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Preface to ”Symmetries of Nonlinear PDEs on Metric

Graphs and Branched Networks”

This Special Issue focuses on recent progress in a new area of mathematical physics and

applied analysis, namely, on nonlinear partial differential equations on metric graphs and branched

networks. Graphs represent a system of edges connected at one or more branching points (vertices).

The connection rule determines the graph topology. When the edges can be assigned a length and the

wave functions on the edges are defined in metric spaces, the graph is called a metric graph.

Evolution equations on metric graphs have attracted much attention as effective tools for the

modeling of particle and wave dynamics in branched structures and networks. Since branched

structures and networks appear in different areas of contemporary physics with many applications

in electronics, biology, material science, and nanotechnology, the development of effective modeling

tools is important for the many practical problems arising in these areas.

The list of important problems includes searches for standing waves, exploring of their

properties (e.g., stability and asymptotic behavior), and scattering dynamics. This Special Issue

is a representative sample of the works devoted to the solutions of these and other problems.

The contributions to the Special Issue are written by selected participants of the workshop

“Nonlinear PDEs on Metric Graphs and Branched Networks” organized at Lorentz center, Leiden,

the Netherlands, in August 2018.

Diego Noja, Dmitry E. Pelinovsky

Special Issue Editors
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Abstract: The main purpose of this article is two-fold: first, to justify the choice of Kirchhoff vertex
conditions on a metric graph as they appear naturally as a limit of Neumann Laplacians on a family
of open sets shrinking to the metric graph (“thick graphs”) in a self-contained presentation; second,
to show that the metric graph example is close to a physically more realistic model where the edges
have a thin, but positive thickness. The tool used is a generalization of norm resolvent convergence
to the case when the underlying spaces vary. Finally, we give some hints about how to extend these
convergence results to some mild non-linear operators.

Keywords: metric graphs; open sets converging to metric graphs; Laplacians; norm convergence of
operators; convergence of spectra

1. Introduction

The study of operators on metric graphs has been an ongoing and active area of research for at
least two decades. Several natural questions arise in the study of Laplacians on metric graphs: As there
is some freedom in defining a self-adjoint Laplacian on a metric graph due to the vertex conditions
(see, e.g., [1] and the references therein), can one justify a certain choice of such vertex conditions?
Second, in a realistic physical model (a thick graph), the wires have a thickness of order ε, but in the
metric graph model, it is simplified to ε = 0: Can one justify some sort of limit of a Laplacian on the
network with thickness ε > 0 as ε→ 0?

The aim of this article is to give an answer to both questions. We show that the Neumann Laplacian
on the ε-neighborhood of the metric graph (embedded in some ambient space Rm+1) converges to
the Kirchhoff Laplacian on the metric graph. This gives answers to both questions above: First,
the “natural” vertex conditions are the so-called Kirchhoff conditions; see Equations (3) and (4). Second,
the limit problem is a good approximation to a realistic physical model on a thick graph as ε → 0.
Note that the problem significantly simplifies in the limit, as we only have to consider a system of
ODEs instead of a PDE on a complicated and ε-dependent space. Moreover, the problem on the metric
graph can often be solved explicitly.

A technical difficulty is that the Laplacian on the thick graph and on the metric graph live on
different spaces. We therefore generalize the notion of norm resolvent convergence to this case; this was
first done in [2]; see also the monograph [3] for a history of the problem and [4] for a recent list of
references. Convergence of the (discrete) spectrum for the Neumann Laplacian on a thick graph
converging to a compact metric graph has already been established by variational methods in [5–7].

The aim of this article is also to provide an almost self-contained presentation of the results for
linear operators on thick and metric graphs to the “non-linear” community and also to give some ideas
of how they can be extended to some mild non-linear operators.

Symmetry 2019, 11, 369; doi:10.3390/sym11030369 www.mdpi.com/journal/symmetry1
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2. Metric Graphs and Their Laplacians

For a detailed presentation of metric graphs and their Laplacians, we refer to [1,3] and the
references therein. Let X0 denote a metric graph given by the data (V, E, �), where V and E are the (at
most countable) sets of vertices and edges, respectively, and where � : E −→ (0, ∞). e �→ �e denotes the
length of the edge e ∈ E; a metric edge will be the interval Ie := [0, �e]. The metric graph X0 is now the
disjoint union of all metric edges ·⋃e∈E Ie after identifying the endpoints ∂Ie with the corresponding
vertices. A metric graph is a metric space using the intrinsic metric (i.e., d(s, s̃) is the length of the
shortest path in X0 between s and s̃). Moreover, there is a natural measure on X0 given by the sum of
the Lebesgue measures on each metric edge Ie.

As the Hilbert space on X0, we choose:

H0 := L2(X0) =
⊕
e∈E

L2(Ie),

where we write f ∈ L2(X0) as family ( fe)e∈E with fe ∈ L2(Ie); moreover,
⊕

e∈E L2(Ie) denotes the
Hilbert orthogonal sum with f being in it if its squared norm:

‖ f ‖2
L2(X0)

:= ∑
e∈E

∫
Ie
| fe(s)|2 ds

is finite. Similarly, we define Hk
dec(X) :=

⊕
e∈E Hk(Ie) for k ∈ N0. The label “dec” refers to the fact that

for k ≥ 1, there is no relation between the (well-defined) values of fe and its derivatives at a vertex v
for different e ∈ Ev. Here, Ev denotes the set of edges that are adjacent with the vertex v ∈ V. Recall
that functions in H1(Ie) are continuous as we have the estimate:

∣∣ fe(s)− fe(s̃)
∣∣2 ≤ |s− s̃|

∫
Ie
| f ′e(u)|2 du.

Using a suitable cut-off function, we conclude the Sobolev trace estimate:

| fe(v)|2 ≤ Ce‖ fe‖H1(Ie)
= Ce

∫
Ie

(| fe(s)|2 + | f ′e(s)|2
)

ds (1)

with Ce = 2/ min{1, �e}, where fe(v) denotes the evaluation of fe at one of the endpoints of Ie

corresponding to v ∈ V. In particular, we assume that:

�0 := min{ inf
e∈E

�e, 1} > 0. (2)

From (1) and (2), we then conclude that the subspace:

H1(X0) := H1
dec(X0) ∩ C(X0) =

{
f ∈ H1

dec(X0)
∣∣ fe(v) is independent of e ∈ Ev for all v ∈ V

}
(3)

is closed in H1
dec(X0). We denote by f (v) := fe(v) the common value of f at the vertex v. It follows that:

l0( f ) := ‖ f ′‖2 = ∑
e∈E

∫
Ie
| f ′e(s)|2 ds, f ∈ dom l0 := H1(X0),

defines a closed, non-negative quadratic form in H0 = L2(X0). The associated self-adjoint and
non-negative operator L0 is given by:

(L0 f )e = − f ′′e , f ∈ dom L0 =
{

f ∈ H2
dec(X0)

∣∣∣ f ∈ C(X0), ∑
e∈Ev

f ′e(v) = 0
}

. (4)

2
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Here, f ′e(v) denotes the (weak) derivative of fe along e towards the vertex v. The operator L0 is
sometimes referred to as the (generalized) Neumann Laplacian or Kirchhoff Laplacian (the second because
of the flux condition ∑e∈Ev f ′e(v) = 0 on the derivatives). Note that for vertices of degree one, the vertex
condition is just the usual Neumann boundary condition f ′e(v) = 0, and for vertices of degree two,
we have fe1(v) = fe2(v) and f ′e1

(v) + f ′e2
(v) = 0, i.e., the continuity of f and its derivative along v

(recall that f ′e(v) denotes the derivative towards the vertex v).

3. Thick Graphs and Their Laplacians

We assume first that the metric graph X0 is embedded in some space Rm+1 (m ≥ 1) such that all
edges are straight line segments in Rm+1. For ε > 0, denote by:

X�ε :=
{

x ∈ Rm+1 ∣∣ d(x, X0) < ε/ωm
}

the ε/ωm-neighborhood of X0 in Rm+1. Here, ωm is the mth root of the volume of the unit Euclidean
ball in Rm, i.e., ω1 = 2, ω2 =

√
π, ω3 = 3

√
4π/3, etc. We say that X�ε is a graph-like space or a thick graph

constructed from the metric graph X0 if there is ε0 > 0 such that:

X�ε =
⋃

v∈V
X�ε,v ∪

⋃
e∈E

X�ε,e (5)

for all ε ∈ (0, ε0] (cf. Figure 1), where X�ε,v and X�ε,e are open and pairwise disjoint subsets of Rm+1 such
that the so-called vertex and edge neighborhoods fulfil:

X�ε,v
∼= εXv and X�ε,e

∼= (ε, �e − 2aeε
)× εB, (6)

i.e., X�ε,v is isometric to the ε-scaled version of an open subset Xv, X�ε,e is isometric with the product of
an interval of length �e − 2aeε, and B ⊂ Rm is a ball of radius 1/ωm, having m-dimensional volume
one by the definition of the scaling factor ωm. Moreover, 2aeε is the sum of the lengths of the two parts
of the metric edge inside the vertex neighborhood. For finite graphs, the existence of ε0 > 0 is no
restriction, but for infinite graphs with an arbitrary large vertex degree, this might be a restriction
on the embedding and the edge lengths. More details on spaces constructed according to a graph
(so-called “graph-like spaces”) can be found in the monograph [3]; see also the references therein.

X�ε,v����
v

�e

Xε

X�ε,e

Figure 1. The decomposition of a graph-like space of thickness of order ε into vertex neighborhoods
X�ε,v (dark grey) and edge neighborhoods X�ε,e (light grey) according to a metric graph X0 embedded
in R2.

As the Hilbert space, we set H �
ε := L2(X�ε ). As the operator, we use the (non-negative) Neumann

Laplacian L�ε defined as the self-adjoint and non-negative operator associated with the closed and
non-negative quadratic form given by:

a�ε (u) := ‖∇u‖2
L2(X�ε )

3
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in H �
ε = L2(X�ε ).
In our calculations later, it is more convenient to work with edge neighborhoods Xε,e that are

isometric with the product of the original edge Ie times the ε-scaled ball B, i.e.,

Xε,e ∼= Ie × εB

instead of the slightly shortened edge neighborhood X�ε,e. For v ∈ V, we set Xε,v = X�ε,v = εXv.
We then construct Xε as the space obtained from gluing the building blocks Xε,v and Xε,e such that a
decomposition similar to (5) holds, now without the label (·)�. Note that Xε is defined as an abstract
flat manifold with boundary and might not be embeddable into Rm+1 any longer. We also call Xε a
graph-like space or thick graph. We state that the Neumann Laplacians on Xε and X�ε are “close to each
other” in Lemma 4.

Due to a decomposition of Xε into its building blocks similar to (5) and the scaling behavior, the
norm in the Hilbert space Hε := L2(Xε) fulfills:

‖u‖2
L2(Xε)

= ∑
v∈V

εm+1
∫

Xv
|uv(x)|2 dx + ∑

e∈E
εm
∫

Ie

∫
B
|ue(s, y)|2 dy ds,

where uv and ue denote the restriction of u onto the ε-independent building blocks Xv and Xe = Ie × B.
Note that with this notation, we have put all ε-dependencies into the norm (and later also into the
quadratic form).

As the operator, we use the (negative) Neumann Laplacian Lε defined as the self-adjoint and
non-negative operator associated with the closed and non-negative quadratic form given by:

lε(u) :=‖∇u‖2
L2(Xε)

= ∑
v∈V

εm−1
∫

Xv
|∇uv(x)|2 dx + ∑

e∈E
εm
∫

Ie

∫
B

(
|u′e(s, y)|2 + 1

ε2 |∇Bue(s, y)|2
)

dy ds

in Hε = L2(Xε) using the scaling behavior of the building blocks. Here, u′e denotes the derivative with
respect to the longitudinal (first) variable s, and ∇B denotes the derivative with respect to the second
variable y ∈ B.

4. Convergence of the Resolvents

How can we now compare the two Laplacians L0 and Lε (resp. L�ε )? The idea is first to consider
the resolvents:

R0 := (L0 + 1)−1 resp. Rε := (Lε + 1)−1

in H0, resp. Hε, since they are bounded operators. In order to define a norm difference of these
resolvents, we need a so-called identification operator:

Jε : H0 −→Hε,

in our situation given by

(Jε f )v = 0 and (Jε f )e(s, y) = ε−m/2 fe(s),

i.e., we set J f to zero on the vertex neighborhood and transversally constant on the edge neighborhood,
together with an appropriate rescaling constant. As the identification operator in the opposite direction,
we use J∗ε : Hε −→H0, where an easy calculation shows that:

(J∗ε u)e(s) = εm/2
∫

B
ue(s, y)dy.

4
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It is easy to see that J∗ε Jε f = f , i.e., Jε is an isometry.
We now compare the two resolvents, sandwiched with Jε. Let:

Dε := Rε Jε − JεR0 : H0 −→Hε.

What does Dε look like? The best way to deal with it is to consider 〈Dεg, w〉Hε
for g ∈ H0 and

w ∈Hε. We have:

〈Dεg, w〉Hε
= 〈Jεg, Rεw〉Hε

− 〈JεR0g, w〉Hε

= 〈JεL0 f , u〉Hε
− 〈Jε f , Lεu〉Hε

,

where u = Rεw ∈ dom Lε and f = R0g ∈ dom L0. Note that

(Lεu)e = −u′′e +
1
ε2 LBue,

where LB is (minus) the Neumann Laplacian on B acting on the second variable y ∈ B. In particular,
we conclude:

〈JεL0 f , u〉Hε
− 〈Jε f , Lεu〉Hε

= εm/2 ∑
e∈E

∫
Ie

∫
B

(
− f ′′e (s)ue(s, y)− fe(s)

(
−u′′e +

1
ε2 LBue

)
(s, y)

)
dy ds

= εm/2 ∑
e∈E

[
− f ′e(s)

∫
B

ue(s, y)dy + fe(s)
∫

B
u′e(s, y)dy

]�e

s=0

= εm/2 ∑
v∈V

∑
e∈Ev

(
− f ′e(v)

∫
B

ue(v, y)dy + fe(v)
∫

B
u′e(v, y)dy

)
,

where we used partial integration and the fact that LB is a self-adjoint operator in L2(B) and LB fe = 0
(as fe is independent of the second variable y) for the second equality and a reordering argument in the
third equality. Moreover, plugging v into s means evaluation at s = 0, resp. s = �e, if v corresponds to
zero, resp. �e; for the longitudinal derivative, we assume u′e(v, y) = −u′e(0, y), resp. u′e(v, y) = u′e(�e, y)
if v corresponds to zero, resp. �e.

We now use the fact that f ∈ dom L0: first note that ∑e∈Ev f ′e(v) = 0, so that we can smuggle in a
constant Cvu into the first summand, namely:

∑
e∈Ev

(
− f ′e(v)

∫
B

ue(v, y)dy
)
= ∑

e∈Ev

f ′e(v)
(

Cvu−
∫

B
ue(v, y)

)
dy.

We specify Cvu in a moment. For the second summand, we use the fact that fe(v) = f (v) is
independent of e ∈ Ev, and we have:

∑
e∈Ev

fe(v)
∫

B
u′e(v, y)dy = − f (v)

∫
∂Xv

∂nu(x)dx = − f (v)
∫

Xv
Δu(x)dx.

For the second equality, we used the fact that B at s = v corresponds to the subset ∂eXv of ∂Xv

where the edge neighborhood is attached and that the normal derivative (pointing outwards) of u
vanishes on ∂Xε,v ∩ ∂Xε due to the Neumann conditions. For the last equality, we used the Gauss–Green
formula (write ∂nu = ∂nu · 1).

As u ∈ dom Lε, we expect that the average
∫

B u(v, y)dy of u over the boundary component ∂eXv

is close to the average of u over Xv itself (recall that volm B = 1); hence, we set:

Cvu := −
∫

Xv
u(x)dx.

5



Symmetry 2019, 11, 369

Define now:

(A0g)(v) := ( f ′e(v))e∈Ev ∈ CEv , (Aεw)(v) := εm/2
(

Cvu−
∫

B
ue(v, y)dy

)
e∈Ev
∈ CEv ,

(B0g)(v) := f (v) ∈ C, (Bεw)(v) :=
εm/2

deg v

∫
Xv
(−Δu)(x)dx,

where deg v denotes the degree of v (i.e., the number of elements in Ev), then we have shown that:

〈Dεg, w〉Hε
= ∑

v∈V

(
〈A0g)(v), (Aεw)(v)〉CEv + (B0g)(v)(Bεw)(v)deg v

)
.

Defining G := �2(V, deg) (with the weighted norm given by ‖ϕ‖2
�2(V,deg) = ∑v∈V |ϕ(v)|2 deg v)

and G̃ :=
⊕

v∈V CEv , the previous equation reads as:

Dε = A∗ε A0 + B∗ε B0 (7)

in operator notation, where:

A0 : H0 −→ G̃ , (A0g)e(v) = (R0g)′e(v), B0 : H0 −→ G , (B0g)(v) = (R0g)(v)

and:

Aε : Hε −→ G̃ , (Aεw)e(v) = εm/2
(

Cv(Rεw)−
∫

B
(Rεw)e(v, y)dy

)
,

Bε : Hε −→ G , (Bεw)(v) =
εm/2

deg v

∫
Xv
(−Δ(Rεw))(x)dx.

Let us now estimate the norms of the auxiliary operators: it also explains why we work with the
weighted space �2(V, deg):

Lemma 1. Assume that (2) holds, then:

‖A0‖H0→G̃ ≤
2
√

2√
�0

and ‖B0‖H0→G ≤ 2√
�0

.

Proof. From (1) and (2), for each fe, the fact that f (v) = fe(v), and summing over v ∈ V, we conclude:

‖B0g‖2
�2(V,deg) = ∑

v∈V
| f (v)|2 deg v = ∑

v∈V
∑

e∈Ev

| fe(v)|2 ≤ ∑
v∈V

∑
e∈Ev

2
�0
‖ fe‖2

H1(Ie)
=

4
�0

∑
e∈E
‖ fe‖2

H1(Ie)

where g = R0 f . Now, the last sum equals:

l0( f ) + ‖ f ‖2
H0

= ‖(L0 + 1)1/2 f ‖2
H0

= ‖(L0 + 1)−1/2g‖2
H0
≤ ‖g‖2

H0
;

hence, the second norm estimate holds. For the first one, we argue: similarly

‖A0g‖2
G̃
= ∑

v∈V
∑

e∈Ev

| f ′e(v)|2 ≤ ∑
v∈V

∑
e∈Ev

2
�0
‖ f ′e‖2

H1(Ie)
=

4
�0

(‖ f ′‖2
L2(X0)

+ ‖ f ′′‖2
L2(X0)

)
,

Now,

‖ f ′‖L2(X0)
= ‖L1/2

0 (L0 + 1)−1g‖L2(X0)
≤ ‖g‖L2(X0)

and

‖ f ′′‖L2(X0)
= ‖L0(L0 + 1)−1g‖L2(X0)

≤ ‖g‖L2(X0)

6
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by the spectral calculus, and the first norm estimate follows.

More importantly, we now show that the ε-dependent operators have actually a norm converging
to zero as ε→ 0:

Lemma 2. Assume that (2) and:

deg v ≤ d0 < ∞, λ2(Xv) ≥ λ2 > 0 and
volXv

deg v
≤ c < ∞ (8)

hold (By some modifications in the decomposition (6) (namely, one uses X�ε,e = (εae, �e − aeε) for some
appropriate ae > 0), one can avoid a direct upper bound d0 on the vertex degrees, but then ae has to be large
if deg v is large; also, the high degree will make vol Xv larger in order to have enough space to attach all the
edge neighborhood; see also the discussion in ([2], Section 3.1.) for all v ∈ V, where λ2(Xv) is the second (first
non-zero) Neumann eigenvalue of Xv, then:

‖Aε‖2
Hε→G̃

≤ 2εd0

(
1 +

1
λ2

)
and ‖Bε‖2

Hε→G ≤ ε3c.

Proof. We need the following vector-valued version of (1):

‖ue(v, ·)‖2
L2(B) ≤ 2

(‖∇u‖2
L2(Xv)

+ ‖u‖2
L2(Xv)

)
(9)

(actually, we apply (1) to u(·, y) for each y ∈ B into a line of length one at y ∈ B perpendicular to
∂eXv ∼= B into Xv, and integrate then over y ∈ B). We then have:

∣∣Cvu−
∫

B
ue(v, y)dy

∣∣2 =
∣∣∫

B
(Cvu− ue(v, y))dy

∣∣2 ≤ ‖Cvu− ue‖2
L2(B)

≤ 2
(‖∇u‖2

L2(Xv)
+ ‖u− Cvu‖2

L2(Xv)

)
(recall that

∫
B dx = 1). Now, u− Cvu is the projection onto the eigenspace of the Neumann problem

on Xv of all eigenfunctions orthogonal to the constant; hence, we have:

‖u− Cvu‖2
L2(Xv)

≤ 1
λ2(Xv)

‖∇u‖2
L2(Xv)

by the variational characterization of eigenvalues. In particular, we have:

∣∣Cvu−
∫

B
ue(v, y)dy

∣∣2 ≤ 2
(

1 +
1

λv(Xv)

)
‖∇u‖2

L2(Xv)
.

Now, letting u = Rεw, we have:

‖Aεw‖2
G̃
= εm ∑

v∈V
∑

e∈Ev

∣∣Cvu−
∫

B
ue(v, y)dy

∣∣2 ≤ 2εm ∑
v∈V

deg v
(

1 +
1

λv(Xv)

)
‖∇u‖2

L2(Xv)
.

Moreover,

εm ∑
v∈V
‖∇u‖2

L2(Xv)
≤ εlε(u) = ε‖L1/2

ε (Lε + 1)−1w‖2
L2(Xε)

≤ ε‖w‖2
L2(Xε)

;

hence, ‖Aε‖2
Hε→G̃

≤ ε supv∈V 2(deg v)(1 + 1/λ2(Xv)) ≤ 2εd0(1 + 1/λ2).
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For the second norm estimate, we have:

‖Bεw‖2
G = εm ∑

v∈V

1
deg v

∣∣∣∫
Xv
(−Δu)(x)dx

∣∣∣2 ≤ εm ∑
v∈V

vol Xv

deg v
‖−Δw‖2

L2(Xv)

≤ ε3c‖Lε(Lε + 1)−1w‖2
L2(Xε)

≤ ε3c‖w‖2
L2(Xε)

From the calculation of Dε in (7) and Lemmas 1 and 2, we conclude:

Theorem 1. Under the uniformity assumptions (2) and (8), the operator norm of:

Dε = Rε Jε − JεR0 : H0 = L2(X0) −→Hε = L2(Xε)

is of order ε1/2. In particular, if X0 is a compact metric graph, then ‖Dε‖ = O(ε1/2) without any assumption.

Note that the operator norm of Aε in Dε = A∗ε A0 + B∗ε B0 leads to the error estimate O(ε1/2), as it
is dominant if ε→ 0.

5. Generalized Norm Resolvent Convergence

Let Lε be a family of self-adjoint and non-negative operators (ε ≥ 0) acting in an ε-independent
Hilbert space H . We say that Lε converges in the norm resolvent sense to L0 if:

‖(Lε + 1)−1 − (L0 + 1)−1‖H →H → 0.

As a consequence, operator functions of Lε also converge in the norm, e.g., for the semigroups,
we have:

‖e−tLε − e−tL0‖H →H → 0.

Moreover, the spectra converge uniformly on bounded intervals. In particular, if Lε all have
a purely discrete spectrum, then λk(Lε) → λk(L0), where λk(·) denotes the kth eigenvalue ordered
increasingly and repeated with respect to multiplicity.

We now want to extend these results to operators acting in different Hilbert spaces.

Definition 1. For ε ≥ 0, let Lε be a self-adjoint and non-negative operator acting in a Hilbert space Hε.
We say that Lε converges to L0 in the generalized norm resolvent sense, if there is a family of bounded operators
Jε : H0 −→Hε such that:

‖Rε Jε − JεR0‖H0→Hε
→ 0, J∗ε Jε = idH0 and ‖(idHε

−Jε J∗ε )Rε‖Hε→Hε
→ 0, (10)

where Rε := (Lε + 1)−1 denotes the resolvent.

There are actually more general versions of generalized norm resolvent convergence; see, e.g., [2,3]
or also [4] and the references therein. We can also specify the convergence speed as the maximum of
the two norm estimates.

Moreover, almost all conclusions that hold for norm resolvent convergence are still true here, e.g.,
the convergence of eigenvalues or the spectrum. Moreover, if Lε converges to L0 in the generalized
norm resolvent sense with convergence speed δε → 0, then the corresponding semigroups converge,
i.e., we have, e.g.,

‖e−tLε − Jεe−tL0 J∗ε ‖Hε→Hε
≤ Ctδε → 0, ε→ 0.

One can even control the dependency on t (Ct = O(1/t) as t→ 0); see ([4], Ex. 1.10 (ii)) for details.

8
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As an application, we show that the corresponding solutions of the heat equations converge:
denote by ut, resp. ft, the solution of

∂ ft + L0 ft = 0 and ∂ut + Lεut = 0

with initial data f0 = J∗ε u0 at t = 0, then we have:

‖ut − Jε ft‖Hε
= ‖(e−tLε − Jεe−tL0 J∗ε )u0‖Hε

≤ Ctδε‖u0‖Hε
, (11)

i.e., the approximate solution Jε ft converges to the proper solution uε of the more complicated problem
on Hε uniformly with respect to the initial data u0.

We have already shown the first norm convergence and the equality in (10) in the previous section
(cf. Theorem 1); but we even have:

Theorem 2. Under the uniformity assumptions (2) and (8), the Neumann Laplacians Lε on the graph-like
space Xε converge to the Kirchhoff Laplacian on the underlying metric graph X0 in the generalized norm
resolvent sense.

Proof. It remains to show the last limit in (10). We have:

‖u− Jε J∗ε u‖2
Hε

= ∑
v∈V
‖u‖2

L2(Xε,v)
+ εm ∑

e∈E

∫
Ie
‖ue(s, ·)−

∫
B

ue(s, y)dy‖2
L2(B) ds.

The integrand in the second sum can be estimated by:

‖ue(s, ·)−
∫

B
ue(s, y)dy‖2

L2(B) ≤
1

λ2(B)
‖∇Bu(s, ·)‖2

L2(B)

using again the variational characterization of eigenvalues. In particular, the second sum can be
estimated by εlε(u). The first sum is also small, as functions with bounded energy do not concentrate at
the vertex neighborhoods Xε,v. The arguments to show this (actually, ‖u‖2

L2(Xε,v)
≤ O(ε)lε(u)) are very

similar to the ones used in the proof of Lemma 2. Details can be found, e.g., in ([3], Section 6.3).

Note that, once having proven the generalized norm resolvent convergence, with an error term of
order ε1/2, we can approximately solve the heat equation on Xε as in (11): note that on a metric graph,
one might even find explicit formulas for the solutions of the heat equation ft, at least for simple metric
graphs; hence, one has automatically approximate solutions for the corresponding heat equation on
the more complicated space Xε.

Let us now come back to the original thick graph given by X�ε , where the edge neighborhoods
have slightly shorter edge lengths.

We say that two operators Lε and L�ε are asymptotically close in the generalized norm resolvent sense,
if (10) holds with Rε = (Lε + 1)−1 and R0 replaced by (L�ε + 1)−1. We have the following result (for
the proof, see, e.g., ([3], Prp. 4.2.5):

Lemma 3. If Lε converges to L0 and if Lε and L�ε are asymptotically close, both in the generalized norm resolvent
sense, then L�ε converges to L0 in the generalized norm resolvent sense.

Now, in our concrete example with the slightly shortened edges, we have (for a proof, see ([3],
Prp. 5.3.7)):

Lemma 4. Assume that Lε and L�ε are given as in Section 3, then Lε and L�ε are asymptotically close in the
generalized norm resolvent sense.

9
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We then immediately conclude from Theorem 2:

Corollary 1. Under the uniformity assumptions (2) and (8), the Neumann Laplacians L�ε on the
ε/ωm-neighborhood X�ε of an embedded metric graph X0 ⊂ Rm+1 converge to the Kirchhoff Laplacian on
X0 in the generalized norm resolvent sense.

6. Outlook

The author is currently working on extending this result to some mildly non-linear equations
with Claudio Cacciapuoti and with Michael Hinz and Jan Simmer in two different settings. Probably,
the first systematic treatment of (non-linear) partial differential operators on thin domains was given
in the nice overview of Geneviéve Raugel [8], combining some abstract results with concrete examples,
but to the best of our knowledge, no thick graph domain and its limit were considered there explicitly.
For Neumann Laplacians on thick graphs, there were actually results about the convergence of
certain non-linear problems in [9,10], but Kosugi’s papers did not contain an abstract approach using
identification operators as we do.

At the conference, Jean-Guy Caputo also presented results on non-linear waves in networks and
thick graphs justifying at least numerically the Kirchhoff vertex conditions; see [11,12]. There is another
interesting application of the concept of generalized norm resolvent convergence: Berkolaiko et al. [13]
studied the behavior of Laplacians on metric graphs if some edge lengths shrink to zero. A similar
result (a compact part of the metric graph shrinks to a point) using different methods has been
presented by Cacciapuoti [14] at the conference. A general convergence scheme also for some mildly
non-linear equations would allow extending their analysis to non-linear problems.

We have the following type of equations in mind. Let:

∂tut = Lεut + Fε(ut),

for ε > 0 and
∂t ft = L0 ft + F0( ft).

As the non-linearity, we think of Fε(ψ) = αε|ψ|2μψ for some μ > 0 and αε > 0. For the the solution,
we make the ansatz:

ut = e−tLε u0 −
∫ t

0
e−(t−s)LεFε(us)ds

and similarly for ft. The non-linearity and the identification operators have to fulfil some compatibility
conditions, namely Fε ◦ Jε − Jε ◦ F0 has to be small in some sense. One might use an iteration procedure
in order to obtain a sequence of functions converging to the solution. If Fε(ψ) = αε|ψ|2μψ in our
example of thick metric graphs converging to metric graphs, then we must have αε = εmμα0.

If one wants to consider the non-linear Schrödinger equation i∂tut = Lεut + Fε(ut), one faces
the additional problem that the (generalized) norm resolvent convergence does not imply norm
convergence of the unitary group eitLε for general initial data u0; if one restricts u0 to the range of the
spectral projection [0, λ0](Lε) for some λ0 > 0, then there are still some operator norm estimates;
see ([3], Thm. 4.2.16) for details. Nevertheless, one also has to make sure that Fε(u0) still remains in the
range of [0, λ0](Lε), which is probably too restrictive.
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Abstract: We consider a compact metric graph of size ε and attach to it several edges (leads) of length
of order one (or of infinite length). As ε goes to zero, the graph Gε obtained in this way looks like
the star-graph formed by the leads joined in a central vertex. On Gε we define an Hamiltonian Hε,
properly scaled with the parameter ε. We prove that there exists a scale invariant effective Hamiltonian
on the star-graph that approximates Hε (in a suitable norm resolvent sense) as ε→ 0. The effective
Hamiltonian depends on the spectral properties of an auxiliary ε-independent Hamiltonian defined
on the compact graph obtained by setting ε = 1. If zero is not an eigenvalue of the auxiliary
Hamiltonian, in the limit ε→ 0, the leads are decoupled.

Keywords: metric graphs; scaling limit; Kreı̆n formula; point interactions
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1. Introduction

One nice feature of quantum graphs (metric graphs equipped with differential operators) is that
they are simple objects. In many cases, for example in the framework of the analysis of self-adjoint
realizations of the Laplacian, it is possible to write down explicit formulae for the relevant quantities,
such as the resolvent or the scattering matrix (see, e.g., [1] and [2]).

If the graph is too intricate though, it can be difficult, if not impossible, to perform exact
computations. In such a situation, one may be interested in a simpler, effective model which captures
only the most essential features of a complex quantum graph.

If several edges of the graph are much shorter then others, an effective model should rely on a
simpler graph obtained by shrinking the short edges into vertices. These new vertices should keep
track of at least some of the spectral or scattering properties of the shrinking edges, and perform as a
black box approximation for a small, possibly intricate, network.

Our goal is to understand under what circumstances this type of effective models can be
implemented. In this report we give some preliminary results showing that under certain assumptions
such approximation is possible.

To fix the ideas, consider a compact metric graph G in,ε of size (total length) ε, and attach to it
several edges of length of order one (or of infinite length), the leads. Clearly, when ε goes to zero,
the graph obtained in this way (let us denote it by Gε) looks like the star-graph formed by the leads
joined in a central vertex. Let us denote by Gout such star-graph and by v0 the central vertex.

Given a certain Hamiltonian (self-adjoint Schrödinger operator) Hε on Gε, we want to show that
there exists an Hamiltonian Hout on Gout such that, for small ε, Hout approximates (in a sense to be
specified) Hε. Of course, one main issue is to understand what boundary conditions in the vertex v0

characterize the domain of Hout.

Symmetry 2019, 11, 359; doi:10.3390/sym11030359 www.mdpi.com/journal/symmetry12
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It turns out that, under several technical assumptions, the boundary conditions in v0 are fully
determined by the spectral properties of an auxiliary, ε-independent Hamiltonian defined on the graph
G in = G in,ε=1.

Below we briefly discuss these technical assumptions, and refer to Section 2 for the details.

(i) The Hamiltonian Hε on Gε is a self-adjoint realization of the operator −Δ + Bε on Gε, where Bε is
a potential term.

(ii) To set up the graph Gε we select N distinct vertices in G in,ε (we call them connecting vertices) and
attach to each of them one lead, which is either a finite or an infinite length edge. The domain of
Hε is characterized by Kirchhoff (also called standard or free) boundary conditions at the connecting
vertices, i.e., in each connecting vertex functions are continuous and the sum of the outgoing
derivatives equals zero.

(iii) Scale invariance; the small (or inner) part of the graph scales uniformly in ε, i.e., G in,ε = εG in.
The Hamiltonian Hε has a specific scaling property with respect to the parameter ε; loosely
speaking, up to a multiplicative factor, the “restriction” of Hε to G in,ε is unitarily equivalent
to an ε-independent operator on G in. The scale invariance property can be made precise by
reasoning in terms of Hamiltonians on the inner graph G in,ε. This is done in Section 4 below.
Here we just mention that this assumption forces the scaling on the in component of the potential
Bin,ε(x) = ε−2Bin(x/ε), x ∈ G in,ε, and, in the vertices of G in,ε, the Robin-type vertex conditions
(if any) also scale with ε accordingly.

(iv) The “restriction” of Hε to the leads does not depend on ε. In particular, Bout, the out component
of the potential, does not depend on ε.

We prove that it is always possible to identify an Hamiltonian Hout on Gout that approximates the
Hamiltonian Hε. The Hamiltonian Hout is a self-adjoint realization of the operator −Δ + Bout on Gout,
and it is characterized by scale invariant vertex conditions in v0, i.e., vertex conditions with no Robin
part (see [3], Section 1.4.2); in our notation, scale invariant means Θv = 0 in Equation (1). The precise
form of the possible effective Hamiltonians is given in Definitions 6 and 7 below.

The convergence of Hε to Hout is understood in the following sense. We look at the resolvent
operator Rε

z := (Hε − z)−1, z ∈ C\R, as an operator in the Hilbert space L2(Gε) = L2(Gout)⊕ L2(G in,ε).
In the limit ε → 0, the bounded operator Rε

z converges to an operator which is diagonal in the
decomposition L2(Gout)⊕ L2(G in,ε). The out/out component of the limiting operator is the resolvent
of a self-adjoint operator in L2(Gout), which we identify as the effective Hamiltonian on the star-graph.

Additionally, we characterize the limiting boundary conditions in the vertex v0 in terms of the
spectral properties of an auxiliary Hamiltonian on the (compact) graph G in = G in,ε=1. We distinguish
two mutually exclusive cases: in one case (that we call generic) zero is not an eigenvalue of the auxiliary
Hamiltonian; in the other case (we call it non-generic) zero is an eigenvalue of the auxiliary Hamiltonian.

In the generic case the effective Hamiltonian, denoted by H̊out, is characterized by Dirichlet (also
called decoupling) boundary conditions in the vertex v0, i.e., functions in its domain are zero in v0,
see Definition 6. From the point of view of applications this is the less interesting case, since the leads
are decoupled (no transmission through v0 is possible).

In the non-generic case the situation is more involved. If zero is an eigenvalue of the
auxiliary Hamiltonian one can identify a corresponding set of orthonormal eigenfunctions (in general
eigenvalues can have multiplicity larger than one, included the zero eigenvalue). In the domain of
the effective Hamiltonian Ĥout, the boundary conditions in v0 are associated to the values of these
eigenfunctions in the connecting vertices, see Definition 7. In this case, the boundary conditions in the
vertex v0 are scale invariant but, in general, not of decoupling type. For example, if the multiplicity of
the zero eigenvalue is one, and the corresponding eigenfunction assumes the same value in all the
connecting vertices, the boundary conditions are of Kirchhoff type.

The proof of the convergence is based on a Kreı̆n-type formula for the resolvent Rε
z. This formula

allows us to write Rε
z as a block matrix operator in the decomposition L2(Gε) = L2(Gout)⊕ L2(G in,ε)

(see Equation (31)). In the formula, the first term, R̊ε
z, is block diagonal and contains the resolvents
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of H̊out and H̊in,ε (a scaled down version of the auxiliary Hamiltonian, see Section 2.4); the second
term is non-trivial, and couples the out and in components to reconstruct the resolvent of the full
Hamiltonian Hε. As ε goes to zero, the off-diagonal components in Rε

z converge to zero, hence, the out
and in components are always decoupled in the limit. A careful analysis of the non-trivial term in
Formula (31) shows that it converges to zero in the generic case. In the non-generic case, instead,
the out/out component of the non-trivial term converges to a finite operator, and the whole out/out
component of Rε

z reconstructs the resolvent of the effective Hamiltonian Ĥ0.
The limiting behavior of Hε is essentially determined by the small ε asymptotics of the spectrum

of the inner Hamiltonian H̊in,ε. The scale invariance assumption implies that the eigenvalues of H̊in,ε

are given by λε
n = λn/ε2, where λn are the eigenvalues of the (scaled up) auxiliary Hamiltonian H̊in.

Obviously, all the non-zero eigenvalues move to infinity as ε → 0; the zero eigenvalue instead, if it
exists, persists, and for this reason it plays a special role in the analysis.

Closely related to our work is the paper by G. Berkolaiko, Y. Latushkin, and S. Sukhtaiev [4],
to which we refer also for additional references. In [4] the authors analyze the convergence of
Schrödinger operators on metric graphs with shrinking edges. Our setting is similar to the one in [4]
with several differences. In [4] there are no restrictions on the topology of the graph, i.e., Gout is
not necessarily a star-graph; outer edges can form loops, be connected among them or to arbitrarily
intricate finite length graphs. In [4], moreover, the scale invariance assumption is missing. With respect
to our work, however, the potential terms in [4] do not play an essential role in the limiting problem
(because they are uniformly bounded in the scaling parameter).

As it was done in [4], to analyze the convergence of Hε to Hout, since they are operators on different
Hilbert spaces, one could use the notion of δε-quasi unitary equivalence (or generalized norm resolvent
convergence) introduced by P. Exner and O. Post in the series of works [5–9]. In Theorems 1 and 2
we state our main results in terms of the expansion of the resolvent in the decomposition
L2(Gε) = L2(Gout)⊕ L2(G in,ε); and comment on the δε-quasi unitary equivalence of the operators Hε

and H̊out (or Ĥout) in Remark 6.
Our analysis, with the scaling on the potential Bin,ε(x) = ε−2Bin(x/ε), is also related to the

problem of approximating point-interactions on the real line through scaled potentials in the presence
of a zero energy resonance, see, e.g., [10]. The same type of scaling arises naturally also in the study of
the convergence of Schrödinger operators in thin waveguides to operators on graphs, see, e.g., [11–14].

Problems on graphs with a small compact core have been studied in several papers in the case in
which Gε is itself a star-graph, see, e.g., [15–19]. In particular, in the latter series of works, the authors
point out the role of the zero energy eigenvalue.

Also related to our work is the problem of the approximation of vertex conditions through
“physical Hamiltonians”. In [20] (see also references therein), it is shown that all the possible self-adjoint
boundary conditions at the central vertex of a star-graph, can be obtained as the limit of Hamiltonians
with δ-interactions and magnetic field terms on a graph with a shrinking inner part.

Instead of looking at the convergence of the resolvent, a different approach consists in the analysis
of the time dependent problem. This is done, e.g., in [21], for a tadpole-graph as the circle shrinks to
a point.

The paper is structured as follows. In Section 2 we introduce some notation, our assumptions
and present the main results, see Theorems 1 and 2. In Section 3 we discuss the Kreı̆n formulae for
the resolvents of Hε and Ĥout (the limiting Hamiltonian in the non-generic case). These formulae are
the main tools in our analysis. In Section 4 we discuss the scale invariance properties of the auxiliary
Hamiltonian, and other relevant operators. In Section 5 we prove Theorems 1 and 2. In doing so we
present the results with a finer estimate of the remainder, see Theorems 3 and 4. We conclude the paper
with two appendices: in Appendix A we briefly discuss the proofs of the Kreı̆n resolvent formulae
from Section 3; in Appendix B we prove some useful bounds on the eigenvalues and eigenfunctions
of H̊in.
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Index of Notation

For the convenience of the reader we recall here the notation for the Hamiltonians used in our
analysis. For the definitions we refer to Section 2 below.

• Hε is the full Hamiltonian.
• H̊in is the auxiliary Hamiltonian
• H̊in,ε is the scaled down auxiliary Hamiltonian (see Definition 2 and Section 4); H̊in = H̊in,ε=1.
• H̊out is the effective Hamiltonian in the generic case.
• Ĥout is the effective Hamiltonian in the non-generic case.
• H̊ε is the diagonal Hamiltonian H̊ε = diag(H̊out, H̊in,ε) in the decomposition L2(Gε) =

L2(Gout)⊕ L2(G in,ε) (see Section 3).

2. Preliminaries and Main Results

For a general introduction to metric graphs we refer to the monograph [3]. Here, for the
convenience of the reader, we introduce some notation and recall few basic notions that will be
used throughout the paper.

2.1. Basic Notions and Notation

To fix the ideas we start by selecting a collection of points, the vertices of the graph, and a
connection rule among them. The bonds joining the vertices are associated to oriented segments and
are the finite-length edges of the graph. Other edges can be of infinite length, and these edges are
connected only to one vertex and are associated to half-lines. In this way we obtained a metric graph,
see, e.g., Figure 1.

∞ ∞

∞

Figure 1. A metric graph with seven vertices (marked by dots) and 14 edges (three of which are
half-lines).

Given a metric graph G we denote by E the set of its edges and by V the set of its vertices. We shall
also use the notation |E | and |V| to denote the cardinality of E and V respectively. We shall always
assume that both |E | and |V| are finite.

For any e ∈ E , we identify the corresponding edge with the segment [0, �e] if e has finite length
�e > 0, or with [0,+∞) if e has infinite length.

Given a function ψ : G → C, for e ∈ E , ψe denotes its restriction to the edge e. With this notation
in mind one can define the Hilbert space

H :=
⊕
e∈E

L2(e),

with scalar product and norm given by

(φ, ψ)H := ∑
e∈E

(φe, ψe)L2(e) and ‖ψ‖H := (ψ, ψ)1/2
H .
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In a similar way one can define the Sobolev spaceH2 :=
⊕

e∈E H2(e), equipped with the norm

‖ψ‖H2 :=

(
∑
e∈E
‖ψe‖2

H2(e)

)1/2

.

Note that functions inH2 are continuous in the edges of the graph but do not need to be continuous
in the vertices.

For any vertex v ∈ V we denote by d(v) the degree of the vertex, this is the number of edges
having one endpoint identified by v, counting twice the edges that have both endpoints coinciding
with v (loops). Let Ev ⊆ E be the set of edges which are incident to the vertex v. For any vertex v
we order the edges in Ev in an arbitrary way, counting twice the loops. In this way, for an arbitrary
function ψ ∈ H2, one can define the vector Ψ(v) ∈ Cd(v) associated to the evaluation of ψ in v, i.e.,
the components of Ψ(v) are given by ψe(0) or ψe(�e), e ∈ Ev, depending whether v is the initial or
terminal vertex of the edge e, or by both values if e is a loop.

In a similar way one can define the vector Ψ′(v) ∈ Cd(v) with components ψ′e(0) and −ψ′e(�e),
e ∈ Ev. Note that in the definition of Ψ′(v), ψ′e denotes the derivative of ψe(x) with respect to x, and the
derivative in v is always taken in the outgoing direction with respect to the vertex.

We are interested in defining self-adjoint operators in H which coincide with the Laplacian,
possibly plus a potential term.

We denote by B the potential term in the operator, so that B : G → R is a real-valued function on
the graph; and denote by Be its restriction to the edge e. Additionally we assume that B is bounded
and compactly supported on G.

For every vertex v ∈ V we define a projection Pv : Cd(v) → Cd(v) and a self-adjoint operator Θv in
Ran Pv, both Pv and Θv can be identified with Hermitian d(v)× d(v) matrices.

It is well known, see, e.g., [3] and ([22], Example 5.2) that the operator HP,Θ defined by:

D(HP,Θ) :=
{

ψ ∈ H2| P⊥v Ψ(v) = 0 ; PvΨ′(v)−ΘvPvΨ(v) = 0 ∀v ∈ V
}

(1)

(HP,Θψ)e := −ψ′′e + Beψe ∀e ∈ E (2)

is self-adjoint. Instead of Equation (2), we shall write

HP,Θψ := −ψ′′ + Bψ, (3)

to be understood componentwise.
We remark that for every Pv and Θv as above, HP,Θ is a self-adjoint extension of the symmetric

operator Hmin

D(Hmin) :=
{

ψ ∈ H2|Ψ(v) = 0 ; Ψ′(v) = 0 ∀v ∈ V} Hminψ := −ψ′′ + Bψ.

2.2. Graphs with a Small Compact Core

We consider a graph Gε obtained by attaching several edges to a small compact core (a compact
metric graph of size ε).

We denote the compact core of the graph by G in,ε. The graph G in,ε is obtained by shrinking a
compact graph G in by means of a parameter 0 < ε < 1, more precisely, we set

G in,ε = εG in. (4)

We denote by E in the set of edges of the graph G in and by E in,ε the set of edges of the graph G in,ε.
In the graph G in (or, equivalently, in G in,ε) we select N distinct vertices that we label with v1, ..., vN ,

and refer to them as connecting vertices. We shall denote by C the set of connecting vertices. We denote
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by V in the set of all the remaining vertices, and call the elements of V in inner vertices (note that the set
V in may be empty).

To construct the graph Gε, we attach to each connecting vertex one additional edge which can be
an half-line or an edge of finite length (not dependent on ε). We shall call these additional edges outer
edges and denote by E out the corresponding set of edges; obviously |E out| = N. When needed, we shall
denote these edges by e1, ..., eN , so that the edge ej is connected to the vertex vj, j = 1, ..., N. Moreover
we shall use the notation

ψej ≡ ψj ej ∈ E out, j = 1, ..., N.

Note that if e ∈ E out is of finite length the endpoint which does not coincide with the connecting
vertex is of degree one (all the finite length outer edges are pendants).

We shall always assume, without loss of generality, that for each edge in E out the connecting
vertex is identified by x = 0.

We denote by E ε and V the sets of edges and vertices of the graph Gε. We note that E ε = E out ∪E in,ε

and V = V out ∪ C ∪ V in, where V out is the set of vertices in Gε which are neither connecting nor inner
vertices.

Remark 1. For any v ∈ C we denote by din(v) its degree as a vertex of the graph G in,ε, so that its degree as a
vertex of the graph Gε is d(v) = din(v) + 1.

As ε→ 0, the inner graph shrinks to one point, in the limit all the connecting vertices merge in
one vertex which we identify with the point xj = 0, xj being the coordinate along the edge ej ∈ E out,
j = 1, . . . , N. In the limit the graph Gε looks like a star-graph with N edges connected in the origin,
see Figure 2; we denote the star-graph by Gout.

∞ ∞

∞

Figure 2. The dashed lines represent the edges of G in,ε, the large dots the connecting vertices. The graph
Gout is obtained by merging the connecting vertices. In the example in the picture, Gout has three
infinite edges and one edge of finite length.

We define the Hilbert spaces:

Hε :=
⊕
e∈E ε

L2(e), Hout :=
⊕

e∈E out

L2(e), Hin,ε :=
⊕

e∈E in,ε

L2(e).

We remark that one can always think ofHε as the direct sum

Hε = Hout ⊕Hin,ε, (5)

and decompose each function ψ ∈ Hε as ψ = (ψout, ψin) with ψout ∈ Hout and ψin ∈ Hin,ε. When no
misunderstanding is possible, we omit the dependence on ε, moreover we simply write ψ, instead of
ψout or ψin.

In a similar way we introduce the Sobolev spaces

Hε
2 :=

⊕
e∈E ε

H2(e), Hout
2 :=

⊕
e∈E out

H2(e), Hin,ε
2 :=

⊕
e∈E in,ε

H2(e).

17
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2.3. Full Hamiltonian

Next we define an Hamiltonian Hε inHε (of the form given in Equations (1)–(3)); this is the object
of our investigation.

• Recall that if v ∈ V out, then d(v) = 1. For any v ∈ V out we fix an orthogonal projection
Pout

v : C→ C, and a self-adjoint operator Θout
v in Ran(Pout

v ). Since vertices in V out have degree
one, Pout

v is either 1 or 0; whenever Pout
v = 1 it makes sense to define Θout

v which turns out to
be the operator acting as the multiplication by a real constant. In other words, the boundary
conditions in v ∈ V out (of the form given in the definition of D(HP,Θ)) can be of Dirichlet type,
ψe(v) = 0; of Neumann type ψ′e(v) = 0; or of Robin type ψ′e(v) = αψe(v) with α ∈ R.
It would be possible to consider a more general setting in which the outer graph has a non trivial
topology, in same spirit of the work [4], but we will not pursue this goal.

• For any v ∈ C we define the orthogonal projection (see Remark 1 for the definition of d(v)):

Kv : Cd(v) → Cd(v), Kv := 1d(v)

(
1d(v), ·

)
Cd(v)

∀v ∈ C,

where 1d(v) denotes the vector (of unit norm) in Cd(v) defined by 1d(v) = (d(v))−1/2(1, ..., 1). In a
similar way, we define the orthogonal projection

Kin
v : Cdin(v) → Cdin(v), Kin

v := 1din(v)

(
1din(v), ·

)
Cdin(v)

∀v ∈ C,

where 1din(v) ∈ Cdin(v) is defined by 1din(v) = (din(v))−1/2(1, ..., 1). Both Kv and Kin
v have

one-dimensional range given by the span of the vectors 1d(v) and 1din(v) respectively.
A function ψ satisfies Kirchhoff conditions in the vertex v (it is continuous in v and the sum of
the outgoing derivatives in v equals zero) if and only if K⊥v Ψ(v) = 0 and KvΨ′(v) = 0.

• For any v ∈ V in we fix an orthogonal projection Pin
v : Cd(v) → Cd(v), and a self-adjoint operator

Θin,ε
v in Ran(Pin

v ).
• We fix an ε-dependent real-valued function Bε : Gε → R, such that in the out/in decomposition (5)

one has Bε = (Bout, Bin,ε). With Bout : Gout → R bounded and compactly supported.
• Scale invariance; recall that G in,ε = εG in, see Equation (4). We assume additionally: that Bin,ε(x) =

ε−2Bin(x/ε), where Bin : G in → R is bounded; and that Θin,ε
v = ε−1Θin

v , for all v ∈ V in. For a
discussion on the meaning and the main consequences of these assumptions we refer to Section 4.

Definition 1 (Hamiltonian Hε). We denote by Hε the self-adjoint operator inHε defined by

D(Hε) :=
{

ψ ∈ Hε
2| Pin

v
⊥

Ψ(v) = 0 , Pin
v Ψ′(v)−Θin,ε

v Pin
v Ψ(v) = 0 ∀v ∈ V in;

Pout
v
⊥Ψ(v) = 0 , Pout

v Ψ′(v)−Θout
v Pout

v Ψ(v) = 0 ∀v ∈ V out;

K⊥v Ψ(v) = 0 , KvΨ′(v) = 0 ∀v ∈ C}
Hεψ := −ψ′′ + Bεψ ∀ψ ∈ D(Hε).

Remark 2. In the out/in decomposition one has

(Hεψ)out = −ψout ′′ + Boutψout

(Hεψ)in = −ψin ′′ + Bin,εψin.

Note that the action of the outer component of Hε does not depend on ε.
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Remark 3. By the definition of Kv, in each connecting vertex boundary conditions in D(Hε) are of
Kirchhoff-type: the function ψ is continuous in v ∈ C and

∑
e∼v

ψ′e(v) = 0 v ∈ C,

where the sum is taken on all the edges incident on v (counting loops twice) and the derivative is understood in
the outgoing direction from the vertex.

2.4. Auxiliary Hamiltonian

We are interested in the limit of the operator Hε as ε→ 0. We shall see that the limiting properties
of Hε are strongly related to spectral properties of the Hamiltonian H̊in,ε:

Definition 2 (Auxiliary Hamiltonian, scaled down version).

D(H̊in,ε) :=
{

ψ ∈ Hin,ε
2 | Pin

v
⊥

Ψ(v) = 0 , Pin
v Ψ′(v)−Θin,ε

v Pin
v Ψ(v) = 0 ∀v ∈ V in;

Kin
v
⊥

Ψ(v) = 0 , Kin
v Ψ′(v) = 0 ∀v ∈ C} (6)

H̊in,εψ := −ψ′′ + Bin,εψ ∀ψ ∈ D(H̊in,ε).

LetHin = Hin,ε=1, and define the unitary scaling group

Uin,ε : Hin → Hin,ε , (Uin,εψin)(x) := ε−1/2ψin(x/ε);

its inverse is
Uin,ε−1

: Hin,ε → Hin , (Uin,ε−1
ψin)(x) = ε1/2ψin(εx).

By the scaling properties Θin,ε
v = ε−1Θin

v and Bin,ε(x/ε) = ε−2Bin(x), one infers the unitary relation

H̊in,ε = ε−2Uin,εH̊inUin,ε−1
(7)

with H̊in defined on Hε and given by H̊in = H̊in,ε=1. One consequence of Equation (7) is that the
spectrum of H̊in,ε is related to the spectrum of H̊in by the relation σ(H̊in,ε) = ε−2σ(H̊in) (see Section 4
for more comments on the implications of the scale invariance assumption). For this reason, we prefer
to formulate the results in terms of the spectral properties of the ε-independent Hamiltonian H̊in

instead of the spectral properties of H̊in,ε.

Definition 3 (Auxiliary Hamiltonian H̊in). We call Auxiliary Hamiltonian the Hamiltonian H̊in = H̊in,ε=1

defined onHin.
LettingHin

2 = Hin,ε=1
2 , the domain and action of H̊in are given by

D(H̊in) =
{

ψ ∈ Hin
2 | Pin

v
⊥

Ψ(v) = 0 , Pin
v Ψ′(v)−Θin

v Pin
v Ψ(v) = 0 ∀v ∈ V in;

Kin
v
⊥

Ψ(v) = 0 , Kin
v Ψ′(v) = 0 ∀v ∈ C} (8)

H̊inψ = −ψ′′ + Binψ ∀ψ ∈ D(H̊in).

The spectrum of H̊in consists of isolated eigenvalues of finite multiplicity, see, e.g., ([3],
Theorem 3.1.1). For n ∈ N, we denote by λn the eigenvalues of H̊in (counting multiplicity) and
by {ϕn}n∈N a corresponding set of orthonormal eigenfunctions.

Definition 4 (Generic/non-generic case). In the analysis of the limit of Hε we distinguish two cases:
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(1) Generic (or non-resonant, or decoupling) case. λ = 0 is not an eigenvalue of the operator H̊in.
(2) Non-generic (or resonant) case. λ = 0 is an eigenvalue of the operator H̊in.

In the non-generic case we denote by {ϕ̂k}k=1,...,m a set of (orthonormal) eigenfunctions corresponding to
the zero eigenvalue. By Equation (8), functions in D(H̊in) are continuous in the connecting vertices (see
also Remark 3). We denote by ϕ̂k(v), v ∈ C, the value of ϕ̂k in v, and define the vectors

ĉk := (ϕ̂k(v1), . . . , ϕ̂k(vN)) ∈ CN , k = 1, . . . , m, vj ∈ C, j = 1, . . . , N. (9)

Definition 5 (Ĉ – P̂). In the non-generic case, let Ĉ be the operator

Ĉ :=
m

∑
k=1

ĉk(ĉk, ·)CN : CN → CN .

Ĉ is a bounded self-adjoint operator (it is an N × N Hermitian matrix). Denote by Ran Ĉ ⊆ CN and
Ker Ĉ ⊆ CN, the range and the kernel of Ĉ respectively. One has that the subspaces Ran Ĉ and Ker Ĉ are
Ĉ-invariant. Moreover, CN = Ran Ĉ⊕Ker Ĉ. In what follows we denote by P̂ the orthogonal projection (Riesz
projection, see, e.g., ([23], Section I.2)) on Ran(Ĉ), and by P̂⊥ = IN − P̂ the orthogonal projection on Ker(Ĉ).

Remark 4. We note that q ∈ Ker Ĉ if and only if (ĉk, q)CN = 0 for all k = 1, . . . , m. To see that this indeed
the case, observe that if q ∈ Ker Ĉ then it must be (q, Ĉq)CN = 0, hence, ∑m

k=1 |(ĉk, q)CN |2 = 0, which in turn
implies (ĉk, q)CN = 0 for all k = 1, . . . , m. The other implication is trivial.

Since P̂⊥ ĉk ∈ Ker Ĉ, we infer 0 = (ĉk, P̂⊥ ĉk)CN = (P̂⊥ ĉk, P̂⊥ ĉk)CN = ‖P̂⊥ ĉk‖2
CN for all k = 1, . . . , m;

hence, P̂⊥ ĉk = 0, or, equivalently, ĉk ∈ Ran(Ĉ).

2.5. Effective Hamiltonians

We shall see that the definition of the limiting operator (effective Hamiltonian inHout) depends
on presence of a zero eigenvalue for H̊in (the occurrence of the generic case vs. the non-generic case).

Recall that for ψ ∈ Hout, we used ψj to denote the component of ψ on the edge ej attached to the
connecting vertex vj. Moreover, we assumed that the vertex vj is identified by x = 0. With this remark
in mind, given a function ψ ∈ Hout

2 we define the vectors

Ψ(0) := (ψ1(0), . . . , ψN(0))T ∈ CN , Ψ′(0) := (ψ′1(0), . . . , ψ′N(0))T ∈ CN .

These correspond to Ψ(v0) and Ψ′(v0), as defined in Section 2.1, where v0 is the central vertex of
the star-graph Gout.

In the limit ε→ 0, the connecting vertices in G in,ε coincide, and can be identified with the vertex
v0 ≡ 0.

We distinguish two possible effective Hamiltonians inHout.

Definition 6 (Effective Hamiltonian, generic case). We denote by H̊out the self-adjoint operator in Hout

defined by

D(H̊out) :=
{

ψ ∈ Hout
2 | Pout

v
⊥Ψ(v) = 0 , Pout

v Ψ′(v)−Θout
v Pout

v Ψ(v) = 0 ∀v ∈ V out;

Ψ(0) = 0
} (10)

Houtψ := −ψ′′ + Boutψ ∀ψ ∈ D(H̊out).
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Definition 7 (Effective Hamiltonian, non-generic case). Let P̂ be the orthogonal projection given in
Definition 5. We denote by Ĥout the self-adjoint operator inHout defined by

D(Ĥout) :=
{

ψ ∈ Hout
2 | Pout

v
⊥Ψ(v) = 0 , Pout

v Ψ′(v)−Θout
v Pout

v Ψ(v) = 0 ∀v ∈ V out;

P̂⊥Ψ(0) = 0 , P̂Ψ′(0) = 0
}

Ĥoutψ := −ψ′′ + Boutψ ∀ψ ∈ D(Ĥout).

The boundary conditions in 0 in the definitions of D(H̊out) and D(Ĥout) are scale invariant
(see ([3], Section 1.4.2)).

2.6. Main Results

In what follows C denotes a generic positive constant independent on ε. Given two Hilbert spaces
X and Y, we denote by B(X, Y) (or simply by B(X) if X = Y) the space of bounded linear operators
from X to Y, and by ‖ · ‖B(X,Y) the corresponding norm. For any a ∈ R, we use the notationOB(X,Y)(ε

a)

to denote a generic operator from X to Y whose norm is bounded by Cεa for ε small enough.
Given a bounded operator A inHε we use the notation

A =

(
Aout,out Aout,in

Ain,out Ain,in

)
(11)

to describe its action in the out/in decomposition (5): here Au,v : Hv → Hu, u, v = out, in, are operators
defined according to

(Aψ)out =Aout,outψout + Aout,inψin

(Aψ)in =Ain,outψout + Ain,inψin.
(12)

Theorem 1. Let z ∈ C\R. In the generic case (see Definition 4)

(Hε − z)−1 =

(
(H̊out − z)−1 O

O O

)
+OB(Hε)(ε), (13)

where the expansion has to be understood in the out/in decomposition (11).

Theorem 2. Let z ∈ C\R. In the non-generic case (see Definition 4), let Ĉ0 be the restriction of Ĉ to Ran P̂.

(i) If Ker Ĉ ⊂ CN, Ĉ0 is invertible as an operator in P̂CN, and

(Hε− z)−1 =

(
(Ĥout − z)−1 O

O −z−1 ∑m
k,k′=1

(
δk,k′ − (ĉk, Ĉ−1

0 ĉk′)CN

)
ϕ̂ε

k(ϕ̂ε
k′ , ·)Hin,ε

)
+OB(Hε)(ε

1/2),

(14)
where the expansion has to be understood in the out/in decomposition (11).

(ii) If Ker Ĉ = CN, then P̂ = 0, and expansion (14) holds true with Ĥout = H̊out, (ĉk, Ĉ−1
0 ĉk′)CN = 0 for

all k, k′ = 1, . . . , m, and the error term changed in OB(Hε)(ε).

(iii) If the vectors ĉk, k = 1, . . . , m, are linearly independent, then
(

δk,k′ − (ĉk, Ĉ−1
0 ĉk′)CN

)
= 0 for all

k, k′ = 1, . . . , m, and

(Hε − z)−1 =

(
(Ĥout − z)−1 O

O O

)
+OB(Hε)(ε

1/2). (15)

Remark 5. Finer estimates on the remainders in Equations (13) and (14) are given in Theorems 3 and 4 below.
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Remark 6. We recall and adapt to our setting the notion of δε-quasi unitary equivalence of operators acting
on different Hilbert spaces introduced by P. Exner and O. Post, see in particular ([7], Section 3.2) and ([9],
Chapter 4). See also ([4], Section 5) for a discussion on the application of this approach to the analysis of operators
on graphs with shrinking edges.

Let J be the operator

J : Hout → Hε, Jψout = (ψout, 0) for all ψout ∈ Hout,

where (ψout, 0) is understood in the decomposition (5). Its adjoint J∗ mapsHε inHout, and is given by:

J∗ : Hε → Hout, J∗ψ = ψout for all ψ = (ψout, ψin) ∈ Hε.

Note that J∗ J = Iout, where Iout is the identity inHout.
The operator Hε is δε-quasi unitarily equivalent to a self-adjoint operator Hout inHout if∥∥(I− J J∗)(Hε − z)−1∥∥B(Hε)

≤ Cδε and
∥∥J(Hout − z)−1 − (Hε − z)−1 J

∥∥B(Hout ,Hε)
≤ Cδε, (16)

for some z ∈ C\R.
Note that in the decomposition (12), one has

(I− J J∗)(Hε − z)−1ψ =
(
(Hε − z)−1)in,out

ψout +
(
(Hε − z)−1)in,in

ψin

and

(J(Hout − z)−1 − (Hε − z)−1 J)ψout =
((

(Hout − z)−1 − ((Hε − z)−1)out,out)
ψout,−((Hε − z)−1)in,out

ψout
)

,

hence:
By Theorem 1, in the generic case the operator Hε is ε-quasi unitarily equivalent to the operator H̊out.
By Theorem 2–(iii), in the non-generic case, if the vectors ĉk, k = 1, . . . , m, are linearly independent,

the operator Hε is ε1/2-quasi unitarily equivalent to the operator Ĥout. More precisely, the second condition in
Equation (16) always holds true, while the first one holds true only under the additional assumption that the
vectors ĉk are linearly independent.

We refer to [9] for a comprehensive discussion on the comparison between operators acting on
different spaces.

3. Kreı̆n Resolvent Formulae

In this section we introduce the main tools in our analysis: the Kreı̆n-type resolvent formulae for
the resolvents of Hε and Ĥout. The proofs are postponed to Appendix A.

Given the Hilbert spaces Xout, Yout, Xin, and Yin, and a couple of operators Aout : Xout → Yout and
Ain : Xin → Yin, we denote by A := diag(Aout, Ain), the operator A : X → Y, with X := Xout ⊕ Xin

and Y := Yout ⊕ Yin, acting as A f := (Aout f out, Ain f in), for all f = ( f out, f in) ∈ X, f out ∈ Xout and
f in ∈ Xin.

We set
D(H̊ε) := D(H̊out)⊕ D(H̊in,ε) and H̊ε := diag(H̊out, H̊in,ε), (17)

with H̊out and H̊in,ε given as in Definitions 6 and 2
Given an operator A, we denote by ρ(A) its resolvent set; the resolvent of A is defined as (A− z)−1

for all z ∈ ρ(A).
For the resolvents of the relevant operators we introduce the shorthand notation

Rε
z := (Hε − z)−1 z ∈ ρ(Hε); (18)

R̊ε
z := (H̊ε − z)−1 z ∈ ρ(H̊ε) = ρ(H̊out) ∩ ρ(H̊in,ε); (19)
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R̊out
z := (H̊out − z)−1 z ∈ ρ(H̊out); R̂out

z := (Ĥout − z)−1 z ∈ ρ(Ĥout); (20)

R̊in,ε
z := (H̊in,ε − z)−1 z ∈ ρ(H̊in,ε). (21)

Obviously, all the operators in Equations (18)–(21) are well-defined and bounded for z ∈ C\R,
moreover R̊ε

z = diag(R̊out
z , R̊in,ε

z ).
Our aim is to write the resolvent difference Rε

z − R̊ε
z in a suitable block matrix form, associated

to the off-diagonal matrix Θ in Equation (29). To do so we follow the approach of Posilicano [22,24].
All the self-adjoint extensions of the symmetric operator obtained by restricting a given self-adjoint
operator to the kernel of a given map τ are parametrized by a projection P and a self-adjoint operator
Θ in Ran P. We choose the reference operator H̊ε and the map τ so that the Hamiltonian of interest
Hε is the self-adjoint extension parametrized by the identity and the self-adjoint operator given by
the off-diagonal matrix Θ. The Kreı̆n formula for the resolvent difference Rε

z − R̊ε
z, see Lemma 2,

is obtained within the approach from [22,24].
We define the maps:

τout : Hout
2 → CN τoutψ := Ψ′(0); (22)

τin : Hin,ε
2 → CN

τinψ :=

(
1√

din(v1)
(1din(v1)

, Ψ(v1))
Cdin(v1)

, ...,
1√

din(vN)
(1din(vN), Ψ(vN))

Cdin(vN )

)T

.
(23)

Moreover we set,

τ : Hε
2 = Hout

2 ⊕Hin,ε
2 → C2N τ := diag(τout, τin).

Note that we are using the identification C2N = CN ⊕CN .
The following maps are well-defined and bounded

Ğout
z : Hout → CN Ğout

z := τoutR̊out
z z ∈ ρ(H̊out)

and
Ğin,ε

z : Hin,ε → CN Ğin,ε
z := τinR̊in,ε

z z ∈ ρ(H̊in,ε). (24)

Moreover we set

Ğε
z : Hε = Hout ⊕Hin,ε → C2N Ğε

z := diag(Ğout
z , Ğin,ε

z ),

for z ∈ ρ(H̊out) ∩ ρ(H̊in,ε). Note that Ğε
z = τR̊ε

z and that all the maps above are well-defined bounded
operators for z ∈ C\R.

The adjoint maps (in z̄) are denoted by

Gout
z : CN → Hout Gout

z := Ğout∗
z̄ ,

Gin,ε
z : CN → Hin,ε Gin,ε

z := Ğin,ε∗
z̄ , (25)

(∗ denoting the adjoint) and
Gε

z : C2N → Hε Gε
z := Ğε∗

z̄ .

Obviously Gε
z = diag(Gout

z , Gin,ε
z ) to be understood as an operator from C2N = CN ⊕ CN to

Hε = Hout ⊕Hin,ε.
We note that, see Remark A2, Gout

z : CN → Hout
2 and Gin,ε

z : CN → Hin,ε
2 , for all z ∈ ρ(H̊out) and

z ∈ ρ(H̊in,ε) respectively, so that the maps (N × N, z-dependent matrices)

Mout
z : CN → CN , Mout

z := τoutGout
z z ∈ ρ(H̊out) (26)
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Min,ε
z : CN → CN , Min,ε

z := τinGin,ε
z z ∈ ρ(H̊in,ε), (27)

are well defined. Moreover, we set

Mε
z : C2N → C2N , Mε

z := diag(Mout
z , Min,ε

z ) z ∈ ρ(H̊out) ∩ ρ(H̊in,ε) = ρ(H̊ε); (28)

obviously Mε
z = τGε(z).

In the following Lemmata we give two Kreı̆n-type resolvent formulae: one allows to express the
resolvent of Ĥout in terms of the resolvent of H̊out; the other gives the resolvent of Hε in terms of the
resolvent of H̊ε. For the proofs we refer to Appendix A, Appendix A.1.

Lemma 1. Let P̂ be an orthogonal projection in CN, and Ĥout and H̊out be the Hamiltonians defined according
to Definitions 7 and 6. Then, for any z ∈ ρ(Ĥout)∩ ρ(H̊out), the map P̂Mout

z P̂ : P̂CN → P̂CN is invertible and

R̂out
z = R̊out

z − Gout
z P̂
(

P̂Mout
z P̂
)−1P̂Ğout

z .

Lemma 2. Let Θ be the 2N × 2N block matrix

Θ =

(
ON IN
IN ON

)
. (29)

Then, for any z ∈ ρ(Hε) ∩ ρ(H̊ε), the map (Mε
z −Θ) : C2N → C2N is invertible and

Rε
z = R̊ε

z − Gε
z
(

Mε
z −Θ

)−1Ğε
z.

We conclude this section with an alternative formula for the resolvent Rε
z. We refer to Appendix A,

Appendix A.2, for the proof.

Lemma 3. Let z ∈ C\R, then the maps (N × N, z-dependent matrices)

Min,ε
z Mout

z − IN : CN → CN and Mout
z Min,ε

z − IN : CN → CN (30)

are invertible. Moreover,

Rε
z = R̊ε

z − Gε
z

⎛⎜⎝
(

Min,ε
z Mout

z − IN
)−1Min,ε

z
(

Min,ε
z Mout

z − IN
)−1

(
Mout

z Min,ε
z − IN

)−1 Mout
z
(

Min,ε
z Mout

z − IN
)−1

⎞⎟⎠ Ğε
z. (31)

4. Scale Invariance

In this section we discuss the scale invariance properties of H̊in,ε and collect several formulae
concerning the operators R̊in,ε

z , Ğin,ε
z , Gin,ε

z , and Min,ε
z .

Recall that we have denoted by λn and {ϕn}n∈N the eigenvalues and a corresponding set of
orthonormal eigenfunctions of H̊in.

The eigenvalues of H̊in,ε (counting multiplicity) and a corresponding set of orthonormal
eigenfunctions are given by

λε
n = ε−2λn ; ϕε

n(x) = ε−1/2 ϕn(x/ε), (32)

where λn are the eigenvalues of H̊in, and ϕn the corresponding (orthonormal) eigenfunctions.
By the spectral theorem and by the scaling properties (32), R̊in,ε

z is given by

R̊in,ε
z = ∑

n∈N

ϕε
n(ϕε

n, ·)Hin,ε

λε
n − z

= ε2 ∑
n∈N

ϕε
n(ϕε

n, ·)Hin,ε

λn − ε2z
. (33)
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Hence, its integral kernel can be written as

R̊in,ε
z (x, y) = ε ∑

n∈N

ϕn(x/ε)ϕn(y/ε)

λn − ε2z
x, y ∈ G in,ε. (34)

Since there exists a positive constant C such that supx∈G in |ϕn(x)| ≤ C and λn ≥ Cn2 for
n large enough (see Appendix B), the series in Equation (34) is uniformly convergent for x, y ∈
G in,ε. Hence, we can write the operators Ğin,ε

z and Gin,ε
z , and the matrix Min,ε

z in a similar way,
see Equations (35) and (36) below.

Note that, since functions in D(H̊in,ε) are continuous in the connecting vertices, the eigenfunctions
ϕε

n can be evaluated in the connecting vertices, and, by the definition of τin (see Equation (23)), one has

τin ϕε
n = (ϕε

n(v1), . . . , ϕε
n(vN))

T .

So that, for any eigenfunction ϕε
n we can define the vector cε

n as

cε
n := τin ϕε

n.

We note that cε
n = ε−1/2cn, with

cn = (ϕn(v1), . . . , ϕn(vN))
T ,

and that the vectors cn are defined in the same way as the vectors ĉk in Equation (9).

Remark 7. In the non-generic case, zero is an eigenvalue of H̊in,ε. We denote by {ϕ̂ε
k}k=1,...,m the corresponding

set of (orthonormal) eigenfunctions given by ϕ̂ε
k(x) = ε−1/2 ϕ̂k(x/ε) where ϕ̂k are the eigenfunctions

corresponding to the eigenvalue zero of H̊in. The vectors ĉε
k := τin ϕ̂ε

k are related to the vectors ĉk by the
identity ĉε

k = ε−1/2 ĉk.

By the discussion above, and by the definitions (24), (25), and (27), we obtain

Ğin,ε
z = ε3/2 ∑

n∈N

cn(ϕε
n, ·)Hin,ε

λn − ε2z
; Gin,ε

z = ε3/2 ∑
n∈N

ϕε
n(cn, ·)CN

λn − ε2z
, (35)

and

Min,ε
z = ε ∑

n∈N

cn(cn, ·)CN

λn − ε2z
. (36)

5. Proof of Theorems 1 and 2

This section is devoted to the proofs of Theorems 1 and 2. Actually, we shall prove a finer version
of the results with more precise estimates of the remainders, see Theorems 3 and 4 below.

Remark 8. By Equation (31), it follows that, in the out/in decomposition (11), the resolvent Rε
z can be

written as

Rε
z =

(
R̊out

z O

O R̊in,ε
z

)
−
(
Rout,out,ε

z Rout,in,ε
z

Rin,out,ε
z Rin,in,ε

z

)
(37)

with

Rout,out,ε
z = Gout

z
(

Min,ε
z Mout

z − IN
)−1Min,ε

z Ğout
z ; (38)

Rin,out,ε
z = Gin,ε

z
(

Mout
z Min,ε

z − IN
)−1Ğout

z ; (39)

Rout,in,ε
z = Gout

z
(

Min,ε
z Mout

z − IN
)−1Ğin,ε

z ; (40)

Rin,in,ε
z = Gin,ε

z Mout
z
(

Min,ε
z Mout

z − IN
)−1Ğin,ε

z . (41)
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Note that since Mz = M∗̄z holds true both for the “out” and “in” M-matrices (see Equation (A2)),
one infersRin,out,ε

z = Rout,in,ε∗
z̄ .

5.1. Generic Case. Proof of Theorem 1

In this section we study the limit of the relevant quantities in the generic case and prove Theorem 1.

Proposition 1. Let z ∈ C\R. In the generic case,

R̊in,ε
z = OB(Hin,ε)(ε

2); (42)

Ğin,ε
z = OB(Hin,ε ,CN)(ε

3/2) ; Gin,ε
z = OB(CN ,Hin,ε)(ε

3/2). (43)

Proof. We prove first Claim (42). For any ψin ∈ Hin,ε, since {ϕε
n}n∈N is an orthonormal set of

eigenfunctions inHin,ε, and by Equation (33), we infer

‖R̊in,ε
z ψin‖Hin,ε = ε2

(
∑

n∈N

|(ϕε
n, ψin)Hin,ε |2
|λn − ε2z|2

)1/2

≤ Cε2‖ψin‖Hin,ε ,

where in the latter inequality we used the bound |λn − ε2z|−2 ≤ 4|λn|−2 ≤ C, which holds true in the
generic case because |λn − ε2z| ≥ |λn|/2 ≥ C for all n ∈ N and ε small enough.

To prove the first claim in Equation (43), let ψin ∈ Hin,ε, then

Ğin,ε
z ψin = ε3/2 ∑

n∈N

cn(ϕε
n, ψin)Hin,ε

λn − ε2z
.

Hence, from the Cauchy–Schwarz inequality,

‖Ğin,ε
z ψin‖CN ≤ε3/2 ∑

n∈N

‖cn‖CN |(ϕε
n, ψin)Hin,ε |

|λn − ε2z|

≤ε3/2‖ψin‖Hin,ε

(
∑

n∈N

‖cn‖2
CN

|λn − ε2z|2
)1/2

≤ C ε3/2‖ψin‖Hin,ε ,

because ‖cn‖2
CN ≤ C and ∑n∈N |λn − ε2z|−2 ≤ C ∑n∈N |λn|−2 ≤ C. This proves the first Claim in

Equation (43); the second one is trivial, being Gin,ε
z the adjoint of Ğin,ε

z̄ .

Proposition 2. Let z ∈ C\R. In the generic case,

Min,ε
z = OB(CN)(ε). (44)

Proof. Recall Equation (36) and note that for any q ∈ CN ,

‖Min,ε
z q‖CN ≤ ε ∑

n∈N

‖cn‖CN |(cn, q)CN |
|λn − ε2z| ≤ ε‖q‖CN ∑

n∈N

‖cn‖2
CN

|λn − ε2z| ≤ Cε‖q‖CN ,

because ‖cn‖2
CN ≤ C and ∑n∈N |λn − ε2z|−1 ≤ C ∑n∈N |λn|−1 ≤ C.

Theorem 3. Let z ∈ C\R. In the generic case

Rε
z =

(
R̊out

z +OB(Hout)(ε) OB(Hin,ε ,Hout) (ε3/2)

OB(Hout ,Hin,ε)(ε
3/2) OB(Hin,ε)(ε

2)

)
, (45)
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where the expansion has to be understood in the out/in decomposition (11).

Proof. Note that
(

Min,ε
z Mout

z − IN
)−1

= OCN (1) by Equation (44) and because Mout
z is bounded and

does not depend on ε. Hence,
(

Min,ε
z Mout

z − IN
)−1Min,ε

z = OCN (ε).
To conclude, by Equations (38)–(41), and by expansions (43), we infer: Rout,out,ε

z = OB(Hout)(ε);

Rout,in,ε
z = OB(Hin,ε ,Hout) (ε3/2); Rin,out,ε

z = OB(Hout ,Hin,ε)(ε
3/2) (this is obvious since it is the adjoint of

Rout,in,ε
z̄ ); andRin,in,ε

z = OB(Hin,ε)(ε
3).

Expansion (45) follows by taking into account the bound (42), and from Remark 8.

Theorem 1 is a direct consequence of Theorem 3.

5.2. Non-Generic Case. Proof of Theorem 2

In this section we study the limit of the relevant quantities in the non-generic case and prove
Theorem 2.

Recall that, in the non-generic case, {ϕ̂ε
k}k=1,...,m denotes a set of orthonormal eigenfunctions

corresponding to the zero eigenvalue, see also Remark 7.

Proposition 3. Let z ∈ C\R. In the non-generic case

R̊in,ε
z =−

m

∑
k=1

ϕ̂ε
k(ϕ̂ε

k, ·)Hin,ε

z
+OB(Hin,ε)(ε

2); (46)

Ğin,ε
z =−

m

∑
k=1

ĉk(ϕ̂ε
k, ·)Hin,ε

ε1/2z
+OB(Hin,ε ,CN)(ε

3/2); (47)

Gin,ε
z =−

m

∑
k=1

ϕ̂ε
k(ĉk, ·)CN

ε1/2z
+OB(CN ,Hin,ε)(ε

3/2). (48)

Proof. We prove first Claim (46). By Equation (33) we infer

R̊in,ε
z = −

m

∑
k=1

ϕ̂ε
k(ϕ̂ε

k, ·)Hin,ε

z
+ ε2 ∑

n:λn �=0

ϕε
n(ϕε

n, ·)Hin,ε

λn − ε2z
. (49)

Note that the second sum runs over λn �= 0, hence one has the bound |λn − ε2z| ≥ |λn|/2 ≥ C,
for ε small enough. For this reason, the bound in Equation (46) on the second term at the r.h.s. of
Equation (49) can be obtained with an argument similar to the one used in the proof of bound (42).

To prove Claim (47) we proceed in a similar way. We note that, see Equation (35),

Ğin,ε
z = −

m

∑
k=1

ĉk(ϕ̂ε
k, ·)Hin,ε

ε1/2z
+ ε3/2 ∑

n:λn �=0

cn(ϕε
n, ·)Hin,ε

λn − ε2z
,

and bound the second term at the r.h.s. by reasoning in the same way as in the proof of Proposition 1.
Claim (48) follows by noticing that Gin,ε

z is the adjoint of Ğin,ε
z̄ .

Next we prove a proposition on the expansion of the N × N, z-dependent matrix Min,ε
z . Recall

that Ĉ was defined in Definition 5.

Proposition 4. Let z ∈ C\R. In the non-generic case,

Min,ε
z = − 1

εz
Ĉ +OB(CN)(ε). (50)
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Proof. The claim immediately follows from Equation (36), after noticing that

Min,ε
z = − 1

εz
Ĉ + ε ∑

n:λn �=0

cn(cn, ·)CN

λn − ε2z

and by treating the second term at the r.h.s. with argument similar to the one used in the proof of
Proposition 2.

We set
M̃in,ε

z := εMin,ε
z

and recall that Mout
z is invertible (see Remark A3), then

(Min,ε
z Mout

z − IN)
−1 = εMout

z
−1

(M̃in,ε
z − εMout

z
−1

)−1. (51)

In the following proposition we give an expansion formula for the term (M̃in,ε
z − εMout

z
−1

)−1 in
the non-generic case.

Proposition 5. Let z ∈ C\R. In the non-generic case, decompose the space CN as CN = P̂CN ⊕ P̂⊥CN,
and denote by Ĉ0 the restriction of Ĉ to P̂CN. Then, the map P̂⊥Mout

z
−1P̂⊥ is invertible in P̂⊥CN.

Set
Nz := (P̂⊥Mout

z
−1P̂⊥)−1 : P̂⊥CN → P̂⊥CN , (52)

then

(M̃in,ε
z − εMout

z
−1

)−1

=−
(

zĈ−1
0 +OB(P̂CN)(ε) −zĈ−1

0 P̂Mout
z
−1P̂⊥Nz +OB(P̂⊥CN ,P̂CN)(ε)

−zNzP̂⊥Mout
z
−1P̂Ĉ−1

0 +OB(P̂CN ,P̂⊥CN)(ε) ε−1Nz +OB(P̂⊥CN)(1)

)
,

(53)

to be understood in the decomposition CN = P̂CN ⊕ P̂⊥CN.

Proof. We postpone the proof of the fact that the map P̂⊥Mout
z
−1P̂⊥ is invertible in P̂⊥CN to the

appendix, see Remark A4.
Next we prove that the expansion formula (53) holds true. We start by noticing that the map

z−1Ĉ + εMout
z
−1 is invertible. In fact, by Remark A4 and since (q, Ĉq)CN = ∑m

k=1 |(ĉk, q)CN |2 ≥ 0,
we infer

Im
(
q, (z−1Ĉ + εMout

z
−1

)q
)
CN = − Im z

|z|2 (q, Ĉq)CN − ε Im z‖Gout
z Mout

z
−1q‖2

Hout �= 0,

because it is the sum of two non-positive (or non-negative) terms and ‖Gout
z Mout

z
−1q‖2

Hout �= 0 by the

injectivity of Gout
z Mout

z
−1, see Remark A1.

Moreover we have the a-priori estimate

(M̃in,ε
z − εMout

z
−1

)−1 = OB(CN)(ε
−1). (54)

The latter follows from (see also Equation (A3))

‖q‖CN‖(M̃in,ε
z − εMout

z
−1

)q‖CN ≥|(q, M̃in,ε
z − εMout

z
−1q)CN |

≥| Im(q, M̃in,ε
z − εMout

z
−1q)CN |

=ε| Im z|(‖Gin,ε
z q‖2

Hin,ε + ‖Gout
z Mout

z
−1q‖2

Hout) ≥ εCz‖q‖2
CN ,
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for some positive constant Cz, from the injectivity of Gout
z Mout

z
−1. Hence, setting q = (M̃in,ε

z −
εMout

z
−1

)−1 p, it follows that ‖(M̃in,ε
z − εMout

z
−1

)−1 p‖CN ≤ (εCz)−1‖p‖CN .
Next we use the expansion (see Equation (50))

M̃in,ε
z = −1

z
Ĉ +OB(CN)(ε

2), (55)

which, together with the a-priori estimate (54), gives

(M̃in,ε
z − εMout

z
−1

)−1 =− (z−1Ĉ + εMout
z
−1

)−1 + (z−1Ĉ + εMout
z
−1

)−1OB(CN)(ε
2)(M̃in,ε

z − εMout
z
−1

)−1

=− (z−1Ĉ + εMout
z
−1

)−1 + (z−1Ĉ + εMout
z
−1

)−1OB(CN)(ε). (56)

Here we used the formula (A + B)−1 = A−1 − A−1B(A + B)−1. Note that by using instead the
complementary formula (A + B)−1 = A−1 − (A + B)−1BA−1, we obtain

(M̃in,ε
z − εMout

z
−1

)−1 = −(z−1Ĉ + εMout
z
−1

)−1 +OB(CN)(ε)(z
−1Ĉ + εMout

z
−1

)−1. (57)

Next we analyze the term (z−1Ĉ + εMout
z
−1

)−1.
We start by noticing that the map z−1Ĉ0 + εP̂Mout

z
−1P̂ : P̂CN → P̂CN is invertible, because Ĉ0 is

invertible in P̂CN and εP̂Mout
z
−1P̂ = OCN (ε).

By the identification (to be understood in the decomposition CN = P̂CN ⊕ P̂⊥CN)

Mout
z
−1

=

(
P̂Mout

z
−1P̂ P̂Mout

z
−1P̂⊥

P̂⊥Mout
z
−1P̂ P̂⊥Mout

z
−1P̂⊥

)
, (58)

we have the identity

z−1Ĉ + εMout
z
−1

=

(
z−1Ĉ0 + εP̂Mout

z
−1P̂ εP̂Mout

z
−1P̂⊥

εP̂⊥Mout
z
−1P̂ εP̂⊥Mout

z
−1P̂⊥

)
.

Hence, from the block-matrix inversion formula, we obtain

(z−1Ĉ + εMout
z
−1

)−1 =

(
Dε

z −Dε
zP̂Mout

z
−1P̂⊥Nz

−NzP̂⊥Mout
z
−1P̂Dε

z ε−1Nz + NzP̂⊥Mout
z
−1P̂Dε

zP̂Mout
z
−1P̂⊥Nz

)
,

with Dε
z : P̂CN → P̂CN given by

Dε
z :=

(
z−1Ĉ0 + εP̂Mout

z
−1P̂− εP̂Mout

z
−1P̂⊥(P̂⊥Mout

z
−1P̂⊥)−1P̂⊥Mout

z
−1P̂
)−1

;

note that Dε
z is well-defined because it is the inverse of a map of the form z−1Ĉ0 + OB(P̂CN)(ε),

and z−1Ĉ0 is invertible in P̂CN .
Moreover, it holds true,

Dε
z = zĈ−1

0 +OB(P̂CN)(ε).

Hence,

(z−1Ĉ + εMout
z
−1

)−1

=

(
zĈ−1

0 −zĈ−1
0 P̂Mout

z
−1P̂⊥Nz

−zNzP̂⊥Mout
z
−1P̂Ĉ−1

0 ε−1Nz + zNzP̂⊥Mout
z
−1P̂Ĉ−1

0 P̂Mout
z
−1P̂⊥Nz

)
+OB(CN)(ε).
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The latter can also be written as

(z−1Ĉ + εMout
z
−1

)−1 =

(
zĈ−1

0 −zĈ−1
0 P̂Mout

z
−1P̂⊥Nz

−zNzP̂⊥Mout
z
−1P̂Ĉ−1

0 ε−1Nz +OB(P̂⊥CN)(1)

)
+OB(CN)(ε).

Using this expansion formula in Equation (56) we obtain

(M̃in,ε
z − εMout

z
−1

)−1

=−
(

zĈ−1
0 −zĈ−1

0 P̂Mout
z
−1P̂⊥Nz

−zNzP̂⊥Mout
z
−1P̂Ĉ−1

0 ε−1Nz +OB(P̂⊥CN)(1)

)

+

(
zĈ−1

0 −zĈ−1
0 P̂Mout

z
−1P̂⊥Nz

−zNzP̂⊥Mout
z
−1P̂Ĉ−1

0 ε−1Nz +OB(P̂⊥CN)(1)

)
OB(CN)(ε) +OB(CN)(ε)

=−
(

zĈ−1
0 +OB(P̂CN)(ε) −zĈ−1

0 P̂Mout
z
−1P̂⊥Nz +OB(P̂⊥CN ,P̂CN)(ε)

OB(P̂CN ,P̂⊥CN)(1) ε−1Nz +OB(P̂⊥CN)(1)

)
.

On the other hand, using Equation (57), we obtain

(M̃in,ε
z − εMout

z
−1

)−1 =−
(

zĈ−1
0 −zĈ−1

0 P̂Mout
z
−1P̂⊥Nz

−zNzP̂⊥Mout
z
−1P̂Ĉ−1

0 ε−1Nz +OB(P̂⊥CN)(1)

)

+OB(CN)(ε)

(
zĈ−1

0 −zĈ−1
0 P̂Mout

z
−1P̂⊥Nz

−zNzP̂⊥Mout
z
−1P̂Ĉ−1

0 ε−1Nz +OB(P̂⊥CN)(1)

)
+OB(CN)(ε)

=−
(

zĈ−1
0 +OB(P̂CN)(ε) OB(P̂⊥CN ,P̂CN)(1)

−zNzP̂⊥Mout
z
−1P̂Ĉ−1

0 +OB(P̂CN ,P̂⊥CN)(ε) ε−1Nz +OB(P̂⊥CN)(1)

)
.

Hence Expansion (53) must hold true

Recall that, for Im z �= 0, P̂Mout
z P̂ is invertible in P̂CN , see Remark A3.

Proposition 6. Let z ∈ C\R. In the non-generic case,

(Min,ε
z Mout

z − IN)
−1Min,ε

z = P̂(P̂Mout
z P̂)−1P̂ +OB(CN)(ε).

Proof. Taking into account Expansion (55), rewritten in the decomposition CN = P̂CN ⊕ P̂⊥CN ,
one has

M̃in,ε
z = −1

z
Ĉ +OB(CN)(ε

2) = −
(

z−1Ĉ0 0
0 0

)
+OB(CN)(ε

2).

So that, by Equation (53),

(M̃in,ε
z − εMout

z
−1

)−1M̃in,ε
z =

(
IP̂CN 0

−NzP̂⊥Mout
z
−1P̂ 0

)
+OB(CN)(ε).
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By the latter expansion and by the identification (58) it follows that (recall Equation (51) and the
definition of Nz in Equation (52))

(Min,ε
z Mout

z − IN)
−1Min,ε

z

=Mout
z
−1

(M̃in,ε
z − εMout

z
−1

)−1M̃in,ε
z

=

(
P̂Mout

z
−1P̂ P̂Mout

z
−1P̂⊥

P̂⊥Mout
z
−1P̂ P̂⊥Mout

z
−1P̂⊥

)(
IP̂CN 0

−NzP̂⊥Mout
z
−1P̂ 0

)
+OB(CN)(ε)

=

(
P̂Mout

z
−1P̂− P̂Mout

z
−1P̂⊥NzP̂⊥Mout

z
−1P̂ 0

0 0

)
+OB(CN)(ε). (59)

To conclude, we apply the block-matrix inversion formula to Equation (58) to obtain

Mout
z =

(
D̃z −D̃zP̂Mout

z
−1P̂⊥Nz

−NzP̂⊥Mout
z
−1P̂D̃z Nz + NzP̂⊥Mout

z
−1P̂D̃zP̂Mout

z
−1P̂⊥Nz

)
,

with
D̃z = (P̂Mout

z
−1P̂− P̂Mout

z
−1P̂⊥NzP̂⊥Mout

z
−1P̂)−1.

Hence it must be

P̂Mout
z P̂ = D̃z = (P̂Mout

z
−1P̂− P̂Mout

z
−1P̂⊥NzP̂⊥Mout

z
−1P̂)−1,

so that
(P̂Mout

z P̂)−1 = P̂Mout
z
−1P̂− P̂Mout

z
−1P̂⊥NzP̂⊥Mout

z
−1P̂.

This, together with Equation (59), allows us to infer the expansion

(Min,ε
z Mout

z − IN)
−1Min,ε

z =

(
(P̂Mout

z P̂)−1 0
0 0

)
+OB(CN)(ε) = P̂(P̂Mout

z P̂)−1P̂ +OB(CN)(ε)

and conclude the proof of the proposition.

We are now ready to state and prove the main theorem for the non-generic case. In the statement
of the theorem, we assume that Ker Ĉ ⊂ CN , i.e., P̂ �= 0. In this way the quantity (ĉk, Ĉ−1

0 ĉk′)CN is
certainly well defined. We discuss the case Ker Ĉ = CN (i.e., P̂ = 0) separately in the proof of point (ii)
of Theorem 2 (after the proof of Theorem 4).

Theorem 4. Let z ∈ C\R. In the non-generic case assume that Ker Ĉ ⊂ CN, then

Rε
z =

(
R̂out

z +OB(Hout)(ε) OB(Hin,ε ,Hout) (ε1/2)

OB(Hout ,Hin,ε)(ε
1/2) −z−1 ∑m

k,k′=1

(
δk,k′ − (ĉk, Ĉ−1

0 ĉk′)CN

)
ϕ̂ε

k(ϕ̂ε
k′ , ·)Hin,ε +OB(Hin,ε)(ε).

)
,

where the expansion has to be understood in the out/in decomposition (11).

Proof. We analyze term by term the r.h.s. in Equation (37).
Term out/out: by Proposition 6 and Lemma 1, it immediately follows that

R̊out
z −Rout,out,ε

z = R̂out
z +OB(Hout)(ε).
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Term out/in: by Equation (51) and by the definition of Rout,in,ε
z , recalling that Gout

z and Mout
z
−1

are bounded, it is enough to prove that

ε(M̃in,ε
z − εMout

z
−1

)−1Ğin,ε
z = OB(Hin,ε ,CN)(ε

1/2). (60)

Taking into account the fact that for all ψ ∈ Hin,ε, ‖∑m
k=1 ĉk(ϕ̂ε

k, ψ)Hin,ε‖CN ≤ C‖ψ‖Hin,ε , and the
fact that ∑m

k=1 ĉk(ϕ̂ε
k, ψ)Hin,ε ∈ P̂CN (it is a linear combination of vectors in P̂CN , see Rem 4) we infer

that (see Equation (47)),

Ğin,ε
z ψ = qε + pε qε := −

m

∑
k=1

ĉk(ϕ̂ε
k, ψ)Hin,ε

ε1/2z

with qε ∈ P̂CN , ‖qε‖CN ≤ Cε−1/2‖ψ‖Hin,ε , and ‖pε‖CN ≤ Cε3/2‖ψ‖Hin,ε .
Hence, by the expansion (53), we infer

ε(M̃in,ε
z − εMout

z
−1

)−1Ğin,ε
z ψ

=− ε
(
zĈ−1

0 − zNzP̂⊥Mout
z
−1P̂Ĉ−1

0 +OB(CN)(ε)
)
qε + ε(M̃in,ε

z − εMout
z
−1

)−1 pε.
(61)

Here the leading term is
ε
(
zĈ−1

0 − zNzP̂⊥Mout
z
−1P̂Ĉ−1

0
)
qε,

and for it we have the bound

‖ε(zĈ−1
0 − zNzP̂⊥Mout

z
−1P̂Ĉ−1

0
)
qε‖CN ≤ Cε1/2‖ψ‖Hin,ε .

The remainder is bounded by

‖OB(CN)(ε
2)qε + ε(M̃in,ε

z − εMout
z
−1

)−1 pε‖CN ≤ Cε2‖qε‖CN + C‖pε‖CN ≤ Cε3/2‖ψ‖Hin,ε ;

in the latter bound we used (M̃in,ε
z − εMout

z
−1
)−1 = OB(CN)(ε

−1), see Equation (53) (see also Equation (54)).
Hence,

‖ε(M̃in,ε
z − εMout

z
−1

)−1Ğin,ε
z ψ‖CN ≤ Cε1/2‖ψ‖Hin,ε ,

and the bound (60) holds true.
The bound on the term in/out follows immediately by noticing thatRin,out,ε

z = Rout,in,ε∗
z̄ .

Term in/in; by Equation (51), we have that

Rin,in,ε
z = εGin,ε

z (M̃in,ε
z − εMout

z
−1

)−1Ğin,ε
z .

Taking into account Equation (61) and the expansion (48), we infer that, for all ψ ∈ Hin,ε the
leading term inRin,in,ε

z ψ is given by

m

∑
k=1

ϕ̂ε
k(ĉk, ·)CN

ε1/2z
(
ε
(
zĈ−1

0 − zNzP̂⊥Mout
z
−1P̂Ĉ−1

0
)
qε
)
=ε1/2

m

∑
k=1

ϕ̂ε
k(ĉk, Ĉ−1

0 qε)CN

=− 1
z

m

∑
k,k′=1

ϕ̂ε
k(ĉk, Ĉ−1

0 ĉk′)CN (ϕ̂ε
k′ , ψ)Hin,ε .

the remainder being of order ε. From the latter formula and from the expansion (46) we infer

R̊in,ε
z −Rin,in,ε

z = −z−1
m

∑
k,k′=1

(
δk,k′ − (ĉk, Ĉ−1

0 ĉk′)CN

)
ϕ̂ε

k(ϕ̂ε
k′ , ·)Hin,ε +OB(Hin,ε)(ε).
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Theorem 2-(i) follows immediately from Theorem 4.

Proof of Theorem 2 - (ii). If Ker Ĉ = CN then ĉk = 0, for all k = 1, . . . , m, see Remark 4. Hence,
expansions (47), (48), and (50) read respectively

Ğin,ε
z = OB(Hin,ε ,CN)(ε

3/2); Gin,ε
z = OB(CN ,Hin,ε)(ε

3/2); Min,ε
z = OB(CN)(ε).

Reasoning along the lines of the analysis of the generic case, see the proof of Theorem 3, and taking
into account the expansion (46), one readily infers

Rε
z =

(
R̊out

z +OB(Hout)(ε) OB(Hin,ε ,Hout) (ε3/2)

OB(Hout ,Hin,ε)(ε
3/2) −∑m

k=1
ϕ̂ε

k(ϕ̂ε
k ,·)Hin,ε
z +OB(Hin,ε)(ε

2),

)

which implies the statement in Theorem 2 - (ii).

Proof of Theorem 2 - (iii). To prove the second part of Theorem 2, recall that ĉk′ ∈ P̂CN and
Ĉ−1

0 ĉk′ ∈ P̂CN , hence ĈĈ−1
0 ĉk′ = Ĉ0Ĉ−1

0 ĉk′ = ĉk′ . By the definition of Ĉ this is equivalent to

m

∑
k=1

(δk,k′ − (ĉk, Ĉ−1
0 ĉk′))ĉk = 0.

If the vectors {ĉk}m
k=1 are linearly independent this linear combination is zero if and only if

δk,k′ − (ĉk, Ĉ−1
0 ĉk′) = 0 for all k. Hence, expansion (15) follows from Equation (14).

Remark 9. Denote by Λ the operator inHin,ε defined by

D(Λ) := Hin,ε, Λ :=
m

∑
k,k′=1

(
δk,k′ − (ĉk, Ĉ−1

0 ĉk′)CN

)
ϕ̂ε

k(ϕ̂ε
k′ , ·)Hin,ε .

Λ is selfadjoint and Λ2 = Λ. The first claim is obvious (recall that Ĉ0 is selfadjoint). To prove the second
claim, note that, since (ϕ̂ε

l′ , ϕε
k)Hin,ε = δl′ ,k,

Λ2 =
m

∑
l,k,k′=1

(
δl,k − (ĉl , Ĉ−1

0 ĉk)CN

) (
δk,k′ − (ĉk, Ĉ−1

0 ĉk′)CN

)
ϕ̂ε

l (ϕ̂ε
k′ , ·)Hin,ε ,

but
m

∑
k=1

(
δl,k − (ĉl , Ĉ−1

0 ĉk)CN

) (
δk,k′ − (ĉk, Ĉ−1

0 ĉk′)CN

)
=δl,k′ − 2(ĉl , Ĉ−1

0 ĉk′)CN +
m

∑
k=1

(ĉl , Ĉ−1
0 ĉk)CN (ĉk, Ĉ−1

0 ĉk′)CN

=δl,k′ − 2(ĉl , Ĉ−1
0 ĉk′)CN + (ĉl , Ĉ−1

0 ĈĈ−1
0 ĉk′)CN = δl,k′ − (ĉl , Ĉ−1

0 ĉk′)CN ,

where we used the fact that Ĉ−1
0 ĈĈ−1

0 = Ĉ−1
0 Ĉ0Ĉ−1

0 = Ĉ−1
0 . Hence,

Λ2 =
m

∑
l,k′=1

(
δl,k′ − (ĉl , Ĉ−1

0 ĉk′)CN

)
ϕ̂ε

l (ϕ̂ε
k′ , ·)Hin,ε = Λ.

Hence, Λ is an orthogonal projection inHin,ε.
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Appendix A. Proof of the Kreı̆n Resolvent Formulae

We use several known results from the theory of self-adjoint extensions of symmetric operators.
We follow, for the most, the approach and the notation from the papers by A. Posilicano [24]

and [22]. Other approaches would be possible, such as the one based on the use of boundary triples,
see, e.g., [25–28].

When no misunderstanding is possible, in this appendix we omit the suffixes “out”, “in”, and ε.

Appendix A.1. Proofs of Lemmata 1 and 2

We denote by τ̊ the restriction of the maps τ to the domain D(H̊), by Equations (22) and (23)
we infer

τ̊ : D(H̊ε)→ C2N , τ̊ = diag(τ̊out, τ̊in);

τ̊out : D(H̊out)→ CN , τ̊outψ := Ψ′(0);

τ̊in : D(H̊in,ε)→ CN , τ̊inψ := (ψ(v1), ..., ψ(vN))
T ;

where in τ̊in we used the definition of τin and the fact that functions in D(H̊in,ε) are continuous in the
connecting vertices.

Remark A1. The map τ̊ is surjective. Hence, the map Ğε
z = τR̊ε

z = τ̊R̊ε
z is also surjective as a map from

Hε → C2N (the operator R̊ε
z : Hε → D(H̊ε) is obviously surjective). We conclude that Gε

z = Ğε∗
z̄ is an

injective map from C2N → Hε (it is the adjoint of a surjective map). A similar statement holds true also for the
corresponding “out” and “in” operators.

Remark A2. We claim that for all z ∈ ρ(H̊ε) and q ∈ C2N one has Gε
zq ∈ Hε

2 and

(−Δ + Bε − z)Gε
zq = 0, (A1)

and similar properties hold true for the “out” and “in” operators (here Δ denotes the maximal Laplacian inHε,
i.e., D(Δ) := Hε

2, Δψ = ψ′′).
To prove that Gε

zq ∈ Hε
2 and that Equation (A1) holds true we start by discussing the case Bε = 0. In such a case

it is possible to obtain an explicit formula for the integral kernel of R̊ε
z,0 = R̊ε

z,Bε=0, see, e.g., ([2], Lemma 4.2).
By this explicit formula it is easily seen that the operator Gε

z,0 = Gε
z,Bε=0 maps any vector q ∈ C2N in a function

in Hε
2 and that (−Δ− z)Gε

z,0q = 0. It is not needed to investigate the detailed properties of the boundary
conditions in the vertices of Gε, it is enough to take into account the dependence on x, y ∈ Gε of the integral
kernel R̊ε

z,0(x, y) (see also ([22], Examples 5.1 and 5.2)). That the same is true for Bε �= 0 follows immediately
from the resolvent identity

R̊ε
z = R̊ε

z,0 − R̊ε
z,0BεR̊ε

z,

which gives Ğε
z = Ğε

z,0 − Ğε
z,0BεR̊ε

z and Gε
z = Gε

z,0 − R̊ε
zBεGε

z,0.

In consideration of the remark above, we infer that the maps (N × N, z-dependent matrices) Mz

in Equations (26), (27) and (28) are all well defined. Moreover, by the resolvent identities

Rz − Rw = (z− w)RzRw and Rz = R∗̄z

it follows that
Ğz − Ğw = (z− w)ĞzRw,
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Gz − Gw = (z− w)RwGz,

Mz −Mw = (z− w)ĞwGz and Mz = M∗̄z . (A2)

Let us denote by K the space C2N or CN depending on if we are reasoning with operators inHε,Hout

orHin,ε. By Equation (A2), it follows that for any projection P in K and any self-adjoint operator Θ in
Ran P, the map MP,Θ

z := PMzP−Θ is invertible in Ran P. To see that this is indeed the case, note that
by Equation (A2) one has

MP,Θ
z −MP,Θ

w = (z− w)PĞwGzP and MP,Θ
z = MP,Θ∗

z̄ .

So that, for Im z �= 0 and for all q ∈ K, such that Pq �= 0, it holds

Im(q, MP,Θ
z q)K =

1
2i
(
q, (MP,Θ

z −MP,Θ
z̄ )q

)
K = Im z‖GzPq‖2

H �= 0; (A3)

because Gz is injective. Hence, MP,Θ
z is invertible in Ran P for Im z �= 0.

Remark A3. By the discussion above, it follows that the maps Mout
z : CN → CN, P̂Mout

z P̂ : P̂CN → P̂CN,
and (Mε

z −Θ) : C2N → C2N are invertible for all Im z �= 0.

By ([22], Theorem 2.1) (see also ([24], Theorem 2.1)) it follows that: for any z ∈ C\R the operators
R̂out

z and Rε
z are the resolvents of a self-adjoint extension of the symmetric operators H̊out �Ker τ̊out and

H̊ε �Ker τ̊ respectively.
We are left to prove that such self-adjoint extensions coincide with Ĥout and Hε respectively.
Let us focus attention on Rε

z (similar considerations hold true for R̂out
z ). Since the self-adjoint

operator associated to Rε
z is an extension of H̊ε �Ker τ̊ , to prove that Rε

z is the resolvent of Hε, we just
need to check that in the connecting vertices functions in Ran Rε

z satisfy the boundary conditions
required by D(Hε). The remaining boundary conditions are clearly satisfied because the map τ̊

evaluates functions only in the connecting vertices.
Define the maps:

σout : Hout
2 → CN σoutψ := Ψ(0);

σin : Hin,ε
2 → CN

σinψ := −
(√

din(v1)(1din(v1)
, Ψ′(v1))

Cdin(v1)
, ...,
√

din(vN)(1din(vN), Ψ′(vN))
Cdin(vN )

)T
;

and
σ : Hε

2 = Hout
2 ⊕Hin,ε

2 → C2N σ := diag(σout, σin).

We recall the following formula which is obtained by integrating by parts

(
(−Δ + Bε − z̄)φ, ψ

)
Hε −

(
φ, (−Δ + Bε − z)ψ

)
Hε = ∑

v∈V

[
(Φ′(v), Ψ(v))

Cd(v) − (Φ(v), Ψ′(v))
Cd(v)

]
∀φ, ψ ∈ Hε

2.
(A4)

Fix χ ∈ Hε and let q =
(

Mε
z −Θ

)−1Ğε
zχ ∈ C2N and ψ = Gε

zq.
For all φ ∈ D(H̊ε) and ψ as above, the identity (A4) gives

(
τφ, q

)
C2N = ∑v∈C

[
(Kin

v
⊥Φin ′(v), Kin

v
⊥Ψin(v))

Cd(v) − (Kin
v Φin(v), Kin

v Ψin ′(v))
Cd(v)

]
+ ∑N

j=1 φout
j
′
(0)ψout

j (0). (A5)

In what follows we use the decomposition C2N = CN ⊕ CN , so that q = (qout, qin) and
τφ = (τoutφout, τinφin).
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Let φ = (φout, 0) ∈ D(H̊ε). Then Identity (A5) gives

(
τoutφout, qout)

CN =
N

∑
j=1

φout
j
′
(0)ψout

j (0). (A6)

Take φout ∈ D(H̊out), such that φout
1
′
(0) = 1 and φout

j = 0 for all j = 2, . . . , N. Then (τoutφout)j = δ1,j,
j = 1, . . . , N and Equation (A6) gives ψout

1 (0) = q1. In a similar way it is possible to show that
ψout

j (0) = qj for all j = 2, . . . , N. Hence, σoutψout = qout.

Next let φ = (0, φin). Then Identity (A5) gives

(
τinφin, qin)

CN = ∑
v∈C

[
(Kin

v
⊥

Φin ′(v), Kin
v
⊥

Ψin(v))
Cd(v) − (Kin

v Φin(v), Kin
v Ψin ′(v))

Cd(v)

]
. (A7)

Take φin such that φin(v1) = 1, Φin ′(v1) = 0 and Φin ′(vj) = Φin(vj) = 0 for all j = 2, . . . , N.
Hence, (τinφin)j = δ1,j, j = 1, . . . , N, and Kin

v1
Φin(v1) = (din(v1))

1/21din(v1)
. Hence, Equation (A7)

gives

qin
1 = −((din(v1))

1/21din(v1)
, Kin

v1
Ψin ′(v1)

)
Cd(v1) = −

(
(din(v1))

1/21din(v1)
, Ψin ′(v1)

)
Cd(v1) = (σinψin)1.

In a similar way one can prove qin
j = (σinψin)j, j = 2, . . . , N, hence, σinψin = qin.

We also note that the function ψ is continuous in the connecting vertices (whenever the vertex
degree is larger or equal than two). To see that this is indeed the case, consider in Equation (A7)
a function φin such that φin(vj) = 0, j = 1, . . . , N, Φin ′(v1) = (1,−1, 0, . . . , 0)T := e, Φin ′(vj) = 0,
j = 2, . . . , N. Since Kin⊥

v1
e = e, condition (A7) gives (e, Ψin(v1)) = 0. Repeating the process, moving

−1 in the vector e on all the positions (from the second one on) one obtains the continuity of ψ in the
vertex v1. The same holds true for every connecting vertex.

We have proved that for any χ ∈ Hε, setting q =
(

Mε
z −Θ

)−1Ğε
zχ ∈ C2N , one has:

σoutGout
z qout = qout ; σinGin,ε

z qin = qin ; σGε
zq = q. (A8)

Let χ ∈ Hε and set ψ = Rε
zχ. One has that

τψ = τ
(

R̊ε
z − Gε

z
(

Mε
z −Θ

)−1Ğε
z
)
χ =

(
I−Mε

z(Mε
z −Θ)−1)Ğε

zχ = −Θ(Mε
z −Θ)−1Ğε

zχ.

On the other hand, noticing that σR̊ε
zχ = 0, by the definition of D(H̊ε) (see Equations (10), (6), and (17)),

and by Equation (A8) it follows that

σψ = −(Mε
z −Θ)−1Ğε

zχ.

We conclude that ψ satisfies the condition τψ = Θσψ. Taking into account the fact that ψin is continuous
in the connecting vertices, it is easy convince oneself that the condition τψ = Θσψ is equivalent to

Ψout′(0) = −
(√

din(v1)(1din(v1)
, Ψin′(v1))

Cdin(v1)
, ...,
√

din(vN)(1din(vN), Ψin′(vN))
Cdin(vN )

)T
,

and
ψin(vj) = ψj(0);

which, in turns, is equivalent to the Kirchhoff boundary conditions in D(Hε).
The fact that the resolvent formula holds true for all z ∈ ρ(Hε) ∩ ρ(H̊ε), follows from ([29],

Theorem 2.19).
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To prove the resolvent formula for R̂out
z , let χ ∈ Hout and set ψ = R̂out

z χ. By the first formula
in (A8), one has

Ψ(0) = −P̂(P̂MoutP̂)−1P̂Ğout
z χ,

hence, P̂⊥Ψ(0) = 0. Moreover,

P̂Ψ′(0) = P̂τoutψ =
(
I− P̂Mout

z P̂(P̂MoutP̂)−1)P̂Ğout
z χ = 0.

Hence, the boundary conditions in D(Ĥout) are satisfied, see Definition 7.

Appendix A.2. Proof of Lemma 3

Recall that we are denoting by K the space C2N or CN depending on if we are reasoning with
operators inHε,Hout orHin,ε.

Remark A4. By Identities (A2) we infer

M−1
w −M−1

z = (z− w)M−1
w ĞwGz M−1

z .

Hence, for Im z �= 0, and for any projection P in K, and q ∈ PK

Im(q, PM−1
z Pq)K =

1
2i
(
q, P(M−1

z −M−1
z̄ )Pq

)
K = − Im z‖Gz M−1

z Pq‖2
H �= 0 (A9)

because Gz M−1
z is an injective map, being the composition of injective maps.

Hence, the map PM−1
z P is invertible in PK.

To prove that the map Min,ε
z Mout

z − IN is invertible (the proof of the second statement in
Equation (30) is analogous) note that it is enough to show that Min,ε

z −Mout
z
−1 is invertible (because

Mout
z is). Let q ∈ CN , by Equations (A3) and (A9)

Im(q, Min,ε
z −Mout

z
−1q)CN = Im z

(‖Gin,ε
z q‖2

CN + ‖Gout
z Mout

z
−1q‖2

CN

) �= 0.

Formula (31), comes from the block matrix inversion formula⎛⎜⎝Mout
z −IN

−IN Min,ε
z

⎞⎟⎠
−1

=

⎛⎜⎝Mout
z
−1

+ Mout
z
−1(Min,ε

z −Mout
z
−1)−1Mout

z
−1 Mout

z
−1(Min,ε

z −Mout
z
−1)−1

(
Min,ε

z −Mout
z
−1)−1Mout

z
−1 (

Min,ε
z −Mout

z
−1)−1

⎞⎟⎠ ,

together with the identities

Mout
z
−1(Min,ε

z −Mout
z
−1)−1

=
(

Min,ε
z Mout

z − IN
)−1(

Min,ε
z −Mout

z
−1)−1Mout

z
−1

=
(

Mout
z Min,ε

z − IN
)−1

and
Mout

z
−1

+ Mout
z
−1(Min,ε

z −Mout
z
−1)−1Mout

z
−1

=
(

Min,ε
z Mout

z − IN
)−1Min,ε

z .

Appendix B. Estimates on Eigenvalues and Eigenfunctions of H̊in

In this appendix we prove the following proposition on the asymptotic behavior of eigenvalues
and eigenfunctions of H̊in.
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Proposition A1. Recall that we denoted by {λn}n∈N the eigenvalues of the Hamiltonian H̊in, and by {ϕn}n∈N
a corresponding set of orthonormal eigenfunctions. There exists n0 such that for any n ≥ n0:

λn > n2C (A10)

and
sup

x∈G in
|ϕn(x)| ≤ C (A11)

for some positive constant C which does not depend on n.

Proof. Claim (A10) is just the Weyl law. For Bin = 0 a proof can be found in ([30], Proposition 4.2) (see
also [31]). For Bin �= 0 bounded, claim (A10) can be deduced by a perturbative argument.

To prove the bound (A11) we follow the lines in the proof of Theorem A.1 in [32]. For b ∈ L∞(0, �)
and real valued, and λ > 0 let f be the solution of the equation

− f ′′ + b f = λ f , (A12)

with initial conditions f (0) = f0 and f ′(0) = f ′0. Then f (x) can be written as

f (x) =
∫ x

0

sin(
√

λ(x− y))√
λ

b(y) f (y)dy + f0 cos(
√

λx) +
f ′0√
λ

sin(
√

λx), (A13)

from which it immediately follows that

| f (x)| ≤ M +
∫ x

0

1√
λ
|b(y)|| f (y)|dy,

with

M = | f0|+ | f
′
0|√
λ

.

Then from Gronwall’s lemma, see, e.g. ([33], page 103), one has

| f (x)| ≤ M exp
( ∫ x

0

|b(y)|√
λ

dy
)
≤ M exp

( ∫ �

0
|b(y)|dy

)
, (A14)

where we assumed λ > 1. By equation (A13) and by the estimate (A14) it follows that∣∣∣∣ f (x)− f0 cos(
√

λx)− f ′0√
λ

sin(
√

λx)
∣∣∣∣ ≤ M exp

( ∫ �

0
|b(y)|dy

) ∫ x

0

|b(y)|√
λ

dy ≤ C
( | f0|√

λ
+
| f ′0|
λ

)
where C is a positive constant which does not depend on λ, f0 and f ′0. We have then proved that

f (x) = f0 cos(
√

λx) +
f ′0√
λ

sin(
√

λx) +OL∞((0,�))

( | f0|√
λ
+
| f ′0|
λ

)
. (A15)

Any component of the eigenfunction ϕn satisfies in the corresponding edge an equation of the
form (A12) with some initial data in x = 0. Then the discussion on the function f (x) above applies
to all the components of the vector ϕn. By the normalization condition ‖ϕn‖Hin = 1 it follows that it
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must be ‖ f ‖L2((0,l)) = C, with C ≤ 1 (here f denotes a generic component of ϕn, i.e., the restriction of
ϕn to a generic edge of G in). Hence, from the identity

∫ �

0

∣∣∣∣ f0 cos(
√

λx) +
f ′0√
λ

sin(
√

λx)
∣∣∣∣2 dx

=
�

2

(
| f0|2 + | f

′
0|2
λ

)
+

cos(2
√

λ�)− 1
4
√

λ

(
| f0|2 − | f

′
0|2
λ

)
+

Re ( f̄0 f ′0)
λ

sin2(
√

λ�)

one infers

C2 = ‖ f ‖2
L2((0,l)) =

�

2

(
| f0|2 + | f

′
0|2
λ

)
+O
( | f0|2√

λ
,
| f ′0|2
λ3/2 ,

| f0|| f ′0|
λ

)
.

The latter estimate implies that there exists λ̃ such that, for all λ > λ̃, the inequalities | f0| ≤ C1

and | f ′0|/
√

λ ≤ C1 hold true for some positive constant C1 which does depend on λ. The bounds
| f0| ≤ C1 and | f ′0|/

√
λ ≤ C1, together with estimate (A15) and the fact that λn → +∞ for n → ∞,

imply (A11).
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Abstract: We present a brief overview of the existence/nonexistence of standing waves for the
NonLinear Schrödinger and the NonLinear Dirac Equations (NLSE/NLDE) on metric graphs with
localized nonlinearity. First, we focus on the NLSE (both in the subcritical and the critical case) and,
then, on the NLDE highlighting similarities and differences with the NLSE. Finally, we show how the
two equations are related in the nonrelativistic limit by the convergence of the bound states.
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1. Introduction

The aim of this paper is to present the state of the art on the study of the standing waves of the
NonLinear Schrödinger and the NonLinear Dirac Equations (NLSE/NLDE) on metric graphs with
localized nonlinearities (for a summarizing scheme see Section 5).

In the following paper, by metric graph we mean the locally compact metric space which one
obtains endowing a multigraph G = (V, E) with a parametrization that associates each bounded edge
e ∈ E with a closed and bounded interval Ie = [0, �e] of the real line, and each unbounded edge e ∈ E
with a (copy of the) half-line Ie = R+ (an extensive description can be found in [1,2] and references
therein). Consequently, functions on metric graphs u = (ue)e∈E : G → R, C must be seen as bunches of
functions ue : Ie → R, C such that u|e = ue. Consistently, Lebesgue and Sobolev spaces are defined as

Lp(G) :=
⊕
e∈E

Lp(Ie), p ∈ [1, ∞], and Hm(G) :=
⊕
e∈E

Hm(Ie), m ∈ N,

and are equipped with the natural norms. Moreover, throughout this article, Lp-norms are denoted by
‖u‖p,G and the H1-norm is denoted by ‖u‖ for the sake of simplicity.

It is also worth recalling that in the present paper we limit ourselves to focus on the case of metric
graphs G satisfying the following hypothesis:

Hypothesis (H1). G is connected and non-compact;

Hypothesis (H2). G has a finite number of edges;

Symmetry 2019, 11, 169; doi:10.3390/sym11020169 www.mdpi.com/journal/symmetry41
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Hypothesis (H3). G has a non-empty compact core K (which is the subgraph of G consisting of all its
bounded edges);

(see, e.g., Figure 1).

Figure 1. A graph G satisfying (H1)–(H3) and its compact core (bold edges).

The growing interest in the study of evolution equations on metric graphs and networks is due to
the fact that they are regarded as effective models for the dynamics of systems constrained in branched
spatial structures (see [3] and references therein).

In particular, in recent years a considerable attention has been devoted to the focusing NLSE, i.e.,

ı∂tw = −ΔGw− |w|p−2 w, p ≥ 2, (1)

where −ΔG is a suitable self-adjoint realization of the operator

−Δ|⊕e∈EC∞
0 ( I̊e)

,

and, precisely, on the existence of standing waves of (1). Those are functions of the form

w(t, x) := e−iλt u(x) ,

with λ ∈ R and u ∈ L2(G), solving the stationary version of (1), namely,

− ΔGu− |u|p−2 u = λu. (2)

The physical motivations for the study of the NLSE on metric graphs are extensively explained,
e.g., in [3–5] and references therein. We limit ourselves to mention the application to the study
of the qualitative behavior of Bose-Einstein condensates in ramified traps (that can be presently
realized in laboratory as shown, e.g., by [6]) and to the study of nonlinear optics in Kerr media.
In particular, in nonlinear optics one can mention, for instance, the discussion of arrays of planar
self-focusing waveguides and of propagation in variously shaped fiber-optic devices (such as
Y-junctions, H-junctions, and so on).

The first results in this direction (see, e.g., [7–10]) considered the so-called infinite N-star graph
(see, e.g., Figure 2) in the case where −ΔG is the Laplacian with δ-type vertex conditions, that is

(−Δδ,α
G u)|Ie := −u′′e , ∀e ∈ E, ∀u ∈ dom(−Δδ,α

G ),

dom(−Δδ,α
G ) :=

{
u ∈ H2(G) : u satisfies (3) and (4)

}
,
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where

ue1(v) = ue2(v), ∀e1, e2 � v, ∀v ∈ K, (3)

∑
e�v

due

dxe
(v) = αu(v), ∀v ∈ K, (4)

for some α ∈ R (e � v meaning that the edge e is incident at the vertex v, while due
dxe

(v) stands for u′e(0)
or −u′e(�e) according to whether xe is equal to 0 or �e at v).

Figure 2. Infinite N-star graph (N = 8).

On the other hand, in the case α = 0, which is usually called Kirchhoff Laplacian (and which will be
denoted simply by −ΔG in place of −Δδ,0

G in the sequel for the sake of simplicity), more general graphs
have been studied (precisely, any graph satisfying (H1)–(H2)). We mention, in this regard [1,11,12],
for a discussion of the existence of ground states (i.e., those standing waves that minimize the energy
functional associated with (2)) and [13–17] concerning more general excited states, a.k.a. bound states.
We also mention [18] where the same problems are studied in the presence of an external potential.

A modification of this model, introduced in [5,19], consists of assuming that the nonlinearity
affects only the compact core of the graph (which then must be supposed non-empty as in (H3)) so that
(2) reads

− ΔGu− χK|u|p−2 u = λu, (5)

where χK is the characteristic function of K. The existence of stationary solutions to (5) has been
discussed in [20–22] in the L2-subcritical case, i.e., p ∈ (2, 6), and, more recently, in [23,24] in the
L2-critical case, i.e., p = 6. A detailed description of these results will be presented in Section 2.

For the sake of completeness, we also remark that the NLSE on compact graphs (which,
in particular, do not fulfill (H1)) has been studied, e.g., in [25–28]; while the case of one or
higher-dimensional periodic graphs (which, in particular, do not fulfill (H2) as, for instance, in Figure 3)
has been addressed, e.g., by [29–32].

Besides the NLS, other dispersive PDEs on metric graphs have been explored in recent years.
We mention, for instance, the case of [33] which deals with the dynamics for the Airy equation
(motivated by the study of the KdV equation) on star graphs.

On the other hand, other newly studied issues on metric graphs concerns different types of
nonlinearities for the NLSE with interesting implications in some physical models (see, e.g., [34]):
nonlinearities which are nonlocal and/or present a PT-symmetry (see, e.g., [35,36]). In particular,
the question of the PT-symmetry in quantum graphs has been discussed in the last few years with a
focus only on linear problems and, precisely, on the issue of detecting PT-symmetric vertex conditions
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for symmetric operators on graphs (see [37,38]). Nevertheless, nonlinear PT-symmetric equations on
graph are completely unexplored and may represent an interesting topic for future research.

(a)

(b)

Figure 3. Two examples of periodic graphs: (a) A one-dimensional periodic graph; (b) A
two-dimensional grid.

Recently, we started a new research project concerning the NLDE on metric graphs in [39].
The physical motivations for such a model mainly come from solid state physics and nonlinear optics.
The existence of Dirac solitons in Bose-Einstein condensates and optical lattices and their concrete
realization in discrete waveguide arrays have been investigated in [40,41]. In that case one may expect
to recover the metric graph model in an appropriate scaling regime. We also mention that a rigorous
mathematical study of the dynamics and the existence of Dirac solitons on lattices has been recently
treated in [42–46].

The search for the stationary solutions of the NLDE in this context has been first proposed by [47]
for the case of the infinite 3-star graph (see Figure 4). However, in [47] the authors considered the case
of an extended nonlinearity, i.e.,

ı∂tΨ = DGΨ− |Ψ|p−2 Ψ, p ≥ 2,

where DG is a suitable self-adjoint realization of the one-dimensional Dirac operator D, i.e.,

D := −ıc
d

dx
⊗ σ1 + mc2 ⊗ σ3,

m > 0 and c > 0 representing the mass of the generic particle of the system and a relativistic parameter
(respectively), and σ1 and σ3 representing the Pauli matrices, i.e.,

σ1 :=

(
0 1
1 0

)
and σ3 :=

(
1 0
0 −1

)
. (6)

44



Symmetry 2019, 11, 169

Figure 4. Infinite 3-star graph.

Here the equation of the standing waves Ψ(t, x) = e−ıωtψ(x) reads

DGψ− |ψ|p−2 ψ = ωψ.

In fact, in order to deal with more complex graph topologies, in [39] we restricted ourselves to the case
of a Kirchhoff-type extension of the Dirac operator (for details see Section 3.1) and, most importantly,
we considered the case of a localized nonlinearity, that is

DGψ− χK|ψ|p−2 ψ = ωψ. (7)

In addition, in order to test the consistency of this model we also proved (see Section 4) the convergence
(of the bound states) of (7) to (the bound states of) (5) in the nonrelativistic limit, namely as “c→ ∞”.

Please note that in (7) (as in the equation studied in [47]) the nonlinearity is a pure power, thus
being manifestly non-covariant. This kind of nonlinearities typically arises in nonlinear optics. We also
stress that from a theoretical point of view there is no conceptual contradiction as the NLDE should be
intended only as an effective model.

Nevertheless, the equation obtained replacing the nonlinearity |ψ|p−2 ψ with a covariant one, i.e.,

DGψ− |〈ψ, σ3ψ〉|(p−2)/2ψ = ωψ

(the nonlinearity now being defined in terms of a Lorentz-scalar) is of great interest. This equation, indeed,
might be interpreted as the model for a truly relativistic particle (a Dirac fermion), whose dynamics
is constrained to a one-dimensional structure. In this case, the model should be Lorentz-covariant
(strictly speaking, in this case the equation should be rewritten in covariant form). We expect that this
will require some technical adjustments to deal with the indefiniteness of the nonlinearity. This might
be quite relevant in the study of the nonrelativistic limit, since in [39] we used the fact that a positive
nonlinearity allows to get a priori estimates uniform in c.

Finally, we mention that the discussion of extended nonlinearities presents some technical
problems that we were not able to overcome thus far. However, we plan to investigate this question in
a forthcoming paper.

2. Nonlinear Schrödinger Equation

The study of the existence/nonexistence and multiplicity of bound states of (5) carried on
in [20–24] is completely based on variational methods.

This is due to the simple observation that L2-solutions of (5), with −ΔG denoting the Kirchhoff
Laplacian, arise also as constrained critical points of the energy functional

E(u,K, p) :=
1
2

∫
G
|u′|2 dx− 1

p

∫
K
|u|p dx, p ≥ 2,

on the manifold
Hμ(G) :=

{
u ∈ H(G) : ‖u‖2

2,G = μ
}

(8)
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for some fixed (but arbitrary) μ > 0, where

H(G) :=
{

u ∈ H1(G) : u satisfies (3)
}

.

Moreover, if u is a constrained critical point, also known as bound state, then computation shows that
the Lagrange multiplier λ can be found as

λ = λ(u) :=
1
μ

( ∫
G
|u′|2 dx−

∫
K
|u|p dx

)
. (9)

Remark 1. Please note that H(G) is the form domain of −ΔG . In addition, it is worth mentioning that the
choice of the manifold (8) is also related to the fact that the time dependent counterpart of (5) is mass-preserving.

2.1. Ground States

The first step in the study of the bound states consists in looking for ground states, namely the
constrained minimizers of E(·,K, p) on the manifoldHμ(G).

Ground states can be shown (see [1]) to be of the form

u(x) = eıφv(x)

where φ is a fixed phase factor and v is real-valued. Hence, in the following, in minimization problems
we will always limit ourselves to consider real-valued functions.

For more general bound states we cannot prove at the moment that such a property holds.
Therefore, while in existence and multiplicity results we will limit to real-valued functions, nonexistence
results concern also complex-valued functions.

2.1.1. The Subcritical Case: p ∈ (2, 6)

We start reporting on the existence of constrained minimizers in the so-called L2-subcritical case,
namely, when p ∈ (2, 6).

For p > 2 and for every graph satisfying (H1)–(H2) it is possible to prove (see, e.g., [11],
[Proposition 2.1] and [22], [Proposition 4.1] for real-valued functions and [21], [Proposition 2.6] for
complex-valued functions) that the following Gagliardo-Nirenberg inequalities hold:

‖u‖p
p,G ≤ C(G, p)‖u′‖

p
2−1
2,G ‖u‖

p
2 +1
2,G , ∀u ∈ H(G), (10)

‖u‖∞,G ≤ C(G, ∞)‖u′‖
1
2
2,G‖u‖

1
2
2,G , ∀u ∈ H(G) (11)

with C(G, p) and C(G, ∞) denoting the optimal constants of the respective inequalities. Then

E(u,K, p) ≥ 1
2
‖u′‖2

2,G −
C(G, p)

p
‖u′‖

p
2−1
2,G ‖u‖

p
2 +1
2,G , ∀u ∈ H(G),

so that

E(u,K, p) ≥ 1
2
‖u′‖

p
2−1
2,G

(
‖u′‖

6−p
2

2,G −
2μ

p+2
4 C(G, p)

p

)
, ∀u ∈ Hμ(G), (12)

and, if p ∈ (2, 6), this immediately entails that the functional E(·,K, p) is bounded from below on the
manifoldHμ(G).

Remark 2. Please note that in fact, (10) and (11) hold for every u ∈ H1(G) under the sole assumption (H2),
up to a redefinition of the optimal constants. However, we chose to mention theH(G)-version, which holds even
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if (H2) is not fulfilled. We remark that the best constants of these versions play a crucial role in the analysis of
the ground states.

In addition to (12), as a general fact, one can prove that

inf
u∈Hμ(G)

E(u,K, p) ≤ 0 (13)

and that
inf

u∈Hμ(G)
E(u,K, p) < 0 =⇒ a ground state does exist. (14)

As a consequence, the following results can be established

Theorem 1 ([22] [Theorems 3.3 and 3.4], [21] [Corollary 3.4]). Let G satisfy (H1)–(H3) and let p ∈ (2, 6).
Therefore:

(1) if p < 4, then there exists a ground state for every μ > 0;
(2) if p ≥ 4, then:

(i) whenever

μ
p−2
6−p |K| > N

4
6−p cp, (15)

where N is the number of half-lines of G and

cp :=
[(

p(p− 4)
16

) 2
p−2

+
p
8

(
p(p− 4)

16

) 4−p
p−2
] p−2

6−p

,

there exists a ground state of mass μ;
(ii) whenever

μ
p−2
6−p |K| <

(
p
2

) 2
6−p C(G, p)

4−p
6−p

C(G, ∞)p , (16)

there does not exist any ground state of mass μ.

The proof of the previous theorem is clearly based on (13) and (14). Precisely, from (14) there
results that the existence part can be obtained exhibiting a function with negative energy, usually called
competitor. This can be achieved for every mass μ when p ∈ (2, 4), while when p ∈ [4, 6) this is possible
only under (15). Such competitors are constant on the compact core and exponentially decreasing
on half-lines. In this way they minimize the kinetic energy on the compact core and have the exact
qualitative behavior of the bound states on the half-lines (where the problem is linear). Clearly, such
competitors cannot be minimizers since they do not fulfill (4) with α = 0.

On the other hand, (13) shows that to prove nonexistence, it is sufficient to prove that every
function possesses a strictly positive energy level. This is, actually, the idea behind the first proof of the
nonexistence result for ground states. However, there is also another strategy, which is similar to that
of the proof of Theorem 5, which allows to prove item 2)(ii) in a straighter way and with the sharper
threshold given by (16).

Finally, it is worth mentioning both that the negativity of the energy levels of the minimizers
entails that the associated Lagrange multipliers (given by (9)) are negative, and that the results of
Theorem 1 are invariant under the homotetic transformation

μ �→ σμ, G �→ σ
2−p
6−p G.
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In other words, if one sets for instance p = 4, then a problem on a graph G with a given mass constraint
μ is completely equivalent to a problem with half the mass and a “doubled” graph, and vice versa.

2.1.2. The Critical Case: p = 6

The study of the so-called L2-critical case p = 6 has been successfully managed only very recently.
Here the main difficulty comes from the fact that the boundedness from below of the energy functional
strongly depends on the mass constraint.

Indeed, in this case (12) reads

E(u,K, 6) ≥ 1
2
‖u′‖2

2,G
(

1− μ2C(G, 6)
3

)
, ∀u ∈ Hμ(G), (17)

and hence the boundedness of functional clearly depends on the value of μ. In particular, it turns out
that the discriminating value is related to the best constant of (10); that is, the critical mass μG of the
problem is defined by

μG :=

√
3

C(G, 6)
.

It is well known that when G = R,R+

μR =
π
√

3
2

, μ+
R
=

μR

2
, (18)

that
μ+
R
≤ μG ≤ μR, ∀G satisfying (H1)–(H3),

and that μR, μ+
R

are the sole values of the mass constraint at which the problem with the extended
nonlinearity on R,R+ (respectively) admits a ground state (see, e.g., [48]).

However, one can easily see that, while for the problem with extended nonlinearity (treated
in [12]) μG is the proper parameter to be investigated, in the localized case one should better consider
a reduced critical mass

μK :=

√
3
C(K) , (19)

where C(K) denotes the optimal constant of the following modified Gagliardo-Nirenberg inequality

‖u‖6
6,K ≤ C(K)‖u′‖2

2,G‖u‖4
2,G , ∀u ∈ H(G),

namely

C(K) := sup
u∈H(G)

‖u‖6
6,K

‖u′‖2
2,G‖u‖4

2,G
.

In fact, using this new parameter one obtains

E(u,K, 6) ≥ 1
2
‖u′‖2

2,G
(

1− μ2C(K)
3

)
, ∀u ∈ Hμ(G),

which is clearly sharper than (17), as one can easily see that C(K) ≤ C(G, 6).
Existence of ground states has been first investigated in [23] in the simple case of the tadpole graph

(see Figure 5). Very recently more refined results have been obtained without any assumption on the
topology of the graph, thus providing a (almost) complete classification of the phenomenology.
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Figure 5. Tadpole graph.

To state such results, let

EG(μ) := inf
u∈Hμ(G)

E(u,K, 6),

and recall the following definitions for a metric graph:

• a graph G is said to admit a cycle-covering if and only if every edge of G belongs to a cycle, namely
either a loop (i.e., a closed path of consecutive bounded edges) or an unbounded path joining the
endpoints of two distinct half-lines (which are then identified as a single vertex at infinity);

• a graph G is said to possesses a terminal edge if and only if it contains an edge ending with a vertex
of degree one.

Theorem 2 ([24] [Theorem 1.1]). Let G satisfy (H1)–(H3). Then,

EG(μ,K)

⎧⎪⎪⎨⎪⎪⎩
= 0 if μ ≤ μK
< 0 if μ ∈ (μK, μR]

= −∞ if μ > μR.

In addition,

(i) if G has at least a terminal edge (as, for instance, in Figure 6a), then

μK = μR+ , EG(μ,K) = −∞ for all μ > μK,

and there is no ground state of mass μ for any μ > 0;
(ii) if G admits a cycle-covering (as, for instance, in Figure 6b), then

μK = μR

and there is no ground state of mass μ for any μ > 0;
(iii) if G has only one half-line and no terminal edges (as, for instance, in Figure 6c), then

μR+ < μK <
√

3 (20)

and there is a ground states of mass μ if and only if μ ∈ [μK, μR].
(iv) if G has no terminal edges, does not admit a cycle-covering, but presents at least two half-lines (as,

for instance, in Figure 6d), then
μR+ < μK ≤ μR (21)

and there is a ground states of mass μ if and only if μ ∈ [μK, μR], provided that μK �= μR.

Theorem 2 presents several differences with respect to its analogous for the extended case
established in [12] (in addition to the fact that μG is replaced with μK). For details on such differences
we refer the reader to [24]. Here, we aim at highlighting a more crucial feature of the previous
result. Indeed, while in the subcritical case the topology of the graph plays no role in establishing
existence/nonexistence of ground states, now the topological classification of the graphs is the central
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point as well as it occurs in the context of extended nonlinearities. Even though there is no rigorous
explanation of such a phenomenon, this seems to be related to the fact that the critical power of the

nonlinearity “breaks” the characteristic length of the graph, i.e., μ
p−2
6−p |K|, thus making the metric

properties less relevant in the discussion.

(a) (b)

(c) (d)

Figure 6. Examples of graphs from cases (i)-(iv) of Theorem 2: (a) A graph with one terminal edge;
(b) A graph admitting a cycle-covering; (c) A graph with one half-line and without terminal edges;
(d) A graph without terminal edges and cycle-coverings, and with two half-lines.

Nevertheless, they preserve a role also in the critical case, at least in cases (iii) and (iv), as shown
by the following

Theorem 3 ([24] [Theorems 1.2 and 1.3]). Estimates (20) and (21) are sharp in general; i.e., for every ε > 0
there exist two non-compact metric graphs G1

ε ,G2
ε (with compact cores K1

ε ,K2
ε ) with one half-line and without

terminal edges such that
μK1

ε
≤ μR+ + ε and μK2

ε
≥
√

3− ε,

and two non-compact metric graphs G3
ε ,G4

ε (with compact cores K3
ε ,K4

ε ) without terminal edges and
cycle-coverings and with at least two half-lines such that

μK3
ε
≤ μR+ + ε and μK4

ε
≥ μR − ε.

In other words, Theorem 3 shows that estimates (20) and (21) are sharp by exhibiting four suitable
sequences of graphs. They can be constructed as follows:

(1) the sequence G1
ε can be constructed by considering a graph whose compact core does not admit a

cycle-covering (see, e.g., Figure 7a) and letting the length of one of its cut-edges, the edges whose
removal disconnects the graph (e.g., ê in Figure 7a), go to infinity;
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(2) the sequence G2
ε can be constructed by considering a graph as in Figure 7b and letting the length

of the compact core go to infinity keeping at the same time the total diameter of the compact core
bounded (namely, thickening the compact core);

(3) the sequences G3
ε ,G4

ε can be constructed by considering a signpost graph (see, e.g., Figure 7c) and
letting the length of its cut-edge ẽ go to infinity and to zero, respectively.

ê

(a) (b)

ẽ

(c)

Figure 7. Examples of graphs from Theorem 3: (a) A graph whose compact core does not admit a
cycle-covering; (b) A tadpole graph with extra connections between two vertices; (c) A signpost graph.

The proofs of Theorems 2 and 3 are quite technical and we refer the reader to [24] for a complete
presentation. They are based on a careful analysis of the behavior of the constant C(K) and on
the “graph surgery” and rearrangement techniques developed by [1,11,12]. In particular, given a
nonnegative function u ∈ H(G), one uses the decreasing rearrangement

u∗(x) := inf{t ≥ 0 : ρ(t) ≤ x}, x ∈ [0, |G|)

and the symmetric rearrangement

û(x) := inf{t ≥ 0 : ρ(t) ≤ 2|x|}, x ∈ (−|G|/2, |G|/2),

where
ρ(t) := ∑

e∈E
|{xe ∈ Ie : ue(xe) > t}| t ≥ 0,

and precisely the facts that

‖u‖p,G = ‖u∗‖p,R+ = ‖û‖p,R, ∀ p ≥ 1,

that
‖(u∗)′‖2,R+ ≤ ‖u′‖2,G

and that for every function u which possesses at least two preimages at each level,

‖(û)′‖2,R ≤ ‖u′‖2,G ,

to construct suitable minimizing sequences or suitable competitors to exploit level arguments
analogous to (14) to get compactness in the limit.
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2.2. Bound States

Besides the investigation of ground states, one can also study standing waves which are not
necessarily minimizers of the constrained energy, namely bound/excited states. They may arise as
constrained critical points of the energy functional onHμ(G).

To the best of our knowledge all the known results on existence (and multiplicity), as well as
on nonexistence, of general bound states strongly exploit the assumption on the subcriticality of the
power nonlinearity (up to some exception that we mention below).

2.2.1. Existence Results

Existence and multiplicity results in this context have been proved by extending some well-known
techniques from Critical Point Theory (see, e.g., [49–51]).

However, the context of metric graphs presents two additional technical issues. First, it is not
possible, in general, to gain compactness restricting to symmetric (in some suitable sense) functions if
one does not want to restrict the discussion to symmetric graphs. Furthermore, the fact that graphs
with non-empty compact core are not homothetically invariant entails that multiple solutions of
prescribed mass cannot be found by scaling arguments.

The strategy used in [20], to solve these problems is, then, the following:

• detecting the energy levels at which the Palais-Smale condition is satisfied, namely detect the values
c ∈ R such that any sequence (un) ∈ Hμ(G) satisfying

(i) E(un,K, p)→ c
(ii) ‖dE|Hμ(G)(un,K, p)‖T′unHμ(G) → 0

(with T′unHμ(G) denoting the topological dual of the tangent to the manifoldHμ(G) at un) admits
a subsequence converging inHμ(G);

• constructing suitable min-max levels.

In this case, one can prove that the constrained functional possesses the Palais-Smale property only at
negative levels and whence the min-max levels must be negative. In addition, as the functional is even,
it is possible to construct such min-max levels using the Krasnosel’skii genus (see, e.g., [52]), that is, for
every A ⊂ H(G)\{0} closed and symmetric, the natural number defined by

γ(A) := min{n ∈ N : ∃φ : A→ Rn\{0}, φ continuous and odd}.

In fact, one can prove that the suitable levels are

cj := inf
A∈Γj

max
u∈A

E(u,K, p),

where
Γj := {A ⊂ Hμ(G) : A is compact and symmetric, and γ(A) ≥ j}.

In this way it is possible to prove the following

Theorem 4 ([20] [Theorem 1.2]). Let G satisfy (H1)–(H3) and let p ∈ (2, 6). For every k ∈ N, there exists
μk > 0 such that for every μ ≥ μk there exist at least k distinct pairs (±uj) of bound states of mass μ. Moreover,
for every j = 1, . . . , k,

E(uj,K, p) ≤ jE(ϕμ/j,R, p) + σk(μ) < 0,

where ϕμ/j denote the unique positive minimizer of E(·,R, p) constrained on Hμ/j(G) and σk(μ) → 0
(exponentially fast) as μ→ ∞. Finally, for each j, the Lagrange multiplier λj relative to uj is negative.
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The strategy hinted before cannot be easily adapted to the extended problem since in this case the
Palais-Smale condition fails also at infinitely many negative energy levels and then it is open how to
fix a min-max level in the gap between two of these levels.

On the other hand, it is also unclear how to extend this strategy to the critical case. Indeed, the
construction of negative energy min-max levels is based on the possibility of putting (on increasing the
mass) several suitable truncations of scaled copies of ϕμ/j on the compact core of the graph keeping
the total energy negative. However, no direct analogous of such a technique is available for the critical
case as the minimizers ϕμ do exist only at the critical mass and present a zero energy level.

2.2.2. Nonexistence Results

Nonexistence results concern clearly only the regime p ∈ [4, 6) since for p ∈ (2, 4) the existence of
bound states is guaranteed by Theorem 1.

The interesting part of nonexistence results for bound states in the subcritical regime is that they
strongly rely both on metric and on topological features of the graph as one can see by the following

Theorem 5 ([21] [Theorems 3.2 and 3.5]). Let G satisfy (H1)–(H3) and let p ∈ [4, 6). Therefore,

(i) if the graph G satisfies

μ
p−2
6−p |K| < C(G, p)

4−p
6−p

C(G, ∞)p ,

then, there are no bound states of mass μ with λ ≤ 0;
(ii) if G is a tree (i.e., no loops) with at most one pendant (see, e.g., Figure 8), then there is no bound state of

mass μ with λ ≥ 0, for every μ > 0.

Figure 8. A tree with one pendant.

The most remarkable fact is that the dependence on metric or topological features in the
nonexistence result is connected to the sign of the Lagrange multiplier. In particular, the first condition
prevents the existence of bound states supported on the whole G, as such functions cannot possess a
negative Lagrange multiplier since they are in L2(G). On the other hand, one can check that the second
part of Theorem 5 holds as well for p ≥ 6 and even in the extended nonlinearity case.

Finally, it is worth observing that the condition of the second part of Theorem 5 is sharp. Indeed,
one can easily construct counterexamples whenever the assumption of being a tree with at most
one pendant is dropped. Precisely, if G possesses a loop, then one can define a bound state with
a nonnegative Lagrange multiplier supported only on the loop (see, e.g., Figure 9a); if G is a tree
with two pendants, instead, then one can define a bound state with nonnegative Lagrange multiplier
supported on the path which joins the two pendants (see, e.g., Figure 9b).
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(a) (b)

Figure 9. Examples of graphs for which item (ii) of Theorem 5 does not hold: (a) A graph with a loop.
(b) A tree with two pendants.

3. Nonlinear Dirac Equation

As already mentioned in Section 1, the study of bound state-solutions of NLDE (7) in the context
of metric graphs has been introduced in [47]. To our knowledge, the first rigorous work on this subject
for general graphs has been done in [39] for the case of localized nonlinearities.

Such discussion requires a suitable definition of the Dirac operator on graphs and the adaptation
of some techniques from Critical Point Theory.

Before going more into details, we recall that Dirac-type equations are of spinorial nature and,
hence, here we de deal with vector-valued function on graphs (2-spinors). More precisely, we consider
wave functions ψ : G → C2 that can be seen as a family of 2-spinors on intervals, i.e., ψ = (ψe) with

ψe =

(
φe

χe

)
: Ie −→ C2, ∀e ∈ E,

or equivalently as 2-components vector of functions on graphs, i.e., ψ = (φ, χ)T , with φ = (φe) and
χ = (χe). Accordingly,

Lp(G,C2) :=
⊕
e∈E

Lp(Ie,C2) = {ψ : G → C2 : φ, χ ∈ Lp(G)},

and
Hm(G,C2) :=

⊕
e∈E

Hm(Ie,C2) = {ψ : G → C2 : φ, χ ∈ Hm(G)},

endowed with the natural norms, which we denote, with a little abuse of notation, by ‖ψ‖p,G and ‖ψ‖
(in the case m = 1), respectively.

3.1. Remarks on the Dirac Operator on Graphs

As we mentioned before, the first step in the study of the NLDE on graphs is to define a self-adjoint
realization of the Dirac operator.

A complete discussion of such a topic can be found, e.g., in [53,54]. Here, however, we limit
ourselves to the extension that we call of Kirchhoff type, since it represents the analogous to the
Schrödinger operator with Kirchhoff conditions and, hence, corresponds to the free case, that is, the case
where there is no interaction at vertices (for detail on such extension, refer to [39]).

For every fixed m, c > 0, we define the Dirac operator of Kirchhoff type as the operator

DG : L2(G,C2)→ L2(G,C2)

with action

DG|Ie
ψ = Deψe := −ıc σ1ψ′e + mc2 σ3ψe, ∀e ∈ E, ∀ψ ∈ dom(DG),
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σ1, σ3 being the Pauli matrices defined in (6), and whose domain is

dom(DG) :=
{

ψ ∈ H1(G,C2) : ψ satisfies (22) and (23)
}

,

where

φe1(v) = φe2(v), ∀e1, e2 � v, ∀v ∈ K, (22)

∑
e�v

χe(v)± = 0, ∀v ∈ K, (23)

χe(v)± standing for χe(0) or −χe(�e) according to whether xe is equal to 0 or �e at v.
Such operator can be proved to be self-adjoint and, in addition, possesses spectral properties

analogous to the standard Dirac operator on R, that is

σ(DG) = (−∞,−mc2] ∪ [mc2,+∞) , (24)

even though, according to the structure of the graph, there might be eigenvalues embedded at any
point of the spectrum.

The actual reason for which we call such operator of Kirchhoff type is better explained by Section 4.
However, an informal justification is provided by the following formal computation. First, one can see
thatD2

G acts as (−ΔG)⊗ IC2 (if m = 0). In addition, if one considers spinors of the type ψ = (φ, 0)T and
assumes that they belong to the domain of D2

G , namely that ψ ∈ dom(DG) and that DGψ ∈ dom(DG),
one clearly sees that φ ∈ dom(−ΔG).

Finally, compared to the Schrödinger case, a big difference is given by the definition of the quadratic
form associated with DG . In particular, here it is not explicitly known since Fourier transform is not
available (in a simple way), as we are not in an Euclidean space, and since classical duality arguments
fail, as it is not true in general that H−1/2(G,C2) is the topological dual of H1/2(G,C2).

It can be defined, clearly, using the Spectral Theorem, so that

dom(QDG ) :=
{

ψ ∈ L2(G,C2) :
∫

σ(DG )
|ν| dμ

ψ
DG (ν)

}
, QDG (ψ) :=

∫
σ(DG )

ν dμ
ψ
DG (ν),

where μ
ψ
DG denotes the spectral measure associated with DG and ψ. However, such a definition is

not useful for computations. A more precise description of the quadratic form and its domain can be
obtained arguing as follows (for more details, see [39]).

First, using Real Interpolation Theory, one can prove that

dom(QDG ) =
[

L2(G,C2), dom(DG)
]

1
2

, (25)

whence
dom(QDG ) ↪→ H1/2(G,C2) ↪→ Lp(G,C2), ∀p ≥ 2.

On the other hand, according to (24) one can decompose the form domain as the orthogonal sum of
the positive and negative spectral subspaces for the operator DG , i.e.,

dom(QDG ) = dom(QDG )+ ⊕ dom(QDG )−.

As a consequence, if one denotes ψ+ := P+ψ and ψ− := P−ψ and recalls that it is possible to define a
norm for dom(QDG ) as

‖ψ‖QDG := ‖
√
|DG|ψ‖2,G , ∀ψ ∈ dom(QDG ),
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(with
√|DG|ψ given by Borel functional calculus for DG ), then there results that

QDG (ψ) =
1
2

(
‖ψ+‖QDG − ‖ψ

−‖QDG
)

. (26)

Clearly, (25) and (26) are not explicit forms for the domain and the action of the quadratic form
associated with DG . Nevertheless, they present the suitable details to manage the computations
required in the proofs of Theorems 6 and 7 below.

3.2. Bound States

The study of bound states of (7) presents some relevant differences with respect to the NLS case (5)
(a difference which also arises in the extended case).

The main point here is the unboundedness from below of the spectrum of DG which makes the
associated quadratic form strongly indefinite, even fixing the L2-norm. Consequently, the natural energy
functional associated with (7), i.e.,

QDG (ψ)−
1
p

∫
K
|ψ|p−2ψ, p ≥ 2,

is unbounded from below even under the mass constraint ‖ψ‖2
2,G = μ. Hence, no minimization can be

performed and the search for constrained critical points presents several technical difficulties.
Therefore, the most promising strategy seems to be that of considering the action functional

associated with (7) without any constraint. Then, for a fixed ω ∈ R, one looks for critical points of
the functional

L(ψ,K, p) = QDG (ψ)−
ω

2

∫
G
|ψ|2 − 1

p

∫
K
|ψ|p dx,

on the form domain dom(QDG ).
To this aim, one needs to adapt to the metric graphs setting some well-known techniques of

Critical Point Theory. In particular, a suitable version of the so-called linking technique for even
functional is exploited. We refer the reader to [51,55], for a general presentation of those methods in an
abstract setting, together with several applications, and to [56] which deals with NLDEs.

Critical levels for L are defined as the following min-max levels

αN := inf
X∈FN

sup
ψ∈X
L(ψ,K, p),

with

FN :=
{

X ∈ H1(G,C2)\{0} : X closed and symmetric, s.t. γ[ht(S+
r ) ∩ X] ≥ N, ∀t ≥ 0

}
,

where ht is the usual pseudo-gradient flow associated with L(·,K, p), S+
r is the sphere of radius r of

dom(QDG )+ and γ denotes again the Krasnosel’skii genus. Indeed, one can check that if FN �= ∅,
then there exists a Palais-Smale sequence (ψn) ⊂ dom(QDG ) at level αN , i.e.,⎧⎪⎨⎪⎩

L(ψn,K, p)→ αN

dL(ψn,K, p)
dom(QDG )′−−−−−−→ 0,

and in addition, there results

αN1 ≤ αN2 , ∀N1 < N2,

ρ ≤ αN ≤ ρ̃ < +∞, ∀N ∈ N,
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for fixed ρ, ρ̃ > 0.
As a consequence, in order to prove that FN �= ∅, it suffices to show that the functional possesses

a so-called linking geometry; namely that for every N ∈ N there exist R = R(N, p) > 0 and an
N-dimensional space ZN ⊂ dom(QDG )+ such that

L(ψ,K, p) ≤ 0, ∀ψ ∈ ∂MN ,

where
∂MN =

{
ψ ∈ MN : ‖ψ−‖ = R or ‖ψ+‖ = R

}
and

MN :=
{

ψ ∈ dom(QDG ) : ‖ψ−‖ ≤ R and ψ+ ∈ ZN with ‖ψ+‖ ≤ R
}

,

and that there exist r, ρ > 0 such that

inf
S+

r

L(·,K, p) ≥ ρ > 0

(for a graphic intuition see, e.g., Figure 10).
Finally, checking the validity of the Palais-Smale condition at positive levels for the action

functional it is possible to prove the following

Theorem 6 ([39] [Theorem 2.11]). Let G satisfy (H1)–(H3), p > 2 and m, c > 0. Then, for every ω ∈
R\σ(DG) = (−mc2, mc2) there exists infinitely many (distinct) pairs of bound states of frequency ω of the
NLDE, at mass m and relativistic parameter c.

MN

∂MN

0

dom(QDG)

dom(QDG)
+

dom(QDG)
−

dom(QDG)
+\ZN

ZN

S+
r

Figure 10. A graphic insight on linking geometry.

4. Nonrelativistic Limit

The NLDE and the NLSE equation are clearly closely related as, physically, the latter should
correspond to the nonrelativistic limit of the former. Heuristically, one expects to recover the NLSE
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from NLDE as the relativistic parameter tends to infinity (namely, “c → ∞”), that is, neglecting
relativistic effects. It is, then, particularly interesting to rigorously establish such a connection.

This has been first done in [57] for the Dirac-Fock equations proving the convergence of bound
states to those of the (nonrelativistic) Hartree-Fock model.

More in detail, given a sequence cn → ∞, one is interested in the limit behavior of a sequence of
bound states with frequencies 0 < ωn < mc2

n. Precisely, one must choose frequencies such that

ωn −mc2
n −→

λ

m
< 0.

This represents a kind of renormalization, which corresponds to the fact that one must subtract the rest
energy of the particles, as this property is a peculiarity of relativistic theories which is absent in the
nonrelativistic setting.

The strategy adopted in [39] is an adaptation of the one developed in [57]. Namely, first one has to
establish H1 uniform bounds for the sequence of the bound states and then, suitably manipulating (7),
one has to prove that the lower component goes to zero while the sequence of upper components is a
Palais-Smale sequence for the action functional associated with (5), namely for

J (u) :=
1
2

∫
G
|u′|2 dx− 2m

p

∫
K
|u|p dx− λ

2

∫
G
|u|2 dx.

at a fixed λ < 0. Therefore, up to a compactness argument, the existence of a limit satisfying the NLSE
is proved.

However, we would like to remark that some relevant differences are present here with respect
to [57] that call for some relevant modifications of the proofs. In particular, in [57] bound states were
obtained as constrained critical points of the energy. Consequently, the uniform boundedness of the
L2-norms and the non-triviality of the limit are easily obtained. On the contrary, in the case considered
in [39], those properties are not a priori guaranteed and represent two main points of the proofs.

However, for the sake of completeness, we mention that in [57] one of the most delicate parts
the proof is to estimate the sequence of the Lagrange multipliers corresponding to the L2-constraint,
proving that they are in the spectral gap of the operator. This, actually, is one of the reasons for which
in [39] we looked for critical points of the action and not for the constrained critical points of the energy,
to avoid such additional technical difficulties.

In view of all the above remarks it is possible to state the following

Theorem 7 ([39] [Theorem 2.12]). Let G satisfy (H1)–(H3), p ∈ (2, 6), m > 0 and λ < 0. Let also (cn), (ωn)

be two real sequences such that

0 < cn, ωn → +∞,

ωn < mc2
n,

ωn −mc2
n −→

λ

m
.

If {ψn = (φn, χn)T} is a sequence of bound states of frequency ωn of the NLDE at relativistic parameter cn,
then, up to subsequences, there holds

φn → u and χn → 0 in H1(G).

where u is a bound state of frequency λ of the NLSE.

Actually, the bound states of NLDE do not converge exactly to the bound states of the NLSE
depicted in (7). In fact, u is a solution of
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−ΔGu− 2mχK|u|p−2 u = λu.

The coefficient 2m is consistent with the fact that in the nonrelativistic limit the kinetic (free) part of the
Hamiltonian of a particle is given by

−Δ
2m

.

Remark 3. It is also worth observing that Theorem 7, in contrast to Theorem 6, holds only for a fixed range of
exponents, the L2-subcritical case: p ∈ (2, 6).

5. Conclusion: A Brief Summary

In this final section we provide in Table 1 a summary of the results presented in the review.
However, before showing it, some remarks are in order:

(i) the mentioned results only concerne the “free” self-adjoint extensions of the Laplacian and the
Dirac operator introduced in Sections 1 and 3.1, respectively;

Table 1. Summarizing Table.

Exponents Ground Bound Connection NLS-NLD

NLSE

p ∈ (2, 4) - yes, ∀μ > 0 (see box below) (see box below)

p ∈ [4, 6)
- yes if μ > μ1
- no if μ < μ2
- unknown if μ ∈ [μ2, μ1]

- yes (and multiple) if μ is
large enough

- yes if G has a loop or
two terminal edges

- no (with λ ≤ 0) if
μ < (p/2)2/(2−p)μ2

- no (with λ ≥ 0) if G
has (at most) one termi-
nal edge and no loops

- unknown otherwise

- some bounds are limits
of bounds of NLDE

- unknown if all are limits

p = 6 - yes if μ ∈ [μK , μR] and
if no terminal edges and
no cycle-coverings∗

- no otherwise

- yes if G has a loop or
two terminal edges

- no (with λ ≥ 0) if G
has (at most) one termi-
nal edge and no loops

- unknown otherwise

- unknown

p > 6 - unknown (see box above) - unknown

NLDE

p ∈ (2, 6) - no - yes (infinitely many)
if ω ∈ (−mc2, mc2),
namely ω ∈ R\σ(DG )

- unknown otherwise

- bounds converge (up to
subsequences) to bounds
of NLSE

- unknown if can one
avoid extracting

p = 6 - no (see box above) - unknown

p > 6 - no (see box above) - unknown

(ii) in order to find bound states, in the NLS case one fixes the mass μ and studies constrained
critical points of the energy functional (thus providing no information on the frequencies λ

that arise naturally as Lagrange multipliers), while in the NLD case one fixes the frequency ω

and discusses the connected action functional (thus losing any information on the mass of the
resulting critical points);
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(iii) the nonrelativistic limit must be considered (as above) a limit for a sequence of relativistic
parameters cn → ∞ and a suitably “tuned” sequence of frequencies ωn;

(iv) since (clearly) a ground state is a bound state too, the fourth column of the Table 1 must be meant
to refer to those bound states which are not ground states;

(v) the constants μ1, μ2 are defined by: μ1 := N
4

p−2 c
6−p
p−2
p |K|

p−6
p−2 (with N, cp introduced in

Theorem 1–item (i)) and μ2 := (p/2)
2

p−2 C(G, p)
4−p
p−2 |K|

p−6
p−2 C(G, ∞)

p(p−6)
p−2 (with C(G, p), C(G, ∞)

introduced in (10)–(11));
(v) the constant μK (defined by (19)), in contrast to μR (defined by (18)), actually depends on the

graph and, moreover, if there is more than one half-line, then existence is guaranteed only
provided that μK �= μR.
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Abstract: We study standing waves of the NLS equation posed on the double-bridge graph:
two semi-infinite half-lines attached at a circle. At the two vertices, Kirchhoff boundary conditions
are imposed. We pursue a recent study concerning solutions nonzero on the half-lines and periodic
on the circle, by proving some existing results of sign-changing solutions non-periodic on the circle.
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1. Introduction and Main Results

The study of nonlinear equations on graphs, especially the nonlinear Schrödinger equation
(NLS), is a quite recent research subject, which already produced a plenty of interesting results
(see [1–3]). The attractive feature of these mathematical models is the complexity allowed by the
graph structure, joined with the one dimensional character of the equations. While they are an
oversimplification in many real problems, they appear indicative of several dynamically interesting
phenomena that are atypical or unexpected in more standard frameworks. The most studied issue
concerning NLS is certainly the existence and characterization of standing waves (see, e.g., [4–9]).
More particularly, several results are known about ground states (standing waves of minimal energy
at fixed mass, i.e., L2 norm) as regard existence, non-existence and stability properties, depending on
various characteristics of the graph [2,10–13].

In this paper, we are interested in a special example, which reveals an unsuspectedly complex
structure of the set of standing waves. More precisely, we consider a metric graph G made up of two
half lines joined by two bounded edges, i.e., a so-called double-bridge graph (see Figure 1). G can
also be thought of as a ring with two half lines attached in two distinct vertices. The half lines are
both identified with the interval [0,+∞), while the bounded edges are represented by two bounded
intervals of lengths L1 > 0 and L2 ≥ L1, precisely [0, L1] and [L1, L] with L = L1 + L2.

∞ ∞

L1

L2

Figure 1. The double-bridge graph.
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A function ψ on G is a Cartesian product ψ(x1, ..., x4) = (ψ1 (x1) , . . . , ψ4 (x4)) with xj ∈ Ij for
j = 1, . . . , 4, where I1 = [0, L1], I2 = [L1, L] and I3 = I4 = [0,+∞). Then, a Schrödinger operator HG
on G is defined as

HGψ (x1, . . . , x4) =
(−ψ′′1 (x1) , . . . ,−ψ′′4 (x4)

)
, xj ∈ Ij, (1)

with domain D (HG) given by the functions ψ on G whose components satisfy ψj ∈ H2(Ij) together
with the so-called Kirchhoff boundary conditions, i.e.,

ψ1(0) = ψ2(L) = ψ3(0), ψ1(L1) = ψ2(L1) = ψ4(0), (2)

ψ′1(0)− ψ′2(L) + ψ′3(0) = ψ′1(L1)− ψ′2(L1)− ψ′4(0) = 0. (3)

As is well known (see [14] for general information on quantum graphs), the operator HG is
self-adjoint on the domain D(HG), and it generates a unitary Schrödinger dynamics. Essential
information about its spectrum is given in ([15], Appendix A). We perturb this linear dynamics
with a focusing cubic term, namely we consider the following NLS on G

i
dψt

dt
= HGψt − |ψt|2 ψt (4)

where the nonlinear term |ψt|2ψt is a shortened notation for (|ψ1,t|2ψ1,t, . . . , |ψ4,t|2ψ4,t). Hence,
Equation (4) is a system of scalar NLS equations on the intervals Ij coupled through the Kirchhoff
boundary conditions in Equations (2)–(3) included in the domain of HG . On rather general grounds, it
can be shown that this problem enjoys well-posedness both in strong sense and in the energy space
(see in particular ([2], Section 2.6)).

We are interested in standing waves of Equation (4), i.e., its solutions of the form ψt = e−iωtU (x)
where ω ∈ R and U(x1, ..., x4) = (u1 (x1) , . . . , u4 (x4)) is a purely spatial function on G, which may
also depend on ω. Such a problem has already been considered in [11,12,15,16]. In particular, in [11,12],
variational methods are used to show, among many other things, that Equation (4) has no ground
state, i.e., no standing wave exists that minimizes the energy at fixed L2-norm. In a recent paper [16],
information on positive bound states that are not ground states is given. The special example of tadpole
graph (a ring with a single half-line) is treated in detail in [17,18].

As for the results in [15], they can be summarized as follows. Writing the problem of standing
waves of Equation (4) component-wise, we get the following scalar problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩

−u′′j − u3
j = ωuj, uj ∈ H2(Ij)

u1(0) = u2(L) = u3(0), u1(L1) = u2(L1) = u4(0)

u′1(0)− u′2(L) + u′3(0) = 0, u′1(L1)− u′2(L1)− u′4(0) = 0.

(5)

Such a system has solutions with u3 = u4 = 0 if and only if the ratio L1/L2 is rational. In this
case, they form a sequence of continuous branches in the (ω, ‖U‖L2) plane, bifurcating from the
linear eigenvectors of the Schrödinger operator HG (see Figure 2), and they are periodic on the ring
of G, that is, u1 and u2 are restrictions to I1 and I2 of a function u belonging to the second Sobolev
space of periodic functions H2

per([0, L]) =
{

u ∈ H2([0, L]) : u(0) = u(L), u′(0) = u′(L)
}

. In particular,
such function u is a rescaled Jacobi cnoidal function (see, e.g., [19,20] for a treatise on the Jacobian
elliptic functions). If ω ≥ 0, no other nonzero standing waves exist, since the NLS on the unbounded
edges has no nontrivial solution. If ω < 0, instead, the NLS on the half lines has soliton solutions,
so that standing waves with nonzero u3 and u4 are admissible. The general study of this kind of
solutions leads to a rather complicated system of equations, since, while u3 and u4 must be shifted
solitons, each of u1 and u2 can be (at least in principle) a cnoidal function, a dnoidal function or a
shifted soliton. To limit this complexity, the analysis in [15] is focused on the special case of standing
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waves that are non-vanishing on the half lines but share the above-mentioned periodicity feature with
the bifurcation solutions. This amounts to study the following system:⎧⎨⎩ −u′′ − u3 = ωu, u ∈ H2

per([0, L]), ω < 0

u(0) = ±u(L1) =
√

2|ω|
(6)

where the sign ± distinguishes the cases of u3 and u4 with the same sign (which we may assume
positive, thanks to the odd parity of the equation) or with different signs. In [15], it is shown that:

(i) If L1/L2 ∈ Q, then the set of solutions to (6) is made up of a sequence of secondary
bifurcation branches {(ω, ũn,ω) : ω < 0}n≥1, originating at ω = 0 from each of the previous
ones, together with a sequence {(ωn, un)}n≥1 not lying on any branch (see Figure 2).

Figure 2. Bifurcation diagram for L1/L = p/q with p, q ∈ N coprime.

(ii) If L1/L2 /∈ Q, then the set of solutions to (6) reduces to two sequences {(ω+
n , u+

n )}n≥1 and
{(ω−n , u−n )}n≥1 alone, solving the problem in Equation (6) with sign ±, respectively, where the
frequency sequences {ω±n }n≥1 are unbounded below and have at least a finite nonzero cluster
point (see Figure 3). The functions u±n oscillate n times on the ring of the graph.

These results come rather unexpectedly, so the aim of this paper is to pursue the study begun
in [15] by deepening the understanding of such results in relation to the underlying physical model.
In particular, we ask the following questions: Does Equation (4) admit standing waves that are
non-periodic on ring of G? If so, do they form continuous branches to which the isolated periodic
solutions belong?
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Figure 3. The appearance of each of the sequences {(ω+
n , u+

n )}n∈N and {(ω−n , u−n )}n∈N for
L1/L ∈ R \Q.

With a view to especially answer the second question, we look for standing waves which include
the ones given by Equation (6) but still change sign on the bounded edges. More precisely, we look for
solutions to Equation (5) exhibiting the following features:

• u1, u2 are sign-changing.
• u3, u4 are nonzero.

The second feature implies ω < 0 and

uj(x) = ±
√

2η sech
(
η
(

x + aj
))

, aj ∈ R, j = 3, 4 (7)

where we set η :=
√|ω| for brevity. Then, the first feature implies

uj(x) = η

√√√√ 2k2
j

2k2
j − 1

cn

⎛⎝ η√
2k2

j − 1

(
x + aj

)
; kj

⎞⎠ , kj ∈
(

1√
2

, 1
)

, aj ∈
[
0, Tj
)

, j = 1, 2 (8)

where cn (·; k) is the cnoidal function of parameter k and Tj = Tj
(
kj, η
)

:= S
(
kj
)

/η is the period of

the function cn
(

η (·) /
√

2k2
j − 1; kj

)
. Here and in the rest of the paper, S denotes the function

S(k) := 4
√

2k2 − 1 K(k) = 4
√

2k2 − 1
∫ 1

0

dt√
(1− t2)(1− k2t2)

, (9)

where K(k) is the so called complete elliptic integral of first kind. Notice that S : (1/
√

2, 1) → R is
strictly increasing, continuous and such that S

(
(1/
√

2, 1)
)
= (0,+∞).

Therefore, restricting ourselves for simplicity to the case with u3 and u4 of the same sign, which we
may assume positive thanks to the odd parity of the system in Equation (5), we are led to study
the existence of solutions η > 0, k1, k2 ∈

(
1√
2
, 1
)

, a1 ∈ [0, T1), a2 ∈ [0, T2), a3, a4 ∈ R to the
following system:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1√
2k2

1−1
cn
(

ηa1√
2k2

1−1
; k1

)
= k2√

2k2
2−1

cn
(

η(L+a2)√
2k2

2−1
; k2

)
= sech (ηa3)

k1√
2k2

1−1
cn
(

η(L1+a1)√
2k2

1−1
; k1

)
= k2√

2k2
2−1

cn
(

η(L1+a2)√
2k2

2−1
; k2

)
= sech (ηa4)

tanh (ηa3) sech (ηa3) =

= − k1
2k2

1−1
sn
(

ηa1√
2k2

1−1
; k1

)
dn
(

ηa1√
2k2

1−1
; k1

)
+ k2

2k2
2−1

sn
(

η(L+a2)√
2k2

2−1
; k2

)
dn
(

η(L+a2)√
2k2

2−1
; k2

)
tanh (ηa4) sech (ηa4) =

= k1
2k2

1−1
sn
(

η(L1+a1)√
2k2

1−1
; k1

)
dn
(

η(L1+a1)√
2k2

1−1
; k1

)
− k2

2k2
2−1

sn
(

η(L1+a2)√
2k2

2−1
; k2

)
dn
(

η(L1+a2)√
2k2

2−1
; k2

)
.

(10)

This set of equations turns out to be still rather difficult to study in his full generality, and indeed
we have results only in the subcase where the two solitons in Equation (7) have the same height at
the vertices, i.e., sech (ηa3) = sech (ηa4) (which corresponds to θ1 = θ2 in Section 2). More precisely,
in Section 2 we reduce the system in Equation (10) to an equivalent one, which naturally splits into
different cases. Then, we study three of such cases, all with sech (ηa3) = sech (ηa4), leading to our
existence results, which are the following three theorems.

The first two results only concern the case of irrational ratios L1/L2 and give solutions with
k1 �= k2, i.e., non-periodic on the ring of the graph.

Theorem 1. Assume that L1/L2 ∈ R \Q. Then, there exists a sequence of positive integers (nh)h∈N such
that for every ω < −32K(1/

√
2)2/(L1L2) there exists hω ∈ N (also depending on L1 and L2) such that for

all h > hω the problem in Equation (5) has two solutions (u+
1,h, u+

2,h, u+
3,h, u+

4,h) and (u−1,h, u−2,h, u−3,h, u−4,h) of
the form:

u±j,h(x) =

√√√√2 |ω| k2
j,h

2k2
j,h − 1

cn

(√
|ω|

2k2
j,h − 1

(
x + a±j,h

)
; kj,h

)
, j = 1, 2 (11)

u±j,h(x) =
√

2 |ω| sech
(√
|ω|
(

x + a±j,h
))

, j = 3, 4 (12)

where u±1,h(x) and u±2,h(x) have periods T1,h = L1/ [nhL1/L2 + 1] and T2,h = L2/nh, and for all h one has

1√
2
< k1,h < k2,h < 1, a±1,h ∈

(
0,

T1,h

4

)
, a±2,h ∈ [0, T2,h) , a±3,h < 0, a±4,h > 0, a+j,h �= a−j,h. (13)

Remark 1. More precisely, according to the proof, in Theorem 1, we have that

k1,h = S−1
(

L1

[nhL1/L2 + 1]

√
|ω|
)

, a±1,h = γ1(k1,h, ω, θ±h ),

k2,h = S−1
(

L2

nh

√
|ω|
)

, a±2,h = γ2(k2,h, ω, θ±h )− L + pT2,h, −a±3,h = a±4,h = sech−1
|[0,+∞)(θ

±
h ),

where p is the unique positive integer such that a±2,h ∈ [0, T2,h), θ±h are the two distinct solutions in (0, 1] of the
equation θ2 (1− θ2) = tk1,h ,k2,h

with tk1,h ,k2,h
given by Equation (17), and γj(kj,h, ω, θ±h ) is the unique preimage

in
(

0, Tj,h/4
)

of θ±h
√

2k2
j,h − 1/kj,h by the function cn

(
(·)√|ω|/√2k2

j,h − 1; kj,h

)
.

Theorem 2. Assume that L1/L2 ∈ R \ Q. Then, there exists a sequence of positive integers (nh)h∈N
such that for every ω < −32K(1/

√
2)2/(L1L2) there exists hω ∈ N (also depending on L1 and L2)

such that for all h > hω the problem in Equation (5) has two solutions (u±1,h, u±2,h, u±3,h, u±4,h) of the form
of Equations (11)–(12), where u±1,h(x) and u±2,h(x) have periods T1,h = L1/ [nhL1/L2] and T2,h = L2/nh,
the parameters a±1,h, a±2,h, a±3,h, a±4,h are as in Equation (13) and for all h one has
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1√
2
< k2,h < k1,h < 1.

Remark 2. More precisely, in Theorem 2 we have that

k1,h = S−1
(

L1

[nhL1/L2]

√
|ω|
)

and k2,h = S−1
(

L2

nh

√
|ω|
)

,

whereas a±j,h are exactly as in Remark 1.

The third result does not need L1/L2 irrational and concerns the subcase of the system in
Equation (5) which, if L1/L2 ∈ R \Q and k1 = k2, is exactly the system in Equation (6) with plus sign
(see Remark 5).

Theorem 3. Let m, n ∈ N be such that n > m ≥ 1. Then, there exists ωm,n < 0 (also depending on L1) such
that for all ω < ωm,n the problem in Equation (5) has a solution (u1, u2, u3, u4) of the form of Equations (7)–(8),
with k1, k2 ∈

(√
3/2, 1

)
, a1 ∈ (0, T1/4), a2 ∈ [0, T2).

Remark 3. According to the proof, in Theorem 3, a1, a2, a3, a4 can be described in a similar way of
Theorems 1 and 2. On the contrary, the parameters k1, k2 do exist, but are not explicit as in the previous theorems.

As already mentioned, Theorems 1–3 do not exhaust the study of solutions to the problem in
Equation (5), and thus of standing waves of (NLS), as they only concern the case of solitons having
the same height at the vertices. In addition, they do not describe the whole family of this kind of
solutions, but only give existence results. However, they still provide some answer to the questions
raised above. Indeed, Theorems 1 and 2 answer in the affirmative to the first question, as they prove
existence of standing waves which are non-periodic on the ring of G. As to Theorem 3, for any m
and n, it provides a family of solutions which depend on the continuous parameter ω ∈ (−∞, ωm,n)

and, roughly speaking, make m oscillations on the edge of length L1 and n− m oscillations on the
one of length L2 (cf. the second and third equations of the system in Equation (33)). If L1/L2 is
irrational and one of these families contain a solution with k1 = k2, then such a solution is one of
the isolated solutions found in [15] in the irrational case and we can answer affirmatively also to the
second question. Unfortunately, the argument we used in proving Theorem 3 does not allow us to
say wether we find solutions with k1 = k2 or not, and therefore we do not have a final answer to the
second question.

2. Preliminaries

In this section, we reduce the system in Equation (10) to a simpler equivalent one, which is the
system in Equation (14) with the last two equations replaced by the system in Equation (19).

For brevity, we set

X1 =
ηa1√

2k2
1 − 1

, X2 =
η (L + a2)√

2k2
2 − 1

, X3 =
η (L1 + a1)√

2k2
1 − 1

, X4 =
η (L1 + a2)√

2k2
2 − 1

,

and

σ1 = sgn [sn (X1; k1)] , σ2 = sgn [sn (X2; k2)] , σ3 = sgn [sn (X3; k1)] , σ4 = sgn [sn (X4; k2)] .

Then, using well known identities (see [20]) and the first equation of the system in Equation (10),
we get
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sn (X1; k1) = σ1

√
1− cn2 (X1; k1) = σ1

√
1− 2k2

1 − 1
k2

1
sech2 (ηa3),

dn (X1; k1) =
√

1− k2
1 + k2

1 cn2 (X1; k1) =
√

1− k2
1 +
(
2k2

1 − 1
)

sech2 (ηa3)

and hence

k1

2k2
1 − 1

sn (X1; k1)dn (X1; k1) = σ1

√
k2

1
2k2

1 − 1
− sech2 (ηa3)

√(
1− k2

1
)

2k2
1 − 1

+ sech2 (ηa3)

= σ1

√√√√ k2
1
(
1− k2

1
)(

2k2
1 − 1

)2 + sech2 (ηa3)− sech4 (ηa3).

Arguing similarly for the products sn (X2; k2)dn (X2; k2), sn (X3; k1)dn (X3; k1) and
sn (X4; k2)dn (X4; k2), and defining

c (k) :=
k2 (1− k2)
(2k2 − 1)2 ,

we thus obtain that the system in Equation (10) is equivalent to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1√
2k2

1−1
cn
(

ηa1√
2k2

1−1
; k1

)
= k2√

2k2
2−1

cn
(

η(L+a2)√
2k2

2−1
; k2

)
= sech (ηa3)

k1√
2k2

1−1
cn
(

η(L1+a1)√
2k2

1−1
; k1

)
= k2√

2k2
2−1

cn
(

η(L1+a2)√
2k2

2−1
; k2

)
= sech (ηa4)

tanh (ηa3) sech (ηa3) = −σ1

√
c (k1) + sech2 (ηa3)− sech4 (ηa3) + σ2

√
c (k2) + sech2 (ηa3)− sech4 (ηa3)

tanh (ηa4) sech (ηa4) = σ3

√
c (k1) + sech2 (ηa4)− sech4 (ηa4)− σ4

√
c (k2) + sech2 (ηa4)− sech4 (ηa4).

(14)

Let us now focus on the last two equations. Setting

θ1 = sech (ηa3) , θ2 = sech (ηa4) , σ5 = sgn (a3) = sgn (tanh (ηa3)) , σ6 = sgn (a4) = sgn (tanh (ηa4))

the couple of such equations is equivalent to⎧⎪⎨⎪⎩
σ5

√
1− θ2

1 θ1 = −σ1

√
c (k1) + θ2

1
(
1− θ2

1
)
+ σ2

√
c (k2) + θ2

1
(
1− θ2

1
)

σ6

√
1− θ2

2 θ2 = σ3

√
c (k1) + θ2

2
(
1− θ2

2
)− σ4

√
c (k2) + θ2

2
(
1− θ2

2
)
.

(15)

Squaring the equations, we get

c (k1) + θ2
1

(
1− θ2

1

)
+ c (k2)− 2σ1σ2

√
c (k1) + θ2

1
(
1− θ2

1
)√

c (k2) + θ2
1
(
1− θ2

1
)
= 0,

c (k1) + θ2
2

(
1− θ2

2

)
+ c (k2)− 2σ3σ4

√
c (k1) + θ2

2
(
1− θ2

2
)√

c (k2) + θ2
2
(
1− θ2

2
)
= 0,

which are impossible if σ1σ2 = −1 or σ3σ4 = −1. Hence, we can add the conditions σ1 = σ2 and
σ3 = σ4 to the system in Equation (15), and get⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

σ5

√
1− θ2

1 θ1 = σ1

(
−
√

c (k1) + θ2
1
(
1− θ2

1
)
+
√

c (k2) + θ2
1
(
1− θ2

1
))

σ6

√
1− θ2

2 θ2 = σ3

(√
c (k1) + θ2

2
(
1− θ2

2
)−√c (k2) + θ2

2
(
1− θ2

2
))

σ2 = σ1, σ4 = σ3.

(16)
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Moreover, both θ2
1
(
1− θ2

1
)

and θ2
2
(
1− θ2

2
)

must be solutions t ∈ [0, 1/4] of the equation

c (k1) + c (k2) + t− 2
√

c (k1) + t
√

c (k2) + t = 0.

Such equation has the unique nonnegative solution

t = tk1,k2 =
1
3

(
2
√

c (k1)
2 − c (k1) c (k2) + c (k2)

2 − c (k1)− c (k2)

)
, (17)

which belongs to [0, 1/4] if and only if (k1, k2) belongs to the set

A =

{
(k1, k2) ∈

(
1√
2

, 1
)2

: 2
√

c (k1)
2 − c (k1) c (k2) + c (k2)

2 − c (k1)− c (k2) ≤ 3
4

}
,

i.e., as one can easily see after some computations,

A =

⎧⎨⎩(k1, k2) ∈ R : k1 ∈
(

1√
2

, 1
)

,

√
4k2

1 − 1

2k1
≤ k2 ≤ 1

2
√

1− k2
1

, k2 < 1

⎫⎬⎭
(the set A is portrayed in Figure 4).

Figure 4. The set A. The point (
√

2/2,
√

2/2) and the straight lines of the boundary are not included.

In this case, the equation θ2 (1− θ2) = tk1,k2 with θ ∈ (0, 1] has two distinct solutions

θ±k1,k2
=

√
1±√1− 4tk1,k2

2
(18)

if tk1,k2 ∈ (0, 1/4), two coincident solutions θ+k1,k2
= θ−k1,k2

= 1/
√

2 if tk1,k2 = 1/4, and a unique solution
θ+k1,k2

= 1 if tk1,k2 = 0 (i.e., k1 = k2). In this latter case, we still write θ+k1,k2
= θ−k1,k2

= 1 for future

convenience. We also observe that the function c (k) is positive and strictly decreasing from
(

1/
√

2, 1
)

onto (0,+∞), so that the terms within brackets on the right hand sides of the first two equations of
Equation (16) have a fixed sign according as k1 < k2 or k1 > k2. Therefore, the system in Equation (15)
turns out to be equivalent to
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(k1, k2) ∈ A, θ1, θ2 ∈
{

θ+k1,k2
, θ−k1,k2

}
sech (ηa3) = θ1, sech (ηa4) = θ2⎧⎪⎨⎪⎩

k1 < k2

σ5 = −σ1

σ6 = σ3

∨

⎧⎪⎨⎪⎩
k1 > k2

σ5 = σ1

σ6 = −σ3

∨
{

k1 = k2

a3 = a4 = 0

σ2 = σ1, σ4 = σ3.

(19)

As a conclusion, Equation (10) is equivalent to the system in Equation (14) with the last two
equations replaced by the system in Equation (19).

3. Case θ1 = θ2, σ1 = σ3 and k1 < k2. Proof of Theorem 1

We focus on the case σ1 = σ3 = 1, which gives Theorem 1, leaving the analogous case
σ1 = σ3 = −1 to the interested reader. In such a case, condition (k1, k2) ∈ A becomes

(k1, k2) ∈ A′ = A∩{(k1, k2) ∈ R : k1 < k2} =
⎧⎨⎩(k1, k2) ∈ R :

1√
2
< k1 < k2 ≤ 1

2
√

1− k2
1

, k2 < 1

⎫⎬⎭
and, taking into account the equivalence between Equation (15) and Equation (19), the system in
Equation (14) becomes:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(k1, k2) ∈ A′, θ ∈
{

θ+k1,k2
, θ−k1,k2

}
sech (ηa3) = sech (ηa4) = θ, a3 < 0, a4 > 0

k1√
2k2

1−1
cn
(

ηa1√
2k2

1−1
; k1

)
= k2√

2k2
2−1

cn
(

η(L+a2)√
2k2

2−1
; k2

)
= θ

k1√
2k2

1−1
cn
(

η(L1+a1)√
2k2

1−1
; k1

)
= k2√

2k2
2−1

cn
(

η(L1+a2)√
2k2

2−1
; k2

)
= θ

sn
(

ηa1√
2k2

1−1
; k1

)
> 0, sn

(
η(L1+a1)√

2k2
1−1

; k1

)
> 0

sn
(

η(L+a2)√
2k2

2−1
; k2

)
> 0, sn

(
η(L1+a2)√

2k2
2−1

; k2

)
> 0.

(20)

We denote by γj = γj
(
kj, η, θ

)
the unique preimage in

(
0, Tj/4

)
of the value

√
2k2

j−1

kj
θ by

the function cn

(
η√

2k2
j−1

(·) ; kj

)
. Then,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k1√

2k2
1−1

cn
(

ηa1√
2k2

1−1
; k1

)
= θ, sn

(
ηa1√
2k2

1−1
; k1

)
> 0

k1√
2k2

1−1
cn
(

η(L1+a1)√
2k2

1−1
; k1

)
= θ, sn

(
η(L1+a1)√

2k2
1−1

; k1

)
> 0

means{
a1 = γ1

L1 + a1 = γ1 + mT1 for some m ≥ 1,
i.e.,

{
a1 = γ1

L1 = mT1 for some m ≥ 1
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while ⎧⎪⎪⎪⎨⎪⎪⎪⎩
k2√

2k2
2−1

cn
(

η(L+a2)√
2k2

2−1
; k2

)
= θ, sn

(
η(L+a2)√

2k2
2−1

; k2

)
> 0

k2√
2k2

2−1
cn
(

η(L1+a2)√
2k2

2−1
; k2

)
= θ, sn

(
η(L1+a2)√

2k2
2−1

; k2

)
> 0

means{
L + a2 = γ2 + pT2 for some p ≥ 0
L1 + a2 = γ2 + qT2 for some 0 ≤ q < p,

i.e.,

{
L + a2 = γ2 + pT2 for some p ≥ 0
L2 = (p− q) T2 for some 0 ≤ q < p.

Hence, the system in Equation (20) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(k1, k2) ∈ A′, θ ∈
{

θ+k1,k2
, θ−k1,k2

}
sech (ηa3) = sech (ηa4) = θ, a3 < 0, a4 > 0

L1 = mT1 (k1, η) for some m ≥ 1

L2 = nT2 (k2, η) for some n ≥ 1

a1 = γ1 (k1, η, θ)

a2 = γ2 (k2, η, θ) + pT2 (k2, η)− L for some p ≥ n

(21)

(observe that θ depends on both k1 and k2, and so do a1 and a2 according to the last two equations).

Remark 4. The equivalence between the systems in Equation (20) and Equation (21) does not need assumption
k1 < k2. On the other hand, if k1 = k2, then T1 (k1, η) = T2 (k2, η) and thus the third and fourth equations of
the system in Equation (21) imply L1/L2 ∈ Q. This means that solutions to the system in Equation (10) with
k1 = k2 (which implies θ1 = θ2 = 1) and σ1 = σ3 cannot exist if the ratio L1/L2 is not rational.

Let us now focus on the following group of equations:⎧⎪⎪⎨⎪⎪⎩
(k1, k2) ∈ A′

L1 = mT1 (k1, η) , for some m ≥ 1

L2 = nT2 (k2, η) , for some n ≥ 1.

(22)

Recalling that Tj
(
kj, η
)
= S
(
kj
)

/η, this system is equivalent to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1√
2
< k1 < k2 ≤ 1

2
√

1−k2
1
, k2 < 1

k1 = S−1
(

η L1
m

)
for some m ≥ 1

k2 = S−1
(

η L2
n

)
for some n ≥ 1.

(23)

and therefore, recalling that S is strictly increasing and continuous from (1/
√

2, 1) onto (0,+∞),
we can obtain solutions by fixing η > 0 and finding n, m ≥ 1 such that

⎧⎪⎪⎨⎪⎪⎩
S−1
(

η L1
m

)
< S−1

(
η L2

n

)
S−1
(

η L2
n

)
≤ 1

2

√
1−
[
S−1
(

η
L1
m

)]2 ,
i.e.,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L1
m < L2

n

η L2
n ≤ S

⎛⎝ 1

2

√
1−
[
S−1
(

η
L1
m

)]2
⎞⎠ .

(24)
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Lemma 1. One has

S

⎛⎝ 1

2
√

1− [S−1 (t)]2

⎞⎠ = t +
1

32K2
0

t3 + o
(

t3
)

as t→ 0+

(where, we recall, K0 = K
(

1/
√

2
)

).

Proof. We have

lim
t→0+

S−1 (t)− 1√
2
− t2

32K2
0

√
2

t4 = lim
k→(1/

√
2)

+

S−1 (S (k))− 1√
2
− S(k)2

32K2
0

√
2

S (k)4

= lim
k→(1/

√
2)

+

k− 1√
2
− 16K(k)2(2k2−1)

32K2
0

√
2

28K (k)4 (2k2 − 1)2

=
1

210K2
0

lim
k→(1/

√
2)

+

2K2
0 − K (k)2

(√
2k + 1

)
K (k)4

(√
2k + 1

)2 (
k− 1/

√
2
)

where, setting K′0 = K′
(

1/
√

2
)

, by De L’Hôpital’s rule, we get

lim
k→(1/

√
2)

+

2K2
0 − K (k)2

(√
2k + 1

)
k− 1/

√
2

= −4K0K′0 − K2
0

√
2.

Hence, we conclude

lim
t→0+

S−1 (t)− 1√
2
− t2

32K2
0

√
2

t4 = −K0 + 2
√

2K′0
211
√

2K5
0

,

i.e.,

S−1 (t) =
1√
2
+ c1t2 − c2t4 + o

(
t4
)

as t→ 0+ (25)

where c1 = 1
32
√

2K2
0

and c2 =
K0+2

√
2K′0

211
√

2K5
0

. This implies

1

2
√

1− S−1 (t)2
=

1

2
√

1
2 − 2√

2
c1t2 −

(
c2

1 −
√

2c2

)
t4 + o (t4)

=
1

√
2
√

1− 2
√

2c1t2 − 2
(

c2
1 −
√

2c2

)
t4 + o (t4)

=
1√
2
+ c1t2 +

(
2
√

2c2
1 − c2

)
t4 + o

(
t4
)

.

Using De L’Hôpital’s rule again, we now compute

lim
k→(1/

√
2)

+

S (k)− 211/4K0

(
k− 1/

√
2
)1/2

(
k− 1/

√
2
)3/2 = lim

k→(1/
√

2)
+

S′ (k)− 27/4K0

(
k− 1/

√
2
)−1/2

3
2

(
k− 1/

√
2
)1/2
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=
2
3

lim
k→(1/

√
2)

+

8k√
2k2−1

K (k) + 4
√

2k2 − 1K′ (k)− 27/4K0

(k−1/
√

2)
1/2(

k− 1/
√

2
)1/2

=
215/4

3
K′0 +

2
3

lim
k→(1/

√
2)

+

8kK(k)
4√2
√√

2k+1
− 27/4K0

k− 1/
√

2

=
215/4

3
K′0 +

2
3

lim
k→(1/

√
2)

+

8k(K(k)−K0)
4√2
√√

2k+1
+

(
8k

4√2
√√

2k+1
− 27/4

)
K0

k− 1/
√

2
= 25/4K0 + 211/4K′0

where the result follows because K (k)− K0 ∼ K′0
(

k− 1/
√

2
)

as k→
(

1/
√

2
)+

and

8k
4
√

2
√√

2k + 1
− 27/4 = 27/4 2k−

√√
2k + 1√√

2k + 1
= 27/4 4k2 −√2k− 1√√

2k + 1
(

2k +
√√

2k + 1
)

= 27/4

(
4k +

√
2
) (

k− 1/
√

2
)

√√
2k + 1

(
2k +

√√
2k + 1

) .

This means

S (k) = 211/4K0

(
k− 1/

√
2
)1/2

+
(

25/4K0 + 211/4K′0
) (

k− 1/
√

2
)3/2

+ o
((

k− 1/
√

2
)3/2
)

(26)

as k→
(

1/
√

2
)+

and therefore we deduce that as t→ 0+ one has (note that 211/4K0
√

c1 = 1)

S

⎛⎝ 1

2
√

1− S−1 (t)2

⎞⎠ = 211/4K0
√

c1t

(
1 +

2
√

2c2
1 − c2

c1
t2 + o

(
t2
))1/2

+

+
(

25/4K0 + 211/4K′0
)

c1
√

c1t3

(
1 +

2
√

2c2
1 − c2

c1
t2 + o

(
t2
))3/2

+ o
(

t3
)

= t

(
1 +

1
2

2
√

2c2
1 − c2

c1
t2 + o

(
t2
))

+

+
(

25/4K0 + 211/4K′0
)

c1
√

c1t3

(
1 +

3
2

2
√

2c2
1 − c2

c1
t2 + o

(
t2
))

+ o
(

t3
)

= t +

(
211/4K0

√
c1

1
2

2
√

2c2
1 − c2

c1
+
(

25/4K0 + 211/4K′0
)

c1
√

c1

)
t3 + o

(
t3
)

.

Simplifying the coefficient of t3, this gives the result.

Thanks to Lemma 1, the system in Equation (24) becomes

0 <
m
n
− L1

L2
≤ L3

1η2

32K2
0 L2

1
m2 + ζm (27)

where (ζm)m is a suitable sequence (also dependent on L1, L2, η) such that ζm = o
(
m−2) as m → ∞.

Notice that, according to systems (23) and (24), the equality sign in the second inequality amounts to
k2 = 1

2
√

1−k2
1
.
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Proof of Theorem 1. Since L1/L2 ∈ R \Q, by ([21], Corollary 1.9) there exist infinitely many rational
numbers m/n such that

0 <
m
n
− L1

L2
<

1
n2 . (28)

This implies nL1/L2 < m < nL1/L2 + 1 and thus m = [nL1/L2 + 1]. Since the denominators
of such rationals m/n must be infinite, we may arrange them in a diverging sequence (nh) ⊂ N;
accordingly, the corresponding numerators are mh = [nhL1/L2 + 1]. Now, let η > 4

√
2K0 (L1L2)

−1/2

and fix ε > 0 such that

η2 >

(
L1

L2
+ ε

)2 32K2
0 L2

L3
1

.

Since Equation (28) implies that mh/nh → L1/L2 as h → ∞, for h large enough, we have that
mh/nh < L1/L2 + ε, so that

1
n2

h
<

(
L1

L2
+ ε

)2 1
m2

h
<

L3
1η2

32K2
0 L2

1
m2

h
.

Hence, up to further enlarging h, Equation (28) gives

0 <
mh
nh
− L1

L2
<

(
L1

L2
+ ε

)2 1
m2

h
<

L3
1η2

32K2
0 L2

1
m2

h
+ ζmh , (29)

so that nh and mh satisfy Equation (27). For every h, this provides solutions to the system in
Equation (22) by taking k1 = k1,h = S−1 (ηL1/mh) and k2 = k2,h = S−1 (ηL2/nh), and thus solutions
to the system in Equation (21) by choosing θ = θh ∈ {θ+k1,h ,k2,h

, θ−k1,h ,k2,h
}, taking p as the unique integer

such that
0 ≤ γ2 (k2,h, η, θh) + pT2 (k2,h, η)− L < T2 (k2,h, η)

(where T2 (k2,h, η) = L2/nh), which turns out to be greater than or equal to nh, and defining a1, a2, a3, a4

according to the second, fifth and sixth equation of the system. Note that θ+k1,h ,k2,h
and θ−k1,h ,k2,h

are
different for all h, since tk1,h ,k2,h

�= 0 (because k1,h �= k2,h) and tk1,h ,k2,h
�= 1/4 (because of the strict

inequality signs in Equation (29)). Up to discarding a finite number of terms of the sequence (nh),
the proof is complete.

4. Case θ1 = θ2, σ1 = σ3 and k1 > k2. Proof of Theorem 2

As in the previous section, we focus on the case σ1 = σ3 = 1. In this case, the system
in Equation (14) becomes again the system in Equation (21), but with (k1, k2) ∈ A′ replaced by
(k1, k2) ∈ A′′, where

A′′ = A ∩ {(k1, k2) ∈ R : k1 > k2} =
⎧⎨⎩(k1, k2) ∈ R :

√
4k2

1 − 1

2k1
≤ k2 < k1 < 1

⎫⎬⎭ .

Then, Equation (22) is now equivalent to the system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

√
1− 1

4k2
1
≤ k2 < k1 < 1

k1 = S−1
(

η L1
m

)
for some m ≥ 1

k2 = S−1
(

η L2
n

)
for some n ≥ 1,
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i.e., ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

L2
n < L1

m

η L2
n ≥ S

(√
1− 1

4S−1
(

η
L1
m

)2

)

k1 = S−1
(

η L1
m

)
, k2 = S−1

(
η L2

n

) (30)

with η > 0 and n, m ∈ N.

Lemma 2. One has

S

(√
1− 1

4S−1 (t)2

)
= t− 1

32K2
0

t3 + o
(

t3
)

as t→ 0+

(where, we recall, K0 = K
(

1/
√

2
)

).

Proof. Since S−1 (t) = 1√
2
+ c1t2 − c2t4 + o

(
t4) as t→ 0+ (see Equation (25)), we have

1− 1

2S−1 (t)2 = 1− 1

2
(

S−1 (t)− 1/
√

2 + 1/
√

2
)2

= 1− 1
2

1(
S−1 (t)− 1/

√
2
)2

+ 1/2 + 2
(

S−1 (t)− 1/
√

2
)

/
√

2

= 1− 1
2

1

(c1t2 − c2t4 + o (t4))
2
+ 1/2 + 2 (c1t2 − c2t4 + o (t4)) /

√
2

= 1− 1

1 + 2c1
√

2t2 + 2
(

c2
1 − c2

√
2
)

t4 + o (t4)

= 2c1
√

2t2 − 2
(

3c2
1 + c2

√
2
)

t4 + o
(

t4
)

and therefore√
1− 1

4S−1 (t)2 =
1√
2

√√√√1 +

(
1− 1

2S−1 (t)2

)

=
1√
2

⎛⎝1 +
1
2

(
1− 1

2S−1 (t)2

)
− 1

8

(
1− 1

2S−1 (t)2

)2

+ o

⎛⎝(1− 1

2S−1 (t)2

)2
⎞⎠⎞⎠

=
1√
2
+ c1t2 −

(
2
√

2c2
1 + c2

)
t4 + o

(
t4
)

.
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Hence, using the expansion in Equation (25), we deduce that

S

(√
1− 1

4S−1 (t)2

)
= 211/4K0

√
c1t

(
1− 2

√
2c2

1 + c2

c1
t2 + o

(
t2
))1/2

+

+
(

25/4K0 + 211/4K′0
)

c1
√

c1t3

(
1− 2

√
2c2

1 + c2

c1
t2 + o

(
t2
))3/2

+ o
(

t3
)

= t

(
1− 1

2
2
√

2c2
1 + c2

c1
t2 + o

(
t2
))

+

+
(

25/4K0 + 211/4K′0
)

c1
√

c1t3

(
1− 3

2
2
√

2c2
1 + c2

c1
t2 + o

(
t2
))

+ o
(

t3
)

= t +

((
25/4K0 + 211/4K′0

)
c1
√

c1 − 211/4K0
√

c1
1
2

2
√

2c2
1 + c2

c1

)
t3 + o

(
t3
)

.

Simplifying the coefficient of t3, the result ensues.

By Lemma 2, the first two conditions of the system in Equation (24) become

0 >
m
n
− L1

L2
≥ − L3

1η2

32K2
0 L2

1
m2 + ζm

where (ζm)m is a suitable sequence such that ζm = o
(
m−2) as m→ ∞. Notice that the equality sign in

the second inequality amounts to k2 =

√
4k2

1−1
2k1

.

Proof of Theorem 2. Since L1/L2 ∈ R \Q, by ([21], Corollary 1.9) there exist infinitely many rational
numbers m/n such that

0 >
m
n
− L1

L2
> − 1

n2 .

This implies nL1/L2 − 1 < m < nL1/L2 and thus m = [nL1/L2]. Proceeding exactly as in the
proof of Theorem 1, the result follows.

5. Case θ1 = θ2 and σ1 = −σ3. Proof of Theorem 3

We focus on the case θ1 = θ2 = θ+k1,k2
and σ1 = −σ3 = 1, which gives Theorem 3, leaving the

analogous cases θ1 = θ2 = θ−k1,k2
or σ1 = −σ3 = −1 to the interested reader. In such a case, the system in

Equation (14) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(k1, k2) ∈ A

k1√
2k2

1−1
cn
(

ηa1√
2k2

1−1
; k1

)
= k2√

2k2
2−1

cn
(

η(L+a2)√
2k2

2−1
; k2

)
= sech (ηa3) = θ+k1,k2

k1√
2k2

1−1
cn
(

η(L1+a1)√
2k2

1−1
; k1

)
= k2√

2k2
2−1

cn
(

η(L1+a2)√
2k2

2−1
; k2

)
= sech (ηa4) = θ+k1,k2

σ2 = −σ4 = 1{
k1 < k2

σ5 = σ6 = −1
∨
{

k1 > k2

σ5 = σ6 = 1
∨
{

k1 = k2

a3 = a4 = 0
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that is ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(k1, k2) ∈ A

k1√
2k2

1−1
cn
(

ηa1√
2k2

1−1
; k1

)
= k2√

2k2
2−1

cn
(

η(L+a2)√
2k2

2−1
; k2

)
= sech (ηa3) = θ+k1,k2

k1√
2k2

1−1
cn
(

η(L1+a1)√
2k2

1−1
; k1

)
= k2√

2k2
2−1

cn
(

η(L1+a2)√
2k2

2−1
; k2

)
= sech (ηa4) = θ+k1,k2

sn
(

ηa1√
2k2

1−1
; k1

)
> 0, sn

(
η(L1+a1)√

2k2
1−1

; k1

)
< 0

sn
(

η(L+a2)√
2k2

2−1
; k2

)
> 0, sn

(
η(L1+a2)√

2k2
2−1

; k2

)
< 0{

k1 < k2

σ5 = σ6 = −1
∨
{

k1 > k2

σ5 = σ6 = 1
∨
{

k1 = k2

a3 = a4 = 0

(31)

Defining γj
(
kj, η, θ

)
as in Section 3, we have that⎧⎪⎪⎪⎨⎪⎪⎪⎩
k1√

2k2
1−1

cn
(

ηa1√
2k2

1−1
; k1

)
= θ+k1,k2

, sn
(

ηa1√
2k2

1−1
; k1

)
> 0

k1√
2k2

1−1
cn
(

η(L1+a1)√
2k2

1−1
; k1

)
= θ+k1,k2

, sn
(

η(L1+a1)√
2k2

1−1
; k1

)
< 0

means ⎧⎨⎩ a1 = γ1

(
k1, η, θ+k1,k2

)
L1 = mT1 (k1, η)− 2γ1

(
k1, η, θ+k1,k2

)
for some m ≥ 1

(32)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
k2√

2k2
2−1

cn
(

η(L+a2)√
2k2

2−1
; k2

)
= θ+k1,k2

, sn
(

η(L+a2)√
2k2

2−1
; k2

)
> 0

k2√
2k2

2−1
cn
(

η(L1+a2)√
2k2

2−1
; k2

)
= θ+k1,k2

, sn
(

η(L1+a2)√
2k2

2−1
; k2

)
< 0

means ⎧⎨⎩ L2 = (n−m) T2 (k2, η) + 2γ2

(
k2, η, θ+k1,k2

)
for some n ≥ m

a2 = γ2

(
k2, η, θ+k1,k2

)
− L + pT2 (k2, η) for some p ≥ n−m + 1

where m is the same integer of the system in Equation (32). Hence, the system in Equation (31)
amounts to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(k1, k2) ∈ A

L1 = mT1 (k1, η)− 2γ1

(
k1, η, θ+k1,k2

)
for some m ≥ 1

L2 = (n−m) T2 (k2, η) + 2γ2

(
k2, η, θ+k1,k2

)
for some n ≥ m

a1 = γ1

(
k1, η, θ+k1,k2

)
a2 = γ2

(
k2, η, θ+k1,k2

)
− L + pT2 (k2, η) for some p ≥ n−m + 1

sech (ηa3) = sech (ηa4) = θ+k1,k2{
k1 < k2

a3, a4 < 0
∨
{

k1 > k2

a3, a4 > 0
∨
{

k1 = k2

a3 = a4 = 0.

(33)

Remark 5. Suppose L1/L2 /∈ Q. If we assume k1 = k2 in the system in Equation (14), then we have
θ1 = θ2 = 1 and σ1 = −σ3 (see Remark 4). Hence, a solution to the problem in. Equation (6) with plus
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sign gives rise to a solution to the system in Equation (33). On the other hand, a solution to the system in
Equation (33) with k1 = k2 is such that L = L1 + L2 = nT and a2 = a1 − L + pT = a1 + (p − n)T,
where T = T1 (k1, η) = T2 (k2, η), a1 ∈ (0, T/4) and a2 ∈ [0, T). This forces p = n and thus a1 = a2, so that
the corresponding solution to the problem in Equation (6) is periodic on the circle.

Now, recall that Tj
(
kj, η
)

:=
S
(
kj
)

η
. By the definition of γj = γj

(
kj, η, θ+k1,k2

)
, one has

cn

⎛⎝ η√
2k2

j − 1
γj; kj

⎞⎠ =

√
2k2

j − 1

kj
θ+k1,k2

(34)

with γj ∈
(
0, Tj/4

)
. This implies

0 <
η√

2k2
j − 1

γj <
η√

2k2
j − 1

S
(
kj
)

4η
=

S
(
kj
)

4
√

2k2
j − 1

= K
(
kj
)

and therefore Equation (34) yields that

γj

(
kj, η, θ+k1,k2

)
=

√
2k2

j − 1

η
arccn

⎛⎝
√

2k2
j − 1

kj
θ+k1,k2

; kj

⎞⎠ .

Hence, defining

γ (k1, k2) :=
√

2k2
1 − 1 arccn

⎛⎝
√

2k2
1 − 1

k1
θ+k1,k2

; k1

⎞⎠ =
√

2k2
1 − 1

∫ 1√
2k2

1−1
k1

θ+k1,k2

dt√
(1− t2)

(
1− k2

1(1− t2)
)

and observing that θ+k1,k2
= θ+k2,k1

, one has

γ1

(
k1, η, θ+k1,k2

)
=

1
η

γ (k1, k2) and γ2

(
k2, η, θ+k1,k2

)
=

1
η

γ (k2, k1) .

Thus, the first three equations of the system in Equation (33) are equivalent to⎧⎪⎪⎪⎨⎪⎪⎪⎩
(k1, k2) ∈ A

ηL1 = mS (k1)− 2γ (k1, k2) for some m ≥ 1

ηL2 = (n−m) S (k2) + 2γ (k2, k1) for some n ≥ m.

(35)

To prove Theorem 3, we use the following lemma, concerning the existence of a globally defined
implicit function. Its proof is classical, so we leave it to the interested reader.

Lemma 3. Let bi ∈ R for i = 1, ..., 4 and let G : (b1, b2)× (b3, b4)→ R be a continuous function such that
for all x ∈ (b1, b2) the following properties hold:

• the mapping G(x, ·) is strictly increasing on (b3, b4);
• lim

y→b+3
G(x, y) < 0 and lim

y→b−4
G(x, y) > 0.

Then, the set of solutions to the equation G(x, y) = 0 is the graph of a continuous function g : (b1, b2) →
(b3, b4).

79



Symmetry 2019, 11, 161

Proof of Theorem 3. Let n > m ≥ 1 and for (k1, k2) ∈ A define the continuous functions

Fm (k1, k2) := mS (k1)− 2γ (k1, k2) and Fm,n (k1, k2) := (n−m) S (k2) + 2γ (k2, k1) .

We also define Fm and Fm,n on the segments
{
(k1, 1) :

√
3/2 ≤ k1 < 1

}
and{

(1, k2) :
√

3/2 ≤ k2 < 1
}

of the boundary of A, respectively, where the above definitions
also make sense.

Fix
√

3/2 < λ < 1 such that the square Q = [λ, 1]× [λ, 1] is contained into the closure of A and
the partial derivatives ∂F1/∂k1 and ∂F1,2/∂k2 are strictly positive on Q. The existence of such a square
can be checked by using the explicit expressions

F1 (k1, k2) = 2
√

2k2
1 − 1

⎛⎝2K (k1)−
∫ 1√

2k2
1−1

k1
θ+k1,k2

dt√
(1− t2)

(
1− k2

1(1− t2)
)
⎞⎠ , (36)

F1,2 (k1, k2) = 2
√

2k2
2 − 1

⎛⎝2K (k2) +
∫ 1√

2k2
2−1

k2
θ+k1,k2

dt√
(1− t2)

(
1− k2

2(1− t2)
)
⎞⎠ , (37)

where θ+k1,k2
is given by Equation (18). Similarly, one checks that also F1 is strictly positive on Q,

while F1,2 obviously is. Consequently, ∂Fm/∂k1, ∂Fm,n/∂k2, Fm and Fm,n are also strictly positive on Q
(recall that the function S is strictly increasing and positive). Define

μm := max
λ≤k2≤1

Fm (λ, k2) , μm,n := max
λ≤k1≤1

Fm,n (k1, λ) and ηm,n :=
max {μm, μm,n}

L1
,

and let η > ηm,n, so that ηL2 > ηL1 > max {μm, μm,n}. By continuity of Fm and Fm,n, and using
again the explicit expressions in Equations (36)–(37) (with general m and n inserted) as k1, k2 → 1, we
have that

lim
k1→λ+

Fm (k1, k2) = Fm (λ, k2) ≤ μm < ηL1 and lim
k1→1−

Fm (k1, k2) = +∞

for every fixed k2 ∈ [λ, 1], and

lim
k2→λ+

Fm,n (k1, k2) = Fm,n (k1, λ) ≤ μm,n < ηL2 and lim
k2→1−

Fm,n (k1, k2) = +∞

for every fixed k1 ∈ [λ, 1]. Then, Lemma 3 ensures that the level sets

{(k1, k2) ∈ Q : Fm (k1, k2) = ηL1} and {(k1, k2) ∈ Q : Fm,n (k1, k2) = ηL2}

respectively, are the graphs k1 = f (k2) and k2 = g (k1) of two continuous functions f , g defined on
[λ, 1]. The first graph joins a point on the segment [λ, 1]× {1} to a point on [λ, 1]× {λ}, the latter one
joins a point on {λ} × [λ, 1] to a point on {1} × [λ, 1], and therefore the two level sets must intersect in
the interior of Q at a point (k1, k2), which thus solves the system in Equation (35). Then, Lines 4–7 of
the system in Equation (33) fix the values of a1, a2, a3, a4, by taking p as the unique integer such that
the corresponding a4 belongs to (0, T2]. This completes the proof.

Remark 6. In the proof of Theorem 3, the sign of the function F1 can be easily checked. Indeed, taking into
account that θ+k1,k2

≥ 1/
√

2, one has

F1 (k1, k2) > 2
√

2k2
1 − 1

∫ 1√
2k2

1−1

k1
√

2

1√
1− t2

⎛⎝ 1√
1− k2

1t2
− 1√

1− k2
1(1− t2)

⎞⎠ > 0.
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On the contrary, the analysis of the sign of ∂F1/∂k1 and ∂F1,2/∂k2 over the set A is rather involved and we
could not perform it exactly. Therefore, we based our argument concerning the existence of the square Q on the
numerical evidence given by the plots of their graphs (see Figure 5), for which we used the software Wolfram
MATHEMATICA 10.4.1.

Figure 5. The functions ∂F1/∂k1 and ∂F1,2/∂k2 over the square [λ, 1]2 with λ = 0.88.
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Abstract: We consider stationary waves on nonlinear quantum star graphs, i.e., solutions to the
stationary (cubic) nonlinear Schrödinger equation on a metric star graph with Kirchhoff matching
conditions at the centre. We prove the existence of solutions that vanish at the centre of the star and
classify them according to the nodal structure on each edge (i.e., the number of nodal domains or
nodal points that the solution has on each edge). We discuss the relevance of these solutions in more
applied settings as starting points for numerical calculations of spectral curves and put our results
into the wider context of nodal counting, such as the classic Sturm oscillation theorem.

Keywords: quantum graphs; nonlinear Schrödinger equation; nodal structure

1. Introduction

Sturm’s oscillation theorem [1] is a classic example for how solutions of linear self-adjoint
differential eigenvalue problems Dφ(x) = λφ(x) (where D is a Sturm-Liouville operator) are ordered
and classified by the number of nodal points. According to Sturm’s oscillation theorem, the n-th
eigenfunction, φn, has n− 1 nodal points, when the eigenfunctions are ordered by increasing order of
their corresponding eigenvalues λ1 < λ2 < λ3 < . . . . Equivalently, the number νn of nodal domains
(the connected domains where φn has the same sign) obeys νn = n for all n.

In higher dimensions, (e.g., for the free Schrödinger equation −Δφ(x) = λφ(x) on a bounded
domain with self-adjoint boundary conditions) the number of nodal domains is bounded from above,
νn ≤ n, by Courant’s theorem [2] (see [3] for the case of Schrödinger equation with potential).
Furthermore, there is only a finite number of Courant sharp eigenfunctions for which νn = n, as
was shown by Pleijel [4].

In (linear) quantum graph theory one considers the Schrödinger equation with self-adjoint matching
conditions at the vertices of a metric graph. Locally, graphs are one-dimensional though the connectivity
of the graph allows to mimic some features of higher dimensions. Nodal counts for quantum graphs
have been considered for more than a decade [5]. For example, it has been shown in [5] that Courant’s
bound applies to quantum graphs as well. Yet, for graphs there are generically infinitely many Courant
sharp eigenfunctions [6,7]. For tree graphs it has been proven that all generic eigenfunctions are Courant
sharp, i.e., νn = n [8,9] . In other words, Sturm’s oscillation theorem generalizes to metric trees graphs.
It has been proven by one of us that the converse also holds, namely that if the graph’s nodal count
obeys νn = n for all n, then this graph is a tree [10]. When a graph is not a tree, its first Betti number,
β := E−V + 1 is positive. Here, E, V are correspondingly the numbers of graph’s edges and vertices
and β indicates the number of the graphs independent cycles. In addition to Courant’s bound, the nodal
count of a graph is bounded from below, νn ≤ n− β as was shown first in [11]. The actual number of

Symmetry 2019, 11, 185; doi:10.3390/sym11020185 www.mdpi.com/journal/symmetry83
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nodal domains may be characterized by various variational methods [12,13]. Some statistical properties
of the nodal count are also known [6], but to date there is no general explicit formula or a full statistical
description of the nodal count.

In the present work we present some related results concerning nodal points and nodal domains
for nonlinear star graphs (see Figure 1).

Figure 1. A star graph with E = 8 edges and E + 1 = 9 vertices.

Nonlinear wave equations on metric graphs (i.e., nonlinear quantum graphs) have recently attracted
considerable interest both from the mathematical perspective and the applied regime. They allow the
study of intricate interplay between the non-trivial connectivity and the nonlinearity. Among the physical
applications of nonlinear wave equations on metric graphs is light transmission through a network of
optical fibres or Bose-Einstein condensates in quasi one-dimensional traps. We refer to [14,15] where a
detailed overview of the recent literature and some applications is given and just summarise here the
relevant work related to the nodal counting. In a previous work some of us have shown that Sturm’s
oscillation theorem is generically broken for nonlinear quantum stars, apart from the special case of an
interval [16]. This is not unexpected as the set of solutions is known to have a far more complex structure.
Our main result here is that the nonlinear case of a metric star allows for solutions with any given number
of nodal domains on each edge. Namely, for a star with E edges and a certain E-tuple, (n1, . . . , nE) of
non-negative integers there are solutions with ne nodal points on the e-th edge for e = 1, . . . , E.

In the remainder of the introduction chapter we define the setting. In Section 2 we state our
main results. In Section 3 we present the nonlinear generalization of Sturm’s oscillation theorem to
an interval, some general background and properties of nonlinear solutions as well as a few motivating
numerical results. In Section 4 we prove the main theorems and afterwards in Section 5 we discuss our
results and their possible implications in the broader context of nonlinear quantum graphs.

1.1. The Setting—Nonlinear Star Graphs

Metric star graphs are a special class of metric trees with E edges and E + 1 vertices such that
all edges are incident to one common vertex (see Figure 1). The common vertex will be called the
centre of the star and the other vertices will be called the boundary. We assume that each edge has
a finite length 0 < �e < ∞ (e = 1, . . . , E) and a coordinate xe ∈ [0, �e] such that xe = 0 at the centre and
xe = �e at the boundary. On each edge e = 1, . . . , E we consider the stationary nonlinear Schrödinger
(NLS) equation

− d2

dx2
e

φe(xe) + g|φe(xe)|2φe(xe) = μ φe(xe) (1)

for φe : [0, �e]→ C. Here g is a nonlinear coupling parameter and μ a spectral parameter. We consider
this as a generalized eigenequation with eigenvalues μ. We have assumed here that the nonlinear
interaction is homogeneously repulsive (g > 0) or attractive (g < 0) on all edges and will continue to
do so throughout this manuscript. One may consider more general graphs where g takes different

84



Symmetry 2019, 11, 185

values (and different signs) on different edges (or even where g→ ge(xe) is a real scalar function on the
graph). It is not, however, our aim to be as general as possible. In the following we restrict ourselves to
one generic setting in order to keep the notation and discussion as clear and short as possible. We will
later discuss some straightforward generalizations of our results.

At the centre we prescribe Kirchhoff (a.k.a Neumann) matching conditions

φe(0) =φe′(0) for all 1 ≤ e < e′ ≤ E (2)
E

∑
e=1

dφe

dxe
(0) =0 (3)

and at the boundary we prescribe Dirichlet conditions φe(�e) = 0.
For the coupling constant g it is sufficient without loss of generality to consider three different cases.

For g = 0 one recovers the linear Schrödinger equation and thus standard quantum star graphs.
For g = 1 one has a nonlinear quantum star graph with repulsive interaction and for g = −1 one has a
nonlinear quantum star with attractive interaction. If g takes any other non-zero value a simple rescaling
φe(xe) �→ 1√

|g|φe(xe) of the wavefunction is equivalent to replacing g �→ g
|g| = ±1.

Without loss of generality we may focus on real-valued and twice differentiable solutions
{φe(xe)}E

e=1, where twice differentiable refers separately to each φe : (0, �e)→ C. We also assume that
the solution is not the constant zero function on the graph, namely that there is an edge e and some
point x̂e ∈ [0, �e] with φe(x̂e) �= 0. Moreover, any complex-valued solution is related to a real-valued
solution by a global gauge-transformation (i.e., a change of phase φe(xe) �→ φe(xe)eiα) [14].

1.2. The Nodal Structure

We will call a solution {φe(xe)}N
e=1 regular if the wavefunction does not vanish on any edge,

that is for each edge e there is x̂e ∈ (0, �e) with φe(x̂e) �= 0. Accordingly, non-regular solutions vanish
identically on some edges, in other words there is (at least) one edge e such that φe(xe) = 0 for all
xe ∈ [0, �e].

A solution with a node at the centre, φe(0) = 0 (by continuity this is either true for all e or for none)
will be called central Dirichlet because it satisfies Dirichlet conditions at the centre (in addition to the
Kirchhoff condition). Hence, non-regular solutions are always central Dirichlet. Our main theorem will
construct solutions which are regular and central Dirichlet. Note that from a regular central Dirichlet
solution on a metric star graph G one can construct non-regular solutions on a larger metric star graph G′,
if G is a metric subgraph of G′: on each edge e ∈ G′ \ G one may just extend the solution by setting
φe(xe) = 0 for all xe ∈ [0, �e].

Our main aim is to characterize solutions in terms of their nodal structure. The nodal structure is
described in terms of either the number ν of nodal domains (maximal connected subgraphs where
φe(xe) �= 0) or by the number ξ of nodal points. We will include in the count the trivial nodal points
at the boundary. Note that regular solutions which are not central Dirichlet obey ν = ξ + 1 − E
while regular central Dirichlet solutions obey ν = ξ − 1. We have stated in the introduction that in
the linear case, g = 0, such a characterization is very well understood even for the more general
tree graphs, which obey a generalized version of Sturm’s oscillation theorem.

As we will see, the solutions of nonlinear star graphs have a very rich structure and a classification
of solutions in terms of the total numbers ν or ξ of nodal domains or nodal points is far from being
unique. We will thus use a more detailed description of the nodal structure of the solutions. To each
regular solution {φe(xe)}E

e=1 we associate the E-tuple

n = (n1, . . . , nE) ∈ NE (4)

where ne ≥ 1 is the number of nodal domains of the wavefunction φe(xe) on the edge xe ∈ [0, �E].
For solutions which are not central Dirichlet, ne also equals the number of nodal points of φe(xe)
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(including the nodal point at the boundary). We will call n ∈ NE the (regular) nodal edge count
structure of the (regular) solution {φe(xe)}N

e=1. For non-regular solutions one may characterize the
nodal structure in a similar way by formally setting ne = ∞ for all edges where the wavefunction is
identical zero. In that case we speak of a non-regular nodal edge count structure. Note that we do not
claim that the nodal edge count structure, n, leads to a unique characterization of the solutions (which
actually come in one-parameter families). Indeed we have numerical counter-examples. With this
more detailed description we show that a much larger set of nodal structures is possible in nonlinear
quantum star graphs compared to the linear case, as is stated in the next section.

2. Statement of Main Theorems

Our main results concern the existence of solutions with any given nodal edge structure. We state
two theorems: One for repulsive nonlinear interaction g = 1 and one for attractive nonlinear interaction
g = −1. The two theorems establish the existence of central Dirichlet solutions with nodal edge structure
n = (1, . . . , 1) subject to (achievable) conditions on the edge lengths. As corollaries, we get the existence
of central Dirichlet solutions with any prescribed values of n (again subject to some achievable conditions
on the lengths). Throughout this section we consider a nonlinear quantum star graph as described in
Section 1.1. In order to avoid trivial special cases we will assume E ≥ 3. Indeed, E = 1 is the interval
and well understood and E = 2 reduces to an interval (of total length �1 + �2) as the Kirchhoff vertex
condition in this case just states that the wavefunction is continuous and has a continuous first derivative.
We will also assume that all edge lengths are different. Without loss of generality we take them as
ordered �e < �e+1 (e = 1, . . . , E− 1).

Theorem 1. If g = 1 (repulsive case) and either

1. the number of edges E is odd, or
2. E is even and √

m+

m−
1 + m−
1 + m+

>
E

E− 2
, (5)

where 0 < m− < m+ < 1 are implicitly defined in terms of the edge lengths l1, l E
2 +1, l E

2 +2 by

K(m+)
√

1 + m+ =
π

2

� E
2 +2

�1
,

K(m−)
√

1 + m− =
π

2

� E
2 +1

�1
,

(6)

with

K(m) =
∫ 1

0

1√
1− u2

√
1−mu2

du (7)

being the complete elliptic integral of first kind,

then there exists a regular central Dirichlet solution for some positive value of the spectral parameter μ = k2 > π2

�2
1

such that there is exactly one nodal domain on each edge, i.e., the nodal edge structure n satisfies ne = 1 for all
edges e.

Note that the condition in this theorem for even number of edges involves only three edge lengths

and can be stated in terms of two ratios that satisfy
� E

2 +2

�1
≥

� E
2 +1

�1
≥ 1 (as we have ordered the edges

by lengths). If the larger ratio
� E

2 +2

�1
is given then one may always achieve this condition by choosing

the other ratio sufficiently small (as
� E

2 +1

�1
→ 1 one has m− → 0 and the left-hand side of condition (5)

grows without any bound). Figure 2 shows a graph of the regions where the two length ratios satisfy
condition (5) for star graphs with E edges. One can see how the condition becomes less restrictive
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when the number of edges is large. We will present the proof of Theorem 1 in Section 4.1. The proof
shows that the condition (5) is not optimal. Less restrictive conditions that depend on other edge
lengths may be stated. Nevertheless, we have chosen to state the condition (5), as its form is probably
more compactly phrased than other conditions would be.

1 1.5 2
�E
2
+2

�1

1

1.5

2

�E
2 +1

�1

E = 4

E = 10

E = 50

E = 200

Figure 2. The shaded regions indicate choices of relative edge lengths 1 <
� E

2 +1

�1
<

� E
2 +2

�1
that satisfy the

condition (5) of Theorem 1. The dashed lines indicate the boundary of regions for a star graph with E
edges (where E = 4, 10, 50, 200). Condition (5) is satisfied below the dashed lines.

Theorem 2. Let g = −1 (attractive case). If there exists an integer M < E/2 such that

E−1

∑
e=M+1

1
�2

e
<

M

∑
e=1

1
�2

e
<

E

∑
e=M+1

1
�2

e
, (8)

then there exists a regular central Dirichlet solution for some positive value of the spectral parameter μ = k2 ∈(
0, π2

�2
E

)
such that there is exactly one nodal domain on each edge, i.e., the nodal edge structure n satisfies

ne = 1 for all edges e.

We will prove this theorem in Section 4.2. One may extend Theorem 2 to find negative values of
the spectral parameter μ < 0 under appropriate conditions on edge lengths using similar ideas as the
ones used in our proof for μ > 0. To keep the paper concise we focus here on μ > 0.
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In order to demonstrate how the two conditions (8) in Theorem 2 may be achieved, we point out
that the following weaker conditions

�M
�M+1

<

√
M

E−M− 1

�1

�E
>

√
M

E−M

(9)

imply (8) (recalling that �1 < . . . < �E). The conditions (9) are easy to apply and they may be
achieved straight-forwardly. For instance, if E is odd and M = (E− 1)/2 (the largest possible value
for M) then the first inequality in (9) is always satisfied and the second condition gives the restriction

1 > �1
�E

>
√

M
M+1 on the ratio between the smallest and largest edge length. In addition to that one

may easily construct a star graph with edge lengths which satisfy conditions (9) above. This is done
by starting from a star graph which has only two different edge lengths �− < �+ where �e = �−
for 1 ≤ e ≤ M and �e = �+ for M + 1 ≤ e ≤ E. If one chooses the ratio of the lengths in the range√

M
E−M < �−

�+
<
√

M
E−M−1 and then perturbs all edge lengths slightly to make them different then

condition (9) is satisfied. Note however that, just as in Theorem 1, even the condition which is stated
in Theorem 2 is not optimal and more detailed conditions can be derived from our proof in Section 4.2.

Before discussing some straight-forward implications let us also state here that the assumption
that all edge lengths are different that we made for both Theorems 1 and 2 may be relaxed. This is
because any two edges with the same length decouple in a certain way from the remaining graph.
If one deletes pairs of edges of equal length from the graph until all edges in the remaining graph are
different one may apply the theorems to the remaining graph (if the remaining graph has at least three
edges). This will be discussed more in Remark 1.

In the remainder of this section we discuss the implications of the two theorems for finding
solutions with a given nodal edge structure n ∈ NE. In this case we divide each edge length into ne

fractions �e = ne �̃e. The n-th fraction �̃e then corresponds to the length of one nodal domain. For the
rest of this section we do not assume that the edge lengths {�e} are ordered by length and different,
rather we now assume that these assumptions apply to the fractions, i.e., �̃e < ˜�e+1 (e = 1, . . . , E− 1).
By first considering the metrically smaller star graph with edge lengths {�̃e} Theorems 1 and 2
establish the existence of solutions on this smaller graph subject to conditions on the lengths {�̃e}.
These solutions can be extended straight-forwardly to a solution on the full star graph. Indeed, as we
explain in more detail in Section 3.1, the solution on each edge is a naturally periodic function given
by an elliptic deformation of a sine and shares the same symmetry around nodes and extrema, as the
sine function. The main relevant difference to a sine is that the period of the solution depends on the
amplitude. In the repulsive case one then obtains the following.

Corollary 1. Let g = 1 (repulsive case) and n ∈ NE. If either

1. E is odd, or
2. E is even and the fractions �̃e = �e/ne (e = 1, . . . , E) satisfy the condition (5),

then there exists a regular central Dirichlet solution for some positive value of the spectral parameter μ = k2 > π2

�̃2
1

‘with regular nodal edge count structure n.

Similarly, Theorem 2 implies the following.

Corollary 2. Let g = −1 (attractive case) and n ∈ NE. If the fractions �̃e = �e/ne satisfy condition
(8) then there exists a regular central Dirichlet solution for some positive value of the spectral parameter

μ = k2 ∈
(

0, π2

�̃2
E

)
with regular nodal edge count structure n.
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The corollaries above provide sufficient conditions for the existence of a central Dirichlet solution
with a particular given nodal edge count. In addition to that, it is straight-forward to apply Theorems 1
and 2 to show that for any choice of edge lengths there are infinitely many E-tuples which can serve as
the graph’s regular central Dirichlet nodal structure.

Moreover Theorems 1 and 2 also imply infinitely many values for non-regular nodal structures,
as every non-regular solution is equivalent to a regular solution on a subgraph.

Finally, we note that the proofs of Theorems 1 and 2 in Section 4 are constructive and they specify
the corresponding solution up to a single parameter (which one may take to be k =

√
μ) that may

easily be found numerically.

3. General Background on the Solutions of Nonlinear Quantum Star Graphs

Before we turn to the proof of Theorems 1 and 2 we would like discuss how the implied regular
central Dirichlet solutions are related to the complete set of solutions of the nonlinear star graph.
Though we are far from having a full understanding of all solutions we can give a heuristic picture.

3.1. The Nonlinear Interval - Solutions and Spectral Curves

Let us start with giving a complete overview of the solutions for the interval (i.e., the star graph
with E = 1). While these are well known and understood they play a central part in the construction
of central Dirichlet solutions for star graphs in our later proof and serve as a good way to introduce
some general background. On the half line x ≥ 0 with a Dirichlet condition φ(0) = 0 at the origin it
is straight-forward to check (see also [14]) that the solutions for positive spectral parameters μ = k2

(where k > 0) are of the form

φ(x) =

⎧⎪⎪⎨⎪⎪⎩
χ
(+)
m,k (x) = k

√
2m

1+m sn
(

kx√
1+m

, m
)

in the repulsive case g = 1 ,

χ
(−)
m,k (x) = k

√
2m(1−m)

1−2m
sn
(

kx√
1−2m

,m
)

dn
(

kx√
1−2m

,m
) in the attractive case g = −1.

(10)

Here sn(y, m) and dn(y, m) are Jacobi elliptic functions with a deformation parameter m. The definition
of elliptic functions allows m to take arbitrary values in the interval m ∈ [0, 1] (as there are many
conventions for these functions we summarize ours in Appendix A). Note that sn(y, m) is a deformed
variant of the sine function and sn(y, 0) = sin(y) and dn(y, 0) = 1.

For any spectral parameter μ = k2 there is a one-parameter family of solutions parameterised
by the deformation parameter m. In the repulsive case the deformation parameter may take values
m ∈ (0, 1] (as for m = 0 one obtains the trivial solution χ

(+)
0,k (x) = 0) and in the attractive case

m ∈
(

0, 1
2

)
(the expressions are not well defined for m = 1

2 and for m > 1
2 the expressions are no

longer real).
Let us now summarise some properties of these solutions in the following proposition for the

solutions of the NLS equation on the half line.

Proposition 1. The solutions φ(x) = χ
(±)
m,k (x) given in Equation (10) have the following properties

1. All solutions are periodic χ
(±)
m,k (x) = χ

(±)
m,k (x + Λ(±)(m, k)) with a nonlinear wavelength

Λ(+)(m, k) =
4
√

1 + mK(m)

k

Λ(−)(m, k) =
4
√

1− 2mK(m)

k
,

(11)

where K(m) is the complete elliptic integral of first kind, Equation (7).
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2. For m→ 0 one regains the standard relation Λ(±)(0, k) = 2π
k for the free linear Schrödinger equation.

In the repulsive case Λ(+)(m, k) is an increasing function of m (at fixed k) that increases without bound as
m→ 1. In the attractive case Λ(−)(m, k) is a decreasing function of m (at fixed k) with Λ(−)

(
1
2 , k
)
= 0.

3. The nodal points are separated by half the nonlinear wavelength. Namely, χ
(±)
m,k (nΛ(±)(m, k)/2) = 0 for

n = 0, 1, , . . . .
4. The solutions are anti-symmetric around each nodal point and symmetric around each extremum, i.e., it has

the same symmetry properties as a sine function.
5. As sn (K(m), m) = 1 and dn (K(m), m) =

√
1−m the amplitude

A(±)(k, m) = max
(

χ
(±)
m,k (x)

)
x≥0

= χ
(±)
m,k

(
Λ(±)(m, k)

4

)

is given by

A(+)(m, k) =k
√

2m
1 + m

A(−)(m, k) =k
√

2m
1− 2m

.

(12)

6. As m → 0+ the amplitude of the solutions also decreases to zero A(±)(0, k) = 0 for both the repulsive
and the attractive case. In this case the effective strength of the nonlinear interaction becomes weaker
and the oscillations are closer. In the repulsive case the amplitude remains bounded as m → 1 with
A(+)(1, k) = k. In the attractive case A(−)(m, k) grows without bound as m→ 1

2 .

All statements in this proposition follow straight-forwardly from the known properties of elliptic
integrals and elliptic functions and we thus omit the proof here. Furthermore, some of the statements
in the proposition are mentioned explicitly in [14,16,17] and others follow easily from the definitions
as given in the Appendix A.

For the NLS equation for φ(x) on an interval x ∈ [0, �] with Dirichlet conditions at both boundaries
φ(0) = φ(�) = 0 one obtains a full set of solutions straight-forwardly from the solutions χ

(±)
m,k (x) on

the half-line by requiring that there is a nodal point at x = �. Since the distance between two nodal
points in χ

(±)
m,k (x) is Λ(±)(k, m)/2 the length of the interval has to be an integer multiple of half the

nonlinear wavelength
2� = nΛ(±)(k, m), (13)

where the positive integer n is the number of nodal domains. We arrive at the following proposition.

Proposition 2. The NLS Equation (1) on an interval of length � with Dirichlet boundary conditions
has a one-parameter family of real-valued solutions with n nodal domains, for each n ∈ N. The relation
between the spectral parameter μ = k2 and the deformation parameter m is dictated by Equation (13) and may
be explicitly written as

k(+)
n,� (m) =

2n
√

1 + mK(m)

�

k(−)n,� (m) =
2n
√

1− 2mK(m)

�

. (14)

We refer to k(±)n� (m) (or its implicitly defined inverse m(±)
n,� (k)) as spectral curves. As k(±)n+1,�(m) >

k(±)n,� (m), the spectral curves never cross (see Figure 3) and we obtain the first nonlinear generalization
of Sturm’s oscillation theorem as a corollary (see also Theorem 2.4 in [16]).
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Figure 3. Spectral curves k(±)n,� (m) for the repulsive (a) and attractive case (b). The n-th curve is obtained

from the curve for n = 1 by rescaling k(±)n,� (m) = nk(±)1,� (m).

Corollary 3. For any allowed value of the deformation parameter m (m ∈ (0, 1) for g = 1 and m ∈
(

0, 1
2

)
for

g = −1) there is a discrete set {kn}∞
n=1 of positive real numbers, increasingly ordered, such that φn = χ

(±)
m,kn

∣∣∣
[0,�]

is a solution of the NLS equation on the interval [0, �] with spectral parameters μn = k2
n and n is the number

of nodal domains. Furthermore, these are all the solutions of the NLS equation whose deformation parameter
equals m.

While this is mathematically sound, fixing the deformation parameter m is not a very useful
approach in an applied setting. A more physical approach (and one that is useful when we consider
star graphs) is to fix the L2-norm N(±)

n,� (m) =
∫ �

0 χ
(±)
m,k(±)n,� (m)

(x)2dx of the solutions. The L2-norm is

a global measure for the strength of the nonlinearity. It has the physical meaning of an integrated
intensity. In optical applications this is proportional to the total physical energy and for applications in
Bose-Einstein condensates this is proportional to the number of particles.

By direct calculation (see [15]) we express the L2-norms in terms of elliptic integrals (see Appendix A) as

N(+)
n,� (m) =

8n2

�
K(m) [K(m)− E(1, m)]

N(−)
n,� (m) =

8n2(1−m)

�
K(m) [Π(1, m, m)− K(m)] ,

(15)

and use those to implicitly define the spectral curves in the form k(±)n,� (N). The latter spectral curves are
shown in Figure 4. The monotonicity of the spectral curves in this form follows from the monotonicity
of k(±)n,� (m) together with the monotonicity of N(±)

n,� (m). More precisely, one may check that N(±)
n,� (m)

in (15) is an increasing function of m in the corresponding interval m ∈ (0, 1] for g = 1 and m ∈
(

0, 1
2

)
for g = −1. To verify this statement, observe that

1. [K(m)− E(1, m)] and 1
m [Π(1, m, m)− K(m)] are increasing functions of m. This follows from

their integral representations (see Appendix A). Explicitly, writing each expression as an integral,
the corresponding integrands are positive and pointwise increasing functions of m.

2. K(m) and m(1−m) are also positive increasing functions of m in the relevant intervals.
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Figure 4. The spectral curves k(±)n,� (N) (full green lines) in the repulsive (a) and attractive case (b).

The n-th curve is obtained from the curve for n = 1 by scaling k(±)n,� (N) = nk(±)1,� (N/n2). The (blue)
dashed lines indicate trajectories of the flow (17). The deformation parameter m is constant along
the flow.

The inverse of N(±)
n,� (m) will be denoted m(±)

n,� (N). Combining the monotonicity of k(±)n,� (m) and

N(±)
n,� (m) one finds in the repulsive case that k(+)

n,� (N) is an increasing function of N defined for N > 0

while in the attractive case k(−)n,� (N) is a decreasing function defined on 0 < N < N(−),max
n,� where

N(−),max
n,� =

4n2

�
K
(

1
2

) [
Π
(

1,
1
2

,
1
2

)
− K
(

1
2

)]
. (16)

A characterization of the spectral curves k(±)n,� (N) may be given as follows. We define the following
flow in the k-N-plane (see Figure 4).

Φτ(m) = (N(±)
τ,� (m), k(±)τ,� (m)), (17)

where N(±)
τ,� (m) and k(±)τ,� (m) are extensions of the expressions in Equations (15) and (14), replacing

the integer valued n with the real flow parameter τ. Observe that k(±)τ,� (m) depends linearly on τ

whereas, N(±)
τ,� (m) is proportional to τ2. This means that for each value of m, the corresponding flow

line {Φτ(m)}∞
τ=0 is of the form k = γ

√
N (where γ depends on m). In particular, this implies that the

spectral curves k(±)n,� (N) are self-similar

k(±)n,� (N) = nk(±)1,�

(
N
n2

)
. (18)

In addition, each flow line traverses the spectral curves k(±)n,� (N) in the order given by the
number of nodal domains n. This implies that the spectral curves never cross each other and remain
properly ordered. We thus obtain the following second generalization of Sturm’s oscillation theorem
on the interval.

Proposition 3. For g = 1 (repulsive case) let N > 0 and for g = −1 (attractive case) let N ∈ (0, N(−),max
1,� ).

Then there is a discrete set {kn}∞
n=1 of positive real numbers, increasingly ordered such that
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φn = χ
(±)
m(±)

n,� (N), kn

∣∣∣∣∣
[0,�]

is a solution of the NLS equation on the interval with a spectral parameter μn = k2
n and L2-norm

N =
∫ �

0 φn(x)2 dx and n is the number of nodal domains. Furthermore, these are all solutions whose L2-norm
equals N.

3.2. Nonlinear Quantum Star Graphs

One may use the functions χ
(±)
m,k (x) defined in Equation (10) in order to reduce the problem of

finding a solution of the NLS equation on a star graph to a (nonlinear) algebraic problem. By setting

φe(xe) = σeχ
(±)
me ,k(�e − xe) (19)

where an overall sign σe = ±1 and the deformation parameter me remain unspecified (and allowed
to take different values on different edges) one has a set of E functions that satisfy the NLS equation
with spectral parameter μ = k2 on each edge and also satisfy the Dirichlet condition φe(�e) = 0 at
the boundary vertices. Setting σe = sgn

(
χ
(±)
me ,k(�e)

)
(unless χ

(±)
me ,k(�e) = 0) the Kirchhoff matching

conditions at the centre give a set of E independent nonlinear algebraic equations (see Equations (2)
and (3)) for E continuous parameters {me}. If k is fixed there are typically discrete solutions for the
parameters {me}. As k varies the solutions deform and form one-parameter families. Setting

N =
E

∑
e=1

∫ �e

0
φe(xe)

2 dxe (20)

each solution may be characterized by a pair (k, N) and as k is varied one naturally arrives at spectral
curves in the k-N-plane, that may be expressed as k(N) (or N(k)), as we have seen for the interval
in the previous section. Nevertheless, the spectral curves of the star graph have a more intricate
structure (see Figure 5). In non-linear algebraic equations one generally expects that solutions appear
or disappear in bifurcations. For any particular example some numerical approach is needed to find the
spectral curves. To do so, one first needs to have some approximate solution (either found by analytical
approximation or by a numerical search in the parameter space). After that Newton-Raphson methods
may be used to find the solution up to the desired numerical accuracy and the spectral curves are
found by varying the spectral parameter slowly.

Figure 5 shows spectral curves that have been found numerically for a star graph with E = 3 and
edge lengths �e =

√
e (e = 1, 2, 3). Most of the curves have been found starting from the corresponding

spectrum of the linear problem (g = 0). Yet, one can see an additional curve that does not connect to the
linear spectrum as N → 0. This has originally been found in previous work [15] by coincidence, as the
the numerical method jumped from one curve to another where they almost touch in the diagram.

We stress that in a numerical approach it is very hard to make sure that all solutions of interest
are found, even if one restricts the search to a restricted region in parameter space. A full characterization
of all solutions (such as given above for the nonlinear interval) will generally be elusive even for basic
nonlinear quantum graphs. Theorems 1 and 2 and the related Corollaries 1 and 2 establish the existence
of a large set of solutions inside the deep nonlinear regime. Each of these solutions may be used as
a starting point for a numerical calculation of further solutions along the corresponding spectral curves.
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Figure 5. Spectral curves k(N) for a nonlinear star graph with E = 3 edges and edge lengths �1 = 1,
�2 =

√
2, and �3 =

√
3 with repulsive (a) and attractive (b) nonlinear interaction. The spectral curves

have been obtained by numerically solving the matching conditions using a Newton-Raphson method.
For N → 0 one obtains the spectrum of the corresponding linear star graph. Apart from one curve,
all shown curves are connected to the linear spectrum this way. In the attractive case one spectral
curve (shown in blue) is not connected to the linear spectrum. Such curves can sometimes be found
by coincidence, e.g., if one is close to a bifurcation and numerical inaccuracy allows to jump from one
solution branch to another (and this is indeed how we found it). In the repulsive case there is one
spectral curve that has a sharp cusp. This indicates that there may be a bifurcation nearby that has
additional solution branches that have not been found. In general it is a non-trivial numerical task to
ensure that a diagram of spectral curves is complete. Here, completeness has not been attempted as the
picture serves a mainly illustrative purpose.

3.3. Nodal Edge Counting and Central Dirichlet Solutions

It is interesting to consider the nodal structure along a spectral curve. Generically the wavefunction
does not vanish at the centre and the nodal edge count structure (i.e., the vector n) remains constant
along the curve. The existence of central Dirichlet solutions implies that nodal points may move into
(and through) the centre along a spectral curve (see also Theorem 2.9, [16]). At this instance the nodal
edge count structure changes twice; first when the node hits the centre and then again when it has moved
through. If n0 is the nodal edge count structure at a central Dirichlet solution, then generically the value
of the function at the centre will change its sign along the spectral curve close to the central Dirichlet
solution. If n< and n> are the nodal edge count structures close to the central Dirichlet solution then
their entries differ at most by one n>,e − n<,e = ±1 and when the nodal point hits the centre one has
no,e = min(n>,e, n<,e). This is shown in more detail for a numerical example in Figure 6, where some
central Dirichlet solutions are indicated on the spectral curves. The figure also shows the relevance of
the central Dirichlet solutions for finding numerical solutions. The central Dirichlet solutions can be
constructed directly using the machinery of the proof in the next section. From that one can then obtain
a full spectral curve numerically by varying the parameters appropriately.
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Figure 6. Upper panel (a): Two spectral curves (green and blue) of the star graph described in the
caption of Figure 5 with attractive nonlinear interaction. The yellow and pink dots indicate positions
that correspond to central Dirichlet solutions. The nodal edge structure n is indicated for each part of
the curve. The latter is constant along spectral curves apart from jumps at the positions that correspond
to central Dirichlet solutions. Lower panel (b): The three diagrams show how the nodal points move
through the centre while N is increased through a central Dirichlet point on a spectral curve (the
green curve in the upper panel). Only some nodal points close to the centre are shown. In the left
diagram the three large dots are the closest to the centre and the arrows indicate how they move when
N is increased. The numbers give the number of nodal domains on each edge. Increasing N further
two nodal points on different edges merge at the centre as shown in the middle diagram. On the
corresponding edges one nodal domain disappears. Further increasing N the nodal point moves from
the centre into the remaining edge where the number of nodal domains is increased by one.

4. Proofs of Main Theorems

We prove the two theorems for repulsive and attractive interaction separately. The main construction
is however the same. We start by describing the idea behind the construction and then turn to the actual
proofs. Let m(±)

1,�e
(k) be the functions describing the deformation parameter of solutions on the interval of

length � with Dirichlet boundary conditions and a single nodal domain (they are given as the inverse of
Equation (14); see also the lowest curve in Figure 3). Those functions are well-defined for k > π

�e
in the

repulsive case and for k < π
�e

in the attractive case. Using these, we define
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φe := σe χ
(±)
m(±)

1,�e
(k), k

∣∣∣∣∣
[0,�e ]

, (21)

for e = 1, . . . , E, and where σe = ±1 are signs that will be specified later. These are of course just
the solutions of the NLS with one nodal domain on the corresponding interval at spectral parameter
μ = k2. In order to ensure that this function is well defined on all edges at given k we have to choose
k ∈ ( π

�1
, ∞) in the repulsive case and k ∈ (0, π

�E
) in the attractive case (recall that we ordered the edge

lengths by �1 < . . . < �E).
As φe(0) = 0 by construction, the set {φe}E

e=1 defines a continuous function on the graph including
the centre for all allowed values of k. However, in general, these functions do not satisfy the remaining
Kirchhoff condition ∑E

e=1
dφe
dxe

(0) = 0. The idea of the proofs is the following. We consider ∑E
e=1

dφe
dxe

(0)
as a function of k and need to show that it vanishes at some k = k0. We find a particular set of signs
{σe} for which it is easy to show that ∑E

e=1
dφe
dxe

(0) changes sign as k is varied within its allowed range.
Since this function is continuous in k it must vanish somewhere, which establishes the required central
Dirichlet solution with exactly one nodal domain on each edge.

As we recognized above the role which the derivative of the solution plays in the proof, let us
now directly calculate it.

θ(±)(m) :=
1√
2k2

dχ
(±)
m,k

dx
(0) =

⎧⎪⎨⎪⎩
√

m
1+m for g = 1,
√

m(1−m)
1−2m for g = −1.

(22)

In particular, expressing the derivative as a function of m and k and multiplying by a factor 1√
2k2 ,

we see that the resulting function θ(±)(m) does not depend explicitly on k, but only via the deformation
parameter, m.

Remark 1. In the statement of the theorem we have assumed that all edge lengths are different and stated how
this may be relaxed in a subsequent remark. We can explain this now in more detail. Assume that we have two
edge lengths that coincide. Denote those edges by e0, e1 and follow the construction above. By choosing opposite
sign for the two edges σe0 = σe1 the contribution of the two edges to the sum of derivatives ∑E

e=1
dφe
dxe

(0) cancels

exactly for all allowed values of k, that is
dφe0
dxe0

(0) +
dφe1
dxe1

(0) = 0. One may then focus on the subgraph where
the two edges are deleted and continue to construct a solution on the subgraph.
One may also start with a graph with different edge lengths. If one has found any regular central Dirichlet
solution on the graph one may add as many pairs of edges of the same length and find a regular non-Dirichlet
solution on the larger graph following the above construction.

4.1. The Repulsive Case g = 1:

Proof of Theorem 1. Using the construction defined above we have to establish that there is a choice
for the signs σ = (σ1, . . . , σE) and value for the spectral parameter k =

√
μ such that the Kirchhoff

condition ∑∞
e=1

dφe
dxe

(0) = 0 is satisfied. For k ∈ ( π
�1

, ∞) let us define the function

fσ(k) :=
E

∑
e=1

σeθ(+)
(

m(+)
1,�e

(k)
)
=

E

∑
e

σe

√
m(+)

1,�e
(k)

1 + m(+)
1,�e(k)

(23)

where θ(+)(m) was defined in Equation (22) and m(+)
1,�e

(k) is the inverse of

k(+)
1,�e

(m) =
2
�e

√
1 + mK(m) (24)
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as defined in Equation (14) (setting n = 1 for one nodal domain). The Kirchhoff condition is equivalent
to the condition fσ(k) = 0 for some k > π

�1
.

To continue the proof, we point out some monotonicity properties of θ(+)(m) and m(+)
1,�e

(k).
These properties may be easily verified by direct calculation using Equations (14) and (22). For m ∈ (0, 1)
the functions θ(+)(m) and k(+)

1,�e
(m) are strictly increasing and

θ(+)(0) = 0, θ(+)(1) =
1
2

, (25)

k(+)
1,�e

(0) =
π

�e
, k(+)

1,�e
(m) −→

m→1
∞. (26)

This implies that θ(+)
(

m(+)
1,�e

(k)
)

is strictly increasing for k ∈ ( π
�e

, ∞) and

θ(+)

(
m(+)

1,�e

(
π

�e

))
= 0 , θ(+)

(
m(+)

1,�e
(k)
)
−→
k→∞

1
2

. (27)

If E ≥ 3 is odd we choose the signs σ = (σ1, . . . , σE) to satisfy the following conditions

σ1 = −1 and
E

∑
e=2

σe = 0 (28)

and

fσ

(
π

�1

)
=

E

∑
e=1

σeθ(+)

(
m(+)

1,�e

(
π

�1

))
> 0 . (29)

Such a choice of signs is always possible as θ(+)
(

m(+)
1,�e

(
π
�1

))
> 0 for all e > 1. We then get by

Equations (27) and (28) that limk→∞ fσ(k) = 1
2 ∑E

e=1 σe = − 1
2 . By continuity there exists k0 ∈ ( π

�1
, ∞)

such that fσ(k0) = 0 for the given choice of signs. This proves the theorem for odd E.
For an even number of edges E = 2M (M ≥ 2) one needs to do a little bit more work. In this case,

there are two strategies for choosing signs, σ = (σ1, . . . , σE), and showing that fσ (k) vanishes for some k.

1. One may choose more negative signs than positive signs so that ∑e σe < 0. Then limk→∞ fσ (k) =
1
2 ∑E

e=1 σe is trivially negative. The difficulty here is in showing that such a choice is consistent

with fσ

(
π
�1

)
> 0. This generally leads to some conditions which the edge lengths should satisfy.

2. One may choose as many positive as negative signs, which makes it easier to satisfy fσ

(
π
�1

)
> 0

(i.e., the conditions on the edge lengths are less restrictive). Yet, the difficulty here lies in
limk→∞ fσ (k) = 0, which means that one needs to show that this limit is approached from the
negative side (i.e., find the conditions on the edge lengths which ensures this).

These two strategies give some indication on how our proof may be generalized beyond the
stated length restrictions. Moreover, they also give a practical instruction for how one may search for
further solutions numerically.

We continue the proof by following the second strategy and setting

σe =

{
1 for e = 1 and e ≥ M + 2,

−1 for 2 ≤ e ≤ M + 1
(30)

so that ∑E
e=1 σe = 0. One then has limk→∞ fσ (k) = 0 and we will show that the leading term in the

(convergent) asymptotic expansion of fσ (k) for large k is negative. Using the known asymptotics [17]
of the elliptic integral K(m) as m = 1− δm goes to one (or δm→ 0)
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K(1− δm) = −1
2

log(δm) + 2 log(2) + O (δm log(δm)) (31)

one may invert Equation (24) asymptotically for large k as

1−m(±)
1,�e

(k) = 16e−
k�e√

2 + O
(

ke−
√

2k�e
)

(32)

and, thus

√
m(±)

1,�e
(k)

1 + m(±)
1,�e

(k)
=

√
1−
(

1−m(±)
1,�e

(k)
)

2−
(

1−m(±)
1,�e

(k)
)

=
1
2
− 1

16

(
1−m(±)

1,�e
(k)
)2

+ O
((

1−m(±)
1,�e

(k)
)3
)

=
1
2
− 16e−

√
2k�e + O

(
ke−3 k�e√

2

)
.

(33)

This directly leads to the asymptotic expansion

fσ(k) = −
E

∑
e=1

σe16e−
√

2k�e + O
(

ke−3 k�1√
2

)
= −16e−

√
2k�1

(
1 +

E

∑
e=2

σee−
√

2k(�e−�1)

)
+ O
(

ke−3 k�1√
2

)
(34)

which is negative for sufficiently large k because �1 is the shortest edge length.
It is left to show fσ

(
π
�1

)
> 0.

For this let us write m(+)
1,�e

(k) = m(+)
1,1 (k�e) for each term. As θ(+)

(
m(+)

1,1 (π)
)
= 0 the condition

fσ

(
π
�1

)
> 0 is equivalent to

M+1

∑
e=2

θ(+)

(
m(+)

1,1

(
π�e

�1

))
<

E

∑
e=M+2

θ(+)

(
m(+)

1,1

(
π�e

�1

))
, (35)

using our choice of the signs, Equation (30). Since m(+)
1,1 and θ(+) are increasing functions and

�1 < . . . < �E, condition (35) is certainly satisfied if

θ(+)
(

m(+)
1,1

(
π�M+2

�1

))
θ(+)

(
m(+)

1,1

(
π�M+1

�1

)) >
M

M− 1
. (36)

The condition (36) restricts the three edge lengths �1, �M+1 and �M+2 and it is equivalent to the
condition (5) stated in the theorem. Indeed, this is trivial for the right-hand side where M

M−1 = E
E−2 .

For the left-hand side note that Equation (6) in Theorem 1 identifies m+ = m(+)
1,1

(
π�M+2

�1

)
and

m− = m(+)
1,1

(
π�M+1

�1

)
such that the left-hand-side of the stated condition (5) in the theorem and the

left-hand side of Equation (36) are identical when written out explicitly.

4.2. The Attractive Case g = −1:

Proof of Theorem 2. In the attractive case we can start similarly to the previous proof by rewriting
the Kirchhoff condition on the sum of derivatives as fσ(k) = 0 for some k ∈ (0, π

�E
) where

fσ(k) = k2
E

∑
e=1

σeθ(−)
(

m(−)
1,�e

(k)
)
=

E

∑
e

σe

4
√

m(−)
1,�e

(k)(1−m(−)
1,�e

(k))K
(

m(−)
1,�e

(k)
)2

�2
e

. (37)
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The additional factor k2 is irrelevant for satisfying the condition but allows us to extend the
definition of the function to k = 0 (where k2 ∼ 1− 2m(−)

1,� (k)). Noting that m(−)
1,�e

(k) is a decreasing

function for k ∈ (0, π
�e
) with m(−)

1,�e
(0) = 1

2 and m(−)
1,�e

(
π
�e

)
= 0 and K(m) is increasing with m we get

that the function

k2θ(−)
(

m(−)
1,�e

(k)
)
=

4
√

m(−)
1,�e

(k)(1−m(−)
1,�e

(k))K
(

m(−)
1,�e

(k)
)2

�2
e

is a decreasing function for k ∈ (0, π
�e
) and

lim
k→0

k2θ(−)
(

m(−)
1,�e

(k)
)
=

2K( 1
2 )

2

�2
2

,
(

π

�e

)2
θ(−)

(
m(−)

1,�e

(
π

�e

))
= 0.

Altogether this implies that

fσ(0) = 2K
(

1
2

)2 E

∑
e=1

σe

�2
e

(38)

and

fσ

(
π

�E

)
=

E−1

∑
e=1

σe

4
√

m(−)
1,�e

(
π
�E

) (
1−m(−)

1,�e

(
π
�E

))
K
(

m(−)
1,�e

(
π
�E

))2

�2
e

(39)

Now let us assume that the two conditions (8) stated in Theorem 2 are satisfied and let us choose
(for M < E/2 as is given in the condition of the theorem)

σe =

{
1 for e ≤ M,

−1 for e ≥ M + 1.
(40)

Then

fσ(0) = 2K
(

1
2

)2
[

M

∑
e=1

1
�2

e
−

E

∑
e=M+1

1
�2

e

]
(41)

and the right inequality of (8) directly implies that fσ(0) < 0.
In order to prove the existence of the solution stated in Theorem 2, it is left to show that

fσ

(
π
�E

)
> 0, which would imply that fσ vanishes for some k ∈ (0, π

�E
). Using our choice of signs and

the identity m(−)
1,�e

(k) = m(−)
1,1 (k�e) we may rewrite Equation (39) as

fσ

(
π

�E

)
=

M

∑
e=1

4
√

m(−)
1,1

(
π�e
�E

) (
1−m(−)

1,1

(
π�e
�E

))
K
(

m(−)
1,1

(
π�e
�E

))2

�2
e

−
E−1

∑
e=M+1

4
√

m(−)
1,1

(
π�e
�E

) (
1−m(−)

1,1

(
π�e
�E

))
K
(

m(−)
1,1

(
π�e
�E

))2

�2
e

.

(42)

As
√

m(1−m)K(m)2 is an increasing function for m ∈ (0, 1
2 ) and m(−)

1,1 (k) is a decreasing function
of its argument the left inequality in Equation (8) implies

√
m− (1−m−)K (m−))2

E−1

∑
e=M+1

1
�2

e
<
√

m+ (1−m+)K (m+))
2

M

∑
e=1

1
�2

e
(43)
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where m+ = m(−)
1,1

(
π�M
�1

)
and m− = m(−)

1,1

(
π�M+1

�1

)
. The same monotonicity argument implies that the

negative contributions in Equation (42) are smaller than the left-hand side of inequality Equation (43)
and that the positive contributions in Equation (42) are larger than the right-hand side of inequality
Equation (43). Thus Equation (43) implies fσ

(
π
�E

)
> 0, as required.

5. Conclusions

We have established the existence of solutions of the stationary nonlinear Schrödinger equation
on metric star graphs with a nodal point at the centre. The existence is subject to certain conditions on
the edge lengths that can be satisfied for any numbers of edges E ≥ 3. We stress that some of these
solutions are deep in the nonlinear regime where finding any solutions is quite non-trivial. Let us
elaborate on that. The non-linear solutions come in one-parameter families, and a possible way to
track those families (or curves) is to start from the solutions of the corresponding linear Schrödinger
equation. Indeed, since the linear solutions are good approximations for the nonlinear solutions
with low intensities they may be used as starting points for finding nonlinear solutions numerically.
By slowly changing parameters one may then find some spectral curves that extend into the deep
nonlinear regime. However, there may be many solutions on spectral curves that do not extend to
arbitrary small intensities and these are are much harder to find numerically. By focusing on solutions
which vanish at the centre our work shows how to construct such solutions. These may then be used
in a numerical approach to give a more complete picture of spectral curves.

The solutions that we construct are characterised by their nodal count structure. The nodal
structure on a spectral curve is constant as long as the corresponding solutions do not vanish at
the centre. Our approach thus constructs the solutions where the nodal structure changes along the
corresponding spectral curve. In this way we have made some progress in characterizing general
solutions on star graphs in terms of their nodal structure.

Many open questions remain. The main one being whether all spectral curves of the NLS equation
on a star graph may be found just by combining the linear solutions with the non-linear solutions
which vanish at the centre. If not, how many other spectral curves remain and how can they be
characterized? Numerically we found that apart from the ground state spectral curve it is generic for
a spectral curve to have at least one point where the corresponding solution vanishes at the centre.
Of course this leaves open how many spectral curves there are where the corresponding solutions
never vanishes at the centre. Another interesting line of future research may be to extend some of our
results to tree graphs.
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Appendix A. Elliptic Integrals and Jacobi Elliptic Functions

We use the following definitions for elliptic integrals (the Jacobi form)

F(x|m) :=
∫ x

0

1√
1− u2

√
1−m u2

du (A1a)

K(m) :=F(1|m) (A1b)

E(x|m) :=
∫ x

0

√
1−m u2
√

1− u2
du (A1c)

Π(x|a, m) :=
∫ x

0

1√
1− u2

√
1−m u2(1− a u2)

du (A1d)

where 0 ≤ x ≤ 1, m ≤ 1 and a ≤ 1. Note that our definition allows m and a to be negative.
The notation in the literature is far from being uniform. Our choice seems the most concise for

the present context and it is usually straight-forward to translate our definitions into the ones of any
standard reference on special functions. For instance, the NIST Handbook of Mathematical Functions [17]
defines the three elliptical integrals F(φ, k), E(φ, k) and Π(φ, α, k) by setting x = sin(φ), m = k2,
and a = α2 in our definitions above.

Jacobi’s Elliptic function sn(x, m), the elliptic sine, is defined as the inverse of F(u|m)

u = sn(x, m) ⇔ x = F(u|m) . (A2)

This defines sn(x, m) for x ∈ [0, K(m)] which can straight-forwardly be extended to a periodic
function with period 4K(m) by requiring sn(K(m) + x, m) = sn(K(m)− x, m), sn(−x, m) = −sn(x, m)

and sn(x + 4K(m), m) = sn(x, m). The corresponding elliptic cosine cn(x, m) is obtained by requiring
that it is a continuous function satisfying

cn2(x, m) + sn2(x, m) = 1 (A3)

such that cn(0, m) = 1. It is useful to also define the non-negative function

dn(x, m) :=
√

1−m sn2(x, m). (A4)

At m = 0 and m = 1 the elliptic functions can be expressed as

sn(x, 0) = sin x, sn(x, 1) = tanh x, (A5a)

cn(x, 0) = cos x, cn(x, 1) = cosh−1 x, (A5b)

dn(x, 0) =1, dn(x, 1) = cosh−1 x . (A5c)

Derivatives of elliptic functions can be expressed in terms of elliptic functions

d
dx

sn(x, m) =cn(x, m)dn(x, m), (A6a)

d
dx

cn(x, m) =− sn(x, m)dn(x, m), (A6b)

d
dx

dn(x, m) =−m sn(x, m)cn(x, m) . (A6c)

The first of these equations implies that u = sn(x, m) is a solution of the first order ordinary
differential equation

du
dx

=
√

1− u2
√

1−mu2 . (A7)
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Abstract: We consider the interactions of traveling localized wave solutions with a vertex in a
star graph domain that describes multiple Josephson junctions with a common/branch point (i.e.,
tricrystal junctions). The system is modeled by the sine-Gordon equation. The vertex is represented
by boundary conditions that are determined by the continuity of the magnetic field and vanishing
total fluxes. When one considers small-amplitude breather solutions, the system can be reduced
into the nonlinear Schrödinger equation posed on a star graph. Using the equation, we show
that a high-velocity incoming soliton is split into a transmitted component and a reflected one.
The transmission is shown to be in good agreement with the transmission rate of plane waves
in the linear Schrödinger equation on the same graph (i.e., a quantum graph). In the context of
the sine-Gordon equation, small-amplitude breathers show similar qualitative behaviors, while
large-amplitude ones produce complex dynamics.

Keywords: soliton; breather; sine-Gordon equation; Schrödinger equation; star graph; quantum graph

1. Introduction

A quantum graph is a metric graph, i.e., a network-shaped structure of vertices connected by
edges, with a Schrödinger-like operator suitably defined on functions that are supported on the edges.
It arises as a model for wave propagations in a system similar to a thin neighborhood of a graph.
Pauling [1] was most likely the pioneer of the research subject when he modeled free electrons in
organic molecules. In his model, he approximated the atoms as vertices while the electrons form
bonds that fix a frame in the shape of the molecule on which the free electrons are confined. The term
‘quantum graph’ itself may be a shortening of the title of a paper by Kottos and Smilansky [2].
See, e.g., [3] for an elementary introduction to quantum graphs, where some basic tools in the spectral
theory of the Schrödinger operator on metric graphs are discussed.

Quantum graphs have been used to describe a variety of mathematical concepts as well as physical
problems and applications. A review of quantum graphs with applications in theoretical physics is
provided by Gnutzmann and Smilansky [4]. For a comprehensive introduction and survey of the
current state of research on quantum graphs and their applications, the reader is encouraged to consult
a mathematically oriented book by Berkolaiko and Kuchment [5]. See also an introduction and a brief
survey to quantum graphs by Kuchment [6].

Symmetry 2019, 11, 271; doi:10.3390/sym11020271 www.mdpi.com/journal/symmetry103
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The study of nonlinear counterparts of quantum graphs, where the linear wave equations are
replaced by nonlinear ones, has been growing due to their potential of becoming a paradigm model
for topological effects in nonlinear wave propagation (see [7] for a recent review). Because of the
nonlinearity, soliton solutions exist. However, a unique ’trapped soliton’ state, which is admitted by
the cubic focusing nonlinear Schrödinger (NLS) equation on the star graph with Kirchhoff conditions
at the vertex, is not the ground state [8]. This is remarkably different from the NLS equation on the
line. The existence and behavior of trapped solitons with a δ-interaction at the vertex are considered
by Adami et al. [9]. A generalized NLS equation with power nonlinearity on star graphs has also been
investigated in various reports [10–12]. The existence of ground states of the same equation on several
types of star metric graphs has been considered in [13]. Bifurcations of stationary solutions in various
other simple topologies have also been studied, such as in tadpole graphs consisting of a half-line
joined to a loop at a single vertex [14], dumbbell-shaped metric graphs [15,16], bowtie graphs [16], and
double-bridge graphs [17].

In addition to stationary solutions, the interaction of a moving soliton with the vertex is also
intriguing. Soliton scattering in the NLS equation on a star graph with a repulsive δ-, δ′-function
potential, and the free Kirchoff condition at the vertex is studied by Adami et al. [18], who extended
the work of Holmer et al. [19]. Adami et al. showed that a soliton will split into a transmitted soliton, a
reflected one, and some radiation upon collision with the vertex. Soliton dynamics in star graphs with
’integrable’ vertex conditions that preserve the solution norm was studied in [20].

In this work, we consider a star graph that models a tricrystal Josephson junction, see Figure 1.
A Josephson junction is a quantum mechanical structure that is made of two superconducting electrodes
separated by a thin barrier. Three semi-infinite junctions with the ends meeting at a common point
form a tricrystal junction. The vertex conditions were likely first derived in [21,22], where the
structure was proposed as a logic gate device. In recent work, tricrystal Josephson junctions were
fabricated as a probe of the order parameter symmetry of high-temperature superconductors [23–26].
In particular, tetracrystal junctions (i.e., star graphs with four arms) were also constructed and studied
experimentally, see, e.g., Section IV.C of [26,27].

The study of soliton solutions in tricrystal junctions has only been done for topological solitons, i.e.,
kinks, especially when they are static [25,28–30]. This type of solitons is also called ‘fluxons’ because
they carry integer quanta of electromagnetic flux. The dynamics of moving vortices in tricrystal
junctions was discussed in [21,22,31,32]. Here, instead, we consider for the first time the dynamics of
non-topological solitons, i.e., breathers (see Figure 1). In the case of small-amplitude breather solutions,
the governing equation, which is the sine-Gordon (sG) equation, can be reduced into the NLS equation
with vertex conditions different from those considered in previous works. Soliton dynamics within
that approximation will be discussed as well.

The paper is structured as follows. In Section 2, we discuss the governing equation of tricrystal
Josephson junctions. Under an assumption of small-amplitude solutions, we will also derive the NLS
equation with vertex conditions. In Section 3, the scattering of linear plane waves, soliton and breather
solutions will be discussed. Numerical simulations will be presented in the same section describing
the scattering processes when nonlinearity is present. In Section 4, we consider the nonlinear scattering
of sG breathers numerically. We present two different typical cases corresponding to small- and
large-amplitudes with slow- and fast-incoming velocities. The conclusion of the paper is in Section 5.

2. Governing Equations

The phase difference of wave functions along each Josephson junction is described by the
sG equation

u(j)
xx − u(j)

tt = sin u(j), (1)

where upper indices j = 1, 2, 3, label the different branches of the system and the subscripts indicate
derivatives with respect to the variables. The direction of the x-axes follows the sketch in Figure 1.
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At the meeting point between the three branches, i.e., x = 0, we have the boundary
conditions [28,31]

u(1) = u(2) + u(3), u(1)
x = u(2)

x = u(3)
x . (2)

The first equation comes from the physical property that the magnetic flux through an
infinitesimally small contour encircling the origin must vanish, i.e., the total change of the
gauge-invariant phase difference is zero. The second equation means that the field, which is
proportional to the slope of the phase difference, is continuous at the origin.

Figure 1. A schematic diagram of the system, showing a breather traveling from x ! 0 towards x = 0.
The convention of the spatial direction used herein is indicated.

Far away from the origin x ! 0, the sG Equation (1) admits two types of fundamental solitons: a
kink, that is in the form of

u(x, t) = 4 tan−1 {exp[−γ(x− vt− x0)]} , x0 ∈ R (3)

and a breather

u(x, t) = 4 tan−1 {tan θ sin [γ cos(θ)(t− vx− t0))] sech [γ sin(θ)(x− vt− x0)]} , x0 ∈ R (4)

where γ = 1/
√

1− v2 is the Lorentz-type contraction of a moving excitation. Both represent a
topological and non-topological soliton moving with velocity v. The breather (4) oscillates in time
with frequency γ cos θ. All the previous work on solitons in tricrystal junctions dealt with the first
class of solutions (see the related references mentioned in Section 2). Here, we will concentrate on
breather dynamics.

To study the dynamics of small-amplitude breathers (4), one can also use the standard
multiple-scale expansion method. Writing

u(j)(x, t) = εU(j)(X, T) + c.c. + higher-order terms,

where X = εx and T = ε2t/2 are the slow space and time variables, respectively, and c.c. is the
complex conjugation of the preceding terms, we obtain the NLS equation (see, e.g., [33])

iU(j)
T + U(j)

XX +
1
2
|U(j)|2U(j) = 0. (5)
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The boundary conditions (2) then become

U(1) = U(2) + U(3), U(1)
X = U(2)

X = U(3)
X . (6)

Far away from the branch point X = 0, i.e., X → −∞, the NLS equation has a traveling
bright soliton

U(X, T) = A sech(A(X− vT − X0)/2) exp(iφ− ivX/2 + i(A2 − v2)T/4), (7)

with A > 0, X0, φ and v ∈ R. This soliton approximates the breather solution (4) for small |θ|.

3. Scattering of NLS Solitons

Studying the scattering problem for non-topological solitary waves as sketched in Figure 1, we can
consider a symmetric solution between the second and third branch, i.e., u(2) = u(3) and U(2) = U(3).
Under the symmetry, the initial boundary value problems (1)–(2) and (5)–(6) become a single equation
on the real line:

uxx − utt = sin u, x ∈ R, (8)

with u(0−) = 2u(0+), ux(0−) = ux(0+) and

iUT + UXX +
1
2
|U|2U = 0, X ∈ R, (9)

with U(0−) = 2U(0+), UX(0−) = UX(0+).

3.1. Scattering in the Linear Problems

It is natural to consider first the scattering problem for plane waves in the linear Schrödinger
equation obtained by omitting the cubic term in Equtaion (9). Incoming plane waves arriving from
X → −∞ has the form U(X, T) = ei(kX−ωT), with the amplitude normalized to 1, ω > 0, and k =

√
ω.

The general solution of the scattering problem is

ψ(X) =

{
ei(kX−ωT) + r̃ei(−kX−ωT), X < 0,
t̃ei(kX−ωT), X > 0.

(10)

Here, r̃ and t̃ are reflection and transmission coefficients, respectively.
Substituting the solution (10) into the boundary conditions at X = 0 will give us

r̃ =
1
3

, t̃ =
2
3

. (11)

It turns out that these coefficients do not satisfy the standard (unitarity) condition due to
the following:

|r̃|2 + |t̃|2 =
5
9
< 1, t̃ < 1 + r̃ =

4
3

.

This informs us that the vertex conditions will not preserve the ‘mass’ of localized solutions
M =

∫
X∈R |U|2 dX.

3.2. NLS Soliton Scattering

We now consider the interaction of a bright soliton with the vertex. We integrate the NLS
Equation (9) numerically using the fourth-order Runge-Kutta method. The Laplacian is discretized
using a three-point central difference. Therefore, our scheme has the discretization error of at least
order O(Δx2, Δt4), where Δx and Δt are the spatial mesh size and the time step, respectively. We used
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several combinations of Δx and Δt to make sure that variations of the computed results caused by the
discretization are small enough. As the initial data, we take a soliton approaching the branch point
from X ! 0 in the form of U(X, 0) from (7), and without losing its generality, we set A = 1.

In Figure 2 we plot the dynamics of a soliton traveling towards the origin for two different
initial velocities, namely v = 0.3 and 3, representing slow- and fast-moving solitons, respectively.
In both cases, especially for the slow-incoming soliton, we see that as it approaches the branch point,
it accelerates. This is usually a characteristic of an attractive potential. However, note that after the
interaction, there is no trapped state, which on the other hand is a characteristic of a repulsive potential.
It can be easily checked that the corresponding linear eigenvalue problem of (9) has no point spectrum,
which confirms the absence of a trapped state. Thus, our branching point has both characteristics of an
attractive as well as a repulsive potential at the same time.
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Figure 2. (a,b) Dynamics of a soliton moving towards the branch point X = 0 with the initial velocity
v = 0.3 (a) and v = 3 (b). Shown are the top view of |U(X, T)|2. (c) Numerically obtained transmission
rate T̃s as a function of the incoming soliton velocity v. The horizontal dashed line is the theoretical
approximation t̃2 = 4

9 from (11).
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The main difference between Figure 2a,b is that for the slow-incoming soliton, most of the mass is
reflected, while for the fast-moving one, most of it is transmitted. To quantify how much of the mass is
being transmitted, we define the ‘transmission rate’ T̃s as

T̃s = lim
T→∞

1
4A

∫
X>0
|U(X, T)|2 dX. (12)

Here, we normalize the rate with the initial L2-norm limT→−∞ ||U(T)||2L2 = 4A, which (in the
absence of the vertex conditions) normally would be constant in time. We plot the transmission rate T̃s

in Figure 2c for different values of the initial velocity v. There is a steep transition in the interval of
v ≈ 0.5 and v ≈ 1.5 where the soliton changes from being mostly reflected to mostly transmitted.

Recalling that for large v, the essential wave numbers of the Fourier transform of NLS solitons
are concentrated around k = v, we can expect that the quantum transmission rate of a soliton with
velocity v will approach a limiting value that is given by the absolute value square of the transmission
coefficient of the linear plane wave |t̃|2, see (11). We can see that this is indeed the case.

4. Scattering of sG Breathers

After studying the soliton scattering in the NLS setting, finally, we now consider the original
problem, i.e., scattering in the sG equation context. The results of Section 3 should be comparable to
the scattering of small-amplitude breathers in the sG equation.

In the infinite domain problem without any vertex condition at x = 0, the sG equation preserves
the ‘mass’H =

∫
x∈R H dx, where the function H is the Hamiltonian given by

H(x, t) =
1
2

u2
t +

1
2

u2
x + (1− cos u). (13)

We solved the sG Equation (8) using a similar numerical integration method previously
implemented in solving the NLS equation in Section 3. As the initial data, we take the breather (4)
with x0 ! 0 at t = 0.

First, we simulate the dynamics of small-amplitude breathers with θ = cos−1 0.99. In Figure 3,
we present our simulations of a breather traveling with two different velocities towards the branch
point x = 0. It is interesting to see a close resemblance between panels (a, b) of Figure 3 and those of
Figure 2. It is then instructive to compute the transmission rate of the breathers for different values of
the incoming velocity. Defining

T̃b = lim
T→∞

1
H0

∫
x>0

H(x, t) dx, (14)

whereH0 = limt→−∞ ||H(t)||L1 , we plot in Figure 3c the transmission rate T̃b, which again compared
to Figure 2c shows the same qualitative profile. Moreover, we obtain numerically that the nonlinear
transmission rate tends to the linear one t̃2 (11) as the incoming breather velocity v→ 1.

Next, we consider large-amplitude breathers. In a similar setup, we simulated a slow- and a
fast-incoming soliton. We present the typical dynamics of the two cases in Figure 4, where we take
θ = cos−1 0.1.

Far away from the branch point, a large-amplitude breather can be seen obviously as an oscillating
pair of a kink and an anti-kink. Upon collision with the vertex, the slow-moving breather is trapped
at the origin, while the fast-moving one dissociates into a trapped kink and an ejected anti-kink.
Both cases show completely different dynamics from the small-amplitude breathers and the NLS
solitons, see Figures 2 and 3. From the simulations, we note that the vertex acts as a repulsive potential
for small-amplitude breathers, while it behaves as an attractive potential for large-amplitude ones.
The difference can be explained as follows.
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Figure 3. Similar to Figure 2, but for (small-amplitude) sG breathers with velocity v = 0.1 (a) and
v = 0.3 (b). In panels (a,b), shown are the top view of H(x, t). Panel (c) is the transmission rate
T̃b as a function of the incoming breather velocity v. The horizontal dashed line is the theoretical
approximation t̃2 = 4

9 from (11). Here, θ = cos−1 0.99.

The branch point has been reported before to trap kinks, i.e., topological excitations [21,29,31,32].
They are given analytically by [29,31]

u = 4 tan−1
{

exp[−x± ln
√

3]
}

, (15)

with the ‘+’ sign for the region x < 0 and the ‘−’ sign for x > 0. They also have an oscillatory mode
with frequency [29,31]

ω =

√
1 +
√

13
8

. (16)

When excited, the mode will vibrate, but eventually, it will fade away because of ’radiative’
damping, i.e., a damping mechanism due to the excitation of higher harmonics with frequencies in the
continuous spectrum. Even more, trapped kink oscillations decay asymptotically at a rate of O(t−1/2),
see [34]. Here, even though our excitations are non-topological, large-amplitude breathers are close
to an intertwining pair of kink and anti-kink. Trapping is therefore expected and in this case, an
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oscillatory mode must exist. Such oscillation can be seen quite well in Figure 4b where the trapped
kink jiggles about x = 0.
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Figure 4. Similar to Figure 3a,b, but for a large-amplitude sG breather with velocity v = 0.1 (a) and
v = 0.5 (b). Here, θ = cos−1 0.1.

As for the oscillatory dynamics of the breather in Figure 4a, we can explain it as follows.
The breather does not dissociate into a separate kink and anti-kink because its free energy is not
enough to do so. As a result, it maintains its non-topological shape. In return, the vertex will tend
to repel it. However, the non-topological excitation still has a relatively large amplitude, which on
the other side looks like a kink and hence tends to be attracted by the vertex. Therefore, the branch
point acts as a repellent and an attractor at the same time. This creates the oscillatory movement of
the breather. Additionally, we also observe a fast oscillation. We strongly suspect that it is due to the
trapping mode and hence its frequency is approximately given by (16).

5. Conclusions

We have analyzed for the first time the dynamics of breathers in a tricrystal Josephson junction.
The physically relevant model consists of three semi-infinite Josephson junctions coupled at one
end. For small-amplitude breathers, we have derived the corresponding NLS equation on star
graphs from the governing sG equation. We have shown the resemblance of the dynamics of
small-amplitude breathers with the NLS bright solitons. Large-amplitude breathers yield qualitatively
different behaviors.

For future work, it will be interesting to rigorously study the collision of a fast-incoming NLS
soliton with the vertex. This study will be along the lines of the analysis by Holmer et al. [19] about
the scattering of fast-moving solitons by a delta interaction on the line. An extension of their work
to the case of sG equations on graphs, which is not available yet, will also be particularly appealing.
In the context of collective coordinate methods, it will be important to derive an effective Hamiltonian
describing slow-moving soliton interactions with the vertex, along the idea of, e.g., [35–37]. The main
challenge is how to incorporate the vertex condition, which is not explicitly embedded within the
governing equation. On the numerical side, it will also be interesting to provide bounds to the
discretization as well as the round-off errors of our numerical scheme.
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Abstract: We considered the propagation of nonlinear shallow water waves in a narrow channel
presenting a fork. We aimed at computing the coupling conditions for a 1D effective model, using 2D
simulations and an analysis based on the conservation laws. For small amplitudes, this analysis
justifies the well-known Stoker interface conditions, so that the coupling does not depend on the angle
of the fork. We also find this in the numerical solution. Large amplitude solutions in a symmetric
fork also tend to follow Stoker’s relations, due to the symmetry constraint. For non symmetric forks,
2D effects dominate so that it is necessary to understand the flow inside the fork. However, even then,
conservation laws give some insight in the dynamics.

Keywords: networks; nonlinear shallow water equations; nonlinear wave equations

1. Introduction

The propagation of nonlinear waves in a network is an important topic. As an example, consider
a hydrological network which is prone to floods. Understanding the global dynamics of the network
can help identify its most vulnerable sections and take the appropriate measures. Real networks are
formed by long 2D or 3D channels of a small cross-section. To study the propagation of waves in such
systems, a first step is to consider a simple fork as a model of elementary junctions. The final goal is to
reduce the model to 1D channels connected by appropriate interface conditions. The study of such 1D
systems is now well advanced, in particular for systems of conservation laws, see the review [1].

The type of PDE model describing the quantity propagating on the network is very important
to derive the coupling conditions. Recently for the sine-Gordon nonlinear wave equation, we [2]
introduced a homothetic reduction [3] where we averaged the operator over the fork region and
consistently took the limit when the width tended to zero. Assuming continuity of the field, we
obtained Kirchhoff’s law for the gradients. Comparing the 2D solution with the one for the reduced
1D equations gives excellent agreement. In this situation, the angle of the fork does not play a role.
When considering networks of rivers, many authors, for example Stoker [4] and Jacovkis [5] assumed
continuity of the water height and continuity of the flux so that again, the angle of the fork did not
come in. In the close context of gas dynamics, Holden and Risebro [6] studied shocks in a pipe with an
elbow. They showed that the Riemann problem had a unique solution when the angle was smaller
than π. The angle is also important for classical hydrodynamics; in a fork, it sets the forces experienced
by the pipes [7]. In fact, for large amplitude shallow water waves our numerical calculations show
that the energy entering a branch can vary from 20% to 50% depending on the symmetry of the fork.
These studies point out the importance of the angle.

A few authors addressed the problem of the angle of a junction. Schmidt [8] studied the 2D
connection between 1D channels; he made no assumption on the size of the connecting domain.
The flow in the junction was assumed linear so that the author used a variational method that gave the
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solution as a superposition of fields. The final result was a system of ordinary differential equations for
the values at the ends of the branches coupled to the shallow water PDEs. Despite its formal beauty,
it remains difficult to handle and does not give a simple picture. Shi et al. [9] studied experimentally and
numerically the propagation of long waves in wide and narrow channels. They used the Boussinesq
dispersive shallow water equations for narrow channels. They observed no angle dependence and a
strong transmission. For the same equations, Nachbin and Simoes [10] obtained interface conditions
containing implicitly the angles of the fork. These gave an excellent matching between the average of
the 2D solution and the solution of the 1D effective model for angles smaller than π/3.

In this article, we consider the nonlinear shallow water equations. The system is very general
because it only involves conservation laws. Also it is simple enough. We revisit the problem of shallow
water propagation in 2D forks using our homothetic reduction procedure to obtain approximate
conservation laws and compare them with the numerical solutions. We compute approximate
conservation for the mass, momenta and energy laws for a general fork geometry. In the small
amplitude limit we recover Stoker’s conditions, i.e., continuity of surface elevation and mass
conservation (Kirchoff law). To our knowledge, this is a first formal justification of Stoker’s interface
conditions. This angle independent reduction holds also for a general class of scalar nonlinear wave
equations, for example the 2D sine-Gordon equation or the 2D reaction-diffusion equation; it confirms
the results of [2]. We computed the 2D numerical solution for a simple T-fork geometry for small and
large amplitudes. The wave was also launched in two different branches to see the effect of symmetry.
We show that Stoker’s conditions hold for the symmetric case for small and large amplitudes. For the
non-symmetric case, they hold for small amplitudes. When the amplitude is large, 2D effects dominate
the fork region. Nevertheless the approximate conservation laws give an insight into the flow.

The article is organized as follows. Section 2 presents the fork geometry and shows the
straightforward reduction for a general class of nonlinear wave equations. In Section 3 we recall the
shallow water equations and their conserved quantities. Section 4 gives the integrals of these equations
on the fork showing that the mass and energy laws do not involve the angles while the momenta laws
do. Section 5 shows the 2D numerical solutions for symmetric and non symmetric configurations for
small and large waves. There, we compare the numerical results with the conservation laws established
in Section 4. We discuss these results and conclude in Section 6.

2. General Scalar Nonlinear Wave Equations

Before considering the nonlinear shallow water equations, we analyze the simpler case of a class
of scalar 2D nonlinear wave equations. This large class includes hyperbolic wave equations like the
sine-Gordon equation as well as reaction diffusion equations like the Fisher equation, to name a few.
We consider equations of the form

αutt + βut − Δu = N(u), (1)

where u(x, y, t) is a scalar, Δ is the usual 2D Laplacian and where N(u) is a nonlinearity not containing
derivatives. The boundary condition on the lateral domain is of Neumann type

∂nu = ∇u · n = 0. (2)

Consider the fork domain shown in Figure 1. Far from the fork region, the solution can be
assumed to be 1D so that we do not loose much information by approximating the 2D dynamics with
a 1D equation. Inside the fork domain, a strong coupling occurs between the branches. To see this,
we proceed as in [2] and integrate the operators on the fork region. Then we examine the behavior
of the different terms as w, the width of the branches, goes to zero. We assume that domains that we
consider behave in a regular way as we shrink w homothetically to zero, [3].
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θ

θ

Figure 1. A fork geometry with arbitrary angles (left) and with right angles (right).

Consider the asymmetric Y-branch shown in the left panel of Figure 1. A first assumption is the
continuity of u which is obvious for the 2D operator. The other condition comes from the integration
of the operator (1) on the fork domain F = IABCDEFGHI. We get∫

[αutt + βut − N(u)] dxdy−
∫

∂F
(∇u) · n ds = 0. (3)

The first integral is of order O(w2). On the exterior boundaries, (∇u) · n = 0 so the line integral
reduces to ∫

IA
· · ·+

∫
CD
· · ·+

∫
FG

. . . ,

which are O(w). We then obtain for w→ 0

− ∂su1 + ∂su2 + ∂su3 = 0, (4)

where ui, i = 1, 2, 3 are respectively the values of the field at the end of branch 1 (IA) and at the
beginning of branches 2 (FG) and 3 (CD). Relation (4) is Kirchhoff’s law [2]. When the widths of the
branches are not equal, this Kirchoff relation becomes

− w1∂su1 + w2∂su2 + w3∂su3 = 0. (5)

Remark that in the result (4) the angle of the fork plays no role. The reduction leading from the
flux equation to (5) is an asymptotic result that holds for w → 0. It is then natural to approximate
the 2D Equation (1) by a 1D equation in each branch together with the conditions of continuity and
Kirchoff (4) at the junctions.

The result we obtain can be connected to a property of the Laplace operator with Neumann
boundary conditions on a so-called “fat” graph [11]. Consider a graph where each edge has a transverse
size w, assume Neumann boundary conditions on the transverse edge. Then the spectrum of the
Laplacian converges to the one of the 1D Laplacian as w→ 0. This is true for compact and non compact
graphs. See the article by Exner and Post [11] and the book by Post [12] for the details of the proof.

The validity of the reduction was confirmed numerically for the 2D sine-Gordon equation, (1) with
α = 1, β = 0 and N(u) = − sin(u) in [2]. There we compared the 2D solutions to the ones of the 1D
sine-Gordon equation in each branch, coupled by the interface conditions. For completeness, we recall
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the case of a sine-Gordon kink propagating in forks with angles 45 and 90 degrees. The kink is an exact
solution in 1D, it is

u(x, t) = 4 arctan
[

exp(
x− vt√
1− v2

)

]
, (6)

where the velocity 0 ≤ v < 1 is a free parameter. To compare the 2D and 1D solutions, we plot the
energies in each branch

Ei
2 =

∫
Ωi

[
1
2

u2
t +

1
2
|∇u|2 + (1− cos u)

]
dxdy, (7)

and

Ei
1 = ∑

i=1,2,3

∫
Ωi

[
1
2

u2
t +

1
2
|ux|2 + (1− cos u)

]
dx, (8)

where Ωi is branch i, abusively named the same in 1D and 2D. The kink is started in branch 1 with
an initial velocity v = 0.75, this gives a typical wavelength λ ≈ 4/

√
1− v2 = 2.7. The width of the

branches is w = 0.7 << λ. Figure 2 shows the time evolution of the energies Ei
2 for forks with angles

45 and 90 degrees and Ei
1, where i = 1, 2 corresponds to the branches. Initially the kink is in branch

1 so that E2
2 = E3

2 = 0. As the kink crosses into branches 2 and 3, E1
2 becomes very small. Note the

excellent agreement between the two expressions Ei
2 and the expression Ei

1. This confirms that the
angle of the fork plays no role for such a system.
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Figure 2. Time evolution of the energies Ei
2 for the kink motion in branches i = 1, 2 for the T-junction

(90 degrees) in full line (red online), for the Y-junction (45 degrees) in dashed line. The energy Ei
1 for

the 1D effective model is plotted with points.

The dynamics of kinks for the sine-Gordon equation is controlled by the energy: if the initial
energy is enough, a kink in branch 1 gives rise to two kinks in branches 2 and 3. This gives a very
simple picture. Other solutions like the breather have much more complicated dynamics, we refer the
reader to [2] for more details.
The dynamics of such waves can then be studied for general networks as we have done in [13].

3. The Nonlinear Shallow Water Equations

The shallow water equations in a 2D domain written in terms of the fluid velocity u(x, t)

u = (u, v)T
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and the water height h(x, t) read [4]

ht +∇ · (hu) = 0, (9)

(hu)t +∇ ·
(

hu2 + gh2

2
huv

)
= 0, (10)

(hv)t +∇ ·
(

huv

hv2 + gh2

2

)
= 0, (11)

where g is the gravitational acceleration. The wall boundary condition is

u · n = 0. (12)

We assume an even bottom of the channels h = h0.

3.1. Conserved Quantities

We first recall the conserved quantities. Integrating Equations (9)–(11) over a 2D closed domain Ω
and using the boundary condition (12) we get

∂t

∫
Ω

h dxdy = 0, (13)

∂t

∫
Ω

hu dxdy +
∮

∂Ω

gh2

2
nx ds = 0, (14)

∂t

∫
Ω

hv dxdy +
∮

∂Ω

gh2

2
ny ds = 0. (15)

A localized wave will have as first conserved quantity the integral of the water elevation

M =
∫

Ω
h dxdy.

The total x and y momenta

Px =
∫

Ω
hu dxdy, Py =

∫
Ω

hv dxdy

will not be conserved in the fork geometries.
A flux relation that can be deduced from the conservation laws (9)–(11) is the total energy flux

et +∇ ·
[

u(e +
gh2

2
)

]
= 0. (16)

where the total energy density is

e =
1
2

[
gh2 + (u2 + v2)h

]
. (17)

Integrating the energy flux relation over a volume Ω we obtain that a localized wave in Ω will
have constant energy

dE
dt

=
d
dt

∫
Ω

e dxdy = 0.
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3.2. Small Amplitude Limit

It is well known that in the linear limit, Equations (9)–(11) reduce to the linear wave equation
for the water height h. To see this, consider the steady state h = h0, u = v = 0, then the linearized
system is

ht + h0∇u = 0, (18)

h0ut + g∇h = 0, (19)

Taking the time derivative of the first equation and plugging in the second equation, we get the
wave equation

htt − gh0(hxx + hyy) = 0. (20)

The boundary conditions reduce to∇h ·n = 0 as can be seen by projecting (19) on n. This equation
is in the class (1).

4. Reduction of the Shallow Water Equations

The shallow water equations cannot be reduced so simply as the nonlinear scalar wave equation.
In fact, it is not clear what are the right interface conditions that should be implemented for a 1D
effective model. Stoker, in his well-known book [4] introduces the following interface conditions for
the water elevations h1, h2, h3 and branch-oriented velocities u‖1, u‖2, u‖3

h1 = h2 = h3, (21)

−h1u‖1 + h2u‖2 + h3u‖3 = 0, (22)

and uses them to analyze the junction of the Mississippi and the Missouri rivers. These conditions
were not justified by a formal argument. Note also that they do not depend on the angle of the junction.

Below, we will see that these conditions arise naturally in the limit of small amplitude for the
shallow water equations. For general amplitudes, it is not clear that these apply. To analyze the
problem, we proceed as in [2], integrate the governing equations on the bifurcation region and consider
the limit of vanishing transverse width w.

4.1. Mass Flux

Integrating the Equation (9) over the closed region F ≡ ABCDEFGHIA yields∫
F

ht dxdy +
∮

∂F
h u · n ds = 0.

Because of the boundary condition u · n = 0 on ABC, DEF and GHI the expression above
reduces to ∫

F
ht dxdy +

∫
AI

h u · n ds +
∫

CD
h u · n ds +

∫
FG

h u · n ds = 0.

The first integral is O(w2) while the three other integrals are O(w). Dividing the equation by w
and taking the limit w→ 0 we get from these three terms

− h1u‖1 + h2u‖2 + h3u‖3 = 0, (23)

where we have introduced the local branch-oriented velocities u‖, u⊥ such that(
u‖

u⊥

)
=

(
cos θ sin θ

− sin θ cos θ

)(
u
v

)
(24)
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and where the indices 1,2 and 3 refer to the branches. Of course, when the transverse widths w1, w2, w3

are different, with the condition that the ratios w2/w1, w3/w1 remain finite, the relation (23) becomes

−w1h1u‖1 + w2h2u‖2 + w3h3u‖3 = 0.

4.2. Energy Flux

The energy flux (16) can be consistently reduced to a 1D relation. As for the mass relation,
we integrate Equation (17) over the domain F = ABCDEFGHIA to obtain

∫
F

et dxdy +
∮

∂F
(e +

gh2

2
) u · n ds = 0.

Because of the boundary condition u · n = 0 on ABE, the expression above reduces to

∫
F

et dxdy +
∫

AI
(e +

gh2

2
) u · n ds +

∫
CD

(e +
gh2

2
) u · n ds +

∫
FG

(e +
gh2

2
) u · n ds = 0.

The first integral is O(w2) while the three other integrals are O(w). Dividing the equation by w
and taking the limit w→ 0 we get from these three terms

− (e1 +
gh2

1
2

)u‖1 + (e2 +
gh2

2
2

)u‖2 + (e3 +
gh2

3
2

)u‖3 = 0. (25)

To conclude, Equation (9) gives in the 1D limit, the balance of mass (23). The same happens for
the energy flux (16) which yields (25). The natural matching conditions for 1D shallow water equations
on a network are then

− h1u‖1 + h2u‖2 + h3u‖3 = 0, (26)

− u‖1(gh2
1 + h1

u‖1
2

2
) + u‖2(gh2

2 + h2
u‖2

2

2
) + u‖3(gh2

3 + h3
u‖3

2

2
) = 0. (27)

For the mass and the energy balance laws, we have a similar situation to the one of the nonlinear
scalar wave equation, the angles of the fork do not play any role. In the small amplitude limit,
the speeds u1, u2, u3 are small and the squares can be neglected in the energy relation. Then, we recover
the Stoker interface conditions (21).

4.3. Momentum Flux for a General Fork

Contrary to the mass and the energy, the momentum Equations (10) and (11) cannot be consistently
reduced to a 1D condition involving h, u‖ at each end of F .

To see this, integrate the horizontal momentum Equation (10) over the domain F and get

∫
F
(hu)t dxdy +

∮
∂F

(
hu2 + gh2

2
huv

)
· n ds = 0,

where the first integral is a surface integral and the second one a line integral. In the integrand of the
latter, we have (

hu2

huv

)
· n = hu

(
u
v

)
· n = 0

on the exterior boundaries of ∂F because of the boundary condition (2). Then, only the potential term
gh2

2 will contribute to these terms.
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The O(w) terms (line integrals) reduce to

− g
2 (|AB|h2

AB − |HI|h2
HI)− sin θ2

g
2 (|BC|h2

BC − |DE|h2
DE)− sin θ3

g
2 (|EF|h2

EF − |HG|h2
HG)

−wh1u1v1 + w
[
(h2u2

2 + g h2
2

2 ) cos θ2 + h2u2v2 sin θ2

]
+ w
[
(h3u2

3 + g h2
3

2 ) cos θ3 + h3u3v3 sin θ3

]
= 0.

(28)

Using the branch oriented velocities (24) we get the approximate law

− g
2 (|AB|h2

AB − |HI|h2
HI)− sin θ2

g
2 (|BC|h2

BC − |DE|h2
DE)− sin θ3

g
2 (|EF|h2

EF − |GH|h2
GH)

−wh1u1v1 + w cos θ2

[
h2u‖2

2
+ g h2

2

2

]
+ w cos θ3

[
h3u‖3

2
+ g h3

2

2

]
= 0,

(29)

where we neglected the velocity components u⊥.
Similarly for the vertical momentum equation we obtain

g
2

cos θ2(|BC| h2
BC − |DE| h2

DE) +
g
2

cos θ3(|EF| h2
EF − |GH| h2

GH)− w

[
h1v2

1 + g
h1

2

2

]

+ w

[
(h2u2

2 + g
h2

2
2
) sin θ2 + h2u2v2 cos θ2

]
+ w

[
(h3u2

3 + g
h2

3
2
) sin θ3 + h3u3v3 cos θ3

]
= 0. (30)

Using the branch velocities and neglecting the transverse components we get

g
2

cos θ2(|BC| h2
BC − |DE| h2

DE) +
g
2

cos θ3(|EF| h2
EF − |GH| h2

GH)

− w

[
h1v2

1 + g
h1

2

2

]
+ w sin θ2

[
h2u‖2

2
+ g

h2
2

2

]
+ w sin θ3

[
h3u‖3

2
+ g

h2
3

2

]
= 0. (31)

4.4. Momentum Flux for the T-Fork

Consider now the T-geometry shown in the right panel of Figure 1. The calculations are simpler
so that we used this geometry to validate the approach numerically. The general fork domain F can
be reduced to the square ADFIA by taking θ2 = π, θ3 = 0 and B → C → A, G → H → I. Then the
Equations (28) and (30) reduce to

−h1u1v1 − (h2u2
2 + g

h2
2

2
) + h3u2

3 + g
h2

3
2

= 0, (32)

−(h1v2
1 + g

h2
1

2
)− h2u2v2 + g

h2
23
2

+ h3u3v3 = 0, (33)

where the term h23 is

h2
23 ≡

1
w

∫
DF

h2 ds. (34)

We will see that it can be obtained by interpolation of h2 and h3.

4.5. Effective 1D Model for the T-Fork

The pseudo-conservation laws (26), (27), (29) and (31) established in the previous section in the
limit w→ 0 provide a formal connection between h, u‖ in branches 1,2 and 3. In principle, they enable
to approximate the 2D problem (9)–(11) by three 1D shallow water equations

Hi
t + (HiUi)x = 0, (35)

(HiUi)t + (HiUi2 +
gH2

i
2

)x = 0, (36)
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where i = 1, 2, 3 correspond to the different branches. These 1D shallow water equations can be solved
using a standard finite difference scheme, see for example [14]. The discretization is shown in Figure 3
where the first nodes in each branch have values H = hi, U = ui. The coupling equations between
these three nodes given by (26), (27) and (29) would be solved using a Newton iteration.

 

x=0 x=0

x=0

2
2

u
h 3

u1h1

 

h
u3

Figure 3. Space discretization for the 1D approximation.

5. Numerical Solutions of the 2D Shallow Water Equations

The approximation described in the previous section holds if the error remains small. We now
evaluate this error by solving numerically the 2D problem (9)–(11), compute h, u‖ and see how these
values agree with the pseudo-conservation laws (26), (27), (29) and (31). We chose the T geometry
shown in the right panel of Figure 1 for simplicity and considered symmetric and non symmetric
initial conditions. We also increased the wave amplitude to estimate the effect of the non linearity.

The Equations (9)–(11) were discretized using as space unit the depth d. The time unit was
√

d
g .

The variables and fields was rescaled as

x′ = x
d

, t′ = t
√

g
d

, h′ = x
d

, u′ = u√
gd

. (37)

This amounts to taking d = 1, g = 1 in (9)–(11).
We solved the nonlinear shallow water equations using a first order finite volume scheme on an

unstructured triangular mesh produced with the Gmsh meshing software (see details in [15]). We used
the width w = 0.125 and the typical size of the triangles is 0.02. The time advance used a variable order
Adams–Bashforth–Moulton multistep solver (implemented in Matlab under ode113 subroutine [16]).
The relative and absolute tolerances were set to 10−5.

The initial condition is taken as a travelling solitary wave of velocity c. This is an exact solution
for the mass conservation law. We used a solitary wave inspired by the Serre theory [17], (see [18] for
the modern variational derivation)

h(x, y, t = 0) = d + η(y), (38)

v(x, y, t = 0) = c
η(y)

d + η(y)
, (39)

η(y) = a sech2(
1
2

k(y− y0)), (40)

where the speed is

c =
√

g(d + a).

121



Symmetry 2019, 11, 434

The other parameters were

g = 1, k = 1, d = 1, a = 1, x0 = y0 = 2.5.

The wave was chosen so that its extension 2/k = 2 is much larger than the width w = 0.125.
Below we discuss the effect of the width.

The four pseudo-conservation laws for the mass, momenta and energy (26), (27) and (29) on the
fork domain ADFIA are

δm ≡ −h1v1 − h2u2 + h3u3 = 0, (41)

δpx ≡ −h1u1v1 − (h2u2
2 + g

h2
2

2
) + h3u2

3 + g
h2

3
2

= 0. (42)

δpy ≡ −(h1v2
1 + g

h2
1

2
)− h2u2v2 + g

h2
23
2

+ h3u3v3 = 0, (43)

δe ≡ −v1(gh2
1 + h1

v2
1

2
)− u2(gh2

2 + h2
u2

2
2
) + u3(gh2

3 + h3
u2

3
2
) = 0, (44)

where we introduced the residuals δm, δpx, δpy and δe.
We considered a symmetric situation where the wave is incident from branch 1 and a non

symmetric situation where the wave was send into the fork from branch 3. In both cases, the number
of unknowns was the same; see Table 1.

Table 1. The two different dynamic problems for the T-branch.

Type Known Unknown

wave in branch 1 h1, v1 h2, u2, h3, u3
wave in branch 3 h3, u3 h1, v1, h2, u2

The wave mass and wave energy in each branch have been calculated. They are defined as

Mw =
∫

Ω
(h− d) dxdy,

Ew =
∫

Ω

1
2

[
g(h− d)2 + (u2 + v2)h

]
dxdy.

Energy will propagate very differently in problems 1 and 2. In the next sections we examine in
detail the two types of problems and use the conservation laws to establish jump conditions for the 1D
effective model.

To verify the approximation given by the relations (41)–(44), we also computed the time evolution
of the quantities h1, h2, h3, v1, u2, u3 from the 2D direct numerical simulations. We used a scattered
linear interpolation to estimate these physical variables along the four different segments of the fork
region from the unstructured triangular mesh data.

5.1. Wave Incident into Branch 1

5.1.1. Small Amplitude Waves a/d = 0.1

The time evolution of the wave mass and energy is presented in Figure 4. Consider the wave mass,
at t = 0: M0

1 = 57 10−3, M0
2 = M0

3 = 0. After the wave has passed, at t = 6.5, M1 = 0, M2 = M3 = 26.
We have 2× 26 = 52 which shows the conservation of mass. Notice the depression in the mass in
branch 1 after the wave passes. Almost all energy is transferred to branches 2 and 3.

Here our balance laws hold well for both the mass and the energy, see Figure 5.
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Figure 4. Time evolution of the wave mass Mw (left) and the wave energy Ew (right) for a wave
incident in branch 1 for a/d = 0.1.
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Figure 5. Time evolution of the mass and energy quantities δm (black online) and δe (red online) for
a/d = 0.1.

We can use them to obtain u2, h2. Assume symmetry h2 = h3, u2 = −u3. The balance laws
reduce to

−h1v1 − 2h2u2 = 0, (45)

−v1(gh2
1 + h1v2

1/2)− 2u2(gh2
2 + h2u2

2/2) = 0. (46)

Since v2
1, u2

2 ! gh2 we can neglect the terms v2
1, u2

2 of the second equation. The resulting relations
are satisfied by

h2 = h1, u2 = −v1/2, (47)

which are the Stoker conditions. These are in good agreement with the simulations as shown
by Figure 6.
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Figure 6. Time evolution of h1, h2 (top) and v1/2, u2 (bottom) for a/d = 0.1.

5.1.2. Very Large Amplitude Waves a/d = 2

In this case, 2D effects start to appear. Figure 7 shows a snapshot of the surface elevation h for a
wave such that a/d = 2. Notice the lump h ≈ 2 on the edge of the domain.
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Figure 7. Snapshot of the surface elevation h at time t = 0.9 for a wave incident in branch 1 for a/d = 2.

Figure 8 shows the time evolution of the wave mass and energy. Despite the evidence of 2D
effects, the overall transfer of wave mass and wave energy from branch 1 to branches 2 and 3 does not
vary significantly as a/d changes from 0.1 to 2.
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Figure 8. Time evolution of the wave mass Mw (left) and the wave energy Ew (right) for a wave
incident in branch 1 for a/d = 2.

Figure 9 shows the time evolution of δm and δe. Notice that the mass relation is better satisfied
than the energy relation.
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Figure 9. Time evolution of the mass and energy quantities δm, δe for a/d = 2.

Again the Stoker relations (47) give a good approximation as shown by Figure 10 which show
that h2 ≈ h1 and u2 ≈ v1/2. The price to pay to approximate the 2D situation by a 1D effective model
is an energy loss at the junction.

Figure 10. Time evolution of h1, h2 (top) and v1/2, u2 (bottom) for a/d = 2.
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Also remark that for the approximation to hold it is crucial that the wave be wider than w and not
too fast. If these conditions are not met, h2 and u2 will be delayed from h1, v1 and will need to describe
what happens in the fork. We observed this for a larger channel w = 1 and the same parameters.

5.2. Wave Incident into Branch 3

For this configuration, we observe a significant difference in behavior as the wave amplitude
increases. Figure 11 shows the time evolution of the wave mass and wave energy for a/d = 0.1
(top panels) and a/d = 2 (bottom panels). Small amplitude waves get transmitted to branch 1 as much
as to branch 2. On the other hand, large amplitude waves are predominantly transmitted to branch 2.
The mass entering branch 2 is three times larger than the one entering branch 1; for energies, the factor
is six.
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Figure 11. Time evolution of the wave mass Mw (left) and the wave energy Ew (right) for a wave
incident in branch 3 for a/d = 0.1 (top panels) and a/d = 2 (bottom panels). Notice the different scales.

5.2.1. Small Amplitude Waves a/d = 0.1

First observe that u1 is non zero and close to v1. Nevertheless, the mass and energy residuals δm
and δe are small as seen in Figure 12. The wave elevation h does not vary much from one branch to
the other as seen in the top panel of Figure 13. The velocities u2 and v1 verify u2 ≈ u3/2, v1 ≈ u3/2.
These two results show that the Stoker conditions hold for this small amplitude.
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Figure 12. Time evolution of the mass and energy quantities δm (black online) and δe (red online) for
a/d = 0.1.

Figure 13. Time evolution of h1, h2 and h3 (top) and u3, u2, u1, v1 (bottom) for a/d = 0.1.

5.2.2. Large Amplitude Waves a/d = 1

Figure 14 shows h(t = 0.8) for a wave incident in branch 3 for a/d = 2. Notice the complex
structure of the flow at the junction. There is some recirculation so that the flow is essentially 2D and
not amenable to a 1D reduction.

-0.6 -0.4 -0.2 0 0.2 0.4
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0

0.5

1

1.5

Figure 14. Snapshot of the surface elevation h at time t = 0.8 for a wave incident in branch 3 for
a/d = 2.
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Nevertheless, for a smaller amplitude a/d = 1, the balance laws (41)–(44) give some insight
into the flow. Figure 15 shows the mass δm and energy δe. The mass is much better conserved than
the energy.
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Figure 15. Time evolution of the mass and energy quantities δm (black online) and δe (purple online)
for a/d = 2.

The momenta (42) and (43) are plotted in Figure 16.
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Figure 16. Time evolution of the x and y momenta quantities δpx (black online) and δpy (purple online)
for a/d = 1.

When the wave is coming from branch 3, an obvious solution is

v1 = 0, u2 = u3, h2 = h3, h1 = h2. (48)

This is simplistic, in reality v1 �= 0 but remains small. The horizontal component u1 is non zero
and close to u2 as shown in Figure 17.

128



Symmetry 2019, 11, 434

Figure 17. Time evolution of h1, h2, h3 (top) and u3, u2, u1, v1 (bottom) for a/d = 1.

The mass equation and y momentum equations allow to extract relations between
v1, h1, h2, u2, v1, h3, u3. Assuming v1, u2, u3 smaller than h2

1, h2
2, h2

3, we have

v1 =
h3u3 − h2u2

h1
, (49)

h1 = h23. (50)

The quantity (34) in the y component of the momentum is computed from the numerical solution.
It is plotted as a function of time together with the estimate

hi
23 =

√
1
2
(h2

2 + h2
3), (51)

in the left panel of Figure 18. As can be seen, the agreement is very good.

*

Figure 18. (Left) panel, time evolution of the quantity h23 (purple online) from (34) obtained from
the 2D numerics together with the approximation (51) (black online) indicated by the ∗ symbol.
(Right) panel, time evolution of h23 and h1.

The velocity v1m given by the mass conservation relation agrees semi-quantitatively with the
value v1 estimated from the 2D numerical solution. Both quantities are plotted as a function of time
in Figure 19. Note the delay due to the time the wave needs to propagate from one interface to the
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other. The y momentum conservation law is not satisfied so that there is no additional equation to
estimate u2.

-0.4

-0.3

-0.2

-0.1

 0

 0   1   2   3   4

1

1m

v 1, v
1m

 

t’

Figure 19. Time evolution of the quantity v1m obtained from the mass conservation law (49)
(purple online) and v1 from the 2D numerical solution (black online).

6. Discussion and Conclusions

The results of the previous section show that for large amplitudes and an asymmetric fork Stoker’s
interface conditions do not hold and the angle of the fork plays a role. This seems to contradict the
findings of Shi et al. [9]. Two reasons show that there is no contradiction. First, the amplitude of our
waves (a/d ≈ 1) are much larger than the ones presented in [9] (a/d ≈ 0.3) so that nonlinear effects are
much stronger in our study. The other point is that the sech2 initial condition is an exact solution of the
Boussinesq equations, but not of the nonlinear shallow water equations. For the Boussinesq equations,
we also expect an angle dependence, even for narrow channels, when the amplitude becomes large.
To see this, we examine the reduction of the equations for a fork.

The Boussinesq equations read

ht +∇ · [(1 + h)∇ϕ] = 0, (52)

ϕt +
1
2
(∇ϕ)2 + h− 1

3
(Δϕ)t = 0, (53)

where h(x, y, t) is the water elevation. The velocity potential ϕ(x, y, t) is such that (u, v)T = ∇ϕ.
The boundary conditions are non slip ∇ϕ · n = 0. Integrating the equations on the fork domain F
(left panel of Figure 1) we get

∂t

∫
F

hdxdy−
∫

IA∪CD∪FG
(1 + h)∇ϕ · nds, (54)

∂t

∫
F
(ϕ− 1

3
Δϕ)dxdy +

∫
F
(

1
2
(∇ϕ)2 + h)dxdy = 0. (55)

Neglecting the time evolution in the fork region, we get the following interface conditions

(1 + h1)u
‖
1 + (1 + h2)u

‖
2 + (1 + h3)u

‖
3 = 0, (56)∫

F
1
2

[
(∇ϕ)2 + h

]
dxdy = 0. (57)
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Note how the first equation reduces to Kirchhoff’s law for small h. The second equation contains
is an integral over the whole domain and depends on the angle of the fork. For small angles, we can
assume that ∇ϕ = u‖ so that the conditions reduce to

(1 + h1)u
‖
1 + (1 + h2)u

‖
2 + (1 + h3)u

‖
3 = 0, (58)

1
2
(u‖1)

2 + h1 +
1
2
(u‖2)

2 + h2 +
1
2
(u‖3)

2 + h3 = 0. (59)

Not surprisingly, these conditions are very close to the ones obtained by Nachbin and Simoes [10],
except for the Jacobian of the conformal transformation.

To conclude, we studied the propagation of shallow water waves in a fork between three narrow
channels. We considered both the 2D numerical solution and a homothetic reduction procedure that
gives coupling conditions at the interface. For such narrow widths, the delay experienced by the wave
is negligible so that one can envision describing the junction by an effective 1D PDE model.

Our reduction enabled us to derive balance laws for the mass, momenta and energy of the flow
across a general junction. For small amplitude waves, these laws reduce to the commonly used Stoker
jump conditions, giving these a formal justification. We verified these Stoker conditions on the 2D
numerical solutions of the shallow water equations for symmetric and non symmetric conditions.
Then, the angle of the junction does not play any role. This happens also for a general nonlinear wave
equation; we had seen this a previous study for the particular case of the sine-Gordon equation [2].

For large amplitude shallow water waves, the situation depends on the symmetry of the fork.
For a symmetric fork, the Stoker conditions are approximately verified. This is explained by the strong
constraint imposed by the symmetry. Then, the only solution of the balance laws corresponds to the
Stoker conditions. When the fork is non symmetric as in our case 2, more information is needed about
what happens inside the fork. The quantities u‖i , i = 1, 2, 3 are velocities projected in the direction
of the branches and this projection leads to a loss of information. Far from the junction, the flow is
quasi-1D so that not much is lost. On the contrary, inside the junction, the flow is full 2D. A possible
solution, to be studied in the future would be to use the full conservation law including the time
dependent term. Then we would introduce a fictitious node inside the junction and couple it to the
boundaries using average differential equations obtained by integrating (9)–(11) on the fork domain.
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