesh refinement, the solution exists in the computational domain. Otherwise, the
computational domain needs to be enlarged and recalculated. To verify the existence of the solution
and avoid a spurious solution, we suggest that n should be selected as 6–8 in the first loop step in
practical calculations.

5. Numerical Results and Discussion

5.1. Comparison with the Exact Analytical Results

To verify the validity of the power series method, the exact analytic solution and the asymptotic
solution of the power series are compared when all material parameters vary with the same exponential
function. The exact analytical solution can be obtained for waves propagating in the special FGVM
thin film. The governing equations can be simplified to ordinary differential equations with constant
coefficients, and the analytical solution can be obtained directly.

We suppose that the material parameters follow:

λ = λ0ep(z/h), μ = μ0ep(z/h), η = ξμ = ξμ0ep(z/h), ρ = ρ0ep(z/h) (26)

where λ0, μ0, and ρ0 are material parameters of the film lower surface at z = 0, η is the viscosity
coefficient, ξ is a constant and is selected as 10−5, and p represents the gradient parameter. The
analytical solution in this condition can be selected as a reference for the solution of the power series
reported in this paper.

The material parameters used in this paper can be deduced as:

ĉ11 =
(
λ0 + 2μ0 − 4

3 iΩξμ0
)
ep(z/h) = β1ep(z/h)

ĉ44 = (μ0 − iΩξμ0)ep(z/h) = β2ep(z/h)

ρ = ρ0ep(z/h) = β3ep(z/h)
(27)

The displacement amplitude can also be expressed in an exponential function form as:

Ue(z) = Aeα(z/h) , We(z) = Beα(z/h) (28)

By substitution of Equation (28) into Equation (10) the homogeneous linear equations for the
undetermined coefficients A and B can be deduced as:[

β2α2 + pαβ1 +
(
β3c2 − β1

)
(kh)2

]
A + [kh(β1 − β2)α+ khpβ2]B = 0

[kh(β2 − β1)α+ p(2β2 − β1)]A +
[
β1α2 + pαβ1 +

(
β3c2 − β2

)
(kh)2

]
B = 0

(29)
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Equations (29) comprise a set of linear homogeneous equations with respect to A and B. From
the necessary and sufficient conditions for the existence of a nontrivial solution, we obtain that the
determinant of the coefficient matrix is equal to zero:∣∣∣∣∣∣∣ β2α2 + pαβ1 +

(
β3c2 − β1

)
(kh)2 kh(β1 − β2)α+ khpβ2

kh(β2 − β1)α+ p(2β2 − β1) β1α2 + pαβ1 +
(
β3c2 − β2

)
(kh)2

∣∣∣∣∣∣∣ = 0 (30)

Considering that Equation (30) is a fourth-order equation, we suppose that the solution is α j (j
=1–4). The relation between A and B is derived by calculating Equation (29) as follows:

Bi = fiAi(i = 1–4) (31)

The displacement amplitude solution of Equation (10) can be rewritten as:

U =
4∑

j=1

Ajeα j(z/h) W =
4∑

j=1

f jAjeα j(z/h) (32)

Similarly, by considering the boundary conditions, we then obtain the dispersion equation:∣∣∣Tij
∣∣∣ = 0 (33)

where
T1 j = (β1 − 2β2)k + β1 f jα j, T2 j = α j − k fj

T3 j =
[
(β1 − 2β2)k + β1 f jα j

]
eα jh, T4 j =

(
α j − k fj

)
eα jh( j = 1− 4)

In numerical analysis, the normalized wave velocity ĉ and the dimensionless wave number kh are
applied for describing the wave propagation property. The normalized dimensionless wave velocity
ĉ satisfies:

ĉ = c/csh (34)

where csh =
√

G/ρ, which is the bulk shear wave velocity. The Poisson ratio is a constant and satisfies
ν = 0.25.

To evaluate the accuracy and precision of the power series and MMA methods, the relation between
the normalized wave velocity and the dimensionless wave number for Lamb waves propagating in the
special FGVM thin film is plotted in Figure 3. When p = 0, the FGVM thin film becomes a homogenous
viscoelastic thin film. Figure 3a,b present the real and imaginary parts of the normalized wave velocity,
respectively. It is found that the solution obtained by using the power series method agrees well with
the exact analytical solution.

 
   (a) (b) 

Figure 3. Wave velocity of Lamb waves in homogenous viscoelastic film and in special FGVM film. (a)
Real part, (b) imaginary part.
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By checking the results of the change of phase velocity, we find that there exists little difference
between the wave velocity curves for Lamb waves in the homogenous viscoelastic thin film and in the
special FGVM thin film. Normally, the dispersion curves of Lamb waves in homogenous film can be
determined by bulk shear wave velocity and the Poisson ratio. Both the bulk shear wave velocity and
the Poisson ratio in homogenous thin film are same as those in the special FGVM thin film. It can be
used to explain that the dispersion curves of the two cases are almost identical. This implies that we
cannot measure the gradient parameters by variation of the wave velocity

We further study the wave structure of Lamb wave propagation in different viscoelastic thin films.
The normalized displacement amplitude is defined as:

�u = |U|/
∣∣∣U(0)

∣∣∣ · sign
{
Re(U)/Re[U(0)]

}
, �w = |W|/

∣∣∣U(0)
∣∣∣ · sign

{
Re(W)/Re[U(0)]

}
(35)

where U(0), which represents displacement component at z = 0, is selected to be 1 in the numerical
analysis, Re is the real part of the complex number, and the sign function satisfies

sign(x) =

⎧⎪⎪⎨⎪⎪⎩1, x ≥ 0

−1, x < 0
(36)

The normalized displacement amplitude of the first two modes at kh = π and kh = 2π are plotted
in Figure 4. The curves obtained from the exact solution and these obtained by using the power
series method coincide completely. In a homogenous viscoelastic thin film, the wave structure is
symmetric or antisymmetric. However, because of the asymmetric properties of the FGVM thin film,
the displacement amplitudes are not symmetric.

  
         (a) (b) 

  
          (c) (d) 

Figure 4. Wave structure. (a) kh = π, Mode 1, (b) kh = π, Mode 2, (c) kh = 2π, Mode 1, (d) kh = 2π,
Mode 2.
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To further investigate the influence of the gradient property on the displacement, we denote the
ellipticity of particles on lower and upper surfaces as χ0 = |w0/u0| and χh = |wh/uh|, respectively. The
relation between the gradient parameter and the ellipticity of particles at kh = π and kh = 2π is plotted
in Figure 5. It is found that the influence of the gradient property on the ellipticity of a particle on the
surface is more obvious than that on the wave velocity.

  
              (a)   (b)  

  
             (c)   (d)  

Figure 5. Ellipticity of particles on lower and upper surfaces versus the gradient parameter. (a) kh = π,
Mode 1, (b) kh = π, Mode 2, (c) kh = 2π, Mode 1, (d) kh = 2π, Mode 2.

5.2. Material Parameters Varying Linearly

For numerical analysis with the theoretical model described above, we assumed that the Lamé
parameters λ and μ, mass density ρ, and viscosity coefficient η in the functionally graded viscoelastic
film varied as follows:

λ = λ0 + p1λ0
z
h

, μ = μ0 + p2μ0
z
h

, ρ = ρ0 + p3ρ0
z
h

, η = ξμ (37)

where λ0, μ0, and ρ0 are material parameters of the film lower surface at z = 0; η is the viscosity
coefficient; ξ is a constant and is selected as 10−5 (except in Section 5.2.3); and p1, p2 and p3 are the
gradient parameters of λ, μ, and ρ, respectively (0 ≤ p1, p2, p3 < 1).

The material parameters used in this paper can be deduced as:

ĉ11 = λ+ 2μ− 4
3

iΩη, ĉ44 = μ− iΩη (38)

5.2.1. All Material Parameters Varying Identically

Suppose that all material parameters vary along the thickness direction linearly and identically,
i.e., pi = p(i = 1, 2, 3). The wave velocity plotted as a function of wave number when p = 0, 0.3, 0.5,
and 0.7 is shown in Figure 6. By comparing the results for the case in Section 5.1, a similar conclusion
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can be reached. If all the material parameters vary along the thickness direction identically, the wave
velocity curves almost coincide.

  
            (a) (b)  

Figure 6. Wave velocity of Lamb waves in homogenous viscoelastic film and in FGVM film (with all
material parameters varying linearly and identically). (a) Real part, (b) imaginary part.

In these cases, the bulk wave velocity, including the shear wave velocity csh and the longitudinal
wave velocity cL, where cL =

√
(λ+ 2μ)/ρ, are constants. This implies that, if the bulk wave velocities

are constants, the wave velocity of Lamb waves in the FGVM thin film are almost similar to that in a
homogenous film.

Similarly, the wave structures are also plotted in Figure 7. It is found that the gradient parameter
has an obvious influence on the wave structure. It is also shown in Figure 7 that the ellipticity of
particles on the upper and lower surfaces is different owing to the gradient property of the FGVM film.
Considering testability, we suggest that the ellipticity of a particle on the surface can be applied for
measuring the gradient parameter when all material parameters vary identically.

  
          (a)                     (b)    

  
          (c)                      (d) 

Figure 7. Wave structure of Lamb waves (with all material parameters varying linearly and identically).
(a) kh = π, Mode 1, (b) kh = π, Mode 2, (c) kh = 2π, Mode 1, (d) kh = 2π, Mode 2.
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5.2.2. Material Parameters Varying Independently

To investigate the influence of the elastic modulus and density gradient on dispersion and
attenuation characteristics of Lamb waves in gradient viscoelastic film, we chose three types of films
for which the gradient parameters are:

A : p1 = p2 = p3 = 0; B : p1, p2 = 0, p3 = 0.2; C : p1 = 0.2, p2 = 0.2, p3 = 0

Film A is a homogeneous film, which can be used for referencing the propagation characteristics
in the gradient film. The elastic modulus in film B is a constant, and the density increases along the
thickness of the film and the density of the lower surface is the same as that of the homogeneous film.
Conversely, the density in film C is a constant, and the elastic modulus varies along the thickness
direction linearly.

The real and imaginary parts of the wave velocity in the three types of films are shown in Figure 8.
When the mass density increases, the real part and the absolute value of the imaginary part of the wave
velocity of each mode are less than these in the homogenous film; when the elastic modulus increases,
the real part and the absolute value of the imaginary part of the dimensionless wave velocity of each
mode are larger than these in the homogenous film.

  
      (a) (b) 

Figure 8. Dimensionless Lamb wave velocity in functionally graded viscoelastic films of different
gradient parameters: (a) Dispersion curves of Lamb waves in the three films, (b) attenuation curves of
Lamb waves in the three films.

5.2.3. Relative Viscosity Coefficient Varying Independently

In engineering application, the relative viscosity coefficient might vary along one direction because
of the environment. However, in these cases, the mass density and the elastic parameters might not
change. To reveal the influence of the gradient relative viscosity coefficient on the wave property, we
suppose that the relative viscosity coefficient ξ varies along the thickness direction and that other
parameters including λ, μ, and ρ are constants. The material parameters are:

λ = λ0, μ = μ0, ρ = ρ0, η = ξμ, ξ = 10−5p4(z/h) (39)

The wave velocity is plotted as function of wave number in Figure 9. In Figure 9a, the curves for
the real part of the phase velocity almost coincide. This suggests that the influence of the gradient
relative viscosity coefficient on the dispersion curves is too slight to measure. However, obvious
differences can be observed in Figure 9b, which describes the relation between the imaginary parts
of the wave velocity. The absolute value of the imaginary part of the dimensionless wave velocity
increases with the increase of the gradient relative viscosity coefficient. The physical meaning of the
imaginary parts of the wave velocity will be discussed in the next section.
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       (a) (b) 

Figure 9. Wave velocity of Lamb waves in homogenous viscoelastic film and in FGVM film (with only
the relative viscosity coefficient varying linearly and identically). (a) Real part, (b) imaginary part.

5.3. Influence of Gradient Parameter on Wave Attenuation

Equation (18) is a complex equation. As the wave number is a real number, the wavelength is also
a real number, the obtained wave velocity is complex, and the product Ω of the wave velocity c and
the wave number k is complex, which can be expressed as follows:

cp = Re(c), Ω = ω+ iω̃ = ck (40)

where ω and ω̃ are the real and imaginary parts of Ω, respectively, ω is frequency, and ω̃ is related to
the attenuation of the wave amplitude. From Equation (40), we have:

ω = cpk (41)

In viscoelastic materials, the wave propagation process is essentially a quasi-periodic motion, and
the period of the particle displacement is determined by the phase velocity. The period is expressed
as follows:

T =
2π

kRe(c)
=

2π
ω

(42)

To analyze the attenuation trend, we define the amplitude ratio of the adjacent period as the
damping coefficient γ, given by:

γ = exp
[
−2π

Im(c)
Re(c)

]
= exp

(
−2πω̃
ω

)
(43)

In this study, the normalized product of frequency and thickness ω̂h is selected to be the abscissa. If

ω̂ =
ω
csh

is satisfied, then

ω̂h =
ω
csh

h =
cp

csh
kh (44)

The influence of the gradient properties on the damping coefficient is plotted in Figure 10.
The damping coefficient increases with the increase of the frequency. When material parameters are
constants, or material parameters vary along the thickness direction with the same exponential function,
or both Lamé parameters and mass density vary linearly, the damping coefficient of Mode 1 and Mode
2 is similar, as shown in Figure 10a,b. However, when the Lamé parameters and mass density do not
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vary identically, a difference in the damping coefficient can be observed, as shown in Figure 10b. When
the mass density increases, the damping coefficient increases at high frequency (ω̂h > s0). This implies
that, at high frequency, if the mass density increases along the thickness direction, then the Lamb
waves in the FGVM thin film should attenuate more quickly than those in a homogenous material.
Conversely, if the Lamé parameters increase along the thickness direction, then the attenuation of
Lamb waves in the FGVM thin film should be weakened. If only the relative viscosity coefficient
increases along the thickness direction, then the attenuation of Lamb waves will become more serious,
as shown in Figure 11. As the gradient coefficient increases, the damping coefficient increases and the
attenuation tendency becomes obvious.

  
        (a) (b) 

Figure 10. Damping coefficient of Lamb waves with Lamé parameters and density varying along
the thickness direction: (a) Material parameters varying following the same exponential function; (b)
material parameters varying following a linear function.

Figure 11. Damping coefficient of Lamb waves with the relative viscosity coefficient varying.

6. Conclusions

The power series method can be employed for solving the governing differential equations for
Lamb wave propagation in FGVM thin films. The MMA method is proposed to solve the transcendental
equations in the form of a series with complex coefficients. It is suggested that the meshing number
should be selected as 6–8 in the first loop step and 4 in other loops. The numerical results obtained by
these methods agree well with the exact analytical solution.

When Lamé parameters and mass density vary along the thickness direction identically, the
influence of the gradient properties on the wave velocity is slight but that on the wave structure and
the ellipticity of particles on the surface is obvious. This suggests that the ellipticity of particles on the
surface should be selected to measure the gradient property if the bulk wave velocities are constants
in the FGVM thin film. When Lamé parameters and mass density vary along the thickness direction
independently, the variation of the phase velocity can be used for testing the gradient parameters.
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However, when the relative viscosity coefficient is a variable and both Lamé parameters and mass
density are constants, the gradient property will not affect the phase velocity. The attenuation tendency
becomes obvious with the increase of the gradient relative viscosity coefficient.

The method proposed herein and the results obtained should provide theoretical guidance for
ultrasonic nondestructive testing of heterogeneous viscoelastic materials and enable the safe evaluation
of surface acoustic wave devices.

Author Contributions: Conceptualization, X.C.; Data curation, H.J. and Y.R.; Funding acquisition, X.C. and J.S.;
Methodology, X.C. and Y.R.; Software, X.C. and H.J.; Supervision, X.C.; Writing—original draft, X.C., H.J. and Y.R.;
Writing—review & editing, X.C. and J.S.

Funding: This research was funded by the National Natural Science Foundation of China (Nos. 11572244,
11872300). It also was supported by NSAF (No. U1630144) and the Open Subject of State Key Laboratories of
Transducer Technology (No. SKT1506).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Achenbach, J.D. Wave Propagation in Elastic Solids; Tongji University Press: Shanghai, China, 1992; pp. 232–248.
2. Lu, Y.; Zhu, Y.; Zhu, Z. The propagation of Lamb waves in a plate with viscoelastic layer coating. Acta Acust.

2006, 31, 355–362.
3. Cao, X.S.; Jin, F.; Jeon, I. Calculation of propagation properties of Lamb waves in a functionally graded

material (FGM) plate by power series technique. NDT E Int. 2011, 44, 84–92. [CrossRef]
4. Amor, M.B.; Ghozlen, M.H.B. Lamb waves propagation in functionally graded piezoelectric materials by

Peano-series method. Ultrasonics 2015, 55, 10–14. [CrossRef] [PubMed]
5. Wu, X.H.; Shen, Y.P.; Sun, Q. Lamb wave propagation in magneto-electro-elastic plates. Appl. Acoust. 2007,

68, 1224–1240. [CrossRef]
6. De Luca, A.; Caputo, F.; Khodaei, Z.S.; Aliabadi, M.H. Damage characterization of composite plates under

low velocity impact using ultrasonic guided waves. Compos. Part B Eng. 2018, 138, 168–180. [CrossRef]
7. De Luca, A.; Perfetto, D.; De Fenza, A.; Petrone, G.; Caputo, F. Guided waves in a composite winglet structure:

Numerical and experimental investigations. Compos. Struct. 2019, 210, 96–108. [CrossRef]
8. Koizumi, M. The concept of FGM. Ceram. Trans. FGM. 1993, 34, 3–10.
9. Qian, Z.H.; Jin, F.; Lu, T.J.; Kishimoto, K. Transverse surface waves in functionally graded piezoelectric

materials with exponential variation. Smart Mater. Struct. 2008, 17, 065005. [CrossRef]
10. Cao, X.; Jin, F.; Jeon, I.; Lu, T.J. Propagation of Love waves in a functionally graded piezoelectric material

(FGPM) layered composite system. Int. J. Solids Struct. 2009, 46, 4123–4132. [CrossRef]
11. Kuo, H.Y.; Bhattacharya, K. Fibrous composites of piezoelectric and piezomagnetic phases. Mech. Mater.

2013, 60, 159–170. [CrossRef]
12. Han, X.; Liu, G.R. Effects of SH waves in a functionally graded plate. Mech. Res. Commun. 2002, 29, 327–338.

[CrossRef]
13. Kiełczyński, P.; Szalewski, M.; Balcerzak, A.; Wieja, K. Propagation of ultrasonic Love waves in

nonhomogeneous elastic functionally graded materials. Ultrasonics 2016, 65, 220–227. [CrossRef]
14. Cao, X.S.; Jin, F.; Wang, Z.K. On dispersion relations of Rayleigh waves in a functionally graded piezoelectric

material (FGPM) half-space. Acta Mech. 2008, 200, 247–261. [CrossRef]
15. Yuan, L.; Shen, Z.H.; Ni, X.W.; Lu, J. Numerical calculation of laser induced surface wave in material with

changes of near-surface properties. Infrared Laser Eng. 2007, 36, 328–331.
16. Sun, H.X. Numerical simulation of laser-generated Rayleigh wave by finite element method on viscoelastic

materials. Acta Phys. Sin. 2009, 58, 6344–6350.
17. Cai, C.; Liu, G.R.; Lam, K.Y. A transfer matrix approach for acoustic analysis of a multilayered active acoustic

coating. J. Sound Vib. 2001, 248, 71–89. [CrossRef]
18. Du, J.K.; Ye, D. SH waves in laminated structure of functionally gradient piezoelectric material. J. Solid Rocket

Technol. 2005, 28, 133–136.
19. Collet, B.; Destrade, M.; Maugin, G.A. Bleustein–Gulyaev waves in some functionally graded materials. Eur.

J. Mech. 2006, 25, 695–706. [CrossRef]

249



Materials 2019, 12, 268

20. Qian, Z.; Jin, F.; Wang, Z.; Kishimoto, K. Transverse surface waves on a piezoelectric material carrying a
functionally graded layer of finite thickness. Int. J. Eng. Sci. 2007, 45, 455–466. [CrossRef]

21. Shen, X.; Ren, D.; Cao, X.; Wang, J. Cut-off frequencies of circumferential horizontal shear waves in various
functionally graded cylinder shells. Ultrasonics 2018, 84, 180–186. [CrossRef]

22. Li, X.Y.; Wang, Z.K.; Huang, S.H. Love waves in functionally graded piezoelectric materials. Int. J. Solids
Struct. 2004, 41, 7309–7328. [CrossRef]

23. Vlasie, V.; Rousseau, M. Guided modes in a plane elastic layer with gradually continuous acoustic properties.
NDT E Int. 2004, 37, 633–644. [CrossRef]

24. Cao, X.S.; Jin, F.; Wang, Z.K. Bleustein-Gulyaev(B-G) waves in functionally graded piezoelectric layered
structures. Sci. China 2009, 52, 613–625. [CrossRef]

25. Dahmen, S.; Amor, M.B.; Ghozlen, M.H.B. Investigation of the coupled Lamb waves propagation in
viscoelastic and anisotropic multilayer composites by Legendre polynomial method. Compos. Struct. 2016,
153, 557–568. [CrossRef]

26. Yu, J.G.; Ratolojanahary, F.E.; Lefebvre, J.E. Guided waves in functionally graded viscoelastic plates. Compos.
Struct. 2011, 93, 2671–2677. [CrossRef]

27. Paehler, D.; Schneider, D.; Herben, M. Nondestructive characterization of sub-surface damage in rotational
ground silicon wafers by laser acoustics. Microelectron. Eng. 2007, 84, 340–354. [CrossRef]

28. Yu, J. Viscoelastic shear horizontal wave in graded and layered plates. Int. J. Solids Struct. 2011, 48, 2361–2372.
29. Zhang, Z.; Sun, C.; Wu, D. Love wave forward modeling in Kelvin-Voigt viscoelastic medium. In Proceedings

of the Annual Meeting of Chinese Geoscience Union, Beijing, China, 20–23 October 2014; p. 1453.
30. Zhang, X.M.; Wang, Y.Q.; Yu, J.G. Guided circumferential SH wave in orthotropic viscoelastic hollow

cylinders. Eng. Mech. 2013, 30, 78–81. [CrossRef]
31. Lefebvre, J.E.; Zhang, V.; Gazalet, J.; Gryba, T.; Sadaune, V. Acoustic wave propagation in continuous

functionally graded plates: An extension of the Legendre polynomial approach. IEEE Trans. Ultrason.
Ferroelectr. Freq. Control 2001, 48, 1332–1340. [CrossRef]

32. Li, N.; Qian, Z.; Wang, B. Study on computational methods of dispersion curves in complex wavenumber
range. Chin. J. Appl. Mech. 2016, 33, 365–370.

33. Yang, T.Q. Theory of Viscoelasticity; Huazhong University of Science and Technology Press: Wuhan, China,
1990.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

250



MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Materials Editorial Office
E-mail: materials@mdpi.com

www.mdpi.com/journal/materials





MDPI  
St. Alban-Anlage 66 
4052 Basel 
Switzerland

Tel: +41 61 683 77 34 
Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-03921-659-8


	Blank Page



