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Preface 

In 1990, scientists began working together on one of the largest biological research projects 
ever proposed. The project proposed to sequence the three billion nucleotides in the human 
genome. The Human Genome Project took 13 years and was completed in April 2003, at a 
cost of approximately three billion dollars. It was a major scientific achievement that forever 
changed the understanding of our own nature. The sequencing of the human genome was in 
many ways a triumph for technology as much as it was for science. From the Human Genome 
Project, powerful technologies have been developed (e.g., microarrays and next generation 
sequencing) and new branches of science have emerged (e.g., functional genomics and 
pharmacogenomics), paving new ways for advancing genomic research and medical 
applications of genomics in the 21st century. The investigations have provided new tests and 
drug targets, as well as insights into the basis of human development and diagnosis/treatment 
of cancer and several mysterious humans diseases. This genomic revolution is prompting a 
new era in medicine, which brings both challenges and opportunities. Parallel to the 
promising advances over the last decade, the study of the human genome has also revealed 
how complicated human biology is, and how much remains to be understood. The legacy of 
the understanding of our genome has just begun. To celebrate the 10th anniversary of the 
essential completion of the Human Genome Project, in April 2013 Genes launched this 
Special Issue, which highlights the recent scientific breakthroughs in human genomics, with a 
collection of papers written by authors who are leading experts in the field. 
 

John Burn, James R. Lupski,  
Karen E. Nelson and Pabulo H. Rampelotto 

Guest Editors 
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Revisiting Respect for Persons in Genomic Research 

Debra J. H. Mathews and Leila Jamal 

Abstract: The risks and benefits of research using large databases of personal information are 
evolving in an era of ubiquitous, internet-based data exchange. In addition, information technology 
has facilitated a shift in the relationship between individuals and their personal data, enabling 
increased individual control over how (and how much) personal data are used in research, and by 
whom. This shift in control has created new opportunities to engage members of the public as partners 
in the research enterprise on more equal and transparent terms. Here, we consider how some of the 
technological advances driving and paralleling developments in genomics can also be used to 
supplement the practice of informed consent with other strategies to ensure that the research process 
as a whole honors the notion of respect for persons upon which human research subjects 
protections are premised. Further, we suggest that technological advances can help the research 
enterprise achieve a more thoroughgoing respect for persons than was possible when current 
policies governing human subject research were developed. Questions remain about the best way to 
revise policy to accommodate these changes. 

Reprinted from Genes. Cite as: Mathews, D.J.H.; Jamal, L. Revisiting Respect for Persons in 
Genomic Research. Genes 2014, 5, 1-12. 

1. Introduction 

The risks and benefits of research using large databases of personal information are evolving in 
an era of ubiquitous, internet-based data exchange. Here, we consider some of the technological 
advances driving and paralleling developments in genomics, and how they can be used to 
supplement the practice of informed consent to ensure that the research process as a whole honors 
the notion of respect for persons upon which human research subjects protections are premised. 

The cost of next-generation sequencing has declined precipitously in recent years, increasing the 
potential of genomic research to expand knowledge of human biology and disease [1]. To render 
human genome data meaningful for individuals, investigators must collect and analyze information 
contributed by many individuals from diverse populations over long periods of time. To build large 
datasets, people are asked to donate biospecimens and personal data, including genomic data, to 
repositories of de-identified tissue and data used by many researchers [2]. Indeed, in an effort to 
harness the scientific potential of such large datasets, many of the world’s leading research 
institutions recently announced ambitious plans to build a global, interoperable framework for 
sharing genomic and other research data more broadly in the future [3], and the NIH is currently 
developing a revised data-sharing policy [4]. As this new era of genomic research progresses, it is 
critical that we attend not only to the benefits that such broad sharing will have for science and 
medicine, but also to the proportionality of risks and benefits borne by contributors to 
biorepositories and genome databases. 
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The structures and norms guiding the development and use of such repositories were established 
at a time when the re-identification of individual data contributors was thought to be unlikely, and 
the anonymization of personal data was a reasonable strategy for mitigating risks to research 
subjects from loss of confidentiality and subsequent discrimination. As we have learned over the 
past five years, it is no longer possible to credibly guarantee that anonymized or de-identified 
samples and data will remain de-identified in large data repositories [5–7]. The increased technical 
capacity to reidentify individuals in databases can be addressed in a number of ways: (1) we can 
clamp down on sharing; (2) we can merely be transparent about the risks during the informed 
consent process and allow those individuals willing to assume the risks to do so [8]; or (3) we can 
shift our attention to increasing penalties for re-identification and misuse of identifiable data [9]. 
Limiting use would be an unfortunate and ill-considered outcome, reducing research and medical 
benefits to society and foiling the intentions of many individual contributors who are, after all, 
providing samples and data to further science and clinical innovation. Transparency and penalties 
for misuse may be necessary to address the increased risk of re-identification, but they are not 
sufficient. Here, we suggest that, where technological capacity exists, technological advances can 
help the research enterprise achieve a more thoroughgoing respect for persons than was possible 
when current policies governing human subject research were developed. Further, by restricting 
access to data and failing to recognize that some individuals may exercise their autonomy by 
enabling use of their genomic and personal data, researchers and regulators hobble science and fail 
to truly honor the notion of respect for persons that underlies the entire enterprise. That said, 
questions remain about the best way to revise policy to accommodate the changed landscape. 

2. Background 

Concerns about the ethical use of human genomic and other personal data in prospective cohort 
studies are longstanding [10]. However, the increased use of next-generation sequencing in 
research reanimates three challenges on an unprecedented scale. First, next-generation sequencing 
can generate data from every known disease-associated gene or DNA sample. As more is learned 
about the contribution of genomic factors to disease risk, an individual genome sequence will 
acquire new meaning to the person from whom it originated and will contribute to the interpretation of 
others’ genomes. 

Second, next-generation sequencing has co-evolved with powerful computing infrastructures for 
analyzing and exchanging enormous volumes of personal data. To facilitate the efficient use of 
resources, there has been a growing tendency to establish large databases and open-access policies 
to store and share human genomic and other research data. This trend favors the “emergence” of 
many hypotheses from large datasets long after a participant’s initial informed consent to research, 
and facilitates the re-use and combining of datasets by multiple researchers. As a result, secondary 
and tertiary data users may be far removed from the original context in which research data were 
obtained, blurring the lines of accountability for responsible data use. 

Third, it has become easier to re-identify individual contributors to databases based on  
publicly-available internet data, as the latter has grown more abundant [5–7]. Consequently, the 
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privacy risks associated with contributing biospecimens and genomic data to research must now be 
assessed broadly, rather than in relation to the activities of any one project. 

A current challenge facing policymakers is to develop standards for using not only archived 
tissues samples and data, but also newly generated genomic information in research to benefit 
society while respecting heterogeneous beliefs about privacy [11–14] and while safeguarding 
research participants from uncertain risks. This dilemma is often framed as a tension between 
serving individual autonomy interests by keeping data confidential on the one hand, and advancing 
public beneficence by sharing data liberally on the other. However, this polarized view may be 
oversimplified. Internet users have increasingly come to use social media—blogs, Facebook, 
Twitter, wikis, forums—to become content creators and sharers in their own right. While norms are 
still evolving, information technology (IT) has facilitated a shift in the relationship between 
individuals and their personal data, enabling increased individual control over how (and how much) 
personal data are used in research, and by whom. This shift in control has created new 
opportunities to engage members of the public as partners in the research enterprise on more equal 
and transparent terms. Conceptions of privacy—including what should remain private and what 
privacy means in various online spaces—and risks of breaching confidentiality are changing even 
as genomic data are accumulating rapidly. 

3. The Rationale for Informed Consent 

An ethical duty to secure the autonomous and voluntary informed consent of human research 
subjects emerged in response to specific and grave concerns—about physical harm, discrimination, 
stigma—that arose from inhumane and coercive research practices in the U.S., Europe and 
elsewhere during the 20th century [15,16]. Today, to uphold the bioethical principle of respect for 
persons, the United States Federal Policy for the Protection of Human Subjects (“The Common 
Rule”) requires investigators to obtain informed consent from prospective research subjects before 
collecting or using their individually identifiable biological materials or data in research  
studies [17]. The doctrine of informed consent was conceived to ensure respect for persons as 
autonomous agents in clinical care and research. Motivated to prevent further unethical research 
practices, the U.S. National Research Act of 1974 both mandated Institutional Review Board (IRB) 
review for research and convened a National Commission for the Protection of Human Subjects of 
Biomedical and Behavioral Research, which produced The Belmont Report, the foundation of 
much of the Common Rule.  

The Belmont Report identifies three ethical principles: respect for persons, beneficence, and 
justice, which are paired with three corresponding means of translating principle into action: 
informed consent, assessing risks and benefits, and fair selection of subjects. The original Belmont 
concept of “autonomy” embedded in respect for persons is elaborated as follows: 

An autonomous person is an individual capable of deliberation about personal goals and of 
acting under the direction of such deliberation. To respect autonomy is to give weight to an 
autonomous person’s considered opinions and choices while refraining from obstructing their 
actions unless they are clearly detrimental to others. To show lack of respect for an autonomous 
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agent is to repudiate that person’s considered judgments or to withhold information necessary to 
make a considered judgment, when there are no compelling reasons to do so [18] [underlining added]. 

The Belmont Report formed the basis of the first formal research regulations adopted by the 
Department of Health and Human Services (HHS) in 1981, only slightly modified in the currently 
prevailing Common Rule. 

4. The Changing Research Landscape 

It is widely agreed that since the adoption of the Common Rule, the advent of genomic research 
has changed the research landscape, as have its risks and benefits, as a result of technological 
advances that make it cheaper and easier to generate, analyze, and share large volumes of data [19,20]. 
Just as significant, many technological advances in the same period have diversified the tools 
available to mitigate or offset the risks facing contributors to genomic research. 

4.1. The Shifting Relationship between Identifiability and Ethics Review 

Historically, the risks of genetic and genomic research have been mitigated by nondisclosure  
(e.g., of non-paternity), and sample and data anonymization or de-identification. Stripping 
identifiers or severing links between tissues and tissue donors were, justifiably, seen as effective 
measures to mitigate risks to individuals’ privacy interests, by restricting access to their personal 
information. Yet privacy is a complex, variably defined concept encompassing a plurality of related 
issues; informational secrecy is merely one of its dimensions. Further, the practice of respecting 
privacy by restricting access to individual information undermines the pursuit of public benefit 
through aggregation of large amounts of personal data in research databases, and may not actually 
align with research subjects’ values [21,22]. 

The concerns addressed by restricting access to personal information include threats to valued 
social and economic opportunities as a result of privacy breaches and threats to individual 
autonomy, including risk of social stigma and unwanted scrutiny, making it harder to exercise basic 
liberties in the course of daily life [23]. Further, some individuals simply do not want others  
(e.g., researchers) to know information about them that they do not know themselves, or that they 
do not wish to know about themselves. 

The moral case for gaining access to personal information also varies. In science, the argument 
is often made that such access will advance scientific knowledge, leading to improved healthcare 
and other societal benefits [24,25]. Justifying the use of personal information to achieve ends like 
these is difficult when the contribution of individual information to these outcomes is unclear, and 
even harder when not all parties involved are in agreement about the desirability of the ends. The 
various interests protected and hindered by confidentiality provisions make it impossible to arrive 
at a consensus risk-benefit profile for a pool of research subjects that can be assessed each time 
personal information is transferred from one holder to another. 

Given the choice, some individuals might decline to make their personally identifiable health 
information available to researchers; others might elect to share their data to enable scientists to 
develop new treatments, to help advance biomedical science, or to forge connections to other 
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individuals with common diagnoses or health concerns; still others might choose to share with 
academic but not commercial researchers, or with breast cancer researchers, but not those who 
study psychiatric disease. Whether a person is motivated to enroll in research by personal history of 
illness, intellectual curiosity, or feelings of altruism or social responsibility, the tradeoffs involved 
in contributing personal information to a biorepository are dynamic and variable over time, and 
contributors’ values and goals are diverse. Current policy that uniformly restricts access to data as a 
form of privacy protection both fails to respect those participants who would wish to have and 
share their data freely and limits the potential benefits to science and society that may accrue from 
the use of those data. 

In recent years, it has become increasingly possible to re-identify individual data contributors to 
large electronic datasets [5–7]. This is significant because under the regulatory status quo, full 
ethics review is primarily reserved for projects using personal data considered “identifiable” under  
the Common Rule, meaning that the identity of the subject can be “readily ascertained” by the 
investigator from the information. Informed consent is not typically sought from individuals before 
their “de-identified” data are used in research. In human genomics, this policy is problematic due to 
the inherent identifiability of human sequence data and the need sometimes to interpret these data 
in the context of detailed phenotypic information. 

The prevailing notion that investigators can balance the risk-benefit profile of genomic research 
by divorcing data from individual identifiers is also problematic because de-identification may 
actually impoverish the quality of research data to an extent that undermines scientific progress.  
De-identification might also preclude the return of individual research results to participants in 
instances when such results have implications for their well-being. Further, de-identification denies 
participants the opportunity to exercise their autonomy by managing the use of their data over time, 
as their circumstances and views change. From an individual’s perspective, the foreclosure of these 
benefits and limitations on their autonomy might actually worsen the risk-benefit profile of 
participating in research.  

4.2. Growth of Online Data-Sharing 

Simultaneous with the emergence of next-gen sequencing technologies, there has been a 
profound shift in the nature of online information sharing in the course of daily life. Today’s 
Internet contains vast quantities of user-volunteered, identifiable data disclosed for purposes as 
varied as commercial exchange, social networking, recreational gaming, and health support and 
promotion. Facebook, Pinterest, patient discussion boards, posted Fitbit reports and myriad other 
forms of Internet sharing have changed what, how and with whom we share. In many online health-
related communities, members develop and test their own hypotheses, assuming roles typically 
reserved for “experts”, and operating outside traditional human subjects protections frameworks 
(see Section 5.4 below). Further, some have begun to advocate not for the ability to keep one’s data 
private, but rather for the ability to have and to share one’s data freely [26]. Such calls for the 
freedom to share reflect the oft-ignored feature of autonomy as defined in the Belmont Report, 
respect for individuals’ ability to pursue their interests so long as they do not harm others  
(see underling above). 
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Norms of information exchange are also changing. When investigators and institutions are trusted, 
research participants tend not to mind contributing identifiable data to multiple research projects provided 
that they are kept informed about the nature of the research to which they are contributing [27,28]. 
Furthermore, several studies have shown that individual concerns about privacy are highly variable 
and seem to be affected by the tradeoffs that individuals make among three considerations: their 
privacy concerns, their perceptions of the utility of study participation, and the degree of 
reciprocity they perceive from investigators using their data [29,30]. 

Taken together—the limitations of informed consent, the growing ease of re-identifying donors 
and the value of donor-associated data, the proliferation of new IT platforms, and evidence for  
a so-called “privacy-utility tradeoff” made by research participants—these new realities suggest it 
is time to revise how we configure an ethical relationship between donors and users of genomic 
research data. If we wish to uphold the notion of respect for persons on which we base human 
research subject protections, we must both “give weight to an autonomous person’s considered 
opinions and choices” and refrain “from obstructing their actions unless they are clearly 
detrimental to others.” Limiting autonomy by restricting individuals’ access to and sharing of their 
own data, or ability to modify their preferences regarding data use over time fails to uphold the 
second requirement of respect for persons. 

5. Application of IT to Both Research and Research Subject Protections 

The importance of trust and reciprocity to research participation suggests that revising the 
relationship between donors and users toward a more collaborative model might also encourage 
and support participation in genomic research, to the potential benefit of both parties and society as 
a whole. Many argue that research subjects must become more active partners in the research 
process itself: true participants, rather than mere subjects [10–12]. To realize this aim, and achieve 
the hoped for trust and reciprocity, new digital systems for collecting and curating research data 
(including genomic data) have been developed by innovators in both the for-profit and non-profit 
sectors. Below, we describe a heterogeneous group of evolving new approaches to collecting and 
using biospecimens and genomic data in research. Given their novelty and continuing evolution, it 
is not our aim to classify them prematurely or draw a false equivalence among them. Our goals are 
to draw attention to the innovative ways these approaches re-imagine the relationship between 
research participants and researchers, and to highlight some of the empirical questions that must be 
addressed, as we attempt to evaluate the ethical implications of the new research models. 

5.1. The Personal Genome Project and Open Consent 

The Harvard-based Personal Genome Project (PGP) [31] has abandoned the notion that  
de-identification of genomic research data and samples is plausible or even desirable, privileging 
the values of “veracity” and reciprocity in the conduct of research [32]. The PGP is a longitudinal 
genome research study enrolling participants through a detailed, web-based informed consent 
process (including a mandatory genetics exam) that secures “open consent” from participants for 
ongoing research use of their individual genomic and phenotypic data. PGP participants are free to 
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upload as little or as much personal information as they wish to their online PGP profiles, within its 
defined parameters. Although these profiles do not display names, the PGP makes no promises that 
data contributed to the project will remain de-identified or anonymous. In return for assuming the 
risks of re-identification, the PGP offers participants individual research data and hosts an annual 
research meeting to which participants are invited, demonstrating the PGP’s belief that reciprocity 
may play an important role in earning and securing the trust of their study participants. 

5.2. Portable Legal Consent 

The Portable Legal Consent (PLC), developed by the Consent to Research project, is designed 
to address the challenges of broad data sharing. The PLC gives participants who wish to donate 
data to research the opportunity to attach a single research consent to their health and genetic data, 
which they then upload to a secure website. These data can then be used for research purposes by 
any researcher who agrees to specific terms of data use including: an intent to publish research 
results in an open-access forum, a promise not to attempt to re-identify individual research 
participants, and a promise not to distribute data among third parties who do not agree to the PLC 
conditions. While participants may withdraw their data from the database at any time, they are 
clearly advised that once data are uploaded, it may not be possible to remove them from all sources 
(for example, from researchers who have already downloaded, shared, or used the data). 

5.3. Registry for All Disease (“Reg4All”) 

In 2012, the umbrella disease advocacy organization Genetic Alliance created Reg4All [33] to 
collect information relevant to many health conditions. Using a “dynamic consent” platform, 
Reg4All participants select fine-grained consent rules to determine how their personal data are 
viewed, by whom, and for what purposes. The system’s privacy settings include “deny the use of 
my data in any form for any purpose”; “allow discovery and retrieval of all of my data in the 
registry”, and “make my data available to ONLY this research project”. Preferences also allow 
varying degrees of contact between registry participants and investigators interested in using their 
data. Participants may make their data available to specific clinical trials and research studies, or 
they may allow their data to be used openly by all. For each decision about data use, a participant 
may choose to give consent, deny consent, or postpone the decision until later. A participant may 
choose to enter their preferences once and retain them, or they may choose to change their choices 
at a later date. The overall vision of Reg4All is to re-imagine the researcher-participant relationship 
as a reciprocal collaboration over time. 

5.4. “Apomediated”, Peer-Produced Research 

The term “apomediation” describes the relatively non-hierarchical nature of information-sharing 
in some research communities [34,35]. Apomediated initiatives create virtual spaces in which 
individuals are encouraged to propose and carry out their own research studies using self-reported 
data. Examples include PatientsLikeMe (PLM), which provides self-tracking and social networking 
tools to its over 220,000 users in exchange for permission to share their data with researchers listed 
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on the PLM website. Since 2012, PLM’s peer-reviewed publications have covered measures  
of functional disability in multiple sclerosis, epilepsy care quality, and Parkinson’s disease 
progression [36–38]. Other initiatives include DIYGenomics, which has hosted a crowd-sourced 
study of the relationship between polymorphisms in the Methylenetetrahydrofolate reductase 
(MTHFR) gene, homocysteine levels, and vitamin B deficiency, and Genomera, which in beta 
version allows members of online communities to initiate studies related to nutrition, sleep 
patterns, exercise, and genome variation [39].  

6. Open Questions 

The ability of IT and social media to change how genomic and other health data are shared  
and interpreted has generated excitement among health-oriented constituencies. Advocacy 
organizations have embraced social media’s role in helping patients become more engaged in their 
own healthcare and in research [40–42]. That said, using social media to share personal information 
raises its own ethical issues, and robust, longitudinal studies examining the effectiveness or safety 
of using social media to manage health information are needed. Some question whether existing 
initiatives are as “participant-centric” as they claim, given that commercial incentives may generate 
conflicts of interest in some cases [43]. One obvious concern is that personal information may be 
acquired surreptitiously or abused [44]. Another concern is that “gamified” survey data may not 
always be contributed voluntarily by users, given the compulsive nature of some forms of internet 
gaming [45]. Yet other concerns focus on financial motivations of the entities controlling the 
data—will participant and researcher incentives always stay in alignment [43]? 

Thus far, we have few data on basic questions about these new models for doing research, such 
as: do granular data-sharing choices unduly hinder or bias the collection of research data? Who, if 
anyone, is alienated or excluded by systems like those we have described above? It is important to 
acknowledge that many participants in genomics research will not have ready access to or 
experience with the kinds of technologies we discuss here—will variation in access to technology 
lead to or exacerbate existing disparities between different research populations? Which, and how 
many, data-sharing options are necessary to secure autonomous and respectful research 
participation? What happens when study participants assume roles traditionally held by researchers? 

Interactive websites have been demonstrated to be effective at educating the public about 
genomics, and individual data-sharing attitudes have been found to be highly nuanced and variable. 
We believe that the approaches highlighted above are promising strategies for managing many of the 
challenges of modern genomic research, while fostering autonomy. However, to realize their full 
potential, they must be developed in parallel with empirical studies of their benefits and harms, both 
intended and unintended. 

7. Conclusions 

Current informed consent practices are unequal to the task of upholding authentic respect for 
persons in contemporary genomic research. New models that take advantage of advances in both 
genomic research and IT promise to address this shortfall, but require further study of their associated 



 9 
 

 

benefits and harms. Careful study will be necessary to guide the evolution of these new models,  
and to ensure that research both adequately balances protections and benefits against the burdens  
and uncertainties borne by participants in genomic studies, and does not unnecessarily limit 
participants’ actions. 

Prior work in bioethics has addressed privacy concerns narrowly, by focusing on privacy  
as a strict function of identifiability or a form of informational secrecy [46–48]. This focus misses 
other broad interests individuals may have in sharing their own health and genomic data and 
information. The conception of privacy as informational secrecy lends itself to a view of genomic 
information-sharing as a false dichotomy, in which information is either wholly private or wholly 
public. By restricting access to data and failing to recognize that some individuals may exercise 
their autonomy by enabling use of their genomic and personal data, researchers and regulators 
hobble science and fail to truly honor the notion of respect for persons that underlies the  
entire enterprise. 

The scientific, bioethics, and research oversight communities frequently frame the debate as 
privacy versus public beneficence and equate respect for persons with informed consent. Such 
norms and practices impede meaningful reform of human subjects protections. Further, we lack the 
empirical evidence necessary to evaluate emerging models of engaging with research subjects and 
participants that more fully embody the original concept of respect for persons. The research 
enterprise as a whole must accommodate the cultural shift that is taking place in the relationship 
between individuals and their health information. Appreciating and understanding this 
transformation will be an indispensible step in adapting ethical guidelines to the realities of modern 
information use and patients who want and expect to be true participants in research. 
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Genetics of Charcot-Marie-Tooth (CMT) Disease within the 
Frame of the Human Genome Project Success 

Vincent Timmerman, Alleene V. Strickland and Stephan Züchner 

Abstract: Charcot-Marie-Tooth (CMT) neuropathies comprise a group of monogenic disorders 
affecting the peripheral nervous system. CMT is characterized by a clinically and genetically 
heterogeneous group of neuropathies, involving all types of Mendelian inheritance patterns. Over 1000 
different mutations have been discovered in 80 disease-associated genes. Genetic research of CMT has 
pioneered the discovery of genomic disorders and aided in understanding the effects of copy 
number variation and the mechanisms of genomic rearrangements. CMT genetic study also unraveled 
common pathomechanisms for peripheral nerve degeneration, elucidated gene networks, and 
initiated the development of therapeutic approaches. The reference genome, which became 
available thanks to the Human Genome Project, and the development of next generation 
sequencing tools, considerably accelerated gene and mutation discoveries. In fact, the first clinical 
whole genome sequence was reported in a patient with CMT. Here we review the history of CMT 
gene discoveries, starting with technologies from the early days in human genetics through the 
high-throughput application of modern DNA analyses. We highlight the most relevant examples of 
CMT genes and mutation mechanisms, some of which provide promising treatment strategies. 
Finally, we propose future initiatives to accelerate diagnosis of CMT patients through new ways of 
sharing large datasets and genetic variants, and at ever diminishing costs. 

Reprinted from Genes. Cite as: Timmerman, V.; Strickland, A.V.; Züchner, S. Genetics of  
Charcot-Marie-Tooth (CMT) Disease within the Frame of the Human Genome Project Success. 
Genes 2014, 5, 13-32. 

1. Introduction 

Charcot-Marie-Tooth (CMT) disease was so named to acknowledge J.M. Charcot, P. Marie, and 
H.H. Tooth, who originally described this inherited peripheral neuropathy in the 19th century [1,2]. 
CMT occurs worldwide with an estimated prevalence of 1/2,500. CMT is a neuromuscular disorder 
characterized by progressive and length-dependent degeneration of peripheral nerves resulting in 
muscle weakness and wasting in distal limbs, feet and hands. Onset varies from childhood to late 
adulthood and clinical severity ranges from mild to severe between patients. The neurophysiological 
and neuropathological defects in the motor and/or sensory nerves create foot deformities, walking 
disabilities, wheelchair dependence, and sensory deficits. Over the years, clinical and genetic 
studies have demonstrated that CMT is extremely heterogeneous. A classification was proposed in 
the 1970s aiming to group the most common CMT variants as hereditary motor and sensory 
neuropathies (HMSN). In CMT type 1 the myelinating Schwann cells are affected, while axons are 
degenerated in CMT2. Besides these two autosomal dominant inherited CMT types, recessive and 
X-linked demyelinating and axonal CMT subtypes have been described and also included in the 
HMSN classification [3]. Depending on the severity of motor or sensory deficiency, other CMT 
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variants were grouped into predominantly distal hereditary motor neuropathies (distal HMN) and 
hereditary sensory and autonomic neuropathies (HSAN) [4,5]. More recently, clinical and genetic 
overlaps have been reported between CMT neuropathies and hereditary spastic paraplegias. In 
addition, there have been cases with more complex clinical phenotypes involving other tissues, 
such as skin and bone (reviews by [6–8]), further complicating the original CMT classification.  

Figure 1. Genes and loci for Charcot-Marie-Tooth (CMT) and related inherited  
peripheral neuropathies. 

 
The figure shows 80 currently known genes (orange symbols) and their corresponding chromosomal loci 
(vertical bars). The corresponding phenotypes are indicated by blue symbols and are according to the 
disease nomenclature. Note that the disease names may not always correspond to information available 
in OMIM, GeneReviews, or in other publicly available databases. The full names of the gene symbols 
and year of gene identification are provided in Supplementary Table S1.  

The first CMT locus was mapped in 1982 [9], and 30 years of genetic research has not only 
allowed the successful identification of 80 disease-causing genes, but also pioneered the discovery 
of novel genomic mechanisms (Figure 1). Loci and genes for CMT and related peripheral 
neuropathies were initially identified using genetic linkage studies, positional cloning, or candidate 
gene approaches. Since the publication of the Human Genome in 2001 [10,11], the development of 
high-throughput technologies, such as whole genome mapping (WGM), whole genome sequencing 
(WGS), and whole exome sequencing (WES) [12,13] accelerated the gene and mutation discovery 
in CMT research. Genetic research in CMT has shown that all Mendelian inheritance patterns are 
possible. However, besides dominant, recessive, and X-linked inherited CMT types, mutations also 
occur de novo in isolated patients. More recently, a CMT phenotype was associated with a defect in 
MT-ATP6A, a gene encoded by the mitochondrial DNA [14]. Different CMT phenotypes can be 
caused by mutations in the same gene, and conversely mutations in different genes may result in 
the same phenotype. This is further complicated by the fact that some mutations are extremely rare 
and occur in specific subtypes. Mutations in more than 20 genes cause primary alterations of the 
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myelin sheath; well-known examples include MPZ, PMP22, and GJB1. Mutations in genes with 
axonal functions, however, result in axonal CMT and associated phenotypes (e.g., NEFL, GAN). 
Their gene products have cell-type specific functions, allowing underlying disease mechanisms to 
be logically inferred. Other mutations have been reported to cause intermediate CMT, with both 
myelin and axonal phenotypes. The availability of the Human Genome also contributed to the 
identification of mutations in genes that were not the primary functional candidates for CMT 
neuropathies. Examples include mutations found in ubiquitously expressed genes coding for 
amino-acyl tRNA synthetases (GARS, YARS, HARS, MARS, AARS), small heat shock proteins 
(HSPB1, HSPB3, HSPB8) and enzymes involved in membrane and transport metabolism (SPTLC1, 
SPTLC2, MTMR2, SBF1, SBF2), whose resulting gene products have housekeeping functions and 
pleiotropic activities. In addition, CMT disease-associated genes are expressed in different cellular 
compartments of the developing and myelinating Schwann cells and/or the neuronal axons [15]. 
Some of these genes have been shown to function in the nucleus as transcription factors (EGR2, 
SOX10, DNMT1), others in vesicle transport (RAB7A), in the Golgi (FAM134B), endoplasmic 
reticulum (SPTLC1, REEP1, ATL1), or the mitochondria (MFN2, GDAP1). For most of these 
genes, it still remains an enigma why the mutant proteins cause such specific, length-dependent 
degeneration of peripheral nerves in CMT patients (Figure 2). 

Figure 2. Functional categories containing enriched molecular and cellular functions of 
genes involved in CMT and related neuropathies. 

 
Ingenuity Pathway Analysis (IPA version 17199142, Ingenuity Systems [16]) was used to summarize the 
molecular and cellular functions that were most strongly associated with genes linked to inherited 
peripheral neuropathies. Detailed gene functions are provided as Supplementary Tables S2. 
Corresponding p-values in the supplementary files were calculated using Fisher’s exact test and corrected 
for multiple testing using the Benjamini-Hochberg method. Note that the same gene can be present in 
various clusters.  
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The tremendous success of molecular genetics between 1990 and 2004 can be attributed to 
multiplex studies of large CMT families suitable for positional cloning and candidate gene 
screening. Because such families have become rare, the pace of gene discovery slowed down soon 
after the publication of the Human Genome (Figure 3). Reflecting the clinical reality, the majority 
of patients with peripheral neuropathies derive from nuclear families or represent isolated patients 
with severe phenotypes. Despite their huge potential, these patients and nuclear families were 
beyond the reach of classical gene discovery approaches. Fortunately, this situation has changed 
spectacularly with the introduction of novel, affordable sequencing technologies which allow 
massive, genome-wide analysis of entire exomes (all protein coding regions) or even genomes. We 
will discuss the history of CMT gene discoveries by providing a few highlights where the Human 
Genome Project (HGP) contributed to the gene finding. As not all discoveries can be discussed, we 
provide a comprehensive table listing all currently known disease-causing genes for CMT, as well 
as the original technologies used to find the associated genes and mutations (Supplementary Table 
S1). Further details can be obtained from corresponding references to the literature, via the OMIM 
database [17], IPNMDB database [18], or LOVD database [19], which in part provide a list of 
mutations and genetic variants.  

Figure 3. Historical overview of gene identification in CMT and related inherited 
peripheral neuropathies. 

 
This figure shows the number of genes found per year since the identification of the CMT1A duplication in 
1991. Note a peak in gene discovery soon after the publication of the HGP in 2001. A second peak occurs 
when next generation sequencing (NGS) tools became available from 2009. We also highlighted the 
introduction of NGS methods (WES and WGS), as well as the major functional and positional CMT genes 
identified before and after the publication of the HGP. All genes identified per year are listed in 
Supplementary Table S1.  
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2. CMT Genetics as a Pioneer for Genomic Mechanisms and Emerging Genome Technologies 

2.1. Early Linkage Studies 

In 1982, T. Bird assigned the first locus for autosomal dominant CMT by screening the  
Duffy-blood group marker in a family with demyelinating HMSN. He obtained genetic linkage 
between CMT and the Duffy locus on chromosome 1 [9], which was soon confirmed in other CMT 
families and defined as the CMT1B subtype (reviewed in [20]). However, the Duffy-blood group 
marker did not segregate in several other large CMT families which were grouped within the 
CMT1A subtype of HMSN [21–23]. It took as long as 10 years to find that the MPZ gene coding 
for the major peripheral myelin protein (P0) was mutated in CMT1B patients [24]. The MPZ gene 
was assigned to chromosome 1q22-q23 and was the perfect candidate gene for a demyelinating 
peripheral neuropathy. Further genetic research, based on sequencing the coding region of the MPZ 
gene, demonstrated that mainly heterozygous, missense mutations occur in CMT1B. Other rare 
mutations in MPZ were associated with severe and early onset peripheral neuropathies, such as 
Roussy-Levy syndrome [25], Dejerine-Sottas syndrome [26] and congenital hypomyelination [27]. 
At least 117 mutations have been described in MPZ [18], and genotype/phenotype correlations 
associated a few MPZ mutations with axonal HMSN or CMT2 [28,29]. Although CMT patients 
can be routinely screened for MPZ mutations in DNA diagnostic labs, the CMT1B subtype is less 
frequent than CMT1A [30,31].  

2.2. CMT1A—The First ‘Genomic Disorder’ 

The CMT1A subtype is the most common HMSN and one of the first genetic examples of a 
submicroscopic genomic disorder. The CMT1A locus was assigned, in 1989, to chromosome 17 
through genetic linkage studies in large HMSN families using restriction fragment length 
polymorphic (RFLP) markers [21–23,32]. These families were excluded for linkage to the CMT1B 
locus on chromosome 1q22-q23. A multipoint linkage study allowed refinement of the CMT1A 
locus to a 30 cM region on 17p11.2-p12 [33]. In 1991 a tandem-duplication of 1.4 megabases (Mb) 
on chromosome band 17p12 was identified as a frequent cause for CMT1A and represented 70% of 
CMT1 in many populations [30,31,34,35]. Several molecular methods revealed the CMT1A 
duplication: the presence of three informative alleles by RFLP analysis and polymorphic 
dinucleotide (CA)n repeats in affected individuals, the identification of a patient-specific junction 
fragment by pulsed-field gel electrophoresis (PFGE), and the duplication of probes detected by 
fluorescence in situ hybridization (FISH) (reviewed in [36]). A deletion of the same chromosomal 
region in 17p12 resulted in a distinct form of inherited peripheral neuropathy, known as hereditary 
neuropathy with liability to pressure palsy (HNPP) [37]. Through the availability of large insert 
clones, such as yeast artificial chromosomes (YAC), P1 artificial chromosomes (PAC) and 
bacterial artificial chromosomes (BAC), it became possible to build clone contigs of chromosome 
17. These clones could be further subcloned into smaller fragments, which could then undergo 
DNA sequencing analysis. This procedure allowed sequencing of 1,421,129 bp of DNA at the 
CMT1A duplication and HNPP deletion region. Furthermore, this 1.4 Mb chromosomal region was 
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found to be flanked by two 24 kb homologous low copy repeats (LCRs) called the proximal and 
distal CMT1A-REPs. This unique genomic architecture creates a non-allelic homologous 
recombination (NAHR) which cause the CMT1A duplication or HNPP deletion. Further analysis of 
the genomic region nearby the CMT1A-REPs demonstrated an evolutionary mechanism for the 
formation of the CMT1A-REP and the creation of novel genes by DNA rearrangement [38–40]. 
The PMP22 gene, encoding the peripheral myelin protein 22, was physically assigned in the middle 
of the 1.4-Mb CMT1A region using somatic chromosomal hybrid cell lines, PFGE restriction, and 
YAC maps [41–44]. As a consequence, one additional copy of PMP22 is responsible for CMT1A, 
whereas loss of one copy of PMP22 results in HNPP, highlighting a gene dosage effect as the 
mechanism for these disorders [45]. In addition, some CMT1A and HNPP neuropathy patients have 
apparent rare copy number variations (CNVs) of an atypical size in the 17p12 region [46]. More recent, 
detailed analysis of these genomic rearrangements by high-density, oligonucleotide-based array 
comparative genomic hybridization (aCGH) and subsequent sequencing of the CMT1A/HNPP 
breakpoint revealed non-recurrent rearrangements including: non-homologous end joining (NHEJ), 
Alu-Alu-mediated recombination, and DNA replication-based mechanisms such as fork stalling  
and template switching (FoSTeS) and microhomology-mediated break-induced replication 
(MMBIR) [47]. All these studies confirmed that PMP22, either altered by dosage or dysregulation, 
is the major gene responsible for CMT1A and HNPP. The identification of the CMT1A duplication 
and reciprocal HNPP deletion on 17p12 has also shown that rare CNVs involving both coding and 
non-coding sequences can cause human disorders (reviewed in [48,49]). Further genetic research in 
CMT and HNPP resulted in the identification of 61 different point mutations in PMP22. 

Some of these PMP22 mutations have been described in naturally occurring mouse mutants 
(trembler mouse) or have been modeled in transgenic animals [50,51] (reviewed in [52]). Rodent 
models expressing multiple copies of the PMP22 gene mimic the human CMT1A duplication and 
have been instrumental in understanding the disease mechanism and developing therapeutic 
approaches. Anti-progesterone or ascorbic acid (Vitamin C) has been used to alleviate the typical 
demyelinating neuropathy in CMT1A rat and mouse models respectively [53,54]. Based on this 
data, multicenter clinical trials with the aim to treat CMT1A duplication patients have been 
developed for adults and children, but did not reveal significant improvement of the disease 
symptoms [55–60]. Recently, clinicians and researchers have focused on the natural history of 
peripheral neuropathies and developed reliable clinical and DNA diagnostic guidelines [61,62]. 
These internationally accepted guidelines will be important to support other treatment strategies for 
CMT1A currently under investigation. 

2.3. Genetic and Physical Mapping, and the Contribution of the Human Genome Reference to 
Gene Finding in CMT 

The HGP has significantly contributed to the identification of genes that were not considered  
likely candidates for peripheral neuropathies. Here we provide a research example for CMT-related 
neuropathies where the motor neurons are predominantly affected. The clinical characteristics of 
this entity, also known as distal hereditary motor neuropathy (HMN), have been defined by A. 
Harding and P.K. Thomas in 1980 [63]. The identification of the distal HMN genes also started 
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through genetic linkage studies in extended families in which the disease was dominantly transmitted 
(reviewed in [64]). These studies were labor intensive and time consuming due to the limited 
availability of genetic markers, which were mainly RFLPs analyzed by Southern blotting and 
hybridization with radioactive labeled probes. Linkage excluded the CMT1A and CMT1B loci on 
chromosomes 17 and 1 respectively [65]. However, thanks to the discovery of highly polymorphic 
short tandem repeat (STR) markers and their detection through PCR methods, genome-wide scans 
(GWS) allowed the identification of one of the first distal HMN loci on chromosome 12. The GWS 
was performed with a multiplex procedure for genotyping microsatellite markers (referred to as 
afm-markers) combined with a hybridization-based detection technology [66]. A total of 187 (CA)n 
repeat polymorphisms located on chromosomes 1 to 12 were genotyped at a mean distance of 15 
cM. Based on the segregation analysis of STR alleles, the presence of informative recombinants, 
and multipoint linkage analysis, a candidate region for the distal HMN gene was delineated to a 
region of 13 cM [67]. Although a large part of chromosome 12 was then assembled into integrated 
physical, genetic, and cytogenetic maps, the distal part of 12q, including the critical region of the 
distal HMN locus, was not yet converted into a high-density contig. Attempts to construct a 
contiguous YAC-based map of the chromosomal region were not successful due to the presence of 
gaps or chimeric YAC clones. However, the use of PAC and BAC clones, which contained few 
deletions and were rarely chimeric, allowed the generation of a complete PAC/BAC contig. The 
PAC and BAC libraries were screened with known STR markers as well as with markers derived 
from cloned end-fragments of PACs and BACs using STS content mapping, PFGE analysis, 
Southern blotting, and fiber fluorescence in situ hybridizations (FISH). This final clone contig of 
12q24 allowed mapping candidate genes or expressed sequenced tags (ESTs) within the critical 
distal HMN region [68]. The combination of genetic linkage studies (including haplotype analysis 
of polymorphic markers and the identification of recombinants) and the availability of the clone 
contig allowed further reduction of the locus from 5 to 1.7 Mb. From this refined region, known 
genes were selected from the HGP data [10,11] for Sanger sequencing using one of the first ABI 
automated DNA sequencing machines. In two large distal HMN families, a missense mutation 
(K141N) was found in the HSPB8 gene coding for the 22-kDa small heat shock protein B8 
(HSP22/HSPB8). In two other distal HMN families, another mutation targeted the same lysine 
residue (K141E) in the HSPB8 protein [69]. Interestingly, a very similar strategy resulted in the 
identification of another CMT locus on chromosome 7q11-q21 (CMT2F) in a large family with 
autosomal dominant axonal CMT [70]. A missense mutation (S135F) in the HSPB1 gene encoding 
the 27-kDa small heat-shock protein B1 (HSP27/HSPB1) segregated in this CMT2F family. 
Screening for HSPB1 mutations in additional CMT and HMN families confirmed the previously 
observed mutation and identified several additional missense mutations [71]. Both small heat shock 
proteins act as molecular chaperones but are also involved in many essential cellular processes such 
as apoptosis, autophagy, splicing, cytoskeleton dynamics, and neuronal survival (reviewed by [72]). 
Transgenic mouse models for mutant HSPB1 have been created, which develop neurological 
symptoms similar to the human condition. Alpha-tubulin is less acetylated in sciatic nerves of 
mutant HSPB1 mice when compared to wild type animals, and treatment with HDAC inhibitors 
(which avoids deacetylation of tubulin), ameliorated the axonal degeneration in the HSPB1 mutant 
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mouse [73]. Studies aimed at developing better treatment strategies for this group of axonal CMT 
are being tested in cell and animal models. 

2.4. CMT2A—The Importance of a Finished Human Genome Reference 

The chromosomal locus for the first axonal form of CMT was mapped to chromosome 1p36  
in 1993 [74]. Despite a sizable number of mapped, large families and efforts to identify the 
underlying gene at multiple laboratories, no gene was discovered for over 10 years. What 
complicated the search was an incomplete map for chromosome 1. Within the established linkage 
region existed a gap of unknown size and content. In 2001, an elegant study involving cell and 
mouse models of Kif1b showed mitochondrial transport deficiencies due to loss-of-function 
mutations [75]. A single small CMT2 family from Japan with suggestive linkage to 1p35-36 [74] 
was reported to carry a specific Q98L missense mutation that showed functional deficits in a cell 
culture-based assay. The fact that a mutation in the motor protein Kif1b can underlie a peripheral 
neuropathy led to the conclusion that KIF1B is the long sought after CMT2A gene [75]. Subsequent 
mutation screening studies of linked CMT2A families, however, came back empty-handed. To our 
knowledge, no additional KIF1B mutations have been reported in the literature. This raised the 
possibility of a second gene in the region. With steadily improving genomic maps of chromosome 1, an 
international collaboration eventually identified mutations in the gene coding for MFN2 in all 
previously linked CMT2A families [76]. MFN2 is now established as the most common CMT2 
gene accounting for ~20% of all axonal cases. Amongst the most severe and early onset forms of 
CMT2, MFN2 carries a mutation in ~90% of cases [77]. The MFN2 screening has also revealed a 
broader phenotypic spectrum that includes early- and late-onset cases of HMSN [78], severe and mild 
manifestation of symptoms [79,80] accompanying optic atrophy (HMSN VI) [81], and involvement of 
upper motor neurons (HMSN V) [82]. Rarely, a recessive/co-dominant trait is possible in  
MFN2 [77,83]. 

3. Next Generation Sequencing Boosted the Identification of CMT Associated Genes 

3.1. Targeted Next-Generation Sequencing and Its Limitation in CMT Gene Finding 

As next generation sequencing (NGS) platforms become more and more accessible and 
affordable, many CMT laboratories are shifting their research towards smaller families and isolated 
patients who still represent a large group of genetically unsolved patients. These revolutionary 
technologies will allow studying isolated patients with severe phenotypes that, until recently, were 
beyond our reach. 

Multiple studies have successfully combined whole-genome SNP genotyping, subsequent target 
capturing, and parallel sequencing. This approach revealed a single novel missense variant in 
FBLN5 causing autosomal dominant CMT with hyperelastic skin and age-related macular 
degeneration [84]. A similar approach, combining whole-genome SNP genotyping, homozygosity 
mapping and NGS, allowed the identification of mutations in HINT1 causing an autosomal 
recessive axonal neuropathy with neuromyotonia [85]. Other examples of NGS of CMT genes, 
with or without additional clinical features, are provided in Supplementary Table S1. As whole 
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exome and whole genome studies become more affordable, such targeted studies will not be 
competitive in the near future. Furthermore, the current limitation of targeted NGS is the lack of 
complete coverage of some genes and the inability to detect non-exonic mutations and copy 
number variations (CNVs) [86,87].  

Importantly, current diagnostic sequencing of disease genes heavily relies on targeted  
NGS-based methods. By creating gene panels that includes all known CMT genes, the cost of 
sequence production can be radically reduced, and for the first time, clinicians will have a 
comprehensive view of the mutational load in all CMT genes. This technique allows for a much 
better characterization of genotype/phenotype correlations. It will likely also uncover digenic and 
other unusual mutational mechanisms. The phenotypic spectra of each CMT gene will be 
comprehensively defined over the coming decade. At the moment a technical drawback for this 
approach is the less-than-100% coverage of a sequence of interest. It is expected, however, that the 
technology will soon match and outperform traditional Sanger sequencing in sensitivity and specificity.  

3.2. Whole Exome Sequencing as a Successful Approach in CMT Gene Finding  

Whole exome sequencing (WES), aiming to sequence an abbreviated version of the entire 
genome, has become a powerful and cost-efficient method. CMT research was one of the earliest 
adaptors of this new technology. Montenegro et al. reported a study of a large CMT pedigree and 
the identification of a known GJB1 mutation for the X-linked variant of CMT [88]. This was 
somewhat unexpected, as the family pedigree initially appeared to exclude an X-linked trait. After 
mutation identification, it appeared that a distant branch of the pedigree with male-to-male 
transmission was never clinically evaluated and likely carried a different phenotype. This study 
further detailed the challenges of data interpretation and incompleteness of sequence coverage of 
coding sequences, as well as possible strategies to resolve these shortcomings of WES. As discussed 
below, this approach is now well established in many clinical laboratories, only two years later. 

One can now analyse whole exomes in trios (patients and their parents) for de novo dominant 
mutations. Examples of novel genes for CMT and related inherited peripheral neuropathies 
discovered solely based on WES include MARS [89], BICD2 [90–92], PDK3 [93], SCN11A [94], 
SLC5A7 [95], and TUBB3 [96] (Supplementary Table S1). The gene discovery rate will increase 
to as much as one new gene per month in the CMT field alone, until the majority of rare genes have 
been identified. However, WES may still be hindered by the lack of complete coverage of some 
genes [86,87]. Regardless, it is widely expected that these new genes will allow for a precise 
delineation of pathways that are key to the pathogenesis of CMT and related axonopathies.  

3.3. First Whole-Genome Sequencing of a CMT Patient 

The first whole-genome sequence (WGS) of a CMT patient was published in 2010 [97]. This 
study demonstrated for the first time in all of medicine that WGS can identify clinically relevant 
variants and provide diagnostic information [98]. The DNA sample of the index patient belonged to 
a family with recessive CMT and was sequenced on the SOLiD (Sequencing by Oligonucleotide 
Ligation and Detection) next-generation-sequencing platform developed by Applied Biosystems. 
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The accuracy in sequencing of 50-base reads on the SOLiD system exceeded 99% and 12 multiple 
sequences were read simultaneously. Overlapping reads increased the overall sequence accuracy 
and reduced the risk of obtaining false positive sequence variants. In the patient sample a 
compound heterozygous mutation was identified in SH3TC2, a previously known gene for 
recessive CMT [97,99]. The two mutations in SH3TC2 co-segregated with the CMT disease 
phenotype in the pedigree. All four affected individuals had slowed nerve conduction velocities, 
which is indicative of a demyelinating CMT phenotype. Interestingly, the Y169H mutation also 
seemed to co-segregate with an electrophysiologically defined axonal neuropathy phenotype that 
was evident in the four affected siblings as well as the proband’s father and grandmother. By 
contrast, the first R954X variant in SH3TC2 was associated with subclinical electrophysiological 
evidence of carpal tunnel syndrome, regardless of the presence of the second R169H mutation. 
Although some of the proband’s family were shown to have one or the other of these mutations, 
only the proband and his three siblings, who were also diagnosed with CMT, had both mutations [97]. 
These observations underline the importance of careful phenotyping for the valid interpretation of 
genomic variant data. In their study, J.R. Lupski and colleagues [97] identified over 9,000 
non-synonymous single nucleotide variants (SNVs), 148 of which involved stop codons, and 112 
of which were located in conserved exon splice-sites, which presumably had severe consequences 
for the affected proteins. Moreover, 21 of these changes were previously described as causing a 
Mendelian disease other than CMT. Thus, the identification of phenotypically relevant variations 
by means of WGS can be difficult. At the time, the authors estimated the cost of their study at  
~$50,000—the same study today, three years later, would amount to less than $10,000. 

4. Future Perspectives and the Need to Share Large Datasets and Genetic Variants 

In the early days of molecular genetics, access to rare, large families was a prerequisite for 
linkage studies and positional cloning strategies. With the introduction of WGS and WES, this 
hurdle has largely been cleared. Today these novel high-throughput technologies allow the 
simultaneous analysis of approximately 20,000 genes in the human genome in an unbiased way. 
Besides the tremendous generation of DNA sequence data from complete genomes or exomes, 
these emerging NGS technologies also permit geneticists to tackle phenotypes that were previously 
largely inaccessible via Sanger sequencing. Because these methods are so powerful, NGS projects 
are shifting towards nuclear families and isolated patients, representing a very large group of 
genetically undefined patients. For each nuclear family, one can sequence two affected individuals 
and search for variants in genes that are shared between patients. Different strategies can be applied 
to study isolated patients; when the individuals are severely affected, this can be the consequence 
of a de novo mutation, and by sequencing both parents and the patient, de novo variations can be 
identified. Another approach involves sequencing unrelated index patients and detecting variations 
in the same gene in different individuals across families, which is a very strong and independent 
argument in favor of a pathogenic link between a certain gene and the CMT neuropathy. To this 
end, novel, innovative genome data analysis platforms have emerged, such as Genomes 
Management Application (GEM.app) [100]. GEM.app allows laboratories around the world to 
analyze their data jointly, collaborate ad hoc on specific novel genes, or establish networks of 
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collaboration. This is possible via a strictly web-based system with secure access to data [101]. 
Every user has full control over their own data, but also sees counts of variants by gene, phenotype 
and variant type for all exomes/genomes in this system. The majority of novel CMT and HSP 
(hereditary spastic paraplegia) genes are currently discovered via GEM.app by over 200 users from 
24 different countries. A variation of this approach is the Genome Variant Database for Human 
Diseases [101], which is heavily biased towards axonopathies. This system contains more than  
500 exomes that can be freely queried to search for a “second family” to support a new gene. 

Large scale screening of patients allows determination of CMT mutation frequencies, 
establishment of phenotypic borders of these heterogeneous neuropathies, and at the same time, 
exploration of phenotypic overlaps between CMT and other neuropathies. As such, NGS will be an 
important tool for personalized and preventive medicine. Several database initiatives aim at 
capturing more complete lists of clinically relevant mutations in human diseases. These include the 
Leiden Open Variant Database [19], the Human Gene Mutation Database [102], and a specific 
CMT database currently constructed by the Inherited Neuropathy Consortium [103] However, 
CMT genetics have already identified more than 1,000 mutations in 80 disease associated genes, 
and novel NGS tools will unravel at least an equal amount of CMT associated genes, making it 
more appropriate to study the common disease mechanisms. Importantly, the development of NGS 
technologies also led to the discovery of novel mutations in known genes, uncovering their 
phenotypic spectrum and highlighting pleiotropic effects.  

Finally, we cannot forget the important role of functional studies in unraveling gene and protein 
functions, and in particular the study of mutations in cell and animal models [104]. In general, 
these studies were designed to understand the complex pathomechanisms of axonal degeneration 
and myelination defects in the peripheral nervous system. Cell and animal models that have been 
developed for a large group of peripheral neuropathy associated genes will be instrumental for 
treatment of CMT and related disorders [105]. However, focusing on treatment strategies for 
axonal degeneration or demyelination, or aiming at treating motor and sensory defects, might be 
more relevant than aiming at rescuing all CMT mutations individually. 
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The Past, Present, and Future of Human Centromere Genomics 

Megan E. Aldrup-MacDonald and Beth A. Sullivan 

Abstract: The centromere is the chromosomal locus essential for chromosome inheritance and 
genome stability. Human centromeres are located at repetitive alpha satellite DNA arrays that 
compose approximately 5% of the genome. Contiguous alpha satellite DNA sequence is absent 
from the assembled reference genome, limiting current understanding of centromere organization 
and function. Here, we review the progress in centromere genomics spanning the discovery of the 
sequence to its molecular characterization and the work done during the Human Genome Project 
era to elucidate alpha satellite structure and sequence variation. We discuss exciting recent advances 
in alpha satellite sequence assembly that have provided important insight into the abundance and 
complex organization of this sequence on human chromosomes. In light of these new findings, we 
offer perspectives for future studies of human centromere assembly and function. 

Reprinted from Genes. Cite as: Aldrup-MacDonald, M.E.; Sullivan, B.A. The Past, Present, and 
Future of Human Centromere Genomics. Genes 2014, 5, 33-50. 

1. Introduction 

The centromere is the chromosomal locus that controls chromosome segregation during cell 
division. Visually, the centromere appears on metaphase chromosomes, at least in metazoans that  
have excellent cytology, as a primary constriction. This is also the site of kinetochore assembly, the 
multi-protein structure that forms to coordinate attachment to and movement of chromosomes 
along microtubules. The proteins associated with centromeres are conserved among species, 
consistent with the functional significance of the locus. A surprising feature of centromeres is that 
the DNA sequences present at the locus are dissimilar, not only among organisms but often within 
the same organism. However, protein components of centromeres are shared among species, 
suggesting an epigenetic basis for centromere assembly. Such centromere proteins (CENPs) 
include CENP-A, CENP-C, and CENP-T that are important for structural and functional aspects of 
the centromere and kinetochore. CENP-A is of particular significance since it is a histone H3 
variant that contributes to specialized chromatin at centromeres. The Holliday Junction Recognition 
Protein HJURP and its fungal homolog Scm3 are chaperones that direct the loading of CENP-A 
into chromatin primed by the Mis18 complex and ensure propagation of epigenetically marked 
centromeric nucleosomes (reviewed by [1,2]). 

Despite the lack of sequence identity, many centromeres are located in regions of repetitive 
DNA or satellites. In humans, repetitive alpha satellite DNA defines the centromere. The sequence 
basis of centromere identity is widely debated, since variant centromeres have been identified in 
humans and other organisms. These unusual centromeres include neocentromeres, new centromeres 
that are formed on unique or non-centromeric DNA sequences [3,4]. Dicentric human chromosomes, 
those chromosomes that are formed by fusion or translocation, have two regions of centromeric 
DNA, but often only one is the site of kinetochore formation. In these instances, the alpha satellite 
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DNA appears to be neither necessary nor sufficient for centromere function. Nevertheless, other 
evidence exists that supports the importance of DNA sequence in centromere formation in humans, 
particularly de novo centromere assembly. In this review, we will discuss advances in our 
understanding of human centromeric DNA, from the discovery of human centromeric sequences 
through integration of physical and genetic maps of centromeres during the Human Genome 
Project era to the first centromeric genome assemblies that are only now emerging. 

2. Alpha Satellite DNA: Discovery, Organization, and Variation 

Human centromeres, and in fact most primate centromeres, are composed of alpha satellite  
DNA [5]. This sequence is thought to be important for centromere function since it is present at the 
primary constriction of all human chromosomes. It comprises up to 5% of the genome. Alpha 
satellite is based on a 171 bp monomer arranged in a tandem, head-to-tail fashion. Individual 
monomers share 50%–70% sequence identity. An integral number of monomers give rise to a 
higher order repeat (HOR) unit that is itself repeated in a largely uninterrupted fashion so that 
within a given centromeric locus, the alpha satellite array can span from 250 to 5,000 kb. Such  
re-iteration of the HOR gives rise to a homogenized alpha satellite array in which the HORs differ in 
sequence by only a few percent (Figure 1), even though the constituent monomers show much less 
sequence similarity [6,7]. Some monomers within the HORs contain a 17 bp sequence called the 
CENP-B box, a motif that is recognized by the DNA-binding centromere protein CENP-B [8]. 
Outside of the higher order arrays, monomers are randomly arranged and span the region between 
the homogeneous array and the chromosome arm [9]. 

Figure 1. The genomic organization of human centromeres. The primary sequence at 
human centromeres is alpha satellite DNA that is based on 171 bp monomers (colored 
arrows) organized in a tandem head-to tail fashion. The monomeric sequences differ by 
as much as 40%. A set number of monomers give rise to a higher order repeat (colored 
bars with black arrowhead) and confer chromosome-specificity. Higher order repeats 
are themselves reiterated hundreds to thousands of times, so that the alpha satellite 
arrays are highly homogenous and span several hundred kilobases to several 
megabases. Unordered monomeric alpha satellite DNA flanks the higher order arrays, 
becoming progressively more divergent farther away from centromeric core. 
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Figure 2. Heterogeneity of alpha satellite DNA. The alpha satellite DNA at 
centromeres exhibits several types of polymorphism. (A) Total array size, defined by 
the number of higher order repeats (HOR; gray arrows), varies between homologues 
and among individuals; (B) The same alpha satellite array from a given chromosome 
type can contain HORs of different sizes. In addition, the number of each HOR variant 
can vary. For example, an alpha satellite array can contain a mixture of 10-mers and  
6-mers, with a greater number of 10-mers. Another array from the same chromosome in 
a different individual might have an equal number of 10-mers and 6-mers or, 
alternatively, more 6-mers than 10-mers; (C) Alpha satellite DNA can also vary at the 
level of monomer (black arrowheads) type and arrangement. Some monomers (gray 
arrowheads) contain a specific sequence element called the CENP-B box. Others 
monomers can contain identical nucleotide changes or SNPs (yellow arrowheads) 
within the same array. Multiple SNPs (hot pink, orange, gray, yellow arrowheads) can 
be present in the same HOR or distributed across an alpha satellite array. Each type of 
variation (array size, HOR size, SNPs) is not mutually exclusive and all contribute to 
the heterogeneity of alpha satellite DNA in the human population. 

 

Variation within the alpha satellite is common and complex. Each chromosome type is defined 
by an alpha satellite array in which the multimers of the HOR contain a particular number of 
tandem monomers [7,10,11]. The homogeneity of HORs of the same monomer number makes the 
alpha satellite array chromosome-specific and distinguishable from related sequences at other 
centromeres. Certain chromosomes share greater homology of HORs based on monomer subtypes 
and organization, allowing them to be classified into one of three suprachromosomal families [12]. 
Diverged monomeric alpha satellite falls into two additional suprachromosomal families [13]. On a 
given chromosome type, the number of times the HOR is re-iterated is heterogeneous, spanning 
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hundreds to thousands of copies. Consequently, total array size on a given chromosome varies 
between homologs and among individuals (Figure 2) [14–18]. Although array sizes can be as small 
as a few hundred kilobases or as large as five megabases [16,19,20], the range appears to be less 
extensive on a particular chromosome type [21]. Array size polymorphisms are largely stable 
through meiosis since they can be efficiently tracked through multigenerational families [17]. 
These polymorphisms make alpha satellite a useful centromeric marker for tracking inheritance of 
individual chromosomes. 

Additional alpha satellite variation exists at the level of the HOR. On a given chromosome, the 
primary HOR unit can exhibit size polymorphisms that are most likely the result of deletions caused 
by unequal exchange [22,23]. Human chromosome 17 is a good example of HOR polymorphism within 
the D17Z1 alpha satellite array. The predominant HOR on D17Z1 is a 16-monomer (16-mer) [18,22]. 
However, less prevalent 15-mer and 14-mer HORs are present on many D17Z1 arrays, as well as 
13-mers and 12-mers [22,24]. Within this group, the 13-mer is the most abundant after the 16-mer. 
These size polymorphisms create centromeric haplotypes, with the 16-/15-/14-mer comprising a 
haplotype found on 65% of chromosome 17 s and the additional 13-mer present on 35% of 
chromosome 17 s [22,25]. A recent study that evaluated centromere assembly on multiple 
chromosome 17 s suggested that HOR variants might have different functional capacities [26]. This 
possibility, however, remains to be formally tested in an independent functional assay. 

3. Functional Studies that Have Defined Genomic Centromeres 

The strongest evidence for implicating alpha satellite DNA in human centromere function came 
from two lines of chromosome engineering experiments that took “bottom up” and “top down” 
approaches (Figure 3). In the “top down” strategy, telomere-mediated chromosomal truncation was 
used to modify the X chromosome or Y chromosome, some of which had been transferred to either 
rodent somatic cell hybrids or DT40 chicken cells (Figure 3B) [27,28]. Because DT40 cells are 
proficient in homologous recombination, targeted seeding of the telomere truncation constructs 
accelerated the deletion process. Multiple rounds of telomere truncation generated a series of 
deleted chromosomes, each containing less X or Y chromosome material (Figure 3B). The stability 
of the minichromosomes was monitored and those that maintained the least amount of the original 
chromosome but were still mitotically stable were concluded to contain the minimal sequence(s) 
necessary for centromere function. In both truncated X and Y chromosomes, minichromosomes 
containing alpha satellite DNA arrays DXZ1 and DYZ3, respectively, equated with the most stable 
linear minichromosomes. These studies strongly implicated alpha satellite DNA as the sequence 
that corresponds to centromere function and chromosome stability. 

However, it could be argued that in the top-down studies the centromere, once established on 
any sequence, stays at that sequence, and does not shift with truncation. At the same time, 
pioneering experiments were being developed by two groups to take a “bottom up” approach to 
define the sequences required for centromere function. In these studies, alpha satellite sequences 
were introduced into linear yeast artificial chromosome (YAC) or circular bacterial artificial 
chromosome (BAC) vectors (Figure 3A). Hunt Willard’s group created first generation artificial 
chromosomes from synthetic alpha satellite arrays [29]. One higher order repeat from D17Z1 



36 
 

 

(chromosome 17) or DYZ3 (chromosome Y) was amplified through successive rounds of 
directional cloning to yield a 1Mb array that was inserted into a BAC vector. Introduction of these 
artificial chromosome assembly constructs by liposome-mediated transfection into the HT1080 cell 
line yielded clones that contained a microchromosome or human artificial chromosome (HAC). 
The HACs recruited centromere proteins and were stable in mitosis for at least 6 months. Careful 
analysis of the HACs showed that the D17Z1 HACs were completely derived from the input 
construct. However, the DYZ3-derived HAC had acquired additional alpha satellite sequences 
from host chromosomes. The functional significance of the inability of DYZ3 to form a functional 
HAC containing only Y centromere sequences was not fully appreciated at the time. Subsequent 
studies shed light on the correlation between DYZ3 sequence and its competence for de novo 
centromere assembly (see below). 

At the same time that the Willard group was creating HACs from synthetic alpha satellite DNA, 
Howard Cooke’s and Hiroshi Masumoto’s groups were collaborating to clone large alpha satellite 
arrays from human chromosome 21 into linear YAC vectors. In their studies, the higher order array 

21-I and the unordered monomeric array 21-II were introduced into HT1080 cells and compared 
for de novo centromere competency [30]. Only YACs containing the 21-I HOR array were 
capable of forming mitotically stable HACs that properly assembled centromere proteins.  
These innovative studies complemented those of the Willard group, and contributed important 
structure-function information that implicated HOR alpha satellite as a preferred substrate for de 
novo centromere assembly. In the time that has elapsed since these groundbreaking experiments, 
additional studies have established HACs as models for testing the genomic (and epigenetic) 
requirements for de novo centromere assembly and function. Circular BAC and PAC vectors, 
rather than linear YACs, are the most useful assembly vectors and are associated with high rates of 
HAC formation [31,32]. Not all alpha satellite arrays translate to HAC formation. Y chromosome 
alpha satellite DNA (DYZ3) lacks CENP-B boxes and is unable to efficiently form de novo 
centromeres on HACs [29,32]. Furthermore, arrays containing mutated CENP-B boxes cannot form 
de novo HACs [33]. Thus, the presence of CENP-B binding sites is required for centromere 
assembly. This has been a perplexing finding, given that the Y chromosome clearly assembles a 
functional centromere and recruits essential centromere proteins. These findings hint at key 
differences between de novo versus established centromere function that are not well understood. 

Initial studies that tested the ability of alpha satellite to nucleate functional centromeres 
introduced cosmids containing human alpha satellite DNA from chromosome 17 into African green 
monkey (AGM) cells [34]. These experiments did not result in supernumerary chromosomes or 
HACs, but instead, integration of the alpha satellite construct into AGM chromosomes (Figure 3A). 
Indeed, up to 60% of HAC constructs introduced into human cells integrate into the genome rather 
than forming an independent chromosome. While some might point out that this argues against the 
case for sequence-dependent centromere assembly, another interpretation is that de novo chromosome 
assembly and de novo centromere formation are two different processes. Indeed, some integrated 
alpha satellite arrays recruit centromere proteins [34,35], although they may not retain some or all 
of the proteins long-term. At the very least, both integrated and free-lying HAC studies suggest that 
alpha satellite provides sequence information for some aspects of centromere function. 



37 
 

Figure 3. Minichromosome-based assays defining alpha satellite as the functional 
human centromere. (A) In the late 1990s, human artificial chromosome (HAC) assays 
(bottom up approach) were developed to test the ability of alpha satellite DNA to form 
de novo centromeres. Synthetic or clone arrays of alpha satellite DNA, such as D17Z1 
from human chromosome 17 (green), were cloned into bacterial or plasmid (P1) 
artificial chromosome (BAC/PAC) vectors containing selectable marker genes (SM). 
The chromosome assembly constructs were introduced by transfection into human 
cells. In approximately half of the cells, an autonomous de novo chromosome 
(arrowhead) was produced, consisting of the same alpha satellite DNA (D17Z1, green, 
as shown) as the parental chromosome (arrow). Inset shows DAPI (DNA) staining of 
HAC. In the other proportion of transfected clones, the alpha satellite assembly 
BAC/PAC vector does not make a HAC, but integrates once or multiple times (as 
shown) into one or more chromosomes. In these instances, the alpha satellite DNA does 
not recruit any, or all, centromere proteins and is not a functional centromere. Inset 
shows DAPI (DNA) stained chromosome that contains multiple insertions of D17Z1. 
(B) In a complementary top-down approach, existing chromosomes (X and Y) were 
systematically deleted using plasmid constructs containing mammalian telomeric 
sequence (yellow arrowheads). These experiments yielded partially deleted chromosomes 
with integrated telomeres (red-orange-yellow rectangles) that were progressively 
deleted. Mitotic chromosome segregation of these minichromosomes was used as a 
measure of chromosome stability. Based on the molecular composition of the stable 
minichromosomes that were recovered, alpha satellite DNA (pink oval) was defined as 
the minimal sequence required for centromere function.  

 

Contemporary studies are now using centromere-based chromosome engineering to create  
a new generation of HACs that contain alpha satellite in addition to tetracycline operator (tetO) 
sequences [36]. The tetO sequences are bound with high affinity by the tet repressor (tetR) that can 



38 
 

 

be fused to different proteins in order to manipulate the chromatin or protein composition of the 
HAC [37,38]. In this way, centromere assembly on the alpha satellite can be enhanced or inhibited, 
the long-term stability of the HAC can be monitored by tethering tetR fluorescent protein fusions, 
and expression of genes included on the HAC can be tested [39]. 

4. Centromere Regions in the Human Genome Project Era 

As the understanding of the relationship between alpha satellite DNA and centromere function 
emerged at the end of the 20th century, it led to a call for the identification and mapping of functional 
centromere sequences [40]. However, the nature of alpha satellite, with its megabase-scale regions 
of higher-order repetitive structure, made it highly refractory to sequencing and assembly [41]. As 
the Human Genome Project (HGP) rapidly increased the sequence information available for testing 
human genome function, gains were largely not seen at the pericentromeres and centromeres of 
most human chromosomes. A 1998 plan for the project that outlined the HGP’s goal for a 2001 
working draft and a 2003 final draft acknowledged that “the small proportion of highly repeated 
sequence represented by the centromeres and other constitutive heterochromatic regions of the 
genome” might not be included in the final reference assembly [42]. A contemporary perspective 
on the plan warned of the possibility that potentially important duplications and tandem repeats 
would be “swept under the carpet”. There was a repeated call for at least some centromeric  
regions to be characterized in order to confirm that their structure was as homogenous as originally 
claimed [43]. But again, due to the computational complexity required to accurately assemble such 
highly repetitive regions, few labs attempted to close these sequence gaps [44–46]. A decade later, 
multi-megabase-sized gaps remain at the centromeres of most chromosome assemblies. This 
problem is not exclusive to the human genome, since centromere and pericentromere sequence 
gaps in other organisms such as mouse and Drosophila remain unclosed [47–50]. Only in the past 
year have advances in sequencing technologies and innovative computational efforts focused on 
elucidating alpha satellite structure helped to make a full understanding of the genome and some of 
its most critical elements a real possibility [51,52]. 

5. Linking Physical and Genetic Maps of Human Centromeres 

By the late 1990s and early 2000s, several groups had pushed forward the centromere field by 
producing integrated physical and genetic maps of centromere regions including chromosomes X, 
5, and 12 [53–55]. These studies used pulsed-field gel electrophoresis to estimate physical alpha 
satellite array sizes and either radiation hybrid or linkage analyses to estimate genetic distance 
across the centromere. In addition to confirming the repression of recombination across 
centromeres, the integrated maps that resulted allowed for the anchoring of alpha satellite regions 
to existing genomic maps, and sometimes identified unique pericentric sequences that had not been 
represented in the human genome drafts [55]. 

Of the sequence assemblies around the centromere that do exist, the pericentric regions are  
the best characterized. Within these regions, a high proportion of segmental duplications have 
accumulated [44,56]. Many pericentric duplications corresponding to unmapped regions of the 
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genome were identified using monochromosomal somatic cell hybrids and PCR or FISH with known 
pericentric sequences and genomic BACs that recognized paralogous sequences across the  
genome [56]. Genome-wide analysis of the January 2001 draft assembly further revealed 
pericentromeric and subtelomeric enrichment for duplicated sequences, and showed that such 
sequences were frequently present in unmapped or misassembled segments [57]. The discordance 
between FISH and BLAST results in these analyses was much higher than the genome-wide rate 
reported in the same year [58]. Together, these studies demonstrated the importance of elucidating 
highly duplicated pericentric regions in order to accurately understand the Human Genome 
Project’s results. More recent progress was made in assembling “inaccessible” regions by using 
linkage disequilibrium analysis of genetically distinct (admixed) genomes to map almost 20 Mb of 
sequence near centromeres [59]. As the number of admixed genomes available for analysis 
increases, this powerful technique is expected to reduce the gaps in the current reference assembly. 

Figure 4. The detailed genomic organization of the human X centromere. The first 
contiguous genomic map of a human centromere (CEN) on the X chromosome was 
completed in 2001 and showed that the higher order array (large light gray arrays containing 
black monomer arrowheads) is flanked by unordered, monomeric alpha satellite DNA 
(multi-colored arrows). The regions between monomeric alpha satellite and the chromosome 
short (Xp) and long (Xq) arms contain other types of satellite DNA, such as gamma 
satellite and HSAT4. LINEs (red lollipops) and SINEs (purple lollipops) punctuate the 
repetitive DNA between the centromere and chromosome arms. The Xq pericentromere 
contains monomeric alpha satellite and a LINE element at the pericentromere-arm 
junction. Some of the monomers within the unordered Xq satellite contain CENP-B 
boxes (black asterisks). The functional significance of these monomers remains unclear. 

 

6. Correlating the Genetic and Functional Centromere 

In 2001, a major breakthrough in reaching beyond the boundaries of alpha satellite occurred 
when chromosome X short arm (Xp) genomic clones were mapped into the homogenous higher 
order DXZ1 array [60]. This tour-de-force used combined in silico and high-stringency BAC clone 
screening to demonstrate that even in higher order alpha satellite, enough sequence variation existed to 
assemble a contig extending almost half a megabase from the satellite boundary towards the 
centromere core that is the location of the functional centromere (Figure 4). This study revealed 
that heterogeneity of alpha satellite DNA increased with more distance from the DXZ1 core. These 
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studies permitted the definition of transitions between the higher order alpha satellite and flanking 
regions. Monomers of alpha satellite DNA that are not ordered into multi-monomer repeat units are 
located directly outside of the homogenous HOR domain [9]. These monomers exhibit enough sequence 
variation that they can be more easily assembled and in fact represent most of the alpha satellite 
that exists in the human reference assembly [60,61]. The monomeric alpha satellite regions show 
greater sequence dissimilarity and more interspersed elements, such as L1 sequences, as they approach 
the chromosome arms. Currently, HSAX and HSA8 are the only human chromosomes represented 
in the genome assembly with contiguous sequence from higher-order alpha satellite to both arms [62,63]. 

Subsequent to these findings, several groups began analyzing alpha satellite at increasing 
sequence depth, discovering new alpha satellite polymorphisms and repeat organization. Building 
on the work of previous decades, targeted sequencing of several well-characterized arrays was 
performed. The high copy number of alpha satellite HORs on each chromosome permitted analysis 
of intra-homolog SNPs in addition to inter-individual variation that was paired with restriction 
digestion for haplotype analysis [64]. These studies revisited the molecular basis for variation within 
alpha satellite by pinpointing where unequal exchange occurred to produce array homogenization. 

7. The Computational Challenge of Alpha Satellite Genome Assemblies 

The bottleneck in generating alpha satellite assemblies has undoubtedly been the sophistication 
of assembly tools that are required to order distinguishable monomeric sequences within highly 
homogenous arrays. Several groups have developed in silico tools for analyzing higher order alpha 
satellite sequence available in genome assemblies [65,66]. These computational and in silico 
approaches are most effective when combined with experimental approaches that mapped clones 
by FISH to verify their location in or near the higher order array. Indeed, such dry/wet approaches 
were used to map the region spanning the Xp centromere-arm junction and to characterize the 
centromere of human chromosome 17 [60,61,67]. In the latter instance, a novel higher-order array 
(D17Z1-B) was discovered on chromosome 17 [67], emphasizing the power of this integrative 
approach. Another novel HOR array, localized by BLAST to HSA22 and verified by FISH to 
hybridize to HSA14 and 22, was found by “rescuing” unassembled alpha satellite sequence 
information from whole genome sequencing (WGS) repositories [68]. These studies revealed that 
while challenging to assemble, repetitive satellite regions, particularly in the centromere, hold a 
wealth of complex genomic structure and potentially functional information. 

8. Assembling Centromeres in the Present Day 

Previous studies utilized traditional sequencing technologies that have the potential to contain 
several 171-bp monomers per read. Next generation short-read sequencing technology has enabled 
the recent increase in whole-genome sequencing and the amount of human sequence information 
available overall. Nevertheless, short reads present a particular challenge for assembling alpha 
satellite sequence. It appears that this obstacle of aligning short-read alpha satellite sequences can 
be overcome to utilize functional information gleaned from chromatin immunoprecipitation with 
centromeric protein antibodies and Illumina sequencing of the DNA that is captured [51]. This 
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ChIP-sequencing (ChIP-seq) approach utilized the reference assembly as well as the HuRef 
genome, first by aligning the HuRef alpha satellite reads to the reference assembly. After this 
alignment, the reference alpha satellite was broken into sliding windows, and the alignment 
checked back onto the HuRef reads to determine the “mappability” of each window. This mappability 
information was then used for alignment of the short Illumina reads generated by ChIP-seq. It 
should be noted, however, that this study did not have the means to extend beyond the edges of the 
reference assembly into the homogenous centromere cores (see Future Perspectives). Another 
major discovery from the assembly annotation of this work was that many more chromosomes than 
previously thought contain two or more higher order alpha satellite arrays [51,61,69–71]. This 
finding has raised the complexity of centromeres to a new level and introduced the possibility that 
the location of centromere assembly may be quite variable in humans. This is indeed the case for 
human chromosome 17 on which the centromere can be assembled at either of the two higher order 
repeat arrays [26]. This new information suggests that in addition to alpha satellite haplotypes, 
there may a number of functional centromeric genotypes. How a functional genotype might affect 
long-term chromosome stability is an open question. 

9. Future Perspectives 

It is now 2014, so what can we expect from the centromere field in the next decade? Based on 
the foundation laid by the Human Genome Project era, the most exciting areas of centromere 
research are in some of the following areas. 

9.1. Centromere Assemblies 

Clearly, the most significant frontier that remains to be explored in centromere biology is 
complete genomic centromere assemblies. With the recent advances in the past two years alone using 
long-template sequencing and advanced computational approaches that have sampled, annotated, 
and assembled centromere sequences in multiple genomes, centromere reference sequences are a 
real possibility. Just recently, ordering of monomer sequences from whole-genome shotgun reads 
has produced the first linear characterization of centromeric assemblies for alpha satellite arrays 
from chromosomes X and Y [72]. Increasing read lengths offered by multiple platforms offer the 
potential to contain several multi-kilobase HORs in one read. In fact, long PacBio reads have 
already accelerated the discovery and mapping of centromeric tandem repeats in a variety of 
species [52]. These third generation sequencing techniques should enable longer alpha satellite 
sequence assemblies and better understanding of centromere structure and neighboring variant 
HORs. Completion of even a few centromere assemblies will undoubtedly be important, but given 
the amount of variation in alpha satellite organization and size, the ultimate goal would be to 
produce centromere assemblies for each individual. These personalized maps would be useful for 
defining the spectrum of sequences that correlate with functional competency. In addition, they will 
allow identification of other features—such as genes or non-coding elements—that are present 
within current centromere/pericentromere gaps. These sequences may require centromeric locations 
for proper function, similar to heterochromatic genes in Drosophila [48,73]. Indeed, a human 
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muscle disorder has been mapped to the gene KCNJ18 that is located in an assembly gap on 
17p11.2 [74]. It is possible that other genes or elements within centromere regions may be 
associated with diseases for which the molecular basis remains undefined. 

9.2. Centromeric Variation and Functional Capacity 

The ability to confidently assemble centromeric contigs should permit identification of the full 
range of variability in alpha satellite, including sequence and size variants [72]. Such variation will 
shed light on the molecular mechanisms that regulate alpha satellite homogenization, but also 
effects of fundamental processes such as DNA replication and DNA repair on alpha satellite 
stability. Ultimately, characterization of alpha satellite variation would reveal the range of 
sequences that are capable of supporting centromere function. HAC studies have taught us that not 
all alpha satellite sequences have the capacity to support de novo centromere assembly [29,32]. The 
reasons for this have been largely unexplored, and mostly attributed to the presence or absence of 
CENP-B boxes in alpha satellite [33,75]. One would expect that like a given complex human 
disease that is often associated with various SNPs, many types of sequence variation would be 
associated with diminished centromere function. Complete, personalized centromeric assemblies 
linked to functional centromere status would expedite experiments to compare efficiencies of 
various sequence variants in de novo centromere assembly and/or centromere maintenance. 

9.3. Maps of Functional Centromeric Domains 

The consensus in the centromere field is that centromere identity is specified by epigenetic 
mechanisms. However, without detailed genomic information, this theory is not irrefutable. 
Centromere proteins, such as the histone H3-like protein CENP-A, are assembled onto alpha 
satellite DNA to create a specialized type of nucleosome within unique chromatin that 
distinguishes the centromere from the rest of the genome [76,77]. CENP-A and other proteins 
create a complicated network of protein sub-complexes that link the chromatin to the structural 
kinetochore that interacts with spindle microtubules [78]. However, chromatin that contains  
CENP-A nucleosomes is only assembled on a portion of alpha satellite DNA [79,80]. How and 
why CENP-A is recruited to only a subset of alpha satellite HOR and/or monomers is unclear. 
Recent studies have revealed that CENP-A nucleosomes on the human X chromosome are 
positioned at monomers that do not contain CENP-B boxes [81]. One could speculate that 
distribution of CENP-B boxes within an alpha satellite array and sequence variation that interrupts 
the CENP-B box motif or makes the motif non-functional (not bound by CENP-B) might impact 
CENP-A chromatin assembly and centromere function. Complete centromeric assemblies of many 
human chromosomes will be important for addressing this possibility experimentally. 

10. Conclusions 

Since the discovery of alpha satellite DNA in the late 1970s, the field has moved from 
identification of centromeric sequences at every human centromere to a basic molecular 
understanding of the organization and structure of alpha satellite monomers into homogeneous 
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higher order repetitive arrays (Figure 5). The Human Genome Project was essential in providing a 
rough and limited reference assembly for centromeres of three chromosomes (X, 8, 17). These 
fundamental studies of alpha satellite DNA paved the way for pioneering functional assays in 
which the sequence was tested in de novo centromere assembly in human artificial chromosome 
assays. HACs have been the gold standard for testing centromere assembly, but are now being used 
to explore chromosome stability and gene expression. The next challenge will be to complete 
genomic assemblies for all human centromeres in multiple individuals and populations and to 
develop the next generation of functional assays to test the role of alpha satellite variation in 
centromere function, chromosome stability, and disease association. 

Figure 5. Timeline of major discoveries in human centromere genomics. Since the 
discovery of alpha satellite DNA in 1979, the understanding of the sequence, organization, 
and functional aspects of this sequence flourished during the Human Genome Project 
era. Recent years have shown the use of human artificial chromosomes (HACs) and the 
creation of the first database of alpha satellite sequences linked to their functional capacity. 

 

Acknowledgments 

We apologize to our colleagues whose work on alpha satellite DNA and human centromeres  
could not be cited due to space constraints. Research in the Sullivan lab is supported in part by R01 
GM098500 (NIH) and Gene Discovery and Translational Research Grant #1-FY13-517 (March of 
Dimes Foundation). 

Author Contributions 

Wrote the paper: MEAM, BAS. 

Conflicts of interest 

The authors declare no conflict of interest. 

References 

1. Panchenko, T.; Black, B.E. The epigenetic basis for centromere identity. Prog. Mol. Subcell. 
Biol. 2009, 48, 1–32. 

2. Valente, L.P.; Silva, M.C.; Jansen, L.E. Temporal control of epigenetic centromere 
specification. Chromosome Res. 2012, 20, 481–492. 

3. Choo, K.H. Domain organization at the centromere and neocentromere. Dev. Cell 2001, 1, 165–177. 



44 
 

 

4. Warburton, P.E. Chromosomal dynamics of human neocentromere formation. Chromosome Res. 
2004, 12, 617–626. 

5. Manuelidis, L.; Wu, J.C. Homology between human and simian repeated DNA. Nature 1978, 
276, 92–94. 

6. Waye, J.S.; Willard, H.F. Nucleotide sequence heterogeneity of alpha satellite repetitive DNA: 
A survey of alphoid sequences from different human chromosomes. Nucleic Acids Res. 1987, 
15, 7549–7569. 

7. Willard, H.F. Chromosome-specific organization of human alpha satellite DNA. Am. J. Hum. 
Genet. 1985, 37, 524–532. 

8. Muro, Y.; Masumoto, H.; Yoda, K.; Nozaki, N.; Ohashi, M.; Okazaki, T. Centromere protein 
B assembles human centromeric alpha-satellite DNA at the 17-bp sequence, CENP-B box. J. Cell 
Biol. 1992, 116, 585–596. 

9. Schueler, M.G.; Sullivan, B.A. Structural and functional dynamics of human centromeric 
chromatin. Annu. Rev. Genomics Hum. Genet. 2006, 7, 301–313. 

10. Choo, K.H.; Vissel, B.; Nagy, A.; Earle, E.; Kalitsis, P. A survey of the genomic distribution 
of alpha satellite DNA on all the human chromosomes, and derivation of a new consensus 
sequence. Nucleic Acids Res. 1991, 19, 1179–1182. 

11. Vissel, B.; Choo, K.H. Human alpha satellite DNA—Consensus sequence and conserved 
regions. Nucleic Acids Res. 1987, 15, 6751–6752. 

12. Alexandrov, I.A.; Mitkevich, S.P.; Yurov, Y.B. The phylogeny of human chromosome 
specific alpha satellites. Chromosoma 1988, 96, 443–453. 

13. Alexandrov, I.; Kazakov, A.; Tumeneva, I.; Shepelev, V.; Yurov, Y. Alpha-satellite DNA of 
primates: Old and new families. Chromosoma 2001, 110, 253–266. 

14. Devilee, P.; Kievits, T.; Waye, J.S.; Pearson, P.L.; Willard, H.F. Chromosome-specific  
alpha satellite DNA: Isolation and mapping of a polymorphic alphoid repeat from human 
chromosome 10. Genomics 1988, 3, 1–7. 

15. Mahtani, M.M.; Willard, H.F. Pulsed-field gel analysis of alpha-satellite DNA at the human X 
chromosome centromere: High-frequency polymorphisms and array size estimate. Genomics 
1990, 7, 607–613. 

16. Greig, G.M.; Parikh, S.; George, J.; Powers, V.E.; Willard, H.F. Molecular cytogenetics of 
alpha satellite DNA from chromosome 12: Fluorescence in situ hybridization and description 
of DNA and array length polymorphisms. Cytogenet. Cell Genet. 1991, 56, 144–148. 

17. Wevrick, R.; Willard, H.F. Long-range organization of tandem arrays of alpha satellite DNA 
at the centromeres of human chromosomes: High-frequency array-length polymorphism and 
meiotic stability. Proc. Natl. Acad. Sci. USA 1989, 86, 9394–9398. 

18. Willard, H.F.; Waye, J.S.; Skolnick, M.H.; Schwartz, C.E.; Powers, V.E.; England, S.B. Detection 
of restriction fragment length polymorphisms at the centromeres of human chromosomes by 
using chromosome-specific alpha satellite DNA probes: Implications for development of 
centromere-based genetic linkage maps. Proc. Natl. Acad. Sci. USA 1986, 83, 5611–5615. 

19. Abruzzo, M.A.; Griffin, D.K.; Millie, E.A.; Sheean, L.A.; Hassold, T.J. The effect of  
Y-chromosome alpha-satellite array length on the rate of sex chromosome disomy in human 
sperm. Hum. Genet. 1996, 97, 819–823. 



45 
 
20. Oakey, R.; Tyler-Smith, C. Y chromosome DNA haplotyping suggests that most European 

and Asian men are descended from one of two males. Genomics 1990, 7, 325–330. 
21. Willard, H.F. Evolution of alpha satellite. Curr. Opin. Genet. Dev. 1991, 1, 509–514. 
22. Waye, J.S.; Willard, H.F. Molecular analysis of a deletion polymorphism in alpha satellite of 

human chromosome 17: Evidence for homologous unequal crossing-over and subsequent 
fixation. Nucleic Acids Res. 1986, 14, 6915–6927. 

23. Waye, J.S.; Willard, H.F. Structure, organization, and sequence of alpha satellite DNA from 
human chromosome 17: Evidence for evolution by unequal crossing-over and an ancestral 
pentamer repeat shared with the human X chromosome. Mol. Cell. Biol. 1986, 6, 3156–3165. 

24. Willard, H.F.; Greig, G.M.; Powers, V.E.; Waye, J.S. Molecular organization and haplotype 
analysis of centromeric DNA from human chromosome 17: Implications for linkage in 
neurofibromatosis. Genomics 1987, 1, 368–373. 

25. Warburton, P.E.; Willard, H.F. Interhomologue sequence variation of alpha satellite DNA 
from human chromosome 17: Evidence for concerted evolution along haplotypic lineages.  
J. Mol. Evol. 1995, 41, 1006–1015. 

26. Maloney, K.A.; Sullivan, L.L.; Matheny, J.E.; Strome, E.D.; Merrett, S.L.; Ferris, A.;  
Sullivan, B.A. Functional epialleles at an endogenous human centromere. Proc. Natl. Acad. 
Sci. USA 2012, 109, 13704–13709. 

27. Brown, K.E.; Barnett, M.A.; Burgtorf, C.; Shaw, P.; Buckle, V.J.; Brown, W.R. Dissecting the 
centromere of the human Y chromosome with cloned telomeric DNA. Hum. Mol. Genet. 1994, 
3, 1227–1237. 

28. Farr, C.J.; Bayne, R.A.; Kipling, D.; Mills, W.; Critcher, R.; Cooke, H.J. Generation of a 
human X-derived minichromosome using telomere-associated chromosome fragmentation. 
EMBO J. 1995, 14, 5444–5454. 

29. Harrington, J.J.; van Bokkelen, G.; Mays, R.W.; Gustashaw, K.; Willard, H.F. Formation of  
de novo centromeres and construction of first-generation human artificial microchromosomes. 
Nat. Genet. 1997, 15, 345–355. 

30. Ikeno, M.; Grimes, B.R.; Okazaki, T.; Nakano, M.; Saitoh, K.; Hoshino, H.; McGill, N.I.;  
Cooke, H.; Masumoto, H. Construction of YAC-based mammalian artificial chromosomes. 
Nat. Biotechnol. 1998, 16, 431–439. 

31. Grimes, B.R.; Babcock, J.; Rudd, M.K.; Chadwick, B.; Willard, H.F. Assembly and characterization 
of heterochromatin and euchromatin on human artificial chromosomes. Genome Biol. 2004, 5, R89. 

32. Grimes, B.R.; Rhoades, A.A.; Willard, H.F. Alpha-satellite DNA and vector composition 
influence rates of human artificial chromosome formation. Mol. Ther. 2002, 5, 798–805. 

33. Ohzeki, J.; Nakano, M.; Okada, T.; Masumoto, H. CENP-B box is required for de novo 
centromere chromatin assembly on human alphoid DNA. J. Cell Biol. 2002, 159, 765–775. 

34. Haaf, T.; Warburton, P.E.; Willard, H.F. Integration of human alpha-satellite DNA into simian 
chromosomes: Centromere protein binding and disruption of normal chromosome segregation. 
Cell 1992, 70, 681–696. 

35. Nakashima, H.; Nakano, M.; Ohnishi, R.; Hiraoka, Y.; Kaneda, Y.; Sugino, A.; Masumoto, H. 
Assembly of additional heterochromatin distinct from centromere-kinetochore chromatin is 
required for de novo formation of human artificial chromosome. J. Cell Sci. 2005, 118, 5885–5898. 



46 
 

 

36. Nakano, M.; Cardinale, S.; Noskov, V.N.; Gassmann, R.; Vagnarelli, P.; Kandels-Lewis, S.; 
Larionov, V.; Earnshaw, W.C.; Masumoto, H. Inactivation of a human kinetochore by specific 
targeting of chromatin modifiers. Dev. Cell 2008, 14, 507–522. 

37. Bergmann, J.H.; Rodriguez, M.G.; Martins, N.M.; Kimura, H.; Kelly, D.A.; Masumoto, H.; 
Larionov, V.; Jansen, L.E.; Earnshaw, W.C. Epigenetic engineering shows H3K4me2 is required 
for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J. 
2011, 30, 328–340. 

38. Cardinale, S.; Bergmann, J.H.; Kelly, D.; Nakano, M.; Valdivia, M.M.; Kimura, H.;  
Masumoto, H.; Larionov, V.; Earnshaw, W.C. Hierarchical inactivation of a synthetic human 
kinetochore by a chromatin modifier. Mol. Biol. Cell 2009, 20, 4194–4204. 

39. Kononenko, A.V.; Lee, N.C.; Earnshaw, W.C.; Kouprina, N.; Larionov, V. Re-engineering  
an alphoid(tetO)-HAC-based vector to enable high-throughput analyses of gene function.  
Nucleic Acids Res. 2013, 41, e107. 

40. Murphy, T.D.; Karpen, G.H. Centromeres take flight: Alpha satellite and the quest for the 
human centromere. Cell 1998, 93, 317–320. 

41. Henikoff, S. Near the edge of a chromosome’s “black hole”. Trends Genet. 2002, 18, 165–167. 
42. Collins, F.S.; Patrinos, A.; Jordan, E.; Chakravarti, A.; Gesteland, R.; Walters, L. New goals 

for the U.S. Human Genome Project: 1998–2003. Science 1998, 282, 682–689. 
43. Eichler, E.E. Repetitive conundrums of centromere structure and function. Hum. Mol. Genet. 

1999, 8, 151–155. 
44. Horvath, J.E.; Bailey, J.A.; Locke, D.P.; Eichler, E.E. Lessons from the human genome: 

Transitions between euchromatin and heterochromatin. Hum. Mol. Genet. 2001, 10, 2215–2223. 
45. Horvath, J.E.; Viggiano, L.; Loftus, B.J.; Adams, M.D.; Archidiacono, N.; Rocchi, M.;  

Eichler, E.E. Molecular structure and evolution of an alpha satellite/non-alpha satellite junction 
at 16p11. Hum. Mol. Genet. 2000, 9, 113–123. 

46. She, X.; Horvath, J.E.; Jiang, Z.; Liu, G.; Furey, T.S.; Christ, L.; Clark, R.; Graves, T.;  
Gulden, C.L.; Alkan, C.; et al. The structure and evolution of centromeric transition regions 
within the human genome. Nature 2004, 430, 857–864. 

47. Hoskins, R.A.; Carlson, J.W.; Kennedy, C.; Acevedo, D.; Evans-Holm, M.; Frise, E.;  
Wan, K.H.; Park, S.; Mendez-Lago, M.; Rossi, F.; et al. Sequence finishing and mapping of 
Drosophila melanogaster heterochromatin. Science 2007, 316, 1625–1628. 

48. Smith, C.D.; Shu, S.; Mungall, C.J.; Karpen, G.H. The Release 5.1 annotation of Drosophila 
melanogaster heterochromatin. Science 2007, 316, 1586–1591. 

49. Kalitsis, P.; Griffiths, B.; Choo, K.H. Mouse telocentric sequences reveal a high rate of 
homogenization and possible role in Robertsonian translocation. Proc. Natl. Acad. Sci. USA 
2006, 103, 8786–8791. 

50. Mouse Genome Sequencing Consortium; Waterston, R.H.; Lindblad-Toh, K.; Birney, E.;  
Rogers, J.; Abril, J.F.; Agarwal, P.; Agarwala, R.; Ainscough, R.; Alexandersson, M.; et al. 
Initial sequencing and comparative analysis of the mouse genome. Nature 2002, 420, 520–562. 

51. Hayden, K.E.; Strome, E.D.; Merrett, S.E.; Lee, H.R.; Rudd, M.K.; Willard, H.F. Sequences 
associated with centromere competency in the human genome. Mol. Cell. Biol. 2012, 33, 763–772. 



47 
 
52. Melters, D.P.; Bradnam, K.R.; Young, H.A.; Telis, N.; May, M.R.; Ruby, J.G.; Sebra, R.;  

Peluso, P.; Eid, J.; Rank, D.; et al. Comparative analysis of tandem repeats from hundreds of 
species reveals unique insights into centromere evolution. Genome Biol. 2013, 14, R10. 

53. Mahtani, M.M.; Willard, H.F. Physical and genetic mapping of the human X chromosome 
centromere: Repression of recombination. Genome Res. 1998, 8, 100–110. 

54. Puechberty, J.; Laurent, A.M.; Gimenez, S.; Billault, A.; Brun-Laurent, M.E.; Calenda, A.; 
Marçais, B.; Prades, C.; Ioannou, P.; Yurov, Y.; et al. Genetic and physical analyses of the 
centromeric and pericentromeric regions of human chromosome 5: Recombination across 
5cen. Genomics 1999, 56, 274–287. 

55. Vermeesch, J.R.; Duhamel, H.; Raeymaekers, P.; van Zand, K.; Verhasselt, P.; Fryns, J.P.; 
Marynen, P. A physical map of the chromosome 12 centromere. Cytogenet. Genome Res. 
2003, 103, 63–73. 

56. Horvath, J.E.; Schwartz, S.; Eichler, E.E. The mosaic structure of human pericentromeric DNA: A 
strategy for characterizing complex regions of the human genome. Genome Res. 2000, 10, 839–852. 

57. Bailey, J.A.; Yavor, A.M.; Massa, H.F.; Trask, B.J.; Eichler, E.E. Segmental duplications: 
Organization and impact within the current human genome project assembly. Genome Res. 
2001, 11, 1005–1017. 

58. Cheung, V.G.; Nowak, N.; Jang, W.; Kirsch, I.R.; Zhao, S.; Chen, X.N.; Furey, T.S.;  
Kim, U.J.; Kuo, W.L.; Olivier, M.; et al. Integration of cytogenetic landmarks into the draft 
sequence of the human genome. Nature 2001, 409, 953–958. 

59. Genovese, G.; Handsaker, R.E.; Li, H.; Kenny, E.E.; McCarroll, S.A. Mapping the human 
reference genome’s missing sequence by three-way admixture in Latino genomes. Am. J. 
Hum. Genet. 2013, 93, 411–421. 

60. Schueler, M.G.; Higgins, A.W.; Rudd, M.K.; Gustashaw, K.; Willard, H.F. Genomic and 
genetic definition of a functional human centromere. Science 2001, 294, 109–115. 

61. Rudd, M.K.; Willard, H.F. Analysis of the centromeric regions of the human genome 
assembly. Trends Genet. 2004, 20, 529–533. 

62. Nusbaum, C.; Mikkelsen, T.S.; Zody, M.C.; Asakawa, S.; Taudien, S.; Garber, M.;  
Kodira, C.D.; Schueler, M.G.; Shimizu, A.; Whittaker, C.A.; et al. DNA sequence and 
analysis of human chromosome 8. Nature 2006, 439, 331–335. 

63. Ross, M.T.; Grafham, D.V.; Coffey, A.J.; Scherer, S.; McLay, K.; Muzny, D.; Platzer, M.; 
Howell, G.R.; Burrows, C.; Bird, C.P.; et al. The DNA sequence of the human X 
chromosome. Nature 2005, 434, 325–337. 

64. Roizes, G. Human centromeric alphoid domains are periodically homogenized so that they 
vary substantially between homologues. Mechanism and implications for centromere functioning. 
Nucleic Acids Res. 2006, 34, 1912–1924. 

65. Paar, V.; Pavin, N.; Rosandic, M.; Gluncic, M.; Basar, I.; Pezer, R.; Zinic, S.D.  
ColorHOR—Novel graphical algorithm for fast scan of alpha satellite higher-order repeats and 
HOR annotation for GenBank sequence of human genome. Bioinformatics 2005, 21, 846–852. 

66. Rosandic, M.; Paar, V.; Gluncic, M.; Basar, I.; Pavin, N. Key-string algorithm—Novel 
approach to computational analysis of repetitive sequences in human centromeric DNA. 
Croat. Med. J. 2003, 44, 386–406. 



48 
 

 

67. Rudd, M.K.; Schueler, M.G.; Willard, H.F. Sequence organization and functional annotation 
of human centromeres. Cold Spring Harb. Symp. Quant. Biol. 2003, 68, 141–149. 

68. Alkan, C.; Ventura, M.; Archidiacono, N.; Rocchi, M.; Sahinalp, S.C.; Eichler, E.E. 
Organization and evolution of primate centromeric DNA from whole-genome shotgun 
sequence data. PLoS Comput. Biol. 2007, 3, 1807–1818. 

69. Alexandrov, I.A.; Mashkova, T.D.; Akopian, T.A.; Medvedev, L.I.; Kisselev, L.L.;  
Mitkevich, S.P.; Yurov, Y.B. Chromosome-specific alpha satellites: Two distinct families on 
human chromosome 18. Genomics 1991, 11, 15–23. 

70. Choo, K.H.; Earle, E.; Vissel, B.; Filby, R.G. Identification of two distinct subfamilies of alpha 
satellite DNA that are highly specific for human chromosome 15. Genomics 1990, 7, 143–151. 

71. Wevrick, R.; Willard, H.F. Physical map of the centromeric region of human chromosome 7: 
Relationship between two distinct alpha satellite arrays. Nucleic Acids Res. 1991, 19, 2295–2301. 

72. Miga, K.H.; Newton, Y.; Jain, M.; Altemose, N.; Willard, H.F.; Kent, W.J. Centromere reference 
models for human chromosomes X and Y satellite arrays. arXiv 2013, arXiv:1307.0035v3[q-bio.GN]. 

73. Schulze, S.; Sinclair, D.A.; Silva, E.; Fitzpatrick, K.A.; Singh, M.; Lloyd, V.K.; Morin, K.A.; 
Kim, J.; Holm, D.G.; Kennison, J.A.; et al. Essential genes in proximal 3L heterochromatin of 
Drosophila melanogaster. Mol. Gen. Genet. 2001, 264, 782–789. 

74. Ryan, D.P.; da Silva, M.R.; Soong, T.W.; Fontaine, B.; Donaldson, M.R.; Kung, A.W.; 
Jongjaroenprasert, W.; Liang, M.C.; Khoo, D.H.; Cheah, J.S.; et al. Mutations in potassium channel 
Kir2.6 cause susceptibility to thyrotoxic hypokalemic periodic paralysis. Cell 2010, 140, 88–98. 

75. Masumoto, H.; Nakano, M.; Ohzeki, J. The role of CENP-B and alpha-satellite DNA: De novo 
assembly and epigenetic maintenance of human centromeres. Chromosome Res. 2004, 12, 543–556. 

76. Blower, M.D.; Sullivan, B.A.; Karpen, G.H. Conserved organization of centromeric chromatin 
in flies and humans. Dev. Cell 2002, 2, 319–330. 

77. Sullivan, B.A.; Karpen, G.H. Centromeric chromatin exhibits a histone modification pattern that is 
distinct from both euchromatin and heterochromatin. Nat. Struct. Mol. Biol. 2004, 11, 1076–1083. 

78. Hori, T.; Fukagawa, T. Establishment of the vertebrate kinetochores. Chromosome Res. 2012, 
20, 547–561. 

79. Spence, J.M.; Critcher, R.; Ebersole, T.A.; Valdivia, M.M.; Earnshaw, W.C.; Fukagawa, T.;  
Farr, C.J. Co-localization of centromere activity, proteins and topoisomerase II within a 
subdomain of the major human X alpha-satellite array. EMBO J. 2002, 21, 5269–5280. 

80. Sullivan, L.L.; Boivin, C.D.; Mravinac, B.; Song, I.Y.; Sullivan, B.A. Genomic size of  
CENP-A domain is proportional to total alpha satellite array size at human centromeres and 
expands in cancer cells. Chromosome Res. 2011, 19, 457–470. 

81. Hasson, D.; Panchenko, T.; Salimian, K.J.; Salman, M.U.; Sekulic, N.; Alonso, A.;  
Warburton, P.E.; Black, B.E. The octamer is the major form of CENP-A nucleosomes at 
human centromeres. Nat. Struct. Mol. Biol. 2013, 20, 687–695. 



49 
 

 

Lessons and Implications from Genome-Wide Association 
Studies (GWAS) Findings of Blood Cell Phenotypes 

Nathalie Chami and Guillaume Lettre  

Abstract: Genome-wide association studies (GWAS) have identified reproducible genetic 
associations with hundreds of human diseases and traits. The vast majority of these associated 
single nucleotide polymorphisms (SNPs) are non-coding, highlighting the challenge in moving 
from genetic findings to mechanistic and functional insights. Nevertheless, large-scale (epi)genomic 
studies and bioinformatic analyses strongly suggest that GWAS hits are not randomly distributed in 
the genome but rather pinpoint specific biological pathways important for disease development or 
phenotypic variation. In this review, we focus on GWAS discoveries for the three main blood cell 
types: red blood cells, white blood cells and platelets. We summarize the knowledge gained from 
GWAS of these phenotypes and discuss their possible clinical implications for common (e.g., anemia) 
and rare (e.g., myeloproliferative neoplasms) human blood-related diseases. Finally, we argue that 
blood phenotypes are ideal to study the genetics of complex human traits because they are fully 
amenable to experimental testing. 

Reprinted from Genes. Cite as: Chami, N.; Lettre, G. Lessons and Implications from Genome-Wide 
Association Studies (GWAS) Findings of Blood Cell Phenotypes. Genes 2014, 5, 51-64. 

1. Genetics of Red Blood Cells, White Blood Cells and Platelets 

Blood is mostly composed of plasma and blood cells and plays a major role in a variety of 
functions involved in general human homeostasis: it transports oxygen, nutrients and hormones to 
tissues, removes waste, performs immunological functions and contributes tissue damage repair 
through coagulation. The main three blood cell types carry out most of these activities: red blood 
cells (RBC, or erythrocytes) transport oxygen, white blood cells (WBC, or leukocytes) coordinate 
some of the immune responses, and platelets are the bricks that form blood clots to prevent 
excessive bleeding. All of these cell types originate through proliferation and differentiation from 
common precursors (hematopoietic stem cells) [1]. 

An aberrant number, size or feature of the three main blood cell types characterizes multiple 
human diseases (Table 1). In many cases, the triggering factor is of environmental origin, often 
poor nutrition or infections (e.g., malaria, HIV). Germline and somatic mutations can also cause 
severe blood disorders, such as mutations in glucose-6 phosphate dehydrogenase (G6PD) which is 
responsible for chronic hemolytic anemia or mutations in oncogenes or tumor suppressor genes that 
result in leukemia. It is also known that blood cell phenotypes vary between healthy individuals, 
and that some of this inter-individual variation is controlled by genetics. In a large study of healthy 
Sardinians (N = 6,148), the heritability estimates for RBC, WBC and platelet counts were, 
respectively, 0.67, 0.38 and 0.53 [2]. Similar heritability estimates were obtained when analyzing 
phenotype concordance in healthy monozygotic and dizygotic twins from the United Kingdom [3]. 
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These results indicate that a large fraction of the phenotypic variation in these blood traits is 
controlled by DNA sequence variants segregating in healthy individuals. 

Table 1. Main blood cell traits routinely measured in standard complete blood count (CBC). 

Trait Description Unit 
Red blood cell (RBC) count Count of RBC per microliter Million cells per microliter (×106/ L) 

Hemoglobin (HGB) Hemoglobin concentration Gram per deciliter (g/dL) 
Hematocrit (HCT) Fraction of blood that contains hemoglobin Percentage (%) 

Mean corpuscular hemoglobin (MCH) Amount of hemoglobin per RBC Picogram (pg) 
Mean corpuscular volume (MCV) Average volume of RBC Femtoliter (fL) 

MCH concentration (MCHC) Hemoglobin divided by hematocrit Gram per deciliter (g/dL) 
RBC distribution width (RDW) Distribution of RBC volume Percentage (%) 
White blood cell (WBC) count Number of WBC per liter (include all main subtypes) Billion cells per liter (×109/L) 

Platelet (PLT) count Number of PLT per liter Billion cells per liter (×109/L) 
Mean platelet volume (MPV) Average platelet volume Femtoliter (fL) 

The clinical importance of this heritable variation in blood cell phenotypes is unclear. However, 
it is interesting that epidemiological studies have detected links between WBC or platelet counts 
and the risk to suffer from cardio- and cerebrovascular diseases [4–6]. As for most epidemiological 
observations, however, it is difficult to determine if changes in hematological parameters are 
pathological or reflect consequences of disease manifestation. Using Mendelian randomization 
methodologies, in which inherited genetic variants associated with hematological traits are used as 
instruments to test the causal effect of the traits on diseases, may provide an answer to this  
question [7]. Such an approach was successfully used to determine that LDL-cholesterol and 
triglyceride levels, but unlikely HDL-cholesterol levels, are causes of coronary artery diseases [8,9]. 
Understanding how DNA polymorphisms modulate blood cell phenotypes in health (and diseases) 
could provide new opportunities to study hematopoiesis, improve their use in medicine as biomarkers 
and maybe even help in the development of new drugs. To this list, we would also add that 
hematological traits are ideal phenotypes to further our understanding of the genetics of  
human complex diseases and traits because experimental systems exist to functionally validate 
genetic findings. 

2. Genome-Wide Association Studies (GWAS) for Blood Cell Phenotypes 

Before GWAS, little was known about the role of SNPs and other common DNA sequence 
variants on normal variation in blood cell phenotypes. Candidate gene DNA sequencing 
experiments have identified mutations in the globin loci, but also in the erythropoietin receptor 
(EPOR) and hemochromatosis (HFE) genes [10,11]. Genome-wide linkage studies also found a 
few reproducible signals, most notably a linkage peak on chromosome 6q23 that encompasses the 
MYB transcription factor [12,13]. These findings could not, however, explain the heritability of 
these blood cell phenotypes in normal individuals. 

As for many other complex human traits and diseases, the capacity to test associations with 
genotypes across the genome by GWAS opened a new world. Prior to the GWAS era, genetic 
association studies often had sample sizes that were too small and were limited to testing only 
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known genes [14]. With GWAS, it became possible to genotype all genes independently of 
previous knowledge. Blood cell traits are particularly amenable to the GWAS approach because 
they are routinely and accurately measured in large cohorts, and initial findings can be tested for 
replication in other cohorts because it is easy to harmonize these phenotypes (Figure 1) [15]. In 
general, one of the main challenges for GWAS has been to pinpoint functional genes and variants 
associated with a given trait. Although this remains a challenge, blood cell traits are particularly 
well-suited for genetic and functional follow-up. As mentioned earlier, fine-mapping by dense 
genotyping and DNA re-sequencing is possible because the traits are usually available in most 
cohorts or biobanks, including participants of different ethnicities (see below). There is also the 
possibility to test the functions of new genes in cell culture systems or model organisms because 
the phenotypes are often cell autonomous and the assays already well-developed. Using this 
approach, investigators showed that SNPs at 6p21.1 modulate erythrocyte traits through a regulatory 
effect on the cyclin D3 (CCND3) gene [16]. Large-scale gene silencing and other functional 
experiments in fruit flies, zebrafish and mice were also used to validate several new genes involved 
in platelet and RBC development within loci identified by GWAS [17,18]. 

All the steps described in Figure 1 now take advantage of powerful bioinformatic tools and other 
resources freely available on the web. For instance, comparative genomics has identified DNA 
bases that are conserved through evolution and therefore more likely to be functionally important [19]. 
There are also software that can predict based on conservation and physicochemical properties 
whether a DNA polymorphism that changes an amino acid is likely detrimental or not [20,21]. We 
can also quickly query large gene expression datasets to determine if the genes near an associated 
SNP are expressed in the relevant tissue(s) for the phenotypes of interest (as an example, see 
reference [22]). And when genotypes are available, it is possible to test in silico if the GWAS SNPs 
(or SNPs in linkage disequilibrium) control gene expression through regulatory mechanisms; that 
is, if the variants are expression quantitative trait loci (eQTL) [23]. The ENCODE and Roadmap 
Epigenomics Projects have used next-generation DNA sequencing applications, including DNAse I 
hypersensitive sites mapping and chromatin immunoprecipitation with antibodies against several 
histone tail modifications (ChIP-seq), to define regulatory sequences in human cell lines and  
tissues [24–26]. Using a complementary approach (FAIRE-seq), Paul et al. identified regions of 
open chromatin in primary human blood cells and showed that SNPs associated with RBC and 
platelet phenotypes are enriched in these regions [27]. All this vast genomic information is useful 
in prioritizing causal genes and variants at GWAS loci, and investigators are developing algorithms 
to facilitate its integration [28,29]. 

Several GWAS for hematological traits have already been published [17,18,30–46]. The largest 
studies, carried out in Europeans or individuals of European ancestry, have so far identified at 
genome-wide significance (p-value < 5 × 10 8) 75, 10 and 68 SNPs associated with RBC, WBC 
and platelet traits respectively [17,18,45]. The lower number of SNPs associated with WBC count 
could be explained by a lower heritability (see above), but also because the sample size for the 
WBC GWAS was smaller (N = 11,823) in comparison with the GWAS for RBC (N = 135,367) and 
platelet (N = 66,867) traits. Despite their large number, these variants only explain a small fraction 
of the heritable variation in these phenotypes (<10%). They are, however, not random but clustered 
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near genes involved in relevant biological pathways and enriched for regulatory functions by 
expression quantitative trait loci (eQTL) and epigenomic analyses. Most loci are associated with a 
single blood cell type but by comparing the different studies, we found seven loci that are 
associated with at least two different cell types (Table 2). These include SH2B3, a gene that 
encodes the adapter protein LNK that interacts with JAK2 and modulates JAK-STAT signaling in 
hematopoietic cells, and MYB, that encodes a transcription factor essential for definitive 
hematopoiesis. Both SH2B3 and MYB SNPs are associated with the three main blood cell types. 
The other loci presented in Table 2 include genes associated with a combination of two phenotypes, 
maybe suggesting different functions in different hematopoietic lineages. 

Figure 1. Ideal study design to identify single nucleotide polymorphisms (SNPs) 
associated with human complex traits and diseases using genome-wide association 
studies (GWAS). For blood cell phenotypes, GWAS were particularly successful 
because sample sizes are large, phenotypes are easy to measure and are accurate, and 
well-characterized experimental models already exist. 

 

Table 2. Loci identified by GWAS that carry SNPs associated with at least two of the 
three main blood cell types. For each association, we report the ethnic group in which the 
genetic associations were found. We also listed only one gene per locus, although for 
many loci, the causal gene is unknown. RBC: red blood cell; WBC: white blood cell. 

Locus Location RBC WBC Platelet References 
TMCC2 1q32.1 Caucasian  Caucasian [17,18] 

ARHGEF3 3p14.3 African American  Caucasian [17,30,36,38] 
LRRC16A 6p22.2 African American  African American [31,37] 
HBS1L-

MYB 
6q22-q23.3 

African American/ 
Caucasian/Japanese 

Caucasian 
African American/ 

Caucasian 
[17,18,31,32,34,35,37] 

IL-6 7p21  Japanese Japanese [47] 
RCL1 9p24.1-p23 Caucasian  Caucasian/Japanese [17,18,32,34] 

SH2B3 12q24 Caucasian Caucasian Caucasian/Japanese [17,32–35,38] 

Some Loci Associated with Blood Cell Traits Are Population-Specific 

It is difficult to compare association results for hematological traits across different populations 
because the sample size of the respective GWAS, and thus the statistical power to discover 
associations, is very different. For instance for RBC phenotypes, the largest studies in Caucasians 
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and African Americans included, respectively, 135,367 and 16,496 participants [18,31]. Despite 
this caveat, many of the loci found in African Americans or Asians were also present in 
Caucasians; this general transferability of results across ethnic groups has been observed for other 
complex human traits [48,49]. For blood cell traits, however, there are notable exceptions. A SNP 
upstream of the Duffy antigen/receptor for chemokines (DARC) gene explains a large fraction of 
the variation in WBC and neutrophil counts, and is responsible for benign neutropenia [50]. This 
variant, which is monomorphic in Caucasians, is under positive selection in persons of African 
ancestry because it provides protection against Plasmodium vivax malaria infections. Similarly, 
genetic variation near the -globin, the -globin and the G6PD genes are associated with RBC 
indices in Africa-derived populations and are relatively common in frequency because they provide 
a selective advantage against malaria infections. These observations suggest that as we continue to 
query the human genome for associations with blood cell phenotypes, integrating evidence of 
natural selection would be a powerful approach. 

3. Genetic Modifiers of Disease Severity 

Several human diseases, which afflict a large fraction of the human population, are characterized 
by abnormally low or high counts of the three main blood cell types, or some unusual values for 
their features or contents. Anemia is a decrease of RBC count and hemoglobin levels (<11 g/dL in 
women or <13 g/dL in men) and is characterized by a wide spectrum of symptoms from simple 
fatigue to heart failure [51]. The World Health Organization estimates that anemia affects 1.62 billion 
people in the World [52]. The main causes of anemia are poor nutrition and iron deficiency, 
infections (e.g., malaria) and RBC diseases such as the hemoglobinopathies. Although the effect 
size of an individual SNP associated with RBC count or hemoglobin levels is not sufficient to 
cause anemia, a combination of hemoglobin-reducing alleles at many SNPs could have an impact 
on the risk to develop this disorder. Maybe more importantly, without causing anemia itself, this 
genetic score could influence clinical severity in at-risk populations (e.g., children with a small 
number of hemoglobin-increasing alleles that live in a region where malaria is endemic). Since 
anemia is mostly frequent in Africa and South-East Asia, it is critical to continue to search for 
genetic associations with hemoglobin levels in these populations [52]. 

There are many other human diseases that are diagnosed, like anemia, through abnormal counts 
of the main blood cell types (e.g., cancers). One example is myeloproliferative neoplasms (MPNs), 
diseases of the bone marrow characterized by excess cell production [53]. By far the main cause of 
MPNs is a somatic gain-of-function mutation in the kinase gene JAK2 (Val617Phe), which 
activates cell proliferation in the myeloid lineage [54,55], and changes platelet formation and 
reactivity [56]. It has never been tested whether SNPs associated with blood cell counts could 
modify complication risk in MPN patients with a JAK2 (Val617Phe) mutation. For instance, MPN 
patients are at high risk of stroke, but it is unknown if such patients that also carry a large number 
of platelet-increasing alleles are at even higher stroke risk. Such analyses, on MPNs but also all 
other diseases characterized by a blood phenotype, are simple and could test the role that SNPs 
associated with normal variation in hematological traits may have on our risk to develop more severe 
disorders and related complications [18]. 
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BCL11A Modifies Clinical Severity in Hemoglobinopathies 

In adults, hemoglobin (HbA) is composed of two - and two -globin subunits that form a 
tetramer with the heme moiety to transport oxygen from the lungs to the different organs. Prior to 
birth, the -globin gene is silent and the -globin subunits are encoded by the -globin genes to 
form fetal hemoglobin (HbF). The switch from HbF to HbA production is a transcriptionally and 
epigenetically tightly regulated process [57]. For most healthy individuals, the switch itself has no 
clinical impact. However, for -thalassemia and sickle cell disease patients with mutations in the  

-globin gene, understanding and modulating the globin switch is currently the most promising 
therapeutic strategy. Conceptually, this is easy to appreciate: if the disease-causing mutations are in 
the -globin gene, then re-activating -globin gene expression to form “normal” -globin subunits 
would bypass the problem. This approach is supported by an extensive literature on the natural 
history of hemoglobinopathies and epidemiological studies [58]. For instance, it has been shown 
that sickle cell disease patients that normally produce more HbF have better survival prognostic 
and less severe disease complications than patients with low HbF levels [59–61]. 

Although as adults we mostly produce HbA, we continue to make residual levels of HbF.  
Inter-individual variation in HbF levels is highly heritable (h2 ~ 0.6–0.9) [2,62]. Genetic 
investigations, including GWAS, have identified common genetic variation at three loci (BCL11A, 
HBS1L-MYB and -globin) that have strong phenotypic effects and that together explain almost 
half of the heritable variation in HbF levels [63–66]. These HbF-associated SNPs are also 
associated with clinical severity in -hemoglobinopathy patients: transfusion-dependency in  

-thalassemia and painful crises in sickle cell disease [65,67,68]. This again emphasizes the 
importance of HbF as a strong modifier of severity for these diseases. 

BCL11A encodes a transcription factor that had no known function in the globin switch before 
its discovery in two GWAS for HbF levels [63,65]. Since then, we have learned that BCL11A is a 
potent transcriptional repressor of -globin gene expression and that its inactivation in the erythroid 
lineage can treat a sickle cell disease mouse model through re-activation of HbF production [69,70]. 
More recently, both genetic and molecular fine-mapping work has determined that HbF-associated 
SNPs located in a BCL11A intron disrupt en erythroid enhancer that controls BCL11A expression [71]. 
This model was confirmed by targeted deletion of the enhancer through genome engineering that 
blocked BCL11A expression and re-activated -globin gene expression and HbF production [16]. 
As genome editing methods are rapidly improving, this proof-of-concept experiment suggests a 
new therapeutic strategy in which the BCL11A enhancer would be deleted ex vivo in a hemoglobinopathy 
patient’s cells to re-activate HbF production, and the cells would then be transplanted back to the 
patient [72]. The characterization of BCL11A and its role in HbF production serves as a powerful 
example to illustrate the success of GWAS from new biology to potentially innovative therapy. 

4. Orphan Blood Cell Diseases 

Although we did not assess the statistical significance of the enrichment, we observed that many  
of the SNPs associated with blood cell traits are located near genes that are mutated in severe 
hematological disorders and inherited in a Mendelian fashion. These include SNPs near HK1 
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(hemolytic anemia), TMPRSS6, HFE and TFR2 (iron deficiency) or TUBB1 (thrombocytopenia). 
This observation is similar to the situation of many other complex human phenotypes (e.g., lipids, 
height, diabetes) where GWAS have identified hypomorphic alleles near human syndrome genes 
for related phenotypes. As such, the long list of loci found by GWAS provides a framework to 
investigate human syndromes characterized by aberrant blood features, mapped to a chromosome 
arm by linkage studies, but where the gene culprit has not been identified yet. 

Table 3. Orphan human syndromes mapped to a chromosomal band and characterized 
by a blood cell phenotype. Only such syndromes that overlap with a locus identified by 
GWAS for the corresponding blood cell trait are included in this table. We generated 
this list by querying the Online Mendelian Inheritance in Man (OMIM) database with 
the following keywords: anemia, blood, hemoglobin, leukopenia, neutropenia, platelet, 
thrombocytopenia. 

Mendelian genetics: orphan syndromes Genome-wide association studies 

Locus Disease OMIM# Description SNP Position Phenotype 
Candidate-
gene(s) 

Ref. 

5q31 Familial eosinophilia 131400 Characterized by peripheral 
hypereosinophilia with or 
without other organ 
involvement 

rs4143832 chr5: 
131,862,977 

Eosinophil 
count 

IL5 [33] 

6p21 Macroblobulinemia, 
susceptibility to 
Waldenstrom 

153600 Malignant B-cell neoplasm 
characterized by 
lymphoplasmacytic infiltration 
of the bone marrow and 
hypersecretion of monoclonal 
immunoglobulin M (IgM) 
protein 

rs2517524 chr6: 
31,025,713 

White blood 
cell 

HLA region [45] 

15q21 Dyserythropoietic 
anemia, congenital 
type III 

105600 Characterized by 
nonprogressive mild to 
moderate hemolytic anemia, 
macrocytosis in the peripheral 
blood, and giant multinucleated 
erythroblasts in the bone 
marrow 

rs1532085 chr15: 
58,683,366 

Hemoglobin LIPC [18] 

19q13 Transient 
erythroblastopenia of 
childhood 

227050 Red blood cell aplasia rs3892630 chr19: 
33,181484 

Mean 
corpuscular 
volume 

NUDT19 [18] 

To investigate this hypothesis, we queried the Online Mendelian Inheritance in Man (OMIM) 
database [73]. In a non-exhaustive search, we identified four such orphan diseases where the 
genomic locations overlap with SNPs identified by GWAS (Table 3). For three of the diseases, 
GWAS findings suggest a strong candidate gene (IL5, LIPC, NUDT19) for re-sequencing in 
affected individuals. As we continue to map these rare blood disorders, cross-referencing with 
GWAS hits may provide a strong filter to prioritize genes for genetic testing. 
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5. Conclusions 

GWAS have identified hundreds of loci that carry common genetic variants associated with 
RBC, WBC and platelet phenotypes. Many of these genetic associations still need to be linked to 
causal genes and genetic variants, yet because tractable cellular and animal models are available, 
this might be simpler for blood cell traits than it is for most complex human phenotypes. By design, 
GWAS interrogate common DNA variants, leaving untested low-frequency and rare sequence 
variation. The development of next-generation DNA sequencing platforms and exome genotyping 
arrays now provides the tools to test the role of this rarer genetic variation on blood cell 
phenotypes. Much criticism has been raised against GWAS because identified SNPs have poor 
predictive value; this is also true for SNPs associated with blood cell traits. However, this 
observation needs to be counter-balanced by the potential gain in improving our understanding of 
human biology in health and disease. GWAS blood cell trait loci provide new opportunities to 
study hematopoiesis, natural selection and the various ways common segregating DNA sequence 
variants can modify disease severity, paving the way for the development of more specific therapies. 
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The Genomic Signature of Breast Cancer Prevention  

Jose Russo, Julia Santucci-Pereira and Irma H. Russo 

Abstract: The breast of parous postmenopausal women exhibits a specific signature that has been 
induced by a full term pregnancy. This signature is centered in chromatin remodeling and the 
epigenetic changes induced by methylation of specific genes which are important regulatory 
pathways induced by pregnancy. Through the analysis of the genes found to be differentially 
methylated between women of varying parity, multiple positions at which beta-catenin production 
and use is inhibited were recognized. The biological importance of the pathways identified in this 
specific population cannot be sufficiently emphasized because they could represent a safeguard 
mechanism mediating the protection of the breast conferred by full term pregnancy. 

Reprinted from Genes. Cite as: Russo, J.; Santucci-Pereira, J.; Russo, I.H. The Genomic Signature 
of Breast Cancer Prevention. Genes 2014, 5, 65-83. 

1. Introduction 

More than 300 years ago, an excess in breast cancer mortality in nuns was reported, in whom 
the increased risk was attributed to their childlessness [1] until MacMahon et al. [2] found an 
almost linear relationship between a woman’s risk and the age at which she bore her first child. 
This work confirmed that pregnancy had a protective effect that was evident from the early teen 
years and persisted until the middle twenties [1]. Other studies have reported that additional 
pregnancies and breastfeeding confer greater protection to young women, including a statistically 
significantly reduced risk of breast cancer in women with deleterious BRCA1 mutations who 
breast-fed for a cumulative total of more than one year [3,4]. Our studies, designed to unravel what 
specific changes occurred in the breast during pregnancy that confer a lifetime protection from 
developing cancer, led us to the discovery that endogenous endocrinological or environmental 
influences affecting breast development before the first full term pregnancy were important 
modulators of the susceptibility of the breast to undergo neoplastic transformation. The fact that 
exposure of the breast of young nulliparous females to environmental physical agents [5] or 
chemical toxicants [6,7] results in a greater rate of cell transformation suggests that the immature 
breast possesses a greater number of susceptible cells that can become the site of the origin of 
cancer, similarly to what has been reported in experimental animal models [8–11]. In these models, 
the initiation of cancer is prevented by the differentiation of the mammary gland induced by 
pregnancy [11,12]. The molecular changes involved in this phenomenon are just starting to be 
unraveled [13–18]. The protection conferred by pregnancy is age-specific since a delay in 
childbearing after age 24 progressively increases the risk of cancer development. Eventually, this 
risk becomes greater than that of nulliparous women when the first full term pregnancy (FFTP) 
occurs after 35 years of age [2]. The higher breast cancer risk which has been associated with early 
menarche further emphasizes the importance of the length of the susceptibility “window” that 
encompasses the period of breast development occurring between menarche and the first 
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pregnancy, when the organ is more susceptible to undergo complete differentiation under 
physiological hormonal stimuli. Differentiation is a hallmark that protects the breast from 
developing cancer by lessening the risk of suffering genetic or epigenetic damages. This postulate 
is supported by our observations that the architectural pattern of lobular development in parous 
women with cancer differs from that of parous women without cancer; the former being similar to 
the architectural pattern of lobular development of nulliparous women with or without cancer. 
Thus, the higher breast cancer risk in parous women might have resulted from either a failure of the 
breast to fully differentiate under the influence of the hormones of pregnancy and/or proliferation 
of transformed cells initiated by early damage or genetic predisposition [18]. 

Numerous studies have been performed to understand how the dramatic modifications that occur 
during pregnancy in the pattern of lobular development and differentiation, cell proliferation, and 
steroid hormone receptor content of the breast influence cancer risk [18]. Studies at the molecular 
level using different platforms for global genome analysis have confirmed the universality of this 
phenomenon in various strains of rats and mice [13–21]. Studies in experimental animal models 
have been useful for uncovering the sequential genomic changes occurring in the mammary gland 
in response to multiple hormonal stimuli of pregnancy that lead to the imprinting of a permanent 
genomic signature. Our results support our hypothesis that post-menopausal parous women exhibit 
a genomic “signature” that differs from the expression present in the breast of nulliparous women, 
who traditionally represent a high breast cancer risk group. 

2. Phenotypic Changes Induced by Pregnancy in the Human Breast 

Our study has been done using core biopsies of nulliparous (NP) and parous (P) postmenopausal 
women [22,23]. The nulliparous group included both nulligravida nulliparous (NN) and gravida 
nulliparous (GN); both NN and GN women were considered within the NP as a single group for 
most analyses, unless indicated otherwise. Our previous studies have in great part clarified the role 
of pregnancy-induced breast differentiation in the reduction in breast cancer risk, as well as the 
identification of lobules type 1 (Lob 1) or the terminal ductal lobular unit (TDLU) as the site of 
origin of breast cancer [4,7,24]. The morphological, physiological and genomic changes resulting 
from pregnancy and hormonally-induced differentiation of the breast and their influence on breast 
cancer risk have been addressed in previous publications [4,7,24,25]. Our observations that during 
the post-menopausal years the breast of both parous and nulliparous women contains 
preponderantly Lob 1, and the fact that nulliparous women are at higher risk of developing breast 
cancer than parous women, indicate that Lob 1 in these two groups of women either differ 
biologically, or exhibit different susceptibility to carcinogenesis [25]. The breast tissues of the P 
and NP women contained ducts and Lob 1 [4,12,26].  

The microscopic analysis of the breast tissue revealed that the population of luminal cells lining 
ducts and Lob 1 was composed of cells that were characterized by their nuclear appearance into 
two types: one that contained large and palely stained nuclei with prominent nucleoli and another 
consisting of small hyper chromatic nuclei [27]. The pale staining of the large former nuclei is a 
feature indicative of a high content of non-condensed euchromatin; these nuclei were called 
euchromatin-rich nuclei (EUN). The hyperchromasia observed in the latter nuclei was indicative of 
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chromatin condensation and high content of heterochromatin; these nuclei were identified as 
heterochromatin-rich nucleus (HTN). The analysis of the distribution of HTN and EUN cells in 
histological sections of the breast core biopsies revealed that EUN were more abundant in the NP 
than in the P breast tissues, whereas the inverse was true for the HTN; these differences were 
statistically significant [27]. We have confirmed the differences between the HTN and EUN using 
a quantitative image analysis system [27]. The nuclear size (diameter, area and perimeter) of the 
EUN as a whole was significantly higher (p < 0.05) than that of the HTN in both nulliparous and 
parous women. Differences were also found to be statistically significant (p < 0.05) regarding the 
nuclear shape (nuclear feret ratio) in the breast of nulliparous women, indicating that in these 
breasts the nuclei of the HTN had a more elongated ellipsoidal shape than the EUN. The light 
absorbance (mean gray values/nucleus) was always greater for EUN than for HTN of both NP and 
P breasts, either considered as two groups or individually, an indication that under densitometric 
terms HTN were always more densely stained than EUN. Comparison of the EUN of nulliparous vs. 
parous breasts revealed significant differences in nuclear size, stainability and densitometric energy, 
leading us to conclude that epithelial cell nuclei were larger, less stainable and with smaller regions 
with uniform densitometric intensity in nulliparous breasts. Comparison of the HTN of nulliparous 
vs. parous breasts revealed significant differences in nuclear diameter, perimeter, shape and 
stainability; cell nuclei showed larger contours and more elongated ellipsoidal shape and they were 
more stainable in nulliparous breasts. These observations indicated that a shift of the EUN cell 
population to a more densely packed chromatin cell (HTN) had occurred in association with the 
history of pregnancy as a distinctive pattern of the postmenopausal parous breast [27]. 

Since chromatin condensation is part of the process of chromatin remodeling towards gene 
silencing that is highly regulated by methylation of histones, we verified this phenomenon by 
immunohistochemistry (IHC) incubating NP and P breast tissues with antibodies against histone 3 
dimethylated at lysine 9 (H3K9me2) and trimethylated at lysine 27 (H3K27me3) [27]. The IHC 
stain revealed that methylation of H3 at both lysine 9 and 27 was increased in the heterochromatin 
condensed nuclei of epithelial cells of the parous breast when compared to the euchromatin rich 
nuclei of the nulliparous breast. In the nulliparous breast, the reactivity in individual cells was less 
intense and the number of positive cells was significantly lower. These variations in chromatin 
reorganization were supported by the upregulation of CBX3, CHD2, L3MBTL, and EZH2 genes 
controlling this process (Table 1) [27]. 

Table 1. Genes upregulated in the parous breast. 

Symbol Log Ratio P value Gene Name 
Apoptosis (GO:0006915; GO:0006917; GO:0008624; GO:0042981) 

CASP4 0.37 0.0003 caspase 4, apoptosis-related cysteine peptidase 
RUNX3 0.36 0.0000 runt-related transcription factor 3 
LUC7L3 0.34 0.0002 LUC7-like 3 (S. cerevisiae) 
ELMO3 0.30 0.0003 engulfment and cell motility 3 

DNA repair (GO:0006281; GO:0006284) 
SFPQ 0.46 0.0002 splicing factor proline/glutamine-rich 
MBD4 0.36 0.0003 methyl-CpG binding domain protein 4 
RBBP8 0.32 0.0000 retinoblastoma binding protein 8 
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Table 1. Cont. 

Symbol Log Ratio P value Gene Name 
Cell adhesion (GO:0007155; GO:0030155) 

NRXN1 0.60 0.0001 neurexin 1 
DSC3 0.51 0.0000 desmocollin 3 

COL27A1 0.44 0.0002 collagen, type XXVII, alpha 1 
PNN 0.37 0.0001 pinin, desmosome associated protein 

COL4A6 0.36 0.0008 collagen, type IV, alpha 6 
LAMC2 0.34 0.0008 laminin, gamma 2 
COL7A1 0.33 0.0002 collagen, type VII, alpha 1 

COL16A1 0.31 0.0000 collagen, type XVI, alpha 1 
LAMA3 0.30 0.0008 laminin, alpha 3 

Cell cycle (GO:0000075; GO:0007049; GO:0045786) 
SYCP2 0.45 0.0000 synaptonemal complex protein 2 
PNN 0.37 0.0001 pinin, desmosome associated protein 

RUNX3 0.36 0.0000 runt-related transcription factor 3 
RBBP8 0.32 0.0000 retinoblastoma binding protein 8 

Cell differentiation (GO:0001709; GO:0030154; GO:0030216) 
MGP 0.53 0.0003 matrix Gla protein 
KRT5 0.41 0.0002 keratin 5 

GATA3 0.35 0.0009 GATA binding protein 3 
LAMA3 0.30 0.0008 laminin, alpha 3 

Cell proliferation (GO:0008283; GO:0008284; GO:0008285; GO:0042127; GO:0050679; GO:0050680) 
PTN 0.67 0.0002 Pleiotrophin 

KRT5 0.41 0.0002 keratin 5 
RUNX3 0.36 0.0000 runt-related transcription factor 3 
IL28RA 0.34 0.0003 interleukin 28 receptor, alpha (interferon, lambda receptor) 
CDCA7 0.31 0.0005 cell division cycle associated 7 

Cell motility (GO:0006928; GO:0030334) 
DNALI1 0.37 0.0001 dynein, axonemal, light intermediate chain 1 
LAMA3 0.30 0.0008 laminin, alpha 3 

G-protein coupled receptor pathway (GO:0007186) 
OXTR 0.54 0.0006 oxytocin receptor 

RNA metabolic process (GO:0000398; GO:0001510; GO:0006376; GO:0006396; GO:0006397; GO:0006401; 
GO:0008380) 

METTL3 0.69 0.0000 methyltransferase like 3 
HNRPDL 0.65 0.0001 heterogeneous nuclear ribonucleoprotein D-like 

HNRNPD 0.59 0.0003 
heterogeneous nuclear ribonucleoprotein D (AU-rich element RNA 

binding protein 1, 37 kDa) 
HNRNPA2B1 0.56 0.0003 heterogeneous nuclear ribonucleoprotein A2/B1 

SFPQ 0.47 0.0006 splicing factor proline/glutamine-rich 
RBM25 0.38 0.0009 RNA binding motif protein 25 
RBMX 0.38 0.0000 RNA binding motif protein, X-linked 

LUC7L3 0.34 0.0002 LUC7-like 3 (S. cerevisiae) 
SFRS1 0.30 0.0001 splicing factor, arginine/serine-rich 1 

RNA transport (GO:0050658) 
HNRNPA2B1 0.56 0.0003 heterogeneous nuclear ribonucleoprotein A2/B1 
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Table 1. Cont. 

Symbol Log Ratio P value Gene Name 
Transcription (GO:0006350; GO:0006355; GO:0006357; GO:0006366; GO:0016481; GO:0045449; GO:0045893; 

GO:0045941) 
HNRPDL 0.65 0.0001 heterogeneous nuclear ribonucleoprotein D-like 

HNRNPD 0.59 0.0003 
heterogeneous nuclear ribonucleoprotein D (AU-rich element  

RNA binding protein 1, 37 kDa) 
CBX3 0.53 0.0003 chromobox homolog 3 (HP1 gamma homolog, Drosophila) 

NFKBIZ 0.48 0.0001 
nuclear factor of kappa light polypeptide gene enhancer  

in B-cells inhibitor, zeta 
FUBP1 0.47 0.0002 far upstream element (FUSE) binding protein 1 
SFPQ 0.47 0.0006 splicing factor proline/glutamine-rich 
EZH2 0.44 0.0000 enhancer of zeste homolog 2 (Drosophila) 

ZNF207 0.41 0.0007 zinc finger protein 207 
ZNF711 0.41 0.0003 zinc finger protein 711 
GATA3 0.38 0.0009 GATA binding protein 3 

PNN 0.37 0.0003 pinin, desmosome associated protein 
ZNF107 0.37 0.0001 zinc finger protein 107 
RUNX3 0.36 0.0000 runt-related transcription factor 3 
CCNL1 0.35 0.0009 cyclin L1 
ZNF692 0.34 0.0000 zinc finger protein 692 
CHD2 0.33 0.0001 chromodomain helicase DNA binding protein 2 
RBBP8 0.32 0.0000 retinoblastoma binding protein 8 
ZNF789 0.32 0.0005 zinc finger protein 789 
CDCA7 0.31 0.0005 cell division cycle associated 7 

Chromatin organization (GO:0006333; GO:0006338) 
CBX3 0.53 0.0003 chromobox homolog 3 (HP1 gamma homolog, Drosophila) 
CHD2 0.33 0.0001 chromodomain helicase DNA binding protein 2 

Cell division (GO:0051301) 
SYCP2 0.45 0.0000 synaptonemal complex protein 2 

DNA metabolic process (GO:0006139; GO:0006260; GO:0006310; GO:0015074) 
METTL3 0.69 0.0000 methyltransferase like 3 

SFPQ 0.46 0.0002 splicing factor proline/glutamine-rich 
GOLGA2B 0.32 0.0001 golgin A2 family, member B 

Lactation (GO:0007595) 
OXTR 0.54 0.0006 oxytocin receptor 

3. Transcriptomic Differences Induced by Pregnancy  

Analysis of P and NP gene expression microarrays revealed that there were 305 probe sets, 
corresponding to 208 distinct genes, differentially expressed between these two groups. Of the 305 
probe sets, 267 were up- and 38 were down-regulated [22,23]. From these 267 up-regulated genes, 
we described biological processes that were representative of the transcriptomic differences 
between the parous and the nulliparous breasts. Using bioinformatics based analysis of microarray 
data, we found that the biological processes involving the splicing machinery and mRNA 
processing were prevalent in the parous breast and were represented by the following upregulated 
genes: LUC7L3, SFRS1, HNRNPA2B1, HNRNPD, RBM25, SFRS5, METTL3, HNRNPDL, and 



68 
 

 

SFPQ (Table 1). Transcription regulation and chromatin organization were also highly represented 
in the parous breast by the upregulation of CBX3, EBF1, GATA3, RBBP8, CCNL1, CCNL2, 
CDCA7, EZH2, FUBP1, NFKBIZ, RUNX3, ZNF107, ZNF207, ZNF692, ZNF711, ZNF789, 
CDCA7, and ZNF692 (Table 1). The parous breast also expressed upregulation of six non-coding 
regions that included XIST, MALAT-1 (or NEAT2) and NEAT1 [27]. 

Genes that were down-regulated in the parous breast represented transcription regulation, 
encompassing CBL, FHL5, NFATC3, NCR3C1, TCF7L2, and a set of genes that were involved in 
IGF-like growth factor signaling, somatic stem cell maintenance, muscle cell differentiation and 
apoptosis, such as IGF1, RASD1, EBF1, SOX 1,SOX6, SOX 17, RALGAPA2 and ABHD5. In 
rodents, also was observed the reduction of expression of genes related to growth factors, such as 
Igf1 [15]. The level of expression was confirmed to be differentially expressed between nulliparous 
and parous breast tissues by real time RT-PCR for the following genes: CREBZF, XIST, 
MALAT1, NEAT1, CCNL2, GATA3, DDX17, HNRPDL, SOX6, SNHG12, SOX 17 and 
C1orf168 [23]. In addition to the level of expression, the localization of the alternative splicing 
regulator cyclin L2 protein (CCNL2) [28], was verified by IHC. CCNL2 protein was expressed in 
the nucleus of epithelial cells in breast tissues from NP and P women, although the level of 
expression was significantly higher in Lob 1 in the parous breast when compared with similar 
structures found in the breast of nulliparous women. These observations confirmed the localization 
of this gene product in the splicing factor compartment (nuclear speckles) [29]. 

4. Shifting of the Cell Population in the Human Breast 

We found a shift in the cell population of the postmenopausal breast as a manifestation of the 
reprogramming of the organ after pregnancy. These observations are in agreement with what is 
observed in the rat mammary gland, which also contains two types of luminal epithelial cells, 
designated dark (DC) and intermediate (IC) cells, in addition to the myoepithelial cells [30]. The 
DC and IC are equivalent to the HTN and EUN cells described in the present work. DCs increase 
after pregnancy and lactational involution; whereas the ICs significantly outnumber the DC in 
ductal hyperplasias and ductal carcinomas [30,31]. Our analysis of nuclear ultrastructural and 
morphometric parameters of rodent IC have allowed us to differentiate the mammary progenitor 
stem cell from the cancer stem cells [25,30,31]. Nuclear morphometric analysis of breast and 
ovarian carcinomas has confirmed the predictive value of nuclear grade on the progression of 
premalignant lesions to invasiveness [32–34]. Our findings of a significant decrease in the number 
of EUN with a subsequent increase in the number of HTN cells expressing specific biomarkers 
identified at the chromatin and transcriptional levels support the value of morphometric analysis as 
an adjuvant to molecular studies [27]. Our data clearly indicate that there are morphological 
indications of chromatin remodeling in the parous breast, such as the increase in the number of 
epithelial cells with condensed chromatin and increased reactivity with anti-H3K9me2 and 
H3K27me3 antibodies. Histone methylation is a major determinant for the formation of active and 
inactive regions of the genome and is crucial for the proper programming of the genome during 
development [35]. In the parous breast, there is upregulation of transcription factors and chromatin 
remodeling genes such as CHD2 or chromodomain helicase DNA binding protein 2 and the CBX3 
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or Chromobox homolog 3, whose products are required for controlling recruitment of protein/protein 
or DNA/protein interactions. CBX3 is involved in transcriptional silencing in heterochromatin-like 
complexes, and recognizes and binds H3 tails methylated at lysine 9, leading to epigenetic 
repression. Two other important genes related to the polycomb group (PcG) protein that are 
upregulated in the parous breast are the L3MBTL gene or l(3)mbt-like and the histone-lysine  
N-methyltransferase or EZH2. Members of the PcG form multimeric protein complexes that 
maintain the transcriptional repressive state of genes over successive cell generations (Table 1). 
EZH2 is an enzyme that acts mainly as a gene silencer, performing this role by the addition of three 
methyl groups to lysine 27 of histone 3, a modification that leads to chromatin condensation [30,36,37]. 

5. Methylation Changes in the DNA of Parous Women are Part of Chromatin Remodeling 
and the Genomic Signature of Pregnancy 

The chromatin remodeling process is demonstrated not only by the shifting of the EUN to the 
HTN cells, but also confirmed by the increase in methylation of histones H3K9me2 and 
H3K27me3. This is an indication that methylation of other genes could also be involved in the 
process. Using the DNA from five nulliparous and five parous breast core biopsies and applying 
the MBD-cap sequencing methodology [38], we have identified 583 genes showing different levels 
of methylation between the parous and nulliparous breasts. From the 583 genes, 455 were 
hypermethylated in the parous while 128 were hypermethylated in the nulliparous breast, 
confirming the reprogramming of the chromatin to a more silenced or resting stage. To get a better 
understanding of the methylation profile of the 583 genes, we used Integrative Genomics Viewer 
(IGV) software [39,40]. IGV was utilized to identify the distinct areas, throughout the entire gene, 
where the methylation levels differed between the sample groups. The identification of these areas, 
known as differentially methylated regions (DMRs), is important because they are more likely to 
affect gene expression [41]. We performed the comparison between the nulliparous and parous 
methylation profiles against the human reference genome “hg 18” and against each other. For 
example, the gene COBRA 1, which is the cofactor of BRCA1 and has been shown to work in its 
regulatory pathway [42], was hypermethylated in the nulliparous breast. It is shown in Figure 1 that 
the methylation levels for each sample at each base pair that an area of higher methylation occurring 
in at least four of the samples of one group as compared to all members of the opposing group, that 
area was defined as a (DMR) (Figures 1 and 2). COBRA1 had a DMR near the end of the gene, 
which was marked in Figure 1 using the IGV’s marking tool. When a differentially methylated area 
is found and marked, hovering over the red marker at the top of the sample area gives the exact 
chromosomal location. Every gene within the 583 gene list was closely examined for DMRs. The 
chromosomal locations at which these DMRs were found and marked were recorded in  
Tables 2 and 3. 
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Figure 1. Overview of how the DNA methylation levels appear in the Integrative 
Genomics Viewer (IGV). At the top of the figure is the ideogram of the chromosome 
given by IGV, with the area currently being examined marked in red. At the bottom is 
the overall shape of the gene containing exons and introns. Exons are shown as thicker 
blue sections on the overall gene. The gray bars represent the methylation levels of each 
volunteer at each base pair. They are created by combining each read resulting from the 
sequencing done on the samples. The higher they are, the higher the percentage of 
methylation is at any given base pair. When there was an area of higher methylation 
occurring in at least four of the members of one parity group as compared to all 
members of the opposing group, that area was defined as a differentially methylated 
region (DMR). 

 

After analysis of the 583 genes using the IGV, we have identified the DMRs of 53 genes. Of the 
455 parous hypermethylated genes, 41 had DMRs. These were NEGR1, NUF2, SYT14, POU4F1, 
FLRT2, ASAP2, DNAJC13, IFITM4P, ZNF292, SDK1, ELAVL4, DACT1, SPATA5L1, 
DYNC1I2, NLGN1, MAN1A1, AK5, DPYD, PROX1, PDE3A, NOVA1, SKAP1, ANKRD12, 
B4GALT5, CNTN4, ROBO1, GSK3B, INPP4B, FNIP2, IL6ST, TICAM2, PPP2CA, C6orf138, 
PRKAR2B, TTLL7, MAN1A2, CDC42BPA, OSBP, STIM2, NR3C2, and REV3L. The exact 
locations of these DMRs are recorded in Table 2. A point of interest within these genes is that 
DNAJC13 and GSK3B, while statistically given to be hypermethylated within parous women, had 
DMRs which suggested nulliparous hypermethylation. Because of this and for the scope of this 
experiment, those genes are treated as nulliparous hypermethylated. Of the 128 nulliparous 
hypermethylated genes, 12 had DMRs. These were NHSL2, PTX4, LRRC37A3, C20orf166-AS1, 
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TPPP, NELF, SAMD10, CELSR1, FZD1, TNFRSF18, SRMS, and COBRA1. The chromosomal 
locations of these DMRs can be seen in Table 3. Within this list only C20orf166-AS1 was found to 
have a DMR in the direction opposite to what the statistics showed. Visual examples of these 
differentially methylated areas are seen in Figure 2 and Supplementary Figures S1–S4. 

Figure 2. DMRs for PRKAR2B. At the top we see the gene shape, with the red marked 
DMRs. Any colored locations within the gray bars indicate a nucleotide read which is 
different from the reference genome.  

 

Table 2. DMRs within parous hypermethylated genes. 
Parous Hypermethylated Genes 

NEGR1 chr1 71702567-71703327  
72142369-72142934 

NUF2 chr1 161576182-161576653 

SYT14 chr1 208309959-208310406 
208206495-208206910 

POU4F1 chr13 78072725-78073146 
FLRT2 chr14 85155301-85155789 

ASAP2 chr2 9266977-9267464 
9432659-9433115 

DNAJC13 Chr3 133712540-133712930 
IFITM4P Chr6 29826792-29827266 
ZNF292 Chr6 88022117-88022631 

SDK1 Chr7 4121961-4122279 
4230104-4230384 

ELAVL4 Chr1 50387715-50388146 
DACT1 Chr14 58182547-58182717 

SPATA5L1 Chr15 43494615-43495210 
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Table 2. Cont. 
Parous Hypermethylated Genes 

DYNC1I2 Chr2 172279940-172280462 

NLGN1 Chr3 
175147546-175148159 
175156296-175156626 
175277928-175278476 

MAN1A1 Chr6 119623891-119624320 

AK5 Chr1 77616541-77616886 
77655265-77655548 

DPYD Chr1 98153997-98154252 
PROX1 Chr1 212267523-212267905 
PDE3A Chr12 20432463-20432808 
NOVA1 Chr14 26015695-26016215 
SKAP1 Chr17 43591761-43592022 

ANKRD12 Chr18 9168269-9168654 
B4GALT5 Chr20 47704095-47704520 

CNTN4 Chr3 2572819-2573349 
ROBO1 Chr3 79026030-79023709 
GSK3B Chr3 121258375-121258501 

INPP4B Chr4 
143292977-143293319 
143347212-143347585 
143966478-143966985 

FNIP2 Chr4 159911129-159911596 
160015288-160015809 

IL6ST Chr5 55271135-55271466 

TICAM2 Chr5 114955685-114955992 
114956473-114956938 

PPP2CA Chr5 133567556-133567871 

C6orf138 Chr6 48025616-48025836 
48067151-48067418 

PRKAR2B Chr7 106573431-106573642 
106574760-106574889 

TTLL7 Chr1 84185339-84185660 
MAN1A2 Chr1 117816180-117816444 

CDC42BPA Chr1 225520202-225520399 

OSBP Chr11 59121100-59121437 
59121927-59122155 

STIM2 Chr4 26572404-26572775 
NR3C2 Chr4 149367631-149368052 
REV3L Chr6 111804054-111804285 

Table 3. DMRs within nulliparous hypermethylated genes. 
Nulliparous Hypermethylated Genes 

NHSL2 chrX 71270541-71271527 
C16orf38 (PTX4) Chr16 1476600-1476773 

LRRC37A3 Chr17 60311872-60311982 
C20orf200 (C20orf166-AS1) Chr20 60557111-60557421 

TPPP Chr5 742334-742618 

NELF Chr9 139471353-139471653 (HYPO) 
139471653-139471895 

SAMD10 Chr20 62077471-62077661 
CELSR1 Chr22 45272965-45273071 

FZD1 Chr7 90733372-90733621 
TNFRSF18 Chr1 1130349-1130634 

SRMS Chr20 61646714-61647041 
COBRA1 Chr9 139285424-139285977 
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Analysis and research into the functions of these 53 genes identified seven which interacted with 
each other in either the Wnt signaling pathway or its controlling PI3K/AKT/mTOR pathways. The 
DMRs of these genes (DACT1, PPP2CA, GSK3B, ROBO1, INPP4B, IL6ST, FZD1) are shown in 
Supplementary Figures S1–S4. An overview of the involvement in the canonical Wnt pathway is 
shown in Figure 3. The interworking of these genes with each other and with other genes within the 
statistically methylated 583 can be seen in Figure 4. 

Figure 3. Canonical WNT/ -catenin signaling genes marked in green are 
hypermethylated in parous women (suggesting down-regulation of the gene in parous 
women). Genes in red are hypermethylated within nulliparous women. Genes marked 
with (*) were observed differentially expressed the microarray data. This canonical 
pathway was generated through the use of IPA (Ingenuity® Systems) [43]. 

 

Of the seven genes with DMRs which we have shown to work together in the Wnt pathway or 
its controllers, three worked directly in canonical Wnt signaling. Interestingly, when we analyzed 
the genes differentially expressed between parous and nulliparous [23], we found genes that also 
participate in the Wnt pathway, such as CSNK1A1 and SOX family (Figure 3). FZD1, which is the 
hypermethylated in the nulliparous breast, codes for the Frizzled receptor. When activated, this 
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receptor directly activates Disheveled (Dsh) in the cytosol to begin the Wnt signaling cascade [44]. 
GSK3B, which also contains DMRs hypermethylated in the nulliparous women, has as main rule to 
decrease beta-catenin levels in the Wnt signaling pathway [45]. PPP2CA (PP2A) is suggested to 
work both upstream and downstream of beta-catenin to assist in its stabilization [46]. DACT1 
assists in Wnt signaling by up-regulating GSK3B [47]. ROBO1, INPP4B and IL6ST genes are 
active in PI3K dependent AKT signaling [48–50]. 

Figure 4. Interaction of target genes in Wnt/ -catenin signaling. The green genes are 
statistically parous hypermethylated, while the ones colored red are statistically 
nulliparous hypermethylated. The darker genes have recorded DMRs, and this is to the 
exception of GSK3B, which was first found statistically significant hypermethylated in 
the parous breast, but its DMR is hypermethylated in the nulliparous samples. This 
network was generated through the use of IPA (Ingenuity® Systems) [43]. 

 

The potential significance of the Wnt signaling pathway is rooted in an experiment performed  
in 1982 to find which genes would mutate in mice injected with mouse mammary tumor virus  
locating int1, a proto-oncogene [51]. Int1 was soon found to be highly conserved across multiple 
species, including drosophila and humans. Int1 was discovered to be the mammalian homologue of 
the drosophila Wingless (Wg), a gene previously found to be a segment polarity gene in embryonic 
development. The Wnt signaling pathway was given its name from the combination of Wg and 
int1, and has always had a close relationship to both differentiation and breast cancer. 

Mammary development requires complex, reciprocal epithelial mesenchymal interactions. 
During embryonic development, Wnt signaling is involved in the initiation and early formation of 
mammary buds [52]. Then, during pregnancy, the pathway is activated to help the differentiation of 
mammary ducts in preparation for lactation. It does this by increasing beta-catenin levels in the 
cytosol and the nucleus, which in turn increases epithelial-mesenchymal transition and aids in 
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transcription. After weaning, the mammary glands go through involution and the E-cadherin 
binding domain for beta-catenin is truncated [53]. This decreases cellular adhesion and signal 
epithelial apoptosis. The result is a lessened need for beta-catenin. In fact, overexpression of beta-
catenin during involution results in a lack of complete involution [54]. This suggests that lowered 
beta-catenin expression is essential for proper mammary involution. Studies in mouse model 
systems clearly demonstrate that activated Wnt signaling leads to mammary tumorigenesis [55]. 
Misra et al. observed alteration in Fzd4 and Wnt2 expression in rats after full term pregnancy [20]. 
Other studies have shown an increase in cytosolic/nuclear beta-catenin in about 60% of breast 
cancers. This is usually explained by the pathway’s ability to aid in epithelial-mesenchymal 
transition and cell proliferation, two things incredibly important in the progression of cancer. 
Recently, the Wnt signaling pathway has been directly implicated in the parity induced protective 
effect against breast cancer [56]. It was revealed that parity induces differentiation and down-regulates 
the Wnt/Notch signaling ratio of basal stem/progenitor cells in mice. The down-regulation was 
attributed to a reduced expression of Wnt4, a necessary ligand in the activation stages of the Wnt 
pathway, in the mammary cells of parous mice [56].  

The nulliparous hypermethylation of FZD1 suggests an up-regulation of the Frizzled family 
receptors and through this an up-regulation of all three types of Wnt signaling, indeed, we observed 
a slight overexpression of this gene in the parous women (not statistically significant). Increased 
Wnt signaling is associated with an increase in EMT in both development and cancer [57,58]. 
However, despite the Wnt signaling pathways being seemingly up-regulated, key genes within the 
pathways appear within our data to be down-regulated, thus changing the outcome of the signals 
sent through the Frizzled receptors. Signals sent through the Fz receptors activate the phosphoprotein 
Disheveled (Dsh). Dsh has three highly conserved protein domains, which interact differently 
depending on which Wnt pathway it is interacting with [44]. An up-regulation of FZD1 assumes an 
overall up-regulation of Dsh activation, and thus an increase in all three Wnt pathways. The three 
pathways are the canonical Wnt/beta-catenin pathway, the noncanonical planar cell polarity (PCP) 
pathway, and the noncanonical Wnt/calcium pathway. 

The canonical pathway is the only one to involve beta-catenin, which is the TCF/LEF binding 
protein responsible for increased transcription and EMT [57,58]. Intracellular beta-catenin levels 
are maintained through constant creation and destruction, the processes of which are suggested to 
be regulated differently between our parity groups. 

The canonical Wnt pathway contains the beta-catenin destruction complex, which is usually  
down-regulated or disrupted after the activation of Wnt signaling. The most effective way this 
occurs is through the binding of Fz to LRP5/6, which will disrupt the destruction complex before it 
can begin [59]. Our analysis showed an increased methylation of LRP5 within parous women, 
which suggests a decreased expression of LRP5/6 and a decreased cellular capability to stop the 
beta-catenin destruction complex in this way. The beta-catenin destruction complex begins with the 
binding of GSK3 to Axin, which leaves GSK3’s active site open to phosphorylate beta-catenin. Once 
phosphorylated, beta-catenin is ubiquitinated and sent to the proteasome for removal [59]. It is 
suggested that initial tumor development requires rapid and effective repression of GSK3B [58]. In 
our analysis through IGV, GSK3B was found to have a DMR hypermethylated in the nulliparous 
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samples. This suggests an increase in expression of GSK3 within parous women and subsequently 
an increase in the activity of the beta-catenin destruction complex.  

PPP2CA, found to be hypermethylated within parous women, is also closely involved in 
canonical Wnt signaling. While the effect of PPP2CA in this context is still unclear, research leans 
toward a positive ability to stabilize beta-catenin [59]. The parous hypermethylation of PPP2CA, 
which suggests a lower expression in parous women, supports the idea of decreased beta-catenin.  

The noncanonical Wnt/calcium pathway, which is also found to be up-regulated in parous 
women as a result of increased FZD1 expression, occurs independently of beta-catenin. However, the 
noncanonical Wnt/calcium pathway is an inhibitor of canonical Wnt/beta-catenin signaling further 
along the line by stopping the transcriptional efforts of beta-catenin in the nucleus [60]. This 
inhibition occurs in one of two ways. The first uses the CaMKII-TAK1-NLK pathway, which 
inhibits beta-catenin-TCF-dependent transcription through the phosphorylation of TCF. The second 
uses NFAT-mediated transcriptional regulation to suppress beta-catenin-dependent-transcription. 

Whereas more mechanistic studies need to be done in human breast cells, the data analyzed thus 
far indicate that the methylation of genes involved in Wnt signaling pathway could be another path 
involved in the protective effect of pregnancy in the human breast.  

6. Conclusions 

Our work [22,23,27] clearly demonstrates that the breast of parous postmenopausal women 
exhibits a specific signature that has been induced by a full term pregnancy. This signature reveals 
for the first time that the differentiation process is centered in chromatin remodeling and the 
epigenetic changes induced by methylation of specific genes, that are important regulatory pathways 
induced by pregnancy. Through the analysis of the genes found to be differentially methylated 
between women of varying parity, multiple positions at which beta-catenin production and use is 
inhibited were recognized. First, the ability of the Fz receptor to bind to LRP5/6 and disrupt the 
beta-catenin destruction complex was down-regulated by a decrease in LRP5. Then, an increase in 
GSK3B suggests a strong up-regulation of the beta-catenin destruction complex, wherein GSK3B 
is responsible for marking beta-catenin for deletion. Third, a decrease in PPP2CA lowers its ability 
to stabilize beta-catenin. All of these transpire to decrease the amount of beta-catenin able to make 
it through the cytosol and into the nucleus. Once in the nucleus, however, the increased expression 
of the noncanonical Wnt/calcium signaling pathway interferes with the ability to beta-catenin to 
bind to TCF and help in transcription and EMT. The added effect of all of these differential 
methylations leans toward the conclusion that beta-catenin, especially as it pertains to the Wnt 
signaling pathway, is regulated differently between parous and nulliparous women. The decrease in 
beta-catenin production and accumulation may be a leftover effect from mammary involution, 
which would have been the last process of remodeling the mammary glands had undergone. This 
suggests that the decreased capacity for beta-catenin accumulation caused by involution is what 
causes the protective effect of pregnancy against breast cancer. The biological importance of the 
pathways identified in this specific population cannot be sufficiently emphasized due to the fact 
that they could represent another safeguard mechanism besides the ones discussed earlier [27], 
mediating the protection of the breast conferred by full term pregnancy. 
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Lessons from Genome-Wide Search for Disease-Related Genes 
with Special Reference to HLA-Disease Associations 

Katsushi Tokunaga 

Abstract: The relationships between diseases and genetic factors are by no means uniform. 
Single-gene diseases are caused primarily by rare mutations of specific genes. Although each 
single-gene disease has a low prevalence, there are an estimated 5000 or more such diseases in the 
world. In contrast, multifactorial diseases are diseases in which both genetic and environmental 
factors are involved in onset. These include a variety of diseases, such as diabetes and autoimmune 
diseases, and onset is caused by a range of various environmental factors together with a number of 
genetic factors. With the astonishing advances in genome analysis technology in recent years and the 
accumulation of data on human genome variation, there has been a rapid progress in research 
involving genome-wide searches for genes related to diseases. Many of these studies have led to the 
recognition of the importance of the human leucocyte antigen (HLA) gene complex. Here, the 
current state and future challenges of genome-wide exploratory research into variations that are 
associated with disease susceptibilities and drug/therapy responses are described, mainly with 
reference to our own experience in this field. 

Reprinted from Genes. Cite as: Tokunaga, K. Lessons from Genome-Wide Search for 
Disease-Related Genes with Special Reference to HLA-Disease Associations. Genes 2014, 5, 84-96. 

1. Development of Genome-Wide Searches 

The greatest attraction of the strategy of genome-wide searches for genes related to diseases is the 
potential for the discovery of the involvement of completely new genes that could not have been 
predicted using existing knowledge or data. The previous method for genome-wide search of 
multifactorial disease-susceptibility genes was non-parametric linkage analysis, which does not 
presuppose any specific inheritance mode. One such method is the affected sib-pair method. 
However, it is not easy to collect a large number of samples with affected sib-pairs, so the detection 
power of this method is inevitably low [1]. Consequently, only limited results have been obtained so far. 

The genome-wide association study (GWAS), however, makes use of the high statistical power of 
association analysis traditionally used for investigating the possible involvement of specific 
candidate genes, and applies it genome-wide [1]. Two pioneering GWAS studies were carried out in 
Japan. One was the first single nucleotide polymorphism (SNP)-based GWAS for myocardial infarction, 
which utilized an approximately 90,000 SNPs [2]. The other was the first microsatellite-based GWAS 
for rheumatoid arthritis, which used approximately 30,000 microsatellite polymorphisms [3]. However, 
only a few research groups adopted either of these platforms, due to the labor and cost they involved. 

GWAS advanced to a new stage from 2006 onward, mainly as a result of two developments in 
infrastructure. The first was information infrastructure, typified by the Database of Single Nucleotide 
Polymorphisms (dbSNP) [4], the International HapMap Project [5] and the 1000 Genomes  
Project [6], which gathered together a vast range of information of genome variation that spanned the 
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entire human genome. The other development was in technology infrastructure; this was the 
commercial release of platforms that allowed the analysis of several thousands of samples performed 
on several hundreds of thousands of SNPs and could be carried out relatively easily. The application 
of these developments meant that SNP-based GWAS became a broad-based, practical strategy, and 
in 2007, several studies were published from large-scale collaborations between multiple 
institutions. The subsequent rush to discover gene polymorphisms associated with different diseases 
or traits using GWAS was dramatic, and over 1600 types of significant associations with  
250 diseases or traits have been reported [7]. Nevertheless, attention should be paid for GWAS in 
ethnically diverse populations, since the genome-wide SNP typing chips have been designed based 
on mainly European data, these chips may have limited utility in certain populations. 

2. Identified Susceptibility Genes to Multifactorial Diseases 

2.1. Population Differences in Disease Susceptibility Genes 

A disease for which GWAS have shown striking results is type II diabetes. In 2007, several 
groups from Europe and North America reported results from different GWAS on several thousand 
patients and controls [8–11]. Over 11 susceptibility loci were identified, and over half of these were 
newly discovered. The following year, two independent groups from Japan reported a new 
susceptibility gene, KCNQ1 [12,13]. Table 1 shows a comparison between European and Japanese 
populations of the allele frequency, odds ratio and p-value of TCF7L2, the most important 
susceptibility gene found in European populations, and KCNQ1, which was discovered in Japanese. 
TCF7L2 showed a p-value of 10 48 in European populations, indicating a definite association with 
type II diabetes [8]. Among Japanese, however, the p-value is at a level of no more than 10 4 [14]. 
The main reason for this is the difference in minor allele frequency, which is lower in Japanese by an 
order of magnitude. Consequently, although the odds ratio is similar to European populations, no 
clear association was observed in an analysis of 2000 patients and 2000 healthy controls. A 
contrasting relationship can be seen with KCNQ1 [12]. The p-value for Japanese samples was 10 29, 
indicating a definite association with type II diabetes, and the same clear association was found for 
Korean and Chinese samples. However, although European samples showed the same tendency of 
the odds ratio, the p-value was at a level of no more than 10 4. 

Table 1. Population differences of susceptibility genes to type II diabetes. 

Gen (SNP) Population Odds Ratio p Minor Allele Frequency 
TCF7L2 (rs7903146) European [8–11] 1.37 1.0 × 10 48 0.31/0.25 
TCF7L2 (rs7903146) Japanese [14] 1.70 7.0 × 10 4 0.05/0.02 
KCNQ1 (rs2237892) European [12] 1.29 7.8 × 10 4 0.03/0.05 
KCNQ1 (rs2237892) Japanese [12] 1.43 3.0 × 10 29 0.31/0.40 

In other words, the main type II diabetes-susceptibility genes for European and East Asian 
populations, respectively, are, in fact, shared susceptibility genes by both populations, but because 
they differ greatly in frequency, their contribution in each respective population is different. 
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Several genetic factors, in addition to environmental factors, such as stress, are involved in the 
onset of narcolepsy, one of the hypersomnia. In the past, the only gene well established as a genetic 
factor for narcolepsy was HLA-DR/DQ [15]; then, we carried out a GWAS to search for new genetic 
factors [16]. As a result, an SNP located between CPT1B and CHKB on Chromosome 22 was found 
to be associated with narcolepsy. Japanese and Koreans were found to have similar allele frequency 
and both showed a significant association. However, although the odds ratio showed similar trends in 
European Americans and African Americans, we could not find a significant difference association, 
because of the low frequency of the susceptibility allele. We have also experienced significant 
population differences in other diseases, including tuberculosis [17], rheumatoid arthritis [18], 
glaucoma [19] and primary biliary cirrhosis [20]. 

The above diseases serve as examples of different contributions of multiple genetic factors in each 
population. Consequently, the study of each individual population would be essential to build a 
complete picture of the important genetic factors to complex diseases in the various human populations. 

2.2. Susceptibility Genes Common to Different Diseases 

There has been an increase in the number of reports of genetic factors that are common to different 
diseases. GPC5 (glypican-5) has been found to be a susceptibility gene common to nephrotic syndrome 
diseases, such as membranous nephropathy, immunoglobulin A nephropathy and diabetic nephropathy 
(Table 2) [21]. We further confirmed the expression of the GPC5 protein in the glomerular podocytes 
and showed that the risk allele is associated with a high level of GPC5 expression. 

Table 2. Common susceptibility gene GPC5 (glypican 5) for acquired nephrotic syndrome [21]. 

Panel Case: Minor Allele Frequency Control: Minor Allele Frequency p * Odds Ratio 

1 0.237 0.167 5.8 × 10 3 2.33 (1.25–4.35) 

2 0.195 0.159 2.0 × 10 5 3.44 (1.89–6.25) 

3 0.224 0.174 8.7 × 10 6 2.39 (1.61–3.55) 

Combined 0.219 0.168 6.0 × 10 11 2.54 (1.91–3.40) 

* Based on the recessive model of the minor allele (GG + GA vs. AA). 

Meta-analysis of the largest-scale GWAS in Japan on rheumatoid arthritis (RA) led to the 
discovery of susceptibility genes that are common to various different autoimmune disorders [18]. 
The GWAS was performed on approximately 4000 patients and 17,000 controls, and a replication 
study was carried out with 5000 patients and 22,000 controls. In addition to previously reported 
susceptibility genes, nine new susceptibility genes were discovered. Among these are several susceptibility 
genes that have been also reported for systemic lupus erythematosus (SLE) and Graves’ disease. 

Another example in our recent experience was primary biliary cirrhosis [20]. We performed a 
GWAS by a nation-wide collaboration; as a result, we discovered two new susceptibility genes. 
Interestingly, one of these, TNFSF15, has also been reported as a susceptibility gene for 
inflammatory bowel disease, including Crohn’s disease and ulcerative colitis. There are numerous 
other reports of genetic factors that are found to be common to various autoimmune and 
inflammatory diseases [22,23]. 
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The presence of common susceptibility genes for different diseases suggests that at least part of 
the pathogenic mechanism of these diseases is shared. These results may contribute to the elucidation 
of the pathogenic mechanism of these diseases and to the development of new therapies. 

2.3. Towards the Understanding of Pathogenic Mechanisms 

As mentioned earlier, the new narcolepsy-susceptibility region, CPT1B/CHKB, was discovered 
through a GWAS performed to search for genetic factors other than the established factor, HLA [16]. 
Subjects possessing the risk allele of the susceptibility SNP showed significantly lower levels of 
mRNA expression of both CPT1B and CHKB. We also observed that narcolepsy patients show 
abnormally low levels of carnitine [24], on which CPT1B (carnitine palmitoyltransferase 1B) is relevant, 
and that carnitine improves the sleep of the patients [25]. Carnitine is known as the transporter of 
long-chain fatty acids into mitochondria, thus playing a crucial role in energy production. 

Moreover, the new susceptibility gene, TRA (T cell receptor ), was discovered through a GWAS 
performed by a joint international research group [26]. SNPs located in the J region of TRA showed 
significant associations with narcolepsy in European and Asian populations. TRA and HLA are key 
molecules in the regulation of immune response in the acquired immunity. The same joint 
international research group also found that a polymorphism of P2RY11, which is also involved in 
the regulation of the immune system, is associated with narcolepsy [27]. From these results, it may be 
assumed that narcolepsy onset has at least two mechanisms: both autoimmunity to orexin 
(hypocretin)-producing cells and a disorder of fatty acid -oxidation. 

If we appreciate that multiple susceptibility genes that have been discovered belong to specific 
pathways or networks, they will provide useful hints toward clarifying the mechanism of disease 
onset or disease formation and also developing new drugs. 

3. Identified Response Genes to Drugs/Therapies 

3.1. Development of New Gene Tests 

GWAS studies are extremely useful in the search for drug-response genes. We performed a 
GWAS as part of a multi-institutional joint research group investigating hepatitis C virus related 
diseases. As a result of this GWAS, we discovered that IL28B on Chromosome 19 was strongly 
associated with non-responder patients to the combined therapy of PEGylated interferon-alpha and 
ribavirin for chronic hepatitis C [28]. This was a completely unexpected result. The GWAS was 
performed on only 78 non-responders and 64 responders to this therapy; nevertheless a p-value at the 
level of 10 12 was obtained, reaching the genome-wide significance level (Figure 1). About 70%–80% 
of the non-responding patients possessed the minor alleles of several SNPs in the IL28B region, and 
combining the replication study data, the p-value was 10 27–10 32 and the odds ratio was 17 30 
(Figure 2). 

Response to the interferon-alpha therapy had been considered to be determined mainly by the 
virus genotype and concentration. However, the discovery that response is, in fact, mostly 
determined by a human genetic factor had a major impact. IL28B SNP typing has already been 
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introduced into the routine clinical testing in Japan and is used as important reference data in the 
determination of therapeutic strategies. 

Figure 1. A genome-wide association study (GWAS) on the response to the combined 
therapy of PEGylated interferon-alpha and ribavirin for chronic hepatitis C identified two 
SNPs on Chromosome 19 [28]. 

 

Figure 2. The strong association of IL28B with therapy response for chronic hepatitis C: 
80% of non-responders possess the minor allele [28]. 

 

3.2. Identification of New Therapeutic Targets 

The discovery of IL28B, which is strongly associated with response to treatment for hepatitis C, 
indicated another highly interesting possibility. IL28B is a member of the interferon  family and is 
assumed to exhibit its defensive activity against viral infection mediated by similar receptors and 
intracellular signal transduction pathway as interferon , which was used in the treatment of hepatitis 
C. IL28B itself is therefore expected to be a powerful contender for the development of new hepatitis 
C drugs. In fact, IL-29, a member of the same family, has already been subjected to clinical trial for a  
new drug. 
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In addition to the above, genes involved in response to many drugs have been reported, and an 
increasing number of genetic factors are being identified for the first time as a result of GWAS. 
Drug-response genes generally tend to show greater odds ratios than disease-susceptibility genes, so 
that even with a relatively small sample size, there is a high likelihood of being able to identify the 
relevant gene. Ever greater results may therefore be expected in the future. 

4. Particular Importance of HLA 

4.1. Immune-Mediated Diseases and HLA 

GWAS studies have been conducted for a number of diseases to date, and many of these have 
reported HLA as a susceptibility gene. In our own experience, narcolepsy [16], hepatitis B [29], 
rheumatoid arthritis [18], primary biliary cirrhosis [20], Stevens–Johnson syndrome, insulin autoimmune 
syndrome and type I diabetes have all shown strong association with certain HLA gene(s).  
Of these, narcolepsy, rheumatoid arthritis, primary biliary cirrhosis, type I diabetes and insulin 
autoimmune syndrome were associated most strongly with the HLA-DR and HLA-DQ regions, while 
hepatitis B and Stevens-Johnson syndrome were associated most strongly with the HLA-DP and 
HLA-A genes, respectively. 

With regard to narcolepsy, Juji et al. [30] first reported in 1984 an extremely strong association  
with HLA-DR2 (HLA-DRB1*1501-DQB1*0602 haplotype according to the recent sequence-level 
nomenclature). We also found an extremely strong association between narcolepsy and the 
HLA-DR/DQ region with an SNP-based GWAS (Figure 3) [16]. If the results of HLA analysis in 
European and African populations are considered together, the primary susceptibility allele is assumed 
to be HLA-DQB1*0602. 

Figure 3. GWAS confirmed the most strong association of the HLA-DR/DQ region with 
narcolepsy [16]. 

 

Numerous GWAS have also been carried out for rheumatoid arthritis in Japan and elsewhere, and 
the HLA-DR/DQ region has been shown to have stronger association than any other region of the 
genome [18]. HLA-DR4 has been known to be strongly associated with rheumatoid arthritis since the 
latter half of the 1970s; recent analysis at the sequence level has shown that DRB1*0401 is most 
strongly associated in European populations and DRB1*0405 among Japanese. However, there are 
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several other DRB1 alleles that also exhibit susceptibility or resistance, and a hierarchy may be seen 
in their odds ratios. 

With primary biliary cirrhosis, also, the HLA-DR/DQ region showed the strongest association in 
the GWAS of European populations [31] and in the first GWAS of an Asian population [20].  
From the analysis of HLA itself, HLA-DRB1*0803-DQB1*0602 and HLA-DRB1*0405-DQB1*0401 
have been reported as susceptible haplotypes in the Japanese population [32], while 
HLA-DRB1*0801-DQB1*04 was reported in European descendants [33]. 

4.2. Drug Hypersensitivity and HLA 

There has also been great interest in HLA in its association with drug hypersensitivity. In 2002, it 
was reported that nearly 80% of patients who showed a hypersensitivity against the HIV drug, 
abacavir, possessed HLA-B*5701, with an odds ratio of 117 [34]. In 2004, a group from Taiwan 
found that of 44 patients with Stevens–Johnson syndrome induced by carbamazepine used for 
epilepsy seizures or as a psychotropic drug, all had HLA-B*1502 [35]. However, less than 0.1% of 
Japanese possess HLA-B*5701, while HLA-B*1502 is extremely rare. Consequently, it was predicted 
that the associations observed in the previous reports are hardly seen at all among Japanese. 

In fact, Ozeki et al. [36] reported that adverse reactions in the skin as a result of carbamazepine are 
associated with HLA-A*3101. We reported independently that Stevens–Johnson syndrome/toxic 
epidermal necrolysis accompanied by eye manifestations caused by certain types of cold remedies is 
associated with HLA-A*0206 [37]. Now, GWAS for this type of Stevens-Johnson syndrome has 
identified new susceptibility gene(s). Accordingly, GWAS can be powerful tool to investigate 
hypersensitivity to different kinds of drugs, and there is particular interest in associations with the 
HLA gene complex. 

4.3. Characteristics of HLA and the Importance of HLA Typing 

There are a number of unique characteristics of HLA genes and their polymorphisms, which 
indicates the limitation of SNP-based analysis and the importance of typing HLA genes themselves. 
First, the HLA genes are broadly classified into the Class I and Class II genes. Genes that exhibit high 
degrees of polymorphisms include HLA-A, -B and -C in Class I and HLA-DRB1, -DQA1, -DQB1, 
-DPA1, and -DPB1 in Class II. Including HLA and non-HLA genes, a total of some 130 genes encoding 
proteins are densely located within a physical distance of about 4 Mbp on the short arm of Chromosome 6. 
They also show stronger linkage disequilibria than any other region of human genome. For these 
reasons, specifying a gene locus that is primarily associated with a disease is no easy task. 

Second, commercially available genome-wide SNP typing arrays are unable to analyze the SNPs 
of the HLA-DR region. This is because there is copy number polymorphism of the DRB genes in the 
region: there are four functional DRB genes (DRB1, B3, B4 and B5) and five pseudogenes (DRB2, 
B6, B7, B8 and B9), and the gene composition differs depending upon the DRB haplotype. The SNPs 
of this region therefore do not conform to the Hardy–Weinberg equilibrium and, so, are not included 
on the arrays. Consequently, even though the HLA-DQ region may appear to show primary 
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association from the results of an SNP-based GWAS, the adjacent HLA-DR region with extremely 
strong linkage disequilibrium must also be considered as a candidate region. 

Third, genes in the Class II region are each adjacent on the genome as a pair, comprising an A 
gene and a B gene, and are linked to each other with a strong linkage disequilibrium. It is therefore 
very difficult to specify which gene of the pair is the primary one. 

Fourth, as mentioned above, the HLA gene exhibits a high degree of polymorphism, and there are 
a huge number of alleles. There are almost no SNPs or SNP haplotypes that correspond one-on-one 
to individual HLA alleles. For example, more than 1300 alleles of HLA-DRB1 have been admitted 
worldwide to date; for example, around 20 alleles with relatively high frequency and a great number of 
rare alleles have been found in the Japanese population; however, this sort of subclassification is not 
possible from SNP haplotypes. 

Furthermore, a major feature is that a striking diversity between different populations can be 
observed. In other words, many HLA alleles are distributed only in certain regional populations. 

Imputation of HLA alleles using HLA region SNP data is reported to have an accuracy of over 
94% in European populations [38–40]. However, it is not perfect, especially for infrequent alleles, 
and the imputation is not yet fully available in Japanese or other Asian populations. The typing of the 
HLA genes is preferable for specifying HLA alleles directly involved in susceptibility, because there 
are multiple susceptibility alleles and resistance alleles, as well as ‘neutral’ alleles, and for many of 
these, the odds ratios are not consistent. 

With regard to the HLA-associated diseases, therefore, detailed analysis, including the typing of 
the HLA genes themselves, are necessary to identify the primary HLA genes and alleles for each 
individual disease. These data will prove invaluable in clarifying the molecular mechanism through 
which HLA is associated with disease. 

5. Conclusions and Issues for the Future 

There are two hypotheses regarding the involvement of genome variation in common diseases: 
the common disease (common variants hypothesis and the common disease) and the rare variants 
hypothesis. In this regard, there is the argument that the common variants identified by GWAS as 
causing susceptibility to multifactorial diseases can only account for a small proportion of the genetic 
factors of disease, so that rare variants must also be important. This was symbolized by the term 
“missing heritability” [41], when only around 20 susceptibility loci for type II diabetes had been 
identified. Even in total, these could only explain about 5% of heritability. To date, over 60 common 
susceptibility loci have been identified, and this number is increasing all the time as a result of 
GWAS and meta-analyses carried out on greater scales. Further, it has been shown by the latest 
statistical analysis using all the GWAS data that around 40% 60% of all genetic factors can be 
explained. Therefore, it is assumed that there are still a great many relatively weak common 
susceptibility variants that have yet to be discovered. 

To put it differently, we have not yet utilized the data obtained from GWAS to the fullest extent.  
For example, susceptibility genes that are not discovered by gathering samples from patients with the 
same disease name may be discovered by collecting detailed clinical data for each patient and then 
carrying out an analysis focused on clinical subsets. Considering a common disease from the 
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viewpoint of its genetic architecture, the disease could be a collection of the many diseases that 
resemble each other, but also exhibit heterogeneity. Furthermore, it is likely that many susceptibility 
gene polymorphisms do not reach the so-called genome-wide significance level and, instead, exhibit 
moderate p-values. Establishing a method to identify the real susceptibility loci from this gray area is 
an issue that will need to be resolved in the future. It will be necessary to develop new methods that 
synthesize data from genetic ontology, pathway/network informatics and other fields and to establish 
statistical methods that can detect both intra-gene and inter-gene interactions. Our collaborators 
developed one such method that greatly improves the detection power of susceptibility loci [42]. 

Other than investigation by means of SNPs, there is also a need to clarify the degree to which 
variation, such as copy number variation (CNV) and short insertion/deletion variation, account for 
genetic factors in disease. Massive sequencing using next-generation sequencers is leading to 
astounding developments; to date, it has been very useful in identifying single genes responsible for 
hereditary diseases, and it has recently started to be applied to the search for susceptibility genes of 
multifactorial diseases. Until now, exome analysis has not turned up major results with respect to 
multifactorial disease. Considering that the majority of susceptibility SNPs identified by GWAS 
have been discovered in regions that regulate gene expression rather than in regions that code 
proteins, large-scale whole genome sequencing with a large number of patient and control samples 
may be needed. Then, the major challenge for the future is to establish a system to extract valuable 
data from the huge data produced by this new technology and to detect variants associated with certain 
multifactorial diseases. 

HLA is already essential in clinical testing, such as organ and bone marrow transplantation and 
platelet transfusion. In addition, its association with over 100 types of diseases, including various 
autoimmune and inflammatory disorders, as well as infectious diseases, has been reported since the 
1970s. Research aimed at understanding the mechanism of HLA-disease association commenced in 
the 1980s, but even now, the mechanism is not clearly known. In the 1990s, also, researchers carried 
out many analyses of antigenic peptides eluted from HLA molecules prepared from mass cultured 
cells and analyses of T-cell clones created from patient samples, but were unable to gain a complete 
understanding of pathogenic peptides or the mechanisms of disease onset. It is hoped that there will 
be breakthroughs in the search for solutions to the huge riddle of disease mechanisms through 
advances, such as the diversity analysis of each HLA haplotype using next-generation sequencers, 
expression analysis of each HLA molecule using the latest protein chemistry and high-order structure 
analysis of the HLA-antigenic peptide-T-cell receptor complex. 

Finally, the sharing of a huge amount of data produced by genome-wide variation analyses on 
various diseases through public databases, such as the Database of Genotypes and Phenotypes 
(dbGaP) [43], European Genome-Phenome Archive (EGA) [44] and GWAS Central [45], is crucial 
for the promotion of the complete identification of disease susceptibility genes and the understanding 
of the molecular mechanism of disease onset. We have also developed a public database for studies 
on the Japanese population [46–48]. 
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Phenotype-Based Genetic Association Studies  
(PGAS)—Towards Understanding the Contribution of 
Common Genetic Variants to Schizophrenia Subphenotypes 

Hannelore Ehrenreich and Klaus-Armin Nave  

Abstract: Neuropsychiatric diseases ranging from schizophrenia to affective disorders and autism 
are heritable, highly complex and heterogeneous conditions, diagnosed purely clinically, with no 
supporting biomarkers or neuroimaging criteria. Relying on these “umbrella diagnoses”, genetic 
analyses, including genome-wide association studies (GWAS), were undertaken but failed to 
provide insight into the biological basis of these disorders. “Risk genotypes” of unknown 
significance with low odds ratios of mostly <1.2 were extracted and confirmed by including ever 
increasing numbers of individuals in large multicenter efforts. Facing these results, we have to 
hypothesize that thousands of genetic constellations in highly variable combinations with 
environmental co-factors can cause the individual disorder in the sense of a final common pathway. 
This would explain why the prevalence of mental diseases is so high and why mutations, including 
copy number variations, with a higher effect size than SNPs, constitute only a small part of 
variance. Elucidating the contribution of normal genetic variation to (disease) phenotypes, and so 
re-defining disease entities, will be extremely labor-intense but crucial. We have termed this 
approach PGAS (“phenotype-based genetic association studies”). Ultimate goal is the definition of 
biological subgroups of mental diseases. For that purpose, the GRAS (Göttingen Research 
Association for Schizophrenia) data collection was initiated in 2005. With >3000 phenotypical data 
points per patient, it comprises the world-wide largest currently available schizophrenia database  
(N > 1200), combining genome-wide SNP coverage and deep phenotyping under highly standardized 
conditions. First PGAS results on normal genetic variants, relevant for e.g., cognition or catatonia, 
demonstrated proof-of-concept. Presently, an autistic subphenotype of schizophrenia is being 
defined where an unfortunate accumulation of normal genotypes, so-called pro-autistic variants of 
synaptic genes, explains part of the phenotypical variance. Deep phenotyping and comprehensive 
clinical data sets, however, are expensive and it may take years before PGAS will complement 
conventional GWAS approaches in psychiatric genetics. 

Reprinted from Genes. Cite as: Ehrenreich, H.; Nave, K. Phenotype-Based Genetic Association Studies 
(PGAS)—Towards Understanding the Contribution of Common Genetic Variants to Schizophrenia 
Subphenotypes. Genes 2014, 5, 97-105. 

1. Schizophrenia Is a Heterogeneous Group of Diseases Diagnosed Purely Clinically 

The diagnosis of schizophrenia (as of most mental diseases) is to this day an exclusively clinical 
one which, based on the leading classification systems, DSM and ICD, demands the simultaneous 
presence of a number of symptoms that are labeled “positive” or “negative”. In addition, 
persistence of these symptoms for at least 6 months is requested. As such, schizophrenia is the 
unifying term of a highly complex and heterogeneous group of multigenetic disorders, with an 
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array of environmental hazards having influenced onset and course. Common to this group of 
disorders are merely some gross phenotypical traits. Biomarkers in unequivocal support of the 
diagnosis are missing and also modern imaging technologies, despite revealing brain matter loss or 
various functional alterations, have not yet assisted in better understanding disease etiology or 
pathogenesis, or in defining objective diagnostic criteria. This conglomerate of uncertainties, 
however, is the groundwork on which genetic studies have been and are being built on. 

2. Despite High Heritability of Schizophrenia No “Disease Genes” Have Been Uncovered 

There is no doubt that schizophrenia has a major genetic root. Family studies yielded heritability 
estimates of up to 80% for schizophrenia [1,2]. Monozygotic twins manifest concordance rates of 
~50%, thus—on top of a clear genetic origin—pointing to a considerable influence of non-genetic 
causes, i.e., environmental and/or epigenetic factors [3–6]. Searching for the genetic part of 
schizophrenia etiology, a considerable number of explorations have been undertaken, ranging from 
segregation or linkage analyses to association studies based on candidate genes [7,8]. Most of the 
so identified “disease genes”, e.g., DISC1 [9], turned out not to respect disease borders. In fact, the 
DISC1 translocation was found associated as much with mental health as with affective diseases, 
schizophrenia, autism, or personality disorders [10]. DISC1 and others may thus at best deserve the 
label of a global risk gene for mental disorders. 

So far, no definite “schizophrenia genes” of general significance could be identified. Recently 
reported genome-wide association studies (GWAS) of schizophrenia identified a number of genetic 
risk markers significantly associated with the disease, but unfortunately could not extract any 
universally convincing “disease genes”. The initially limited reproducibility over studies and 
ethnicities has improved with increasing numbers to ~60,000 individuals (PGC, Psychiatric  
Genetic Consortium) [11]. Associations, however, remain hampered by very low odds ratios  
(OR distinctly <1.2) [12,13]. Altogether, it appears highly unlikely that even larger GWAS, based 
on the umbrella term “schizophrenia”, will succeed in unraveling the genetic basis of these 
conditions or in identifying relevant disease genes. 

3. “GWAS Hits” Do Not Predict Disease Severity or Other Relevant  
Schizophrenia Phenotypes 

Which information do we then gain from the GWAS-identified risk genotypes? In fact, even an 
accumulation of the GWAS-identified “top 10” risk genotypes [14] does not lead to a more severe 
disease phenotype. In other words: If an individual possessed all “top 10” risk markers at the same 
time (“accumulated risk”), his disease will not be more grave than if he carried none of the  
risk genotypes. 

Another attempt to make use of the GWAS-derived information has been the definition of 
polygenic schizophrenia risk scores (PSS). Besides the genome-wide significant risk loci, a 
substantial proportion of schizophrenia risk has been hypothesized to lie in markers not achieving 
genome-wide significance. Thus, quantitative PSS were calculated based on nominal associations 
of each SNP from the PGC GWAS. These PSS explained up to 6% of variance regarding the 
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diagnosis schizophrenia in an independent sample [11]. Subsequently, PSS effects on  
various disease-relevant phenotypes, e.g., brain matter dimensions, were explored with variable 
success [15,16]. Employing the GRAS data collection of >1200 well characterized schizophrenic 
subjects (see below), we could not uncover the slightest association of PSS with any lead features 
of schizophrenia. In contrast, we found in the same schizophrenic population dramatic effects of 
accumulated environmental risk on age at onset of the disease [17]. 

4. Definition of Biological Subgroups of Schizophrenia: The Essential Next Step 

In summary, we note that all genetic “schizophrenia markers” discovered by GWAS up to date 
do not contribute more to the entirety of this disease than a minimally heightened probability  
(OR < 1.2) of receiving the “umbrella diagnosis schizophrenia”. This whole picture could, 
however, look quite different when considering biological subgroups of schizophrenia as illustrated 
in Figure 1. GWAS on well-defined disease-relevant subphenotypes may ultimately not only lead to the 
identification of entirely new risk genotypes but, importantly, also to a re-distribution of some of 
the identified GWAS risk markers to certain subgroups, resulting then in much higher odds ratios. 

Figure 1. Schematic presentation of three hypothetical subphenotypes of schizophrenia 
embedded in a sample Manhattan plot. The non-overlapping red, blue or yellow dots 
comprise genetic constellations (“assemblies”) suggested to account for disease 
subforms with respective subphenotypes. Note that typical genome-wide association 
studies (GWAS) “top hits”, as defined by the highest significance levels for the clinical 
endpoint diagnosis (“schizophrenia”), most likely fall into different assemblies. This 
can explain their low odd ratios in a large and diverse patient group and the apparent 
lack of interactions. The depicted schema is purely hypothetical and shall illustrate the 
difficulties to define disease genes by conventional GWAS approaches based on 
endpoint diagnoses. 

 

In order to define biological subgroups of schizophrenia, the GRAS (Göttingen Research 
Association for Schizophrenia) data collection was initiated in 2004 [18,19]. The lead hypothesis of 
GRAS states that schizophrenia is caused by thousands of possible combinations of genetic 
markers interacting with a large array of different environmental risk factors. There may be rare 
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cases where a ‘per se’ critical genetic load exists and the disease onset is independent of additional 
external factors. In the vast majority of cases, however, only the interaction between certain genetic 
predispositions and environmental factors will lead to disease onset. The overlap of genetic risk 
factors between individual schizophrenic patients/families probably is fairly low. This in turn might 
explain why it is obviously impossible to obtain common risk genes of schizophrenia with 
convincing odds ratios. According to the primary GRAS hypothesis, schizophrenia is the result of a 
combination of ‘unfortunate’ normal genetic variants exposed to unfavorable environmental 
influence. Apart from its scientific significance, undoubtedly, this hypothesis strongly supports any 
anti-stigma campaign. 

We hypothesize that a considerable proportion of the population across cultures (likely ~50%) 
may harbor a principal genetic make-up for developing mental diseases whereas the remaining 
50% of individuals could never acquire them due to absence of respective genetic prerequisites. Only 
in a small fraction of risk carriers the disease will break out (~0.5%–1% of the population across 
cultures) [20], co-induced by a multitude of potential external inputs, while the bulk of carriers will 
stay healthy and forward their predisposition to their offspring. 

5. Deep Phenotyping Is a Prerequisite for PGAS: The GRAS Data Collection 

If all human genetic approaches to schizophrenia as a “classic” genetic disease apparently failed, 
how will it be possible to learn more about the contribution of genes/genotypes to relevant disease 
subphenotypes? Motivated by this central question we started an alternative and at the same time 
complementary approach to conventional GWAS. We call this approach PGAS, which stands for 
phenotype-based genetic association study. PGAS enables us to explore the contribution of 
genes/genetic markers to schizophrenic subphenotypes. To start PGAS, we had to establish a 
comprehensive standardized phenotypical characterization of schizophrenic patients, the above 
introduced GRAS data collection. Within a few years we compiled the presently world-wide largest 
phenotypical database of schizophrenic patients comprising presently ~1200 subjects, with slow 
steady-state recruitment ongoing. Although much larger data bases of schizophrenic subjects exist, 
unfortunately, they do not even come close to the deep phenotyping information of GRAS. A total 
of 23 psychiatric hospitals all over Germany were involved as hosting centers in this effort [18,19]. 
Inclusion criteria for the patients were confirmed diagnosis of schizophrenia or schizoaffective 
disorder, and the ability to cooperate at least to a minimal degree. The GRAS population is 
representative for those schizophrenic patients in central Europe/Germany who are in contact with 
the healthcare system. Unrivalled in the GRAS data collection is the fact that all cross-sectional 
examinations of all patients were performed by one and the same travelling team. This fact 
contributes in a highly significant manner to the homogeneity of the resulting database, containing 
at present 82% schizophrenic and 18% schizoaffective subjects [18,19]. 

The GRAS data collection does not only encompass sociodemographic and basic clinical 
parameters but also, for example, a very comprehensive cognitive test battery, an extensive 
investigation of neurological signs and symptoms, a thorough medication history, several tests of 
extrapyramidal side effects of antipsychotic medication, complete information on drug 
abuse/addiction or other comorbidities, to name just a few of the covered data modules. Apart from 
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the comprehensive cross-sectional analyses, we collected nearly all psychiatric medical reports and 
discharge letters of all GRAS patients, allowing also for fairly solid longitudinal data analysis, e.g., 
information on disease course and outcome. Altogether, we have about 3000 data points per 
patient, which allow us to perform PGAS [18,19]. Importantly, most GRAS patients agreed to be 
re-contacted for follow-up studies, thereby enabling targeted analyses in the future, e.g., detailed 
morphometrical or functional magnetic resonance imaging studies, or inducible pluripotent stem 
cell approaches to study cellular consequences of complex genotypes. 

6. Phenotype-Based Genetic Association Studies (PGAS): Proof-of-Principle 

First proof-of-principle studies for the PGAS approach were performed over the last years. We 
could show that genetic variants within the complexin2 gene (6 single nucleotide polymorphisms) 
influence the cognitive capability of schizophrenic patients [18]. This gene encodes a synaptic protein 
that is crucial for the regulation of neurotransmitter release. Similarly, the calcium-activated potassium 
channel SK3 is involved in the modulation of neuroplasticity and influences cognition of schizophrenic 
individuals genotype-dependently (as a function of the length of a CAG repeat in the N-terminal 
region) [21]. Moreover, a distinct combination of erythropoietin (EPO) and EPO receptor (EPOR) 
genotypes leads to a remarkable cognitive benefit in schizophrenic subjects as compared to all 
other possible EPO/EPOR genotype combinations [22]. Of note, the association of certain genetic 
variants with cognition in schizophrenia may likewise hold true for healthy individuals and other disease 
populations [22]. This clearly emphasizes the importance of investigating the genotype contribution to 
phenotypes in general, rather than immediately focusing on risk genes in complex diseases. 

Among the discussed candidate risk genes of schizophrenia is NRG1 [23–25]. Analyzing its 
disease-relevance in the GRAS population yielded for the first time an association with age at 
disease onset and severity of positive symptoms [26]. A myelin-associated gene, CNP, turned out 
to co-determine the occurrence of a catatonia-depression syndrome upon aging [27]. Importantly, 
in most of these PGAS approaches, either replication in an independent human cohort and/or 
behavioral phenotypes in corresponding mouse mutants were demonstrated. In fact, the translation 
to mouse models, and even to cultured cells, plays an important part in the search for mechanistic 
comprehension of the observed phenomena. 

7. PGAS Will Be Instrumental for Definition of Biological Schizophrenia Subgroups 

Even though the above mentioned first proof-of-principle studies were important to set the stage 
for PGAS, it is now mandatory to work on the “bigger picture”. The availability of genome-wide 
genetic data on the GRAS sample enables us to better understand the genetic basis of neuropsychiatric 
phenotypes. Using the AxiomTM Caucasian European array as a backbone, we have enriched it by 
including additional markers of putative functional importance [28]. At present, we are in the 
process of defining biological subphenotypes of schizophrenia which are less complex as compared 
to the ‘umbrella diagnosis schizophrenia’ and can be described and well quantified by respective 
phenotype scores. Prerequisite for applying these scores to genetic studies is a high internal 
consistency of the selected score items, reflected by a demanded Cronbach’s alpha of >80%. As a 
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first example, we have operationalized an autistic subphenotype of schizophrenia. This subphenotype, 
which comprises lead features of high-functioning autism (deficits in social interaction and 
communication, as well as repetitive behaviors/stereotypies), shows a normal distribution in the 
GRAS population, thus allowing for extreme group comparisons with respect to the associated 
genotypical information. Our primary target genes for the autistic subphenotype are synaptic genes 
where we find an unfortunate accumulation of normal genotypes, that we consider as “pro-autistic” 
variants of these genes, to explain an appreciable part of the phenotypical variance. A sample of Asperger 
autists is presently recruited with the aim to replicate the genotype-phenotype associations found in the 
autistic subgroup of schizophrenic individuals. Similarly, a psychomotor and a schizoaffective 
subphenotype of schizophrenia will be phenotypically as well as—subsequently—genetically 
characterized, targeting myelin- and ion channel-associated genes, respectively [29]. 

8. Conclusions 

To conclude, the lack of objective diagnoses and the non-existence of classical disease genes 
have forced us to re-consider the genetic approach to mental diseases. Deep clinical phenotyping as 
prerequisite for PGAS, combined with genome-wide SNP coverage, makes it possible to improve 
our understanding of the molecular-genetic architecture of schizophrenia and likely other mental 
diseases via systematic phenotype-based approaches. These in turn necessitate highly labor-intense 
groundwork since they depend on the availability of comprehensive phenotypical databases comparable 
to the GRAS data collection. Some efforts in a similar direction are launched in other disciplines, 
for instance in a first trial to integrate available electronic medical record data and GWAS 
information [30]. Regarding the depth of phenotyping, however, this approach certainly needs to be 
substantially improved. Even if “deep phenotyping” is much more tedious than collecting thousands of 
subjects with merely a certain diagnostic label versus healthy individuals, it will be the only way to 
reach the goal, i.e., novel definitions of biologically sound disease subgroups. It can only be hoped 
that big consortia and sponsors will follow this rationale such that the number of deeply 
phenotyped individuals will grow. At the end of the road, PGAS will permit better insights into the 
complex genotype-phenotype interactions of schizophrenia (and other neuropsychiatric diseases) 
and in this way open up more targeted therapeutic strategies for biological subphenotypes of the disease. 
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Mechanisms of Base Substitution Mutagenesis in  
Cancer Genomes 

Albino Bacolla, David N. Cooper and Karen M. Vasquez  

Abstract: Cancer genome sequence data provide an invaluable resource for inferring the key 
mechanisms by which mutations arise in cancer cells, favoring their survival, proliferation and 
invasiveness. Here we examine recent advances in understanding the molecular mechanisms 
responsible for the predominant type of genetic alteration found in cancer cells, somatic single base 
substitutions (SBSs). Cytosine methylation, demethylation and deamination, charge transfer 
reactions in DNA, DNA replication timing, chromatin status and altered DNA proofreading 
activities are all now known to contribute to the mechanisms leading to base substitution 
mutagenesis. We review current hypotheses as to the major processes that give rise to SBSs and 
evaluate their relative relevance in the light of knowledge acquired from cancer genome sequencing 
projects and the study of base modifications, DNA repair and lesion bypass. Although gene 
expression data on APOBEC3B enzymes provide support for a role in cancer mutagenesis through 
U:G mismatch intermediates, the enzyme preference for single-stranded DNA may limit its activity 
genome-wide. For SBSs at both CG:CG and YC:GR sites, we outline evidence for a prominent role 
of damage by charge transfer reactions that follow interactions of the DNA with reactive oxygen 
species (ROS) and other endogenous or exogenous electron-abstracting molecules. 

Reprinted from Genes. Cite as: Bacolla, A.; Cooper, D.N.; Vasquez, K.M. Mechanisms of Base 
Substitution Mutagenesis in Cancer Genomes. Genes 2014, 5, 108-146. 

1. Introduction 

The explosion of cancer genome sequencing projects over the past few years has revealed the 
complexity of the processes whose alterations are associated with, and are often causative of, 
various types of cancer [1,2]. These include mutational mechanisms that give rise to tissue-specific 
mutation rates, variations in mutation frequencies in distinct compartments of chromosomes, 
sequence context-dependent mutation spectra, and regional hypermutation, often termed kataegis 
(thunderstorm) [3]. Cancer genome studies have also served to catalogue the extent to which 
translocations, chromosomal gains and losses and focal copy-number alterations take place, often 
mediated by catastrophic chromosomal shattering events, as in the case of some bone and pediatric 
cancers [4–8]. From a mechanistic and therapeutic perspective, the arsenal of gene classes and 
pathways that are frequently altered, such as signal transduction, metabolism, DNA repair, 
transcription, epigenetics, RNA splicing and protein homeostasis, has also greatly expanded [1,2,9–11]. 
Attempts to address key questions concerning the causes leading to the mutational events  
that characterize and contribute to driving a normal cell towards tumorigenesis have also 
burgeoned [12–14]. These attempts are, however, necessarily indirect since the only material 
available for analysis are the catalogues of mutations that survived and accumulated, in most cases, 
over long periods of time. With few exceptions, such as mutation patterns observed in the lung 
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cancers of heavy smokers and in skin cancers following UV exposure, most mutational patterns 
have remained enigmatic. 

The goal of this review is to examine two prominent single base substitution (SBS) patterns 
observed in cancer genomes, both of which display sequence context-dependent signatures: C T 
transitions at CG:CG (the colon separates complementary bases written in a 5' 3' direction) 
dinucleotide sequences and substitutions at C:G base-pairs in the context of YC:GR (Y, 
pyrimidine; R, purine) motifs. Whereas spontaneous deamination of 5-methylcytosine has been 
proposed to account for the first pattern, two mechanisms have been recently suggested for the 
latter pattern: over-activity by the APOBEC family of cytosine deaminases and electron transfer 
following oxidative damage. After considering several factors associated with SBSs, such as 
regional variations in mutation frequencies, mechanisms leading to base modification, and DNA 
repair systems, we conclude that for both SBS patterns, oxidative base damage from ROS and other 
electron-abstracting molecules appears to play a more significant role than previously anticipated. 

2. Meta-Analyses of Cancer Genomes 

2.1. Mutational Signatures in Cancer Genomes 

The large number of sequenced cancer genomes now available has made it possible to  
address the issue of mutational spectra and relative mutation frequencies, both exome-wide and 
genome-wide across different cancer types. Some of the largest meta-analyses have included 
4,938,362 somatic substitutions and small insertions/deletions (indels) from 7,042 primary cancers of 
30 different classes [13], ~1,000,000 somatic exome mutations from 4,800 tumors representing  
19 different cancers [15], 617,354 somatic mutations in 3,281 tumors from 12 cancer types [16], 
533,482 somatic SBSs from 1,149 cancer samples and 2 cell lines representing 14 different  
tissues [17], and 373,909 non-silent coding mutations in 3,083 tumor-normal pairs across 27 tumor 
types [18]. The prevalence of SBSs was highly variable, both between and within cancer classes, 
ranging from ~0.001 per megabase (Mb) to >400 per Mb, with childhood cancers generally 
carrying the fewest mutations, acute myeloid leukemia exhibiting a very low median mutation 
frequency (~0.28/Mb), and cancers associated with chronic mutagen exposure, such as lung 
(tobacco smoking) and malignant melanoma (UV light) displaying the highest mutation 
frequencies (8.15/Mb for lung squamous cell carcinoma) [13,15,16]. 

With regard to mutational spectra, the most consistent and frequent mutational signature across 
cancer types has been noted at CG:CG (we identify both nucleosides and nucleotides by their base) 
dinucleotides, with 25/30 cancer types in [13] and 13/14 in [17], and gastrointestinal tumors 
displaying CG:CG TG:CA (target base underlined) among the highest fractions [13,16,17]  
(Table 1A). The preponderance of C T transitions at CG:CG sequences has been attributed to  
high rates of spontaneous deamination of 5-methylcytosine (5mC) as compared to unmethylated 
cytosine [13,16,17,19]; such deamination events yield T:G mismatches and, subsequently, G A 
transitions at the next round of DNA replication. A second prominent mutational signature found 
across several cancer types, including breast, ovary, bladder, head and neck, cervix, liver and  
lung [13,15–17,20,21], has been noted at C:G base-pairs in the context of TC:GA dinucleotides 
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(C T, C G and C A) (Table 1A); this has been attributed either to over-activity of  
members of the apolipoprotein B mRNA-editing catalytic polypeptide (APOBEC) cytosine 
deaminases [13,15,18,20], or to electron transfer reactions following oxidative damage [17]. 

Table 1. Mutational signatures in cancer genomes. 

A. Main mutational signatures revealed from meta-analyses of cancer genomes 
Total number of 

mutations 
Total number of 

cancer types 
Major SBS signature 

(% cancer types) Sequence context References

4,938,362 30 C:G T:A (80%) NCG:CGN [13] 
  C:G T:A or G:C (50%) TCN:NGA  

1,000,000 19 C:G any subst. (32%) TCN:NGA [15] 
617,354 12 C:G T:A (33%) CG:CG [16] 

  C:G G:C (25%) TC:GA  
533,482 14 C:G any subst. (93%) NNCG:CGNN [17] 

  C:G any subst. (36%) NYCH:DGRN  
373,909 27 C:G T:A (30%) CG:CG [18] 

  C:G any subst. (11%) TC:GA  
B. Main cancer type-specific mutational signatures 

Cancer type Putative cause SBS signature Sequence context References
Lung cancer tobacco smoke C:G A:T none [22,27–30] 

 arsenic exposure T:A G:C none [35] 
Melanoma UV, APOBEC3A C:G T:A pyrimidine dimers [36–42,44] 

 unknown G:C any subst. NGRA:TYCN [17] 
Liver carcinoma carcinogens T:A C:G none [13,18] 

Leukemia unknown A:T T:A TA:TA [13,18] 
Endometrial cancer POLEP286R G:C T:A AGA:TCT  

N, any nucleotide; Y, C or T; R, A or G; D, A or G or T; H, A or C or T. 

Cancer type-specific mutational signatures have also been identified, particularly in cancers of 
the lung and skin. For example, in a cohort of 17 non-small cell lung cancer patients, the total 
number of somatic mutations was ~10-fold higher in smokers (median 15,659, range 7,424–26,202) 
than in never-smokers (median 888, range 842–1,268) [22], consistent with other reports that  
smoking-associated lung cancer is distinguished by a significantly high number of mutations  
per Mb [23–28]. Tumors from smokers were also characterized by high fractions (up to 46%) of 
C:G A:T transversions [22,27–30] (Table 1B), a signature of exposure to alkylating nitrosamines 
and polycyclic aromatic hydrocarbons (PAHs) present in tobacco smoke, which yield miscoding G 
adducts [31–34]. This conclusion is further supported by a recent whole-genome sequencing 
analysis of an arsenic exposure-related lung squamous cell carcinoma, which was instead 
characterized by a high fraction (16.3%) of T:A G:C transversions but a low fraction (~6.1%) of 
C:G A:T transversions [35] (Table 1B). In melanomas, up to 87% of all mutations were represented 
by C:G T:A transitions, mostly at pyrimidine dimers [36–42], consistent with DNA translesion 
synthesis across UV-induced covalently linked pyrimidine dimers [43]. Mutations in skin cancer at 
pyrimidine dimers, particularly CC TT transitions on the non-transcribed strand of expressed genes, 
have also been attributed to APOBEC3A, a member of the APOBEC family of cytosine deaminases 
which are active mostly on single-stranded DNA, and expressed in skin keratinocytes [44]  
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(Table 1B). Other prominent patterns included T C transitions in hepatocellular carcinomas, 
which have been attributed to bulky DNA adducts on adenine, A T transversions in the TA:TA 
context, particularly in leukemia samples [13,18], a 2-fold increase in mutations at NGRA relative 
to NGRB (B = C or G or T) in melanomas [17] (Table 1B) and several others, for which the 
underlying mechanisms remain unknown. 

2.2. Mismatch Repair and DNA Replicative Polymerase Proofreading Genes 

The high fidelity of human DNA replication achieves nucleotide incorporation error rates of  
~10 9–10 10 in part through the proofreading (3' 5' exonuclease) activities of replicative 
polymerases, Pol  and Pol , and postreplicative mismatch repair (MMR), which decrease the rates 
of misincorporation on the newly synthesized daughter strands by 100–1,000-fold each [45–48]. 
The proofreading domains reside in the large 261 and 125 kDa POLE and POLD1 catalytic 
subunits of the Pol  and Pol  holoenzymes, respectively, which perform their specific function 
predominantly during leading-strand (Pol ) and lagging-strand (Pol ) DNA synthesis in S  
phase [49]. The MMR pathway comprises 6 genes (MSH2, MSH3, MSH6, MLH1, PMS1 and 
PMS2) whose products yield 4 types of heterodimeric complexes [MutS  (MSH2/6), MutS  
(MSH2/3), MutL  (MLH1/PMS2) and MutL  (MLH1/PMS1)], active on mismatches, bulges, 
small loops, and a number of DNA lesions [50,51]. 

More than 1,000 constitutional gene variants in MLH1, MSH2, MSH6 and PMS2 have been 
classified as pathogenic or likely pathogenic in patients affected by Lynch syndrome [52], an 
autosomal dominant condition also known as hereditary non-polyposis colorectal cancer (HNPCC) and 
characterized by increased susceptibility to colorectal (25%–70%), endometrial (30%–70%), and 
other types of cancer [53]. Such MMR defects have also been known to lead to an accumulation of 
mutations, mostly in the form of microsatellite length changes (microsatellite instability, MSI) [53]. 
The patterns of SBSs in cancers showing MSI have recently been addressed from the exome and 
whole-genome sequencing data of two large cohorts of colorectal [54] and endometrial [55] cancer 
patients (224 and 373 tumors, respectively), and the reconstructed whole-genomes from two gastric 
cancer patients [56]. In general, there was no relationship between MSI status (high/low) and SBS 
mutation rates. By contrast, most samples with elevated SBS mutation rates also displayed somatic 
mutations in the proofreading POLE domain [57]. In addition, POLE-mutated samples could be 
classified into two distinct groups based on MLH1 status: group 1, with low SBS mutations rates, 
MLH1 inactivation and MSI-high; and group 2, with high SBS mutation rates, functional MLH1 and 
MSI-low. Thus, paradoxically, concomitant POLE and MLH1 mutations do not appear to act 
synergistically on SBS mutation rates in most patients [57]. 

Mutations in the proofreading domains of POLE and POLD1 were also reported in two human 
colorectal cancer cell lines (DLD-1 and LoVo) and 1/76 colorectal cancer patients, all three 
samples exhibiting MMR deficiency [58]. More recently, two recurrent germline mutations in the 
proofreading domains of POLE (L424V) and POLD1 (S478N) have been found in a cohort of 
3,805 colorectal cancer patients selected for family history of colorectal tumors and multiple 
adenomas [59]. In the 62 tumors analyzed, no MSI was found; rather, loss of heterozygosity, 
chromosomal instability and driver mutations in known cancer genes, including KRAS, BRAF, 
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APC, PIK3CA, FBXW7, but not CTNNB1, were revealed, suggesting that mutant POLEL424V and 
POLD1S478N may promote tumor formation by increasing the rates of SBS, without any apparent 
bias for a predominant type of base substitution [59]. Twelve missense somatic mutations predicted 
to affect the proofreading domain of POLE, and all associated with microsatellite stability, have 
also been identified in a study of 173 endometrial cancers, P286R being the most commonly 
represented (6 times) POLE mutation [60]. Using a panel of 75 cancer genes, POLE-mutated tumors 
exhibited an ~6-fold increase in mutations relative to non-POLE-mutated tumors, with a prevalence 
of G:C T:A transversions, particularly at G:C base-pairs flanked 5' and 3' by an A:T base-pair [60]. 
Further validation of the putative role for POLE, and to a lesser extent POLD1, mutations in 
endometrial cancer has been obtained from an analysis of unpublished TCGA genomic data, where 
21 (8.5%) and 1 (0.4%) tumors out of 248 samples were found to harbor POLE and POLD1 
mutations, respectively, including 8 cases of P286R and 5 cases of V411L changes in POLE [60]. 
POLE/POLD1-mutated cancers displayed high SBS rates, ranging from 227 to 14,695 exonic 
events, compared to a range of 22 to 2,014 in cancers lacking POLE/POLD1 mutations. Likewise, 
cancers carrying the POLEP286R allele exhibited an overrepresentation of G:C T:A substitutions at 
AGA:TCT motifs (Table 1B), supporting a DNA sequence-specific proofreading defect for this 
particular POLE mutation [60]. In summary, germline and somatic mutations in the POLE and 
POLD1 genes appear to predispose to, or promote, colorectal and endometrial cancers in part by 
increasing the rates of SBSs [61]. Less direct investigations from cell culture nuclear extracts 
suggest that defects in DNA replication fidelity might also be associated with ovarian cancers [62]. 

2.3. The APOBEC Family of Cytosine Deaminases 

The family of APOBEC cytosine deaminases comprises eleven members with distinct functions: 
activation–induced deaminase (AID), a B cell-specific enzyme required for both somatic 
hypermutation (SHM) and class-switch recombination (CSR); APOBEC1, which is expressed 
primarily in the gastrointestinal compartment and is active in the transcript sequence editing of the 
apolipoprotein B mRNA; APOBEC2, which is expressed in heart and skeletal muscles and which 
appears to be essential for muscle development; APOBEC3s (A, B, C, D, F, G and H), which are 
active against exogenous viruses and endogenous retroelements and hence important for innate 
immunity; and APOBEC4, which is mostly expressed in the testes but whose function remains 
unknown [63]. APOBECs have in common a zinc-dependent cytidine deaminase domain (ZDD), 
which catalyzes the conversion of cytosine and deoxycytidine to uracil and deoxyuracil [64] in 
single-stranded RNA and DNA, often in a sequence-dependent context. 

Editing activities of APOBEC3s play a critical role in restricting viral infectivity, and have also 
been postulated to have counteracted the actions against genome stability, mostly in terms of 
integration, exerted by both non-LTR (long terminal repeats) and LTR retrotransposons during 
evolutionary time [63,65]. For example, in vif (virion infectivity factor) HIV-1 particles, 
APOBEC3G proteins interact with the nucleocapsid domain of viral Gag to form nucleoprotein 
complexes with several Pol-II and Pol-III transcribed RNAs, which are then encapsulated into 
virions. During HIV-1 reverse transcription, up to 10% of cytosines can be deaminated to uracil on 
the minus strand of the viral complementary DNA (cDNA), thereby promoting loss of genetic 
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information and the production of large populations of defective virions [63]. Vif antagonizes the 
activity of APOBEC3G (and other APOBEC3s) by binding and targeting the enzyme for 
polyubiquitination and subsequent degradation [63,66,67]. Other viruses targeted by APOBEC3 
enzymes include human T-cell lymphotropic virus (HTLV), hepatitis B virus (HBV), hepatitis C 
virus (HCV), human papillomavirus (HPV) and human herpesviruses (HHV). In addition to 
deaminase activity, APOBEC enzymes restrict exogeneous viruses and endogenous retroelements 
through editing-independent activities. These include inhibition of viral replication, for example by 
interfering with tRNA priming and the initiation of DNA replication during HIV-1 reverse 
transcription, binding with positive regulators of viral gene expression, as in the case of heterogeneous 
nuclear ribonucleoprotein K (hnRNP) for HBV [63], and other less well-characterized mechanisms 
aimed at restricting non-LTR retrotransposon transcription, DNA synthesis and integration [65]. 

At least three recent reports have suggested the involvement of aberrant APOBEC3B deaminase 
activity as a frequent cause of SBSs in cancer. For example, APOBEC3B mRNA was found to be 
upregulated relative to controls in 28/38 established breast cancer cell lines and to be expressed in 
the nucleus [68]. In selected nuclear extracts, C U editing activity was detected on synthetic DNA 
substrates specifically at TC:GA dinucleotides when treated with a control shRNA, whereas no 
activity was evident upon treatment with short hairpin RNA (shRNA) targeting APOBEC3B 
mRNA. In these cell lines, treatment with anti-APOBEC3B shRNA also led to a decrease in 
genomic uracil loads from ~100,000 to ~60,000 per haploid genome by HPLC-ESI-MS/MS and, as 
expected, test amplicons displayed a decrease in C T transition mutation frequency. The involvement 
of APOBEC3B activity in cancer was further supported by data on Ref-seq APOBEC3B 
expression, which was shown to be high in several tumor types, including breast, uterus, bladder, 
head and neck and lung (both adenocarcinoma and squamous cell carcinoma) [15,20]. The top five 
cancer types with the majority of mutations at C:G base-pairs were also among the top six datasets 
in terms of APOBEC3B mRNA expression, and a positive correlation between the proportion of 
mutations at C:G base-pairs and median APOBEC3B levels was observed. Bladder, cervical, lung 
squamous cell carcinoma, lung adenocarcinoma, head and neck, and breast cancers shared a strong 
bias for TCN (N = A or C or G or T) mutation signatures, as observed for the recombinant 
APOBEC3B protein. Interestingly, a significant enrichment of strand-coordinated and clustered  
(2 or more per 10 kb) C T and C G mutations at TCW (W = A or T) motifs were discovered, a 
number of which were in close proximity to chromosomal rearrangement breakpoints, particularly in 
bladder, cervical, head and neck, breast and lung tumors [15,20], a phenomenon termed kataegis [3]. 
In summary, these analyses are consistent with the possibility that aberrant APOBEC deaminase 
activity, particularly at TC:GA sites, may represent a general endogenous mutagen that contributes 
to several different types of human cancer. 

2.4. Electron Transfer in DNA Oxidation 

Mutation spectra analyses of SBSs arising spontaneously, both in cell culture and in whole 
animals, have indicated the frequent occurrence of sequence context-dependent mutations. For 
example, an analysis of 837 spontaneous SBSs in the supF tRNA gene in 18 cell lines and 2 
transgenic mouse models indicated that the most mutable regions involved guanine and cytosine 
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tracts [69]. In human osteosarcoma cells, shRNA knock-down of the WRN helicase gene,  
mutations in which are associated with the progeroid Werner syndrome, led to a doubling in genomic 
8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxoG) content and an increase in SBSs in the supF reporter 
gene, consisting largely of G C (49%), G A (28%) and G T (23%) substitutions at GA:TC 
dinucleotides within the supF reporter gene [70]. Because 8-oxoG is a well-recognized marker of 
oxidative damage and guanine oxidation depends upon flanking sequence (i.e., GR > GY; R = A or 
G; Y = T or C) as a result of stacking-induced electron transfer [71,72], these data suggested a role 
for oxidative damage in sequence context-dependent mutagenesis. 

A recent study addressed the question as to whether electron transfer might also cause sequence 
context-dependent SBSs in cancer [17]. The analysis compared the fractions of mutations occurring 
at G:C base-pairs in the context of all 64 possible combinations of NGNN:NNCN motifs (NGNN 
for simplicity), and included 21 cancer datasets representing 14 tissues comprising 1,149 patient 
samples and 2 cell lines for a total of 533,482 SBSs. With the exception of two melanoma datasets, 
CGNN sequences were more frequently mutated than DGNN (D = A or G or T), consistent with 
the CG:CG dinucleotide, the most prominent substrate for cytosine methylation, being a common 
mutation hotspot (Table 1A). In 7 cancer datasets, including lung, head and neck and melanoma, 
for which association with exposure to either cigarette smoke or sunlight was documented, G 
followed by a 3' purine was associated with increased mutations as compared to a 3' pyrimidine, 
i.e., DGRN > DGYN (Table 1A). Notably, significant correlations were observed between the 
fractions of mutated DGNN motifs and the sequence-dependent free energies of base stacking 
along the DGNN motifs for 5 of the 7 cancer datasets. Significant correlations were also observed 
between the fractions of mutated DGNN motifs and the energies required to abstract an electron 
from the target guanines, as assessed from the values of vertical ionization energies computed for 
all G-centered trimer motifs. These results are consistent with the conclusion that DNA oxidation 
may be a source of sequence context-dependent SBSs in cancer as a result of electron transfer, as 
postulated from model sequences in vitro [73,74]. 

2.5. DNA Replication Timing 

During eukaryotic DNA replication, more than 20,000 pre-replicative complexes comprising the 
origin recognition complex (ORC), Cdc6 and Cdt1 load inactive minichromosome maintenance 
(MCM) helicase complexes to generate “licensed” replication origins. Initiation of DNA synthesis 
is controlled by Dbf4-dependent kinase (DDK), which recruits Cdc45 and Sld3, and cyclin-
dependent kinase (CDK), which by phosphorylating Sld3 and Sld2 recruit GINS and additional 
factors, including DNA polymerases. Origin firing is controlled both temporally and spatially. 
Chromatin correlating positively with gene expression, G + C-richness and active chromatin marks 
is replicated in early S phase in the nuclear interior, whereas chromatin associated with gene-poor 
regions, A + T-richness and repressive chromatin marks is preferentially replicated during late S 
phase at the nuclear periphery [75,76]. 

In cancer, late replicating chromatin has been shown to harbor higher relative fractions of SBSs 
than early replicating chromatin. For example, the fractions of SBSs from several completely 
sequenced cancer genomes (melanoma, prostate cancer, small cell lung cancer, chronic lymphocytic 
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leukemia and colorectal cancer) were found to be significantly more extensive in the constant late 
than in the constant early replicating zones of neutrally evolving regions [77]. Such genomic 
regions were those remaining after sequences from centromeres, telomeres, the Y chromosome, 
genes, promoters, repetitive elements and ultra-conserved regions had been excluded. Analyses of 
the mutation spectra indicated that, with the exception of A T (T A) transversions, which 
occurred more often in the constant late replicating regions in all five cancer types, the relative 
proportions of substitutions were very similar between constant early and constant late replicating 
regions, even though mutation frequencies were higher in the latter. Similarly, a large study of SBSs 
in exomes from 3,083 tumor-normal pairs representing 27 different cancer types also found that the 
average mutation fraction was higher (~2.9-fold) in the latest- as compared to the earliest-
replicating percentiles [18]. 

The increased mutation frequency in late as compared to early replicating regions does not 
appear to be a unique property of cancer cells. For example, a comparison of 1-Mb non-overlapping 
regions containing SBSs between human and chimpanzee and the pooled cancer data [77] indicated 
that most regions harboring human-chimpanzee SBSs also harbored SBSs in cancer. Similarly, in 
human populations, late-replicating regions of the human genome have been shown to be characterized 
by a greater density of single nucleotide polymorphisms (SNPs) than early replicating regions [78]. 
Finally, deep-sequencing of human lymphoblastoid cell lines from father-mother-offspring trios 
revealed that transition mutations were >2-fold more abundant in late-replicating than in  
early-replicating regions of the genome, whereas transversion mutations were increased >6-fold [79]. In 
summary, these analyses suggest that the increased mutation rate in late- versus early-DNA 
replicating regions, which has been noted in both population and cancer genome studies, are potentially 
caused by mechanisms that share some commonalities between the germline and the soma. 

2.6. Chromatin Organization 

Chromatin structure has been found to strongly correlate with regional SBS rates along 
chromosomes in cancer genomes. Chromatin organization is regulated by many factors, including 
epigenetics, i.e., reversible changes both at the level of DNA and involving histone tail amino 
acids. Chromatin condensation, or heterochromatin, is associated with reduced gene expression and  
involves the accumulation of specific histone marks, including methylation of lysines 9 and 27 on 
histone 3 (H3K9me2 and H3K27me3) by histone methyltransferases (HMT) such as G9a, GLP and 
SETBD1, and DNA methylation at C5 of cytosine, mainly at CG:CG dinucleotides, by DNA 
(cytosine-5)-methyltransferases (DNMT1, DNMT3a and DNMT3b). Among other critical 
interactions, H3K9me2 serves as a high-affinity binding site for the recruitment of heterochromatin 
protein 1 (HP1), a platform protein that collapses chromatin into higher-order fibers as a result of 
dimerization between nucleosomes. By contrast, promoter DNA demethylation and acetylation of 
H3K9 maintains open chromatin structure, or euchromatin, and supports active gene transcription [80]. 
These represent only a few epigenetic marks that are known to influence chromatin structure. 

A total of 84,879 unique SBS positions from leukemia, melanoma, small cell lung cancer and 
prostate cancer genomes were used to identify potential sources of mutation rate variation across 
the genome, by correlating site variation with a set of 46 diverse genetic and epigenetic features 
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that had been mapped genome-wide in human cells [81]. On a megabase scale, cancer SBS density 
correlated with many features of somatic cell chromatin organization, with the highest positive 
correlations being represented by the repressive histone modification H3K9me3, followed by 
H3K9me2 and H4K20me3. In fact, >55% of the variance in cancer SBS regional variation could be 
accounted for by combining features, with H3K9me3 alone associating with more than 40% of the 
observed variance in SBS density. Interestingly, the associations remained strong when only  
non-genic or only genic regions of the genome were considered, suggesting that transcription or 
transcription-coupled nucleotide excision repair may have played a comparatively minor role as 
compared to epigenetic modifications. We should note that, in a separate study, levels of gene 
transcription were found to correlate inversely with mutation rates [18], although the process of 
transcription is known to be a source of genetic instability [82,83]. The use of a metric that 
employed data on physical contacts between regions through three-dimensional folding of 
chromosomes, thereby distinguishing between densely packed chromatin with strong short-range 
interactions and accessible euchromatin with more diverse interactions, also revealed an  
anti-correlation pattern with somatic SBS density [81]. These findings led the authors to propose 
that chromatin organization is a major determinant of variation in regional mutation rates in cancer. 
Specifically, SBS rates in cancer cells appear to be highest in inaccessible, heterochromatin-like 
regions and lowest in accessible euchromatin-like domains. Reversible histone acetylation and 
deacetylation events in the cell are also critical for mutation avoidance. For example, failure to 
deacetylate H3K59ac marks following the S-phase in hst3  hst4  double-mutant yeast cells 
increased the rates of SBS ~10-fold and the rates of gross chromosomal rearrangements  
15,600-fold, whereas lack of H3K59 acetylation in rtt109  cells led to a ~10-fold increase in 
complex mutations [84]. These effects were synergistic with mutations in MMR and the 
proofreading activities of replicative Pols  and , suggesting a model in which cyclic acetylation 
and deacetylation of chromatin is critical for replication fidelity. 

3. Mechanisms of Base Modification 

3.1. Cytosine Methylation and Demethylation 

The ability of site-specific DNA (cytosine-5)-methyltransferases to transfer the methyl group 
from S-adenosylmethionine to the C5 position of cytosine in the context (mainly) of CG:CG 
dinucleotides in mammals and the role of DNA methylation in transcriptional regulation, genomic 
imprinting and silencing of repetitive DNA have been well reviewed [85,86]. During the past few 
years, it has become evident that DNA methylation can be reversed by a group of enzymes 
belonging to the ten-eleven translocation (TET1, 2, and 3) family of iron and -ketoglutarate  
( -KG)-dependent dioxygenases, which utilize molecular oxygen to transfer a hydroxyl group to 
5mC to form 5-hydroxymethylcytosine (5hmC) (Figure 1, top). Whereas approximately 4% of all 
cytosines (70%–80% of CG:CGs) are estimated to be methylated, only ~0.1%–0.7% total appear to 
be marked by hydroxymethylation [87]. TET enzymes can further oxidize 5hmC sequentially to yield 
5-formylcytosine (5fC) and 5-carboxycytosine (5caC), and evidence is increasing for a role of 
thymine DNA glycosylase (TDG), a member of the base excision repair pathway, in cleaving 5fC 
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and 5caC thereby yielding abasic sites which are then replaced with unmodified cytosines [88,89] 
(Figure 1, top). 

A critical step in the TET-dependent oxidation reactions is the role played by -KG, which 
binds to a His-His-Asp-coordinated Fe(II) cluster in the enzymatic active site to effect the transfer 
of an oxygen to the substrate 5mC and release 5hmC. -KG is synthesized from isocitrate in a fully 
reversible reaction by different isoforms of NADP+-dependent isocitrate dehydrogenases (IDH), 
with IDH2 and IDH3 acting in the mitochondria as part of the tricarboxylic acid (TCA) cycle 
(Krebs cycle), and IDH1 providing a source of NADPH in the cytoplasm for lipid biosynthesis and 
protection from oxidative stress [90]. 

Recurrent gain-of-function mutations in IDH1 and/or IDH2 typify ~70% of sporadic  
high-grade gliomas and secondary glioblastomas, ~10% of acute myeloid leukemias [16] and 
colangiocarcinomas [91], and have been reported in patients with acute lymphoblastic leukemia, 
chondrosarcomas, angioimmunoblastic T-cell lymphoma, cholangiocarcinoma and pancreatic  
cancers [90,92], where they have been found to induce DNA hypermethylation at CG:CG islands 
and shores in a tissue-specific manner [91]. The mutations, which occur at the active site of IDHs, 
alter the reaction order of the enzymes such that high concentrations of D-2-hydroxyglutarate (2-HG), 
rather than -KG, are released [92] (Figure 2). Thus, 2-HG binding to both TET enzymes as well as 
other cellular dioxygenases, including histone demethylases and propyl hydroxylases, effectively 
inhibits their activities. 

Figure 1. (Top) Cytosine methylation and demethylation pathways; (Bottom) Products 
of cytosine and C5-substituted cytosine deamination. 

 

Figure 2. Conversion of isocitrate to -ketoglutarate ( -KG) by isocitrate 
dehydrogenases (IDH) enzymes and conversion of -KG to D-2-hydroxyglutarate (2-
HG) by gain-of-function mutations in IDH1 or IDH2. 
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In melanoma, loss of 5mC through oxidation to 5hmC has been observed both as a result of 
IDH1 or IDH2 neomorphic mutations as well as the downregulation of TET and IDH2 genes [93].  
A comparison between benign nevi and melanoma further supported the selective loss of 5hmC in 
melanoma; in addition, the extent of 5hmC loss in melanoma correlated directly with Breslow 
depth, a predictor of prognosis, pathological stage and, most significantly, Kaplan-Meier survival 
curves [93]. Large losses of 5hmC peaks and higher levels of 5mC in melanoma versus nevi were 
detected within gene coding and flanking regions, including genes associated with adherens 
junctions, Wnt signaling, additional pathways in cancer, and melanogenesis pathways, implying a 
role for 5hmC in pathways that are fundamental to cellular differentiation and dedifferentiation. In 
mouse embryonic stem cells, 5fC and 5hmC were found to be enriched in intragenic regions, 
especially within exons and enhancers, where they colocalized with histone acetyltransferase p300 
sites, DNaseI hypersensitive sites and CTCF-bound regions, specifically at poised enhancers, 
which are marked by H3K4me1[+] and H3K27ac[–], in comparison to active enhancers 
(H3K4me1[+] H3K27ac[+]), concomitantly with a decrease in 5mC [88]. Accordingly, in the 
absence of TDG, accumulation of 5fC correlated with increased binding of the transcriptional 
activator p300 at poised enhancers. These data support a role for 5mC and 5hmC oxidation in the 
regulation of the epigenetic state of functional enhancer elements in mammalian genomes. CG:CG 
hypermethylation at specific genes was also found to represent a marker for relapse-free survival 
time after surgery in a cohort of 444 patients with non-small cell lung cancer. Specifically, patients 
with zero to one methylated markers in the HIST1H4F, PCDHGB6, NPBWR1, ALX1 and HOXA9 
genes were characterized by a longer relapse-free survival time than those with two or more 
hypermethylated markers; 48% from the enriched methylated group relapsed, as compared with 
only 18% of those in the less methylated group [94]. 

3.2. Deamination of Cytosine Bases 

3.2.1. Spontaneous Deamination 

The rate constants for the spontaneous deamination of cytosine (C) and protonated C to uracil 
(U), 5mC to T, 5hmC to 5hmU, 5fC to 5fU and 5caC to 5caU (Figure 1, bottom) have been 
determined from both the extrapolations of Arrhenius plots and genetic assays [95–100]. In double-
stranded DNA, deamination rates for C and 5mC are extremely slow, of the order of 10 13 s 1 
(Table 2), which translates into half-lives ranging between ~30,000 to ~85,000 years. Rates 
increase approximately 3-orders of magnitude in both single-stranded DNA and in isolated 
deoxyribonucleotides, supporting the view that hydrogen bonding plays a major role in shielding 
cytosines from spontaneous deamination. Comparison of the data given in Table 2 indicates that 
rates of deamination for 5mC are only marginally higher than for cytosine. Rates increase by an 
additional 3-orders of magnitude upon protonation; however, since cytosine protonation occurs at 
acidic pH (pKa = 2.4) within a C:G Watson-Crick base-pair [101], it is unlikely to play a 
significant role in vivo. That DNA melting is rate-limiting for cytosine deamination is further 
suggested by evolutionary studies, which indicate that CG:CGs embedded within G+C-rich areas 
(H isochores), and thus characterized by increased melting temperatures, have been depleted to a 
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lesser extent than CG:CGs embedded in G+C-poor (L isochores) regions, which melt at lower 
temperatures [102]. Further support is provided by the finding that C T transitions decrease 
gradually with increasing nucleosome occupancy score in comparative studies of S. cerevisiae, 
medaka (Oryzias lapites) and C. elegans genomes [103]. Analysis of the hydrolytic deamination 
reaction using density functional theory shed considerable light on the requirements for base 
unpairing and the effect of protonation [104]. Two pathways have been identified (Figure 3). In 
pathway A, upon protonation of N3 (Figure 3a), nucleophilic addition of a first water molecule to 
carbon C4, leads to the formation of a tetrahedral intermediate with the assistance of a second 
water molecule (Figure 3b). The C4-N4 bond is then broken and a proton transfer takes place from 
the hydroxyl group at C4 to NH3, thereby forming thymine and an ammonium cation. In pathway 
B, nucleophilic addition of the first water molecule to C4 occurs on the neutral 5mC (Figure 3b), 
again with the assistance of a second water molecule, yielding a neutral tetrahedral intermediate 
(not shown). The exocyclic amino group is then protonated through an intermolecular proton 
transfer, after which the reaction proceeds as in pathway A. For both pathways, the nucleophilic 
addition is the rate-determining step; however, whereas nucleophilic addition to carbon C4 of 5mC 
is easier than to the N3-protonated form, the trend is reversed in the case of C and N3-protonated 
C. Thus, deamination of 5mC is more difficult than that of C in pathway A, whereas the opposite is 
seen in pathway B. 

This study has several implications. First, nucleophilic attack and formation of the tetrahedral 
intermediate cannot occur on duplex DNA; second, only pathway B is compatible with the greater 
susceptibility of 5mC to deamination, compared with C; third, a protonated base is not required for 
pathway B; and fourth, for pathway B, the activation free energy for 5mC (134.1 kJ/mol in aqueous 
solution) is only 4.4 kJ/mol less than that associated with C (138.5 kJ/mol in aqueous solution), 
implying that the susceptibility to deamination of 5mC relative to C is no more than 4-5-fold. In 
summary, these investigations show that (1) spontaneous deamination of cytosine bases only occurs in 
single-stranded DNA; (2) deamination of 5mC is only marginally more efficient than for C; and (3) 
all C5 substituted bases, with the exception of 5caC, display detectable (and rather similar)  
rates of deamination. 

3.2.2. ROS-Induced Deamination 

ROS, such as the non-radical hydrogen peroxide (H2O2) and free superoxide radicals (O2 ), are 
generated as a result of mitochondrial respiration, from the activation of growth factor receptors 
through NADPH oxidase, the arachidonic acid cascade and others, and play crucial roles as signal 
transduction molecules and neuroregulators [105,106]. H2O2 may also generate free radicals, 
including the hydroxyl radical (OH), the most potent oxidizing radical generated by the cell, 
through routes including ionizing radiation, interactions with O2  through the Haber-Weiss reaction 
and by interactions with transition metal ions [Fe(II) and Cu(I)/Cu(II)] through Fenton chemistry, 
as exemplified in reaction 1. 

Cu(II) + H2O2  Cu(I) + H2O + H+; Cu(I) + H2O2  Cu(II) + OH + OH  (1)
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Free radicals constitute an important endogenous source of damage to DNA and other 
molecules, and therefore strict homeostatic controls exist in the cell between the generation and 
neutralization of ROS species by catalase, superoxide dismutase 1 and 2 (SOD1 and 2), the 
glutathione peroxidase (GPX) and peroxiredoxin (PRX) families of detoxifying enzymes and other 
antioxidants, such as vitamins C and E [106,107]. A number of studies in leukemia, breast cancer, 
ovarian cancer, benign and malignant prostate cancer, non-small cell lung carcinoma, cervical 
squamous cell carcinoma, stomach cancer, and Hodgkin’s disease patients all concur with the 
conclusion that levels of ROS detoxifying enzymes are generally lower in cancer than in 
surrounding normal tissue, leading to oxidative stress, i.e., altered ROS homeostasis in favor of 
increased steady-state levels of ROS [107]. In addition, as in the case of BCR-ABL1 translocations 
in myeloid leukemia, Rac2 activation has been shown to reduce the mitochondrial membrane 
potential ( m), thereby inducing electron leakage from the mitochondrial respiratory chain 
complexes I-III and II-III (MRC-cIII) and, as a consequence, a 2- to 6-fold increase in cellular ROS 
[108]. 

Treatment of duplex oligonucleotides containing methylated and unmethylated CG:CGs with 
Cu(II)/H2O2/ascorbate to effect Fenton-type reactions led to much more frequent modifications of 
5mC than C [109]. One of the main products involved the saturation of the C5-C6 double-bond of 
5mC, to yield 5-methyl-5,6-dihydroxy-5,6-dihydro-2'-deoxycytidine (5-methyl-2'-deoxycytidine glycol, 
5mCg). Kinetic determinations of the spontaneous deamination of two stereoisomers of 5mCg, i.e., 
5mCg(5S,6S) and 5mCg(5R,6R) in duplex DNA, which affords 5,6-dihydroxy-5,6-dihydrothymidine 
(thymidine glycol, Tg) [110], indicated rates in the range of ~10 6 s 1, similar to the values 
determined for isolated nucleotides. Thus, ROS-induced saturation of the C5-C6 double-bond in 
5mC increases rates of deamination by ~4 orders of magnitude with respect to single-stranded 
DNA, and ~7 orders of magnitude with respect to unmodified 5mC in double-stranded DNA. The 
susceptibility of duplex DNA to damage by Fenton-type reactions has been assessed using 5S 
rDNA, either alone or upon reconstitution on nucleosome particles. The number of single base 
lesions was found to be 8-fold higher on nucleosomal DNA than on isolated DNA, implying that 
Fenton chemistry is not only unrestricted by chromatin compaction but actually appears to be 
facilitated [111]. Although the roles of histone octamers in permitting DNA damage are not fully 
understood, X-ray crystal structure studies revealed the presence of many divalent metal binding 
sites in nucleosome particles [112], and several peptide models of histones H2A, H2B, H3 and H4 
have been shown to coordinate Cu(II), mostly through macrochelate rings involving histidine and 
carboxylate groups [113]. The extremely short (<1 ns) half-life of OH likely restricts Fenton 
chemistry at sites of OH generation. Thus, given that H2O2 is relatively stable and able to diffuse 
across cells, copper coordination within nucleosome particles might provide a suitable environment 
for oxidative DNA damage in chromatin. Determinations of copper concentrations by both atomic 
absorption spectroscopy and X-ray fluorescence in plasma and tumor samples from several types of 
cancer indicate that levels are usually higher (up to 2- to 3-fold) in cancer patients than in normal 
controls [107]. Indeed, high levels of copper appear to be required for tumor growth [114]. 
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Table 2. Rates of spontaneous deamination for cytosines. 

Deaminating base Sequence context Deaminated base product Deamination rate at 37 °C (s 1) References 
C Free nucleoside U 9.4 ± 0.5 × 10 10 [95] 

3mC+ Free nucleoside 3mU 5 × 10 7 [100] 
3mC+ Free nucleotide 3mU 13 × 10 7 [100] 
5mC Free nucleoside T 7.8 ± 0.3 × 10 10 [95] 
5hmC Free nucleoside 5hmU 5.8 ± 0.8 × 10 10 [95] 
5fC Free nucleoside 5fU 1.2 ± 0.2 × 10 9 [95] 

5caC Free nucleoside 5caU not detected [95] 
5mCg(5S,6S) Free nucleoside Tg 1.1 × 10 5 [115] 
5mCg(5R,6R) Free nucleoside Tg 8.6 × 10 6 [115] 

C ssDNA U 2.1 × 10 10 [96] 
C ssDNA U ~1 × 10 10 [98] 

5mC ssDNA T 9.5 × 10 10 [96] 
C dsDNA U 2.6 × 10 13 [97] 
C dsDNA U 4 × 10 13 [99] 
C dsDNA U ~7 × 10 13 [98] 

5mC dsDNA T 5.8 × 10 13 [97] 
5mC dsDNA T 1.5 × 10 11 [99] 

5mCg(5S,6S) dsDNA Tg 5.2 × 10 6 [109] 
5mCg(5R,6R) dsDNA Tg 7.0 × 10 6 [109] 

C, cytosine; 5mC, 5-methylcytosine; 3mC+, N3-methylcytosine; 5hmC, 5-hydroxymethylcytosine; 5fC, 5-formylcytosine; 

5caC, 5-carboxycytosine; 5mCg(5S,6S) and 5mCg(5R,6R), 5-methylcytosine glycol stereoisomers; U, uracil; 3mU, 

N3-methyluracil; T, thymine; 5hmU, 5-hydroxymethyluracil; 5fU, 5-formyluracil; Tg, thymine glycols. 

Figure 3. (a) Numbering scheme for cytosines; (b) Pathways for the spontaneous 
deamination of C and 5mC (only 5mC is shown). 

 

In summary, oxidation of 5mC by copper ions and ROS generate cytosine glycol intermediates, 
which deaminate at high rates to yield Tg:G mispairs. DNA oxidation by Fenton chemistry is 
enhanced in nucleosomal DNA, in which several coordination sites for copper and other metal ions 
have been identified. Both ROS and copper concentrations have been found to be enhanced in 
tumors, raising the possibility that ROS-dependent deamination at methylated CG:CG sites may 
contribute to mutation in cancer. 
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3.2.3. Enzymatic Deamination by Single-Stranded DNA-Specific AID/APOBECs  

AID/APOBEC enzymes catalyze the deamination of cytosine to uracil on single-stranded DNA 
(Figure 1, bottom). The active site of APOBEC enzymes is recognized by a conserved motif  
(H-X-E-X23–28-P-C-X-C), in which a coordinated zinc ion carries out the nucleophilic attack during 
the deamination reaction. In the high-resolution crystal structures of human APOBEC2 and the 
catalytic domain of APOBEC3G (aa 197–380), a water molecule serves as a hydrogen donor, 
whereas a conserved glutamate residue (E100 in APOBEC2 and E259 in APOBEC3G) functions as 
a proton shuffler during the hydrolytic cycle [116]. As with other DNA metabolizing enzymes, the 
target cytosine is flipped-out and inserted into the active site; because the flipping step appears to 
involve passive DNA breathing, it probably accounts for the greater enzymatic activities observed 
for deamination of single-stranded, as opposed to double-stranded, nucleic acids [117,118]. Whether 
AID/APOBEC enzymes deaminate cytosines modified at C5, including 5mC, 5hmC, 5fC and 5caC 
has been controversial, with recent studies reporting generally weak or no activities towards  
C5-substituted cytosines [118–120], and earlier work reporting strong activities on 5mC by human 
AID and rat APOBEC1 [121]. Experiments performed by scoring mutations either in viral DNA or 
in vitro with model sequences indicate strong effects on deamination rates by nucleotides flanking 
the target cytosine: optimal substrates include (C/G)TC(A/G) for APOBEC3B [122,123], T(T/C)C 
for APOBEC3C [124], CCCA for APOBEC3G [122,124–127], TTCT for APOBEC3F [124–126], 
WRCY (W = A or T; R = A or G; Y = C or T) for AID [128], although comparative analyses using 
enzymatic kinetic constants awaits further work. In summary, APOBEC enzymes favor deamination 
of unmodified cytosine residues, to yield C-to-U modifications, in single-stranded DNA and in a 
sequence-dependent manner that is specific to each family member. 

3.3. Sequence Context-Dependent Guanine Oxidation Products 

3.3.1. Guanine 

DNA oxidation plays a significant role in the pathophysiology of cancer, with epidemiological 
studies demonstrating a strong association between the generation of ROS and reactive nitrogen 
species (RNS) from chronic inflammation and increased cancer risk [129]. Guanine has the lowest 
redox potential of all DNA bases, and it has consistently been found to be a highly susceptible site 
for reactions with a variety of agents, including singlet oxygen, OH radicals, peroxynitrite, UV 
radiation with riboflavin and many others [130]. For example, in a study in which duplex DNA was 
subjected to 266 nm wavelength laser pulses as a source of photonic ionization, the quantum yield 
for the formation of 8-oxoG was much higher than that of oxidized nucleosides arising from the 
degradation of the other bases [131]. In addition, extensive experimental evidence supports a role 
for sequence context in terms of the chemistry and extent of DNA damage at guanine residues. 
Pioneering work in which DNA cleavage was induced by riboflavin as an electron-accepting 
photosensitizer in double-stranded 30-mers containing a target G in different sequence contexts  
(5'-TXGYT-3'), showed that the extent of cleavage at the target G depended upon DNA flanking 
sequence composition [73], implying that the ease of losing an electron by the target G was also 
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dependent on flanking sequence. Indeed, computations of the ionization potentials (i.e., the energy 
required to abstract an electron) (IPs) for the target G were found not only to differ with varying X 
and Y in a 5'-XGY-3' context, but also to correlate inversely with the extent of cleavage [73]. 
Specifically, the ionization potentials at a G followed by a 3' A or G were found to be up to 0.44 eV 
lower than when followed by a 3' T or C, whereas the base composition 5' of a G made little  
(<0.1 eV) contribution [74]. Hence, these and other investigations have together laid the foundation 
for the concept that a positive charge (a hole) inserted into DNA by abstracting an electron 
migrates through base stacking, either by hopping from one base to the next over long distances or 
by a tunneling mechanism over short distances (1–3 bases) [132], from the original location to sites 
of lowest IPs, i.e., 5' G in GA and GG sequences. 

3.3.2. 8-oxoG 

In addition to unmodified bases, sequence context-dependent reactivity has also been  
observed for 8-oxoG, one of the main products of DNA exposed to ROS and RNS. 8-oxoG is 
several orders-of-magnitude more susceptible to further oxidation than G itself due to a lower 
ionization potential (6.93 versus 7.31 eV for unstacked 8-oxoG and G, respectively) [133],  
yielding more stable secondary oxidation products, including dehydroguanidinohydantoin (DGh), 
N-nitro-dehydroguanidinohydantoin (NO2-DGh), 5-guanidinohydantoin (Gh), 2-imino-5, 
5'-spirodihydantoin (Sp), 2,5-diamino-4H-imidazol-4-one (imidazolone, Iz), its hydrolysis  
product 2,2,4-triamino-5(2H)-oxazolone (oxazolone, Oz) [134] and guanidinoformimine (Gf), the 
decarboxylated product of Oz [135] (Figure 4). 

Earlier studies demonstrated that 8-oxoG reactivity to a variety of oxidants, including 
NiCR/KHSO5, IrCl62 , IrBr62 , Fe(CN)63 , SO4  and 1O2, increased when located 5' to a G  
(8-oxoGG) compared to 3' to a G (G8-oxoG) [136], a trend that followed the computed  
sequence-dependent ionization potentials (6.38 eV for 8-oxoGG and 6.51 eV for G8-oxoG) [133]. 
More recent studies further established the sequence-dependent reactivity of 8-oxoG in duplex 
oligonucleotides to UVA-irradiated riboflavin to follow: C8-oxoGA  A8-oxoGG > G8-oxoGG > 
C8-oxoGT > T8-oxoGC > A8-oxoGC, supporting a model whereby indiscriminate removal of 
electrons from all four nucleobases by riboflavin creates holes that migrate to sites of lower IPs  
(8-oxoG), with 8-oxoG reactivity modulated by sequence-dependent variations in the IPs by 
neighboring bases [137]. In addition to the extent of reactivity, also the types of products formed by 
riboflavin-oxidized 8-oxoG varied with flanking sequence composition. For example, although three 
main products were generally observed (Sp > Gh > Iz), at low riboflavin concentrations (<15 M) 
oligonucleotides containing G8-oxoGG, C8-oxoGT and T8-oxoGC yielded relatively high levels of 
Sp that decreased as a function of increasing riboflavin concentration. By contrast, at riboflavin 
doses >30 M, DGh was the most abundant species in some sequence contexts (G8-oxoGG and  
C8-oxoGA), with Iz matching DGh in the A8-oxoGG and G8-oxoGG sequence contexts. In contrast to 
riboflavin, nitrosoperoxycarbonate (ONOOCO2 ), generated from macrophage-derived nitric oxide 
(NO) and superoxide (O2 ), failed to yield sequence-dependent 8-oxoG reactivity and displayed a 
rather uniform spectrum of oxidation products, which were dominated by DGh > Oxaluric acid > 
NO2-DGh [138]. Likewise, Gh and Sp have been established as the main products of G and  
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8-oxoG oxidation by peroxynitrite, peroxyl radicals, and hypochlorous acid, reactive species  
also released by macrophages during an inflammatory response [139]. Thus, as noted by  
Lim et al. [138], “the observation of strong sequence context effects on the final chemistry of DNA 
oxidation complicates our understanding of the mechanistic basis for both mutation frequency  
and mutational spectra caused by DNA damage in vivo”, a task that is further complicated by 
sequence-dependent variations in the rates of DNA repair of individual DNA lesions. The analyses 
reported above clearly point to a critical role being played by charge (electron) transfer in the 
sequence context-dependent oxidation of DNA and the migration of the original sites of damage to 
distant sites of lower IPs, mostly G and 8-oxoG in the GA, GG, 8-oxoGA, and 8-oxoGG contexts. 

Figure 4. Sequence context-dependent reaction products of 8-oxoG. 

 

3.3.3. Charge Transfer in Nucleosomal DNA 

Whereas bases in single-stranded DNA are generally more easily oxidized than in  
double-stranded DNA [138], the stability of stacking interactions in duplex DNA enables the 
charge transfer process towards guanine bases to take place more efficiently in duplex DNA than in 
single-stranded DNA. For example, increasing the ionic strength, which results in a more stable 
duplex, also enhanced the yield of 8-oxoG and, concomitantly, decreased the yield of thymine and 
adenine oxidation products upon 266 nm laser pulses in isolated DNA [131]. Charge transfer was 
also shown to occur more efficiently in chromatinized DNA than in naked DNA. A detailed study 
of the location and types of guanine oxidation products generated by UVA photodamage along a 
duplex DNA fragment wrapped around a nucleosome core particle (NCP) indicated that, whereas 
in naked DNA lesions were mostly localized at the distal sites, in nucleosomal DNA there was 
substantial enhancement of internally (i.e., in contact with the NCP) damaged guanine sites [140]. 
Surprisingly, removing the histone tails from nucleosomes, most of which were in molecular 
contact with the packaged DNA, was sufficient to abrogate the effects of nucleosomal packing on 
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long-range charge transfer, implying that weakening histone-DNA interactions also dampened the 
efficiency of charge transfer along DNA. In addition, a shift in the nature of guanine lesions was 
observed, from Oz mostly in the linker regions and in naked DNA to 8-oxoG for those sites in 
closest contact with the NCP. Because the guanine radical cation (G+), a key intermediate in 
guanine oxidation, may react with either oxygen or water to yield Oz and 8-oxoG, respectively, 
these results clearly show that the NCP shields G+ from reacting with molecular oxygen. As the 
authors pointed out, the implications of this study are two-fold: first, “the enhancement of damage 
in the most tightly packaged nucleosomes could result in enhanced guanine oxidation in 
heterochromatin versus euchromatin”; and second “the distribution of guanine oxidation products 
is modulated by nucleosomal packaging. Therefore, the spectrum of guanine lesions generated by 
DNA oxidation could vary in different regions of chromatin”. 

In summary, sites of oxidation in DNA may migrate from their original location to sites of lower 
ionization potentials, e.g., predominantly G in the context of GA and GG sequences 
(charge/electron transfer); charge transfer also occurs towards 8-oxoG, which yields different 
oxidation products depending on the nature of the oxidizing agent and flanking sequence 
composition. Finally, charge transfer in DNA is favored in chromatin, where guanine oxidation 
products are modulated by their position along the NCP. 

4. DNA Repair Pathways and Synthesis across Modified Bases and Mismatches 

4.1. Base Excision Repair 

Base excision repair (BER) is initiated by the activity of a DNA glycosylase that recognizes  
small perturbations in the DNA helical structure caused by base modifications or a mismatched  
base-pair [141]. The basic steps of BER, the distinction between short and long patch repair, the 
nature of monofunctional versus bifunctional enzymes and the involvement of Pol  in cancer have 
been thoroughly reviewed [141–143]. Herein, we shall focus on those BER enzymes that have been 
shown to process the modified bases and mismatches described above. 

4.1.1. Modified CG:CG Sites 

Two monofunctional DNA glycosylases display a preference for correcting T:G and U:G 
mismatches in the CG:CG sequence context in double-stranded DNA, methyl-CpG binding domain 
protein 4 (MBD4) and thymine DNA glycosylase (TDG). MBD4 contains an N-terminal methyl-
CpG binding domain and a C-terminal DNA glycosylase domain that acts on T:G, 5hmU:G and 
U:G mismatches with relative rate constants of 0.5, 1.0 and 1.7 min 1, respectively [144], and on 
Tg:G with half the efficiency observed for T:G. Thus, the enzyme is poised to recognize 
deamination products of 5mC:G, 5hmC:G and C:G within CG:CG sequences [145]. Consistent 
with these activities in vitro, Mbd4 /  mice display a ~3-fold increase in C T transitions at CG:CG 
sites relative to wild-type littermates [146,147]; however, a direct role for Mbd4 /  in accelerating 
tumorigenesis has not been confirmed [148]. Competition experiments indicate that CG:CG 
methylation enhances MBD4 binding and that, whereas glycosylase activity is observed on 
reconstituted chromatin, activity is enhanced upon histone tail acetylation, consistent with 
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increased accessibility of the target sites on a less compact chromatin environment [149]. TDG 
actively processes a number of lesions resulting from oxidation, alkylation and deamination of C, 
5mC, 5hmC, T and A, with the strongest activities observed on U:G > T:G > Tg:G mismatches. 
The enzyme also cleaves the products of 5hmC oxidation, 5fC and 5caC. The TDG gene is 
expressed at high levels in the G2-M and G1 phases of the cell cycle, and then rapidly declines at 
the onset of S-phase. Loss of TDG expression is embryonic lethal in mice and, indeed, a number of 
investigations support a role for TDG in demethylation during embyogenesis, whereas interactions 
with transcription factors, transcriptional coregulators, DNMT3a, DNMT3b and others, suggest a 
scenario in which coordinated CG:CG methylation/demethylation and chromatin organization 
serve to regulate gene expression [145]. A striking preponderance (86%) of C T transitions at 
mutated CG:CG sites, which are normally methylated, was recently reported in a mismatch-repair 
(PMS2) deficient 13-year-old colorectal cancer patient with a heterozygous germline missense 
mutation in TDG [150], in line with a potential role for TDG in repairing C5-substituted C 
deaminated products at CG:CG sites. 

Because thymidine glycol may exist in four different configurations, 5Rcis/trans (Figure 5a) and 
5Scis/trans (Figure 5b) pairs, the efficiency of repair by DNA glycosylases will vary depending upon 
whether Tg isomers oppose G (Tg:G), which results from 5mC oxidation and deamination, or A 
(Tg:A), which results from T oxidation. Under conditions of single turnover, the stereoselectivity 
of nth endonuclease III-like 1 (NTHL1, a bifunctional enzyme with -lyase activity) was similar 
for Tg(5R):A and Tg(5R):G, but the amount of Tg(5R) cleaved was ~13-fold higher than for the 
Tg(5S) due to stronger product inhibition by the latter. By contrast, for nei endonuclease VIII-like 1 
(NEIL1, a bifunctional enzyme with , -lyase activity), no stereoselectivity was detected; however, 
Tg:G was excised much more rapidly than Tg:A, suggesting that NEIL1 may be primarily involved 
in the repair of modified CG:CG sites [151]. Nth1 / Neil1 /  double mutant, but not single mutant, 
mice developed a high incidence of lung and liver tumors after the first year, implying overlapping 
roles in DNA repair [152]. 

Figure 5. (a) cis-trans stereoisomer pair of 5R thymine glycol; (b) cis-trans 
stereoisomer pair of 5S thymine glycol. 

 

NEIL1 synthesis is activated during S-phase, and NEIL1 has been proposed to act at the 
replication fork to remove oxidative DNA lesions in a scheme involving: (1) damage recognition 
on the single-stranded template but cleavage inhibition by replication protein A (RPA); (2) fork 
reversal, which places the lesion back into duplex DNA; (3) base cleavage; and (4) resumption of 
the collapsed replication fork and DNA synthesis. Although NEIL2, which displays substrate 
specificities similar to NEIL1, was able to partially complement NEIL1 at the replication fork, its 
activity is believed to be more relevant during transcription [153]. A study on promoter 
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methylation for 160 DNA repair genes in ~40 head and neck squamous cell carcinoma samples and 
controls identified NEIL1 as the most prominently hypermethylated gene, with 81% samples 
(35/43) displaying significant hypermethylation relative to controls, suggesting a role for 
diminished DNA repair activity in cancer onset or progression [154]. 

4.1.2. Uracil 

Two additional monofunctional DNA glycosylases, uracil-DNA glycosylase 2 (UNG2) and  
single-stranded selective monofunctional uracil-DNA glycosylase 1 (SMUG1), serve to remove 
uracil from nuclear DNA [141]. UNG2 is a single-stranded DNA-specific enzyme that plays an 
indispensable role in somatic hypermutation (SHM), which is part of the antigen-driven  
high-affinity antibody diversification program in follicular B cells, by removing uracil generated by 
AID at WRCY sequence hotspots. In vitro, SMUG1 is active either on single-stranded or  
double-stranded DNA, depending on salt concentrations. However, at physiological mono and 
divalent metal ion concentrations, SMUG1 is active only on double-stranded DNA, and therefore it 
is considered to be a double-stranded-specific DNA glycosylase. This distinction is crucial, since it 
places UNG2 as the sole enzyme acting on uracil in single-stranded DNA in vivo. Thus, in addition 
to sequence-specificity, the ability of RPA, a single-stranded DNA binding protein, to recruit 
UNG2 to single-stranded DNA has been proposed as a key feature that restricts UNG2 (rather than 
SMUG1, TDG or MBD4) activity to SHM [155]. In mice, during SHM, UNG2-generated AP sites 
are “copied” by error-prone translesion synthesis (TLS) polymerases during DNA replication, 
including Rev1 and Pol , yielding C T, C G and C A mutations [128]. In chronic myeloid 
leukemia in chronic phase (CML-CP) hematopoietic stem cells, the kinase activity associated with 
the BCL-ABL1 translocation was found to inhibit UNG2 activity, thereby promoting mutations 
arising from increased ROS-mediated oxidative base lesions [156]. 

4.1.3. Guanine Lesions 

Two bifunctional double-strand-specific DNA glycosylases, 8-oxoguanine DNA glycosylase 1 
(OGG1) and mutY homologue (MUTYH), act upon 8-oxoG, a highly miscoding lesion that 
instructs A incorporation (8-oxoG:A base-pairs) by the replicative DNA Pol / . nockout mice for 
both enzymes are strongly prone to lung, ovarian cancers and lymphomas, and have shortened life 
spans [157], whereas human germline biallelic MUTYH mutations have been implicated in 
MUTYH-associated polyposis, a condition associated with increased risk of colorectal cancer 
[158]. OGG1 cleaves 8-oxoG only when paired with C, owing to specific contacts made with both 
bases, which trigger catalysis [159]. By contrast, MUTYH specifically cleaves the A base in 8-
oxoG:A base-pairs by using a central interconnector domain (ICD) to coordinate the action 
between the  
N-terminal catalytic domain and the C-terminal 8-oxoG recognition domain. In addition, the ICD 
serves as a structural scaffold to direct MUTYH activity to replication foci through specific 
interactions, including PCNA and Rad9-Rad1-Hus1 (the 9-1-1 complex) [160]. After induction of 
oxidative stress, the co-localization of OGG1-containing BER patches with H3meK4 or acetylated 
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histone H4 in euchromatic regions and the exclusion from heterochromatic regions suggests that 
chromatin compaction hinders BER [161]. These conclusions are in line with dinucleosome 
reconstitution experiments in vitro, in which 8-oxoG cleavage in the linker region separating the 
two nucleosomes was unhindered in the absence of H1, but was decreased ~10-fold upon H1 
binding to the linker [162]. 

In vitro, Oz in Oz:C and Gh in Gh:C mispairs in duplex oligonucleotides were cleaved by 
NEIL1 as efficiently as the well-recognized pyrimidine lesion 5hU:G, implying that guanine 
oxidation lesions, in addition to pyrimidine lesions, are good substrates for the enzyme. Similar 
results were obtained with NTHL1, although Gh was cleaved slightly more efficiently than  
Oz [163]. NEIL1 and NHTL1 also cleaved Oz:G as efficiently as Oz:C, which would give rise to 
G C transversions; Oz:G mispairs are predicted to arise from Pol  or  replication across Oz, as 
mentioned below. 

Although the ability of NEIL1 and NEIL2 to remove Sp and Gh lesions has been well  
documented [164–166], a critical role for NEIL3 has recently emerged [167]. Neil3 /  mice 
exhibited learning and memory deficits, impaired proliferation of neural stem/progenitor cells 
[168], and tissue extracts from Neil3 /  mice, but not from wild-type littermates, displayed 
defective nicking activities on hydantoin lesions only when present on single-stranded DNA [169]. 
The purified human catalytic domain of NEIL3 was also found to display strong preference for Sp 
and Gh when compared to several other lesions, including 5-OHC and 5-OHU, with the greatest 
turnover number (0.035 s 1) on Gh in single-stranded DNA, as assessed from single turnover 
experiments, ~2-fold higher than on double-stranded Gh and single-/double-stranded Sp. Thus, 
removal of Sp and Gh lesions appears to depend critically on NEIL3. Interestingly, the enzyme 
elicited uncoordinated cleavage and -lyase activities, suggesting that it can act both as a 
monofunctional and as a bifunctional glycosylase [170]. 

4.2. Lesion Bypass 

Base lesions that remain unrepaired can serve as templates during DNA synthesis, and are either 
copied by the normal replicative DNA polymerases (Pol ,  and ) or alternatively may block 
replication, in which case they are bypassed by one of 10 specialized polymerases lacking 3' 5' 
proofreading exonuclease activity during TLS, which limits DNA synthesis to a few bases across 
the blocking lesion [43,142]. Of the modified bases described above, C5 modified cytosines direct 
mostly guanine incorporation, and hence are not mutagenic; by contrast, their deaminated 
counterparts (thymine and uracil derivatives) enable the incorporation of adenine by replicative 
polymerases [171], which yields C T (G A) transitions. Tg stereroisomers block replication; 
investigations in vitro with DNA Polymerase gp43 from bacteriophage RB69 (a polymerase of the 
B-family, which in humans includes Pol , ,  and ) revealed that whereas Tg is weakly bypassed 
and correctly paired with A, extension is inhibited by the enzymatic exonuclease activity [172] and, 
thus, extended through TLS by Pol , , ,  or , either alone or in combination [43,173–179]. 
Thus, TLS across Tg:G base-pairs originating from 5mC oxidation and subsequent deamination are 
expected to lead almost quantitatively to C T (G A) transitions. 8-oxoG is able to functionally 
mimic thymine in the syn conformation, and DNA synthesis by replicative polymerases has been 
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shown to yield both the correct 8-oxoG:C base-pair and the incorrect 8-oxoG(syn):A(anti) 
Hoogsteen base-pair [180–182] (Figure 6a–c) in ~3:2 ratios and to be extended, mostly by Pol  
 [182–187]. The 8-oxoG:A base-pair would therefore give rise to G T (C A) transversions. 

The crystal structure of bacteriophage B-family Polymerase RB69 bound to the templating  
R-stereoisomer of Gh revealed that the base was flipped in a non-templating position. However, the 
results also suggested that either slow rotation by the R-isomer or, more effectively, the S-isomer 
would present the pyrimidine-like hydantoin side to the enzyme, thereby instructing incorporation 
of a purine (A or G) [188]. Indeed, a Y567A mutant of RB69 was found to insert both bases with 
>100-fold increased efficiency, whereas extension was blocked [189]. These data suggest that, as in 
the case with Tg stereoisomers, Gh:A and Gh:G are switched to the enzymatic exonucleolytic 
domain, thereby triggering a futile incorporation/degradation cycle that effectively blocks  
DNA replication and renders Gh an obligate mutagen. Thus, a TLS extender polymerase may assist 
in lesion bypass across Gh in vivo; in addition, Pol  was found to bypass Gh efficiently  
and to incorporate either A or G in primer extension assays [190]. Although Sp was also found to 
yield G C and G T transversions [191], no structural data are currently available for 
polymerease:Sp complexes. 

In primer extension assays, Pol  was found to partially extend past the Oz, Iz and Gf lesions  
(Oz > Iz > Gf), whereas Pol  was almost completely blocked [135]. Sequence analyses of the 
extended products indicated that Pol  incorporated either C (55%–65%) or G (35%–45%), 
whereas Pol  incorporated C (41%–58%), G (25%–37%) and A (16%–33%), across all lesions. 
Thus, T incorporation seems to be limited with both TLS polymerases. How these lesions are 
processed by replicative DNA polymerases and the extent to which each leads to SBSs remains to 
be determined. The stabilization energies ( E) for a number of isomers of the oxidative  
guanine products Gh, Sp, Iz and Oz base-paired with G (Figure 6d–g) have been computed  
by ab initio molecular orbital calculations; using density functional theory, E values varied from 
28.2 kcal/mol for Sp:G to 20.7 kcal/mol for Oz:G (30.9 kcal/mol for the canonical G:C  
base-pair) [130,192]. 

Figure 6. (a) Canonical G:C base-pair; (b) Canonical A:T base-pair; (c) 8-oxoG(syn):A(anti) 
base-pair; (d) Gh:G base-pair; (e) Sp:G base-pair; (f) Iz:G base-pair; (g) Oz:G  
base-pair. For noncanonical base-pairs, the templating base is shown in blue. 
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4.3. Transcription-Coupled Repair 

Given that cancer genome analyses have indicated that the number of SBSs is often lower at 
sites of putative base lesions on the transcribed strand than on the non-transcribed strand [13,30,193], 
we will briefly discuss some key aspects of transcription-coupled repair. Nucleotide excision repair 
(NER) is considered to be the main pathway for the repair of UV photo-induced DNA lesions; 
CPDs and 6-4 pyrimidine-pyrimidone photo products (6-4PP) [194], and defects in NER components 
are associated with inherited DNA repair syndromes such as xeroderma pigmentosum [195] and 
Cockayne syndrome [194], that display severe hypersensitivity to sunlight. NER also actively 
repairs many types of DNA adducts that cause helical distortions, including environmental 
mutagens such as benzo[a]pyrene and other PAHs, aromatic amines, oxidative endogenous lesions 
such as cyclopurines, and adducts caused by cancer chemotherapeutic agents, including cisplatin [196]. 
NER comprises two distinctive subpathways, global genome NER (GG-NER) and transcription-coupled 
NER (TC-NER), which acts specifically on the transcribed strand of actively transcribed  
genes [194]. TC-NER is activated by the physical blockage imposed by bulky DNA adducts and 
abasic sites on RNA Polymerase II (RNAPII), but not by small lesions such as thymine glycols and 
8-oxoG [197,198]. RNAPII is found in transient association with Cockayne syndrome type B 
protein (CSB, the product of the ERCC6 gene) and the UV-stimulated scaffold protein A 
(UVSSA)–ubiquitin-specific peptidase 7 (USP7) complex. RNAPII stalling is believed to stabilize 
RNAPII/CSB interactions and activate the UVSSA/USP7 complex, thus protecting CSB from 
degradation through deubiquitination. Stabilized CSB recruits a complex that includes Cockayne 
syndrome WD repeat protein (CSA, product of the ERCC8 gene), damage-specific DNA binding 
protein 1 (DDB1), cullin 4A (CUL4A) and others, which mediates downstream events, including 
chromatin remodeling, permitting backtracking of the RNAPII complex and exposing the lesion for 
repair by the GG-NER complex. Specific DNA adducts have been shown to be repaired 
exclusively by TC-NER but not by GG-NER. For example, exome sequencing of urothelial 
carcinomas of the upper urinary tract associated with chronic exposure to aristolochic acid, a 
natural compound from traditional herb medicine, revealed a characteristic A T (T A) 
mutational signature on non-transcribed strands leading to splicing defects [199,200], which was 
attributed to a failure of GG-NER, but not TC-NER, to recognize aristolactam-DNA adducts [201]. 
In addition to its role in TC-NER, CSB has been reported to facilitate lesion bypass by the RNAPII 
complex [202], to associate with components of BER, including OGG1, NEIL1 and AP1, and to elicit 
critical functions in mitochondria related to DNA repair, ROS homeostasis and others [203–205]. 

More recently, immunoprecipitation experiments in human gastric epithelial AGS cells revealed 
a direct association between the DNA glycosylase NEIL2, RNAPII and heterogeneous nuclear 
ribonucleoprotein U (hnRNP-U) [206]. On a 51-mer oligonucleotide, NEIL2 activity on a single  
5-OHU lesion was stimulated 5- to 6-fold by hnRNP-U and likewise, on a plasmid system, a 
reconstituted transcription-repair complex comprising RNAPII, NEIL2, hnRNP-U and the BER 
components Pol , Lig IIIα, PNK was proficient in repairing a 5-OHU lesion on the transcribed, 
but not on the non-transcribed, strand under conditions of active transcription. Co-localizations of 
NEIL2 with hnRNP-U with actively transcribed genes were confirmed by pulling down  
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NEIL2-FLAG expressing AGS and neuroblastoma SK-N-BE2-(C) cells, followed by chromatin 
immunoprecipitation with hnRNP-U antibodies. Finally, a rise in mutations was inferred on 
selected, transcribed, genes in NEIL2 knock-down compared to control cells. These composite data 
extend previous investigations [207], and document the preferential removal of oxidized DNA 
bases in actively transcribed genes by a system linking BER to the transcriptional apparatus. As 
already pointed out [206], it remains to be seen whether components of NER, such as CSB, also 
take part in BER related to transcription. In summary, whereas common oxidative DNA lesions 
may not be recognized by TC-NER, they are likely to represent a substrate for BER on the 
transcribed strand in association with transcription. 

5. Proposed Mutational Mechanisms 

Herein we have provided information on the most prominent SBS mutation patterns found in 
cancer genomes, i.e., C T transitions at CG:CG sites and substitutions at C:G base-pairs in the 
context of YC:GR dinucleotides, in an attempt to examine the validity of currently proposed 
models of mutagenesis. The main points may be summarized as follows: (i) higher fractions of 
SBSs have been found in cancer genomes within gene-poor regions, which are associated with 
heterochromatin and replicate late during the cell cycle, than in euchromatin, a pattern that mimics 
the one observed in population analyses; (ii) there are several established mechanisms for base 
substitutions at C residues, and their relative importance is only now being recognized. These 
involve deamination, oxidation, BER, TC-NER, TLS, and APOBEC activities; (iii) both guanine 
and 8-oxoG undergo sequence context- and ROS-dependent oxidation reactions that are consistent 
with an electron transfer (charge or hole migration) mechanism, whose efficiency is enhanced in 
the context of nucleosomal DNA; (iv) BER displays widely overlapping substrate specificity; 
however, NEIL enzymes appear to play a more prominent role in repairing guanine lesions, such as 
Gh and Sp, which are obligate mutagens during TLS; (v) most endogenous DNA lesions do not 
activate TC-NER; however, there are hints for a functional link between BER and transcription, 
leading to preferential repair on the transcribed strand. 

C T transitions at CG:CG sites have generally been attributed to faster spontaneous 
deamination of 5mC relative to C [13,16,17,19]. Our current analysis suggests that this explanation 
may be somewhat too restrictive. First, the fact that a family of C5-substituted Cs exists at CG:CG 
sites implies that C T transitions are not limited to 5mC but, rather, to any of the C5-substituted 
species, i.e., 5hmC, 5fC and 5caC. Second, as noted [208], the modest (5-fold at the most) increase 
in spontaneous deamination rates for C5-substituted Cs relative to Cs contrasts with the larger 
fractions of mutated Cs at CG:CG sites relative to non-CG:CG sites (up to 10–50 times), both in 
cancer and the germline [17,209]. Third, there does not seem to be a rational barrier to the 
possibility that 5mC oxidation and further deamination may yield Tg:G mismatches at CG:CG 
sites, which would then lead to C T transitions during TLS. In fact, the observation that such a 
type of oxidation is facilitated by nucleosome occupancy raises the prospect for thymine glycols in 
Tg:G mispairs being a more prominent source of mutation at CG:CG sites than T:G mismatches, as 
previously pointed out [208]. The finding that C:G T:A substitutions at CG:CG dinucleotides 
showed a strong positive correlation with the age at cancer diagnosis in ER– cancers, but not in 
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ER+ cancers [193], further supports the conclusion that spontaneous deamination of 5mC may not 
be the only mechanism leading to mutations at CG:CG. 

With respect to mutations at YC:GR sites, the gene expression data on APOBEC3B enzymes 
provide strong support for a role in cancer mutagenesis through U:G mismatch intermediates, as in 
the case of SHM. However, the extent to which the enzyme preference for single-stranded DNA 
may limit their activity genome-wide, possibly at sites of clustered and strand-coordinated mutations 
(kataegis) [13,210], remains to be determined. For example, whole-genome sequencing of gastric 
cancers, in which a prominent C T signature at GC dinucleotides in coding-regions did not 
overlap with a preponderance of C A transversions at CCT or TCA motifs genome-wide, were 
attributed to AID activation (on single-stranded DNA during transcription) and ROS/NOS, 
respectively, following H. pylori infection [56]. The findings that: (i) oxidative DNA damage 
occurs at YC:GR sites, which overlap with APOBEC3B specificity; (ii) numerous oxidation 
products can form at the target GR; (iii) efficient charge transfer and high mutation rates  
co-localize with heterochromatin; and (iv) some oxidation products of guanine are obligate 
mutagens during TLS, make it tempting to attribute a significant role for oxidative damage in 
mutations at YC:GR sites genome-wide in cancer mutagenesis. Thus, for SBSs at both CG:CG  
and YC:GR sites, we suggest a prominent role for oxidative damage by ROS and other  
electron-abstracting species. 

One severe limitation in elucidating mechanisms of SBS is obviously the lack of information on 
the steady-state levels of modified bases and mismatches in cancer cells. Current efforts to address 
this critical issue [211–215] should at least temper these limitations, not only for the limited 
number of base modifications discussed here, but also for the much larger repertoire that may be 
formed by both endogenous and environmental agents, and which have not been addressed herein. 
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Abstract: The customary consanguineous nuptials in Pakistan underlie the frequent occurrence of 
autosomal recessive inherited disorders, including retinal dystrophy (RD). In many studies, 
homozygosity mapping has been shown to be successful in mapping susceptibility loci for 
autosomal recessive inherited disease. RDs are the most frequent cause of inherited blindness 
worldwide. To date there is no comprehensive genetic overview of different RDs in Pakistan. In 
this review, genetic data of syndromic and non-syndromic RD families from Pakistan has been 
collected. Out of the 132 genes known to be involved in non-syndromic RD, 35 different genes 
have been reported to be mutated in families of Pakistani origin. In the Pakistani RD families 90% 
of the mutations causing non-syndromic RD and all mutations causing syndromic forms of the 
disease have not been reported in other populations. Based on the current inventory of all Pakistani 
RD-associated gene defects, a cost-efficient allele-specific analysis of 11 RD-associated variants is 
proposed, which may capture up to 35% of the genetic causes of retinal dystrophy in Pakistan. 

Reprinted from Genes. Cite as: Khan, M.I.; Azam, M.; Ajmal, M.; Collin, R.W.J.; den Hollander, A.I.; 
Cremers, F.P.M.; Qamar, R. The Molecular Basis of Retinal Dystrophies in Pakistan. Genes 2014, 
5, 176-195. 

1. Introduction 

Inherited retinal dystrophies (RD) belong to a group of clinically and genetically heterogeneous 
disorders [1]. The clinical sub-classification of this group of diseases is based on the nature of the 
disease (stationary or progressive), the inheritance pattern, and the dysfunctional part of the  
retina [2]. The disease is either congenital, occurring early in life, such as Leber congenital 
amaurosis (LCA; MIM# 204000), and congenital stationary night blindness (CSNB; MIM# 310500), 
or might have a later onset, such as in retinitis pigmentosa (RP; MIM# 268000), cone-rod dystrophy 
(CRD; MIM# 604116), and cone dystrophy (CD; MIM# 602093) [3]. In addition to disorders 
confined to the eye, there are syndromic forms of the disease in which retinal dystrophy is either 
among the primary clinical symptoms or might manifest at an advanced stage. The most common 
syndromic form of RD is Usher syndrome (USH; MIM# 276900), in which RP is associated with 
variable degrees of hearing loss and vestibular dysfunction [4]. Other types of syndromic RD include 
Bardet-Biedl syndrome (BBS; MIM# 209900), Senior-Loken syndrome (SLSN; MIM# 266900), 
Joubert syndrome (JBTS; MIM# 213300), and Meckel syndrome (MKS; MIM# 249000). All these 
syndromes exhibit severe clinical features in addition to retinal degeneration [5,6]. 

The estimated worldwide prevalence of RD is 1 in 3000 individuals [7]. RP is the most frequent 
phenotype among the RDs, affecting 1 in 4000 individuals [8,9]. In Pakistan the frequency of RD is 
not very well defined, but a hospital-based study estimated autosomal recessive RP to be the most 
prevalent [10]. In several developing countries, as opposed to Western countries, consanguinity has 
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always been a major contributing factor in the high prevalence of autosomal recessive  
disorders [11]. In Pakistan more than 60% of marriages are consanguineous and among them about 
80% are between first cousins [12]. Such consanguineous families are ideal for homozygosity 
based genetic mapping studies aimed at the identification of the underlying genetic defect [13,14]. 

As a result of several technological advances, 201 genes implicated in different forms of RD  
have been identified to date [15]. Among these genes, 132 are linked to non-syndromic forms of 
the disease with some genetic overlap between different classes [1,3,16]. In the developed 
countries, genetic testing using medium-to-high throughput genotyping methods are now being 
routinely used for proper disease diagnosis [17]. This has resulted in the establishment of many 
genotype-phenotype correlations [17–19]. In the last two decades, several studies have described 
the genetic causes of different retinal dystrophies in consanguineous Pakistani families. However, 
to date, there has been no comprehensive ophthalmogenetic overview of all forms of RD that have 
been identified in Pakistan. Therefore, this literature review provides an overview of all published 
genetic data of syndromic and non-syndromic RD that have been described for Pakistani families. 

2. Experimental 

A comprehensive literature review was performed for mutations and loci, which have been 
described previously for Pakistani individuals with syndromic and non-syndromic retinal diseases.  
The Retinal Network (RetNet) [15], National Centre for Biotechnology Information (NCBI) [20], 
Online Mendelian Inheritance in Man (OMIM) [21], The Human Gene Mutation Database  
(HGMD) [22], and published literature were used to search for the causative genes. In order to 
predict the pathogenicity of the reported missense mutations, in silico analysis including, 
polymorphism phenotyping (PolyPhen-2) [23], and sorting tolerant from intolerant (SIFT) [24] were 
performed. The frequency of these variants in the healthy population was checked via the exome 
variant server (EVS) [25]. 

3. Results 

3.1. Overview of Molecular Genetic Studies in Non-Syndromic RD in Pakistan 

Thus far, fifty-six studies have reported on the genetic causes of non-syndromic RD including 
arCRD, arCSNB, arLCA, and arRP in Pakistani persons, most of which belong to consanguineous 
families. The genetic data of a total of 466 Pakistani RD patients from 103 families (Tables 1 and 2), 
have been described in the current review. Among these retinal phenotypes, arRP was found to be 
the most frequently occurring RD (59%), followed by arLCA (19%), arCRD (10%), and arCSNB 
(9%) (Tables 1 and 2; Figure 1). Autosomal recessive inheritance seems to predominate in the RD 
families (96%) and only two autosomal dominant RP (adRP) families have been described  
(Tables 1 and 2). Of these, one adRP family carries a mutation in RHO (MIM# 180380) [26], while 
in one family a frequent variant (c.2138G>A) in SEMA4A (MIM# 607292) has been described to 
cause adRP, however in silico prediction and exome variant server (EVS) frequency do not support 
the pathogenicity of the latter variant (Table 2) [27]. The compiled data demonstrate that out of the 
132 genes known to be involved in non-syndromic RD, mutations in 36 different genes are causing 
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disease in patients of Pakistani origin (Table 1; Figure 2), reflecting the genetic heterogeneity of the 
disease in this population. The most frequently mutated genes were AIPL1 (MIM# 604392), CRB1 
(MIM# 604210), TULP1 (MIM# 602280), RPGRIP1 (MIM# 605446), RP1 (MIM# 180100), 
SEMA4A, LCA5 (MIM# 611408), and PDE6A (MIM# 180071) (Figure 2). Most of the reported 
mutations, and those identified in the current cohort, were novel to this population except for 
mutations in ABCA4 (MIM# 601691), CRB1, CERKL (MIM# 608381), RPE65 (MIM# 180069), 
RPGR (MIM# 312610), and SPATA7 (MIM# 609868), which were initially identified in persons of 
different ethnicity (Table 1). As expected, all the reported disease associated alleles are rare 
variants and in silico analysis predicted these variants to have a deleterious effect on protein function 
(Table S1). 

Table 1. Mutations identified in Pakistani patients with non-syndromic retinal dystrophies. 
Gene RefSeq Id Nucleotide variant Protein variant Phenotype # Families # Patients References 

ABCA4 NM_000350.2 c.6658C>T p.(Gln2220*) arRP 1 6 [28,29] 
ADAM9 NM_003816.2 c.766C>T p.(Arg256*) arCRD 1 4 [30] 
AIPL1 ‡ NM_201253.2 c.116C>A p.(Thr39Asp) arLCA 1 6 [31] 
AIPL1 ‡ NM_014336.3 c.834G>A p.(Trp278*) EORP 11 25 [29,31–34] 
BEST1 ‡ NM_001139443.1 c.418C>G p.(Leu140Val) arRP 1 4 [35] 
CERKL NM_001030311.2 c.316C>A p.(Arg106Ser) arRP 1 3 [36] 
CERKL NM_001030311.2 c.847C>T p.(Arg283*) arRP 1 6 [29,37,38] 
CLRN1 † NM_001195794.1 c.92C>T p.(Pro31Leu) arRP 1 6 [39] 
CLRN1 † NM_001195794.1 c.461T>G p.(Leu154Trp) arRP 1 6 [39] 
CNGA1 NM_00142564.1 c.626_627del p.(Ile209Serfs*26) arRP 1 7 [40] 
CNGA1 NM_00142564.1 c.1298G>A P.(Gly433Asp) arRP 1 3 [41] 
CNGA3 NM_001298.2 c.822G>T p.(Arg274Ser) arCRD (ACHM) 1 4 [42] 
CNGA3 NM_001298.2 c.827A>G p.(Asn276Ser) arCRD (ACHM) 1 6 [43] 
CNGB1 NM_001297.4 c.412-1G>A p.(?) arRP 1 10 [44] 
CNGB1 NM_001297.4 c.2284C>T p.(Arg762Cys) arRP 1 5 [44] 
CNGB1 NM_001297.4 c.2493-2A>G p.(?) arRP 1 10 [41] 
CNGB3 NM_019098.4 c.1825del p.(Val609Trpfs*9) arCRD (ACHM) 1 2 [42] 
CRB1 NM_201253.2 c.107C>G p.(Ser36*) arLCA 1 10 [33] 
CRB1 NM_201253.2 c.2234C>T p.(Thr745Met) arRP 1 2 [41,45] 
CRB1 NM_201253.2 c.2536G>A p.(Gly846Arg) arRP 1 6 [31] 
CRB1 NM_201253.2 c.3101T>C p.(Leu989Thr) arLCA 1 8 [31] 
CRB1 NM_201253.2 c.3296C>A p.(Thr1099Lys) arRP 1 9 [44] 
CRB1 NM_201253.2 c.3343_3352del p.(Gly1115Ilefs*23) arRP 1 9 [46] 
CRB1 NM_201253.2 c.3347T>C p.(Leu1071Pro) arRP 1 7 [31] 
CRB1 NM_201253.2 c.3962G>C p.(Cys1321Ser) arRP 1 5 [46] 
EYS NM_001142800.1 c.8299G>T p.(Asp2767Tyr) arRP 1 7 [47] 

GNAT1 NM_144499.2 c.386A>G p.(Asp129Gly) arCSNB 1 1 [48] 
GRK1 NM_ 002929 c.614C>A p.(Ser205*) arCSNB (Oguchi) 1 9 [49] 
GRK1 NM_ 002929 c.827+623_883del p.(?) arCSNB (Oguchi) 1 3 [50] 

IMPG2 ‡ NM_016247.3 c.1680T>A p.(Tyr560*) arRP 1 2 [51] 
LCA5 ‡ NM_181714.3 c.643del p.(Leu215Tyrfs*11) arLCA 1 4 [52] 
LCA5 ‡ NM_181714.3 c.1151del p.(Pro384Glnfs*17) arLCA 3 13 [33,53] 
MERTK NM_00634.2 c.718G>T p.(Glu240*) arRP 1 4 [54] 

NMNAT1 ‡ NM_022787.3 c.25G>A p.(Val9Met) arLCA 1 5 [55] 
NMNAT1 ‡ NM_022787.3 c.838T>C p.*280Glnext*16 arLCA 1 8 [56] 

PDE6A NM_000440.2 c.889C>T p.(Gly297Ser) arRP 1 4 [57] 
PDE6A NM_000440.2 c.1264-2A>G p.(?) arRP 1 5 [57] 
PDE6A NM_000440.2 c.1630C>T p.(Arg544Trp) arRP 1 3 [29] 
PDE6A NM_000440.2 c.2218_2219insT p.(Ala740Valfs*2) arRP 1 3 [57] 
PDE6B NM_000283.3 c.1160C>T p.(Pro387Leu) arRP 1 6 [58] 
PDE6B NM_000283.3 c.1655G>A p.(Arg552Gln) arRP 1 9 [58] 
PDE6B NM_000283.3 c.1722+1G>A p.(?) arRP 1 4 [44] 
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Table 1. Cont. 
Gene RefSeq Id Nucleotide variant Protein variant Phenotype # Families # Patients References 

PROM1 NM_006017.2 c.1726C>T p.(Gln576*) arRP 1 6 [59] 
RDH12 NM_152443.2 c.506G>A p.(Arg169Gln) arLCA/EORD 2 2 [60] 
RDH12 NM_152443.2 c.619A>G p.(Asn207Asp) arLCA/EORD 1 1 [60] 
RDH5 NM_001199771.1 c.758T>G p.(Met253Arg) arCSNB (FA) 1 6 [61] 
RDH5 NM_001199771.1 c.913_917del p.(Val305Hisfs*29) arCSNB (FA) 1 2 [61] 
RHO NM_000539.3 c.448G>A p.(Glu150Lys) arRP 2 6 [62] 
RHO NM_000539.3 c.1045T>G p.(*349Gluext*52) adRP 1 8 [26] 

RLBP1 NM_000326.4 c.346G>C p.(Gly116Arg) FA 1 4 [63] 
RLBP1 NM_000326.4 c.466C>T p.(Arg156*) FA 1 6 [63] 

RP1 NM_006269.1 c.1458_1461dup p.(Glu488*) arRP 2 9 [64,65] 
RP1 NM_006269.1 c.4555del p.(Arg1519Glufs*2) arRP 1 5 [65] 
RP1 NM_006269.1 c.5252del p.(Asn1751Ilefs*4) arRP 1 4 [65] 

RPE65 NM_000329.2 c.131G>A p.(Arg44Gln) EORP 1 3 [41,66,67] 
RPE65 NM_000329.2 c.361del p.(Ser121Leufs*6) EORP 1 4 [41,67] 
RPE65 NM_000329.2 c.751G>T p.(Val251Phe) arLCA 1 6 [33] 
RPGR NM_001034853.1 c.2426_2427del p.(Glu809Glyfs*25) xlRP 1 8 [41,68] 

RPGRIP1 NM_020366.3 c.587+1G>C p.(?) arLCA 1 1 [33] 
RPGRIP1 NM_020366.3 c.1180C>T p.(Gln394*) arLCA 1 1 [33] 
RPGRIP1 NM_020366.3 c.2480G>T p.(Arg827Leu) arCRD, arLCA 2 9 [33,69] 
RPGRIP1 NM_020366.3 c.3620T>G p.(Leu1207*) arLCA 1 1 [33] 

SAG NM_000541.4 c.916G>T p.(Glu306*) arCSNB 1 1 [70] 
SEMA4A ‡ NM_022367.3 c.1033G>C p.(Asp345His) 

arCRD, arRP 4 4 [27] 
SEMA4A ‡ NM_022367.3 c.1049T>G p.(Phe350Cys) 
SLC24A1 ‡ NM_004727.2 c.1613_1614del p.(Phe538Cysfs*23) arCSNB 1 5 [71] 

SPATA7 NM_018418.4 c.253C>T p.(Arg85*) arLCA/arRD 2 3 [72] 
SPATA7 NM_018418.4 c.960dup p.(Pro321Thrfs*6) arLCA/arRD 1 6 [72,73] 
TTC8 † NM_144596.2 c.115-2A>G p.(?) arRP 1 4 [74] 
TULP1 NM_003322.3 c.1138A>G p.(Thr380Ala) arRP 3 34 [33,75,76] 
TULP1 NM_003322.3 c.1445G>A p.(Arg482Gln) arRP 1 8 [75] 
TULP1 NM_003322.3 c.1466A>G p.(Lys489Arg) arRP 4 19 [41,76,77] 
ZNF513 NM_144631.5 c.1015T>C p.(Cys339Arg) arRP 1 4 [78,79] 

ACHM, achromatopsia; ad, autosomal dominant; ar, autosomal recessive; CSNB, congenital stationary night 

blindness; CRD, cone rod dystrophy; EORD, early onset retinal dystrophy; EORP, early onset RP; FA, fundus 

albipunctatus; LCA, Leber congenital amaurosis; RD, retinal dystrophy; RefSeq Id, reference sequence identifier; 

RP, retinitis pigmentosa; xlRP, X-linked RP; ‡ novel gene identification; † novel phenotype association. 

Table 2. Common variants reported as mutations in Pakistani patients with  
non-syndromic retinal dystrophies and their in silico pathogenicity prediction. 

Gene RefSeq Id 
Nucleotide 

variant 

Protein 

variant 
Phenotype # Families # Patients Ref. phyloP

Grantham 

distance 
PolyPhen SIFT EVS 

RP1 NM_006269.1 c.1118C>T p.(Thr373Ile) arRP 2 11 [64] 0.61 89 
Benign 

(0.01) 

Tolerated 

(0.50) 

T = 152; 

C = 12,854 

(rs77775126)

RPGRIP1 NM_020366.3 c.1639G>T p.(Ala547Ser) arCRD 3 12 [69] 0.29 99 

Probably 

damaging 

(1.00) 

Tolerated 

(0.49) 

T = 2,792; 

G = 9,214 

(rs10151259)

SEMA4A NM_022367.3 c.2138G>A p.(Arg713Gln) adRP 1 4 [27] 1.25 43 
Benign 

(0.23) 

Tolerated 

(0.43) 

A = 451; 

G = 12,555 

(rs41265017)

Ad, autosomal dominant; ar, autosomal recessive; CRD, cone-rod dystrophy; EVS, exome variant server;  

PolyPhen, polymorphism phenotyping; RefSeq Id, reference sequence identifier; RP, retinitis pigmentosa; SIFT, 

sorting tolerant from intolerant. 
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Out of the 47 non-synonymous variants identified in Pakistani non-syndromic RD families  
(Table 1) three variants (SEMA4A, c.2138G>A; RP1, c.1118C>T; RPGRIP1, c.1639G>T),  
are reported as single nucleotide polymorphisms (SNP) with high frequencies in the EVS  
(Table 2) [27,64,69]. In addition, SIFT also predicts these changes to be tolerated while except for 
the RPGRIP1 variant, the other two are considered to be benign by PolyPhen-2 (Table 2). 
Therefore, these variants could be segregating with the disease in the family by chance and the 
causative mutation may reside in another gene. 

Figure 1. Distribution of non-syndromic Pakistani RD families according to their 
phenotypes. Ad, autosomal dominant; ar, autosomal recessive; CRD, cone-rod 
dystrophy; CSNB, congenital stationary night blindness; LCA, Leber congenital 
amaurosis; RP, retinitis pigmentosa; xl, X-linked. 

 

Figure 2. Occurrence of gene defects in non-syndromic RD families in Pakistan. 
Numbers of families with mutations in respective genes are indicated between parentheses. 
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3.2. Overview of Molecular Genetic Studies in Syndromic RDs in Pakistan 

In addition to the non-syndromic families, data of 52 syndromic RD families with a total of  
139 affected individuals were collected from 22 studies. Usher syndrome represented about 36% of 
the families in this group, whereas BBS (33%), MKS (13%), JBTS (10%), and SLSN (8%), 
accounted for the other families (Table 3; Figure 3). The most commonly mutated gene associated 
with syndromic RD in the Pakistani population was cadherin 23 (CDH23; MIM# 605516), which 
has been reported to be mutated in persons with Usher type 1, followed by TMEM67  
(MIM# 609884), the gene mutated in persons with autosomal recessive MKS (Table 3; Figure 4). 
As expected for the syndromic mutations, all the reported disease associated alleles are rare 
variants and in silico analysis predicted these variants to have a deleterious effect on protein 
function (Table S2). 

4. Discussion 

The Pakistani population is known for its high rate of consanguinity (>60%), but it is still 
remarkable that 97% of the families with inherited RDs had an autosomal recessive mode of 
inheritance. It is, therefore, not surprising that Pakistani families have been instrumental in pinpointing 
a number of the underlying gene defects through homozygosity mapping [80,81]. Genetic studies 
of Pakistani families with RD have previously facilitated the identification of eleven novel RD 
genes, i.e., AIPL1 [34], BEST1 [35], CC2D2A (MIM# 612013) [82], CDH23 (MIM# 605516) [83], 
IMPG2 (MIM# 607056) [51], LCA5 (MIM# 611408) [53], NMNAT1 (MIM:608700) [55,56], 
ZNF513 (MIM# 613598) [78], PCDH15 (MIM# 605514) [84], SEMA4A [27], and SLC24A1 
(MIM# 603617) [71]. In addition, mutations in CLRN1 (MIM# 606397) and TTC8 (MIM# 608132), 
which had been previously implicated in the syndromic retinal phenotypes USH3 (MIM# 276902), 
and BBS (MIM# 209900), respectively, were found to cause non-syndromic arRP [39,74]. Mutations 
in RP1, which had previously been shown to be involved in adRP, were found to segregate in a 
recessive manner in 3 Pakistani families [64]. In addition to the novel genes identified in the affected 
Pakistani families, five novel RD loci including three non-syndromic, i.e., CORD8 (MIM# 605549), [85], 
RP29 (MIM# 612165), [86], and RP32 [87], and two syndromic, i.e., USH1H (MIM# 612632), [88], 
and USH1K [89], have also been identified in Pakistani families. 

Table 3. Mutations identified in Pakistani patients with syndromic retinal dystrophies. 

Gene RefSeq Id Nucleotide variant Protein variant Phenotype # Families # Patients References

AHI1 NM_017651.4 c.2370dup p.(Lys791*) arJBTS 1 2 [90] 

ARL6 NM_032146.3 c.281T>C p.(Ile94Thr) arBBS 1 5 [91] 

ARL6 NM_032146.3 c.123+1119del p.(?) arBBS 1 1 [92] 

ARL13B NM_182896.2 c.236G>A p.(Arg79Gln) arJBTS 1 3 [93] 

BBS1 NM_02464.9.4 c.47+1G>T p.(?) arBBS 1 2 [94] 

BBS1 NM_02464.9.4 c.442G>A p.(Asp148Asn) arBBS 1 2 [94] 

BBS2 NM_031885.3 c.1237C>T p.(Arg413*) arBBS 1 1 [95] 

BBS5 NM_152384.2 c.2T>A p.(Met1Lys) arBBS 2 2 [95] 

BBS10 NM_024685.3 c.271dup p.(Cys91Leufs*5) arBBS 2 4 [96] 

BBS10 NM_024685.3 c.1075C>T p.(Gln359*) arBBS 1 7 [91] 
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Table 3. Cont. 

Gene RefSeq Id Nucleotide variant Protein variant Phenotype # Families # Patients References

BBS10 NM_024685.3 c.1091del p.(Asn364Thrfs*5) arBBS 1 1 [96] 

BBS10 NM_024685.3 c.1958_1967del p.(Ser653Ilefs*4) arBBS 1 2 [97] 

BBS10 NM_024685.3 c.2121dup p.(Lys708*) arBBS 1 1 [96] 

BBS12 NM_152618.2 c.1589T>C p.(Leu530Pro) arBBS 2 2 [95] 

BBS12 NM_152618.2 c.2102C>A p.(Ser701*) arBBS 1 3 [98] 

CC2D2A ‡ NM_001080522.2 c.2003+1G>C p.(?) arJBTS 1 5 [82] 

CDH23 ‡ NM_022124.5 c.1114C>T p.(Gln372*) arUSH1 1 3 [83] 

CDH23 NM_022124.5 c.2587+1G>A p.(?) arUSH1 1 4 [99] 

CDH23 NI NI p.(Arg1305*) arUSH1 1 4 [99] 

CDH23 ‡ NM_022124.5 c.3106_3106+11delinsTGGT p.(Gly1036delinsTrpCys) arUSH1 1 5 [83] 

CDH23 ‡ NM_022124.5 c.6050-9G>A p.(?) arUSH1 4 13 [83] 

CDH23 ‡ NM_022124.5 c.6050-1G>C p.(?) arUSH1 1 6 [83] 

CDH23 ‡ NM_022124.5 c.6054_6074del p.(Val2019_Val2025del) arUSH1 1 3 [83] 

CDH23 ‡ NM_022124.5 c.6845del p.(Asn2282Thrfs*91) arUSH1 1 3 [83] 

CDH23 ‡ NM_022124.5 c.7198C>T p.(Pro2400Ser) arUSH1 1 4 [83] 

CDH23 ‡ NM_022124.5 c.8150A>G p.(Asp2717Gly) arUSH1 1 3 [83] 

CDH23 ‡ NM_022124.5 c.8208_8209del p.(Val2737Alafs*2) arUSH1 2 11 [83] 

CEP290 NM_025114.3 c.5668G>T p.(Gly1890*) arJBTS 1 1 [100,101] 

IQCB1 NM_001023570.2 c.488-1G>A p.(?) arSLSN 1 1 [41,102] 

IQCB1 NM_001023570.2 c.1465C>T p.(Arg489*) arSLSN 1 1 [102] 

IQCB1 NM_001023570.2 c.1796T>G p.(*599Serext*2) arSLSN 1 1 [102] 

NPHP4 NM_015102.3 c.3272dup p.(Ser1092Valfs*11) arSLSN 1 1 [102] 

PCDH15 ‡ NM_001142763.1 c.7C>T p.(Arg3*) arUSH1 1 5 [84] 

PCDH15 ‡ NM_001142763.1 c.1927C>T p.(Arg643*) arUSH1 1 3 [103] 

PCDH15 ‡ NM_001142763.1 c.3389-2A>G p.(?) arUSH1 1 3 [84] 

TCTN2 NM_024809.3 c.1873C>T p.(Gln625*) arJBTS 1 4 [104] 

TMEM67 NM_153704.5 c.647del p.(Val217Leufs*5) arMKS 1 2 [105] 

TMEM67 NM_153704.5 c.715-2A>G p.(?) arMKS 1 1 [105] 

TMEM67 NM_153704.5 c.1127A>C p.(Gln376Pro) arMKS 2 2 [105] 

TMEM67 NM_153704.5 c.1575+1G>A p.(?) arMKS 3 5 [105] 

TTC8 NM_144596.2 c.1049+2_1049+4del p.(?) arBBS 1 3 [106] 

USH1G NM_173477.2 c.163_164+13del p.(Gly56*) arUSH1 1 4 [107] 

Ar, autosomal recessive; BBS, Bardet-Biedl syndrome; JBTS, Joubert syndrome; MKS, Meckel syndrome; NI, not 

indicated; RefSeq Id, reference sequence identifier; SLSN, Senior-Loken syndrome; USH1, Usher syndrome type 1; 
‡ novel gene identification; † novel phenotype association. 

In the 103 non-syndromic Pakistani RD families described so far, mutations were most 
frequently found in AIPL1, CRB1, TULP1, RPGRIP1, RP1, SEMA4A, LCA5, and PDE6A  
(Table 1; Figure 2). A direct comparison with other RD populations is difficult as comprehensive 
studies of this kind are rare. In a recent study of Abu-Safieh et al. (2012) comprising 150 Saudi 
Arabian RD families, similar results were observed as RP1, TULP1, RPGRIP1, and CRB1 were 
found to be the most frequently mutated genes [108]. 
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Figure 3. Prevalences of syndromic RD phenotypes. BBS, Bardet-Biedl syndrome;  
JBTS, Joubert syndrome; MKS, Meckel syndrome; SLS, Senior-Loken syndrome; 
USH, Usher syndrome. 

 

Figure 4. Occurrence of gene defects in syndromic RD families in Pakistan. Numbers 
of families with mutations in respective genes are indicated between parentheses. 

 

A worldwide general literature study revealed arRP-associated mutations distributed in USH2A 
(12%; MIM# 276901), ABCA4 (8%), PDE6B (7%; MIM# 180072), CNGB1 (6%), and PDE6A 
(5%; MIM# 180071) [109]. In a more recent study of 230 Dutch persons with isolated or arRP [110], 
the most frequently mutated genes were EYS (11%; MIM# 602772), and CRB1 (11%) followed by 
USH2A (10%), ABCA4 (9%), and PDE6B (7%). As opposed to these studies the absence of USH2A 
variants in individuals of Pakistani origin is probably due to the fact that the most frequent  
arRP-associated variant, c.2299del;p.(E767fs), is almost invariably found in compound 
heterozygous states with second mutations that are considered to be mild [111], precluding their 
detection in a homozygosity mapping approach. Other differences can only be attributed to 
divergent genetic backgrounds of these populations [112,113]. 
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Although 113/118 variants listed in Tables 1 and 3 have only been identified in Pakistani  
patients, seven variants (SEMA4A, p.(Asp345His) and p.(Phe350Cys); TULP1, p.(Thr380Ala); 
LCA5, p.(Pro384Glnfs*17); RPGRIP1, p.(Arg827Leu); TMEM67, c.1575+1G>A and p.(Gln37Pro)), 
are more frequent than others, and therefore they seem to be population-specific. The six most 
frequent variants, p.(Trp278*) in AIPL1, p.(Lys489Arg) and p.(Thr380Ala) in TULP1, p.(Asp345His) 
and p.(Phe350Cys) in SEMA4A, p.(Pro384Glnfs*17) in LCA5 (Table 1), explain about 25% of the 
non-syndromic Pakistani RD families. The p.Trp278* variant has been identified as the most 
frequent AIPL1 variant worldwide in many LCA studies [114,115], suggesting that this variant is 
relatively old. The six frequent variants mentioned above, together with five other variants in 
RDH12 (MIM# 608830), p.(Arg169Gln); RHO, p.(Glu150Lys); RP1, p.(Glu488*), RPGRIP1, 
p.(Arg827Leu), and SPATA7, p.(Arg85*), account for approximately 34% (35/103) of all  
non-syndromic RD families from Pakistan. A cost-effective initial genetic screening of Pakistani 
persons with RD therefore could be to analyze these variants using Sanger sequencing. For 
example, 10 amplicons covers the most frequent variants mentioned above. Alternatively, a larger 
subset of variants can be captured by arrayed primer extension (APEX) analysis or other  
allele-specific genotyping methods [116–119]. 

Three of the 47 missense mutations (RP1: c.1118C>T, RPGRIP1: c.1639G>T, SEMA4A: 
c.2138G>A) reported to be associated with RD in Pakistani families are found at higher frequencies 
in EVS. In silico analysis also predict them likely to be non-pathogenic, therefore they should be 
considered as non-causative (Table 2) [27,64,69]. As these variants on their own are not sufficient 
to explain the phenotype in these six families (two, three and one with RP1, RPGRIP1 and 
SEMA4A mutations, respectively) they must still be considered genetically unresolved. 

Of all the non-syndromic and syndromic arRD families (n = 146), which are genetically 
resolved, compound heterozygous mutations were identified in only four non-syndromic RD 
families (4/146 = 2.7%). These compound heterozygous mutations were identified in SEMA4A. 
This finding on one hand favors the utility of homozygosity based gene identification strategies for 
Pakistani RD families. While on the other hand it also indicates that in a small but significant 
proportion of the families (~2/100), compound heterozygous mutations might be able to explain the 
phenotype. These mutations will certainly be overlooked if one only considers homozygosity 
mapping based approaches to pinpoint causative genetic defects. 

5. Conclusions 

This review provides a comprehensive overview of genetic causes of non-syndromic and 
syndromic retinal diseases in Pakistan, the results of which can be used to design a cost-effective 
screening platform for future genetic testing in Pakistan. For genetically unsolved non-syndromic 
RD cases, we propose a sequencing-based pre-screening genetic test in which 10 different 
amplicons capture the most frequent mutations described for Pakistani RD patients. In 
consanguineous families, homozygosity directed sequence analysis has demonstrated its potential 
to unravel genetic defect underlying recessive diseases. 
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Abstract: Since the completion of the Human Genome Project, the field of human genetics has 
been in great flux, largely due to technological advances in studying DNA sequence variation. 
Although community-wide adoption of statistical standards was key to the success of genome-wide 
association studies, similar standards have not yet been globally applied to the processing and 
interpretation of sequencing data. It has proven particularly challenging to pinpoint unequivocally 
disease variants in sequencing studies of polygenic traits. Here, we comment on a number of 
factors that may contribute to irreproducible claims of association in scientific literature and 
discuss possible steps that we can take towards cultural change. 
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1. The Evolution of Genetic Association Studies 

The Human Genome Project [1] remains the largest scientific endeavor in the biological 
sciences, spanning thirteen years, requiring hundreds of researchers around the globe, and costing 
$3 billion. Called the “most important, most wondrous map ever produced by human kind” [2] by 
U.S. President Clinton upon its completion, the map of the genome catapulted the investigation of 
human disease into a new era. The study of complex traits and disease had previously been limited 
to genetic linkage studies, typically laborious efforts limited to constructing linkage maps in 
families and powered for discovering highly penetrant variants. Now, geneticists could identify 
single-base changes in the genome (single nucleotide polymorphisms, or SNPs) and, by measuring 
the frequencies of these changes in large groups of cases and controls, test SNPs for association 
with susceptibility to any number of diseases. 

Upon the completion of the Human Genome Project, the field of genetics was faced with 
determining how best to hunt for such associations. The first widely used method was candidate 
gene studies, in which genes with suspected biological or functional relevance to the disease in 
question were selected for testing. These studies were applied to a variety of traits [3], but in the 
absence of community-wide standards for analysis, they were plagued with problems. Reviews of 
candidate gene studies found that small sample sizes, population stratification issues, weak effects, 
and a lack of statistical evidence for the claimed associations were common [3–6]. All of these 
problems contributed to the irreproducibility of initial findings; one review found that of  
166 associations with more than two follow-up studies, only six (3.6%) replicated [3]. 

Despite limited success in candidate gene studies, the number of replicated associations 
indicated that common variation (frequency >5%) indeed plays a role in genetic susceptibility to 
common disease (involving tens of genes and environmental factors) [7]. In 2005, the approach in 
genetics began shifting towards genome-wide association studies (GWAS) [8], which require no 
prior hypothesis about which genes are likely to influence disease. Instead, geneticists could test 
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millions of common variants across the genome for association with the trait of interest. Systematic 
cataloguing of these variants [9] allowed for the design of genome-wide SNP arrays, ultimately 
allowing for low-cost capture of tens of thousands of variants in large samples. 

The beginnings of GWAS were slow; initial studies produced few if any associated loci, and it 
quickly became clear that larger samples would be necessary for sufficient power to detect 
susceptibility variants [10]. With the formation of international consortia, collection of large 
samples, and assembly of imputation panels that allowed for testing of variants not present on SNP 
arrays came an explosion in discovered loci (Figure 1). Along with the rapid increase in the number 
of GWAS being performed came a large-scale effort to standardize the method. The community 
adopted the genome-wide significance p-value threshold of 5 × 10 8, a p-value that reflects a 
Bonferroni correction for the approximately one million independent tests performed in a  
GWAS [11,12]. Methods for handling population stratification were developed [13], as were 
approaches for finding and removing poorly captured genotypes [14]. Replication of discovered 
loci also became a criterion for declaring a SNP to be associated with a disease [15,16]. With best 
practices in place, GWAS has become an efficient and robust method for discovering the 
contribution of common variation to susceptibility in common disease. The total number of SNPs 
associated with complex traits (at genome-wide significance) was only seven by the end of 2006, 
but by 2008, an additional 637 associations had been discovered [17]. Today, more than  
6,000 disease-SNP associations have been reported. 

Figure 1. Disease-susceptibility loci discovered to date in various complex traits, as 
reported in the National Human Genome Research Institute (NHGRI) genome-wide 
association studies (GWAS) catalog [17]. Early genome-wide association studies 
interrogated small samples and uncovered few, if any, loci associated with the trait of 
interest. However, collaborative efforts to assemble large-scale samples improved 
power and implicated tens and even hundreds of susceptibility loci, revealing a 
(roughly) linear relationship between sample size and associated loci [18]. 
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Because of established best practices and statistical thresholds, most GWAS findings are robust 
and reproducible. The method is, of course, not immune to error; for example, one GWAS looking 
for variants associated with longevity failed to correct for technical bias introduced by the use of 
two different SNP arrays, inducing spurious association [19]. The mistake went unnoticed until the 
results were published and several geneticists caught the error. The false report received attention 
from the genetics community and the media alike [20] and was later retracted [21]. 

More recently, scientists and the media have cast a critical eye towards the aspects of scientific 
culture that also give rise to false-positive findings in published work. The Economist recently 
published an article suggesting that science is not as self-correcting as many assume [22,23], and 
journals such as Nature and Science are publishing columns on scientific misconduct, peer-review, 
and other issues that contribute to the reporting of inaccurate results [24–28]. The last four years 
have also seen several published studies on the prevalence of false discoveries and misconduct, 
indicating that as many as “1% of published papers are fraudulent” (about 20,000 papers each  
year) [25]. Given the increased attention from the public and scientists alike, and because genetics 
is in a transition phase as it moves from performing GWAS data to studying next-generation 
sequencing data, now is an ideal time to address some of these shortcomings. 

2. Sources of Error and Bias in Genetic Research 

A number of factors contribute to false-positive findings in published human genetic research. 
Technical artifact, such as mishandling of population stratification, poorly genotyped SNPs, and 
batch effects introduced by different SNP arrays or genotyping runs can cause spurious results, 
though a number of methods have been designed for detecting them [13,29–32]. Study design is 
also crucial in avoiding false positives. SNPs implicated in disease susceptibility typically have 
modest effect sizes (odds ratios ranging from 1.1–1.5) [18]; insufficient sample size to detect such 
effects can substantially reduce a study’s power and increase the likelihood of discovering an artifact 
rather than a true association. 

Although technical error can lead to false positives, a number of other forces in research culture 
also contribute to the number of published erroneous findings. In the span of just seven years, 
GWAS moved from small-scale efforts to studies of thousands of samples, leading to a heavy 
reliance on statistical methods to study large datasets. Yet, researchers’ understanding of statistics 
has not kept pace with data generation, making them more likely to apply inappropriate statistical 
tests or perform tests they do not fully understand. The same holds true for the many programs 
written to analyze genome-wide datasets. Not all researchers using this software will fully 
understand the underlying methods, increasing the chance of false positives going unnoticed. 

The peer-review process is also partially to blame for the introduction of false findings into 
scientific literature. Though researchers would seem ideal candidates for catching the mistakes of 
their peers, studies suggest that they often fail to catch errors (even when instructed that there are 
errors to find) [22]. Further, peer-reviewers are not provided all data underlying a paper and 
therefore cannot reproduce analyses to verify findings. 

Studies also indicate that misconduct (which includes plagiarism, fraud, and duplicate 
publications) has been on the rise in recent years [33] and accounts for the majority of retracted 
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papers in the life sciences [34]. A number of aspects of research culture likely contribute to such 
misconduct. Scientific research has become a field in which the number of articles a researcher 
produces is a primary measure of success. Career opportunities in the sciences also often hinge on 
the number of publications a scientist has produced. Conflating financial interests (whether in the 
form of employment or grants) and pressure to publish is a factor that potentially gives rise to false 
associations reported in scientific literature [35]. Anyone pressed to produce such a high volume of 
results, preferably at great speed, is more likely to miss mistakes in her own work. 

Publication and funding bias are also problematic [36]. Although replicating a result is the 
backbone of establishing the veracity of a scientific claim, replication studies are less likely to be 
funded than discovery-focused experiments, and journals are less likely to publish them. Journals 
also typically do not publish negative studies, preferring to focus instead on novel results. The 
establishment of the impact factor system has further intensified journals’ bias towards novelty. 
While selecting manuscripts for publication, journal editors consider not only the content of the 
manuscript, but also the potential that the paper will improve the journal’s impact factor. The 
impact factor ranking system also heightens publishing competition for researchers. Researchers 
seek publication in only a very small set of highly selective journals in pursuit of many citations, 
widespread attention from the scientific community and popular media, and potential career 
advancement. In molecular biology and genetics, just six journals accounted for 85 of the 100 
most-cited articles between 1998 and 2008 [37]. 

Figure 2. The growth of open access journals over time and around the world.  
(a) The number of open-access journals, as tracked by the Directory of Open Access 
Journals, over the last 140 years. (b) Countries with over 100 open-access journals 
accepting manuscripts. 
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Increasing the prevalence of false positives are those journals that seek to turn a profit by 
preying off a research culture that keeps publishing at its center. The number of journals accepting 
manuscripts is large and rapidly growing. The Directory of Open Access Journals, which tracks 
open access journals and their credibility, has tracked the swift global expansion of the number of 
open access journals, including an addition of over 1000 journals in 2012 alone [38] (Figure 2). A 
“sting” conducted on open-access journals revealed that many of them are uninterested in scientific 
veracity; a paper concocted wholesale and containing glaring errors was accepted by more than 
52% of the targeted journals [39]. The “sting” in part implicated a flawed peer-review system, as 
40% of the submissions were reviewed and then accepted. The other 60% of submissions, however, 
were accepted without any indication of peer review, suggesting that many of the journals the 
“sting” targeted are focused more on profit rather than on scientific rigor, encouraging a culture 
that values a published finding over a robust result. 

3. Next-Generation Sequencing: New Technology, New Challenges 

The advent of next-generation sequencing (NGS) technology has ushered in a new wave of 
studies in human genetic research. Given that many complex traits involve tens and sometimes 
hundreds of loci [40,41], lower-frequency variants may also contribute to the architecture of human 
disease. However, these variants are weakly tagged by common SNPs and have therefore gone 
untested by GWAS efforts. Researchers using NGS data can test (nearly) the entire set of variants 
in a single genome, helping to complete the picture of the role of genetic variation in common 
disease. Yet, this new technology brings with it many challenges, giving rise to additional forces 
that may lead to false positives in scientific literature. 

A number of technical errors can give rise to a false-positive association in a NGS disease study. 
Determining genotypes from sequencing reads is more challenging than determining genotypes 
from SNP array data [42,43]. Rather than measuring probe intensities, as is done with SNP arrays 
to determine genotypes, extracting genotypes from sequencing data involves multiple steps, 
including mapping sequencing reads to a reference, detecting bases that do not match the reference, 
and determining the genotypes of each individual at each base; errors can occur at any of these 
steps and are particularly likely in regions that are difficult to capture, such as those rich in GC 
content or that are highly repetitive. Further, determining inclusion and exclusion criteria for 
variants based on a host of sequencing metrics can be difficult, sometimes requiring manual review 
of each of the metrics to determine appropriate filters [44]. Even the most conservative variant 
calling and quality control (QC) cannot guarantee that “variants” that are actually artifacts will be 
removed from the dataset. 

Study design flaws can also prompt false-positive results. Although methods for detecting 
population stratification have been developed and widely used in GWAS, our understanding of 
population stratification in rare variants is limited and may confound association results [45]. To 
reduce costs, an investigator may choose to sequence only cases and use external (previously 
sequenced) controls; this approach may introduce stratification because the controls may be 
sequenced using a different platform [46] or genotype-called using outdated software. 
Alternatively, an investigator may want to sequence only cases and then genotype the discovered 
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variants in controls or have cases substantially outnumber the controls, but these approaches also 
inflate type I error [47]. 

So-called loss-of-function mutations are of particular interest in NGS studies since they truncate 
proteins and are thus good candidates for likely pathogenic mutations. However, determining the 
deleteriousness of a loss-of-function mutation can be challenging, and this class of variants is 
enriched for artifacts [48]. It may be tempting to relax statistical thresholds for loss-of-function 
mutations or produce functional results for them before assembling appropriate statistical evidence 
from the genetic data, but doing so can lead to error. 

Figure 3. (a) The power to detect a genetic association is a function of sample size (N), 
effect size ( ), the frequency of the associated allele (p), and linkage disequilibrium 
(LD) between the tested and causal variants (R2), assuming an additive model [50].  
(b) For sequencing studies, many thousands of samples will be necessary to detect 
single, low-frequency variants associated with disease risk at genome-wide significance 
(black line). RAF, risk allele frequency. 
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Though there are many challenges in performing an NGS study, the single largest problem 
plaguing sequencing disease studies to date is low statistical power to detect an association.  
The hypothesis that rare variants influencing susceptibility to common disease would have  
larger effect sizes than those discovered by GWAS has gone largely unsupported, and analyses 
indicate that NGS studies will require tens and even hundreds of thousands of samples to be well 
powered [46,49] (Figure 3). Consequently, assembling adequate sample sizes for NGS studies will 
take time, but researchers remain under pressure to publish. As a result, they will likely be  
anxious to push forward results that are not fully understood, lack statistical evidence, and may not 
even be real. 

Finally, publishing bias will prove even more problematic in the sequencing age. The optimal 
choices for designing and performing a sequencing study—from phenotype ascertainment to 
selecting algorithms for calling and filtering variants and deciding which association tests to 
apply—remain difficult to discern. Sequencing studies that lack “positive” findings are highly 
informative but publishing bias will prevent such information from being widely disseminated. It 
will be more difficult to establish a standardized methodology for NGS studies, as was done for 
GWAS, because it is likely that “failed” experiments will not be given the same attention as studies 
reporting new and exciting results. 

4. Lacking Evidence: Examples from NGS Studies 

To publish disease-associated loci discovered through genome-wide association studies, it has 
become standard practice to meet basic criteria for discovery: appropriate sample and genotype 
cleaning, a SNP at genome-wide significance with a reasonable effect size and frequency, and 
replication in independent samples. Such standards do not yet exist for sequencing studies. Without 
criteria for claiming an association combined with publication bias and the pervasive pressure to 
“publish or perish,” some NGS studies in complex traits have been published despite a paucity of 
statistical evidence. 

A targeted sequencing project in anorexia nervosa (AN) patients claims an association between 
AN and the epoxide hydrolase 2 (EPHX2) gene, though the burden test p-value of the gene failed to 
meet exome-wide significance (discovery, p = 4 × 10 4; replication, p = 6.2 × 10 3) [51]. Because 
EPHX2 has been linked to lipid traits and hypercholesterolemia is common in AN patients, the 
authors performed a variety of interaction tests between variants in EPHX2 and cholesterol and 
body mass index. They suggest that the results of the interaction tests of seven SNPs  
(p = 0.004–0.045) are additional evidence for the role of EPHX2 in AN, but show no correction for 
multiple testing. A small sample size (1205 cases and 1719 controls), a large case-control ratio 
(~3:1) in discovery, and mismatched ancestries between cases and controls (indicated by a 
principal component plot) may have also confounded the results. Although the authors 
acknowledge the need for additional replication, declaring the association between EPHX2 and AN 
“statistically compelling” seems premature. 

Another study examined whole-exome sequencing (WES) from four samples with multiple 
sclerosis (MS) selected from a family with more than 15 affected individuals [52]. The group found 
one novel missense mutation in the tyrosine kinase 2 (TYK2) gene, an MS-susceptibility locus 
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established through GWAS [53,54]. The authors performed genotyping of the variant in all 
remaining family members and report the percentage of affected and unaffected individuals 
carrying the variant (10/14 (71.4%) and 28/60 (46.7%), respectively); the difference is not 
statistically significant (p = 0.17; not reported). Follow-up genotyping in an additional 2,104 cases 
and 1,543 controls revealed that the variant had a frequency of 0.8% in cases and 0.6% in controls, 
also not a statistically significant difference (which the authors state themselves). In fact, these 
frequencies are consistent with observed frequencies in several sets of healthy individuals [55]. 
Nonetheless, the authors conclude the variant has a modest effect on MS risk. Even though GWAS 
has established TYK2 as an MS-associated locus, the particular variant implicated by this study is 
severely lacking in statistical evidence and seems highly unlikely to confer disease susceptibility. 

Some sequencing studies rely on functional follow-up of a variant or gene in the absence of 
statistically compelling genetic evidence. One recent paper examining a family with 22 members 
with early-onset myocardial infarction (EOMI) implicated a frameshift insertion in the guanyl 
cyclase 1, soluble alpha 3 (GUCY1A3) gene and a nonsynonymous single nucleotide variant (SNV) 
in the chaperonin containing TCP1 (CCT7) gene in susceptibility to disease [56]. The frequency of 
the variants in affected versus unaffected family members was not statistically significant, as the 
sample size was small. A search for other susceptibility variants in these two genes in 252 EOMI 
cases and 800 controls yielded counts that were also not statistically significant (Fisher’s p = 0.023 
and p = 0.12 for GUCY1A3 and CCT7, respectively). Functional work on both variants is provided 
as additional evidence, indicating that mutations in both GUCY1A3 and CCT7 in mice induce a 
protein deficiency that can accelerate the formation of clots that potentially cause infarction. 
Guanyl cyclase is a key gene in signal transduction involved in vasodilation, and it is possible that 
these two loci influence susceptibility to EOMI. However, the statistical evidence from the genetic 
data alone is not strong enough to claim association between the mutations and the trait. Moreover, 
it is not immediately obvious whether the conclusions of functional work in mouse models will be 
pertinent to humans or whether findings from such an extreme family will be extendable to EOMI in 
the general population [57]. 

A WES study in sporadic amyotrophic lateral sclerosis (ALS) trios also relied on functional 
work to bolster the finding in the absence of statistically compelling results [58]. The group 
identified de novo mutations in 47 ALS patients and discovered 25 de novo variants in 25 different 
genes, a distribution consistent with the (null) distribution in healthy individuals [59]. A pathway 
analysis indicated enrichment for chromatin regulator genes, such as the synovial sarcoma 
translocation (SS18L1 or CREST) gene, which contained a single de novo event in one sample. The 
authors found that variants in CREST inhibited neurite growth in animal models and claimed that 
de novo mutations in the gene confer ALS risk. However, a single de novo event from one 
individual, even if the variant is functional, is insufficient evidence to claim a role in disease 
susceptibility [60], and extensive replication efforts will be necessary to determine whether the 
ALS-CREST association is real.  

A similar WES effort in Hirschsprung’s disease sequenced two affected (related) samples and  
also used pathway analysis to investigate the role of the neuregulin 3 (NRG3) gene in disease 
susceptibility [61]. Three variants found in NRG3 in the initial samples were followed up in 96 
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cases and 110 controls; the variants were carried by a few cases and no controls (Fisher’s  
p = 0.021, p = 0.22, p = 0.021, for the three variants, respectively). The authors discuss the 
biological plausibility of the NRG3 association based on the gene’s role in the nervous system, but 
due to the small sample size, the genetic evidence for the association is lacking. 

In each of these studies, the statistical evidence based on the provided data was insufficient. 
Although it is certainly possible that replication will show these findings to be real, their 
publication before gathering more persuasive statistical evidence from genetic data seems a 
symptom of a much larger problem. Researchers eager to publish novel results, peer reviewers not 
questioning the dearth of evidence, and journals enthusiastic to publish exciting stories that will 
garner both attention and citations all combine to allow findings that have not yet been 
demonstrated as statistically robust to enter scientific literature as such. 

5. Conclusions: Moving Towards Permanent Change 

A number of changes, addressing both technical challenges and cultural characteristics of 
research, can be implemented in order to improve the veracity of claims in published research. 
Though association testing approaches may differ between sequencing studies (such as selecting 
single-variant testing or gene-based testing), the universal application of particular thresholds will 
help to ensure the robustness of claimed associations. The statistical stringency of genome-wide 
significance at 5 × 10 8 has served the genetics community well and has ensured the robustness of 
the majority of GWAS findings. Single-variant testing across whole-genome data should maintain 
this threshold, if not establish a more conservative one given the increased number of variants 
tested. Similarly, burden tests of genes should be held to an exome-wide significance level, 
estimated to be approximately 5 × 10 7 [44]. Relaxing these thresholds, particularly tempting in the 
case of loss-of-function mutations or studies that analyze only a small set of genes, is unwise. A 
number of mechanisms make interpreting the true deleteriousness of a variant difficult; functional 
annotation alone does not guarantee a true loss-of-function mutation [44,48]. Findings from other 
association testing approaches, such as pathway analyses or polygenic modeling, should be 
evaluated based on appropriate Bonferroni correction for independent tests. Some may argue that it 
is overly conservative to hold a small set of genes or variants to an exome- or genome-wide 
threshold, but these smaller analyses are simply subsets of what will likely become exhaustive 
genome-wide searches. Contingent on the assembly of large datasets, testing every gene or variant 
is inevitable. False-positive signals can occur anywhere in the search space, and assuming these 
false positives will not occur in smaller, earlier searches is faulty logic [62]. 

Designing and performing a study correctly is also crucial to avoiding spurious associations. 
Large samples are of the utmost priority and will lead to additional discoveries, as demonstrated by 
a recent WES project in Alzheimer’s that discovered rare variants in the phospholipase D family 
(Member 3) (PLD3) gene by whole-exome sequencing of 14 families and replicated the finding in 
a large-scale cohort (11,000 European-ancestry cases and controls, gene burden odds ratio = 2.75,  
p = 1.44 × 10 11; 302 African-ancestry cases and controls, gene burden odds ratio = 5.48,  
p = 1.4 × 10 3) [63]. Leveraging population isolates [64] and assembling non-European  
samples [46] may also help in improving power, as was true in the GWAS era [65]. Because of 
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varying study designs and technologies, standardizing NGS data processing and analysis is difficult 
and will likely take time as methods continue to develop. However, some best practices already 
exist [42,43,55] and should be followed. Further, the methods sections of papers should be as clear 
and explicit as possible, reading as “how-to” guides to allow peer reviewers to catch technical 
mistakes and aid external replication efforts. Ideally, data should be made publicly available whenever 
possible. Each of these steps will improve the quality of NGS studies as they are increasingly used in 
the future to study complex traits (Figure 4a,b). 

Designing a sequencing study not only involves consideration of the technical aspects of the 
study but also of the analysis team. Diversifying the team to include scientists with an array of 
expertise will improve the study’s execution and increase the likelihood that the findings prove 
replicable. In addition to geneticists, computer scientists, statisticians, biologists, engineers, and 
clinicians can all contribute to different aspects of a sequencing study, from assembling the raw 
sequencing data to interpreting results. Methods for sequencing analysis are evolving rapidly, and 
multifaceted teams representing many scientific fields are optimal for keeping pace with this 
changing landscape. 

Future scientific publications will also be improved by an open peer review system. Some 
journals, such as the journal of the European Molecular Biology Organization (EMBO), have 
already begun making peer review a public process to great success [66]. The exchange that occurs 
between scientists during peer review can be valuable not only for the authors, but also for other 
researchers. If reviews, responses and revisions are made public the scientific community will 
benefit as a whole by being able to design better studies and avoid errors that other researchers 
have made. Further, peer review is crucial to the scientific process, yet is rarely ever taught. Making 
peer review reports accessible to all can serve as a teaching tool, particularly for younger scientists 
who may be unfamiliar with the process [66]. 

Peer review is not the only aspect of publishing in scientific journals that should be open. 
Though some open-access journals were discredited in Science’s recent “sting”, several open-access 
journals have become highly reputable in the scientific community, and other journals are giving 
authors the option to make their article open-access. This trend towards open-access science should 
continue. Rather than hiding important discoveries behind exorbitantly priced subscriptions, 
journals should be making these findings easily accessible so that they may be discussed and 
retested by the scientific community and available to the public. 

While changes such as statistical stringency, public peer review, and open-access articles are 
readily implementable, other changes in research culture will enhance the robustness of published 
findings, but will require a larger community effort. Journals should require researchers to increase 
transparency and meet certain criteria before submitting a manuscript for consideration. The Nature 
Publishing Group recently updated its editorial policies [67], requiring authors to fill out a checklist 
that accompanies their submitted manuscript. The checklist addresses areas of manuscripts, such as 
study design and analysis, which the editors have noticed are often not reported completely. The 
checklist also lends particular emphasis to justifying statistical analyses; the Nature Publishing 
Group will now consult with statisticians if there seem to be glaring analytic issues or if a referee 
suggests outside consultation. Other journals should adopt a similar strategy. 
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Retractions of genome-wide association and next-generation sequencing studies have been 
limited and should remain as such. To further increase the responsibility of journals in helping 
prevent retractions, the genetics community could establish a retraction index (similar to impact 
factor) for each journal. Such an index would track retraction rate and thus encourage journal 
editors to rigorously review findings and pursue a thorough peer-review process. Of course, 
researchers must take on greater responsibility for retractions, as well. Currently, retraction notices 
can be limited in information or completely ambiguous [34]. Instead, authors should be required to 
provide retraction notices that detail the steps that led to the retraction. The notice should be 
published as a brief article for the journal’s readership to see and appended to the original 
manuscript. Requiring a detailed notice will encourage authors to be particularly critical of their 
own work and may help deter future retractions (Figure 4c). 

Journals should also work to rectify publication bias towards novel findings (Figure 4d). A study 
on de novo variation in Autism Spectrum Disorder (which did not discover any disease-susceptibility 
loci) extensively investigated population stratification in rare variants and the effects of different  
meta-analysis approaches on power [68]. A recent WES paper on Type 2 Diabetes also did not 
discover disease-associated genes, but performed a host of analyses to determine likely etiological 
architecture [69]. Such findings should be made accessible to the entire community, as they can 
clarify our understanding of the genetic architecture of complex traits and improve future studies.  

Journals can also be used to educate the scientific community in areas where it is lacking, such 
as applications of statistics and data interpretation. Three papers published together in the  
Journal of the American Medical Association explain how to interpret genome-wide association 
studies [70–72]. This fall, Nature Methods began publishing the column Points of  
Significance [73–76], which addresses important statistical concepts such as p-values, significance, 
and the relationship between sample size and power. Nature also recently ran a column that 
discussed the role of bias, the inexact nature of measurements, and the important distinction 
between correlation and causation [77]. Such articles do a great community service and will remain 
invaluable teaching tools to the many genetics researchers without formal training in statistics, 
allowing them to evaluate claims of novelty, both in their work and the work of others. 

Of course, in addition to all of these larger changes, the field will hugely benefit from changes 
on a smaller scale. Senior scientists should encourage younger members of the field to conduct 
rigorous experiments, remain vigilant to prevent error, and seek additional help when in doubt 
about an analysis or result. Mistakes or “negative” findings should be met with discussion about 
how to improve a scientific question or refine an experiment. Randy Schekman, who won the 
Nobel Prize for physiology or medicine in 2013, has recently sparked public debate by announcing 
that he and all members of his lab will no longer be publishing in Nature, Science, and Cell [78]. 
Schekman’s announcement, while controversial because of its potentially detrimental effects on the 
careers of his younger lab members, has an important motivation: to publicly address the adverse 
effects that publication bias and lack of open-access have had on the field. Making younger 
scientists aware of the aspects of scientific culture that are damaging to the quality of published and 
public science and prompting them to push for change can only alter the field for the better. 
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Figure 4. Trending topics on PubMed, 2000–2013. The cumulative number of times 
certain phrases appear per one million abstracts in PubMed. (a) Earlier genetic 
association studies (search terms: “candidate gene”; “linkage analysis” or “linkage 
study”; “genome-wide association study”). (b) Next-generation sequencing studies 
(search terms: “exome sequencing”; “whole-genome sequencing”). (c) Retraction notices 
(search terms: “retraction notice” or “notice of retraction”). (d) Claims of novelty and 
statistical significance (search terms: “novel”; “not statistically significant” or “not 
significant”; “statistically significant” removing “not statistically significant”). 

 

Fortunately, science in general and genetics in particular has proven to be a highly adaptive 
field. Peer-review is a relatively new process, becoming standard practice for most scientific 
journals in the second half of the 20th century [79]. In less than a decade, the foundation of the 
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Public Library of Science (PLoS) has helped to revolutionize publishing in science, providing the 
scientific community with a family of open-access journals and encouraging other journals to 
follow suit in its pursuit of freely available scientific literature [80]. In genetics specifically, the 
community acknowledged that candidate gene studies were poorly performing and established 
standards for more robust genome-wide association studies. Again, the tide has begun to shift as 
communities to discuss pre-prints continue to grow [81,82], researchers increasingly use social 
media to discuss many of the issues addressed here, and journals begin altering their editorial and 
publishing processes. With a concerted effort to improve published work, the field of human 
genetics is capable of permanent change. 
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Genetic Profiling for Risk Reduction in Human  
Cardiovascular Disease 

Megan J. Puckelwartz and Elizabeth M. McNally 

Abstract: Cardiovascular disease is a major health concern affecting over 80,000,000 people in the 
U.S. alone. Heart failure, cardiomyopathy, heart rhythm disorders, atherosclerosis and aneurysm 
formation have significant heritable contribution. Supported by familial aggregation and twin 
studies, these cardiovascular diseases are influenced by genetic variation. Family-based linkage 
studies and population-based genome-wide association studies (GWAS) have each identified genes 
and variants important for the pathogenesis of cardiovascular disease. The advent of next 
generation sequencing has ushered in a new era in the genetic diagnosis of cardiovascular disease, 
and this is especially evident when considering cardiomyopathy, a leading cause of heart failure. 
Cardiomyopathy is a genetically heterogeneous disorder characterized by morphologically 
abnormal heart with abnormal function. Genetic testing for cardiomyopathy employs gene panels, 
and these panels assess more than 50 genes simultaneously. Despite the large size of these panels, 
the sensitivity for detecting the primary genetic defect is still only approximately 50%. Recently, 
there has been a shift towards applying broader exome and/or genome sequencing to interrogate 
more of the genome to provide a genetic diagnosis for cardiomyopathy. Genetic mutations in 
cardiomyopathy offer the capacity to predict clinical outcome, including arrhythmia risk, and 
genetic diagnosis often provides an early window in which to institute therapy. This discussion is 
an overview as to how genomic data is shaping the current understanding and treatment of 
cardiovascular disease. 

Reprinted from Genes. Cite as: Puckelwartz, M.J.; McNally, E.M. Genetic Profiling for Risk 
Reduction in Human Cardiovascular Disease. Genes 2014, 5, 214-234. 

1. Introduction 

Next generation sequencing has revolutionized the study of human genome variation and has the 
capacity to greatly influence health care decision making. The Human Genome Project, as 
conceived, was to sequence the first human genome in ~15 years at a cost of almost $3 billion 
using traditional dideoxy chain termination sequencing. In under 10 years, massively parallel next 
generation sequencing has led to the routine sequencing of exomes and whole genomes. Now 
achieved in weeks and at a cost that is multiple orders of magnitude less than the first genome, 
personalized genetic information is now widely available. These rapid advances in sequencing 
technology require new ways of collecting, analyzing, and disseminating genomic data. Herein, we 
discuss the ways that genomic information is currently being applied and how that data is shaping 
the ability to understand and treat cardiovascular disease (CVD). 

Genetic variation is considered a contributory component for nearly all disease, whether single 
gene familial disorders or more common, complex traits with multiple gene involvement. Single 
gene or “Mendelian” disorders can be attributed to one gene as both necessary and sufficient to cause a 
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large component of the disease phenotype. With complex traits, the gene-gene and gene-environment 
interactions are multifactorial. CVD consists of both single gene-familial disorders and common, 
complex disease. CVD is a major health concern affecting over 80,000,000 people in the U.S.  
alone [1]. CVD extends to heart failure and cardiomyopathy, heart rhythm disorders, 
atherosclerosis and thromboembolic events, aneurysm and others disorders. Familial aggregation 
and twin studies demonstrate that most, if not all, of CVD is heavily influenced by a genetic 
component [2–4]. 

2. Genetic Variation in CVD 

Beginning in the 1980s, family-based linkage analysis was used to identify regions of the 
genome responsible for monogenic disease. The success of these methods required large families 
with penetrant phenotypes. Polymorphic genetic markers segregated with the phenotype of interest 
in large multi-generational families to identify chromosomal regions bearing the causal genes of 
interest [5]. Such familial linkage studies were highly successful in identifying genes for multiple 
forms of CVD. In 1989, linkage analysis defined the chromosomal location responsible for 
hypertrophic cardiomyopathy [6]. The next year, this data was used to identify mutations in the 
causative gene, MYH7, encoding -myosin heavy chain [7]. Genetic determinants for Long QT 
syndrome, multiple cardiomyopathies, Marfan’s disease, and forms of congenital heart disease 
were identified highlighting both extensive locus and allelic heterogeneity [8–14]. However, these 
methods remain limited by the need for large families, a feature often not available since CVD 
confers survival disadvantage. Furthermore, much of CVD is under the influence of multiple 
genetic loci, and therefore requires alternative statistical methods and larger phenotypically and 
genetically characterized cohorts [15]. The HapMap project annotated the location of millions of 
single-nucleotide polymorphisms (SNPs) and took advantage of the long haplotype structure of the 
human genome [16]. Concurrently, commercially available platforms such as SNP arrays were 
developed that allowed simultaneous sampling of hundreds of thousands of SNPs paving the path 
for genome-wide association studies (GWAS). GWAS, which correlates SNPs with disease 
phenotypes, does not require a specific mode of inheritance and takes advantage of the extensive 
linkage disequilibrium (LD) in the human genome. In order to have enough statistical power to 
detect correlation, these large-scale association studies typically assess thousands to millions of 
SNPs across the genome in hundreds to thousands of cases and controls. According to the National 
Human Genome Research Institute (NHGRI) Catalog of Published Genome-Wide Association 
Studies [17] over 2800 strong SNP associations have been identified (p < 1 × 10 8) to date, and 
many of these are CVD-associated traits. 

2.1. The Overlap between GWAS Hits and Monogenic Disease in CVD 

CVD related phenotypes are well suited for GWAS because many CVDs have readily 
quantifiable discernable traits. Intriguingly, many GWAS “hits” overlap considerably with the same 
genes already linked to the disease though familial linkage studies. For example, Newton-Cheh and 
colleagues conducted a meta-analysis of three GWAS from ~14,000 individuals to examine the 
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duration of QT interval from surface electrocardiograms [18]. QT duration reflects electrical 
depolarization and repolarization of the cardiac ventricles. A long QT interval is a biomarker for 
arrhythmias and a risk factor for sudden death. Non-familial QT disorders are still highly heritable 
(h2  0.35), indicating a genetic component. GWAS identified 10 loci with significant  
(p < 5 × 10 8) association with QT interval. Five loci were those known to be involved in 
Mendelian long-QT syndromes, while the other five loci were genes that offer additional insights 
into variation at the QT interval. In total, the variation at these 10 loci accounted for 5.4%–6.5% of 
variation in the QT interval, which is quite high by GWAS standards. Genetic testing for the 
Mendelian form of long QT currently identifies mutations in ~75% of probands, so the additional 
GWAS loci may represent new candidate genes for mutation screening in familial long QT disorders. 

BAG3 (B-cell lymphoma 2-associated athanogene 3) is another example of GWAS results 
informing rare, Mendelian disease. In 2011, Villard and colleagues performed GWAS to identify 
loci contributing to sporadic dilated cardiomyopathy. Dilated cardiomyopathy (DCM) is 
exemplified by left ventricular dilation and systolic dysfunction, and is a major cause of heart 
failure and the principle indicator for heart transplant [19]. DCM has a high heritable component 
with 20%–35% of DCM patients having an affected first-degree relative [20]. More than 50 genes 
have been implicated in familial monogenetic DCM [21–23]. GWAS was performed with DNA from 
1179 sporadic (non-familial) DCM patients and 1108 controls using ~500,000 SNPs [19]. The 
authors identified a DCM-associated non-synonymous SNP (p. C151R) in the coding region of 
BAG3. BAG3 is a co-chaperone that regulates HSP70 [24]. Further analysis of BAG3  
non-synonymous SNPs found another higher frequency SNP also associated with DCM. The 
authors investigated BAG3 variation in familial DCM based on both the apparent association of 
BAG3 non-synonymous SNPs with sporadic DCM and previously reported linkage with familial 
DCM between markers on chromosome 10 that include the BAG3 locus [25]. In a cohort of 168 
cases from DCM families, the authors identified additional likely pathogenic mutations in BAG3. 
Features of DCM were identified in 16 of 18 mutation carriers in the cohort [19]. In the same year, 
Norton and colleagues identified BAG3 mutations in familial DCM [26]. The authors also created a 
BAG3 knockdown zebrafish model that recapitulated the DCM and heart failure found in  
patients [26]. Together, the GWAS and familial data implicate BAG3 in DCM and indicate that 
genes can harbor common variation that influences risk of disease in sporadic cases and rare 
variation that accounts for familial disease. 

2.2. The Missing Heritability of GWAS 

Despite the overlap of GWAS findings with monogenic disease, GWAS associations often 
account for only a small proportion of genetic variation. Also, the vast majority of variants 
identified by GWAS does not explain the high heritability or reveal the causal mechanism for the 
cardiovascular phenotype in question [27–29]. Using GWAS, McPherson and colleagues identified an 
interval on chromosome 9q21 that consistently associated with coronary heart disease in more than 
23,000 participants from 6 independent cohorts [30]. Homozygotes for the risk allele have a  
30%–40% increased risk for coronary artery disease (CAD). This finding remains perplexing as this 
region on 9q21 has no annotated genes and is not associated with known CAD risk factors [30]. 
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This same chromosome 9q21 region has also been associated with myocardial infarction in a GWAS 
with 4587 cases and 12,676 controls [31]. Homozygotes for the allele have 1.64 times increased risk 
for myocardial infarction compared to noncarriers. Despite the evidence that this region is 
important for CVD pathophysiology, no disease mechanism has yet been identified. 

GWAS is ultimately based on the idea that common diseases are caused by common  
genetic variants, each with small effect. Through additive and interactive effects, in conjunction 
with the environment, GWAS variants explain disease [27,32,33]. Recently, the common disease 
common variant hypothesis has been called into question due to the observation of missing 
heritability [34,35]. Missing heritability refers to the proportion of genetic variance that is not 
explained by the effect of common variants identified by GWAS. Several explanations have been 
suggested to explain missing heritability. It is possible that the number of variants responsible for a 
trait has been significantly underestimated, and that many more yet identified variants with very 
small effect sizes must be discovered. Another possibility is the presence of rare variants with 
larger effect size. Such rare variants are undetectable using present day SNP arrays, which are 
biased towards SNPs with allele frequencies close to 50%. There is also a possibility that missing 
heritability arises from variation caused by structural variants in the genome, also difficult to detect 
with SNP arrays. Lastly, there is also the possibility that gene-gene interactions and gene-environment 
interactions are of major importance, but are not appropriately modeled by current methods.  

GWAS typically interrogate SNPs with a minor allele frequency (MAF) > 5% while largely 
ignoring variants with lower population-based frequencies (MAF: 0.5%–5%) and those SNPs that 
are rare (MAF < 0.5%). The rationale for ignoring these variants relates to the strong linkage 
disequilibrium (LD) in the human genome. The human genome has an estimated mutation rate of 
approximately 1.4 × 10 8 or approximately 40 new mutations per generation. Projected over the 
current population of ~7 billion, the world currently has 300–400 million new mutations this 
generation [36]. Within the coding region alone, there are ~13,000 nonsynonymous variants per 
genome [37,38]. The National Heart Lung and Blood Institute sponsored exome sequencing project 
(NHLBI ESP) sequenced ~15,000 human-protein coding genes in >2000 individuals [39]. This 
study revealed an abundance of rare variants that were often population specific, potentially 
offering some support that rare variation explains some component of missing heritability. Alleles 
that confer high risk of disease are subject to negative selection pressure and would not reach high 
population frequencies. However, many different rare alleles in the same genes or gene pathways 
would induce the same phenotype across the population despite the “rare” genetic etiology. 
Johansen and colleagues recently performed GWAS and resequencing to determine mutational 
burden of rare variants in individuals with hypertriglyceridemia versus control subjects [40]. 
Hypertriglyceridemia is polygenic in nature and confers risk for cardiovascular disease. In general, 
GWAS variants explain <10% of variation for lipid traits [41,42]. Loci associated with GWAS 
signals were assessed for rare variation by focusing on protein-coding sequences of four  
GWAS-associated genes [40]. The authors identified a significant number of rare variants in 
individuals with hypertriglyceridemia compared to controls. An additional more restricted study, 
which analyzed only rare variants unique to cases and removing all reported variants without 
functional deficits, also confirmed a greater mutational burden in cases compared to controls [40]. 
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These data indicate that GWAS-identified genes may carry rare variation that contributes to the 
heritability of a complex trait, and rare SNPs with relatively large effects on common disease may 
not be identified by GWAS studies. The underlying assumption that genotypes can be inferred 
between common alleles in strong LD may be flawed. Inferring genotypes based on strong LD may 
misestimate variation across the genome. While haplotype structure may be maintained with 
several to many common SNPs still inherited together, rare variation may occur between these 
SNPs, reducing the predictive value of the common SNPs. This rare variation may be the result of a 
higher than expected mutation rate and/or population structure.  

2.3. Rare Variation as a Cause of CVD 

Next generation sequencing (NGS) provides a method to identify rare genetic variation. 
Massively parallel, array-based sequencing dramatically reduced cost and increased efficiency of 
DNA sequencing. Depending on the platform, sequencing reads range from ~35 base pairs to up to 
~1000 base pairs. As the generation of sequence has become far more facile with NGS, large-scale 
alignment and interpretation has become the rate limiting step. Bioinformatics tools are available 
for alignment to the referent genome and calling variants (reviewed in [43,44]). A number of efforts 
are currently underway to catalog human genetic variation. The 1000 Genomes project has sequenced 
1092 individuals from 14 populations using a combination of low coverage whole genome 
sequencing and exome sequencing [45]. It is estimated that this dataset captures 98% of SNPs at a 
frequency of 1%, finding 38 million SNPs, 59% of which were novel [45]. The NHLBI ESP 
provided whole exome sequencing on >6500 individuals, including 180,000 exons in 23,000 genes. 
The ESP is derived from diverse, well-phenotyped populations, including the Atherosclerosis Risk 
in Communities (ARIC) study, the Coronary Artery Risk Development in Young Adults 
(CARDIA) study, the Cardiovascular Health Study, the Framingham Heart Study, the Jackson 
Heart Study, and the Multi-Ethnic Study of Atherosclerosis. The data from this project will 
examine the genetic contribution to early-onset myocardial infarction, low-density lipoprotein 
cholesterol, body mass index/type 2 Diabetes mellitus, blood pressure, and ischemic stroke. 

These databases are not only providing a rich dataset to identify rare variation, but they are also 
providing better allele frequencies across diverse populations for alleles once thought to be rare and 
pathogenic. Jabbari and colleagues examined the NHLBI ESP database (n = 6503) for variants 
previously associated with Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT)  
and compared the frequency of those variants with the expected prevalence of CPVT in the 
population [46]. CPVT is a rare, lethal, hereditary cardiac disease characterized by fatal ventricular 
arrhythmias in the absence of structural defects of the heart or abnormal electrocardiographic 
findings [47]. Eleven percent of variants previously associated with CPVT were found in the ESP 
population, corresponding to a 1:150 prevalence of CPVT in the population, much higher than the 
known 1:10,000 prevalence. The 1000 Genomes (1KG) database was evaluated for the presence of 
predicted and previously reported pathogenic variation in three genes associated with 
cardiomyopathy (MYH7, MYBPC3 and TTN) [48]. Nine percent of the population was identified as 
having a pathogenic variant (9%), which exceeds population prevalence estimates for dilated and 
hypertrophic cardiomyopathy (0.04%–0.2%, respectively). Similar studies have been performed for 
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other cardiovascular diseases including Brugada Syndrome, cardiac channelopathies and 
arrhythmogenic right ventricular cardiomyopathy [49–51]. Since in every case the predicted 
pathogenic variation vastly exceeds the known disease prevalence, it suggests that on their own, 
these variants are not sufficient to cause disease. Whether these variants represent “at risk” 
genotypes for developing milder forms of disease is not known and requires prospective studies. 

3. The Genetics of Dilated Cardiomyopathy 

Cardiomyopathy is marked by a morphologically abnormal ventricle and frequently is 
associated with heart failure. Cardiomyopathy is divided into four groups: dilated (DCM), 
hypertrophic (HCM), restrictive (RCM), and arrhythmogenic right ventricular (ARVC), and the 
most common mode of inheritance is autosomal dominant. Depending on screening methods, 
nonischemic DCM, defined as DCM not arising from myocardial infarct or ischemia, is familial in 
25%–50% of cases [52]. Greater than 50 genes have been implicated in familial DCM, and the 
majority of mutations are phenocopies as there are no outward clinical signs that predict the 
specific gene mutation. Identification of the genetic cause of cardiomyopathy is clinically 
important because of the high incidence of sudden death and clinical progression, which can be 
medically managed. In 2007, genetic testing relied on commercially available panels that 
interrogated only 5 genes using traditional sequencing. In 2011, Meder and colleagues developed an 
array-based panel that enriched for coding regions of 29 known and 18 novel, potential 
cardiomyopathy genes, followed by next-generation sequencing [53]. Current panels now include >50 
genes [54], and the estimated sensitivity in DCM for detecting a pathogenic mutation is under 50% 
(Partners Healthcare [55]). 

3.1. Next Generation Sequencing Identifies TTN as a Major Contributor to DCM 

Next-generation sequencing facilitated the screening of TTN for DCM-causing variants. The TTN 
gene includes >350 exons and encodes the giant sarcomere protein titin, which ranges in size from 
~27,000 to ~33,000 amino acids depending on isoform, making it the largest human protein [56]. 
Together, two titin molecules span the sarcomere, providing both passive and active contractile 
forces [57–60]. Previous work has linked TTN to dilated cardiomyopathy in families, but extensive 
screening was limited due to its large size [61–63]. Herman and colleagues developed an array to 
capture TTN exons and sequence TTN in patients with DCM (n = 312) [64]. TTN truncating 
mutations accounted for approximately 25% of familial DCM, but had a minimal contribution to 
hypertrophic cardiomyopathy (~1%). Approximately 30% of TTN truncating variants identified 
were putative splice site disrupting mutations whose effect on function can be difficult to  
assess in silico. 

3.2. Beyond Panel Based Sequencing for Cardiomyopathy and Beyond 

Despite the inclusion of TTN, the sensitivity for detecting a DCM mutation remains at just  
under 50%. There are several explanations for the missing variation. First, there are likely novel 
genes not yet associated with cardiomyopathy; second, certain genetic variation may not be readily 
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detectable with NGS and SNP analysis. For example, nucleotide repeat expansions and structural 
variation is not commonly determined by NGS, as analytic methods are biased toward SNP 
analysis and small insertions and deletions; Third, pathogenic variation may arise from 
combinations of pathogenic variation, and analysis is generally biased towards finding a single 
pathogenic variant. This bias reflects that most families with inherited cardiomyopathy have 
autosomal dominant inheritance; Fourth, pathogenic variation may be non-coding and at this point, 
these regions are not captured by gene panels. To combat these problems and provide a more 
comprehensive variant profile, whole exome sequencing (WES) and whole genome sequencing 
(WGS) are being applied to identify disease-causing variation for many different diseases  
(Table 1). WES interrogates the coding portion of the genome; approximately 1%–2% of nuclear 
DNA, although at higher coverage than-comparably priced WGS [65]. Interrogating only a small 
portion of the genome, as in WES, is less expensive than WGS, and it is currently the most-readily 
interpreted, as approximately 85% of Mendelian-disease causing mutations cause changes in the 
coding sequence of the genome [66]. WES relies on commercially available sequence-capture 
arrays to enrich for the coding subset of genomic DNA, followed by massively parallel,  
next-generation sequencing of the enriched fragments. The choice of exome kit is an important 
consideration as the exome is approximately 30 megabases, and exome capture kits interrogate 
anywhere from 50 to 100 megabases, depending on the provider. Most of the additional sequences 
are untranslated regions (UTRs) that may be important for disease pathogenesis.  

Table 1. Comparison of Panel, whole exome sequencing (WES) and whole genome 
sequencing (WGS). 

 Panel WES WGS 
Variation in Known Genes yes yes yes 
Novel Gene Identification no yes yes 

Structural Variation no limited yes 
Non-coding Variation no limited yes 

Repeat testing required if first pass negative yes yes no 

3.3. Exome Sequencing of Multiple Family Members Improves Identification of  
Pathogenic Variation 

Campbell and colleagues used exome sequencing on three members of a large multi-generational 
family with classical DCM. After sequencing, variants were filtered by frequency and protein 
prediction algorithms [67]. Eight potentially causative mutations were shared across the three 
family members, significantly reducing the potential variants to be considered. Variants were tested 
for segregation across the other family members and only one variant segregated with disease, 
TNNT2 R173W, a known cardiomyopathy gene. These data are particularly convincing as the 
variant segregates across all affected members of the family, including fourth-degree relatives [67]. 
The underlying assumption with this analysis is that a single variant accounts for disease in all 
family members, an assumption that may or may not hold true. In 2013, Wells and others used 
WES in a large, multi-generational family with DCM of unknown etiology [68]. The proband had 
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undergone extensive unrevealing panel testing for DCM. The authors selected 3 distantly related 
affected family members for WES. Distantly related family members that are obligate carriers of 
the same mutation should share fewer variants by descent than closely related members, allowing 
for easier filtering of potentially causative variants. Variants were then filtered for rarity, functional 
significance, conservation and autosomal-dominant inheritance [68]. Variants were also prioritized 
using the VAAST tool, a probabilistic search tool that combines conservation, amino acid 
substitution chemistry, and frequency data to build a unified likelihood-framework to identify 
damaged genes and disease-causing variants [69]. Heterozygous, nonsense, nonsynonymous and 
splice site variants shared between the 3 affected candidates were filtered based on rare frequency 
in 1 KG and ESP, leaving 26 candidates for analysis. Wells and colleagues then compared these 
variants to variants identified in ~70 exomes previously sequenced by their laboratory. Variants 
identified in multiple exomes were removed, leaving 2 putative variants. This comparison allowed 
for removal of false positives that may be inherent to some sequencing platforms and variant 
calling pipelines. An RBM20 variant was identified in an unrelated patient with familial-DCM, 
consistent with its role in causing disease. The authors confirmed segregation within the larger 
pedigree of the variant in RBM20, a recently identified cardiomyopathy gene [70], providing 
statistical support for RBM20 causing DCM. It is interesting to note that this finding is largely based 
on frequency in both the general population and in a cohort already sequenced by the laboratory. The 
authors did perform filtering that considered evolutionary conservation (Genomic Evolutionary Rate 
Profiling) and functional effects (Polyphen2) but these tools did not reduce the list as extensively as 
population and cohort frequency combined (8 variants versus 2 variants, respectively [69,71,72]. 
These data indicate that exome sequencing followed by extensive filtering, in conjunction with 
segregation analysis can identify rare, DCM-causing variation in known cardiomyopathy genes. 

3.4. Identifying Cardiomyopathy Modifier Loci Using Broad Based Sequencing 

With large gene panels or WES/WGS additional, disease-modifying variation can be identified. 
Intra-familial variability including age of onset, severity and penetrance is a hallmark of DCM, but 
the loci that modify DCM phenotypes have not been well elucidated [73,74]. Roncarati and 
colleagues used WES to investigate clinical variability in an extended family with 14 subjects  
that included four family members with severe DCM that required heart transplant in early 
adulthood [75]. WES was performed on three severely affected and one unaffected family member. 
Variants were filtered for rarity, predicted pathogenicity and inheritance. The filtering process left a 
list of only 28 variants that where further filtered through the Human Phenotype Ontology project, 
which uses formal ontology to capture phenotypic information to identify relationships between 
different genes and phenotypes [76]. Through this analysis, the authors identified eight genes with 
variation associated with Mendelian disease [75], and two of eight LMNA and TTN, were known to 
cause DCM. A missense LMNA mutation, previously identified in an unrelated DCM patient, was 
confirmed in all affected family members [77]. A TTN variant was identified in five family 
members, four of whom were severely affected, while the fifth is likely too young to yet be 
symptomatic. Doubly heterozygous family members had a more severe clinical course than the 
LMNA-only family members, indicating that the TTN variant modifies the clinical progression [75]. 
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This mutational stratification is expected to prove useful for assessing clinical risk and guiding 
treatment. Broad based sequencing through gene panels or WES/WGS is now positioned to outline 
the contribution of multiple variants to DCM development.  

3.5. WES/WGS Can Identify New Genes for Cardiomyopathy 

In 2011, Theis and colleagues used genome-wide mapping and exome sequencing in a 
consanguineous family with autosomal recessive DCM [78]. Genome-wide linkage analysis was 
performed in nineteen family members and a significant LOD score was identified on chromosome 
7q21, in a region containing >250 genes. Exome sequencing was performed on 2 affected siblings, 
and variants were called and filtered without taking into account the linkage peak on 7q21. 
Synonymous, intergenic and intronic variants were removed from further consideration. Variants 
were filtered based on presence in 1 KG, HapMap, and in the authors’ collection of exome 
sequences. Heterozygous SNPs were excluded due to the autosomal recessive inheritance mode. 
This extensive filtering left only 3 homozygous missense variants and only 1 was not present in 
unaffected family members, a mutation in GATAD1 that maps to the already identified linkage 
region on 7q21. GATAD1 encodes the GATA zinc finger domain-containing protein 1 which is 
ubiquitously expressed and is thought to bind to a histone modification site that regulates gene 
expression [79]. Immunohistochemistry with an antibody to GATAD1 revealed an abnormal 
staining pattern in the proband heart compared to control heart [78]. These data implicate GATAD1 
in the pathogenesis of DCM indicating that exome sequencing can be used to identify novel  
DCM genes.  

3.6. Limitations of WES 

While fruitful, exome sequencing does have limitations. There are inherent technical limitations 
associated with the method. WES requires a capture step, which is limited by design of capture 
oligonucleotides. Not all genes or exons are adequately annotated and therefore will not be 
properly included in the methods to capture exons. Furthermore, there can be inconsistencies in 
capture resulting in poorly covered exons and off-target sequencing. Capture efficiency only 
approximates 70%–80% in part due to the high GC content of exonic sequence. Probably the most 
notable limitation is that only 1%–2% of the entire genome is evaluated. Because approximately 
85% of described Mendelian mutations occur in the coding regions of genes, it is assumed that 
Mendelian disease is more likely to be caused by mutations in protein coding exons than in  
non-coding sequences. However, over a third of Mendelian diseases reported in OMIM have no 
known molecular basis. It is reasonable to conclude that some of these missing mutations are either 
structural variants or that they occur in non-coding regions of the genome, exome sequencing is not 
suited to interrogate either of these possibilities. 

Copy number variants (CNVs) are regions, >50 bp in length, that differ from the expected 
diploid status [80]. CNVs are an important component of genomic variation in humans and some 
contribute to disease including cardiovascular disease [81–83]. A recent study by Norton and 
colleagues identified a large deletion in BAG3 in a large multi-generational family with DCM [26]. 
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Whole exome sequencing was performed on 4 of the affected family members and comparative 
genomic hybridization was performed on the proband to detect copy number variations. The 
technical limitations of WES prevented identification of the large BAG3 deletion (>8.7 kb). 
Algorithms are being created to aid in the use of exome sequencing for the detection of copy 
number variation [84,85]. However, these methods come with a variety of limitations and cannot 
detect other types of structural variation such as uniparental disomies or chromosomal 
rearrangements, both exceedingly important for disease pathogenesis. WGS, as opposed to WES, 
may offer a better method to detect some structural variants, but may require improved analytic 
tools for specificity and sensitivity of structural variant detection.  

4. WGS as a Tool to Investigate Non-Coding Variation for CVD 

Perhaps even more important to understanding disease etiology is the investigation of  
non-coding variation. Over 98% of the genome is non-coding, and WGS captures nearly 100 fold 
more of this information compared to WES. However, the interpretation of non-coding variation is 
currently far more challenging than the interpretation of coding variants. Often referred to as the 
“dark matter” of the genome, these regions can include microRNAs, long non-coding RNAs, splice 
variants and regulatory elements that can directly cause or modulate disease phenotypes [37]. 
miRNAs are important regulators of heart function and recent studies have revealed miRNA 
misexpression in human cardiac disease and animal models of heart failure [86–88]. For example, 
miR-208 is encoded by an intron within MYH6, which encodes  myosin heavy chain and is in 
close proximity to MYH7 [87,88]. mir-208 null mice do not hypertrophy in response to cardiac 
stress and null mice do not upregulate Myh7 [89,90]. Silencing of miR-208 reduces cardiac 
remodeling, deterioration of heart function, and improves survival in a rat model of heart failure, 
while overexpression of miR-208 in cardiomyocytes leads to cardiomyocyte hypertrophy [90,91]. 
Another miR, miR-1 is the most highly expressed miRNA in the murine heart [88,92]. miR-1 
targets HAND2, a transcription factor important for expansion of ventricular cardiomyocytes. 
Deletion of miR-1 results in 50% perinatal lethality due to ventricular septal defects [88]. The 
majority of surviving mice exhibit sudden death due to conduction defects. Overexpression of  
miR-1 in embryonic cardiomyocytes caused thin-walled ventricles leading to death at embryonic 
day 13.5 [86]. These data underscore the importance of miRNAs in cardiac phenotypes. Variation 
in these and other non-coding regions of the genome may play a vital role in the disease process. 
Annotation of the non-coding genome is currently underway to aid in the interpretation of these 
variants. The ENCODE project (Encyclopedia of DNA Elements) has assigned biochemical 
functions to 80% of the genome [93]. Only twelve percent of SNPs identified by GWAS as  
disease-associated are located in the vicinity of a protein-coding region even though SNPs in coding 
regions are over-represented on SNP arrays. However, over 60% of disease-associated SNPs identified 
by GWAS lie within functional, non-coding regions, especially in promoters and enhancers [94].  
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4.1. WGS Has Greater Sensitivity than WES 

WGS is only now emerging as an alternative to WES since higher cost and more complex 
analysis limited uptake of WGS. Recently, WGS was used to identify a putative causative variant 
in a family with two children affected by a previously unreported disease defined by cardiomyopathy 
and progressive muscle weakness [95]. Wang and colleagues performed WES on one sibling and 
WGS on the other sibling. WES was performed to a depth of 118× with >90% target regions covered 
by 10 reads, while WGS was performed to a depth of 81×. Variants were filtered using ANNOVAR, 
which relies on frequency and functional variation [96]. After validation with Sanger sequencing and 
transmission pattern testing, only two genes remained as candidates. One, TAF1L, is homologous 
to TAF(II)250 and is specifically expressed in testis. The other candidate, RBCK1, codes for an E3 
ubiquitin-protein ligase. In this family, RBCK1 had two truncating mutations, each inherited from 
one parent [95]. RBCK1 was considered a good candidate for both its rarity and the involvement of 
other ubiquitin-ligase proteins in muscle disease. The WES data set failed to reveal the RBCK1 
variants despite good coverage over the targeted regions including the exons of RBCK1. Upon 
reanalysis, coverage was very low (2 and 4 reads respectively) for the two mutations, with only one 
read containing a mutation [95]. Further investigation revealed a high GC content surrounding 
these mutations [97]. Previous studies have also noted that uneven exome coverage has resulted in 
filtering of disease genes [98]. This study serves as a proof of principle that whole genome 
sequencing can be used to identify rare Mendelian, cardiomyopathy phenotypes, and, in some 
instances, may be more sensitive than WES. 

4.2. Limitations of WGS 

Two of the major limitations of WGS are size and cost. To achieve average coverage  
~35–40× with WGS requires approximately 125 Gb of generated sequencing data. Figure 1A 
compares the amount of data generated from panel (blue), exome (red) and whole genome 
sequencing (green). WGS produces an order of magnitude more data than WES. All three 
technologies call variants proportionate to the amount of data generated with WGS calling  
~4 million variants per genome, WES calling ~90 K, and gene panels calling far fewer (Figure 1B). 
At this time, clinical WGS is more expensive than either WES or panel sequencing at 
approximately $9000–$9500 for WGS, ~$7000 for WES and ~$4000 for a pan-cardiomyopathy 
panel. The price for both WES and WGS is considerably more than the cost of a panel. However, 
this only remains true if a pathogenic mutation is identified in the first panel. The value of each test 
can be thought of in terms of the cost per variant identified, and with this metric WGS is a better 
value (Figure 1D). Panel sequencing is ~$1.70, WES is ~$0.08 (8¢) and WGS is ~$0.002 (0.2¢) per 
variant detected. While only a handful of variants may be germane to identifying the cause of an 
individual’s primary cardiomyopathy, the other sequence data remains available where it may 
provide useful guidance for life-style and medical decisions.  
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Figure 1. Size and Cost Considerations of Next-Generation Sequencing. (A) The 
amount of data generated by a typical cardiomyopathy gene panel of ~50 genes (green), 
whole exome sequencing (red) and whole genome Sequencing (blue) is shown; (B) The 
approximate number of variants produced by each method is indicated; (C) The 
Clinical cost of each method ranges from ~$4000 (cardiomyopathy gene panel, green) 
to ~$9500 (whole genome sequencing, blue); (D) The cost per variant is greatly 
reduced for WGS ($0.002, blue) versus WES ($0.08, red) and gene panel-based 
sequencing ($1.70, green). Boxes indicate parameters used to calculate values in  
A–D including coverage, base pairs interrogated and total output. 

 

4.3. Multi-Pass Filtering Methods Allow for More Efficient Variant Identification 

WGS produces vastly more data than either panels or WES, and this is the double-edged sword 
of broad based sequence analysis. To cope with this problem we (and others) have adopted 
stepwise, multi-pass filtering methods (Figure 2). In the first pass, candidate genes are analyzed for 
the phenotype of interest, in this case cardiomyopathy. Typically, exonic variants in candidate genes are 
filtered for frequency and for potential protein pathogenicity. A number of tools are freely available 
that predict the impact of amino acid changes on protein structure and function including PolyPhen-2, 
GERP, SIFT, PhastCons, Panther and Conseq [72,99–103]. MaxEnt can be used to score the 
strength of splice site variants [104]. If filtering candidate genes does not produce meaningful 
variation, the search can be expanded to less attractive candidates or to all rare protein coding 
variation and finally to non-coding variation. Non-coding variants can be filtered for frequency, 
however this is more challenging as many frequency databases are biased towards coding regions. 
Conservation of sequences across multiple species may provide clues about the selection acting on a 
sequence. The data generated by the ENCODE project will also provide information about 
variation in functional elements. The complexity of analysis increases with each pass. While this 
approach approximates panel and WES analysis, it is an improvement in several ways. With this 
model, WGS only needs to be performed once, while patients that are panel negative will need 
additional sequencing. In the case of WES, exome capture kits are often updated due to changing 
gene annotations and the inclusion of newly understood non-coding sequence, requiring retesting with 
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new kits. WGS is less likely to need additional sequencing, and moreover, may provide additional 
data that over a lifetime can be used to inform not only the primary health concern for which data 
was collected, but medical choices throughout a patient’s life. 

Figure 2. Pipeline for WGS Variant Identification. WGS produces ~4 million variants 
per genome and requires extensive filtering to identify variants of interest. Shown here 
is a potential pipeline to identify variants. The first pass of the pipeline entails only 
reviewing variants in the coding regions of genes of interest and filtering by frequency, 
protein pathogenicity, and mode of inheritance (segregation in available family 
members). If no variant is identified, a second pass includes the same filtering steps, but 
on variants in all coding regions. The third pass includes analysis of non-coding 
variation using frequency, conservation and ENCODE annotation, along with mode of 
inheritance. The complexity of analysis increases with each pass. 

 

5. Incidental Findings and Their Importance for CVD Related Phenotypes 

Incidental findings are a concern with all genetic assessment and especially so for WES and 
WGS. However, incidental findings are not unique to genetic testing and are part of medical 
decision making for any mode of testing, including imaging and blood tests. WGS may provide 
many more incidental findings than any other tests available, and this has led to new 
recommendations for delivering results of incidental findings from genetic research and testing. In 
2006, an NHLBI working recommended reporting research results to study participants when the 
risk of disease is significant and has important health implications including sudden death or 
considerable risk of morbidity especially when therapeutic interventions are available [105]. In 
2013, the American College of Medical Genetics and Genomics (ACMG) made recommendations 
for reporting incidental findings in exome and genome sequencing [106]. The ACMG 
recommended that laboratories performing sequencing should identify and report mutations in 
genes included on their minimal list. Notably, this list includes 24 phenotypes of which a third are 
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cardiovascular disorders for which penetrance is high and clinical interventions are available [106]. 
Of the 57 genes for which recommendations were made to report incidental findings, more than 
half (34) were CVD-associated genes. 

6. Conclusions 

In the case of CVD genetic profiling, there are often medical management decisions that can 
reduce risk. This is the case whether the initial genetic profiling was done for assessing CVD risk 
or whether the genetic profiling was done to assess risk of other inherited diseases. For example, 
risks for cardiomyopathy and especially arrhythmias can be managed medically, with increased 
surveillance or even with device insertion. Risks for developing atherosclerosis or aneurysms can 
be mitigated through drug or even surgical intervention. Importantly, since CVD disorders can be 
associated with sudden cardiac death, the capacity to intervene based on genetic risk profiles is 
evident. With the improvement in genetic databases that are accompanied by robust phenotyping, it 
should be possible to more accurately predict risk for CVD. 
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Illuminating the Transcriptome through the Genome 

David J. Elliott 

Abstract: Sequencing the human genome was a huge milestone in genetic research that revealed 
almost the total DNA sequence required to create a human being. However, in order to function, 
the DNA genome needs to be expressed as an RNA transcriptome. This article reviews how 
knowledge of genome sequence information has led to fundamental discoveries in how the 
transcriptome is processed, with a focus on new system-wide insights into how pre-mRNAs that 
are encoded by split genes in the genome are rearranged by splicing into functional mRNAs. These 
advances have been made possible by the development of new post-genome technologies to probe 
splicing patterns. Transcriptome-wide approaches have characterised a “splicing code” that is 
embedded within and has a significant role in deciphering the genome, and is deciphered by RNA 
binding proteins. These analyses have also found that most human genes encode multiple mRNA 
isoforms, and in some cases proteins, leading in turn to a re-assessment of what exactly a gene is. 
Analysis of the transcriptome has given insights into how the genome is packaged and transcribed, 
and is helping to explain important aspects of genome evolution. 

Reprinted from Genes. Cite as: Elliott, D.J. Illuminating the Transcriptome through the Genome. 
Genes 2014, 5, 235-253. 

1. Introduction 

The completion of the human genome sequence [1,2] brought together key scientific and 
philosophical questions, including exactly what we are as a species and individuals. However, in 
order to function, the genome has to be expressed. The primary expression product of the genome 
is RNA, and the complete set of all RNA molecules made through copying the genome into RNA is 
called the transcriptome (Figure 1). After transcription in the nucleus, mRNAs are translated into 
protein in the cytoplasm to yield the proteome while other RNAs have noncoding functions [3]. 

A key feature of human (and other eukaryotic) genes is their split exon-intron structure [4,5]. 
Figure 2 shows the exon-intron structure of a typical human gene displayed on a genome  
browser [6]. The exons include the protein coding information of the gene while introns are the 
intervening sequences between them. The term exon refers to the fact that exon sequences are 
expressed in the mRNA made from the gene, as opposed to introns which are removed (intron 
refers to intragenic regions) [7]. The presence of introns within genes and the long intergenic 
sequences between genes mean that only a small fraction of the human genome is truly  
protein-encoding. To put some figures on this, human protein-encoding genes contribute ~33.5% of 
the human genome sequence [1,2] but exons alone comprise 2.94% of the genome [8]. Protein 
coding exons make up a smaller proportion still (1.2%) of the genome. This is because there are at 
least partially untranslated exons in every mRNA (some of which can have important regulatory 
roles), and some exons remain entirely untranslated (see below). 
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Genes need to be transcribed over their full length (including both introns and exons) to generate 
precursor mRNAs (pre-mRNAs). Transcription of long genes represents a considerable energy 
investment by the cell. One of the longest genes in the human genome, DYSTROPHIN takes in the 
order of 16 hours to transcribe, yet produces a final mRNA of just ~14 kb that would have just 
taken ~7 minutes to transcribe by itself, assuming an elongation rate of 2 kb/minute [9]. It is 
calculated that ~95% of RNA does not leave the nucleus [10]. Nuclear-retained RNA includes 
intron sequences and some long ncRNAs that are also spliced but retained in the nucleus. 

Figure 1. Information flow from the genome to the proteome. The genome represents 
an archive of information embedded in DNA. This information is transcribed as RNA 
to give the transcriptome, and then translated into protein to give the proteome. 

 

Figure 2. The intron-exon structure of a typical human gene displayed on the UCSC 
genome browser [6]. Introns are shown as lines (the “arrowheads” in the lines indicate 
the direction of transcription). Exons are shown as vertical bars. Coding exons are 
shown as thicker vertical bars than non-coding exon sequence. This example shows the 
NASP gene. The gene structures shown are “Refseq genes” that represent known human 
protein-coding and non-protein-coding genes taken from the NCBI RNA reference 
sequences collection. Notice that this single gene locus contains three distinct Refseq 
annotations containing different exon structures. Conserved sequences detected by 
comparative genomic information from 100 vertebrate genome sequences are shown at 
the bottom as a Phastcons plot—the higher values are most conserved, and often 
correspond to exons. 
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The splicing reaction is catalysed by the spliceosome. While introns are generally discarded after 
splicing, some introns can yield functional RNAs after splicing (e.g., miRNAs) [11,12]. 
Spliceosomes themselves are multi-component machines containing five snRNAs and at least 200 
proteins, making them one of the most complicated assemblies in the cell [13,14]. Spliceosomes 
assemble de novo around each intron to be removed. A typical gene containing eight exons would 
require the assembly of eight spliceosomes to create a functional mRNA. Input of energy is 
required for spliceosomes to properly assemble through multiple ATP-dependent RNA helicases 
and other energy consuming proteins (including GTPases) [15]. 

Prior to completion of the human genome sequence, research into splicing typically looked at 
single genes and exons as models. However, while these detailed studies continue to be very 
important, the advances in genomics catalysed by genome sequencing projects have spawned 
parallel advances in transcriptomics, enabling a much broader system-wide dissection of RNA 
processing pathways. Here I review some of these new insights. While the focus here is on  
pre-mRNA splicing, transcriptome-wide analyses have also been directed at other aspects of 
genome expression, including RNA editing, RNA stability, expression of ncRNAs, polyadenylation 
and translation. 

2. The Human Genome Sequence Has Led to New Global Insights into the Control of Splicing 

In the 1980s examination of a limited number of genes led to the identification of short conserved 
sequences called 5' and 3' splice sites at exon-intron junctions [16]. The availability of the human and 
other genome sequences have enabled these studies to be extended genome-wide [17]. Most human 
exons are spliced together by a single kind of major spliceosome that recognises most 5' and 3' splice 
sites. In addition a second minor spliceosome exists in parallel that decodes a smaller subset of  
intron–exon junctions [18]. This minor spliceosome has a different but overlapping complement of 
snRNAs to the major spliceosome. Recent transcriptome-wide data show a key snRNA component 
in the minor spliceosome (called U6ATAC) is an important gene expression switch controlling patterns 
of splicing [19]. In the rest of this review the activities of the major and minor spliceosomes are not 
separately distinguished. 

The conserved 5' and 3' splice site sequences encoded in the genome at exon-intron junctions are 
quite short. Furthermore, scattered within introns are short sequence elements called pseudoexons. 
Pseudoexons “look like” exons in that they have 5' and 3' splice sites, but are not selected as exons 
by the spliceosome. Estimates from model human genes suggest pre-mRNA splicing is remarkably 
accurate [20]. However, transcriptome-wide analyses of splicing patterns using RNAseq do detect 
some errors in splicing (at a rate of around 0.7% errors/intron)—these errors have been termed 
“noisy splicing”, and might contribute to gene and protein evolution by enabling new mRNA 
isoforms to be made even at low frequencies [21]. 

The spliceosome uses several mechanisms to accurately decode exon/intron structure using 
information embedded in the transcriptome. Firstly, in humans and most vertebrates, spliceosomes 
recognise exons from introns through a process called exon definition [22–24]. The advantage of 
exon definition is that since exons are quite small they should be easier to identify as discrete units 
compared most (considerably longer) vertebrate introns. In exon definition, early spliceosome 
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components bind to the pre-mRNA and “flag” exons to be spliced together. Following exon 
definition, pairs of exons are then joined together by splicing which removes the intervening intron 
sequences. Amongst the early binding components of the spliceosome involved in exon definition 
are the U1 snRNP RNA-protein complex that recognises the 5' splice site, and a protein dimer 
which recognises 3' splice sites called U2AF (U2AF65 and U2AF35 are the two proteins  
in the dimer). 

Figure 3. Transcriptome-wide data can be used to predict the splicing code in specific 
genes. In this example sequences within a cassette exon in the mouse NASP gene have 
been analysed using genome and transcriptome wide datasets to pinpoint splicing 
control sequences. Firstly a Chasin Z-score plot was used that can identify sequences 
predictive of exonic splicing enhancers and silencers [32,34]: the four exonic splicing 
enhancer (ESE) sequences identified are shown as peaks in the plot above the sequence. 
In this example, these ESE sequences were individually mutated to test function in 
minigenes (the Chasin profiles of the mutants M1-M4 are shown compared to the wild 
type sequence: notice the change in the Z-score plot removes predicted ESE activity for 
each mutant). The positions of these ESEs mapped to binding sites for the splicing 
factor Tra2 , both individually identified using cross linking immunoprecipitation 
(CLIP) in the mouse testis and predicted from the in vivo binding site generated from 
transcriptome-wide Tra2  binding data from the mouse testis. This figure is adapted 
from [32].  

 

A second mechanism that facilitates accurate decoding of the genome is the presence of a 
splicing code that helps to differentiate between exons and introns in pre-mRNA. Before the 
sequencing of the human and other eukaryotic genomes, the important sequences controlling 
splicing of an exon were usually worked out on a gene by gene basis, using a finite number of 
model exons. The importance of exon sequences outside the splice junctions for splicing were first 
identified in pioneering experiments using model exons in the FIBRONECTIN and  globin  
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genes [25,26]. It is now known that pre-mRNAs each contain multiple short nucleotide sequences 
that can enhance or silence splicing of their associated exons [27–29]. Exon sequences can function 
as exonic splicing enhancers (abbreviated ESEs) that help the spliceosome to recognise exons, or 
exonic splicing silencers (abbreviated ESSs) that inhibit spliceosome recognition by the 
spliceosome. Similarly, intron associated sequences can function as intronic splicing enhancers 
(abbreviated ISE) or Intronic Splicing Silencers (abbreviated ISSs). Splicing enhancers are bound 
by proteins or complexes of proteins, including the SR proteins that contain domains enriched in 
serine and arginine residues, and splicing silencers are frequently bound by heterogeneous 
ribonucleoproteins (abbreviated hnRNPs). 

The availability of genome sequences have allowed system-wide approaches to identify  
splicing enhancers and silencers that control splicing and led to significant insights into the  
“splicing code” [29]. These approaches have included machine learning approaches to utilize 
hundreds of features in pre-mRNAs including motifs bound by RNA binding proteins and RNA 
secondary structure predictions to predict in vivo splicing decisions [30]. Computer programmes 
have also been devised that can computationally predict positions of predicted splicing enhancers 
and silencers and the target sequences of RNA binding proteins in an input genomic sequence  
(e.g., Figure 3) [30–33]. The combination of these system-wide experimental and bioinformatic 
analyses show the splicing code is maintained as nucleotide information in the genome. The 
splicing code has similar importance to the genetic code that is deciphered to read amino acid 
sequences from mRNAs. However, the splicing code is much more complex than the genetic code. 
While the genetic code uses triplet codons to specify amino acids, in the splicing code multiple 
sequence elements act in combination to decipher the exon/intron structure of pre-mRNAs [30]. 

Because they are needed for exons to be spliced into mRNAs, ESE sequences have been 
maintained in exons as well as the codons that specify amino acid sequences [35]. The intronic 
sequences that flank exons are often also strongly conserved between species (Figure 4 shows as an 
example conserved nucleotide sequences flanking an exon in the mouse Neurexin3 gene 
downloaded from the UCSC genome browser). Comparison of the human and mouse  
genomes [1,36] which diverged 75 million years ago show that alternative exons are usually 
flanked by much longer stretches of conserved intron sequences than constitutive exons, consistent 
with more elaborate control mechanisms [37,38]. Conservation in these exon flanking intron 
sequences in some cases is much higher than in promoters, suggesting that one of the main 
functions of conserved noncoding sequences between mouse and human is the regulation of 
alternative splicing [37]. Even non-protein coding exons can be highly conserved in the genome. 
Noncoding exons include highly conserved “poison exons” (for example see Figure 5), that when 
included insert premature translational termination codons and lead to mRNA decay [32,39]. 
“Poison exons” are very important for auto-regulation of RNA binding proteins that control 
splicing [39,40]. Together these studies show the maintenance of splicing control sequences has 
had a significant impact in constraining genome evolution. 
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Figure 4. A functional requirement to maintain splicing control sequences constrains 
evolution of the genome. This screenshot is downloaded from the UCSC genome 
browser [6] and shows conserved intron sequences flanking the alternatively spliced 
AS4 exon from the mouse Nrxn3 gene. The conserved sequences are shaded. At the 
top, the UCSC gene annotations show that this cassette exon is included in ¾ mRNA 
isoforms made from this gene. At the bottom the Phastcons plot shows that the flanking 
intron sequences are also highly conserved as well as the exon sequence (exons might 
be conserved because of their protein-coding content). Conservation of these intron 
sequences are likely important to control tissue-specific splicing of this exon by the 
spliceosome. Known alternative events are annotated on the UCSC track “Alt events”, 
and can be shown alongside the gene structure (here the cassette exon is annotated in 
the alt events track, and is in purple). 

 

Genome sequences have been used to help develop technologies aimed to globally dissect RNA 
processing pathways [41]. These technologies can identify the target sites of RNA binding proteins 
transcriptome-wide. In cross linking immunoprecipitation (abbreviated CLIP) experiments RNA 
binding proteins are cross-linked in situ to their target RNAs within intact cells using ultra violet 
irradiation, followed by immunoprecipitation of the RNA protein complexes and amplification by  
PCR [42–44]. Once unique target sites are identified by next generation sequencing (these are 
called CLIP tags), these can be mapped onto genome sequences to reveal the initial binding sites in 
the transcriptome. Transcriptome-wide CLIP analyses have enabled maps to be drawn of the target 
sites of RNA binding proteins relative to regulated exons, and these maps can be used to predict 
mechanisms of splicing control [45]. For example, CLIP tags of the RNA binding protein Tra2  
that is needed for splicing inclusion for a regulated cassette exon in the NASP gene are shown in 
Figure 3 [32]. 
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Figure 5. Non protein coding exons are conserved in the genome. Some non-coding 
exons are highly conserved in the human genome and play important roles in 
controlling the expression levels of splicing regulator proteins. The TRA2A gene 
encodes the splicing regulator protein Tra2  and contains a poison exon that contains 
multiple stop codons and is only inserted into some mRNAs. Despite not containing 
coding information, the TRA2A poison exon is highly conserved across species 
(indicated by the Phastcons score). Notice that the TRA2A gene encodes also 
alternative 5' splice sites and uses alternative promoters. This screenshot was 
downloaded from the UCSC genome browser [6]. 

 

The completion of the human genome sequence enabled the development of comprehensive 
microarrays to interrogate gene expression. These global techniques include the development of  
splice-sensitive microarrays. These microarrays either detect specific exons in the transcriptome  
or the use of specific splice junctions and report splicing patterns in mRNA [46,47].  
Transcriptome-wide patterns of alternative splicing can also be detected by RNAseq [48,49]. These 
technologies have been used to search for exons mis-spliced after depletion of particular RNA 
binding proteins from cells. By analysing thousands of exons in parallel the splicing events that are 
regulated by specific RNA binding proteins can be comprehensively identified. These experiments 
have shown some individual RNA binding proteins bind to and regulate similar mRNAs. For 
example, the NOVA protein regulates splicing of a functionally coherent set of genes involved in 
synapse function [50]. Other splicing regulators might similarly have coherent RNA functional 
targets, including T-STAR and SAM68 which regulate regional alternative splicing of the synaptic 
neurexin genes in the brain [51,52]. 

Knowing which splicing events are regulated by what proteins at a global level has been used to 
derive general rules. For example, binding of the NOVA proteins upstream of exons tends to block 
splicing, while binding of the same proteins downstream of exons enhance splicing [44,45]. These 
rules governing the RNA motifs bound by NOVA and their role in activating or repressing 
associated exon inclusion are conserved between flies and mammals, although the actual target 
mRNAs are different [53]. Similar rules have also been uncovered for PTB and some other splicing 
regulator proteins [45,54,55]. Recent developments to understand the splicing code have compared 
binding maps for different RNA binding proteins, and show that some functionally collaborate with 
each other to generate tissue specific splicing patterns [56]. 
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Transcriptome-wide insights have have also revealed the involvement of RNA binding proteins 
in other aspects of genome biology. Alu sequences are retro-transposable elements that frequently 
insert into introns, and have sequence similarities to exons [57]. There are over 15,000 Alu 
sequences in the human genome, many of which are inserted into introns. The RNA binding 
protein hnRNP C has an important role for in protecting the transcriptome from potential  
mis-splicing caused by the insertion of Alu retrotransposable elements into genomic introns [58]. 
Depletion of hnRNPC leads to aberrant inclusion of around 1000 Alu-derived exons into the 
transcriptome. Alu sequences contain polypyrimidine tracts that potentially bind U2AF65, leading 
to them being aberrantly included into mRNAs, but this splicing is blocked by hnRNPC. 

3. Analysis of the Human Transcriptome Led to the Realisation That Most Human Genes 
Encode Alternatively Spliced mRNAs 

Historically genes have been defined in different ways by different people at different times. 
Following the human genome sequencing project, the fundamental definition of what a gene 
actually is has been enriched, and to some extent clouded, by comparison of genome and transcriptome 
sequences [59,60]. Alternative mRNA isoforms can originate from the same genetic loci through 
use of alternative promoters and polyadenylation sites, and by the process of alternative splicing 
through which exons can be spliced into different combinations to give multiple mRNAs. Hence a 
“single gene” can encode multiple products. Alternative splicing fits into four different categories, 
depending on how variable splice junctions are utilised (Figure 6). In the simplest form of 
alternative splicing, called exon skipping, whole exons are either spliced into the mRNA or skipped 
(ignored by the spliceosome). Exon sequences can also be spliced into mRNA using different splice 
sites (alternative 5' splice site or 3' splice sites can be selected). Whole introns can also be left in the 
mRNA (this is called intron retention). Transcriptome-wide analyses show that in humans exon 
skipping is the most frequent form of alternative splicing, and intron retention the least frequent [61]. 

Figure 6. Types of alternative splicing events detected in the human transcriptome. 
Exons are shown as boxes, introns as lines, and splicing patterns as broken lines. mRNAs 
can be made from individual genes can using multiple alternative events, including 
different types of splicing, to build up complex patterns of alternative spliced mRNAs. 
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Evidence provided by comparative genome and transcriptome sequences has shown alternative 
splicing to be extremely frequent. Before the human genome was published, random sequencing of 
human mRNAs from their 3' ends using oligo dT priming suggested ~40% of human genes 
encoded alternatively spliced mRNAs [62,63]. During the human genome sequencing project, 
reconstruction of mRNAs from the gene rich chromosomes 19 and 22 upped this estimate to 59% 
of genes encode alternative mRNAs, with 2–3 mRNA isoforms made/gene [1]. The use of 
microarrays to detect global patterns of alternative splicing indicated 73%–74% of human genes 
express alternatively spliced mRNA isoforms [46,64]. The most recently reported RNAseq 
analyses of the human transcriptome is consistent with ~95% of multi-exonic genes expressing 
variant mRNA isoforms, with a plateaux of 10–11 isoforms/gene/cell line [65]. Usually one or two 
major mRNA isoforms predominate in a given cell line so many cell types will just express one 
major mRNA isoform [60,65,66]. 86% of genes have a minor isoform frequency of 15% or more, 
and more than 50% of alternative exons are tissue specific in expression [48,67]. Alternative events 
are now annotated on genome browsers like the UCSC genome browser (e.g., Figure 4) [6]. 

4. To What Extent Can Human Complexity Be Ascribed to Alternative Splicing? 

Proteins make up large components of human bodies. Prior to the genome sequence estimates of 
human gene numbers went as high as 100,000. An initial surprise from the human genome 
sequence was a much lower protein coding gene number, initially counted at around 23,000 [1,2]. 
The most recent gene counts from the ENCODE consortia suggest only 20,687 human protein 
coding genes [8]. The number of proteins expressed in a human cell is in contrast estimated to be 
~100,000 [68,69]. This protein number represents an amplification factor of 5-fold compared to the 
counted number of genes. This total gene number in humans does not seem to be exceptionally 
higher than seemingly less sophisticated organisms. The genome of Haemophilus influenza 
contains 1743 predicted genes, the yeast Saccharomyces cerevisiae ~6000 genes, Drosophila 
melanogaster ~13,600 genes, and nematode worms 18,425 genes [70–72].  

This apparent failure of gene numbers to correlate with complexity has been called the gene 
number paradox, and counted as one of the major surprises from the human genome sequence. To 
what extent might alternative splicing and the resulting expansion in protein coding information 
help explain developmental and physiological complexity in humans (Figure 7)? Until recently this 
question has been difficult to address, since the higher number of mRNA and EST sequences 
available from humans made comparisons of alternative splicing frequency with other species 
biased. However, a recent modencode project based on RNAseq analysis to look at alternative 
splicing in C. elegans found ~25% alternative splicing in 5000 genes, with around 30% of these 
being alternatively spliced between different developmental stages [73]. In depth experiments using 
RNAseq and tiling arrays do show a lower frequency (60.7%) of genes in the fruitfly are 
alternatively spliced than in humans, often in a developmental or sex-specific fashion [74]. 
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Figure 7. Alternative splicing amplifies genome information. Alternative splicing 
amplifies information in the human transcriptome relative to the genome. 

 

Hence amongst multicellular animals investigated in detail, humans do seem to exhibit higher 
levels of alternative splicing, which might lend credence to the idea that alternative splicing may be 
a factor contributing to human sophistication. If phylogenetic differences in alternative splicing 
frequency correlate with complexity, one might expect a decreased level in single celled organisms 
compared with multicellular organisms. On the one level less introns are found in the single celled 
baker’s yeast Saccharomyces cerevisiae: only 5% of genes contain introns in this yeast  
(290/6000 genes). However, these lower intron numbers are a bit misleading. The reason for a low 
overall intron number in this yeast is that many introns have been lost because of reverse 
transcriptase activity converting mRNAs into cDNAs, which then re-integrate into the genome 
through high levels of homologous recombination replacing originally intron containing genes [75]. 
While intron-containing genes generally are rare in yeast, alternative splicing of some of these 
introns are specifically utilised to control developmental timing of during meiosis that takes place 
under conditions of limiting nutrients [76,77] so alternative splicing is used to control a complex 
stage in the lifecycle of this single celled organism. Taken as a whole, it is difficult to draw general 
correlations between overall frequencies of alternative splicing and organism sophistication. 

Alternative splicing patterns can also evolve rapidly and sometimes differ between closely 
related species. For example, despite almost 99% identity in protein coding information, 
comparative transcriptome analyses have shown that 6%–8% of alternative spliced exons have 
different inclusion patterns between humans and chimps. These observations are consistent with 
alternative splicing contributing to species-species differences, and transcriptomes being more 
distinct between species than protein coding information [78]. Although the major conclusion from 
evolutionary comparisons is that much alternative splicing is not conserved between species, 
comparative genomics show some alternative exons have been highly conserved during  
evolution [79–81]. These include the highly conserved “AS4” alternative exon in the Neurexin3 
gene (abbreviated Nrxn3, Figure 4) that is conserved across the vertebrate lineage [51]. The 
Neurexin genes have been linked with autism and schizophrenia, and mice genetically engineered 
to be unable to regulate this AS4 alternative exon in the Nrxn3 gene have different synaptic activity 
in the brain [82]. 

Post-genome analyses have also addressed the question what alternative splicing does. Protein 
sequences encoded by alternatively spliced exons are frequently involved in protein-protein 
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interaction networks and contain signalling domains [83,84]. Some alternatively spliced mRNAs 
encode proteins with clearly different functional activity. For example, different mRNA splice 
isoforms encoding the FOXP1 transcription factor are made between neural stem cells and 
differentiated cells, and these encode proteins that activate different promoters [85]. Alternative 
splicing regulators have been implicated in human cognitive diseases like autism [86]. Different 
groups of genes are regulated by alternative splicing from those regulated by transcription [87]. 

Alternative splicing pathways have been shown to have important roles in controlling 
development, and some human diseases are caused by defects in alternative splicing including the 
multi-system disorder myotonic dystrophy [87]. However, individual RNA binding proteins likely 
regulate coordinated splicing programmes of many target exons, and each of these individual exons 
might only have somewhat subtle biological contributions. Furthermore, post-genome technologies 
are also starting to introduce a note of caution in the interpretation of high levels of alternative 
splicing. Some lower abundance splice variants might be non-functional isoforms that occur as a 
result of low frequency events mistakes in the splicing process if they are neither evolutionarily 
conserved nor protein-coding [21,88]. Hence the frequency of functional alternative splicing is 
likely to be lower than the total frequency of all alternative splicing events. 

5. Human Genome Packaging into Chromatin Correlates with Its Intron/Exon Structure 

Post genome analyses have shown that the genome and transcriptome are intimately linked. In 
particular the exon/intron structure of genes correlates with how the genome is packaged. Within 
the nucleus the genome is wrapped around protein complexes called nucleosomes to form 
chromatin. Each nucleosome is itself made up of eight positively charged histone molecules that 
can be modified by the addition of small chemical groups (typically methyl and acetyl groups) [89]. 
Packaging of the genome within chromatin is important to enable storage of chromosomes within 
the comparatively small space afforded by the nuclear volume.  

After experimental treatment of chromatin with the enzyme DNAse I, the DNA sequences 
wrapped around nucleosomes remain protected, while the DNA linkages joining nucleosomes 
together become degraded. Genome-wide analysis of sequences protected from DNAse I digestion 
in humans and other species indicate a 1.5 fold enrichment of exon sequences over nucleosomes 
compared to intron sequences [90,91]. This means that in chromatin exons are preferentially  
(but not exclusively) associated with nucleosomes. This is likely to have a biochemical 
explanation: exon sequences are GC-enriched, while their flanking intron sequences are AT-rich. 
Nucleosomes interact more strongly with GC-rich sequences, which likely help anchor exons to 
nucleosomes. The association of exons with nucleosomes has in turn had important implications for 
genome evolution. A length of ~150 nucleotides of DNA is needed to wrap around a nucleosome, 
and this is also the average size of an exon. Hence nucleosome wrapping has placed an 
evolutionary constraint on exon size, while in contrast introns have been able to expand in size to 
thousands of nucleotides. 
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6. Most Splicing Occurs Co-Transcriptionally 

Another important connection between the genome and the transcriptome is their physical 
proximity during important RNA processing steps. In several species including humans much  
pre-mRNA splicing has been shown to take place co-transcriptionally [92]. This means that  
“full length” pre-mRNA copies of genes are not made. Instead processing takes place as  
pre-mRNAs are produced on nascent pre-mRNAs still attached to RNA polymerases engaged in 
transcription. Deep sequencing of fractionated nascent RNA in human cell lines and total RNA in 
the brain show that exons located more upstream in genes are most likely to be spliced on nascent 
RNA [65,93,94]. Transcription of the genome also functionally depends on components more 
“traditionally” thought to be involved in splicing. Transcriptome-wide analysis of gene expression 
following depletion of U1 snRNP (a component of the spliceosome that recognises 5' splice sites) 
has shown that high nuclear concentrations of U1 snRNP are needed to prevent premature intragenic 
polyadenylation at sites upstream of the proper 3' boundary of genes [95]. 

The fact that splicing takes place on chromatin during ongoing transcription has important 
implications for alternative splicing patterns. Single molecule experiments have shown that 
nucleosomes slow down the progress of transcription [96,97]. This means that the time taken to 
traverse nucleosomes can provide pauses in RNA polymerase II elongation, allowing the 
spliceosome a window to assemble on nascent pre-mRNA. Nucleosomes have thus been described 
as “speed bumps” [98–101]. Interestingly only true exons, and not pseudoexons, are associated 
with nucleosomes [90,91]. Exon association with nucleosomes is likely to help in their recognition 
by the spliceosome. Pauses in transcriptional elongation on bona fide exons might facilitate 
spliceosome assembly before potentially competing splice sites in downstream pseudoexons can be 
transcribed. Changes in chromatin structure can locally speed up or slow down transcription within 
genes and be important for controlling alternative splicing [99]. Local transcriptional pauses would 
provide spliceosomes a longer “window” of time in which to assemble and sometimes even carry 
out splicing of an exon before a competing downstream splice site appears [102,103]. Faster 
elongating RNA polymerase II enzymes would give spliceosomes less time to assemble on nascent 
pre-mRNA before competing exons were transcribed, and so would favour exon skipping. In some 
cases changes in histone modification can recruit or stabilise RNA binding proteins which regulate 
splicing of the pre-mRNAs made from the gene [104]. The interactions between the different 
processes in gene expression have been recently reviewed in [105]. 

7. Conclusions 

The human genome sequence has provided a catalyst for understanding the transcriptome.  
System-wide approaches of the transcriptome have led to a fuller appreciation of how genomes 
work including how the human genome operates with a finite gene number and providing a system 
wide view of RNA processing. 
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Architecture of Inherited Susceptibility to Colorectal Cancer:  
A Voyage of Discovery 

Nicola Whiffin and Richard S. Houlston 

Abstract: This review looks back at five decades of research into genetic susceptibility to 
colorectal cancer (CRC) and the insights these studies have provided. Initial evidence of a genetic 
basis of CRC stems from epidemiological studies in the 1950s and is further provided by the 
existence of multiple dominant predisposition syndromes. Genetic linkage and positional cloning 
studies identified the first high-penetrance genes for CRC in the 1980s and 1990s. More recent 
genome-wide association studies have identified common low-penetrance susceptibility loci and 
provide support for a polygenic model of disease susceptibility. These observations suggest a high 
proportion of CRC may arise in a group of susceptible individuals as a consequence of the 
combined effects of common low-penetrance risk alleles and rare variants conferring moderate 
CRC risks. Despite these advances, however, currently identified loci explain only a small fraction 
of the estimated heritability to CRC. It is hoped that a new generation of sequencing projects will 
help explain this missing heritability. 

Reprinted from Genes. Cite as: Whiffin, N.; Houlston, R.S. Architecture of Inherited Susceptibility 
to Colorectal Cancer: A Voyage of Discovery. Genes 2014, 5, 270-284. 

1. Introduction 

Colorectal cancer (CRC) is the third most common cancer worldwide with half a million new 
individuals diagnosed annually [1]. In the UK CRC affects ~40,000 individuals and is responsible 
for ~16,000 deaths each year (Cancer Research UK, 2013) amounting to a life-time risk of 5%–6%. 
It is now an established fact that inherited susceptibility has an important role in predisposition to 
CRC. The earliest evidence for this came from epidemiological studies in the 1950s which showed 
a two- to three-fold increased risk of CRC in first degree relatives of patients [2]. Subsequent 
studies have identified a number of CRC susceptibility genes. These discoveries have greatly 
increased our understanding of the mechanisms underlying CRC biology and have provided 
promising targets for therapeutic intervention. Moreover, the ability to identify individuals at 
increased risk of CRC is of important clinical relevance. 

2. Early Models of Genetic Susceptibility 

Large families with multiple individuals affected by CRC have long been reported in the clinic. 
It was not until the late 1950s, however, that epidemiological studies attempted to quantify this 
familial clustering by comparing the incidence of CRC in first degree relatives (FDRs) of cases to 
control groups [3–5]. Recent analysis estimates an approximate two-fold increase in risk in FDRs [2]. 
This risk increases further to four-fold when the relative is diagnosed with early-onset CRC  
(<45 years of age), indicative of colorectal tumours developing in genetically susceptibly 
individuals at an earlier age. 
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In 1969 Ashley [6] proposed that colonic cancer development could be ascribed to a series of 
carcinogenic “hits” on normal intestinal mucosa cells. He further noted that the number of 
necessary “hits” was lower for genetically susceptible individuals with the Mendelian 
predisposition syndrome familial adenomatous polyposis (FAP). In the same year, DeMars [7] 
suggested that FAP, along with other apparently autosomal dominant syndromes, is autosomally 
recessive at the cellular level; individuals with a germline mutation in one allele of a tumour 
suppressor gene develop cancer as a result of subsequent somatic mutations in the other gene copy. 

Anderson [8], in 1974, made the first argument for a polygenic mechanism to cancer 
susceptibility based on the increased risk in FDRs of cancer patients being limited to two- to  
three-fold. He stated these results were “not indicative of strong genetic effects” and rather 
suggested a mechanism involving many genes with small effects acting in concert with 
environmental factors with larger effects. Whilst there is growing evidence to suggest that his 
conclusion is, at least in part, correct, the reasoning behind this statement is flawed as the relative 
risks associated with FDRs are likely to be underestimated. This is because calculations of relative 
risks typically include both sporadic and genetically susceptible cases that are then compared to the 
general population which, to compound the problem, also contains individuals that are genetically 
susceptible to CRC. 

3. Identification of Rare High-Penetrance Susceptibility Alleles 

Evidence for Mendelian transmission of CRC was first provided by reports of large families 
with CRC segregating in a dominant fashion. Perhaps the most notable case report is “family G” 
first described in 1913 by Warthin and subsequently revisited by Lynch and Krush in 1971 [9]. 
This family of over 650 blood relatives provided scientists with one of the longest, most detailed 
cancer genealogies in the world and was instrumental in establishing the syndrome of hereditary  
non-polyposis colorectal cancer (HNPCC or Lynch syndrome). 

Table 1. Colorectal cancer predisposition syndromes and associated high-penetrance mutations. 

Gene(s) Syndrome Risk in mutation carriers Mode of inheritance References 

APC FAP 90% by age 45 Dominant [10–14] 

Mismatch repair 

(MLH1/MSH2/MSH6/PMS2) 
HNPCC/Lynch syndrome 40%–80% by age 75 Dominant [15–26,32,33]

SMAD4/BMPR1A JPS 17%–68% by age 60 Dominant [26,27] 

STK11 PJS 39% by age 70 Dominant [28] 

MUTYH MYH-associated polyposis 35%–53% Recessive [34,35] 

POLD1/POLE Oligopolyposis  Dominant [36] 

Family based genetic linkage and positional cloning studies in the late 1980s and early 1990s 
led to the identification of numerous CRC susceptibility genes (Table 1). The APC gene on 
chromosome 5 was the first gene to be shown to be associated with CRC susceptibility when it was 
identified as mutated in FAP patients [10–14]. Subsequently, mutations in genes of the mismatch 
repair (MMR) pathway, particularly MSH2, MLH1 and MSH6, the TGF-  signalling pathway genes, 
SMAD4 and BMPR1A, and the serine/threonine kinase gene STK11, were revealed as the causes of 
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HNPCC [15–26], Juvenile Polyposis syndrome (JPS) [27,28] and Peutz-Jeghers syndrome  
(PJS) [29] respectively. Risk alleles in these genes are rare (<0.1%) and confer a >10 fold increase 
in risk of CRC. These genes are tumour suppressors conforming to DeMars’ “two-hit” model of 
cancer susceptibility through an apparently dominant mode of inheritance. The clinical utility of 
testing for high penetrance mutations in these genes has long been established and identification of 
individuals with such mutations has been shown reduce CRC incidence through prevention 
strategies and screening [30,31]. 

4. More Recent Models of Genetic Susceptibility  

Studies examining the difference in CRC development between monozygotic and dizygotic 
twins estimated that ~35% of CRC could be ascribed to a genetic predisposition [37]. However, 
<10% of all CRC can be accounted for by germline mutations in APC and the MMR genes and 
crucially ~70% of the familial risk of CRC remains unexplained [38]. 

Over the past 20 years, extensive efforts to identify additional, highly penetrant cancer 
susceptibility genes for CRC through conventional linkage scans have met with limited  
success [39,40]. This strongly implies that any additional high penetrance CRC gene will 
individually account for only a small proportion of the familial risk. Statistical modelling of the 
pattern of familial occurrence of CRC after exclusion of known high-risk genes suggests that much 
of the inherited susceptibility is likely to be polygenic with the co-inheritance of multiple genetic 
variants, each with a modest individual effect, causing a wide range of risk in the population 
(Figure 1). 

Over the past two decades candidate gene studies have identified rare moderately-penetrant risk 
alleles (minor allele frequency (MAF) < 2%; relative risks (RRs) > 2.0) and more recent  
genome-wide association studies (GWAS) have identified common, low-penetrance alleles  
(MAF > 10%; OR < 1.5). In reality, these variants are likely to occur as a continuum and the 
separate classes of risk alleles merely reflect the subgroups detectable using current methodologies. 

5. Rare, Moderately-Penetrant Disease-Causing Variants 

The “rare-variant” hypothesis suggests that much of the remaining heritability could be due to 
the combined effect of rare, moderately-penetrant risk alleles [41]. These variants are hypothesised 
to act independently and to confer modest, but detectable, increases in risk. 

Attempts to identify this class of disease allele have mainly been through resequencing 
candidate genes in affected families, the success of which has been hampered by our limited 
knowledge of tumour biology. The identification of the missense variant, APC I1307K, carried by 
~6% of Ashkenazi Jews and conferring around a two-fold increase in risk of CRC [42] and the 
more recent discovery of the functional promoter variant -93G>A of MLH1, shown to predispose 
to microsatellite unstable CRC [43], represent rare successes of this approach. 

A priori rare disease-causing alleles are likely to act in a dominant fashion; however, functional 
variants in the base-excision repair gene MUTYH provide an example of a recessive model of 
inheritance [34]. Biallelic or compound heterozygosity of the G396D and Y179C mutations in 



225 
 

 

MUTYH, which are carried by around 1%–2% of the UK population, confers a CRC risk 
comparable to that seen in carriers of germline MMR mutations [35]. 

Figure 1. Polygenic model of disease susceptibility. The distribution of risk alleles in 
both cases and controls follows a normal distribution. However, cases have a shift 
towards a higher number of high risk alleles. 

 

Mechanistically these variants are likely to be directly causal. For the variants in MUTYH, 
insights into biological basis of susceptibility came from the method in which they were 
discovered; a FAP family with no apparent APC mutation was found to possess a mutator 
phenotype reflective of defective base excision, resulting in somatic mutation of APC and other 
genes [34,44]. In contrast, the APC I1307K T>A variant appears to increase replication errors in 
APC through generation of a run of eight adenines [42]. 

6. Identification of Common Low-Penetrance Alleles 

The “common-variant, common-disease” hypothesis states that a substantial proportion of the 
remaining risk is likely to be accounted for by the summation of numerous low-penetrant genetic 
variants, each with a relatively high frequency in the population [45]. These variants have more 
subtle effects on gene regulation and predominantly reside within non-coding regions of the 
genome. Each individual variant is associated with only a modest increase in risk; however, 
collectively they may confer a substantial increase in disease susceptibility. These alleles rarely 
cause multiple cases in families and therefore cannot be detected through genetic linkage  
studies [46]. Initial attempts to identify this class of allele through candidate gene association studies 
were based on small case-control series and had little success; any proposed variants were not 
successfully validated in subsequent studies. 

Genome-wide association studies (GWAS), typically based on genotyping of 300,000 to  
over 1 million SNPs, have proved to be a powerful approach in identifying common, low 
penetrance susceptibility loci for CRC without prior knowledge of location and function. 

Since the first CRC GWAS in 2007, 18 CRC susceptibility loci have been identified in 
European populations (Table 2) [47–53]. While each individual risk allele confers only a small 
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relative risk (1.06 < OR < 1.26), the SNPs are common (MAF > 10%) and hence contribute 
significantly to the overall incidence of CRC. Moreover, by acting in concert they can impact 
significantly on an individual’s risk of developing CRC (Figure 2) [54]. The design of association 
studies is advantageous as large numbers of unrelated case and control samples may be readily 
obtained, providing adequate power to detect loci with relatively small effects. This is in contrast to 
the difficulty in recruiting the extensive pedigrees required for linkage studies. 

Table 2. Loci identified as associated with colorectal cancer through genome-wide 
association studies and meta-analyses. 

Locus Nearest Gene(s) GWAS tagSNP Location Risk Allele Alt Allele RAF 
1q41 DUSP10 rs6691170 222,045,446 T G 0.40 

3q26.2 TERC, MYNN rs10936599 169,492,101 C T 0.75 
6p21.2 CDKN1A rs1321311 36,622,900 T G 0.21 
8q23.3 EIF3H rs16892766 117,630,683 C A 0.09 

8q24.21 MYC rs6983267 128,413,305 G T 0.52 
10p14 GATA3 rs10795668 8,701,219 G A 0.67 

11q13.4 POLD3 rs3824999 74,345,550 C A 0.47 
11q23.1 FLJ45803 rs3802842 111,171,709 C A 0.27 
12q13 DIP2B, ATF1 rs11169552 51,155,663 C T 0.75 

14q22.2 BMP4 rs4444235 54,410,919 C T 0.48 
15q13.3 SCG5, GREM1 rs4779584 32,994,756 T C 0.19 
16q22.1 CDH1 rs9929218 68,820,946 G A 0.71 
18q21.2 SMAD7 rs4939827 46,453,463 T C 0.53 

19q13.11 RHPN2, GPATCH1 rs10411210 33,532,300 C T 0.90 
20p12.3 BMP2 rs961253 6,404,281 A C 0.37 

rs4813802 6,699,595 G T 0.34 
20q13.33 LAMA5 rs4925386 60,921,044 C T 0.68 
Xp22.2 SHROOM2 rs5934683 9,751,474 T C 0.56 

Figure 2. Plot showing the increase in odds ratio for colorectal cancer with an 
increasing number of risk alleles. 
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Importantly, few genes implicated in GWAS were previously evaluated in candidate gene 
studies, highlighting the importance of such an agnostic approach for gene discovery and 
understanding of CRC aetiology. None of the currently identified loci, for example, are involved in 
DNA repair, which is the principle pathway underscoring high-penetrance CRC susceptibility. 
Interestingly, five of the loci discovered to date are within or near to genes involved in the TGF-  
signalling pathway [47,50]. This pathway has already been implicated in pathogenesis of CRC, as 
the dominant CRC predisposition syndrome JPS is caused by high penetrance mutations in the 
TGF-  family genes SMAD4 and BMPR1A [13,14]. 

7. Functional Effects of GWAS Loci 

Elucidating the basis of association at common low-penetrance loci represents a significant 
challenge. The tagging SNPs (tagSNPs) used in GWAS are not necessarily strong candidates for 
being causal and were instead chosen to capture variation across large genomic regions. Hence, 
establishing which of a set of highly correlated variants in linkage disequilibrium (LD) with the 
tagSNP is the true causal variant is a challenge. In addition, many GWAS loci map to non-coding 
regions or gene deserts, suggesting the true cause of the association at these regions is through 
subtle effects on gene expression rather than changes to protein coding sequence. 

Fine mapping of CRC loci is still in its infancy with most studies attempting only to narrow 
down the location of a likely functional variant through imputation or re-sequencing [55–57]. 
These studies suggest candidate variants but very few functional studies have been carried out to 
test these assertions. To date, in only four regions has a SNP been proposed as the likely functional 
candidate and a mechanism of action suggested (8q23.3 [58], 8q24.21 [59,60], 11q23.1 [61], 
18q21.1 [62]). The most intriguing of these regions is 8q24.21, which has pleiotropic effects on 
cancer susceptibility, also harbouring risk loci for breast [57], ovarian [63], bladder [64], CLL [65] 
and multiple independent loci for prostate cancer [66–69]. This is in contrast to most associations 
found to date which appear to be disease specific. The rs6983267 risk SNP is associated with both 
prostate and colorectal cancers and lies within an evolutionarily conserved region. The two alleles 
of rs6983267 show differential binding of the TCF4 transcription factor [59] to an enhancer 
element that has been shown to physically interact with the MYC gene promoter [60]. MYC is 
amplified or over-expressed in multiple cancer types leading to up-regulation of many genes 
controlling cell proliferation, so it is predicted that variation at this locus acts through subtle effects 
on MYC gene expression. The risk allele of rs6983267 has also been suggested as a marker of 
worse prognosis in CRC patients [70]. The strongest CRC GWAS association is at 18q21.1  
(RR = 1.26) within the SMAD7 gene, which acts as an antagonist of the TGF-  signalling pathway. 
Resequencing of the 17 kb region of linkage disequilibrium surrounding the GWAS tagSNP 
rs4939827 identified a novel variant, termed Novel1 (rs58920878), which was shown to affect 
SMAD7 expression [62]. 
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8. Impact of Common Variation on CRC Risk 

Collectively, the currently identified risk loci explain only ~6% of the overall familial risk of 
CRC. This estimate is likely conservative as the effect of the causal variant at each locus is 
expected to be greater than the association detected through a GWAS tagSNP. In addition, as 
evinced by the 14q22 (BMP4) [52] association multiple risk variants may exist at each locus, 
including low-frequency variants with significantly larger effects. Moreover, epistatic interactions 
may exist between common risk loci, which could make the contribution of low-penetrance 
susceptibility alleles much higher. Such interactions remain difficult to detect due to substantial 
multiple testing penalties, and existing studies suggest the effects of most common low-penetrance 
alleles seem to be independent. In addition, interactions of these alleles with epigenetic regulation 
or environmental factors may lead to a greater increase in disease risk. For example the  
MLH1-93G>A polymorphism has been shown to be associated with increased methylation of the 
MLH1 promoter [71]. Another important consideration is the possible modification of the effect of 
a low-penetrance allele by the presence of a high-penetrance mutation. The only evidence to 
support this assertion in CRC is a small study implicating the 8q23.3 and 11q23.1 CRC SNPs as 
modifiers of CRC risk in MMR mutation carriers [72]. Although there was initial hope for the use 
of low penetrance variants in the clinic, the small proportion of familial risk explained and the 
apparent lack of epistatic interactions between the variants leads to them being of low predictive 
power. The increased risk associated with having a high number of risk alleles (Figure 2) has the 
prospect of identifying individuals in the general population who might benefit from earlier 
screening [54]. 

9. Identifying Novel CRC Susceptibility Loci 

It is unlikely that there are any common CRC risk loci with appreciable MAF (>10%) and with 
relative risks >1.1 that remain to be uncovered given the size of existing GWAS studies. Small 
variant effect sizes combined with stringent thresholds for establishing statistical significance and 
financial constraints on the number of variants which can be followed up constrain GWAS study 
power. However, many GWAS have long tails of association with alleles of increasingly small 
effect, suggesting much of the remaining susceptibility may be embodied in a multitude of 
common risk alleles. Larger GWAS studies combining multiple phases and tens of thousands of 
cases may identify many more of these susceptibility loci, although the effect of these on CRC risk 
is likely to be minimal. Such studies have been conducted in both breast [73] and prostate [74] 
cancer identifying 41 and 23 novel risk loci respectively. 

Commercial arrays used for GWAS capture a large proportion of common SNPs with minor 
allele frequencies (MAF) > 10%. However, a much lower fraction of less common (5%–10% 
MAF) and rare (MAF < 5%) SNPs are captured by these arrays. The power of GWAS to detect 
variants with MAF < 10% is therefore limited. Additionally, GWAS arrays are not optimally 
formatted to capture indels and copy number variants, both of which are likely to have roles in 
disease susceptibility. New “exome chips” have recently been released that aim to address some of 
these limitations. However the success of these new arrays remains to be evaluated. 
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Since the completion of the human genome project in 2003, the utilisation of massively parallel 
sequencing technologies to identify variants has become feasible. Moreover, these methods can be 
used to detect small indels, substitutions and structural variants. Although in their infancy, such 
studies are beginning to identify additional variants. For example, highly-penetrant mutations have 
recently been identified in the proof reading domains of POLD1 (S478N) and POLE (L424V) in 
CRC families [36]. Another recent study identified 11 candidate CRC susceptibility genes with 
truncating mutations in two or more of 96 familial CRC cases [75]. To maximally utilise 
sequencing data, new bioinformatic techniques are required to remove sequencing errors and 
prioritise variants. Additionally, due to financial considerations such studies remain small and not 
powered to detect less common variants with moderate effects risk of disease. Using cases enriched 
for genetic susceptibility evidenced by a strong family history or early disease onset is a useful 
technique to increase the efficiency of these studies. In addition, utilising whole exome sequencing, 
as performed by Palles et al. [36], can dramatically reduce the costs associated with such projects. 
Coding variants are also much easier to interpret than those in non-coding regions. However, with 
every individual’s genome harboring 250–300 putative loss of function variants [76] and many 
missense variants being of unknown effect, identification of the disease causing variant presents a 
significant challenge. Recent studies are working to interpret this class of variants [77] and 
algorithms such as SIFT [78], PolyPhen2 [79] and CONDEL [80] aim to guide researchers by 
predicting the functional effects of coding mutations. Work to develop similar methods to deal with 
non-coding regions is still in its infancy [81,82], however, recent evidence [83,84] suggests that 
these regions are also a priori likely to contain variants with a large effect on CRC risk. 

10. Conclusions 

Much has been achieved in the study of genetic susceptibility to CRC in the last five decades.  
The architecture underlying this susceptibility is now recognised to be defined by a spectrum of 
predisposition alleles with different effect sizes and frequencies in the population. GWAS has 
proved a successful approach for identification of novel low-penetrance CRC risk alleles, 
improving our understanding of disease aetiology and providing novel therapeutic targets. 
Determining the biological processes underlying the associations at these loci presents a significant 
challenge and will likely require large collaborations between genetic researchers and functional 
biologists. Despite these advances, a large proportion of the heritability to CRC remains 
unaccounted for. It is hoped that the new generation of sequencing projects will help to uncover 
this missing heritability. 
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Reading and Language Disorders: The Importance of Both 
Quantity and Quality 
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Abstract: Reading and language disorders are common childhood conditions that often co-occur 
with each other and with other neurodevelopmental impairments. There is strong evidence that 
disorders, such as dyslexia and Specific Language Impairment (SLI), have a genetic basis, but we 
expect the contributing genetic factors to be complex in nature. To date, only a few genes have been 
implicated in these traits. Their functional characterization has provided novel insight into the 
biology of neurodevelopmental disorders. However, the lack of biological markers and clear 
diagnostic criteria have prevented the collection of the large sample sizes required for well-powered 
genome-wide screens. One of the main challenges of the field will be to combine careful clinical 
assessment with high throughput genetic technologies within multidisciplinary collaborations. 
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1. Introduction 

The disturbance of speech and language development is a common feature of many 
neurodevelopmental disorders [1]. Language impairment is often secondary to more pressing 
clinical features (e.g., in autistic disorders, epilepsy or periventricular heterotopia), but in some 
cases may represent the primary clinical concern (“specific language disorders”, e.g., in Specific 
Language Impairment (SLI) and dyslexia) [1]. Specific language disorders typically occur in the 
absence of any gross neurodevelopmental difficulties, neurological or sensory impairments and 
with normal non-verbal intelligence. SLI is defined as a disturbance of oral language skills, 
whereas dyslexia is an impairment in the use and/or understanding of written language [2]. Both 
show a strong familial bias, and heritability estimates indicate that a high proportion of the 
phenotypic variation in each of these disorders can be attributed to genetic variation [3–5]. 

2. Complex Traits, Complex Definitions 

Whilst the terms “dyslexia” and “SLI” are widely used in the clinical and research literature,  
both disorders lack clear diagnostic guidelines and are often defined chiefly in terms of 
exclusionary criteria [6]. DSM-5 (Diagnostic and Statistical Manual) classifies SLI as a language 
disorder, while dyslexia is categorized as a specific learning disorder. However, both diagnoses 
require that “the individual’s difficulties must not be better explained by developmental, 
neurological, sensory (vision or hearing), or motor disorders and must significantly interfere with 
academic achievement, occupational performance, or activities of daily living” [7]. To complicate 
things further, deficits of language may vary considerably both between individuals and over the 
developmental trajectory in addition to the modality of language affected [6,8]. It is generally 
accepted that dyslexia primarily reflects a difficulty in the domain of phonological decoding 
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(translating written letters into speech sounds) [9]. Nonetheless, it is very common to observe a 
phonological deficit in combination with other manifestations, like sensory or fine motor control 
problems [10,11]. SLI has been proposed to reflect a deficit in phonological short-term memory 
(the retention of verbal information for short periods of time) [12], auditory perception  
(the processing of brief and/or rapid auditory stimuli) [13] and/or the development and application 
of grammatical rules [14]. However, all of these theories are supported by varying amounts of 
evidence in the primary research literature. 

3. Changing and Heterogeneous Phenotypes 

In addition, the difficulties experienced by any given individual may cross linguistic and 
cognitive domains and often change as the child develops [15,16]. Such observations perhaps 
suggest that SLI and dyslexia cannot be treated as discrete clinical conditions. Instead, it is possible 
that these language disorders might represent complex end effects of the disruption of multiple 
cognitive development processes that overlap with, and are related to, the secondary language 
disorders mentioned above [17]. Under this model, the investigation of dimensions of impairment 
may be more relevant than the ascertainment of clinical cohorts. The observed co-occurrence of 
SLI and dyslexia (~50%, [18]) support such a hypothesis and has led researchers to suggest that 
both disorders may result from an impairment in phonological representation [17]. The clinical 
presentation of the deficit may represent the severity of the underlying impairment or the presence 
of additional language- or cognitive-related difficulties [17,19]. Thus, “specific” language disorders 
may be the exception, rather than the rule, since co-morbidities often extend outside of the 
linguistic domains. For example, weaknesses in motor skills and executive function and reduced 
functional brain laterality are commonly described in children with dyslexia or SLI [20–26]. 
Nonetheless, the causal relationships between symptoms and cognitive, linguistic and developmental 
markers have yet to be elucidated. Others maintain that SLI and dyslexia may still have  
separate etiologies, and the co-incidence may simply represent comorbidity, as seen with other 
neurodevelopmental disorders [19]. Identifying the genetic underpinning of these disorders is 
required to inform this debate and reach more definitive conclusions about the diagnosis. For 
example, are there shared or partially overlapping genetic factors that contribute to separate 
disorders? Can we talk about common etiologies? Or do the DSM-5 definitions correlate with 
distinct biological pathways? While it would be tempting to simplistically ask if candidate genes 
for a single disorder can also influence a disorder with a different diagnosis, we might be asking the 
wrong questions if the initial diagnoses are artificial clinical constructs and misleading with  
regards to etiology. 

4. Monogenic Conditions Back in the Picture 

For many language disorders that are associated with known syndromes, the genetic cause of the 
syndrome itself is known. These involve a wide range of genetic mutations, from point mutations 
(for example, MECP2 mutations in Rett syndrome [27]), to nucleotide expansions (for example, the 
expansion of the FMR1 gene in Fragile X [16]) and deletion syndromes, such as velo-cardio-facial 
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syndrome, which results from a 3-Mb deletion on chromosome 22q11.2 [28], or the duplication or 
deletion of an entire chromosome, such as Down syndrome and Turner syndrome [29–31]. Thus, it 
is likely that any population selected to have language impairment will harbor a subset of children 
with these recognized syndromes [32]. Single gene mutations have also been described for some 
specific language disorders. Mutations and disruptions of the FOXP2 gene lead to childhood 
apraxia of speech [33,34], and point mutations in genes in the lysosomal pathway (GNPTAB, 
GNPTG and NAGPA) have been associated with persistent stuttering [35]. However, even in these 
severe and exceptional cases, there is often a high degree of heterogeneity between individuals. 
While some generalizations can be made, there is still considerable inter-individual variation. For 
example, individuals with FOXP2 disruptions invariably present with dyspraxic speech (the inability to 
make fine-tuned oromotor movements necessary for coherent speech), while others can present 
with both receptive and expressive language difficulties, only an expressive deficit, only with 
intellectual deficits or good performance on non-verbal intelligence tasks [36]. 

5. Genetic Windows into Development 

One argument against the utility of understanding the genetic underpinnings of these rare 
syndromic language disorders has been to question their relevance to the biology of common forms 
of SLI and dyslexia. However, the identification of a specific candidate gene and mutations thereof 
can allow the development of targeted investigations in cellular or animal models, which, in turn, 
can point to mechanisms that might be relevant to more common forms of language-related 
conditions affecting thousands of children. An example of this is how the FOXP2 transcription 
factor regulates the expression of target genes, such as CNTNAP2, which has been shown to play a 
role in more common forms of language impairment [37], as well as other neurodevelopmental 
disorders [38–41] and normal language variation [42]. The increased resolution and power of 
genetic screening demonstrates that the boundary between monogenic and common traits may 
actually be less defined than that predicted previously. Recent large-scale studies have clearly 
shown that genes disrupted by highly penetrant mutations and leading to well-defined diseases can 
play a role in complex disorders, although this may only be relevant in a subset of cases [43]. 
Nonetheless, genetic contributions to the majority of specific language disorders are expected to be 
complex in nature and involve genetic variation in many genes, which combine to determine an 
overall risk of disorder [44]. 

6. Classical Approaches 

Genetic contributions to neurodevelopmental disorders (both syndromic and specific forms) can 
be traced by linkage analyses. This approach can be applied to extended multi-generational  
families or large collections of small nuclear families and can involve the investigation of  
linkage-disequilibrium patterns [45]. Linkage analysis allows the identification of broad 
chromosome regions that co-segregate with a disorder in a given family unit. Since such studies 
consider segregation patterns rather than specific genetic variants, they can enable the identification 
of shared chromosome regions even when the pathological variants in each region differ between 
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family units. This methodology is particularly powerful for the identification of genetic variants 
with high penetrance and expressivity and can be applied to more complex situations, such as that 
expected for both SLI and dyslexia.  

7. SLI and Dyslexia Linkage Loci 

Genome-wide screens or targeted analyses of dyslexic families have allowed the  
identification of linkage loci on chromosomes 15q21 (DYX1—OMIM#127700) [46,47],  
6p22.3-p21.3 (DYX2—OMIM#600202) [46,48–51], 2p16-p15 (DYX3—OMIM#604254) [52,53], 
3p12-q13 (DYX5—OMIM#606896) [54,55], 18p11.2 (DYX6—OMIM#606616) [56], 11 
(DYX7—OMIM#127700) [57], 1p36-p34 (DYX8—OMIM#608995) [58,59] and Xq27.2-q28 
(DYX9—OMIM#300509) [60]. Subsequent fine-mapping efforts across linked loci, through the 
investigation of specific genetic variations or the characterization of individuals with chromosome 
imbalances, have led to the identification of putative risk variants in the DCDC2 [61],  
KIAA0319 [62–64], DYX1C1 [65,66], C2orf3/MRPL19 [67], CYP19A1 [68] and ROBO1 [54] 
genes. Each of these candidate genes has a variable amount of support, ranging from observations 
limited to a single family to replication across multiple cohorts [69]. Nonetheless, functional 
analyses have led to an intriguing conversion upon pathways involving neuronal migration [70–76] 
and cilia motility [72,77–79], as discussed in later sections. Investigations of SLI are less  
advanced, but linkage studies have identified four loci of interest on chromosomes 7q35-q36  
(SLI4—OMIM#612514) [80], 13q21 (SLI3—OMIM#607134) [81,82], 16q (SLI1—OMIM#606711) [83–86] 
and 19q (SLI2—OMIM#606712) [83–86], and subsequent studies have identified two candidate 
genes; CMIP and ATP2C2, both in SLI1 [87]. Microdeletions in the ZNF277 gene on chromosome 
7 have also been implicated in SLI [88], as has the Human Leukocyte Antigen (HLA) locus [89]. 

Although the linkage loci described for SLI and dyslexia do not overlap, studies of other 
complex genetic disorders indicate that there may be hundreds of genetic variants contributing to 
any one phenotypic status. Since genetic analyses are likely to detect only the major gene effects 
within any given cohort (the so-called winners curse [90]), this observation may simply be a result 
of the number of studies performed rather than the reflection of separate pathologies per se.  

8. GWA Studies 

Advances in genetic technologies over the last decade have allowed enormous leaps in our 
characterization and understanding of both rare and common genetic variations at the sequence 
level. Projects, such as the HapMap ([91]) and 1000 Genomes ([92]), have provided us with 
catalogues of expected variations across multiple populations. Methodological advances, such as 
microarrays and high throughput genotyping and sequencing platforms, have allowed us to 
characterize known variants efficiently. Accordingly, gene identification shifted from linkage 
analysis to genome-wide association (GWA) studies [93]. GWA studies usually interrogate large 
cohorts of cases and controls (typical sample sizes range from 1000 up to 1,000,000), but can be 
extended to a regression analysis of variant frequency upon performance in phenotype-related 
quantitative tasks (quantitative GWA study). Since GWA studies consider the frequency of each 
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variant independently, there is an underlying assumption that the causal variation (or a Single 
Nucleotide Polymorphism (SNP) in linkage disequilibrium with the causal variant) will be common 
across cases. As such, association studies do not allow for a high level of genetic heterogeneity 
between cases. 

9. GWA Studies of Speech and Language-Related Traits 

GWA studies of speech and language cohorts to date have not yielded consistent findings.  
Meaburn et al. (2008) applied a pooled genotyping method across two extreme samples selected 
from a twin cohort on the basis of reading ability (755 low reading ability cases and 747 high 
reading ability controls) using 100,000 SNPs, but did not identify any significant associations [94]. 
This may reflect the sparse density of the genotyping arrays employed at that time. Roeske et al. 
analyzed a discovery (N = 200) and replication (N = 186) cohort both selected for dyslexia and 
found association for a specific electrophysiological endophenotype of dyslexia (“mismatch 
negativity component” or MMN) (p = 5.14 × e 8 in combined dataset) pointing to the SLC2A3 
gene, which is implicated in glucose transport in the brain [95]. Field et al. 2013, performed a joint 
linkage and association study on 718 individuals from 101 dyslexia families with 100,000 SNPs. 
Again, they did not find any associations that met the threshold of genome-wide significance  
(1 × 10 8 [96]) [97]. They did however, find suggestive association (p = 6.2 × 10 7) with an SNP 77 
Kb downstream of the FGF18 gene, which has been implicated in lateralization [97]. Luciano et al. 
reported a meta-analysis of quantitative reading and language measures across two relatively large 
population-based samples (1177 individuals from 538 families and approximately 5000 cases) [98]. 
They found a suggestive level of association (p = 7.34 × 10 8) between variants in the ABCC13 gene 
on chromosome 21 and non-word repetition (a marker of phonological short-term memory). However, 
they did not replicate the association to FGF18 [98]. Eicher et al. also used a population-based 
sample, but in their study, they selected low language and reading performers for their GWA  
study [99]. Their sample included 163 language impaired probands, 353 dyslexic probands and 174 
comorbid probands (i.e., those with both language and reading impairment). They compared 
variant frequencies between these proband groups and the remainder of the population. They 
observed suggestive association with SNPs in ZNF385D (p = 5.45 × 10 7) and COL4A2  
(p = 7.59 × 10 7) in the cases with the comorbid phenotype, and to SNPs in the NDST4  
(p = 1.4 × 10 7) gene in language impaired probands [99]. 

Recently, it has been proposed that parent-of-origin effects could explain part of the missing 
heritability of complex traits, suggesting that the addition of these effects within GWA studies may 
be fruitful [100]. A recent study of 278 families with a language-impaired child, investigated child 
genotype and parent-of-origin effects [101]. They identified significant evidence for paternal  
parent-of-origin effects on chromosome 14q12 (p = 3.74 × 10 8) and suggestive evidence for maternal 
parent-of-origin effects on chromosome 5p13 (p = 1.16 × 10 7) [101]. The paternally-associated 
SNP on chromosome 14 yields a non-synonymous coding change within the NOP9 gene, which 
has been reported to be significantly dysregulated in individuals with schizophrenia. 
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Figure 1. Study design for quantitative phenotypes (a) genome-wide association 
(GWA) studies for speech and language-related traits typically use phenotypes across 
the entire distribution (population-based quantitative GWA studies). Others might apply 
a binary affection status under which low language-performing individuals are defined 
as “cases” and individuals within the “normal” language range (usually performance 
above the mean) as “controls”. Under certain conditions, “super-controls” can provide 
more power, as they are selected to fall at the upper extreme of the distribution. If 
controls with phenotype data are not available, they may be derived from standard 
control populations under the knowledge that they might include a small proportion of 
cases. Quantitative GWA studies restricted to cases may be based on a phenotypic 
distribution restricted to the lower tail of the entire distribution or may be based on a 
phenotypic curve derived across cases samples, as denoted by the two normal 
distributions in (a) (note that in (a), the phenotype distribution may not necessarily be 
expected to be normal, although it is shown as such in the figure). (b) The pegboard test 
generates a quantitative measure for handedness (PegQ) that is normally distributed 
around a positive mean. PegQ strongly correlates with hand preference, so that 
individuals with positive scores are very likely to be right-handed (roughly 90% of the 
population), and individuals with negative scores are likely to be left handed. Typically 
genetic studies for handedness have used the categorical measures of hand-preference 
using a case-control (left vs. right) study design. 

 

10. GWA Study Design Factors 

The ability of GWA studies to identify risk variants depends upon several factors. These include 
the effect size of the variants, the frequency of the variants in the population under study and the 
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population as a whole and, of course, sample size and study design [102]. The lack of replication 
described in the previous section is therefore perhaps not surprising: each started with a different 
hypothesis and definition of disorder and applied different selection procedures and association 
methodologies. Inconsistency across studies makes it hard to assess whether non-replication 
indicates the presence of false positives or is simply a function of study design or power to detect 
an association. In addition, the variations between independent studies means that it is not possible 
to simply combine existing cohorts to generate adequately powered meta-analyses. 

As discussed above, some of the language-related GWA studies used population-based samples 
and chose to select low language-performing subjects as cases (i.e., the lower tail end of the 
distribution, marked as “cases” Figure 1a). Others studied speech and language-related traits across 
the entire distribution in a quantitative GWA approach (i.e., the entire normal distribution in  
Figure 1a). Such population-based approaches assume that genetic contributions to disorders of 
speech and language will be the same as those that contribute to speech and language-related traits 
across the entire distribution. This assumption is dependent upon the way in which disorders, such 
as SLI and dyslexia, are conceptualized: do they just represent the lower tail of the normal 
distribution with respect to speech and language (dimensional model) or is there a qualitative 
difference between dyslexic individuals and poor readers (categorical model)? (i.e., the difference 
between the “cases” and the lower normal distribution in Figure 1a). 

11. Dimensional and Categorical Models of Language Disorder 

The distinction between dimensional and categorical models of language disorders is still a 
matter of debate. Leonard argues that perhaps there is no tangible cause for SLI, and the mental 
representations of children with the label SLI are not distinct from other children [103]. Taxonomic 
and principal component analyses support this view, demonstrating that relationships between 
language-related measures do not differ between children affected by SLI and those with normal 
language development [104–106]. In addition, the ease of the acquisition of specific language 
features has also been shown to be consistent between children affected by SLI and those with 
normal language development [107]. Under this dimensional model, one can consider variation 
across the range when attempting to identify underlying genetic effects. Twin studies of SLI 
instead support a categorical distinction [4,108–111]. Such studies indicate that children who have 
speech and language difficulties that are severe enough to warrant clinical referral have a 
qualitatively different profile of impairment, which shows increased levels of heritability [110]. 
Thus, it is possible that some forms of speech and language impairment, at least, have different 
underlying pathology from those mechanisms that are important in normal language variation  
(i.e., the distinct lower normal distribution in Figure 1a). Under this hypothesis, one needs to 
specifically select children with SLI to identify these distinct underlying genetic effects. It is, of 
course, possible that both models contribute to some level: studies of the effects of specific genetic 
risk variants upon language development indicate that some genetic risk variants play a role across 
the entire distribution of ability [87,112–114], while others appear to play a role that is specific to 
impairment [87,113]. These data suggest that a variety of approaches will be required to delineate 
genetic effects underlying language impairment: GWA studies of individuals across a range of 
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abilities will identify genes that contribute across the entire distribution, while studies of specific 
disorder subsets will be required to identify genes with more specific effects.  

12. Cross-Linguistic Difficulties of Speech and Language Disorders 

Given all these complexities, we extol the value of combining quantity with quality in the 
collection of larger cohorts carefully characterized at the phenotypic level. This is a major 
investment both in time and resources, but clearly represents the most promising way forward. The 
success of genetic mapping for complex traits has been largely facilitated by the collaboration of 
scientists and clinicians in large consortia, which have facilitated the collection of large sample 
sizes for genome mapping. This normally requires international collaborations, which pose 
additional complications for reading and language disorders. The psychometric tests used to assess 
reading and language skills cannot be separated from the language spoken in different countries 
and are not always directly comparable. In this context, the European NeuroDys project is working 
to define common guidelines for the collection and assessment of a large dyslexia cohort 
throughout research groups spread across Europe [115]. NeuroDys aims to exclude comorbidity 
and select severe dyslexic cases by selecting those more than 1.25 SD below grade level on a 
standardized word-reading test. Their strategy also includes the screening of control samples. Since 
dyslexia has a relatively high frequency, 5%–10% of population samples, routinely employed in 
GWA studies, will be expected to consist of individuals with dyslexia. GWA analysis of the 
NeuroDys cohort is currently underway. Analysis of dyslexia candidate genes in this cohort did not 
reveal any statistically significant association, highlighting many of the challenges covered in this 
review [116]. As discussed previously, universal inclusion/exclusion criteria are a good strategy to 
facilitate meta-analyses or cross-linguistic categorical GWA studies. Nonetheless, they do not 
entirely solve the challenge of obtaining large sample sizes for quantitative analyses. For example, 
single word reading tests tend to assess accuracy in English versus speed in transparent languages, 
like Italian or German. A composite score, including both accuracy and speed, as used by the 
NeuroDys study, can address this, but does not necessarily reflect the real reading difficulty in 
different populations. It is interesting to note that despite these differences, associations with candidate 
genes have been replicated in different languages; association with the DCDC2 gene has been reported 
in English-speaking (Meng et al. 2005 [61], Scerri et al. 2011 [113]) and German-speaking 
(Schumacher et al. 2006 [117]) cohorts. Similarly, cross-linguistic studies find that features of the 
native language can act to modulate given aspects of the SLI phenotype. In general, those linguistic 
features that are considered “hardest” for a normally developing child to understand will represent 
areas of particular problem for children with SLI [118,119]. Within-child differences indicate that 
this generalization extends to bilingual children. Bilingual children with SLI encounter similar 
problems to monolingual children with SLI, and these problems appear to be language-specific [120]. 
These cross-linguistic variations represent an extra complication for meta-analyses and 
collaborative studies of speech and language impairments. If the features of the disorder vary 
across populations, the measurement of disability will be language-specific. Thus, multi-site efforts 
will not only need to consider the best way to overcome cross-ethnicity genetic differences, but 
also cross-ethnicity language differences. 
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13. Mega-, Meta- and Mixed-GWA Studies 

Many successful GWA studies in the literature now include hundreds of thousands of 
individuals (diabetes, body mass index, height) [121–125] compared to the hundreds employed in 
the studies described above. Such “mega-GWA studies” have been relatively successful in 
identifying significant and consistent loci that contribute to either disease status or continuous traits 
across the general population. However, it is clear from these large studies that each genetic risk 
variant is likely to explain only a small amount of the heritability and that several hundred risk loci 
are likely to underlie any given trait or disorder [126]. Besides an increased sample sizes, a possible 
route of future investigation may be provided by a model adopted in the study of psychiatric 
disorders. Much like SLI and dyslexia, there is much evidence for the existence of shared genetic 
effects between psychiatric disorders, such as bipolar disorder, depressive disorder and 
schizophrenia. “Mixed-GWA study” investigations of mixed cohorts across these disorders have 
recently identified risk factors that span these clinical boundaries, suggesting that there may be some 
common pathophysiologies across related disorders [127,128]. The above studies suggest that  
meta-analyses across the existing SLI and dyslexia cohorts would be a worthwhile effort, despite 
the challenges involved in the amalgamation of these highly heterogeneous samples. 

14. Quantitative vs. Qualitative, or Both 

Throughout this manuscript, we have clearly advocated the combined analyses of existing 
cohorts or the collection of new large homogeneous samples relevant to developmental disorders. 
However, is sample size all that matters? If that were the case, the field should probably shift 
towards questionnaire-based phenotypic assessments, which would be an efficient way to boost 
numbers. Nonetheless, there is an intrinsic value in investing in phenotypic assessments that are 
detailed and quantitative. Firstly, this strategy allows cohorts to be stratified in distinct subgroups 
according to distinct criteria, which might be required for different hypotheses. For example, it 
makes it possible to select for the severity of disorders or to change features along with revised 
diagnostic criteria (as in Figure 1b). In addition, association analyses that use quantitative measures 
are potentially more powerful, as they exploit the full range of variability of a given phenotype, 
allowing the direct investigation of dimensional and categorical models. A recent story describing a 
GWA study for handedness is emblematic of how small, detailed cohorts can provide power to 
detect relevant biological effects [129,130]. This GWA study was conducted in a small sample  
(N = 728, well below the recommended standard) originally selected for a dyslexia diagnosis. In 
addition to language-related measures, this cohort was characterized with the pegboard test, which 
allows the derivation of a quantitative measure of relative hand skills (PegQ). This measure is 
normally distributed with a right-shifted mean and strongly correlates with hand preference  
(Figure 1b). Despite the small sample size, the screening led to a genome-wide significant result 
within the PCSK6 gene, known to regulate the NODAL protein pathway, essential for the left/right 
patterning in early embryonic development [131], and therefore represents an extremely interesting 
candidate for a lateralized phenotype. Although this association was replicated in two independent 
cohorts with developmental dyslexia, the risk variant appeared to confer an opposite effect 
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(reduced relative laterality) in a general population cohort (N = 2666). In support of these findings, 
subsequent gene enrichment analysis showed that genes controlling structural asymmetries were 
associated with the handedness measure in both cohorts regardless of a dyslexia diagnosis [130]. 
These findings demonstrate the importance of studying phenotypes within specific selected cohorts, 
as well as across the general population, as discussed above. It is possible that these effects are the 
result of risk variant interactions with different genotypic/biological backgrounds, as discussed 
below. A dyslexia-specific effect has also been observed for other traits. A variant in the MYO18B 
gene has also been implicated in mathematical ability specifically in children with dyslexia [132]. 
Hand preference (left vs. right) can readily be collected as a simple add-on question in any 
questionnaire battery. Thus, it would be very straightforward to re-analyze or meta-analyze existing 
GWA cohorts (even those collected for the investigation of different traits) using a case-control 
definition based on hand preference. A recent conference abstract describing a genome-wide 
analysis of hand preference data from more than 20,000 individuals did not find any genome-wide 
significant loci (Medland et al. ASHG, 2009 [133]). Similarly, a study of 4268 subjects from a 
population-based cohort, which included broad measures of laterality (hand or foot preference, 
ocular dominance or hand clasp), did not yield genome-wide significant associations [134]. These 
data suggest that the genetic effects at the population level are extremely low or, alternatively, that 
a categorical approach is not suitable for dissecting the genetics of this trait. It is likely that the 
biological regulation of hand preference involves complex and integrated processes that are not 
efficiently represented by the reductive phenotypes of left- versus right-handedness. If this can be 
said for a relatively transparent trait, like handedness, then we might expect these correlations to be 
even lower when considering a phenotype as complex as language. In addition, we must consider 
that the genetic effects might depend on sample stratification for a neurodevelopmental  
disorder definition.  

15. Filling the Gap 

Collecting large-scale GWA cohorts takes time, effort, funding and usually a concerted and 
collaborative effort between multiple research and clinical teams. Does this mean that we cannot 
make progress in this field until such statistical criteria are met? Perhaps the application of next-
generation sequencing technologies to existing sample sets with detailed phenotypic information 
has the potential to fill this gap. While small individual family-based units do not provide enough 
power to map variants through linkage analyses alone, the application of this technique in 
combination with high-throughput sequencing can provide a powerful paradigm. The whole-exome 
or whole-genome sequencing of sporadic cases and their parents under the assumption of causative 
de novo mutations has proven successful in disorders, such as autism [135–138] and intellectual 
disability [139]. The sequencing of larger family units with multiple recurrent cases have allowed 
the identification of “ultra-rare” (often defined as <0.01%) or private (unique to the given family) 
mutations with high functional impact (i.e., the gain of a stop codon and frame shift mutations) that 
cosegregate with disorder [140,141]. A recent exome sequencing study of children with childhood 
apraxia of speech investigated known candidate genes for language development [142]. They 
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reported potentially deleterious variants in FOXP1, CNTNAP2, ATP13A4, CNTNAP1, KIAA0319 
and SETX, providing support for the role of these candidate genes [142]. 

16. Difficulties of High-Throughput Sequencing Studies 

Although relatively simplistic in design, high throughput sequencing studies are far from 
straightforward. Rigorous quality control procedures and expert bioinformatics are needed, and the 
variation between platforms, capture assays and algorithms can be problematic. The main problem, 
though, is perhaps the proof of causality. The number of de novo mutations can be affected by 
environmental factors (e.g., paternal age [143]), but all being equal, the expected number of de 
novo mutations is approximately one per exome per generation. In contrast, the number of private 
mutations identified in an exome can be substantial, particularly as sequencing sensitivity and 
coverage increase. In addition, by design, these methods focus upon mutations that are likely to be 
private to the given individual and will not generalize between families. Studies of autistic disorder 
indicate that recurrent mutations in specific genes will be rare [135–137]. Furthermore, while the 
role of rare disruptive mutations is perhaps more tangible than that of common variation, these 
effects are still likely to function as part of a complex genetic model and represent risk variants 
rather than a causative mutation. Incomplete segregation, even within family units, is often 
observed for both rare mutations and copy number events, which can also prove a fruitful avenue 
of research in relatively small sample sizes. While large, disruptive events of genes that are known 
to be important can clearly be assigned some functionality, when a mutation or copy number 
variant is private, it can be very hard to distinguish between a functional effect that is subject to 
incomplete penetrance or modifier gene effects and a non-functional change. Such observations 
have led to the double-hit hypothesis in developmental disorders in which mutations and/or copy 
number events combine in an additive or epistatic manner to modulate the exact clinical 
presentation [136,144–148]. 

17. Translational Relevance 

The pathway from association to functional evidence is a long, but necessary road if we are to  
truly elucidate the biological mechanisms underlying speech and language disorders. While a  
p-value < 0.5 × 10 8 or the observation or private mutations in conserved motifs are certainly 
robust indicators of a genuine genetic susceptibility, these findings remain statistical predictions if 
they are not coupled by functional data. It is important to keep in mind that the risk variants 
identified by GWA studies are not necessarily functional and often represent proxies for the 
functional variant [102]. Functional investigations are being further progressed by projects, such as 
the Encyclopedia Of DNA Elements (ENCODE) and the Genetic European Variation in Health and 
Disease (GEUVADIS) project, which apply high-throughput methods to the study of gene 
expression and regulation to facilitate our understanding of the findings of GWA studies [149,150]. 
The functionality of rare coding mutations or copy number events is more tractable, but still not 
straightforward, especially when they are private. Changes to the coding sequence do not always 
result in protein dysfunction, and the interpretation of the severity of a given mutation often relies 
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on in silico predictions [151]. Once the identity of the functional variant is established, its 
biological contribution to disorder needs to be clarified, a step which is usually achieved in animal 
models. The development of translational targets is not always clear, even for fully penetrant 
monogenic mutations with clear functional effects [152,153]. These limitations reflect the 
importance of considering genetic variants within relevant pathways and networks and are likely to 
be exacerbated for complex disorders. 

18. Biology beyond the p-Values 

The association of variants in the PCSK6 gene and relative hand skill introduced earlier acts to 
illustrate the importance of taking statistical associations forward with molecular investigations of 
the mechanism. As described above, the PCSK6 association with relative hand skill appears to 
confer specific effects in individuals with dyslexia. Given that the prevalence of left-handers is not 
higher among individuals with dyslexia compared to controls, at first glance, it appears difficult to 
explain this specificity. The very fact that this handedness measure was collected in individuals 
with dyslexia stems from a long-sought link between laterality and neurodevelopmental  
disorders [154]. Language is a lateralized behavior under the control of one specialized cerebral 
hemisphere (the left one, in most cases), and it has been suggested that language-related disorders 
might therefore be linked to handedness, which is the most obvious lateralized behavior. For many 
decades, researchers have looked with little success for a link between handedness and different 
psychiatric disorders, mainly by assessing the frequency of left-handers in patient cohorts [155]. 
Whilst largely inconclusive, an increased frequency of left-handers has been reported for 
schizophrenia [156]. Furthermore, imaging studies have shown that disorders, such as dyslexia and 
SLI, present with atypical and weaker cerebral lateralization [25]. Although, there is some 
controversy over whether these effects are causative or consequential [157]. 

19. Converging Evidence towards Biological Pathways 

More direct evidence in support of the dyslexia-specific PCSK6 association comes from very 
recent functional studies. We have already eluded to the apparently connected functional role of 
dyslexia candidate genes. Functional studies and in vivo techniques have demonstrated that several 
of the dyslexia candidates described above (KIAA0319, DCDC2 and DYX1C1) are involved in 
early phases of fetal brain development and, in particular, in neuronal migration processes. In 
addition, ROBO1 is a neuronal axon guidance receptor that is also important for cortex 
development. The importance of neuronal migration processes in dyslexia is thus now generally 
accepted in the literature [158]. However, it is not clear which exact mechanisms these candidate 
genes mediate. More recently, a role for cilia function and development has also been suggested as 
a common biological pathway between dyslexia candidate genes [159]. Cilia are essential in the 
establishment of left/right axis determination in the first weeks of embryogenesis by the activation 
of the NODAL pathway on the left side of the embryo. Mutations in genes controlling cilia 
function lead to a class of conditions often characterized by laterality defects (ciliopathies). 
DCDC2, DYX1C1 and KIAA0319 have recently been reported to form a novel co-expressed module 
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in ciliated cells [79]. Dcdc2 has been implicated in the control of cilia length [72], and disruption of 
Dyx1c1 in mice and zebrafish [77,78] leads to laterality defects and impairments in cilia function, 
resembling that observed in primary ciliary dyskinesia (PCD). In humans, DYX1C1 mutations have 
been identified in 12 families with PCD [77]. KIAA0319 is characterized by five polycystic kidney 
disease (PKD) domains [160] typically found in proteins (e.g., PKD1 and PKD2) playing key roles 
in cilia function [161]. 

Cilial structures control many processes. In particular, they are important in neuronal migration, 
where they play a guiding role during cortical development. It has therefore been suggested that the 
roles of cilia in neuronal migration may be directly implicated in leading to cortical defects, which 
are at the basis of cognitive deficits in neurodevelopmental disorders [162]. Taken together, these 
observations support a possible interaction between biological pathways controlling the 
establishment of left/right structural asymmetries and neuronal migration early in development 
with genes implicated in dyslexia [159]. These interactions could be mediated by concomitant 
actions in controlling cilia function and could explain the PCSK6 association observed specifically 
in individuals with dyslexia. Furthermore, these data suggest for the first time that the mechanisms 
that control left/right body asymmetries maybe also be relevant in establishing functional brain 
asymmetries, contrary to previous evidence [163]. Incorrect reference order 

20. Conclusions 

We have discussed the various factors that can impact upon the relative success of genetic 
investigations in general and highlighted those factors that may be particularly pertinent to the 
investigation of speech and language disorders. While GWA studies have often been criticized for 
their high economic cost and little clinical benefits, they have contributed enormously to our 
understanding of human genome variation and appreciation of the complexity behind human 
biology and genetic disorders. Nonetheless, the application of these technologies to the study of 
genetic contributions to language and reading has not progressed as fast as other complex traits. 
One obvious limitation to the study of speech and language is the challenge of defining cases and 
ascertaining homogeneous cohorts with phenotypic measures that are universally relevant at the 
biological level. The translational application of genetic research to complex disorders will require 
the integration of large genomic datasets, functional genomic screenings and basic research 
projects aimed at studying the human brain. We know that genes and proteins do not act in 
isolation, and their functions differ between individuals, tissues, environments and over time; yet, 
we still consider risk variants as independent entities with fixed effects. Although we must accept 
that it is not currently possible to simultaneously consider all these effects within a single model, 
perhaps it is time to question the adherence to clinically defined strata in the genetic study of 
developmental disorders and, instead, promote the acceptance of cross-disorder studies that fully 
consider comorbidities across clinical symptoms and environmental factors, as well as regulatory 
effects and epigenetics. This reiterates the need for multidisciplinary collaborations to enable an 
increase in sample sizes, while maintaining detailed phenotypic assessments that ultimately will 
inform the definition of diagnostic criteria. In terms of future directions, it is difficult to establish 
whether resources would be better spent collecting large cohorts that meet a superficial categorical 
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cutoff or, alternatively, in assembling smaller cohorts characterized across a range of detailed 
developmental phenotypes. What is clear is that the definition of universal guidelines will facilitate 
the coordinated collection of uniform and international cohorts, easing the burden of downstream 
analyses. Although larger collaborations are needed, a meta-analysis of existing resources would be 
a good starting point to establish such efforts. The reporting of complete data sets, even when 
events are considered non-significant or uninteresting in isolation, will also be crucial to the 
planning of future collections. Ultimately, functional evidence is necessary to definitely prove the 
downstream effects of genetic variants and to understand the biology of underlying disorders and 
neurodevelopment. Despite the lack of advances from genome-wide screening in speech and 
language disorders, the functional assessment of candidate genes has allowed considerable progress 
in the identification of specific biological processes that may be important in these phenotypes. In 
particular, neuronal migration and ciliogenesis have been highlighted as two, perhaps related, 
processes that may play a role in developmental dyslexia. These encouraging findings demonstrate 
the importance of the systematic integration of functional studies and genetic association or 
sequencing studies.  
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