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Cold regions, characterized by the presence of permafrost and extensive snow and ice cover,
are significantly affected by changing climate. Of great importance is the ability to track abrupt and
longer term changes to ice, snow, hydrology and terrestrial ecosystems that are occurring within these
regions. Remote sensing allows for measurement of environmental variables at multiple spatial and
temporal scales, providing key support for monitoring and interpreting the environmental changes
occurring in cold regions. The recent advances in the application of remote sensing for the analysis of
environmental changes in cold regions are documented in this Special Issue.

Theoretical modeling—For improving the current understanding of L-band microwave emissions
from snow-covered soil, the Wave Approach for LOw-frequency MIcrowave emission in Snow
(WALOMIS) model, initially developed for semi-infinite snow-firn conditions, was adapted and
parameterized for seasonal snow. Evaluations of the model simulations against ground-based
radiometer measurements show that the WALOMIS model can well reproduce the observed brightness
temperature (Tb) with overall root-mean-square error (RMSE) between 7.2 and 10.5 K and have higher
performance over larger incidence angles and H-polarization. The wave approach of WALOMIS also
enables better quantification of the effects of interference and snow layering [1].

Ice—Satellite-based sea ice concentration (SIC) products have been widely used in monitoring
global warming and navigating ships but are difficult to validate over the remote Arctic regions.
For assessing the performance of satellite products and algorithms, SIC data sets were derived
from ship-borne photographic observations acquired along cruise paths and compared with six
passive microwave remote sensing products. The comparisons suggest that satellite products likely
over/underestimate SIC under low/high SIC conditions mainly due to the presence of melt ponds;
and the Special Sensor Microwave Imager Sounder (SSMIS) NASA Team algorithm has the overall best
accuracy [2].

Ice-jam flood is one of the major hazards threatening riverine communities in the sub-arctic regions.
Early forecasting of ice-jam flood can benefit from accurate locating and discriminating different types of
ice. A novel method of differentiating ice runs from intact ice covers was developed using spaceborne
synthetic-aperture radar (SAR) observations and the Freeman–Durden decomposition technique.
The method was demonstrated using RADARSAT-2 imagery acquired along the Athabasca River for
the spring of 2018, showing the distinct scattering signatures of ice runs and intact ice and its potentials
in flood monitoring [3].

Remote Sens. 2019, 11, 2165; doi:10.3390/rs11182165 www.mdpi.com/journal/remotesensing1
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Snow—Snow properties including snow cover area and snow water equivalent (SWE) are vital
inputs for numerical weather predictions and hydrologic model simulations. The quantification of
global snow depth (SD) and SWE distributions generally relies on the observations from multi-frequency
satellite microwave radiometers such as the Advanced Microwave Scanning Radiometer for Earth
Observing System (AMSR-E) and China’s FengYun-3D (FY-3D) Microwave Radiometer Image (MWRI).
For developing FY-3D SD algorithm for regions of China, five operational algorithms were first
evaluated using in-situ measurements. Considerable underestimate for deep snowpack (>20 cm) or
persistent overestimate of SD by these algorithm outputs are mainly caused by inaccurate representation
of snowpack characteristics in China. The FY-3D SD algorithm was then built using an empirical
retrieval formula calibrated by weather station measurements. The refined algorithm shows improved
retrieval accuracy over the baseline products with a RMSE of 6.6 cm and bias of 0.2 cm [4].

Frozen soil—One of the key issues in satellite microwave sensing of frozen soil is the determination
of microwave radiation response depth (MRRD). A parameterized model to estimate MRRD was
developed using the combination of theoretical model simulations and field measurements. According
to the model, MRRD can be accurately determined from soil temperature, soil texture and microwave
frequency. The estimated errors of MRRD of frozen loam soil at 6.9 GHz, 10.65 GHz, 18.7 GHz and
36.5 GHz were about 0.537 cm [5].

Surface water—Near-nadir interferometric imaging SAR techniques are well suited for measuring
terrestrial water body extent and surface height at relatively fine spatial and temporal resolutions.
The concept of near-nadir interferometric measurements was implemented in the experimental
Interferometric Imaging Radar Altimeters (InIRA) mounted on Chinese Tian Gong 2 (TG-2) space
laboratory. Both theoretical simulations and InIRA imagery showed that water and surrounding land
pixels can be well distinguished by near-nadir SAR and the intensity of radar signals is determined by
surface dielectric properties, roughness and incidence angles. A dynamic threshold approach was
developed for InIRA and tested over Tibetan lakes where in-situ observations are sparse. Validations
using a 30-m LandSat water mask suggest that high accuracy (>90%) of water and land classification
can be achieved by InIRA [6].

Alternatively, optical remote sensing enables surface water mapping at sub-meter to meter
scales. For mitigating the risks of glacier lake outburst flood, multi-resolution satellite imageries from
LandSat (30-m resolution), Sentinel-2 (10-m resolution), WorldView and GeoEye (0.5–2 m resolution)
were synergistically used to analyze the dynamics of supraglacial ponds in the Himalayan region.
The analyses showed a continuous increase in the area and number of supraglacial ponds from
1989–2017, consistent seasonal patterns and a great diversity of pond features. The satellite images also
revealed high persistency and density of the ponds (>0.005 km2) near the glacier terminuses; and a fast
expanding of spillway lakes on the Ngozompa, Bhote Koshi, Khumbu and Lumsamba glaciers [7].

Landsat imageries (1985–2015) and higher resolution aerial photographs were used to quantify
surface water changes in the high Arctic pond complexes of western Banks Island, Northwest Territories.
Analysis based on remote sensing, field sampling and geostatistic approaches showed an overall drying
trend of high Arctic lakes mainly driven by climate factors and also affected by intensive occupation by
lesser snow geese [8].

Vegetation—Multi-year Landsat and MODIS (Moderate Resolution Imaging Spectroradiometer)
data sets were examined to reconstruct vegetation recovery from wildfire disturbances in Alaska.
Breakpoint analysis using the BFAST (Breaks for Additive Seasonal and Trend) approach was able to
capture the wildfire-related structural change in the MODIS normalized difference vegetation index
(NDVI) time series. Further analysis of the change detection results suggested that vegetation cover
density in the Alaskan wetlands likely recovers to pre-fire levels in less than 10 years [9].

In summary, continuous warming has altered the hydrologic and ecologic conditions across the cold
regions, resulting in a myriad of changes including glacier melting, active layer deepening, permafrost
degradation, snow and ice phenology changes, water body shrink and expansion, and regional
greening and browning. Remote sensing is essential in tracking and understanding the environmental
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changes and revealing the underlying physical mechanisms. Multi-source data fusion approaches,
emerging techniques such as microsatellites and artificial intelligence, light detection and ranging
(LIDAR) and structure from motion photogrammetry, and next generation satellite missions will enable
unprecedented remote sensing performance in cold land studies [10].

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Detailed angular ground-based L-band brightness temperature (TB) measurements over
snow covered frozen soil in a prairie environment were used to parameterize and evaluate an
electromagnetic model, the Wave Approach for LOw-frequency MIcrowave emission in Snow
(WALOMIS), for seasonal snow. WALOMIS, initially developed for Antarctic applications,
was extended with a soil interface model. A Gaussian noise on snow layer thickness was implemented
to account for natural variability and thus improve the TB simulations compared to observations.
The model performance was compared with two radiative transfer models, the Dense Media Radiative
Transfer-Multi Layer incoherent model (DMRT-ML) and a version of the Microwave Emission Model
for Layered Snowpacks (MEMLS) adapted specifically for use at L-band in the original one-layer
configuration (LS-MEMLS-1L). Angular radiometer measurements (30◦, 40◦, 50◦, and 60◦) were
acquired at six snow pits. The root-mean-square error (RMSE) between simulated and measured
TB at vertical and horizontal polarizations were similar for the three models, with overall RMSE
between 7.2 and 10.5 K. However, WALOMIS and DMRT-ML were able to better reproduce the
observed TB at higher incidence angles (50◦ and 60◦) and at horizontal polarization. The similar
results obtained between WALOMIS and DMRT-ML suggests that the interference phenomena are
weak in the case of shallow seasonal snow despite the presence of visible layers with thicknesses
smaller than the wavelength, and the radiative transfer model can thus be used to compute L-band
brightness temperature.

Keywords: L-band emission; snow; WALOMIS; Frozen soil; ground-based radiometer

1. Introduction

Three spaceborne L-band passive microwave radiometer missions were successfully launched
in recent years for global monitoring of soil moisture and sea surface salinity. The European Space
Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) mission [1] was launched in November

Remote Sens. 2018, 10, 1451; doi:10.3390/rs10091451 www.mdpi.com/journal/remotesensing4
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2009 and continues to operate. The NASA Aquarius instrument on board the Aquarius/Satélite
de Aplicaciones Científicas (SAC-D) mission, developed collaboratively between the U.S. National
Aeronautics and Space Administration (NASA) and Argentina’s space agency, Comisión Nacional
de Actividades Espaciales (CONAE) acquired L-band observations between September 2012 and
July 2015 [2], and the NASA Soil Moisture Active Passive (SMAP) satellite was launched in January
2015 [3]. These missions also provide useful information for cryosphere applications including
monitoring the freeze/thaw (F/T) state of the land surface [4–7], estimating snow density and ground
permittivity [8,9], and retrieving the thickness of thin sea ice [10].

Many studies have improved the modelling of L-band brightness temperature (TB) for
non-frozen surfaces [11], while numerous snow emission models exist for higher frequencies [12–15].
Comparatively few studies have calibrated and validated a snow emission model over frozen soil at
L-band, as conventionally snow cover has been thought to have little relevance for L-band emissions
because of inherent low scattering and absorption in dry snow. Recent studies, however, show the
non-negligible impact of dry snow on L-band emission [16–18]. On the basis of the Microwave
Emission Model for Layered Snowpacks (MEMLS, [12]) and the L-band microwave emission of the
biosphere (L-MEB) model [11], Naderpour et al. [19] developed a simplified emission model specifically
for L-band (called LS-MEMLS hereafter). The model neglects volume scattering in the snow layer,
which is a plausible approximation for L-band. In cases of wet snow, absorption is considered by
LS-MEMLS, whereas dry snow is assumed to be fully transparent, which is reasonable for seasonal
snowpacks with thicknesses much smaller than L-band emission depth in dry snow (>300 m [20]).
However, sensitivity to dry snow is retained though impedance matching and changes in the refraction
angle at the snow-soil interface due to variable snow permittivity, which is in turn controlled by the dry
snow density. The study also introduces a dual parameter retrieval approach for dry snow density and
ground permittivity. The model and retrieval methods were evaluated with experimental data in boreal
forest [9] and Canadian prairie environments [17]. However, the LS-MEMLS model approach does not
take into account wave coherence effects [21], which potentially induces multiple reflections within a
thin layer of snow or ice and associated interferences. Coherence effects may arise when the thickness
of the layer is less than about a quarter of the wavelength (λ; about 5 cm at L-band; [22]), and when
layers are sufficiently homogeneous and parallel in the horizontal direction within the radiometer field
of view. This can lead to significant variation in TB especially at the horizontal polarization [23,24].

In this study, we focus on modelling the snow contribution to L-band emission to better
understand the effect of snow layering and interference for improved F/T monitoring and snow density
retrieval. Three electromagnetic models were compared: the Dense Media Radiative Transfer-Multi
Layer incoherent model (DMRT-ML) [14], the LS-MEMLS model [19], and the Wave Approach for
LOw-frequency MIcrowave emission in Snow (WALOMIS) model [18,25]. The latter is a coherent
model successfully used at L-band in the case of semi-infinite snow-firn over Antarctica. It was not
previously applied to seasonal snow cover, so some improvements are introduced in this study.

Ground-based L-band radiometer measurements acquired in a Canadian prairie environment are
used to first implement the WALOMIS model for seasonal snow, followed by comparisons with the
LS-MEMLS and the DMRT-ML. In the following sections, we first present the ground-based radiometer
observations and in situ measurements as well as the three snow microwave emission models and the
soil emission model. The model parameterizations are presented, after which we present results and a
comparison of the model performance.

2. Site and Data

During the 2014–2015 winter, a ground-based L-band radiometer measurement campaign was
conducted at the Kernen Crop Research Farm (KCRF; 52.149◦N; 106.545◦W), a 380 ha property within
the city of Saskatoon owned and operated by the University of Saskatchewan, Canada. L-band
radiometer measurements and coincident snow pit and meteorological observations were performed.
The study area and the campaign and datasets are described in detail in Reference [17].
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At KCRF, tree scenes were located adjacent to each other within the same field to ensure similarity
in background emission, with only the overlying snow conditions altered. The three scenes include:
Scene 1—Undisturbed snow: A scene of naturally accumulating snow-covered ground; Scene 2—Snow
free: snow was removed on a weekly basis to maintain bare ground; Scene 3—Artificially compacted
snow: a scene with deep and dense snow. Additional snow was manually added to Scene 3 and
compacted on December 10th, 19th, 2014 and January 11th 2015 and then left to evolve naturally
for the rest of the season. As this study focuses on snow emission modelling, Scene 2 was not used
in this study. The scenes were characterized by silt-loam bare soil conditions. Wheat residue was
noted and not disturbed during the study. Surface roughness was derived using a terrestrial Light
Detection and Ranging (LiDAR) system using a surface roughness tool called Roughness from Point
Cloud Profiles (RPCP) [26] implemented in Whitebox Geospatial Analysis Tools (GAT) software [27].
Surface roughness had a root-mean-square height (RMSH) of 1.78 cm and 1.64 cm within Scene 1 and
3, respectively, at the beginning of the study and remained almost unchanged throughout the study
(RMSH = 1.79 cm and 1.75 cm).

L-band measurements were acquired by a surface-based hyperspectral dual polarization L-band
Fourier transform radio-frequency interference (RFI) detecting radiometer with 385 channels designed
for a frequency range from 1400 MHz to ≈1550 MHz. The radiometer antenna is a 19-element air
loaded conformal muffin tin design that has a 30◦ half-power (−3 dB) beamwidth. A method was
developed for separating out the thermal spectrum from RFI-contaminated channels to get unique
RFI-free TB from the measured spectrum [28]. Only the protected radio-astronomy frequency spectrum
of 1400–1427 MHz was used to calculate the TB. The radiometer was set 2.75 m above the surface,
and measurements at the angles 30◦, 40◦, 50◦, and 60◦ relative to nadir were taken of the three scenes
on a weekly basis. On 9 November 2014, radiometric measurements were taken while the soil was
frozen and snow-free. From December 2014 to March 2015, six radiometric measurements were taken,
coincident with manual snow pit measurements in the vicinity of Scene 1 and 3. The snow pits
included documenting the snow stratigraphy, including the presence of ice lenses. Profiles of snow
temperature and snow density were taken for the observed snow layers. Mass density was measured
using a 100 cm3 density cutter, and samples were weighed with a digital scale with an accuracy of
±0.1 g. The snow and soil temperature at 2.5 cm intervals were measured with a digital temperature
probe (±0.1 ◦C). Soil was frozen at each visit.

Figure 1 shows snow pits performed close to Scene 1 and 3 during each visit. Note that on
7 December 2014, only a single snow pit is available and refers to both scenes. Snow pits in the vicinity
of Scene 1 were generally shallow (Table 1) and composed of a depth hoar layer at the bottom and a
high-density rounded grain winds slab snow layer at the surface. One or two high-density melt/ice
crust layers and/or ice lenses were present within the snowpack, resulting from mid-winter melt
events (see in Reference [17] the Figure 4 and details). Note that this strong stratification between the
top and bottom of the snowpack made the snow density measurements a challenge because of the
hardness (surface wind slab and melt/ice crust) and the instability (depth hoar) of the snow layers.
Because of the artificial compaction of snow, the snow density of the bottom layer is higher in Scene
3. There was still a high snow density observed in February showing that the artificial high-density
snow/ice crust made up a large proportion of the lower 10 cm of the snowpack in Scene 3. However,
as the season progressed and metamorphism continued within the snowpack, there was a decrease in
the density of the snow/ice crust layers found within the bottom layers. Note that all air temperature
measurements below −6 ◦C ensure that the snow was dry during each visit (Table 1).
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Figure 1. Snow pits measurements in the vicinity of Scene 1 (left) and Scene 3 (right) performed at
each visit. Dark blue lines are the snow layer density. Scene 2 was not considered in this study.

Table 1. Snow and air temperature measurements during each visit. “-” means no data. Note that
missing data are related to technical issues with instruments.

Dates
Snow Depth (cm)

Snow Bulk Density
(kg m−3)

Air
Temperature

(◦C)

Magna Probe Mean Snow
Depth and Standard

Deviation (cm)

Scene 1 Scene 3 Scene 1 Scene 3

2014-12-7 20 20 230 230 −6.6 12 ± 5
2014-12-19 14 18 460 490 −9.0 -
2015-1-11 26 28 226 563 −20.2 18 ± 10
2015-2-9 12 30 360 480 −13.9 18 ± 7
2015-3-4 36 31 283 358 −16.8 25 ± 7

3. Emission Models

All three snow microwave emission models and the soil emission model used in this study are
already well described in detail (see previously provided references). Accordingly, we only recall here
the principal components of each model, the model inputs and adjustments made for this study.

3.1. WALOMIS

The WALOMIS [18] coherent snow emission model is based on a wave approach, i.e., solving
Maxwell’s equation for a multi-layered medium [29,30]. Each layer is characterized by thickness,
temperature, and density. The most important simplification in this model is to neglect scattering
by snow grains. This assumption is invalid for high microwave frequencies, however, in the case
of L-band, scattering by grains is insignificant in comparison with absorption and reflection at the
interfaces between layers due to the L-band wavelength being several orders of magnitude larger than
snow grain size. Under these assumptions, the vertically and horizontally polarized TB of a given
snowpack is calculated with the propagation-matrix derived from Reference [31].

WALOMIS was initially implemented to investigate the microwave emission at L-band for
semi-infinite snow-firn in Antarctica [18,25]. In the case of the Antarctic ice-sheet, the soil emission can
be ignored because of the high ice thickness (>1000 m). Thus, the lowest layer of the model is considered
a semi-infinite ice layer. In contrast, in the case of seasonal snowpack, the soil emission is not negligible
for the total emission of the snow-covered ground. Therefore, for the present study WALOMIS was
adapted to take into account the soil emission from below the snowpack replacing the semi-infinite
bottom ice layer by a soil layer characterized by the observed temperature and permittivity.

Because of the high sensitivity of the interference phenomena to the layer thickness with the wave
approach (which is not the case with the non-coherent radiative transfer approach), the result obtained
for a specific snowpack configuration (i.e., a given set of inputs) may differ considerably from those
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obtained with a slightly different snowpack. To account for the variable nature and the imperfect
layering of the snowpack within the footprint of the radiometer, it is essential to average a large number
of simulations using inputs that represent natural snow variability. As thousands of simulations are
required, it would be impossible to obtain the input profiles from direct measurements. Several
studies suggested stochastic methods to generate such profiles from measurements in Antarctica (e.g.,
Reference [18,29,32]). A similar procedure used here is described in Section 4.2. The output of the
model is the average TB from all the generated profiles.

3.2. DMRT-ML

The DMRT-MultiLayer (DMRT-ML) is an incoherent model that describes the snowpack as a
multilayer medium, where each snow layer is characterized by its thickness, temperature, density,
grain optical radius, stickiness parameter, and liquid water content. The model is available from
http://gp.snow-physics.science/dmrtml. It is based on the DMRT theory [30]. In this study, stickiness
is not investigated because scattering by grains is negligible, and this parameter has no effect at
L-band (typically less than 0.1 K). Because all the measurements were made in cold conditions with
dry snow, the liquid water content was considered to be zero. For each layer, the effective dielectric
constant is represented using the first order quasi-crystalline approximation and the Percus–Yevik
approximation for spherical grains. The absorption and scattering coefficients are calculated assuming
a medium of “ice spheres in air background” and the emission and propagation of radiation through
the snowpack are computed using the Discrete Ordinate Method (DISORT: [33]) with 64 streams,
which takes multiple scattering between the layers into account, but not the interferences.

3.3. LS-MEMLS-1L

The LS-MEMLS [19] model estimates L-band microwave emission from a ground surface covered
by a layer of dry snow. This emission model is based on parts of MEMLS, [12] with the assumptions of
no absorption and no volume scattering in dry snow, which are applicable to the L-band frequencies in
dry snow. Once the interface reflectivities are known, the Kirchhoff coefficients associated with a single
(snow) layer above an infinite half-space (ground) are computed to derive TB. Snow is characterized
only by its permittivity, controlled by the dry snow density. Schwank et al. [8] assumed a single snow
layer with a homogeneous density distribution, which allowed a numerical inversion of the model
with minimal a priori information, for purposes of retrieval of snow and ground parameters. Although
e.g., Reference [34] applied the model also in a configuration exhibiting a vertical distribution of snow
densities, in this study LS-MEMLS is applied in the original one-layer configuration (LS-MEMLS-1L)
to evaluate its applicability for snow density retrievals [8,9].

3.4. Soil Emission Model

At L-band, soil emission has a significant contribution to the signal emerging from the surface in
environments with seasonal snow [35]. Hence, a soil reflectivity model is a prominent component of
seasonal snow microwave-emission models. In this study, the soil reflectivity is calculated from the
Fresnel equations and the roughness is considered as negligible. A specular soil reflectivity model is
used in this study because WALOMIS needs electric field reflectivity between layers, while known
rough soil emission models (i.e., Reference [36]) provide only the power reflectivity without phase
information. Because the main purpose of this study is to evaluate the performance of snow emission
models, it is important that the same soil emission model is used for the three snow emission models
in order to avoid any bias in simulations that come from soil emission modelling. The same specular
soil reflectivity model is thus used with each of the three snow emission models. The hypothesis of a
specular soil is plausible in our case because the root-mean-square height (RMSH: 1.79 cm and 1.75 cm;
see Section 2) of the soil measured with the LiDAR is much smaller than the L-band wavelength
(RMSH < λ/12).
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Fresnel equations calculate the soil reflectivity from the permittivity of the frozen soil and the
permittivity of the layer on top (air or snow). Snow permittivity is calculated from snow emission
models, but frozen soil permittivity (εg) was not measured and remains an unknown. Hence, εg was
inferred from frozen ground snow-free radiometric measurements taken on 9 November (see Table 1).
An iterative process with an increment of 0.1 was used to calculate the frozen soil permittivity that
minimized the root-mean-square error (RMSE) between the measured TB (TB mes), and simulated TB

(TB sim) at vertical (V-pol) and horizontal polarization (H-pol) at the four measured incidence angles
such that:

RMSEεg =

√√√√∑N
i=1

(
TV−pol

B∼,i − TV−pol
Bmes,i

)2
+

(
TH−pol

B∼,i − TH−pol
Bmes,i

)2

2N
(1)

The optimization of εg was done on Scene 1 and 3 separately. In this case, εg should be considered
as an effective parameter that allows representation of frozen soil emission for the three models, but
can also partially compensate for the specular assumption.

4. Results

4.1. Frozen Soil Permittivity

The optimized εg was calculated from TB simulations for εg ranging from 1 to 15 and using
November snow-free frozen soil parameters. RMSEεg was computed from angular radiometer
measurements performed on 1st November 2015 on Scene 1 and 3 at vertical and horizontal polarization
(Figure 2). The optimal value of εg was 4.6 and 4.9 for Scene 1 and 3, respectively. RMSEεg of 10.7 K
and 8.2 K, respectively, was observed for Scene 1 and 3, but an important component of this error
was the poor simulation performance at 60◦ V-pol (discussed in more detail later). RMSEεg computed
without the TB at 60◦ are 6.9 K and 5.7 K for an optimized εg of 4.3 and 4.8 for Scene 1 and 3,
respectively. The small differences between both sites are not significant, and could be related to
differences in soil RMSH, which is not considered in the soil model. These optimized εg were used in
the following simulations.

 
Figure 2. RMSEεg) obtained from Dense Media Radiative Transfer-Multi Layer (DMRT-ML) simulations
and angular radiometer measurements performed in November 2015 on snow-free frozen soil on Scene 1
(blue) and 3 (red) for different values of soil permittivity (εg) with a specular soil reflectivity model.
RMSEεg including all incidence angles (solid lines) and without 60◦ (dashed lines) are represented.

4.2. WALOMIS Gaussian Noise Parameterization

As is true of any model based on the wave approach, the result obtained for a specific snowpack
configuration (i.e., a given set of inputs) may differ considerably from those obtained with a slightly
different snowpack, which is not the case with the radiative transfer approach. This is due to the high
sensitivity of interference phenomena to layer characteristics. Hence, on the basis of Reference [18],
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10,000 snow density profiles were generated by adding a Gaussian noise (σd) to the measured density
profile and TB was obtained from the average of 10,000 WALOMIS simulations performed with
these profiles.

Figure 3 shows the effect of the Gaussian noise for an example of simulations for Scene 1 on
4 March 2015 with fixed layer thickness. Even with a very high Gaussian noise of σd = 90 kg m−3,
the simulations show a wavy angular pattern owing to the high sensitivity of interference phenomena,
very different to the measured angular spectrum. These results suggest that for shallow seasonal snow,
adding Gaussian noise to density profiles does not reproduce the variability of snow cover within the
radiometer field of view.

Figure 3. TBV-pol (blue) and TBH-pol (black) on 4 March 2015 at Scene 1 measured (symbols)
and simulated (lines) with the Wave Approach for LOw-frequency MIcrowave emission in Snow
(WALOMIS) with added Gaussian noise (σd) to the measured density of 30 kg m−3 (left), 60 kg m−3

(center) and 90 kg m−3 (right).

In situ measurements performed during the campaign revealed strong variability in the thickness
of internal layers within the snowpack (see Reference [17]), which could better represent interference
phenomena in the model. WALOMIS simulations were also performed from 10,000 profiles of layers
thickness by adding a Gaussian noise (σh) to the measured layer thickness, keeping the measured
snow density. Figure 4 shows that with increasing σh, the angular pattern of the simulation gets closer
to the TB measurements. Increasing the variability of layer thickness to 2–4 cm results in agreement
with the TB observations (Figure 4). With a σh = 2 cm and 4 cm, the simulated H-pol also capture
the TB decrease with incidence angle. However, contrary to observations which slowly decrease with
incidence angle, simulations at V-pol tend to increase with incidence angle, before decreasing at 60◦.
As expected, because interference phenomena are highly sensitive to optical path-length across layers,
a Gaussian noise of σh = 2 cm, was found to give the best agreement with measurements and was used
for the subsequent simulations.
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Figure 4. TBV-pol (blue) and TBH-pol (black) for 4 March 2015 at Scene 1 measured (symbols) and
simulated (lines) with WALOMIS with added Gaussian noise (σh) to the measured layer thickness of
1 cm (left), 2 cm (center) and 4 cm (right).

4.3. Footprint Integration

Because of the large antenna full beamwidth (30◦) and the footprint geometry of the surface-based
radiometer, the simulated TB of a single directional incidence angle (θ) might not be representative of
the measured TB over a large footprint, especially at higher incidence angles [37]. Hence, in this study,
a weighting function was computed to estimate the integrated TB within the footprint for a range
of incidence angles. For this estimation, the area included in θ ± 15◦ was considered. A Gaussian
weighting was applied to θ with a standard deviation of 7.5◦ in order to represent the antenna
directional power sensitivity pattern. Then, a factor 1/r2, with r the distance from the radiometer,
was applied to the obtained coefficients to attenuate the contribution as a function of the location
within the footprint. The coefficients used for the weighting are illustrated in Figure 5, normalized by
the maximum.

 

Figure 5. Weight relative to maximum diagram where X and Y are coordinates (in meters) on the
field from the radiometer (0, 0). Red crosses are the incidence angles of the antenna footprint center.
Grey lines for incidence angles inside the footprint by 2◦ step.

When the weighting function was applied to the simulations of the three snow emission models
at Scene 3 on 4 March 2015, there is a decrease of TB at both H-pol and V-pol mostly at incidence angles
higher than 55◦ (Figure 6). This decrease in TB slightly improved the results for all three models at
high incidence angles, thus it was used in the following simulations.
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Figure 6. TBV-pol (blue) and TBH-pol (black) measured (symbols) and simulated using non-weighted
(dashed) and weighted (lines) signal within the footprint; with WALOMIS (left), DMRT-ML (center)
and LS-MEMLS-1L (right) at Scene 3 for 4 March 2015.

4.4. Snow Emission Model Intercomparison

The effect of dry snow at L-band is mostly related to refraction and impedance matching [16].
Impedance matching by dry snow reduces dielectric gradients and consequently increases thermal
emission of the scene, while refraction caused by the snow layer in contact with the ground surface
leads to a steeper incidence angle at the ground surface in comparison with the observation angle [16].
The impact is in general higher at H-pol, since at V-pol these effects are partly compensatory, and even
fully compensatory around an incidence angle of 51◦. At H-pol, the effect of snow typically increases
with incidence angle. At the plot scale, the presence of snow can change TB at H-pol from 5 K at 30◦ up
to 20 K at 60◦ [17]. The specular soil reflectivity model with optimized permittivity and the optimized
weighting function were used to simulate the TB at the Scene 1 and 3 and for the six sampling periods
with the three snow emission models (Figure 7). The three models show very similar overall RMSE
at V-pol and H-pol with values ranging between 7.2 K and 10.5 K. LS-MEMLS-1L gives lower RMSE
at H-pol while DMRT-ML gives slightly better results at V-pol. Note that for the three models and
both polarizations, the RMSE increases with increasing incidence angle (Table 2). The worst results are
obtained at 60◦, which has a strong impact on the overall RMSE (noted “All” in Table 2). It is thus not
possible to state that a specific snow emission model gives better results overall. Nevertheless, at 50◦

and 60◦, LS-MEMLS-1L clearly underestimates the variability of TB H-pol, with a standard deviation
of the simulations much lower than the standard deviation of observations. Simulations at 60◦ ranged
between 203.9 K and 213.9 K, while the measured TB H-pol ranged between 192.8 K and 225.8 K.
On the other hand, the standard deviations of WALOMIS and DMRT-ML simulations at TB H-pol
are much closer to the measurements (Table 3). These results suggest that snow layers significantly
impact the TB H-pol. The multi-layer model configurations are able to better capture this effect, but the
complex interaction of the radiation within the layers and the difficulty to precisely measure the snow
layer characteristics in the field at the meter scale (footprint) leads to an overall RMSE comparable to
LS-MEMLS-1L applied in a 1-layer configuration. We thus face the problem where more complex and
more sensitive radiometric models require precise in situ information for comprehensive evaluation,
a condition that will provide limitations for more general use, especially at the satellite scale.
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Figure 7. TB simulated from WALOMIS (left), DMRT-ML (center) and LS-MEMLS-1L (right) for Scene
1 and 3 at V-pol and H-pol (symbols) and at four incidence angles (colors).

Table 2. Root-mean-square height (RMSE) of all the dates and Scene 1 and 3 together. “All” is the
RMSE calculated with incidence angles of 30◦, 40◦, 50◦ and 60◦.

RMSE for TBV-pol (K) RMSE for TBH-pol (K)

30◦ 40◦ 50◦ 60◦ All 30◦ 40◦ 50◦ 60◦ All

WALOMIS 4.6 2.9 7.8 15.4 9.1 6.9 7.8 10.2 12.9 9.7
DMRT-ML 4.1 2.6 7.7 14.8 8.8 5.9 7.0 11.0 15.7 10.5
LS-MEMLS-1L 2.5 3.8 9.2 16.1 9.6 3.7 4.3 7.3 11.2 7.2

Table 3. Standard deviation (Std) of all the dates and, Scene 1 and 3 together. “All” is the Std calculated
with incidence angles of 30◦, 40◦, 50◦ and 60◦.

Std for TBV-pol (K) Std for TBH-pol (K)

30◦ 40◦ 50◦ 60◦ 30◦ 40◦ 50◦ 60◦

WALOMIS 3.8 3.1 2.6 2.5 6.7 7.5 8.1 10.1
DMRT-ML 3.1 2.5 2.3 2.4 5.6 6.8 8.6 11.1
LS-MEMLS-1L 2.6 2.5 2.4 2.4 2.9 2.9 2.8 2.8
Measures 2.3 2.7 2.9 4.2 5.3 7.8 11.3 13.8

5. Discussion

5.1. Soil Permittivity Parameterization

The optimized values of frozen soil permittivity are close to other studies [16,17,35,38,39].
Rautiainen et al. [35] obtained L-band real part soil permittivity values between 3.3 to 3.8 in boreal forest
frozen soils; Schwank et al. [16] showed that for L-band, the real part of the frozen soil permittivity
varies from 3.5 to 4.5, while Hallikainen et al. [38] showed that it varies from 5 to 8 in the 10 to 18 GHz
frequency range. At the same frequency range, Mironov et al. [39] developed a temperature dependent
permittivity model and showed that the permittivity could vary from 3 to 4.5 for a frozen soil at
−25 ◦C. The optimized values are similar to the ones obtain at the same site ([17]; εg = 5.1), but using
a two parameter (εg and snow density) retrieval method [8]. The plausible optimized εg values thus
show that the assumption of a flat soil at L-band was reasonable for our site and the impact of soil
roughness is reasonably included in the εg. However, in this study, soil emission was empirically
parameterized to minimize its impact on the simulation of snow covered ground, but it remains that
the snow-free frozen soil RMSE are similar to the snow simulations. In particular, Figure 6 shows
that at V-pol, there is a clear underestimation of the TB at an incidence angle of 30◦, while there is an
overestimation of TB at higher incidence angle (50◦ and 60◦). There is thus an opposite trend in the
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angular spectrum between the measurements and the observations, an effect most likely related to
the soil model. It should be note that those error impact substantially the results with snow-covered
surface. Simulations and observations at V-pol will have to be investigated further.

5.2. WALOMIS Gaussian Noise Parameterization

This study shows that an approach developed by Reference [18], which applies Gaussian noise
to in situ snow density measurements to estimate TB variability is insufficient to smooth the snow
layer interference phenomena in WALOMIS. However, Gaussian noise applied to snow depth layer
thickness of σh = 2 cm leads to an angular spectrum comparable to the observations. A value of
σh = 2 cm is plausible considering the high standard deviation of snow depth in the area and the
variable internal layering of the snowpack. Snow depth surveys around the area suggest that despite
the surface appearing relatively homogeneous, the standard deviation of the snow depth is in the
range of 28 to 56% (Table 1). The high variability in snow depth is related to wind redistribution, a key
process in this prairie environment [40]. Strong winds also lead to a high snow density layer observed
at top of the snowpack due to compaction processes [41], thus resulting in the optimized snow depth
layer thickness variability σh of 2 cm at the plot scale.

5.3. Footprint Integration

Roy et al. [37] showed that spatially distributed surface-based radiometer observations within
a SMOS pixel gives constantly lower TB (between 8.5 and 22.9 K) than SMOS observations at 60◦

V-pol (not apparent at lower incidence angles). It was hypothesized that these discrepancies were
due to the large beamwidth (30◦) of the surface-based radiometer, which produced an incidence
angle in the far range of up to 75◦. This may exaggerate the influence of high incidence angles on
reducing the magnitude of V-pol TB. The calculation of the weighted footprint integration in this
paper shows that the effective incidence angle can explain a small part of the ground-based radiometer
bias to lower TB at 60◦ V-pol (Figure 6). For the three models, RMSE was reduced 2.4 K at 60◦ V-pol
because of the footprint integration, but no clear improvement was observed at H-pol. The footprint
integration cannot fully account for the entire difference between simulations and measurements at
higher incidence angles. Thus, part of the difference may be the result of the sky contribution (low TB)
captured by antenna side lobes.

5.4. Snow Emission Model Intercomparison

Results show that all models give similar overall RMSE values between 7.2 K and 10.5 K. It is thus
difficult to identify a preferred model for this environment. Those snow-covered RMSE are very similar
to snow-free RMSE, which suggest that a large part of the errors come from the soil parameterization
(see Section 5.1). However, our results suggest that the multi-layer models, DMRT-ML and WALOMIS,
are able to better simulate the range of observed TB compared to the one-layer model. DMRT-ML
and WALOMIS simulations are similar, and suggest that the interference phenomena, simulated by
WALOMIS, have a marginal impact on the simulations. Leduc-Leballeur et al. [14] showed that the
coherence effect considered in WALOMIS significantly improve the simulation for the semi-infinite
snow layered medium in Antarctica, which is not the case for shallow seasonal snowpack. It seems
that DMRT-ML, by considering the refraction between layers incorporate the main features needed to
reproduce variations in the TB similar to the observations. However, the snowpack during the winter
was shallow with very strong meter scale spatial variability and a stratigraphy that made the snow
density measurements challenging to document within the field of view of the radiometer (Table 1).
Furthermore, because of the several melt/refreeze events that occurred during the winter several ice
layers were present in the snowpack resulting in substantial spatial variability. Because of this high
spatial variability in the presence of ice layers and snow density within the snowpack, it is unlikely that
individual snow pit measurements are representative of the radiometer footprint, and thus a further
source of model uncertainty. Therefore, it is difficult to precisely quantify the effect of coherence in
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an ice layer, even in a relatively controlled experiment such as that described. A similar experiment
but with deeper and more homogeneous snow could help to improve our understanding of snow
layer effects on L-band emission. The higher complexity of simulations with WALOMIS may not be
necessary, unless coherence and layering effects are very strong.

Although the one-layer model does not capture stratigraphy and coherence effects captured in the
more detailed multi-layered models, the overall performance was similar. Hence, in a snow density
inversion scheme such as that proposed by Reference [8], the one-layer model is a practical solution
because it includes only a small number of free parameters, which is almost a prerequisite to achieve
unique values of respective retrievals.

6. Summary and Conclusions

Recent studies show the non-negligible impact of snow on L-band emission [8,17,19] even when
the snowpack is shallow. In this study, the Wave Approach for LOw-frequency MIcrowave emission
in Snow was adapted and parameterized for seasonal snow using ground-based L-band radiometer
observations in a prairie environment. A specular soil reflectivity model was added to WALOMIS,
and frozen soil permittivity (εg) of 4.3 and 4.8 used for Scene 1 and 3, respectively, was estimated using
an optimisation scheme that compared, observed and simulated TB (DMRT-ML) from snow free frozen
ground measurements.

Gaussian noise of snow depth layers of σh = 2 cm obtained a comparable multi-angular TB

response but still underestimated the observations at H-pol. The same simulations also underestimated
at lower incidence angles and overestimated at higher incidence angles compared to V-pol observations.
The calculation of a weighted footprint integration shows that the effective incidence angle can explain
part, but not all of the ground-based radiometer bias to lower TB at 60◦ V-pol, but no clear improvement
was observed at H-pol. The WALOMIS simulations were then compared to two other radiative transfer
models, the DMRT-ML and a simplified adaptation of MEMLS for L-band (LS-MEMLS-1L), used in
a single-layer configuration. RMSE between simulated and measured TB were similar for the three
models with overall RMSE between 7.2 and 10.5 K. However, WALOMIS and DMRT-ML were able to
better reproduce the range of TB of the observations at higher V-pol incidence angles (50◦ and 60◦) and
across all incidence angles at H-pol.

The impact of snow on surface emission at L-band is relatively small compared to higher
frequencies, where the wavelength is similar to snow grain size, inducing scattering. However,
there is still valuable and complementary snow information in L-band observations, such as sensitivity
to snow density [9] and ice layers [6]. Hence, it is important to develop and assess existing emission
models that will help to better quantify these different effects for applications such as the observation of
the soil freeze/thaw status. In this study, an effort was made to develop and parameterize WALOMIS
for seasonal snow. While the results of all three models are similar, the wave approach of WALOMIS
suggests that it is an appropriate new tool to better understand and model L-band emission when
interference and snow layering is present.
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Abstract: Arctic sea ice concentration (SIC) has been studied extensively using passive microwave
(PM) remote sensing. This technology could be used to improve navigation along vessel cruise
paths; however, investigations on this topic have been limited. In this study, shipborne photographic
observation (P-OBS) of sea ice was conducted using oblique-oriented cameras during the Chinese
National Arctic Research Expedition in the summer of 2016. SIC and the areal fractions of open
water, melt ponds, and sea ice (Aw, Ap, and Ai, respectively) were determined along the cruise path.
The distribution of SIC along the cruise path was U-shaped, and open water accounted for a large
proportion of the path. The SIC derived from the commonly used PM algorithms was compared
with the moving average (MA) P-OBS SIC, including Bootstrap and NASA Team (NT) algorithms
based on Special Sensor Microwave Imager/Sounder (SSMIS) data; and ARTIST sea ice, Bootstrap, Sea
Ice Climate Change Initiative, and NASA Team 2 (NT2) algorithms based on Advanced Microwave
Scanning Radiometer 2 (AMSR2) data. P-OBS performed better than PM remote sensing at detecting
low SIC (< 10%). Our results indicate that PM SIC overestimates MA P-OBS SIC at low SIC, but
underestimates it when SIC exceeds a turnover point (TP). The presence of melt ponds affected the
accuracy of the PM SIC; the PM SIC shifted from an overestimate to an underestimate with increasing
Ap, compared with MA P-OBS SIC below the TP, while the underestimation increased above the TP.
The PM algorithms were then ranked; SSMIS-NT and AMSR2-NT2 are the best and worst choices for
Arctic navigation, respectively.

Keywords: sea ice concentration; passive microwave; shipborne observation; Arctic navigation

1. Introduction

Arctic sea ice cover has undergone substantial changes in recent decades, such as reductions in
sea ice thickness [1,2] and extent [3,4], loss of sea ice volume [5] and multiyear ice coverage [6,7], and a
rapid decline in sea ice concentration (SIC) in summer and early autumn [8,9]. These changes have
made the Arctic more accessible, which has led to numerous studies of sea ice along the Arctic Passage
in the fields of remote sensing, engineering, and geoscience. SIC is one of the main parameters, not
only for Arctic sea surface albedo [10] and climate change [11], but also for ice resistance and the safety
of ships during Arctic navigation [12].

Passive microwave (PM) remote sensing is a powerful approach to detect SIC at a pan-Arctic scale.
This method is widely used because of its relatively low sensitivity to atmospheric conditions, such as
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clouds and humidity, and because it is independent of daylight hours. In addition, PM has also been
adopted to investigate the snow properties such as snow water equivalent [13,14]. PM Arctic sea ice
information has been available since the launch of the Scanning Multichannel Microwave Radiometer
(SMMR) in 1978, followed by the Special Sensor Microwave/Imager (SSM/I) and the Special Sensor
Microwave Imager/Sounder (SSMIS) in 1987. Later, more useful PM information on Arctic sea ice has
been provided by the Advanced Microwave Scanning Radiometer for the Earth Observing System
(AMSR-E) and its successor, the Advanced Microwave Scanning Radiometer 2 (AMSR2), launched
in 2002 and 2012, respectively. Several algorithms have been developed to estimate Arctic SIC based
on PM data, such as NASA Team (NT) and its enhanced version (NASA Team 2, NT2), Bootstrap,
Arctic radiation and turbulence interaction study (ARTIST) sea ice (ASI), and the European Space
Agency (ESA) Sea Ice Climate Change Initiative (SICCI) algorithms. Based on these algorithms, more
variability and unknown aspects of the SIC in the Northern Polar Region have been revealed [15–17].

However, the accuracy of the SIC derived from PM algorithms is limited. Each algorithm
uses a set of brightness temperatures for ice-free ocean (SIC = 0) and closed ice cover (SIC = 100%)
to retrieve SIC [18], which represents the radiometric characteristics of different polar sea surface
types [19]. The brightness temperature of sea ice depends on the real temperature and emissivity,
which in turn depends on the phase (ice/water) and salinity [20]. In summer, the real temperature is at
the melting point, but the phase and salinity experience high variability. Therefore, the brightness
temperature of summer sea ice varies considerably in time and space, and the PM algorithms have
large uncertainties [21]. Inter-comparison of SIC algorithms has shown that there are differences
between the SIC retrieved from different PM algorithms [21–24]. Ivanova et al. [25] also showed that
the differences between the PM SIC algorithms are greater in summer than in winter.

Due to the potential errors in the PM SIC, field measurements are essential to obtain SIC at
higher resolution and to validate PM SIC measurements. Several methods are available for shipborne
observations. The visual observation (V-OBS) aboard a vessel is a direct way to record SIC along
the cruise transect, according to the protocol of the Antarctic Sea Ice Processes and Climate program
(ASPeCt) or the Arctic Shipborne Sea Ice Standardization Tool (ASSIST) standard, and V-OBS has been
carried out extensively on expeditions in the Polar Regions [26–30]. Ozsoy-Cicek et al. [31] compared
NT2 and Bootstrap SIC based on AMSR-E data with V-OBS SIC in Antarctica, and found that in general
the NT2 algorithm produces slightly higher SIC measurements than the Bootstrap algorithm. Beitsch
et al. [19] found that Bootstrap and ASI SIC based on AMSR-E data were in better agreement with
V-OBS SIC than the SIC based on SSM/I data using the same algorithms. Pang et al. [32] found that
AMSR2-ASI SIC matched better with V-OBS SIC at the Arctic ice edge than AMSR2-Bootstrap SIC.

However, because human subjectivity during V-OBS cannot be avoided [33], instruments, such
as digital cameras, have been applied. Hall et al. [34] used an oblique-oriented camera to capture
the ice conditions on a scientific cruise to the Greenland Sea. When retrieving SIC, they only
used a sub-scene close to the ship without a geometric correction of the images. To promote the
use of photographs and retrieval accuracy, algorithms have been developed to retrieve SIC from
oblique-captured photographs that have been processed with image partitioning and geometric
orthorectification. Band thresholding, the simplest classification method for pixel extraction, has been
used extensively for image partitioning [27,35–37]. Other methods, such as the K-means technique,
has also been employed [38,39]. For geometric orthorectification, Weissling et al. [38] used a Delauney
Triangulation method, which needs a considerable number of ground control points, stating that this
method was just an ad hoc solution. A more general method of geometric correction for oblique-view
photographs was developed by Lu and Li [40] based on photogrammetric theory, in which the
actual image pixel size can be calculated using the camera system parameters. Using the shipborne
photographic observation (P-OBS) method enables the recording of small-scale ice features that cannot
be detected by PM.

With the development of commercial activities in the Arctic, ice management requires more
small-scale SIC information along the ship routes to guide navigation. In fact, vessels are always
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directed to the areas with wide leads [41]. However, as the most widely used method to detect sea
ice condition, PM observations are deficient in detecting SIC at small scales due to its coarse grid.
Therefore, the performances of PM SIC algorithms need to be evaluated to validate their agreements
with the SIC along the vessel routes from the perspective of navigation. Furthermore, ranking of the
PM SIC algorithms is necessary for choosing an optimal option to guide ice navigation. Although a
few studies have reported the differences between PM and shipborne SIC along a cruise path in the
Arctic [28–30,42], very few ones have adopted an objective method, such as P-OBS.

In order to achieve the present objective, a shipborne sea ice P-OBS program was carried out on the
icebreaker R/V Xuelong as it sailed in the sea ice zone within the Pacific Arctic sector during the Chinese
National Arctic Research Expedition (CHINARE) in the summer of 2016. Based on the P-OBS SIC, the
performances of several most commonly used PM SIC algorithms (including Bootstrap and NT SIC
based on SSMIS data and ASI, Bootstrap, SICCI, and NT2 SIC based on AMSR2 data) were evaluated.
The text is divided as follows: Section 2 provides details of the P-OBS method and image processing.
Section 3 presents the distribution of SIC along the cruise path by P-OBS and the comparisons between
PM SIC and P-OBS SIC. In Section 4, we discuss the potential factors influencing the differences in the
SIC derived from the two sources, the effects of melt ponds, and an inter-comparison of SIC from 2010
to 2016. Finally, these PM algorithms are ranked in Section 5.

2. Data and Methods

2.1. Overview of Ice Navigation

The cruise path of R/V Xuelong in the Pacific sector of the Arctic Ocean in summer 2016 is shown
by the black line in Figure 1. The cruise was restricted by the ice-breaking ability of the vessel, local
ice conditions, and the locations of ice and oceanographic stations. Furthermore, the vessel’s captain
tended to navigate to regions with wide leads. Sea ice was first encountered at around 71.7◦N on
25 July. After entering into the sea ice zone, the vessel sailed northward to 82.7◦N on 7 August for a
long-term ice camp (nine days), and then drifted back to 82.2◦N. The southward navigation began on
15 August and lasted until 23 August, when the vessel sailed out of the sea ice zone at around 74.7◦N.
The cruise passed through Chukchi Sea, Beaufort Sea, and the Central Arctic, all of which are important
seas along the Arctic Passage. Shipborne P-OBS was initiated once sea ice was first encountered and
suspended temporarily during the long-term ice camp. When the southward navigation began, P-OBS
was resumed and finally terminated as the vessel sailed out of the sea ice zone. A threshold of 60%
SIC was used to define the boundary between the marginal ice zone (MIZ) and the pack ice zone
(PIZ) [43]. The region north of 82◦N on the northward leg was taken as the PIZ (see Section 3.1). In the
PIZ, surface wave actions were weak because they were largely constrained by sea ice. In the MIZ,
waves were enhanced with large open water areas present. While it was found that the wavelengths
were less than the size of most floes, so that sea ice seldom fluctuated with waves [44]. The weather
conditions were recorded every minute by the shipborne weather instruments. During ice navigation,
air temperature varied between −5.2 ◦C and 7.3 ◦C, 82% of the time in the range of from −3 to 0 ◦C.
Wind velocity was normally distributed approximately with the average and standard deviation of
8.0 m/s and 4.0 m/s, respectively. Relative humidity ranged between 77% and 100%, and exceeded 98%
in half of the sailing duration.
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Figure 1. The cruise path of R/V Xuelong (black solid line) during Chinese National Arctic Research
Expedition (CHINARE)-2016 with mean sea ice concentration (SIC) derived using the AMSR2-ASI
(Advanced Microwave Scanning Radiometer 2-Arctic radiation and turbulence interaction study sea
ice) algorithm between 25 July 2016 and 23 August 2016 shown in the background. Also included are
the dates of the main turning points (green dots), and the cruise tracks of CHINARE-2014 (red dashed
line) [43] and CHINARE-2010 (blue dashed line) [30] with ice observations in the same sector.

2.2. Shipborne Photographic Observations

The shipborne P-OBS was carried out using oblique-oriented cameras to automatically capture
the sea surface. Two digital cameras were mounted on the port and starboard sides of the R/V Xuelong
to observe the surface morphology during the cruise. Each camera was installed in a plastic box inlaid
with a glass window at the front to protect it from snow and wind (the portside example is shown in
Figure 2). The boxes were attached to the ship’s hull firmly, so that cameras could only shake with the
vessel motion. To gain a wide view, the cameras were placed on the bridge deck (27.3 m above the sea
surface) and oriented obliquely at an angle of 25◦ to the horizon to ensure that the view encompassed
the range from shipside to the skyline. The focal length of the cameras was fixed throughout the cruise.
The cameras worked automatically with a time interval of 1 min and their time format was set to the
Coordinated Universal Time, which was adopted in the shipborne Global Position System, so that the
locations of the photographs could be determined from the moment of capture.

The first step to derive P-OBS SIC from oblique-oriented pictures is image partitioning. We used the
band-thresholding method, which has been adopted in several investigations in Arctic [27,35,36,45,46].
The accuracy of this method has been assessed by Li et al. [46] using the confusion matrix, and the results
showed that the overall accuracy and kappa coefficient were 87%–91% and 0.80–0.86, respectively. We
used the same assessment method as Li et al. [45] in this study and the overall accuracy and kappa
coefficient turned out to be 94% and 0.91, respectively, which indicates high reliability. As shown in
Figure 3a, melt ponds can be distinguished from the surrounding ice because they look bluish, and
because of its lower reflectance, open water can be identified by its darker appearance [47]. According
to these criteria, sea surface morphology can be partitioned into three categories: sea ice, melt ponds,
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and open water, by selecting red, green, and blue thresholds based on the color distribution histograms
within each picture, as shown in Figure 3b. Because the color of these sea surface categories varies
depending on the weather conditions (sunlight or cloud cover) and viewing angle, it was impossible
to select common thresholds for the whole image set. Therefore, the threshold level for each surface
category in each image was independently determined by hand. Especially, melt ponds were usually
misidentified during image partitioning. Manual intervention was a necessary procedure to check the
boundary of melt ponds based on the threshold calculated by computer and justified by naked eyes.
Then the targets mistaken as melt ponds could be excluded and corrected.

 

Figure 2. The camera used to observe the sea surface (a) on the portside of the R/V Xuelong (b).

Figure 3. An original oblique-oriented picture (a) and its corresponding image after partitioning (b) in
which the white, red, and blue parts are sea ice, open water, and melt ponds, respectively.

In oblique-oriented cameras, unless the image is rectified, geometric distortion can cause errors in
the areal fractions of the sea surface categories. Therefore, the second step in deriving P-OBS SIC is
geometric orthorectification. The simplified method proposed by Lu and Li [40] was adopted in this
study. In this method, the actual image pixel size is calculated using camera height H, camera tilt α, and
focal length f. H and α were obtained during camera installation, and f could be obtained from image
information. The ship motion, especially the roll of vessel, influences the geometric distortion. While
the error can be effectively controlled by setting an upper limit of the viewing angle. To maintain the
balance between the avoidance of large errors and the full utilization of the image, the upper limit of
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the viewing angle was set to 85◦. The relative error induced per degree of the ship’s roll was, therefore,
less than 30%, and approximately 78% of the image could be used.

After the above two steps, the areal fractions of open water, melt ponds, and sea ice were
determined by dividing the area of the pixels of each sea surface category by the total area of the
pixels. The results are denoted as Aw, Ap, and Ai, respectively, for open water, melt ponds and sea
ice. SIC is the sum of Ap and Ai. Of the total 53,200 pictures captured, 19.7% were not processed due
to poor visibility caused by heavy fog or precipitation. Photographs from both port and starboard
sides were selected at 10-min intervals to reduce our workload, and a total of 4792 pictures were used
for the analysis in this study. The average of the areal fractions obtained from both sides at the same
location was used as the local value. In all, we obtained the sea ice conditions at 2396 locations along
the cruise path.

2.3. Passive Microwave Data

The PM data used in this work are from SSMIS launched onboard the Defense Meteorological
Satellite Program satellites and AMSR2 launched onboard the Global Change Observation Mission
1st-Water satellite. These satellites are on sun-synchronous, near-circular polar orbits and cover the
Polar Regions every day. The SSMIS sensor is a 24-channel PM radiometer with frequencies ranging
from 19.4 to 183.3 GHz, and the AMSR2 sensor is a 7-channel PM radiometer with frequencies ranging
from 6.9 to 89.0 GHz. We selected several commonly used algorithms at their highest spatial resolution,
including Bootstrap and NT algorithms based on SSMIS data and ASI, Bootstrap, SICCI, and NT2
algorithms based on AMSR2 data (Table 1).

Table 1. Information on the passive microwave (PM) SIC used in the study. NT: NASA Team; NT2:
NASA Team 2; SICCI: Sea Ice Climate Change Initiative.

PM Sensor Algorithm Channels Used for Retrieval (GHz) Resolution (km)

SSMIS
Bootstrap 19.4 V 1, 37.0 V 25 × 25

NT 19.4 V, 19.4 H, 37.0 V 25 × 25

AMSR2

ASI 89.0 V, 89.0 H 3.125 × 3.125
Bootstrap 18.7 V, 36.5 V 6.25 × 6.25

NT2 18.7 V, 18.7 H, 36.5 V, 36.5 H, 89.0 V, 89.0 H 12.5 × 12.5
SICCI 18.7 V, 18.7 H, 36.5 V, 36.5 H 25 × 25

1 V and H denote vertical and horizontal polarization, respectively.

2.4. Auxiliary Data

Alongside CHINARE-2016 data, shipborne V-OBS SIC data from CHINARE-2010 and shipborne
P-OBS data from CHINARE-2014 were used to characterize the interannual variability of SIC in the
Central Arctic Passage. During CHINARE-2010, V-OBS was conducted from the bridge deck of R/V
Xuelong at time intervals of half an hour [30]. The main information related to SIC, floe size, ice type,
melt pond coverage, and ice and snow thickness were recorded according to the ASSIST standard; we
used SIC for this work. During CHINARE-2014, P-OBS was carried out using the same method as in
this study to measure SIC [43], and these SIC data were therefore also used for comparison.

3. Results

3.1. Sea Ice Concentration Derived from Shipborne Photographic Observations

The SIC distribution along the cruise path is presented in Figure 4a. P-OBS was suspended
temporarily during the long-term ice camp (nine days) and also for a short time when the instruments
were repaired, as shown by the discontinued sections of the curve with colored points on the northward
and southward legs. P-OBS shows that there were two ice belts at the beginning of the northward
leg between 71.7◦ and 72.6◦N and between 73.0◦ and 73.7◦N, with a mean SIC of 70.3% and 95.7%,
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respectively. The sea surface in these ice belts was mainly covered by small floes with melt ponds
and melt holes spreading onto the ice surface (Figure 4b). There was not much open water present,
but leads were found between small floes. In the 73.7◦–78.1◦N region, SIC decreased rapidly with an
average of 10.4%. Although the sea ice still appeared mainly as small floes, a lot of open water area
was observed (Figure 4c). Sailing northward, the open water area diminished, and floe size increased
with a mean SIC of 53.5% between 78.1◦ and 82.7◦N (Figure 4d,e). Within the high-latitude part of the
southward leg, 80.0◦–82.2◦N, the latitude 81◦N appeared to be a demarcation point. The SIC between
81.0◦ and 82.2◦N was less than that in the same latitude on the northward leg; while the SIC between
80.0◦ and 81.0◦N was similar to that in the same latitude on the northward leg. SIC decreased abruptly
with a mean value of 7.6% moving southward and large open water areas reappeared with small floes
and brash ice (Figure 4f).

Figure 4. The distribution of sea ice concentration (SIC) (colored points) derived from shipborne
photographic observation along the cruise track (black line) in 2016 (a) with photographs of typical ice
conditions and corresponding locations (b–f).

The frequency distribution of SIC along the cruise path is shown in Figure 5, with a 10% bin size.
SIC was not normally distributed, but bimodal, and tended to show an approximate U-shape. Because
the cruise path was biased towards wide leads, most data were in the 0%–10% bin with a frequency of
0.55. The frequency in the 90%–100%-bin was the second highest, with a value of 0.19. In the other
bins, the frequencies in the low SIC class interval (10%–30%-bin) were marginally more than those in
the high interval (30%–90%-bin), with frequencies of approximately 0.02.

25



Remote Sens. 2019, 11, 2009

 

Figure 5. Histogram of the frequency distribution of sea ice concentration (SIC) along the cruise path
with a 10% bin size.

3.2. Sea Surface Categories Distribution along the Cruise Path

Figure 6 presents the distribution of each sea surface category (open water, melt ponds, and sea
ice) along the cruise path. There were three regions with a small amount of water along the cruise track
(Figure 6a): 72.0◦–73.7◦N (mean Aw = 39.8%) and 80.6◦–82.7◦N (mean Aw = 15.8%) on the northward
leg and 79.9◦–80.1◦N (mean Aw = 11.9%) on the southward leg. In most of the other regions, open
water accounted for the largest fraction. Observations also showed that along the whole cruise path, Ap

fluctuated within a relatively narrow range from 0% to 39.8% with an average of 1.2%. The distribution
of Ai was the opposite of Aw; the three regions with small Aw mentioned above all had large Ai, with
mean Ai values of 60.0%, 82.9%, and 85.6%, respectively.

 

Figure 6. The distribution of areal fractions of open water (Aw) (a), melt ponds (Ap) (b), and sea ice (Ai)
(c) (colored points) along the cruise path (black line) based on the photographic observation data.

To better depict the spatial variability in the sea ice conditions, the mean fractional coverage of the
sea surface categories and SIC on the northward and southward legs at each latitude are shown in
Figure 7. On the northward leg (Figure 7a), the mean Aw was approximately 60% at the southern edge
of the sea ice zone (< 74◦N), and increased to more than 90% in the 74◦–77◦N latitude bands. The mean
Aw decreased with a slope of 14.8% per degree of latitude in the 78◦–82◦N latitude bands, although
there was a peak at 80◦N. The spatial variability of Ai and SIC on the northward leg showed similar
trends that were opposite to the Aw. Both the mean Ai and SIC decreased from approximately 35%
and 40%, respectively, to 7% as the latitude increased from 72◦–73◦N to 74◦–77◦N, and then increased
by 14.8% per degree of latitude between 78◦ and 82◦N. Overall, the mean Ap remained fairly small,
measuring only 5% for 72◦–73◦N, and then decreased to less than 2.5% for 74◦–82◦N. On the southward
leg (Figure 7b), the spatial variability of the sea ice conditions was similar to that on the northward

26



Remote Sens. 2019, 11, 2009

cruise track, but at 81◦N the mean Aw was higher and the mean Ai and SIC were lower. The mean Ap

was never more than 1.8% on the southward leg.

 

Figure 7. Average areal fractions of open water, melt ponds, and sea ice (Aw, Ap, and Ai, respectively)
and sea ice concentration (SIC) on the northward (a) and southward (b) legs along the cruise path.

3.3. Comparison of Sea Ice Concentration Derived from Two Sources

Because of the fixed PM data grid, there is a large difference in the spatial resolution between
PM SIC and P-OBS SIC. According to the equipment installation parameters (H and α) and the upper
limit angle set in the image process algorithm, the actual P-OBS area is a 624-m-wide strip along the
cruise track. Furthermore, the average sailing speed of R/V Xuelong in the ice zone was 4.47 knots
(8.28 km/h), and therefore, the ship advanced a distance of 1.38 km in each 10-min interval. It is
therefore questionable whether a direct comparison between PM SIC and P-OBS SIC is viable given the
different resolutions [27]. However, a moving average (MA) method was adopted to provide a better
comparison. The PM SIC of the same day as the P-OBS was interpolated to each image location using
the value of the closest grid point. The displacement between the locations of two adjoining P-OBS
images was calculated to determine the average window, which was close to but no more than the
corresponding PM resolution (Table 1). The P-OBS SIC within the average window was then averaged.
Finally, the SIC derived from the two sources with different resolutions were compared. The standard
deviation of the MA P-OBS SIC was calculated. It was found that in areas with MA P-OBS SIC < 50%,
the standard deviation increased from 0 to approximate 40% with SIC increasing from 0 to 50%; while
in areas with MA P-OBS SIC ≥ 50%, the standard deviation decreased from approximate 40% to 0 with
SIC increasing from 50% to 100%.

However, a number of uncertainties regarding spatial and temporal differences also warrant
discussion before moving onto the comparison. First, because the P-OBS area is only a 624-m-wide
strip along the cruise path, and although it is averaged, the result does not exactly match the PM
pixels of 3.125–25 km in both dimensions. With the objective to evaluate the performances of PM
algorithms in estimating SIC along ship routes, it was assumed that the ice conditions were isotropic
and homogeneous on the scale of the PM grid cells [40]. Second, P-OBS SIC is instantaneous while PM
SIC is a daily average. An error is introduced due to the temporal difference, which can be divided
into two main components: the varied sea ice surface condition due to dynamic and thermodynamic
processes and the varied sea ice position due to drift. The former component is difficult to estimate
because of the varying dynamic-thermodynamic sea ice processes in Arctic summer, while the latter
can be estimated qualitatively. Considering that the drift speed of Arctic sea ice is generally no more
than 0.1 m/s [48–50], the influence caused by sea ice drift is expected to have minor effects on the
comparison of PM SIC with sparser resolutions such as 12.5 km and 25 km. Above all, the error in
the comparison is objective because of the distinct resolutions and sampling time of the data. In fact,
this issue occurs when comparing the PM SIC with any field observations, not only P-OBS as in our
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study, but also SIC from aerial observations [27,46] and visual surveys [19,42]. To the authors’ best
knowledge, a good solution to this issue is absent so far. Maybe improving the field observation
technique is a possible way to access the problem in the future.

The comparison between PM SIC and the corresponding MA P-OBS SIC for different resolutions
along the cruise path are shown in Figure 8. All the PM SIC series exhibited similar characteristics. PM
SIC fluctuated at the start of the northward leg (distance < 1000 km), followed by a peak at a distance of
approximately 1000 km (region A). Between 1000 and 2000 km the PM SIC series again fluctuated and
reached a peak at approximately 2000 km (region B). Next, all the PM SIC series decreased abruptly,
except for AMSR2-NT2 SIC (red circle), and then increased up to approximately 100% when the ship
arrived at the long-term ice camp. At the start of the southward leg, all the PM SIC series fluctuated
between 3000 and 4000 km, followed by a gradual decline, and again increased abruptly in region C
and at the end of the cruise.

 

Figure 8. Comparison between passive microwave (PM) sea ice concentration (SIC) and moving
average (MA) photographic observation (P-OBS) SIC along the cruise path for each algorithm (a–d).
The orange columns represent the regions with a large difference between PM SIC and MA P-OBS
SIC, and R denotes the spatial resolution. The sections of the northward leg, long-term ice camp, and
southward leg are also indicated.
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Compared with the MA P-OBS SIC, the PM SIC series showed similar variability. There were
three regions (A, B, and C shown in Figure 8) where the PM SIC data were much higher than the
corresponding MA P-OBS SIC. AMSR2-NT2 SIC had the largest bias with respect to MA P-OBS SIC in
these three regions, reaching 60.6%, 79.8%, and 72.5% for regions A, B, and C, respectively. Examining
the image set, the three regions showed similar ice conditions, where open water covered almost the
whole sea surface with only a few floes in the far range of the image.

The results of the frequency distributions between PM SIC and MA P-OBS SIC are shown in Figure 9.
In general, the frequencies of low SIC derived from PM data were much less than those observed by
P-OBS, while the opposite occurred for high SIC. This demonstrates that it is difficult for PM to detect
low levels of SIC. AMSR2-ASI, AMSR2-Bootstrap, SSMIS-NT, AMSR2-SICCI, and SSMIS-Bootstrap
all underestimated the SIC frequency in the < 20%-bin, and AMSR2-NT2 underestimated the SIC
frequency in the < 40%-bin. In the middle section (40%–80%-bin for AMSR2-NT2 and 20%–80%-bin
for the others), the frequencies were higher for PM SIC than for MA P-OBS SIC. In the > 80%-bin,
individual differences occurred. SSMIS-NT and AMSR2-SICCI did not detect SIC beyond 90%, and
only SSMIS-NT SIC had a lower frequency than the MA P-OBS SIC in the 80–90%-bin. Apart from
SSMIS-NT, the other PM SIC data showed higher frequencies than MA P-OBS SIC in the > 80%-bin.

 

Figure 9. Comparison of the frequency distributions between passive microwave (PM) sea ice
concentration (SIC) and moving average (MA) photographic observation (P-OBS) SIC for each algorithm
(a–d), where R denotes the spatial resolution.

As MA P-OBS SIC reflects the true situation in the field, the difference between PM SIC and MA
P-OBS is due to an error in the PM algorithms. To further evaluate the agreement of the SIC derived
from PM algorithms with the SIC along a ship cruise path, we calculated the mean error and the
root-mean-square-error (RMSE) between MA P-OBS SIC and PM SIC. Figure 10 shows the comparison
of the mean error and RMSE. The PM algorithms with lower resolutions do not always have poorer
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accuracy, e.g., PM SIC with a resolution of 25 km did not perform the worst in the comparisons.
SSMIS-NT (mean = 10.3%, RMSE = 32.0%) and AMSR2-SICCI (mean = 15.3%, RMSE = 35.9%) were
the best two and even better than AMSR2-ASI (mean = 22.1%, RMSE = 47.9%), which had the highest
resolution. AMSR2-Bootstrap had a slightly larger mean error than AMSR2-ASI, whereas it had
a lower RMSE. SSMIS-Bootstrap and AMSR2-NT2 had the poorest performance, and AMSR2-NT2
(mean = 34.7%, RMSE = 54.9%) was worse than SSMIS-Bootstrap (mean = 30.2%, RMSE = 45.4%).
AMSR2-ASI, AMSR2-Bootstrap, AMSR2-NT2, and SSMIS-Bootstrap obtained SIC values between 0
and 100%. However, for SSMIS-NT the upper limits were 64% in the regime with MA P-OBS SIC <
64%, and 82% in the regime with MA P-OBS SIC > 64%, and for AMSR2-SICCI the upper limit was
83.8% in the whole SIC regime; and the lower limit of PM SIC was 0 for both algorithms.

 

Figure 10. The difference in passive microwave (PM) sea ice concentration (SIC) with respect to moving
average (MA) photographic observation (P-OBS) SIC for each algorithm (a–f). The gray dashed lines
represent a difference equal to 0. The blue dashed lines represent the linear fit line of the difference.
The red dashed lines represent the upper and lower limits of the PM SIC. The blue triangles represent
the turnover points (TPs) of SIC. Also shown are the mean error, root-mean-square-error (RMSE),
equations of linear fit, coefficient of determination R2, and the significance level p.

The linear fit as shown in Figure 10 can be used to further describe the general variation of the mean
error; the over- and underestimation of the PM SIC compared with MA P-OBS SIC can be seen clearly.
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In general, with increasing SIC, PM SIC shifts from an overestimate to an underestimate compared with
P-OBS SIC. For example, for AMSR2-ASI (Figure 10a), the linear fit turned from positive to negative at
SIC = 59.4%, i.e., an overestimate at SIC < 59.4% and an underestimate at SIC ≥ 59.4%. The turnover
point (TP) of the SIC for each PM algorithm is listed in Table 2. SSMIS-NT and SSMIS-Bootstrap had
the lowest and highest TP values, respectively. Each PM algorithm performed differently in the SIC
regimes below and above the TP. Table 3 summarizes the mean error and RMSE of each PM algorithm
in these two SIC regimes. Almost all algorithms had a higher mean error below the TP than the
absolute value of the mean error above the TP. This result was also seen in the RMSE. The exception
was SSMIS-NT, where the mean error below the TP was slightly less than the absolute value of the
mean error above the TP. For SSMIS-NT and AMSR2-SICCI, the RMSE values below the TP were
8.8% and 0.8% less than above the TP, respectively. It is noteworthy that the TP values can be used to
statistically determine the over- and underestimation of the PM algorithms, while it does not mean
that the SIC derived from the PM measurement must be greater or less than that derived from P-OBS
in the SIC regime below or above the TP.

Table 2. The turnover point (TP) of the sea ice concentration (SIC) from an overestimate to an
underestimate for the passive microwave (PM) algorithms compared with moving average photographic
observation SIC.

PM
Algorithm

AMSR2-
ASI

AMSR2-
Bootstrap

AMSR2-
NT2

SSMIS- NT
AMSR2-
SICCI

SSMIS-
Bootstrap

TP (%) 59.4 66.6 69.2 41.3 48.5 75.2

Table 3. The mean error and root-mean-square-error (RMSE) of the passive microwave (PM) sea ice
concentration (SIC) with respect to moving average photographic observation SIC below and above the
turnover point (TP) of the SIC.

PM Algorithm
<TP ≥TP

Mean Error (%) RMSE (%) Mean Error (%) RMSE (%)

AMSR2-ASI 36.5 49.1 −23.6 42.8
AMSR2-Bootstrap 37.3 46.3 −15.9 34.3

AMSR2-NT2 46.9 58.0 −19.5 38.0
SSMIS-NT 23.9 29.4 −26.6 38.2

AMSR2-SICCI 27.8 35.7 −24.5 36.5
SSMIS-Bootstrap 38.1 47.2 −14.6 33.2

4. Discussion

4.1. Factors Influencing the Difference of Sea Ice Concentration Derived from Two Sources

The resolution of the PM data and the physical properties of summer sea ice and snow are the two
contributing factors responsible for the difference between the shipborne observed and PM SIC [27].
On the one hand, because vessel cruise paths are typically biased towards areas with leads and isotropic
ice conditions are assumed, P-OBS always underestimates the mean regional SIC. It is difficult to detect
leads from PM measurements because the spatial resolution is much coarser than the lead scale, which
has resulted in overestimates by the PM SIC algorithms in regions with leads compared with P-OBS
data. On the other hand, sea ice and snow cover become saturated and flooded with liquid water
during the melting season, and hence their physical properties, especially emissivity, change and the
surface appears as a mixture of ice and open water to the PM sensors. This causes an underestimate of
PM SIC [19].

As shown in Figure 10, PM SIC shifts from an overestimate to an underestimate compared with
P-OBS SIC. Therefore, different factors play major roles in the SIC regimes below and above the TP.
The coarse resolution dominates mainly below the TP, because more open water leads exist in areas
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with low SIC. With increasing SIC, less leads occur, and overestimation of the PM SIC decreases.
However, the physical properties of summer sea ice and snow dominate above the TP. In areas with
high SIC, the sea surface is mostly covered by sea ice and fewer leads are present. In these areas the
bias is controlled by the physical properties of wet ice and snow, which results in an underestimate
of PM SIC. Similar observations were reported by Knuth and Ackley [27], who compared the SIC
derived from the SSM/I-NT algorithm (25 km) with V-OBS SIC in the summer and fall in the Antarctic,
respectively. In the summer, there is a similar trend whereby PM SIC shifts from an overestimate to an
underestimate compared with V-OBS SIC with a TP of approximately 57%. In the fall, however, PM
SIC underestimates V-OBS data at any SIC.

In addition to PM resolution and physical properties of snow and ice, there are several other factors
influencing the difference between MA P-OBS SIC and PM SIC, such as the inherent characteristics
(e.g., channels and their sensitivities to atmospheric conditions and tie-points) of PM algorithms.
Of the investigated algorithms, NT2 and ASI algorithms based on the AMSR2 sensor are very sensitive
to atmospheric effects because of using the 89 GHz channel. The cloud liquid water and water
vapor can reduce the polarization difference over open water and near ice edge [21]. NT algorithm
shows some sensitivity to wind-roughened ocean surface [21]. Algorithms based solely on the 19 and
37 GHz vertically polarized channels display the smallest sensitivity to the atmospheric conditions [22].
Each algorithm uses a set of tie-points to retrieve SIC, while the brightness temperature may have
a range of variability for the same ice type or open water due to varying emissivity, atmospheric
conditions, and the temperature of the emitting layer, which in turn affects the retrieval accuracy.
To compare the superiority of the PM algorithms without the influence of resolution, we selected the
algorithms with the same resolution of 25 km, i.e., SSMIS-Bootstrap, SSMIS-NT, and AMSR2-SICCI.
Comparison in Figure 10 shows that although the SSMIS-Bootstrap had the smallest sensitivity to the
atmospheric conditions, its performance was still lower than SSMIS-NT which accuracy is affected
by wind, indicating that the selection of tie-points has heavier effects on Bootstrap algorithm than
NT algorithm. SICCI algorithm was suggested as a good choice for SIC retrieval [21], and it is found
from the comparison that the performance of AMSR2-SICCI was better than most of other algorithms,
but was slightly poorer than SSMIS-NT. The characteristics of SSMIS and AMSR2 sensors may be the
causes of the differences. While a thorough study on the characteristics of PM algorithms and sensors
is beyond the scope of the current work, as this research has paid more attention to the application of
PM SIC algorithms in guiding Arctic navigation. Systemic evaluation can be seen in Ivanova et al. [21]
and Andersen et al. [22].

4.2. Melt Pond Effects on the Mean Error of Passive Microwave Sea Ice Concentration

Melt ponds are known to be an important source of error for PM algorithms in detecting Arctic
summer SIC, and thus, have attracted much attention [21,51,52]. The previous works provide a
qualitative understanding of the melt pond effects; however, to the authors’ best knowledge, only very
limited studies have quantified the melt pond effects. Only Kern et al. [53] presented that AMSR-E
algorithms underestimated MODIS SIC by 20–30% in areas with a high melt pond fraction of 50%.
To explore the melt pond effects in a quantitative way, the data shown in Figure 10 were analyzed
further. The MA AP of each data point was first determined, and then the MA Ap range was divided at
1% intervals. The mean error at each interval was defined using the average difference of the PM SIC
with respect to MA P-OBS SIC. The variations of the mean error versus MA Ap are shown in Figure 11.
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Figure 11. The mean error of the passive microwave (PM) sea ice concentration (SIC) with respect to
moving average (MA) photographic observation (P-OBS) SIC with the MA areal fraction of melt ponds
(Ap) for each algorithm (a–f), where R denotes the spatial resolution. The gray dashed lines represent
the mean error equal to 0. The black and blue dashed lines represent the linear fit line of the mean error
below and above the turnover point (TP) for each PM SIC algorithm. Also shown are the equations of
the linear fit, the coefficient of determination R2, and the significance level p.

Below the TP, all the PM SIC methods overestimated the MA P-OBS SIC when the MA AP was
approximately less than 5%, mainly because the PM measurement has difficulty in detecting leads due
to the coarser spatial resolution. As the MA Ap exceeded 5%, the PM SIC shifted from an overestimate
to an underestimate. Because of the similar microwave radiometric nature between open water and
melt ponds (the presence of liquid water) as well as the limited penetration depth of microwave
radiation into liquid water, melt ponds are easily interpreted as open water by PM measurements [21].
The MA Ap regime below the TP for SSMIS-NT was only 0%–5%, while according to the trend shown
in Figure 11d, SSMIS-NT SIC could also underestimate the MA P-OBS SIC if the MA Ap exceeded 5%.
Above the TP, almost all PM SIC underestimated the MA P-OBS SIC when the MA AP varied between
approximately 0 and 20%, and the underestimation increased with increasing MA Ap. The exception
was SSMIS-Bootstrap, where the mean error was positive with a value of 2.0% when MA Ap was 0.
For AMSR2-ASI and AMSR2-Bootstrap above the TP, when the MA Ap exceeded 20%, the mean error
was independent of Ap and reached the lower limit, as the horizontal curves show in Figure 11a,b.
We also assumed that there are critical values of Ap for the other PM algorithms in the SIC regime
above the TP and all the PM algorithms in the SIC regime below the TP, above which the mean error of
PM SIC reaches the lower limit, at least –100%, and is independent of Ap.

33



Remote Sens. 2019, 11, 2009

The trends of the mean error with the MA Ap in the observed Ap regime below and above the TP
of SIC were quantitatively described using linear regression (Figure 11). The results show a good linear
relationship between the mean error and MA Ap. The slope of the linear fit indicates the influence level
of Ap on the mean error. The influence level of Ap below the TP was greater than that above the TP for
most PM SIC, with the ratio ranging between 1.5 and 3.9. Only SSMIS-NT had a relatively smaller Ap

influence level below the TP than that above the TP. Among these PM algorithms, AMSR2-NT2 had
both the highest and lowest influence level of Ap below and above the TP, respectively. SSMIS-NT had
the lowest Ap influence level below the TP and SSMIS-Bootstrap had the highest Ap influence level
above the TP.

4.3. An Inter-Comparison of Sea Ice Concentration from 2010 to 2016

Shipborne observations of SIC were also conducted during CHINARE-2010 [30] and
CHINARE-2014 [43]. The expedition areas covered 178.8◦E–152.5◦W, 75.6◦–88.5◦N in 2010 and
139.0◦–169.0◦W, 72.3◦–82.7◦N in 2014 (Figure 1); both were similar to the area covered in 2016. The
observations were carried out from 21 July–28 August 2010 and from 2 August–1 September 2014,
similar to the duration of the observation in 2016. Therefore, the comparison of SIC between these
three expeditions can be helpful to depict the variation of summer sea ice in the Central Arctic Passage.

The results show that there were clear differences in SIC between 2010, 2014, and 2016. The
boundary between PIZ and MIZ was clear in 2010 and 2014: the area north of 75◦N on the northward
leg and north of 80◦N on the southward leg can be defined as the PIZ in 2010. For 2014, PIZ covered
the area north of 76◦N on both of the northward and southward legs. It was difficult to identify the
boundary between MIZ and PIZ in 2016 due to the dramatically varying SIC, and only the region
north of 82◦N on the northward leg could be taken as the PIZ. Therefore, the boundary was farther
north in 2016 than in 2010 and 2014. In 2010, the mean SIC in the PIZ was 66% for the northward leg
and 71% for the southward leg, and the mean SIC in the MIZ was 30% (Table 4). The numbers were
slightly higher in 2014: the mean SIC was 76% in the PIZ and 48% in the MIZ. The mean SIC in the
MIZ decreased to 20% in 2016. However, in the PIZ, the SIC remained at a similar level to that in 2010
and 2014, with an average of 70%.

Table 4. The mean sea ice concentration along the cruise path in marginal ice zone (MIZ), pack ice zone
(PIZ), Chukchi Sea, Beaufort Sea, and Central Arctic in 2010, 2014, and 2016, respectively.

Year MIZ PIZ Chukchi Sea Beaufort Sea Central Arctic

2010 30% 66% (northward leg)
71% (southward leg) / / /

2014 48% 76% 56% 59% 98%

2016 20% 70% 21% 8% 56%

Based on the Arctic Sea area division provided by the National Snow and Ice Data Center, the SIC
in the R/V Xuelong cruise region covered parts of the Chukchi Sea, Beaufort Sea, and the Central Arctic.
Therefore, the SIC in these seas can be compared, while due to a lack of detailed information, the SIC in
2010 was not included in the following comparison. Our results show that the SIC in Chukchi Sea and
Beaufort Sea were similar in 2014, with averages of 56% and 59%, respectively, while there were larger
areas of open water in these two seas in 2016. The mean SIC was only 21% in the Chukchi Sea and even
less in the Beaufort Sea (8%). In the Central Arctic, the sea surface in 2014 was almost fully covered
with sea ice (or ponded sea ice), with a mean SIC of 98%, while in 2016 the mean SIC was only 56%.

5. Conclusions

With the objective to perform a detailed evaluation on the performances of PM algorithms in
estimating SIC along the vessel routes from the perspective of guiding Arctic navigation, a shipborne
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photographic observation (P-OBS) program was conducted as a part of the Chinese National Arctic
Research Expedition in the summer of 2016. When sailing in the sea ice zone, the vessel’s cruise path
was biased towards wide ice leads. P-OBS was performed using two cameras mounted obliquely
to map the sea surface along a strip beside the ship’s track. The sea ice concentration (SIC) and
areal fractions of open water, melt ponds, and sea ice (Aw, Ap, and Ai, respectively) along the strip
were calculated based on the collected images, which were processed using image partitioning and
geometric orthorectification. Using these P-OBS data, we compared several commonly used passive
microwave (PM) SIC algorithms, including Bootstrap (25 km resolution) and NASA Team (NT) (25 km)
algorithms based on the Special Sensor Microwave Imager/Sounder (SSMIS) data and Arctic radiation
and turbulence interaction study (ARTIST) sea ice (ASI) (3.125 km), Bootstrap (6.25 km), Sea Ice
Climate Change Initiative (SICCI) (25 km), and NASA Team 2 (NT2) (12.5 km) algorithms based on the
Advanced Microwave Scanning Radiometer 2 (AMSR2) data.

The observations showed that the distribution of SIC along the cruise path was U-shaped, where
the SIC in the SIC classes 0%–10% and 90%–100% accounted for a large proportion of the probability
mass. PM SIC mainly underestimated the proportion of SIC in the 0%–10%-bin and overestimated the
proportion of SIC in the 90%–100%-bin, indicating that PM measurements have difficulties in detecting
very low SIC values. Observations also showed that there were only three areas with small Aw values
along the whole cruise track, while in the other parts of the cruise, open water accounted for the largest
proportion of the sea surface. Throughout the whole cruise track, Ap fluctuated within a relatively
narrow range from 0 to 39.8% with an average of 1.2%.

To provide an optimal option for guiding Arctic navigation, the PM SIC algorithms investigated
in this paper were ranked based on the agreement compared with the MA P-OBS SIC (mean error
and root-mean-square-error, RMSE). SSMIS-NT produces the smallest mean error and RMSE, and
thus performs best out of the chosen algorithms. AMSR2-SICCI produces a slightly larger mean
error and RMSE than SSMIS-NT, and is the second best. AMSR2-ASI and AMSR2-Bootstrap have
similar performances, while AMSR2-ASI exhibits a lower mean error and ranks as the third choice.
The relatively high mean error makes the performance of AMSR2-Bootstrap poorer than that of
AMSR2-ASI. Both SSMIS-Bootstrap and AMSR2-NT2 perform worse; AMSR2-NT2 has a larger mean
error and RMSE, and is therefore ranked as the last.

The moving average (MA) P-OBS SIC is considered to reflect the true situation, and the difference
between PM SIC and MA P-OBS is due to an error in the PM algorithms. A turnover point (TP) in the
SIC was determined using the variations in the PM SIC error. Below the TP, PM SIC overestimated
P-OBS SIC due to the much coarser PM resolution, whereas it underestimated P-OBS SIC above the TP
because the emissivity of the saturated and flooded sea ice and snow cover made the surface signatures
appear as a mixture of ice and open water to the PM sensors. The effects of melt ponds on the mean
error of PM SIC were analyzed quantitatively. Below the TP, the mean error shifted from positive to
negative with increasing Ap. Above the TP, the underestimation of PM SIC increased as Ap increased
from 0% to 20%. A linear trend was found for the mean error varying with MA Ap, which was used to
quantify the effects of melt ponds on PM SCI.

Arctic sea ice is changing rapidly, which results in increased ship traffic on the Arctic ship routes.
Therefore, there will be a greater need for information on the sea ice conditions along ship cruise
paths for Arctic ice management. The present research focused on to evaluate the performances of PM
algorithms in estimating SIC along the ship routes. Thus, the results will facilitate navigation in the
Polar Regions in which only PM satellite data are available. In addition, more factors influencing the
accuracy of PM SIC retrieval, such as weather conditions, will be evaluated further in future. Field
observation technique also needs improvement to diminish the error caused by temporal and spatial
differences in comparisons.
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Abstract: For ice-jam flood forecasting it is important to differentiate between intact ice covers and
ice runs. Ice runs consist of long accumulations of rubble ice that stem from broken up ice covers or
ice-jams that have released. A water wave generally travels ahead of the ice run at a faster celerity,
arriving at the potentially high flood–risk area much sooner than the ice accumulation. Hence, a rapid
detection of the ice run is necessary to lengthen response times for flood mitigation. Intact ice covers
are stationary and hence are not an immediate threat to a downstream flood situation, allowing
more time for flood preparedness. However, once ice accumulations are moving and potentially
pose imminent impacts to flooding, flood response may have to switch from a mitigation to an
evacuation mode of the flood management plan. Ice runs are generally observed, often by chance,
through ground observations or airborne surveys. In this technical note, we introduce a novel method
of differentiating ice runs from intact ice covers using imagery acquired from space-borne radar
backscatter signals. The signals are decomposed into different scatter components—surface scattering,
volume scattering and double-bounce—the ratios of one to another allow differentiation between
intact and running ice. The method is demonstrated for the breakup season of spring 2018 along the
Athabasca River, when an ice run shoved into an intact ice cover which led to some flooding in Fort
McMurray, Alberta, Canada.

Keywords: Athabasca River; decomposition; Fort McMurray; ice run; MODIS; RADARSAT-2

1. Introduction

Ice-jam releases can be quite detrimental to flood-prone areas for a number of reasons. The water
wave and running ice accumulation created by the release of impounded water and ice can travel at
high velocities of up to almost 11 m/s [1,2] leading to high rates of water level rise with very little
notice in high flood risk areas. This is particularly difficult for emergency measure coordination when
evacuations in such high flood hazard areas are required. The extra water and ice can also exasperate
an existing ice-jam situation by adding ice to the ice-jam volume and flow to increase backwater
staging. The momentum of the additional water and ice flow can shove into the existing jam to thicken
its cover, which in turn increases the jam’s underside roughness to augment backwater staging. Hence,
from an ice-jam flood forecasting perspective, it is important to distinguish between ice upstream
of a flood-prone area, that is; (i) intact or (ii) running and accompanying a water wave. Intact ice
provides some delay in the time when the ice can potentially become a hazard to the downstream-lying
areas of flood risk. The running ice generally stems from broken up ice covers or ice-jam releases.
The arrival of the ice accumulation in the flood-prone area is more imminent, reducing the time for
flood preparedness and potentially having to switch from flood mitigation activities to an evacuation
mode of the flood management plan.
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Much work has already been carried out to study the behaviour of ice-jam releases and their
effects on existing downstream ice covers, ice-jams and open water stretches. Earlier work established
empirical criteria to determine the onset of breakup. Guo [3] successfully used the shear stress of the
water flow on the ice cover as a criterion for ice cover breakup. Ettema [4] emphasised the important
role confluences play as conducive locations for the jamming and release of ice accumulations. Jasek [5]
studied ice-jam releases and their effects along the Porcupine and Yukon rivers in the Yukon Territory
of Canada. Shen and Liu [6] studied a rare occurrence of an ice-jam on the Shokotsu River in Japan
showing that, not only the rapid flow increase from snowmelt but also geomorphological characteristics
at the jam location (rapid reduction in slope and width in the flow direction) were responsible for the
mechanical breakup that led to jamming of the resulting ice accumulations. Beltaos and Burrell [7,8]
studied field data of ice-jam release waves (javes) on the Little Southwest Miramichi, Restigouche and
Saint John rivers in New Brunswick to characterise parameters describing the waveforms. Once the
parameters have been calibrated, particularly celerities of the leading edge and crest of the waves,
flow velocities, discharges and shear stress induced by the javes can be quantified. Kowalczyk
Hutchinson and Hicks [2] and She et al. [9] investigated ice-jam releases along the Athabasca River
and provided a protocol for the collection of data required for numerical modelling of ice-jam releases.
Nafziger et al. [10] studied the effects of ice runs in sequence along the Hay River and paid particular
attention to the changes in shape and celerity of water wave and ice run hydrographs. Beltaos [1]
investigated ice-jam release waves in the lower Mackenzie River and the upper channels of the river’s
delta. Shen et al. [11] applied the model DynaRICE, a two-dimensional flow and ice model, to study the
behaviour of ice-jam releases and highlighted the importance of upstream flood waves in instigating
ice-jam releases. Kolerski and Shen [12] applied the model to calculate bed shear stress during the
release of an ice-jam along the St. Clair River, flowing from the Laurentian great lake Lake Huron to
Lake St. Clair. They established that there needs to be a substantial increase in the stress for backwater
from ice-jamming and subsequent ice-jam release to occur. Knack et al. [13] applied the same model
to the Saint-John River in New Brunswick, Canada, to simulate ice cover breakup and found that
much of the breakup occurrences along that river are due to accumulations from upstream ice-jam
release surges.

In general, several insights can be gleaned and summarized from these studies in regard to an
ice-jam flood forecasting context. Firstly, both water waves and ice runs disperse as they travel along
the river. The celerity of the water waves is generally faster than those of the ice runs. This adds
complexity to flood forecasting efforts since the rising flood waters precede the arrival of the running
ice accumulation. The ice run can be readily detected by observations from the ground or aerial
surveys, which do not provide enough warning for the arrival of the water wave. Secondly, fluvial
geomorphology has a marked influence on the hydrograph shapes and travel as they advance along the
river. For instance, ice run surface concentrations and celerities can increase when the ice accumulation
passes through a width constriction along the river and river segments that are deep. As the slope of the
river decreases, as in delta channels, breakup of the ice cover is mostly caused by upstream-originating
ice-jam release waves. Thirdly, there are differences in the surge behaviours depending if they are
impeded (the water and ice flow into an existing ice cover or jam) or unimpeded (the water and ice flow
along an open stretch of water). Stalled jams, when the flow of ice temporarily stops or slows down
allowing backwater staging to increase before releasing again, can accentuate wave peaks potentially
resulting in more havoc in the flood-prone area.

All of these studies relied on ground observations, either through inspection, recording
instrumentation, photography (trail cameras), aerial surveys (helicopter or fixed-wing airplane),
numerical modelling and space-borne remote sensing. The use of satellite imagery to distinguish
between intact and running ice has thus far not been reported in the scientific literature.

In this technical note, we introduce a novel methodology of differentiating between the two
ice covers, intact and running ice, using microwave backscatter signals from the RADARSAT-2
sensor. The sensor allows the transmission and receiving of electromagnetic waves polarised in
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both horizontal (H) and vertical (V) planes, from which four different transmission-receiving
combinations (quad-polarisation) can be acquired; HH, HV, VH, and VV. The four backscatter
signals (HH, HV, VH, and VV) can be decomposed into surface backscattering, volume
scattering, and double bounce scattering components using the Freeman–Durden decomposition
technique [14]. The Freeman–Durden decomposition is a physical-based model, first developed
to estimate the contribution of volume scattering from randomly oriented dipoles, surface
scattering of first-order Bragg surface, and double bounce scattering, to the total backscatter [14].
The backscattering components of C-band SAR (Synthetic Aperture Radar) images decomposed using
the Freeman–Durden decomposition technique have been used to distinguish between solid and
macro-porous ice covers and monitoring river ice cover development along the Slave River [15,16].
According to the authors’ knowledge, no other applications of this method to river ice has been
reported in the scientific literature, since it has only recently been applied in the river ice context.

For snow-covered freshwater ice covers, double bounce scattering of SAR–freshwater ice
interaction is typically in a small and negligible magnitude. For a SAR sensor with specific SAR
parameters (i.e., wavelength and look angle), the surface scattering component is controlled by the
roughness and the permittivity (E) contrast between air (E~1.0), snow (dry snow: E: 1.0–2.0), ice (E~3.7),
and water (E~80), and volume scattering is controlled by the physical properties of snow and ice [17,18].
For an interface with similar magnitude of surface roughness, the larger the permittivity contrast,
the larger the reflection coefficient at the interface thus resulting in the larger surface backscattering.
The discussion in this paper is based on C-band SAR. Dry snow on the ice surface and the air/snow
interface have limited contribution to the backscattering decomposition components of C-band
SAR image [19,20]. The surface scattering component of SAR–freshwater ice interactions is mainly
determined by the effective roughness of the ice–water interface due to the large dielectric contrast
of water and ice, followed by the roughness of the snow–ice–water interface [15,18,20,21]. However,
the ice–water interface in a river typically is smoothed due to thermal erosion and thus has limited
contribution to the surface scattering. In addition, the C-band radar pulse usually cannot penetrate the
ice layers of consolidated ice covers and reach the bottom ice because of the absorption and reflection of
different mediums with variable permittivity [21]. Hence, the main contributor of surface scattering of
river ice is the roughness of the snow–ice interface. When the surface of ice covers becomes wet during
the ice breakup season, the increased dielectric contrast between the snow/air–ice interface would
result in the increase in surface backscattering. The volume scattering is mainly determined by physical
properties of ice covers, which mainly refer to the inclusions, including air bubbles, dead vegetation,
and sediments in ice covers, as well as the porosity of ice covers.

Ice runs typically have a wetter surface and a greater porosity than intact ice covers, and therefore
ice runs are expected to have higher surface scattering due to the increased dielectric contrast
of the snow/air–ice interface and a larger volume scattering because of increased porosity of ice
covers. Hence, in this paper, we apply the surface backscattering and volume backscattering of
the Freeman–Durden decomposition, and the ratio of volume and surface scattering to differentiate
between intact and running ice to provide valuable information for ice-jam predictions in a flood
forecasting context.

2. Study Site

The study site is the Athabasca River near Fort McMurray, Alberta, Canada extending
approximately 200 km from the mouth of the House River to approximately 15 km downstream
of the Clearwater River mouth (see Figure 1). The reach upstream of Fort McMurray is relatively steep
(slope ≈ 0.001), narrow (width of 150–250 m) and sinuous, interspersed with many rapids making
this stretch conducive to the generation of a thick consolidated ice cover during river freeze-up and to
sequences of ice-jamming and release during ice cover breakup. The fluvial geomorphology changes
abruptly at Fort McMurray when the river flows into a reach with a bed that is much flatter (slope ≈
0.0003) and wider (width = 300–700 m). Although less sinuous, this reach is interlaced with islands
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providing many sites for the arrest of ice flow and the formation of ice-jams. The inflow from the
Clearwater River tributary in this area also provides an additional source of ice and water. However,
the tributary also buffers flood staging when Athabasca River water backs up into the Clearwater River
when flood waves and ice runs flow along the Athabasca River through and past the Fort McMurray
area. This buffering can slow down the flood wave and ice run enough to allow ice to jam downstream
of the Clearwater River mouth, exasperating backwater staging. The rising water levels also extend
upstream along the Clearwater River to pose a flood hazard to the downtown area of Fort McMurray.

Figure 1. Athabasca River near Fort McMurray, Alberta.

Ice cover breakup monitoring is carried out every spring by scientists and engineers from Alberta
Environment and Park’s (AEP) River Forecasting Centre. Important Athabasca River gauges are used
to track water level elevations, shown in Figure 1, including the one just upstream of Grand Rapids,
those just downstream of Crooked and Cascade rapids and the one at the Athabasca River Bridge.
Other gauges along the Athabasca River are usually available, but failed during the spring of 2018
breakup period, hence are not shown in Figure 1.

Trail cameras, aerial surveys and satellite images are also used to monitor the progression of spring
breakup. Products from RADARSAT-2 and SENTINEL-1 satellite imagery provide classifications
of the ice cover into sheet or rubble ice, both intact ice covers, and open water stretches [22].
However, a classification between intact ice covers and moving/floating ice that constitute ice runs
is not yet integrated in the classification protocol. Oftentimes, the satellite imagery is not available
because acquisitions conflict with other end users or due to long revisit intervals, hence some optical
satellite sensors such as the Terra and Aqua sensors of the MODIS (Moderate Resolution Imaging
Spectroradiometer) mission have been drawn upon to fill in time gaps. Optical imagery is limited,
though, to cloud-free and daytime observations. It is hoped that with the launch of the Radarsat
Constellation Mission (RCM) in February 2019, a more reliable and frequent imagery source will be
made available which is desperately needed in an ice-jam flood forecasting context. The reader
is referred to Lindenschmidt et al. [23] for an example of the requirements of an ice-jam flood
forecasting system.
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3. Methods

To differentiate the ice runs from intact ice, the Freeman–Durden decomposition [14] was applied
to the SQ5W RADARSAT-2 images acquired at 06:57 on 26 April 2018. The incidence angle of a
SQ5W RADARSAT-2 image ranges from 22.5◦ to 26.0◦ and the nominal range resolution is between
20.6 and 23.6 m. We used the Freeman–Durden decomposition because it has performed well in
monitoring ice cover development [16]. Mermoz et al. [21] also applied a similar but mathematics-based
decomposition approach, the Cloude–Pottier decomposition method [24], to determine ice thicknesses.
The scattering mechanism of surface scattering and volume scattering on differentiating the ice covers
of ice runs and intact ice covers dominated by consolidated ice are proposed in Figure 2.

 

water

(a) intact ice cover

water

(b) ice run

surface scattering

volume scattering

Incoming Radar Pulse

Figure 2. The scheme of surface and volume scattering of fully polarimetric SAR (Synthetic
Aperture Radar) images for differentiating (a) intact ice covers and (b) ice runs (adapted from
Gherboudj et al. [19]).

A mask was applied to isolate the river. Prior to decomposition, the SQ5W image was
orthorectified in PCI Geomatica 2017 using the Radar-Specific Model and the ASTER Global Digital
Elevation Model Version 2 (GDEM V2). The pixel size of the image was resampled to 25 m
using the nearest neighbour method and Sigma Nought radiometric correction was also applied.
The orthorectified and radiometrically corrected image was then despeckled by applying a boxcar
filter within a 5 × 5 pixel moving window using the PoLSAR Boxcar Filter in the Focus Module of
PCI Geomatica 2017. Finally, the asymmetric covariance matrix of the despeckled SQ5W image was
converted to a symmetric covariance matrix and the Freeman–Durden decomposition was applied to
the symmetric covariance matrix to decompose the total power to the contribution of surface scattering,
volume scattering and double bounce in the Focus Module of PCI Geomatica 2017.

The decomposed volume, surface backscattering, and their ratio were used to differentiate ice
covers of ice runs from intact ice covers. MODIS images (used for validation of ice cover conditions
when cloud free), aerial photographs, and gauge hydrographs at the Grand Rapids, Crooked Rapids,
Cascade Rapids, and Fort Murray Bridge, taken in the ice breakup time of the winter of 2017–2018
were used to support the analysis. A flowchart has been provided in Figure 3.
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Figure 3. The procedures of image processing and differentiation of ice covers of ice runs and intact
ice covers.

4. Ice Cover Breakup of Spring 2018

On 24 April 2018, the ice cover along the river stretch of interest was intact, as evidenced in the
Terra MODIS imagery acquired on that day (figure not shown). The following day, deterioration of
the ice cover was quite advanced with some areas exhibiting the opening up of water leads in the ice
cover, particularly near rapids.

As reported by Alberta Parks and Environment [25,26] and referring to the ice map in Figure 4,
some sections along the intact ice cover (orange) between Grand Rapids and Crooked Rapids had
moved and broken up resulting in accumulations of rubble ice at the downstream ends of open water
stretches (dark blue in Figure 4) approximately 1 to 3 km in length. Some stretches where the ice had
broken but not moved were flooded with water (light blue in Figure 4) or had open leads (Figure 5b).
Some ice accumulations had resulted in the formation of small ice-jams approximately 2 km in length
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(red in Figure 4, Figure 5a). The ice cover between Crooked Rapids and Fort McMurray remained
intact (Figure 5c). The river downstream of the Clearwater River mouth was open for approximately
15 km (Figure 5d).

Some movement of the ice cover became first evident in the water level hydrographs recorded
at Grand Rapids at 10:15 on 25 April 2018 (Figure 6a). Breakup of the ice cover was first recorded at
Grand Rapids at midnight, during the night from 25 to 26 April 2018 (Figure 6b). The wave of this
breaking front propagated downstream to arrive at the Crooked Rapids gauge 7 hours later (Figure 6c),
at the Cascade Rapids gauge (Figure 6d) and at the bridge gauge (Figure 6e), all during the same
morning. The breaking front wave tripped the ice movement indicators at 07:00 and 07:45, respectively
at Crooked and Cascade rapids (Figure 6f,g). The RADARSAT-2 image was acquired three minutes
before ice movement was recorded at Crooked Rapids, dedicating Crooked Rapids to a threshold
location, upstream of which the ice was running and downstream of which the ice cover was still
intact. The breakup reached the Fort McMurray bridge at approximately 10:00 (Figure 6e) with a large
amount of ice and water being forced into the Fort McMurray area. Celerities of this impeded breaking
front (propagating downstream into an intact ice cover) decreased in the downstream direction from
an average of 3.87 m/s between Grand and Crooked rapids, 3.67 m/s between Crooked and Cascade
rapids, and 3.12 m/s between Cascade Rapids and the bridge.

An ice run that began far upstream of our study site, indicated as ice run #2 in Figures 7 and 8,
arrived at the Crooked Rapids gauge at 18:30 on 26 April 2018 (Figure 6h) and progressed further
downstream, arriving at the Cascade Rapids gauge approximately a half hour later (Figure 6i).
The celerity of this unimpeded ice run front (propagating downstream into open water or water
with free-floating ice) between these two gauges averaged 4.85 m/s, which is faster than the previously
propagating impeded breaking front. This ice run added water and ice (Figure 6j) to the already high
water and ice flows at the bridge.

Both ice movement indicators at Crooked and Cascade rapids recorded movement of the ice run
for approximately 26.5 h, until 09.35 and 10:00 on 27 April 2018 at the respective gauges (Figure 6k,l).

Figure 4. Ice map of the Athabasca and Clearwater rivers near Fort McMurray from 25 April 2018 (data
source: [26]).
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(a) 

(b) 

 

(c) 

(d) 

 
Figure 5. (a) Small ice-jam downstream of Grand Rapids; (b) Open lead in intact ice cover at Crooked
Rapids; (c) Intact ice extending 6 km upstream of bridges; (d) Intermittent ice cover downstream of
Clearwater River mouth. (source: [26]).
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Figure 6. Gauges from hydrographs during the April 2018 breakup event.

Figure 7. MODIS Terra image acquired 26 April 2018 11:35 MST.
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Figure 8. MODIS Aqua image acquired 26 April 2018 13:23 MST.

5. Results and Discussion

The top panel of Figure 9 shows longitudinal profiles of the surface scattering, volume scattering,
and double bounce averaged along the course of the river. The double bounce was very small in
relation to the other two scatter components. Surface scattering overpowered volume scattering for
most of the stretch, in particular the stretch with intact ice. However, in the stretch with running ice,
upstream of the Crooked Rapids gauge (35 to 48 river km), the volume scatter did appear to approach
the same power contribution as surface scattering. This was more differentiated in the ratio volume
scattering/surface scattering as shown in the bottom panel of Figure 9. Intact ice has a very low
volume to surface scattering ratio, while an ice run has a much larger volume/surface ratio.
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Figure 9. Longitudinal profile of averaged backscatter components (top panel) and ratio of volume
scattering/surface scattering (bottom panel).
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The power contribution of the volume scatter did become substantial downstream of the bridge
where the local ice cover may have broken up and formed consolidated ice covers. Unfortunately,
photographs were not taken during this time to provide evidence, however, a stretch of open water
between −3.5 and −5 river-km did point to an area where the ice cover had broken up from which
the rubble ice would had to have travelled downstream to shove into the downstream ice cover to
form a jam between −5 and −8 river-km. Water levels recorded at the bridge (Figure 6m) did indicate
some staging at the time the RADARSAT-2 image was acquired. For open water, almost all of the
transmitted microwaves were reflected and scattered forward from the water surface, hence little
scatter components remained.

Some higher volume scatter relative to the surface scatter was shown a few kilometres upstream
of the bridge, between 4 and 6 river-km (top panel of Figure 9), with a relative strong volume
scatter/surface scatter ratio (bottom panel of Figure 9). This may be due to some breakup of the local
ice cover, however, this was difficult to verify since no photographic evidence was available for this
stretch at that time.

Figure 10 shows a spatial representation of the decomposed scatter components at Crooked Rapids.
This area represents the transition from running ice and intact ice. Again, the double bounce signal
was minute and need not to be shown in the figure. However, both the surface and volume scatter
components, respectively the top and middles panels of the figure, had higher values in the ice run
stretch (upstream of the gauge) than the intact ice stretch (downstream of the gauge), which coincides
with the results shown in Figure 10. More distinction in the transition from running to intact ice can be
seen in the map of the volume scatter/surface scatter ratio, shown in the bottom panel of Figure 10.
The running ice will be more porous and wetter, hence exhibit more surface scattering, whereas the
intact ice will retain more volume scattering due to its continuous, solid medium.

 

 

Figure 10. Surface scatter (top panel), volume scatter (middle panel) and volume scatter/surface
scatter ratio (bottom panel) (RADARSAT-2 Data and Products © MacDonald, Dettwiler and Associates
Ltd—All Rights Reserved. RADARSAT is an official trademark of the Canadian Space Agency).
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The river reach with ice runs showed higher volume and surface scattering and a larger volume
to surface scattering ratio than the reach covered by intact ice. The dramatically increased volume
scattering of ice runs is probably attributed to the interactions of radar pulse between adjacent
broken ice in ice runs (increased porosity of ice runs). However, numerical modelling and more
images at ice breakup are needed to confirm this finding in the future. For intact ice, volume
scattering mainly stems from the inclusions (e.g., air bubbles, sediments, and air bubbles) in ice
covers [19,21]. The amount of such inclusions determines the contribution of volume scattering to
the total backscattering. The large surface scattering was attributed to the rough air–ice interface [17],
while the contribution of the ice–water interface in a high flow river channel was negligible because
the bottom of ice is typically smooth in a river with high water flow due to the thermal erosion. In this
regard, the larger surface scattering of ice runs may result from the increased surface roughness,
compared to intact ice. In addition, broken ice covers of ice runs tend to have a wetter surface,
compared to the intact ice covers, which would also account for the higher surface scattering as a result
of an increased dielectric contrast of the air–ice interface.

Applying Freeman–Durden decomposition to C-band quad-pol RADARSAT-2 images has
demonstrated great potential to differentiate ice runs from intact ice in this study. Nevertheless,
further research or observation data is needed to investigate the sources of the high volume scattering
and large ratio of volume to surface scattering near and downstream of the bridge.

6. Conclusions

Using the Freeman–Durden decomposition method, intact ice and running ice were successfully
differentiated from quad-pol RADARSAT-2 imagery. This novel method of using space-borne imagery
to provide wider coverage of ice characteristics along rivers can be very useful in an ice-jam flood
forecasting context. Characterising the difference between running and stationary ice covers helps
determine the potential timing of the arrival of water and ice run waves which can lead to ice-jam
backwater staging and flooding in high flood risk areas. This methodology will also refine an ice-jam
flood forecasting approach using a stochastic modelling approach first applied to the town of Fort
McMurray in the spring of 2018. A second attempt of stochastic ice-jam flood forecasting is planned
for the spring breakup of 2019 and it is hoped that differentiating between running ice and intact ice
can help better quantify the volumes of ice available for ice-jamming in the town.
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Abstract: Launched on 15 November 2017, China’s FengYun-3D (FY-3D) has taken over prime
operational weather service from the aging FengYun-3B (FY-3B). Rather than directly implementing
an FY-3B operational snow depth retrieval algorithm on FY-3D, we investigated this and four other
well-known snow depth algorithms with respect to regional uncertainties in China. Applicable to
various passive microwave sensors, these four snow depth algorithms are the Environmental and
Ecological Science Data Centre of Western China (WESTDC) algorithm, the Advanced Microwave
Scanning Radiometer for Earth Observing System (AMSR-E) algorithm, the Chang algorithm,
and the Foster algorithm. Among these algorithms, validation results indicate that FY-3B and
WESTDC perform better than the others. However, these two algorithms often result in considerable
underestimation for deep snowpack (greater than 20 cm), while the other three persistently
overestimate snow depth, probably because of their poor representation of snowpack characteristics
in China. To overcome the retrieval errors that occur under deep snowpack conditions without
sacrificing performance under relatively thin snowpack conditions, we developed an empirical
snow depth retrieval algorithm suite for the FY-3D satellite. Independent evaluation using weather
station observations in 2014 and 2015 demonstrates that the FY-3D snow depth algorithm’s root mean
square error (RMSE) and bias are 6.6 cm and 0.2 cm, respectively, and it has advantages over other
similar algorithms.

Keywords: snow depth; FY-3D/MWRI; regional algorithms; China

1. Introduction

Seasonal snow cover is an important component of the Earth’s hydrologic cycle, energy balance,
and climate system [1–4]. Snow cover parameters—including the snow water equivalent (SWE), snow
cover extent (SCE), and snow albedo (SA)—are vital to initialize numerical weather prediction models,
hydrologic models, and land surface process models [5–7]. SWE, which is determined by integrating
snow density over snow depth, describes how much water would be released if snowpack melted
completely at once [8,9]. Manual snow surveys are time-consuming and expensive, and observations
from widely spaced weather stations cannot represent the detailed spatial distribution of snow
depth. Fortunately, passive microwave (PMW) sensors offer the advantages of all-weather capability
and all-year coverage at good temporal (daily) and moderate spatial resolutions (~25 km). Another
advantage of microwave over optical sensors is the ability to obtain dry snow’s volume information, not
just the surface [10–12]. These advantages make snow depth estimation with satellite PMW sensors an
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attractive option. The extraction of snow depth from satellite observations requires algorithms relating
the snow’s physical properties to the microwave signal. Most of the widely used inversion algorithms
are based on empirical relationships between snow depth and multifrequency spaceborne satellite
brightness temperature gradients [13]. Various linear coefficients were derived empirically for specific
areas and based on assumed fixed snow properties, such as density and grain size, to derive snow
depth from spaceborne measurements [13–17]. The accuracy, however, was affected by uncertainties in
the assumptions. One such assumption is that snow grain size (radius) and snow density are assumed
to be static in all layers of snowpack. In nature, snowpack varies in density and grain size with depth.
The microstructure—the size, shape, and bonding—of snow grains, mainly defines how microwave
radiation is scattered in snowpack [18]. Therefore, simplifying snowpack as one homogeneous layer
may result in significant errors in snow depth retrieval. Another source of uncertainty is that these
algorithms did not account for the effects of forest canopy and atmosphere, which attenuate the signals
emitted from the surface and emit their own energy toward the satellite. These impacts on snow
depth retrieval are reported to lead to underestimation [19–24]. Later, more advanced algorithms
were developed for global [25–29] and regional [30–38] applications. The algorithm designed for
the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) accounts
for the influence of forest cover and snow grain growth and also takes advantage of the expanded
range of channels available on the AMSR-E/2 instruments [25,26]. This algorithm retrieves the snow
depth from moderate snow accumulations using the 37 GHz channel and from deep snow using the
19 and 10 GHz channels. Additionally, there are approaches that use theoretical or semi-empirical
radiative transfer models, coupled with atmospheric and vegetation models, to simulate microwave
emissions and inversely calculate snow parameters from satellite measurements, such as the European
Space Agency (ESA) Global Snow Monitoring for Climate Research (GlobSnow) SWE product, which
combines synoptic weather station data with satellite passive microwave radiometer data though the
forward model (Helsinki University of Technology snow emission model, HUT) [27–29]. Note that
the GlobSnow SWE highly relies on weather station data. To avoid spurious or erroneous deep snow
observations, a mask is used in mountainous areas [36]. Meanwhile, the algorithm may not be as
feasible as those empirical algorithms to operate in real time because of its sophisticated procedure and
diverse inputs (auxiliary data). In addition to the traditional algorithms, machine learning approaches
(e.g., artificial neural networks, support vector regression, random forest) to estimate snow depth
have emerged in recent years [39–41]. Though machine learning techniques can present good results
without requiring users to have much knowledge, it is difficult to retrieve real-time snow depth with
PMW measurements.

In order to avoid the deficiencies of empirical algorithms, we first validate five well-known snow
depth algorithms with in situ snow depths and PMW measurements over China. Concerning the need
for a feasible and reliable retrieval algorithm specifically for FY-3D, regional snow depth retrieval
algorithms that perform well over China are proposed in this paper. The remote sensing and auxiliary
data as well as snow depth methods are described in Section 2. Section 3.1 presents their performance
in detail. The purpose is to determine which one is best and identify their problems and advantages.
Then, the regional algorithms are validated and analyzed in Section 3.2. A discussion is presented in
Section 4, and in Section 5 we give the conclusions of this study.

2. Materials and Methods

2.1. Data

2.1.1. Satellite Passive Microwave Measurements

The FY-3D satellite was launched on 15 November 2017 with the goal of observing global
atmospheric and geophysical features around the clock. It is in a sun-synchronous orbit with local
ascending overpasses at about 2:00 p.m. The microwave radiation imager (MWRI) loaded in the
FY-3D satellite is a 10-channel, 5-frequency, 2-polarization radiometer system that measures brightness
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temperatures ranging from 10.65 GHz to 89 GHz at horizontal and vertical polarizations. The FY-3D and
FY-3C satellites make up a series of Chinese polar-orbit meteorological satellites and form a constellation
network. Because of the limited amount of FY-3D/MWRI data until now, AMSR-E and FY-3C/MWRI
brightness temperature data (L1 product, 25 km) were used in development and validation. Table 1
shows the main parameters of passive microwave remote sensing sensors. The MWRI and AMSR-E
differ in four important ways: (a) the MWRI has no C-band channel; (b) the MWRI has a coarser
footprint size and slightly narrower orbital swath for all frequencies relative to the AMSR-E sensor;
(c) there is a satellite overpass time difference between MWRI and AMSR-E of approximately 30 min
(FY-3D) or dozens of hours (FY-3C); and (d) the MWRI has an approximate 53◦ earth incident angle
instead of 55◦ for the AMSR-E sensor. Fortunately, intercalibration results indicated that snow depth
bias caused by instrumental differences was very low [42]. To eliminate brightness temperature
uncertainties caused by snow humidity in the daytime, only data collected at night (FY-3C, 22:00;
AMSR-E, 01:30) were used.

Table 1. Summary of main passive microwave remote sensing sensors.

Sensor AMSR-E MWRI

Satellite EOS Aqua FY-3C FY-3D

Incident angle 55 53 53

Equator crossing time (Local time zone) A: 01:30 A: 22:00 A: 14:00
D: 13:30 D: 10:00 D: 02:00

Frequency: footprint (GHz: km × km)

6.925: 43 × 75 10.65: 51 × 85
10.65: 29 × 51 18.7: 30 × 50
18.7: 16 × 27 23.8: 27 × 45
23.8: 18 × 32 36.5: 18 × 30
36.5: 8 × 14 89: 9 × 15

89: 4 × 6

AMSR-E, Advanced Microwave Scanning Radiometer for Earth Observing System; MWRI, microwave radiation
imager; FY-3C/3D, FengYun-3C/3D; A, ascending; D, descending.

2.1.2. In Situ Measurements

Weather station data were acquired from the National Meteorological Information Centre, China
Meteorology Administration (CMA). The dataset of snow depth measurements from 753 stations
throughout China spans from 2002 to 2015 in temporal coverage (Figure 1, left). Recorded variables
include the site name, observation time, geolocation (latitude and longitude), elevation (m), near-surface
soil temperature (measured at 5 cm depth; ◦C), and snow depth (cm). Quality control steps were
conducted prior to comparison with the satellite product. The first step was to select records only
when the near-surface soil temperature was lower than 0 ◦C. The second step was to remove any
sites where the areal fraction of open water exceeded 30% in corresponding pixels. This is because a
water body acts an emitter rather than a scatterer and confuses the relationship between brightness
temperature difference (TBD) and snow depth. Finally, only ground-measured snow depths greater
than 3 cm were used in the validation, because microwave response to thinner snow cover at 37 GHz
is basically negligible. In addition, Chinese snow surveys were conducted from December 2017 to
March 2018. Figure 1 shows the four snow course routes in Xinjiang (routes 1 and 2, 143 samples) and
Northeast China (routes 3 and 4, 154 samples). The parameters include snow depth, air temperature,
and snow density measured every 10–20 km. Table 2 shows the statistics of air temperature, snow
depth, and snow density, including maximum, minimum, and mean.
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Figure 1. Spatial distribution of weather stations (left) and land cover (right) in China. Green points are
sites and colored lines are snow course routes spanning from December 2017 to March 2018. The base
map on the left shows the elevation (m) in China.

Table 2. Summary of snow course data (location, air temperature, snow depth, density, and number
of samples).

Snow
Course
Route

Location
(lat, lon)

Air Temperature (◦C)
Snow Depth

(cm)
Snow Density

(g/cm3) Samples

Max Min Mean Max Min Mean Max Min Mean

1 43.90◦N–48.06◦N
82.97◦E–89.88◦E −1.7 −34.0 −18.8 50.0 3.0 13.2 0.30 0.10 0.18 70

2 42.97◦N–44.50◦N
80.83◦E–88.97◦E −0.6 −29.5 −12.9 63.0 3.0 19.8 0.12 0.41 0.21 73

3 45.10◦N–53.46◦N
118.30◦E126.96◦E −1.5 −33.8 −15.8 51.5 3.2 16.4 0.31 0.06 0.16 100

4 41.88◦N–48.17◦N
125.73◦E–130.31◦E −3.1 −30.6 −12.4 45.2 4.1 16.6 0.24 0.15 0.18 54

2.1.3. Land Cover Fraction

A 1 km land use/land cover (LULC) map (Figure 1, right) derived from 30 m Thematic Mapper
(TM) imagery classification was provided by the Data Center for Resources and Environmental Sciences,
Chinese Academy of Sciences (http://www.resdc.cn/). Because the 1 km LULC map was derived from
30 m TM imagery, it can be recalculated as percentage of each land cover type in 25 km grid cells. Then
it was used to produce a 25 km land cover fraction dataset of main land cover types: grassland, barren,
farmland, forest, water body, and construction. The dataset is not reviewed here; see Jiang et al. (2014)
for more details [17].

2.2. Methodology

In order to better develop the FY-3D algorithm, we introduced and validated five well-known
operational snow depth algorithms. Then regional FY-3D algorithms were built with weather station
snow depths and PMW measurements over China. Finally, they were quantitatively evaluated using
weather station observations and satellite brightness temperature data obtained from the FY-3C/MWRI
in 2014 and 2015 (winter season: January, February, March, November, and December). The in situ
snow depth is from weather stations, measured every morning at 08:00 a.m. If there was more than
one site in a pixel, those sites were averaged. The estimated snow depth was retrieved with different

56



Remote Sens. 2019, 11, 977

algorithms. To remove the scattering signals of frozen ground, cold desert, and rainfall, this study
applied Li’s snow cover identification method [43] based on Liu et al.’s (2018) assessment of snow
cover mapping methods [44]. It also should be noted that in this study the validation was conducted
with brightness temperatures at 10.65, 18.7, 36.5, and 89 GHz from FY-3C/MWRI. However, some
algorithms were developed based on 18 (18.7) GHz and 37 (36.5) GHz channels. The difference was
ignored in this paper [42].

2.2.1. Well-Known Operational Algorithms

Although numerous snow depth estimation algorithms have been proposed, we only chose five
well-known operational algorithms to validate their performance in China. The first method is the
Chang equation (Chang algorithm)

SD = 1.59 × (TB18h − TB37h), (1)

where SD is snow depth in cm, and TB18h and TB37h are brightness temperature in K at horizontally
polarized ~18 and ~37 GHz channels, respectively. The coefficient value 1.59 was determined by
assuming a grain radius of 0.30 mm and a snowpack density of 0.30 g/cm3 [13].

The second algorithm was initially developed for the AMSR-E sensor [26]. It includes a measure
of forest cover fraction and density and uses the ~10 GHz channel and both vertically and horizontally
polarized ~19 and ~37 GHz channels to retrieve data from shallow, moderate, and thick snow
(AMSR-E algorithm)

SD = ff × SDf + (1 − ff ) × SDo, (2)

where ff is forest fraction (unitless) ranging from 0 to 1, (1 − ff ) is the nonforested component, SDf is
snow depth (cm) in forested areas, and SDo is snow depth (cm) in nonforested areas. SDf and SDo are
calculated using the equations

SDf = 1/log10(pol37) × (TB19v − TB37v)/(1 − 0.6 × fd) (3)

SDo = 1/log10(pol37) × (TB10v − TB37v) + [1/log10(pol19) × (TB10v − TB19v)], (4)

where fd is the forest density, pol37 is the polarization difference at 37 GHz (i.e., TB37v − TB37h), and
pol19 is the polarization difference at 19 GHz. TB10v, TB19v, and TB37v are brightness temperatures in K
at vertically polarized ~10, ~19, and ~37 GHz channels, respectively.

The third algorithm was developed based on Chinese weather station observations and PMW
brightness temperatures [16]. This is the improved Chang algorithm in terms of specific snowpack
conditions and satellite data. It has been used to generate a long-term snow dataset for the algorithm
of the Environmental and Ecological Science Data Centre of Western China (WESTDC algorithm). Its
equation is

SD = 0.66 × (TB19h − TB37h), (5)

where TB19h and TB37h are brightness temperatures at horizontally polarized ~19 and ~37 GHz
channels, respectively. The coefficient value was changed from 1.59 to 0.66 based on a relationship
between Chinese in situ snow depths and brightness temperatures.

The fourth algorithm was established by Foster et al. [14] in 1997. The linear fitting coefficient is
0.78, and combining the forest cover parameter yields the Foster algorithm

SD = 0.78 × (TB18h − TB37h)/(1 − ff ), (6)

where ff is the fractional forest cover and TB19h and TB37h are brightness temperature at horizontally
polarized ~18 and ~37 GHz channels, respectively.

The last algorithm is a mixed-pixel method for the FY-3B meteorological satellite in China [17].
Frequencies of 10.7, 18.7, 36.5, and 89 GHz with both polarizations were used to develop the regressions
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of the empirically derived algorithm. The estimates were the sums of values from four individual
land-cover algorithms, weighted by the percentage of each type (FY-3B algorithm):

SD = ff grass × SDgrass + ff barren × SDbarren + ff forest × SDforest + ff farmland × SDfarmland, (7)

where ff is the fractional land cover. The subscripts denote grass, barren, forest, and farmland. SDxx

is snow depth in pure pixels where the land cover fraction is greater than 85%. The pure-pixel
functions are

SDfarmland = −4.235 + 0.432 × (TB18h − TB36h) + 1.074 × (TB89v − TB89h) (8)

SDgrass = 4.320 + 0.506 × (TB18h − TB36h) − 0.131 × (TB18v − TB18h) + 0.183 × (TB10v − TB89h) − 0.123× (TB18v − TB89h) (9)

SDbarren = 3.143 + 0.532 × (TB36h − TB89h) − 1.424 × (TB10v − TB89v) + 1.345 × (TB18v − TB89v) − 0.238 × (TB36v − TB89v) (10)

SDforest = 11.128 − 0.474 × (TB18h − TB36v) − 1.441 × (TB18v − TB18h) + 0.678 × (TB10v − TB89h) − 0.649 × (TB36v − TB89h) (11)

2.2.2. Development of FY-3D Algorithm

Numerous studies have demonstrated that no single standard algorithm can describe snow cover
characteristics well everywhere [19,29,32,45]. Thus, regional algorithms that have been calibrated
at a local scale might be capable of providing a reasonable snow depth estimation. Similar studies
have been carried out over the years by several scholars [46–48]. They divided Chinese snow cover
into different regions based on topography, land cover, and snow cover duration, e.g., Xingjiang,
Qinghai–Tibetan Plateau, Northeast, and others. Based on these previous studies, China’s snow cover
is divided into three regions (Figure 2):

 
Figure 2. Three regions for regional algorithms: Region I: Xinjiang; Region II: Xinjiang; Region III: Others.

(1) Region I: Northeast China

Northeast China consists of Liaoning, Jilin, Heilongjiang, and eastern Inner Mongolia. Various
land cover types are unevenly distributed. Cultivated and forest land predominate in Northeast China,
and large uncertainties in snow depth retrieval are associated with forest cover. Foster et al. [14]
developed an algorithm that accounts for the influence of forest cover on brightness temperature.
Unfortunately, it tends to overestimate snow depth in China, especially in densely forested areas.
Therefore, the Foster algorithm can be improved by the use of 1/(1 − ff ) to alleviate overestimation.
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Referring to the study by Kelly et al. [26] performed in 2009, incorporating a weight factor that
limits 1/(1 − ff ) within reasonable intervals can reduce overestimation. Thus, we modified the Foster
algorithm as follows:

SD = 0.38 × (TB19h − TB37h)/(1 − 0.7 × ff ), (12)

where the constant 0.38 is a regression fitting coefficient between AMSR-E brightness temperatures
and weather station observations, and 0.7 is the weight factor that keeps the term 1/(1 − ff ) within a
range of 1 to 5 (Figure 3). For a weight factor value of 0.5 or 0.9, the algorithm still overestimates snow
depth in dense forest areas.

 

Figure 3. Relationship between forest fraction ff and p. The p is a correction factor calculated with
p = 1/(1 − a × ff ). The coefficient a is the weight factor. Blue line: a = 1; red line: a = 0.9; green line:
a = 0.7; cyan line: a = 0.5.

(2) Region II: Xinjiang

The Xinjiang Uyghur Autonomous Region is located in northwest China. The southern and
northern parts of Xinjiang are dominated by grass, and the land cover in the central part is mainly
bare ground dominated by desert (Figure 1). Snow cover is relatively thick in northern Xinjiang,
where underestimation usually occurs (e.g., by the FY-3B and WESTDC algorithms). Based on scatter
diagrams of station snow depth versus satellite BTD from the AMSR-E sensor in the 2002–2009 period
(not shown here), the combination of cross-polarization at 19 GHz and 37 GHz was selected. The shorter
37 GHz wavelength emissions from the ground will be scattered more by the snowpack than the longer
19 GHz wavelength emissions. The brightness temperature at vertical polarization is less affected by
incidence angle [34]. Moreover, the brightness temperature of cross-polarization is more sensitive
to snow depth than that of co-polarization, owing to the effects of depth hoar [15,17,32,37,38,49].
The regression equation is

SD=0.48 × (TB19v − TB37h), (13)

where the constant 0.48 is a regression fitting coefficient between AMSR-E brightness temperatures
and weather station observations. At the bottom of snowpack, the snow has evolved with time and
undergone compaction due to the overburden and freeze/melt cycle, which makes grain size larger.
Snow grain size increases with layer depth (0.3–3 mm). Especially for the depth hoar, the radius can be
larger than 3 mm because of snow metamorphism [19]. Moreover, the temperature brightness gradient
for cross-polarization is higher than that for co-polarization because of a better penetration capacity of
vertical polarization. These factors explain why the fitting coefficient is 0.48 rather than 1.59 in Chang’s
algorithm for which the assumptions fail in Xinjiang.

(3) Region III: Others

In areas other than Xinjiang and northeastern China, a mixed-pixel method is suitable because of
complex land cover and thin snow cover, and the original FY-3B method performs well at retrieving
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snow depth from shallow snowpack [17]. Therefore, the FY-3B algorithm was used to estimate snow
depth in Region III.

3. Results

The main framework of the paper is to first show the deficiencies and advantages of current
empirical algorithms and then develop the FY-3D algorithm, which complements their strengths.
Comparisons and validations of five well-known algorithms are shown in Section 3.1. Section 3.2
displays the validation and analysis of the FY-3D algorithm.

3.1. Comparisons and Validations of Five Well-Known Algorithms

The validation results of five algorithms are shown in Figure 4. The WESTDC and FY-3B algorithms
performed better than the other three methods (Figure 4c,e), primarily because they were developed
based on Chinese weather station measurements. However, there are still many problems and doubts.
For example, the FY-3B version tends to underestimate snow depth for thick snow (greater than 20 cm).
The error probably originates from the nonuniform training samples. FY-3B estimates were the sum of
values from four individual pure-pixel algorithms, weighted by the land cover fraction. Figure 5 shows the
spatial distribution of pure-pixel samples (with a certain land cover fraction greater than 85%), including
forest, grass, farm, and barren. The base map is snow types based on snow cover days (instantaneous
snow cover: 0–10 days; unstable snow cover: 10–60 days; stable snow cover: 60–365 days). The stable
snow cover areas usually are covered with deep snow, such as Xinjiang and Northeast China. As shown
in Figure 5, many pure pixels are mainly distributed in thin snow dominated areas, while there are few
samples in Northeast China and Xinjiang. Therefore, underestimation occurs for empirical relationships
presented in Equation (7).

Figure 4. Cont.
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Figure 4. Color-density scatterplots of estimated and measured snow depth for five algorithms:
(a) Chang; (b) AMSR-E; (c) WESTDC; (d) Foster; (e) FY-3B. Color scale represents data density of
scattered points, ranging from 0 to 1. Number of samples is 8495. RMSE, root mean square error.

Figure 5. Spatial distribution of pure-pixel samples (fractional land cover greater than 85%). Grass
samples are from 25 meteorological stations; forest samples are from 15 meteorological stations, mostly
in South China; farm and barren samples are from 36 meteorological stations.

Figure 4b shows that the AMSR-E algorithm generally tends to overestimate snow depth in China
compared with ground meteorological station observations. The main cause is that the dynamic
coefficient, polarization factor pol36 = Tb36V − Tb36H or pol18 = Tb18V − Tb18H, does not clearly indicate
the variation of snow grain size and may need adjustment with further testing [26]. Figure 4a shows
that the Chang algorithm produces larger errors of overestimation in China. The fitting coefficient
value is 1.59, based on the assumption that the snow density is 0.30 g/cm3 and snow grain size is
0.30 mm. In situ measurements, however, show that these assumptions fail in China. The grain radius
of fresh snow in the uppermost layer is approximately 0.30 mm, while the size within the middle or
bottom layers is up to 4 mm [37,38]. Figure 6 shows a simulation of the single-layer HUT model with
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different inputs. The input variables are snow grain radius and snow density, and fixed parameters
are snow temperature, atmospheric temperature, and forest fraction. The result shows that the fitting
coefficients vary with different inputs. The fitting coefficients are 1.5979 and 1.6800, respectively, for
horizontal and vertical polarization under the assumptions of the Chang algorithm (snow density,
0.30 g/cm3; snow grain radius, 0.30 mm). However, the coefficients are 0.7014 and 0.6793, respectively,
for a snow density of 0.18 g/cm3 and snow grain radius of 0.80 mm, based on Chinese field work
measurements in 2018 (Figures 1 and 7). Figure 4c also shows that the WESTDC algorithm has better
performance than Chang’s when the fitting coefficient is 0.66 rather than 1.59.

 

Figure 6. Relationship between brightness temperature difference (TBD) (19–37 GHz) and snow depth
based on single-layer HUT model with varying inputs. d19v37v and d19h37h are the TBD in K between
vertically and horizontally polarized ~19 and ~37 GHz channels, respectively. The fixed parameters
are snow temperature (Tsnow), atmosphere temperature (Tatm), and forest fraction (~0). Red and
blue lines represent modeling results with input variables (snow grain radius, 0.30 mm; snow density,
0.30 g/cm3). Green and magenta lines are modeling results with input variables (snow grain radius,
0.80 mm; snow density, 0.18 g/cm3).

 

Figure 7. In situ snow densities based on snow surveys (winter season) in (a) Xinjiang (XJ) and
(b) Northeast (NE), and (c) total (XJ + NE). Snow surveys were conducted from December 2017 to
March 2018. Figure 1 shows the four snow course routes in Xinjiang (143 samples) and Northeast China
(154 samples).
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Figure 4d shows the performance of the Foster algorithm. The coefficient was changed from 1.59 to
0.78. The algorithm also accounts for the tendency of forest cover to reduce the sensitivity of brightness
temperature to snow depth. However, it is noteworthy that false high retrievals occur. Owing to the
equation form p = 1/(1 − ff ) and high fitting coefficient (0.78) in China, the snow depth shows explosive
growth when the forest fraction (ff ) is greater than 60% (Figure 3, blue line). Thus, the Foster algorithm
does not perform well on areas covered by dense forest in China. Figure 3 also shows that a weight factor
(a) that limits 1/(1 − ff ) within reasonable intervals can reduce overestimation. This study offers a new
idea for improving the Foster algorithm.

To illustrate the performance of various algorithms in three areas (Xinjiang, Northeast China, and
others; Figure 2), the regional validation is shown in Figure 8. The pattern is similar to that of the
whole validation (Figure 4). Regardless of location, the WESTDC and FY-3B algorithms perform best
based on their root mean square errors (RMSEs). However, they tend to underestimate the snow depth
in Xinjiang and Northeast China and overestimate it in other areas. As mentioned earlier, the Foster
algorithm performs well in open or sparsely vegetated areas, such as in Xinjiang, where the land cover
is mainly barren or grassland. Conversely, it yields the poorest estimates in forested areas, such as
Northeastern China. Thus, the five well-known operational snow depth retrieval algorithms cannot
fully capture the temporal and spatial distribution of snow cover in China. It is essential to develop
a suite of algorithms based on China’s snow cover characteristics, rather than directly implement
FY-3B/MWRI’s operational empirical retrieval algorithm.

Figure 8. Reginal validation results: (a) RMSE; (b) bias. Histograms present performance (RMSE and
bias) of five algorithms. XJ, Xinjiang; NE, Northeast China. Three regions are based on Figure 2.

3.2. Validation and Analysis of FY-3D Algorithm

Section 2.2 presents the FY-3D algorithm. In this paper, the snow depth product retrieved using
the FY-3D algorithm is validated rather than the algorithms because the product’s performance
without any auxiliary data is what we are interested in. To mitigate any distinct borders in retrievals
between adjacent pixels from different regions, a moving-average filter was used to perform smoothing.
To demonstrate the performance of the FY-3D algorithm, three products retrieved from the FY-3B,
WESTDC, and FY-3D algorithms were validated and compared.

As shown in Figure 9, the FY-3D algorithm’s RMSE and bias are 6.6 cm and 0.2 cm, respectively.
The correlation coefficient is 0.71, which is greater than those of the other algorithms. The RMSEs
of the products retrieved with the WESTDC and original FY-3B algorithms are 8.9 cm and 9.0 cm,
respectively. The WESTDC and original FY-3B algorithms encounter underestimation at snowpack
deeper than 13 cm. The bias of the WESTDC and original FY-3B algorithms is −2.6 cm, while it is
just 0.2 cm for the FY-3D algorithm, which also shows that the FY-3D algorithm performs better than
the others. Owing to limited FY-3D/MWRI data (1 January to 31 March 2018), there are only about
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3800 samples to validate the new algorithm. Figure 10 shows that snow depths estimated with FY-3D
brightness temperature are closer to the ground truth.

  

  

  

(a)  (a’) 

(b) (b’) 

(c) (c’) 

Figure 9. Scatter diagrams of estimated vs. measured snow depth using (a) FY-3B algorithm, (b) WESTDC
algorithm, and (c) FY-3D algorithm, and error bars of (a’) FY-3B algorithm, (b’) WESTDC algorithm, and
(c’) FY-3D algorithm. The ‘x’ marks the mean snow depth computed at each corresponding bin, while
upper and lower blue bars indicate one standard deviation from the mean.

   

Figure 10. Validation of three algorithms with FY-3D/MWRI measurements: (a) FY-3D algorithm;
(b) FY-3B algorithm; (c) WESTDC algorithm.
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Figure 11 shows the spatial distribution of RMSE and bias of pixels where the sites are located.
The RMSE distribution indicates that the three algorithms perform similarly in Region III. However,
there are large differences in Xinjiang and Northeast China. The FY-3D algorithm has an advantage over
the others in northern Xinjiang and Heilongjiang Provinces because of low RMSEs. The results also
confirm that the FY-3D algorithm is more sensitive to deep snow. In terms of bias (difference between
retrieved and measured snow depth), Figure 11 shows that underestimation occurs mostly in the North
China Plain and South China, where the snow is often thin and wet. Wet snow usually corresponds
to low BTD, resulting in underestimation [32,45,50]. In northern Xinjiang and Northeast China, the
original FY-3B algorithm produces the lowest bias, as low as −10 cm. The WESTDC algorithm performs
better than the original FY-3B algorithm in deep snow cover, as shown in Figure 11. Interestingly, there
is overestimation in the Qinghai–Tibetan Plateau. There, the snow cover differs from that in other
seasonally snow-covered regions; it is often shallow, patchy, and of short duration [50–52]. A distinct
meteorological characteristic is the large diurnal temperature range, which causes snow to undergo
frequent freeze–thaw cycles. Note that these cycles lead to rapid grain growth and consequently to a
low brightness temperature [45,50]. Frozen soil is also a factor that reduces the accuracy of estimates in
the Qinghai–Tibetan Plateau. Both snow and frozen ground are volume-scattering materials, and they
have similar microwave radiation characteristics, making them difficult to distinguish.

   

   

   

Figure 11. Spatial patterns of RMSE and bias produced by the FY-3B algorithm (top), WESTDC
algorithm (middle), and FY-3D algorithm (bottom). Left and right columns represent RMSE and bias,
respectively. Each point represents one pixel (spatial resolution: 25 × 25 km).
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In view of the heterogeneity of snow depth in the three regions, RMSE and bias cannot fully
explain where an algorithm consistently performs well or poorly. Thus, the spatial distribution of
relative error (RMSE divided by mean snow depth) is shown in Figure 12. First, the error in areas of
shallow snow cover is higher than that in thick snow areas. This pattern is caused by the different mean
snow depth. Similarly, a high RMSE does not mean poor performance. What is certain, however, is
that the FY-3D algorithm performs best in Xinjiang and the northeast regardless of RMSE, bias, or error.

Figure 12. Spatial distributions of relative error corresponding to the (a) WESTDC algorithm; (b) FY-3B
algorithm; (c) FY-3D algorithm.

To evaluate the monthly performance of the algorithms, RMSE and bias were calculated independently.
The results are shown in Figure 13. The maximal RMSE occurs in March. This poor performance is
associated with the confounding effect of snow grain size and stratigraphy. Another reason is thick snow
cover. The minimum RMSE occurs in November. On the one hand, the snow parameters are stable
and have no evolution. Therefore, the relationship between snow depth and brightness temperature is
relatively strong. On the other hand, the snow cover is shallow in November. Bias ranges from −1 to 2 for
the FY-3D algorithm, and it performs better in the snowy season, except in March.

Figure 13. Monthly statistics of the three algorithms: (a) RMSE and (b) bias. Blue, green, and red lines
represent FY-3D, FY-3B, and WESTDC algorithms, respectively. Dashed black lines denote bias at ±2 cm.

4. Discussion

4.1. Influence of Snow Microphysical Properties

PMW retrievals are plagued by a number of challenges, which often disrupt the relationship
between snow depth and brightness temperature, resulting in poor estimation [34,38,45,53,54].
Neglecting to account for snow’s microphysical properties (mostly grain size and density) tends
to cause retrieval errors. Figure 14 shows time series of snow depth (station observations, 2002–2009)
and TBD (19 GHz and 37 GHz, AMSR-E, 2002–2009) at Aletai station (deep snow, maximum snow
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depth 57 cm, mean snow depth 26 cm) and Mingshui station (thin snow, maximum snow depth 23 cm,
mean snow depth 10 cm). When the snow depth is invariable, however, the TBD still increases at
Aletai station, as shown within the dashed black frames in Figure 14a. Figure 14b shows that the
TBD increases with decreasing snow depth at Mingshui station. Simulation with the single-layer
microwave emission model of layered snowpack (MEMLS) model shows that the TBD increases
with increasing snow grain correlation length (Figure 15, top) and snow density (Figure 15, middle)
and decreases with increasing humidity except for cross-polarization (Figure 15, bottom). TBD for
cross-polarization (TB19v − TB37h) increases with increased snow liquid water content. This is mainly
because the cross-polarization difference at 37 GHz (TB37v − TB37h) is large due to water dielectric
properties, and (TB19v − TB37h) can be expressed as (TB19v − TB37v) + (TB37v − TB37h). It is clear that
(TB19v − TB37v) is small (Figure 15, bottom left), so the major contributions are from (TB37v − TB37h).
Therefore, the factor that can be used to explain the anomalous pattern in Figure 14 is the evolution in
snow grain size and snow density. Although empirical and physical models have been developed to
predict the growth of snow crystals and increase in density [25,26], they are not suited to regional- or
global-scale conditions.

 

 
Figure 14. Time series of snow depth (solid red line) and T19H37H = TB19h − TB37h (solid green line)
at (a) Aletai station (grassland) and (b) Mingshui station (farmland). Boxes marked with dashed black
lines show the anomalous relationship between snow depth and brightness temperature difference.

 

Figure 15. Cont.
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Figure 15. Sensitivity analysis of brightness temperature difference to snow parameters, including
snow grain correlation length (top), snow density (middle), and snow liquid water (bottom). Left:
d19v37v = TB19v − TB37v; middle: d19h37h = TB19h − TB37h; right: d19v37h = TB19v − TB37h.

4.2. Influence of Snow Density on SWE Mapping

Snow density is a key parameter that not only confounds the relationship between TB and
snow depth, but also influences SWE [17,32,33]. Much SWE retrieval processing is based on snow
depth information

SWE = SD × ρs/ρw × 10, (14)

where SD is the snow depth (cm), ρs is the snow density (g/cm3), ρw is the density of water (1 g/cm3),
and SWE is measured in millimeters of water. The first implementation of the FY-3B SWE retrieval
scheme utilized reference snow density of Sturm’s climatological snow classes [55,56]. Based on in situ
snow course data in Xinjiang and Northeast China, however, the snow density is generally around
0.18 g/cm3 (Table 2, Figure 7). The average snow densities in the northeast and Xinjiang are similar,
0.19 g/cm3 and 0.17 g/cm3, respectively. Weather station observations from 1992 to 2009 include snow
pressure, which can be converted to SWE. The relationship between snow depth and SWE is shown in
Figure 16. The slope of the fitting is 0.16, meaning that snow density is about 0.16 g/cm3.

 
Figure 16. Snow density based on the relationship between snow depth and SWE (weather station
observations from 1992 to 2009, 13,462 samples). The solid black line is the fitted linear relationship
obtained from Equation (14) with regression coefficient 0.16.

Figure 17a is a Kriging interpolation map of snow densities obtained from weather stations during
the winters of 2002–2009. It is masked with instantaneous snow cover in Figure 5. Figure 17b shows
the spatial distribution of snow density based on Sturm’s climatological snow classes [55,56]. It is
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clear that snow density based on Sturm’s climatological snow classes (minimum ~ 0.21) tends to
be bigger than that in China (maximum ~ 0.20), which results in systematic overestimation of SWE.
Therefore, the snow density used in the FY-3D SWE version is 0.18 g/cm3 rather than that in the Kriging
interpolation because of uncertainties resulting from unevenly distributed weather stations (Figure 1).
In future work, the temporospatial distribution of snow density in China will be mapped based on
field measurements from 2018 to 2021 and weather station observations.

Figure 17. Spatial distribution of snow density in China: (a) Kriging interpolation and (b) based on
Sturm’s climatological snow classes.

4.3. Influence of Forest Cover Fraction

Forest cover represents a significant source of error in satellite PMW snow depth and SWE
retrieval algorithms. In this work, we improved the Foster algorithm by employing a weight factor
to avoid overestimation in densely forested areas. In fact, this method results in overestimation in
sparsely forested areas. Figure 18 shows that RMSE increases with increasing forest cover fraction,
and bias overestimation is serious as forest fractions range from 20% to 60% (Figure 18, magenta
line), mainly caused by mixed pixels [38]. When the forest fraction is greater than 80%, serious
underestimation occurs because of minimal penetration depth of the microwave signal in the forest
canopy. Because snow depth varies in different areas, relative error is more reasonable to show the
algorithm’s performance. Although RMSEs in densely forested areas are large, relative errors are still
smooth, not larger than those in sparsely forested areas. In future work, we will study the influence of
forest on brightness temperature with a physically based radiative transfer model and the influence of
snow microphysical properties on brightness temperature with a snow forward model, then calibrate
microwave signals to improve snow depth estimation [53,54].
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Figure 18. Influence of forest cover fraction on snow depth estimation. The blue line represents RMSE,
the magenta line represents bias, and the magenta histogram represents relative error (RMSE is divided
by mean snow depth, in the range of 0 to 1).

5. Conclusions

In this study, the performance of five snow depth estimation methods was evaluated using in situ
snow depth measurements and satellite brightness temperatures. The results show that the WESTDC
and FY-3B algorithms performed well. However, there was persistent underestimation in thick snow
cover (greater than 20 cm). The purpose of the study was to develop a new algorithm that can solve
the problem of underestimation of deep snow. Ideally, it should be possible to retrieve deep and
shallow snow depths, as the AMSR-E algorithm does. However, PMW remote sensing still cannot
distinguish deep snow from thin snow and only can detect snow cover, i.e., snow vs. snow-free. Thus,
establishing regional algorithms calibrated at a local scale is a promising approach and may improve
snow depth estimation. Thus, we developed regional algorithms for Xinjiang, Northeast China, and
other areas. Based on our evaluation and analysis, the FY-3D algorithm performed better than other
algorithms. The RMSE and bias were 6.6 cm and 0.2 cm, respectively. Based on an in-situ snow density
of 0.18 g/cm3, the RMSE of the SWE is approximately 12 mm.
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Abstract: The sensing depth of passive microwave remote sensing is a significant factor in quantitative
frozen soil studies. In this paper, a microwave radiation response depth (MRRD) was proposed to
describe the source of the main signals of passive microwave remote sensing. The main goal of this
research was to develop a simple and accurate parameterized model for estimating the MRRD of
frozen soil. A theoretical model was introduced first to describe the emission characteristics of a
three-layer case, which incorporates multiple reflections at the two boundaries. Based on radiative
transfer theory, the total emission of the three layers was calculated. A sensitivity analysis was
then performed to demonstrate the effects of soil properties and frequency on the MRRD based on
a simulation database comprising a wide range of soil characteristics and frequencies. Sensitivity
analysis indicated that soil temperature, soil texture, and frequencies are three of the primary
variables affecting MRRD, and a definite empirical relationship existed between the three parameters
and the MRRD. Thus, a parameterized model for estimating MRRD was developed based on the
sensitivity analysis results. A controlled field experiment using a truck-mounted multi-frequency
microwave radiometer (TMMR) was designed and performed to validate the emission model of the
soil freeze–thaw cycle and the parameterized model of MRRD developed in this work. The results
indicated that the developed parameterized model offers a relatively accurate and simple way of
estimating the MRRD. The total root mean square error (RMSE) between the calculated and measured
MRRD of frozen loam soil was approximately 0.5 cm for the TMMR’s four frequencies.

Keywords: frozen soil; microwave radiation response depth (MRRD); microwave radiometer
experiment; parameterized model

1. Introduction

Permafrost and seasonally frozen soil, whose thermal and physical properties differ from unfrozen
soil, are key components of the cryosphere. The regional energy and water balance are dramatically
modified by the phase transition of soil water during the freeze–thaw process. The freezing–thawing
of soil induced the release of decomposable organic carbon, and thus had a profound influence on
the overall functioning of ecosystems [1]. However, the degradation of permafrost, which releases
latent heat and carbon, has become a positive global warming feedback [2]. Previous experiments
have shown that the carbon emission in soil profile varied spatially and temporally and was correlated
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with soil frozen depth [3]. Hence, it is necessary to determine the soil frozen depth for a given frozen
area and explore the extent and distribution of frozen areas.

Satellite remote-sensing technology is an ideal tool for obtaining the spatial and temporal
information of frozen areas. Passive microwave remote sensing has been used to provide qualitative
information in previous studies because of less vulnerably linked to cloud cover and more frequent
revisit time comparing to optical remote sensing. In some previous research, many scientists have
devoted to exploring freeze/thaw discrimination methods using passive microwave remote sensing
data [4–8]. Recently, multiple studies have focused on the quantitative frozen ground remote sensing,
such as the amount of water released by the phase transition during the freeze/thaw process, the frost
penetration velocity [9,10], and so on. It should be noted that in these investigations, land surface
properties were monitored using microwave remote-sensing sensors, which provided an integrated
microwave emission signal over a certain surface within a certain depth. Knowing this depth is
important for this research referred to above. It is an indication of the thickness of the surface layer,
within which variations in soil moisture or other soil parameters can significantly affect the emitted
radiation at a certain frequency [11,12]. For different frequencies, the depth varies too. Hence, it can be
an explanation for some phenomenon in freeze–thaw related research because signals from different
surfaces might indicate different depth. In addition, it is useful for planning ground data collection
campaigns for model and algorithm development and validation in this field.

However, what the definition of this ‘depth’ is and how deep the ‘depth’ refers to are two main
issues in front of us. Many scientists attempt to answer these two questions and have contributed to
some related work. Ulaby proposed a penetration depth model for active microwaves [13]. It might
cause errors for the active microwave model to be used in passive microwave remote sensing
applications because of the disparate working mechanisms between active and passive microwave
remote sensing [14]. Wilheit proposed a thermal sampling depth and reflectivity sampling depth based
on a multiple-layered and coherent radiative transfer model [15]. The thermal sampling depth is the
depth at which thermal radiation upwelling originates in the soil and the reflectivity sampling depth
was determined as the depth at which the isothermal and non-isothermal reflectivities were equal.
The reflectivity characteristics changed over the depth of approximately 1/10–1/7 of the wavelengths in
the medium, and the thermal radiation was generally larger [16]. Blinn and Paloscia gave a feasible
way to study the question regarding which depth of soil is responsible for the greatest part of the
emission upwelling from soil by conducting a controlled ground experiment [17,18]. The conclusion of
the sensitivity of L band emission to the moisture content of a soil layer about 5 cm thick was confirmed.
There are also several theoretical and experimental results that demonstrated that the sensing depths
were approximately 2–20 cm for different soil conditions at L band [12,19–22] and about 2 cm at 5 GHz
with a soil moisture of 0.1 cm3/cm3 [20].

Although, previous studies have revealed different definitions and results of the passive microwave
remote-sensing depth, a feasible method to estimate a depth that determined as the source of the
predominant microwave remote-sensing signals has been poorly investigated. As a result, scientists
commonly use an empirical depth. For example, although the depth varies with frequency and soil
characteristics, soil moisture measurements with depths of at least 0–5 cm are widely used to validate
remote-sensing data at L band [23–25]. It is possible that for unfrozen soil the measurements of
soil moisture are only partially representative of average values measured by a radiometer. Finally,
it can be seen that most of the research referred to unfrozen soil. As the dielectric and microwave
radiation characteristics of unfrozen soil are quite different with that of frozen soil [26–28], the models
of estimating penetration depth for unfrozen soil usually do not work well for frozen soil.

In this research, we will try to propose a passive microwave remote-sensing response depth
(MRRD) and develop a simple parameterized model to determine its value for frozen soil. A field
experiment using a truck-mounted multi-frequency microwave radiometer (TMMR) will be introduced
in Section 2.1. Field experiment data will be used for validation. In Section 2.2, we propose the theory
used to investigate the passive microwave remote sensing response depth and develop a parameterized
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model to estimate the frozen soil response depth. The measurements are analyzed and discussed in
Sections 3 and 4. In Section 5 we give the conclusions of this study.

2. Materials and Methods

2.1. Field Experiment

As has already been done by other investigators [17,18], we carried out a “microwave radiation
response depth experiment” by putting soil samples over a metal plate. A TMMR was used to measure
the microwave radiation from an aluminum sheet covered with soil samples of various thicknesses.
The controlled experiment data is used to investigate the effects of frequency and soil parameters on
the microwave remote sensing response depth and validated a parameterized model of the microwave
radiation response depth (MRRD) in frozen soil. The detailed field experiment is presented in the
following sections.

2.1.1. Experimental Setup and Material Preparation

The experiment was performed in Baoding, Hebei Province, China (38◦42’10.21”N, 115◦23’18.23”E)
from 12 to 19 January 2012. During this period, the soil typically froze at night and thawed during the
day. The most important instrument in this experiment is the TMMR. It is an eight-channel radiometer
with four frequencies (6.925, 10.65, 18.7, and 36.5 GHz), with vertical and horizontal polarization at
each frequency. The TMMR can collect data at multiple angles, both in the zenith (from −90◦ to 90◦)
and azimuthal directions (from 0◦ to 360◦). The TMMR was calibrated on a four-point calibration
scheme before the experiment, and the precision of measurements was also tested by measuring a
calm water area. An absolute Tb accuracy of 1 K could be achieved with the accuracy of calibration
target temperature sensors and the minimization of thermal gradients. Detailed calibration and test
procedures were described in [29].

The radiometer was placed on a truck using a hydraulic lifting platform, which lifted the apparatus
to 4.78 m above the ground. Figure 1 presents the observation field. Measurements were made toward
the south to avoid the shadow of the truck. The incident angle was fixed at 45◦ during the whole
experiment. The −10 dB footprints of the four antennas were calculated and labeled on the ground
according to the radiometer configuration. Due to the low emissivity of aluminum, aluminum sheets
were used as the background for the following measurements. Eight aluminum sheets (each 1 m × 2 m)
were arranged on the ground in two rows to form a 4 m × 4 m mosaic, which completely covered
the four antenna footprints. This can ensure that the signals received by TMMR are from the objects
on the aluminum sheets. The soil was air dried and sieved to ensure a homogeneous soil moisture
and texture.

For each thickness, the appropriate amount of water was mixed with the dried soil to obtain
the desired soil moisture. The mixture was used to cover the aluminum sheets, and the layer was
artificially smoothed. To improve soil plasticity and artificially smooth the soil surface, appropriate soil
moisture content is needed. Note that covering the eight aluminum sheets with the area of 16 m2 using
the mixture and artificially smoothing the sample surface is a very time-consuming and labor-intensive
process. In addition, a heterogeneous soil temperature profile may exist if the soil thickness is too large.
Conversely, soil samples with thin thickness are more easily to be freeze uniformly. Thus, only five
and relatively thin soil samples were analyzed in this experiment.
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Figure 1. Viewing scene of the truck-mounted multi-frequency microwave radiometer (TMMR).

2.1.2. Measurements

The TMMR was used to measure the microwave radiation from the aluminum sheet to obtain the
emissivity at four frequencies. During the experiment, the brightness temperature of the aluminum
sheet, which was covered by various soil layer thicknesses, was measured using a TMMR. To eliminate
the atmospheric effect on each measurement, the atmospheric downward radiations in different
frequencies were measured by TMMR and then were used to calculate the emissivity values of
soil samples.

In this experiment, the initial soil moisture of soil sample is 0.433 cm3/cm3, and the thicknesses of
five soil samples were 0.18, 0.43, 0.63, 0.96, and 1.06 cm, respectively. The continuous measurements of
each sample lasted for approximately 24 hours to include the typical thawing and freezing processes
that occur during the day and night, respectively. Because the physical temperature remained too high
for completely freezing during the first 24-hour period, the 1.06 cm soil sample was observed for about
two days. To avoid soil moisture evaporation, a plastic film was used to cover the soil. A trial conducted
before our experiment revealed that the effect of the plastic film was negligible. The soil temperature
and moisture were automatically measured every 3 minutes by the temperature and moisture sensors
and collected using an Intelligent Data Acquisition Collector (IDAC) (Figure 1). As one thickness
measurement was being conducted, another sample was being prepared. The thickness of the soil
sample was measured after one sample observation was performed.

A cutting ring was used to measure the soil bulk density. The mean bulk density was 1.41 g/cm3.
The soil texture is classified as loam (sand: 30.16%, silt: 48.85%, clay: 20.99%) according to the U.S.
Department of Agriculture classification scheme.

2.2. Methodology

To develop a parameterized model to estimate MRRD of frozen soil, the definitions of the
MRRD and the theoretical model utilized were introduced firstly. Sensitivity analysis were then
performed to determine the relationship between MRRD and soil parameters using the theoretical
model. The parameterized model was developed based on sensitivity analysis results. The field
experiment data introduced in 2.1 were used for validation of theorical model and parameterized model.
A flow chart has shown the parameterized model development and validation process (Figure 2).
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Figure 2. The flow chart of the parameterized model development and validation process.

2.2.1. Microwave Radiation Response Depth (MRRD)

To describe the characteristics observed by passive microwave remote sensing, the MRRD was
defined in this paper. We used the following experiment to obtain an expression for the MRRD.
A radiometer was used to measure the emissivity of aluminum sheets (theoretically, its emissivity is
0 and reflectivity is 1.0) covered with various soil thicknesses. As a result, when the soil layer was
thin, the brightness temperature measured by the radiometer was very low. The observed brightness
temperature increased as the soil thickness increased, and it will stabilize when the soil thickness
increases. Because the emissivity can be deduced by normalizing brightness temperature to a physical
temperature of the target, herein, the emissivity was used to describe the definition of MRRD. If the
observed emissivity reaches emax, i.e., achieves stability, the MRRD can be defined as the depth
at which:

emax − ez = 0.001 (1)

Where, ez is the emissivity of soil with thickness of z. The above formula indicates that at depth
z, the difference between the emissivity and the maximum emissivity (the stable value) is only 0.001
(approximately 0.1–0.3 K for frozen soil). This depth is defined as the MRRD. The MRRD provides a
reference for the primary source of the observed signals.

2.2.2. Theoretical Model

A three-layer case was used to illustrate the theoretical model for frozen/thaw soil (Figure 3).
We define the air, soil, and aluminum sheet as the first, second, and third layers and the air–soil and
soil–aluminum sheet boundaries as the first and second boundaries, respectively.

The model was used to calculate emissions using the radiative transfer theory [13]. It is a
non-coherent model, which does not include interference. The brightness temperature consists of
two contributions:

TB(θ1; p) = TB2(θ1; p) + TB3(θ1; p) (2)

where TB2 and TB3 are the brightness temperature contributions due to the layer 2 and 3 emissions,
respectively. θ1 is the angle of the radiation emitted into layer 1.
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Figure 3. The emissions from layer 2 and layer 3 into layer 1 (air).

Multiple reflections at the two boundaries were incorporated into this model. Each of the two
bottom layers is assumed to isotropically radiate, and the boundary roughness is ignored. We are only
interested in the radiation that is emitted into layer 1 at an angle of θ1. The only radiation of interest
in layer 2 is that emitted at boundary 1 at an angle of θ2. This consists of upward emissions and
downward emissions that are reflected by boundary 2 toward boundary 1. The contributions of these
two components to TB2 can be designated by the upward emission, T2U, and downward emission, T2D:

TB2(θ1; p) = T2U(θ1; p) + T2D(θ1; p) (3)

Consider a thin horizontal stratum in layer 2 at a depth of ζ and a thickness of dζ. In the upward
direction, this stratum’s emissions are first attenuated by the stratum at depth ζ and boundary 1 along
the path. Then, at boundary 1, a fraction of this attenuated emission is transmitted across the boundary
and the remainder is reflected. The reflected portion decreases as it travels to boundary 2. It is then
partially reflected toward boundary 1 and partially transmitted into layer 3. This process will infinitely
continue. In the downward direction, this stratum’s emissions are also attenuated by the stratum
at depth ζ and boundary 2 along the path. A fraction is transmitted across boundary 2, while the
remainder is reflected. It then experiences the same reflections between boundaries 1 and 2 as the
upward emission. The total energy can be found by integrating over the 0 to d depth range.

For layer 3, the upwelling emission at angle θ3 is transmitted by boundary 2 and attenuated
by layer 2, then reflected toward boundary 1, which is the only component we consider. It can be
computed in a similar manner as layer 2. The theoretical model can be described as:

TB(θ1; p) =
(1− Γ1)(

1− Γ1Γ2/L2
2

)
[(

1 +
Γ2

L2

)
(1− a)

(
1− 1

L2

)
T2 +

(1− Γ2)T3

L2

]
(4)

The above expression gives the total brightness temperature, TB, of the three layers. In the model,
Γ is the reflectivity of a boundary, and the subscripts 1 and 2 indicate boundaries 1 and 2. The reflectivity
can be calculated using Fresnel’s law at the first boundary. T is the physical temperature of each layer.
Subscripts 1, 2, and 3 indicate layers 1, 2, and 3, respectively. θ θand p are the incident angle and
polarization. L is the power loss factor, which can be expressed by:

L = exp(κed sec θ2) (5)

where d is the soil thickness, θ2 is the real transmission angle, and κe is the extinction coefficient. If soil
medium scattering is ignored, κe is approximately equal to the absorption coefficient, κa, given by:

κe � κa =
4π
λ0

∣∣∣∣Im(√ε)
∣∣∣∣ (6)
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where λ0 is the wavelength in free space and ε = ε′ − jε′′ is the corresponding permittivity of soil.
The low emissivity of the aluminum sheet makes it an ideal background material. Additionally,

it can shield signals from below the aluminum sheet. We assume that the soil properties are uniform
with depth, the reflectivity of the aluminum sheet is 1.0 and the single scattering albedo is sufficiently
small that diffuse scattering can be ignored (a = 0). The implications of these assumptions will be
discussed in Section 4.

Because the physical characteristics of the soil layer are unknown, several empirical models were
introduced. Unfrozen soil can be considered a mixture of air, solid soil, bound water, and free water.
Dobson developed an empirical model to calculate the permittivity [30], which has been widely used
in soil permittivity estimations.

εαm = 1 + (ρb/ρs)(ε
α
s − 1) + mβvε

α
fW −mv (7)

Here, εm, εs, and ε fW are the dielectric constants of the unfrozen soil, solid soil, and free water,
respectively. ρb and ρs are the bulk density and specific density in g/cm3, respectively. mv is the
volumetric soil moisture in cm3/cm3. α is a constant shape factor, and β is a coefficient dependent on
the soil textural composition.

Due to the adsorption forces and curvature at the soil particle surfaces in frozen soil, a certain
amount of water remains unfrozen, even when the soil temperature is below 0 ◦C. This is called the
unfrozen water content. The amount of unfrozen water mainly depends on the physical properties
of the soil. Typically, the specific surface, which is the ratio of total surface area to the mass of the
soil, controls the binding force on the water. The higher the soil specific surface area, the greater the
binding force, making the water prone to remaining unfrozen. However, the unfrozen water content
overcomes the adsorption forces of soil particles and freezes as the soil temperature continues to
decrease. Anderson developed an empirical model for estimating the unfrozen water content using
the soil temperature and specific surface area of the soil [31] which is given by:

mu = a|T − 273.15|−b

ln a = 0.5519 ln S + 0.2618
ln b = −0.264 ln S + 0.3711

(8)

where mu is the unfrozen water content (cm3/cm3), T is the soil temperature in Kelvin, and S is the soil
specific area in m2/g, which is determined based on the particle-size distribution of the soil. The soil
specific area can be predicted using an empirical model [32] based on the sand, silt, and clay contents:

S = 0.042 + 4.23clay% + 1.12silt%− 1.16sand% (9)

The unfrozen water content directly affects the permittivity of the frozen soil due to the large
difference in the permittivity between ice and water. Based on Dobson’s work, Zhang added a term to
the parameterized model to describe the ice fraction contribution to the frozen soil permittivity [26].
This model can be used for various soil types and includes soil texture, bulk density, soil moisture,
and temperature inputs. It has been used in previous passive microwave remote sensing studies of
frozen soil [7,9]. The simulated results were also validated using experimental data obtained with an
Agilent PNA Network Analyzer E8362B. The expression can be written as:

εαmf = 1 + (ρb/ρs)(ε
α
s − 1) + mβνuε

α
fw −mvu + mνiε

α
i −mvi (10)

where the subscripts s, i, f w, vu, and vi refer to solid soil, ice, free water, volumetric unfrozen water,
and the volumetric ice content, respectively.

80



Remote Sens. 2019, 11, 2028

2.2.3. Sensitivity Analysis

The attenuation of electromagnetic waves in the soil is determined based on the soil’s permittivity
and the wavelength. Hence, the MRRD is mainly affected by the factors impact on the dielectric
characteristics of the soil. A sensitivity analysis was conducted to determine the relationship between
MRRD and soil parameters using the theoretical model described above. We have performed
the comparison between MRRD computed using the theoretical model for horizontal and vertical
polarization. It can be concluded that the MRRDs for horizontal and vertical polarization are highly
correlated and have negligible difference when the incident angle equals zero. However, the MRRD for
horizontal polarization was slightly higher than that for vertical polarization because different Fresnel
reflectivity of polarizations exists at the air–soil boundary if the incident angle is not zero [12,33].
For simplicity, the vertical polarization brightness temperature is used in the following analysis.
A simulation database covering a wide range of soil characteristics and frequencies was created.
The unfrozen water content, soil temperature, frequency, bulk density, and soil specific surface area
were selected as the factors to be analyzed. The key input parameters of the theoretical model are listed
in Table 1. Note that the unfrozen water content was calculated by temperature and soil specific surface
area using Equation (8). The incidence angle determines the microwave radiation path, which can be
calculated with vertical path. Therefore, it was set to be 55◦ according to the commonly used Advanced
Microwave Scanning Radiometer–Earth Observing System (AMSR-E) observation configuration.

Table 1. Setup of the key parameters in the simulation database.

Parameters Value

Temperature 243.15 to 271.15 K(−30 to −2 ◦C)
Frequency 4 to 40 GHz

Soil specific surface area 37.442 to 253.042 m2/g
Unfrozen water content 0.02 to 0.31 cm3/cm3

Bulk density 1.2 to 1.8 g/cm3

Incident angle 55◦
Initial soil moisture 0.433 cm3/cm3

To compare the sensitivity of soil characteristics and frequencies to MRRD, the normalized index
for each parameter was used in the sensitivity analysis. The normalized index for a parameter can be
expressed as

PN = (Pi − Pmin)/(Pmax − Pmin) (11)

Where, Pi indicates the values of soil temperature, frequency, soil specific surface area and bulk
density. PN is the normalized value of these parameters. The subscript max and min are the maximum
and minimum value of the corresponding parameters set in the simulation database.

As described above, not all of the liquid water transforms into ice when the temperature drops
below 0 ◦C. The unfrozen water in the soil is determined based on the temperature and soil texture.
Figure 4a–c show the dependence of the MRRD on temperature, soil specific area, and unfrozen soil
water content, respectively. For a given frequency, the MRRD increases when the temperature varies
from −2 ◦C to −30 ◦C and the soil specific surface area ranges from 253.042 to 37.442 m2/g. This can be
explained by the positive correlation between the unfrozen water and temperature. The unfrozen water
content in the frozen soil decreases as the temperature decreases, leading to a lower soil permittivity
and weaker electromagnetic extinction when all other soil characteristics are held constant. Another
parameter affecting the unfrozen water in the soil is the soil texture, which impacts the soil particle
water adsorption. The higher the specific surface area, the stronger the water binding force, leading to
more unfrozen water and a higher permittivity (Figure 4b). Figure 4d illustrates the MRRD decrease
with increasing frequency (decreasing the wavelength). Additionally, at −15 ◦C, the difference in the
MRRD is 2 cm (approximately 8 cm and 6 cm) for frequencies ranging from 6.925 GHz to 10.65 GHz,
but only 0.4 cm (5.1 cm and 4.7 cm) for frequencies from 18 GHz to 36.5 GHz. The MRRD is weakly

81



Remote Sens. 2019, 11, 2028

dependent on the frequency above 10 GHz. This behavior is clearly shown in Figure 4d and agrees
with our expectations of the microwave remote sensing penetrability.

 

(a) (b) 

 

(c) (d) 

 

 

(e)  

Figure 4. The microwave radiation response depth (MRRD) computed using the theoretical model as a
function of normalized soil temperature (a), soil specific surface area (b), unfrozen soil water content
(c), frequency (d), and bulk density (e).

82



Remote Sens. 2019, 11, 2028

Overall, the MRRD is negatively correlated with all parameters. The sensitivity of MRRD to
unfrozen water content, temperature, frequency, and soil specific surface area is larger than that to
bulk density (Figure 4e). Furthermore, the bulk density generally relates to the composition of soil
particles. Hence, it is not considered in the parameterized model development.

2.2.4. Parameterized MRRD Estimated Model Development

Based on the sensitivity analysis in part 2.2.3, we concluded that the observation frequency,
unfrozen water content, temperature, and specific surface area are important factors for determining
the frozen soil MRRD. Note that the measurements of unfrozen water content in frozen soil is
generally very complicated and difficult. Furthermore, the unfrozen water content was represented by
temperature and soil specific surface area. Therefore, it was not included in the parameterized model
development. Hence, three parameters, including temperature, frequency, and specific surface area,
were used to develop a simple, accurate model to estimate the MRRD in this research. The relationship
between the temperature and MRRD was analyzed firstly based on the simulation database as shown
in Figure 5.

Figure 5. The fitted result of the relationship between MRRD and soil temperature.

The relationship between the MRRD and temperature can be expressed by the exponential function:

d = A|T− 273.15|B (12)

where d is the MRRD in cm and T is the physical soil temperature in Kelvin. Because the physical
temperature is lower than 273.15 K in frozen soil, the absolute value was used in the function.

The empirical coefficients A and B depend on observation frequency and specific surface area.
The least squares fitting method was used to seek the relationship between the coefficients and
frequency (Figure 6).
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(a) (b) 

Figure 6. The fitted results of the relationship between coefficients A(a) and B(b) and frequency.

According to the fitted results, the coefficient A and B is negatively and positively correlated with
frequency, respectively. They can be expressed by a function of frequency as:

A = a1ea2f + a3

B = b1 + b2/f
(13)

Then a regression analysis was performed to explore the relationship between the coefficients a1,
a2, a3, b1, and b2 with specific surface area (Figure 7). Except for coefficient b2, the coefficients a1, a2, a3,
and b1 were high related to specific surface area and the R2 was 0.96, 0.91, 0.93, and 0.84, respectively.

The relationship between the coefficients and specific surface area can be expressed as (14).
It should be noted that the b2 was set to be a constant of average values because it is slightly correlated
with specific surface area.

a1 = −8.316 ln(S) + 50.991
a2 = 0.0004S− 0.368
a3 = −0.116 ln(S) + 0.8004
b1 = −0.197 ln(S) + 2.1617
b2 = −3.97168

(14)

Formulas (12) to (14) comprise the parameterized model for estimating the MRRD. In this model,
the MRRD can be estimated using three common and easily acquired parameters: soil temperature, T,
frequency, f, and soil specific surface area, S. Note that the empirical model was developed according
to the AMSR-E configuration, at an incident angle of 55◦. Thus, d is the soil layer vertical thickness,
not the extinction path in the soil layer. Hence, the MRRD is d sec θ2 when the wave is vertically
incident upon the soil.
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(a) (b) 

 

(c) 

(e) 

Figure 7. The fitted results of the relationship between coefficients a1(a), a2(b), a3(c), b1(d), and b2(e)
and specific surface area.
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3. Results

3.1. Measurement Results

The observation duration and the lowest/highest temperature of five soil samples were listed
in Table 2. The lowest temperature of all samples is lower than 268.5 K (−4.65 ◦C) and the highest
temperature is higher than 275.9 K (2.75 ◦C), ensuring all samples occurred complete thawing and
freezing processes.

Table 2. The observed lowest and highest temperature of five soil samples.

Samples Thickness(cm) Observation Duration The Lowest and Highest Temperature(K)

0.18 Jan.12th 21:45~Jan. 13th, 15:24 260.3 ~ 294.1
0.43 Jan.13th 18:06~Jan. 14th, 16:10 263.3 ~ 288.7
0.63 Jan.14th 17:52~Jan. 15th, 16:32 265.7 ~ 283.7
0.96 Jan.15th 17:40~Jan. 16th, 15:56 267.5 ~ 275.9
1.06 Jan.17th 17:30~Jan. 19th, 09:53 268.5 ~ 277.8

Typical brightness temperature and physical temperature variations are shown in Figure 8. (using
a 0.63 cm-thick sample as an example). It can be seen that the soil on the aluminum sheet experienced
a thaw-freeze-thaw cycle from 17:52 on 14 January to 16:32 on 15 January. The lowest physical
temperature was 265.7K (−7.45 ◦C), which occurred at 7:47. The highest temperature was 283.7 K
(10.55 ◦C), which occurred at 13:41.

Figure 8. Emissivity and physical temperature variations measured in 0.63 cm-thick soil.

In the experiment, the aluminum sheets were the “cold” source. At the beginning of the
measurements, all or part of the signal from the aluminum sheet and wet soil was measured by the
radiometer. As the soil’s physical temperature decreases, the liquid water in the soil freezes, which
weakens the attenuation ability of the soil and increases its emissivity. Thus, the “cold” signal from the
aluminum sheet can easily be observed by the radiometer and initially contribute to the total emissions.
Due to the low emissivity of the aluminum sheet, the observed emissivity quickly decreased as its
contribution increased. Moreover, due to the greater penetrability, the lower frequency emissivity
values were smaller. Hence, the emissivity at 6.925 GHz decreased first, followed by 10.65, 18.7, and
36.5 GHz. After the wet soil was completely frozen, the emissivity values became relatively stable at
all four frequencies.
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During the soil-thawing process, some of the ice melted, forming liquid water, when the
temperature increased on the morning of 15 January. Thus, the “cold” signal of aluminum sheet is
shielded by the wet soil, and the observed emissivity increases. However, the emissivity decreases as
the amount of ice transformed into liquid water increases. As expected, the emissivity again stabilizes
when the soil is completely thawed.

The emissivity and physical temperature trends were similar for each soil sample, regardless of
thickness. Two emissivity values exist for each frequency at a given physical temperature (e.g., points
A and B on the 6.925 GHz vertical polarization line in Figure 8). At point A, the soil temperature
is decreasing from 0+ to 0− ◦C (‘+’ and ‘−’ indicate that the temperature is just above or below
0 ◦C). Thus, the soil was freezing. In contrast, point B (from 0− to 0+ ◦C) corresponds to thawing.
Although the temperatures are equal, the physical processes are different, resulting in small emissivity
differences. According to a previous experimental study [9,26], at the same negative soil temperature,
more unfrozen water can be found in frozen soil during freezing than thawing. Therefore, the unfrozen
soil in the thawing process lags behind that in the freezing process. Hence, the unfrozen water
content at point B is smaller than at point A. Accounting for the “cold” signal of the aluminum sheet,
the observed emissivity at point A is larger than at point B.

To further analyze the emissivity difference in the same negative temperature between freezing
and thawing process, we analyzed the measured emissivity with temperature of 268 K, 269 K, 270 K,
271 K, and 272 K. The emissivity at different frequencies during freezing and thawing process was
shown in Figure 9. It has shown that the emissivity at all frequencies during freezing process were
higher than that during thawing process with the same soil sample temperature.

Figure 9. The measured emissivity at different frequencies during freezing and thawing process.

3.2. Theoretical Model Validation

The theoretical model was evaluated based on the field experiment radiometer measurements.
Five soil samples of different thicknesses were analyzed. The measured emissivities with the soil
temperature of 268 K, 269 K, 270 K, 271 K, and 272 K in the field experiment were selected to compare
with the corresponding simulated emissivities. The parameters used in emissivity simulation were
listed in Table 3. Figure 10 illustrates the comparison between measured and simulated emissivity
values for the four frequencies: 6.925, 10.65, 18.7, and 36.5 GHz, during the freezing and thawing
processes. As described above, there is little difference between the freezing and thawing soil processes.
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The RMSEs between the simulated and observed emissivity values are 0.076 and 0.096 for the freezing
and thawing processes, respectively.

Table 3. Setup of the key parameters in emissivity simulation.

Parameters Value

Temperature 268 K, 269 K, 270 K, 271 K, and 272 K
Frequency 6.925, 10.65, 18.7, and 36.5 GHz
Soil texture sand: 30.16%, silt: 48.85%, clay: 20.99%

Bulk density 1.41 g/cm3

Initial soil moisture 0.433 cm3/cm3

Figure 10. Comparison between measured and simulated emissivity using theoretical model during
freezing and thawing processes.

3.3. Parameterized Model Validation

Five soil samples of different thicknesses were studied in the experiment. Accounting for the
emissivity of the aluminum sheet as the background value (soil thickness = 0), we obtained six
points on the curve expressing the relationship between emissivity and soil thickness for a given soil
physical temperature. Soil thickness is the only variable that affects the observed emissivity if the
physical temperature is fixed. The emissivity will increase with increasing soil thickness due to the low
emissivity of the aluminum sheet, eventually reaching a stable value. However, due to the time and
material limitations of this experiment, we cannot create enough soil samples with varying thicknesses
to reach these stable emissivity levels for the four frequencies analyzed. Thus, the least square method
was used to fit the curves using experimental data. Furthermore, considering the relationship between
the measured emissivity and soil thickness introduced in the expression for the MRRD, the exponential
form was used to fit the curves.

e f it = α+ β· exp(γ·st) (15)

Where, e f it is the fitted emissivity based on experiment measurements, st is soil thickness in cm.
α, β, and γ is coefficients.

Using a physical temperature of 268 K as an example, Figure 11 shows the measured and fitted
emissivity values as a function of soil thickness at 6.925, 10.65, 18.7, and 36.5 GHz. The initial soil
moisture is 0.433 cm3/cm3. As the soil thickness increases, the stable values of emissivity at lower
frequencies lags behind that at higher frequencies because lower frequencies can penetrate greater soil
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depths. Moreover, there is little difference between the freezing (soil temperature varying from 268+ to
268− K) and thawing processes (from 268− to 268+ K) of soil, as noted above.

(a) 

(b) 

Figure 11. Measured and fitted relationships between soil thickness and emissivity at four frequencies
during the thawing process (a) and freezing process (b).

Using the fitted curve obtained to describe the relationship between the emissivity and soil
thickness, it is feasible to estimate the MRRD. The MRRD can be calculated based on the fitted curve
for each frequency at a given physical temperature.

The parameterized model was evaluated based on the radiometer measurements from the field
experiment. The emissivity values were selected based on a single physical temperature, thereby
guaranteeing a consistent soil condition at different soil thicknesses. Thus, the soil thickness is the
only variable affecting the observed emissivity for a given frequency. The soil physical temperatures
used in this study are 268 K, 269 K, 270 K, 271 K, and 272 K. The MRRD was calculated based on the
previously discussed methods at each physical temperature and all four TRMM frequencies (6.925,
10.65, 18.7 and 36.5 GHz). The MRRD can also be estimated using the parameterized model. Because
the MRRD from the model and experiment were derived with different incident angles, they must be
modified to the appropriate depth at 90◦ using the real angle of transmission [13]. The estimated MRRD
is plotted with the measured values in Figure 12. A good agreement can be seen between the two
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parameters, except for several points at a low frequency (6.925 GHz), which display a higher MRRD.
Our previous study [27] focused on the coherent effects of freezing soil, which may be significant
in ground radiometric experiments, especially when using a low-frequency radiometer. This effect
could be attributed to the interference caused by frozen layer thickness variations, which results in
brightness temperature oscillations (Figure 11). However, the theoretical model used in this study is a
non-coherent model, which does not include interference. Furthermore, due to the time limitation
and avoiding a heterogeneous frozen soil sample in this experiment, the thickest soil sample was only
1.06 cm. It limited the accuracy of the fitted curves, especially the measurements at lower frequencies,
i.e. 6.925 GHz. The fitting curve introduced errors to results of measured MRRD at 6.925 GHz and
resulted in disagreement of measured and estimated MRRDs. Therefore, the estimated points at
6.925 GHz do not agree well with the measured MRRD.

Figure 12. Comparison of measured and estimated MRRDs using the parameterized model.

The averaged root mean square errors (RMSE) of the soil at the four frequencies are 0.402 cm and
0.537 cm for the thawing and freezing processes, respectively. Note that the validation conducted
based on controlled experimental data (i.e., specific soil moistures, textures, temperatures and other
parameters). In addition, the parameterized model accuracy is difficult to address based on real soil
data. However, the parameterized model was derived based on the radiative transfer theory and
the assumptions are both reasonable and consistent with previous research. Thus, there is reason to
believe that the developed parameterized model offers an acceptable and simple way for estimating
the MRRD using three common parameters: temperature, frequency, and specific surface area.

4. Discussion

In this study, the theoretical model was used to describe the soil microwave radiation in the soil
freezing and thawing process. It was then used to develop the parameterized model for estimating the
MRRD by using multiple regression analysis based on a simulation database. However, the developed
parameterized model has its limitations because the diffuse scattering is not taken into consideration.
At low microwave frequencies, the wavelength in soil is in the order of several centimeters, which
is significantly larger than the soil particles. At high frequencies, which correspond to shorter
wavelengths, the soil particles and voids between particles may cause scattering. For the frozen soil,
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their emission characteristics are similar to very dry soil, due to an absence of liquid water. Thus,
scattering is possible, especially at higher frequencies.

However, there are few published models to describe the complicated diffuse scattering of soil.
Herein, the diffuse scattering of soil was ignored in our work and the effect of soil diffuse scattering
on MRRD estimation was evaluated by analyzing MRRD at different frequencies as a function of the
single scattering albedo (Figure 13). It has shown that the single scattering albedo varying from 0.01
to 0.09 resulted in about 0.43, 0.46, 0.56, and 0.75 cm variation of MRRD at 6.925 GHz, 10.65 GHz,
18.7 GHz, and 36.5 GHz, respectively. This finding suggests that the omission of diffused albedo can
lead to a slight MRRD overestimation.

Figure 13. MRRD as a function of single scattering albedo at different frequencies.

The assumption of equal soil moisture and soil temperature throughout the soil is not strictly true.
Temperature and moisture gradients exist within the frozen soil, especially when the soil depth is very
thick and the soil temperature is approximately 0 ◦C. Because the soil sample on the aluminum sheet
is not very thick and the data used in this study were below −1 ◦C, the assumption of uniform soil
properties with depth is reasonable.

Another explanation for the disagreement between the measured and estimated MRRDs is the
difference of aluminium sheet emissivity used in the theoretical model and measurements. Theoretically,
aluminium is an ideal conductor and the waves transmitted to a smooth aluminium sheet will be totally
reflected [34]. Therefore, the emissivity of the aluminium sheets should be zero at any observation
angle or frequency. In the theoretical model, the emissivity of aluminium were set to be zero. Obviously,
they are about 0.01 ~ 0.03, which may be caused by the surface oxidation of the aluminium sheets in
the experiment (as shown in Figure 11, when the soil thickness is zero, the measured emissivity is not
zero). These results were also found in our other field experiments [35].

5. Conclusions

The objective of this work was to develop a simple, accurate approach for calculating the MRRD
of frozen soil. The concept of the MRRD was proposed to describe the source of the primary signal of
passive microwave remote sensing and provide a specific expression to define the depth. A controlled
truck-mounted experiment was conducted using a three-layer setup. A three-layer theoretical model
was then introduced and altered to satisfy the specific experimental design of the study. A database
was constructed and sensitivity analysis was conducted based on this theoretical model to study the
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relationship among the MRRD, soil properties, and frequency. According to the sensitivity analysis,
the sensitivity of the MRRD to soil bulk density is much less than that of the three main variables
temperature, frequency, and specific surface area for the frozen soil. A parameterized model was
then developed for estimating the MRRD of frozen soil using three common and easily acquired
parameters: temperature, frequency, and specific surface area. Finally, the parameterized model was
validated using experimental data. Some interesting conclusions can be made regarding the MRRD of
frozen soil. The soil temperature, frequency, and soil texture are the three main variables affecting
the MRRD. The MRRD is negatively correlated with soil temperature, frequency, and specific surface
area. Additionally, the MRRD is more sensitive to temperature and frequency than specific surface
area. Based on the sensitivity analysis, a parameterized model was developed for estimating the
MRRD, and the validation results indicated that the parameterized model has an acceptable accuracy.
The RMSEs of MRRD at TMMR’s four frequencies were 0.402 cm and 0.537 cm for the thawing
and freezing soil processes, respectively. However, because the validation was performed based on
controlled experimental data (i.e., specific soil moistures, textures, temperature variations and other
parameters), the parameterized model should be further tested in future studies prior to application.
This testing could include field data collection and brightness temperature simulation using a radiative
transfer model.
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Abstract: Near-nadir interferometric imaging SAR (Synthetic Aperture Radar) techniques are
promising in measuring global water extent and surface height at fine spatial and temporal resolutions.
The concept of near-nadir interferometric measurements was implemented in the experimental
Interferometric Imaging Radar Altimeters (InIRA) mounted on Chinese Tian Gong 2 (TG-2) space
laboratory. This study is focused on mapping the extent of high mountain lakes in the remote
Qinghai–Tibet Plateau (QTP) areas using the InIRA observations. Theoretical simulations were first
conducted to understand the scattering mechanisms under near-nadir observation geometry. It was
found that water and surrounding land pixels are generally distinguishable depending on the degree
of their difference in dielectric properties and surface roughness. The observed radar backscatter is
also greatly influenced by incidence angles. A dynamic threshold method was then developed to
detect water pixels based on the theoretical analysis and ancillary data. As assessed by the LandSat
results, the overall classification accuracy is higher than 90%, though the classifications are affected
by low backscatter possibly from very smooth water surface. The algorithms developed from this
study can be extended to all InIRA land measurements and provide support for the similar space
missions in the future.

Keywords: near-nadir SAR; Tian Gong 2; Qinghai–Tibet Plateau; lake

1. Introduction

Lakes are essential components in global hydraulic cycle and climate processes. The expansion
and shrinkage of lake extent are strongly influenced by seasonal climate patterns as well as long term
environmental changes [1,2]. Lakes provide strong feedbacks to regional and global environments,
and the emergence and expansion of thaw-lakes are found having profound impacts on high-latitude
ecosystems [3]. There is high priority to monitor the dynamics of lake area and water storage for
assessing global change impacts and forecasting the future climate change scenarios. The areas and
levels of high mountain lakes in the Qinghai–Tibet Plateau (QTP) are particularly important for
monitoring the impacts of glacier melting [4], mitigating the hazards from glacier lake outbursts [5],
and detecting the climate pattern changes [6] due to the region’s high sensitivity and vulnerability to
climate changes [7–9].

A large number of lakes are distributed in the QTP whose lake areas are more than half of
the total lake area of China [1]. The unique high mountain lakes in QTP also represents one of
the largest lake systems in the world [10]. However, most of the lakes in the region are located
in remote areas, which make it difficult for human surveying of the lake physical and chemical
parameters. Remote sensing has been successfully used for mapping global water bodies. A variety
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of studies applying optical remote sensing have been conducted for detecting land surface water
over the QTP and the globe [11–16]. Among these studies, the research described in [16] used
satellite optical images from the China–Brazil Earth Resources Satellite (CBERS) and the National
Aeronautics and Space Administration (NASA)/United States Geological Survey (USGS) Landsat
to provide detailed mapping of the boundaries of natural lakes in China including the QTP region.
However, the CBERS and LandSat images or similar optical observations only work well for clear-sky
conditions, and this restriction normally leads to retrievals with coarse temporal resolutions [17].
Satellite passive microwave radiometer is capable of all-sky sensing of land surface and has been
used for deriving global surface water products. The products derived from the Special Sensor
Microwave Imagers (SSMI), the Advanced Microwave Scanning Radiometer on the Earth Observing
System (AMSR-E), and the Soil Moisture Active Passive (SMAP) are sensitive to short-term changes
of water surface but are at resolutions about 25 km [18–20]. These products therefore cannot be used
for mapping small lakes. In contrast, the next generation near-nadir interferometric imaging SAR
(Synthetic Aperture Radar) such as the NASA Surface Water Ocean Topography (SWOT) mission
is promising for high spatial and temporal mapping of lakes including those smaller than 1 km2

(SWOT) [21–24]. The main payloads of SWOT include two Ka-band Radar Interferometers designed
for near-nadir SAR imaging and interferometric measurement [22]. SWOT is scheduled for launch in
2021 and its potential for accurate inundation mapping has been demonstrated by SWOT airborne
simulator in the field campaign [24]. Similar to SWOT in the designing concept, a pair of near-nadir
Interferometric Imaging Radar Altimeters (InIRA) mounted on Chinese unmanned space laboratory
Tian Gong 2 (TG-2) have collected Ku-band SAR observations over the globe since 2016. The InIRA
provides a unique opportunity to evaluate the near-nadir imaging techniques in measuring water cycle
components from space. In this study, we developed an algorithm to map lake bodies in Northern
QTP based on TG-2 InIRA observations and theoretical simulations. The derived lake body maps
were evaluated by LandSat results. Detailed descriptions of the study region and data set are in the
following Sections 2.1 and 2.2, theory and algorithms are described in Sections 2.3 and 2.4, and the
results are presented in Section 3 and discussed in Section 4.

2. Materials and Methods

2.1. Study Region

The study region (within the red rectangles of Figure 1) was located within Nagqu prefecture
of Tibet Autonomous Region, China, covering about 3600 km2 area. The natural environment of the
region is cold and dry, typical of that of the Northern QTP where elevations are normally higher than
4000 m and annual precipitation is as low as 247.3 mm [1,25]. Major lakes within the study areas
include Que’er Caka, Khongnam Tso, Dorosidong Co, Maqiao Co., and Chibzhang Co. Most of the
lakes in the regions are saline lakes [26,27]. Due to the scarce of precipitation, glaciers of the region
provide important water supplies to many lakes; the lake area changes are affected by factors such
as glacier retreat, permafrost degradation, and climate pattern changes [1,26,27]. The two largest
lakes of the region are Dorsoidong Co (center latitude 33.41◦, longitude 89.88◦) and Chibzhang Co
(center latitude 33.47◦, longitude 90.34◦), both of which are glacier-fed lakes undergoing expansions
and interlinked with other in recent years [26].
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Figure 1. The InIRA observations over Nagqu area of Qinghai–Tibet Plateau (QTP).

2.2. Instrument and Data Set

The InIRA mounted on TG-2 space laboratory was developed by the China Manned Space
Engineering Project and has been operational since 15 September 2016. The TG-2 space laboratory is
served as a test bed for scientific research and new technologies, and carries more than 50 scientific
instruments. There are also more than 10 science and application space experiments conducted in TG-2
in the fields of earth science, astronomy, microgravity physics, microgravity fluid physics, space life
science, space environment, and space physics. The InIRA is an interferometric synthetic aperture radar
(InSAR) system with near-nadir imaging capacity at Ku-band. As the first space-borne interferometric
radar altimeters, the experimental InIRA system is designed for evaluating the near-nadir imaging
and interferometric techniques in measuring sea surface height, water body extent and land elevation.
The detailed parameters of the instrument for land applications are listed in Table 1.

Table 1. Parameters of Tian Gong 2 Interferometric Imaging Radar Altimeter.

Altitude Frequency Incidence Angles Spatial Resolution

400 km 13.58 GHz 2.5–7.5◦ 40 m/200 m

Swath Width Look Direction Baseline length Cover area
35 km Right 2.3 m ±42 degrees of latitudes

For this study, the VV-polarized SAR backscatter images (Figure 1) acquired by InIRA of the study
region on 23 September 2016 were used for mapping lake extent. The two images (Images A and B of
Figure 1) sequentially acquired by InIRA were Level 2 scientific data with radiometric and geometric
calibrations conducted and downloaded from Space Application Data Promoting Service Platform for
China Manned Space Engineering (http://www.msadc.cn). As seen in Figure 1, the backscattering
coefficients range from −5 to 15 dB and the overall bright lake areas are generally distinguishable
from the surrounding darker land areas. However, geometric distortions are found over the northern
edges of the images. The layover and shadow regions which are typical to the SAR observations over
mountainous areas are also shown in the two images.

Two ancillary data sets were used in this study for algorithm development. The data
sets include the official elevation product of InIRA and LandSat-based water occurrence dataset
(WOD) [15]. The official Level 3 elevation products of InIRA (Figure 2) derived using signals with
high interferometric coherence were obtained from http://www.msadc.cn. The elevation data are
used to calculate terrain slopes for identifying hilly areas. Since no valid data were available over
areas with strong geometric distortions, the elevation product also serves as a reference to mask out

97



Remote Sens. 2018, 10, 1418

the non-retrievable pixels. The second ancillary data set WOD was generated based on 30 m Landsat
images from 1984 to 2015 [15]. The WOD was produced by analyzing the Landsat 5, 7, and 8 archives.
The data of WOD range from 0% (always land) to 100% (permanent water) and represent the global
surface water persistence over more than three decades. For this study, about 120 pixels with water
occurrence >95% were randomly selected for each InIRA image. These pixels are highly likely to
be part of a permanent water body and are used for establishing the training data sets for InIRA
water detection.

Figure 2. The elevation of the study region estimated by InIRA.

We also chose LandSat Operational Land Imager (OLI) images as the ancillary data for validation
purposes. The LandSat/OLI image used for this study was acquired on 9 September 2016 over the
study region, and downloaded from USGS website (https://landsat.usgs.gov/). The selected LandSat
image has relatively less cloud coverage and is closest to the InIRA observations in acquisition date,
though not exactly the same. For validating the InIRA water retrievals, the Landsat/OLI image was
processed by Fmask algorithm [28] for generating 30-m water mask, which was then interpolated
to 40-m resolution image using the nearest neighbor method. The Fmask algorithm was designed
to identify cloud, cloud shadow, snow, land, and water pixels using LandSat or Sentinel 2 images,
and was recently improved for its use over mountainous areas [29].

2.3. Theoretical Simulations

Similar to the conventional SAR applications, the near-nadir SAR studies requires the
understanding of the interactions between microwave and land surface features through theoretical
models, field experiments, or both. Radar backscattering can be simulated through numerical
simulations based on rigid electromagnetic theories or their simplified forms. The Integral Equation
Method (IEM) developed in the literature [30–32] has a relatively simple algebraic form with
physically justified assumptions while retains high accuracy under a wide range of surface roughness
and dielectric conditions. The IEM model bridges the validity gaps between the traditional
small perturbation (SPM) and geometrical optics (GO) models [30,31], and has been successfully
applied to microwave remote sensing including forward model simulations and inversion algorithm
development [33–36].

For investigating the possibility of identifying water and land through InIRA observations,
we simulated the InIRA signals under a set of soil and water conditions using IEM model. Typical input
parameters used by IEM for describing surface roughness include root mean square (RMS) height,
correlation length, and correlation function. The model inputs for this study are listed in Table 2.
The dielectric properties of soil are calculated by the Dobson model [37]. Considering little vegetation
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presence in the study region, only bare soil conditions were simulated. The QTP lakes are brackish or
saline with salinity ranging from <3‰ to hypersaline conditions [38]. For simulating the backscattering
from saline lake surfaces, we assumed the salinity 35.0‰, which is the average salinity level of sea
water. The dielectric properties of salty water are calculated by the Stogryn dielectric model [39].

Table 2. Input parameters of theoretical model.

Frequency
Incidence

Angles
RMS Height

Correlation
Length

Soil Moisture
Correlation

Function

13.58 GHz 2, 5, and 8◦ 0.125–3 cm interval
0.125 cm 10 cm 10–40% interval 15%

(cm3/cm3)
Exponential

function

2.4. SAR Water Detection Method

We developed a dynamic threshold algorithm for InIRA aiming at detecting water bodies from
bare or sparsely vegetated soil of the focused region using limited pixels selected from WOD as prior
knowledge. The first step is to select pixels representing permanent water within a InIRA image. The
water pixels are randomly selected from the WOD data whose historical water occurrence is higher
than 95%, meaning likely part of a permanent water body. Similarly, the same number of land pixels is
determined using the WOD data if 0% water occurrence is documented. The backscattering coefficients
of the selected land and water pixels are then obtained from the InIRA images and constitute a training
data set. For this study, the training data set for each InIRA image contains about 120 water pixels
and 120 land pixels. The portion of training pixels over the number of total retrievable pixels is
very small (less than 0.1%) but provide important reference information of land and water scattering
characteristics at different incidence angles and across the study regions since the training points were
randomly selected and distributed over the image. As the second step, the terrain slope derived from
Tian Gong 2 elevation products was calculated for each pixel and used for additional constraints to the
water and land classifications. For a given pixel, its slope is determined by the rates of elevation changes
in both X and Y directions of an InIRA image. To minimize possible impacts on the classifications
caused by geometry distortions detected on the image edges and mountainous regions, we use TG-2
elevation product to mask out the pixels without valid elevation retrievals. The last step is to loop
through each pixel and determine its land or water attribute. A pixel is assigned as water if its observed
backscattering coefficient is closer to the value of nearest water pixel than that of the nearest land
pixel pre-defined in the training data set, and its terrain slope is lower than 5◦, indicating a relatively
flat area.

The method was applied to the InIRA images and evaluated by the Fmask results derived from
LandSat OLI observations. The classification results are assessed by the following metrics including
overall accuracy, producer’s accuracy, and user’s accuracy. The overall accuracy is the ratio between
the number of correctly classified pixels and the total number of pixels. The producer’s accuracy
represents the proportion of reference land or water features being correctly classified. The user’s
accuracy is referred to classification reliability and represents the proportion of classified water or land
pixels being consistent with the reference pixels [40].

3. Results

3.1. Theoretical Simulations

The simulation results (Figure 3) show the backscatter patterns of soil and water over different
surface roughness parameters, dielectric properties, and incidence angles. The water backscattering
under small incidence angle conditions is typically stronger than that of soil for a given surface
roughness. This is caused by the higher dielectric value of water than those of soil at normal wetness
levels (≤0.4 cm3/cm3). Comparing with the dielectric properties, the surface roughness is a more
dominant factor that determines the backscatter magnitudes. For very smooth surface (e.g., still water),
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the backscatter signals from soil and water are generally low and similar to each other (e.g., Figure 3B
when RMS height less than 0.25 cm) since most of the scattered signals are distributed in a narrow
specular direction. For smooth surface (e.g., RMS height 0.5 cm) which can be seen in water bodies with
wind-driven ripples and waves, and natural (e.g., large rocks) or artificial land features (e.g., airplane
runway), the near-nadir backscatter is generally very strong due to increased diffuse scattering into
the observed direction. The diffuse scattering tends to be more uniform in all directions as the surface
roughness further increases (e.g., RMS height 3.0 cm), therefore the intensity of the received signals
at near-nadir directions decrease. In summary, the surface roughness difference between normally
smooth water surface and relatively rough soil surface is the key to distinguish the two features
in InIRA images. For evaluating the impacts of incidence angles, the simulations were conducted
for 2, 5, and 8◦, which cover the incidence angle range of InIRA. As illustrated by Figure 3A–C,
the pattern of backscattering coefficients changing with surface roughness is significantly affected
by the sensor viewing geometry. The backscatter peaks earlier as the RMS height increases but then
drops faster for smaller incidence angles. For larger incidence angles, the magnitudes of backscattering
coefficients from soil and water surfaces with RMS height smaller than 0.5 cm (Figure 3C) appear to be
similarly small.

 

 

A 

B 

Figure 3. Cont.
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C 

Figure 3. Radar backscattering coefficients changes with surface roughness for incidence angle (A) 2◦;
(B) 5◦ and (C) 8◦. VSM, volumetric soil moisture.

The above simulations suggest: (a) water and surrounding soil can be generally separated through
their differences in backscatter intensity except for the very calm/rough water or very smooth soil.
Prior knowledge of the land feature information may help avoid the misclassifications of smooth water
and land; (b) the backscatter intensity of water and soil varies with their roughness and dielectric
values; and (c) the incidence angle increases from InIRA near-range to far-range, and different incidence
angles significantly affects the radar backscatter observations. Therefore, for the applications over
a large region with a variety of land surface and incidence angle conditions, a dynamic threshold
classification method is needed.

3.2. Land and Water Classifications

The dynamic threshold algorithm was applied to InIRA images (Figure 1) for the regions
with valid TG-2 elevation data (Figure 2). The mean threshold values are 9.8 dB and 7.1 dB for
Images A and B, respectively. The classified lake water result (Figure 4) was compared to the
LandSat/OLI water classifications by Fmask method (Figure 5). The detailed error matrices were listed
in Tables 3 and 4 for the respective Images A and B. The Fmask is proved accurate in detecting land
features; however, its water and land classifications are also affected by the presence of cloud and its
shadow. The comparisons with Fmask result were only made when land and water classifications are
available. As such, the total pixel number of Image B (Table 4) is smaller than that of Image A (Table 3)
due to a larger portion of cloud coverage over the Image B area in the LandSat/OLI observations.

Table 3. Error matrix for the classification results of Image A.

OLI Land OLI Water Total

InIRA Land 728,795 11,780 740,575
InIRA Water 24,822 179,899 204,721

Total 753,617 191,679 945,296

Table 4. Error matrix for the classification results of Image B.

OLI Land OLI Water Total

InIRA Land 439,097 51,689 490,786
InIRA Water 26,354 270,300 296,654

Total 465,451 321,989 787,440

101



Remote Sens. 2018, 10, 1418

Figure 4. Lake water detected by Tian Gong 2 InIRA images acquired on 23 September 2016 using a
dynamic threshold algorithm (blue: water; white: land or no retrievals).

 

Figure 5. Lake water detected using Landsat OLI image acquired on 9 September 2016 (blue: water;
grey: cloud; white: land or no retrievals).

The accuracy metrics were calculated from the error matrices. For both images, most water and
land pixels as shown in the reference LandSat/OLI results are correctly detected by InIRA with the
overall classification accuracy 96.13% for image A and 90.09% for Image B. For land pixels in Image
A, the producer’s accuracy is 96.71% and user’s accuracy 98.41%; for water pixels, the producer’s
accuracy is 93.85% and user’s accuracy 87.88%. For land pixels in Image B, the producer’s accuracy is
94.34% and user’s accuracy is 89.47%; for water pixels, the producer’s accuracy is 83.95% and user’s
accuracy is 91.12%. Though the overall accuracy is higher than 90%, the producer’s accuracy for water
classifications using Image B decreases for about 10% as compared with that of Image A, suggesting
increased misclassifications of the referenced LandSat/OLI water pixels. In Image B, the major water
areas not detected by InIRA were coincident in locations with the dark regions of InIRA backscattering
coefficient image (Figure 1). As analyzed by theoretical simulations (Section 3.1), low backscatter from
water surface is possibly caused by very smooth water surface when there is no/little wind.

4. Discussion

The future NASA SWOT mission is promising in estimating global water budget at high accuracy,
fine spatial and favorable temporal resolutions. The near-nadir SAR imaging and interferometric
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measuring techniques adopted by SWOT represent a novel way to realize the goal of global water
measurements. The experimental InIRA mounted on TG-2 space laboratory has provided unique
Ku-band observations since 2016 and these data contain rich information that needs to be interpreted
for understanding the advantages and drawbacks of near-nadir SAR imaging techniques for water
cycle observations. For this study, we applied the images to the classifications of high mountain waters
with the supports of theoretical simulations. Both the theoretical predictions and actual SAR images
prove the potential of using SWOT-like instruments in fine-scale detection of water bodies. Compared
with LandSat/OLI (Figure 5), the InIRA Ku-band observations (Figure 1) and classifications (Figure 4)
are less affected by the atmospheric conditions and have similarly high classification accuracy.

The main issue of the near-nadir imaging technique in water body detection is its strong
dependence on surface roughness. In extreme cases when the water body is perfectly still, low
backscatter from water surface or dark-water observations can be confused with soil signals.
Referenced data sets from other sensors or InIRA time-series observations may help mitigate the
problem. Similar issue was independently confirmed by airborne observations from AirSWOT
measurements, though the flat surface problem can be partially overcome by increasing the observation
frequency (e.g., to the SWOT Ka-band) [21,24]. Considering limited near-nadir microwave observations
from satellites, the studies on InIRA may help to mitigate the dark-water issue for future SWOT mission.
We also noticed the geometric distortions in InIRA images which need to be corrected by improved
data processing. Despite the above issues, the contrasting land and water backscattering behaviors
were observed by the space-borne InIRA and utilized in high accurate water body mapping at 40-m
resolution by the dynamic threshold method. The findings of this work help to improve the designing
of instruments, data processing flow, and algorithm performance in the future studies.

5. Conclusions

The lakes in QTP are highly sensitive to global environment changes while are less studied due to
harsh natural conditions. The expansion and shrinking of these high mountain lakes contain the useful
information of the surrounding environment changes. This study represents the first lake mapping
efforts using the novel space-borne near-nadir SAR imaging techniques. The resulting water maps
show high consistency with the alternative LandSAT/OLI results while less affected by cloud coverage
and weather conditions. The algorithm was also found not applicable to the lakes with very smooth
surface and needs to be improved in the future studies by introducing ancillary data sets or time
series information. Besides the direct applications of InIRA in high mountain studies, the accumulated
observations from InIRA and its algorithms developed in this study also provide support for future
missions and their global applications.
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Abstract: Several supraglacial ponds are developing and increasing in size and number in the
Himalayan region. They are the precursors of large glacial lakes and may become potential for
glacial lake outburst floods (GLOFs). Recently, GLOF events originating from supraglacial ponds
were recorded; however, the spatial, temporal, and seasonal distributions of these ponds are not
well documented. We chose 23 debris-covered glaciers in the Everest region, Nepal, to study the
development of supraglacial ponds. We used historical Landsat images (30-m resolution) from 1989
to 2017, and Sentinel-2 (10-m resolution) images from 2016 to 2018 to understand the long-term
development and seasonal variations of these ponds. We also used fine-resolution (0.5–2 m) WorldView
and GeoEye imageries to reveal the high-resolution inventory of these features and these images
were also used as references for accuracy assessments. We observed a continuous increase in the
area and number of ponds from 1989–2017, with minor fluctuations. Similarly, seasonal variations
were observed at the highest ponded area in the pre- and postmonsoon seasons, and lowest ponded
area in the winter season. Substantial variations of the ponds were also observed among glaciers
corresponding to their size, slope, width, moraine height, and elevation. The persistency and densities
of the ponds with sizes >0.005 km2 were found near the glacier terminuses. Furthermore, spillway
lakes on the Ngozompa, Bhote Koshi, Khumbu, and Lumsamba glaciers were expanding at a faster
rate, indicating a trajectory towards large lake development. Our analysis also found that Sentinel-2
(10-m resolution) has good potential to study the seasonal changes of supraglacial ponds, while
fine-resolution (<2 m) imagery is able to map the supraglacial ponds with high accuracy and can help
in understanding the surrounding morphology of the glacier.

Keywords: glacial lake; supraglacial pond; Himalaya; Everest; remote sensing

1. Introduction

High Mountain Asian glaciers are the perennial sources of water for approximately 1.4 billion
people [1]. Glaciers in this region are losing their mass and volume [2–5] at a significant rate due
to a warming climate. The increased storage of meltwater from glaciers and snow in the form of
supraglacial and proglacial lakes is also an indication of volumetric loss of glacier ice and snow [6,7].
The number of glacial lakes and supraglacial ponds have been increasing in size and number [8,9]
in the region. Supraglacial ponds are common features on the surfaces of relatively slow-moving,
debris-covered glaciers [10] in comparison to clean glaciers. These features grow by the coalescence of
small ponds [11]. About 13–36% of the Himalayan region’s glacierized area exhibits debris cover [12],
which shows very slow movement rates at their tongues [13,14]. The debris-covered glaciers have
heterogeneous surfaces with debris thickness ranging from a few centimeters to meters, and they
have different thermal properties [15]. The thermal properties of the debris play an important role
in the heat conduction from the surface to debris–ice interface. Setting of the debris-covered glaciers
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favors the formation and expansion of supraglacial ponds, whose hydrological buffering roles remain
unconstrained [12]. Supraglacial ponds are known for meltwater storage [16], progressively buffering
the runoff regimes of the glacier-originated river in increased projections of debris cover [12]. They
play an important role in the ablation of debris-covered glaciers [17,18] through absorbing atmospheric
energy [19,20]. The majority of absorbed atmospheric energy leaves the pond system through englacial
conduits [16,20,21], and hydraulic connection of pond to englacial water level exerts a key control on
whether the pond contributes to longer-term terminus disintegration [10]. This process enlarges the
englacial conduits which can collapse the roof of the conduits, leading to the formation of ice cliffs
and new ponds [20,22,23]. However, the majority of ponds occupy closed basins with no perennial
connection to the englacial system and can undergo rapid growth until they find the connection [24].
Ponds are highly recurrent and persistent with high interannual variability [19], but small ponds have
the potential to expand rapidly [25].

Previous studies on supraglacial ponds have shown that the ponded areas change from
year-to-year [11,16,19,26], which may be due to the downwasting of glaciers [4–6,27]. These features
also show substantial seasonal variations in response to draining and freeze–thaw activities in different
seasons [19], and seasonal differences in the ice melt [28]. The condition of pond formation according to the
glacier’s characteristics, including slope and surface velocity has also been demonstrated [18,19,29,30].

The use of multitemporal satellite imagery is a common technique for monitoring large glacial
lakes [9,11,31–34]. Several previous studies were conducted in the Nepal Himalaya, focusing on the
development of such lakes (e.g., [31,34–36]), hazard assessments (e.g., [13,30,34,37,38]), and community
involvement in glacial lake research (e.g., [39,40]). Most of these studies demonstrated the development
of glacial lakes usually on a decadal basis [8,41,42], and were regionally aggregated [11]. Furthermore,
these studies were glacier or lake specific [13,24,43,44] or used one time satellite imagery [45]. Remote
sensing techniques are also used for monitoring supraglacial ponds [16,19,26]. Spatial, seasonal, and
interannual patterns of the ponds for five debris-covered glaciers in the Langtang Valley, Nepal were
studied [19] using Landsat images of 30-m resolution, which found high variability in the emergence
of ponds among glaciers and also pronounced seasonal variations.

The Everest region in the Nepal Himalaya can be considered a hotspot of glacial lakes and
supraglacial ponds [16,37,45]. However, there is no research being conducted on the spatial and
seasonal variations and long-term development of the ponds on an annual basis, despite their
importance in studies on the impact of recent climate change [45,46]. Such studies are also important
in understanding the evolution of ponds into large glacial lakes in the future. Efforts for documenting
the development of the ponds and their variations were made in the region [16] by using satellite
imageries of 0.5–2 m resolution. However, this study incorporated only eight glaciers and used
historical imageries only from 2000 to 2015.

To address this shortcoming, we assessed the development of supraglacial ponds on all of the
23 debris-covered glaciers in the region. Our first aim was to present the historical development of
the supraglacial ponds on annual basis from 1989 to 2017, to understand the year-to-year variations
and long-term evolution in the Everest region of Nepal. We used atmospherically corrected surface
reflectance Level-2 science products of Landsat images for this purpose. Secondly, we aimed, for the
first time in this area of research, to understand the seasonal variations of the ponds by analyzing
Sentinel-2 images of 10-m resolution in combination with long-term development. Our third aim was
to prepare a high-resolution inventory (2-m spatial resolution) of the supraglacial ponds by using
WorldView-2, WorldView-3 and GeoEye-1 images for 2015–2016. Finally, we evaluated the relationship
between the ponded areas and the morphometric characteristics of the glaciers.
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2. Materials and Methods

2.1. Study Area

The Everest region is located in the Solukhumbu District in the northeastern part of Nepal
(Figure 1). This area includes Sagarmatha (Mt. Everest) National Park (SNP), a World Heritage site that
is the highest mountainous area in the world. This region includes the upper catchment of the Dudh
Koshi River (DKR) basin, which is one of the most widely glaciated regions in the Nepal Himalaya.
This river is one of the seven major tributaries of the Koshi River. The SNP covers the northern part of
the DKR basin, and encompasses an area of 1148 km2, with elevations ranging from 2845 m a.s.l. at
Jorsalle to 8848 m a.s.l. at the peak of Mt. Everest. More than 60% of the park area has an elevation
higher than 5000 m. The total number of glaciers in the whole DKR basin is 287 and cover an area of
391.1 km2 which was 9.62% of the basin in 2010 [47]. The glaciers in this region are characterized by
the presence of debris in their lower reaches. The debris area covers approximately 28% (110 km2) of
the total glacier area in the DKR basin [47]. The SNP includes 132 glaciers covering an area of 262 km2

which is 23% of the park area.

Figure 1. The glaciers studied in the Sagarmatha National Park (Upper Dudh Koshi basin), Nepal.
Glacier outlines and supraglacial ponds were delineated using 2-m resolution images of WorldView
and GeoEye except Thyanbo Glacier, for which Sentinel-2 of 10-m resolution image was used.

We chose 23 debris-covered glaciers in the SNP covering approximately 88% and 230.7 km2 of the
total glacier area in the park. The debris portion of the selected glaciers occupy an area of 103.4 km2,
which is 45% of the total area of the studied glaciers. Debris-covered glaciers slope relatively gently
in comparison to clean glaciers and have the potential to form large glacial lakes. All supraglacial
ponds that were plotted by Salerno [45] in 2008 covered 18% of the total lake area in the park. These
supraglacial ponds are precursors to large glacier lakes. They are vulnerable to increasing temperatures.
The Nare Drangka and Dig Tsho glacial lakes experienced glacier lake outburst floods (GLOFs) in 1977
and 1985, respectively. Some of the supraglacial ponds on the Lhotse and Changri Shar Glaciers also
experienced GLOFs in 2015, 2016 [48], and in 2017 [49], respectively. Inter- and intra-annual changes in
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glacier-scale ponded areas of up to 17% and 52% respectively, have been observed, which indicates
drainage events, pond expansion and coalescence, and melt season pond expansion [16].

2.2. Datasets and Preprocessing

To assess the evolution and variation of the supraglacial ponds from 1989 to 2018 we used
data from multiple platforms and sensors with medium to high resolution. These were Landsat
(30-m resolution), Sentinel-2 (10-m resolution); WorldView-2, WorldView-3 and GeoEye-1 (2-m and
0.5-m resolution).

2.2.1. Landsat

We used surface reflectance Level-2 science products of the Landsat 5 Thematic Mapper (TM),
Landsat 7 Enhanced Thematic Mapper (ETM+), and Landsat 8 operational land imager (OLI) to study
the long-term development of the supraglacial ponds. These products were available after 1987 for
our study site. Images were downloaded from the USGS website for each year from 1987 to 2017.
Unfortunately, no suitable scenes were available from the same month for each year, which would
minimize error from monthly variation of the ponds due to the presence of significant cloud during the
summer monsoon season and snow during the winter and premonsoon season. Seasonal changes in
glaciers and glacial lakes are relatively minor from September to December [50]. Therefore, images that
lie within the three-month period of October to December (Figure 2) were selected for the whole period
except for 1990, 2013, and 2014. We obtained the images from January for 1990 and September for 2013
and 2014. Most utilized scenes were without snow or cloud cover on the debris portions of the glaciers
and were suitable for pond identification. However, no suitable scenes were available for 1987, 1988,
1991, 1997, 1999, 2006, 2007, 2011, and 2012 due to extensive snow or cloud cover and data gaps caused
by a scan line error. We used two scenes for 2014, one from September, and the other from November,
to minimize the effect of clouds. In total, 23 scenes (Table S1) were used for the 22 different years for our
study. Surface reflectance products are atmospherically corrected products using a radiative transfer
model, which are the Second Simulation of Satellite Signal in the Solar Spectrum (6S) for the Landsat 5
and 7 and an internal algorithm for Landsat 8. In these models, the effects of water vapor, aerosol, and
ozone were removed to obtain accurate surface reflectance. Landsat images were also radiometrically
calibrated and orthorectified using ground control points and a digital elevation model (DEM).

Figure 2. Temporal and seasonal distributions of scenes used in the study. Blue marks are for Landsat,
red marks for Sentinel-2, and green marks for WorldView and GeoEye scenes.
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2.2.2. Sentinel-2

We obtained Sentinel-2A and 2B images for 2016–2018 from the European Space Agency’s (ESA)
Sentinel Scientific Data Hub, incorporating the postmonsoon (October), winter (December–January),
and premonsoon (April–May) seasons (Figure 2). Two scenes of Sentinel-2 were acquired to cover the
entire study area for each period. We acquired images from two time periods of the same month for
the premonsoon season of 2018 to minimize the error due to freezing of the ponds. We used 14 Sentinel
2A and four Sentinel 2B images of the level 1C (Table S2) covering the entire study area for the eight
different time periods. The ESA sen2cor plugin, which is available on the Sentinel Application Platform
(SNAP) was used for atmospheric and terrain correction of the Level 1C images and to produce an
atmospherically corrected Level 2A bottom of atmosphere (BOA) reflectance product. The Level 2A
product is similar to that of the Landsat surface reflectance product. We chose only 10-m resolution
bands, being Blue, Green, Red, and Infrared bands for our study’s purposes. A mosaic of two scenes of
the same period was created to incorporate the entire area.

2.2.3. WorldView and GeoEye

High-resolution WorldView and GeoEye images from 2015 and 2016 were obtained from the
DigitalGlobe Foundation. We obtained the 0.5-m (panchromatic) and 2-m (multispectral) resolution
Basic 1B imagery products (Level 1) of WorldView-2, WorldView-3 and GeoEye-1 images (Table S3).
These images were radiometrically and sensor corrected but not projected to a plane using a map
projection or datum. Therefore, we orthorectified each scene in ERDAS Imagine using rational
polynomial coefficients and the 30-m Shuttle Radar Topography Mission (SRTM) DEM. These images
covered 22 of the 23 debris-covered glaciers studied here and were used to prepare the high resolution
inventory map of the supraglacial ponds in the SNP.

2.2.4. Digital Elevation Model (DEM)

We obtained High Mountain Asia 8-m DEMs derived from along-track optical imagery, version 1
for the period 2015 to 2016 from the Earth Data website [51] for an analysis of glacier characteristics.
These DEMs were generated from very-high-resolution (VHR) stereoscopic imagery from DigitalGlobe
satellites. We filled the gap that existed in each of the individual DEM tiles using the focal statistics
tool in ArcMap and the filled tiles were mosaicked to cover the entire glacier area. However, these
DEMs have significant data gaps in accumulation zones of the glaciers so we used the SRTM DEM
based on data collected in 2000 to identify the accumulation and ablation areas.

2.3. Methods

2.3.1. Glacier Characteristics

We manually identified and digitized the boundaries of the 22 debris-covered glaciers using 2-m
resolution images of WorldView and GeoEye from 2015 to 2016. A Sentinel-2 image from 2016 was
used for the Thyanbo Glacier, for which high-resolution images were not available. In our study, the
terminus of the Changri Nup and Changri Shar Glaciers were merged together and considered a single
glacier, the Changri Nup Glacier. The Imja and Lhotse Shar Glaciers were also merged together and
considered a single glacier, the Imja Glacier. Clean-type glaciers were ignored from the inventory in
our study.

We evaluated eight descriptive metrics for the debris-covered area of the glaciers and compared
them with ponded areas using Spearman’s rank-order correlation [19]. We produced correlation
coefficients (rs) ranging from a perfect negative correlation (−1) to a perfect positive correlation (+1).

The total glacier area, debris-covered area, and width of the glaciers were determined by using
the outlines of the glaciers. We averaged the width of the glaciers based on 3–13 transects, depending
on the sizes of the glaciers. The minimum and mean elevations of the debris-covered glaciers were
computed based on the 8-m DEM, assuming that air temperature has a strong control on the surface
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mass balance of the glaciers. Similarly, the accumulation-area ratio (AAR) was calculated based
on the equilibrium-line altitude (ELA) of 5477 based on a previous study in the Everest region [52].
We approximated the average height of the moraine from the glacier surface (DGM) based on the
3–13 transects to understand the cumulative downwasting of the glacier surface [19,29]. Similarly, we
estimated the mean gradients of the glaciers using a recent 8-m DEM, which has a strong control on
pond formation and distribution [19,30,45]. The aspect of the debris-covered part of the glaciers was
computed, however, rs was not estimated for this metric, and we used this metric solely to understand
the dominance of the ponds on certain aspects of the glaciers.

The boundaries of the glaciers for 1990 was adopted from the glacier inventory of the ICIMOD [47]
and were modified to obtain the extent of the debris-covered area using Landsat images of the
corresponding period. The boundaries of the debris-covered glaciers from the 1990s were used as
references to map the supraglacial ponds for the entire study period.

2.3.2. Supraglacial Pond Mapping

Automatic lake mapping methods for glacial lakes and supraglacial ponds have been well
discussed [16,19,53]. However, the possibility of misclassification and omission of ponds increases
significantly with moderate resolution of the dataset [16]. Manual editing is recommended to increase
the accuracy of the mapping [54,55], and therefore, to improve the results, we adopted postediting
after applying the water index and band ratios. Preprocessed scenes of each Landsat, Sentinel, and
WorldView and GeoEye images were clipped to the boundary of the debris-covered glaciers. Several
combination of bands for normalized difference water index (NDWI) have been proposed by several
previous studies [11,19,53,56]. Modified NDWI (MNDWI) that uses the SWIR and Green band is useful
in built-up or urbanized area to minimize the noise [56]. The bands used in MNDWI are similar to
normalized difference snow index (NDSI) and it omits the ponded area especially when pond is frozen.
The NDWI proposed by [53] uses the Blue band in combination with NIR band, which misclassify the
ponded area as shadow area [11], especially in high mountain areas with significant shadow. Therefore,
here we used NDWI by using NIR and Green band (Equation (1)) for each scene as used by previous
studies (e.g., [11,19,53,57,58]) to delineate the boundaries of the supraglacial ponds.

NDWI =
BGreen − BNIR

BGreen + BNIR
(1)

Band ratios (BR1) of green-to-near-infrared (Equation (2)) were applied, which is useful for
differentiating between moisture and nonmoisture [19].

BR1 =
BGreen
BNIR

(2)

The presence of shadow leads to misclassified ponds [53] due to similar reflectance with water
bodies. Therefore, we used the quality assessment (QA) band available in the Landsat surface
reflectance product and scene classification algorithm in sen2cor for Sentinel-2 images to remove the
effect of the shadow. The above-mentioned metrics did not work efficiently for the images with snow
cover and frozen ponds. Prior efforts to identify snow have used NDSI [59] which is similar to the
MNDWI (Equation (3)) [56], but cannot differentiate between the presence of snow and water bodies.

NDSI and MNDWI =
BGreen − BSWIR
BGreen + BSWIR

(3)

The mask obtained from the conventional NDSI leads to the significant removal of ponds.
Therefore, considering that snow had the highest reflectance in the mountains, we applied the spectral
metric (BR2) (Equation (4)).

BR2 =
BBlue + BGreen + BRed

3
(4)
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Supraglacial lakes are evident where the surface gradient of a glacier is less than 2◦ [18,19,30],
while discrete and small isolated ponds are evident where slopes are between 2 and 10◦ [18]. This
suggests that a glacial lake can expand in a debris-covered glacier which has low inclination and little
ice flux from upstream [60]. We used a higher surface slope threshold of 30◦ [19] to eliminate steep
avalanche fans or icefall from the debris-covered area in which ponds can form.

In our work, initially, we applied several thresholds of NDWI that range from 0.0 to 0.50 and
checked the results from each threshold. The results obtained from threshold 0.3 was better than the
other results, which was crosschecked with the histogram of NDWI. Similar approach was applied
to detect threshold for BR2 and threshold of 1.2 for BR1 used by [19] was adopted. Finally, ponds
that met the slope threshold as well as NDWI > 0.3 or BR1 > 1.2 and BR2 > 0.45 were delineated,
following an approach similar to [19] and [11]. However, the threshold values can vary with time
and may lead to overestimation and underestimation of ponds. Therefore, all delineated ponds were
checked for accuracy and edited manually to minimize the error due to variations in thresholds values
and reflectance among turbid and blue ponds. During manual editing, we edited the boundaries
of ponds by including all pure pixels of water body and about half of the pixels that surround the
pure pixels. Different area thresholds have been used for glacial lake mapping, ranging from 0.003 to
0.1 km2 [11,37,41,61,62]. The possibility of an overestimation of a pond area can increase at smaller
thresholds (4 pixels or less), particularly for coarse resolution images. Therefore, we used the minimum
of 5 pixels [50] for mapping supraglacial ponds, an area of 0.005, 00005, 0.00002 km2 for the Landsat,
Sentinel, and WorldView and GeoEye images, respectively. Polygons smaller than these thresholds
were removed. We also generated the Sentinel-2 and WorldView and GeoEye ponds with an area
threshold of 0.005 km2 to compare with the Landsat ponds.

3. Results

3.1. Glacier Distribution and Characteristics

The morphometric characteristics of the debris portions of the 23 glaciers studied for 2015–2016
are presented in Table 1. They exhibited a wide range of geometric conditions. The smallest glacier was
Tweche Glacier (0.31 ± 0.003 km2) in which no accumulation zone was observed, while the largest was
Ngozompa Glacier with a total area of 77.71 ± 0.24 km2, with debris-covering area of 25.99 ± 0.09 km2.
The proportion of debris-covered glaciers to the total glacier area ranged from 30% (Khumbu) to 100%
(Tweche). The average glacier width was 465.8 m. The two extremes were Changri Nup Glacier, with
the largest average width of 923 m, and Thaynbo Glacier, with the smallest average width of 206 m.
The mean DGM, that is, the elevation difference between the lowest elevation of the glacier and the
dominant outermost lateral moraine peak elevation, was 63.2 m. The Thyanbo Glacier had the lowest
mean DGM (15 m), and the Imja Glacier had the highest mean DGM (129 m). The minimum elevation
of all glaciers (debris-covered area) exceeded 4600 m a.s.l., with the exception of Cholo and Thyanbo
glaciers that extended below 4500 m a.s.l. Only six glaciers had a mean elevation below 5000 m a.s.l.

The mean slope of the glaciers ranged from 6.8◦ (Lumsamba) to 20.3◦ (Tingbo), and 11 glaciers had
mean surface gradients below 10◦. Only four glaciers, Ngozompa, Imja, Nareyargaip, and Khumbu
glaciers, had an accumulation area greater than 50% and the remainder of the glaciers were dominated
by the ablation part with debris-covered portions. The Cholo and Thyanbo glaciers were oriented
towards the east, with mean average azimuth of 88.8◦, while the remainder of the glaciers were oriented
towards the south (south, southwest, and southeast) with an average azimuth of 188.7◦.

3.2. High-Resolution Inventory of Supraglacial Ponds in the Everest Region

Our mapping of supraglacial ponds in the Everest region using 2-m resolution imagery and an
area threshold of 0.00002 km2 has identified 3009 ponds (Figure 1) with a total area of 2.04 ± 0.32 km2

and a mean size of 0.0007 km2 in the years 2015 and 2016. The Shapiro–Wilk distribution test at 95%
confidence interval reveals that the distribution of ponds was not normal (Figure 3a,b) and skewed
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positively with a factor of 20.9. The probability distribution of ponded area reveals that ~98% (n = 2949)
of ponds had an area of <0.005 km2, which contributes approximately 45% of total ponded area
(Figure 3b). Only ~2% (n = 60) of the supraglacial ponds of sizes >0.005 km2 contribute to 55% of
the total ponded area. The three largest studied glaciers, Ngozompa, Bhote Koshi, and Khumbu
glaciers feature 60% of the total ponded area among 22 glaciers, and the maximum number (896) and
area (0.61 ± 0.1 km2) of supraglacial ponds were observed in the Ngozompa Glacier. The majority of
the glaciers (n = 14) that have debris-covered areas <5 km2 (Table 1) exhibited only 13% of the total
ponded area.

Table 1. Morphometric characteristics of the glaciers and supraglacial ponds and lakes of the Sagarmatha
National Park in 2015 and 2016.
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Cover (%)

Clean +
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Debris
(%)

Min. Mean

Landak 1.6 1.0 (60) 312 41 4857 5030 12.0 30 SE 0.21
Chhule 4.9 3.4 (69) 408 22 4794 4980 10.5 14 SE 1.67
Melung 7.2 6.3 (88) 443 58 4967 5184 9.7 11 SE 0.69
Bhote Koshi 30.3 17.9 (59) 510 63 4756 5104 9.6 38 S 1.55
Lumsamba 10.9 5.1 (47) 463 61 4900 5166 6.8 45 S 2.98
Ngozompa 77.7 26.0 (33) 904 75 4669 5022 7.0 57 S 2.33
Changri Nup 12.3 7.4 (60) 923 98 5094 5257 9.6 38 SE 3.11
Nuptse 5.3 3.3 (63) 419 49 4938 5237 9.2 44 S 1.22
Lhotse Nup 2.3 1.6 (69) 297 39 4930 5075 8.9 18 SW 1.53
Lhotse 10.5 5.9 (56) 740 42 4813 5051 7.1 33 SW 1.54
Amphu 2.2 1.3 (60) 380 113 5021 5166 14.5 12 SW 0.65
Imja 15.3 5.5 (36) 718 129 4980 5145 8.7 53 SW 0.52
Ama Dablam 7.7 2.4 (31) 441 63 4753 4911 8.8 37 S 2.06
Duwo 1.5 1.2 (81) 616 57 4714 4809 13.4 1 SW 1.30
Lobuche 1.4 0.6 (44) 364 44 4943 5018 15.8 48 SE 3.24
Cholotse 1.2 0.8 (72) 344 70 4859 4967 13.2 21 SW 0.81
Tweche 0.3 0.3 (100) 268 64 4967 5035 13.7 0 SW 1.62
Cholo 1.0 1.0 (95) 253 39 4427 4732 16.5 5 E 0.06
Nareyargaip 5.4 2.1 (39) 375 107 5042 5268 15.5 61 S 2.17
Nare 1.6 0.7 (42) 526 108 4983 5112 12.5 24 S 0.17
Thyanbo2 2.2 1.4 (62) 206 15 4347 4653 13.9 26 E
Tingbo 0.9 0.5 (56) 235 26 4855 5051 20.3 19 SW 0.03
Khumbu 27.2 8.0 (30) 568 70 4885 5132 7.7 66 SW 3.89
rs 0.90 0.90 0.70 0.21 −0.11 0.72 −0.75 0.61

1 Elevation data are based on the debris-covered portions of the glaciers. 2 High-resolution pond cover was not
available for this glacier.

We observed significant variability in pond cover among the studied glaciers, ranging from 0.03%
(Tingbo Glacier) to 3.89% (Khumbu Glacier) of the debris-covered area in 2015 and 2016. The rank-order
correlation coefficient between pond area and different morphometric characteristics of the glaciers
was estimated and it exhibited a very strong rank-order correlation with the total glacier area (rs = 0.90)
and debris area (rs = 0.90), a strong correlation with the mean slope (rs = −0.75), mean elevation
(rs = 0.72), and glacier width (rs = 0.70), and a moderate correlation with the AAR (rs = 0.61) which is
statistically significant at 99% confidence level. However, no significant rank-order correlation was
found for glacier minimum elevation (rs = −0.11) and DGM (rs = 0.21). The altitudinal area distribution
of the ponds shows that supraglacial ponds can be found as high as ~5560 m a.s.l., ~200 m lower
than the upper extent of debris portion of the glacier (Figure 4a). Most ponds were concentrated at
lower reaches of the glacier, below 5200 m a.s.l. and the highest area (~20%) of the pond was observed
between 5100 and 5200 m a.s.l. About 87% of the ponded area was observed in the glaciers with slopes
of <10◦, of which 55% of the ponded area was observed on slopes from 2–6◦, 17% on slopes <2◦ and
15% on slopes from 6–10◦ (Figure 4b).
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Figure 3. Distribution of ponded areas (1989–2017) in the Everest region using (a) normal Q-Q plot,
and (b) normal probability plot.

 
Figure 4. The relationship between ponded area and glacier characteristics with (a) elevation and (b)
slope. The altitudinal area distribution of the debris portion of the glacier and area of all supraglacial
ponds were mapped using 2-m resolution imagery in the Everest region. The elevation class value on
the y-axis indicates the uppermost value.

3.3. Long-Term Evolution of the Ponds

Between 1989 and 2017 we mapped a total of 1026 supraglacial ponds (>0.005 km2) in the Everest
region on the surfaces of 23 debris-covered glaciers. We excluded the large pond at the Changri
Nup Glacier for an analysis. This was observed in only a few images due to the presence of shadow.
Approximately 59% (n = 594) of the supraglacial ponds were <0.01 km2 in size, which accounts for only
one-third of the total ponded area over the period studied. Of the total ponded area studied during the
period, ponds with sizes of 0.01–0.02 km2, and >0.02 km2 had ponded areas of 32% (n = 294), and 35%
(n = 120), respectively.

The Shapiro–Wilk distribution test statistics at 95% confidence interval reveals that the distribution
of ponds was not normal (Figure 5a) and skewed positively with a factor of 4.23. The skewness factor
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was reduced to 3.71 when we ignored the large ponds at one of the tributaries of the Khumbu Glacier.
The probability distribution of ponded area also reveals that ~90% (n = 923) of ponds have an area
<0.025 km2, and approximately 96% (n = 983) of the ponds have an area <0.05 km2, which contributes
approximately 60% and 73% of total ponded area between 1989 and 2017, respectively (Figure 5b,c).
Only 4% (n = 43) of the ponds comprise approximately 27% of the total pond coverage. It is notable
that the distribution of supraglacial ponds according to dimensional size was also far from normal in
each year, with an abundance of small ponds and few large ponds. The frequency of ponds in the 0.02
to 0.04 km2 dimensional class has increased significantly in recent years, which was also indicated by
the increase in the median size of the ponds.

 
Figure 5. The distribution of pond areas (1989–2017) in the Everest region with (a) normal Q-Q plot of
pond area, (b) normal probability plot of pond area, and (c) frequency distribution of ponds.

We observed an overall increase in area (Figure 6a,d) and number (Figure 6b) of ponds from
1989 to 2017, with minor fluctuations (Tables S4–S6). The overall area of the ponds has increased
from 0.378 ± 0.19 km2 in 1989 to approximately 1.324 ± 0.727 km2 in 2017, representing an overall
growth of 350%. The size of the ponds and lakes varied from 0.005 to 0.13 km2, with a mean size of
0.015 ± 0.019 km2 (Figure 6c). The rate of increase was comparatively slower between 1980 and 2005
(0.01 km2/yr) than between 2008 and 2017 (0.07 km2/yr). In the 1989 imagery, 25 supraglacial ponds
were identified and this number increased to 85 (340%) in 2017, with the highest number of ponds in
2015 (88). The number of ponds almost doubles between 1989 and 2002, slightly decreases between
2003 and 2005, and increases rapidly from 2009. The year-by-year variations in number and total area
for different dimensional classes of supraglacial ponds show that the frequency of small-sized ponds
(<0.01 km2) was higher than the larger ponds (>0.02 km2) in each studied year, however, the area
covered by larger ponds contributes significantly more than the small ponds in the majority of years
(Figure 6b,d). We observed the highest increase in the number of ponds that have dimensional classes
of <0.01 km2 in the recent period. However, the highest increase in pond areas was observed in the
dimensional class of >0.02 km2. The increase in pond areas with the class >0.02 km2 ranges from 45 to
54% after 2008. Ponds were observed in 16 of the 23 studied glaciers in the region, whereas ponded
areas were not observed in the Cholo, Choloste, Landak, Nare, Tingbo, and Tweche glaciers (<1 km2).
However, a significant ponded area was observed in frequent years from 1989 to 2017 in the smaller
Lobuche Glacier (0.45 km2).

3.3.1. Glacier Wise Trends of Pond Cover

The glaciers studied here demonstrate the significant variability in pond cover over time. Of the
23 glaciers we investigated, supraglacial ponds were observed in nine glaciers in 1989 and 16 glaciers
in 2014 and 2015, while no ponds were observed in 13 and 7 glaciers in 1989 and 2017, respectively.
All glaciers except for Lobuche Glacier experienced either increments in area of ponds or the appearance
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of new ponds. The increments of pond cover vary among the glaciers, and the largest increase in
number, from 8 to 27 and in area, from 0.063 ± 0.048 to 0.424 ± 0.237 km2 was observed on the
Ngozompa Glacier during the period studied of 28 years (Figure 6a). Similarly, the Bhote Koshi and
Khumbu glaciers contributed significant increases in ponded area. The Ngozompa, Bhote Koshi, and
Khumbu glaciers exhibited a total ponded area of 81% in 1989 and 67% in 2017. The Ngozompa Glacier
alone contributed approximately 32% of total ponded area in 2017. The Nareyargaip and Lumsamba
glaciers record increased pond coverage by approximately ten times than that in 1989, although the
actual increase in pond area was 0.053 km2.

Figure 6. Long-term development of the supraglacial ponds in the Everest region from 1989–2017 with
(a) total ponded area for all study glaciers and three selected glaciers, Ngozompa, Bhote Koshi, and
Khumbu glaciers, (b) changes in number for three dimensional classes, (c) variation in the mean area,
and (d) changes in the area of three-dimensional classes of supraglacial ponds.

Substantial interannual variation in the ponded area was observed due to draining of the ponds
within the year. The ponded area on the Ngozompa Glacier increased by approximately 370% from
1990–1993 and then decreased until 1996. This variation in pond area was contributed to by the
formation and development of one large pond (0.1 km2) 1.5 km from the current outlet of the glacier.
It was almost completely drained (0.007 km2) by 1994. Similarly, a large pond on the Bhote Koshi
Glacier also lost its size by 530% within a period of 1–2 years, from 1990–1992 and contributed to a
decrease in ponded area on this glacier within this period.

The Thyanbo, Chhule, Melung, Bhote Koshi, Lumsamba, Ngozompa, Khumbu, and Nuptse
glaciers exhibited the presence of either spillway lakes or ponds near their terminuses. However, the
area of the spillways on the Ngozompa, Bhote Koshi, Khumbu, and Lumsamba glaciers increased
significantly. Most of these ponds were larger than the ponds in the upstream region and exhibited
~40% of the total ponded area in 2017.

3.3.2. Pond Persistency

Pond persistency is described in terms of the frequency of the ponds. Most ponds at the glacier
terminuses, especially on Ngozompa, Khumbu, and Bhote Koshi glaciers were very persistent (Figure 7).
One of the tributaries of the Khumbu Glacier had a very persistent pond over 22 scenes over the
studied 28-year period, with very little expansion in size. However, ponds in the smaller glaciers
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with relatively higher slopes tend to be less persistent for a longer time period (Figure S1). Pond
frequency maps for the periods 1989–1998, 1999–2008, and 2009–2017 were computed to highlight
the expansion, distribution, and persistence between different shorter periods. The distribution of
ponds has expanded and shows more persistence in the later period (2009–2017) than in the early and
middle periods.

  

Figure 7. Distribution of supraglacial ponds in (a) Ngozompa, (b) Khumbu, (c) Bhote Koshi, and
(d) Lumsamba glaciers in different time periods from 1989 and 2017, highlighting the persistence
of individual ponds. The pond persistency of the remainder of the glaciers is provided in the
supplementary file (Figure S1).
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3.4. Seasonal Pond Cover

We mapped a total of 3027 supraglacial ponds (>0.0005 km2) for eight different seasons between
January 2016 and May 2018. The mean size was 0.0046 ± 0.0014 km2. Supraglacial pond cover in
the Everest region shows no clear trend among seasons; however, the smallest number and area of
the ponds were recorded in the winter season (Figure 8). Ponded areas in the pre- and postmonsoon
seasons of 2016 were very similar at 1.7 ± 0.55 km2; however the highest number and area of the ponds
were observed in the premonsoon season of 2018.

 
Figure 8. Seasonal changes in the number and area of the supraglacial ponds (>0.0005 km2) between
January 2016 and May 2018 obtained from Sentinel-2 images of 10-m resolution.

4. Discussion

4.1. Supraglacial Pond Inventory Using Remote Sensing

We used the multitemporal and multiresolution satellite imageries for monitoring the long-term
development and short-term variations of the supraglacial ponds in the Everest region and updated
the glacier inventory of the ICIMOD [47] for the 23 debris-covered glaciers of the region using 2-m
resolution imageries.

We were able to prepare the historical inventory for 28 years from 1989 to 2017 by using Landsat
images of medium resolution with area thresholds of >0.005 km2 (5 pixels). The supraglacial ponds
smaller than this size were excluded from our historical inventory. The 10-m Sentinel-2 images were
used for seasonal variations of the ponds and 2-m WorldView and GeoEye imageries were used
to prepare the high-resolution inventory of the supraglacial ponds. The areal uncertainty of the
delineated features for ponds and glaciers was generated by multiplying a perimeter by half of a cell
resolution [36,50] and was varied among different resolutions. The values of uncertainties estimated
using this method is higher. However, we used manual editing technique after applying automatic
mapping. Therefore, highly accurate boundaries of ponds are expected from our study, which was
crosschecked by using 0.5-m resolution panchromatic band of WorldView imageries. Higher-resolution
panchromatic images (0.5-m) were available for 25 and 29 October 2016, which was almost the same
time period as that of Sentinel-2 (30 October 2016) and Landsat (10 November 2016), and these were
used for an accuracy assessment of the ponds. These images covered the Khumbu, Nuptse, Lhotse Nup,
and Lhotse glaciers. Ponds (>0.005 km2) on these glaciers were manually digitized using panchromatic
images. The mean uncertainty of ponds for the 0.5-m resolution images was 1.25%, which can be
considered negligible. We analyzed the aerial error by comparing the area of the ponds obtained from
0.5-m resolution images with 2-, 10-, and 30-m resolution images. We found 12 supraglacial ponds
covering an area of 0.3 km2 on the surface of the four glaciers (>0.005 km2) and found total areal
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difference of 5.7, 9.2, and 14.9% with 2-, 10-, and 30-m resolutions, respectively, for the total ponded
area. However, the maximum aerial error for individual ponds ranged from 20 to 85% for different
resolution imageries. High error among individual ponds was mainly caused by the inability of the
semiautomatic method to detect narrow channels that connect the ponds, which can be manually
mapped with high-resolution images. Nevertheless, the majority of the ponds (65–75%) had an aerial
error of less than 7, 14, and 22% for the 2-, 10-, and 30-m resolution imageries, respectively. Few cases
of the ponds which were mapped using three different sensors are available in supplementary file
(Figure S2).

The inventory using 2-m resolution with thresholds of 5 pixels for each image suggested that
Landsat and Sentinel-2 images were unable to map 45% and 13%, respectively, of the total ponded
area. These statistics were 98% and 83% of the total number of ponds mapped by 2-m imagery for
the Landsat and Sentinel-2 imagery, respectively. The inventory also revealed that ponds <1 pixel
of Landsat (900 m2) accounted for 19% of the total ponded area and those <1 pixel of Sentinel-2
accounted for 4% of total ponded area. These estimations were upper bounds and are comparable
with other findings [16]. These results suggest that Landsat images are suitable for understanding
the long-term development of supraglacial ponds with sizes of >0.005 km2. Our estimations also
suggest that Sentinel-2 images have the potential to study seasonal variations, and that WorldView
images can be used for higher accuracy, detailed inventories of the ponds. The fluctuation of shallow
and small size ponds can be large and require images with <10-m resolution [16,63]. The amount
of sediments in the ponds and when frozen also hindered the pond mapping with coarse resolution
imagery [16,64]. The capability of 15-m ASTER images to detect and monitor the supraglacial lakes
in comparison to much coarser resolution has been highlighted [64]. Here, we demonstrated the
application of the 10-m Sentinel-2 images to detect and monitor supraglacial ponds on a seasonal basis.
Sentinel-2 imageries with 10-m spatial resolution and 5-day temporal resolution can potentially be
used for mapping supraglacial ponds of sizes >0.0005 km2, which may help to understand, with higher
accuracy, the short-term variations of the ponds.

4.2. Spatial, Temporal, and Seasonal Trends in Supraglacial Pond Development

We used satellite imagery with different resolutions ranging from 2-m to 30-m to study the
long-term development and short-term variation of the ponds as well as to prepare the high-resolution
inventory. Previous studies on supraglacial ponds in the Everest region were conducted by using
single image or by using imageries which cover part of the Everest region or by decadal timespan
studies [16,41,45]. However, year-to-year variations of the ponds from glacier-to-glacier are required to
understand the pond dynamics of a studied glacier. Here, we present the year-to-year, season-to-season,
and glacier-to-glacier variations of the supraglacial ponds in the SNP, Nepal. The results from this
historical study reveal an increase in the number and area of the ponds with substantial temporal,
spatial, and seasonal variations. The detection of substantial increases in area of the supraglacial ponds
suggests that ice melt is increasing at a higher rate in recent time periods [4,5], and that ice melt is
much higher at ice cliffs with supraglacial ponds [18,65]. Ponds that occupy a closed basin with no
perennial connections can undergo rapid growth [24], and development of new ponds increase heat
absorption, which increases ice melt through under- and side-cutting [20]. The development of new
ponds also enhances the growth of the ponds.

The increase in the area and number of ponds can be attributed to the increase in temperature in
this region. We used the Asian Precipitation–Highly-Resolved Observation Data Integration Towards
Evaluation of the Water Resources (APHRODITE) dataset [66] to understand the general trend of
temperature for the region. Point data at an elevation of 5000 m a.s.l. were extracted from the gridded
dataset. Temperature shows a decreasing trend (−0.04 ◦C/yr) from 1961 to 1988 (Figure 9a) and an
increasing trend (0.02 ◦C/yr) from 1989 to 2015 (Figure 9b). Significant surface lowering of glaciers in
many parts of the Himalayas has been observed [2,3,5] with increase in temperature which resulted
in lowering surface gradient and glacier velocity [14], which favors the development of supraglacial
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ponds and glacial lakes [24,67,68]. Wastage of glacier in recent period provides the sufficient melt
water to develop the supraglacial ponds and helps in expanding their size [10,17,43], which may
likely grow monotonically if glaciers continue losing their mass [24] . The expansion in ponded area
contributes substantially to ablation of the glacier due to undercutting, calving, and melting imposed
by ponded water.

Figure 9. The temperature trend in the Everest region for the time period (a) 1961–1988 and (b)
1989–2015 using APHRODITE gridded dataset.

The results of seasonal variation of the ponds obtained from the 10-m Sentinel-2 imageries show
the intra-annual dynamics for three seasons: premonsoon, postmonsoon, and winter, corresponding
to seasonal ice melt [15,28]. Here, we excluded the monsoon season because satellite observations
during monsoon periods are severely limited by sporadic cloud cover. Considering the three seasons
for analysis, supraglacial pond cover in the Everest region showed the least during the winter season
and ponded area was comparable in the premonsoon and postmonsoon seasons. Seasonality of the
ponds by previous studies due to the ablation processes of the glaciers in different seasons has been
reported [19,26]. The main reason for less pond cover during the winter season is the unavailability of
melt water and the presence of a frozen surface, which makes accurate mapping challenging.

4.3. Glacier Characteristics and Pond Cover

We utilized the 2-m imagery to map the glacier boundaries of the 22 debris-covered glaciers and
pond covers on them. The debris-covered areas of the studied glaciers showed significant variability in
pond cover in 2015 and 2016, ranging from 0.03% (Tingbo Glacier) to 3.89% (Khumbu Glacier) of the
debris-covered area. The pond cover on each glacier was correlated with the glacier’s characteristics
and showed very strong rank-order correlation with the total area of the glacier and debris-covered
area [19] and strong correlation with the slope and width of the glacier. This also suggests higher pond
cover for the larger glaciers, which generally have surface gradients of <10◦ [18]. In the Everest region,
approximately 6, 45, and 69% of the glacier areas have slopes of less than 2, 6, and 10◦, respectively,
suggesting that all the glaciers studied have the potential to form supraglacial ponds.

The lowest percentage of pond cover on the Tingbo Glacier is correlated with its smallest size
and steepest mean slope (20.3◦) of all the glaciers studied. Similarly, the highest pond cover on the
Khumbu Glacier is the result of a low mean gradient (7.6◦) and stagnant tongue [14]. A series of
several interconnected ponds at the terminus (0.12 km2) and a large pond of the same size at a tributary
of the glacier in 2017 contributed to the significant pond cover on the Khumbu Glacier. The highest
area of pond (0.61 km2) in the Ngozompa Glacier was also highly correlated with its largest area, low
mean slope, high DGM [29,49], and glacier width, with southern aspect (Table 1). Similarly, Bhote
Koshi, Changri Nup, and Lumsamba glaciers exhibited high pond cover of 1.6, 3.1, and 3% of the
debris-covered area and covered an area of 0.28, 0.23, and 0.16 km2, respectively. The higher ponded
area on these glaciers can be explained by the large debris-covered area, low mean slope, southern
aspect, and higher DGM and width of the glaciers (Table 1). The ponded area is also strongly correlated
with mean elevation of the glaciers, corresponding to large area of the glaciers at higher elevations
(5000–5300 m a.s.l.) and less area of the glaciers at lower elevations (4400–4900 m a.s.l.).
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4.4. Future Development of the Lakes and Associated Risk

A significant increase in the area and number of ponds in the Everest region was clearly observed.
The ponds which are located above the level of outlet channel of the glacier can grow until they are
intercepted by an englacial conduit, and may fully or partially drain [44]. However, nearly half of
the total ponded area is contributed to by the ponds near the terminus (up to ~2 km) of the glaciers
where the slope was 0–4◦. The highest densities of the ponds with sizes >0.005 km2 at the terminuses
of the four larger glaciers (Figure 10) suggest that these glaciers have the potential to form a large
lake. A series of ponds may evolve into a large glacial lake [31,33,34,44], corresponding to warming
temperatures and a trend of negative glacier mass balance [4,6,27] if the level of outlet channel remains
at the same elevation. An increasing temperature can reduce the snow extent, and reducing albedo also
reduces glacier extent [67], which provides more melt water to the ponds. Furthermore, we found an
increase in area by 16% from the 1990s to 2016 in the debris-covered portion of the glaciers in the Everest
region. We expect a potential increase in the ponded area in the future. Lakes with sizes <0.1 km2

have been considered as less hazardous [38]; however, drainage of supraglacial ponds with sizes
<0.1 km2 also have the potential for GLOFs [48,49] by coalescing several ponds and contributing water
from subglacial storage. Therefore, an estimation of the volume of these features is required [16] to
understand the potential flood volume, although area–volume relationships can be used [16,49,62,63].

 
Figure 10. The densities of supraglacial ponds at the surface of the four selected glaciers with different
area thresholds of the ponds, being greater than (a) 20 m2, (b) 100 m2, (c) 3600 m2, and (d) 5000 m2.

The spillway lakes on the Ngozompa, Bhote Koshi, Khumbu, and Lumsamba glaciers (Figure 11)
appeared to have the greatest potential for developing into glacial lakes. This corresponds to the
dominance of very gentle slopes (<2◦) [18,29,30], stagnant glacier terminuses [14], and higher mean

121



Remote Sens. 2019, 11, 1058

DGM (>60 m) [29]. Furthermore, these ponds are associated with islands of ice with cliffs, and well-built
terminal moraines, which also favor a trajectory towards a large glacial lake [16]. Additionally, the
lake-terminating glaciers are retreating and showed maximum thinning towards their termini [69],
also indicates the sign of lake expansion. It is possible that the lowering of the glacier’s surface leads to
a reduction in the gradients and may enhance the possibility of the development of glacial lakes [29].

 
Figure 11. Spillway ponds and associated supraglacial ponds at the termini of (a) Ngozompa Glacier
from November 2016, (b) Khumbu Glacier from October 2016, (c) Bhote Koshi Glacier from November
2015, and (d) Lumsamba Glacier from April 2016.

Nepal has experienced greatest national-level economic consequences (22% of global total) due
to glacier floods [70]. The total number of GLOF events in Nepal documented by [71] from different
sources were 24 GLOFs and out of which 14 were originated within Nepal and 10 originated in Tibet
which caused floods in Nepal. Further, recent GLOFs in Upper Barun Valley in 2017 [72], Bhote Koshi
and Sun Koshi River in 2016 [73] has caused geomorphic and infrastructure damage, and fatalities.
Additionally, floods that originated from supraglacial ponds were also recorded in Lhotse Glacier
in 2015 and 2016 [48], and Changri Shar Glacier in 2017 [49]. The potential flood volume from the
supraglacial ponds assumed to be smaller and hazard associated with this could be minor due to
their small size in comparison to the large glacial lakes. However, the peak discharge of GLOF event
that originated from supraglacial ponds in Lhotse Glacier was estimated to be 210 ± 43 m3s−1 with
2.65 × 106 m3 of total maximum flood volume [48]. This event was supplemented by the stored water
within englacial conduits through hydraulically efficient pathways and catastrophic glacier buoyancy.
Therefore, catastrophic GLOFs might occur where series of supraglacial ponds are already developed
with the presence of large spillway lakes specifically on large glacier, e.g., Ngozompa, Bhote Koshi,
and Khumbu glaciers. Besides, several floods that originated from glaciers and caused serious floods
in Nepal are not documented. The results obtained from our study through remote sensing techniques,
can be used for “first-pass” hazard assessment in regions where field access is difficult [30]. Further
detailed studies of the morphological characteristics of glaciers and the regular monitoring of lakes are
required to understand the risk of GLOFs and glacier-related hazard management.
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4.5. Limitations of the Study

We used Landsat images of 30-m resolution and mapped ponds with sizes >0.005 km2 (5 pixels)
to understand the historical development, and this led to the omission of 45% of the total ponded
area. Images from the monsoon seasons were not used in our study due to the presence of significant
cloud cover in the images. The use of radar images with a similar resolution, which can penetrate
cloud, is recommended to understand the dynamics of ponds in the monsoon season. Our study
was limited in the areal estimation of ponds and volumetric estimations are suggested for hazard
assessment. Furthermore, pond bathymetry is required [16] as well as an understanding of englacial
connectivity [22]. The exponential expansion of spillway lakes on Ngozompa, Bhote Koshi, Khumbu,
and Lumsamba glaciers suggests that they require detailed investigations to understand their trajectory
toward large glacial lakes. Such knowledge is lacking in this area of research. Although we used
0.5-m resolution images for accuracy assessment, field-based studies are essential for more accurate
mapping and to gain a better understanding of the surrounding morphology, particularly at the
locations of spillway lakes. Recent new technology, the unmanned aerial vehicle (UAV), can be used
for this purpose.

5. Conclusions

We presented an extensive application of multiresolution satellite imageries to study the historical
development and seasonal variations in the Everest region. We also developed a high-resolution
inventory of the supraglacial ponds in the region. We used atmospherically corrected images spanning
28 years for a long-term study and three years for understanding seasonal variations of the supraglacial
ponds at the surface of all debris-covered glaciers in the region. The use of Sentinel-2 images with 10-m
resolution to study the seasonal variations, and the use of historical Landsat imagery from 1989–2017
to study the year-to-year variations for 28 years is novel. Also novel is the high resolution inventory of
the supraglacial ponds for 2015 and 2016 presented here.

Our results show that supraglacial ponds are widely distributed on glaciers in the Everest region,
and also show the rapid increase in their area and number from 1989–2017. We mapped a total of 1026
supraglacial ponds with sizes >0.005 km2 for the entire period studied from 1989 to 2017, and only 25
in 1989 and 85 in 2017. We found a net increase in area of ponds of 350% in 28 years, from 1989–2017.
High-persistence ponds were evident at the terminus of the glaciers and the persistency increased
in the recent period (2009–2017) more than in the earlier period (1989–1998). It was also found that
the densities of the ponds with sizes >0.005 km2 were highest around the terminus of the glaciers.
Spillway lakes and associated ponds were observed at the tongues of Ngozompa, Khumbu, Bhote
Koshi, and Lumsamba glaciers, where exponential expansion was found. This is suggestive of a large
lake developing in the future. The seasonal analysis showed the lowest ponded areas to be in the
winter season and comparable ponded areas in the pre- and postmonsoon seasons. The temperature
trend showed that annual mean temperature increased at the rate of 0.02 ◦C/yr from 1989–2015 in the
region, which may contribute to an increase in ponded cover due to increasing ice melt. However,
the characteristics of the glaciers and roles of already developed supraglacial ponds have also had a
significant influence on the increase in the area of the ponds.

We have presented the results of a high-resolution inventory, in which we mapped 3009 supraglacial
ponds with sizes>0.00002 km2 on the surface of 22 debris-covered glaciers in the region, with the highest
number and area of ponds on the Ngozompa Glacier, the largest glacier in the region. The ponded area
was strongly correlated with area, slope, width, and mean elevation of the glacier.

We also presented the results from different resolution imageries. Landsat imagery (30 m) has the
potential to map the supraglacial ponds (>0.005 km2) to help understand their historical evolution.
However, it has led to the omission of ponded areas smaller than 0.005 km2 (45%). Sentinel-2 (10 m)
with high temporal resolution has high potential to map small features and it will help to understand
the seasonal variations of supraglacial ponds.
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Abstract: Rapid increases in air temperature in Arctic and subarctic regions are driving significant
changes to surface waters. These changes and their impacts are not well understood in sensitive
high-Arctic ecosystems. This study explores changes in surface water in the high Arctic pond
complexes of western Banks Island, Northwest Territories. Landsat imagery (1985–2015) was used
to detect sub-pixel trends in surface water. Comparison of higher resolution aerial photographs
(1958) and satellite imagery (2014) quantified changes in the size and distribution of waterbodies.
Field sampling investigated factors contributing to the observed changes. The impact of expanding
lesser snow goose populations and other biotic or abiotic factors on observed changes in surface
water were also investigated using an information theoretic model selection approach. Our analyses
show that the pond complexes of western Banks Island lost 7.9% of the surface water that existed in
1985. Drying disproportionately impacted smaller sized waterbodies, indicating that climate is the
main driver. Model selection showed that intensive occupation by lesser snow geese was associated
with more extensive drying and draining of waterbodies and suggests this intensive habitat use may
reduce the resilience of pond complexes to climate warming. Changes in surface water are likely
altering permafrost, vegetation, and the utility of these areas for animals and local land-users, and
should be investigated further.

Keywords: tundra ponds; Arctic wetlands; desiccation; Landsat; aerial photographs; global change;
protected areas

1. Introduction

Recent temperature increases in Arctic regions have been twice the average global change [1,2]
and have triggered significant changes to regional hydrological systems, including surface water
dynamics [3–7]. Changes in surface waters are concerning, because lakes, ponds, and wetlands
strongly influence a range of physical, geochemical, and biological processes [8–11]. Arctic freshwater
systems are also tied to the global climate system through their effects on permafrost thaw and
greenhouse gas emissions from thawed ground [12–14].

Changes in the abundance and surface area of lakes and ponds in the Arctic have been attributed
to increasing evaporation [15], fluctuations in precipitation [16], permafrost degradation leading to
lateral and subsurface drainage [3,6,17,18], and thermokarst lake expansion [19]. The vulnerability
of waterbodies to these processes depends on both the waterbody dimensions [20,21] and catchment
characteristics [7,22,23]. Regional differences in these factors have resulted in considerable variation in
surface water dynamics across the Arctic [7,18,23,24]. Several recent studies suggest that permafrost
extent is a major determinant of change in surface water [7,23]. Most studies in discontinuous
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permafrost zones have reported decreases in surface water, while most studies in continuous
permafrost zones have shown increases in surface water [17,19,23,25]. However, these studies
have been restricted to subarctic and low Arctic regions, and trends in the high Arctic remain
largely unstudied.

High Arctic pond complexes may be particularly vulnerable to the effects of increasing air and
ground temperatures [26,27]. Small and shallow waterbodies, with high surface area to volume ratios, are
disproportionately impacted by fluctuations in evaporation [15,21]. In addition, the shallow active layer
common in the high Arctic restricts groundwater storage capacity, reducing resilience during unusually
dry periods [28]. Furthermore, the high ground-ice content typically found in regularly saturated
soils [28] makes areas more susceptible to thermokarst induced changes to hydrology [10,29,30].

Changes in the extent of surface water in high Arctic pond complexes will likely impact
surrounding vegetation and herbivore populations, particularly migratory bird species that use these
areas as breeding habitat [11,31]. Pond complexes fill an important ecological niche in the otherwise
arid polar deserts of the high Arctic. However, high grazing pressures from expanding herbivore
populations could also be contributing to climate-driven changes in surface water. Lesser snow goose
(Chen caerulescens caerulescens) nesting colonies across the Arctic have seen rapid expansions in recent
decades, largely due to intensified agricultural land-use providing abundant forage in their southern
wintering areas and a warming climate in Arctic nesting areas [32]. These expanding nesting colonies
have caused significant and lasting degradation to northern wetlands [31,33–35]. Intensive and
recurring foraging can alter microtopography [36] and increase near-surface ground temperatures and
evaporation [34,37], which likely decreases water retention in nearby waterbodies and may increase the
risk of lateral drainage [38]. Park [38] found that ephemeral ponds surrounded by high levels of lesser
snow goose grubbing had significantly shorter hydroperiods than ponds not associated with grubbing.

To improve our ability to predict the long-term impacts of climate change on high Arctic freshwater
systems, additional case studies are required to understand the processes controlling surface water
dynamics. The objectives of this study are to (1) explore the extent of changing waterbodies within the
pond complexes of western Banks Island, Northwest Territories; and (2) to investigate the causes of
this change. Landsat imagery (1985–2015) was used to detect long-term surface water trends, while
higher resolution aerial photographs (1958) and satellite imagery (2014) were used to explore changes
in the size and distribution of waterbodies, and field sampling investigated potential causes and
contributing factors.

We tested three specific hypotheses: (1) The number and size of waterbodies on western Banks
Island is decreasing; (2) the loss of small waterbodies is widespread; and (3) changes in number and
size of waterbodies are following different trajectories in heavily overgrazed snow goose nesting areas,
compared to areas less impacted by overgrazing.

2. Materials and Methods

2.1. Study Area

Banks Island is the westernmost island in the Canadian Arctic Archipelago and part of the
Inuvialuit Settlement Region in the Northwest Territories. The community of Sachs Harbour is the
only permanent settlement on the Island and has a population of approximately 100 residents. Located
within the high Arctic, this area has a harsh climate with a mean annual temperature of −12.8 ◦C at
Sachs Harbour. Summers are short with average daily temperatures rising above freezing for only 3
months of the year, peaking at 6.6 ◦C in July. Average annual precipitation is 151.5 mm, with only 38%
falling as rain (June to September). Mean annual temperatures have shown a 3.5 ◦C increase since 1956,
while summer precipitation and maximum snow water equivalent before spring melt have changed
minimally [30,39].

The western side of Banks Island is underlain by unconsolidated Miocene-Pliocene sands and
gravels and is characterized by gently rolling uplands, intersected by numerous west-flowing rivers
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with wide floodplains [40,41]. Alluvial terraces in these river valleys are dotted with thousands
of shallow ponds and have nearly continuous vegetation cover, dominated by sedges, grasses,
and mosses [31,41]. Decomposition of this vegetation has produced limited organic deposits over
predominantly Gleysolic Turbic Cryosols [41]. Permafrost is continuous is this region, and ice-wedge
polygons, non-sorted circles and stripes, and turf hummocks are widespread [41]. In this study,
we focused on the alluvial terraces of the west-flowing rivers valleys (Figure 1).

 
Figure 1. A map of the study area on Banks Island, Northwest Territories, showing field survey sites
and areas where fine-scale imagery was analyzed. The inset map in the upper-right corner shows
Banks Island as the westernmost island in the Canadian Arctic Archipelago. The inset map in the
bottom-right corner is an enlarged map of the nesting colony area, within the Big River valley.

The river valleys of western Banks Island are important breeding habitat for many migratory bird
species, including the lesser snow goose. This habitat supports over 95% of the western Arctic lesser
snow goose population. The main nesting colony of this population is located at the confluence of the
Egg and Big rivers [31,41] (Figure 1). The Banks Island Migratory Bird Sanctuary No. 1 is the second
largest bird sanctuary in Canada at 20,517 km2, and was created to protect this colony [31,41].

2.2. Sub-Pixel Water Fraction

To measure persistent changes in surface water, sub-pixel water fraction (SWF) was calculated
for 94 30 m resolution images captured by the Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI
sensors, between 1985 and 2015. Depending on cloud cover, 1 to 7 images were used per year, balanced
over the time-series so that no significant linear relationship existed with the number of images per
year. To minimize the influence of phenology and the spring freshet, all collected images fell within
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the period of 5 July to 10 August and were balanced across Julian Days so that no significant linear
relationship existed over the time-series. Images were calibrated to top-of-atmosphere reflectance
using USGS coefficients, and scan lines, clouds, and cloud shadows were masked out [42].

SWF was calculated using the Tasseled Cap wetness (TCW) index, derived from each of the 94
Landsat images, and a histogram-breakpoint method [19]. The TCW index is a transformation that
contrasts shortwave infrared with visible and near-infrared bands using established Tasseled Cap (TC)
coefficients [43,44]. The use of shortwave infrared bands in the TCW index makes it sensitive to water
surfaces, soil moisture, and plant moisture [43,45].

Following TCW transformation, breakpoint regression was applied to the frequency distribution
of pixel values in each image to identify the land limit (LL), the threshold value separating pure
land pixels from pixels of mixed land-water cover, and the water limit (WL), separating pure water
pixels from pixels of mixed land-water cover. Breakpoint regression was applied to each scene to
reduce variabilities caused by different Landsat sensors, atmospheric conditions, and phenology states.
Candidate breakpoints were determined using the ‘strucchange’ package [46] in R software version
3.3.2 [47] and the breakpoint algorithm for estimating multiple possible breakpoints [48]. Once range
limits were obtained, the following equation was used to calculate the SWF of each mixed pixel in
an image, where TCW is the Tasseled Cap Wetness value of the pixel being estimated. TCW values
outside of the threshold LL and WL values were assigned 0% or 100% SWF, respectively.

SWF =
(TCW − LL)× 100%

(WL − LL)
(1)

The accuracy of the histogram-breakpoint method in this terrain type was assessed by comparing
SWF estimates to manually digitized estimates of surface water within 60 (0.25 km2) plots in the Big
River valley. Manually digitized estimates of surface water were derived from WorldView-2 (WV02)
satellite imagery (0.5 m resolution), acquired on 9 July 2014. Because of cloud cover and Landsat 7 scan
line errors, the digitized surface water was compared against a multi-year SWF composite, calculated
as the mean of SWF images from July 2013 and 2015.

To identify pixels that exhibited persistent changes in surface water, we used Theil-Sen
regression and the rank-based Mann-Kendall test to determine SWF trends and significance over
time (1985–2015) [19,49]. Theil-Sen regression is a nonparametric alternative to ordinary least-squares
regression that uses the median of all possible pairwise slopes instead of the mean. The rank-based
Mann-Kendall test of significance is calculated through comparison to all possible pairwise slopes [50].
The change in surface water for pixels with significant trends was estimated by multiplying the slope
coefficient by the length of the time-series and the area of a single pixel (900 m2). These changes were
then summed within each river valley to estimate regional surface water changes.

This analysis was restricted to the alluvial terraces of major river valleys (an area of ~2335 km2),
which were manually-delineated as areas of lowland terrain within 25 km of the main river channel
(<80 m above-sea-level) [41]. Lowland terrain was visually identified using 10 m resolution false-colour
near-infrared Sentinel-2 satellite imagery acquired on 19 July 2017, and confirmed using a 5 m resolution
digital elevation model (ArcticDEM) created by the Polar Geospatial Center from DigitalGlobe, Inc.
imagery [51].

2.3. Fine-Scale Surface Water Change Detection

To explore and corroborate surface water dynamics at a finer scale, the historical and current
extent of lakes and ponds was mapped within 12 (1 km2) plots using greyscale aerial photographs and
WV02 satellite images in the Big River valley. Six (1 km2) plots were established in areas impacted by
severe drying, and six (1 km2) plots were established in stable areas that were minimally impacted by
drying. Severe drying and stable plots were classified based on the composition of significant Local
Indicators of Spatial Association (LISA) clusters [52] of SWF trends within the Big River valley. Severe
drying plots primarily consisted of negative SWF trend clusters (mean Δ of −271.5 m2) and stable
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plots primarily consisted of low positive SWF trend clusters (mean Δ of +55.6 m2). Clusters of negative
and positive SWF trends were present in opposing plots; however, they did not exceed 5% of the plot
area. LISA clusters were generated using GeoDa software (1.8.16.4) and an order 2 Queen contiguity
weights matrix, including lower orders [52,53].

Historical waterbodies greater than 50 m2 were delineated using 1:60,000 scale aerial photographs
acquired on 14 July 1958, with an effective pixel size of 1.5 m. Aerial photographs were georeferenced
in ArcMap (10.4.1) using a first-order polynomial transformation and 6–11 control points. The current
extent of the waterbodies in these plots was delineated using WV02 satellite imagery (0.5 m resolution)
acquired on 9 July 2014. Summer precipitation was similar in 1958 and 2014, reducing the likelihood
that interannual variation in precipitation could influence differences in surface water extent. All
waterbodies were digitized on-screen while viewing images at a 1:500 scale. If new waterbodies
appeared in the 2014 imagery, their historical areas were recorded as zero. A chi-square test was used
to determine if the size class distribution of waterbodies in 1958 in severe drying and stable plot types
deviated from their expected distribution. Expected values were calculated by multiplying the total
number of waterbodies in each size class with the total number in each plot type and dividing by the
sample size. Waterbodies were tallied within eight size classes, which progressively doubled in size to
account for the lower frequencies of larger waterbodies.

To explore potential drivers of surface water change in the Big River valley, we used an
information-theoretic approach to compare models based on four a priori hypotheses regarding the
cause of change in the area of individual waterbodies from 1958–2014 [54]. Hypotheses were informed
by the literature (Table 1) and models were constructed using the linear models procedure in R software
(3.3.2) [47]. To account for the greater potential change in surface area of larger sized waterbodies, an
interaction term for pond size was also added to several models. The 2015 Tasseled Cap Greenness
(TCG) parameter used in models 2 and 3 (Table 1) was calculated using the same methods as for
the TCW index [43,44]. The distance from the colony parameter used in models 4 and 5 was log
transformed because visual inspection of the data suggested the relationship was non-linear. The flow
accumulation parameter used in models 6 and 7 was calculated using the ArcticDEM [51] and the
Fill, Flow Direction, and Flow Accumulation tools on ArcMap (10.4.1). Prior to model selection, all
model parameters were examined for outliers using Cleveland dot plots [55] and collinearity using
Pearson correlation coefficient matrices. To keep variance inflation factors below 3.0, variable pairs
with correlation values greater than 0.7 were not included in the same model [55,56].

Following model selection, we performed an additional analysis using categorical intervals
of waterbody size and distance from the nesting colony to better understand how snow goose
occupation may be influencing change proportional to the waterbody area. This was conducted
using the GLIMMIX procedure in SAS (9.3) to construct a linear mixed effects model of proportional
area change versus categorical groupings of waterbody size and distance from the colony [57]. Pairwise
comparisons among categories were made using the least-squares procedure, estimated using the
restricted-maximum likelihood method. The model included the 12 aerial imagery plots as a random
effect. Degrees of freedom were determined using the Kenward-Roger method [57].
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2.4. Field Surveys

To characterize field conditions in areas that showed declines in SWF and explore potential causes
of these changes, surveys were conducted at 13 sites within five river valleys in July 2017 (Figure 1).
Field sites were selected using LISA clusters of SWF trends and included drying sites, within clusters
of negative SWF trends, and control sites, within clusters of low positive SWF trends and areas outside
of significant clusters. We also visited several colony sites that were located within clusters of negative
SWF trends, within 1 km of the densest parts of the nesting colony [58]. Colony sites were sampled
to differentiate drying patterns in highly-used snow goose habitat areas from areas not intensively
used by snow geese. All sampling locations were selected within the alluvial terraces, between 0–20 m
in elevation.

At each site, 11 measurement points were established at 10 m intervals along a north-south
oriented 100 m transect. At each point, measurements were made of thaw depth, soil moisture,
vegetation cover, and goose grubbing. Thaw depth was measured using an active layer probe,
which was pushed into the ground until the depth of refusal. Soil moisture was measured using
a handheld moisture probe (HH2 Moisture Meter with a Theta Probe soil moisture sensor-ML2x,
from Delta-T Devices Ltd., Cambridge, UK). Vegetation cover was measured by visually estimating
the percent cover of vascular plants within a 50 cm2 quadrat, aligned with the bottom-left corner
at the measurement point. Goose grubbing was measured by counting the number of grub holes
within the same 50 cm2 quadrat. Grubbing is a particularly destructive form of foraging which targets
below-ground roots and rhizomes before above-ground vegetation is available. Along each transect,
we also noted if points were located within a former pond basin. Former pond basins were identified
based on the absence of organic material within a pond-shaped topographic depression.

To test for significant differences in thaw depth, soil moisture, vegetation cover, and goose
grubbing among drying, control, and colony site types, we constructed linear mixed effects models
using the GLIMMIX procedure in SAS (9.3) [57]. Pairwise comparisons among site types were
made using the least-squares procedure, estimated using the restricted-maximum likelihood method.
All models included site and river valley as random effects. Degrees of freedom were determined
using the Kenward-Roger method [57]. Measurements that landed within former pond basins were
excluded from statistical comparisons of these variables, as they represented landcover with a different
origin and substrate.

3. Results

3.1. Sub-Pixel Water Fraction

3.1.1. SWF Trends

Between 1985 and 2015, the alluvial terraces of western Banks Island lost 33.3 km2 of surface
water and gained 3.9 km2 of surface water, resulting in a net loss of 29.3 km2, or 7.9% of the original
surface water (Figures A1–A3). Regional SWF trends indicate that surface water has declined in all
river valleys except the Kellett (Figure 2). The Bernard River valley lost the largest absolute area of
surface water (8.83 km2) and the Relfe-Fawcett River valley lost the highest proportion of original
surface water (17.1%).
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Figure 2. Net change in surface water from 1985–2015 in the 9 major river valleys of western Banks
Island. River valleys are ordered by latitude, with the Kellett (at left) being the most southern and the
Davies (at right) being the most Northern. SWF trends (p < 0.05) were determined using 94 Landsat
images between 1985–2015.

3.1.2. SWF Accuracy

Estimates of SWF made using the histogram-breakpoint method were strongly correlated with
waterbody areas delineated manually. An ordinary least-squares regression model of the sum of SWF
pixel values and the sum of manually-delineated waterbody areas within the 60 accuracy assessment
plots produced an r2 value of 0.942 and a residual standard error of 0.0124 (Figure 3). In our study, the
histogram-breakpoint SWF method overestimated surface water in 83.3% of the accuracy assessment
plots (Figure 3). On average, SWF calculations overestimated waterbody area by 0.00863 km2 (14%)
compared to manually-delineated waterbody areas. The consistency of overestimation across a range
of surface water proportions suggests that it is not likely to have impacted the slopes of SWF trends
across the time-series (1985–2015). Overestimation is likely linked to the sensitivity of TCW to plant
moisture [43,45] and the occurrence of wet sedge meadows on the landscape, which would not have
been delineated as waterbodies using the aerial imagery.

Figure 3. The sum of sub-pixel water fraction pixel values plotted against the sum of the area of
manually-delineated waterbodies within 500 m2 plots. The blue line represents the model predictions
(SWF estimates ~ WV02 Pond Areas), the grey bar represents the 95% confidence interval, and the
dotted red line shows a 1:1 relationship.
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3.2. Fine-Scale Surface Water Change Detection

3.2.1. Waterbody Size Distributions

There were large reductions in the number of waterbodies between 1958 and 2014, in both severe
drying and stable plots (Figure 4). Severe drying plots exhibited a complete loss of 732 (48.1%)
waterbodies, while stable plots lost 286 (38.1%) waterbodies. Lost waterbodies ranged in their original
size, from 58.5 m2 to 17,708.5 m2. Only 12 new waterbodies were recorded in the 2014 imagery, and only
19.9% of all waterbodies either increased in surface area or remained stable (−10% to +10% change).

Severe drying and stable plots exhibited differences in waterbody density and average size. In
1958, severe drying plots had a mean density of 253 waterbodies per km2 and a mean waterbody
size of 1228.2 m2. Stable plots had a mean density of 149 waterbodies per km2 and a much larger
mean waterbody size of 3319.2 m2. The chi-square test (p < 0.001) confirmed that areas exhibiting
severe drying had more small waterbodies (50–900 m2) and fewer large waterbodies (>900 m2)
than expected. Conversely, stable areas had fewer small waterbodies (50–900 m2) and more large
waterbodies (>900 m2) than expected (Table 2).

Figure 4. Size distributions of waterbodies mapped using aerial imagery, split by plot type and
year. The dashed black lines show the average waterbody size within that year and plot, excluding
waterbodies with a size of 0 m2. The grey bars in 2014 show the number of waterbodies that experienced
complete drainage.
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Table 2. Observed and expected size class distributions of waterbodies in severe drying and stable
plots, based on the chi-square analysis. Bold numbers indicate that the number of observed waterbodies
exceeds the number of expected waterbodies. Numbers with an asterisk indicate a significant difference
from the expected value, using a Bonferroni correction (p < 0.0063).

Severe Drying Stable

Observed Expected Observed Expected

50–450 m2 625 597 324 352
450–900 m2 455 * 402 184 * 237
900–1800 m2 249 255 156 150

1800–3600 m2 100 * 121 93 * 72
3600–7200 m2 53 64 49 38

7200–14,400 m2 15 * 35 41 * 21
14,400–28,800 m2 14 * 23 22 * 13

28,800–120,000 m2 4 * 18 25 * 11

Column totals 1515 1515 894 894

Across all plots, 47.8% of the total surface water loss occurred in waterbodies smaller than
1800 m2, despite the fact that these waterbodies only accounted for 20.5% of the total surface area in
1958 (Table 3). Smaller waterbodies lost a higher proportion of their total area, compared to larger
waterbodies (Figure 5). The smallest size class (50–450 m2) lost 90.6% of the total area, compared to the
5% lost by the largest size class (28,800–120,000 m2).

Table 3. Summary statistics including the total number, area, change in area, and proportion of change
for waterbodies in different size classes.

Waterbody Size in 1958 (m2) 50–450 450–900 900–1800 1800–3600 3600–7200 7200–14,400 14,400–28,800 28,800–120,000

Count 949 639 405 193 102 56 36 29
Total area (m2) 213,525 431,325 546,750 521,100 550,800 604,800 777,600 2,157,600

Change in total area (m2) −193,437 −212,536 −204,329 −153,752 −151,374 −119,682 −142,308 −107,254
Proportion of total area lost 90.59% 49.28% 37.37% 29.51% 27.48% 19.79% 18.30% 4.97%

Figure 5. Visualization of the interaction effect (distance from the colony and waterbody size) in the
best model (Table 4). Data were divided based on the waterbody size classes indicated above each
panel. Each point represents the change in area of a single waterbody. The blue lines show model
predictions for waterbody area change within that size class. The dotted red reference lines show no
change in waterbody area.
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Table 4. Candidate models for change in waterbody area, with goodness-of-fit metrics. The table is
ordered by the model fit, and the best model is shown in bold.

Model
Number

Explanatory Variables R2 AICc ΔAICc
AICc

Weight
Rank

7
log(Colony Distance) + Pond Size +
log(Colony Distance) × Pond Size

0.429 39960.4 0 1.0 1

6 log(Colony Distance) + Pond Size 0.291 40482.6 522.2 4.0 × 10−114 2
4 2015 TCG + Pond Size + 2015 TCG × Pond Size 0.276 40532.4 572.0 6.2 × 10−125 3
3 2015 TCG + Pond Size 0.220 40710.3 749.9 1.4 × 10−163 4
1 Pond Size 0.211 40739.5 779.1 6.5 × 10−170 5
9 Flow Accumulation + Pond Size 0.210 40741.0 780.6 3.1 × 10−170 6

10 Flow Accumulation + Pond Size + Flow
Accumulation × Pond Size 0.210 40742.5 782.1 1.4 × 10−170 7

5 log(Colony Distance) 0.0995 41056.4 1096.0 9.8 × 10−239 8
2 2015 TCG 0.00926 41286.4 1326.0 1.1 × 10−288 9
8 Flow Accumulation 0.00264 41302.5 1342.1 3.6 × 10−292 10

In stable and severe drying plots, there was an increase in the mean size of waterbodies present
in 2014 (Figure 4), which is indicative of a disproportionate loss of small waterbodies. The change in
mean waterbody size between 1958–2014 was considerably smaller in severe drying plots (Δ 9.4 m2),
compared to stable plots (Δ 876.9 m2), which showed a more balanced loss of waterbodies of
varying sizes.

3.2.2. Model Selection

The model selection procedure showed that large reductions in waterbody area were most strongly
associated with waterbody size and proximity to the nesting colony. The best model included an
interaction between the distance from the colony and pond size measurements (Table 4). Waterbody
area losses were larger near the colony regardless of waterbody size, but the impact of the colony was
most obvious in larger waterbodies. This was evidenced by an increase in the slope of the relationship
between the distance from the colony and area loss in larger waterbodies (Figure 5).

3.2.3. Categorical Proportional Area Loss

All waterbody size classes, except the largest (>28,800 m2), had significantly greater proportional
area loss (p < 0.05) within 1 km of the nesting colony, compared to waterbodies between 1–5 km and
further than 5 km from the nesting colony (Figure 6). At distances greater than 1 km from the nesting
colony, waterbodies showed similar proportional changes in all size classes. Regardless of distance from
the colony, the smallest waterbody size class had the largest proportional area loss at 95.3% +/− 9.2 for
0–1 km from the nesting colony, 76.3% +/− 11.1 for 1–5 km, and 74.4% +/− 7.8 for greater than 5 km.

Figure 6. Bar plots showing the proportional area change by distance from the nesting colony and
waterbody size intervals. The error bars represent 95% confidence intervals. Asterisks are present
when the 0–1 km distance group is significantly different from the other distance groups based on the
least-squares means estimates.
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3.3. Field Surveys

3.3.1. Pond Basin Transect Intersections

Field surveys showed evidence of widespread drying, as all site types intersected former pond
basins to some extent. Colony sites had the highest proportion of former pond basins (75.76%), then
drying sites (31.82%), and then control sites (2.05%) (Figure 7). Regardless of site type, former pond
basins intersected transect lines exclusively within pixels that experienced negative SWF trends.

Figure 7. Aerial photographs captured using an unmanned aerial vehicle (UAV) during July 2017 field
surveys. The bars below the images show the proportion of field transects classified as former pond
basins and regular land.

3.3.2. Biotic and Abiotic Site Differences

Soils were significantly drier at colony sites (p < 0.05) compared to the control and drying site types,
which were not significantly different from each other (Figure 8). Mean soil volumetric water content
was three times lower at colony sites (24.6% +/− 30.4%), compared to drying (78.4% +/− 24.6%)
and control sites (72.2% +/− 15.8%). Thaw depth was not significantly different among site types
(Figure S2). Vegetation cover was also significantly lower at the colony sites (p < 0.01) (Figure 8),
where groundcover was dominated by exposed peat. Mean vascular plant cover was 10–15 times
lower at colony sites (4.1% +/− 23.6%), compared to drying (43.8% +/− 18.2%) and control sites
(59.5% +/− 10.9%). Goose grubbing was not significantly different among site types (Figure S2).
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Figure 8. Least-squares means estimates of (a) soil volumetric water content and (b) vegetation cover
from the linear mixed effects models. Error bars represent 95% confidence intervals and bars with
different letters are significantly different.

4. Discussion

The results of our analyses confirm our hypothesis that the number and size of waterbodies in the
pond complexes of western Banks Island are decreasing. This observation differs from most surface
water studies in the low Arctic [17,19], which have reported increases in surface water. In the pond
complexes of western Banks Island, only a small portion of existing waterbodies expanded and few
new waterbodies emerged. This indicates that surface water responses to climate change in high
Arctic regions are distinct and require additional research, as the high Arctic is one of Canada’s largest
ecozones, covering about 15% of the country. Estimates of change in surface water based on the SWF
analysis and manual aerial imagery digitization span different time periods, but results from both
sources of information showed similar patterns of substantial surface water loss.

4.1. Smaller Waterbodies Are More Vulnerable

Our observation that small waterbodies are being disproportionately affected is aligned with our
second hypothesis and suggests that climate is the main driver of drying in the study area. Almost
half of the loss in surface water occurred in small waterbodies (50–1800 m2), despite only making
up 20.5% of the total surface water in 1958. There are several climate-driven processes that may
be contributing to the loss of surface water on Banks Island. Warming summer temperatures and
extended ice-free seasons increase annual evaporative losses and can lead to the complete desiccation
of waterbodies [15,62]. The effects of this would be most evident in small and shallow waterbodies
because of their high surface area to volume ratios [15,20,21]. Declines in terrestrial water storage
in large river basins across the Arctic have also been linked to increases in evapotranspiration [64].
Warmer and longer summers would also reduce summer snowpack, which might be sustaining
wet areas with meltwater throughout the ice-free season [26,28,65]. Most of the summer snowpack
observed in the 1958 aerial photographs was not visible in the 2014 aerial imagery, despite having
acquisition dates only five days apart. Warming air and ground temperatures can also increase thaw
depth and groundwater storage capacities, which might lower the water table [28]. This would reduce
hydrological connectivity [28] and could potentially desiccate shallow waterbodies perched above
the lowered water table. Degradation of low-centered polygonal terrain, from increasing ground
temperatures, would also result in a large loss of small waterbodies [66]. As low-centered polygons

140



Remote Sens. 2018, 10, 1892

degrade into high-centered polygons, their capacity to hold water decreases. Our data suggests this
is not occurring because it would also result in an increase in waterbodies in the trough areas of the
polygons [66], which we did not observe. Furthermore, areas visited in the field, which experienced
concentrated losses of small waterbodies, have remained as low-centered polygonal terrain. Further
investigation is needed to evaluate the potential contributions of these processes and to understand
how similar terrain types in other regions of the Arctic are being impacted. The knowledge of hunters
and land-users can also provide significant insight into these processes [67–69].

Our finding that small ponds are the most vulnerable to change highlights the importance of
using fine-scale data or sub-pixel/spectral un-mixing techniques for surface water change detection
in areas with small waterbody size distributions. It is important to use data at appropriate scales or
remote sensing techniques that are matched with the biophysical variation in the area of interest. In
our study area, most waterbodies were smaller than 900 m2, the size of the Landsat pixel footprint.
Previous broad-scale analyses, not considering sub-pixel information [70], were only sensitive to
changes impacting the majority of a pixel and therefore did not detect the magnitude of change
we observed.

4.2. Intensified Drying in the Nesting Colony

Our results also confirm our hypothesis that surface water changes are following different
trajectories in the nesting colony area and indicate that the intensive occupation of lesser snow
geese may be reducing the resilience of waterbodies to climate warming by facilitating drying or
draining processes. Reductions in waterbody area were larger and more consistent closer to the
nesting colony, regardless of original waterbody size. Colony sites were shown to have reduced
vegetation cover and soil moisture, which are common impacts of overgrazing in expanding snow
goose nesting colonies [34,35]. Vegetation provides a strong insulating layer that stabilizes near-surface
ground temperatures and increases soil moisture retention [34,37]. In other regions, reductions in
the vegetation layer associated with intense goose activity have been found to increase evaporation
in soils [34], which may reduce subsurface hydrological connectivity. Waterbodies isolated from
subsurface inputs are also more vulnerable to desiccation over the ice-free season [26,27,62].

Trampling by lesser snow geese, which can create depressions and terraces [36], likely contributes
to reduced vegetation cover to increase the risk of lateral drainage through accelerated degradation
of ice-wedge polygons. Ice-wedge polygons are one of the most common forms of ground ice in the
Arctic [71,72] and were ubiquitous at our field sites. These features have been suggested to be more
vulnerable to degradation in higher latitude areas because wedge ice is located closer to the ground
surface and is less insulated from changing air temperatures [29,30].

Since lesser snow goose breeding areas are synonymous with wet Arctic habitats, a better
understanding of the impacts of these animals on permafrost and surface water dynamics is important.
Similar patterns of surface water loss can be seen in the lowland areas of Southampton Island,
Nunavut [70], which hosts the third largest lesser snow goose population in the Canadian Arctic [35].
As populations continue to expand, impacts on freshwater systems in the Canadian Arctic are likely to
intensify. Further research on snow goose habitat impacts to permafrost and surface water dynamics
are necessary, as this topic is largely unstudied to date.

4.3. Implications

Drying of high Arctic wetlands will impact lesser snow geese and other herbivore populations,
as these areas provide important breeding habitat in largely arid polar deserts [35]. A recent study
projected 30–80% reductions in lake extent within the areas of five Alaskan National Wildlife Refuges
over the next 50 years, and anticipated that these areas would not persist as important waterfowl
production areas if rates of change continue [23]. Changes in the extent of surface water can also
affect permafrost thaw [12–14] and increase methane and carbon dioxide emissions with shoreline
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expansion [12,73]. Understanding surface water changes in high Arctic environments is therefore
critical for making accurate evaluations of greenhouse gas emissions across the Arctic.

5. Conclusions

Based on the data analyzed here, we draw the following conclusions:

• The pond complexes on western Banks Island are drying.
• Wetland drying is being caused by warming climate, but is exacerbated in areas with intensive

snow goose habitat use.
• Future studies should explore the mechanisms causing pond desiccation, the impacts of snow

geese on these processes, and the impacts of drying on vegetation and permafrost conditions.
• Remote sensing studies must use data and methods that consider the biophysical variation in the

area of interest to adequately assess environmental changes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/10/12/1892/
s1, Figure S1: Study methods flow diagram, Figure S2: Linear mixed effects model outputs for thaw depth and
goose grubbing.
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Appendix A

 

Figure A1. Sub-pixel water fraction trend surfaces of the Davies, Relfe, and Fawcett river valleys of
western Banks Island, between 1985–2015.
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Figure A2. Sub-pixel water fraction trend surfaces of the Burnett Bay area, and the Bernard and
Storkerson river valleys of western Banks Island, between 1985–2015.

144



Remote Sens. 2018, 10, 1892

 

Figure A3. Sub-pixel water fraction trend surfaces of the Sea Otter, Big, Lennie, and Kellett river valleys
of western Banks Island, between 1985–2015.
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Abstract: The analysis of wildfire impacts at the scale of less than a square kilometer can reveal
important patterns of vegetation recovery and regrowth in freshwater Arctic and boreal regions.
For this study, NASA Landsat burned area products since the year 2000, and a near 20-year record
of vegetation green cover from the MODIS (Moderate Resolution Imaging Spectroradiometer)
satellite sensor were combined to reconstruct the recovery rates and seasonal profiles of burned
wetland ecosystems in Alaska. Region-wide breakpoint analysis results showed that significant
structural change could be detected in the 250-m normalized difference vegetation index (NDVI)
time series for the vast majority of wetland locations in the major Yukon river drainages of interior
Alaska that had burned at high severity since the year 2001. Additional comparisons showed that
wetland cover locations across Alaska that have burned at high severity subsequently recovered their
green cover seasonal profiles to relatively stable pre-fire levels in less than 10 years. Negative changes
in the MODIS NDVI, namely lower greenness in 2017 than pre-fire and incomplete greenness recovery,
were more commonly detected in burned wetland areas after 2013. In the years prior to 2013, the NDVI
change tended to be positive (higher greenness in 2017 than pre-fire) at burned wetland elevations
lower than 400 m, whereas burned wetland locations at higher elevation showed relatively few
positive greenness recovery changes by 2017.

Keywords: wildfire; wetlands; elevation; MODIS; Landsat; Alaska

1. Introduction

High-severity wildfires have been shown to have long-term impacts on freshwater ecosystems;
as nutrients are mobilized, runoff and erosion can increase, and soil properties may be modified [1].
While there is a growing literature for the effects of fire on upland vegetation types [2],
the existing information on vegetation removal by burning remains limited for most freshwater
plant communities globally.

To extend this knowledge base, satellite remote sensing can be used to effectively monitor changes
in high-latitude (boreal and tundra) wetland vegetation cover and productivity, especially following
disturbance events such as wildfires [3–7]. Most of these remote sensing studies have been carried
out for non-wetland (interior boreal forest and upland tundra) vegetation cover types. Nonetheless,
Potter et al. [6] reported that the wetland tundra areas of Alaska that burned since the year 1980 had a
3:2 ratio coverage of significant positive versus negative vegetation greening trends between 2000–2010,
whereas non-wetland tundra areas that burned since 1980 had a 2:5 coverage ratio of significant positive
versus negative vegetation greening trends between 2000–2010. This result suggested that the wetland
areas of Alaska can recover more completely and rapidly in greenness cover from recent wildfires than
non-wetland land cover types; however, this supposition remains to be tested region-wide over longer
time periods.
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Over the past several decades, there has been an increase in the frequency and severity of boreal
region wildfires in Alaska [8]. During the 2000s, an average of 767,000 ha per year were burned
statewide, which is 50% higher than in any previous decade since the 1940s. In the extreme wildfire
year of 2015, nearly 60% of Alaska’s burned area was consumed at moderate-to-high severity levels [9].

Most of the wildfires in the spruce forest ecosystems of Alaska are either crown or ground fires
with a high enough severity to kill over-story trees [10–12]. Usually, some of the organic layer of the
forest floor remains, but fires in late summer following exceptionally dry or windy conditions may
consume all of the organic layer, exposing mineral soil [13]. Jiang et al. [14] and Brown et al. [15]
reported that the post-fire thickness of the soil organic layer and its impact on soil thermal conductivity
was the most important factor determining post-fire soil temperatures and thaw depth. In moderately
burned sites, the presence of permafrost can mitigate the loss of the insulating soil organic layer,
decrease soil drying, and increase surface water pooling.

The objective of this study was to analyze the vegetation recovery patterns of all of the Alaska
wetlands that have burned at high severity since the year 2000 using a combination of the Landsat and
MODIS (Moderate Resolution Imaging Spectroradiometer) satellite datasets. A statistical analysis of
the changes in the MODIS vegetation index time series was conducted using the “Breaks for Additive
Seasonal and Trend” method (BFAST, Verbesselt et al. [16,17]). de Jong et al. [18] analyzed trends in
the normalized difference vegetation index (NDVI) satellite time series using the BFAST procedure,
and detected both abrupt and gradual changes in large parts of the world, especially in shrubland and
grassland biomes where abrupt greening was often followed by gradual browning.

This study was undertaken as a contribution to the NASA Arctic Boreal Vulnerability Experiment
(ABoVE) field campaign, chiefly to better understand changes in related hydrologic and biogeochemical
mechanisms in the years following high-latitude wildfires. One of the major questions being addressed
by ABoVE, and in this type of Landsat/MODIS study, is “What processes are controlling changes in
boreal–Arctic land cover properties, and what are the impacts of these changes?”

2. Materials and Methods

2.1. Landsat Burn Severity Classes

Digital maps of burn severity classes at 30-m spatial resolution were obtained from the Monitoring
Trends in Burn Severity (MTBS; www.mtbs.gov) project, which has consistently mapped fires greater
than 1000 acres (405 ha) across the United States from 1984 to the present [19]. The MTBS project is
conducted through a partnership between the United States (US) Geological Survey (USGS) National
Center for Earth Resources Observation and Science (EROS) and the Unites States Department of
Agriculture (USDA) Forest Service. Landsat data have been analyzed through a standardized and
consistent methodology by the MTBS project.

The normalized burn ratio (NBR) index was calculated by MTBS using approximately one-year
pre-fire and post-fire images from the near infrared (NIR) and shortwave infrared (SWIR) bands of the
Landsat sensors, with reflectance values scaled to between 0–10,000 NBR units.

NBR = (NIR − SWIR)/(NIR + SWIR)

Pre-fire and post-fire NBR images were next differenced for each Landsat scene pair to generate
the Relative dNBR (RdNBR) [20].

RdNBR = [(NBRpre-fire − NBRpost-fire)]/
√

ABS (NBRpre-fire)

The RdNBR severity classes of low, moderate, and high (LBS, MBS, HBS) have been defined
previously by Miller and Thode [20] and cover a range of −500 to +1200 over burned land
surfaces. Positive RdNBR values represent a decrease in vegetation cover and a higher burn severity,
while negative values would represent an increase in live vegetation cover following the fire event.
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2.2. MODIS Vegetation Index Time Series

NASA’s MODIS (Moderate Resolution Imaging Spectroradiometer) satellite sensors Terra and
Aqua have been used to generate a 250-m resolution NDVI (MOD13) global product on 16-day intervals
since the year 2000 [21,22]. The MODIS Collection 6 NDVI data set provides consistent spatial and
temporal profiles of vegetation canopy greenness according to the equation:

NDVI = (NIR − Red)/(NIR + Red)

where NIR is the reflectance of wavelengths from 0.7 μm to 1.0 μm, and Red is the reflectance from
0.6 μm to 0.7 μm, with values scaled to between 0 and 10,000 NDVI units to preserve decimal places in
integer file storage. Low values of NDVI (near 0) indicate barren land cover, whereas high values of
NDVI (above 8000) indicate dense canopy greenness cover.

The MOD13 250-m vegetation indices (VIs) have been retrieved from daily, atmosphere-corrected,
bidirectional surface reflectance. The VIs were computed from MODIS-specific compositing methods
based on product quality assurance metrics to remove all of the low-quality pixels from the
final NDVI value reported. Cloud and water pixels were identified and excluded using other
MODIS atmospheric data masks. From the remaining good-quality NDVI values, a constrained
view-angle approach (closest to nadir) then selected the optimal pixel value to represent each
16-day compositing period. These MOD13 data sets were downloaded from the files that were
available at modis.gsfc.nasa.gov/data/dataprod/mod13.php for time series analysis across Alaska
wetland locations.

2.3. Elevation and Land Cover Map Layers

Digital elevation (in vertical meters) for Alaska was derived from USGS [23] mapping at 300-m
ground resolution. Wetland cover was mapped for the state at 30-m ground resolution from the 2011
National Land Cover Dataset (NLCD) of Alaska ([24]; available at www.mrlc.gov/nlcd11_leg.php).
The overall thematic accuracy for the previous Alaska NLCD was 76% at Level II (12 classes evaluated).
For contextual comparison purposes, the open water (class 11), barren land (class 31), and evergreen
forest (class 42) classes of this NLCD were mapped with high user’s accuracy, while the herbaceous
wetland (class 95) was mapped with moderate user’s accuracy.

For this study, the NLCD woody wetland (class 90) together with all of the herbaceous wetland
pixels were combined into one class, and were all overlaid 200 × 200-m resolution areas with a majority
of the wetland surface coverage identified and mapped for the entire state (Figure 1). This combined
wetland coverage was overlaid with statewide MTBS high burn severity (HBS) class pixels from the
years 2001 to 2015, and with MODIS 250-m summer season NDVI (from the composite Julian day
177; 26 June) images for each of these years to carry out a time trend analysis of the burned wetland
area NDVI changes statewide. “Pre-fire” MODIS NDVI values were all derived from the Julian day
177 NDVI from the year before the fire date for change detection.
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Figure 1. Alaska wetland cover (blue pixels) at 200-m resolution derived from the 2011 National Land
Cover Dataset (NLCD) map.

The section of the Julian date 177 for NDVI change detection over time was not an arbitrary choice,
but rather was determined to be a seasonally consistent metric of green cover change, since 26 June is
nearly always near the seasonal maximum in interior Alaska for green cover, which was verified by
examining thousands of pixels in time-stacked NDVI maps of Alaska wetland locations. Wetland areas
that covered less than a majority of 200 × 200-m resolution areas in the statewide grid were too small
to be matched consistently with MODIS 250-m summer season NDVI, and were therefore not included
in the results.

2.4. Statistical Analysis Methods

The BFAST (Breaks for Additive Seasonal and Trend) methodology was applied to a MODIS
NDVI monthly time series for selected wetland locations that covered the majority of a 250 × 250
m pixel area within severely burned locations. BFAST was developed by Verbesselt et al. [16,17]
for detecting and characterizing abrupt changes within a time series, while also adjusting for
regular seasonal cycles. A harmonic seasonal model is first applied in BFAST to account for regular
seasonal phenological variations. BFAST next computes the Ordinary Least Squares Moving Sum
(OLS-MOSUM) by considering that the moving sums of the residuals after the harmonic seasonal
model have been removed from the time series data values. MOSUM tests for structural change using
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the null hypothesis that all regression coefficients are equal i.e., every observed value can be expressed
as a linear function with the same slope [25]. If the null hypothesis is true, the values can be modeled
by one line with that slope, and the sum of residuals will have a zero mean. MOSUM compares moving
sums of residuals to test the likelihood of the regression coefficient for a certain time period based
on a user’s input stating the minimum time between potential “breakpoints”. A rejection of the null
hypothesis indicates that the regression coefficient changes at that point in time.

The MOSUM uses a default p-value of 0.05, meaning that the probability of it detecting a structural
change when none has occurred is less than 5%. If MOSUM does not detect some structural change
with a confidence level of 95%, it returns a “no breakpoints” result. If MOSUM detects some structural
change with a confidence level of 95%, it then processes the time series through a second test, which is
used to determine where the breakpoints are located in time. The output of this function is a 95%
confidence interval for each breakpoint (expressed as two date numbers that define a range, before and
after a breakpoint.).

For BFAST timer-series analysis, MOD13 NDVI data values (2000 to 2017) from Alaska wetland
locations were subsampled to include only the growing season values during the low snow cover
period of 1 May to 1 October, leaving about 10 observations per year. If a “no data” value was present
in the growing season MOD13 record, then the NDVI from the previous 16-day period was substituted.
Change metrics generated by BFAST from the time series analysis results included the number of
breakpoints, date of each breakpoint, and the slope of the NDVI between breakpoint dates.

3. Results

3.1. Wetland NDVI Changes within Large Wildfires 1999–2009

Based on yearly MTBS RdNBR map collections, the names and locations of the largest contiguous
wetland area that burned at high severity in Alaska were determined for each year since 2000. Four of
the largest wildfires were selected (Figure 2) to generate examples of post-fire NDVI time series analysis
results using BFAST.

Figure 2. Wildfire boundaries (as gray outlines) mapped by the Monitoring Trends in Burn Severity
(MTBS) project for interior Alaska in from 2000 to 2015, along with the locations of the largest wildfires
recorded from the years 1999, 2000, 2004, and 2009. Yukon River drainage basins comprised of
the Yukon Flats, Ramparts, Lower Tanana River, and the Klatsuta River sub-basins (USGS Level
8 Hydrologic Units, [26]), are delineated in shaded boundaries.
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The complete MODIS 16-day NDVI record was plotted for these wetland-dominated pixels from
2000 to 2017, starting with the 102,385 ha 1999 Kevinjik Fire (Figure 3a). Two HBS wetland cover
locations were plotted for each large wildfire, and the time series showed that the recovery of NDVI
seasonal profiles following this 1999 fire was gradual and relatively stable by about the year 2012.
Comparing the HBS wetland vegetation profiles following the 67,987 ha Zitziana Fire from the year
2000, NDVI recovery appeared to be even more rapid (than for the Kevinjik Fire) and became relatively
stable by about the year 2007.

a. 
1999 Kevinjik 66.6448  -141.9170 (top);  66.7217  -141.8772 (bottom) 2000 Zitziana 64.7601 -150.9101 (top);  64.6757  -150.6751 (bottom)

2004 Boundary  65.2087  -146.4217 (top);  65.2435  -146.4261 (bottom) 2009 Minto Flats  64.6511  -149.62518 (top);  64.5350  -149.6160 (bottom)

M
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b.

Figure 3. Yearly time series plots (16-days) of 250-m resolution normalized difference vegetation index
(NDVI) from Moderate Resolution Imaging Spectroradiometer (MODIS) for all of the wetland cover
pixels within the four largest Alaska wildfires from the years 1999, 2000, 2004, and 2009. The latitude
and longitude of each pixel center is shown.

The largest contiguous wetland areas that had burned at high severity within the 217,720 ha
Boundary Fire of 2004 recovered to near pre-fire NDVI profile levels by 2014 (Figure 3b visual
assessment), whereas the largest contiguous wetland areas that had burned at high severity within
the 212,050 ha Minto Flats Fire in 2009 had yet to fully recover to pre-fire NDVI profile levels by 2017.
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It was noteworthy that the change that can be visually detected in seasonal NDVI profiles before and
after the Minto Flats Fire may be indicative of a shift from the longer (broader) green-season evergreen
(conifer forest) profile to a mixed deciduous (birch, alder, willow) shrub and herbaceous cover profile.

The BFAST results for these four large fires for wetland-dominated MODIS pixels showed
significant (p < 0.01) downward breakpoint shifts in NDVI (Table 1 and Figure 4) during the
MTBS-document years of the most severe burning (2001, 2004, and 2009) detected in the Landsat NBR
records. As expected, the BFAST results for the selected pixel location of the 1999 Kevinjik fire showed
no breakpoints, but instead a showed strong upward slope in the de-seasonalized NDVI values for the
years following 2000. The significant wildfire-related breakpoints detected for the Zitziana, Boundary,
and Minto Flats wetland fire areas were commonly followed by one to two years of relatively rapid
recovery of NDVI, and then by about five years of relatively slower NDVI recovery (Figure 4).
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To expand the BFAST results to a regional level for interior Alaska, breakpoint analysis was
applied to a total of 3200 wetland locations (mapped at 200-m resolution) that were recorded as
burned at high severity by large wildfires [19] between 2001–2015 within the following Yukon River
drainage sub-basins: Yukon Flats, Ramparts, Lower Tanana River, and the Klatsuta River (USGS Level
8 Hydrologic Units, [26], as shown in Figure 2). Results showed that at least one breakpoint was
detected by BFAST analysis in the MODIS NDVI time series at 85% of these HBS wetland locations in
interior Alaska. The distribution of dates (binned by year) of burning from Landsat HBS mapping [19]
at these wetland locations closely matched the distribution of dates of breakpoints from the MODIS
NDVI time series BFAST analysis, with the exception of 2015, for which BFAST did not detect the
highest number of breakpoints (Figure 5).

Figure 5. Histograms of the years of fire dates for wetland areas that burned at high severity in interior
Alaska from the MTBS Landsat [19] (left) and the BFAST analysis of the MODIS NDVI time series
(right).

The histogram of the BFAST 18-year trend results of MODIS NDVI for 3200 wetland locations that
were recorded as having burned at high severity between 2001–2015 within the Yukon River drainage
basins (detected with at least one breakpoint) showed a strong skewness (2.8) and the predominance of
positive greening trends that reflect regrowth from disturbance (Figure 6). For comparison, the BFAST
results for 1000 wetland locations in the Upper Yukon Flats sub-drainage basin that had not been
burned by large wildfires between the years 2001–2015 [19] showed the opposite frequency distribution
to Figure 6, with a strong negative skewness (−3.0) in slope values and almost no positive NDVI slope
values greater than 100 units per year.

Figure 6. Histogram of the slopes of MODIS NDVI trends for wetland areas that burned at high
severity in interior Alaska between 2001–2015 from BFAST breakpoint analysis.
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3.2. Statewide Wetland NDVI Change for HBS Areas 2000–2015

For standardized comparisons, “pre-fire” MODIS NDVI values were all derived from the Julian
day 177 NDVI from the year before the fire date for change detection. The resulting plots of the NDVI
change (pre-fire to post-fire summer of 2017, both on Julian day 177) for years when the total HBS
wetland areas were greater than 2000 ha, statewide, showed that the fraction of negative change in the
NDVI (lower greenness in 2017 than pre-fire and incomplete greenness recovery) increased markedly
after the 2013 wildfires (Figure 7). In years prior to 2013, the NDVI change tended to be positive
(higher greenness in 2017 than pre-fire) at HBS wetland elevations lower than 400 m, whereas higher
elevation HBS wetland locations showed relatively few positive greenness recovery changes by 2017.

The selection of the NDVI from the summer of 2017 as the post-fire comparison year made
the change in greenness comparisons consistent among all of the previous years of recorded
wetland wildfires. According the long-term weather station records from Fairbanks (available at
w1.weather.gov/obhistory/PAFA.html), 2017 had a total of 40.6 cm of precipitation, compared to the
average annual total of 29.7 cm since 1999. The mean annual temperature in 2017 was recorded in
Fairbanks as 29.5 ◦C versus the annual average of 28.1 ◦C since the year 1999. Therefore, 2017 would not
have been a particularly dry year with poor growing conditions for these post-fire NDVI computations.
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Figure 7. Yearly plots of change in MODIS 250-m resolution wetland NDVI between pre-fire years and
2017 versus wetland elevation for years with the largest areas that burned at high severity.
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The year (since 2000) that was calculated with the highest area of HBS wetland vegetation loss
was 2005 with 20,700 ha, followed by 2015 with 16,540 ha, 2009 with 9280 ha, and 2004 with 6460 ha
of wetland vegetation consumed by wildfire across the state of Alaska. The average change in NDVI
from pre-fire levels to post-fire (2017) levels, along with the within-year variability, that was estimated
across these acreages showed that severely burned Alaska wetlands from the years 2002 and 2005 have
had a significant (t-test, p < 0.05) positive recovery of green vegetation cover since wildfire. For all of
the other years before 2014, the average wetland change in NDVI since wildfire was not different from
zero, indicating a full recovery of green vegetation cover by 2017. On the other hand, severely burned
wetlands from the year 2015 still had a significantly (p < 0.05) lower average level of green vegetation
cover than was estimated from the years before the wildfires (Figure 8).
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Figure 8. Average change in MODIS 250-m resolution wetland NDVI between pre-fire years and 2017,
for all of the MTBS wildfires in Alaska greater than 2000 ha in the National Land Cover Dataset (NLCD)
wetland area burned at high severity. Error bars of post-fire NDVI minus pre-fire NDVI represent two
standard errors of the average change in NDVI.

4. Discussion

The principal findings of this study were that wetland cover locations across Alaska that burned
at high severity subsequently recovered their green cover seasonal profiles to relatively stable pre-fire
levels in less than a decade. The large wetland fires in Alaska from 2013 to 2016 showed an incomplete
greenness recovery compared to earlier fires. In the years prior to 2013, the NDVI change tended
to be positive at HBS wetland elevations lower than 400 m, whereas higher elevation HBS wetland
locations showed much weaker greenness recovery changes by 2017. This elevation threshold of 400 m
for positive post-fire NDVI recovery is not obviously related to any known topoecological changes
for high-latitude wetlands, which is a new finding that merits more field research to understand this
remote sensing observation. By all accounts, this is the first statewide or regional study of wetland
burning and greenness recovery for Alaska that has been published, making comparisons to previous
published results of a similar nature unattainable.

Nonetheless, the outcomes of recovery and regrowth pathways after high severity burning over
the next few decades will be of significant consequence to the local community members in Alaska
who have depended on wetland ecosystems for subsistence hunting and trapping. In and around
mesic soil locations, the deep surface organic material of low bulk density in evergreen tree stands
generally precludes deciduous boreal species from establishing seedlings [10].

However, relatively thin post-fire organic layer depths, such as those measured by Potter [9]
in field surveys in the Tanana Area fires of 2015, may cause notable alterations in the successional
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outcomes of severely burned ecosystems, including a shift from the conifer-dominated thick organic
layer to an increase in the dominance of deciduous or shrub species [10,26]. Barrett et al. [27] reported
that the areas with less than 3 cm of surface organic layer depth after boreal forest fires will be
susceptible to deciduous-dominated regeneration, whereas areas with 3–10 cm of organic layer depth
will be susceptible to co-dominant regeneration by both coniferous and deciduous trees.

The aboveground biomass levels in the tundra wetlands of Alaska have been positively correlated
with NDVI, and with elevated ecosystem carbon (CO2) fluxes, including net ecosystem production
and ecosystem respiration [3]. Anywhere that most of the live vegetation is consumed by intense
wildfire, nutrients can be mobilized, surface water temperature can become elevated, and soil erosion
may increase [1]. The recovery of wetland vegetation production and live green foliage cover after
wildfires can help stabilize hydrological and thermal regimes, promote biodiversity, and reduce the
seepage of dissolved nutrients to adjacent fluvial systems [28].

In previously published studies of satellite greenness (NDVI) in Alaska using the BFAST method,
Forkel et al. [29] found the region to be of special interest for the analysis of trend change detection,
because of greening NDVI trends in the tundra ecosystems of the North Slope as well as browning
trends in the interior boreal forests. These authors reported that most of the breakpoints in NDVI
time series coincided with large wildfire events. As in the present study of wetland NDVI trends and
wildfire, BFAST methods detected stronger greening and browning trends if snow-affected values
were excluded from the analysis or when only peak seasonal NDVI values were used. Breakpoints
with abrupt changes, i.e., higher magnitudes, were detected more frequently than were breakpoints
with gradual changes, i.e., low magnitudes.

Forkel et al. [29] further reported that downward (browning) trends in the NDVI between
20–30 years long occurred in some of the boreal regions of central Alaska and in southwestern Alaska,
usually with uncertainties of up to four years. The detection of breakpoints in the NDVI time series
in 2004 agreed with the spatial distribution of Landsat-mapped large wildfires and other field-based
observations. Seasonal NDVI patterns suggested that the conifer forests that burned in 2004 tended to
be replaced by broad-leaved shrubs (dwarf birch and aspen) and grasses during post-fire recovery
years, which resulted in a structural change in the NDVI time series.

The region-wide BFAST analysis results from the present study similarly indicated that significant
structural change (in the form of breakpoints) could be detected in the 250-m NDVI time series for
the vast majority of wetland locations in the major Yukon river drainages of interior Alaska that had
burned at high severity since the year 2001. The lower-than-expected number of breakpoints in the
MODIS NDVI time series detected by BFAST in 2015 may be explained by (1) there being fewer dates
in 2016 and 2017 to compare to pre-2015 NDVI levels than for other fire years, and (2) the presence
of fires prior to 2015 at the same wetland location, which would have depressed NDVI values in
2015 more than unburned locations. The predominance of positive overall slopes in the NDVI time
series of wetlands with breakpoints indicated rates of vegetation recovery that are typically in the
range of 40 to 200 NDVI units per year (scaled from 0–1 by a factor or 10,000).

5. Conclusions

Breakpoint analysis was able to detect significant structural change and increasing yearly slopes
(since fire) in the 250-m NDVI time series for most of the wetland locations in interior Alaska that had
burned at high severity since the year 2001. The results from this study of greenness recovery in Alaska
wetlands following high severity burns support the supposition that vegetation cover density in these
ecosystems, albeit possibly with a higher fraction of annual herbaceous cover than was present before
the fire, will make a nearly complete recovery within 10 years, and often within five years post-fire.
A corollary hypothesis worth testing in future field and remote sensing studies is that relatively
low-elevation wetlands are not as susceptible to drying and warming trends in the Arctic and boreal
regions as are upland forest and tundra shrublands, and therefore wetlands on the whole will recover
aboveground biomass more rapidly than non-wetlands over the same period of climate change.
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Abstract: Cold regions, including high-latitude and high-altitude landscapes, are experiencing
profound environmental changes driven by global warming. With the advance of earth observation
technology, remote sensing has become increasingly important for detecting, monitoring, and
understanding environmental changes over vast and remote regions. This paper provides an
overview of recent achievements, challenges, and opportunities for land remote sensing of cold
regions by (a) summarizing the physical principles and methods in remote sensing of selected key
variables related to ice, snow, permafrost, water bodies, and vegetation; (b) highlighting recent
environmental nonstationarity occurring in the Arctic, Tibetan Plateau, and Antarctica as detected
from satellite observations; (c) discussing the limits of available remote sensing data and approaches
for regional monitoring; and (d) exploring new opportunities from next-generation satellite missions
and emerging methods for accurate, timely, and multi-scale mapping of cold regions.

Keywords: remote sensing; cryosphere; climate change; northern high latitudes; Antarctica;
Tibetan Plateau

1. Introduction

Cold regions, including high-latitude and high-altitude landscapes, are experiencing climate
warming with amplification at roughly twice the global rate for the Arctic region (>60◦N) [1,2] and
Tibetan Plateau (TP) [3,4]. Cold regions are typically characterized by the presence of permafrost,
extensive snow and ice cover, and rich reserves of stored soil organic carbon in the northern regions
and TP [5,6]. Ecosystems within these regions are highly vulnerable to changes resulting from the rapid
destabilization and melting of ice above the 0 ◦C isotherm [7,8], lengthening the annual non-frozen
season [9,10], and thawing of carbon-rich permafrost soils [11].
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Recent region-wide warming trends have altered vegetation, and interactions and feedbacks
between the water, energy, and carbon cycles [12–14]; these changes have also resulted in a myriad of
impacts to landscape function and ecosystem services [15]. Warmer temperatures have reduced the
duration of seasonal snow and ice cover over land, ocean, and inland water bodies [16–19]. Longer
snow and ice-free seasons have led to lower surface albedos and greater net energy loading, reinforcing
regional warming trends [20–22]. The alteration of seasonal snow and ice cover has also altered
wildlife habitats and human mobility, including degrading the stability of snow and ice cover for
winter travel [23].

Permafrost soils are estimated to store up to 1,600 billion tonnes of soil carbon, representing
roughly twice the amount of carbon stored in the atmosphere [11]. Warming soils have promoted
permafrost degradation and active layer deepening, enhancing the mobilization and potential transfer
of soil carbon to the atmosphere [24,25]. Ground surface deformation from degrading permafrost has
also increased the risk of damage to human infrastructure, including roads, pipelines, and buildings [26].
Changes in permafrost properties greatly impact the surface water budget because the soil ice layers
form a relatively impermeable barrier to soil drainage [27]. Surface subsidence into the water table
driven by the thawing of ice rich soils has increased surface water inundation and lake expansion
in continuous permafrost areas (where more than 80% of the ground is underlain by permafrost).
In contrast, extensive draining of lakes and wetlands has been observed in more degraded permafrost
areas [28–30].

Satellite observations have indicated vegetation greening over northern latitude tundra, attributed
to enhanced vegetation growth from a longer frost-free season, contrasting with vegetation browning
in boreal forest and some tundra regions, that may result from greater drought stress due to warmer
temperatures and a longer frost-free season [31]. Boreal forests have also been affected by an increase in
the frequency and severity of wildfires exacerbated by warmer and drier conditions, and insect-related
disturbances [32,33]. The net effect of these changes is a complex snow/ice, vegetation, soil, and wetland
mosaic where the terrestrial water, carbon, and energy cycles are strongly coupled and interactive with
the climate.

Remote sensing provides an unprecedented approach for characterizing the timing, magnitude,
and patterns of environmental changes. This is especially advantageous for geographically remote
cold regions, where site observations are often spatially sparse and temporally limited. The multi-scale
nature of remote sensing also provides insight into the often emergent spatial and temporal patterns
and properties of ecosystems that may not be fully identified nor understood when approached
from the perspective of a local region. Earth parameter data records derived from optical-infrared
(optical-IR) and microwave satellite observations spanning multiple decades are particularly valuable
in distinguishing large characteristic natural climate variability from more subtle environmental trends
in cold regions [14,19,34,35] and for the detection of local to regional disturbances [36,37]. Finer
spatial-resolution optical-IR and active microwave sensors are essential for distinguishing the complex
spatial heterogeneity in permafrost landscapes [38–40] and for near-real time applications such as
monitoring river ice jams [41] and glacial lake outburst flooding [42].

This paper provides an overview of recent progress and prospects in remote sensing of cold regions
by first reviewing general principles and methods in measuring a selection of key environmental
variables, including glacier ice; snow; surface water bodies; permafrost and surface deformation;
vegetation and terrestrial carbon process. We then summarize recent environmental changes
documented by the remote sensing data record. Finally, we explore opportunities for leveraging
available and future satellite missions, and integrating emerging remote sensing and big data techniques
to establish a next-generation monitoring system for cold regions.

2. Principles and Methods

Satellite optical-IR and microwave sensors (Supplementary Table S1) have provided complementary
observations of cold regions since the 1970s. In general, optical-IR sensors are well suited for mapping
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environmental variables over heterogeneous landscapes due to their relatively high-resolution (sub-meter
to 1 km) imaging capability, though the signal-to-noise ratio of the observations may be degraded by
cloud–atmosphere aerosol contamination, low solar elevation, and long periods of seasonal darkness at
higher latitudes. Microwave remote sensing is less affected by atmospheric conditions and provides
earth observations day-or-night under nearly all-weather conditions [43]. The microwave penetration
ability is generally superior to optical-IR wavelengths and depends on sensor frequency and landscape
conditions. Lower-frequency (e.g. 1–2GHz or L-band, 0.3–1GHz or P-band) observations provide
better measurements of forest biomass and enhanced soil sensitivity under low to moderate vegetation
and snow cover, while higher frequency (e.g., 12–18GHz or Ku-, 26.5–40 GHz or Ka-band) signals are
more suitable to detect sparsely vegetated soil, snow properties (e.g., snow depth, surface roughness,
stratification, and microstructures) [44,45] and ephemeral surface freeze–thaw (FT) conditions [38,46–48].
Among microwave sensors, satellite synthetic aperture radar (SAR) measures backscatter signals at
relatively high spatial resolution (1–100s m), though the utility of operational SARs has been constrained
by limited data access, incomplete global coverage and low temporal sampling. Alternatively, satellite
microwave scatterometers and radiometers provide global coverage and frequent sampling (i.e., every
1–3 days) valuable for monitoring environmental dynamics over large regions, but at relatively coarse
spatial resolution (~5–36 km).

A variety of sensor configurations and remote sensing techniques have been applied for monitoring
cold regions, based on radiative transfer theory and the unique spectral signatures of various target
variables. These approaches are summarized in the following subsections for selected variables
where remote sensing has been used to document significant environmental changes attributed to
global warming.

2.1. Remote Sensing of Ice

2.1.1. Glacier Mass and Movement

Glaciers are slow moving masses of ice formed over time by the accumulation and compaction
of snow, holding 75% of Earth’s freshwater [49] and 10% of the global land area, including most of
Greenland and Antarctica [50]. Glacier mass balance is highly sensitive to climate change and controls
a glacier’s long-term behavior and evolution. A glacier flows under its own weight due to the pull of
gravity, and thus transports ice mass to lower altitudes. Remote sensing is the only practical approach
for inferring glacier mass and movement over large regions.

Glacier mass is commonly estimated through independent or combined gravimetry and altimetry
measurements [51]. Satellite and aircraft-based gravimetry measurements have been widely used in
glacier mass change assessments [52]. Glacier mass can also be indirectly estimated through glacier
area and thickness measurements. Glacier area change events, such as ice calving, can be precisely
detected using satellite images acquired over different times [53]. Glacier thickness change caused by
ice melting or accumulation can be measured via geodetic approaches, including point measurements
from altimetry and digital elevation models (DEMs) derived from photogrammetry or interferometric
SAR (InSAR) techniques (Supplementary Table S2). Satellite laser altimeter measurements can achieve
decimeter to centimeter accuracy levels; for example, the Geoscience Laser Altimeter System (GLAS)
onboard the Ice, Cloud, and land Elevation Satellite (ICESat) provided decimeter-accuracy elevation
data with a 70-m ground footprint over the global ice sheets [54]. The ICESat-2 satellite was launched in
late 2018 and has a significantly improved laser system providing observations with enhanced spatial
resolution, temporal sampling, and measurement accuracy [55]. Alternatively, satellite photogrammetry
using optical-IR (e.g., ASTER, IKONOS) and SAR/InSAR (e.g., ERS-1/2 and ENVISAT) measurements
have been successful in providing glacier raster DEMs [56,57]. In particular, the SAR Interferometer
Radar Altimeter (SIRAL) onboard Cryosat-2 is capable of measuring changes in the thickness of both
sea ice and land ice under three different measurement modes (low resolution, SAR and InSAR) [58].

167



Remote Sens. 2019, 11, 1952

Glacier movement can be detected from repeat-pass satellite images using feature tracking and
Differential InSAR (DInSAR) techniques. The feature tracking method identifies and matches ice surface
features from satellite images and calculates the moving distance of the features over different acquisition
times. The methods have been applied to both optical-IR and SAR image series, including Landsat
Operational Land Imager (OLI) [59], Moderate Resolution Imaging Spectroradiometer (MODIS) [60],
and ERS-1/2 SAR [61] sensors. DInSAR uses repeat-pass SAR imagery to calculate glacier motion
velocity after removing the topography signals from the sensor interferograms using an external DEM
or a combination of interferograms [62,63]. The accuracy of the feature-tracking method can be within
the sub-pixel level, while that of DInSAR is up to half of the radar wavelength.

2.1.2. Lake Ice Cover

Ice cover plays an important role in lake-atmosphere interactions at high latitudes. The presence
(or absence) and extent/concentration of ice cover on large lakes has a significant impact on regional
weather and climate (e.g., lake-effect snowfall, thermal moderation effect) [64–68]. Ice cover (extent)
and ice thickness have recently been identified as Essential Climate Variables by the Global Climate
Observing System (GCOS) of the World Meteorological Organization [69]. Both ice extent, from which
ice phenology (i.e., ice dates during freeze-up and break-up, and ice cover duration) can be determined,
and ice thickness are sensitive indicators of climate change [70,71]. Not identified by GCOS is the
bedfast ice regime of shallow Arctic/sub-Arctic lakes (less than about 3-m). Such lakes are widespread
across permafrost regions of Alaska, Northern Canada, and Siberia. Determining if and when entire
lakes or lake sections become bedfast (i.e., ice cover is thick enough to reach lake bottoms) in winter has
been shown to also be relevant for climate monitoring [72,73]. Winters with a larger (smaller) fraction
of bedfast ice are generally indicative of colder (warmer) air temperature and/or lower (higher) on-ice
snow depth conditions which can lead to thicker (thinner) ice. Considering the sparse distribution of
weather stations in northern high latitudes, whose temperature measurements are not representative
for large areas, satellite remote sensing provides an alternative to measure regional ice cover extent
(phenology), ice thickness, and bedfast ice as summarized below.

Ice cover extent and phenology—Satellite remote sensing has assumed a greater role in lake ice
observations in recent years due to the dramatic reduction in ground-based observational recordings
and the availability of increasingly longer satellite time series, particularly from the 2000s onward [74].
Ice cover extent products are either generated manually, largely from visual interpretation of
multi-source/frequency satellite imagery such as the National Oceanic and Atmospheric Administration
(NOAA) National Ice Center Interactive Multisensor Snow and Ice Mapping System (IMS). The IMS
products are produced manually through assimilation of various sources of data, including polar-orbit
and geostationary satellite imagery and in situ data. In some cases, automated algorithms are applied to
these data to facilitate analysis. The IMS products are available at various resolutions (1 km, 4 km, and
24 km) [75]. Ice phenology dates (freeze-up/ice-on and break-up/ice-off dates) and ice cover duration
can also be derived from the IMS products [74,76]. MODIS 500-m snow (MOD10A1/MYD10A1) and
250-m surface reflectance (MOD09GQ) products have been used in a few recent studies, alone or in
combination with each other and 1-km MODIS (MOD11A1/MYD11A1) Land Surface Temperature
(LST), to derive ice dates (start and end of break-up and freeze-up dates) and their associated trends
(2001-2017 or shorter) [77–82]. Approaches that use top-of-atmosphere or surface reflectance (e.g.,
MODIS near-infrared and red bands) are based on threshold values where ice is determined to be
present/absent above/below a certain value. High solar zenith angle, which is important during
freeze-up for high-latitude lakes, and cloud cover are two factors that affect the quality of lake ice
products. Hence, research has also focused on developing ice phenology retrieval algorithms from
passive and active microwave observations.

At passive microwave frequencies (e.g., 18–37 GHz) used for satellite remote sensing of lake
ice cover, nadir emissivity from open water is low (ε = 0.443– 0.504 at 24 GHz) compared to that of
ice (ε = 0.858–0.908 at 24 GHz) [83]. This makes the determination of the timing of ice formation and
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decay on lakes feasible from brightness temperature (Tb) measurements. The emissivity of ice, and
therefore Tb, further increases during ice formation, as the influence of radiometrically cold water
under the ice cover decreases with ice thickening [84]. Kang et al. (2012) found AMSR-E (Advanced
Microwave Scanning Radiometer for Earth Observing System) 18.7 GHz (H- pol) Tb data (interpolated
onto a 10-km grid) to be the most suitable for estimating ice dates (freeze-onset, ice-on dates, melt-onset,
and ice-off dates), as well as the duration of ice cover and ice- free seasons using a thresholding
approach. Du et al. [17] further demonstrated that ice dates could be derived from AMSR-E and
AMSR2 (Advanced Microwave Scanning Radiometer 2) 36.5 GHz (H-pol) Tb (re-gridded at 5-km)
data using a moving t-test algorithm. Derived ice dates compared favorably with those obtained from
ground-based observations and other satellite products such as IMS.

Threshold-based and semi-automated (region-based segmentation followed by manual labelling
of ice/open water) approaches have also been developed to generate ice cover extent and phenology
products using SAR data. Wang et al. [85] evaluated the semi-automated segmentation algorithm
“glocal” Iterative Region Growing with Semantics (IRGS) [86] for lake ice classification using dual
polarized (HH and HV) RADARSAT-2 imagery acquired over Lake Erie. Their analysis showed that
the algorithm could provide reliable discrimination between ice and open water with high overall
classification accuracy (90.4%) when compared to Great Lakes image analysis charts from the Canadian
Ice Service. Murfitt et al. [87] developed a threshold-based approach for estimating ice phenology
events for mid-latitude lakes in Central Ontario by tracking the temporal evolution in backscatter
from HH-polarization RADARSAT-2 imagery (2008–2017). The authors reported mean absolute errors
of 2.5–10 days for freeze events and 1.5–7.1 days for water clear-of-ice when compared to MODIS
imagery. The method was also successful in detecting multiple freeze (high backscatter) and melt (low
backscatter) events throughout the ice season. By combining acquisitions from ENVISAT Advanced
SAR (ASAR) wide swath and RADARSAT-2 ScanSAR data, Surdu et al. [88] showed the advantage of
more frequent sampling (i.e., every 2–5 days over the 2005–2011 study period), but also the need for
sensor incidence angle correction for more precise ice phenology detection from backscatter thresholds
over Alaskan North Slope lakes.

Ice thickness—Field measurements of ice thickness are spatially and temporally sparse in cold
regions. Recent investigations have developed approaches to estimate ice thickness from passive
microwave, active microwave (altimetry and SAR) and thermal remote sensing data. Kang et al. [84]
showed that the temporal evolution of Tb measurements from AMSR-E at 10.7 GHz and 18.7 GHz
frequency (V polarization) during the ice growth season on Great Bear Lake (GBL) and Great Slave
Lake (GSL), Canada, is strongly related to ice thickness. The authors proposed simple linear regression
equations to estimate ice thickness for the lakes using 18.7 GHz V-pol data (2002–2009), while the
estimated ice thicknesses compared favorably with in situ measurements (Mean Bias Error, MBE, 6 cm;
Root Mean Square Error, RMSE, 19 cm). Beckers et al. [89] explored waveforms from CryoSat-2 Ku-band
radar altimetry to estimate ice thickness also on GBL and GSL. Their study obtained ice thickness
estimates with RMSE of 33 cm when compared to in-situ measurements obtained at GSL. Murfitt et
al. [90] evaluated RADARSAT-2 data for estimating lake ice thickness in Central Ontario, Canada.
They reported RMSE values of 11.7 cm and attributed the uncertainty to unexplored questions about
scattering mechanisms and the interaction of the radar signal with lake ice having complex structure
within the ice layer and at the ice–water interface. In addition to the radar-based investigations, lake
surface (ice/snow) temperature observations from MODIS have also been evaluated for estimating
lake ice thickness [91]. Using heat balance terms derived from the Canadian Lake Ice Model [92], the
authors retrieved ice thicknesses up to 1.7 m from MODIS with RMSE of 17 cm and MBE of 7 cm when
compared to field measurements acquired on GSL and Baker Lake, Canada. Work on the estimation of
ice thickness from satellite remote sensing is still in its infancy. Biases in retrievals are relatively large
from some spaceborne instruments, while the remote sensing time series are generally too short to
analyze climate trends in satellite-derived ice thickness.
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Bedfast ice—Radar remote sensing allows for distinguishing lakes with bedfast (grounded) ice
due to the difference in backscatter intensities between floating ice (generally higher backscatter
return) and bedfast ice (lower return) [93]. Recent analyses of polarimetric SAR (X-, C-, and L-band)
satellite and ground-based scatterometer (Ku- and X-band) measurements, supported by radiative
transfer modeling experiments, have revealed that the high backscatter of floating ice on shallow
Arctic lakes is from the ice–water interface (due to appreciable surface roughness or preferentially
oriented ice facets), dominated by single-bounce scattering [94,95]. Areas of bedfast and floating lake
ice are monitored/mapped from SAR using image thresholding [73] or region-based segmentation
approaches [96]. Analyses of C-band SAR time series (ERS-1/2, RADARSAT-1/2, ENVISAT ASAR, and
Sentinel-1) have been used to document trends and variability in bedfast ice across Alaska, over the
last 20–25 years [73,88]. Antonova et al. [97] have also shown the potential of a unique time series
of three-year repeat-pass TerraSAR-X imagery with higher temporal (11 days) and spatial (10 m)
resolutions than available in past studies for monitoring both bedfast ice and lake ice phenology in the
Lena River Delta, Siberia. The authors also analyzed an 11-day sequential interferometric coherence
time series from TerraSAR-X as a supplementary approach for bedfast ice monitoring. Coherence time
series have been found to detect most areas of bedfast ice as well as spring snow/ice melt onset.

2.2. Remote Sensing of Snow

Snow and glaciers provide one-sixth of the world’s population with fresh drinking water, and
seasonal snow is the main fresh-water source at mid-latitudes [98]. Snow is also a crucial factor
controlling the seasonal radiation balance of the land surface, and a sensitive indicator of global
climate change. Snow measurement is essential to snowmelt driven runoff predictions, water resources
management, flood control, and climate change studies [99]. Key snow properties derived from remote
sensing include snow cover area or extent, structure (e.g., depth, density), and water equivalent.

2.2.1. Snow Cover Area

Snow cover area has been estimated using satellite optical sensors such as Landsat TM, Aqua/Terra
MODIS, and NOAA AVHRR (advanced very-high-resolution radiometer). Snow cover can be identified
under clear-sky conditions using the Normalized Difference Snow Index (NDSI), which exploits the
contrasting reflectance of snow in the visible and short-wave infrared bands [100,101]. Utilizing
ancillary spectral indices such as Normalized Difference Vegetation Index (NDVI) and Normalized
Difference Forest Snow Index (NDFSI) helps incorporate vegetation information in snow detection and
improves performance in mapping forest snow cover [102,103]. Radiation transfer models can also be
used for improved snow mapping over forest areas [104]. Recent snow mapping efforts have focused
on generating long-term snow cover products using observations from multiple satellite sensors [105],
high-spatial resolution snow mapping using Sentinel-2 and Landsat optical imagery [106,107] and
machine-learning techniques [108,109]. In addition, satellite sub-pixel snow cover is valuable for
improved estimation of snowmelt runoff and understanding energy exchanges between the land surface
and atmosphere [110]. Two main approaches to derive sub-pixel snow fraction include empirical linear
regression of NDSI [111] and spectral mixture analysis [112–116].

Cloud contamination can significantly limit the signal quality of snow property detections made
by satellite optical-IR remote sensing. Daily composites of half-hourly to hourly observations from
geostationary satellites enable optimized snow detection while suppressing cloud contamination
effects. Automated snow mapping has been achieved for a variety of geostationary satellites including
GOES (Geostationary Operational Environmental Satellite) over North America [117]; Meteosat
Second Generation (MSG) satellites over Europe [118,119]; and Multifunctional Transport Satellites
(MTSAT)-2, Himawari-8, and Feng Yun (FY)-2 over Asia [120,121]. A linear interpolation method [117]
has been used to derive fractional snow cover from FY-2 satellite observations [122]. Cloud-free
snow cover products have also been derived using combined observations from polar-orbiting and
geostationary satellites [121], additional observations from satellite microwave sensors [123–126];
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and through processing of satellite data using advanced spatiotemporal filters and interpolation
techniques [127,128]. Optical-IR sensors have limitations in distinguishing between dry and wet snow,
which can be effectively addressed by incorporating SAR observations.

2.2.2. Snow Water Equivalent

Snow water equivalent (SWE) describes the amount of water contained in the snowpack when
completely melted. To estimate SWE from satellite microwave observations, the scattering and
emission contributions from intervening atmosphere, snow surface, snowpack, and underlying soil and
snow–soil interactions need to be distinguished and accounted for, which can be done by exploiting
the frequency-dependent sensitivity of microwaves to land surface components [129,130] (Figure 1).

Figure 1. Components of snow emissions and scattering observed by space-borne microwave radiometer
and radar observations. By neglecting atmosphere scattering and upward emission, the satellite signals
mainly consist of contributions from the air–snow surface (as), snow pack (v), underlying soil (g), and
snow–soil interactions (gv).

Satellite passive microwave SWE estimation relies on multi-frequency observations from SMMR
(Scanning Multichannel Microwave Radiometer), SSM/I (Special Sensor Microwave/Imager), SSMIS
(Special Sensor Microwave Imager Sounder), AMSR-E/2, and FY-3 MWRI (Microwave Radiation
Imager) [125] sensors. The associated SWE algorithms include (a) static [130] and dynamic
semi-empirical algorithms [131,132]; (b) iterative algorithms [133]; (c) physically based statistical
algorithms [134]; (d) probabilistic approaches [135]; (e) machine learning methods [136,137]; and (f)
data assimilation methods [138,139].

The satellite SAR SWE retrieval algorithms can be grouped into two categories: (a) physical
inversion algorithms and (b) interferometry methods. By utilizing the frequency-dependent sensitivity
to snow and underlying soil properties, combined multi-frequency SAR observations (e.g., X-
and Ku-band) are capable of SWE retrievals as demonstrated by model simulations and field
experiments [140–143]. The uncertainties related to snow density, ice microstructure, snow layer
stratification, vegetation, and terrain effects are the main issues affecting the performance of both
passive and active microwave snow retrieval algorithms [144–146]. Alternatively, SAR interferometry
techniques show promise in overcoming many of the above difficulties by utilizing interferometry
phase difference information for SWE estimation [147,148].

2.3. Remote Sensing of Frozen Soil

2.3.1. Landscape Freeze/Thaw States

The landscape FT status is closely linked to ecosystem carbon, water and energy exchanges, snow
melt dynamics, and permafrost extent and stability [21,34,149,150]. Global FT observational data
records spanning the modern satellite era have been used to document environmental trends from
global warming, including earlier and longer non-frozen seasons as a driver of northern vegetation
greening, increased trends in damaging frost events in early spring [9], degrading permafrost, and an
earlier spring flood pulse across the pan-Arctic [151]. By availing of the high sensitivity of microwaves
to significant dielectric shifts between solid and liquid water phase transitions, the FT signals can be
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captured by classifying Tb or radar backscatter coefficient (σ0) changes relative to frozen or non-frozen
reference conditions [35].

FT algorithms applied to both active and passive microwave observations include threshold-based
methods [35,38,152], change-detection approaches [48,153], and multi-channel data fusion or machine-
learning methods [154–158]. The threshold-based methods determine FT conditions by comparing the
satellite observations with reference Tb or σ0 values representative of seasonal frozen and non-frozen
conditions. Such approaches are robust and relatively easy to implement for operational FT retrievals.
More sophisticated multi-channel combinations, decision tree, and probabilistic model methods can
effectively distinguish FT conditions from precipitation events in sparsely vegetated and drier climate
zones. As a recent development, data fusion, and machine learning methods show promise in providing
potentially enhanced FT retrievals by exploiting massive archives of satellite observations and ancillary
data [157–159].

Multiple global FT data records have been developed using observations from satellite microwave
radiometers and scatterometers, including SMMR and SSM/I[S] [160], AMSR-E/2 [161], Aquarius [162],
SMOS (Soil Moisture and Ocean Salinity) [46], SMAP [163,164], and ASCAT [165]. Long-term (>39-year)
global daily FT data records have been developed using similar overlapping 37 GHz Tb retrievals
from SMMR and SSM/I[S] sensors with moderate (~25km) spatial resolution [160]. Finer (~12km)
resolution FT data have also been developed using calibrated 36.5 GHz orbital swath Tb records from
the AMSR-E/2 sensors [161,166]. The SMAP mission provides an operational FT data record derived
from L-band (1.4 GHz) Tb retrievals with global coverage, 1–3-day temporal fidelity, and 9-km and
36-km resolution gridding [163,164,167]. Example maps of the observed non-frozen days in 2017 are
shown (Figure 2) from three different FT data products and operational satellite sensors, including
SMAP [167], SSM/I [160], and AMSR2 [161]. The SSM/I and AMSR2 FT records are derived from
vertically polarized Tb retrievals and a modified single channel algorithm. The SMAP FT record is
derived using a dual algorithm approach including a normalized polarization ratio (NPR) of vertically
and horizontally polarized Tb differences from NPR reference states, and a single channel algorithm
where conditions are unfavorable for the NPR. All of these records show similar FT regional patterns,
including generally fewer frost days at lower latitudes and altitudes, and in coastal areas relative to
higher latitude, alpine, and inland areas. However, the SMAP and AMSR2 products show generally
enhanced spatial delineation of FT patterns due to the respective finer 9-km and 6-km resolution
gridding of these products, relative to the 25-km resolution SSM/I global grid product. The SMAP
L-band products also have greater soil FT sensitivity than the K-band retrievals from AMSR2 or
SSM/I [152].

In addition, the SMAP radar produced operational FT retrievals over northern (≥45◦N) land areas
with ~3-km resolution and 1–3-day fidelity until the radar transmitter failed in July, 2015; however,
these data are overlapping with SMAP radiometer based FT records which share the same satellite
antenna receiver [152]. FT retrievals have also been acquired from L-band Global Navigation Satellite
System (GNSS) signals captured from the SMAP radar receiver, which has provided kilometer scale
observations of FT seasonal transitions.
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(a) (b) 

(c) 

Figure 2. Estimated annual non-frozen season in 2017 derived from three operational satellite FT data
products, including: (a) SSM/I (37 GHz; 25-km), (b) AMSR2 (36.5 GHz; 6-km), and (c) SMAP (1.4 GHz;
9-km). Areas outside of the FT global domain for each product are shown in grey and white.

2.3.2. Surface Deformation

In cold regions, climate change could significantly affect surface morphology (e.g., permafrost
melting due to global warming), which may pose a threat to 70% of current infrastructure in Arctic
permafrost regions by 2050 (Figure 3) [26]. Remote sensing technologies could offer a useful platform
to better understand these geomorphic changes, especially those that guarantee high-resolution
topography analysis [168].

 

Figure 3. Projected infrastructure hazard areas from degrading permafrost over the Northern
Hemisphere by year 2050 [26]. The figure was reproduced with permission from [26], which is
licensed under a Creative Commons Attribution 4.0 International License.

Liu et al. [169] used spaceborne InSAR data to map surface subsidence trends at a thermokarst
landform located near Deadhorse on the North Slope of Alaska. The motivation of this study was
the fact that the intrinsic dynamic thermokarst process of surface subsidence remains a challenge to
quantify and is seldom examined using remote sensing methods. Subsequent InSAR analysis using
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Phased Array type L-band SAR (PALSAR) images revealed localized thermokarst subsidence of a
few cm yr−1 between 2006 and 2010. Luo et al. [170] used terrestrial laser scanning for quantifying
surface deformation pertaining to underlying hydrological–thermal processes affecting active layer FT
conditions in the Tibetan Autonomous Region (China). The Terrestrial Laser Scanner and six Trimble
5700 GNSS systems were deployed in the region between May 2014 and October 2015, where the site
was monitored four times. The results indicated that as air temperature and precipitation increase with
climate warming the active layer will become more unstable, exacerbating slope instability as phase
changes (thawing and freezing) occur. Jorgenson and Grosse [171] summarized recent developments
(2010–2015) in remote sensing applications to detect and monitor landscape changes in permafrost
regions, analyzing surface temperatures, snow cover, topography, surface water, vegetation cover, and
disturbances from fire and human activities. According to this review, repeated light detection and
ranging (LIDAR), InSAR, and airborne geophysics will be key tools for monitoring permafrost changes
(topographic and subsurface) in Arctic and boreal regions. Arenson et al. [172] stressed the fact that in
situ monitoring of periglacial dynamics is essential for the study of periglacial morphology and the
design of mitigation and adaptation measures for infrastructure in permafrost zones. The application of
structure-from-motion photogrammetric techniques is relatively low-cost and easy to use (e.g., see [173]
for details), and provide capabilities for multi-temporal surveys of surface deformation. Meng et
al. [174] used X-band SAR Interferometry for the detection of surface deformation in the Sichuan–Tibet
Grid Connection Project Area (China). In this area, landslides, and debris flows triggered by climate
change are becoming a major threat. Surface deformation time series observations were obtained
through sequential TerraSAR X-band images. The analysis suggested that the deformation rate tends
to increase dramatically during the late spring and late autumn, but with reduced deformation during
colder winter months. Stettner et al. [175] discussed the capability of high spatiotemporal resolution
X-band microwave satellite data (obtained from the TerraSAR-X satellite) to quantify cliff-top erosion
of an ice-rich permafrost riverbank in the central Lena Delta. The results indicated continuous erosion
from June to September in 2014 and 2015 with no significant seasonality across the thawing season.
The authors identified X-band backscatter time series as a useful tool complementing optical remote
sensing and in situ monitoring for rapid analysis of tundra permafrost erosion along riverbanks and
coastal areas. Chen et al. [176] used Persistent Scatterer Interferometry (PSI) to map and quantify
permafrost thaw subsidence in the Qinghai–Tibet Plateau. According to the authors, the PSI approach
is less affected by temporal or geometric decorrelation, while their results indicated that permafrost
areas near gullies are more vulnerable to gradual thawing and degradation.

2.4. Remote Sensing of Water Bodies

Surface water (SW) over inland areas is a key component of the water and energy cycles, covering
about three percent (4.46 million km2) of Earth’s land [177]. The dynamics of SW in cold land regions
are closely linked to terrestrial water storage changes [178], flood and drought events [179], seasonal
thawing and the spring flood pulse [180], microtopography, underlying geology and permafrost
conditions [181]. SW changes are also occurring in Arctic-boreal wetlands, lakes, rivers, and streams as
permafrost degrades with regional climate warming [29,180,182]; surface subsidence during the initial
stages of permafrost degradation leads to increased inundation, while later stages of permafrost thaw
lead to surface drying and reduced wetland extent as drainage pathways increase [27]. The emerging
glacier and thermokarst lakes formed as ice melts have a strong climate feedback and may increase
regional hazards from outburst flooding [183,184].

Clear and calm water appears dark and is readily distinguished from surrounding land features
using optical-IR, microwave radiometer, and mono-static radar sensors. Optical-IR satellite sensors
such as PlanetScope multispectral cameras, MODIS, AVHRR, and Landsat provide potential daily
to 16-day repeat global observations of SW cover at moderate to high-resolution (3–1000 m), while
screening and temporal compositing of the data to reduce the influence of cloud and atmosphere
contamination may degrade temporal fidelity [177,181,185].
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Potential drawbacks from optical-IR sensors can be partially overcome by active [186] and
passive [178,187–189] microwave remote sensing. Daily satellite passive microwave observations were
used to monitor spatial variability and multi-year trends in surface inundation in permafrost affected
regions [29,188]. Lower frequency (e.g., L-band) microwave retrievals have shown greater sensitivity
and detection of surface water even under low to moderate vegetation cover [190]. The synergistic
use of optical-IR and microwave observations, and ancillary hydrologic information has shown
promise in producing optimum SW mapping results in terms of accuracy, and spatial and temporal
resolution [190–195].

2.5. Remote Sensing of Terrestrial Ecosystems

Vegetation growth in cold regions is limited by multiple environmental constraints including
low temperatures, frozen sub-surface soils in permafrost affected terrain, low light levels in winter
and shoulder seasons, water stress in summer, and nutrient limitations due to the very slow release
of plant available nitrogen and phosphorus from seasonally frozen or inundated soils [196,197].
Although ground-based measurements are needed to inform local-scale investigations, remote sensing
is especially important for the cold regions because it provides spatially and temporally resolved data
over broader scales, allowing for synoptic investigations of vegetation ranging from individual plots
to regional and global extents.

2.5.1. Vegetation Mapping

Land cover type is a general term encompassing a range of important information about ecosystems,
including biotic and abiotic properties related to vegetation, energy balance, and carbon exchanges.
Satellite remote sensing has been used throughout the cold regions to provide various maps of land
cover that group vegetation according to geobotanical themes, including physiology. The spatial
patterns in the vegetation maps can provide useful insight into how microclimates, soil type, and
hydrology, disturbance and plant succession contribute to variations in plant community characteristics
at landscape to regional levels. These maps are also used to parameterize ecosystem process models by
means of parameter look-up tables aggregated according to generalized plant functional types [198,199].

Classification algorithms trained on satellite optical-IR spectral information have been used to
map land cover and vegetation type over large areas. For example, the United States Geological
Survey (USGS) provides 30-m land cover data for the state of Alaska for years 2001 and 2011, using the
C5 decision-tree classifier applied to Landsat TM and ETM+ (Enhanced Thematic Mapper) imagery
(http://www.mrlc.gov). For the Anderson Level II classification (19 classes, defining different types of
forest, shrub, herbaceous, and wetland), the overall accuracy ranged from 59% to 76%, depending on the
definition of agreement with reference data [200]. The Earth Observation for Sustainable Development
of Forests (EOSD) project used an unsupervised k-means clustering approach with Landsat ETM+
data to map land cover across Canada at 25-m resolution for the year 2000, using a detailed 23-class
system [201]. In another study, phenological data derived from Landsat 8 NDVI timeseries, along
with other inputs, were used to classify land cover across ice-free portions of Greenland at 30-m
resolution [202]. Mapped classes included fen, dry heath and grasslands, wet heath, and copse and
tall shrubs, with an overall classification accuracy of 89%. Other studies have used higher resolution
imagery to map vegetation communities in heterogenous tundra landscapes (e.g., using IKONOS
imagery [203]). For sites across the North Slope of Alaska, tundra vegetation communities were shown
to be separable based on visible wavelengths collected through field spectroscopy, and vegetation
type was mapped at 2-m resolution with ~70% accuracy using linear discriminant analysis applied to
WorldView-2 data [40].

In addition to optical-IR data, airborne and satellite SAR data can be effective for separating land
cover classes due to its sensitivity to vegetation structure and water content [204–206]. A supervised
classification approach was applied to airborne, multifrequency polarimetric SAR imagery to map
functional vegetation types at 30-m resolution across a boreal forest area [204]. Classes such as jack pine,
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black spruce, and trembling aspen were mapped with high accuracy (> 90%). Radar data can also be
used to distinguish different types of wetland vegetation, as higher frequency microwave data can detect
flooded short vegetation (e.g., fens and bogs), while lower frequency data are better at detecting flooded
tall vegetation (e.g., forests and swamps) [206]. The fusion of microwave and optical data through
traditional supervised classification (e.g., maximum-likelihood classifier) [205] and machine-learning
approaches [206,207] enables improved land cover classification over the high-latitudes. Deep-learning
approaches also show promise in utilizing semantic information of satellite imagery for classifying
complex ecosystems [208].

2.5.2. Vegetation Growth and Photosynthetic Carbon Assimilation

A number of remote sensing vegetation indices such as NDVI, leaf area index (LAI), and
enhanced vegetation index (EVI) have been developed to characterize vegetation properties related to
photosynthesis on a per-pixel basis [209]. In Arctic-boreal regions, multispectral satellite data have
been used to quantify variables related to vegetation growth [210], biomass [211,212], and carbon
fluxes [213]. Satellite microwave systems can also provide information about vegetation growth and
carbon assimilation. For example, vegetation optical depth (VOD) derived from satellite microwave
Tb observations is sensitive to vegetation water content and provides information on both canopy
biomass (photosynthetic and non-photosynthetic) phenology and drought stress [214–218]. VOD has
also been used to monitor vegetation growth and recovery after fires in boreal forests [219].

Much of the remote sensing-based work for plant growth and carbon cycling has focused on
modeling gross primary productivity (GPP), which represents carbon biomass created by plants through
the process of photosynthesis over a given length of time and space (e.g., m2 day−1). GPP also represents
the amount of atmospheric CO2 sequestered by plants within biomass. GPP models are often based on
a light-use efficiency (LUE) framework, which estimates GPP as a function of APAR, the fraction of
absorbed photosynthetically active radiation (PAR), and a photosynthetic efficiency parameter which
describes the rate at which absorbed radiation is used for carbon fixation [220]. To model APAR, inputs
of LAI and fPAR (the fraction of canopy absorbed PAR) are needed, which can be modeled using
spectral reflectance data combined with radiative transfer algorithms [221]. Alternatively, NDVI can be
used as a proxy for fPAR [222]. The efficiency parameter is more difficult to model and can vary based
on vegetation type, water limitations, and light conditions [220]. However, GPP has also been shown to
be directly related to the EVI, which tends to be less saturated than NDVI over higher canopy densities
and less sensitive to soil background noise [220]. Relationships between EVI and GPP were shown to
vary among sites, with correlations generally stronger for deciduous sites than for evergreen sites [220].
Another important and newer proxy for GPP is solar-induced fluorescence (SIF) [223]. SIF quantifies
the amount of light reemitted by chlorophyll molecules as a byproduct of photosynthesis, and has
been shown to be directly proportional to GPP [224]. Satellite-based SIF (e.g., from the Global Ozone
Monitoring Experiment 2 [225] and Orbiting Carbon Observatory-2 [226]), allows for global monitoring
of terrestrial GPP and the carbon cycle. However, the SIF signal has relatively small magnitude and
generally requires a large sensor footprint and coarse temporal compositing of the data to obtain an
adequate signal-to-noise ratio relative to NDVI and EVI observations [227].

Aboveground biomass (AGB) is an important component of global carbon accounting. Remote
sensing techniques are used to estimate AGB by capturing both vertical structure and spatial variability
of canopies. For example, AGB has been estimated from LIDAR-derived canopy height and vertical
structure metrics [228,229]. Biomass was mapped for the circumboreal zone using multi-step modeling
that combined field-based biomass data, airborne and satellite LIDAR data [230,231], and similarly
at the regional scale for boreal forest in Québec [232]. Other studies demonstrated the potential of
low-frequency (e.g., L- and P-band) polarimetric SAR/InSAR data for estimating AGB in boreal forests
and over complex terrain [233–237].
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3. Changes and Trends

Climate warming in cold regions has been altering the phenology of snow, lake, and river ice,
and vegetation, causing accelerated ice melting in polar regions, and leading to complex wetting and
drying trends, and greening and browning patterns in northern high latitudes and TP. Multi-decade
remote sensing observations are essential in documenting the environmental changes and revealing
the long-term trends

3.1. Northern High Latitudes

The long-term (1979–2017) anomalies of the annual non-frozen season derived from the satellite
microwave FT observational record show a lengthening non-frozen season trend over vegetated lands
(excluding large water bodies and permanent ice/snow covered areas) in the high-northern latitudes
(3.30 day decade−1; p-value <0.001), with similar trends over the Northern Hemisphere (3.98 day
decade−1), Southern Hemisphere (3.61 day decade−1), and global domains (3.93 day decade−1) as
shown in Figure 4.

Figure 4. Non-frozen season trend (1979–2017) for the Northern Hemisphere (NH), Southern
Hemisphere (SH), high-northern latitudes (HNL), and global domain. The anomalies were calculated
as annual differences from the long-term mean. Grid cells dominated by permanent snow/ice cover
and large water bodies (open water fraction ≥ 20%) are excluded from the analysis.

The changes in the annual non-frozen season length reflect the overall warming trend in the climate
system. The timing and duration of the non-frozen season is an important factor affecting water, carbon,
and energy budgets in cold land areas. Recent trends toward earlier and longer non-frozen seasons
coincide with global warming and have been shown to be a major driver of northern vegetation greening,
active layer deepening and permafrost degradation, enhanced evapotranspiration, earlier snowmelt
onset, and associated changes in terrestrial water and energy budgets [21,34,149]. For example, satellite
observations indicate that the snow end date in spring advanced by 5.11 days from 2001 to 2014 in the
high northern latitudes (52–75◦N) [238], along with shorter lake ice cover duration at higher latitudes
from 2002 to 2015 [17]. The melting of permafrost ice provides the water supply to thermokarst
lakes [239] and leads to surface water expansion detected within continuous and discontinuous
permafrost zones [29].

Satellite remote sensing observations have been used to detect changes in warming Arctic–boreal
ecosystems. Increasing temperatures and atmospheric CO2 concentrations can impact the production,
dynamics, and composition of vegetation, as well as soil moisture and other soil properties [240]. One
of the most pronounced ongoing changes is tundra shrub expansion [203]. Changes to vegetation
are likely to occur around vegetation ecotones [203,240]. Much effort has been given to identifying
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regions of vegetation production increase (greening) or decrease (browning). A 10-year time series of
monthly average AVHRR NDVI indicated an increase in photosynthetic activity in the northern high
latitudes from 1981 to 1991 driven by earlier growing season onset [241]. A subsequent study using a
longer AVHRR time series indicated an increase in tundra vegetation growth in boreal North America,
largely driven by longer growing seasons, but decreasing growth in interior forests [242]. Recent work
used time series of Landsat vegetation indices in Arctic sites, with results indicating more areas with
increasing growth than decreasing growth [243]. Analysis of a 28-year Landsat NDVI record indicated
that greening and browning of Canadian boreal forests were largely driven by disturbances from wild
fire and insect damages; and, in forests not affected by disturbance, climate changes were associated
with both areas of greening and browning [240]. Regarding phenological changes, a 30-year Landsat
record was used to detect an earlier/heterogeneous leaf emergence trend in temperate/boreal deciduous
forests [197], while a 33-year AVHRR NDVI time series revealed regional trends toward earlier growing
season onset, later growing season end, and longer growing season duration over the high northern
latitudes [31]. Based on recent satellite optical and microwave observations for years 2003 through 2017
over the high northern latitudes, the mean summer (JJA) MODIS NDVI record (MYD13A1.006; [244])
showed similar spatial patterns with the AMSR-E/2 VOD record [216], despite the different spatial
resolutions and underlying physics of the observations (Figure 5a,b). Major greening and biomass
growth trends are found in northern taiga and tundra regions, where both NDVI and VOD show
significant increases (p-value < 0.05) (Figure 5c,d). However, declining NDVI and VOD trends are
also widespread, indicating decreasing productivity. The declining trend areas largely occur in boreal
forest but are generally less significant than positive trend areas.

(a) (b) 

(c) (d) 

Figure 5. Vegetation conditions and growth trend over the high northern latitudes from 2003 through
2017. (a) Mean summer MODIS NDVI; (b) Mean summer AMSR-E/2 VOD; (c) Trends in mean summer
NDVI; (d) Trends in mean summer VOD. In c and d, positive values indicate an increasing trend and
negative values indicate a decreasing trend; pixels with significant trend (p-value < 0.05) are shown
with crosshatch.
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3.2. Antarctic and Greenland Ice

The Antarctic and Greenland ice sheets are the largest ice bodies on Earth and are significantly
affected by changing air temperatures and solar radiation. If completely melted, the polar ice sheets
would raise global sea level by 70 m [245]. Recent studies show that the magnitude of recent melting of
the Greenland ice sheet is exceptional over at least the last 350 years [246]. Greenland’s ice is melting
so fast that it could become a major contributor to sea-level rise within two decades. Greenland ice loss
mainly occurred in the southeast and northwest margins of the ice sheet in the 2000–2010 period; while
the largest sustained acceleration (~10 years) in ice loss was detected in southwest Greenland from
GRACE (Gravity Recovery and Climate Experiment) observations [247]. The overall transformation of
ice into liquid water appears to be accelerating and Greenland loses an average of 270 billion tons of
ice each year [248].

The recent loss of continental ice includes both the northern and southern hemispheres. An estimate
of the mass balance of the entire Antarctic ice sheet over a 25-year record (1992 to 2017) shows that
the Antarctic Peninsula, the smallest ice sheet in Antarctica, has lost an average of 20 Gigatonnes
(Gt) of ice per year. The loss rate increased during the study period especially after the year 2000.
The West Antarctic Ice Sheet lost 53 ± 29 Gt yr−1 from 1992-1997, and the loss rate accelerated to
159 ± 26 Gt yr−1 from 2012-2017. The East Antarctic Ice Sheet is relatively stable, with small gains over
the study period [249]. The changes of polar mass balance are associated with snow and ice surface
darkening [250], warmer atmosphere and ice surface conditions [251–253], and increased surface melt
duration and extent [253–255] as observed by satellite optical and microwave sensors.

The velocity of ice flow in the Antarctic has been closely monitored using optical and radar remote
sensing due to its importance in determining ice discharge and sea level rise [60,256]. The velocity map
derived from the MODIS-based Mosaic of Antarctica data showed the general flow patterns of glaciers
and ice sheets moving from interior Antarctica toward the ocean for the periods from 2003–2004 and
2008–2009 (Figure 6). Continuous monitoring of the widespread ice flow over the entire continent is
highly needed for improving our understanding of ice sheet dynamics and evolution in a warming
climate [60,256].

 

Figure 6. Antarctic surface ice velocity map. The floating velocity field of the Drygalski Ice Tongue is
enlarged in the close-up below. The figure was reproduced with permission from [60].
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3.3. Tibetan Plateau

The Tibetan Plateau (TP), the most extensive highland in the world, has an area of approximately
2.5 × 106 km2 and an average elevation of over 4000 m. The TP also has the Earth’s largest storage
of ice outside of the north and south polar regions. The climate of the TP is changing rapidly with
temperatures warming at a rate of around 0.36 ◦C/decade [3], which is twice the mean global trend [4].
Consequently, the impacts of climate change on the TP environment are most pronounced, leading to
earlier onset of seasonal thawing, accelerating glacier melting, permafrost degradation, and complex
changes in snow, lakes, and vegetation.

Glacier melting has been observed over the TP and larger High Mountain Asia region.
Kaab et al. [257] used ICESat to analyze glacier mass change in the Hindu Kush–Karakoram–Himalaya
region during 2003–2008 and found a mass loss rate of −12.8 ± 3.5 Gt yr−1 in this region, which is faster
than the rate previously estimated using GRACE [258]. For the whole TP region, Neckel et al. [259]
estimated an overall mass loss rate of −15.6 ± 10.1 Gt yr−1 using ICESat observations from 2003 to 2009.
For the same period, Gardner et al. [260] estimated a total mass change of –29 ± 13 Gt yr−1 over High
Mountain Asia by integrating GRACE and ICESat observations.

Global and localized satellite snow products have been used for studying environmental
changes in the TP, including snow impacts on the regional water cycle, ecosystems, and atmospheric
circulation [261].

Based on the MODIS snow cover product (MOD10A2) and observations from 37 meteorological
stations, a significant trend of earlier onset of snow ablation during the 2001-2015 period was detected
over the TP [262]. By analyzing MODIS snow cover data from 2001 to 2011, other research [263] found
about 34.14% (5.56%) of the TP area having a declining (significant declining) trend in snow duration,
while 24.75% (3.9%) of the region showed increasing snow duration. To further enhance the accuracy
of TP snow products, Chen et al. [264] integrated snow cover data from multiple sources to generate a
gap-filled daily 5-km Tibetan Plateau snow cover extent record (TPSCE) from 1981–2016. As revealed
by the TPSCE, the snow cover fraction increased in the northern interior TP river basins and upper
reaches of the Yangtze, Mekong, and Brahmaputra River basins (Figure 7).

 

Figure 7. Climatology and changes of the TP snow cover fraction (%) calculated using MCD10A1-TP
(a, b) and TPSCE (c, d) from 2001–2014. Black dots in (b) and (d) indicate the changes are statistically
significant at the 95% level. The figure was reproduced with permission from [264].
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Beside the global FT products available from satellite microwave observations [160], Kou et al. [265]
developed an enhanced resolution (0.05 degree) FT product over the TP by merging MODIS LST with
AMSR-E Tb records. Li et al. [266] analyzed changes in the soil FT cycle over the TP using SSM/I
data from 1988-2007. They identified a trend toward earlier onset of soil thaw by approximately
14 days/decade and later onset of soil freeze by approximately 10 days/decade. The observed changes
in FT patterns over the TP are also closely related to regional climate warming [265].

There are more than 1000 lakes with an area greater than 1 km2 on the TP. Generally, the total
TP lake area is expanding, from 41,800 km2 in 2005–2006 [267] to 46,600 km2 in 2015 [268]. The lake
expansion can be directly measured through optical satellite remote sensing. Wang et al. [269] analyzed
the trend of lake area changes during 1960-2000 by integrating aerial photos, satellite images (Landsat
and CBERS-1 (China-Brazil Earth Resources Satellite)), and topography information. They found
that most lakes in the central TP were expanding, while the lakes in the source regions of the Yellow
River were shrinking. For lakes in the central TP, Wan et al. [270] analyzed Landsat TM/ETM+ and
CBERS images, and found that lakes southeast of the Qiangtang area were expanding from 1975 to
2005. Another study [271] analyzed Landsat images from 1970 to 2010 and found a shrinking lake
trend in the southwest TP contrasting with rapid lake expansion in the northeast TP. Yang et al. [272]
investigated lake extent fluctuations in the Hindu Kush–Himalaya–Tibetan (HKHT) regions over
the past 40 years using Landsat images obtained from the 1970s to 2014. They showed that the TP
lake trends are distinct from region to region, with the most intensive lake shrinking observed in
northeastern HKHT (HKHT Interior, Tarim, Yellow, Yangtze), while the most extensive expansion was
observed in the western and southwestern HKHT (Amu Darya, Ganges Indus, and Brahmaputra),
largely caused by the proliferation of small lakes in high-altitude regions from the 1970s to 1995.

Lake water levels measured from LIDAR/Radar altimetry can also be used to quantify lake changes.
Based on 10-year TOPEX/Poseidon altimetry data, the water level of La’nga lake in the western TP was
found to decrease steadily from 1993 to 2001, while that of Ngangzi lake in the eastern TP decreased
from 1993 to 1997 and then increased monotonically afterwards [273]. Another study [274] used
ICESat altimetry data to analyze water level changes from 2003–2009 for 74 TP lakes and identified
an increasing lake level trend (~0.23 m yr−1) over 84% of the lakes represented. Consistent with
the findings of [275], an average water level increase of 0.20 m yr−1 was detected from GLAS data
over 154 TP lakes for the same period [276]. By integrating multi-altimeter data from Envisat/RA-2,
Cryosat-2/Siral, Jason-1/Poseidon-2, and Jason-2/Poseidon-3, Gao et al. [277] found that water levels
increased by about 0.275 m yr−1 for over 82% of 51 TP lakes sampled, while major lake expansion and
shrinking were identified over the northern and southern TP, respectively.

A general greening trend from the 1980s to 2010s was detected from satellite remote sensing
over the TP [278]. Seasonal analysis based on GIMMS (Global Inventory Monitoring and Modeling
System) NDVI data further revealed that the largest NDVI increase occurred in autumn over 61%
of the TP, while the smallest increase occurred in spring over 41% of the region [279]. Vegetation
changes in the northeast, southwest, mid-eastern, and southern TP regions were driven by three
different factors, including changes in surface air temperature, water availability, and solar radiation,
respectively. Anthropogenic disturbances may offset climate-driven vegetation greening and exacerbate
vegetation browning, while ecosystem conservation efforts contributed to vegetation recovery in the
TP Three-River Headwaters Region [280].

Based on the NDVI data from 1982 to 2014, an advancing start of growing season, delayed end of
season and increasing length of growing season were identified for meadow areas in the eastern TP;
while the opposite changes were found for the steppe and sparse herbaceous or sparse shrub areas in
the northwest and western edges of the TP. The satellite-observed phenology changes were driven
by a number of environmental factors including temperature [281–283], precipitation [284], sunshine
duration [285], and snow cover [286]; and may be partially attributed to aerosol contamination in the
satellite observations [287].
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4. Challenges and Opportunities

4.1. Limitations of Current Approaches

Despite great achievements in cold land remote sensing, comprehensive assessment of both
long-term trends and relatively abrupt environmental changes requires quantifying hydrological and
ecological variables with greater precision, including clearer delineation of different land components,
better accuracy, data consistency, spatial resolution, and temporal sampling.

Ice—The spatial resolution of satellite gravimetry observations of glaciers and ice sheets are
generally very coarse (around 100 km), which limits their ability to precisely detect and locate
glacier mass change at finer scales. LIDAR-based measurements of glacier elevations are of high
accuracy (decimeter level) but with relatively poor spatial coverage, which consequently requires data
interpolation and extrapolation for applications over large areas. For monitoring glacier movement,
feature tracking fails when low coherence occurs in fast moving glaciers or over prolonged time
intervals between observations.

Snow—Snow covered area is mainly derived using optical sensors onboard polar-orbiting or
geostationary satellites. However, it is still challenging to distinguish between clouds and snow
in satellite optical snow mapping. Long-term (>40-year) SWE data records have been generated
for the globe through satellite passive microwave sensors, but the retrieval spatial resolution and
accuracy has generally not met the requirements for regional climate, numerical weather prediction,
and hydrological research. The retrieval uncertainties mainly come from four sources, including mixed
pixel effects, terrain effects, large diversity in snow physical properties, and low microwave sensitivity
to shallow snow.

Landscape Freeze/Thaw States—Most of the available global FT products represent aggregate
landscape FT conditions that do not distinguish land components of the FT signal within a satellite
footprint at several-10s km. Accurate estimates of FT metrics (e.g., spring thaw timing, frost days)
pertaining to soil, snow, and vegetation components isolated from the integrated microwave FT
signals with improved spatial resolution are required for better understanding of land and atmosphere
interactions, including carbon, water, and energy exchanges. It is also needed to understand the scaling
effects for heterogeneous terrain to bridge multi-resolution satellite observations [38].

Water Bodies—It is challenging to detect water within mixed pixels or under overlying vegetation
for both optical-IR and microwave sensors. In addition, near real-time and fine-scale mapping of
regional SW dynamics are urgently needed for monitoring flood hazards and arctic wetting and
drying trends.

Vegetation—The short growing season and generally low vegetation productivity of Arctic–boreal
regions can create challenges in terms of detecting changes in vegetation growth through use of
remote sensing time series data. Other challenges in Arctic–boreal regions include saturated satellite
signals over high-biomass vegetation, high occurrence of shallow water bodies, the presence of
snow and ice cover, and spatially heterogenous snowmelt resulting in pixels mixed with snow and
vegetation. Additionally, long-term and fine-scale delineation (1–200 m) of vegetation (e.g., shrub)
patch distributions is lacking, but greatly needed in high-latitude ecosystem studies [288].

4.2. Opportunities

Progress in remote sensing and information technologies such as the Advanced Topographic
Laser Altimeter System (ATLAS) on-board ICESat-2 [289,290]; near-nadir SAR [291,292]; C-, L- and
P-band SAR [293–295]; small satellites [181,296]; and cloud computation and artificial intelligence [297]
will likely provide opportunities to overcome current challenges.

It is anticipated that SAR will play a greater role in cold land studies. The European Space
Agency’s Sentinel-1A/B satellites and the Canadian Space Agency’s RADARSAT Constellation Mission
(RCM) launched on 12 June 2019 [293] can provide multi-resolution (1–3 m to 100-m) C-band SAR and
InSAR measurements every 1–6 days globally and at low cost for monitoring glacier movement, river
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ice conditions, water body dynamics, snow, and vegetation parameters [298]. The next generation
NISAR (National Aeronautics and Space Administration - Indian Space Research Organisation SAR)
mission is expected to improve capabilities for dynamic mapping of global surface water at resolutions
from 3–10 m [294] and provide new opportunities to derive SWE in complex terrain from single-
and repeat-pass radar (L-band) interferometry [16]. The surface water ocean topography (SWOT)
mission has a projected launch in 2021 and will enable estimation of the changing volumes of global
water bodies whose surface area exceeds 250 m by 250 m at sub-monthly time scales [178,291]. The
upcoming BIOMASS mission (launch 2021) offers opportunities for mapping vegetation biomass with
enhanced P-band penetration capability [299], though National restrictions on P-band transmissions
will eliminate BIOMASS coverage over North America [300]. Another future direction for analyzing
environmental changes in remote areas under harsh climatic conditions could also involve relatively
low-cost multi-temporal remote sensing surveys. Unmanned aerial vehicle (UAV)-based remote
sensing (e.g., thermal imaging, structure from motion photogrammetric techniques), given relatively
low application barriers (e.g., low cost for repeat seasonal or yearly surveys), is expected to become
a strategic tool for better monitoring and understanding of the geomorphologic dynamics of cold
regions, and related impacts on ecosystems and infrastructures.

Improved retrieval algorithms will better leverage the remote sensing observations. For example,
entropy-based multi-scale image matching and optical flow techniques potentially help overcome the
limitations of conventional image matching approaches for monitoring fast moving glaciers [301,302].
Backward reconstruction techniques using a temperature-index or energy-balance model provide
another promising tool to estimate SWE through the melt season in mountainous regions and
elsewhere [303,304]. There is also great potential for improving snow depth and SWE retrievals using
LIDAR measurements [305,306], microwave interferometry [147,307], and GNSS techniques [308],
which largely avoid issues related to snow microstructure. Considering the complementarity of LIDAR,
optical-IR, and microwave remote sensing, the use of data integration techniques such as deep-learning
approaches [208] from a collection of multi-sensor observations may enable enhanced delineations of
snow, water, soil, and vegetation elements, and accurate mapping of environmental variables at high
spatial–temporal resolutions.

5. Conclusions

The rapid environmental changes in cold land regions have profound impacts on ecosystems,
geomorphology, animal habitats, and human lives. Remote sensing is the most valuable and
indispensable technique for large-scale monitoring of such changes, accurately quantifying both
transient anomalies and longer-term trends, while providing observational benchmarks to test earth
system model projections. Calibrated long-term observations from these sensors have produced
relatively precise satellite data records documenting significant changes in landscape FT states,
snow extent and depth, glacier mass and movement, water body dynamics, and lake ice [309] and
vegetation phenology. Earlier onset of snow melt [310], soil thaw, and lake ice break-up, longer
potential growing seasons, and expanding lakes were identified in both the northern high latitudes
and TP; and continuous ice loss has been observed in both Greenland and Antarctica. Despite these
achievements, pressing issues such as melting permafrost, disappearing glaciers, shrinking ice cover,
and structural and functional changes in ecosystems require more timely and accurate interpretations
from remote sensing observations. Multi-sensor data fusion approaches show promise in overcoming
the drawbacks of single sensor observations, while strengthening capabilities for monitoring and
detecting environmental changes in cold regions. Next generation satellite missions including SWOT,
NISAR, and BIOMASS; emerging techniques such as micro-satellites and data mining; and coordinated
research activities [311–313] will enable cold land mapping with unprecedented sampling frequency,
spatial resolution, and accuracy.
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Acronym list

AGB Aboveground biomass
APAR Absorbed PAR
AMSR2 Advanced Microwave Scanning Radiometer 2

AMSR-E
Advanced Microwave Scanning Radiometer for Earth
Observing System

ASAR Advanced SAR
ATLAS Advanced Topographic Laser Altimeter System
AVHRR Advanced very-high-resolution radiometer
AMSR-E/2 AMSR-E and AMSR2
Tb Brightness temperature
China–Brazil Earth Resources Satellite CBERS-1
DEM Digital Elevation Model
DInSAR Differential Interferometric Synthetic Aperture Radar
DMSP Defense Meteorological Satellite Program
ERS European remote sensing satellite
ETM Enhanced Thematic Mapper
EVI Enhanced Vegetation Index
FT Freeze–thaw
FY Feng Yun
GLAS Geoscience Laser Altimeter System
GIMMS Global Inventory Monitoring and Modeling System
GCOS Global Climate Observing System
GNSS Global Navigation Satellite System
GOES Geostationary Operational Environmental Satellite
GRACE Gravity Recovery and Climate Experiment
GBL Great Bear Lake
GSL Great Slave Lake
GPP Gross Primary Productivity
ICESat Ice, Cloud, and land Elevation Satellite
IMS Interactive Multisensor Snow and Ice Mapping System
InSAR Interferometric Synthetic Aperture Radar
ISRO Indian Space Research Organisation
HKHT Kush-Himalaya-Tibetan
LST Land Surface Temperature
LAI Leaf Area Index
LIDAR Light Detection and Ranging
LUE Light Use Efficiency
MBE Mean Bias Error
MSG Meteosat Second Generation
MWRI Microwave Radiation Imager
MODIS Moderate Resolution Imaging Spectroradiometer
MTSAT Multifunctional Transport Satellites
NASA National Aeronautics and Space Administration
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NISAR NASA-ISRO Synthetic Aperture Radar
NOAA National Oceanic and Atmospheric Administration
NDSI Normalized Difference Snow Index
NDVI Normalized Difference Vegetation Index
NDFSI Normalized Difference Forest Snow Index
Optical-IR Optical and Infrared
OLI Operational Land Imager
PSI Persistent Scattered Interferometry
PALSAR Phased Array type L-band Synthetic Aperture Radar
PAR Photosynthetically active radiation
RMSE Root Mean Square Error
SIRAL SAR Interferometer Radar Altimeter
SMMR Scanning Multichannel Microwave Radiometer
SWE Snow water equivalent
SMAP Soil Moisture Active Passive
SMOS Soil Moisture and Ocean Salinity
SIF Solar Induced Fluorescence
SSM/I Special Sensor Microwave/Imager
SSMIS Special Sensor Microwave Imager Sounder
SW Surface water
SWOT Surface Water Ocean Topography
SAR Synthetic Aperture Radar
fPAR The fraction of absorbed PAR
TM Thematic Mapper
TP Tibetan Plateau
TPSCE Tibetan Plateau Snow Cover Extent record
UAV Unmanned aerial vehicle
USGS United States Geological Survey
VOD Vegetation Optical Depth
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