
Computer Algebra in
Scientific Computing

Andreas Weber

www.mdpi.com/journal/mathematics

Edited by

Printed Edition of the Special Issue Published in Mathematics

Computer Algebra in
Scientific Computing

Computer Algebra in
Scientific Computing

Special Issue Editor

Andreas Weber

MDPI • Basel • Beijing •Wuhan • Barcelona • Belgrade

Special Issue Editor

Andreas Weber

Bonn University

Germany

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Mathematics (ISSN 2227-7390) from 2018 to 2019 (available at: https://www.mdpi.com/journal/

mathematics/special issues/Computer Algebra)

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number,

Page Range.

ISBN 978-3-03921-730-4 (Pbk)

ISBN 978-3-03921-731-1 (PDF)

c© 2019 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.

Contents

About the Special Issue Editor . vii

Preface to ”Computer Algebra in Scientific Computing” . ix

Mohammadali Asadi, Alexander Brandt, Robert H. C. Moir and Marc Moreno
Maza Algorithms and Data Structures for Sparse Polynomial Arithmetic
Reprinted from: Mathematics 2019, 7, 441, doi:10.3390/math7050441 1

Xiaojie Dou and Jin-San Cheng

A Heuristic Method for Certifying Isolated Zeros of Polynomial Systems
Reprinted from: Mathematics 2018, 6, 166, doi:10.3390/math6090166 30

Mario Albert and Werner M. Seiler

Resolving Decompositions for Polynomial Modules
Reprinted from: Mathematics 2018, 6, 161, doi:10.3390/math6090161 48

Valery Antonov, Wilker Fernandes, Valery G. Romanovski and Natalie L. Shcheglova
First Integrals of the May–Leonard Asymmetric System
Reprinted from: Mathematics 2019, 7, 292, doi:10.3390/math7030292 65

Erhan Güler and Ömer Kişi
Dini-Type Helicoidal Hypersurfaces with Timelike Axis in Minkowski 4-Space E4

1

Reprinted from: Mathematics 2019, 7, 205, doi:10.3390/math7020205 80

Erhan Güler, Ömer Kişi and Christos Konaxis

Implicit Equations of the Henneberg-Type Minimal Surface in the Four-Dimensional Euclidean
Space
Reprinted from: Mathematics 2018, 6, 279, doi:10.3390/math6120279 88

Farnoosh Hajati, Ali Iranmanesh and Abolfazl Tehranian

A Characterization of Projective Special Unitary Group PSU(3,3) and Projective Special Linear
Group PSL(3,3) by NSE
Reprinted from: Mathematics 2018, 6, 120, doi:10.3390/math6070120 98

Maurice R. Kibler

Quantum Information: A Brief Overview and Some Mathematical Aspects
Reprinted from: Mathematics 2018, 6, 273, doi:10.3390/math6120273 108

v

About the Special Issue Editor

Andreas Weber (Prof. Dr.) studied mathematics and computer science at the Universities of

Tübingen, Germany, and Boulder, Colorado, U.S.A. He was awarded his MS in Mathematics

(Dipl.-Math) in 1990 and his Ph.D. (Dr. rer. nat.) in computer science from the University of Tübingen

in 1993. From 1995 to 1997, he was awarded a scholarship from Deutsche Forschungsgemeinschaft to

conduct research as a postdoctoral fellow at the Computer Science Department, Cornell University.

From 1997 to 1999 he was a member of the Symbolic Computation Group at the University of

Tübingen, Germany. From 1999 to 2001, he was a member of the research group Animation and

Image Communication at the Fraunhofer Institut for Computer Graphics. He has been Professor of

computer science at the University of Bonn, Germany, since his appointment in April 2001. He has

served as Chair of the Department of Computer Science from 2014 to 2016. During his academic

career, he has written more than 100 papers for journals and refereed conference proceedings and

has been the first supervisor of 9 completed Ph.D. theses and over 70 master’s and bachelor’s theses.

He has served as a reviewer for more than 60 different journals and conferences. In 2013, he has been

awarded the Teaching Award of the University of Bonn.

vii

Preface to ”Computer Algebra in Scientific Computing”
Although scientific computing is very often associated with numeric computations, the use of

computer algebra methods in scientific computing has obtained considerable attention in the last two
decades. Computer algebra methods are especially suitable for parametric analysis of the key
properties of systems arising in scientific computing. The expression-based computational answers
generally provided by these methods are very appealing as they directly relate properties to
parameters and speed up testing and tuning of mathematical models through all their possible
behaviors. The articles contained in this book cover a broad range of topics in the context of computer
algebra in scientific computing. At the core of many computer algebra methods are algorithms for
multivariate polynomials, and the first article on “Algorithms and Data Structures for Sparse
Polynomial Arithmetic” is at the essence of this core, giving a comprehensive presentation of
algorithms, data structures, and implementation techniques for high-performance sparse
multivariate polynomial arithmetic over the integers and rational numbers as implemented in the
freely available Basic Polynomial Algebra Subprograms (BPAS) library. “A Heuristic Method for
Certifying Isolated Zeros of Polynomial Systems” deals with the fundamental problem of certifying
the isolated zeros of polynomial systems. Computing Gröbner bases and other kind of bases is
another core of computer algebra. In “Resolving Decompositions for Polynomial Modules”, the
authors deal with a fundamental task in “computational commutative algebra and algebraic
geometry”, namely, the determination of free resolutions for polynomial modules. They introduce
the novel concept of resolving decomposition of a polynomial module as a combinatorial structure
that allows for the effective construction of free resolutions and provide a unifying framework for
recent results involving different types of bases. The analysis of certain invariants of a dynamical
system—which are at the heart of many problems in scientific computing—is another major area for
computer algebra research. In the article “First Integrals of the May–Leonard Asymmetric System”,
an important system arising in the life sciences is investigated, which is given by a quadratic system
of the Lotka–Volterra type depending on six parameters. The authors look for subfamilies admitting
invariant algebraic surfaces of degree two, and then for some such subfamilies, they construct first
integrals of the Darboux type, identifying the systems with one first integral or with two independent
first integrals. A problem based in physics, namely “Minkowski 4-space”, is treated in the article
“Dini-Type Helicoidal Hypersurfaces with Timelike Axis in Minkowski 4-Space”. The authors
consider Ulisse Dini-type helicoidal hypersurfaces with timelike axis in Minkowski 4-space, and by
calculating the Gaussian and mean curvatures of the hypersurfaces, they demonstrate some special
symmetries for the curvatures when they are flat and minimal. In the article “Implicit Equations of
the Henneberg-Type Minimal Surface in the Four-Dimensional Euclidean Space” the authors find
implicit algebraic equations of the Henneberg-type minimal surface of values (4,2). The exciting field
of quantum computing has also lead to several problems in computer algebra. In “Quantum
Information: A Brief Overview and Some Mathematical Aspects”, not only is a review of the main
ideas behind quantum computing and quantum information presented, but the focus is also on some
mathematical problems related to the so-called mutually unbiased bases used in quantum computing
and quantum information processing. In this direction, the construction of mutually unbiased bases
is presented via two distinct approaches: one based on the group SU(2) and the other on Galois fields
and Galois rings.

 Andreas Weber
 Special Issue Editor

ix

x

mathematics

Article

Algorithms and Data Structures for Sparse
Polynomial Arithmetic

Mohammadali Asadi, Alexander Brandt *, Robert H. C. Moir and Marc Moreno Maza

Department of Computer Science, University of Western Ontario, London, ON N6A 5B7, Canada;
masadi4@uwo.ca (M.A.); rmoir3@uwo.ca (R.H.C.M.); moreno@csd.uwo.ca (M.M.M.)
* Correspondence: abrandt5@uwo.ca

Received: 1 February 2019; Accepted: 12 May 2019; Published: 17 May 2019

Abstract: We provide a comprehensive presentation of algorithms, data structures, and implementation
techniques for high-performance sparse multivariate polynomial arithmetic over the integers and
rational numbers as implemented in the freely available Basic Polynomial Algebra Subprograms
(BPAS) library. We report on an algorithm for sparse pseudo-division, based on the algorithms
for division with remainder, multiplication, and addition, which are also examined herein.
The pseudo-division and division with remainder operations are extended to multi-divisor
pseudo-division and normal form algorithms, respectively, where the divisor set is assumed to form
a triangular set. Our operations make use of two data structures for sparse distributed polynomials
and sparse recursively viewed polynomials, with a keen focus on locality and memory usage for
optimized performance on modern memory hierarchies. Experimentation shows that these new
implementations compare favorably against competing implementations, performing between a
factor of 3 better (for multiplication over the integers) to more than 4 orders of magnitude better
(for pseudo-division with respect to a triangular set).

Keywords: sparse polynomials; polynomial arithmetic; normal form; pseudo-division;
pseudo-remainder; sparse data structures

1. Introduction

Technological advances in computer hardware have allowed scientists to greatly expand the
size and complexity of problems tackled by scientific computing. Only in the last decade have
sparse polynomial arithmetic operations (Polynomial arithmetic operations here refers to addition,
subtraction, multiplication, division with remainder, and pseudo-division) and data structures come
under focus again in support of large problems which cannot be efficiently represented densely.
Sparse polynomial representations was an active research topic many decades ago out of necessity;
computing resources, particularly memory, were very limited. Computer algebra systems of the
time (which handled multivariate polynomials) all made use of sparse representations, including
ALTRAN [1], MACSYMA [2], and REDUCE [3]. More recent work can be categorized into two streams,
the first dealing primarily with algebraic complexity [4,5] and the second focusing on implementation
techniques [6,7]. Recent research on implementation techniques has been motivated by the efficient
use of memory. Due to reasons such as the processor–memory gap ([8] Section 2.1) and the memory
wall [9], program performance has become limited by the speed of memory. We consider these issues
foremost in our algorithms, data structures, and implementations. An early version of this work
appeared as [10].

Sparse polynomials, for example, arise in the world of polynomial system solving—a critical
problem in nearly every scientific discipline. Polynomial systems generally come from real-life
applications, consisting of multivariate polynomials with rational number coefficients. Core routines

Mathematics 2019, 7, 441; doi:10.3390/math7050441 www.mdpi.com/journal/mathematics1

Mathematics 2019, 7, 441

for determining solutions to polynomial systems (e.g., Gröbner bases, homotopy methods, or triangular
decompositions) have driven a large body of work in computer algebra. Algorithms, data structures,
and implementation techniques for polynomial and matrix data types have seen particular attention.
We are motivated in our work on sparse polynomials by obtaining efficient implementations of
triangular decomposition algorithms based on the theory of regular chains [11].

Our aim for the work presented in this paper is to provide highly optimized sparse multivariate
polynomial arithmetic operations as a foundation for implementing high-level algorithms requiring
such operations, including triangular decomposition. The implementations presented herein are
freely available in the BPAS library [12] at www.bpaslib.org. The BPAS library is highly focused
on performance, concerning itself not only with execution time but also memory usage and cache
complexity [13]. The library is mainly written in the C language, for high-performance, with a
simplified C++ interface for end-user usability and object-oriented programming. The BPAS library
also makes use of parallelization (e.g., via the CILK extension [14]) for added performance on multi-core
architectures, such as in dense polynomial arithmetic [15,16] and arithmetic for big prime fields based
on Fast Fourier Transform (FFT) [17]. Despite these previous achievements, the work presented here
is in active development and not yet been parallelized.

Indeed, parallelizing sparse arithmetic is an interesting problem and is much more difficult than
parallelizing dense arithmetic. Many recent works have attempted to parallelize sparse polynomial
arithmetic. Sub-linear parallel speed-up is obtained for the relatively more simple schemes of Monagan
and Pearce [18,19] or Biscani [20], while Gastineau and Laskar [7,21] have obtained near-linear parallel
speed-up but have a much more intricate parallelization scheme. Other works are quite limited:
the implementation of Popescu and Garcia [22] is limited to floating point coefficients while the work
of Ewart et al. [23] is limited to only 4 variables. We hope to tackle parallelization of sparse arithmetic
in the future, however, we strongly believe that one should obtain an optimized serial implementation
before attempting a parallel one.

Contributions and Paper Organization

Contained herein is a comprehensive treatment of the algorithms and data structures we have
established for high-performance sparse multivariate polynomial arithmetic in the BPAS library.
We present in Section 2 the well-known sparse addition and multiplication algorithms from [24] to
provide the necessary background for discussing division with remainder (Section 3), an extension
of the exact division also presented in [24]. In Section 4 we have extended division with remainder
into a new algorithm for sparse pseudo-division. Our presentation of both division with remainder
and pseudo-division has two levels: one which is abstract and independent of the supporting data
structures (Algorithms 3 and 5); and one taking advantage of heap data structures (Algorithms 4
and 6). Section 5 extends division with remainder and pseudo-division to algorithms for computing
normal forms and pseudo-division with respect to a triangular set; the former was first seen in [25]
and here we extend it to the case of pseudo-division. All new algorithms are proved formally.

In support of all these arithmetic operations we have created a so-called alternating array
representation for distributed sparse polynomials which focuses greatly on data locality and
memory usage. When a recursive view of a polynomial (i.e., a representation as a univariate
polynomial with multivariate polynomial coefficients) is needed, we have devised a succinct
recursive representation which maintains the optimized distributed representation for the polynomial
coefficients and whose conversion to and from the distributed sparse representation is highly efficient.
Both representations are explained in detail in Section 6. The efficiency of our algorithms and
implementations are highlighted beginning in Section 7, with implementation-specific optimizations,
and then Section 8, which gathers our experimental results. We obtain speed-ups between a factor of
3 (for multiplication over the integers) and a factor of 18,141 (for pseudo-division with respect to a
triangular set).

2

Mathematics 2019, 7, 441

2. Background

2.1. Notation and Nomenclature

Throughout this paper we use the notation R to denote a ring (commutative with identity),
D to denote an integral domain, and K to denote a field. Our treatment of sparse polynomial
arithmetic requires both a distributed and recursive view of polynomials, depending on which
operation is considered. For a distributed polynomial a ∈ R[x1, . . . , xv], a ring R, and variable
ordering x1 < x2 < · · · < xv, we use the notation

a =
na

∑
i=1

Ai =
na

∑
i=1

aiXαi ,

where na is the number of (non-zero) terms, 0 �= ai ∈ R, and αi is an exponent vector for the variables
X = (x1, . . . , xv). A term of a is represented by Ai = aiXαi . We use a lexicographical term order
and assume that the terms are ordered decreasingly, thus lc(a) = a1 is the leading coefficient of a and
lt(a) = a1Xα1 = A1 is the leading term of a. If a is not constant the greatest variable appearing in a
(denoted mvar(a)) is the main variable of a. The maximum sum of the elements of αi is the total degree
(denoted tdeg(a)). The maximum exponent of the variable xi is the degree with respect to xi (denoted
deg(a, xi)). Given a term Ai of a, coef(Ai) = ai is the coefficient, expn(Ai) = αi is the exponent vector,
and deg(Ai, xj) is the component of αi corresponding to xj. We also note the use of a simplified syntax
for comparing monomials based on the term ordering; we denote Xαi > Xαj as αi > αj.

To obtain a recursive view of a non-constant polynomial a ∈ R[x1, . . . , xv], we view a as
a univariate polynomial in R̃[xj], with xj called the main variable (denoted mvar(a)) and where
R̃ = R[x1, . . . , xj−1, xj+1, . . . , xv]. Usually, xj is chosen to be xv and we have a ∈ R[x1, . . . , xv−1][xv].
Given a term Ai of a ∈ R̃[xj], coef(Ai) ∈ R[x1, . . . , xj−1, xj+1, . . . , xv] is the coefficient and expn(Ai) =

deg(Ai, xj) = deg(Ai) is the degree. Given a ∈ R̃[xj], an exponent e picks out the term Ai of a such that
deg(Ai) = e, so we define in this case coef(a, xj, e) := coef(Ai). Viewed specifically in the recursive
way R̃[xj], the leading coefficient of a is an element of R̃ called the initial of a (denoted init(a)) while
the degree of a in the main variable xj is called the main degree (denoted mdeg(a)), or simply degree
where the univariate view is understood by context.

2.2. Addition and Multiplication

Adding (or subtracting) two polynomials involves three operations: joining the terms of the
two summands; combining terms with identical exponents (possibly with cancellation); and sorting
of the terms in the sum. A naïve approach computes the sum a + b term-by-term, adding a term
of the addend (b) to the augend (a), and sorting the result at each step, in a manner similar to
insertion sort. (This sorting of the result is a crucial step in any sparse operation. Certain optimizations
and tricks can be used in the algorithms when it is known that the operands are in some sorted order,
say in a canonical form. For example, obtaining the leading term and degree is much simpler, and,
as is shown throughout this paper, arithmetic operations can exploit this sorting.) This method is
inefficient and does not take advantage of the fact that both a and b are already ordered. We follow
the observation of Johnson [24] that this can be accomplished efficiently in terms of operations and
space by performing a single step of merge sort on the two summands, taking full advantage of
initial sorting of the two summands. One slight difference from a typical merge sort step is that like
terms (terms with identical exponent vectors) are combined as they are encountered. This scheme
results in the sum (or difference) being automatically sorted and all like terms being combined.
The algorithm is very straightforward for anyone familiar with merge sort. The details of the algorithm
are presented in ([24], p. 65). However, for completeness we present the algorithm here using our
notation (Algorithm 1).

3

Mathematics 2019, 7, 441

Algorithm 1 ADDPOLYNOMIALS (a,b)

a, b ∈ R[x1, . . . , xv], a = ∑na
i=1 ai Xαi , b = ∑

nb
j=1 bj X

βj ;
return c = a + b = ∑nc

k=1 ck Xγk ∈ R[x1, . . . , xv]

1: (i, j, k) := 1
2: while i ≤ na and j ≤ nb do
3: if αi < β j then
4: ck := bj ; γk := β j

5: j := j + 1
6: else if αi > β j then
7: ck := ai ; γk := αi
8: i := i + 1
9: else

10: ck := ai + bj ; γk := αi

11: i := i + 1; j := j + 1
12: if ck = 0 then
13: continue #Do not increment k
14: k := k + 1
15: end
16: while i ≤ na do
17: ck := ai ; γk := αi
18: i := i + 1; k := k + 1
19: while j ≤ nb do
20: ck := bj ; γk := β j

21: j := j + 1; k := k + 1

22: return c = ∑k−1
�=1 c�Xγ�

Multiplication of two polynomials follows the same general idea of addition: Make use of the
fact that the multiplier and multiplicand are already sorted. Under our sparse representation of
polynomials multiplication requires production of the product terms, combining terms with equal
exponents, and then sorting the product terms. A naïve method computes the product a · b (where a
has na terms and b has nb terms) by distributing each term of the multiplier (a) over the multiplicand
(b) and combining like terms:

c = a · b = (a1Xα1 · b) + (a2Xα2 · b) + · · · .

This is inefficient because all nanb terms are generated, whether or not like terms are later
combined, and then all nanb terms must be sorted, and like terms combined. Again, following
Johnson [24], we can improve algorithmic efficiency by generating terms in sorted order.

We can make good use of the sparse data structure for

a =
na

∑
i=1

aiXαi , and b =
nb

∑
j=1

bjX
β j ,

based on the observation that for given αi and β j, it is always the case that Xαi+1+β j and Xαi+β j+1 are
less than Xαi+β j in the term order. Since we always have Xαi+β j > Xαi+β j+1 , it is possible to generate
product terms in order by merging na “streams” of terms computed by multiplying a single term of a
distributed over b,

a · b =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(a1 · b1) Xα1+β1 + (a1 · b2) Xα1+β2 + (a1 · b3) Xα1+β3 + . . .

(a2 · b1) Xα2+β1 + (a2 · b2) Xα2+β2 + (a2 · b3) Xα2+β3 + . . .
...

(ana · b1) Xαna+β1 + (ana · b2) Xαna+β2 + (ana · b3) Xαna+β3 + . . .

and then choosing the maximum term from the “heads” of the streams. We can consider this as an
na-way merge where at each step, we select the maximum term from among the heads of the streams,
making it the next product term, removing it from the stream in the process. The new head of the
stream where a term is removed will then be the term to its right.

4

Mathematics 2019, 7, 441

This sub-problem of selecting the maximum term among na different terms can be solved
efficiently by making use of a priority queue data structure, which can be implemented as a heap (see
Section 6.3 for implementation details). The virtue of using a heap was noticed by Johnson [24], but the
description of his algorithm was left very abstract and did not make explicit use of a priority queue.

In Algorithm 2 we give our heap-based multiplication algorithm. This algorithm makes use of
a few specialized functions to interface with the heap and the heads of streams contained therein.
We provide here a simplified yet complete interface consisting of four functions. (Please note that
algorithms for insertion and removal from a heap are standard and provided in any good reference on
data structures and algorithms (see, e.g., [26]).) heapInitialize(a, B1) initializes the heap by initiating
na streams, where the head of the i-th stream is Ai · B1. Each of these heads are inserted into the heap.
heapInsert(Ai, Bj) adds the product of the terms Ai and Bj to the heap. It is important to note, however,
that the heap does not need to store the actual product terms but can store instead only the indices of
the two factors, with their product only being computed when elements are removed from the heap.
(This strategy is actually required in the case of pseudo-division (Section 7.4) where the streams
themselves are updated over the course of the algorithm.) The exponent vector of the monomial must
be computed on insertion, though, since this determines the insertion location (priority) in the heap.
heapPeek() returns the exponent vector γ of the top element in the heap and the stream index s
from which the product term was formed, i.e., s such that the top element comes from the stream
As · B. Please note that nothing is removed from the heap by heapPeek(). heapExtract() removes
the top element of the heap, providing the product term. If the heap is empty heapPeek() will return
γ = (−1, 0, . . . , 0), which is, by design, less than any exponent of any polynomial term because the
first element is −1. We therefore abuse notation and write γ = −1 for an empty heap.

Algorithm 2 HEAPMULTIPLYPOLYNOMIALS(a,b)

a, b ∈ R[x1, . . . , xv], a = ∑na
i=1 ai Xαi , b = ∑

nb
j=1 bj X

βj ;
return c = a · b = ∑nc

k=1 ck Xγk ∈ R[x1, . . . , xv]

1: if na = 0 or nb = 0 then
2: return 0
3: k := 1; C1 := 0
4: s = 1; γ := α1 + β1 # Maximum possible value of γ
5: heapInitialize(a, B1)
6: for i = 1 to na do
7: fi := 1 # Indices of the current head of each stream

8: while γ > −1 do # γ = −1 when the heap is exhausted
9: if γ �= expn(Ck) and coef(Ck) �= 0 then

10: k := k + 1
11: Ck := 0
12: Ck := Ck + heapExtract()
13: fs := fs + 1
14: if fs ≤ nb then
15: heapInsert(As , Bfs)

16: (γ, s) := heapPeek() # Get degree and stream index of the top of the heap

17: end
18: if Ck = 0 then k := k− 1
19: return c = ∑k

�=1 C� = ∑k
�=1 c�Xγ�

We note that while this algorithm seems simple in pseudo-code, its implementation, especially
with respect to the heap, requires many subtle optimizations to achieve good performance.
The discussions of such improvements are left to Section 7. Nonetheless the algorithm presented here
is complete and correct.

Proposition 1. Algorithm 2 terminates and is correct.

Proof. Let a, b ∈ R[x1, . . . , xv]. If either na = 0 or nb = 0 then a = 0 or b = 0, in which case c = 0
and we are done. Otherwise, c �= 0 and we initialize the heap with na pairs (Ai, B1), i = 1, . . . , na,
we initialize the stream element indices fi to 1, and we set C1 = 0. We initially set γ = α1 + β1,
the maximum possible for polynomials a and b, and a guaranteed term of the product. This also serves

5

Mathematics 2019, 7, 441

to enter the loop for the first time. Since C1 was initially set to 0, Ck = 0, so the first condition on line 9
is met, but not the second, so we move to line 12. Lines 12 through 15 extract the top of the heap, add it
to Ck (giving C1 = A1B1), and insert the next element of the first stream into the heap. This value of
C1 is correct. Since we add the top element of each stream to the heap, the remaining elements to be
added to the heap are all less than at least one element in the heap. The next heapPeek() sets γ to one
of α2 + β1 or α1 + β2 (or −1 if na = nb = 1), and sets s accordingly. Subsequent passes through the
loop must do one of the following: (1) if Ck �= 0 and there exists another term with exponent expn(Ck),
add it to Ck; (2) if Ck = 0, add to Ck the next greatest element (since for sparse polynomials we store
only non-zero terms); or (3) when Ck �= 0 and the next term has lower degree (γk > γ), increase k and
then begin building the next Ck term. Cases (1) and (2) are both handled by line 12, since the condition
on line 9 fails in both cases, respectively because γ = expn(Ck) or because Ck = 0. Case (3) is handled
by lines 9–12, since γ �= expn(Ck) and Ck �= 0 by assumption. Hence, the behavior is correct. The loop
terminates because there are only nb elements in each stream, and lines 14–15 only add an element to
the heap if there is a new element to add, while every iteration of the loop always removes an element
from the heap at line 12.

3. Division with Remainder

3.1. Naïve Division with Remainder

We now consider the problem of multivariate division with remainder, where the input
polynomials are a, b ∈ D[x1, . . . , xv], with b �= 0 being the divisor and a the dividend. While this
operation is well-defined for a, b ∈ D[x1, . . . , xv] for an arbitrary integral domain D, provided that lc(b)
is a divisor of the content of both a and b, we rather assume, for simplicity, that the polynomials a and
b are over a field. We can therefore specify this operation as having the inputs a, b ∈ K[x1, . . . , xv],
and outputs q, r ∈ K[x1, . . . , xv], where q and r satisfy (We note due to its relevance for the algorithms
presented in Section 5 that {b} is a Gröbner basis of the ideal it generates and the stated condition here
on the remainder r is equivalent to the condition that r is reduced with respect to the Gröbner basis
{b} (see [27] for further discussion of Gröbner bases and ideals)):

a = qb + r, where r = 0 or lt(b) does not divide any term in r.

In an effort to achieve performance, we continue to be motivated by the idea of producing terms
of the result (quotient and remainder) in sorted order. However, this is much trickier in the case of
division in comparison to multiplication. We must compute terms of both the quotient and remainder
in order, while simultaneously producing terms of the product qb in order. We must also produce
these product terms while q is being generated term-by-term throughout the algorithm. This is not so
simple, especially in implementation.

In the general “long division” of polynomials (see Section 2.4 of [28]) one repeatedly obtains the
product of a newly computed quotient term and the divisor, and then updates the dividend with
the difference between it and this product. Of course, this is computationally wasteful and not ideal,
since at each step of this long division one needs only the leading term of this updated dividend to
compute the next quotient term. Thus, before concerning ourselves with a heap-based algorithm,
we consider a computationally efficient division algorithm which does not perform this continued
updating of the dividend. This algorithm, which is a special case of the algorithm in Theorem 3 of
Section 2.3 in [27] , is presented as Algorithm 3.

6

Mathematics 2019, 7, 441

Algorithm 3 DIVIDEPOLYNOMIALS(a,b)
a, b ∈ K[x1, . . . , xv], b �= 0; return q, r ∈ K[x1, . . . , xv] such that a = qb + r where r = 0 or lt(b) does not divide any term in r (r is reduced with
respect to the Gröbner basis {b}).

1: q := 0; r := 0
2: while (r̃ := lt(a− qb− r)) �= 0 do
3: if lt(b) | r̃ then
4: q := q + r̃/lt(b)
5: else
6: r := r + r̃
7: end
8: return (q, r)

In this algorithm, the quotient and remainder, q and r, are computed term-by-term by computing
r̃ = lt(a− qb− r) at each step. This works for division by deciding whether r̃ should belong to the
remainder or the quotient at each step. If lt(b) | r̃ then we perform this division and obtain a new
quotient term. Otherwise, we obtain a new remainder term. In either case, this r̃ was the leading term
of the expression a− qb− r and now either belongs to q or r. Therefore, in the next step, the old r̃
which was added to either q or r will now cancel itself out, resulting in a new leading term of the
expression a− qb− r. This new leading term is non-increasing (in the sense of its monomial) relative
to the preceding r̃ and thus terms of the quotient and remainder are produced in order.

Proposition 2. Algorithm 3 terminates and is correct. ([27], pp. 61–63)

3.2. Heap-Based Division with Remainder

It is clear from Algorithm 3 that multivariate division reduces to polynomial multiplication
(through the product qb) and polynomial subtraction. What is not obvious is the efficient computation
of the term r̃ = lt(a− qb− r). Nonetheless, we can again use heap-based multiplication to keep track
of the product qb. The principal difference from multiplication, where all terms of both factors are
known from the input, is that the terms of q are computed as the algorithm proceeds. This idea of
using a heap to monitor q · b follows that of Johnson [24] for his exact univariate division. We extend
his algorithm to multivariate division with remainder.

In terms of the wording of the multiplication algorithm, we set q to the multiplier and b to the
multiplicand, distributing q over b, so the streams are formed from a single term of q, while the stream
moves along b. By having q in this position it becomes relatively easy to add new streams into the
computation as new terms of q are computed. Using the notations of our heap-division algorithm
(Algorithm 4), the crucial difference between heap-based multiplication and heap-based division is
that each stream does not start with Q�B1. Rather, the stream begins at Q�B2 since the product term
Q�B1 is cancelled out by construction.

The management of the heap to compute the product qb uses several of the functions described for
Algorithm 2. Specifically heapPeek(), heapInsert(·, ·), and heapExtract(). However, heapExtract()
is modified slightly from its definition in multiplication. For division it combines removal of the top
heap element and insertion of the next element of the stream (if there is a next) from which the top
element originated. In this algorithm we use δ to denote the exponent of the top term in the heap of
q · b. Similar to multiplication, we abuse notation and let δ = −1 if the heap is empty.

Finally, having settled the details of the product qb, what remains is to efficiently compute the
leading term of a− qb− r. This is handled by a case discussion between the maximum term (in the
sense of the term order) of a which has yet to be cancelled out and the maximum term of the product
qb which has yet to be used to cancel out something. Then, by construction, when a newly generated
term goes to the remainder it exactly cancels out one term of a− qb. This case discussion is evident in
lines 4, 7, and 10 of Algorithm 4, while Proposition 3 formally proves the correctness of this approach.

7

Mathematics 2019, 7, 441

Algorithm 4 HEAPDIVIDEPOLYNOMIALS(a,b)

a, b ∈ K[x1, . . . , xv], a = ∑na
i=1 ai Xαi = ∑na

i=1 Ai , b �= 0 = ∑
nb
j=1 bj X

βj = ∑
nb
j=1 Bj ; return q, r ∈ K[x1, . . . , xv] such that a = qb + r where r = 0 or B1

does not divide any term in r (r is reduced with respect to the Gröbner basis {b}).

1: (q, r, l) := 0
2: k := 1
3: while (δ := heapPeek()) > −1 or k ≤ na do
4: if δ < αk then
5: r̃ := Ak
6: k := k + 1
7: else if δ = αk then
8: r̃ := Ak − heapExtract()
9: k := k + 1

10: else
11: r̃ := −heapExtract()

12: if B1 | r̃ then
13: � := �+ 1
14: Q� := r̃/B1
15: q := q + Q�

16: heapInsert(Q� , B2)
17: else
18: r := r + r̃
19: end
20: return (q, r)

Proposition 3. Algorithm 4 terminates and is correct.

Proof. Let K be a field and a, b ∈ K[x1, . . . , xv] with tdeg(b) > 0. If b ∈ K then this degenerate case is
simply a scalar multiplication by b−1

1 and proceeds as in Proposition 2. Then r = 0 and we are done.
Otherwise, tdeg(b) > 0 and we begin by initializing q, r = 0, k = 1 (index into a), � = 0 (index into q),
and δ = −1 (heap empty condition) since the heap is initially empty. The key change from Algorithm 3
to obtain Algorithm 4 is to use terms of qb obtained from the heap to compute r̃ = lt(a − qb − r).
There are then three cases to track: (1) r̃ is an uncancelled term of a; (2) r̃ is a term from (a− r)− (qb),
i.e., the degree of the greatest uncancelled term of a is the same as the degree of the leading term of
qb; and (3) r̃ is a term of −qb with the property that the rest of the terms of a− r are smaller in the
term order. Let akXαk = Ak be the greatest uncancelled term of a. The three cases then correspond to
conditions on the ordering of δ and αk. The term r̃ is an uncancelled term of a (Case 1) either if the
heap is empty (meaning either that no terms of q have yet been computed or all terms of qb have been
removed), or if δ > −1 but δ < αk. In either of these two situations δ < αk holds and r̃ is chosen to
be Ak. The term r̃ is a term from the difference (a− r)− (qb) (Case 2) if both Ak and the top term in the
heap have the same exponent vector (δ = αk). Lastly, r̃ is a term of−qb (Case 3) whenever δ > αk holds.
Algorithm 4 uses the above observation to compute r̃ by adding conditional statements to compare
the components of δ and αk. Terms are only removed from the heap when δ ≥ αk holds, and thus we
“consume” a term of qb. Simultaneously, when a term is removed from the heap, the next term from
the given stream, if it exists, is added to the heap (by the definition of heapExtract()). The updating
of q and r with the new leading term r̃ is almost the same as Algorithm 3, with the exception that
when we update the quotient, we also initialize a new stream with Q� in the multiplication of q · b.
This stream is initialized with a head of Q�B2 because Q�B1, by construction, cancels a unique term of
the expression a− qb− r. In all three cases, either the quotient is updated, or the remainder is updated.
It follows from the case discussion of δ and αk that the leading term of a− qb− r is non-increasing for
each loop iteration and the algorithm therefore terminates by Proposition 2. Correctness is implied by
the condition that r̃ = 0 at the end of the algorithm together with the fact that all terms of r satisfy the
condition lt(b) � Rk.

8

Mathematics 2019, 7, 441

4. Pseudo-Division

4.1. Naïve Pseudo-Division

The pseudo-division algorithm is essentially a univariate operation. Accordingly, we denote
polynomials and terms in this section as being elements of D̃[x1, . . . , xv−1][xv] = D[x] for an arbitrary
integral domain D̃. It is important to note that while the algorithms and discussion in this section
are specified for univariate polynomials they are, in general, multivariate polynomials, and thus the
coefficients of these univariate polynomials are in general themselves multivariate polynomials.

Pseudo-division is essentially a fraction-free division: instead of dividing a by h = lc(b) (once
for each term of the quotient q), a is multiplied by h to ensure that the polynomial division can
occur without being concerned with divisibility limitations of the ground ring. The outputs of a
pseudo-division operation are the pseudo-quotient q and pseudo-remainder r satisfying

h�a = qb + r, deg(r) < deg(b), (1)

where � satisfies the inequality 0 ≤ � ≤ deg(a) − deg(b) + 1. When � < deg(a) − deg(b) + 1 the
pseudo-division operation is called lazy or sparse.

Under this definition, the simple multivariate division algorithm (Algorithm 3) can be readily
modified for pseudo-division by accounting for the required factors of h. This enters in two places:
(i) each time a term of a is used, we must multiply the current term Ak of a by h�, where � is the number
of quotient terms computed so far, and (ii) each time a quotient term is computed we must multiply all
the previous quotient terms by h to ensure that h�a = qb + r will be satisfied. Algorithm 5 presents
this basic pseudo-division algorithm modified from the simple multivariate division algorithm.

Algorithm 5 PSEUDODIVIDEPOLYNOMIALS(a,b)
a, b ∈ D[x], b �= 0, h = lc(b); return q, r ∈ D[x] and � ∈ N such that h�a = qb + r, with deg(r) < deg(b).

1: (q, r, �) := 0
2: h := lc(b); β = deg(b)
3: while (r̃ := lt(h�a− qb− r)) �= 0 do
4: if xβ | r̃ then
5: q := hq + r̃/xβ

6: � := �+ 1
7: else
8: r := r + r̃
9: end

10: return (q, r, �)

It is important to note that because pseudo-division is univariate, all of the quotient terms are
computed before any remainder terms are computed. This is because we can always carry out a
pseudo-division step, and produce a new quotient term, provided that deg(b) ≤ deg(lt(h�a− qb− r)),
where r = 0. When deg(b) > deg(lt(h�a− qb− r)) then the quotient is done being computed and
we have r = h�a− qb, satisfying the conditions (1) of a pseudo-remainder. The following proposition
proves the correctness of our pseudo-division algorithm.

Proposition 4. Algorithm 5 terminates and is correct.

Proof. Let D be an integral domain and let a, b ∈ D[x] with β = deg(b) > 0. If deg(b) = 0, b = h
and the divisibility test on line 4 always passes, all generated terms go to the quotient, and we get a
remainder of 0 throughout the algorithm. Essentially this is a meaningless operation. q becomes hna−1a
and the formula (1) holds with r = 0 and the convention that deg(0) = −∞. We proceed assuming
deg(b) > 0. We initialize q, r, � = 0. It is enough to show that for each loop iteration, the degree
of r̃ strictly decreases. Since the degree of r̃ is finite, r̃ is zero after finitely many iterations. We use
superscripts to denote the values of the variables of Algorithm 5 on the i-th iteration. We have two
possibilities for each i, depending on whether or not xβ | r̃(i) holds: (1) Q� = r̃(i)/xβ, Q� being a new

9

Mathematics 2019, 7, 441

quotient term; or (2) Rk = r̃(i), Rk being a new remainder term. In Case 1 we update only the quotient
term so r(i+1) = r(i); in Case 2 we update only the remainder term so q(i+1) = q(i).

Suppose, then, that r̃(i) has just been used to compute a term of q or r, and we now look to
compute r̃(i+1). Depending on whether or not xβ | r̃(i) we have:
Case 1: xβ | lt(h�a− q(i)b− r(i)) and Q� = r̃(i)/xβ. Here, because we are still computing quotient
terms, r(i+1) = r(i) = 0. Thus,

r̃(i+1) = lt(h�+1a− q(i+1)b− r(i+1)) = lt(h�+1a− ([hq(i) + Q�]b))

= lt(h�+1a− (hq(i)b + Q�b))

= lt(h�+1a− [hq(i)b + (hr̃(i) − hr̃(i)) + Q�b])

= lt(h�+1a− [hq(i)b + hr̃(i) + Q�(b− hxβ)])

= lt(h[h�a− q(i)b− r̃(i)]−Q�(b− B1))

= lt
(
(h[h�a− q(i)b− r(i) − r̃(i)])−Q�(b− B1)

)
< lt(r̃(i)) = r̃(i).

In the second last line, where r(i) = 0 appears, notice that since r̃(i) = lt(h�a− q(i)b− r(i)) and
h ∈ D, we can ignore h for the purposes of choosing a term with highest degree and we have therefore
that lt(h�a− q(i)b− r(i) − r̃(i)) < lt(r̃(i)). Also, the expression Q�(b− B1) has leading term Q�B2 which
is strictly less than r̃(i) = Q�xβ, by the ordering of the terms of b. Hence r̃(i+1) is strictly less than r̃(i).
Case 2: xβ � lt(h�a− q(i)b− r(i)) and Rk = r̃(i)

r̃(i+1) = lt(h�a− q(i+1)b− r(i+1)) = lt(h�a− q(i)b− (r(i) + Rk))

= lt((h�a− q(i)b− r(i))− r̃(i))

< lt(r̃(i)) = r̃(i).

Similar to Case 1, r̃(i) = lt(h�a− q(i)b− r(i)), thus the difference between (h�a− q(i)b− r(i)) and
r̃(i) must have a leading term strictly less than r̃(i). The loop therefore terminates. The correctness
is implied by the condition that r̃ = 0 at the end of the loop. The condition deg(r) < deg(b) is
met because the terms are only added to the remainder when xβ � r̃ holds, i.e., when it is always
the case that deg(h�a− qb) < deg(b). � ≤ deg(a)− deg(b) + 1 holds because � is only incremented
when a new quotient term is produced (i.e., xβ | r̃) and the maximum number of quotient terms is
deg(a)− deg(b) + 1.

4.2. Heap-Based Pseudo-Division

Optimization of Algorithm 5 using a heap proceeds in much the same way as for division. The only
additional concern to handle to reach Algorithm 6 is how to account for factors of h in the computation
of lt(h�a− qb− r). Handling this requires adding the same number of factors of h to Ak that have
been added to the quotient up to a given iteration, that is, h�. The number � is incremented when the
previous quotient terms are multiplied by h prior to adding a new quotient term. Other than this,
the changes to Algorithm 5 to reach Algorithm 6 follow exactly the analogous changes to Algorithm 3
to reach Algorithm 4. These observations therefore yield the following algorithm and proposition.

10

Mathematics 2019, 7, 441

Algorithm 6 HEAPPSEUDODIVIDEPOLYNOMIALS(a,b)

a, b ∈ D[x], a = ∑na
i=1 ai xαi = ∑na

i=1 Ai , 0 �= b = ∑
nb
j=1 bj x

βj = ∑
nb
j=1 Bj , h = lc(b);

return q, r ∈ D[x] and � ∈ N such that h�a = qb + r, with deg(r) < deg(b).

1: (q, r, l) := 0
2: h := lc(b); β := deg(b)
3: k := 1
4: while (δ := heapPeek()) > −1 or k ≤ na do
5: if δ < αk then
6: r̃ := h�Ak
7: k := k + 1
8: else if δ = αk then
9: r̃ := h�Ak − heapExtract()

10: k := k + 1
11: else
12: r̃ := −heapExtract()

13: if xβ | r̃ then
14: q := hq
15: � := �+ 1
16: Q� := r̃/xβ

17: q := q + Q�

18: heapInsert(Q� , B2)
19: else
20: r := r + r̃
21: end
22: return (q, r, �)

Proposition 5. Algorithm 6 terminates and is correct.

Proof. Let D be an integral domain and a, b ∈ D[x] with deg(b) > 0. If b ∈ D then this degenerate
case proceeds as in Proposition 4. Then r = 0 with deg(r) = −∞ < 0 = deg(b) and we
are done. Observe that there are two main conditionals (lines 5–12 and 13–20) in the while loop.
Given Proposition 4, it is enough to show that the first conditional computes lt(h�a − qb − r) and
the second uses r̃ to add terms to either q or r, depending on whether or not xβ | r̃. We initialize
q, r = 0, k = 1 (index into a), � = 0 (index into q), δ = −1 (heap empty condition) since the heap is
initially empty. The central change to Algorithm 5 to reach Algorithm 6 is to take terms of qb from
the heap to compute r̃ = lt(h�a− qb− r). Three cases must then be tracked: (1) r̃ is a term of h�a that
has not yet been cancelled; (2) r̃ is a term from (h�a− r)− (qb); and (3) r̃ is a term of −qb such that all
remaining terms of h�a− r have smaller degree. Notice that all the terms of q are computed before
the terms of r since this is essentially univariate division with respect to the monomials. Therefore,
we can ignore r in the sub-expression h�a − r. Thus, computing lt(h�a − qb − r) in order simply
requires computing terms of (h�a− qb) in order. These three cases for computing r̃ are handled by
the first conditional. Let akXαk = Ak be the greatest uncancelled term of a. In Case 1, the heap is
either empty (indicating that no terms of q have been computed yet or all terms of qb have been
extracted) or deg(qb) = δ > −1 but δ < αk. In either situation δ < αk holds and r̃ is chosen to be Ak.
The term r̃ is a term from the difference (h�a− qb) (Case 2) if both Ak and the top term of the heap
have the same degree (δ = αk) and r̃ is chosen to be the difference of h�Ak and the greatest uncancelled
term of qb. Lastly, r̃ is a term of −qb (Case 3) in any other situation, i.e., δ > αk. Thus, the first
conditional computes lt(h�a− qb− r), provided that the second conditional correctly adds terms to q
and r. The second conditional adds terms to the quotient when xβ | lt(h�a− qb) holds. Since each
new quotient term adds another factor of h, we must first multiply all previous quotient terms by h.
We then construct the new quotient term to cancel lt(h�a− qb) by setting Q�+1 = lt(h�a− qb)/xβ, as
in Algorithm 5. Since Q�B1 cancels a term of (h�a− qb) by construction, then line 18 initializing a
new stream with Q�B2 is also correct. If, on the other hand, xβ � lt(h�a− qb), all remaining r̃ terms are
remainder terms, which are correctly added by line 20.

While the algorithmic shift between heap-based multivariate division (Algorithm 4) and
heap-based pseudo-division (Algorithm 6) is very straight forward, the change of coefficient domain
from simple numerical coefficients to full multivariate polynomials (when D is a polynomial ring)

11

Mathematics 2019, 7, 441

leads to many implementation challenges. This affects lines 6, 9 and 14 of Algorithm 6 in particular
because they can involve multiplication of multivariate polynomials. These issues are discussed in
Section 7.4.

5. Multi-Divisor Division and Pseudo-Division

One natural application of multivariate division with remainder is the computation of the normal
form with respect to a Gröbner basis, which is a kind of multi-divisor division. Let K be a field and
B = {b1, . . . , bk} be a Gröbner basis with bj ∈ K[x1, . . . , xv] for 1 ≤ i ≤ k. Then we can compute the
normal form r of a polynomial a ∈ K[x1, . . . , xv] (together with the quotients qj) with respect to B
by Algorithm 21.11 from [28], yielding a = q1t1 + · · ·+ qktk + r, where r is reduced with respect to
B. This naïve normal form algorithm makes repeated calls to a multivariate division with remainder
algorithm, thus we can take advantage of our optimized heap-based division (Algorithm 4).

We can offer algorithmic improvements in some cases where the set of divisors forms a triangular
set, i.e., where the main variables of tj ∈ {t1, . . . , tk} are pairwise different. Note that a triangular
set T = {t1, . . . , tk}, with tj ∈ K[x1, . . . , xv] and mvar(tk) > · · · > mvar(t1), is called normalized if,
for every polynomial of T, every variable appearing in its initial is free, i.e., is not the main variable
of another polynomial of T. In the case where a normalized triangular set is also zero-dimensional
(i.e., k = v) so that being normalized implies that init(ti) ∈ K holds, the triangular set T is actually a
Gröbner basis for the ideal it generates.

For such zero-dimensional normalized (also known as Lazard) triangular sets it is possible to
use a recursive algorithm (Algorithm 7) which is taken from [25]. Since the algorithm is recursive
we appropriately use the recursive representation of the polynomials. If v = 1, the desired result is
obtained by simply applying normal division with remainder. Otherwise the coefficients of a with
respect to xv = mvar(tv) are polynomials belonging to K[x1, . . . , xv−1] because T is a triangular set.
The coefficients of a are reduced with respect to the set {t1, t2, . . . , tv−1} by means of a recursive call,
yielding a polynomial r. At this point, r is divided by tv by applying the division algorithm. Since this
operation can lead to an increase in degree of for the variables less than xv, the coefficients of r are
reduced with respect to {t1, . . . , tv−1} by means of a second recursive call.

Algorithm 7 TRIANGULARSETNORMALFORM (a,T)
Given a ∈ K[x1, . . . , xv], T = {t1, . . . , tv} ⊂ K[x1, . . . , xv], with x1 = mvar(t1) < · · · < xv = mvar(tv) and init(t1), . . . , init(tv) ∈ K, returns
q = {q1, . . . , qv} ⊂ K[x1, . . . , xv] and r ∈ K[x1, . . . , xv] such that a = q1t1 + · · ·+ qvtv + r, with r is reduced (in the Gröbner bas) with respect to
the Lazard triangular set T.

1: if v = 1 then
2: (q1, r) := HEAPDIVIDEPOLYNOMIALS(a, t1)
3: else
4: for i = 0 to deg(a, xv) do

5: (q(i) := {q(i)1 , . . . , q(i)v−1}, r(i)) := TRIANGULARSETNORMALFORM(coef(a, xv , i), {t1, . . . , tv−1})
6: end for
7: q := 0
8: r := ∑

i
r(i)xv

i

9: for j = 1 to v− 1 do

10: qj := qj + ∑
i

q(i)j xv
i

11: end for
12: (q̃, r) := HEAPDIVIDEPOLYNOMIALS(r, tv); qv := qv + q̃
13: for i = 0 to deg(r, xv) do

14: (q(i) := {q(i)1 , . . . , q(i)v−1}, r(i)) := TRIANGULARSETNORMALFORM(coef(r, xv , i), {t1, . . . , tv−1})
15: end for
16: execute Lines 8–11
17: end if
18: return (q, r)

Proposition 6. Algorithm 7 terminates and is correct [25].

This approach can be extended to pseudo-division of a polynomial by a triangular set, an operation
that is important in triangular decomposition algorithms, in the case that the triangular set

12

Mathematics 2019, 7, 441

is normalized. The pseudo-remainder r and pseudo-quotients qj of a polynomial a ∈ K[x1, . . . , xv]

pseudo-divided by a triangular set T = {t1, . . . , tk}must satisfy

ha = q1t1 + · · ·+ qktk + r, deg(r, mvar(tj)) < deg(tj, mvar(tj)) for 1 ≤ j ≤ k, (2)

where h is a product of powers of the initials (leading coefficients in the univariate sense) of the
polynomials of T. If this condition is satisfied then r is said to be reduced with respect to T, again using
the convention that deg(r) = −∞ if r = 0.

The pseudo-remainder r can be computed naïvely in k iterations where each iteration
performs a single pseudo-division step with respect to each main variable in decreasing order
mvar(tk), mvar(tk−1), . . . , mvar(t1). The remainder is initially set to a and is updated during
each iteration. This naïve algorithm is inefficient for two reasons. First, since each pseudo-division
step can increase the degree of lower variables in the order, if a is not already reduced with respect
to T, the intermediate pseudo-remainders can experience significant coefficient swell. Second, it is
inefficient in terms of data locality because each pseudo-division step requires performing operations
on data distributed throughout the polynomial.

A less naïve approach is a recursive algorithm that replaces each of the k pseudo-division steps in
the naïve algorithm with a recursive call, amounting to k iterations where multiple pseudo-division
operations are performed at each step. This algorithm deals with the first inefficiency issue of coefficient
swell, but still runs into the issue with data locality. To perform this operation more efficiently
we conceive a recursive algorithm (Algorithm 8) based on the recursive normal form algorithm
(Algorithm 7). Using a recursive call for each coefficient of the input polynomial a ensures that we
work only on data stored locally, handling the second inefficiency of the naïve algorithm.

Algorithm 8 TRIANGULARSETPSEUDODIVIDE (a,T)
Given a, t1, . . . , tk ∈ K[x1, . . . , xv], T = {t1, . . . , tk}, with mvar(t1) < · · · < mvar(tk) and init(tj) /∈ {mvar(ti) | ti ∈ T} for 1 ≤ j ≤ k, returns
q = {q1, . . . , qk} ⊂ K[x1, . . . , xv] and r, h ∈ K[x1, . . . , xv] such that ha = q1t1 + · · ·+ qktk + r, where r is reduced with respect to T.

1: if k = 1 then
2: (q1, r, e) := HEAPPSEUDODIVIDEPOLYNOMIALS(a, t1); h = init(t1)e

3: else
4: xm := mvar(tk)
5: for i = 0 to deg(a, xm) do

6: (q(i) := {q(i)1 , . . . , q(i)k−1}, r(i) , h(i)) := TRIANGULARSETPSEUDODIVIDE(coef(a, xm , i), {t1, . . . , tk−1})
7: end for
8: q = 0
9: h1 := lcm(h(i)), 0 ≤ i ≤ deg(a, xm)

10: r := ∑
i
(h1/h(i)) r(i)xi

m

11: for j = 1 to k− 1 do

12: qj := qj + ∑
i
(h1/h(i)) q(i)j xi

m

13: end for
14: if mvar(r) = xm then
15: (q̃, r, ẽ) := HEAPPSEUDODIVIDEPOLYNOMIALS(r, tk)

16: h̃ = init(tk)
ẽ

17: for j = 1 to k− 1 do
18: qj := qj h̃
19: end for
20: qk := q̃
21: for i = 0 to deg(r, xm) do

22: (q(i) := {q(i)1 , . . . , q(i)k−1}, r(i) , h(i)) := TRIANGULARSETPSEUDODIVIDE(coef(r, xm , i), {t1, . . . , tk−1})
23: end for
24: h2 := lcm(h(i)), 0 ≤ i ≤ deg(r, xm)
25: for j = 1 to k do
26: qj := qjh2

27: end for
28: execute Lines 9–13 with h2 replacing h1

29: h := h1 h̃h2
30: else
31: h := h1; qk = 0
32: end if
33: end if
34: return (q, r, h)

13

Mathematics 2019, 7, 441

Proposition 7. Algorithm 8 terminates and is correct.

Proof. The central difference between this algorithm and Algorithm 7 is the change from division to
pseudo-division. By Proposition 5 the computed pseudo-remainders are reduced with respect to their
divisor. The fact that the loops of recursive calls are all for a triangular set with one fewer variables
ensures that the total number of recursive calls is finite, and the algorithm terminates. If k = 1, then
Proposition 5 proves correctness of this algorithm, so assume that k > 1.

We must first show that lines 4–13 correctly reduce a with respect to the polynomials

{t1, . . . , tk−1}. Let ci = coef(a, xm, i), so a = ∑
deg(a,xm)
i=0 cixi

m. Assuming the correctness of the

algorithm, the result of these recursive calls are q(i)j , r(i) and h(i) such that h(i)ci = ∑k−1
j=1 q(i)j tj + r(i),

where deg(r(i), mvar(tj)) < deg(tj, mvar(tj)) and h(i) = ∏k−1
j=1 init(tj)

ej for some non-negative integers

ej. It follows that ci =
(

∑k−1
j=1 q(i)j tj + r(i)

)
/h(i). We seek a minimal h1 such that h1a = ∑i h1cixi

m =

∑i(h1/h(i))
(

∑k−1
j=1 q(i)j tj + r(i)

)
xi

m is denominator-free, which is easily seen to be lcm(h(i)). This then

satisfies the required relation of the form (2), with h1 in place of h, by taking qj = ∑i(h1/h(i))q(i)j tjxi
m

and r = ∑i(h1/h(i))r(i)j xi
m. This follows from the conditions deg(r(i), mvar(tj)) < deg(tj, mvar(tj))

since h1 contains none of the main variables of {t1, . . . , tk−1} because T is normalized.
If at this point mvar(r) �= xm, then no further reduction needs to be done and the algorithm

finishes with the correct result by returning (q1, . . . , qk−1, 0, r, h1). This is handled by the else clause
on lines 30 and 31 of the conditional on lines 14–32. If, on the other hand, mvar(r) = xm, we must
reduce r with respect to tk. Proposition 5 proves that after executing line 15, deg(r, mvar(tk)) <

deg(tk, mvar(tk)), and together with lines 16–20 implies that with the updated pseudo-quotients

h̃h1a =
k

∑
j=1

qjtj + r. (3)

Since the pseudo-division step at line 15 may increase the degrees of the variables of r less
than xm in the variable ordering, we must issue a second set of recursive calls to ensure that (2) is
satisfied. Again, given the correctness of the algorithm, it follows that the result of the recursive calls

on lines 21–23 taking as input r = ∑
deg(r,xm)
i=0 cixi

m, with ci = coef(r, xm, i), are q(i)j , r(i) and h(i) such that

h(i)ci = ∑k−1
j=1 q(i)j tj + r(i), where deg(r(i), mvar(tj)) < deg(tj, mvar(tj)). Combining these results as

before and taking h2 = lcm(h(i)) it follows that

h2r =
k−1

∑
j=1

q̃jtj + r̃ (4)

satisfies a reduction condition of the form (2) with q̃ = ∑i(h2/h(i))q(i)j tjxi
m and r̃ = ∑i(h2/h(i))r(i)j xi

m,

again because T is normalized. Multiplying (3) by h2 and using Equation (4) yields h2h̃h1a =

∑k
j=1 h2qjtj + h2r = ∑k

j=1 h2qjtj +∑k−1
j=1 q̃jtj + r̃ = ∑k−1

j=1 (h2qj + q̃j)tj + h2qktk + r̃, which gives the correct
conditions for updating the pseudo-quotients on lines 25–27, with the q̃j and r̃ computed at line 28.
Now r̃ is reduced with respect to xm because r is and with respect to mvar(t1), . . . , mvar(tk−1) because
of the above argument, so that the correct overall multiplier is h = h2h̃h1, set on line 29. The algorithm
is therefore correct.

6. Data Structures

Polynomial arithmetic is fundamental to so many algorithms that it should naturally be optimized
as much as possible. Although algorithm choice is important for this, so too is making use of
appropriate data structures. When programming for modern computer architectures we must be

14

Mathematics 2019, 7, 441

concerned with the processor–memory gap: the exponentially increasing difference between processor
speeds and memory-access time. We combat this gap with judicial memory usage and management.
In particular, the principle of locality and cache complexity describe how to obtain performance by
maximizing memory accesses that make best use of modern memory hierarchies (i.e., data locality).
Basically, this means that the same memory address should be accessed frequently or, at the very
least, accesses should be adjacent to those most recently accessed. Our implementation adheres to this
principle through the use of memory-efficient data structures with optimal data locality. We see later
(in Section 7) that our algorithms have implementation-specific optimizations to exploit this locality
and minimize cache complexity.

This section begins by reviewing our memory-efficient data structures for both sparse distributed
(Section 6.1) polynomials and sparse recursive polynomials (Section 6.2). The latter is interesting as
the data structure is still flat and distributed but allows for the polynomial to be viewed recursively.
Then, we discuss the implementation of our heap data structure (Section 6.3) which is specialized and
optimized for use in polynomial multiplication.

6.1. A Sparse Distributed Polynomial Data Structure

The most simple and common scheme for sparsely representing a polynomial is a linked list,
or some similar variation of data blocks linked together by pointers [6,29,30]. This representation allows
for very easy manipulation of terms using simple pointer manipulation. However, the indirection
created by pointers can lead to poor locality while the pointers themselves must occupy memory,
resulting in memory wasted to encode the structure rather than the data itself. More efficient sparse
data structures have been explored by Gastineau and Laskar [29], where burst tries store monomials
in the TRIP computer algebra system, and Monagan and Peace [30], where the so-called POLY data
structure for MAPLE closely stores monomials in a dense array. In both cases, the multi-precision
coefficients corresponding to those monomials are stored in a secondary structure and accessed by
either indices stored alongside the monomials (in the case of TRIP) or pointers (in the case of MAPLE).

Our distributed polynomial representation stores both coefficients and monomials side-by-side
in the same array. This representation, aptly named an alternating array, improves upon data locality;
the coefficient and monomial which together make a single polynomial term are optimally local
with respect to each other. This decision is motivated by the fact that in arithmetic, coefficients
are accessed alongside their associated monomials (say to perform a multiplication or combine
like terms). In practice, this array structure is augmented by a simple C-struct holding three items: the
number of terms; the number of variables; and a pointer to the actual array. This seemingly simple
structure abstracts away some complexities in both the coefficients and monomials. We begin with
the coefficients.

Due to the nature of arbitrary-precision coefficients, in our case either integers or rational
numbers (We actually have two nearly identical yet distinct alternating array implementations.
One implementation holds integer coefficients while the other holds rational number coefficients),
we cannot say they are fully stored in the array. We make use of the GNU Multiple Precision Arithmetic
(GMP) Library [31] for our coefficients. The implementation of arbitrary-precision numbers in this
library is broken into two distinct parts, which we will call the head and the tree. The head contains
metadata about the tree, as well as a pointer to the tree, while the tree itself is what holds the
numerical data. By the design of the GMP library users only ever interact with the head. Thus,
our alternating array representation holds the heads of the GMP numbers directly in the array
rather than pointers or indices to some other structure, which in turn would hold the heads of
the GMP numbers. Figure 1 depicts an arbitrary polynomial of n terms stored in an alternating array,
highlighting the GMP tree structure.

15

Mathematics 2019, 7, 441

a1 α1 a2 α2 · · · an αn

Term 1 Term 2 Term n

t1 t2 tn

Figure 1. An alternating array representation of n terms showing GMP trees as t1, t2, . . . , tn, GMP
heads as a1, a2, . . . , an, and monomials as α1, α2, . . . , αn. One head and tree together make a single
arbitrary-precision number.

The alternating array diagram in Figure 1 may be misleading at first glance, since it appears
that pointers are still being used; however, these pointers are completely internal to GMP and are
unavoidable. Hence, where other structures use indices ([29], Figure 2) or pointers ([6], Figure 3)
to a separate array of GMP coefficients, that coefficient array also further contains these pointers
to GMP trees. Our implementation thus removes one level of indirection compared to these other
schemes. We do note, however, that the data structure described in [6,30] includes an additional feature
which automatically makes use of machine-precision integers stored directly in the data structure,
rather than GMP integers, if coefficients are small enough.

Next, we discuss the implementation of monomials. Under a fixed variable ordering it
becomes unnecessary to store the variables themselves with the monomial, and so we only store
the exponent vector. This greatly reduces the required memory for a monomial. However, even more
memory is saved via exponent packing. Using bit-masks and bit-shifts, multiple partial degrees, each
taking a small non-negative value, can easily be stored in a single machine word (usually 64 bits).
This fact should be obvious by looking at the binary representation of a non-negative integer on a
computer. Integers are stored in some fixed size, typically 32 or 64 bits, and, when positive or unsigned,
have many leading 0 bits. For example, 5 as a 32-bit integer is 0b00000000000000000000000000000101.
By using a predetermined number of bits for each partial degree in an exponent vector, it becomes
easy to partition the 64 bits to hold many integers. Our alternating array thus holds a single machine
word directly in the array for packing each exponent vector.

Exponent packing has been in use at least since the 60s in ALTRAN [1], but also in more recent
works such as [4,32]. Our implementation differs from others in that exponents are packed unevenly,
i.e., each exponent is given a different number of bits in which to be encoded. This is motivated
by two factors. First, 64 bits is rarely evenly divided among the number of variables, meaning
some bits could be wasted. Second, throughout the process of operations such as pseudo-division
or triangular decomposition the degrees of lower-ordered variables often increase more drastically
than higher-ordered variables, and so we give more bits to the lower-ordered variables. This can
allow for large computations to progress further without failing or having to revert to an unpacked
exponent vector. One final highlight on exponent packing (first emphasized in [32]) is that monomial
comparisons and monomial multiplications respectively reduce to a single machine-integer comparison
and a single machine-integer addition. This result drastically reduces the time to complete monomial
comparisons, and thus sort monomials, a huge part of sparse polynomial arithmetic.

6.2. A Sparse Polynomial Data Structure for Viewing Polynomials Recursively

We take this section to describe our recursive polynomial data structure. That is not to say that
the data structure itself is recursive, rather the polynomial is viewed recursively, as a univariate
polynomial with multivariate polynomial coefficients. In general, polynomials are stored using the
distributed representation; however, some operations, such as pseudo-division, require a specifically
univariate view of the polynomial. Thus, we have created an in-place, very fast conversion between
the distributed and recursive representations, amounting to minimal overhead in both memory usage

16

Mathematics 2019, 7, 441

and time. As a result, we can use the same distributed representation everywhere, only converting as
required. This recursive representation is shown in Figure 2.

3 x1x2
2x3

3 6 x1x2
2x2

3 4 x1x2x2
3 7 x1

3 x1x2
2 6 x1x2

2 4 x1x2 7 x1

3 1 2 2 0 1

�
Distributed

Recursive

Figure 2. A distributed polynomial representation and its corresponding recursive polynomial
representation, showing the additional secondary array. The secondary array alternates between:
(1) degree of the main variable, (2) size of the coefficient polynomial, and (3) a pointer to the coefficient
polynomial, which is simply an offset into the original distributed polynomial.

To view a polynomial recursively we begin by (conceptually) partitioning its terms into blocks
based on the degree of the main (highest-ordered) variable. Since our polynomials are stored using
a lexicographical term order, the terms of the polynomial are already sorted based on the degree of
the main variable. Moreover, terms within the same block are already stored in lexicographical order
with respect to the remaining variables. Therefore, each block will act as a multivariate polynomial
coefficient of the univariate polynomial in the main variable. The partitioning is done in-place, without
any memory movement, simply by maintaining an offset into the alternating array which signifies the
beginning of a particular coefficient, in the recursive sense.

We create a secondary auxiliary array which holds these offsets, the number of terms in each
polynomial coefficient, and the degree of the main variable. Simultaneously, the degree of the main
variable in the original alternating array is set to 0. The degree of the main variable then does not
pollute the polynomial coefficient arithmetic. This secondary array results in minimal overhead,
particularly because its size is proportional to only the number of unique values of the degree of the
main variable. Figure 2 highlights this secondary array as part of the recursive structure.

6.3. Heaps Optimized for Polynomial Multiplication

The largest effort required of our sparse multiplication algorithm (and thus also that of our
division and pseudo-division algorithms) is to sort the terms of the product. Our algorithm makes
use of a heap to do this sorting (much like heap sort), and thus arithmetic performance is largely
dependent in the performance of the heap. Briefly, a heap is a data structure for efficiently obtaining
the maximum (or minimum) from a continually updating collection of elements. This is achieved by
using a binary tree, which stores key-value pairs, with a special heap property—children are always less
than their parents in the tree. A more complete discussion of heaps can be found in ([26], Section 2.4).

The optimizations used in our heap implementation focus on two aspects, minimizing the working
memory of the heap and minimizing the number of comparisons. The need for the latter should be
obvious, while the need for the former is more subtle. Due to the encoding of a heap as a binary tree,
parent nodes and child nodes are not adjacent to each other in memory; the heap must essentially
perform random memory accesses across all its elements. In the sense of locality and cache usage, this
is not ideal, yet unavoidable. Therefore, we look to minimize the size of the heap in hopes that it will
entirely fit in cache and allow for quick access to all its elements.

The first optimization is due to [33] which reduces the number of comparisons required to remove
the maximum element of the heap by a factor of two. The usual implementation of a heap removes
the root node, swapping a leaf node into the hole, and then filtering it downward to re-establish the
heap property. This requires two comparisons per level to determine which path to travel down.
Instead, one can continuously promote the larger of the hole’s two children until the hole is a leaf node.
This requires only one comparison per level.

17

Mathematics 2019, 7, 441

The second optimization called chaining reduces both the required number of comparisons and
the amount of working memory for the heap. This technique is common in the implementation of hash
tables for conflict resolution ([26], Chapter 3). Whenever a “conflict” occurs (when two elements are
found to be equal) they form a chain, or linked list. Each node’s key remains in the heap, but the values
are now linked lists. Elements found to be equal simply add their value to the chain rather than insert
a new element. This minimizes the number of elements in the heap but also allows extracting an entire
chain, and therefore many elements, at the cost of removing a single element. This heap organization
is presented in Figure 3.

In the context of polynomial multiplication, the exponent vector of the product term is the
key while the value is a linked list of coefficients of the product. For our multiplication algorithm
(Algorithm 2) we must also know from which stream a particular product term originated, and so
should also store the stream index. However, to minimize the space required for the heap, while also
storing the stream index (i.e., the multiplier term’s index), we do not store the product term’s coefficient
at all and instead store the indices of the multiplier and multiplicand terms which together would
produce a particular product term’s coefficient. We do not need the coefficient of the product term
to do the sorting, and so storing indices is more efficient. Moreover, delaying the multiplication of
coefficients has benefits for locality. With chaining, removing the maximum element actually removes
an entire chain of like terms, then the coefficient multiplication and addition of like terms can be
done simultaneously.

Similar heap optimizations, including chaining, have been used in [6]. In contrast with our
implementation, chaining in [32] used pointers to multiplier and multiplicand terms rather than
indices. Integer indices (32 bits) are twice as efficient in memory usage as pointers on 64-bit machines,
improving the overall memory and cache usage of the heap (and multiplication in general).

αi + β j

αi+1 + β j

. . .

i j

i + 1 j

i− 1 j + 2

Heap Elements Element Chains

Figure 3. A heap of product terms, showing element chaining and index-based storing of coefficients.
In this case, terms Ai+1 · Bj and Ai−1 · Bj+2 have equal monomials and are chained together.

7. Implementation

As discussed in the previous section, our data structures are memory-efficient with exceptional
data locality. Now, in this section, we describe the implementation-specific optimizations of our
algorithms, such as memory management techniques and efficient use of our data structures.
These implementations exploit the locality of the data structures to minimize cache complexity and
improve performance. Formal cache complexity estimates of these algorithms are presented in [34];
we exclude them here and instead focus on motivations and techniques for reducing cache complexity
in general.

We begin in Section 7.1 describing how to exploit our data structure for an optimized “in-place”
addition (or subtraction) operation. Next, we discuss our implementations of multiplication
(Section 7.2), division with remainder (Section 7.3), and pseudo-division (Section 7.4), all based
on our heap data structure described above (Section 6.3). Lastly, we examine the application of these
operations in our implementation of normal form and pseudo-division by a triangular set (Section 7.5).

18

Mathematics 2019, 7, 441

7.1. In-Place Addition and Subtraction

An “in-place” algorithm suggests that the result is stored back into the same data structure as one
of operands (or the only operand). This strategy is often motivated by either limited available memory
resources or working with data that is too large to consider making a complete copy for the result.
For our purposes, we are concerned with neither of these since our polynomial representations use
relatively small amounts of memory. Hence, in-place operations are only of interest if they can
improve running time. Generally speaking, in-place algorithms require more operations and more
movement of data than out-of-place alternatives, making them most useful when the data set being
sorted is so large that a copy cannot be afforded. For example, in-place merge sort has been a topic
of discussion for decades, however, these implementations run 25–200% slower than an out-of-place
implementation [35–37].

Due to the similarities between merge sort and polynomial addition (subtraction) it would seem
unlikely that an in-place scheme would lead to performance benefits. However, our in-place addition
becomes increasingly faster than out-of-place addition as coefficient sizes increase. This in-place
addition scheme is not technically in-place, but it does exploit the structure of GMP numbers
(as shown in Figure 1) for in-place coefficient arithmetic. In-place addition builds the resulting
polynomial out-of-place but reuses the GMP trees of one of the operand polynomials. Rather than
allocating a new GMP number—and thus a new GMP tree—in the resulting polynomial, we simply
copy the head of one GMP number (and the pointer to its existing tree) into the new polynomial’s
alternating array, performing the coefficient arithmetic in-place. This saves on memory allocation
and memory copying, and benefits from the improved performance of GMP when using in-place
arithmetic ([31], Section 3.11).

These surprising results are highlighted in Figure 4 where out-of-place addition and its in-place
counterpart are compared for various polynomial sizes with varying coefficient sizes. In-place addition
has a speed-up factor of up to 3 for the coefficient sizes tested, with continued improvements as
coefficient sizes grow larger. In-place arithmetic is put to use in pseudo-division to reduce the
cost of polynomial coefficient arithmetic and improve the performance of pseudo-division itself.
See Section 7.4 for this discussion.

103 104 105 106 107
10−4

10−3

10−2

10−1

100

101

Number of Terms (n)

R
un

ni
ng

Ti
m

e
(s

)

Q[x1, x2, x3] Addition
In-place vs Out-of-place

Out, 256
Out, 64
Out, 8

In, 256
In, 64
In, 8

Figure 4. Comparing in-place and out-of-place polynomial addition. Random rational number
polynomials in 3 variables are added together for various numbers of terms and for various
coefficient sizes. The number of bits needed to encode the coefficients of the operands are shown in the
legend. Notice this is a log-log plot.

19

Mathematics 2019, 7, 441

7.2. Multiplication

The algorithm for polynomial multiplication (Algorithm 2) translates to code quite directly.
However, we note some important implementation details to obtain better performance. Apart from
the optimizations within the heap itself there are some implementation details concerning how the
heap is used within multiplication to improve performance.

The first optimization makes use of the fact that multiplication is a commutative operation.
Since the number of elements in the heap is equal to the number of streams, which is in turn equal
to the number of terms in the multiplier (the factor a in a · b), then we choose the multiplier to be the
smaller operand, minimizing the size of the heap. The second optimization deals with the initialization
of the heap. Due to the fact that for two terms Ai and Bj, Ai · Bj is always greater than Ai+1 · Bj in the
term order, then at the beginning of the multiplication algorithm it is only necessary to insert the term
Ai+1 · B1 after the term Ai · B1 has been removed from the heap.

A final optimization for multiplication deals with memory management. In particular,
we know that for operands with na and nb terms each, the maximum size of the product is na · nb.
Therefore, we can pre-allocate this maximal size of the product (and similarly pre-allocate a maximal
size na for the heap) before we begin computation. This eliminates any need for reallocation or memory
movement, which can cause slowdowns. However, in the case where na · nb is a very large number, say,
exceeding 100 million, then we begin by only allocating 100 million terms for the product, doubling
the allocation as needed in order amortize the cost of reallocation. Of course, any memory allocated in
excess is freed at the end of the algorithm.

7.3. Division with Remainder

Polynomial division is essentially a direct application of polynomial multiplication. Again, we use
heaps, with all the optimizations previously discussed, to produce the terms of the quotient-divisor
product efficiently and in order. However, one important difference between division and
multiplication is that the one of the operands of the quotient-divisor product, the quotient,
is simultaneously being produced and consumed throughout the algorithm. Thus, we cannot
pre-allocate space for the product or heap since the size of the quotient is unknown. Instead, we again
follow a doubling of allocation strategy for the quotient and remainder to amortize the cost of
reallocation. Moreover, we reallocate the space for the heap whenever we reallocate q since we
know that the heap’s maximum size will be equal to the number of terms in q. The added benefit of
this is that the heap is guaranteed to have enough space to store all elements and does not need to
check for overflow on each insert.

7.4. Pseudo-Division

As seen in Section 4.1 the algorithms for division (Algorithms 3 and 4) can easily be
adapted to pseudo-division (Algorithms 5 and 6) by multiplying the dividend and quotient
by the divisor’s initial. However, the implementation between these two algorithms is
very different. In essence, pseudo-division is a univariate operation, viewing the input multivariate
polynomials recursively. That is, the dividend and divisor are seen as univariate polynomials
over some arbitrary (polynomial) integral domain. Therefore, coefficients can be, and indeed are,
entire polynomials themselves. Coefficient arithmetic becomes non-trivial. Moreover, the normal
distributed polynomial representation would be inefficient to traverse and manipulate in this recursive
way. Therefore, we use the recursive polynomial representation described in Section 6.1 with minimal
overhead for conversion.

One of the largest performance concerns in this recursive view is the non-trivial
coefficient arithmetic. As coefficients are now full polynomials there is more overhead in manipulating
them and performing arithmetic. One important implementation detail is to perform the addition
(and subtraction) of like terms in-place. Such combinations occur when computing the leading

20

Mathematics 2019, 7, 441

term of h�a− qb and when combining like terms in the quotient-divisor product. In-place addition,
as described in Section 7.1, performs exceedingly better than out-of-place addition as the size of
numerical coefficients grows, which occurs drastically during pseudo-division.

Similarly, the update of the quotient by multiplying by the initial of the divisor requires
a multiplication of full polynomials. If we wish to save on memory movement we should
perform this multiplication in-place as well. However, in our recursive representation (Figure 2),
coefficient polynomials are tightly packed in a continuous array. To modify them in-place would
require shifting all the following coefficients down the array to make room for the strictly large product
polynomial. To avoid this unnecessary memory movement we modify the recursive data structure
exclusively for the quotient polynomial; we break the continuous array of coefficients into many arrays,
one for each coefficient. This allows them to grow without displacing the following coefficients. At the
end of the algorithm, once the quotient has finished being produced, we collect and compact all of
these disjoint polynomials into a single, packed array. In contrast, the remainder is never updated once
its terms are produced, nor does it need to be viewed recursively, thus it is stored directly in the normal
distributed representation, avoiding the unnecessary conversion out of the recursive representation.

7.5. Multi-Divisor (Pseudo-)Division

The performance of our normal form and multi-divisor pseudo-division algorithms primarily
relies on the performance of the basic operations of division and pseudo-division, respectively.
Hence, our normal form and multi-divisor pseudo-division algorithms gain significant performance
benefits from the optimization of these lower-level operations. We only note two particular
implementation details for these multi-divisor algorithms.

Firstly, the algorithms for normal form (Algorithm 7) and triangular set pseudo-division
(Algorithm 8) use distributed and recursive polynomial representations, respectively, to manipulate
operand polynomials appropriately for their operations. Secondly, we use in-place techniques,
following the scheme of in-place addition (Section 7.1) to reduce the effects of GMP arithmetic and
memory movement. Due to the recursive nature of these algorithms we can use a pre-allocation of
memory as a destination to store both the final remainder and the remainder in each recursive call,
continually reusing GMP coefficients.

8. Experimentation and Discussion

As we have seen in the previous two sections, our implementation has focused well on locality
and memory usage in interest of obtaining performance. Indeed, as a result of the processor–memory
gap this is highly important on modern architectures. The experimentation and benchmarks provided
in this section substantiate our efforts where we will compare similar heap-based arithmetic algorithms
provided in MAPLE [38].

Let us begin with a discussion on the quantification of sparsity with respect to polynomials.
For univariate polynomials, sparsity can easily be defined as the maximum degree difference between
any two successive non-zero terms. However, in the multivariate case, and in particular using
lex ordering, there are infinitely many polynomial terms between x1 and x2, in the form of xi

1.
For multivariate polynomial, sparsity is less easily defined. Inspired by Kronecker substitution ([28],
Section 8.4) we propose the following sparsity measure for multivariate polynomials adapted from
the univariate case. Let f ∈ R[x1, . . . , xv] be non-zero and define r = max(deg(f , xi), 1 ≤ i ≤ v) + 1.
Then, every exponent vector e := (e1, . . . , ev) of a term of f can be viewed as an integer in a radix-r
representation, e1 + e2r + · · ·+ evrv−1. Viewing any two successive polynomial terms in f , say Fi and
Fi+1, as integers in this radix-r representation, say ci and ci+1, we call the sparsity of f the smallest
integer which is larger than the maximum value of ci − ci+1, for 1 ≤ i < n f .

Our experimentation uses randomly generated sparse polynomials whose generation is
parameterized by several variables: the number of variables v, the number of terms n, the number of
bits used to encode any coefficient (denoted coefficient bound), and a sparsity value s used to compute

21

Mathematics 2019, 7, 441

the radix r = 	 v
√

s · n� for use in generating exponent vectors as just defined. Our arithmetic algorithms,
and code for generating random test instances, are openly available in the BPAS library [12].

We compare our arithmetic implementations against MAPLE for both integer polynomials and
rational number polynomials. Thanks to the work by Monagan and Pearce [6,18,19,32] in recent
years MAPLE has become the leader in integer polynomial arithmetic. Benchmarks there clearly
show that their implementation outperforms many others including that of TRIP [39], MAGMA [40],
SINGULAR [41], and PARI/GP [42]. Moreover, other common libraries like FLINT [43] and
NTL [44] provide only univariate polynomials, so to compare our multivariate implementation
against theirs would be unfair. Hence, we compare against MAPLE with its leading high-performance
implementation. In particular, MAPLE 2017 with kernelopts(numcpus = 1) (which forces MAPLE to
run serially.) Of course, the parallel arithmetic of MAPLE described in [18,19], which has been shown
to achieve up to 17x parallel speed-up, could out-perform our serial implementation in some cases,
such as multiplication and division over Z. However, to be fair, we compare serial against serial.

Our benchmarks were collected on a machine running Ubuntu 14.04 using an Intel Xeon X560
processor (Intel, Santa Clara, CA, USA) at 2.67 GHz with 32 KB L1 data cache, 256 KB L2 cache,
and 12288 KB L3 cache, with 12× 4 GB of DDR3 RAM at 1333 MHz. In all the following timings we
present the median time among 3 trials using 3 different sets of randomly generated input polynomials.

8.1. Multiplication and Division with Remainder

We compare multiplication and division with remainder against MAPLE for both polynomials
over the rational numbers and the integers. For multiplication we call expand in MAPLE and for
division with remainder we call Groebner:-NormalForm. Normal form is a more general algorithm
for many divisors but reduces to division with remainder in the case of a single divisor. This operation
appears to be the only documented algorithm for computing division with remainder in MAPLE.
The optimized integer polynomial exact division of [6] appears in MAPLE as the divide operation.
It would be unfair to use our division with remainder algorithm to compute exact divisions to compare
against [6] directly (although, some examples of such are shown in Section 8.4). However, internally,
Groebner:-NormalForm clears contents to work, at least temporarily, with integer polynomials for
calls to divide and expand for division and multiplication operations, respectively, each of which is
indeed optimized (Contents are cleared from (rational number) polynomials, to result in an integer
polynomial, either via the basis computation or directly in the call to the underlying normal form
function Groebner:-Buchberger:-nfprocs).

We begin by comparing our multiplication and division with remainder algorithms for
polynomials over the rationals. MAPLE does not have an optimized data structure for polynomials
with rational number coefficients [30], so this benchmark is meant to highlight the necessity of
memory-efficient data structures for algorithmic performance. The plot in Figure 5a shows the
performance of multiplication over Q for polynomials in 5 variables of varying sparsity and number
of terms. The parameters specified determine how both the multiplier and multiplicand where
randomly generated. The plot in Figure 5b shows the performance of division with remainder over Q
for polynomials in 5 variables of varying sparsity and number of terms. For this division, we construct
two polynomials f and g using the parameters specified and then perform the division (f · g + f)/g.
The disparity in running times between BPAS and MAPLE is very apparent, with multiple orders
of magnitude separating the two. We see speed-ups of 333 for multiplication and 731 for division
with remainder.

The same set of experiments were performed again for integer polynomials. Figure 6a,b shows
multiplication and division with remainder, respectively, for polynomials over Z. In this case, MAPLE

features a more optimized data structure for polynomials over Z and performs relatively much better.
However, BPAS still outperforms MAPLE with a speed-up factor of up to 3 for multiplication and 67
for division with remainder. The speed-up factors continue to grow as sparsity increases. This growth
can be attributed to the fact that as sparsity increases, the number of like terms produced during

22

Mathematics 2019, 7, 441

a multiplication decreases. Hence, there is less coefficient arithmetic and many more terms in the
product, highlighting the effects of better locality and memory management.

200 400 600 800

10−2

10−1

100

101

102

Number of Terms (n)

R
un

ni
ng

Ti
m

e
(s

)

Q[x1, x2, x3, x4, x5] Multiplication
Running Time vs. Number of Terms

Maple, 200 BPAS, 200

Maple, 100 BPAS, 100

Maple, 50 BPAS, 50

(a) Multiplication.

200 400 600 800

10−2

10−1

100

101

102

103

Number of Terms (n)
R

un
ni

ng
Ti

m
e

(s
)

Q[x1, x2, x3, x4, x5] Division with Remainder
Running Time vs. Number of Terms

Maple, 200 BPAS, 200

Maple, 100 BPAS, 100

Maple, 50 BPAS, 50

(b) Division with remainder. (f g + f)/g is performed.

Figure 5. Comparing multiplication and division with remainder over Q. Polynomials are in 5 variables
and the coefficient bound is 128. The sparsity varies as noted in the legend.

2000 4000 6000 8000
0

10

20

30

40

50

Number of Terms (n)

R
un

ni
ng

Ti
m

e
(s

)

Z[x1, x2, x3, x4, x5] Multiplication
Running Time vs. Number of Terms

Maple, 200 BPAS, 200

Maple, 100 BPAS, 100

Maple, 50 BPAS, 50

(a) Multiplication.

200 400 600 800
10−4

10−3

10−2

10−1

100

101

Number of Terms (n)

R
un

ni
ng

Ti
m

e
(s

)

Z[x1, x2, x3, x4, x5] Division with Remainder
Running Time vs. Number of Terms

Maple, 200 BPAS, 200

Maple, 100 BPAS, 100

Maple, 50 BPAS, 50

(b) Division with remainder. (f g + f)/g is performed.

Figure 6. Comparing multiplication and division with remainder over Z. Polynomials are in 5 variables
and the coefficient bound is 128. The sparsity varies as noted in the legend.

8.2. Pseudo-Division

We next compare the implementations of pseudo-division over Z. We perform the pseudo-division
of (f · g + f) by g for randomly generated f and g. However, since pseudo-division is essentially
univariate, the randomly generated polynomials go through a secondary cleaning phase where the
degree of the main variable is spread out evenly such that each polynomial coefficient, in the recursive
sense, is the same size. This stabilizes the running time for randomly generated polynomials with
the same number of terms. Figure 7b shows the running time of non-lazy pseudo-division, that is,
� is forced to be deg(a)− deg(b) + 1 in the pseudo-division equation h�a = qb + r. Figure 7a shows a
lazy pseudo-division, where � is only as large as is needed to perform the pseudo-division. For lazy
pseudo-division we see a speed-up factor of up to 2 while for non-lazy pseudo-division we see a

23

Mathematics 2019, 7, 441

speed-up factor of up to 178. A non-lazy pseudo-division’s running time is usually dominated by
coefficient polynomial arithmetic and performs much slower than the lazy version. Moreover, the gap
between BPAS and MAPLE is much greater for non-lazy pseudo-division; increasing sparsity became a
big problem in MAPLE, taking several hours to perform a single pseudo-division. Again, an increase
in sparsity creates an increase in the number of terms in a polynomial product. Therefore, with our
efficient memory management and use of data structures, increasing sparsity has little effect on our
performance, in contrast to that of MAPLE. In MAPLE we call prem and sprem for non-lazy and lazy
pseudo-division, respectively.

200 400 600 800
0

10

20

30

40

Number of Terms (n)

R
un

ni
ng

Ti
m

e
(s

)

Z[x1, x2, x3, x4, x5] Lazy Pseudo-Division
Running Time vs. Number of Terms

Maple, 200 BPAS, 200

Maple, 100 BPAS, 100

Maple, 50 BPAS, 50

(a) Lazy pseudo-division of f g + f by g.

0 50 100 150
10−4

10−2

100

102

104

Number of Terms (n)

R
un

ni
ng

Ti
m

e
(s

)

Z[x1, x2, x3, x4, x5] Pseudo-Division
Running Time vs. Number of Terms

Maple, 200 BPAS, 200

Maple, 100 BPAS, 100

Maple, 50 BPAS, 50

(b) Non-lazy pseudo-division of f g + f by g.

Figure 7. Comparing lazy and non-lazy pseudo-division over Z. Polynomials are in 5 variables and
the coefficient bound is 128. The sparsity varies as noted in the legend.

8.3. Multi-Divisor Division and Pseudo-Division

For comparing multi-divisor division (normal form) and pseudo-division with respect to
a triangular set, we require more structure to our operands. For these experiments we use a
zero-dimensional normalized (Lazard) triangular set. For our benchmarks we use polynomials
with 5 variables, say x1, x2, x3, x4, x5, and thus a triangular set of size 5 (T = {t1, t2, t3, t4, t5}).
The polynomials in the divisor set and dividend (a) are always fully dense and have the following
degree pattern. For some positive integer Δ we let deg(a, x1) = 2Δ, deg(a, xi) = lg(Δ), deg(a, x1)−
deg(t1, x1) = Δ and deg(a, xi) − deg(ti, xi) = 1 for 1 < i ≤ 5. There is a large gap in the lowest
variable, but a small gap in the remaining variables, a common structure of which the recursive
algorithms can take advantage. For both polynomials over Q (Figure 8a,b) and over Z (Figure 9a,b) we
compare the naïve and recursive algorithms for both normal form and pseudo-division by a triangular
set against MAPLE. For normal form we call MAPLE’s Groebner:-NormalForm with respect to the rem
while for triangular set pseudo-division we implement Algorithm 8 in MAPLE using prem. Since prem
is a non-lazy pseudo-division, we similarly perform non-lazy pseudo-division in our implementations
for a fair comparison. In general, the normal form results are relatively close, particularly in comparison
to the differences between timings for pseudo-division. Our pseudo-division implementation sees
several orders of magnitude speed-up against MAPLE thanks to our recursive scheme and optimized
single-divisor pseudo-division.

24

Mathematics 2019, 7, 441

2 4 6 8 10 12

100

101

102

Δ

R
un

ni
ng

Ti
m

e
(s

)

Q[x1, x2, x3, x4, x5] Multi-Divisor Normal Form
Running Time vs. Δ

MAPLE

BPAS Naïve

BPAS Recursive

(a) Normal form.

2 4 6 8 10

100

101

102

103

Δ

R
un

ni
ng

Ti
m

e
(s

)

Q[x1, x2, x3, x4, x5] Multi-Divisor Pseudo-Division
Running Time vs. Δ

MAPLE

BPAS Naïve

BPAS Recursive

(b) Triangular set pseudo-division.

Figure 8. Comparing normal form and triangular set pseudo-division over Q. For each, the naïve
algorithm, the recursive algorithm, and the algorithm within MAPLE are compared. Polynomials are in
5 variables and the coefficient bound is 128.

0 20 40 60 80 100
0

2

4

6

8

10

12

Δ

R
un

ni
ng

Ti
m

e
(s

)

Z[x1, x2, x3, x4, x5] Multi-Divisor Normal Form
Running Time vs. Δ

MAPLE

BPAS Naïve

BPAS Recursive

(a) Normal form.

2 4 6 8 10

10−2

10−1

100

101

102

103

Δ

R
un

ni
ng

Ti
m

e
(s

)

Z[x1, x2, x3, x4, x5] Multi-Divisor Pseudo-Division
Running Time vs. Δ

MAPLE

BPAS Naïve

BPAS Recursive

(b) Triangular set pseudo-division.

Figure 9. Comparing normal form and triangular set pseudo-division over Z. For each, the naïve
algorithm, the recursive algorithm, and the algorithm within MAPLE are compared. Polynomials are in
5 variables and the coefficient bound is 128.

8.4. Structured Problems

To further test our implementations on structured examples, rather than random, we look at
two problems proposed by Monagan and Pearce in [6,45] and a classic third problem. First is the
sparse 10 variable problem. In this problem f1 = (∑9

i=1 (xixi+1 + xi) + x10x1 + x10 + 1)d and g1 =

(∑10
i=1
(

x2
i + xi
)
+ 1)d. The multiplication h1 = f1 · g1 and the division q1 = h1/ f1 are performed.

Second is the very sparse 5 variable problem. In this problem f2 = (1 + x1 + x2
2 + x3

3 + x5
4 + x7

5)
d and

g2 = (1 + x7
1 + x5

2 + x3
3 + x2

4 + x5)
d. The multiplication h2 = f2 · g2 and the division q2 = h2/ f2

are performed. Lastly, a classic problem in polynomial factorization and division, f3 = xd − 1 and
g3 = x− 1, performing f3/g3. Let us call this the dense quotient problem. The sparsity of the dividend
is at a maximum, but the quotient produced is completely dense.

25

Mathematics 2019, 7, 441

In these problems the coefficients are strictly machine-word sized, i.e., less than 64-bits.
We concede that MAPLE uses more advanced techniques for coefficient arithmetic, using machine-word
integers and arithmetic, if possible. This contrasts with our implementation which uses only
arbitrary-precision integers. It is expected then for MAPLE to out-perform BPAS on these examples
with machine-integer coefficients. However, this is only the case for the first two problems. To focus
exclusively on the polynomial algorithms and not the integer arithmetic, we repeat the first two
problems with arbitrary-precision coefficients, each term in f1, g1, f2, g2 is given a random positive
integer coefficient using a coefficient bound. Table 1 shows the execution time and memory used (for all
inputs and outputs) for these problems for various values of d. Multiplication again shows speed-up
of a factor between 1.2 and 21.6, becoming increasingly better with increasing sparsity and number
of terms. Division here is exact and, in comparison to division with remainder, MAPLE performs
much better, likely thanks to their so-called divisor heap [32]. Only as sparsity increases does BPAS
out-perform MAPLE. In all multi-precision cases, however, memory usage in BPAS is significantly
better, being less than half that of MAPLE.

Table 1. Comparing multiplication and division on the three structured problems.

Operation d Coef. Bound
BPAS MAPLE

Time (s) Memory (MiB) Time (s) Memory (MiB)

Multiplication 4 1 4.28 172.11 1.78 79.31
h1 = f1 · g1 4 64 8.22 353.27 9.58 810.23

5 64 155.51 2481.37 221.71 5569.25

Division 4 64 7.84 353.29 6.465 816.03
q1 = h1/ f1 5 64 154.08 2509.42 124.37 5583.50

Multiplication 12 1 3.61 702.14 2.835 439.21
h2 = f2 · g2 12 32 7.62 1878.96 52.80 4026.29

15 32 51.61 8605.52 1114.23 18,941.05

Division 12 32 8.09 1919.28 10.35 4033.57
q2 = h2/ f2 15 32 57.09 8627.16 58.906 18,660.94

Division 1,000,000 1 0.18 38.59 1.505 164.54
q3 = f3/g3 10,000,000 1 1.87 522.65 23.63 1102.21

9. Conclusions and Future Work

In this paper, we have described algorithms and data structures for the high-performance
sparse polynomial arithmetic as implemented in the freely available BPAS library. We have
considered polynomials both over the integers and the rationals, where others have ignored the
rationals; arithmetic over the rationals is important for areas such as Gröbner bases and polynomial
system solving. The operations of multiplication, and division, have been extended from [24] to also
include division with remainder and a new algorithm for sparse pseudo-division. We employ these
fundamental algorithms for use in the mid-level algorithms of normal form and pseudo-division
with respect to a triangular set. Our experimentation against MAPLE highlights how the proper
treatment of locality and data structures can result huge improvements in memory usage and
running time. We achieve orders of magnitude speed-up (for arithmetic over the rationals and non-lazy
pseudo-division over the integers) or up to a factor of 67 (for other operations over the integers).

In the future we hope to apply these techniques for locality and arithmetic optimization to obtain
efficient computations with regular chains and triangular decompositions. Following the design goals
of the BPAS library we plan to apply parallelization to both the arithmetic operations presented in this
paper and to upcoming work on triangular decompositions.

26

Mathematics 2019, 7, 441

Author Contributions: Conceptualization, A.B. and M.M.M.; software, M.A. and A.B.; formal analysis, R.H.C.M.;
investigation, M.A. and A.B.; writing—original draft preparation, M.A., A.B., R.H.C.M., M.M.M.; supervision,
M.M.M.; project administration, M.M.M.; funding acquisition, M.M.M.

Funding: This research was funded by IBM Canada Ltd (CAS project 880) and Natural Sciences and Engineering
Research Council of Canada (NSERC) CRD grant CRDPJ500717-16.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hall, A.D., Jr. The ALTRAN system for rational function manipulation-a survey. In Proceedings of the Second
ACM Symposium on Symbolic and Algebraic Manipulation, Los Angeles, CA, USA, 23–25 March 1971;
ACM: New York, NY, USA, 1971; pp. 153–157.

2. Martin, W.A.; Fateman, R.J. The MACSYMA system. In Proceedings of the Second ACM Symposium on
Symbolic and Algebraic Manipulation, Los Angeles, CA, USA, 23–25 March 1971; ACM: New York, NY,
USA, 1971; pp. 59–75.

3. Hearn, A.C. REDUCE: A user-oriented interactive system for algebraic simplification. In Symposium on
Interactive Systems for Experimental Applied Mathematics, Proceedings of the Association for Computing Machinery
Inc. Symposium, Washington, DC, USA, 1 August 1967; ACM: New York, NY, USA, 1967; pp. 79–90.

4. Van der Hoeven, J.; Lecerf, G. On the bit-complexity of sparse polynomial and series multiplication.
J. Symb. Comput. 2013, 50, 227–254, doi:10.1016/j.jsc.2012.06.004. [CrossRef]

5. Arnold, A.; Roche, D.S. Output-Sensitive Algorithms for Sumset and Sparse Polynomial Multiplication.
In Proceedings of the ISSAC 2015, Bath, UK, 6–9 July 2015; pp. 29–36. [CrossRef]

6. Monagan, M.B.; Pearce, R. Sparse polynomial division using a heap. J. Symb. Comput. 2011, 46, 807–822.
[CrossRef]

7. Gastineau, M.; Laskar, J. Highly Scalable Multiplication for Distributed Sparse Multivariate Polynomials on
Many-Core Systems. In Proceedings of the CASC, Berlin, Germany, 9–13 September 2013; pp. 100–115.

8. Hennessy, J.L.; Patterson, D.A. Computer Architecture: A Quantitative Approach, 4th ed.; Morgan Kaufmann:
San Francisco, CA, USA, 2007.

9. Wulf, W.A.; McKee, S.A. Hitting the memory wall: Implications of the obvious. ACM SIGARCH Comput.
Archit. News 1995, 23, 20–24. [CrossRef]

10. Asadi, M.; Brandt, A.; Moir, R.H.C.; Moreno Maza, M. Sparse Polynomial Arithmetic with the BPAS Library.
In Proceedings of the Computer Algebra in Scientific Computing—20th International Workshop (CASC 2018),
Lille, France, 17–21 September 2018; pp. 32–50. [CrossRef]

11. Chen, C.; Moreno Maza, M. Algorithms for computing triangular decomposition of polynomial systems.
J. Symb. Comput. 2012, 47, 610–642. [CrossRef]

12. Asadi, M.; Brandt, A.; Chen, C.; Covanov, S.; Mansouri, F.; Mohajerani, D.; Moir, R.H.C.; Moreno Maza, M.;
Wang, L.X.; Xie, N.; et al. Basic Polynomial Algebra Subprograms (BPAS). 2018. Available online:
http://www.bpaslib.org (accessed on 16 May 2019).

13. Frigo, M.; Leiserson, C.E.; Prokop, H.; Ramachandran, S. Cache-Oblivious Algorithms. ACM Trans.
Algorithms 2012, 8, 4. [CrossRef]

14. Leiserson, C.E. Cilk. In Encyclopedia of Parallel Computing; Springer: Boston, MA, USA, 2011; pp. 273–288.
[CrossRef]

15. Moreno Maza, M.; Xie, Y. Balanced Dense Polynomial Multiplication on Multi-Cores. Int. J. Found.
Comput. Sci. 2011, 22, 1035–1055. [CrossRef]

16. Chen, C.; Covanov, S.; Mansouri, F.; Moreno Maza, M.; Xie, N.; Xie, Y. Parallel Integer Polynomial
Multiplication. arXiv 2016, arXiv:1612.05778.

17. Covanov, S.; Mohajerani, D.; Moreno Maza, M.; Wang, L.X. Big Prime Field FFT on Multi-core Processors.
In Proceedings of the ISSAC, Beijing, China, 15–18 July 2019; ACM: New York, NY, USA, 2019.

18. Monagan, M.B.; Pearce, R. Parallel sparse polynomial multiplication using heaps. In Proceedings of the
ISSAC, Seoul, Korea, 29–31 July 2009; pp. 263–270.

27

Mathematics 2019, 7, 441

19. Monagan, M.; Pearce, R. Parallel sparse polynomial division using heaps. In Proceedings of the PASCO,
Grenoble, France, 21–23 July 2010; ACM: New York, NY, USA, 2010; pp. 105–111.

20. Biscani, F. Parallel sparse polynomial multiplication on modern hardware architectures. In Proceedings of the
37th International Symposium on Symbolic and Algebraic Computation, Grenoble, France, 22–25 July 2012;
ACM: New York, NY, USA, 2012; pp. 83–90.

21. Gastineau, M.; Laskar, J. Parallel sparse multivariate polynomial division. In Proceedings of the PASCO
2015, Bath, UK, 10–12 July 2015; pp. 25–33. [CrossRef]

22. Popescu, D.A.; Garcia, R.T. Multivariate polynomial multiplication on gpu. Procedia Comput. Sci. 2016,
80, 154–165. [CrossRef]

23. Ewart, T.; Hehn, A.; Troyer, M. VLI–A Library for High Precision Integer and Polynomial Arithmetic.
In Proceedings of the International Supercomputing Conference, Leipzig, Germany, 16–20 June 2013;
Springer: Berlin/Heidelberg, Germany, 2013; pp. 267–278.

24. Johnson, S.C. Sparse polynomial arithmetic. ACM SIGSAM Bull. 1974, 8, 63–71. [CrossRef]
25. Li, X.; Moreno Maza, M.; Schost, É. Fast arithmetic for triangular sets: From theory to practice.

J. Symb. Comput. 2009, 44, 891–907. [CrossRef]
26. Sedgewick, R.; Wayne, K. Algorithms, 4th ed.; Addison-Wesley: Boston, MA, USA, 2011.
27. Cox, D.A.; Little, J.; O’shea, D. Ideals, Varieties, and Algorithms, 2 ed.; Springer: New York, NY, USA, 1997.
28. Von zur Gathen, J.; Gerhard, J. Modern Computer Algebra, 2 ed.; Cambridge University Press: New York, NY,

USA, 2003.
29. Gastineau, M.; Laskar, J. Development of TRIP: Fast Sparse Multivariate Polynomial Multiplication Using

Burst Tries. In Proceedings of the Computational Science—ICCS 2006, 6th International Conference, Reading,
UK, 28–31 May 2006; Part II, pp. 446–453. [CrossRef]

30. Monagan, M.; Pearce, R. The design of Maple’s sum-of-products and POLY data structures for representing
mathematical objects. ACM Commun. Comput. Algebra 2015, 48, 166–186. [CrossRef]

31. Granlund, T.; others. GNU MP 6.0 Multiple Precision Arithmetic Library; Samurai Media Limited:
Surrey, UK, 2015.

32. Monagan, M.; Pearce, R. Polynomial division using dynamic arrays, heaps, and packed exponent
vectors. In Proceedings of the CASC 2007, Bonn, Germany, 16–20 September 2007; Springer:
Berlin/Heidelberg, Germany, 2007; pp. 295–315.

33. Gonnet, G.H.; Munro, J.I. Heaps on heaps. SIAM J. Comput. 1986, 15, 964–971. [CrossRef]
34. Brandt, A. High Performance Sparse Multivariate Polynomials: Fundamental Data Structures and

Algorithms. Master’s Thesis, The University of Western Ontario, London, ON, Canada, 2018.
35. Huang, B.C.; Langston, M.A. Practical in-place merging. Commun. ACM 1988, 31, 348–352. [CrossRef]
36. Katajainen, J.; Pasanen, T.; Teuhola, J. Practical in-place mergesort. Nord. J. Comput. 1996, 3, 27–40.
37. Dalkilic, M.E.; Acar, E.; Tokatli, G. A simple shuffle-based stable in-place merge algorithm.

Procedia Comput. Sci. 2011, 3, 1049–1054. [CrossRef]
38. Waterloo Maple Inc. MAPLE 2017—The Essential Tool for Mathematics; Waterloo Maple Inc.: Waterloo, ON,

Canada, 2017.
39. Gastineau, M.; Laskar, J. TRIP: A Computer Algebra System Dedicated to Celestial Mechanics and

Perturbation Series. ACM Commun. Comput. Algebra 2011, 44, 194–197. [CrossRef]
40. Bosma, W.; Cannon, J.; Playoust, C. The Magma algebra system. I. The user language. J. Symb. Comput. 1997,

24, 235–265. [CrossRef]
41. Decker, W.; Greuel, G.M.; Pfister, G.; Schönemann, H. SINGULAR 4-1-1—A Computer Algebra System

for Polynomial Computations. 2018 Available online: http://www.singular.uni-kl.de (accessed on
15 March 2019).

42. The PARI Group, Univ. Bordeaux. PARI/GP Version 2.3.3. 2008. Available online: http://pari.math.u-
bordeaux.fr/ (accessed on 15 March 2019).

43. Hart, W.; Johansson, F.; Pancratz, S. FLINT: Fast Library for Number Theory. V. 2.4.3. Available online:
http://flintlib.org (accessed on 15 March 2019).

28

Mathematics 2019, 7, 441

44. Shoup, V. NTL: A Library for Doing Number Theory. Available online: www.shoup.net/ntl/ (accessed on
15 March 2019).

45. Monagan, M.B.; Pearce, R. Sparse polynomial multiplication and division in Maple 14. ACM Commun.
Comput. Algebra 2010, 44, 205–209. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

29

mathematics

Article

A Heuristic Method for Certifying Isolated Zeros
of Polynomial Systems

Xiaojie Dou 1 and Jin-San Cheng 2,*

1 College of Science, Civil Aviation University of China, Tianjin 300300, China; xjdou@amss.ac.cn
2 KLMM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences,

Beijing 100190, China
* Correspondence: jcheng@amss.ac.cn

Received: 12 July 2018; Accepted: 3 September; Published: 11 September 2018

Abstract: In this paper, by transforming the given over-determined system into a square
system, we prove a necessary and sufficient condition to certify the simple real zeros of the
over-determined system by certifying the simple real zeros of the square system. After certifying
a simple real zero of the related square system with the interval methods, we assert that the
certified zero is a local minimum of sum of squares of the input polynomials. If the value of
sum of squares of the input polynomials at the certified zero is equal to zero, it is a zero of the
input system. As an application, we also consider the heuristic verification of isolated zeros of
polynomial systems and their multiplicity structures.

Keywords: over-determined polynomial system; isolated zeros; minimum point; sum of
squares; interval methods

1. Introduction

Finding zeros of polynomial systems is a fundamental problem in scientific computing.
Newton’s method is widely used to solve this problem. For a fixed approximate solution of
a system, we can use the α-theory [1–3], the interval methods or the optimization methods [4–9]
to completely determine whether it is related to a zero of the system. However, the α-theory or
the interval methods focuses mainly on a simple zero of a square system, that is, a system with n
equations and n unknowns.

Some special certifications of a rational solution of rational polynomials with certified sum
of squares decompositions are considered [10–16].

What about singular zeros of a well-constrained polynomial system? Usually, an over-
determined system which contains the same zero as a simple one is constructed by introducing
new equations. The basic idea is the deflation techniques [17–24]. In some studies [25–30],
new variables are also included. Moreover, some authors verify that a perturbed system possesses
an isolated singular solution within a narrow and computed error bound. The multiplicity
structures of singular zeros of a polynomial system are also studied [18,21,29]. Although it is
in a theoretical sense and global sense, the method in [17] provides a sufficient condition that
a zero is exactly a zero of a zero-dimensional polynomial system with rational coefficients.

For the deflation methods mentioned above, on the one hand, to be a zero of the perturbed
systems does not mean being a zero of the input system considering the difference between the
two systems; on the other hand, although the over-determined systems without introducing

Mathematics 2018, 6, 166; doi:10.3390/math6090166 www.mdpi.com/journal/mathematics

30

Mathematics 2018, 6, 166

new variables have the same zeros as the input systems, the verification methods, such as the
α-theory or the interval methods, could not be used directly on the over-determined systems
in general.

In [31], the authors extended the α-theory from well-constrained systems to over-determined
systems. A main result about Newton’s method given in their paper is their Theorem 4 [31],
which says that under the condition of 2α1(g, ζ) < 1, where g = (g1, . . . , gm) ∈
(C[x1, . . . , xn])m(m ≥ n), J(g)(x)† is the Moore–Penrose inverse of the Jacobian matrix J(g)(x)
of g and

α1(g, x) = β1(g, x)γ1(g, x),

β1(g, x) = ‖J(g)(x)†‖‖g(x)‖,

γ1(g, x) = sup
k≥2

(
‖J(g)(x)†‖ Jk(g)(x)

k!

) 1
k−1

,

ζ is an attractive fixed point for Newton’s method and, simultaneously, a strict local

minimum for ‖g‖2 =
m
∑

j=1
‖gj‖2. However, as they stated, whether the attracting fixed points for

Newton’s method are always local minima of ‖g‖2, or the zeros of the input system, is unknown.
In this paper, we consider the problem of certifying the simple real zeros of

an over-determined polynomial system. Given Σ = { f1, . . . , fm} ∈ (R[x1, . . . , xn])m(m ≥ n),

we construct a new square system Σ′ = { ∂ f
∂x1

, . . . , ∂ f
∂xn
} with f =

m
∑

i=1
f 2
i . After transforming the

input over-determined system into a square one, we can use both the α-theory and the interval
methods to certify its simple zeros. In this paper, we only consider using the interval methods to
certify the simple real zeros of the over-determined system. We prove that the simple real zeros
of the input system are local minima of sum of squares of the input polynomials. We also give
the condition that the local minimum is a simple zero of the input system.

Let R be the field of real numbers. Denote R[x] = R[x1, . . . , xn] as the polynomial ring.
Let F = { f1, . . . , fm} ⊂ R[x] be a polynomial system. Let p = (p1, . . . , pn) ∈ Rn.

The following theorem is the main result of this paper.

Theorem 1. Let Σ = { f1, . . . , fm} ⊂ R[x] (m ≥ n) and f =
m
∑

i=1
f 2
i . Then, we have:

1. If p ∈ Rn is an isolated simple real zero of Σ, p is a local minimum of f .
2. p is a simple real zero of Σ if and only if (p, 0) is a simple real zero of the square system

Σr = {J1(f), . . ., Jn(f), f − r}, where Ji(f) = ∂ f
∂xi

and r is a new variable.

In the above theorem, we get a necessary and sufficient condition to certify the simple real
zeros of the input system Σ by certifying the simple real zeros of the square system Σr. Therefore,
to certify that p is a simple real zero of Σ, the key point is verifying that f (p) = 0.

However, it is difficult to decide numerically if a point is a zero of a polynomial.
Thus, we cannot use the necessary and sufficient condition to certify the simple real zeros
of Σ by certifying the simple real zeros of Σr.

As an alternative, we refine and certify the simple real zeros of Σ by refining and certifying a
new square system Σ′ = {J1(f), . . ., Jn(f)}with the interval methods and get a verified inclusion
X, which contains a unique simple real zero x̂ of Σ′. In fact, x̂ is a local minimum of f , which also
is a necessary condition for the certification. On the one hand, if f (x̂) = 0, by Theorem 1, (x̂, 0) is

31

Mathematics 2018, 6, 166

a simple real zero of Σr, and then x̂ is a simple real zero of Σ. Thus, we certified the input system
Σ. On the other hand, if f (x̂) �= 0, we can only assert that Σr has a unique zero in the verified
inclusion X× [0, f (x̂)], which means we certified the system Σr.

A big difference between this paper and our pervious work [32] is that we do not merely
consider certifying simple zeros of over-determined polynomial systems, but also consider the
certification of the general isolated zeros. Specifically, as an application of our method, we give
a heuristic method for certifying not only the isolated singular zeros of polynomial systems,
but also the multiplicity structures of the isolated singular zeros of polynomial systems.

This paper is an extended version of the CASC’17 conference paper [32].
The paper is organized as follows. We introduce some notations and preliminaries in the

next section. In Section 3, we give a method to show how to transform an over-determined
system into a square one. The interval verification method on the obtained square system
is considered in Section 4. We give two applications of our method in Section 5 and draw
conclusions in Section 6.

2. Preliminaries

Let C be the field of complex numbers. Denote C[x] = C[x1, . . . , xn] as the polynomial
ring. Let F = { f1, . . . , fm} ⊂ C[x] be a polynomial system. Let p = (p1, . . . , pn) ∈ Cn. F(p) = 0

denote that p is a zero of F(x) = 0.
Let A be a matrix. Denote AT as the transpose of A and rank(A) as the rank of A.

Let Mat(ai,j) denote the matrix whose i-th row j-th column element is ai,j.
Let Σ = { f1, . . . , fm} ⊂ C[x] be a polynomial system. Denote J(Σ) as the Jacobian matrix of

Σ. That is,

J(Σ) =

⎛⎜⎜⎝
∂ f1
∂x1

. . . ∂ f1
∂xn

...
. . .

...
∂ fm
∂x1

. . . ∂ fm
∂xn

⎞⎟⎟⎠ .

For a polynomial f ∈ C[x], let J(f) denote (∂ f
∂x1

, ∂ f
∂x2

, . . . , ∂ f
∂xn

), Ji(f) = ∂ f
∂xi

and

Ji,j(f) = Jj(Ji(f)) = ∂2 f
∂xj∂xi

. Denote Σr = {J1(f), . . ., Jn(f), f − r} with f =
m
∑

j=1
f 2
j .

We denote the value of a function matrix A ∈ C[x]n×n at a point p ∈ Cn as A(p). Let J(F)(p)

denote the value of a function matrix J(F) at a point p, similarly for J(f)(p).

Definition 1. An isolated solution of F(x) = 0 is a point p ∈ Cn which satisfies:

∃ ε > 0 : {y ∈ Cn : ‖y− p‖ < ε} ∩ F−1(0) = {p}.

Definition 2. We call an isolated solution p ∈ Cn of F(x) = 0 a singular solution if and only if

rank(J(F)(p)) < n.

Otherwise, we call p a simple solution.

Definition 3. A stationary point of a polynomial function f (x) ∈ C[x] is a point p ∈ Cn,
which satisfies:

∂ f
∂xi

(p) = 0, ∀ i = 1, . . . , n.

32

Mathematics 2018, 6, 166

We can find the following lemma in many undergraduate textbooks about linear algebra
(see Example 7 on page 224 in [33] for example).

Lemma 1. Let A ∈ Rm×n be a real matrix with m ≥ n and B = AT A. Then, the ranks of A and B are
the same, especially for the case that A is of full rank.

In the following, we consider the real zeros of the systems with real coefficients. It is
reasonable since, for a system (m equations and n unknowns) with complex coefficients,
we can rewrite the system into a new one with 2 m equations and 2 n unknowns by splitting
the unknowns xi = xi,1 + i xi,2 and equations f j(x1, . . . , xn) = gj,1(x1,1, x1,2, . . . , xn,1, xn,2) +

i gj,2(x1,1, x1,2, . . . , xn,1, xn,2), where i2 = −1, f j ∈ C[x], gj,1, gj,2 ∈ R[x], j = 1, . . . , m, and find the
complex zeros of the original system by finding out the real zeros of the new system.

3. Transforming Over-determined Polynomial Systems into Square Ones

In this section, we show how to transform an over-determined polynomial system into a
square one with their zeros having a one-to-one correspondence, especially for the simple zeros.

By Definition 3, we have the following lemma:

Lemma 2. Given a polynomial system Σ = { f1, . . . , fm} ⊂ R[x] (m ≥ n). Let f =
m
∑

i=1
f 2
i and

Σ′ = {J1(f), J2(f), . . . , Jn(f)}. If p ∈ Rn is an isolated real zero of Σ′, then p is a stationary point of f .

Lemma 3. Let Σ = { f1, . . . , fm} ⊂ R[x] (m ≥ n), Σ′ = {J1(f), J2(f), . . . , Jn(f)} with f =
m
∑

i=1
f 2
i .

If p ∈ Rn is an isolated real zero of Σ, then we have:

1. p is an isolated real zero of Σ′.
2. rank(J(Σ)(p)) = rank(J(Σ′)(p)).

Proof. It is clear that p is an isolated real zero of Σ′ providing that p is an isolated real zero of Σ,

since Ji(f) = 2
m
∑

k=1
fk Ji(fk).

To prove the second part of this lemma, we rewrite Ji(f) as follows.

Ji(f) = 2 〈 f1, . . . , fm〉 〈Ji(f1), . . . , Ji(fm)〉T , (1)

where 〈 · 〉T is the transpose of a vector or a matrix 〈 · 〉. Then,

Ji,j(f) = Jj(Ji(f)) = Jj(2
m

∑
k=1

fk Ji(fk)) = 2
m

∑
k=1

(Jj(fk)Ji(fk) + fk Ji,j(fk))

= 2 〈Jj(f1), . . . , Jj(fm)〉 〈Ji(f1), . . . , Ji(fm)〉T + 2
m

∑
k=1

fk Ji,j(fk).
(2)

Then, the Jacobian matrix of Σ′ is

J(Σ′) =

⎛⎜⎝ J1,1(f) . . . J1,n(f)
...

. . .
...

Jn,1(f) . . . Jn,n(f)

⎞⎟⎠ = Mat(Ji,j(f)).

33

Mathematics 2018, 6, 166

We rewrite

Mat(Ji,j(f)) = 2 AT A + 2 Mat(
m

∑
k=1

fk Ji,j(fk)), (3)

where

A =

⎛⎜⎝ J1(f1) . . . Jn(f1)
...

. . .
...

J1(fm) . . . Jn(fm)

⎞⎟⎠
is an m× n matrix which is exactly the Jacobian matrix of Σ, that is, J(Σ) = A. Then, we have

J(Σ′)(p) = 2A(p)T A(p). (4)

By Lemma 1, the second part of the lemma is true. This ends the proof.

Remark 1. In our construction of f and Σ′, the degrees of the polynomials almost be doubled compared
to the original one. However, to evaluate the Jacobian matrix of Σ′, we evaluate the Jacobian matrix of the
original system with m2n numerical products. One can find it from Equation (4) in the above proof. In fact,
to get J(Σ′)(p), we only need to compute A(p), which does not increase our actual computing degree.

As a byproduct, thanks to the doubled degree of the polynomials, our final certified accuracy is also
improved in Lemma 4.

The following is the proof of Theorem 1:

Proof. In fact, by fixing the real zero p as an isolated simple zero in Lemma 3, we have p is an
isolated simple real zero of Σ′ = {J1(f), . . . , Jn(f)}. Since p is an isolated simple zero of Σ, A(p)

is a column full rank matrix. Therefore, it is easy to verify that J(Σ′)(p) = 2 A(p)T A(p) is a
positive definite matrix. Thus, p is a local minimum of f and the first part of the theorem is true.
Now, we consider the second part.

First, it is easy to verify that p is the real zero of Σ if and only if (p, 0) is the real zero of Σr.
Notice that Σr = {Σ′, f − r}. Thus, with the same method as proving Lemma 3, we can compute
easily that

J(Σr)(p, 0) =

(
J(Σ′)(p) 0

0 −1

)
=

(
2 J(Σ)(p)TJ(Σ)(p) 0

0 −1

)
,

which implies that

rank(J(Σ)(p)) = rank(J(Σ′)(p)) = rank(J(Σr)(p, 0))− 1, (5)

which means that J(Σr)(p, 0) is of full rank if and only if J(Σ)(p) is of full rank. Thus, p is an
isolated simple zero of Σ if and only if (p, 0) is an isolated simple zero of Σr. The second part is
true. We have finished the proof.

From Theorem 1, we know that the simple real zeros of Σ and Σr are in one-to-one
correspondence with the constraint that the value of the sum of squares of the polynomials
in Σ at the simple real zeros is identically zero. Thus, we can transform an over-determined
polynomial system into a square system Σr.

We show a simple example to illustrate the theorem below.

34

Mathematics 2018, 6, 166

Example 1. The simple zero p = (0, 0) of the over-determined system Σ = { f1, f2, f3} corresponds to a
simple zero of a square system Σr = {J1(f), J2(f), f − r}, where f = f 2

1 + f 2
2 + f 2

3 with

f1 = x2 − 2 y, f2 = y2 − x, f3 = x2 − 2 x + y2 − 2 y.

We can verify simply that (p, 0) is a simple zero of Σr.

Although the simple real zeros of Σ and Σr have a one-to-one correspondence, it cannot be
used directly to do certification of the simple zeros of Σ since we cannot certify r = 0 numerically.
However, we can certify the zeros of Σ′ = {J1(f), J2(f), . . . , Jn(f)} as an alternative, which is a
necessary condition for the certification.

We discuss it in next section.

4. Certifying Simple Zeros of Over-determined Systems

In this section, we consider certifying the over-determined system with the interval methods.
We prove the same local minimum result as [31].

The classical interval verification methods are based on the following theorem:

Theorem 2 ([5,6,8,30]). Let f = (f1, . . . , fn) ∈ (R[x])n be a polynomial system, x̃ ∈ Rn, real interval
vector X ∈ IRn with 0 ∈ X and real matrix R ∈ Rn×n be given. Let an interval matrix M ∈ IRn×n be
given whose i-th row Mi satisfies

{∇ fi(ζ) : ζ ∈ x̃ + X} ⊆ Mi.

Denote by I the n× n identity matrix and assume

−Rf(x̃) + (I − RM)X ⊆ int(X),

where int(X) denotes the interior of X. Then, there is a unique x̂ ∈ x̃ + X with f(x̂) = 0. Moreover,
every matrix M̃ ∈ M is nonsingular. In particular, the Jacobian J(f)(x̂) is nonsingular.

About interval matrices, there is an important property in the following theorem.

Theorem 3 ([34]). A symmetric interval matrix AI is positive definite if and only if it is regular and
contains at least one positive definite matrix.

Given an over-determined polynomial system Σ = { f1, . . . , fm} ⊂ R[x] with an isolated
simple real zero, we can compute a related square system

Σ′ = { ∂ f
∂x1

,
∂ f
∂x2

, . . . ,
∂ f
∂xn

} with f =
m

∑
j=1

f 2
j .

Based on Lemma 3, a simple zero of Σ is a simple zero of Σ′. Thus, we can compute the
approximate simple zero of Σ by computing the approximate simple zero of Σ′. Using Newton’s
method, we can refine these approximate simple zeros with quadratic convergence to a relative
higher accuracy. Then, we can certify them with the interval method mentioned before and
get a verified inclusion X, which possesses a unique certified simple zero of the system Σ′ by
Theorem 2, denoting as x̂ ∈ X.

35

Mathematics 2018, 6, 166

However, even though we get a certified zero x̂ of the system Σ′, considering Lemma 2,
we cannot say x̂ is a zero of the input system Σ. Because the certified zero x̂ is just a stationary
point of f . Considering Theorem 1 and the difference between Σ′ and Σr, we have the
following theorem.

Theorem 4. Let Σ, Σ′, Σr, f , x̂ and the interval X be given as above. Then, we have:

1. x̂ is a local minimum of f .
2. There exists a verified inclusion X× [0, f (x̂)] that possesses a unique simple zero of the system Σr.

Especially, if f (x̂) = 0, the verified inclusion X possesses a unique simple zero of the input system Σ.

Proof. First, it is easy to see that computing the value of the matrix J(Σ′) at the interval X

will give a symmetric interval matrix, denoting as J(Σ′)(X). By Theorem 2, we know that, for
every matrix M ∈ J(Σ′)(X), M is nonsingular. Therefore, the interval matrix J(Σ′)(X) is regular.
Especially, the matrix J(Σ′)(x̂), which is the Hessian matrix of f , is full rank and, therefore,
is positive definite. Thus, x̂ is a local minimum of f . By Theorem 3, we know that J(Σ′)(X) is
positive definite. Thus, for every point q ∈ X, J(Σ′)(q) is a positive definite matrix. Considering
Theorem 2, it is trivial that, for the verified inclusion X× [0, f (x̂)], there exists a unique simple
zero of the system Σr. If f (x̂) = 0, by Theorem 1, the verified inclusion X of the system Σ′ is a
verified inclusion of the original system Σ.

Remark 2. 1. In the above proof, we know that, for every point q ∈ X, J(Σ′)(q) is a positive
definite matrix.

2. By Theorem 2, we know that there is a unique x̂ ∈ X with Σ′(x̂) = 0. However, we could not
know what the exact x̂ is. According to the usual practice, in actual computation, we take the midpoint p̂

of the inclusion X as x̂ and verify whether f (p̂) = 0. Considering the uniqueness of x̂ in X, therefore, if
f (p̂) = 0, we are sure that the verified inclusion X possesses a unique simple zero of the input system Σ.
If f (p̂) �= 0, we can only claim that there is a local minimum of f in the inclusion X and X× [0, f (p̂)] is
a verified inclusion for the system Σr.

Considering the expression of Σ and f and for the midpoint p̂ of X, we have a trivial
result below.

Lemma 4. Denote ε =
m

max
j=1

| f j(p̂)|. Under the conditions of Theorem 4, we have | f (p̂)| ≤ mε2.

Based on the above idea, we give an algorithm below. In the verification steps,
we apply algorithm verifynlss in INTLAB [30], which is based on Theorem 2, to compute
a verified inclusion X for the related square system Σ′. For simplicity, denote the interval
X = [x1, x1], · · · , [xm, xm] and the midpoint of X as p̂ = [(x1 + x1)/2, . . . , (xm + xm)/2].

The correctness and the termination of the algorithm is obvious by the above analysis.
We give two examples to illustrate our algorithm.

Example 2. Continue Example 1. Given an approximate zero p̃ = (0.0003528, 0.0008131),
using Newton’s method, we get a higher accuracy approximate zero

p̃′ = 10−11 · (−0.104224090958505,−0.005858368844383).

36

Mathematics 2018, 6, 166

Compute f = f 2
1 + f 2

2 + f 2
3 and Σ′ = {J1(f), J2(f)}. After applying algorithm verifynlss on Σ′,

we have a verified inclusion:

X =

(
[−0.11330049261083, 0.11330049261083]
[−0.08866995073891, 0.08866995073891]

)
· 10−321.

Based on Theorem 2, we know that there exists a unique x̂ ∈ X, such that Σ′(x̂) = 0.
Let Σr = {J1(f), J2(f), f − r}. By Theorem 1, we can certify the simple zero of Σ by certifying

the simple zero of Σr theoretically. Considering the difference between Σ′ and Σr, we check first whether
the value of f at some point in the interval X is zero. According to the usual practice, we consider the
midpoint p̂ of X, which equals (0, 0) and, further, f (p̂) is zero. Therefore, we are sure that there exists a
unique x̂ = (x̂, ŷ) ∈ X, s.t. Σr((x̂, 0)) = 0 and, then, there exists a unique simple zero (x̂, ŷ) ∈ X of the
input system Σ, which means we certified the input system Σ.

Example 3. Let Σ = { f1 = x2
1 + 3 x1x2 + 3 x1x3 − 3 x2

3 + 2 x2 + 2 x3, f2 = −3 x1x2 + x1x3 − 2 x2
2 +

x2
3 + 3 x1 + x2, f3 = 2 x2x3 + 3 x1− 3 x3 + 2, f4 = −6 x2

2x3 + 2 x2x2
3 + 6 x2

2 + 15 x2x3− 6 x2
3− 9 x2−

7 x3 + 6} be an over-determined system. Consider an approximate zero

p̃ = (−1.29655, 0.47055,−0.91761).

Using Newton’s method, we get a higher accuracy zero

p̃′ = (−1.296687216045438, 0.470344502045004,−0.917812633399457).

Compute
f = f 2

1 + f 2
2 + f 2

3 + f 2
4 and Σ′ = {J1(f), J2(f), J3(f)}.

After applying algorithm verifynlss on Σ′, we have a verified inclusion:

X =

⎛⎜⎝ [−1.29668721603974, −1.29668721603967]
[0.47034450205107, 0.47034450205114]
[−0.91781263339256, −0.91781263339247]

⎞⎟⎠ .

Similarly, based on Theorem 2, we know that there exists a unique x̂ ∈ X, such that Σ′(x̂) = 0.
Proceeding as in the above example, we consider the midpoint p̂ of X and compute f (p̂) = 3.94 ·

10−31 �= 0. Thus, by Theorem 4, we get a verified inclusion X× [0, f (p̂)], which contains a unique simple
zero of the system Σr. It means that X may contain a zero of Σ. Even if X does not contain a zero of Σ,
it contains a local minimum of f , which has a minimum value no larger than f (p̂).

5. Two Applications

As an application, we consider certifying isolated singular zeros of over-determined systems
heuristically. Generally, dealing with the multiple zeros of polynomial systems directly is difficult.
The classical method to deal with the isolated singular zeros of polynomial systems is the
deflation technique, which constructs a new system owning the same singular zero as an isolated
simple one. Although the deflation method can be used to refine or verify the isolated zero of
the original system, it is a pity that the multiplicity information of the isolated zero is missed.
In this section, as an application of the method of converting an over-determined system into a

37

Mathematics 2018, 6, 166

square system in previous section, we give a heuristic method for certifying isolated singular
zeros of polynomial systems and their multiplicity structures.

5.1. Certifying Isolated Singular Zeros of Polynomial Systems

Recently, Cheng et al. [35] proposed a new deflation method to reduce the multiplicity
of an isolated singular zero of a polynomial system to get a final system, which owns the
isolated singular zero of the input system as a simple one. Different from the previous deflation
methods, they considered the deflation of isolated singular zeros of polynomial systems from
the perspective of linear combination.

In this section, we first give a brief introduction of their deflation method and, then,
show how our method is applied to certify the isolated singular zeros of the input system
in a heuristic way.

Definition 4. Let f ∈ C[x], p̃ ∈ Cn and a tolerance θ > 0, s.t. | f (p̃)| < θ. We say f is θ-singular at
p̃ if ∣∣∣∣∣∂ f (p̃)

∂xj

∣∣∣∣∣ < θ, ∀1 ≤ j ≤ n.

Otherwise, we say f is θ-regular at p̃.

Let F = { f1, . . . , fn} ⊂ C[x] be a polynomial system. p̃ ∈ Cn is an approximate isolated zero
of F = 0. Consider a tolerance θ. First, we can compute the polynomials of all fi(i = 1, . . . , n),
which is θ-regular at the approximate zero p̃. That is, we compute a polynomial set

G = {d
γ
x (f)|dγ

x (f) is θ-regular at p̃, f ∈ F}.

Then, put G and F together and compute a subsystem H = {h1, . . . , hs} ⊂ G ∪ F, whose
Jacobian matrix at p̃ has a maximal rank s. If s = n, we get the final system F̃′ = H. Otherwise,
we choose a new polynomial h ∈ G∪ F \H and compute

g = h +
s

∑
i=1

αihi, gj =
∂h
∂xj

, j = 1, . . . , n,

where αj, j = 1, . . . , n are new introduced variables. Next, we check if

rank(J(H, g1, . . . , gn)(p̃)) = n + s. (6)

If Equation (6) holds, we get the final system F̃′ = H ∪ {g1, . . . , gn}. Otherwise,
let H := H∪ {g1, . . . , gn} ⊂ C[x, α] and repeat again until Equation (6) holds.

Now, we give an example to illustrate the above idea.

Example 4. Consider a polynomial system F = { f1 = − 9
4 + 3

2 x1 + 2 x2 + 3 x3 + 4 x4 − 1
4 x2

1, f2 =

x1− 2 x2− 2 x3− 4 x4 + 2 x1x2 + 3 x1x3 + 4 x1x4, f3 = 8− 4 x1− 8 x4 + 2 x2
4 + 4 x1x4− x1x2

4, f4 =

−3 + 3 x1 + 2 x2 + 4 x3 + 4 x4}. Consider an approximate singular zero

p̃ = (p̃1, p̃2, p̃3, p̃4) = (1.00004659,−1.99995813,−0.99991547, 2.00005261)

of F = 0 and the tolerance ε = 0.005.

38

Mathematics 2018, 6, 166

First, we have the Taylor expansion of f3 at p̃:

f3 = 3× 10−9 − 3× 10−9(x1 − p̃1) + 0.00010522(x4 − p̃4) + 0.99995341(x4 − p̃4)
2

−0.00010522(x1 − p̃1)(x4 − p̃4)− (x1 − p̃1)(x4 − p̃4)
2.

Consider the tolerance θ = 0.05. Since

| f3(p̃)| < θ,
∣∣∣∣∂ f3

∂xi
(p̃)

∣∣∣∣ < θ(i = 1, 2, 3, 4),

∣∣∣∣∣∂2 f3

∂x2
4
(p̃)

∣∣∣∣∣ > θ,

we get a polynomial
∂ f3

∂x4
= −8 + 4 x1 + 4 x4 − 2 x1x4,

which is θ-regular at p̃. Similarly, by the Taylor expansion of f1, f2, f4 at p̃, we have that f1, f2, f4 are all
θ-regular at p̃.

Thus, we have
G = { f1, f2,−8 + 4 x1 + 4 x4 − 2 x1x4, f4}.

Compute
r = rank(J(G)(p̃), ε) = 3.

We can choose

H = {h1 = f1, h2 = f2, h3 = −8 + 4 x1 + 4 x4 − 2 x1x4}

from G∪ F. To h = f4 ∈ G∪ F \H, let

g = h + α1h1 + α2h2 + α3h3.

By solving a Least Square problem:

LeastSquares((J(H, h)(p̃))T [α1, α2, α3,−1]T = 0),

we get an approximate value:

(α̃1, α̃2, α̃3) = (−1.000006509,−0.9997557989, 0.000106178711).

Then, compute⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1 =
∂g
∂x1

= 3 +
3
2

α1 + α2 + 4α3 − 1
2

α1x1 + 2α2x2 + 3α2x3 + 4α2x4 − 2α3x4,

g2 =
∂g
∂x2

= 2 + 2α1 − 2α2 + 2α2x1,

g3 =
∂g
∂x3

= 4 + 3α1 − 2α2 + 3α2x1,

g4 =
∂g
∂x4

= 4 + 4α1 − 4α2 + 4α3 + 4α2x1 − 2α3x1,

and we get a polynomial set
H′ = {h1, h2, h3, g1, g2, g3, g4},

39

Mathematics 2018, 6, 166

which satisfies
rank(J(H′)(p̃, α̃1, α̃2, α̃3), ε) = 7.

Thus, we get the final system F̃′(x, α) = H′.

In the above example, given a polynomial system F with an isolated singular zero p,
by computing the derivatives of the input polynomials directly or the linear combinations of the
related polynomials, we compute a new system F̃′, which has a simple zero. However, generally,
the final system F̃′ does not contain all fi(i = 1, . . . , n). Thus, to ensure that the simple zero or
parts of the simple zero of the square system F̃′ really correspond to the isolated singular zero
of the original system, we put F and F̃′ together and consider certifying the over-determined
system F∪ F̃′ in the following.

Example 5. Continue with Example 4. we put F and F̃′ together and get the over-determined system
Σ = F∪ F̃′. According to our method in Section 4, let

f =
4

∑
j=1

f 2
j + h2

3 +
4

∑
j=1

g2
j .

Then, we compute

Σ′ = { ∂ f
∂x1

, . . . ,
∂ f
∂x4

,
∂ f
∂α1

, . . . ,
∂ f
∂α3
} and Σr = {Σ′, f − r}.

After applying algorithm verifynlss on Σ′ at (p̃, α̃1, α̃2, α̃3), we have a verified inclusion:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[0.99999999999979, 1.00000000000019]
[−2.00000000000060,−1.99999999999945]
[−1.00000000000040,−0.99999999999956]
[1.99999999999998, 2.00000000000002]
[−1.00000000000026,−0.99999999999976]
[−1.00000000000022,−0.99999999999975]
[−0.00000000000012, 0.00000000000010]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
By Theorem 2, we affirm that there is a unique isolated simple zero x̂ ∈ X, s.t. Σ′(x̂) = 0.
Next, as in Examples 2 and 3, we consider the midpoint (p̂, α̂) of X and compute

f (p̂, α̂) = 4.0133× 10−28. Thus, by Theorem 4, we get a verified inclusion X× [0, f (p̂, α̂)], which
contains a unique simple zero of the system Σr. It means that X may contain a zero of Σ. Even if X does
not contain a zero of Σ, it contains a local minimum of f , which has a minimum value no larger than
f (p̂, α̂).

In the above example, we get the verified inclusion X× [0, f (p̂, α̂)] of the system Σr. Noticing
that f (p̂, α̂) �= 0, according to Theorem 4, we are not sure if the verified inclusion X contains
a unique simple zero of the system Σ. While, considering the value of f (p̂, α̂) is very small,
under certain numerical tolerance condition(for example 10−25), we can deem that the verified
inclusion X contains a simple zero of the system Σ. That is, we certified the over-determined
system Σ and further certified the original system F.

40

Mathematics 2018, 6, 166

5.2. Certifying the Multiplicity Structures of Isolated Singular Zeros of Polynomial Systems

In recent years, Mourrain et al. [21,36] proposed a new deflation method, which can be used
to refine the accuracy of an isolated singular zero and the parameters introduced simultaneously
and, moreover, the parameters can describe the multiplicity structure at the zero. They also
proved that the number of equations and variables in this deflation method depend polynomially
on the number of variables and equations of the input system and the multiplicity of the singular
zero. However, although they also showed that the isolated simple zeros of the extended
polynomial system correspond to zeros of the input system, the extended system is usually an
over-determined system. Therefore, the problem of knowing the multiplicity structure of the
isolated singular zero exactly becomes the problem of solving or certifying the isolated simple
zero of the over-determined system.

In this section, we first give a brief introduction of their deflation method and, then, show
how our method is applied to certify the multiplicity structure of the isolated singular zero of
the input system heuristically.

Let F = { f1, . . . , fm} ⊂ C[x]. Let p = (p1, . . . , pn) ∈ Cn be an isolated multiple zero of F.
Let I = 〈 f1, . . . , fm〉, mp be the maximal ideal at p and Q be the primary component of I at p so
that

√
Q = mp.

Consider the ring of power series C[[∂p]] := C[[∂1,p, . . . , ∂n,p]] and we use the notation for
β = (β1, . . . , βn) ∈ Nn:

∂
β
p(f) := ∂

β1
1,p · · · ∂βn

n,p =
∂|β| f

∂xβ1
1 · · · ∂xβn

n
(p), for f ∈ C[x].

The deflation method based on the orthogonal primal-dual pairs of bases for the space
C[x]/Q and its dual D ⊂ C[∂], which is illustrated in the following lemma.

Lemma 5. Let F, p, Q, D be as in the above and δ be the multiplicity of F at p. Then, there exists a
primal-dual basis pair of the local ring C[x]/Q with the following properties:

1. (a) The primal basis of the local ring C[x]/Q has the form

B := {(x− p)α0 , (x− p)α1 , . . . , (x− p)αδ−1}.

We can assume that α0 = 0 and that the monomials in B are connected to 1. Define the set of
exponents in B

E := {α0, . . . , αδ−1}.

2. The unique dual basis Λ = {Λ0, Λ1, . . . , Λδ−1} ⊂ D orthogonal to B has the form:

Λ0 = ∂α0
p = 1p,

Λ1 =
1

α1!
∂α1

p + ∑
|β|<|α1|

β/∈E

να1,β
1
β!

∂
β
p,

...

Λδ−1 =
1

αδ−1!
∂

αδ−1
p + ∑

|β|<|αδ−1|
β/∈E

ναδ−1,β
1
β!

∂
β
p,

41

Mathematics 2018, 6, 166

The above lemma says that, once given a primal basis B of the local ring C[x]/Q, there
exists a unique dual basis Λ, which can be used to determine the multiplicity structure of p

in F and further the multiplicity δ of p, orthogonal to B. Based on the known primal basis B,
Mourrain et.al constructed the following parametric multiplication matrices, which can be used
to determine the coefficients of the dual basis Λ.

Definition 5. Let B as defined in Lemma 5 and denote the exponents in B by E := {α0, . . . , αδ−1} as
above. Let

E+ :=
n⋃

i=1

(E + ei)

with E + ei = {(γ1, . . . , γi + 1, . . . , γn) : γ ∈ E} and we denote ∂(E) = E+ \ E. We define an array
μ of length nδ(δ− 1)/2 consisting of 0s, 1s and the variables μαi ,β as follows: for all αi, αk ∈ E and
j ∈ {1, . . . , n} the corresponding entry is

μαi ,αl+ej =

⎧⎪⎪⎨⎪⎪⎩
1, i f αi = αk + ej

0, i f αk + ej ∈ E, αi �= αk + ej

μαi ,αl+ej , i f αk + ej /∈ E.

The parametric multiplication matrices corresponding to E are defined for i = 1, . . . , n by

Mt
i(μ) :=

0 μα1,ei μα2,ei · · · μαδ−1,ei

0 0 μα2,α1+ei · · · μαδ−1,α1+ei
...

...
...

0 0 0 · · · μαδ−1,αδ−2+ei

0 0 0 · · · 0

.

Definition 6. (Parametric normal form). Let K ⊂ C be a field. We define

Nz,μ : K[x] −→ K[z, μ]δ

f �−→ Nz,μ(f) := f (z + M(μ))[1] = ∑
γ∈Nn

1
γ!

∂
γ
z (f)M(μ)γ[1].

where [1] = [1, 0, . . . , 0] is the coefficient vector of 1 in the basis B.

Based on the above lemma and definitions, the multiplicity structure are characterized by
polynomial equations in the following theorem.

Theorem 5 ([36]). Let K ⊂ C be any field, F ⊂ K[x], and let p ∈ Cn be an isolated zero of F.
Let Q be the primary ideal at p and assume that B is a basis for K[x]/Q satisfying the conditions of
Lemma 5. Let E ⊂ Nn be as in Lemma 5 and Mi(μ) for i = 1, . . . , n be the parametric multiplication
matrices corresponding to E as in Definition 5 and Nz,μ be the parametric form as in Definition 6. Then,
(z, μ) = (p, ν) is an isolated zero with multiplicity one of the polynomial system in K[z, μ]:{Nz,μ(fk) = 0, f or k = 1, . . . , m,

Mi(μ) · Mj(μ)− Mj(μ) · Mi(μ) = 0, f or i, j = 1, . . . , n.
(7)

42

Mathematics 2018, 6, 166

The second part of Equation (7) gives a pairwise commutation relationship of the parametric
multiplication matrices. Moreover, Theorem 5 makes sure that Equation (7) has an isolated zero
(p, ν) of multiplicity one. Thus, it can be used to deflate the isolated zero p of the input system F

and simultaneously determine the multiplicity structure of p.
Now, we show an example to illustrate how their method works.

Example 6. Let F = { f1 = x1 + x2 + x2
1, f2 = x1 + x2 + x2

2} be a polynomial system with a three-fold
isolated zero p = (0, 0). Given the primal basis B = {1, x1, x2

1}, which satisfies the properties of Lemma 5,
we can compute the parametric multiplication matrices:

Mt
1(μ) =

⎡⎢⎣0 1 0
0 0 1
0 0 0

⎤⎥⎦ , Mt
2(μ) =

⎡⎢⎣0 μ1 μ2

0 0 μ3

0 0 0

⎤⎥⎦ .

Thus, Equation (7) generates the following polynomials:

1. N (f1) = 0 gives the polynomials x1 + x2 + x2
1, 1 + 2x1 + μ1, 1 + μ2.

2. N (f2) = 0 gives the polynomials x1 + x2 + x2
2, 1 + (1 + 2x2)μ1, (1 + 2x2)μ2 + μ1μ3.

3. M1M2 − M2M1 = 0 gives the polynomial μ3 − μ1.

Furthermore, Theorem 5 promises that (p, ν1, ν2, ν3) is an isolated zero with multiplicity one of the
system F′ = { f1, f2, 1 + 2x1 + μ1, 1 + μ2, 1 + (1 + 2x2)μ1, (1 + 2x2)μ2 + μ1μ3, μ3 − μ1}.

On the one hand, from the above example, we can see that given a polynomial system F

with an isolated zero p, by Theorem 5, we will get an extended system F′ ⊂ C[x, μ], which owns
an isolated zero (p, ν) with multiplicity one. Moreover, by Lemma 5, we have the dual basis

Λ = {1, ∂1 + ν1∂2,
1
2

∂2
1 + ν2∂2 + ν3∂1∂2 +

1
2

ν1ν3∂2
2},

which corresponds to the primal basis B = {1, x1, x2
1}.

On the other hand, it is not hard to see that Equation (7) defined in Theorem 5 usually gives
an over-determined extended system F′. Once given an approximate zero (p̃, ν̃), similar to in
Corollary 4.12 in [29], we can use random linear combinations of the polynomials in F′ to produce
a square system, which has a simple zero at (p, ν) with high probability. Furthermore, Newton’s
method can be used on this square system to refine (p̃, ν̃) to a higher accuracy. However, this
operation can only return an approximate multiplicity structure of the input system F with a
higher accuracy. Next, we consider employing our certification method to certify the multiplicity
structure of F.

Example 7. Continue to consider Example 6. Let Σ = F′ = { f1, f2, g1 = 1 + 2x1 + μ1, g2 =

1 + μ2, g3 = 1 + (1 + 2x2)μ1, g4 = (1 + 2x2)μ2 + μ1μ3, g5 = μ3 − μ1}. Given an approximate zero

(p̃, ν̃) = (0.15, 0.12,−1.13,−1.32,−1.47).

By Algorithm 1, with Newton’s method, we get a higher accuracy zero

(p̃′, ν̃′) = (0.000000771, 0.000001256,−1.000002523,−1.000000587,−1.000001940).

43

Mathematics 2018, 6, 166

Then, let

f = f 2
1 + f 2

2 +
5

∑
j=1

g2
j

and compute
Σ′ = {J1(f), J2(f), Jμ1

(f), Jμ2
(f), Jμ3

(f)}.

After applying algorithm verifynlss on Σ′ at (p̃′, ν̃′), we have a verified inclusion:

X =

⎛⎜⎜⎜⎜⎜⎝
[−0.00000000000001, 0.00000000000001]
[−0.00000000000001, 0.00000000000001]
[−1.00000000000001, −0.99999999999999]
[−1.00000000000001, −0.99999999999999]
[−1.00000000000001, −0.99999999999999]

⎞⎟⎟⎟⎟⎟⎠ .

Based on Theorem 2, we know that there exists a unique (x̂, μ̂) ∈ X, s.t. Σ′(x̂, μ̂) = 0.
Similarly, as in Examples 2 and 3, we consider the midpoint (p̂, ν̂) of X and compute f (p̂, ν̂) = 0.

Thus, by Theorem 4, we are sure that there exists a unique simple zero (x̂1, x̂2, ν̂1, ν̂2, ν̂3) of the input
system Σ in the interval X, which means we certified the input system Σ.

According to the analysis in the above example, we know that, after applying our
Algorithm 1 on the extended system Σ = F′, we get a verified inclusion X, which possesses a
unique simple zero of F′. Noticing that the values of the variables μ1, μ2, μ3 in F′ determine the
coefficients of the dual basis Λ, thus, certifying the extended system F′ means certifying the
multiplicity structure of the input system F at p. Thus, by Theorem 4, as long as f (x̂, μ̂) = 0,
we are sure that we certified not only the isolated singular zero of the input system F, but also its
multiplicity structure.

Algorithm 1 VSPS: verifying a simple zero of a polynomial system.

Input: an over-determined polynomial system Σ := { f1, · · · , fm} ⊂ R[x] and an approximate

simple zero p̃ = (p̃1, · · · , p̃n) ∈ Rn.
Output: a verified inclusion X and a small non-negative number.

1: Compute f and Σ′;
2: Compute p̃′ := Newton(Σ′, p̃);
3: Compute X := verifynlss(Σ′, p̃′) and f (p̂);
4: if f (p̂) = 0, then

5: return (X, 0);
6: else

7: return (X, f (p̂)).
8: end if

6. Conclusions

In this paper, we introduce the following two main contributions. First, we consider
certifying the simple zeros of over-determined systems. By transforming the given
over-determined system into a square one, we prove a necessary and sufficient condition to
certify the simple real zeros of the over-determined system Σ by certifying the simple real zeros
of the square system Σr. However, noting that deciding numerically if a point is a zero of a

44

Mathematics 2018, 6, 166

polynomial is difficult, we refine and certify the simple real zeros of Σ by refining and certifying
a new square system Σ′ with the interval methods and get a verified inclusion X, which contains
a unique simple real zero x̂ of Σ′. In fact, x̂ is a local minimum of f , which is also a necessary
condition for the certification. By the necessary and sufficient condition in Theorem 1, we know
that, as long as f (x̂) = 0, we can say that x̂ is a simple real zero of Σ and we certified the input
system Σ.

Second, based on our work [35] and the work of Mourrain et al. [21,36], as an application
of our method, we give a heuristic method for certifying not only the isolated singular zeros
of polynomial systems, but also the multiplicity structures of the isolated singular zeros of
polynomial systems.

In the future, for the certified zero x̂, trying to give a sufficient condition for the certification
is the direction of our effort.

Author Contributions: J.C. contributed for supervision, project administration, funding and conceived of
the presented idea. X.D. developed the theory, performed the computations and wrote the initial draft of
the paper. J.C. verified the analytical methods. Both authors read and approved the final version of the
paper.

Funding: The work was partially supported by NSFC Grants 11471327.

Acknowledgments: The authors would like to thank the anonymous referees very much for their useful
suggestions that improved this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Blum, L.; Cucker, F.; Shub, M.; Smale, S. Complexity and Real Computation; Springer: New York, NY,
USA, 1998.

2. Hauenstein, J.D.; Sottile, F. Algorithm 921: AlphaCertified: Certifying Solutions to Polynomial Systems.
ACM Trans. Math. Softw. 2012, 38, 28. [CrossRef]

3. Smale, S. Newton’s Method Estimates from Data at One Point. In The Disciplines: New Directions in
Pure, Applied and Computational Mathematics; Ewing, R., Gross, K., Martin, C., Eds.; Springer: New York,
NY, USA, 1986.

4. Kanzawa, Y.; Kashiwagi, M.; Oishi, S. An algorithm for finding all solutions of parameter-dependent
nonlinear equations with guaranteed accuracy. Electr. Commun. JPn. 1999, 82, 33–39. [CrossRef]

5. Krawczyk, R. Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlherschranken.
Computing 1969, 4, 247–293. [CrossRef]

6. Moore, R.E. A test for existence of solutions to nonlinear systems. SIAM J. Numer. Anal. 1977, 14,
611–615. [CrossRef]

7. Nakaya, Y.; Oishi, S.; Kashiwagi, M.; Kanzawa, Y. Numerical verification of nonexistence of solutions
for separable nonlinear equations and its application to all solutions algorithm. Electr. Commun. Jpn.
2003, 86, 45–53. [CrossRef]

8. Rump, S.M. Solving algebraic problems with high accuracy. Proceedings of the Symposium on A New
Approach to Scientific Computation; Academic Press Professional, Inc.: San Diego, CA, USA, 1983;
pp. 51–120.

9. Yamamura, K.; Kawata, H.; Tokue, A. Interval solution of nonlinear equations using linear
programming. BIT Numer. Math. 1998, 38, 186–199. [CrossRef]

10. Allamigeon, X.; Gaubert, S.; Magron, V.; Werner, B. Formal proofs for nonlinear optimization.
J. Form. Reason. 2015, 8, 1–24.

11. Kaltofen, E.; Li, B.; Yang, Z.; Zhi, L. Exact certification of global optimality of approximate
factorizations via rationalizing sums-of-squares with floating point scalars. In Proceedings of the

45

Mathematics 2018, 6, 166

Twenty-first International Symposium on Symbolic and Algebraic Computation, ISSAC 08, Hagenberg,
Austria, 20–23 July 2008; ACM: New York, NY, USA; pp. 155–164.

12. Kaltofen, E.L.; Li, B.; Yang, Z.; Zhi, L. Exact certification in global polynomial optimization via
sums-of-squares of rational functions with rational coefficients. J. Symb. Computat. 2012, 47, 1–15.
[CrossRef]

13. Monniaux, D.; Corbineau, P. On the generation of positivstellensatz witnesses in degenerate cases.
In Interactive Theorem Proving; LNCS 6898; van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F., Eds.;
Springer: Berlin/Heidelberg, Germany, 2011; pp. 249–264.

14. Peyrl, H.; Parrilo, P.A. A Macaulay2 package for computing sum of squares decompositions of
polynomials with rational coefficients. In Proceedings of the SNC 2007, Waterloo, AB, Canada, 2007;
pp. 207–208.

15. Peyrl, H.; Parrilo, P.A. Computing sum of squares decompositions with rational coefficients.
Theor. Comput. Sci. 2008, 409, 269–281. [CrossRef]

16. Safey, M.; Din, E.; Zhi, L. Computing rational points in convex semialgebraic sets and sum of squares
decompositions. SIAM J. Optim. 2010, 20, 2876–2889.

17. Akogul, T.A.; Hauenstein, J.D.; Szanto, A. Certifying solutions to overdetermined and singular
polynomial systems over Q. J. Symb. Comput. 2018, 84, 147–171.

18. Dayton, B.; Zeng, Z. Computing the multiplicity structure in solving polynomial systems.
In Proceedings of the 2005 International Symposium on Symbolic and Algebraic Computation, Beijing,
China, 24–27 July 2005; Kauers, M., Ed.; ACM: New York, NY, USA, 2005; pp. 116–123.

19. Giusti, M.; Lecerf, G.; Salvy, B.; Yakoubsohn, J.-C. On location and approximation of clusters of zeros:
case of embedding dimension one. Found. Comput. Math. 2007, 7, 1–58. [CrossRef]

20. Hauenstein, J.D.; Wampler, C.W. Isosingular sets and deflation. Found. Computat. Math. 2013, 13,
371–403. [CrossRef]

21. Hauenstein, J.D.; Mourrain, B.; Szant, A. Certifying isolated singular points and their multiplicity
structure. In Proceedings of the Twenty-first International Symposium on Symbolic and Algebraic
Computation, ISSAC’ 15, Bath, UK, 6–9 July 2015; pp. 213–220.

22. Ojika, T. A numerical method for branch points of a system of nonlinear algebraic equations.
Appl. Numer. Math. 1988, 4, 419–430. [CrossRef]

23. Ojika, T.; Watanabe, S.; Mitsui, T. Deflation algorithm for the multiple roots of a system of nonlinear
equations. J. Math. Anal. Appl. 1983, 96, 463–479. [CrossRef]

24. Zeng, Z. Computing multiple roots of inexact polynomials. Math. Comput. 2005, 74, 869–903.
[CrossRef]

25. Dayton, B.; Li, T.; Zeng, Z. Multiple zeros of nonlinear systems. Math. Comput. 2011, 80, 2143–2168.
[CrossRef]

26. Kanzawa, Y.; Oishi, S. Approximate singular solutions of nonlinear equations and a numerical method
of proving their existence. Theory and application of numerical calculation in science and technology,
II (Japanese) (Kyoto, 1996). Sūrikaisekikenkyūsho Kōkyūroku 1997, 990, 216–223.

27. Leykin, A.; Verschelde, J.; Zhao, A. Newton’s method with deflation for isolated singularities of
polynomial systems. Theor. Comput. Sci. 2006, 359, 111–122. [CrossRef]

28. Li, N.; Zhi, L. Verified Error Bounds for Isolated Singular Solutions of Polynomial Systems. SIAM J.
Numer. Anal. 2014, 52, 1623–1640. [CrossRef]

29. Mantzaflaris, A.; Mourrain, B. Deflation and certified isolation of singular zeros of polynomial systems.
In Proceedings of the ISSAC 2011, San Jose, CA, USA, 17 January 2011; pp. 249–256.

30. Rump, S.M.; Graillat, S. Verified error bounds for multiple roots of systems of nonlinear equations.
Numer. Algorithms 2010, 54, 359–377. [CrossRef]

31. Dedieu, J.P.; Shub, M. Newton’s method for overdetermined systems of equations. Math. Comput.
1999, 69, 1099–1115. [CrossRef]

46

Mathematics 2018, 6, 166

32. Cheng, J.S.; Dou, X. Certifying simple zeros of over-determined polynomial systems. In Computer
Algebra in Scientific Computing; CASC’17 Lecture Notes in Computer Science; Gerdt, V., Koepf, W.,
Seiler W., Vorozhtsov E., Eds.; Springer: Cham, Switzerland, 2017; pp. 55–76.

33. Li, S. Linear Algebra; Higher Education Press: Beijing, China, 2006; ISBN 978-7-04-019870-6.
34. Rohn, J. Positive definiteness and stability of interval matrices. SIAM J. Matrix Anal. Appl. 1994, 15,

175–184. [CrossRef]
35. Cheng, J.S.; Dou, X.; Wen, J. A new deflation method for verifying the isolated singular zeros of

polynomial systems. preprint 2018.
36. Hauenstein, J.D.; Mourrain, B.; Szanto, A. On deflation and multiplicity structure. J. Symb. Comput.

2017, 83, 228–253. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open
access article distributed under the terms and conditions of the Creative Commons
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

47

mathematics

Article

Resolving Decompositions for Polynomial Modules

Mario Albert † and Werner M. Seiler *,†

Institut für Mathematik, Universität Kassel, 34132 Kassel, Germany; mario.albert@gmx.de
* Correspondence: seiler@mathematik.uni-kassel.de
† These authors contributed equally to this work.

Received: 12 July 2018; Accepted: 4 September 2018; Published: 7 September 2018

Abstract: We introduce the novel concept of a resolving decomposition of a polynomial module as a
combinatorial structure that allows for the effective construction of free resolutions. It provides a
unifying framework for recent results of the authors for different types of bases.

Keywords: polynomial modules; free resolutions; combinatorial decompositions

MSC: 13D02; 13P10; 68W30

1. Introduction

The determination of free resolutions for polynomial modules is a fundamental task in
computational commutative algebra and algebraic geometry. Free resolutions are needed for derived
functors like Ext and Tor and many important homological invariants like the projective dimension or
the Castelnuovo-Mumford regularity are defined via the minimal resolution. Furthermore, already the
Betti numbers, which measure the size of the minimal free resolution, give valuable information about
the geometry and topology of varieties.

Unfortunately, resolutions are computationally rather expensive. A rough estimate says that a
resolution of length � requires to compute � Gröbner bases. In many situations, partial information
like the Betti numbers already suffice. However, all classical algorithms for the computation of
Betti numbers require to always determine a full resolution. Indeed, one can observe in computer
algebra systems like SINGULAR that computing the Betti numbers needs as much computation time as
computing a full resolution.

In the recent work [1], we developed a novel approach to this question consisting of a combination
of the theory of involutive bases—in the form of Pommaret bases—(see [2] for a general survey on
involutive bases) and of algebraic discrete Morse theory (see [3,4]). We also implemented it in the
COCOALIB [5]. To the best of our knowledge, this approach is the only one that is able to compute
(even individual) Betti numbers without first determining a full resolution. For most ideals, it is
therefore much faster than classical methods (see the detailed benchmarks given in [1,6]). Furthermore,
the new approach can be easily parallelised and scales much better with the problem size.

Because of these advantages, a generalisation of our approach to other situations is of great interest.
Furthermore, it should be noted that Pommaret bases exist only in generic coordinates. As a first step,
we extended it therefore to Janet bases [6], as these can be computed more efficiently and always exist.
While the proofs follow the same lines, the use of a different involutive division entailed the adaption
of many technical points. Furthermore, we are currently considering the use of alternative ideal bases
not necessarily coming from an involutive division, but inducing combinatorial decompositions of the
ideal with essentially the same properties. The development of a syzygy theory for such bases again
proceeds along the same ideas, but various proofs have to be modified in minor ways.

In a different line of work, we recently introduced the concept of a module marked on a
quasi-stable submodule which is very useful for the explicit determination of equations for Hilbert

Mathematics 2018, 6, 161; doi:10.3390/math6090161 www.mdpi.com/journal/mathematics48

Mathematics 2018, 6, 161

and Quot schemes [7,8]. The marking induces a combinatorial decomposition based on Pommaret
multiplicative variables, but this time the key issue is that the head terms are not chosen with respect
to a term order. Nevertheless, we showed that the most important results on resolutions presented [1]
still remain essentially true. Again the proofs follow the same basic ideas, but require smaller technical
modifications at some places.

This article represents a revised and expanded version of [9] which was presented at the conference
Computer Algebra in Scientific Computing. Its main objective is to unify all our above-mentioned works
in a general axiomatic framework. It centers about the novel concept of a resolving decomposition
of an ideal. It refines the classical Stanley decompositions by certain additional axioms implying the
existence of standard representations and normal forms. We then discuss how a free resolution and
Betti numbers can be determined from a resolving decomposition.

The goal of this unification is not the development of any new algorithms. In particular,
no algorithm for the construction of resolving decomposition will be presented. Instead, our results
should be considered as a “meta-machinery” which augments any concept of a basis that induces a
resolving decomposition with an effective syzygy theory. As already mentioned above, we applied
this “meta-machinery” already for the special case of Janet or Pommaret bases (including a concrete
implementation in the COCOALIB) [1,6]. The case of marked bases is considered in great detail in [7,8]
(the latter reference also describes a concrete implementation in COCOALIB for the case of ideals).

The article is structured as follows. The next section provides the definition of a resolving
decomposition and shows explicitly that all the cases mentioned above are contained in it. The third
section discusses the construction of a syzygy resolution out of a resolving decomposition and some of
its properties. In the fourth section, an explicit formula for the differential of this resolution is derived
by relating our construction with the work of Sköldberg [10]. Finally, some conclusions are given.

2. Resolving Decompositions

Throughout this article, we will use the following notations. Let � be a field and P = �[x]

the polynomial ring in the variable x = (x0, . . . , xn). We write � for the set of terms xμ ∈ P .
Let Pm

d =
⊕m

i=1 P(−di)e
(0)
i be a finitely generated free P-module with grading d = (d1, . . . , dm)

and free generators e
(0)
1 , . . . , e

(0)
m . A module U ⊆ Pm

d is called monomial module, if it is of the form

⊕m
k=1 J(k)e(0)k with each J(k) a monomial ideal in P . A module term (with index i) is a term of the form

xμe
(0)
i . If J ⊆ P is a monomial ideal, we denote by N (J) ⊆ � the set of terms in � not belonging to J.

In the case of monomial module U, we analogously write N (U) =
⋃m

k=1N (J(k))e(0)k . The support of
an element f ∈ Pm

d is the set supp(f) of all module terms appearing in f with a non-zero coefficient,

thus f = ∑xαe
(0)
iα
∈supp(f)

cαxαe
(0)
iα . If B is a set of homogeneous elements of degree s in Pm

d , we write

〈B〉� for the �-vector space generated by B in (Pm
d)s. For a module U ⊆ Pm

d , we denote by pd (U) the
projective dimension and by reg (U) the (Castelnuovo-Mumford) regularity of U.

Let B = {h1, . . . , hs} be a finite set of homogeneous elements in Pm
d . We need the following data

to define a resolving decomposition of the submodule U defined by B. For every generator hi ∈ B, we
choose a term xμi e

(0)
ki
∈ supp hi denoted by hm (hi) and call it the head module term of hi. Furthermore,

we define the head module terms of B by hm (B) := Bigl{hm (h) | h ∈ BBigr} and the head module of U
by hm (U) = 〈hmB〉. Obviously, the monomial module hm (U) depends on the choice of both the
generating set B and the head module terms hm (B). Furthermore, we assign to every head module
term hm(h) with h ∈ B a set of multiplicative variables XB(h) ⊆ x and denote by XB the set of all these
sets. Finally, we choose a term order ≺B on P s with s the number of generators in B.

Definition 1. The above introduced quadruple (B, hm (B), XB ,≺B) defines a resolving decomposition of a
submodule U ⊆ Pm

d , if the following five properties hold:

(i) U = 〈B〉.

49

Mathematics 2018, 6, 161

(ii) Let h ∈ B be an arbitrary generator. Each module term xμe
(0)
k ∈ supp(h) \ {hm(h)} must satisfy

xμe
(0)
k /∈ hm(U).

(iii) The assigned multiplicative variables induce direct sum decompositions of both the head module

hm(U) = Bigoplush∈B�[XB(h)] · hm(h) (1)

and the module itself
U = Bigoplush∈B�[XB(h)] · h . (2)

(iv) We have a direct sum decomposition (Pm
d)r = Ur ⊕ 〈N (hm(U))r〉� for all degrees r ≥ 0.

(v) Let {e
(1)
1 , . . . , e

(1)
s } denote the canonical basis of the free module P s. Given an arbitrary term xδ ∈ �

and an arbitrary generator hα ∈ B, we find for every term xεe
(0)
i ∈ supp(xδhα) ∩ hm(U) a unique

hBeta ∈ hm(B) such that xεe
(0)
i = xδ′ hm(hβ) with xδ′ ∈ �[XB(hBeta)] by (iii). Then the inequality

xδe
(1)
α �B xδ′eBeta(1) holds with respect to the term order ≺B .

In the sequel, we will always assume that (B, hm (B), XB ,≺B) is a resolving decomposition of
the finitely generated module U = 〈B〉 ⊆ Pm

d . In addition to the multiplicative variables, we define
for h ∈ B the non-multiplicative variables as XB(h) = {x0, . . . , xn} \ XB(h).

Remark 1. Resolving decompositions refine the classical concept of Stanley decompositions [11]. Indeed,
the equalities (1) and (2) simply represents Stanley decompositions of the head module of U and of U itself,
respectively. This observation makes it straightforward to compute the Hilbert functions of hm(U) and of U,
respectively. Since the two Stanley decompositions possess an identical structure, the arising Hilbert functions
trivially coincides. This fact represents a built-in term order free version of the well-known Macaulay theorem
for Gröbner bases—see e.g., [12]).

Condition (iii) implies the existence of a unique standard representation

f =
s

∑
α=1

Pαhα

with Pα ∈ �[XB(hα)] for every f ∈ U. Note that these representations are indeed unique due to the fact
that each coefficient may only depend on the multiplicative variables. Condition (iv) implies the existence of
unique normal forms modulo U for all homogeneous elements f ∈ Pm

d . Due to it, we find a unique coefficient
Pα ∈ �[XB(hα)] for each generator hα ∈ B such that f′ = f−∑s

α=1 Pαhα ∈ 〈N (hm(U))〉�. It also follows
trivially from (1) that for every generator in the basis B a different head module term is chosen.

For the goals of this article, the mere existence of normal forms suffices. Nevertheless, we remark
that Condition (v) entails that these normal forms can be effectively determined. The head terms and
multiplicative variables inherent to a resolving decomposition allows for the definition of a natural
reduction relation. If there exists a term xεe

(0)
i ∈ supp (f) ∩ hm (U) for some module element f ∈ Pm

d ,

then we find a unique head module term h ∈ hm(B) such that xεe
(0)
i = xδ hm(h) with xδ ∈ �[XB(h)]

and consequently a reduction f
B−→ f− cxδh is possible for a suitably chosen scalar c ∈ �.

Lemma 1. For any resolving decomposition (B, hm (B), XB ,≺B) the transitive closure B−→∗ of the reduction

relation B−→ is Noetherian and confluent.

Proof. It is sufficient to prove that for every term xγe
(0)
k in hm(U), there is a unique g ∈ Pm

d such

that xγe
(0)
k

B−→∗ g and g ∈ 〈N (hm(U))〉. Since xγe
(0)
k ∈ hm(U), there exists a unique xδhα ∈ U such

that xδ hm(hα) = xγe
(0)
k and xδ ∈ XB(hα). Hence, xγe

(0)
k

B−→ xγe
(0)
k − cxδhα for a suitably chosen

coefficient c ∈ �. Denoting again the canonical basis of P s by {e
(1)
1 , . . . , e

(1)
s }, we associate the term

50

Mathematics 2018, 6, 161

xδe
(1)
α with this reduction step. If we could proceed infinitely with further reduction steps, then the

reduction process would induce a sequence of terms in P s containing an infinite chain which, by
Condition (v) of Definition 1, is strictly descending for ≺B . However, this is impossible, since ≺B is a

well-ordering. Hence B−→∗ is Noetherian. Confluence is immediate by the uniqueness of the element
that is used at each reduction step.

The following examples show that involutive and marked bases, respectively, do indeed induce
resolving decomposition as claimed in the introduction. In fact, one can say that the definition of
resolving decompositions evolved from an abstraction and combination of these two basic examples:
the emphasis on Stanley decompositions and unique normal forms represents a key feature of
involutive bases and the somewhat convoluted last condition in Definition 1 stems from the theory of
marked bases where it allows for the introduction of a Noetherian reduction relation without having
head terms selected by a term order. The cited literature implicitly provides many concrete instances of
resolving decompositions stemming either from involutive or marked bases. We refrain from repeating
them, as this is, at least in the first case, rather standard now.

Example 1. An involutive basis is a Gröbner basis with additional combinatorial properties (see [2] for a general
introduction and a survey of their basic theoretical and algorithmic properties). It is defined with respect to a
term order ≺ on the free module Pm

d and an involutive division L (see ([2], Definition 2.1)). Given a finite set
B ⊂ Pm

d of terms, an involutive division associates with each term in B a set of multiplicative variables. B is
an L-involutive basis, if it suffices to multiply each term with terms in each multiplicative variable to obtain
the whole module generated by B. The extension to general polynomial modules is straightforward using the
term order ≺ and normal form arguments. Note that the existence of Stanley decompositions induced by the
multiplicative variables is thus a central part of the definition of involutive bases.

Assume now that L is a continuous division,≺ an arbitrary term order and B ⊂ Pm
d a finite, L-involutively

autoreduced set ([2], Definition 5.8) which defines a strong L-involutive basis ([2], Definition 5.1) of the
polynomial submodule U ⊆ Pm

d it generates. We choose the head module hm(B) = {lt(h1), . . . , lt(hs)} via
the leading terms for the given term order ≺. The multiplicative variables XB are of course assigned according
to the involutive division L. Finally, we take for the term order ≺B the classical Schreyer order induced by B
and ≺ as it appears in Schreyer’s theorem (see e.g., ([13], Chapt. 5, Thm. 3.3)). Then the quadruple (B, hm (B),
XB ,≺B) defines a resolving decomposition of U.

The proof that all conditions of Definition 1 are satisfied consists simply of recalling some basic results
about involutive bases. Condition (i) is entailed by ([2], Corollary 5.5). Condition (ii) follows from the fact that
the set B is assumed to be involutively autoreduced and Condition (iii) is a consequence of ([2], Lemma 5.12).
Furthermore, by ([2], Proposition 5.13), every module element f ∈ Pm

d has a unique normal form with respect to
U. Remark 1 discusses that this property is equivalent to the fourth condition. Finally, Condition (v) is satisfied
because of ([14], Lemma 5.5), asserting the existence of an L-ordering for any continuous division.

Example 2. The key point about marked modules and marked bases, introduced in the first version of [8], is that
no term order is used for the selection of the head terms. Given a basis B of the polynomial module U ⊂ Pm

d ,
one can in principle choose any term in the support of a generator as head term. However, in general such a choice
will not lead to a Noetherian reduction relation. Therefore, certain restrictions apply. The chosen head terms
must define a quasi-stable module which is equivalent to saying that they form a Pommaret basis of the head
module. This fact immediately entails that most polynomial modules do not possess a marked basis. Indeed, the
point of marked bases is not that one wants to compute one for a given module U ⊂ Pm

d , but that one prescribes
a quasi-stable module V ⊆ Pm

d by giving its Pommaret basis and then constructs all possible marked bases
where the set of head terms coincides with this Pommaret basis. This construction is a key step for obtaining
local equations for Hilbert and Quot schemes modulo coordinate transformations (see [7,8] for more details).

More precisely, let H = {xμ1e
(0)
k1

, . . . xμs e
(0)
ks
} be a monomial Pommaret basis and V ⊆ Pm

d the

quasi-stable module generated byH. A marked basis B = {h1, . . . , hs} then firstly satisfies hm(hi) = xμi e
(0)
ki

51

Mathematics 2018, 6, 161

and supp(hi − xμi e
(0)
ki

) ⊆ 〈N (V)
deg(xμi e

(0)
ki

)
〉� for each index 1 ≤ i ≤ s. Secondly, we require that the

homogeneous component N (V)r of degree r induces a �-linear basis of the factor module (Pm
d)r/〈B〉r for any

r ≥ 0. Note that this fact entails the decompositions (Pm
d)r = 〈B〉r ⊕ 〈N (V)r〉� for all r. For a more detailed

discussion of marked bases, we refer to ([8], Section 2). For the desired resolving decomposition, we take as
multiplicative variables XB simply the multiplicative variables of the Pommaret basisH. Recall that if 1 ≤ c ≤ n
is the minimal index value such that the multi index μ has a non-zero entry at position c (this value is called the
class of μ), then the variables x1, . . . , xc are Pommaret multiplicative for xμe

(0)
k . Finally, we choose as module

term order ≺B the standard TOP lift of the classical lexicographic order [15].
We claim now again that (B, hm (B), XB ,≺B) defines a resolving decomposition of U. Indeed, it follows

immediately by construction that the Conditions (i), (ii) and (iv) are satisfied. The first part of Condition (iii)
is a consequence of the fact that H = hm(B) is a Pommaret basis and the second part of the uniqueness of
the reduction process ([8], Lemma 5.1) (here it is crucial that in this particular case the reduction process is
essentially the Pommaret normal form algorithm, as otherwise no Noetherian reduction relation would arise).
Finally, Condition (v) is entailed by ([8], Lemma 3.6).

The main obstacle in checking whether or not a given quadruple (B, hm (B), XB ,≺B) defines a
resolving decomposition is Condition (v). It can be tackled with the help of a directed graph induced by
any decomposition (B, hm (B), XB ,≺B) satisfying the first four conditions of Definition 1. Its vertices
are given by the elements in B. If xj ∈ XB(h) for some h ∈ B, then, by definition, B contains a unique
generator h′ such that xj hm (h) = xμ hm (h′) with xμ ∈ �[XB(h′)]. In this case we include a directed
edge from h to h′. We call the thus defined graph the B-graph and show now that acyclicity of it is a
necessary condition for a resolving decomposition.

Proposition 1. The B-graph of a resolving decomposition (B, hm (B), XB ,≺B) is always acyclic.

Proof. Assume the B-graph was cyclic. Then we can find pairwise distinct generators hk1 , . . . , hkt ∈ B
plus a non-multiplicative variable xij ∈ XB(hm(hkj

)) and a multiplicative term xμj ∈ �[XB(hm(hkj
))]

for each j ∈ {1, . . . , t} such that

xi1 hm(hk1) = xμ2 hm(hk2),

xi2 hm(hk2) = xμ3 hm(hk3),
...

xit hm(hkt) = xμ1 hm(hk1).

Multiplying with some variables, we obtain the following chain of equations:

xi1 · · · xit hm(hk1) = xi2 · · · xit x
μ2 hm(hk2)

= xi3 · · · xit x
μ2 xμ3 hm(hk3)

...

= xit x
μ2 · · · xμt hm(hkt)

= xμ1 · · · xμt hm(hk1)

which implies that xi1 · · · xit = xμ1 · · · xμt . Furthermore, Condition (v) of Definition 1 implies in P s the
following chain:

xi1 · · · xit e
(1)
k1
�B xi2 · · · xit x

μ2e
(1)
k2
�B · · · �B xμ1 · · · xμt e

(1)
k1

.

Because of xi1 · · · xit = xμ1 · · · xμt , we must have throughout equality entailing that k1 = · · · = kt

which contradicts our assumptions.

52

Mathematics 2018, 6, 161

The following two results provide a converse of this proposition for the special case of a monomial
generating set B by showing that whenever the B-graph of such a set is acyclic, then there exists a
term order satisfying Condition (v).

Lemma 2. Let B be a generating set consisting only of module terms. Assume that for the chosen multiplicative
variables XB , the B-graph is acyclic. Then it is not possible to find a chain of equalities of the form

xν1hk1 = xμ2hk2 , (3a)

xν2hk2 = xμ3hk3 , (3b)
...

xνt hkt = xμ1hk1 (3c)

with multiplicative terms xμi ∈ �[XB(hki
)] and arbitrary terms xνi ∈ �. Furthermore, whenever an equality

xν hm(hi) = xμ hm(hj) holds with a multiplicative term xμ ∈ �[XB(hj)], then the B-graph contains a
directed path from hi to hj.

Proof. We show that any chain of the form (3) induces a cycle in the B-graph and thus violates
the assumed acyclicity. Without loss of generality, we may assume that gcd(xνi , xμi+1) = 1 and
xνi /∈ �[XB(hki

)]. This implies the existence of a non-multiplicative variable xi0 ∈ XB(hk1) dividing xν1 .
Set xρ0 = xν1 /xi0 and let the normal form of xi0hk1 be xτ1 hl1 . Then xρ0 xτ1 hl1 = xμ2 hk2 . By assumption,
there exists a non-multiplicative variable xi1 ∈ XB(hl1) dividing xρ0 xτ1 . Now set xρ1 = xρ0 xτ1 /xi1 and
repeat the procedure.

Due to the fact that the B-graph is acyclic and that there are only finitely many terms xρ, xτ

and generators hl such that xρxτhl = xμ2 hk2 , we find after finitely many steps xlt and hlt such that
xlt ∈ XB(hlt) divides xρt−1 xτt and such that the normal form of xlt hlt is xμ2 hk2 . Now we do the same
for hk2 , hk3 , . . . at the end we reach again hk1 . Hence, we have constructed a cycle in the B-graph.

The final assertion follows immediately from the construction above.

Lemma 3. Let B = {h1, . . . , hs} be a generating set consisting only of module terms. Assume that for the
chosen multiplicative variables XB Conditions (i) to (iv) of Definition 1 are satisfied. Furthermore, let the
B-graph be acyclic and the elements of B be numbered in such a way that for any path from hi to hj in the

B-graph we always have i < j. If ≺B is an arbitrary term order on P s such that xαe
(0)
i �B xBetae

(0)
j whenever

i < j, then (B, hm (B), XB ,≺B) is a resolving decomposition.

Proof. We first remark that a numbering of the set B as assumed in the Lemma always exists for an
acyclic graph. Now we only have to check Condition (v) of Definition 1. Take a generator hi ∈ B
and an arbitrary term xδ ∈ �. Then xδhi = xαhj for a suitable multiplicative term xα ∈ �[XB(hj)].
By Lemma 2, there exists a path from hi to hj in the B-graph and hence i < j. However, this implies

xδe
(0)
i �B xαe

(0)
j proving the missing condition in the definition of a resolving decomposition.

The last lemma provides us with a simple check whether a monomial generating set together with
the chosen assignment of multiplicative variables can be used for defining a resolving decomposition:
we only have to check whether the induced B-graph is acyclic. If this is the case, then we can choose any
term order satisfying the property of Lemma 3 to complete the definition of a resolving decomposition.
The existence of such a term order is obvious, as every POT lift fulfils this property [16].

53

Mathematics 2018, 6, 161

Example 3. Set P = �[x0, x1, x2, x3] with the standard grading and m = 1. Let U be the ideal generated by
x0x1, x2

1, x2x3, x3
3 in P . A Stanley decomposition of U is then given by the set

B = {h1 = x0x1, h2 = x0x1x2, h3 = x2
0x1, h4 = x2

1, h5 = x2
1x3,

h6 = x0x1x3, h7 = x2
1x2

3, h8 = x0x1x2
3, h9 = x3

3, h10 = x2x3}

with multiplicative variables

XB(h1) = ∅, XB(h2) = {x0, x2}
XB(h3) = {x0, x2}, XB(h4) = {x0, x1, x2}
XB(h5) = {x1}, XB(h6) = {x0, x1}
XB(h7) = {x1}, XB(h8) = {x0, x1}
XB(h9) = {x0, x1, x3}, XB(h10) = {x0, x1, x2, x3} .

The corresponding B-graph is

h2 ��

��

h10

h1

��

��

��
��

h4 �� h5

��

��

��

h7

��

��

��

h9

		

h3

��

�� h6 ��

h8.

��

��

and obviously acyclic. Hence we can choose an arbitrary term order ≺B as described in Lemma 3 to complete the
definition of a resolving decomposition (B, hm (B), XB ,≺B).

Example 4. It should be emphasised that not even in the monomial case does every Stanley decomposition induce
a resolving decomposition, i.e., we cannot always find a corresponding term order ≺B . A simple counterexample
can already be given based on the homogeneous maximal ideal U in P for n = 4 and the standard grading.
In ([17], Page 31), it is shown that a Stanley decomposition of U is defined by the set

B = {h1 = x0, h2 = x1, h3 = x2, h4 = x3, h5 = x4, h6 = x0x1x3, h7 = x0x2x3,

h8 = x0x2x4, h9 = x1x2x4, h10 = x1x3x4, h11 = x0x1x2x3x4}

with multiplicative variables

XB(h1) = {x0, x1, x2}, XB(h2) = {x1, x2, x3}
XB(h3) = {x2, x3, x4}, XB(h4) = {x0, x3, x4}
XB(h5) = {x0, x1, x4}, XB(h6) = {x0, x1, x2, x3}
XB(h7) = {x0, x2, x3, x4}, XB(h8) = {x0, x1, x2, x4}
XB(h9) = {x1, x2, x3, x4}, XB(h10) = {x0, x1, x3, x4}

XB(h11) = {x0, x1, x2, x3, x4} .

The B-graph corresponding to this basis is

54

Mathematics 2018, 6, 161

h4

�� ��

h6 �� h10

��
h1

��

��

h2

��

�� h3��

h11 h9

��
h5

��

��

h7

��

h8��

and obviously contains several cycles. Therefore, it is not possible to find a term order ≺B , which makes this
Stanley decomposition into a resolving one.

This phenomenon is typical for Stanley decompositions considered in the context of the Stanley conjecture,
i. e., for decompositions where one tries to maximise the Stanley depth which is given by the minimal number of
multiplicative variables of a generator (see [17] and references therein for more details on the Stanley conjecture).

3. The Syzygy Resolutions Induced by a Resolving Decomposition

Let now U = 〈B(0)〉 with B(0) = {h1, . . . , hs1} be a finitely generated graded submodule of Pm
d0

,

the graded free polynomial module with canonical basis {e
(0)
1 , . . . , e

(0)
m } and grading defined by the

vector d0 = (d(0)1 , . . . d(0)m). We assume that we have somehow obtained a resolving decomposition
(B(0), hm (B(0)), XB(0) ,≺B(0)) of U. Our first step consists of showing that it induces in a natural way
a resolving decomposition (B(1), hm (B(1)), XB(1) ,≺B(1)) of the first syzygy module Syz(B(0)) ⊆ P s1 .
This result represents an extension or refinement of the classical Schreyer theorem providing a Gröbner
basis G(1) for the syzygy module Syz(G(0)) of a Gröbner basis G(0) (see e.g., ([13], Chapt. 5, Thm. 3.3)).

By the definition of a resolving decomposition, we have for every non-multiplicative variable xk

of each generator hα ∈ B(0) a unique standard representation xkhα = ∑s1
β=1 P(α;k)

β hβ corresponding to
the syzygy

Sα;k = xke
(1)
α −

s1

∑
β=1

P(α;k)
β e

(1)
β (4)

where {e
(1)
1 , . . . , e

(1)
s1 } denotes the canonical basis of the graded free polynomial module P s1

d1
with

grading defined by the degree vector d1 = (deg(h1), . . . , deg(hs)).

Lemma 4. Let S = ∑s1
α=1 Sαe

(1)
α be an arbitrary syzygy of B(0) with coefficients Sα ∈ P . Then we have

Sα ∈ �[XB(0) (hα)] for all 1 ≤ α ≤ s1, if and only if S = 0.

Proof. If S ∈ Syz(B(0)), then ∑s1
α=1 Sαhα = 0. By definition of a resolving decomposition, each f ∈ U

can be uniquely written in the form f = ∑s1
α=1 Pαhα with hα ∈ B(0) and Pα ∈ �[XB(0) (hα)]. In particular,

this holds for 0 ∈ U. Thus 0 = Sα ∈ �[XB(0) (hl)] for all α and hence S = 0.

We denote the non-multiplicative variables of the generator hα ∈ B(0) by {xiα1
, . . . , xiαrα

} where we

assume that iα
1 < · · · < iα

rα
. Then we take as B(1) the set

{
Sα;iαk

| 1 ≤ α ≤ s1, 1 ≤ k ≤ iα
rα

}
consisting of

all syzygies constructed as above from the products of generators by non-multiplicative variables.

Theorem 1. For each syzygy Sα;iαk
∈ B(1), we choose as head term

hm(Sα;iαk
) = xiαk

e
(1)
α

and as multiplicative variables

XB(1) (Sα;iαk
) = {x0, . . . xn} \ {xiα1

, . . . , xiαk−1
} .

55

Mathematics 2018, 6, 161

Furthermore, we take for ≺B(1) the Schreyer order associated to B(0) and ≺B(0) . Then the quadruple (B(1),
hm (B(1)), XB(1) ,≺B(1)) defines a resolving decomposition of the syzygy module Syz(B(0)).

Proof. We first show that (B(1), hm (B(1)), XB(1) ,≺B(1)) is a resolving decomposition of 〈B(1)〉. In a
second step, we prove that furthermore 〈B(1)〉 = Syz(B(0)).

The first condition of Definition 1 is trivially satisfied. By construction, it is obvious that

hm(〈B(1)〉) = Bigopluss1
α=1〈XB(0) (hα)〉e(1)α . (5)

It follows from (4) that any non head term xμe
(1)
l ∈ supp(Sα;k − xke

(1)
α) must satisfy xμ ∈

�[XB(0) (hl)] and hence we find xμe
(1)
l /∈ hm(〈B(1)〉) implying Condition (ii). Furthermore, it is

obvious that

〈XB(0) (hα)〉e(1)α =
rα⊕

k=1

�[XB(1) (Sα,iαk
)]xiαk

e
(1)
α .

If we combine this equation with (5), then the first part of Condition (iii) follows immediately.
The second part of this condition is a bit harder to prove. We take an arbitrary module element

f ∈ 〈B(1)〉 and construct its standard representation using hm(〈B(1)〉). Assume first that the support of
f contains no multiple of a head term, i. e., supp(f) ∩ hm(〈B(1)〉) = ∅. Then all terms xεe

(1)
α ∈ supp(f)

in the support must satisfy xε ∈ XB(0) (hα). Therefore, we get that f = 0 due to Lemma 4.

We may thus assume that supp(f) ∩ hm(〈B(1)〉) �= ∅ and we take the biggest term xμe
(1)
α in this

set with respect to the order ≺B(0) . By the already proven first part of Condition (iii), there must be
a syzygy Sα;i such that xi | xμ and xμ/xi ∈ �[XB(1) (Sα;i)]. We reduce f by this syzygy and obtain the
new module element

f′ = f− c
xμ

xi
Sα;i

for a suitable constant c ∈ � such that the term xμe
(1)
α is no longer in support of f′. Every term

xλe
(1)
β ∈ supp (f′) that is newly introduced by the subtraction of c xμ

xi
Sα;i and that also lies in hm(〈B(1)〉)

must be strictly less than the removed term xμe
(1)
α by Condition (v) of Definition 1 and by Equation (4)

defining the syzygy Sα;i.
We repeat this reduction procedure until we eventually obtain a module element f′′ such that

supp(f′′) ∩ hm (〈B(1)〉) = ∅. This will happen after a finite number of steps, since the reduced terms
forms a decreasing sequence with respect to the well-order ≺B(0) . By the same argument as above,
this implies that we must have f′′ = 0, which concludes the proof of this condition.

The above procedure provides us with an algorithm to compute arbitrary normal forms and
hence Condition (iv) follows immediately. For the last condition in Definition 1, we observe that the
head term xie

(1)
α is the leading term of the syzygy Sα;i for the module term order ≺B(0) . Thus the used

Schreyer order indeed satisfies Condition (v).

As is the case for the classical Schreyer theorem, this construction can now be iterated to obtain
resolving decompositions of the second and higher syzygy modules. This iteration thus leads
to a (generally non-minimal) free resolution of the submodule U where the constructed syzygies
define the columns of the matrices of the differentials. Note that for actually writing down all
these syzygies, we must compute many standard representations of products of generators by
non-multiplicative variables. This fact does not change compared to the classical situation (where one
considers S-polynomials instead of products by variables). However, since a resolving decomposition
contains much more information than a Gröbner basis, it is now possible to make at least precise
statements about the shape of the resolution. More precisely, it turns out that, without any further
computations, it is now possible to predict solely on the basis of the resolving decomposition (B(0),
hm (B(0)), XB(0) ,≺B(0)) the head terms of all higher syzygies and thus in particular their numbers

56

Mathematics 2018, 6, 161

corresponding to the ranks of the free modules appearing in the resolution. Furthermore, the length of
the resolution can also be easily read off from (B(0), hm (B(0)), XB(0) ,≺B(0)).

Theorem 2. Let (B(0), hm (B(0)), XB(0) ,≺B(0)) define a resolving decomposition of the graded submodule

U ⊂ Pm
d0

. Denote by β
(k)
0,j the number of generators h ∈ B(0) which are of degree j and have k multiplicative

variables. Furthermore, we write d = min {k | ∃j : β
(k)
0,j > 0} for the minimal number of multiplicative

variables of a generator. Then the submodule U possesses a graded free resolution of length n− d + 1 of the form

0 →⊕
j
P(−j)rn+1−d,j → · · · →⊕

j
P(−j)r1,j →⊕

j
P(−j)r0,j → U → 0 (6)

where the graded ranks of the appearing free modules are given by

ri,j =
n+1−i

∑
k=1

(
n + 1− k

i

)
β
(k)
0,j−i .

Proof. Iterating Theorem 1, we can construct a resolving decomposition (B(i), hm (B(i)), XB(i) ,≺B(i))

of the ith syzygy module Syzi(U) for any i. Given an index 1 ≤ l ≤ m and a non-multiplicative
variable xk ∈ XB(0) (hα(l)), we find |XB(1) (Sl;k)| < |XB(0) (hα(l))|.

If di denotes the minimal number of multiplicative variables assigned to a head module term
in hm (B(i)), then it is easy to see that the minimal number of multiplicative variables assigned to a
head term in hm (B(1)) is d + 1. This fact immediately entails the claimed length of the resolution (6).
Furthermore, it follows from our construction of the basic syzygies via products of generators by
non-multiplicative variables that deg(Sk;i) = deg(hk) + 1.

The assertion about the graded ranks of the modules is obtained by a combinatorial calculation.
We denote by β

(k)
i,j the number of generators in B(i) of degree j with k multiplicative variables. It follows

from our construction, that we have

β
(k)
i,j =

k−1

∑
t=1

β
(t)
i−1,j−1 ,

as each generator in B(i−1) of degree j− 1 with less than k multiplicative variables contributes one
generator in B(i) with k multiplicative variables. We will now show by induction how β

(k)
i,j can be

expressed in terms of β
(k)
0,j , namely that

β
(k)
i,j =

k−i

∑
t=1

(
k− t− 1

i− 1

)
β
(t)
0,j−i.

The base case i = 1 is trivial. For the inductive step, we first note that obviously β
(�)
i,j = 0 if

� < i + 1. Using this observation and the inductive hypothesis, we get

β
(k)
i+1,j =

k−1

∑
�=i+2

β
(�)
i,j−1 =

k−1

∑
�=i+2

�−i

∑
t=1

(
�− t− 1

i− 1

)
β
(t)
0,j−i =

k−i−1

∑
t=1

[
k−1

∑
�=i+t

(
�− t− 1

i− 1

)]
βt

0,j−i .

A shift of the index in the inner sum by t + 1 proves our claim via the following identity obtained
by summing over one column in the Pascal triangle:

k−t−2

∑
m=i−1

(
m

i− 1

)
=

(
k− t− 2

i

)
.

57

Mathematics 2018, 6, 161

For the ranks of the free modules, we compute

ri,j =
n+1

∑
k=1

β
(k)
i,j =

n+1

∑
k=1

k−i

∑
t=1

(
k− t− 1

i− 1

)
β
(t)
0,j−i =

n+1−i

∑
k=1

(
n + 1− k

i

)
β
(k)
0,j−i

where we used again the above identity for binomial coefficients for obtaining the last equality.

We now take a closer look at this iterative construction of the resolving decompositions (B(j),
hm (B(j)), XB(j) ,≺B(j)) for the syzygy modules Syzj(U). To define an element of B(j), we consider for

each generator hα ∈ B(0) all ordered integer sequences k = (k1, . . . , kj) with 0 ≤ k1 < · · · < kj ≤ n
of length |k| = j such that xki

∈ XB(0) (hα) for all 1 ≤ i ≤ j. We denote for any 1 ≤ i ≤ j by ki
the sequence obtained by eliminating ki from k. Then the generator Sα;k arises recursively from
the standard representation of xkj

Sα;kj according to the resolving decomposition (B(j−1), hm (B(j−1)),
XB(j−1) ,≺B(j−1)):

xkj
Sα;kj =

s1

∑
β=1

∑
l

P(α;k)
β;l Sβ;l. (7)

The second sum is over all ordered integer sequences l of length j− 1 such that for each entry
�i the variable x�i

is non-multiplicative for the generator hBeta ∈ B(0). Denoting the free generators

of the free module which contains the jth syzygy module by e
(j)
α,l , such that α ∈ {1, . . . , s1} and l is an

ordered subset of XB(0) (hα) of length j− 1 we get the following representation for Sα,k:

Sα;k = xkj
e
(j)
α;kj
−

s1

∑
β=1

∑
l

P(α;k)
β;l e

(j)
β;l.

An important consequence of our construction is that it allows us to bound certain homological
invariants of the submodule U in terms of data easily read off from the resolving decomposition (B(0),
hm (B(0)), XB(0) ,≺B(0)). Note, however, that in contrast to the situation in [14] where the resolution
induced by a Pommaret basis was considered, we obtain indeed only bounds, whereas a Pommaret
basis gives directly the exact values of the invariants.

Corollary 1. In the situation of Theorem 2, define

d = min
{

k | ∃j : β
(k)
0,j > 0
}

, q = deg (B(0)) = maxBigl{deg (h) | h ∈ B(0)Bigr} .

Then we obtain the following bounds for the projective dimension, the Castelnuovo-Mumford regularity and the
depth, respectively, of the submodule U:

pd(U) ≤ n + 1− d , reg(U) ≤ q , depth(U) ≥ d .

Proof. The first estimate follows immediately from the resolution (6) induced by the resolving
decomposition (B(0), hm (B(0)), XB(0) ,≺B(0)) of U. The last estimate is a simple consequence of the first
one and the graded form of the Auslander-Buchsbaum formula ([18], Ex. 19.8). By construction, the
module Syzi(B(0)) is generated by syzygies of degree less than or equal to q + i. Hence U is q-regular
which implies by definition the second estimate.

Remark 2. If one takes a closer look at the construction of the resolving decomposition (B(1), hm (B(1)), XB(1) ,
≺B(1)) of Syz(B(0)) provided in Theorem 1, then one notices that B(1) is always a Janet basis of Syz(B(0))

for the order ≺B(0) . This follows simply from the fact that the way in which we choose in Theorem 1 the
multiplicative variables for (B(1), hm (B(1)), XB(1) ,≺B(1)) is inspired by the definition of the Janet division.
Thus, if the resolving decomposition (B(0), hm (B(0)), XB(0) ,≺B(0)) stems from a Pommaret or a Janet basis,

58

Mathematics 2018, 6, 161

then all the resolving decompositions (B(i), hm (B(i)), XB(i) ,≺B(i)) are actually also induced by Pommaret or
Janet bases for a Schreyer order.

Gerdt [19] introduced a new involutive division called alex, since it is based on the anti degree lexicographic
order (a local term order for which terms of higher degree are always smaller than those of lower degree). It is
easy to see that a Janet basis which only consists of variables defines also an involutive basis for the alex division.
Hence, the same assertions are true for resolving decompositions induced by alex bases.

Such observations already demonstrate some advantages of the introduction of such a general framework,
like resolving decomposition. In our previous works on the free resolutions induced by an involutive basis,
we always needed the assumption that the used involutive division L is of Schreyer type to ensure that our
construction yields at each step again an L-involutive basis for the syzygy module for a suitable Schreyer order.
The construction in Theorem 1 always yields a Janet basis for Syz(B(0)), as in a resolving decomposition we can
choose the head terms and the multiplicative variables as we like. This allows us to extend the results of [14]
to involutive bases for arbitrary involutive divisions (not necessarily of Schreyer type), provided the L-graph
of the L-involutive basis is acyclic (which is guaranteed for continuous division). Note that, in contrast to the
old approach, the here presented construction will not necessarily lead to an L-involutive basis for each syzygy
module, but for most applications this fact is irrelevant.

4. Explicitly Determining the Differentials

As in the previous section, let Pm
d0

be a graded free module with free generators e
(0)
1 , . . . e

(0)
m and

a grading defined by the vector d0 = (d(0)1 , . . . d(0)m). We will always work with a finitely generated
graded submodule U ⊂ Pm

d0
with a resolving decomposition (B(0), hm (B(0)), XB(0) ,≺B(0)) where

B(0) = {h1, . . . , hs1}.
While Theorem 2 provides us with the shape of the induced resolution 6, we cannot obtain explicit

expressions for the differentials in the resolution. As discussed above, we only now the head term
of each higher syzygy. Our goal in this section is to derive such explicit fomulae. We first describe
the complex underlying the resolution (6) in a different manner. For this purpose, we introduce two
free P-modules,W =

⊕s1
α=1 Pwα and V =

⊕n
i=0 Pvi, the ranks of which are determined by the size

of the resolving decomposition (B(0), hm (B(0)), XB(0) ,≺B(0)) and by the number of variables in the
polynomial ring P , respectively. Then we set Ci =W ⊗P ΛiV where Λ• denotes the exterior product.
A P-linear basis of Ci is provided by the elements wα ⊗ vk where vk = vk1 ∧ · · · ∧ vki

for an ordered
sequence k = (k1, . . . , ki) with 0 ≤ k1 < · · · < ki ≤ n. Then the free subcomplex S• ⊂ C• generated
by all elements wα ⊗ vk with k ⊆ XB(0) (hα) corresponds to (6), if we identify e

(i+1)
α;k ↔ wα ⊗ vk.

Let ki+1 ∈ XB0(hα) \ k, then the differential comes from (7),

dS (wα ⊗ vk,ki+1
) = xki+1

wα ⊗ vk −∑
β,l

P(α;k,ki+1)
β;l wβ ⊗ vl ,

and thus requires the explicit determination of all the higher syzygies (7).
We will now present a method to directly compute the differential without computing higher

syzygies. It extends a construction of Sköldberg [10] using algebraic discrete Morse theory [3,4] and
generalises our results in [1,6] for the resolution induced by a Pommaret or a Janet basis.

Definition 2. The graded submodule U possesses head linear syzygies, if it has a finite presentation

0 −→ ker η −→ W =
s⊕

α=1

Pwα
η−→ U −→ 0 (8)

such that ker η can be generated by a finite set H = {h1, . . . , ht} where one can choose for each generator
hα ∈ H a head module term hm(hα) of the form xiwα.

59

Mathematics 2018, 6, 161

Sköldberg’s construction begins with the following two-sided Koszul complex (F , dF) defining a
free resolution of U. Let V be a �-linear space with basis {v0, . . . , vn} and introduce the free P-module
Fj = P ⊗� ΛjV ⊗� U. Any �-linear basis {ma | a ∈ A} of U induces a P-linear basis of Fj consisting
of all elements of the form 1⊗ vk ⊗ma with ordered sequences k of length j. The differential dF of the
two-sided Koszul complex F is now defined as

dF (1⊗ vk ⊗ma) =
j

∑
i=1

(−1)i+1(xki
⊗ vki ⊗ma − 1⊗ vki ⊗ xki

ma
)
. (9)

Note that the second term on the right hand side is not yet expressed in the chosen �-linear basis
of U and that this resolution is generally of infinite size, as the index set A is almost always infinite.
For notational simplicity, we will drop in the sequel the tensor sign ⊗ and leading factors 1 when
writing elements of F•.

Sköldberg uses a specialisation of head linear terms. He requires that for a given term order
≺ the leading module of ker η in the presentation (8) must be generated by terms of the form xiwα.
In this case, he says that U has initially linear syzygies. Our definition is term order free. Furthermore,
Sköldberg considered exclusively the case that the presentation (8) is minimal. However, this represents
a severe restriction, as the existence of such presentations cannot be guaranteed. As his construction
needs this restriction only to ensure that the final resolution is minimal, we have dropped it.

For a module U with head linear syzygies via a presentation (8), we now construct a finite
resolution (G, dG) via a Morse matching. We call the variables

crit (wα) = {xj | xjwα ∈ hm (H)} ,

where H is chosen as in Definition 2, critical for the generator wα; the remaining non-critical ones
are contained in the set ncrit (wα). Then a �-linear basis of U is given by all elements xμhα with
hα = η(wα) and xμ ∈ �[ncrit (wα)]. Following [4], we define Gj ⊆ Fj as the free submodule generated
by those vertices vkhα where the ordered sequences k are of length j and such that every entry ki is
critical for wα. In particularW ∼= G0 with an isomorphism induced by wα �→ v∅hα.

The description of the differential dG is based on reduction paths in the associated Morse graph
(for a detailed treatment of these notions, see [1,3,4]) and expresses the differential as a triple sum. If we
assume that, after expanding the right hand side of (9) in the chosen �-linear basis of U, the differential
of the complex F• can be expressed as

dF (vkhα) = ∑
m,μ,γ

Qk,α
m,μ,γvm(xμhγ) ,

then dG is defined by
dG(vkhα) = ∑

l,β
∑

m,μ,γ
∑
p

ρp
(
Qk,α

m,μ,γvm(xμhγ)
)

(10)

where the first sum ranges over all ordered sequences l which consists entirely of critical indices for
wβ. Moreover, the second sum may be restricted to all values such that a polynomial multiple of
vm(xμhγ) effectively appears in dF (vkhα) and the third sum ranges over all reduction paths p going
from vm(xμhγ) to vlhβ. Finally ρp is the reduction associated with the reduction path p satisfying

ρp
(
vm(xμhγ)

)
= qpvlhβ

for some polynomial qp ∈ P .

Remark 3. The explicit formula (10) with its complicated summation ranges obviously looks rather cumbersome
and does not appear to be very useful for practical purposes. However, this first impression is misleading.
In fact, (10) can be well exploited both theoretically and computationally. As shown by the COCOALIB

60

Mathematics 2018, 6, 161

implementations described in [1,6], it is for a computer rather straightforward to evaluate (10) for any concrete
submodule U. Moreover, the most valuable feature of (10) is that it provides an explicit expression for each entry
in the differential which is independent of all other entries of the differential. This observation will be the key for
the efficient determination of Betti numbers (even individual ones).

In the sequel, we will show that for a finitely generated graded module U with resolving
decomposition (B(0), hm (B(0)), XB(0) ,≺B(0)) the resolution constructed by Sköldberg’s method is
isomorphic to the resolution which is induced by the resolving decomposition, if we choose the head
linear syzygies properly. Firstly, we obtain the following trivial assertion.

Lemma 5. If the graded submodule U ⊆ P s1
d0

possesses a resolving decomposition (B(0), hm (B(0)), XB(0) ,
≺B(0)), then it has head linear syzygies. More precisely, we can set crit(wα) = XB(0) (hα), i. e., the critical
variables of the vector wα are simply the non-multiplicative variables of the generator hα = η(wα).

We will subsequently apply some lemmata from [1]. In this reference, they are formulated only
for the special case that the resolution is induced by a Pommaret basis. Nevertheless, if not explicitly
stated otherwise, we can still use them in our more general setting, as their proofs remain correct
also for arbitrary resolving decompositions. This is due to the fact that the proofs only require the
existence of unique standard representations and a separation of the variables into multiplicative
and non-multiplicative ones. In some proofs, the notion of the class of a generator in B(0) appears.
As already mentioned above, it is used to assign multiplicative variables for the Pommaret division.
When working with an arbitrary resolving decomposition, one must simply substitute it by the
maximal index of a multiplicative variable of the considered generator.

We could see above that the explicit description of the differential dG is based on reduction paths
in the associated Morse graph. We now take a closer look at them and their properties. Any reduction
path can be decomposed into so-called elementary ones which are always of length two. One can
distinguish three different types of elementary reductions paths ([1], Section 4). Those of type 0 are
irrelevant ([1], Lemma 4.5); the other ones have the form

vk(xμhα) −→ vk∪i(
xμ

xi
hα) −→ vl(xνhβ) .

Here k∪ i denotes the ordered sequence arising when i is inserted into the sequence k; likewise
k \ i stands for the sequence obtained by removing an index i ∈ k. Now we distinguish two further
types of elementary reduction paths depending on the form of the associated reduction.

Type 1: This is the case where l = (k ∪ i)\j, xν = xμ

xi
and β = α. Note that it is allowed that i = j.

We define ε(i; k) = (−1)|{j∈k|j>i}|. Then the corresponding reduction is

ρ(vkxμhα) = ε(i; k∪ i)ε(j; k∪ i)xjv(k∪i)\j
(xμ

xi
hα

)
.

Type 2: In this case l = (k∪ i) \ j and the term xνhβ appears in the involutive standard representation

of the product
xμxj

xi
hα with the coefficient λj,i,α,μ,ν,β ∈ �. By the construction of the Morse

matching, we now always find i �= j. The corresponding reduction is

ρ(vkxμhα) = −ε(i; k∪ i)ε(j; k∪ i)λj,i,α,μ,ν,βv(k∪i)\j(xνhβ) .

This case distinction comes from the differential (9). Summands appearing in it possess one of
the following two possible forms: xki

vki ma or vki (xki
ma). Each of these summands corresponds to a

directed edge in the Morse graph ΓA
F• . Consider now an elementary reduction path

61

Mathematics 2018, 6, 161

vk(xμhα) −→ vk∪i
(xμ

xi
hα

) −→ vl(xνhβ) .

If the second edge starts at a summand of the first resp. second form, then the elementary
reduction path is of type 1 resp. type 2.

For the proof of the existence of an isomorphism relating the resolution induced by a resolving
decomposition to the resolution constructed via the above outlined method of Sköldberg, we recall a
well-known result about the uniqueness of free resolutions.

Theorem 3. ([20], Theorem 1.6) Let U be a finitely generated graded P-module. If F is the graded minimal
free resolution of U and G an arbitrary graded free resolution of U, then G is isomorphic to the direct sum of F
and a trivial complex.

Theorem 4. Let U ⊂ Pm
d be a graded submodule. The graded free resolution F induced by a resolving

decomposition (B(0), hm (B(0)), XB(0) ,≺B(0)) of U and the graded free resolution G obtained by the method of
Sköldberg in the case that the head linear syzygies have been chosen in such a way that crit(hα) = XB(0) (hα)

for every generator hα ∈ B(0) are isomorphic.

Proof. It is not difficult to see that bases for the free modules in the resolution G constructed by
Sköldberg’s method consists of those generators vkhα with xk ∈ XB(0) (hα) for all indices k contained
in k. In the discussion following the proof of Theorem 2, we showed that bases for the modules in the
resolution F coming from the resolving decomposition are induced by the syzygies Sα,k and are thus
of the same cardinality. Hence, the two resolutions considered possess the same shape, meaning that
the homogeneous components of the contained free modules satisfy dim� (Fi)j = dim� (Gi)j. The
made assertion is now a trivial consequence of Theorem 3.

This proof already indicates that the two considered resolutions actually possess very similar
differentials. To deepen the comparison of the resolutions a bit more, we now recall a few further
simple observations made in [1]. It turns out that in the resolution G we may always choose as head
module terms for the higher syzygies exactly the same terms that appear as head module terms in
the resolving decompositions (B(i), hm (B(i)), XB(i) ,≺B(i)). In the case that we start with a resolving
decomposition induced by an involutive bases and then obtain involutive bases for all syzygy modules
(recall Remark 2), this entails that Sköldberg’s method also actually constructs involutive bases.

Lemma 6. ([1], Lemma 4.3) Given an index i such that xi ∈ crit (hα), let xihα = ∑s1
β=1 P(α;i)

β hβ be the

standard representation. Then we have dG(vihα) = xiv∅hα −∑s1
β=1 P(α;i)

β v∅hβ.

Our next statement may be interpreted in the following way. Assume that we choose in the Morse
graph a vertex vi(xμhα) having certain properties and then follow all possible reduction paths starting
at it. Then we will never reach a point where it becomes necessary to calculate a standard representation.
Assume furthermore that the chosen vertex possesses no critical (i.e., non-multiplicative) variables.
Then no such variables will arise while we follow a reduction path. If we want to generalise this
statement to higher homological degrees, then we must only replace the index conditions xi ∈ ncrit (hα)

and xj ∈ ncrit (hβ) by the conditions xk ∈ ncrit (hα) and x� ∈ ncrit (hβ) for all indices k and � contained
in the ordered sequences k and l, respectively.

Lemma 7. ([1], Lemma 4.4) Assume that {xi} ∪ supp(xμ) ⊆ ncrit (hα). Then for any reduction path
p = vi(xμhα) → · · · → vj(xνhβ) we have xj ∈ ncrit (hβ). In particular, in this situation there is no
reduction path p = vi(xμhα)→ · · · → vkhβ with xk ∈ crit (hβ).

62

Mathematics 2018, 6, 161

Our final corollary now asserts that we can indeed choose in the resolution G head module terms
in such a way that there is a one-to-one correspondence to the head module terms in the resolution F .
It is a direct consequence of Lemma 7 and provides us with an alternative explicit proof of Theorem 4.

Corollary 2. Let k = (k1, . . . , kj) with xki
∈ crit hα for all i, then

xkl
vk\kl

hα ∈ supp(dG(vkhα)).

5. Conclusions

In this article, we introduced a framework that provides many different types of bases of graded
polynomial submodules with an effective syzygy theory. The key is less the properties of the bases
themselves and more the combinatorial decompositions induced by them via the choice of head terms
and multiplicative variables. Effectivity is guaranteed through the required term order.

Given any basis that induces a resolving decomposition in the sense of Definition 1, we obtain
with Theorem 1 a generalised version of the classical Schreyer theorem and iteration leads to a free
resolution. One should, however, note the following crucial difference. The classical Schreyer theorem
yields only “in principle” a resolution; without actually performing the computations required for
every iteration step, no information about the final resolution can be obtained. By contrast, Theorem 2
describes already the full shape of the final resolution based only on the resolving decomposition of
the given submodule. Thus we could give (usually quite sharp) bounds for important homological
invariants in Corollary 1. In fact, the numbers ri,j given in Theorem 2 can also be interpreted as upper
bounds for the Betti numbers.

In [1], we showed that with the help of Pommaret bases Sköldberg’s method for the construction
of an explicit resolution can be made fully effective and then yields essentially the same resolution, as
the one induced by the Pommaret basis. In Section 4, we extended these results to arbitrary resolving
decompositions and thus provided an approach for the explicit computation of free resolutions based
on such a decomposition.

In [1,6], we presented a method to effectively compute graded Betti numbers via the induced
free resolutions of Janet and Pommaret bases and the method of Sköldberg. It is well-known that one
needs only the constant part of an arbitrary free resolution to determine the Betti numbers via linear
algebra over the field �. We showed that the method of Sköldberg allows us to compute directly only
this constant part instead of the whole resolution which drastically improves the complexity of such
a computation. With this approach, it is even possible to determine a single Betti number without
computing the complete constant part of the free resolution. The reason for this is that Sköldberg’s
formula allows us to compute any entry of a differential in the free resolution independently of the rest
of the free resolution. Furthermore, the theorem about the induced free resolution gives us a formula
to compute the ranks of any homogeneous component appearing in the resolution. These methods are
also applicable for an arbitrary resolving decomposition due to the fact that we proved Theorem 2 and
the form of the differential (10).

Author Contributions: Both authors contributed equally to conceptualisation and writing of this article.

Funding: The research of the first author was funded by Otto Braun-Stiftung and the research of the second
author partially by the European grant H2020-FETOPEN-2016-2017-CSA SC2 (712689).

Conflicts of Interest: The authors declare no conflict of interest.

63

Mathematics 2018, 6, 161

References

1. Albert, M.; Fetzer, M.; Sáenz-de Cabezón, E.; Seiler, W. On the free resolution induced by a Pommaret basis.
J. Symb. Comp. 2015, 68, 4–26. [CrossRef]

2. Seiler, W. A Combinatorial Approach to Involution and δ-Regularity I: Involutive Bases in Polynomial
Algebras of Solvable Type. Appl. Algebr. Eng. Commun. Comput. 2009, 20, 207–259. [CrossRef]

3. Jöllenbeck, M.; Welker, V. Minimal Resolutions via Algebraic Discrete Morse Theory; Memoirs American
Mathematical Society (AMS): Providence, RI, USA, 2009; Volume 197.

4. Sköldberg, E. Morse Theory from an Algebraic Viewpoint. Trans. Am. Math. Soc. 2006, 358, 115–129.
[CrossRef]

5. Abbott, J.; Bigatti, M. COCOALIB: A C++ Library for Doing Computations in Commutative Algebra.
Available online: http://cocoa.dima.unige.it/cocoalib (accessed on 9 August 2018).

6. Albert, M.; Fetzer, M.; Seiler, W.M. Janet Bases and Resolutions in CoCoALib. In Computer Algebra in Scientific
Computing, Proceedings of the 17th International Workshop on Computer Algebra in Scientific Computing (CASC
2015), Aachen, Germany, 14–18 September 2015; Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V., Eds.;
Springer International Publishing: Cham, Switzerland, 2015; pp. 15–29.

7. Albert, M. Computing Quot Schemes. Ph.D. Thesis, Institut für Mathematik, Universität Kassel, Kassel,
Germany, 2017.

8. Albert, M.; Bertone, C.; Roggero, M.; Seiler, W.M. Computing Quot Schemes via Marked Bases over
Quasi-Stable Modules. arXiv 2018, arXiv:1511.03547v2 .

9. Albert, M.; Seiler, W. Resolving Decompositions for Polynomial Modules. In Computer Algebra in Scientific
Computing, Proceedings of the 18th International Workshop on Computer Algebra in Scientific Computing—CASC
2016, Bucharest, Romania, 19–23 September 2016; Lecture Notes in Computer Science; Gerdt, V., Koepf, W.,
Seiler, W., Vorozhtsov, E., Eds.; Springer: Cham, Switzerland, 2016; Volume 9890, pp. 13–27.

10. Sköldberg, E. Resolutions of Modules with Initially Linear Syzygies. arXiv 2011, arXiv:1106.1913.
11. Stanley, R. Hilbert Functions of Graded Algebras. Adv. Math. 1978, 28, 57–83. [CrossRef]
12. Cox, D.; Little, J.; O’Shea, D. Ideals, Varieties, and Algorithms; Undergraduate Texts in Mathematics; Springer:

New York, NY, USA, 1992.
13. Cox, D.; Little, J.; O’Shea, D. Using Algebraic Geometry; Graduate Texts in Mathematics 185; Springer:

New York, NY, USA, 1998.
14. Seiler, W. A Combinatorial Approach to Involution and δ-Regularity II: Structure Analysis of Polynomial

Modules with Pommaret Bases. Appl. Algebr. Eng. Commun. Comput. 2009, 20, 261–338. [CrossRef]
15. Given a term order ≺ on P , its term over position (TOP) lifts to a module term order ≺TOP on Pm

d is defined

as follows: let xμe
(0)
k , xνe

(0)
l ∈ Pm

d , then xμe
(0)
k �TOP xνe

(0)
l if xμ � xν or if xμ = xν and k < l.

16. Given a term order ≺ on P , its position over term (POT) lift to a module term order ≺POT on Pm
d is defined

as follows: let xμe
(0)
k , xνe

(0)
l ∈ Pm

d , then xμe
(0)
k �POT xνe

(0)
l if k < l or if k = l and xμ � xν.

17. Herzog, J. A Survey on Stanley Depth. In Monomial Ideals, Computations and Applications; Bigatti, A.,
Gimenez, P., Sáenz-de Cabezón, E., Eds.; Lecture Notes in Mathemmatics; Springer: Berlin/Heidelberg,
Germany, 2013; Volume 2083, pp. 3–45.

18. Eisenbud, D. Commutative Algebra with a View Toward Algebraic Geometry; Graduate Texts in Mathematics 150;
Springer: New York, NY, USA, 1995.

19. Gerdt, V.P.; Blinkov, Y.A. Involutive Division Generated by an Antigraded Monomial Ordering. In Computer
Algebra in Scientific Computing, Proceedings of the 13th International Workshop on Computer Algebra in
Scientific Computing (CASC 2011), Kassel, Germany, 5–9 September 2011; Gerdt, V.P., Koepf, W., Mayr, E.W.,
Vorozhtsov, E. V., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 158–174.

20. Eisenbud, D. The Geometry of Syzygies: A Second Course in Algebraic Geometry and Commutative Algebra
(Graduate Texts in Mathematics); Springer: Berlin/Heidelberg, Germany, 2005.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

64

mathematics

Article

First Integrals of the May–Leonard
Asymmetric System

Valery Antonov 1, Wilker Fernandes 2, Valery G. Romanovski 3,4,5,* and Natalie L. Shcheglova 6

1 Department of Mathematics, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29,
195251 St. Petersburg, Russia; antonovvi@mail.ru

2 Departamento de Matemática e Estatística, Universidade Federal de São João del Rei, São João del Rei,
Minas Gerais 36307-352, Brazil; wilker@ufsj.edu.br

3 Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46,
SI-2000 Maribor, Slovenia

4 Center for Applied Mathematics and Theoretical Physics, Mladinska 3, SI-2000 Maribor, Slovenia
5 Faculty of Natural Science and Mathematics, University of Maribor, Koroška cesta 160,

SI-2000 Maribor, Slovenia
6 Faculty of Mechanics and Mathematics, Belarusian State University, Nezavisimosti avenue 4,

220030 Minsk, Belarus; shcheglova@tut.by
* Correspondence: valerij.romanovskij@um.si

Received: 8 January 2019 ; Accepted: 15 March 2019; Published: 21 March 2019

Abstract: For the May–Leonard asymmetric system, which is a quadratic system of the Lotka–Volterra
type depending on six parameters, we first look for subfamilies admitting invariant algebraic surfaces
of degree two. Then for some such subfamilies we construct first integrals of the Darboux type,
identifying the systems with one first integral or with two independent first integrals.

Keywords: integrability; invariant surfaces; Lotka–Volterra system; computational algebra

1. Introduction

An important class of mathematical models describing different phenomena in biology,
ecology and chemistry are the so-called Lotka–Volterra systems, which are written in the form

ẋi = xi(
n

∑
j=1

aijxj + bi) (i = 1, . . . , n). (1)

They were introduced independently by Lotka and Volterra in the 1920s to model the interaction
among species, see [1,2], and continue being intensively investigated. For the class of systems in
Equation (1), most studies are devoted to the case n = 3. One of simplest models of such a type
describing a competition of three species was introduced by May and Leonard in [3]. It is a model
depending on two parameters and is written as the differential system

ẋ =x(1− x− αy− βz),

ẏ =y(1− βx− y− αz),

ż =z(1− αx− βy− z),

(2)

where x, y, z ≥ 0, 0 < α < 1 < β, and
α + β > 2. (3)

Mathematics 2019, 7, 292; doi:10.3390/math7030292 www.mdpi.com/journal/mathematics65

Mathematics 2019, 7, 292

It was shown in [3] that system (2) has four singular points in
R3
+ = {(x, y, z) ∈ R3, x, y, z ≥ 0}—three of them are on the boundary of R3

+ in

E1 = (1, 0, 0), E2 = (0, 1, 0), E3 = (0, 0, 1)

and the fourth one in the interior point

C = ((1 + α + β)−1, (1 + α + β)−1, (1 + α + β)−1).

There is a separatix cycle F formed by orbits connecting E1, E2 and E3 on the boundary of R3
+ and

every orbit in R3
+, except of the equilibrium point C, has F as ω-limit. It was shown in [3] that in the

degenerate case α + β = 2, the cycle F becomes a triangle on the invariant plane

x + y + z = 1,

all orbits inside the triangle are closed and every orbit in the interior of R3
+ has one of these closed

orbits as an ω-limit. Latter on, the dynamics of Equation (2) was studied in more details in [4–6] and
some other works.

A generalization of model (2) is the model described by the differential system

ẋ =x(1− x− α1y− β1z) = X(x, y, z),

ẏ =y(1− β2x− y− α2z) = Y(x, y, z),

ż =z(1− α3x− β3y− z) = Z(x, y, z),

(4)

where x, y, z ≥ 0 and αi, βi > 0 (1 ≤ i ≤ 3), which is called the asymmetric May–Leonard model.
The dynamics of Equation (4) were studied in [6–9]. In particular, Chi, Hsu and Wu [8] studied (4)
under the assumption

0 < αi < 1 < βi (1 ≤ i ≤ 3) (5)

and showed that under this assumption the system has a unique interior equilibrium P, which is
locally asymptotically stable if

A1 A2 A3 > B1B2B3,

where Ai = 1− αi, Bi = βi − 1, (1 ≤ i ≤ 3), and if

A1 A2 A3 < B1B2B3,

then P is a saddle point with a one-dimensional stable manifold. They also have shown that if
A1 A2 A3 �= B1B2B3, then the system does not have periodic solutions, and if

A1 A2 A3 = B1B2B3, (6)

then there is a family of periodic solutions. It was shown in [7] that even if assumption (5) is dropped,
the system (4) still can have a family of periodic solutions. Moreover, it was shown there, that the
periodic solutions of the system do not arise as a result of Hopf bifurcations, but their existence is due
to the Lyapunov theorem on holomorphic integrals.

First integrals of the May–Leonard system (2) were studied by Leach and Miritzis [10] (see also [11]),
who obtained the following first integrals:

(i) H1 = xyz
(x+y+z)3 if α + β = 2 and α �= 1,

(ii) H2 = y(x−z)
x(y−z) if α = β �= 1,

(iii) H3 = x/z and H4 = y/z, which are two independent first integrals, if α = β = 1.

66

Mathematics 2019, 7, 292

It was shown in [4] that system (2) is completely integrable, that is, it admits two independent
first integrals, if either α + β = 2 or β = α.

In this paper we study integrability of the asymmetric May–Leonard model (4). Using algorithms
from elimination theory, we first find systems of the form in Equation (4) admitting invariant planes
and invariant surfaces defined by the quadratic polynomials. Then we look for first integrals of the
Darboux type constructed using these invariant surfaces and find subfamilies of (4) admitting one or
two independent first integrals. As we show, the set of systems with first integrals is much larger for
system (4) than for the classical May–Leonard system (2).

2. Preliminaries

In this section we recall some general results from elimination theory and the Darboux theory of
integrability, which we shall use in our study.

Consider the system of differential equations

ẋ =P(x, y, z),

ẏ =Q(x, y, z),

ż =R(x, y, z),

(7)

where P, Q and R are polynomials of degree at most m, and let X be the corresponding vector field,

X = P
∂

∂x
+ Q

∂

∂y
+ R

∂

∂z
.

A C1 function
H : U → R

with U ⊂ R3, non-constant in any open subset of U is a first integral of the differential system
(7) if and only if XH ≡ 0 in U. Let H1 : U1 → R and H2 : U2 → R be two first integrals of the
system (7). It is said that H1 and H2 are functionally independent in U1 ∩U2 if their gradients are
independent in all the points of U1 ∩U2 except perhaps in a zero Lebesgue measure set. Equivalently,
Hi = Hi(x, y, z), i = 1, 2, are functionally independent if their Jacobian has maximal rank,

rank
∂(H1, H2)

∂(x, y, z)
= 2, (8)

in all the points of U1 ∩U2 except perhaps on a zero Lebesgue measure set. System (7) is completely
integrable in R3 if it has two independent first integrals in R3.

A Darboux polynomial of system (7) is a polynomial f (x, y, z) such that

X f =
∂ f
∂x

P +
∂ f
∂y

Q +
∂ f
∂z

R = K f , (9)

where K(x, y, z) is a polynomial of degree at most m− 1. The polynomial K(x, y, z) is called the cofactor
of f . It easy to see that if f is a Darboux polynomial of Equation (7), then the equation f = 0 defines an
algebraic surface which is invariant under the flow of system (7). For this reason, f often is referred as
an invariant algebraic surface of Equation (7).

A simple computation shows that if there are Darboux polynomials f1, f2, ..., fk with the cofactors
K1, K2, ..., Kk satisfying

k

∑
i=1

λiKi = 0, (10)

67

Mathematics 2019, 7, 292

where λ1, . . . , λk are some non-zero real numbers, then

H = f λ1
1 · · · f λk

k , (11)

is a first integral of (7). An integral of the form in Equation (11) is called a Darboux integral of system (7).
The ideas of the method go back to the works of Darboux [12,13]. Further developments of the

approach were presented in the works of Prelle and Singer [14] and Schlomiuk [15,16]. In [14], the
authors did not use the term “Darboux polynomials”, but they proposed an algorithm to find first
integrals using them. This algorithm was put in relation with the Darboux method in the work of
Schlomiuk [15,16]. See also [17,18] for more details on the method.

To find Darboux polynomials (algebraic invariant surfaces) of system (4) we will use the following
result from computational commutative algebra. Let I be an ideal in the polynomial ring k[x1, . . . , xn],
where k is a field, and � be a fixed number from the set {0, 1, . . . , n− 1}. The �-th elimination ideal of I
is the ideal

I� = I ∩ k[x�+1, . . . , xn].

According to the Elimination Theorem (see, for example, [19,20]) in order to compute (for any
0 � � � n− 1) the �-th elimination ideal I� of an ideal I in k[x1, . . . , xn], one can choose the lexicographic
term order with

x1 > x2 > · · · > xn

on the ring k[x1, . . . , xn] and compute a Gröbner basis G for the ideal I with respect to this order. Then,
by the Elimination theorem, the set

G� := G ∩ k[x�+1, . . . , xn]

is a Gröbner basis for the �-th elimination ideal I�. Geometrically, the elimination means projecting the
variety V(I) of the ideal I to the affine space kn−� corresponding to the variables x�+1, . . . , xn.

3. Darboux Polynomials of System (4)

In this section, using the Elimination Theorem, we look for Darboux polynomials of degree two
for system (4). A general form of a polynomial of degree two is

f (x, y, z) = h000 + h100x + h010y + h001z + h200x2 + h110xy

+ h101xz + h020y2 + h011yz + h002z2.
(12)

A cofactor of any Darboux polynomials of system (7) is a polynomial of degree one which we
write in the form

K(x, y, z) = c0 + c1x + c2y + c3z. (13)

Polynomial (12) will be a Darboux polynomial of system (4) with cofactor (13) if

X f = K f , (14)

where now
X f :=

∂ f
∂x

X +
∂ f
∂y

Y +
∂ f
∂z

Z,

with X, Y and Z defined in (4).
Comparing the coefficients of the monomials on both sides of (14) we obtain the

polynomial system
g1 = g2 = ... = g19 = g20 = 0,

68

Mathematics 2019, 7, 292

where
g1 = −c0h000,

g2 = −c3h000 + h001 − c0h001,

g3 = −h001 − c3h001 + 2h002 − c0h002,

g4 = −2h002 − c3h002,

g5 = −c2h000 + h010 − c0h010,

g6 = −β3h001 − c2h001 − α2h010 − c3h010 + 2h011 − c0h011,

g7 = −2β3h002 − c2h002 − h011 − α2h011 − c3h011,

g8 = −h010 − c2h010 + 2h020 − c0h020,

g9 = −2h020 − c2h020,

g10 = −h011 − β3h011 − c2h011 − 2α2h020 − c3h020,

g11 = −c1h000 + h100 − c0h100,

g12 = −α3h001 − c1h001 − β1h100 − c3h100 + 2h101 − c0h101,

g13 = −2α3h002 − c1h002 − h101 − β1h101 − c3h101,

g14 = −β2h010 − c1h010 − α1h100 − c2h100 + 2h110 − c0h110,

g15 = −2β2h020 − c1h020 − h110 − α1h110 − c2h110,

g16 = −α3h011 − β2h011 − c1h011 − α1h101 − β3h101

− c2h101 − α2h110 − β1h110 − c3h110,

g17 = −h100 − c1h100 + 2h200 − c0h200,

g18 = −2h200 − c1h200,

g19 = −h110 − β2h110 − c1h110 − 2α1h200 − c2h200,

g20 = −h101 − α3h101 − c1h101 − 2β1h200 − c3h200.

(15)

We denote by I = 〈g1, g2, ..., g19, g20〉 the ideal generated by polynomials (15). Since computations
based on the Elimination Theorem are very laborious, to simplify them we consider separately the
cases h000 = 1 and h000 = 0, that is, we look separately for invariant curves f = 0 not passing and
passing through the origin, so from now on in this section we assume that h000 = 1.

To find Darboux polynomials of system (4) of degree two, we have to determine for which
values of parameters αi, βi (i = 1, 2, 3) system (15) has a solution with at least one of coefficient
h200, h002, h011, h020, h101, h110 different from zero. To satisfy this condition we have six options that can
be written in polynomial forms as

1− wh200 = 0, 1− wh110 = 0, 1− wh101 = 0,

1− wh020 = 0, 1− wh011 = 0, 1− wh002 = 0,
(16)

respectively (where w is a new variable). For instance, to find systems of the form (4) which have
surfaces with h200 �= 0, we can compute (for example, with the routine eliminate of the computer
algebra system SINGULAR [21]) the 13th elimination ideal of the ideal I(1) = 〈I, 1− wh200〉, in the ring
Q[w, c0, c1, c2, c3, h001, h002, h010, h011, h020, h100, h101, h110, α1, β1, α2, β2, α3, β3]. Denote this elimination
ideal by I(1)13 and its variety by V1 (that is, V1 = V(I(1)13)). Proceeding analogously we find the other

five elimination ideals I(2)13 , . . . , I(6)13 corresponding to the other cases of Equation (16). Denote the

corresponding varieties V2 = V(I(2)13), . . . , V(I(6)13). It is clear that the union V = V1 ∪ ...∪V6 of these
six varieties contains the set of all systems (4) having invariant surfaces of the form (12) not passing
through the origin. To compute the irreducible decomposition of the variety V it is sufficient to
compute the ideal J = I(1)13 ∩ · · · ∩ I(6)13 , which defines the variety V = V1 ∪ ...∪V6 and then to find the
irreducible decomposition of V. The intersection of ideals can be computed with the routine intersect

69

Mathematics 2019, 7, 292

of SINGULAR, and the irreducible decomposition of V can be found with the routine minAssGTZ [22],
which is based on the algorithm of [23]. Theoretically, such computations should give all systems
in family (4) having invariant surfaces of degree two. However all the routines eliminate, intersect
and minAssGTZ rely on computations of many Gröbner bases, and such computations can be rarely
completed when computing over the field Q of rational numbers for polynomials in many variables.
To be able to complete our computations, we computed in the field of the finite characteristic 32003 and
then lifted the resulting ideals to the ring of polynomials with rational coefficients using the rational
reconstruction algorithm of [24] (a MATHEMATICA code for the algorithm can be found in [25]).

The primary decomposition of the radical of the ideal

J =
6⋂

i=1

I(i)13 (17)

computed using the routine minAssGTZ in the field of characteristic 32003 consists of 88 ideals, that is,
we have 88 irreducible components of the variety V(J) given in Appendix A. It means there are
88 conditions on the parameters αi, βi of system (4) for existence of an invariant surface of degree two
not passing through the origin.

However some of these conditions give systems with the same dynamics in the phase space,
since system (4) has a symmetry with respect to simple linear transformations. Namely, it is easily seen
that the transformations

x → z, y → x, z → y, (18)

x → y, y → z, z → x, (19)

x → y, y → x, z → z, (20)

x → z, y → y, z → z, (21)

x → x, y → z, z → y, (22)

which correspond to re-labeling of the coordinate axes, do not change the shape of the system.
For instance, under transformation (19) system (4) is changed into the system

ẋ =x(1− x− α2y− β2z),

ẏ =y(1− β3x− y− α3z),

ż =z(1− α1x− β1y− z),

(23)

which can be obtained from system (4) by the change of parameters

α1 → α3, β1 → β3, α2 → α1, β2 → β1, α3 → α2, β3 → β2. (24)

Thus, if we have a condition on the parameters of Equation (4) under which the system has an
algebraic invariant surface, another condition will be obtained by the transformation of the parameters
according to rule (24). For example, as we will see below, system (4) has the invariant surface

f = 2− 4x + 2x2 − 2y + yz

if condition (5) of Theorem 1 is fulfilled, that is, if

β3 = β1 = α3 + 1 = β2 − 3 = α2 + 1 = α1 − 1/2 = 0.

Applying to Equation (4) the transformation (19) we obtain that system (4) has the
invariant surface

f = 2− 4z + 2z2 − 2x + xy

70

Mathematics 2019, 7, 292

if the condition
β2 = β3 = α2 + 1 = β1 − 3 = α1 + 1 = α3 − 1/2 = 0

holds, that is, condition (3) is changed according to Equation (24). Similarly, after substitutions (20)–(22)
the conditions for existence of invariant surfaces are changed according to the rules

α1 → α2, β1 → β2, α2 → α3, β2 → β3, α3 → α1, β3 → β1, (25)

α1 → β2, β1 → α2, α2 → β1, β2 → α1, α3 → β3, β3 → α3, (26)

α1 → β3, β1 → α3, α2 → β2, β2 → α2, α3 → β1, β3 → α1, (27)

α1 → β1, β1 → α1, α2 → β3, β2 → α3, α3 → β2, β3 → α2, (28)

respectively.
We say, that two conditions for existence of invariant planes are conjugate if one can be obtained

from another by means of one of transformations (24), (25)–(28). For instance, condition (3) (which is
the same as condition (7) from Appendix A) and conditions (10), (19), (25), (33), (47) from Appendix A
can be obtained from each other by one of the transformations (24), (25)–(28), so all these conditions
are conjugate.

Note that some of the obtained 88 conditions give Darboux polynomials of degree two which are
not irreducible, but they are products of two polynomials of degree one. Namely, if

(i) α1 = β1 = 0 (condition 1 of the Appendix), then system (4) has the Darboux polynomial
(−1 + x)2 (and the conjugate conditions are 22 and 36 from Appendix A);

(ii) α2 = β1 = β2 + α1 − 2 = 0 (condition 5 of Appendix A), then system (4) has the Darboux
polynomial (−1 + x + z)2 (and the conjugate conditions are 44 and 78 from Appendix);

(iii) β1 + α3 − 2 = β2 + α1 − 2 = β3 + α2 − 2 = 0 (condition 88 of Appendix), then system (4) has
the Darboux polynomial (−1 + x + y + z)2.

From the analysis of the obtained 88 conditions we obtain the following result.

Theorem 1. System (4) has an irreducible invariant surface not passing through the origin if its parameters
have the values given in the following Table 1 or are conjugate to them.

Table 1. Parameter values for systems with invariant surfaces not passing through the origin.

α1 α2 α3 β1 β2 β3 Condition in Appendix A

1. 3 0 α3 0 1/2 β3 2
2. 3 0 α3 0 3 β3 4
3. 1 + α3 −1 α3 0 1− α3 0 6
4. 1/2 −1 −1 0 3 0 7
5. −1 3/2 3 0 3 0 8
6. 1 1/2 3 0 1 3 11
7. 3 −1 1/2 0 1/2 3 12
8. 1/2 3/2 3 0 3 1/2 14
9. 3 −1 −3 0 3 3 15
10. 1/2 3/2 2 0 3 1/2 16
11. 1− β3 2− β3 0 0 1 + β3 β3 17
12. α3 − 2 −1 α3 0 4− α3 3 18
13. 2− β2 3 1/2 3 β2 1/2 53
14. 1/2 3 3 3 3 1/2 54
15. 1/2 3 α3 2− α3 3 1/2 55
16. α1 3 3 3 2− α1 3 65
17. α3 − 2 3 α3 2− α3 4− α3 3 67

71

Mathematics 2019, 7, 292

Remark 1. For instance, the first row of the table means that the parameters α3 and β3 can be chosen arbitrary,
the other parameters satisfy the condition

α1 = 3, α2 = β1 = 0, β2 =
1
2

,

and this is condition 2 from Appendix A.

Proof of Theorem 1. For each case of the theorem we give below the irreducible Darboux polynomial
f of degree two which defines the invariant quadratic invariant surface f = 0 not passing through the
origin and the corresponding cofactor:

1. f = 1− x− 2y + y2; K = −x− 2y;
2. f = 1− 2x + x2 − 2y− 2xy + y2; K = −2(x + y);
3. f = 2− 2x− 2y + yz; K = −x− y;
4. f = 2− 4x + 2x2 − 2y + yz; K = −2x− y;
5. f = 2− 4x + 2x2 + 2xy− 2z + xz; K = −2x− z;
6. f = 2− 4x + 2x2 − 4y + 4xy + 2y2 − 2z + xz; K = −2x− 2y− z;
7. f = 1− x− 2y + y2 + yz; K = −x− 2y;
8. f = 2− 4x + 2x2 − 2y− 2z + xz; K = −2x− y− z;
9. f = 1− 2x + x2 − 2y− 2xy + y2 + yz; K = −2(x + y);

10. f = 1− 2x + x2 − y− z + xz; K = −2x− y− z;
11. f = 1− x− y− z + xz; K = −x− y− z;
12. f = 1− 2x + x2 − 2y + 2xy + y2 + yz; K = −2(x + y);
13. f = 1− x− y− 2z + z2; K = −x− y− 2z;
14. f = 1− 2x + x2 − y− 2z− 2xz + z2; K = −2x− y− 2z;
15. f = 1− 2x + x2 − y− 2z + 2xz + z2; K = −2x− y− 2z;
16. f = 1− 2x + x2 − 2y + 2xy + y2 − 2z− 2xz− 2yz + z2; K = −2(x + y + z);
17. f = 1− 2x + x2 − 2y + 2xy + y2 − 2z + 2xz− 2yz + z2; K = −2(x + y + z).

4. First Integrals of System (4)

In this section we look for Darboux first integrals of the system (4), which can be constructed
using the invariant surfaces obtained in the previous section.

Theorem 2. (a) If one of conditions 1–3, 11, 12, 17 of Theorem 1 holds, then the corresponding system (4)
admits at least one Darboux first integral. (b) If one of conditions 4–10, 13–16 of Theorem 1 holds, then the
corresponding system (4) is completely integrable, that is, it admits two independents Darboux first integrals.

Proof. First note that system (4) always has the following three invariant surfaces of degree one,
with the respective cofactors,

f1 = x; K1 = 1− x− α1y− β1z;

f2 = y; K2 = 1− β2x− y− α2z;

f3 = z; K3 = 1− α3x− β3y− z.

(29)

However, in most cases it is impossible to construct Darboux first integrals using just these
invariant planes and the surfaces given by Theorem 1. To find the integrals we additionally look
for invariant surfaces of the form (12) with h000 = 0 using the procedure described at the beginning
of Section 3. For each considered case we have to solve system (15) with h000 = 0 and parameters
αi, βi (i = 1, 2, 3) given by Theorem 1. Since some parameters are fixed the corresponding systems (15)
are easily solved with MATHEMATICA (no need for computations with SINGULAR now).

Case (a). To prove statement (a) of the theorem, we present the Darboux first integrals for each
case mentioned in the statement.

72

Mathematics 2019, 7, 292

If condition (1) of Theorem 1 is satisfied the system has the form

ẋ = x(1− x− 3y), ẏ = y(1− x/2− y)y, ż = z(1− α3x− β3y− z) (30)

Besides the invariant surfaces f1, f2 and f3 given above and the invariant surface

f = 1− x− 2y + y2 (31)

system (30) has the following surfaces f4, f5 (with cofactors K4, K5, respectively),

f4 = x + 4y; K4 = 1− x− y;

f5 = x + 2y− 2y2; K5 = 1− x− 2y.
(32)

From the corresponding Equation (10) we find that λ1 = λ3/2, λ2 = λ4, λ5 = −λ3 − 2λ4, λ6 = 0.
Thus, for arbitrary λ3, λ4 not both equal to zero system (30) has a Darboux first integral

H̃ = xλ4 yλ3(x + 4y)λ4
(

x− 2y2 + 2y
)−λ3−2λ4

(
−x + y2 − 2y + 1

) λ3
2 .

In particular, taking λ4 = 1 and = λ3 = 0 we have the Darboux first integral

H =
x(x + 4y)

(x + 2y− 2y2)2 .

Using the same approach we obtain the following Darboux first integrals for the remaining cases:

(2) H =
xy

(−x + x2 − y− 2xy + y2)2 ;

(3) H =
(x + y− yz)2

x2 + 2xy + y2 − 2yz
;

(11) H =
xz(1− x− y− z + xz)
(−x− y− z + 2xz)2 ;

(12) H =
yz

(−x + x2 − y + 2xy + y2 + yz)2 ;

(17) H =
yz

(−x + x2 − y + 2xy + y2 − z + 2xz− 2yz + z2)2 .

Case (b). For each system of this case we present two independent Darboux first integrals.
Case (4). Besides the invariant surface f1, f2, f3 given above and f of the previous theorem,

we have the invariant surfaces f4 = 4x + y− 2z with the cofactor K4 = 1− x − y− z. Using these
polynomials we can find the following two Darboux first integrals:

H1 =
z(2− 4x + 2x2 − 2y + yz)

(4x + y− 2z)
,

H2 =
yz
x2 .

To check if these first integrals are independent, we compute their gradients and obtain
that they are

G1 = {4(−2 + 2x + y)(1 + x− z)z
(4x + y− 2z)2 , − 2(1 + x− z)2z

(4x + y− 2z)2 ,

2(4x− 8x2 + 4x3 + y− 6xy + x2y− y2 + 4xyz + y2z− yz2)

(4x + y− 2z)2 },

G2 = { − 2yz
x3 ,

z
x2 ,

y
x2 },

73

Mathematics 2019, 7, 292

respectively. Then we verify if for the Jacobian

J = [G1, G2].

condition (8) holds. One of 2× 2 minors of the matrix J is

m1 = −2z2(x− z + 1)
(
2x2 − 2x + yz− y

)
x3(4x + y− 2z)

.

Clearly, m1 is different from zero on the neighborhood of the origin except the set of the
points where

xz(x− z + 1)(2x2 − 2x + yz− y)(4x + y− 2z)2 = 0. (33)

Since the set defined by Equation (33) has Lebesgue measure zero, the Darboux first integrals H1

and H2 are independent.
Case (5). Besides the invariant surfaces f1, f2, f3 given in Equation (29) and f of the

previous theorem, we have the following invariant surfaces passing through the origin (with the
respective cofactors):

f4 = −4xy + 2xz + z2; K4 = −2(−1 + 2x + z);

f5 = 2y + z; K5 = 1− 3x− y− z;

f6 = 2x + 2y + z; K6 = 1− x− y− z;

f7 = −2x + 2x2 + 2xy− z + xz; K7 = 1− 2x− z.

Using these polynomials we can find the following two Darboux first integrals:

H1 =
xy2

z2(2x + 2y + z)
,

H2 =
xy2

(2y + z)(−2x + 2x2 + 2xy− z + xz)2 .

The gradients of them are

G1 = { y2(2y + z)
z2(2x + 2y + z)2 ,

2xy(2x + y + z)
z2(2x + 2y + z)2 , − xy2(4x + 4y + 3z)

z3(2x + 2y + z)2 },

G2 = { − y2(−2x + 6x2 + 2xy + z + xz)
(2y + z)(−2x + 2x2 + 2xy− z + xz)3 ,

2xy(−2xy + 2x2y− 2xy2 − 2xz + 2x2z− yz + xyz− z2 + xz2)

(2y + z)2(−2x + 2x2 + 2xy− z + xz)3 ,

− xy2(−2x + 2x2 − 4y + 6xy− 3z + 3xz)
(2y + z)2(−2x + 2x2 + 2xy− z + xz)3 },

respectively. Similarly as in the previous case, computing the minors of the Jacobian we check H1 and
H2 are independent.

Using similar computations we get the following pairs of independent Darboux first integrals for
the remaining cases:

(6) H1 =
z

x(2− 4x + 2x2 − 4y + 4xy + 2y2 − 2z + xz)
,

H2 =
z(2x + 4y + z)

y2(2− 4x + 2x2 − 4y + 4xy + 2y2 − 2z + xz)
;

(7) H1 = − x2

yz(−1 + x + 2y− y2 − yz)
,

74

Mathematics 2019, 7, 292

H2 = − (x− 2z)2

z(y + z)(−1 + x + 2y− y2 − yz)
;

(8) H1 =
xz(2− 4x + 2x2 − 2y− 2z + xz)

(y + z)2 ,

H2 =
(2x + z)(y + z)2

xy2 ;

(9) H1 =
yz(1− 2x + x2 − 2y− 2xy + y2 + yz)

x2 ,

H2 =
y2z(4x− z)

x2(x2 − 2xy + y2 + yz)
;

(10) H1 = − x(y− z + xz + z2)

z(−2x + 2x2 − y− z + 2xz)
,

H2 =
y2(x + z)

z(2x− 2x2 + y + z− 2xz)(y− z + xz + z2)
;

(13) H1 =
(−x− y− 2z + 2z2)2

z2(1− x− y− 2z + z2)
,

H2 =
xz2α1−2(x + y + 4z)2−2α1

y
;

(14) H1 =
(−2x + 2x2 − y− 2z− 4xz + 2z2)2

(x− z)2(1− 2x + x2 − y− 2z− 2xz + z2)
,

H2 =
x(y + 4z)2(−2x + 2x2 − y− 2z− 4xz + 2z2)2

z(x− z)4(1− 2x + x2 − y− 2z− 2xz + z2)2 ;

(15) H1 =
y(4x + y + 4z)

(2x− 2x2 + y + 2z− 4xz− 2z2)2 ,

H2 =
x(4x + y + 4z)1−α3(−2x + 2x2 − y− 2z + 4xz + 2z2)1+α3

z(x + z)2(1− 2x + x2 − y− 2z + 2xz + z2)
;

(16) H1 =
(x + y)z

(−x + x2 − y + 2xy + y2 − z− 2xz− 2yz + z2)2 ,

H2 =
1
y4 x4z2−2α1(1− 2x + x2 − 2y + 2xy + y2 − 2z− 2xz− 2yz + z2)1−α1

(−x + x2 − y + 2xy + y2 − z− 2xz− 2yz + z2)2α1−2.

Remark 2. Note that first two equations of (30) are independent of z, they are,

ẋ = x(1− x− 3y), ẏ = y(1− x/2− y)y. (34)

Therefore we cannot construct another independent first integral H2(x, y, z) of Equation (30) using only the
planes x = 0, y = 0, z = 0 and the surfaces defined by Equations (31) and (32). Indeed, since the equations of all
surfaces of this case, except of z = 0, are independent on z, if such integral would exist, it would be independent of z,
but then two-dimensional system (34) would have two independent first integrals, which is impossible.

In case (2), similarly as in case (1), the system is separable into a two-dimensional system and a single first
order equation, and we can construct only one Darboux first integral using the found invariant surfaces.

5. Conclusions

To summarize, we have found some Darboux first integrals of the May–Leonard system (4) which
are constructed using Darboux polynomials of degree one and two. We do not know if we found
all independent first integrals of system (4) which can be constructed from Darboux polynomials
of degree one and two. To verify if the list is complete, we have to find Darboux polynomials of
Equation (4), which define invariant algebraic surfaces passing through the origin, that is, polynomials
(12) with h000 = 0. A naïve expectation is that this case should be simpler, than the case h000 = 1,

75

Mathematics 2019, 7, 292

which we have successfully investigated in this paper. However it turns out that the case h000 = 0 is
computationally much more difficult and we were not able to complete computations for this case
using our computational facilities. We believe that a reason for this difficulty is that since the origin
is a singular point there are many invariant surfaces passing through the origin and it implies a
complicated structure of the elimination ideals which we have to compute using our approach.

Author Contributions: V.A. and V.G.R. contributed for supervision, conceptualization, methodology and
prepared the final version of the paper; W.F. performed computations and wrote the initial draft of the paper,
N.L.S. developed the software and performed computations.

Funding: Valery Romanovski is supported by the Slovenian Research Agency (program P1-0306, project N1-0063).
The second, third and forth authors acknowledge also the support by a Marie Curie International Research Staff
Exchange Scheme Fellowship within the 7th European Community Framework Programme, FP7-PEOPLE-2012-
IRSES-316338.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Here we list the irreducible components of the variety of ideals in (17), which give conditions for
existence in system (4) of invariant surfaces of degree two not passing through the origin of the system:

1. α1 = β1 = 0
2. −(1/2) + β2 = α2 = β1 = −3 + α1 = 0
3. −3 + β2 = α2 = β1 = −(1/2) + α1 = 0
4. −3 + β2 = α2 = β1 = −3 + α1 = 0
5. α2 = β1 = β2 + α1 − 2 = 0
6. β3 = −1 + α3 + β2 = 1 + α2 = β1 = −1 + α1 − α3 = 0
7. β3 = 1 + α3 = −3 + β2 = 1 + α2 = β1 = −(1/2) + α1 = 0
8. β3 = −3 + α3 = −3 + β2 = −(3/2) + α2 = β1 = 1 + α1 = 0
9. −3 + β3 = −(3/2) + α3 = β2 = 1 + α2 = β1 = −3 + α1 = 0

10. −3 + β3 = 1 + α3 = β2 = −(1/2) + α2 = β1 = 1 + α1 = 0
11. −3 + β3 = −3 + α3 = −1 + β2 = −(1/2) + α2 = β1 = −1 + α1 = 0
12. −3 + β3 = −(1/2) + α3 = −(1/2) + β2 = 1 + α2 = β1 = −3 + α1 = 0
13. 1 + α3 = β2 = −2 + α2 + β3 = β1 = −1 + α1 + β3 = 0
14. −(1/2) + β3 = −3 + α3 = −3 + β2 = −(3/2) + α2 = β1 = −(1/2) + α1 = 0
15. −3 + β3 = 3 + α3 = −3 + β2 = 1 + α2 = β1 = −3 + α1 = 0
16. −(1/2) + β3 = −2 + α3 = −3 + β2 = −(3/2) + α2 = β1 = −(1/2) + α1 = 0
17. α3 = −1 + β2 − β3 = −2 + α2 + β3 = β1 = −1 + α1 + β3 = 0
18. −3 + β3 = −4 + α3 + β2 = 1 + α2 = β1 = 2 + α1 − α3 = 0
19. 1 + β3 = −3 + α3 = 1 + β2 = α2 = −(1/2) + β1 = α1 = 0
20. 1 + β3 = −1 + α3 + β2 = α2 = −2 + α3 + β1 = α1 = 0
21. −(3/2) + β3 = −3 + α3 = −3 + β2 = α2 = 1 + β1 = α1 = 0
22. α2 = β2 = 0
23. −2 + β3 = −(1/2) + α3 = −(1/2) + β2 = α2 = −(3/2) + β1 = −3 + α1 = 0
24. −3 + β3 = −(1/2) + α3 = −(1/2) + β2 = α2 = −(3/2) + β1 = −3 + α1 = 0
25. 1 + β3 = α3 = −(1/2) + β2 = α2 = 1 + β1 = −3 + α1 = 0
26. 3 + β3 = −3 + α3 = −3 + β2 = α2 = 1 + β1 = −3 + α1 = 0
27. −(1/2) + β3 = −3 + α3 = −3 + β2 = α2 = 1 + β1 = −(1/2) + α1 = 0
28. α3 = −1 + β2 − β3 = α2 = 1 + β1 = −1 + α1 + β3 = 0
29. −3 + β3 = α3 = 1 + β2 = α2 = −(3/2) + β1 = −3 + α1 = 0
30. −3 + α3 = 2 + β2 − β3 = α2 = 1 + β1 = −4 + α1 + β3 = 0
31. −3 + β3 = −3 + α3 = −1 + β2 = α2 = −(1/2) + β1 = −1 + α1 = 0
32. β3 = −1 + α3 + β2 = α2 = −2 + α3 + β1 = −1 + α1 − α3 = 0
33. β3 = −(1/2) + α3 = β2 = 1 + α2 = −3 + β1 = 1 + α1 = 0
34. β3 = β2 = 1 + α2 − α3 = −2 + α3 + β1 = 1 + α1 = 0
35. β3 = 1 + α3 = β2 = −3 + α2 = −3 + β1 = −(3/2) + α1 = 0
36. α3 = β3 = 0

76

Mathematics 2019, 7, 292

37. β3 = −(1/2) + α3 = −3 + β1 = α1 = 0
38. β3 = −(1/2) + α3 = −(1/2) + β2 = −2 + α2 = −3 + β1 = −(3/2) + α1 = 0
39. β3 = −(1/2) + α3 = −(1/2) + β2 = −3 + α2 = −3 + β1 = −(3/2) + α1 = 0
40. β3 = −3 + α3 = −(1/2) + β1 = α1 = 0
41. β3 = −3 + α3 = −3 + β1 = α1 = 0
42. β3 = −3 + α3 = −3 + β2 = −(1/2) + α2 = −(1/2) + β1 = 1 + α1 = 0
43. β3 = −3 + α3 = −3 + β2 = 3 + α2 = −3 + β1 = 1 + α1 = 0
44. α1 = β1 + α3 − 2 = β3 = 0
45. β3 = −1 + α3 = −3 + β2 = −3 + α2 = −1 + β1 = −(1/2) + α1 = 0
46. β3 = −3 + β2 = −2 + α2 − α3 = −2 + α3 + β1 = 1 + α1 = 0
47. −(1/2) + β3 = α3 = 1 + β2 = −3 + α2 = 1 + β1 = α1 = 0
48. −(1/2) + β3 = −1 + α3 = −3 + β2 = −3 + α2 = −1 + β1 = α1 = 0
49. −(1/2) + β3 = α3 = β2 = −3 + α2 = 0
50. −(1/2) + β3 = 1 + α3 = β2 = −3 + α2 = −3 + β1 = −(1/2) + α1 = 0
51. −(1/2) + β3 = α3 = −(3/2) + β2 = −3 + α2 = −2 + β1 = −(1/2) + α1 = 0
52. −(1/2) + β3 = α3 = −(3/2) + β2 = −3 + α2 = −3 + β1 = −(1/2) + α1 = 0
53. −(1/2) + β3 = −(1/2) + α3 = −3 + α2 = −3 + β1 = −2 + α1 + β2 = 0
54. −(1/2) + β3 = −3 + α3 = −3 + β2 = −3 + α2 = −3 + β1 = −(1/2) + α1 = 0
55. −(1/2) + β3 = −3 + β2 = −3 + α2 = −2 + α3 + β1 = −(1/2) + α1 = 0
56. −3 + β3 = α3 = β2 = −(1/2) + α2 = 0
57. −3 + β3 = α3 = β2 = −3 + α2 = 0
58. −3 + β3 = −(3/2) + α3 = β2 = −(1/2) + α2 = −(1/2) + β1 = −2 + α1 = 0
59. −3 + β3 = −(3/2) + α3 = β2 = −(1/2) + α2 = −(1/2) + β1 = −3 + α1 = 0
60. −3 + β3 = 1 + α3 = β2 = −3 + α2 = −3 + β1 = 3 + α1 = 0
61. −3 + β3 = α3 = 1 + β2 = −(1/2) + α2 = −(1/2) + β1 = −3 + α1 = 0
62. −3 + β3 = α3 = 1 + β2 = −3 + α2 = 3 + β1 = −3 + α1 = 0
63. −3 + β3 = −(1/2) + α3 = −(1/2) + β2 = −3 + α2 = −3 + β1 = −3 + α1 = 0
64. −3 + β3 = −3 + α3 = −(1/2) + α2 = −(1/2) + β1 = −2 + α1 + β2 = 0
65. −3 + β3 = −3 + α3 = −3 + α2 = −3 + β1 = −2 + α1 + β2 = 0
66. −3 + β3 = −3 + α3 = −3 + β2 = −(1/2) + α2 = −(1/2) + β1 = −3 + α1 = 0
67. −3 + β3 = −4 + α3 + β2 = −3 + α2 = −2 + α3 + β1 = 2 + α1 − α3 = 0
68. −3 + β3 = −(1/2) + β2 = −(1/2) + α2 = −2 + α3 + β1 = −3 + α1 = 0
69. −3 + β3 = −3 + β2 = −3 + α2 = −2 + α3 + β1 = −3 + α1 = 0
70. −3 + α3 + β3 = β2 = −2 + α2 + β3 = 1 + β1 − β3 = α1 = 0
71. α3 = 1 + β2 = −2 + α2 + β3 = 1 + β1 − β3 = α1 = 0
72. 1 + β3 = α3 = −(3/2) + β2 = −3 + α2 = −3 + β1 = α1 = 0
73. 1 + β3 = −(1/2) + α3 = −(1/2) + β2 = −3 + α2 = −3 + β1 = α1 = 0
74. −(3/2) + β3 = −3 + α3 = −2 + β2 = −(1/2) + α2 = −(1/2) + β1 = α1 = 0
75. −(3/2) + β3 = −3 + α3 = −3 + β2 = −(1/2) + α2 = −(1/2) + β1 = α1 = 0
76. 1 + β3 = −3 + α3 = 3 + β2 = −3 + α2 = −3 + β1 = α1 = 0
77. 1 + β3 = −4 + α3 + β2 = −3 + α2 = −2 + α3 + β1 = α1 = 0
78. α3 = β2 = β3 + α1 − 2 = 0
79. 1 + α3 = β2 = −2 + α2 + β3 = −3 + β1 = −4 + α1 + β3 = 0
80. −1 + β3 = −(1/2) + α3 = β2 = −1 + α2 = −3 + β1 = −3 + α1 = 0
81. −1 + β3 = α3 = −(1/2) + β2 = −1 + α2 = −3 + β1 = −3 + α1 = 0
82. −(1/2) + α3 = −(1/2) + β2 = −2 + α2 + β3 = −3 + β1 = −3 + α1 = 0
83. −3 + α3 = −3 + β2 = −2 + α2 + β3 = −(1/2) + β1 = −(1/2) + α1 = 0
84. −3 + α3 = −3 + β2 = −2 + α2 + β3 = −3 + β1 = −3 + α1 = 0
85. α3 + β3 = −3 + β2 = −2 + α2 + β3 = −2 + β1 − β3 = −3 + α1 = 0
86. α3 = 1 + β2 = −2 + α2 + β3 = −2 + β1 − β3 = −3 + α1 = 0
87. −3 + α3 = 2 + β2 − β3 = −2 + α2 + β3 = −3 + β1 = −4 + α1 + β3 = 0
88. β1 + α3 − 2 = β2 + α1 − 2 = β3 + α1 − 2 = 0.

77

Mathematics 2019, 7, 292

References

1. Lotka, A.J. Analytical note on certain rhythmic relations in organic systems. Proc. Natl. Acad. Sci. USA
1920, 6, 410–415. [CrossRef] [PubMed]

2. Volterra, V. Lecons sur la Théorie Mathématique de la Lutte pour la Vie; Gauthier-Villars: Paris, France, 1931.
3. May, R.M.; Leonard, W.J. Nonlinear aspects of competition between three species. SIAM J. Appl. Math.

1975, 29, 243–253. [CrossRef]
4. Blé, G.; Castellanos, V.; Llibre, J.; Quilantán, I. Integrability and global dynamics of the May–Leonard model.

Nonlinear Anal. Real World Appl. 2013, 14, 280–293. [CrossRef]
5. Schuster, P.; Sigmund, K.; Wolf, R. On ω-limit for competition between three species. SIAM J. Appl. Math.

1979, 37, 49–54. [CrossRef]
6. Zeeman, M.L. Hopf bifurcations in competitive three dimensional Lotka–Volterra systems. Dyn. Stab. Syst.

1993, 8, 189–216. [CrossRef]
7. Antonov, V.; Dolićanin, D.; Romanovski, V.G.; Tóth, J. Invariant planes and periodic oscillations in the

May–Leonard asymmetric model. MATCH Commun. Math. Comput. Chem. 2016, 76, 455–474.
8. Chi, C.-W.; Hsu, S.-B.; Wu, L.-I. On the asymmetric May–Leonard model of three competing species. SIAM J.

Appl. Math. 1998, 58, 211–226. [CrossRef]
9. Van der Hoff, Q.; Greeff, J.C.; Fay, T.H. Defining a stability boundary for three species competition models.

Ecol. Model. 2009, 220, 2640–2645. [CrossRef]
10. Leach, G.L.; Miritzis, J. Analytic behaviour of competition among three species. J. Nonlinear Math. Phys.

2006, 13, 535–548. [CrossRef]
11. Llibre, J.; Valls, C. Polynomial, rational and analytic first integrals for a family of 3-dimensional

Lotka–Volterra systems. Z. Angew. Math. Phys. 2011, 62, 761–777. [CrossRef]
12. Darboux, G. Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré

(Mélanges). Bull. Sci. Math. 1878, 2, 60–96, 123–144, 151–200.
13. Darboux, G. De l’emploi des solutions particulières algébriques dans l’intégration des systèmes d’équations

différentielles algébriques. C. R. Math. Acad. Sci. Paris 1878, 86, 1012–1014.
14. Prelle, M.J.; Singer, M.F. Elementary first integrals of differential equations. Trans. Am. Math. Soc.

1983, 279, 613–636. [CrossRef]
15. Schlomiuk, D. Algebraic and geometric aspects of the theory of polynomial vector fields. In Bifurcations and

Periodic Orbits of Vector Fields; Schlomiuk, D., Ed.; NATO ASI Series, Series C: Mathematical and Physical
Sciences; Kluwer Academic Publishers: New York, NY, USA, 1993; Volume 408, pp. 429–467.

16. Schlomiuk, D. Elementary first integrals and algebraic invariant curves of differential equations. Expos. Math.
1993, 11, 433–454.

17. Llibre, J. On the integrability of the differential systems in dimension two and of the polynomial differential
systems in arbitrary dimension. J. Appl. Anal. Comput. 2011, 1, 33–52.

18. Llibre, J.; Zhang, X. On the Darboux integrability of polynomial differential systems. Qual. Theory Dyn. Syst.
2012, 11, 129–144. [CrossRef]

19. Romanovski, V.G.; Shafer, D.S. The Center and Cyclicity Problems: A Computational Algebra Approach; Birkhäuser:
Boston, MA, USA, 2009.

20. Cox, D.; Little, J.; O’Shea, D. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic
Geometry and Commutative Algebra; Springer: New York, NY, USA, 1997.

21. Decker, W.; Greuel, G.-M.; Pfister, G.; Shönemann, H. SINGULAR 3-1-6—A Computer Algebra System
for Polynomial Computations. 2012. Available online: http://www.singular.uni-kl.de (accessed on
15 May 2017).

22. Decker, W.; Pfister, G.; Schönemann, H.; Laplagne, S. A SINGULAR 3.0 Library for Computing the Primary
Decomposition and Radical of Ideals. 2005. Available online: http://www.singular.uni-kl.de (accessed on
15 May 2017).

23. Gianni, P.; Trager, B.; Zacharias, G. Gröbner bases and primary decomposition of polynomials.
J. Symb. Comput. 1998, 6, 146–167. [CrossRef]

78

Mathematics 2019, 7, 292

24. Wang, P.S.; Guy, M.J.T.; Davenport, J.H. P-adic reconstruction of rational numbers. SIGSAM Bull. 1982, 16, 2–3.
[CrossRef]

25. Giné, J.; Christopher, C.; Prešern, M.; Romanovski, V.G.; Shcheglova, N.L. The resonant center problem
for a 2:−3 resonant cubic Lotka–Volterra system. In Proceedings of the 14th International Workshop on
Computer Algebra in Scientific Computing CASC 2012, Maribor, Slovenia, 3–6 September 2012; Lecture
Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7442, pp. 129–142.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

79

mathematics

Article

Dini-Type Helicoidal Hypersurfaces with Timelike
Axis in Minkowski 4-Space E4

1

Erhan Güler * and Ömer Kişi

Department of Mathematics, Faculty of Sciences, Bartın University, 74100 Bartın, Turkey; okisi@bartin.edu.tr
* Correspondence: eguler@bartin.edu.tr; Tel.: +90-378-5011000-1521

Received: 31 January 2019; Accepted: 13 February 2019; Published: 22 February 2019

Abstract: We consider Ulisse Dini-type helicoidal hypersurfaces with timelike axis in Minkowski
4-space E4

1. Calculating the Gaussian and the mean curvatures of the hypersurfaces, we demonstrate
some special symmetries for the curvatures when they are flat and minimal.

Keywords: Minkowski 4-space; Dini-type helicoidal hypersurface; Gauss map; timelike axis

1. Introduction

The concept of finite-type immersion of submanifolds of a Euclidean space has been known in
classifying and characterizing Riemannian submanifolds [1]. Chen proposed the problem of classifying
these kinds surfaces in the three-dimensional Euclidean space E3. A Euclidean submanifold is called
Chen finite-type if its coordinate functions are a finite sum of eigenfunctions of its Laplacian Δ [1].
Hence, the idea of finite-type can be enlarged to any smooth functions on a submanifold of Euclidean
or pseudo-Euclidean spaces.

Takahashi [2] obtained spheres and the minimal surfaces are the unique surfaces in E3 satisfying
the condition Δr = λr, where r is the position vector, λ ∈ R. Ferrandez, Garay and Lucas [3] showed
the surfaces of E3 providing ΔH = AH. Here H is the mean curvature and A ∈ Mat(3, 3) are either
of a right circular cylinder, or of an open piece of sphere, or minimal. Choi and Kim [4] worked the
minimal helicoid with pointwise 1-type Gauss map of the first type.

Dillen, Pas, and Verstraelen [5] studied the unique surfaces in E3 providing Δr = Ar + B,
A ∈ Mat(3, 3), B ∈ Mat(3, 1) are the spheres, the circular cylinder, the minimal surfaces. Senoussi and
Bekkar [6] obtained helicoidal surfaces in E3 by using the fundamental forms I, I I and I I I.

In classical surface geometry, it is well known a pair of the right helicoid and the catenoid is
the unique ruled and rotational surface, which is minimal. When we look at ruled (i.e., helicoid)
and rotational surfaces, we meet Bour’s theorem in [7]. By using a result of Bour [7], Do Carmo and
Dajczer [8] worked isometric helicoidal surfaces.

Lawson [9] defined the generalized Laplace-Beltrami operator. Magid, Scharlach and
Vrancken [10] studied the affine umbilical surfaces in 4-space. Vlachos [11] introduced hypersurfaces
with harmonic mean curvature in E4. Scharlach [12] gave the affine geometry of surfaces and
hypersurfaces in 4-space. Cheng and Wan [13] studied complete hypersurfaces of 4-space with CMC.
Arslan, Deszcz and Yaprak [14] obtained Weyl pseudosymmetric hypersurfaces. Arvanitoyeorgos,
Kaimakamais and Magid [15] wrote that if the mean curvature vector field of M3

1 satisfies the equation
ΔH = αH (α a constant), then M3

1 has constant mean curvature in Minkowski 4-space E4
1. This equation

is a natural generalization of the biharmonic submanifold equation ΔH = 0.
General rotational surfaces in the four-dimensional Euclidean space were originated by

Moore [16,17]. Ganchev and Milousheva [18] considered the analogue of these surfaces in E4
1.

Verstraelen, Valrave, and Yaprak [19] studied the minimal translation surfaces in En for arbitrary
dimension n. Kim and Turgay [20] studied surfaces with L1-pointwise 1-type Gauss map in E4. Moruz

Mathematics 2019, 7, 205; doi:10.3390/math7020205 www.mdpi.com/journal/mathematics80

Mathematics 2019, 7, 205

and Munteanu [21] considered hypersurfaces defined as the sum of a curve and a surface whose mean
curvature vanishes in E4.

Yoon [22] considered rotational surfaces which has a finite-type Gauss map in E4. Dursun [23]
introduced hypersurfaces of pointwise 1-type Gauss map in Minkowski space. Dursun and Turgay [24]
studied minimal, pseudo-umbilical rotational surfaces in E4. Arslan, Bulca and Milousheva [25]
focused pointwise 1-type Gauss map of meridian surfaces in E4. Aksoyak and Yaylı [26] worked
boost-invariant surfaces with pointwise 1-type Gauss map in E4

1. Also they [27] considered generalized
rotational surfaces of pointwise 1-type Gauss map in E4

2. Güler, Magid and Yaylı [28] defined helicoidal
hypersurface with the Laplace-Beltrami operator in E4. Furthermore, Güler, Hacısalihoğlu and Kim [29]
worked rotational hypersurface with the III Laplace-Beltrami operator and the Gauss map in E4.

There are few works in the literature about Italian Mathematician Ulisse Dini’s helicoidal
surface [30] in E3. Moreover, Güler and Kişi [31] introduced helicoidal hypersurfaces of Dini-type with
spacelike axis in E4

1.
In this paper, we study the Ulisse Dini-type helicoidal hypersurface with timelike axis in

Minkowski 4-space E4
1. We give some basic notions of Minkowskian geometry, and define helicoidal

hypersurface in Section 2. Moreover, we obtain the Dini-type helicoidal hypersurface timelike axis,
and calculate its curvatures in the Section 3. We obtain some special symmetries in the last section.

2. Preliminaries

In this section, we will describe the notation that will be used in the paper, after we give some
basic facts and basic definitions.

Let Em
1 be the Minkowski m-space with the Euclidean metric denoted by

g̃ = 〈 , 〉 =
m−1

∑
i=1

dx2
i − dx2

m,

where (x1, x2, . . . , xm) is a coordinate system in Em
1 .

Consider an n-dimensional Minkowskian submanifold of the space Em
1 . We denote Levi-Civita

connections of Em
1 and M by ∇̃ and ∇, respectively. We will use letters X, Y, Z, W (resp., ξ, η) to

show vector fields tangent (resp., normal) to M. The Gauss and the Weingarten formulas are defined
by as follows:

∇̃XY = ∇XY + h(X, Y),

∇̃Xξ = −Aξ(X) + DXξ,

where h, D, and A are the second fundamental form, the normal connection and the shape operator of
M, respectively.

The shape operator Aξ is a symmetric endomorphism of the tangent space Tp M at p ∈ M for each
ξ ∈ T⊥p M. The second fundamental form and the shape operator are connected by

〈h(X, Y), ξ〉 = 〈Aξ X, Y
〉

.

The Gauss and Codazzi equations are denoted, respectively, as follows:

〈R(X, Y,)Z, W〉 = 〈h(Y, Z), h(X, W)〉 − 〈h(X, Z), h(Y, W)〉, (1)

(∇̄Xh)(Y, Z) = (∇̄Yh)(X, Z). (2)

Here, R, RD are the curvature tensors related with connections ∇ and D, respectively, and ∇̄h is
defined by

(∇̄Xh)(Y, Z) = DXh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ).

81

Mathematics 2019, 7, 205

2.1. Hypersurfaces of Minkowski Space

Assume that M be an oriented hypersurface in Minkowski space En
1 , S its shape operator and

x its position vector. We think about a local orthonormal frame field {e1, e2, . . . , en} occurring of the
principal directions of M matching to the principal curvatures ki for i = 1, 2, . . . n. Let {θ1, θ2, . . . , θ} be
dual basis of this frame field. Then the first structural equation of Cartan is

dθi =
n

∑
i=1

θj ∧ωij, i = 1, 2, . . . , n.

Here, ωij demonstrates the connection forms matching to the chosen frame field. We show the
Levi-Civita connection of M and En

1 by ∇ and ∇̃, respectively. Then, from the Codazzi Equation (2)
we have

ei(kj) = ωij(ej)(ki − kj),

ωij(el)(ki − kj) = ωil(ej)(ki − kl)

for distinct i, j, l = 1, 2, . . . , n.
We take sj = σj(k1, k2, . . . , kn), where σj is the j-th elementary symmetric function given by

σj(a1, a2, . . . , an) = ∑
1≤i1<i2<...,ij≤n

ai1 ai2 . . . aij .

We also use the following notation

rj
i = σj(k1, k2, . . . , ki−1, ki+1, ki+2, . . . , kn).

By definition, we have r0
i = 1 and sn+1 = sn+2 = · · · = 0.

On the other hand, we will call the function sk as the k-th mean curvature of M. We would like to
note that functions H = 1

n s1 and K = sn are called the mean and the Gauss-Kronecker curvatures of
M, respectively. Particularly, M is called j-minimal if sj ≡ 0 on M.

2.2. Helicoidal Hypersurfaces with Timelike Axis in Minkowskian Spaces

In this subsection, we will obtain the helicoidal hypersurfaces with timelike axis in Minkowski
4-space E4

1. In the rest of this paper, we will identify a vector (a,b,c,d) with its transpose.
Before we proceed, we would like to note that the definition of rotational hypersurfaces in

Riemannian space forms were defined in [32]. A rotational hypersurface M ⊂ En
1 generated by a curve

C about an axis r does not meet C is generated by using the orbit of C under those orthogonal
transformations of En

1 which leave r pointwise fixed (See [32] remark 2.3).
A curve C rotates about the axis r, and at the same time replaces parallel lines orthogonal to the

axis r, so that the speed of replacement is proportional to the speed of rotation. Finally, the resulting
hypersurface is called the helicoidal hypersurface with axis r.

Consider the particular case n = 4 and let C be the curve parametrized by

γ(u) = (f (u) , 0, 0, ϕ(u)) ,

where f and ϕ are differentiable functions. If r is the timelike vector (0, 0, 0, 1), then an orthogonal
transformation of E4

1 that leaves r pointwise fixed has the form Z(v, w) as follows:

82

Mathematics 2019, 7, 205

Z(v, w) =

⎛⎜⎜⎜⎝
cos v cos w − sin v − cos v sin w 0
cos w sin v cos v − sin v sin w 0

sin w 0 cos w 0
0 0 0 1

⎞⎟⎟⎟⎠ ,

and the following relations hold:

ZTεZ = ZεZT = ε, ZrT= rT , det Z = 1, ε = diag (1, 1, 1,−1) ,

v, w ∈ R. Therefore, the parametrization of the rotational hypersurface obtained by a curve C around
an axis r is

H(u, v, w) = Z(v, w)γ(u)T + (av + bw) rT ,

where u ∈ I, v, w ∈ [0, 2π] and pitches a, b ∈ R\{0}.
Clearly, an helicoidal hypersurface with timelike axis written as

H(u, v, w) =

⎛⎜⎜⎜⎝
f (u) cos v cos w
f (u) sin v cos w

f (u) sin w
ϕ(u) + av + bw

⎞⎟⎟⎟⎠ . (3)

When w = 0, we have an helicoidal surface with timelike axis in E4
1.

Now we give some basic elements of the Minkowski 4-space E4
1. Let M = M(u, v, w) be an

isometric immersion of a hypersurface M3 in E4
1. Using vectors−→x = (x1, x2, x3, x4),

−→y = (y1, y2, y3, y4)

and −→z = (z1, z2, z3, z4), the Minkowskian inner product and vector product are defined by as follows,
respectively, −→x · −→y = x1y1 + x2y2 + x3y3 − x4y4,

−→x ×−→y ×−→z = (x2y3z4 − x2y4z3 − x3y2z4 + x3y4z2 + x4y2z3 − x4y3z2,
− x1y3z4 + x1y4z3 + x3y1z4 − x3z1y4 − y1x4z3 + x4y3z1,

x1y2z4 − x1y4z2 − x2y1z4 + x2z1y4 + y1x4z2 − x4y2z1,
x1y2z3 − x1y3z2 − x2y1z3 + x2y3z1 + x3y1z2 − x3y2z1).

For a hypersurface M in E4
1, the first fundamental form matrix is I =

(
gij

)
3×3

, and

det I = det
(

gij

)
, and also the second fundamental form matrix is II =

(
hij

)
3×3

, and

det II = det
(

hij

)
, where 1 ≤ i, j ≤ 3, g11 = Mu ·Mu, g12 = Mu ·Mv, ..., g33 = Mw ·Mw, and

h11 = Muu ·G, h12 = Muv · G, ..., h33 = Mww · G, and some partial differentials we represent are
Mu = ∂M

∂u , Muw = ∂2M
∂u∂w ,

G =
Mu ×Mv ×Mw

‖Mu ×Mv ×Mw‖

is the Gauss map.
(

gij

)−1 (
hij

)
gives the matrix of shape operator (i.e., Weingarten map)

S = 1
det I

(
sij

)
3×3

. Therefore, we get the Gaussian and the mean curvature formulas, respectively, as

follows:
K = det(S) =

det II

det I
, (4)

and
H =

1
3

tr (S) . (5)

83

Mathematics 2019, 7, 205

3. Dini-Type Helicoidal Hypersurface with a Timelike Axis

Taking f (u) = sin u in (3), we define Dini-type helicoidal hypersurface with a timelike axis in E4
1,

as follows:

D(u, v, w) =

⎛⎜⎜⎜⎝
sin u cos v cos w
sin u sin v cos w

sin u sin w
ϕ(u) + av + bw

⎞⎟⎟⎟⎠ , (6)

where u ∈ R\{0} and 0 ≤ v, w ≤ 2π.
Computing the first differentials of (6) depend on u, v, w, we obtain the first quantities as follows:

I =

⎛⎜⎝ cos2 u− ϕ′2 −aϕ′ −bϕ′

−aϕ′ sin2 u cos2 w− a2 −ab
−bϕ′ −ab sin2 u− b2

⎞⎟⎠ ,

and have
det I = − sin2 u

{
ϕ′2 sin2 u cos2 w +

[(
b2 − sin2 u

)
cos2 w + a2

]
cos2 u
}

,

where ϕ = ϕ(u), ϕ′ = dϕ
du .

By using the second differentials depend on u, v, w, we have the second quantities as follows:

II =

⎛⎜⎜⎜⎜⎝
− sin2 u cos w(ϕ′′ cos u+ϕ′ sin u)√

‖det I‖
a sin u cos2 u cos w√

‖det I‖
b sin u cos2 u cos w√

‖det I‖
a sin u cos2 u cos w√

‖det I‖
sin2 u cos2 w(b cos u sin w−ϕ′ sin u cos w)√

‖det I‖ − a sin2 u cos u sin w√
‖det I‖

b sin u cos2 u cos w√
‖det I‖ − a sin2 u cos u sin w√

‖det I‖ − ϕ′ sin3 u cos w√
‖det I‖

⎞⎟⎟⎟⎟⎠ ,

and we get

det II =

⎛⎜⎜⎜⎜⎜⎝
−ϕ′2 ϕ′′ sin8 u cos u cos5 w + bϕ′ϕ′′ sin7 u cos2 u sin w cos4 w

+a2 ϕ′′ sin6 u cos3 u sin2 w cos w− ϕ′3 sin9 u cos5 w
+bϕ′2 sin8 u cos u cos4 w sin w

+
(
a2 (cos2 u cos2 w + sin2 u sin2 w

)− b2 cos4 u
)

ϕ′ sin5 u cos2 u cos w
−b
(
2a2 + b2 cos2 w

)
sin4 u cos5 u sin w cos2 w

⎞⎟⎟⎟⎟⎟⎠
(det I)3/2 .

The Gauss map of a helicoidal hypersurface with a timelike axis is

eD =
1√

det I

⎛⎜⎜⎜⎝
(ϕ′ sin u cos v cos2 w− a cos u sin v− b cos u cos v sin w cos w) sin u
(ϕ′ sin u sin v cos2 w + a cos u cos v− b cos u sin v sin w cos w) sin u

(ϕ′ sin u sin w + b cos u cos w) sin u cos w
sin2 u cos u cos w

⎞⎟⎟⎟⎠ .

Finally, we have the Gaussian curvature of a helicoidal hypersurface with a timelike axis
as follows:

K =
α1 ϕ′2 ϕ′′ + α2 ϕ′ϕ′′ + α3 ϕ′′ + α4 ϕ′3 + α5 ϕ′2 + α6 ϕ′ + α7

(det I)5/2 ,

where
α1 = − sin8 u cos u cos5 w,
α2 = b sin7 u cos2 u sin w cos4 w,
α3 = a2 sin8 u cos3 u sin2 w cos w,
α4 = − sin9 u cos5 w,
α5 = b sin8 u cos u sin w cos4 w,

84

Mathematics 2019, 7, 205

α6 =
(
a2 (cos2 u cos2 w + sin2 u sin2 w

)− b2 cos4 u
)

sin5 u cos2 u cos w, :
α7 = −b(2a2 + b2 cos2 w) sin4 u cos5 u sin w cos2 w.

Then we calculate the mean curvature of a helicoidal hypersurface with a timelike axis as follows:

H =
β1 ϕ′′ + β2 ϕ′3 + β3 ϕ′2 + β4 ϕ′ + β5

3(det I)3/2 ,

where
β1 = − ((b2 − sin2 u

)
cos2 w + a2) sin4 u cos u cos w,

β2 = −2 sin5 u cos3 w,
β3 = −b sin4 u cos u sin w cos2 w,
β4 = −

(((
b2 + cos2 u

)2 − 1
)

cos2 w + a2 (2 cos2 u + 1
))

sin3 u cos w,

β5 = b(
(
b2 − sin2 u

)
cos2 w + 2a2) sin2 u cos3 u sin w.

Therefore, we get the following theorems about flatness and minimality of the hypersurface.

Theorem 1. Let D : M3 −→ E4
1 be an isometric immersion given by (6). Then M3 is flat if and only if

α1 ϕ′2 ϕ′′ + α2 ϕ′ϕ′′ + α3 ϕ′′ + α4 ϕ′3 + α5 ϕ′2 + α6 ϕ′ + α7 = 0. (7)

Theorem 2. Let D : M3 −→ E4
1 be an isometric immersion given by (6). Then M3 is minimal if and only if

β1 ϕ′′ + β2 ϕ′3 + β3 ϕ′2 + β4 ϕ′ + β5 = 0. (8)

Solving these two equations is an attractive problem.
In the next two propositions, we will use the function

ϕ(u) = cos u + log
(

tan
u
2

)
(9)

as in Dini helicoidal surface used by Ulisse Dini in Euclidean 3-space, and its following derivatives

ϕ′(u) =
tan2 u

2 − 2 sin u tan u
2 + 1

2 tan u
2

(10)

and

ϕ′′(u) =
tan4 u

2 − 4 cos u tan2 u
2 − 1

4 tan2 u
2

. (11)

Proposition 1. Let D is Dini-type flat hypersurface with a timelike axis (i.e. K = 0) in Minkowski 4-space.
Using the function (9) and its derivatives (10), (11) and substituting them into the (7) in Theorem 1, we obtain

8

∑
i=0

Ai tani
(u

2

)
= 0,

where
A8 = α1,
A7 = −4α1 sin u + 2α2 + 2α4,
A6 =
(
2 + 4 sin2 u− 4 cos u

)
α1 − 4α2 sin u + 4α3 − 12α4 sin u + 4α5u,

A5 = (16 cos u− 4) α1 sin u + (−8 cos u + 2) α2 +
(
24 sin2 u + 6

)
α4 − 16α5 sin u + 8α6,

A4 =
(−16 sin2 u− 8

)
α1 cos u + 16α2 cos u sin u− 16α3 cos u

+
(−16 sin2 u− 24

)
α4 sin u +

(
16 sin2 u + 8

)
α5 − 16α6 sin u + 16α7

A3 = (16 cos u + 4) α1 sin u + (−8 cos u− 2) α2 +
(
24 sin2 u + 6

)
α4 − 16α5 sin u + 8α6,

85

Mathematics 2019, 7, 205

A2 =
(−2− 4 sin2 u− 4 cos u

)
α1 + 4α2 sin u− 4α3 − 12α4 sin u + 4α5,

A1 = 4α1 sin u− 2α2 + 2α4,
A0 = −α1.

Proposition 2. Let D is Dini-type minimal helicoidal hypersurface with a timelike axis (i.e., H = 0) in
Minkowski 4-space. Using the function (9) and its derivatives (10), (11) and substituting them into the (8) in
Theorem 2, we get

6

∑
i=0

Bi tani
(u

2

)
= 0,

where
B6 = β2,
B5 = 2β1 − 6β2 sin u + 2β3,
B4 =
(
3 + 12 sin2 u

)
β2 − 8β3 sin u + 4β4,

B3 = −8β1 cos u− (12 sin u + 8 sin3 u
)

β2 +
(
4 + 8 sin2 u

)
β3 − 8β4 sin u + 8β5,

B2 =
(
3 + 12 sin2 u

)
β2 − 8β3 sin u + 4β4,

B1 = −2β1 − 6β2 sin u + 2β3,
B0 = β2.

Corollary 1. From the Proposition 1, and the Proposition 2, we obtain following special symmetries of D, respectively,

A8 ∼ A0, A7 ∼ A1, A6 ∼ A2, A5 ∼ A3,

and
B6 = B0, B5 ∼ B1, B4 = B2,

where “∼” means the αi (i = 1, 2, ..., 7) and β j (j = 1, 2, ..., 5) term coefficients which ignored signs, respectively,
are equal.

Author Contributions: E.G. considered the idea for Dini type helicoidal hypersurface with timelike axis in the
four dimensional Minkowski space. Then E.G. and Ö.K. checked and polished the draft.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare that there is no conflict of interests regarding the publication of
this paper.

References

1. Chen, B.Y. Total Mean Curvature and Submanifolds of Finite Type; World Scientific: Singapore, 1984.
2. Takahashi, T. Minimal immersions of Riemannian manifolds. J. Math. Soc. Japan 1966, 18, 380–385. [CrossRef]
3. Ferrandez, A.; Garay, O.J.; Lucas, P. On a certain class of conformally at Euclidean hypersurfaces. In Global

Analysis and Global Differential Geometry; Springer: Berlin, Germany, 1990; pp. 48–54.
4. Choi, M.; Kim, Y.H. Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map.

Bull. Korean Math. Soc. 2001, 38, 753–761.
5. Dillen, F.; Pas, J.; Verstraelen, L. On surfaces of finite type in Euclidean 3-space. Kodai Math. J. 1990, 13, 10–21.

[CrossRef]
6. Senoussi, B.; Bekkar, M. Helicoidal surfaces with ΔJr = Ar in 3-dimensional Euclidean space. Stud. Univ.

Babeş-Bolyai Math. 2015, 60, 437–448.
7. Bour, E. Theorie de la deformation des surfaces. J. Ecole Imp. Polytech. 1862, 22, 1–148.
8. Do Carmo, M.; Dajczer, M. Helicoidal surfaces with constant mean curvature. Tohoku Math. J. 1982, 34, 351–367.

[CrossRef]
9. Lawson, H.B. Lectures on Minimal Submanifolds, 2nd ed.; Mathematics Lecture Series 9; Publish or Perish, Inc.:

Wilmington, DE, USA, 1980.

86

Mathematics 2019, 7, 205

10. Magid, M.; Scharlach, C.; Vrancken, L. Affine umbilical surfaces in R4. Manuscr. Math. 1995, 88, 275–289.
[CrossRef]

11. Vlachos, T. Hypersurfaces in E4 with harmonic mean curvature vector field. Math. Nachr. 1995, 172, 145–169.
12. Scharlach, C. Affine geometry of surfaces and hypersurfaces in R4. In Symposium on the Differential Geometry

of Submanifolds; Dillen, F., Simon, U., Vrancken, L., Eds.; University Valenciennes: Valenciennes, France, 2007;
Volume 124, pp. 251–256.

13. Cheng, Q.M.; Wan, Q.R. Complete hypersurfaces of R4 with constant mean curvature. Monatsh. Math. 1994,
118, 171–204. [CrossRef]

14. Arslan, K.; Deszcz, R.; Yaprak, Ş. On Weyl pseudosymmetric hypersurfaces. Colloq. Math. 1997, 72, 353–361.
[CrossRef]

15. Arvanitoyeorgos, A.; Kaimakamis, G.; Magid, M. Lorentz hypersurfaces in E4
1 satisfying ΔH = αH. Ill. J. Math.

2009, 53, 581–590.
16. Moore, C. Surfaces of rotation in a space of four dimensions. Ann. Math. 1919, 21, 81–93. [CrossRef]
17. Moore, C. Rotation surfaces of constant curvature in space of four dimensions. Bull. Am. Math. Soc. 1920, 26,

454–460. [CrossRef]
18. Ganchev, G.; Milousheva, V. General rotational surfaces in the 4-dimensional Minkowski space. Turk. J. Math.

2014, 38, 883–895. [CrossRef]
19. Verstraelen, L.; Valrave, J.; Yaprak, Ş. The minimal translation surfaces in Euclidean space. Soochow J. Math.

1994, 20, 77–82.
20. Kim, Y.H.; Turgay, N.C. Surfaces in E4 with L1-pointwise 1-type Gauss map. Bull. Korean Math. Soc. 2013, 50,

935–949. [CrossRef]
21. Moruz, M.; Munteanu, M.I. Minimal translation hypersurfaces in E4. J. Math. Anal. Appl. 2016, 439, 798–812.

[CrossRef]
22. Yoon, D.W. Rotation Surfaces with finite type Gauss map in E4. Indian J. Pure Appl. Math. 2001, 32, 1803–1808.
23. Dursun, U. Hypersurfaces with pointwise 1-type Gauss map in Lorentz-Minkowski space. Proc. Est. Acad. Sci.

2009, 58, 146–161. [CrossRef]
24. Dursun, U.; Turgay, N.C. Minimal and pseudo-umbilical rotational surfaces in Euclidean space E4. Mediterr.

J. Math. 2013, 10, 497–506. [CrossRef]
25. Arslan, K.; Bulca, B.; Milousheva, V. Meridian surfaces in E4 with pointwise 1-type Gauss map. Bull. Korean

Math. Soc. 2014, 51, 911–922. [CrossRef]
26. Aksoyak, F.; Yaylı, Y. Boost invariant surfaces with pointwise 1-type Gauss map in Minkowski 4-Space E4

1.
Bull. Korean Math. Soc. 2014, 51, 1863–1874. [CrossRef]

27. Aksoyak, F.; Yaylı, Y. General rotational surfaces with pointwise 1-type Gauss map in pseudo-Euclidean
space E4

2. Indian J. Pure Appl. Math. 2015, 46, 107–118. [CrossRef]
28. Güler, E.; Magid, M.; Yaylı, Y. Laplace Beltrami operator of a helicoidal hypersurface in four space. J. Geom.

Symmetry Phys. 2016, 41, 77–95. [CrossRef]
29. Güler, E.; Hacısalihoğlu, H.H.; Kim, Y.H. The Gauss map and the third Laplace-Beltrami operator of the

rotational hypersurface in 4-space. Symmetry 2018, 10, 398. [CrossRef]
30. Dini, U. Sopra le funzioni di una variabile complessa. Annali di Matematica Pura ed Applicata 1871, 4, 159–174.

[CrossRef]
31. Güler, E.; Kişi, Ö. Helicoidal Hypersurfaces of Dini-Type in the Four Dimensional Minkowski Space.

In Proceedings of the International Conference on Analysis and Its Applications (ICAA-2018), Kırşehir,
Türkiye, 11–14 September 2018; pp. 13–18.

32. Do Carmo, M.; Dajczer, M. Rotation Hypersurfaces in Spaces of Constant Curvature. Trans. Am. Math. Soc.
1983, 277, 685–709. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

87

mathematics

Article

Implicit Equations of the Henneberg-Type Minimal
Surface in the Four-Dimensional Euclidean Space

Erhan Güler 1,*, Ömer Kişi 1 and Christos Konaxis 2

1 Department of Mathematics, Faculty of Sciences, Bartın University, 74100 Bartın, Turkey; okisi@bartin.edu.tr
2 Department of Informatics and Telecommunications, National and Kapodistrian University of Athens,

15784 Athens, Greece; ckonaxis@di.uoa.gr
* Correspondence: eguler@bartin.edu.tr; Tel.: +90-378-5011000-1521

Received: 18 October 2018; Accepted: 22 November 2018; Published: 25 November 2018

Abstract: Considering the Weierstrass data as (ψ, f , g) = (2, 1 − z−m, zn), we introduce a
two-parameter family of Henneberg-type minimal surface that we call Hm,n for positive integers
(m, n) by using the Weierstrass representation in the four-dimensional Euclidean space E4. We define
Hm,n in (r, θ) coordinates for positive integers (m, n) with m �= 1, n �= −1,−m + n �= −1, and also in
(u, v) coordinates, and then we obtain implicit algebraic equations of the Henneberg-type minimal
surface of values (4, 2).

Keywords: Henneberg-type minimal surface; Weierstrass representation; four-dimensional space;
implicit equation; degree

1. Introduction

The theory of surfaces has an important role in mathematics, physics, biology, architecture, see e.g.,
the classical books [1,2] and papers [3–9].

A minimal surface in the three-dimensional Euclidean space E3, also in higher dimensions, is a
regular surface for which the mean curvature vanishes identically. See [10–27] for details. On the other
hand, a Henneberg surface [4–6], also obtained by the Weierstrass representation [8,9] is well-known
classical minimal surface in E3.

In the four-dimensional Euclidean space E4, a general definition of rotation surfaces was given by
Moore in [28] as follows

X(u, t) =

⎛⎜⎜⎜⎝
x1(u) cos(at)− x2(u) sin(at)
x1(u) cos(at) + x2(u) sin(at)
x3(u) cos(bt)− x4(u) sin(bt)
x3(u) cos(bt) + x4(u) sin(bt)

⎞⎟⎟⎟⎠ .

A more restricted case can be found in [29]:

W(u, t) = (x1(u), x2(u), r(u) cos(t), r(u) sin(t)).

It is a bit too general since the curve is not located in any subspace before rotation.
Güler and Kişi [30] studied the Weierstrass representation, the degree and the classes of surfaces

in E4, see [31–38] for some previous work.
In this paper, we study a two-parameter family of Henneberg-type minimal surfaces using the

Weierstrass representation in E4. We give the Weierstrass equations for a minimal surface in E4,
and obtain two normals of the surface in Section 2.

In Section 3, we introduce complex form of the Henneberg-type minimal surface in 4-dimension,
considering 3-dimension case. Then we define Henneberg-type minimal surface in the polar

Mathematics 2018, 6, 279; doi:10.3390/math6120279 www.mdpi.com/journal/mathematics88

Mathematics 2018, 6, 279

coordinates using real part for values (m, n) called Hm,n, where m and n are positive integers with
m �= 1, n �= −1, −m + n �= −1. We also focus on Henneberg-type minimal surface H4,2 using the
Weierstrass representation in E4, and give explicit parametrizations for minimal Henneberg-type
surface of values (4, 2).

Finally, we describe how we obtained the implicit algebraic equation of the Henneberg-type
surface H4,2, by using elimination techniques based on Groebner Basis in the software package Maple
in Section 4.

2. Weierstrass Equations for a Minimal Surface in E4

We identify −→x and
−→
xt without further comment. Let E4 =

({−→x = (x1, x2, x3, x4)
t|xi ∈ R}, 〈·, ·〉)

be the 4-dimensional Euclidean space with metric 〈x, y〉 = x1y1 + x2y2 + x3y3 + x4y4.
Hoffman and Osserman [12] gave the Weierstrass equations for a minimal surface in E4:

Φ(z) =
ψ

2
[1 + f g, i(1− f g), f − g,−i(f + g)] . (1)

Here, ψ is analytic and the order of the zeros of ψ must be greater than the order of the poles of
f , g at each point.

Xx − iXy = Φ(z)

= [(1 + f1g1 − f2g2)x− (f2g1 + f1g2)y,

(f2g1 + f1g2) x− y + f1g1y− f2g2y,

(f1 − g1) x + (− f2 + g2)y, (f2 + g2) x + (f1 + g1)y]

−i[−y− f1(g2x + g1y) + f2(−g1x + g2y),

(−1 + f1g1 − f2g2)x− (f2g1 + f1g2)y,

+(− f2 + g2)x + (− f1 + g1)y,

(f1 + g1) x− (f2 + g2)y],

where ψ = 2z and f = f1 + i f2, g = g1 + ig2. We set

w1 = [−(f2g1x + f1g2x− y + f1g1y− f2g2y),

(1 + f1g1 − f2g2)x− (f2g1 + f1g2)y,

−((f2 + g2) x + (f1 + g1)y),

(f1 − g1) x + (− f2 + g2)y]

which is perpendicular to Xx, and

w2 = [−((−1 + f1g1 − f2g2)x− (f2g1 + f1g2)y),

−y− f1(g2x + g1y) + f2(−g1x + g2y),

−(f1x + g1x− (f2 + g2)y),

− f2x + g2x + (− f1 + g1)y]

which is perpendicular to Xy.
So far, we see that:

b = 〈Xx, w2〉
= −(−1 + f 2

1 + f 2
2)(1 + g2

1 + g2
2)(x2 + y2)

= −〈Xy, w1〉,

while

89

Mathematics 2018, 6, 279

a = 〈Xx, Xx〉
= 〈Xy, Xy〉
=
(

1 + f 2
1 + f 2

2

)
(1 + g2

1 + g2
2)(x2 + y2)

= 〈wj, wj〉.

Next, we use Gram-Schmidt to find an orthonormal basis for the normal space. Let e1 = Xx/
√

a
and e2 = Xy/

√
a.

Then we get

n1 =

√
a

a2 − b2

(
w1 +

b
a

Xy

)
(2)

and

n2 =

√
a

a2 − b2

(
w2 − b

a
Xx

)
, (3)

where

a2 − b2 = 4
(

f 2
1 + f 2

2

) (
x2 + y2

)2 (
g2

1 + g2
2 + 1
)2

,√
a

a2 − b2 =

√
1 + f 2

1 + f 2
2

4
(

f 2
1 + f 2

2
)
(x2 + y2)

(
g2

1 + g2
2 + 1
) ,

b
a

= −−1 + f 2
1 + f 2

2
1 + f 2

1 + f 2
2

,

w1 =

⎛⎜⎜⎜⎝
− (f1g2 + f2g1) x− (−1 + f1g1 − f2g2) y

(1 + f1g1 − f2g2)x− (f2g1 + f1g2)y
− (f2 + g2) x− (f1 + g1)y
(f1 − g1) x + (− f2 + g2)y

⎞⎟⎟⎟⎠ ,

w2 =

⎛⎜⎜⎜⎝
−((−1 + f1g1 − f2g2)x− (f2g1 + f1g2)y)
−y− f1(g2x + g1y) + f2(−g1x + g2y)

−(f1x + g1x− (f2 + g2)y)
− f2x + g2x + (− f1 + g1)y

⎞⎟⎟⎟⎠ ,

Xx =

⎛⎜⎜⎜⎝
(1 + f1g1 − f2g2)x− (f2g1 + f1g2)y
f2g1x + f1g2x− y + f1g1y− f2g2y

f1x− g1x + (− f2 + g2)y
f2x + g2x + (f1 + g1)y

⎞⎟⎟⎟⎠ ,

Xy =

⎛⎜⎜⎜⎝
− (f1g2 + f2g1) x + (−1− f1g1 + f2g2) y
(−1 + f1g1 − f2g2)x− (f2g1 + f1g2)y

(− f2 + g2) x + (− f1 + g1)y
(f1 + g1) x− (f2 + g2)y

⎞⎟⎟⎟⎠ .

With x = r cos(θ), y = r sin(θ), f1 = 1 − r−m cos(mθ), f2 = −r−m sin(mθ), g1 = rn cos(nθ),
g2 = rn sin(nθ) we have the following two normals:

n1(r, θ) = A

⎛⎜⎜⎜⎝
B sin (θ)− r2mrn sin ((n + 1) θ) + rmrn sin ((m + n + 1) θ)

B cos (θ) + r2mrn cos ((n + 1) θ)− rmrn cos ((m + n + 1) θ)

−r2m sin (θ) + rm sin ((m + 1) θ)− Brn sin ((n + 1) θ)

r2m cos (θ)− rm cos ((m + 1) θ)− Brn cos ((n + 1) θ)

⎞⎟⎟⎟⎠ , (4)

90

Mathematics 2018, 6, 279

and

n2(r, θ) = A

⎛⎜⎜⎜⎝
B cos (θ)− r2mrn cos ((n + 1) θ) + rmrn cos ((m + n + 1) θ)

−B sin (θ)− r2mrn sin ((n + 1) θ) + rmrn sin ((m + n + 1) θ)

−r2m cos (θ) + rm cos ((m + 1) θ)− Brn cos ((n + 1) θ)

−r2m sin (θ) + rm sin ((m + 1) θ) + Brn sin ((n + 1) θ)

⎞⎟⎟⎟⎠ , (5)

where A =
[
B
(
r2n + 1
) (

2r2m − 2rm cos (mθ) + 1
)]−1/2 , B = r2m − 2rm cos (mθ) + 1.

When we check inner products of n1 and n2 with themselves, we get

〈n1, n1〉 = 〈n2, n2〉
= A2

(
r2n + 1
) (

r2m + r4m − 2r3m cos (mθ) + B2
)

= 1.

3. Henneberg Family of Surfaces Hm,n

In 3-space, the Weierstrass data of the Henneberg surface is known as (f , g) = (1− 1/z4, z).
In 4-space, we consider general case of it and choose ψ = 2, f = 1− 1/zm and g = zn in (1). This gives

Φ(z) =
(
1 + zn − zn−m, i(1− zn + zn−m), 1− z−m − zn,−i(1− z−m + zn)

)
. (6)

We integrate (6) to get complex form of the family of Henneberg-type minimal surface:

∫
Φ(z)dz =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z +
zn+1

n + 1
− z−m+n+1

−m + n + 1

i
(

z− zn+1

n + 1
+

z−m+n+1

−m + n + 1

)
z− z−m+1

−m + 1
− zn+1

n + 1

−i
(

z− z−m+1

−m+1 +
zn+1

n + 1

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7)

with m �= 1, n �= −1,−m + n �= −1. Therefore, we get following definition:

Definition 1. Taking the real part of the (7), with z = reiθ , we obtain family of Henneberg-type minimal
surface Hm,n as follows

Hm,n(r, θ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r cos(θ) +
rn+1 cos((n + 1)θ)

n + 1
− r−m+n+1 cos((−m + n + 1)θ)

−m + n + 1

−r sin(θ) +
rn+1 sin((n + 1)θ)

n + 1
− r−m+n+1 sin((−m + n + 1)θ)

−m + n + 1

r cos(θ)− r−m+1 cos((−m + 1)θ)
−m + 1

− rn+1 cos((n + 1)θ)
n + 1

r sin(θ)− r−m+1 sin((−m + 1)θ)
−m + 1

+
rn+1 sin((n + 1)θ)

n + 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (8)

where m �= 1, n �= −1,−m + n �= −1.

Algebraic Henneberg-Type Minimal Surface H4,2

Next, we choose (ψ, f , g) = (2, 1− 1/z4, z2) in (1). This means (m, n) = (4, 2). Hence, we can define
Henneberg-type surface H4,2 in (r, θ) and (u, v) coordinates in the four-dimensional Euclidean space.

91

Mathematics 2018, 6, 279

Definition 2. In (r, θ) coordinates, taking m = 4, n = 2 in (8), we have Henneberg-type minimal surface
as follows:

H4,2(r, θ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r3 cos(3θ)

3
+ r cos(θ) +

cos(θ)
r

r3 sin(3θ)

3
− r sin(θ)− sin(θ)

r

− r3 cos(3θ)

3
+ r cos(θ) +

cos(3θ)

3r3

r3 sin(3θ)

3
+ r sin(θ)− sin(3θ)

3r3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝
x(r, θ)

y(r, θ)

z(r, θ)

w(r, θ)

⎞⎟⎟⎟⎠ . (9)

With the help of following equalities

r3 cos(3θ)

3
=

1
3

r3 cos3 θ − r3 cos θ sin2 θ,

r3 sin(3θ)

3
= −1

3
r3 sin3 θ + r3 cos2 θ sin θ,

cos(3θ)

3r3 =
1

3r3 cos3 θ − 1
r3 cos θ sin2 θ,

sin(3θ)

3r3 = − 1
3r3 sin3 θ +

1
r3 cos2 θ sin θ,

and substituting
cos(θ)

r
=

u
u2 + v2 ,

sin(θ)
r

=
v

u2 + v2 ,

into (9), we have following definition:

Definition 3. Henneberg-type minimal surface in (u, v) coordinates is defined by as follows:

H4,2(u, v) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
3

u3 − uv2 + u +
u

u2 + v2

−1
3

v3 + u2v− v− v
u2 + v2

−1
3

u3 + uv2 + u +
1
3

u3

(u2 + v2)
3 −

uv2

(u2 + v2)
3

−1
3

v3 + u2v + v +
1
3

v3

(u2 + v2)
3 −

u2v

(u2 + v2)
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝
x(u, v)
y(u, v)
z(u, v)
w(u, v)

⎞⎟⎟⎟⎠ , (10)

where u := r cos θ, v := r sin θ.

Next, we see algebraic surface and its degree:

Definition 4. With R4 = {(x, y, z, w) | x, y, z, w ∈ R}, the set of roots of a polynomial f (x, y, z, w) = 0
gives an algebraic surface. An algebraic surface is said to be of degree n, when n = deg(f).

On the other hand, we meet following lemma about an algebraic minimal surface and an algebraic
curve, obtained by Henneberg:

92

Mathematics 2018, 6, 279

Lemma 1. (Henneberg [5,7]) A plane intersects an algebraic minimal surface in an algebraic curve.

See also [16] for details.
Considering the above definition and lemma in 4-space, we obtain the following corollaries for

the algebraic curves within the Henneberg-type minimal surface H4,2(u, v) in (10):

Corollary 1. The implicit equation of the curve

H4,2(u, 0) = γ4,2(u) =

⎛⎜⎜⎜⎜⎜⎝
1
3

u3 + u +
1
u

0

−1
3

u3 + u +
1

3u3

0

⎞⎟⎟⎟⎟⎟⎠
on the xz-plane, obtained by eliminating u and v, is as follows (see Figure 1a)

γ4,2(x, z) = −729x6 + 6561x5z− 19683x4z2 + 19683x3z3 + 1458x5 − 10935x4z

+26244x3z2 − 19683x2z3 + 9720x4 − 32076x3z + 65610x2z2 + 6561xz3

−59049z4 − 14040x3 + 36936x2z− 49572xz2 − 729z3 − 38772x2

+72576xz− 116154z2 + 29016x− 27000z + 83240.

Its degree is deg(γ4,2(x, z)) = 6. Hence, the xz-plane intersects the algebraic minimal surface H4,2(u, v)
in an algebraic curve γ4,2(u).

Corollary 2. The implicit equation of the curve

H4,2(0, v) = γ4,2(v) =

⎛⎜⎜⎜⎜⎜⎝
0

−1
3

v3 − v− 1
v

0

−1
3

v3 + v +
1

3v3

⎞⎟⎟⎟⎟⎟⎠
on the yw-plane, obtained by eliminating u and v, is as follows (see Figure 1b)

γ4,2(y, w) = 729w3y3 − 2187w2y4 + 2187wy5 − 729y6 + 2187w4

−8748w3y + 12636w2y2 − 3402wy3 + 14823y4

+13365w2 + 25623wy− 41175y2 + 39601,

and we see that its degree is deg(γ4,2(y, w)) = 6. Therefore, the yw-plane intersects the algebraic minimal
surface H4,2(u, v) in an algebraic curve γ4,2(v).

93

Mathematics 2018, 6, 279

(a) (b)

Figure 1. Henneberg algebraic curves. (a): γ4,2(x, z) = 0; (b): γ4,2(y, w) = 0.

Next, we will focus on the implicit equation of the algebraic surface H4,2(x, y, z, w) and on the
degree of the Henneberg-type surface H4,2(u, v).

By eliminating u and v of H4,2(u, v) using Groebner Basis in the Maple software package
(see Section 4), we obtain the irreducible implicit equations of H4,2 (x, y, z, w) = 0 in the cartesian
coordinates x, y, z, w. The degrees of the 125 implicit equations vary from 12 to 15. Next, we show only
the leading term of one of the degree 15 implicit equations:

H4,2(x, y, z, w) = −200357529114010966392986849696173135384400160212306238814

6921798341947018263352974811247016293579407850833661779885

3866925524317171303746574348380455005752233355972467214402

70054850560 xy2zw11 + 729 other lower degree terms.

Since deg (H4,2) = 15, we have that H4,2(x, y, z, w) = 0 is an implicit algebraic Henneberg-type
minimal surface in 4-space.

4. Maple Codes and Figures for Algebraic Henneberg Surface in E4

To compute the implicit equation of the Henneberg surface in E4 we have tried a series of
standard techniques in elimination theory: projective (Macaulay) and sparse multivariate resultants
implemented in the Maple package multires (The package can be found at http://www-sop.
inria.fr/galaad/software/multires/multires), Maple’s native implicitization command Implicitize,
and implicitization based on Maples’ native implementation of Groebner Basis. For the latter we
implemented in Maple the method in [39] (Chapter 3, p. 128).

All the above methods failed to give the implicit equations in reasonable time. In particular, for the
resultant methods, the bottleneck was the computation of the determinant of the huge resultant matrix.

The final and successful method we have tried was to compute the equations defining the
elimination ideal using the Groebner Basis package FGb [40]. The package can be found at:
https://www-polsys.lip6.fr/~jcf/FGb/index.html.

The time required to output the 125 polynomials defining the elimination ideal was under 20 s.
See Figures 2 and 3 for the projections in R3 of the surface defined by one of these polynomials.

94

Mathematics 2018, 6, 279

(a) (b)

Figure 2. Projection in R3 of a Henneberg algebraic surface. (a): H4,2(x, y, z) = 0; (b): H4,2(x, y, w) = 0.

(a) (b)

Figure 3. Projection in R3 of a Henneberg algebraic surface. (a): H4,2(x, z, w) = 0; (b): H4,2(y, z, w) = 0.

Author Contributions: E.G. gave the idea for Henneberg type minimal surface in 4-space. Then E.G., Ö.K. and
C.K. checked and polished the draft.

Funding: This research received no external funding.

Conflicts of Interest: The author declares that there is no conflict of interests regarding the publication of
this paper.

References

1. Darboux, G. Lecons sur la Theorie Generate des Surfaces III; Gauthier-Villars: Paris, France, 1894.
2. Eisenhart, L.P. A Treatise on the Differential Geometry of Curves and Surfaces; Dover Publications:

New York, NY, USA, 1909.
3. Bour, E. Théorie de la déformation des surfaces. J. l’Êcole Polytech. 1862, 22, 1–148.
4. Henneberg, L. Über Salche Minimalfläche, Welche Eine Vorgeschriebene Ebene Curve sur Geodätishen Line

Haben. Ph.D. Thesis, Eidgenössisches Polythechikum, Zürich, Switzerland, 1875.
5. Henneberg, L. Über diejenige minimalfläche, welche die Neilsche Parabel zur ebenen geodätischen Linie hat.

Wolf Z. 1876, XXI, 17–21.
6. Henneberg, L. Über die Evoluten der ebenen algebraischen Curven. Wolf Z. 1876, 21, 71–72.

95

Mathematics 2018, 6, 279

7. Henneberg, L. Bestimmung der niedrigsten classenzahl der algebraischen minimalflachen. Ann. Mat.
Pura Appl. 1878, 9, 54–57. [CrossRef]

8. Weierstrass, K. Untersuchungen über die flächen, deren mittlere Krümmung überall gleich null ist.
Preuss Akad. Wiss. 1866, III, 219–220.

9. Weierstrass, K. Mathematische Werke; Mayer & Muller: Berlin, Germany, 1903; Volume 3.
10. Takahashi, T. Minimal immersions of Riemannian manifolds. J. Math. Soc. Jpn. 1966, 18, 380–385. [CrossRef]
11. Osserman, R. A Survey of Minimal Surfaces; Van Nostrand Reinhold Co.: New York, NY, USA, 1969.
12. Hoffman, D.A.; Osserman, R. The Geometry of the Generalized Gauss Map; American Mathematical Society:

Providence, RI, USA, 1980.
13. Lawson, H.B. Lectures on Minimal Submanifolds, 2nd ed.; Mathematics Lecture Series 9; Publish or Perish, Inc.:

Wilmington, NC, USA, 1980; Volume I.
14. Do Carmo, M.; Dajczer, M. Helicoidal surfaces with constant mean curvature. Tohoku Math. J. 1982,

34, 351–367. [CrossRef]
15. De Oliveira, M.E.G.G. Some new examples of nonorientable minimal surfaces. Proc. Am. Math. Soc. 1986,

98, 629–636. [CrossRef]
16. Nitsche, J.C.C. Lectures on Minimal Surfaces. Vol. 1. Introduction, Fundamentals, Geometry and Basic Boundary

Value Problems; Cambridge University Press: Cambridge, UK, 1989.
17. Small, A.J. Minimal surfaces in R3 and algebraic curves. Differ. Geom. Appl. 1992, 2, 369–384. [CrossRef]
18. Small, A.J. Linear structures on the collections of minimal surfaces in R3 and R4. Ann. Glob. Anal. Geom.

1994, 12, 97–101. [CrossRef]
19. Ikawa, T. Bour’s theorem and Gauss map. Yokohama Math. J. 2000, 48, 173–180.
20. Ikawa, T. Bour’s theorem in Minkowski geometry. Tokyo J. Math. 2001, 24, 377–394. [CrossRef]
21. Gray, A.; Abbena, E.; Salamon, S. Modern Differential Geometry of Curves and Surfaces with Mathematica R©, 3rd ed.;

Studies in Advanced Mathematics; Chapman & Hall/CRC: Boca Raton, FL, USA, 2006.
22. Güler, E.; Turgut Vanlı, A. Bour’s theorem in Minkowski 3-space. J. Math. Kyoto Univ. 2006, 46, 47–63.

[CrossRef]
23. Güler, E.; Yaylı, Y.; Hacısalihoğlu, H.H. Bour’s theorem on the Gauss map in 3-Euclidean space. Hacet. J.

Math. Stat. 2010, 39, 515–525.
24. Güler, E.; Yaylı, Y. Generalized Bour theorem. Kuwait J. Sci. 2015, 42, 79–90.
25. Ji, F.; Kim, Y.H. Mean curvatures and Gauss maps of a pair of isometric helicoidal and rotation surfaces in

Minkowski 3-space. J. Math. Anal. Appl. 2010, 368, 623–635. [CrossRef]
26. Ji, F.; Kim, Y.H. Isometries between minimal helicoidal surfaces and rotation surfaces in Minkowski space.

Appl. Math. Comput. 2013, 220, 1–11. [CrossRef]
27. Dierkes, U.; Hildebrandt, S.; Sauvigny, F. Minimal Surfaces, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2010.
28. Moore, C. Surfaces of rotation in a space of four dimensions. Ann. Math. 1919, 21, 81–93. [CrossRef]
29. Ganchev, G.; Milousheva, V. An invariant theory of surfaces in the four-dimensional Euclidean or Minkowski

space. Pliska Stud. Math. Bulg. 2012, 21, 177–200.
30. Güler, E.; Kişi, Ö. Weierstrass representation, degree and classes of the surfaces in the four dimensional

Euclidean space. Celal Bayar Univ. J. Sci. 2017, 13, 155–163. [CrossRef]
31. Arslan, K.; Kılıç Bayram, B.; Bulca, B.; Öztürk, G. Generalized Rotation Surfaces in E4. Results Math. 2012,

61 315–327. [CrossRef]
32. Xu, G.; Rabczuk, T.; Güler, E.; Wu X.; Hui, K.; Wang, G. Quasi-harmonic Bezier approximation of minimal

surfaces for finding forms of structural membranes. Comput. Struct. 2015, 161, 55–63. [CrossRef]
33. Arslan, K.; Bayram, B.; Bulca, B.; Öztürk, G. On translation surfaces in 4-dimensional Euclidean space.

Acta Comment. Univ. Tartu. Math. 2016, 20, 123–133. [CrossRef]
34. Güler, E.; Magid, M.; Yaylı, Y. Laplace Beltrami operator of a helicoidal hypersurface in four space. J. Geom.

Symmetry Phys. 2016, 41, 77–95. [CrossRef]
35. Arslan, K.; Bulca, B.; Kosova, D. On generalized rotational surfaces in Euclidean spaces. J. Korean Math. Soc.

2017, 54, 999–1013. [CrossRef]
36. The Hieu, D.; Ngoc Thang, N. Bour’s theorem in 4-dimensional Euclidean space. Bull. Korean Math. Soc.

2017, 54, 2081–2089.
37. Güler, E.; Hacısalihoğlu, H.H.; Kim, Y.H. The Gauss map and the third Laplace-Beltrami operator of the

rotational hypersurface in 4-Space. Symmetry 2018, 10, 398. [CrossRef]

96

Mathematics 2018, 6, 279

38. Güler, E. Isometric deformation of (m, n)-type helicoidal surface in the three dimensional Euclidean space.
Mathematics 2018, 6, 226. [CrossRef]

39. Cox, D.; Little, J.; O’Shea, D. Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry
and Commutative Algebra, 3rd ed.; Undergraduate Texts in Mathematics; Springer: New York, NY, USA, 2007.

40. Faugère, J.C. FGb: A library for computing Gröbner bases. In Proceedings of the Third International
Congress Conference on Mathematical Software (ICMS’10), Kobe, Japan, 13–17 September 2010; Springer:
Berlin/Heidelberg, Germany, 2010; pp. 84–87.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

97

mathematics

Article

A Characterization of Projective Special Unitary
Group PSU(3,3) and Projective Special Linear Group
PSL(3,3) by NSE

Farnoosh Hajati 1, Ali Iranmanesh 2,* and Abolfazl Tehranian 1

1 Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran 14515-775, Iran;
F−hajati@azad.ac.ir (F.H.); tehranian@srbiau.ac.ir (A.T.)

2 Department of Mathematics, Tarbiat Modares University, Tehran 14115-137, Iran
* Correspondence: iranmanesh@modares.ac.ir

Received: 17 May 2018; Accepted: 29 June 2018; Published: 10 July 2018

Abstract: Let G be a finite group and ω(G) be the set of element orders of G. Let k ∈ ω(G) and mk be
the number of elements of order k in G. Let nse(G) = {mk|k ∈ ω(G)}. In this paper, we prove that if
G is a finite group such that nse(G) = nse(H), where H = PSU(3, 3) or PSL(3, 3), then G ∼= H.

Keywords: element order; number of elements of the same order; projective special linear group;
projective special unitary group; simple Kn-group

1. Introduction

We devote this section to relevant definitions, basic facts about nse, and a brief history
of this problem. Throughout this paper, G is a finite group. We express by π(G) the set
of prime divisors of |G|, and by ω(G), we introduce the set of order of elements from G.
Set mk = mk(G) = |{g ∈ G|the order o f g is k}| and nse(G)={mk|k ∈ ω(G)}. In fact, mk is the number
of elements of order k in G and nse(G) is the set of sizes of elements with the same order in G.

One of the important problems in group theory is characterization of a group by a given
property, that is, to prove there exist only one group with a given property (up to isomorphism).
A finite nonabelian simple group H is called characterizable by nse if every finite group G with
nse(G) = nse(H) implies that G ∼= H.

After the monumental attempt to classify the finite simple groups, a huge amount of information
about these groups has been collected. It has been noticed that some of the known simple groups are
characterizable by some of their properties. Until now, different characterization are considered for
some simple groups.

The twentieth century mathematician J.G. Thompson posed very interesting problem [1] .
Thompson Problem. Let T(G)={(k, mk)|k ∈ ω(G), mk ∈ nse(G)} where mk is the number of

elements with order k. Suppose that T(G) = T(H). If G is a finite solvable group, is it true that H is
also necessary solvable?

Characterization of a group G by nse(G) and |G|, for short, deals with the number of elements
of order k in the group G and |G|, where one must answer the question “is a finite group G, can be
characterized by the set nse(G) and |G|?” While mathematicians might undoubtedly give many
answers to such a question, the answer in Shao et al. [2,3] would probably rank near the top of most
responses. They proved that if G is a simple ki (i = 3, 4) group, then G is characterizable by nse(G)

and |G|. Several groups were characterized by nse and order. For example, in [4,5], it is proved that the
Suzuki group, and sporadic groups are characterizable by nse and order. We remark here that not all
groups can be characterized by their group orders and the set nse. For example, let H1 = C4 × C4 and
H2 = C2 ×Q8, where C2 and C4 are cyclic groups of order 2 and 4, respectively, and Q8 is a quaternion

Mathematics 2018, 6, 120; doi:10.3390/math6070120 www.mdpi.com/journal/mathematics98

Mathematics 2018, 6, 120

group of order 8. It is easy to see that nse(H1) = nse(H2) = {1, 3, 12} and |H1| = |H2| = 16 but
H1 �∼= H2.

We know that the set of sizes of conjugacy classes has an essential role in determining the
structure of a finite group. Hence, one might ask whether the set of sizes of elements with the
same order has an essential role in determining the structure of a finite group. It is claimed that
some simple groups could be characterized by exactly the set nse, without considering the order of
group. In [6–12], it is proved that the alternating groups An, where n ∈ {7, 8}, the symmetric groups
Sn where n ∈ {3, 4, 5, 6, 7}, M12, L2(27), L2(q) where q ∈ {16, 17, 19, 23}, L2(q) where q ∈ {7, 8, 11, 13},
L2(q) where q ∈ {17, 27, 29}, are uniquely determined by nse(G). Besides, in [13–16], it is proved that
U3(4), L3(4), U3(5), and L3(5) are uniquely determined by nse(G). Recently, in [17–19], it is proved
that the simple groups G2(4), L2(3n), where |π(L2(3n))| = 4, and L2(2m), where |π(L2(2m))| = 4,
are uniquely determined by nse(G). Therefore, it is natural to ask what happens with other kinds of
simple groups.

The purpose of this paper is to continue this work by considering the following theorems:

Theorem 1. Let G be a group such that nse(G) = nse(PSU(3, 3)). Then G is isomorphic to PSU(3, 3).

Theorem 2. Let G be a group such that nse(G) = nse(PSL(3, 3)). Then G is isomorphic to PSL(3, 3).

2. Notation and Preliminaries

Before we get started, let us fix some notations that will be used throughout the paper. For a natural
number n, by π(n), we mean the set of all prime divisors of n, so it is obvious that if G is a finite group,
then π(G) = π(|G|). A Sylow r-subgroup of G is denoted by Pr and by nr(G), we mean the number of
Sylow r- subgroup of G. Also the largest element order of Pr is signified by exp(Pr). In addition, G is
called a simple Kn group if G is a simple group with |π(G)| = n. Moreover, we denote by φ, the Euler
function. In the following, we bring some useful lemmas which be used in the proof of main results.

Remark 1. If G is a simple K1- group, then G is a cyclic of prime order.

Remark 2. If |G| = paqb, with p and q distinct primes, and a, b non-negative integers, then by Burnside’s
pq-theorem, G is solvable. In particular, there is no simple K2-groups [20].

Lemma 1. Let G be a group containing more than two elements. If the maximal number s of elements of the
same order in G is finite, then G is finite and |G| ≤ s(s2 − 1) [21].

Lemma 2. Let G be a group. If 1 �= n ∈ nse(G) and 2 �| n, then the following statements hold [12]:

(1) 2||G|;
(2) m2 = n;
(3) for any 2 < t ∈ ω(G), mt �= n.

Lemma 3. Let G be a finite group and m be a positive integer dividing |G|. If Lm(G) = {g ∈ G|gm = 1},
then m||Lm(G)| [22].

Lemma 4. Let G be a group and P be a cyclic Sylow p-group of G of order pα. If there is a prime r such that
pαr ∈ ω(G), then mpαr = mr(CG(P))mpα . In particular, φ(r)mpα |mpαr, where φ(r) is the Euler function of
r [23].

Lemma 5. Let G be a finite group and p ∈ π(G) be odd. Suppose that P is a Sylow p-subgroup of G and
n = psm, where (p, m) = 1. If P is not cyclic group and s > 1, then the number of elements of order n is
always a multiple of ps [24].

99

Mathematics 2018, 6, 120

Lemma 6. Let G be a finite group, P ∈ Sylp(G), where p ∈ π(G). Let G have a normal series 1� K � L � G.
If P ≤ L and p �| |K|, then the following hold [3]:

(1) NG
K
(PK

K) = NG(P)K
K ;

(2) |G : NG(P)| = |L : NL(P)|, that is, np(G) = np(L);
(3) | L

K : N L
K
(PK

K)|t = |G : NG(P)| = |L : NL(P)|, that is, np(
L
K)t = np(G) = np(L) for some positive

integer t, and |NK(P)|t = |K|.

Lemma 7. Let G be a finite solvable group and |G| = mn, where m = pα1
1 · · · pαr

r , (m, n) = 1. Let π =

{p1, · · · , pr} and let hm be the number of π-Hall subgroups of G. Then hm = qβ1
1 · · · qβs

s satisfies the following
conditions for all i ∈ {1, 2, · · · , s} [25]:

(1) qβi
i = 1 (modpj) for some pj;

(2) The order of some chief factor of G is divisible by qβi
i .

Lemma 8. Let the finite group G act on the finite set X. If the action is semi regular, then |G| | |X| [26].

Let us mention the structure of simple K3-groups, which will be needed in Section 3.

Lemma 9. If G is a simple K3-group, then G is isomorphic to one of the following groups [27]: A5, A6, L2(7),
L2(8), L2(17), L3(3), U3(3), U4(2).

3. Main Results

Suppose G is a group such that nse(G) = nse(H), where H = PSU(3, 3), or PSL(3, 3).
By Lemma 1, we can assume that G is finite. Let mn be the number of elements of order n. We notice
that mn = kφ(n), where k is the number of cyclic subgroups of order n in G. In addition, we notice
that if n > 2, then φ(n) is even. If n ∈ ω(G), then by Lemma 3 and the above discussion, we have{

φ(n)|mn

n|∑d|n md
(1)

In the proof of Theorem 1 and Theorem 2, we often apply formula (1) and the above comments.

Proof of Theorem 1. Let G be a group with

nse(G) = nse(PSU(3, 3)) = {1, 63, 504, 728, 1008, 1512, 1728},

where PSU(3, 3) is the projective special unitary group of degree 3 over field of order 3. The proof will
be divided into a sequence of lemmas.

Lemma 10. π(G) ⊆ {2, 3, 7}.

Proof. First, since 63 ∈ nse(G), by Lemma 2, 2 ∈ π(G) and m2 = 63. Let 2 �= p ∈ π(G), by formula (1),
p|(1 + mp) and (p − 1)|mp, which implies that p ∈ {3, 5, 7, 13, 19, 1009}. Now, we prove that
13 /∈ π(G). Conversely, suppose that 13 ∈ π(G). Then formula (1), implies m13 = 1728. On the
other hand, by formula (1), we conclude that if 2.13 ∈ ω(G), then m2.13 ∈ {504, 1008, 1512, 1728}
and 2.13|1 + m2 + m13 + m2.13(= 2296, 2800, 3304, 3520). Hence, (2.13|2296), (2.13|2800), (2.13|3304),
or (2.13|3520), which is a contradiction, and hence 2.13 /∈ ω(G). Since 2.13 /∈ ω(G), the group
P13 acts fixed point freely on the set of elements of order 2, and so, by Lemma 8, |P13||m2, which is
a contradiction. Hence 13 /∈ π(G). Similarly, we can prove that the prime numbers 19 and 1009 do
not belong to π(G). Now, we prove 5 /∈ π(G). Conversely, suppose that 5 ∈ π(G). Then formula (1),
implies m5 = 504. From the formula (1), we conclude that if 3.5 ∈ ω(G), then m15 = 1512. On the other

100

Mathematics 2018, 6, 120

hand, if 3.5 ∈ ω(G), then by Lemma 4, m3.5 = m5.φ(3).t for some integer t. Hence 1512 = (504)(2)t,
which is a contradiction and hence 3.5 /∈ ω(G). Since 3.5 /∈ ω(G), the group P5 acts fixed point freely
on the set of elements of order 3, and so |P5||m3, which is a contradiction. From what has already been
proved, we conclude that π(G) ⊆ {2, 3, 7}.

Remark 3. If 3 , 7 ∈ π(G), then, by formula (1), m3 = 728 and m7 = 1728. If 7a ∈ ω(G),
since m72 /∈ nse(G), then a = 1. By Lemma 3, |P7||(1 + m7) and so |P7||7. Suppose 7 ∈ π(G). Then since
|P7| = 7, n7 = m7

φ(7) = 32.25||G|. Therefore, if 7 ∈ π(G), then 3, 2 ∈ π(G). Hence, we only have to consider
two proper sets {2}, {2, 3}, and finally the whole set {2, 3, 7}.

Now, we will show that π(G) is not equal {2} and {2, 3}. For this purpose at first, we need obtain
some information about elements of ω(G).

If 2a ∈ ω(G), then φ(2a) = 2a−1|m2a and so 0 ≤ a ≤ 7.
By Lemma 3, |P2||(1 + m2 + m22 + · · ·+ m27) and so |P2||210.
If 3a ∈ ω(G), then 1 ≤ a ≤ 4.

Lemma 11. π(G) �= {2} and π(G) �= {2, 3}.

Proof. We claim that π(G) �= {2}. Assume the contrary, that is, let π(G) = {2}. Since 28 /∈ ω(G), we have
ω(G) ⊆ {1, 2, 22, 23, 24, 25, 26, 27}. Hence |G| = 2m = 5544+ 504k1 + 728k2 + 1008k3 + 1512k4 + 1728k5,
where k1, k2, k3, k4, k5 and m are non-negative integers and 0 ≤ k1 + k2 + k3 + k4 + k5 ≤ 1.
Since 5544 ≤ |G| = 2m ≤ 5544+ (k1 + k2 + k3 + k4 + k5)1728, we have 5544 ≤ |G| = 2m ≤ 5544+ 1728.
Now, it is easy to check that the equation has no solution, which is a contradiction. Hence π(G) �= {2}.
Our next claim is that π(G) �= {2, 3}. Suppose, contrary to our claim, that π(G) = {2, 3}.
Since 35 /∈ ω(G), exp(P3) = 3, 32, 33, 34.

• Let exp(P3) = 3. Then by Lemma 3, |P3||(1 + m3) and so |P3||36. We will consider six cases for |P3|.

Case 1. If |P3| = 3, then since n3 = m3
φ(3) = 22.7.13||G|, 13 ∈ π(G), which is a contradiction.

Case 2. If |P3| = 32, then since exp(P3) = 3 and 27.3 /∈ ω(G), we have ω(G) ⊆
{1, 2, 22, 23, 24, 25, 26, 27} ∪ {3, 3.2, 3.22, 3.23, 3.24, 3.25, 3.26}, and |ω(G)| ≤ 15. Therefore,
5544 + 504k1 + 728k2 + 1008k3 + 1512k4 + 1728k5 = |G| = 2a.9, where k1, k2, k3, k4, k5,
and a are non-negative integers and 0 ≤ k1 + k2 + k3 + k4 + k5 ≤ 8. Since 5544 ≤ 2a.9 ≤
5544 + 8.1728, we have a = 10 or a = 11.
If a = 11, then since |P2||210, we have a contradiction.
If a = 10, then 3672 = 504k1 + 728k2 + 1008k3 + 1512k4 + 1728k5 where 0 ≤ k1 + k2 + k3 +

k4 + k5 ≤ 8. By a computer calculation it is easily seen that the equation has no solution.
Case 3. If |P3| = 33, then 5544 + 504k1 + 728k2 + 1008k3 + 1512k4 + 1728k5 = |G| = 2a.27,

where k1, k2, k3, k4, k5, and a are non-negative integers and 0 ≤ k1 + k2 + k3 + k4 + k5 ≤ 8.
Since 5544 ≤ 2a.27 ≤ 5544 + 8.1728, we have a = 8 or a = 9 .
If a = 8, then 1368 = 504k1 + 728k2 + 1008k3 + 1512k4 + 1728k5 where
0 ≤ k1 + k2 + k3 + k4 + k5 ≤ 8. By a computer calculation, it is easily seen that the equation
has no solution.
If a = 9, then 8280 = 504k1 + 728k2 + 1008k3 + 1512k4 + 1728k5 where
0 ≤ k1 + k2 + k3 + k4 + k5 ≤ 8. In this case, the equation has nine solutions. For example,
(k1, k2, k3, k4, k5) = (1, 0, 3, 2, 1) is one of the solutions. We show this is impossible.
Since k2 = 0 and m3 = 728, it follows that m2i �= 728 for 1 ≤ i ≤ 7. On the other
hand, since 28 /∈ ω(G), exp(P2) = 2, 22, 23, 24, 25, 26, 27. Hence, if exp(P2) = 2i where
1 ≤ i ≤ 7, then |P2||(1 + m2 + m22 + · · ·+ m2i) by Lemma 3. Since m2i �= 728, for 1 ≤ i ≤ 7
by a computer calculation, we have |P2||27, which is a contradiction. The same conclusion
can be drawn for other solutions.

101

Mathematics 2018, 6, 120

Case 4. If |P3| = 34, then 5544 + 504k1 + 728k2 + 1008k3 + 1512k4 + 1728k5 = |G| = 2a.81,
where k1, k2, k3, k4, k5, and a are non-negative integers and 0 ≤ k1 + k2 + k3 + k4 + k5 ≤ 8.
Since 5544 ≤ 2a.81 ≤ 5544 + 8.1728, we have a = 7. If a = 7, then 4824 = 504k1 + 728k2 +

1008k3 + 1512k4 + 1728k5 where 0 ≤ k1 + k2 + k3 + k4 + k5 ≤ 8. One sees immediately that the
equation has no solution.

Case 5. If |P3| = 35, then 5544 + 504k1 + 728k2 + 1008k3 + 1512k4 + 1728k5 = |G| = 2a.243
where k1, k2, k3, k4, k5, and a are non-negative integers and 0 ≤ k1 + k2 + k3 + k4 + k5 ≤ 8.
Since 5544 ≤ 2a.243 ≤ 5544 + 8.1728, we have a = 5 or a = 6.
If a = 5, then 2232 = 504k1 + 728k2 + 1008k3 + 1512k4 + 1728k5. By a computer calculation
(1, 0, 0, 0, 1) is the only solution of this equation. Then |ω(G)| = 9, it is clear that
exp(P2) = 24 or exp(P2) = 25. Also since k2 = 0 and m3 = 728, m2i �= 728 for 1 ≤ i ≤ 7.
If exp(P2) = 25, then since |G| = 25.35, the number of Sylow 2-subgroups of G is
1, 3, 9, 27, 81, 243 and so the number of elements of order 2 is 1, 3, 9, 27, 81, 243 but none of
which belong to nse(G).
If exp(P2) = 24, then ω(G) = {1, 2, 22, 23, 24} ∪ {3, 3.2, 3.22, 3.23}. Since 3.24 /∈ ω(G),
it follows that the group P3 acts fixed point freely on the set of elements of order 24.
Hence, |P3||m24 , which is a contradiction (m24 ∈ {504, 1008, 1512, 1728}).
If a = 6, then 10, 008 = 504k1 + 728k2 + 1008k3 + 1512k4 + 1728k5. By a computer
calculation, (0, 0, 2, 3, 2), and (1, 0, 0, 4, 2) are solutions of this equation. Since |ω(G)| = 14,
we have ω(G) = {1, 2, 22, 23, 24, 25, 26} ∪ {3, 3.2, 3.22, 3.23, 3.24, 3.25, 3.26}. We know
|G| = 26.35. It follows that, the number of Sylow 2-subgroups of G is 1, 3, 9, 27, 81, 243 and
so the number of elements of order 2 is 1, 3, 9, 27, 81, 243 but none of which belong to nse(G).

Case 6. Similarly, we can rule out |P3| = 36.

• Let exp(P3) = 32. Then by Lemma 3, |P3||(1 + m3 + m32) and so |P3||33 (for example when
m9 = 1512). We will consider two cases for |P3|.

Case 1. If |P3| = 32, then n3 = m9
φ(9) , since m9 ∈ {504, 1008, 1512, 1728}, n3 = 22.3.7 or n3 = 22.7.32

or n3 = 23.3.7, and so 7 ∈ π(G), which is a contradiction, and if n3 = 25.32, since a cyclic
group of order 9 has two elements of order 3, m3 ≤ 25.32.2 = 576, which is a contradiction.

Case 2. If |P3| = 33, then since 27.3 /∈ ω(G) and 27.32 /∈ ω(G), |ω(G)| ≤ 22.
Therefore, 5544 + 504k1 + 728k2 + 1008k3 + 1512k4 + 1728k5 = |G| = 2a.27, where
k1, k2, k3, k4, k5, and a are non-negative integers and 0 ≤ k1 + k2 + k3 + k4 + k5 ≤ 15.
Since 5544 ≤ 2a.27 ≤ 5544 + 15.1728, we have a = 8, a = 9, or a = 10.
If a = 8, then 1368 = 504k1 + 728k2 + 1008k3 + 1512k4 + 1728k5 where
0 ≤ k1 + k2 + k3 + k4 + k5 ≤ 15. By a computer calculation, it is easily seen that the
equation has no solution.
If a = 9, then 8280 = 504k1 + 728k2 + 1008k3 + 1512k4 + 1728k5 where
0 ≤ k1 + k2 + k3 + k4 + k5 ≤ 15. By a computer calculation, the equation has 22 solutions.
For example, (k1, k2, k3, k4, k5) = (1, 0, 0, 4, 1). We show this solution is impossible.
Since k2 = 0 and m3 = 728, it follows that m2i �= 728, for 1 ≤ i ≤ 7. On the other hand,
if 2a ∈ ω(G), then 0 ≤ a ≤ 7. By Lemma 3, we have |P2||(1 + m2 + m22 + · · · + m27)

, since m2i �= 728 for 1 ≤ i ≤ 7, by a computer calculation we have |P2||27, which is
a contradiction. Arguing as above, for other solutions, we have a contradiction.
Similarly, a = 10 can be ruled out as the above method.

• Let exp(P3) = 33. Then by Lemma 3, |P3||(1 + m3 + m32 + m33) and so |P3||34 (for example when
(m9 = 1512 and m27 = 1728)). We will consider two cases for |P3|.

102

Mathematics 2018, 6, 120

Case 1. If |P3| = 33, then n3 = m27
φ(27) , since m27 ∈ {504, 1008, 1512, 1728}, n3 = 23.7 or n3 = 22.7 or

n3 = 22.3.7, and so 7 ∈ π(G), which is a contradiction, and if n3 = 25.3, since a cyclic group
of order 27 has two elements of order 3, m3 ≤ 25.3.2 = 192, which is a contradiction.

Case 2. If |P3| = 34, and P3 is not cyclic subgroup, then by Lemma 5, 27|m27. Since (27 �| 504) and
(27 �| 1008), it is understood that m27 ∈ {1512, 1728}. Since 27.3 /∈ ω(G), 27.32 /∈ ω(G),
and 27.33 /∈ ω(G), |ω(G)| ≤ 29. Therefore 5544 + 504k1 + 728k2 + 1008k3 + 1512k4 +

1728k5 = |G| = 2a.81, where k1, k2, k3, k4, k5, and a are non-negative integers and
0 ≤ k1 + k2 + k3 + k4 + k5 ≤ 22. Since 5544 ≤ 2a.81 ≤ 5544 + 22.1728, we have a = 7 ,
a = 8, or a = 9.
If a = 7, then 4824 = 504k1 + 728k2 + 1008k3 + 1512k4 + 1728k5 where
0 ≤ k1 + k2 + k3 + k4 + k5 ≤ 22. By a computer calculation, it is easily seen that the
equation has no solution.
If a = 8, then 15192 = 504k1 + 728k2 + 1008k3 + 1512k4 + 1728k5 where 0 ≤ k1 +

k2 + k3 + k4 + k5 ≤ 22. By a computer calculation, the equation has 22 solutions.
For example, (k1, k2, k3, k4, k5) = (0, 0, 2, 3, 5). We show this solution is impossible.
Since k2 = 0 and m3 = 728, it follows that m2i �= 728, for 1 ≤ i ≤ 7. On the
other hand, by Lemma 3, we have |P2||(1 + m2 + m22 + · · · + m27), since m2i �= 728
for 1 ≤ i ≤ 7, by a computer calculation we have |P2||27, which is a contradiction.
Assume (k1, k2, k3, k4, k5) = (0, 9, 0, 0, 5) is a solution. Since |P2||(1 + m2 + m22 + · · ·+ m27)

by Lemma 3. Indeed, |P2||(1 + 63 + 504t1 + 728t2 + 1008t3 + 1512t4 + 1728t5) where
t1, t2, t3, t4, t5, are non-negative integers and 0 ≤ t1 + t2 + t3 + t4 + t5 ≤ 6. Since k1 = 0,
k2 = 9, and k3 = 0, 0 ≤ t1 ≤ 1, 0 ≤ t2 ≤ 10, and 0 ≤ t3 ≤ 1. Since k4 = 0 and m27 = 1512
or 1728, t4 = 0. Also k5 = 5, and thus 0 ≤ t5 ≤ 6. By an easy calculation, this is impossible.
Arguing as above, for other solutions, we have a contradiction.
If a = 9, then 35928 = 504k1 + 728k2 + 1008k3 + 1512k4 + 1728k5 where 0 ≤ k1 + k2 + k3 +

k4 + k5 ≤ 22. By a computer calculation, it is easily seen that the equation has no solution.

• Let exp(P3) = 34. Then by Lemma 3, |P3||(1 + m3 + m32 + m33 + m34) and so |P3||34 (for example
when (m9 = 504, m27 = 1008, and m81 = 1728)).

If |P3| = 34, then n3 = m81
φ(81) , since m81 ∈ {1512, 1728}, n3 = 3.7 or n3 = 25. If n3 = 3.7,

then 7 ∈ π(G) which is a contradiction. If n3 = 25, since a cyclic group of order 81 has two
elements of order 3, then m3 ≤ 25.2, which is a contradiction.

Remark 4. According to Lemmas 10 and 11, Remark 3 we have π(G) = {2, 3, 7}.

Lemma 12. G ∼= PSU(3, 3).

Proof. First, we show that |G| = |PSU(3, 3|. From the above arguments, we have |P7| = 7.
Since 3.7 /∈ ω(G), the group P3 acts fixed point freely on the set of elements of order 7, and so
|P3||m7. Hence |P3||33. Likewise, 2.7 /∈ ω(G), and so |P2||26. Hence, we have |G| = 2m.3n.7.
Since 5544 = 23.32.7.11 ≤ 2m.3n.7, we conclude that |G| = 26.33.7 or |G| = 25.33.7. The proof is
completed by showing that there is no group such that |G| = 26.33.7 and nse(G) = nse(PSU(3, 3)).
First, we claim that G is a non-solvable group. Suppose that G is solvable, since n7 = m7

φ(7) = 25.32,

by Lemma 7, 25 ≡ 1 (mod7), which is a contradiction. Therefore, G is a non-solvable group and
72 �| |G|. Hence, G has a normal series 1 � N � H � G, such that N is a maximal solvable normal
subgroup of G and H

N is a non-solvable minimal normal subgroup of G
N . Indeed, H

N is a non-abelian
simple K3-group, and so by Lemma 9, H

N is isomorphic to L2(7) or L2(8). Suppose that H
N
∼= L2(7).

We know n7(L2(7)) = 8. From Lemma 6, we have n7(
H
N)t = n7(G), and so, n7(G) = 8t for some

integer t. On the other hand, since n7(G)|26.33 and n7(G) = 1 + 7k, we have n7(G) = 1, n7(G) = 8,

103

Mathematics 2018, 6, 120

n7(G) = 36, n7(G) = 64, or n7(G) = 288. If n7(G) = 36, then since 36 = 8t has no integer
solution, we have a contradiction. Similarly, if H

N
∼= L2(8), we have a contradiction. As a result,

|G| = 25.33.7 = |PSU(3, 3)|. Hence |G| = |PSU(3, 3)|, and by assumption, nse(G) = nse(PSU(3, 3)) ,
so by [2], G ∼= PSU(3, 3) and the proof is completed.

The remainder of this section will be devoted to the proof of Theorem 2.

Proof of Theorem 2. Let G be a group with

nse(G) = nse(PSL(3, 3)) = {1, 117, 702, 728, 936, 1404, 1728},

where PSL(3, 3) is the projective special linear group of degree 3 over field of order 3. The proof will
be divided into a sequence of lemmas.

Lemma 13. π(G) ⊆ {2, 3, 13}.

Proof. First, since 117 ∈ nse(G), by Lemma 2, 2 ∈ π(G) and m2 = 117. Applying formula (1), we
obtain π(G) ⊆ {3, 5, 7, 13, 19, 937}. Now, we prove that 7 /∈ π(G). Conversely, suppose that 7 ∈ π(G).
Then formula (1), implies m7 = 1728. From the formula (1), we conclude that if 2.7 ∈ ω(G), then
m14 = 702. On the other hand, if 2.7 ∈ ω(G), then by Lemma 4, m2.7 = m7.φ(2).t for some integer
t. Hence 702 = 1728t, which is a contradiction and hence 2.7 /∈ ω(G). Since 2.7 /∈ ω(G), the group
P7 acts fixed point freely on the set of elements of order 2 of G. Hence, by Lemma 8, |P7||m2, which
is a contradiction. In the same manner, we can see that 5 /∈ π(G). Now, we prove 19 /∈ π(G).
Conversely, suppose that 19 ∈ π(G). Then formula (1), implies m19 ∈ {702, 1728}. On the other hand,
by formula (1), we conclude that if 2.19 ∈ ω(G), then m2.19 ∈ {702, 936, 1404, 1728} . Now, if m19 = 702,
then 2.19|1 + m2 + m19 + m2.19(= 1522, 1756, 2224, 2548), which is a contradiction, and if m19 = 1728,
2.19|1 + m2 + m19 + m2.19(= 2548, 2782, 3250, 3574) which is a contradiction. Hence 2.19 /∈ ω(G).
Since 2.19 /∈ ω(G), the group P19 acts fixed point freely on the set of elements of order 2 of G, and so
|P19||m2., which is a contradiction. Similarly, we can prove that 937 /∈ π(G). From what has already
been proved, we conclude that π(G) ⊆ {2, 3, 13}.

Remark 5. If 3, 13 ∈ π(G), then m3 = 728 and m13 = 1728. If (13)a ∈ ω(G), since m
(13)2 /∈ nse(G),

then a = 1. By Lemma 3, |P13||1 + m13 and so |P13||13. Suppose 13 ∈ π(G). Then since |P13| = 13,
n13 = m13

φ(13) = 32.24||G|.Therefore, if 13 ∈ π(G), then 3, 2 ∈ π(G). Hence, we only have to consider two
proper sets {2}, {2, 3}, and finally the whole set {2, 3, 13}.

Now, we will show that π(G) is not equal {2} and {2, 3}. For this purpose at first, we need obtain
some information about elements of ω(G).

If 2a ∈ ω(G), then, by formula (1), we have 0 ≤ a ≤ 4.
By Lemma 3, |P2||(1 + m2 + m22 + · · ·+ m24) and so |P2||24.
If 3a ∈ ω(G), then 1 ≤ a ≤ 4.

Lemma 14. π(G) �= {2} and π(G) �= {2, 3}.

Proof. We claim that π(G) �= {2}. Assume the contrary, that is, let π(G) = {2}. Then |ω(G)| ≤ 5.
Since, nse(G) has seven elements and |ω(G)| ≤ 5, we have a contradiction. Hence π(G) �= {2}.
Our next claim is that π(G) �= {2, 3}. Suppose, contrary to our claim, that π(G) = {2, 3}.
Since 35 /∈ ω(G), exp(P3) = 3, 32, 33, 34.

• Let exp(P3) = 3. Then by Lemma 3, |P3||(1+ m3) and so |P3||36. We will consider six cases for |P3|.

Case 1. If |P3| = 3, then since n3 = m3
φ(3) = 2.7.13||G|, 7 ∈ π(G), which is a contradiction.

104

Mathematics 2018, 6, 120

Case 2. If |P3| = 32, then since exp(P3) = 3 and 3.25 /∈ ω(G), |ω(G)| ≤ 10. Therefore 5616+ 702k1 +

728k2 + 936k3 + 1404k4 + 1728k5 = |G| = 2a.9 where k1, k2, k3, k4, k5, and a are non-negative
integers and 0 ≤ k1 + k2 + k3 + k4 + k5 ≤ 3. Since 5616 ≤ 2a.9 ≤ 5616 + 3.1728, we have
a = 10.
If a = 10, then since |P2||24, we have a contradiction. Similarly, we can rule out other cases.

• Let exp(P3) = 32. Then by Lemma 3, |P3||(1+m3 +m32) and |P3||33 (for example when m9 = 702).
We will consider two cases for |P3|.
Case1. If |P3| = 32, then n3 = m9

φ(9) ||G|, since m9 ∈ {702, 936, 1404, 1728}, n3 = 32.13, n3 = 22.13.3,

or n3 = 2.32.13, and so 13 ∈ π(G), which is a contradiction, and if n3 = 25.32, since a cyclic group
of order 9 has two elements of order 3, m3 ≤ 25.32.2 = 576, which is a contradiction.
Case 2. If |P3| = 33, then since exp(P3) = 32, 3.25 /∈ ω(G), and 32.25 /∈ ω(G), |ω(G)| ≤ 15.
Therefore 5616 + 702k1 + 728k2 + 936k3 + 1404k4 + 1728k5 = |G| = 2a.27 where k1, k2, k3, k4, k5,
and a are non-negative integers and 0 ≤ k1 + k2 + k3 + k4 + k5 ≤ 8. Since 5616 ≤ 2a.27 ≤
5616 + 8.1728, we have a = 8 or a = 9, which is a contradiction.

• Let exp(P3) = 33. Then by Lemma 3, |P3||(1 + m3 + m32 + m33) and |P3||35 (for example when
m9 = 702 and m27 = 1728). We will consider tree cases for |P3|.
Case 1. If |P3| = 33, then n3 = m27

φ(27) , since m27 ∈ {702, 1404, 1728}, n3 = 3.13, or n3 = 2.3.13,

and so 13 ∈ π(G), which is a contradiction, and if n3 = 25.3, since a cyclic group of order 27 has
two elements of order 3, m3 ≤ 25.3.2 = 192, which is a contradiction.
Case 2. If |P3| = 34, then since exp(P3) = 33, 3.25 /∈ ω(G), 32.25 /∈ ω(G), and 33.25 /∈ ω(G),
|ω(G)| ≤ 20. Therefore 5616 + 702k1 + 728k2 + 936k3 + 1404k4 + 1728k5 = |G| = 2a.81
where k1, k2, k3, k4, k5, and a are non-negative integers and 0 ≤ k1 + k2 + k3 + k4 + k5 ≤ 13.
Since 5616 ≤ 2a.81 ≤ 5616 + 13.1728, we have a = 7 or a = 8, which is a contradiction. In the
same way, we can rule out the case |P3| = 35

• Let exp(P3) = 34. Then by Lemma 3, |P3||(1 + m3 + m32 + m33 + m34) and |P3||35 (for example
when m9 = 1404, m27 = m81 = 1728).We will consider two cases for |P3|.
Case 1. If |P3| = 34, then n3 = m81

φ(81) , since m81 ∈ {702, 1404, 1728}, n3 = 13 or n3 = 13.2 and so

13 ∈ π(G), which is a contradiction. If n3 = 25, since a cyclic group of order 81 has two elements
of order 3, then m3 ≤ 25.2 which is a contradiction.
Case 2. If |P3| = 35, since exp(P3) = 34, 3.25 /∈ ω(G), 32.25 /∈ ω(G), 33.25 /∈ ω(G), and 34.25 /∈
ω(G), |ω(G)| ≤ 25. Therefore, 5616 + 702k1 + 728k2 + 936k3 + 1404k4 + 1728k5 = |G| = 2a.243
where k1, k2, k3, k4, k5, and a are non-negative integers and 0 ≤ k1 + k2 + k3 + k4 + k5 ≤ 18.
Since 5616 ≤ 2a.243 ≤ 5616 + 18.1728, we have a = 5 or a = 6 or a = 7, which is a contradiction.

Remark 6. According to Lemmas 13 and 14, and Remark 5, we have π(G) = {2, 3, 13}.

Lemma 15. G ∼= PSL(3, 3).

Proof. We show that |G| = |PSL(3, 3|. From the above arguments, we have |P13| = 13.
Since 2.13 /∈ ω(G), it follows that, the group P2 acts fixed point freely on the set of elements of
order 13, and so |P2||m13. Hence, |P2||26. Likewise, 3.13 /∈ ω(G), and so |P3||33. and so |P2||m13.
Hence, |P2||26. Likewise, 3.13 /∈ ω(G), and so |P3||33. Hence we have |G| = 2m.3n.13.

Since 5616 = 24.33.13 ≤ 2m.3n.13, we conclude that |G| = 26.33.13, |G| = 26.32.13, |G| = 25.33.13,
or |G| = 24.33.13. The proof is completed by showing that there is no group such that |G| = 26.33.13,
|G| = 26.32.13, or |G| = 25.33.13, and nse(G) = nse(PSL(3, 3)). First, we show that there is no group
such that |G| = 26.33.13 and nse(G) = nse(PSL(3, 3)). We claim that G is a non-solvable group.
Suppose that G is a solvable group, since n13 = m13

φ(13) = 24.32, by Lemma 7, 24 ≡ 1 (mod13), which is

a contradiction. Therefore G is a non-solvable group and (13)2 �| |G|. Hence, G has a normal series

105

Mathematics 2018, 6, 120

1 � N � H � G, such that N is a maximal solvable normal subgroup of G and H
N is a non-solvable

minimal normal subgroup of G
N . Indeed, H

N is a non-abelian simple K3-group, and so by Lemma 9
H
N is isomorphic to one of the simple K3 groups. In fact, H

N
∼= L3(3). We know n13(L3(3)) = 144.

From Lemma 6, we have n13(
H
N)t = n13(G), and so n13(G) = 144t for some integer t. On the other

hand, since n13(G)|26.33 and n13(G) = 1 + 13k, we have n13(G) = 1, n13(G) = 27, or n13(G) = 144.
If n13(G) = 27, then since 27 = 144t has no integer solution, we have a contradiction. Similarly, we can
rule out the case |G| = 25.33.13 and nse(G) = nse(PSL(3, 3)). Finally, we have to show that there is
no group such that |G| = 26.32.13 and nse(G) = nse(PSL(3, 3)). By Lemma 7, it is easy to check that
G is a non-solvable group, and (13)2 �| |G|. Hence, G has a normal series 1 � N � H � G, such that
N is a maximal solvable normal subgroup of G and H

N is a non-solvable minimal normal subgroup
of G

N . Indeed, H
N is a non-abelian simple K3-group, and so by Lemma 9 H

N is isomorphic to L3(3).
Therefore |H| = |N|24.33.13, which is a contradiction. As a result, |G| = 24.33.13 = |PSL(3, 3)|.
Hence |G| = |PSL(3, 3)| and by assumption, nse(G) = nse(PSL(3, 3)) , so by [2], G ∼= PSL(3, 3) and
the proof is completed.

4. Conclusions

In this paper, we showed that the groups PSU(3, 3) and PSL(3, 3) are characterized by nse.
Further investigations are needed to answer “is a group G isomorphic to PSU(3, q) (q > 8 is a prime
power) if and only if nse(G) = nse(PSU(3, q))?” and “is a group G isomorphic to PSL(3, q) (q > 8
is a prime power) if and only if nse(G) = nse(PSL(3, q))?”. In future work, these questions will be
considered.

Author Contributions: All authors contributed equally on writing this paper. All authors have read and have
approved the final manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to express their deep gratitude to the referees for their helpful
comments and valuable suggestion for improvment of this paper. Part of this research work was done while the
second author was spending his sabbatical leave at the Department of Mathematics of University of California,
Berkeley. This author expresses his thanks for the hospitality and facilities provided by Department of Mathematics
of UCB.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shi, W.. A new characterization of sporadic simple groups. In Group Theory, Proceedings of the 1987 Singapore
Conference on Group Theory, Singapore, 8–9 June 1987; Walter de Gruyter: Berlin, Germany, 1989; pp. 531–540.

2. Shoa, C.; Shi, W.; Jiang, Q. A characterization of simple K3-groups. Adv. Math. 2009, 38, 327–330.
3. Shoa, C.; Shi,W.; Jiang,Q. Characterization of simple K4-groups. Front. Math. China 2008, 3, 355–370.

[CrossRef]
4. Iranmanesh, A.; Parvizi Mosaed, H.; Tehranian, A. Characterization of Suzuki group by nse and order of

group. Bull. Korean Math. Soc. 2016, 53, 651–656. [CrossRef]
5. Khalili Asboei, A.; Salehi Amiri, S.S.; Iranmanesh, A.; Tehranian, A. A characterization of sporadic simple

groups by nse and order. J. Algebra Appl. 2013, 12. [CrossRef]
6. Khalili Asboei, A.; Salehi Amiri, S.S.; Iranmanesh, A.; Tehranian, A. A new characterization of A7, A8. An.

St. Univ. Ovidius Constanta 2013, 21, 43–50. [CrossRef]
7. Khalili Asboei, A.; Salehi Amiri, S.S.; Iranmanesh, A. A new characterization of Symmetric groups for some

n. Hacet. J. Math. Stat. 2013, 43, 715–723.
8. Khalili Asboei, A.; Salehi Amiri, S.S.; Iranmanesh, A. A new note on characterization of a Mathieu group of

degree 12. Southeast Asian Bull. Math. 2014, 38, 383–388.
9. Khalili Asboei, A. A new characterization of PSL(2, 27). Bol. Soc. Paran. Mat. 2014, 32, 43–50. [CrossRef]
10. Khalili Asboei, A.; Salehi Amiri, S.S.; Iranmanesh, A. A new characterization of PSL(2,q) for some q.

Ukr. Math. J. 2016, 67, 1297–1305. [CrossRef]

106

Mathematics 2018, 6, 120

11. Khatami, M.; Khosravi, B.; Akhlaghi, Z. A new characterization for some linear groups. Monatsh. Math. 2011,
163, 39–50. [CrossRef]

12. Shoa, C.; Jiang, Q. Characterization of groups L2(q) by nse where q ∈ {17, 27, 29}. Chin. Ann. Math.
2016, 37B, 103–110. [CrossRef]

13. Chen, D. A characterization of PSU(3,4) by nse. Int. J. Algebra Stat. 2013, 2, 51–56. [CrossRef]
14. Liu, S. A characterization of L3(4). Sci. Asia 2013, 39, 436–439. [CrossRef]
15. Liu, S. A characterization of projective special unitary group U3(5) by nse. Arab J. Math. Sci. 2014, 20, 133–140.

[CrossRef]
16. Liu, S. A characterization of projective special linear group L3(5) by nse. Ital. J. Pure Appl. Math. 2014, 32, 203–212.
17. Jahandideh Khangheshlaghi, M.; Darafsheh, M.R. Nse characterization of the Chevalley group G2(4).

Arabian J. Math. 2018, 7, 21–26. [CrossRef]
18. Parvizi Mosaed, H.; Iranmanesh, A.; Tehranian, A. Nse characterization of simple group L2(3n). Publ. Instit.

Math. Nouv. Ser. 2016, 99, 193–201. [CrossRef]
19. Parvizi Mosaed, H.; Iranmanesh, A.; Foroudi Ghasemabadi, M.; Tehranian, A. A new characterization of

simple group L2(2m). Hacet. J. Math. Stat. 2016, 44, 875–886.
20. Kurzweil, H.; Stellmacher, B. The Theory of Finite Groups an Introduction; Springer: New York, NY, USA, 2004 .
21. Shen, R.; Shoa, C.; Q. Jiang, Q.; Shi., W.; Mazurov, V. A new characterization of A5. Monatsh. Math.

2010, 160, 337–341. [CrossRef]
22. Frobenius, G. Verallgemeinerung der Sylowschen Satze. Berl. Ber. 1895, 2, 981–993.
23. Shoa, C.; Jiang, Q. A new characterization of some linear groups by nse. J. Algebra Its Appl. 2014, 13.

[CrossRef]
24. Miller, G.A. Addition to a theorem due to Frobenius. Bull. Am. Math. Soc. 1904, 11, 6–7. [CrossRef]
25. Hall, M. The Theory of Groups; Macmillan: New York, NY, USA, 1959.
26. Passman, D. Permutation Groups; W. A. Benjamin: New York, NY, USA, 1968.

27. Herzog, M. On finite simple groups of order divisible by three primes only. J. Algebra 1968, 10, 383–388.
[CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

107

mathematics

Article

Quantum Information: A Brief Overview and Some
Mathematical Aspects

Maurice R. Kibler 1,2,3

1 CNRS/IN2P3, Institut de Physique Nucléaire, 69622 Villeurbanne, France; m.kibler@ipnl.in2p3.fr
2 Faculté des Sciences et Technologies, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
3 Université de Lyon, 69361 Lyon, France

Received: 23 October 2018; Accepted: 20 November 2018; Published: 22 November 2018

Abstract: The aim of the present paper is twofold. First, to give the main ideas behind quantum
computing and quantum information, a field based on quantum-mechanical phenomena. Therefore,
a short review is devoted to (i) quantum bits or qubits (and more generally qudits), the analogues of
the usual bits 0 and 1 of the classical information theory, and to (ii) two characteristics of quantum
mechanics, namely, linearity, which manifests itself through the superposition of qubits and the action
of unitary operators on qubits, and entanglement of certain multi-qubit states, a resource that is specific
to quantum mechanics. A, second, focus is on some mathematical problems related to the so-called
mutually unbiased bases used in quantum computing and quantum information processing. In this
direction, the construction of mutually unbiased bases is presented via two distinct approaches:
one based on the group SU(2) and the other on Galois fields and Galois rings.

Keywords: linearity; superposition; entanglement; mutually unbiased bases; SU(2); Galois fields;
Galois rings

1. Introduction

In the present days, there is a growing interest for the field of quantum information and quantum
computing. Such a field emerged at the beginning of the 1980s when Feynman and other scientists asked
the question: is it possible to simulate the behaviour of a quantum system by using a classical computer?
Then, the question evolved towards how to use quantum systems to do computations. This led to the
idea of a quantum computer based on quantum physics with the hope to solve problems that would be
intractable or difficult to solve with a classical computer. A fact in favour of a quantum computer is the
law by Moore according to which the size of electronic and spintronic devices for a classical computer
should approach 10 nm in 2020, the scale where quantum effects become important. The field of
quantum information and quantum computing is at the crossroads of experimental and theoretical
quantum physical sciences (physics and chemistry), discrete mathematics and informatics with the
aim of building a quantum computer. We note in passing that physics, mathematics, informatics and
engineering have already greatly benefited from the enormous amount of works achieved along the
line of quantum information and quantum computing.

The unit of classical information is the bit (possible values 0 and 1). In a quantum computer,
classical bits (0 and 1) are replaced by quantum bits or qubits (that interpolate in some sense between 0
and 1). The most general qubit is a normalized vector |ψ〉 in the two-dimensional Hilbert space C2

|ψ〉 = a|0〉+ b|1〉, |a|2 + |b|2 = 1, a ∈ C, b ∈ C (1)

where |0〉 and |1〉 are the elements of an orthonormal basis in C2. The result of a measurement of |ψ〉 is
not deterministic since it gives |0〉 or |1〉with the probability |a|2 or |b|2, respectively. The consideration
of N qubits leads to work in the 2N-dimensional Hilbert space C2N

. Note that the notion of qubit,

Mathematics 2018, 6, 273; doi:10.3390/math6120273 www.mdpi.com/journal/mathematics108

Mathematics 2018, 6, 273

corresponding to C2, is a particular case of the one of qudit, corresponding to Cd (d not necessarily
in the form 2N). A system of N qudits is associated with the Hilbert space CdN

. In this connection,
the techniques developed for finite-dimensional Hilbert spaces are of paramount importance in
quantum computation and quantum computing.

From a formal point of view, a quantum computer is a system producing qubits, the state of which
can be controlled and manipulated via unitary transformations. These transformations correspond
to the product of elementary unitary operators called quantum gates (the analogues of the logic gates
of a classical computer) acting on one, two or more qubits. Measurement of the qubits out-coming
from a quantum circuit of quantum gates yields the result of a (quantum) computation. In other words,
a realization of quantum information processing can be performed by preparing a quantum system in
a quantum state, then submitting this state to unitary transformations and, finally, reading the outcome
from a measurement.

The two basic characteristics of quantum mechanics used in a quantum computer are linearity
(principle of superposition of quantum states) and entanglement. The superposition principle gives
resources: the quantum computer can be in several states at the same time. This leads to a massive
quantum parallelism with a speed up of computations (for N qubits, 2N computations can be achieved
in parallel through the use of quantum algorithms). Entanglement, i.e., the fact that certain quantum
systems made of two or more sub-systems behave as an indissociable entity, is at the root of quantum
computing and quantum teleportation. In quantum mechanics, each measurement on a quantum system
perturbs the system and the superposition principle makes impossible to duplicate a quantum state
(no-cloning theorem). The two latter points and the use of the so-called mutually unbiased bases (MUBs),
to be defined in Section 3, are the basic ingredients of quantum cryptography (illustrated by the BB84
protocol, the first protocol of quantum cryptography).

The aim of this paper is to present to a community of computer engineers and mathematicians
the basic grounds of quantum information and quantum computing as well as some mathematical
aspects and related open problems.

This paper is organized as follows. Section 2 deals with the general framework of quantum
information and quantum computing (i.e., information and computing based on quantum physics):
some of the concepts and ideas evoked above are further described. In Section 3, we address some
mathematical aspects of quantum information; in particular, we review some of the methods for
constructing mutually unbiased bases (more precisely, methods based on the group SU(2) and on
Galois rings and Galois fields). Sections 2 and 3 are mainly based on References [1,2], respectively.
References [3–77] constitute an incomplete list (in chronological order) of original works of relevance
for an in-depth study of Sections 2 and 3. Finally, the reader will find in Reference [78] some calculations
with the help of the Python language illustrating the derivation of mutually unbiased bases according
to the methods described in Section 3.

2. The General Framework of Quantum Information and Quantum Computing

2.1. Quantum Mechanics in a Few Words

Classical physics does not apply in the microscopic world. It is not appropriate for describing,
explaining and predicting physical and chemical phenomena at the atomic and sub-atomic level.
The convenient theory for quantum systems (i.e., molecules, atoms, nuclei and elementary particles) is
quantum mechanics, an extension of the old quantum theory mainly due to Planck, Einstein, Bohr and
Sommerfeld (the word quantum comes from the fact that the energy exchanges between light and
matter occur in a quantized form). Quantum mechanics, which is often used in conjunction with
some other theories like relativity and quantum field theory, can be presented in two equivalent ways:
wave mechanics initiated by de Broglie and Schrödinger and matrix mechanics pioneered by Heisenberg,
Born and Jordan. It is not our purpose to list in detail the postulates of quantum mechanics. We shall

109

Mathematics 2018, 6, 273

restrict ourselves with four aspects of the Copenhagen interpretation which are indispensable in
quantum information and quantum computing.

• In both presentations of quantum mechanics, the state of a closed quantum system is described by
a vector (in matrix mechanics) or a wave function (in wave mechanics), noted |ψ〉 in both cases,
belonging to a finite or infinite Hilbert spaceH.

• In quantum information and quantum computing, the spaceH is finite-dimensional (isomorphic
to C2 for qubits or Cd for qudits) and the (normalized) vector |ψ〉, defined up to a phase factor,
can be the result (arising from an evolution or transformation of a vector |ψ′〉)

|ψ〉 = U|ψ′〉

of the action of a unitary operator U (or quantum gate) on |ψ′〉. (We are not concerned here
with dynamical systems for which the time evolution of ψ in the wave picture is given by the
Schrödinger equation, in the non-relativistic case, or the Dirac equation, in the relativistic case,
two linear equations.)

• In quantum information and quantum computing, |ψ〉 is given by a linear combination of the
eigenvectors of an observable in the matrix formulation. An observable A is associated with
a measurable physical quantity (energy, position, impulsion, spin, etc.). It is represented by a
self-adjoint operator A acting on the space H. The possible outcomes of a measurement of an
observable A are the real eigenvalues of the operator A. Measurement in quantum mechanics
exhibits a probabilistic nature. More precisely, if (in the case of the finite-dimensional Hilbert
spaceH = Cd)

|ψ〉 =
d−1

∑
n=0

cn|ϕn〉, cn ∈ C (2)

where the ϕn given by

A|ϕi〉 = λi|ϕi〉, i = 0, 1, · · · , d− 1

are the orthormalized eigenvectors of A, then a measurement ofAwill give λk with the probability

|ck|2 = |〈ϕk|ψ〉|2

where 〈ϕk|ψ〉 stands for the inner product of |ψ〉 by |ϕk〉 (we suppose that the spectrum of A
is non-degenerate). Hence, before measurement, the quantum system is in several states being
a linear combination of the states |ϕn〉 and, after measurement, the quantum system is in a
well-defined state |ϕk〉. Measurement leads to a reduction of the wave packet or wave function
collapse. In terms of measurement of qudits, what precedes can be formulated as follows. Let
|ψ〉 as given by Equation (2) be a qudit describing a quantum system before measurement. A
measurement of |ψ〉 in a basis {ϕi〉 : i = 0, 1, · · · , d− 1} of Cd yields the state

〈ϕi|ψ〉√〈ψ|ϕi〉〈ϕi|ψ〉
|ϕi〉 = 〈ϕi|ψ〉

|〈ϕi|ψ〉| |ϕi〉

with the probability
p(i) = |〈ψ|ϕi〉|2

Observe that the factor 〈ϕi|ψ〉|〈ϕi|ψ〉|−1 is a simple phase factor without importance. By way of
example, in the case of C2, measurement of the qubit |ψ〉 = a|0〉+ b|1〉 in the basis {|0〉, |1〉} of C2

yields |0〉 or |1〉 (up to unimportant phase factors) with the probabilities |a|2 or |b|2, respectively.

110

Mathematics 2018, 6, 273

• A postulate of quantum mechanics of considerable interest in quantum information and quantum
computing concerns the description of a system composed of several sub-systems. The state
vector for the system is build from tensors products of the state vectors of the various sub-systems.
This may lead to entangled vector states for the composite system. Entanglement constitutes
another important resource for quantum information and quantum computing besides the
linearity and the non deterministic nature of quantum mechanics. As an example, suppose
we have a system of qubits made of two two-level sub-systems. The Hilbert space for the
system isH = C4 ∼ C2 ⊗C2, where the first and second C2 corresponds to the first and second
sub-systems, respectively. By the tensor product, we can take

{|0〉1 ⊗ |0〉2, |0〉1 ⊗ |1〉2, |1〉1 ⊗ |0〉2, |1〉1 ⊗ |1〉2}

as a basis for C4, where the indices 1 and 2 refer to the first and the second qubits, respectively.
Two kinds of states can be considered in C4, namely separable or non entangled states as

|ψs〉 = |0〉1 ⊗ 1
2
(|0〉2 +

√
3|1〉2)

and non separable or entangled states as

|ψns〉 = 1√
2
(|0〉1 ⊗ |1〉2 + |1〉1 ⊗ |0〉2)

For the non entangled state |ψs〉, measurement of the qubit 1 yields |0〉1 with the probability
1 while measurement of the qubit 2 leads either to |0〉2 with the probability 1

4 or to |1〉2 with the
probability 3

4 ; therefore, the result of a measurement for one qubit does not depend on the result of a
measurement for the other qubit. The situation turns out to be entirely different for the entangled state
|ψns〉: a measurement of the first qubit leads either to |0〉1 with the probability 1

2 or to |1〉1 with the
probability 1

2 ; once one of the two results has been obtained, we immediately know what would be the
result if we perform a measurement on the second qubit; it is thus unnecessary to make a measurement
on the second qubit and this may be sum up as follows:

result of a measurement of qubit 1 ⇒ state of qubit 2 (without measurement)

|0〉1 ⇒ |1〉2
|1〉1 ⇒ |0〉2

and conversely

result of a measurement of qubit 2 ⇒ state of qubit 1 (without measurement)

|1〉2 ⇒ |0〉1
|0〉2 ⇒ |1〉1

Entanglement may also occur for more than two qubits. For entangled states, there are strong
correlations between the results of measurements of the qubits. This effect is essential for quantum
information and quantum computing.

Unfortunately, “something is rotten in the state of Denmark” (where the Copenhagen
interpretation developed). In fact, entanglement is also an inconvenience: entanglement of qubits with
their environment leads to errors. This is known as the effect of decoherence an important drawback
for the building of a quantum computer. One way to fight against errors due to decoherence and other
effects of noise is to develop quantum error-correcting codes.

111

Mathematics 2018, 6, 273

2.2. Qubits and Qudits

2.2.1. Qubits

Let
B2 = {|0〉, |1〉}

be an orthonormal basis called the computational basis of the Hilbert space C2. Any normalized
(to unity) vector |ψ〉, see Equation (1), in C2 is called a quantum bit or qubit. From the quantum
mechanical point of view, a qubit describes a state of a two-level quantum system. In the absence of
measurement (and decoherence), the state |ψ〉 is a superposition of |0〉 and |1〉. A measurement of
the state |ψ〉 yields either |0〉 (with the probability |a|2) or |1〉 (with the probability |b|2). Therefore,
the superposition of the states |0〉 and |1〉 is lost after the measurement. In matrix form, we take

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
, |ψ〉 =

(
a
b

)

From a group-theoretical point of view, |0〉 and |1〉 can be considered as the basis vectors for the
fundamental irreducible representation

(
1
2

)
of SU(2), in the chain SU(2) ⊃ U(1), with

|0〉 = |1
2

,
1
2
〉, |1〉 = |1

2
,−1

2
〉 (3)

in the notations of quantum angular momentum theory.
The state |ψ〉 can be associated with a point (x, y, z, t) of the sphere S3 in R4 according to

C2 → S3 : a|0〉+ b|1〉 �→ (x, y, z, t)

with a = x + iy and b = z + it. In fact, the point (x, y, z, t) can be visualized as a point (1, θ, ϕ) of the
sphere S2 in R3, referred to as the Bloch sphere, since ψ can be re-written as

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π (4)

up to a global multiplicative phase factor. The application

S3 → S2 : (x, y, z, t) �→ (1, θ, ϕ)

corresponds to the first Hopf fibration S3 S1−→ S2 of compact fibre S1. Any qubit as given by Equation (4)
can be represented by a point on the Bloch sphere. Table 1 gives the correspondence between some
remarkable qubits |ψ〉 and points on the Bloch sphere. Any unitary transformation acting on a qubit
|ψ〉 corresponds to a rotation around an axis passing through the centre of the Bloch sphere.

Table 1. Correspondence between qubits |ψ〉 = cos θ
2 |0〉 + eiϕ sin θ

2 |1〉 and points (ξ = sin θ cos ϕ,
η = sin θ sin ϕ, ζ = cos θ) of the Bloch sphere S2 in R3.

|ψ〉 |0〉 |1〉 1√
2
(|0〉+ |1〉) 1√

2
(|0〉 − |1〉) 1√

2
(|0〉+ i|1〉) 1√

2
(|0〉 − i|1〉)

(ξ, η, ζ) (0, 0, 1) (0, 0,−1) (1, 0, 0) (−1, 0, 0) (0, 1, 0) (0,−1, 0)

Note that the sets

B0 =

{ |0〉+ |1〉√
2

,
|0〉 − |1〉√

2

}
, B1 =

{ |0〉+ i|1〉√
2

,
|0〉 − i|1〉√

2

}
, B2 = {|0〉, |1〉} (5)

112

Mathematics 2018, 6, 273

appearing in Table 1 are three orthonormal bases of the space C2. In addition, the vectors in B0, B1 and
B2 are eigenvectors of the Pauli matrices σ1, σ2 and σ3 (defined in Equation (9) below), respectively.
The bases B0, B1 and B2 constitute the simplest example of the so-called MUBs to be studied in
Section 3.

2.2.2. Qudits

The generalisation from the two-dimensional Hilbert space C2 to the d-dimensional Hilbert space
Cd (d > 2) is immediate. Given an orthonormal basis (called the computational basis)

Bd = {|n〉 : n = 0, 1, · · · , d− 1} (6)

of Cd, any normalized vector

|ψ〉 =
d−1

∑
n=0

cn|n〉,
d−1

∑
n=0

|cn|2 = 1, ci ∈ C, i = 0, 1, · · · , d− 1

is called a qudit. From the point of view of quantum mechanics, the states |n〉 can be realized as
generalized angular momentum states with

|n〉 = |j, m〉, n = j−m, d = 2j + 1 (7)

where for fixed j, the index m takes the values −j,−j + 1, · · · , j. This yields the correspondence

|0〉 = |j, j〉, |1〉 = |j, j− 1〉, · · · , |d− 1〉 = |j,−j〉

between qudits and angular momentum states. (Let us recall that the angular momentum state |j, m〉 is a
common eigenstate of the square J2 of a generalized angular momentum and of the z-component Jz of
the angular momentum.) Therefore, |ψ〉 can be re-written

|ψ〉 =
j

∑
m=−j

dj−m|j, m〉

in the angular momentum basis {|j, m〉 : m = −j,−j + 1, · · · , j}. For instance, a qutrit |ψ〉 can
be written

|ψ〉 = c0|0〉+ c1|1〉+ c2|2〉
in the ternary basis {|0〉, |1〉, |2〉} or

|ψ〉 = d2|1,−1〉+ d1|1, 0〉+ d0|1, 1〉

in the balanced basis {|1,−1〉, |1, 0〉, |1, 1〉} associated with the angular momentum j = 1.

113

Mathematics 2018, 6, 273

2.2.3. Qudits with d = 2N

In the case where d = 2N , the corresponding qudits can be obtained from tensor products.
For example, for d = 4 a basis of C4 ∼ C2 ⊗C2 is

|0〉 ⊗ |0〉 =
(

1
0

)
⊗
(

1
0

)
=

⎛⎜⎜⎜⎝
1
0
0
0

⎞⎟⎟⎟⎠ , |0〉 ⊗ |1〉 =
(

1
0

)
⊗
(

0
1

)
=

⎛⎜⎜⎜⎝
0
1
0
0

⎞⎟⎟⎟⎠

|1〉 ⊗ |0〉 =
(

0
1

)
⊗
(

1
0

)
=

⎛⎜⎜⎜⎝
0
0
1
0

⎞⎟⎟⎟⎠ , |1〉 ⊗ |1〉 =
(

0
1

)
⊗
(

0
1

)
=

⎛⎜⎜⎜⎝
0
0
0
1

⎞⎟⎟⎟⎠
Then, the most general quartit |ψ〉 is made of the superposition of tensor products of two qubits.

In detail, we have

|ψ〉 = a|0〉 ⊗ |0〉+ b|0〉 ⊗ |1〉+ c|1〉 ⊗ |0〉+ d|1〉 ⊗ |1〉

where a, b, c, d ∈ C (usually, in |i〉 ⊗ |j〉 the state |i〉 refers to the first qubit and |j〉 to the second).
It is interesting to remark that the vectors |ψ〉 for d = 2, 22 and 23 are associated with the Hopf

fibrations S3 S1−→ S2 (connected to complex numbers), S7 S3−→ S4 (connected to quaternions) and

S15 S7−→ S8 (connected to octonions). Entanglement for d = 22 and 23 can be discussed in terms of
fibrations on spheres [21]. In the same vein, we may ask the question of the interest for entanglement
of Cayley-Dickson algebras for d = 2N with N > 3 and of fibrations on hyperboloids [13].

2.3. Physical Realizations of Qubits

According to R. Landauer, information is physical so that qubits are realised by quantum systems,
more specifically by two-level quantum systems, the qubits |0〉 and |1〉 corresponding to two different
(energy) levels. We shall not be concerned here with the physical realization of qubits (and qudits). It is
enough to say that any two-level quantum system may be considered as a qubit. Therefore, qubits can
be carried out by nuclear spins, ultra-cold trapped ions, neutral atoms and Bose-Einstein condensates,
two different polarizations of a photon, and Josephson tunnel nanojunctions. For instance, in nuclear
magnetic resonance, the nuclear spins of an atom in an organic molecule can be aligned (giving the
state |0〉) or anti-aligned (giving the state |1〉) with an applied constant magnetic field; in generalized
angular momentum terminology, we have the quantum states given by Equation (3) and corresponding
to the spin j = 1

2 . Similarly, for an ion cooled and trapped by electric fields in a cavity, qubits can be
implemented as electronic states (ground state for |0〉, excited state for |1〉). Vibrational states can also
be used for realizing qubits (zero-phonon state for |0〉, one-phonon state for |1〉).

2.4. Entanglement

2.4.1. Generalities

Entanglement occurs only in quantum physics. It has no analogue in classical physics. The notion
of entanglement goes back to the famous paper by Einstein, Poldosky and Rosen. In quantum physics,
two (or more than two) particles are said to be entangled if the quantum state of each particle depends
of the quantum state(s) of the other(s) or cannot be described independently of the quantum state(s)
of the other(s). In other words, there exist correlations between the physical properties of a system
of entangled particles. More generally, two entangled sub-systems S1 and S2 are not independent so
that the global system {S1, S2} must be considered as a whole even after separation by an arbitrary
distance. Then, a measurement made on one sub-system gives an information on the other (without

114

Mathematics 2018, 6, 273

measurement on the other sub-system). On the contrary, for a non entangled system consisting of
two sub-systems, a measurement on one sub-system does not give in general an information on the
other sub-system.

As an example, let us consider a system consisting of two particles, system having a total spin
equal to 0. If the spin of one particle is measured to be 1

2 on a certain axis, then we know (without any
measurement) that the spin on the other particle on the same axis is − 1

2 because

0 =
1
2
− 1

2

The two particles are not independent, even after separation. They still behave like an indivisible
system of spin 0.

Entanglement contradicts the principle of locality. There is non locality in the sense that what
happens in some place depends of what happens in another place. Indeed, quantum mechanics is a
non local, non deterministic and linear physical theory.

2.4.2. Entanglement of Qubits

In quantum information, the notion of entanglement occurs for multi-qubit systems. Let us
consider a two-qubit system. There are two possibilities.

• The system is non entangled (or separable); it is then described by a state |ψs〉 ∈ C2⊗C2 such that

|ψs〉 = (a|0〉+ b|1〉)⊗ (c|0〉+ d|1〉)

which can be re-written as

|ψs〉 = ac|0〉 ⊗ |0〉+ ad|0〉 ⊗ |1〉+ bc|1〉 ⊗ |0〉+ bd|1〉 ⊗ |1〉

where a|0〉+ b|1〉 and c|0〉+ d|1〉 refer to the first and second qubit, respectively.
• The system is entangled (or non separable); it is then described by a state |ψns〉 ∈ C4 such that

|ψs〉 = A|0〉 ⊗ |0〉+ B|0〉 ⊗ |1〉+ C|1〉 ⊗ |0〉+ D|1〉 ⊗ |1〉

cannot be written as the tensor product of two qubits in C2.

It is clear that a necessary and sufficient condition for an arbitrary two-qubit state

|ψ〉 = α|0〉 ⊗ |0〉+ β|0〉 ⊗ |1〉+ γ|1〉 ⊗ |0〉+ δ|1〉 ⊗ |1〉

of C4 to be non entangled is
αδ− βγ = 0

Therefore, if αδ− βγ �= 0, then the state is entangled. The degree of entanglement of an arbitrary
normalized two-qubit state |ψ〉 is characterized by the concurrence defined by

C = |αδ− βγ|, 0 ≤ C ≤ 1
2

(8)

Non entangled states correspond to C = 0, maximally entangled states to C = 1
2 . (A maximally

entangled state is such that the density operator for each qubit is half the identity operator;
it corresponds to a maximum value of the entropy.) Equation (8) can be straightforwardly generalized
to the case

|ψ〉 =
d−1

∑
i=0

d−1

∑
j=0

aij|i〉 ⊗ |j〉

115

Mathematics 2018, 6, 273

of two qudits for which the concurrence C is defined as

C = det(aij), 0 ≤ C ≤ 1√
dd

in agreement with Equation (8) for d = 2.

Example 1. Let us consider the four states (⊕ stands for the addition modulo 2)

|βxy〉 = 1√
2
[|0〉 ⊗ |y〉+ (−1)x|1〉 ⊗ |y⊕ 1〉], x, y = 0, 1

called Bell states (in reference to the work on the so-called Bell inequalities) or EPR pairs (in reference to the
paper by Einstein, Poldosky and Rosen). As a particular case

|β01〉 = 1√
2
(|0〉1 ⊗ |1〉2 + |1〉1 ⊗ |0〉2)

where the first qubit (qubit 1) and the second one (qubit 2) are clearly emphasized in order to avoid confusion.
The result of a measurement of the qubit 1 gives

• either |0〉1 (with the probability 1
2) so that the qubit 2 is a priori (without measurement) in the state |1〉2

• or |1〉1 (with the probability 1
2) so that the qubit 2 is a priori (without measurement) in the state |0〉2

but no measurement can lead to both qubits 1 and 2 in the same state (|0〉 or |1〉). The result of a measurement of
the qubit 1 provides information on the qubit 2 and reciprocally. It is then unnecessary to make a measurement
of one qubit once the result of the measurement of the other is known. Similar conclusions can be obtained
for the three other Bell states β00, β10 and β11. The four Bell states are maximally entangled (they correspond
to C = 1

2).
In passing note that

|βxy〉 = (−1)xy[(σ1)
y(σ3)

x]⊗ σ0|β00〉
where σ0, σ1 and σ3 are three of the four Pauli matrices

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ3 =

(
1 0
0 −1

)
, σ2 = iσ1σ3 =

(
0 −i
i 0

)
(9)

Thus, any Bell state |βxy〉 can be obtained from |β00〉.

Example 2. Let us consider the separable state

|ψ〉 = (a|0〉+ b|1〉)⊗ 1√
5
(|0〉+ 2|1〉) = 1√

5
(a|0〉 ⊗ |0〉+ 2a|0〉 ⊗ |1〉+ b|1〉 ⊗ |0〉+ 2b|1〉 ⊗ |1〉)

tensor product of two normalized qubits. A measurement of the first qubit gives either |0〉 with the probability
|a|2 = | a√

5
|2 + | 2a√

5
|2 or |1〉 with the probability |b|2 = | b√

5
|2 + | 2b√

5
|2 while a measurement of the second

qubit gives either |0〉 with the probability 1
5 = | a√

5
|2 + | b√

5
|2 or |1〉 with the probability 4

5 = | 2a√
5
|2 + | 2b√

5
|2.

Therefore, a measurement on one qubit does not provide information on the other qubit (the state |ψ〉 corresponds
to C = 0).

It is important to realize that entanglement of qubits (as in Example 1) and more generally of
qudits has no analogue for classical bits. To be clear, the bits in 00 or 01 or 10 or 11 are not correlated.
This is not the case for the quantum bits in any of the Bell states βxy.

116

Mathematics 2018, 6, 273

2.5. Quantum Gates

2.5.1. One-Qubit Gates

In a classical computer, bits are handled with the help of logic gates (there exist seven basic
logic gates: AND, OR, XOR, NOT, NAND, NOR, and XNOR). A quantum computer processes qubits
arranged in registers. It is equipped with quantum gates which perform unitary transformations
on qubits. Quantum gates can be represented by unitary matrices. Table 2 gives some examples of
quantum gates [G] for one-qubit systems together with their matrix representations G. The actions of
the one-qubit gates of Table 2 on the qubit |x〉 (with x = 0 or 1) are given by

|x〉 → [I]→ |x〉, |x〉 → [NOT]→ |x⊕ 1〉
|x〉 → [Sθ]→ eixθ |x〉, |x〉 → [H]→ 1√

2
(|0〉+ (−1)x|1〉) ≡ 1√

2
(|x⊕ 1〉+ (−1)x|x〉)

(as an example, the quantum circuit |x〉 → [Sθ] → eixθ |x〉 is described by the action Sθ |x〉 = eixθ |x〉).
Therefore, by linearity

a|0〉+ b|1〉 → [NOT]→ b|0〉+ a|1〉
a|0〉+ b|1〉 → [Sθ]→ a|0〉+ eiθb|1〉

a|0〉+ b|1〉 → [H]→ 1√
2
(a + b)|0〉+ 1√

2
(a− b)|1〉

a|0〉+ b|1〉 → [H]→ [H]→ a|0〉+ b|1〉

(the last circuit reflects that H2 = I). Note that the most general qubit can be obtained from the
sequence [H]→ [S2θ]→ [H]→ [S π

2 +ϕ] of one-qubit gates since

|0〉 → [H]→ [S2θ]→ [H]→ [S π
2 +ϕ]→ cos θ|0〉+ eiϕ sin θ|1〉

or
S π

2 +ϕHS2θ H|0〉 = cos θ|0〉+ eiϕ sin θ|1〉
up to the phase factor eiθ .

Table 2. Four basic quantum gates for one-qubit systems; the gates [I] and [NOT] also denoted [X] are
associated with the Pauli matrices σ0 or I and σ1 or σx, respectively; the two other Pauli matrices σ2 or
σy and σ3 or σz define two further one-qubit gates denoted as [Y] and [Z], respectively.

Gate [G] Identity Gate [I] Not Gate [NOT] Phase Gate [Sθ] Hadamard Gate [H]

matrix form G I =
(

1 0
0 1

)
NOT =

(
0 1
1 0

)
Sθ =

(
1 0
0 eiθ

)
H = 1√

2

(
1 1
1 −1

)

2.5.2. Multi-Qubit Gates

Quantum gates for two-qubit systems are important. For example, let us mention the
controlled-NOT gate [CNOT] defined via

|x〉 ⊗ |y〉 → [CNOT]→ |x〉 ⊗ |y⊕ x〉

or in operator form
CNOT |x〉 ⊗ |y〉 = |x〉 ⊗ |y⊕ x〉

117

Mathematics 2018, 6, 273

where the first input qubit |x〉 and the second input qubit |y〉 are called control qubit and target qubit,
respectively. Here, the corresponding quantum circuit has two inputs (|x〉 and |y〉) and two outputs
(|x〉 and |y⊕ x〉). In matrix form, we have the permutation matrix

CNOT =

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎟⎠
Clearly, (CNOT)

2 = I. Note that

CNOT |x〉 ⊗ |0〉 = |x〉 ⊗ |x〉 (10)

where x = 0 or 1; however, this result does not mean that an arbitrary state |ψ〉 = a|0〉+ b|1〉 can be
cloned by using the gate [CNOT] since we generally have (see Section 2.6)

CNOT |ψ〉 ⊗ |0〉 �= |ψ〉 ⊗ |ψ〉

to be compared with Equation (10). Note also that

|x〉 ⊗ |y〉 → [H⊗ I]→ [CNOT]→ |βxy〉

or
|βxy〉 = CNOT(H ⊗ I)|x〉 ⊗ |y〉

that shows the interest of the gate [CNOT] for producing Bell states (i.e., entangled states) from non
entangled states. (By [H⊗ I], we mean that the quantum gates [H] and [I] act on |x〉 and |y〉, respectively.
Hence, H ⊗ I stands for the direct product of the matrices H and I.)

More generally, the quantum gate [Uf] is defined through

|x〉 ⊗ |y〉 → [Uf]→ |x〉 ⊗ |y⊕ f (x)〉

or in an equivalent way
Uf |x〉 ⊗ |y〉 = |x〉 ⊗ |y⊕ f (x)〉

where f stands for the function f : {0, 1} → {0, 1}. Clearly, (Uf)
2 = I.

Another important two-qubit gate is the controlled phase gate [CPθ] such that

|x〉 ⊗ |y〉 → [CPθ]→ |x〉 ⊗ eixyθ |y〉

or
CPθ |x〉 ⊗ |y〉 = |x〉 ⊗ eixyθ |y〉

with

CPθ =

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiθ

⎞⎟⎟⎟⎠
Note that

[CNOT] = [I⊗H]→ [CP π
2
]→ [CP π

2
]→ [I⊗H]

so that the gate [CNOT] can be obtained from the gates [I ⊗ H] and [CP π
2

].
There exist other two-qubit gates. Moreover, use is also made of n-qubit gates (n > 2).

The advantage of the quantum gates over the classical logic gates is that all the quantum gates

118

Mathematics 2018, 6, 273

are reversible or invertible due to the unitary property of the matrices representing quantum gates;
this is not always the case for classical logic gates.

The preceding examples are sufficient for illustrating how works the algorithm set up by Deutsch
and Jozsa [1].

2.5.3. Quantum Computing Algorithms

The Deutsch-Jozsa algorithm addresses the following problem: to find with only one measurement
if the function

f : {0, 1}⊗n → {0, 1}
is constant or balanced (f is balanced means either f (0) = 0 and f (1) = 1 or f (0) = 1 and f (1) = 0;
f is constant means f (0) = f (1) = 0 or 1). The classical algorithm requires 2n−1 + 1 evaluations of f
whereas only one measurement is necessary in order to get the answer. For n = 1, the proof based on
the quantum circuit [H⊗H]→ [Uf]→ [H⊗ I] of two-qubit gates is as follows. It is easy to show that

|0〉 ⊗ |1〉 → [H⊗H]→ [Uf]→ [H⊗ I]→ |x〉 ⊗ |y〉

alternatively
|x〉 ⊗ |y〉 = (H ⊗ I)Uf (H ⊗ H)|0〉 ⊗ |1〉

where

|x〉 ⊗ |y〉 = ±|0〉 ⊗ 1√
2
(|0〉 − |1〉) if f is constant

|x〉 ⊗ |y〉 = ±|1〉 ⊗ 1√
2
(|0〉 − |1〉) if f is balanced

Then, the result of a single measurement of the first output qubit can be⎧⎪⎪⎨⎪⎪⎩
|0〉 ⇒ f is constant

or

|1〉 ⇒ f is balanced

Therefore, a single measurement (instead of two in the classical case) is sufficient for getting the
answer. The Deutsch-Jozsa algorithm is of little interest. However, it shows the superiority of the
quantum approach on the classical one (namely, only one measurement instead of 2n−1 + 1 evaluations
in the general case where f : {0, 1}⊗n → {0, 1}).

Let us briefly mention two other historical algorithms, viz, the Shor algorithm and the Grover
algorithm [1]. The Shor algorithm concerns the search of the period of a periodic function and is
used for the factorization of a composite integer into prime factors. It constitutes an alternative to the
classical RSA code. The Grover algorithm makes it possible to find an item in an unstructured data
basis consisting of n entries; the quantum speed up for this algorithm is n → √

n (O(n) researches for
the classical case and O(

√
n) for the quantum case). The two preceding algorithms are based on the

massive quantum parallelism. They formally show the superiority of a (still hypothetical) quantum
computer on a classical one. The present evolution is towards quantum cryptography.

2.6. No-Cloning Theorem

We may ask the question: does there exist a unitary operator (or quantum gate) U such that

U|ψ〉 ⊗ |0〉 = |ψ〉 ⊗ |ψ〉 (11)

119

Mathematics 2018, 6, 273

where |ψ〉 = a|0〉+ b|1〉 is an arbitrary qubit. As a consequence of the linearity of quantum mechanics,
the answer is no: it is not possible to clone an arbitrary qubit |ψ〉 [8]. This result can be proved in the
following way. Suppose that there exists U such that Equation (11) is true. Then, by linearity

U|ψ〉 ⊗ |0〉 = U(a|0〉+ b|1〉)⊗ |0〉
= U(a|0〉 ⊗ |0〉+ b|1〉 ⊗ |0〉)

(12)
= aU|0〉 ⊗ |0〉+ bU|1〉 ⊗ |0〉
= a|0〉 ⊗ |0〉+ b|1〉 ⊗ |1〉

On another side, we have

U|ψ〉 ⊗ |0〉 = |ψ〉 ⊗ |ψ〉
= (a|0〉+ b|1〉)⊗ (a|0〉+ b|1〉) (13)

= a2|0〉 ⊗ |0〉+ ab(|0〉 ⊗ |1〉+ |1〉 ⊗ |0〉) + b2|1〉 ⊗ |1〉

Compatibility between Equations (12) and (13) yields

a2 = a (⇒ a = 0, 1), b2 = b (⇒ b = 0, 1), ab = 0 (⇒ a = 0 or b = 0)

The sole solutions are (a = 1, b = 0) and (a = 0, b = 1) in agreement with Equation (10). There are
no solution in the general case. This proves the no-cloning theorem (a theorem that does not have an
analogue in classical information).

Another way to understand this result is to realize that in order to clone an arbitrary state
|ψ〉 = a|0〉 + b|1〉 one must measure it so that one gets |0〉 or |1〉, two states that differ from |ψ〉
in general.

2.7. Quantum Teleportation

It is not possible to clone an arbitrary quantum state. However, it is feasible to teleporte it,
i.e., to transfer it from one place to another without an effective transportation. In other words,
without a material transportation of a qubit, it is possible to transmit at distance the information
contained in the qubit. We shall not deal here with some physical device making teleportation possible.
We shall rather limit ourselves to the corresponding quantum algorithm [15].

Suppose someone, Alice, wants to send a qubit |ψ〉 = a|0〉+ b|1〉 (for which she does not know a
and b) to somebody, Bob, by a quantum circuit and the possibility of using a classical communication
channel. The only requirement for Bob and Alice is to dispose of and EPR pair |β00〉, the first qubit of
which belongs to Alice and the second one to Bob. Thus, the entry |ϕ0〉 of the quantum circuit is

|ϕ0〉 = |ψ〉 ⊗ |β00〉
= (a|0〉1 + b|1〉1)⊗ 1√

2
(|0〉2 ⊗ |0〉3 + |1〉2 ⊗ |1〉3)

=
1√
2

[
a|0〉1 ⊗ (|0〉2 ⊗ |0〉3 + |1〉2 ⊗ |1〉3) + b|1〉1 ⊗ (|0〉2 ⊗ |0〉3 + |1〉2 ⊗ |1〉3)

]
=

1√
2

[
a(|0〉1 ⊗ |0〉2 ⊗ |0〉3 + |0〉1 ⊗ |1〉2 ⊗ |1〉3) + b(|1〉1 ⊗ |0〉2 ⊗ |0〉3 + |1〉1 ⊗ |1〉2 ⊗ |1〉3)

]

120

Mathematics 2018, 6, 273

where qubits 1 and 2 refer to the Alice qubit and qubit 3 to the Bob qubit. Then, Alice sends her qubits
to a controlled-NOT gate producing the state

|ϕ1〉 =
1√
2

[
a(|0〉1 ⊗ |0〉2 ⊗ |0〉3 + |0〉1 ⊗ |1〉2 ⊗ |1〉3) + b(|1〉1 ⊗ |1〉2 ⊗ |0〉3 + |1〉1 ⊗ |0〉2 ⊗ |1〉3)

]
=

1√
2

[
a|0〉1 ⊗ (|0〉2 ⊗ |0〉3 + |1〉2 ⊗ |1〉3) + b|1〉1 ⊗ (|1〉2 ⊗ |0〉3 + |0〉2 ⊗ |1〉3)

]
Next, qubit 1 goes to an Hadamard gate giving

|ϕ2〉 = 1
2
[
a(|0〉1 + |1〉1)⊗ (|0〉2 ⊗ |0〉3 + |1〉2 ⊗ |1〉3) + b(|0〉1 − |1〉1)⊗ (|1〉2 ⊗ |0〉3 + |0〉2 ⊗ |1〉3)

]
which can be re-arranged as

|ϕ2〉 =
1
2
[
(|0〉1 ⊗ |0〉2)⊗ (a|0〉3 + b|1〉3) + (|0〉1 ⊗ |1〉2)⊗ (a|1〉3 + b|0〉3)

+ (|1〉1 ⊗ |0〉2)⊗ (a|0〉3 − b|1〉3) + (|1〉1 ⊗ |1〉2)⊗ (a|1〉3 − b|0〉3)
]

Measurement of qubits 1 and 2 by Alice can give

|0〉1 ⊗ |0〉2 with the probability 1
4 , |0〉1 ⊗ |1〉2 with the probability 1

4

|1〉1 ⊗ |0〉2 with the probability 1
4 , |1〉1 ⊗ |1〉2 with the probability 1

4

Suppose Alice gets |0〉1 ⊗ |0〉2. Then, she communicates this result to Bob by a classical channel
(telephone or mail). Thus, Bob knows that |ψ〉 is a|0〉3 + b|1〉3. Should Alice have got |0〉1 ⊗ |1〉2 or
|1〉1 ⊗ |0〉2 or |1〉1 ⊗ |1〉2, then Bob would obtain a|0〉3 + b|1〉3 after the use of the gates [X] or [Z] or
[T] with T = ZX on the states a|1〉3 + b|0〉3 or a|0〉3 − b|1〉3 or a|1〉3 − b|0〉3, respectively. In all cases,
the qubit |ψ〉 = a|0〉+ b|1〉 has been teleported. This proof shows that entanglement (via the EPR pair)
plays a crucial role in teleportation.

3. Some Mathematical Aspects: Mutually Unbiased Bases

3.1. Introducing MUBs

3.1.1. Generalities about MUBs

Unitary operator bases in the Hilbert space Cd are of pivotal importance for quantum information
and quantum computing as well as for quantum mechanics in general. The interest for unitary operator
bases started with the seminal work by Schwinger [5]. In this connection, MUBs play a key role in
quantum information and quantum computing. Two distinct orthonormal bases of Cd are said to be
unbiased if and only if the modulus of the inner product of any vector of one basis with any vector of
the other one is equal to 1√

d
(see the detailed definition in Section 3.1.2).

MUBs proved to be useful in classical information theory (network communication
protocols) [17,47]. They play an important role in quantum mechanics as for the discrete Wigner
function [11,29,34,42,43,55,62], for the solution of the Mean King problem [20,26,33,34,43], for the
understanding of the Feynman path integral formalism [57,63] and potentially for studies of the
Weyl-Heisenberg group in connection with quantum optics. MUBs are of central importance in
quantum information theory as for instance in quantum state tomography (deciphering an unknown
quantum state) [38,56,77], quantum cryptography (secure quantum key exchange) [9,25] and quantum
teleportation [15]. Along this line, measurements corresponding to MUBs are appropriate for an
optimal determination of the density matrix of a quantum system and the use of MUBs ensure the
maximum of security for quantum communication (especially in the BB84 quantum cryptography

121

Mathematics 2018, 6, 273

protocol). Let us also mention that MUBs are connected with the notion of maximal entanglement of
quantum states a result of great importance for quantum computing.

Here, it is not our purpose to give some details about all the applications listed above.
The interested reader may consult the quoted original references for a full description of each
application. It is enough to say that a central common point to all the applications is given by
Equation (15) that reflects the uniform probability nature of the results of measurements using MUBs.
This is especially obvious in the BB84 protocol where the probability of detection of Eve (a spy) on a
quantum communication channel between Alice and Bob is maximum when Alice and Bob use MUBs.

There exist numerous ways of constructing sets of MUBs (e.g., see [58,64,65]). Most of them
are based on discrete Fourier transform over Galois fields and Galois rings [2,14,17,28–30,36,41,72],
discrete Wigner distribution [11,29,34,42,55], generalized Pauli spin matrices [22,23,27,30], mutually
orthogonal Latin squares [33,35], graph theory [74], finite and projective geometries [49,61], convex
polytopes [40], complex projective 2-designs [19,39,67], quantum angular momentum theory [44],
group theoretical methods [24,45,50,53], discrete phase states [68] and Hadamard matrices [73]. In this
section, from quantum theory of angular momentum theory (or, in mathematical terms, from the Lie
algebra A1 of the group SU(2) or SU(2,C) or SL(2,C)) we shall derive a formula for a complete set of
MUBs in dimension p with p prime. Moreover, we shall construct complete sets of MUBs in dimension
pm with p prime and m positive integer from the additive characters of the Galois field GF(pm) for p
odd and of the Galois ring GR(22, m) for p = 2.

3.1.2. Definition of MUBs

Definition 1. Let Ba and Bb two distinct orthonormal bases

Ba = {|aα〉 : α = 0, 1, · · · , d− 1}, Bb = {|bβ〉 : β = 0, 1, · · · , d− 1}

of the Hilbert space Cd. The bases Ba and Bb (a �= b) are said to be unbiased if and only if

∀α ∈ Zd, ∀β ∈ Zd : |〈aα|bβ〉| = 1√
d

(14)

where 〈 | 〉 denotes the inner product of Cd [5,6,10,11]. In other words, the inner product 〈aα|bβ〉 has a modulus
independent of α and β. The relation

|〈aα|bβ〉| = δa,bδα,β +
1√
d
(1− δa,b)

makes it possible to describe both the cases Ba = Bb and Ba �= Bb.

As a typical example, the bases B0, B1 and B2 of C2, see Equation (5), constitute a set of three
MUBS whose basis vectors are specific qubits.

3.1.3. Well-Known Results about MUBs

The main results concerning MUBs are [6,14,19,35,37]:

1. MUBs are stable under unitary or anti-unitary transformations. More precisely, if two unbiased
bases undergo the same unitary or anti-unitary transformation, they remain mutually unbiased.

2. The number N(d) of MUBs in Cd cannot exceed d + 1. Thus

N(d) ≤ d + 1

3. The maximum number d + 1 of MUBs is attained when d is a power pm (m ≥ 1) of a prime
number p. Thus

N(pm) = pm + 1

122

Mathematics 2018, 6, 273

4. When d is a composite number, N(d) is not known but it can be shown that

3 ≤ N(d) ≤ d + 1

As a more accurate result, for d = ∏i pmi
i with pi prime and mi positive integer, we have

min(pmi
i) + 1 ≤ N(d) ≤ d + 1

By way of illustration, let us mention the following cases.

• In the particular composite case d = 6 = 2× 3, we have

3 ≤ N(6) ≤ 7

and it was conjectured that N(6) = 3. Indeed, in spite of an enormous amount of computational
works, no more than three MUBs were found for d = 6.

• For d = 15 = 3× 5 and d = 21 = 3× 7, there are at least four MUBs.
• For d = 676 = 22 × 132, we have

22 + 1 = 5 ≤ N(676) ≤ 677

but it is known how to construct at least six MUBs.

A set of d + 1 MUBs in Cd is referred to as a complete set. Such sets exist for d = pm (p prime,
m positive integer) and this result opens the way to establish a link between MUBs and Galois fields
and/or Galois rings.

For d composite (different from a power of a prime), the question to know if there exist complete
sets in dimension d, i.e., to know if N(d) can be equal to d+ 1, is still an open problem (in 2018). Indeed,
for d different from a power of a prime, it was conjectured (SPR conjecture [32]) that the problem
of the existence of a set of d + 1 MUBs in Cd is equivalent to the problem of whether there exist a
projective plane of order d. As another conjecture for d composite (different from a power of a prime),
the problem of the existence of a set of d + 1 MUBs in Cd is equivalent to the one of the existence of a
decomposition of the Lie algebra of SU(d) into d + 1 Cartan subalgebras of dimension d− 1.

3.1.4. Interests of MUBs

MUBs are or relevance in advanced quantum mechanics. From a very general point of view,
MUBs are closely connected to the principle of complementarity introduced by Bohr in the early days of
quantum mechanics. This principle, quite familiar in terms of observables like position and momentum,
tells that for two non-commuting observables, if we have a complete knowledge of one observable,
then we have a total uncertainty of the other. Equation (14) indicates that the development in the basis
Ba of any vector of the basis Bb is such that each vector of Ba appears in the development with the
probability 1

d . This is especially interesting when translated in terms of measurements, the bases Ba

and Bb corresponding to the (non-degenerate) eigenvectors of two non-commuting observables.
A significance of MUBs in terms of quantum measurements can be seen as follows. Let A and B

be two non-degenerate (i.e., with multiplicity-free eigenvalues) self-adjoint (or hermitian) operators
associated with two observables A and B of a quantum system with the Hilbert space Cd of dimension
d. Suppose that the eigenvectors of A and B yield two unbiased bases Ba and Bb, respectively. When the
quantum system is prepared in an eigenvector |bβ〉 of the observable B, no information can be obtained
from a measurement of the observable A. This result follows from the development in the basis Ba of
any vector of the basis Bb

|bβ〉 =
d−1

∑
α=0
|aα〉〈aα|bβ〉

123

Mathematics 2018, 6, 273

which shows that the d probabilities

|〈aα|bβ〉|2 =
1
d

, α, β = 0, 1, · · · , d− 1 (15)

of obtaining any state vector |aα〉 in a measurement of A are equal.
Indeed, the two operators A and B do not commute. The two corresponding observables A

and B are said to be complementary (Bohr’s principle of complementarity introduced in the early
days of quantum mechanics): a precise knowledge of one of them implies a total uncertainty of
the other (or, all possible results of measurements of the other one are equally probable). This can
be made more explicit through the generalized Heisenberg uncertainty principle. Let A and B be
two hermitian operators associated with two observables and |ψ〉 a vector of Cd. The generalized
Heisenberg uncertainty principle can be expressed as

ΔAΔB ≥ 1
2
|〈ψ|[A, B]−|ψ〉|

where [A, B]− = AB− BA and ΔO stands for the standard deviation

ΔO =
√
〈ψ|O2|ψ〉 − 〈ψ|O|ψ〉2

of the operator O = A or B. (The most familiar example is for d infinite. The position A = x and
the momentum B = px, along the x direction, of a particle are complementary observables. They
satisfy the commutation relations [x, px]− = ih̄, where h̄ is the Planck constant. Hence, ΔxΔpx ≥ 1

2 h̄
so that more precise is Δx more imprecise is Δpx and vice versa.) Therefore, if A and B correspond to
observables generating MUBs, then a precise knowledge of A yields a complete indeterminacy of B
and vice versa.

Note that

d + 1 =
d2 − 1
d− 1

is the number of different measurements to fully determine a quantum state for a quantum system
in dimension d. (This follows from the fact that a d× d density matrix, that is to say an Hermitian
matrix with a trace equal to 1, contains d2 − 1 real parameters and each measurement gives d− 1 real
parameters.) Note also that d2 − 1 and d− 1 are the number of generators and the rank of the special
unitary group SU(d) in d dimensions, respectively, and that for d = p (prime number) their ratio p + 1
is the number of disjoint sets of p− 1 commuting generators of SU(p).

The rest of the paper is structured in the following way. In Section 3.2, we give a complete
solution, based on a nonstandard approach to the Lie algebra of the group SU(2) (equivalently, to the
quantum theory of angular momentum), for the construction of MUBs in the case where d = p
is a prime number. Further developments are discussed in Section 3.3 in relation with Weyl pairs.
Sections 3.4 and 3.5 are concerned with the construction of MUBs from Galois fields (for d = pm,
a power of an odd prime number) and Galois rings (for d = 2m, a power of the even prime number),
respectively. (See Refs. [31,46,48] for the formalism of Galois quantum systems.)

3.2. Group-Theoretical Construction of MUBs

3.2.1. Standard Basis for SU(2)

Equation (7) shows that the vectors |n〉 (with n = 0, 1, · · · , d− 1) of the computational basis (6)
can be viewed as the basis vectors |j, m〉 (with m = j, j− 1, · · · ,−j) for the irreducible representation
(j) of SU(2) in the chain SU(2) ⊃ U(1). In the language of group theory (and quantum angular
momentum theory), the vector |j, m〉 is a common eigenvector of the Casimir operator J2 (the square of

124

Mathematics 2018, 6, 273

an angular momentum) and of a Cartan generator Jz (the z component of the angular momentum) of
the Lie algebra A1 of the group SU(2). More precisely, we have the eigenvalue equations

J2|j, m〉 = j(j + 1)|j, m〉, Jz|j, m〉 = m|j, m〉

with the orthonormality relations

〈j, m|j, m′〉 = δm,m′ , m, m′ = j, j− 1, · · · ,−j

In other words, the computational basis Bd can be visualized as the basis

B2j+1 = {|j, m〉 : m = j, j− 1, · · · ,−j}

known as the standard basis for the irreducible representation (j) of SU(2) or the angular momentum
basis corresponding to the angular momentum quantum number j, referred to as spin angular
momentum for j = 1

2 .

3.2.2. Nonstandard Bases for SU(2)

As far as the representation theory of SU(2) is concerned, we can replace the complete set {J2, Jz}
by another complete set of two commuting operators. For instance, we may consider the set {J2, va},
where the unitary operator va is defined by

va|j, m〉 =

⎧⎪⎪⎨⎪⎪⎩
|j,−j〉 if m = j

ω(j−m)a|j, m + 1〉 if m = j− 1, j− 2, · · · ,−j

where

ω = ei 2π
2j+1

is a primitive (2j + 1)-th root of unity and a is a fixed parameter in the ring Z2j+1. The operator va

takes its origin in a polar decomposition of the two generators E± = J± of the group SU(2). For fixed
a, the common eigenvectors of J2 and va provide an alternative basis to that given by the common
eigenstates of J2 and Jz. This can be made precise by the following result.

Proposition 1. For fixed j and a (with 2j ∈ N∗ and a ∈ Z2j+1), the 2j + 1 common eigenvectors of J2 and va

can be taken in the form

|jα; a〉 = 1√
2j + 1

j

∑
m=−j

ω
1
2 (j+m)(j−m+1)a+(j+m)α|j, m〉

with α = 0, 1, · · · , 2j. The corresponding eigenvalues of va are given by

va|jα; a〉 = ω ja−α|jα; a〉

Then, the spectrum of va is non-degenerate.

The inner product

〈jα; a|jβ; a〉 = δα,β, α, β = 0, 1, · · · , 2j

125

Mathematics 2018, 6, 273

shows that for fixed j and a

Ba = {|jα; a〉 : α = 0, 1, · · · , 2j}

is an orthonormal set which provides a nonstandard basis for the irreducible representation (j) of
SU(2). For fixed j, there exists 2j + 1 orthonormal bases Ba since a can take 2j + 1 distinct values
(a = 0, 1, · · · , 2j).

3.2.3. Bases in Quantum Information

We now go back to quantum information. By introducing

|aα〉 = |jα; a〉

together with the change of notations (7), the eigenvectors of va can be written as

|aα〉 = 1√
d

∑
n∈Zd

ω
1
2 (n+1)(d−n−1)a−(n+1)α|n〉

where ω = ei 2π
d . The vector |aα〉 satisfies the eigenvalue equation

va|aα〉 = ω
1
2 (d−1)a−α|aα〉

For fixed d and a, each eigenvector |aα〉 is a linear combination of the qudits |0〉, |1〉, · · · , |d− 1〉
and the basis

Ba = {|aα〉 : α = 0, 1, · · · , d− 1}

is an alternative to the computational basis Bd. For fixed d, we therefore have d + 1 remarkable bases
of the d-dimensional space Cd, namely, Bd and Ba for a = 0, 1, · · · , d− 1.

The operator va can be represented by a d-dimensional unitary matrix Va. The matrix Va, built on
the basis Bd with the ordering 0, 1, · · · , d− 1 for the lines and columns, reads

Va =

⎛⎜⎜⎜⎜⎜⎜⎝
0 ωa 0 · · · 0
0 0 ω2a · · · 0
...

...
... · · · ...

0 0 0 · · · ω(d−1)a

1 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎠
The eigenvectors of Va are

φ(aα) =
1√
d

∑
n∈Zd

ω
1
2 (n+1)(d−n−1)a−(n+1)αφn

with α = 0, 1, · · · , d− 1, where φn with n = 0, 1, · · · , d− 1 are the column vectors

φ0 =

⎛⎜⎜⎜⎜⎝
1
0
...
0

⎞⎟⎟⎟⎟⎠ , φ1 =

⎛⎜⎜⎜⎜⎝
0
1
...
0

⎞⎟⎟⎟⎟⎠ , · · · , φd−1 =

⎛⎜⎜⎜⎜⎝
0
0
...
1

⎞⎟⎟⎟⎟⎠

126

Mathematics 2018, 6, 273

representing the qudits |0〉, |1〉, · · · , |d − 1〉, respectively. The vectors φ(aα) satisfy the
eigenvalue equation

Vaφ(aα) = ω
1
2 (d−1)a−αφ(aα)

with the orthonormality relation
φ(aα)†φ(aβ) = δα,β

for α, β = 0, 1, · · · , d− 1.
The matrix Va can be diagonalized by means of the d-dimensional matrix Ha of elements

(Ha)nα =
1√
d

ω
1
2 (n+1)(d−n−1)a−(n+1)α

with the lines and columns of Ha arranged from left to right and from top to bottom in the order
n, α = 0, 1, · · · , d− 1. Indeed, by introducing the d× d permutation matrix

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0
0 0 0 · · · 0 1
0 0 0 · · · 1 0
...

...
... · · · ...

...
0 0 1 · · · 0 0
0 1 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
we can check that

(HaP)†Va(HaP) = ω
1
2 (d−1)a

⎛⎜⎜⎜⎜⎝
ω0 0 · · · 0
0 ω1 · · · 0
...

... · · · ...
0 0 · · · ωd−1

⎞⎟⎟⎟⎟⎠
from which we recover the eigenvalues of Va. Note that the complex matrix Ha is a unitary matrix
for which each entry has a modulus equal to 1√

d
. Thus, Ha is a generalized Hadamard matrix.

This establishes a connection between MUBs and Hadamard matrices [35,51,52,60,64,66,73].

3.2.4. MUBs for d = p (p Prime)

Going back to the case where d is arbitrary, we now examine an important property for the couple
(Ba, Bd) and its generalization to couples (Ba, Bb) with b �= a (a, b = 0, 1, · · · , d− 1). For fixed d and a,
we verify that

|〈n|aα〉| = 1√
d

, n, α = 0, 1, · · · , d− 1

which shows that Ba and Bd are two unbiased bases of the Hilbert space Cd.
Other examples of unbiased bases can be obtained for d = 2 and 3. We easily check that the bases

B0 and B1 for d = 2 are unbiased. Similarly, the bases B0, B1 and B2 for d = 3 are mutually unbiased.
Therefore, by taking into account the computational basis Bd, we end up with d + 1 = 3 MUBs for
d = 2 and d + 1 = 4 MUBs for d = 3. This is in agreement with the general result according to which,
in dimension d, the maximum number d + 1 of MUBs is attained when d is a prime number or a power
of a prime number. The results for d = 2 and 3 can be generalized through the following proposition.

127

Mathematics 2018, 6, 273

Proposition 2. For d = p, p a prime number, the bases B0, B1, · · · , Bp form a complete set of p + 1
MUBs. The p2 vectors |aα〉, with a, α = 0, 1, · · · , p − 1, of the bases B0, B1, · · · , Bp−1 are given by a
single formula, namely

|aα〉 = 1√
p ∑

n∈Fp

ω
1
2 (n+1)(p−n−1)a−(n+1)α|n〉, ω = ei 2π

p (16)

that gives the p basis vectors for each basis Ba. In matrix form, |aα〉 and |n〉 are replaced by φ(aα) and
φn, respectively.

Proof. First, the computational basis Bp is clearly unbiased to any of the p bases B0, B1, · · · , Bp−1.
Second, let us consider

〈aα|bβ〉 = 1
p

p−1

∑
k=0

ei π
p {(a−b)k2+[(b−a)p+2(β−α)]k}

for b �= a. The inner product 〈aα|bβ〉 can be rewritten by making use of the generalized quadratic
Gauss sum [18]

S(u, v, w) =
|w|−1

∑
k=0

ei π
w (uk2+vk)

where u, v and w are integers such that u and w are co-prime, uw is non-vanishing and uw + v is even.
This leads to

〈aα|bβ〉 = 1
p

S(u, v, w), u = a− b, v = −(a− b)p− 2(α− β), w = p

It can be shown that |S(u, v, w)| = √p. Consequently

|〈aα|bβ〉| = 1√
p

for b �= a and α, β = 0, 1, · · · , p− 1. This completes the proof.

In many of the papers dealing with the construction of MUBs for d = p a prime number or d = pm

a power of a prime number, the explicit derivation of the bases requires the diagonalization of a set of
matrices. Equation (16) arises from the diagonalization of a single matrix. It allows to derive in one
step the p(p + 1) vectors (or qupits, i.e., qudits with d = p) of a complete set of p + 1 MUBs in Cp via a
single formula easily encodable on a classical computer.

Note that, for d arbitrary, the inner product 〈aα|bβ〉 can be rewritten as

〈aα|bβ〉 =
(

Ha
† Hb

)
αβ

in terms of the generalized Hadamard matrices Ha and Hb. In the case where d = p is a prime number,
we find that ∣∣∣∣(Ha

† Hb

)
αβ

∣∣∣∣ = |〈aα|bβ〉| = 1√
p

Therefore, the product Ha
† Hb is another generalized Hadamard matrix [64].

Finally note that the passage, given by Equation (16), from the computational basis Bp = {|n〉 :
n = 0, 1, · · · , p− 1} to the the basis B0 = {|0α〉 : α = 0, 1, · · · , p− 1} corresponds to a discrete Fourier
transform. Similarly, the passage from the basis Bp to the the basis Ba = {|aα〉 : α = 0, 1, · · · , p− 1}
with a = 1, 2, · · · , p− 1 corresponds to a quadratic discrete Fourier transform.

128

Mathematics 2018, 6, 273

Example 3. d = 2. In this case, relevant for a spin j = 1
2 or for a qubit, we have ω = eiπ and a, α ∈ F2.

The matrices of the operators va are

V0 =

(
0 1
1 0

)
= σ1, V1 =

(
0 −1
1 0

)
= −iσ2

The d + 1 = 3 MUBs B0, B1 and B2 are the following:

B0 : |00〉 = |0〉+ |1〉√
2

=
1√
2

(
1
1

)
, |01〉 = −|0〉 − |1〉√

2
= − 1√

2

(
1
−1

)

B1 : |10〉 = i
|0〉 − i|1〉√

2
=

i√
2

(
1
−i

)
, |11〉 = −i

|0〉+ i|1〉√
2

= − i√
2

(
1
i

)

B2 : |0〉 =
(

1
0

)
, |1〉 =

(
0
1

)

to be compared with Equation (5).

Example 4. d = 3. This case corresponds to an angular momentum j = 1 or to a qutrit. Here, we have
ω = ei 2π

3 and a, α ∈ F3. The matrices of the operators va are

V0 =

⎛⎜⎝0 1 0
0 0 1
1 0 0

⎞⎟⎠ , V1 =

⎛⎜⎝0 ω 0
0 0 ω2

1 0 0

⎞⎟⎠ , V2 =

⎛⎜⎝0 ω2 0
0 0 ω

1 0 0

⎞⎟⎠
The d + 1 = 4 MUBs B0, B1, B2 and B3 are the following:

B0 : |00〉 = |0〉+ |1〉+ |2〉√
3

, |01〉 = ω2|0〉+ ω|1〉+ |2〉√
3

, |02〉 = ω|0〉+ ω2|1〉+ |2〉√
3

B1 : |10〉 = ω|0〉+ ω|1〉+ |2〉√
3

, |11〉 = |0〉+ ω2|1〉+ |2〉√
3

, |12〉 = ω2|0〉+ |1〉+ |2〉√
3

B2 : |20〉 = ω2|0〉+ ω2|1〉+ |2〉√
3

, |21〉 = ω|0〉+ |1〉+ |2〉√
3

, |22〉 = |0〉+ ω|1〉+ |2〉√
3

B3 : |0〉, |1〉, |2〉

This can be transcribed in terms of column vectors as follows:

B0 : |00〉 = 1√
3

⎛⎜⎝1
1
1

⎞⎟⎠ , |01〉 = 1√
3

⎛⎜⎝ω2

ω

1

⎞⎟⎠ , |02〉 = 1√
3

⎛⎜⎝ ω

ω2

1

⎞⎟⎠
B1 : |10〉 = 1√

3

⎛⎜⎝ω

ω

1

⎞⎟⎠ , |11〉 = 1√
3

⎛⎜⎝ 1
ω2

1

⎞⎟⎠ , |12〉 = 1√
3

⎛⎜⎝ω2

1
1

⎞⎟⎠
B2 : |20〉 = 1√

3

⎛⎜⎝ω2

ω2

1

⎞⎟⎠ , |21〉 = 1√
3

⎛⎜⎝ω

1
1

⎞⎟⎠ , |22〉 = 1√
3

⎛⎜⎝ 1
ω

1

⎞⎟⎠
B3 : |0〉 =

⎛⎜⎝1
0
0

⎞⎟⎠ , |1〉 =

⎛⎜⎝0
1
0

⎞⎟⎠ , |2〉 =

⎛⎜⎝0
0
1

⎞⎟⎠

129

Mathematics 2018, 6, 273

To close this section, note that it is not necessary to treat separately the cases p odd and p even:
Equation (16) for |aα〉 is valid both for p even prime (p = 2) and for p odd prime. In the case where p
is odd, there exists a useful alternative formula to Equation (16) as shown in the next section.

3.2.5. MUBs for d = p (p Odd Prime)

In the special case where d = p is an odd prime number, the formula

|aα〉′ = 1√
p ∑

n∈Fp

ω(an+α)n|n〉, ω = ei 2π
p (17)

provides an alternative to Equation (16). Indeed, it can be shown that

Ba
′ = {|aα〉′ : α = 0, 1, · · · , p− 1}

where a can take any of the values 0, 1, · · · , p− 1 constitutes an orthonormal basis of Cd and that the p
bases Ba

′ (a = 0, 1, · · · , p− 1) form, with the computational basis Bp, a complete set of p + 1 MUBs.
The proof, based on the properties of Gauss sums, is analogous to that given in Section 3.2.4.

It is to be emphasized that for p even prime (p = 2) the bases B0
′, B1

′ and B2 do not form a
complete set of MUBs while the proposition given in Section 3.2.4 is valid for p odd prime and equally
well for p even prime. The interest of Equation (17) is that it can be easily extended in the case where
Fp is replaced by the Galois field GF(pm) with m > 1.

3.2.6. MUBs for d Power of a Prime

We may ask what becomes the proposition in Section 3.2.4 when the prime number p is replaced
by an arbitrary (not prime) number d. In this case, Equation (16), with p replaced by d, does not
provide a complete set of d + 1 MUBs. However, it is easy to verify that the bases B0, B1 and Bd are
three MUBs in Cd, in agreement with the well-known result according to which the number of MUBs
in Cd, with d arbitrary, is greater than or equal to 3.

Equation (16) for Cp can be used for deriving a complete set of pm + 1 MUBs in Cpm
(p prime and

m ≥ 2) by tensor products of order m of vectors in Cp. The general case is very much involved. Hence,
we shall limit ourselves to the case d = 22.

The case d = 4 corresponds to the spin angular momentum j = 3
2 . The four bases Ba for

a = 0, 1, 2, 3 consisting of the vectors |aα〉 calculated for d = 4 from Section 3.2.3 and the computational
basis B4 do not constitute a complete set of d + 1 = 5 MUBs. Nevertheless, it is possible to find
d + 1 = 5 MUBs because d = 22 is the power of a prime number. Indeed, another way to deal with the
search for MUBs in C4 is to consider two systems of qubits associated with the spin angular momenta
j1 = 1

2 ⇔ d1 = p = 2 and j2 = 1
2 ⇔ d2 = p = 2. Then, bases of C4 can be constructed from tensor

products |aα〉 ⊗ |bβ〉 which are eigenvectors of the operator va ⊗ vb, where va corresponds to the first
system of qubits and vb to the second one. Obviously, the set

Bab = {|aα〉 ⊗ |bβ〉 : α, β = 0, 1}

is an orthonormal basis of C4. Four of the five MUBs for d = 22 = 4 can be constructed from the
various bases Bab. It is evident that B00 and B11 are two unbiased bases since the modulus of the inner
product of |1α′〉 ⊗ |1β′〉 by |0α〉 ⊗ |0β〉 is

|〈0α|1α′〉〈0β|1β′〉| = 1√
4
=

1√
d

A similar result holds for the two bases B01 and B10. However, the four bases B00, B11, B01 and
B10 are not mutually unbiased. A possible way to overcome this no-go result is to keep the bases B00

130

Mathematics 2018, 6, 273

and B11 intact and to re-organize the vectors inside the bases B01 and B10 in order to obtain four MUBs.
We are thus left with the four bases

W00 ≡ B00, W11 ≡ B11, W01, W10

which together with the computational basis B4 give five MUBs. In detail, we have

W00 = {|0α〉 ⊗ |0β〉 : α, β = 0, 1}
W11 = {|1α〉 ⊗ |1β〉 : α, β = 0, 1}
W01 = {λ|0α〉 ⊗ |1β〉+ μ|0α⊕ 1〉 ⊗ |1β⊕ 1〉 : α, β = 0, 1}
W10 = {λ|1α〉 ⊗ |0β〉+ μ|1α⊕ 1〉 ⊗ |0β⊕ 1〉 : α, β = 0, 1}

where the addition ⊕ should be understood modulo 4; furthermore

λ =
1− i

2
, μ =

1 + i
2

and the vectors of type |aα〉 are given by Equation (16). As a résumé, only two formulas are necessary
for obtaining the d2 = 16 vectors |ab; αβ〉 for the bases Wab, namely

W00, W11 : |aa; αβ〉 = |aα〉 ⊗ |aβ〉
W01, W10 : |aa⊕ 1; αβ〉 = λ|aα〉 ⊗ |a⊕ 1β〉+ μ|aα⊕ 1〉 ⊗ |a⊕ 1β⊕ 1〉

for all a, α, β in F2. A simple development of W00, W11, W01 and W10 gives the following expressions.

The W00 basis:

|00; 00〉 =
1
2
(|0〉 ⊗ |0〉+ |0〉 ⊗ |1〉+ |1〉 ⊗ |0〉+ |1〉 ⊗ |1〉)

|00; 01〉 =
1
2
(|0〉 ⊗ |0〉 − |0〉 ⊗ |1〉+ |1〉 ⊗ |0〉 − |1〉 ⊗ |1〉)

|00; 10〉 =
1
2
(|0〉 ⊗ |0〉+ |0〉 ⊗ |1〉 − |1〉 ⊗ |0〉 − |1〉 ⊗ |1〉)

|00; 11〉 =
1
2
(|0〉 ⊗ |0〉 − |0〉 ⊗ |1〉 − |1〉 ⊗ |0〉+ |1〉 ⊗ |1〉)

or in column vectors

1
2

⎛⎜⎜⎜⎝
1
1
1
1

⎞⎟⎟⎟⎠ ,
1
2

⎛⎜⎜⎜⎝
1
−1
1
−1

⎞⎟⎟⎟⎠ ,
1
2

⎛⎜⎜⎜⎝
1
1
−1
−1

⎞⎟⎟⎟⎠ ,
1
2

⎛⎜⎜⎜⎝
1
−1
−1
1

⎞⎟⎟⎟⎠
The W11 basis:

|11; 00〉 =
1
2
(|0〉 ⊗ |0〉+ i|0〉 ⊗ |1〉+ i|1〉 ⊗ |0〉 − |1〉 ⊗ |1〉)

|11; 01〉 =
1
2
(|0〉 ⊗ |0〉 − i|0〉 ⊗ |1〉+ i|1〉 ⊗ |0〉+ |1〉 ⊗ |1〉)

|11; 10〉 =
1
2
(|0〉 ⊗ |0〉+ i|0〉 ⊗ |1〉 − i|1〉 ⊗ |0〉+ |1〉 ⊗ |1〉)

|11; 11〉 =
1
2
(|0〉 ⊗ |0〉 − i|0〉 ⊗ |1〉 − i|1〉 ⊗ |0〉 − |1〉 ⊗ |1〉)

131

Mathematics 2018, 6, 273

or in column vectors

1
2

⎛⎜⎜⎜⎝
1
i
i
−1

⎞⎟⎟⎟⎠ ,
1
2

⎛⎜⎜⎜⎝
1
−i
i
1

⎞⎟⎟⎟⎠ ,
1
2

⎛⎜⎜⎜⎝
1
i
−i
1

⎞⎟⎟⎟⎠ ,
1
2

⎛⎜⎜⎜⎝
1
−i
−i
−1

⎞⎟⎟⎟⎠
The W01 basis:

|01; 00〉 =
1
2
(|0〉 ⊗ |0〉+ |0〉 ⊗ |1〉 − i|1〉 ⊗ |0〉+ i|1〉 ⊗ |1〉)

|01; 11〉 =
1
2
(|0〉 ⊗ |0〉 − |0〉 ⊗ |1〉+ i|1〉 ⊗ |0〉+ i|1〉 ⊗ |1〉)

|01; 01〉 =
1
2
(|0〉 ⊗ |0〉 − |0〉 ⊗ |1〉 − i|1〉 ⊗ |0〉 − i|1〉 ⊗ |1〉)

|01; 10〉 =
1
2
(|0〉 ⊗ |0〉+ |0〉 ⊗ |1〉+ i|1〉 ⊗ |0〉 − i|1〉 ⊗ |1〉)

or in column vectors

1
2

⎛⎜⎜⎜⎝
1
1
−i
i

⎞⎟⎟⎟⎠ ,
1
2

⎛⎜⎜⎜⎝
1
−1

i
i

⎞⎟⎟⎟⎠ ,
1
2

⎛⎜⎜⎜⎝
1
−1
−i
−i

⎞⎟⎟⎟⎠ ,
1
2

⎛⎜⎜⎜⎝
1
1
i
−i

⎞⎟⎟⎟⎠
The W10 basis:

|10; 00〉 =
1
2
(|0〉 ⊗ |0〉 − i|0〉 ⊗ |1〉+ |1〉 ⊗ |0〉+ i|1〉 ⊗ |1〉)

|10; 11〉 =
1
2
(|0〉 ⊗ |0〉+ i|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉+ i|1〉 ⊗ |1〉)

|10; 01〉 =
1
2
(|0〉 ⊗ |0〉+ i|0〉 ⊗ |1〉+ |1〉 ⊗ |0〉 − i|1〉 ⊗ |1〉)

|10; 10〉 =
1
2
(|0〉 ⊗ |0〉 − i|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉 − i|1〉 ⊗ |1〉)

or in column vectors

1
2

⎛⎜⎜⎜⎝
1
−i
1
i

⎞⎟⎟⎟⎠ ,
1
2

⎛⎜⎜⎜⎝
1
i
−1

i

⎞⎟⎟⎟⎠ ,
1
2

⎛⎜⎜⎜⎝
1
i
1
−i

⎞⎟⎟⎟⎠ ,
1
2

⎛⎜⎜⎜⎝
1
−i
−1
−i

⎞⎟⎟⎟⎠
The computational basis:

|0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉

or in column vectors ⎛⎜⎜⎜⎝
1
0
0
0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0
1
0
0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0
0
1
0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0
0
0
1

⎞⎟⎟⎟⎠
It is to be noted that the vectors of the bases W00 and W11 are not entangled (i.e., each vector is the

tensor product of two vectors) while the vectors of the bases W01 and W10 are entangled (i.e., each vector

132

Mathematics 2018, 6, 273

is not the tensor product of two vectors). In fact, all the state vectors for W01 and W10 are maximally
entangled (the entanglement entropy is maximum for W01 and W10 and vanishes for W00 and W11).

Generalization of the formulas given above for two systems of qubits can be obtained in more
complicated situations (two systems of qupits, three systems of qubits, etc.). The generalization of the
bases W00 and W11 is immediate. The generalization of W01 and W10 can be achieved by taking linear
combinations of vectors such that each linear combination is made of vectors corresponding to the
same eigenvalue of the relevant tensor product of operators of type va.

3.3. Weyl Pairs

3.3.1. Shift and Phase Operators

Let us go back to the case d arbitrary. The matrix Va can be decomposed as

Va = XZa, a = 0, 1, · · · , d− 1

where

X =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 · · · 0
0 0 1 · · · 0
...

...
... · · · ...

0 0 0 · · · 1
1 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎠ , Z =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 · · · 0
0 ω 0 · · · 0
0 0 ω2 · · · 0
...

...
... · · · ...

0 0 0 · · · ωd−1

⎞⎟⎟⎟⎟⎟⎟⎠ , ω = ei 2π
d

The matrices X and Z satisfy

Zφn = ωnφn, n = 0, 1, · · · , d− 1, Xφn = φn−1 mod d =

⎧⎪⎪⎨⎪⎪⎩
φd−1, n = 0

φn−1, n = 1, 2, · · · , d− 1

The linear operators corresponding to the matrices X and Z are known in quantum information
as flip or shift and clock or phase operators, respectively. The unitary matrices X and Z ω-commute in
the sense that

XZ−ωZX = Od

In addition, they satisfy

Xd = Zd = Id

where Id and Od are the d-dimensional unity and zero matrices, respectively. The last two equations
show that X and Z constitute a so-called Weyl pair [3].

Note that the Weyl pair (X, Z) can be deduced from the master matrix Va via

X = V0, Z = V0
†V1

which shows a further interest of the matrix Va. Indeed, the matrix Va condensates all that can be done
with the matrices X and Z. This has been seen in Section 3.2.4 with the derivation of a single formula
for the determination from Va of a complete set of p + 1 MUBs when d = p is prime whereas many
other determinations of such a complete set needs repeated use of the matrices X and Z.

133

Mathematics 2018, 6, 273

A connection between X and Z can be deduced from the expression of (HaP)†Va(HaP) given in
Section 3.2.3. By taking a = 0, we obtain

(H0P)†X(H0P) = Z ⇔ X = (H0P)Z(H0P)†

where H0 is the matrix of a discrete Fourier transform that allows to pass from the vectors
φn (n = 0, 1, · · · , d− 1) to the vector φ(0, α) according to

φ(0, α) = ∑
n∈Zd

(H0)nα φn = (−1)α 1√
d

∑
n∈Zd

e−i 2π
d nαφn

cf. the expression of φ(a, α) in Section 3.2.3.

3.3.2. Generalized Pauli Matrices

For d arbitrary, let us define the matrices

Uab = XaZb, a, b ∈ Zd

The matrices Uab belong to the unitary group U(d). The d2 matrices Uab are called generalized
Pauli matrices in dimension d. They satisfy the trace relation

tr
(

Uab
†Ua′b′
)
= d δa,a′ δb,b′

Thus, the set {Uab : a, b ∈ Zd} of unitary matrices is an orthogonal set with respect to the
Hilbert-Schmidt inner product. Consequently, the d2 pairwise orthogonal matrices Uab can be used as
a basis of Cd×d.

Example 5. The case d = 2 ⇔ j = 1
2 (⇒ ω = eiπ and a, b = 0, 1) corresponds to the two-dimensional

ordinary Pauli matrices of quantum mechanics. The matrices XaZb are

I2 = X0Z0 =

(
1 0
0 1

)
, X = X1Z0 =

(
0 1
1 0

)
, Z = X0Z1 =

(
1 0
0 −1

)
, Y = X1Z1 =

(
0 −1
1 0

)

so that the matrices X and Z generate the ordinary Pauli matrices. Indeed, we have

I2 = σ0, X = V0 = σ1, Y = XZ = V1 = −iσ2, Z = σ3

in terms of the usual (Hermitian and unitary) Pauli matrices.

Example 6. The case d = 3 ⇔ j = 1 (⇒ ω = ei 2π
3 and a, b = 0, 1, 2) yields nine three-dimensional matrices.

More precisely, the matrices X and Z generate I3 = X0Z0 and

X = V0, X2, Z, Z2, XZ = V1, X2Z2, XZ2 = V2, X2Z

134

Mathematics 2018, 6, 273

In the detail, the matrices XaZb are

X0Z0 =

⎛⎜⎝1 0 0
0 1 0
0 0 1

⎞⎟⎠ , X0Z1 =

⎛⎜⎝1 0 0
0 ω 0
0 0 ω2

⎞⎟⎠ , X0Z2 =

⎛⎜⎝1 0 0
0 ω2 0
0 0 ω

⎞⎟⎠
X1Z0 =

⎛⎜⎝0 1 0
0 0 1
1 0 0

⎞⎟⎠ , X1Z1 =

⎛⎜⎝0 ω 0
0 0 ω2

1 0 0

⎞⎟⎠ , X1Z2 =

⎛⎜⎝0 ω2 0
0 0 ω

1 0 0

⎞⎟⎠
X2Z0 =

⎛⎜⎝0 0 1
1 0 0
0 1 0

⎞⎟⎠ , X2Z1 =

⎛⎜⎝0 0 ω2

1 0 0
0 ω 0

⎞⎟⎠ , X2Z2 =

⎛⎜⎝0 0 ω

1 0 0
0 ω2 0

⎞⎟⎠
They constitute a natural extension in dimension d = 3 of the usual Pauli matrices.

3.3.3. Weyl Pair and Groups

For arbitrary d, the Weyl pair (X = V0, Z = V†
0 V1) is a basic ingredient for generating the Pauli

group Pd in d dimensions and the Lie algebra of the linear group GL(d,C) in d dimensions, groups of
central interest in group theory, quantum mechanics and quantum information.

The Pauli group. For arbitrary d, let us define the matrices

Vabc = ωaUbc = ωaXbZc, a, b, c ∈ Zd, ω = ei 2π
d

The matrices Vabc are unitary and satisfy

tr
(

Vabc
†Va′b′c′
)
= ωa′−a d δb,b′ δc,c′

In addition, we have the following result.

Proposition 3. The set {Vabc : a, b, c ∈ Zd} is a finite group of order d3, denoted Pd, for the internal law
(matrix multiplication)

VabcVa′b′c′ = Va′′b′′c′′ , a′′ = a + a′ − cb′, b′′ = b + b′, c′′ = c + c′

It is a non-commutative (for d ≥ 2) nilpotent group with nilpotency class equal to 3.

The group Pd is called the Pauli group in dimension d. It is of considerable importance in quantum
information, especially for quantum computation and for quantum error-correcting codes. The group
Pd is a sub-group of the unitary group U(d). The normalizer of Pd in U(d) is called Clifford group
(denoted as Cd) in d dimensions. More precisely, Cd is the set {U ∈ U(d) : UPdU† = Pd} endowed
with matrix multiplication. The Pauli group Pd as well as any other invariant sub-group of Cd are
useful for quantum error-correcting codes in the case of N-qubit systems corresponding to d = 2N .

Moreover, the Pauli group is connected to the Heisenberg-Weyl group. In fact, the group Pd
corresponds to a discretization of the Heisenberg-Weyl group HW(R). From an abstract point of view,
the group HW(R) is the set S = {(x, y, z) : x, y, z ∈ R} equipped with the internal law S× S → S
defined via

(x, y, z)(x′, y′, z′) = (x + x′ − zy′, y + y′, z + z′)

135

Mathematics 2018, 6, 273

This group is a non-commutative Lie group of order 3. It is non-compact and nilpotent with a
nilpotency class equal to 3. The passage from HW(R) to Pd amounts to replace the infinite field R by
the finite ring Zd so that HW(R) gives HW(Zd) ≡ Pd.

The three generators of HW(R) are

H =
1
i

∂

∂x
, Q =

1
i

∂

∂y
, P =

1
i

(
∂

∂z
− y

∂

∂x

)
They satisfy the commutation relations

[Q, P]− = iH, [P, H]− = 0, [H, Q]− = 0

Therefore, the Lie algebra hw(R) of HW(R) is a three-dimensional nilpotent Lie algebra with
nilpotency class equal to 3. The commutation relations of Q, P and H are reminiscent of the Heisenberg
commutation relations. As a matter of fact, the Heisenberg commutation relations correspond to
an infinite-dimensional irreducible representation by Hermitian matrices of hw(R). The Lie algebra
hw(R) also admits finite-dimensional irreducible representations at the price to abandon the Hermitian
character of the representation matrices.

The linear group. The Weyl pair consisting of the generalized Pauli matrices X and Z in d
dimensions can be used for constructing a basis of the Lie algebra of U(d). More precisely, we have the
two following propositions.

Proposition 4. For arbitrary d, the set {XaZb : a, b ∈ Zd} forms a basis for the Lie algebra gl(d,C) of the
linear group GL(d,C) or for the Lie algebra u(d) of the unitary group U(d). The Lie brackets of gl(d,C) in
such a basis are

[XaZb, XeZ f]− = ∑
i∈Zd

∑
j∈Zd

(ab, e f ; ij)XiZj

with the structure constants

(ab, e f ; ij) = δi,a+eδj,b+ f

(
ω−be −ω−a f

)
where a, b, e, f , i, j ∈ Zd.

Note that the commutator [Uab, Ue f]− = UabUe f − Ue f Uab and the anti-commutator
[Uab, Ue f]+ = UabUe f + Ue f Uab of Uab and Ue f are given by

[Uab, Ue f]± =
(

ω−be ±ω−a f
)

Uij, i = a + e, j = b + f

Consequently, [Uab, Ue f]− = 0 if and only if a f − be = 0 (mod d) and [Uab, Ue f]+ = 0 if and only
if a f − be = 1

2 d (mod d). Therefore, all anti-commutators [Uab, Ue f]+ are different from 0 if d is an
odd integer.

Proposition 5. For d = p, with p a prime number, the simple Lie algebra sl(p,C) of the special linear group
SL(p,C) or its compact real form su(d) of the special unitary group SU(d) can be decomposed into a sum of
p + 1 Abelian subalgebras of dimension p− 1

sl(p,C) = V0 ⊕ V1 ⊕ · · · ⊕ Vp

where each of the p + 1 subalgebras V0,V1, · · · ,Vp is a Cartan subalgebra generated by a set of p − 1
commuting matrices.

136

Mathematics 2018, 6, 273

A similar result holds for d = pm, a power of a prime number [7,12,16,53,64].
The decomposition of sl(p,C), called orthogonal decomposition of sl(p,C), is trivial for p = 2.

In fact, for p = 2 we have the following decomposition

su(2) = σ1 ⊕ σ2 ⊕ σ3

in terms of vector space sum.

3.3.4. MUBs and the Special Linear Group

According to the orthogonal decomposition proposition, in the case where d = p is a prime
number (even or odd), the set {XaZb : a, b ∈ Zp} \ {X0Z0} of cardinality p2 − 1 can be partitioned
into p + 1 subsets containing each p− 1 commuting matrices.

As an example, let us consider the case d = 5. For this case, we are left with the six following sets
of four commuting matrices

V0 = {01, 02, 03, 04}, V1 = {10, 20, 30, 40}, V2 = {11, 22, 33, 44}
V3 = {12, 24, 31, 43}, V4 = {13, 21, 34, 42}, V5 = {14, 23, 32, 41}

where ab is used as an abbreviation of XaZb.
More generally, for d = p with p prime, the p + 1 sets of p− 1 commuting matrices are easily seen

to be

V0 = {X0Za : a = 1, 2, · · · , p− 1}
V1 = {XaZ0 : a = 1, 2, · · · , p− 1}
V2 = {XaZa : a = 1, 2, · · · , p− 1}
V3 = {XaZ2a : a = 1, 2, · · · , p− 1}

...

Vp−1 = {XaZ(p−2)a : a = 1, 2, · · · , p− 1}
Vp = {XaZ(p−1)a : a = 1, 2, · · · , p− 1}

Each of the p + 1 sets V0,V1, · · · ,Vp can be put in a one-to-one correspondence with one basis
of the complete set of p + 1 MUBs. In fact, V0 is associated with the computational basis while
V1,V2, · · · ,Vp are associated with the p remaining MUBs in view of

Va ∈ Va+1 = {XbZab : b = 1, 2, · · · , p− 1}, a = 0, 1, · · · , p− 1

More precisely, we have

Z ∈ V0, X ∈ V1, XZ ∈ V2, · · · , XZp−1 ∈ Vp

The eigenvectors of the p + 1 unitary operators

Z, X, XZ, · · · , XZp−1

generate p + 1 MUBs (one basis is associated with each of the p + 1 operators).

3.4. Galois Field Approach to MUBs

The existence of a complete set of pm + 1 MUBS in Cpm
(p prime and m positive integer) is an

indication of a possible utility of Galois fields and Galois rings for the construction of MUBs in Cpm

(p prime, m ≥ 2). Indeed, the passage from the case d = p to the case d = pm (p prime, m ≥ 2) can be

137

Mathematics 2018, 6, 273

achieved by considering the Galois field GF(pm) for p odd prime and the Galois ring GR(22, m) for
p = 2 [2,28]. In this section, we shall deal with the construction of a complete set of pm + 1 MUBs in
Cpm

, corresponding to the case of m qupits, via the use of the Galois field GF(pm) for p odd prime and
m greater than 1.

3.4.1. The Computational Basis

We first have to define the computational basis Bpm in the framework of GF(pm), p odd prime
and m ≥ 2. The vectors of the basis Bpm of the Hilbert space Cpm

can be labeled by the elements x of
the Galois field GF(pm). This can be done in two ways according to as the elements x are taken in the
monomial form (x = 0, α� with � = 1, 2, · · · , pm − 1) or in the polynomial form (x = [x0x1 · · · xm−1]

with x0, x1, · · · , xm−1 ∈ Fp). In both cases, we have

Bpm = {|0〉 or φ0, |1〉 or φ1, · · · , |pm − 1〉 or φpm−1}

in terms of vectors or column vectors. More precisely, this can be achieved as follows.

• In the monomial form, we define the vectors of Bpm via the correspondences

x = 0 �→ |0〉 or φ0, x = α� �→ |�〉 or φ� with � = 1, 2, · · · , pm − 1

where α is a primitive element of GF(pm).
• In the polynomial form, we can range the vectors of Bpm in the order 0, 1, · · · , pm − 1 by adopting

the lexicographical order for the elements [x0x1 · · · xm−1].

These notations are reminiscent of those employed for the computational basis

Bp = {|0〉 or φ0, |1〉 or φ1, · · · , |p− 1〉 or φp−1}

corresponding to the limit case m = 1.

3.4.2. Shift and Phase Operators for GF(pm)

The notion of Weyl pair can be extended to any Galois field GF(pm) with p (even or odd) prime
and m ≥ 2. Let x and y be two elements of GF(pm) and φy be the basis column vector of Bpm associated
with y. For fixed x, we define the matrices X̂x (shift operators) and Ẑx (phase operators) via the actions

X̂xφy = φy−x, Ẑxφy = χ(xy)φy = ei 2π
p Tr(xy)

φy

where y is arbitrary. One easily verifies the properties

X̂x+y = X̂xX̂y = X̂yX̂x, Ẑx+y = ẐxẐy = ẐyẐx

and
X̂xẐy − χ(xy)ẐyX̂x = Opm , χ(xy) = ei 2π

p Tr(xy)

In the limit case m = 1 (i.e., for the base field Fp) the matrices

X = X̂1, Z = Ẑ1

corresponding to x = y = 1 satisfy

XZ− ei 2π
p ZX = Op

to be compared with the relations satisfied by the Weyl pair (X, Z) defined in Section 3.3.1.

138

Mathematics 2018, 6, 273

3.4.3. Bases in the Frame of GF(pm)

We might use the Weyl pair (Xx, Zy) defined in the framework of GF(pm), see Section 3.4.2,
for determining a complete set of pm + 1 MUBs in Cpm

in a way similar to that used for m = 1 with the
help of the matrix Va for a in Fp. However, it is quicker to start from Equation (17) giving MUBs in Cp

in order to generate a formula for Cpm
giving back Equation (17) in Cp in the limit case m = 1. In this

direction, a possible way to pass from the basis vector

1√
p ∑

x∈Fp

ei 2π
p (ax+α)x|x〉

of Cp to a basis vector of Cpm
is to replace

ei 2π
p (ax+α)x, a, α, x ∈ Fp

by

χ(ax2 + αx) = ei 2π
p Tr(ax2+αx), a, α, x ∈ GF(pm)

where χ is the canonical additive character of GF(pm). This yields the two following propositions.

Proposition 6. For p odd prime and m ≥ 2, the set

Ba = {|aα〉 : α ∈ GF(pm)}

where
|aα〉 = 1√

pm ∑
x∈GF(pm)

ei 2π
p Tr(ax2+αx)|x〉, a ∈ GF(pm)

constitutes an orthonormal basis of Cpm
.

Proof. See the proof of the next proposition.

Note that for m = 1
Tr(ax2 + αx) = ax2 + αx

so that the vector |aα〉 coincides with the vector |aα〉′ derived in Section 3.2.5. This explains why we
chose to extend Equation (17) valid for Cp to the case Cpm

. Indeed, the same kind of extension applied
to Equation (16) is not possible since Tr[1

2 n(p− n)a + nα] does not make sense.

3.4.4. MUBs in the Frame of GF(pm)

Proposition 7. For p odd prime and m ≥ 2, the pm bases Ba, a ranging in GF(pm), constitute with the
computational basis Bpm a complete set of pm + 1 MUBs in Cpm

.

Proof. Let |aα〉 and |bβ〉 two vectors belonging to the bases Ba and Bb, respectively. We have

〈aα|bβ〉 = 1
pm ∑

x∈GF(pm)

ei 2π
p Tr[(b−a)x2+(β−α)x], a, b, α, β ∈ GF(pm)

By using [2,4,18]∣∣∣∣∣∣ ∑
x∈GF(pm)

ei 2π
p Tr(ux2+vx)

∣∣∣∣∣∣ = √pm, u ∈ GF(pm)∗, v ∈ GF(pm)

139

Mathematics 2018, 6, 273

(valid for p odd prime), we obtain

|〈aα|bβ〉| =

⎧⎪⎪⎨⎪⎪⎩
δα,β if b = a

1√
pm if b �= a

or in compact form

|〈aα|bβ〉| = δa,bδα,β +
1√
pm (1− δa,b)

which shows that Ba is an orthonormal basis and that the couple (Ba, Bb) with b �= a is a couple of
unbiased bases. Of course, each basis Ba is unbiased to the computational basis Bpm . We thus end up
with a total of pm + 1 MUBs as desired.

The previous result applies in the limit case m = 1 for which we recover the p + 1 MUBs in Cp.

3.5. Galois Ring Approach to MUBs

In dimension d = 2m, m ≥ 2, the use of the Galois field GF(2m) for constructing a complete set
of 2m + 1 MUBs in C2m

according to the method employed in Section 3.4 for d = pm, p odd prime,
would lead to a no-win situation because gcd(2, 2m) �= 1 (while gcd(2, pm) = 1 for p odd prime).
For d = 2m, which corresponds to the case of m qubits, we can use the Galois ring GR(22, m), denoted
R4m too, for constructing MUBs in C2m

.

3.5.1. Bases in the Frame of GR(22, m)

We start with the residue class ring

GR(22, m) = Z22 [ξ]/〈Pm(ξ)〉

where Pm(x) is a monic basic irreducible polynomial of degree m (i.e., its restriction Pm(x) = Pm(x)
modulo 2 is irreducible over Z2). The 2m vectors of the computational basis B2m are labeled by the 2m

elements of the Teichmüller set Tm associated with the ring Z22 [ξ]/〈Pm(ξ)〉. Thus

B2m = {|x〉 : x ∈ Tm}

(the set Tm and the ring GR(22, m) contain 2m and 4m elements, respectively).

Proposition 8. For a and α in Tm, let

|aα〉 = 1√
2m ∑

x∈Tm

χ[(a + 2α)x]|x〉 = 1√
2m ∑

x∈Tm

ei 2π
4 Tr(ax+2αx)|x〉 = 1√

2m ∑
x∈Tm

iTr(ax+2αx)|x〉

where χ is an additive character vector of GR(22, m) and the trace takes its values in Z4. For fixed a in Tm,
the set

Ba = {|aα〉 : α ∈ Tm}
constitutes an orthonormal basis of C2m

.

Proof. See the proof of the next proposition. �
Note that for m = 1

Tr(ax + 2αx) = ax + 2αx

140

Mathematics 2018, 6, 273

so that
|aα〉 = 1√

2
∑

x∈F2

iax+2αx|x〉 (18)

to be compared with the vector

|aα〉 = 1√
2

∑
x∈F2

ei 2π
2 [1

2 ax(2−x)+αx]|1− x〉 = 1√
2

∑
x∈F2

iax(2−x)+2αx|1− x〉 (19)

given by Equation (16). In view of the fact that

iax+2αx = iax(2−x)+2αx

for x = 0 and x = 1, the two vectors |aα〉 in Equations (18) and (19) are the same up to an interchange
of the vectors |0〉 and |1〉.

3.5.2. MUBs in the Frame of GR(22, m)

Proposition 9. The 2m bases Ba, with m ≥ 2 and a ranging in the Teichüller set Tm associated with the Galois
ring GR(22, m), constitute with the computational basis B2m a complete set of 2m + 1 MUBs in C2m

.

Proof. Let |aα〉 and |bβ〉 two vectors belonging to the bases Ba and Bb, respectively. We have

〈aα|bβ〉 = 1
2m ∑

x∈Tm

ei π
2 Tr[(b−a+2β−2α)x]

By using [2,4,18]

∣∣∣∣∣ ∑x∈Tm

ei π
2 Tr(ux)

∣∣∣∣∣ =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if u ∈ 2Tm, u �= 0

2m if u = 0

√
2m otherwise

we obtain

|〈aα|bβ〉| =

⎧⎪⎪⎨⎪⎪⎩
δα,β if b = a

1√
2m if b �= a

or in compact form

|〈aα|bβ〉| = δa,bδα,β +
1√
2m

(1− δa,b)

which shows that Ba is an orthonormal basis and that the couple (Ba, Bb) with b �= a is a couple of
unbiased bases. Of course, each basis Ba is unbiased to the computational basis B2m . We thus end up
with a total of 2m + 1 MUBs and we are done.

The previous result applies in the limit case m = 1 for which we can recover the 2 + 1 MUBs
in C2.

141

Mathematics 2018, 6, 273

3.5.3. One-Qubit System

For m = 1, the 2m = 2 vectors of the computational basis B2 are labeled with the help of the two
elements of the Teichmüller set T1 = Z2 of the Galois ring GR(22, 1) = Z22 . Thus, the basis B2 is

B2 : |0〉 =
(

1
0

)
, |1〉 =

(
0
1

)

The vectors |aα〉 of the basis Ba (a ∈ T1) are given by (see Section 3.5.1)

|aα〉 = 1√
2

1

∑
x=0

i(a+2α)x|x〉, α ∈ T1 = {0, 1}

This yields the two unbiased bases

B0 : |00〉 = |0〉+ |1〉√
2

, |01〉 = |0〉 − |1〉√
2

B1 : |10〉 = |0〉+ i|1〉√
2

, |11〉 = |0〉 − i|1〉√
2

which, together with the computational basis B2, form a complete set of 2 + 1 = 3 MUBs in C2.
Note that the bases B0 and B1 are in agreement (up to phase factors and a rearrangement of the vectors
inside B1) with the bases B0 and B1 derived in Section 3.2.4.

3.5.4. Two-Qubit System

For m = 2, the 2m = 4 vectors of the computational basis B4 are labeled with the help of the four
elements of the Teichmüller set T2 = {0, β1, β2 = 3 + 3β, β3 = 1} of the Galois ring GR(22, 2) (here,
we use β instead of α in order to avoid confusion with the index α in |aα〉). Thus, the basis B4 is

B4 : |0〉 =

⎛⎜⎜⎜⎝
1
0
0
0

⎞⎟⎟⎟⎠ , |β1 or 1〉 =

⎛⎜⎜⎜⎝
0
1
0
0

⎞⎟⎟⎟⎠ , |β2 or 2〉 =

⎛⎜⎜⎜⎝
0
0
1
0

⎞⎟⎟⎟⎠ , |β3 or 3〉 =

⎛⎜⎜⎜⎝
0
0
0
1

⎞⎟⎟⎟⎠
The vectors |aα〉 of the basis Ba (a = 0, β1 or 1, β2 or 2, β3 or 3) are given by (see Section 3.5.1)

|aα〉 = 1
2 ∑

x∈T2

iTr(ax+2αx)|x〉, α ∈ T2 = {0, β1, β2 = 3 + 3β, β3 = 1}

with
Tr(ax + 2αx) = ax + 2αx + φ(ax + 2αx)

where φ is the generalized Frobenius map GR(22, 2)→ GR(22, 2). The correspondence between the
indexes a, α in |aα〉 and the elements 0, β1, β2, β3 of T2 is as follows

0 ↔ a or α = 0, β1 ↔ a or α = 1, β2 ↔ a or α = 2, β3 ↔ a or α = 3

142

Mathematics 2018, 6, 273

This yields the four unbiased bases

B0 : |00〉 = 1
2

⎛⎜⎜⎜⎝
1
1
1
1

⎞⎟⎟⎟⎠ , |01〉 = 1
2

⎛⎜⎜⎜⎝
1
−1
1
−1

⎞⎟⎟⎟⎠ , |02〉 = 1
2

⎛⎜⎜⎜⎝
1
1
−1
−1

⎞⎟⎟⎟⎠ , |03〉 = 1
2

⎛⎜⎜⎜⎝
1
−1
−1
1

⎞⎟⎟⎟⎠

B1 : |12〉 = 1
2

⎛⎜⎜⎜⎝
1
−i
1
i

⎞⎟⎟⎟⎠ , |11〉 = 1
2

⎛⎜⎜⎜⎝
1
i
−1

i

⎞⎟⎟⎟⎠ , |13〉 = 1
2

⎛⎜⎜⎜⎝
1
i
1
−i

⎞⎟⎟⎟⎠ , |10〉 = 1
2

⎛⎜⎜⎜⎝
1
−i
−1
−i

⎞⎟⎟⎟⎠

B2 : |21〉 = 1
2

⎛⎜⎜⎜⎝
1
1
−i
i

⎞⎟⎟⎟⎠ , |22〉 = 1
2

⎛⎜⎜⎜⎝
1
−1

i
i

⎞⎟⎟⎟⎠ , |20〉 = 1
2

⎛⎜⎜⎜⎝
1
−1
−i
−i

⎞⎟⎟⎟⎠ , |23〉 = 1
2

⎛⎜⎜⎜⎝
1
1
i
−i

⎞⎟⎟⎟⎠

B3 : |33〉 = 1
2

⎛⎜⎜⎜⎝
1
i
i
−1

⎞⎟⎟⎟⎠ , |32〉 = 1
2

⎛⎜⎜⎜⎝
1
−i
i
1

⎞⎟⎟⎟⎠ , |31〉 = 1
2

⎛⎜⎜⎜⎝
1
i
−i
1

⎞⎟⎟⎟⎠ , |30〉 = 1
2

⎛⎜⎜⎜⎝
1
−i
−i
−1

⎞⎟⎟⎟⎠
We thus end up with 4 + 1 = 5 bases (B0 to B4) which form a complete set of MUBs in C4.

Note that the bases B0, B1, B2 and B3 coincide with the bases W00, W10, W01 and W11 derived from
tensor products, respectively; for the purpose of comparison, the vectors |aα〉 are listed in the same
order for each of the couples (B0, W00), (B1, W10), (B2, W01) and (B3, W11), see Section 3.2.6.

4. Closing Remarks

During the last two decades, quantum information and quantum computing have been the object
of considerable progresses both in theoretical and experimental physical sciences, scientific engineering,
discrete mathematics and quantum informatics. In the present days, there exit several quantum
computer languages and, although quantum devices are mainly developed in academic and private
laboratories, the scientific community has access to some quantum computers (e.g., access to the 5-qubit
quantum computer of the IBM Quantum Experience [79]) and to quantum simulators (e.g., access to
the 41-qubit ATOS Quantum Learning Machine [80]). In the medium term, the accent shall be put,
among others, on (i) the development of new quantum algorithms that outperform classical ones,
(ii) the production of qubits robust to decoherence (with coherence time greater than 500 ms), (iii) the
increase of the lifetime of quantum memories, (iv) the development of quantum networks working
over a few thousands of kilometres (v) the realization of 50–100 qubit computers, and (vi) the test of
quantum supremacy. There is a long way before the realization of a universal quantum computer!

From the side of the mathematical aspects of MUBs, some further developments and a few open
problems should be mentioned. It would be interesting to see if Cayley-Dickson algebras of dimension
d = 2N could be used for providing a geometrical approach to entanglement of N qubits with N > 3.
Furthermore, the problem of the determination of the maximum number N(d) of MUBs in composite
dimension d is still an unsolved problem (except in the case where d is a power of a prime number).
The two conjectures listed in Section 3.1.3 do not very much help, probably because they lead to two
equivalent problems for which the solutions are as difficult to find as those of the initial problem. As far
as the second conjecture is concerned, the recent work [76] on orthogonal decompositions of sl(n, R)
over a finite commutative ring with identity R is very appealing. Finally, even in the simplest case
where d = 6, the maximum number N(6) of MUBs is not known (to the best of the author knowledge).
However, for d = 6 there are numerous numerical evidences that N(6) = 3 [19,37,52,54,59,60,70,71].
The number N(6) = 3 is equal indeed to the number of weak mutually unbiased bases associated

143

Mathematics 2018, 6, 273

with the smallest prime divisor of 6 (the recently introduced notion of weak MUBs in dimension d
corresponds to the Definition (14) where

√
d is replaced by

√
f where f is a prime divisor of d [69,75]).

Author Contributions: The author confirms to be the sole contributor of this paper.

Acknowledgments: This paper was presented at the 20th International Workshop on Computer Algebra in
Scientific Computing (CASC 2018). The author wishes to thank Vladimir P. Gerdt (Dubna) for his kind invitation
to give an invited talk at CASC 2018 and Andreas Weber (Bonn) for his encouragement to put the text of the talk
in a form convenient for a community of computer engineers and mathematicians. He is also indebted to Wolfram
Koepf (Kassel) and François Boulier (Lille) for their logistic help during the preparation of this paper. Finally,
the author thanks the Referees for their remarks and suggestions.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press:
Cambridge, UK, 2003.

2. Kibler, M.R. Galois Fields and Galois Rings Made Easy; ISTE Press–Elsevier: London/Oxford, UK, 2017.
3. Weyl, H. The Theory of Groups and Quantum Mechanics; Dover Publications: New York, NY, USA, 1931.
4. Weil, A. On some exponential sums. Proc. Natl. Acad. Sci. USA 1948, 34, 204–207. [CrossRef] [PubMed]
5. Schwinger, J. Unitary operator bases. Proc. Natl. Acad. Sci. USA 1960, 46, 570–579. [CrossRef] [PubMed]
6. Ivanović, I.D. Geometrical description of quantal state determination. J. Phys. A Math. Gen. 1981, 14,

3241–3245. [CrossRef]
7. Kostrikin, A.I.; Kostrikin, I.A.; Ufnarovskiı̆, V.A. Orthogonal decompositions of simple Lie algebras (type An).

Trudy Mat. Inst. Steklov 1981, 158, 105–120. (In Russian)
8. Wootters, W.K.; Zurek, W.H. A single quantum cannot be cloned. Nature 1982, 299, 802. [CrossRef]
9. Bennett, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. In Proceedings

of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India,
10–12 December 1984; pp. 175–179.

10. Wootters, W.K. Quantum mechanics without probability amplitudes. Found. Phys. 1986, 16, 391–405.
[CrossRef]

11. Wootters, W.K. A Wigner function formulation of finite-state quantum mechanics. Ann. Phys. (N. Y.) 1987,
176, 1–21. [CrossRef]

12. Patera, J.; Zassenhaus, H. The Pauli matrices in n dimensions and finest gradings of simple Lie algebras of
type An−1. J. Math. Phys. 1988, 29, 665–673. [CrossRef]

13. Lambert, D.; Kibler, M. An algebraic and geometric approach to non-bijective quadratic transformations.
J. Phys. A Math. Gen. 1988, 21, 307–343. [CrossRef]

14. Wootters, W.K.; Fields, B.D. Optimal state-determination by mutually unbiased measurements. Ann. Phys.
(N. Y.) 1989, 191, 363–381. [CrossRef]

15. Bennett, C.H.; Brassard, G.; Crépeau, C.; Jozsa, R.; Peres, A.; Wootters, W.K. Teleporting an unknown
quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 1993, 70, 1895.
[CrossRef] [PubMed]

16. Kostrikin, A.I.; Tiep, P.H. Orthogonal Decompositions and Integral Lattices; Walter de Gruyter: Berlin,
Germany, 1994.

17. Calderbank, A.R.; Cameron, P.J.; Kantor, W.M.; Seidel, J.J. Z4–Kerdock codes, orthogonal spreads,
and extremal Euclidean line-sets. Proc. Lond. Math. Soc. 1997, 75, 436–480. [CrossRef]

18. Berndt, B.C.; Evans, R.J.; Williams, K.S. Gauss and Jacobi Sums; Wiley: New York, NY, USA, 1998.
19. Zauner, G. Quantendesigns: Grundzüge einer Nichtcommutativen Designtheorie. Bachelor’s Thesis,

University of Wien, Wien, Austria, 1999.
20. Englert, B.-G.; Aharonov, Y. The mean king’s problem: Prime degrees of freedom. Phys. Lett. A 2001, 284, 1–5.

[CrossRef]
21. Mosseri, R.; Dandoloff, R. Geometry of entangled states, Bloch spheres and Hopf fibrations. J. Phys. A

Math. Gen. 2001, 34, 10243–10252. [CrossRef]
22. Bandyopadhyay, S.; Boykin, P.O.; Roychowdhury, V.; Vatan, F. A new proof for the existence of mutually

unbiased bases. Algorithmica 2002, 34, 512–528.

144

Mathematics 2018, 6, 273

23. Lawrence, J.; Brukner, C.; Zeilinger, A. Mutually unbiased binary observable sets on N qubits. Phys. Rev. A
2002, 65, 032320. [CrossRef]

24. Chaturvedi, S. Aspects of mutually unbiased bases in odd prime power dimensions. Phys. Rev. A 2002,
65, 044301. [CrossRef]

25. Cerf, N.J.; Bourennane, M.; Karlsson, A.; Gisin, N. Security of quantum key distribution using d-level
systems. Phys. Rev. Lett. 2002, 88, 127902. [CrossRef] [PubMed]

26. Aravind, P.K. Solution to the King’s problem in prime power dimensions. Z. Naturforsch. 2003, 58, 85–92.
[CrossRef]

27. Lawrence, J. Mutually unbiased bases and trinary operator sets for N qutrits. Phys. Rev. A 2004, 70, 012302.
[CrossRef]

28. Klappenecker, A.; Rötteler, M. Constructions of mutually unbiased bases. Lect. Notes Comput. Sci. 2004, 2948,
137–144.

29. Gibbons, K.S.; Hoffman, M.J.; Wootters, W.K. Discrete phase space based on finite fields. Phys. Rev. A 2004,
70, 062101. [CrossRef]

30. Pittenger, A.O.; Rubin, M.H. Mutually unbiased bases, generalized spin matrices and separability.
Linear Algebr. Appl. 2004, 390, 255–278. [CrossRef]

31. Vourdas, A. Quantum systems with finite Hilbert space. Rep. Prog. Phys. 2004, 67, 267–320. [CrossRef]
32. Saniga, M.; Planat, M.; Rosu, H. Mutually unbiased bases and finite projective planes. J. Opt. B Quantum

Semiclass. Opt. 2004, 6, L19–L20. [CrossRef]
33. Hayashi, A.; Horibe, M.; Hashimoto, T. Mean king’s problem with mutually unbiased bases and orthogonal

Latin squares. Phys. Rev. A 2005, 71, 052331. [CrossRef]
34. Paz, J.P.; Roncaglia, A.J.; Saraceno, M. Qubits in phase space: Wigner-function approach to quantum-error

correction and the mean-king problem. Phys. Rev. A 2005, 72, 012309. [CrossRef]
35. Wocjan, P.; Beth, T. New construction of mutually unbiased bases in square dimensions.

Quantum Inf. Comput. 2005, 5, 93–101.
36. Archer, C. There is no generalization of known formulas for mutually unbiased bases. J. Math. Phys. 2005,

46, 022106. [CrossRef]
37. Grassl, M. On SIC-POVMs and MUBs in dimension 6. In Proceedings of the ERATO Conference on Quantum

Information Science (EQIS’04), Tokyo, Japan, 1–5 September 2004; pp. 60–61.
38. Grassl, M. Tomography of quantum states in small dimensions. Electron. Notes Discret. Math. 2005, 20,

151–164. [CrossRef]
39. Klappenecker, A.; Rötteler, M. Mutually unbiased bases are complex projective 2-designs. In Proceedings of

the 2005 IEEE International Symposium on Information Theory, Adelaide, Australia, 4–9 September 2005;
pp. 1740–1744.

40. Bengtsson, I.; Ericsson, A.A. Mutually unbiased bases and the complementary polytope. Open Syst. Inf. Dyn.
2005, 12, 107–120. [CrossRef]

41. Durt, T. About mutually unbiased bases in even and odd prime power dimensions. J. Phys. A Math. Gen.
2005, 38, 5267–5283. [CrossRef]

42. Pittenger, A.O.; Rubin, M.H. Wigner functions and separability for finite systems. J. Phys. A Math. Gen. 2005,
38, 6005–6036. [CrossRef]

43. Durt, T. About the Mean King’s problem and discrete Wigner distributions. Int. J. Mod. Phys. B 2006, 20,
1742–1760. [CrossRef]

44. Kibler, M.R. Angular momentum and mutually unbiased bases. Int. J. Mod. Phys. B 2006, 20, 1792–1801.
[CrossRef]

45. Kibler, M.R.; Planat, M. A SU(2) recipe for mutually unbiased bases. Int. J. Mod. Phys. B 2006, 20, 1802–1807.
[CrossRef]

46. Vourdas, A. Galois quantum systems, irreducible polynomials and Riemann surfaces. J. Math. Phys. 2006,
47, 092104. [CrossRef]

47. Heath, R.W.; Strohmer, T.; Paulraj, A.J. On quasi-orthogonal signatures for CDMA systems. IEEE Trans.
Inf. Theory 2006, 52, 1217–1226. [CrossRef]

48. Vourdas, A. Quantum systems in finite Hilbert space: Galois fields in quantum mechanics. J. Phys. A
Math. Theor. 2007, 40, R285–R331. [CrossRef]

145

Mathematics 2018, 6, 273

49. Klimov, A.B.; Romero, J.L.; Björk, G.; Sánchez-Soto, L.L. Geometrical approach to mutually unbiased bases.
J. Phys. A Math. Theor. 2007, 40, 3987–3998. [CrossRef]

50. Šulc, P.; Tolar, J. Group theoretical construction of mutually unbiased bases in Hilbert spaces of prime
dimensions. J. Phys. A Math. Theor. 2007, 40, 15099. [CrossRef]

51. Aschbacher, M.; Childs, A.M.; Wocjan, P. The limitations of nice mutually unbiased bases. J. Algebr. Comb.
2007, 25, 111–123. [CrossRef]

52. Bengtsson, I.; Bruzda, W.; Ericsson, A.A.; Larsson, J.-A.A.; Tadej, W.; Zyczkowski, K. Mutually unbiased
bases and Hadamard matrices of order six. J. Math. Phys. 2007, 48, 052106. [CrossRef]

53. Boykin, P.O.; Sitharam, M.; Tiep, P.H.; Wocjan, P. Mutually unbiased bases and orthogonal decompositions
of Lie algebras. Quantum Inf. Comput. 2007, 7, 371–382.

54. Butterley, P.; Hall, W. Numerical evidence for the maximum number of mutually unbiased bases in dimension
six. Phys. Lett. A 2007, 369, 5–8. [CrossRef]

55. Björk, G.; Romero, J.L.; Klimov, A.B.; Sánchez-Soto, L.L. Mutually unbiased bases and discrete Wigner
functions. J. Opt. Soc. Am. B 2007, 24, 371–378. [CrossRef]

56. Klimov, A.B.; Muñoz, C.; Fernández, A.; Saavedra, C. Optimal quantum-state reconstruction for cold trapped
ions. Phys. Rev. A 2008, 77, 060303(R). [CrossRef]

57. Svetlichny, G. Feynman’s integral is about mutually unbiased bases. arXiv 2008, arXiv:0708.3079v3.
58. Kibler, M.R. Variations on a theme of Heisenberg, Pauli and Weyl. J. Phys. A Math. Theor. 2008, 41, 375302.

[CrossRef]
59. Brierley, S.; Weigert, S. Maximal sets of mutually unbiased quantum states in dimension six. Phys. Rev. A

2008, 78, 042312. [CrossRef]
60. Brierley, S.; Weigert, S. Constructing mutually unbiased bases in dimension six. Phys. Rev. A 2009, 79, 052316.

[CrossRef]
61. Appleby, D.M. SIC-POVMS and MUBS: Geometrical relationships in prime dimension. In Proceedings

of the AIP Conference, Foundations of Probability and Physics-5, San Diego, CA, USA, 26–31 May 2009;
Volume 1101, pp. 223–232.

62. Albouy, O. The isotropic lines of Z2
d. J. Phys. A Math. Theor. 2009, 42, 072001. [CrossRef]

63. Tolar, J.; Chadzitaskos, G. Feynman’s path integral and mutually unbiased bases. J. Phys. A Math. Theor.
2009, 42, 245306. [CrossRef]

64. Kibler, M.R. An angular momentum approach to quadratic Fourier transform, Hadamard matrices,
Gauss sums, mutually unbiased bases, the unitary group and the Pauli group. J. Phys. A Math. Theor.
2009, 42, 353001. [CrossRef]

65. Durt, T.; Englert, B.-G.; Bengtsson, I.; Zyczkowski, K. On mutually unbiased bases. Int. J. Quantum Inf. 2010,
8, 535–640. [CrossRef]

66. Diţă, P. Hadamard matrices from mutually unbiased bases. J. Math. Phys. 2010, 51, 072202. [CrossRef]
67. Zauner, G. Quantum designs: Foundations of a noncommutative design theory. Int. J. Quantum Inf. 2011, 9,

445–507. [CrossRef]
68. Daoud, M.; Kibler, M.R. Phase operators, phase states and vector phase states for SU3 and SU2,1.

J. Math. Phys. 2011, 52, 082101. [CrossRef]
69. Shalaby, M.; Vourdas, A. Weak mutually unbiased bases. J. Phys. A Math. Theor. 2012, 45, 052001. [CrossRef]
70. McNulty, D.; Weigert, S. The limited role of mutually unbiased product bases in dimension six. J. Phys. A

Math. Theor. 2012, 45, 102001. [CrossRef]
71. McNulty, D.; Weigert, S. All mutually unbiased product bases in dimension six. J. Phys. A Math. Theor. 2012,

45, 135307. [CrossRef]
72. Ghiu, I. Generation of all sets of mutually unbiased bases for three-qubit systems. Phys. Scr. 2013, 153, 014027.

[CrossRef]
73. Goyeneche, D. Mutually unbiased triplets from non-affine families of complex Hadamard matrices in

dimension 6. J. Phys. A Math. Theor. 2013, 46, 105301. [CrossRef]
74. Spengler, C.; Kraus, B. Graph-state formalism for mutually unbiased bases. Phys. Rev. A 2013, 88, 052323.

[CrossRef]
75. Olupitan, T.; Lei, C.; Vourdas, A. An analytic function approach to weak mutually unbiased bases. Ann. Phys.

(N. Y.) 2016, 371, 1–19. [CrossRef]

146

Mathematics 2018, 6, 273

76. Sriwongsa, S.; Zou, Y.M. Orthogonal abelian Cartan subalgebra decomposition of sln over a finite
commutative ring. Linear Multilinear Algebra 2018. [CrossRef]

77. Rao, H.S.S.; Sirsi, S.; Bharath, K. Mutually disjoint, maximally commuting set of physical observables for
optimum state determination. arXiv 2018, arXiv:1809.06762.

78. Trifa, Y. Utilisation et construction de bases mutuellement non biaisées en théorie de l’information quantique.
In Rapport de Stage, IPN Lyon—ENS Lyon; IPN: Lyon, France; ENS: Lyon, France, 2018.

79. IBM Quantum Experience. Available online: https://quantumexperience.ng.bluemix.net/qx/experience
(accessed on 21 November 2018).

80. ATOS Quantum Learning Machine. Available online: https://atos.net/en/insights-and-innovation/
quantum-computing/atos-quantum (accessed on 21 November 2018).

c© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

147

MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Mathematics Editorial Office
E-mail: mathematics@mdpi.com

www.mdpi.com/journal/mathematics

MDPI
St. Alban-Anlage 66
4052 Basel
Switzerland

Tel: +41 61 683 77 34
Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-03921-731-1

	Blank Page

