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Abstract: Analysis of hydrological extremes is challenging due to their rarity and small sample size
and the interconnections between different types of extremes and gets further complicated by an
untrustworthy representation of meso-scale processes involved in extreme events by coarse spatial
and temporal scale models as well as biased or missing observations due to technical difficulties
during extreme conditions. The special issue “Statistical Analysis and Stochastic Modelling of
Hydrological Extremes”—motivated by the need to apply and develop innovative stochastic and
statistical approaches to analyze hydrological extremes under current and future climate conditions
—encompass 13 research papers. Case studies presented in the papers exploit a wide range of
innovative techniques for hydrological extremes analyses. The papers focus on six topics: Historical
changes in hydrological extremes, projected changes in hydrological extremes, downscaling of
hydrological extremes, early warning and forecasting systems for drought and flood, interconnections
of hydrological extremes and applicability of satellite data for hydrological studies. This Editorial
provides an overview of the covered topics and reviews the case studies relevant for each topic.

Keywords: extreme events; innovative methods; downscaling; forecasting; compound events;
satellite data

1. Introduction

Assessment of hydrological extremes is of paramount importance, as they have the potential
to affect society in terms of human health and mortality, and the ecosystem and the economy
(e.g., infrastructure and agriculture) [1,2]. In the last decades, millions of people have been affected
by hydrological extremes. The risk of these hazards will increase in the future as a result of climate
change and as population and infrastructure continue to increase and occupy areas exposed to higher
risks [3–6].

Analyzing extremes in a complex interacting hydro-climatology system is challenging on the
following grounds. First, extremes are rare events in the tail of distribution, characterized by either
very small or very large values, and therefore, have a different statistical behavior. Being rare, extreme
events have a small sample size, which adds a large uncertainty to the results of statistical analyses.
With regard to observations, extreme events might be biased or missed altogether due to technical
difficulties during extreme events [7].

For future hydrological extremes, the projections are mainly derived from global climate models
(GCMs) which provide coarse spatial and temporal scale data that cannot be implemented directly
in the hydrological impact analysis of climate change. For instance, for design applications in urban
hydrology, precipitation data with a temporal resolution of a few minutes and a spatial resolution
of 1–10 km2 are needed especially when simulating flood events for small urban catchments with
fast runoff processes and short response times [8]. To meet the needs of the end user for hydrological
applications, information provided by climate models needs to be downscaled to much finer spatial
and temporal scales [9]. It adds an extra tier of complexity to the hydrological extremes analyses.
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The statistical analysis and stochastic modelling of hydrological extremes in developing countries
is further hampered by unavailability or scarcity of high quality, fine-scale ground observations.
The analysis of hydrological extremes is particularly important for vulnerable developing countries
because they will shoulder a far greater burden of loss and damage due to inadequately built
infrastructure, weaker preparedness and low levels of capacity to respond to disasters [10]. In the
case rain-gauge observations are not available, satellite estimations with a spatially and temporally
homogeneous precipitation data at a quasi-global to global scale are excellent alternatives [11].
Before the use of satellite data, their quality must, nevertheless, be validated next to the spatial
downscaling of the data to make them suitable for the applications that require fine-resolution data
such as in urban hydrology.

The complexity of analyzing hydrological extremes calls for robust statistical methods for the
treatment of such events. This Special Issue is motivated by the need to apply and develop innovative
stochastic and statistical approaches to analyze hydrological extremes under current and future
climate conditions.

2. Overview of the Special Issue Contributions

The Special Issue includes 13 papers exploiting a broad range of innovative statistical methods for
hydrological extremes analyses. The papers were published between 31 March 2018 and 14 June 2019
with an average time of 45 days from initial submission to online publication. In only a few months
after the online publication, the papers have received 6 (7) citations in the literature indexed in Scopus
(Google Scholar) (Table 1), indicating the significance and immediate impacts of the published studies.
The abstract and full-text of the papers published in the Special Issue have been viewed on average
33 and 44 times per day, showing the broad reach of the published research.

Table 1. Metrics of the papers published in this Special Issue (average full-text and abstract views per
day were calculated until 30 August 2019).

Paper Reference Publication Date
Full-Text

Views
Abstract
Views

Citations

Google Scholar Scopus

Mahmud et al. [12] 31 March 2018 2 4 1 1
Rhee and Yang [13] 14 June 2018 2 2 0 0
Khan et al. [14] 27 July 2018 2 2 1 1
Mousavi et al. [15] 16 October 2018 2 3 1 1
Amnatsan et al. [16] 9 November 2018 3 3 0 0
Bafitlhile and Li [17] 6 January 2019 3 3 1 1
Pan et al. [18] 22 January 2019 2 2 0 0
Ávila et al. [19] 22 February 2019 4 5 2 1
Pham et al. [20] 3 March 2019 3 3 1 1
Tung et al. [21] 8 March 2019 2 2 0 0
Dawley et al. [22] 5 April 2019 3 3 0 0
Zhang and Wang [23] 4 June 2019 2 5 0 0
Mehmood et al. [24] 14 June 2019 3 5 0 0

The papers of this Special Issue focus on six topics associated with hydrological extremes which
are reviewed in the following sections:

• Section 3: Historical changes in hydrological extremes;
• Section 4: Projected changes in hydrological extremes;
• Section 5: Downscaling of hydrological extremes;
• Section 6: Early warning and forecasting systems for drought and flood;
• Section 7: Interconnections of hydrological extremes;
• Section 8: Applicability of satellite data for hydrological studies.
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3. Historical Changes in Hydrological Extremes

3.1. Background

Trend analysis of hydrological extremes provides essential information for regional water resource
planning, risk assessment of hydrological hazards and adaptation and mitigation strategies to climate
change [25,26]. To this end, various parametric and non-parametric methods have been developed and
used over time. Non-parametric tests have gained popularity for the trend analysis of hydrological
variables owing to their insensitivity to skewed data (non-normal distribution) which is likely the case
for extreme events as well as their more resilience to outliers in time series [27,28]. These methods
have, nonetheless, some shortcomings. One of these shortcomings is the sensitivity of trend test
results to serial correlation in time series. In fact, a positive serial correlation, mostly the case for
hydroclimatological data, increases the possibility of rejecting the null hypothesis of no trend while it is
true [28]. Similar to serial correlation, a cross-correlation among the time series of neighboring stations
or gridcells increases the false rejection of the null hypothesis of no field significance of trends [29,30].
These limitations need to be thoroughly addressed to avoid biased and misleading trend analysis
results, e.g., using the effective sample size (ESS) for the former [31] and a bootstrapping method for
the latter [32].

3.2. Case Studies

In a case study for the High Basin of the Cauca River in Southwestern Colombia, Ávila et al. [19]
examined temporal trends in eight extreme precipitation indicators by the Mann-Kendall (MK)
test and the Sen slope estimator for the period 1970–2013. The results showed a decreasing
trend in precipitation intensity indices of annual maximum 1-day precipitation amount (Rx1day)
and annual maximum 5-day precipitation amount (Rx5day). An increasing trend was also
observed in the September–October–November period for consecutive dry days index and in the
December–January–February period for total precipitation and number of wet days. The extreme
precipitation indices were found to have a concurrent correlation with sea surface temperature in the
equatorial Pacific and a lagged correlation (a lag of 2–3 months) with ENSO.

In another study, Mehmood et al. [24] analyzed temporal trends in annual maximum streamflow
using the MK test at 29 stations with varying records between 30 (1987–2016) and 55 (1962–2016)
years in the Kabul River Basin, Pakistan. Stationary and non-stationary Bayesian models were then
used for flood frequency estimation and their results were compared using the corresponding flood
frequency curves (FFCs). The results revealed a mixture of increasing and decreasing trends across
different stations, implying a signal of clear non-stationarity in the flood regime. The non-stationarity
was also confirmed by the findings of the Bayesian models where reliable results were found from
the non-stationary Bayesian model, while the stationary Bayesian model either overestimated or
underestimated flood frequencies.

4. Projected Changes in Hydrological Extremes

4.1. Background

Hydrological extremes can change due to natural climate variability and/or anthropogenic climate
change. While climate variability, referred to natural processes influencing the atmosphere, is a
periodic variation (yearly, decadal or multidecadal) in average or range of weather conditions either
above or below a long-term average value without causing the long-term average itself to change,
climate change is a long-term continuous change (increase or decrease) in these statistics. As for
anthropogenic climate change whose hydrological impact was investigated in three papers in this
Special Issue, extreme precipitation is expected to increase due to an increase in the atmospheric
water-holding capacity under warmer climates dictated by the Clausius–Clapeyron (CC) relation of
�7% ◦C−1 [33,34]. The extreme precipitation intensification has, therefore, been projected under future
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climate change [35,36]. At the regional scale, the extreme precipitation-temperature rate varies with
regional climatic settings (available water vapor and ranges of air temperature variation) [18] and
different scaling rates were reported such as sub-CC (~3% ◦C−1), close-CC (~7% ◦C−1), super-CC
(~14% ◦C−1), peak-like CC (positive and negative), and negative CC [37–40]. The scaling rate also
changes with the intensity and duration of extreme precipitation, being higher for more extreme and
shorter duration precipitation [37,39,41].

4.2. Case Studies

Hourly extreme precipitation-temperature scaling rate regarding storm characteristics (types)
and event process-based temperature variations in South China was investigated by Pan et al. [18].
They found a different magnitude of air temperature fluctuations prior to and after different storm
types, and more reliable scaling rates from the 24-h mean air temperature prior to storms than the
naturally daily mean air temperature. A peak-like scaling relation with a break at 28 ◦C temperature
was reported between precipitation extremes and the 24-h mean air temperature. They obtained a
positive scaling rate below 28 ◦C and a negative one for above 28 ◦C. The former was attributed to a
high availability of relative humidity (80–100%), and the latter was triggered by a lack of moisture in
the atmosphere instead of by the atmospheric water vapor-holding capacity. Comparing heavy storm
producing weather systems in South China (e.g., warm-front storms, cold-front storms, monsoon
storms, convective storms, and typhoon storms), a small influence of the storm types on the scaling
rates was deduced.

China’s extreme precipitation response of the next few decades to emission reductions based on
the implement intended nationally determined contributions (INDCs) under the Paris Agreement was
investigated by Zhang and Wang [23] using an ensemble of GCMs from the Fifth Coupled Climate
Model Intercomparison Project (CMIP5). The maximum consecutive five-day precipitation and number
of heavy precipitation days over China are projected to increase by 16% and up to 20%, respectively.
The population exposure to heavy precipitation events will also increase in almost all Chinese regions,
e.g., by 10% for extreme precipitation of > the 20-year return period.

The climate change impact on hydro-climatology and the potential of hydropower generation in
the Dez Dam Basin in Iran was also investigated [15]. The results showed a remarkable reduction of up
to 33% in future streamflows. Different climate change impacts on the electricity generation potential
were found in two hydropower plants considered: 3% decrease and 33% increase.

5. Downscaling of Hydrological Extremes

5.1. Background

The primary tool for future hydroclimatic projections is GCM. However, the resolution of the
current generation of Earth System Models (see CMIP5) is still coarse and unable to capture sub-grid
scale processes [6,42–44]. The processes that cannot be resolved in horizontal grid spacing of GCMs
are parameterized, which is a source of large bias and uncertainty in the simulations [45–49]. A more
trustworthy representation of these processes and features is provided at finer spatial resolutions
of regional climate models (RCMs) which are typically between 50 and 12 km, for instance 50 km
for RCMs implemented and simulated in the project PRUDENCE [50] and NARCCAP [51], 25 km
in ENSEMBLES [52] and 12 km in EURO-CORDEX [53]. Even if the spatial resolution of RCMs is
much higher than that of GCMs, the grid size is still too large to adequately represent convective rain
which is of primary importance for flood risk analysis [54]. To explicitly represent deep convection,
very high resolution climate models (<4 km) termed convection-permitting models (CPMs) are needed.
The major issue still plaguing CPMs is the representation of rain-on-snow events which are responsible
for flash flooding in urban watersheds.

Another alternative to circumvent the intrinsic deficiency of GCMs and RCMs to represent fine-scale
physical processes is statistical downscaling [55,56]. Nevertheless, the results of downscaling methods
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are often compromised with bias and limitations [57,58] due to assumptions and approximations
made within each method. Some of these assumptions cast doubt on the reliability of downscaled
projections and may limit the suitability of downscaling methods for some applications [59]. As there
is no single best downscaling method, the assumptions that led to the final results for different methods
require evaluation. Therefore, end users can select an appropriate method based on their strengths
and limitations.

5.2. Case Study

To address the need for a statistical downscaling of extreme precipitation to a finer scale
(e.g., catchment), Pham et al. [20] proposed a two-step statistical downscaling approach. Precipitation
was first classified into wet and dry day or dry day, non-extreme precipitation day, and extreme
precipitation day using the linear discriminant analysis (LDA), random forest (RF), and support vector
classification (SVC). Afterwards, the precipitation amount for each precipitation state was predicted
using the least square support vector regression (LS-SVR). Predictors of classification and prediction
were obtained from the large-scale climate variables of the NCEP reanalysis data during 1964–1999 and
2000–2013 for calibration and validation, respectively. The results showed an outperformance of RF
compared to LDA and SVC for precipitation classification. The extreme precipitation downscaling was
found to be improved using RF for the classification of three-precipitation-states and using LS-SVR for
the prediction of precipitation amount.

6. Early Warning and Forecasting Systems for Drought and Flood

6.1. Background

Hydrological hazards (flood and drought) are manageable by implementing appropriate
emergency preparedness and mitigation strategies. One of the effective measures to mitigate the
negative impacts of drought and flood is the early warning and forecasting systems. Forecasting
of hydrological events is performed using conceptual or data-driven models [60]. Each group of
forecasting models has its own cons and pros. The conceptual models usually incorporate simplified
forms of physical laws and are generally nonlinear, deterministic, and time-invariant, with parameters
that characterize watershed features [61]. Nevertheless, the main limitation of these models is that
when they are calibrated to a set of time series, they may not provide an accurate prediction for
values beyond the range of calibration or validation values [62]. Data-driven models are numerical
models which represent causal relationships or patterns between sets of input and output time series
data, independent of the physics of the real-world situation. Although a limited prior knowledge
requirement of internal functions of the system being modeled [63] along with a high ability to
represent non-linear processes [64] and time–space variability [60] are the main pros of data-driven
models, the prediction entirely based on mathematics without explicit physical consideration is the
main limitation of these models.

6.2. Case Studies

Rhee and Yang [13] developed a hybrid model for the meteorological drought prediction of the
6-month Standardized Precipitation Index (SPI) for areas with a sparse gauge network using the APEC
Climate Center Multi-Model Ensemble seasonal climate forecast and machine learning models of
Extra-Trees and Adaboost. To overcome the limitation of the sparse network, dynamically downscaled
historical climate data from the Weather Research and Forecasting (WRF) model were used to train
machine learning models instead of in-situ data as a reference. In another study, Khan et al. [14]
developed two artificial neural network (ANN)-based models and two wavelet-based artificial neural
network (W-ANN) models for meteorological and hydrological droughts characterized by Standard
Index of Annual Precipitation (SIAP) and Standardized Water Storage Index (SWSI), respectively.
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Owing to the importance of reservoir inflow forecasting for appropriate reservoir management,
especially in the flood season, the variation analogue method (VAM), the W-ANN, and the weighted
mean analogue method (WMAM) were used to forecast reservoir inflows by Amnatsan et al. [16].
In another study, Bafitlhile and Li [17] applied ε-Support Vector Machine (ε-SVM) and ANN for the
simulation and forecasting streamflow of three catchments with humid, semi-humid and semi-arid
climates. To optimize the ANN and SVM sensitive parameters, the Evolutionary Strategy (ES)
optimization method was used.

7. Interconnections of Hydrological Extremes

7.1. Background

Hydrological extremes are often investigated in isolation, while in reality hydrologic processes in
the water cycle are interconnected. Or the complex interconnected water systems are oversimplified
such as the relation between precipitation and groundwater table fluctuations. Isolated analysis of
hydrological extremes or oversimplification of their complex interactions results in an underestimation
of the impact associated with extreme conditions. Hydrological extremes must, therefore, be analyzed
in a compound manner for a more realistic estimate of the overall impact. This ensures a better
decision-making to curb the growing impacts of the extremes and to plan and build more resilient
water systems [10].

7.2. Case Studies

The interconnection between hydrological extremes was addressed by Dawley et al. [22] who
correlated surface and subsurface hydrological extreme events by investigating the possible effects
of extreme storm events of different properties on the fluctuations in surface and subsurface water
systems. They applied three probability density functions (PDFs), Gumbel, stable, and stretched
Gaussian distributions, to capture the distribution of extremes and the full-time series of storm
properties (storm duration, intensity, total precipitation, and inter-storm period), stream discharge,
lake stage, and groundwater head values. The potentially non-stationary statistics of hydrological
extremes were quantified by computing the time-scale local Hurst exponent (TSLHE) for the time
series data recording both the surface and subsurface hydrological processes. The results indicated
that groundwater recharge has a strong relationship with storm duration and intensity and a weak one
with total precipitation. The surface water and groundwater series were found to be persistent because
of their relatively slow evolving nature, while storm properties were anti-persistent because of their
rapid temporal evolution. They also showed that a single distribution cannot most effectively capture
all of hydrological extremes and different distributions depending on the variable under study should
be used.

The difficulty of establishing a joint distribution function for multiple correlated random variables
with a mixture of non-normal marginal distributions affecting the design and safety evaluation of
hydro-infrastructural systems was tacked by Tung et al. [21]. They presented a framework for a practical
normal transform based on the third-order polynomial with an explicit consideration of sampling
errors in sample L-moments and correlation coefficients. The modeling framework was then applied
to establish an at-site precipitation intensity–duration-frequency (IDF) relationship for 27-year annual
maximum precipitation records with seven durations (1–72 h). The results showed that the proposed
framework is able to deal with multivariate data having a mixture of non-normal distributions.

8. Applicability of Satellite Data for Hydrological Studies

8.1. Background

The precipitation measurements can be obtained through different sources such as surface
networks, weather radars and satellite estimations. Among them, the most common practice is
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the derivation of precipitation estimates over land areas from surface rain-gauge observations at
automated or human-operated sites [65]. Despite the different types of errors included in surface
network measurements such as instrument/human errors, change of instrument/observer, change of
observing technique and changes in station surroundings like urbanization, they provide the most
accurate measurements. Notwithstanding being the most reliable and longer records [66], they are
limited in sampling precipitation for continental and global applications [67]. In most regions of the
world, rain-gauges do not provide a reliable spatial representation of precipitation [68], especially over
oceans, deserts and mountainous areas. In addition, other possible problems of surface rain-gauge
observations are the inhomogeneous spatial distribution and the existence of missing data resulting in
inadequate temporal and spatial sampling [65] especially in developing countries.

Satellite estimations with a spatially and temporally homogeneous precipitation information at a
quasi-global to global scale are excellent alternatives wherever/whenever rain-gauge observations are
not available [11]. Nevertheless, their quality has to be validated before any application. The typical
sources of errors in satellite precipitation data are sensor-related errors, retrieval errors and spatial
and temporal sampling errors [69]. The most common practice for the verification of satellite data
is to compare satellite estimations with local station-based observations, by considering the spatial
scale mismatch between the point station observations and gridded outputs as the latter represent area
averages rather than point values [54]. Specifically, extreme precipitation values obtained from station
observations are expected to be more intense compared with the ones from gridded outputs [70],
because of the smoothing associated with the spatial averaging of precipitation characteristics over
gridcells [71]. Another limitation of satellite data is their coarse spatial resolution, which is not suitable
for practical applications in hydrology, calling for the spatial downscaling of the data.

8.2. Case Study

Addressing the need for the spatial downscaling of satellite data, Mahmud et al. [12] developed
a spatial downscaling algorithm to produce finer-scale satellite precipitation data in humid tropics.
They used the potential of the low precipitation variability in Peninsular Malaysia and monsoon
characteristics (period, location, and intensity) at the local scale as a proxy to spatially downscale
TRMM (Tropical Rainfall Measuring Mission) satellite precipitation data. To this end, a site-specific
coefficient (SSC) was first derived for each individual pixel by comparing the high-resolution areal
precipitation (0.05◦) from a dense gauge network and re-gridded TRMM satellite precipitation data
(from the initial resolution of 0.25◦ to 0.05◦) and then the SSC was validated to produce high-resolution
precipitation maps.

9. Conclusions

The research published in this Special Issue applied or developed a broad range of novel methods
for the statistical analysis and stochastic modelling of hydrological extremes. The case studies presented
in the 13 published papers have touched on six research areas: (1) Historical changes in hydrological
extremes; (2) projected changes in hydrological extremes; (3) downscaling of hydrological extremes;
(4) early warning and forecasting systems for drought and flood; (5) interconnections of hydrological
extremes; and (6) applicability of satellite data for hydrological studies. Contributions to this Special
Issue are expected to be greatly beneficial for researchers, policy-makers and risk managers dealing
with hydrological hazards. Yet, innovative statistical methods have to be developed to keep up with the
accelerating pace of socio-environmental changes. Hence, of particular interests for further research,
are the topics concerning future hydrological extremes, for instance:

• Assessment of the decadal natural oscillations of hydrological extremes and their concurrent
and lagged relationships with large-sale atmospheric circulation patterns as done in Tabari and
Willems [1];
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• Attribution analysis of changes in the intensity, duration and frequency of hydrological extremes
to anthropogenic influences;

• Dynamical downscaling of hydrological extremes and exploring the added value of CPMs
and RCMs;

• Climate-proof hydraulic designs based on projected IDF curves;
• Assessment of uncertainties in hydrological projections and observations;
• Socioeconomic risk analysis of future hydrological hazards;
• Hydrological hazard mitigation and adaptation strategies.
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Abstract: This study aims to identify spatial and temporal precipitation trends by analyzing eight
extreme climate indices of rainfall in the High Basin of the Cauca River in Southwestern Colombia
from 1970 to 2013. The relation between historical floods and El Niño Southern Oscillation (ENSO) is
also analyzed. Results indicate that in general, the reduction of precipitation, especially in the center of
the basin with negative annual and seasonal trends in intensity indices, namely, the annual maximum
1-day precipitation amount (RX1day) and annual maximum 5-day precipitation amount (RX5day).
Sixty-four percentage of the stations exhibit an increasing trend in September–October–November in
the consecutive dry days. In December–January–February interval, positive trends in most of the
stations is noted for total precipitation and for the number of wet days with rainfall greater than or
equal to 1 mm. The findings also show that sea surface temperature (SST) in the equatorial Pacific is
statistically correlated (r) with indices of extreme precipitation (r ≥ −0.40). However, the effect of
ENSO is evident with a time lag of 2–3 months. These results are relevant for forecasting floods on a
regional scale, since changes in SST of the equatorial Pacific may take place 2–3 months ahead of the
basin inundation. Our results contribute to the understanding of extreme rainfall events, hydrological
hazard forecasts and climate variability in the Colombian Andes.

Keywords: climate change; the Cauca River; climate variability; ENSO; extreme rainfall; trends

1. Introduction

Local intense rainfall events, as well as environmental alterations (deforestation and/or
urbanization), may often trigger the incidence of hydrological hazards, such as floods, flash floods and
landslides, especially in the tropical areas [1]. In Colombia, hydrological hazards mostly occur as a
result of local heavy precipitation during the cold phase of the El Niño Southern Oscillation (ENSO),
known as La Niña [2–6]. Hydrological basins located in the Andes are prone to hazards due to complex
geographical terrain combined with spatial and temporal climate variability [5]. These events have
a strong impact on a large portion of the local economy, since agriculture accounts for a significant
amount of income generation [7,8].

Between 1970 and 2013, floods affected about 16 million Colombians and claimed the lives of more
than 3000 people, according to the Emergency Events Database (EM-DAT). In most cases, this is related
to the “La Niña” that can lead to water-related hydrological hazards with catastrophic consequences
for the livelihood of people and water resources. Indeed, the 2010–2011 La Niña affected 5.2 million
people and caused 683 deaths and losses of more than US$7.8 billion [9,10]. It is crucial to understand
the causes of precipitation changes on global, continental, and regional scales and identify the link
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between these hydrological events and weather phenomena and/or climate variability at inter-decadal
and inter-annual timescales [11–15].

The study of hydrometeorological threats, such as floods, flash floods, and landslides, requires
a multidisciplinary approach to understanding the impact of climate variability and climate change
on water pathways, water storage, and related hazards. Floods are the most frequent hydrological
threats in the Colombia River Basins that is present along the Andes [4,6,9]. The increased frequency
and intensity of extreme hydrometeorological events has become the main socio-environmental issue
in the 21st century [13,16–19]. Therefore, efforts are needed to detect temporal changes in extreme
rainfall and the main climate-associated mechanisms to mitigate the damage to society [20–22].

This study focuses on the High Basin of the Cauca River in Southwestern Colombia located in
the Andes region. This region is susceptible to extreme precipitation events that cause flooding [6,23],
affecting agricultural production sectors, thereby hampering regional and national economic
development [4,9,10]. In lowlands, the natural land cover has been replaced by intensive agriculture,
namely maize, sugar cane, and yucca, which are also cultivated for biofuel production [24]. More
importantly, agriculture, livestock and the human population in the Colombian Andes have also
increased exponentially over the last two centuries, with major peaks between the 1970s and 2000s [25].
Consequently, combined climate–topography–socio-economic factors create a highly vulnerable
scenario for catastrophic events.

Currently, only a few studies have addressed long-term trends in precipitation extremes in the
Colombian Andes [11,23,26,27]. In this study, 44 years (1970–2013) of daily precipitation data are used
to analyze spatiotemporal trends of rainfall at an inter-annual time scale. Moreover, eight extreme
precipitation indices in the High Basin of the Cauca River are analyzed. Specifically, the study explores
the link between climate rainfall indices, historical floods, and ENSO, which can be used in association
with climate indicators for flooding forecasting systems.

2. Methodology

2.1. Study Area

The High Basin of the Cauca River (75◦42′–76◦58′ W, 2◦06′–05◦2′ N) rises in the Colombian Massif
close to the Ecuadorian border and meanders along the Western and Central Andean Cordilleras. The
basin extends over 18.111 km2 (Figure 1a). The mountains are higher (4635 m) in the east but lower
(891 m) in the center and north, including the plains and hills.

This basin is a matter of concern in Colombia due to its important economic and ecological role
as a natural resource of water for the La Salvajina Dam (hydropower plant), domestic water supply,
and industrial and irrigation systems [28]. The population is approximately 4.5 million (9.8% of the
Colombian population in 2010), according to the National Administrative Department of Statistics.
The High Basin of the Cauca River has been identified as the strongest potential leader in agriculture in
Colombia, since it accounts for more than 90% of the sugarcane-planting area and sugar production [29],
and trade and consumption of ethanol [30].

Flood events in the High Basin of the Cauca River occur due to extreme rainfall, drastic
reductions in areas with natural forest [24,31], and the increased level of the population. For example,
the city of Santiago de Cali (the most populous city in Southwestern Colombia) has regularly
been vulnerable to river-based flooding. According to the Government of Colombia’s National
Administrative Department of Statistics (DANE, for its acronym in Spanish), the population of the
city presented a strong growth of 31.538 people per year between 1985 and 2010, from 1.42 million to
2.24 million. This still raises concerns of land use changes due to increased agricultural activities and
livestock, rural/urban migration and the expansion of urban edges, which imply that local geographic
characteristics, anthropogenic factors and climate risks may lead to the onset of catastrophic floods.

13



Water 2019, 11, 379

 
Figure 1. (a) Study area. Location of the High Basin of the Cauca River showing the pluviometric
stations (black points) and location of the river gauging station (red point). (b) Annual and monthly
variability of precipitation over the High Basin of the Cauca River over the 1970–2013 period. Source of
cartography: Corporación Autónoma Regional del Valle del Cauca (CVC).

The hydroclimatology of the Colombian Andes is dominated by climatic mechanisms such as the
latitudinal migration of the Intertropical Convergence Zone (ITCZ), associated with the trans-equatorial
dynamics of the moisture induced by the eastern trade winds. The Chocó jet activity and the behavior
of meso-scale convective systems also play a role as well [32,33]. Other hydroclimatological features
in the area are discussed by [3,34–36]. The precipitation is affected by a double-ITCZ migration
that flows from north to south and then back to north and goes across the geographic valley of the
Cauca River twice a year (Figure 1b); this is a consequence of the semi-annual cycle of the march
of the sun, and the circulation of the trade winds. For these reasons, there are two rainy seasons:
March–April–May (MAM), and September–October–November (SON), which alternate with two
reduced-rain seasons—December–January–February (DJF) and June–July–August (JJA). The total
annual precipitation based on observational data over the 1970–2013 period is between 1294 and
2299 mm (Figure 1b).

2.2. Data Quality Control and Homogeneity

The data used in this study are provided by the Corporación Autónoma Regional del Valle del
Cauca (CVC), based on historical daily precipitation from 108 rainfall stations. From these, only
the stations with at least 90% of daily information between 1970 and 2013 were used. The dataset
homogeneity and identification of possible biased records were investigated by performing RhtestV3
software developed and maintained by Wang and Feng [37] at the Climate Research Branch of
Meteorological Service of Canada, a software running on R which are freely available online at
http://etccdi.pacificclimate.org/software.shtml. After homogeneity testing, only thirty-nine (39)
rainfall stations met the established criteria to compute the extreme precipitation indices.
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2.3. Extreme Precipitation Indices

We used the RClimDex package developed by Zhang and Yang (2004) [38,39] at Climate Research
Branch Environment of Canada. This package is a statistical tool for the R platform, proposed by the
Expert Team on Detection and Climate Change Indices (ETCCDI; http://etccdi.pacificclimate.org/).
In this study, eight precipitation-related indices were selected (Table 1). These indices are calculated at
annual and seasonal scales (DJF, MAM, JJA, and SON). The seasonal analysis is justified by the marked
inter-annual variability of precipitation, as shown above (Figure 1b). These extreme precipitation
indices are also used to detect possible relationships between hydrological hazards and areas potentially
vulnerable to catastrophic events [13,15,22,40–42].

Table 1. Definition of indices selected for analysis of extreme precipitation recommended by the Expert
Team on Climate Change Detection and Indices (ETCCDI).

Index Indicator Definition Unit

PRCPTOT Annual total wet-day
precipitation Total wet-day precipitation (RR * ≥ 1 mm) mm

RX1day Maximum 1-day
precipitation amount Highest 1-day precipitation amount mm

RX5day Maximum 5-day
precipitation amount

Highest 5-day precipitation amount in
consecutive days mm

R95p Very wet days Precipitation due to very wet days
(>95th percentile) mm

NW Number of wet days Number of days for precipitation ≥ 1 mm days

R30mm Number of very heavy
precipitation days Number of days for precipitation ≥ 30 mm days

CWD Consecutive wet days Maximum length of wet spell (RR ≥ 1 mm) days
CDD Consecutive dry days Maximum length of dry spell (RR < 1 mm) days

* RR is the daily rainfall (≥1 mm) amount on a wet day. Note: Indices are calculated using daily data precipitation,
computed at the annual and seasonal scales in the 1970–2013 period.

The extreme rainfall indices can be divided in three categories (Table 1): (1) the intensity indices
describe the amount of maxima (or maximum) precipitation in one day (RX1day) and maximum
accumulated precipitation in 5 consecutive days (RX5day), respectively. The very wet days (R95p)
represents the daily amount of precipitation that surpasses the 95th percentile value. The RX1day,
RX5day and R95p were used to describe floods and flash flood risks (e.g., [13,41]); (2) frequency
indices: the R30mm index represents the number of heaviest precipitation days and indicates the
seasonal/annual count of days when the daily rainfall is greater than or equal to 30 mm. The number
of wet days (NW) counts the number of days with rainfall of ≥1 mm; and (3) duration indices: the
maximum number of consecutive wet days (CWD) and consecutive dry days (CDD). The PRCPTOT
index is the seasonal/annual total wet-day precipitation with daily rainfall greater than or equal to
1 mm. PRCPTOT does not necessarily have a direct relationship with the precipitation extremes but
provides relevant information on the climatological aspects and in wet or dry periods [42].

Temporal trends of precipitation indices are examined by the Mann-Kendall (MK) trend test
and calculated by the Sen slope estimator. The MK test [43,44] is a wildly applied nonparametric
method to characterize trends of extreme precipitation indices [11,14,18,45], whereas the nonparametric
statistical test developed by Sen (1968) [46] is used to estimate the trend magnitude. These methods
are less sensitive to outliers than parametric statistics [11,45]. A more detailed description of these
methods can be found in Yue et al. [47]. Trends are considered to be statistically significant at the 5%
significance level.

2.4. Regional Anomalies of Extreme Precipitation, ENSO and Flood Events

Despite the small number of stations in the south (2◦06′–3◦0′ N) and a larger coverage in the
center (3◦0′–4◦0′ N) and north (4◦0′–05◦2′ N), the stations are found to be reasonably well distributed
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over the basin. The study area was divided into three regions according to the latitude: northern,
central and southern. It is important to note that 12%, 72 % and 15% of the basin’s population are
distributed in the north, central and south regions, respectively. We calculated the aggregate time
series to evaluate the possible existence of large subregional asymmetries as well as exploring spatial
coherence of natural variability in the precipitation extremes, ENSO, and floods events. This method
has been widely used in the analysis of climate precipitation extremes [13,17,26,48]. The regional
averaged anomaly series for each index was calculated using the following equation:

xr,t =
nt

∑
i=1

(xi,t − xi)/nt (1)

where xr,t is the regional averaged index at year t; xi,t is the index i at year t; xi is the 1970–2013 index
mean at series and nt is the number of stations with data in year t. The regional series are expressed in
millimeters (PRCPTOT, RX1day, RX5day, and R95p) and days (R30mm, NW, CDD, and DWD).

The impacts of ENSO on precipitation-related indices are also analyzed. The ENSO regimes are
defined by the Niño 3.4, in line with previous studies by Poveda et al., Ávila et al., Morán-Tejeda et al.,
Maldonado et al. and Vicente-Serrano et al. [49–53]. The Niño 3.4 (0–10S, 90W–80W) characterizes
Eastern Central Tropical Pacific Sea Surface Temperature (SST) anomalies. The series of the ENSO index
over the 1970–2013 period are extracted from the National Oceanic and Atmospheric Administration
website (NOAA; https://www.esrl.noaa.gov/psd/data/climateindices/list/). To characterize the
effect of SST of the Pacific Ocean on precipitation, Pearson’s correlation test was performed between El
Niño 3.4 index and the regional time series of the precipitation indices.

According to the U.S. Geological Survey, a flood is “an overflow of water onto lands that are used
or usable by man and not normally covered by water. Floods have essential features: The inundation
of land is temporary; the land is adjacent to and inundated by overflow from a river”.

We explored the data from thirteen catastrophic floods, recorded since 1970, provided by the CVC
and available in the “Hydrological Analysis of the Historical Flooding of the Cauca River” report [54],
to analyze which is the pattern how extreme precipitation indices characterize the behavior of a
flooding. The report is available at https://www.cvc.gov.co/. The CVC’s report shows inundation
maps (flooded area), dates and the maximum flow registered at the Victoria gauging station (Station ID
40; see the red point in Figure 1; further details in Appendix A). The flooding events occurring in the
Cauca River after the onset of heavy rains are concentrated in flooded areas between 50 km2–700 km2

(Table A1).

3. Results and Discussion

3.1. Annual and Seasonal Extreme Precipitation Trends

Trends and percentages of stations have been calculated for eight precipitation indices on annual
(Figure 2a–i) and seasonal scales (Figures A1–A5), over the study area during the 1970–2013 period.

The total annual precipitation in wet days (PRCPTOT) has experienced positive trends in the north
(Figure 2a) and negative trends over the center (3◦00′–04◦0′ N) and south (2◦06′–3◦00′ N) of the basin.
The seasonal analyses also demonstrate negative trends for the PRCPTOT index (Figure 3b–d). In MAM,
59% of stations show negative trends, with 59% in JJA and 69% in SON (Figures A2–A4). However,
for DJF (Figure A1), positive trends predominated in 74% of the stations. In general, the PRCPTOT
has decreased over the past four decades, in particular in the central region. These results suggest
that precipitation is decreasing in particular for both rainy seasons (MAM and SON) and in the dry
seasons (JJA). These results are in accordance with those obtained by Puertas et al. [27], who analyzed
the rainfall trends at annual and seasonal timescales in the 1975–2006 period. Differences between
the current study and Puertas et al. [27] appear in the seasonal analyses. Puertas et al. [27] found
statistically significant positive trends for DJF and SON, whereas in our study, this is true only for
DJF where the positive trends predominated in 74% of the stations. Differences between these studies

16



Water 2019, 11, 379

may arise from the longer time series and time intervals used in our analyses. We have investigated
12 years more than Puertas et al. [27] which indeed modifies the characteristics of the trends.

Figure 2. Spatial distribution of linear trends for annual precipitation indices: (a) PRCPTOT, (b) RX1day,
(c) RX5day, (d) R95p, (e) NW, (f) R30mm, (g) CWD (h) CDD and (i) Percentage of stations with positive,
negative and no change trends, out of the total stations examined over the Cauca River High Basin
over the 1970–2013 period. Upward (downward) triangles refer to positive (negative) trends. Saturated
triangles indicate trends significant at a 5% level and circles indicate no change trends.
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Figure 3. Temporal evolution of the anomalies for annual precipitation indices over north, central
and south regions in terms of PRCPTOT, RX1day, RX5day and R95p, NW, R30mm, CDW and CDD.
La Niña and El Niño occurrences are displayed by the vertical blue and red bars, respectively.

Celleri et al. [55] detected significant positive trends in rainfall over the Equatorial Andean for DJF
and MAM, and negative tendency for JJA, from 1963 to 1993. Casimiro et al. [56] found similar seasonal
trends over the Peruvian Andes for the 1965–2007 interval. In general, previous studies corroborate
the generalized trend of increased precipitation for DJF (Figure A1), and decreased precipitation for
JJA and SON results (Figures A3 and A4, respectively), which support our findings with the exception
of MAM (Figure A2).
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On the annual scale, the negative trend of PRCPTOT is consistent with the results of Skansi et al. [11],
who determined local trends of climate extremes indices on the annual scale for South America in the
period 1969–2009. Likewise, this result agrees with those obtained by Aguilar et al. [26], who analyzed
extreme precipitation indices for Central America and Northern South America over the 1961–2003.
The PRCPTOT delivered negative trends over stations located in the lower and middle zones of our
study area (Figure 2a).

The annual maximum 1-day precipitation amount (RX1day), annual maximum 5-day precipitation
amount (RX5day), the number of days for precipitation of ≥30 mm (R30mm), and the maximum
number of consecutive days (CWD) do not show similar trend characteristics (negative or positive)
on the annual scale (Figure 2). Nevertheless, RX1day and RX5day were characterized by significant
negative trends over the center of the basin, and the same happens at the seasonal level, except in DJF
(Figures A1–A4). It is important to note that R95p and NW also show 56% and 59% of stations with
positive trends, respectively, especially with significant upward trends in the center and north of the
basin. The trends of R95p in the central region indicate that although PRCPTOT has been decreasing,
the maximum events of rain have become more intense, especially if these tendencies correspond to
the same stations (19, 22, 24, 26 and 30). The NW delivers positive trends in DJF and MAM which
increased by 69% and 54%, respectively. It is important to note that the R30mm has shown no change
of rainfall in most stations during all seasons. Similarly, CWD demonstrates in DJF and JJA that 54%
and 62% of the stations do not experience trends, respectively, with the exception of SON, with a
general negative trend.

Additionally, RX1day, RX5day and R95p show positive trends, specifically in DJF and MAM
(Figures A1 and A2). This is important because intense rainfall has been the main factor in the
generation of historical flood of the Cauca River (Enciso, Carvajal, and Saldoval, 2016). Additionally,
in these seasons, the maximum peaks in the flow of the Cauca River during floods have been presented
(Table A1). In addition, these indices have statistically significant (p value < 0.05) positive trends in the
northern region, except for R95p that presents this type of trends in the southwest region, particularly
in DJF. The positive trends of RX1day, RX5day and R95p in the north and south of the basin, at annual
and seasonal levels, are important because it is where the sub-basins are located that contributed to the
maximum flow of the historical floods of the Cauca River.

Skansi et al. [11] and Aguilar et al. [26] show positive trends on the annual scale for PRCPTOT,
RX1day, RX5day and R95p, which is in line with our results in the northern region (Figure 2). However,
this is not true in all cases for the center and south, where for example the PRCPTOT decreases.
Our results provide an update of the extreme precipitation indices for the region, which were previously
determined by Cardona et al. [23] during 1982–2011 on the annual scale in two Andean sub-basins
of Cauca River Basin, located in the southwest of the region. The results coincide for PRCPTOT and
CWD with negative trends and for RX1day with a positive trend. Additionally, Cuartas et al. [57]
shows indices of climatic extremes at a monthly level between 1998 and 2013 in the flat area of the
Cauca River Basin, where PRCPTOT and RX5day had positive trends. Our results show decreasing
trends for these indices in the same area. This can be explained by the difference in the evaluation
period and the analysis scale.

3.2. Regional Anomalies of Extreme Precipitation, ENSO and Flood Events

In order to verify whether the extreme precipitation is related with ENSO flood events from 1970
to 2013, we evaluated the temporal evolution of annual precipitation indices and soil moisture, which
are shown in Figure 3. The stronger events tend to occur during La Niña years (e.g., 1970–1971, 1999,
and 2011). We have found that during La Niña years, the anomalies of the PRCPTOT, RX5day, R95p,
R30mm and NW are positive and higher than those related to El Niño years (Figure 3; vertical blue and
red bars). The disaster areas of the 1988, 1999 and 2008 were years dictated by precipitation anomalies
related to La Niña, and show however the lowest recorded (less than 134 km2). This has occurred,
because a year before the flood, the contribution of soil moisture was low and the non-homogenous
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behavior of total precipitation and extreme events in comparison with the floods of greater disaster
area. For example, in 1987 and 1998, there were negative anomalies in all indices in the southern region
and in soil moisture in the northern region. Equally, in 2007, soil moisture anomalies were negative in
all regions.

It is interesting to note that the CDD play an important role in the magnitude of the floods due
to its implication on soil moisture before the flood occurrence. At the annual scale, the CDD index
shows negative trends in the central and northern regions (Figure 3). The CDD present a positive
trend in SON in 64% of the stations (Appendix A). These results can be associated to the minimum
occurrence of rainfall due to a decrease in the PRCPTOT, RX1day and NW in this season. It should be
emphasized that, currently, this is the High Basin of the Cauca River rainy season (SON). Furthermore,
the decreasing in precipitation (PRCPTOT) in SON can be changes in DJF patterns rainfall, while the
unbalanced spatial-temporal distribution of rainfall can play an important role in the formation of
flood disasters, mainly in DJF and MAM that present the maximum peaks in the flow (Table A1).

The CDD reflects positive anomalies between extreme precipitation indices and years with floods
(Figure 3). Furthermore, the magnitude of anomalies of the longest dry periods are associated with the
El Niño events. For instance, El Niño conditions are related to reduced precipitation in the High Basin
of the Cauca River. In 1982 and 1997 (Figure 3), the excess precipitation was not sufficient to cause
major floods, because the soil could not store most of the rain since it was particularly dry. Two of the
strongest El Niños in the last century occurred in these years [58]. In the 12 months preceding floods
(1982, and 1997), positive anomalies were identified for two extreme precipitation indices (PRCPTOT
and NW). This may have influenced a gradual increase in soil moisture, reducing the infiltration basin
capacity and thus leading to flooding.

Avila et al. [13] investigated the daily extreme precipitation events and their link to the number of
flash floods in Southeastern Brazil and found statistically significant positive correlation coefficients
between flash flood and extreme precipitation for RX1day (r > 0.49) and RX5day (r > 0.39). Using
similar indices, Wu and Huang [41] demonstrated that maximum RX1day and RX5day values coincide
with the years when floods occur. However, in the current investigation, the RX1day was the least
significant index for indicating floods in the High Basin of the Cauca River, as shown in Figure 3.

Aiming to further explore the climatological evolution of floods on the study area, we examined
the large-scale forcing of the ENSO index (Niño 3.4), and its effects on extreme rainfall indices on
a monthly scale. Considering the delayed precipitation in response to the ENSO index, we used
different time lags (1 lag = 1 month). The maximum coefficients of the Niño 3.4 (Figure 4) and
precipitation-related index have been found for the time lag of 2–3 months. The PRCPTOT, RX1day,
RX5day, R95p, NW, R30mm and CWD demonstrated significant negative correlations for all three
areas. Central and south regions reflects the highest values for 2-lag in the PRCPTOT, RX5day, NW and
CWD (r ≤ −0.45), whereas the lowest values were generally found in RX1day, R95p, and R30 mm
(≥−0.40) over the north region. On the other hand, the CDD reflect maximum significant positive
correlations in central and south areas for the 3-lag with values between 0.41 and 0.44.

The Niño 3.4 index delivered negative correlations with seven precipitation indices, which
indicates that they are out of phase in this region and have an indirect relationship with extreme
precipitation events. Indeed, negative values of the Equatorial Pacific SST, on the other hand, increase
rainfall events over the basin. According to Morán-Tejada et al. and Vicente-Serrano et al. [51,52],
the index of 3.4 explains most of the rainfall in the equatorial mountainous region (the Andes). This is
supported by the results discussed here, since the correlation coefficients are statistically significant for
all extreme precipitation indices related to dry as well as very humid periods.
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Figure 4. Pearson’s correlation coefficients between Niño 3.4 and extreme monthly precipitation indices:
(a) PRCPTOT, (b) RX1day, (c) RX5day, (d) R95p, (e) NW, (f) R30mm, (g) CWD and (h) CDD. The values
in the gray zone indicate statistically insignificant correlations (at p-value = 0.05). The Y-axis refers to
the correlation coefficient values and the X-axis refers to the lag number (1 lag = 1 month).

In general terms, the north, central and south regions have similar temporal evolutions of extreme
precipitation and highly correlated behavior within the index of 3.4 (Figure 4). In particular, central,
southern and regional (region area: all stations) time series have analogues values of the anomalies and
correlations coefficients (Figures 3 and 4). These results may have important implication in terms of
preventing floods and being used in forecasting systems in key areas of the basin. In addition, the CVC
and Enciso et al. [6,54] found that the highest frequency of flooding is concentrated in the center of the
High Basin of the Cauca River (3◦0′–4◦0′ N).

We explored the data from eleven catastrophic floods between 1970 and 2013 to investigate the
ENSO influence (see Appendix A). Figure 5 only presents results for the central region because the
majority of population is placed in this region. Further details of index anomalies over northern and
southern regions are found in Appendix A (Figure A5). The most important factor to cause floods
are the heavy precipitations associated with La Niña conditions, which generates the probability of
elevated discharges of the Cauca River’s and its tributaries rivers [6]. For this reason, the CDD index,
which represents the maximum length of dry spell (dry events), is not included in this analysis.

Figure 5 shows the monthly evolution of seven precipitation extremes and the Niño 3.4 index
before and after the flood event. Based on the 95% confidence interval (hatched area), it was observed
that these indices are positive or close to zero for 3–11 months (phase 1) prior to the month with
the peak flood discharge. At 0–2 months prior to the peak discharge (phase 2), during this phase,
all extreme precipitation indices exhibit the maximum positive anomalies. This suggests that heavy
precipitation (RX1day, R95p, and R30mm) and rainstorms (RX5day, NW, and CWD) contribute to the
evolution and onset of the flooding.
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Figure 5. Index anomalies over the central region for PRCPTOT, RX1day, RX5day, R95, NW, R30mm,
CDW, and soil moisture Niño 3.4 for floods that occurred under La Niña conditions (n = 11) in relation
to the time of the month with a peak discharge. The mean (line) and the 95% confidence interval
(shaded bands) are shown for each index. The vertical dotted line refers to the peak of discharge;
horizontal lines denote a zero anomaly for each index calculated.

The influence of climate features on extreme hydro-meteorological processes (such as floods)
depends on the capability of understanding the role of abnormal pattern of atmospheric pressure,
SST and soil moisture patterns [59,60]. An attempt is done here by evaluation of the synoptic
hydro-meteorological conditions by constructing composite anomalies maps during the 1970–2013
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period (Figure 6), according to Welhouse et al. and Munoz and Dee [59,61]. With it being important to
identify whether climate regimes, occurrence in far-off regions of interest may lead to floods in the
Cauca River.

Figure 6. Composited anomalies of surface temperature over the Pacific sea surface, sea level pressure
(contours), and soil moisture over the High Basin of the Cauca River: (a) 11–9 months, (b) 8–6 months,
(c) 5–3 months, and (d) 2–0 months prior to floods events (n = 11).

Henceforth, the monthly pressure data [62] at 1◦ × 1◦ spatial resolution from the Princeton
University Terrestrial Hydrology Research Group (http://hydrology.princeton.edu/data.pgf.php) is
used. The Centennial In Situ Observation-Based Estimates (COBE SST2) provides reliable monthly
gridded datasets of global SST [63]. The COBE-SST2 (1◦ × 1◦) dataset was downloaded from NOAA’s
official website (https://www.esrl.noaa.gov/psd/data/gridded/data.cobe2.html). The Climate
Prediction Center (CPC; https://www.esrl.noaa.gov/psd/data/gridded/data.cpcsoil.html) provides
a monthly soil moisture dataset with a spatial resolution of 0.5◦ × 0.5◦ [64].
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Figure 6 displays the composited anomalies of surface temperature, sea level pressure, and soil
moisture over the over the tropical Pacific Ocean and Western South America. We calculated monthly
subregional anomalies in the 12 months prior to the floods and calculated the mean and 95% confidence
intervals for eight extreme precipitation climate indices.

Based on Figure 6, it is clear that by about 11–9 months prior to the floods, El Niño-like conditions
dominate the equatorial Pacific, with much higher SST anomalies nearby the South America west coast.
This pattern induces changes in surface pressure and negative SM, further leading to dry conditions
in the Cauca basin (Figure 6a). The 8–6 month anomalies show a different pattern with lower SST
anomalies and increased surface pressure along the South America margin. This pattern is intensified
between 5 and 3 months before the flood, indicating the development of La Niña conditions. During
this interval, remarkable changes are initiated, in particular in the central-south part of the Cauca
River Basin which experiences a drop in surface pressure, and increased precipitation, which result
in positive values of soil moisture (Figure 6b,c). Two–Zero months before the flood event, negative
anomalies of surface pressure dominate the north part of South America, in phase with substantial
changes in soil water availability.

Evaluation of extreme precipitation indices delivered two phases of climatological evolution.
The first phase is characterized by positive and high-magnitude extreme precipitation indices before
the flooding. The second phase is characterized by the increase of soil moisture anomalies over the
basin and saturated water storage over the period before the flood events.

These results imply that ENSO plays an important role in the flood area and magnitude, due to
changes in precipitation extremes in a given year. Moreover, the results indicated that the highest
negative values of the NIÑO 3.4 index occurs 3 months before the peak discharge (Figures 5 and 6).
These results are fundamental in addressing the challenge of forecasting floods, since the changes in
the Pacific SST are seen 3 months before the basin inundation. Similar results were found by Munoz
and Dee [59] in the Lower Mississippi River floods (USA).

4. Conclusions

This study is the result of substantial data collection efforts, and it significantly builds upon
previous studies [23,27,61] by providing updated spatial and temporal coverage in the years leading up
to 2013. The results in the study area show that the annual total precipitation on wet days (PRCPTOT)
has decreased over the central and southern regions. Likewise, more than 59% of the stations showed
decreasing trends in MAM, JJA and SON. However, an increase in total wet-days and the intensity
of the extreme events (RX1day and RX5day) can be observed, as shown by a general increase in the
events with days with rainfall of ≥1 mm (NW), for the DJF season, which is the dry interval.

In SON, decreased intensity, frequency and accumulated rainfall were observed (RX5day, NW
and PRCPTOT), and this has generated the increase of CDD. It should be emphasized that, currently,
this is the Cauca River rainy season.

Equally, JJA, which is a dry season, shows a decrease of accumulated and intensity rain and a
decreased frequency of the days with rainfall, especially in the central region. Although it has not
been our focus in the present study, the region has experienced a systematic increase in the number of
vegetation fires, particularly in JJA [24,65], with substantial economic losses. The decreasing trends
in precipitation indices pose a potential threat for the development of more erratic fires, due to the
vulnerability of the region.

We found that the region El Niño 3 + 4 shows significant correlation with the extreme precipitation
indices. The SST field, principally at the time lag of 2–3 months, are highlighted, evidencing the strong
relationship that ENSO has over the hydro-meteorology of Colombia. Consistent with these results,
Córdoba-Machado et al [66] displayed through a Principal Component Analysis that a pattern based
on global precipitation, mean temperature over land and SST of the ENSO regions (e.g. Niño 3,
and Niño 4) is strongly linked to the hydro-meteorology of country. Nonetheless, the relationship
between extreme precipitation indices and the Pacific SST is not considered in those studies, as has
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been evaluated in the present study. The understanding of precipitation extremes is necessary to
undertake coordinated projects in order to alleviate the response of different productive sectors and
reduce the threat to local populations. The occurrence of historical floods causes significant economic
losses and strong stress on hydric resources. Changes in land use in the region have affected the
natural capacity of the basin during extreme climate events.

In general terms, our results will benefit current and future studies on climate resilience for
hydrological hazard forecasts on a regional scale, since the findings indicate that flooding events may
be predicted by using a series of precipitation extreme indices, soil moisture and ENSO.
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Appendix A

Table A1. Floods recorded at the gauging station at Victoria (Station ID 40; see the red point in Figure 1)
in relation to ENSO events and flooded area in High Basin of the Cauca River.

Peak Stage Date Flow
(m3/s)

Flooded
Area (km2)

Corresponding La Niña 1

(Day/Month/Year) Start Date End Date

18 November 1970 1117 367.7 June 1970 December 1971
5 April 1971 1222 663.8 June 1970 December 1971

24 March 1974 1219 419.1 May 1973 June 1974
30 December 1975 1317 431.2 September 1974 February 1975
18 April 1982 2 972 110.0 –
8 November 1984 1214 353.9 September 1984 May 1985
8 December 1988 1148 128.8 April 1988 April 1989

30 January 1997 2 993 54.0 –
2 March 1999 1166 133.7 June 1998 February 2001
30 November 2008 1055 82.9 July 2007 May 2008
4 December 2010 1202 440.2 July 2010 March 2011
28 April

2011 3 1188
393.2

July 2010 March 2011
16 December 1205 July 2011 January 2012

1 Refers to a La Niña event that ended within a year prior to the major flood stage. 2 Refers to an El Niño event,
according to the Oceanic Niño Index (ONI) and its definition in Jan 2017. 3 Information available only for the annual
total area affected by the floods.
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Figure A1. Spatial distribution of decadal trends for December–January–February (DJF). (a) PRCPTOT,
(b) RX1day, (c) RX5day, (d) R95p, (e) NW, (f) R30mm, (g) CWD (h) CDD and (i) Percentage of stations
with positive, negative and no change trends, out of the total stations examined over the Cauca River
High Basin over the 1970–2013 period. Upward (downward) triangles refer to positive (negative) trends.
Saturated triangles indicate trends significant at the 5% level and circles indicate no change trends.
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Figure A2. Spatial distribution of decadal trends for March–April–May (MAM). (a) PRCPTOT,
(b) RX1day, (c) RX5day, (d) R95p, (e) NW, (f) R30mm, (g) CWD (h) CDD and (i) Percentage of stations
with positive, negative and no change trends, out of the total stations examined over the Cauca River
High Basin over the 1970–2013 period. Upward (downward) triangles refer to positive (negative) trends.
Saturated triangles indicate trends significant at the 5% level and circles indicate no change trends.
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Figure A3. Spatial distribution of decadal trends for June–July–August (JJA). (a) PRCPTOT, (b) RX1day,
(c) RX5day, (d) R95p, (e) NW, (f) R30mm, (g) CWD (h), CDD and (i) Percentage of stations with positive,
negative and no change trends, out of the total stations examined over the Cauca River High Basin
over the 1970–2013 period. Upward (downward) triangles refer to positive (negative) trends. Saturated
triangles indicate trends significant at the 5% level and circles indicate no change trends.
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Figure A4. Spatial distribution of decadal trends for September–October–November (SON).
(a) PRCPTOT, (b) RX1day, (c) RX5day, (d) R95p, (e) NW, (f) R30mm, (g) CWD, (h) CDD and (i)
Percentage of stations with positive, negative and no change trends, out of the total stations examined
over the Cauca River High Basin over the 1970–2013 period. Upward (downward) triangles represent
positive (negative) trends. Saturated triangles indicate trends significant at the 5% level and circles
indicate no change trends.
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Figure A5. Index anomalies over northern (a) and southern (b) regions for PRCPTOT, RX1day, RX5day,
R95, NW, R30mm, CDW, and soil moisture Niño 3.4 for floods that occurred under La Niña conditions
(n = 11) in relation to the time of the month with a peak discharge. The mean (line) and 95% confidence
interval (shaded bands) are shown for each index. The vertical dotted lines refer to the peak of
discharge; horizontal lines denote a zero anomaly for each index calculated.
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Abstract: Recent evidence of regional climate change associated with the intensification of human
activities has led hydrologists to study a flood regime in a non-stationarity context. This study
utilized a Bayesian framework with informed priors on shape parameter for a generalized extreme
value (GEV) model for the estimation of design flood quantiles for “at site analysis” in a changing
environment, and discussed its implications for flood management in the Kabul River basin (KRB),
Pakistan. Initially, 29 study sites in the KRB were used to evaluate the annual maximum flood regime
by applying the Mann–Kendall test. Stationary (without trend) and a non-stationary (with trend)
Bayesian models for flood frequency estimation were used, and their results were compared using
the corresponding flood frequency curves (FFCs), along with their uncertainty bounds. The results
of trend analysis revealed significant positive trends for 27.6% of the gauges, and 10% showed
significant negative trends at the significance level of 0.05. In addition to these, 6.9% of the gauges
also represented significant positive trends at the significance level of 0.1, while the remaining stations
displayed insignificant trends. The non-stationary Bayesian model was found to be reliable for study
sites possessing a statistically significant trend at the significance level of 0.05, while the stationary
Bayesian model overestimated or underestimated the flood hazard for these sites. Therefore, it is
vital to consider the presence of non-stationarity for sustainable flood management under a changing
environment in the KRB, which has a rich history of flooding. Furthermore, this study also states
a regional shape parameter value of 0.26 for the KRB, which can be further used as an informed
prior on shape parameter if the study site under consideration possesses the flood type “flash”.
The synchronized appearance of a significant increase and decrease of trends within very close
gauge stations is worth paying attention to. The present study, which considers non-stationarity
in the flood regime, will provide a reference for hydrologists, water resource managers, planners,
and decision makers.

Keywords: non-stationary; extreme value theory; uncertainty; flood regime; flood management;
Kabul river basin; Pakistan

1. Introduction

The comprehensive understanding of flood regimes is an important challenge in hydrology.
Hydrologists and engineers customarily use flood frequency analysis (FFA) as a tool to understand
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flood regimes throughout the world. FFA estimates the flood peak for a given return period, but the
currently used methods of FFA assume that the flood time series are independent and identically
distributed [1–3] or, in other words, have no trends and unanticipated variations [4]. Indeed, the concept
of stationarity was and is being adopted to design water resources infrastructure and flood protection
works all around the globe. In recent decades, the climate system has been under stress due to natural
variations in the global climate, and human activity also has a potential influence on regional climate
that is ultimately intensifying the hydrologic cycle [5]. The hypothesis of stationarity has become
widely questionable due to this regional and global change. Keeping this point of view, several studies
have tried to explore the validity of this hypothesis in flood regimes in many regions around the world,
considering the effect of natural climate variability [6–12] or land use changes [13–15]. The results of
these studies have shown clear violations of the assumption of stationarity, which is consistent with
studies that indicate an intensification of the hydrologic cycle [16,17].

Particularly, the KRB in the Hindu Kush Himalayan Range (HKH) is exposed to disturbances
from the South Asian monsoon originating from the Bay of Bengal. Several recent studies represented
a paucity of stationarity and indicated the intensification in some elements of the hydrologic cycle
at the regional scale. The results of these studies investigated the change in the rainfall regime of
the KRB. For instance, the number of consecutive wet days has been increasing significantly in the
Peshawar valley, with a total change of 2.16 at a 95% confidence level. Consecutive wet days have
also increased at Saidu Sharif in the Swat valley and Chitral [18]. Ahmad et al. [19] investigated
trends in rainfall over the entire Swat River basin, a sub-basin of the KRB. They observed the highest
positive trend (7.48 mm year−1) at the Saidu Sharif in Swat valley. For annual precipitation time series,
statistically insignificant trends were revealed for the whole Swat River basin. However, significant
positive increasing trends of precipitation (2.18 mm year−1) were observed in the Lower Swat basin.
Saidu Sharif, Mardan, and Charsada stations showed significant positive trends (increased precipitation
over time) at the 5% significance level in the annual precipitation time series [20]. The results of these
studies revealed the presence of trends in precipitation, and their conclusions suggest an important
link between the changes exhibited in hydro-climatic variables [21].

Furthermore, other factors that may affect the magnitude and frequency of floods in the KRB
are associated with human-induced alterations, such as changes in land use, deforestation, and dam
construction. In the KRB, the human activities that can considerably influence flood frequency are
land use changes linked with population increase. For instance, a recent study regarding land use
cover change (LUCC) dynamics in the KRB in Afghanistan highlighted that substantial LUCCs have
occurred during the time interval 2000–2010; among several land cover classes, forest, cultivated
land, and grassland showed dynamical change. During the study period, one-fourth of the forest
area was lost, while cultivated land and grassland showed an increase of 13% and 11%, respectively.
The forest area was mainly transformed into grassland and barren land. Unused land was changed
into built-up areas, up to 2%, and water areas increased by 4%. A total loss of 43% was observed in
forest area [22]. Similarly, LUCCs in the Swat valley have also occurred. Deforestation occurring due
to agriculture expansion was 11.4% at a rate of 0.29%, 77.6% at a rate of 1.98%, and 129.9% at a rate of
3.3%, annually in Kalam, Malam Jaba, and the Swat district areas, respectively. The rangeland has
increased due to the conversion of forest land from 1968–1990, by about 158.7%, 38.18%, and 22.2%
in Kalam, Malam Jaba, and Swat regions, respectively, while a 13.22% increase has occurred from
1990 to 2007 due to the conversion of agriculture land to rangeland [23]. Dir Kohistan areas of the
Hindu Kush Mountains, the northern regions of Pakistan, also showed a 6.4% decrease in forest
cover, 22.1% increase in rangeland, and 2.9% increase in agriculture land [24,25]. Similarly, Ahmad
and Nizami [26] reported a 7.64% decrease in total area under rangeland in Kumrat valley, Hindu
Kush regions. The Mardan city–Kalpani River basin showed an increase in built-up area by 30–60%
during 1990–2010. An increase in built-up area has doubled the impervious surface in Mardan and
the agriculture land has shrunk from 42% to 35% [27]. Similar results were presented for Peshawar,
the capital city of Khyber Pakhtunkhwa province, Pakistan, indicating a 26.59% increase in built-up
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area during 1999–2016 [28]. The Peshawar valley, with a rich history of flooding, provides the junctions
for the Kabul River and its various right and left tributaries.

The above studies clearly show the presence of trends in rainfall regime as well as land use change
in different sub-basins of the KRB. These climate and human interventions may induce non-stationarity
in the flood regime. However, no studies have been reported to examine the presence or absence
of stationarity in the flood regime of the basin. Therefore, it is imperative to study floods with a
non-stationary point of view for the KRB.

Recently, Milly et al. [29] stated that the hypothesis of stationarity must be relinquished and that
“stationarity is dead” and “should not be revived”. The methods used for estimation of hydrologic
indicators should be based on an innovative approach that would be reliable and useful for water
management under a changing environment.

In the literature, various approaches have been reported using probabilistic modeling of flood
frequency in a non-stationary context. Khaliq et al. [2] presented a comprehensive review, including the
incorporation of trends in the parameters of the distributions, the incorporation of trends in statistical
moments, the quantile regression method, and the local likelihood method. The studies of FFA under
non-stationary conditions have mostly assumed trends in time [30–37]. The present study outlined a
Bayesian framework for “at site flood frequency modeling” in stationary and non-stationary conditions.
The fundamental concept is based on the generalized extreme value (GEV) distribution, combined
with Bayesian inference for uncertainty assessment. For this study, a model with trend (non-stationary)
and without trend (stationary) was used.

Previous studies in the KRB were limited to inundation mapping of flood-prone areas with a very
little flow gauge station data, using a traditional frequentist approach [38–42].

The main objectives of the study were: (1) to analyze temporal and spatial trends in the annual
maximum flood regime for the KRB, Pakistan, because no study has yet been reported in the literature
to study the trends in annual extreme data of flood in detail, and (2) to address the non-stationary
modeling of the flood regime in the KRB and its implications for flood management in a changing
environment. We explored the differences between stationary and non-stationary flood quantile
estimates for a given return period using flood frequency curves (FFCs), along with their uncertainty
bounds for risk assessment, to analyze the importance of non-stationary models for improving flood
management in the study area.

2. Study Area and Data Description

2.1. Study Area

The Kabul River basin (KRB), in Pakistan, stretches from 71◦1′55”–72◦56′0” E to 33◦20′9”–36◦50′0”
N, as shown in Figure 1, which covers an area of 33,709 km2. The Kabul River starts at the base of
Unai pass from the Hindu Kush Mountains in Afghanistan and flows eastward, covering a distance
of 700 km to drain into the Indus River, Pakistan [43]. The entire basin covers an area of 87,499 km2.
The elevation in the basin varies substantially from 249 m.a.s.l to 7603 m.a.s.l. High elevation mountains
are mainly located in the north. The average temperature and average precipitation vary significantly
across the River basin. The average temperature is about 13 ◦C. Most of the precipitation occurs in the
northern mountain and highlands, reported up to 1600 mm. [44].

This study explores the part of the KRB that contributes to flooding. The flood problem arises
mainly as the Kabul River enters Pakistan. The Logar River basin, Alingar River basin, and Panjshir
River basin lie in Afghanistan. Three dams—Naghlu, Surobi, and Darunta—are located in Afghanistan
on the Kabul River and Warsak dam is also located on the Kabul River in Pakistan. The study area is
further divided into eight sub-basins: Kabul River basin, Chitral River basin, Main Swat River basin,
Panjkora River basin, Lower Swat River basin, Kalpani River basin, Jindi River basin, and Bara River
basin. The SRTM-DEM (Shuttle Radar Topography Mission–digital elevation model) of 30 m resolution
and the geographical location of the sub-basins are also illustrated in Figure 1.
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Figure 1. Description of Location, SRTM-DEM (Shuttle Radar Topography Mission–digital elevation
model, meters) and flow gauge stations for the Kabul River basin (KRB), Pakistan.

2.2. Flood Data

Twenty-nine flow gauge stations were selected to study the flood regime of the KRB. The annual
maximum daily peak flow data for the seven flow gauge stations at main rivers sites were obtained
from Surface Water Hydrology Project of Water and Power Development Authority (SWHP–WAPDA).
The streamflow data of the remaining study sites were obtained from the Hydrology Section of the
Irrigation Department of Khyber Pakhtunkhwa Province, Pakistan. The study sites that had at least
30 years of records were selected. The main characteristics of the sub-basins and the respective flow
gauge stations in each sub-basin are presented in Table 1 and Figure 1 describes the geographical
locations of the flow gauge stations in each sub-basin.

Table 1. Basic information of flow gauges and sub-basins in the KRB, Pakistan.

Site# Sub Basin and Flow Gauge Stations
Basin Area

(km2)
Coefficient of
Variation (Cv)

Number of Years
of Record

Kabul River Basin 87,499

1 Kabul River at Warsak 0.292 52 (1965–2016)
2 Kabul River at Nowshera 0.433 55 (1962–2016)
3 Shahalam River 0.724 30 (1987–2016)
4 Naguman River 0.829 30 (1987–2016)
5 Adezai River 0.739 30 (1987–2016)

Chitral River Basin 11,396

6 Chitral River 0.2 50 (1964–2013)

Panjkora River Basin 5917

7 Panjkora River 0.859 33 (1984–2016)
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Table 1. Cont.

Site# Sub Basin and Flow Gauge Stations
Basin Area

(km2)
Coefficient of
Variation (Cv)

Number of Years
of Record

Main Swat River Basin 6066

8 Swat River at Kalam 0.2 59 (1961–2009)
9 Swat River at Chakdara 0.336 49 (1961–2009)
10 Swat River at Khawazakela 0.84 34 (1983–2016)
11 Swat River at Ningolai 1.425 31(1986–2016)

Lower Swat River Basin 2685

12 Swat River at Munda Head Works 0.744 55 (1962–2016)
13 Khiyali River at Charsada Road 0.815 48 (1969–2016)
14 Jundi Nullah at Tangi 3.06 37 (1974–2011)

Jindi River Basin 13

15 Jindi River 0.684 48 (1969–2016)

Kalpani River Basin 2830

16 Naranji Nullah 0.975 49 (1968–2016)
17 Badri Nullah 0.893 45 (1966–2010)
18 Kalpani River at Mardan 1.476 33 (1984–2016)
19 Kalpani River at Risalpur 0.752 33 (1984–2016)
20 Dagi Nullah 1.01 33 (1984–2016)
21 Bagiari Nullah 0.917 30 (1987–2016)
22 Lund Khawar West 1.13 30 (1987–2016)

Bara River Basin 3388

23 Budni Nullah 1.28 43 (1974–2016)
24 Bara River at Kohat Bridge 1.69 34 (1983–2016)
25 Khuderzai Nullah 1.65 32 (1980–2011)
26 Chillah Nullah at Pabi 1.15 32 (1980–2011)
27 Hakim Garhi Nullah 0.6 31 (1980–2010)
28 Wazir Garhi Nullah 1.69 30 (1981–2010)
29 Muqam Nullah 0.781 30 (1981–2010)

2.3. Flood Generating Mechanism in KRB

The hydrology of floods is linked to weather and climate as well as to physiographical features [45].
The basin has large altitudinal variations from 249 m.a.s.l. to 7603 m.a.s.l. Glacier-melt contribution
from the upper part of the basin combined with rainfall in the lower part is the most likely cause of
flooding in the region [38]. In the KRB, floods are mostly generated by monsoon rainfall but snow
or glacial melt floods have also been observed in some parts of the basin. Snowmelt floods are not
common. According to the data used in this study, all of the flood peaks were observed during
the monsoon season, from July to August, in almost all the tributaries of the KRB. The historical
floods occurred in July 2010, August 1995, and July 1992; all were observed during the monsoon.
Anjum et al. [46] provided the details regarding rainfall magnitude, intensity, and spatial extent for the
2010 event. The South Asian monsoon originating from the Bay of Bengal is the dominant weather
system for flood generation in the KRB.

However, the flood of 2005 in the Kabul and Indus Rivers was due to snowmelt as well as rainfall
in the pre-monsoon period [47]. The flooding behavior of the different tributaries differs according to
their catchment characteristics. The riverine floods in the Kabul River usually start below the Warsak
dam, and this phenomenon propagates until its confluence with the Indus River at Khairabad near
Attock. Riverine floods also occur in the Swat River in the Lower Swat catchment. In the rest of the
KRB, flash flooding is a common disaster, along with landslides and torrential rains [45].
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3. Methods

3.1. Preliminary Analysis

3.1.1. Trend Analysis

The non-parametric rank-based Mann–Kendall (MK) [48,49] test was used to detect trends in
annual maximum flood series. The trend analysis was performed to show a clear understanding of
the whole study area, while an objective criterion (means if statistically significant trend exists) was
adopted for the non-stationary modeling of flood regime. The Mann–Kendall test was applied at
different significance levels. The autocorrelation function (ACF) was also computed, before applying
the Mann–Kendall (MK) test to check the presence of serial correlations in the annual maximum
flood series.

3.1.2. Selection of Extreme Value Distribution

The Bayesian method using the GEV distribution is getting attention for analyzing hydrological
extremes. The current study also utilized the GEV distribution, which is the integration of Gumbel,
Fréchet, and Weibull distributions, and developed on the limit theorems for block maxima or annual
maxima [50]. Mathematically, the cumulative distribution of the GEV can be written as [51]:

ψ(x) = exp

⎧⎪⎪⎨⎪⎪⎩−
(
1 + ξ

(x− μ
σ

))−1
ξ

⎫⎪⎪⎬⎪⎪⎭,
(
1 + ξ

(x− μ
σ

))
> 0, (1)

where ψ(x) is expressed as
(
1 + ξ

( x−μ
σ

))
> 0; somewhere else, ψ(x) is either 0 or 1 [52].

The location parameter (μ), describes the center of the GEV distribution, the scale parameter
(σ) describes the deviation around (μ), and the shape parameter (ξ) describes the tail behavior of
the distribution. When ξ→ 0, ξ < 0, and ξ > 0, GEV approaches the Gumbel, Weibull, and Fréchet
distributions, respectively.

3.1.3. Goodness of Fit Statistics to GEV Distribution

The goodness of fit analysis of annual maximum peak flow data to the GEV distribution was
performed in order to investigate whether the historical data belonged to the said GEV distribution.
The Anderson–Darling (AD) [53] and Kolmogorov–Smirnov (K-S) [54] tests were performed for this
purpose, using an EasyFit software (version 5.6, MathWave Technologies) [55]. EasyFit estimated
the parameters of the GEV distribution based on maximum likelihood (ML) estimation, using equal
probability sampling. The parameters estimated using the EasyFit software were used to assess the
goodness of fit by AD and K-S statistics.

The K-S statistic (D) is based on the largest vertical difference between the theoretical and the
empirical cumulative distribution function as shown below:

D = m1≤i≤n(ψ(xi) − i− 1
n

,
i
n
− ψ(xi)). (2)

The Anderson–Darling procedure compares the fit of an observed cumulative distribution function
to an expected cumulative distribution function. This test gives more weight to tails than the K-S test.

A2 = −n− 1
n

∑n

i = 1
(2i− 1) × [lnψ(xi) + ln(1−ψ(xn−i+1))]. (3)

H0: The data follow the specified distribution;
Ha: The data do not follow the specified distribution.
The hypothesis regarding the distributional form was rejected at the significance level of 0.05

(alpha) if the test statistic, A2 or D, was greater than the critical value of 2.5018 and 0.18482, respectively.
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Moreover, the outlier’s detection in the annual extreme data of flood series was also performed
using the Chauvenet’s Criterion [56].

3.2. Model Design

The extreme value theory of stationary random process is based on that the statistical properties
of extremes—here, the distribution parameters θ = (μ, σ, ξ) are free from time dependency [57],
while in a non-stationary random process, the parameters of the said distribution function rely on
time-dependency, and the properties of the distribution also vary with time [58]. For this study, two
cases were considered.

(1) Stationary Case: all the model parameters were considered constant.
(2) Non-stationary Case: the location parameter (μ) was considered a function of time, as shown in

Equation (4), while scale and shape parameters were kept constant:

μ(t) = μ1t + μ0, (4)

where t is time, θ = (μ1, μ0) are the regression parameters [50,57–60]. The location parameter was
calculated for each study site in the stationary case and non-stationary case.

3.2.1. Bayes Theorem for GEV Distribution

Let θ be the parameter of given distribution and let Y = {y1, y2, . . . , yn} be the set of n observations.
According to the Bayes theorem, the probability of θ given Y (posterior) is proportional to the product
of the probability of θ (prior) and the probability of Y given θ (likelihood function). Assuming the
independence between the observations, Y:

P(θ|Y) ∝
n∏

i = 1

P(θ) × P(yi
∣∣∣θ). (5)

Here, the likelihood function is the GEV distribution and θ is the vector containing the parameters
of GEV distribution to be estimated. In the stationary case, θ = (μ, σ, ξ). By assuming independent
GEV parameters:

P(μ, σ, ξ
∣∣∣Y) ∝ n∏

i = 1

P(μ) × P(σ) × P(ξ) × P
(
yi
∣∣∣μ , σ, ξ

)
. (6)

In the case of non-stationary analysis, θ contains an additional parameter, which is time-dependent
here, i.e., μ(t), hence, the Bayes theorem for estimation of GEV parameters under the non-stationary
case can be expressed as [57,60]:

P(θ|Y, t) ∝
n∏

i = 1

P(θ) × P(yi
∣∣∣θ, t). (7)

The resulting posterior distributions P(θ|Y, t) provide information on the distribution parameters
(μ1, μ0, σ, ξ).

3.2.2. Prior Distribution

A Bayesian model utilizes a prior belief to calculate the posterior belief. For the current study,
we utilized NEVA (non-stationary extreme value analysis, Matlab Package) [60–62] for our analysis.
In NEVA, the priors are non-informative normal distributions, for location and scale parameters,
while the priors for the shape parameter are a normal distribution, with a standard deviation of 0.3,
as suggested by [57,60,62]. Initially, the shape parameter was considered a non-informative prior:

ξ ~ N (−5, 5), (8)
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if the value of the shape parameter in the posterior distribution exceeded beyond the plausible limit
(−5, 5), as suggested by Martins and Stedinger [63]. Then, we modified the priors for shape parameter,
considering partial pooling of information across sites that had similar flood types, for improving the
flood quantiles estimates for “at site modeling” using the regional information. The shape parameter
was considered an informative prior and the range of priors for shape parameter was:

ξ ~ N (0, Ksi). (9)

where, the Ksi stands for the shape parameter value of the site of interest from where it was exchanged.
However, the location and scale parameter across sites were not shared.

3.2.3. Parameters Estimation and Convergence Criterion

To estimate the parameters inferred by Bayes, the Differential Evolution Markov Chain (DE-MC) is
integrated to generate a large number of realizations from the parameters’ posterior distributions [64,65].
The DE-MC attributes to the genetic algorithm Differential Evolution (DE) for global optimization over
real parameter space with the Markov Chain Monte Carlo (MCMC) approach [64,65]. Here, the target
posterior distributions were sampled through five Markov Chains constructed in parallel. These chains
were allowed to learn from each other by generating candidate draws based on two random parent
Markov Chains, rather than running independently. Therefore, it had the advantages of simplicity,
speed of calculation, and convergence over the conventional MCMC. The initial numbers of burned
samples were 6000 and numbers of evaluations were 10,000 for each study site. The R-hat criterion,
suggested by Gelman and Shirley [66], was used to assess convergence, where R-hat should remain
below 1.1.

Uncertainty estimates for FFCs are crucial for risk assessment and decision making. By combining
DE-MC with Bayesian inference, the posterior probability intervals or credible intervals and uncertainty
bounds of estimated return levels based on the sampled parameters could be obtained simultaneously
for FFCs. For example, for a time series of annual maximum peak flow, the time-variant parameter
(μ(t)) was derived by computing the 95th percentile of DE-MC sampled μ(t), (i.e., the 95th percentile
of μ(t = 1), . . . , μ(t = 100)). These model parameters were then used to develop the stationary and
non-stationary FFCs.

FFCs could also be drawn at 50% Bayesian credible intervals or at any other desired intervals.

3.2.4. Model Evaluation

In order to evaluate the suitability of the stationary versus non-stationary models, a Bayes
factor K was calculated based on the posterior distributions of sampled parameters of both models.
The stationary model was considered a null model M1, while the non-stationary model M2 was
considered an alternative.

A value of Bayes factor > 1 denotes the stationary model is favored, while a value < 1 argues in
the favor of the non-stationary model. Similarly, a value approaching +infinity favors the stationary
model, and −infinity favors non-stationary models. Equation (10) represents the computation of Bayes
factor, as follows:

K =
Pr(DA

∣∣∣M1)

Pr(DA
∣∣∣M2)

=

∫
Pr(θ1

∣∣∣M1)Pr(DA|θ1M1)dθ1∫
Pr(θ2

∣∣∣M2
)
Pr(DA

∣∣∣∣θ2M2)dθ2

. (10)

The term DA denotes input data, and θ stands for model parameters. The term Pr (DA|M) can be
expressed using Monte Carlo integration estimation as follows:

Pr(DA|M) =

⎧⎪⎪⎨⎪⎪⎩
1
m

∑
mi = 1

Pr (DA
∣∣∣∣θ(i), M)

−1
⎫⎪⎪⎬⎪⎪⎭
−1

. (11)

For more details see [67].
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4. Results and Discussion

4.1. Temporal and Spatial Trends in Flood Regime

The trend magnitude for each station is presented in Table 2. Trend analysis results demonstrated
the significant trend by 37.93% of the flow gauge stations in the entire basin; among them, 27.6%
showed a significant increasing trend at the 0.05 significance level and 10.34% of the stations showed a
significant decreasing trend at the significance level of 0.05. Moreover, 6.9% of the flow gauge stations
also revealed a significant increasing trend at the significance level of 0.1. Non-significant trends
were also exhibited by 31% of the flow gauge stations. The Chitral River at Chitral, the Kalpani River
at Risalpur, the Kalpani River at Mardan, the Swat River at Chakdara, the Swat River at Ningolai,
the Adezai River, the Naranji Nullah, the Bagiari Nullah, the Lund Khawar West, and the Bara River
at Kohat Bridge displayed a significant increasing trend (Site #5, 6, 9, 11, 16, 18, 19, 21, 22, and 24),
while the Swat River at Khawazakhela, the Naguman River, and the Badri Nullah showed a significant
decreasing trend. The Khiyali River, the Panjkora River, and the Jundi Nullah at Tangi represented a
moderate increasing trend, while the Kabul River at Warsak, the Swat River at Kalam, the Swat River
at Munda Head Works, the Budni Nullah, and the Khuderzai Nullah displayed a moderate decreasing
trend. Moreover, the main flow gauge station—the Kabul River at Nowshera—did not show any
significant trend.

Table 2. Description of trends in the annual maximum flood regime across the KRB, Pakistan.

Site #
Mann–Kendall

(Test-Z)
Site #

Mann–Kendall
(Test-Z)

Site #
Mann–Kendall

(Test-Z)

1 −1.54 11 4.78 *** 21 3.28 **
2 −0.35 12 −0.89 22 2.83 **
3 0.41 13 1.18 23 −1.28
4 −2.02 * 14 0.86 24 2.28 *
5 2.61 ** 15 −0.37 25 −1.19
6 2.80 ** 16 1.79 + 26 −0.67
7 0.93 17 −3.07 ** 27 0.34
8 −1.36 18 3.24 ** 28 −0.54
9 1.73 + 19 2.13 * 29 −0.83
10 −2.36 * 20 0.16

*** Trend is significant at α = 0.001, ** Trend is significant at α = 0.01, * Trend is significant at α = 0.05, + Trend
significant at α = 0.1.

Figure 2 represents the basin-wide spatial distribution of trends in the flood regime, which
showed that the flood regime of the Chitral River, the Kalpani River, and the Main Swat River basins
exhibited significant increasing trends. However, the Swat River at Khawazakhela and the Badri
Nullah represented a significant decreasing trend.

The Lower Swat River, the Kabul sub-basin, and the Jindi River basins showed non-significant trends.
Especially for the southwestern part of the KRB, the Bara River at Kohat Bridge showed

non-stationarity in the flood regime due to a significant increasing trend, while all other flow
gauge stations in the Bara River basin showed insignificant trends.

The change in flood regime was found to be more evident for the northern and northeastern part
of the KRB as compared to the central and southwestern parts of the KRB. Consequently, the overall
basin showed large spatial variations. However, the basin did not represent a regular spatial pattern.
These spatial variations may be due to climatology, topography, and complex orography of the KRB in
the HKH region. However, the temporal changes in the flood regime might be attributable to regional
environmental change. The results of trend analysis were consistent with previous studies [68–70],
but these studies used only two to three flow gauges.
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Figure 2. Spatial distribution of trends in the annual maximum flood regime of the KRB, Pakistan.

4.2. Evaluation of Goodness of Fit for Annual Extreme Data of Flood

An objective criterion as suggested by Rosner et al. [71] was adopted to evaluate the goodness
of fit of the annual maximum flood series, with GEV and non-stationary temporal trend modeling
of the flood regime, i.e., only the sites showing significant trends in their flood regime were selected.
The study sites under consideration showed proper fitting using the AD test and the value of test
statistics for all the sites using the AD test was less than the critical value of 2.5018. While using the
K-S test, all the sites showed proper fitting except site 21, but it was included in the analysis because it
satisfied the AD test. Table 3 provides the results of the test statistics and estimated GEV parameters
using ML. The p-value belongs to K-S test only.

Outliers were also detected in the data of the annual maximum flood series for the KRB. Table 4
demonstrates the outliers present in the data of selected study sites. Sites 5, 6, 16, 18, 19, 21, and 24
displayed the extreme flood of 2010 as an outlier in the data. Site 6 also revealed the flood of 2005
(1603 m3 s−1) as an outlier, as per evaluation criterion. Similar to site 6, site 9 also represented two
outliers in its flood series. The outlier 1918 m3 s−1 represents the flood of 1992, and the corresponding
value of 1602 m3 s−1 represents the flood of 1987 for site 9.

For Site 11, the 1475 m3 s−1 value corresponds to the flood of 2016 in the Swat River basin,
the sub-basin of the KRB. The flood discharge of 37 m3 s−1 at Lund Khawar West (Site 22) in 1997
was also recorded as an outlier. Despite the existence of outliers, the data series belongs to the GEV
distribution as per AD and K-S test statistics.
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Table 3. The goodness of fit statistics of annual maximum daily peak flow to generalized extreme value
(GEV) distribution.

Site #
Gauge

Stations
GEV

Parameters

Anderson–Darling Test Kolmogorov–Smirnov Test

A-D Statistics K-S Statistics p-Value

5 Adezai River
ξ = 0.07899
σ = 454.66
μ = 521.18

0.6903 0.15394 0.43251

6 Chitral River
ξ = 0.00307
σ = 143.37
μ = 1026.5

0.22503 0.06435 0.97732

9 Swat River at
Chakdara

ξ = 0.13247
σ = 152.1
μ = 646.8

0.66053 0.10305 0.59055

11 Swat River at
Ningolai

ξ = 0.52162
σ = 103.82
μ = 83.499

0.60066 0.1453 0.48501

16 Naranji Nullah
ξ = 0.25789
σ = 77.168
μ = 81.939

0.19219 0.06263 0.98424

18 Kalpani River
at Mardan

ξ = 0.55205
σ = 106.9
μ = 77.204

1.2218 0.17818 0.21796

19 Kalpani River
at Risalpur

ξ = 0.20781
σ = 441.0
μ = 604.88

0.42201 0.10944 0.7987

21 Bagiari Nullah
ξ = 0.06073
σ = 112.05
μ = 94.608

1.838 0.22761 0.08399

22 Lund Khawar
West

ξ = 0.37899
σ = 3.7993
μ = 3.164

0.48511 0.12903 0.7523

24 Bara River at
Kohat Bridge

ξ = 0.57308
σ = 16.871
μ = 9.4788

1.2595 0.15782 0.33006

Table 4. Representation of detected outliers, as per Chauvenet’s criterion.

Site # Station Name
Historical Extreme

(Outliers)
Observed

Value
Critical
Value

5 Adezai River 2285 2.449 2.394
6 Chitral River 1633/1603 2.941/2.76 2.576
9 Swat River at Chakdara 1918/1602 4.6/3.35 2.576

11 Swat River at Ningolai 1475 3.447 2.406
16 Naranji Nullah 850 4.748 2.576
18 Kalpani River at Mardan 1499 3.182 2.429
19 Kalpani River at Risalpur 3358 3.316 2.418
21 Bagiari Nullah 473 2.102 2.394
22 Lund Khawar West 37 3.235 2.394
24 Bara River at Kohat Bridge 331 4.234 2.44

4.3. Regionalization of Shape Parameter for Flash Floods Across the KRB

The shape parameter of the GEV distribution is important for the estimation of flood quantiles.
Initially, non-informative priors for shape parameter were used for the Bayesian analysis of annual
maximum flood regime for the selected study sites that had non-stationarity, due to the existence
of temporal trends. About 30% of the study sites yielded a value of shape parameter in posterior
distribution that exceeded beyond the plausible limit (−5, 5) as suggested by Martins and Stedinger [63],
causing the degeneration of the GEV distribution. In order to avoid this, homogeneous sites were
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identified. Halbert et al., Kuczera, Kyselý et al., Sun et al., and Viglione et al. [72–76] state that the
use of regional information will improve the flood frequency estimation and reduce the uncertainty
for sites having short records. Table 5 illustrates the correlation matrix for the selected study sites,
which demonstrates that hierarchical clustering is possible based on the correlation between the annual
maximum flood series of the selected study sites.

Table 5. Correlation matrix for the selected study sites.

Site # 5 6 9 11 16 18 19 21 22 24

5 1 0.24 −0.04 0.63 0.35 0.61 0.14 0.25 0.39 0.48
6 0.24 1 0.29 0.11 0.42 0.33 0.42 0.37 0.38 0.41
9 −0.04 0.29 1 0.11 0.11 −0.05 −0.22 −0.02 −0.17 0.04

11 0.63 0.11 0.11 1 0.2 0.59 0.04 0.49 0.6 0.21
16 0.35 0.42 0.12 0.2 1 0.41 0.47 0.29 0.32 0.63
18 0.61 0.33 −0.05 0.59 0.41 1 0.63 0.53 0.52 0.54
19 0.14 0.42 −0.22 0.04 0.47 0.63 1 0.65 0.64 0.42
21 0.25 0.37 −0.02 0.49 0.29 0.53 0.65 1 0.41 0.2
22 0.39 0.38 −0.17 0.6 0.32 0.52 0.64 0.41 1 0.47
24 0.48 0.41 0.04 0.21 0.63 0.54 0.42 0.2 0.47 1

A positive correlation is present between the sites. Although site 9 possesses the least positive
correlation with site 6, site 6 has more positive correlations with other sites, hence why all the sites are
considered homogenous. All the sites also possess “flash” flood type. Moreover, all the sites could
also be considered homogenous because of the existence of trends in their flood regime. Sun et al. [77]
also highlighted the clustering of temporal trends and exchange of shape parameter for the Bayesian
analysis of annual maximum floods across Germany.

Furthermore, the utilization of ML for the estimation of the shape parameter for GEV distribution
was found reliable for large records—at least 50 year [78]. After considering all the study sites as
homogenous based on the correlations between sites, similar flood type, and existence of trends,
Naranji Nullah (site 16), with a sufficiently long record, was considered the benchmark site. The shape
parameter estimated by ML was approximately 0.26 for site #16. This value of shape parameter (0.26)
was further recognized for all the study sites as an informative prior in the Bayesian model. This is like
partial pooling of information across homogenous sites, which ultimately improved the flood quantiles
estimates using the regional information as compared to non-informative priors on shape parameter.
Lima et al. [79] used the basin’s average shape parameter value in local and regional hierarchical
Bayesian models to solve the issue of sites where the shape parameter value exceeds beyond (−5–5).
Lima et al. [79] used the prior for shape parameter as non-informative, but this study considers the
priors on shape parameter to be informative priors.

4.4. Comparison between Stationary and Non-Stationary Bayesian Models

Non-stationary FFCs were constructed for the flow gauges with significant increasing trends in
their flood series and compared with their stationary FFCs, considering the entire data series without
the elimination of outliers. Table 6 demonstrates the results at the 95% Bayesian credible interval for
all the selected study sites in the KRB. The stationary model showed overestimation as compared to
the non-stationary model for a 100-year flood (The flood having a probability of exceedance of 0.01)
by 1494 m3 s−1 (+34.9%) for the Adezai River at Adezai Bridge (site 5). The value of the Bayes factor
was 0.0058, which was less than 1, so the non-stationary model was favored. The maximum peak
flood observed at the Adezai River was 2285 m3 s−1, during the historic flood of 2010 in the KRB.
The non-stationary model reasonably described the historical peak flood (Figure 3). Similar behavior
was observed for the other study sites, 11, 18, 21, 22, and 24 (Table 6 and Figures 4–8).
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Figure 3. Comparison between non-stationary and stationary flood frequency curves (FFCs) at site 5,
along with non-stationary uncertainty bounds for the year 2016.

Figure 4. Comparison between non-stationary and stationary FFCs at site 11, along with non-stationary
uncertainty bounds for the year 2016.
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Figure 5. Comparison between non-stationary and stationary FFCs at site 18, along with non-stationary
uncertainty bounds for the year 2016.

Figure 6. Comparison between non-stationary and stationary FFCs at site 21, along with non-stationary
uncertainty bounds for the year 2016.
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Figure 7. Comparison between non-stationary and stationary FFCs at site 22, along with non-stationary
uncertainty bounds for the year 2016.

Figure 8. Comparison between non-stationary and stationary FFCs at site 24, along with non-stationary
uncertainty bounds for the year 2016.

On the other hand, the stationary model also underestimated the 100-year flood as compared to
the non-stationary model. For example, the stationary model underestimated the 100-year flood by
23 m3 s−1 (−1.19%) as compared to the non-stationary model (Figure 9, the Chitral River at Chitral).
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The value of the Bayes factor was 0.068, which was less than 1, so the non-stationary model was
favored. This behavior was obvious for study sites 6 and 19 (Table 6, Figures 9 and 10).

Figure 9. Comparison between non-stationary and stationary FFCs at site 6, along with non-stationary
uncertainty bounds for the year 2013.

Figure 10. Comparison between non-stationary and stationary FFCs at site 19, along with non-stationary
uncertainty bounds for the year 2016.
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Furthermore, for study sites possessing trends at the significance level of 0.1 (although the trends
were modeled at 0.1% for these sites), the non-stationary model overestimated the 100-year flood as
compared to the stationary model, and the corresponding value of the Bayes factor was greater than 1.
This ultimately favors the stationary model for sites 9 and 16 (Table 6, Figures 11 and 12).

Figure 11. Comparison between non-stationary and stationary FFCs at site 9, along with non-stationary
uncertainty bounds for the year 2009.

Figure 12. Comparison between non-stationary and stationary FFCs at site 16, along with non-stationary
uncertainty bounds for the year 2016.
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The non-stationary model was found to be reliable for the sites to study the annual maximum
flood regime, which exhibits significant trends at α = 0.05. The uncertainty bounds of most of the
study sites were high because of the higher value of coefficient of variation, except site 6, where the
value of coefficient of variation was 0.2 (see Table 1 and Figure 9). The uncertainty bound could also be
higher due to the existence of outliers in the data series. The removal of outliers in the data series can
reduce uncertainty.

4.5. Performance of Bayesian Models to Predict the Extreme Floods

The Bayesian models were again re-run for all the study sites before the commencement year
of the extreme flood event that we labeled an outlier for all the study sites. Similarly, the objective
criterion was adopted again (if a trend exists then modeling was performed using the non-stationary
Bayesian model, otherwise only the stationary Bayesian model was used). Table 7 describes the results
of the corresponding stationary and non-stationary Bayesian models.

The Bayesian models performed well, predicting the extreme floods satisfactorily for all the study
sites except sites 9 and 22 (see Table 7 and Figures 13–22). The stationary Bayesian model was found
reliable for sites 5, 6, 11, 16, 21, and 24. However, the non-stationary model was favored as compared
to the stationary model as per the Bayes factor criterion (see Table 7) for sites 6, 18, 19, and 21. Despite
the existence of a significant trend at site 11, the stationary model was favored as per the Bayes factor
criterion, as well as predicting the extreme flood of 2016.

The outlier’s removal improved the fitting of the FFCs as compared to considering the entire data
series and also reduced the uncertainty (see Figures 13–22).

Statistical modeling of extremes in hydrology is exciting and challenging, and opens the door for
further studies. For example, for study site 9 (the Swat River at Chakdara), it is better to consider the
entire data series, and for better fitting, the incorporation of monsoon rainfall as a covariate might be
fruitful. The modeling could also be performed by considering other distributions in the Bayesian
framework or using the traditional frequentist framework.

Finally, from a regional perspective, the region is heterogeneous due to large altitudinal variations.
Due to the regional heterogeneity associated with elevation, it seems to be quite difficult to develop a
regional Bayesian model for the whole KRB, but efforts should be made to develop a regional Bayesian
model at sub-basin or catchment scales in future studies by further pooling of information for other
parameters, like location and scale, across sites. Moreover, the studies are also required to deeply
understand the impact of climate or dominating weather patterns, such as the South Asian monsoon,
low climate variability El-Niño Southern Oscillation and Indian Ocean Dipole (ENSO, IOD, etc.) and
human factors, such as land use cover change (LUCC), population increase, and reservoir construction,
on the flood regime of the KRB [1,13,80–83].
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Figure 13. FFCs at site 5, along with stationary uncertainty bounds for the year 2009.

Figure 14. Comparison between non-stationary and stationary FFCs at site 6, along with non-stationary
uncertainty bounds for the year 2004.
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Figure 15. FFCs at site 9, along with stationary uncertainty bounds for the year 1991.

Figure 16. Comparison between non-stationary and stationary FFCs at site 11, along with non-stationary
uncertainty bounds for the year 2015.
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Figure 17. FFCs at site 16, along with stationary uncertainty bounds for the year 2009.

Figure 18. Comparison between non-stationary and stationary FFCs at site 18, along with non-stationary
uncertainty bounds for the year 2009.

56



Water 2019, 11, 1246

Figure 19. Comparison between non-stationary and stationary FFCs at site 19, along with non-stationary
uncertainty bounds for the year 2009.

Figure 20. Comparison between non-stationary and stationary FFCs at site 21, along with non-stationary
uncertainty bounds for the year 2009.
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Figure 21. FFCs at site 22, along with stationary uncertainty bounds for the year 1996.

Figure 22. Comparison between non-stationary and stationary FFCs at site 24, along with non-stationary
uncertainty bounds for the year 2009.

5. Conclusions

Analyzing the flood regime and its non-stationary modeling in a Bayesian framework for the
KRB was the main objective of the present study. To achieve this, a Mann–Kendall trend analysis was
performed to explore the flood regime of the KRB in detail, and finally, the stationary and non-stationary
Bayesian models with informed priors on shape parameter for GEV distribution were developed,
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and their results were compared by using the corresponding FFCs, along with their uncertainty bounds.
We utilized the annual extreme data of flood series for the study area, with a maximum record of
1962–2016 (55 years) and a minimum of 1987–2016 (30 years). The key findings of the study are
described below:

1. Trend analysis showed a mixture of increasing and decreasing trends at different gauges in the
KRB at α = 0.05. The Chitral River, Kalpani River, Main Swat River, and Bara River basins showed
significant increasing trends, and the Panjkora River basin displayed a moderate increasing trend
in its annual maximum flood regime. However, the Lower Swat and Kabul sub-basins showed
decreasing trends, except for the Adezai River in the Kabul sub-basin, which showed a significant
increasing trend.

2. The overall basin was under critical change and signals of clear non-stationarity in the flood
regime were evident at various spatial scales throughout the basin.

3. The presence of a significant trend and significant difference in flood estimates for 100-year flood
between stationary and non-stationary FFCs were found that represent the clear violation from
the so-called stationary assumption.

4. The non-stationary Bayesian model was found to be reliable for the study sites that had a
significant trend at α = 0.05, while the stationary model overestimated or underestimated the
flood risk for these sites. On the other hand, the stationary Bayesian model performed better for
the study sites for trends at α = 0.1, while the non-stationary Bayesian model overestimated or
underestimated the flood risk for such sites.

5. The use of informed priors on the shape parameter based on regional information improved the
estimation of flood quantiles and reduced the uncertainty.

6. Proper consideration should be given to identify the outliers while using Bayesian models.
7. The presence of non-stationarity in the flood regime of the KRB has substantial implications for

flood management and water resources development. A design with stationary assumption
will cause two major concerns: under estimation or overestimation of design for structural
and non-structural measures in the KRB. An event-based design may also overestimate or
underestimate the risk in hydraulic design that was intended. Some previous studies in other
parts of world also provided similar results [1,13,31,84–86].

The study will be helpful for sustainable flood management and provide a reference for studying
floods in a changing environment for hydrologists, water resources managers, decision makers,
and concerned organizations.
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Abstract: The negative scaling rate between precipitation extremes and the air temperature in tropic
and subtropic regions is still a puzzling issue. This study investigates the scaling rate from two
aspects, storm characteristics (types) and event process-based temperature variations. Heavy storms
in South China are developed by different weather systems with unique meteorological characteristics
each season, such as the warm-front storms (January), cold-front storms (April to mid-May), monsoon
storms (late May to June), convective storms, and typhoon storms (July to September). This study
analyzes the storm characteristics using the hourly rainfall data from 1990 to 2017; compares the
storm hyetographs derived from the one-minute rainfall data during 2008–2017; and investigates the
interactions between heavy storms and meteorological factors including air temperature, relative
humidity, surface pressure, and wind speed at 42 weather stations in Guangzhou during 2015–2017.
Most storms, except for typhoon and warm-front storms, had a short duration (3 h) and intense rates
(~13 mm/h) in Guangzhou, South China. Convective storms were dominant (50%) in occurrence
and had the strongest intensity (15.8 mm/h). Storms in urban areas had stronger interactions with
meteorological factors and showed different hyetographs from suburban areas. Meteorological
factors had larger variations with the storms that occurred in the day time than at night. The air
temperature could rise 6 ◦C and drop 4 ◦C prior to and post-summer storms against the diurnal mean
state. The 24-h mean air temperature prior to the storms produced more reliable scaling rates than the
naturally daily mean air temperature. The precipitation extremes showed a peak-like scaling relation
with the 24-h mean air temperature and had a break temperature of 28 ◦C. Below 28 ◦C, the relative
humidity was 80%–100%, and it showed a positive scaling rate. Above 28 ◦C, the negative scaling
relation was likely caused by a lack of moisture in the atmosphere, where the relative humidity
decreased with the air temperature increase.

Keywords: heavy storm; hyetograph; temperature; clausius-clapeyron scaling
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1. Introduction

Heavy storm rainfall is the driving force of urban pluvial flooding. Mega cities, especially in the
developing countries, such as China and India, suffered frequent flooding disasters in recent years in
the context of global warming and fast urbanization [1–3]. Urban pluvial flooding or waterlogging
is a common problem in many mega cites of China, such as Nanjing, Wuhan, and Guangzhou [4].
Guangzhou faces severe challenges for its over-stressed storm water drainage systems due to the
heavy tropical storms and rapid urbanization in the past 30 years [5]. The impervious urban areas
have a complicated impact on local weather systems, resulting in the phenomena of a heat and rain
island [6]. Numerical modeling studies found that the increase of urban areas would significantly
intensify the local extreme rainfall [1,7,8]. Experimental observations reported that the precipitation
down-wind of large cities could increase 5%–25% from the background values [1,6]. There are urgent
needs to study and update the heavy rainfall characteristics for better storm water management and
emergency response in the metropolitan areas of Guangzhou, South China.

Heavy storms in South China are developed by different weather systems each season. They have
dynamically unique environment structures largely controlled by three-dimensional meteorological
factors, such as air temperature, humidity, pressure, and wind speed and direction, leading to
different storm types and forming mechanisms. Four types of warm season storms are reported
in the literature [9,10], that is, cold-front storms (April to mid-May), monsoon storms (late May to
June), convective storms, and typhoon storms (July to September). Most warm season storms have a
short duration and intense rates in Guangzhou, except for typhoon storms [5,11].

Heavy storms have complicated interactions with air temperature. The impact of air temperature
on precipitation extremes have been extensively investigated after the pioneering work of Lenderink
and van Meijgaard [12] in the Netherlands. The ideal gas law and Clausius–Clapeyron (CC) equation
is the theoretical basis for such studies. The water-holding capacity of the atmosphere increases with
the air temperature by about 7% ◦C−1 globally for a given relative humidity, thus the precipitation
extreme is proposed so as to scale with the precipitable water content in the atmosphere [12,13]. Many
studies have investigated the scaling rate using numerical models and field observations at regional
and global scales. Overall, five types of scaling rates between surface daily mean air temperature and
precipitation extremes were reported, namely sub-CC (~3% ◦C−1), close-CC (~7% ◦C−1), super-CC
(~14% ◦C−1), peak-like CC (positive and negative), and negative CC [14–17].

The apparent scaling rates are mostly affected by the regional climatic settings, namely air
temperature variation ranges and available water vapor. Sub-CC, close-CC, and super-CC were
reported in mid and high latitude regions with a daily mean air temperature below ~20 ◦C, such as
in the Netherlands [12], Germany [18], France [13], and Canada [16], and in the winter time of
mid-latitude regions, such as the United States [14], southern Australia [19], and China [20]. Peak-like
CC were reported in the mid latitude regions (20–55◦ N and 20–55◦ S), with the upper range of
daily mean temperature above 25 ◦C [14,21,22], such as in Central Australia [19], South China [20],
and Southern France [13]. The negative CC were reported in the tropic regions and the summer of the
subtropical regions with a daily mean temperature above 25 ◦C [14], such as in Brazil [15], Northern
Australia [19,23], South China [20], and Hong Kong [24].

Other factors affecting the scaling rates include the available moisture source (humidity),
percentiles, and durations used to quantify the precipitation extremes. Higher percentiles and a
shorter duration display a better close-CC or supper-CC [13,14,16]. The negative part of the peak-like
scaling was explained by the lack of a moisture source, such as in Southern France [13]. This was
supported by the fact that there was a general decrease in the relative humidity with a temperature
increase at most stations in Australia, which suggests that the precipitation extremes were not only
associated with how much moisture the atmosphere can hold, but also with how much moisture was
available in the first place [15,19,23,25,26].

In summary, the current studies are mostly aimed at how global/regional warming intensifies
the precipitation extremes conditional to the rainfall occurring with an available moisture source.

65



Water 2019, 11, 185

The orographic and other meteorological factors influencing rainfall occurrence are also important in
constraining the changes of the precipitation extremes. However, few studies investigate the feedback
and interactions of precipitation extremes with air temperature and other meteorological factors prior
to and after a storm, especially in the tropical and subtropical regions. The behavior and mechanisms
of tropical and subtropical heavy storms are worthy of further investigations.

The primary objectives of this study are (1) to analyze the characteristics of the different types
of heavy storms in the metropolitan areas of Guangzhou, South China (subtropical, 23◦ N), and (2)
to reveal the interactions of the heavy storms with air temperature and other meteorological factors,
including relative humidity, surface pressure, and wind, using event process-based analysis.

2. Study Area and Data

2.1. Study Area

The City of Guangzhou is located in the upper Pearl River Delta in Southern China (Figure 1a).
It has a sub-tropic climate controlled by the Indian summer monsoon and the South China Sea monsoon
later in the year, with an annual mean air temperature of 22 ◦C and precipitation of 1700 mm [27,28].
The warm and wet rainy season starts from April through to September, and falls over 80% of the
annual precipitation [4,29]. The rainy season is usually divided into three periods [30]. From April to
mid-May, rainfall is dominated by frontal systems, being affected by the large-scale cold air south down
from the mid-latitudes and the southwest warm air along the west flank of the western North Pacific
subtropical high [31]. From late May to June, after the summer monsoon onset over the South China
Sea, the monsoonal rain band advances up to the Pearl River Delta areas (Guangzhou), and the rainfall
mainly results from a southeasterly direction, which transports water vapor into Guangzhou [9,10,32].
From July to September, monsoon rainfall becomes relatively weakened, and convective thunderstorms
and tropical cyclones contribute appreciably to the rainfall in Guangzhou [33,34]. The first two periods
are also called the first rainy season, while the third period is called the second rainy season [11].
The warm season storms in Guangzhou can be classified into four classes, mostly based on the location
of the subtropical high (i.e., the cold-front storms, monsoon storms, convective storms, and typhoon
storms) [30].

At present, the administration area of Guangzhou is 7434 km2. It includes 11 districts—Yuexiu,
Haizhu, Liwan, Tianhe, Baiyun, Huangpu, Huadu, Panyu, Nansha, Chonghua, and Zengcheng [5].
The metropolitan area has undergone fast urbanization during the past 30 years, and the built-up
area ratio increased from 3% to 24% from 1990 to 2013, according to Landsat images [5]. There are 42
standard automatic weather stations in Guangzhou. These stations are divided into two groups of
urban and suburban, so as to examine the generic characteristic of the meteorological factors and their
variations with storms in this study (Figure 1b). In addition, six stations in the Tianhe (Site 2/rain
gauge) and Panyu (Site 1, 3–6) Districts had a one-minute record of rainfall and water depth data,
which were used to develop the rain hyetograph (Figure 1c).

2.2. Rain Depth and Other Meteorological Data

The 42 automatic weather stations contained data on the rainfall accumulation, air temperature,
relative humidity, surface pressure, wind speed, and direction. All of the data were processed
and archived in an hourly interval. Their precisions were 0.1 mm for precipitation, 0.1 ◦C for air
temperature, 0.1% for relative humidity, 0.1 m/s for wind speed data, and 1◦ for wind direction.
The data duration was 28 months, from July 2015 to October 2017. All of the climate data were
validated by using quality control procedures [35–37].

Two sources of rainfall data from six automatic gauges were used to develop the storm hyetograph.
The first one was from the national standard weather stations (Sites 1 and 2) of China, where the rainfall
data were automatically recorded at one-minute intervals with a precision of 0.1 mm (Figure 1c). Site 2
is in the downtown area of the Tianhe District, Site 1 is in the suburban Panyu District, and both sites
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are 25 km apart. In addition, the processed hourly-interval rainfall data from 1990–2017 at Sites 1 and
2, and the hourly data at Sites 3–6 from 2014–2017, were used to analyze the storm features separately
for the suburban and urban stations at the climatic time scale. Sites 3–6 were set up in the summer of
2014 at the Panyu District by our own research team. The rainfall data were recorded at one-minute
intervals with a precision of 1 mm, which aimed to record the heavy storm rainfall. The five-year
rainfall data (one-minute interval) from 2008 to 2012 at Sites 1 and 2, and the three-year rainfall data
from 2014–2017 at Sites 3–6, were obtained in order to develop the rain hyetographs, respectively.

Figure 1. Meteorological sites (urban: 23 triangles; suburban: 19 squares) in the administration areas of
Guangzhou (b), South China. The urban areas include the four districts of Haizhu, Liwan, Tianhe, and
Yuexiu, and the suburban areas comprise the seven districts of Baiyun (BY), Huadu (HD), Conghua
(CH), Zengcheng (ZC), Huangpu (HP), Panyu (PY), and Nansha (NS). Map (c) shows the meteorological
sites in the Panyu District, where Sites 3–6 are maintained by our research team, and Sites 1 and 2 are
the national standard meteorological sites.

2.3. China Hourly Merged Precipitation Analysis (CMPA)

The China Hourly Merged Precipitation Analysis (CMPA) data merged the hourly precipitation
products with 0.1◦ × 0.1◦ spatial resolution [38] (http://cdc.nmic.cn/home.do), and are available
from 2008 to present. They show a much better performance in quantifying the extreme rainfall
than the other satellite and reanalysis precipitation data in China [11,38,39]. The CMPA data are
used to illustrate the spatial distributions of five typical storms for the peak intensity and event
total precipitation.
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3. Methodology

3.1. Storm Events Classification

This study does not analyze all of the rain events and only focuses on heavy storms, as they
can produce a severe impact on meteorological factors and cause surface flooding. Storm events
are identified at the individual stations based on the following criteria: (a) rain duration >20 min
for one-minute data or one hour for hourly data [40], (b) rain depth in a one-hour moving window
>20 mm, and (c) storm event separation with an hourly rain depth <1 mm for at least for three
hours [41]. According to these criteria, there were 2611 storms at Sites 1 to 6 during 1990–2017, which
were used to analyze the storm features. Among them, there were 214 storms recorded at Sites 1–2
from 2008 to 2012 and at Sites 3–6 from 2014 to 2017, using the one-minute interval. There were
another 1454 storms at the 42 weather stations from July 2015 to October 2017. The 1454 storms were
not physically separate storm events defined in meteorology, and occurred in Guangzhou. Some of
them were actually the same storm events that occurred at the same or at a slightly later time in the
metropolitan areas of Guangzhou, but were recorded at different weather stations. Those storm events
at the 42 weather stations were mainly used to analyze the variations of the meteorological factors
along the process of storm development and evolution.

In order to analyze the interactions between the storm (rainfall) and meteorological factors (air
temperature, relative humidity, surface pressure, and wind speed), the 42 weather stations were first
divided into urban and suburban groups using the K-means cluster analysis, while considering their
location and neighboring land use/cover (Figure 1b). The K-means cluster algorithm set the initial
center values of the meteorological variables for the two clusters of urban and suburban, and then
calculated their minimum squared distance from the samples to their centers iteratively [11,42]. Finally,
all of the stations were classified into the two clusters by the K-means cluster analysis using the time
series of the hourly observations of the five meteorological factors for each storm event in this study.
There were 23 urban stations (55%) and 19 suburban (Figure 1b) stations. All of the heavy storm events
at both the urban and suburban clusters were generally classified into five types according to the season
or the locations of the subtropical high, which determines the vapor source and forming mechanisms
of heavy storms [9,10]. They are (a) warm-front storms (occurred in January), (b) cold-front storms
(April to mid-May), (c) monsoon storms (late May to June), (d) convective storms (July to September),
and (e) typhoon storms (July to September). The typhoon storms were precisely identified.

The cold-front storms, monsoon storms, and convective storms were further divided into three
groups by occurrence time (i.e., 8:00–12:00, 13:00–18:00, and 19:00–0:00–7:00), so as to assess the impact
of the heavy storms on the meteorological factors during the storm process in different periods/solar
radiation, and thus could better analyze their interaction with storms. Warm-front and typhoon storms
had a limited storm count and did not have such an analysis carried out.

3.2. Anomaly Curves

After the storm events were classified, anomaly curves 36 h prior to and post the storm peak hour
were generated so as to analyze the impact on and the interaction of the storms with meteorological
factors. The reference values are the diurnal mean of each factor during two weeks centered on the
storm time, excluding their values during the 72-h period affected by the storm. The anomalies are the
residuals between the actual meteorological factors’ value and their reference value during the 72 h
centered at the storm peak intensity hour.

3.3. Rain Hyetograph

The rain hyetographs in this study are derived by the Improved Huff curve model reported
by Pan et al. [5]. The Huff curve is a dimensionless hyetograph initially developed by Huff for
characterizing rainfall temporal distributions in an area, and has been widely applied to describe
the hyetograph and to predict the runoff in a catchment [43–46]. In traditional analysis, the storm
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events are first classified into four quartiles according to their normalized time of peak rain intensity.
Next, a quartile curve is developed at a certain provability, normally varying from 10% to 90%, by a
10% increment. Then, a series of Huff curves are developed at different probabilities within each
quartile [46]. The 50% probability (median) curve is the most representative in each quartile.

The improved Huff curve method does not separate storms into the four quartiles as usual, but
divides each storm into the rising and falling limbs, according to the occurrence time of the peak rain
intensity [5]. Then, the dimensionless hyetographs are developed by the Huff curve method based on
the normalized rain intensity and the time in the rising and falling limbs separately. Finally, both of the
hyetographs are combined to form an Improved Huff curve. The Improved Huff curves in this study
were developed at the probability of 50% in both the rising and falling limbs, based on the one-minute
rainfall data of Sites 1–6 from 2008 to 2017.

3.4. Precipitation Extremes and Temperature Scaling

The approach of Clausius–Clapeyron (CC) scaling is applied in order to assess the impact of air
temperature on precipitation extremes in the subtropical Guangzhou, based on all of the available
hourly precipitation and temperature data [12]. Only the hourly precipitation data are analyzed.
The daily mean air temperature is computed from the hourly temperature data during the 24-h period
prior to the storm, as well as the natural daily mean temperature. The precipitation data were stratified
based on the 24-h and daily mean air temperature in bins of 2 ◦C widths, within which the precipitation
extremes were computed from the 75th, 90th, 99th, and 99.9th percentiles. Only the 75th and 99th
percentiles have been presented for graph clarity [47,48].

4. Results and Discussions

4.1. Characteristics of Meteorological Factors

The administration area of Guangzhou is located in the upper Pearl River Delta (PRD), facing the
low-lying delta plain in West and South China Sea in the southeast, and surrounded by hills in the
North and East (Figures 1b and 2a). At the 42 weather stations from July 2015 to October 2017, the
main wind direction during the storm duration was from the south (42%) and east (28%), followed
by the west (19%) and a few (11%) from the north. The suburban districts of Baiyun, Huangpu,
Zengcheng, and Conghua had much larger precipitation than the downtown area of Guangzhou
(Figure 2b). Meanwhile, attention must be paid to the big orange area, which has less precipitation
as a result of the statistical artifacts caused by lack of weather stations in the hills, and thus its actual
annual precipitation could be larger. In the downtown areas of Guangzhou with more weather stations,
the urban stations showed distinct patterns of meteorological factors from the suburban stations, that is,
less precipitation (Figure 2b), higher air temperature (Figure 2c), lower relative humidity (Figure 2d),
lower surface pressure (Figure 2e), and smaller wind speed (Figure 2f) at the urban stations compared
with the suburban stations. Considering the short duration of the records, they were just the typical
mean states for this area. The precipitation extremes were also found to be positively associated with
the urban extent in the Pearl River Delta [39].
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Figure 2. The elevation and built-up areas of Guangzhou and the locations of the meteorological sites
(a), annual total rainfall (b), annual mean air temperature (c), relative humidity (d), air pressure (e),
and wind speed (f) for two complete years from July 2015 to June 2017.

Besides the annual scale, meteorological factors also demonstrated different patterns for urban
and suburban stations at the seasonal and diurnal scales (Figure 3). The urban stations had less rainfall
in the first rainy season, from April to June, than the suburban stations, while they had larger rainfalls
in the second rainy season of July, September, and October (Figure 3a). At the diurnal cycle, all of
the stations showed two peaks of storm events in the morning and afternoon. The urban stations
had a shorter duration in the morning peak and a longer duration in the afternoon peak than the
suburban stations (Figure 3b). The surface air temperature and pressure showed an inverse temporal
pattern at the seasonal scale (Figure 3c,g), while the temperature and relative humidity had an inverse
temporal pattern at the diurnal scale (Figure 3d,f). The air pressure also showed a semidiurnal pattern
(Figure 3h). Similar to the annual scale, the urban stations generally had a higher temperature, lower
humidity and pressure, and much smaller wind speed than the suburban stations (Figure 3).
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Figure 3. The seasonal (monthly) and diurnal (hourly) distributions of (a,b) rainfall, (c,d) surface
temperature, (e,f) relative humidity, (g,h) air pressure, and (i,j) wind speed at the urban and suburban
sites in Guangzhou from July 2015 to October 2017.

4.2. Characteristics of Storms

The storm features displayed little differences between the urban and suburban stations at an
event scale, with a similar storm duration, event total, and intensity (Table 1). Half of the storms had
an event duration of less than three hours, nearly a quarter of them were three to five hours, and over
another quarter were longer than five hours, based on all of the hourly storm rainfall data from 1990 to
2017 (Table 1).
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Table 1. Statistics of storm events at Sites 1–6 for the hourly rainfall data from 1990 to 2017.

Stations
Storm
Count

Duration (h) Mean (h)
Duration

Mean (mm)
Event Total

Mean (mm/h)
Rain Intensity≤1 1–3 3–5 >5

Urban 1327
165 505 297 360

4.4 46 10.5
12% 38% 23% 27%

Suburb 1284
144 493 292 355

4.6 47 10.3
11% 38% 23% 28%

The occurrence time of the peak rainfall plays a crucial role in determining the temporal
distribution of the storm rainfall, that is, the rain hyetograph, which further impacts on the design
storm, local drainage planning/design, and flooding risk. Figure 4 illustrates the rain hyetographs
for the four types of summer storms at urban and suburban stations using the improved Huff curve
established by Pan et al. [5]. Table 2 summarizes the statistics of these storms used in Figure 4.
The urban stations had similar hyetographs, for example, having a similar peak rainfall occurrence
time (29%–32% of event duration) and peak rainfall percentage (52%–57% of total rainfall) during a
0.5-h peak rainfall time. In contrast, the suburban stations had a wider range and later peak rainfall
occurrence time (30%–41%) and a larger range (45%–61%) of peak rainfall percentage. The difference
in the storm hyetograph will generate a different peak runoff, requiring a different drainage capability
even for a same scale storm event. This indicates that different rain hyetographs are required in the
storms for the design of drainage planning and flooding infrastructure in urban and suburban areas,
even in the same administration area of Guangzhou [5].

Figure 4. Storm hyetographs derived from the Improved Huff curve model at a probability of 50%
from the one minute-interval rainfall data at Sites 1–2 during 2008–2012, and Sites 3–6 from 2014–2017
for the cold-front storms, monsoon storms, convective storms, and typhoon storms in (a) urban and (b)
suburban areas.
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Table 2. Statistics of storm events for the one minute-interval data during 2008–2012 (Sites 1–2) and
2014–2017 (Sites 3–6). The peak rainfall time is determined using the maximum five-minute rainfall
accumulation. The rainfall time is normalized using the total rainfall duration.

Stations
Storm
Types

Event Mean
Rainfall (mm)

Percent of Max
0.5h Rainfall

Peak Rainfall
Time

Rainfall Depth Intensity (mm/min)

Rising Falling Rising Falling

Urban

Cold-front 45 52% 29% 40% 60% 0.64 0.31
Monsoon 39 56% 32% 46% 54% 0.64 0.27

Convective 41 57% 28% 41% 59% 0.77 0.39
Typhoon 29 57% 32% 31% 69% 0.17 0.20

Mean 41 55% 29% 42% 58% 0.68 0.33

Suburban

Cold-front 55 52% 34% 40% 60% 0.76 0.54
Monsoon 52 49% 30% 37% 63% 0.64 0.40

Convective 36 61% 33% 42% 58% 0.67 0.44
Typhoon 34 45% 41% 50% 50% 0.32 0.21

Mean 46 54% 32% 40% 60% 0.69 0.45

Table 3 summarizes the storm information recorded at the 42 weather stations from July 2015
to October 2017. The coastal zone had more rainfall than the inner land for the warm-front events
(Figure 5b). There were only two actual warm-front events that occurred during 27–29 January 2016.
For example, one, which occurred on 28 January 2016, was a wide spread and long-duration storm
(Figure 5a,b), and most of the stations reported this storm. Another storm on 27 January 2016 had a
smaller intensity, and only a few stations reported it as a storm event. This explained why there were
50 storm events at the 42 weather stations for the actual two events.

Table 3. Statistics of the storms at the 42 weather stations from July 2015 to October 2017.

Items Stations All
Warm-Front

Storm
Cold-Front

Storm
Monsoon

Storm
Convective

Storm
Typhoon

Storm

Storm Count
Urban (23) 752 *3% 13% 26% 50% 8%

Suburb (19) 702 *4% 23% 29% 39% 7%

Storm Urban 3.2 7.8 3.3 3 2.6 5.9
duration (h) Suburb 3.6 11.9 3.2 3.3 2.9 6

Mean rainfall Urban 41.3 82.1 37.9 37.4 41 43.8
(mm/event) Suburb 44.0 83.1 37.2 37.9 43.3 76.7

Mean rain rate
(mm/h)

Urban 12.8 10.5 11.5 12.5 15.8 7.4
Suburb 12.2 7.0 11.6 11.5 14.9 12.8

Storm count
8:00–12:00

Urban #25% 52% 19% 26% 24% 19%
Suburb #19% 40% 16% 17% 20% 15%

Storm count
13:00–18:00

Urban #40% 0% 38% 30% 51% 28%
Suburb #41% 12% 42% 43% 42% 34%

Storm count
19:00–7:00

Urban #35% 48% 43% 44% 25% 52%
Suburb #40% 48% 41% 40% 37% 51%

**Mean storm
rainfall (mm)

Urban 926 88 235 161 414 28
Suburb 1056 117 374 217 312 36

##Mean total
rainfall (mm)

Urban 2708 296 530 734 1095 53
Suburb 2822 289 609 860 1014 50

Note: * = count percentage of each storm type against all of the storm events. # = count percentage of the morning,
afternoon, and night for each storm type, against those that occurred all day. ** = mean storm rainfall at each site.
## = mean total rainfall, including storms and no storm, at each site.

The cold-front storms were fast moving and wide spreading (Figure 5c,d). The suburban stations
(158) had more storms than the urban stations (94) (Table 3). The afternoon had more storms than the
morning and night on average, for example, a quarter of a day (6 h) in the afternoon had 38% and 42%
of all of the storms in the urban and suburban stations, respectively.
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Figure 5. The spatial distribution of the peak rainfall and event-total rainfall plotted from the China
Hourly Merged Precipitation Analysis (CMPA) product for five typical storm events (types) that
occurred in the metropolitan areas of Guangzhou, China, that is, a warm-front storm (a,b), a cold-front
storm (c,d), a monsoon storm (e,f), a convective storm (g,h), and the typhoon Nida storm (i,j).
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Monsoon storms were the second most recorded storms next to convective storms, 26% in urban
and 29% in suburban (Table 3). They had a similar rain duration and rain depth, but a smaller rainfall
range than the cold-front storms (Figure 5e,f). The urban stations had more storms in the morning and
less storms in the afternoon than the suburban stations, plus an overall shorter duration.

Most of the convective storms were localized and small-range events (Figure 5g,h), while they
had the shortest duration and the largest mean intensity, resulting in most of the urban waterlogging
incidents (Table 3). They were dominant in both the urban (50%) and suburban (39%) stations.
The afternoon had the most events, especially in the urban areas (51%), due to strong solar radiation
and the urban heat island effect.

The typhoon-brought storms were the most-wide spreading (Figure 5i,j), and had the second
longest rain duration following the warm-front storms (Table 3). They were near evenly distributed
through the day. The suburban stations had much more rainfall and a stronger rain rate than the
urban stations.

4.3. Variations of Meteorological Factors with Storms

The interactions between the storm and meteorological factors were investigated from two
aspects. Firstly, five storm events that occurred at a typical station were used to illustrate their
specific interactions (Figure 6). Then, the mean conditions of all events were divided into three storm
occurrence periods of morning, afternoon, and night time, so as to show the impact of solar radiation
on their interactions with cold-front storms, monsoon storms, and convective storms (Figures 7–9).
Warm-front and typhoon storms were not separated into these three periods because of their limited
storm count.

4.3.1. Warm-Front Storms (in January)

The development of warm-front storms was mainly caused by the El Nino effect, a special case in
Guangzhou and Southern China in January 2016. They were controlled by the cold air in the winter
time, and then encountered the warm moist air that moved up from the Bengal Bay and the South
China Sea. During the two weeks centered on 27–29 January 2016, the mean diurnal air temperature
varied between 10 ◦C and 13 ◦C one week prior to and post storm, while it decreased to 5 ◦C prior to
the storm and increased to 18 ◦C after the storm, resulting in a mean storm total of 90 mm (Figure 6a).
The warming effect lasted over three days after the storm. As the warm and moist air moved up
and the temperature increased, the relative humidity dramatically increased from 25% to above 80%
(Figure 6b), the surface pressure was lower than the normal mean prior to and during the storm, and
was higher than the normal after the storm (Figure 6c). The wind speed had a much larger variation
than the normal mean (Figure 6d).

4.3.2. Cold-Front Storms (April to Mid-May)

The cold-front storms are controlled by the southwesterly wind (northeasterly) in South China,
before the South China Sea summer monsoon is formed [9,10]. It generates a heavy storm center
in Qingyuan and Shaoguan, the northern Guangzhou, mainly because of the uplifting effect of the
topography (Figures 1b and 5d). The suburban stations (158 events) in Northern Guangzhou had
much more cold-front storms than the urban stations (94 events) (Table 3).

Taking the storm on 9–11 May 2016 as an example, the air temperature rose by 2 ◦C above the
two-week diurnal mean before the cold front arrived, and it dramatically decreased from 32 ◦C to 23 ◦C
within 20 h as the cold front was approaching and the storm was formed (Figure 6e). It returned to the
normal diurnal variations about 24 h after the storm ended. Relative humidity always accompanied
the air temperature changes in an inverse pattern, that is, a lower and higher relative humidity than the
diurnal mean immediately before and after the storm (Figure 6f). The surface pressure was lower than
the diurnal mean 24 h before the storm, and the difference was reduced after the storm. It returned to
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the normal variation 12 h after the storm (Figure 6g). There was a larger wind speed about 20 h prior
to the storm, and it fell back to the normal variations during and after the storm (Figure 6h).

Figure 6. The fluctuations of air temperature, relative humidity, surface pressure, and wind speed at
an urban station for a warm-front storm on 27–29 January 2016 (a–d), a cold-front storm on 9–11 May
2016 (e–h), a monsoon storm on 9–15 June 2016 (i–l), a convective storm on 14–20 July 2016 (m–p),
and the typhoon Nida storm on 1–4 August 2016 (q–t). The green lines are the diurnal average during
a two-week period centered at but excluded from the storm-affecting duration. This urban station
(G3221) is located in the Tianhe District downtown of Guangzhou.

The impact of the storms on the meteorological factors were investigated by dividing the
occurrence time into morning 8:00–12:00 (Figure 7a–d), afternoon 13:00–18:00 (Figure 7e–h), and
night time 19:00–7:00 (Figure 7i–l). Prior to and after the storm, there were overcast clouds, which
blocked the shortwave solar radiation and retained the Earth’s surface long wave radiation. The storms
disturbed the normal diurnal variation of the meteorological factors, among which the air temperature
was most impacted. When the storm occurred in the morning, the air temperature was +6 ◦C higher
than the diurnal mean about 24 h prior to the storm, lasted about 8 h at that anomaly high status,
and then dramatically decreased to −4 ◦C after the storm (Figure 7a). It decreased at a larger magnitude
and longer duration at the urban stations than at the suburban stations.

When the storm occurred in the afternoon, the air temperature was +2 ◦C higher than the diurnal
mean about 18 h prior to the storm, lasted about 6 h at that positive status, and then dramatically
decreased to −4 ◦C immediately before the storm (Figure 7e). The cooling effect was reduced quickly
after the storm, and the urban stations had a much larger cooling magnitude than the suburban stations.

When the storm occurred in night, the air temperature was +2 ◦C higher than the diurnal mean
about 12 h prior to the storm, lasted about 12 h at that positive status and then immediately decreased
to −2 ◦C during the storm (Figure 7i). The cooling impact lasted 12 h after the storm. The mean
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wind speed was higher than the diurnal mean 12 h prior to, and after the storm at the urban stations
(Figure 7l).

Figure 7. Anomalies of air temperature, relative humidity, surface pressure, and wind speed 36 h prior
to, and after the cold-front storms that occurred in the morning (8:00–12:00; a–d), afternoon (13:00–18:00;
e–h), and night (19:00–7:00; i–l). The references are the diurnal mean during a two-week period centered
at but excluded from the 72 h of storm period from July 2015 to October 2017. The precipitation in the
right-hand axis is the mean event-total rainfall.

4.3.3. Monsoon Storms (Late May to June)

When the southwesterly (northeasterly) wind weakened in the mid-May, the southeasterly
strengthened and then dominated the monsoon rains in late May and June in South China [9].
One important feature of the South China Sea summer monsoon onset is that the upper tropospheric
(100 hPa) zonal wind shifts from westerly to easterly, corresponding to the northward move of the
South Asia High [10]. Thus, the storms occurring in late May and June are caused mainly by the
warm and moist South China Sea summer monsoon. Both the cold frontal and monsoonal rain are
the dominant rain sources in the first rainy season, from April to June. They normally form a storm
center in the southeast coast during the monsoon rain period (Figure 5f). The monsoon rain decreased
from the southeastern coast to the northwestern inland [9]. The monsoon storms had similar storm
durations, event total rainfall, and mean rain rates to the cold-front storms (Table 3). There were more
monsoon storms that occurred in the afternoon, especially at the suburban stations.

The monsoon storms did not form an evident front, such as the storm event that occurred on
12 June 2016 (Figure 5e,f). The air temperature did not show obviously changes before the storm,
but immediately decreased during the storm (Figure 6i). Both the relative humidity and surface
pressure were higher than the two-week diurnal mean for a few days after the storm (Figure 6j,k).
The wind speed was larger and smaller than the diurnal mean several hours prior to and after the
storm, respectively (Figure 6l).

When storms occurred in the morning, the air temperature was +3 ◦C higher than the diurnal
mean about 20 h prior to the storm, lasted about 6 h at that positive status, and then decreased to
−3 ◦C two hours prior to the storm. This negative value reduced slowly, and it returned to the normal
variations 10 h after the storm at the urban stations (Figure 8a). The cooling impact lasted about eight
hours longer at the suburban stations than at the urban stations.
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When the storm occurred in the afternoon, the air temperature was +2 ◦C higher than the diurnal
mean, about six hours prior to the storm, lasted about three hours at that positive status, and then
dramatically decreased to −4 ◦C (anomaly) during the storm (Figure 8e). The cooling impact quickly
reduced after the storm and lasted about 10 h.

When the storms occurred at night, the impact of the storms on the air temperature and other
meteorological factors were reduced compared with the morning and afternoon storms (Figure 8i–l).
The air temperature was +2 ◦C higher than the diurnal mean about 12 h prior to the storm, lasted
about three hours at that positive status and then decreased to −2 ◦C (anomaly) during the storm
(Figure 8i). The cooling impact lasted 10 h after the storm. The mean wind speed was higher than the
diurnal mean after the storm at the urban stations, while it was lower than the diurnal mean at the
suburban stations (Figure 8l).

 
Figure 8. Anomalies of air temperature, relative humidity, surface pressure, and wind speed
during 36 h prior to and post the monsoon storms that occurred in the morning (8:00–12:00; a–d),
afternoon (13:00–18:00; e–h), and night (19:00–7:00; i–l). The references are the diurnal mean during a
two-week period centered at but excluding the 72 h of storm period from July 2015 to October 2017.
The precipitation in the right-hand axis is the mean event-total rainfall.

4.3.4. Convective Storms (July to September)

There is strong solar radiation and intense surface heating in Guangzhou (~N23◦) from 22 June
to 23 September each year, when the sun can vertically shed light on the Tropic of Cancer, and then
moves southward back to the equator. Such a surface heating causes intense convection, resulting in
localized convective storms or thunderstorms at local (micro) scales, especially in urban areas. These
storms have unique dynamical structures largely controlled by the three-dimensional air temperature,
humidity, pressure, and wind in the environment of the convection developing. One example was the
convective thunderstorm that occurred in Guangzhou on the morning of 16 July 2016 (Figure 5g,h).
The air temperature was +3 ◦C above the diurnal mean 18 h prior to the storm, and then decreased to
−3 ◦C below the mean during the storm (Figure 6m). The relative humidity was much higher than the
diurnal mean prior to and after the storms (Figure 6n).

The convective storms had a dominant occurrence frequency in all of the storm types at both the
urban (50%) and suburban (39%) stations (Table 3). The afternoon had the largest share on average,
while night had the least possibility, especially at the urban stations, with 51% count in the afternoon
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(13:00–18:00) and only 25% in the night. When storms occurred in the morning, the air temperature
was +5 ◦C higher than the diurnal mean about 20 h prior to the storm, lasted about four hours at
that anomaly high status, and then dramatically decreased to −4 ◦C (anomaly) six hours prior to
the storm. That negative value reduced slowly and returned to the normal variations 12 h after the
storm (Figure 9a). The wind speed was 0.6 m/s higher than the mean 18–24 h prior to the storm, then
reduced to −0.4 m/s lower than the mean 10 h prior to the storm, and returned to the normal variation
after the storm (Figure 9d).

When the convective storms occurred in the afternoon, the air temperature did not show an
obvious change until several hours prior to the storm, and then dramatically decreased to −4 ◦C
(anomaly) during the storm (Figure 9e). The cooling impact quickly reduced, and it returned to the
normal variations 12 h after the storm. Wind speed was +0.4 m/s larger than the mean 6–12 h prior to
the storm, and −0.4 m/s smaller 0–6 h after the storm (Figure 9h).

When convective storms occurred at night, the impact of the storms on the air temperature and
other meteorological factors were reduced compared to the morning and afternoon-occurring storms
(Figure 9i–l). The air temperature was +2 ◦C higher than the diurnal mean about 10 h prior to the
storm, and then decreased to −2 ◦C (anomaly) during the storm (Figure 9i). The cooling impact lasted
12 h after the storm.

 
Figure 9. Anomalies of air temperature, relative humidity, surface pressure, and wind speed 36 h prior
to, and after the convective storms that occurred in the morning (8:00–12:00; a–d), afternoon (13:00–18:00;
e–h), and night (19:00–7:00; i–l). The references are the diurnal mean during a two-week period centered
at but excluding the 72 h of the storm period from July 2015 to October 2017. The precipitation in the
right-hand axis is the mean event-total rainfall.

4.3.5. Typhoon Storms (July to September)

Tropical cyclones are rapidly rotating storm systems featuring a low-pressure center, a closed
low-level atmospheric circulation, strong winds, spiraling storms, and heavy rain. They are called
typhoons in the northwestern Pacific Ocean and hurricanes in the Atlantic Ocean and northeastern
Pacific Ocean. Most tropical cyclones that made landfall in South China were formed in the South
China Sea and Philippine Sea in the northwestern Pacific Ocean, and the winds blew counterclockwise.
There were 2.8 landfall typhoons on average in South China during 1957–1996, contributing 20%–30%
to the annual rainfall [49].
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Typhoon storms are mesoscale weather systems (Figure 5i,j). They were accurately identified and
consisted 8% of all storms in the three years examined (Table 3). They occurred evenly within the three
periods, with no obvious difference between the urban and suburban stations. Meteorological factor
variations were illustrated as an example during the Typhoon Nida, which made landfall in the east of
Shenzhen at 04:00 on 2 August 2016 (Figure 6q–t). The surface pressure declined to 98 kPa, and the
hourly mean wind speed rose to 3 m/s during landfall at Tianhe in Guangzhou. The air temperature
was more than 6 ◦C lower than the diurnal mean 12 h prior to landfall, and the cooling impact lasted
three days after the landfall. It brought 100–200 mm rainfall in Guangzhou, and the peak rain intensity
was 90 mm/h 24 h after the landfall.

Generally, heavy storms are developed by different weather systems each season, and have unique
and dynamically environment structures largely controlled by the three-dimensional air temperature,
humidity, pressure, and wind (Figures 5 and 6). Prior to and after a storm, there is usually overcast
clouds, which scatters back the shortwave solar radiation and blocks in the Earth’s surface long wave
radiation. It disturbs the normal diurnal variation of the meteorological factors, thus heavy storms
had different impact on meteorological factors when they occurred in the morning, afternoon, and
night (Figures 8–10). Meanwhile, in the formation of clouds and storms, the condensation of water
vapor releases a large latent energy into atmosphere, resulting in an abnormal rise of air temperature.
Subsequently, the rainfall brings down cool water, and the evaporation of the surface rain water absorbs
the heat, resulting in a cooling effect on both the Earth’s surface and on the lower atmosphere [23].
Thus, the air temperature could rise several degrees above the normal range during the 24 h prior to
the storms, and immediately dropped several degrees below the normal range during and after the
storm, resulting in an approximately 6–10 ◦C air temperature difference before and during the storms
(Figures 6–9, Table 4). The 24-h mean air temperature prior to the storms could be a better indicator for
computing the scaling rates of the precipitation extremes with the surface air temperature.

Table 4. Mean air temperature (T. = ◦C) 24 h prior to the storms and during the storms, and the break
air temperature of the scaling rates using the 24-h mean and natural daily mean temperature at the 42
automatic weather stations from July 2015 to October 2017. *All storms only include the three types
of storms.

Storms
24 h Mean T.
Prior to Rain

Mean T. in
Rain Hours

T.
Difference

Break T. 24 h
Mean

Break T. Daily
Mean

*All Three 32.5 23.9 8.6 28 26
Cold-front 31.4 22.9 8.5 28 24
Monsoon 31.9 25.3 6.7 28 28
Convective 32.7 25.8 7.0 28 26

4.4. Scaling Rates

When all of the storms were considered except for the warm-front and typhoon storms, it showed
a peak-like scaling with a break temperature of 28 ◦C and a peak precipitation intensity of 67 mm/h in
the 99th percentile (Figure 10a). The hourly precipitation extremes in the 75th and 99th percentiles
increased at a close-CC rate (~7% ◦C−1), with air temperature below 28 ◦C, while a negative scaling
existed when it was above 28 ◦C (Figure 10a). The break temperature was 26 ◦C in the 75th percentile
for the cold-front and monsoon storms. The scaling rate of the cold-front storms was overall similar to
that of all of the storms, but with a smaller peak intensity of 57 mm/h in the 99th percentile (Figure 10b).
It displayed a super CC rate for monsoon and convective storms when the 24-h mean air temperature
was below 28 ◦C and a negative scaling rate when it was above 28 ◦C (Figure 10c,d). Their 24-h mean
air temperature varied from 24 ◦C to 34 ◦C prior to the storm. The hourly peak precipitation intensities
in the 99th were 57, 71, and 69 mm/h for the cold-front, monsoon, and convective storms, respectively.
Meanwhile, the scaling rates were generally similar for the precipitation extremes at the urban and
suburban stations (Figure 10e,f).

80



Water 2019, 11, 185

Figure 10. The scaling rates between the 24-h mean air temperature prior to the storms and the
hourly precipitation extremes at the 75th and 99th percentile for (a) all of the storms from April to
September, (b) cold-front storms from April to mid-May, (c) monsoon storms from mid-May to June,
(d) the convective storms from July to September, (e) monsoon storms at the suburb stations, and (f)
convective storms at the urban stations. The marked values on each plot are the break temperature and
precipitation extremes. The gray dashed lines are the standard Clausius–Clapeyron (CC) scaling rate.
The Y-axis scale is in logarithm.
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In contrast, when using the natural daily mean air temperature as in literature, the peak-like
scaling structure almost disappeared and only the negative scaling existed, especially in the 75th
percentile for the monsoon storms (Figure 11c). The break air temperature dropped to 24 ◦C and
26 ◦C for the cold-front and convective storms, resulting in a break air temperature of 26 ◦C for all
three types of storms. A negative scaling rate existed for most of the convective storms (Figure 11d).
When the urban and suburban stations were separated, a negative CC scaling rate appeared for the
cold-front storms at the suburban stations (Figure 11e) and for convective storms at the urban stations
(Figure 11f). Meanwhile, the peak-like scaling structure still existed and was similar at the urban and
suburban stations for both the monsoon and convective storms when the 24-h mean air temperature
prior to the storms was used in computing the scaling rates (Figure 10e,f). On the one hand, although
the air temperature affects extreme precipitation, the atmospheric conditions and precipitation affect
the surface air temperature as well. The cooling effect of the storms on the air temperature disturbs
the scaling rate between the precipitation extremes and the air temperature. A lower temperature
during the storms is widely related to the local saturated downdraughts, rain evaporative cooling, and
the synoptic atmospheric properties of colder air in low-pressure systems [23]. This indicates that the
24-h mean air temperature could produce more reliable scaling rates than the naturally daily mean air
temperature used in literature.

The peak-like structure of the scaling rates between the precipitation extremes and air temperature
revealed in this study are similar to those reported in the literature [13,14,16,17], but are slightly
different from those who found negative scaling rates in the tropic and subtropical regions when
daily mean air temperature was above 25 ◦C, such as in Brazil [15], Northern Australia [19], Southern
China [20], and Hong Kong [24]. Such negative scaling rates were also identified by using the daily
mean temperature for the cold-front and convective storms (Figure 11e,f). Using the 24-h mean
air temperature prior to the storms, this study presents a break temperature of 28 ◦C, above which
there was a negative scaling rate for the warm season storms. Figures 6–9 demonstrate that the air
temperature normally increased by several degrees 4–24 h prior to the storm, while it decreased by
several degrees immediately during the storm. The transient cooling effect of the tropical storms could
be up to 4 ◦C in Northern Australia [23]. Table 4 shows that the 24-h mean air temperature prior to the
storms was about 7–8 ◦C higher than that during the rain hours. This suggests that the 24-h mean air
temperature prior to the storms could be a better indicator than the natural daily mean air temperature
in the scaling rate computation, especially for the sub-tropic and tropic storms [15,23,24].

The break air temperature acts like an atmospheric threshold of water vapor availability in the
subtropical Guangzhou. The values of the mean temperature 24 h prior to the storms were 31.4,
31.9, and 32.7 ◦C for the cold-front, monsoon, and convective storms, respectively, and their mean
temperatures during the rain hours were 22.9, 25.3, and 25.8 ◦C (Table 4). Although both the 24-h and
rain-hour mean air temperature were different for the cold-front, monsoon, and convective storms,
they all showed a similar break temperature of 28 ◦C in the 99th percentile (Figure 10). This was 4 ◦C
lower than the 24-h mean air temperature prior to the storms and 2–5 ◦C higher than those during
the rain hours. When the 24-h mean air temperature was lower than 28 ◦C, the relative humidity
was 80%–100%, and showed positive scaling rates (Figures 6–10). In contrast, when it was higher
than 28 ◦C, the relative humidity and precipitation extremes had a negative relationship with the air
temperature (Figure 12). This further confirms a previous explanation that the negative scaling rates
were mainly caused by a lack of moisture [15,20].

The primary mechanism of moisture lack for the high temperature range is likely caused by the
delay of evapotranspiration following the rapid increase of air temperature, rather than by the absolute
lack of water resource, especially in the humid subtropical area of Guangzhou. As the air temperature
rises above 28 ◦C, the atmosphere is more dynamic. A further rising temperature is potentially
associated with different synoptic systems, atmospheric circulation, and moisture advection, thus
resulting in different meteorological or precipitation regimes [19,50]. Meanwhile, the spatial variability
of the mean air temperature is much smaller than the precipitation extreme, and it might contribute
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to the negative scaling rates when the scaling rates were computed using all of the precipitation
extremes at each of the weather stations [14–17]. In other words, such negative scaling rates might be
partially related to the analytical method [51], such as those showed in Figures 10 and 11. They showed
some positive scaling rates in the tropical regions of Australia, by conditioning the precipitation
intensity and storm duration. Nevertheless, given enough time and moisture sources, the scaling rate
is still appropriate to project the future rainfall extremes in the context of climate change and global
warming [17,23].

Figure 11. The same as Figure 10, but using the natural daily mean air temperature.
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Figure 12. The scatter plots between the relative humidity (%) and hourly mean air temperature during
the periods prior to the storms for (a) all of the storms from April to September, (b) cold-front storms
from April to mid-May, (c) monsoon storms from late May to June, and (d) the convective storms from
July to September.

5. Summary and Remark

There is an ongoing debate on the negative scaling rates between precipitation extremes and
surface air temperature in tropic and subtropic regions. A lack of moisture resource was mainly applied
to explain the negative scaling rates. However, heavy storms are developed by different weather
systems each season in the Southern China. They have complicated interactions with meteorological
factors and are the driving force of urban pluvial flooding. This study analyzes the characteristics of
heavy storms in the administration areas of Guangzhou, South China, and investigates the variations
of meteorological factors with different types of storms, and quantifies the scaling rates between
the hourly precipitation extremes with the surface air temperature (i.e., the naturally daily mean
temperature and the 24-h mean values prior to the storms).

Except for the warm-front and typhoon storms, the warm season storms have a short duration
and intense rates in Guangzhou. Half of the storms had rain duration shorter than three hours, a
quarter were in the range of three to five hours, and another quarter were longer than five hours,
respectively. The convective storms were dominant by 50% in urban, followed by monsoon storms
and cold-front storms. Urban and suburban areas had different storm hyetographs.

The air temperature showed a different magnitude of fluctuations prior to and after the different
types of storms, while the storm types had little influence on the scaling rates between the precipitation
extremes and the temperature. Air temperature is one of the leading meteorological factors that
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interacts with heavy storms. It could rise by 6 ◦C and drop by 4 ◦C prior to and after summer storms.
The precipitation extremes showed peak-like scaling rates with the 24-h mean air temperature prior
to the storms. For the cold-front, monsoon, and convective storms, they all showed the same break
temperature of 28 ◦C in the 99th percentile, which was 4 ◦C lower than the 24-h mean air temperature
prior to the storms and 2–5 ◦C higher than those during the storms. Below 28 ◦C, the relative humidity
was 80%–100%, and it showed a positive scaling. In contrast, above 28 ◦C, the relative humidity
decreased with the air temperature increase, which suggests that the negative scaling rates were likely
caused by lack of moisture in the atmosphere, instead of by the atmospheric water vapor-holding
capacity. Meanwhile, when using the natural daily mean air temperature as in the literature, a lower
break temperature appeared for all of the summer storms, partially due to the transient cooling effect,
and even purely negative scaling rates appeared for the monsoon storms at the suburban stations and
the convective storms at the urban stations. This suggests that the 24-h mean air temperature could be
a better variable to use for compute scaling rates rather than the naturally daily mean air temperature.

The storm process-based analysis reveals detailed variations of the meteorological factors prior to,
during, and after the storms, especially for the cold-front, monsoon, and convective storms. For large
scale storms, such as the winter warm-front storms and typhoon storms, it is limited to analyzing the
interactions between the storms and the meteorological factors by using the local weather observations.
Fine atmospheric models are needed in order to investigate their full interactions and feedbacks.
The accurate forecasting of localized heavy storms is still a sever challenge in present-day climate and
weather forecasting models. This study paves a path towards a greater storm-process understanding
of the scaling relation between precipitation extreme and air temperature, and offers some suggestions
to the forecast of local heavy storms and the urban drainage management in the Southern China.
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Abstract: To avoid more severe impacts from climate change, countries worldwide pledged to
implement intended nationally determined contributions (INDCs) for emission reductions (as part
of the Paris Agreement). However, it remains unclear what the resulting precipitation change in
terms of regional extremes would be in response to the INDC scenarios. Here, we analyzed China’s
extreme precipitation response of the next few decades to the updated INDC scenarios within the
framework of the Paris Agreement. Our results indicate increases in the intensity and frequency of
extreme precipitation (compared with the current level) in most regions in China. The maximum
consecutive five-day precipitation over China is projected to increase ~16%, and the number of heavy
precipitation days will increase as much as ~20% in some areas. The probability distributions of
extreme precipitation events become wider, resulting in the occurrence of more record-breaking heavy
precipitation in the future. We further considered the impacts of precipitation-related extremes and
found that the projected population exposure to heavy precipitation events will significantly increase
in almost all Chinese regions. For example, for heavy precipitation events that exceed the 20 year
baseline return value, the population exposure over China increases from 5.7% (5.1–6.0%) to 15.9%
(14.2–16.4%) in the INDC-pledge scenario compared with the present-day level. Limiting the warming
to lower levels (e.g., 1.5 ◦C or 2.0 ◦C) would reduce the population exposure to heavy precipitation,
thereby avoiding impacts associated with more intense precipitation events. These results contribute
to an improved understanding of the future risk of climate extremes, which is paramount for the
design of mitigation and adaptation policies in China.

Keywords: INDC pledge; precipitation; extreme events; extreme precipitation exposure

1. Introduction

In recent decades, a large number of climate extremes related to precipitation have been observed
in conjunction with global warming, for example, flood events in the entire Yangtze River Basin in
1998 [1] and the heaviest rainfall in Beijing in 2012 [2], which caused great damages. Variations in the
temperature, atmospheric moisture, precipitation, and atmospheric circulation have been observed;
meanwhile, the moisture-holding capacity has been increasing at a rate of ~7%/◦C with increasing
temperature, which further alters the precipitation extremes as well as the hydrological cycle [3,4].
However, the changes of the water cycle projected for the future, including prominent regional and
seasonal differences in response to climate change, are far more complex than projected temperature
changes [5]. Precipitation-related extremes are among the most relevant consequences of a warmer
climate. Therefore, it is crucial to more accurately project future precipitation extremes at regional
scales. In China, agriculture heavily depends on the hydrological cycle; a variety of precipitation
changes may affect different regions of China because of the diverse climate types. So, regional
assessments of extreme heavy precipitation risks and impacts that could be avoided by limiting the
warming to a lower level are critical for the design of adaptation and mitigation policies.
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In the Paris Agreement, a goal was set to keep the mean global warming well below 2.0 ◦C above
the preindustrial level and make efforts to limit the warming to 1.5 ◦C [6,7]. To achieve this goal,
countries participating in the Paris Agreement submitted national mitigation plans in the form of
Intended Nationally Determined Contributions (INDC). A total of 192 countries have reported their
respective INDC mitigation targets to the United Nations, as of Dec. 2018. The bottom-up approach in
using national efforts reflecting the willingness of each country to reduce their emissions is easier to
implement because it avoids the divergence of different countries from the distribution quota [8].

Future emissions are the key factors in determining the climate impacts of the next few decades.
Recently, researchers have paid increased attention to changes in the extreme precipitation at the
1.5 ◦C and 2.0 ◦C warming levels and the benefits of limiting the global warming to 1.5 ◦C rather
than 2.0 ◦C [9–12]. A preliminary synthesis is included in Chapter III of the Intergovernmental
Panel on Climate Change (IPCC) 1.5 ◦C report [13]. However, these studies are based on idealized
emission pathways to reach the 1.5 ◦C and 2 ◦C global warming targets [14–16] that are hard to
achieve. Some studies have also focused on the mean global warming response to INDC emission
reduction. For example, Rogelj et al. [15] and CAT [16] evaluated the impact of INDC emission
reduction commitments on mean global warming. The “Emissions Gap Report” released by UNEP [17]
evaluated the gap between INDC emissions and the 2 ◦C target. There is still a lack of evaluations
of the potential changes in regional precipitation and extreme events under INDC emission pledges.
Therefore, the risks associated with future changes in the extreme precipitation are still unclear.

In this study, we analyzed China’s extreme precipitation response of the next few decades to
emission reductions based on the INDC under the Paris Agreement using an ensemble of state-of-the-art
global climate models from the Fifth Coupled Climate Model Intercomparison Project (CMIP5).
We further explored the exposure to extreme precipitation events under the INDC emission scenarios
by considering the potential socioeconomic impacts of future climate change. The results of the
1.5 ◦C/2.0 ◦C scenario are shown as reference.

2. Data and Methods

2.1. Emission Scenarios

We used two categories of emission scenarios: (1) the 1.5 ◦C and 2.0 ◦C target scenarios under the
Paris Agreement and (2) the INDC scenarios. The 1.5 ◦C/2.0 ◦C target scenarios were derived from the
AR5 (Fifth Assessment Report) and 1.5 ◦C special report of the IPCC, respectively [18,19]. The INDC
scenarios are based on emissions data submitted by 192 countries according to the Paris Agreement.
The INDC dataset is continuously updated and can be obtained from the United Nations Framework
Convention on Climate Change (UNFCCC) website [20]. The emission targets reported by different
countries include a range of absolute emission targets to those relative to a base year level or emission
reduction targets relative to a baseline emission scenario. We analyzed and extracted the emission
targets of each country.

Simulations of future emissions based on 28 socioeconomic models were used to extend the
INDC scenarios to the end of this century. Several key features (the rate of decarbonization, carbon
capture, storage technology (CCS), energy structure improvement, and time to carbon neutralization)
were considered. In this study, we considered many possible interpretations of “INDC mitigation
actions” based on the IPCC AR5 Scenario Database (https://secure.iiasa.ac.at/web-apps/ene/AR5DB/).
We used scenarios that conform to the 2030 GHG emission levels, which are in agreement with the
INDC (50–56 Gt CO2eq/year) scenarios. Considering future difficulties and uncertainties with respect
to carbon removal technology, we used a conservative approach regarding the future availability of
negative emission technologies and scenarios based on which CCS > 15 Gt CO2eq/year was eliminated.
The emission pathways were classified into six groups based on several key characteristics (e.g., the
emission targets for specific years, renewable energy structure, and amount of CCS), as shown in Text
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S1 and Figure S1. In this study, we focused on Groups III and IV, which represent the INDC “continued
action” scenario, and compared the results with that of the 1.5 ◦C/2.0 ◦C target scenario.

Subsequently, we evaluated the global mean warming level under INDC “continued action”
scenarios. Based on the 78 climate sensitivity experiments from the earth system models (ESMs)
ensemble of CMIP5 [21], we assessed the possible corresponding global mean temperature rise [22,23];
we also integrated several other studies (temperature rise levels for some pathways have been
provided) [14,15,17,23]. After a comprehensive assessment, we determined 2.9~3.3 ◦C (median 3.1 ◦C)
as the most likely range of temperature increase for the “continued action” pathways of INDCs.

2.2. Data Description

To better project precipitation extremes, 14 state-of-art CMIP5 GCMs were adopted in this
study [21]. The model details are provided in Text S2. For further analyses, all model data were
interpolated to a common 1◦ × 1◦ horizontal grid using a bilinear interpolation method. The ability of
these CMIP5 models to simulate precipitation extremes was assessed using a daily gridded observation
dataset CN05.1 (0.5◦ × 0.5◦) established by the China Meteorological Administration, which was
obtained at 2416 observation stations and covers the period of 1961–2013 [24]. The assessment results
show the validation of these models for simulations of precipitation. It has been widely used in many
studies of precipitation extremes across China [25,26].

To estimate the space pattern of precipitation change, we used a time-slice approach [10,27,28]
where the spatial state at a specific warming point related to ΔTINDC (or 1.5 ◦C, 2.0 ◦C) was separately
derived from decadal time slices with the respective mean warming for each model. For the detailed
analysis process, please refer to Text S3, Figures S2 and S3. The multi-model ensemble (MME) was
calculated based on equal weights.

The period of 1985–2005 is referred to as the present-day period. The preindustrial period in this
study is 1861–1900.

Climate extremes are largely affected by distinct topography. To investigate the characteristics
of future regional changes in the precipitation extremes, the country has been divided into eight
subregions based on geographical conditions and climatic features (Figure 1). Detailed information
regarding these eight subregions is provided in Text S4.

Figure 1. Map of China’s eight geographical subregions.
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2.3. Extreme Precipitation Indices

It is difficult to provide a universally valid definition of extreme precipitation because of the
diversity of climates worldwide. In general, the indices established by the Expert Team on Climate
Change Detection and Indices (ETCCDI) are adopted in most studies of global precipitation extremes
and the extreme events can be defined using either relative or absolute thresholds [29]. Here, two
precipitation indices recommended by the ETCCDI, that is, Rx5day and SDII, which have been widely
used in many studies, have been selected to represent the intensities of precipitation extremes. In China,
the precipitation can be divided into the following five categories: trace rain (0.1–1.0 mm/day), light
rain (1.0–10 mm/day), medium rain (10–25 mm/day), large rain (25–50 mm/day), and heavy rain
(≥50 mm/day); these categories have been widely used in previous research in the country [30,31].
Heavy and severe rainstorms in China are traditionally defined as events with daily precipitation
values larger than 25, 50, or 100 mm [32]. In this study, the absolute threshold of 25 mm/day was
chosen to define a precipitation extreme. The R25 represents the cumulative number of days during
which the daily precipitation exceeds the 25 mm threshold.

Thus, three extreme precipitation indices have been adopted in this study to investigate the changes
in the frequency and intensity of heavy rainfall in China. The detailed definitions of these indices are
provided in Table 1. The evaluation of 14 CMIP5 models based on these indices is summarized in
Text S2.

Table 1. Definitions of extreme precipitation indices used in this study.

Extreme
Precipitation Indices

Definition (Unit)

Rx5day Maximum consecutive 5 day precipitation (mm)

SDII

Simple precipitation intensity index. Let PRwj be the daily precipitation amount on
wet days, PR ≥ 1 mm in period j. If W represents the number of wet days in period j,

then SDIIj =

(
W∑

w=1
PRwj

)
/W (mm/day).

R25 Cumulative number of precipitation days during which the daily precipitation
exceeds 25 mm per year (days)

To quantitatively express the occurrence probability of extreme events, we used the following risk
ratio (RR):

RR =
P1

P0
(1)

where P0 is the probability of reaching a specific present-day intensity (5% is used in this paper), P1 is
the corresponding probability of reaching this temperature intensity in future scenarios, and RR > 1
indicates an increased risk of extreme events.

The Wilcoxon rank sum test was applied to identify if there is a statistical significance of differences
between two warming levels based on multi-model results. We further assessed the signal-to-noise
ratio (SNR), expressed as the significance of the change compared with the internal variability.

2.4. Exposure and Avoided Impacts

Extreme events that substantially deviate from their climatology can result in the greatest losses.
Climate change risks are determined based on the hazards, vulnerability, and exposure of the human
society and natural ecosystems according to IPCC reports [33]. Climate extreme indices (e.g., Rx5day)
are used to characterize the hazard intensity. For further analyses, we defined dangerous extreme
events as those exceeding specific return values (RV) compared with the 1961–2005 baseline and
quantified the changes in the exposure to dangerous extreme precipitation under different scenarios.
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We fitted a generalized extreme value (GEV) distribution to the RX5day in 1961–2005 on the
native grids of each model using the method of maximum likelihood [34]. The cumulative distribution
function of GEV is given by

F(x;μ, σ, ξ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp
[
− exp

(
− x−μ

σ

)]
, ξ = 0

exp
[
−
(
1 + ξ

x−μ
σ

)− 1
ξ

]
, ξ � 0, 1 + ξ

x−μ
σ > 0

(2)

where μ is the location parameter, σ is the (positive) scale parameter, and ξ is the shape parameter.
These parameters are estimated by the method of maximum likelihood. Considering that the noise in
changing patterns of extreme precipitation stems from sampling, the GEV parameter estimates of the
extreme precipitation are smoothed spatially. This is done by smoothing the estimated GEV parameters
at each grid point by its eight surrounding neighbors [35]. Then, the return values (RV) are obtained
by inverting the fitted GEV distributions derived from the smoothed parameters. The different level
RVs from the baseline are derived on the native grid points for each model. Finally, exposures to these
dangerous extremes under different scenarios are estimated, and the area (population) that experiences
RX5day events exceeding the threshold for danger is aggregated spatially to represent the total area
(population) exposed. Population exposure is estimated on the population distribution projected
under different socioeconomic development scenarios of Shared Socioeconomic Pathways (SSPs) [36].
The vulnerability of socioeconomical systems is not discussed in this study, thus the results of exposure
only reflect the risk of physical climate change.

In addition, we investigated the avoided impacts at different levels of warming, which correspond
to different mitigation policies. The impacts in terms of exposure induced by warming are quantified
using the 1985–2005 present-day levels:

Impacts (k) =
Ek − Epresent

Epresent
(3)

where E stands for the exposure and the subscript k indicates different warming levels based on
different scenarios (1.5 ◦C, 2.0 ◦C, and INDC). Thus, the impacts avoided by less warming can be
derived as the difference between the impacts at the two levels.

3. Results

3.1. Changes in the Extreme Precipitation Indices

We first evaluated the model performance; while the general features of the observed temperature
indices were reasonably reproduced by the model, moderate biases were evident (Text S5, Figures S4
and S5).

The changes in the three annual extreme precipitation indices over China and eight subregions
(Text S4) until the end of the century exhibit contrasting patterns in terms of the signal strength and
robustness (Figure 2 for Rx5day, Figure 3 for R25, and Figure 4 for SDII). The national averages and
relative differences between the various sets of scenarios are shown in Figure 5. These results reveal
similar increases for all indices and indicate that heavier precipitation will be more frequent and intense
when higher warming thresholds are crossed.
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Figure 2. Present climatology of the annual Rx5day over Asia (a) and changes in the annual Rx5day
under different scenarios (b–f) based on the multi-model mean. The colored shading in (b–f) was
applied to areas that were statistically significant at the 10% level according to Wilcoxon rank sum test;
the stippling in (b–f) was added to regions with a multi-model mean signal-to-noise ratio (SNR) > 1.
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Figure 3. Present climatology of the annual R25 over Asia (a) and changes in the annual R25 under
different scenarios (b–f) based on the multi-model mean. The colored shading in (b–f) was applied
to areas that were statistically significant at the 10% level according to Wilcoxon rank sum test; the
stippling in (b–f) was added to regions with a multi-model mean SNR > 1.

The intensity and frequency of extreme precipitation consistently increase in most regions of China,
but the magnitudes of the changes are widespread across different subregions and models. Specifically,
the Rx5day over China will increase by 4.2% (3.1–7.3%; range of the 25–75% confidence interval) in the
1.5 ◦C scenario, by 8.3% (6.9–9.8%) in the 2.0 ◦C scenario, and by 16.0% (13.5–20.1%) in the INDC-pledge
scenario compared with the present-day baseline. The spatial patterns of changes of the SDII index
are similar, but the magnitudes are smaller. Hotspots, that is, locations in which the increase in the
intensity of extreme precipitation is the most prominent, are observed in the Huang–Huai River Valley,
Northeast China, and northern and southern periphery of the Tibetan Plateau. In terms of the increase
in the frequency of heavy precipitation, the R25 indices in the southeastern periphery of the Tibetan
Plateau and Yangtze–Huai River Valley are projected to exhibit the greatest rates (for example, under
the INDC, the increase in the R25 in those areas is ~3–4 days compared with the present-day level),
while the vast eastern monsoon region of China will experience slight increases in the number of heavy
precipitation days. The daily precipitation in arid areas in western China hardly exceeds 25 mm.
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The change of the extreme precipitation indices can be shown more intuitively in probability
density (frequency distribution) diagrams (Figure 6). The probability density curves of three extreme
precipitation indices over China only slightly change, indicating insignificant changes in the mean
value of extreme precipitation associated with global warming. However, the shape of the curves
becomes wider, suggesting increases in the standard deviations of the three indices. In particular,
the probability of record-breaking heavy precipitation occurring in China increases, despite a relatively
small rise in the mean value. The RR shows a stronger increase with global warming, which confirms
the above-mentioned proposition. Note that the RRs in the East Asian Monsoon Region are significantly
larger than the national average (Figures S9–S11).

Figure 4. Present climatology of the annual SDII over Asia (a) and changes in the annual SDII under
different scenarios (b–f) based on the multi-model mean. The colored shading in (b–f) was applied
to areas that were statistically significant at the 10% level according to Wilcoxon rank sum test; the
stippling in (b–f) was added to regions with a multi-model mean SNR > 1.
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Figure 5. National average differences among different scenarios for the annual Rx5day (a), R25 (b),
and SDII (c) changes in China based on the multi-model mean ensemble. Boxes (Whiskers) indicate the
25th and 75th percentiles (maximum and minimum) of 14 climate models, and the horizontal lines
represent the multi-model median. The scenarios are the same as those shown in Figures 2–4, with
corresponding colors. The differences between different sets of scenarios are labeled on the X-axis.
The first three bars show the differences of each scenario (1.5 ◦C, 2.0 ◦C, and INDC-pledge) relative to
the present-day baseline scenario and the last two bars show the differences between the 1.5 ◦C and
2.0 ◦C and INDC scenarios and 2.0 ◦C scenario, as labeled at the bottom. Detailed information for each
subregion is provided in Figure S6 (for Rx5day), Figure S7 (for R25), and Figure S8 (for SDII).

 

Figure 6. Frequency distributions (probability distribution function, PDF) of extreme precipitation
indices: Rx5day (a), R25 (b), and SDII (c). Zero R25 values were omitted. The black lines indicate the
results for the period of 1985–2005. The green, blue, and red lines indicate the results during the 1.5 ◦C,
2.0 ◦C, and ΔTINDC warming periods, respectively. The dashed lines indicate the 5% extreme values of
the baseline period (1985–2005). Detailed information for each subregion is provided in Figure S9 (for
Rx5day), Figure S10 (for R25), and Figure S11 (for SDII).

The uncertainties related to the projected precipitation extremes were quantified using the
coefficient of variation (Cv) between the models. Figure S12 shows that the spatial pattern of Cv under
different scenarios is similar. Compared with other regions, the Cv value is much larger in the South
China, Xinjiang Autonomous Region, and the southeastern edge of the Tibetan Plateau. It’s noticed
that Cv is only a quantification of climate model uncertainty.

3.2. Changes in the Exposure to Precipitation-Related Extremes

To further analyze the possible impact of future precipitation-related extremes, we defined
dangerous extreme events as those exceeding the 10 and 20 year RVs compared with the present-day
baseline (1961–2005) The 10 and 20 year thresholds represent different levels of danger. Here, we
only show the population exposure estimated from the projected population for 2100 under the SSP2
scenario [36]. The results of the population exposures based on projections under other SSP scenarios
are qualitatively similar. The evolution of the exposure (especially population-weighted density of
the exposure) depending on the warming levels indicates the probability of the human system being
impacted by these dangerous extremes.
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China and its subregions will be exposed to these events of different RV increases consistently
with global warming, and record-breaking events will be more frequent (Figure 7). For example,
for heavy precipitation events that exceed the 20 year baseline RV, the population exposure over
China increases by 5.7% (5.1–6.0%) to 8.4% (7.5–9.5%) in the 1.5 ◦C scenario, by 10.6% (8.7–11.2%)
in the 2.0 ◦C scenario, and by 15.9% (14.2–16.4%) in the INDC-pledge scenario compared with the
present-day level. An approximately linear increase in the exposure to mean global warming can be
observed in all regions, although the degrees of approximation to linear equations varies among the
eight subregions (Figure 7). Population exposures in the Tibetan Plateau and Southwest China (SWC1
and 2) are notably higher than in other regions; however, the exposure in those two subregions shows
a greater intermodel variability.

 
Figure 7. Population exposure to heavy precipitation events with different return values (RVs)
at corresponding warming levels over Asia and eight subregions (labeled on the top-left corner).
The multi-model means are represented by solid lines and the interquartile ranges are shaded.
The dashed black lines denote the linear trend of the exposure depending on the mean global warming.
The population-weighted density means are estimated from the 2100 population prediction under
the Shared Socioeconomic Pathways 2 (SSP2) scenario (future scenarios). The reliability of the
curves decreases at the right edge because of the inconsistent number of ensemble members which
corresponds to this figure. The results of the calculations based on the individual models are provided
in Figures S15 and S16.
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3.3. Impacts Avoided in Low-Warming Scenarios

If the warming is limited to a lower level, China is projected to benefit from robust reductions in the
population exposure to dangerous extremes (Figure 8). Across China, the population exposures based
on heavy precipitation events that exceed the 10 year baseline RV will increase to 138% (111–160%) in
the 1.5 ◦C scenario, 165% (147–179%) in the 2.0 ◦C scenario, and 217% (199–238%) in the INDC-pledge
scenario compared with the present-day level. Thus, the median values of the avoided impacts
(expressed in units of present-day exposure) are estimated to be 27% (14–36%; 1.5 ◦C versus 2.0 ◦C)
and 55% (41–80%; 2.0 ◦C versus INDC-pledge), respectively. The avoided impacts of the 2.0 ◦C versus
INDC-pledge scenarios are greater than those of the 1.5 ◦C versus 2.0 ◦C scenarios, indicating that
further efforts to increase the emission reduction based on the INDC-pledge will lead to more benefits.

 
Figure 8. Changes in the avoided extreme precipitation in China and its subregions in low-warming
scenarios. The population exposure to heavy precipitation events that exceed the baseline (a) 10 and
(b) 20 year return values is reduced in the low-warming scenarios (1.5 ◦C compared with 2.0 ◦C,
2.0 ◦C compared with Intended Nationally Determined Contributions (INDC). The projected changes
are expressed in units of present-day exposure (1985–2005). The central lines and bars denote the
multi-model medians and interquartile ranges, respectively.

Note that the avoided impacts are more remarkable for more intense extremes. For example, for
heavy rainfall events exceeding the 20 year baseline RV, 27% (12–58%; 1.5 ◦C versus 2.0 ◦C) and 80%
(57–113%; 2.0 ◦C versus INDC-pledge) of the population exposure could be reduced by less warming,
respectively. More than half of the subregions would experience such a robust avoidance of impacts,
although the magnitudes would differ.

Under low-warming scenarios, almost all regions in China will face less risk (exposure) of heavy
precipitation. Here, we only considered the fractional population exposure under SSPs. If the absolute
population growth is exceeding expectations, the avoided impacts will be larger.

4. Discussion

The response of global warming to actual emission reductions based on the Paris Agreement is
of ongoing interest. Most of the existing research is based on RCP or 1.5 ◦C/2.0◦ C scenarios, such as
Xu et al. (2017) [37], Dosio and Fischer Erich (2017) [9], Schleussner et al. (2016) [10] and Zhang et al.
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(2018) [12]. However, these scenarios do not consider current mitigation commitments negotiated by
worldwide governments. Our approach is based on self-determined emission reduction commitments
established during climate negotiations as the starting point to assess the future climate response.

Our results indicate that climate warming under the INDC scenarios is projected to greatly exceed
the long-term Paris Agreement goal of stabilizing the global mean temperature above the 2 ◦C or 1.5 ◦C
level, which is consistent with previously published studies [15,22,23]. Furthermore, we quantified
regional climate change in response to INDC pledges. Based on our results, the regional precipitation
extremes in China under the INDC scenarios are projected to show great increases in intensity and
frequency compared with the current level. The differences in the exposure to extreme events between
different scenarios are higher than that of the mean state. If the global emissions are further reduced to
achieve the ambitious temperature target, the benefits on the regional exposure to heavy precipitation
may be more pronounced than those based on the mean state of precipitation. We focus not only on the
assessment of extreme climate impacts under INDC scenarios, but also on the extreme climate impacts
at 1.5 ◦C. Our results for the 1.5 ◦C scenario are consistent with those reported in Chapter III of the
IPCC 1.5 ◦C report [13].

We also observed a nearly linear relationship between the regional extreme precipitation and
global mean warming, which is consistent with the results of [38]. Linking global warming targets to
regional consequences, such as changing climate extremes, would benefit political decision-making
with respect to climate negotiations and adaptation. However, linear relationships are only meaningful
if associated projection uncertainties are kept within reasonable bounds. Some changes in the climate
system may be abrupt due to tipping points [39]. Therefore, the limitations of this approach need to
be determined.

It is known that the ability of the model to simulate extreme precipitation indices is lower than
the ability to simulate extreme temperature indices [40]. The ability of GCMs to simulate features of
extreme precipitation is closely related to the ability of the models to simulate atmospheric circulation
such as the Northwest Pacific Subtropical High (NPSH) and East Asian Westerly Jet [41–43]. Moreover,
the simulation bias between the GCMs and observation is attributed to the low resolution of GCMs.
Regional climate models (RCMs) have finer resolutions and thus can better capture the characteristics of
extreme precipitation on a regional scale. For example, the RCM can effectively remove the false strong
precipitation center simulated by the GCM along the southeastern edge of the Tibetan Plateau [25].
Thus, an experimental design for INDC emission pledges based on RCMs is needed to better project
the changes in extreme precipitation at smaller regional scales in China and provide decision-makers
with more precise information.

5. Conclusions

By using fully coupled simulations from 14 CMIP5 models and their ensemble, we analyzed
the changes in the extreme precipitation over China under global INDC scenarios and compared the
results with those of the 1.5 ◦C/2.0 ◦C warming targets. The main findings are as follows:

1. With the enhancement of global warming, the intensity and frequency of extreme precipitation
will gradually increase in most regions in China. Changes in the Rx5day are more prominent
than those of SDII, while the spatial patterns are similar. The number of days during which the
daily precipitation exceeds 25 mm (i.e., R25) increases in the monsoon area in eastern China.
The probability distributions of extreme precipitation events are projected to become wider,
resulting in the occurrence of more record-breaking heavy precipitation in China in the future
despite the relatively small rise in the mean value.

2. The population exposure to dangerous (e.g., exceeding the 20-year RV) extreme precipitation
events in China is projected to consistently increase because of climate change, following an
approximately linear trend. Less warming would reduce the population exposure to once-in
20 years extreme rainfall events by 27% (12–58%; 1.5 ◦C versus 2.0 ◦C) and 57% (80–113%; 2.0 ◦C
versus INDC), respectively. Our results improve the understanding of future risks associated
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with extreme precipitation, which is critical for the design of mitigation and adaptation policies
in China, which is home to more than 1.4 billion people.

Supplementary Materials: Supplementary information is available in the online version of the paper.
The following are available online at http://www.mdpi.com/2073-4441/11/6/1167/s1. Figure S1: Future emission
pathways analyzed in this example. The black vertical line represents the range of conditional and unconditional
INDC pledges in 2030; thin lines in different colors show the selected emission pathways clustered into the
six groups. The range of the 1.5 ◦C and 2 ◦C pathways are plotted for reference in grey and orange shaded
areas, respectively [4,8,9]. The estimates of current warming above the pre-industrial level (ΔT) for each scenario
group are labelled on the right (uncertainty range of 33–66% and median in brackets). Figure S2: Time series of
global mean annual temperature changes relative to the baseline climatology of the pre-industrial (1861–1900),
as derived from individual GCMs under RCP8.5 (thin line in different colors). Multi-model ensemble with
21 year running mean (black bold line and shade) is also shown on the graph. The horizontal dashed lines
indicate a given warming target. Figure S3: Median years projected by the 14 CMIP5 models for three global
warming targets (ΔTINDC, 1.5 ◦C, and 2.0 ◦C) under the RCP8.5 scenario. Table S2: Details of eight subregions
in China [10]. Figure S4: Observed (blue line) and simulated (black line and shade, multi-model median and
interquartile range, respectively) time series of three extreme precipitation indices from 1961 to 2005. linear trends
of observation (dotted line in red) and multi-model median (dotted line in yellow) are shown in the same graph.
Yellow cross denotes the linear trend passed the 95% confidence level. Figure S5: Spatial distribution of extreme
precipitation indices for Rx5day (unit: days), SDII (unit: mm day−1), and R25 (unit: days) during the period
of present (1985–2005). Column 1: observation; Column 2: MME; Column 3: bias (model ensemble simulation
minus observation). Figure S6: Regional average differences among different scenarios in the annual Rx5day
in China and its eight subregions, based on the multi-model mean ensemble. Boxes (Whiskers) indicate the
25th and 75th percentiles (maximum and minimum) of 14 climate models, and the horizontal lines represent the
multi-model median. Scenarios are the same as Figure 5, with corresponding colors. The differences between
different sets of scenarios are labelled on the x-axis. The first three bars show differences for each scenario (1.5 ◦C,
2.0 ◦C, and INDC-pledge) relative to the present-day baseline scenario, and the last two bars show differences
between the 1.5 ◦C and 2.0 ◦C scenarios and INDC scenario relative to the 2.0 ◦C scenario, as labelled. Eight
subregions (labelled on the top left corner) are defined in Text S4. Figure S7: Corresponds to Figure S6, but for
R25. The national average of R25 (the central sub-figure), does not include NWC. Figure S8: Corresponds to
Figure S6, but for SDII. Figure S9: Frequency distributions of extreme precipitation indices Rx5day over China
and its eight subregions. Black lines indicate the results during 1985–2005. Green, blue, and red lines indicate the
results during the 1.5 ◦C, 2.0 ◦C, and ΔTINDC warming periods, respectively. The dashed lines indicate the 5%
extreme values for the baseline period 1985–2005. Risk ratios (RRs) for three scenarios labeled on the top-right
(including medians and interquartile ranges). Figure S10: Corresponds to Figure S9, but for R25. Zero values
of R25 are omitted. Figure S11: Corresponds to Figure S9, but for SDII. Figure S12: Spatial distribution of the
intermodel coefficient of variations of three extreme precipitation indices simulated by the 14 CMIP5 models for
scenarios of present, 1.5 ◦C, 2.0 ◦C, and INDC-pledge. Figure S13: Three extreme precipitation indices over China
(regional average) simulated by 14 individual CMIP5 models (in different color lines), with corresponding global
mean warming. Figure S14: Multi-model ensemble areal exposure to heavy rainfall of different return values
(RVs). Corresponds to Figure 7 but for areal exposure. Corresponds to this figure; calculation results of individual
models refer to Figures S17 and S18. Figure S15: Population exposure to heavy precipitation events of 10 year RV
at corresponding warming levels over Asia and eight subregions (labelled in top left corner), based on results of
individual models (line in different colors). Figure S16: Corresponds to Figure S15, but for population exposure to
heavy precipitation events of 20 year RV. Figure S17: Areal exposure to heavy precipitation events of 10 year RV at
corresponding warming levels over Asia and eight subregions (labelled in top left corner), based on results of
individual models (line in different colors). Figure S18: Corresponds to Figure S17 but for population precipitation
events of 20 year RV. Figure S19: Corresponds to Figure 8 but for areal exposure. Table S1: Details of the 14 CMIP5
global climate models used in this research.
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Abstract: In this paper, the impact of climate change on the climate and discharge of the Dez Dam
Basin and the hydropower potential of two hydropower plants (Bakhtiari and Dez) is investigated
based on the downscaled outputs of six GCMs (General Circulation Models) and three SRES
(Special Report on Emission Scenarios) scenarios for the early, mid and late 21st century. Projections
of all the scenarios and GCMs revealed a significant rise in temperature (up to 4.9 ◦C) and slight to
moderate variation in precipitation (up to 18%). Outputs of the HBV hydrologic model, enforced by
projected datasets, show a reduction of the annual flow by 33% under the climate change condition.
Further, analyzing the induced changes in the inflow and hydropower generation potential of the
Bakhtiari and Dez dams showed that both inflow and hydropower generation is significantly affected
by climate change. For the Bakhtiari dam, this indicates a consistent reduction of inflow (up to
27%) and electricity generation (up to 32%). While, in the Dez dam case, the inflow is projected
to decrease (up to 22%) and the corresponding hydropower is expected to slightly increase (up to
3%). This contrasting result for the Dez dam is assessed based on its reservoir and hydropower
plant capacity, as well as other factors such as the timely releases to meet different demands and
flow regime changes under climate change. The results show that the Bakhtiari reservoir and power
plant will not meet the design-capacity outputs under the climate change condition as its large
capacity cannot be fully utilized; while there is room for the further development of the Dez power
plant. Comparing the results of the applied GCMs showed high discrepancies among the outputs of
different models.

Keywords: global warming; statistical downscaling; HBV model; flow regime; uncertainty

1. Introduction

Anthropogenic global warming and its consequences, especially in the arid and semi-arid
regions, received particular attention in recent years as many scholars documented the occurrence and
dominance of droughts, a rise in the temperature, and an increase in the atmospheric water demand,
accompanied by a reduction in the precipitation and runoff [1–4]. Additionally, in Iran, many studies
support the fact that during recent decades the climate has experienced variations, mostly toward hot
and dry conditions [5–14].

Anticipated climatic changes can alter the hydrological regimes, such as the amount of
discharge or the timing of the surface flow on both the regional and local (catchment) scales [15–17],
with socio-economic and environmental consequences. Projections of the impact of climate change on
the hydrological conditions on a global scale show that for low and mid-latitude regions, a reduction
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of freshwater could exacerbate their water-management problems; while the higher latitudes will
experience higher amounts of surface flow [18,19].

Several studies worldwide predicted that the combination of the temperature increase and
precipitation variation during the present century will result in a significant change of the runoff.
According to the study by Tong et al. on the variability of the discharge, under the B1 scenario and
the urbanization in the Las Vegas Wash watershed in the USA, climate change is the main deriving
factor of future changes in the watershed, causing a wintertime discharge decrease and a summertime
discharge increase [20]. The study on the future water availability in Bangladesh revealed that climate
change has a significant impact on runoff and evapotranspiration because the region will face a higher
irrigation demand, a decline of groundwater, and a variability of rainfall and runoff (both increasing
and decreasing) [21].

The projection of future climatic conditions in Senegal by Tall et al. showed an increase in the
temperature, evaporation, and precipitation by the mid-21st century and a decrease of these parameters
by the late-21st century. They also reported that dependent on the applied scenarios, the runoff will
change (both increasingly and decreasingly). This could lead to an arid climate dominance in the
region [22]. He et al. assessed the hydrologic sensitivity to climate change in the upper San Joaquin
River basin in California by employing projected temperature and precipitation datasets, the reported
temperature rise (between 1.5 and 4.5 ◦C) and precipitation variations (between 80 and 120%) [23].
They showed that climate change can lead to annual streamflow variations between −41 and 16%.
They also detected an earlier shift of most of the streamflow by 15 to 46 days as a result of the
temperature increase, which is the cause of the higher seasonal variability of streamflow. Modeling the
future climatic and hydrologic response to climate change in Spain revealed a 1.5–3.3 ◦C temperature
increase, a 6–32% precipitation decrease, and a 2–54% runoff decrease [24]. Xu and Luo, by employing
seven GCMs (General Circulation Models) and the A1B scenario in two semi-arid and humid regions
in China, reported dramatic changes in the temperature (up to +8.6 ◦C), precipitation (up to 139%),
and seasonal discharge (up to 304%), as well as an increase in the extreme flows and seasonal shifts
of discharge [25]. Investigating the scenarios of climate change impact on the river flow in Western
Kenya using different GCMs and SRES (Special Report on Emission Scenarios) showed that climate
change has the potential to significantly alter the river flow [26].

Additionally, assessments of climate change impact on the river flow in Iran show considerable
variations of surface water resources across different parts of the country. Simulation of streamflow in
the North of Iran, through forcing the hydrologic model with climatic projections based on different
SRES scenarios, revealed increases and decreases of the discharge for the wet and dry seasons,
respectively, with an overall increase in the annual discharge [27]. According to another study
on the future changes of the climatic condition and runoff across Iran, the future temperature and
precipitation are projected to vary by ±6 ◦C and ±60%, respectively [28]. Additionally, these changes
will result in higher rates of annual evaporation and a runoff reduction, as well as seasonal variations of
runoff (an increase in winter and a decrease in spring). Rafiei Emam et al. showed that the hydrologic
response of the Raza-Ghahavand region (a semi-arid region in Iran) to climate change is a decrease in
precipitation and an increase in temperature, which leads to less groundwater recharge and a lower
soil water content [29]. A study on the impact of climate change on the surface water supply in the
Zayandeh-Rud River Basin in Central Iran showed an increase of 0.4–0.76 ◦C in annual temperature,
a decrease of 14–38% in the precipitation and a decrease of 8–43% in the runoff [30]. Modeling the
future climate and water resources under the A1B, A2, and B2 scenarios in the Karkheh River Basin
(located in the West and Southwest of Iran) revealed a temperature increase and reduction of the water
yield in the basin. This reduction is considerable from April to September as a result of the temperature
increase and precipitation decrease [31].

It is widely documented that based on the future simulations, the modeled wintertime
discharge increase is usually followed by a springtime discharge decrease, which is due to the
temperature increase which causes the snow to melt sooner and for there to be less snow [15–17,32,33].
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Additionally, a global scale study on the river flow variations caused by the A2 and B1 emission
scenarios suggested an increase in the seasonality of the river flow, i.e., an increase in the high flows
and a decrease in the low flows, for about one-third of the Earth [34]. Elsner et al., using the A1B and
B1 scenarios, showed that climate change causes significant shifts and changes in the amount and
timing of the runoff in the Pacific Northwest [35]. Pervez and Henebry reported that a combination
of the land use and climatic change under different SRES scenarios can cause some changes and
shifts in the amount of discharge and flow timing in the Brahmaputra River Basin [36]. Boyer et al.
studied the projected variability of the wintertime and springtime discharges at a regional scale and
found that under climate change, the wintertime discharge increases, while the springtime discharge
decreases [16].

One of the vulnerable industries to climate change is hydropower generation, which completely
relies on the amount of precipitation, snow cover, snowmelt, streamflow, and the timing of the
flow, all of which show high inter-annual variability [37–39]. Based on the IPCC report, as a result
of climate change, the hydropower generation potential is projected to drop by up to 6% [40].
Therefore, it is essential to adapt the water resources management to the future climatic changes [41].
In Iran, climatic changes and their repercussion on hydropower generation have been studied by
Jahandideh et al. [42] and Jamali et al. [43], focusing on the Karun and Karkheh river basins, respectively.
They reported a reduction of the hydropower generation potential in both of the studied basins.

Problem Statement and Objectives of the Study

The Dez Dam Basin is located in Iran’s Southwest and the discharge from this basin is planned to
provide water for different sectors, such as the agriculture, industry, fishery and hydropower generation
sectors through existing and currently-in-constructed dams. In the planning and management of water
resources, the base period recorded dataset is normally considered. However, the records from recent
years and future projections of climate models suggest that global warming and climate change could
alter the climate indicators and hydrologic conditions. Therefore, for basins like the Dez Dam Basin,
which is not completely developed yet, it is crucial to assess the variations in the amount of discharge on
a basin scale with respect to the climate change scenarios; this is essential for climate change adaptation.
In this study, we investigated the variations of hydroclimatic conditions induced by climate change in
the Dez Dam Basin and its consequences with regards to the hydropower generation potential through
two large dams in the basin. For this aim, first, the precipitation and temperature values were projected
based on the three SRES scenarios. Then, using the HBV hydrologic model, the discharge was simulated
under climate change conditions. Next, the hydropower generation potential was calculated for the
two hydropower plants of the Bakhtiari and Dez dams. Since many scholars identified GCMs as one of
the significant sources of uncertainty in hydro-climatic studies [25,33,44–49], in this study, an ensemble
of six GCMs and three emission scenarios were employed to consider the different climatic conditions
within a range, offered by the outputs of different GCMs and scenarios. This assessment provides a
useful means to the modify water resources management strategies, considering the repercussions of
climate change on the surface water resources and the hydropower plants of the Dez Dam Basin.

2. Materials and Methods

2.1. Study Area and Data

The Dez Dam Basin (hereafter referred to as DDB) is located in the Southwest of Iran between
31◦35′51”–34◦7′46” N and 48◦9′15”–50◦18′37” E and is the upstream tributary of the great Karun
catchment. Figure 1 shows the location of the Dez Dam Basin in Iran, as well as the streams and
hydrometric stations in this basin, based on the data layers acquired from the Iran Water Resources
Management Company. Figure 1 also illustrates the four sub-basins of the DDB (delineated by the
ArcSWAT tool in ArcGIS), namely, Tireh, Marbereh, Sazar, and Bakhtiari. The two main rivers of
Sazar and Bakhtiari drain the basin and join at the point known as Tange Panj to form the Dez River.
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Figure 1 shows the location of the Dez dam, which is currently operational, and the Bakhtiari dam,
which is under construction. As depicted in Figure 1, the Bakhtiari dam is located at the end point of
the Bakhtiari sub-basin. Additionally, the inflow to the multi-purpose Dez dam comes from the Sazar
and Bakhtiari rivers. The Bakhtiari dam is mainly designated for hydropower generation. While the
storage of the Dez reservoir provides water for the domestic, agricultural, and industrial sectors, it is
also used to generate electricity. Table 1 presents a description of the studied sub-basins and the
hydro-meteorological indicators of the study area. The presented coordinates and elevations in Table 1
belong to the centroid of each sub-basin.

 

Figure 1. The map of the Dez River Basin; (a) the sub-basins, main streams, and location of the
hydrometric stations and reservoirs (b) its location in Iran.

Table 1. The description of the sub-basins of the Dez River basin.

Sub-Basins Area (Km2) Elevation
Average

T (◦C) P (mm/y) Q (Mm3)

Tireh (SUB-1) 3477 1551 13.93 603 486
Marbereh (SUB-2) 2553 1943 12.35 472.3 282

Sazar (SUB-3) 3281 1574 14.19 791.2 3231
Bakhtiari (SUB-4) 5973 2460 13.89 673.3 4830

Long-term daily Streamflow (Q), precipitation (P), evaporation (E), and temperature (T) time
series were acquired from the Iran Water Resources Management Company and the Islamic Republic
of the Iran Meteorological Organization (IRIMO). The observation period for Q is 1989–2009 and,
for other parameters, it is 1986–2010.

The catchment is located within a mountainous area known as the Zagros Mountains with limited
shallow aquifers in some parts of the sub-basins 1 to 3. The basin’s climate is characterized as semi-arid
to Mediterranean with warm summers and cold winter and less than 800 mm of precipitation per year.

2.2. GCM-Scenario Ensemble

To project the future T and P, six different GCMs were applied, including CCSM3, ECHAM5-OM,
GFDL-CM2.1, HadCM3, INM-CM3.0, and IPSL-CM4. Each of the applied GCMs couple different
components of the Earth system on different grid resolutions. Applying a multi-model ensemble
of GCMs enables us to consider a wide range of predictions. Table 2 provides a description of the
applied GCMs. The three SRES emission scenarios of A1B, A2, and B1 were applied to project the
future T and P for the 2011–2030 (the 2020s), 2046–2065 (the 2050s), and 2081–2100 (the 2080s) time
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horizons. Therefore, in this study, an ensemble of 54 combinations of GCMs, scenarios, and time
horizons (hereafter referred to as GSTs) were used to assess the climatic change and its impact on the
discharge and hydropower potential of the DDB.

Table 2. The description of the GCMs (General Ciculation Models) and the IPCC-AR4 SRES (Special
Report on Emission Scenarios) emission scenarios.

Research Centre Country GCM Acronym Resolution

National Centre for Atmospheric Research USA CCSM3 CCSM 1.4 × 1.4◦
Max-Planck Institute for Meteorology Germany ECHAM5-OM ECHAM5 1.9 × 1.9◦

Geophysical Fluid Dynamics Lab USA GFDL-CM2.1 GFDL 2 × 2.5◦
UK Meteorological Office UK HadCM3 HadCM3 2.5 × 3.75◦

Institute for Numerical Mathematics Russia INM-CM3.0 INCM3 4 × 5◦
Institute Pierre Simon Laplace France IPSL-CM4 IPSL 2.5 × 3.75◦

The related assumptions regarding each SRES scenario and the corresponding CO2 concentrations
can be found in the IPCC’s fourth assessment technical report (AR4) [50].

To downscale the future T and P in the study area, under three SERS scenarios (A1B, B1, and A2)
during the 2020s, the 2050s, and the 2080s, the stochastic weather generator of LARS-WG was applied.
This generated the future time series based on the probability distribution of the base period data
and the correlations between the observations. The detailed description of LARS-WG is provided by
Semenov [51] and Semenov and Stratonovitch [52].

2.3. Hydrological Modeling

The HBV-light (HBV-light-GUI, V. 4.0.0.6) semi-distributed hydrological model is used to simulate
the streamflow in the DDB. The model considers snow routine, soil moisture routine, response function,
and the flood routing of the basin. This model simulates Q with T, P, and E as the input data. The model
provides the option to link sub-basins, therefore, for SUB-1, SUB-2, and SUB-3, the semi-distributed
mode was applied. A detailed description of the HBV model structure and routines are provided by
Seibert and Vis [53]. Prior to the application of the model, it is necessary to calibrate its parameters by
the trial and error procedure, as recommended by Bergström [54]. After model calibration, validation,
and after ensuring its efficiency, it was run with a projected climate series to simulate the future runoff
in the basin.

2.4. Model Calibration and Validation

There are several statistics to identify the efficiency of a model. In this research, we examined the
goodness of fit with different criteria (Equations (1)–(3)) to diagnose the efficiency of the model in the
simulation of the streamflow in the calibration and validation periods. In details, the Nash–Sutcliff
measure (Reff), the coefficient of determination (R2), and the mean annual difference (Mdiff) are utilized
to evaluate the model performance regarding efficiency, the timing of the flow, and the average
error, respectively.

Re f f = 1 − ∑ (QSim − QObs)
2

∑ (QObs − QObs)
2 (1)

R2 =
(∑ (QObs − QObs)(QSim − QSim))

2

∑ (QObs − QObs)
2
∑ (QSim − QSim)

2 (2)

MDi f f = 100
(

∑ (QObs − QSim)

nQObs
365
)

(3)

where, Qsim and Qobs are the simulated and observed discharge data and n is the number of data.
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2.5. Modeling the Two Reservoirs System

The two reservoirs systems of the Bakhtiari and Dez dams are modeled based on the water balance
equation (Equation (4)) by considering all the restrictions on the operation of the reservoirs and the
power plant, for power generation.

St+1 = St + Qt − REt − RDt − SPLt − EVAPt + ADDt (4)

where, St+1 is the reservoir volume at the end of the t period (beginning of the t + 1 period); St is the
reservoir volume at the beginning of the t period; Qt is the inflow to the reservoir during the t period;
REt is the outflow from the reservoir to generate energy during the t period; RDt is the outflow from
the reservoir to meet the downstream demand during the t period; SPLt is the spill from the reservoir
during the t period; EVAPt is the evaporation from the reservoir during the t period; and ADDt is the
volume of the added flow from the upstream reservoir during the t period.

Additionally, based on the minimum operational reservoir volume (Smin) and the maximum
reservoir volume (Smax), the following conditions are considered in the model:

• If Smin < St < Smax, the outflow from the reservoir and the hydropower generation is equal to the
water and energy demands of that specific month and neither deficit nor spill will occur.

• If Smax < St, considering the upper limit for the reservoir volume (St ≤ Smax), the reservoir volume
(St) is equal to Smax and the excessive amount of water (Smax − St) will spill. In this condition,
there is no water or energy deficit and the secondary energy could be produced.

• If St < Smin, considering the lower limit for the reservoir operation (Smin ≤ St), the reservoir volume
will be substituted with the minimum operational reservoir storage, i.e., Smin. Therefore, in that
month, the deficit is equal to (St − Smin). In this condition, some or all the demands may not
be met. If St − Smin ≥ 0, the water is released based on the priorities to meet high prioritized
demands. Additionally, the energy generation will be affected in accordance with the reduction
of the amount of water flowing through a turbine.

The power generation is associated with the installed capacity, efficiency, and plant factor as well
as to the inflow and hydraulic head. Equation (5) shows the relationship that is used to calculate the
energy generation.

Pt = γQt Htet (5)

where, Pt is the power generated during the t period (W); γ is water specific weight (N/m3); Qt is the
inflow to the turbine during the t period (m3/s); Ht is the net hydraulic head on the turbine during the
t period (m); and et is the power plant efficiency during the t period.

The following constraints are applied for the calculation of the hydropower generation based on
the limits of the hydropower plant (Equations (6)–(8)).

Pt ≤ PCC (6)

Qmin < Qt < Qmax (7)

Hmin < Ht < Hmax (8)

where, PCC is the installed capacity (MW); Qmin is the minimum turbine inflow (m3/s); Qmax is the
maximum turbine inflow (m3/s); Hmin is the minimum required head to operate the power plant (m);
Hmax is the maximum head to operate the power plant (m).
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3. Results

3.1. Projected Impact of Climate Change on Temperature and Precipitation Rates

Figure 2 illustrates the average of the projected temperatures, obtained by different GSTs and
the average temperature of the base period (1986–2010). As depicted in Figure 2, all the GCMs and
scenarios suggest a small temperature change during the 2020s. However, for SUB-4, a temperature
rate increase up to 1.2 ◦C is projected for the first time horizon. While, based on all the scenarios,
a significant rise in the temperature is projected for the time horizons of the 2050s and the 2080s.
Additionally, the average of the projected temperatures in the 2080s is higher than in the 2050s.
Generally, the B1 scenario suggests a smaller temperature increase during the 2050s and the 2080s;
while, scenarios A2 and A1B revealed a higher temperature during these time horizons. Additionally,
regarding the differences between the GCMs, it seems that INCM3 mostly shows the lowest rates of the
temperature increase, especially during the 2050s and 2080s; while GFDL, in most cases, revealed the
highest temperature increase during the 2050s, based on the scenarios A1B, A2, and B1, respectively.
Additionally, during the 2080s, the highest temperatures based on all the scenarios are suggested by
ECHAM5. As it is shown in Figure 2, the amplitude of the multi-GCM projections of temperature
suggests greater uncertainties in the 2080s, compared to the 2050s and the 2020s. Conversely, the values
of the projected temperatures by different GCMs are approximately similar for the first time horizon
(the 2020s).

 

Figure 2. The daily averaged downscaled temperatures based on the A1B, A2, and B1 scenarios for the
three time horizons (the 2020s, 2050s, and 2080s) using different GCMs in the sub-basins: SUB-1 (a);
SUB-2 (b); SUB-3 (c); and SUB-4 (d).

The maximum temperature increase is consistently identified by all models for the 2080s time
horizon under the A2 scenario, except for SUB-1. In SUB-1, the greatest rise in temperature is revealed
by projections of ECHAM5 under the A1B scenario. The greatest temperature increase in the 2080s
time horizon compared to the base period ranges from 4 ◦C (SUB-1) to 4.9 ◦C (SUB-4).
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In a similar way, Figure 3 illustrates the average of the projected annual precipitation for
different GSTs, as well as the average of the precipitation for the base period (1986–2010). As it
is obvious, most of the GSTs suggest increasing the precipitation amounts compared to the base period.
However, the projections obtained by employing IPSL mostly suggest a reduction of the amount
of precipitation in the future time horizons, except for the outputs of the IPSL-A1B-2050s for SUB-1
and SUB-3; these show a slight increase in the amount of precipitation. Additionally, projections for
SUB-2 show both a rise and decline of the precipitation, compared to the base period, which is mostly
inclining towards a decrease of the precipitation rate in the 2020s. Based on the results, the greatest
precipitation changes mostly occur in the 2080s time horizon.

 

Figure 3. The annual downscaled precipitation based on the A1B, A2, and B1 scenarios for the three
time horizons (the 2020s, 2050s, and 2080s) using different GCMs in the sub-basins: SUB-1 (a); SUB-2
(b); SUB-3 (c); and SUB-4 (d).

Regarding the differences between GCMs, it is clear that the IPSL performs differently.
Additionally, GFDL shows greater deviations in the 2050s from the base period. In addition,
some inconsistent results were found among the sub-basins. For example, the projections mostly
suggest a precipitation decrease in the first time horizon (the 2020s) in SUB-2, while for other sub-basins
the precipitation is mostly projected to be increased.

In total, the projections of most of the GSTs indicate a warmer future and a moderate increase in
the precipitation amount. However, the results of the precipitation are more anomalous, showing both
an increase and decrease of the amount of precipitation. Additionally, for the late 21st century,
the GCM-scenario ensemble suggests a wider range of projections for the temperature and precipitation,
implying that the uncertainties of the projections increase in a wider time span. The ensemble revealed
similar results for the 2020s.
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3.2. Hydrological Modeling of the Dez Dam Basin

To simulate the streamflow in the DDB, the semi-distributed HBV model is applied.
First, the model calibration was completed using at least 12 years of observed discharge data. After the
calibration, the model performance was evaluated using at least 5 years of observed discharge data,
independent of the calibration period. It is taken into consideration that the calibration and validation
periods cover both dry and wet conditions to ensure that the model is capable of working with
different conditions.

Table 3 represents the information regarding the length of the calibration and validation periods,
as well as the model performance at each sub-basin. Overall, the statistics show an acceptable
performance of the calibrated model. As it is obvious for the validation period, negative values of
Mdiff (%) are obtained for SUB-1, 2, and 4, which are mainly due to the reduction of the annual
flow during the validation period which coincides with the final years of the observation period.
Figure 4a–d shows the observed and simulated streamflow at the outlet of the four sub-basins during
the calibration and validation periods.

Table 3. The model performance statistics for the calibration and validation periods.

Period Reff R2 MDiff (%)

SUB-1
Calibration 1989–2002 0.68 0.70 6
Validation 2004–2008 0.70 0.79 −19

SUB-2
Calibration 1989–2004 0.62 0.62 8
Validation 2004–2009 0.43 0.78 −24

SUB-3
Calibration 1989–2004 0.63 0.64 1
Validation 2004–2009 0.50 0.63 −3

SUB-4
Calibration 1987–2001 0.65 0.68 2
Validation 2001–2007 0.45 0.60 −18
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Figure 4. The observed and simulated streamflow during the calibration and validation periods in
the sub-basins: SUB-1 (a); SUB-2 (b); SUB-3 (c); and SUB-4 (d). The striped line shown on the graphs
separates the calibration and validation periods.
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3.3. Hydrological Simulation under Climate Change Scenarios

After ensuring the efficiency of the calibrated model, the streamflows were simulated under
different climate change scenarios with the projected T and P time series as inputs. Figures 5–8
illustrate the annual pattern of the simulated streamflows under the considered GSTs, as well as the
observed discharge during the base period (1989–2009), for SUB-1 to SUB-4, respectively. As it is
shown, the amplitude of the future simulations shows a significant variability implying inconsistencies
between the simulated streamflows by different GCMs, mainly for the 2050s and 2080s. Obviously,
the differences between the simulations are smaller during the 2020s, while the highest variations are
associated with the late 21st century. These findings are in agreement with Vidal and Wade [55] who
found a highly increasing variance in the late 21st century due to the spread of the outputs of different
GCMs. In addition, the greatest inconsistencies between the simulated streamflows correspond to the
higher amounts of discharge, which mainly occur during April and March.

 

Figure 5. The annual pattern of observed streamflow (dotted graph) and future projected streamflows
of SUB-1. (a): A1B-2020s; (b): A2-2020s; (c): B1-2020s; (d): A1B-2050s; (e): A2-2050s; (f): B1-2050s; (g):
A1B-2080s; (h): A2-2080s; (i): B1-2080s.

Based on the simulations presented in Figures 5–8, not only the amount of discharge, but also the
flow regime experiences some changes under the studied climate change conditions. As for SUB-1
(Figure 5), the advancing shift of the peak flows compared to the base period is obvious for all time
horizons, while for SUB-3 (Figure 7), the advancing shift occurs during the 2080s, and for SUB-4,
(Figure 8) it was found that the peak of the annual hydrograph occurs earlier during both the 2050s and
2080s time horizons. Similar results indicating the advancing shifts of the peak flows under climate
change conditions are widely documented by different researchers. Regarding the timing of the peak
flow, Nohara et al. reported that under climate change conditions, the peak flows shift earlier [18].
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This is because of the temperature increase which causes the snowmelt to start sooner. Similarly,
the hydrologic regime change and advancing shifts of the peak flows is reported by Gan et al. in the
Naryn river basin (Central Asia) [17].

 

Figure 6. The annual pattern of observed streamflow (dotted graph) and future projected streamflows
of SUB- 2. (a): A1B-2020s; (b): A2-2020s; (c): B1-2020s; (d): A1B-2050s; (e): A2-2050s; (f): B1-2050s; (g):
A1B-2080s; (h): A2-2080s; (i): B1-2080s.

Table 4 summarizes the percentage of the variations of discharge for each sub-basin based on the
applied GSTs.

As it is obvious in Table 4, the sub-basins of the DDB respond differently to climate change.
For example, the surface flow of the SUB-3 (in most cases) seems to be less affected by climate change
compared to other sub-basins. There are similar reports by other researchers about the different
responses to climate change of nearby sub-basins within a region. Nazif and Karamouz, by studying
the variability of streamflows in Central Iran under climate change, showed that the streamflows are
significantly altered [56]. However, they noticed that the responses of three adjacent basins to climate
change were different. Additionally, Ashraf Vaghefi et al. employed the CGCM model, forced by three
SRES scenarios, to project the future water resource availability in the Karkheh River Basin, located
in West and Southwest of Iran and found that the freshwater availability increases in the northern
parts of the basin but it decreases in the southern regions [57]. Additionally, Musau et al. reported
that the sensitivity of the four adjacent watersheds, considering their hydrologic response to climate
change, were different [26]. This highly spatial variability of the responses of the adjacent sub-basins
underlines the importance of studying the impact of climate change on the hydrological conditions in
local scales in order to get a better perspective of the behavior of each basin, rather than a holistic view.
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Figure 7. The annual pattern of observed streamflow (dotted graph) and future projected streamflows
of SUB- 3. (a): A1B-2020s; (b): A2-2020s; (c): B1-2020s; (d): A1B-2050s; (e): A2-2050s; (f): B1-2050s; (g):
A1B-2080s; (h): A2-2080s; (i): B1-2080s.

As shown in Figures 5–8 and Table 4, the results vary based on the GCMs used. For instance,
the amount of annual flow of SUB-3 for the 2080s is projected to increase based on INCM3
(A2 and B1). However, IPSL suggests a reduction of flow in SUB-3 for the same time horizon and
scenarios. Generally, among the six applied GCMs, IPSL revealed higher reductions in the flow.
Therefore, not only were the results for the studied sub-basins different, but the projected response of
a certain sub-basin by different GCMs could also be dissimilar. This result is in good agreement with
other studies as many researchers have so far identified the GCMs as the main source of uncertainty
and reported that the GCM selection can cause significant deviations in the results of the climate change
impact assessments [25,44,46]. In this regard, Graham et al., by examining different RCMs, GCMs and
hydrological models, concluded that the choice of GCMs is more determinative than other factors [45].
Likewise, Habets et al. applied several climate models, hydrological models, downscaling methods,
and emission scenarios to simulate the future water resources and reported that the uncertainties
caused by the climate models are 3–4 times greater than other factors [47]. As mentioned by Turco et al.,
significant differences and deviations between the results of different GCMs/RCMs imply large
uncertainties regarding the use of a certain combination of GCMs and RCMs [48]. Additionally, Fang
et al. documented that most of the streamflow uncertainties correspond to the structural uncertainty
of GCMs [33]. Vidal and Wade mentioned that the highly increasing variance of the late 21st century is
mostly due to the spread of the results obtained from different GCMs [55].
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Figure 8. The annual pattern of observed streamflow (dotted graph) and future projected streamflows
of SUB- 4. (a): A1B-2020s; (b): A2-2020s; (c): B1-2020s; (d): A1B-2050s; (e): A2-2050s; (f): B1-2050s; (g):
A1B-2080s; (h): A2-2080s; (i): B1-2080s.

Table 4. The percentage of the variation of the discharge from sub-basins 1 to 4 under the climate
change conditions projected by the six GCMs and three SRES scenarios for the 2020s, 2050s, and 2080s
time horizons compared to the base period.

GCM

Scenario-Time Horizon

A1B A2 B1

2020 2050 2080 2020 2050 2080 2020 2050 2080

ECHAM5

SUB-1 −7.8 −11.6 −15.3 −7.6 −15.4 −13 −3.6 −19.1 −19.3
SUB-2 1.7 −12.3 −19.3 −0.6 −10.3 −26.1 2.8 −16.8 −20.4
SUB-3 −5.3 −1.3 −1.5 −5.9 −6 1.7 −3.1 −10.4 −7.2
SUB-4 −7 −14.9 −19.8 −7.7 −14.8 −20.4 −6 −15.4 −20.8

HadCM3

SUB-1 −0.8 −5.9 −9.4 −13.1 −10.6 1.7 −16.5 −0.4 1.8
SUB-2 6.8 −5.5 −8.6 −3.9 −4.7 −4.7 −5.9 6.4 4.1
SUB-3 0.4 0.1 3.1 −9.2 −1.2 13 −11.8 6.7 10.2
SUB-4 −13.6 −8.2 −10.4 −10.2 −9.5 −6.4 −10.8 −1.8 −3.1

GFDL

SUB-1 −9.8 −1.4 −17.5 −8.5 −5.9 −28.6 −9 −9.2 −15.2
SUB-2 −1.3 −0.9 −18.8 0.1 −3.3 −29.6 −1.5 −4.3 −10.7
SUB-3 −5.9 9.1 −2.6 −5.4 3.6 −12.4 −0.7 −5.8 −4.6
SUB-4 −9.3 −9 −18.5 −7.1 −9.3 −24.5 −8.6 −9.7 −13.6

CCSM

SUB-1 −12.5 −18.1 −16 3.8 −13.2 −11.1 −11.8 −9.4 −9
SUB-2 −1.5 −10.9 −13.7 11.2 −7.5 −14.2 −0.9 0 −2.3
SUB-3 −8.2 −6.9 −1.8 4.2 −2.1 3.3 −6.9 −2 1
SUB-4 −20.8 −15.4 −15.3 −3.3 −11.5 −14.6 −8.9 −8.9 −9.9

INCM3

SUB-1 −6.5 −12.3 −17.3 −5.3 −9.9 −12.4 −0.2 −8.2 1.7
SUB-2 2.2 −2.4 −11 1.7 −5.1 −7.3 6.1 −2 7.3
SUB-3 −4.8 −3.5 −4.1 −4.3 −2.8 2.6 −0.6 −2 7
SUB-4 −5.9 −8.8 −12 −6.3 −10.8 −10.7 −3.9 −7.6 −3.2

IPSL

SUB-1 −12.2 −18.9 −33.3 −14.5 −22.7 −29.6 −12.6 −25.5 −25.8
SUB-2 −5.1 −12.9 −33.3 −4.3 −15.9 −30.8 −4.2 −16 −21
SUB-3 −9.2 −8.7 −16.9 −11 −12.2 −13.4 −10.5 −14.2 −13.3
SUB-4 −11.8 −15.5 −26.7 −11.6 −17.2 −25 −10.3 −18.1 −21.9
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3.4. Variation of the Inflow to Dez and Bakhtiari Reservoirs and Hydropower Generation under Climate Change

The number of annual inflows to the Bakhtiari and Dez reservoirs under climate change conditions
and the percentage of changes of the simulated inflows compared to the base period are obtained based
on the two reservoir system of the Bakhtiari and Dez dams. The percentage of changes in the inflow to
each of these reservoirs compared to the base period are shown for each GST in Table 5. The long-term
averages of the discharges at the outlet of Bakhtiari and Sazar are 5106.88 and 2938.21 Mm3, respectively.
Considering that the Bakhtiari Dam is located at the end-point of the Bakhtiari basin and that the Dez
dam is located downstream of Tange Panj, the inflow to the Bakhtiari reservoir equals the Bakhtiari
basin’s discharge and the inflow to the Dez reservoir is the total discharge from the upstream basins,
which equals 8045.1 Mm3. Based on the results, the percentages of changes of the simulated inflow to
the Bakhtiari reservoir under climate change varies between −1.7% (HadCM3-B1-2050) and −26.8%
(IPSL-A1B-2080). Additionally, the inflow to the Dez reservoir for future time horizons is simulated to
decrease by up to 21.8% (IPSL-A1B-2080) and increase by up to 3.6% (HadCM3-B1-2080) compared to
the base period.

Table 5. The percentage of variation of the inflows and the hydropower generation of the Bakhtiari and
Dez reservoirs under climate change conditions projected by the six GCMs and three SRES scenarios
for the 2020s, 2050s, and 2080s time horizons compared to the base period.

GCM

Scenario-Time Horizon

A1B A2 B1

2020 2050 2080 2020 2050 2080 2020 2050 2080

ECHAM5

ΔI (B)
1 −7 −14.9 −19.9 −7.7 −14 −20.5 −5.9 −15.3 −20.8

ΔE (B) −6.8 −16.9 −22.7 −7.6 −16.8 −23.6 −5.3 −17.2 −24.1
ΔI (D)

2 −4.7 −8.3 −11.5 −5.4 −10 −10.7 −3.2 −12 −14.3
ΔE (D) 2.4 2.5 2.3 2.4 2.4 2.3 2.1 2.2 2

HadCM3

ΔI (B) −13.6 −8.2 −10.4 −10.1 −9.5 −6.5 −10.7 −1.7 −3.1
ΔE (B) −15 −8.4 −11.1 −10.4 −10 −5.8 −11 −0.9 −2.1
ΔI (D) −6.8 −3.5 −3.7 −8.2 −4.8 2.5 −9.6 3.2 3.6
ΔE (D) 1.5 2.4 2.6 2.2 2.5 2.2 2.1 2 1.9

GFDL

ΔI (B) −9.3 −9.1 −18.6 −7 −9.4 −24.6 −8.5 −9.7 −13.6
ΔE (B) −9.4 −9.4 −21.1 −6.7 −9.8 −28.9 −8.6 −9.9 −15
ΔI (D) −6.4 −0.6 −11.1 −4.8 −2.9 −18.7 −4 −6.7 −8.7
ΔE (D) 2.3 2.1 2.3 2.2 2.3 0.5 1.8 2.4 2.4

CCSM

ΔI (B) −20.8 −15.4 −15.3 −3.3 −11.5 −14.6 −8.8 −8.8 −9.9
ΔE (B) −24.1 −17.5 −17.3 −2.2 −12.2 −16.3 −8.9 −9 −10.3
ΔI (D) −14.6 −10.7 −8.7 1.3 −6.4 −6.3 −6.5 −4.6 −4.2
ΔE (D) 1 2.5 2.6 1.7 2.2 2.8 2.4 2.2 2.6

INCM3

ΔI (B) −5.9 −8.8 −12 −6.3 −10.8 −10.7 −3.8 −7.6 −3.2
ΔE (B) −5.5 −8.8 −12.9 −6 −11.2 −11.3 −3 −7.6 −2.4
ΔI (D) −3.8 −5.2 −7.5 −3.9 −6.2 −4.1 −0.9 −3.9 2.3
ΔE (D) 2.2 2.6 2.4 2.1 2.3 2.4 1.9 2 1.7

IPSL

ΔI (B) −11.7 −15.5 −26.8 −11.5 −17.2 −25.1 −10.2 −18.1 −22
ΔE (B) −12.4 −17.4 −31.8 −12 −19.3 −29.7 −10.5 −20.6 −25.6
ΔI (D) −9.2 −11.5 −21.8 −9.8 −13.9 −19.4 −8.8 −15.2 −17.4
ΔE (D) 2 2.3 −1.3 2.1 1.9 0 2.3 1.6 1.5

1 B: Bakhtiari dam; 2 D: Dez dam.

The hydropower generation potential for the base period and for the future time horizons were
also calculated using the inflows obtained from the previous step. Studying the monthly average of
hydropower generation for the Bakhtiari and Dez reservoirs under climate change conditions versus
the base period (Figures 9 and 10) shows that the ranges of simulations by the use of different GCMs
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and scenarios are greater in the late 21st century, while the amount of produced energy for different
GCMs in the 2020s time horizon indicates a higher agreement of the results.

Figure 9. The monthly hydropower generation of the Bakhtiari power plant for the base period and
under climate change conditions projected by the six GCMs and three SRES scenarios for the 2020s,
2050s, and 2080s time horizons; (a): A1B-2020s; (b): A2-2020s; (c): B1-2020s; (d): A1B-2050s; (e):
A2-2050s; (f): B1-2050s; (g): A1B-2080s; (h): A2-2080s; (i): B1-2080s.

The percentages of the deviations of the projected hydropower generation potential from the
base period for both reservoirs are presented in Table 5 for all the GSTs. Based on the results of the
different GSTs, the potential of the hydropower generation of the Bakhtiari power plant was simulated
to decrease between 0.9% (HadCM3-B1-2050) and 31.8% (IPSL-A1B-2080) compared to the base period.
This is in agreement with the reduction of discharges to the Bakhtiari reservoir. On the contrary,
the hydropower generation potential of the Dez power plant is simulated to be slightly higher than
the base period, for all the GSTs because the highest increase reaches up to 2.8% (CCSM-A2-2080).
Meanwhile, its inflow is mostly projected to decrease for future time horizons.
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Figure 10. The monthly hydropower generation of the Dez power plant for the base period and under
climate change conditions projected by the six GCMs and three SRES scenarios for the 2020s, 2050s,
and 2080s time horizons; (a): A1B-2020s; (b): A2-2020s; (c): B1-2020s; (d): A1B-2050s; (e): A2-2050s; (f):
B1-2050s; (g): A1B-2080s; (h): A2-2080s; (i): B1-2080s.

As mentioned above, in the Dez reservoir case, there are some inconsistencies between the changes
in its inflow and hydropower generation caused by climate change. While the results for the Bakhtiari
reservoir shows more consistency. The difference between the responses of the two reservoirs in terms
of their hydropower generation potential could be attributed to the different operational rules due to
different purposes, as well as due to other factors such as the size of the reservoirs and the installed
capacity of their hydropower plants. To study the possible reasons, the time series of inflow, outflow,
spill, and the water level in the reservoirs for the base period and for the future time horizons were
assessed. The time series pertaining to the base period and the future projections under climate change
(for one of the GSTs as an example) are presented in Figures 11 and 12.

Regarding the different responses of the two studied reservoirs, the following facts should be
taken into consideration:

• It should be noted that the Dez dam is a multi-purpose dam which provides water for different
purposes during specific times to meet specified demands. Therefore, the releases from its
reservoir are planned and only the part of the release or spill, which is not greater than the
penstock or turbine capacity, contributes to the power generation. However, the release from
Bakhtiari is only for hydropower generation purposes.

• Additionally, the small capacity of Dez reservoir (2.7 Bm3), compared to the discharge from its
draining catchment (8 Bm3), causes considerable spills (Figures 11b and 12b).
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• Having considered that the whole capacity of the Dez hydropower plant is relatively small,
compared to its inflow and releases, a significant proportion of the releases (or spills) does not
contribute to power generation. Meanwhile, the Bakhtiari reservoir, with a capacity of 5.16 Bm3

and an average inflow of 5.11 Bm3, can save most of the inflows with negligible spills, both in the
base period and in the future time horizons (Figures 11a and 12a).

• Additionally, the large capacity of the hydropower plant does not pose any limitation on the
energy production. Therefore, in the case of Bakhtiari, there is a direct relationship between the
changes in the rates of inflow and energy generation.

• A comparison between the simulated inflow of the Dez reservoir during the future time horizons
and the base period suggests that under the climate change conditions, a fewer number of floods
and fewer inflows and peak flows would lead to fewer losses through spill (Figures 11b and 12b),
which means that more water could be saved in the reservoir to be used to generate electricity.

Considering the reasons explained above, the future changes induced by climate change in the
hydropower generation potential of the Dez power plant are not consistent with the changes in the
inflow of the Dez reservoir. Additionally, the slight increase in the hydropower generation potential
could be attributed to the changing of the regime of discharges with smaller peaks, leading to fewer
spills and more water remaining to produce electricity.

Figure 11. The monthly inflows, outflows, spills, and reservoir storages for the base period; (a): inflow,
outflow, and spill of the Bakhtiari reservoir; (b): inflow, outflow, and spill of the Dez reservoir.
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Figure 12. The monthly inflows, outflows, spills, and reservoir storages for the 2080s future time
horizon based on the projections of the IPSL under the B1 scenario; (a): inflow, outflow, and spill of the
Bakhtiari reservoir; (b): inflow, outflow, and spill of the Dez reservoir.

4. Conclusions

The impact of climate change on the climate, discharge, and the hydropower generation potential
in the Dez Dam Basin was studied based on the downscaled outputs from six GCMs and three SRES
scenarios for the three time horizons. The study revealed that the basin experiences a significant
temperature rise in the mid and late 21st century (up to 4 ◦C). These changes are accompanied by
variations in precipitation, which mostly lean towards a slight increase in the amount of precipitation.
In total, the projections of all the scenarios and GCMs indicate a warmer future and small-to-moderate
increase in the amount of precipitation. However, the obtained results for precipitation are more
anomalous, showing both an increase and a decrease in the amount of precipitation. To simulate
the future discharge at the outlet of each sub-basin under climate change conditions, the calibrated
HBV hydrologic model was enforced with the projected temperature and precipitation time series.
The results mostly suggest a reduction of the annual discharge in the study area. The most significant
reduction of the annual flow, compared to the base period, reaches up to 33% in the two sub-basins
located upstream of the basin, namely Tireh and Marbereh. Meanwhile, the greatest reductions of the
annual flow of the Sazar and Bakhtiari sub-basins reach up to 17 and 27%, respectively. Considering the
climate change impacts on the temperature, precipitation, and discharge in different sub-basins of the
DDB, it was found that the responses of the four sub-basins are different in many cases, highlighting
the noteworthiness of analyzing the impacts of climate change on local scales.

Moreover, in this study, the impact of climate change on the hydropower generation potential of
the two hydropower plants in the DDB was investigated. Based on the results, climate change has the
potential to significantly alter the hydropower generation potential in this basin. The results showed a
reduction in the inflow and electricity generation for the Bakhtiari reservoir. Meanwhile, for the Dez
reservoir, the reduction in the inflow was accompanied by a slight increase in the generated electricity.
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This contrasting result obtained for the Dez reservoir was assessed and has been attributed to the
small size of the reservoir (2.7 Bm3) compared to the basin’s discharge (8 Bm3), the low capacity of
hydropower plant, the different purposes and timely releases from its reservoir, as well as the flow
regime changes in the future which cause less spills due to the lower peaks of floods. Overall, the results
showed a reduction of the electricity generation at the Bakhtiari power plant. Therefore, its capacity
seems to be high considering the future climatic conditions, while, based on the findings, there is room
for the further development of the Dez power plant in order to increase its capacity for the production
of more electricity.

This study used multiple GCMs for the projection of temperature, precipitation, discharge,
and hydropower generation based on the three future time horizons scenarios. The results
showed considerable discrepancies in the projected variables when obtained from different GCMs,
which indicate the important role of the GCMs in future climatic impact assessments. Therefore, it is
highly recommended that for future projections, different GCMs be employed to cover a range of
likely projections.
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Abstract: A statistical downscaling approach for improving extreme rainfall simulation was proposed
to predict the daily rainfalls at Shih-Men Reservoir catchment in northern Taiwan. The structure of
the proposed downscaling approach is composed of two parts: the rainfall-state classification and
the regression for rainfall-amount prediction. Predictors of classification and regression methods
were selected from the large-scale climate variables of the NCEP reanalysis data based on statistical
tests. The data during 1964–1999 and 2000–2013 were used for calibration and validation, respectively.
Three classification methods, including linear discriminant analysis (LDA), random forest (RF),
and support vector classification (SVC), were adopted for rainfall-state classification and their
performances were compared. After rainfall-state classification, the least square support vector
regression (LS-SVR) was used for rainfall-amount prediction for different rainfall states. Two rainfall
states (i.e., dry day and wet day) and three rainfall states (dry day, non-extreme-rainfall day,
and extreme-rainfall day) were defined and compared for judging their downscaling performances.
The results show that RF outperforms LDA and SVC for rainfall-state classification. Using RF for
three-rainfall-states classification and LS-SVR for rainfall-amount prediction can improve the extreme
rainfall downscaling.

Keywords: statistical downscaling; random forest; least square support vector regression; extreme rainfall

1. Introduction

Statistical precipitation downscaling is the process of making a link between a set of large-scale
atmospheric variables (i.e., mean sea level pressure, vorticity, and geopotential height) and predictand
(i.e., local precipitation). The large-scale predictors are essential for climate change research, but they
do not actually provide a truthful presentation of the climate in a small basin. Generally, they have
a spatial resolution coarser than 2 by 2 degrees in latitude and longitude, whereas hydrologists are
more concerned with the catchment scale which is usually up to a few hundred square kilometers.
This leads to a need for downscaling large-scale predictors to local precipitation. The NCEP reanalysis
data set is a continually updated globally gridded data set that represents the state of the Earth’s
atmosphere, incorporating observations and numerical weather prediction model output from 1948 to
present. The NCEP reanalysis data is commonly used to develop a statistical relationship between
large-scale climate factors with local rainfall for building (or training) downscaling models. The GCM
outputs under climate change scenarios are then used as the inputs of downscaling models to project
future precipitations for studying climate-change impacts [1]. The current study used the NCEP
reanalysis data for building the proposed downscaling approach.
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To date, there are many methods proposed for statistical downscaling using different
techniques such as stochastic weather generators [2–5], weather typing method [6–8], resampling
methods [9–11], and regression methods. The regression methods are attracting more attention and
preferred to apply due to their flexibility and straightforwardness. There are numerous variant
approaches of regression-based downscaling techniques such as logistic regression model [12],
local polynomial regression [13], linear and non-linear regression [14], canonical correlation
analysis [15], principal components [16], artificial neural network [17,18], support vector machine
(SVM) [19–22], and beta regression [23].

Among these statistical downscaling methods, SVM shows its elegant and remarkable advantages
comparing to the other methods. There are several studies which proved that SVM and variants
of SVM are superior to ANN [19,24], multivariate analysis, and the Statistical DownScaling Model
(SDSM) [24]. For instance, SVM performed better than ANN in predicting groundwater levels [25],
runoff and sediment yield simulation [26], flood stage prediction [27], rainfall–runoff modeling [28],
river flow forecasting [29,30], long-term discharge prediction [31], and modeling discharge-suspended
sediment relationship [32]. SVM is also superior to multiple linear regression (MLR) in streamflow
forecasting [33], autoregressive moving average (ARMA) in discharge prediction [31,34], autoregressive
integrated moving average (ARIMA) in streamflow prediction [35], neural networks (NN), and MLR
in daily water demand and inflow forecasting [36] and prediction of reservoir inflows [37].
In addition, SVM performed better than NN and empirical models in modeling daily reference
evapotranspiration [38], neuro fuzzy inference system (ANFIS) in river flow forecasting [29] and daily
forecasting of dam water levels [39], and genetic programming (GP) in forecasting monthly discharge
time series [34].

However, many researches for downscaling precipitation at the catchment scale using
SVM [19,24,40–43] conclude that the downscaling methods based on SVM performed well for
normal rainfall but unsatisfactorily for extreme rainfall (i.e., underestimated extreme-rainfall amount).
Tripathi et al. [19] detected that monthly precipitation downscaling by SVM could not reproduce
the high rainfall observed in the historical records since the regression-based statistical downscaling
models regularly cannot explain entire variance of the downscaled variable. They suggested that
investigation of more large-scale predictor variables and a much longer validation period might likely
provide more insight into this problem. A similar finding about the inability of SVM to mimic high
rainfall has also been reported by Anandhi et al. [40].

In Taiwan, the downscaling methods based on SVM have been proposed by Chen et al. [24] and
Yang et al. [41] for Shih-Men Reservoir catchment in northern Taiwan. The main structure of their
proposed downscaling approach comprises the rainfall-state classification and the regression for rainfall
amount. Chen et al. [24] used support vector classification (SVC) and linear discriminant analysis (LDA)
for rainfall-state classification, while Yang et al. [41] only used LDA. Both the studies use the support
vector regression (SVR) for the rainfall-amount prediction for wet days. Chen et al. [24] compared
the performance of SVM to linear multiple regression and SDSM. The downscaled results showed
that the SVM produced more accurate daily precipitation than SDSM and linear multiple regression.
Yang et al. [41] found that the proposed downscaling model performed well in capturing the magnitude
and variation of daily precipitations below 50 mm/day but underestimated the extreme rainfalls.

The aforementioned weakness of SVM in downscaling extreme rainfall inspires the current
study to propose a modified statistical downscaling approach based on the methods developed
by Chen et al. [24] and Yang et al. [41] for improving the extreme rainfall downscaling. The main
structure of the proposed downscaling approach comprises the rainfall-state classification and the
regression for rainfall-amount prediction. Three classification methods, including LDA, random forest
(RF) and SVC, were adopted for rainfall-state classification and their performances were compared.
The least square support vector regression (LS-SVR) was used for the rainfall-amount prediction for
different rainfall states. Two rainfall states (i.e., dry day and wet day) and three rainfall states (dry day,
non-extreme-rainfall day, and extreme-rainfall day) were defined and compared for judging their
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downscaling performances. Through the above comparisons, the optimal classification method with
proper rainfall-state delineation can be found and linked with the rainfall-amount prediction method
for improving the extreme rainfall downscaling.

The remaining part of this paper is organized as follows. Section 2 “Study Area and Data
Set” provides a summary description of the study area and the data set including local rainfall and
large-scale predictors. Section 3 “Methodology” describes three types of the proposed approach
(i.e., Approach Type-I, Approach Type-II and Approach Type-III) and briefly introduces LDA, RF,
and LS-SVR. Section 4 “Results and Discussion” describes the analysis results of rainfall-states
classification and regression for rainfall-amount prediction by different classification methods and
types of approach. Comparison of different classification methods (i.e., LDA, RF, and SVC) and
different types of approach were made. Finally, Section 5 "Conclusions and Future Work” concludes
the paper.

2. Study Area and Data Set

Shih-Men Reservoir, located in the Danshuei River basin in northern Taiwan, was completed in
1964 as a multifunction reservoir for water supply, agriculture, hydropower generation, and flood
control. The Shih-Men Reservoir is a major reservoir with a storage capacity of around 3 × 108 m3.
Its upstream catchment (Figure 1) has an area of 763 km2, and the basin ground elevation varies from
209 to 2609 meters. The average annual rainfall of the catchment is around 2250 mm.

Figure 1. Shih-Men Reservoir basin (Source: [41]).

Taiwan’s climate is governed by the East Asian Monsoon, which is divided into the summer and
winter monsoons. Therefore, the Water Resources Bureau in Taiwan divided a year into the wet season
(May–October) and the dry season (November–April) based on the summer and winter monsoons,
respectively. The proportion of rainfall during the wet and dry seasons is about 7:3. The long-term
daily rainfall from 1964 to 2013 at 10 rain gauges in the study area were collected to serve as the dataset
(Table 1). The daily areal rainfalls in Shih-Men Reservoir catchment were calculated by using the
Thiessen polygons method which determined the weights of all the stations listed in Table 1.

The daily data of 28 climate variables at the nearest grid point (i.e., Grid #2 at 122.5◦ E,
25◦ N in Figure 1) from 1964 to 2013 are obtained from the re-analysis data of National Centre
for Environmental Prediction (NCEP)/National Centre for Atmospheric Research (NCAR) as listed in
Table 2. These climate variables were used as the candidates of model predictors. The areal rainfalls
and the NCEP reanalysis data during 1964–1999 (calibration period) and 2000–2013 (validation period)
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were used for building statistical downscaling models and for examining and comparing downscaling
results, respectively.

Table 1. Information on rain gauges in Shih-Men reservoir catchment.

Station Name Station Code
Location

Elevation (m) Areal Weight
Longitude (◦E) Latitude (◦N)

Shih-Men 21C050 121.23 24.81 255 0.018
Ba-Ling 21C070 121.39 24.69 1220 0.075
Kao-Yi 21C080 121.35 24.71 620 0.127

Ka-La-Ho 21C090 121.39 24.64 1260 0.123
Chang-Hsing 21C110 121.30 24.80 350 0.151

San-Kuang 21C150 121.36 24.67 630 0.038
Hsiu-Luan 21D140 121.28 24.62 840 0.045

Yu-Feng 21D150 121.29 24.66 780 0.049
Hsin-Pai-Shih 21D160 121.25 24.59 1620 0.115
Chen-His-Pao 21D170 121.30 24.58 630 0.259

Table 2. Large-scale climate factor (from NCEP).

No. Acronym Predictor

1 Mslp Mean sea level pressure
2 p5_z Vorticity at 500 hPa height
3 p8_z Vorticity at 850 hPa height
4 p300 300 hPa geopotential height
5 p500 500 hPa geopotential height
6 p850 850 hPa geopotential height
7 p_f Near surface geostrophic airflow velocity
8 p_z Near surface vorticity
9 r500 Relative humidity at 500 hPa height
10 r850 Relative humidity at 850 hPa height
11 rhum Near surface relative humidity
12 shum500 500 hPa specific humidity
13 Temp Near surface air temperature
14 uas Zonal surface wind speed
15 ua_700 700 hPa zonal wind speed
16 ua_850 850 hPa zonal wind speed
17 pr_wtr Precipitable water
18 lftx Surface lifted index
19 prec Precipitation total
20 dswrf Surface downwelling shortwave flux in air
21 dlwrf Surface downwelling long flux in air
22 vas Meridional surface wind speed
23 ta_700 700 hPa temperature
24 ta_850 850 hPa temperature
25 ta_925 925 hPa temperature
26 va_925 925 hPa meridional wind speed
27 uswrf Surface upwelling shortwave flux in air
28 ulwrf Surface upwelling longwave flux in air

3. Methods

3.1. Proposed Approach

The main structure of the proposed downscaling approach comprises rainfall-state classification
and regression for rainfall-amount prediction. Three classification methods, including LDA, RF,
and SVC, were adopted for rainfall-state classification and their performances were compared.
The LS-SVR was used for the rainfall-amount prediction for different rainfall states. Two rainfall

128



Water 2019, 11, 451

states (i.e., dry day and wet day) and three rainfall states (i.e., dry day, non-extreme-rainfall day,
and extreme-rainfall day) were defined and compared for judging their downscaling performances.
Three types of approach were constructed and described as follows.

3.1.1. Approach Type-I

Two rainfall states (i.e., dry day and wet day) are defined for rainfall-state classification by using
LDA, RF and SVC. The classification performances of LDA, RF, and SVC are compared to decide the
best classification method for linking to the rainfall-amount prediction method. The LS-SVR is used
for rainfall-amount prediction for the rainfall state of "wet day". The flowchart of Approach Type-I is
shown in Figure 2. Dry day and wet day are defined as rainfall = 0 mm/day and rainfall > 0 mm/day,
respectively. Previous researches used the SVC and LDA [24] and only LDA [41] for rainfall-state
classification and the SVR for rainfall-amount prediction for the rainfall state “wet day”.

Figure 2. Flowchart of Approach Type-I.

3.1.2. Approach Type-II

Two-steps classification is used for this type. The first step defines two rainfall states (dry day and
wet day) and uses LDA, RF, and SVC for rainfall-state classification. For the second step, the rainfall
state of “wet day” is further divided into two states “non-extreme-rainfall day” and “extreme-rainfall
day” and the LDA, RF and SVC are also used for rainfall-state classification and compared to judge their
performances. Non-extreme-rainfall day and extreme-rainfall day are defined as rainfall < 50 mm/day
and rainfall ≥ 50 mm/day, respectively. The threshold of 50 mm/day is defined by the Central
Weather Bureau of Taiwan, which is based on the historical cases for catchments where occurred
torrents, landside, or rockfall with a rainfall greater than the threshold. After rainfall-state classification
by the best classification method, the LS-SVR is used for rainfall-amount prediction for the rainfall
states of “non-extreme-rainfall day” and “extreme-rainfall day”. The flowchart of Approach Type-II is
shown in Figure 3.
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Figure 3. Flowchart of Approach Type-II.

3.1.3. Approach Type-III

One-step classification for three rainfall states (dry day, non-extreme-rainfall day, and extreme-rainfall
day) is used for this type, which means a day is directly classified into one of the three rainfall states.
Three rainfall states are defined as Approach Type II and LDA, RF, and SVC are used for rainfall-state
classification and compared to judge their performances. Coupled with the best classification method,
the LS-SVR is used for rainfall-amount prediction for the rainfall states of “non-extreme-rainfall day”
and “extreme-rainfall day”. The flowchart of Approach Type-III is shown in Figure 4.

The above three types of approach (i.e., Approach Type-I, Approach Type-II, and Approach
Type-III) are used for daily rainfall downscaling and their performances are compared. Through the
comparisons, the optimal classification method with proper rainfall-state delineation can be found and
linked with the rainfall-amount prediction method for improving the extreme rainfall downscaling.
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Figure 4. Flowchart of Approach Type-III.

3.2. Linear Discriminant Analysis

LDA, originally developed by Fisher (1936) [44], finds a linear discriminant function L to determine
the class of a predictand based on a set of n predictors (x1, x2, . . . , xn).

L = a0 + a1x1 + a2x2 + . . . + anxn (1)

The parameters (a0, a1, a2, . . . , an) are calibrated from the training data of predictors and a
predefined class label (for example, +1 and −1) of the predictand. The linear discriminant function L is
then used to predict the class of a new predictand according to the estimated class label. In the current
study, LDA was performed by the “fitcdiscr” function provided by MathWorks.

3.3. Random Forest

Random forests (RFs) are very flexible and powerful ensemble classifiers based on decision trees
which were firstly developed by Breiman (2001) [45–47]. Very recently, there has been increasing interest
in RF and it was applied in different areas to solve classification problems [48–51]. However, there are
few applications of RFs to classify rainfall states. The only such application of RFs was recently
proposed to predict rainfall occurrence in Besut station, on the east coast of Peninsular Malaysia [52].
RFs have two calibration parameters which consist of the number of variables (mtry) and the number
of trees (ntree). In the present study, the value of mtry which equal the square of number of features
were implemented for each classification model. Such value can generally give near optimum results
for classification tasks [53]. The value of ntree ranging from 0 to 2000 was used for searching the
optimal value (ntree = 500) adopted in this work. The randomForest package [54] is used in this study.

3.4. Least Square-Support Vector Machine

The least squares support vector machine (LS-SVM) algorithm is an improved algorithm of
standard SVM, which provides a computational advantage (reduces the computational burden) over
standard SVM by converting quadratic optimization problem into a system of linear equations [55].
In the LS-SVM algorithm, a solution is obtained by solving a linear set of equations instead of solving
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a quadratic programming problem involving standard SVM. The LS-SVM can be used for both
classification and regression problems. In the current study, the LS-SVR is used for constructing rainfall
state classification and the daily rainfall downscaling models. The description of SVC for rainfall states
classification can be found in more detail in Chen et al. [24]. The brief description on the LS-SVR is
as follows.

By considering inputs xi (predictors: climate variables) and output yi (predictand: local rainfall).
According to the LS-SVR method, the nonlinear LS-SVR function can be expressed as

f (x) = wT ϕ(x) + b (2)

where f indicates the relationship between the climate variables (predictors) and local rainfall
(predictand), w, ϕ and b are the m-dimensional weight vector, mapping function and bias term,
respectively [56].

Using the function estimation error, the regression problem can be expressed regarding structural
minimization principle as

minJ(w, e) =
1
2

wTw +
γ

2

m

∑
i=1

e2
i (3)

which is subjected to the following constraints:

yi = wT ϕ(xi) + b + ei(i = 1, 2, . . . , m) (4)

where γ refers the penalty term and ei is the training error for xi.
To find the solutions of w and e, the Lagrange multiplier optimal programming method is

employed to solve Equation (3). The objective function can be determined by altering the constraint
problem into an unconstraint problem. The Lagrange function L can be expressed as

L(w, b, e, α) = J(w, e)−
m

∑
i=1

αi

{
wT ϕ(xi) + b + ei − yi} (5)

where αi are the Lagrange multipliers.
Taking into account the Karush–Kuhn–Tucker (KKT) conditions [56], the optimal conditions can

be obtained by taking the partial derivatives of Equation (5) with respect to w, b, e and α, respectively as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

w =
m
∑

i=1
αi ϕ(xi)

m
∑

i=1
αi = 0

αi = γei
wT ϕ(xi) + b + ei − yi = 0

(6)

Thus, the linear equations can be derived after elimination of ei and w as

[
0 − YT

Y ZZT + I/γ

][
b
α

]
=

[
0
1

]
(7)

where Y = (y1, . . . , ym), Z = (ϕ(x1)
Ty1, . . . , ϕ(xm)

Tym), I = (1, . . . , 1), α = (α1, . . . , αl)

By defining kernel function K(x, xi) = ϕ(x)T ϕ(xi), i = 1, . . . , m, which is satisfied with Mercer’s
condition (the readers could refer to the paper of Suykens et al. [57] to get more explanation of Mercer’s
condition). As a result, the LS-SVR can be represented as

f (x) =
m

∑
i=1

αiK(x, xi) + b (8)
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In this study, the commonly used RBF kernel function given in Equation (9) was used.

K(x, xi) = exp(−
∣∣∣∣∣∣x − xi

∣∣∣∣∣∣2/2σ2) (9)

Before calibrating the LS-SVR, the values of local rainfall and predictor variables were normalized
by their respective means and standard deviations. The normalized values of local rainfall and
predictor variables were then utilized for calibrating the LS-SVR. The LS-SVR needs the calibration
of two parameters: the penalty term (γ) and the kernel width (σ). In the training period of LS-SVR,
the grid-search method [58] is used to estimate optimal parameters. The grid search method can yield
an optimal parameter set and employing a cross-validation procedure can prevent the downscaling
model from over-fitting. In the current study, the LS-SVR was performed by the package provided by
MATLAB toolbox (http://www.esat.kuleuven.ac.be/sista/lssvmlab).

4. Results and Discussion

4.1. Rainfall-State Classification

For Approach Type-I, the calibration data (including the NCEP reanalysis data and local
rainfalls) were separated into two groups (i.e., wet-day group and dry-day groups) according to
daily local rainfalls in both dry and wet seasons. The two-sample Kolmogorov–Smirnov test was then
performed to choose suitable predictors of the NCEP reanalysis data. This study used the two-sample
Kolmogorov–Smirnov test to select predictors of the NCEP reanalysis data that are distinguishable
between the dry-day group and the wet-day group. The predictors which showed a significant
difference between two groups (with a significance level of 0.01) were considered as the suitable
predictors for classification models. In the current study, the test was performed by the “kstest2”
function provided by MathWorks. The selected predictors after testing are mean sea level pressure
(mslp), vorticity (p_z, p5_z, and p8_z), geopotential height (p300, p500, and p850), relative humidity
(r500, r850, and rhum), zonal wind speed (ua_700 and ua_850), meridional wind speed (vas and
va_925), and temperature (ta_700, ta_850, and ta_925). The above selected predictors for Approach
Type-I were also used for Approach Type-II and Approach Type-III.

For Approach Type-II, after conducting the same aforementioned process of Approach Type-I, the
given wet days were further classified into non-extreme-rainfall-day group and extreme-rainfall-day
group. For Approach Type-III, the calibration data (including the NCEP reanalysis data and local
rainfalls) were separated into dry-day, non-extreme-rainfall-day, and extreme-rainfall-day groups
according to the daily local rainfalls. Because there are only few extreme rainfalls during the dry season,
the classification of non-extreme-day and extreme-day was only conducted during the wet season.

The accuracies of (1) the dry-day/wet-day classification for Approach Type-I, (2) the
non-extreme-rainfall-day/extreme-rainfall-day classification for Approach Type-II and (3) the
dry-day/non-extreme-rainfall-day/extreme-rainfall-day classification for Approach Type-III can be
estimated respectively as

Accuracy(wet/dry) =
D|D + W|W

D + W
(10)

Accuracy(non − extreme/extreme) =
N|N + E|E

N + E
(11)

Accuracy(dry/non − extreme/extreme) =
D|D + N|N + E|E

D + N + E
(12)

where D is the number of dry days, W is the number of wet days, D|D indicates the number of days
that a dry day is correctly classified as a dry day, W|W indicates the number of wet days that a wet
day correctly classified as a wet day, N is the number of non-extreme-rainfall days, E is the number of
extreme-rainfall days, N|N indicates the number of days that a non-extreme-rainfall day is correctly
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classified as a non-extreme-rainfall day, and E|E indicates the number of extreme-rainfall days that an
extreme-rainfall day correctly classified as an extreme-rainfall day.

Since the formulas for calculating the classification accuracies for Approach Type-I (Equation (10)),
Approach Type-II (Equations (10) and (11)) and Approach Type-III (Equation (12)) are different,
the results in Table 3 were only used for comparing the classification performances by different
methods (LDA, SVC, and RF) in each approach, not for judging which type of approach is the best in
the classification step.

Table 3. Classification accuracy (%) of dry/wet day and extreme-rainfall/non-extreme-rainfall day.

Type of Approach LDA RF SVC

Wet Season Dry Season Wet Season Dry Season Wet Season Dry Season

Type-I 75.38 75.39 79.35 75.64 74.00 72.42
Type-II Step 1 1 75.38 75.39 79.35 75.64 74.00 72.42
Type-II Step 2 95.26 97.62 95.31 98.33 93.06 96.83

Type-III 66.72 68.85 74.46 69.71 69.44 68.63
1 Note: Step 1 in Approach Type-II is similar to Approach Type-I. LDA: linear discriminant analysis; RF: random
forest; SVC: support vector classification.

The performances of (1) the dry-day/wet-day classification for Approach Type-I, (2) the
non-extreme-rainfall-day/extreme-rainfall-day classification for Approach Type-II and (3) the
dry-day/non-extreme-rainfall-day/extreme-rainfall-day classification for Approach Type-III are shown
in Table 3. There are three methods (i.e., LDA, RF, and SVC) which were used for classifying
rainfall states in both wet and dry season. The accuracies of dry-day/wet-day classification are
generally higher than 72%. The performance of the dry-day/wet-day classification models in
the wet season are better than those in the dry season for all three methods. The accuracies of
dry-day/non-extreme-rainfall-day/extreme-rainfall-day classification are generally higher than 66%.
The accuracies of non-extreme-rainfall-day/extreme-rainfall-day classification in Step 2 of Approach
Type-II are generally higher than 93%.

The proportions of individual states (dry day, non-extreme-rainfall day, and extreme-rainfall
day) during the wet season in the calibration period are 33.83%, 62.72%, and 3.45%, respectively.
In the validation period, the proportions of individual states (dry day, non-extreme-rainfall day,
and extreme-rainfall day) during the wet season are 34.07%, 61.54%, and 4.39%, respectively.
Improvement of extreme rainfall downscaling is the main concern of the current study. For emphasizing
the classification accuracy for extreme-rainfall-day state, the classification accuracies (%) of
extreme-rainfall day during wet season were presented in Table 4. The dry season was not taken into
account because most of extreme-rainfall-day occurred during wet season.

Table 4. Classification accuracy (%) of extreme-rainfall-day state during the wet season.

Type of Approach LDA RF SVC

Type-II Step 2 49.52 56.19 30.48
Type-III 47.36 47.57 15.53

By comparing the performances of the three classification methods, it is found that RF
outperforms LDA and SVC by the largest classification accuracy (%) of dry/wet day and
extreme-rainfall/non-extreme-rainfall day in Table 3, and the largest classification accuracy of
extreme-rainfall-day state during the wet season in Table 4. Therefore, the outputs of RF classification
models were selected as inputs for the regression models to simulate rainfall amounts.
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4.2. Regression for Rainfall-Amount

Before establishing the regression models, the principal component analysis (PCA) was used to
transform the predictors (i.e., the 28 climate variables of the NCEP reanalysis data) to new matrices as
the input matrices for LS-SVR models. The purposes of PCA are to eliminate the multicollinearity and
reduce the dimension of a large data set. In the current study, PCA was carried out with the NCEP
reanalysis data obtained from the nearest grid point of the study area. Nine principal components
were selected based on the eigen-values which are greater than 1.0, which can explain more than
85% of the variance of the data set (i.e., the NCEP reanalysis data). The transformed variables by
the nine principal components were used as the predictors of the LS-SVR models for different types
of approach. Based on the transformed variables by PCA, the LS-SVR models were developed for
the wet and dry seasons separately. PCA reduced the dimension of the large data set from a sample
size of 143,080 corresponding to 28 predictors to a smaller sample size of 45,990 corresponding to
nine principle components, which considerably reduces the computational consumption. The local
rainfall and the NCEP reanalysis data during the calibration period were used to tune the two
hyper-parameters of each LS-SVR model. Table 5 lists the tuned parameters of the LS-SVR models.
Since most of extreme rainfalls occur during the wet season, the observed data were separated into
two groups (i.e., non-extreme-rainfall group and extreme-rainfall group) for Approach Type-II and
Approach Type-III. As there are too few extreme rainfalls during the dry season, only Approach Type-I
approach was used for this season. The rainfalls calculated by the LS-SVR models are normalized
values which should be converted to their original scale.

Table 5. The tuned parameters of least square support vector regression (LS-SVR) models.

Season Model Penalty Term Kernel Width

Wet Approach Type-I for wet day 4.62 6.27
Wet Approach Type-II for non-extreme-rainfall day 1.64 5.95
Wet Approach Type-II for extreme-rainfall day 78.50 1.12
Wet Approach Type-III for non-extreme-rainfall day 2.32 5.40
Wet Approach Type-III for extreme-rainfall day 73.65 1.05
Dry Approach Type-I for wet day 10.89 32.60
Dry Approach Type-II for wet day 11.14 31.23
Dry Approach Type-III for wet day 24.34 52.81

The data of 1964–1999 were used to train the classification and regression models. During the
validation period (2000–2013), the 2990 wet days were extracted for construction and evaluation of
the LS-SVR models. In order to demonstrate the accuracy of the proposed approach objectively and
evidently, three statistical measures (i.e., Mean, standard deviation (SD) and Skewness) are employed
for examining whether the downscaling rainfalls by the proposed approach conserves the statistical
characteristics of the observed rainfalls. Tables 6 and 7 list these above measures for comparing the
performances of the three types of approach. From the tables, the output of Approach Type-II is slightly
better than that of Approach Type-III. The simulated values of Mean, SD, and skewness in Approach
Type-II are closer to the observed values than those in Approach Type-III except for SD during the
calibration period (Table 6). In general, the Mean and SD of simulated rainfalls from the three types of
approach tend to underestimate the observed rainfalls. However, Approach Type-II and Approach
Type-III conserve the Mean and SD of observed rainfalls significantly more than Approach Type-I.

Table 6. Statistics of regression results on wet days in the calibration period.

Statistics Approach Type-I Approach Type-II Approach Type-III Observation

Mean (mm) 10.36 10.33 10.33 10.29
SD (mm) 21.49 24.15 24.12 26.87

Skewness (mm) 10.52 10.22 10.32 9.52
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Table 7. Statistics of regression results on wet days during the validation period.

Statistics Approach Type-I Approach Type-II Approach Type-III Observation

Mean (mm) 10.52 11.51 10.57 12.29
SD (mm) 22.55 30.21 28.50 34.94

Skewness (mm) 9.12 8.05 9.09 8.08

To compare the simulated performances for each type of approach, Figure 5 shows the RMSE
of individual months for three types of approach during the wet season in the validation period.
Since most of extreme rainfalls occur during the wet season and the efficiency of Approach Type-II
and Approach Type-III strongly represents during this season, only the RMSE of individual months
during the wet season is presented in the figure. In Figure 5, Approach Type-III and Approach Type-II
have the RMSE smaller than that of Approach Type-I in most of months except for the month of July.
This is because that the classification models of Approach Type-II and Approach Type-III only have
the accuracy around 50% (correctly classified 9 extreme rainfalls in a total of 18 extreme rainfalls) in
July. While the accuracy in August and September are 64.29% and 79.16%, respectively, for Approach
Type-III, which is much better than Approach Type-I. This implies that the accuracy of extreme rainfall
classification has a significant impact on the efficiency of the proposed approach. The classification
of the non-extreme-day/extreme-day showed that the performance in August and September are
better when compared to July, which might be attributed to the number of heavy rainfalls in August
and September.
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Figure 5. The RMSE of individual months for three types of approach during the wet.

In general, Approach Type-II and Approach Type-III show that their performances in terms of
Mean, SD, and skewness are better than the performance of Approach Type-I. Approach Type-II
shows its SD significantly better than that of Approach Type-I and Approach Type-III. Approach
Type-II is slightly better than Approach Type-III in terms of Mean and skewness. It is apparent that
both Approach Type-II and Approach Type-III outperform Approach Type-I in term of generation of
extreme rainfalls during both calibration and validation periods (Figures 6 and 7). Approach Type-II
and Approach Type-III are quite similar in reproducing extreme rainfalls.

Figures 6 and 7 shows the daily downscaling rainfalls for the three types of approach in the
form of quantile–quantile (Q–Q) plots. It reveals that Approach Type-II and Approach Type-III
significantly outperform the Approach Type-I when rainfalls are larger than around 50 mm/day.
This results are consistent with the comparison results of statistical characteristics for both Approach
Type-II and Approach Type-III with a better skewness estimate than that of Approach Type-I. Overall,
both Approach Type-II and Approach Type-III models perform better than Approach Type-I in
downscaling extreme rainfall amounts. It is worth noting that there are three very extreme rainfalls
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greater than 450 mm/day during the validation period (Figure 7) and the three very extreme rainfalls
were still significantly underestimated. This is because there are too few data of very extreme rainfalls
for training the models.

 
Figure 6. Quantile–quantile (Q–Q) plot of downscaling daily rainfalls during the calibration period
(1964–1999).

 

Figure 7. Q–Q plot of downscaling daily rainfalls during the validation period (2000–2013).
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4.3. Discussion

Negative output values from the LS-SVR models were set to zero in the current study.
The proportion of negative values among the total number of wet days are 3.59% in Approach
Type-I, 1.45% in Approach Type-II, and 1.96% in Approach Type-III during the calibration period.
Those are 3.89% in Approach Type-I, 2.68% in Approach Type-II, and 3.65 in Approach Type-III
during the validation period. It is obvious that Approach Type-II and Approach Type-III have less
negative output values than Approach Type-I. Separation of wet days into non-extreme-rainfall-day
and extreme-rainfall-day data groups can get the benefit in terms of gaining less negative output
values from LS-SVR models. The reason might be that the separation supports the LS-SVR models
in Approach Type-II and Approach Type-III to gain more suitable parameters for each data groups
(i.e., non-extreme-rainfall day and extreme-rainfall day), while the LS-SVR model in Approach Type-I
only tunes one set of parameters for only a wet-day data group.

The poor skill of downscaling in capturing extreme events is attributed to two reasons.
First, the standardization may reduce the bias in the mean and variance of the predictor variable,
but it is much harder to accommodate the bias in large-scale patterns of atmospheric circulation or
unrealistic intervariable relationships between predictor variables. The other reason may be that the
NCEP reanalysis data are not able to reproduce the extreme value as many extreme events occur at a
much smaller scale.

Even though the poor skill of GCM downscaling in capturing extreme events, it is found
that the proposed downscaling approach with three rainfall states classification (i.e., Approach
Type-II and Approach Type-III) can improve the extreme-rainfall downscaling by Approach Type-I.
These two types of approach (i.e., Approach Type-II and Approach Type-III) can conserve the statistical
characteristics (e.g., standard deviation and skewness) of observation data, which is a big challenge of
many downscaling models. It is noted that Approach Type-II and Approach Type-III performed the
extreme-rainfall downscaling better than Approach Type-I during the wet season.

5. Conclusions and Future Work

The current study proposes a statistical downscaling approach for improving daily extreme
rainfall simulation at Shih-Men Reservoir catchment in northern Taiwan, which comprises rainfall-state
classification and regression for rainfall-amount prediction. Three classification methods (i.e., LDA, RF,
and SVC) were adopted for rainfall-state classification and the LS-SVR was used for the rainfall-amount
prediction for different rainfall states. Two rainfall states (i.e., dry day and wet day) and three rainfall
states (dry day, non-extreme-rainfall day, and extreme-rainfall day) were defined and compared for
judging their downscaling performances.

Three types of approach (i.e., Approach Type-I, Approach Type-II and Approach Type-III) have
been developed and tested for rainfall downscaling in the study area. Approach Type-I adopts two
rainfall states for rainfall-state classification. Approach Type-II and Approach Type-III adopt three
rainfall states for two-steps and one-step rainfall-state classification, respectively. The results reveal
that RF outperforms LDA and SVC for the rainfall-state classification for all three types of approach.
Approach Type-II and Approach Type-III, which use RF for three-rainfall-states classification and
LS-SVR for rainfall-amount prediction, have better extreme rainfall simulation than Approach Type
I. Future work can apply the two types of approach for the areas with more extreme-rainfall data to
validate the performances for extreme-rainfall downscaling.

Adopting a proper threshold of daily extreme rainfall is essential for extreme/non-extreme-rainfall-day
classification. The threshold of extreme rainfall strongly influences the rainfall-state classification
performance. The current study adopted 50 mm/day as the threshold of extreme rainfall which is defined
by the Central Weather Bureau of Taiwan. Using the thresholds less than 50 mm/day (i.e., 30 mm/day
and 10 mm/day) for getting more extreme events (i.e., larger sample size) was also tested and had no
improvement for rainfall-state classification in the study case. Therefore, using an inappropriate threshold
of extreme rainfall may result in a failure of extreme rainfall classification. Selection of a proper threshold

138



Water 2019, 11, 451

of extreme rainfall should be further investigated scientifically and carefully. The future work may apply
the detrended fluctuation analysis (DFA) to choose an appropriate threshold of extreme rainfall for a
catchment [59].

The choice of a certain reanalysis dataset is often motivated by either ease of access (availability
of the dataset at the institution), ease of use (availability of code to read it), or by the preference for the
local provider [60]. In the current study, the NCEP reanalysis data were used for ease of access and
ease of use. The other available reanalysis data (e.g., European Centre for Medium-Range Weather
Forecasts, ECMWF) with a much better spatial resolution data can be the alternatives for future work.
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Abstract: Hybrid drought prediction models were developed for areas with limited monitoring
gauges using the APEC Climate Center Multi-Model Ensemble seasonal climate forecast and machine
learning models of Extra-Trees and Adaboost. The models provide spatially distributed detailed
drought prediction data of the 6-month Standardized Precipitation Index for the case study area,
Fiji. In order to overcome the limitation of a sparse monitoring network, both in-situ data and
bias-corrected dynamic downscaling of historical climate data from the Weather Research Forecasting
(WRF) model were used as reference data. Performance measures of the mean absolute error as
well as classification accuracy were used. The WRF outputs reflect the topography of the area.
Hybrid models showed better performance than simply bias corrected forecasts in most cases.
Especially, the model based on Extra-Trees trained using the WRF model outputs performed the best
in most cases.

Keywords: drought prediction; APCC Multi-Model Ensemble; seasonal climate forecast;
machine learning; sparse monitoring network; Fiji

1. Introduction

Islands in the South Pacific are vulnerable to climate change [1]. The climate in the South Pacific
has become drier by 15% and warmer by 0.8 ◦C, compared to the earlier 20th century [2]. Fiji, one of the
key Pacific Island countries, experiences easterly trade winds on most calendar days. The easterly trade
winds or the northeasterly monsoon, when lifted by high mountains, causes moisture condensation
and produces heavy rainfall on the windward eastern side of Fiji. The subsidence of the relatively dry
air produces less rainfall on the leeward western side.

From a large-scale viewpoint, the El Nino Southern Oscillation (ENSO) is the main cause of climate
variability over this region at interannual timescales. La Nina events dominated the interannual sea
surface temperature (SST) anomaly (SSTA) over the central Equatorial Pacific during 1950 and 1975;
after that time, El Nino events became more frequent [3]. The Pacific Decadal Oscillation (PDO)
dominates the climate variability at decadal timescales [4]. PDO was mostly positive prior to 1998 and
then shifted to a strong negative phase [5]. Positive PDO is characterized by the similar SSTA of El
Nino over the Equatorial Pacific, and thus shifts the weather systems northeastward, but on a decadal
timescale. The South Pacific Convergence Zone (SPCZ) is a reverse-oriented monsoon trough with
strong low-level convergence and a rainfall band that extends from the Warm Pool southeastward
to French Polynesia [6,7]. The interferential impact of ENSO and PDO on the SPCZ is complex [8,9].
El Nino events weaken the strength of the Walker Circulation and shift the dominant weather systems
over the Equatorial Pacific toward areas in the northeast such as the SPCZ. When El Nino takes
place during the positive PDO, the SPCZ moves northeast towards the equator, and its intensity
becomes stronger [8]. The large-scale convection departure decreases precipitation over Fiji and leads
to droughts [10].
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Fiji has observed more frequent dry conditions since the 1950’s compared to previous decades
in the western and northern areas based on analysis performed using the Standardized Precipitation
Index (SPI). Analysis of observed monthly rainfall for Fiji over the period 1949–2008 showed downward
trends at a 99% confidence level with decreases in rainfall of approximately 13–47 mm per year [11].
Although no significant long-term trends were observed in annual rainfall [12], there were more
frequent dry seasons during the last 50 years compared to the first 50 years when the nearly 100 years
of data since 1900 were examined [13]. The local temperature also increased due to the effects of climate
change [14]. The most impacted stations were located in western and northern Fiji, where deficiency
in rainfall from 1969–1988 caused an increase in moderate and severe droughts [11]. Risbey et al. [15]
projected an increase in rainfall of approximately 3.3% by 2025 and 9.7% by 2100 using a global climate
model (GCM). Feresi et al. [16] and Agrawala et al. [17] did not project a definitive change in rainfall.
IPCC [18] projected that Fiji will experience an intensified seasonal cycle, i.e., a rainfall decrease in the
dry season and a rainfall increase in the wet season. The shift towards extended periods of dry spells
causes loss of soil fertility, which could impact negatively on agriculture [1].

Since 1940, severe droughts have occurred in 1942, 1958, 1969, 1978, 1983, 1987, 1992, 1997–1998,
2003, and 2010 [16]. Severe droughts can cause serious socio-economic loss as well as physical
damages as drought conditions persist. The ENSO event of 1997–1998 caused a severe drought
with damages of up to Fiji $100 million. Rainfall failure occurred across two successive dry seasons,
and more significantly during the intervening wet season when precipitation is normally reliable [16].
Since many rural communities are reliant on rainwater, streams, and shallow wells for domestic
use, watering crop gardens, and livestock, these communities are especially vulnerable to periods of
drought when surface water resources are at a minimum [19]. Schools and businesses were forced to
close and caused disruption to residential areas. Such impacts made extreme difficulties for Fiji since
the resources of an island country are limited. External aid and governmental assistance were required
to ensure supply of sustenance and facilitate recovery in the worst-hit parts of Fiji, which included the
western and northern divisions and outer islands.

Drought conditions in Fiji are currently monitored using the 3-, 6-, and 12-month SPI calculated
for weather stations with long historical data [20]. The monitoring network over Fiji with long data
is quite sparse though, resulting in considerable uncertainty in the estimates of extreme wet and dry
events. Evidence shows that estimation of the historical trends has a large noise-to-signal ratio over
regions with sparse data networks [21]. Furthermore, most Fiji weather stations with long data are
located along the coastline, so the sparse network cannot capture small-scale convective precipitation
over land and precipitation from orographic lifting at mountains. Rainfall variability in the high
mountains is greater than the variability in cities.

The limited variables and inconsistency in duration of satellite observation introduces difficulties
and uncertainties in methods and analysis. For example, the Climate Prediction Center Morphing
Technique (CMORPH) data is only available from 1998 onward. Due to the limited number or variables
being observed, it is difficult to prepare for droughts because the response of rainfall distribution to
large-scale dynamics is unclear. In addition, unlike other types of disasters, the onset and termination
of droughts is not always clear. The increase in uncertainty of climate variability makes the reduction
of drought impacts even more difficult.

Drought outlook of Fiji is also provided based on SPI: SPI predictions for weather stations are
based on the statistically downscaled seasonal forecast data from the Seasonal Climate Outlooks for
Pacific Island Countries developed by the Bureau of Meteorology of Australia. If spatially distributed
drought prediction is available, possibly reflecting the orographic effect of the main island, it would be
helpful to prevent and minimize the adverse impacts of droughts in Fiji. Drought prediction data only
available for weather stations or obtained based on low-resolution bias-corrected seasonal forecast
data are not sufficient for effective decision making.

This study aims to develop a drought prediction model that can be used for areas with sparse
monitoring networks. Fiji is a case study area. By providing spatially detailed drought prediction data,
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vulnerability to droughts may be reduced while resiliency may be increased. Multi-Model Ensemble
seasonal climate forecast data from APEC Climate Center (APCC MME) are used to provide up to 6
months-lead climate forecasting. Machine learning models are used to provide spatially distributed
drought information for ungauged areas. In order to overcome the limitation of sparse monitoring
networks, dynamically downscaled historical climate data from the Weather Research and Forecasting
(WRF) model are used to train machine learning models instead of in-situ data as reference data.

This study ultimately targets national, provincial, and regional officials whose main duties include
water resources and agricultural management. The final beneficiaries of the output are residents of
the area; water users and farmers for whom decision-making can be helped by drought prediction
information with finer spatial resolution.

2. Study Area

Fiji has a total area of about 194,000 km2 of which approximately 10% is land. Fiji consists of 332
islands. The two largest islands are Viti Levu and Vanua Levu, which account for about three-quarters
of the total land area of Fiji [22]. Figure 1 shows the topography of Fiji’s main islands. The largest
island, Viti Levu, which has an area of 10,388 km2, is covered with thick tropical forest. The island has
a considerable area higher than 500 m in elevation with the peak of Mount Tomanivi at 1324 m above
sea level. Viti Levu hosts the capital city of Suva, which contains about three-quarters of the population.
Other important towns include Nadi, where the international airport is located, and Lautoka.

Figure 1. Topography of Fiji’s main islands (color shades are in units of meters).

Fiji has a tropical marine climate and is warm year-round with minimal extremes. The warm
season lasts from November to April and the cool season lasts from May to October. Temperatures
in the cool season average 22 ◦C. Winds are moderate, though cyclones occur about once a year
(10–12 times per decade). Viti Levu is a mountainous volcanic island with a wet-dry tropical climate.
The southeast side of the island faces the predominant trade winds and therefore receives more
precipitation than the northwest side, which is rain-shadowed by interior highlands. The volcanic
mountains force orographic lifting of the saturated air, which can produce extremely heavy rainfall on
the windward side of the mountain. Rainfall on the leeward side is much lighter due to the subsidence
of the dry air, which largely influences agriculture in those areas. In the dry season, the uneven
distribution of rainfall can cause a prolonged lack of moisture on the leeward side. The leeward side
only receives 20% of the annual total rainfall in the dry season, compared to 33% received on the
windward side [23].

Sugar export is an important source of foreign exchange for Fiji, as sugar cane processing
makes up one-third of industrial activity. Coconut, ginger, and copra are also significant industries.
These agricultural products are highly influenced by climate extremes; the sugar industry was
damaged by drought in 1998.
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3. Materials

3.1. In-Situ Data

Figure 2a shows the location of rainfall gauges of the two main islands used in this study (Table 1).
In-situ rain-gauge hourly precipitation data for 1981–2010 were obtained and daily data for the period
were used for the bias-correction of the WRF model. Monthly data were also used for calculating
drought index values for the training of machine learning models. Some data were missing during a
short period of time from gauges at Udu Point and Nabouwalu.

Table 1. Fiji rainfall gauges used in the analysis.

Observation Sites Latitude Longitude

Udu Point (91652) 16.13◦ S 180.02◦ E
Nabouwalu (91659) 16.98◦ S 178.70◦ E

Nadi (91680) 17.75◦ S 177.45◦ E
Suva (91690) 18.15◦ S 178.45◦ E

Figure 2. Location of (a) the rainfall gauges; and (b) the centroids of the Weather Research and
Forecasting (WRF) model outputs.
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3.2. WRF Model Outputs

Dynamic downscaling of historical climate through the WRF model forced by the European Centre
for Medium-Range Weather Forecasts Reanalysis (ERA)-Interim reanalysis dataset in a double nested
framework with spectral nudging in the parent domain was used in this study [24]. Many validations
show that the WRF outputs are pretty reliable. Precipitation data with 8 km spatial resolution for
1981–2010 were used in this study. Centroids of the 227 grid cells are shown in Figure 2b.

3.3. SPI

The SPI is widely used to characterize meteorological drought on a range of timescales [25,26]
(Table 2). It quantifies observed precipitation as a standardized departure from a selected probability
distribution function that models the raw precipitation data. The raw precipitation data are fitted to a
gamma distribution, for example, and then transformed to a normal distribution. The SPI values can
be interpreted as the number of standard deviations by which the observed anomaly deviates from the
long-term mean. The SPI can be created for differing periods of 1 to 36 months, using monthly input
data. The SPI can be compared across regions with markedly different climates. In this study, 6-month
SPI (SPI6) was used to examine the performance of the drought prediction model developed, which is
based on APCC MME up to 6 months-lead forecast data. SPI6 is also used by the Fiji Meteorological
Service (FMS) to examine agricultural (soil moisture) and hydrological droughts because the 6-month
droughts affect deeper rooted plants and medium-sized water bodies [27].

Table 2. Drought categories based on Standardized Precipitation Index (SPI) [26].

Classification Index Value

Extremely wet (EW) ≥2.00
Very wet (VW) 1.50 to 1.99

Moderately wet (MW) 1.00 to 1.49
Near Normal (NN) 0.99 to −0.99

Moderate drought (MD) −1.00 to −1.49
Severe drought (SD) −1.50 to −1.99

Extreme drought (ED) ≤−2.00

3.4. APCC MME Seasonal Climate Forecast

APCC produces the future 6-month global climate forecast using the MME technique, by collecting,
standardizing, and utilizing climate prediction data from 17 different climate prediction organizations
from all round the world. The MME technique collates data from different high quality climate models
resulting in a better forecast than each climate model’s independent forecast. For this study, 6-month
MME data produced by the Simple Composite Method (SCM) based on six individual models were
obtained from the APEC Climate Data Service System [28]. The six individual climate models were
APCC model, the Centro Euro-Mediterraneo sui Cambiamenti Climatici model, the Meteorological
Service of Canada (MSC) model, the National Aeronautics and Space Administration (NASA) model,
the National Centers for Environmental Prediction (NCEP) model, Pusan National University (PNU)
model, and the Predictive Ocean Atmosphere Model for Australia.

3.5. Remote Sensing Data

3.5.1. PERSIANN-CDR

The drought prediction model developed in this study relies on remote sensing based
precipitation data in order to compensate for the low spatial coverage of weather stations. To secure
precipitation data covering a large enough area, the Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks (PERSIANN)-Climate Data Record (CDR) was used [29].
PERSIANN-CDR data were created based on infrared sensor data for the period with no microwave
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sensor data. The data cover 60◦ S–60◦ N, 180◦ W–180◦ E, with a spatial resolution of 0.25◦ × 0.25◦.
Daily data were obtained and converted to monthly total precipitation data.

3.5.2. TRMM

The tropical rainfall measuring mission (TRMM) was developed jointly by the United States (US)
NASA and the Japan Aerospace Exploration Agency. The TRMM 3B42 product with 3-h data collection
intervals was obtained from the NASA Goddard Earth Sciences Data and Information Service Center
and converted to monthly total precipitation data. The TRMM data cover 50◦ S–50◦ N, 180◦ W–180◦

E, and have a spatial resolution of 0.25◦ × 0.25◦. The data are in equirectangular (or geographic)
projection with WGS84 datum.

3.5.3. GPM

The Integrated Multi-Satellite Retrievals for the Global Precipitation Measurement Mission (GPM)
data were used as remote sensing based precipitation data from April 2014 onward. The data were
obtained from the Precipitation Measurement Missions of NASA, and cover 90◦ S–90◦ N, 180◦ W–180◦ E,
and have a spatial resolution of 0.1◦ × 0.1◦. The data are also in equirectangular (or geographic)
projection with WGS84 datum. The data were converted to monthly total precipitation data.

3.5.4. MODIS Land Surface Temperature

Daytime and nighttime land surface temperature (LST) data from the Level-3 standard product of
the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite, MYD11A2
LST and Emissivity 8-day L3 Global 1 km, were obtained from the Earth Observing System Data and
Information System EARTHDATA of NASA from July 2002 to December 2016. MYD11A2 data are the
average of daily MYD11A1 data of cloud-free days. Temporal and spatial resolutions of the data are
8-day and approximately 1 km × 1 km, respectively. The data are projected in Sinusoidal projection.

Since the time scale of the developed drought prediction model is monthly, the 8-day data
were converted into monthly data using the number of days of the 8-day period for each month as
weights. Mean LST (LST_MEAN) was also calculated from daytime LST (LST_DAY) and nighttime
LST (LST_NIGHT).

3.5.5. MODIS Vegetation Indices

Vegetation indices of the Normalized Difference Vegetation Index (NDVI) and the Enhanced
Vegetation Index (EVI) data were obtained from the Level-3 data of MODIS onboard Aqua, MYD13A3
Vegetation Indices Monthly L3 Global 1 km, from EARTHDATA of NASA from July 2002 to December
2016. Temporal and spatial resolutions are monthly and approximately 1 km × 1 km, respectively.
The data are also projected in Sinusoidal projection.

The NDVI can be calculated using the changes in reflectance in red and near infrared (NIR)
channels (Equation (1)) and has been widely used as an indicator of vegetation vigor [30]. The EVI
uses the blue band in addition to red and NIR bands, minimizing the influence of the background
effect of soil, snow, and water (Equation (2)). The EVI retains sensitivity to vegetation vitality, which is
often shown saturated in the NDVI. The blue band helps to remove the atmospheric effect caused by
air and clouds.

NDVI =
NIR − RED
NIR + RED

(1)

EVI = 2 × NIR − RED
L + NIR + C1 × RED + C2 × BLUE

(2)

where NIR, RED, and BLUE are reflectance values of NIR, RED, and BLUE channels, respectively;
L is a parameter for reducing the background effect of canopy; C1 and C2 are weighting parameters
to correct the influence of the aerosol effect of the red band when the blue and red bands are used
together [31].
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3.5.6. Elevation Data

Global 30 Arc-Second Elevation (GTOPO30) data with 1 km × 1 km spatial resolution were
obtained from the US Geological Survey and used for the study area.

3.6. Large-Scale Climate Index

3.6.1. SPCZ

The SPCZ, a reverse-oriented monsoon trough, is a band of low-level convergence, cloudiness, and
precipitation extending from the Western Pacific Warm Pool at the maritime continent southeastward
toward French Polynesia and as far as the Cook Islands (160◦ W, 20◦ S). The SPCZ occurs where the
southeast trade winds from transitory anticyclones to the south meet with the semi-permanent easterly
flow from the eastern South Pacific anticyclone.

To study the SPCZ and its impacts on weather and climate over the South Pacific islands, previous
studies suggested several SPCZ indices [8,32–35]. Here, we adopted the SPCZ strength index from
Kidwell et al. [34] to quantify the impact of the SPCZ on rainfall over Fiji. The SPCZ region was
encompassed in 0◦–30◦ S, 130◦ E–110◦ W. The strength of the SPCZ is defined by the surface wind
convergence in this region derived from the ERA-Interim. Divergence was calculated with Equation (3):

D(x, y) =
∂u
∂x

+
∂v
∂y

(3)

where u and v are the zonal and meridional components of the surface winds. Positive D corresponds
to surface divergence, and a negative value corresponds to surface convergence. The SPCZ strength is
defined by the monthly mean area-weighted average of convergence within the SPCZ region:

s = ∑ D(x, y)a(x, y)/ ∑ a(x, y) (4)

where a(x,y) is the area of a grid cell centered at location (x,y), and the spatial summation ∑ is
performed over grid cells with D(x,y) < 0 within the SPCZ region. The anomaly of the SPCZ strength
is defined as SPCZ index.

3.6.2. MEI

The ENSO is an irregularly periodic variation in winds and SST over the tropical eastern Pacific
Ocean, affecting much of the tropics and subtropics. The warming phase is known as El Nino and the
cooling phase as La Nina. Southern Oscillation is the accompanying atmospheric component, coupled
with the sea temperature change; El Nino is accompanied with high air surface pressure while La Nina
with low in the tropical western Pacific. The two periods last several months each (typically occurring
every few years) and their effects vary in intensity. The Multivariate ENSO Index (MEI) from the
National Oceanic and Atmospheric Administration (NOAA) were used as a measure of ENSO.

4. Methods

4.1. Drought Modeling

Mishra and Singh [36] reviewed a variety of drought modeling methods and described the
components of drought modeling as hydro-meteorological variables, drought indices, climate indices,
methodologies, and outputs. Among hydro-meteorological variables, rainfall is the most important
variable for meteorological drought forecasting, soil moisture and crop yield are the key variables for
agricultural drought forecasting, and stream flow and reservoir level are the most important variables
for hydrological drought forecasting. Sometimes many variables are combined to obtain drought
characteristics such as drought severity, duration, and spatial extent. Large-scale climate indices such
as ENSO or the Arctic Oscillation (AO) index are used to forecast longer droughts. There can be many
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methods used, including regression models, time-series models, probability models, neural networks
models, and statistical-dynamic models [36–41].

Recently, drought prediction methods using machine learning have been developed [42,43].
Rules required by expert systems can be developed either by human experts or derived by machines
based on data provided by human beings; this training process is called machine learning [44].
Tadesse et al. [42] developed a rule-based regression tree model forecasting drought conditions
and crop yield based on remotely sensed vegetation conditions, SPI, land use, available water
capacity of soil, and irrigation areas. Rhee and Im [43] tested decision tree models, random forest
models, and extra-trees models to forecast drought indices of the SPI and the Standardized
Precipitation-Evapotranspiration Index in South Korea.

4.2. Machine Learning Model Design

As an indicator representing true drought conditions, the target variable was set as SPI6_OBS,
which is reference SPI6 calculated either using in-situ precipitation data from four rainfall gauges or
using the WRF model outputs from 227 pixel locations (Figure 3).

If we were to monitor current drought conditions, we may rely on SPI6_RS, which is SPI6
calculated from remote sensing based rainfall, since reference SPI6 is only available for the past or for
some limited locations. However, there are usually gaps between SPI6_RS and SPI6_OBS. In order
to explain or reduce the discrepancy, drought-affected input variables of LST_DAY, LST_NIGHT,
LST_MEAN, NDVI, and EVI can be included to the model (Figure 3). Elevation (ELEV) can also be
included to consider the topographical effect on rainfall, complementing the coarse spatial resolution
of remotely sensed rainfall data (Figure 3).

Since the purpose of the model is drought prediction, long-range climate forecasting can be used
to estimate the effect of synoptic and large-scale atmospheric circulation. While SPI6_RS was used
for training machine learning models assuming perfect climate forecast, SPI6_FCST was used for test;
SPI6_FCST is SPI6 calculated from bias-corrected precipitation data combining the percent increment of
the rainfall anomaly of APCC MME and the climatology of remote sensing based rainfall [45] (Figure 3).
A 6-month period of accumulated rainfall was divided into two periods according to the lead-time of
the forecast; months with observed rainfall and months with forecasted rainfall. Remote sensing-based
precipitation data were used as the observed rainfall, and bias-corrected precipitation forecast data
were used as the forecasted rainfall. Parameters for the gamma probability distribution functions were
pre-fitted based on remote sensing-based precipitation data and used for SPI6_FCST calculations.

Month of the data (MONTH) was also included for temporal information, and large-scale
circulation indices of MEI and SPCZ strength (SPCZ) were also included (Figure 3).

Time points of data vary for 1 to 6-month lead drought prediction; initial points of data were
used for remote sensing data and large-scale indices (for example, January 2017 values were used for
3-month lead predictions for April 2017), while target points of data were used for MONTH, SPI6_RS
(training), and SPI6_FCST (test).

As the machine learning models, the Extra-Trees (ERT hereafter) [46] and the Adaboost [47]
models were used in this study. The implementation was done using the Python library scikit-learn
0.18.1. ERT is known to produce stable results against outliers and noise in training data, and had
excellent performance in drought forecasting [43]. Adaboost is a weak learner; it enables the model to
simulate minor characteristics of training data by assigning higher weights to the subsets that are less
reflected during its iteration processes.

The training of the models can be done either using in-situ data or using the WRF model outputs
for SPI6_OBS. The models trained using SPI6_OBS based on in-situ data may not be appropriate to
be used for other areas because data from only four weather stations are used and the models are
trained specific to the locations. Two cases were compared; in one case, the models were trained using
80% of the WRF model outputs and evaluated using 20% of the data. In the other case, the models
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were trained using all in-situ data and evaluated using the same test dataset of the previous case.
Numbers of data samples are shown in Table 3.

Table 3. Numbers of data samples used for training and testing.

Source Type Lead Time (Month)
Number of Samples

All Categories Three Drier Categories

WRF model output

Train (80%)

1 16,693 1767
2 16,545 1787
3 16,379 1776
4 16,211 1762
5 16,043 1761
6 15,875 1792

Test (20%)

1 4169 470
2 4132 445
3 4091 445
4 4049 447
5 4006 456
6 3964 424

In-situ data All

1 266 37
2 264 37
3 262 37
4 260 37
5 258 37
6 256 36

Although a three-tier approach of training, validation, and testing is often used to optimize
parameters for some artificial intelligence models, we used a two-tier approach of training and testing
with the fixed number of trees for ERT and Adaboost of 100 and the maximum depth of tree growth of
15 levels. Various numbers of trees and levels of maximum depth of tree growth had been tested using
cross-validation of training data; the number of trees larger than 100 did not produce much difference.
Although larger levels of maximum depth of tree growth tend to produce better results, the retrieval
of the trained model with larger than 15 levels of maximum depth of tree growth including full
development was very demanding of computational resources.

Figure 3. Flow diagram of the drought prediction model.
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4.3. Data Pre-Processing

Remote sensing-based variables of LST_DAY, LST_NIGHT, LST_MEAN, NDVI, EVI, and ELEV
were all subset to the extent of 176.5◦ E–178◦ W, 21.5◦ S–12.0◦ S and then resampled to have
0.01◦ × 0.01◦ spatial resolution. Since many machine learning models tend to be sensitive to the
magnitudes of input variables, these data were scaled using maximum and minimum values of each
month for each pixel [48].

Since SPI is inherently Gaussian, the numbers of input data for each drought category of Table 2
are not even. Because some machine learning models are known to be sensitive to the distribution of
samples, the following process was performed when preparing input data: additional input data were
created with added noise by multiplying the standard deviation of the variable for the location and
month with a random number between 0 and 1, so that all drought categories have the same sample
numbers during training.

The thirty-year period from 1981 to 2010 was used for calculating SPI. Due to the short history of
MODIS, the input data from July 2002 to 2016 were used for the machine learning models.

4.4. Performance Measures

Information on drought index values or corresponding drought categories indicating the severity
of drought can be more useful to users than just having binary information of drought or non-drought.
Performance measures used in this study include: Total Accuracy, which is the producer’s accuracy,
and mean absolute error (MAE) for all drought categories in Table 2 (total MAE hereafter). Although
there may not be enough serious drought events during the short study period from July 2002 to
2016, performance measures only for the three drier categories of Extreme Drought, Severe Drought,
and Moderate Drought were also used: Drought Accuracy, which is a modified producer’s accuracy
in Rhee and Im [43] focusing on the three drier categories, and MAE for the three drier categories
(Drought MAE hereafter).

Total or Drought Accuracy =
∑ C
∑ N

(5)

Total or Drought MAE =
∑
∣∣∣SPI6obs − SPI6pred

∣∣∣
Total Number of Samples

(6)

where N is the number of samples for each category, and C is the number of correctly categorized
samples for each category. All categories are considered for Total Accuracy and Total MAE, while the
three drier categories are considered for Drought Accuracy and Drought MAE.

5. Results and Discussion

5.1. Training of the Models

The machine learning models of ERT and Adaboost were trained using 80% of the WRF model
outputs (ERT_WRF and Adaboost_WRF hereafter) or using 100% of the in-situ data (ERT_INSITU
and Adaboost_INSITU hereafter). The performance of SPI6 predictions from simply bias-corrected
precipitation forecast (FCST_ONLY hereafter) based on the same training dataset of the WRF model
outputs was compared to the performance of ERT and Adaboost (Figure 4). Differences in MAE
between methods were also statistically tested using two-sided or one-sided Welch’s t-test for both
Total MAE and Drought MAE.

Both ERT_WRF and Adaboost_WRF outperformed FCST_ONLY in most cases, and Total MAE
and Drought MAE values of ERT_WRF were especially small (Figure 4a,b). The differences were all
statistically significant based on two-tailed p-values with a confidence level of 0.01 (data not shown).
Only Adaboost_WRF with 1-month lead predictions showed larger Drought MAE than FCST_ONLY
based on one-sided t-test (Figure 4b). ERT_WRF outperformed FCST_ONLY and Adaboost_WRF
based on one-sided t-test (data not shown).
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In terms of Total Accuracy and Drought Accuracy, ERT_WRF was much higher compared to
FCST_ONLY for all lead times (Figure 4c,d). However, Adaboost_WRF could not perform better than
FCST_ONLY in terms of Total Accuracy of 2-month lead predictions and Drought Accuracy of 1- and
2-month lead predictions (Figure 4c,d).

We could see that ERT_INSITU is overly fitted based on zero or near-zero Total MAE and Drought
MAE values and perfect Total Accuracy and Drought Accuracy, despite the large number of trees
(Figure 4). It is not very surprising since the numbers of samples for all categories and the three
drier categories are not large; smaller than 270 and 40, respectively (Table 3). Both ERT_INSITU and
Adaboost_INSITU outperformed FCST_ONLY in all cases (Figure 4). Total MAE and Drought MAE
of ERT_WRF were larger than ERT_INSITU because of possible overfitting based on one-sided t-test,
no difference in MAE was found between ERT_WRF and Adaboost_INSITU.

Scatter plots of reference SPI6 vs. 1-month lead SPI6 predictions for training are shown in Figure 5.

 

Figure 4. Training performance (a) Total MAE; (b) Drought MAE; (c) Total Accuracy; and (d) Drought
Accuracy of SPI6 predictions from simply bias-corrected precipitation forecast (FCST_ONLY),
Extra-Trees (ERT) and Adaboost trained using 80% of the WRF model outputs (ERT_WRF and
Adaboost_WRF), and ERT and Adaboost trained using 100% of in-situ data (ERT_INSITU and
Adaboost_INSITU).
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Figure 5. Scatter plots of reference SPI6 vs. 1-month lead SPI6 predictions for training based on
(a) FCST_ONLY; (b) ERT_WRF; (c) Adaboost_WRF; (d) ERT_INSITU; and (e) Adaboost_INSITU.
Reference SPI6 are based on 80% of the WRF model outputs from (a) to (c) and 100% of in-situ
data for (d,e).

5.2. Test of the Models

The performance of SPI6 predictions of the machine learning models (ERT_WRF, Adaboost_WRF,
ERT_INSITU and Adaboost_INSITU) as well as FCST_ONLY was evaluated based on the remaining
20% of the WRF model outputs (Figure 6). Differences in MAE between methods were also
statistically tested.

ERT_WRF showed the smallest Total MAE, and the differences between ERT_WRF and all
other methods were statistically significant based on one-sided t-test with the confidence interval
of 0.01 (Figure 6a; p-values are not shown). Adaboost_WRF also produced smaller Total MAE
compared to FCST_ONLY for 1- to 4-month lead predictions, while the differences were not statistically
significant for 5- and 6-month lead predictions (two-tailed p-values are 0.031 and 0.026, respectively).
Even ERT_INSITU and Adaboost_INSITU produced significantly smaller Total MAE than FCST_ONLY
for 1- to 3-month lead predictions (Figure 6a). Cases that failed to reject the null hypothesis of equal
mean error with FCST_ONLY are shaded (Figure 6a).

In contrast to training where Drought MAE of FCST_ONLY was mostly the largest (Figure 4c),
Drought MAE of FCST_ONLY was mostly the smallest for all lead times with the test dataset (Figure 6c).
Cases that failed to reject the null hypothesis of equal or larger mean error with FCST_ONLY are shaded
based on two-tailed and one-tailed p-values, meaning only these cases produce comparable Drought
MAE to FCST_ONLY (Figure 6c; data not shown). The one-sided t-test with the null hypothesis of
larger error of FCST_ONLY in all other cases was rejected, meaning that they produced larger Drought
MAE in most cases (Figure 6c).

There were no obvious differences observed in Total Accuracy between the methods;
Total Accuracy of ERT_WRF was the highest for all lead times (Figure 6b). FCST_ONLY produced
higher Drought Accuracy for 1-month lead SPI6 predictions, while ERT_WRF performed the best for
longer-term predictions (Figure 6d). The selection of training data (WRF model outputs versus in-situ
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data), the selection of a prediction model (FCST_ONLY versus machine learning models of ERT and
Adaboost), and the lead time had the greatest effect on Drought Accuracy (Figure 6d).

Scatter plots of reference SPI6 vs. 1-month as well as 3-month lead SPI6 predictions for testing are
shown in Figures 7 and 8, respectively.

 

Figure 6. Test performance (a) Total MAE; (b) Drought MAE; (c) Total Accuracy; and (d) Drought
Accuracy of SPI6 predictions from simply bias-corrected precipitation forecast (FCST_ONLY),
ERT and Adaboost trained using 80% of the WRF model outputs (ERT_WRF and Adaboost_WRF),
and ERT and Adaboost trained using 100% of in-situ data (ERT_INSITU and Adaboost_INSITU).
Test was performed using the 20% remaining WRF model outputs.

 

Figure 7. Scatter plots of reference SPI6 vs. 1-month lead SPI6 predictions for testing based on
(a) FCST_ONLY; (b) ERT_WRF; (c) Adaboost_WRF; (d) ERT_INSITU; and (e) Adaboost_INSITU.
Reference SPI6 are based on 20% of the WRF model outputs.
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Figure 8. Scatter plots of reference SPI6 vs. 3-month lead SPI6 predictions for testing based on
(a) FCST_ONLY; (b) ERT_WRF; (c) Adaboost_WRF; (d) ERT_INSITU; and (e) Adaboost_INSITU.
Reference SPI6 are based on 20% of the WRF model outputs.

5.3. Spatial Distribution Maps of SPI6 Predictions

Spatially distributed maps of 1- to 6-month lead SPI6 predictions based on FCST_ONLY and
ERT_WRF were created. Some examples are shown in Figure 9; in order to provide the WRF-based
SPI6 map used for training machine learning models as well as in-situ SPI6 map with available data
from all four weather stations, 21 months with all data available were identified. Although no extreme
drought events were observed in the 21 months, Nadi (91680) station experienced severe droughts in
March, June, July, and October 2010.

The WRF-based SPI6 (Figure 9a,b), 1-month lead SPI6 predictions based on FCST_ONLY
(Figure 9c,d), and 1-month lead SPI6 predictions based on ERT_WRF (Figure 9e,f) for March and
June of 2010 are shown. Four weather stations are also shown with SPI6 based on observation data for
March and June, 2010 (Figure 9). Only Nadi station was in severe drought in March and June of 2010
(SPI6 = −1.51 and −1.94, respectively). In March 2010, Udu Point and Suva stations were in moderate
drought (SPI6 = −1.37 and −1.05, respectively) while Nabouwalu station was in near normal condition
(SPI6 = −0.67). In June, Udu Point station was in moderate drought (SPI6 = −1.48) while Nabouwalu
and Suva stations were in near normal condition (SPI6 = −0.45 and −0.52, respectively).

 
(a) WRF-based SPI6 for March, 2010. (b) WRF-based SPI6 for June, 2010. 

Figure 9. Cont.
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(c) 1-month lead SPI6 prediction for March, 
2010 based on FCST_ONLY. 

(d) 1-month lead SPI6 prediction for June, 2010 
based on FCST_ONLY. 

(e) 1-month lead SPI6 prediction for March, 
2010 based on ERT_WRF. 

(f) 1-month lead SPI6 prediction for June, 2010 
based on ERT_WRF. 

Figure 9. Spatial distribution maps of 1-month lead SPI6 predictions for March 2010 and June 2010 and
WRF-based SPI6.

5.4. Relative Importance of Input Variables to Machine Learning Models

Python modules for machine learning models provide information on the relative importance of
input variables. The importance of the most important variable is set to 100% and relative importance
scores of other input variables are determined. In all cases, the most important variable was SPI6_RS
in this study, and only the scores of other input variables are shown in Figure 10.

When in-situ precipitation data were used for reference data, the relative importance of all other
input variables was quite low; the score of the second important variable MEI only ranges between
4% and 8% for ERT_INSITU (Figure 10c). For Adaboost_INSITU, the scores of input variables vary
with lead time, but all were below 20% (Figure 10d). The importance of temporal (MONTH) and
topographical (ELEV) information as well as large-scale climate indices (SPCZ, MEI) were more
obvious when the WRF model outputs were used for reference data (Figure 10a,b). For ERT_WRF,
the scores of MONTH, MEI, and SPCZ were higher than other input variables, mostly over 20%
(Figure 10a). The scores of those three variables as well as ELEV were higher for Adaboost_WRF; the
score for MONTH even reached about 55% (Figure 10b).

Differences in the relative importance of the input variables between the sources of reference data
indicate that temporal characteristics of drought occurrences and the effect of ENSO, SPCZ strength,
as well as topography of the region could not be adequately applied to the models when in-situ data
were used for reference data, because in-situ data from only few stations are available. The use of the
WRF model output precipitation data, on the other hand, enabled the use of diverse information from
those variables.
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Figure 10. Relative importance scores of input variables to machine learning models for (a) ERT_WRF;
(b) Adaboost_WRF; (c) ERT_INSITU; and (d) Adaboost_INSITU.

6. Conclusions

We developed hybrid drought prediction models using APCC MME seasonal climate forecasts and
machine learning models and examined their performance for the case study area of Fiji. The purpose
of the models is to provide spatially distributed detailed drought prediction data of SPI6 for the
area. The APCC MME provides up to 6-month lead precipitation forecast data. Remote sensing
data were used to bias-correct the forecast data as well as to train machine learning models; machine
learning models of ERT and Adaboost were used to provide spatially distributed drought information
for ungauged areas. In order to overcome the limitation of sparse monitoring network, dynamic
downscaling of historical climate with the WRF model was used to produce reference data.

When compared to the performance of the hybrid models trained based on different reference
data, the models trained using the WRF model outputs performed better than the models trained using
in-situ data: ERT_WRF outperformed ERT_INSITU in all cases, and Adaboost_WRF outperformed
Adaboost_INSITU except for Drought MAE and Drought Accuracy of 1-month lead predictions,
Total MAE and Total Accuracy of 2-month lead predictions, and Total Accuracy of 3-month lead
predictions. The superiority of the models trained based on the WRF model outputs indicates that the
spatial extent of the training data is important because in-situ data are from only four weather stations.
The added value caused by the topography is clear, especially in the convergence/divergence field
over the islands; this crucially impacted inland and coastal precipitation and caused greater detail in
precipitation to be found in the WRF model outputs [24].

The use of the ERT_WRF model produced better results compared to Adaboost_WRF in terms of
Total MAE, Total Accuracy, and Drought Accuracy for all lead times, as well as in terms of Drought
MAE of 1-month lead predictions. For other lead times, no statistical difference between ERT_WRF
and Adaboost_WRF were found (2- to 4-month lead predictions) or ERT_WRF showed larger error
than Adaboost_WRF (5- to 6-month lead predictions) in terms of Drought MAE. It shows that the
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choice of the machine learning model matters; the use of simulated input data with added noise to
attain the same numbers of samples between drought categories may have improved the performance
of ERT and surpassed the advantage of Adaboost, supporting weak learners.

Compared to FCST_ONLY, ERT_WRF performed better in terms of Total MAE and Total Accuracy
for all lead times as well as in terms of Drought Accuracy for 2- to 6-month lead predictions.
Although there was no statistically significant difference for 1-month and 3-month lead predictions
in terms of Drought MAE and the error of ERT_WRF was larger for 2-month and 4- to 6-month
lead predictions, Drought Accuracy of ERT_WRF for 2- to 6-month lead predictions was higher than
FCST_ONLY. The hybrid model, especially ERT_WRF, showed good performance compared to simply
bias corrected forecasts.

Hybrid models with better performance than simply bias corrected forecasts in most cases for areas
with sparse monitoring networks were successfully developed. It should be noted that the performance
of the compared methods may be evaluated differently according to the purpose of the study with
the appropriate choice of a performance measure. In future studies, the use of more diverse input
variables related to drought for machine learning models need to be investigated. Only SPI based on
precipitation data was examined in this study; drought prediction based on drought indices considering
the effect of evapotranspiration, such as the Standardized Precipitation-Evapotranspiration Index [49]
or the Standardized Evapotranspiration Deficit Index [50], may also help to reduce vulnerability
to droughts.
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Abstract: Malaysia is one of the countries that has been experiencing droughts caused by a warming
climate. This study considered the Standard Index of Annual Precipitation (SIAP) and Standardized
Water Storage Index (SWSI) to represent meteorological and hydrological drought, respectively.
The study area is the Langat River Basin, located in the central part of peninsular Malaysia.
The analysis was done using rainfall and water level data over 30 years, from 1986 to 2016. Both of
the indices were calculated in monthly scale, and two neural network-based models and two
wavelet-based artificial neural network (W-ANN) models were developed for monthly droughts.
The performance of the SIAP and SWSI models, in terms of the correlation coefficient (R), was 0.899
and 0.968, respectively. The application of a wavelet for preprocessing the raw data in the developed
W-ANN models achieved higher correlation coefficients for most of the scenarios. This proves that
the created model can predict meteorological and hydrological droughts very close to the observed
values. Overall, this study helps us to understand the history of drought conditions over the past
30 years in the Langat River Basin. It further helps us to forecast drought and to assist in water
resource management.

Keywords: drought analysis; ANN model; drought indices; meteorological drought; SIAP; SWSI;
hydrological drought; discrete wavelet

1. Introduction

Drought gradually happens with a lack of rainfall for a long period of time (i.e., months or years).
This natural disaster is considered to be the most complex and least understood by many scientists.
The impact of drought varies with respect to the affected areas. The damage may include impacts on
the social and agriculture sectors, and the economy [1]. In 2007, it was reported that, because of the
tremendously hot temperature, heat waves, and heavy rainfalls, extreme events would accumulate and
become more frequent [2]. Although Malaysia experiences a tropical climate and receives more than
2000 mm of total rainfall annually, over the recent years, the country has experienced several drought
episodes. For example, the state of Melaka faced a serious water shortage when water levels in the dams
fell under critical levels in 1991, and the Durian Tunggal dam, which serves as a major water supply dam,
ran dry [3]. In 1998, an El Nino-related drought severely hit the states of Selangor, Kedah, and Penang,
which caused severe social and environmental impacts across the country [3]. This drought caused
water rationing and hardship for 1.8 million residents of Kuala Lumpur and other towns in Klang Valley.
The Langat River Basin also experienced a rise in temperature nearly 5◦ higher than usual on many days
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in March and April 2016 [4]. A research study applied the standardized precipitation index (SPI) to
evaluate dry conditions using the data from 10 gauging stations throughout peninsular Malaysia, and
found that extreme dry conditions are becoming more frequent than extreme wet conditions [5]. Thus,
emphasis should be placed on measures to reduce the impact of dry conditions, although the authorities
usually put more focus on reducing extreme wet conditions (i.e., floods).

Drought is generally analyzed by means of drought indices, which are effectually a function
of precipitation and other hydrometeorological variables [6]. Different drought indices have been
discovered and are used in different nations [6]. Hydrologists have defined four major categories of
drought, namely, meteorological drought, agricultural drought, hydrological drought, and socioeconomic
drought [1]. Drought monitoring by indices in specific areas must be based on the availability of
hydrometeorological data and the capability of the index to dependably detect spatial and temporal
differences through a drought event. Nevertheless, no single indicator or index alone can precisely
describe the onset and severity of the event. Numerous climate and water supply indices are used to
describe the severity of any drought event. Although none of the major indices is inherently superior
to the rest in all circumstances, some indices are better suited for certain uses than others [7]. In this
study, the first objective was to assess the drought using two drought indices (DIs), the Standard
Index of Annual Precipitation (SIAP) and the Standardized Water Storage Index (SWSI), to represent
meteorological and hydrological droughts, respectively. The SIAP and SWSI were chosen for their
simplicity, and they do not require parameter estimation. Gourabi [8] used SIAP and the dependable
rainfall index (DRI) for the recognition of drought years in several areas in Iran, and to analyze the
effects on rice yield and water surface. Sing et al. [9] used SIAP and a few other indices to assess the
drought spells in the Almora district of Uttarakhand, India. On the other hand, to calculate SWSI,
the Standardized Drought Assessment Toolbox (SDAT), developed by Farahmand and AghaKouchak
in 2015 [10], is used. The SDAT methodology standardizes the marginal probability of drought-related
variables (e.g., precipitation, soil moisture, and relative humidity) using the empirical distribution
function of the data. This approach does not require an assumption of the representativeness of
a parametric distribution function to describe drought-related variables. Additionally, the nonparametric
framework does not require a parameter estimation and goodness-of-fit evaluation, which makes the
SDAT framework computationally much more efficient. Wang et al. [11] used four drought indices,
including SWSI, in order to assess the intensity and timing of drought events in the upper and middle
Yangtze River Basin in China. In the second objective of this study, artificial neural network (ANN)–based
models coupled with a wavelet were developed and their performance evaluation was carried out for
both SIAP and SWSI models.

Many researchers have developed and applied various models to predict hydrological events, which
could be divided into two major types, conceptual models (CM) and data-based models (DDM) [12].
The conceptual models usually incorporate simplified schemes of physical laws and are generally
nonlinear, time-invariant, and deterministic, with parameters that are representative of watershed
characteristics. However, when they are calibrated to a given set of hydrological signals (time series),
there is no guarantee that the conceptual models can predict accurately when they are used to extrapolate
beyond the range of calibration or verification experience [13,14]. It was also a bit difficult to understand
the nature of these kind of models, so, in order to use such kind of models it was very important
that, in order to get better results, one should have all of the knowledge about the models and its
parameters [15]. However, DDM, which are basically numerical and based on biological neuron systems,
recently known as an artificial brain or intelligence, have received more attention in water related
applications because of their ease, fast progress time, and less data necessity. The ANN- or data-driven
models have become increasingly popular in hydrologic forecasting because they are effective at dealing
with the nonlinear characteristics of hydrological data [16]. Among the various machine learning
methods, artificial neural networks (ANNs), which include back-propagation neural network (BPNN),
radial basis function (RBF) neural network, generalized regression neural network (GRNN), Elman
neural network, and multilayer feed-forward (MLFF) network, are among the most popular techniques
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for hydrological time series forecasting [17]. Although data driven models have attained high levels in
the hydrological field, there is still space present to improve the forecasting methods [18]. Hydrological
processes are non-linear and arbitrary. By simply applying such models on an original time series, the
facts of alteration are overlooked, so that prediction correctness is reduced [19].

In the last decade, wavelet transform has become a widely applied technique for analyzing
variations, periodicities, and trends in time series [20,21]. Wavelet transform, which can produce a good
local representation of the signal, in both the time and frequency domains, provides considerable
information on the structure of the physical process to be modelled. Discrete wavelet transformation
provides a decomposition of original time series. Subseries decomposed by discrete wavelet transform,
from original time series, provide detailed information about the data structure and its periodicity [22].
The attributes of each subseries are different. The wavelet components of the original time series
improve on a forecasting model by giving useful information on various resolution levels [23]; however,
not much research has applied a wavelet for drought forecasting. A major limitation of artificial
neural networks (ANNs) is their inability to deal with nonstationary data. To overcome this limitation,
researchers have increasingly begun to use a wavelet analysis to preprocess the inputs of the hydrologic
data. Shabri [24] proposed a hybrid wavelet–least square support vector machine (WLSSVM) model
that combines the wavelet method and the LSSVM model for monthly stream flow forecasting.
Belayneh and Adamowski [25] studied drought forecasting using machine learning techniques and
found that coupled wavelet neural network models were the most accurate for forecasting three month
SPI (SPI 3) and six month SPI (SPI 6) values over lead times of one and three months in the Awash
River Basin in Ethiopia. Therefore, in this study, coupling wavelets with ANN was expected to provide
significant improvements in the model performance.

2. Materials and Methods

2.1. Standard Index of Annual Precipitation (SIAP)

The SIAP is known for transferring the raw data of precipitation to relative amounts, so that the
deviation of rainfall from mean can be divided to standard deviation. Khalili [26] developed the SIAP
and applied it to the study the processes of drought and wet conditions in Iran [27]. The values of the
SIAP can be computed by Equation (1), provided by Khalili [6,26], as follows:

SIAP =
Pi − P
PSD

(1)

where SIAP is the drought index, Pi is the annual precipitation, P is the mean of precipitation in the
period, and PSD is the standard deviation of the period. SIAP classifies drought intensity into five
major categories, namely, extremely wet, wet, normal, drought, and extreme drought. Details on the
SIAP classifications are given in Table 1 [9,27].

In this study, SIAP is applied for short-term/monthly drought analysis. The pattern of the
raw rainfall data shows a normal distribution, which supports the concept behind using SIAP on
a short-term/monthly scale. Hence, Equation (1) is rewritten as follows:

SIAP (M) =
Pi − P

SD

where SIAP (M) is the drought index on a monthly time scale, Pi is the monthly rainfall in the ith month
(i = 1, 2, 3, 4, . . . 360), P is the mean of the monthly rainfall data for the whole period of study, and SD
is the standard deviation of the monthly rainfall for the duration of the study.
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Table 1. Classification of Standard Index of Annual Precipitation (SIAP) values.

Classes of Drought Intensity SIAP Values

Extremely wet 0.84 or more
Wet 0.52 to 0.84

Normal −0.52 to 0.52
Drought −0.52 to −0.84

Extreme drought −0.84 or less

2.2. Standardized Water Storage Index (SWSI)

The SWSI is used to assess the deficit in the terrestrial water reserves. The SWSI calculation is
based on Equation (2). It is calculated by the SDAT toolbox in MATLAB, which was developed by
Farahmand and AghaKouchak [10].

SWSIi,j =
Si,j − Sj,mean

Sj,sd
(2)

where Si,j is the seasonal water level for year i and month j, Sj,mean is the mean water level of the
corresponding month for the duration of the study, and Sj,sd is the standard deviation. The details of
SWSI classification are given in Table 2.

Table 2. Classification of the Standardized Water Storage Index (SWSI).

SWSI Values Classification

2.0 or more Extremely wet
1.5 to 1.99 Very wet
1.0 to 1.49 Moderately wet

−0.99 to 0.99 Near normal
−1.49 to −1.00 Moderate drought
−1.99 to −1.5 Severe drought
−2 or less Extreme drought

2.3. Development of Forecasting Model Using ANN

An artificial neural network can be defined as a set of simple processing units working as a parallel
distributed processor [28]. These units, which are called neurons, are responsible for storing experimental
knowledge for later disposal. The ANNs mimic the biological nervous system, similar to the brain;
they learn through examples and have acquired knowledge stored in the connection weights between
neurons [29]. The data are introduced in the input layer and the network progressively processes the data
through the subsequent layers, producing a result in the output layer. The input neurons are linked to
those in the intermediate layer through wji weights, and the neurons in the intermediate layer are linked
to those in the output layer through wki weights. The symbols i, j, and k represent the ith, jth, and kth
neuron in input, hidden, and output layers, respectively. The network maps out the relation between the
input data and the output variables based on the nonlinear activation functions. The purpose of training
a network is to minimize the error between outputs of the network and the target values. The training
algorithm reduces the error by adjusting the weights and biases of the network. In training, the input
values are multiplied by the respective connection weights and then the biases are added. The same
process is repeated for the output layer, where the output of a hidden layer is used as an input the output
layer. The combination of net weighted input and biases netj to the jth neuron of the hidden layer can be
expressed as [30] follows :

netj =
l

∑
i=1

(
wjixi + bj

)
(3)
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where xi is the input value to the ith neuron of the input layer, while wji is the weight of the jth neuron of
the hidden layer connected to the ith neuron of the input layer, and bj is the bias of the jth hidden neuron.
The net value, netj, is passed through a transfer or activation function in the hidden layer to produce
an output from the hidden neuron. The output from the hidden layer can be expressed as [30] follows:

yj = f
(
netj
)
= fh

(
p

∑
i=1

(
wjixi + bj

))
(4)

where yj is the output from the jth hidden neuron. The output from the hidden layer, yj, is used as
an input to the output layer, and the same process as in hidden layer is repeated in the output neurons
in order to produce an output from the output layer. The net weighted input to the output neuron can
be represented by [30] the following:

netk =
q

∑
j=1

fo
(
yj
)
wki + bk (5)

Similar to above, the output from the kth neuron in the output layer is given by [30] the following:

yk = f (netk) = fo

(
q

∑
j=1

wki fh

(
p

∑
i=1

(
wjixi + bj

))
+ bk

)
(6)

The ANN weights are made and modified iteratively through a procedure called calibration.
The ANN models used in this study have a feed-forward multilayer perceptron (MLP) architecture
that was trained with the Levenberg–Marquardt (LM) back-propagation algorithm. MLPs have often
been used in hydrologic forecasting because of their simplicity. MLPs consist of an input layer, one
or more hidden layers, and an output layer. The Levenberg–Marquardt (LM) algorithm is used for
training because it is considered one of the fastest methods for training ANNs. The major drawback of
feed-forward network models, as used in this study, is their inability to mimic the temporal pattern
trend during the model training stage. Therefore, this type of model may not be capable of providing
a reliable and accurate forecasting solution [31]. The efficiency of the models may be assessed using
several statistical parameters, which describe the adhering degree among the data that are observed
and predicted by the model [32,33]. A neuron computes and gives feedback based on the weighted sum
of all of its inputs, according to an activation function based on its output [34]. The activation function
selected here is the sigmoidal activation function. Standard neural network training procedures adjust
the weights and biases in the network to minimize a measure of ‘error’ in the training cases, which
is most commonly the sum of the squared differences between the network outputs and the targets.
Finding the weights and biases that minimize the chosen error function is commonly done by using
some gradient-based optimization method, with derivatives of the error, with respect to the weights
and biases calculated by back-propagation. A detailed theory of the back-propagation algorithm is
beyond the scope of this research and can be found in Haykin [28]. In this study, the Neural Networks
Toolbox of MATLAB® is used. Figure 1 shows a simple neural network structure.

The performance of the presented models is evaluated based on their correlation coefficient (R)
and root mean-square error (RMSE). The estimation of R is done using Equation (7), as follows:

R =
1
n ∑n

t=1 (y
o
t − yo

t )
(
y f

t − y f
t
)

√
1
n ∑n

t=1(y
o
t − yo

t )
2
√

1
n ∑n

t=1
(
y f

t − y f
t
)2

(7)

where yo
t and y f

t are the observed and forecasted values at time t, respectively, and n is the number of
data points.
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Figure 1. Neural network structure.

The correlation coefficient (R) measures how well the predicted values correlate with the observed
values and shows the degree to which the two variables are linearly related. An R value close to unity
indicates a satisfactory result, while a low value or one that is close to zero implies an inadequate result.

The RMSE provides information about the predictive capabilities of the model. The RMSE evaluates
how close the predictions match the observations, shown in Equation (8), as follows:

RMSE =

√
1
n ∑n

t=1

(
yo

t − y f
t
)2 (8)

The criteria for deciding the best models are based on how small the RMSEs found in training,
testing, and validation of the data are.

2.4. Discrete Wavelet

Wavelet analysis is a multi-decomposition analysis that provides information on both the time and
frequency domains of the signal, and is the important derivative of the Fourier transform. The wavelet
will become an important tool in time series forecasting. The basic objective of wavelet transformation
is analyzing the time series data, in both the time and frequency domains, by decomposing the
original time series in different frequency bands using wavelet functions. Compared to the Fourier
transform, time series are analyzed using sine and cosine functions. Wavelet transformations
provide useful decompositions of the original time series by capturing useful information on various
decomposition levels.

Nowadays, wavelet analysis is one of the most powerful tools in the study of time series. Wavelet
transform can be divided into two categories, continuous wavelet transform (CWT) and discrete wavelet
transform (DWT). CWT is not often used for forecasting because of its computational complexity and
time requirements [35]. Among the reviewed papers by Nourani et al., [36], only about 20% of the
studies used the CWT for decomposing the hydrological time series, and the majority of studies utilized
the DWT. This is because real world observed hydrologic time series are measured and gathered in
discrete form, rather that in a continuous format [36]. DWT is often used in forecasting applications to
simplify numeric solutions. DWT requires less computation time and is simpler to apply. DWT is given
by the following:

ψm,n(t) =
1√
sm

o
ψ

{
t − nτosm

o
sm

o

}
(9)

where ψ (t) is the mother wavelet, and m and n are integers that control the scale and time, respectively.
The most common choices for the parameters are So = 2 and τo = 1. According to Mallat’s theory,
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the original discrete time series can be decomposed into a series of linearity-independent approximation
and detail signals, by using the inverse DWT. The inverse DWT is given by Mallat [37], as follows:

x(t) = T +
M

∑
m=1

2M−m−1

∑
t=0

Wm,n 2−
m
2 ψ
(
2−m t − n

)
. (10)

where Wm,n = 2− m
2 ∑N−1

t=0 . ψ(2−m t − n)x(t) is the wavelet coefficient for the discrete wavelet at scale
s = 2m and τ = 2m n.

2.5. W-ANN Model

The W-ANN model is obtained by combining the DWT and ANN models. The W-ANN model
uses the subseries obtained from using DWT on original data. The W-ANN model structure developed
in this study can be described with the following steps:

1. Decompose the original time series for each input into subseries components (details and
approximations) by DWT.

2. Select the most important and effective of each subseries component for each input by the
correlation coefficient.

3. Construct a W-ANN model using the new summed series obtained by adding the significant
components of details sub-time series and approximations sub-time series for each input as the
new input to the ANN, and the original output time series as the output of the ANN. Figure 2
shows a schematic representation of the model.

Figure 2. Schematic diagram of wavelet-based artificial neural network (W-ANN) model development.

2.6. Study Area and Data Collection

2.6.1. Langat River Basin

The Langat River is situated in the state of Selangor, Malaysia. This river basin is located near
Kuala Lumpur, the capital city of Malaysia. Therefore, the study area has been rapidly developed,
which makes it dependent on the Langat River for water supply [38]. The Langat River has an estimated
total catchment area of 1817 km2 and is located at latitude 2◦40′152” N to 3◦16′15” N and longitude
101◦19′20” E to 102◦1′10” E [30], and the main river is 141 km in length. The Beranang River, Semenyih
River, and Lui River are the main tributaries of the Langat River, as shown in Figure 3. There are two
reservoirs in the Langat River Basin, Hulu Langat and Semenyih. The northeastern part of the river
basin has a reduced level (RL) of 960 m above the mean sea level and is mountainous. The temperature
of the area varies from 23.5 ◦C to 33.5 ◦C all year, and the comparative humidity ranges from 63% to
95%, with an average of 81%. Heavier rainfall happens in the month of November, with a monthly
average rainfall of 270 mm; the average annual rainfall of the study area is about 2400 mm [38].
The area also sometimes experiences rainstorms, and these usually occur in the early evening through
the year, and are usually of a short duration with a high intensity.
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Figure 3. Langat River Basin.

2.6.2. Data Collection

Thirty years (1986–2016) of rainfall and water level data of stations were collected from the Department
of Irrigation and Drainage (DID), Malaysia. Table 3 gives details of the gauging stations, including the
station name, station number, coordinates (latitude and longitude), data availability, and percentage of
missing data.

Table 3. Details on rainfall and water level gauging stations.

Station Station Name Station No.
Coordinates Data Availability

(Years)
Missing
Data (%)Latitude (N) Longitude (E)

1 Sg. Semenyih di
Sg. Rincing WL 2918401 02◦54′55” 101◦49′25”

1986–2016
5.4%

2 Ldg. Dominion RF 3018107 03◦00′13” 101◦52′55” 6.5%

For the simplicity of naming the stations, water level (WL) station Sg. Semenyih di Sg. Rincing
(WL 2918401) will be referred as station 1, and rainfall station (RF) Ldg. Dominion (RF 3018107) as
station 2. The missing rainfall data of station 2 is estimated using the normal ratio method from the
observations of rainfall at some of the other stations, as close to and as evenly spaced around the
station with the missing record as possible [39].

2.6.3. Distribution of Rainfall and Water Level

The mean and median values were estimated for 30 years of raw data, from October 1986 to
September 2016, and are presented in Figure 4. The most likely time for drought to happen is when
the rainfall is low. It can be seen that, for the distribution of the rainfall data for station 2, the highest
mean and median were in November, at 369.4 mm and 317.0 mm, respectively. The lowest rainfall was
in January, with a mean of 138.4 mm and median of 126.3 mm, followed by June, July, and February.
There are basically three different seasons in the Langat River Basin of Malaysia. The wet period of the
year is from October through to the beginning of January, and the dry months are generally observed
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from January to March, and June to September. October and November are the wettest months, with
an average rainfall of 321.5 mm and 369.4 mm, respectively.

Figure 5 presents the water level data of station 1, and it can be seen that the water level steadily
decreased for the second half of the duration of this study.
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Figure 4. Monthly rainfall distribution at station 2, estimated using data from 1986 to 2016.
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Figure 5. Water level data for 30 years at station 1 (1986–2016).

3. Results and Discussion

3.1. Assessment Using Standard Index of Annual Precipitation (SIAP)

As illustrated in Figure 6, the highest SIAP value was 4.921 (October 1994) and the lowest value
was −1.591 (August 1990). In 1988, the drought period was 11 months; followed by 1990, with a drought
period of 10 months; and then 2015, with a nine month dry period. Figure 6 also shows that in 1988,
there was a 10 month dry period from March to December.

Figure 7 shows a categorization of the results for the five different classes of drought. It shows that
17% of the months were extremely wet, 7% were wet, 39% were normal, 17% had drought, and 20%
had very severe drought. Overall, drought happened during 37% of the total months, and wet periods
occurred during 24% of the total months. Table 4 shows a summary of the drought classifications.
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Figure 6. Standard Index of Annual Precipitation (SIAP) values for 30 years at station 2.
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Figure 7. Distribution of SIAP values into classes (station 2).

Table 4. Summary of drought classifications for station 2.

Category Number of Months Percentage (%)

Extremely wet 62 17
Wet 25 7

Normal 140 39
Drought 61 17

Very severe drought 72 20
Total 360 100

Artificial Neural Network (ANN) Model

The ANN architecture does not have a systematic way to establish suitable architecture. Networks
that are too small and simple can lead to underfitting, while networks that are too complex tend to
overfit the training pattern [40]. Usually, nonlinear sigmoidal activation functions are used, as reported
in the literature, which were also adopted in this study. The inputs to the ANN model were normalized
and kept within the range of 0.1 to 0.9. Normalization or scaling is not really a functional requirement
for the NNs to learn, but it significantly helps as it transposes the input variables into the data range
that the sigmoid activation functions lie in (i.e., 0.1). The learning rate and momentum coefficient
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are influential parameters that control the convergence rate, but optimize them for the best output.
Here, the two parameters were kept constant at 0.4 and 0.6, respectively, throughout the network
structure for various numbers of hidden neurons. The network input models that were tested for
the forecasting were based on the SIAP at station 2, shown by Equations (11) and (12). The input
combinations consisted of lagged data of the rainfall and drought index, and the output was kept as
a single drought index variable.

SIAP (t) = f (Rt−1, Rt−2, Rt−3) Input model number 1 (11)

SIAP (t) = f (SIt−1, SIt−2, SIt−3) Input model number 2 (12)

where SIAP or SI is the drought index; R is the precipitation; n is the time lag, which is effectively the
lead time of the forecast; and t is time in months. The input models based on the main parameter,
rainfall, in calculating the index or a drought index itself as input, performed better in the forecasting
using ANN [41]. The same study also illustrated a lack of impact of the secondary parameters on
the performance of the networks. In the ANN model stated above, there are three classifications of
samples, training, which was kept at 70% (252 samples); validation, 15% (54 samples); and testing, 15%
(54 samples). In the majority of the cases, data division is carried out on an arbitrary basis. However,
the way the data divided can have a significant effect on the model performance. Shahin et al. [42]
investigated the issue of data division and its impact on the ANN model performance for a case
study of predicting the settlement of shallow foundations on granular soils. The results indicated
that the statistical properties of the data in the training, testing, and validation sets need to be taken
into account in order to ensure that the optimal model performance is achieved [42]. During training,
it adjusts the network according to its final measured error. The validation process was used at the
end of training as an extra check on the performance of the model. If the performance of the network
was found to be consistently good on both the test and the validation samples, then it was reasonable
to assume that the network would generalize well on unseen data. For testing, this does not affect
the training part, but it provides an independent measure of the network performance during and
after training. Each MLP was trained with 5 to 15 hidden neurons in a single hidden layer, as shown in
Table 5, to select the most effective model by analyzing the performance. The three best-performing
combinations are shown for each input model.

Table 5. Correlation coefficient (R) of artificial neural network (ANN) network structure (SIAP).

Input Model Number Number of Neurons
R

Training Validation Testing Overall

1 10 0.907 0.865 0.908 0.899
1 15 0.803 0.845 0.758 0.800
1 12 0.796 0.765 0.801 0.783
2 8 0.712 0.813 0.705 0.741
2 9 0.737 0.799 0.782 0.770
2 10 0.882 0.875 0.851 0.868

For the comparison between the output and target, it was found that for input model number 1,
for training, validation, testing, and overall, the R values were 0.907, 0.865, 0.909, and 0.899, respectively.
An R value of 1 means a close relationship, 0 means no relationship. So, this means that the relationship
between the two (output and target) are close and related, which is shown in Figure 8. The errors in
the training, validation, and testing stages are illustrated in Figure 9.

Figure 10 displays a section of time series from January 1987 to December 1989 of the SIAP observed
values against the forecasted ones, by using input model number 1. The results effectively exemplify the
high accuracy of the short-range forecasts of the droughts at station 2. Such studies may be a way to
identify the operational accuracy of forecasts, and have been used by others for similar purposes [43].
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The forecasted and actual index values were similar, so the model can be said to be reliable.
Therefore, this ANN model can be used to predict short- to medium-term drought occurrences in
Malaysia. In addition, SIAP is an effective index for the assessment of drought monitoring and the
characteristics of drought conditions in the Langat River Basin. Authorities can render early warnings
for the timely implementation of preparedness based on predictions.
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Figure 10. Comparison of observed and forecasted SIAP at station 2 of input model number 1.

3.2. Assessment Using SWSI for Hydrological Drought

Figure 11 shows the time series created using SWSI for the 30 years of data at station 1. The data
used for the analysis was the water level of the river. Initially, the values are seen to be classified
as very wet or above, then, they slowly change to near normal. The trend of SWSI in Figure 11 is
similar to the raw input water level data, seen in Figure 5, which shows that almost the first half of the
whole period was very wet or above normal, and the second half was below normal or had droughts.
Climate change, rapid urbanization, environmental degradation, and industrial development may
have resulted in water and related resources within the basin becoming increasingly stressed. A study
conducted in Malaysia highlighted that extreme dry conditions are becoming more frequent than
extreme wet conditions [5]. With reference to Figure 5, the time series starts with one month of
moderately wet conditions, which follows 12 months of near-normal conditions. From November 1987
to May 1994 (months 14 to 92), the conditions are classified as very wet, extremely wet, or moderately
wet. After this wet period, the values are observed to decrease gradually, from very wet conditions to
near normal conditions. From June 1994 to November 2008 (months 93 to 266), the conditions were
near normal. However, there were few months that were moderately wet, very wet, or extremely wet.
The first drought occurred in December 2008 (month 267), with an index value of −1.39. Drought
started to occur more frequently from this point onward. Near-normal conditions are observed from
January 2009 (month 268) to February 2013 (month 317). However, within this period, the months
with drought increased. From March 2013 (month 318) to September 2016 (month 360), all of the
months experienced drought. The most frequent type of drought was moderate drought, followed
by extreme drought. The number of occurrences of severe drought is less than that of moderate and
extreme drought.

Table 6 shows the number of months that each drought occurred, with percentages varying from
2.50% to 66.67%. The most observed condition within the period of study was near normal. Near
normal conditions occurred for 240 months, about 66.67%. Except for the near normal, all of the other
conditions were below 11%. Moderate drought occurred for 37 months (10.28%). Moderately wet
conditions occurred for a similar number of months (35 months; 9.72%). Very wet conditions were
observed in 16 months (4.44%), followed by extremely wet conditions in 12 months (3.33%). Extreme
drought occurred in 11 months (3.06%). The least frequent condition was severe drought, which
occurred in 9 months (2.5%).
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Figure 11. Standardized Water Storage Index (SWSI) values for station 1 for 30 years (360 months).

Table 6. SWSI drought percentage from station 1.

Drought Classification Condition Number of Months Percentage (%)

Extremely wet >2 12 3.33
Very wet 1.5 to −2 16 4.44

Moderately wet 1.0 to 1.5 35 9.72
Near normal −1.0 to 1.0 240 66.67

Moderate drought −1.5 to −1.0 37 10.28
Severe drought −2.0 to −1.5 9 2.50

Extreme drought <−2 11 3.06

Artificial Neural Network Model for Hydrological Drought

The network input models that were tested are based on SWSI at station 1, shown by Equations (13)
and (14), as follows:

SWSI (t) = f (Wt−1, Wt−2, Wt−3) Input model number 3 (13)

SWSI (t) = f (SWt−1, SWt−2, SWt−3) Input model number 4 (14)

where SWSI or SW is the drought index, W is the water level, and n is the time lag, which is effectively
the lead time of the forecasted SWSI model developed for station 1. Similar to the SIAP ANN model,
in this case as well, each MLP was trained with 5 to 15 hidden neurons in a single hidden layer,
as shown in Table 7, in order to select the most effective model by analyzing performance. The three
best-performing combinations are shown for each input model.

Table 7. Correlation coefficient (R) of ANN network structure (SWSI).

Input Model Number Number of Neurons
R

Training Validation Testing Overall

3 10 0.968 0.967 0.969 0.968
3 11 0.898 0.908 0.951 0.918
3 7 0.767 0.801 0.822 0.796
4 15 0.901 0.855 0.835 0.865
4 10 0.911 0.899 0.853 0.888
4 6 0.751 0.772 0.811 0.779
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The output, which is the forecasted results, is plotted together with the observed results in
Figure 12, using the SWSI input model (number 3). The dotted line shows the forecasted values and
the solid line shows the observed results, which were calculated by SWSI. In general, the two plots are
not very different. The forecasted values have only minor differences.

0 30 60 90 120 150 180 210 240 270 300 330 360

Observed Forcasted

Months

Figure 12. SWSI observed and forecasted values (360 months) of station 1 for input model number 3.

An error histogram for input model number 3 of SWSI was also plotted, and is shown in Figure 13.
The error histogram assists in authenticating the performance of the network. The blue part represents
the training data and the green part represents the validation data. The biggest portion of data is
surrounding the zero line. The zero line offers a way to confirm the outliers to determine if the data
contains errors. It can also confirm that those data features are not like the leftovers of the dataset [44].

Figure 13. Error histogram for SWSI input model number 3.
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The R value shown in Figure 14 concludes the connection between the output or target values of
the artificial neural network models. The R value is also known as the correlation coefficient. Strong
and random connections were identified when the R value was 1 and 0, respectively [45]. The line
must be at a 45◦ angle toward 1 to be a perfect fit. The 45◦ line means that the output value is equal to
the input target values. For SWSI, the R values for training, validation, testing, and overall, are the
same at 0.96. This indicates a strong correlation in the prediction of drought, based on the observed
values and developed model [44].

A time series of the calculated indices plotted shows that drought is not increasing gradually,
but occurs irregularly. The water level decreased and drought increased gradually every year. SWSI
considers values between +1 and −1 as near normal, whereas other hydrological drought indices
(e.g., SDI) consider all of the values below 0 as drought.

Figure 14. Correlation coefficient for SWSI at station 1 for input model number 3.

3.3. W-ANN Model

As seen in Table 8, there is a correlation between the DWT wavelet components D1, D2, D3,
D4, D5, D6, D7, and D8 of the SIAP, SWSI, rainfall, and water level series, with the original series.
It can be observed, in the case of SIAP, SWSI, and rainfall, that D1, D2, D3, and D8 show significantly
higher correlations than the average of correlations among them compared to the D4, D5, and D6
components. However, for the water level, only D7 and D8 subseries show higher than average
correlations. According to the correlation analysis, the effective components were selected as the
dominant wavelet components, as stated above. Afterwards, the significant wavelet components and
the approximation (A8) component were added to constitute the new series.
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Table 8. The correlation coefficient between each sub-time series and original drought indices/raw
input series.

Discrete Wavelet
Components (db3)

Correlation between Detailed Sub-Time Series and Observed
Drought Index/Rainfall/Water Level Data

SIAP SWSI Rainfall Water Level * Dominant

D1 0.5291 0.1996 0.5291 0.1335
√

D2 0.5732 0.2221 0.5732 0.1522
√

D3 0.3645 0.1900 0.3645 0.1409
√

D4 0.2130 0.1322 0.2130 0.1120 x
D5 0.1616 0.1519 0.1616 0.1333 x
D6 0.2576 0.1885 0.2576 0.0694 x
D7 0.2015 0.0820 0.2015 0.3151 *
D8 0.3201 0.3923 0.3201 0.4303 *

√
Average 0.3274 0.1948 0.3274 0.1858

* Only D7 and D8 subseries show higher than average correlations.
√

indicates that the subseries is dominant;
x indicates that the subseries is not dominant.

Secondly, the W-ANN models were developed for monthly drought prediction, using wavelet
subseries. The most important part of this wavelet-based model is the selection of inputs for its formation.
The summed wavelet components (the new series) instead of the original data were employed as inputs
of the W-ANN model for drought prediction. Four different models based on combinations of different
input data (SIAP, SWSI, rainfall, and water level) were evaluated. The forecasting performance of the
wavelet–neural network models are presented in Table 9, in terms of RMSE and R. The table shows that
the W-ANN model has a significant positive effect on the monthly drought forecast. As seen from the
table, model number 4, with three months of previous SWSI data, has the lowest RMSE and the highest
correlation coefficients among all of the wavelet–neural network models. For meteorological drought
prediction, while the highest correlation coefficient (R) obtained by the ANN model is 0.899, with the
wavelet-ANN model, this value increased to 0.940. Similarly, for the case of hydrological drought, while
the R obtained by the ANN model is 0.968, with the wavelet-ANN model, this value increased to 0.973.
The application of wavelet in the ANN model achieved higher correlation coefficients for all of the
models, except for input model number 3. In both types of drought forecasting, it was found that the
models based on preceding drought index values as inputs performed better than the models developed
with raw data, such as rainfall or water level as inputs. This proves that the created models can improve
hydrologic and meteorological drought prediction close to the observed values.

Table 9. Root mean-square error (RMSE) and R statistics of different W-ANN models.

Input Model (After Wavelet
Decomposition)

RMSE (Validation) R (Overall) Hidden Neurons

1 (Rt-1, Rt-2, Rt-3) 0.38 0.932 8
1 (Rt-1, Rt-2, Rt-3) 0.41 0.931 10
1 (Rt-1, Rt-2, Rt-3) 0.38 0.901 15

2 (SIt-1, SIt-2, SIt-3) 0.40 0.922 8
2 (SIt-1, SIt-2, SIt-3) 0.42 0.931 10
2 (SIt-1, SIt-2, SIt-3) 0.39 0.940 15
3 (Wt-1, Wt-2, Wt-3) 0.40 0.902 8
3 (Wt-1, Wt-2, Wt-3) 0.43 0.901 10
3 (Wt-1, Wt-2, Wt-3) 0.38 0.910 15

4 (SWt-1, SWt-2, SWt-3) 0.19 0.971 10
4 (SWt-1, SWt-2, SWt-3) 0.17 0.972 13
4 (SWt-1, SWt-2, SWt-3) 0.21 0.973 15
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Table 10 shows the performance improvement of the W-ANN models, and it can be seen that
the models for meteorological drought forecasting improved by 3.67% and 8.29%; however, for the
hydrological drought forecasting models, there was a decrease of R value by 5.99% for input model
number 3. Input model number 4 performed better than the other models that were considered in this
study, with a performance improvement of 9.57%.

Table 10. Performance improvement of R statistics of different W-ANN models.

Input Model
R (With Wavelet
Decomposition)

R (Without Wavelet
Decomposition)

Performance
Improvement (%)

1 (Rt-1, Rt-2, Rt-3) 0.932 0.899 +3.67
2 (SIt-1, SIt-2, SIt-3) 0.940 0.868 +8.29
3 (Wt-1, Wt-2, Wt-3) 0.910 0.968 −5.99

4 (SWt-1, SWt-2, SWt-3) 0.973 0.888 +9.57

Figure 15 shows a scatter plot using model number 4 (SWSI), and it shows that the W-ANN forecasts
approximate the general behavior of the observed data more satisfactorily for the drought months.

Figure 16 shows a scatter plot using model number 3 (SIAP), and it shows that the W-ANN
forecasts do not linearly approximate the general behavior of the observed data, but the correlation
coefficient is 0.940.
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Figure 15. Scatter plot comparing observed and forecasted hydrological drought using W-ANN models.
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Figure 16. Scatter plot comparing observed and forecasted meteorological drought using W-ANN models.
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4. Conclusions

Drought occurrences in the Langat River catchment of peninsular Malaysia were characterized
using meteorological and hydrological drought indices, SIAP and SWSI, respectively. Overall, SWSI
and SIAP were found to be effective indices for the assessment of drought. The occurrence of
hydrological and meteorological droughts was found to be around 16% and 37% by SWSI and SIAP,
respectively. Two neural network-based models and two wavelet-based ANN models were developed
using the values of SIAP and SWSI. For SWSI and SIAP, correlation coefficients of 0.96 and 0.90,
respectively, were calculated. Therefore, it is concluded that both of the models are found to be reliable.
However, with the W-ANN model, these values increased to 0.940 and 0.973 for meteorological and
hydrological drought forecasting, respectively. This proves that the proposed models are able to
predict hydrologic and meteorological drought very close to the observed values. This study can help
in the drought assessment and the prediction of drought occurrence in the study area. Authorities can
issue an early warning for the timely implementation of preparedness, based on predictions.
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Abstract: Reservoir inflow forecasting is crucial for appropriate reservoir management, especially
in the flood season. Forecasting for this season must be sufficiently accurate and timely to allow
dam managers to release water gradually for flood control in downstream areas. Recently, several
models and methodologies have been developed and applied for inflow forecasting, with good
results. Nevertheless, most were reported to have weaknesses in capturing the peak flow, especially
rare extreme flows. In this study, an analogue-based forecasting method, designated the variation
analogue method (VAM), was developed to overcome this weakness. This method, the wavelet
artificial neural network (WANN) model, and the weighted mean analogue method (WMAM) were
used to forecast the monthly reservoir inflow of the Sirikit Dam, located in the Nan River Basin,
one of the eight sub-basins of the Chao Phraya River Basin in Thailand. It is one of four major
dams in the Chao Phraya Basin, with a maximum storage of 10.64 km3, which supplies water to 22
provinces in this basin, covering an irrigation area of 1,513,465 hectares. Due to the huge extreme
monthly inflow in August, with inflow of more than 3 km3 in 1985 and 2011, monthly or longer
lead time inflow forecasting is needed for proper water and flood control management of this dam.
The results of forecasting indicate that the WANN model provided good forecasting for whole-year
forecasting including both low-flow and high-flow patterns, while the WMAM model provided
only satisfactory results. The VAM showed the best forecasting performance and captured the
extreme inflow of the Sirikit Dam well. For the high-flow period (July–September), the WANN model
provided only satisfactory results, while those of the WMAM were markedly poorer than for the
whole year. The VAM showed the best capture of flow in this period, especially for extreme flow
conditions that the WANN and WMAM models could not capture.

Keywords: reservoir inflow forecasting; artificial neural network; wavelet artificial neural network;
weighted mean analogue; variation analogue

1. Introduction

Reservoirs are manmade structures that are widely used in water resource management, and are
recognized as some of the most efficient infrastructure components in integrated water resource
management and development [1]. Reservoirs are among the major solutions to water demand
and water-related problems, including irrigation, hydropower, urban and industrial water supply,
conservation of ecology, and flood control. Nevertheless, there are several factors that affect the
performance of the reservoir system, for example, the reservoir sedimentation [2] and the reservoir
operation. In reservoir operation, care is required, especially for multipurpose reservoirs where there
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may be a number of potentially conflicting objectives. For water supply, operations should keep
reservoirs as full as possible, whereas flood control requires reservoirs to be kept as empty as possible
to allow the capture of flood water [3]. Reservoirs should be neither partially empty at the end of
the rainy season nor full at the time of a series of peak floods that lead to heavy releases, causing
floods in downstream areas [4]. Due to its complexity, reservoir operation is a challenging problem
for water resource planners and managers. To optimize operating rules, many optimization and
simulation models have been developed and applied over the past several decades [5–9]. However,
these operating rules are not easy to implement, as appropriate reservoir operations depend on the
accuracy of inflow forecasting and the operating time horizon [10]. Accurate inflow prediction is
not only an important non-engineering measure to ensure flood-control safety and increase water
resource use efficiency, but also can provide guidance for reservoir planning and management, because
streamflow is the major input into reservoirs [11,12].

Due to its importance, several models and methodologies for reservoir inflow forecasting have
been developed and applied in real-world situations [13]. One method that is widely used to forecast
reservoir inflow is the artificial neural network (ANN) model. Although this is a black-box model in
which the internal structure of the process involved cannot be understood, it has many advantages
from the viewpoint of practical application. First, it is able to recognize the relation between the input
and output variables without explicit physical consideration [14]. Second, it is very convenient to
review the model when the data of interest are suspected as having changed. It can be recalculated
as soon as new data are available with low cost and time requirements. Third, once the model is
developed, it can be adapted very flexibly to other areas or for other purposes. In addition to these
advantages, ANN models have been shown to be applicable to hydrology, including reservoir inflow
prediction [14,15]. There have been several reports of the application of the ANN model for predicting
short-term reservoir inflow at hourly and daily time scales [16,17]. Most studies have concluded
that the ANN model provides satisfactory forecasting results. The ANN model can also be applied
to forecast long-term and seasonal reservoir inflow as reported in several studies [18–20]. Some
studies attempted to improve forecasting results by incorporating sea-surface temperature (SST) and
climatic indices as inputs of the ANN model [21]. Most studies reported the good prediction results
and the incorporation of SST provide improved predictions relative to the same model using only
reservoir inflows.

Although ANNs have been used successfully in various fields, the precision of the results has still
required improvement in many cases. Several hybrid ANN models have been proposed to fulfill this
requirement. Kim and Valdés [22] developed a model for drought forecasting in the Conchos River
Basin in Mexico, making use of the ability of neural networks to model and forecast nonlinear and
non-stationary time series and the ability of wavelet transforms to provide useful decompositions of
an original time series. The results indicated that the conjunction model significantly improved the
ability of neural networks to forecast the index regional drought. A similar study which indicated
the successful integration of the ANN and wavelet analysis to predict water levels in the Nan River,
Thailand, can be found in the work of Amnatsan et al. [23].

Another technique that has been widely used in forecasting is the analogue method (AM),
which was first introduced by Lorenz in 1969 to predict the evolution of the states of a dynamic
system [24]. This is the simplest statistical technique that can establish nonlinear relationships between
variables in a straightforward manner [25]. The analogue forecasting approach is based on the
hypothesis that two relatively similar synoptic situations may produce similar local effects [26]. This
approach has two main advantages and has been commonly used in weather prediction. First,
the use of observed weather patterns helps to maintain the local-scale weather in the simulated
field. Second, it is easy to construct scenarios for non-normally distributed variables, such as daily
precipitation, because the AM does not assume the form of probability distribution of downscaled
variables [27]. There have been many reports of successful implementation of the AM in weather
prediction [25,26,28,29]. However, there have been few reports regarding its application to streamflow
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forecasting. Bellier et al. [30] evaluated probabilistic flood forecasting on the Rhone River using
ensemble- and analogue-based precipitation forecasts. They reported that forecasting performance of
the two methods for the peak amplitude and peak timing of floods was very similar. Svensson [31]
performed flow forecasting based on flow persistence and historical flow analogues. The river flows at
one and three months in the future at 93 individual river flow stations across the United Kingdom
were forecast using two historical AMs, i.e., the weighted mean method and the shifted weighted
mean method. The results indicated that forecasts based on persistence of the previous month’s
flow generally outperformed the analogue approach, particularly for slowly responding catchments
with large underground water storage in aquifers. For the weighted-mean AM, the forecasting
performance was increased with the length of historical flow records. The considerable success used of
the weighted-mean in an interlayer forward validated scheme was reported in Panagoulia [32].

In this study, the wavelet artificial neural network (WANN) and the weighted mean AM (WMAM)
were used to forecast the monthly reservoir inflows of the Sirikit Dam in Thailand. Monthly and
seasonal inflow forecasting are very important for proper management of this multipurpose dam,
which has a large catchment area of 13,130 km2 and maximum storage of 10.64 km3. This is one of four
major dams that supply water to 22 provinces in the Chao Phraya Basin, covering an irrigation area
of 1,513,465 hectares. Difficulty in the operation of this dam occurs mainly in the monsoon season,
especially in July to September, the months which account for about 50% of the annual inflow. During
this period, the dam managers have to decide whether to keep or release water. They have to retain
sufficient water to supply demand in the next dry season, but for downstream flood control they must
not keep too much water. As the capacity of the downstream river is limited, large amounts of water
cannot be released in too short a time. An incorrect decision due to lack of an accurate and timely inflow
forecast will lead to excessive release in a short time, resulting in flooding in downstream areas. On the
other hand, a long forecast lead time will allow dam managers to release water gradually. Therefore,
monthly or seasonal weather and reservoir inflow forecasting are crucial for proper management of
this dam [33].

In addition to the WANN and WMAM methods, a forecasting method designated as the variation
analogue method (VAM) was developed and employed to forecast the reservoir inflow of this dam.
This study was performed to evaluate the performance of different forecasting methods in predicting
the reservoir inflow, especially with regard to predicting extreme flow. Many researchers have reported
that ANN-based models cannot predict extreme values in river flow [34,35]. The WMAM, which was
found to show good predictive performance for a low-response watershed [31], may not be able to
forecast the peak flow for the high-response catchment of the Sirikit Dam.

Several previous studies have indicated that SSTs and ocean indices are associated with the
seasonal and interannual climate of Thailand [36–39], and therefore the variability of rainfall and
reservoir inflows may be associated with SST anomalies. Manusthiparom [40] reported that adding
SSTs as ANN inputs significantly improved the results of monthly rainfall and runoff forecasting for the
Chao Phraya River Basin. In this study, we incorporated SSTs and ocean indices into the WANN and the
VAM to improve the performance of inflow forecasting. Their forecasting performance was compared
using four indicators: the root mean square error (RMSE), the correlation (R), the Nash–Sutcliffe
efficiency index (EI), and the coefficient of determination (CD).

2. Study Area and Methods

2.1. Study Area and Data

The Sirikit Dam is located in the Nan River Basin, one of the eight sub-basins of the Chao
Phraya River Basin in Thailand, as shown in Figure 1. It is the largest earth-filled dam in Thailand,
with a catchment area of 13,130 km2 and a maximum storage of 10.64 km3. The main functions of
this dam are flood prevention, water supply for domestic use, ecological conservation, agriculture,
industry, fishing, and as an important tourist attraction.
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The sources of data used in this study are listed in Table 1. The monthly reservoir inflow data of
Sirikit Dam used in this study were obtained from the Electricity Generating Authority of Thailand
(EGAT). The data were for the period from January 1974 to December 2014.

 

Figure 1. Location of the Sirikit Dam.

Table 1. Sources of data used in this study.

Data Used SST Regions/Ocean Index Name Source

Sea-surface temperature (SST)

Niño 1 + 2

The U.S. National Oceanic and
Atmospheric Administration

(NOAA)

Niño 3
Niño 3.4
Niño 4

Pacific Ocean
South China Sea

Andaman Sea

Ocean index
Southern Oscillation Index (SOI)

Dipole Mode Index (DMI)
Japan Agency for Marine-Earth

Science and Technology
(JAMSTEC)

Monthly reservoir inflow Electricity Generating Authority
of Thailand (EGAT)

The SSTs and the El Niño/La Niña Southern Oscillation (ENSO) indices in Niño 3, Niño 4,
Niño 1 + 2, and Niño 3.4 regions, including the Southern Oscillation Index (SOI), were used in
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this study. The data were taken from the U.S. National Oceanic and Atmospheric Administration
(NOAA), available at http://www.cpc.ncep.noaa.gov/. These are monthly data from January 1950 to
December 2014.

In addition, the Dipole Mode Index (DMI) was also used as another ocean index. The DMI,
which represents the intensity of the Indian Ocean Dipole (IOD), shows the anomalous SSTs between
the western Indian Ocean and the southeastern Indian Ocean. The DMI data were obtained from the
Japan Agency for Marine-Earth Science and Technology (JAMSTEC) website (http://www.jamstec.go.
jp).

Additional SST data for the Pacific Ocean, the South China Sea, and the Andaman Sea were also
used in this study to improve the accuracy of reservoir-inflow forecasting. The Extended Reconstructed
Sea Surface Temperature (ERSST) version 3b dataset, a global monthly SST analysis derived from
the International Comprehensive Ocean-Atmosphere Dataset with missing data filled in by statistical
methods, was taken from the U.S. National Oceanic and Atmospheric Administration (NOAA),
available at http://www.ncdc.noaa.gov.

For the WANN forecasts, data from January 1974 to December 2004 were used for training, from
January 2005 to December 2010 for validation, and from January 2011 to December 2014 for testing
of the models. For the WMAM and VAM forecasts, the inflow data from January 1974 to December
2004 were used as historical analogues for forecasting inflow from January 2005 to December 2014.
This forecasting period corresponded to the validation and testing periods in the WANN models.

2.2. Wavelet Artificial Neural Network

The WANN is a hybrid version of the ANN model in which wavelet analysis is used as a data
pre-processing technique to improve accuracy. According to the investigation of the American
Society of Civil Engineers (ASCE) Task Committee on Application of Artificial Neural Networks
in Hydrology [14] that a feed-forward network with a single hidden with an arbitrary number of
sigmoidal hidden nodes can approximate any continuous function, a multilayer perceptron (MLP)
feedforward network with one hidden layer was adopted in this study. The network was trained in
a supervised manner with an error back-propagation algorithm. As suggested in Panagoulia et al. [41],
input variables should be “first stage” selected, depending on their robustness, from an inclusive set
which influences the physical model underlying the ANN structure with the constraint of minimizing
redundancy and noise. In the second stage of selection, an association via statistics must be established
to determine those first stage input variables that are maximally and distinctly connected to the major
internal model variables. In this study, the reservoir inflow was selected and the autocorrelation
analysis between different lag versions of those inflows was performed in an initial experiment. After
that, other inputs were selected and cross-correlation analyses between the different lag versions of
those inputs and the inflows were performed. Trials with changes in activation function, learning
rate, number of hidden neurons, and momentum of the ANN network were also performed to
obtain the best forecasting results. After obtaining the best forecasting results for each input dataset,
the original input data were then decomposed into their detailed (high frequency) and approximated
(low frequency) components by a discrete wavelet transform. Based on the study of Wang et al. [42],
using different mother wavelets in the wavelet neural network affected the accuracy of prediction
results. In this study, the Haar wavelet, the simplest and oldest of all wavelet functions [43], was used.
This wavelet function provided a good prediction result in the study of Wang et al. [42]. The simplicity
of this wavelet function facilitated the decomposition process and consequently supported practical
implementation. Only one level of decomposition was used in this study. After decomposition,
the decomposed data were used as the input for the ANN model. The architecture of the WANN
model used in this study is shown in Figure 2.

186



Water 2018, 10, 1614

Figure 2. Architecture of the wavelet artificial neural network (WANN) model.

2.3. Weighted Mean Analogue Method

The full details of the WMAM were presented by Svensson [31]. In the present study, the forecast
was obtained by first calculating the reservoir inflow anomalies. In the calculation, monthly reservoir
inflows were transformed to the log form to ensure that the distribution was similar to a normal
distribution, and when assessing the similarity of the analogues to the recent past, the highest
inflows became less extreme. After log transformation, standardized reservoir inflow anomalies
were calculated for use in the analysis as follows. For each of the 12 calendar months (mon), the mean
reservoir inflow (mmon), and standard deviation (smon) were calculated from the log-transformed
monthly reservoir inflow (qt). A series of standardized monthly anomalies (at) was then calculated as:

at =
qt − mmon

smon
(1)

where t denotes the serial number of the month, starting from January 1974, and mon refers to the
calendar month corresponding to t. Forecasts could be made once the observed data for the latest
month were received by comparing the monthly anomalies of the most recent past months with all
possible historical sequences of anomalies covering the same months of the year. From this annual
series of potential analogues based on the RMSE, the Nana historical analogues most similar to those of
the recent past were selected. Then, we used the inverse of these RMSEs to weight the inflow anomalies
in the months following the analogues to obtain the WMAM forecast. The RMSE was calculated for
each potential analogue in the observed record as follows:

RMSE =

√√√√ 1
Dana

Dana

∑
k=1

(
ap(k)− ar(k)

)2 (2)

where ap(k) is the inflow anomaly for each month k in the potential analogue of duration Dana, and ar(k)
is the corresponding inflow anomaly in the recent past. The RMSEs for the selected Nana analogues
were used to calculate the weight, w, for each analogue as follows:

w(n) =
1

RMSE(n)
/

Nana

∑
n=1

1
RMSE(n)

(3)

where n = 1, . . . , Nana is the rank of the ordered RMSEs (the potential analogue ap(n) with the smallest
RMSE had rank n = 1). The weighted mean forecast anomalies, af(m), for each month m = 1, . . . , Df in
the forecast duration, Df, formed the last part of the constructed analogue, ac, and were calculated as:

a f (m) = ac(Dana + m) =
Nana

∑
b−1

w(b)ap,b(Dana + m), (4)
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where ap,n is the vector of inflow anomalies for the potential analogue with rank n. The Dana, Nana,
and Df were set to 5, 5, and 1, respectively.

2.4. Variation Analogue Method

The VAM was developed and used to forecast the reservoir inflow in this study. The idea behind
this method emerged from the concept of a force system. Consider a force system in which two objects
are located at different locations and subjected to different forces. If we observe both objects through
a small window and notice that they move to the same location at the same time, we cannot assume
that the next location of these objects after some time interval will be the same. This is because they
are subjected to different forces and start moving from different initial locations. This is similar to
most forecasting methods in hydrology and meteorology that try to compare historical amounts of
rainfall, discharge, runoff, or inflow to forecast future values of the data of interest. If similarities in the
values of the data of interest are the result of different forcing factors and different initial conditions,
the forecasting result may be worse than expected. Compare this to another force system in which two
objects are located at different locations but are subjected to the same force. In this system, at the same
time interval, the objects will again move to different locations. However, although the new locations of
the two objects are different, their displacement will be equal. If we compare the displacements of the
objects instead of their locations, we can predict that in the next time interval of interest the two objects
will have the same displacement. Consequently, the locations of the two objects can be calculated
from their predicted displacement. Based on this concept, the forecasting method known as VAM was
developed in this study. This method compares the variation (displacement) in standardized inflows
instead of comparing standardized inflows as in the WMAM. It replaces data points by their successive
differences so that the model target is shifted towards prediction based on differences rather than
absolute positioning. By this method, a measure of chronological stability around a suitably chosen
statistical quantity is established based on long-term data calculation. Considering the standardized
monthly anomalies (at) as calculated in Equation (1), the variation (vt) in at can be calculated as:

vt = at − at−1 (5)

Once the observed data for the latest month have been received and the variation (vt) has been
calculated, this variation is compared to all possible historical sequences of variations covering the
same months of the year. From this annual series of potential variation analogues (vana), the Nana

historical variation analogues most similar to the recent variation are selected. The variation for the
next month can then be forecast as:

vt+1 =
1

Nana
/

Nana

∑
n=1

[
vt + vana(t+1) − vana(t)

]
. (6)

Then, the forecast standardized monthly anomaly for the next month can be calculated as:

at+1 = vt+1 + at (7)

Comparison of the variation in standardized inflows is similar to comparison of the displacement
of objects subjected to a force—if the objects have the same properties and are subjected to the same
force, their displacement will be the same, regardless of their initial locations. Building on this concept,
if the displacement of one of these objects is known, it is possible to predict the displacement of the
other objects. Applying this to inflow forecasting, if the variation in inflow in the current month of the
current year is similar to the variation in inflow in the same month of a historical year, the inflows of
the two years are inferred to occur due to similar forcing factors. If it is assumed that these forcing
factors persist, the variation in inflow in the next month of the current year can be forecast from the
variation in inflow of the historical year. Using this method, reservoir inflows are standardized as
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in the WMAM forecasts. Then, the variation in standardized inflows between successive months is
calculated and used in forecasting as described above.

3. Results

The forecasting using the WANN model in this study was begun by finding the input parameters
of the ANN model that produced the best forecast. After several trials, the best forecasting results were
obtained from a model with 22 input parameters, as shown in Table 2. The activation function of this
model in both the hidden and output layers was a hyperbolic function. The number of hidden neurons,
learning rate, and momentum that provided the best results were 10, 0.0001, and −0.5, respectively.
After obtaining the best forecast from the ANN model, all input parameters were decomposed into
their detailed (high frequency) and approximated (low frequency) components. Then, all decomposed
components were fed into the neural network model. The performance indicators of the WANN model
in each model period are shown in Table 3.

Table 2. Input parameters of the artificial neural network (ANN) model that produced the best forecast.
SOI: Southern Oscillation Index; DMI: Dipole Mode Index.

Input Parameter SST Region/Ocean Index Name Lag Used (Month)

Sea-surface temperature

Niño 1+2 5, 17, 18
Niño 3 4, 16, 17

Niño 3.4 5, 15, 16
Pacific Ocean 6, 7, 18

South China Sea 6, 18, 19
Andaman Sea 7, 18, 19

Ocean index
SOI 5
DMI 16

Reservoir inflow - 1, 12

Table 3. Performance indicators of the wavelet artificial neural network (WANN) model. CD: coefficient
of determination; EI: efficiency index; RMSE: root mean square error; R: correlation.

Model Period
Model Performance Indicators

RMSE R EI CD

Training 179.85 0.95 0.90 0.89
Validation 248.68 0.90 0.81 0.85

Testing 210.80 0.95 0.89 0.77

For the forecasting using the WMAM and VAM methods, reservoir inflow data from 1974 to 2004
were used to forecast the inflow of the years 2005 to 2014. Therefore, there were at least 31 years of
monthly records for use as historical analogues. For the WMAM method, the selection of potential
historical analogues was based on calculation of the RMSE as described in the Methodology section.
Figure 3 shows an example of reservoir inflow forecasting for March 2013. Five historical analogues
gave the minimum root mean square values selected for the forecast. After selection, the weights for
each analogue were calculated, and these weights were then used to calculate the forecast standardized
value and converted to obtain the forecast inflow for March 2013. The yellow broken line and the
yellow solid line are the forecast and observed standardized inflows in March 2013, respectively.
The forecast standardized inflows were converted to inflows in a normal form and used to calculate
the performance indicators.

Figure 4 shows an example of the variation values plotted against standardized inflow values
from February to January of the following year. Assuming that the most current month is December
2005, we can forecast the inflow in January 2006. The variation from March to January of previous
years is plotted alongside the variation from March to December of 2005. Then, the most similar

189



Water 2018, 10, 1614

variation analogue is selected by comparing the variation vectors from November to December. In this
example, the most similar analogue is the plot for 1993–1994, as shown in Figure 4. Thus, the variation
in January 2006 is calculated from the variation in December 1993 and January 1994. Then, the forecast
standardized value for January 2006 is calculated from this forecast variation value, as shown in
Figure 4. The plot of standardized inflows from October 2005 to January 2006 is very similar to the
plot from October 1993 to January 1994. It is evident from the plot that VAM forecasting has the
advantage that it allows determination of similar patterns among inflow events even if they occurred
in different zones. This is different from the WMAM, in which selection of potential historical dialogues
depends on the RMSE between inflows of previous years and the current year. The selection will
include all nearby inflow patterns even if they are not similar to the inflow pattern of the current year,
while similar patterns in different zones, as in this example, will not be selected.

Figure 3. Forecasting of the reservoir inflow in March 2013 using the weighted mean analogue method.

Figure 4. Variation and standardized values of inflows used for forecasting inflow in January 2006.
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To improve forecasting results of the VAM, additional processes to assist selection of the most
similar analogue were investigated. Consider the predicted inflow of the Sirikit Dam in August
1995, which was the most extreme Sirikit Dam inflow on record, shown in Figure 5. The plot of the
variation in standardized inflow for June–July 1995 is very similar to the plot for the same period in
1992. The forecast variation in standardized inflow in August 1995 should follow the red dotted line.
Nevertheless, the actual variation followed the dark red line, which is very far from the forecast result.
These observations indicate that the VAM still has some weaknesses and requires further improvement.

Figure 5. Plot of variation in standardized inflow forecasts for August 1995.

Several previous studies have indicated that SSTs and climatic indices are associated with climate
and rainfall in Thailand. Moreover, several previous studies have reported that incorporating SSTs and
climatic indices into river-flow forecasts can improve results. The incorporation of SSTs and climatic
indices as inputs to the WANN in this study confirmed that these data can improve reservoir inflow
forecasts, implying that SST and climatic indices are also associated with reservoir inflow. Based on
this assumption, years with similar patterns of standardized inflow variation should have similar SST
and climatic-index patterns. These similar SST and climatic-index patterns can then act as guidelines
in the selection of the most potentially useful historical analogues. Therefore, cross-correlation analysis
between SSTs and the climatic indices used as the inputs of the WANN model and standardized
inflow was performed. The correlation values between SSTs, climatic indices, and standardized inflow
were calculated for each month. The SSTs and climatic indices with correlation values exceeding the
threshold for significance (0.304 for 41-year inflow data in this study) [44] were considered significant
SSTs and indices in the selection of historical analogues of the corresponding month. As examples,
Appendix A lists the significant SSTs and climatic indices for the Sirikit Dam inflows in January and
August; the number −1 behind a month indicates the month in the previous year compared to the
year of inflow. For example, Niño 3 (Jan-1) refers to the Niño 3 index in January of the previous
year compared to the year of the inflow to be forecast. These significant SSTs and climatic indices
will be used to decide the most useful potential historical analogue for forecasting the inflow of the
current year.

An example of forecasting the inflow of the Sirikit Dam in January 2008 is presented. In this case,
the most current month is December 2007, and the inflow to forecast is that of January 2008. The steps
of forecasting the inflow are as follows.

1. The variations in standardized inflows for March to December 2007 are plotted along with the
variations in standardized inflows for March to January of the available analogues. Potential

191



Water 2018, 10, 1614

analogues with variation patterns similar to that of December 2007 are selected. In this case, there
are three historical analogue candidates: December 1976, December 1988, and December 1989
(Figure 6).

2. To forecast the inflow for January 2008, the significant SSTs and climatic indices for inflows in
January 2008, January 1977, January 1989, and January 1990 are plotted to assist in selection of
the best potential analogue (see Appendix B). In this case, most of the significant climatic indices
and SSTs for January 2008 are very similar to those for January 1989, and therefore January 1989
is selected as the best potential analogue.

3. The forecast variation for January 2008 is calculated from the variation in January 1989 using
Equation (6) and plotted as the red-dotted line in Figure 6.

4. After obtaining the variation for January 2008, the standardized inflow is calculated using
Equation (7) and converted to the normal form of inflow. The forecast inflow values calculated
from this method and the observed inflow in January 2008 are 138.29 and 136.84 million cubic
meters, respectively.

Figure 6. Plot of variation in forecasts of the Sirikit Dam inflow in January 2008.

For a greater understanding of forecasting using the VAM with the consideration of SSTs and
climatic indices (the VAM-improved), the readers can read the examples of forecasting for the inflow in
August 1995 and August 2011, which were the most extreme inflows on record (Appendices C and D,
respectively).

Based on the results described above, the improved VAM that considers climatic indices was
used to forecast July, August, and September, which are high-flow periods in Sirikit Dam inflow.
The forecasting performance of all methods for the whole-year and high-flow periods was evaluated
and compared. To compare the performance of the WANN with other methods, the forecasting results
of the WANN in the validation and testing periods were combined and the performance indicators
were recalculated to match the forecasting period of the WANN with that of the WMAM and VAM.
The performance indicators of all methods in predicting the reservoir inflow of the Sirikit Dam from
January 2005 to December 2014 are shown in Table 4. Plots of forecast and observed inflows for the
whole-year and high-flow periods are shown for comparison in Figures 7 and 8, respectively.
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Table 4. Performance indicators of all forecasting methods for forecasting the Sirikit Dam inflow in
2005–2014. VAM: variation analogue method; WANN: wavelet artificial neural network; WMAM:
weighted mean analogue method.

Forecasting Period Method
Model Performance Indicator

RMSE R EI CD

Whole year
(January–December)

WANN 234.20 0.92 0.85 0.81
WMAM 335.45 0.84 0.69 0.62

VAM 186.33 0.95 0.90 1.01
VAM-improved 115.55 0.98 0.96 0.92

High flow
(July–September)

WANN 366.78 0.83 0.67 0.60
WMAM 627.42 0.37 0.04 0.37

VAM 305.59 0.84 0.84 0.87
VAM-improved 215.55 0.95 0.92 0.86

Figure 7. Comparison of plots of forecast and observed inflows for whole-year periods from 2005
to 2014.

Figure 8. Comparison of plots of forecast and observed inflows in high-flow periods from 2005 to 2014.
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For the whole-year forecasting period, which included both low-flow and high-flow patterns,
the WANN model provided good forecasting results as all performance indicators were above 0.80.
The WMAM provided only satisfactory forecasting results, as the EI and CD values were <0.70 and the
RMSE was higher than for the other methods. The forecasting performance of the VAM was superior
to that of other methods as all performance indicators were >0.9 and the RMSE had the lowest value.
It can also be seen from the comparison plot in Figure 8 that the VAM forecast captured the extreme
inflow of the Sirikit Dam reservoir.

For the high-flow period, the forecasting performance of all methods significantly worsened.
The WANN method, which produced good results for the overall period, provided only satisfactory
results for this period. This was not unexpected; poor performance in predicting peak flow is a common
weakness of ANN methods, as noted in several previous reports (e.g., Sudheer [34]; Yang et al. [35]).
The forecasting performance of the WMAM was markedly lower in the high-flow period compared to
the whole year, indicating that this method is not suitable for prediction of inflow in a high-response
watershed, especially for the high-flow season, as in this case. This weakness of the WMAM was
also noted by Svensson [31], who reported a high degree of uncertainty in the historical analogue
approach, particularly in catchments with a rapid response. The VAM captured flow best in this period
comparing to the WANN and the WMAM, especially peak flow. Taking SSTs and climatic indices into
consideration significantly improves forecasting results of the VAM. The VAM-improved performance
indicators were the best in both the whole-year and high-flow forecasting periods; this model provided
very good performance indicators even in high-flow periods, with all indicators having values above
0.85. The improvement can be seen in Figure 8, where most of the VAM-improved forecast values are
closer to the observed values than those of the standard VAM (i.e., the VAM without consideration of
SSTs and climatic indices).

Based on the very high reliability and low uncertainty of the improved VAM indicated by the
results, this method can be used for management of the Sirikit Dam, especially in high-flow periods.
It provides very good forecasting results, with all performance indicators above 0.85, and its uncertainty
as defined by RMSE values is less than the reservoir surcharge storage (998,000,000 m3). Moreover,
in testing, it predicted extreme flow such as occurred in August 2011, whereas other methods did
not. However, in forecasting based on historical analogues, there may be high-return-period events
for which no suitable analogues are available. Therefore, scenarios based on forecasts with various
uncertainty values should be modeled. The most suitable scenario for the current month can then
be selected for dam operation. For example, if the water level in the dam is very low in August,
well below the upper curve of the reservoir operation rule, and low inflow is forecast in September,
then a scenario with less inflow than that forecast is selected to retain the water for the coming dry
season. On the other hand, if the water level in the dam is very high in August, close to the upper
curve of the reservoir operation rule, and high inflow is forecast in September, then a scenario with
more inflow than that forecast is selected. The dam operator can then decide to release water gradually
to make space for the expected inflow. For the low-flow season, the forecasting results of all of the
methods examined in this study were acceptable for dam operation, as their uncertainties were close
enough to observed values. Moreover, most of the inflow in the low-flow period is kept for water
supply, so uncertainty is less important.

4. Discussion and Conclusions

This study compared three forecasting methods—the WANN method, the WMAM, and the
VAM—for use in forecasting the monthly reservoir inflow of the Sirikit Dam in Thailand. The results
indicate that for whole-year forecasting, which includes both low- and high-flow seasons, the WANN
method provided good results, while those obtained using the WMAM were only satisfactory.
The performance of the VAM was superior to that of the other methods and accurately predicted
extreme inflow. For the high-flow period (July–September), the VAM predicted flow best, especially
in the case of peak flow. However, the performance of all of the methods was significantly lower for
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the high-flow period. The WANN method, which produced good results for whole-year forecasts,
provided only satisfactory results for the high-flow period. The performance of the WMAM method
was markedly worse in the high-flow period compared to the whole-year period. Based on the results
of this study, the following conclusions were reached with regard to the methodologies and application
to Sirikit Dam in Thailand.

1. The WANN model, a hybrid of ANN and wavelet analysis, produced good results in forecasting
the monthly reservoir inflow of Sirikit Dam. However, for the high-flow period it provided
only satisfactory results. This indicated that the WANN model is weak in forecasting peak
flows because such flows are rare compared to low- and moderate-flow events. As ANN-based
models rely on learning from past events, the number of peak flow events is insufficient for ANN
models to learn and produce good forecasting results. This characteristic of ANN-based models
is a common issue that has been reported in the literature (e.g., Sudheer [34]; Yang et al. [35]).
Wavelet analysis, a data pre-processing technique, generally improved the forecasting results,
but the improvement was not enough to predict peak flow. In conclusion, the WANN method
has a poor ability to forecast peak flows.

2. The WMAM provided only reasonably satisfactory predictions for the whole-year period and
its performance was markedly worse in the high-flow period. This may have been because the
forecasting is dependent on the RMSE between historical and current inflows. The selection of
historical analogues based on RMSE may result in the inclusion of all recent inflow patterns,
even if they are not similar to the pattern of the current year. This leads to incorrect selection of
analogues, especially for a high-response catchment such as the Sirikit Dam. This characteristic
of analogue-based methods such as the WMAM was reported previously by Svensson [31],
who concluded that the uncertainty of the historical analogue approach can be large, especially
in catchments with a fast response.

3. The developed VAM provided excellent predictions of the monthly reservoir inflow of the Sirikit
Dam. Its ability to forecast extreme peak flow represented an advantage over the other methods.
However, it has the drawback that it relies on past observation data. Therefore, in the absence
of a similar historical analogue it may not provide good results. This is especially important
in the case of events with return periods that may be longer than the record length, making
rare situations that have not been observed in the past very difficult to forecast. The example of
this situation is the case of forecasting the inflow in August 1995 described earlier. In addition,
changes in land use, urbanization processes, or changes in the morphology of the rivers may
affect the discharge arriving to the reservoirs. The study of the effect of those changes should be
further conducted to clarify this issue.

4. The incorporation of SSTs and climatic indices in the WANN model and the VAM significantly
improved forecasts. In the WANN model, SSTs and climatic indices were used as an input
to the model. In the VAM, significant SSTs and climatic indices for the inflow each month
were plotted and compared to aid in selecting appropriate historical analogues. The idea
behind investigating use of SSTs and climatic indices as guidelines for selection of the most
suitable historical analogues was derived from the results of several previous studies that
indicated that SSTs and climatic indices were associated with the Thai climate and rainfall
(e.g., Singharattna et al. [36]; Bejranonda and Koch [37]; Chansaengkrachang [38]; Bridhikitti [39];
and Manusthiparom [40]). The improvement in forecasts in this study after incorporation of SSTs
and climatic indices supports these previous reports. However, future studies should clarify the
individual contributions of SSTs and the climate indexes.

5. Although the VAM could provide excellent predictions of the reservoir inflow of the Sirikit Dam,
the leading time of prediction in this study is only one month, which may not be enough for
the open large reservoir where prediction times of longer than one month are often needed.
The further study of longer lead-time prediction using the VAM is hence needed for better
reservoir operation.
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Appendix A

Table A1. Significant SSTs and climatic indices for Sirikit Dam Inflow in January and August. SCS:
South China Sea; AO: Arctic Oscillation.

January August

Significant
SSTs/Indices

Correlation Significant SSTs/Indices Correlation

Andaman (MAR-1) −0.404 Andaman (AUG) −0.321
Andaman (APR-1) −0.366 Andaman (MAY-1) −0.372
Andaman (MAY-1) −0.400 Andaman (JUN-1) −0.336
Andaman (JUN-1) −0.320 AO (FEB-1) −0.345
Andaman (JUL-1) −0.342 AO (DEC-1) −0.308

Andaman (AUG-1) −0.556 AO (MAY) −0.356
Andaman (SEP-1) −0.499 DMI (APR) 0.312
Andaman (OCT-1) −0.303 DMI (MAR-1) 0.325
Andaman (NOV-1) −0.371 DMI (APR-1) 0.421
Andaman (DEC-1) −0.325 DMI (MAY-1) 0.324

Niño 3 (JAN-1) −0.375 SOI (MAR) 0.448
Niño 3 (FEB-1) −0.422 Niño 1 + 2 (MAR) −0.316

Niño 3 (MAR-1) −0.391 Niño 1 + 2 (APR) −0.440
Niño 3 (APR-1) −0.388 Niño 1 + 2 (MAY) −0.404
Niño 3.4 (Jan-1) −0.398 Niño 1 + 2 (JUN) −0.342
Niño 3.4 (FEB-1) −0.403 Niño 1 + 2 (JUL) −0.307

Niño 3.4 (MAR-1)) −0.422 Niño 1 + 2 (AUG) −0.334
Niño 3.4 (APR-1) −0.459 Niño 3 (MAR) −0.330
Niño 3.4 (MAY-1) −0.327 Niño 3 (APR) −0.421
Niño 4 (JAN-1) −0.327 Niño 3 (MAY) −0.439
Niño 4 (FEB-1) −0.321 Niño 3 (JUN) −0.357

Niño 4 (MAR-1) −0.322 Niño 3 (JUL) −0.310
Pacific (FEB-1) −0.339 Niño 3 (AUG) −0.329

Pacific (MAR-1) −0.327 Niño 3.4 (APR) −0.318
Pacific (APR-1) −0.325 Niño 3.4 (MAY) −0.353
Pacific (MAY-1) −0.394 Pacific (JUL) −0.409
Pacific (JUN-1) −0.487 Pacific (AUG) −0.355
Pacific (JUL-1) −0.591

Pacific (AUG-1) −0.544
Pacific (SEP-1) −0.354
SCS (APR-1) −0.334
SCS (MAY-1) −0.320
SCS (JUN-1) −0.346
SCS (JUL-1) −0.361

SCS (AUG-1) −0.340
SOI (JAN-1) 0.362
SOI (FEB-1) 0.412

SOI (MAR-1) 0.531
SOI (APR-1) 0.398
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Appendix B

Figure A1. Plots of significant SSTs and climatic indices for forecasting Sirikit Dam inflow in January
2008 (a) Niño 3; (b) Niño 4; (c) Niño 3.4; (d) SOI; (e) Standardized SST in the South China Sea;
(f) Standardized SST in the Pacific Ocean (g) Standardized SST in the Andaman sea.

Appendix C

The inflow forecasts for August 1995 using the VAM.
In the inflow forecasts for August 1995 described in the Results section, if we assume that all inflow

data from 1974 to 2014 were available for prediction of inflow in August 1995 (which is impossible
because 1996–2014 was in the future in August 1995), the potential variation analogues would be as
plotted as in Figure A2. When considering the plots of significant SSTs and climatic indices for the
inflow in August 1995 and all candidate analogues (see Figure A3), it is evident from the plots that most
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of the significant SSTs and climatic indices for August 1995 are similar to those for August 2001 and
August 2013. It is also evident that the most significant SSTs and climatic indices for August 1992 differ
from those for August 1995. Therefore, the variation in standardized inflow in August 1995 does not
align with the variation in August 1992, even though it is the most visually similar among the available
candidates. In this case, the variation in standardized inflow in August 1995 could be calculated from
the variation in August 2001 and August 2013 using Equation (6). The forecast variation in August
1995 is shown by the red dotted line in Figure A2, which is closer to the observed value than before.
This is the strength of the improved VAM that considers significant SSTs and climatic indices to predict
extreme peak flow accurately.

Figure A2. Plot of variation in forecasts of Sirikit Dam inflow in August 1995.
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Figure A3. Plots of Significant SSTs and climatic indices for forecasting Sirikit Dam inflow in August
1995 (a) Niño 1 + 2; (b) Niño 3; (c) Niño 3.4; (d) Standardized SST in the Pacific Ocean; (e) Standardized
SST in the Andaman Sea; (f) DMI; (g) Other SSTs and indices as stated in Appendix A.

Appendix D

The inflow forecasts for August 2011 using the VAM.
The inflow in August 2011 is another extreme event in the record. To confirm the ability of

the VAM to predict extreme inflow, the forecast procedure for this extreme event is discussed. The
prediction follows the steps described for the January 2008 inflow. Here, the most current month is July
2011, so we require a similar pattern of variation in July in the optimal analogue. Visual examination
of the variation plots produces six potential analogues with patterns similar to that of July 2011 (see
Figure A5). The significant SSTs and climatic indices for inflow in August 2011 and all candidate
analogues are plotted to determine which analogue is the best potential candidate for forecasting (see
Figure A6). The August 2011 patterns of SSTs and significant indices are not very similar to any one or
two historical analogues, unlike the previous cases in the Results section. Therefore, the climate-forcing
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factors affecting the rainfall and inflow of the Sirikit Dam Basin in August 2011 are a mix of the forcing
factors in the candidate analogue years. Based on this assumption, the variation in standardized
inflow in August 2011 is the average of the variation in August of all candidate analogues and can be
calculated using Equation (6). The results are shown by the red dashed line, which is very close to the
observed value depicted by the dark red line (see Figure A5). This result confirms the strength of the
improved VAM in forecasting extreme peak flows. In other methods that attempt to compare or search
for historical inflow information, finding candidate analogues is very difficult, especially in the case of
extreme events such as in August 2011, because the events occur in a very high-flow zone and similar
events are very rare (see Figure A4).
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Figure A4. Plots of standardized inflow for forecasting Sirikit Dam inflow in August 2011.
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Figure A5. Plots of variation-standardized inflow for forecasting Sirikit Dam inflow in August 2011.
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Figure A6. Plots of significant SSTs and climatic indices for forecasting Sirikit Dam inflow in August
2011 (a) Niño 1 + 2; (b) Niño 3; (c) Niño 3.4; (d) Standardized SST in the Pacific Ocean; (e) Standardized
SST in the Andaman Sea; (f) DMI; (g) Other SSTs and indices as stated in Appendix A.
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Abstract: The aim of this study was to develop hydrological models that can represent different
geo-climatic system, namely: humid, semi-humid and semi-arid systems, in China. Humid and
semi-humid areas suffer from frequent flood events, whereas semi-arid areas suffer from flash floods
because of urbanization and climate change, which contribute to an increase in runoff. This study
applied ε-Support Vector Machine (ε-SVM) and artificial neural network (ANN) for the simulation
and forecasting streamflow of three different catchments. The Evolutionary Strategy (ES) optimization
method was used to optimize the ANN and SVM sensitive parameters. The relative performance of
the two models was compared, and the results indicate that both models performed well for humid
and semi-humid systems, and SVM generally perform better than ANN in the streamflow simulation
of all catchments.

Keywords: streamflow; artificial neural network; simulation; forecasting; support vector machine;
evolutionary strategy

1. Introduction

Timely flood forecasting with high accuracy and excellent reliability is very critical, because
human societies are facing a precarious situation of recurring natural disasters such as floods due to
the increase in community economy, which brings about an increase in urbanization. Hydrological
models have contributed significantly to modern flood forecasting because of their ability to simulate
the natural hydrological processes based on physical and empirical laws. Hydrological models are
classified into two groups: conceptually or physically based models, and data-driven models (DDMs).
Recently, DDMs have gained increasing attention from hydrologists as a complementary technology
for modeling complex physical hydrologic processes.

Hydrological modeling can be a complicated process because of the many underlying factors
that are involved in the generation of runoff and river flow. Moreover, complications arise because of
nonlinearity, and the high degree of spatial and temporal variability resulting from various factors, such
as catchment, storm, geomorphologic and climate characteristics. The impediments and complexities
encountered when using hydrological models require several processes to be involved in the generation
of runoff or streamflow, including evapotranspiration, infiltration rate, antecedent soil moisture
content, land use, and land cover. Therefore, it is challenging to use models that demand more input
variables like physical models due to limited data, or even in any area, environment or situation
where availability of data can be challenging, such as in semi-arid and arid zones. Therefore, DDMs
attract attention from hydrologists because of their proficiency in establishing the relationship between
rainfall and runoff without any underlying physical processes.

The viability of DDM depends on the disposal of recorded environmental observational data
that can help in predictive analytics. Therefore, use of DDMs in hydrological forecasts has become
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prevalent because of its ability to find a relationship between rainfall and runoff without any other
underlying processes, such as evapotranspiration, drainage, and so forth, and also due to the increasing
availability of data. In hydrology, DDMs are commonly used for flood forecasting, rainfall-runoff
simulation, and water quality prediction. The most used DDMs for prediction and classification are
the Support Vector Machine (SVM), Artificial Neural Network (ANN), Fussy rule-based system, and
Model Trees (MT) [1].

DDMs are based on computer intelligence (CI) algorithms typically associated with learning from
data [2]. They induce causal relationships or patterns between sets of input and output time series
data in the form of a mathematical device, which is generally not related to the physics of real-world
simulations [3]. They can be used for mathematical prediction problems, reconstructing highly
nonlinear functions, performing classification, grouping data, and building rule-based systems [4].
In the hydrological cycle, since DDMs operate with only a limited number of assumptions about
the physical behavior of the system, they require pairs of input-output training data to capture the
nonlinearity relationships of a rainfall-runoff process.

The following areas have contributed to the development of DDM: artificial intelligence (AI),
data mining (DM), knowledge discovery in databases (KDD), CI, machine learning (ML), intelligent
data analysis (IDA), soft computing (SC), and pattern recognition. All these areas overlap, often with
similar focuses and application areas. The most popular DDMs used in hydrological systems include
statistical-like methods, e.g., autoregressive moving average (ARMA), multiple linear regression
(MLR), and autoregressive integrated moving average (ARIMA) are popular flood frequency analysis
(FFA) methods for modeling flood prediction [5]. Also, ML methods like ANN, SVM and Neuro-fuzzy
(NF) have been proven to be useful for both long- and short-term flood forecast. Among popular CI
methods are also genetic algorithms (GA); they are not, however, modeling paradigms or function
approximation methods, but constitute an optimization approach used in model calibration or model
structure optimization [4].

China has invested much time studying rainfall-runoff since the early 1960s [6]. Many years ago,
hydrologists focused on developing flood forecasting models for humid areas in the southern part of the
Yangtze River, China, because of frequent severe flood events [7]. Further developments due to climate
change and an increase in the economy contributed to an increase in runoff. There are increasingly
urgent demands for flood forecasting in semi-arid and arid areas, and these have become a severe issue
in water science, since flood forecasting is entirely different from that of humid areas [7]. Modeling
hydrologic processes of semi-arid and arid basins is challenging due to the specific characteristics of
these basins [8]. There is a variability of runoff that sub-basins bring about both in space and time,
resulting in a highly complicated rainfall-runoff relationship, and there are also lapses in storage
excess runoff generation mechanisms [7,8]. Furthermore, in arid and semi-arid areas, few models are
considered adequate due to the difficulty in effectively modeling infiltration-excess runoff processes as
the dominant generation mechanism [9,10].

Streamflow is ephemeral under these conditions because of there being only few runoff events
each year, and hence generally no hydrologic response at the outlet of the basin. Hydrological research
is inadequate in semi-arid and arid zones because of insufficient hydrological and meteorological
data [11]. Compared to humid regions, channel flow is perennial, and information on the internal
state of the basin is obtained from streamflow records, with most models performing well, because the
dominant runoff generation mechanism is saturation excess runoff [8,12]. Semi-arid and arid areas
experience flash floods where rainfall intensity is usually very high, and rainfall duration is low [13,14];
there are high flood peaks and rapid flows, and substantial loss of life and property [11,14].

In semi-humid areas, saturation excess and infiltration excess runoff coexist. Consequently, the
hydrological prediction is more challenging than for humid regions. Numerous types of research
have been carried out to improve the hydrological model for semi-humid and semi-arid regions using
conceptual models, physically based models and data-driven models. Seven hydrological models were
used to simulate flood events in 3 semi-humid catchments: Xinanjiang (XAJ), Top model, SAC-SMA,
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Green-Ampt, Xinanjiang-Green-Ampt, Hebei, and Xinanjiang-Haihe. The averaging method improved
the Bayesian model for flood prediction, and the automatic optimization method combined with the
manual optimization method calibrated hydrological models. Infiltration excess flow was combined
with the surface runoff calculated using Green-Ampt (G-BMA). The results showed that models
with saturation-excess mechanisms perform well in semi-humid catchments. It was found that the
physically based G-BMA approach outperformed all the other models, including BMA for semi-humid
regions, with a high ratio of infiltration-excess surface flow [15]. Ref. [7] also used conceptual models:
mix runoff (MIX), Xinanjiang, and Northern Shaanxi were applied to three humid, three semi-humid
and three semi-arid watersheds. The results indicate that it is more complicated to model drier regions
than wetter watersheds. Simulation results show that all models perform satisfactorily in humid
watersheds, and only Northern Shaanxi (NS) is applicable in the arid basin. In semi-humid semi-arid
watersheds, XAJ and MIX performed better than NS.

SVM has proven to be robust in hydrological modeling [16]. Ref. [17] adopted the SVM model
and the SVM + Ensemble Kalman Filter (SVM + EnKF) model for streamflow forecasting, and the
results show that SVM overestimated flood peaks and the SVM + EnKF model provided the best
results, indicating that data assimilation (DA) improves the model structure and enhance performance.
ASVM estimated model streamflow using rainfall and evaporation as model inputs [18]. The results
show that SVMs generalize better by successfully predicting streamflow on test data better than ANN.
Ref. [19] developed a simulation framework using SVM coupled with base flow separation to reduce
the lag relationship between streamflow and meteorological time series, and it helped to improve the
simulation performance.

Ref. [20] employed least square SVM (LSSVM) for daily and monthly streamflow forecasting using
temperature, rainfall, and streamflow input data; LSSVM outperformed Fuzzy Genetic Algorithm
(FGA) and M5 Model Tree in forecasting daily streamflows. A Gamma Test (GT) derived the best input
combination, SVM was employed to predict flood discharge for 2, 5, 10, 25, 50, and 100 year return
periods. The SVM model performed better than ANN, adaptive neuro-fuzzy inference system (ANFIS),
and nonlinear regression (NLR) [21]. ANN and SVM forecasted streamflow, and SVM successfully
forecasted monthly streamflow better than ANN [22]. Ref. [23] applied SVM for real-time radar-derived
rainfall forecasting. Ref. [23] used the antecedent grid-based radar-derived rainfall, grid position,
and elevation as input variables and radar-derived rainfall as the output variable. The single-mode
forecasting model (SMFM) and multiple-mode forecasting models (MMFM) were constructed based
on the random forest (RF) and SVM to forecast 1–3-h rainfall for all grids in a catchment and concluded
that the performance of SVM-based SMFM exceeds that of RF-based SMFM.

Genetic Algorithm (GA), Grid system and particle swarm optimization (PSO) methods optimized
SVM in the prediction of monthly reservoir storage, and GA-based SVM performed better than the
SVM optimized with other optimization methods [24]. Ref. [25] also applied GA-SVM for modeling
daily reference evaporation in a semi-arid mountain area, and the results show that GA-SVM is
superior to the artificial neural network (ANN) in the simulation of evaporation. Ref. [26] compared
ANN and linear regression to model the rainfall-runoff relationship, and ANN showed better ability
to model streamflow for semi-arid catchment than the linear regression model (LRM). Ref. [27] also
used ANN validated by GR2M for simulation of streamflow in an arid region, and ANN performed
well in prediction of streamflow compared to GR2M.SVM with other data-driven hydrological models,
including ANN and adaptive neuro inference system (ANFIS), were used for hydrological modeling
in semi-arid and humid regions, and the results show that there are no substantial variations in the
performance of the models, although SVM performed better than the other models [28,29].

Neural fuzzy logic model forecasted downstream water level using upstream hourly telemetrics,
and from the results, the efficiencies of the developed model show an acceptable degree of performance
according to the tested performance indicators [30]. Ref. [31] compared ANFIS to the ANN model
for forecasting monthly river inflow, and the results show that the ANFIS model provided higher
inflow forecasting accuracy, especially during extreme flow events, compared with the ANN model.
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Also, Ref. [32] compared ANFIS with ANN optimized by GA, and ANFIS still outperformed Genetic
Algorithm ANN (GA-ANN). Researchers have proposed both conceptual and DDM hydrological
models for different climatic and environmental conditions. However, these models are still not
able to represent all the typical geo-climatic characteristics of the vast and diverse territory of China,
e.g., Xiananjiang performs better in the humid region and Northern Shaanxi for the semi-arid region
in China.

This study aims to gain knowledge of how DDMs, specifically SVM and ANN, perform under
different geo-climatic conditions for streamflow simulation and forecasting. Many Evolutionary
algorithms (EAs), like genetic algorithms (GAs), evolutionary programming (EP), differential evolution
(DE), particle swarm optimization (PSO), have been applied in the field of hydrology for optimization
of hydrological models. Evolutionary Strategies (ES), as one of the EAs, has not been utilized in
hydrology. Therefore, this study endeavors to explore the ES approach for optimization of SVM and
ANN to improve flood prediction in humid, semi-humid and semi-arid areas. This paper applied
ε-SVM and ANN for streamflow simulation and forecasting of three different catchments: Changhua,
Chenhe, and Zhidan; from humid, semi-humid, semi-arid regions, respectively. This research expected
the ES optimization method to fine-tune the sensitive parameter of the ε-SVM and ANN to improve
the performance of the models to successfully simulate and forecast streamflow for all catchments,
including a semi-arid region which is complicated to model. Measures of performance evaluated and
statistically tested the performance of the model, and the results show that the models successfully
simulated and forecasted the streamflow of humid and semi-humid areas, and poorly forecasted the
streamflow of semi-humid areas; however, SVM performed better than ANN.

2. Back-Propagation Learning Algorithm

The back-propagation algorithm, a mentor learning algorithm using the gradient descent method,
is a supervised learning method divided into two phases: propagation and weight update. The two
phases repeat until the performance of the network is good enough. Firstly, the inputs and outputs are
both provided, the initial estimation of the weight is performed randomly to avoid a zero gradient error
if initialized at zero, because it will result in no change in the network. The network then processes the
inputs by propagating them forward, through every node except the input nodes, sums the product of
the inputs and the weight coming in, and passes the signal through an activation function. The output
of every node becomes the input of the nodes in the next layer. The output values of the model are
then compared with the desired output to determine the network error [33,34]. The network error
gradient is computed and then propagated backward through each weight in the network, causing
the system to adjust every weight parameter in the network to reduce the value of the error function
by some small amount. The process will go through many iterations, as the weights are continually
adjusting, while the network is recurrently learning the target function. The set of data which enables
training is ‘training data’, the data is processed many times as the network tries to find the right model
to match the desired output.

xl
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j) = θ(
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∑
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As the error is propagated backward through the network to each node, the connection weights
are adjusted correspondingly, based on Equation (3).

Δwij(n) = ε∗ ∂ew

∂wij
+ a∗Δwij(n − 1) (4)

where Δwij(n) and Δwij(n − 1) = weight increment between node i and j during the nth and (n − 1)th
pass, or epoch; ε and α denote learning rate and momentum respectively.

Ref. [35] used a back-propagation neural network (BPNN) for time series forecasting and
employed adaptive differential evolution (ADE), differential evolution (DE) and genetic algorithm
(GA) for optimization of BPNN; ADE_BPNN outperformed teh other BPNN techniques. Ref. [36]
used output weight optimization-hidden weight optimization (OWO-HWO) to optimize the initial
weights of the connections, GA was also used for optimizing the network, and GA was found to have
tune the parameters of the network better that OWO-HWO. An emotional ANN (EANN) trained
by a modified back-propagation algorithm and conventional feed-forward neural network (FFNN)
were employed to model the rainfall-runoff process of two watersheds with two distinct conditions.
The results showed that EANN outperformed the FFNN model, especially in the estimation of runoff
peak values. EANN also performed better than FFNN in multi-step ahead forecasting [37].

ANN techniques, namely, radial basis function (RBF), FFNN and generalized regression neural
network (GRNN) forecated streamflow using monthly flow data from two stations. GRNN performed
better than FFNN and RBF technique in one-month-ahead streamflow forecasting. Likewise, RBF
performed better than FFNN. However, RBF and FFNN simulated streamflow better than GRNN [38].
Both [39,40] confirmed that the back-propagation algorithm improves the performance of the network.

3. Support Vector Machine

SVM was developed in the early 1990s by Vapnik and his collaborators [41,42]. SVM embodies
the structural risk minimization (SRM) principle, which minimizes the expected error of a learning
model, reduces the problem of overfitting, and enables better generalization [43]. SVM can be applied
to regression problems using an alternative loss function to draw the nonlinearity of the observed
data x in a high-dimensional feature space, and then to implement a linear regression in the feature
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space [18,44]. SVM has been productively applied in several hydrologic studies and streamflow
forecasting, as well as in groundwater monitoring and runoff prediction problems. SVM operates with
the help of kernels. Radial basis function (RBF) has proved to be the best kernel function, and has been
further explored in hydrology applications, together with a linear function [18]. The SVM regression
function relates the input x to the output ŷ as follows:

f (x) = wTϑ(x) + b = ŷ (5)

where ϑ(x) is a nonlinear function mapping the input vector to a high-dimensional feature space. w
and b are weight vector and bias term, respectively, and can be estimated by minimizing the following
structural risk function

R =
1
2

wTw + C
Nd

∑
i=1

Lε(ŷi) (6)

where Nd is the sample size; C represents the tradeoff between the model complexity and the empirical
error; increase in the value of C will increase the relative importance of the empirical risk concerning
the regularization term [45]; and Lε is the Vapnik’s ε-insensitive loss function. Both C and ε are
user-defined parameters. Vapnik transformed the SVM as an optimization problem
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where ai and a′i are dual Lagrange multipliers. The solution to Equation (3) is guaranteed to be unique
and globally optimal, because the objective function is a convex function. The optimal Lagrange
multipliers a∗i are solved by the standard quadratic programming algorithm. Then the regression
function can be rewritten as

f (x) =
Nd

∑
i=1

a∗i ϑ(xi)
Tϑ(x)T + b =

Nd

∑
i=1

a∗i K(xi, x) + b (8)

where K(xi, x) is the Kernel function. The most used kernel function is the RBF, and this is adopted
herein. Some of the solved Lagrange multipliers ai − a′i are zero, and should be eliminated from
the regression function. The regression function involves the nonzero Lagrange multipliers and the
corresponding input vectors of the training data, which are referred to as support vectors (SV). The final
regression can be written as:

f (x) =
Nsv

∑
i=1

akK(xk, x) + b (9)

where xk denotes the kth support vector and Nsv is the number of SV. Herein, the parameter C, which
is the tradeoff between the model complexity and the empirical error, is set to 1. This means that the
model complexity is as important as the empirical error. In addition, it is acceptable to set the error
tolerance ε to 1% for flow forecasting [46].

In general, there are different types of SVM, i.e., linear SVM, LSSVR, ν-SVM, and ε-SVR with
various kinds of kernel functions, i.e., linear, polynomial and RBF. The most used kernel function is the
RBF, and is as follows:

K(x, xi) = e(
−||x−xi ||2

2σ2 ) (10)

The SVM model has the following specifications: (1) a global optimal solution is to be found; (2)
it avoids overtraining; (3) the solution will be sparse, and only a limited set of training points will
contribute to the solution; and (4) nonlinear solutions can be calculated efficiently because of the usage
of inner products [46].
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4. Evolutionary Strategy

Evolutionary Strategy (ES) is inspired by the natural evolution of species in natural systems.
I. Rechenberg pioneered and developed ES in the early 1960s, and published the first paper about ES
in 1964; later, H. P. Schwefel also contributed to the improvement of ES [47]. (1+1)-ES is the original
ES, because each generation consists of one child, and the best individual is chosen from between the
parent and the child to be the individual in the next generation. One ancestor and one descendant per
generation, and mutations created by subtracting two numbers drawn from a binomial distribution,
comprised the first experiments. Its offspring replaced the ancestor if the latter was not worse than the
former [48]. The first generalization of (1+1)-ES is (μ+1)-ES, also called the steady state. In (μ+1)-ES,
μ parents are used in each generation, where μ is a user-defined parameter. Each parent also has an
associated σ vector that controls the magnitude of mutations. The parents combine to form a single
child, and then the child is mutated. The best μ individuals are chosen from among the μ parents and
the child, and they become the μ parents of the next generation. Hence, its best individual never gets
worse from one generation to the next (elitist), and this could be called extinction of the worst, because
of the removal of one individual from the overall population at the end of each generation.

The next ES generalization strategy was (μ+λ)-ES. (μ+λ)-ES starts with a population size of μ,
and mutation for each generation generates λ offspring. After the generation of children, we have
(μ+λ), and the total population is sorted according to the objective function values—finally, the best μ
of the total population are selected as the parents of the next generation [47,49,50]. ES is a commonly
used strategy; there are μ parents and λ offspring generated by mutation. Here, none of the μ parents
survive to the next generation. Since selection takes place between the λ, the best of the λ members
generated become the μ parents of the next generation. The (μ, λ)-ES often works better than the
(μ+λ)-ES when the fitness function is noisy or time-varying [47]. In (μ+λ)-ES, a given individual
(x, σ)-ES may have a good fitness, but be unlikely to improve due to an inappropriate σ. Therefore, the
(x, σ)-ES individual may remain in the population for many generations without improving, which
wastes a place in the population. The (x, σ)-ES solves this problem by forcing all individuals out of
the population after one generation and allowing only the best children to survive. It helps restrict
survival in the next generation to those children with a good σ, which is a σ that results in a mutation
vector that allows improvement in x [51]. Combining the two generalization strategies, (μ+λ)-ES and
(x, σ)-ES, results in (μ, k, λ, p)-ES [52]. The population of the (μ, k, λ, p)-ES has μ parents, each has
a maximum lifetime of k generations, and each generation produces λ children, each of whom has
p parents.

The ES algorithms discussed above do not give options for adjusting the standard deviation σkj
of the mutation. Only the adaptive (1+1)-ES algorithm can, by examining all λ of the mutation at
each generation and monitoring them in terms of how they contribute to improvements. To find an
optimum σ, the elements {σi} of the standard deviation vector have to mutate as follows:

σ′
i ← σ′

i e(τ
′ρo+Tρi) (11)

x′i ← x′i + σ′
i ri

For i ∈ [1, n], where ρo, ρi and ri, are scalar random variables taken from N (0, 1), and τ and τ′

are tuning parameters. The factor τ′ρo allows for a general change in the mutation rate of x′i , and
the factors Tρi allow for changes in the mutation rates of specific elements of x′i . The form of the σ′

i
mutation guarantees that σ′

i remains positive. Note that ρo and ρi are equally likely to be positive as
they are to be negative. This means that the exponential in Equation (11) is equally likely to be greater
than one as it is to be less than one. This, in turn, means that σ′

i is just as likely to increase as it is to
decrease. Schwetel suggest that this mutation is robust to changes in τ and τ′, but he suggests setting
them as follows (Equation (8)).
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τ = P1

(√
2
√

n
)−1

(12)

τ′ = P2

(√
2n
)−1

where n is the problem dimension, and P1 and P2 are proportional constants that are typically equally
to 1.

Firstly, mutate σ′, followed by x′. This is because σ′ needs to be used to mutate x′, so that the
fitness of x′ indicates, as accurately as possible, the appropriateness of σ′. These ideas lead to the
self-adaptive (μ, λ) and (μ+λ) evolutionary strategies.

ES was compared with different methods of GA and penalty function for the optimization of a
single-layer sound absorber, in particular with regard to frequency, and using an arbitrary frequency
band. The results showed that ES outperformed other optimization methods [53]. Hierarchical ES
was proposed for the construction and training of the neural network for fault diagnostics of the rotor
bearing system, and the results show that ES is a feasible and effective method for solving classification
problems [54].

5. Study Area and Data

In this study, three different catchments in China were selected to evaluate the performance of
ε-SVM and ANN, namely, the Changhua, Chenhe and Zhidan catchments, in humid, semi-humid
and semi-arid regions, respectively. The total area of the Changhua river basin is 3442 km2, with a
mainstream length of 1624 km, and an overall drop of 965 m. It is a subtropical monsoon climate with
abundant rainfall and significant rainfall variation, with an annual rainfall of 1638.2 mm. During the
spring season from March to early April, the southeasterly wind prevails upon the ground surface,
and the amount of precipitation gradually increases. During the period from May to July, the frontal
surface often stagnates or swings over the watershed, resulting in continuous rainfall with high
rainfall intensity and long rainy seasons. During the summer months of July and September, the
weather is hot, with prevailing southerly thunderstorm and typhoon rainfalls. From October to
November, the weather is mainly sunny; from December to February, temperatures are low, with rain
and snow weather.

Chenhe basin is located in the northern temperate zone, Shanxi province in China and belongs to
the continental monsoon climate. The annual average precipitation is 700–900 mm. The local rainstorm
is the primary cause of the flood. The average runoff depth is 100–500 mm, and the runoff coefficient is
0.2–0.5. It is a relatively high runoff yield area, with an erosion modulus of 100–200 t/km2.

Zhidan hydrologic station is located in Chengguan Town, Zhidan County, Shaanxi province,
China. It is in the longitude of 108◦46′ E, 36◦49′ N. The topographic distribution of the upper reaches
is comprised of high mountains, gorges, and barren beaches, with substantial slope changes, sparse
vegetation, and severe soil erosion. The station catchment area is 744 km2, the river length is 81.3 km,
and the distance from the estuary is 31 km. The regional climate features a moderate temperate
semi-humid semi-arid zone, which is cold and dry in winter, and dry and windy in spring, with
droughts and floods in summer, and which is cool and humid in autumn. The average annual
temperature, precipitation, sediment transport, and discharge are 7.8 ◦C, 509.8 mm, 102 million tons,
and 2610 m3/s, respectively. Floods are caused by heavy rains, with rapid fluctuations, sharp peaks,
and short duration. The relationship between water level and discharge is generally poor.

This study used seven rainfall stations and one hydrological station for the Changhua catchment
(Figure 1a) and eleven flood events between 07/04/1998 and 24/06/2002, nine rainfall stations and
one hydrological station for the Changhua catchment (Figure 1b) and eleven flood events between
26/09/2003 and 30/09/2012, and seven rainfall stations and one hydrological station for the Zhidan
catchment (Figure 1c) and fifteen flood events for the period between 27/07/2000 and 13/08/2010 for
the development of the hydrological models using hourly data.

211



Water 2019, 11, 85

 
(a) 

 
(b) 

 
(c) 

Figure 1. (a) Changhua catchment, (b) Chenhe catchment, (c) Zhidan catchment.

This research applied the vector autoregressive (VAR) method to determine the correlation over
time and periodicities in the time series. VAR is one of the most useful, flexible, and easy-to-use models
for analyzing the dynamic input of random disturbances on a system of variables [55]; Ref. [56] used
VAR for streamflow sequence analysis. Ref [57] analyzed rainfall and groundwater level using VAR,
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and the results show that there is a significant influence of rainfall on groundwater level. Ref. [58]
used VAR for rainfall forecasting; VAR accurately detected the correlation between rainfall and the
coordinates of the isohyets; VAR successfully forecasted rainfall, and even outperformed the ARIMA
model. Ref. [59] used monthly rainfall and streamflow data to develop streamflow trends using rainfall
variability and determined causality between streamflow and rainfall for forecasting. Equation (13)
shows a basic VAR model.

yt = Ayt−1 + · · · Apyt−p + Cxt + εt (13)

where yt = (Ayt−1 + · · · Apyt−p) is the K × 1 vector of the observable endogenous variables, xt is a d
× 1 vector of the endogenous variables, A1 . . . Ap are K × K matrices of lag coefficients to be estimated,
C is a matrix of the exogenous variable coefficient to be estimated, εt is white noise. Different criteria
are used for optimal lag selection, including the Akaike Information Criterion (AIC), the Schwarz
Information Criterion (SC), and the Hannan-Quinn information criterion (HQ). This research adopted
the SC criterion for selecting the optimal lag time of each variable, and the auto correlation function is
plotted to show the significant lags in the time series of each variable.

Parameter optimization of the model plays a crucial role in the performance of the model.
For the ANN model, learning rate, momentum value, and above all the network architecture were
optimized using the logistic function and linear function as the activation function and output function,
respectively. The optimized parameters for ε-SVM are the cost constant C and error tolerance (ε),
and parameter ε controls the width of the e-insensitive loss function. Large ε-values result in a flatter
estimated regression function. Parameter σ controls the RBF width, which reflects the distribution
range of x-values of training data. Parameters have commonly been determined by a trial and error
process, which is inefficient and makes it difficult to achieve a favorable set of parameters that will
provide a better-performing model—usually by means a costly grid search, which scales exponentially
with the number of parameters used for finding optimal hyperparameters. Nonetheless, for effective
optimization of parameters, the model should be nested with an automated, efficient optimization
strategy for hyperparameters. Fortunately, the availability of advanced metaheuristic algorithms helps
in providing the best solution for the multi-objective optimization problem.

This research adopted the ε-SVM and ANN models. SVM was trained by the RBF kernel function
to transform a nonlinear problem into a linear function by mapping the input data into a hypothetical,
high-dimensional feature space, while the back-propagation algorithm trained the ANN model.
The data was standardized by the two models to remove periodicities present in the time series, and
was divided into two datasets—training data set and testing data set—in a ratio of 68% and 32%,
respectively. The windowing operator transformed the series data into features that describe the history
for the current time point by taking a cross-section of data in time, followed by the application of a
sliding window validation operator on the windowed data with a nested model algorithm inside for
training and backtesting the hypothesis. When the model was finally developed, the model parameters,
including (C, σ, ε for SVM) for SVM, (ε, α, network architecture) for ANN and cross-section, training
size, and testing size, were finally optimized, and the model was set for streamflow prediction.

The performance of the models developed in this study was evaluated using seven different
statistically different statistical measures of performance:

Root Mean Square Error (RMSE) measures overall performance across the entire range of the
dataset. It is sensitive to small differences in the model performance and, being a squared measure,
exhibits marked sensitivities to the larger errors that occur at higher magnitudes

RMSE =

√
∑N

i=1 ŷi − yi

N
(14)

Coefficient of determination (R2) describes the proportion of the total statistical variance in the
observed dataset that can be explained by the model.
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R2 =

⎛
⎜⎜⎝ ∑N

i=1(ŷi − yi)(ŷi − yi)√
∑N

i=1(yi − yi)
2
√

∑N
i=1
(
ŷi − ŷi

)2

⎞
⎟⎟⎠

2

(15)

Nash Sutcliffe Efficiency (NSE) coefficient is sensitive to extreme values and might yield
sub-optimal results when the dataset contains large outliers. Furthermore, it quantitatively describes
the accuracy of model outputs other than the discharge.

NSE = 1 − ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − yi)

2 (16)

Mean Square Relative Error (MSRE) provides a relative measure of model performance, the use
of squared values makes it far more sensitive to the larger relative errors that will occur at lower
magnitudes. It will, in consequence, be less critical of the larger absolute errors that tend to occur at
higher magnitudes and more prone to potential fouling by small numbers in the observed record.

MSRE = 1/n
n

∑
i=1

(
yi − ŷi

yi

)2
(17)

Mean Relative Error (MRE) is a relative metric that is sensitive to the forecasting errors that occur
in the lower magnitudes of each dataset. In this case, because the errors are not squared, the evaluation
metric is less sensitive to the larger errors that usually occur at higher values.

MRE = 1/n
n

∑
i=1

(
yi − ŷi

yi

)
(18)

Mean Absolute Error (MAE) provides no information about underestimation or overestimation.
It is not weighted towards higher-magnitude or lower-magnitude events, but instead evaluates all
deviations from the observed values, in an equal manner and regardless of sign.

MAE = 1/n
n

∑
i=1

|yi − ŷi| (19)

Mean Absolute Percentage Error (MAPE) is a relative metric that is sensitive to the forecasting
errors that occur in the lower magnitudes of each dataset. In this case, because the errors are not
squared, the evaluation metric is less sensitive to the larger errors that usually occur at higher
magnitudes. It is nevertheless subject to potential “fouling” by small numbers in the observed record.

MAPE = 1/n
n

∑
i=1

|yi − ŷi|
yi

(20)

6. Results

Figure 2 shows the internal correlation within the time series of rainfall and streamflow data for
humid, semi-humid, and semi-arid areas with a 5% level of confidence for a lag time of up to 12 h.
Figure 2 indicates that the time series of a humid area is mostly stationary, with significant spikes in
the streamflow data and rainfall data collected from Longmengsi station. The semi-humid area data
has a few periodic events, noticed later in every rainfall time series, but the majority of the time series
is stationary, whereas in semi-arid areas, the time series shows seasonality and there is a significant
contribution to the variance in the time series from the many significant spikes showing periodicity
within the time series. Table 1 indicates that there are shorter delays (2–4 h) in the time series of humid
areas, and longer delays (7–8 h) in semi-humid and semi-arid areas.
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(a) 

 
(b) 

 
(c) 

Figure 2. Autocorrelation plots of rainfall and streamflow for (a) Humid, (b) Semi-Humid,
(c) Semi-arid catchments.
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Selection of significant input variables is an essential step in the development of time series
forecasting models to improve the performance of the model by removing irrelevant and redundant
variables that add extra noise, which reduces the accuracy and speed of the model [60]. Correlated
input variables affect the prediction ability of the model, because they obscure the true relationship
that exists between important variables [61]. This study adopted a model-based approach by using
a brute force feature selection method to select the significant input variables, trying all possible
combinations of attribute selection in an automatic search process that optimized some indicators for
model performance. Since models respond differently to input variables, SVM and ANN operate as a
subprocess and return a performance vector; then, the brute force operator selects the feature set with
the best performance vector Table 2.

Table 2. Selected significant input variables for SVM and ANN models.

SVM Model ANN Model

Humid Semi-Humid Semi-Arid Humid Semi-Humid Semi-Arid

Longmengsi Houzhengzi Yejicha Taohuacun Diaoyutai Yejicha
Taohuacun Maichang Wafangzhuang Yulingguan Houzhengzi Wafangzhuang
Shuangshi Shaliangzi Bachatai Shuangshi Maichang Bachatai
Daoshiwu Bafangzi Shunning Daoshiwu Shaliangzi Shunning

Xiaowangjian Zhifang Laoshuima Zhifang
Xiaowangjian

7. Discussion

Table 3 shows seven statistical measures of performance used to assess the performance of the
models for the three catchments. One distinct feature is that the models performed phenomenally
during the simulation process of all the catchments. SVM successfully simulated streamflow better
than ANN, as indicated by all metrics in Table 3. According to R2 and NSE, both models accurately
predicted the maximum flow for humid and semi-humid regions. However, the value of AME shows
that ANN underestimated the minimum streamflow of the humid area. SVM successfully simulated
streamflow of the semi-arid area, while ANN poorly simulated the both minimum and maximum flows
of the streamflow, as indicated by R2, NSE, MSRE, and MRE. The results tie in well with those of [22,62].
Due to the high degree of spatial and temporal variability in semi-arid areas, ANN underperformed,
because ANN often fails to find global optima in complex and high-dimensional parameter spaces [63].

For the forecasted time in humid areas, SVM successfully forecasted streamflow up to 4 h lead
time, and ANN forecasted up to 5 h, according to R2 and NSE values. This indicated that the models
predicted the streamflow very well, though ANN overestimated the low flow events according to
MSRE and MAE, signifying a high deviation of predicted values from the observed values. This result
is in agreement with those of [22,64], in which the authors compared the performances of ANN and
SVM for streamflow forecasting. From Table 3, in the semi-humid area, the ANN model obtained the
highest R2 and NSE values for all of the forecasted period, and also obtained a lower RMSE for all
periods than the SVM model. However, SVM performed well when using other evaluation metrics.
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Regarding relative evaluation metrics such as MRE, MSRE and MAE, ANN did not perform
well, for 1 h and 3 h forecast time, especially, the ANN model underestimated the minimum flow,
as indicated by the MRE values, which were −0.06 and −0.13, respectively. ANN was applied for
hydrological modeling, the author emphasized that ANN models in hydrology tend to perform very
well according to statistical metrics sensitive to errors occurring at higher magnitudes (R2, NSE, RMSE),
but perform poorly when estimating low flows because of relative metrics, which are more critical
for errors occurring in the lower magnitudes (MRE, MAPE, MSRE) [65]. Ref. [65] used integrated
GA to overcome the ANN problem of failing to estimate minimum flows, and also to improve the
overall performance of ANN in streamflow simulation. As for semi-arid catchments, both models
failed to forecast streamflow, with only the SVM model closely predicting streamflow in the results for
the 1-hour-ahead prediction, as indicated by R2, RMSE, MAE, MAPE and MRE. All metrics critically
penalize ANN for 1 h lead time. SVM is penalized more by R2 than ANN as forecasting time increases,
whereas MSRE and NSE severely penalize both models with increasing lead times. Regular ANN was
compared with wavelet-ANN (WA-ANN) for 1–3-day lead time forecasting, and as indicated by R2,
ANN and WA-ANN obtained 0.62 and 0.78 for a 1 day lead time, and 0.4 and 0.42 for a 3 day lead time,
respectively. These results are in agreement with the findings of this paper regarding the decreasing
value of R2 obtained with increasing lead times [66]. NSE is used to assess the predictive power of
hydrological models. The threshold values indicating a model’s degree of sufficiency are suggested to
be between 0.5 < NSE < 0.65. Therefore, the models performed poorly on semi-arid catchments, and
only predicted the one-hour lead time, which is still not satisfactory.

The results from Figure 3 are in agreement with the results in Table 3, that SVM outperformed
ANN in streamflow simulation of all catchments; nonetheless, both models successfully simulated
streamflow, except for ANN in semi-arid areas, as confirmed by all metric values in Table 3. Points are
distributed along the regression line during the first 3 h of lead time for the SVM and ANN models in
humid and semi-humid areas, and then spread wide from the line of perfect agreement as the lead
time increases. However, the wide distribution of points from the regression line is more significantly
noticeable in SVM than in ANN. The notable feature is that the correlation coefficient between the
observed discharge and the forecasted discharge also diminishes with the increase in forecast time;
Figure 3 is in agreement with Table 3 that the linear regression relationship behavior between observed
and estimated streamflow shows that the performance of the models decreases from humid regions to
drier regions.

  
(a) 

Figure 3. Cont.
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(b) 

  
(c) 

Figure 3. Scatter plots of the target (measure streamflow) versus simulated and forecasted streamflow
from 1 h lead time to 5 h lead time for Changhua basin, Chenhe basin and Zhidan basin (a), (b) and (c)
respectively for both SVM and ANN models.

Figure 4 gives a clear graphical representation of how the ANN and SVM model has simulated,
and forecasted streamflow for all different catchments [67] stated that SVM could be able to prevent
the influence of non-SV over the model during training by optimizing SV, and [68] mentioned that
SVMs are suitable for nonlinear regression than ANN as they can identify optimal global solution.
The SVM model managed to predict the shape of the hydrograph very well for simulation and all
forecasted results. Most importantly SVM successfully predicted the lows and peaks of the time
series of all catchments. Furthermore, SVM accurately simulated the streamflow of all catchments
as indicated in Table 3 and Figure 3. SVM was used for streamflow forecasting, and the model
accurately simulated the streamflow of Lang Yang river basin [16]. ANN model also performed very
well in humid and semi-humid catchments. Figure 4 clearly shows that SVM outperformed ANN in
streamflow simulation of all catchments.
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(b) 

 
(c) 

Figure 4. Observed streamflow versus simulated and forecasted streamflow from 1 h lead time to 5 h
lead time for Changhua basin, Chenhe basin and Zhidan basin—(a), (b) and (c), respectively—for both
SVM and ANN models.

The notable performance from Figure 4 is that as forecast time increases, there is an increase in
the lag phase between the predicted hydrograph by SVM and the observed hydrograph. The lag
is noticeable in the forecasted period of 3 h of Changhua streamflow and increases as forecast time
increases. Meanwhile, in the Chenhe catchments, the lag is noticeable within 3 h forecast time. Lastly,
for Zhidan, the streamflow in Figure 4 is in agreement with the scatter plots for the performance of the
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model, as the lag is visible at 1 h lead time. Figure 4 explains the results in Table 3, indicating that all of
the metrics that measure overall performance are more sensitive to hydrograph lags than the peaks,
and also removes the impression given by Figure 3 that SVM overestimated the maximum flows, as
this is due to the lags in the predicted hydrographs. Ref. [69] used SVR for flood stage forecasting,
and the model successfully forecasted flood stage, although the results were slightly weaker than the
simulation results. SVR effectively forecasted the flood stage with 1 h to 6 h lead time, and the time lag
is visible for 5 h to 6 h lead times, but the phase lag is insignificant when compared to the SVM results
in this study. The authors suggest that the phase lags could be due to the sensitivity of the model with
respect to the lag of the input variables.

Figure 4 shows that ANN forecasted streamflow very well for humid and semi-humid catchments,
but the model slightly underestimated the peak flows, and there was a drop in estimated peak flows
as forecast time increased; a significant decline in estimated peak is visible with a 5 h lead time.
Furthermore, the noticeable characteristic of ANN is that as the lead time increases, the model fails to
predict the trend or shape of the observed time series, especially the lower and moderate flows. [65]
applied ANN for streamflow forecasting, and the results are quite similar to the results of this study.
The authors trained ANN using BP and GA, and the results indicate that ANN models trained with the
BP algorithm tend to overestimate the minimum streamflow; therefore, Srinivasule and Jain applied
GA to solve the problem. However, the ANN model trained with BP also overestimated the peak flows,
whereas in this study, ANN has the problem of underestimating the peak flows. Finally, the ANN
model failed to forecast semi-arid streamflow; the model completely underestimated the peak of the
hydrograph for all forecasted times. This could be due to the effect of low rainfall being overestimated
by the model [63].

This study applied different metrics that are critical to errors occurring at low and at peak flow, as
well as those that measure the overall performance of the model. This illustrates that every statistical
index has its weaknesses and limitations, as observed in Table 3, in which NSE, R2, and RMSE heavily
penalized SVM, but not MSRE, MRE and MAPE; while metrics like MAE, MSRE, MRE, and MAPE
punished ANN more heavily than overall measures of performance. Therefore, consideration of other
analysis tools such as graphical representation is prudent before accepting or rejecting a model based
on the values of the metrics without acknowledging the flaws.

Figure 5 was considered for further analysis in the performance of the ε-SVM and ANN models.
The box plots were formed by determining the median of the data set, then the median in the
lower and upper quartiles of the data set, and finally the lower and upper extremes of the data set,
which are connected by the whisker to the box showing the minimum and the maximum of the
data set. Figure 5 shows that the SVM model accurately predicted the observed time series of all
catchments, as the predicted results have the same mean, median, minimum and interquartile range.
SVM slightly overestimated the peak flows with 4 h and 5 h lead times for humid areas, whereas ANN
underestimated the peaks with 1–3 h lead times, and with 3–5 h lead times, the performance of the
model declined, as the mean, median and range were significantly different from the observed data.
Furthermore, the model overestimated the minimum flows, as indicated in Table 3. Figure 5c clearly
shows that the results predicted by SVM are similar to the observed values. This confirms that for
semi-arid catchments, the metrics were sensitive to the lags of the predicted hydrographs. Meanwhile,
ANN did not perform well in semi-arid regions; the nonlinearity and variability of the basin could
have affected the prediction accuracy of the model, because of overparameterization effects and the
optimization algorithm failing to reach global optima in complex and high-dimensional spaces [63].
Figure 5 clearly shows that SVM simulated and forecasted the streamflow of all catchments better
than ANN. SVM and ANN were applied for streamflow forecasting, and their results concur with
the results of this study, indicating that both models performed well in predictions of streamflow,
especially in the humid and semi-humid areas [26,64,70]. The results of this study are in agreement
with the results of other studies, suggesting that SVM performs better than ANN. This is because
SVMs are capable of evaluating more relevant information conveniently [71]. Furthermore, its quality
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of abiding by a structural risk minimization principle helps SVM to maximize the margin; thus, its
generalizability does not decrease [44].

 
(a) 

 
(b) 

 
(c) 

Figure 5. Box plots for forecasted time for (a) Changhua, (b) Chenhe, and (c) Zhidan catchments.

8. Conclusions

This study developed ANN and SVM models for flood simulation and forecasting in humid,
semi-humid and semi-arid catchments using input antecedent hourly rainfall date and output
antecedent hourly streamflow data. Then, the Brute force method was applied for the selection of the
significant input variables of every model, and the ES algorithm was employed for the optimization of
model parameters. The models were compared for a 1–5 h lead time for all catchments. The results
showed that the ANN model successfully established accurate and reliable streamflow forecasting of
humid and semi-humid catchments, although the model had the problem of underestimating the peak
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flow. Meanwhile, the SVM model successfully simulated and forecasted the streamflow of all basins,
and the SVM model was able to maintain excellent accuracy for the minimum and maximum values of
all basins and forecast times. The only significant drawback affecting the prediction accuracy of SVM
was the presence of lags, and the lag phase increased with the forecast lead time.

Performance of SVM could be improved by removing the lags in the forecasted time series,
especially of semi-arid areas, because lags were observed in 1 h lead time predictions in comparison
to other areas. Although delays are inevitable when forecasting time series, ANN was found to
be efficient in the elimination of lags. However, ANN performed poorly in semi-arid areas, as it
overestimated minimum flow and underestimated peak flows. The possible reason for which ANN
and SVM performed well in humid and semi-arid areas could be that the rainfall-runoff relationship
is not complicated or dynamic, because water storage is near saturation. Whereas, in semi-arid
areas, the performance is poor because of the complex and dynamic rainfall-relationship. To improve
the performance of the ANN and SVM models in forecasting the streamflow of semi-arid areas,
other methods for determining significant input variables should be exploited, such as evolutionary
algorithms, or additional model parameter optimization. The ensemble of the models could also help
to improve prediction and eliminate the lags in the forecasted time series.
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Abstract: Hydrological extremes in the water cycle can significantly affect surface water engineering
design, and represents the high-impact response of surface water and groundwater systems to climate
change. Statistical analysis of these extreme events provides a convenient way to interpret the nature
of, and interaction between, components of the water cycle. This study applies three probability
density functions (PDFs), Gumbel, stable, and stretched Gaussian distributions, to capture the
distribution of extremes and the full-time series of storm properties (storm duration, intensity, total
precipitation, and inter-storm period), stream discharge, lake stage, and groundwater head values
observed in the Lake Tuscaloosa watershed, Alabama, USA. To quantify the potentially non-stationary
statistics of hydrological extremes, the time-scale local Hurst exponent (TSLHE) was also calculated
for the time series data recording both the surface and subsurface hydrological processes. First, results
showed that storm duration was most closely related to groundwater recharge compared to the other
storm properties, while intensity also had a close relationship with recharge. These relationships were
likely due to the effects of oversaturation and overland flow in extreme total precipitation storms.
Second, the surface water and groundwater series were persistent according to the TSLHE values,
because they were relatively slow evolving systems, while storm properties were anti-persistent
since they were rapidly evolving in time. Third, the stretched Gaussian distribution was the most
effective PDF to capture the distribution of surface and subsurface hydrological extremes, since this
distribution can capture the broad transition from a Gaussian distribution to a power-law one.

Keywords: statistical analysis; hydrological extremes; stretched Gaussian distribution;
Hurst exponent

1. Introduction

Low probability and high impact extremes in hydrology, such as storms, play an important role
in characterizing the hydrologic system and affecting water infrastructure design [1–4]. Capturing
and defining these extremes is still a difficult task in hydrology because of the complexity of natural
systems, as well as their variability in both space and time [5,6]. Compared to the prohibitive physical
process-based models requiring intensive data that are typically not available for many study sites,
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statistical analysis of hydrological extremes is an attractive tool to interpret these extreme events within
and across systems from simple measurements [7–10].

There are two major challenges when applying basic statistics to analyze hydrologic extremes.
First, hydrologic processes in the water cycle are interconnected, while basic statistical analysis of
extremes often does not consider multiple systems and tends to oversimplify the complexity of the
correlated processes like precipitation and groundwater table fluctuations [11,12]. Understanding how
the subtle properties of one system’s extreme events can affect the other interconnected systems requires
more in-depth analysis and use of advanced statistical techniques. Second, these basic statistical
techniques often rely on assumptions or major simplifications of properties for water systems, such as
stationarity in both space and time, which may not always be valid for real world dynamics [13–15].
These issues motivated this study.

One example of the assumption/simplification used by basic statistical studies in hydrological
extremes is the well-known Gumbel distribution. Statistics of extremes is one of the historical topics in
hydrology, including for example probability density functions (PDFs) developed for analyzing the
distribution of hydrologic extremes [13]. One of the fundamental distributions used in hydrology is the
Gumbel distribution, a case of the generalized extreme value distribution where the shape parameter
is 0, proposed by Gumbel to fit the frequency of floods [16]. This distribution was developed before
many advances in statistics and computing, and it has been widely used for decades by hydrologists.
To apply this theory, data must be assumed to be homogenous, meaning that there should be no
change in climate or basin characteristics during both the observation period and any period that
predictions are made. This assumption, however, may not be valid considering the intrinsic evolution
of the dynamic, natural systems [13,17,18]. One promising way to overcome the assumption of the
homogeneous system is non-stationary statistics [19,20].

This study aims to fill two knowledge gaps when analyzing the distribution, memory,
and correlation embedded in the hydrological extremes. First, we will identify the PDF that can define
the overall distribution pattern of real-world hydrological extremes. Several studies [21,22] found
that various random processes in hydrology usually follow a one-sided distribution with a heavy tail.
This finding motivated us to test two physically meaningful PDFs, the stretched Gaussian distribution
and the α-stable distribution, in capturing the hydrological extremes and comparing them with the
classical Gumbel distribution. All three of the distributions allow for a one-sided, heavy tailed PDF,
which is a common occurrence in natural water systems [23–25]. Each distribution has different
parameters, and they can all be conveniently computed and parameterized for series. Since the
extremes of water systems are often needed to determine the infrastructure design and management
plans, improving the prediction using the most reasonable distribution as a model can greatly improve
water management practices [26].

Second, we will evaluate the non-stationary statistics for hydrological extremes. One example of
a non-stationary statistic is the Hurst exponent, first developed to quantify the long-term persistence
of water storage of reservoirs by Hurst [27]. Peng et al. [28] introduced detrended fluctuation
analysis (DFA) to investigate long-range correlation (also called memory) of a series that contains
significant noise, such as DNA nucleotides, financial series, seismic analysis, and hydraulic data [28–32].
Peng et al.’s contribution [28] allowed for a time-scale local Hurst exponent (TSLHE) to be calculated,
defining a non-stationary statistic. Zhang and Schilling [32] applied DFA to investigate the scaling
behavior of hydraulic head and base flow, which is related to the groundwater recharge and can be
used to determine the fractal dimension and Hurst exponent of the series. Zhou et al. [33] used a multi
fractal DFA (MF-DFA) method to show that river discharge in the Yangtze basin was non-stationary
and had different correlation properties depending on the measurement location in the watershed.
Tong et al. [34] used the Hurst exponent to quantify the variation of droughts in both space and time.
These successful applications motivated us to apply the TSLHE to explore the evolution of hydrological
extreme properties.
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Different from most of the previous works, this study tries to evaluate and correlate surface and
subsurface hydrological extreme events. We will investigate the effects that extreme storm events,
of different properties, have on the fluctuations in surface and subsurface water systems. To the best of
our knowledge, these fluctuations have not been compared to different storm properties. With potential
changes in climate, the storm properties are expected to evolve in time [35–37]. These fluctuations are
correlated to the properties over time and compared across systems and storm properties. The memory
of the water series is also investigated using the TSLHE, which is correlated to the storm properties.
Finally, we will investigate the distributions that fit each of the different data sets and storm properties.

The rest of this study is organized in four sections. Section 2 briefly introduces the study site and
the data sources used for statistical analysis. Methods are then described, including the calculations of
storm properties, the Hurst exponent, and the distributions used to fit the time series data. Section 3
presents the results of statistical analysis for both the surface water and groundwater. Section 4
discusses the statistical results, and Section 5 draws the main conclusions.

2. Study Site and Methodologies

2.1. Background of the Study Site and Data Source

The study site was the Lake Tuscaloosa watershed in Tuscaloosa, northern Alabama, USA. The lake
has been the primary source of drinking water for the city of Tuscaloosa (200,000 consumers in 2014)
since 1970. Lake Tuscaloosa has an approximate volume of 150,000,000 m3 and a surface area of 23.82
km2 [38]. The lake is fed by four major streams which have U.S. Geological Survey (USGS) gauge
stations—North Creek, Binion Creek, Bush Creek, and Carroll Creek—which represent most of the
surface flow into the lake, as well as many smaller streams that do not significantly contribute to the
lake. North and Binion Creeks have the highest discharge and the best coverage of measurements,
and hence they are used as the streams for this study. The lake sits primarily in the Pottsville Formation,
a Pennsylvanian aged sandstone interbedded with shale and siltstone, as well as the lower Coker
Formation, a Cretaceous unit with sand and gravel beds. The lake is partially fed by groundwater
from these aquifers, as are the streams that flow into it [39].

The study site has a humid subtropical climate, typical of the Deep South weather region of the
U.S., with abundant rain (with an average precipitation of 1336.04 mm/year) and rare measurable
snowfall. The local climate is affected significantly by the Gulf of Mexico which brings relatively
warmer and moist air. This causes precipitation during fall, winter, and spring seasons, when the
warmer/moist air from the south interacts with the cooler/drier air from the north of the southeastern
U.S. Extreme weather conditions, such as hurricanes, can occur in the spring and fall, especially in
April. For example, two tornadoes (EF3 and EF4, where “EF” stands for the Enhanced Fujita scale for
tornado intensity/damage) in a span of twelve days hit the city of Tuscaloosa in 15–27 April, 2011
killing more than fifty people and causing considerable infrastructure damage [40]. Therefore, study
of extreme hydrological events in this area is particularly important.

The locations of measurement stations are shown in Figure 1. The primary precipitation station is
~13 km southwest of the lake, at the Tuscaloosa Municipal Airport, and is assumed to be consistent with
rainfall in the watershed, as is the case for rain dominated systems with little topographic variation [41].
The additional precipitation stations shown in Figure 1 are used as a supplement to the primary station
as discussed in the next section. The data were taken from the USGS National Water Information
System (NWIS) for terrestrial water and National Centers for Environmental Information (NCEI) from
National Oceanic and Atmospheric (NOAA) for precipitation. Data from the USGS were at a daily
resolution and from NOAA at an hourly resolution.
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Figure 1. Left: The study area and surrounding counties, showing the precipitation stations as red dots
with their National Oceanic and Atmospheric ID. Right: The study area with gray points denoting
surface water stations and the red point showing the position of the groundwater well.

Both the surface and subsurface records were relatively abundant to support reasonable statistical
analysis in this study. The data with the longest period of record was the North Creek discharge,
with the earliest record from 1938 to the present (i.e., a record of ~80 years with a daily resolution).
Precipitation also had a long period of record, starting in 1958 and continuing to 2005. Lake stage and
Binion Creek were recorded from 1982 and 1986, respectively. Groundwater data were recorded from
1979 to the present. Groundwater had an average depth from the land surface of approximately 13 m
and was generally low in the winter. The vadose zone was comprised mostly of soils, which tended to
be loam type soils that are often rich in clay minerals as is typical in the southeast U.S.

2.2. Storm Properties

A complete data series of hourly precipitation was built first, so that there were no missing values.
The stations in Perry and Hale counties were first determined to be reasonable analogs by annual
statistics. The storm properties were then calculated using the method proposed by Jiang et al. [42].
We briefly review the methodology here, and further details can be found in that reference [42].

Four properties were calculated for each storm, including storm duration, intensity, total
precipitation, and inter-storm period. Storm duration was the number of consecutive hours of
precipitation for a single storm which ended when there were six consecutive hours of no precipitation.
Intensity was the average rainfall per hour in a single storm. Total precipitation was the amount of
precipitation that fell during that storm. Inter-storm period was the number of consecutive hours with
no precipitation that occurred between storms.

There are different possible values that can be used to define the inter-storm periods that have been
used in the literature. For this study, six hours was chosen as the minimum value for an inter-storm
period as it was a frequently used minimum in previous work [36,43,44]. This minimum threshold for
an inter-storm period also allowed for direct comparison to our previous work since it used the same
minimum value for the inter-storm period [42].

To explore the extremes of these properties, the data set was filtered so that the 95th percentile of
each property was isolated. These extreme data points were then analyzed against groundwater head
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fluctuations and fitted with the distributions separately, as well as the entire set of storm properties for
further comparison. The distributions used are discussed later in this section.

2.3. Hurst Exponent

The Hurst exponent is a measure of the memory of a time series, meaning how strong the
influence of past values is on future values. The Hurst exponent was originally developed to optimize
the dam’s size in the 1950s when evaluating the reservoir storage [27]. It has since been improved
and used in many signal processing applications [28–32]. This study used the method proposed by
Habib et al. [45] to calculate a time-scale local Hurst exponent using the following four equations:

F(S) ≈ SH (1)
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i
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k=1
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(4)

Here Equation (1) gives the scaling function (F(S)) which is approximately equal to scale (S) raised
to the Hurst exponent (H). Equation (2) develops a cumulative sum (Y) where Xk is a specific value and
〈x〉 is the series mean. Equation (3) determines the variance (F2) of each section by subtracting a best fit
polynomial of order n (Pn). Finally, Equation (4) finds the (square root of the) average variance for all
segments which defines the scaling function. Different values of Hurst exponents H represent different
properties in a system. In this study, the calculated H is between 0 and 1. The range of 0 < H < 0.5
represents an anti-persistent series where high values are usually followed by low, and the range of H
> 0.5 represents persistent series where high values are followed by high. It is also noteworthy that we
used a window of 30 samples as our scale (S) when calculating the TSLHE.

2.4. Random Variable Distributions for Hydrological Processes

Here we introduce the three distributions for random hydrological variables. First, the Gaussian
distribution, also known as the exponentially modified Gaussian distribution, can be used to capture
the distribution for processes with a heavy tail in one direction. This distribution is defined by the
following function with a stability index (α), location parameter (D), and scale parameter (T):

f (T, S) =
1√

πD(S − T).5α
× e

−x2

4D(S−T).5α (5)

This distribution is closely related to the normal (Gaussian distribution) except that it is modified
by the stability index α, which controls the tailing behavior of the distribution.

The stable distribution is defined by the following function with a stability index (α), skewness
parameter (β), scale parameter (γ), and location parameter (δ):

φ1(t)

{
−exp(−γα|t|α[1 − iβsin(t)

(
tan πα

2
)
+ iδt

]
) α �= 1

−exp(−γ|t|[1 − iβ 2
π sin(t)ln|t|+ iδt

]
), α = 1

(6)

Here the stability index α controls the overall shape (i.e., pattern) of the distribution, with α

= 2 reducing the distribution to a Gaussian distribution. The skewness parameter β controls the
skewness of the distribution with a negative β resulting in a skewness to the left (representing extreme
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minimums), and a positive one causing a skewness to the right (representing extreme maximums).
The other parameters do not affect the overall shape of the distribution, except for the overall expansion
(by the scale parameter γ) and shift (by the location parameter δ).

The widely used Gumbel distribution is also used here as a control and comparison. The following
equation gives the PDF of the Gumbel distribution with a location parameter (μ) and scale parameter
(β) as the only two parameters for the distribution:

f (x) =
1
β

e−(z−e−z) (7)

where
z =

x − μ

β
(8)

Another commonly used extreme value distribution is the Log-Pearson Type 3 distribution.
This distribution is commonly used to fit a frequency distribution data, often when determining
flood occurrence [46]. The distribution is based on three parameters, which are location (μ), scale (β),
and skewness (γ). We introduced this function on the measurement data series since we did not find a
single most effective distribution among the first three listed above. The distribution is defined by the
following PDF:

f (x) =
β

Γ(x)
(x − μ)γ−1e−β(x−μ) (9)

where Γ(x) represents the Gamma function.
The distributions mentioned above were parameterized in MATLAB or R using convenient

optimization toolboxes that estimated the best fit parameters from the data. The Gumbel distribution
was parameterized using the “evfit” function which estimated a maximum likelihood estimate of the
parameters of the type one extreme value distribution (Gumbel) within a 95% confidence interval.
The stretched Gaussian distribution was parameterized using the “exgauss_fit” function, which also
used a maximum likelihood method but was bounded by a simple algorithm. The stable distribution
was parameterized using the “stblfit” function which used Koutrouvelis’ method, an iterative,
regression method which used an initial estimate of parameters and repeated using weighted regression
runs until convergence criteria was met. The Log-Pearson distribution was parameterized using the
“fisdist” function in R, which also used a maximum likelihood estimator method. We used the root
mean square error (RSME) as a quantitative metric to determine goodness of fit and compare across
different distributions.

3. Results

3.1. Temporal Variation of Precipitation Properties and Their Extremes

First, the seasonal distribution of storm properties was investigated. Box plots for each property
are depicted for each month to show subtle temporal variations (Figure 2). Duration and total
precipitation had similar trends with highs coming in the winter season and lows in the summer.
Particularly, February was on average the wettest month (Figure 2), which was consistent with the
local weather conditions. These two properties both tended to have their extremes come during
winter months (especially February) when the average values were higher. Intensity had the opposite
trend with the most intense precipitation coming in spring/fall and less intense storms in the winter.
Intensity extremes had a random pattern with most extremes events occurring in spring and fall,
such as April and September, which are the typical seasons for land-falling hurricanes. Inter-storm
period did not have a significant trend annually for either average or extreme values, but did have its
three largest values all occurring in January, the winter season.
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Figure 2. Box and whisker plots for each of the storm properties annual variation showing duration
(row 1), intensity (row 2), total precipitation (row 3), and inter-storm period (row 4) values using a
one-month bin.

Evolution of the distribution for all storm properties was then evaluated to show when the
extremes of precipitation occurred in the area (Figure 3). Many of the duration extremes occurred in
the start of the study period and their occurrence rate slowly declined with time. Inter-storm period
had the opposite behavior with many of the extreme values coming in the most recent portion of the
study period. Total precipitation and intensity had less obvious changes in the occurrence of their
extremes. Extreme events of intensity became more frequent over the study period, with the plot of
intensity extremes occurrence vs. time increasing slightly with time (Figure 3).

Figure 3. Histogram of different extreme events and their occurrences over time to show the frequency
of occurrence for extreme events during the study period. Each sub figure shows this for each storm
property: Duration (A), intensity (B), total precipitation (C), and inter-storm period (D).
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3.2. Correlation between Storm Properties and River/Groundwater

Figure 4 shows the correlation between the extreme values of precipitation characteristics
(duration, intensity, and total precipitation), which are taken as the 95th percentile of each unique
property compared to the fluctuation of groundwater head. Since groundwater fluctuation was
measured using depth to groundwater surface, a decrease in depth to water corresponded to an increase
in water storage in the aquifer since the water table was closer to the surface. The strongest correlation
of all the studied storm properties was with intensity, with a maximum correlation coefficient of −0.6
at 12 days after the end of a rainfall event. Duration shows a relatively weaker correlation, but it is
more consistent with peaks at −0.5 at 10 days. Total precipitation was weakly correlated to increased
groundwater storage, peaking much after the other two storm properties mentioned above, at −0.25 at
21 days.

Figure 4. Correlation between the storm property extremes and depth to groundwater surface at
different number of days lags, showing the slow evolving process. In the legend, “tprecip” represents
“total precipitation”.

Due to the high frequency of precipitation at the study site (the average number of days with
rainfall ≥0.25 mm is 111.3 days per year at the study site), the inter-storm period was often too short
to effectively capture the effects of the interval arrival period between storms. Most of the inter-storm
periods were usually only a few days long (13 days was the 95th percentile of inter-storm periods) and
only 17 dry periods longer than 31 days were recorded over the entire precipitation record (~60 years).

Since surface water recharging to groundwater is a slow acting process (involving relatively
slow infiltration through the ~13 m thick vadose zone), with other results showing ~13 days for peak
influence for a storm to occur, these short periods only capture the effects of the previous precipitation
event on groundwater head.

Stream discharge, however, cannot be correlated to storm properties in this study, because river
response (within minutes to hours) to precipitation was faster than our measurement resolution (daily).
We could not find a strong correlation at any time period measurable within the resolution of our data.
This was likely due to the issue of storms ending in the middle of the day. This makes it difficult to
correlate to fluctuations in river stages that occur within the first hours after a storm ends, since the
next river measurements after the storm may occur as much as 23 h after the storm actually ends.
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Due to these issues, the small sample size of usable inter-storm periods, and the rapid fluctuation
in stream discharge, the results were not presented here or found to be significant at the site. Further
investigations for inter-storm periods in more arid areas may provide meaningful and interesting
insights. High resolution (ideally hourly) stream discharge data are needed to better correlate
these fluctuations.

3.3. Time-Scale Local Hurst Exponent

Time-scale local Hurst exponents for all of the surface water data sets were also calculated
and compared to those for extreme values. Figure 5 shows the distribution of TSLHE for the four
precipitation properties. The modes of each data set are listed in Table 1. The Hurst exponent revealed
the memory present in each system. Streams tended to have a mode of H slightly above 0.5, indicating
that they have memory and that high values (in stream discharge) likely follow high values. Hence,
streamflow discharge time series have at least some impact of memory in their behavior. Groundwater
head fluctuation had a mode of H very close to 1 (~0.963), indicating a highly persistent system with
strong memory. This follows the expected trend of groundwater being a slowly evolving system that
cannot rapidly transition from high to low values and vice versa.

The storm properties however exhibited different behaviors. The storm properties are also a time
series that can be analyzed using DFA techniques in the TSLHE. All of the storm properties showed
strongly anti-persistent TSLHE values with modes between H = 0.09 and H = 0.25 with maximum
values never reaching 0.5 or the minimum threshold for some persistence. The TSLHE values for
terrestrial water systems showed no significant correlation to storm properties for either the extreme
values or the entire data sets.

 
Figure 5. Probability density functions (PDF) of the time-scale local Hurst exponent (TSLHE) calculated
for each of the storm properties using the full data sets with duration (A), intensity (B), inter-storm
period (C), and total precipitation (D).
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Table 1. The mode of the TSLHEs for each of the distributions. The North and Binion Creek values
represent stream discharge series.

Groundwater Surface Water Storm Properties

Depth to
Water

Lake
Stage

North
Creek

Binion
Creek

Intensity
Inter-Storm

Period
Total

precipitation
Duration

Mode
TSLHE 0.963 0.792 0.530 0.396 0.252 0.161 0.156 0.095

3.4. Distribution Fittings

Below are the results from the distribution fittings using the three PDFs introduced in Section 2.4.
Figure 6 shows the graphical representation of the three distributions which fitted the actual data
points for the extreme values of precipitation properties. Figure 7 shows the graphs of the fittings of
the full storm property value data sets to the three distributions. Figure 8 shows fitting results for lake
stage, groundwater head fluctuation, and stream discharge using the Gumbel, Stretched Gaussian
and Stable distributions. Figure 9 shows these same series but fits the log-Pearson type 3 distribution.
Tables 2 and 3 show the root mean square error (RMSE) for each distribution compared to the storm
properties and surface water/groundwater systems. Tables 4 and 5 show the distribution parameters
for the different direct measurements, the storm property full series, and the extremes.

 
Figure 6. The best-fit PDF distribution for the extreme value set of each storm property: Inter-storm
periods (A), duration (B), total precipitation (C), and intensity (D), using the three proposed
distributions: Stable (the blue line), Gumbel (green line), and stretched Gaussian (red line) compared to
the actual data (open circles).

237



Water 2019, 11, 707

 

Figure 7. The best-fit PDF distribution for the full data set of each storm property: Inter-storm periods
(A), duration (B), intensity (C), and total precipitation (D) using the three proposed distributions:
Stable (the blue line), Gumbel (green line), and stretched Gaussian (red line) compared to the actual
data (open circles).

 

Figure 8. PDF distribution fittings for measurements of: Binion Creek discharge (A), North Creek
discharge (B), depth to groundwater (C), and lake stage (D) using each of the proposed distributions:
Stable (blue), Gumbel (green), and stretched Gaussian (red) compared to the actual data (white circles
w/black outline).
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Figure 9. PDF distribution fittings for measurements of: Binion Creek discharge (A), North Creek
discharge (B), depth to groundwater (C), and lake stage (D) using only the Log-Pearson Type 3
distribution (black lines) compared to the actual data (white circles w/black outline).

Table 2. Root mean square error (RMSE) of each of the calculated distributions for the four storm
properties, including both extreme values and full sets. The lowest RMSE is highlighted by bold font
for each distribution.

PDF

Extreme Events Only Full Series

Total
Precipitation

Duration Intensity Period
Total

Precipitation
Duration Intensity Period

Gumbel 0.0053 0.0183 0.0159 6.31 × 10−4 0.0092 0.0273 0.0091 9.08 × 10−4

Stretched 0.002 0.0118 0.0034 1.49 × 10−4 0.0027 0.0102 0.0026 1.64 × 10−4

Stable 0.0039 0.0072 0.0078 3.12 × 10−4 0.0068 0.0203 0.0052 4.46 × 10−4

Table 3. The RMSE of each of the calculated distributions for the different water systems. Numbers
shown for the creeks are RMSE for fitting the stream discharge. The lowest RMSE is highlighted by
bold font for each distribution.

Distribution Groundwater Lake Stage North Creek Binion Creek

Gumbel 0.0331 0.1305 2.99 × 10−4 0.0015
Stretched 0.0539 0.1148 1.49 × 10−4 4.18 × 10−4

Stable 0.428 0.0390 7.42 × 10−5 0.0014
Log-Pearson III 0.0172 0.0172 0.0563 0.0470
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Table 4. The distribution parameters for the water measurement distribution fittings.

Lake Stage Groundwater North Creek Binion Creak

Stable

α 1.15 1.47 0.57 0.96
β −0.31 −1.00 1.00 0.33
γ 0.30 1.16 51.86 18.15
δ 223.21 40.38 −43.75 −34.43

Stretched
Gaussian

μ 223.20 40.64 0.10 8.74
D 0.82 2.28 3.82 × 10−8 1.81
T 0.22 0.53 370.19 74.65

Gumbel
μ 223.81 42.17 979.53 187.12
β 0.96 1.61 2962.88 463.87

Table 5. The distribution parameters for storm property distribution fittings.

Full Series Extreme Events Only

Period Duration Intensity
Total

Precipitation
Total

Precipitation
Duration Intensity Period

Stable

α 1.21 1.37 1.18 1.32 1.23 1.42 0.81 1.15
β 1.00 1.00 1.00 1.00 1.00 1.00 0.84 1.00
γ 37.43 2.18 1.07 6.39 9.63 2.99 2.66 65.94
δ 172.67 7.44 5.76 22.79 97.97 26.62 7.32 699.67

Stretched
Gaussian

μ 6.00 1.00 0.22 0.34 51.80 18.00 10.67 308.00
D 1.09 × 10−10 1.49 × 10−12 0.072 0.085 5.21 × 10−13 2.31 × 10−14 1.16 × 10−12 3.06 × 10−11

T 93.22 4.24 3.63 14.73 24.68 6.49 10.58 210.14

Gumbel
μ 220.67 8.65 7.89 26.44 94.33 28.55 30.39 794.30
β 641.93 10.89 17.75 45.17 55.99 11.75 25.28 934.64

4. Discussion

4.1. Surface Water

The distribution for all storm properties were compared to the time in the study period.
Occurrence of extreme events over time were plotted to show the changes in precipitation behavior in
the area. Many of the duration extremes occurred in the start of the study period and slowly declined
with time. Inter-storm period had the opposite behavior, with many of the extreme values coming
in the most recent portion of the study period. This would indicate that the region was experiencing
shorter storms with longer dry spells in between, but does not necessarily indicate a dryer climate,
since intensity is increasing, and total precipitation extremes are generally varying without a stable
pattern. Changing climate was likely the driver for these changes, creating more intense, shorter
storms, with longer dry periods in between. Furthermore, more intensive climate modeling is needed
to fully investigate trends in storm properties. Current research suggests that these properties are
changing but there is not a scientific consensus for a projection, and projections are variable in both
space and time.

4.2. Storm Propertires Correlated with Groundwater Head Fluctutations

For the fluctuations of groundwater table, the strongest average correlation of any storm property
was with intensity, with a maximum correlation coefficient of 0.5 at 10 days after the end of a rainfall
event. There are two likely causes for this high correlation between storm duration and groundwater
head fluctuation. First, a longer storm allows more time for a higher percentage of precipitation to
infiltrate into the aquifer, instead of flowing away as overland flow/surface runoff and eventually
discharging into streams and lakes, or evaporating. Second, the extreme values of storm duration occur
more frequently in the winter months when there is lower evapotranspiration (ET) and withdrawal
from the aquifer is lower during this time since there is less water used for irrigation.

Intensity had the next strongest correlation with groundwater head fluctuation. The highest
correlation coefficient for intensity was actually higher than for storm duration; however, across the
period where fluctuations were analyzed, there was generally a weaker correlation, and for the first
four days the correlation was positive indicating a decrease in water supply. This transition time
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showed that there was a lag between the precipitation event and the first portion of precipitation to
infiltrate to the water table. The peak correlation was at 12 days after the precipitation event ended and
the correlation was −0.595, representing the point where the groundwater table reached its highest
level after a precipitation event. Intensity tended to be higher in the summer months, so this explains
the initial positive decrease in water level. This is because there is higher ET in the summer and there
is some water withdrawal for irrigation in the area. After the peak correlation, the correlation slowly
decreased, representing the return from the peak increase at 12 days.

Interestingly, total precipitation had the weakest correlation with groundwater head fluctuation of
the three properties analyzed with a peak correlation coefficient of −0.253 at 20 days after precipitation
events. There is a positive correlation (indicating a decrease in groundwater storage) for the first
10 days, peaking at six days after precipitation, transitioning to a negative correlation (increased GW
storage) after day 10. The high total precipitation likely exceeded the infiltration capacity of the soils
and a significant portion of the precipitation was discharged into surface water systems or as overland
flow. Extreme values of total precipitation are less temporally dependent than the other variables,
and generally the winter months have higher total precipitation.

4.3. Time-Scale Local Hurst Exponents and System Memory

The TSLHE values for groundwater head fluctuation, lake stage, and river discharge all showed
that they were persistent or semi-persistent series since their modes were above H = 0.5. Groundwater
was the slowest evolving system so that likely caused it to have the highest value, followed by lake
stage. The lake stage was faster evolving than groundwater, but slower than river discharge, leading
to the increase in total correlation. The TSLHE also showed that precipitation properties do not
have memory acting on them and are actually anti-persistent across all values, and reverse more
frequently than white noise would. This may be because a major storm would use much of the
available atmospheric moisture and result in following storms being weaker and not as intense or
long lasting.

4.4. Distribution Evaluation

For the distribution fittings of storm properties, the stretched Gaussian distribution performed
the best across all of the data series except for the extreme values of duration where the tempered
stable distribution was found to be the more effective. The Gumbel distribution was consistently
the least effective distribution for capturing storm properties, often overestimating low values
and underestimating the extremes of precipitation. The stretched Gaussian produced a RMSE of
approximately half the RMSE of the stable distribution for the values where it was most effective.
The stretched Gaussian is effective in these data sets because it mixes the properties of the standard
Gaussian distribution, which captures the small, more frequent values, and the power law distribution,
which is able to capture the extreme values. The stable distribution generally overestimates the lower,
more frequent values and underestimates the extreme values, but remains a viable option for fitting
these data. The different data sets all had differing parameters for the distribution, however, there was
no major trend across all sets. Generally, the extreme events and full data sets for storm properties
have similar parameters for each distribution.

For the measured data from lake stage, groundwater head fluctuations, and stream discharge
there were varying results in distribution effectiveness. First the Gumbel, stable and stretched Gaussian
distributions were tested. The Gumbel distribution was the best of these distributions to fit the values
of depth to groundwater. The depth to groundwater surface had the narrowest range of all the systems,
and hence the Gumbel distribution was able to effectively capture it. The stable distribution was the
most effective of these three distributions for lake stage. Lake stage had a negative tail and very sharp
peak value, likely due to its quick response to storm events. This peak and light negative tail allowed
the stable distribution to fit it most effectively. The two creeks had different results. The larger creek,
North Creek, was best fit by the stable distribution as it had a weaker tail compared to the smaller
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creek. Binion Creek had a heavier tail of extreme values and was captured most effectively by the
stretched Gaussian distribution.

Since there was not a single distribution that proved most effective in capturing these different
values, we also tested the Log-Pearson Type 3 distribution to try to find a single most effective
distribution. The Log-Pearson gave the best RSME value for both lake stage and for the depth
to groundwater measurements. Both of these measurement series had a much more “normal”
shape (i.e., closer to standard Gaussian behavior, and weaker tailing behavior), suggesting that
the Log-Pearson Type 3 distribution may perform better on series without large tails. The Log-Pearson
also exhibited erratic behavior at the extreme values of river discharge since there were values that did
not occur in our data sets (i.e., a density of 0) which caused the density curve to change values rapidly.
Since these series were from different parts of the water cycle, and controlled by different processes,
there may not be a single distribution that will most effectively capture all of them. There are a variety
of different extreme value distributions that could possibly be used to effectively capture these series
more effectively, such as the generalized extreme value, two-component extreme value, or generalized
Pareto distributions, which will be evaluated for details in a future study.

5. Conclusions

This study conducted statistical analysis to reveal the distribution, memory, and correlation in
surface and subsurface water observed in the Lake Tuscaloosa watershed in Tuscaloosa, AL. Three main
conclusions are obtained.

First, statistical analysis shows that precipitation properties can be correlated to groundwater
head fluctuations and different properties can have an influence on the motion of water. Duration was
more closely related to the fluctuation of groundwater head than any of the other studied properties,
and had a peak correlation at 10 days after the end of the precipitation event for the ~13 m deep well.
Intensity had a stronger peak correlation to groundwater head fluctuation at 12 days but was more
variable and had a worse average correlation than duration. Total precipitation was weakly correlated
compared to the other two properties indicating that it had the least control over recharge.

Second, the surface and groundwater series are found to be persistent from the TSLHE values.
Groundwater followed by lake stage was the most persistent. The TSLHE for stream discharge
was very close to the values for white noise. Precipitation properties were anti-persistent, with the
values entirely constrained in the anti-persistent range of TSLHE for all properties and hourly values.
This was the expected result since the most persistent series were the slowest evolving with more
volatile systems being heavily anti-persistent. TSLHE itself was not distributed with any meaningful
relationship to storm properties and was likely driven by annual processes.

Third, the stretched Gaussian distribution was found to be the most effective distribution in
capturing the storm properties for both the extreme values and the entire data sets. This distribution
was likely most effective due to its mix of properties of the Gaussian and power law distributions.
In other words, it allows to capture the peak frequency values as well as the lower frequency extreme
values that are vital to understanding a system like the water cycle. For the surface and groundwater
distributions, however, there was not a clear best distribution, since the different systems had different
best RSME values, and the stream discharge best distributions differed between the two streams.
Further analysis with more data is needed to resolve the best distribution, which may not be any of
those tested here, for these different systems.
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Abstract: Hydro-infrastructural systems (e.g., flood control dams, stormwater detention basins, and
seawalls) are designed to protect the public against the adverse impacts of various hydrologic
extremes (e.g., floods, droughts, and storm surges). In their design and safety evaluation,
the characteristics of concerned hydrologic extremes affecting the hydrosystem performance often
are described by several interrelated random variables—not just one—that need to be considered
simultaneously. These multiple random variables, in practical problems, have a mixture of
non-normal distributions of which the joint distribution function is difficult to establish. To tackle
problems involving multivariate non-normal variables, one frequently adopted approach is to
transform non-normal variables from their original domain to multivariate normal space under
which a large wealth of established theories can be utilized. This study presents a framework for
practical normal transform based on the third-order polynomial in the context of a multivariate
setting. Especially, the study focuses on multivariate third-order polynomial normal transform
(TPNT) with explicit consideration of sampling errors in sample L-moments and correlation
coefficients. For illustration, the modeling framework is applied to establish an at-site rainfall
intensity–duration-frequency (IDF) relationship. Annual maximum rainfall data analyzed contain
seven durations (1–72 h) with 27 years of useable records. Numerical application shows that the
proposed modeling framework can produce reasonable rainfall IDF relationships by simultaneously
treating several correlated rainfall data series and is a viable tool in dealing with multivariate data
with a mixture of non-normal distributions.

Keywords: polynomial normal transform; multivariate modeling; sampling errors; non-normality;
extreme rainfall analysis

1. Introduction

In hydrosystem design, performance evaluation, and simulation, the problems often involve
multiple random variables that are correlated with a mixture of non-normal marginal distributions.
Under this condition, it is generally difficult, if not impossible, to establish an analytical joint probability
distribution for these variables. In comparison with univariate distributions, there are relatively few
analytical multivariate distribution functions under special combinations of parametric marginal
distributions, and most of them are of the same type, which can be found in [1,2]. Examples of using
analytical multivariate distributions in hydrology are bivariate Gamma distribution [3] and bivariate
generalized extreme distribution [4]. Their use is somewhat limited to many practical problems
because of different marginal distributions.

Due to the difficulty in establishing a truly multivariate joint distribution model for problems
involving mixtures of several correlated, non-normal variables, approximated approaches, such as
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copula or normal transform, are often used by preserving marginal distributions or moments, including
the correlation features among the variables. However, one should realize that, unlike using a true
multivariate joint distribution function, preservation of the marginal distributions and dependence
structure represents the retention of partial information of the concerned multivariate random variables
in the analysis [5].

The concept of copula is one type of approximated multivariate approaches that has recently
received tremendous attention and applications by researchers in various disciplines, including in
hydrology [6]. Some examples of applying copula in multivariate hydrologic modeling can be found
in analyzing floods [7,8], droughts [9–12], dam safety [13], and extreme rainfalls [14,15]. Most of
the copula-based applications deal with bivariate problems and some trivariate problems under
some restrictive conditions on correlation structures [8]. Applications of copula to higher dimension
multivariate problems are rare primarily because there are only a few copula families that are rather
restrictive in describing the dependence structure. Recently, the introduction of vine copulas has shown
the advantage of overcoming the limitation of currently used copulas in multivariate analysis [16–19].
A copula-based approach is parametric by nature in that analytical marginal distribution models for
the involved variables are specified.

Alternatively, another viable scheme in treating multivariate problems involving correlated
non-normal random variables is to apply a NORTA (normal-to-anything) algorithm [20]. By a NORTA
algorithm, normal transformation of an individual non-normal variable is made by preserving its
marginal probability content in the normal variable domain as Φ(z) = Fx(x) with Φ(·) and Fx(·),
respectively, being the cumulative distribution functions (CDFs) of the standard normal variable Z and
the original variable X. In addition, a relationship must be established to allow the determination of an
equivalent correlation coefficient, ρzj ,zk , of a pair of normal transformed variables, Zj and Zk, from the
correlation coefficient, ρxj ,xk , of the corresponding random variables, Xj and Xk, in the original space.

Once the correlation matrix of standard normal variables Z’s,
{

ρzj ,zk

}
, is obtained from that of the

non-normal variables X’s,
{

ρxj ,xk

}
, appropriate orthogonal transformation can be implemented to

transform the original correlated variables into uncorrelated standard normal space for analysis.
The determination of ρzj , zk from ρxj , xk is made through the Nataf transform [21], which requires

solving an implicit non-linear equation in the form of a double integration involving marginal
distributions of a pair of random variables,Xj and Xk, under consideration:

ρxj ,xk =
∫ ∞

−∞

∫ ∞

−∞

(
xj − μj

σj

) (
xk − μk

σk

)
φjk

(
zj, zk

∣∣∣ρzj ,zk

)
dzj dzk (1)

where xj = F−1
j
[
Φ
(
zj
)]

, and φjk(·) = bivariate standard normal joint probability density function
(PDF). Lebrun and Dutfoy [22] provide an insightful analysis of Nataf transform and uncover that it is
a special modeling of dependence structure using Gaussian copula. To facilitate practical engineering
applications, a set of empirical equations for 10 commonly used distribution functions has been
established to relate ρzj ,zk to ρxj ,xk and their distribution properties [23]. Such empirical relations were
applied to reliability analysis of engineering systems [5,24]. Later, computationally more efficient
methods based on root finding and linear search [25], the false position method [26], and the artificial
neural network method [27] were proposed to solve Equation (1) for ρzj ,zk from the known ρxj ,xk and
marginal PDFs of Xj and Xk.

The above mentioned schemes (i.e., copula, NORTA, and Nataf transform) all require the
stipulation of marginal PDFs. The stipulation of a distribution function implies knowing the complete
statistical information of the random variable, including its moments of all orders. This ideal situation
is attainable only when one has a large amount of data, which generally is not the case in practice.
Therefore, to relax the information requirement without having to specify the distribution functions,
third-order polynomial normal transform (TPNT) can be used. By TPNT, each individual non-normal
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random variable is related to a 3rd-order polynomial function of the corresponding standard normal
variable [28]. The polynomial coefficients are determined by matching the statistical moments or
quantiles of the individual random variables. The multivariate version of TPNT was first proposed
by Vale and Maurelli [29] to simultaneously consider statistical moments and correlation coefficients.
A multivariate TPNT procedure has been applied to different fields including, but not limited to, Monte
Carlo simulation for generating multivariate random variates [24,30–33], wind power modeling [34],
load computation in power network planning [35], and reliability analysis [36,37].

It should be noted that the great majority of multivariate TPNT applications are done under
the assumption of known marginal statistical moments (i.e., product-moments and L-moments)
and correlation coefficients. However, in real-life hydrologic applications, the amount of available
data generally is not sufficiently large to reliably ascertain the true marginal probability distribution
functions, statistical moments, and correlation coefficients. Therefore, the sample statistical moments
and correlation coefficients used could be subject to sampling errors. In this study, a procedure
is proposed to (1) optimally estimate multivariate TPNT coefficients by explicitly incorporating
sampling errors associated with the sample moments and correlation coefficients, and (2) comply
with a one-to-one monotonicity increasing relation between quantiles of the original and normal
transformed variables. The procedure is illustrated by analyzing annual maximum rainfall data series
involving seven different durations to establish at-site rainfall intensity–duration–frequency (IDF) and
depth–duration–frequency (DDF) relationships.

2. Methods

2.1. Third-Order Polynomial Normal Transform (TPNT)

2.1.1. Univariate TPNT

By TPNT, a univariate non-normal random variable, X, is approximated by the standard normal
variable, Z, in the form of a 3rd-order polynomial functional relation as [28]

X = TPNT(Z
∣∣∣ a0, a1, a2, a3) = a0 + a1Z + a2Z2 + a3Z3 (2)

where TPNT(Z | a0, a1, a2, a3) denotes the 3rd-order polynomial transform with a0, a1, a2, and a3

being the transformation coefficients. The TPNT coefficients can be determined by several methods of
varying mathematical complexity. By preserving the first four product-moments, the TPNT coefficients
are related to the first four product moments of the standardized variable, X′ = (X − μx)/σx, as [28]

0 = a0 + a2 (3)

1 = a2
1 + 6a1a3 + 2a2

2 + 15a2
3 (4)

γx = 2a2

(
a2

1 + 24a1a3 + 105a2
3 + 2

)
(5)

κx = 3 + 24
[

a1a3 + a2
2

(
1 + a2

1 + 28a1a3

)
+ a2

3

(
12 + 48a1a3 + 141a2

2 + 225a2
3

)]
(6)

in which γx = skew coefficient; κx = kurtosis of the original random variable X. Alternatively, the TPNT
coefficients in Equation (2) can also be related to the first four L-moments as [38]

a0 + a2 = λ1 (7)

0.5642a1 + 1.4104a3 = λ2 (8)

0.5513a2 λ3 (9)

0.0692a1 + 0.8078a3 = λ4 (10)
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in which λm = the mth order L-moment [39] of the original non-normal random variable, X.
Other than the above two moment-matching methods, TPNT coefficients can also be determined by the
quantile-based least square method and the Fisher–Cornish asymptotic expansion (FC) method [40].
Chen and Tung [41] investigated the performance of different methods in determining the TPNT
coefficients with regard to their accuracy and robustness in capturing the probabilistic features of
the random variable X under the condition that the population distribution is known. It was found
that, among the various methods for estimating TPNT coefficients, the L-moment based method is
computational simplistic and can yield a satisfactory performance under a wide range of distribution
conditions. The product-moment method can also yield a satisfactory normal transformation provided
that accurate estimations of skew coefficient and kurtosis in Equations (3)–(6) can be made. However,
when the statistical moments are to be estimated from finite data, the sample L-moments have been
proven to be more stable and robust than those of product-moments [42], especially when the sample
size is not large.

By referring to Equations (3)–(6), one also realizes that determining TPNT coefficients based on
the product-moments requires solving a system of non-linear equations. It is expected that solving
Equations (3)–(6) would be more difficult than solving L-moments based on Equations (7)–(10), which is
linear. Sometimes, the solution to the system of non-linear equation may not be attainable. According
to Equations (7)–(10), TPNT coefficients can be easily obtained in terms of L-moments as

a0 = λ1 − 1.8138λ3 (11)

a1 = 2.2552λ2 − 3.9376λ4 (12)

a2 = 1.8138λ3 (13)

a3 = −0.1931λ2 + 1.5751λ4 (14)

In the transformation process, it is necessary to preserve probability content in both original space
and standard normal space, i.e., Fx

(
xp
)
= Φ

(
zp
)
= p. This implies that quantiles of the two variables

should satisfy the following relationship:

xp = a0 + a1zp + a2z2
p + a3z3

p (15)

where xp and zp = pth-order quantiles of random variable X and standard normal random variable,
Z, respectively, that is, xp = F−1(p) and zp = Φ−1(p). Furthermore, inherently embedded in
Equation (15) is a requirement of one-to-one monotonically increasing relations between xp and zp.
This, then, requires that TPNT coefficients must comply with the following conditions:

a3 > 0 and a2
2 − 3a1a3 < 0. (16)

It should be noted that the TPNT coefficients obtained from solving Equations (3)–(6),
Equations (7)–(10), or other methods mentioned above do not guarantee the compliance of the
monotonicity condition stipulated in Equation (16). This is especially a major concern when sample
statistics are used in determining TPNT coefficients.

2.1.2. Multivariate TPNT

The TPNT coefficients can be determined by preserving the statistical moments of individual
random variables. Specifically, L-moments are used herein to determine the multivariate TPNT
coefficients due to simple, linear functional relationships between the TPNT coefficients and the
L-moments as shown in Equations (11)–(14). Furthermore, sample L-moments have several desirable
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sampling properties over the product-moments as proven by Hosking [42]. In the context of fitting the
first four L-moments of a total of N correlated variables, Equations (7)–(10) can be re-written as

a0j + a2j = λ1j (17)

0.5642a1j + 1.4104a3j = λ2j (18)

0.5513a2j λ3j (19)

0.0692a1j + 0.8078a3j = λ4j (20)

in which λmj = the mth order L-moment of the jth random variable Xj for j = 1, 2, . . . , N.
In addition to preserving marginal statistical moments of involved variables, multivariate TPNT

must also simultaneously preserve the statistical dependence between random variables in the
transformation. The correlation coefficient of any two correlated random variables, Xj and Xk,
is imbedded in their 2nd-order cross-product moment of which Vale and Maurelli [29] had shown the
explicit expressions in terms of TPNT coefficients as

CPj,k

(
aj, ak; ρzj , zk

)
= E

[
XjXk

]
= μjμk − ρxj , xk σjσk

=
(

6a3ja3k

)
ρ3

zj , zk
+
(

2a2ja2k

)
ρ2

zj , zk
+
[(

a1j + 3a3j

)
(a1k + 3a3k)

]
ρzj , zk +

[(
a0j + a2j

)
(a0k + a2k)

] (21)

in which ρxj , xk , ρzj , zk = correlation coefficient of random variables
(
Xj, Xk

)
and its equivalent

(
Zj, Zk

)
in normal space; μj and σj = mean and standard deviation of random variable Xj, respectively.
The correlation coefficient in the original scale, ρxj , xk , is related to its counterpart in the normal
space, ρzj , zk , in a 3rd-order polynomial relationship through TPNT coefficients.

Upon the determination of TPNT coefficients for the two concerned random variables,
the correlation coefficient in the normal space, ρzj , zk , corresponding to that in the original space,
ρxj , xk , can be obtained by finding the real root of Equation (21). The mathematical relations between
the two correlation coefficients are [20]

ρxj , xk × ρzj , zk > 0;
∣∣∣ρxj , xk

∣∣∣ ≤ ∣∣∣ρzj , zk

∣∣∣ (22)

Equation (21) is used repeatedly to solve for ρzj , zk for all pairs of correlated random variables to
establish the correlation matrix in multivariate normal space.

2.2. Optimization Framework for Determining Multivariate TPNT Coefficients

2.2.1. Objective Function

To determine the multivariate TPNT coefficients that best preserve the known values of
L-moments, the least-square criterion is used in the study by which the objective function can be
expressed as

Minimize
4

∑
m=1

N

∑
j=1

δ2
mj (23)

where δmj = a decision variable defining the deviation between the mth-order TPNT-based L-moments
computed by the left-hand side of Equations (17)–(20) and the known values, λmj, of the jth random
variable, Xj. Of course, other forms of objective function, such as minimizing the sum of absolute
deviations, can be used.
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2.2.2. Constraints

Several constraints are essential to make sure that multivariate TPNT coefficients obtained
are able to preserve the known statistical features and mathematical relationships of concerned
random variables.

(a) Preservation of L-moments for the individual variable Xj:

The deviation δmj in the objective function defining the degree of preserving the known values of
the first-four L-moments of individual variable Xj can be written, according to Equations (17)–(20), as

a0j + a2j + δ1j = λ1j (24)

0.5642a1j + 1.4104a3j + δ2j = λ2j (25)

0.5513a2j + δ3j = λ3j (26)

0.0692a1j + 0.8078a3j + δ4j = λ4j. (27)

Note that the value of δmj is unrestricted-in-sign, meaning that its value can be negative, zero,
and positive, depending on the relative magnitudes of TPNT-based L-moments and those of the
known values.

In reality, statistical properties of a random variable are estimated from a finite number of sample
data. Consequently, sample L-moments of random variables, Xj, are subject to uncertainty. In practice,
two approaches are used to estimate sample L-moments: plotting position-based estimators and
unbiased estimators. This study adopts the latter by which the first four unbiased estimators of
L-moments, {λ1, λ2, λ3, λ4}, can be computed respectively as [42]

�1 =

(
n
1

)−1

∑n
i=1 xi:n (28)

�2 =
1
2!

(
n
2

)−1

∑n
i=1

{(
i − 1

1

)
−
(

n − i
1

)}
xi:n (29)

�3 =
1
3!

(
n
3

)−1

∑n
i=1

{(
i − 1

2

)
− 2

(
i − 1

1

)(
n − i

1

)
+

(
n − i

2

)}
xi:n (30)

�4 =
1
4!

⎛
⎝ n

4

⎞
⎠

−1

∑n
i=1

⎧⎨
⎩
⎛
⎝ i − 1

3

⎞
⎠− 3

⎛
⎝ i − 1

2

⎞
⎠
⎛
⎝ n − i

1

⎞
⎠+ 3

⎛
⎝ i − 1

1

⎞
⎠
⎛
⎝ n − i

2

⎞
⎠−

⎛
⎝ n − i

3

⎞
⎠
⎫⎬
⎭xi:n (31)

in which �m = sample estimator of the mth-order L-moment, λm; xi:n = the ith ranked sample (ascending
order) in a data of size n.

Suppose that the sampling distributions of sample L-moments are derived or approximated.
Proper bounds can then be incorporated into Equations (24)–(27) for determining the suitable and
probabilistically plausible TPNT coefficients for all N random variables X1, X2, . . . , XN. Assuming that
the lower and upper bounds of the L-moments can be determined from their corresponding sampling
distributions, constraint Equations (24)–(27) then can be modified as

�
(L)
1j ≤ a0j + a2j + δ1j ≤ �

(U)
1j (32)

�
(L)
2j ≤ 0.5642a1j + 1.4104a3j + δ2j ≤ �

(U)
2j (33)

�
(L)
3j ≤ 0.5513a2j + δ3j ≤ �

(U)
3j (34)
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�
(L)
4j ≤ 0.0692a1j + 0.8078a3j + δ4j ≤ �

(U)
4j (35)

for j = 1, 2, . . . , N. In Equations (32)–(35), �(U)
mj and �

(L)
mj are, respectively, the upper and lower bounds

containing the unknown population mth-order L-moment of random variable Xj, λmj. The derivation
of bounds for unknown population L-moments is described in Section 2.3.1.

(b) Preservation of the monotonic probability–quantile relationship for individual variable Xj:

a3j > 0; a2
2j − 3a1ja2j < 0, for j = 1, 2, . . . , N (36)

(c) Preservation of the correlation between all pairs of different variables, Xj and Xk:

Based on Equation (21), any pair of two correlated random variables Xj and Xk must satisfy the
following equation.

CPj,k

(
aj, ak; ρzj , zk

)
−
(

μjμk − ρxj , xk
σjσk

)
= 0, for all variable pairs j �= k (37)

where CPj,k

(
aj, aj′ ; ρzj , zk

)
= E

(
Xj, Xk

)
= cross-product moment of variables, Xj and Xk, defined in

Equation (21), which are functions of the corresponding TPNT coefficients aj =
(
a0j, a1j, a2j, a3j

)
and

ak = (a0k, a1k, a2k, a3k); ρxj , xk
and ρzj , zk

= correlation coefficients of random variables, Xj and Xk,
and their normal equivalents, Zj and Zk, respectively; μj, σj = mean and standard deviation of random
variable Xj, respectively.

Similarly, constraint Equation (37) on correlation coefficients can be modified as

r(L)
xj , xk ≤

CPj,k

(
aj, ak; rzj , zk

)
− mj

(
aj
)
mk(ak)

sj
(
aj
)× sk(ak)

≤ r(U)
xj , xk , for all variable pairs j �= k (38)

in which r(L)
xj , xk , r(U)

xj , xk = lower and upper bounds, respectively, of the unknown population correlation
coefficient, ρxj ,xk

, between the random variables Xj and Xk (see Section 2.3.2); rzj , zk
= equivalent

correlation coefficient of the random variables in the standard normal domain; mj
(
aj
)
, sj
(
aj
)

=
TPNT-based estimation of mean and standard deviation of random variables Xj which can be computed
according to Equations (3) and (4) as

mj
(
aj
)
= a0j + a2j (39)

s2
j
(
aj
)
= a2

1j + 6a1ja3j + 2a2
2j + 15a2

3j. (40)

Equation (38) can alternatively be expressed as

CPj,k

(
aj, ak; rzj , zk

)
− mj

(
aj
)

mk(ak)− r(U)
xj , xk sj

(
aj
)

sk(ak) ≤ 0 (41)

CPj,k

(
aj, ak; rzj , zk

)
− mj

(
aj
)

mk(ak)− r(L)
xj , xk sj

(
aj
)

sk(ak) ≥ 0 (42)

In summary, by considering sampling errors of sample L-moments and correlation coefficients,
the optimization model to determine the most plausible TPNT coefficients for establishing multivariate
relationships can be summarized as follows:

The objective function is expressed in Equation (23) or its variations, which is subject to the
following constraints:

• Equations (32)–(35) for preserving plausible L-moments (8 × N constraints);
• Equation (36) for complying with a probability–quantile monotonic relationship (2 × N constraints);
• Equations (41) and (42) for preserving plausible correlation coefficient (N × (N − 1)

constraints); and
• unrestrictive-in-sign of polynomial coefficients (a0j, a1j, a2j, a3j) and deviations δmj.
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2.3. Determination of Bounds for L-Moments and Correlation Coefficients

2.3.1. Bounds for L-Moments

To determine the bounds for L-moments, the sampling distributions corresponding to the
sample L-moments are needed. For independent random samples of size n from a distribution
function Fx(x) having the mth-order population L-moment λm, Hosking [39] showed that the statistic
n1/2(�m − λm), with �m being the sample L-moment of order m, is unbiased, having a sampling
distribution asymptotically converge to the normal distribution with the mean zero and variance Λmm.
Therefore, the variance of the mth-order sample L-moment, �m, has the variance of σ2(�m) = Λmm/n.
For the first four orders of sample L-moment, the value of Λmm can be computed by

Λ11 =
�
x<y

(y − x)2du dv (43)

Λ22 =
�
x<y

[(3 − 4v)(1 − 4u)](y − x)2du dv (44)

Λ33 =
�
x<y

[(
7 − 24v + 18v2

)(
1 − 12u + 18u2

)]
(y − x)2du dv (45)

Λ44 =
�
x<y

[(
−13 + 84v − 150v2 + 80v3

)(
−1 + 24u − 90u2 + 80u3

)]
(y − x)2du dv (46)

in which u = Fx(x) and v = Fx(y). To estimate the values of Λmm based on the ranked sample
observations, the double integration stated in Equations (43)–(46) can be carried out numerically as

Λ̂11 =
1

n(n − 1)

n−1

∑
i=1

n

∑
k=i+1

[
x(k) − x(i)

]2
(47)

Λ̂22 =
1

n(n − 1)

n−1

∑
i=1

n

∑
k=i+1

{
(3 − 4pk:n)(1 − 4pi:n)

[
x(k) − x(i)

]2
}

(48)

Λ̂33 =
1

n(n − 1)

n−1

∑
i=1

n

∑
k=i+1

{(
7 − 24pk:n + 18p2

k:n

)(
1 − 12pi:n + 18p2

i:n

)[
x(k) − x(i)

]2
}

(49)

Λ̂44 =
1

n(n − 1)

n−1

∑
i=1

n

∑
k=i+1

{(
−13 + 84pk:n − 150p2

k:n + 80p3
k:n

)(
−1 + 24pi:n − 90p2

i:n + 80p3
i:n

) [
x(k) − x(i)

]2
}

(50)

in which x(i) = the ith ranked sample in ascending order, i.e., x(1) < x(2) < . . . < x(i) < . . . <

x(k) < . . . < x(n); pi:n = estimated cumulative probability for the ith ranked sample, i.e., Pr
[

X ≤ x(i)
]
,

by using the well-known Weibull plotting position formula, pi:n = i/(n + 1). Makkonen [43] has
shown that the Weibull plotting position formula [44] provides the best estimate for the underlying
non-exceedance probability. The superiority of the Weibull formula gets more pronounced with a
decreasing sample size. By adopting the normality distribution assumption, the α-confidence interval
for the unknown population λk can be obtained as

(
�
(L)
m , �(U)

m

)
=

(
�m − zα/2

√
Λmm

n
, �m + zα/2

√
Λmm

n

)
(51)

in which zα/2 = Φ−1(1 − α/2), a standard normal quantile with an exceedance probability of α/2,
with Φ−1(·) being the inverse standard normal CDF.
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2.3.2. Bounds for Correlation Coefficients

To quantify the lower and upper bounds of a correlation coefficient, Fisher transform is often used
by which the sampling distribution of the inverse hyperbolic tangent function of sample correlation
approximately follows a normal distribution as [45,46]

tanh−1(r) =
1
2

ln
(

1 + r
1 − r

)
∼ Normal

(
1
2

ln
(

1 + ρ

1 − ρ

)
,

1
n − 3

)
(52)

in which r, ρ = sample and population correlation coefficients, respectively; n = number of sample
pairs. With a specified confidence level α, the corresponding lower and upper bounds for the unknown
population coefficient ρ can be obtained as

[
r(L) , r(U)

]
=

[
tanh

(
tanh−1(r)− zα/2√

n − 3

)
, tanh

(
tanh−1(r) +

zα/2√
n − 3

) ]
(53)

where the hyperbolic tangent function is defined as tanh(θ) = (e2θ − 1)/
(
e2θ + 1

)
.

2.4. Solution Algorithm

A recursive procedure is proposed to solve the above optimization models for determining
multivariate TPNT coefficients. The procedure consists of four steps of initialization, optimization,
validation, and updating. Solution algorithm for determining multivariate TPNT coefficients
considering sampling errors of L-moments and correlation coefficients is detailed below and outlined
in Figure 1.

 
Figure 1. Flow diagram showing the procedure of multivariate TPNT modeling considering sampling
errors of sample statistics.
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Step (1): Initialization—Since the problem involves a nonlinear optimization model, an initial
solution would be needed. One straightforward and sound initial solutions for the TPNT coefficients,
a(0)j , are those provided by Equations (11)–(14) for all variables j = 1, 2, . . . , N. The initial TPNT
coefficients obtained this way will automatically satisfy the constraint Equations (24)–(27). However,
they do not necessarily comply with the monotonicity constraint Equation (36). As for the initial
normal correlation coefficients, rather than arbitrarily choosing a set of initial correlation coefficients,
let
{

ρ
(0)
zj , zk

}
=
{

rxj , xk

}
in which rxj , xk

is the sample correlation coefficient between random variables

Xj and Xk. Alternatively, obtain a feasible set of initial
{

ρ
(0)
zj , zk

}
by solving the 3rd-order polynomial

function of ρzj , zk
in Equation (21) according to the initially assumed TPNT coefficients, a(0)j .

Step (2): Optimization—Based on the initially adopted TPNT coefficients, a(0)j , and the normal

transformed correlation coefficients
{

ρ
(0)
zj ,zk

}
, solve the optimization model with objective function

Equation (23) and constraint Equations (32)–(35), (36), and (41)–(42) for the optimal TPNT coefficients
a∗j =

(
a∗0j, a∗1j, a∗2j, a∗3j

)
for random variable Xj, j = 1, 2, . . . , N.

Step (3): Validation—From the optimal feasible TPNT coefficients a∗j =
(

a∗0j, a∗1j, a∗2j, a∗3j

)
for j

= 1, 2, . . . , N obtained from Step (2), determine the equivalent normal variates corresponding to the
sample data by solving the 3rd-order polynomial function:

a∗0j + a∗1j zj,i + a∗2j z2
j,i + a∗3j z3

j,i = xj,i , for all j = 1 ∼ N; i = 1 ∼ n (54)

where zj,i = unknown normal variate corresponding to the ith observation of the jth random variable

xj,i under the optimal set of TNPT coefficients a∗j =
(

a∗0j, a∗1j, a∗2j, a∗3j

)
. From the normal-transformed

data series of two different variables, zj =
(
zj,1, zj,2, . . . , zj,n

)
and zk = (zk,1, zk,2, . . . , zk,n),

the corresponding correlation coefficient, ρ∗zj , zk
, in the normal space is calculated.

Step (4): Updating—Compare the discrepancies between the initialized ρ
(0)
zj , zk and validated ρ∗zj , zk

for all different pairs of concerned random variables. If the discrepancy in any pair of durations is
judged to be significant, update the initial normal correlation as ρ

(0)
zj , zk = ρ∗zj , zk

and TPNT coefficients

a(0)j = a∗j , and the process from Steps (2)–(4) is repeated. Otherwise, the optimal solutions are obtained
and the iteration stops.

With regard to the optimization step presented in Step (2), the sequential quadratic programming
(SQP) algorithm is implemented [47]. The SQP tackles a nonlinear optimization problem by
successively finding the approximated optimum solution to the quadratic programming (QP)
representation of the original problem. The approximated solution is improved iteratively by solving
the QP problem. Boggs and Tolle [48] elaborated some useful properties of the SQP algorithm.
The subroutine “sqp.m” in Matlab is used in this study to solve the optimization model.

3. Numerical Example

In this section, at-site rainfall intensity–duration–frequency (IDF) and depth–duration–frequency
(DDF) relations are established to demonstrate the proposed multivariate TPNT method and
examine its general performance. Rainfall IDF relations are widely used in the planning, design,
and management of hydrosystem infrastructures, such as stormwater sewer systems and detention
basins [49,50]. Such relations at a given location involves at-site frequency analysis of annual maximum
rainfall intensity (or depth) data of several selected durations. The conventional approach in rainfall
frequency analysis chooses a proper parametric probability distribution model to individually fit the
observed annual maximum rainfall data of different durations. The choice of a distribution model for
the rainfall intensity–frequency relations is largely statistical without much physical justification [51].

By the conventional approach, resulting rainfall intensity–frequency curves of different durations
could sometimes intersect within the probability range of practical application. The crossover
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phenomenon often occurs when data record length is relatively short. According to the physical
reality, rainfall intensity–frequency curves of different durations should not crossover or intersect.
Porras and Porras [52] attributed the occurrence of crossover of rainfall IDF curves to short record data
of questionable representation in which a significant amount of sampling errors existed in the estimated
rainfall quantiles by frequency analysis. One other plausible reason for the possible crossover of IDF
curves is that frequency analysis of rainfall data is performed separately for each duration without
considering the inter-correlations that are intrinsically embedded in rainfall data of different durations.
Haktanir [53] earlier pointed out that rainfall frequency analysis of different durations in the process
of establishing IDF relationships should not be performed independently of each other, but did not
propose a mechanism to handle the correlation directly. Recently, Gräler et al. [54] applied D-vine
copula, along with the generalized extreme value distributions, to derive rainfall IDF relationships
based on rainfalls of five durations. You and Tung [55], under the TPNT framework, developed a
constrained least square model to simultaneously considering rainfall data of seven durations for
establishing at-site rainfall IDF relations. However, their model does not explicitly take into account
the correlation among rainfall data of different durations.

The multivariate TPNT-based model presented above was applied to establish at-site rainfall IDF
relations using annual maximum hourly rainfall data of various durations at a raingauge in Zhongli
City of Taoyuan County, Taiwan. Annual maximum rainfall intensity data cover the record period
of 1988–2015, but the year 1992 was excluded from the analysis due to long periods of registers with
technical issues. Hence, only 27-year data (n = 27) with seven (N = 7) durations (i.e., 1, 2, 6, 12, 24, 48,
and 72 h) are used in this illustration (see data in Table 1). The sample values of the mean, standard
deviation, and first-four L-moments of rainfall data of different durations are tabulated in Table 2.
Furthermore, the standard error values corresponding to the first four sample L-moments, according
to Equations (47)–(50), are listed in Table 3. The sample correlation coefficients of all rainfall intensity
pairs of different durations in the original and normal-transformed domains are shown in Tables 3
and 4, respectively. Based on the information given in Tables 2 and 4, one is able to define the lower
and upper bounds for the L-moments and correlation coefficients according to the desired confidence
level, α, by Equations (51) and (53), respectively. Table 5 lists the values of correlation coefficients in
normal-transformed space, rzj , zk

, provided by the solution to constraint Equations (41) and (42) in the
optimization model.

Under different constraint types and confidence levels for the L-moments and correlation
coefficients, the corresponding optimal multivariate TPNT coefficients can vary. With the confidence
level of α = 90% for both L-moments and correlation coefficients, Table 6a–d list the optimal TPNT
coefficients under four different constraint types, including “LM” for L-moments by Equations
(32)–(35), “Mono” for monotonicity by Equation (36), “Corr” for correlation by Equations (41) and (42),
and “NC” for no-crossover by Equation (56). Once the optimal TPNT coefficients associated with each
rainfall duration are obtained from solving the multivariate TPNT model, the rainfall IDF relations,
according to Equation (15), can be established as

i∗t,T = a∗0,t + a∗1,tzT + a∗2,tz
2
T + a∗3,tz

3
T (55)

where i∗t,T = estimated t-h, T-year rainfall intensity; a∗0,t, a∗1,t, a∗2,t, and a∗3,t = optimum TPNT coefficients
corresponding to rainfall of duration t (h); zT is the standard normal quantile corresponding to return
period T-year having an annual exceedance probability of 1 − Φ(zT) = 1/T.
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Table 1. Annual maximum rainfall intensities (mm/h) at Zhongli Station, Taiwan.

Year 1 h 2 h 6 h 12 h 24 h 48 h 72 h

1988 48.0 41.0 18.1 9.0 4.6 2.9 2.2
1989 83.5 69.5 38.2 19.9 10.0 6.1 4.1
1990 89.0 51.3 25.1 14.0 8.1 5.7 3.8
1991 52.5 36.3 13.1 6.8 4.4 3.9 2.9
1993 73.0 50.5 25.8 15.5 8.1 4.3 3.0
1994 44.5 31.0 19.1 11.7 8.7 5.0 3.3
1995 87.5 59.0 27.1 13.7 7.0 4.7 3.5
1996 80.5 40.3 14.0 10.3 8.0 4.6 3.1
1997 35.5 22.8 16.4 11.0 6.3 3.7 2.7
1998 70.5 35.3 21.2 11.1 7.8 4.5 3.0
1999 58.5 29.3 12.2 7.7 5.5 2.9 2.0
2000 43.5 25.8 19.8 14.0 11.2 8.2 5.8
2001 49.5 43.5 28.0 21.5 14.3 12.4 8.7
2002 35.0 28.3 12.4 6.9 5.0 2.7 1.8
2003 30.5 20.5 9.2 7.1 4.7 2.6 1.7
2004 51.5 35.3 19.4 13.3 9.6 6.1 4.1
2005 38.0 30.3 14.8 9.3 7.6 4.6 3.7
2006 48.5 32.3 19.7 13.8 7.7 5.3 4.6
2007 65.5 60.5 24.9 12.6 8.4 6.5 5.3
2008 42.0 32.3 13.5 9.5 7.1 5.5 4.8
2009 33.0 29.3 14.9 10.7 6.2 3.2 2.6
2010 47.5 35.0 13.6 9.3 7.0 3.6 2.4
2011 71.5 48.8 21.0 12.6 7.1 3.7 2.6
2012 72.0 47.8 43.4 34.3 17.6 8.8 5.9
2013 52.0 46.0 25.8 14.5 7.6 6.7 4.5
2014 41.0 26.3 15.0 11.3 7.9 4.9 3.6
2015 35.5 25.5 15.6 10.3 5.6 3.2 2.1

Table 2. Sample moments (in mm/h) of rainfall intensity data.

Moments 1 h 2 h 6 h 12 h 24 h 48 h 72 h

μ̂ 54.80 38.26 20.04 12.65 7.89 5.05 3.63
σ̂ 17.8 12.4 7.9 5.6 2.9 2.2 1.5

�1 54.80 38.26 20.04 12.65 7.89 5.05 3.63
�2 10.21 7.02 4.25 2.67 1.46 1.13 0.83
�3 1.673 1.393 1.110 0.879 0.389 0.317 0.200
�4 0.322 0.715 0.706 0.863 0.460 0.246 0.148

Table 3. Standard errors (in mm/h) of sample L-moments of rainfall intensity data.

Std. Error 1 h 2 h 6 h 12 h 24 h 48 h 72 h

se(�1) 3.423 2.386 1.519 1.071 0.554 0.415 0.296
se(�2) 1.110 0.952 0.750 0.682 0.324 0.226 0.148
se(�3) 1.005 0.660 0.447 0.389 0.159 0.127 0.089
se(�4) 0.713 0.404 0.209 0.182 0.088 0.066 0.050

Table 4. Sample correlation coefficients between rainfall intensity of different durations.

Duration 1 h 2 h 6 h 12 h 24 h 48 h 72 h

1 h 1.000
2 h 0.826 1.000
6 h 0.624 0.760 1.000
12 h 0.421 0.496 0.910 1.000
24 h 0.306 0.335 0.762 0.915 1.000
48 h 0.210 0.338 0.635 0.732 0.869 1.000
72 h 0.161 0.324 0.576 0.671 0.812 0.976 1.000
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Table 5. Correlation coefficients of normal-transformed rainfall intensity of different durations.

Duration 1 h 2 h 6 h 12 h 24 h 48 h 72 h

1 h 1.000
2 h 0.849 1.000
6 h 0.654 0.768 1.000
12 h 0.511 0.569 0.918 1.000
24 h 0.430 0.440 0.736 0.870 1.000
48 h 0.396 0.462 0.713 0.796 0.903 1.000
72 h 0.323 0.438 0.670 0.755 0.854 0.979 1.000

Table 6. Multivariate TPNT coefficients obtained under different constraints with α = 0.90.

(a) Constraints: L-moments only (LM)

TPNT Coefficients 1 h 2 h 6 h 12 h 24 h 48 h 72 h

a0 51.76 35.73 18.03 11.06 7.19 4.47 3.27
a1 21.76 13.02 6.80 2.62 1.47 1.58 1.29
a2 3.03 2.53 2.01 1.59 0.70 0.58 0.36
a3 −1.465 −0.230 0.292 0.843 0.444 0.170 0.072

a3 > 0 −1.46 * −0.23 * 0.29 0.84 0.44 0.17 0.07
a2

2 − 3a1a2 < 0 104.8 * 15.4 * −1.90 −4.09 −1.46 −0.47 −0.15

(b) Constraints: L-moments and Monotonicity (LM/Mono)

1 h 2 h 6 h 12 h 24 h 48 h 72 h

a0 51.99 35.81 18.03 11.06 7.19 4.47 3.27
a1 17.52 11.98 6.80 2.62 1.47 1.58 1.29
a2 2.80 2.45 2.01 1.59 0.70 0.58 0.36
a3 0.150 0.167 0.292 0.843 0.444 0.170 0.072

a3 > 0 0.15 0.17 0.29 0.84 0.44 0.17 0.07
a2

2 − 3a1a2 < 0 −0.01 −0.01 −1.9 −4.1 −1.5 −0.5 −0.1

(c) Constraints: L-moments, Monotonicity, and Correlation (LM/Mono/Corr)

1 h 2 h 6 h 12 h 24 h 48 h 72 h

a0 51.76 35.81 18.03 11.06 7.19 4.47 3.27
a1 17.14 11.98 6.80 2.62 1.47 1.58 1.29
a2 3.03 2.45 2.01 1.59 0.70 0.58 0.36
a3 0.382 0.167 0.292 0.843 0.444 0.170 0.072

a3 > 0 0.38 0.17 0.29 0.84 0.44 0.17 0.07
a2

2 − 3a1a2 < 0 −10.4 −0.01 −1.9 −4.1 −1.5 −0.5 −0.1

(d) Constraints: L-moments, Monotonicity, Correlation, and No Crossover (LM/Mono/Corr/NC)

1 h 2 h 6 h 12 h 24 h 48 h 72 h

a0 51.99 35.81 18.01 11.06 7.19 4.48 3.26
a1 17.52 11.98 6.80 2.62 1.47 1.61 1.25
a2 2.80 2.45 2.03 1.59 0.71 0.57 0.37
a3 0.150 0.167 0.292 0.843 0.444 0.159 0.089

a3 > 0 0.15 0.17 0.29 0.84 0.44 0.16 0.09
a2

2 − 3a1a2 < 0 −0.01 −0.01 −1.8 −4.1 −1.5 −0.4 −0.2

Note: * indicates a violation of monotonicity condition.

4. Results and Discussions

By varying the value of zT for different return periods in Equation (55), in conjunction with the
optimal TPNT coefficients listed in Table 6a–d, one can establish IDF curves as shown in Figures 2
and 3. Part (a) of Table 6 and Figures 2–4 (denoted by “LM”) shows the results from considering only
the bounding constraints of L-moments, Equations (32)–(35). In fact, the optimal TPNT coefficients
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corresponding to each duration can be obtained separately from the exact solutions using sample
L-moments in Equations (11)–(14). Note that the TPNT coefficients obtained from each rainfall duration
at this stage do not necessarily comply with a one-to-one monotonic increasing relation of rainfall
quantile and probability. This can be clearly seen in Table 6a for 1 and 2 h rainfalls for which the two
monotonicity constraints are violated (shown by *). Part (b) (denoted by “LM/Mono”) shows the results
by considering both L-moment constraints, Equations (32)–(35), and the monotonicity constraints,
Equation (36), for each rainfall duration. In this case, both results presented in Parts (a) and (b) in Table 6
and Figures 2–4 can be obtained separately by treating rainfall data of different durations without
considering their inter-correlations. Results in Part (c), denoted by “LM/Mono/Corr,” were obtained
by incorporating correlation constraints of rainfall data with different durations, Equations (41) and
(42), in determining the multivariate TPNT coefficients.

  

  

Figure 2. Multivariate TPNT modeling of rainfall intensity–duration relationships of varying
return periods under different constraints which consider: (a) L-moments only; (b) L-moments and
monotonicity; (c) L-moments, monotonicity and correlation; (d) L-moments, monotonicity, correlation
and no crossover.

To show the degree of goodness-of-fit of normal transformed rainfall data by the proposed
multivariate TPNT procedure, a normal probability plot of 24 h rainfall data (after normal
transformation) with the fitted line and 95% confidence band are shown in Figure 5 as an example.
The goodness-of-fit test shown in Figure 5 was achieved by the Anderson–Darling test [56] by which
the test statistic is 0.535 with a p-value of 0.155. Figure 5 represents the worst case among the seven
durations considered. The range of p-value varies from 0.155 (for 72 h) to 0.933 (for 2 h), which are
higher than the generally adopted significance level of 0.05. This indicates that the normal transform
by the proposed multivariate TPNT procedure is quite adequate.
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Figure 3. Multivariate TPNT modeling of rainfall intensity–frequency relationships of varying
durations under different constraints which consider: (a) L-moments only; (b) L-moments and
monotonicity; (c) L-moments, monotonicity and correlation; (d) L-moments, monotonicity, correlation
and no crossover.

  

  

Figure 4. Multivariate TPNT modeling of rainfall depth–frequency relationships of varying durations
under different constraints which consider: (a) L-moments only; (b) L-moments and monotonicity; (c)
L-moments, monotonicity and correlation; (d) L-moments, monotonicity, correlation and no crossover.
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N 27
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Figure 5. Probability plot of normalized 24 h rainfall data.

Note that the solution obtained up to this stage does not necessarily comply with the physical
reality that rainfall intensity (depth) of a given return period is a decreasing (an increasing) function
of duration. In other words, rainfall intensity/depth–frequency curves of different durations should
not intersect or crossover each other. However, in the process of establishing rainfall IDF/DDF
relationships, one does not know in advance if any two resulting two curves would intersect before
the statistical model is developed. Therefore, a special set of intersections avoidance constraints are
imposed in establishing the IDF curves:

(
a0,tj − a0,tk

)
+
(

a1,tj − a1,tk

)
zT∗ +

(
a2,tj − a2,tk

)
z2

T∗ +
(

a3,tj − a3,tk

)
z3

T∗ > 0, fordurations tj < tk (56)

where T∗ = upper limit of selected rainfall return period below which no crossover of IDF curves is
permitted to occur; zT∗ = standard normal quantile obtainable from Φ−1

(
1 − 1

T∗

)
. Hence, additional

N − 1 no-crossover (NC) constraints are included in the optimization model to solve for multivariate
TPNT coefficients. Part (d) results (denoted by “LM/Mono/Corr/NC”) show the rainfall IDF relations
considering the NC constraints.

Figure 2 shows the rainfall intensity–duration curves corresponding to various frequencies.
For this particular data set, by only preserving sample L-moments, Figure 2a reveals two unusual
features for those curves when return period is high (say, ≥100 years). They are (1) curves that tend
to converge together for rainfall duration in the vicinity of 1 h and (2) the relatively pronounced
undulation of curves for medium and long duration. These features are indications of possible
anomalies that should not appear in a reasonable rainfall IDF relation. The convergence of rainfall
intensity–duration curves in Figure 2a, shown in a different form in intensity–frequency relation
as Figure 3a, reveal that the 1 h curve (in red) clearly does not satisfy the monotonicity condition
according to Equation (36), which requires a rainfall intensity quantile value to increase continuously
with a return period (see also Table 4a). In fact, the 2 h intensity–frequency curve (in gold) also
mildly violates the monotonicity requirement as the curve starts to bend down for high return periods.
The violation of the monotonicity condition can also be observed in the form of the depth–frequency
curve for a 1 h duration (see Figure 4a). In this circumstance, the non-monotonicity of the 1 h rainfall
intensity–frequency relation produces a crossover with the 2 h curve shown in Figure 3a.

Interestingly, Figure 3a also reveals that 6 and 12 h rainfall intensity–frequency curves have
a strong tendency to intersect as rainfall frequency increases. This tendency to intersect could be
attributed to a relatively large undulation of intensity–duration curves in the range of 6–12 h when
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rainfall frequency increases (see Figure 2a). From 6 to 12 h, the gradient of intensity–duration curves
flatten out for larger return periods. The empirical results show some evidence of improvement
(in terms of a decrease in undulation, for large frequencies) when more constraints are considered.
However, the improvement is not significantly enough to remove undulation. In practical engineering
applications, the undulation of rainfall IDF curves such as those shown in Figure 2a–d is removed by
fitting the estimated rainfall intensity–duration data by an empirical IDF model, such as Sherman’s
equation [57].

It is clear that, by considering the monotonicity constraint, Equation (36), the crossover tendency
of intensity–duration curves (see Figure 2b) in the vicinity of 1–2 h disappears (see also Table 6b),
as does that of the 1 h and 2 h intensity–frequency curves in Figure 3b. Correspondingly, the concave
down appearance of the 1 h depth–frequency curve and, to a lesser extent, the 2 h curve is corrected
(see Figure 4b).

Notice that joint consideration of complying with L-moments and the monotonicity condition
does not truly take into account the inter-correlations of rainfall intensity or depth with different
durations. The appearance of undulation in the rainfall intensity–duration curves for medium and
long durations (≥6 h), which satisfy the monotonicity condition, is not affected. Hence, the crossover
tendency of 6 and 12 h intensity–frequency curves (see Figure 3b) and the actual intersection of 48 and
72 h depth–frequency curves (see Figure 4b) remain unchanged.

With further consideration of inter-correlations of rainfalls of different durations, Equations (41)
and (42), the resulting rainfall IDF and DDF curves are shown in Part (c) of Figures 2–4. Figure 2c
shows that the rainfall intensity–duration curves in the range of short duration for a high return
period completely remove the crossover tendency. Both Figures 3c and 4c show that rainfall
intensity–frequency and depth–frequency curves for 1 and 2 h are parallel to each other. Still, the 48
and 72 h rainfall depth–frequency curves intersect (see Figure 4c).

For illustration, this application artificially select T∗ = 5000-year in Equation (56) as the limiting
frequency below which rainfall depth–frequency or intensity–frequency curves of any two durations
are not allowed to intersect. The obvious results of imposing no-crossover constraint is that the 48 h
rainfall depth–frequency curve in Figure 4d would not intersect with the 72 h curve.

As for the effect of confidence level, numerical results indicate that a feasible solution for TPNT
coefficients may not exist when the confidence levels for the unknown true L-moments and correlation
coefficients are too low. This is expected because the width of confidence interval shrinks toward
the sample L-moments and correlation coefficients as the confidence level reduces. At a certain
confidence level, the corresponding width of the confidence band might be too restrictive for the
optimization model to find feasible TPNT coefficients that simultaneously satisfy the monotonicity
constraints. How low the limiting confidence level is depends on the problem. In this numerical
example, the limiting confidence level is about 70%, below which no feasible solution can be found
for multivariate TPNT coefficients. On the other hand, a reasonable confidence interval allows one to
obtain a suitable set of TPNT coefficients to approximate multivariate relations.

5. Summary and Conclusions

Statistical modeling and data analysis in hydrosystems engineering often encounter multiple
correlated random variables following non-normal distributions. Due to the difficulty in establishing
a full joint probability density function for the involved variables, most of the methods tackling
multivariate problems preserve the marginal statistical properties (e.g., distributions or moments) of
individual variables and their correlation structures. In this study, focus is placed on the third-order
polynomial transform (TPNT) procedure, which relies on the preservation of marginal L-moments
and correlations among variables. In particular, a general framework is presented to optimally
determine multivariate TPNT coefficients incorporating the constraints that (1) preserve the statistical
L-moments and correlations with explicit consideration of their associated sampling errors; (2) comply
with a one-to-one monotonicity increasing relation between quantiles of the original and normal
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transformed variables. Other than the above basic constraints required to hold the statistical and
mathematical validity of the TPNT method, additional constraints that are relevant to the problem at
hand can be incorporated into the modeling framework. In the illustrative example of establishing
rainfall intensity–duration–frequency (IDF) relations, the no-intersection constraints for rainfall
depth–frequency curves of different durations, Equation (56), are introduced in the model formulation
to ensure that the resulting IDF relationships comply with the physical reality. The proposed method
not only solves for the suitable multivariate TPNT coefficients that satisfy the monotonicity condition
for individual variables, but also produces the correlation coefficients between random variables in
the normal space. At this stage, the proposed multivariate TPNT procedure has not gone through a
formal mathematical testing for its performance under different scenarios of multivariate distributions,
correlation structures, and sample sizes. However, the procedure is based on a good logic with sound
statistical and mathematical theory. The results from the empirical application to establish at-site
rainfall IDF relationships appear to be quite reasonable.
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Abstract: This paper described the development of a spatial downscaling algorithm to produce finer
grid resolution for satellite precipitation data (0.05◦) in humid tropics. The grid resolution provided
by satellite precipitation data (>0.25◦) was unsuitable for practical hydrology and meteorology
applications in the high hydrometeorological dynamics of Southeast Asia. Many downscaling
algorithms have been developed based on significant seasonal relationships, without vegetation and
climate conditions, which were inapplicable in humid, equatorial, and tropical regions. Therefore,
we exploited the potential of the low variability of rainfall and monsoon characteristics (period,
location, and intensity) on a local scale, as a proxy to downscale the satellite precipitation grid and
its corresponding rainfall estimates. This study hypothesized that the ratio between the satellite
precipitation and ground rainfall in the low-variance spatial rainfall pattern and seasonality region
of humid tropics can be used as a coefficient (constant value) to spatially downscale future satellite
precipitation datasets. The spatial downscaling process has two major phases: the first is the
derivation of the high-resolution coefficient (0.05◦), and the second is applying the coefficient to
produce the high-resolution precipitation map. The first phase utilized the long-term bias records
(1998–2008) between the high-resolution areal precipitation (0.05◦) that was derived from dense
network of ground precipitation data and re-gridded satellite precipitation data (0.05◦) from the
Tropical Rainfall Measuring Mission (TRMM) to produce the site-specific coefficient (SSC) for each
individual pixel. The outcome of the spatial downscaling process managed to produce a higher
resolution of the TRMM data from 0.25◦ to 0.05◦ with a lower bias (average: 18%). The trade-off for
the process was a small decline in the correlation between TRMM and ground rainfall. Our results
indicate that the SSC downscaled method can be used to spatially downscale satellite precipitation
data in humid, tropical regions, where the seasonal rainfall is consistent.

Keywords: rainfall; monsoon; high resolution; TRMM

1. Introduction

Precise information on spatiotemporal rainfall is critical for accurate hydrology predictions
and simulations in humid tropical regions. Satellite precipitation data are useful for supporting
in-situ measurements, because they provide wide coverage, are publicly available, and are grid-based.
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However, their suitability for small basins is hindered by their coarse grid size [1,2]. This is conspicuous
for most humid tropical catchments in Southeast Asia, where the region comprises of small land–sea
ration area—especially islands and peninsula. Hence, the spatial variability of tropical rainfall variation
is rather high [3], and is expected to increase [4]. Although the new satellite precipitation data product
from Global Precipitation Mission and GsMAP has higher resolution (0.1◦) than its predecessor,
the Tropical Rainfall Measuring Mission (TRMM), it is only available from 2015 onwards. Effective
climate-hydrologic analysis requires continuous data, especially historical, and therefore it is important
to improve those datasets. Due to that conflict, numerous efforts have been made to improve the
coarse grids by spatial downscaling.

However, spatial-downscaling algorithms for satellite precipitation data for humid, tropical
environments have rarely been reported. Currently, advances in spatial downscaling of satellite
precipitation data are centered on using rainfall-related environmental parameters at higher spatial
resolutions as predictors. Based on the strong relationship between the rainfall and its site-specific
explanatory proxy variables, the rainfall values for a smaller grid were estimated through the regression
coefficient. Often, multiple regression analyses are used to assess the relationships between rainfall,
vegetation, and elevation [5–10]. Those variables were selected due to their significant relationship
at a specific temporal period. In the temperate region, the relationship between seasonal rainfall and
vegetation was strong, particularly during late spring and summer, where the photosynthetic rate
increased. Meanwhile, topographic variations have significantly influenced regional or local rainfall
patterns and distribution, especially in the hilly areas. These orographic effects can be relatively
stronger if that region received air masses from the significant seasonal wind flows (e.g., monsoon).

Employing these variables for robust downscaling in humid tropical regions might be less suitable
because of the weaker relationships between rainfall, vegetation, and elevation compared to temperate
regions. Although applying multivariate regression could be effective in statistically increasing the
predictive power of the model, the approach is constrained by several doubts: first is the possibility
of a declining relationship between predictors and rainfall from low to finer resolution scales, and
second is whether the high predictive power agreed with the physics of the rainfall-environmental
perspectives [11–13]. Merging the rain gauge data to downscale the satellite precipitation in the
tropics is useful, such as the process done by [14]. However, their method did not improved the
spatial resolution of the precipitation. Efforts by [15] in applying the fractal downscaling is effective,
but limited by the real-time support of wind and other meteorological data through complex processes.
Therefore, an alternative initiative for an effective, operational, and less complex transformation of the
satellite spatial downscaling in humid tropics is required.

The proxy variable in humid tropics should be one that influences rainfall patterns and, most
importantly, one for which the surrogate data is available at a higher resolution than the satellite
precipitation (<0.1◦). Anders and Nesbitt [16] highlighted significant variables that influenced the
satellite precipitation gradient in the tropics. On a local scale, precipitation was influenced by
hydro-meteorological variables, namely prevailing winds, atmospheric moisture, and convective
mode. Another important criteria for the spatial downscaling method is the operational aspect.
Most of the satellite precipitation spatial downscaling models were developed based on the single
or multivariate relationship over specific times and conditions; therefore, downscaling of the future
satellite data requires the recalibration or redevelopment of the model, because either the predictor or
the rainfall itself might change and influence the predictive power of the regression model (e.g., [8,15]).

Rainfall distribution in the tropics is closely associated with water vapor [17] and monsoons [18].
However, the high resolution data for water vapor is not available regularly, and therefore not suitable
to be used as proxy downscaling variable. The Asian monsoon season contributed significantly to
the variation in local rainfall in many tropical regions of Southeast Asia [19–21]. The seasonal rainfall
pattern is found to be less variable on a local scale, and exhibits specific local zoning [21–23]. Using
the ratio product between the satellite precipitation and the corresponding rain gauge to calibrate the
satellite precipitation is a well-developed approach in quantitative downscaling, and widely used in
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merging algorithms [24]. Theoretically, if the rainfall pattern was historically consistent over space and
time, the ratio between the satellite and the rain gauge should follow a similar trend. We could expand
this concept to developing a spatial downscaling method that is suitable for the humid tropics.

It is our aim to produce high-resolution satellite precipitation data by two process: first, by
re-gridding the raw satellite precipitation data; and second, by recalculating the values of each pixel
using the historical satellite–rain gauge ratio value. The appropriately high resolution would depend
on two main factors: the density of rain gauges and the desired scale. For humid tropics, the challenge
is to model atmospheric and hydro-meteorological variables at a mesoscale resolution (2–20 km) or
lower [25,26]. We hypothesized that in humid tropical regions of low seasonal rainfall variability,
the bias ratio between the previous satellite and ground measurements is consistent, and therefore
can be used as a coefficient to estimate the accurate rainfall values of the future satellite precipitation
datasets. If the site-specific coefficient were available at a smaller grid, a fine-scale estimation of the
satellite precipitation would be achievable.

Based on the above-mentioned concept and hypothesis, we attempted to conduct an experiment.
To test this hypothesis, Peninsular Malaysia was selected as an experimental site, because the coefficient
of variance (COV) for seasonal precipitation is low [27]. The experiment has two main objectives:
(1) Derive the site-specific coefficient (SSC) for each individual pixel, using the average bias ratio
between the high-resolution ground rainfall data and re-gridded satellite rainfall data; and (2) validate
the SSC to produce high-resolution precipitation maps. The proposed downscaling algorithm can be
used to create high-resolution precipitation maps in the highly dynamic hydro-meteorological status
quo of humid tropics, with less complex computation and more reliable results.

2. Materials and Methods

2.1. Study Site

Peninsular Malaysia (99.7–104.5◦ E, 1.3–6.8◦ N) is located in the western part of Malaysia
(Figure 1a). It has a population of 18 million and an area of ~132,000 km2. The general land cover is
agricultural (52%), forest (22%), and built-up areas (26%) [28]. The climate is that of a tropical rainforest,
with temperatures ranging from 24 ◦C to 32 ◦C and an annual rainfall of 2500 mm. The rainfall
distribution pattern over Peninsular Malaysia is strongly influenced by seasonal monsoons, and the
area is classified into five local climate regions: northwest, east, west, southwest, and highland (>400 m
above sea level) (Figure 2) [27]. There are two distinct wet seasons: one from November to February,
during which the northeast monsoon (NEM) produces heavy rainfall in the eastern region (Figure 1b);
and the other from May until mid-September, when the southwest monsoon (SWM) affects areas in
the west and southwest regions (Figure 1d). The northwest, west, and southwest regions experience
two annual wet seasons, from mid-March until May (IM1) (Figure 1c), and from mid-September until
August (IM2) [21,27]. Both of these seasons occur during the inter-monsoon periods between the
NEM and SWM seasons. Substantial rainfall occurs during the inter-monsoon periods, because of the
directional wind change and effects of the local topography.
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Figure 1. Peninsular Malaysia and its seasonal rainfall variation.

Figure 2. Rain gauge distribution in Peninsula Malaysia and rainfall zones (based on seasonal
and intensity).
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2.2. Data

2.2.1. Tropical Rainfall Measuring Mission Satellite Data

The Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA)
data product, which provides rainfall estimates from multiple satellites and other sources, was selected
for this study. The TRMM satellite orbits the Earth at an altitude of 402 km, carrying three primary
sensors, including precipitation radar (PR), a TRMM microwave imager (TMI), and a visible and
infrared scanner (VIRS). The PR sensor is designed to provide detailed vertical distribution of radar
reflectivity related to the amount of precipitation inside the system. The TMI sensor measures the
vertically-integrated ice and water path, and the VIRS provides information on cloud-top temperatures
and reflectance. Using the fundamental concept of precipitation and radar reflectivity, the rain rate
is estimated. A general description of the data product, including algorithms and other parameters,
can be found in the TRMM instruction manual (2005 and 2011).

Precipitation data products from the TRMM satellite were used because they provide frequent,
current, and consistent data (scaling from three hourly to monthly readings) with high spatial resolution
(0.25), and because the data are publicly available. The high spatial and temporal resolution satisfies
the requirement of primary inputs for hydrological modelling and spatial analysis. The data were
downloaded from the official website of the National Aeronautics and Space Administration (NASA),
with the collaboration of the Japanese Aerospace Exploration Agency (JAXA). The rainfall data can
be accessed from the following link (http://daac.gsfc.nasa.gov/data/datapool/TRMM/01_Data_
Products/02_Gridded/index.html). The TMPA data for Peninsular Malaysia were extracted using the
corresponding global coordinates for this region.

2.2.2. Rain Gauge Data

A total of 984 rain gauges, covering the entire Malaysia peninsula from 1998 (prior to the
availability of the TRMM data) to 2011, were collected from the Malaysian Department of Irrigation
and Drainage (Figure 2). Rain gauge measurements were conducted on a daily basis with a 24 h
observation period, beginning and ending each day at 8:00 a.m. Then, the daily rainfall measurements
were summed over one month to produce monthly rainfall data. After that, these data and their
corresponding geographical coordinates were exported into a geographic information system (GIS) in
shapefile format.

2.3. Downscaling Tropical Rainfall Measuring Mission Data Using the Seasonal Site-Specific Coefficient

2.3.1. Phase 1: Preparation of the High-Resolution Precipitation Data for Coefficient Derivation

Monthly areal precipitation at 0.05◦ resolution was generated using the dense rain gauge network
and the universal co-kriging interpolation method in the ArcGIS software package (Esri, Redlands,
CA, USA). Meanwhile, the satellite precipitation data was re-gridded from the original 0.25◦ resolution
to a resolution of 0.05◦, though within this new fine resolution grid (0.05◦), the original precipitation
value of the TRMM data was retained. For further understanding of this process, an illustration has
been provided (Figure 3a). Two types of areal precipitation datasets were produced: the first is from
the satellite; while the second is from the ground rain gauges, where both have an identical 0.05◦ grid.
This process was done to the dataset from 1998 to 2008.
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Figure 3. (a) Overall methodology. (b) Methodological flowchart of the spatial downscaling process—
generating the high resolution precipitation data.

2.3.2. Phase 2: Deriving the Seasonal Site-Specific Coefficient

By using the input from phase 1, the SSC was derived through two fundamental steps. First,
the re-gridded satellite precipitation data were divided by the ground precipitation. This process was
performed at monthly scale. Prior to this process, new images were produced, where each pixel has a
specific monthly bias ratio value. This was done for the dataset from 1998–2008. The second step was
to calculate the average bias ratio for each pixel. The outcome of this process is known as the seasonal
coefficient, or SSC. In total, there were 12 unique coefficient images, each representing the monthly
basis downscale coefficient from January to December. Equation (1) shows the SSC-downscaled
precipitation calculation, and Figure 3 illustrates the process (Phase 2).
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HRC(i,j) =
1
n ∑

Sat(i,j)
Rg(i,j)

(1)

DSat(i,j) =
RSat(i,j)
HRC(i,j)

(2)

where Sat is the satellite precipitation data, Rg is the areal ground precipitation data, DSat and
RSat are the downscale and raw re-gridded precipitation values, respectively, and i and j are the
pixel coordinates.

2.3.3. Phase 3: Downscaling the Tropical Rainfall Measuring Mission Satellite Data Using the
Site-Specific Coefficient

The next step of the downscaling process is to apply the derived SSC to an independent dataset
from 2009–2011. The satellite precipitation data was re-gridded from 0.25◦ to 0.05◦. Subsequently,
each pixel value for the re-gridded raw TRMM data (0.05◦) was divided by the corresponding SSC
derived in phase 2. An SSC value of 1.0 represents a perfect condition where no modification occurs.
Meanwhile, an SSC value greater than 1.0 indicated an overestimate, and vice versa. Equations (1)
and (2), as well as Figure 3 (phase 3), summarize the process of the SSC derivation and downscale
process, respectively.

2.3.4. Phase 4: Accuracy Validation

To verify the performance of the SSC-downscale procedures, four indicators were used on their
respective products, generated in phase 3. The first two indicators were the bias ratio reduction capacity
and root mean square error (RMSE) between the precipitation product from the SSC-downscaled data
and the interpolated rain gauges. To determine the quality of the SSC-downscaled products, we first
computed the bias ratio reduction, which is the percent difference between the average bias ratios of the
direct re-gridded raw TRMM data against that of the downscaled product. High bias ratio reduction
capacity (~100%) indicated good quality (low bias), and vice versa. In addition, the coefficient of
variance (COV) for the bias ratio was computed to examine whether the bias records were developed
under low seasonal variance. Equation (3) shows the calculation for the bias ratio reduction capacity.

BR Capacity =

(
Bias ratioRSat − Bias ratioDSat

Bias ratioRSat

)
x 100% (3)

RMSE =

√√√√[ 1
N

N

∑
i=1

(Si − Gi)
2

]
(4)

where RSat is the average of the directly re-gridded satellite precipitation data, DSat is the average
SSC-based downscale precipitation, Si is the satellite precipitation, and Gi is the rain gauge
measurement. RMSE was computed for two measurement pairs: downscale rainfall vs rain gauge,
and raw rainfall vs rain gauge.

The third indicator was the bias ratio comparison to other gridded precipitation data products,
measured either by satellite or rain gauge interpolation, or also by hybrids that are publicly available.
This was carried out to determine the relative performance of the highest resolution of SSC-downscaled
precipitation data upon other data products. Our expectation was that the SSC-downscaled should
perform better than other products, or at least have comparable performance. Statistically, a small bias
ratio was taken to indicate the spatial predictive increment after the downscaling process.

There were six gridded precipitation data products that were taken into account: (1) Global
Satellite Mapping of Precipitation (GsMAP), (2) Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks (PERSIANN), (3) CPC Morphing precipitation product
(CMORPH), (4) CPC Unified Gauge-Based Analysis of Daily Precipitation (CPC), (5) CPC Merged
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Analysis Precipitation (CMAP) data, and (6) Global Precipitation Climatology Project (GPCP)
precipitation data.

The GSMaP Project was sponsored by Japan Science and Technology—Core Research for
Evolutional Science and Technology (JST-CREST) and is promoted by the JAXA Precipitation
Measuring Mission (PMM) Science Team. The GsMAP products currently provide 0.1◦ resolution
data, which is distributed by the Earth Observation Research Center, Japan Aerospace Exploration
Agency [29]. The PERSIANN product, produced by the Center for Hydrometeorology and Remote
Sensing (CHRS) at the University of California, uses neural network function classification procedures
to compute an estimate of rainfall rate at 0.25◦ × 0.25◦ for each pixel of the infrared brightness
temperature image provided by geostationary satellites [30]. Gridded precipitation numbers three
to five were different types of products produced by the NOAA Climate Prediction Center, using
various types of data and processing methods. The CPC product utilized the optimal interpolation
(OI) objective analysis technique [31] provided by the NOAA Climate Prediction Center. Meanwhile,
the CMORPH product produces high spatial and temporal resolution global precipitation estimates
from passive microwave and infrared data. Morphing technique refers to the process of performing a
time-weighting interpolation between multi-temporal, microwave-derived precipitation at a given
location. Details about the morphing process can be found in [32]. Another product, CMAP, is a global
precipitation product that merged precipitation estimates from several satellite-based algorithms and
rain gauges. The creators of CMAP used the merging technique of reducing random error [33] and
blending [34]. The last product, GPCP, eventually utilized a similar input, but with different merging
techniques [24].

The fourth indicator was Moran’s I. It was used to determine the qualitative performance of the
downscaled result. Moran’s I was able to define the rainfall pattern, and was reliable to be used in
hydrology (e.g., [35]). The idea is that the pattern of the downscaled precipitation should more closely
resemble the ground areal rainfall pattern. Therefore, the difference of the Moran’s I values between
the downscaled and ground areal rainfall should be small compared to those of the non-downscaled
values. We computed the value based on monsoon preferences, because the rainfall patterns were
strongly influenced by that factor. The corresponding equations [36] are shown below:

I =
n ∑n

i=1 ∑n
j=1 wi,jzizj

So ∑n
i=1 zi

2 (5)

So =
n

∑
i=1

n

∑
j=1

wi,j (6)

where zi is the rainfall value deviation from its mean, wi,j is the spatial weight between rainfall at i and
j location, n is the total samples, and So is the aggregate of all the weights.

2.4. Determining the Effect of Interpolation to the Gridded Areal Ground Rainfall

To evaluate the effects of the interpolation process to the gridded site-specific coefficient, as well
as the areal rainfall, k-fold cross-validation analysis was conducted. We applied the holdout method,
which is based on separating the data into two sets: one is used for training and the other for testing.
Prior to that, the rain gauge data was divided into two datasets. The samples for testing and validation
were divided to be 60 and 40%, respectively. This is to ensure that there were a balanced number of
samples between testing and validation, and also adequate samples to cover the whole study area [37].
A well-distributed selection was made to ensure the equivalent spatial coverage for both datasets.
Two indicators were computed: the mean average error, known as root mean square error (RMSE);
and the datasets’ corresponding percentage against the average rainfall. We justified that the effect
should be small and not affect the entire downscaling quality (<10%) [38].
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3. Results

3.1. Performance of the Site-Specific Coefficient Tropical Rainfall Measuring Mission Downscaled Precipitation

(a) Quantitative Assessment

The three-year average showed that the SSC-TRMM downscaled precipitation had a lower bias
ratio compared to the raw TRMM precipitation products over all hydro-climate regions (Table 1).
The bias ratio reduction capacity is an indicator quantifying the effectiveness of the downscaling
method in reducing bias, and represents high similarity value with the ground reference value, which
had an average score of 54%. The greatest improvement was identified in the northwest, with a
94% bias reduction. Meanwhile, continuous performance over time showed that the downscaled
precipitation data scored a lower RMSE compared to the raw precipitation data (Figure 4a–e). However,
there was a slight decrease of the correlation between the downscaled precipitation data against the
ground rainfall data. Nonetheless, it can be justified to be a very minimal effect. Hence, it can be
considered as a positive trade-off, because the downscaled precipitation had improved the data’s
overall quality. The spatial refinement of factor five (from 0.25◦ to 0.05◦) resulted in a remarkable
improvement of the rainfall predictions, as indicated by a reduction in bias ratio of 54% and an RMSE
of 40%.

Table 1. Bias ratio comparison between raw Tropical Rainfall Measuring Mission (TRMM) data and
site-specific coefficient (SSC)-downscaled product.

Region
2009 2010 2011 Average Bias Ratio

Reduction Capacity (%)
Average SSC

Ratio *Raw SSC Raw SSC Raw SSC

Northwest 3.14 2.01 3.59 1.52 2.70 1.30 94 1.6
East 2.70 1.70 1.60 1.03 1.34 0.86 49 1.2
West 1.28 0.83 1.39 0.85 1.35 0.84 53 0.8

Southwest 1.45 1.09 2.16 1.57 1.72 1.31 31 1.3
Highland 1.04 0.97 1.43 0.91 1.35 0.85 41 0.9

* 1.0 is perfect ratio, >1.0 is a satellite overestimate, <1.0 is a satellite underestimate. The numbers in italics represent
underestimate cases.

(b) Qualitative Assessment

From the qualitative perspective, a visual assessment showed that the spatial pattern of the
SSC-downscaled precipitation more closely resembled the ground rainfall (Figure 5). This was
statistically proven, where the differences between the Moran’s I value of the downscaled precipitation
and rain gauge-interpolated rainfall surfaces was getting smaller (Table 2). The corresponding average
difference was 2%. Meanwhile, the average difference was 6% for the raw TRMM precipitation vs
rain gauge-interpolated precipitation. These findings clarified that qualitatively, the SSC-downscaled
precipitation was effective in depicting the actual rainfall on the ground compared to the raw version of
the TRMM precipitation. Combining the results from quantitative and qualitative assessment showed
that the overall SSC-downscaled precipitation results were able to precisely depict the actual ground
rainfall over continuous spatial dimension and time, with a trade-off in decreased monthly correlation.
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Figure 4. Cont.
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Figure 4. Time series between the ground areal rainfall, raw TRMM, and the SSC-downscale product
from 2009–2011.

Table 2. Spatial autocorrelation of Moran’s I value (transformed into a Z-score) of the interpolated rain
gauge data (reference), raw TRMM, and the downscaled TRMM data.

Monsoon
Season

Rain
Gauge-Interpolated (a)

SSC-Downscale
TRMM (b)

Raw TRMM
(c)

Differences (%)

(‖a − b‖/a) × 100 (‖a − c‖/a) × 100

NEM 36.75 35.35 37.22 3.8 1.3
IM1 33.80 33.49 36.14 0.9 6.9

SWM 33.81 33.50 31.44 0.9 7.0
IM2 34.73 33.49 30.74 3.6 11.5
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Figure 5. Seasonal rainfall maps of Peninsular Malaysia, from the interpolated rain gauge, site-specific
coefficient-downscaled TRMM product, and raw TRMM product.

3.2. Coefficient of Variance of Historical Bias Ratio Records and Downscaling Performance

Hypothetically, the COV of the bias ratio records, which were the basis of the downscaling
coefficient, should have a low variance (<35%). This 35% threshold as borrowed from [27], who
used this value to classify the local hydro-climatic zone over the Malaysian peninsula. The regional
average COV between the satellite and ground rainfall data was 37%, slightly higher than the preferred
threshold. Nevertheless, this value was contributed by the large COV in the northwest (54%), while the
other regions had relatively lower COV values (east: 34%; west: 34%; southwest: 31%; highland: 36%).
One significant observation was that the COV was higher during the dry season, which takes place in
February, in all regions (Figure 6). This finding showed that most of the downscaling coefficient was
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derived under a low-variance bias (<35%), except in February. Nevertheless, we found no evidence or
trend that related the low-variance condition of the downscaling coefficient and the effectiveness of
the result. Therefore, the results of the lower bias might be achieved due to the site-specific coefficient,
which minimized the bias in a robust fashion.

Figure 6. Coefficient of variance of the historical bias record, from the satellite and ground areal rainfall.
The red line represents 35%, the threshold value for low variance.
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3.3. Comparison of the Site-Specific Coefficient-Downscale and Other Satellite Precipitation Products

Discrete rain gauge comparison between the other satellite precipitation products were conducted,
in order to determine the relative effectiveness of the SSC-downscaled precipitation. At the peninsular
scale, the SSC-TRMM downscaled precipitation had a lower bias ratio than the other satellite
precipitation products (Table 3). Only in the northwest and southwest did the GsMAP outperform
the SSC-downscaled precipitation. However, the resolution of the GsMAP was relatively coarser
(0.1◦). We also found that the higher resolution of the SSC-TRMM-downscaled precipitation (<0.05◦)
was relatively better for depicting the local spatial rainfall in the western region, where many other
precipitation products had failed to represent it.

Table 3. Comparison between the SSC-downscale product and other satellite precipitation products.
N represents northwest, E is east, W is west, S is southwest, and H is highland.

Satellite Precipitation Products * Grid Size (Deg.)
Ratio

N E W S H

TRMM V7—SSC 0.05 2.2 0.9 0.8 1.5 0.8
GsMAP 0.10 1.5 1.4 19.8 0.9 1.0

PERSIANN 0.25 15.0 1.8 43.5 1.9 1.4
CMORPH 0.25 10.6 1.8 20.5 2.0 1.3

CPC 0.50 21.0 1.9 23.7 1.4 0.8
GPCP 1.00 27.0 25.0 24.0 24.0 23.0
CMAP 2.50 15.0 1.8 43.5 1.9 1.4

* GsMAP: Global Satellite Mapping of Precipitation, PERSIANN: Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks, CMORPH: CPC Morphing Technique, CPC: Climate Prediction
Centre Precipitation, GPCP: Global Precipitation Climatology Project, CMAP: CPC Merged Analysis of Precipitation.

3.4. Effects of the Interpolation Process

The cross-validation results showed that the interpolation scheme on both the SSC (Table 4) and
ground areal rainfall were small (<10%) (Table 5). The very densely- and well-distributed samples
could be the reason. A minor variation was found, where a higher error was indicated as rainfall
intensity increased in specific monsoons. This minor effect was identified for interpolated ground
rainfall. Nonetheless, we assumed that the interpolation process did not influence the results.

Table 4. Cross-validation analysis of the interpolated data. This evaluates the effect of interpolation to
the derived site-specific coefficient. Zero percentage means that the interpolation has no effect to the
value of the coefficient.

Monsoon Season
Cross-Validation Metrics

MPE (%)

NEM (November–January) 5
IM1 (March–April) 3

SWM (May–August) 3
IM2 (September–October) 4

Average 4
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Table 5. Ground areal rainfall (2009–2011). This result determines the effects of interpolation process to
the ground areal rainfall, which was used in verifying the downscaled rainfall data from 2009–2011.
Zero percentage of mean percentage error (MPE) means the interpolation process had no effect. RMSE
is used in determining the quantitative effect of the interpolation in a standard unit (millimeters).

Monsoon Season
Cross-Validation Metrics

Average Ground Rainfall (mm)
RMSE (mm) MPE (%)

NEM (November–January) 24 13 200
IM1 (March–April) 13 8 115

SWM (May–August) 11 9 118
IM2 (September–October) 21 10 176

Average 17 10 152

4. Discussion

The use of the SSC-downscaling method was able to produce a high-resolution precipitation map
(0.05◦) with improved quantitative accuracy. In addition, it was effective in spatially downscaling
the future dataset without the input from rain gauges. Most of the present or previous merging,
or other spatial resolution improvement methods, require multi-dataset or the ground in-situ
preferences’ surrogate information [5,6,24,32]. In the context of a tropical region, our results had
a better performance compared to the downscaling based on multivariate regression done by [12]
in mountainous, coastal, and forested environments. On the other hand, although our results’
performance slightly underachieved in using the super ensemble method developed by Yatagai et al.
(2014), we successfully produced higher-resolution precipitation data. Furthermore, our computation
was less complex, and fewer input variables were required. Therefore, we can conclude that
incorporating a dense rain gauge network [39], as well as monsoon rainfall seasonality and variability
proved to be the effective in robustly downscaling satellite precipitation for various environmental
contexts in the humid tropics.

Prior to positive results, this technique can be useful to the humid tropical regions, which have
small land–sea ratio, many islands, and highly-variable seasonal rainfall patterns. Those characteristics
are common and significant, especially for many areas in Southeast Asia [2,40,41]. It is also one of the
regions in the world that receives large rainfall excess with high intensity [42], and is prone to extreme
rainfall events [43]. The availability of high-resolution precipitation information would be significant
for understanding the dynamics of tropical rainfall at a microscale.

In addition, smaller tropical catchment or sub-basin hydrology modelling from space will be
possible. Current satellite precipitation data had limitations to representing the catchment scale
rainfall, due to coarse resolution [2,44]. From a water resources perspective, with the availability of the
global data, many humid tropical catchments for important reservoirs were categorized as smaller
catchments (<10 km2) [45]. They were located in thick, remote, and mountainous tropical forests,
which are difficult to access. Utilizing an operational infrastructure could be expensive and laborious.
Literature had showed that a substantial number of them were inadequately monitored and require
support mechanisms [46,47].

Another positive implication of the downscaling method is the opportunity to develop
higher-resolution historical tropical precipitation data from satellite datasets. This was a critical
parameter that was missing from precise regional climate modelling, which is the primary domain
of future climate and environmental sustainability efforts [25]. There were substantial amounts of
coarse-resolution satellite precipitation data before TRMM, especially from the early METEOSAT
missions [48–50]. Performing our SSC-downscaling technique to those datasets is plausible, under the
condition that the site-specific coefficient should be derived first.

Despite the promising outcomes of this study, there were a few limitations. First was the
requirement of a large rain gauge dataset. Because the downscaling coefficient was eventually derived
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by correcting the bias factors at a smaller grid, it is necessary to have as large a rain gauge network
as possible. This could be a limitation for hydrological data conflict areas (HDCS). An HDCS is an
area which has experienced one or more of these conflicts: sparse rain gauges, missing rain gauge
data, inefficient data sharing policies, or ineffective data management. The second limitation was
whether the downscaling coefficient could be used for other satellite precipitation data besides TRMM.
Hypothetically, it can be used, but a further investigation is needed.

The third limitation is that there was emerging evidence on the change in seasonal monsoon
rainfall patterns, due namely to an external factor: El Nino Southern Oscillation (ENSO) [22,51,52].
This effect, however, was neglected in our study, due to lack of ENSO data at local scale. The final
limitation was the effect of decreasing temporal correlation after the downscaling process. It was
believed to be caused by the high-resolution output grid. Because the original TRMM gridded data
was coarse, it tended to homogenize the local rainfall pattern. Therefore, as the grid was transformed
to be smaller, the high heterogeneity of local rainfall patterns appeared. This effect, however, was
minimal, and did not affect the output performance.

Anticipating the second and third limitations by testing the usability of the coefficient on other
satellite precipitation data, and excluding samples that affected by ENSO, could be future work in to
improve this study. In an effort to further localize the satellite precipitation data, utilizing the role of
topographic control as a proxy variable is promising. This is especially true for high-altitude regions in
the tropics. In addition, experimenting with the similar downscaling procedures at a higher temporal
scale (i.e., weekly) could be worthwhile, because the rainfall in humid tropics is highly dynamic.

5. Conclusions

We tested the hypothesis that higher-resolution data on historical bias records for low-variance
seasonal monsoon rainfall can be used to spatially downscale TRMM satellite precipitation data.
The use of the site-specific coefficient successfully transformed the initial TRMM satellite precipitation
data resolution from 0.25◦ to 0.05◦, with smaller errors and increased similarity with the ground rainfall
pattern. With the availability of the SSC, the downscaling of the future satellite precipitation data can
be done without any ground reference or rain gauge data. However, it caused a small decline in the
temporal correlation. The simplistic and effective procedure described in this study can be applied to
spatially downscale satellite precipitation data in regions with low variability in seasonal rainfall in
the humid tropics.
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