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Preface 

In 1990, scientists began working together on one of the largest biological research projects 
ever proposed. The project proposed to sequence the three billion nucleotides in the human 
genome. The Human Genome Project took 13 years and was completed in April 2003, at a 
cost of approximately three billion dollars. It was a major scientific achievement that forever 
changed the understanding of our own nature. The sequencing of the human genome was in 
many ways a triumph for technology as much as it was for science. From the Human Genome 
Project, powerful technologies have been developed (e.g., microarrays and next generation 
sequencing) and new branches of science have emerged (e.g., functional genomics and 
pharmacogenomics), paving new ways for advancing genomic research and medical 
applications of genomics in the 21st century. The investigations have provided new tests and 
drug targets, as well as insights into the basis of human development and diagnosis/treatment 
of cancer and several mysterious humans diseases. This genomic revolution is prompting a 
new era in medicine, which brings both challenges and opportunities. Parallel to the 
promising advances over the last decade, the study of the human genome has also revealed 
how complicated human biology is, and how much remains to be understood. The legacy of 
the understanding of our genome has just begun. To celebrate the 10th anniversary of the 
essential completion of the Human Genome Project, in April 2013 Genes launched this 
Special Issue, which highlights the recent scientific breakthroughs in human genomics, with a 
collection of papers written by authors who are leading experts in the field. 
 

John Burn, James R. Lupski,  
Karen E. Nelson and Pabulo H. Rampelotto 

Guest Editors 
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The Epigenome View: An Effort towards Non-Invasive  
Prenatal Diagnosis 

Elisavet A. Papageorgiou, George Koumbaris, Elena Kypri, Michael Hadjidaniel and  
Philippos C. Patsalis 

Abstract: Epigenetic modifications have proven to play a significant role in cancer development, 
as well as fetal development. Taking advantage of the knowledge acquired during the last decade, 
great interest has been shown worldwide in deciphering the fetal epigenome towards the 
development of methylation-based non-invasive prenatal tests (NIPT). In this review, we highlight 
the different approaches implemented, such as sodium bisulfite conversion, restriction enzyme 
digestion and methylated DNA immunoprecipitation, for the identification of differentially 
methylated regions (DMRs) between free fetal DNA found in maternal blood and DNA from 
maternal blood cells. Furthermore, we evaluate the use of selected DMRs identified towards the 
development of NIPT for fetal chromosomal aneuploidies. In addition, we perform a comparison 
analysis, evaluate the performance of each assay and provide a comprehensive discussion on the 
potential use of different methylation-based technologies in retrieving the fetal methylome, with 
the aim of further expanding the development of NIPT assays. 

Reprinted from Genes. Cite as: Papageorgiou, E.A.; Koumbaris, G.; Kypri, E.; Hadjidaniel, M.; 
Patsalis, P.C. The Epigenome View: An Effort towards Non-Invasive Prenatal Diagnosis. Genes 
2014, 5, 310-329. 

1. Introduction 

The discovery of free fetal DNA in maternal circulation [1] was a landmark towards the 
development of non-invasive prenatal diagnostic assays, and remarkable advances have taken place 
since then. The revolution was initiated in 1997 with the determination of the fetal fraction, which 
was estimated to be 3% during the early stages of the pregnancy [2]. In the following years, more 
advanced technologies were used (e.g., digital PCR) to re-evaluate the fetal DNA fraction, which is 
now estimated to be 10%–20% [3].  

Deciphering the critical characteristics of the fetal genome has been the main goal for the 
development of non-invasive prenatal tests (NIPT). Studies have shown that the origin of maternal 
free DNA present in maternal peripheral blood is the hematopoietic system of the mother [4]. On 
the other hand, free fetal DNA (ffDNA) is derived from embryonic cell degradation in maternal 
peripheral blood [5,6] or from apoptotic placental cells [7–9]. More recent studies have confirmed 
the above, using bisulfite sequencing technologies and provided convincing evidence for the origin 
of both fetal and maternal free DNA in maternal plasma [10]. It has also been demonstrated  
that free fetal DNA from maternal plasma is cleared immediately (within a few hours) after 
pregnancy [11]. These findings were confirmed by more recent studies [12–15] and is a finding of 
great importance, since the presence of fetal DNA from previous pregnancies would interfere with 
the correct interpretation of subsequent pregnancies. A number of independent studies have also 
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demonstrated that the amount of fetal DNA released in maternal circulation increases with 
pregnancy progression [2,16]. 

Other studies characterizing ffDNA have found that the size of fetal DNA fragments were 
estimated to be <0.3 kb, whereas that of maternal DNA was >1 kb [17,18]. Follow-up studies have 
demonstrated that the release of fetal DNA is due to the apoptosis of no more than three 
nucleosomal complexes, and it has been shown that the average fetal fragment size is 286 ± 28 bp 
with a maximum ffDNA fragment size ranging from 219 to 313 bp [19]. However, better 
determination and characterization of free fetal DNA fragment sizes will allow further evaluation 
of the diagnostic limitations that are introduced because of fragment size. 

The first attempts towards NIPT were based on the use of fetal-specific markers, which were 
easily distinguishable in maternal circulation, as they were fetal-specific. Such markers were  
Y-chromosome-specific loci for fetal sex determination, such as DYS14 [1,20], as well as fetal 
Rhesus D found in maternal circulation in pregnancies in which the mother was Rhesus D  
negative [21,22]. These methods were readily and rapidly introduced in the clinical setting of 
diagnostic laboratories worldwide [23], and within a few years, the field of NIPT evolved even 
further with the use of Y-chromosome-specific markers or paternally inherited polymorphic loci for 
the NIPT of X-linked inherited diseases, as well as through the identification of fetal-specific 
chromosomal translocations [24] and trinucleotide repeats in muscular dystrophy (DMPK) [25]. 

The above successful developments relied on the presence or absence of a fetal-specific marker. 
However, further developments and advances were needed for the identification of fetal  
specific-markers that are independent of gender and polymorphic sites and would allow direct 
discrimination of the free fetal DNA from the free maternal DNA [23,26]. The challenge of the 
field was the development of NIPT for the detection of chromosomal aneuploidies in the fetus. The 
need for the identification of fetal-specific markers that would enable the discrimination of a 
diploid pregnancy from an aneuploid pregnancy was urgent, because aneuploidies are among the 
most frequent fetal abnormalities, the most common of which are trisomy 21, trisomy 18, trisomy 13 
and aneuploidies associated with chromosomes X and Y [23,27]. Major efforts took place from a 
number of independent research groups towards the NIPT of the most common chromosomal 
aneuploidies [23,26,28]. One such area that was extensively investigated was epigenetic 
modifications during development and how such changes could be taken into consideration for the 
identification of methylation fetal-specific markers that could potentially be used for the 
development of NIPT of fetal chromosomal abnormalities. In this review, we describe, compare 
and evaluate the different epigenetic-based approaches that have been implemented in the field of 
NIPT of fetal aneuploidies. 

2. DNA Methylation in Fetal Development  

DNA methylation is an enzymatic chemical modification of the genome, which includes the 
addition of a methyl group to the carbon-5 position of the cytokines of CpG dinucleotides [29].  

The methylation pattern of the cell is reset during embryogenesis, and it is established early 
during development [30,31]. After its establishment, the methylation pattern is inherited from one 
cell generation to the next [29]. The methylation occurs in CpG dinucleotides non-uniformly 
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distributed in the genome. In contrast, areas rich in CpG dinucleotides (CpG Islands) are usually 
found in promoter regions of genes, and the majority of them are presented as non-methylated [29]. 
It is estimated that the human genome consists of approximately 30,000 CpG islands, of which, a 
proportion of 50%–60% lies within promoters [32]. Although the majority of these sequences are 
non-methylated, the CpG islands of imprinted genes and the inactive X chromosome are 
predominantly methylated [33]. 

DNA methylation is a dynamic process and may change during the post-developmental  
stage [34]. It is believed that 60% of tissue-specific differentially methylated regions (TDMRs) are 
methylated in embryonic cells, while during the differentiation of embryonic tissues to adult tissues, 
they undergo de-methylation [35–39]. More recent studies confirm the above, indicating that some 
of the methylated TDMRs undergo de-methylation in embryonic cells during the transformation 
into adult tissues, while a large proportion remains methylated in newborn tissues [40]. Therefore, the 
de-methylation of TDMRs occurs at a later developmental stage. In addition, the results indicated 
that specific regions of the genome show a different methylation pattern in different tissues and at 
different stages of development. The above findings provided convincing evidence that fetal DNA 
will present different methylation patterns from the methylation pattern of the maternal DNA.  

Several independent research groups argued that methylation patterns are different between 
different tissues [41–44]. In 2008, a team of researchers led by Beck implemented a newly 
developed methodology known as MeDIP (methylated DNA immunoprecipitation), which was used in 
combination with whole genome microarray technologies to investigate the methylation status of all 
known promoter regions and CpG islands in different tissues [44]. Based on the above study, the 
phenomenon of CpG islands’ methylation in normal cells and their contribution to normal cellular 
functions is more frequent than ever anticipated.  

An epigenetic modification is a dynamic process and has been proven to play a very important 
role in the development of cancer cells [45,46]. More interestingly, the identification of  
tumor-specific DNA methylation patterns in the plasma of patients has led to great efforts towards 
the non-invasive diagnosis of cancer [47,48]. These developments in the field of cancer 
investigation have provided additional convincing support that epigenetic differences may be 
present between the fetal DNA and the maternal DNA in maternal circulation during pregnancy. 

3. DNA Methylation Biomarkers Discovery 

The aim of DNA methylation-based approaches was first to identify fetal-specific methylation 
markers that would allow the discrimination of fetal DNA from the maternal DNA in maternal 
circulation and that have the potential to be developed into non-invasive prenatal diagnostic 
markers. The approaches that have been used for investigating the DNA methylation patterns in 
fetal DNA and maternal DNA are of three main categories: sodium bisulfite-based approaches, 
restriction enzyme-based approaches and methylated DNA immunoprecipitation-based approaches. 
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3.1. Sodium Bisulfite-Based Approaches 

Sodium bisulfite conversion leads to the transformation of an epigenetic modification into a 
genetic sequence change for further investigation. More specifically, the treatment of DNA with 
sodium bisulfite results in the conversion of unmethylated cytosines to uracils, leaving methylated 
cytosines unchanged [49]. The genetic composition of the converted sequences of interest could be 
investigated using methylation-specific PCR (MSP) in which the amplification process is separate for 
the methylated (non-converted) fragments and the non-methylated (converted) fragments [50]. 
Alternatively, the methylation status of bisulfite converted sequences could be assessed through the 
implementation of sequencing technologies [49,51]. In 2002, Poon and his colleagues demonstrated 
for the first time the potential for the presence of epigenetic differences between the fetus and the 
mother by performing sodium bisulfite conversion of placental DNA and female peripheral blood 
DNA followed by MSP [50,52]. The first differentially methylated region was identified in  
2005 by the use of sodium bisulfite conversion in combination with MSP and sequencing. The 
differentially methylated gene, known as SERPINB5, was found to be hypomethylated in fetal 
DNA and hypermethylated in maternal DNA [12]. The identification of hypomethylated  
fetal-specific SERPINB5 sequences was also achieved in maternal plasma during pregnancy. This 
genomic region was used to demonstrate that fetal DNA is not detectable in maternal plasma 24 h 
after delivery [28]. 

Since then, great efforts have taken place from independent groups towards the identification of 
fetal-specific methylation markers. The initial attempts were based on the investigation of promoter 
regions and CpG islands. In 2008, a bisulfite based systematic search for placental DNA 
methylation markers on chromosome 21 was described. In this study, the methylation-sensitive 
single nucleotide extension (Ms-SNuPE) method was used to assess the methylation differences of 
CpG sites [53,54]. The above study performed an evaluation of the methylation status of 114 CpG 
islands (based on bioinformatics criteria) in five first trimester placental tissues and two samples of 
non-pregnant female blood. Among them, 22 CpG islands were identified as having the potential to 
be developed into biomarkers for the NIPT of trisomy [54]. 

In 2010, a second study was performed with the aim of identifying a panel of fetal-specific 
hypermethylated markers on chromosome 21, and it used the methylation pattern of a previously 
characterized gene, RASSF1A. The RASSF1A gene is located on chromosome 3 and has been found 
to be completely methylated in fetal DNA and completely unmethylated in maternal DNA. This 
characteristic allowed the use of the RASSF1A gene as a fetal universal marker [28,55]. The study 
was performed using the combined bisulfite restriction analysis (COBRA) [56] to investigate 35 
gene promoter regions on chromosome 21. The analysis demonstrated that the HLCS gene located 
on chromosome 21 is fully methylated in placenta and unmethylated in maternal blood cells [15]. 

A recent report published in 2013 illustrates the potential of retrieving the methylation profiles 
of placental tissues and maternal blood cells using sodium bisulfite in combination with next 
generation sequencing technologies [10]. The investigators were able to retrieve the fetal 
methylome through the identification of single nucleotide polymorphism (SNP) genotype 
differences between the mother and the fetus in maternal plasma and to identify differentially 



5 
 

 

methylated regions (DMRs). They identified 44,455 loci as being fetal-specific hypomethylated 
and 3081 regions as being fetal-specific hypermethylated. The above findings are in agreement 
with previous studies in which it was clearly evident that the fetal genome is mostly 
hypomethylated in contrast to the adult peripheral blood, which is greatly hypermethylated, 
indicating a regulatory role of the methylation patterns and gene expression profiles [44,57,58]. 
Interestingly, it has also been reported that hypomethylated sequences tend to be of a smaller 
fragment size. These findings could indicate a contribution of the fetal methylation status to the 
small fetal DNA fragments size in maternal plasma [10]. 

3.2. Restriction Enzyme-Based Approaches  

Methylation patterns of CG dinucleotides can also be assessed using restriction enzymes, which 
have recognition sites containing CG sequences. Methylation-sensitive restriction enzymes can 
digest their recognition site only when unmethylated, whereas methylation insensitive restriction 
enzymes digest their recognition sites only when the cytokines of the CGs within their recognition 
site are methylated. In 2007, the team headed by Old reported for the first time the investigation  
and identification of a panel of differentially methylated regions on chromosome 21 using 
methylation-sensitive enzymes [59]. More specifically, the team used the HpaII enzyme, and the 
underlying idea was based on the fact that the enzyme would digest only the unmethylated type of 
its recognition site (CCGG). Therefore, this would allow them to identify regions containing the 
above recognition sites, which are differentially methylated between placenta and maternal blood 
cells. The study was focused on the investigation of promoters from highly expressed genes, 
randomly selected promoters, as well as randomly selected non-promoter regions. Among the  
200 pre-selected regions, three promoter regions of the AIRE, SIM2 and ERG genes were found to 
be methylated in the placenta and unmethylated in the maternal blood cells. The methylation status 
of those regions was confirmed by sodium bisulfite followed by MSP [59].  

In 2011 a study performed by Peters and his team demonstrated that the use of  
methylation-based restriction enzymes, such as HpaII and MSpI, in combination with high-resolution 
arrays can distinguish differentially methylated regions between the placenta and maternal blood 
cells [58]. They presented a large panel of DMRs consisting of 6311 DMRs across chromosomes 
13, 18 and 21 [58,60] and demonstrated that the fetal DNA is mostly hypomethylated, whereas the 
maternal blood cells are mostly hypermethylated, findings which are in agreement with previous 
reports [44,57]. Moreover, they illustrated that the majority of the hypomethylated regions of both 
fetal and maternal origin are located within CpG islands, promoters and exons, indicating a 
potential correlation with expression profiles [58]. 

3.3. Methylated DNA Immunoprecipitation-Based Approaches 

One of the most modern methods of studying the levels of DNA methylation is the MeDIP 
(methylated DNA immunoprecipitation) approach. The method was first described in 2005 by  
Weber et al. with the aim of investigating the methylation pattern of cancer cells in a genome-wide 
fashion using microarray platforms [45]. In 2007, Beck and his team introduced linker-mediated 
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PCR amplification (LM-PCR) in combination with the MeDIP methodology. They obtained large 
amounts of immunoprecipitated DNA and generated the first whole genome mammalian 
methylome using a large panel of different tissues [44,61]. The principles of the MeDIP methodology 
includes fragmentation of the DNA (through sonication or enzymatic digestion) into short DNA 
fragments of 300–1000 bp. The sample is denatured and incubated with a monoclonal  
antibody, which recognizes and attaches to the 5-methylcytosines of CpG dinucleotides. 
Immunoprecipitation of methylated sequences is accomplished with the addition of magnetic 
beads. Through the implementation of the MeDIP methodology, you can achieve direct enrichment 
of methylated fragments. Enrichment of methylated target sequences is easily retrieved through the 
use of a large number of different technologies, such as PCR, qPCR (quantitative Polymerase Chain 
Reaction), microarray and sequencing. Since its development, MeDIP has been extensively used for the 
investigation of the methylation status/patterns of cancer tissues with great success either in 
combination with microarray technologies (MeDIP-chip) [42,44,45] or, more recently, in 
conjunction with next generation sequencing (MeDIP-seq) [62–65]. 

The MeDIP methodology was first introduced to the field of NIPT by our team in 2009 with the 
aim of investigating and identifying DMRs between placenta and female peripheral blood towards 
the development of NIPT for the identification of common aneuploidies [57]. Our team used 
MeDIP in combination with chromosome-specific high-resolution oligo arrays for the investigation 
of the methylation pattern of chromosomes 13, 18, 21, X and Y. Although previous studies solely 
investigated promoter regions and CpG islands for DMR identification, we were the first to screen 
entire chromosomes of interest irrespective of the genomic position or CG content. At the time, we 
reported the largest panel of DMRs with the potential to be developed into NIPT biomarkers for the 
most common fetal aneuploidies. More specifically, we identified around 2000 DMRs on each of 
the chromosomes investigated, and interestingly, we noticed that the vast majority of the DMRs 
were located within non-genic regions and in relatively poor CG regions. More specifically, we 
illustrated that 56%–83% of the DMRs were located within non-genic regions, whereas only  
1%–11% were located within CpG islands. Our findings were concordant with previous studies 
performed by other groups investigating a panel of different tissues [44] and were also in agreement 
with more recent reports using bisulfite sequencing technologies [3,58]. We were also able to report 
the presence of inter-individual variability and the changes in the methylation patterns during the 
progression of the pregnancy, findings which have recently been confirmed by independent  
groups [10].  

Following our study, the group headed by Chim used MeDIP in combination with a microarray 
platform targeting promoter regions and CpG islands. The group identified a panel of eight DMRs 
with the potential of being developed into biomarkers for diagnostic purposes [66], most of which 
are among the DMRs identified previously by our group [57]. Any discrepancies reported 
regarding the identification of DMRs, such as the failure to have the exact same methylation status 
of all DMRs reported by independent studies, are not uncommon, since different platforms and 
different methylation-based technologies were used.  
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4. Implementation of Methyl-Biomarkers in NIPT 

The discovery of DMRs has mainly been focused on chromosomes 13, 18, 21, X and Y with the 
aim of identifying as a priority methylation-based biomarkers (methyl-biomarkers) suitable for the 
development of NIPT for the most common chromosomal fetal aneuploidies. The first attempt was 
reported back in 2006 for the NIPT of trisomy 18 (Edward’s syndrome) [67]. In this study, the 
authors implemented a combination of sodium bisulfite conversion with MSP using maternal 
plasma samples from normal and trisomy 18 pregnancies. To achieve discrimination, they used the 
information of an SNP located within the SERPINB5 gene. The cases were considered informative 
if the SNP was homozygous in the mother and heterozygous in the fetus, and only those cases 
could be used for NIPT of trisomy 18 (T18). To achieve this, the team introduced the so-called 
epigenetic allelic ratio (EAR) in which the chromosome 18 copy number was assessed based on the 
allele ratio calculation of an informative SNP. The challenge in this study was to have informative 
SNPs, and because there was only a single SNP in the target sequence, it was extremely difficult to 
be informative in all cases tested (Table 1). The results showed that among the 173 euploid 
placentas and 14 trisomy18 placentas genotyped for the polymorphism, only 31 and seven 
placentas, respectively, were informative. The rarity of having an informative SNP in this study 
does not allow this approach to be implemented population-wide [23,26]. 

To overcome the above limitations, in 2010, the same group developed an SNP-free 
methylation-based assay for NIPT of trisomy 21 (Down syndrome). Methylation-sensitive 
restriction digestion was used followed by digital PCR to investigate DMRs identified on 
chromosome 21 [15]. The copy number of chromosome 21 was determined through the  
epigenetic-genetic (EGG) chromosome dosage approach using the fetal-specific hypermethylated 
promoter region of the HLCS gene located on chromosome 21 and the ZFY locus on chromosome 
Y. The assay tested 24 maternal plasma samples from euploid pregnancies and five maternal 
plasma samples from trisomy 21 pregnancies. All but one euploid pregnancy were correctly 
classified (Table 1) [15].  

The EGG chromosome dosage approach was also implemented for the NIPT of trisomy 18 in 
which the fetal-specific methylated VAPA-APCDD1 loci on chromosome 18 and the ZFY on 
chromosome Y were quantified with digital PCR after HinP1I- and HpaII sample digestion [66]. 
The study was performed on nine maternal plasma samples from male trisomy 18 pregnancies and 
27 maternal plasma samples from male euploid pregnancies. Among them, eight out of nine and one 
out of 27 trisomy 18 and euploid pregnancies, respectively, were correctly identified, which 
corresponds to 88.9% sensitivity and 96.3% specificity (Table 1) [66].  
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Although the results from the studies using the EGG chromosome dosage approach were 
promising, the technology was restricted to male pregnancies, because the EGG calculation 
involved the use of the ZFY gene (Table 1). To overcome the above difficulties, a modification was 
introduced in the EGG calculation to be able to include the testing of female pregnancies, as well. 
The study was performed using 14 maternal plasma from trisomy 21 pregnancies and were 
compared to 33 cases with a euploid fetus [68]. For calculation purposes, the ZFY gene was 
replaced with an autosomal genetic reference marker. Interpretation of the results was achieved 
using a paternally-inherited SNP allele on the TMED8 gene located on chromosome 14, which 
served as a baseline for the EGG chromosome dosage calculation. The sensitivity of the assay 
varied depending on which of the two alleles of an SNP was fetal-specific, making the evaluation 
of the assay performance even more challenging. Overall, although the limitation of testing only 
male pregnancies was overcome, the assessment of the copy number of chromosome 21 remained a 
challenge, as the presence of at least one informative SNP was necessary (Table 1). 

A different approach was proposed by our group in 2011 and was based on using the MeDIP 
methodology in combination with real-time quantitative PCR (real time-qPCR) for the 
quantification of selected DMRs located on chromosome 21 [69]. We selected 12 previously 
identified DMRs located on chromosome 21 [57], which were hypermethylated in fetal DNA and 
hypomethylated in female peripheral blood cells. We used in our study a total of 40 maternal blood 
samples from euploid pregnancies and 40 maternal blood samples from trisomy 21 cases. We 
developed a diagnostic formula by calculating the DNA methylation ratio of the selected DMRs 
using 20 normal pregnancies and 20 trisomy 21 pregnancies. Eight specific DMRs were the most 
statistically significant markers in discriminating normal from trisomy 21 pregnancies. The 
MeDIP-qPCR methodology was used to then test 40 additional pregnancies, of which 20 were 
obtained from trisomy 21 pregnancies and showed 100% specificity and 100% sensitivity [69]. We 
also demonstrated that diagnostic accuracy can only be achieved through the combination of 
multiple DMRs from chromosome 21, which was an important finding for further NIPT 
developments [23].  

Our team continued to improve the MeDIP-qPCR assay with a larger validation study of  
175 pregnancies that included 50 trisomy 21 pregnancies [72]. In this larger-scale validation, we  
re-evaluated our diagnostic assay, taking into consideration the genomic composition of our DMRs 
and by selectively excluding those DMRs located in copy number variable (CNV) regions. Based 
on the above, we re-designed our diagnostic formula and then evaluated its performance using  
100 new cases, which included 25 trisomy 21 pregnancies. The results demonstrated 100% 
sensitivity and 99.2% specificity (Table 1) [72]. Our group also investigated whether the variability 
of the fetal fraction present in maternal plasma has a negative effect in our assay’s diagnostic 
efficiency. Although previous reports demonstrated an effect of different fetal amounts present in 
maternal plasma [73–75], our study has shown no significant association between cffDNA fraction, 
absolute fetal amount or the concentration present in maternal plasma with the test result 
classification using our diagnostic formula [20,72]. We speculate that this is due to the fact that 
maternal blood contains <1% of fetal DNA [20,72] in contrast to maternal plasma, which contains 
~10%–15% fetal DNA [10,76]. 
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More importantly, the results of our studies have been reproduced by two independent groups, 
which have reported their results using the MeDIP-qPCR methodology and the published 
diagnostic formula [70,71]. In addition, independent groups have also commented positively on the 
potential prospects or application of the MeDIP-qPCR assay towards the NIPT of chromosomal 
aneuploidies. The low cost of the technology and the ease of implementing it, in combination with the 
use of equipment common to every laboratory, allows its implementation in any diagnostic 
laboratory setting [77]. A major strength of the MeDIP-qPCR assay is that it is a gender- and 
polymorphism-independent assay that could be implemented population-wide. Nevertheless, a 
different independent group has failed to reproduce the MeDIP-qPCR results by performing a small 
scale validation study [78]. Lack of reproducibility of the results would not be a surprise to our 
team, since, as stated in our reply to the above manuscript, very stringent quality control criteria 
must be applied to critical reagents and conditions throughout the method [79]. 

A very interesting recent development of investigating DNA methylation for use in NIPT has 
been the implementation of sodium bisulfite DNA treatment in combination with next generation 
sequencing technologies (NGS) [10]. The study is presented as a proof of principle and 
demonstrates one use of the assay with the detection of trisomy 21. NGS technologies have already 
been introduced in the field of NIPT by different independent groups with the primary aim of 
detecting the most common chromosomal aneuploidies [73–76,80–82]. Biotechnology companies 
have already introduced in the market their NGS-based NIPT of the most common chromosomal 
fetal aneuploidies [83–85]. However, sequencing of maternal plasma can turn out to be very 
challenging, due to the restrictions of the very low amount of fetal DNA available. Furthermore, 
such technology is not yet available in all clinical laboratories. Sequencing technologies are still 
considered to be of a high cost, requiring significant infrastructure, are labor intensive and require 
highly trained personnel, and the bioinformatics analysis can be very challenging, especially when 
the target sequence is of a very low amount, such as fetal DNA present in maternal plasma. 

5. Evaluating the Efficiency of Methylation Assays 

Developments towards methyl-biomarker discovery and their applications in the NIPT of fetal 
chromosomal abnormalities were achieved through a number of independent groups, as described 
above, using different methylation-based approaches. Different analytical tools and a variety of 
quantitative approaches (e.g., MSP, digital PCR, real-time qPCR, microarray platforms and next 
generation sequencing) were used, of which the statistical power in discriminating normal from 
abnormal pregnancies has been extensively assessed [23,26,86]. Nevertheless, the statistical 
discriminating power of each of the end point analytical tools relies on the efficiency of the 
methylation-based technology used to enrich the fetal DNA in maternal circulation (Table 1). 
Therefore, the evaluation and assessment of the efficiency of the methylation-based enrichment 
technology used is of significant importance.  

One of the most commonly used approaches is the treatment of DNA with sodium bisulfite. 
Sodium bisulfite conversion is considered the gold standard in the evaluation of the methylation 
status of different tissues and has been extensively used, especially in the field of cancer [87,88]. 
However, it is well known that this chemical treatment of the DNA is associated with a high degree 
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of DNA degradation, reaching >90% of the template DNA [89]. This major drawback of the 
technology is undesirable for its implementation in plasma samples of pregnant women. During 
pregnancy, the amount of fetal DNA in maternal plasma is very low [10,76], and further 
degradation will result in even fewer fetal DNA molecules available for quantification; therefore, 
the accuracy and sensitivity of the test will be reduced. To compensate for the degradation effect, 
much larger amounts of maternal plasma are required, which makes the testing of maternal plasma 
even more complicated. Furthermore, bisulfite conversion can be challenging, since 100% 
conversion of the unmethylated cytosines to uracils is rarely achieved, and purification is required 
to remove the sodium bisulfite [90]. Such an effect will bias the correct interpretation of the  
results [23]. On the other hand, bisulfite conversion strategies are not sensitive to low purity and 
low integrity samples, an advantage especially for samples with very low starting DNA amounts. 
Nevertheless, bisulfite conversion in combination with sequencing technologies can provide a 
comprehensive analysis of the methylation status at the base pair composition, which can make it a 
very powerful tool (Table 2). 

Table 2. Comparison of different methylation assays. 

Methylation assay Advantages Disadvantages Analytical tool used for NIPT

Sodium bisulfite 

Not sensitive to sample 

impurities, methylation 

analysis at the base pair level 

DNA degradation (>90%),  

100% conversion is rarely achieved 

* MSP, microarrays, Digital 

PCR, ** COBRA, *** NGS 

Restriction enzyme 

digestion 
Easy to perform and low cost 

Sensitive to sample impurities, requires 

high amount of starting DNA, applicable 

to a limited number of DNA sequences 

** COBRA, digital PCR 

**** MeDIP 

Ideal for investigating low CG 

content regions, low cost 

assay, not sensitive to sample 

impurities, can be applied with 

low starting DNA amounts 

Depends on antibody efficiency and ideal 

combination of affinity reagents 
Real time-qPCR, microarrays 

* Methylation-specific PCR; ** combined bisulfite restriction analysis; *** next generation sequencing;  
**** methylated DNA immunoprecipitation. 

A different approach implemented by a number of independent groups towards methyl-biomarker 
discovery and methylation-based NIPT developments has been the use of methylation restriction 
enzymes, as described above. Through methylation restriction enzymatic digestions (MRED), the 
unmethylated maternal origin sequences, present in maternal plasma, are digested to achieve 
indirect enrichment for the corresponding sequences of fetal origin, which are methylated. The 
efficiency of the MRED assays depends on the purity of the sample, and for this reason, they 
require high purity and high integrity samples [90]. Additionally, MRED assays require fairly high 
quantities of starting material, which is a restriction to its implementation in plasma samples, 
because not only the target fetal DNA sequences are of a low amount, but also the total plasma 
DNA is very low (around 10 ng/4 mL plasma) [20]. An additional drawback of the assay is that it 
can only evaluate the methylation status of a specific and very limited number of genomic 
sequences. Only those sequences that include a recognition site of a methylation-dependent 
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restriction enzyme could be evaluated. Such inherent restrictions do not allow efficient and  
detailed genome-wide methylation assessment [23,26]. An example is the recognition sites of the 
HpaII restriction enzyme, which are presented in only 3.9% of CGs across non-repetitive sequences 
of the human genome [91]. Moreover, the efficiency of digestion should always be carefully 
evaluated for an unbiased interpretation of the results. Nevertheless, it is a very easy to perform 
assay and low cost. 

The MeDIP assay, an affinity-enrichment method, was also utilized towards DMR identification 
and characterization to discriminate fetal DNA from maternal DNA in maternal circulation during 
pregnancy. Based on studies performed by several independent groups, it is clearly evident that the 
vast majority of DMRs identified between different tissues are located within non-genic and CG 
poor regions [44,58]. Based on recent reports, the MeDIP methodology is ideal for the 
investigation of low CpG density regions [92]. Indeed, the DMRs identified and selected for NIPT 
of trisomy 21 using MeDIP-qPCR are located in low CpG sites and are mostly found within  
non-genic regions [57,69,72]. Therefore, we strongly feel that MeDIP is the choice of selection for 
the investigation of DMRs towards NIPT. MeDIP is an efficient method for genome-wide 
methylation assessment [42,44,45], as it can evaluate the methylation levels irrespective of 
genomic composition and overcomes limitations of the previously described methodologies. The 
MeDIP assay can tolerate sample impurities, and thus, no prior sample purification is required. 
Furthermore, it has recently been proven to be applicable for low starting DNA templates, 
generating sufficiently enriched outputs [64,65], a development that simplifies and makes possible 
its implementation with plasma samples. Moreover, it is a technically robust methodology, easy to 
use and affordable. Nevertheless, the efficiency and performance of MeDIP greatly depends on 
determining the ideal combination of affinity reagents. This is very important, especially in regions 
with varying methylcytosine density, such as the DMRs identified for the NIPT of common 
chromosomal aneuploidies [57,69,72]. The advantages and disadvantages of all the different 
methylation-based assays implemented towards the NIPT of fetal chromosomal abnormalities are 
summarized in Table 2. 

6. Conclusions and Future Directions 

Deciphering the epigenome and understanding the underlying mechanisms that lead to 
epigenetic modifications has been one of the most interesting fields under investigation for the last 
decade. Since 2002, a large panel of DMRs has been identified by independent groups, with the 
potential of being developed into diagnostic markers having as a primary goal the development of 
NIPT for common fetal chromosomal abnormalities.  

We speculate that epigenetic approaches towards NIPT will soon dominate the field of NIPT, 
because they are easy to perform, are fast and inexpensive compared to existing NIPT approaches, 
which are based on next generation sequencing technologies [73–75,81,82]. We speculate that one 
of the first epigenetic-based approaches that will be launched for the NIPT of common 
chromosomal fetal abnormalities will be a MeDIP-based approach. NIPD Genetics Ltd., a company 
in which three of the authors are employed, is dedicated to developing a MeDIP-qPCR-based 
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diagnostic assay. The company will be soon ready to launch the first epigenetic-based NIPT for 
trisomy 21 following completion of a large-scale validation study [23,72,93]. 

Methylation-based approaches could also be used for retrieving the methylation status of 
abnormal tissues, such as placental tissues from aneuploid pregnancies. A very recent study has 
shown that trisomy 21 placentas are characterized by a global hypermethylation in contrast to 
normal placentas, which are mainly hypomethylated [94]. Identifying such disease-associated 
characteristics can benefit and contribute to more robust and sensitive NIPT. Furthermore, 
methylation differences during fetal development have also been shown to be associated with 
transcription. It has been demonstrated that the early gestational placental methylome is 
significantly associated with gene expression [58]. Such structural and regulatory characteristics of 
the placental epigenome are of great importance and could be used to determine the role of aberrant 
or altered methylation in placental dysfunction. 

In addition to the methods described in this review, the implementation of alternative  
methylation-based approaches, such as MBD (methylated binding domain) [92] and McrBC  
(a GTP-requiring, modification-dependent endonuclease of Escherichia coli K-12) fragmentation, 
as well as HELP (HpaII tiny fragment enrichment by ligation-mediated PCR) [95,96], in 
combination with the development of bioinformatics-based algorithms, will contribute to a better 
understanding of the fetal methylome. We envision that epigenetic-based enrichment methods will 
have a major contribution to fetal methylome analysis through direct testing of maternal plasma. 
Looking ahead, we predict that epigenetic-based approaches in combination with genetic-based 
approaches and advanced technological approaches, such as digital PCR and next generation 
sequencing, will contribute to the development of NIPT of more subtle fetal abnormalities, such as 
point mutations, microdeletion/microduplication syndromes, etc. 
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Abstract: Alcohol problems represent a classic example of a complex behavioral outcome  
that is likely influenced by many genes of small effect. A polygenic approach, which examines 
aggregate measured genetic effects, can have predictive power in cases where individual genes or 
genetic variants do not. In the current study, we first tested whether polygenic risk for alcohol 
problems—derived from genome-wide association estimates of an alcohol problems factor score 
from the age 18 assessment of the Avon Longitudinal Study of Parents and Children (ALSPAC;  
n = 4304 individuals of European descent; 57% female)—predicted alcohol problems earlier in 
development (age 14) in an independent sample (FinnTwin12; n = 1162; 53% female). We then 
tested whether environmental factors (parental knowledge and peer deviance) moderated polygenic 
risk to predict alcohol problems in the FinnTwin12 sample. We found evidence for both polygenic 
association and for additive polygene-environment interaction. Higher polygenic scores predicted a 
greater number of alcohol problems (range of Pearson partial correlations 0.07–0.08, all  
p-values  0.01). Moreover, genetic influences were significantly more pronounced under 
conditions of low parental knowledge or high peer deviance (unstandardized regression coefficients 
(b), p-values (p), and percent of variance (R2) accounted for by interaction terms: b = 1.54,  
p = 0.02, R2 = 0.33%; b = 0.94, p = 0.04, R2 = 0.30%, respectively). Supplementary set-based 
analyses indicated that the individual top single nucleotide polymorphisms (SNPs) contributing to 
the polygenic scores were not individually enriched for gene-environment interaction. Although the 
magnitude of the observed effects are small, this study illustrates the usefulness of polygenic 
approaches for understanding the pathways by which measured genetic predispositions come 
together with environmental factors to predict complex behavioral outcomes.  

Reprinted from Genes. Cite as: Salvatore, J.E.; Aliev, F.; Edwards, A.C.; Evans, D.M.; Macleod, J.; 
Hickman, M.; Lewis, G.; Kendler, K.S.; Loukola, A.; Korhonen, T.; Latvala, A.; Rose, R.J.; 
Kaprio, J.; Dick, D.M. Polygenic Scores Predict Alcohol Problems in an Independent Sample and 
Show Moderation by the Environment. Genes 2014, 5, 330-346. 

1. Introduction 

Alcohol consumption and related problems are classic examples of complex behavioral 
outcomes that likely involve many genes of small effect [1]. Twin studies, which infer genetic 
influences by comparing the phenotypic similarity between monozygotic (MZ) twins (who share all 
of their genetic variation) and dizygotic (DZ) twins (who share half of their genetic variation, on 
average), have been crucial for demonstrating that latent genetic influences account for a 
considerable amount of the variation in measures of alcohol consumption and problems, with 



22 
 
heritability estimates in the range of 50%–60% [2–5]. Twin studies have also been critical for 
demonstrating that environmental factors moderate the importance of genetic influences. In 
adolescents, for example, genetic influences on alcohol use and other closely related externalizing 
problems (e.g., conduct problems) increase under conditions of low parental knowledge (i.e., the 
degree to which parents know about one’s daily activities and associates) or high peer deviance 
(i.e., the degree to which one’s peer group engages in substance use and antisocial behavior) [6–9]. 
Thus, genetic influences appear to become more important under environmental conditions 
characterized by more social opportunity and less social control [10].  

In contrast to the consistent evidence for the heritability of alcohol use and problems, no robust 
associations have been detected in genome-wide association studies (GWAS) to date. This is the 
case, in part, because the small samples typically used in alcohol research are underpowered to 
detect the very modest individual effect sizes that are generally observed in GWAS of complex 
behavioral outcomes. Large meta- and mega-analyses pooling across many studies are needed to 
obtain robust results in the substance use area [11]; only now are these studies underway for 
alcohol use and alcohol problems. In candidate gene studies, a few compelling associations have 
emerged within biologically plausible pathways. For example, polymorphisms in ADH1B and 
ALDH2 genes, which code for alcohol-metabolizing enzymes, have well-replicated associations 
with alcohol dependence [12–15]. In another example, independent groups have found evidence 
that the 2 encoding subunit of the GABA-A receptor (GABRA2) is associated with alcohol 
dependence [16,17]. Likewise, despite consistent evidence from twin samples that environmental 
factors moderate latent genetic influences, measured gene-by-environment moderation effects for 
behavioral outcomes have been widely criticized on the grounds that they are underpowered and 
likely reflect Type I statistical error [18].  

In the absence of success in identifying individual genes that account for a substantial 
proportion of the variance in alcohol outcomes, and lack of expectation that such genes will be 
found in the near future, polygenic approaches have emerged as one paradigm for examining aggregate 
measured genetic effects that can have predictive power when individual genes cannot [19]. This 
approach typically uses results from a genome-wide association study in a discovery sample. Using 
a p-value threshold much more liberal than what would be required for genome-wide significance, 
a polygenic risk score for each individual in an independent target sample is calculated by 
summing up the number of alleles for each single nucleotide polymorphism (SNP) weighted by the 
effect size drawn from a GWAS. The score then represents the composite additive effect of these 
multiple variants, which likely includes a mixture of true genetic signals and noise.  

In the current study, we adopted a polygenic approach to examine alcohol problems in 
adolescence. Adolescence represents an important developmental period for the initiation of alcohol 
use [20], and, for some, the development of alcohol problems [21]. Longitudinal developmental 
studies indicate that the heritability of alcohol use increases across adolescence [4,22], making this 
an important period of the lifespan for beginning to identify the genetic predispositions toward 
alcohol problems, and how these predispositions interface with key environmental factors  
(e.g., low parental knowledge and affiliations with deviant peers) known to be associated with 
higher levels of alcohol problems. We tested the hypotheses that: (1) polygenic risk for alcohol 
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problems—derived from GWAS estimates in one population-based sample—would predict alcohol 
problems in adolescence in a second, independent, population-based sample; and (2) parenting and 
peer factors in adolescence would moderate polygenic risk to predict alcohol problems in the 
independent sample. 

2. Experimental Section  

We drew upon two population-based samples in the present study. GWAS results from the Avon 
Longitudinal Study of Parents and Children (ALSPAC) [23] were used to create polygenic risk 
scores in the independent FinnTwin12 sample [24]. The samples and measures are described in 
greater detail below.  

2.1. Avon Longitudinal Study of Parents and Children  

The ALSPAC sample included 15,247 pregnancies from women residing in Avon, UK with 
expected dates of delivery between April 1991 and December 1992, resulting in 15,458 fetuses. Of 
this total sample of 15,458 fetuses, 14,775 were live births and 14,701 were alive at 1 year of age. 
Additional details regarding the sample can be found in Boyd et al. [25]. Ethical approval for the 
study was obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics 
Committees. In the present study, we used data from unrelated participants who completed an 
alcohol assessment at 16 and/or 18 years of age (5952 participants) for whom there were also 
genotypic data (n = 4304). Please note that the study website contains details of all the data that is 
available through a fully searchable data dictionary (http://www.bris.ac.uk/alspac/researchers/ 
data-access/data-dictionary). 

2.1.1. Alcohol Problems Factor Score 

We measured alcohol problems using a factor score that included ten items from the Alcohol 
Use Disorders Identification Test (AUDIT) [26], seven DSM-IV Alcohol Dependence criteria [27], 
and three additional measures related to alcohol problems (getting into fights, police involvement, 
and drinking to alleviate withdrawal symptoms) that were collected as part of the age 18 assessment. 
To increase our sample size, we also imputed age 18 alcohol problems data for the participants who 
completed the age 16 alcohol assessment, but not the age 18 assessment (n = 1993) using 
imputation software IVEware [28]. Frequency and correlation checks after imputation showed that 
all imputations kept similar frequency distributions and that imputed and original variables were 
closely correlated. The results of an exploratory factor analyses indicated one main factor 
(eigenvalue = 6.78) that broadly measured heavy alcohol use and problems. We then ran a 
confirmatory factor analysis to calculate factor scores using Mplus 6.11 [29]. All items’ factor 
loadings were >0.30, and the items with the greatest loadings were: frequency of heavy drinking  
(6 or more drinks on one occasion); drinks per day on drinking days; injuries as a result of drinking; 
and tolerance. In total, alcohol problems factor scores were calculated for 5952 participants. 
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2.1.2. Genotyping 

ALSPAC participants were genotyped from blood samples using the Illumina 550K custom chip 
(San Diego, CA, USA). Multi-dimensional scaling modeling seeded with HapMap Phase II release 
22 reference populations was used to identify individuals of non-European descent. To reduce bias 
introduced by population stratification, individuals of non-European descent were removed from 
subsequent analyses. Those of European descent were imputed to HapMap Phase II (release 22, 
NCBI build 36, hg18) using the Markov Chain Haplotyping software (MACH v.1.0.16) [30]. SNPs 
that were in Hardy-Weinberg equilibrium (p > 5 × 10 7) with a final call rate of >95%, and minor 
allele frequency >1% were used in the imputation procedure. The 2,450,300 autosomal SNPs that 
exceeded an Rsq metric of 0.3 and had a minor allele frequency >1% following imputation were 
used in the GWAS. Additional, detailed GWAS data cleaning information for this sample are 
available in Fatemifar et al. [31].  

2.2. FinnTwin12  

Our second, independent sample was FinnTwin12 [24]—a population-based twin sample 
identified through Finland’s Population Register Center. Approximately 2700 pairs of twins were 
initially enrolled between ages 11–12 and have been contacted for multiple follow-up assessments 
of behavioral, emotional, and physical health. In the present study we used data from 1162 
participants (467 MZ individuals, 684 DZ individuals, and 11 individuals of unknown zygosity; 
53% female, 47% male) for whom there were genome-wide association (GWA) data. Relevant 
phenotypic data from a psychiatric interview and self-report measures of parental knowledge  
(n = 1115) and peer deviance (n = 1116) at age 14 were available for a subset of the GWA sample. 

2.2.1. Alcohol Problems, Parental Knowledge, and Peer Deviance  

Alcohol problems, parental knowledge, and peer deviance were assessed at age 14. The alcohol 
measure was a sum score of alcohol problems (range 0–30) from the Child version of the  
Semi-Structured Assessment for the Genetics of Alcoholism [32]. Sample items included needing 
50% more alcohol to get an effect, being unable to cut down, reducing important activities to drink, 
and experiencing withdrawal symptoms.  

The parental knowledge measure was the sum score of four adolescent self-report items adapted 
from Chassin and colleagues [33] about the degree to which their parents know about their daily 
plans, activities and whereabouts, how they spend their money, and where/who they are with when 
not at home. Responses were made on a 4-point scale ranging from almost always to rarely or 
never, and were summed such that high scores indicate low parental knowledge (more risk;  
range 4–16).  

The peer deviance measure was the sum score of four adolescent self-report items regarding the 
number of friends/acquaintances who drink, smoke, use drugs, and get into trouble at school. 
Responses were made on a 4-point scale ranging from none to more than five, and were summed 
such that high scores indicate high peer deviance (more risk; range 4–16).  
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2.2.2. Genotyping 

Genome-wide data were collected using blood samples obtained at the age 22 assessment. 
Genotyping was performed at the Wellcome Trust Sanger Institute (Hinxton, UK) on the 
Human670-QuadCustom Illumina BeadChip (Illumina, Inc., San Diego, CA, USA), as previously 
described in Broms et al. [34]. The data were checked for minor allele frequency (MAF > 1%), 
genotyping success rate per SNP and per individual (>95%; >99% for SNPs with MAF < 5%), 
Hardy-Weinberg Equilibrium (HWE p > 1 × 10 6), sex, and heterozygosity. In addition, to check 
whether any individuals were unexpectedly related to each other, a multidimensional scaling plot 
(using a pairwise-IBS matrix) with only one member of each known family was created. After the 
pedigree was checked for accuracy, the basic filters (MAF, genotyping success, HWE) were 
reapplied to the data. 

Imputation was performed by using ShapeIT [35] in pre-phasing and IMPUTE2 [36] for 
genotype imputation, with the 1000 Genomes Phase I integrated variant set release (v3) reference 
panel. The posterior probability threshold for “best-guess” imputed genotypes was 0.9. Genotypes 
below the threshold were set to missing. Genotypes for altogether 6,729,635 SNPs were available 
for analysis.  

2.3. Analytic Plan 

2.3.1. Genome-Wide Association Analysis in the ALSPAC Sample 

The GWAS was conducted using MACH2QTL [37] and was limited to individuals of European 
descent. Sex was included as a covariate. 

2.3.2. Calculation of Polygenic Scores in FinnTwin12 

We used ALSPAC GWAS estimates from the alcohol problems factor score to calculate 
polygenic scores for FinnTwin12 using the --score procedure in PLINK [38]. We computed a linear 
function of the number of score alleles an individual possessed weighted by the product of the sign 
of the SNP effect and the negative logarithm (base 10) of the associated GWAS p-value. This 
retains the same direction between calculated and original output values. Of the 2,450,300 
autosomal SNPs that passed quality control in the ALSPAC sample, 2,221,783 (91%) were 
available in the FinnTwin12 sample.  

There are no set criteria for creating maximally informative polygenic scores [39], and so we 
created a series of scores using p-value thresholds ranging from 0.05 to 0.50. Table 1 summarizes 
the number of SNPs meeting each threshold in the ALSPAC sample, as well as the number and 
percent of those SNPs that were available in the FinnTwin12 sample. Previous work using 
polygenic approaches indicates that pruning for linkage disequilibrium (LD) does not substantially 
change the results [19,40]. In view of this, we chose to incorporate all SNPs meeting each 
polygenic threshold into our scores. 
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Table 1. Autosomal single nucleotide polymorphisms (SNPs) contributing to each 
polygenic threshold in Avon Longitudinal Study of Parents and Children (ALSPAC) 
sample, and availability in FinnTwin12.  

Polygenic threshold Number of autosomal SNPs 
meeting threshold in ALSPAC 

Number (percent) of SNPs 
available in FinnTwin12 

p  0.05 125,969 113,992 (90.5%) 
p  0.10 250, 244 226,789 (90.6%) 
p  0.20 495,760 449,273 (90.6%) 
p  0.30 739,758 670,293 (90.6%) 
p  0.40 984,167 891,782 (90.6%) 
p  0.50 1,231,165 1,115,557 (90.6%) 

2.3.3. Polygenic Association and Moderation Analyses in FinnTwin12 

We used partial Pearson correlations, controlling for sex, to test associations between the 
FinnTwin12 polygenic scores and alcohol problems. We used moderated multiple regression to test 
our gene-by-environment interaction hypotheses that parental knowledge and peer deviance would 
moderate the predictive association of polygenic scores with the age 14 alcohol problems measure. 
For these analyses, the parameters of interest were the statistical interactions between the 
environmental factors (parental knowledge and peer deviance) and the polygenic scores. The main 
effects of sex and the environmental factors were used as covariates in the relevant models. 
Parental knowledge, peer deviance, and polygenic scores were centered on their means prior to 
running moderation analyses to reduce co-linearity among predictor variables. 

3. Results and Discussion 

3.1. Descriptive Statistics and Zero-Order Correlations 

Descriptive statistics for the focal variables and for an illustrative polygenic score (using the  
p  0.05 threshold) are presented in Table 2. MZ twins’ alcohol problems were correlated at  
r = 0.53 (232 pairs; p < 0.01), and DZ twins were correlated at r = 0.36 (277 pairs; p < 0.01). This 
pattern of twin correlations suggests that additive genetic effects accounted for approximately 34% 
of the variance in alcohol problems. Lower parental knowledge (indexed by higher scores on the 
parental knowledge scale used here) and higher peer deviance were associated with higher levels of 
alcohol problems [r(1113) = 0.29 and r(1114) = 0.35, both p-values < 0.01, respectively], which is 
consistent with previous work indicating that more permissive and deviant environments are 
associated with a greater amount of adolescent substance use [33,41,42].  

Table 2. FinnTwin12 descriptive statistics for focal study variables. 

Variable M SD Min Max 
Alcohol problems (age 14), range 0–30 0.29 0.96 0 8 

Parental knowledge (age 14), range 4–16 6.62 2.08 4 15 
Peer deviance (age 14), range 4–16 7.91 3.14 4 16 
Polygenic score (p  0.05 threshold)  0.07 0.02 0.13 0.00 

Abbreviations: M, mean; SD, standard deviation; Min, minimum observed value; Max, maximum observed value. 
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3.2. Polygenic Associations with Alcohol Problems  

Partial correlations (controlling for sex) between the polygenic scores and alcohol problems are 
presented in Figure 1. As expected, higher polygenic scores predicted higher alcohol problems at 
age 14 (range of Pearson partial correlations 0.07–0.08, all p-values < 0.01). This is consistent with 
previous studies of other psychiatric conditions (such as bipolar disorder [19], schizophrenia [43] 
and externalizing disorders [40]) in showing that polygenic scores derived from GWAS weights 
from one sample can have predictive validity in an independent sample. Furthermore, our effect 
sizes were similar in magnitude to those observed in a polygenic analysis of a behavioral 
disinhibition measure (which included antisocial behavior, nicotine use/dependence, alcohol 
consumption and dependence, and drug use) [40].  

The magnitude of the associations between polygenic scores and alcohol problems was fairly 
consistent across the range of selected p-value thresholds, and accounted for, on average, 0.63% of 
the variance in alcohol problems (range 0.55%–0.70%). To be sure that our effects were not driven 
by non-independence within the sample, we re-ran the association analyses after randomly 
dropping one member from each twin pair (n = 634) and found the same pattern of results. This is 
substantially lower than the estimate (derived from the pattern of MZ and DZ twin correlations in 
the same sample) that additive genetics effects account for 34% of the variance in alcohol 
problems. We note, however, that heritability estimates derived from twin models and the variance 
accounted for by a polygenic score are not directly comparable. Polygenic scores are composed of 
SNPs across a range of p-value thresholds, and thus their genetic informativeness is likely to be 
somewhere between a polygenic risk score based on genome-wide significant SNPs and SNP 
heritability as derived through methods that estimate the variance explained by genome-wide 
markers (e.g., GCTA; [44]). The limited amount of variance accounted for in our analyses may be 
attributable to the fact that GWAS-derived polygenic scores only account for common  
(versus rare; [45]) genetic variation; accordingly, incorporating rare genetic variation in polygenic 
scores may be an important direction for future research. In addition, the limited variance 
accounted for may also be attributable to the relatively small sample from which we derived our 
GWAS weights owing to the fact that smaller samples are likely to have a higher signal-to-noise 
ratio compared to larger samples. 

Figure 1. Pearson partial correlations (controlling for sex) between polygenic scores 
and age 14 alcohol problems (all p-values  0.01) in FinnTwin12 (n = 1161). 
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We also tested whether there was evidence for gene-environment correlation by using Pearson 
correlations to examine the associations between polygenic scores and the parental knowledge and 
peer deviance environmental measures. As expected, higher polygenic scores were modestly 
associated with lower parental knowledge, although the effect was of a small magnitude and not 
significant [r (1113) = 0.05, p = 0.09]. Higher polygenic scores were also modestly associated with 
higher peer deviance [r (1114) = 0.08, p < 0.01]. This is consistent with previous evidence from 
twin studies showing that externalizing-spectrum behaviors such as alcohol use, tobacco use, and 
conduct problems are genetically correlated with environmental factors [7,8]. These findings 
highlight the complex interplay between genetic and “environmental” influences on behavioral 
outcomes such as alcohol problems [46]. 

3.3. Gene-by-Environment Interactions 

The polygenic score using the p  0.05 threshold accounted for the greatest proportion  
of variance (0.70%) in age 14 alcohol problems, and we carried this score forward for the  
gene-by-environment analyses in view of earlier suggestions that SNPs having a nominal 
association with a phenotype are likely to be enriched for gene-by-environment interaction [47]. 

Table 3. FinnTwin12 sample. Moderated multiple regression of age 14 alcohol 
problems on sex, polygenic score, parental knowledge, and the interaction of polygenic 
score and parental knowledge (top; n = 1115). Moderated multiple regression of age 14 
alcohol problems on sex, polygenic score, peer deviance, and the interaction of 
polygenic score and peer deviance (bottom; n = 1116).  

Parental Knowledge  
 b SE t P R2 

Intercept 0.16 0.04 3.97 <0.01 -- 
Sex 0.23 0.06 4.17 <0.01 0.006 

Polygenic score 3.10 1.40 2.21 0.03 0.006 
Parental knowledge 0.14 0.01 10.31 <0.01 0.088 

Polygenic score × Parental knowledge 1.54 0.68 2.27 0.02 0.003 
Peer Deviance  

 b SE t P R2 
Intercept 0.19 0.04 4.88 <0.01 -- 

Sex 0.17 0.05 3.07 <0.01 0.006 
Polygenic score 2.75 1.38 1.99 0.05 0.006 
Peer deviance 0.11 0.01 12.43 <0.01 0.120 

Polygenic score × Peer deviance 0.94 0.44 2.11 0.04 0.003 
Boldfaced statistics indicate p < 0.05. Boldfaced and italicized statistics indicate p < 0.01. Abbreviations:  
n = sample size, b, unstandardized regression estimates; SE, standard error for b; t, t-statistic; P, p-value;  

R2, step-wise change in variance accounted for by each parameter in model. 

Moderated multiple regression analyses indicated that parental knowledge and peer deviance 
moderated the associations of polygenic scores with age 14 alcohol problems (Table 3). Genetic 
influences were more pronounced under conditions of low parental knowledge or high peer 
deviance compared to conditions of high parental knowledge or high peer deviance (Figure 2). The 
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interactions with parental knowledge and peer deviance accounted for 0.33% and 0.30% of the 
variance in alcohol problems, respectively. To verify that our effects were not driven by  
non-independence within the sample, we note that the same pattern of effects was found when we 
re-ran the moderation analyses after randomly dropping one member from each twin pair (n = 634). 

Figure 2. Parental knowledge (top) and peer deviance (bottom) moderate polygenic 
risk to predict age 14 alcohol problems in FinnTwin12. Interactions are plotted as 
predicted values based on the moderated multiple regression equation for age 14 
alcohol problems. Illustrative low and high values (±1 SD of mean) for the polygenic 
scores, parental knowledge, and peer deviance are shown. The predicted values for high 
parental knowledge and low peer deviance were out of bounds (negative values) and 
were set to zero—the lowest possible value for the alcohol problems measure. Error 
bars are equal to the standard deviation of the model residuals divided by the square 
root of the sample size. We note that high scores on the parental knowledge scale 
indicate low parental knowledge (i.e., more risk). For ease of interpretation, we have 
formatted the axis for each figure so that the riskier environment appears on the right.  

 

 

Although the effect sizes for the polygenic score X environment interactions were small, the 
pattern of effects is consistent with previous findings from the twin literature. Multiple independent 
twin studies find that parenting and peer environmental factors moderate latent genetic influences 
for alcohol use and related outcomes such that genetic influences increase under conditions of low 
parental knowledge and high peer deviance [6–9,48]. The convergence between the pattern of  
gene-environment interactions from twin studies and measured polygenic effects is encouraging, 
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and suggests that polygenic approaches may be a useful way to characterize gene-environment 
interplay for aggregate genetic risk using measured genotypic data.  

In addition to these core analyses, we ran a series of supplementary analyses to examine the 
robustness of our effects after controlling for gene-environment correlation and after transforming 
our alcohol problems dependent variable to a logarithmic scale. Gene-environment correlation can 
produce spurious gene-environment interaction effects; likewise, interaction effects are known to 
be sensitive to scale. Accordingly, our supplementary analyses were intended to address concerns 
that our observed gene-environment interaction effects could be statistical artifacts. 

To control for gene-environment correlation in our parental knowledge analyses, we used 
residualized polygenic score and parental knowledge variables in our model. To calculate 
residualized variables, we regressed polygenic scores onto parental knowledge (and vice versa) and 
saved the residuals for use in the moderation models. Using residualized variables in this way 
statistically eliminates gene-environment correlation from the model because the genetic and 
environmental effects have been partialled from one another. We used the same method to 
calculate residualized polygenic score and peer deviance variables for our peer deviance analyses. 
The moderation effect for parental knowledge continued to be statistically significant; however, the 
moderation effect for peer deviance trended in the same direction but was not statistically 
significant (unstandardized regression coefficients (b) and p-values (p) for interaction terms:  
b = 1.33, p = 0.05 and b = 0.66, p = 0.14, respectively) when we used residualized values in  
our analyses.  

To test whether our interaction effects could be attributed to the scale of the alcohol problems 
measure, we used a log-transformed version of the measure (i.e., log10 (alcohol problems + 1)) in 
our analyses. The interaction effects trended in the expected direction for parental knowledge and 
peer deviance, albeit failing to reach significance (unstandardized regression coefficients (b) and  
p-values (p) for interaction terms: b = 0.51, p = 0.07 and b = 0.30, p = 0.10, respectively). As a set, 
these supplementary analyses demonstrate that the moderation effects were modestly attenuated 
after controlling for gene-environment correlation and changing the scale of the alcohol problems 
outcome variable, but they continued to trend in the same direction and did not entirely go away.  

Although the causal relationships among the genetic and environmental variables examined here 
are unknown, we note that early findings from genetically-informed randomized prevention studies 
suggest that efforts aimed at reducing environmental risk factors for adolescent alcohol use and 
related behavior problems may be particularly effective for those who are genetically predisposed 
toward developing such problems. For example, adolescents with either the short/short or 
short/long genotype of SCL6A4(5-HTT) who took part in a family-based prevention-intervention 
program aimed at increasing family cohesion were less likely to initiate risk behaviors (alcohol use, 
marijuana use, and sex) across a 29-month period compared to their counterparts in the control 
condition [49]. Examining whether efforts to bolster parental knowledge or reduce peer deviance 
attenuate polygenic risk for alcohol problems is an important direction for future research. 
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3.4. Set-Based Analyses Examining Enrichment for Gene-Environment Interaction among  
Top SNPs 

The polygenic analyses indicated significant gene-environment interaction effects with parental 
knowledge and peer deviance, and we used set-based analyses to probe whether the individual top 
SNPs contributing to our polygenic scores were themselves enriched for gene-environment 
interaction. We examined this question using the set of top SNPs (p  0.0001) from the ALSPAC 
GWAS. We selected this relatively stringent p-value threshold in view of the computing resources 
required to perform the permutation analyses described below. Of the 311 SNPs meeting this 
threshold in ALSPAC, 279 (90%) were available in FinnTwin12. We pruned by LD in the 
FinnTwin12 sample in order to reduce the set to include only independent (r2 < 0.50) SNPs, which 
resulted in 76 SNPs. Because LD calculations should be made on independent individuals, we used 
a randomly-selected sample of independent individuals in the FinnTwin12 sample (n = 634) for this 
purpose. We then permuted the phenotypic and covariate information for these individuals  
100,000 times while keeping the genotypic information (LD) unchanged. For each of these 
permuted datasets, we examined gene-environment interaction effects for parental knowledge and 
peer deviance. To calculate empirical p-values, we used the equation (R + 1)/(N + 1). R is the 
number of permutations where the sum of the absolute value of the t-scores for significant SNP 
interaction effects (p < 0.05) exceeded the sum of the absolute value of the t-scores for significant 
SNP interaction effects in the observed data. N is the number of permutations (100,000). 

Our empirical p-values were 0.32 and 0.71 for parental knowledge and peer deviance, 
respectively. This indicates that the SNPs contributing to our polygenic scores were not 
individually enriched for gene-environment interaction, and further suggests that the polygenic 
moderation effects that we observed occur at the aggregate genetic level rather than at the level of 
individual SNPs. Attempts to replicate these effects in other independent datasets are critical for 
better understanding the contributions of individual SNPs to the aggregate effects observed for 
polygenic scores.  

3.5. Limitations 

Our results should be interpreted in the context of their limitations. First, the participants in our 
two samples were of European descent, the latter exclusively of Finnish descent, which may limit 
the generalizability of the present findings to samples from the same ancestral background. Second, 
although our association and moderation findings were in the expected direction, the effect sizes 
were quite small—often accounting for less than 1% of the variance. Although there is much 
enthusiasm for personalized medicine approaches [50] that use genome-wide information to 
identify for whom and under what conditions prevention and intervention efforts are likely to be 
effective, our results caution against using empirically-derived GWAS scores in a clinical setting 
for complex behavioral outcomes such as alcohol problems due to the fact that they account for a 
limited proportion of the variance [51]. Third, alcohol problems in FinnTwin12 were assessed at 
age 14. Accordingly, endorsements of alcohol problems at this age may represent a more severe 
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phenotype than those at age 18 in ALSPAC. The age and measurement differences across the 
ALSPAC and FinnTwin12 samples may explain, in part, the low percentage of variance accounted 
for by the polygenic score. Finally, the polygenic approach adopted here is limited in that it does 
not attempt to implicate the specific genes involved in alcohol problems. Additional methods, such 
as gene set approaches that examine whether SNPs included in a polygenic score are located in 
functionally related genes [52], are well suited to identify the potential biological mechanisms 
underlying polygenic effects.  

4. Conclusions  

Higher polygenic predispositions for alcohol problems (based on GWAS estimates from a 
population-based sample of young adults) predicted a higher number of adolescent alcohol 
problems in an independent, population-based sample. In addition, environmental factors in 
adolescence moderated these polygenic predispositions. Genetic predispositions were more important 
under conditions of low parental knowledge and high peer deviance. These gene-by-environment 
interactions, although small in magnitude, are consistent with previous findings from studies that 
show that environments low in social control or high in social opportunity permit the expression of 
genetic predispositions [10]. In contrast, environments high in social control or low in social 
opportunity may inhibit the expression of that same predisposition. Accordingly, prevention and 
intervention efforts that increase parental knowledge and decrease affiliations with deviant peers 
may be one strategy for reducing risk for adolescents with genetic predispositions toward alcohol 
problems; however additional study is needed before making strong claims about the potential 
effectiveness of such interventions.  
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Abstract: DNA methylation is one of the most extensively studied epigenetic marks in humans. 
Yet, it is largely unknown what causes variation in DNA methylation between individuals. The 
comparison of DNA methylation profiles of monozygotic (MZ) twins offers a unique experimental 
design to examine the extent to which such variation is related to individual-specific environmental 
influences and stochastic events or to familial factors (DNA sequence and shared environment). 
We measured genome-wide DNA methylation in buccal samples from ten MZ pairs (age 8–19) 
using the Illumina 450k array and examined twin correlations for methylation level at 420,921 CpGs 
after QC. After selecting CpGs showing the most variation in the methylation level between 
subjects, the mean genome-wide correlation (rho) was 0.54. The correlation was higher, on average, for 
CpGs within CpG islands (CGIs), compared to CGI shores, shelves and non-CGI regions, 
particularly at hypomethylated CpGs. This finding suggests that individual-specific environmental 
and stochastic influences account for more variation in DNA methylation in CpG-poor regions. 
Our findings also indicate that it is worthwhile to examine heritable and shared environmental 
influences on buccal DNA methylation in larger studies that also include dizygotic twins. 

Reprinted from Genes. Cite as: van Dongen, J.; Ehli, E.A.; Slieker, R.C.; Bartels, M.; Weber, Z.M.; 
Davies, G.E.; Slagboom, P.E.; Heijmans, B.T.; Boomsma, D.I. Epigenetic Variation in Monozygotic 
Twins: A Genome-Wide Analysis of DNA Methylation in Buccal Cells. Genes 2014, 5, 347-365. 

1. Introduction 

To date, hundreds of genetic risk variants for complex traits and diseases have been identified, 
although for most of these variants, the biological mechanisms remain to be elucidated [1]. 
Interestingly, the majority of disease-associated genetic variation is located in regulatory regions of 
the genome [2], including transcription-factor-occupied regions and DNase I hypersensitive sites 
(which correspond to open chromatin) [3]. This suggests that mechanisms that control the activity 
of genes, including epigenetic mechanisms, may represent an important link between DNA 
sequence variation and common disease susceptibility [4]. Trying to unravel the molecular biology 
underlying complex traits and disease, much attention has been drawn recently to these epigenetic 
mechanisms; non-DNA sequence-based regulation of gene expression by DNA methylation, histone 
modification, microRNAs, etc. [5]. DNA methylation is one of the most extensively studied 
epigenetic mechanisms in human populations and tissues and is the focus of this paper. 

In humans, DNA methylation occurs almost exclusively at cytosines that are part of CpG 
dinucleotides. The relationship between DNA methylation and expression varies depending on the 
genomic context: CpG methylation at promoter regions is generally thought to repress gene 
expression, while gene body methylation is generally associated with active gene expression and has 
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been suggested to regulate splicing [6–8]. In most cell types, the majority of CpGs in the genome 
(on average, 70%–80%) is typically methylated [9]. Of the unmethylated CpG sites in the genome, 
most occur in areas of clustered CpGs, called CpG islands, which are often present in promoter 
regions. Yet, DNA methylation patterns may vary, and differential methylation has been 
demonstrated to occur across age [10], cell types, tissues [7,11] and disease states [12,13], and it has 
become clear that widespread variation in methylation patterns exist between individuals [14]. 
Accumulating evidence suggests that DNA methylation patterns can be affected by genetic variants 
(mQTLs) [15], environmental exposures [16] and stochastic factors [17,18], but it is largely 
unknown how much each of these factors account for overall variation between individuals in 
DNA methylation across the genome. Twin studies provide insight into the proportion of  
inter-individual variation in DNA methylation that is due to genetic variation, environmental 
effects and stochastic variation [19]. 

Because MZ twins derive from a single zygote and, therefore, have (nearly) identical DNA 
sequences (see, for example, Ye et al., 2013 [20]), the comparison of DNA methylation patterns of 
MZ twins allows one to examine the extent to which differences in methylation between human 
individuals are related to environmental and stochastic events. Previous studies have highlighted 
that various tissues of MZ twins already show differences in DNA methylation at birth [21,22] and 
that differences between twins for average genome-wide DNA methylation, total histone 
acetylation levels and methylation at certain loci increase with age (referred to as “epigenetic 
drift”) [23]. Although a cross-sectional study of DNA methylation discordance in saliva from  
34 MZ pairs (age range: 21–55 years) found no evidence for larger differences in DNA methylation 
in older MZ pairs [24], results from a cross-sectional analysis based on 230 MZ pairs (age range: 
18–89 years) suggested a gradual increase of DNA methylation discordance in MZ twins from 
early adulthood to advanced age at various candidate loci, which was supported by longitudinal 
data from 19 elderly MZ pairs [25]. 

In the past few years, various studies have examined DNA methylation at a set of candidate 
genes or particular genomic regions in MZ and dizygotic (DZ) twins [26–31], usually reporting 
greater similarity of MZ twins compared to DZ twins, suggesting that heritable influences 
contribute to DNA methylation variation at specific regions. While CpG sites at some imprinted 
loci showed evidence for moderate to high heritability in blood samples from adolescent and 
middle-aged twins [29], other genomic regions, including the major histocompatibility complex 
(MHC) region, showed little evidence for genetic influences on DNA methylation variation [28]. 
Twin studies also highlighted variation between tissues in the importance of genetic influences on 
methylation of candidate loci at birth [30]. A longitudinal classical twin study of three candidate 
genes (DRD4, SLC6A4/SERT and MAOA) based on buccal cells indicated that changes in the 
methylation of these genes within individuals between age five and 10 are mostly attributable to 
non-shared environmental influences and stochastic variation [31]. Clearly, twin studies of 
candidate regions suggest that there is broad variation in the importance of heritable influences and 
environmental or stochastic variation to DNA methylation at different regions. 

To date, only a few genome-scale analyses of DNA methylation have been performed using the 
classical twin design, including a study of ~12,000 CpG sites within islands [32], two studies that 
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used a promoter-specific array targeting ~27,000 CpG sites (Illumina 27k) [21,33] and two studies 
that used the Infinium HumanMethylation450 array (Illumina 450k) [22,34], which assesses 
~485,000 CpG sites across a variety of regions in the genome, including gene bodies and intergenic 
regions [35]. The studies that assessed heritability consistently reported that the average heritability 
of the methylation level at CpGs across the genome is low to moderate when all sites are 
considered, although the heritability of individual CpGs ranges between 0% and 100%. The 
following estimates of average heritability across genome-wide CpGs have been reported to date 
(based on all analyzed CpGs): 18% in blood from 32- to 80-year-old twins (21 MZ pairs and 31 DZ 
pairs) [33], 5% in placenta, 7% in human umbilical vascular endothelial cells (HUVEC) and 12% 
in cord-blood mononuclear cells (CBMC) from neonatal twins (22 MZ and 12 DZ pair [21]) and 
19% in adipose tissue from adult female twins (97 MZ pairs and 162 DZ pairs) [34]. In two studies 
of neonatal twin tissues, methylation discordance in MZ and DZ twins increased with increasing 
distance from CpG islands (CGIs) for certain probes (Type I), i.e., differences were larger in the 
shores and shelves that flank CGIs [21,22]. In the study of adipose tissue, it was noted that the 
average genome-wide heritability of DNA methylation was higher when restricting to the most 
variable CpG sites (for the top 10% CpGs of which the methylation level varied most between 
subjects, the average heritability was 37%) [34]. It was also found that gene body and intergenic 
regions showed higher average methylation levels, more variation between subjects and higher 
heritability compared to promoter regions in adipose tissue [34]. 

To summarize, there is great interest in unraveling the factors that contribute to variation in 
DNA methylation between persons, but most previous twin studies of DNA methylation have been 
limited to candidate genes or a subset of regulatory regions in the genome (mostly promoter 
regions and CGIs). Two earlier studies used the Illumina 450k to collect genome-wide data in MZ 
and DZ twins; one in adipose tissue in adults [34] and one in DNA isolated from buccal cells in 
infants (10 MZ pairs and five DZ pairs, longitudinal design) [22]. In line with earlier findings 
suggesting the divergence of DNA methylation profiles with age in MZ twins (mostly based on data 
from adult twins, cross-sectional comparisons and limited genomic coverage), Martino et al. [22] 
showed that widespread DNA methylation changes occur across the genome in buccal cells 
between birth and 18 months and that some MZ and DZ pairs already show divergence of DNA 
methylation profiles, whereas other pairs show stable difference levels or became more similar 
within the first 18 months after birth. In this paper, we analyzed genome-wide DNA methylation 
profiles (Illumina 450k) from buccal epithelium. We focused on 10 young and adolescent MZ twin 
pairs (age 8–19). The aim of our study was to examine how similar the DNA methylation profiles 
of buccal cells from genetically identical subjects are in childhood and adolescence and whether 
MZ twin similarity varies between different genomic regions. 

Previous studies have highlighted differences in mean methylation level, differences in the 
effect of methylation level on gene expression and differences in the effect size and direction of the 
effect on methylation for disease associations across different regions in the genome [6]. These 
findings indicate that the establishment and maintenance of DNA methylation is differentially 
regulated in different regions and that a given change in methylation in different areas may have 
different downstream effects, suggesting that DNA methylation in some regions may be more 
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tightly controlled than in others. We questioned whether these regional differences are also 
accompanied by differences in the importance of environmental and stochastic influences versus 
familial factors (genetic variation and shared environment) to inter-individual variation in 
methylation levels. Therefore, we describe the MZ twin correlations of individual CpGs as a function 
of various genomic classifications, including the position relative to CGIs (CGI regions, shores, 
shelves and non-CGI regions), genes (distal to promoter, proximal to promoter, gene body and 
intergenic) and ENCODE regulatory regions (DNaseI hypersensitive sites (DHS) and transcription 
factor binding sites (TFBS)). Hereby, our study gives valuable insight into the factors influencing 
inter-individual genome-wide DNA methylation variation in buccal cells in childhood and adolescence 
and into the degree to which these influences vary across functional regions in the genome. 

2. Experimental 

2.1. Subjects 

Ten monozygotic twin pairs, who take part in longitudinal studies of the Netherlands Twin 
Register (NTR), were selected for the current study. There were five young twin pairs [36] whose 
buccal samples were collected when the twins were between ages 8 and 10 years and five adolescent 
pairs [37] who were aged 18–19 years at the time of sample collection. In the young group, there 
were three male pairs and two female pairs, and in the adolescent group, there were two male pairs 
and three female pairs. The twins were unselected with respect to phenotypic characteristics. 
Informed consent was obtained from the parents (children) or from the twins themselves 
(adolescents). The study was approved by the Central Ethics Committee on Research Involving 
Human Subjects of the VU University Medical Centre, Amsterdam, an Institutional Review Board 
certified by the U.S. Office of Human Research Protections (IRB number IRB-2991 under Federal-
wide Assurance-3703; IRB/institute codes, NTR 03-180). Participants could indicate if they wished 
to be informed of the results of zygosity testing. Zygosity testing, based on a set of SNPs and 
VNTRs, as described in Van Beijsterveldt et al. 2013 [36], confirmed that all pairs were MZ. In 
addition to the twin samples, a single sample was used as a genomic DNA control. This DNA 
sample (CEPH) was derived from a stable cell line (female) from the HapMap project and was run 
in four replicates on the methylation BeadChip arrays. 

2.2. Buccal DNA Collection 

The procedures of buccal swab collection [38] and genomic DNA extraction [39] have been 
described previously. In short, 16 cotton mouth swabs were individually rubbed against the inside 
of the cheek by the participants and placed in four separate 15 mL conical tubes (four swabs in 
each tube) containing 0.5 mL STE buffer (100 mM sodium chloride, 10 mM Tris hydrochloride 
(pH 8.0) and 10 mM ethylenediaminetetraacetic acid) with proteinase K (0.1 mg/mL) and sodium 
dodecyl sulfate (SDS) (0.5%) per swab. Individuals were asked to refrain from eating or drinking  
1 hour prior to sampling. High molecular weight genomic DNA was extracted from the swabs 
using a high salt (KAc) precipitation followed by a standard chloroform/isoamyl alcohol (24:1) 
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extraction. The DNA samples were quantified using absorbance at 260 nm with a Nanodrop  
ND-1000 (Nanodrop Technologies, Wilmington, DE, USA). 

2.3. Infinium HumanMethylation450 BeadChip Data Generation 

The epigenome-wide methylation data was generated using the Infinium HumanMethylation450 
BeadChip Kit (Illumina Inc., San Diego, CA, USA). The Infinium HumanMethylation450 
BeadChip is able to interrogate over 450,000 methylation sites across the entire genome, including 
99% of RefSeq genes. Content was selected to include gene regulatory regions, such as the 
promoter, 5' UTR, first exon, gene body and the 3' UTR. Additionally, bead probes were also 
designed to cover regions adjacent to the CpG islands, such as the shores and shelves [35]. 

The Infinium DNA methylation assay was performed at the Avera Institute for Human Genetics. 
The assay was completed exactly as denoted in the manufacturer’s protocol. The concentration of 
genomic DNA used in the Infinium DNA methylation assay was determined by comparing the 
binding of PicoGreen to known standards (  DNA) and to the sample DNA. Briefly, 500 ng of 
genomic DNA was used for bisulfite conversion using the Zymo EZ DNA methylation kit  
(Zymo Research). Five microliters of bisulfite-converted DNA were whole genome amplified, 
which was followed by enzymatic end-point fragmentation. The resulting fragments were purified 
using an isopropanol precipitation, and the resuspended genomic DNA was denatured and 
hybridized to the BeadChip arrays for 18 hours. Extension, staining and washing were completed 
manually in flow cells followed by imaging using the iScan system (Illumina, Inc.). The raw data 
were extracted as idat files and were used in the downstream analysis. 

2.4. Quality Control, Normalization and Data Processing 

The raw intensity files (idat) were imported into the R environment [40], where further 
processing, quality control and normalization took place. The performance of bisulfite control 
probes confirmed successful bisulfite conversion for all samples. For each sample, we compared 
the overall (median) methylated signal intensity to the overall unmethylated signal intensity across 
all probes and compared the overall signal intensity from all CpG probes to the overall background 
signal (“noise”), as assessed using negative control probes. The overall signal from CpG probes 
was good and well-separated from the background signal for all samples. As a final quality check 
of the samples, cluster analysis was performed (cluster method = complete linkage) based on the 
Euclidean distance between samples, which was calculated from the pair-wise correlations between 
samples using the most variable probes (probes with an SD of the -value across all 24 samples >0.10, 
with probes on the X and Y chromosomes and probes containing SNPs, as described in the next 
paragraph excluded; Nprobes = 38,359). The results of the cluster analysis were visualized in a 
dendrogram (see the “Results” section), which showed no outlier samples and illustrated tight 
clustering of the four replicate measures of control DNA. 

Several probe-level QC steps were performed to filter out probes with low performance. For all 
samples, ambiguously-mapped probes were excluded, based on the definition of an overlap of at 
least 47 bases per probe from Chen et al. [41], and all probes containing an SNP, identified in the 
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Dutch population [42], within the CpG site (at the C or G position) were excluded, irrespective of 
minor allele frequency. For each sample individually, probes with an intensity value of zero (not 
present on the array of a particular sample), probes with a detection p-value > 0.01 (calculated 
using the function detectionP from the minfi package) and probes with a bead count <3 were 
excluded. After these steps, probes with a success rate <0.95 across samples were removed from all 
samples, and the success rate across probes for each sample was computed (range of per sample 
success rate: 0.9990–0.9998). 

After QC, background and red/green color adjustment were applied to the raw probe intensity 
values using quantile normalization. Normalized intensity values were converted into beta-values 
( ). The -value, which represents the methylation level at a CpG for an individual and ranges from 
0 to 1, is calculated as: 

 =   

where M = methylated signal, U = unmethylated signal and 100 represents a correction term to 
control the -value of probes with a very low overall signal intensity (i.e., probes for which M + U 
~ 0 after background subtraction). 

Finally, in anticipation of our categorization of CpGs based on the mean -value across samples,  
-values were adjusted to account for (intra-sample) differences in the distributions of methylation 

values derived from Type I probes (two bead types per CpG site) versus Type II probes (one bead 
type per CpG site) using the beta-mixture quantile normalization method (BMIQ) [43]. 

2.5. Genomic Annotations 

CpGs that passed QC criteria (N = 420,921) were mapped to genomic features, DNase I 
hypersensitive sites (DHS) and transcription factor binding sites (TFBS), as described by Slieker  
et al. [7]. The genomic feature annotation is based on first assigning CpGs to one of five  
gene-centric regions: intergenic region (>10 kb from the nearest transcription start site (TSS)), 
distal promoter ( 10 kb to 1.5 kb from the nearest TSS), proximal promoter ( 1.5 kb to +500 bp 
from the nearest TSS), gene body (+500 bp to 3' end of the gene) and downstream region (3' end to 
+5 kb from 3' end). Next, CpGs were mapped to CGIs (CG content >50%, length >200 bp and 
observed/expected ratio of CpGs >0.6; locations were obtained from the UCSC genome  
browser [44]), CGI shore (2-kb region flanking CGI), CGI shelf (2-kb region flanking CGI shore) 
or non-CGI regions (Figure 1). According to the gene-annotations, 14.4% of all CpGs were located 
in intergenic regions, 4.7% mapped to the distal promoter, 40.4% to the proximal promoter, 38.6% 
to the gene body and 1.9% to the downstream region. Thirty three percent of CpGs were located 
within CGIs, 23.8% in shores, 9.2% in shelves and 34.0% outside CGIs. The locations of DHS and 
TFBS, which were described by the ENCODE project [3], were downloaded from the UCSC 
genome browser. Finally, CpGs were mapped to imprinted genes that were described by  
Yuen et al. [45]. 
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Figure 1. Illustration of a CpG island (CGI) with surrounding CGI shores, CGI-shelves 
and non-CGI regions. 

 

2.6. Statistical Analysis of Twin Data 

To examine the s imilarity of DNA methylation profiles of MZ twins, we computed correlations 
between the normalized -values of MZ co-twins using the following two approaches: (1) for each 
MZ twin pair, the Spearman correlation (rho) was computed between the -values of Twin 1 and 
the -values of Twin 2 (across all CpGs, i.e., CpGs are cases), as a measure of the overall similarity 
of the methylation profiles of each twin pair; (2) for each CpG, the Spearman correlation (rho) was 
computed between the -value of Twin 1 and the -value of Twin 2 (across all 10 MZ twin pairs, 
i.e., MZ twin pairs are cases), as a measure of the similarity of the methylation level of a CpG in 
MZ twins. For Scenario 2, we describe the range of correlations for the most variable CpGs. The 
most variable CpGs were additionally grouped by genomic annotations and average methylation 
level. For each CpG, the average methylation level ( -value) and the standard deviation (SD) were 
computed across subjects (20 MZ twins). Based on the average , CpGs were classified as 
hypomethylated (mean  < 0.3), intermediately methylated (mean   0.3–0.7), or hypermethylated 
(mean   0.7). Based on the SD, CpGs were classified as “most variable CpGs” if they had  
an SD  0.05. 

3. Results and Discussion 

3.1. DNA Methylation Level across the Genome 

After QC of the methylation data, 420,921 CpGs from 10 monozygotic twin pairs were 
analyzed. The methylation level across genome-wide CpGs showed the typical bimodal 
distribution for each subject (Figure 2). Based on our -value cut-offs (see the “Experimental” 
section); 184,765 CpGs (43.9%) were classified as hypomethylated, 64,829 CpGs (15.4%) were 
intermediately methylated and 171,327 CpGs (40.7%) were hypermethylated. CGIs were on 
average hypomethylated, with CGIs in proximal promoter regions showing a narrow range of 
average methylation levels across individual CpGs and CGIs in gene bodies, downstream regions 
and intergenic regions showing a broader range of methylation levels across individual CpGs  
(see Figure 3). Compared to CGIs, the shores, shelves and non-CGI regions on average had a 
higher methylation level, except for proximal promoter shores. Shores generally showed the widest 
range of average methylation levels across individual CpGs, when compared to CGIs, shelves and 
non-CGI regions (Figure 3). 
  

CGI CGI Shore CGI Shore CGI Shelf CGI Shelf 

2 kb 2 kb 2 kb 2 kb 

Non- 
CGI 

Non- 
CGI 
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Figure 2. Density of -values after normalization for all twin samples. 

 

3.2. Similarity of Genome-Wide Methylation Profiles of MZ Twins 

A cluster analysis of the methylation data revealed that all but one MZ twin clustered closely 
together with their co-twin (Figure 4), which could be related to differences in the cellular 
composition of the samples of this twin pair. Buccal swab samples are mainly composed of buccal 
epithelial cells with a small proportion of leukocytes, but the exact proportions may vary between 
persons. Using information from a reference 450k methylation dataset [7], we examined potential 
variation between twin samples in the proportion of buccal versus blood cells, by clustering the 
twin data based on methylation values at CpGs that showed a large difference in methylation 
between blood and buccal samples in the reference dataset (see the Supplementary Methods). 
Although some variation was indicated by this approach, the exclusion of twin samples with 
putatively deviant cellular proportions yielded similar results for the correlation analyses  
(see Table S1 and Figure S1), and we therefore decided to keep all samples in the analyses reported 
in this paper. 

Figure 5 shows a typical scatterplot of genome-wide CpG methylation levels in buccal cells 
from an MZ twin pair. It illustrates that overall, the buccal DNA methylation profiles of MZ pairs 
are highly concordant when all CpGs are considered (rho = 0.981–0.994 for different MZ pairs, 
mean rho = 0.991); however, these correlations are to a large extent driven by invariable CpGs that 
are hypomethylated or hypermethylated in both twins. For pairs of unrelated subjects, the mean 
correlation was 0.983 (range: 0.970–0.992). When comparing only the most variable CpGs (SD of 

  0.05), the correlations ranged from 0.869 to 0.989 (mean rho = 0.966) in MZ twins (and mean 
rho = 0.859, range: 0.608–0.963 for unrelated subjects). Thus, when looking only at CpGs that may 
vary between individuals, the overall pattern of methylation across CpGs is still highly similar 
within MZ pairs on average, but more variation between individual pairs becomes visible, as the 
methylation level at variable CpGs overall was more strongly correlated for some MZ pairs than 
for others. This finding is in line with the results from Martino et al. based on buccal cells from 
twins at birth and at the age of 18 months [22], which also indicated that some MZ pairs are more 
similar than other pairs with respect to their DNA methylation profiles. 
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Figure 3. Average methylation level of individual CpGs across gene regions (a), CpG 
islands (CGI) and non-CGI regions (b) and for each genomic feature separately (c). 

 

 

Figure 4. Cluster dendrogram of all twin and control samples. From left to right, the 
first two branches separate the control samples (HapMap cell line DNA) from the 
buccal samples from twins. 
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Figure 5. Smooth scatterplot of DNA methylation levels ( -values) at 420,921 CpGs in 
buccal cells from a monozygotic twin pair. 

 

3.3. Similarity of the Methylation Level at Individual CpGs in MZ Twins 

Although all ten MZ twin pairs showed high overall similarity of methylation across  
genome-wide CpGs, some CpGs differed within MZ twin pairs (Figure 5), and we questioned how 
similar the methylation level at individual CpGs is when summarized across all MZ pairs. To this 
end, we computed for each CpG the correlation between methylation values of MZ twins. A high 
MZ twin correlation for a CpG suggests that MZ co-twins consistently show similar methylation 
levels at this CpG, indicating little stochastic and environmental variation (including measurement 
error) at this site, whereas a low MZ twin correlation for a CpG suggests dissimilar methylation 
levels in co-twins, which is indicative of a large degree of stochastic and environmental influences.  

Summarizing the individual CpG correlations over all 420,921 CpGs, the average MZ twin 
correlation was 0.31 (median = 0.35, range: 0.963–1), which is in line with the low heritability 
across genome-wide CpGs reported by previous studies [21,33,34]. However, as the majority of 
CpGs showed very little variation in the methylation level between subjects, all subsequent 
analyses were conducted using only the most variable sites (N = 59,041), which showed an average 
genome-wide correlation of 0.54 (median = 0.54, range: 0.661–1) in MZ twins. These findings 
suggest that while the large majority of CpGs are either hyper- or hypo-methylated and show little 
between-individual variation in DNA methylation in buccal samples, a small portion does vary 
markedly, and these CpGs are on average moderately to strongly correlated in MZ twins. 

Table 1 describes the MZ twin correlations separately for various genomic regions and 
separately for hypomethylated, intermediately methylated and hypermethylated CpGs. Comparing 
the different gene-centric classifications, the average MZ twin correlation was highest for CpGs in 
proximal promoter areas (mean rho = 0.57) and lowest for gene body CpGs (mean rho = 0.51).  
The MZ twin correlation of methylation values was also lower on average in CGI shores  
(mean rho = 0.54), shelves (mean rho = 0.50) and non-CGI regions (mean rho = 0.49) compared to 
CGIs (mean rho = 0.66). Looking at the MZ twin correlations across genome annotations 
separately for hypomethylated (29.8% of variable CpGs), intermediately methylated (50.0% of 
variable CpGs) and hypermethylated CpGs (20.2% of variable CpGs), the median MZ twin 
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correlation was consistently lower in the shelves, shores and non-CGI regions compared to  
CGIs, for all genic and intergenic regions, and this difference was most pronounced for 
hypomethylated CpGs (Figure 6). This observation suggests that the relative influence of familial 
versus individual-specific influences differs between these regions, with regions of low CpG 
density showing more variation due to individual-specific environmental and stochastic factors 
compared to CpG dense regions. Larger methylation discordance of MZ twins in CGI shores and 
shelves was also previously indicated by studies of neonatal twins [21,22]. Our results thus 
replicate previous findings and add to these findings that the pattern previously observed in MZ 
twins at birth is also visible in childhood and adolescence. 

Figure 6. MZ twin correlations for individual CpGs grouped by genomic region and 
average methylation level. Hypo = Hypomethylated. Inter = intermediate methylation. 
Hyper = Hypermethylated. Results are based on the most variable CpGs (N = 59,041).  

 

Table 1. Spearman correlation between the methylation values of monozygotic (MZ) 
twins for individual CpGs. Results are based on the most variable CpGs (N = 59,041). 

Category N CpGs Mean rho Median rho Min rho Max rho 

All CpGs 59,041 0.54 0.54 0.661 1 

Gene-centric annotations N CpGs (%) Mean rho Median rho Min rho Max rho 

Intergenic (>10 kb from TSS) 11,430 (19.4%) 0.52 0.53 0.56 1 

Distal Promoter ( 10 kb to 1.5 kb from TSS) 3193 (5.4%) 0.53 0.53 0.54 1 

Proximal Promoter ( 1.5 kb to +500 bp from TSS) 17,880 (30.3%) 0.57 0.62 0.66 1 

Gene Body (+500 bp to 3' end) 25,163 (42.6%) 0.51 0.50 0.59 1 

Downstream region (3' end to +5 kb from 3' end) 1375 (2.3%) 0.55 0.55 0.66 1 

CGI annotations N CpGs (%) Mean rho Median rho Min rho Max rho 

CGI 10,576 (17.9%) 0.66 0.73 0.49 1 

CGI shore 14,803 (25.1%) 0.54 0.55 0.59 1 

CGI shelf 6001 (10.2%) 0.50 0.49 0.54 1 

Non-CGI 27,661 (46.9%) 0.49 0.47 0.66 1 

Methylation level  N CpGs (%) Mean rho Median rho Min rho Max rho 

Hypomethylated (average beta <0.3) 17,581 (29.8) 0.48 0.42 0.59 1 

Intermediately methylated (average beta 0.3–0.7) 29,519 (50.0) 0.55 0.56 0.66 1 

Hypermethylated (average beta 0.7) 11,941 (20.2) 0.58 0.61 0.59 1 
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The most strongly correlated CpGs in MZ twins (mean rho = 0.73) were hypomethylated CpGs 
located in proximal promoter CGIs (N = 2547 CpGs, constituting 4.3% of the most variable CpGs, 
and 2.9% of all CpGs located in proximal promoter CGIs), while MZ twin correlations on average 
were lowest in hypomethylated non-CGI gene body CpGs (N = 2972 CpGs constituting 5.0% of 
the most variable CpGs, Mean rho = 0.34). In combination with our observation that most proximal 
promoter CpGs are on average hypomethylated (Figure 3), these findings indicate that DNA 
methylation variation is generally depleted in proximal promoter CGIs. Yet, a small proportion of 
CpGs in proximal promoter CGIs does show marked variation in young and adolescent individuals, 
and the high average MZ twin correlations at these sites suggest that this variation may be to a 
large extent under genetic control. 

3.4. MZ Twin Resemblance at CpGs in ENCODE Regulatory Regions 

To further examine DNA methylation at regulatory regions in the genome, we focused 
specifically on CpGs located within DNase I hypersensitive sites (DHS) and CpGs within 
transcription factor binding sites (TFBS) identified by the ENCODE project. It has previously been 
described that these regions are enriched among disease-associated genetic variants [3], but it has not 
yet been studied to which extent heritable versus other sources of variation account for variation in 
DNA methylation in these regions. We found that both DHS and TFBS were on average 
hypomethylated, as expected for transcriptionally active DNA (DHS: mean  = 0.27, median = 0.09; 
TFBS: mean  = 0.24, median = 0.08). The most variable CpGs in these areas (representing 16.2% 
of all CpGs in DHS and 13.7% of CpGs in TFBS) showed a mean correlation of 0.52 (DHS) and 
0.53 (TFBS), respectively, in MZ twins. These results suggest that buccal cells overall show little 
variation in the methylation level at the majority of CpGs within DHS and TFBS. A small 
proportion of CpGs in DHS and TFBS, however, does show variation between individuals, and 
these sites were moderately to strongly correlated in MZ twins, suggesting that these sites may be 
of particular interest for follow-up in future studies of heritability. 

3.5. MZ Twin Resemblance at CpGs in Imprinted Genes 

At imprinted genes, one of the alleles is typically methylated to repress expression, while the 
other allele is unmethylated, depending on the parent from whom the allele was inherited. This 
results in a methylation level of around 50% at imprinted CpGs when the two alleles are measured 
simultaneously. A previous twin study demonstrated moderate to high heritability at CpGs at two 
imprinted loci [29], suggesting that CpGs within imprinted genes may on average show more 
heritable variation compared to most other genome-wide CpGs. In our dataset, 346 CpGs were 
located in DMRs (differentially methylated regions) of 59 imprinted genes, described by  
Yuen et al. [45]. These genes were identified as imprinted in human placental tissue, and although 
some of these genes showed similar methylation patterns in one or multiple fetal tissues, including 
muscle, brain and kidney, it is unknown whether these genes are also imprinted in buccal cells. 
From the Yuen et al. set, 144 CpGs in 46 genes (see Table S2) showed a methylation level 
indicative of imprinting in our data (intermediate methylation; mean   0.3–0.7). The average MZ 
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twin correlation for this set of CpGs was 0.47 (median rho = 0.50), suggesting that MZ twin 
correlations at imprinted gene CpGs on average are comparable to the MZ twin correlation at 
intermediately methylated CpGs in general.  

3.6. Interpretation and Future Directions 

The average twin correlation of methylation values for MZ twins at individual CpGs was low 
across all measured genome-wide CpGs, but it was moderate to large on average when focusing 
only on variably methylated CpGs. This is in line with results from a heritability analysis of DNA 
methylation in adipose tissue, which showed that the average heritability across all CpGs was 
higher for the top 10% of CpGs with the largest standard deviation of methylation level across 
subjects [34]. 

Importantly, in addition to the effects of environmental and stochastic influences, differences in 
DNA methylation within MZ twin pairs may result from variation in the cellular composition of 
samples and from technical variation (including measurement error). Buccal swab samples are 
mainly composed of buccal epithelial cells with a small proportion of leukocytes, but the exact 
proportions may vary between persons, which could lead to methylation variation within MZ twin 
pairs that mainly tag differences in cell type composition. We examined the impact of variation in 
the proportion of buccal versus leukocytes on our data by studying the methylation patterns of all 
twin samples at CpGs with a large methylation level difference between buccal and blood samples 
(see Supplementary Methods). Exclusion of four twin pairs, for which this approach indicated a more 
deviant cellular composition in one or both twins (lower proportion of buccal epithelial cells; see Figure 
S2 and Table S3), however, had very little impact on the average MZ twin correlations reported in 
this paper and led to the same conclusions (See Table S1 and Figure S1 for the results based on the 
exclusion of the putatively more heterogeneous samples). 

With respect to technical variation, it is important to note that if the actual methylation status at 
a particular site is either completely unmethylated (0%) or completely methylated (100%) without 
true biological variation between subjects, some variability between the measured values of 
individuals is expected due to technical variation [46]. It is therefore likely that at sites that were on 
average hypomethylated or hypermethylated in our data, technical variation may account for a 
large part of the observed variation (although true biological variation may of course also account 
for part of the variation at these sites). An interesting question that largely remains to be examined 
is what types of environmental influences can induce changes in DNA methylation and thereby 
possibly impact on gene expression. Although our study design does not provide insight with 
regard to which of the observed differences between twins are the result of different environmental 
exposures and which differences have arisen due to stochastic variation in molecular processes, 
future studies of MZ twins who are discordant for environmental exposures should allow one to 
examine the effects of such influences on DNA methylation. Our finding that many CpGs in the 
genome show dissimilar methylation levels in young and adolescent MZ twins indicates that it is of 
interest for further studies to specifically search for regions in the genome where differential 
methylation in MZ twin coincides with differential exposures. As we observed that DNA 
methylation in MZ twins is overall less similar at CpGs in non-CGI regions, CGI shores and 
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shelves, these regions are of particular interest to studies examining environmental exposures, as 
these regions may show the strongest effects of environmental influences. 

To check whether the lower average MZ twin correlation at hypomethylated sites is not merely 
related to the distribution of -values being truncated at zero (and one) by definition, we also ran 
the analyses on M-values (M = log2 ), which have better statistical properties, but reduced 

biological interpretability, compared to -values [47]. The MZ twin correlations based on M-values 
were highly similar to those based on -values and showed a similar genome-wide average  
(Table S4) and a similar pattern across regions and mean methylation categories (Figure S3). 
Irrespective of whether the lower resemblance of MZ twins mainly reflects that these sites harbor 
more biological variation that is unique to MZ twins or reflects that more variation at these sites is 
related to measurement error, our findings provide useful information for future heritability and 
mQTL studies. CpGs that are very weakly correlated between MZ twins are not likely to show high 
heritability or strong effects of DNA variants on the methylation level. 

A limitation of our study is the modest study size, which limited the scope of our analyses to the 
description of the major patterns (i.e., averages) of twin correlations across the genome. A second 
limitation is that we did not include DZ twins. The correlation between the phenotypes of MZ 
twins summarizes the contribution of heritable influences and shared environmental factors to 
phenotypic variation. It thus remains to be established whether CpGs that were strongly correlated 
in MZ twin pairs are strongly affected by heritable influences or whether shared environmental 
influences are also important at these sites. Of interest, a previous twin study of DNA methylation 
in adipose tissue identified a number of CpGs with evidence for shared environmental effects on 
DNA methylation [34]. Future studies that include data from both MZ and DZ twin pairs are 
needed to separate the effects of heritable effects and shared environment on genome-wide DNA 
methylation profiles in buccal cells. Our results indicate that such studies are worthwhile, as we 
have shown that methylation at a number of CpGs is strongly correlated between MZ twins in 
buccal cells. 

We studied DNA methylation extracted from buccal samples, which may be easier to collect 
than blood samples in, e.g., young children, and are therefore well-suited for large-scale studies in 
humans. A relevant question is how representative DNA methylation extracted from these samples 
is for DNA methylation variation in other tissues and whether methylation studies of buccal vs. 
blood-derived DNA would lead to similar insights. Although DNA methylation patterns are to a 
large extent tissue-specific [7] and epigenetic changes arising later in life in one tissue may not be 
detectable in others, epigenetic variation that is established early in development is more likely to 
be reflected in multiple tissues [4]. Yet, the methylation patterns of buccal cells are likely to be 
more informative to the methylation state of other ectoderm-derived tissues, whereas methylation 
patterns in blood may be more comparable to other mesoderm-derived tissues. Finally, it may be 
regarded as an advantage that compared to blood, which consists of many different cell types, 
buccal samples represent a relatively homogenous sample type [48], in the sense that it consists of 
only two major cell types, which potentially makes correction for cell types more straightforward. 
On the other hand, an advantage of blood samples is that they may provide more insight into DNA 
methylation variation related to immune system-mediated processes in the body, which are 
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important in many diseases. To conclude, blood and buccal samples are both valuable for gaining 
insight into the overall importance of heritable and environmental factors to DNA methylation 
variation in the genome, and our study showed that the average genome-wide MZ twin correlation 
for DNA methylation in buccal cells is similar to the average correlation previously reported for 
peripheral blood [33].  

4. Conclusions 

To summarize, we computed genome-wide MZ twin correlations for the buccal DNA 
methylation level at individual CpGs. Methylation levels in MZ twins were moderately to strongly 
correlated at CpGs with the largest inter-individual variation, which constituted a relatively small 
proportion of the CpGs that were measured. The average MZ twin correlation across all CpGs was 
relatively low (mean rho = 0.31), which is similar to findings from previous twin studies [21,33]. 
Although most CpGs within CGIs were on average hypomethylated, some of them showed large 
variation in methylation levels. We observed that CpGs with variable methylation levels were more 
strongly correlated in MZ twins when located in CGIs compared to CpGs in shores and shelves. 
CpGs in DHS and TFBS were generally hypomethylated, as expected for regulatory active DNA, 
but CpGs in these regions that were more variably methylated were moderately to strongly 
correlated in MZ twin pairs, in line with our findings for variably methylated CpGs in general. To 
conclude, we have shown that in buccal samples from young and adolescent MZ twins, most CpGs 
show an average methylation level close to zero or 100% and little inter-individual variation, and a 
subset of CpGs show larger variability with evidence for a familial component (DNA sequence 
variation or shared environment). These findings are relevant for future heritability studies of DNA 
methylation and for mQTL studies. 
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Abstract: We present the use of a series of laboratory, analytical and interpretation methods to 
investigate personalized cancer care for a case of small cell prostate carcinoma (SCPC), a rare and 
aggressive tumor with poor prognosis, for which the underlying genomic architecture and 
mutational spectrum has not been well characterized. We performed both SNP genotyping and 
exome sequencing of a Virchow node metastasis from a patient with SCPC. A variety of methods 
were used to analyze and interpret the tumor genome for copy number variation, loss of 
heterozygosity (LOH), somatic mosaicism and mutations in genes from known cancer pathways. 
The combination of genotyping and exome sequencing approaches provided more information than 
either technique alone. The results showed widespread evidence of copy number changes involving 
most chromosomes including the possible loss of both alleles of CDKN1B (p27/Kip1). LOH was 
observed for the regions encompassing the tumor suppressors TP53, RB1, and CHD1. Predicted 
damaging somatic mutations were observed in the retained TP53 and RB1 alleles. Mutations in 
other genes that may be functionally relevant were noted, especially the recently reported high 
confidence cancer drivers FOXA1 and CCAR1. The disruption of multiple cancer drivers 
underscores why SCPC may be such a difficult cancer to manage. 

Reprinted from Genes. Cite as: Scott, A.F.; Mohr, D.W.; Ling, H.; Scharpf, R.B.; Zhang, P.;  
Liptak, G.S. Characterization of the Genomic Architecture and Mutational Spectrum of a Small 
Cell Prostate Carcinoma. Genes 2014, 5, 366-384. 

1. Introduction 

The promise of the Human Genome Project (HGP), for which we mark the tenth anniversary, 
was that individualized genomics would become a reality for medical diagnosis and care. However, 
only recently have methods for sequencing, data analysis and the interpretation of variation with 
respect to medically relevant sequence information become sufficiently robust to make this 
approach useful. In this paper we compared different methods to investigate the genomic 
architecture and mutational spectrum of a rare tumor, small cell prostate cancer (SCPC). Our goal 
was to identify which methods were most informative and what information might provide the best 
guidance to the patient and his physician. Secondarily, we hoped to provide further characterization 
for this tumor type that may be of use to the community. 

SCPC is a high-grade malignant tumor with neuroendrocrine differentiation sometimes referred 
to as neuroendocrine prostate cancer (NEPC) [1]. SCPC is often discovered after the occurrence of 
metastases, has been reported to account for 0.5%–2% of all prostate carcinomas and has a median 
survival from diagnosis of approximately 12.5 months [2]. The largest SCPC series was published 
by Wang and Epstein [3] who histologically examined 95 cases of which 92% showed expression 
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of the neuroendocrine marker CD56 (NCAM1) and of which approximately 80% failed to show 
elevated PSA levels. Aparicio et al. [1] noted that, although rare as a primary diagnosis, NEPC may 
be more common than appreciated and could account for as much as 25% of lethal prostate cancer. 

A few studies have looked at the genomic events characterizing NEPC. Beltran et al. [4] 
measured gene expression using NGS RNA-sequencing and oligonucleotide arrays in NEPC 
tumors and observed a correlation between overexpression of MYCN and AURKA both of which 
were amplified at the gene level in 40% of NEPCs. The authors also noted evidence for a 
TMPRSS2-ERG gene fusion, a lack of the ERG protein marker, high expression of the neuroendocrine 
genes CGA and SYP, and low expression of the androgen-regulated genes KLK3 (PSA), TMPRSS2 
and NXK3.1. Beltran et al. [4] further showed that NEPC cell lines were sensitive to the AURKA 
inhibitor danusertib which produced a suppression of neuroendocrine expression. However, phase 
II clinical trials of men with castration-resistant prostate cancer were disappointing [5].  
Tzelepi et al. [6] produced SCPC xenografts and performed expression studies and genomic 
profiling using array-CGH (comparative genomic hybridization) which showed up-regulation of 
UBE2C and other mitotic genes along with the absence of expression of the androgen receptor 
(AR), RB1, and cyclin D1. A subset of tumors showed microdeletions of RB1. Grasso et al. [7] 
sequenced 50 lethal metastatic castration-resistant prostate cancers (CRPC) which include SCPC. The 
authors identified subsets of tumors with either disruptions in CHD1 (chromodomain helicase 
DNA-binding protein 1) or in ETS2 (usually from fusions of ETS2 with TMPRSS2). The authors 
also found mutations in multiple genes whose protein products physically interact with androgen 
receptors such as the ERG gene fusion, the chromatin modifying protein MLL2, and FOXA1 
among others. Grasso et al. [7] further showed that mutated FOXA1 repressed androgen signaling 
and enhanced tumor growth. The importance of FOXA1 in tumor progression was also 
demonstrated by Imamura et al. [8] who were able to reduce proliferation in cell culture with an 
siRNA directed against FOXA1. Van Allen et al. [9] performed whole exome sequencing on a 
CRPC bone metastasis and identified a homozygous deletion in PTEN and a nonsense mutation in 
BRCA2, both of which suggested clinical treatment strategies. 

The diversity of findings in the studies cited above likely results from both tumor heterogeneity 
and the different laboratory methods used. In this study we have used array based genotyping to 
examine the overall genomic architecture, exome sequencing to identify somatic mutations, various 
software tools to analyze the resulting data and both public and commercial interpretation tools to 
attempt to understand the findings. 

2. Experimental 

2.1. Sample 

The patient was a consented 63-year old male of European ancestry who presented with 
hematuria and without elevated levels of prostate specific antigen (PSA). The cancer was detected 
after the development of metastases and the diagnosis of SCPC was made at the patient’s primary 
care hospital and confirmed at the Johns Hopkins Hospital. High molecular weight DNA was 
isolated from two needle aspirates of a metastatic Virchow node and from saliva (ScopeTM 



58 
 
mouthwash, Procter & Gamble) using standard methods but with extended proteinase K digestion 
time for the biopsies. Cells from the aspirates were examined by a pathologist at the time of 
collection and the remaining tissue was transferred, unfixed, to the laboratory for DNA isolation. A 
total of 25.5 g of DNA was obtained from the tumor and 60 g from the mouthwash collection. 

2.2. Genomic SNP Array and Analysis 

The DNA from the metastasis was adjusted to 50 ng/ L and 5 L (250 ng) were genotyped on  
an Illumina HumanOmni2.5S BeadChipTM array at the SNP Center of the Genetic Resources  
Core Facility [10] at the Johns Hopkins School of Medicine. Illumina GenomeStudio software 
(Illumina Inc., San Diego, CA, USA) was used to process the array data and calculate B-allele 
frequencies (BAF) and log R Ratios (LRR). The BAF and LRR values generated by GenomeStudio 
ver. 1.7.4 (Illumina, Inc.) are plotted in Figure 1 (panels A and B, respectively) for all the 
autosomes. The LRR values were segmented using the circular binary segmentation algorithm 
implemented in the R package DNAcopy (ver. 1.36.0) [11]. The black lines in the LRR plots are 
the average LRRs for those segments of the chromosome. 

Figure 1. Allele frequencies (A) and log R ratios (B) estimated by GenomeStudio. 
Autosomal log R ratios were segmented by circular binary segmentation [11] as indicated 
in black; (C) Log R values from whole exome sequencing were obtained by the 
EXCAVATOR program [12] and aligned to panels A and B, providing a qualitatively 
similar profile of the copy number alterations. Black lines depict the segmentation of 
the log R values. 
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2.3. Exome Capture and Sequencing 

Exome-sequencing was performed at the High-Throughput Sequencing facility of the GRCF.  
DNA (3 g) from the tumor and saliva were sheared to a size of 150 to 200 bp using a Covaris 
E210 system (Covaris Inc., Woburn, MA, USA). End repair and addition of an overhanging “A” 
base was performed using a NEBNextTM reagent kit (New England Biolabs, Ipswich, MA, USA). 
DNA fragments were ligated to library adapters (Illumina). The ligated fragments were then size 
selected through purification using SPRI beads and PCR amplified to prepare the libraries. An 
Agilent Bioanalyzer DNA1000 assay was used for quality control of the libraries to ensure 
adequate concentration and appropriate fragment size. Sequencing was performed on an Illumina 
HiSeqTM 2000 following library capture with an Agilent SureSelect All Exon v3 kit. Sample 
indexing was applied to distinguish the source of the libraries. Sequence data was processed using 
CIDRSeqsuite v2.3.0 [13] as follows. Sequence reads were processed through Illumina software 
generating base calls and corresponding base-call quality scores. Resulting data was aligned to hg19 
with the Burrows-Wheeler Alignment (BWA; [14]) tool resulting in a SAM/BAM file. Molecular 
and optical duplicate reads were flagged using software from the Picard program suite [15].  
Post-processing of the aligned data included local realignment around SNPs and indels and  
base-call quality score recalibration using the Genome Analysis Tool Kit ver. 2 (GATK2; [16]). 
Single sample calling was done using GATK2 HaplotypeCaller with hard filtering and outputted  
in VCF 4.0 format. Analyses were performed in accordance with GATK Best Practices 
recommendations [17,18]. All positions reported are with respect to the hg19 reference sequence. 

2.4. Sequence Interpretation 

Differences of SNVs and indels between the tumor and normal exomes were computed using 
both open source and commercial software to identify somatic mutations. The open source 
programs included ANNOVAR [19], SG-adviser, a suite of web-based tool offered by The Scripps 
Translational Science Institute [20] Strelka [21] and Seurat [22] which were used with their default 
settings. In addition, we used the IntOGen-mutations platform [23,24] to identify genes mutated in 
the TCGA/ICCG cancer genome projects. The Condel online tool [25] was used to obtain scores 
for missense mutations [26] shown in the exome sequencing data tables. We also used the 
Ingenuity Variant Analysis web-based application to compare sequence between the tumor and 
matched normal exomes with differing filtering parameters (see Supplementary Methods: Analysis 
and Variant Filtering). 

3. Results and Discussion 

3.1. Genomic Landscape Detailed from Genotyping Data 

The genotyping array showed a large degree of copy number variation of chromosomal 
segments and loss of heterozygosity with 17 of the 22 autosomes grossly affected (Figure 1). The 
genotypes from the Illumina 2.5 M BeadChip processed by circular binary segmentation indicated 
a modest range in copy number. Visual inspection of the BAF plots clearly identifies blocks of 
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homozygosity on chromosomes 1, 2, 5, 9, 12, 13, 15, 16, and 17. At least four critical tumor 
suppressors are within these regions of LOH; TP53 on Chr 17, RB1 on Chr 13, CDKN1B on Chr 
12 and CHD1 on chromosome 5 (Figure 2a). While the regions that include TP53 and CHD1 are 
essentially copy neutral, the LRR plot and segmentation showed a reduced copy number for the 
chromosome 13 block containing RB1 and a likely homozygous deletion of the chromosome 12 
region containing CDKN1B (Figure 2b). 

Figure 2. The location of the key genes described in the text. CHD1  
(Chr 5: 98.190–98.265 Mb) was not mutated but occurs in a block of LOH; CDKN1B 
(Chr 12: 12.870–12.875 Mb) has low copy number, RB1 (Chr 13: 48.878 Mb–49.056 Mb) 
occurs in a block of LOH, has reduced copy number and the retained allele is predicted 
to be damaging; TP53 (Chr 17: 75.712 Mb–75.909 Mb) occurs in a copy neutral block 
of LOH and the retained allele is predicted to be damaged. Figure 2b, magnified view 
of the CDKN1B region showing a likely deletion of the gene supported by both the 
array (top and middle panels) and exome-sequencing platforms (bottom). 
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Grasso et al. [7] recently described the mutational landscape of castration-resistant prostate 
cancer (CRPC) based on exome sequencing of 50 lethal metastatic cases. An important finding of 
their study was that tumors involving CHD1 lacked ETS2 gene fusions and ETS2 mutations. 
CHD1 is an ATP-dependent chromatin-remodeling enzyme that recognizes histone H3 lysine 4 
methylation and is associated with the promoters of active genes where it presumably acts in 
nucleosome disassembly [27]. In this tumor the regions around ETS2 and TMPRSS2 have normal 
copy number although SNP arrays are not capable of identifying contiguous chromosomal events 
and a translocation in non-coding DNA is certainly possible. In contrast, CHD1 clearly falls within 
a region of LOH and although the exon sequences for the gene are the same as reference  
we do not know if there might have been mutations in regulatory regions. Unfortunately, we were 
unable to obtain RNA from the limited biopsy specimen so we could not measure changes in 
CHD1 expression. 

The genotyping data identified a region of LOH and markedly reduced copy number on 
chromosome 12p (~Chr 12: 10–24 Mb) that includes CDKN1B (Chr 12: 12.870–12.875 Mb) the 
gene which encodes the p27 cyclin-dependent kinase inhibitor also referred to as p27(KIP1). The 
exome reads were also significantly reduced and it is possible that the gene is completely absent in 
the tumor and that the observed reads represent those from contaminating or infiltrating normal 
cells. CDKN1B blocks cell division in G0/G1, regulates cell motility and apoptosis and is classified 
as a tumor suppressor [28]. Although CDKN1B was not mutated in this tumor, decreased copy 
number has been associated with tumor pathology in mice (e.g., [29]) and in lethal human epithelial 
cancers with a poor outcome [30]. 

Tumor Purity 

Several regions of LOH identified by genotyping showed very few spurious mutant sequencing 
reads indicating that normal cells were not present in the tumor to any significant degree  
(e.g., TP53 Chr 17:5,578,394). Nevertheless, the mean read depth for the tumor library was 353X 
and 138X for the normal exome. Although the range in the frequency of mutant reads (Table 1) 
varies considerably, the fact that 97% of the reads for TP53 are mutant confirms that the tumor was 
unlikely to have been contaminated with a significant number of normal cells and that differences 
in allelic fraction at other positions most likely represent tumor heterogeneity. Because of this high 
level of tumor purity we felt that our exome sequencing provided a good representation of the 
genomic events without the need to sequence to extraordinary depth to distinguish tumor from 
infiltrating non-tumor cells. 

3.2. Exome Variant Interpretation 

We used open source tools to generate variant calls and a mixture of open-source and commercial 
programs to evaluate the significance of the somatic mutations. All variant filtering is a trade-off 
between sensitivity and specificity and the risk of missing variants of biological significance must be 
weighed against a larger number of false calls. The variant calling programs included Haplotype  
Caller [16,17], Strelka [21] and Seurat [22]. Haplotype Caller was run under GATK best practices with 
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hard filtering [18], producing single sample calls for both tumor and normal. Strelka and Seurat are 
somatic variant callers that identify SNVs and indels present in a tumor but not the matched normal 
sample. Both were run using default settings. The default filter for Seurat removes sequences with 
a mapping quality score less than 10 while Strelka removes all read pairs with a mapping quality 
below 40. Seurat identified 3577 somatic SNVs and 2290 indels. In comparison, Strelka found 535 
SNVs and 11 indels. Lists from both somatic callers were submitted to the Integrative Onco 
Genomics single tumor analysis web tool [23] which searches somatic mutations, genes and 
pathways identified, at the time of the analysis, from 4623 tumor/normal exomes by the International 
Cancer Genome Consortium (ICCG; [31]) and The Cancer Genome Anatomy (TCGA; [32]) 
initiatives. Because the Seurat results appeared to have high sensitivity but low specificity we 
decided to focus on the Strelka list. We manually inspected the Strelka /IntOGen dataset by 
examining each of the positions using the Integrative Genomic Browser (IGV, ver. 2.3.23; [33]). 

Ingenuity Variant Analysis (QIAGEN, Redwood City, CA, USA) was also used to filter and 
interpret somatic variants under different filtering criteria and single-sample variant call files were 
uploaded, parsed, and comparatively queried initially for rare (<3% allele frequency in public 
genome/exome datasets) missense, nonsense, coding indel, or clinically classified (pathogenic/likely 
pathogenic) variants, confidently called (PHRED-scaled variant call quality >20 in either sample) 
in genes directly or indirectly (within 2 upstream interaction hops) implicated in “prostate cancer” 
or “small cell adenocarcinoma” (interactive supplement at https://variants.ingenuity.com/Scott-etal-2014). 
Other filtering parameters (e.g., 1 upstream interaction hop, frequency in 1000 genomes or 
Complete Genomics data of less than 0.001%, and broader disease terms including “small cell 
adenocarcinoma”, “castration-refractory prostate cancer”, and “metastases”) were also evaluated 
(interactive supplement at https://variants.ingenuity.com/Scott2014ver2). 

We grouped SNVs into four categories: (1) The principal findings (Table 1) that we speculate 
have a strong likelihood of causing or contributing to SCPC; (2) Potentially implicated genes 
(Table 2) for which there is some evidence of an involvement in cancer but are less certain;  
(3) Genes with probable passenger mutations (Table S1) whose involvement in cancer is less 
obvious or lacking and (4) Possibly inherited risk factors (Table S2) for cancer susceptibility. The 
distinction between each of the first three categories is somewhat arbitrary. 

Table 1 shows the top six genes based on their designation as high-confidence or candidate 
drivers (HCD, CD) of cancer by Tamborero et al. [34], their consensus deleteriousness (Condel) 
scores [26] or their reduced copy number. Premature nonsense mutations were presumed to be 
deleterious. The fraction of mutant reads at each position was also calculated from the BWA 
alignment. As discussed above, the predicted copy numbers in Table 1 and whether the gene fell 
into a region of LOH was based on both the genotyping array data as well as normalized exome 
capture read depth.  
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The most obvious findings from the genotyping and sequencing data are that the classic tumor 
suppressors TP53 and RB1 both occur in blocks of LOH and the retained alleles were mutated. In 
the case of TP53 the His to Arg missense substitution is damaging by both SIFT and Condel. The 
RB1 mutation was a premature stop codon at amino acid 323. As with other treatment resistant 
cancers, mutations in TP53 and RB1 have been reported in lethal prostate cancers [6,7]. Mutations 
in MLL2 have been reported in about 9% of CRPC while mutations in FOXA1 occurred in about 
3.4% of tumors [7]. In this case of SCPC we did not find mutations in MLL2 but did detect a 
mutation in FOXA1. FOXA1 is a nuclear protein that promotes tumor progression through its 
interaction with the androgen receptor, which in turn, induces several prostate-specific genes. 
FOXA1 levels are positively correlated with PSA, Gleason scores and AR expression [8]. The 
damaging FOXA1 mutation reported here occurred in about half of the sequence reads and is 
presumed to result in lower activity which may, in part, explain the fact that the patient’s PSA 
levels were not elevated. Grasso et al. [7] also showed that FOXA1 mutations repressed androgen 
signaling and increased tumor growth. 

Barbieri et al. [35] examined 112 prostate cancer tumor-normal pairs by exome sequencing and 
found recurrent somatic mutations in the genes FOXA1 and MED12 (~5% of tumors each) and in 
SPOP (~13% of tumors) in individuals with metastatic disease. The authors observed three different 
FOXA1 missense mutations in the forkhead (FH) domain, the DNA-binding domain of the  
protein [35,36]. FOXA1 binds to the androgen receptor and regulates the transcription of prostatic 
genes and is required for development of the prostate. The damaging mutation reported here also 
occurred in the FH domain. We did not observe mutations in SPOP and it does not occur in the 
region of LOH we observed on chromosome 17. Likewise, MED12 on the X chromosome did not 
appear to have somatic mutations when compared to the normal DNA sample. 

Recurrent deletions of 5q21 have been reported in prostate cancer [35,37], and correlated with 
loss of the tumor suppressor CHD1. Further, Burkhardt et al. [37] showed a strong correlation 
between the loss of CHD1 and the biochemical failure to detect prostate-specific antigen. 
Similarly, we observed a region of LOH on chromosome 5 (~60–145 Mb, 5q12.1–31.3) which 
includes the CHD1 gene (Chr 5: 98,188,908–98,264,238) and, as noted, PSA levels were also not 
elevated in this cancer. While the remaining allele of CHD1 appears to have a normal sequence the 
genotyping array shows a reduced LRR. We were unable to perform studies to determine if RNA 
or protein levels were concomitantly reduced. The LOH region in our patient also includes the 
PIK3R1 gene, mutations in which are associated with various tumors (e.g., [9,38]). We observed 
no somatic mutations in the retained PIK3R1 allele. 

The list of potentially implicated genes with somatic mutations is shown in Table 2 and ordered 
by the percent of mosaicism of the variant. These were selected based on the Ingenuity assessment, 
being a member of a gene family in which a related gene is a known or candidate cancer driver or 
from published literature implicating them in some aspect of cancer. Among these are NCK2 
whose potentially damaging mutation occurs in 100% of reads. NCK2 is reported to promote 
melanoma cell proliferation, migration and invasion [39]. RGPD3 is expressed in the testis and 
HeLa cells [40], KIAA1324 or estrogen-expressed gene 21 is associated with ovarian cancer 
survival [41] and overexpression of EIG121 was observed to cause “profound suppression” of cell 
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growth [42]. Presumably, reduced expression would have the opposite effect. MAP4K4 is a 
serine/threonine kinase that is overexpressed in many cancers where it is implicated in migration 
and invasion [43] and RBFOX1 is related to the candidate driver RBFOX2 [44]. Zhou et al. [45] 
reported a mutation in RBFOX1 in a colorectal adenoma. Decreased expression of testis-specific 
kinase substrate, TSKS has been observed in cancerous testicular tissue and in very low levels in 
various embryonal carcinomas [46]. NTRK3 is a potential tumor suppressor [47] often fused with 
ETV6 in thyroid cancer [48]. PSMD8 is up-regulated in a choriocarcinoma cell line [49]. AGO4 or 
EIF2C4 is down-regulated in hepatocellular cancer [50]. DDX11 is required for sister chromatid 
cohesion and is expressed at high levels in primary and metastatic melanomas [51] and DDP9 is 
expressed in breast and ovarian cancer [52]. ANXA11 plays an important role in cell division and 
disruption of the gene “may lead to or enhance the metastasis, invasion and drug resistance of 
cancers” [53]. A literature survey for TRIM14 did not identify a link to cancer but the protein shares 
homology to the reported high confidence driver TRIM7 [34]. 

We noted LOH and slightly reduced copy number for the region on chromosome 2 (181.5–181.8 Mb) 
containing the long non-coding RNAs SChLAP1 (LINC00913) [54] and for PCGEM1 (193.6 Mb) [55] 
both of which have been reported to be overexpressed in aggressive prostate cancer. We did not 
find evidence that CDKN2A was deleted or that CCNE1, E2F3, UBE2C, or MYCC were amplified 
as seen in other cancers (e.g., [56]). Our patient did not receive castration therapy and the androgen 
receptor gene (AR) was not deleted. We did not find evidence for a fusion between TRPSSC2 and 
ERG based on exon sequences although, as noted above, we cannot rule out a translocation outside 
of coding regions. Cyclin D1 (CCND1), a gene often altered in cancer and a modifier of androgen 
receptor function [57], may have reduced copy numbers based on the array data but had no obvious 
sequence differences from the normal sample. We also found no evidence for copy number or 
somatic mutations in AURKA, KLK3, CGA, SYP, NXK3.1, NCAM1, CD56, ETS or UBE2C. In 
fact, the total estimated mutational burden is low (<1/50,000 bp). 

The patient’s normal genome was also studied for inherited SNPs that might confer an increased 
risk for cancer (Table S2). A heterozygous SNP in FOXC1 that creates a P321Q variant that is 
predicted to be deleterious by SIFT and Condel (score = 0.92) was observed. Overexpression of 
FOXC1 has been correlated with poor outcome (e.g., [58,59]) and as a promoter of invasion in breast 
cancer [60]. The patient was also heterozygous for a known rare variant in DND1 (rs72800920) 
that is predicted to be damaging by both SIFT and CONDEL (score = 0.96). In mice, a premature 
stop mutation in Dnd1 has been shown to markedly increase the risk of testicular germ line  
tumors [61]. We do not know if rs72800920 is a cancer risk factor or simply a private rare variant. 
Other possible risk factors for which the patient was heterozygous were ALK, NCK2, DDX11 and 
CBWD3. Somatic mutations in ALK (anaplastic lymphoma receptor tyrosine kinase) have been 
seen in neuoblastomas [62]. NCK adaptor protein 2, NCK2, has been reported to promote 
melanoma cell proliferation [39]. DEAD/DEAH box helicase 11, DDX11, is required for sister 
chromatid cohesion and has been reported to be essential for the survival of advanced  
melanomas [51]. It is curious that the patient was a carrier for a likely pathogenic inherited variant 
and his tumor showed two somatic mutations in DDX11. Each of the germline alleles in these 
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genes remained heterozygous in the tumor (i.e., did not show evidence for selection) and we have 
no formal evidence that they conferred risk for disease or its progression. 

4. Conclusions 

The main goal of this study was to assess how the new genomic technologies, analysis methods 
and interpretation tools might be used to provide clinical utility. Secondarily, we hoped to better 
characterize a SCPC metastasis in a single case using these approaches. The combination of 
genotyping arrays, to provide a broad overview of the genomic landscape, and exome sequencing, 
to identify specific mutations, was more useful than either method alone. The genotyping array 
highlighted key regions of the genome that showed abnormal copy number or loss of 
heterozygosity. In general, these changes in genomic architecture are clues to underlying genes that 
may be implicated in cancer. LOH is commonly associated with the loss of tumor suppressors and 
by identifying those regions first on an array we were able to focus attention on the somatic 
sequence variants found there. 

Because of limited sample we were unable to perform karyotyping or expression studies (either 
arrays or RNAseq). However, such limitations are likely to be expected in routine clinical testing 
so maximizing information from samples is critical. Going forward it would be preferable to do 
dual RNA and DNA isolations from fresh needle biopsies and perform RNA sequencing to 
measure relative expression levels, identify the main splice variants and any fusion transcripts. 
Given the good correlation between exome read depth and copy number from the array shown here 
it may be unnecessary to perform high-density genotyping in the future. However, we would likely 
replace exome-capture with PCR-free whole genome sequencing in order to eliminate biases 
related to the capture reagents and be able to potentially identify chromosomal translocation events 
and other genomic rearrangements. Currently, we feel it is important to manually review the 
sequence data at key positions and perform Sanger sequencing as confirmation for actionable 
mutations. However, improvements in laboratory methods and analysis may soon make this 
unnecessary (e.g., [63]). 

We found that both open source and commercial tools were invaluable for interpreting somatic 
variants although it is essential that the analysis pipeline that produces the variants for 
interpretation be as rigorous as possible. Interpretation software essentially performs two tasks: it 
matches lists of variants within a study to those reported in various databases or in the literature in 
a way that is meaningful for the disease or mode of inheritance and it uses one or more algorithms 
to predict the effects of mutations. The first function will only be as good as the databases 
referenced and for commercial databases the details are usually not available. In general, there was 
excellent concordance between the open source tools and the Ingenuity Variant Analysis although 
the latter identified several somatic mutations in genes that were not flagged by the IntOGen 
analysis. This is not surprising given that IntOGen is based on data from large cancer sequencing 
projects while Ingenuity also includes literature-based gene information and predictive algorithms 
that infer change in protein function. 

A current limitation to variant interpretation is, as seen in Table 1, that many genes produce 
multiple alternative transcripts and may have deleterious mutations predicted in some isoforms but 
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not others. In the absence of RNASeq data we do not know which isoforms may predominate in a 
given cancer type. Information about the splice variants and fusion transcripts will have to be 
included in a comprehensive analysis. Further, because the interpretation tools used in this analysis 
were based on VCFs they did not take copy number or LOH into account. As shown from the 
Excavator analysis this is something that could certainly be added. A clear advantage of the 
Ingenuity Variant Analysis tool was the ability of a user to easily link to the biomedical literature 
and pathway information that included potential drugs for targets it identified. Providing such 
information will be a valuable adjunct to physicians acting on exome and genome test results. 

As noted above, as with other types of genetic testing, NGS approaches need to be standardized, 
accurate and have practical utility. Perhaps more than other genetic tests, whole genome or whole 
exome sequencing blurs the borders between clinical testing and research. This was also true of 
other methods when they first appeared (e.g., FISH, comparative hybridization arrays, etc.) and 
only with the accumulation of large datasets and more standardized methods in the laboratory and 
during analysis will the utility of genome sequencing become routine. As more correlations are 
made between patterns of the genomic landscape and mutational profiles we should be better able 
to tailor treatments or predict the course of disease. Already, sequencing data are being used to 
design patient-specific tests to follow response to treatment [64] and gene or mutation-specific 
treatments have been and are being developed. 

SCPC is a lethal cancer with a poor prognosis. Ciriello et al. [56], in summarizing the ICGC and 
TCGA oncogenic signatures from over 3000 tumors, concluded that cancers generally fall into one 
of two classifications; “M” class cancers with, often large numbers of somatic mutations, and the 
“C” class with chromosomal abnormalities and fewer variants but which often involve somatic 
mutations in TP53, the likely cause of the genomic instability [65]. This tumor clearly falls into the 
C class. It is remarkable that while the overall somatic mutation rate was relatively low given that 
so many cancer driver genes were mutated. Perhaps the rarity of SCPC reflects the need to 
accumulate many separate deleterious mutations. Unfortunately, nothing in our sequencing or 
interpretation analysis offered a useful treatment strategy but, hopefully, the approaches and results 
reported here will be of use to others studying this and other aggressive cancers. By redefining 
cancers based on their genomic, expression and mutational architectures we may be able to 
markedly improve cancer diagnosis and therapy. 
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The Little Fly that Could: Wizardry and Artistry of  
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Abstract: For more than 100 years now, the fruit fly Drosophila melanogaster has been at the 
forefront of our endeavors to unlock the secrets of the genome. From the pioneering studies of 
chromosomes and heredity by Morgan and his colleagues, to the generation of fly models for 
human disease, Drosophila research has been at the forefront of genetics and genomics. We present 
a broad overview of some of the most powerful genomics tools that keep Drosophila research at 
the cutting edge of modern biomedical research. 

Reprinted from Genes. Cite as: Ejsmont, R.K.; Hassan, B.A. The Little Fly that Could: Wizardry 
and Artistry of Drosophila Genomics. Genes 2014, 5, 385-414. 

1. Introduction 

The Human Genome Project, on its way to producing an assembled genome of Homo sapiens, 
has gone through several test runs yielding sequenced genomes of other organisms of high 
relevance for research into human development and disease. The first published genome of a  
free-living organism was that of the proteobaterium Haemophilus influenzae [1], followed by 
sequencing of the genome of Saccharomyces cerevisiae yeast, the first eukaryotic genome 
sequenced [2], and the genome of Caenorhabditis elegans, the first genome of a multicellular 
organism and the first animal genome [3]. The second animal genome sequenced was that of the 
fruit fly Drosophila melanogaster [4]. In this review, we discuss the significance of the sequencing 
of the Drosophila genome as well as the technical advances and new research avenues that have 
accompanied it. 

2. Drosophila as a Model 

2.1. In Development 

The fruit fly has been studied for over a century and the lessons learned from fly research makes 
it almost impossible to enumerate but a few of the most notable cases. The pioneering studies that 
identified genes involved in Drosophila embryo segmentation [5,6] and establishment of segment 
polarity [6] were seminal for understanding conserved developmental strategies in the animal 
kingdom. The discovery of homeotic genes is one of the best-known examples of genes discovered 
in the fruit fly, and these were found to be conserved and play analogous roles in humans [7–9]. 
Drosophila has played a seminal role in sensory organ development research. The discovery of the 
eyeless gene [10], a fly homolog of human and mouse PAX6 [11,12], and determination of its  
targets [13] shed light on vertebrate eye development and led to discovery of novel disease related 
genes in humans [14]. The proneural gene atonal plays a crucial role in the development of 
Drosophila photoreceptor neurons [15] and chordotonal organs [16]. Its function is conserved in 
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mammals, where its homologs Math5 and Math1 were shown to be involved in regulating 
formation of retinal ganglion cells [17] and inner ear mechanosensory hair cells [18]. 

2.2. In Signaling 

Drosophila has been extensively used for studies of signaling pathways. In Hedgehog signaling, 
both the Hedgehog ligand itself [6,19,20] and its receptor Patched [6,21,22] were first identified in 
the fly, though the link between the two was first established in mammals [23,24]. The ligand of 
the Wnt signaling pathway turned out to be a well-known Drosophila segment polarity protein, i.e., 
Wingless. The Wnt receptor, Frizzled [25], and several other signal transduction cascade members 
were identified in the fly as members of the Wnt pathway [26–28]. The planar cell polarity (PCP) 
pathway is yet another example of a signaling cascade in which key players and mechanisms of 
action have been, to a large extend, identified in Drosophila [29,30]. The Notch signaling pathway, 
associated with cell fate control, lateral inhibition, and signal integration during development, has 
been discovered and extensively studied in fruit flies [31–33]. Finally, major components and 
mechanisms of action of the Hippo signaling pathway have been described in Drosophila [34–36]. 
All these pathways play major roles in human development and disease. 

2.3. In Disease 

Over the past two decades the fruit fly became an increasingly popular model organism for the 
study of human disease, with focus on neurodegenerative [37] and neuromuscular [38] diseases as 
well as cancer [39]. Neurological diseases that have been modeled in Drosophila include 
trinucleotide repeat disorders [40–42], Alzheimer’s disease [43–46], Parkinson’s disease [47,48], 
amyotrophic lateral sclerosis [49,50], and dystrophy [51]. Other examples that include use of the 
fruit fly model are studies of alcohol abuse [52,53], cocaine addiction [54], obesity [55] and 
diabetes [56], cardiac diseases [57], and asthma [58]. Drosophila has been demonstrated to be a 
great model to identify tumor suppressor genes [59] or genes involved in metastasis [60]. Thanks to 
the conservation of major signaling pathways, tumor suppressors and oncogenes, various fly cancer 
models have been established. Understanding how signal transduction pathways like Hippo, Notch, 
Dpp or JAK-STAT affect tumor formation was aided by research in fruit flies [61–63]. Drosophila 
has been used as a model for tumor invasion and metastasis [64], and as a platform to identify 
novel therapeutic targets [65]. 

3. Meet the Drosophila Genome 

The Drosophila genome is estimated to be approximately 200 Mb, with one third of it forming 
pericentric heterochromatin [66]. It is organized on three autosomes (numbered 2, 3 and 4) and sex 
chromosomes, X (also referred to as the first chromosome) and Y. The initial assembly of the fruit 
fly genome was published in March 2000, after almost a year of whole genome shotgun 
sequencing. The first published assembly, referred to as Release 1 of the genome, included  
13,991 genes encoding for 14,080 peptides. Over two thirds of annotated genes were assigned gene 
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ontology (GO) terms upon annotation. The initial assembly contained ~1300 gaps in mapped 
sequences [4] that were filled with subsequent releases. 

The third release of the genome was the first that included pericentric heterochromatin 
sequences [67]. The mutations indicated in the sequenced strain’s genotype, as well as several other 
identified mutations, have been corrected with wild-type sequence [68]. With that release, a 
comprehensive set of resources were published, including a library of full-length cDNAs for 40% 
of genes [69] and an atlas of gene expression patterns during embryogenesis [70]. Sequence 
analysis provided insights into transposable elements within the genome [71], core promoter 
structures [72], and largely improved annotation of gene models [68]. 

The current, fifth assembly of the genome has closed all but 9 gaps in the main assembly. The 
sequenced genome covers over 120 Mb of euchromatin, and over 9 Mb of mapped and over 10 Mb 
of unmapped heterochromatin. The current annotation revision contains 13,942 protein coding 
genes and over 2354 non-coding RNA genes, including ribosomal (rRNAs), transport (tRNAs), 
micro- (miRNAs), and small nuclear (snRNA) and small nucleolar (snoRNA) RNAs [73]. Through 
genome analysis, fruit flies have been found to contain complex gene structures. Approximately 
7.5% of all genes, including non-coding RNAs, are located within the introns of other genes. 
Messenger RNAs for about 15% of genes overlap with mRNAs of genes on the opposite strands. 
Over 30 genes have been identified as dicistronic, i.e., producing single mRNA encoding for two 
separate protein products through independent translation initiation events [68]. Over 30% of 
Drosophila melanogaster genes were found to be alternatively spliced [74], yielding a diverse set 
of almost 30,000 protein-coding transcripts [73]. The next release of the genome assembly  
(Release 6) is expected this year (2014). 

Improved assembly and annotation of the fruit fly genome was possible not only due to new 
sequencing data, but also thanks to advances in bioinformatics tools. An integrated computational 
pipeline and a tailored database schema have been developed to facilitate genomic data storage and 
automated sequence annotation [75]. Computed annotations have been manually curated by experts 
and to aid in this task, a dedicated annotation editor was developed [76]. Finally, automated 
genome annotation in general requires the use of computational tools, some of which were first 
applied in the Drosophila genome project [72,77]. 

4. Genomes by the Dozen 

Analysis of coding parts of the genome can be facilitated by comparison of genomic sequences 
with sequences of cDNAs originating from the same species. Most of the DNA in the majority of 
species, however, is non-coding. One approach to identify functional non-coding DNA segments, 
such as cis-regulatory elements, relies on finding conserved regions or motifs across related 
species. This naturally requires having more than one genome sequenced and was a driving force 
behind sequencing of the genomes of Schizosaccharomyces pombe [78] and Caenorhabditis 
briggsae [79] in the yeast and worm research communities, respectively. In the Drosophila genus, 
the comparative genomics era began with sequencing of the Drosophila pseudoobscura  
genome [80]. The two genomes were found to be very similar, despite 25–55 million years of 
evolutionary divergence. Synteny is preserved in blocks containing 10.7 genes on average, which 
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corresponds to ~83 kb. The vast majority of synteny breaks were caused by intrachromosomal 
rearrangements. On average, ~48% of the base pairs are conserved between these two species. 

The next advance in Drosophila comparative genomics came with sequencing of ten further 
species, Drosophila sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, 
mojavensis, virilis, and grimshawi. These species span a broad spectrum of morphologies, 
ecologies, and behaviors, yet have identical body plans and very similar life cycles [81]. Furthermore, 
these species share approximately 70% of their genes. Genome sizes estimated by flow cytometry vary 
between 130 Mb in D. mojavensis to 364 Mb in D. virilis [66]. The synteny conservation between 
sequenced species varies with an average of 122 genes per block between D. melanogaster and 
simulans down to 8 genes per block between D. melanogaster and grimshawi. Overall genome size, 
number of genes, distribution of transposable element classes, and patterns of codon usage are all 
very similar across the 12 sequenced genomes. At a finer scale, however, the number of structural 
changes and rearrangements is larger, including rearrangements of genes within the Hox cluster or 
highly dynamic sizes and content of multigene families [81]. 

Together, the 12 Drosophila genomes provide a solid platform for annotation and analysis of  
both coding and non-coding DNA. This unprecedented dataset enabled the use of evolutionary 
signatures—specific patterns of change in DNA elements upon selection—for de novo prediction 
and correction of previously annotated protein-coding gene models [82], non-coding RNAs, and 
transcription factor (TF) binding sites [83]. Identification of TF binding motifs has traditionally 
been based on DNA alignments. Alignment-based methods can also be used for the identification 
of cis-regulatory modules (CRMs), which are comprised of a number of TF binding motifs [84]. In 
many cases, however, the number and order of individual motifs varies between species, especially 
when these are distant, while preserving regulatory outcome. To address such cases, alignment-free 
approaches have also been developed [85,86]. 

5. Genomes by Population 

Drosophila provides an unmatched set of resources for studying quantitative traits [87]. In the 
post genomic era, genome-wide association studies (GWAS) have become a preferred method for 
analyzing complex traits. The GWAS methodology is now routinely and successfully applied in the 
identification of human disease-associated genes [88]. Two fruit fly resources, the Drosophila 
Genetic Reference Panel (DGRP) [89] and the Drosophila Synthetic Population Resource  
(DSPR) [90], offer large sets of sequenced and mapped fly lines tailored for GWAS and 
quantitative trait loci (QTL) mapping. 

The DGRP is a collection of more than 200 fully sequenced recombinant inbred lines (RILs) 
that were established from mated females collected from a market in Raleigh, North Carolina, 
USA. The genomic sequences of these lines contain over 4.5 million single nucleotide 
polymorphisms (SNPs), over one hundred thousand polymorphic microsatellites, and over 36 
thousand transposable elements [89]. The DGRP has been extensively characterized and in addition 
to detailed genomic sequence analysis includes microarray [91] and RNA-seq [92] datasets for 
selected lines. To date, numerous genome-wide association studies have been published on various 



79 
 
traits using DGRP, including oxidative stress [93], mitochondrial function [94], viral infection 
resistance [95], and sleep [96]. 

The Drosophila Synthetic Population Resource uses a different approach. Over 1,700 DSPR 
RILs were established from 15 isogenic founder lines created from geographically distinct 
Drosophila populations. The founder lines were split in two groups of eight (with one line in both 
groups) and mixed for 50 generations to create two synthetic populations, from which two sets of 
RILs were established. The founder lines were fully sequenced and each RIL was mapped using 
restriction-site associated DNA (RAD) markers onto the founders’ sequence with 17 kb median 
resolution. The number of SNPs in the founder lines exceeds 1.6 million [90]. The DSPR is 
complementary to DGRP and both resources can be used together for cross-validation and to 
increase the mapping power [97]. 

6. Decoding the Genome’s Secrets 

6.1. The modENCODE Project 

The information encoded by genomes goes far beyond a simple trinucleotide code used to 
translate nucleic acid sequence into protein. A plethora of information is hidden within introns, 
UTRs, non-coding RNAs, cis-regulatory elements, and chromatin marks. These elements are 
known to regulate where and when a gene product is expressed. The human ENCODE 
(ENCyclopedia Of DNA Elements) project [98] aims to identify and understand the information 
carried by the human genome. The modENCODE project is the model organism counterpart of 
ENCODE with focus on two species C. elegans [99] and D. melanogaster [100]. The fruit fly 
modENCODE data includes high-throughput transcriptome sequencing (RNA-seq), chromatin 
immunoprecipitation followed by sequencing (ChIP–seq) for transcription factor binding sites and 
histone modifications, DNA replication patterns, and nucleosome occupancy. The samples have 
been collected from 12–30 developmental time points of the sequenced D. melanogaster strain and 
from several cell lines [100]. 

6.2. The Transcriptome 

Comprehensive transcriptomics data has redefined gene models for 75% of fly genes by adding 
new exons or splice variants. The majority of annotation changes were supported by direct cDNA 
evidence. Analysis of transcription start sites (TSSs) for over half of Drosophila genes resulted in 
identification of over 1500 novel promoters. The structural analysis of RNA-seq-identified 
transcripts that did not seem to encode proteins revealed that a majority of them has no 
thermodynamically stable secondary structure, suggesting structure-independent functions. Among 
structural non-coding RNAs, several hundred novel small regulatory RNAs (miRNAs, siRNAs, 
and piRNA) have been identified. Additionally, transcription start sites for both protein coding and 
non-coding RNAs have been derived from the presence of chromatin marks characteristic of 
transcriptionally active regions, such as H3K4me3 enrichment, H3K9ac, and presence of RNA 
polymerase II in TSS-proximal regions [100]. 
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6.3. Chromatin Landscape 

Eukaryotic genomes are organized into large domains that exhibit distinct chromatin  
properties [100]. Analysis of large-scale organization of the chromatin landscape has revealed 
unexpected complexity and plasticity among different cell types. Some regions in the usually silent 
pericentric heterochromatin exhibited surprisingly high gene expression activity. Conversely, large 
regions of normally transcriptionally active euchromatin harbored histone marks (H3K9me2) 
typical for heterochromatin [100,101]. Chromatin signatures characteristic of various functional 
elements have been identified by ChIP-chip for 18 histone modifications (both activating, such as 
H3K4me, H3K9/18/27ac, H2B ubiquitination and repressive, such as H3K9me2/3 or Polycomb 
associated H3K27me3) and variants (H1, H4) from several cell lines and developmental stages. 
Correlating chromatin signatures with transcriptome and protein binding data (replication factors, 
insulator-binding proteins, and transcription factors) helped identify marks specific for promoters, 
actively transcribed regions, introns, insulators, and origins of replication [100]. The presence of 
specific chromatin marks was found to correlate with the physical properties of chromatin, where 
transcriptionally active chromatin exhibited high solubility and high nucleosome-turnover rates [100]. 
Computational analysis of combinatorial patterns of histone modifications revealed distinct chromatin 
states associated with active TSSs, exons, introns, and other open chromatin as well as closed 
chromatin states [100,102,103]. 

6.4. Transcriptional Regulation 

The modENCODE project has identified binding sites for almost 40 transcription factors 
through both ChIP-chip and ChIP-seq. The analysis has revealed that out of nearly 40,000 
identified unique binding sites found, 5% are bound by 8 different transcription factors or more and 
are considered High Occupancy Target (HOT) regions. Furthermore, almost 40% of the sites can be 
bound by more than two factors [103]. The HOT regions exhibit decreased nucleosome density, 
increased nucleosome turnover and often colocalize with TSS and ORC (origin recognition 
complex) binding sites, suggesting interplay between chromatin regulation, TF binding, and DNA 
replication [100,103]. In total, modENCODE ChIP experiments revealed over 500 silencers, 2300 
new promoters, over 14 candidate CBP-bound cis-regulatory elements, and over 7500 putative 
insulators [103]. Pairwise analysis of binding site co-occurrence has revealed over 800 known and 
putative transcription factor co-binding interactions. Binding sites for transcription factors 
regulating biologically opposing roles exhibited negative associations. The modENCODE TF 
binding data sets combined with external data were used to construct a network covering over 80 
transcription factors and characterizing over 800, largely novel, regulatory interactions. Binding site 
co-occurrence among various analyzed promoters corresponded to temporal co-expression of the 
respective target genes, supporting the existence of combinatorial transcription factor codes [103]. 
  



81 
 
7. The Fruit Fly Toolkit 

7.1. Getting Constructs in 

Drosophila is famous for its extensive range of forward and reverse genetics tools. The  
powerful toolkit was primed by the discovery of P transposable element-based germline 
transformation [104]. This revolutionary development allowed, for the first time, efficient delivery of 
foreign DNA into the genome. Development of the vast majority of Drosophila tools required at 
some stage use of P-element or other transposon systems. P-elements were used for gene  
cloning [105], genetic rescue [106], and as potent mutagens by their insertion [107] or  
excision [108]. P-element insertions have enabled the creation of enhancer traps, thus allowing 
visualization of gene expression patterns using genetically encoded reporters [109]. The Drosophila 
Gene Disruption Project used P-elements to create single transposon insertions in over 30% of fly 
genes [110]. The remaining genes, due to target sequence bias of P-elements, are currently targeted 
using other transposons [111]. The catalog of transposons that can be used for fly transformation 
has been expanded over the years and includes mariner [112,113], Minos [114,115], and  
piggyBac [116,117]. Each of these transposable elements, except for Minos that seems to insert 
randomly, has its hot and cold spots, but failure to target a certain region can often be addressed by 
using a different transposon [111]. 

While random, transposon-mediated transgenesis is desirable for gene disruption or genomic 
targeting, but integration of reporter or rescue constructs calls for more control over the locus 
where these integrate, thus reducing the chance of position effects that can strongly influence gene 
expression [118,119]. Early attempts to repeatedly target a specific locus in the fruit fly genome 
were based on transposon homing [120]. Short regulatory sequences from Polycomb target genes or 
from the linotte locus included in the transposon were shown to increase the likelihood of such 
transposon landing in the vicinity of genomic regions bearing these sequences [120,121]. The low 
resolution (30 bp) and efficiency (20% of insertions) of this homing technique prompted further 
developments in the field. The introduction of an irreversible, site-specific recombinase from the 
phiC31 phage ushered in a new era in fly transgenesis. The phiC31 integrase catalyzes 
unidirectional recombination between two attachment sites, attP and attB, leading to the formation 
of attL and attR sites [122]. A circular construct harboring an attB site can be efficiently and 
specifically integrated into an attP site located on the genome [123]. The phiC31 integrase system 
has, for the first time, enabled transformation of flies with BAC-sized constructs [124]. The 
integrase can be expressed from mRNA co-injected with the construct [123] or from the genome 
under a germ-line specific promoter, the latter method being more efficient [125]. Several dozens 
of attP landing lines have been created and tested [123–126], creating unlimited possibilities to 
combine transgenes. 

7.2. Express What You Want, Where You Want, and When You Want 

P-element transgenesis has enabled the creation of a plethora of other Drosophila tools, of 
which the Gal4/UAS system is the most notable example. The system is based on yeast 
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transcription factor gene GAL4 fused to a minimal promoter. This construct is randomly inserted 
into the genome, for instance by means of P-element transgenesis, hitchhiking nearby enhancers 
and creating an enhancer trap. Alternatively, enhancer sequences can be cloned upstream of the 
minimal promoter and other arrangements, with enhancers cloned elsewhere, for example within 
introns, are also possible. The second component of the system is the Gal4 binding site, known as 
the upstream activation sequence (UAS), driving expression of the target gene. The combination of 
a GAL4 enhancer trap with a UAS-driven target enables expression of the gene of interest in the 
desired tissues or cell types [127]. Several collections of GAL4 enhancer traps have been created 
using P-element [128,129] and piggyBac [110,130] insertions. The enhancer trap resources have 
recently been supplemented by large collections of cloned enhancers driving expression of  
Gal4 [131,132]. The Gal4 expression pattern can be refined spatially [133] or temporarily [134] 
using the Gal80 repressor [135]. Further control over Gal4-driven expression can be obtained using 
variants requiring drugs for activation [136–139]. Today, the Gal4-UAS system is one of several 
binary expression systems available in Drosophila. Other examples include the LexA transactivator 
that binds LexOp sites [140] and the Q system with QF transactivator, QUAS binding sites and the 
QS repressor whose activity can additionally be drug controlled [141]. The existing binary systems 
can be combined to provide fine control over target expression pattern or for simultaneous targeting 
of different cellular populations [142]. 

7.3. Mutant Tissue on Demand 

The Gal4-UAS system is an important component of yet another powerful fruit fly tool, the 
mosaic analysis with a repressible cell marker or MARCM. Induction of mosaicism in Drosophila 
is used either for studying an otherwise lethal phenotype within a tissue of interest [143] or for 
marking a clone of cells within a tissue of interest [144]. Mosaics can be created using flippase 
(Flp) mediated mitotic recombination between homologous chromosomes [145]. In this technique, 
homologous chromosomes carry an insertion (usually P-element mediated) of a flippase 
recognition target (FRT) site. One of the chromosomes carries a wild type and the other a mutant 
allele of the gene of interest. In the presence of flippase, recombination events between 
homologous chromosomes can occur during cell division, leading to the generation of homozygous 
mutant cells from heterozygous precursors. The MARCM technique (Figure 1) enhances  
Flp-mediated mitotic recombination by uniquely labeling mutant cells using a genetically encoded 
marker. The mutant clone is marked with a UAS-GFP (green fluorescent protein) construct, driven 
by ubiquitously expressed GAL4. These two transgenes are usually inserted together on any 
chromosome, except the wild type chromosome that carries the Gal4 repressor—GAL80 under the 
control of a ubiquitous promoter. The presence of the Gal4 repressor on the wild-type chromosome 
prevents GFP expression in both heterozygous and homozygous wild type cells [135]. The 
MARCM technique was later extended to label wild type cells as well [146]. 
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Figure 1. Mosaic analysis with a repressible cell marker (MARCM). (A) Gal4 
transcription factor (blue oval) drives expression of green fluorescent protein (GFP) 
gene (green box) by binding the upstream activation sequence (UAS) (white box). This 
expression is repressed when Gal80 (red oval) is present. As a consequence cells that 
do not carry a gene encoding Gal80 but carry genes encoding Gal4 and UAS-GFP are 
marked green. (B) In MARCM, the GAL80 repressor gene (red box) is carried on a 
chromosome that bears the wild-type allele of a gene (yellow box) of interest and a 
flippase recognition target (FRT) site (grey triangle) placed pericentricaly. The 
homologous chromosome carries a FRT site in exactly the same position and a mutant 
allele (orange box), but does not carry the GAL80 gene. Cells also carry the GAL4 gene 
and UAS-GFP on the other chromosomes. During G2 phase (after DNA replication), 
flippase mediates recombination between two FRT sites of homologous chromosomes, 
thus generating sister chromatids; one of which carries the wild-type allele and GAL80 
repressor and the other the mutant allele. During mitosis, sister chromatids are 
distributed to daughter cells, generating cells that are homozygous wild-type or 
homozygous mutant. Cells that are homozygous mutant are the only cells lacking the 
GAL80 gene and thus are labeled with GFP. Reproduced with permission from 
MacMillan: Nature Protocols ©2007 [181]. 

 

MARCM, among other mitotic-recombination-based approaches, has enabled the creation of 
tissue specific mutant cells for genes where a mutant exists. This, however, is not yet [111,147] the 
case for all fruit fly genes. Post-transcriptional gene silencing by double-stranded RNA  
(dsRNA) [148], commonly known as RNA interference (RNAi), allows the silencing of virtually 
any transcript encoded by the genome [149]. Drosophila is not only one of the first organisms 
where RNAi has been used to silence genes [150,151], but it has also played an important role in 
studying the mechanism of dsRNA dependent gene silencing [152]. Injections of dsRNA into the 
Drosophila embryos were used to pioneer RNAi in the fruit fly. However, this mode of delivery 
has limited use for studying gene function in the late stages of development or in a tissue specific 
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manner. A combination of genetically encoded hairpin-loop RNAs with a Gal4/UAS system has 
been introduced to address these issues and place Drosophila RNAi under spatio-temporal  
control [153]. Efficient transformation techniques developed for Drosophila Schneider (S2)  
cells [154] combined with Drosophila dsRNA libraries allowed RNAi screens in cell culture on a 
genome-wide scale [155–158]. With genome-wide libraries of fly lines carrying UAS-driven 
hairpin RNAs, tissue-specific RNAi screens in the whole animals became possible [159,160]. 
While the first library used P-element for transgenesis, thus leading to variability of hairpin RNA 
expression levels in different lines, the next generation of libraries followed, using phiC31-mediated 
insertions into a defined locus [161,162]. RNAi in flies has proven very effective and allowed for a 
number of large scale screens to be performed, including ones targeting muscle development [162], 
heart function [163], obesity [164], pain [165], glial function [166], or piRNA pathways [167]. The 
off-target effect, a well-known pitfall of RNA interference, has been addressed in flies by 
specificity control using either cross-species rescue [168,169] or engineered RNAi-refractory 
transgenes [170]. 

7.4. Bright Rescue 

Modern classical and reverse-genetic approaches often call for reliable sources of transgenes, 
both to induce new and rescue induced phenotypes. Classically, clones from cDNA libraries [69] 
combined with the Gal4/UAS system [127] have been used to specifically express a gene of 
interest in target tissue. These constructs could be used either to ectopically express a gene of 
interest [127], rescue a mutant phenotype [171], or by using a fusion of cDNA with a fluorescent 
protein coding sequence to visualize the localization of a protein of interest [172]. These 
approaches, however, do not allow simultaneous modification, such as introduction of point 
mutations, truncation, tagging, and expression of a protein of interest under native or nearly native 
control. This usually requires a larger genomic context. 

Genome-wide libraries of fruit fly genomic DNA cloned in bacterial artificial chromosomes 
(BACs) or fosmids, spanning between 20 and over 100 kb, have been constructed for the purpose 
of genome sequencing [4]. The p[ACMAN] system (Figure 2B,C) has enabled turning them into 
reliable sources of modifiable genomic inserts, tailored for fly transgenesis. The centerpiece of the 
system is a single copy vector harboring a second, inducible medium copy origin of replication 
(oriV), a fly selectable marker (white), and attachment site (attB) for phiC31-mediated  
transgenesis [124]. Site-specific-recombinase-based transformation enables the insertion of 
constructs over 100 kb in size. Genomic inserts are subcloned into the backbone using Red/ET 
homologous recombination (Figure 3), also known as recombineering [173–176]. The ability to 
arbitrarily modify and transform large genomic constructs has fostered the development of 
transformation ready genomic libraries of Drosophila melanogaster and other fly species. Two 
such resources have been created so far, the p[ACMAN] [177] and FlyFos [178]. The p[ACMAN] 
features BAC libraries with average insert sizes of 21 and 83 kb. The vector used is similar to the 
one in the p[ACMAN] subcloning kit. The FlyFos system (Figure 2A,C) features 36 kb fosmid 
libraries for Drosophila melanogaster and pseudoobscura [169,178]. The library vector also 
includes an inducible oriV, attB site, and a dominant fluorescent marker, selectable in diverse 
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insect species [179]. The liquid culture recombineering pipeline [180] introduced in the system 
enables high-throughput gene tagging with a variety of tags in 96-well format [178]. 

Figure 2. FlyFos and p[ACMAN] genomic libraries. (A) FlyFos library is cloned in a 
fosmid vector, pFlyFos. Genomic inserts were cloned into the PmlI site. pFlyFos 
features an inducible origin of replication (oriS for single copy and oriV for arabinose-
inducible moderate copy maintenance), attB site for fly transgenesis, and 3xP3-dsRed as a 
fly-selectable marker. (B) p[ACMAN] libraries are cloned into the BamHI site of a 
p[ACMAN] bacterial artificial chromosome (BAC) vector. This vector also features 
inducible oriS/oriV and attB site, but uses white as fly selectable marker. In addition to 
phiC31-mediated transgenesis, p[ACMAN] vector carrying small inserts can theoretically 
be used for P-element transformation. (C) Size distribution of FlyFos and p[ACMAN] 
D. melanogaster libraries. There are two p[ACMAN] libraries: CHORI-321 with 
average clone size of 83.3 kb and CHORI-322 with average clone size of 21 kb. The 
FlyFos library has an average clone size of 36 kb. 
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Figure 3. Recombineering principles. (A) The target sequence (orange box) is carried 
on a single copy fosmid or bacterial artificial chromosome (BAC) vector. The 50 bp 
fragments flanking the target sequence, called homology arms (HA), are depicted as 
yellow boxes. In this example, the target sequence will be replaced with the 
recombineering cassette. However, when homology arms are designed to directly 
follow each other, the cassette can be simply inserted into the target vector. (B) The 
PCR-amplified recombineering cassette harboring homology arms (introduced as 
primer overhangs) on its termini is electroporated into bacteria carrying the target 
vector. In the depicted example, the cassette contains a reporter (green arrow) and a 
flippase recognition target (FRT)-flanked (grey triangles) bacterial selectable marker 
(red arrow). Homologous recombinase, transiently expressed in bacteria mediates 
recombination between homology arms replacing the target sequence with the 
recombineering cassette. (C) Recombinant bacterial cells are selected using the 
selectable marker encoded in the recombineering cassette. If the selectable marker is 
flanked by FRT sites, it can now be removed (flipped-out) through transient expression 
of flippase. (D) The final recombineering product contains the desired sequence and a 
34 bp FRT scar flanked by the homology arms. 
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BAC and fosmid-based recombineering has enabled the introduction of modified “third alleles” 
of genes of interest. The powerful fruit fly genetics toolkit also allows for modifications of genes  
in situ, in their native loci. The first in situ genomic targeting in Drosophila was performed using 
the ends-in technique [182]. Ends-in genomic targeting relies on double strand break (DSB) repair 
through homologous recombination. The targeting construct contains homology arms, one of which 
is antiparallel to the genomic sequence, and leads to duplication of the targeted locus upon 
recombination. Initial targeting attempts involving linear DNA injection into the germline were 
unsuccessful. Inserting the targeting construct into a random locus first, via P-element transgenesis, 
has solved the issue. FRT sites present on the flanks of the construct were used to mobilize the 
targeting construct from the genome before generating DSB using I-SceI nuclease [182]. Ends-out 
targeting uses very similar basic logic, but relies on homology arms that are both parallel to the 
genomic locus, therefore leading to a clean insertion or replacement [183]. Both ends-in and  
ends-out have provided reliable means to target genomic loci; however, at a cost of relatively low 
efficiency. This has made targeting the same locus with different cassettes a labor-intensive task. The 
integrase-mediated approach for gene knock-out (IMAGO) technique (Figure 4) combines ends-out 
targeting with phiC31-mediated recombinase-mediated cassette exchange (RMCE) [184]. IMAGO 
uses ends-out to replace the targeted locus with an attP-flanked selectable marker, which can 
subsequently be replaced with any desirable construct, thus enabling in situ gene tagging, 
conditional knock-outs, or functional analysis of orthologs. An alternative strategy uses a single 
attP site and a loxP-flanked selectable marker as the knock-out cassette [185]. Rescue constructs 
can then be integrated into the target locus using phiC31-mediated transgenesis, just like into any 
other landing site. 

Genomic targeting techniques using DSBs induced in the targeting construct have proven to be 
robust tools. However, these approaches have a quite high price tag, because of their low 
efficiency. Homologous recombination with genomic loci is known to be much more effective if 
DSBs are introduced in the chromosome [186]. Induction of chromosomal DSBs in specific 
genomic loci requires designer nucleases that can target a sequence of choice. Currently three 
custom nuclease systems are in broad use: zinc finger nucleases (ZFNs) [187], transcription 
activator-like effector nucleases (TALENs), and the bacterial clustered regularly interspaced short 
palindromic repeat (CRISPR) system and its RNA-driven Cas9 nuclease. Double strand breaks are 
repaired using one of two cellular mechanisms: non-homologous end joining (NHEJ) and 
homologous recombination (HR). NHEJ involves processing and ligation of broken strands and 
usually leads to insertions and deletions [188]. However; it has also been shown to mediate 
efficient knock-ins in zebrafish [189]. HR requires a sequence homologous to the locus in which 
DSB has occurred, either from a sister chromatid, paralogous locus; or provided linear or plasmid 
DNA, and can, therefore, be exploited to insert or replace a genomic sequence with custom 
constructs [190]. 
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Figure 4. Integrase-mediated approach for gene knock-out (IMAGO). (A) A targeting 
construct harboring white gene flanked by attP sites, 1 kb–5 kb homology arms, I-SceI 
meganuclease site, and flippase recognition target (FRT) sites is inserted into the fly 
genome using transposition or site-specific integration. (B) The targeting cassette is 
mobilized into the circular episome by flippase and subsequently linearized by 
meganuclease. This linear fragment induces cellular double strand break repair 
mechanisms and (with certain frequency) replaces the genomic locus flanked by 
homology arms. (C) Recombinant progeny are selected for white dominant marker. The 
attP sites flanking the white gene can be used for recombinase-mediated cassette 
exchange. (D, F) A plasmid containing the attB-flanked construct (cKO or a mutant 
allele) is injected into phiC31-expressing fly embryos and exchanges the attP-flanked 
white gene. (E, G) Recombinant progeny carrying modified alleles are selected for loss 
of the white dominant marker. 
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Figure 5. Designer nucleases. (A) Zink finger nucleases (ZFNs) combine a zinc finger 
DNA binding domain with a FokI nickase. Each zinc finger recognizes a triplet of 
bases and usually three to six zinc fingers are present in the targeting domain. Cleavage 
occurs outside the target sequence and requires a pair of ZFNs, each binding one DNA 
strand. (B) Transcription activator-like effector nucleases (TALEN), similarly to ZFNs 
have two domains: a DNA binding domain and a FokI nickase domain. The targeting 
domain is composed of 33–35 amino acid repeats, each binding a single nucleotide. 
The cleavage mechanism of TALENs is identical to ZFNs. (C) Clustered regularly 
interspaced short palindromic repeats (CRISPR) is a RNA driven double-stranded 
DNA endonuclease system. Cleavage specificity is provided by crRNA (cyan) that 
hybridizes with the target sequence (green). Cleavage is performed by the Cas9 protein 
that, in addition to crRNA, requires tracrRNA for activity. The cleavage site (star) is 
located between the target sequence and NGG protospacer adjacent motif, 
complimentary to the sequence immediately downstream of the target. crRNA and 
tracrRNA can be fused to form guide RNA of similar activity. 

 

ZFNs were the first designer nuclease system (Figure 5A) to be introduced in flies [188]. They 
are comprised of three to four zinc-finger DNA binding modules, each recognizing three base pairs, 
and a FokI endonuclease. Since FokI needs to dimerize for activity, a pair of ZFNs is required for 
DNA cleavage [187]. The specificity and affinity of zinc-finger modules is context dependent, 
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therefore, several strategies have been developed to achieve assembly of optimal DNA binding 
domains [191–194]. TALENs (Figure 5B), similar to ZFNs, are hybrids of DNA binding domains 
derived from transcription factors and FokI endonuclease and, as a consequence, two TALENs are 
required to form a functional nuclease [195–197]. The TALE (transcription activator-like effector) 
domains contain a tandem array of 15.5–19.5 repeats, each made of 34 residues, two of which 
provide DNA-binding specificity against a single nucleotide [198]. Due to the highly repetitive 
coding sequence of the TALE domain, special approaches have been developed for its efficient 
assembly using type IIs endonucleases [197]. CRISPR (Figure 5C), a defensive nuclease system 
from Streptococcus pyogenes, takes a completely different approach to DNA cleavage. The 
specificity is provided by a crRNA pairing with a 20 nt complimentary sequence within the DNA 
target. The cleavage is performed by Cas9 nuclease that requires trans-activating CRISPR RNA 
(tracrRNA) in addition to crRNA for activity. The complimentary region of the DNA target must 
be followed by a 3 bp PAM (protospacer adjacent motif) [199,200]. A pair of crRNA and 
tracrRNA can be replaced by a single hybrid guide RNA (sgRNA), thus reducing the system  
to two components [201]. To date, several implementations of the CRISPR system have been 
created in Drosophila [202–204], including transgenic flies with genomically encoded sources of 
Cas9 [205–207] and tracrRNA/sgRNA [208]. The CRISPR system has been combined with 
classical ends-out targeting and site-specific integrase approaches, resulting in a versatile toolkit for 
genome engineering [209]. It should be stated that at this stage the efficiency and specificity of all 
designer-nuclease-based approaches in vivo remains to be fully established, although CRISPR is 
showing great promise. 

8. Conclusions 

Drosophila occupies a paramount position among model organisms, largely due to the variety of 
genetic tools unique to the fruit fly, its short generation time, and ease of transformation. The 
Drosophila classic Gal4/UAS two-component expression system and its counterparts, LexA and Q, 
can be combined with one another and with site-specific recombination systems like Flp/FRT, 
Cre/LoxP or phiC31, yielding novel combinatorial systems for even tighter spatio-temporal gene 
expression control, clonal analysis, and lineage tracing [210]. The fruit fly genome is easily 
accessible using a broad range of genome engineering tools, including those based on classic 
transposition, site-specific recombinases and fosmid/BAC recombineering [211], as well as the 
emerging field of genome editing using designer nucleases [212]. Availability of an almost 
complete genomic sequence for over 12 species from genus Drosophila and dozens of various  
D. melanogaster strain genomes make fruit flies an excellent model for comparative genomics and 
population genetics. A large number of human disease-related genes that have homologs in the fruit 
fly [213,214] connected with powerful resources for QTL mapping and GWAS [89,90] make 
Drosophila an attractive model for studying the genetic basis of human disease.  

Rapid development of genome engineering techniques, especially those introducing synthetic 
approaches using designer DNA binding domains of TALEs [215,216] and the CRISPR  
system [217], will undeniably affect the Drosophila field in the next years. Completing the genome 
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and transcriptome sequencing effort for additional fly species [218] will aid in further functional 
annotation of the Drosophila genome and fuel the evolutionary developmental biology field. 

Acknowledgments 

Work in the Hassan lab is supported by VIB and grants form FWO, BELSPO, and KU Leuven. 
Radoslaw K. Ejsmont was supported by an EMBO ALTF 1056-2011 long-term fellowship and 
currently by a Marie Curie Actions co-funded Omics@VIB postdoctoral fellowship. 

Author Contributions 

Wrote the manuscript: Radoslaw K. Ejsmont and Bassem A. Hassan. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Fleischmann, R.D.; Adams, M.D.; White, O.; Clayton, R.A.; Kirkness, E.F.; Kerlavage, A.R.; 
Bult, C.J.; Tomb, J.F.; Dougherty, B.A.; Merrick, J.M.; et al. Whole-genome random 
sequencing and assembly of haemophilus influenzae Rd. Science 1995, 269, 496–512. 

2. Clayton, R.A.; White, O.; Ketchum, K.A.; Venter, J.C. The first genome from the third 
domain of life. Nature 1997, 387, 459–462. 

3. C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: A 
platform for investigating biology. Science 1998, 282, 2012–2018. 

4. Adams, M.D.; Celniker, S.E.; Holt, R.A.; Evans, C.A.; Gocayne, J.D.; Amanatides, P.G.; 
Scherer, S.E.; Li, P.W.; Hoskins, R.A.; Galle, R.F.; et al. The genome sequence of drosophila 
melanogaster. Science 2000, 287, 2185–2195. 

5. Lewis, E.B. A gene complex controlling segmentation in drosophila. Nature 1978, 276,  
565–570. 

6. Nusslein-Volhard, C.; Wieschaus, E. Mutations affecting segment number and polarity in 
drosophila. Nature 1980, 287, 795–801. 

7. Gehring, W.J.; Hiromi, Y. Homeotic genes and the homeobox. Annu. Rev. Genet. 1986, 20,  
147–173. 

8. Lawrence, P.A.; Morata, G. Homeobox genes: Their function in drosophila segmentation and 
pattern formation. Cell 1994, 78, 181–189. 

9. Krumlauf, R. Hox genes in vertebrate development. Cell 1994, 78, 191–201. 
10. Quiring, R.; Walldorf, U.; Kloter, U.; Gehring, W.J. Homology of the eyeless gene of 

drosophila to the small eye gene in mice and aniridia in humans. Science 1994, 265, 785–789. 
  



92 
 

 

11. Ton, C.C.; Hirvonen, H.; Miwa, H.; Weil, M.M.; Monaghan, P.; Jordan, T.; van Heyningen, V.; 
Hastie, N.D.; Meijers-Heijboer, H.; Drechsler, M.; et al. Positional cloning and 
characterization of a paired box- and homeobox-containing gene from the aniridia region. Cell 
1991, 67, 1059–1074. 

12. Hill, R.E.; Favor, J.; Hogan, B.L.; Ton, C.C.; Saunders, G.F.; Hanson, I.M.; Prosser, J.;  
Jordan, T.; Hastie, N.D.; van Heyningen, V. Mouse small eye results from mutations in a  
paired-like homeobox-containing gene. Nature 1991, 354, 522–525. 

13. Halder, G.; Callaerts, P.; Flister, S.; Walldorf, U.; Kloter, U.; Gehring, W.J. Eyeless initiates 
the expression of both sine oculis and eyes absent during drosophila compound eye 
development. Development 1998, 125, 2181–2191. 

14. Kumar, J.P. The sine oculis homeobox (six) family of transcription factors as regulators of 
development and disease. Cell. Mol. Life Sci. 2009, 66, 565–583. 

15. Jarman, A.P.; Grell, E.H.; Ackerman, L.; Jan, L.Y.; Jan, Y.N. Atonal is the proneural gene for 
drosophila photoreceptors. Nature 1994, 369, 398–400. 

16. Jarman, A.P.; Grau, Y.; Jan, L.Y.; Jan, Y.N. Atonal is a proneural gene that directs 
chordotonal organ formation in the drosophila peripheral nervous system. Cell 1993, 73, 
1307–1321. 

17. Brown, N.L.; Patel, S.; Brzezinski, J.; Glaser, T. Math5 is required for retinal ganglion cell 
and optic nerve formation. Development 2001, 128, 2497–2508. 

18. Bermingham, N.A.; Hassan, B.A.; Price, S.D.; Vollrath, M.A.; Ben-Arie, N.; Eatock, R.A.; 
Bellen, H.J.; Lysakowski, A.; Zoghbi, H.Y. Math1: An essential gene for the generation of 
inner ear hair cells. Science 1999, 284, 1837–1841. 

19. Tabata, T.; Eaton, S.; Kornberg, T.B. The drosophila hedgehog gene is expressed specifically  
in posterior compartment cells and is a target of engrailed regulation. Genes Dev. 1992, 6,  
2635–2645. 

20. Lee, J.J.; von Kessler, D.P.; Parks, S.; Beachy, P.A. Secretion and localized transcription 
suggest a role in positional signaling for products of the segmentation gene hedgehog. Cell 1992, 
71, 33–50. 

21. Hooper, J.E.; Scott, M.P. The drosophila patched gene encodes a putative membrane protein 
required for segmental patterning. Cell 1989, 59, 751–765. 

22. Nakano, Y.; Guerrero, I.; Hidalgo, A.; Taylor, A.; Whittle, J.R.; Ingham, P.W. A protein with 
several possible membrane-spanning domains encoded by the drosophila segment polarity 
gene patched. Nature 1989, 341, 508–513. 

23. Stone, D.M.; Hynes, M.; Armanini, M.; Swanson, T.A.; Gu, Q.; Johnson, R.L.; Scott, M.P.; 
Pennica, D.; Goddard, A.; Phillips, H.; et al. The tumour-suppressor gene patched encodes a 
candidate receptor for sonic hedgehog. Nature 1996, 384, 129–134. 

24. Marigo, V.; Davey, R.A.; Zuo, Y.; Cunningham, J.M.; Tabin, C.J. Biochemical evidence that 
patched is the hedgehog receptor. Nature 1996, 384, 176–179. 

25. Bhanot, P.; Brink, M.; Samos, C.H.; Hsieh, J.C.; Wang, Y.; Macke, J.P.; Andrew, D.;  
Nathans, J.; Nusse, R. A new member of the frizzled family from drosophila functions as a 
wingless receptor. Nature 1996, 382, 225–230. 



93 
 
26. Siegfried, E.; Chou, T.B.; Perrimon, N. Wingless signaling acts through zeste-white 3, the 

drosophila homolog of glycogen synthase kinase-3, to regulate engrailed and establish cell 
fate. Cell 1992, 71, 1167–1179. 

27. Wehrli, M.; Dougan, S.T.; Caldwell, K.; O'Keefe, L.; Schwartz, S.; Vaizel-Ohayon, D.;  
Schejter, E.; Tomlinson, A.; DiNardo, S. Arrow encodes an ldl-receptor-related protein 
essential for wingless signalling. Nature 2000, 407, 527–530. 

28. Brunner, E.; Peter, O.; Schweizer, L.; Basler, K. Pangolin encodes a lef-1 homologue that 
acts downstream of armadillo to transduce the wingless signal in drosophila. Nature 1997, 385, 
829–833. 

29. Adler, P.N. The genetic control of tissue polarity in drosophila. BioEssays 1992, 14, 735–741. 
30. Eaton, S.; Julicher, F. Cell flow and tissue polarity patterns. Curr. Opin. Genet. Dev. 2011, 

21, 747–752. 
31. Wharton, K.A.; Johansen, K.M.; Xu, T.; Artavanis-Tsakonas, S. Nucleotide sequence from 

the neurogenic locus notch implies a gene product that shares homology with proteins 
containing egf-like repeats. Cell 1985, 43, 567–581. 

32. Artavanis-Tsakonas, S.; Matsuno, K.; Fortini, M.E. Notch signaling. Science 1995, 268,  
225–232. 

33. Artavanis-Tsakonas, S.; Rand, M.D.; Lake, R.J. Notch signaling: Cell fate control and signal 
integration in development. Science 1999, 284, 770–776. 

34. Wu, S.; Huang, J.; Dong, J.; Pan, D. Hippo encodes a STE-20 family protein kinase that 
restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. 
Cell 2003, 114, 445–456. 

35. Harvey, K.F.; Pfleger, C.M.; Hariharan, I.K. The drosophila mst ortholog, hippo, restricts 
growth and cell proliferation and promotes apoptosis. Cell 2003, 114, 457–467. 

36. Udan, R.S.; Kango-Singh, M.; Nolo, R.; Tao, C.; Halder, G. Hippo promotes proliferation 
arrest and apoptosis in the salvador/warts pathway. Nat. Cell Biol. 2003, 5, 914–920. 

37. Fortini, M.E.; Bonini, N.M. Modeling human neurodegenerative diseases in drosophila: On a 
wing and a prayer. Trends Genet. 2000, 16, 161–167. 

38. Lloyd, T.E.; Taylor, J.P. Flightless flies: Drosophila models of neuromuscular disease.  
Ann. N. Y. Acad. Sci. 2010, 1184, e1–e20. 

39. Potter, C.J.; Turenchalk, G.S.; Xu, T. Drosophila in cancer research. An expanding role.  
Trends Genet. 2000, 16, 33–39. 

40. Jackson, G.R.; Salecker, I.; Dong, X.; Yao, X.; Arnheim, N.; Faber, P.W.; MacDonald, M.E.; 
Zipursky, S.L. Polyglutamine-expanded human huntingtin transgenes induce degeneration of 
drosophila photoreceptor neurons. Neuron 1998, 21, 633–642. 

41. Warrick, J.M.; Paulson, H.L.; Gray-Board, G.L.; Bui, Q.T.; Fischbeck, K.H.; Pittman, R.N.; 
Bonini, N.M. Expanded polyglutamine protein forms nuclear inclusions and causes neural 
degeneration in drosophila. Cell 1998, 93, 939–949. 

42. Morales, J.; Hiesinger, P.R.; Schroeder, A.J.; Kume, K.; Verstreken, P.; Jackson, F.R.;  
Nelson, D.L.; Hassan, B.A. Drosophila fragile x protein, dfxr, regulates neuronal morphology 
and function in the brain. Neuron 2002, 34, 961–972. 



94 
 

 

43. Luo, L.Q.; Martin-Morris, L.E.; White, K. Identification, secretion, and neural expression of 
appl, a drosophila protein similar to human amyloid protein precursor. J. Neurosci. 1990, 10, 
3849–3861. 

44. Luo, L.; Tully, T.; White, K. Human amyloid precursor protein ameliorates behavioral deficit 
of flies deleted for appl gene. Neuron 1992, 9, 595–605. 

45. Ye, Y.; Fortini, M.E. Apoptotic activities of wild-type and alzheimer’s disease-related mutant 
presenilins in drosophila melanogaster. J. Cell Biol. 1999, 146, 1351–1364. 

46. Wittmann, C.W.; Wszolek, M.F.; Shulman, J.M.; Salvaterra, P.M.; Lewis, J.; Hutton, M.;  
Feany, M.B. Tauopathy in drosophila: Neurodegeneration without neurofibrillary tangles. 
Science 2001, 293, 711–714. 

47. Feany, M.B.; Bender, W.W. A drosophila model of parkinson’s disease. Nature 2000, 404,  
394–398. 

48. Whitworth, A.J.; Theodore, D.A.; Greene, J.C.; Benes, H.; Wes, P.D.; Pallanck, L.J. 
Increased glutathione s-transferase activity rescues dopaminergic neuron loss in a drosophila 
model of parkinson’s disease. Proc. Natl. Acad. Sci. USA 2005, 102, 8024–8029. 

49. Parkes, T.L.; Elia, A.J.; Dickinson, D.; Hilliker, A.J.; Phillips, J.P.; Boulianne, G.L. 
Extension of drosophila lifespan by overexpression of human sod1 in motorneurons.  
Nat. Genet. 1998, 19, 171–174. 

50. Shahidullah, M.; Le Marchand, S.J.; Fei, H.; Zhang, J.; Pandey, U.B.; Dalva, M.B.;  
Pasinelli, P.; Levitan, I.B. Defects in synapse structure and function precede motor neuron 
degeneration in drosophila models of fus-related als. J. Neurosci. 2013, 33, 19590–19598. 

51. Van der Plas, M.C.; Pilgram, G.S.; Plomp, J.J.; de Jong, A.; Fradkin, L.G.; Noordermeer, J.N. 
Dystrophin is required for appropriate retrograde control of neurotransmitter release at the 
drosophila neuromuscular junction. J. Neurosci. 2006, 26, 333–344. 

52. Moore, M.S.; DeZazzo, J.; Luk, A.Y.; Tully, T.; Singh, C.M.; Heberlein, U. Ethanol 
intoxication in drosophila: Genetic and pharmacological evidence for regulation by the camp 
signaling pathway. Cell 1998, 93, 997–1007. 

53. Kaun, K.R.; Azanchi, R.; Maung, Z.; Hirsh, J.; Heberlein, U. A drosophila model for alcohol 
reward. Nat. Neurosci. 2011, 14, 612–619. 

54. McClung, C.; Hirsh, J. Stereotypic behavioral responses to free-base cocaine and the 
development of behavioral sensitization in drosophila. Curr. Biol. 1998, 8, 109–112. 

55. Al-Anzi, B.; Sapin, V.; Waters, C.; Zinn, K.; Wyman, R.J.; Benzer, S. Obesity-blocking 
neurons in drosophila. Neuron 2009, 63, 329–341. 

56. Baker, K.D.; Thummel, C.S. Diabetic larvae and obese flies-emerging studies of metabolism 
in drosophila. Cell Metab. 2007, 6, 257–266. 

57. Wolf, M.J.; Amrein, H.; Izatt, J.A.; Choma, M.A.; Reedy, M.C.; Rockman, H.A. Drosophila 
as a model for the identification of genes causing adult human heart disease. Proc. Natl. 
Acad. Sci. USA 2006, 103, 1394–1399. 

58. Roeder, T.; Isermann, K.; Kallsen, K.; Uliczka, K.; Wagner, C. A drosophila asthma  
model—What the fly tells us about inflammatory diseases of the lung. Adv. Exp. Med. Biol. 
2012, 710, 37–47. 



95 
 
59. Xu, T.; Wang, W.; Zhang, S.; Stewart, R.A.; Yu, W. Identifying tumor suppressors in genetic 

mosaics: The drosophila lats gene encodes a putative protein kinase. Development 1995, 121, 
1053–1063. 

60. Pagliarini, R.A.; Xu, T. A genetic screen in drosophila for metastatic behavior. Science 2003, 
302, 1227–1231. 

61. Januschke, J.; Gonzalez, C. Drosophila asymmetric division, polarity and cancer. Oncogene 
2008, 27, 6994–7002. 

62. Brumby, A.M.; Richardson, H.E. Using drosophila melanogaster to map human cancer 
pathways. Nat. Rev. Cancer 2005, 5, 626–639. 

63. Vidal, M.; Cagan, R.L. Drosophila models for cancer research. Curr. Opin. Genet. Dev. 2006, 
16, 10–16. 

64. Miles, W.O.; Dyson, N.J.; Walker, J.A. Modeling tumor invasion and metastasis in 
drosophila. Dis. Models Mech. 2011, 4, 753–761. 

65. Gonzalez, C. Drosophila melanogaster: A model and a tool to investigate malignancy and 
identify new therapeutics. Nat. Rev. Cancer 2013, 13, 172–183. 

66. Bosco, G.; Campbell, P.; Leiva-Neto, J.T.; Markow, T.A. Analysis of drosophila species 
genome size and satellite DNA content reveals significant differences among strains as well 
as between species. Genetics 2007, 177, 1277–1290. 

67. Hoskins, R.A.; Smith, C.D.; Carlson, J.W.; Carvalho, A.B.; Halpern, A.; Kaminker, J.S.; 
Kennedy, C.; Mungall, C.J.; Sullivan, B.A.; Sutton, G.G.; et al. Heterochromatic sequences in 
a drosophila whole-genome shotgun assembly. Genome Biol. 2002, doi:10.1186/gb-2002-3-
12-research0085. 

68. Misra, S.; Crosby, M.A.; Mungall, C.J.; Matthews, B.B.; Campbell, K.S.; Hradecky, P.;  
Huang, Y.; Kaminker, J.S.; Millburn, G.H.; Prochnik, S.E.; et al. Annotation of the  
drosophila melanogaster euchromatic genome: A systematic review. Genome Biol. 2002, 
doi:10.1186/gb-2002-3-12-research0083. 

69. Stapleton, M.; Carlson, J.; Brokstein, P.; Yu, C.; Champe, M.; George, R.; Guarin, H.; 
Kronmiller, B.; Pacleb, J.; Park, S.; et al. A drosophila full-length cdna resource. Genome 
Biol. 2002, doi:10.1186/gb-2002-3-12-research0080. 

70. Tomancak, P.; Beaton, A.; Weiszmann, R.; Kwan, E.; Shu, S.; Lewis, S.E.; Richards, S.; 
Ashburner, M.; Hartenstein, V.; Celniker, S.E.; et al. Systematic determination of patterns of 
gene expression during drosophila embryogenesis. Genome Biol. 2002, doi:10.1186/gb-2002-3-
12-research0088. 

71. Kaminker, J.S.; Bergman, C.M.; Kronmiller, B.; Carlson, J.; Svirskas, R.; Patel, S.; Frise, E.; 
Wheeler, D.A.; Lewis, S.E.; Rubin, G.M.; et al. The transposable elements of the drosophila 
melanogaster euchromatin: A genomics perspective. Genome Biol. 2002, doi:10.1186/gb-2002-3-
12-research0084. 

72. Ohler, U.; Liao, G.C.; Niemann, H.; Rubin, G.M. Computational analysis of core promoters 
in the drosophila genome. Genome Biol. 2002, doi:10.1186/gb-2002-3-12-research0087. 



96 
 

 

73. Marygold, S.J.; Leyland, P.C.; Seal, R.L.; Goodman, J.L.; Thurmond, J.; Strelets, V.B.;  
Wilson, R.J.; the FlyBase consortium. Flybase: Improvements to the bibliography. Nucleic 
Acids Res. 2013, 41, D751–D757. 

74. Daines, B.; Wang, H.; Wang, L.; Li, Y.; Han, Y.; Emmert, D.; Gelbart, W.; Wang, X.; Li, W.; 
Gibbs, R.; et al. The drosophila melanogaster transcriptome by paired-end RNA sequencing. 
Genome Res. 2011, 21, 315–324. 

75. Mungall, C.J.; Misra, S.; Berman, B.P.; Carlson, J.; Frise, E.; Harris, N.; Marshall, B.;  
Shu, S.; Kaminker, J.S.; Prochnik, S.E.; et al. An integrated computational pipeline and database 
to support whole-genome sequence annotation. Genome Biol. 2002, doi:10.1186/gb-2002-3-12-
research0081. 

76. Lewis, S.E.; Searle, S.M.; Harris, N.; Gibson, M.; Lyer, V.; Richter, J.; Wiel, C.;  
Bayraktaroglir, L.; Birney, E.; Crosby, M.A.; et al. Apollo: A sequence annotation editor. 
Genome Biol. 2002, doi:10.1186/gb-2002-3-12-research0082. 

77. Reese, M.G.; Kulp, D.; Tammana, H.; Haussler, D. Genie—Gene finding in drosophila 
melanogaster. Genome Res. 2000, 10, 529–538. 

78. Wood, V.; Gwilliam, R.; Rajandream, M.A.; Lyne, M.; Lyne, R.; Stewart, A.; Sgouros, J.;  
Peat, N.; Hayles, J.; Baker, S.; et al. The genome sequence of schizosaccharomyces pombe. 
Nature 2002, 415, 871–880. 

79. Stein, L.D.; Bao, Z.; Blasiar, D.; Blumenthal, T.; Brent, M.R.; Chen, N.; Chinwalla, A.;  
Clarke, L.; Clee, C.; Coghlan, A.; et al. The genome sequence of caenorhabditis briggsae:  
A platform for comparative genomics. PLoS Biol. 2003, 1, e45. 

80. Richards, S.; Liu, Y.; Bettencourt, B.R.; Hradecky, P.; Letovsky, S.; Nielsen, R.; Thornton, K.; 
Hubisz, M.J.; Chen, R.; Meisel, R.P.; et al. Comparative genome sequencing of drosophila 
pseudoobscura: Chromosomal, gene, and cis-element evolution. Genome Res. 2005, 15, 1–18. 

81. Drosophila 12 Genomes Consortium; Clark, A.G.; Eisen, M.B.; Smith, D.R.; Bergman, C.M.; 
Oliver, B.; Markow, T.A.; Kaufman, T.C.; Kellis, M.; Gelbart, W.; et al. Evolution of genes 
and genomes on the drosophila phylogeny. Nature 2007, 450, 203–218. 

82. Lin, M.F.; Carlson, J.W.; Crosby, M.A.; Matthews, B.B.; Yu, C.; Park, S.; Wan, K.H.; 
Schroeder, A.J.; Gramates, L.S.; St Pierre, S.E.; et al. Revisiting the protein-coding gene 
catalog of drosophila melanogaster using 12 fly genomes. Genome Res. 2007, 17, 1823–1836. 

83. Stark, A.; Lin, M.F.; Kheradpour, P.; Pedersen, J.S.; Parts, L.; Carlson, J.W.; Crosby, M.A.; 
Rasmussen, M.D.; Roy, S.; Deoras, A.N.; et al. Discovery of functional elements in 12 
drosophila genomes using evolutionary signatures. Nature 2007, 450, 219–232. 

84. Majoros, W.H.; Ohler, U. Modeling the evolution of regulatory elements by simultaneous 
detection and alignment with phylogenetic pair hmms. PLoS Comput. Biol. 2010, 6, e1001037. 

85. Arunachalam, M.; Jayasurya, K.; Tomancak, P.; Ohler, U. An alignment-free method to 
identify candidate orthologous enhancers in multiple drosophila genomes. Bioinformatics 
2010, 26, 2109–2115. 

  



97 
 
86. Aerts, S.; Quan, X.J.; Claeys, A.; Naval Sanchez, M.; Tate, P.; Yan, J.; Hassan, B.A.  

Robust target gene discovery through transcriptome perturbations and genome-wide enhancer 
predictions in drosophila uncovers a regulatory basis for sensory specification. PLoS Biol. 
2010, 8, e1000435. 

87. Mackay, T.F. Quantitative trait loci in drosophila. Nat. Rev. Genet. 2001, 2, 11–20. 
88. Hindorff, L.A.; Sethupathy, P.; Junkins, H.A.; Ramos, E.M.; Mehta, J.P.; Collins, F.S.;  

Manolio, T.A. Potential etiologic and functional implications of genome-wide association loci 
for human diseases and traits. Proc. Natl. Acad. Sci. USA 2009, 106, 9362–9367. 

89. Mackay, T.F.; Richards, S.; Stone, E.A.; Barbadilla, A.; Ayroles, J.F.; Zhu, D.; Casillas, S.;  
Han, Y.; Magwire, M.M.; Cridland, J.M.; et al. The drosophila melanogaster genetic 
reference panel. Nature 2012, 482, 173–178. 

90. King, E.G.; Merkes, C.M.; McNeil, C.L.; Hoofer, S.R.; Sen, S.; Broman, K.W.; Long, A.D.; 
Macdonald, S.J. Genetic dissection of a model complex trait using the drosophila synthetic 
population resource. Genome Res. 2012, 22, 1558–1566. 

91. Ayroles, J.F.; Carbone, M.A.; Stone, E.A.; Jordan, K.W.; Lyman, R.F.; Magwire, M.M.; 
Rollmann, S.M.; Duncan, L.H.; Lawrence, F.; Anholt, R.R.; et al. Systems genetics of 
complex traits in drosophila melanogaster. Nat. Genet. 2009, 41, 299–307. 

92. Massouras, A.; Waszak, S.M.; Albarca-Aguilera, M.; Hens, K.; Holcombe, W.; Ayroles, J.F.; 
Dermitzakis, E.T.; Stone, E.A.; Jensen, J.D.; Mackay, T.F.; et al. Genomic variation and its 
impact on gene expression in drosophila melanogaster. PLoS Genet. 2012, 8, e1003055. 

93. Jordan, K.W.; Craver, K.L.; Magwire, M.M.; Cubilla, C.E.; Mackay, T.F.; Anholt, R.R.  
Genome-wide association for sensitivity to chronic oxidative stress in drosophila 
melanogaster. PLoS One 2012, 7, e38722. 

94. Jumbo-Lucioni, P.; Bu, S.; Harbison, S.T.; Slaughter, J.C.; Mackay, T.F.; Moellering, D.R.;  
de Luca, M. Nuclear genomic control of naturally occurring variation in mitochondrial 
function in drosophila melanogaster. BMC Genomics 2012, doi:10.1186/1471-2164-13-659. 

95. Magwire, M.M.; Fabian, D.K.; Schweyen, H.; Cao, C.; Longdon, B.; Bayer, F.; Jiggins, F.M. 
Genome-wide association studies reveal a simple genetic basis of resistance to naturally 
coevolving viruses in drosophila melanogaster. PLoS Genet. 2012, 8, e1003057. 

96. Harbison, S.T.; McCoy, L.J.; Mackay, T.F. Genome-wide association study of sleep in 
drosophila melanogaster. BMC Genomics 2013, doi:10.1186/1471-2164-14-281. 

97. King, E.G.; Macdonald, S.J.; Long, A.D. Properties and power of the drosophila synthetic 
population resource for the routine dissection of complex traits. Genetics 2012, 191, 935–949. 

98. ENCODE Project Consortium. The encode (encyclopedia of DNA elements) project. Science 
2004, 306, 636–640. 

99. Gerstein, M.B.; Lu, Z.J.; van Nostrand, E.L.; Cheng, C.; Arshinoff, B.I.; Liu, T.; Yip, K.Y.; 
Robilotto, R.; Rechtsteiner, A.; Ikegami, K.; et al. Integrative analysis of the caenorhabditis 
elegans genome by the modencode project. Science 2010, 330, 1775–1787. 

100. modENCODE Consortium; Roy, S.; Ernst, J.; Kharchenko, P.V.; Kheradpour, P.; Negre, N.; 
Eaton, M.L.; Landolin, J.M.; Bristow, C.A.; Ma, L.; et al. Identification of functional 
elements and regulatory circuits by drosophila modencode. Science 2010, 330, 1787–1797. 



98 
 

 

101. Riddle, N.C.; Minoda, A.; Kharchenko, P.V.; Alekseyenko, A.A.; Schwartz, Y.B.; 
Tolstorukov, M.Y.; Gorchakov, A.A.; Jaffe, J.D.; Kennedy, C.; Linder-Basso, D.; et al. 
Plasticity in patterns of histone modifications and chromosomal proteins in drosophila 
heterochromatin. Genome Res. 2011, 21, 147–163. 

102. Kharchenko, P.V.; Alekseyenko, A.A.; Schwartz, Y.B.; Minoda, A.; Riddle, N.C.; Ernst, J.; 
Sabo, P.J.; Larschan, E.; Gorchakov, A.A.; Gu, T.; et al. Comprehensive analysis of the 
chromatin landscape in drosophila melanogaster. Nature 2011, 471, 480–485. 

103. Nègre, N.; Brown, C.D.; Ma, L.; Bristow, C.A.; Miller, S.W.; Wagner, U.; Kheradpour, P.; 
Eaton, M.L.; Loriaux, P.; Sealfon, R.; et al. A cis-regulatory map of the drosophila genome. 
Nature 2011, 471, 527–531. 

104. Spradling, A.C.; Rubin, G.M. Transposition of cloned p elements into drosophila germ line 
chromosomes. Science 1982, 218, 341–347. 

105. Searles, L.L.; Jokerst, R.S.; Bingham, P.M.; Voelker, R.A.; Greenleaf, A.L. Molecular 
cloning of sequences from a drosophila RNA polymerase ii locus by p element transposon 
tagging. Cell 1982, 31, 585–592. 

106. Rubin, G.M.; Spradling, A.C. Genetic transformation of drosophila with transposable element 
vectors. Science 1982, 218, 348–353. 

107. Cooley, L.; Kelley, R.; Spradling, A. Insertional mutagenesis of the drosophila genome with 
single P elements. Science 1988, 239, 1121–1128. 

108. Cooley, L.; Thompson, D.; Spradling, A.C. Constructing deletions with defined endpoints in 
drosophila. Proc. Natl. Acad. Sci. USA 1990, 87, 3170–3173. 

109. O'Kane, C.J.; Gehring, W.J. Detection in situ of genomic regulatory elements in drosophila. 
Proc. Natl. Acad. Sci. USA 1987, 84, 9123–9127. 

110. Bellen, H.J.; Levis, R.W.; Liao, G.; He, Y.; Carlson, J.W.; Tsang, G.; Evans-Holm, M.; 
Hiesinger, P.R.; Schulze, K.L.; Rubin, G.M.; et al. The bdgp gene disruption project: Single 
transposon insertions associated with 40% of drosophila genes. Genetics 2004, 167, 761–781. 

111. Bellen, H.J.; Levis, R.W.; He, Y.; Carlson, J.W.; Evans-Holm, M.; Bae, E.; Kim, J.;  
Metaxakis, A.; Savakis, C.; Schulze, K.L.; et al. The drosophila gene disruption project: 
Progress using transposons with distinctive site specificities. Genetics 2011, 188, 731–743. 

112. Jacobson, J.W.; Medhora, M.M.; Hartl, D.L. Molecular structure of a somatically unstable 
transposable element in drosophila. Proc. Natl. Acad. Sci. USA 1986, 83, 8684–8688. 

113. Garza, D.; Medhora, M.; Koga, A.; Hartl, D.L. Introduction of the transposable element 
mariner into the germline of drosophila melanogaster. Genetics 1991, 128, 303–310. 

114. Franz, G.; Savakis, C. Minos, a new transposable element from drosophila hydei, is a member 
of the tc1-like family of transposons. Nucleic Acids Res. 1991, 19, 6646. 

115. Loukeris, T.G.; Arca, B.; Livadaras, I.; Dialektaki, G.; Savakis, C. Introduction of the 
transposable element minos into the germ line of drosophila melanogaster. Proc. Natl. Acad.  
Sci. USA 1995, 92, 9485–9489. 

116. Handler, A.M.; McCombs, S.D.; Fraser, M.J.; Saul, S.H. The lepidopteran transposon vector, 
piggybac, mediates germ-line transformation in the mediterranean fruit fly. Proc. Natl. Acad.  
Sci. USA 1998, 95, 7520–7525. 



99 
 
117. Handler, A.M.; Harrell, R.A., 2nd. Germline transformation of drosophila melanogaster with 

the piggybac transposon vector. Insect Mol. Biol. 1999, 8, 449–457. 
118. Spradling, A.C.; Rubin, G.M. The effect of chromosomal position on the expression of the 

drosophila xanthine dehydrogenase gene. Cell 1983, 34, 47–57. 
119. Levis, R.; Hazelrigg, T.; Rubin, G.M. Effects of genomic position on the expression of 

transduced copies of the white gene of drosophila. Science 1985, 229, 558–561. 
120. Taillebourg, E.; Dura, J.M. A novel mechanism for p element homing in drosophila.  

Proc. Natl. Acad. Sci. USA 1999, 96, 6856–6861. 
121. Cheng, Y.; Kwon, D.Y.; Arai, A.L.; Mucci, D.; Kassis, J.A. P-element homing is facilitated 

by engrailed polycomb-group response elements in drosophila melanogaster. PLoS One 2012,  
7, e30437. 

122. Thorpe, H.M.; Smith, M.C. In vitro site-specific integration of bacteriophage DNA catalyzed  
by a recombinase of the resolvase/invertase family. Proc. Natl. Acad. Sci. USA 1998, 95,  
5505–5510. 

123. Groth, A.C.; Fish, M.; Nusse, R.; Calos, M.P. Construction of transgenic drosophila by using 
the site-specific integrase from phage phic31. Genetics 2004, 166, 1775–1782. 

124. Venken, K.J.; He, Y.; Hoskins, R.A.; Bellen, H.J. P[acman]: A bac transgenic platform for 
targeted insertion of large DNA fragments in d. Melanogaster. Science 2006, 314,  
1747–1751. 

125. Bischof, J.; Maeda, R.K.; Hediger, M.; Karch, F.; Basler, K. An optimized transgenesis 
system for drosophila using germ-line-specific phic31 integrases. Proc. Natl. Acad. Sci. USA 
2007, 104, 3312–3317. 

126. Markstein, M.; Pitsouli, C.; Villalta, C.; Celniker, S.E.; Perrimon, N. Exploiting position 
effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes.  
Nat. Genet. 2008, 40, 476–483. 

127. Brand, A.H.; Perrimon, N. Targeted gene expression as a means of altering cell fates and 
generating dominant phenotypes. Development 1993, 118, 401–415. 

128. Manseau, L.; Baradaran, A.; Brower, D.; Budhu, A.; Elefant, F.; Phan, H.; Philp, A.V.;  
Yang, M.; Glover, D.; Kaiser, K.; et al. Gal4 enhancer traps expressed in the embryo, larval 
brain, imaginal discs, and ovary of drosophila. Dev. Dyn. 1997, 209, 310–322. 

129. Hayashi, S.; Ito, K.; Sado, Y.; Taniguchi, M.; Akimoto, A.; Takeuchi, H.; Aigaki, T.;  
Matsuzaki, F.; Nakagoshi, H.; Tanimura, T.; et al. Getdb, a database compiling expression 
patterns and molecular locations of a collection of gal4 enhancer traps. Genesis 2002, 34,  
58–61. 

130. Horn, C.; Offen, N.; Nystedt, S.; Hacker, U.; Wimmer, E.A. Piggybac-based insertional 
mutagenesis and enhancer detection as a tool for functional insect genomics. Genetics 2003, 
163, 647–661. 

131. Jenett, A.; Rubin, G.M.; Ngo, T.T.; Shepherd, D.; Murphy, C.; Dionne, H.; Pfeiffer, B.D.; 
Cavallaro, A.; Hall, D.; Jeter, J.; et al. A gal4-driver line resource for drosophila 
neurobiology. Cell Rep. 2012, 2, 991–1001. 



100 
 

 

132. Stark, A.; Dickson, B.J. Vt (vienna tile) gal4 Driver Lines. Available online: 
http://stockcenter.vdrc.at/control/vtlibrary/ (accessed on 10 January 2014). 

133. Suster, M.L.; Seugnet, L.; Bate, M.; Sokolowski, M.B. Refining gal4-driven transgene 
expression in drosophila with a gal80 enhancer-trap. Genesis 2004, 39, 240–245. 

134. McGuire, S.E.; Le, P.T.; Osborn, A.J.; Matsumoto, K.; Davis, R.L. Spatiotemporal rescue of 
memory dysfunction in drosophila. Science 2003, 302, 1765–1768. 

135. Lee, T.; Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in 
neuronal morphogenesis. Neuron 1999, 22, 451–461. 

136. Han, D.D.; Stein, D.; Stevens, L.M. Investigating the function of follicular subpopulations 
during drosophila oogenesis through hormone-dependent enhancer-targeted cell ablation. 
Development 2000, 127, 573–583. 

137. Osterwalder, T.; Yoon, K.S.; White, B.H.; Keshishian, H. A conditional tissue-specific 
transgene expression system using inducible gal4. Proc. Natl. Acad. Sci. USA 2001, 98, 
12596–12601. 

138. Roman, G.; Endo, K.; Zong, L.; Davis, R.L. P[switch], a system for spatial and temporal  
control of gene expression in drosophila melanogaster. Proc. Natl. Acad. Sci. USA 2001, 98, 
12602–12607. 

139. Stebbins, M.J.; Urlinger, S.; Byrne, G.; Bello, B.; Hillen, W.; Yin, J.C. Tetracycline-inducible 
systems for drosophila. Proc. Natl. Acad. Sci. USA 2001, 98, 10775–10780. 

140. Lai, S.L.; Lee, T. Genetic mosaic with dual binary transcriptional systems in drosophila.  
Nat. Neurosci. 2006, 9, 703–709. 

141. Potter, C.J.; Tasic, B.; Russler, E.V.; Liang, L.; Luo, L. The q system: A repressible binary 
system for transgene expression, lineage tracing, and mosaic analysis. Cell 2010, 141,  
536–548. 

142. Yagi, R.; Mayer, F.; Basler, K. Refined lexa transactivators and their use in combination with 
the drosophila gal4 system. Proc. Natl. Acad. Sci. USA 2010, 107, 16166–16171. 

143. Dang, D.T.; Perrimon, N. Use of a yeast site-specific recombinase to generate embryonic 
mosaics in drosophila. Dev. Genet. 1992, 13, 367–375. 

144. Harrison, D.A.; Perrimon, N. Simple and efficient generation of marked clones in drosophila. 
Curr. Biol. 1993, 3, 424–433. 

145. Golic, K.G. Site-specific recombination between homologous chromosomes in drosophila. 
Science 1991, 252, 958–961. 

146. Yu, H.H.; Chen, C.H.; Shi, L.; Huang, Y.; Lee, T. Twin-spot marcm to reveal the 
developmental origin and identity of neurons. Nat. Neurosci. 2009, 12, 947–953. 

147. Venken, K.J.; Schulze, K.L.; Haelterman, N.A.; Pan, H.; He, Y.; Evans-Holm, M.;  
Carlson, J.W.; Levis, R.W.; Spradling, A.C.; Hoskins, R.A.; et al. Mimic: A highly versatile 
transposon insertion resource for engineering drosophila melanogaster genes. Nat. Methods 
2011, 8, 737–743. 

148. Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and 
specific genetic interference by double-stranded RNA in caenorhabditis elegans. Nature 1998, 
391, 806–811. 



101 
 
149. Hannon, G.J. RNA interference. Nature 2002, 418, 244–251. 
150. Kennerdell, J.R.; Carthew, R.W. Use of dsrna-mediated genetic interference to demonstrate 

that frizzled and frizzled 2 act in the wingless pathway. Cell 1998, 95, 1017–1026. 
151. Misquitta, L.; Paterson, B.M. Targeted disruption of gene function in drosophila by RNA 

interference (RNA-i): A role for nautilus in embryonic somatic muscle formation. Proc. Natl. 
Acad. Sci. USA 1999, 96, 1451–1456. 

152. Hammond, S.M.; Bernstein, E.; Beach, D.; Hannon, G.J. An RNA-directed nuclease mediates  
post-transcriptional gene silencing in drosophila cells. Nature 2000, 404, 293–296. 

153. Kennerdell, J.R.; Carthew, R.W. Heritable gene silencing in drosophila using double-stranded 
RNA. Nat. Biotechnol. 2000, 18, 896–898. 

154. Clemens, J.C.; Worby, C.A.; Simonson-Leff, N.; Muda, M.; Maehama, T.; Hemmings, B.A.; 
Dixon, J.E. Use of double-stranded RNA interference in drosophila cell lines to dissect signal 
transduction pathways. Proc. Natl. Acad. Sci. USA 2000, 97, 6499–6503. 

155. Kiger, A.A.; Baum, B.; Jones, S.; Jones, M.R.; Coulson, A.; Echeverri, C.; Perrimon, N.  
A functional genomic analysis of cell morphology using RNA interference. J. Biol. 2003, 
doi:10.1186/1475-4924-2-27. 

156. Lum, L.; Yao, S.; Mozer, B.; Rovescalli, A.; von Kessler, D.; Nirenberg, M.; Beachy, P.A. 
Identification of hedgehog pathway components by RNAi in drosophila cultured cells. 
Science 2003, 299, 2039–2045. 

157. Boutros, M.; Kiger, A.A.; Armknecht, S.; Kerr, K.; Hild, M.; Koch, B.; Haas, S.A.; Paro, R.; 
Perrimon, N.; Heidelberg Fly Array, C. Genome-wide RNAi analysis of growth and viability 
in drosophila cells. Science 2004, 303, 832–835. 

158. Foley, E.; O’Farrell, P.H. Functional dissection of an innate immune response by a  
genome-wide RNAi screen. PLoS Biol. 2004, 2, E203. 

159. Dietzl, G.; Chen, D.; Schnorrer, F.; Su, K.-C.; Barinova, Y.; Fellner, M.; Gasser, B.;  
Kinsey, K.; Oppel, S.; Scheiblauer, S.; et al. A genome-wide transgenic RNAi library for 
conditional gene inactivation in drosophila. Nature 2007, 448, 151–156. 

160. Ueda, R. RNAi Fly—A Comprehensive RNAi-Mutant Fly Bank. Available online: 
http://www. 
shigen.nig.ac.jp/fly/nigfly/about/aboutrnai.jsp/ (accessed on 13 January 2014). 

161. Ni, J.-Q.; Liu, L.-P.; Binari, R.; Hardy, R.; Shim, H.-S.; Cavallaro, A.; Booker, M.;  
Pfeiffer, B.D.; Markstein, M.; Wang, H.; et al. A drosophila resource of transgenic RNAi 
lines for neurogenetics. Genetics 2009, 182, 1089–1100. 

162. Schnorrer, F.; Schonbauer, C.; Langer, C.C.; Dietzl, G.; Novatchkova, M.; Schernhuber, K.; 
Fellner, M.; Azaryan, A.; Radolf, M.; Stark, A.; et al. Systematic genetic analysis of muscle 
morphogenesis and function in drosophila. Nature 2010, 464, 287–291. 

163. Neely, G.G.; Kuba, K.; Cammarato, A.; Isobe, K.; Amann, S.; Zhang, L.; Murata, M.;  
Elmen, L.; Gupta, V.; Arora, S.; et al. A global in vivo drosophila RNAi screen identifies not3 
as a conserved regulator of heart function. Cell 2010, 141, 142–153. 



102 
 

 

164. Pospisilik, J.A.; Schramek, D.; Schnidar, H.; Cronin, S.J.; Nehme, N.T.; Zhang, X.; Knauf, C.; 
Cani, P.D.; Aumayr, K.; Todoric, J.; et al. Drosophila genome-wide obesity screen reveals 
hedgehog as a determinant of brown versus white adipose cell fate. Cell 2010, 140, 148–160. 

165. Neely, G.G.; Hess, A.; Costigan, M.; Keene, A.C.; Goulas, S.; Langeslag, M.; Griffin, R.S.; 
Belfer, I.; Dai, F.; Smith, S.B.; et al. A genome-wide drosophila screen for heat nociception 
identifies alpha2delta3 as an evolutionarily conserved pain gene. Cell 2010, 143, 628–638. 

166. Ghosh, A.; Kling, T.; Snaidero, N.; Sampaio, J.L.; Shevchenko, A.; Gras, H.; Geurten, B.; 
Gopfert, M.C.; Schulz, J.B.; Voigt, A.; et al. A global in vivo drosophila RNAi screen 
identifies a key role of ceramide phosphoethanolamine for glial ensheathment of axons.  
PLoS Genet. 2013, 9, e1003980. 

167. Czech, B.; Preall, J.B.; McGinn, J.; Hannon, G.J. A transcriptome-wide RNAi screen in the 
drosophila ovary reveals factors of the germline piRNA pathway. Mol. Cell 2013, 50,  
749–761. 

168. Kondo, S.; Booker, M.; Perrimon, N. Cross-species RNAi rescue platform in drosophila 
melanogaster. Genetics 2009, 183, 1165–1173. 

169. Langer, C.C.H.; Ejsmont, R.K.; Schönbauer, C.; Schnorrer, F.; Tomancak, P. In vivo RNAi 
rescue in drosophila melanogaster with genomic transgenes from drosophila pseudoobscura. 
PLoS One 2010, 5, e8928. 

170. Schulz, J.G.; David, G.; Hassan, B.A. A novel method for tissue-specific RNAi rescue in 
drosophila. Nucleic Acids Res. 2009, 37, e93. 

171. Lawrence, P.A.; Bodmer, R.; Vincent, J.P. Segmental patterning of heart precursors in 
drosophila. Development 1995, 121, 4303–4308. 

172. Murray, M.J.; Merritt, D.J.; Brand, A.H.; Whitington, P.M. In vivo dynamics of axon 
pathfinding in the drosophilia CNS: A time-lapse study of an identified motorneuron.  
J. Neurobiol. 1998, 37, 607–621. 

173. Murphy, K.C. Use of bacteriophage lambda recombination functions to promote gene 
replacement in escherichia coli. J. Bacteriol. 1998, 180, 2063–2071. 

174. Zhang, Y.; Buchholz, F.; Muyrers, J.P.; Stewart, A.F. A new logic for DNA engineering 
using recombination in escherichia coli. Nat. Genet. 1998, 20, 123–128. 

175. Muyrers, J.P.; Zhang, Y.; Testa, G.; Stewart, A.F. Rapid modification of bacterial artificial 
chromosomes by et-recombination. Nucleic Acids Res. 1999, 27, 1555–1557. 

176. Yu, D.; Ellis, H.M.; Lee, E.C.; Jenkins, N.A.; Copeland, N.G.; Court, D.L. An efficient 
recombination system for chromosome engineering in Escherichia coli. Proc. Natl. Acad. Sci. 
USA 2000, 97, 5978–5983. 

177. Venken, K.J.T.; Carlson, J.W.; Schulze, K.L.; Pan, H.; He, Y.; Spokony, R.; Wan, K.H.; 
Koriabine, M.; de Jong, P.J.; White, K.P.; et al. Versatile P[acman] bac libraries for 
transgenesis studies in drosophila melanogaster. Nat. Methods 2009, 6, 431–434. 

178. Ejsmont, R.K.; Sarov, M.; Winkler, S.; Lipinski, K.A.; Tomancak, P. A toolkit for  
high-throughput, cross-species gene engineering in drosophila. Nat. Methods 2009, 6,  
435–437. 



103 
 
179. Horn, C.; Jaunich, B.; Wimmer, E.A. Highly sensitive, fluorescent transformation marker for 

drosophila transgenesis. Dev. Genes Evol. 2000, 210, 623–629. 
180. Poser, I.; Sarov, M.; Hutchins, J.R.; Heriche, J.K.; Toyoda, Y.; Pozniakovsky, A.; Weigl, D.; 

Nitzsche, A.; Hegemann, B.; Bird, A.W.; et al. Bac transgeneomics: A high-throughput 
method for exploration of protein function in mammals. Nat. Methods 2008, 5, 409–415. 

181. Wu, J.S.; Luo, L. A protocol for mosaic analysis with a repressible cell marker (Marcm) in 
drosophila. Nat. Protoc. 2006, 1, 2583–2589. 

182. Rong, Y.S.; Golic, K.G. Gene targeting by homologous recombination in drosophila. Science 
2000, 288, 2013–2018. 

183. Gong, W.J.; Golic, K.G. Ends-out, or replacement, gene targeting in drosophila. Proc. Natl. 
Acad. Sci. USA 2003, 100, 2556–2561. 

184. Choi, C.M.; Vilain, S.; Langen, M.; van Kelst, S.; de Geest, N.; Yan, J.; Verstreken, P.; 
Hassan, B.A. Conditional mutagenesis in drosophila. Science 2009, doi:10.1126/ 
science.1168275. 

185. Huang, J.; Zhou, W.; Dong, W.; Watson, A.M.; Hong, Y. From the cover: Directed, efficient, 
and versatile modifications of the drosophila genome by genomic engineering. Proc. Natl. 
Acad. Sci. USA 2009, 106, 8284–8289. 

186. Gloor, G.B.; Nassif, N.A.; Johnson-Schlitz, D.M.; Preston, C.R.; Engels, W.R. Targeted gene 
replacement in drosophila via p element-induced gap repair. Science 1991, 253, 1110–1117. 

187. Kim, Y.G.; Cha, J.; Chandrasegaran, S. Hybrid restriction enzymes: Zinc finger fusions to 
Fok I cleavage domain. Proc. Natl. Acad. Sci. USA 1996, 93, 1156–1160. 

188. Bibikova, M.; Golic, M.; Golic, K.G.; Carroll, D. Targeted chromosomal cleavage and 
mutagenesis in drosophila using zinc-finger nucleases. Genetics 2002, 161, 1169–1175. 

189. Auer, T.O.; Duroure, K.; de Cian, A.; Concordet, J.P.; Del Bene, F. Highly efficient  
crispr/cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome 
Res. 2014, 24, 142–153. 

190. Beumer, K.; Bhattacharyya, G.; Bibikova, M.; Trautman, J.K.; Carroll, D. Efficient gene 
targeting in drosophila with zinc-finger nucleases. Genetics 2006, 172, 2391–2403. 

191. Maeder, M.L.; Thibodeau-Beganny, S.; Osiak, A.; Wright, D.A.; Anthony, R.M.;  
Eichtinger, M.; Jiang, T.; Foley, J.E.; Winfrey, R.J.; Townsend, J.A.; et al. Rapid  
“open-source” engineering of customized zinc-finger nucleases for highly efficient gene 
modification. Mol. Cell 2008, 31, 294–301. 

192. Sander, J.D.; Dahlborg, E.J.; Goodwin, M.J.; Cade, L.; Zhang, F.; Cifuentes, D.; Curtin, S.J.; 
Blackburn, J.S.; Thibodeau-Beganny, S.; Qi, Y.; et al. Selection-free zinc-finger-nuclease 
engineering by context-dependent assembly (coda). Nat. Methods 2011, 8, 67–69. 

193. Kim, S.; Lee, M.J.; Kim, H.; Kang, M.; Kim, J.S. Preassembled zinc-finger arrays for rapid 
construction of zfns. Nat. Methods 2011, doi:10.1038/nmeth0111-7a. 

194. Doyon, Y.; Vo, T.D.; Mendel, M.C.; Greenberg, S.G.; Wang, J.; Xia, D.F.; Miller, J.C.;  
Urnov, F.D.; Gregory, P.D.; Holmes, M.C. Enhancing zinc-finger-nuclease activity with 
improved obligate heterodimeric architectures. Nat. Methods 2011, 8, 74–79. 



104 
 

 

195. Mahfouz, M.M.; Li, L.; Shamimuzzaman, M.; Wibowo, A.; Fang, X.; Zhu, J.K.  
De novo-engineered transcription activator-like effector (tale) hybrid nuclease with novel 
DNA binding specificity creates double-strand breaks. Proc. Natl. Acad. Sci. USA 2011, 108, 
2623–2628. 

196. Miller, J.C.; Tan, S.; Qiao, G.; Barlow, K.A.; Wang, J.; Xia, D.F.; Meng, X.; Paschon, D.E.; 
Leung, E.; Hinkley, S.J.; et al. A tale nuclease architecture for efficient genome editing.  
Nat. Biotechnol. 2011, 29, 143–148. 

197. Morbitzer, R.; Elsaesser, J.; Hausner, J.; Lahaye, T. Assembly of custom tale-type DNA 
binding domains by modular cloning. Nucleic Acids Res. 2011, 39, 5790–5799. 

198. Moscou, M.J.; Bogdanove, A.J. A simple cipher governs DNA recognition by tal effectors. 
Science 2009, doi:10.1126/science.1178817. 

199. Brouns, S.J.; Jore, M.M.; Lundgren, M.; Westra, E.R.; Slijkhuis, R.J.; Snijders, A.P.;  
Dickman, M.J.; Makarova, K.S.; Koonin, E.V.; van der Oost, J. Small crispr rnas guide 
antiviral defense in prokaryotes. Science 2008, 321, 960–964. 

200. Gasiunas, G.; Barrangou, R.; Horvath, P.; Siksnys, V. Cas9-crrna ribonucleoprotein complex 
mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. 
USA 2012, 109, E2579–E2586. 

201. Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A 
programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 
2012, 337, 816–821. 

202. Bassett, A.R.; Tibbit, C.; Ponting, C.P.; Liu, J.L. Highly efficient targeted mutagenesis of 
drosophila with the crispr/cas9 system. Cell Rep. 2013, 4, 220–228. 

203. Gratz, S.J.; Cummings, A.M.; Nguyen, J.N.; Hamm, D.C.; Donohue, L.K.; Harrison, M.M.; 
Wildonger, J.; O’Connor-Giles, K.M. Genome engineering of drosophila with the crispr  
RNA-guided cas9 nuclease. Genetics 2013, 194, 1029–1035. 

204. Yu, Z.; Ren, M.; Wang, Z.; Zhang, B.; Rong, Y.S.; Jiao, R.; Gao, G. Highly efficient genome 
modifications mediated by crispr/cas9 in drosophila. Genetics 2013, 195, 289–291. 

205. Sebo, Z.L.; Lee, H.B.; Peng, Y.; Guo, Y. A simplified and efficient germline-specific 
crispr/cas9 system for drosophila genomic engineering. Fly 2014, 8, 52–57. 

206. Ren, X.; Sun, J.; Housden, B.E.; Hu, Y.; Roesel, C.; Lin, S.; Liu, L.-P.; Yang, Z.; Mao, D.;  
Sun, L.; et al. Optimized gene editing technology for drosophila melanogaster using germ  
line-specific cas9. Proc. Natl. Acad. Sci. USA 2013, 110, 19012–19017. 

207. Gratz, S.J.; Ukken, F.P.; Rubinstein, C.D.; Thiede, G.; Donohue, L.K.; Cummings, A.M.; 
O’Connor-Giles, K.M. Highly specific and efficient crispr/cas9-catalyzed homology-directed 
repair in drosophila. Genetics 2014, doi:10.1534/genetics.113.160713. 

208. Kondo, S.; Ueda, R. Highly improved gene targeting by germline-specific cas9 expression in 
drosophila. Genetics 2013, 195, 715–721. 

209. Baena-Lopez, L.A.; Alexandre, C.; Mitchell, A.; Pasakarnis, L.; Vincent, J.P. Accelerated 
homologous recombination and subsequent genome modification in drosophila. Development 
2013, 140, 4818–4825. 



105 
 
210. Del Valle Rodriguez, A.; Didiano, D.; Desplan, C. Power tools for gene expression and clonal 

analysis in drosophila. Nat. Methods 2012, 9, 47–55. 
211. Venken, K.J.; Bellen, H.J. Genome-wide manipulations of drosophila melanogaster with 

transposons, flp recombinase, and phic31 integrase. Methods Mol. Biol. 2012, 859, 203–228. 
212. Gratz, S.J.; Wildonger, J.; Harrison, M.M.; O’Connor-Giles, K.M. Crispr/cas9-mediated 

genome engineering and the promise of designer flies on demand. Fly 2013, 
doi:10.4161/fly.26566. 

213. Reiter, L.T.; Potocki, L.; Chien, S.; Gribskov, M.; Bier, E. A systematic analysis of  
human disease-associated gene sequences in drosophila melanogaster. Genome Res. 2001, 11, 
1114–1125. 

214. Chien, S.; Reiter, L.T.; Bier, E.; Gribskov, M. Homophila: Human disease gene cognates in 
drosophila. Nucleic Acids Res. 2002, 30, 149–151. 

215. Richter, A.; Boch, J. Designer tales team up for highly efficient gene induction. Nat. Methods 
2013, 10, 207–208. 

216. Crocker, J.; Stern, D.L. Tale-mediated modulation of transcriptional enhancers in vivo.  
Nat. Methods 2013, 10, 762–767. 

217. Mali, P.; Esvelt, K.M.; Church, G.M. Cas9 as a versatile tool for engineering biology.  
Nat. Methods 2013, 10, 957–963. 

218. modENCODE Consortium Modencode Comparative Genomics Whitepaper. Available 
online: http://www.genome.gov/Pages/Research/Sequencing/SeqProposals/modENCODE_ 
ComparativeGenomics_WhitePaper.pdf (accessed on 16 January 2014). 



106 
 
Genome-Wide Analysis of Alpharetroviral Integration in 
Human Hematopoietic Stem/Progenitor Cells 

Arianna Moiani, Julia Debora Suerth, Francesco Gandolfi, Ermanno Rizzi,  
Marco Severgnini, Gianluca De Bellis, Axel Schambach and Fulvio Mavilio 

Abstract: Gene transfer vectors derived from gamma-retroviruses or lentiviruses are currently used 
for the gene therapy of genetic or acquired diseases. Retroviral vectors display a non-random 
integration pattern in the human genome, targeting either regulatory regions (gamma-retroviruses) 
or the transcribed portion of expressed genes (lentiviruses), and have the potential to deregulate 
gene expression at the transcriptional or post-transcriptional level. A recently developed alternative 
vector system derives from the avian sarcoma-leukosis alpha-retrovirus (ASLV) and shows 
favorable safety features compared to both gamma-retroviral and lentiviral vectors in preclinical 
models. We performed a high-throughput analysis of the integration pattern of self-inactivating 
(SIN) alpha-retroviral vectors in human CD34+ hematopoietic stem/progenitor cells (HSPCs) and 
compared it to previously reported gamma-retroviral and lentiviral vectors integration profiles 
obtained in the same experimental setting. Compared to gamma-retroviral and lentiviral vectors, 
the SIN-ASLV vector maintains a preference for open chromatin regions, but shows no bias for 
transcriptional regulatory elements or transcription units, as defined by genomic annotations and 
epigenetic markers (H3K4me1 and H3K4me3 histone modifications). Importantly, SIN-ASLV 
integrations do not cluster in hot spots and target potentially dangerous genomic loci, such as the 
EVI2A/B, RUNX1 and LMO2 proto-oncogenes at a virtually random frequency. These 
characteristics predict a safer profile for ASLV-derived vectors for clinical applications. 

Reprinted from Genes. Cite as: Moiani, A.; Suerth, J.D.; Gandolfi, F.; Rizzi, E.; Severgnini, M.;  
de Bellis, G.; Schambach, A.; Mavilio, F. Genome-Wide Analysis of Alpharetroviral Integration in 
Human Hematopoietic Stem/Progenitor Cells. Genes 2014, 5, 415-429. 

1. Introduction 

Transplantation of hematopoietic stem cells genetically modified by retroviral vectors has 
proven its clinical efficacy in a number of seminal clinical trials for the treatment of severe 
monogenic disorders [1–8]. However, some of these studies also showed the genotoxic risks 
associated with the insertion of foreign DNA in the human genome, which limit the clinical 
application of integrating vectors (reviewed in [9]). Several efforts have been made to improve the 
safety of retroviral vectors, leading to the design of safer constructs and the development of robust 
in vitro and in vivo genotoxic assays to predict the potential risk associated with their integration 
into the genome [10–12]. High-definition mapping of integration sites of vectors derived from the 
Moloney murine leukemia virus (MLV) and human immunodeficiency virus (HIV) in murine and 
human cells revealed non-random profiles with a strong tendency to target active regulatory regions 
for MLV-derived gamma-retroviral vectors [13,14] and transcribed regions for HIV-derived lentiviral 
vectors [15,16]. These integration patterns explain the relatively high risk to deregulate gene 
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expression at the transcriptional or post-transcriptional level observed in pre-clinical, as well as in 
clinical studies (reviewed in [9]). 

Small-scale surveys of integration sites of vectors derived from alpha-retroviruses, such as the 
avian sarcoma-leukosis virus (ASLV), in different cell types indicated a more random pattern 
compared to other retroviruses, with a slight preference for transcription units, but no apparent 
preference for promoters and transcription start sites (TSSs) [17–20]. This potentially more 
favorable integration profile prompted the development of a replication-deficient, self-inactivating 
(SIN) ASLV-derived vector capable of efficiently transducing murine and human cells [21]. This 
vector was able to sustain long-term transgene expression in murine and human hematopoietic 
progenitors at levels comparable to those obtained with SIN-MLV and SIN-HIV vectors and to 
correct the X-linked chronic granulomatous disease (X-CGD) phenotype in a mouse model of the 
disease [20,22]. 

We and others previously reported that MLV, SIN-MLV and SIN-HIV integrations are highly 
clustered in the human genome, with cell-specific patterns that correlate with the transcriptional 
program and the epigenetic landscape of each cell type [14–16,19,23–26]. In this study, we report a 
high-definition analysis of the integration patterns of SIN-MLV, SIN-ASLV and SIN-HIV vectors 
in human CD34+ hematopoietic stem/progenitor cells (HSPCs), which was carried out to evaluate 
their comparative genotoxic potential in a clinically relevant target cell. We show that the  
SIN-ASLV integration profile is close to random, with no preferential targeting of TSSs or 
transcribed genes compared to SIN-MLV and SIN-HIV. The SIN-ASLV vector does not target 
CpG islands, conserved non-coding regions (CNCs) or elements enriched in transcription factor 
binding sites (TFBS), is less frequently associated with epigenetically defined promoter and 
enhancer regions compared to SIN-MLV and is randomly associated with repetitive elements in the 
genome. Similarly, we observed no preference for transcribed regions compared to SIN-HIV. 
Heterochromatic regions are excluded by the integration pattern of all three vectors. Interestingly, 
the ASLV vector showed no apparent clustering in the genome and has no association with the 
typical integration hot spots observed for MLV- and HIV-based vectors. These results highlight a 
safer integration profile of alpha-retroviral vectors in human cells, supporting their development as 
a clinical gene transfer tool. 

2. Experimental 

2.1. Vectors and Cells 

Human CD34+ HSPCs were purified form umbilical cord blood, pre-stimulated for 48 h in  
serum-free Iscove’s modified Dulbecco medium supplemented with 20% Fetal Calf Serum (FCS),  
20 ng/mL human thrombopoietin, 100 ng/mL Flt-3 ligand, 20 ng/mL interleukin-6 and 100 ng/mL stem 
cell factor, as previously described [23]. HSPCs were transduced with the SIN-ASLV vector, 
pAlpha.SIN.EFS.EGFP.WPRE (noTATA), expressing GFP under the control of the elongation factor 
1  promoter, pseudotyped in an amphotropic envelope by three-plasmid transfection in 293T cells, 
as previously described [20]. Cells were infected by 3 rounds of spinoculation (1500 rpm for  
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45 min) in the presence of 4 g/mL polybrene. Transduction efficiency was evaluated by 
cytofluorimetric analysis of GFP expression 48 h after infection. 

2.2. Amplification, Sequencing, and Analysis of Retroviral Integration Sites 

Genomic DNA was extracted from a pool of 3.5 × 106 CD34+/GFP+ cells enriched by  
fluorescence-activated cell sorting, after a brief period in culture to dilute unintegrated vectors.  
3'-LTR vector-genome junctions were amplified by LM-PCR adapted to the GS-FLX Genome 
Sequencer (Roche/454 Life Sciences) pyrosequencing platform, as previously described [14].  
Raw sequence reads were processed by an automated bioinformatic pipeline that eliminated small 
and redundant sequences [14] and mapped on the University of California at Santa Cruz (UCSC) 
hg19 release of the human genome [14]. All UCSC RefSeq genes having their TSS at ±50 kb from 
an integration site were annotated as targets. Genomic features were annotated when their genomic 
coordinates overlapped for 1 nucleotide with a ±1 kb interval around each integration site. We 
used UCSC tracks for both CpG islands and conserved TFBSs, and the previously described 
genomic coordinates of 82,335 mammalian conserved non-coding sequences (CNCs) [27]. Raw 
sequences having a single or ambiguous match in the genome (the latter mapping in multiple 
genomic positions with a difference in the identity <2) were blasted on the UCSC RepeatMasker 
database. DNase I hypersensitive sites from publicly available data [28] were annotated when 
overlapping for at least 1 bp with a ±1-kb interval around an integration. Repetitive elements were 
annotated when directly targeted by each integration site. Sequences having multiple matches were 
collapsed and counted as one when matching in the same genomic positions and were univocally 
associated with the single type of repetitive element they targeted. 

For the association of the integrations with epigenetically defined chromatin states, we used 
publicly available ChIP-Seq data (NIH Roadmap Epigenomics Mapping Consortium database) that 
we re-annotated in the UCSC hg19 release of the human genome. We analyzed the distribution of 
integration sites around histone modifications (H3K4me1, H3K4me3, H3K36me3, H3K27me3) 
using the seqMINER platform [29]. Previously generated SIN-MLV, SIN-HIV integrations and 
random control sequences datasets [14] were also re-annotated on the UCSC hg19 genome. For all 
pairwise comparisons, we applied a 2-sided Fisher’s exact test. The threshold for statistical 
significance was set at a p-value < 0.01. 

3. Results and Discussion 

3.1. SIN-ASLV Vectors Exhibit an Almost Random Integration Profile in the Genome of Human  
CD34+ HSPCs 

To generate a high-definition alpha-retroviral integration profile in human HSPCs, we 
transduced umbilical cord blood-derived CD34+ cells with a previously described SIN-ASLV 
vector carrying a GFP expression cassette under the control of the intron-less, 240-bp version of the 
elongation factor-1  (EFS) promoter [20]. Cells were transduced at 10% to 20% efficiency and 
were selected for GFP expression by cell sorting 10 days after infection, to dilute unintegrated 
vectors. Vector-genome junctions were amplified from genomic DNA by ligation-mediated  
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(LM)-PCR and pyrosequenced, as previously described [14]. Raw sequences (available at 
GenBank with the accession number SRR1282019) were processed by a previously described 
bioinformatic pipeline [14] and mapped on the UCSC hg19 release of the human genome, to obtain 
8250 unique insertion sites. Two datasets of SIN-MLV (13,097) and SIN-HIV (31,827) vector 
integrations, previously generated in human umbilical cord blood-derived CD34+ cells in 
comparable experimental conditions, and a set of in-silico generated normalized random sites 
(40,000) [14,26] were re-annotated on the hg19 genome and used for comparison. To identify 
differences in the integration preferences of SIN-ASLV compared to SIN-MLV and SIN-HIV in 
human HSPCs, we first analyzed the distribution of integration sites around RefSeq genes in the 
human genome: integration was annotated as TSS-proximal when occurring in an interval of ±2.5 
kb from the TSS of any RefSeq gene, intragenic when occurring inside a RefSeq gene >2.5 kb from 
the TSS and intergenic in all other cases. 

The high-definition profile of SIN-ASLV integration showed only a modest preference for TSSs 
(6.97% of the integration sites were annotated as TSS-proximal) compared to SIN-HIV and random 
sites (3.45% and 3.16%, respectively), which was significantly lower than that observed for the  
SIN-MLV vector (23.38%, p < 0.01). Similarly, SIN-ASLV showed only a slight tendency to 
integrate into genes (49.48% vs. 40.58% of random sites), significantly lower than that observed for 
SIN-HIV vectors (76.77%, p < 0.01). As a consequence, the frequency of SIN-ASLV integration 
outside transcription units was only slightly lower than random (43.55% vs. 56.26%) and 
significantly higher than those observed for the other two vectors (34.36% and 19.78%, 
respectively, p < 0.01) (Table 1). A plot of the relative distance of SIN-ASLV integration sites in 
an interval of ±50 kb from any TSS revealed a spread distribution with only a modest accumulation 
in the ±2.5 kb interval around TSS compared to the SIN-MLV vector. A higher definition map 
(100-bp intervals) showed the absence of integrations in the basal promoter region, most likely 
occupied by the RNA PolII basal transcriptional machinery. Integrations of the SIN-HIV vector 
were under-represented in a much wider interval of ±2.5-kb around the TSS (Figure 1). 

Table 1. Integration distribution around RefSeq genes and genomic features in the 
genome of human hematopoietic stem/progenitor cells (HSPCs). 

Vector Intergenic 
(%) 

TSS-proximal 
(%) 

Intragenic 
(%) 

CpG islands 
(%) 

CNCs 
(%) 

TFBS 
(%) 

Total 
integrations

SIN-ASLV 43.55 * 6.97 49.48 2.84 5.49 55.70 8250 
SIN-MLV 34.36 * 23.38 * 42.26 17.68 * 8.42 69.95 * 13,097 
SIN-HIV 19.78 * 3.45 76.77 * 1.23 4.58 54.61 31,827 
Random 56.26 3.16 40.58 1.76 6.05 51.01 40,000 
Percentage of self-inactivating (SIN)-Moloney murine leukemia virus (MLV), SIN-avian  
sarcoma-leukosis alpha-retrovirus (ASLV) and SIN-HIV integrations and random sequences targeting 
intergenic, transcription start sites (TSS)-proximal and intragenic regions, regions annotated as CpG 
islands, conserved non-coding (CNC) regions and transcription factor binding sites (TFBS). For all the 
comparison with random sites, we applied a two-sided Fisher’s exact test. * p < 0.01. 

This analysis indicates that SIN-ASLV vector integrations have an almost random distribution 
in the human genome, with only a modest preference for genes and promoter regions compared to  
SIN-HIV and SIN-MLV vectors, suggesting entirely different modalities of target site selection. 
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We previously reported that SIN-MLV integrations are enriched around annotated CpG islands 
and conserved TFBSs and moderately enriched around mammalian, evolutionarily conserved  
non-coding sequences (CNCs) [14,25,26]. SIN-ASLV integrations were found associated with 
these genomic features at almost a random frequency, as observed for SIN-HIV integrations, and at 
a much lower frequency compared to SIN-MLV integrations (CpGs: 2.84% vs. 17.68%; TFBSs: 
55.70% vs. 69.95%; CNCs: 5.49% vs. 8.42%, p < 0.01 in all cases) (Table 1), suggesting again that 
SIN-ASLV integrations have no obvious association with functional genomic elements. 

Figure 1. Genomic distribution of SIN-MLV, SIN-ASLV and SIN-HIV integrations in 
human HSPCs. The distribution of the distance of SIN-MLV (red bars), SIN-ASLV 
(yellow bars) and SIN-HIV (blue bars) integration sites from the TSS of targeted genes 
at 2500-bp (a) or 50-bp (b) resolution. The percentage of genes targeted at each 
position is plotted on the y-axis. The black line indicates the distribution of random 
control sites. 

 

We then looked at the tendency of the three types of retroviral vectors to target repetitive 
elements, by blasting both single- and multiple-match sequences to the UCSC RepeatMasker 
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database and by annotating repetitive elements directly targeted by each integration site. 
Interestingly, only SIN-ASLV integrations were associated with repetitive elements with an almost 
random frequency (51% vs. 50%), while both SIN-MLV and SIN-HIV integrations were 
significantly under-represented in repetitive regions (37% and 45%, respectively, p < 0.01)  
(Table 2). By looking at the different classes of repetitive elements, we found that all three vectors 
have a slightly higher preference to integrate in short interspersed nuclear elements (SINEs) 
compared to random controls (17% to 20% vs. 15%), probably as a consequence of the fact that 
SINEs are often located in transcribed regions and contain PolII promoters [30,31]. On the 
contrary, integrations in long interspersed nuclear elements (LINEs), long terminal repeats (LTRs) 
and other repetitive elements were under-represented or close to random (Table 2). Finally, 
integration in satellite elements was observed at a random frequency only for SIN-ASLV vectors 
(0.43% vs. 0.35%), while both SIN-MLV and SIN-HIV integrations were significantly  
under-represented in these regions (0.01% and 0.05%, respectively, p < 0.01) (Table 2). 

Table 2. Integrations targeting repetitive elements in the genome. 

Vector 
Repetitive elements 

(%) 
LINEs 

(%) 
SINEs 

(%) 
Satellites 

(%) 
LTRs 
(%) 

Others 
(%) 

SIN-ASLV (8,899) 51.29 19.50 19.77 0.43 6.26 5.35 
SIN-MLV (13,606) 37.75 10.96 17.26 0.01 5.09 4.42 
SIN-HIV (32,964) 45.78 19.45 16.86 0.05 4.08 5.35 
Random (40,000) 50.96 21.27 14.69 0.35 9.57 5.10 

Percentage of SIN-MLV, SIN-ASLV, SIN-HIV integrations and random sequences targeting repetitive 
elements and the percentage targeting each specific element: LINEs, short interspersed nuclear elements 
(SINEs), satellites, LTRs and all the other elements. 

Overall, these data indicate a remarkably random pattern of integration for the ASLV-derived 
vector, which shows none of the characteristic preferences of gamma-retroviruses and lentiviruses 
for genes and genetic elements associated with gene function and regulation. 

3.2. SIN-ASLV Integration Is Not Associated with Epigenetically-Defined Functional  
Genomic Regions 

Many studies have reported a strong correlation between MLV and HIV integration sites and 
distinct epigenetic markers in different cell types (reviewed in [9]). In human CD34+ HSPCs, MLV 
integrations are strongly associated with histone modifications marking transcriptionally active 
PolII promoters and enhancers, while HIV integrations correlate with epigenetic markers of active 
PolII elongation within transcription units [14,32]. We therefore investigated the association of 
SIN-ASLV integrations with defined epigenetic markers of functional genomic elements. Taking 
advantage of publicly available ChIP-Seq data in the genome of human CD34+ HSPCs, we 
analyzed the association of SIN-MLV, SIN-ASLV and SIN-HIV integrations with specific histone 
modifications defining active or poised PolII promoters, enhancers, transcribed regions and 
heterochromatin (H3K4me1, H3K4me3, H3K36me3, H3K27me3 and H3K27ac). 
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Figure 2. Association of vector integration sites with different epigenetically-defined 
chromatin states. (a) The percentage of integration sites associated with specific, 
epigenetically defined genomic regions for each vector type. Chromatin states are 
categorized on the basis of the combination of different epigenetic marks mapped by  
ChIP-seq in human HSPCs. Only integration sites that are unambiguously associated 
with one chromatin state were used for the analysis. (b) The mean densities of 
H3K4me1, H3K4me3, H3K36me3 and H3K27me3 ChIP-seq fragments in a 5-kb 
window around all SIN-MLV (red), SIN-ASLV (yellow) and SIN-HIV (light blue) 
integration sites and random sequences (black). ac: H3K27ac. 

 

 

More than 60% and 70% of SIN-MLV and SIN-HIV integrations sites, respectively, were 
univocally associated with a defined chromatin state, compared to only 40% of the SIN-ASLV 
integration sites, a frequency very close to the 30% observed for random sequences. In particular,  
SIN-ASLV integrations were found around regulatory regions, i.e., enhancer (H3K4me1+) and 
promoters (H3K4me3+), at a much lower frequency compared to SIN-MLV (10% vs. 37% in 
enhancers and 6% vs. 26% in promoters, respectively, p < 0.01), a tendency comparable to that 
observed for SIN-HIV (10% in enhancers and 4% in promoters) and slightly higher than that of the 
random sample (3% and 2%, respectively). Moreover, SIN-ASLV integrations were poorly 
associated with a marker of transcribed gene bodies (H3K36me3) compared to SIN-HIV (15% vs. 
38%, p < 0.01). All three vectors were under-represented in heterochromatic regions marked by 
H3K27me3 compared to random sites, with the SIN-ASLV vector showing the highest association 
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(Figure 2A). This analysis is in agreement with the associations observed at the level of DNA 
sequence and genomic annotations, and confirms the preference of SIN-MLV and SIN-HIV vectors 
for, respectively, regulatory sequences and transcribed regions and an almost random integration 
pattern for SIN-ASLV. The modest bias observed for SIN-ASLV integrations in DNase I 
hypersensitive regions compared to the random sample (Table S1) can be explained by a certain 
tendency to integrate in “open” chromatin regions, as observed for most retroviruses [14,16,33,34]. 

The differences between SIN-ASLV and the other two vectors in targeting defined chromatin 
regions are highlighted by plotting the average integration densities of each vector type around 
each histone modification. Indeed, we clearly observe a peak of SIN-MLV integration sites in a 
±2.5-kb interval from epigenetically-defined enhancers and promoters, while the distribution of the 
SIN-ASLV and SIN-HIV integrations around these elements is similar to that observed for random 
sequences (Figure 2B). The quasi-random association of ASLV integrations in regulatory element 
predicts a much lower genotoxic risk compared to MLV-derived vectors, whose tendency to target 
active regulatory elements is at the basis of their propensity to cause insertional deregulation of 
gene expression [9]. Most (>70%) of the genes targeted by all three vectors in HSPCs are actively 
expressed (Figure S1), an expected finding, considering that retroviral target site selection is highly 
favored by an open chromatin state [14,16,33,34]. However, the SIN-ASLV vector targets the 
transcribed portion of active genes at a much lower frequency compared to HIV and is devoid of 
splicing signals, thus predicting a much lower risk to interfere with gene regulation at the  
post-transcriptional level [22,35,36]. 

3.3. SIN-ASLV Vector Integrations Are Not Clustered in the Human Genome 

The integration profile of MLV- and HIV-derived vectors in the human genome is characterized 
by heavy clustering into integration hot spots, where MLV forms narrow clusters overlapping active 
regulatory elements and HIV larger clusters targeting a subset of transcribed genes, in both cases in a  
cell-specific fashion [14–16,24,37]. On the contrary, the SIN-ASLV vector showed no significant 
clustering when we applied a statistical definition of clusters adjusted to the numerosity of the  
sample [14], which for the SIN-ASLV dataset was three integrations in 53,920 bp. By this 
threshold, we were able to identify only 484 clusters, a significantly lower frequency compared to 
the 1,415 and 2,724 identified for the SIN-MLV and SIN-HIV vectors, respectively (p < 0.01). 
Only 21% of all SIN-ASLV integrations are clustered, compared to 56% and 51% of SIN-MLV 
and SIN-HIV integrations, respectively (p < 0.01) (Table 3). Moreover, SIN-ASLV clusters are 
mostly made of few (three or four) integrations with few clusters containing up to nine integrations, 
while SIN-MLV and SIN-HIV clusters contain up to 37 and 122 integrations, respectively. From 
these data, it appears that, contrary to other retroviral vectors, SIN-ASLV integrations do not form 
hot spots of integrations in the human genome. Interestingly, when we looked at integration 
clusters at single genomic loci, we observed that the frequency of SIN-ASLV integrations at the 
typical MLV or HIV hot spots is very low and comparable to the frequency observed for random 
sequences. Figure 3 shows a comparison of the integration pattern of the three vectors in the  
NF1-EVI2A/B, RUNX1, LMO2 and PACS1 loci, four known hot spots for MLV or HIV 
integration. The same scenario is true for the EVI1/MDS1 (MECOM) locus and all other MLV or 



114 
 
HIV integration hot spots (data not shown). The low frequency of SIN-ASLV integration in  
proto-oncogenes responsible for the severe adverse events observed in clinical gene therapy trials, 
such as LMO2, provide a further indication of its lower genotoxic profile. 

Table 3. Clusters of integration sites in the genome of human HSPCs. 

 SIN-MLV (13,097) SIN-ASLV (8250) SIN-HIV (31,827) 
Clusters  1415 484 2724 

Integrations in clusters (%) 56 21 51 
Average cluster dimension 5.1 3.6 5.9 

The number of SIN-MLV, SIN-ASLV and SIN-HIV clusters of integrations, the percentage of 
integrations in clusters and the average cluster dimension, calculated based on random sequences 
distribution in the genome. The threshold for cluster definition was defined at a p-value of <0.01 by a 
statistical algorithm that adjusts for the numerosity of the sample [14]. 

Figure 3. SIN-MLV, SIN-ASLV and SIN-HIV integration sites and clusters in  
CD34+ HSPC-specific loci. Distribution of SIN-MLV (red), SIN-ASLV (green) and  
SIN-HIV (blue) integration clusters (horizontal solid bars) and integrations (vertical 
marks) in the NF1-EVI2A/B, RUNX1, LMO2 and PACS1 loci, as displayed by the 
UCSC Genome Browser. 
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Although the SIN-ASLV integration profile shows none of the features typical of MLV- and  
HIV-derived vectors, it is not completely random and shows a general preference for euchromatic 
regions. It is now know that both MLV and HIV pre-integration complexes (PICs) are targeted to 
chromatin by a tethering mechanism involving the interaction of the viral integrase with host cell 
factors: the LEDGF/p75 chromatin component interacts with the HIV integrase and directs its 
integration into transcribed gene bodies [38,39], while the MLV integrase appears to bind to 
bromodomain-containing BET proteins specifically associated with acetylated histones around 
TSSs and active regulatory elements [40–42]. Although it is likely that ASLV also may adopt a 
tethering mechanism to direct its integration in favorable genomic regions, the details are unknown. 
The integration preferences uncovered by our analysis predict an interaction with a broader range 
of host cell factors, which tether the PICs to open chromatin regions with unspecified or very subtle 
functional characteristics, thus leading to a more random profile characterized by the absence of 
hot spots. 

4. Conclusions 

Overcoming the genotoxic consequences of retroviral vector integration in the host cell genome 
is one of the major issues for the application of retroviral-based gene transfer in clinical trials. The 
strong preference to target TSSs, active regulatory elements or transcribed genes, together with the 
high frequency of clustering around hot spots, is a characteristics shared by all retroviral vectors 
currently used in clinical gene therapy. These characteristics are at the basis of the potential of 
retroviral insertion to deregulate gene expression at the transcriptional or post-transcriptional level, 
which has been observed to cause clonal expansion and contribute to neoplastic transformation in a 
number of cases (reviewed by [9]). Many efforts are being made to improve the safety of currently 
available retroviral vectors by removing the viral transcriptional control element and avoiding 
dominant, long-range acting enhancers in the transgene expression cassette. Retargeting vector 
integration has proven more difficult and was so far unsuccessful. No strategy is obviously perfect, 
and even a completely random integration machinery would not abolish the risk of inducing an 
insertional oncogenic mutation in the host cell genome. 

Based on a genome-wide analysis of >8000 integration sites in human HSPCs, we show that a  
SIN-ASLV vector has a quasi-random integration pattern that privileges active chromatin regions, 
but is not associated with active regulatory elements, like MLV, or with transcribed genes, like 
HIV. More importantly, the SIN-ASLV vector showed no integration hot spots and no preferences 
for subsets of genes with a defined ontology or genes that were previously identified as being 
activated by retroviral insertion into tumors. Previous evaluations of ASLV-derived vectors in pre-
clinical models proved its ability to sustain long-term transgene expression in murine and human 
hematopoietic progenitors and to correct the pathology in a mouse model of X-linked Chronic 
Granulomatous Disease (X-CGD), with no evidence of post-transcriptional interference [20,22]. 
Combined with the use of short-range or cell-specific transcriptional regulatory elements, an ASLV 
vector appears to offer a very safe profile and to be an ideal candidate for ex vivo gene  
therapy applications. 
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Pharmacogenomics: Current State-of-the-Art 

Daniel F. Carr, Ana Alfirevic and Munir Pirmohamed 

Abstract: The completion of the human genome project 10 years ago was met with great optimism 
for improving drug therapy through personalized medicine approaches, with the anticipation that an 
era of genotype-guided patient prescribing was imminent. To some extent this has come to pass and 
a number of key pharmacogenomics markers of inter-individual drug response, for both safety and 
efficacy, have been identified and subsequently been adopted in clinical practice as pre-treatment 
genetic tests. However, the universal application of genetics in treatment guidance is still a long 
way off. This review will highlight important pharmacogenomic discoveries which have been 
facilitated by the human genome project and other milestone projects such as the International HapMap 
and 1000 genomes, and by the continued development of genotyping and sequencing technologies, 
including rapid point of care pre-treatment genetic testing. However, there are still many challenges 
to implementation for the many other reported biomarkers which continue to languish within the 
discovery phase. As technology advances over the next 10 years, and the costs fall, the field will 
see larger genetic data sets, including affordable whole genome sequences, which will, it is hoped, 
improve patient outcomes through better diagnostic, prognostic and predictive biomarkers. 

Reprinted from Genes. Cite as: Carr, D.F.; Alfirevic, A.; Pirmohamed, M. Pharmacogenomics: 
Current State-of-the-Art. Genes 2014, 5, 430-443. 

1. Introduction 

The field of pharmacogenomics can trace its roots back to significantly earlier than the first draft 
publication human genome sequence in 2001 [1] and the subsequent completion in 2003. Indeed,  
the term “Pharmacogenetics” was first coined by Friedrich Vogel in 1959 [2], just 6 years after 
Watson and Crick’s discovery of the structure of DNA [3].  

Though significant progress has been made in the field since 2003, it could be argued that 
pharmacogenomics has failed to live up to expectations. A vast number of discoveries relating to 
genomic variability and drug response have been made in the last 10 years. The challenge remains 
to translate these findings into clinical practice for the benefit of the patient. 

2. The International HapMap Project 

The completion of the first phase of the International Hapmap project [4], a catalogue of 
common genetic variations within individuals of diverse ethnicities, in 2003, provided a rich data 
resource which enabled researchers to investigate the association of variants across the human 
genome with a wide range of clinical phenotypes. Indeed, the data derived from this allowed the 
creation of SNP arrays whereby researchers could analyze patient genotype for 100,000 s to 
millions of SNPs at a time. Thus, for the first time, unbiased genetic analysis of clinical 
phenotype/genotype associations was possible using platforms created for the Genome Wide 
Association Study (GWAS). More recent advances in genomics have seen the development of next 
generation sequencing methodologies which do not require a priori knowledge of genetic variation. 
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Mining of the National Human Genome Institute (NHGRI) genome wide association study (GWAS) 
catalogue [5] (accessed on 22nd April 2014) showed that a total of 1885 peer-reviewed articles have 
been published reporting GWAS findings. However, only 93 (4.9%) are related to inter-individual 
variability of drug response phenotypes (either safety or efficacy). 

Despite the small numbers of studies to date, which have investigated common genetic variant 
associations with pharmacological phenotypes, a number of important genotype-phenotype 
associations have been identified in pharmacogenomics using GWAS approaches (Table 1). The 
interesting phenomenon, when compared with GWAS of complex diseases, is that the effect size 
for pharmacogenomics phenotypes on the whole seems to be larger than that observed for complex 
diseases, which allows for (a) smaller sample sizes to be studied, which is more time- and cost-efficient, 
and (b) some variants to be considered for clinical implementation in terms of use prior to drug 
prescription, which contrasts with complex diseases, where the relative risks identified are usually 
below 1.5 and have not been used clinically. Whilst common genetic variation has been shown, in a 
number of examples to be important factors determining inter-individual variability in drug 
response, the role of rare, or private, variants is unclear in pharmacogenomics phenotypes, and is 
an important area for further research.  

3. The 1000 Genomes Project  

The first findings from the 1000 genomes project were reported in 2010 [16]. This has provided 
researchers with a population scale map of rare variants to complement and enrich existing 
knowledge of common variants gained from the HapMap project. With the per-base cost of 
sequencing using “next generation sequencing (NGS)” platforms continuing to fall, it is likely that 
studies will further investigate the role of rare genetic variants in defining variation in drug 
response phenotypes. 

A recent study reported the mapping of rare and common variants within 12 Cytochrome  
P450 genes, thought to be responsible for metabolizing 75% of prescribed drugs [17]. Using whole 
exome sequence data for 2203 African Americans and 4300 Caucasians, researchers were able to 
identify novel, potentially deleterious alleles in major drug metabolizing enzymes in 7.6%–11.7% 
of individuals. The power of NGS technologies to identify rare variants could allow for greater 
understanding of their contribution to inter-individual variability in drug responses where common 
variants explain a limited degree of variability. One such example where rare variants may  
enhance our understanding of variability is the case of warfarin dose prediction. Incorporating 
CYP2C9*2, *3 and VKORC1 polymorphisms along with clinical confounding factors into a dosing 
algorithm allows clinicians to predict ~60% [18] of dose variability. However, it is entirely 
plausible that incorporating the contribution of rare functional genetic variants into such algorithms 
may in the future allow for even greater accuracy in warfarin dose prediction. Indeed a number of 
small scale studies and case reports have already identified rare missense variants in the VKORC1 
gene in warfarin resistant patients [19–22]. Another example is drug-induced torsades de pointes 
where at least 10% of cases of may be due to rare mutations in the congenital long QT syndrome 
genes [23]. At least 23% of Caucasian subjects with drug-induced torsades de pointes carry a 
variant within 22 congenital arrhythmia genes (which include the 13 congenital long QT syndrome 
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genes), compared with a background rate of 1.7% in 60 control subjects from the 1000 Genomes 
CEU data [24]. As greater numbers of NGS-based analyses in pharmacogenetic studies are 
undertaken, so the contribution of rare variants in other drug safety and efficacy phenotypes will be 
better understood. 

4. Non-Coding RNAs 

Large-scale, coordinated, international, research efforts, such as the ENCODE project [25] have 
expelled the myth that large regions of our human genome are “junk” DNA. Indeed, the presence 
of non-coding RNAs has altered the scientific community’s perception of the central dogma of 
molecular biology. To date, only a very small number of studies have investigated the application 
of small non-coding RNA molecules as biomarkers of variable drug response.  

However, studies have shown a potential utility for specific microRNAs as markers of both  
drug-induced liver injury (miR-122 and -192) [26] and severe skin reactions (miR-18a-5p) [27]. 
Though such biomarkers are still at the discovery stage, further clinical validation may see these 
and other non-coding RNAs enter clinical practice as early-stage pharmacogenomics predictors of 
adverse drug reactions. 

5. Clinical Utilization of Pharmacogenomics 

The biggest challenge that has faced the field of pharmacogenomics in the 10 years since the 
completion of the human genome project is clearly the application of genetic markers of variable 
drug response to decision-making in relation to prescribing. Indeed, as recently as 2011 it has been 
estimated that, of the >150,000 papers reporting claimed biomarkers, less than 100 has made it into 
clinical utility [28]. This of course refers to all biomarkers, not just pharmacogenomic biomarkers; 
whether pharmacogenomics biomarkers have been more successful is unclear, and would require 
formal analysis.  

There are currently 121 Food and Drug Administation (FDA) drug labels referring to 
pharmacogenetic biomarkers of drug safety or efficacy [29]. Only a very small proportion of these 
drug labels mandate clinicians to test for pharmacogenetic markers (e.g., abacavir and  
HLA-B*57:01; and carbamazepine and HLA-B*15:02 in Southern Asians). However, a large 
number of testing guideline position papers have been published by the Clinical Pharmacogenetics 
Implementation Consortium [30]. The aim of this collaborative effort is to help clinicians 
understand how genetic tests may be used to guide treatment decisions.  

One reason why many pharmacogenetic biomarkers have failed to move from discovery to 
clinical implementation is that many genotype/phenotype associations fail to be independently 
replicated. It has been recognized that variability in phenotype definition could contribute to this, 
particularly in relation to adverse drug reactions. To this end a number of phenotype 
standardization efforts have been undertaken in recent years. These include drug-induced skin 
injury [31], liver injury [32] and Torsade de Pointes (long-QT syndrome) [33]. It is hoped that, 
with studies applying consistent phenotype definitions, future pharmacogenetic studies may 
identify replicable pharmacogenetic biomarkers that, with sufficient weight of evidence, could find 
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their way into clinical utility. Another reason for lack of replication is the inability to find 
replication sample sets, particularly where the phenotype is a rare adverse event. In such cases, 
functional genomic analyses may reduce false positives, and provide more confidence for 
implementation because of insights into the mechanism of effect of that biomarker. 

6. The Future… 

6.1. Point of Care Genetic Testing 

As our understanding of the human genome has grown, so the technology with which we can 
analyze it has developed in terms of speed and fidelity. The polymerase chain reaction, first 
described by Kary Mullis in 1983 [34], allowed sensitive analysis of DNA and ultimately yielded a 
number of pharmacogenetic biomarkers in the pre-genome era based on prior knowledge of gene 
function (candidate gene studies). As with our understanding of the genome, PCR-based 
technology has advanced significantly and now allows for rapid and accurate genotype detection. 
In recent years a number of studies have investigated the potential utility of rapid point-of-care 
(POC) genetic testing.  

Two key randomized control trials have recently utilized pre-treatment genetic testing, with 
POC devices, to guide the use of drugs used in cardiovascular medicine, the anticoagulant 
coumarin derivatives (e.g., warfarin) [35] and the antiplatelet drug clopidogrel [36]. The EU-PACT 
study [35] randomized patients to either genotype-guided or standard dosing. The genotype guided 
group, utilized molecular beacon technology to genotype for the CYP2C9*2 and CYP2C9*3 
variants and a promoter polymorphism of VKORC1 prior to the patient receiving warfarin. The 
results generated were then incorporated into a warfarin dose calculator, incorporating a number of 
key non-genetic factors affecting dose requirement. The warfarin trial found that patients randomized 
to pharmacogenetic-guided dosing spent a mean percentage time in the therapeutic range of 67.4% 
compared with 60.3% on the standard dosing protocol. In this example, the healthcare professional 
was presented with an individualized, genotype-guided dosing regimen for the patient based on not 
only clinical variables but also genetic factors. The technology used in the EU-PACT trial had a 
lead time of approximately 2 h to obtain the required genotypes.  

In the case of the RAPID-GENE trial [36], patients were typed for the CYP2C19*2 allele, which 
has been associated with a lack of efficacy of clopidogrel following percutaneous coronary intervention 
(PCI). Patients were randomized to standard (75 mg/day clopidogrel) or genotype-guided arms. In 
the genotype guided arm, patients carrying the CYP2C19*2 allele were prescribed 10 mg prasugrel 
while wild-type patients were given the standard therapy of 75 mg/day clopidogrel. The trial 
demonstrated that genotype-guided dosing significantly reduced adverse events (platelet reactivity) 
compared to standard treatment. The genotyping technology utilized for RAPID-GENE, the 
Spartan RX CYP2C19, is able to produce genotypes in less than 60 min. In August 2013, the 
Spartan RX CYP2C19 device became the first on-demand rapid genetic testing device for 
prescribing guidance to gain Food and Drug Administration (FDA) approval. However, it is 
important to note that it is not approved as a POC device and must be operated within a clinical 
laboratory environment. 
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POC Genotype technologies continue to advance and molecular biology methodologies, such as 
SmartAmp 2 [37] are reducing the time to obtain a genotype further. It is already possible to 
determine genotypes for pharmacogenomics-related variants such as those associated with warfarin 
dose requirement (VKORC1 and CYP2C9) in 30–40 min [37,38]. With addition of microfluidics 
technology to devices [39,40], the size of the equipment for genotyping will decrease and 
subsequently, the portability will also increase. It is the ease of use and interpretation of results 
which are the key attributes for POC genetic test which will facilitate their adoption by health-care 
professionals. In future years, it is likely that many more devices and tests will be applied to 
clinical care and obtain regulatory approval. 

6.2. Companion Diagnostics 

For a number of years now the notion of “one size fits all” in both drug prescribing and drug 
development has seemed an outdated concept. Indeed, the pharmaceutical industry has re-focused 
its efforts away from the previous block buster drug model to develop more “niche-busting” 
products which are licensed alongside a companion diagnostic assay (Table 2). This allows for 
drugs which may be largely considered ineffective in the wider population to be targeted to a subset 
of patients likely to respond well to the treatment. To date, the vast majority of these have been 
developed in the oncology field but it is likely that many more examples of population stratification 
using genomics methodologies for targeted treatment will emerge for other indications. An added 
advantage of undertaking targeted therapies in cancer using companion diagnostics has been the 
rapid approvals obtained from the FDA, despite pivotal efficacy trials testing smaller numbers than 
is usual in non-stratified trials [41]. 

While the majority of companion diagnostics products to date have focused on variation in 
pharmacodynamic factors for stratification, there is also a growing interest in individualizing drug 
doses based on pharmacokinetic variability. For example, dose escalation of tivantinib, a non-small 
cell lung cancer therapy, is based on stratification for the CYP2C19 genotype [42]. This is consistent  
with European Medicines Agency guidance on pharmacogenetic effects on drug pharmacokinetics [43].  
Thus, in the future, it is likely that regulatory approval for a new drug could be dependent on dose 
stratification based on the underlying metabolizer phenotypes.  

6.3. Pre-Emptive Genotyping 

The possibility of pre-emptying genotyping is being explored in the U.S., for example, through  
the Vanderbilt Personalized Medicines Program, where patients are genotyped on a 184-variant 
platform [44]. The theory behind this approach is that if a genotype is available to the physician in 
the electronic medical record, at the point of prescribing, they will be able to make a rational 
decision as to the choice and/or dose of the drug. It also highlights an important issue in relation to 
the evidence for clinical implementation: we cannot possibly undertake randomised controlled 
trials or prospective studies for every genomic variant that is identified, and other methodologies 
for evaluating the clinical utility of a genomic biomarker will have to be utilized. It is also 
important to note that such information is already used by physicians with respect to  
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non-pharmacogenomic tests, for example renal function tests allow clinicians to reduce the dose of 
a drug that is renally excreted [45]. Whether and how such pre-prescription genotyping will be used 
by prescribers, and whether it leads to improvement in clinical outcomes, will require careful 
evaluation over the next few years. Indeed it can be seen as a prelude to a time when whole genome 
sequencing is so cheap that is undertaken routinely with the data being available within electronic 
medical records. 

6.4. Personal Genomes and Clinical Applications 

The per-base cost of sequencing has fallen exponentially since 2003 and has for many years 
exceeded the trajectory of Moores Law (the number of transistors on integrated circuits 
approximately doubles every 2 years) [46]. With this is mind it is feasible to imagine in the not too 
distant future that whole genome sequencing will be a cost effective option for healthcare 
providers. However, with the >3 billion base pairs confirmed in 2003 by the human genome project 
and the complexity of interpreting the role of genetic variation in inter-individual drug response, it 
is likely the challenge for the next 10 years will be in producing the tools with which to interpret 
this data and provide meaningful outputs that can be utilized by healthcare professionals. 

6.5. Ethical Considerations 

A key ethical issue with regard to the implementation of personalised medicine relates to the 
fact that it may lead to health inequalities, within and between countries. Given the costs related to 
developing, manufacturing and obtaining approval for genetic tests, in addition to defining the role 
of ethnic genetic differences, it is easy to see how resource poor countries and communities could 
miss out on the benefits of personalised medicine advances in the future. This may be offset by the 
advances in genomics technologies and the vast reduction in costs of implementing them that has 
taken place over the last 10 years. Another issue which is becoming increasingly important with the 
use of next generation sequencing technologies is whether patients should be informed about 
incidental findings. An analysis of 1000 participants’ exomes showed that the frequency of 
actionable (i.e., pathogenic or likely pathogenic single nucleotide variants) incidental findings was 
3.4% in European Caucasians and 1.2% in Africans [53]. Some guidelines have been produced [54], 
but there is still controversy [54,55], and the debate will no doubt become more intense as more 
people have their genomes sequenced, and more variants are classified as being actionable. 

6.6. Educating Stakeholders 

In order for pharmacogenomics, as one of the technologies that is important for personalised 
medicine, to realize wider uptake into healthcare provision, there needs to be greater awareness and 
education. This applies not only to healthcare professional but to patients who are the ultimate 
stakeholder in pharmacogenomics, and stand to gain the most if we can improve predictability of 
how patients will respond to drugs.  
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Clinicians need to be made aware of the availability of genetic tests relating to treatment 
decisions, and how to interpret them. Lack of familiarity with genetic tests may be one reason for 
the poor uptake into clinical practice [45]. The lack of training is amongst the most common 
reasons cited as a barrier to pharmacogenomic implementation [56].  

6.7. Regulatory Environment 

There are of course many other issues which need to be tackled in order to facilitate the 
implementation of pharmacogenomic testing into clinical practice—many of these also apply to 
other biomarker strategies that are important for personalised medicine [41]. Amongst this is the 
regulatory environment, which has a big influence on the diagnostics industry. With the 
development of companion diagnostics, it will be important for there to be streamlined procedures 
which allow for simultaneous approval of the drug and diagnostic. There are differences between 
the FDA and European Medicines Agency for the development of companion diagnostics, with the 
latter being less stringent, but likely to adopt similar procedures in a drive to ensure there is global 
harmonization of the regulatory procedures needed for approval [57]. For the diagnostics industry, 
the requirement for a clinical utility study may become prohibitive in terms of cost, unless there are 
clear pathways for protection of intellectual property and re-imbursement.  

7. Conclusions 

Since the completion of the human genome, there has been steady, albeit slow, progress in the 
identification and implementation of biomarkers into clinical practice. This progress is likely to 
continue, and hopefully accelerate as our ability to interrogate the human genome becomes more  
cost- and time-efficient, and we start embracing, and intelligently interpreting, different sources of 
data to define the clinical validity and utility of biomarkers. Outcomes research will thus become 
particularly important, and will depend on having access to curated electronic healthcare databases 
where patients can be followed longitudinally from the time of having a biomarker assessed to the 
time a drug is prescribed, and forward into the future to define the clinical outcome of the patient  
(in comparison to relevant a priori defined controls).  
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Changing Histopathological Diagnostics by Genome-Based 
Tumor Classification 

Michael Kloth and Reinhard Buettner 

Abstract: Traditionally, tumors are classified by histopathological criteria, i.e., based on their 
specific morphological appearances. Consequently, current therapeutic decisions in oncology are 
strongly influenced by histology rather than underlying molecular or genomic aberrations. The 
increase of information on molecular changes however, enabled by the Human Genome Project and 
the International Cancer Genome Consortium as well as the manifold advances in molecular 
biology and high-throughput sequencing techniques, inaugurated the integration of genomic 
information into disease classification. Furthermore, in some cases it became evident that former 
classifications needed major revision and adaption. Such adaptations are often required by 
understanding the pathogenesis of a disease from a specific molecular alteration, using this 
molecular driver for targeted and highly effective therapies. Altogether, reclassifications should 
lead to higher information content of the underlying diagnoses, reflecting their molecular 
pathogenesis and resulting in optimized and individual therapeutic decisions. The objective of this 
article is to summarize some particularly important examples of genome-based classification 
approaches and associated therapeutic concepts. In addition to reviewing disease specific markers, 
we focus on potentially therapeutic or predictive markers and the relevance of molecular 
diagnostics in disease monitoring. 

Reprinted from Genes. Cite as: Kloth, M.; Buettner, R. Changing Histopathological Diagnostics by 
Genome-Based Tumor Classification. Genes 2014, 5, 444-459. 

1. Approaches to a Genome-Based Tumor Classification 

1.1. The 2008 WHO Classification of Hematological Malignancies 

The 2008 WHO classification of chronic myeloid malignancies is at present the most evolved 
approach to a taxonomy considering defined molecular aberrations [1]. The malignancies that are 
included are now classified into five categories:  

(1) Acute myeloid leukemia (AML) and related precursor neoplasms; 
(2) Myelodysplastic syndromes (MDS); 
(3) Myeloproliferative neoplasms (MPN); 
(4) Myelodysplastic/Myeloproliferative neoplasms (MDS/MPN); 
(5) Myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, 

PDGFRB, or FGFR1. 

The integration of histology and genetics is particularly visible in the category of 
myeloproliferative neoplasms (MPN). Classification of specific entities into MPN is dependent on 
presence or absence of BCR-ABL1, the disease-causing translocation in CML [2]. The first 
description of the associated karyotype t(9;22)(q34;q11), according to an abnormally short 
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chromosome 22, was published as early as 1960 and is widely known as the Philadelphia (Ph) 
chromosome [3]. Due to the high specificity of BCR-ABL1, its detection is mandatory for diagnosis 
of CML and is further underscored by the influence on therapy with the small molecule tyrosine 
kinase inhibitor (TKI) Imatinib [4]. Nevertheless, the remarkable journey, from the genomic 
aberration to the specific therapy, required approximately forty years and started long before the 
elucidation of the human genome (Figure 1).  

Figure 1. Timeline of the elucidation of genomic alterations in myeloproliferative 
neoplasms. Major breakthroughs in the understanding of the Ph+ neoplasm CML are 
depicted below the line, those in the understanding of Ph- neoplasms above. Note the 
significant impact of the human genome project on the elucidation on Ph- specific genomic 
alterations. 

 

Further myeloproliferative neoplasms are characterized by the absence of BCR-ABL1, including 
the three Ph-negative classic MPNs—polycythemia vera (PV), essential thrombocythemia (ET) and 
progressive myelofibrosis (PMF). Despite the absence of BCR-ABL1, it has consecutively been 
shown that these MPNs are themselves also characterized by additional recurrent aberrations [5,6] 
(Figure 1).  

The JAK2 V617F mutation is detectable in approximately 95% of all PV patients and 50% of 
both ET and PMF patients [7–9]. It is further detected in patients with refractory anemia with ring 
sideroblasts and thrombocytosis (RARS-T), but in less than 5% of patients with acute myeloid 
leukemia (AML) or myeloid dysplastic syndrome (MDS) and not in solid tumors [10,11]. 
Although, the diagnostic process is initially dominated by peripheral blood cell count and serum 
erythropoetin (EPO) levels, JAK2 V617F or less common JAK2 Exon 12 mutations [12] confirm 
the diagnosis of a suspected PV without the need of a bone marrow biopsy [13]. Beside the two 
most important genetic aberrations in the diagnostic algorithm of MPNs, namely BCR-ABL1 and 
JAK2 V617F, several other potentially helpful recurrent aberrations are known. These include the 
presence of recurrent mutations in CALR exon 9 [14] and MPL codon 515 [15], essentially 
occurring in JAK2 V617F negative cases (Figure 2). 

Another important example of the integration of molecular aberrations in the 2008 WHO 
classification of hematological malignancies is the newly introduced group of myeloid and 
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lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB, or FGFR1. This 
reclassification highlights the consideration of the targetable alterations FIP1L1-PDGFRA or 
PDGFRB-rearrangements and those harboring FGFR1-rearrangements, indicating response or 
resistance to Imatinib [2,16].  

Figure 2. Diagnostic algorithm of classic myeloproliferative neoplasms using specific 
molecular aberrations. Detection of the molecular aberrations depicted above is highly 
suggestive for the suspected myeloproliferative disorder. Nevertheless, at least in the 
case of absence of these specific aberrations, a bone marrow biopsy should be 
performed. 

 

1.2. Lung Cancer as a Paradigm: Advances in the Molecular Characterization of Solid 
Malignancies 

The ongoing comprehensive characterizations of solid tumors, such as those conducted by  
The Cancer Genome Atlas (TCGA) will significantly impact upcoming tumor classifications. This 
also includes lung cancer, the leading cause of cancer death worldwide [17] and an example for 
substantial advances by genome-based therapy approaches [18]. In general, NSCLC is 
subclassified into adenocarcinoma, squamous cell carcinoma and large cell carcinoma. Future 
classifications need to characterize clinically relevant subtypes, instead of the traditional distinction 
of non-small cell lung cancers (NSCLC) and small-cell lung cancer (SSLC). Concepts for a 
reclassification of lung adenocarcinoma were suggested, particularly with respect to reclassify large 
cell carcinoma based on genomic aberrations into adenocarcinoma, squamous cell carcinoma and 
large cell neuroendocrine carcinoma, respectively. Recommendations for (immuno)histological 
diagnostic work-up, and also for determining specific molecular aberrations in lung 
adenocarcinoma subtypes have been published [19]. 

Major rationales for changes in adenocarcinoma histologic variants are that the invasive 
mucinous type shows frequent mutations in KRAS and hardly any in EGFR, whereas non-mucinous 
adenocarcinoma of predominant lepidic subtype is characterized by frequent mutations in EGFR 
and fewer in KRAS [20]. In this context, it is worth noting and described in more detail below, that 
clinical studies with the TKIs Gefitinib and Erlotinib showed significantly improved survival in 
patients suffering from lung adenocarcinoma harboring mutations in the kinase domain of  
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EGFR [21,22]. Besides the mutations in EGFR and KRAS, the targetable translocation EML4-ALK 
recurrently occurs in lung adenocarcinoma [23] and is most frequent in tumours with mucinous 
signet-ring appearance. Clinical trials using the tyrosine kinase inhibitors Crizotinib and Ceritinib 
have now shown improved progression-free survival in those patients [24,25]. 

In contrast, squamous cell carcinoma of the lung is commonly associated with mutations in the 
NFE2L2/KEAP-axis [26] and often harbors targetable alterations of FGFR1 [27] and in fewer cases 
mutations in DDR2. Interestingly, DDR2-transformed cell lines maintain SRC phosphorylation and 
are sensitive to Dasatinib [28], proved by the response in squamous cell lung cancer patients [29]. 

Beyond the combined loss of RB1 and TP53 in neuroendocrine pulmonary tumors [30], it was 
shown that low- and intermediate-grade pulmonary cacinoids harbor recurrent mutations in 
chromatin remodeling complexes [31], whereas the high-grade neuroendocrine tumor, small cell 
lung cancer, is associated with sequential changes, including the deletion of PTEN [32]. 

Additionally, we assessed cancer genome alterations linked to histomorphological and 
immunohistochemical features, considering high therapeutic relevance and improved patient  
outcome [33] (Figure 3). By this approach, we devised a genomic-based prediction model of lung 
cancer subtypes. This model shows that the majority of large cell cancers could be reassigned to 
adenocarcinoma, squamous cell carcinoma or small-cell lung cancer. By the combined analysis of 
immunohistochemical, genomic and clinical features it becomes further evident that personalized 
approaches significantly improve the outcome of patients with advanced lung cancer and other  
solid cancers. 

Figure 3. Frequencies of significant genomic alterations in histological subgroups of  
lung cancer. Colors of histological subtypes are encoded as follows: green—squamous 
cell lung cancer (SQ), purple—carcinoid tumor, light blue—large cell lung cancer (LC),  
red—adenocarcinoma of the lung (AD), dark blue—small cell lung cancer (SCLC).  
Data adapted from [33]. 

 

Beyond the principally well-characterized situation in lung cancer, we already know of highly 
recurrent genomic alterations in many other solid malignancies. Prostate cancer is the most 
common cancer in men and is characterized by fewer mutations in typical cancer genes, when 
compared to other solid cancers [34–36]. However, genomic alterations in androgen signaling, the 
rearrangement of ETS transcription factors, especially the fusion of TMPRSS2-ERG [37], as well as 
the deletion of PTEN [38] are known to be highly recurrent in primary cancers [39], early-onset 
cancers [40] and castration-resistant prostate cancers [41]. Beside the outstanding therapeutic role of 
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androgen deprivation, recent efforts investigate a mechanistic rationale of PARP inhibition in  
ETS-rearranged prostate cancers [42].  

1.3. EWS and the Importance of Translocations in the Diagnostic Workup of  
Mesenchymal Malignancies 

Tumors ascribed to the family of Ewing’s sarcomas or primitive neuroectodermal tumors 
(PNET) are the second most common bone tumors in children, but can also arise from any other 
tissue. The recent molecular understanding of these aggressive tumors has greatly advanced new 
therapeutic approaches. However, whereas chemotherapy improved the survival rate from 10% to 
70%–80% in localized disease, the survival of patients with distant metastases is still poor [43]. 
The WHO classification of Ewing sarcoma (ES) as a single entity is underlined by its cytogenetic 
signature t(11;12)(q24;q12), according to the translocation EWSR1-FLI1 in approximately 85% of 
patients. Although, EWSR1 translocations can be found in many other mesenchymal tumors, almost 
all of the remaining ES cases are characterized by further ES-specific EWSR1 translocations [44,45]. 
This also includes the second most common cytogenetic aberration t(21;22)(q22;q12), 
corresponding to EWSR1-ERG [46] (Table 1). 

Table 1. Fusion partners of EWSR1-rearrangements in different soft tissue tumors. 
Overlapping rearrangements in different histopathological entities are in bold. Adapted 
from [44,45]. 

Histological type Translocation EWS-rearrangements

Ewing’s Sarcoma 

t(11;22)(q24;q12) 
t(21;22)(q22;q12) 
t(7;22)(q22;q12) 

t(17;22)(q21;q12) 
t(2;22)(q36;q12) 
inv(22)(q12q12) 
t(2;22)(q31;q12) 

t(20;22)(q13;q12) 
t(4;22)(q31;12) 

t(17;22)(q12;q12) 
inv(22)(q21;12) 

EWSR1-FLI1 
EWSR1-ERG 
EWSR1-ETV1 
EWSR1-ETV4 
EWSR1-FEV 

EWSR1-PATZ1 
EWSR1-SP3 

EWSR1-NFATC2 
EWSR1-SMARCA5 

EWSR1-E1AF 
EWSR1-ZSG 

Angiomatoid fibrous histiocytoma 
t(12;22)(q13;q12) 
t(2;22)(q33;q12) 

EWSR1-ATF1 
EWSR1-CREB1 

Clear cell sarcoma 
t(12;22)(q13;q12) 
t(2;22)(q33;q12) 

EWSR1-ATF1 
EWSR1-CREB1 

Malignant gastrointestinal neuroectodermal tumor
t(12;22)(q13;q12) 
t(2;22)(q33;q12) 

EWSR1-ATF1 
EWSR1-CREB1 

Myoepithelial tumor of soft tissue and bone 
t(1;22)(q23;q12) 

t(19;22)(q13;q12) 
t(6;22)(p21;q12) 

EWSR1-PBX1 
EWSR1-ZNF444 
EWSR1-POU5F1 

Extraskeletal myxoid chondrosarcoma t(9;22)(q22;q12) EWSR1-NR4A3 
Myxoid liposarcoma t(12;22)(q13;q12) EWSR1-DD1T3 
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Intriguingly, the well-characterized molecular situation of ES is in contrast to the fact that the 
cell of origin of the small round cell appearing tumor is not known. A further complication of the 
histological diagnosis is caused by atypical ES, including large/epithelioid/clear/spindle cell ES, 
vascular-like ES, adamantinoma-like ES, ES with neuroectodermal features, synovial sarcoma-like 
PNET and sclerosing PNET [47]. Beyond this difficult histopathological classification, sarcomas 
may be genetically classified from a near-diploid karyotpe to a more complex genomic instability. 
The first is characterized by highly recurrent translocations, the latter by numerical and structural 
abnormalities affecting multiple chromosomes [48]. In the case of small round cell appearing 
sarcoma, recently, new subtypes were defined by recurrent translocations of BCOR-CCNB3 [49] 
and CIC-DUX4 [50]. 

Furthermore, we already know several diagnostically relevant genomic rearrangements in soft 
tissue malignancies [51]. The recurrently occurring reciprocal translocation t(X;18) is characteristic 
of synovial sarcoma, and leads to the potentially therapeutic relevant SSX-S18 protein [52].  
The translocation FUS-CHOP is detected in myxoid liposarcoma [53] and recurrent amplifications 
of the E3-Ubiqutitin ligase MDM2, as well as CDK4, in well differentiated and dedifferentiated 
liposarcoma [54,55]. Interestingly, ongoing efforts investigate the reactivation of p53 by  
MDM2-p53 interaction inhibitors [56]. 

1.4. Cancer of Unknown Primary Origin (CUP) 

Carcinoma of an unknown primary origin (CUP) is descriptive of a metastatic cancer without an 
identifiable primary tumor site. CUP accounts for 3%–5% of all cancer diagnoses and is usually 
characterized by an aggressive metastatic growth and a challenging clinical presentation. In theory, 
CUP could be considered as a unique biological entity, or in the opposite view, as a group of 
different entities. The classification of CUP is essentially based on the prognostic outcome, thereby 
distinguishing favorable and unfavorable carcinomas [57–59] (Table 2).  

Table 2. Classification of cancers of unknown primary origin. 

Clinically favorable CUP Clinically unfavorable CUP 
Extragonadal germ-cell cancer Metastatic adenocarcinoma 

Peritoneal papillary adenocarcinoma Non papillary malignant ascites 
Adenocarcinoma in axillary lymph nodes Multiple cerebral metastases 

Cervical squamous-cell carcinoma Squamous-cell carcinoma of the abdominopelvic cavity
Neuroendocrine carcinoma Lytic bone metastases 

Blastic bone metastases and PSA elevation  

This classification predominantly depends on the morphological and immunohistochemical 
appearance. At present, the specimen is investigated by the use of specific antibodies (investigated 
epitopes in parentheses): 

(1) Identification of the cancer type: 
Carcinoma (CK AE1/3), mesothelioma (Calretinin, BerEP4), sarcoma (Vimentin), 
lymphoma (LCA), melanoma (HMB-45, MITF, S100);  
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(2) Identification of the subtype: 
Adenocarcinoma (CK7, CK20), squamous cell carcinoma (CK5/6, p40, p63), hepatocellular 
carcinoma (Hepar1), renal cell carcinoma (RCC, PAX8, CA9), urothelial carcinoma  
(GATA3, S100P, Uroplakin), thyroid cancer (hTG, TTF1), neuroendocrine cancer (CD56, 
Synaptophysin, ChromoA), germ-cell tumor (PLAP); 

(3) Identification of the origin: 
Lung (TTF1, NapsinA), colorectal cancer (CDX2, CK20), breast (ER, PR), pancreas 
(CDX2, CK7, CK20), ovary (Ca125, ER, WT1), prostate (PSA, PSAP, AR). 

However, only 30% of all cases studied can be assigned to a primary tumor and even fewer benefit 
from a change in therapy regimen. Over the last decade, the molecular characterization by  
gene-expression profiling in various tumor types has led to the development of several gene 
signature assays with identification rates of a putative tissue of origin in up to 90% of cases. 
Furthermore, it was shown that CUP can be treated along actionable genomic alterations and recent 
whole exome sequencing revealed the existence of known recurrent mutations [60]. These include 
therapeutically relevant mutations in PIK3CA, MET, FGFR3, IDH1 as well as several others and it 
has been already demonstrated that targeted therapies can significantly influence a more favorable 
outcome in CUP patients [61]. As another variation on this theme, a drug-sensitizing genome 
alteration in one tumor type may not confer drug susceptibility in another histology, as has been 
observed in the case of BRAF mutations that confer MEK and BRAF dependency in melanomas [62,63] 
but not in colorectal carcinomas resulting from EGFR activation [64]. These interactions highlight 
the need for classifications integrating cancer genome alterations, but also histomorphological and 
immunohistochemical features. 

2. Monitoring of Malignancies 

Molecular monitoring of CML is the most advanced routinely used surveillance strategy and 
reflects the need for standardization and quality controls of diagnostic tests. A main objective is the 
identification of patients, which have a worse response or resistance to therapy with tyrosine kinase 
inhibitors. The quantification of BCR-ABL1 transcripts in peripheral blood is thereby of 
outstanding value in the early phase after initial drug administration, corresponding to the 
molecular response rate (MMR) upon TKI therapy [65–67]. The MMR is calculated in relation to a 
control gene (e.g., BCR or ABL1) and was standardized between laboratories using the international 
scale (IS) [68]. Essentially, the WHO has undertaken extensive efforts to simplify and standardize 
the assay by providing reference reagents. The importance of such efforts is reflected by a 
comparable poor overall survival of patients with an early MMR >10%, in turn leading to 
universally valid changes in the associated NCCN and ELN guidelines [66]. 

Despite significant progress in therapy of lung adenocarcinoma, all patients with EGFR 
mutations and ALK or ROS1 translocations receiving specific tyrosine kinase inhibitors will 
ultimately experience relapse. Recent work highlights the potential of noninvasive detection and 
monitoring of resistance mutations in free circulating plasma DNA of lung cancer patients. The 
most prominent example is the known resistance mechanisms mediated by T790M in EGFR [69]. 
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Beside the potential of directly targeting cancers harboring T790M by new tyrosine kinase 
inhibitors [70], it is important to note that T790M cells proliferate more slowly, thereby enabling 
resensitizing of tumors to primarily used TKIs after temporary withdrawal of the drug. Since it is 
difficult in clinical practice to undertake repeat biopsies at multiple metastatic sites, noninvasive 
targeted sequencing techniques may further enable additional therapeutic strategies [71]. It thereby 
becomes evident that new diagnostic techniques will not only lead to major influences in treatment 
and monitoring guidelines, but will influence therapeutic guidelines and also the classification of 
tumors. Especially, the opportunity of non-invasive testing seems to be an attractive and emerging 
field in diagnostic and therapeutic concepts, as further delineated by testing for TMPRSS2-ERG in 
the case of suspicion of prostate cancer [72]. 

3. Clinical Success of Targeted Therapeutic Approaches Based on Molecular Biomarkers 

3.1. BCR-ABL1 

As depicted above, BCR-ABL1 is the driving lesion in CML, leading to the development of the 
first small molecule TKI, Imatinib [4,73]. Several multicenter studies confirmed that the overall 
survival of advanced-stage cancer patients in a chronic disease phase climbed from approximately 
50% before 2002 up to approximately 90% after introduction of Imatinib in 2002 [74]. The success 
of the targeted approach in CML patients is further underscored by ongoing studies investigating 
the discontinuation of Imatinib [75] and the groundbreaking question of a potential cure [76]. 
Despite these promising developments, several further therapeutic possibilities for second line 
therapies are underway. These include the use of second generation TKIs in case of therapeutic 
failure or intolerance, e.g., Dasatinib, Nilotinib, Bosutinib and Ponatinib, the latter particularly used 
in case of a secondary resistance by T315I mutation [75] (Figure 1). 

3.2. BRAF 

The most common melanoma mutation in BRAF exon 15, the activating mutation V600E, leads 
to response rates of more than 50% of all patients treated with the specific TKI Vemurafenib. 
Further, therapy with Vemurafenib is associated with a relative reduction in death of 63% when 
compared to standard therapeutic regime with Dacarbazine [62]. In contrast to the activating 
biology of BRAF V600E, ongoing clinical trials investigate the potency of Dasatinib in tumors 
harboring inactivating BRAF exon 11 mutations (NCT01514864 clinicaltrials.gov). 

3.3. EGFR-Family and KRAS Mutational Status 

Genetic aberrations in members of the EGFR-family are well known for targeted therapies, 
including HER2- and EGFR-targeted inhibition of downstream signaling cascades. HER2/ERBB2 
is primary known as being amplified and activated in breast cancer causing high recurrence rates 
and increased mortality in approximately 15% of all patients [77]. Patients with amplification of 
HER2/ERBB2 treated with the monoclonal antibody Trastuzumab in combination with chemotherapy 
showed improved outcome in several studies [78]. Beyond Trastuzumab several ongoing studies 
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are investigating further drug therapies targeting the HER2-axis. These include the combined 
inhibition of HER2/HER3-heterodimerization and activation by Trastuzumab/Pertuzumab [79] and 
the use of the covalent immunoconjugate Trastuzumab-Emtansine (T-DM1) [80] (Figure 4). 
Moreover, several trials evaluate the therapeutic significance of small molecule inhibition in 
HER2-positive breast cancer, e.g., Lapatinib, Afatinib, Pazopanib and Neratinib [81]. 

Comparable to the situation in HER2-amplified breast cancer, substantial progress has been 
made by the introduction of EGFR-targeted therapies in the treatment of lung cancer and colorectal 
cancer. These efforts become evident by comparing the median overall survival of lung 
adenocarcinoma patients under standard therapeutic regimes of approximately 12 months with 
approximately 2 years under EGFR-targeted therapy with Erlotinib or Gefitinib in EGFR-mutated 
cancers [82]. As depicted above, further efforts are made to overcome primary and secondary 
therapeutic resistance by next generation TKIs [70]. Similar positive achievements were made for 
treatment of metastatic colorectal cancer (mCRC) by an improvement of survival from 12 months 
with fluoruracil monotherapy up to approximately 2 years with EGFR/VEGFR-targeted therapy 
combined with chemotherapy [83].  

Figure 4. Predictive Biomarkers for Targeted and Selective Therapies. Signaling of  
EGFR-family receptors is characterized by homo-/heterodimerization and subsequent 
activation of the targetable downstream signaling pathways RAS/RAF and PI3K/AKT. 
Present therapeutic approaches focus on the inhibition of ligand-dependent activation, 
dimerization and receptor tyrosine kinases. Immunoconjugates, e.g., T-DM1, specifically 
deliver chemotherapeutic agents by the process of receptor internalization. As described 
in the text in more detail, ongoing efforts investigate the effectiveness of combined or  
dual approaches. 

 

Beyond that, it recently became evident that we need to predict therapeutic response to 
cetuximab/panitumumab in mCRC not only by KRAS mutational status, but also by NRAS 
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mutational status [84], highlighting the increasing importance of mutations in downstream or 
interacting pathways. As depicted above, it becomes also clear that combined approaches, like the 
inhibition of the EGFR/BRAF-axis in BRAF V600E mutated colorectal cancers [64], could be used 
to overcome primary resistance in histological subtypes. 

4. Conclusions 

The purpose of integrating pathogenetic and molecular information into disease classification 
systems, exemplified by the 2008 WHO classification of hematological malignancies, reflects the 
high clinical relevance for predicting therapy outcome and prognosis. The human genome project 
and emerging technologies in the last decade have led to fundamental pathogenetic breakthroughs, 
which substantially improved the translation into clinical practice and individual therapeutic 
possibilities. Altogether, this data underlines the significant influence of cancer genomics and the 
substantial increase in genomic information on the process of defining tumor entities and effective 
and selective treatment approaches. 
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GWAS to Sequencing: Divergence in Study Design and
Analysis
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Abstract: The success of genome-wide association studies (GWAS) in uncovering genetic

risk factors for complex traits has generated great promise for the complete data generated by

sequencing. The bumpy transition from GWAS to whole-exome or whole-genome association studies

(WGAS) based on sequencing investigations has highlighted important differences in analysis and

interpretation. We show how the loss in power due to the allele frequency spectrum targeted by

sequencing is difficult to compensate for with realistic effect sizes and point to study designs that

may help. We discuss several issues in interpreting the results, including a special case of the

winner’s curse. Extrapolation and prediction using rare SNPs is complex, because of the selective

ascertainment of SNPs in case-control studies and the low amount of information at each SNP, and

naive procedures are biased under the alternative. We also discuss the challenges in tuning gene-based

tests and accounting for multiple testing when genes have very different sets of SNPs. The examples

we emphasize in this paper highlight the difficult road we must travel for a two-letter switch.

Reprinted from Genes. Cite as: King, C.R.; Nicolae, D.L. GWAS to Sequencing: Divergence in

Study Design and Analysis. Genes 2014, 5, 460–476.

1. Introduction

The Human Genome Project has paved the way to the data revolution in complex disease

genetics, by permitting the development of databases of genetic variation, such as HapMap [1],

and machinery for producing genome-wide data, such as genotyping arrays and high-throughput

sequencing technologies. Our understanding of the genetic risk factors for complex traits has

evolved from a few loci discovered with positional cloning approaches in the 1990s to thousands

of replicated associations from genome-wide association studies (GWAS), available to the public,

as well as scientists in the NHGRI catalog [2]. Interest has shifted recently to discovering disease

association with data from whole-genome or whole-exome sequencing studies, and so far, these

have had limited success. GWAS has delivered on their early promise to speed up the search

for disease genes, and there are bold predictions about what sequencing can achieve [3] on the

way to the era of personalized medicine. Sequencing could offer a complete picture of genetic

variation—from SNPs to Copy Number Variants (CNVs) and insertions-deletions—for the subjects

in the study and for future patients and has led to successful discoveries in Mendelian diseases.

So far, sequencing has had limited success for complex diseases, mostly in candidate gene studies.

Whole-genome and whole-exome sequencing investigations have only demonstrated the complicated

architecture of common traits, sometimes indirectly through a lack of findings in single-SNP

low-frequency analyses.
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The success of GWAS and of the corresponding analytical tools leads naturally to an investigation

of what is different between the two strategies. The goal of this paper is to compare some of the

divergent aspects of GWAS and sequencing studies with the hope of guiding future sequencing

investigations. We focus on two key distinctions. First, we look at consequences that follow from

investigating SNPs with low minor allele frequency (MAF), including the ability to detect novel

SNPs. It is important to reiterate that GWAS analyses cover, directly (through genotyping or

imputation) or indirectly (through linkage disequilibrium), most of the common variants in the

studied populations. This implies that the goal of sequence-based studies is to detect association with

low frequency and rare variants. Even though sequencing studies can be used to investigate high

MAF SNPs, we ignore their role, since traditional genotyping is dramatically more cost effective.

Furthermore, we do not discuss the fact that sequencing studies permit the investigation of structural

variation, an important characteristic for diseases, such as autism, where these variants play an

important role. In Section 2, we develop a simple analytical formula for the power of a burden

test and use it to illustrate the factors affecting power with a contrast to GWAS and scenarios for

improving them. In Section 3, we illustrate two novel problems with estimation and prediction using

sequencing data. First, we show that case-control studies, which add rare SNPs into a super-SNP

or test the distribution of case- and control-private SNPs, can be misleading if analyzed naively.

Second, we show that the optimal prediction for previously observed and novel rare SNPs can be

strikingly different.

Second, we turn to issues surrounding the use of gene-based tests. In Section 4, we discuss the

difficulty of selecting and tuning gene-based test statistics and contrast this to the case in GWAS. We

show the alternative hypothesis, which would recommend that a particular procedure can be quite

unstable even with seemingly irrelevant details of a gene. We do not recommend a particular testing

procedure, but highlight concerns guiding the tuning parameter selection. Finally, in Section 5,

we highlight the sharp distinctions between multiple-testing-adjustment strategies for GWAS and

gene-based tests.

2. Power of Sequencing versus GWAS

The relatively minor number of associations with rare variants seems surprising to many, but was

predicted by prior knowledge on the genetics of complex phenotypes. For example, the lack of major

linkage loci for diseases, like type 2 diabetes [4], suggests that there are no genes with many rare

variants with very large effects. Given this lack of observed associations, it is useful to investigate

the relative contributions of factors driving power. We will illustrate with a burden-style test for

which an analytical power calculation is straightforward.

The goal here is not to calculate power nor to find realistic sample sizes for genetic association

studies with rare variants. Existing software (e.g., [5]) can perform such calculations. Our aim is

to use simple analytical calculations to gain insight into what drives power and what are possible

strategies for designing optimal investigations. A comparison to GWAS will illustrate the challenges

ahead of us. One important set of shared assumptions for GWAS and WGAS is that of the
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unconfoundedness of associations. Recent work has suggested that approaches to adjusting for

population structure, which work well in GWAS, may not in WGAS [6–8]. However, the literature

on this topic is rapidly evolving, and we will set this problem aside for purposes of discussion.

Assume a balanced design with n cases and n controls. It can be shown (see Appendix A for

the assumptions used in the derivation of this) that the non-centrality parameter (NCP) for burden

tests [9,10] can be approximated by:

√
n

k1√
k

EM√
VM + EM − E2

M

(γ − 1) (1)

where the test is done on a set of k SNPs, out of which, k1 are associated with a common odds-ratio

(OR) of γ, and EM , VM are the mean and variance of the minor allele frequency (MAF) for the

SNPs in the set. This formula works for single SNP analyses, as well, with k1/
√
k = 1 and the term

about frequency replaced by the corresponding function of MAF. Note that the power of the test is

approximately linear in the NCP in the interesting range of moderate values.

All the terms, except the one containing elements of the MAF distribution, are easy to calculate

and interpret. The MAF term can be approximated using 1000 Genomes Project data and calculations

conditional on an SNP being polymorphic in a study. For 5000 cases and 5000 controls of European

descent, and filtering to SNPs with MAF < 1%, that term is close to 0.046, and the non-centrality

parameter when k = 100, k1 = 10 and γ = 3 is approximately 6.47. Those settings yield a power of

87% at the genome-wide 5 × 10−8 significance level. We will discuss the four terms in Formula (1)

and contrast the results between GWAS and sequencing.

Sample size: The simplest way to double the NCP is to increase the sample size by a

factor of four. This requires the least amount of innovation, but takes a huge effort and

expense, especially when using existing cohorts, since ascertaining and phenotyping additional

samples comparable with existing data is very difficult. As is common with many GWAS

meta-analyses, a cost-effective increase in the sample size requires the use of ancestry-diverse

populations. Additional diversity increases heterogeneity and will affect power to a larger

degree than in GWAS, both because the effective MAF decreases (many rare alleles are

population-specific) and because a similarly defined set of SNPs (e.g., all exonic SNPs in a

given gene) will have different elements in different populations, with powerful tests requiring

the presence of functional/causal variants in each (sub)population. We also anticipate that cryptic

gene-environment interactions (GxE) provides a substantial amount of heterogeneity in effect sizes.

GxE has been long known to exist for some complex traits (e.g., for a review in psychiatric

phenotypes, see [11]); given how difficult is it to anticipate relevant modifiers, measure them

accurately and statistically detect them [12], it seems likely that unknown environmental modifiers

are not uniformly distributed across populations. We will not expand on the difficulties inherent to

adjusting for structure in diverse samples, but note that this is much more challenging in sequencing,

since rare SNPs can be specific for relatively recent and small-scale demographic events [9,10].

Sparsity of signals and variant annotation: The next term in Formula (1) has to do with the number

of associated SNPs relative to investigated SNPs, which we call the sparsity of the signal. Figure 1

shows the impact of sparsity on sample sizes needed to design powerful association studies. For



153

GWAS (k1 = k = 1), the sparsity term is equal to one for associated SNPs. In sequencing studies,

it is possible to increase the power by reducing the number of non-associated SNPs (for sets where

k is large compared to k1). The annotation of SNPs through functional status, eQTL (expression

quantitative trait loci) studies, ENCODE, prior data, etc., will allow more useful definitions for the

analyzed sets by excluding SNPs with a low a priori likelihood of being associated. This is a fruitful

area of current research and one that is implicit in some study designs, such as exome sequencing.

Figure 1. The plot shows the sample sizes (on the y-axis, in thousands) needed to

achieve 80% power at the 10−6 significance level as a function of “sparsity”, k1/
√
k (on

the x-axis), with k and k1 as defined in the text. It is assumed for these calculations

that the k SNPs are independent (no linkage disequilibrium), with the minor allele

frequency (MAF) sampled from a beta distribution with parameters selected to match

allele frequencies from the CEU of the 1000 Genomes Project, B(0.14,0.73); the

distribution is truncated at 0.01 (so SNPs have MAF < 1%) and only polymorphic SNPs

when sequencing 10,000 subjects are selected. Calculations are based on the NCP in

Equation (1). OR, odds ratio.

The MAF distribution: The dominant term in the denominator of Formula (1) is given by the mean

MAF, so a simple approximation to the third component of NCP is
√
EM . This is the term in NCP that

explains most of the difference between sequence association and GWAS. The corresponding term

for a single-SNP test with a risk allele frequency of 0.2 is approximately 10 times larger than our 1000

Genomes-based estimate. In order to have comparable power between sequencing and GWAS, this

loss would have to be balanced by the other terms (sample size, sparsity and effect size). There is no

easy strategy to increase this term in unrelated individuals, but one available route is to shift the study

design to families or isolated populations, where alleles which are rare in the larger population are

locally common.
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Phenotyping/environment: We can also increase power by analyzing datasets with a larger effect

size; this corresponds to the last term in Formula (1), (γ − 1). This can be done using stratified

analysis: by analyzing sub-phenotypes and/or by accounting for environment (when GxE is present).

This is a common issue for GWAS and sequencing, and we illustrate the impact of stratification on

the effect size using a single SNP as the unit of analysis. Let us assume that γT is the mean effect

corresponding to the cases in the most at risk strata (with the rest of cases being “controls” with

respect to the variants in the set under investigation). Let α be the proportion of relevant cases, and

let p be the control MAF. It follows that in the full set of cases (relevant and irrelevant), the MAF is

approximated by αpγT+(1−α)p, and the corresponding effect size is γ−1 ≈ α(γT−1). Therefore, if

phenotyping or sub-setting by environment allows one to find the relevant cases, analyzing a smaller

sample size (of αn) leads to an increase of 1/α in the fourth term of NCP and to a 1/
√
α overall

increase in NCP.

3. Prediction Using Rare and Novel SNPs: A Different Winner’s Curse

Aside from association discovery, one of the major goals of GWAS is to estimate the effect

sizes of SNPs on traits, which can be used for the prediction of unrealized phenotypes on newly

sequenced individuals. For example, SNP genotyping platforms have recently been used for risk

and pharmacogenomic prediction by several companies, such as 23andMe, Life Technologies, and

Pathway Genomics. Prediction using SNPs discovered in a sequencing study can be performed

analogously to GWAS, as long as adequate data has been gathered. One major difference between

GWAS and sequencing is that newly-sequenced individuals will regularly carry novel SNPs in

disease-associated genes, and most discovered SNPs will have too little information for accurate

per-SNP estimates [13,14]. Quantitative estimates of personal risk based on sequencing association

studies will therefore require an evidence-based estimate of the effect of previously unobserved and

seldomly observed rare SNPs. Given that mutations in the gene in question have already been

associated with disease and that harmful SNPs are thought to be more likely to be rare [15–20],

ignoring these SNPs (setting the effect to zero) is unlikely to be accurate. Naively, we could estimate

a “rare SNP effect” based on the rare SNPs observed in previous sequencing studies and apply that

estimate to new SNPs and known rare SNPs alike. We illustrate two problems with no analog in

GWAS that occur when rare SNPs are lumped into a super-SNP for estimation or prediction. The

major results are that: (1) rare alleles in a sequencing study can cumulatively have a substantial

per-allele OR, which depends on disease prevalence, even if log odds-ratios (lORs) are centered at

zero; (2) the prediction of new samples based on that OR is substantially inaccurate.

First, unlike GWAS, prediction with new SNPs depends non-trivially on the variability of rare

SNP effects. With GWAS, previous data will give the investigator an estimate of the effect of each

SNP; a plug-in prediction can be formed using these estimates: logit(Ŷi) = Giβ̂ + α, where logit

is the logistic function, Ŷi is the predicted probability for person i, Gi is the vector of genotypes

for that person, α is an intercept, which depends on disease frequency, and β are SNP lORs. The

naive plug-in prediction is not quite correct due to the uncertainty in SNP effects; however, the
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inaccuracy with GWAS-based estimates tends to be negligible for reasons discussed below. In

contrast, the effect of a rare SNP in an associated gene is not precisely known, and the impact of

that uncertainty on prediction is substantial. For example, even if SNPs in an associated gene are as

likely to be risk-decreasing as risk-increasing, the correct prediction in the context of a rare disease

for a newly sequenced individual is that carrying a novel SNP increases their odds of being affected.

Qualitatively, the uncertainty in SNP effects makes one less confident in the plug-in estimate and

pushes the best estimate from the raw prevalence closer to 50:50. To give a numerical example, if

the population of lORs for novel SNPs is Gaussian, with a mean of zero and standard deviation of

one, and the disease frequency is 1%, then the marginal OR for carrying an allele (versus no minor

alleles) is 1.9.

This is a well-known phenomenon from the literature comparing marginal and conditional

random effects [21–23]; derivation of the effect size and additional explanation is offered in the

Appendix. A useful formula for the risk associated with carrying new SNPs can be derived under

the assumption that their lORs are Gaussian distributed with mean μ and standard deviation σ along

with standard logistic regression assumptions. Define c as a constant related to the disease prevalence

(the threshold in the Appendix c = −log( p
1−p

) ≈ −log(p)) and gi as the number of alleles in that

individual, then:

logit (Pr{Yi = 1|gi, μ, σ}) ≈ −c+ μgi√
1 + ν2σ2gi

(2)

where ν ≈ 0.625. When the mean lOR is zero and the standard deviation is not large (it is almost

assuredly less than one in areas without overwhelming evidence for linkage), the lOR for having

an SNP (versus no SNPs) is approximately cν2σ2

2
√
1+ν2σ2 , which increases sharply with the standard

deviation of lORs and scales with the negative log of disease prevalence. This is the lOR that we

estimate when regressing the outcome on the number of SNPs carried and that we would use for

prediction, absent other information about the effects of particular SNPs.

A related result occurs for GWAS-based plug-in estimates, the details of which depend on the

choice of statistical estimators used for effect estimates and the pattern of linkage disequilibrium.

For any estimate of an SNP’s lOR for which a central limit theorem applies, σ2 in Equation (2) can

be replaced with the square of the standard error of the estimate, which will usually scale as the

inverse of the sample size and the MAF. Given the relatively low cost of GWAS data acquisition and

the need to overcome the burden of genome-wide multiple testing, we are accustomed to gathering

enough data for precise estimates. For example, the expected standard error of a lOR of zero with a

MAF of 0.3 and 3000 cases and 3000 controls is 0.06. If the standard deviation of the population of

novel SNP lORs is 0.5, then the marginal lOR for a new SNP is 70 times bigger than the previously

observed SNP.

The above effect is observable regardless of the sample size and MAF of SNPs used in the

calculation. One might expect that since case control-based estimates of ORs are consistent for

prospective associations, that this effect would be corrected by empirically estimating the per-allele

OR and using that for future data; however, there is a unique twist for the group of SNPs with MAFs,

such that they are reasonably likely to be monomorphic in the original study. The observed lOR for
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all rare SNPs together does estimate the marginal effect of future rare SNPs, but that prediction breaks

down when stratified by whether or not the SNP was observed as polymorphic in the case-control

study. Case-control designs are somewhat more efficient for discovering rare risk-increasing SNPs

compared to risk-decreasing SNPs [20,24–27], so as a group, previously observed SNPs are more

harmful in future samples than newly observed SNPs.

In Figure 2, we plot how the probability of an SNP being discovered (the minor allele is observed

in at least one participant) in a case-control study depends on both the OR and the MAF when the

MAF is low compared to the sample size. The absolute probability of a SNP appearing at least once

in the study increases markedly with OR in this range of MAF. Intuitively, compared to a population

sample, a risk-increasing SNP’s greater frequency among cases more than makes up for the decline

in its frequency among controls. As a result, the observed odds of a rare SNP appearing in a case are

inflated, and the finite pool of remaining SNPs at that MAF contains a preponderance of protective

and small effects.

Figure 2. Sampling probability by MAF, log odds-ratio. The contour plot has on the

x-axis the allelic expected count in a population sample the same size as the control

group (sample sizes times MAF) and, on the y-axis, the log-odds ratio. Contours are

the absolute probability of being sampled in a case-control study of 100 cases and 100

controls when prevalence equals 1%.

This is similar to the first problem discussed above, except that we have selectively observed SNPs

based on their true odds ratio. Figure 3 shows that when the lORs of SNPs in a gene are assumed

to come from a population with high variance, the odds of an SNP appearing only in cases and the

expected lOR of observed SNPs varies with MAF and substantially favors an increase in risk. This
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is not a Bayesian argument; it relies only on the rate at which SNPs appear in the sample, even for

fixed SNP effects. To give a numerical example, with a sample size of 100, a prevalence of 5%, 125

SNPs with a MAF of 0.002 and lORs drawn from a standard normal, an average of 36% of the SNPs

are discovered in the original sequencing study with an average per-allele estimated lOR of 0.33. In

a new replication or prediction sample, the average per-allele lOR based on previously discovered

SNPs is 0.66, but the per-allele lOR of new SNPs is only 0.05. The numerical result depends heavily

on a number of parameters; we have deferred a detailed exploration of the phenomenon to another

work [28]. The longer report is available for download, and re-demonstration of the importance of

each factor is beyond the scope of this paper. However, there are three notable features to which we

wish to briefly draw attention: (1) the tail behavior of SNP lORs is very influential; large ORs

enrich even rare SNPs into the population of cases; (2) the effect occurs at a MAF around the

minimum observable in a study; regardless of the size of the original dataset observed, rare SNPs

are unrepresentative of future rare SNPs; (3) the effect vanishes under the null hypothesis that no

SNPs in a gene are associated.

Figure 3. Observed data probabilities by MAF. X-axis N·MAF. The y-axis shows

the probability of each special data type conditional on the SNP being polymorphic:

occurring only in cases (red), once in controls and zero times in cases (blue) and all

other (black). Green = expected log-odds-ratio (OR) of sampled SNPs (same numeric

scale). The log-ORs are assumed to be distributed left: N(0, 1); center: N(0, 0.52);

right: N(0, 0.252); other settings are as in Figure 2.

4. Implicit and Explicit Models in Association Studies

In contrast to GWAS, genetics practitioners with sequencing data are currently faced with a

dizzying selection of methods to test for an association between genotype and phenotype, each of

which has tuning parameters. In GWAS, a simple allelic test is the overwhelmingly most commonly

used test. The additive allelic model performs well regardless of the true risk model when linkage

disequilibrium between a tested marker and causal allele is imperfect [29]. While some authors have

suggested GWAS schemes that incorporate prior knowledge and more complex risk models through

explicit Bayesian calculations or alpha-spending procedures (see also Section 5), the dominant
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technique in the literature is to report SNP-level evidence and the allelic effect from a particular

dataset. While the commonly used methods make usual regression-type assumptions about the

distribution of the trait, the effects of confounders and covariates and the measurement error of SNPs,

they make minimal assumptions about the effects of other SNPs or how effect size varies with SNP-

or gene-level features.

Because of the small amount of information at each rare SNP, all sequencing association tests of

which we are aware pool information in some way across SNPs, which are regarded as belonging to

a unit (gene) or being “similar,” and some pool information across genes that are “similar.” These

techniques have tuning parameters appropriate under a particular alternative hypothesis and that

may suffer a substantial loss of power under other alternatives. A full comparison of proposed

tests for sequencing data is beyond the scope of this article; however, we will discuss a few of

the most common tests. In this section, we will discuss the role and meaning of some of these

tuning parameters. Ignoring these tuning parameters as if the investigator were still using relatively

assumption-free GWAS techniques is unlikely to work well, and the importance of these analytic

decisions represents a substantial divergence from GWAS.

One extreme of this approach is to try to swap tuning parameters for explicit models and

assumptions. We have advocated multi-level modeling of effect sizes or lORs using SNP- and

gene-level features as predictors, with stated assumptions, such as the functional form of associations,

the linearity and additivity of associations, distributional requirements and exchangeability between

SNPs, where required [30].

However, most proposed tests are not model-based summaries. In some cases, we can gain insight

into these tests by constructing a map from the tuning parameters to a genetic model, which would

imply those as optimal in some way. For example, C(α) and diagonal kernel SKAT [5] can be

derived from an explicit model with weights on the j − th SNP, wj ∝ E[lOR2
j ] [31], and therefore,

any scheme of weights as a function of MAF can be understood in terms of the implied variance of

SNP effects. The addition of correlation structures to SNP effects also follows a simple model-based

logic; for example, if effects are expected to substantially go the same direction (such as a group

of loss-of-function SNPs), one can balance between the burden-type and variance-component-type

test [5]. Similarly, several authors [32,33] have pointed out that optimal weights for burden-type tests

are proportional to per-SNP lORs. Figure 4 shows curves for three MAF-depended weights proposed

in the literature [34]. Notably, the implied lOR curve depends heavily on the upper limit of MAF

included in the pooling procedure.

However, the tuning parameters of some proposed tests are more challenging. For example,

SKAT with the Gaussian kernel does not map to a meaningful model of SNP effects, but is

suspected to work reasonably well under several alternatives and detects some non-linear effects

and epistatic interactions [35–37]. The kernel itself is a tuning parameter for SKAT and related

methods; kernel-based techniques are sensitive to the choice of kernel and, aside from a few special

cases [35,38], are difficult to choose between a priori. Additionally, while most kernels can up- or

down-weight SNPs, transforming prior information into a calibrated SNP “similarity” or “distance”

measure is a task for which we have little guidance. While SKAT and related tests can be motivated by
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a simple variance components model, they are not automatically robust to non-Gaussian SNP effects,

such as a mixture of causal and non-causal alleles [39,40]. This is not to suggest that the many

variants of kernel-based tests are poorly applied tools or that they perform poorly compared to other

tests, just to highlight the fundamental difficulty of interpreting and guiding the key analytic decision.

Figure 4. Implied alternative OR (on the y-axis, logarithmic scale) as a function of

MAF (x-axis) for three burden weighting schemes. The black line corresponds to

the Madsen–Browning weight [10]; the red line corresponds to the attributable risk

weight [41], and the blue line corresponds to the default in SKAT, Beta(25,1) [42]; the

green line is for equal weights. For the left panel, the MAF is truncated at 5%, and for

the right panel at 1%. We assume that the OR of the SNP with the largest MAF is 1.2.

There are numerous specific deviations from linear Gaussian SNP effects, which hypothetically

should influence the tuning parameter selection. In the implicit model tests described above, these

issues are difficult to address in planning and power analysis. When considering sequencing data as

potential negative evidence in replication studies, each has to be explored on a case-by-case basis.

Explicit-model methods have the advantage of facilitating graphical model checks (for an example,

see [30]), posterior-predictive diagnostics [43] and prior-data conflict summaries [44,45]. The

price of these checks is a relatively high computational burden, stricter distributional assumptions,

additional investigator effort eliciting the model (and suitable priors for Bayesian methods [46]) and

an unclear definition of a “good enough” model.

5. On Multiplicity

The common strategy used in GWAS for ranking and follow-up of new discoveries is to focus

on the SNPs with the most significant p-values. As we discussed in Section 2, association tests of

common single SNPs yield p-values that reflect a combination of sample size, effect size and MAF;

however, for the range of MAFs in GWAS, rankings based on p-values correlate well with those

based on effect size. Adjustment for multiple testing is usually done independent of any information

on SNPs, and in a Bayesian framework, this corresponds to an equal prior probability of each SNP
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being associated. There have been approaches developed to incorporate prior knowledge, such as

stratified false discovery control [47] and weighted Bonferroni criteria [48]. Although there are

several sources of information for these procedures in GWAS (such as effect on expression, effect

on related phenotypes, position relative to gene elements, MAF), formal methods have not been used

extensively for several reasons. In general, the available information is difficult to translate to the

right scale, and there is low prior confidence that information on tag-SNPs is useful, since the causal

SNP is unobserved.

Sequencing-based association studies are even more challenging, because there is more

variability in the units of analysis than in GWAS. Gene units vary enormously in the number of

SNPs, linkage disequilibrium (LD) pattern, the plausible ratio of causal SNPs, MAF spectrum and

annotations. For example, what is more likely to be associated, a gene with two non-synonymous

SNPs or a gene with ten non-synonymous SNPs? A gene with ten singletons (variants with only

one observed copy of the non-reference allele) versus a gene with 10 total minor alleles with

varying MAF? A set of ten non-synonymous SNPs versus a set of ten intronic SNPs? Furthermore

the calculation of optimal weights will include an interplay of subject matter knowledge (e.g.,

assumptions on the effect sizes for different annotations) and the choice of statistical methods (e.g.,

some methods will accommodate signal sparsity well).

The complicated assessment of prior probabilities for a set of SNPs is one of the issues in using

p-values for ranking genes and for deciding on efficient follow-up studies. p-values might be a poor

proxy for the probability of replication, especially when the signals come from the very rare alleles

that might not appear in the subjects used for replication. p-values contain little information on

strategies for functional validation, because they do not inform on the best variants to be investigated.

Relying only on p-values for decision-making has a bigger impact in sequencing studies than in

GWAS, and we hope that developing better and more diverse measures of significance will become

a more active area of research.

6. Discussion

Many people have been surprised by the lack of substantial findings from the recent studies

on rare variants performed with whole-genome or whole-exome sequencing and from platforms,

such as the exome chip. The reality is that for complex traits, there was little prior evidence in

favor of genetic models that would give such studies high power (with multiple rare variants with

a large effect per unit of study). The whole literature of the recent past, which is too extensive

to be cited here, on investigating low frequency variants using imputation from population-based

sequencing shows that large effect SNPs are uncommon for the diseases where they exist. This

advocates for the development of more efficient strategies than the brute force sequencing of large,

poorly phenotyped cohorts. The detailed annotation of variants should improve the sparsity of signals

in the units of analysis, and careful phenotyping and incorporation of environmental factors should

lead to the discovery of larger effects.
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Much of the analytical effort on the association with sequencing data has been put into the

development of novel testing tools. We argue in this paper that it is equally important to focus on

other aspects of the process, from the design of the study to the interpretation of results. Furthermore,

hypothesis tests and multiplicity adjustments should fit into the paradigm of a careful design that we

set out above; model-based tests should incorporate the complexity that we expect without resorting

to black boxes or poorly characterized weights. We should also be on guard for excessive parsimony;

lumping together rare SNPs into a super-SNP creates a variable with properties that depend on

the sampling scheme, minor allele frequency distribution and effects on phenotype distribution in

complex ways.
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Appendix

A. The Derivation of the Power Formula

The following assumptions are used for the calculation of power: (1) there are n cases and m

controls; (2) the association test is performed on a set of k SNPs, out of which, k1 are associated, and

the calculations are done conditional on k and k1, ignoring the variability in those numbers that is

associated with sequencing; (3) MAFs are sampled from a distribution with mean EM and variance

VM ; (4) for simplicity, we assume that the effect sizes of the associated SNPs are independent of

MAF; (5) the SNPs are in linkage equilibrium; (6) all associations are with the rare allele; and (7)

the effect sizes are sampled from a distribution with a mean odds ration equal to γ.

The association method used for illustration is the “burden” test, where, for each individual, we

calculate a score based on the genotypes for the k SNPs. Let Gj denote the number of rare alleles at

the j-th SNP, and let wj be a fixed prespecified weight (it does not depend on the observed data; this

is needed to simplify the analytical calculations). For each subject, we calculate:

S =
k∑

j=1

wjGj
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then correlate this with the trait for the detection of association. For case-control studies, this can

be done using a two-sample t-test. Note that power for a two sample normal test is governed by the

non-centrality parameter, √
nm

n+m

μ1 − μ2

σ

with classical notation (and assuming equal variance). Note that for large k and n, the burden test will

be close to a two sample normal test, and the mean and variance of the scores are the key determinants

of power. The approximation is fairly accurate, even for small k, as long as n remains large.

If we denote with Pj the MAF for the j-th SNP, we have that:

E(S) = E [E(S|P )] = E

(
k∑

j=1

wj2Pj

)
=

k∑
j=1

2wjEM = 2w̄kEM

where w̄ is the average weight. Similarly,

Var(S) = Var [E(S|P )] + E [Var(S|P )] = Var

(
2

k∑
j=1

wjPj

)
+ E

(
2

k∑
j=1

w2
jPj(1− Pj)

)
=

4VM

k∑
j=1

w2
j + 2

(
k∑

j=1

w2
j

)
(EM − VM − E2

M) = 2kw2
[
Vm + EM − E2

M

]
In the case of equal weights (wj = 1),

E(S) = 2kEM , Var(S) = 2k(VM + EM − E2
M)

For a rare associated SNP, its MAF is approximated by the product of the MAF in controls and

the odds ratio. Because MAF and the odds ratios are independent (Assumption 4), we obtain that

the mean MAF is approximated by EMγ. This leads to the following mean score in cases (assuming

equal weights),

E(S) ≈ 2(k − k1)EM + 2k1EMγ = 2kEM + 2k1EM(γ − 1)

One can similarly derive a formula for Var(S) in the cases.

Assuming that the variances of the scores are not greatly different in cases and controls (valid

with mild assumptions), the non-centrality parameter is approximated by:√
2nm

n+m

k1√
k

EM√
VM + EM − E2

M

(γ − 1)

B. Marginal Effects with Uncertainty

The marginal effect of a SNP whose true log odds ratio comes from a known distribution is

easy to quantitatively analyze when using a model of the binary disease outcome as a dichotomized

latent liability plus an SNP effect. That is, one can recast a traditional logistic regression model as a

model where each individual has an unobserved quantitative trait, and individuals whose quantitative
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trait is greater than some threshold demonstrate a positive binary trait. Effects of covariates (such as

SNPs) add or subtract to the unobserved quantitative trait; when the liability has a logistic distribution

(slightly heavier tailed than a Gaussian distribution), the effects on the latent scale are the same as

lORs. Consider a logistic model shown in Figure A1; the plotted curve is the density of the latent

liability and the dotted line the threshold above which individuals are affected by disease and below

which they are unaffected if the base rate of the disease is 5%. The area under the curve to the right of

the threshold are affected individuals and to the left of the threshold unaffected. The blue area under

the curve is the fraction of individuals in the population who, with a moderately risk-increasing SNP,

would cross the liability threshold and become affected by the disease. The smaller red area is the

individuals who, with a risk-decreasing SNP of the same magnitude, lOR would cross the liability

threshold in the other direction and cease to be affected.

Figure A1. Density of latent trait before SNP effects. The dotted line indicates the case

threshold. The blue area corresponds to controls that become cases if possessing an SNP

with OR = 1.6. The red area indicates cases that become controls if possessing an SNP

with lOR = 1/1.6.

When Gi is a vector of genotypes for person i, β are SNP lORs Gaussian distributed with mean

μ and standard deviation σ, c is the threshold above, I() the indicator function and Xi the latent

liability, then we can write:

Yi|gi, μ, σ = I(Xi +Giβ > c) (A1)

One can approximate a logistic variable by a Gaussian scaled by 1.6, yielding:

Yi|gi, μ, σ = I(Zi

√
1.62 + σ2gi + μgi > c) (A2)

for Zi, a standard normal. One can then re-apply the normal-logistic approximation:

Yi|gi, μ, σ = I(X∗
i +

μgi − c√
1 + σ2gi/1.62

> 0) (A3)

where X∗ is again logistic distributed, returning to a usual form for logistic regression.
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Imprinted Genes and the Environment: Links to the Toxic 
Metals Arsenic, Cadmium and Lead 

Lisa Smeester, Andrew E. Yosim, Monica D. Nye, Cathrine Hoyo, Susan K. Murphy and 
Rebecca C. Fry  

Abstract: Imprinted genes defy rules of Mendelian genetics with their expression tied to the parent 
from whom each allele was inherited. They are known to play a role in various diseases/disorders 
including fetal growth disruption, lower birth weight, obesity, and cancer. There is increasing interest 
in understanding their influence on environmentally-induced disease. The environment can be 
thought of broadly as including chemicals present in air, water and soil, as well as food. According 
to the Agency for Toxic Substances and Disease Registry (ATSDR), some of the highest ranking 
environmental chemicals of concern include metals/metalloids such as arsenic, cadmium, and lead. 
The complex relationships between toxic metal exposure, imprinted gene regulation/expression and 
health outcomes are understudied. Herein we examine trends in imprinted gene biology, including 
an assessment of the imprinted genes and their known functional roles in the cell, particularly as 
they relate to toxic metals exposure and disease. The data highlight that many of the imprinted 
genes have known associations to developmental diseases and are enriched for their role in the 
TP53 and AhR pathways. Assessment of the promoter regions of the imprinted genes resulted in 
the identification of an enrichment of binding sites for two transcription factor families, namely the 
zinc finger family II and PLAG transcription factors. Taken together these data contribute insight 
into the complex relationships between toxic metals in the environment and imprinted gene biology. 

Reprinted from Genes. Cite as: Smeester, L.; Yosim, A.E.; Nye, M.D.; Hoyo, C.; Murphy, S.K.;  
Fry, R.C. Imprinted Genes and the Environment: Links to the Toxic Metals Arsenic, Cadmium and 
Lead. Genes 2014, 5, 477-496. 

1. Introduction 

There is heightened interest in understanding the role of epigenetic mechanisms in cell signaling 
regulation and disease. This is particularly the case when attempting to discern the etiology of 
disease where a cause is hitherto unknown. Recent studies suggest that disease can be influenced 
by the environment via epigenetic mechanisms [1–3], a seemingly Lamarkian notion discordant 
with the tenets set forth by Mendel’s work. Yet the advent of modern epigenetics as a distinct field 
of study is much more storied than simply pitting Lamark’s theory of “soft inheritance” against 
Mendel’s firm genetic basis of heredity. While controversial to this day, some of the earliest 
experiments that suggested non-Mendelian inheritance, and possibly the first indication of  
parent-of-origin phenomena, came from Kammerer’s midwife toad experiments [4] which pointed 
to the ability of a modified environment to modulate heritable shifts in mating. 

However, it was not until the early 1940s, the same time Huxley’s Modern Synthesis sought an 
interdisciplinary approach to inheritance and evolution [5], that the term epigenetics was first 
introduced by developmental biologist Conrad Waddington [6]. Describing mechanisms that 
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determine cell fate and differentiation during development, Waddington’s epigenetics arose as a 
conceptual means to describe how a complex network of genes and gene-environment interactions 
brought about phenotype in an evolutionary context [7]. 

It was more recently though, with Holliday linking the term epigenetics with the ability of DNA 
methylation to modulate gene activity, that the definition of epigenetics began to shift to being inclusive 
of any mechanism with the ability to modulate gene activity without a change in DNA sequence [8]. 
These epigenetic modifications to an individual’s genome include, but are not limited to, three 
commonly studied mechanisms: DNA methylation, histone modification, and non-coding RNA 
expression [9]. 

While such marks are generally stable and heritable in nature, there is the potential for 
epigenetic modifications to be reversible, as seen with their innate reversibility during critical 
stages of fetal development, as epigenetic tags are added and removed [10–12]. Such changes to the 
epigenetic landscape are vital in the process of normal development [13], yet imprinted genes are 
protected from this process [14]. 

Changes to the epigenome can also be induced by the environment resulting in abnormal 
physiologic changes [3,15]. Stable epigenetic modifications are implicated in adult onset disease 
such as cancer, neurodevelopmental/neurodegenerative disorders, and autoimmune disorders [16] 
among others, and also have the potential to be trans-generational in nature [17,18]. However, it 
should be noted that the stability of such epigenetic alterations and their link to later life health 
outcomes is still under active debate [19,20]. 

Current research has shown that epigenetic modifications can be induced by exposure to 
environmental contaminants, such as toxic metals [21–23]. Such modifications have been linked to 
later life health outcomes including cancers, heart disease, kidney disease, and various neurological 
conditions [20,24,25]. While cadmium and lead are metals, arsenic is a metalloid, with shared 
properties of both metals and non-metals. For the purposes of this article, all three elements will 
hereby be referred to as “metals.” While these metals are among the most studied, many other 
metals have demonstrated toxicity and are associated with epigenetic alterations including nickel 
and chromium [21]. In addition, new research is currently investigating various under-studied 
metals for toxicity and associated epigenetic alterations including tungsten and cobalt [26,27]. 

While research continues into the stability of epigenetic alterations associated with 
environmental contaminants and their associations with negative health endpoints, many have 
theorized that such reversibility may provide the opportunity for therapeutic targets for disease 
prevention following environmental exposure [24,28]. 

1.1. What is Genomic Imprinting? 

Evidence that parental genomes are not equivalent was first described in mouse models by both 
the Surani and McGrath groups in the early 1980s [29,30]. The researchers attempted to generate 
viable embryos using only maternal or paternal chromosomes. They found that normal 
development required genetic material from both parents; maternal and paternal genomes were not 
interchangeable, indicating the first experiments to demonstrate mammalian imprinting. While the 
exact mechanism of these imprinting phenomena was unknown at that time, they hypothesized a 
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process that operated pre-fertilization, yet impacted post-fertilization expression. To date, 
researchers have used a variety of strategies including genome-wide studies, gene-specific 
experiments, and transcriptome analysis to determine which human or mammalian genes are 
imprinted [31–33]. Imprinted genes are vulnerable to genetic and epigenetic perturbation and have 
been tied to adverse health outcomes. As imprinted genes are monoallelically expressed with one 
of the copies of the gene silenced in a parent-of-origin dependent manner, only one copy is 
functional. As a result, mutations or epigenetic alterations on one allele that would normally have 
minimal impact for a biallelically expressed gene may lead to detrimental consequences for an 
imprinted gene. 

As it is a critical part of the epigenome, the inheritance and manifestation of traits associated 
with imprinted genes is regulated through epigenetic marks. The term “imprintome” was first 
coined to describe a set of “cis-acting imprint regulatory elements” [34]. This term refers to the 
mechanisms needed for modifying expression including DNA methylation and histone 
modification, which are two such mechanisms that are well established as being required for the 
appropriate maintenance of imprinted gene expression [35]. The imprintome is vulnerable to the 
environment and potentially modified by a host of environmental chemicals and contaminants [36]. 

Many imprinted genes are grouped in clusters and possess imprinting control regions (ICRs) or 
a central control region [37]. These ICRs, as well as other regulatory regions associated with 
imprinted genes, are referred to as differentially methylated regions (DMRs) and display ~50% 
methylation, where one of the parental alleles is methylated and the other unmethylated in a 
manner based on parent of origin. These DMRs represent discrete DNA elements that carry a 
heritable epigenetic mark that distinguishes the parental alleles. 

1.2. Evolution of Imprinted Genes: A Fight between the Parental Chromosomes 

Perhaps the most widely accepted hypothesis for evolutionary underpinnings of the origins of 
genomic imprinting is the parental conflict theory or the “battle of the sexes” [38,39]. Central to 
this hypothesis is the struggle to control maternal resources during fetal development, with paternal 
genes favoring increased use of maternal resources in order to promote the fittest possible 
offspring, and to divert resources from offspring of other males. Contextually, this hypothesis 
posits that imprinting arose during early mammalian evolution, where females were able to 
simultaneously gestate offspring from multiple males. The basis then for the desired growth and 
resource extraction of the offspring carrying the male’s DNA is an attempt to out-compete 
offspring from other males. In contrast, maternal genes will suppress fetal growth to ensure equal 
reproductive success among all her offspring. Supporting this argument, many paternally expressed 
genes are growth promoting and metabolism-related, whereas maternally expressed genes tend to 
be growth limiting. The placenta, which can serve to regulate nutrients and growth for the 
developing fetus, is thought to play a pivotal role in this maternal-paternal fight over resources and 
control of fetal growth [40]. Within the placenta, a large number of the known imprinted genes are 
expressed, and genomic imprinting has been confirmed in all placental mammals studied  
thus far [41]. 
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1.3. Imprinted Genes and Their Relationship to Human Health 

Imprinted genes have been associated with various human adverse outcomes including diabetes, 
cancer, developmental disorders, behavioral disorders, and reproductive diseases [42,43].  
Prader-Willi and Angelman syndromes were the first disorders to suggest an imprinted mechanism. 
Though each syndrome manifests differently, it was shown they both arise from deletions in the same 
region of chromosome fifteen [44]; Prader-Willi results from the loss of a cluster of paternally 
expressed genes, whereas Angelman syndrome results from the loss of maternal expression within 
the 15q11-q13 region. 

Imprinted genes have also been associated with altered cellular growth resulting in cancer [45,46]. 
Imprinted genes are particularly vulnerable because they are functionally haploid, thus any epigenetic 
or genetic perturbations may have a greater impact. For example, epigenetically-induced silencing of 
the active allele of an imprinted tumor suppressor gene could result in complete loss of expression 
which in turn would influence cell growth or proliferation [47]. Conversely, epigenetic alterations can 
also result in activation of the otherwise silent copy of an imprinted growth-promoting gene, 
contributing to loss of growth regulation. Both of these types of alterations are referred to as “loss of 
imprinting” (LOI). In fact, LOI has been found across a broad spectrum of tumors and is one of the 
most common alterations in cancer [46]. As examples, in cancer, the active copy of tumor  
suppressor cyclin-dependent kinase inhibitor 1C (CDKN1C) is frequently aberrantly silenced and the 
silent copy of the growth promoting insulin-like growth factor II (IGF2) gene is often inappropriately 
activated [48]. 

1.4. Links between Imprinted Genes and Toxic Environmental Metals  

Environmental contaminants are currently estimated to be responsible for almost five million 
deaths and over eighty million Disability-Adjusted Life Years (DALYs) globally [49], and are 
thought to be involved in 13% to 37% of the global disease burden [50]. Toxic metals represent 
some of the highest priority contaminants as determined by the Agency for Toxic Substances and 
Disease Registry (ATSDR) [51]. 

A number of studies have observed links between exposure to toxic metals and epigenetic 
events tied to imprinted genes. For example, quantitative analysis was conducted on multiple 
imprinted gene DMRs in peripheral blood from individuals followed as part of the Cincinnati Lead 
Study [52]. The researchers identified early childhood lead exposure was associated with 
hypomethylation of the gene pleiomorphic adenoma gene-like 1 (PLAGL1) [53]. Prenatal lead 
exposure has also been linked to decreases in global DNA methylation in cord blood [54]. In 
addition, lead has been shown to disrupt global DNA methylation patterns in embryonic stem  
cells [55]. 

Similarly, exposure to arsenic and cadmium has been observed to alter the methylation of both 
experimentally validated and predicted imprinted genes. Specifically, in adults exposed to 
inorganic arsenic, the known imprinted gene anoctamin 1, calcium activated chloride channel 
(ANO1) and predicted imprinted gene forkhead box F1 (FOXF1) shows increased promoter 
methylation in leukocytes [56]. Conversely, in a separate study, the imprinted gene insulin (INS) 
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exhibits decreased promoter methylation as a result of arsenic exposure [57]. In a cohort  
of mother-newborn pairs, the putative imprinted gene zic family member 1 (ZIC1), as well as 
ANO1, are differentially methylated in leukocytes, where cadmium exposure was associated with 
hypermethylation of ZIC1 in mothers and ANO1 in newborns [58]. 

Tobacco is a common source of cadmium exposure [59,60]. Tobacco smoke exposure in utero 
has been associated with altered DNA methylation [61,62]. These studies showed that among 
smoking mothers, ten imprinted genes including aryl-hydrocarbon receptor repressor (AHRR), 
growth factor independent 1 transcription repressor (GFI1), and cytochrome P450, family 1, subfamily 
A, polypeptide 1 (CYP1A1) were hypomethylated in newborn cord blood [61]. Additionally, the 
imprinted gene IGF2 was found to be hypermethylated in cord blood of newborns born to smoking 
mothers [62]. Infant gender was correlated with differential methylation, as males exhibited 
smoking related methylation changes at IGF2 while female newborns did not [62]. While the 
mechanisms of such sex-associated methylation patterning are unknown, other studies have shown 
similar sex-differentiated changes in methylation [63,64]. Further research is needed to understand 
gender specific epigenetic alterations, including imprinting, and may help to inform both sex-linked 
susceptibility to disease, as well as potentially being predictive of severity and/or prognosis. 
Additionally, research into the biological basis underlying the roll an individual’s sex  
plays in disease development may afford the ability to develop targeted therapies based on 
differential responses. 

1.5. Study Aim 

In the present study, we set out to analyze imprinted genes for their involvement in shared 
biological pathways and to determine their known interactions with arsenic, cadmium, and lead. 
This analysis included an assessment of: (i) known relationships between the proteins encoded by 
the imprinted genes; (ii) common functionality of the proteins encoded by the imprinted genes in 
the cell; and (iii) common transcription factor-based regulatory regions present in the promoter 
regions of the imprinted genes. 

2. Methods 

Imprinted Gene List and Network, Pathway, and Functional Enrichment Analysis 

We analyzed imprinted genes derived from a publically available database from  
GeneImprint [65] that were filtered for experimentally validated and computationally predicted 
imprinted genes. The genes within the GeneImprint database are classified as predicted based upon 
chromosomal location [66]. From those, individuals have confirmed some to be imprinted based on 
actual experiments with cDNA showing parent-of-origin monoallelic expression from humans or 
other methodologies. Specifically, of the 197 genes, 90 were experimentally confirmed. These two 
imprinted gene sets were further analyzed for known metals relationships using the comparative 
toxicogenomics database (CTD) resulting in two additional gene lists with n = 43, and n = 14, 
respectively. Toxic metals were prioritized based on their 2011 ATSDR rankings [51]. Metal and 
imprinted gene relationships were determined using the CTD [67]. The CTD is a public resource 
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that synthesizes current scientific literature on interactions between chemicals, genes, proteins, and 
the diseases associated with each. However, it should be noted that while the CTD is a useful tool 
that may be utilized to query a centralized public repository for known gene-metal interactions, the 
database may be limited in use for emerging findings, as there may be a delay between recent 
publications and inclusion in the database. 

In order to identify biological pathways enriched within the imprinted gene sets, the four gene 
lists were analyzed for enrichment using Ingenuity Pathway Analysis (IPA) [68]. Ingenuity allows 
for the mapping of genes, proteins, and their corresponding regulatory networks as a useful tool for 
the identification of molecular pathways in disease. As a secondary method, for verification, The 
Database for Annotation, Visualization and Integrated Discovery (DAVIDv6.7) was also used to 
analyze the four gene lists. 

As a method to identify transcription factor binding site enrichment within the imprintome, the 
imprinted gene set(s) were analyzed using the Genomatix Matinspector module (Genomatix Software 
Inc., Ann Arbor, MI, USA) [69]. The analysis was used to examine the four gene sets for common 
regulatory sequences and/or known regulation by common transcription factors. Where multiple 
promoter regions were possible for a given gene, a single promoter region was selected to 
maximize the number of experimentally verified 5' complete transcripts. The promoter regions 
were analyzed with the additional search criteria of 1000 base pairs upstream, and 50 base pairs 
downstream relative to the transcription start site. The genes were analyzed with a minimum core 
and matrix similarity of 1.00, the highest level of sensitivity possible. The p-value generated is the 
probability to obtain an equal or greater number of sequences with a match in a randomly drawn 
sample of the same size as the input sequence set. The lower this probability the higher is the 
importance of the observed common transcription factor. 

3. Results and Discussion 

3.1. Enriched Biological Trends within the Imprinted Gene Set 

We analyzed imprinted genes derived from a publically available database that were filtered for 
experimentally validated and computationally predicted imprinted genes. Of the 197 genes, 90 
were experimentally confirmed. These gene lists can be found in Table S1. These two imprinted 
gene sets were further analyzed for metals relationships using the CTD. Specifically, these 
associations include cellular perturbations such as altered mRNA and/or protein expression as well as 
epigenetic modifications (e.g., DNA methylation). The analysis identified known metals interactions 
for n = 43 predicted and experimentally validated imprinted genes and n = 14 experimentally 
validated imprinted genes with known metals interactions (Table S2). 

The resulting four imprinted gene lists (both computationally predicted and validated) and the 
metals-associated genes were analyzed using IPA for known molecular interactions and for 
enrichment of diseases and canonical pathways. Many of the genes are involved in gene 
expression, embryonic development, organismal development, gastrointestinal disease, endocrine 
system disorders, hereditary disorders, cell morphology, cellular development, cell growth and 
proliferation, cell death and survival (Table 1). The results of IPA analysis were supported by 
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analysis performed using DAVID which found similar enrichment of several of the functional 
pathways such as embryonic development and gene regulation (Table 1). 

In addition, enrichment analyses for canonical pathways were performed using IPA. The 
imprinted gene set is enriched for two canonical pathways, namely the TP53 and aryl-hydrocarbon 
receptor (AhR) signalling pathways (Table 1). A total of five genes were associated with TP53 
including cyclin-dependent kinase 4 (CDK4), PLAGL1, retinoblastoma 1 (RB1), tumor protein p73 
(TP73), and Wilms tumor 1 (WT1) (enrichment p value = 0.00107). A total of five genes were also 
associated with AhR including aldehyde dehydrogenase 1 family, member L1 (ALDH1L1), CDK4, 
cytochrome P450, family 1, subfamily B, polypeptide 1 (CYP1B1), RB1, and TP73 (enrichment p 
value < 0.01). The following three genes were common to both pathways: CDK4, RB1, and TP73. 
This shared gene set perhaps is not surprising, as imprinted genes play a large role in development, 
and these pathways are fundamental in regulating development, signaling, and cellular responses to 
stress. However, it should be noted that the observation of the links between the imprinted gene set 
and these two critical biological pathways has not been previously reported. 

Table 1. Summary of enriched biological processes/functions of the imprinted gene set.  

Networks p-value 
Embryonic Development, Organismal Development, Gene Expression * 

Embryonic Organ Development ** 
1 × 10 39 

1.7 × 10 12 
Gene Expression, Developmental Disorder, Endocrine System Disorders * 1 × 10 39 

Diseases and Disorders Average p-value 
Developmental Disorder * 0.001 

Endocrine System Disorders * 0.001 
Organismal Injury and Abnormalities * 0.002 

Gastrointestinal Disease * 0.002 
Hereditary Disorder * 

Prader-Willi Syndrome ** 
Beckwith-Wiedemann Syndrome ** 

0.006 
0.02 

0.0007 
Molecular and Cellular Functions Average p-value 

Gene Expression * 
Transcription Regulation ** 

<0.001 
8.2 × 10 8 

Cell Morphology * 
Cell Morphogenesis Involved in Differentiation 

0.002 
0.005 

Cellular Development * 
Development-associated Proteins ** 

0.003 
1.8 × 10 10 

Cell Death and Survival * 0.003 
Cell Signaling * 0.003 

Canonical Pathways p-value 
TP53 Signaling * 0.001 

Aryl Hydrocarbon Receptor Signaling * 0.006 
(*) Ingenuity Pathway Analysis (IPA) results; (**) Database for Annotation, Visualization and Integrated 
Discovery (DAVID) results. 

Enrichment analyses for canonical pathways were also performed for the experimentally 
validated imprinted gene set (n = 90), where the TP53 signalling pathway was enriched (p  0.001) 
represented by the following four genes PLAGL1, RB1, TP73, and WT1. Imprinted genes involved 
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in the AhR signalling pathway were also present including RB1 and TP73, and the pathway was 
marginally significant (p = 0.09). Further enrichment analysis was performed on the two imprinted 
gene sets filtered for known association with our prioritized metals; those genes that are predicted 
or experimentally validated (n = 43), and just those experimentally validated (n = 14). The TP53 
signaling pathway was also enriched in both the predicted/validated and experimentally validated 
gene sets (p < 5.7 × 10 5, and p < 0.0023, respectively). Enrichment of the AhR signaling pathway 
was significant (p < 0.00023) represented by the genes CDK4, CYP1B1, RB1, and TP73 in the 
computationally predicted/experimentally validated gene set, but not in the set of only 
experimentally validated metal-associated imprinted genes. 

3.1.1. TP53 Signaling-Associated Imprinted Genes  

The TP53 tumor suppressor protein is known as the guardian of the genome. It is a key 
transcriptional regulator that responds to a variety of cellular stresses including damage induced by 
various environmental contaminants. It serves to control key cellular processes such as DNA 
repair, cell-cycle progression, angiogenesis, and apoptosis pathways critical for influencing apoptosis 
or cell-cycle arrest [70]. In addition to its critical roles in DNA repair pathways, TP53 can act as a 
transcriptional regulator. Mutations within the TP53 gene are responsible for Li-Fraumeni 
syndrome [71] and loss in functionality of the tumor suppressor is thought to be a contributing 
factor in the majority of cancer cases [72,73]. 

Of the five imprinted genes found to be associated with TP53, TP73 has been shown to increase 
activation of phosphorylated TP53 in mouse embryo fibroblasts [74] and PLAGL1 was shown to 
act as a transcriptional co-activator and enhance the activity of TP53 in both human carcinoma 
P53+/  and HeLa cells [75]. In in vitro models of rat kidney and human osteoblast-like cells, 
binding of WT1 to TP53 has been shown to stabilize TP53, as well as inhibit TP53-mediated 
apoptosis [76]. Further, TP53 has been shown to modulate CDK4/RB1 through CDKN1A in 
human colon cancer cells [77]. TP53 can increase the expression of CDKN1A, which in turn 
decreases phosphorylation of RB1 [78]. Additionally, CDKN1A may also decrease phosphorylation 
of RB1 via CDK2-Cyclin D1 complex [79]. 

3.1.2. AhR Signaling-Associated Imprinted Genes 

The aryl-hydrocarbon receptor is a transcription factor involved in cell cycle regulation, and an 
initiator of biological responses to xenobiotics. AhR has been shown to regulate enzymes such as 
cytochrome P450 and other xenobiotic metabolizing enzyme genes including putative imprinted 
gene CYP1B1 [80]. In addition to xenobiotic metabolism, the AhR pathway plays a key role in 
organismal development processes [81]. In vertebrates, AhR is important for cellular proliferation 
and differentiation as well as many developmental pathways [82]. In addition to its role in 
mediating xenobiotics, the AhR pathway contributes to gene regulation and carcinogenesis [83]. 

Of the five genes found to be associated with AhR, CDK4 is involved in regulation of RB1 
through phosphorylation [84]. It has been shown that RB1 increases activation of the AhR-Arnt 
complex in hepatoma cells [85] and this heterodimer complex is known to regulate CYP1B1 [86] and 
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ALDH1 [87]. AhR has also been shown to decrease activation of phosphorylated E2F1 in tandem 
with RB1 [88,89]. This is worth noting, as expression of TP73, as well as many cyclins, is 
regulated by E2F1 [90,91]. 

3.1.3. Relationships between Imprinted Genes and Toxic Metals 

Using data collected from the CTD, the seven unique genes within the TP53 and AhR pathways 
were detailed according to their known relationships to metals (Figure 1). The current body of 
literature pertaining to these relationships includes associations of the metals with altered gene 
regulation. Of the three genes (CDK4, RB1, and TP73) common to both pathways, upregulation of 
CDK4 is observed upon exposure to both arsenic in a glioma cell line [92] and lead measured in 
peripheral blood [93]. Similarly, exposure to inorganic arsenic is associated with increased TP73 
protein expression and activation of the downstream TP73-TP53 pathway in leukemia cells [94]. 
Conversely, there is decreased expression of RB1 from arsenic [95] and cadmium exposure [96]. 

Of the genes specific to the TP53 pathway, exposure to inorganic arsenic is associated with 
decreased expression of the WT1 gene in leukemia cell lines [97]. To date, the only known 
interaction between PLAGL1 and environmental metals is hypomethylation associated with lead 
exposure [53]. Importantly, changes to signaling within the TP53 pathway by environmental 
contaminants such as inorganic arsenic and cadmium can impact the balance between apoptosis 
and proliferation in epithelial cancer cell lines [98,99]. 

Figure 1. Top canonical pathways and their relationships to toxic metals. The aryl-
hydrocarbon receptor (AhR) (p = 0.001) and TP53 (p = 0.007) networks display known 
interactions between pathway genes and priority metals (arsenic, cadmium, and lead). 
Imprinted status is also noted; abbreviations are shown in the figure legend. 

 

Gene-metal interactions that disrupt the AhR pathway can disturb xenobiotic metabolism and 
increase an individual’s susceptibility to a range of negative health outcomes. Studies have shown 
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decreased expression of CYP1B1 in response to metals such as arsenic [100] and cadmium in acute 
promyelocytic leukemia cell lines [101]. Interactions between ALDH1L1 and environmental metals 
have not been studied. It should be mentioned that the analyses for gene-metal interactions were 
performed using the CTD database, which may not be fully comprehensive due to querying 
limitations and time delays between published findings and inclusion in the database. Tools such as 
CTD or IPA’s canonical pathway analysis may be prone to inherent selection bias. Resources such 
as these that index interactions from published research may disproportionately display enrichment 
for a particular outcome or pathway as a consequence of overrepresentation of that particular 
interaction within the literature. Nevertheless, the alteration of these putative imprinted genes 
within the AhR pathway by inorganic arsenic, cadmium, and possibly other toxic metals may then 
serve as a potential mechanism of later life health outcomes including cancers and susceptibility to 
exogenous chemicals. 

3.2. Sequence Specific Patterns of TF Elements in the Imprinted Genes 

An analytical method was used to explore the four separate gene sets including experimentally 
validated and predicted imprinted genes (n = 197), experimentally validated imprinted genes  
(n = 90), experimentally validated and predicted imprinted genes associated with metals 
enrichment (n = 43), and experimentally validated imprinted genes associated with metals 
enrichment (n = 14) for common regulatory sequences and/or known regulation by common 
transcription factors. These results demonstrated that two transcription factor families were 
identified across all four gene lists, namely the family containing TF2B (Transcription Factor II B) 
and the PLAG family (Table 2). 

TF2B is a transcription factor that mediates interactions between RNA polymerase II and 
promoter regions [102]. The other significantly enriched transcription factor family was the PLAG 
family. The PLAG family contains the transcription factors pleiomorphic adenoma gene 1 
(PLAG1), pleiomorphic adenoma gene-like 2 (PLAGL2), and Pleiomorphic Adenoma Gene-Like 1 
(PLAGL1, also known as ZAC1) encoded by the imprinted gene PLAGL1. 

Interestingly, PLAGL1 is a zinc finger protein transcription factor that has been implicated as a 
regulatory hub in an “imprinted gene network” (IGN) controlling embryonic growth and cell 
proliferation, and proposed as a regulator of expression of other imprinted genes including IGF2, 
H19, and CDKN1C [103,104]. The data here expand upon this notion and in fact support that 
many, specifically 133 of the 171 analyzed imprinted genes (i.e., 77%–78%) have binding sites for 
PLAG transcription factors, thus greatly expanding the current list of potential imprinted gene  
targets of PLAG. 

Likewise, when only the metal-associated imprinted genes (n = 14) were analyzed,  
the most significantly enriched transcription factor families were once again the families of TF2B  
(p < 2.62 × 10 4) and PLAG (p < 4.9 × 10 3). TF2B motifs were enriched in 7 of 14 (50%) metal 
associated gene sequences. 
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Table 2. Enriched transcription factors amongst the imprinted gene sets.  

Gene set 
Transcription 

factor families 

Transcription 

factors 
Genes p-value 

Representative consensus 

sequence 

Experimentally 

Validated & Predicted 

IGs (n = 197) 

TF2B GTF2B 93/171 

(54%) 

3.79E-45 ccgCGCC 1 

 PLAG PLAG1 

PLAGL1 

PLAGL2 

133/171 

(78%) 

2.10E-08 gaGGGGgcggggggggggggggg 2 

Experimentally 

Validated IGs  

(n = 90) 

TF2B GTF2B 38/71 

(54%) 

4.72E-19 ccgCGCC 

 PLAG PLAG1 

PLAGL1 

PLAGL2 

55/71 

(77%) 

3.48E-04 gaGGGGgcggggggggggggggg 

Experimentally 

Validated & Predicted 

IGs Metals-associated 

(n = 43) 

TF2B GTF2B 21/43 

(49%) 

1.09E-10 ccgCGCC 

 PLAG PLAG1 

PLAGL1 

PLAGL2 

35/43 

(81%) 

1.31E-04 gaGGGGgcggggggggggggggg 

Experimentally 

Validated IGs Metals-

associated (n = 14) 

TF2B 

 

GTF2B 7/14 (50%) 2.62E-04 ccgCGCC 

 PLAG PLAG1 

PLAGL1 

PLAGL2 

13/14 

(93%) 

4.90E-03 gaGGGGgcggggggggggggggg 

1 Consensus sequence based on most conserved nucleotide at each position for 210 sequences; 2 Consensus sequence 

based on most conserved nucleotide at each position for 337 sequences. 

Transcription factors are known regulators of gene expression but they also serve an important 
role in regulating access to the DNA within genes. This access has consequences for both 
transcription and DNA methylation patterning. The binding of transcription factors to specific sites 
within the promoter region may protect CpG islands from methylation [105]. Recent work has 
found that areas with high transcription factor binding tend to have lower methylation [106]. 

Expanding upon previous work linking transcription factor occupancy with footprints left by  
DNase 1 [107,108], the Stamatoyannopoulos group studied numerous cell and tissue lines and 
found such footprint occupancy represented a viable quantitative measure of transcription factor 
occupancy and such occupancy afforded protection from DNA methylation [109]. 

In this context, our laboratory has recently hypothesized that in the case of cadmium and likely 
other environmental contaminants as well, distinct methylation patterns may represent 
“environmental footprints” or indicators of transcription factor occupancy during times of DNA 
methylation [58]. Based on the results from the present study, it can be hypothesized that specific 
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transcription factor families may impact occupancy related to imprinted gene regulatory regions 
and subsequently their potential for DNA methylation. The identification of these regulators of the 
methylation “footprints” may serve as important biomarkers of environmental exposure, and may 
help to support a mechanistic link between toxic metals exposure, imprinted gene alterations, and 
later life health outcomes. 

4. Conclusions and Future Research Directions 

Using a survey of current experimentally validated and predicted imprinted genes, we set out to 
examine shared functionality and pathway enrichment within the imprinted gene set. Notably, we 
found: (i) common functionality among proteins encoded by the imprinted gene set; (ii) several of 
the putative and known imprinted genes play a role in the TP53 and AhR pathways and many of 
these imprinted genes have been shown to interact with toxic environmental metals specifically in 
their ability to modify, and in certain cases disrupt, apoptosis, cell cycle arrest, ligand metabolism,  
DNA repair, and may promote the development of certain cancers; and (iii) common transcription 
factor-based regulatory regions for TF2B and PLAG present in the promoter regions of the 
experimentally validated and predicted imprinted genes. 

As a result of their impact of access to DNA, transcription factors may contribute to specific 
DNA methylation patterning upon exposure to metals. Our lab has recently hypothesized that 
distinct methylation patterns due to exposure to environmental contaminants may represent 
“environmental footprints” of transcription factor occupancy during DNA methylating events. 
Based on our results, it can be hypothesized that specific transcription factor families such as TF2B 
and PLAG may impact the occupancy and subsequent methylation of the imprinted gene set. 
Additional research is needed to understand the mechanisms linking metals exposure, transcription 
factor occupancy and the imprintome. It is also worth noting that we prioritized the current research 
on cadmium, lead, and arsenic. While these metals represent some of the most studied, the lack of 
inclusion the emerging roll additional metals play in terms of impact on the epigenome is not a 
reflection of their toxicity, or relationship to genetic imprinting. Furthermore, metals are only one 
class of the broad range of environmental contaminants that have been shown, or may be associated 
with genetic imprinting and other epigenetic alterations. 

Our novel finding that CDK4, RB1, and TP73 are associated with two biologically critical 
pathways, TP53 and AhR may have implications for understanding the biological mechanisms of 
how these imprinted genes may ultimately be associated with negative health outcomes. 
Importantly, as more databases are populated with published work on imprinted genes and their 
interactions with toxic metals, other statistically significant pathways may be associated with the 
imprintome, or subsets of imprinted genes, and may provide further mechanistic links between 
genetic imprinting and disease. 

Furthermore, our current findings have implications for understanding perturbed biological 
pathways that may provide insight into early life exposures and later life health consequences. In 
addition, it is worth noting, that while the idea is still under debate, further studies are needed to 
determine the extent of trans-generational inheritability of specific patterns of methylation and their 
contributions to disease. Combined with the dysregulation of imprinted genes by toxic-metals, it 
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may be possible to link ancestral exposure to environmental contaminants with current  
patterns of disease. 

Based on our findings, further research is recommended to investigate the biological 
consequences of the imprinted gene set and its relationship to transcription factor occupancy. 
Specifically, transcription factor knockdown experiments or controlled toxicological experiments 
may help to elucidate the relationship between imprinted genes, transcription factor occupancy, 
environmental exposures, and associated health consequences. 
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The Impact of the Human Genome Project on  
Complex Disease 

Jessica N. Cooke Bailey, Margaret A. Pericak-Vance and Jonathan L. Haines 

Abstract: In the decade that has passed since the initial release of the Human Genome, numerous 
advancements in science and technology within and beyond genetics and genomics have been 
encouraged and enhanced by the availability of this vast and remarkable data resource. Progress in 
understanding three common, complex diseases: age-related macular degeneration (AMD), 
Alzheimer’s disease (AD), and multiple sclerosis (MS), are three exemplars of the incredible 
impact on the elucidation of the genetic architecture of disease. The approaches used in these 
diseases have been successfully applied to numerous other complex diseases. For example, the 
heritability of AMD was confirmed upon the release of the first genome-wide association study 
(GWAS) along with confirmatory reports that supported the findings of that state-of-the art 
method, thus setting the foundation for future GWAS in other heritable diseases. Following this 
seminal discovery and applying it to other diseases including AD and MS, the genetic knowledge of 
AD expanded far beyond the well-known APOE locus and now includes more than 20 loci. MS 
genetics saw a similar increase beyond the HLA loci and now has more than 100 known risk loci. 
Ongoing and future efforts will seek to define the remaining heritability of these diseases; the next 
decade could very well hold the key to attaining this goal. 

Reprinted from Genes. Cite as: Bailey, J.N.C.; Pericak-Vance, M.A.; Haines, J.L. The Impact of the 
Human Genome Project on Complex Disease. Genes 2014, 5, 518-535. 

1. Introduction 

In celebration of the 10th anniversary of the completion of the Human Genome Project, it is 
pertinent to take a step back and reflect on the progress that has been made in genetic and genomic 
research over the past decade by exploring the knowledge gleaned from the extensive wealth of 
information provided by the Human Genome Project (HGP). Herein we provide a concise historical 
overview of three signature human diseases that have strong but complex genetic etiologies:  
age-related macular degeneration (AMD), multiple sclerosis (MS), and Alzheimer’s disease (AD). 
The significant progress in defining the genetic architecture of these diseases, beginning with the 
pre-genome-wide association study (GWAS)-era and concluding with the current state of each, and 
what lies ahead for these complex diseases reflects the great progress that has been made in general 
in the study of multifactorial diseases, and provides a brief glimpse at what we can hope the next 
decade of genomic research will provide. 

2. Age-Related Macular Degeneration (AMD) and the First Genome-Wide Association Study 

Age-related macular degeneration an ocular neurodegenerative disease that results primarily in 
loss of central vision, is a major cause of visual impairment and blindness in elderly populations 
worldwide. Although there was at one time substantial controversy over the strength of the genetic 
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effects in AMD, genetic and epidemiological research, established that there is a significant genetic 
component to AMD, estimated to be 45%–70% [1]. This was supported by twin studies that reported 
higher incidence of disease in monozygotic versus dizygotic twins [1–5] and family studies in 
which risk for developing AMD between first degree relatives ranges from 2–3 [3,6,7]. This 
knowledge encouraged the application of increasingly sophisticated genomic techniques to elucidate 
the genetic etiology of AMD susceptibility and pathogenesis. Prior to major genetic breakthroughs 
such as the completion of the HGP, it was well established that inflammatory and immunologic 
mediators contribute to AMD (e.g., [8–13]). However, this knowledge did not lead to identification 
of any confirmed genetic loci for AMD. Following the trends at that time in applying the available 
statistical genetic techniques, numerous genetic linkage studies using multiplex families and 
(primarily) affected sibships were attempted [14–22]. Notably, The ABCA4 (ABCR) locus on 
chromosome 1p21, identified for its involvement in autosomal recessive Stargardt disease 
retinopathy [23–27], was one of the first loci identified as involved in AMD, though not all reports 
have been consistent [23–31]. While linkage studies continued to provide suggestive evidence of a 
role of genetics, they did not find any definitive locus for AMD. In a large meta-analysis of most of 
these genetic linkage studies, several chromosomal regions were identified as highly likely to 
harbor AMD genes, most convincingly including chromosome 1q23.3–q32 and 10q26 [32]. 

With the continuing evolution of HGP resources, in particular the identification of very large 
numbers of single nucleotide polymorphisms (SNPs) [33,34] multiple new experimental designs 
for identifying AMD loci were employed. SNPs provided several advantages over the then 
prevalent microsatellite markers; the two most important were the high density of SNPs across the 
genome, and their much higher fidelity in genotyping. The culmination of the efforts of four 
independent studies using four complementary study designs was a convergence on the discovery 
of the association between AMD and the gene encoding the complement factor H protein (CFH), 
located on chromosome 1q32. In one of the first reported genome-wide association studies 
(GWAS), Klein et al. [35] screened 96 AMD cases and 50 non-AMD controls to evaluate variants 
associated with AMD. The GWAS method implements a hypothesis-free approach in which a large 
number of SNPs are genotyped across the genome and evaluated for association with disease. This 
particular study evaluated 116,204 successfully genotyped SNPs and detected association between 
AMD and an intronic SNP in CFH (p < 10 7). Linkage disequilibrium analysis and localization 
using resequencing in this region led to the discovery of a nonsynonymous SNP in exon 9  
of CFH; this SNP, rs1061170, causes the substitution of a histidine for a tyrosine at amino  
acid 402 (Y402H). 

Independently and concurrently with the Klein et al. study [35], Haines et al. [36] also identified 
the association with the Y402H variant, but by implementing a purely locational genomic 
approach. By focusing on and extending slightly beyond the 24 Mb region implicated by linkage 
studies of AMD [14,15,22] they identified a five-SNP haplotype spanning a 261 kb region 
surrounding the Regulators of Complement Activation (RCA) gene cluster by genotyping only 61 
SNPs in two independent datasets. Both affected and unaffected individuals homozygous for the 
risk haplotype were sequenced for the genes residing in this haplotype. Their hypothesis was that 
having controlled for the locus specific genetic background (e.g., the haplotype), frequency 
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differences for variants between cases and controls would identify the causal variation. Scanning 
the coding region of CFH in those individuals, Y402H was by far the most significantly different 
of the 11 detected variants. Follow-up genotyping in the original datasets confirmed that the 
Y402H variant was significantly associated with risk for AMD and that a surprisingly high 
proportion of the genetic variation in AMD could be attributed to the Y402H variant. 

Implementing yet another independent, concurrent, and complimentary approach to localize  
AMD-causing variants, Edwards et al. also identified the Y402H variant using a fine-mapping 
approach focused on this same general region on chromosome 1 [37]. This study centered efforts 
on 86 SNPs located in coding sequences encompassing the RCA locus in a case-control sample. 
The most significant of the 29 associated variants located in the RCA was again rs1061170 (Y402H) 
in CFH. Replication analysis evaluating this and 13 additional SNPs typed in a second case-control 
sample confirmed the association of Y402H with AMD. Further analysis established that that C 
(risk)-allele carrying individuals accounted for approximately half of cases. 

Hageman and colleagues also confirmed the Y402H variant, applying yet a fourth genetic 
analysis method [38]. They applied prior biological knowledge of the involvement of CFH (also 
called HF1) in membranoproliferative glomerulonephritis type II (MPGNII), a disease in which 
patients develop ocular drusen nearly identical to those found in AMD patients. The genetic lesion 
for MPGNII resides in the same chromosome 1q31–32 region that was also implicated in linkage 
studies of AMD [14,15,22]. Evaluating two samples of unrelated individuals for AMD-associated 
variation in CFH, this group also detected evidence for association between AMD and the  
Y402H variant. 

These four studies simultaneously reported the role of variation in a chromosome 1 region that 
had previously been highlighted in AMD linkage studies [14,15,22]; identifying this major genetic 
determinant of AMD, something that even a year earlier was thought not to exist, was a major 
landmark in genetics of complex disease. These results, while obviously important for AMD 
research, provided the first validation of the GWAS approach. Up to that point, hundreds of papers 
had been written about the potential of the GWAS study design, but very little had been published 
on actual implementation. Dr. Elias Zherhouni, then Director of NIH, highlighted these studies as a 
major breakthrough in health research [39]. This very strong validation imparted the necessary 
confidence in GWAS to invigorate its application to numerous other diseases. Over the past nine 
years more than 2000 GWAS studies that have been published [40]. 

Since the initial discovery of the Y402H CFH variant, substantial progress has been made in 
understanding the genetics of AMD. This includes the localization of the strongest single genetic 
effect in AMD on chromosome 10q26 (through positional localization approach) to the region 
containing ARMS2 and HTRA1 (e.g., [41–47]), though there is still controversy whether either one 
or both of these genes contains the causal variant (e.g. [46–49]). 

In the CFH region, in addition to the high-effect Y402H variant, a deletion of CFHR1 and 
CFHR3 was detected and determine to be protective for AMD [50] (e.g., [51–53]). Various 
additional studies focused on the potential role of additional complement mediators in AMD. Gold 
et al. explored additional alternative complement pathway activators beyond CFH and determined 
that variants in complement factor b (BF/CFB) and C2 are highly protective against AMD [54]. A 
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coding variant in C3 was also determined to be associated with AMD [55–57]. A variant upstream 
of the CFI gene was also determined to influence AMD risk [58]. A variant in the CFD gene was 
associated with AMD but replicated almost solely in females [59]. More recently discovered  
AMD-associated loci have been detect in/near genes ADAMTS9, B3GALTL, CETP,  
COL8A1-FILIP1L, IER3-DDR1, LIPC, RAD51B, SLC16A8, TGFBR1 and TIMP3 [60–62]. 

GWAS studies in AMD now include over 1 million markers [61,63–65]. Though the traditional 
GWAS approach has been incredibly informative for many diseases, a great deal of the genetic 
proportion of many of these diseases remains to be fully elucidated even after applying 
straightforward and complex GWAS methods [66]. Approaches to enhance the detection of genetic 
variation associated with disease have necessarily expanded beyond the traditional GWAS to 
broaden the range of discovery and increase the power of detection; one technique that aids in this 
process is imputing variants—using known genetic information from a reference sample. 
Obviously increasing the sample size of genetic studies of complex diseases is crucial to accelerate 
the identification of disease-specific variants. Expanding the number of testable variants is now a 
more attainable goal using imputation, a technique that can significantly increase the number of 
tested variants beyond those interrogated by a GWAS through informing genotypes of untyped 
SNPs [67,68]. Combining known genotypes at GWAS-interrogated SNPs with available sequence 
data from a reference panel and inferring untyped SNPs in the dataset based on haplotype 
frequencies allows for the inference of numerous SNPs with varying degrees of confidence and 
accuracy. This method increases the power of GWAS by increasing the number of SNPs that can 
be tested, it can also lead to more efficient identification of causal variants and/or SNPs in high 
linkage disequilibrium with a causal variant [67,68]. Imputation has been implemented in several 
studies of AMD to enhance the ability to detect associated variants [61,63,69]. For example, the 
most recent publication from the AMD Gene Consortium reports seven novel variants that were 
detected using imputed data in addition to confirming 12 previously identified variants [61]. 

An additional method to utilize genome-wide data beyond the traditional association analysis is 
to perform pathway enrichment analyses. The goal of such analyses is identify biological 
relationships between associated genetic signals and pathways of interest in a particular disease. 
Pathway analysis can be performed by a comprehensive review of GWAS results to assess 
overrepresentation of SNPs meeting a specific threshold that occur within biological  
pathways [70]. These enhance GWAS by evaluating potentially biologically relevant signals that 
might otherwise be overlooked because of the numerous false-positive results that occur in large 
GWAS studies [70]. These have the potential to highlight otherwise undetected small and/or 
interactive effects that are important to evaluate in addition to and in the context of the overall 
genome-wide results. Using the INRICH (Interval-based Enrichment Analysis Tool for Genome 
Wide Association Studies) pathway analysis tool [71] to evaluate overall results, the AMD Gene 
Consortium not only confirmed previously implicated AMD pathways, but also determined 
additional pathways of interest in the most recent publication which detected enrichment of 
complement and atherosclerotic pathway-encoding genes as well as genes involved in pathways of 
collagen and extracellular region, complement and coagulation cascades, lipoprotein metabolism, 
and regulation of apoptosis [61]. 
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The impressive impact that genetic information can have on our understanding of disease 
pathophysiology is highlighted in the recent publication by Yang et al. in which they report that 
ARMS2/HTRA1 risk alleles contribute to AMD pathogenesis by decreasing the defense capabilities 
of superoxide dismutase 2 (SOD2) and thereby cause the retinal pigment epithelium to be more 
susceptibility to oxidative damage [72]. Having an explanation for the role the variants have in the 
disease is crucial to further elucidating disease mechanisms both genetically and physiologically. 
Additionally, genetic studies implicate VEGF as having a role in AMD and current AMD treatment 
and clinical trials utilize this information for treatment of neovascular AMD (reviewed in [73]), 
thus highlighting the utility of genetic data for clinical impact. 

3. Alzheimer’s Disease 

Alzheimer’s disease (AD) is a genetically heterogeneous neurologic disorder that is the leading 
cause of dementia among the elderly. It is characterized by the progressive loss of cognitive ability 
beyond what is normally associated with aging. AD is a complex disease that is influenced by both 
environmental and genetic mediators, the most significant of which is age [74,75]. The heritability 
of AD is estimated between 60%–80%. Before 1985, there was very significant debate about 
whether or not genetics played any role in AD (e.g., [76–80]). However, in 1987, using some of the 
earliest technologies employing genomic markers, a locus for the rare early onset AD (EOAD) was 
identified [81], and in 1991 the responsible variation in the APP gene was located [41]. 

Expansions of genomic marker sets, developed through early HGP efforts, were used to further 
identify two additional early onset genes in the early 1990’s [82–86]. Simultaneously and 
independently, the emerging technologies of genomic markers and genetic linkage analysis were 
applied to the far more common late onset Alzheimer’s disease (LOAD), which accounts for 99% 
of AD cases [87]. Using these techniques, Pericak-Vance et al. identified a locus on chromosome 
19 near the gene encoding apolipoprotein E (APOE) [88,89], which was at that time thought to only 
be involved in cardiovascular disease. This locus has three distinct alleles: 2, 3, and 4.  
Corder et al. characterized a dose-dependent association between the APOE- 4 allele and an 
increased risk of LOAD [90]. Mutations in the EOAD genes are causal, with very high penetrance, 
and opened avenues for exploring the pathophysiology of AD. However, in aggregate they explain 
less than 1% of AD. In contrast, APOE explains at least 25% of AD. A year after determining the 
role of the 4 variant in LOAD susceptibility, it became apparent that the 2 allele provided an 
independently protective effect on LOAD [91]. 

The APOE finding was pivotal for two reasons. Within the AD research community, it provided  
a new avenue and a completely different view of the genetic etiology of AD. More generally, 
however, this was one of the very first examples of how the emerging technologies of the HGP 
could be successfully applied to diseases lacking a simple Mendelian inheritance pattern, i.e., what 
are commonly called complex diseases. The finding of the APOE- 2 allele protective effect was 
also one of the first examples of different alleles carrying different effects on a complex disease, a 
pivotal moment in AD research and broadly in the field of genetics. 

Innumerable attempts to identify additional genomic variations modulating the risk of LOAD 
followed these groundbreaking APOE discoveries, using the increasingly dense set of known 
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variations and emerging sequencing techniques (cataloged in Alzgene.org). These efforts were 
primarily applied to specific genes of interest; that is, employing a focused candidate gene 
approach. Although there were numerous reports of significant associations, no consensus arose 
that any of these were true effects. It was not until GWAS became a viable approach [92–94], and 
multiple datasets were combined, that additional LOAD loci become visible and confirmed [95–97]. 
The most recent efforts by the Alzheimer Disease Genetics Consortium (ADGC) and the 
International Genomics of Alzheimer’s Project (IGAP) have greatly increased the number of 
known loci associated with LOAD. In the 2011 Naj et al. report, a three-stage design (discovery 
stage 1, replication stages 2–3) was utilized; this analysis evaluated >18,000 cases and  
>29,000 controls using both joint- and meta-analysis approaches and novel genome-wide significant 
hits were detected at SNPs in MS4A4A, CD2AP, EPHA1 and CD33 [96]. In Lambert et al. 2013, 
the IGAP reported an additional eleven novel LOAD susceptibility loci after analyzing genotyped 
and imputed data in a two-stage meta-analysis of >25,000 cases and >48,000 controls [95]. There are 
now over 20 loci identified that influence LOAD [95]. Importantly, using the pathway approach, the 
amyloid precursor protein and tau pathways are confirmed by this most recent large GWAS in 
addition to the newly implicated hippocampal synaptic function, cytoskeletal function and axonal 
transport, regulation of gene expression and post-translational modification of proteins, and 
microglial and myeloid cell function pathways [95]. 

4. Multiple Sclerosis 

Multiple sclerosis (MS) is a common cause of neurological disability involving inflammatory 
demyelination of the central nervous system [98–101]. There is ample evidence that MS has  
a strong genetic component, but like so many other complex diseases, non-genetic influences are 
also important (e.g., [99,102–104]). MS is also a complex, heterogeneous disease in which 
significant efforts to unravel the role of genetics have been made. Unlike both AMD and LOAD, 
the first and strongest genetic effect in MS was identified well before the HGP was undertaken. 
Because MS is an autoimmune disease, it was strongly suspected that the major histocompatibility 
locus (MHC) would be involved. More specifically, there was a focus on the human leukocyte 
antigen loci on chromosome 6. In the early 1970’s the HLA loci could be genotyped using blood 
antigen reactions, allowing assignment of genotypes without directly examining the DNA. Through 
a number of efforts (e.g., [99,103–109]) a strong risk association with the HLA-DR locus, and 
specifically the 15*01 allele was identified. 

Despite this auspicious beginning, identifying additional MS loci languished. As with the other 
complex diseases, genetic linkage analysis was applied to multiplex MS families, with varying 
results. Some early genetic linkage studies confirmed the role of HLA [110], while others  
did not [111]. Additional studies, using the increasingly dense DNA marker sets and larger 
datasets, ultimately demonstrated and confirmed that the HLA locus was the single largest genetic 
effect, and that any other MS loci would have at most modest individual effects [109,110,112–116]. 
These studies did highlight several other possible loci, but did not have the resolution to identify 
specific associated genetic variations [115,116]. 
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Finally, in 2007, nearly 30 years after the initial association finding, a second locus for MS was 
identified [117,118]. Gregory et al. employed a genomic convergence approach that integrated data 
from genetic linkage studies, genetic association studies, model system gene expression data, and  
in vitro functional data to narrow in on a specific locus and a functional polymorphism in the 
interleukin-7 receptor  chain (IL7R) [117]. Independently, the International Multiple Sclerosis 
Genetics Consortium (IMSGC) published results from one of the first large-scale GWAS studies, 
using 334,923 GWAS SNPs. The IMSGC used a hybrid study design that included a family-based 
study of 931 family trios and an independent dataset set of cases and controls [118]. These analyses 
confirmed the role of genetic variation in IL7RA and also highlighted variations in IL2RA. 

These results also had broad implications for the field of MS resarch. The IMSGC GWAS was 
still one of the first such studies done with a well-powered dataset and demonstrated that  
family-based and case-control GWAS approaches were both useful methods for exploring genetic 
information. In addition, like AMD, the convergence of independent approaches (GWAS and  
gene-targeted methods) further validated that GWAS could identify relevant associated loci. 
Subsequent studies with much larger datasets [96,119,120] have now identified over 100 total loci 
associated with MS. 

Efforts in MS have shown substantial increases in the number of independent loci associated 
with this disease. The most recent IMSGC study evaluated in two stages more than 80,000 individuals 
of European ancestry [119]. This analysis expanded the known MS loci by 48, raising the total 
number of discrete MS-associated loci to 103. In addition, the IMSGC interrogated specific 
genomic regions and hypotheses using a custom array, the Immunochip. The group efficiently 
utilized extensive amounts of data by assembling multiple studies and utilizing imputation methods 
and then applying conditional and joint analysis methods [119]. Such methods are becoming more 
common in the efforts to expand the power to detect common variation in many multifactorial 
diseases. The strongest of the novel hits from this analysis implicates a SNP in the region between 
BCL10 and DDAH1 [119]; BCL10 is an activator of nuclear factor (NF)- B signaling which is 
involved in gene expression control of inflammation, immunity, cell proliferation and apoptosis 
and has been explored as a clinical target for MS [73,119,121]. 

Pathway analysis in MS has also proven useful. The IMSGC study additionally sought to 
evaluate the Gene Ontology (GO) processes of the associated variants using the MetaCore ([122]); 
their results indicated, as expected, that most variants fall in or near genes with immune  
function [119]. Another recent endeavor to evaluate pathways involved in MS utilized results from 
eight MS GWAS datasets and prioritized genes in the cell adhesion molecule (CAM) biological 
pathway with the Cytoscape software [120,123]. Their findings highlighted five networks that were 
associated with susceptibility to MS—again supporting the utility of expanding beyond traditional 
case-control association analyses of GWAS data and encouraging the use of multiple datasets to 
determine enrichment of signals that might otherwise not have been detected using a traditional 
GWAS approach [120]. 
  



193 
 

 

5. Conclusions and Future Directions 

Since the completion of the HGP and shortly after the first GWAS, thousands more GWAS have 
been reported [40]; these have brought forth great progress in numerous diseases that previously 
were only hypothesized to have a genetic component. Large-scale collaborative efforts have raised 
the number of known AMD, AD, and MS loci to 19 [61], 20 [95], and 103 [119], respectively. 
Efforts to increase sample size have been successful, as evidenced by the largest and most recently 
reported analyses of AMD [61], AD [95] and MS [92], which each evaluated >74,000 individuals; 
however, other techniques are necessary to evaluate and explore as data becomes increasingly large 
and complex. Whole exome and whole genome sequencing are more recent approaches to 
generating genetic data that allow investigation far beyond the capabilities of the GWAS, and their 
utility is just starting to take shape in studies of many complex common diseases, including those 
mentioned herein. These will enable the study of rare and low frequency variants, which have been 
implicated as a potential source of missing heritability in many genetic diseases [66]. Analysis of 
data from exome arrays, designed to jointly interrogate data relevant to association studies of 
common variants and sequencing studies of rare variants, will improve genetic analysis of disease 
by providing greater coverage of known susceptibility loci and enhancing the likelihood for 
discovery of novel disease loci. 

For each of these diseases, the fact that there is a genetic component is irrefutable; this 
knowledge has, over the past decade, most certainly been confirmed and expounded upon with the 
completion of the human genome sequence. As genetic knowledge continues to grow, and as 
clinical phenotyping techniques improve, further genetic variation influencing AMD, AD, and MS 
will likely be detectable and, hopefully, their roles in these diseases will be more clearly  
defined [124]. We can anticipate that as our understanding of genetic etiology of these diseases 
grows, future studies will further explore rare variations contributing to disease, the role of copy 
number variants, and the genetics of these diseases in non-European populations. Additionally, the 
role of currently undetermined environmental factors and their interactions with genetic variants 
must continue to be elucidated. The global objective of prior and ongoing studies is certainly to 
improve the current comprehension of new and existing disease loci in order that the biology of 
these diseases can be fully explicated in the hope of attaining improved strategies for disease 
treatment and prevention in the future. 

The last decade has doubtlessly ushered in dramatic advances in the amount of shared data 
available to genetic researchers. Resources such as the NHLBI Grand Opportunity Exome Sequencing 
Project [125], the 1000Genomes [126], ENCODE [127], and the International HapMap  
Project [128,129] provide seemingly limitless amounts of data—all geared toward further 
understanding the intricacies of the human genome and how alterations of it influence human 
variation. We have provided a brief genetic history of three diseases that are exemplars of developing 
approaches to apply the incredible resources of the HGP. Such progress will most certainly continue 
to improve and exponentially increase in the next decade to facilitate a greater understanding of these 
and other complex diseases, as well as usher in the realization of personalized medicine. 
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From Genotype to Functional Phenotype: Unraveling the 
Metabolomic Features of Colorectal Cancer 

Oliver F. Bathe and Farshad Farshidfar 

Abstract: Much effort in recent years has been expended in defining the genomic and epigenetic 
alterations that characterize colorectal adenocarcinoma and its subtypes. However, little is known 
about the functional ramifications related to various subtypes. Metabolomics, the study of small 
molecule intermediates in disease, provides a snapshot of the functional phenotype of colorectal 
cancer. Data, thus far, have characterized some of the metabolic perturbations that accompany 
colorectal cancer. However, further studies will be required to identify biologically meaningful 
metabolic subsets, including those corresponding to specific genetic aberrations. Moreover, further 
studies are necessary to distinguish changes due to tumor and the host response to tumor. 

Reprinted from Genes. Cite as: Bathe, O.F.; Farshidfar, F. From Genotype to Functional Phenotype: 
Unraveling the Metabolomic Features of Colorectal Cancer. Genes 2014, 5, 536-560. 

1. Introduction  

Colorectal cancer (CRC) is the second leading cause of cancer death in the Western world. CRC 
invades locally to involve successive layers of the colon or rectum, then spreads via the lymphatic 
system to regional lymph nodes and/or metastasizes hematogenously to involve distant organs, 
such as the liver or lungs. Distant metastatic disease is present in about 25% of individuals. The 
features of the tumor that describe this behavior are reflected in the TNM (Tumor, Lymph Node, 
Metastasis) staging classification of tumor, where higher degrees of disease portend a worse 
prognosis. Other clinical and pathologic features that are well known to reflect biological behavior 
include the presence of obstruction or perforation; degree of differentiation; and presence of lymph 
or vascular invasion. 

In recent years, it has become apparent that CRC has variable biologic behavior, which is not 
always reflected by its clinicopathological features. Rather, its growth properties, its tendency to 
metastasize, and its susceptibility to treatments are a function of its molecular properties. For 
example, colorectal cancers with lymph node involvement more frequently have BRAF and KRAS 
mutations [1,2], high levels of CCR7 [3], low levels of thymidylate gene expression [4], as well as 
p16INK4A promoter methylation [1]. The recognition that the molecular properties of CRC dictate 
biological behavior has led various investigators to subclassify CRC based on its “molecular 
signature” at the transcriptomic level [5–8]. Even more recently, coordinated efforts have been 
made to obtain highly detailed analysis of the CRC genome, as well as the downstream 
transcriptomic and epigenomic events [9]. As a result of these efforts, it is now feasible to refine 
the classification of CRC, based on molecular pathogenesis. 
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2. Molecular Subclassification of CRC: From Genomics to Phenotype 

Most investigators classify sporadic CRC according to molecular pathway leading to its 
pathogenesis (Figure 1): chromosomal instability (CIN), microsatellite instability (MSI) and CpG 
island methylator phenotype (CIMP). Others have proposed a molecular classification system in 
which groups of CRC are defined according only to MSI and CIMP status in conjunction with 
clinicopathological features (Figure 2) [10,11]. More recently, based on data generated from The 
Cancer Genome Atlas Project, CRC has been designated as hypermutated or non-hypermutated, 
based on mutation rates (Figure 3). 

Figure 1. Classification of CRC by pathogenic pathway. The classical pathway 
involves a progressive accumulation of mutations due to chromosomal instability as an 
adenoma develops into adenocarcinoma. Serrated polyps, which are thought to develop 
from hyperplastic polyps, are generated due to microsatellite instability and/or high 
levels of CpG island methylation. The adenocarcinomas that emerge from that pathway 
have distinct clinical and pathological features.  

 

Figure 2. Relationship of CIMP expression phenotype and microsatellite instability. 
There is significant overlap between MSI-H tumors and CIMP-H tumors, although 
microsatellite stable (MSS) tumors and tumors with a low level of MSI (MSI-L) may 
have high levels of CpG island methylation.  
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Figure 3. CRC subgroups identified by analysis of molecular data compiled from  
224 tumors analyzed by The Cancer Genome Atlas Project [9]. Hypermutated CRC is 
highly enriched for hypermethylation, CIMP expression phenotype and BRAF 
mutations; it most frequently occurs in the proximal colon. 

 

CRC due to CIN represents 80%–85% of sporadic cases. There are imbalances in chromosome 
number and loss of heterozygosity, as well as accumulation of mutations in tumor suppressor genes 
and oncogenes that activate pathways critical for CRC initiation and progression. In that pathway, 
CRC arises from adenomas. 

Tumors with a high degree of MSI (MSI-H; about 15% of CRC) are characterized by frequent 
microsatellite length mutations. MSI occurs due to deficiencies in the mismatch repair (MMR) 
system, which recognizes and repairs nucleotide mismatches. Most sporadic MSI-H CRCs are 
caused by hypermethylation (epigenetic silencing) of the mismatch-repair gene MLH1. This 
silencing typically occurs in tumors of the CIMP phenotype. There is substantial overlap between 
MSI-H cancers and cancers containing a high degree of CIMP (Figure 2). 

CIMP represents a specific type of epigenomic stability that is characterized by widespread 
promoter CpG island methylation and epigenetic gene silencing including tumor suppressor genes. 
CRCs with a high degree of CIMP are associated with older age, female gender, proximal tumor 
location, poor tumor differentiation, BRAF mutation, wild-type TP53, and high levels of global DNA 
methylation [12–14]. CIMP tumors have a distinct mRNA expression profile [9]. CIMP is also 
significantly associated with mucinous or signet ring cell morphology, as well as a marked 
peritumoral lymphocytic reaction, features that are also associated with MSI-H tumors [15,16]. 
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CIMP and MSI-H tumors are thought to arise via the serrated adenoma pathway (i.e., derived from 
sessile serrated adenomas, with progressive dysplasia) [16,17]. 

Importantly, the genomic and epigenomic subclass of CRC has clinical significance (and, 
therefore, biological significance). CIN is associated with a worse prognosis independent of stage 
and type of therapy [18]. MSI-H tumors have a better prognosis than microsatellite stable (MSS) 
CRC [19,20]. Hypermethylation is more common in cancers of the proximal colon, and most 
hypermutated CRCs originate in the proximal colon [9]. The effect of CIMP on prognosis is 
controversial, and analysis has been complicated by the high degree of overlap with MSI. MSI-H 
tumors containing a high level of CIMP are less prone to lymph node or distant metastasis [21]. 
However, in tumors that are not MSI-H, CIMP appears to be associated with worse  
survivals [22,23]. There are also numerous studies on patient outcomes as a function of individual 
molecular events (BRAF mutation, KRAS mutation, TP53 mutation, etc.). However, given the 
numerous possible interactions with other genetic and molecular events, the findings from such 
studies should be interpreted with caution. As an example of this, among MSI-H cancers, TGFBR2 
mutations are associated with better survival [24], and this association with improved survival is 
even more pronounced in the presence of BAX mutations [25]. Finally, there is evidence that there 
is a link between genomic and epigenomic subclass and chemosensitivity [26]. Together, these 
observations demonstrate that the molecular features of CRC have biological consequences that 
translate to clinically significant outcomes. To this end, subclassification schemes will provide a 
good initial framework on which to study the disease. 

However, subclassification based on genomic and epigenomic features has limitations, 
particularly when applying that information to an individual. That is, given the large number of 
combinations of molecular aberrations that are possible for any subclass of CRC, it is clear that 
there is substantial heterogeneity even within each subclass—even at the genomic level, let alone at 
the transcriptomic and proteomic levels. For example, while BRAF mutation frequency is 
particularly high in CIMP-H tumors, it may also occur (albeit infrequently) in CIMP-low  
tumors [10]. Indeed, there are no known mutations that are pathognomonic for any particular 
subtype of CRC. Therefore, if therapeutic strategies and decisions are to be derived for any individual, 
more work is required to define the biological phenotype by studying downstream pathophysiologies. 

3. Functional Genomics: Defining the Biological Impact of the CRC Genome 

While cataloging the molecular features of CRC subtypes is important, what is most relevant 
from a clinical standpoint is how particular molecular features translate to differences in tumor 
biology. Which molecular features predispose to metastasis to various sites in the body, enhance 
tumor growth, induce angiogenesis, confer susceptibility to certain drugs, most affect the general 
health of the host (the patient), and are associated with the best (or worst) prognosis? 

In general, it is well recognized that the fixed structure and sequence comprising the genome  
does not closely predict function or phenotype, as the information encoded by the genome is 
subject to modifications through a multitude of mechanisms and downstream events (Figure 4). 
There are multiple examples relevant to CRC. Hypermethylation of promoter-associated CpG 
islands is frequently seen in CRC and leads to transcriptional silencing; hypomethylation of CpG 
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islands outside of promoter regions is also a hallmark of CRC [27]. Long non-coding RNAs that 
overlap the 5' and 3' termini of genes may regulate the function of one or more genes [28–30]. 
MicroRNAs (miRNA) function to regulate expression at the post-transcriptional level, and 
numerous miRNAs are seen to be dysregulated in CRC [31–35]. Pseudogenes further complicate 
the interpretation of genomic and transcriptomic information. Pseudogenes resemble real genes, but 
contain premature stop codons and mutations that preclude their translation into functional 
proteins. Pseudogene-derived transcripts may act as a decoy to functionally significant miRNAs. 
For example, transcripts corresponding to the pseudogenes PTENP1 and KRAS1P act as a decoy 
for miRNAs targeting PTEN and KRAS [36,37], which are known to be important in CRC. Protein 
translation is further regulated by a number of mechanisms that may vary in CRC [38,39].  
Post-translational modifications, which may be altered in CRC, and differential expression of 
protein isoforms can further affect tumor biology or the host response to CRC [40]. 

In CRC, the genes and pathways that are particularly important in the initiation and progression  
of CRC include the WNT, MAPK, phosphatidylinositol-3-kinase (PI3K), TGF-  and p53 signaling 
pathways [9]. What is becoming increasingly clear is that there is a multitude of genetic and 
molecular events that can lead to the dysregulation of these signaling pathways in CRC. Moreover, 
the degree of dysregulation in each of these pathways may vary considerably between individuals, 
and the biological consequences of those variations are not currently predictable. 

Figure 4. CRC is derived from an accumulation of genomic and epigenomic 
alterations. Alterations at the transcriptional level also occur due to the influence of 
regulatory RNAs (e.g., long noncoding RNA, miRNA, pseudogenes). Post-translational 
regulation and post-translational modifications further contribute to functional 
perturbations in tumor cells. These sequential and synchronous events contribute to the 
phenotype. Phenotype can further modify the genotype as well as any of the 
downstream events. According to this model, the metabolome represents the closest 
molecular representation of phenotype. 
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One example of how diverse (but related) mechanisms could lead to the same biological 
manifestation is in activation of the insulin-like growth factor (IGF)-PI3K pathway. It has recently 
been identified that about 7% of CRCs have an amplification of insulin-like growth factor 2  
(IGF2) [9]. IGF2 overexpression may play an important role in the promotion of CRC [41,42]. In 
15% of tumors without IGF2 amplification, IGF2 gene expression was also overexpressed. IGF2 
amplification or overexpression was associated with genomic events known to activate the PI3K 
pathway. We and others have also observed that CRC is often associated with high levels of 
expression of IGF1R (the receptor for IGF2) [43]. The IRS2 gene, which encodes a protein that 
links IGF1R with PI3K, is frequently gained in CRC, which may also enhance the activity of this 
pathway [9]. Activation of the IGF1R-PI3K pathway is associated with multiple functional 
alterations in tumor cells, including changes in lipid metabolism and inflammatory events. Given 
the diversity of mechanisms by which this pathway (and any pathway) could be affected, it would be 
impractical to dissect all of the individual molecular events contributing to the function of that 
pathway. Rather, it may be more practical to dissect the phenotype so that therapeutic efforts could 
be directed at that particular imbalance. 

Phenotype is therefore a product of preliminary molecular instructions (the genome) amended 
by a number of sequential and synchronous molecular events at the transcriptional and translational 
levels. Genomic information is, therefore, least reflective of phenotype and, as more downstream  
events are taken into account (especially in sum), molecular features more closely predict 
phenotype. Using this as a framework, it would be expected that proteomic and metabolomic 
profiles most closely reflect the phenotype and functional state of a cell (Figure 4). As an extension 
of this functional genomic model, phenotype can further modify any of the preceding molecular 
processes (including genotype, in cells susceptible to mutation), by affecting the conditions of the 
intracellular or extracellular microenvironment. 

4. Metabolism: A Terminal Function Reflecting Phenotype 

While it is possible to identify and measure some of the terminal elements of the proteome, 
protein function is significantly modified by the abundance of other proteins that may not be 
simultaneously measured. For example, soluble receptors and binding proteins may compete with 
functional receptors; ligand function can be modified by competing ligands or inhibitory proteins; 
and protein fragments can have significant biological effects. Since our knowledge of protein 
function is far from complete and since it is not yet possible to measure every single protein and 
protein fragment, one cannot make accurate inferences on phenotype just by evaluating  
the proteome. 

Perhaps the best reflection of tumor phenotype (besides measurement of specific biological 
functions) is the metabolome. Any biological function is dependent on metabolic functions. Any 
alterations in metabolism and bioenergetics will alter the efficiency of downstream biological 
functions. Any perturbations in metabolism are identifiable by simultaneously measuring the 
abundance of co-related metabolites. Importantly, modifications of any of the constituents of the 
metabolome are measurable. Constituents of the metabolome—similar to proteins—are subject to 
some modifications such hydroxylation or amination. Derivatization of functionally known 
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metabolites is traceable by mass spectrometry methods and flux analysis. Moreover, because of the 
co-relationship of various metabolites, it is possible to extrapolate functional consequences of a 
metabolomic state despite such modifications. 

Metabolic phenotype is dynamic; it is not static or even stable. There are a number of sources  
for the dynamic nature of the phenotype in tumor. First, while we often consider a tumor to be of a 
particular genotype, it must be appreciated that any given tumor is actually comprised of cells with 
substantial molecular heterogeneity [44]. Second, tumor phenotype is sculpted by the host immune 
response, where susceptible cells are eliminated and resistant cells survive the immune response, 
immunoediting [45,46]. Third, treatments, such as chemotherapy, alter phenotype by selective 
mechanisms, based on the pharmacology of any particular pharmacologic agent [44,47,48]. Fourth, 
the metabolic and inflammatory milieu within the tumor microenvironment may affect the  
function and phenotype of tumor cells, irrespective of genotype [49,50]. Finally, these same 
microenvironmental factors can predispose tumor cells to further mutational events [51]. The 
metabolic state of any tumor is, therefore, a product of all of these ever-changing influences at any 
given time. 

4.1. Disordered Metabolism Is a Hallmark of Cancer 

It has recently been recognized that one of the hallmarks of a cancer cell is the reprogramming 
of energy metabolism [52]. Cancer consists of rapidly proliferating cells, and large amounts of 
adenosine triphosphate (ATP) and substrates are required to support this proliferation. Sufficient 
ATP production is possible due to adaptations in metabolic pathways, including processes of 
carbohydrate, protein, lipid and nucleotide synthesis, which sustain the high metabolic demand. 

The classic example of metabolic reprogramming is the Warburg Effect [53]. In normal cells, in 
the presence of sufficient oxygen, glucose is processed through oxidative phosphorylation, which is 
the most efficient means of generating ATP. Glycolysis only becomes a primary means to 
metabolize glucose in hypoxic conditions. However, in cancer cells, glycolysis is the dominant 
pathway for glucose metabolism, and this is independent of oxygen supply. The advantage to the 
tumor cell is that this is a much more rapid means of ATP production, which is necessary to 
support rapid cellular proliferation. The increased glucose processing in cancer cells forms the basis 
of 18F-fluorodeoxyglucose positron emission tomography (FDG-PET), which is used to detect and 
monitor tumors including CRC [54,55]. 

Tumor cells also have other characteristic features of metabolic reprogramming, each of which 
function to support the rapidly expanding biomass within tumor. Glutamine uptake is enhanced to 
replenish the tricarboxylic acid (TCA) cycle; glutaminolysis also contributes to the production of 
acetyl-coenzyme A for subsequent lipid biosynthesis; and there is increased fatty acid and lipid 
synthesis, which sustains synthesis of cell membranes and lipid derivatives. 

The altered metabolism of malignancy influences other hallmark functions of cancer such as 
proliferation, apoptosis and inflammation. A high rate of cell proliferation is supported  
by high levels of ATP and substrate. Defective mitochondrial morphology and function can affect 
susceptibility to apoptosis [56,57]. The metabolic milieu within tumor can produce an 
immunosuppressive microenvironment. For example, tryptophan depletion due to overexpression 
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of indoleamine 2,3-dioxygenase can suppress T cell responses against tumor [58–60].  
Finally, alterations in fatty acid metabolism can result in a proinflammatory state, which  
is known to deleteriously affect tumor biology in CRC [61–63]. Therefore, not only is altered 
metabolism in itself a hallmark of cancer; it also supports the other disordered functions that 
characterize malignancy. 

4.2. Genomic and Molecular Events Influencing Metabolism in CRC 

While the genetic and molecular pathogenesis of CRC is being delineated in ever greater detail, 
the effects of the genetic and transcriptional events that characterize CRC are relatively poorly 
understood. That genotype affects metabolism is apparent in the features of FDG-PET, which 
varies with KRAS mutation status and HIF-1 expression [55]. Table 1 summarizes some of the 
known metabolic effects of genetic and epigenetic features that frequently accompany CRC. In a 
number of instances, important proteins can be dysregulated as a result of modulatory events at 
multiple levels (Figure 5). 

KRAS mutations frequently accompany CRC. Tumors with KRAS mutations express high levels  
of GLUT1 (glucose transporter-1), providing the ability for enhanced glucose uptake and 
glycolysis, enabling survival in low glucose conditions [64]. KRAS protein expression and 
activation can be further modified by a number of mechanisms, including post-translational 
modification (Figure 5). 

HIF-1 overexpression also frequently accompanies CRC [69]. HIF-1 transcription factor 
activates numerous target genes (reviewed in [70]). Not only is HIF-1 transcription factor a pivotal 
regulator of oxygen homeostasis; it also encourages glycolysis, contributes to the metabolism of 
nucleotides and iron, and exerts additional effects on cellular bioenergetics through its mitogenic 
effects. HIF-1 regulates genes involved in glucose metabolism, encouraging conversion of glucose 
to lactate. Specifically, HIF-1 increases expression of glucose transporters (GLUT1 and GLUT3) [71] 
and increases transcription of hexokinase-2 [71]. Direct activation of pyruvate dehydrogenase 
kinase 1 (PDK1) by HIF-1 leads to inactivation of pyruvate dehydrogenase (PDH), a key enzyme 
in TCA cycle. This inhibition of mitochondrial biogenesis results in shunting of pyruvate to  
lactate [72]. HIF-1 also alters the expression of pyruvate kinase (PK), the enzyme that catalyzes the 
last step of glycolysis. In a number of cancers, including CRC [73], the M2 isoform of  
(normally found in embryonic tissue) is the predominant PK isoform, and this is encouraged by 
HIF-1. PKM2 enhances aerobic glycolysis, which represents a selective growth advantage to tumor 
cells [74]. 
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Table 1. Examples of genetic and epigenetic alterations in colorectal cancer (CRC) that 
have known or potential metabolic consequences. 

Gene Protein Product Mechanism of  
Change in Function Metabolic Effect 

TGFBR2 TGF-beta receptor type-2 Inactivating 
mutation, 
overexpression 

Activation of MAPK/ERK and  
TGF- -SMAD pathway; inactivation 
leads to increased proliferation and 
decreased apoptosis 

TP53 Tumor protein p53 Inactivating mutation 
or SNP in tumor 
suppressor 

Inhibition of glucose transporters, 
inhibition of insulin receptor,  
activation of TCA cycle and  
oxidative phosphorylation 

KRAS GTPase kras Activating mutation Increased glucose uptake. Increased 
glycolysis, activation of PI3K 
pathway 

PI3KCA Phosphatidylinositol-4,5-
bisphosphate 3-kinase, 
catalytic subunit alpha 

Activating mutation Increased lipid metabolism,  
growth-factor independence, 
increased glycolysis and 
glutaminolysis 

SMAD4 Mothers against 
decapentaplegic  
homolog 4 

Inactivating mutation TGF-  signaling 

TCF7L2 Transcription factor  
7-like 2 

Activating mutation Increased Wnt signaling, increased 
glycolysis and lactate production 

SMAD2 Mothers against 
decapentaplegic  
homolog 2 

Inactivating mutation 
in tumor suppressor 

TGF-  signaling 

CTNNB1 Catenin beta-1 Activating mutation Wnt signaling pathway 
SOX9 SRY (sex determining 

region Y)-box 9 
Mutation or 
Overexpression of 
transcription factor 

Wnt signaling pathway, inactivation 
of insulin signaling, anti-proliferation 

SOX9 SRY (sex determining 
region Y)-box 9 

Mutation or 
Overexpression of 
transcription factor 

Wnt signaling pathway, inactivation 
of insulin signaling, anti-proliferation 

ACVR1B Activin receptor type-1B Mutation, 
Overexpression 

Activation of TGF-  signaling 

EDNRB Endothelin B receptor Mutation, 
hypermethylation, 
Overexpression 

Response to peptide hormonal 
stimuli 

FASN Fatty acid synthase Overexpression Production of fatty acids  
from Acetyl-CoA 

PTGS2 
(COX2) 

Prostaglandin G/H 
synthase 2 

Overexpression Modulated by HIF-2 , inducing  
TGF-  pathway 

E-Cadherin 
(CDH1) 

Cadherin 1, type 1,  
E-cadherin 

Mutation, 
Overexpression 

Activates Wnt signaling and lipid 
metabolism pathway 

CDKN2A 
(p16-INK4a) 

Cyclin dependent kinase 
inhibitor 2A 

Mutation, deletion, 
Methylation 

Leads to mitochondrial dysfunction 
and impaired phosphorylative 
oxidation, increased glycolysis 



214 
 

 

Table 1. Cont. 

Gene Protein Product Mechanism of  
Change in Function Metabolic Effect 

THBS1/TSP1 Thrombospondin 1 Methylation Regulator of TGF-  signaling, 
increased inflammation in  
adipose tissue 

SDH Succinate dehydrogenase 
complex, subunit B,  
iron sulfur 

Underexpression 
(mechanism unclear) 

Enzyme for TCA cycle, 
phosphorylative oxidation activity, 
decreased glucose uptake 

PTEN Phosphatase and  
tensin homolog 

Inactivating mutation 
in tumor suppressor 

Suppressor of PI3K/Akt pathway. 
Inactivation leads to increased 
glycolysis, lipogenesis  
and glycogenesis. 

HIF-1  Hypoxia-inducible  
factor 1-alpha 

Overexpression and 
molecular 
stabilization 

Activates glycolysis, deactivates 
TCA cycle and phosphorylative 
oxidation 

TP53 mutations frequently occur in CRC. TP53 inhibits transcription of glucose transporters 
(GLUT1 and GLUT4) and the insulin receptor, reducing glucose uptake by cells. Glucose uptake  
is further inhibited by activation of NF- B, which inhibits GLUT3 expression. TP53 also activates 
TP53-inducible glycolysis and apoptosis regulator (TIGAR), which catalyzes the conversion of 
fructose-2,6-bisphosphate to fructose-6-phosphate, an important substrate for the pentose 
phosphate pathway [75]. Accumulation of fructose-6-phosphate also inhibits glycolysis and 
encourages gluconeogenesis. TIGAR also activates H2AX complex, which plays an important 
role in histone methylation of many genes, some of which may have metabolic functions such as 
PTEN [76]. Finally, TP53 activates transcription of SCO2 (cytochrome C oxidase assembly gene), 
which encourages oxidative phosphorylation through regulation of complex IV of the 
mitochondrial respiratory chain [75]. Loss of TP53 function, which results from TP53 mutations in 
CRC, therefore, results in enhanced cellular glucose uptake, accelerated glycolysis, as well as 
reduced oxidative phosphorylation. At the protein level, p53 isoform composition, post-translational 
deacetylation and interactions with other proteins may further modify p53 activity (Figure 5). 

In CRC, PTEN inactivation occurs through mixed genetic and epigenetic mechanisms [77], and 
it is also controlled by post-translational modifications [78]. PTEN is a tumor suppressor gene that 
functions to antagonize the PI3K/AKT/mammalian target of rapamycin (mTOR) pathway. PTEN 
loss of function results in deregulation of PI3K signaling, leading to constitutively activated AKT. 
Constitutive activation of AKT results in metabolic changes that are characteristic of the Warburg 
effect [79], as well as lipogenesis [80]. 

Alterations in TGF-  signaling are frequent in CRC. Binding of TGF-  initiates downstream 
signaling involving phosphorylation of SMADs. TGFBR2 mutations are among the recurrently 
mutated genes in hypermutated CRCs [9,81]. Mutations in SMAD2, SMAD3, and SMAD4 occur 
primarily in tumors of mucinous histology [82]. These alterations typically result in suppression of  
the TGF-  antiproliferative effect [83,84]. 
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4.3. Metabolomic Studies Related to CRC 

Recently, the field of metabolomics has emerged as a means to more comprehensively study the 
contribution of tumor on the overall metabolic milieu. The metabolome can be evaluated in a 
multiplexed fashion using two primary technologies: nuclear magnetic resonance (NMR) 
spectroscopy and mass spectrometry (MS). Currently no single analytical technology is capable of 
detecting all metabolites in a biological sample and, since metabolites detectable in one analytical 
modality are not necessarily detectable in the other, these modalities are complimentary. 

There has been considerable interest in the metabolomic analysis of CRC. Several groups have 
shown that metabolomic profiling of colon mucosa could distinguish between normal and 
malignant tissues using high resolution magic angle spinning (HR-MAS) 1H-NMR spectroscopy, as 
well as gas chromatography-mass spectrometry (GC-MS) [85–87]. In general, metabolites 
associated with the TCA cycle were found to be lower in malignant tissues; and intermediates of 
the urea cycle, purines, pyrimidines, amino acids, and choline containing compounds were more 
abundant, consistent with the higher metabolic requirements of rapidly dividing cells. 

Fecal water extracts have also been submitted to metabolomic analysis. Monleon et al. reported 
that patients with CRC had low fecal concentrations of short chain fatty acids such as acetate and 
butyrate and higher levels of proline and cysteine [88]. While there may be some diagnostic utility 
in this observation, further study is required to understand the origin of these alterations.  
CRC-associated changes in fecal metabolites may be related to differences in gut mucosa, 
malabsorption of certain nutrients, or alterations in the gut microflora; any of these differences may 
represent factors that predispose to CRC or that occur secondary to CRC. In an attempt to delineate 
the contribution of intestinal bacteria, Weir and coworkers simultaneously assessed stool 
metabolome (by GC-MS) and gut microbiome [89]. Indeed, in patients with CRC, butyrate-producing 
species were under-represented and a mucin-degrading species (Akkermansia muciniphila) was 
present at a higher level. 

A number of reports have appeared describing the serum metabolome associated with  
CRC [90–96]. Subtle differences in disease-associated metabolomic changes may reflect  
population-based differences based on dietary, environmental and genetic factors, although the 
contribution of these factors to results are currently difficult to identify because of the diversity of 
analytical platforms used in each of the studies. Qiu et al. compared 64 Chinese patients with  
CRC to healthy controls; metabolomic profiles were determined by GC-MS and liquid 
chromatography-mass spectrometry (LC-MS) [90]. A distinct metabolomic signature for CRC was 
identified. In a follow-up replication study, similar findings were observed, which demonstrated 
alterations in the TCA cycle, urea cycle, glutamine metabolism, and gut flora metabolism [96]. 
Similar efforts have emerged from Japan, using GC-MS [94]. CRC is associated with changes in 
the composition of serum fatty acid profile (evaluated by GC-MS) [91]. The serum amino acid 
profile as identified by electrospray tandem mass spectrometry differs from normal controls [93]. 
The biological meaning of alterations in fatty acid and amino acid profile will require further 
interrogation. Stage of CRC as well as site of metastasis may affect metabolomic profile [95]. In 
addition, there is evidence that the serum metabolomic profile may be related to survival, although 
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it is unclear whether it is of prognostic or predictive significance [97]. In all, these studies 
demonstrate the feasibility of using metabolomics biomarkers to diagnose CRC, and also suggest 
that it may be possible to identify subgroups based on metabolomic profile. 

Efforts at describing the metabolomic changes that occur in various tissues and biofluids in CRC 
have largely been descriptive in nature. Much more work will be required to understand the 
biological implications of any of the metabolomic alterations that typify CRC. Diet, environment 
and genetic background can represent confounding factors. In metabolomic studies using blood, 
urine, and stool, it is difficult to determine whether metabolic perturbations are derived from tumor, 
host factors (including response to tumor), or gut microbiome. To complicate the analysis further, it 
is possible that some of the metabolic perturbations are not actually a result of CRC, but rather 
reflect the metabolic state of an individual who is predisposed to CRC. Therefore, to understand the 
biological basis of metabolomic studies, more detailed experiments and bioinformatic analyses  
will be required. 

5. Linking Genotypic Subsets with Functional Subsets of CRC 

As we improve our understanding of the metabolic changes associated with CRC, it will be 
important to dissect the genetic, epigenetic and transcriptional events that accompany these 
changes. Using the multiplexed information derived from metabolomic studies, bioinformatic 
approaches have been described to identify pathways that are putatively involved in the metabolic 
derangements of CRC [98–100]. This is facilitated by the fact that many metabolites behave in a 
collinear fashion due to their relationships in metabolic processes. Such an approach generates 
hypotheses, facilitating a more focused interrogation based on experiments. Indeed, even the 
limited information derived from a proteomic screen can be used to seed a bioinformatic search for 
functional networks at the protein and transcriptional levels [101]. 

Alternatively, multiplexed genomic, transcriptomic, proteomic, and metabolomic data sets can 
be generated in parallel to catalogue relationships in genotype and phenotype. Integrating “omics” 
information has been attempted by several groups [100,102–105]. The Cancer Genome Atlas 
(TCGA) Project represents a large-scale effort at synchronously cataloguing genome sequence, 
DNA copy number, promoter methylome, and transcriptome for a number of tumor types, 
including CRC [9]. The tools to analyze these parallel “omics” data sets are evolving quickly. For 
example, the cBio Cancer Genomics Portal [106] is an online open-access application that enables 
public access to the multidimensional raw data derived from TCGA, as well as evaluation for 
possible molecular relationships [107]. The University of California, Santa Cruz (UCSC) 
Interaction Browser [108] facilitates the simultaneous visualization and analysis of multiple 
“omics” data sets, enabling integration of biological networks at multiple levels [105]. So far, 
metabolomic data have not been a large part of such large-scale efforts, but the means to perform 
such research is now available. The Subpathway-GM method for identifying important metabolic 
subpathways using genomic and metabolomic data sets represents one example of an effort to 
integrate metabolomics with upstream molecular events [100].  

While integrative analysis of multiple “omics” data sets is attractive, there are some limitations. 
Even alterations in a single metabolic enzyme or any other molecular event may affect multiple 
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pathways, and such effects can be modified by consequential molecular events. Therefore, such an 
approach will prove challenging from a bioinformatic perspective. Importantly, opposing molecular 
events may appear at different biological levels (for example, at the genomic and transcriptional 
levels), and the net effect of those events cannot be predicted without the final phenotypical  
and functional information. Finally, it is important to keep in mind that bioinformatic analyses are 
largely hypothesis-generating, and specific experiments remain an essential means to accentuate 
our biological knowledge. 

To more efficiently derive an understanding of the linkages between genome, epigenome, 
transcriptome and metabolome, targeted analyses of specific events in large data sets will be 
required. Moreover, to derive mechanistic insight, discreet experimental systems must be utilized. 
This represents an important direction in the field, and publications taking this approach are 
beginning to appear. One such recent effort involved the analysis of 376 surgical samples of CRC 
and adjacent normal colon from US and Chinese patients, using GC-MS [109]. Fifteen metabolites 
were found to be differentially abundant in tumor and normal colonic epithelium. Investigators 
observed several metabolic variations to support proliferation; findings consistent with the 
Warburg effect (glycolysis and aerobic fermentation); and activation of the pentose phosphate 
pathway (providing substrates for nucleic acid and fatty acid synthesis). A subsequent targeted 
transcriptomic analysis was performed based on the pattern of metabolites seen to be differentially 
abundant in CRC tissue. Fatty acid synthase (FASN) and stearoyl-CoA desaturase-1 (SCD1) were 
among the most highly upregulated transcripts. Thus, using a combination of bioinformatic 
interrogation and experimental work, transcriptional and metabolic linkages could be identified. 

Manna and coworkers analyzed the urine metabolome of ApcMin/+ mice as well as mice with 
azoxymethane (AOM) induced tumors by LC-MS [110]. In mice with colon-specific disruption of 
APC, urinary excretion of amino acid metabolites (e.g., glutamine, proline, N -acetyl lysine)  
and nucleic acid metabolites (e.g., xanthosine, inosine, xanthine, cytidine, deoxyuridine, thymidine) 
increased progressively during tumorigenesis. Similar changes occurred in mice with AOM-induced 
colorectal tumors, although there were some differences in individual metabolites in this model. In 
ApcMin/+ mice, these metabolomic changes were associated with expression of key genes involved 
in related pathways. For example, there was overexpression of a number of genes involved in 
amino acid metabolism, urea cycle and polyamine metabolism. The interconnectivity of these 
events suggested that the pathogenesis of CRC involved a coordinated reprogramming of metabolic 
pathways during tumorigenesis. 

Finally, Tessem et al. utilized HR-MAS 1H-NMR spectroscopy to determine differences in CRC 
tissue between MSI-H tumors and MSS tumors [87]. The metabolomic profiles were easily 
distinguished. MSI-H tumors were characterized by higher levels of lactate, glycine, taurine, 
creatine, and choline; myo-inositol and glucose were decreased. Interestingly, there were also 
differences seen in adjacent normal colon between MSI-H tumors and MSS tumors. The biological 
significance of these findings might become apparent with a more comprehensive analysis of the 
metabolic perturbations seen in each of these CRC subtypes. 

Further studies will clearly be required to connect genomic, epigenomic, transcriptomic, and 
proteomic events to alterations in metabolism in CRC. A combined approach including 
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bioinformatics and targeted experimental analysis appears to be quite constructive. It is possible, 
since metabolism is a terminal event preceding function, that new phenotypical subtypes can be 
identified, which may aid in individualizing systemic therapy for CRC. 

6. Metabolomics as a Means to Discover Novel Therapeutic Targets 

Genotype is known to affect sensitivity to treatment. For example, tumors containing  
KRAS or NRAS mutations are resistant to EGFR inhibitors [111,112]. Tumors that are MSI-H are 
resistant to fluoropyrimidines [26]. While genotype has some clinical utility as a predictive 
biomarker, it does not predict with any certainty whether an individual tumor will respond to any 
antineoplastic agent, for coincidental mutations and molecular alterations may additionally 
influence chemosensitivity. 

Information derived from metabolomic studies may identify improved ways of targeting the 
disordered metabolism seen in CRC, which is particularly critical for those tumors that are resistant 
to other agents. Defining the metabolic phenotype may also enhance therapeutic efforts in 
individuals and in subgroups. For example, one CRC variant may have dysregulation of specific 
metabolic pathways that provide it with a growth advantage; other variants may have different 
metabolic disorders that could be targeted. Indeed, in CRC several metabolic variations have been 
described [87,109]. 

The recognition that disordered metabolism is a hallmark of cancer has spurred some interest  
in therapies targeting metabolism. Cytotoxic drugs, such as fluoropyrimidines, target metabolism 
and they have been used in practice for years. Because tumors frequently have disordered 
mitochondrial function, drugs have been developed that affect mitochondrial function [113]. 
Interventions influencing the disordered carbohydrate metabolism that characterizes most cancers 
are also attracting interest. For example, oral hypoglycemics used to treat diabetes are being 
investigated, and retrospective studies have demonstrated reductions in cancer-related mortality in 
diabetics taking metformin [114,115]. Metformin inhibits the mTOR pathway. Interestingly, 
metformin is toxic to cancer stem cells [116]. In breast cancer patients, metformin is associated 
with higher response rates to cytotoxic chemotherapy [117]. A clinical trial is in progress assessing 
the role of metformin in colorectal adenoma formation [118]. Other mTOR inhibitors are also 
being tested in CRC [119–121], as are other drugs targeting the insulin-like growth factor  
pathway [122,123]. These are only some of the examples of pharmacologic agents that target 
specific metabolic processes that are being evaluated for cancer. 

Genotype may aid in identifying the metabolic disorders that are likely to be contained in any 
particular tumor. For example, tumors with KRAS mutations are known to have typical metabolic 
derangements. KRAS transformed fibroblasts lose their proliferative ability with glutamine 
deprivation [124]. In preclinical models, targeting metabolic enzymes to disrupt glucose 
metabolism is effective in the treatment of tumors driven by KRAS [64,125]. Other common 
genotypes may similarly be treatable by a specific metabolism-targeted therapy.  

The main challenge in designing agents that target metabolism will be to avoid toxicity related  
to targeting metabolic pathways in normal proliferating cells. Therefore, it will be vital to identify 
pathways that are redundant in normal cells but absent in cancer cells. Identification of such a 
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therapeutic window may be facilitated by comprehensive analysis of the metabolome in cancer 
cells and normal cells. 

7. Conclusions 

It has become apparent that cataloguing the static structural and sequence alterations in the CRC 
genome merely represents a start to understanding the biology of CRC. It is essential to develop  
a greater understanding of the dynamic functional perturbations that accompany the genomic 
changes that characterize CRC and its subtypes, including the multitude of changes in the 
transcriptome, the proteome, and the metabolome. Moreover, the interactions of each of these 
elements that comprise each of these downstream molecular events must be dissected. 
Understanding the functional (or phenotypic) implications of each genotype is imperative to the 
clinician for a number of reasons. The biological behavior of subsets of CRC can be defined for the 
purpose of prognostication; and therapies targeting specific biological events can be better 
engineered. Metabolomics allows a comprehensive analysis of some of the most fundamental 
biological processes that typify CRC and its subtypes, and is perhaps the closest molecular 
representation of phenotype currently available. 
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An Efficient Estimator of the Mutation Parameter and
Analysis of Polymorphism from the 1000 Genomes Project

Yunxin Fu

Abstract: The mutation parameter θ is fundamental and ubiquitous in the analysis of population

samples of DNA sequences. This paper presents a new highly efficient estimator of θ by utilizing the

phylogenetic information among distinct alleles in a sample of DNA sequences. The new estimator,

called Allelic BLUE, is derived from a generalized linear model about the mutations in the allelic

genealogy. This estimator is not only highly accurate, but also computational efficient, which makes

it particularly useful for estimating θ for large samples, as well as for a large number of cases, such

as the situation of analyzing sequence data from a large genome project, such as the 1000 Genomes

Project. Simulation shows that Allelic BLUE is nearly unbiased, with variance nearly as small as the

minimum achievable variance, and in many situations, it can be hundreds- or thousands-fold more

efficient than a previous method, which was already quite efficient compared to other approaches.

One useful feature of the new estimator is its applicability to collections of distinct alleles without

detailed frequencies. The utility of the new estimator is demonstrated by analyzing the pattern of θ

in the data from the 1000 Genomes Project.

Reprinted from Genes. Cite as: Fu, Y. An Efficient Estimator of the Mutation Parameter and Analysis

of Polymorphism from the 1000 Genomes Project. Genes 2014, 5, 561–575.

1. Introduction

The pattern of genetic polymorphism in a population can be influenced by a number of factors,

among which the mutation parameter (commonly denoted by θ) plays a central role. θ is defined

as 4Nu and 2Nu for diploid and haploid genomes, respectively, where N is the effective population

size and u is the mutation rate per sequence per generation. Almost all existing summary statistics for

polymorphism are related to θ. Well-known examples include the number of alleles in a sample [1]

the number (K) of segregating sites (or polymorphic sites) [2], mean number (Π) of nucleotide

differences between two sequences [3] and the number of mutations of various sizes [4].

Due to the fundamental nature of this parameter for understanding both population dynamics, as

well as the mechanism of evolution, it is important that it can be estimated as accurately as possible.

Classical estimators include Watterson’s estimator [2], Tajima’s estimator [3], Ewens’ estimator

based on the number of alleles [5] in the sample and the heterozygosity estimator [6]. Under the

assumption of a single random mating population evolving according to the Wright–Fisher model

with constant population size and neutral mutations, these estimators are all either unbiased or nearly

unbiased. However, their variances, which are the primary measure of accuracy of an estimator,

can differ considerably and, furthermore, are substantially larger than the minimum achievable

variance [7]:
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Vmin = θ

[
n−1∑
i=1

1

θ + i

]−1

(1)

where n is the sample size. Realizing the limitations of these classical estimators, several new

approaches were developed in the 1990s, all utilizing the fine structural result of coalescent

theory [3,8,9]. Representative are Griffiths and Tavare’s Markov Chain Monte Carlo (MCMC)

estimator [10,11] based on recurrent equations for the probability of the polymorphism configuration,

Knuher and Felsenstein’s MCMC method [12] based on Metropolitan-Hasting sampling and Fu’s

BLUE estimators [13,14] based on linear regression taking advantage of the linear relationship

between mutations in the genealogy of a sample and the mutation parameter. These new groups

of estimators can all achieve substantially smaller variances and may even reach the minimum

variance [13]. One common feature of these estimators is that they are all computationally intensive

and, as a result, are suitable for only relatively smaller samples. Such limitations are particularly

serious for the MCMC-based approach.

The potential for genetic research based on population samples has been greatly enhanced by the

steady reduction in the cost of sequencing. As a result, sample sizes in these studies are substantially

larger than before, and the trend will continue with the arrival of next generation sequencers.

Already, it is commonplace to see sequenced samples of many hundreds of individuals and even

thousands (such as the sample in the 1000 Genomes Project [15]). The reduction of sequencing

cost also leads to a larger region of the genome or even the entire genome being sequenced (e.g.,

1000 Genomes Project). Consequently, new approaches that are both highly accurate and efficient

in computation are desirable. This paper presents one such method and demonstrates its utility by

analyzing polymorphism from the 1000 Genomes Project.

2. Theory and Method

2.1. The Theory

Assume that a sample of n DNA sequences at a locus without recombination is taken from a single

population evolving according to the Wright–Fisher model and all mutations are selectively neutral.

The sample genealogy thus consists of 2(n− 1) branches, each spanning at least one coalescent time

(Figure 1). The number of mutations that occurred in a branch is thus the sum of the numbers of

mutations in the coalescent time it spans. Consider one branch, and without loss of generality, assume

it spans the i-th coalescent time. Then, during the i-th coalescent time, the number of mutations

occurred in the branch has expectation and variance equal to:

θ

i(i− 1)
and

θ

i(i− 1)
+

1

i2(i− 1)2
θ2 (2)

respectively. These are consequences of the coalescent time being exponentially distributed and the

number of mutations in a given number of generations following a Poisson distribution. Consider
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the number of mutations in another branch that spans the j-th coalescent time. Then, the covariance

between the two numbers of mutations is equal to:

θ2

i2(i− 1)2
(3)

if i = j, and zero otherwise.

Figure 1. A sample genealogy with different coalescent times separated by dashed

lines. Branch 1 spans the third to the sixth coalescent times, χ1(2) = 0, χ1(i) = 1,

for i = 3, ..., 6, while Branch 2 spans the fourth to the sixth coalescent times,

χ2(2) = χ2(3) = 0, χ2(4) = χ2(5) = χ2(6) = 1. Combining Branches 1 and 2

results in φ(2) = 0, φ(3) = 1, φ(4) = φ(5) = φ(6) = 2.

t

t

t

6

3

2

t5

4t

2
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For the branch k(k = 1, ..., 2(n − 1)) in the genealogy, define an index χk(i), such that it takes

value one if the branch spans the i-th coalescent time and zero otherwise. Then, mk, the number of

mutations, has its expectation and variance equal to:

E(mk) = θ

n∑
i=2

χk(i)

i(i− 1)
(4)

V (mk) = E(mk) + θ2
n∑

i=2

χ2
k(i)

i2(i− 1)2
(5)

respectively, and for two different branches a and b:

Cov(ma,mb) = θ2
n∑

i=2

χa(i)χb(i)

i2(i− 1)2
(6)
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The previous results are readily generalized. Instead of considering the mutations in different

branches separately, one can combine mutations in several branches. Suppose branches (k1, ..., kt)

are combined. Define for the combined branches a variable φ as:

φ(i) =
t∑

j=1

χkj(i) (7)

Consider a population dynamics model in which the effective population size can change only at

the time a coalescent event occurs. Although such a model does not stem from biological reality,

its laddered changes in population sizes allow a reasonable approximation of reality and makes

the mathematics simpler. Let θi represent the θ during the i-th coalescent period. Suppose the

combined branches is denoted by branch (group) k, then mk, the number of mutations in branch

k has expectation and variance equal to:

E(mk) =
n∑

i=2

φk(i)θi
i(i− 1)

(8)

V (mk) = E(mk) +
n∑

i=2

φ2
k(i)θ

2
i

i2(i− 1)2
(9)

respectively, and for two such branches a and b, we have:

Cov(ma,mb) =
n∑

i=2

φa(i)φb(i)θ
2
i

i2(i− 1)2
(10)

Suppose that the 2(n − 1) branches of the sample genealogy are divided into M (≤ 2(n − 1))

disjoint groups (i.e., each branch belongs to one and only one group). Let mk represent the number

of mutations in branch group k and m = (m1, ...,mk)
T . Then, similar to the previous result [13],

the relationship between θ = (θ2, ..., θn)
T and m can be expressed by a generalized linear model:

m = αθ + e (11)

where α is a matrix of dimension M × n with: αij =
φi(j)
j(j−1)

and e a vector of length M representing

error terms. Let Γ(θ) = V ar(m). Then:

Γ(θ) = γ(θ) + β(θ) (12)

where γ and β are both M ×M matrices defined as:

γ(θ) = Diag{α1θ, ...,αMθ} (13)

β(θ) =

{
n∑

k=2

φi(k)φj(k)θ
2
k

k2(k − 1)2

}
(14)

where αk represents the k-th row vector of α. Following the previous approach [13,14], a best linear

unbiased estimator of θ can be obtained as the limit of the series:

θ(k+1) = [αTΓ(θ(k))−1α]−1αTΓ(θ(k))−1m (15)
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with θ(0) being the initial estimate of θ (for example, setting all θi equal to Watterson’s

estimate of θ).

The above formulation allows maximal n − 1 different values of θ corresponding to the n − 1

coalescent periods. Although very flexible, such an extreme model may lead to reduced accuracy of

estimation for individual parameters, so some compromise is likely to be useful. When two or more

consecutive θ values are assumed to be the same, the length of the θ vector will be reduced. At the

extreme, if all of the θs are the same, θ is reduced to a single quantity, and when M = 2(n − 1),

it further defaults to BLUE [13]. Since efficient estimators for a single value of θ will continue to

be useful in the analysis of the whole genome polymorphism of large samples, we will focus on

developing one such scheme in this paper.

2.2. Allelic BLUE estimator

In order to take advantage of the BLUE estimator, sample genealogy needs to be inferred.

Furthermore, the key to developing a highly efficient BLUE estimator is to define the M groups of

branches, which not only retains the detail mutational information, but also satisfies the relationship

M << 2(n− 1). Fu’s UPBLUE [13] corresponds to the extreme in which M = 2(n− 1), i.e., each

branch belongs to its own group. While this may retain the maximal mutational information, it leads

to computational inefficiency. Fu’s [14] approach is more or less equivalent to M = n − 1, with

groups defined by the size of mutations. This achieves computational efficiency with the expense of

reduced accuracy due to over condensation of mutational information. Thus, the goal here is to strive

for a balance.

We recognize that much of the phylogenetic information in a sample resides in the pattern of

differences between distinct alleles. The phylogenetic method, UPGMA (e.g., [16]), which was

found to be appropriate in Fu [13], will continue to be used in our new method. Since UPGMA is a

sequential method, which at each step joins two sequences (or two groups of sequences) that differ

the least. As a result, copies of sequences of the same allele will be joined together before any pair

of sequences of distinct alleles. The resulting sample genealogy can be roughly divided into two

portions (see Figure 2), with the bottom portion corresponding to the coalescent within allelic class

and the upper portion the coalescent among allelic classes. Combine all the branches (or segments

of branches) underneath the dashed line into one group, which will be referred to as the within allele

branch. Suppose there are L distinct alleles in the sample; then we have for the within allele branch:

φ(i) =

⎧⎨
⎩0, i ≤ L

i, i > L
(16)

Then, the number of mutations in the within allele branch have expectation and variance equal

respectively to:

(an − aL)θ and (an − aL)θ + (bn − bL)θ
2 . (17)
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Figure 2. Schematic relationship between sample genealogy and allelic genealogy. The

dark portion is the genealogy of distinct alleles, while the light portion (which is below

the horizontal line) is the coalescent within alleles and contains no mutation or only a

few in the dashed segments of the branches.

Furthermore, we assume that there is no mutation in the within allele branch (which should be

a good approximation, although technically, the assertion may not be true). Since the within allele

branch does not span any coalescent time that overlaps with those of branches in the allelic genealogy,

we have (assumed that the last branch group represents the within allele subtree) that:

α =

(
α∗

an − aL

)
(18)

where α∗ a vector of length 2(L− 1) with the k-th element equal to
∑L

i=2
φk(i)
i(i−1)

. The inverse of the

covariance matrix of m is: (
Γ∗(θ)−1 0

0 [(an − aL)θ + (bn − bL)θ
2]−1

)
(19)

where Γ∗ is defined for branch groups of the allelic genealogy. Let m∗ be the vector of mutations

in branches of the allelic genealogy (the dark portion in the genealogy of Figure 2). Then, Equation

(15) becomes:

θ(k+1) =
(α∗)TΓ∗(θ(k))−1

(an − aL)2[(an − aL) + (bn − bL)θ(k)]−1 + (α∗)TΓ∗(θ(k))−1α∗m
∗ (20)

This limit will be referred to as the Allelic BLUE estimator denoted by θab. Since, for large

samples, the number of distinct alleles is typically much smaller than the sample size; thus, the new

estimator is expected to be highly efficient computationally.
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To determine if it is indeed true that merging those branches representing within allele coalescent

does not lead to significant loss of information and, thus, would not reduce the accuracy of estimation,

we compared Allelic BLUE with the original BLUE using simulated samples for a number of

combinations of θ and n. The correlation between the two estimates is around 0.99. Therefore,

Allelic BLUE is expected to be as accurate as BLUE without merging branches.

2.3. Bias-Corrected Allelic BLUE Estimator

Since UPGMA systematically introduces bias in the inferred sample genealogy, the resulting

Allelic BLUE estimate is expected to be biased similar to the BLUE estimator [13]. Therefore, it is

necessary to correct the bias. Similar to Fu [13], we used simulated samples to derive understanding

of the pattern of biases. A total of 550 combinations of θ and n were examined with 25 different θ

values: 0.5, 0.75, 1, 1.5, 2(1)5, 6(2)12, 15(5), 50, 60(10)100 and 150, and 25 different sample sizes n:

10(5)25, 30(10)60, 80, 100(25)200, 250, 300, 400, 500, 750, 1000(1000)5000. For each combination

of the parameters, 1000 samples were simulated, and for each simulated sample, θab was obtained

and their mean value computed over all simulated samples. Similar to those in Fu [13], the estimates

in almost all situations are underestimates of the true θ. In general, the underestimate is the result of

systematic bias of the UPGMA algorithm used to construct the genealogy, because UPGMA leads

to early coalescent for more similar sequences and, thus, has a tendency to place more mutations

in branches that are deeper into the tree. In the current situation, it is further compounded by our

simplification that, up to the i+ 1 coalescent, there are no mutations.

Using regression analysis, Fu [13] showed that the relationship:√
θu = −0.0336

√
n− 2 + 1.002

√
θ (21)

summarizes well the BLUE estimate (with M = 2(n − 1)), θ and sample size n, which is not

larger than 100. When larger sample sizes were examined, the above equation is not adequate,

and log transformation, rather than square-root transformation, can lead to a better regression [17].

Therefore, log-transformation was chosen in our regression analysis. Table 1 showed that ln(θab) can

be summarized very well by the following equation:

ln(θab) =− 0.1981 + 0.0080ln(n) + 1.0043ln(θ)

− 0.0019ln(n)ln(θ) + 0.0108ln2(θ)− 0.0012ln(n)ln2(θ) (22)

which leads to an estimate of θ from the solution for the above quadratic equation with regard to

ln(θa):

θ̂a = exp

[−b+
√
b2 − 4ac

2a

]
(23)

where:

a = 0.0108− 0.0012ln(n) (24)

b = 1.0043− 0.0019ln(n) (25)

c = −ln(θab)− 0.1981 + 0.008ln(n) (26)
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Although this estimator in most situations is excellent, we found that regression equations for

a narrower range of sample sizes provides estimates that are more robust in some situations

(particularly when θ is large). As a result, we derive our final estimator θ̂a of θ using Equation

(23) with values of a, b and c, as provided in Table 2.

Table 1. Summary of regression analysis between θab, θ and n.

Source Sum of Squares Degrees of freedom Mean Square

Model 1,715.227 5 343.0454

Residual 0.074 644 0.0001

Total 1,715.301 649 2.6430

Term Coefficient Standard Error t test P > |t|
ln(n) 0.0080 0.0005 16.73 0.000

ln(θ) 1.0043 0.0025 398.16 0.000

ln(n)ln(θ) -0.0019 0.0004 -4.19 0.000

ln2(θ) 0.0108 0.0005 19.80 0.000

ln(n)ln2(θ) -0.0012 0.0001 -12.74 0.000

constant -0.1981 0.0027 -72.99 0.000

Note: Number of points for regression = 650, R2 = 1.000 and MSE = 0.0107

Table 2. Coefficients for estimating θ using Equation (23).

Coefficients (n′ = ln(n))

Sample Size a b c

n < 50 0.0112− 0.0012n′ 1.0076− 0.0026n′ −ln(θa)− 0.2101 + 0.0107n′

50 ≤ n < 500 0.0131− 0.0017n′ 1.0009− 0.0016n′ −ln(θa)− 0.1980 + 0.0088n′

n ≥ 500 0.0069− 0.0007n′ 0.9850− 0.0008n′ −ln(θa)− 0.1581 + 0.0025n′

Figure 3 plots the relationship between θ, sample size (n) and the allelic BLUE estimates (θab)

for a subset of these parameter combinations. It is easy to see that the match between prediction and

the mean value of θa is excellent.

Figure 4 shows the distributions of the estimate θ̂a from simulated samples in the case of

n = 500 with θ = 5, and n = 2000 with θ = 50, respectively. It appears in both cases that the

normalities are sufficiently accurate approximations, which is indeed expected from the theory of

least squares estimators.

The ultimate measure of the quality of an estimator is its bias and standard deviation for samples

independent of those used to derive the estimator. Therefore, we simulated another set of samples for

a number of combinations of θ and n and applied θ̂a, as well as UPBLUE to these samples. Table 3

presents the summary of these simulations, particularly the efficiency of the new approach.
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Figure 3. The relationship between Allelic Blue estimate θa, θ and sample size. Solid

lines represents the prediction of θa based on Equation (23) with the coefficients given in

Table 2.
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Figure 4. Distribution of θ̂a based on 1000 simulated samples. (Left) n = 500 and

θ = 5; (right) n = 2000 and θ = 50.
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Table 3. Performance of θ̂a.

θ n mean θ̂a SE SDmin Speed Ratio

2 20 1.97 1.00 0.97 0.00 10

50 1.98 0.84 0.81 0.00 59

100 1.98 0.75 0.74 0.00 280

500 2.00 0.63 0.61 0.02 1,569

1,000 2.00 0.58 0.58 0.27 1,615

2,500 2.00 0.54 0.54 2.59 3,104

5 20 4.93 1.90 1.83 0.00 4.5

50 4.96 1.52 1.48 0.00 23

100 4.99 1.34 1.30 0.00 78

500 5.01 1.08 1.05 0.04 970

1,000 5.00 1.00 0.98 0.47 1,306

2,500 4.91 0.87 0.90 4.90 1,565

20 20 20.33 5.84 5.52 0.00 2.0

50 20.27 4.20 4.05 0.01 4.4

100 20.06 3.47 3.37 0.06 8.7

500 20.04 2.56 2.49 0.18 359

1,000 19.99 2.32 2.26 0.91 727

2,500 19.96 2.07 2.04 16 842

50 20 50.92 12.58 12.51 0.01 1.6

50 50.45 8.68 8.59 0.02 2.5

100 50.09 6.99 6.79 0.07 3.8

500 50.06 4.70 4.58 0.97 72

1,000 49.90 4.15 4.06 3.6 206

2,500 49.80 3.94 3.57 42 356

100 20 100.25 23.47 24.03 0.01 1.5

50 100.20 15.52 15.87 0.15 1.7

100 99.97 12.24 12.08 0.20 2

500 100.38 7.86 7.48 4 22

1,000 99.89 6.59 6.47 16 49

2,500 99.69 5.58 5.54 75 202

Note: Speed is the average CPU time (in seconds) for obtaining θ̂a for a simulated sample in a Linux machine

with a 2.3-Ghz CPU. SDmin is the minimum standard deviation computed as the square root of Equation

(28) in [18]. Ratio is the ratio of speed for UPBLUE [13] and speed of θ̂a.

Table 3 shows that the speed of θ̂a increases with the sample size slowly, while it increases faster

with θ. This is because θ̂a’s speed is dependent on the number of alleles in the sample, which is

more closely related to θ than sample size. In comparison, UPBLUE is considerably less efficient,

particularly with increasing sample size. Take the case of θ = 100 and n = 5000, it takes on



239

average about one minute for θ̂a to complete the estimation, while it takes about 6 h for UPBLUE to

do the same.

3. Exploring θ in Data from the 1000 Genomes Project

The 1000 Genomes Project generated a very valuable set of genome-wide polymorphism

data [15] for which the newly developed Allelic Blue estimator is applicable. Phase I (May, 2012,

release) contains polymorphism, as well as inferred phases compiled from 1092 individuals from 14

different populations. The rich information captured by the genome-wide polymorphism deserves to

be analyzed from various angles [20], and our main purpose here is to illustrate that our efficient

estimator of θ provides additional insight into the pattern of polymorphism in addition to the

conventional estimates. We chose to report the analysis for a subset of samples, which consists of the

three African samples (YRI, LWKand ASW) with 246 individuals (thus, a sample size of n = 492).

Figure 5. Plot of (θ̂W − θ̂T )/θ̂T along 22 autosomes with windows of a size of 2000 bps

(each dot represents a mean over 10 consecutive windows). Chromosomes 1 to 22 are

presented from left to right separated by vertical lines. The overall mean value is 0.96.
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In our analysis, each of the 22 autosomal chromosomes was divided into non-overlapping

consecutive windows of 2000 bps (within which the average impact of recombination should be

negligible), and θ was estimated for each window. Since the phases of SNPs for each individual were

the result of inference, there are some segments in which the quality of inference appears to be poor

due to an unreasonably larger number of inferred alleles than the number of SNPs. We thus removed

all of the segments in which there is evidence of either recombination or a poor quality of inference,
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that is, when the number of alleles is larger than the number of SNPs plus one. It should be noted that

the SNPs reported in the 1000 Genomes Project data set are those that passed various quality controls

and filtering. In our analysis, no further filtering is applied, except for the aforementioned exclusion

of segments that are suspected to be the result of poor phrase inference. A total of 648,903 windows

were analyzed. This analysis required about 3 h to complete the estimates of θ in a desktop computer

equipped with an Intel Xeon CPUs at 3.33 Ghz. In comparison, UBPLUE ran a couple days without

being able to finish the same task.

Since both Watterson’s estimator θ̂W and Tajima’s estimator (θ̂T ) are widely used, we present our

results in terms of the relative values with regard to θ̂W and contrast them with the relative values

of θ̂W to θ̂T . Since testing neutrality is not the purpose, we do not employ testing statistics, such

as Tajima’s test [19] or Fu and Li’s tests [7]. Figure 5 plots the proportional difference between

θ̂W = K/an (K is the number of segregating sites and an is a constant depending on the sample size)

and θ̂T . The overwhelming characteristic of the plot is that θW is, in general, larger than θ̂T , with an

average of 1.96-times the value of θ̂T ; similar patterns were observed previously (for example, [20]).

In general, an estimated θ can be viewed as a weighted average of SNPs of various sizes. θ̂T gives

on average more weight to SNPs that occurred long ago than those arisen recently, while θ̂W gives

equal weight to every SNP. Therefore, elevated θ̂W values across the whole genome compared to

θ̂T were considered as evidence of recent population growth. It should be noted that there is no

obvious extended regions with smaller or larger values for θW or θT . In comparison, Figure 6 plots

the proportional difference between θ̂a and θ̂W .

Figure 6. Plot of (θ̂a − θ̂W )/θ̂W along 22 autosomes with windows of a size of 2000 bps

(each dot represents a mean over 10 consecutive windows). Chromosomes 1 to 22 are

presented from left to right separated by vertical lines. The overall mean value is 0.20.
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The overwhelming pattern shown in Figure 6 is again that θ̂a in general is larger than θ̂W , which

means that the difference to θ̂T will be more pronounced than that of θ̂T . This is the result that more

weight is given to recent mutations than the old ones in θ̂a. Beside some sporadic large values, there

are regions at either the beginning or the end of some chromosomes that yield considerably elevated

values of θ̂a (for example, for chromosomes 7, 8, 9, 16 and 22). We are not sure how to interpret

these patterns, but suspect that they may partially suggest the decreased quality of phase inference at

the beginning and end of chromosomes.

4. Discussion and Conclusions

The Allelic BLUE estimator of θ presented in this paper is a high quality estimator with little

bias and its variance nearly as small as the minimum achievable variance. Furthermore, it is highly

efficient computationally, because its speed depends on the number of distinct alleles in a sample

rather than the sample size. This later characteristic makes it very useful for estimating θ for large

samples and for situations in which a large region (or the whole genome) is sequenced, while θ needs

to be estimated for successive windows of a genome, such as the case of 1000 Genomes Projects.

Since θa and UPBLUE are both based on the same idea of utilizing phylogenetic information in a

sample with generalized linear regression, their estimates are highly correlated, which are seen in

both the simulation and in real data. However, since θa is computationally much more efficient, it is

thus superior to UPBLUE [13] and, thus, can replace UPBLUE for general use. The analysis of the

polymorphism from the 1000 Genomes Project shows that although UPBLUE is a relatively efficient

estimator among sophisticated estimators; it has nearly reached its limit for exploratory data analysis

for large genome projects. Therefore, the new Allelic BLUE estimator arrival is timely.

One additional utility of the new estimator θ̂a is for estimating θ from a collection of distinct

alleles, which are collected without recording the multiplicity of each allele, as long as the number

of alleles examined is roughly known. Such situations sometime arise when the collection of data is

focused on identifying distinct alleles, such as in the survey of infectious pathogens or when data are

collected over years and pooled from multiple sources. To illustrate this utility, we simulated samples

of size 200 with θ = 10. If only the distinct alleles are recorded (which implicitly assumes that the

sample size is the same as the number of distinct alleles), then θa yields an average value of 22.8,

which is more than twice as large as the true value. However, if the sample size used in the estimation

is 20% smaller or larger than the actual value (thus, 160 and 240, respectively), the corresponding θ̂a

are 10.6 and 9.5, respectively, both of which are quite close to the true θ value.

The Allelic BLUE estimator is developed under the assumption of one single random mating

population evolving according to the Wright–Fisher model with a constant effective population size.

The restriction to constant population size results in an estimator of average θ since the MRCAof a

sample, which is comparable to some classical estimators and, thus, provides an informative contrast

to other estimators (and may be used to construct hypothesis tests in the future). However, the

restriction does make the method unsuitable for exploring historical changes in effective population

sizes. On the other hand, the theoretical foundation for exploring changes in population sizes in
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the linear regression framework has been established in this paper, and we will study its statistical

properties, as well as its application elsewhere.

The Java programs for performing the Allelic Blue estimation can be downloaded from the

author’s web page [21].
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The Challenges of Genome Analysis in the Health Care Setting 

Anneke Lucassen and Richard S. Houlston 

Abstract: Genome sequencing is now a sufficiently mature and affordable technology  
for clinical use. Its application promises not only to transform clinicians’ diagnostic and predictive 
ability, but also to improve preventative therapies, surveillance regimes, and tailor patient treatment to 
an individual’s genetic make-up. However, as with any technological advance, there are associated 
fresh challenges. While some of the ethical, legal and social aspects resulting from the generation 
of data from genome sequencing are generic, several nuances are unique. Since the UK government 
recently announced plans to sequence the genomes of 100,000 Health Service patients, and similar 
initiatives are being considered elsewhere, a discussion of these nuances is timely and needs  
to go hand in hand with formulation of guidelines and public engagement activities around 
implementation of sequencing in clinical practice. 

Reprinted from Genes. Cite as: Lucassen, A.; Houlston, R.S. The Challenges of Genome Analysis 
in the Health Care Setting. Genes 2014, 5, 576-585. 

1. Introduction 

The speed by which a person’s genome can be analysed has increased phenomenally over recent 
years, while the attendant costs have plummeted. As a result, genetic testing is shifting from a 
targeted approach analysing specific genes based on particular symptoms or family histories to 
sequencing of an entire exome or genome (whole exome sequencing [WES], whole genome 
sequencing [WGS]). Targeted approaches characteristically have a high yield for penetrant 
monogenic conditions; whole genome approaches have the potential to unravel a much larger 
proportion of genetic disease burden. Whole genome analyses, therefore, are likely not only to 
transform a clinician’s diagnostic and predictive ability, but also to improve preventative therapies, 
surveillance regimes, and tailor patient treatment to an individual’s genetic make-up. 

The improved diagnostic yields of genome sequencing are to be welcomed; however as with any 
technological advance there are associated fresh challenges. While the ethical, legal and social 
aspects resulting from the generation of data from genome sequencing are not unique, several 
nuances merit serious consideration. Since the UK government recently announced plans to 
sequence the genomes of 100,000 Health Service patients [1], and similar initiatives are being 
considered elsewhere, a discussion of these nuances is timely and needs to go hand in hand with 
formulation of guidelines and public engagement activities around the implementation of genome 
sequencing. Box 1 lists some of the ethical, legal, and social and practical issues that we consider 
merit consideration.  
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Box 1. Some of the overlapping ethical, legal, social and practical issues that need to be 
addressed as genome analysis enters clinical practice. 
Complexity 

• Genome analysis can provide many different predictions about diagnoses, or 
susceptibilities to conditions. However, it will do so with varying degrees of certainty or 
confidence intervals around the predictions. Such predictions are likely to change 
substantially over time as evidence about epistatic factors accumulates. 

• Providing consent to genomic testing is therefore complex. Should consent be sought to 
any answer that genome analysis might provide? Or should there be cut-off for levels of 
certainty? Or should a genome analysis be used solely to answering a current clinical 
question? Should some results be staged? (e.g., risk of adult onset conditions diagnosed 
in children?) 

Familial Aspects 
• Although genomic information is on the one hand very personal, on the other, it may be 

relevant to relatives who have not sought medical advice but may be identified as being at 
risk from the results in another person. How can health services best record, store and 
communicate such familial information? 

Re-Contacting/Follow Up Policies 
• Who should be re-contacted and when, in the light of evolving knowledge? Who might be 

liable if a patient remains unaware of new evidence and therefore interpretation of previous 
test results? 

Data Management 
• What should be stored: the DNA sample, the DNA sequence, the interpretation of the 

sequence? Or combinations of these? What is to be stored in medical record systems, and 
how can these be compliant with relevant data protection—and other—legislation? How 
can/should these be linked with biobank or research databases, and how can the security 
issues around identifiable data best be managed? 

Research/Clinical Divide 
• The traditional route of research to clinic evolution is not necessarily applicable in rapidly 

evolving technologies. 
Public Perceptions of Genetics 

• Currently, this is often thought as a clear cut, or deterministic result than there is 
evidence for. 

• Analytical validity not the same as clinical validity or utility; $1000 genome analysis is 
a reality soon, yet the cost of interpretation is much greater. 

2. The Promise of Whole Genome Analysis 

Genetic testing has traditionally been restricted to analysing small numbers of genes usually 
picked on the basis of a high prior probability of being mutated. However, this approach has several 
limitations. Firstly, many inherited diseases are genetically heterogeneous and sequential mutational 
analysis of individual genes is slow and expensive. Secondly, while subsets of some common 
diseases can be caused by mutations in a single gene, traditional methods of selecting whom to test 
on basis of disease characteristics or family history are crude and have a high false negative rate. 
Finally, analysis may not ultimately be diagnostic if the disease is a consequence of a hitherto 
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unknown disease-causing gene. Collectively these issues make whole genome approaches at 
competitive prices an attractive proposition. 

Most next-generation sequencing (NGS) technologies are based on the fragmentation of 
genomic DNA with the oversampling of reads providing the necessary linking information for 
whole-genome assembly algorithms. For analysis of a gene to be of diagnostic quality using NGS 
there needs to be sufficient read depth for any mutation to be called with a high degree of 
confidence. While WGS or WES typically provide good overall coverage for most regions of the 
genome, for other regions it may be poor; sequencing some regions of the genome is problematic 
because of repetitive sequence and other features leading to systematic error [2]. Such limitations 
have, in part, been the motivation for developing targeted sequencing approaches focusing on 
panels of genes relevant to specific diseases states; for example, cancer gene and nervous system 
disease panels. Such technical shortcomings are likely to be addressed in the near future so that a 
“one-stop-shop” test will replace the sequential approaches to genetic diagnoses which were time 
and labour intensive. 

3. Analytical Validity versus Interpretation of WGS Approaches 

Whilst the analytical validity of WGS approaches is high, and improving at a rapid pace, the 
clinical validity of the output from WGS is much more complex than commonly perceived and  
the utility has often been evaluated only in very small groups. There is much genome variation that 
is either: uninterpretable; probably benign; or only pathogenic in certain circumstances, for 
example, in the presence of as yet unknown epistatic factors. This gap between technological 
advances and the interpretation of any NGS output, is neatly encapsulated by the phrase  
“$1000 genome; $1 million interpretation [3], yet, little recognised in the popular discourse around 
whole genome technologies. 

In the clinical setting, certainly in the short term, diagnostic accuracy will therefore continue to 
depend on additional factors such as clinical history and, therefore, pre-test probability. Attempts to 
overcome these issues include use of gene panels or analyses of selected portions of the genetic 
code; an apparently anachronistic step in the evolution of whole genome approaches. However, if 
WGS approaches are to be used to answer clinical questions, some sort of filtering of sequence 
output will need to take place. Although targeted approaches are commonplace in health care, this has 
usually involved a targeting of the investigations. In WGS the targeting will have to be at the 
analysis stage—the results require targeted analysis—and this raises novel issues about what 
constitutes a result, what is disclosed to the patient, and what is recorded in a patient’s  
medical records. 

4. The Data Interpretation Problem 

Much of the misperception about the diagnostic value of genome sequencing results from  
an oversimplification in which it is assumed there is “a gene” for the condition, when in fact any 
increase in risk conferred by a mutation may be subtle, or only manifest in the context of specific 
genetic background or environmental exposure. For many common diseases there are multiple risk 
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factors and while the identification of susceptibility genes has often provided novel insights in 
disease biology, their clinical utility in an individual may be very low because their predictive 
power in isolation is very poor. 

There is, however, also a risk of over-interpretation even for mutations with seemingly large 
effects. For affected patients where there is a strong prior probability of the gene mutation being 
causal because of a positive family history and or specific clinical phenotype, interpretation can be 
straightforward. However, if mutations are not fully penetrant, there will be carriers in the 
population who are healthy. Much of our knowledge about the penetrance of mutations to date is 
based on family data and, hence, suffers from ascertainment bias [4]. Without unbiased knowledge of 
the effect of mutations, interpretation at the population level will be inherently problematic. Whilst 
policies to restrict genetic testing to high risk populations were initially driven by budget restraints, 
and the more widespread availability of testing thought to be an advantage of declining costs, 
another consequence is that the interpretation of the clinical significance of a mutation is much 
more difficult if found without the ascertainment bias noted above. That is to say, predicting the 
effects of a novel BRCA2 mutation in the context of a strong family history of the mutation 
segregating with disease in the family, is far easier than when it is discovered in a population screen 
(see Box 2 for an illustrative example). 

Box 2. Difficulty of clinical interpretation of genomic findings in absence of clear clinical 
phenotype or family history. 

A two-year old boy was investigated for “absence spells”. He had no loss of consciousness, was 
investigated in detail for epilepsy and no abnormalities were found. Paediatric cardiologists also 
found no abnormalities, his baseline ECG was defined as within normal limits and he had no 
family history (to 3rd degree relatives) of any cardiac problems. The cardiologist had been to a 
presentation about mainstreaming genetics and realised that long QT (LQT) interval gene carriers 
can be difficult to detect in childhood. He therefore requested genetic testing of LQT genes “to 
exclude LQT syndrome”. A LQT1—associated mutation was identified, described on the 
laboratory report as “highly likely to be pathogenic”. A reveal device was inserted but no 
abnormalities in his QT interval were recorded during subsequence “absence spells”. Nevertheless, 
it was thought appropriate to treat him with beta blockers. Cascade testing of his family revealed 
his three-year-old sister, father, paternal aunt (and her two children, aged four and eight) and 
paternal grandfather all carried the same mutation. Cardiac investigations of their phenotype, at 
rest, with exercise, and pharmacological challenge were normal or equivocal. All carriers in the 
family were prescribed beta blockade and two members of the family were referred for possible 
implantable cardiac defibrillator insertion. 

In Box 2 the assumption that this LQT1 mutation depicts a high future risk of clinical symptoms 
from LQT syndrome is based on the laboratory description of its likely pathogenicity and the 
previous finding in families with symptomatic LQT. The intensive therapy is in part because the first 
presentation of LQT can be sudden cardiac death. However, this family was not ascertained on the 
basis of any relevant clinical symptoms and clear clinical predictions for the seven asymptomatic 
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carriers are extremely difficult. However, if the mutation was found in a family with a segregating 
LQT phenotype, preventative therapy would be justifiable on clinical grounds. These cases  
serve to illustrate that the predictive powers of genetics require more than information about 
genotype, for the effects of any genotype are dependent on a range of other factors. Importantly, 
the penetrance of different mutations in the same gene can vary substantially and assigning a 
likelihood of a mutation being disease-causing will increasingly be based on the synthesis of 
multiple forms of evidence. 

5. Determining Clinical Utility of Sequence Variants 

The translation of genome sequence into medically actionable information is a key challenge. 
Without support from segregation in families, assigning pathogenicity can be problematic; notably 
large duplications, most synonymous and some missense mutations, intronic variants, and most 
variants in promoter and enhancers are particularly difficult to interpret. Predicting the functional 
consequences of variants which disrupt protein-coding sequence can also be challenging. A variant 
might affect a transcription factor binding site, a microRNA target site, affect RNA-splicing or 
stability or truncate a protein. Finally the issue of linkage disequilibrium (where benign variants lie 
close to a disease predisposing variant) can complicate interpretation of recurrent risk variants. 

Irrespective of whether animal models can adequately mimic human disease such model 
systems are inherently unsuited to determining the consequences of specific mutations as a routine 
activity. While yeast and cell line systems can be used to assess the functionality of DNA repair 
gene mutations the general applicability of such model systems is limited. In view of these factors 
increasing reliance will be placed on the implementation of in silico tools to infer the functional 
consequences of mutations. Although such algorithms can help to predict the likely pathogenicity of 
variants, often different tools conclude in opposite directions and without an established 
relationship between gene dysfunction and disease phenotype, robust risk prediction is problematic. 

6. The Need to Systematically Catalogue Sequence Variation with Phenotype 

Several initiatives are cataloguing and assigning pathogenicity to variants/mutations in various 
specific genes. Examples of such databases include InSiGHT (International Society for 
Gastrointestinal Hereditary Tumours Incorporated) [5], LoVd (Leiden open variant database) [6] 
Decipher [7] and DMuDB [8] (the diagnostic mutation database), and the Locus Reference 
Genomic Collaboration [9]. These resources provide health care professionals with valuable 
information for decision making processes. While published reports are valuable sources for such 
databases their stewardship depends heavily on the submission of individual variants and 
associated clinic-pathological data by sequencing laboratories using some form of incentivization. 
Currently these databases are limited to curation of restricted number of genes. Even here 
translating genomic sequence into medically actionable information can be highly time consuming. 

To meet the future needs, comprehensive resources with a far more overarching remit will need 
to be developed and maintained. This needs to be coupled with adoption of automated machine 
learning, support vector machines and other technologies to create systematic and efficient 
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mechanisms to assess the impact of variants found by genomic sequencing. All of this will require 
substantial investment before it becomes a reality and has not been factored into the $1000 genome 
analysis headlines. 

7. Diagnostics versus Population Screening 

Given the significant limitations to our current understanding of the impact of genetic variation, 
we believe that clinical genome sequencing should for now be focused on particular clinical 
presentations compatible with a genetic aetiology, rather than engaging in opportunistic population 
screening. For example, the identification of an APC mutation in a person with colonic polyposis is 
diagnostic and highly predictive for family members. In contrast the identification of variants, such 
as LQT1 described in Box 1, in a population screen do not have sufficient certainty to infer as 
much, resulting in difficult clinical management issues. Such contextual differences may be 
difficult to grasp if genetics is portrayed as being clear cut, and clinical interventions may therefore 
be offered without sufficient evidence for their benefit. 

Intelligent interrogation of genomic outputs in the clinic should initially therefore be restricted 
to specific genes or diseases for which there is a high prior likelihood of diagnosis. Any 
opportunistic screening should in the first instance be limited to known epistatic factors for particular 
conditions, e.g., low risk genes for breast cancer in the investigation of a family history of breast 
cancer, and formal evaluation of the benefits should not be leap frogged just because of the rapidly 
decreasing costs of the technologies involved. 

8. The Need for Large Scale Genotype-Phenotype Linkages 

Before more widespread population genome screening is to be contemplated, large-scale 
systematic and longitudinal investigation of variants in categorised populations would need to take 
place and their penetrance robustly determined. Depending on variant prevalence the ongoing 
international biobank sequencing projects are likely to provide a rich source of such data. 
Additionally, variants identified through clinical testing or research projects, could together with 
associated phenotypic information, be submitted to publicly accessible databases cataloguing 
genomic variation. Many of the current databases are however relatively ad hoc affairs and  
disease-specific. If the full potential of genomics is to be realised there is a need for the 
development of big data centres which have an overarching remit. However, the development and 
establishment of such initiatives brings with it the significant issue of data-storage and allied 
security requirements. These linkages will have to be undertaken within legislative frameworks 
relating to data protection within host countries and adapted to any changes to such legislation. For 
example, proposed changes by the European Commission to the data protection directive may have 
far reaching consequences for the gathering of such linkages [10]. 

9. The Need for Public-Professional Engagement 

In parallel with the acquisition and curation of genetic data there needs to be an ongoing 
dialogue with health care professionals and the public around understandings and interpretations of 
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genomic data so that expectations of new WGS approaches are realistic and grounded in evidence. 
In the wake of public anxiety around large scale databases, e.g., care.data in UK [11], this dialogue 
urgently needs to incorporate the importance of data sharing to realise the clinical utility of whole 
genome approaches. It also needs to incorporate the issues around shifting the point of targeting, as 
outlined in Section 3. For example, international recommendations suggest that children should not 
be offered genetic testing for adult-onset conditions (unless a result would alter their medical 
management). However, once such a result is available many would opine it should be disclosed, 
even if they would not have tested for it in the first place [12,13]. 

10. Incidental Findings 

Any broad, highly sensitive investigation has the ability to occasionally detect abnormalities that 
are incidental to the reason for the test. Whole genome approaches are much more likely to detect 
asymptomatic or silent abnormalities that have nothing to do with the current clinical reason for a 
test. Such findings have been variably termed “secondary”, “non-pertinent”, “unexpected” or 
“incidental” belying the fact that the appropriate adjective may vary according to the situation [14]. A 
genome test can, however, only have an incidental finding (IF) if it is used to answer, for example, a 
particular clinical question. If the question is “what are the abnormalities in this genome?” then there 
can be no IFs. 

There has been much recent debate about the management of IFs in clinical applications of WG 
technologies [15–20]. The American College of Medical Genetics and Genomics (ACMG) 
produced guidelines that recommended the active search for particular IFs if using WGS/WES 
approaches [21]. The heated debate that ensued was largely focused on patient/parental choice 
regarding such IF searches with their purported “right not to know” being exercised by such 
guidance. A subsequent amendment now argues for decision about IF search to be made at the time 
of testing, but still recommends search for additional mutations not indicated by the clinical 
symptoms. The European Society of Human Genetics (ESHG) responded that WG approaches 
should be targeted to the clinical question, but there is still widespread debate about the 
management of IFs in practice and whether real up-front patient choice is feasible or preferable. 

11. Familial Consequences of IFs 

A family history of a particular disease usually means that unaffected relatives have some idea  
they too might be at risk. In contrast, if something is found incidentally there is unlikely to be 
awareness of the suspected condition. Furthermore, a new variant may only be found to be 
clinically significant once it has been studied alongside phenotypes in a family and the absence of a 
family history is likely to make the need for such cascade screening more difficult to comprehend. 
Furthermore, professionals may be uncertain what, if any, duties they have to alert relatives about 
risks that may only be clarified after cascade screening. 
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12. Return of Results from Genomic Testing 

As the pace and scale of genetic testing increases, it is inevitable there will be less time to 
prepare individuals for potential test results. Since the implications of some variants, particularly 
IFs, may fall outside the expertise of the professional who requested the test, referral to another 
health care professional may be necessary. This process is likely to add to anxiety of families 
burdened with unexpected genetic information and means that consent and disclosure practices 
become dissociated. Training in genomic medicine should be expanded to all medical specialties so 
that the complexities of genomic information can be adequately communicated but we do not 
underestimate the size of this task in a rapidly changing environment. We suggest that clinical 
genetic professionals, although relatively few in number, will need to take on greater liaison 
activities to facilitate this training. 

Opinions about disclosure of IFs vary, ranging from full disclosure to disclosing only those with 
established clinical significance, and/or which have an intervention can impact on disease. In reality 
clinically significant, because further investigations of the patient, and their relatives, may be required 
it can be extremely difficult to withhold details of IFs, even if a conclusion is that they are not to 
arrive at this conclusion. Even if the pathogenicity of an IF is established, disease onset may not be 
for many years. Hence robust mechanisms are required to identify, re-contact, and review family 
members when health care interventions become appropriate. Current health-care systems are, 
however ill-equipped to deal with the recording of familial information, future risks to health, or the 
monitoring of multiple family members. We consider that genome results need to be considered as a 
resource that can be accessed over time [22], rather than as one result that needs to be disclosed as 
one at the point of testing. 

13. Consent for Genome Testing 

Providing individuals with sufficient information in order to make decisions about investigations 
or interventions is a key element of good clinical practice. Achieving a balance between providing 
sufficient information but avoiding overload can be a challenge, especially for tests where multiple 
different outcomes are possible. Individuals need to understand what genome tests can reveal, but 
also that some degree of uncertainty is likely. The possible need to investigate relatives to assign 
pathogenicity of variants found is a difficult issue to incorporate into any consent process. 
Obtaining adequate consent to disclose an IF for which there is no prior suspicion on the basis of 
family history or symptoms is likewise problematic, especially if such an IF is unlikely to have 
clinical consequences for some time. All of this is set against a background of media coverage that 
generally portrays genetics as clear-cut and highly determinative. 

14. Is Personalised Medicine a Helpful Term to Promote Genomics? 

Although genomic analyses will help to stratify individuals into subpopulations with common 
characteristics so that particular variants might have greater predictive value, this is not the same as 
individualisation. A concern about describing genomics as leading to personalised medicine is that 
it may encourage views of genetic determinism or reductionism. There has been much professional 
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and public discussion regarding which parts of a whole genome sequence should be communicated, 
with emotive discussions about rights to personal information. On the one hand there is a public 
perception that some form of medical paternalism might be exhibited where useful information 
would be withheld, on the other there is acceptance that most of the three billion letter output of a 
genome sequence has no personal clinical relevance [23]. Some advocate that anyone sequenced 
should have the right to be appraised of “all of” the test results, even if the clinical relevance is 
indeterminate. Whilst full disclosure is thought to respect a person’s autonomy it may do the 
opposite if it delivers outputs that are uninterpretable. 

15. Conclusions 

Whilst the technology of genome sequencing is now a sufficiently mature and affordable 
technology for it to be implemented clinically, significant challenges around interpretation and 
implementation remain. We believe that clinical genome analyses should be directed to delivering 
diagnoses for patients and that integration or linkage with biobanks and other research ventures will 
be crucial for better clinical translation in the future. We do not underestimate the practical 
challenges such a statement results in but hope that by delineating some of the complexities and 
aligning them next to common perceptions of genetics will lead to intelligent international debate 
about consent and disclosure practices, long-term follow-up arrangements, appropriate 
communication with relatives and linkages between clinical practice and research.  
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