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Preface to ”Cosmological Inflation, Dark Matter and

Dark Energy”

Based on recent cosmological observations, such as type Ia supernovae, cosmic microwave 
background (CMB) radiation large-scale structure, baryon acoustic oscillations (BAO), and weak 
lensing, the universe has experienced an accelerated phase of its expansion, not only regarding the 
early universe but also in present times. The former is called “inflation” and the latter is called “the 
late-time cosmic acceleration”. It is also well known that the three energy components of the universe 
are dark energy (about 68%), dark matter (about 27%), and baryon (about 5%).

A number of studies have been executed for the origins of the field to realize inflation, dark 
matter, and dark energy. The future detection of primordial gravitational waves is strongly expected 
in order to know the energy scale of the inflationary phase. Moreover, there are two possibilities for 
the origin of dark matter, namely, new particles in particle theory models beyond the standard model 
and astrophysical objects. Furthermore, two representative studies have been proposed for the true 
character of dark energy. One is the introduction of some unknown matter called dark energy with 
the negative pressure in the framework of general relativity. The other is the modification of gravity 
at large scales, leading to the so-called geometrical dark energy.

The main aim of this book is to understand various cosmological aspects, including the origins 
of inflation, dark matter, and dark energy. It is one of the most significant and fundamental issues 
in modern physics and cosmology. In addition to phenomenological approaches, more fundamental 
studies are considered from higher-dimensional theories of gravity, quantum gravity, and quantum 
cosmology, physics in the early universe, quantum field theories, and gauge field theories in curved 
spacetime as well as strings, branes, and the holographic principle.

This book consists of the 13 peer-reviewed articles published in the Special Issue “Cosmological 
Inflation, Dark Matter and Dark Energy” in Symmetry. As Guest Editor of this Special Issue, I have 
invited the authors to write original articles to the Issue and rearranged the contents for this book.

The organization of this book is as follows. The first part (2 articles) concerns the origin and 
nature of dark matter. The second (7 articles) details the mechanisms for the cosmic accelerations 
of dark energy as well as inflation. The third (4 articles) covers gravity theories and their 
quantum aspects.

I would like to sincerely acknowledge MDPI and am greatly appreciative of the Managing Editor, 
Ms. Dalia Su, for her very kind support and warm assistance during this project. Moreover, I am 
highly grateful to the Editor-in-Chief Professor Dr. Sergei D. Odintsov for giving me the chance to 
serve as Guest Editor of this Special Issue. Furthermore, since this is my first memorial editorial book, 
I would like to express my sincere gratitude to my supervisors Professor Dr. Jun’ichi Yokoyama, 
Professor Dr. Misao Sasaki, Professor Dr. Motohiko Yoshimura, Professor Dr. Fumio Takahara; 
my professors Professor Dr. Shin’ichi Nojiri, Professor Dr. Akio Sugamoto, Professor Dr. Chao-Qiang 
Geng, Professor Dr. Nobuyoshi Ohta; my important collaborators on the topics in this book, Professor 
Dr. Salvatore Capozziello, Professor Dr. Emmanuel N. Saridakis, Professor Dr. Shinji Tsujikawa; 
as well as to all of my collaborators. I would also like to thank all the authors for the submission of 
their articles to this Special Issue of Symmetry.

Kazuharu Bamba

Special Issue Editor
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Dark Matter as a Non-Relativistic Bose–Einstein
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Abstract: We confront a non-relativistic Bose–Einstein Condensate (BEC) model of light bosons
interacting gravitationally either through a Newtonian or a Yukawa potential with the observed
rotational curves of 12 dwarf galaxies. The baryonic component is modeled as an axisymmetric
exponential disk and its characteristics are derived from the surface luminosity profile of the
galaxies. The purely baryonic fit is unsatisfactory, hence a dark matter component is clearly needed.
The rotational curves of five galaxies could be explained with high confidence level by the BEC model.
For these galaxies, we derive: (i) upper limits for the allowed graviton mass; and (ii) constraints on
a velocity-type and a density-type quantity characterizing the BEC, both being expressed in terms
of the BEC particle mass, scattering length and chemical potential. The upper limit for the graviton
mass is of the order of 10−26 eV/c2, three orders of magnitude stronger than the limit derived from
recent gravitational wave detections.

Keywords: dark matter; galactic rotation curve

1. Introduction

The universe is homogeneous and isotropic at scales greater than about 300 Mpc. It is also spatially
flat and expanding at an accelerating rate, following the laws of general relativity. The spatial flatness
and accelerated expansion are most easily explained by assuming that the universe is almost entirely
filled with just three constituents, namely visible matter, Dark Matter (DM) and Dark Energy (DE),
with densities ρvis, ρDM and ρDE, respectively, such that ρvis + ρDM + ρDE = ρcrit ≡ 3H2

0 /8πG ≈
10−26 kg/m3 (where H0 is the current value of the Hubble parameter and G the Newton’s constant),
the so-called critical density, and ρvis/ρcrit = 0.05, ρDM/ρcrit = 0.25 and ρDM/ρcrit = 0.70 [1,2]. It is
the large amount of DE which causes the accelerated expansion. In other words, 95% of its constituents
is invisible. Furthermore, the true nature of DM and DE remains to be understood. There has been
a number of promising candidates for DM, including weakly interacting massive particles (WIMPs),
sterile neutrinos, solitons, massive compact (halo) objects, primordial black holes, gravitons, etc.,
but none of them have been detected by dedicated experiments and some of them fail to accurately
reproduce the rotation curves near galaxy centers [3,4]. Similarly, there has been a number of promising
DE candidates as well, the most popular being a small cosmological constant, but any computation of
the vacuum energy of quantum fields as a source of this constant gives incredibly large (and incorrect)
estimates; another popular candidate is a dynamical scalar field [5,6]. Two scalar fields are also able to
model both DM and DE [7]. Extra-dimensional modifications through a variable brane tension and
five-dimensional Weyl curvature could also simulate the effects of DM and DE [8]. In other theories,
dark energy is the thermodynamic energy of the internal motions of a polytropic DM fluid [9,10].

Symmetry 2018, 10, 520; doi:10.3390/sym10100520 www.mdpi.com/journal/symmetry1
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Therefore, what exactly are DM and DE remain as two of the most important open questions in
theoretical physics and cosmology.

Given that DM pervades all universe, has mass and energy, gravitates and is cold (as otherwise it
would not clump near galaxy centers), it was examined recently whether a Bose–Einstein condensate
(BEC) of gravitons, axions or a Higgs type scalar can account for the DM content of our universe [11,12].
While this proposal is not new, and in fact BEC and superfluids as DM have been considered by various
authors [13–34], the novelty of the new proposal was twofold: (i) for the first time, it computed the
quantum potential associated with the BEC; and (ii) it showed that this potential can in principle
account for the DE content of our universe as well. It was also argued in the above papers that, if the
BEC is accounting for DE gravitons, then their mass would be tightly restricted to about 10−32 eV/c2.
Any higher, and the corresponding Yukawa potential would be such that gravity would be shorter
ranged than the current Hubble radius, about 1026 m, thereby contradicting cosmological observations.
Any lower and unitarity in a quantum field theory with gravitons would be lost [35].

In this paper, we discuss the possibility of a BEC formed by scalar particles, interacting
gravitationally through either the Newton or Yukawa potential. Such a BEC, interacting only through
massless gravitons has been previously tested as a viable DM candidate by confronting with galactic
rotation curves [30,36].

In this paper, we solve the time-dependent Scrödinger equation for the macroscopic wavefunction
of a spherically symmetric BEC, where in place of the potential we plug-in a sum of the external
gravitational potential and local density of the condensate, proportional to the absolute square of
the wavefunction itself, times the self-interaction strength. The resultant non-linear Schrödinger
equation is known as the Gross–Pitaevskii equation. For the self-interaction, we assume a two-body
δ-function type interaction (the Thomas–Fermi approximation), while we assume that the external
potential being massive-gravitational in nature, satisfying the Poisson equation with a mass term.
The BEC-forming bosons could be ultra-light, raising the question of why we use the non-relativistic
Schrödinger equation. This is because, once in the condensate, they are in their ground states with
little or no velocity, and hence non-relativistic for all practical purposes. Solving these coupled set of
equations, we obtain the density function, the potential outside the condensate and also the velocity
profiles of the rotational curves. We then compare these analytical results with observational curves for
12 dwarf galaxies and show that they agree with a high degree of confidence for five of them. For the
remaining galaxies, no definitive conclusion can be drawn with a high confidence level. Nevertheless,
our work provides the necessary groundwork and motivation to study the problem further to provide
strong evidence for or against our model.

This paper is organized as follows. In the next section, we set the stage by summarizing the
coupled differential equations that govern the BEC wavefunction and gravitational potential and find
the BEC density profiles. In Section 3, we construct the corresponding analytical rotation curves. In
Section 4, we compare these and the rotational curves due to baryonic matter with the observational
curves for galaxies. In Section 5, we find most probable bounds on the graviton mass, as well as derive
limits for a velocity-type and a density-type quantity characterizing the BEC.

2. Self-Gravitating, Spherically Symmetric Bec Distribution in the Thomas-Fermi Approximation

A non-relativistic Bose–Einstein condensate in the mean-field approximation is characterized by
the wave function ψ(r, t) obeying

ih̄
∂

∂t
ψ(r, t) =

[
− h̄2

2m
Δ + mVext (r) + λρ (r, t)

]
ψ(r, t) , (1)

2
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known as the Gross–Pitaevskii equation [37–39]. Here, h̄ is the reduced Planck constant, r is the
position vector; t is the time; Δ is the Laplacian; m is the boson mass;

ρ (r, t) = |ψ(r, t)|2 (2)

is the probability density; the parameter λ > 0 measures the atomic interactions and is also related to
the scattering length [40], characterizing the two-body interatomic potential energy:

Vsel f = λδ
(
r − r′

)
; (3)

and finally Vext (r) is an external potential. For a stationary state,

ψ(r, t) =
√

ρ (r) exp
(

iμ
h̄

t
)

(4)

where μ is a chemical potential energy [40,41]. When μ is constant, Equation (1) reduces to present
works [22,30]

mVext + VQ + λρ = μ , (5)

where VQ is the quantum correction potential energy:

VQ = − h̄2

2m
Δ
√

ρ
√

ρ
. (6)

We mention that Equation (5) is valid in the domain where ρ (r) �= 0.
The quantum correction VQ has significant contribution only close to the BEC boundary [21],

therefore it can be neglected in comparison to the self-interaction term λρ. This Thomas–Fermi
approximation becomes increasingly accurate with an increasing number of particles [42].

We assume Vext (r) to be the gravitational potential created by the condensate. In the case of
massive gravitons, it is described by the Yukawa-potential in the non-relativistic limit:

Vext = UY (r) = −
∫ GρBEC (r′)

|r − r′| e
− |r−r′ |

Rg d3r′ , (7)

with ρBEC = mρ, gravitational constant G, and characteristic range of the force Rg carried by the
gravitons with mass mg. The relation between Rg and mg is Rg = h̄/

(
mgc

)
, where c is the speed of

light and h̄ is the reduced Planck constant. The Yukawa potential obeys the following equation:

ΔUY − UY
R2

g
= 4πGρBEC . (8)

Contrary to Equation (5), Equation (8) is also valid in the domain where ρ (r) = 0. In the
massless graviton limit, we recover Newtonian gravity, in particular Equations (7) and (8) reduce to
the Newtonian potential and Poisson equation.

2.1. Mass Density and the Gravitational Potential inside the Condensate

The Laplacian of Equation (5) using Equation (8) gives

ΔρBEC +
4πGm2

λ
ρBEC = − m2

λR2
g

UY . (9)

3
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For a spherical symmetric matter distribution, Equations (8) and (9) become

d2 (rUY)

dr2 − 1
R2

g
(rUY) = 4πG (rρBEC) , (10)

d2 (rρBEC)

dr2 +
1

R2∗
(rρBEC) = − m2

λR2
g
(rUY) . (11)

where we introduced the notation
1

R2∗
=

4πGm2

λ
. (12)

This system gives the following fourth order, homogeneous, linear differential equation for rρBEC:

d4 (rρBEC)

dr4 + Λ2 d2 (rρBEC)

dr2 = 0 , (13)

with

Λ =

√
1

R2∗
− 1

R2
g

. (14)

In the case of massless gravitons, πR∗ gives the radius of the BEC halo [30]. To have a real Λ,
Rg > R∗ should hold, constraining the graviton mass from above. Typical dark matter halos have πR∗
of the order of 1 kpc which gives the following upper bound for the graviton mass: mgc2 < 4× 10−26 eV.
Then, the general solution of Equation (13) is

rρBEC = A1 sin (Λr) + B1 cos (Λr) + C1r + D1 . (15)

with integration constants A1, B1, C1 and D1. This is why we impose the reality of Λ. For the imaginary
case the general solution would contain runaway hyperbolic functions. This is also the solution of the
system in Equations (10) and (11). Requiring ρBEC to be bounded, we have D1 = −B1. Then, the core
density of the condensate is

0 < ρ(c) ≡ ρBEC (r = 0) = A1Λ + C1 , (16)

and the solution can be written as

ρBEC (r) =
(

ρ(c) − C1

) sin (Λr)
Λr

+ B1
cos (Λr)− 1

r
+ C1 . (17)

Substituting ρBEC (r) in Equation (11), the gravitational potential is

− m2

λR2
g
(rUY) =

(
ρ(c) − C1

) sin (Λr)
ΛR2

g
+

B1

R2
g

cos (Λr)− B1

R2∗
+

C1

R2∗
r . (18)

Being related to the mass density by Equation (5) gives

B1 = 0 , C1 = − mμ

λR2
gΛ2 . (19)

The BEC mass distribution ends at some radial distance RBEC (above which we set ρBEC to zero),
allowing to express C1 in terms of ρ(c), RBEC and Λ as

C1 = ρ(c)
sin (ΛRBEC)

ΛRBEC

(
sin (ΛRBEC)

ΛRBEC
− 1

)−1
. (20)

4
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Finally, we consider the massless graviton limiting case mg → 0. Then, Rg → ∞
implies Λ =

√
4πGm2/λ = 1/R∗ and C1 = 0 (by Equation (19)). Then, ρBEC (r) coincides with

Equation (40) [22].

2.2. Gravitational Potential Outside the Condensate

The potential U is determined up to an arbitrary constant A2, i.e.,

Uout = Uout
Y + A2 . (21)

Here, Uout
Y satisfies Equation (8) with ρBEC = 0. The solution for Uout

Y is

Uout
Y = B2

e
− r

Rg

r
+ C2

e
r

Rg

r
. (22)

Since an exponentially growing gravitational potential is non-physical, C2 = 0 and

Uout = A2 + B2
e
− r

Rg

r
. (23)

The constants A2 and B2 are determined from the junction conditions: the potential is both
continuous and continuously differentiable at r = RBEC:

A2 =
4πGρ(c)

1 + RBEC
Rg

R2
∗R2

g

1 − sin(ΛRBEC)
ΛRBEC

[
Λ
Rg

sin (ΛRBEC)

1
R2∗

sin (ΛRBEC)

ΛRBEC
− cos (ΛRBEC)

R2
g

]
, (24)

B2 =
4πGρ(c)

1
RBEC

+ 1
Rg

R2
∗

1 − sin(ΛRBEC)
ΛRBEC

[
cos (ΛRBEC)−

sin (ΛRBEC)

ΛRBEC

]
e

RBEC
Rg . (25)

In the next section, we see that the continuous differentiability of the gravitational potential
coincides with the continuity of the rotation curves.

3. Rotation Curves in Case of Massive Gravitons

Newton’s equation of motions give the velocity squared of stars in circular orbit in the plane of
the galaxy as

v2 (R) = R
∂U
∂R

. (26)

Here, R is the radial coordinate in the galaxy’s plane and U is the gravitational potential. In the
case of massive gravitons, U is given by U = UY + A, where UY satisfies the Yukawa-equation with
the relevant mass density and A is a constant.

The contribution of the condensate to the circular velocity is

v2
BEC (R) =

4πGρ(c)R2
∗

1 − sin(ΛRBEC)
ΛRBEC

[
sin (ΛR)

ΛR
− cos (ΛR)

]
(27)

for r ≤ RBEC and

v2
BEC (R) = −B2

(
1
R
+

1
Rg

)
e
− R

Rg (28)

for r ≥ RBEC.

5
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In the relevant situations, the stars orbit inside the halo and their rotation curves are determined
by the parameters: ρ(c)R2

∗, RBEC and Λ. In the limit mg → 0, the v2 of the BEC with massless gravitons
is recovered, given as Böhmer proposed [22]

v2
BEC(R) = 4πGρ(c)R2

∗

[
sin(R−1

∗ R)
R−1∗ R

− cos(R−1
∗ R)

]
(29)

for r ≤ RBEC and

v2
BEC (R) = 4Gρ(c)

R∗
R

(30)

for r ≥ RBEC.

4. Best-Fit Rotational Curves

4.1. Contribution of the Baryonic Matter in Newtonian and in Yukawa Gravitation

The baryonic rotational curves are derived from the distribution of the luminous matter, given by
the surface brightness S = F/ΔΩ (radiative flux F per solid angle ΔΩ measured in radian squared
of the image) of the galaxy. The observed S depends on the redshift as 1/(1 + z)4, on the orientation
of the galaxy rotational axis with respect to the line of sight of the observer, but independent from
the curvature index of Friedmann universe. Since we investigate dwarf galaxies at small redshift
(z < 0.002), the z-dependence of S is negligible. Instead of S given in units of solar luminosity
L� per square kiloparsec (L�/kpc2), the quantity μ given in units of mag/arcsec2 can be employed,
defined through

S(R) = 4.255 × 1014 × 100.4(M�−μ(R)), (31)

where R is the distance measured the center of the galaxy in the galaxy plane and M� is the absolute
brightness of the Sun in units of mag. The absolute magnitude gives the luminosity of an object, on
a logarithmic scale. It is defined to be equal to the apparent magnitude appearing from a distance of
10 parsecs. The bolometric absolute magnitude of a celestial object M�, which takes into account the
electromagnetic radiation on all wavelengths, is defined as M� −M� = −2.5 log(L�/L�), where L�

and L� are the luminosity of the object and of the Sun, respectively.
The brightness profile of the galaxies μ(R) was derived in some works [43–45] from isophotal fits,

employing the orientation parameters of the galaxies (center, inclination angle and ellipticity). This
analysis leads to μ(R) which would be seen if the galaxy rotational axis was parallel to the line-of-sight.
We used this μ(R) to generate S(R).

The surface photometry of the dwarf galaxies are consistent with modeling their baryonic
component as an axisymmetric exponential disk with surface brightness [46]:

S(R) = S0 exp[−R/b] (32)

where b is the scale length of the exponential disk, and S0 is the central surface brightness. To convert
this to mass density profiles, we fitted the mass-to-light ratio (Υ = M/L) of the galaxies.

In Newtonian gravity, the rotational velocity squared of an exponential disk emerges as Freeman
proposed [46]:

v2(R) = πGS0Υb
(

R
b

)2
(I0K0 − I1K1), (33)

6
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with I and K the modified Bessel functions, evaluated at R/2b. In Yukawa gravity, a more cumbersome
expression has been given in the work of De Araujo and Miranda [47] as

v2(R) = 2πGS0ΥR ×
[∫ ∞

b/λ

√
x2 − b2/λ2

(1 + x2)3/2 J1

(
R
b

√
x2 − b2/λ2

)
dx

−
∫ b/λ

0

√
b2/λ2 − x2

(1 + x2)3/2 I1

(
R
b

√
b2/λ2 − x2

)
dx

]
, (34)

where λ = h/mg/c = 2πRg is the Compton wavelength. For b/λ  1, the Newtonian limit
is recovered.

4.2. Testing Pure Baryonic and Baryonic + Dark Matter Models

We chose 12 late-type dwarf galaxies from the Westerbork HI survey of spiral and irregular
galaxies [43–45] to test rotation curve models. The selection criterion was that these disk-like galaxies
have the longest R-band surface photometry profiles and rotation curves. For the absolute R-magnitude
of the Sun, M�,R = 4.42m [48] was adopted. Then, we fitted Equation (32) to the surface luminosity
profile of the galaxies, calculated with Equation (31) from μ(R). The best-fit parameters describing the
photometric profile of the dwarf galaxies are given in Table 1.

We derived the pure baryonic rotational curves by fitting the square root of Equation (33) to
the observed rotational curves allowing for variable M/L. The pure baryonic model leads to best-fit
model-rotation curves above 5σ significance level for all galaxies (the χ2-s are presented in the first
group of columns in Table 1), hence a dark matter component is clearly required.

Then, we fitted theoretical rotation curves with contributions of baryonic matter and BEC-type
dark matter with massless gravitons to the observed rotational curves in Newtonian gravity.
The model–rotational velocity of the galaxies in this case is given by the square root of the sum
of velocity squares given by Equations (29) and (33) with free parameters Υ, ρ(c) and R∗. The best-fit
parameters are given in the second group of columns of Table 1. Adding the contribution of a BEC-type
dark matter component with zero-mass gravitons to rotational velocity significantly improves the
χ2 for all galaxies, as well as results in smaller values of M/L. The fits are within 1σ significance
level in five cases (UGC3851, UGC6446, UGC7125, UGC7278, and UGC12060), between 1σ and 2σ in
three cases (UGC3711, UGC4499, and UGC7603), between 2σ and 3σ in one case (UGC8490), between
3σ and 4σ in one case (UGC5986) and above 5σ in two cases (UGC1281 and UGC5721). We note
that the bumpy characteristic of the BEC model results in the limitation of the model in some cases,
the decreasing branch of the theoretical rotation curve of the BEC component being unable to follow
the observed plateau of the galaxies (UGC5721, UGC5986, and UGC8490). The theoretical rotation
curves composed of a baryonic component plus BEC-type dark matter component with massless
gravitons are presented on Figure 1.
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Figure 1. Theoretical rotational curves of the dwarf galaxy sample. The dots with error-bars denote
archive rotational velocity curves. The model rotation curves are denoted as follows: pure baryonic
in Newtonian gravitation with dotted line, baryonic + BEC with massless gravitons in Newtonian
gravitation with dashed line, and baryonic + BEC with the upper limit on mg in Yukawa gravitation
with continuous line.
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We attempted to distinguish among galaxies to be included in well-fitting or less well-fitting
classes based on their baryonic matter distribution. Several factors affect the goodness of the fits, as
follows. The best-fit falls outside the 1σ significance level in the case of seven galaxies. Among these
galaxies, UGC8490 and UGC5721 have (a1) steeply rising rotational curve due to their centralized
baryonic matter distribution (b < 0.5 kpc, vmax > 50 km s−1) with (a2) long, approximately constant
height observed plateau. Joint fulfilment of these criteria does not occur for the well-fitting galaxies, as
b � 0.5 kpc for them. The rest of the galaxies with best-fits falling outside the 1σ significance level have
(b1) slowly rising rotational curve due to their less centralized baryonic matter distribution (b > 0.5 kpc,
vmax < 50 km s−1) with (b2) short, variable height observed plateau, holding relatively small number of
observational points (N ≤ 15, a small N lowers the 1σ significance level). The well-fitting galaxies do
not belong to this group, as either they hold more observational points, or have a longer, approximately
constant height observed plateau. We expect that for the galaxies not falling in the classes with baryonic
and observational characteristics summarized by either properties (a1)–(a2) or (b1)–(b2) the BEC dark
matter model represents a good fit. Finally, we note the galaxy UGC3711 represents a special case due
to the lack of sufficient observational data. Although the shape of its rotational curve is very similar
to that of the best-fitting galaxy, UGC12060, it is based on just six observational points, lowering the
1σ level. Its points also have smaller error bars, which increases the χ2. This results in the best-fit
rotational curve of UGC3711 falling outside out the 1σ significance level.

Finally, we fitted the theoretical rotational curves given by both a baryonic component and
a non-relativistic BEC component with massive gravitons, employing Yukawa gravity. The parameters
Υ, ρ(c) and R∗ were kept from the best-fit galaxy models composed of baryonic matter + BEC with
massless gravitons. The model–rotational velocity of the galaxies arises as the square root of the sum
of velocity squares given by Equations (27) and (34) with free parameters RBEC and Rg. Adding mass
to the gravitons in the BEC model leads to similar performances of the fits.

5. Discussion and Concluding Remarks

We estimated the upper limit on the graviton mass, employing first the theoretical condition of
the existence of the constant Λ, then analyzing the modelfit results of those five dwarf galaxies for
which the fit of the BEC model with massive gravitons to data was within 1σ significance level.

Keeping the best-fit parameters ρ(c), R∗, we varied the value of RBEC and Rg and calculated the
χ2 between model and data. The upper limit on the graviton mass mg has been estimated from the
values of Rg, for which χ2 = 1σ has been reached. The results are given in Table 1. We plotted the
theoretical rotation curves given by a baryonic plus a non-relativistic BEC component with massive
gravitons with limiting mass in Figure 1. As shown in Table 2, the fit with the rotation curve data has
improved the limit on the graviton mass in all cases.

Table 2. Constraints for both the upper limit for the mass of the graviton (first from the existence
of Λ, second from the rotation curves) and for the velocity-type and density-type BEC parameters
(related to the mass of the BEC particle, scattering length and chemical potential) in the case of the five
well-fitting galaxies.

ID
mg(Λ ∈ IR) mg v̄BEC ρ̄BEC

10−26 eV
c2 10−26 eV

c2
m
s 106 M�

kpc3

UGC12060 < 1.51 < 0.95 37, 724 3.75
UGC7278 < 2.35 < 1.40 42, 800 11.69
UGC6446 < 1.32 < 0.42 48, 383 4.68
UGC3851 < 2.65 < 1.26 29, 571 7.1
UGC7125 < 1.5 < 0.31 63, 964 10.61

Comparing the theoretical rotation curves derived in our model with the observational ones,
we found the upper limit to the graviton mass to be of the order of 10−26 eV/c2 . We also note that
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the constraint on the graviton mass imposed from the dispersion relations tested by the first three
observations of gravitational waves, 7.7 × 10−23 eV/c2 [49], is still weaker than the present one.

For the BEC, we could derive two accompanying limits: (i) first m2/λ has been constrained from
the corresponding values of R∗ arising from the fit with the massless gravity model; and then (ii) m/μ

has been constrained from the constraints derived for the graviton mass and our previous fits through
Equations (19) and (20). These are related to the bosonic mass, chemical potential and scattering length,
but only two combinations of them, a velocity-type quantity

v̄BEC =

√
μ

m
(35)

and a density-type quantity

ρ̄BEC =
m2

λ
v̄2

BEC (36)

were restricted, both characterizing the BEC. Their values are also given in Table 2 for the set of five
well-fitting galaxies.

If the BEC consists of massive gravitons with the limiting masses m = mg determined in Table 2,
the chemical potential μ and the constant characterizing the interparticle interaction λ can be
determined as presented in Table 3.

Table 3. Constraints on μ and λ assuming m = mg in case of the five well fitting galaxies.

ID
μ(m = mg) λ(m = mg)

10−53 m2

s2 kg 10−94 m5

s2 kg

UGC12060 < 2.41 < 16.08
UGC7278 < 4.57 < 14.40
UGC6446 < 1.75 < 4.14
UGC3851 < 1.96 < 9.17
UGC7125 < 2.26 < 1.74

With this, we established observational constraints for both the upper limit for the mass of the
graviton and for the BEC.
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Abstract: The problems of simple elementary weakly interacting massive particles (WIMPs) appeal
to extend the physical basis for nonbaryonic dark matter. Such extension involves more sophisticated
dark matter candidates from physics beyond the Standard Model (BSM) of elementary particles.
We discuss several models of dark matter, predicting new colored, hyper-colored or techni-colored
particles and their accelerator and non-accelerator probes. The nontrivial properties of the proposed
dark matter candidates can shed new light on the dark matter physics. They provide interesting
solutions for the puzzles of direct and indirect dark matter search.

Keywords: cosmology; particle physics; cosmo–particle physics; QCD; hyper-color; dark atoms;
composite dark matter

1. Introduction

The nature of dark matter is inevitably linked to beyond the Standard Model (BSM) physics
of elementary particles. In the lack of direct experimental evidences for this physics, methods of
cosmo–particle physics [1–6] are needed for its study involving proper combination of cosmological,
astrophysical and experimental physical probes.

The most popular simplest dark matter candidate—elementary weakly interacting massive
particles (WIMPs)—finds support neither in direct dark matter searches, nor in searches for
supersymmetric (SUSY) particles at the Large Hadron Collider (LHC). The latter removes strong
theoretical motivation for WIMPs as the lightest supersymmetric particles and opens the room for
wider class of BSM models and corresponding dark matter candidates [7–12].

In this paper, we turn to a possibility of hadronic, hyperhadronic, and composite dark matter
candidates. In particular, in the scenario with hadronic dark matter it is suggested that such candidates
consist of a new heavy quark and a light standard one.

It can be shown that the effects of new physics are related to the new massive stable quarks,
which fit into the limits imposed by both the electroweak and cosmo–particle data. The bound states
of these heavy fermions with light QCD quarks can be considered as (pseudoscalar) neutral dark
matter candidates. Masses of these particles as the lifetime of the charged component are estimated.
Besides, we study a low-energy asymptotics of the potential for their interactions with nucleons and
with each other. Remind, there is well-known Sommerfeld–Gamov–Sakharov enhancement when
heavy particles annihilate. Here, this effect for the states considered is also discussed.

An extension of the Standard Model (SM) with an additional symplectic hypercolor gauge group
is analyzed. The extension keeps the Higgs boson of SM as a fundamental field but permits the Higgs
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to participate in mixing with composite hyperhadrons. New heavy hyperquarks are assumed to be
vector-like in the character of their interactions with the intermediate vector bosons. We also consider
the properties of pseudo-Nambu–Goldstone (pNG) bosons emerging as a result of dynamical symmetry
breaking SU(2nF) → Sp(2nF), with nF being a number of hyperquark flavors. Some versions of the
model are invariant under specific global symmetries that ensure the stability of a neutral pseudoscalar
field and scalar diquark states (hyperbaryons). Possible signals of the emergence of these lightest
states at colliders are also discussed on the basis of the dark matter (DM) two-component model.
Consideration of the DM relic density kinetics allows us to evaluate masses of these neutral stable
states and, consequently, to analyze some processes with their participation. Here, we briefly describe
possible channels of the hyperhadron production at colliders having a specific signature of final state.
Moreover, there occurs an interesting feature of cosmic ray scattering off the dark matter particles;
the study of a diffuse photon spectrum produced by annihilation of the DM candidates results in
a possible prominent manifestation of the two-component structure of dark matter. It is especially
important signal because one of the DM components does not interact with vector bosons directly and
is, in some sense, invisible in electroweak processes. The generalization of vector-like model symmetry
to include three hyperquark flavors significantly expands the spectrum of states, leading to new
additional stable hadrons. They can be observed and identified as specific features of the energy and
angular spectra of photons and/or leptons recorded mainly by space telescopes. Virtually all additional
new hadronic states are quite massive, which prevents their production and study at colliders.

The dark atom scenario assumes existence of stable multiple charged particles that can be
predicted in some non-supersymmetric BSM models. It involves minimal number of parameters
of new physics—the mass of the new charged particles. Particles with charge −2 bind with primordial
helium nuclei in a neutral OHe atom. The nuclear interactions of its α-particle shell dominantly
determine cosmological evolution and astrophysical effects of these atoms. However, the nontrivial
structure of the OHe atom with the radius of the Bohr orbit equal to the size of helium nucleus and
strongly interacting atomic shell make impossible to apply usual approximations of atomic physics to
its analysis. Qualitatively this approach can shed light on the puzzles of direct dark matter searches.
It can give explanation to the observed excess in radiation in positronium annihilation line in the
galactic bulge. It can explain the excess of high energy positrons in cosmic rays as indirect effects
of composite dark matter. Stable multiple charged constituents of dark atoms are a challenge for
their direct search at the LHC and the such searches acquire the meaning of the direct probe of dark
atom cosmology.

The paper is organized as follows. In the framework of the hadronic scenario we consider new
stable hadrons, in which a new stable heavy quark is bound by the standard QCD interaction with
ordinary light quarks (Section 2). In hyperhadronic models, new heavy quarks are bound by hypercolor
strong interactions (Section 3). We also consider the scenario with dark atoms, in which the ordinary
Coulomb interaction binds new stable −2 charged particle with primordial helium nucleus (Section 4).
We discuss the physical motivation for these extensions of the Standard model and their experimental
and observational signatures. We conclude (Section 5) by the discussion of the cross-disciplinary test
of these BSM models in the context of cosmo–particle physics.

2. New Stable Hadrons

In this Section, we consider theoretical and experimental motivations for hadronic dark matter.
As a rule, DM candidates are interpreted as stable heavy particles which interact with standard
particles through the weak vector bosons (WIMP). The last rigid experimental restrictions on the
value of WIMP-nucleon interaction cross section [13] expel some variants of WIMPs as candidates
for dark matter. Therefore, alternative variants are considered in literature, namely the model with
fermions from fourth generation, hypercolor models, dark atoms in composite DM, and so on (see the
review [14] and references therein). It was shown in refs. [15–22] that the existence of hadronic DM
candidates, which consist of a new heavy stable quark and a light standard one, is not excluded by
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cosmological data. In particular, such possibility was carefully considered in the chiral-symmetric
extension of SM [22].

We consider the scenarios where the strong interaction of new heavy quarks with light standard
quarks, which is described by SUC(3) symmetry, forms new stable heavy states. This possibility was
analyzed in the extensions of SM with fourth generation [15–19], in the framework of mirror and
chiral-symmetric models [22,23], and in the models with a singlet quark [24–29]. The simplest variant
of the chiral-symmetric model was realized in ref. [22], where quark content and quantum numbers of
new heavy mesons and fermions were represented, and the low-energy phenomenology of new heavy
pseudoscalar mesons was described. It is shown in this work that the existence of new hadrons does
not contradict to cosmo–chemical data and precision restrictions on new electroweak effects. Here, we
should note that the chiral-symmetric scenario may encounter experimental and theoretical difficulties,
which was not analyzed in Ref. [22]. The scenario with fourth generation and its phenomenology was
also considered in literature, although there are strong restrictions from invisible Z-decay channel,
unitarity of quark-mixing matrix, flavor-changing neutral currents, and others. The principal problem
of the extension with fourth generation is contained in new quarks contributions into the Higgs decay
channels [30]. It was shown that new quarks contribution to vector gauge boson coupling can be
compensated by heavy (with the mass around 50 GeV) neutrino contribution [15,31,32]. Then Higgs
should have the dominant channel of decay to the fourth neutrino, which is excluded by experimental
measurements at the LHC. The proposed solution is that the fourth family gets masses from additional
heavy Higgses and the standard Higgs (125 GeV) has suppressed couplings to the fourth family. In this
section, we consider the hypothesis of hadronic DM candidates which can be built in the framework of
the chiral-symmetrical and singlet quark extensions of SM.

2.1. Gauge Structure of Chiral-Symmetrical Model with New Quarks

The chiral-symmetrical extension of the standard set of fermionic fields was considered in ref. [22],
where the phenomenology of new heavy hadrons is described. In this subsection, we consider the
group structure of new quark sector and analyze corresponding gauge interactions of quarks with
vector bosons. This aspect was not analyzed in ref. [22] but has significance in electroweak precision
test of the model. In the model under consideration, new multiplets of the up and down quarks has
chiral-symmetric structure with respect to the standard set of quarks:

Q = {QR =

(
U
D

)
R

; UL, DL}. (1)

Thus, in contrast to the Standard Model structure, the right-hand components of new quarks
are doublets and left-hand ones are singlets. The structure of covariant derivatives follows from this
definition in the standard way:

DμQR =(∂μ − ig1YQVμ − ig2

2
τaVa

μ − ig3tiGi
μ)QR;

DμUL =(∂μ − ig1YUVμ − ig3tiGi
μ)UL,

DμDL =(∂μ − ig1YDVμ − ig3tiGi
μ)DL.

(2)

In Equation (2), the values YA, A = Q, U, D, are the hypercharges of quark multiplets (doublets
and singlets), ti are generators of SUC(3) group, which describes the standard color (strong) interaction.
We should note that the coupling constants g1 and g2 are equal to the standard ones at the energy
scale, where the chiral symmetry is restored. At low energy they depend on the details of symmetry
violation scenario. Here, the gauge boson fields Va

μ are chiral partner of the standard gauge bosons
which are expected to be superheavy. The status of the abelian gauge field Vμ depends on its physical
interpretation in low-energy electromagnetic processes. If we interpret abelian gauge field Vμ as
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standard one, then the mixing of Vμ and V3
μ in the standard way is forbidden, because it leads to

contradictions with precision electroweak measurements. Moreover, a direct interpretation of the field
Vμ and the weak hypercharge YQ = q̄, where q̄ is an average electric charge of a quark multiplet (in our
case, doublet and singlets), leads to wrong a V − A structure of photon interaction with fermions.
To escape these obstacles, we have two options:

• to interpret the field Vμ as a new non-standard abelian field which mixes with V3
μ in analogy with

the standard procedure,
• to assume that Vμ is standard abelian field which does not mix with V3

μ .

The first option leads to a mirror world with exotic “electroweak” vector bosons (in particular,
mirror or dark photons) and standard QCD-like strong interactions. In the framework of this scenario,
it is difficult to build coupled heavy-light states of type (qQ) and satisfy cosmo–chemical restrictions
which were considered in ref. [22]. So, we consider the second option and analyze the interaction of Vμ

with additional heavy quark sector. This scenario needs a redefinition of the hypercharge operator ŶQ,
which we consider below. The standard definition of the hypercharge operator ŶQ = (q̂ − t̂) in the
case of the doublet Q can be realized with the help of 2 × 2 matrices of charge q̂ and isospin t̂ = τ3/2.
This operator in matrix representation acts on the standard left quark doublet as follows:

ŶQQL =

(
q̂u − 1/2 0

0 q̂d + 1/2

)(
u
d

)
L

. (3)

The operator of charge q̂ in (3) is defined by equalities q̂uu = 2/3 u and q̂dd = −1/3 d. So, it
follows from (3) that

ŶQQL =
1
6

(
1 0
0 1

)(
u
d

)
L

=
1
6
· QL. (4)

Thus, the operator action reduces to multiplication by the coefficient 1/6 (one half of the average
charge of the doublet) and the standard V-structure of γ- and V − A structure of Z-interactions arise
as a result of the mixing of Aμ and W3

μ. From this simple analysis, it follows that the presence of
the isospin operator in definition of the hypercharge operator is connected with the presence of
singlet-triplet mixing. So, the hypercharge operator in the absence of mixing has the form ŶQ = q̂
(without t̂):

ŶQQR =

(
q̂u 0
0 q̂d

)(
U
D

)
R

. (5)

Taking into account equalities q̂u · UR = ŶU · UL = 2/3 · U and q̂d · DR = ŶD · DL = −1/3 · D,
it follows from the Equation (2) that vector-like interactions of physical fields γ and Z with the new
quarks U = UR + UL and D = DR + DL:

L int
Q = g1VμQ̄γμ q̂Q = g1(cw Aμ − swZμ)(qUŪγμU − qDD̄γμD), (6)

where we omit the strong interaction term which has the standard structure. In the expression (6),
abelian field Vμ is the standard mixture of the physical fields Aμ and Zμ, cw = cos θw, sw = sin θw,
g1cw = e and θw is the Weinberg angle. Indirect limits for the new quarks follow from electroweak
measurements of FCNC processes and the value of polarizations. Since the new fermions are stable,
there are no FCNC processes in our scenario. The constraints which are caused by the vector-boson
polarization measurements will be considered below.
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2.2. The Extension of Standard Quark Sector with Stable Singlet Quark

There are many scenarios of SM extensions with singlet (isosinglet) quarks which are considered
in literature. The singlet quark (SQ) is usually defined as a Dirac fermion with the quark quantum
numbers having the standard UY(1) and SUC(3) gauge interactions. In contrast to a standard quark,
it is a singlet with respect to SUW(2) transformations, that is, it does not interact with the non-abelian
weak charged boson W. The high-energy origin and low-energy phenomenology of SQ were discussed
in literature (see the recent works [20,33–35], and references therein). As a rule, SQ is supposed to
be an unstable particle, which is caused by the mixing of SQ with ordinary quarks. Such mixing
leads to FCNC appearing at the tree level, which is absent in SM. This results in an additional
contributions to rare lepton decays and M0 − M̄0 oscillations. There are strong restrictions on the
value of singlet-ordinary quark mixing. Here, we suggest an alternative variant with a stable SQ,
namely, the scenario with the absence of such mixing. Further, we analyze this variant and apply it
to the description of possible DM candidate. Because the SQ together with ordinary quarks are in
confinement they form the bound states of type (Sq), (Sqq), (SSq), and more complicated. Here, we
consider the main properties of (Sq)-states and describe the lightest state M0 = (S̄q) (which should be
stable) as DM particle.

Further, we analyze the scenario with SQ, which in general case can be up, U, or down, D, type
(q = 2/3 or q = −1/3 respectively). According to the above definitions, the minimal Lagrangian
describing interactions of the singlet quark S with the gauge bosons is as follows:

LS = iS̄γμ(∂μ − ig1qVμ − igstaGa
μ)S − MSS̄S. (7)

In (7), the hypercharge Y/2 = q is a charge of the S, ta = λa/2 are generators of SUC(3) group,
and MS is a phenomenological mass of the S. It can not get mass by the Higgs mechanism because
the corresponding term is forbidden by SU(2) symmetry. However, the mass term in expression (7) is
allowed by the symmetry of the model. The abelian part in (7) contains the interactions of SQ with
photon and Z-boson:

L int
S = g1qVμS̄γμS = qg1(cw Aμ − swZμ)S̄γμS. (8)

In expression (8), the values cw = cos θw, sw = sin θw, g1cw = e and θw is the Weinberg angle. We
should note that the interaction of SQ with the vector bosons has a vector-like form, so SQ is usually
called a vector quark [34,35].

Now, we take into account the restrictions on the processes with SQ participation, which follow
from the experimental data. New sequential quarks are excluded by LHC data on Higgs properties [33].
Because SQ does not interact with the Higgs doublet, it is not excluded by data on Higgs physics.
The limits on new quarks for colored factors ne f f = 2, 3, 6 are about 200 GeV, 300 GeV, and 400 GeV
respectively [36]. As we show further, these limits are much less than our estimations with the
assumption that the new heavy quark is a DM particle. The scenario with the long-lived heavy quarks,
which takes place when SQ slightly mixes with an ordinary quark, was discussed in the review [20].

2.3. Constraints on the New Quarks Following from the Precision Electroweak Measurements

The constraints on the new heavy quarks follow from the electroweak measurements of FCNC
and vector boson polarization. As was noted earlier, there is no mixing of the new quarks with the
standard ones and the new quarks do not contribute to rare processes. The contributions of the
new quarks to polarization tensors of the vector bosons are described by the Peskin–Takeuchi (PT)
parameters [37]. From Equations (6) and (8), it follows that interactions of the new quarks with the
vector bosons in both scenarios (the chiral-symmetrical extension and the model with SQ) have the
same structure and their contributions into the PT parameters can be described by general expressions.
In the models under consideration, the new heavy quarks contribute into polarization tensors of γ

and Z-bosons, namely Πγγ, ΠγZ, ΠZZ. Note, because the W-boson does not interact with the new
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quarks, ΠWW = 0. To extract the transverse part Π(p2) of the polarization tensor Πμν(p2), we have
used the definition Πμν(p2) = pμ pνP(p2) + gμνΠ(p2). In our case, Πab(0) = 0, a, b = γ, Z and the PT
parameters, which we take from [38], can be represented by the following expressions:

S =
4s2

wc2
w

α
[
ΠZZ(M2

Z, M2
Q)

M2
Z

− c2
w − s2

w
swcw

Π
′
γZ(0, M2

Q)− Π
′
γγ(0, M2

Q)]; T = −
ΠZZ(0, M2

Q)

αM2
Z

= 0;

U =− 4s2
w

α
[c2

w
ΠZZ(M2

Z, M2
Q)

M2
Z

+ 2swcwΠ
′
γZ(0, M2

Q) + s2
wΠ

′
γγ(0, M2

Q)].

(9)

In Equation (9), α = e2/4π, MQ is a mass of the new heavy quark and Πab(p2) are defined
at p2 = M2

Z and p2 = 0. In (9), the functions Πab(p2, M2
Q), a, b = γ, Z, can be represented in a

simple form:

Πab(p2, M2
Q) =

g2
1

9π2 kabF(p2, M2
Q); kZZ = s2

w, kγγ = c2
w, kγZ = −swcw;

F(p2, M2
Q) =− 1

3
p2 + 2M2

Q + 2A0(M2
Q) + (p2 + 2M2

Q)B0(p2, M2
Q),

(10)

where we take into account the contribution of the new quark with q = 2/3. The function F(p2, M2
Q)

in Equation (10) contains divergent terms in the one-point, A0(M2
Q), and two-point, B0(p2, M2

Q),
Veltman functions. These terms are compensated exactly in the physical parameters S, T, and U,
defined by the expressions (9). In the case of the D-type quark, the contributions are four times
smaller. Using the standard definitions of the functions A0(M2

Q) and B0(p2, M2
Q) and the equality

B
′
0(0, M2

Q) = M2
Q/6, we get:

S = −U =
ks4

w
9π

[−1
3
+ 2(1 + 2

M2
Q

M2
Z
)(1 −

√
β arctan

1√
β
)]. (11)

In Equation (11), β = 4M2
Q/M2

Z − 1, k = 16(4) at q = 2/3(−1/3), and k = 20 in the case of
the chiral-symmetric model. We have checked by direct calculations that in the limit of infinitely
heavy masses of the new quarks, M2

Q/M2
Z → ∞, the parameters S and U go to zero as ∼ M2

Z/M2
Q.

From Equation (11) it follows that for the value of mass MQ > 500 GeV the parameters S, U < 10−2.
Experimental limits are represented in the review [39]:

S = 0.00 + 0.11(−0.10), U = 0.08 ± 0.11, T = 0.02 + 0.11(−0.12). (12)

Thus, the scenarios with the new heavy quarks do not contradict to the experimental
electroweak restrictions.

At the quark-gluon phase of the evolution of the Universe, the new heavy quarks strongly
interact with the standard ones. So, there are strong processes of scattering and annihilation into
gluons and quarks, QQ̄ → gg and QQ̄ → qq̄. Additional contributions to these processes through
electroweak channels QQ̄ → γγ, ZZ give small differences for cross sections in the scenarios under
consideration. Cross sections of annihilation are derived from the expressions for annihilation of gluons
and light quarks into heavy quarks gg → QQ̄ and qq̄ → QQ̄ [39]. The cross section of two-quark
annihilation [39]:

dσ

dΩ
(q̄q → Q̄Q) =

α2
s

9s3

√
1 −

4M2
Q

s
[(M2

Q − t)2 + (M2
Q − u)2 + 2M2

Qs], (13)
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where MQ is a mass of the heavy quark (MQ � mq). At the threshold, s ≈ 4M2
Q, the parameters

t ≈ u ≈ −M2
Q. The cross section of the process Q̄Q → q̄q can be derived from (13) by reversing time.

In this limit, from (13), we get

dσ

dΩ
(Q̄Q → q̄q) =

α2
s

18vr M2
Q

, (14)

where vr is a relative velocity of the heavy quarks. The cross section of two-gluon annihilation [39]:

dσ

dΩ
(gg → Q̄Q) =

α2
s

32s

√
1 −

4M2
Q

s
F(s, t, u; M2

Q), (15)

where exact expression for the function F(s, t, u; M2
Q) is rather complicated. In the approximation

s ≈ 4M2
Q, we get F ≈ 7/6, and the cross section of the reversed process Q̄Q → gg is:

dσ

dΩ
(Q̄Q → gg) =

7α2
s

3 · 128vr M2
Q

. (16)

Now, we give the expressions for the total cross section of two-gluon and two-quark annihilation.
Two-gluon cross section in the low-energy limit:

σ(QQ̄ → gg)vr =
14π

3
α2

s

M2
Q

, (17)

where αs = αs(MQ). Two-quark cross section in the limit mq → 0:

σ(QQ̄ → qq̄)vr =
2π

9
α2

s

M2
Q

. (18)

From expressions (17) and (18), it follows that the two-gluon channel dominates. The value
of cross section of σvr ∼ 1/M2

Q and the remaining concentration of the heavy component may be
dominant at the end of the quark-gluon phase of the evolution. At the hadronization stage, the new
heavy quarks, which participate in the standard strong interactions, form coupled states with ordinary
quarks. Here, we consider neutral and charged states of type (qQ). The lightest of them is stable
and can be suggested as a DM candidate. Here, we should note that the dominance of the heavy
component before the transition from the quark-gluon to hadronization phase may be connected with
the dominance of dark matter relative to ordinary matter. The possibility of the heavy-hadron existence
was analyzed in [22]. It was shown that this possibility does not contradict to cosmo–chemical data.
This conclusion was drawn taking account of the repulsive strong interaction of new hadrons with
nucleons. This effect will be qualitatively analyzed in the next section.

The constraints on the new heavy hadrons, which follow from the cosmo–chemical data, will be
discussed in the following subsection. Such constraints on the new hadrons as strongly interacting
carrier of dark matter (SIMP) follow also from astroparticle physics. The majority of restrictions
refer to the mass of the new hadrons or available mass/cross section parameters space [40–48].
As a rule, the low limits on the mass value do not exceed 1–2 TeV which are an order of magnitude
less then our previous estimations of DM particle mass [29] (see also the estimations in this work).
Here, we should pick out the results of research in [46,47], where it was reported that the mass
of new hadrons M � 102 TeV. Further we represent almost the same estimation taking account of
Sommerfeld–Gamov–Sakharov enhancement effect in annihilation cross section. An additional and
more detailed information on restrictions, which follows from XQC experiments, can be found in
the Refs. [49,50]. In the next section, we represent effective theory of low-energy interaction of new

20



Symmetry 2019, 11, 587

hadrons. From this consideration, it follows that the value of interaction of the new hadrons with
nucleons is of the same order of magnitude as the hadronic one (see Ref. [22]).

2.4. Composition of New Heavy Hadrons and Long-Distance Interactions with Nucleons

Due to the strong interaction new quarks together with standard ones form the coupled meson
and fermion states, the lightest of which are stable. Classification of such new heavy hadrons was
considered in ref. [22], where the main processes with their participation were analyzed. In the Table 1,
we represent the quantum numbers and quark content of new mesons and fermions for the case of U-
and D-type of new quarks.

Table 1. Classification of new hadrons.

JP = 0− T =
1
2

MU = (M0
U M−

U ) M0
U = Ūu, M−

U = Ūd

JP = 0− T =
1
2

MD = (M+
D M0

D) M+
D = D̄u, M0

D = D̄d

J =
1
2

T = 1 B1U = (B++
1U B+

1U B0
1U) B++

1U = Uuu, B+
1U = Uud, B0

1U = Udd

J =
1
2

T = 1 B1D = (B+
1D B0

1D B−
1D) B+

1D = Duu, B−
1D = Ddd, B0

1D = Dud

J =
1
2

T =
1
2

B2U = (B++
2U B+

2U) B++
2U = UUu, B+

2U = UUd

J =
1
2

T =
1
2

B2D = (B0
2D B−

2D) B0
2D = DDu, B−

2D = DDd

J =
3
2

T = 0 (B++
3U ) B++

3U = UUU

J =
3
2

T = 0 (B−
3D) B−

3D = DDD

Most of the two- and three-quark states, which are represented in Table 1, were considered also in
Refs. [20,51]. Ref. [52] considered an alternative for the DM candidates which are electromagnetically
bound states made of terafermions. Here, we propose the neutral M0-particles as candidates for DM.
Another possibility is discussed in Refs. [17–19]—new charged hadrons exist but are hidden from
detection. Namely, the particles with charge q = −2 are bound with primordial helium. In our case,
the interactions of baryons B1Q and B2Q, where Q = U, D, are similar to the nucleonic interactions.
These particles may compose heavy atomic nuclei together with nucleons.

Evolution of new hadrons was qualitatively studied in [22] and, here, we briefly reproduce this
analysis for both cases. Matter of stars and planets may contain stable U-type particles M0

U , B+
1U and

B++
2U as well as B++

3U and B̄++
3U . The antiparticles M̄0

U , B̄+
1U and B̄++

2U are burning out due to interactions
with nucleons N:

M̄0
U + N → B+

1U + X, B̄+
1U + N → M0

U + X, B̄++
1U + N → 2M0

U + X, (19)

where X are leptons or photons in the final state. There are no Coulomb barriers for the reactions (19),
so the particles M̄0

U , B̄+
1U and B̄++

2U burn out during the evolution of the Universe. Other stable particles
participate in reactions with annihilation of new quarks:

M0
U + B++

3U → B++
2U + X, M0

U + B++
2U → B+

1U + X, M0
U + B+

1U → p + X, B̄++
3U + B++

3U → X. (20)

The Coulomb barrier may appear in the last reaction in (20), however, simple evaluations which
are based on the quark model show that the reaction

B++
3U + N → 3M̄0

U + X (21)
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is energetically preferred. Thus, there are no limits for total burning out of U-quarks and, along
with them, all positively charged new hadrons to the level compatible with cosmological restrictions.
The rest of the antiquarks Ū in accordance with (21) may exist inside neutral M0

U-particles only.
Concentration of these particles in matter is determined by the baryon asymmetry in the new
quarks sector.

In the case of D-type hadrons, M+
D , B0

1D, B0
2D and B−

3D particles and B̄−
3D antiparticles may be

situated in matter medium, in the inner part of stars, for example. In analogy with (19) the reactions
for the case of down type hadrons can be represented in the form

M̄+
D + N → B0

1D + X, B̄0
1D + N → M+

D + X, B̄0
2D + N → 2M+

D + X. (22)

It should be noted that the Coulomb barriers to them are absent. Annihilation of new D-quarks
goes through the following channels:

M+
D + B−

3D → B0
2D + X, M+

D + B0
2D → B0

1D + X, M+
D + B0

1D → p + X, B̄−
3D + B−

3D → X. (23)

From this qualitative analysis and cosmo–chemical restrictions the conclusion was done that the
baryon asymmetry in new quark sector exists. This asymmetry has a sign which is opposite to the
ordinary baryon asymmetry sign. This conclusion mainly follows from the ratios “anomalous/natural”
hydrogen C � 10−28 for MQ � 1 TeV [53] and anomalous helium C � 10−12 − 10−17 for
MQ ≤ 10 TeV [54]. In the case of up hadrons, the state B+

1U = (Uud) is heavy proton which can
form anomalous hydrogen. The anomalous state B+

1U at hadronization phase can be formed by
coupling of quarks U, u, d and as a result of reaction M̄0

U + N → B+
1U + X (the first reaction in (19)).

The antiparticles B̄+
1U are burning out due to the reaction B̄+

1U + N → M0
U + X. The states like (pM0

U)

can also manifest itself as anomalous hydrogen. But in [22] it was shown that the interaction of p
and M0

U has a potential barrier. So, the formation of the coupled states (pM0
U) is strongly suppressed.

Baryon symmetry of new quarks is not excluded when they are superheavy.
The hadronic interactions are usually described in the meson exchange approach with the help of

an effective Lagrangian. Low-energy baryon-meson interaction was described in [55] by U(1)× SU(3)
gauge theory. There, U(1)-interaction corresponds to exchange by singlet vector meson and SU(3) is
group of unitary symmetry. Field contents and structure of Lagrangian, for our case, are represented
in [22]. It was shown that the dominant contribution to this interaction is caused by vector meson
exchange. We apply this Lagrangian for analysis of MN and MM interactions. The part of the
Lagrangian which will be used further is as follows:

Lint(V, N, M) = gωωμN̄γμN + gρN̄γμτaρ
μ
a N + igωMωμ(M†∂μ M − ∂μ M† M)

+ igρM(M†τaρ
μ
a ∂μ M − ∂μ M†τaρ

μ
a M).

(24)

In (24), N = (p, n) is doublet of nucleons, M = (M0, M−), M† = (M̄0, M+) are new
pseudoscalar mesons. Coupling constants are the following ones [22]:

gρ = gρM = g/2, gω =
√

3g/2 cos θ, gωM = g/4
√

3 cos θ, g2/4π ≈ 3.16, cos θ = 0.644. (25)

Note, the effective strong interaction does not depend on the type of new heavy quark, so we omit
subscriptions U and D in (24). We should note that one-pion exchange is absent because MMπ-vertex
is forbidden due to parity conservation.

The potential V(R) and amplitude f (q) in Born approximation are connected by the relation

V(�r) = − 1
4π2μ

∫
f (q) exp(i�q�r) d3q, (26)
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where μ is a reduced mass and we consider the case of non-polarized particles. The potential of
MN-interaction was calculated in ref. [22], where the relation f (q) = −2πiμF(q) was used (here, F(Q)

is Feynman amplitude). It was shown in [22] that scalar and two-pion exchanges are strongly
suppressed. The potentials of various pairs from M = (M0, M−) and N = (p, n) are described
by the following expressions:

V(M0, p; r) = V(M−, n; r) ≈ Vω(r) + Vρ(r), V(M0, n; r) = V(M−, p; r) ≈ Vω(r)− Vρ(r). (27)

In (27), the terms Vω(r) and Vρ(r) are as follows:

Vω(r) =
g2Kω

16π cos2 θ

1
r

exp(− r
rω

), Vρ(r) =
g2Kρ

16π

1
r

exp(− r
rρ
), (28)

where Kω = Kρ ≈ 0.92, rω = 1.04/mω, rρ = 1.04/mρ. Using these values and approximate equality
mω ≈ mρ, we rewrite the expressions (27):

V(M0, p; r) = V(M−, n; r) ≈ 2.5
1
r

exp(− r
rρ
), V(M0, n; r) = V(M−, p; r) ≈ 1.0

1
r

exp(− r
rρ
). (29)

Two important phenomenological conclusions follow from the expressions (29). All pairs of
particles have repulsive (V > 0) potential and the existence of a barrier prevents the formation of the
coupled states (pM0), that is, anomalous protons.

The potential of MM interaction can be built in full analogy with MN-case. To find the sign of the
potential, we use the following non-relativistic limit:

L = L0 +Lint −→ Wk(m, v)− V(r, t), mv̇ = −∂U(r, t)
∂r

(30)

where Wk(m, v) is kinetic term, V(r, t) is potential and we separate the spatial and temporal variables.
From this definition and the expression for energy, E = W + V, it follows that at long distance, where
the monotonically decreasing function V(r) is positive, V > 0, this function describes repulsive
potential. Here, we use a relation between Le f f (q) and amplitude F(q), namely F(q) = ikLe f f (q),
where k > 0. Then, we get equality for the sign of V and F, signum(V) = signum(iF). Here, the
amplitude F(q) is determined by one-particle exchange diagrams for the process M1M2 → M

′
1M

′
2.

The vertices are defined by the low-energy Lagrangian (24). Then we check that MN-interactions have
a repulsive character. Note that Lagrangians of NM0 and NM̄0 have opposite signs. This is caused by
different signs of vertices ωM0M0 and ωM̄0M̄0, which give dominant contribution. This effect follows
from the differential structure of (24) and operator structure of field function of the M-particles. We
get the vertices ω(q)M0(p)M0(p − q) and ω(q)M̄0(p)M̄0(p − q) in momentum representation with
opposite signs, Le f f = ±gωM(2p − q), respectively. This leads to the potentials of interactions through
ω exchange, which is repulsive for the case of NM and attractive for NM̄ scattering. Thus, the absence
of a potential barrier gives rise to the problem of coupled states pM̄0. To overcome this problem, we
assume the existence of asymmetry in the sector of new quarks or that the particles M̄0 are superheavy.
Interactions of baryons B1 and B2 are similar to the nucleonic one. Together with nucleons, they can
compose an atomic nuclei.

With the help of the simple method presented above, we have checked that the potentials of M0M0

and M̄0M̄0 interactions are attractive for the case of scalar meson exchange. It is repulsive for the
case of vector meson exchange. The potentials of M0M̄0 interactions have attractive asymptotes both
for scalar and vector meson exchanges. Thus, the sign of potential for the cases of M0M0 and M̄0M̄0

scattering is determined by contributions of scalar and vector mesons. In the case of M0M̄0 scattering,
the total potential is attractive in all channels. This property leads to the effect of enhancement of
annihilation cross section (Sommerfeld–Gamov–Sakharov effect [56–61]).
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2.5. The Properties of New Heavy Particles and Hadronic Dark Matter

In this subsection, we consider the main properties of new hadrons M0, M− and analyze the
possibility that M0 is stable and can be considered as DM candidate. We evaluate the mass of the
new quark MQ and mass splitting of the M− and M0 mesons, Δm = m− − m0. Then, we take into
account the standard electromagnetic and strong interactions of new hadrons which were described in
a previous subsection. The properties of mesons M = (M0, M−) are analogous to ones of standard
heavy-light mesons. Let us consider the data on mass splitting in pairs K = (K0, K±), D = (D0, D±),
and B = (B0, B±). For the case of the mesons K and B, which contain heavy down-type quarks,
the mass-splitting Δm < 0. For the case of the up-type meson D, which contains heavy charm quark,
Δm > 0. The value δm for all cases is O(MeV) and less. We take into consideration these data and
assume that for the case of up-type new mesons

Δm = m(M−)− m(M0) > 0, and Δm = O(MeV). (31)

This assumption means that the neutral state M0 = (Ūu) is stable and can be considered as the
DM candidate. The charged partner M− = (Ūd) is unstable, if δm > me, and has only one decay
channel with small phase space in the final state:

M− → M0(W−)∗ → M0e−ν̄e, (32)

where (W−)∗ is a W-boson in intermediate state and e− is an electron. In the semileptonic decay (32),
stable antiquark Ū is considered as a spectator. The width of this decay is calculated in the form-factor
approach. The expression for differential width is (see review by R. Kowalski in ref. [39])

dΓ(m, Δm)

dκ
=

G2
F

48π3 |Uud|2(m− + m0)
2m3

0(κ
2 − 1)3/2G2(κ), (33)

where m− ≈ m0, κ = k0/m0 ≈ 1 and G(κ) ≈ 1 (HQS approximation, [39]). Note, the value G(ω) is
equivalent to the normalized form-factor f+(q). This form-factor in the vector dominance approach
is usually defined by the pole expression f+(q) = f+(0)/(1 − q2/m2

v). So, the HQS approximation
corresponds to the conditions q2  m2

v and f+(0) ≈ 1 when κ = k0/m0 ≈ 1. The expression for the
total width follows from Equation (33):

Γ(m, Δm) ≈ G2
F|Uud|2m5

0
12π3

∫ κm

1
(κ2 − 1)3/2dκ, (34)

where κm = (m2
0 + m2

−)/2m0m−. After the integration, the expression (34) can be written in a
simple form:

Γ(Δm) ≈ G2
F

60π3 (Δm)5. (35)

So, the width crucially depends on the mass splitting, Γ ∼ (Δm)5. It does not depend on the mass
of heavy meson. In the interval Δm = (1 − 10)MeV we get following estimations:

Γ ∼ (10−29 − 10−24)GeV; τ ∼ (105 − 100) s. (36)

Thus, charged particle M− can be detected in the processes of M0N-collisions. This possibility was
analyzed in ref. [22] (and references therein), where indirect experimental evidences for the presence
of heavy charged metastable particles in cosmic rays were considered. Here, we should note that the
scenario with a long-lived co-annihilation partner is considered in refs. [20,62].
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Further, we estimate the mass of new heavy hadrons in the scenario where they are interpreted as
dark matter candidates. The data on the DM relic concentration lead to the equality

(σ(M)vr)
exp ≈ 10−10 GeV−2. (37)

In (37), M is the mass of new hadron. From this equality we estimate the mass of the meson M0.
Note, the calculations are done for the case of hadron-symmetric DM. To escape the problem with
anomalous helium in this case, we expect MQ > 10 TeV. Evaluation of the cross section σ(M0M̄0) is
fulfilled in the approach σ(M0M̄0) ∼ σ(UŪ), where U is new heavy quark and we consider the light
u-quark as a spectator. So, we estimate the cross section at the level of sub-processes with participation
of a heavy quark, where the main contributions follow from sub-processes UŪ → gg and UŪ → qq̄.
The expressions for these cross sections were represented in the third subsection (Equations (17)
and (18)) and we use their sum for evaluation of the total cross section. Thus, we estimate the mass
m(M0) ≈ MU from the approximate equation

(σ(M)vr)
exp ≈ 44π

9
α2

s

M2
U

. (38)

From (37) and (38) it follows that m(M0) = M ≈ MU ≈ 20 TeV at αs = αs(M). This values are in
accordance with the results in Ref. [63] for the case of heavy WIMPonium.

Attractive potential of M0M̄0-interaction, as was noted in the previous subsection, can increase
annihilation cross section due to the light meson exchange at long distance. This effect leads to the
so-called Sommerfeld–Gamov–Sakharov (SGS) enhancement [61]:

σ(M)vr = σ0(M)vrK(2α/vr). (39)

Here, σ0(M) is the initial cross section, α = g2/4π is strong coupling which is defined in (25).
At m  M ≈ MU , where m is mass of intermediate mesons (the light force mediators), the SGS factor
K can be represented in the form [61]:

K(2α/vr) =
2πα/vr

1 − exp(−2πα/vr)
. (40)

The light force carriers, in the case under consideration, are ω- and ρ-mesons and α ∼ 1,
so, from Equation (40) we get the estimations 102 � K(2α/vr)/π � 103 in the interval 10−2 >

vr > 10−3. Thus, from the Equations (38)–(40) it follows that at vr ∼ 10−2 the mass of new quark
MU ∼ 102 TeV. This value agrees with the estimations of the baryonic DM mass in [64] (M ∼ 100 TeV).
So, the value MU falls out from the mass range of the searches for anomalous hydrogen (Mmax � 1 TeV)
and anomalous helium (Mmax � 10 TeV). In our estimations we take into account the light mesons
only, (m  M). At a short distance, near r ∼ M−1, the exchange by heavy mesons is possible.
The expression (40), in this case, is not valid because Mχ ∼ MU , where Mχ is the mass of heavy force
mediators. For evaluation of SGS factor K in this case, we use the numerical calculations in ref. [65].
From this work it follows that K ≈ 10 in the interval 10−1 > vr > 10−3, and we get from (38) and
(39) the estimation M ≈ 60 TeV which does not crucially change the situation. Here, we should note
that correct description of SGS requires taking account of bosons Z and W also. Thus, SGS effects
are formed at various energies which correspond to various distances. So, this effect has a very
complicated and vague nature (see also ref. [66]).

3. Hypercolor Extensions of Standard Model

In this section, we consider some particular variants of models that extend SM by introducing an
additional strong sector with heavy vector-like fermions, hyperquarks (H-quarks), charged under an
H-color gauge group [67–78]. Depending on H-quark quantum numbers, such models can encompass
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scenarios with composite Higgs doublets (see e.g., [79]) or a small mixing between fundamental
Higgs fields of SM and composite hadron-like states of the new strong sector making the Higgs boson
partially composite. Models of this class leave room for the existence of DM candidates whose decays
are forbidden by accidental symmetries. Besides, H-color models comply well with electroweak
precision constraints, since H-quarks are assumed to be vector-like.

In the rest of this section, we briefly review one of the simplest realizations of the scenario
described—models with two or three vector-like H-flavors confined by strong H-color force Sp(2χc̃),
χc̃ � 1. The models with H-color group SU(2) [74,80] are included as particular cases in this
consideration due to isomorphism SU(2) = Sp(2) [74,80]. The global symmetry group of the strong
sector with symplectic H-color group is larger than for the special unitary case—it is the group SU(2nF)
broken spontaneously to Sp(2nF), with nF being a number of H-flavors. We posit that the extensions of
SM under consideration preserve the elementary Higgs doublet in the set of Lagrangian field operators.
This doublet mixes with H-hadrons, which makes the physical Higgs partially composite. Note also
that the same coset SU(2nF)/Sp(2nF) can be used to construct composite two Higgs doublet model [79]
or little Higgs models [81–86].

3.1. Lagrangian and Global Symmetry of Symplectic QCD with nF = 2, 3 Hyperquark Flavors

In this section, we consider the simplest possibilities to extend the symmetry of SM, GSM, by
adding a symplectic hypercolor group, i.e., the gauge group of the extension under consideration
is G = GSM × Sp(2χc̃), χc̃ � 1. The model is postulated to have new degrees of freedom, six
hyperquarks—Weyl fermions charged under H-color group. These fermions are assumed to form
two weak doublets Qkk

L(A)
and two singlets Sk

L(A)
, A = 1, 2. In this paper, we underscore indices that

are related to the H-color group Sp(2χc̃); the normal Latin indices (k, a, etc.) are for the weak group
SU(2)L. The transformation law for the H-quarks is posited to be

(Q
jj
L(A)

)′ = Q
jj
L(A)

− i
2

g1YQ(A)θQ
jj
L(A)

+
i
2

g2θaτ
jk
a Q

kj
L(A)

+
i
2

gc̃θaλ
jk
a Qjk

L(A)
, (41)

(S
j
L(A)

)′ = S
j
L(A)

− ig1YS(A)θS
j
L(A)

+
i
2

gc̃θaλ
jk
a Sk

L(A)
. (42)

Here, θ, θa, θa are transformation parameters of U(1)Y, SU(2)L, and Sp(2χc̃) respectively; τa are
the Pauli matrices; λa, a = 1 . . . χc̃(2χc̃ + 1) are Sp(2χc̃)c̃ generators satisfying the relation

λT
a ω + ωλa = 0, (43)

where T stands for “transpose”, ω is an antisymmetric 2χc̃ × 2χc̃ matrix, ωTω = 1. From now on,
SU(2)L and Sp(2χc̃)c̃ indices are omitted if this does not lead to ambiguities. The relation (43) and
the analogous one holding true for the Pauli matrices of the weak group imply that the H-quarks
are pseudoreal representations of the gauge symmetry groups of the model. This allows us to write
the right-handed fields exhibiting transformation properties that are similar to those of the original
left-handed ones:

Q′
R(A) = εωQL(A)

C = QR(A) +
i
2

g1YQ(A)θQR(A) +
i
2

g2θaτaQR(A) +
i
2

gc̃θaλaQR(A), (44)

S′
R(A) = ωSL(A)

C = SR(A) + ig1YS(A)θSR(A) +
i
2

gc̃θaλaSR(A), (45)

where ε = iτ2.
The quantum numbers of the right-handed spinors QR(A) and SR(A) are the same as the ones

of the left-handed H-quarks except for the opposite-sign hypercharges. Therefore, setting YQ(1) =

−YQ(2) = YQ and YS(1) = −YS(2) = YS, we obtain a doublet and a singlet of Dirac fields:
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Q = QL(1) + QR(2), S = SL(1) + SR(2). (46)

These relations among hypercharges are also enforced independently by requiring cancellation of
gauge anomalies.

Finally, the Lagrangian of the SM extension invariant under G = GSM × Sp(2χc̃) reads

L = LSM − 1
4

Hμν
a Ha

μν + iQ̄ /DQ − mQQ̄Q + iS̄ /DS − mSS̄S + δLY, (47)

DμQ =

[
∂μ +

i
2

g1YQBμ − i
2

g2Wμ
a τa −

i
2

gc̃ Hμ
a λa

]
Q, (48)

DμS =

[
∂μ + ig1YSBμ − i

2
gc̃ Hμ

a λa

]
S, (49)

where Hμ
a , a = 1 . . . χc̃(2χc̃ + 1) are hypergluon fields and Hμν

a are their strength tensors. Contact
Yukawa couplings δLY of the H-quarks and the SM Higgs doublet H are permitted in the model if
the hypercharges satisfy an additional linear relation:

δLY = yL (Q̄LH ) SR + yR (Q̄RεH̄ ) SL + h.c. for
YQ

2
− YS = +

1
2

; (50)

δLY = yL (Q̄LεH̄ ) SR + yR (Q̄RH ) SL + h.c. for
YQ

2
− YS = −1

2
. (51)

The model can be reconciled with the electroweak precision constraints quite easily, since H-quarks
are vector-like, i.e., their electroweak interactions are chirally symmetric in this scheme. Besides, this
allows us to introduce explicit gauge-invariant Dirac mass terms for H-quarks.

It is easy to prove that the kinetic terms of H-quarks Q and S in the Lagrangian (47) can be
rewritten in terms of a left-handed sextet as follows:

δLH-quarks, kin = iP̄L /DPL, PL =
(

QT
L(1), QT

L(2), SL(1), SL(2)

)T
, (52)

DμPL =

[
∂μ + ig1Bμ

(
YQΣQ + YSΣS

)
− i

2
g2Wμ

a Σa
W − i

2
gc̃Hμ

a λa

]
PL, (53)

ΣQ =
1
2

⎛
⎜⎝1 0 0

0 −1 0
0 0 0

⎞
⎟⎠ , ΣS =

⎛
⎜⎝0 0 0

0 0 0
0 0 τ3

⎞
⎟⎠ , Σa

W =

⎛
⎜⎝τa 0 0

0 τa 0
0 0 0

⎞
⎟⎠ . (54)

In the limit of vanishing electroweak interactions, g1 = g2 = 0, this Lagrangian is invariant under
a global SU(6) symmetry, which is dubbed as the Pauli–Gürsey symmetry sometimes [87,88]:

PL → UPL, U ∈ SU(6). (55)

The subgroups of the SU(6) symmetry include:

• the chiral symmetry SU(3)L × SU(3)R,
• SU(4) subgroup corresponding to the two-flavor model without singlet H-quark S,
• two-flavor chiral group SU(2)L × SU(2)R, which is a subgroup of both former subgroups.

The global symmetry is broken both explicitly and dynamically:

• explicitly—by the electroweak and Yukawa interactions, (50) and (53), and the H-quark masses;
• dynamically—by H-quark condensate [89,90]:

〈Q̄Q + S̄S〉 = 1
2
〈P̄LM0PR + P̄RM†

0 PL〉, PR = ωPL
C, M0 =

⎛
⎜⎝0 ε 0

ε 0 0
0 0 ε

⎞
⎟⎠ . (56)
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The condensate (56) is invariant under Sp(6) ⊂ SU(6) transformations U that satisfy a condition

UTM0 + M0U = 0, (57)

i.e., the global SU(6) symmetry is broken dynamically to its Sp(6) subgroup. The mass terms of
H-quarks in (47) could break the symmetry further to Sp(4) × Sp(2):

δLH-quarks, masses = −1
2

P̄LM′
0PR + h.c., M′

0 = −M′
0

T =

⎛
⎜⎝ 0 mQε 0

mQε 0 0
0 0 mSε

⎞
⎟⎠ . (58)

The case of a two-flavor model (without the singlet H-quark) is completely analogous to the
three-flavor model but is simpler than latter one—the global SU(4) symmetry is broken dynamically to
its Sp(4) subgroup by the condensate of doublet H-quarks; the Lagrangian of the model is obtained
from the one given by Equations (47)–(54) by simply setting to zero all terms with the H-quark S.

3.2. Linear Sigma Model as an Effective Field Theory of Constituent H-Quarks

Now, we proceed to construct a linear σ-model for interactions of constituent H-quarks.
The Lagrangian of the model consists of kinetic terms for the constituent fermions and the lightest
(pseudo)scalar composite states, Yukawa terms for the interactions of the (pseudo)scalars with the
fermions, and a potential of (pseudo)scalar self-interactions Uscalars. The Lagrangian reads

LLσ = LH-quarks +LY +Lscalars, (59)

LH-quarks = iP̄L /DPL, LY = −
√

2κ
(

P̄LMPR + P̄RM†PL

)
, (60)

Lscalars = DμH † · DμH + Tr Dμ M† · Dμ M − Uscalars, (61)

Here, κ is a coupling constant; M is a complex antisymmetric 2nF × 2nF matrix of (pseudo)scalar
fields; the multiplets PL, R correspond now to the constituent H-quarks but retain all the definitions
and properties of the fundamental multiplets described in the previous section. The fields transform
under the global symmetry SU(2nF) as follows:

M → UMUT, PL → UPL, PR → ŪPR, U ∈ SU(2nF), (62)

where Ū designates the complex conjugate of the matrix U. Note also that the model comprises of the
fundamental (not composite) Higgs doublet H of SM.

It is postulated that the interactions of the constituent H-quarks with the gauge bosons are the same
as for the fundamental H-quarks. This and the transformation laws (62) define the covariant derivative
for the scalar field M. The complete set of covariant derivatives present in the Lagrangian (59) is
as follows:

DμH =

[
∂μ +

i
2

g1Bμ − i
2

g2Wa
μ

]
H , DμPL =

[
∂μ + ig1Bμ

(
YQΣQ + YSΣS

)
− i

2
g2Wμ

a Σa
W

]
PL, (63)

Dμ M = ∂μ M + iYQg1Bμ(ΣQ M + MΣT
Q) + iYSg1Bμ(ΣS M + MΣT

S)−
i
2

g2Wa
μ(Σa

W M + MΣaT
W ), (64)

where the matrices ΣQ, ΣS, Σa
W , a = 1, 2, 3 are defined by Equation (54).
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3.2.1. Interactions of the Constituent H-Quarks with H-Hadrons and the Electroweak Gauge Bosons

In the case of nF = 3, the field M can be expanded in a basis of fourteen “broken” generators βa

of the global symmetry group SU(6):

M =

[
1

2
√

nF
(A0 + iB0)I + (Aa + iBa)βa

]
M0

=
1
2

⎛
⎜⎜⎜⎜⎜⎜⎝

Āε

[
1√
nF

σ +
1√
2nF

f +
1√
2

aaτa

]
ε K�ε[

1√
nF

σ +
1√
2nF

f − 1√
2

aaτa

]
ε Aε εK̄�

K�†ε εK�T 1√
nF

(
σ −

√
2 f
)

ε

⎞
⎟⎟⎟⎟⎟⎟⎠

+
i
2

⎛
⎜⎜⎜⎜⎜⎜⎝

B̄ε

[
1√
nF

η +
1√
2nF

η′ +
1√
2

πaτa

]
ε Kε[

1√
nF

η +
1√
2nF

η′ − 1√
2

πaτa

]
ε Bε εK̄

K†ε εKT 1√
nF

(
η −

√
2η′
)

ε

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

(65)

Here, I is the identity matrix and new scalar fields are defined as follows:

σ = A0, η = B0, f = A6, η′ = B6, aa = Aa+2, πa = Ba+2, a = 1, 2, 3,

A =
1√
2
(A1 + iA2), B =

1√
2
(B1 + iB2),

K� =
1
2
[A10 + iA14 + (A6+a + iA10+a)τa] , K =

1
2
[B10 + iB14 + (B6+a + iB10+a)τa] .

The generators βa are defined in the Appendix A. A bar over a scalar field denote the complex
conjugate of the field operator. In the case of nF = 2, we should substitute the identity matrix I in
Equation (65) by the diagonal matrix diag(1, 1, 1, 1, 0, 0) and take into account just the first five of
generators βa, i.e., Aa = 0 = Ba for a = 6, . . . 14 or, equivalently, K = 0 = K� and f = 0 = η′. In other
words, only the upper left 4 × 4 block of the matrix (65) remains under consideration, while all other
its elements are set to zero.

Assuming that the singlet meson σ develops a v.e.v. u, σ = u + σ′, and inserting the
representation (65) into the Lagrangian (59) of the sigma model, we arrive at the following form
of the Lagrangian:

LH-quarks +LY = iQ̄ /DQ + iS̄ /DS −κu (Q̄Q + S̄S)

−κQ̄
[

σ′ +
1√
3

f + i
(

η +
1√
3

η′
)

γ5 + (aa + iπaγ5) τa

]
Q −κS̄

[
σ′ − 2√

3
f + i

(
η − 2√

3
η′
)

γ5

]
S

−
√

2κ [(Q̄K �) S + i (Q̄K ) γ5S + h.c.]−
√

2κ
[
(Q̄A )ωSC + i (Q̄B) γ5ωSC + h.c.

]
− κ√

2

(
AQ̄εωQC + iBQ̄γ5εωQC + h.c.

)
,

(66)

DμQ = ∂μQ +
i
2

g1YQBμQ − i
2

g2Wa
μτaQ, DμS = ∂μS + ig1YSBμS, (67)

where K �, K and A , B are SU(2)L doublets of H-mesons and H-diquarks (H-baryons) respectively:
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K � =
1√
2
(R1 + iR2) , K =

1√
2
(S1 + iS2) , A =

1√
2

ε (R̄1 + iR̄2) , B =
1√
2

ε (S̄1 + iS̄2) , (68)

R1 =
1√
2

(
A10 + iA13

−A12 + iA11

)
, R2 =

1√
2

(
A14 − iA9

A8 − iA7

)
, (69)

S1 =
1√
2

(
B10 + iB13

−B12 + iB11

)
, S2 =

1√
2

(
B14 − iB9

B8 − iB7

)
. (70)

The Lagrangian for the case of a two-flavor model, nF = 2, is obtained by simply neglecting all
terms with the singlet H-quark S in Equation (66). All H-hadrons the models with nF = 2, 3 describe
are listed in the Table 2.

Table 2. The lightest (pseudo)scalar H-hadrons in Sp(2χc̃) model with two and three flavors of
H-quarks (in the limit of vanishing mixings). The lower half of the table lists the states present only
in the three-flavor version of the model. T is the weak isospin. G̃ denotes hyper-G-parity of a state
(see Section 3.2.4). B̃ is the H-baryon number. Qem is the electric charge (in units of the positron charge
e = |e|). The H-quark charges are QU

em = (YQ + 1)/2, QD
em = (YQ − 1)/2, and QS

em = YS, which is
seen from (67).

State H-Quark Current TG̃(JPC) B̃ Qem

σ Q̄Q + S̄S 0+(0++) 0 0
η i (Q̄γ5Q + S̄γ5S) 0+(0−+) 0 0
ak Q̄τkQ 1−(0++) 0 ±1, 0
πk iQ̄γ5τkQ 1−(0−+) 0 ±1, 0
A Q̄CεωQ 0 (0− ) 1 YQ

B iQ̄Cεωγ5Q 0 (0+ ) 1 YQ

f Q̄Q − 2S̄S 0+(0++) 0 0
η′ i (Q̄γ5Q − 2S̄γ5S) 0+(0−+) 0 0

K � S̄Q
1
2

(0+ ) 0 YQ/2 − YS ± 1/2

K iS̄γ5Q
1
2

(0− ) 0 YQ/2 − YS ± 1/2

A S̄CωQ
1
2

(0− ) 1 YQ/2 + YS ± 1/2

B iS̄Cωγ5Q
1
2

(0+ ) 1 YQ/2 + YS ± 1/2

3.2.2. Interactions of the (Pseudo)scalar Fields with the Electroweak Gauge Bosons

The kinetic terms of the lightest H-hadrons in the Lagrangian (61) can be put into the
following form:

Tscalars =
1
2 ∑

ϕ

Dμ ϕ · Dμ ϕ + ∑
Φ

(
DμΦ

)† DμΦ + Dμ Ā · Dμ A + Dμ B̄ · DμB, (71)

where ϕ = h, ha, πa, aa, σ, f , η, η′ are singlet and triplet fields, Φ = K , K �, A , B are doublets.
The fields h and ha, a = 1, 2, 3 are components of the fundamental Higgs doublet

H =
1√
2

(
h2 + ih1

h − ih3

)
. (72)

All covariant derivatives in the Lagrangian (71) follow directly from the covariant derivatives of
the fields H (63) and M (64):
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Dμh = ∂μh +
1
2
(g1δa

3Bμ + g2Wa
μ)ha, Dμφ = ∂μφ, φ = σ, f , η, η′, (73)

Dμha = ∂μha −
1
2
(g1δa

3Bμ + g2Wa
μ)h − 1

2
eabc(g1δb

3Bμ − g2Wb
μ)hc, (74)

Dμπa = ∂μπa + g2eabcWb
μπc, Dμaa = ∂μaa + g2eabcWb

μac, (75)

Dμ A = ∂μ A + ig1YQBμ A, DμB = ∂μB + ig1YQBμB, (76)

DμK =

[
∂μ + ig1

(
YQ

2
− YS

)
Bμ − i

2
g2Wa

μτa
]

K , (77)

DμK � = DμK
∣∣
K →K � , DμA = DμK

∣∣∣∣K →A
YS→−YS

, DμB = DμK

∣∣∣∣K →B
YS→−YS

. (78)

3.2.3. Self-Interactions and Masses of the (Pseudo)Scalar Fields

The potential of spin-0 fields—the Higgs boson and (pseudo)scalar H-hadrons—can be written
as follows:

Uscalars =
4

∑
i=0

λi Ii +
3

∑
0=i�k=0

λik Ii Ik. (79)

Here, Ii, i = 0, 1, 2, 3, 4 are the lowest dimension invariants

I0 = H †H , I1 = Tr
(

M† M
)

, I2 = Re Pf M, I3 = Im Pf M, I4 = Tr
[(

M† M
)2
]

. (80)

The Pfaffian of M is defined as

Pf M =
1

222!
εabcd Mab Mcd for nF = 2, Pf M =

1
233!

εabcde f Mab Mcd Me f for nF = 3, (81)

where ε is the 2nF-dimensional Levi–Civita symbol (ε12...(2nF)
= +1). We consider only renormalizable

part of the potential (79) permitted by the symmetries of the model. This implies that λi2 = λi3 = 0 for
all i if nF = 3. Besides, the invariant I3 is CP odd, i.e., λ3 = 0 as well as λi3 = 0 for i = 0, 1, 2. In the
two-flavor model, one of the terms in the potential (79) is redundant because of the identity

I2
1 − 4I2

2 − 4I2
3 − 2I4 = 0 (82)

that holds for nF = 2. To take this into account, we set λ22 = 0. (As it is mentioned above, λ22 is also
set to zero for nF = 3, since we consider only renormalizable interactions.).

In the case of vanishing Yukawa couplings yL = yR = 0, the tadpole equations for v.e.v.’s
v = 〈h〉 �= 0 and u = 〈σ〉 �= 0 read

μ2
0 = λ00v2 +

1
2

Λ01u2, μ2
1 =

1
2

Λ01v2 + Λ11u2 − (4 − nF) nFλ2unF−2

2 (2
√

nF)
nF

+
3
2

ζ
〈Q̄Q + S̄S〉

u
, (83)

where

μ2
0 = −λ0, μ2

1 = −λ1, Λ01 = λ01 −
1
4

λ02, (84)

Λ11 = λ11 +
λ4

2nF
− 1

4
λ12 −

nF(nF − 2)λ2

2 (2
√

nF)
nF u4−nF

− ζ〈Q̄Q + S̄S〉
2u3 . (85)

31



Symmetry 2019, 11, 587

The condition of vacuum stability requires that the following inequalities hold:

λ00 > 0, Λ11 > 0, 4λ00Λ11 − Λ2
01 > 0. (86)

The effects of explicit breaking of the SU(2nF) global symmetry can be communicated to the
effective fields by different non-invariant terms in the Lagrangian [91–93]. Here, we use the most
common one which is a tadpole-like term LSB = −ζ〈Q̄Q + S̄S〉(u + σ′), with the parameter ζ being
proportional to the current mass mQ of the H-quarks (see [94,95], for example).

Tree masses of the (pseudo)scalars:

m2
σ,H = λ00v2 + Λ11u2 ±

√
(λ00v2 − Λ11u2)2 + Λ2

01v2u2, (87)

m2
π = m2

η′ = m2
B = m2

K = m2
B = − ζ〈Q̄Q + S̄S〉

u
, m2

η =

⎧⎪⎪⎨
⎪⎪⎩

1
2

(
1
4

λ33 − λ4

)
u2 + m2

a for nF = 2,
√

3
24

λ2u − 1
3

λ4u2 + m2
a for nF = 3,

(88)

m2
f = m2

K � = m2
A =

√
3

12
λ2u +

1
3

λ4u2 − ζ〈Q̄Q + S̄S〉
u

, (89)

m2
a = m2

A =

⎧⎪⎨
⎪⎩

1
2

(
λ4 +

1
2

λ12

)
u2 +

1
4

λ02v2 +
1
2

λ2 −
ζ〈Q̄Q〉

u
for nF = 2,

m2
f for nF = 3.

(90)

For all nF, the model involves a small mixing of the fundamental Higgs and H-meson σ′,
which makes the Higgs partially composite:

h = cos θs H − sin θsσ, σ′ = sin θs H + cos θsσ, (91)

tan 2θs =
Λ01vu

λ00v2 − Λ11u2 , sgn sin θs = − sgn Λ01, (92)

where H and σ are physical fields.

3.2.4. Accidental Symmetries

If the hypercharges of H-quarks are set to zero, the Lagrangian (47) is invariant under an additional
symmetry—hyper G-parity [96,97]:

QG̃ = εωQC, SG̃ = ωSC. (93)

Since H-gluons and all SM fields are left intact by (93), the lightest G̃-odd H-hadron becomes
stable. It happens to be the neutral H-pion π0.

Besides, the numbers of doublet and singlet quarks are conserved in the model (47), because of
the two global U(1) symmetry groups of the Lagrangian. This makes two H-baryon states stable—the
neutral singlet H-baryon B and the lightest state in doublet B, which carries a charge of ±1/2.

3.3. Physics and Cosmology of Hypercolor SU(4) and SU(6) Models

So, in the simplest case of zero hypercharge, it is possible to consider some experimentally
observed consequences of SU(4) minimal model [80]. As it is seen from above, even in the minimal
scenario of this type of hypercolor extension, there emerges a significant number of additional degrees
of freedom. These new states, such as pNG or other hyperhadrons, can be detected in reactions at the
collider at sufficiently high energies.
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Readers should be reminded here of several papers that concern the formulation and construction
of a vector-like hypercolor scheme [67,68]. In addition to the awareness of the original ideology, which
made it possible to avoid known difficulties of Technicolor, main potentially observable consequences
of this type of the SM extension were analyzed qualitatively and quantitatively [69,71,72,78]. Also in
these articles, the possibilities of the hypercolor models for explaining the nature of DM particles were
discussed in detail. Namely, this extension of the SM offers several different options as DM candidates
with specific features and predictions. Some of these scenarios will be discussed in more detail below.

The vector-like hypercolor model contains two different scalar states with zero (or small) mixing,
the Higgs boson and σ̃, and possibility to analyze quantitatively an effect of this mixing tends to
zero. Then, we should hope to find some New Physics signals not in channels with the Higgs boson,
but from production and decays of σ̃-meson (as shown by experimental data at the LHC, almost all
predictions of the SM for the Higgs boson production cross sections in different channels as well as
the widths of various modes of its decay are confirmed). Interestingly, the fluke two-photon signal at
750 GeV at the LHC seemed to indicate unambiguously decay of a scalar analog of the Higgs. If this
were the case, the hyperpion mass in this model would have to be sufficiently small ∼ 102 GeV due
to the direct connection between π̃ and σ̃ masses. The condition of small mixing of scalars H and σ̃

in the conformal limit is mσ̃ ≈
√

3mπ̃ [68] and it means, in fact, that σ̃ is a pNG boson of conformal
symmetry. Then, it should be close in mass to other pNG states. In this case, signals of formation and
decays of charged and neutral (stable!) H-pions would be observed at the collider [70,80]. Nature,
however, turned out to be more sophisticated.

To consider the phenomenological manifestations, we postulate a certain hierarchy of scales for
numerous degrees of freedom in the model. Namely, the pNG bosons are the lightest in the spectrum
of possible hyperhadrons, and the triplet of H-pions are the lightest states of pNG. This arrangement
of the scales follows from the assumption that the apparent violation of the symmetry SU(4) is a small
perturbation by analogy with the violation of the dynamic symmetry in the orthodox QCD scheme.
There, the chiral symmetry is broken on a scale much larger than the mass scale of light quarks.

In the absence of new physics data from the LHC, we can use an estimate obtained on the
assumption that the stable states in the model are dark matter candidates. In particular, the neutral
H-pion π̃0 and neutral hyperbaryon, B0, can be such candidates. In this case, the analysis of the
relic concentration of the dark matter makes it possible to estimate the range of masses of these
particles. Thus, there is a natural mutual influence and collaboration of astrophysical and collider
studies. So, in this scenario of the Standard Model extension, it becomes possible to identify DM
particles with two representatives of the pNG states. For quantitative analysis, however, a more
accurate consideration of the mass spectrum of the H-pion triplet and mass splitting between π̃0 and
hyperbaryon B0 is necessary.

As for the mass splitting in the H-pion triplet, this parameter is defined by purely electroweak
contributions [72,98] and is as follows:

Δmπ̃ =
GF M4

W

2
√

2π2mπ̃

[
ln

M2
Z

M2
W

− β2
Z ln μZ + β2

W ln μW

− 4β3
Z√

μZ

(
arctan

2 − μZ
2
√

μzβZ
+ arctan

√
μZ

2βZ

)

+
4β3

W√
μW

(
arctan

2 − μW
2
√

μW βW
+ arctan

√
μW

2βW

)]
.

(94)

Here, μV = M2
V/m2

π̃ , βV =
√

1 − μV/4, and GF denotes Fermi’s constant. Taking the H-pion
mass in a wide range 200–1500 GeV, from (94) we found the value Δmπ̃ ≈ 0.162–0.170 GeV.

Indeed, this small, non-zero and almost constant splitting of the mass in the triplet of the
hyperpions obviously violates isotopic invariance. But at the same time, HG-parity remains a conserved
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quantum number. The reason is that the HG-parity is associated with a discrete symmetry, and not
with a continuous transformation of the H-pion states. It is important to note that the inclusion of
higher order corrections cannot destabilize a neutral weakly interacting H-pion, which is the lightest
state in this pseudoscalar triplet. But charged H-pion states should decay by several channels.

In the strong channel, the width of the charged H-pion decay [80] can be written as

Γ(π̃± → π̃0π±) =
G2

F
π

f 2
π |Uud|2m±

π̃ (Δmπ̃)
2λ̄(m2

π± , m2
π̃0 ; m2

π̃±). (95)

Here, fπ = 132 MeV and π± denotes a standard pion. The reduced triangle function is defined as

λ̄(a, b; c) =
[

1 − 2
a + b

c
+

(a − b)2

c2

]1/2

. (96)

For the decay in the lepton channel we get:

Γ(π̃± → π̃0l±νl) =
G2

Fm3
π̃±

24π3

∫ q2
2

q2
1

λ̄(q2, m2
π̃0 ; m2

π̃±)
3/2

(
1 − 3m2

l
2q2 +

m6
l

2q6

)
dq2, (97)

where q2
1 = m2

l , q2
2 = (Δmπ̃)

2, and ml is a lepton mass.
Now, we can estimate decay widths of the charged H-pion and, correspondingly, lifetimes, and

track lengths in these channels. To do this, we use (96), (97), and Δmπ̃ from (94) and get

Γ(π̃± → π̃0π±) = 6 · 10−17 GeV, τπ = 1.1 · 10−8 s, cτπ ≈ 330 cm;

Γ(π̃± → π̃0l±νl) = 3 · 10−15 GeV, τl = 2.2 · 10−10 s, cτl ≈ 6.6 cm.
(98)

Then, at TeV scale, characteristic manifestations of H-pions can be observed in the Drell–Yan type
reactions due to the following fingerprints:

1. large ET,mis reaction due to production of stable π̃0 and neutrino from π̃± and/or W± decays,
or two leptons from charged H-pion and W decays (this is reaction of associated production,
W, π̃±, π̃0 final state of the process);

2. large ET,mis due to creation of two stable π̃0 and neutrino from decay of charged H-pions, π̃±,
one lepton from π̃± and two quark jets from W± decay (the same final state with particles
W, π̃±, π̃0);

3. large ET,mis due to two stable neutral H-pions and neutrino from charged H-pion decay, two
leptons (virtual Z, and π̃+, π̃− in the final state);

4. large ET,mis due to two final neutral H-pions and neutrino from π̃±, one lepton which originated
from virtual W, π̃+, π̃0 final states.

Besides, H-pion signals can be seen due to two tagged jets in vector-boson-fusion channel in
addition to main characteristics of the stable hyperpion—Emis ∼ mπ̃ and accompanying leptons.

Obviously, targeted search for such signals is possible only when we know, at least approximately,
the range of hyperpion mass values. These estimates can be obtained by calculating the relic content of
hidden mass in the Universe and comparing it with recent astrophysical data. Within the framework
of the model, such calculations were made (see below). The possible values of the H-pion mass are in
the range from 600–700 GeV to 1200–1400 GeV, while the naturally σ̃-meson is quite heavy—we recall
that its mass is directly related to the masses of H-pions in the case of small H-σ̃ mixing. Cross sections
of the reactions above (with large missed energy and momentum) are too small to be detected without
special and careful analysis of specific events with predicted signature. The number of these events is
also evidently small, and the signal can be hardly extracted from the background because there is a lot
of events with decaying W-bosons and, correspondingly, neutrino or quark jets.
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So, another interesting process to probe into the model of this type is the production and decay of
a scalar H-meson σ̃ at the LHC; this production is possible at the tree level, however, the cross section
is strongly damped due to small mixing. A small value of the mixing angle, θs, suppresses the cross
section by an extra multiplier sin2 θs in comparison with the standard Higgs boson production.

However, at one-loop level it is possible to get single and double H-sigma in the processes of
vector-vector fusion. Namely, in V∗V′∗ → σ̃, 2σ̃ and/or in the decay through hyperquark triangle
loop Δ, i.e., V∗ → Δ → V

′
σ̃, 2σ̃. Here, V∗ and V

′
are intermediate or final vector bosons.

Now, a heavy H-sigma can decay via loops of hyperquarks or hyperpions σ̃ → V1V2, where
V1,2 = γ, Z, W. Besides, the main decay modes of H-sigma are σ̃ → π̃0π̃0, π̃+π̃−; these are described
by tree-level diagrams that predict large decay width for mσ̃ � 2mπ̃ . As we will see below (from the
DM relic abundance analysis), at some values of π̃ and σ̃ masses these channels are opened. In the
small mixing limit, the width is

Γ(σ̃ → π̃π̃) =
3u2λ2

11
8πmσ̃

(
1 − 4m2

π̃

m2
σ̃

)
, (99)

and it depends strongly on the parameter λ11.
An initial analysis of the model parameters was carried out in [68], using the value λ11 (it is

denoted there as λHC) and u, from (99) we get: Γ(σ̃ → π̃π̃) � 10 GeV when mσ̃ � 2mπ̃ .
The smallness of H–σ̃ mixing, as it is dictated by conformal approximation, results in the multiplier

sin2 θs for all tree-level squared amplitudes for decay widths. Then, for σ̃ decay widths we have

Γ(σ̃ → f f̄ ) =
g2

W sin2 θs

32π
mσ̃

m2
f

M2
W
(1 − 4

m2
f

m2
σ̃

)3/2,

Γ(σ̃ → ZZ) =
g2

W sin2 θs

16πc2
W

M2
Z

mσ̃
(1 − 4

m2
Z

m2
σ̃

)1/2[1 +
(m2

σ̃ − 2M2
Z)

2

8M4
Z

],

Γ(σ̃ → W+W−) =
g2

W sin2 θs

8π

M2
W

mσ̃
(1 − 4

m2
W

m2
σ̃

)1/2[1 +
(m2

σ̃ − 2M2
W)2

8M4
W

].

(100)

Here, m f is a mass of standard fermion f and cW = cos θW .
Recall that the two-photon decay of the Higgs boson is the very main channel in which the

deviation of the experimental data from the predictions of the SM was originally found. Analogically,
we consider a σ̃ → γγ decay which occurs through loops of heavy hyperquarks and H-pions; the
width has the following form:

Γ(σ̃ → γγ) =
α2mσ̃

16π3 |FQ + Fπ̃ + Fã + FW + Ftop|2. (101)

Here, FQ, Fπ̃ , FW , and Ftop are contributions from the H-quark, H-pion, W-boson, and top-quark
loops; they can be presented as follows:

FQ = −2κ
MQ

mσ̃
[1 + (1 − τ−1

Q ) f (τQ)],

Fπ̃ =
gπ̃σ̃

mσ̃
[1 − τ−1

π̃ f (τπ̃)], gπ̃σ̃ ≈ uλ11,

Fã =
gãσ̃

mσ̃
[1 − τ−1

ã f (τã)], gãσ̃ ≈ uλ12,

FW = − gW sin θsmσ̃

8MW
[2 + 3τ−1

W + 3τ−1
W (2 − τ−1

W ) f (τW)],

Ftop =
4
3

gW sin θs M2
t

mσ̃ MW
[1 + (1 − τ−1

t ) f (τt)],

(102)
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and
f (τ) = arcsin2 √τ, τ < 1,

f (τ) =− 1
4

[
ln

1 +
√

1 − τ−1

1 −
√

1 − τ−1
− iπ

]2

, τ > 1.
(103)

As it is seen, contributions from W- and t-quark loops are induced by non-zero σ̃–H mixing.
Taking necessary parameters from [68], the width is evaluated as Γ(σ̃ → γγ) ≈ 5–10 MeV.

Obviously, the process pp̄ → σ̃ → all should be analyzed quantitatively after integration of cross
section of quark subprocess with partonic distribution functions. It is reasonable, however, to get an
approximate value of the vector boson fusion cross section VV → σ̃(s) → all, V = γ, Z, W.

The useful procedure to calculate the cross section with a suitable accuracy is the method of
factorization [99]; this approach is simple and for the cross section estimation it suggests a clear recipe:

σ(VV → σ̃(s)) =
16π2Γ(σ̃(s) → VV)

9
√

s λ̄2(M2
V , M2

V ; s)
ρσ̃(s), (104)

where σ̃(s) is σ̃ in the intermediate state having energy
√

s. A partial decay width is denoted as
Γ(σ̃(s) → VV). The density of probability, ρσ̃(s), can be written as

ρσ̃(s) =
1
π

√
s Γσ̃(s)

(s − M2
σ̃)

2 + s Γ2
σ̃(s)

. (105)

Here, Γσ̃(s) is the total width of virtual σ̃-meson having Mσ̃ =
√

s. At this energy we get exclusive
cross section changing the numerator in (105), namely Γσ̃ → Γ(σ̃ → V

′
V

′
) = Γσ̃ · Br(σ̃ → V

′
V

′
); for

the cross section now we have

σ(VV → σ̃ → V
′
V

′
) =

16π

9
Br(σ̃ → VV)Br(σ̃ → V

′
V

′
)

m2
σ̃(1 − 4M2

V/m2
σ̃)

≈ 16π

9m2
σ̃

· Br(σ̃ → VV)Br(σ̃ → V
′
V

′
). (106)

Now, when M2
σ̃ � M2

V the cross section considered is determined by the branchings of H-sigma
decay and the value of Mσ̃. Note, if 2mπ̃ > Mσ̃ H-sigma dominantly decays through following
channels σ̃ → WW, ZZ. In this case, we get for σ̃ a narrow peak (Γ � 10–100 MeV).

As we said earlier, up to the present, there are no signals from the LHC about the existence of a
heavy scalar state that mixes with the Higgs boson. Therefore, we are forced to estimate the mass of
the H-sigma relying on astrophysical data on the DM concentration. Namely, we can consider H-pions
as stable dark matter particles and then take into account the connection of their mass with the mass of
σ̃-meson in the (almost) conformal limit.

Now, we should use the cross section which is averaged over energy resolution. As a result, the
value of the cross section is reduced significantly. More exactly, for 2mπ̃ < Mσ̃ the dominant channel is
σ̃ → π̃π̃ with a wide peak (Γ ∼ 10 GeV). So, Br(σ̃ → VV) is small and consequently the cross section
of H-meson prodution is estimated as very small.

Thus, with a sufficiently heavy (with mass (2–3) TeV) second scalar meson, the main fingerprint of
its emergence in the reaction is a wide peak induced by the strong decay σ̃ → 2π̃. It is accompanied by
final states with two photons, leptons and quark jets originating from decays of WW, ZZ, and standard
π±. Besides, it occurs with some specific decay mode of σ̃ with two final stable π̃0. This channel is
specified by a large missed energy; charged final H-pions result in a signature with missed energy plus
charged leptons.

As it was shown, existence of global U(1) hyperbaryon symmetry leads to the stability of the
lightest neutral H-diquark. In the scenario considered, we suppose that charged H-diquark states

36



Symmetry 2019, 11, 587

decay to the neutral stable one and some other particles. Moreover, we also assume that these charged
H-diquarks are sufficiently heavy, so their contributions into processes at (1–2) TeV are negligible [80].

Thus, having two different stable states—neutral H-pion and the lightest H-diquark with
conserved H-baryon number—we can study a possibility to construct dark matter from these particles.
This scenario with two-component dark matter is an immanent consequence of symmetry of this type
of SM extension. Certainly, emergence of a set of pNG states together with heavy hyperhadrons needs
careful and detailed analysis. At first stage, the mass splitting between stable components of the DM,
not only H-pions, should be considered. Importantly, the model does not contain stable H-baryon
participating into electroweak interactions. It means that any constraints for the DM relic concentration
are absent for this case.

Note, π̃0 and B0 have the same tree level masses, so it is important to analyze the mass splitting
ΔMBπ̃ = mB0 − mπ̃0 . As it follows from calculations, this parameter depends on electroweak
contributions only, all other (strong) diagrams are canceled mutually. Then, we get:

ΔMBπ̃ =
−g2

2mπ̃

16π2

[
8β2 − 1 − (4β2 − 1) ln

m2
π̃

μ2 + 2
M2

W
m2

π̃

(
ln

M2
W

μ2 − β2 ln
M2

W
m2

π̃

)

− 8
MW
mπ̃

β3

(
arctan

MW
2mπ̃ β

+ arctan
2m2

π̃ − M2
W

2mπ̃ MW β

)]
,

(107)

where β =

√
1 − M2

W
4m2

π̃

. An important point is that ΔMBπ̃ dependence on a renormalization point

results from the coupling of the pNG states with H-quark currents of different structure at close but not
the same energy scales. Thus, the dependence of the characteristics of the DM on the renormalization
parameter is necessarily considered when analyzing the features of the DM model.

We remind that it is assumed that not-pNG H-hadrons (possible vector H-mesons, etc.) manifest
itself at much more larger energies. It results from the smallness of the scale of explicit SU(4) symmetry
breaking comparing with the scale of dynamical symmetry breaking. This hierarchy of scales copies
the QCD construction.

Now, since the effects of hyperparticles at the collider are small, and an interesting scenario
of a two-component DM arises, let us consider in more detail the possibility of describing the
dark matter candidates in the framework of this model [100,101]. At the same time, we should
note the importance of previous studies of the DM scenarios based on vector-like technicolor in the
papers ref. [65,68,69,71,72,102–104]. Several quite optimistic versions of the DM description (including
technineutrons, B-baryons, etc.) were considered, which, however, did not have a continuation,
since they relied on a number of not quite reasonable assumptions—in particular, that B-baryons
form the triplet.

When we turn to the hypercolor model, it will be necessary not only to calculate the total
annihilation cross section for dark matter states, but to analyze the entire kinetics of freezing out
of DM particles. The reason is that the mass splittings in the H-pions multiplet and between
masses of two components are small (in the last case this parameter can be suggested as small).
Then, the coupled system of five Boltzmann kinetic equations should be solved. Namely, two states
of the neutral H-baryon, B0, B̄0, neutral H-pion and also two charged H-pions should be considered.
Such cumbersome kinetics are a consequence of proximity of masses of all particles participating in
the process of formation of residual DM relic concentration. So, the co-annihilation processes [105]
can contribute significantly to the cross section of annihilation. It had been shown also in previous
vector-like scenario [72].
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Now, for each component of the DM and co-annihilating particles, i, j = π̃+, π̃−, π̃0; μ, ν = B, B̄,
we have the basic Boltzmann Equations (108) and (109) (neglecting reactions of type iX ↔ jX):

da3ni
a3dt

= −∑
j
< σv >ij

(
ninj − neq

i neq
j

)
− ∑

j
Γij

(
ni − neq

i

)
−

∑
j,μ,ν

< σv >ij→μν

(
ninj −

neq
i neq

j

neq
μ neq

ν

nμnν

)
+

∑
j,μ,ν

< σv >μν→ij

(
nμnν −

neq
μ neq

ν

neq
i neq

j
ninj

)
.

(108)

We also get
da3nμ

a3dt
= −∑

ν

< σv >μν

(
nμnν − neq

μ neq
ν

)
+

∑
ν,i,j

< σv >ij→μν

(
ninj −

neq
i neq

j

neq
μ neq

ν

nμnν

)
−

∑
ν,i,j

< σv >μν→ij

(
nμnν −

neq
μ neq

ν

neq
i neq

j
ninj

)
,

(109)

where
< σv >ij= < σv > (ij → XX),

< σv >ij→μν= < σv > (ij → μν),

Γij =Γ(i → jXX).

(110)

Because of decays of charged H-pions, the main parameters in this calculation are total densities
of π̃, B0 and B̄0, namely, nπ̃ = ∑i ni and nB = ∑μ nμ. Using an equilibrium density, neq, for describing
co-annihilation, we estimate ni/n ≈ neq

i /neq. Then, the system of equations can be rewritten as

da3nπ

a3dt
= ¯< σv >π̃

(
n2
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(

neq
π̃

)2
)
− < σv >π̃π̃

⎛
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π̃
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(
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B

)2 n2
B

⎞
⎟⎠+
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⎜⎝n2

B −

(
neq

B

)2

(
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⎟⎠ ,

(111)

da3nB

a3dt
= ¯< σv >B
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)2
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+ < σv >π̃π̃
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⎞
⎟⎠ ,

(112)

where
¯< σv >π̃ =

1
9 ∑

i,j
< σv >ij, ¯< σv >B =

1
4 ∑

μ,ν
< σv >μν,

< σv >π̃π̃=
1
9
(< σv > (π̃0π̃0 → BB̄) + 2 < σv > (π̃+π̃− → BB̄)),

< σv >BB=
1
2
(< σv > (BB̄ → π̃0π̃0)+ < σv > (BB̄ → π̃−π̃+)).

(113)
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Now, it is reasonable to consider the ratio mπ̃/MB ≈ 1 using a suitable value of the
renormalization parameter in the mass splitting between mπ̃0 and MB0 , more exactly, ΔMB0π̃0 /mπ̃0 �
0.02. Then, the system of kinetic equations simplifies further. Having neq

B /neq
π̃ = 2/3, we come to the

following form of equations:

da3nπ̃

a3dt
= ¯< σv >π̃

(
n2

π̃ −
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)
− < σv >π̃π̃
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+

< σv >BB

(
n2

B − 4
9

n2
π̃

)
,

(114)

da3nB
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(115)

When masses of the DM components are close to each other, it is necessary to take into account
the temperature dependence [105] in the cross sections < σv >π̃π̃ and < σv >BB of the processes:

< σv >BB≈< (a + bv2)v >=
2√
πx

(
a +

8b
x

)
, (116)

where x = mπ̃/T, v is the relative velocity of final particles.
There are commonly used notations, which are convenient for solve the system, Y = n/s and

x = mπ̃/T, where s is the density of entropy. Then, neglecting small terms ΔMπ̃/MB we have:

dYπ

dx
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[
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eq
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4
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, (117)

dYB
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The energy density is determined by a set of relativistic degrees of freedom, this function can be
written in a convenient form as

g(x, T) =
√

g(T)
x2

{
1 +

1
3

d(log g(T))
d(log T)

}
� 115

2
+

75
2

tanh
[
2.2
(
log10 T + 0.5

)]
+ 10 tanh

[
3
(
log10 T − 1.65

)]
.

(119)

Here, we use an approximated value of this parameter, which works in the numerical solution
with a good accuracy [101] and better than known approximation g(T) ≈ 100; also, there are
standard notations from [106]: λi = 2.76 × 1035mπ̃ < σv >i, Yeq

π̃ = 0.145(3/g(T))x3/2e−x, Yeq
B =

0.145(2/g(T))x3/2e−x,
The DM relic density, Ωh2, is expressed in terms of relic abundance and critical mass density, ρ

and ρcrit:

Ωh2 =
ρ

ρcrit
h2 =

ms0Y0

ρcrit
h2 � 0.3 × 109 m

GeV
Y0. (120)

Present time values are denoted by the subscript “0”.
After the replacement W = log Y [106], the system of kinetic equations is solved numerically.

As it is shown in detail in [101], there is a set of regions in a plane of H-pion and H-sigma masses,
where it is possible to get the value of the DM relic density in a correspondence with the modern
astrophysical data. More exactly, the H-pion fraction is described by the following intervals: 0.1047 ≤
Ωh2

HP + Ωh2
HB ≤ 0.1228 and Ωh2

HP/(Ωh2
HP + Ωh2

HB) ≤ 0.25). There are also some slightly different
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areas having all parameters nearly the same. However, H-pions make up just over a quarter of
dark matter density, more exactly, 0.1047 ≤ Ωh2

HP + Ωh2
HB ≤ 0.1228 and 0.25 ≤ Ωh2

HP/(Ωh2
HP +

Ωh2
HB) ≤ 0.4. Certainly, there are regions of parameters which are forbidden by restrictions by

XENON collaboration [13,107,108].
It is important that there are no regions of parameters where the H-pion component dominates in

the dark matter density. The reason is that this hyperpion component interacts with vector bosons,
Z, W, at the tree level and, consequently, annihilates into ordinary particles much faster than stable
B0-baryons. The latter particles do not interact with standard vector bosons directly but only at loop
level through H-quark and H-pion loops. It is a specific feature of SU(4) vector-like model having two
stable pNG states.

At this stage of analysis (without an account of loop contributions from B0 − B− annihilation),
there are three allowable regions of parameters (masses):

Area 1: here Mσ̃ > 2mπ̃0 and u ≥ Mσ̃; at small mixing, sθ  1, and large mass of H-pions we get
a reasonable value of the relic density and a significant H-pion fraction;

Area 2: here again Mσ̃ > 2mπ̃0 and u ≥ Mσ̃ but mπ̃ ≈ 300–600 GeV; H-pion fraction is small here,
approximately, (10–15)%;

Area 3: Mσ̃ < 2mπ̃—this region is possible for all values of parameters, but decay σ̃ → π̃π̃ is
prohibited and two-photon signal from reaction pp → σ̃ → γγX would have to be visible at the LHC.
Simultaneously, H-pion fraction can be sufficiently large, up to 40% for large mπ̃0 ∼ 1 TeV and small
angle of mixing.

Thus, from kinetics of two components of hidden mass it follows that the mass of these particles
can vary in the interval (600–1000)GeV in agreement with recent data on the DM relic abundance.
Having these values, it is possible to consider some manifestations of the hidden mass structure
in the model.

Particularly, the inelastic interactions of high-energy cosmic rays with the DM particles can be
interesting for studying the hidden mass distribution using signals of energetic leptons (neutrino) or
photons which are produced in this scattering process [101].

Cosmic ray electrons can interact with the H-pion component via a weak boson in the process
eπ̃0 → νeπ̃−, then charged π̃− will decay. In the narrow-width approximation we get for the cross
section: σ(eπ̃0 → νeπ̃0lν′l ) ≈ σ((eπ̃0 → νeπ̃−) · Br(π̃− → π̃0lν′l ), branchings of charged hyperpion
decay channels are: Br(π̃− → π̃0eν′e) ≈ 0.01 and also Br(π̃− → π̃0π−) ≈ 0.99.

Considering final charged hyperpion π̃− near its mass shell, standard light charged pion produces
neutrino eνe and μνμ with following probabilities: ≈1.2 × 10−6 and ≈0.999, correspondingly.

Then, in this reaction, an energetic cosmic electron produces electronic neutrino due to vertex
Weνe, and soft secondary e′ν′e or μνμ arise from charged H-pion decays. Now, there are final states with
Br(π̃0νeμ′ν′μ) ≈ 0.99 and Br(π̃0νee′ν′e) ≈ 10−2. Obviously, we use here some simple estimations, they
can be justified in the framework of the factorization approach [99]. Characteristic values of H-pion
mass which can be used for the analysis are, for example, mπ̃0 = 800 GeV and 1200 GeV.

As it results from calculations, at initial electron energies in the interval Ee = (100–1000) GeV the
cross section of the process decreases from O(10) nb up to O(0.1) nb having maximum at small angles
between electron and the neutrino emitted, i.e., inelastic neutrino production occurs in the forward
direction (for more detail see figures in Ref. [101]). In this approximation, the energy of the neutrino
produced is proportional to the energy of the incident electron and depends on the mass of the dark
matter particle very weakly. The neutrino flux is calculated by integrating of spectrum, dN/dEν, this
flux depends on H-pion mass very weakly. In the interval (50–350)GeV it decreases most steeply, and
then, down to energies ∼1 TeV the fall is smoother.

Certainly, integrating the spectrum dN/dEν, we can estimate the number of neutrino landing on
the surface of IceTop [109,110] which is approximately one squared kilometer.

Even taking into account some coefficients to amplify the DM density near the galaxy center for
the symmetric Einasto profile, we have found the number of such neutrino events per year as very
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small, Nν = (6–7), in comparison with the corresponding number of events for neutrino with energies
in the multi-TeV region. Note, the Einasto profile modified in such manner reproduces well the hidden
mass density value near Galaxy center in concordance with other DM profiles [111]. In any case, such
small number of neutrino events at IceCube does not allow to study this interaction of cosmic rays
with the DM effectively. Any other DM profile gives practically the same estimation of number of
events for neutrino with these energies. Indeed, cross section of νN interaction for small neutrino
energies ∼(102–103) GeV is much lower than for neutrino energies ∼(101–105) TeV. Consequently, all
parameters of the signal detected, particularly, deposition of energy, intensity of Cherenkov emission,
are noticeably worse. Because of the absence of good statistics of neutrino events, it is practically
impossible to measure the neutrino spectrum of the predicted form. Probability of neutrino detection
can be estimated in the concept of an effective area of the detector [110,112–115]). In our case this
probability is small, P = 10−10–10−8 [101], so we need some additional factor that can increase the flux
of neutrino substantially.

In principle, some factors amplifying these weak signals of cosmic electron scattering off the DM
can be provided by inhomogeneities in the hidden mass distribution, i.e., so called clumps [116–121].
The scattering of cosmic rays off clusters of very high density [122] can result in amplifying neutrino
flux substantially [123,124].

Though the scattering process suggested can be seen due to specific form of neutrino flux,
the expected number of events is too small to be measured in experiments at modern neutrino
observatories. The weakeness of the signal is also resulted from effective bremsstrahlung of electrons
and the smallness of electron fraction in cosmic rays, ∼1%. Therefore, they are not so good probe for
the DM structure; only if there are sharply non-homogeneous spatial distribution of hidden mass,
the signal of production of energetic neutrino by cosmic electrons can be detected. It is an important
reason to study inelastic scattering of cosmic protons, because they are more energetic and have a
much larger flux.

Besides, an important information of the nature and profile of hidden mass should be manifested
in a specific form of the DM annihilation gamma spectrum from clumps [125,126]. This signal can
be significantly amplified due to increasing of density of hidden mass inside clumps, corresponding
cross section depends on the squared density in contrary with the energy spectrum of final particles
(neutrino, for example) which is resulted from scattering. In the last case, cross section is proportional
to a first degree of the DM density.

Indeed, in the vector-like model with the two lowest in mass neutral stable states, one from these
components does not participate in the scattering reaction with leptons, so the flux of final particles is
diminished. There are, however, annihilation channels of both components into charged secondaries
which emit photons. Some important contributions into this process describe so called virtual internal
bremsshtrahlung (VIB). This part of photon spectrum containing information on the DM structure
may be about 30%. Consequently, a feature of the DM structure in the model (particularly, existence of
two components with different tree-level interactions) can result in some characteristic form of the
annihilation diffuse spectra.

Introducing a parameter which determines H-pion fraction in the DM density,

κ =
Ωh2

HP
Ωh2

HP + Ωh2
HB

, (121)

full annihilation spectrum is written as

d(σv)
dEγ

E2
γ = κ2 d(σvπ̃0π̃0)

dEγ
E2

γ + (1 − κ)2 d(σvB0 B̄0)

dEγ
E2

γ. (122)

Contributions of the DM components to the total cross section of production of diffuse photons
differ because of distinction in tree-level interaction with weak bosons. Annihilation of hyperpions into
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charged states (in particular, W-bosons) gives the most intensive part of diffuse photon flux. However,
B0-baryons can provide a significant fraction of this flux in some regions of the model parameters,
namely, if the DM particles have mass ≈600 GeV. It should be noted also that σ-meson mass affects
the cross section value changing it noticeably: from −10 % to +50 %, approximately. This effect is
seen better for the DM component mass ≈800 GeV when contribution from B0 is not so prominent.
Obviously, contributions to the gamma flux intensity from annihilation of different DM components
contribute to the gamma flux in correspondence with the model content and structure. Thus, there
appears a sign of the existence of two Dark matter components, observed in the form of a specific
humped curve of the photon spectrum, due to virtual internal bremsstrahlung subprocesses. This effect
should be considered in detail, because it is necessary to have much more astrophysics data together
with an accurate analysis of all possible contributions to the spectrum for various regions of parameters.
Certainly, because of high density of interacting particles, reactions of annihilation into photons in the
DM clumps can be seen much better, and it also should be studied.

There is a set of possible observing consequences of the DM particle origin, structure and
interactions produced by vector-like extension of the SM. Some of them have been analyzed
quantitatively, while the analysis of others is still in progress. As there are plenty of additional
heavy degrees of freedom in this model, they induce new effects that should be considered to predict
observable and measurable phenomena. Moreover, the numerical estimations of model parameters
and analysis of the effects above are based on some assumptions about spectrum of hyperhadrons.
Particularly, it is suggested that charged di-hyperquark states, B±, have masses which are much larger
than neutral-state masses. It allows us to eliminate a lot of possible subprocesses with these particles
and simplify substantially the system of kinetic equations for the DM components. This approach is
quite reasonable.

Extension of the vector-like model symmetry, from SU(4) to SU(6), unambiguously results in a
much larger number of additional H-hadrons which spawn a great quantity of new processes and
effects. As noted above, there is an invariance of the model physical Lagrangian with respect to some
additional symmetries, as a result of which we obtain a number of stable states and it is necessary
to study their possible manifestations. Consideration of a new variant of the vector-like model of
H-quarks is at the very beginning, therefore now we can define only some possible scenarios.

In the scenario with Y = YS = 0, two stable neutral states, H-pion, B0 and also the lightest charged
B± occur, as it is dictated by hyper-G-parity. In this case, we again have the opportunity to construct
hidden mass from several components, as it was done in the previous version of SU(4) symmetry.
However, a quantitative analysis of the mass difference for B-diquarks is necessary in order to assess
the importance of the co-annihilation process for them. Assuming this mass splitting to be small,
one can predict that the characteristics of a two-component DM in this scenario will not differ much
from the previous version. Namely, we expect the masses of all dark matter components to be in the
interval (0.8–1.2) TeV providing corresponding DM density.

Very interesting consequences follow from an occurrence of the stable charged state. First, the
charged H-hadrons interact electromagnetically with cosmological plasma, so the hidden mass can be
split from the plasma much later in comparison with the purely neutral DM. Second, there should
be tree-level annihilation of these DM states into photons with an observable flux of specific form.
Certainly, these conclusions make sense if relative concentration of the charged component is not
small. Known data on the gamma spectrum from cosmic telescopes should help to establish necessary
restrictions for the scenario parameters.

Moreover, the stable charged H-hadron can be seen in the collider experiments at corresponding
energies. These heavy particles in the final states and neutral stable particles should be observed in
the characteristic events with large missed energy. The cross sections of reactions and energies of
detectable secondaries (hadronic jets and/or leptons) depend on the mass splitting between neutral
and charged states.
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The charged stable H-hadron should also be prominent in the scattering off the nuclei in
underground experiments, we can expect that the corresponding cross section will be larger then
in the stable neutral component scattering due to exchanges via vector bosons, not only through
intermediate scalar mesons. However, known restrictions for measurable cross sections which follow
from experiments at the underground setup will predict then more heavy stable particles in this model.

Note also that the next possible scenario with YQ = 0, YS = ±1/2 is less interesting for describing
the DM properties because of the absence of stable states. (There is, possibly, a very special case with
the one H-baryon state stable, the case should be considered separately, this work is in progress.).

Considering the physical Lagrangian for SU(6) vector-like extension, we find an important feature
of the model: in this case there arise interactions of K-doublets and B-states with standard vector bosons
(see the section above). These interactions can both amplify channels of new particles production at
the collider and increase cross section of the DM annihilation and co-annihilation. Then, possible value
of the DM components mass should also be larger to provide a suitable hidden mass density. In any
case, these scenarios should be carefully analyzed before we can formulate a set of predictions for
collider and astrophysical measurements. As it is seen, the vector-like extensions of the SM allow us to
suggest some interesting scenarios with new stable heavy objects—H-hadrons—which can manifest
itself both in events with large missed energy at the LHC and in astrophysical signals such as spectrum
of photons and/or leptons from various sources in the Galaxy.

4. Dark Atom Physics and Cosmology

The approach of dark atoms, proposed and developed in [127–129], had followed the idea by
Sh.L. Glashow [52] on dark matter species as electromagnetically bound systems of new stable charged
particles. The potential danger for this approach is the possibility of overproduction of anomalous
hydrogen, being a bound state of a heavy +1 charged particle with ordinary electrons. Hence +1
charged particles should be unstable to avoid such an overproduction. Moreover, primordial heavy
stable −1 charged particles, being in deficit relative to primordial helium are all captured by primordial
helium nuclei, forming a +1 chareged ion, as soon as helium is produced in the course of Big Bang
nucleosynthesis [130]. Therefore charged dark atom constituents should have even charge, which is a
double charge in the simplest case.

The abundance of particles with charge +2, bound with ordinary electrons, should be suppressed
to satisfy the experimental upper limits on the anomalous helium. They should be either produced
in deficit relative to the corresponding −2 charged particles [127,128,131], or there should be some
special mechanism, suppressing the abundance of anomalous helium in the terrestrial matter [129].

These constraints distinguish negative even charged particles as possible constituents of dark
atoms. Particles with charge −2 are captured by primordial helium and form O-helium dark atom.
Particles X with even negative charge form X-nuclearites: the −4 charged capture two helium nuclei
and form X-berillium (XBe), with the charge −6 capture three helium nuclei to form X-carbon (XC)
and with the charge −8–X-oxygen (XO), in which four helium nuclei are bound with −8 charged
particle. The existing examples of O or X particles exhibit their leptonic or lepton-like nature, and the
properties and effects of the coresponding dark atoms are determined by their nuclear-interacting
helium shells. It naturally puts OHe and X-nulearites in the list of hadronic dark matter candidates.

4.1. Dark Atoms Structure, Effects and Probes

General analysis of the bound states of massive negatively charged particle with nuclei was
proposed in [132–134]. It assumed a simplified description of nuclei as homogeneously charged spheres
and that the charged particle doesn’t possess strong interaction. The structure of the corresponding
bound state depends on the value of parameter a = ZZoαAmpR, where Z,

R ∼ 1.2A1/3/(200 MeV) (123)
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and A are, respectively, charge, radius and atomic number of the nucleus. In the Equation (123) Zo is
the charge of particle, α is the fine structure constant and mp stands for the proton mass. For 0 < a < 1
the bound state looks like Bohr atom with negatively charged particle in the core and nucleus moving
along the Bohr orbit. At 2 < a < ∞ the bound states look like Thomson atoms, in which the body of
nucleus oscillates around the heavy negatively charged particle (see e.g., [14]).

In the case of OHe Z = 2, Zo = 2 and a = ZZoαAmpR ≤ 1, which proves its Bohr-atom-like
structure [14,127,128]. For point-like charge distribution in helium nucleus the OHe binding energy is
given by

Eb =
1
2

Z2Z2
o α2 Amp (124)

and the radius of Bohr orbit in this “atom” [14,127,128] is

ro =
1

ZoZHeα4mp
= 2 × 10−13 cm, (125)

being of the order of and even a bit smaller than the size of He nucleus. Therefore non-point-like
charge distribution in He leads to a significant correction to the OHe binding energy.

For large nuclei or large particle charge, the system looks like Thomson atom with the particle
inside the nuclear droplet. The binding energy can be estimated in this case with the use of harmonic
oscillator approximation [14,132–134]

Eb =
3
2
(

ZZoα

R
− 1

R
(

ZZoα

AmpR
)1/2). (126)

In the approximation RHe ≈ ro one can easily find from the Equation (126) that binding energy of
He with X-particle with charge Zo is given by

EHe = 2.4 MeV(1 − 1

Z1/2
o

)Zo. (127)

It gives EHe = 4.8 MeV for X-berillium, 8.6 MeV for X-carbon and 12.8 MeV for X-oxygen.
X-nuclearites look similar to O-nuclearites—neutral bound states of heavy nuclei and multiple

O−− particles, compensating nuclear charge [135]. However, X-nuclearites consist of a single multiple
charged lepton-like particle bound with the corresponding number of helium nuclei and hence their
structure needs special study.

4.2. Models of Stable Multiple Charged Particles

4.2.1. Double Cherged Stable Particles of Fourth Generation

The existence of the fourth sequential generation can follow from heterotic string phenomenology.
Its quarks and leptons can possess a new conserved charge [14,127]. Conservation of this charge can
provide stability of the lightest quark of the 4th generation [14,127]. If it is the U-quark, sphaleron
transitions in the early Universe can establish excess of Ū antiquarks at the observed baryon asymmetry.
Then (ŪŪŪ) with the charge −2 can be formed. It binds with 4He in atom-like state of O-helium [127].
Origin of X-particles with larger charges seem highly unprobable in this model.

As we discussed above in Section 2 the experimental data puts constraints on possible deviation
of 125 GeV Higgs boson from the predictions of the Standard model. It excludes the full strength
coupling of this boson to fourth generation quarks and leptons. The suppression of these couplings
implies some other nature of the mass of fourth generation e.g., due to another heavier Higgs boson.
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4.2.2. Stable Charged Techniparticles in Walking Technicolor

In the lack of positive result of SUSY searches at the LHC the possibilities of non-supersymmetric
solutions for the problems of the Standard model become of special interest. The minimal walking
technicolor model (WTC) [14,104,136–140] proposes the composite nature of Higgs boson. In this
approach divergence of Higgs boson mass is cut by the scale of technicolor confinement. This scale
also determines the scale of the electroweak symmetry breaking. Possible extensions of the minimal
WTC model to improve the correspondence of this approach to the recent LHC data are discussed
in [141].

WTC involves two techniquarks,U and D. They transform under the adjoint representation of a
SU(2) technicolor gauge group. A neutral techniquark–antiquark state is associated with the Higgs
boson. Six bosons UU, UD, DD, and their antiparticles are technibaryons. If the technibaryon number
TB is conserved, the lightest technibaryon should be stable.

Electric charges of UU, UD and DD are not fixed. They are given in general by q + 1, q, and
q − 1, respectively. Here q is an arbitrary real number [14,128]. Compensation of anomalies requires in
addition technileptons ν′ and ζ that are technicolor singlets with charges (1 − 3q)/2 and (−1 − 3q)/2,
respectively. Conservation of technilepton number L′ provides stability of the lightest technilepton.

Owing to their nontrivial SU(2) electroweak charges techniparticles participate in sphaleron
transitions in the early universe. Sphalerons support equilibrium relationship between TB, baryon
number B, of lepton number L, and L′. When the rate of sphaleron transitions becomes smaller than
the rate of expansion the excess of stable techniparticles is frozen out. It was shown in [128,131] that
there is a balance between the excess of negatively charged particles over the corresponding positively
charegd particles and the observed baryon asymmetry of the Universe. These negatively charged
massive particles are bound in neutral atoms with primordial helium immediately after Big Bang
nucleosynthesis.

In the case of q = 1 three possibilities were found for a dark atom scenario based on
WTC [14,128,131]. If TB is conserved there can be excess of stable antitechnibaryons ŪŪ with charge
−2. If technilepton number L′ is conserved, the excess of stable technilepton ζ with charge −2
is possible. In both cases, stable −2 charged particles can capture primordial 4He++ nuclei and
form O-helium atoms, dominating in the observed dark matter. If both TB and L′ are conserved a
two-component techni-O-helium dark matter scenario is possible.

Finally, the excessive technibaryons and technileptons can have opposite sign. Then two types of
dark atoms, (4He++ζ−−) and (ζ−−(UU)++), are possible. The former is nuclear interating O-helium,
while the latter is weakly interacting and severely constrained by direct dark matter searches. Hence,
WIMP-like (ζ−−(UU)++) is subdominant in this two-component scenario, while O-helium is the
dominant component of dark matter.

In all the three cases it was shown that there are parameters of the model at which the techniparticle
asymmetries have proper sign and value, explaining the O-helium dark matter density [128,131].

The case of multiple −2n charged particles remains still unexplored for n > 1. We have marked
bold possible multiple charged candidates for stable charged constituents of X-nuclearites in Table 3.
The analysis of possible structures of corresponding X-nuclearites and their cosmological evolution
and possible impact are now under way.

Table 3. List of possible integer charged techniparticles. Candidates for even charged constituents of
dark atoms are marked bold.

q UU(q + 1) UD(q) DD(q − 1) ν′(1 − 3q
2

) ζ(
−1 − 3q

2
)

1 2 1 0 −1 −2
3 4 3 2 −4 −5
5 6 5 4 −7 −8
7 8 7 6 −10 −11
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4.3. Effects of Hadronic Dark Matter

4.3.1. Cosmology of Hadronic Dark Matter

The considered BSM models make only a small step beyond the physics of the Standard Model
and do not contain the physical basis for inflation and baryosynthesis that may provide some specific
features of the cosmological scenario and mechanisms of generation of primordial density fluctuations,
in particular. Therefore we assume in our cosmological scenario a standard picture of inflation and
baryosynthesis with the adiabatic spectrum of density fluctuations, generated at the inflational stage.
After the spectrum of fluctuations is generated, it causes density fluctuations within the cosmological
horizon and their evolution depends on the matter/radiation content, equation of state and possible
mechanisms of damping. The succession of steps to formation of our hadronic and hadron-like states
in the early Universe needs special detailed study, but qualitatively it is similar to the evolution of
tera-particles studied in [130].

One can divide possible forms of dark matter in hadronic and hadron-like models on two possible
types. The case of new stable hadrons or composite dark matter like O-helium corresponds to SIMPs,
while candidates without or with strongly suppressed QCD interaction are closer to WIMPs. In the
latter case, the cosmological scenario should follow the main features of the Standard ΛCDM model
with possible specifics related with the multicomponent WIMP-like candidates.

In the former case, SIMP interactions with plasma support thermal equilibrium with radiation at
the radiation dominance (RD) stage. The radiation pressure acts on the plasma and then is transferred
to the O-helium gas. It converts O-helium density fluctuations in acoustic waves, preventing their
growth [14].

At temperature T < Tod ≈ 1S2/3
3 keV SIMPs decouple from plasma and radiation, since [127,128]

nB 〈σv〉 (mp/mo)t < 1. (128)

Here mo is the mass of the SIMP particle and we denote S3 = mo/(1 TeV). In the Equation (128)
v =

√
2T/mp is the baryon thermal velocity. with the use of the analogy with OHe case we took

according to [14,127,128]
σ ≈ σo ∼ πr2

o ≈ 10−25 cm2, (129)

where ro is given by Equation (125). Then, SIMP gas decouples from plasma and plays the role of dark
matter in formation of the large scale structure (LSS). At t ∼ 1012 s corresponding to T ≤ TRM ≈ 1 eV,
SIMPs start to dominate in the Universe, triggering the LSS formation. The details of the corresponding
dark matter scenario are determined by the nature of SIMPs and need special study. Qualitatively,
conversion in sound waves leads to suppression on the corresponding scales and the spectrum acquires
the features of warmer than cold dark matter scenario [14,127,128]. Decoupled from baryonic matter
SIMP gas doesn’t follow formation of baryonic objects, forming dark matter halos of galaxies.

In spite of strong (hadronic) cross section SIMP gas is collisionless on the scale of galaxies, since its
collision timescale is much larger than the age of the Universe. The baryonic matter is transparent for
SIMPs at large scales. Indeed, nσR = 8 × 10−5  1 in a galaxy with mass M = 1010M� and radius
R = 1023 cm. Here n = M/4πR3 and σ = 2 × 10−25 cm2 is taken as the geometrical cross section for
SIMP collisions with baryons. Therefore, SIMPs should not follow baryonic matter in formation of
the baryonic objects. SIMPs can be captured only by sufficiently dense matter proto-object clouds and
objects, like planets and stars (see [135]).

4.3.2. Probes for Hadronic Dark Matter

In the charge symmetric case, SIMP collisions can lead to indirect effects of their annihilation,
like in the case of WIMP annihilation first considered in [142], and contribute by its products to gamma
background and cosmic rays. Effects of annihilation are not possible for asymmetric dark matter,
but its inelastic collisions can produce cosmic particles and radiation. For example, OHe excitations in
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such collisions can result in pair production in the course of de-excitation and the estimated emission
in positron annihilation line can explain the excess, observed by INTEGRAL in the galactic bulge [143].
The realistic estimation of the density of dark matter in the center of galaxy makes such explanation
possible for O−− mass near 1.25 TeV [144].

In the two-component dark atom model, based on the walking technicolor, a subdominant
WIMP-like component UUζ is present, with metstable technibaryon UU, having charge +2. Decays of
this technibaryon to the same sign (positive) lepton pairs can explain excess of high energy cosmic
positrons observed by PAMELA and AMS02 [145]. However, any source of positrons inevitably is also
the source of gamma radiation. Therefore the observed level of gamma background puts upper limit
on the mass of UU, not exceeding 1 TeV [144].

These upper limits on the mass of stable double charged particles challenges their search at the
LHC (see [144,146] for review and references).

Owing to their hadronic interaction, SIMP particles are captured by the Earth and slowed down
in the terrestrial matter (see e.g., [14]). After thermalization they drift towards the center of the Earth
with velocity

V =
g

nAσtrv
≈ 200 S3 A−1/6

med
1 g/ cm3

ρ
cm/ s (130)

Here Amed ∼ 30 is the average atomic weight in terrestrial surface matter. In the Equation (130)

nA =
ρ

Amedmp
= 6 × 1023/Amed

ρ

1 g/ cm3

is the number density of terrestrial atomic nuclei and the transport geometrical cross section of
collisions on matter nuclei with radius R, given by Equation (123), is given by

σtr = πR2 Amedmp

mo
.

We denote by mo the mass of the SIMP particle, S3 = mo/(1 TeV), v =
√

2T/Amedmp as the
thermal velocity of matter nuclei and g = 980 cm/ s2.

At a depth L below the Earth’s surface, the drift timescale is tdr ∼ L/V. Here V is the drift velocity
given by Equation (130). The incoming flux changes due to the orbital motion of the Earth. It should
lead to the corresponding change in the equilibrium underground concentration of SIMPs. At the
depth L ∼ 105 cm the timescale of this change of SIMP concentration is given by

tdr ≈ 5 × 102 A1/6
med

ρ

1 g/ cm3 S−1
3 s.

Thermalized due their elastic collisions with matter, SIMPs are too slow to cause in the underground
detectors any significant effect of nuclear recoil, on which the strategy of direct WIMP searches is based.
However, a specific type of inelastic processes, combined with annual modulation of SIMP concentration
can explain positive results of DAMA/NaI and DAMA/LIBRA experiments [147–151] in their apparent
contradiction with negative results of other experiments [152–156].

In the case of OHe such explanation was based on the existence of its 3 keV bound state with
sodium nuclei [7,14,157]. Annual modulations in transitions to this state can explain positive results of
the DAMA experiments. The rate of OHe radiative capture by a nucleus in a medium with temperature
T is determined by electric dipole transition and given by [14,157]

σv =
f πα

m2
p

3√
2
(

Z
A
)2 T√

AmpE
. (131)

Here A and Z are atomic number and charge of nucleus, E is the energy level. The factor
f = 1.410−3 accounts for violation of isospin symmetry in this electric dipole transition since He
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nucleus in OHe is scalar and isoscalar. Since the rate of the OHe radiative capture is proportional to the
temperature (or to the product of mass of nucleus and square of relative velocity in the non-equilibrium
case) the effect of such capture shpould be suppressed in cryogenic detectors. On the other hand,
the existence of a low energy bound state was found in [157] only for intermediate mass nuclei and
excluded for heavy nuclei, like xenon. It can explain the absence of the signal in such experiments as
XENON100 [155] or LUX [156]. The confirmation of these results should follow from complete and
self-consistent quantum mechanical description of OHe interaction with nuclei, which still remains an
open problem for the dark atom scenario.

4.4. Open Problems of Hadronic Dark Matter

In spite of uncertainty in the description of the interaction with matter of hypercolor motivated
dark matter candidates, they are most probably similar to WIMPs and thus can hardly resolve the
puzzles of direct dark matter searches.

One should note that in the simplest case hadronic dark matter can also hardly provide solution
for these puzzles. Slowed down in the terrestrial matter SIMP ellastic collisions cannot cause significant
nuclear recoil in the underground detectors, while inelastic nuclear processes should lead to energy
release in the MeV range and cannot provide explanation for the signal detected by DAMA experiments
in a few keV range. This puzzle may be resolved by some specifics of structure of SIMPs and their
interaction with nuclei.

Such specifics was proposed in the dark atom model and the solution of a low energy bound state
of the OHe-nucleus system was found. This solution was based on the existence of a dipole repulsive
barrier that arises due to OHe polarization by the nuclear attraction of the approaching nucleus and
provides a shallow potential well, in which the low energy level is possible for intermediate mass
nuclei. However, the main open problem of the dark atom scenario is the lack of the correct quantum
mechanical treatment of this feature of OHe nuclear interaction [158]. In the essence, this difficulty lies
in the necessity to take into account simultaneous effect of nuclear attraction and Coulomb repulsion in
the absence of the usual simplifying conditions of the atomic physics (smallness of the ratio of the core
and the shell as well as the possibility of perturbative treatment of the electromagnetic interaction of the
electronic shell). In any case, strongly interacting dark matter cannot cross the matter from the opposite
side of the Earth and it should inevitably lead to diurinal modulation of the OHe concentration in the
underground detector and the corresponding events. The role of this modulation needs special study
for the conditions of the DAMA/NaI and DAMA/LIBRA experiments.

The lack of correct quantum mechanical treatment of OHe nuclear physics also leaves open the
question on the dominance of elastic collisions with the matter, on which OHe scenario is based and
on the possible role of inelastic processes in this scenario. Indeed, screening the electric charge of the
α-particle, OHe interactions after Big Bang nucleosynthesis can play a catalyzing role in production of
primordial heavy elements, or influence stellar nucleosynthesis. Therefore the lack of developed OHe
nuclear physics prevents detailed analysis of possible role of OHe in nucleosynthesis, stellar evolution
and other astrophysical processes, as well as elaboration of the complete dark atom scenario.

The attractive feature of the dark atom model is the possibility to explain the excess of positron
annihilation line emission, observed by INTEGRAL, and the excess of high energy fraction of cosmic
positrons, detected by PAMELA and AMS02. These explanations are possible for double charged
particles with the mass below 1.3 TeV, challenging the probe of the existence of its even-charged
constituents in the direct searches at the LHC [146], in which effects of two-photon annihilation of
bound multiple charged particles should be also taken into account [159].

5. Composite Dark Matter in the Context of Cosmo–Particle Physics

Observational cosmology offers strong evidence in favor of a new physics that challenges its
discovery and thorough investigation. Cosmo–particle physics [1–3,6] elaborates methods to explore
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new forms of matter and their physical properties. Physics of dark matter plays an important role in
this process and we make here a small step in the exploration of possible forms of this new physics.

We consider some scenarios of SM extensions with new strongly interacting heavy particles
which are suggested as DM candidates (new stable hadrons, hyperhadrons and nuclear interacting
dark atoms). It makes a minor step beyond the physics of the Standard model and doesn’t provide
mechanisms for inflation and baryosynthesis. But even such a modest step provides many new
interesting physical and astrophysical phenomena.

Within the framework of the hadronic scenario, we analyzed the simplest extensions of the SM
quark sector with new heavy quark in fundamental representation of color SUC(3) group. It was
shown that the prediction of new heavy hadrons, which consist of new and standard quarks, does not
contradict to cosmological constraints.

An appearance of new heavy quarks resulted from some additional vacuum symmetry breaking at
a scale which is much larger than EW scale. Namely, in the mirror model (it is one of possible scenarios
with new heavy fermions), there should be an extra Higgs doublet with v.e.v. ∼(106–1010) GeV to
provide masses for new fermions [22]. Analogously, an origin of heavy singlet quark as a consequence
of the chain of transitions like E(6) → SO(10) → SU(5) also stems from an additional Higgs doublet
and corresponding symmetry breaking at a high scale. We suppose that both of these variants of heavy
fermion emergence take place at the end of the inflation stage (or after it) due to some first Higgs
transition. Then, massive non-stable states decay contributing to the quark-gluon plasma, while stable
massive quarks go on interacting with photons. Later, after the second (electroweak) Higgs transition,
remaining “light” quarks become massive, and (at the hadronic epoch) hadrons can be formed as
bound states of the quarks. New “heavy-light” mesons also produced after the EW symmetry breaking.
At the same time, we can just appeal to some special unknown dynamics which should break the
symmetry at some higher scale. It may cause nontrivial features of cosmological scenario, which
deserve further analysis.

There also arises a question: can the heavy dark matter occurrence substantially modify the
distribution of the energy density produced by the acoustic waves at the inflation stage? As we
suppose, the most intensive inflation sound waves had passed through the plasma before the first
Higgs transition, an emergence of massive particles after the passing of the waves (when the inflation
is finished) would only insufficiently change the density in already-formed areas with high energy
density. In other words, this primary DM does not qualitatively change the whole pattern of the
density distribution imprinting in CMB.

Here we show that the schemes with extensions of quark sector are in agreement with the
precision electro-weak constraints on new physics effects. Using an effective Lagrangian of low-energy
hadron interaction, we get the asymptotics of potential of interaction. In principle, both lighter mesons
M = (Qq) and fermions B = (Qqq) can be stable.However, fermionic states can burn out in collisions
with nucleons and new heavy mesons.

The main argument in favor of choosing mesons (two-quark pseudoscalars) as the DM candidates
is that they have a repulsive potential for interactions with nucleons. This is due to the absence of
one-pion exchanges, since the corresponding vertex is forbidden by parity conservation. Such a vertex
for new fermions is not forbidden, and, at large distances, the potential of their interaction can be
attractive. As a result, the new fermions can form bound states with nucleons, but not mesons (at low
energies). In other words, at long distances between new heavy hadrons and also between them and
nucleons a repulsive forces arise, and a potential barrier prevents the formation of bound states of new
and standard hadrons at low energies. From the experimental limits on anomalous hydrogen and
helium we can conclude that M0 and M̄0 abundances are not equal, and this asymmetry is opposite to
ordinary baryon asymmetry. An alternative scenario (symmetrical abundance of new quarks) can be
permissible when new hadrons are superheavy (with mass M > 10 TeV).

As it was shown here, at the galaxy scale even hadronic DM behaves as collision-less gas.
Therefore, both bosons and fermions should be distributed in the galactic halo. The difference between
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them can appear only after the DM capture by stars, when the difference in statistics can be important
for a DM core inside the star. Indeed, type of the DM should influence on the formation and evolution
of stars. Certainly, for scalars (with the repulsive interaction) and fermions (with an attractive potential
at low energies), these processes are different. Discussion of these interesting problems is, however,
beyond the scope of this paper.

Taking into account experimental data on masses of standard heavy-light mesons we evaluated
the mass-splitting of charged M− and neutral M0 components and calculated width of charged meson
which occurs large, so the charge component is long-lived, τ � 1 s. Starting from the relic concentration
of dark matter and the expression for annihilation cross-section, the mass of the dark matter candidate
was determined. The estimation of mass without SGS enhancement gives the value of mass near 20 TeV
and an account of this effect increases this value up to 102 TeV. These estimations are in agreement
with the evaluations of mass in the scenarios with baryonic DM, which are considered in literature.
Thus, in the LHC experiments, superheavy new hadrons cannot be produced and directly detected
in the nearest future. Moreover, it is difficult to observe superheavy hadrons when searching and
studying an anomalous hydrogen and helium. However, as it was noted early, charged hadron M−

having a large lifetime can be directly detected in the process of M0N scattering off energetic nucleons.
In the calculation of annihilation cross-section we take into account some peculiarities of SGS effect.
We note also that annihilation cross-section was considered here at the level of sub-processes. It means,
to analyze features of the hadronic DM in more detail we need to clarify the annihilation mechanism.

We can conclude that the extensions of the SM with additional heavy fermions and vector-like
interactions are perspective both from the theoretical point of view (they demonstrate an interesting
structure of dynamical symmetry group and a wide spectrum of states) and an area for the checking of
model predictions in collider experiments and in astrophysics.

We have also considered some particular representatives in the class of SM extensions with an
additional hypercolor gauge group that confines a set of new vector-like fermions, H-quarks. If the
hypercolor group is chosen as symplectic one, the global symmetry of the model is SU(2nF) (nF is
a number of H-quark flavors), which is larger than the chiral group and predicts consequently a
spectrum of H-hadrons that contains not only heavy analogues of QCD hadrons, but also new states
such as heavy diquarks (H-baryons). We have considered the cases of two and three H-flavors.

The analysis of the oblique parameters showed that in order to comply with the restrictions
of precision data of the SM, it is necessary to fulfil certain conditions imposed on this type of
extensions. For example, there are lower bounds on the masses of new particles arising in the
framework of the model, and the mixing parameter of scalars, Higgs boson and H-sigma. The study of
the symmetry properties led to the conclusion that two stable neutral objects exist in the SU(4) scenario
(a more general SU(6) version with partially composite Higgs is being studied). Thus, the model
predicts a two-component dark matter structure. The complexity of the DM has been discussed
repeatedly [7,14,131,160–164], starting from the early works [165–167] but in the case of the vector-like
model, the emergence of two components is a consequence of the symmetry of the model, and not an
artificial assumption to explain some of the observed features in the measured spectra of cosmic photon
or lepton fluxes. Such inclusion of various DM components in the unique theoretical framework can
be a natural consequence of the realistic extensions of the SM symmetry, as it was shown in the gauge
models of broken quark-lepton family symmetry [168,169].

Hoping for the detection of specific signals from new H-hadrons at the collider (when extending
the energy interval and improving statistics), it is necessary also to deepen an analysis of the DM
particle effects in astrophysics. It is especially important to study the channels of interaction of the
neutral component of the H-diquark with ordinary fermions—these reactions define significantly of
the observed features of leptonic and photonic spectra measured by space telescopes.

The started analysis of the DM scenarios in the framework of the SU(6) extension promises
to be very interesting since the dark matter in this case may seem to contain another H-hadron
component. Of course, in hyper-color models, the hyper-interaction itself is not studied yet, but
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its scale is noticeably higher than the achieved energies at the collider, and the corresponding loop
contributions of hyperquarks, hypergluons and heavy H-hadrons are too small to noticeably affect
the spectra observed in astrophysics. It seems that an analysis of high-energy cosmic rays scattering
off the DM, the consideration of the annihilation of DM particles in various clump models, have
good prospects. Analysis of photon and lepton signals will allow not only to assess the validity
and possibilities of the proposed options for the SM extension, but also to understand how the
DM multicomponent structure arising in them manifests itself in the observed data and gives an
information on the DM distribution in the galaxy.

The dark atom scenario is based on the minimal extension of the SM content, involving only
hypothetical stable even charged particles and reducing most of observable DM effects to the properties
of the helium shell of OHe and its nuclear interactions. Such effects can provide nontrivial solutions for
the puzzles of direct and indirect dark matter searches and it looks like this model can be made fully
predictible on the basis of the known physics. However, the nontrivial features of OHe interaction with
nuclei still leave an open problem a self-consistent quantitative analysis of the corresponding scenario.

To conclude, we have discussed a set of nontrivial dark matter candidates that follow from the
BSM models, involving QCD color, hypercolor and technicolor physics. These predictions provide
interesting combinations of collider, non-collider, astrophysical and cosmological signatures that can
lead to thorough investigation of these models of new physics by the methods of cosmo–particle
physics. We cannot expect that our models can give answers to all the problems of the physical basis of
the Universe, but the observational fact that we live in the Universe full of unknowm forms of matter
and energy stimulates our efforts to approach the mystery of their puzzling nature.
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Appendix A. Algebras su(6) and sp(6)

The generators Λα, α = 1, . . . , 35 of SU(6) satisfy the following relations:

Λ†
α = Λα, Tr Λα = 0, Tr ΛαΛβ =

1
2

δαβ. (A1)

It is convenient for us to separate two subsets of the generators. The first one forms a sub-algebra
sp(6) ⊂ su(6)—it includes matrices Σα̇, α̇ = 1, . . . , 21 satisfying a relation

ΣT
α̇ M0 + M0Σα̇ = 0, (A2)

where the antisymmetric matrix M0 is chosen as in Equation (56).
We choose these generators as follows:
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Σa =
1

2
√

2

⎛
⎜⎝ 0 τa 0

τa 0 0
0 0 0

⎞
⎟⎠ , Σ3+a =

i
2
√

2

⎛
⎜⎝ 0 τa 0
−τa 0 0

0 0 0

⎞
⎟⎠ , Σ6+a =

1
2

⎛
⎜⎝0 0 0
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⎞
⎟⎠ ,
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1

2
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2
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⎜⎝τa 0 0

0 τa 0
0 0 0

⎞
⎟⎠ , Σ12+a =

1
4

⎛
⎜⎝ 0 0 τa

0 0 τa

τa τa 0

⎞
⎟⎠ , Σ15+a =

i
4

⎛
⎜⎝ 0 0 τa

0 0 −τa

−τa τa 0

⎞
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Σ19 =
1

2
√

2

⎛
⎜⎝1 0 0

0 −1 0
0 0 0

⎞
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1
4

⎛
⎜⎝0 0 1

0 0 −1
1 −1 0

⎞
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i
4

⎛
⎜⎝ 0 0 1

0 0 1
−1 −1 0

⎞
⎟⎠ ,

where τa, a = 1, 2, 3 are the Pauli matrices.
The remainder of the generators, βα, α = 1, . . . , 14, belong to the coset SU(6)/Sp(6) and

satisfy a relation

βT
α M0 = M0βα. (A3)

These can be defined as follows:

β1 =
1

2
√

2

⎛
⎜⎝0 1 0

1 0 0
0 0 0

⎞
⎟⎠ , β2 =

i
2
√

2
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⎜⎝0 −1 0

1 0 0
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2
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2
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1

2
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⎞
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1
4
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⎜⎝ 0 0 τa

0 0 −τa
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⎞
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1
4
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0 0 1
1 1 0

⎞
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β10+a =
i
4
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⎜⎝ 0 0 τa

0 0 τa

−τa −τa 0

⎞
⎟⎠ , β14 =

i
4
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⎜⎝ 0 0 1

0 0 −1
−1 1 0

⎞
⎟⎠ .
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Abstract: We study the cosmic evolution of the Bianchi type I universe by using new holographic
dark energy model in the context of the Brans-Dicke theory for both non-interacting and interacting
cases between dark energy and dark matter. We evaluate the equation of state for dark energy ωD
and draw the ωD − ω̇D plane, where the dot denotes the time derivative. It is found that a stage in
which the cosmic expansion is accelerating can be realized in both cases. In addition, we investigate
the stability of the model by analyzing the sound speed. As a result, it is demonstrated that for both
cases, the behavior of the sound speed becomes unstable. Furthermore, with the Om-diagnostic tool,
it is shown that the quintessence region of the universe can exist.

Keywords: brans-dicke theory; dark energy model; cosmological parameters
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1. Introduction

In 1961, Brans and Dicke [1] proposed an alternative to General Relativity theory, by absorbing
Mach’s principle (which states that inertial forces experienced by a body in non-uniform motion are
determined by the distribution of matter in the universe) into gravity, named as Brans-Dicke (BD)
theory. In this theory, the dynamic of gravity is represented by a scalar field, while the metric tensor
solely incorporates the spacetime structure. As a consequence, gravity couples with a time-dependent
scalar field, ψ(t), corresponding to the inverse of Newton’s gravitational constant, G(t), through
a coupling parameter ω.

On the other hand, the holographic dark energy (HDE) approach appears to play a fundamental
role in cosmic evolution (for recent reviews on the issue of dark energy and the theories of modified
gravity, see, for instance, [2–8]). The holographic principle states that the number of degrees of
freedom in a bounded system should be finite and associated to its boundary area. According to
this principle, there is a theoretical relation between infrared and ultraviolet cutoffs. This model was
originally proposed by Li [9] who used the basic concept of holographic principle in the background
of Quantum Gravity. He concluded that, in a system having an ultraviolet cutoff and size L , the total
energy should not be more than that of a black hole with the same size, leading to L3ρD ≤ LM2

p

(where Mp = (8πGe f f )
−1
2 and ρD represent the reduced Planck mass and the energy density of HDE,

respectively). He also investigated three choices of L which are assumed to give an infrared cutoff.
First, he assumed L = H−1 introducing the most natural choice for the infrared cutoff in the formalism
of HDE, but this choice could not illustrate the accelerated expansion of the universe in General
Relativity [10] and BD gravity [11]. As a Second cutoff, the particle horizon radius was selected,
which also failed to explain the current cosmic behavior. A future event horizon was the third choice,
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which eventually managed to yield the desired results. However, in this case, extra care is needed,
since future singularities may lead to an undesirable phenomenology of the Universe (see, e.g., [12,13]).

More recently, Granda and Oliveros [14] considered a HDE model in which the energy density
depends on the Hubble parameter and its derivative, being referred to as the new holographic dark
energy (NHDE) model. Oliveros and Acero [15] studied this NHDE approach in the vicinity of the
FRW metric with a non-linear interaction between DE and DM, and discussed the portrait of the
equation of state (EoS) parameter ωD, on the ωD − ω̇D plane, as well as its behavior with the aid
of the Om-diagnostic tool. Fayaz et al. [16] investigated HDE model in a Bianchi Type I with (BI)
universe within the context of the generalized teleparallel theory and found phantom/quintessence
regions of the universe. Sadri and Vakili [17] studied the NHDE approach in BD theory using a FRW
universe model with logarithmic scalar field, and analyzed the EoS/deceleration parameter, statefinder
and Om-diagnostic tool for both non-interacting/interacting case. Jahromi et al. [18] studied the
generalized entropy formalism and used a NHDE model to illustrate the evolution of the universe
through its cosmological parameters.

The effects of anisotropy in the universe can be studied in the framework of an anisotropic BI
model. Reddy et al. [19] analyzed homogeneous and axially symmetric BI models in BD theory and
found that the deceleration parameter is negative, leading to an accelerated expansion of the universe.
Setare [20] studied the HDE model with non-flat FRW metric in BD cosmology and found that the
EoS parameter demonstrates a phantom-like region and crosses the phantom divide line. Kumar and
Singh [21] used exact solutions describing BI cosmological models to study the cosmic evolution in
a scalar-tensor theory. Setare and Vanegas [22] investigated an interacting HDE model and discussed
cosmological implications. Sharif and Kausar [23,24] examined the dynamical behavior of a Bianchi
universe with anisotropic fluid in f (R) gravity. Sharif and Waheed [25] studied the evolution of a BI
model in BD theory, using isotropic, anisotropic, as well as magnetized anisotropic fluid, and found
that the latter may attain isotropy to the universe. Milan and Singh [26] discussed an HDE model
with infrared cutoff as a future event horizon, as well as a logarithmic form of BD scalar field for the
FRW universe in BD theory. Felegary et al. [27] studied the dynamics of an interacting HDE model in
BD cosmology as regards the future event horizon cutoff, as well as its Hubble-horizon counterpart,
and discussed the coincidence problem.

In this paper, we consider the NHDE approach for a BI universe and study the associated
cosmic evolution in the background of BD theory. It should be noted that the present HDE model
under consideration is corresponding to a kind of particular case of the investigations in [28] and
its generalized considerations [29]. The outline of the paper is as follows. In Section 2, we study
the NHDE model for non-interacting as well as in the interacting case and investigate the associated
cosmological parameters. We also analyze the stability of the NHDE model through the corresponding
sound speed. Section 3 deals with the Om-diagnostic tool, to study the cosmic evolution. Finally,
we summarize our results in Section 4.

2. NHDE Model and BD Theory

The action for the BD theory is [1]

S =
∫

d4x
√
−g

(
ω

ψ
gij∂iψ∂jψ − ψR + Lm

)
, (1)

where R and Lm represent the Ricci scalar and matter Lagrangian density, respectively. The field
equations for BD theory are
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Gij =
1
ψ
(T(m)

ij + T(ψ)
ij ), (2)

�ψ =
T(m)

2ω + 3
, (3)

where

T(m)
ij = (ρ + p)uiuj − pgij,

T(ψ)
ij = ψ,i;j − gij�ψ +

ω

ψ
(ψ,i ψ,j −

1
2

gijψ
,αψ,α ), T(m) = gijT(m)

ij .

Here, Gij indicates the Einstein tensor, � is the d’Alembertian operator while T(m)
ij and T(ψ)

ij are the
energy-momentum tensors for matter distribution and scalar field, respectively. Equations (2) and (3)
represent the field equations for BD theory and equation of evolution for the scalar field, respectively.
We consider homogeneous and anisotropic locally rotationally symmetric BI universe model as

ds2 = dt2 − A2(t)dx2 − B2(t)(dy2 + dz2), (4)

where A and B indicate the scale factors in spatial directions.
The corresponding field equations for BI model are

2ȦḂ
AB

+
Ḃ2

B2 +

(
Ȧ
A

+ 2
Ḃ
B

)
ψ̇

ψ
− ω

2
ψ̇2

ψ2 =
ρm + ρD

ψ
, (5)

2B̈
B

+
Ḃ2

B2 +
ψ̈

ψ
+

2Ḃ
B

ψ̇

ψ
+

ω

2
ψ̇2

ψ2 = − pD
ψ

, (6)

B̈
B
+

ȦḂ
AB

+
Ä
A

+

(
Ȧ
A

+
Ḃ
B

)
ψ̇

ψ
+

ψ̈

ψ
+

ω

2
ψ̇2

ψ2 = − pD
ψ

, (7)

where dot represents derivative with respect to t. In the above equations, ρD and ρm indicate DE and
DM energy densities, respectively, while pD is the pressure of DE. For the scalar field ψ, the wave
equation in (3) takes the form

ψ̈ +

(
Ȧ
B
+ 2

Ḃ
B

)
ψ̇ − ρm + ρD − 3pD

2ω + 3
= 0. (8)

For the sake of simplicity, we take A = Bm, m �= 1, consequently, Equations (5), (7) and (8) turn
out to be

(2m + 1)
Ḃ2

B2 + (m + 2)
Ḃ
B

ψ̇

ψ
− ω

2
ψ̇2

ψ2 =
ρm + ρD

ψ
, (9)

(m + 1)
B̈
B
+ m2 Ḃ2

B2 + (m + 1)
Ḃ
B

ψ̇

ψ
+

Ḃ
B

ψ̇

ψ
+

ψ̈

ψ
+

ω

2
ψ̇2

ψ2 = − pD
ψ

, (10)

ψ̈ + (m + 2)
Ḃ
B

ψ̇ − ρm + ρD − 3pD
2ω + 3

= 0. (11)

Due to non-linear field equations, we suppose power-law model for the scalar field as ψ(t) = ψ0Bα,
α > 0 and ψ0 are constants. Subtracting Equation (10) from (6) and using power-law relation, we obtain
a differential equation for the scale factor B as

B̈
B
+ (m + α + 1)

Ḃ2

B2 = 0,

whose integration leads to

62



Symmetry 2018, 10, 153

B(t) = (m + α + 2)
1

m+α+2 (c1t + c2)
1

m+α+2 , (12)

where c1 and c2 are integration constants. Consequently, we have

A(t) = ((m + α + 2)(c1t + c2))
m

m+α+2 .

For our line element, the mean Hubble parameter is given as

H =
1
3

(
Ȧ
A

+ 2
Ḃ
B

)
.

Using A = Bm and Equation (12), the above equation yields

H =
c1(m + 2)

(m + α + 2)(c1t + c2)
. (13)

In the following, we discuss non-interacting and interacting cases of NHDE and investigate
cosmological parameters graphically.

2.1. Non-Interacting Case

In this section, we discuss the case when DE and DM do not interact, the corresponding
conservation equations are

ρ̇D + 3(1 + ωD)ρD H = 0, (14)

ρ̇m + 3ρm H = 0, (15)

where ωD = pD
ρD

is the EoS parameter through which we analyze different universe eras. The energy
density of HDE model is defined as

ρD = 3n2M2
pL−2,

where n is a dimensionless constant. The energy density of NHDE model is given by

ρD = 3n2M2
pL−2

(
1 − εL

3rc

)
, (16)

here rc =
M2

p

2M3
5

is the crossover length scale while ε = ±1 denotes self-accelerated and normal branches

of solution. If L  3rc, the above energy density reduces to the energy density of HDE model.
The fractional energy densities in their usual form are given as

Ωm =
ρm

ρcr
=

4ωρm

3ψ2H2 , (17)

ΩD =
ρD
ρcr

= c2
(

1 − ε

3Hrc

)
, (18)

where rc =
1

2H
√

Ωrc
. Taking time derivative of Equation (16), we obtain

ρ̇D = ρD

(
2

ψ̇

ψ
+ 2

Ḣ
H

)
+

c2εψ2√Ωrc ḢH
2ω

. (19)

Using Equation (13), we have
Ḣ
H2 =

−3(m + α + 2)
m + 2

. (20)

Differentiating Equation (18) with respect to t, we find
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Ω̇D =
2
3

εc2
√

Ωrc
Ḣ
H

.

Using Equations (14) and (19), the EoS parameter turns out to be

ωD = −1 − 2α

m + 2
+

(
ΩD + c2

ΩD

)(
m + α + 2

m + 2

)
. (21)

We fix the value of fractional density of DE as ΩD = 0.73 [30] while other parameters are fixed
as c = 0.8, m = −1.55 and α > 0. Using these values in the above equation, we see that ωD < 0
which corresponds to accelerated behavior of the universe. Caldwell and Linder [31] investigated that
the quintessence model of DE can be separated into two distinct regions, i.e., thawing and freezing
regions through ωD − ω̇D plane. The thawing region is characterized when ω̇D > 0, ωD < 0 while
the freezing region is determined for ω̇D < 0, ωD < 0. Taking the time derivative of Equation (21),
it follows that

ω̇D = −2
3

ε
√

Ωrc
c4c1(m + α + 2)

Ω2
D(c1t + c2)(m + 2)

. (22)

In this scenario, we plot ωD − ω̇D plane for two values of integration constant c2 (Figure 1).
The left plot indicates that positive value of c2 leads to ω̇D > 0, ωD < 0 which corresponds to thawing
region. The right graph is plotted for c2 = −10 showing that negative value of c2 yields freezing region
for NHDE model.
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Figure 1. Plot of ωD − ω̇D plane with c2 = 5 (left), c2 = −10 (right), c1 = 1, c = 0.8, m = −1.55 and
α = 3.5 for non-interacting case.

Now, we analyze stability of the NHDE model using squared speed of sound given as

υ2
s =

ṗD
ρ̇D

= ωD + ω̇D
ρD
ρ̇D

. (23)

The model is unstable for υ2
s (t) < 0 while υ2

s (t) > 0 leads to stability. Using Equations (19), (21)
and (22) in (23), it follows that

υ2
s = −1 − 2α

m+2 +
(

ΩD+c2

ΩD

) (m+α+2
m+2

)
− 2ε

√
Ωrc

c4c1(m+α+2)((m+α+2)(c1t+c2))
2α

m+α+2 (1− 2
3 ε

√
Ωrc)

Ω2
D(c1t+c2)(m+2)

×
[

3((m + α + 2)(c1t + c2))
2α

m+α+2 (1 − 2
3 ε
√

Ωrc)(
2αc1

(m+α+2)(c1t+c2)

− 2c1
c1t+c2

)− 2c1ε(m + α + 2)
2

m+α+2−3(c1t + c2)
2

m+α+4−3
]−1

.

(24)
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The graph of υ2
s (t) versus t is shown in Figure 2, where the unit of time t is taken as second.

The change in free parameters does not affect the behavior of υ2
s (t), so we show only one plot here.

It is found that υ2
s (t) < 0, representing that our model is unstable.
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Figure 2. Plot of υ2
s (t) versus t (the unit of which is second) with c1 = 1, c2 = 5, c = 0.8, m = −1.55

and α = 3.5 for non-interacting case.

2.2. Interacting Case

Here we study the case when both dark components, i.e., DM and DE, interact with each other.
In this case, the continuity equations are given by

ρ̇D + 3(1 + ωD)ρD H = −Γ, (25)

ρ̇m + 3ρm H = Γ, (26)

where Γ = 3b2HρD is a particular interacting term with the interacting parameter b2. Using
Equations (20) and (25), the EoS parameter is given by

ωD = −1 − b2 − 2α

m + 2
+

(
ΩD + c2

ΩD

)(
m + α + 2

m + 2

)
. (27)

In order to observe the behavior of the EoS parameter, we fix the constants ΩD, m, c, α as for
the previous case while the interacting parameter will be varied. We observe that ωD exhibits similar
behavior as in non-interacting case, i.e., it demonstrates accelerated behavior of the universe. Taking
derivative of the above equation with respect to t, we have

ω̇D = −2
3

ε
√

Ωrc
c4c1(m + α + 2)

Ω2
D(c1t + c2)(m + 2)

. (28)

Figure 3 shows the graph of ωD − ω̇D plane for two values of the interacting parameter. It is
found that ωD − ω̇D plane corresponds to thawing and freezing regions for c2 = 5 and c2 = −10,
respectively. Using Equations (19), (27) and (28) in (23), the sound speed parameter takes the form
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υ2
s = −1 − b2 − 2α

m+2 +
(

ΩD+c2

ΩD

) (m+α+2
m+2

)
− 2ε

√
Ωrc

c4c1(m+α+2)((m+α+2)(c1t+c2))
2α

m+α+2 (1− 2
3 ε

√
Ωrc)

Ω2
D(c1t+c2)(m+2)

×
[

3((m + α + 2)(c1t + c2))
2α

m+α+2 (1 − 2
3 ε
√

Ωrc)(
2αc1

(m+α+2)(c1t+c2)

− 2c1
c1t+c2

)− 2c1ε(m + α + 2)
2

m+α+2−3(c1t + c2)
2

m+α+4−3
]−1

.

(29)

The graph of υ2
s (t) versus t is plotted in Figure 4 which shows that υ2

s (t) < 0 demonstrating that
our model is not stable. Here, the unit of time t is taken as second.
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Figure 3. Plot of ωD − ω̇D plane with c2 = 5 (left), c2 = −10 (right), c1 = 1, c = 0.8, m = −1.55 and
α = 3.5 for interacting case.
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Figure 4. Plot of υ2
s (t) versus t (the unit of which is second) with c1 = 1, c2 = 5, c = 0.8, m = −1.55

and α = 3.5 for interacting case.

3. Om-Diagnostic

Here, we study different stages of the universe through the Om-diagnostic tool [32]. This helps
to observe the behavior of the DE model and divides it into two sections. The positive values of
Om(t) give phantom-like behavior and its negative values correspond to the quintessence region.
The Om-diagnostic tool is defined as

Om(t) =
h2(t)− 1

t3 − 1
, (30)
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where h(t) = H(t)
H0

, H0 is the Hubble constant. Using Equation (13), the above equation becomes

Om(t) =

(m+2)2c2
1

9H2
0 ((m+α+2)(c1t+c2))2 − 1

t3 − 1
. (31)

We see that the Om-diagnostic tool attains negative values in the range 1.02 ≤ t ≤ 5 which shows
quintessence behavior of the universe (Figure 5, in which the unit of time t is taken as second).
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Figure 5. Plot of Om(t) versus t (the unit of which is second) with c1 = 1, c2 = 5, m = −1.55, α = 3.5
and H0 = 68.

4. Conclusions

In this paper, we investigate the NHDE approach in a BI cosmological model, to discuss the
expanding behavior of the universe in the framework of BD theory. For this purpose, the cosmological
parameters are evaluated in two scenarios. First, we consider the case where DM and DE do not interact
with each other. In this case, the EoS parameter is negative, leading to a universe that experiences
accelerated expansion. We have also analyzed its behavior on the ωD − ω̇D plane, which indicates
that our model lies either in the thawing or in the freezing region, corresponding to a positive or
a negative value of the associated integration constant, respectively. Furthermore, the stability of the
NHDE model is investigated, using the corresponding speed of sound parameter. It is found that this
parameter attains negative values, leading to unstable cosmological models.

Second, the interaction between DM and DE is taken into account. In this case, the same
parameters as before are formulated yielding that the EoS remains negative for two values of the
interaction parameter, b2, i.e., our universe is in an expanding phase. It is also found that the ωD − ω̇D
plane analysis demonstrates similar behavior for both values of b2, i.e., our model remains in the
thawing and freezing regions. Furthermore, we conclude that such a model does not exhibit stable
behavior. Finally, cosmological evolution is discussed also with the aid of the Om-diagnostic tool,
which, in our case, exhibits quintessence behavior of the universe. It is quite interesting to mention
that our results are consistent with the corresponding isotropic universe model [17].
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Abstract: Decaying Dark Energy models modify the background evolution of the most
common observables, such as the Hubble function, the luminosity distance and the Cosmic
Microwave Background temperature–redshift scaling relation. We use the most recent
observationally-determined datasets, including Supernovae Type Ia and Gamma Ray Bursts data,
along with H(z) and Cosmic Microwave Background temperature versus z data and the reduced
Cosmic Microwave Background parameters, to improve the previous constraints on these models.
We perform a Monte Carlo Markov Chain analysis to constrain the parameter space, on the basis of
two distinct methods. In view of the first method, the Hubble constant and the matter density are left
to vary freely. In this case, our results are compatible with previous analyses associated with decaying
Dark Energy models, as well as with the most recent description of the cosmological background. In
view of the second method, we set the Hubble constant and the matter density to their best fit values
obtained by the Planck satellite, reducing the parameter space to two dimensions, and improving the
existent constraints on the model’s parameters. Our results suggest that the accelerated expansion
of the Universe is well described by the cosmological constant, and we argue that forthcoming
observations will play a determinant role to constrain/rule out decaying Dark Energy.

Keywords: Dark Energy; statistical analysis; Baryon Acoustic Oscillation (BAO); Supernovae;
cosmological model; Hubble constant; Cosmic Microwave Background (CMB) temperature

1. Introduction

In the last decades, several observations have pointed out that the Universe is in an ongoing period
of accelerated expansion that is driven by the presence of an exotic fluid with negative pressure [1–12].
Its simplest form is a cosmological constant Λ, having an equation of state w = −1. More complicated
prescriptions lead to the so-called Dark Energy (DE). Although several models have been proposed
to explain DE [13–27], the observations have only determined that it accounts for ∼ 68% of the total
energy-density budget of the Universe, while its fundamental nature is still unknown (see, for instance,
the reviews [28,29]). In addition, we should mention that the accelerated expansion of the Universe
could be explained by several modifications of the gravitational action. For example, introducing
higher order terms of the Ricci curvature in the Hilbert–Einstein Lagrangian, gives rise to an effective
matter stress–energy tensor which could drive the current accelerated expansion (see, for example,
the reviews [12,30–35]). Another alternative for reproducing the dark energy effects is by introducing
non-derivative terms interactions in the action, in addition to the Einstein–Hilbert action term, such that
it creates the effect of a massive graviton [36–38].

We are interested in exploring a specific decaying DE model, Λ(z) ∝ (1 + z)m, leading to
creation/annihilation of photons and Dark Matter (DM) particles. The model is based on the
theoretical framework developed in [39–43], while the thermodynamic features have been developed
in [44,45]. Since DE continuously decays into photons and/or DM particles along the cosmic evolution,
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the relation between the temperature of the Cosmic Microwave Background (CMB) radiation and the
redshift is modified.

In the framework of the standard cosmological model, the Universe expands adiabatically and, as
consequence of the entropy and photon number conservation, the temperature of the CMB radiation
scales linearly with redshift, ∝ (1 + z). Nevertheless, in those models where conservation laws are
violated, the creation or annihilation of photons can lead to distortions in the blackbody spectrum
of the CMB and, consequently, to deviations of the standard CMB temperature–redshift scaling
relation. Such deviations are usually explored with a phenomenological parameterization, such as
TCMB(z) = T0(1 + z)1−β proposed in [41], where β is a constant parameter (β = 0 means adiabatic
evolution), and T0 is the CMB temperature at z = 0, which has been strongly constrained with
COBE-FIRAS experiment, T0 = 2.7260 ± 0.0013 K [46]. The parameter β has been constrained using
two methodologies: (a) the fine structure lines corresponding to the transition energies of atoms or
molecules, present in quasar spectra, and excited by the CMB photon [47]; and (b) the multi-frequency
measurements of the Sunyaev-Zel’dovich (SZ) effect [48–50]. Recent results based on data released by
the Planck satellite and the South Pole Telescope (SPT) have led to sub-percent constraints on β which
results to be compatible with zero at 1σ level (more details can be found in [11,51–56]).

In this paper, we start with the theoretical results obtained in [44,45]. Such a model has been
constrained using luminosity distance measurements from Supernovae Type Ia (SNIa), differential
age data, Baryonic Acoustic Oscillation (BAO), the CMB temperature–redshift relation, and the CMB
shift parameter. Since the latter depends on the redshift of the last surface scattering, zCMB ∼ 1000,
it represents a very high redshift probe. On the contrary, other datasets were used to probe the Universe
at low redshift, z � 3.0. We aim to improve those constraints performing two different analysis: first,
we constrain the whole parameter space to study the possibility of the model to alleviate the tension in
the Hubble constant (see Section 5.4 in [10] for the latest results on the subject); and, second, we adopt
the Planck cosmology to improve the constraint on the remaining parameters. Thus, we retain the SNIa,
and use the most recent measurements the differential age, BAO, and the CMB temperature–redshift
data. In addition, we use luminosity distances data of Gamma Ray Burst (GRB), which allow us to
extend the redshift range till z ∼ 8. Finally, we also use the reduced (compressed) set of parameters
from CMB constraints [10].

The paper is organized as follows. In Section 2, we summarize the theoretical framework starting
from the general Friedman–Robertson–Walker (FRW) metric, and point out the modification to the
cosmological background arising from the violation of the conservation laws. In Section 3, we present
the datasets used in the analysis, and the methodology implemented to explore the parameter space.
The results are shown and discussed in Section 4 and, finally, in Section 5, we give our conclusions.

2. Theoretical Framework

The starting point is the well-known FRW metric

ds2 = c2dt2 − a2(t)
[

dr2

1 − kr2 + r2(dθ2 + sin2 θdφ2)

]
, (1)

where a(t) is the scale factor and k is the curvature of the space time [57]. In General Relativity (GR),
one obtains the following Friedman equations:

8πG(ρm,tot + ρx) + Λ0c2 = 3
(

ȧ
a

)2

+ 3
kc2

a2 , (2)

8πG
c2 (pm,tot + px)− Λ0c2 = −2

ä
a
− ȧ2

a2 − kc2

a2 , (3)
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where the total pressure is pm,tot = pγ, the total density is ρm,tot = ρm + ργ, and ρx and px are the
density and pressure of DE, respectively. Following [44,45], we set both the “bare” cosmological
constant Λ0 and the curvature k equal to 0.

In the standard cosmology, the Bianchi identities hold and the stress–energy momentum Tμν is
locally conserved

∇μTμν = 0 . (4)

Adopting a perfect fluid, the previous relation can recast as

ρ̇ + 3(ρ + p)H = 0 , (5)

where H ≡ ȧ/a is the definition of the Hubble parameter. Thus, each component is conserved.
Nevertheless, due to the photon/matter creation/annihilation happening in the case of decaying DE,
the conservation equation is recast in the following relations:

ρ̇m + 3ρm H = (1 − ε) Cx , (6)

ρ̇γ + 3γργ H = ε Cx , (7)

ρ̇x + 3(px + ρx)H = −Cx , (8)

where γ is a free parameter determining the equation of state of radiation pγ = (γ− 1)ργ and, Cx and ε

account for the decay of DE. Cx describe the physical mechanism leading to the production of particles
(see, for instance, the thermogravitational quantum creation theory [40] or the quintessence scalar
field cosmology [14]), and ε must be small enough in order to have the current density of radiation
matching the observational constraints. Assuming px = −ρx, and defining

ρx =
Λ(t)
8πG

, (9)

the parameter Cx can be obtained from the Equation (8)

Cx = − Λ̇(t)
8πG

. (10)

Following [44,45], one can adopt a power law model

Λ(t) = B
(

a(t)
a(0)

)−m

= B(1 + z)m , (11)

then, writing Equation (2) at the present epoch, one can obtain B = 3H2
0(1 − Ωm,0), where Ωm,0 is

the matter density fraction at z = 0. It is very straightforward to verify that setting the power law
index m = 0 leads to the cosmological constant. From Equation (8), it is also possible to write down an
effective equation of state for the DE [45]:

we f f =
m
3
− 1 . (12)

Finally, using Equations (2) and (6)–(8), the Hubble parameter can be obtained [43–45]:

H(z) � 8πG
3

(ρm + ρx) = H0

[
3(1 − Ωm,0)

3 − m
(1 + z)m +

(3Ωm,0 − m)

3 − m
(1 + z)3

]1/2

. (13)
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Let us note that the standard Hubble parameter is recovered by setting m = 0 in Equation (13).
Having the Hubble parameter allows us to compute the luminosity distance as follows

DL =
(1 + z)c

H0

∫ z

0

dz′

E(z′)
, (14)

where we have defined E(z) ≡ H(z)/H0.
Finally, following the approach originally proposed in [39], combining the Equations (6)–(8), with

the equation for the number density conservation

ṅγ + 3nγH = ψγ , (15)

where ψγ is the photon source, and the Gibbs Law

nγTγdσγ = dργ − ργ + pγ

nγ
dnγ , (16)

one obtains, through the use of thermodynamic identities, the following CMB temperature redshift
relation (see for more details [43,45]):

TCMB(z) = T0(1 + z)3(γ−1) ×
(
(m − 3Ωm,0) + m(1 + z)m−3(Ωm,0 − 1)

(m − 3)Ωm,0

)(γ−1)

. (17)

Again, setting m = 0 gives the standard relation TCMB(z) = T0(1 + z). Equations (13), (14) and
(17) can be easily implemented to test the decaying DE scenario. To show the effectiveness of these
observables in constraining the cosmological model, we depict in Figure 1 their scalings as a function
of the redshift for different value of the parameters γ and m, while we set H0 and Ω0 to their best
fit from Planck satellite. In Figure 1a–c, we fix γ = 4/3 (which represents its standard value) while
varying m in the range [−0.5, 0.5] to show its impact on the Hubble constant, the luminosity distance
and the CMB temperature. On the contrary, in Figure 1d, we set m = 0 (standard value) and vary
γ illustrating how much the TCMB-redshift relation is affected. The redshift ranges in the panels are
set to the ones of the datasets. Looking at the plots, it is clear that the data will be really sensible to
a variation of γ, while m will be more difficult to constrain.
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Figure 1. The figure shows as function of redshift the Hubble constant in panel (a), the luminosity
distance in panel (b), and the CMB temperature in panels (c) and (d). Colors and lines indicate the
different values assigned to the parameters m and γ to illustrate their impact on the observables.

3. Methodology and Data

We use measurements of H(z), luminosity distances from SNIa and GRBs, BAO, and the CMB
temperature–redshift relation. Then, we predict the theoretical counterparts using Equations (13), (14),
and (17), and fit each one to the corresponding dataset computing the likelihood −2 logL = χ2(p),
where p = [H0, Ωm,0, m, γ] are the parameters of the model. The parameter space is explored using a
Monte Carlo Markov Chain (MCMC) based on the Metropolis–Hastings [58,59] sampling algorithm
with an adaptive step size to guarantee an optimal acceptance rate between 20% and 50% [60,61],
while the convergence is ensured by the Gelman–Rubin criteria [62]. Once the convergence criteria
is satisfied, the different chains are merged to compute the marginalized likelihood L(p) = ΠkL(p),
where k indicates the different datasets, and to constrain the model’s parameters. The priors are
specified in Table 1.

Table 1. Parameter space explored by the MCMC algorithm.

Parameter Priors

H0 [50.0, 100.0]
Ωm,0 [0.0, 1.0]

m [−1, 1]
γ [1.0, 2.0]
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Finally, the expectation value (〈pi〉) of the 1D marginalized likelihood distribution and the
corresponding variance are computed as follows [63]

〈pi〉 =
∫

dNs pL(p)pi, (18)

σ2
i =

∫
dNs pL(p)(pi − 〈pi〉)2, (19)

where Ns is the dimension of the parameter space.
Finally, the joint likelihood of the independent observables is used to compare decaying DE model

with ΛCDM employing the Akaike Information Criteria (AIC) [64]:

AIC = −2 logLmax + 2Np , (20)

where Np is the number of parameters. A negative variation of the AIC indicator with respect to the
reference model, Δ(AIC) = AICdec.DE − AICΛCDM, would indicate the model performs better than
ΛCDM.

3.1. Supernovae Type Ia

We use a dataset of 557 Supernovae Type Ia (SNIa) in the redshift range z = [0, 1.4] extracted
from the UnionII catalogue ( more details can be found in [65]). The observable is the so-called
distance modulus μobs, which is the difference of the apparent and absolute magnitudes. Its theoretical
counterpart can be computed starting from the luminosity distance in Equation (14), and it is given by

μth(z) = 5 log10 D̂L(z) + μ0 , (21)

where μ0 = 42.38 − 5 log10 h, with h ≡ H0/100, and D̂L(z) is given by

D̂L(z) = (1 + z)
∫ z

0

dz′

E(z′)
. (22)

Then, we can define the χ2 function as

− 2 logLSN(p) = χ2
SN(p) =

557

∑
i=1

(
μth(zi, p)− μobs(zi)

σμ(zi)

)2

, (23)

where σμ(z) is the error on μobs(z). Let us note that the parameter μ0 encodes the dependence by
the Hubble constant. Whenever one is not interest in fitting H0, the marginalized χ2 function can be
defined as [66–69]:

χ̃2
SN(p) = Ã − B̃2

C̃
, (24)

where

Ã =
557

∑
i=1

(
μth(zi, p, μ0 = 0)− μobs(zi)

σμ(zi)

)2

, (25)

B̃ =
557

∑
i=1

μth(zi, p, μ0 = 0)− μobs(zi)

σ2
μ(zi)

, (26)

C̃ =
557

∑
i=1

1
σ2

μ(zi)
. (27)
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3.2. Differential Ages, H(z)

Following [70], we use 30 uncorrelated measurements of expansion rate, H(z), that have been
obtained using the differential age method [71–78]. Thus, we define the corresponding χ2 as

− 2 logLH(p) = χ2
H(p) =

30

∑
i=1

(
H(zi, p)− Hobs,(zi)

σH(zi)

)2

, (28)

where σH(z) is the error on Hobs(z). As stated in Section 3.1, the marginalized χ2 with respect to H0

can be also defined using Equation (24), where, for the H(z) dataset, we have

Ã =
30

∑
i=1

(
(H(zi, p, H0 = 1)− Hobs(zi)

σH(zi)

)2

, (29)

B̃ =
30

∑
i=1

H(zi, p, H0 = 1)− Hobs(zi)

σ2
H(zi)

, (30)

C̃ =
30

∑
i=1

1
σ2

H(zi)
. (31)

3.3. Baryonic Acoustic Oscillation

It is customary to define the BAO’s observable as the following ratio: Ξ̂ ≡ rd/DV(z), where rd is
the sound horizon at the drag epoch zd [79]:

rd =
∫ ∞

zd

cs(z)
H(z)

dz , (32)

and DV the spherically averaged distance measure [80]

DV(z) ≡
[
(1 + z)2d2

A(z)
cz

H(z)

]1/3
. (33)

Following [70], we use data from the 6dFGS [81], the SDSS DR7 [82], the BOSS DR11 [83–85],
which are reported in Table I of [70]. Such a dataset is uncorrelated, therefore the likelihood can be
straightforwardly computed as

− 2 logLBAO(p) = χ2
BAO(p) =

6

∑
i=1

(
Ξ̂(p, zi)− Ξobs(zi)

σΞ(zi)

)2

, (34)

where σΞ(z) is the error on Ξ(z).

3.4. Gamma Ray Burst

We use a dataset of 109 GRB given in [86] which have been already used in other cosmological
analysis (see for example [87]). The dataset was compiled using the Amati relation [88–90], and
it is formed by 50 GRBs at z < 1.4 and 59 GRBs spanning the range of redshift [0.1, 8.1]. As it is for
SNIa, the observable is the distance modulus, which in the case of GRBs is related to peak energy and
the bolometric fluence (for more details, see [86,87]). The theoretical counterpart is computed using
Equation (21), and the χ2 function is defined as follows

− 2 logLGRB(p) = χ2
GRB(p) =

109

∑
i=1

(
μth(zi, p)− μobs(zi)

σμ(zi)

)2

. (35)
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3.5. TCMB–Redshift Relation

The last dataset is represented by the measurements of the CMB temperature at different redshifts.
We use 12 data points obtained by using multi-frequency measurements of the Sunyaev–Zel’dovich
effect produced by 813 galaxy clusters stacked on the CMB maps of the Planck satellite [54]. To those
data, we add 10 high redshift measurements obtained through the study of quasar absorption line
spectra [47]. The full dataset includes 22 data points spanning the redshift range [0.0, 3.0], and they
are listed in Table I of [51]. Finally, we predict the theoretical counterpart using Equation (17), and we
compute the likelihood as

− 2 logLTCMB(p) = χ2
TCMB

(p) =
22

∑
i=1

(
TCMB,th(zi, p)− TCMB,obs(zi)

σTCMB(zi)

)2

. (36)

3.6. PlanckTT + LowP

The CMB power spectrum is the most powerful tools used to constrain cosmological parameters.
However, the calculation of the power spectrum is time consuming, and it is common to use the
so-called reduced parameters. It is possible to compress the whole information of the CMB power
spectrum into a set of four parameters [91,92]: the CMB shift parameter (R), the angular scale (lA) of
the sound horizon at the redshift of the last scattering surface (z∗), the baryon density, and the scalar
spectral index. Here, we rely only on R and lA which can be compute as follows:

R =
√

Ωm,0

∫ z∗

0

dz′

E(z′)
, (37)

lA =
πDA(z∗)

rs(z∗)
, (38)

where rs is the sound horizon at z∗. In the 2015 data release of Planck satellite, the observational values
of those parameters are: [R, lA] = [1.7488; 301.76]± [0.0074; 0.14] (for more details see Section 5.1.6 in
[93]). Thus, the likelihood can be straightforwardly computed as

− 2 logLCMB(p) = χ2
CMB(p) =

(
Robs − Rth(p)

σR

)2

+

(
lA,obs − lA,th(p)

σlA

)2

. (39)

4. Results and Discussions

Following the aforementioned methodology, we carried out two sets of analysis: (A) we fit the
whole parameter space composed by the Hubble constant H0, the matter density parameter Ωm,0, γ

and m; and (B) we set H0 = 67.37 ± 0.54 and Ωm,0 = 0.3147 ± 0.0074 which are the best fit values
of joint analysis of the CMB power spectrum and other probes [10], while m and γ stay free to vary.
All results are summarized in Table 2, and some comments are deserved.

In Analysis (A), we show that the best fit values of [H0, Ωm,0] are consistent with the most common
cosmological analysis at low redshift, and [m, γ] are compatible with the ones from [44,45] and their
standard values at 1σ meaning that DE is well described by a cosmological constant. Interestingly,
although our parameter space is larger than previous analysis, we get a comparable precision in m.
This fact expresses the constraining powerful of this dataset with respect to the one used in previous
analysis. The matter density is always compatible with current constraint from Planck 2018 results
[10] at ∼ 2σ. Nevertheless, there are two cases in which the central value of Ωm,0 gets closer to the
one from Planck at ∼ 1σ: (i) when using only H(z) and CMB temperature data; and (ii) when using
all datasets. In addition, the central value of the Hubble constant deserves some comments. When
we used only H(z) and TCMB datasets, we obtained a lower central value of H0 that is compatible at
1σ with Planck 2018 constraints and at 3σ with recent constraint from SNIa [94,95]. On the contrary,
when introducing luminosity distances measurements, the best fits values of H0 increases showing a
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tension with Planck 2018 results. The agreement of H0 from the expansion rate data is rather expected
since it has been found in other recent analysis [96–98].

Table 2. Maximum likelihood parameters and 1σ uncertainties from the MCMC algorithm and for the
following datasets.

Dataset [H0, Ωm,0] Free

H0 Ωm,0 m γ

H(z)+TCMB 66.9+2.56
−2.34 0.314+0.055

−0.045 0.07+0.16
−0.14 1.34 ± 0.02

SNIa+H(z)+TCMB 71.02+0.85
−0.91 0.26 ± 0.03 0.01 ± 0.11 1.34 ± 0.02

SNIa+GRB+H(z)+TCMB 71.46+0.84
−0.85 0.25 ± 0.03 0.03+0.10

−0.11 1.34 ± 0.02
SNIa+GRB+H(z)+BAO+TCMB 70.31+0.66

−0.62 0.30 ± 0.01 0.18 ± 0.06 1.36 ± 0.01
SNIa+GRB+H(z)+BAO+TCMB+CMB 69.8 ± 0.6 0.29 ± 0.01 0.01 ± 0.02 1.335 ± 0.005

[H0, Ωm,0] = [67.37, 0.315]

H(z)+TCMB 0.08 ± 0.07 1.34 ± 0.01
SNIa+H(z)+TCMB 0.05 ± 0.07 1.34 ± 0.01
SNIa+GRB+H(z)+TCMB 0.04+0.07

−0.08 1.34 ± 0.01
SNIa+GRB+H(z)+BAO+TCMB 0.05 ± 0.06 1.339 ± 0.009
SNIa+GRB+H(z)+BAO+TCMB+CMB 0.01 ± 0.02 1.332 ± 0.005

Interestingly, the central value of m in the analysis including all the background observables is
higher and it is compatible with zero only at 3σ. In such case, the power law index is m = 0.18 ± 0.06
which can be recast in term of the equation of state parameter using Equation (12) and obtaining
we f f = −0.94 ± 0.02, which is in tension with latest results from Planck satellite (w = −1.04 ± 0.1 [10]).
This fact demands a deeper analysis to be done with forthcoming datasets such as LSST, Euclid
and WFIRST which will explore the Universe until redshift z ∼ 6 providing high redshift SNIa
and BAO data, and growth factor data with unprecedented precision [99–102]. Finally, in the full
analysis including also the CMB constraints, we found a lower value of m which can be translated in
we f f = −0.996 ± 0.007, which is perfectly compatible with a cosmological constant. To compare the
decaying DE model with ΛCMD, we applied the AIC criteria obtaining Δ(AIC) = 1.53 which slightly
favors the standard cosmological model over the decaying DE one.

In the second analysis, H0 and Ωm,0 are fixed to the Planck 2018 best fit values, and the parameters
m and γ are fully in agreement with their expected values. Our best constraint of the power law index
is m = 0.01 ± 0.02 which means we f f = −0.996 ± 0.007 fully compatible with Planck 2018 results, and
with a cosmological constant at 1σ. Moreover, to directly compare our results with the ones in [44,45],
we carried out another analysis setting γ = 4/3 and leaving only m as free parameter. The constrained
values of m with 1σ error is: m = 0.004 ± 0.006, which represents a factor of ∼ 5 improvement in σm

over previous constraints.
Finally, in Figures 2 and 3, we show the 68% and 95% confidence levels of the whole and reduced

parameter space constrained with the full dataset. To avoid overcrowding, in Figure 2, we do not
overplot the contours from the several combinations of the datasets listed in Table 2.
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Figure 2. 2D marginalized contours of the model parameters [H0, Ω0, m, γ] obtained from the MCMC
analysis. The 68% (dark grey) and 95% (light grey) confidence levels are shown for each pair of
parameters. In each row, the marginalized likelihood distribution is also shown.

Figure 3. 2D marginalized 68% (solid line) and 95% (dashed line) contours of the model parameters
[m, γ] obtained from the MCMC analysis.

5. Conclusions

We have studied the decaying DE model introduced in [43–45]. In this model, photons and
DM particles can be created or disrupted violating the conservation laws and altering the CMB
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temperature–redshift scaling relation. The model has been studied using the latest dataset of SNIa,
GRB, BAO, H(z), TCMB(z) and PlanckTT + lowP data, which are described in Section 3.

First, we have explored the whole parameter space composed by the Hubble constant, the matter
density fraction, and the parameters m and γ introduced in [44]. In this configuration, when using all
the background observables, we obtain that the parameter m, which is the power law index of the DE
decay law, is compatible with a cosmological constant only at 3σ. Therefore, forthcoming dataset could
find a statistically relevant departure from standard cosmology, or alleviate this tension. Nevertheless,
it is worth noting that, by adding the CMB constraints, such a tension disappears. Second, we have
also studied a reduced parameter space composed by only m and γ, and setting the Hubble constant
and the matter density parameter to their best fit values obtained recently by Planck satellite [10]. In
this case, both parameters are always compatible at 1σ level with standard cosmology. Third, varying
only m as in [44,45], we have improved the previous constraints of a factor ∼ 5.

Finally, on the one side, we have demonstrated the improved constraining power of current
dataset with respect to previous analysis, while, on the other side, we expect that forthcoming higher
precision measurements of the CMB temperature at the location of high redshift galaxy clusters and
Quasars, high redshift SNIa, improved measurements of BAO and of luminosity distance of GRBs,
will be able to confirm or rule out decaying DE models [99–102].
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70. Luković, V.V.; D’Agostino, R.; Vittorio, N. Is there a concordance value for H0? Astron. Astrophys. 2016,
595, A109.

71. Jimenez, R.; Loeb, A. Constraining Cosmological Parameters Based on Relative Galaxy Ages. Astrophys. J.
2005, 573, 37.

72. Simon, J.; Verde, L.; Jimenez, R. Constraints on the redshift dependence of the dark energy potential. Phys.
Rev. D 2005, 71, 123001.

73. Stern, D.; Jimenez, R.; Verde, L.; Stanford, S.A.; Kamionkowski, M. Cosmic Chronometers: Constraining the
Equation of State of Dark Energy. II. A Spectroscopic Catalog of Red Galaxies in Galaxy Clusters. Astrophys.
J. Suppl. 2010, 188, 280.

74. Zhang, C.; Zhang, H.; Yuan, S.; Liu, S.; Zhang, T.J.; Sun, Y.C. Four new observational H(z) data from luminous
red galaxies in the Sloan Digital Sky Survey data release seven. Res. Astron. Astrophys. 2014, 14, 1221.

75. Moresco, M. Raising the bar: New constraints on the Hubble parameter with cosmic chronometers at z ∼ 2.
Mon. Not. R. Astron. Soc. 2015, 450, L16.

76. Moresco, M.; Cimatti, A.; Jimenez, R.; Pozzetti, L.; Zamorani, G.; Bolzonella, M.; Dunlop, J.; Lamareille, F.;
Mignoli, M.; Pearce, H.; et al. Improved constraints on the expansion rate of the Universe up to z ∼ 1.1 from
the spectroscopic evolution of cosmic chronometers. J. Cosmol. Astropart. Phys. 2012, 2012, 1112–1119.

77. Moresco, M.; Pozzetti, L.; Cimatti, A.; Jimenez, R.; Maraston, C.; Verde, L.; Thomas, D.; Citro, A.; Tojeiro,
R.; Wilkinson, D. A 6% measurement of the Hubble parameter at z ∼ 0.45: Direct evidence of the epoch of
cosmic re-acceleration. J. Cosmol. Astropart. Phys. 2016, 2016, 014.

78. Moresco, M.; Verde, L.; Pozzetti, L.; Jimenez, R.; Cimatti, A. New constraints on cosmological parameters
and neutrino properties using the expansion rate of the Universe to z ∼ 1.75. J. Cosmol. Astropart. Phys. 2012,
2012, 053.

79. Eisenstein, D.J.; Hu, W.; Tegmark, M. Cosmic Complementarity: H0 and Ωm from Combining Cosmic
Microwave Background Experiments and Redshift Surveys. Astrophys. J. Lett. 1998, 504, L57.

80. Eisenstein, D.J.; Zehavi, I.; Hogg, D.W.; Scoccimarro, R.; Blanton, M.R.; Nichol, R.C.; Scranton, R.; Seo, H.;
Tegmark, M.; Zheng, Z.; et al. Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function
of SDSS Luminous Red Galaxies. Astrophys. J. 2005, 633, 560.

81. Beutler, F.; Blake, C.; Colless, M.; Jones, D.H.; Staveley-Smith, L.; Campbell, L.; Parker, Q.; Saunders, W.;
Watson, F. The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant. Mon. Not. R.
Astron. Soc. 2011, 416, 3017.

82. Ross, A.J.; Samushia, L.; Howlett, C.; Percival, W.J.; Burden, A.; Manera, M.; The clustering of the SDSS DR7
main Galaxy sample - I. A 4 per cent distance measure at z = 0.15. Mon. Not. R. Astron. Soc. 2015, 449, 835.

83



Symmetry 2018, 10, 372

83. Anderson, L.; Aubourg, E.; Bailey, S.; Beutler, F.; Bhardwaj, V.; Blanton, M.; Bolton, A.S.; Brinkmann, J.;
Brownstein, J.R.; Burden, A.; et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic
Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples. Mon. Not. R. Astron. Soc.
2014, 441, 24.

84. Delubac, T.; Bautista, J.E.; Busca, N.G.; Rich, J.; Kirkby, D.; Bailey, S.; Font-Ribera, A.; Slosar, A.; Lee, K.G.;
Pieri, M.M.; et al. Baryon acoustic oscillations in the Lyα forest of BOSS DR11 quasars. Astron. Astrophys.
2015, 574, A59.

85. Font-Ribera, A.; Kirkby, D.; Busca, N.; Miralda-Escudé, J.; Ross, N.P.; Slosar, A.; Rich, J.; Aubourg, E.;
Bailey, S.; Bhardwaj, V.; et al. Quasar-Lyman α forest cross-correlation from BOSS DR11: Baryon Acoustic
Oscillations. J. Cosmol. Astropart. Phys. 2014, 5, 27.

86. Wei, H. Observational constraints on cosmological models with the updated long gamma-ray bursts.
J. Cosmol. Astropart. Phys. 2010, 1008, 020.
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Abstract: We study a new exactly solvable model of coupling of the Dark Energy and Dark Matter,
in the framework of which the kernel of non-gravitational interaction is presented by the integral
Volterra-type operator well-known in the classical theory of fading memory. Exact solutions of this
isotropic homogeneous cosmological model were classified with respect to the sign of the discriminant
of the cubic characteristic polynomial associated with the key equation of the model. Energy-density
scalars of the Dark Energy and Dark Matter, the Hubble function and acceleration parameter are
presented explicitly; the scale factor is found in quadratures. Asymptotic analysis of the exact
solutions has shown that the Big Rip, Little Rip, Pseudo Rip regimes can be realized with the specific
choice of guiding parameters of the model. We show that the Coincidence problem can be solved if
we consider the memory effect associated with the interactions in the Dark Sector of the universe.

Keywords: Dark Energy; Dark Matter; memory

1. Introduction

Dark Matter (DM) and Dark Energy (DE) play the key roles in all modern cosmological scenaria
(see, e.g., [1–17], and references therein for the history of problem, for main ideas and mathematical
details). The DM and DE interact by the gravitational field, thus creating the space-time background
for various astrophysical and cosmological events. In addition, according to the general view, the direct
(non-gravitational) DM/DE coupling exists. One of the motivation of this idea is connected with the
so-called Coincidence Problem [18–20]), which is based on the fact that the ratio between DE and
DM energy densities is nowadays of the order 73

23 , while at the Planck time this ratio was of the order
10−95, if one uses for calculations the energy density, associated with the cosmological constant (see,
e.g., the review [21] for details of estimations). Clearly, the non-gravitational interactions between
the DE and DM, or for short, interactions in the Dark Sector of the Universe, could start up the
self-regulation procedure thus eliminating the initial disbalance. There are several models, which
describe the DE/DM coupling (see, e.g., [21–24]). The most known models are phenomenological;
they operate with the so-called kernel of interaction, the function Q(t), which is linear in the energy
densities of the DE and DM with coefficients proportional to the Hubble function [21]. In the series
of works [25–28] the DE/DM interaction is modeled on the base of relativistic kinetic theory with an
assumption that DE acts on the DM particles by the gradient force of the Archimedean type. In [29,30]
the DE/DM interactions are considered in terms of extended electrodynamics of continua. In [31]
the kernel Q(t) was reconstructed for the case, when the cosmological expansion is described by the
hybrid scale factor, composed using both: power-law and exponential functions.

In this work, we present the function Q(t), the kernel of DE/DM interaction, in the integral form,
using the analogy with classical theory of fading memory. The appropriate mathematical formalism
is based on the theory of linear Volterra operators [32]; the corresponding integrand contains the
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difference of the DE and DM energy densities. The kernel of interaction vanishes if the DE and DM
energy densities coincide; when these quantities do not coincide, the kernel of interaction acts as
the source in the balance equations providing the procedure of self-regulation. However, in contrast
to the known local phenomenological representations of the interaction kernels, the value of the
source-function Q(t) in the model, which includes the Volterra integrals, is predetermined by whole
prehistory of the Universe evolution. As the result of modeling, we see that the ratio between the DE
and DM energy densities tends asymptotically to some theoretically predicted value, which can be
verified using the cosmological observations.

The paper is organized as follows. In Section 2 we recall the main elements of the
phenomenological approach to the Universe evolution filled by interacting DE and DM. In Section 3
we formulate the model with kernel of the Volterra type, derive the integro-differential equations
describing the Universe evolution, and obtain the so-called key equation, which is the differential
equation of the Euler type of the third order in ordinary derivatives for the DE energy density. In
Section 4 we classify the exact solutions with respect to the sign of the discriminant of the characteristic
polynomial. In Section 5 we consider three examples of explicit analysis of the Universe evolution
in the proposed model, and distinguish two exact solutions indicated as bounce and super-inflation,
respectively. Section 6 contains discussion and conclusions.

2. Phenomenological Approach to the Problem of Interactions in the Dark Sector of the Universe

First of all, we would like to recall how do the phenomenological elements appear in the theory of
interactions in the Dark Sector of the Universe. We consider the well-known two-fluid model, which
describes the so-called Dark Fluid joining the DE and DM ; in this model the baryonic matter remains
out of consideration.

2.1. Two-Fluid Model in the Einstein Theory of Gravity

The master equations for the gravity field

Rik − 1
2

gikR − Λgik = κ
[

Tik
(DE) + Tik

(DM)

]
(1)

are considered to be derived from the Hilbert-Einstein action functional. Here Rik is the Ricci tensor;
R is the Ricci scalar; Λ is the cosmological constant; Tik

(DE) and Tik
(DM)

are the stress-energy tensors of the
DE and DM , respectively. These tensors can be algebraically decomposed using the Landau-Lifshitz
scheme of definition of the fluid macroscopic velocity:

Tik
(DE) = WUiUk + P ik , Tik

(DM) = EViVk + Πik . (2)

Here Ui and Vi are the timelike velocity four-vectors, the eigen-vectors of the corresponding
stress-energy tensors:

UiTik
(DE) = WUk , VkTik

(DM) = EVi . (3)

The corresponding eigen-values, the scalars W and E are the energy density scalars of DE and
DM, respectively. The quantities P ik and Πik are the pressure tensors of the DE and DM; they are
orthogonal to the velocity four-vectors:

UiP ik = 0 , VkΠik = 0 . (4)

The Bianchi identity provides the sum of the DE and DM stress-energy tensors to be
divergence free:

∇k

[
Tik
(DE) + Tik

(DM)

]
= 0 . (5)
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This means that there exists a vector field Qi, which possesses the property

∇kTik
(DE) = Qi = −∇kTik

(DM) . (6)

Until now we did not use the phenomenological assumptions; only the next step, namely the
modeling of the vector field Qi is the essence of the phenomenological approach, which describes the
DE/DM interactions.

2.2. Description of the DE/DM Coupling in the Framework of an Isotropic Homogeneous Cosmological Model

When one deals with the spatially isotropic homogeneous cosmological model the key elements
of the theory of DE and DM coupling can be simplified essentially. First of all, one uses the metric

ds2 = dt2 − a2(t)
[
dx2 + dy2 + dz2

]
, (7)

with the scale factor a(t) depending on the cosmological time; one assumes that the energy-density
scalars also depend on time only, W(t), E(t). Second, the eigen four-vectors Ui and Vi coincide and
are of the form Ui = Vi = δi

0. Third, the pressure tensors happen to be reduced to the Pascal-type
scalars P(t) and Π(t):

P ik = −PΔik , Πik = −ΠΔik , Δik = gik − UiUk . (8)

The four-vector Qi now is presented by one scalar function Q(t), since Qi = QUi in the spatially
isotropic model. The function Q(t) is called in the review [21] by the term kernel of interaction.
The master equations of the model can be now reduced to the following three ones:

3H2 − Λ = κ [W(t) + E(t)] , (9)

Ẇ + 3H(W + P) = Q , (10)

Ė + 3H(E + Π) = −Q , (11)

where H(t) ≡ ȧ
a is the Hubble function, and the dot denotes the derivative with respect to time.

The Equation (9) is taken from the Einstein equations; the sum of (10) and (11) gives the total energy
conservation law. Also, we use the standard linear equations of state

P = (Γ − 1)W , Π = (γ − 1)E , (12)

which allow us to focus on the analysis of the set of three equations for three unknown functions W, E
and H. The history of modeling of the function Q(t) is well documented in the review [21]; we focus
below on a new (rheological-type) model.

3. Rheological-Type Model of the DE/DM Coupling

3.1. Reconstruction of the Kernel Q(t)

To reconstruct phenomenologically the interaction kernel Q(t) we use the ansatz based on the
following three assumptions.

(i) The function Q(t) is presented by the integral operator of the Volterra type:

Q(t) =
∫ t

t0

dξK(t, ξ)[E(ξ)− W(ξ)] . (13)

(ii) The Volterra integral contains the difference of the energy density scalars E(ξ) and W(ξ).
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(iii) The kernel of the Volterra integral K(t, ξ) has a specific multiplicative form

K(t, ξ) = K0H(t)H(ξ)

[
a(ξ)
a(t)

]ν

. (14)

Motivation of our choice is the following.

(1) In the context of rheological approach we assume that the state of a fluid system at the present
time moment t is predetermined by whole prehistory of its evolution from the starting moment
t0 till to the moment t. More than century ago it was shown, that the mathematical formalism
appropriate for description of this idea can be based on the theory of linear integral Volterra
operators, which have found numerous applications to the theory of media with memory. We
also use this fruitful idea.

(2) Our ansatz is that the interaction between two constituents of the Dark Fluid vanishes, if the
DE energy density coincides identically with the DM energy density, W ≡ E. When W �= E the
integral mechanism of self-regulation inside the Dark Fluid switches on. For instance, during the
cosmological epochs with DE domination, i.e., when W > E, the corresponding contribution into
the interaction term Q is negative, the rates Ẇ and Ė obtain negative and positive contributions,
respectively (see (10) and (11)); when W < E, the inverse process starts thus regulating the ratio
between DE and DM energy densities.

(3) For classical models of fading memory the kernel of the Volterra operator is known to be of
exponential form K(t, ξ) = K exp (ξ−t)

T0
, where the parameter T0 describes the typical time of

memory fading, and the quantity K has the dimensionality [time]−2. When we work with the
de Sitter scale factor a(t) = a(t0) exp H0t, we can rewrite the kernel of the Volterra operator
as follows:

K(t, ξ) = K exp
[

H0(ξ − t)
H0T0

]
= K0H2

0

[
a(ξ)
a(t)

] 1
H0T0

, (15)

where the parameter K0 is dimensionless. This idea inspired us to formulate the ansatz, that
not only for the de Sitter spacetime, but for Friedmann - type spacetimes also, we can use the
kernel (14) with two additional model parameters, ν and K0.

3.2. Key Equation of the Model

To analyze the set of coupled Equations (9)–(12), (13) and (14), let us derive the so-called key
equation, which contains only one unknown function, W. In our model with the ansatz (14) the
unknown functions W and E depend on time through the scale factor, i.e., W = W(a(t)), E = E(a(t)).
Following the standard approach (see, e.g., the review [21]), we introduce new dimensionless variable
x instead of t using the definitions

x ≡ a(t)
a(t0)

,
d
dt

= xH(x)
d

dx
. (16)

When the function H(x) is found, the scale factor as the function of cosmological time can be
found from the following quadrature:

t − t0 =
∫ a(t)

a(t0)

1

dx
xH(x)

. (17)

In these terms three basic master equations take the form

3H2(x)− Λ = κ [W(x) + E(x)] , (18)

88



Symmetry 2018, 10, 411

x
dW
dx

+ 3ΓW = K0x−ν
∫ x

1
dyyν−1[E(y)− W(y)] , (19)

x
dE
dx

+ 3γE = K0x−ν
∫ x

1
dyyν−1[W(y)− E(y)] . (20)

Also, we have the consequence of two last equations:

x
d

dx
(W + E) + 3 (ΓW + γE) = 0 . (21)

The Equation (18) is decoupled from this set; it can be used to find the Hubble function, when W(x)
and E(x) are obtained. Two last integro-differential equations can be reduced to the differential ones:

x2W ′′ + xW ′(ν + 1 + 3Γ) + 3νΓW = K0(E − W) , (22)

x2E′′ + xE′(ν + 1 + 3γ) + 3νγE = K0(W − E) . (23)

Here and below the prime denotes the derivative with respect to dimensionless variable x.
The next step is the following: we extract E(x) from (22)

E(x) =
1

K0

[
x2W ′′ + xW ′(ν + 1 + 3Γ) + W(K0 + 3νΓ)

]
, (24)

and put it into (21), thus obtaining the Euler equation of the third order

x3W ′′′ + (A + 3)x2W ′′ + (B + 1)xW ′ + DW = 0 , (25)

where the auxiliary parameters are the following:

A = ν + 3(Γ + γ) , B = A + 2K0 + 3ν(Γ + γ) + 9Γγ , D = 3 [K0(Γ + γ) + 3νΓγ] . (26)

We indicate Equation (25) as the key equation, since when W(x) is found, we obtain E(x)
immediately from (24), and then H(x) from (18).

4. Classification of Solutions

4.1. The Scheme of Classification

The characteristic equation for the Euler Equation (25) is the cubic one:

σ3 + σ2 A + σ(B − A) + D = 0 . (27)

As usual, we reduce the cubic equation to the canonic form

σ = z − A
3

→ z3 + pz + q = 0 , (28)

using the following definitions of the canonic parameters p and q:

p = B − A − 1
3

A2 , q =
2
27

A3 +
1
3

A(A − B) + D . (29)

The discriminant of the cubic Equation (27) with p and q given by (29) is of the form

Δ =
p3

27
+

q2

4
. (30)
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When Δ < 0, the roots of Equation (27) are real and do not coincide, σ1 �= σ2 �= σ3. When Δ = 0,
the roots are real, but at least two of them coincide, σ1 �= σ2 = σ3 or σ1 = σ2 = σ3. When Δ > 0, there is
one real root, and a pair of complex conjugated, σ1, σ2,3 = α ± iβ. Let us study all these cases in detail.

4.2. Solutions Corresponding to the Negative Discriminant, Δ < 0

4.2.1. The Structure of the Exact Solution

It is the case, when the parameter p is negative, p < 0, and
∣∣ q

2

∣∣ ( 3
|p|

) 3
2
< 1, or in more detail

∣∣∣∣ 1
27

A3 +
1
6

A(A − B) +
1
2

D
∣∣∣∣ <

∣∣∣∣13 (B − A)− 1
9

A2
∣∣∣∣

3
2

. (31)

All three roots σ1, σ2, σ3 are real and they do not coincide:

σ1 = − A
3
+ 2

√
|p|
3

cos
ϕ

3
, σ2,3 = − A

3
+ 2

√
|p|
3

cos
(

ϕ

3
± 2π

3

)
, (32)

where the auxiliary angle 0 ≤ ϕ ≤ π is defined as follows:

cos ϕ = − q
2

(
3
|p|

) 3
2

. (33)

In this case, the key equation for the DE energy density scalar W(x) gives power-law solution:

W(x) = C1xσ1 + C2xσ2 + C3xσ3 . (34)

Using the relationship (24) we obtain immediately the DM energy density scalar E(x)

E(x) = 1
K0

{
C1xσ1

[
σ2

1 + σ1(ν + 3Γ) + (K0 + 3νΓ)
]
+

C2xσ2
[
σ2

2 + σ2(ν + 3Γ) + (K0 + 3νΓ)
]
+ C3xσ3

[
σ2

3 + σ3(ν + 3Γ) + (K0 + 3νΓ)
]}

.
(35)

The constants of integration C1, C2, C3 can be expressed in terms of presented functions at t = t0,
or equivalently, at x = 1; they are the solutions of the system:

C1 + C2 + C3 = W(1) , (36)

C1σ1 + C2σ2 + C3σ3 = −3ΓW(1) , (37)

C1
[
σ2

1 + σ1(ν + 3Γ) + (K0 + 3νΓ)
]
+ C2

[
σ2

2 + σ2(ν + 3Γ) + (K0 + 3νΓ)
]
+

C3
[
σ2

3 + σ3(ν + 3Γ) + (K0 + 3νΓ)
]
] = K0E(1) .

(38)

Clearly, the first and third equations are the direct consequences of (34) and (35), respectively;
as for the second relationship, we obtain it from (19), when x = 1. The Cramer determinant for
this system

D = (σ1 − σ2)(σ2 − σ3)(σ3 − σ1) �= 0 (39)

is not equal to zero, thus the system has the unique solution:

C1 =
1

(σ1 − σ2)(σ1 − σ3)

{
W(1)

[
σ2σ3 + 3Γ(σ2 + σ3) + 9Γ2 − K0

]
+ K0E(1)

}
, (40)

C2 =
1

(σ2 − σ1)(σ2 − σ3)

{
W(1)

[
σ1σ3 + 3Γ(σ1 + σ3) + 9Γ2 − K0

]
+ K0E(1)

}
, (41)
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C3 =
1

(σ3 − σ1)(σ3 − σ2)

{
W(1)

[
σ1σ2 + 3Γ(σ1 + σ2) + 9Γ2 − K0

]
+ K0E(1)

}
. (42)

Then, using the Einstein Equation (18) we find the square of the Hubble function:

H2(x) = Λ
3 + κ

3K0

{
C1xσ1

[
2K0 + σ2

1 + σ1(ν + 3Γ) + 3νΓ
]
+

C2xσ2
[
2K0 + σ2

2 + σ2(ν + 3Γ) + 3νΓ
]
+ C3xσ3

[
2K0 + σ2

3 + σ3(ν + 3Γ) + 3νΓ
]}

.
(43)

The scale factor a(t) can be now obtained from the integral

√
κ

3K0
(t − t0) =

∫ a(t)
a(t0)

1

dx

x
√

K0Λ
κ + ∑3

j=1 Cjx
σj
[
2K0 + σ2

j + σj(ν + 3Γ) + 3νΓ
] . (44)

Generally, this integral cannot be expressed in elementary functions; results of asymptotic analysis
are discussed below.

4.2.2. Two Auxiliary Characteristics of the Model and a Scheme of Estimation of the Kernel Parameters

(1) The acceleration parameter q

The formula (43) allows us to calculate immediately the acceleration parameter:

− q(x) = 1 +
x

2H2(x)
dH2

dx
=

K0Λ
κ + ∑3

j=1 Cjx
σj
(

1 +
σj
2

) [
2K0 + σ2

j + σj(ν + 3Γ) + 3νΓ
]

K0Λ
κ + ∑3

j=1 Cjx
σj
[
2K0 + σ2

j + σj(ν + 3Γ) + 3νΓ
] . (45)

(2) The DM/DE energy density ratio ω

For many purposes it is important to have the ratio ω(x) = E(x)
W(x) . Direct calculation gives

ω(x) =
E(x)
W(x)

=
∑3

j=1 Cjx
σj
[
σ2

j + σj(ν + 3Γ) + (K0 + 3νΓ)
]

K0 ∑3
j=1 Cjx

σj
. (46)

Let us assume that the present moment of the cosmological time is t = T, and the corresponding
value of the dimensionless scale factor is X = a(T)

a(t0)
. Also, we use the following estimations for the

present time parameters:

ω(X) =
E(X)

W(X)
� 23

73
, q(X) = −0.55 . (47)

Thus, we have two relationships, which link the kernel parameters K0 and ν with X and other
coupling constants:

− 0.9 =
∑3

j=1 CjX
σj σj

[
2K0 + σ2

j + σj(ν + 3Γ) + 3νΓ
]

K0Λ
κ + ∑3

j=1 CjX
σj
[
2K0 + σ2

j + σj(ν + 3Γ) + 3νΓ
] , (48)

23
73

=
∑3

j=1 CjX
σj
[
σ2

j + σj(ν + 3Γ) + (K0 + 3νΓ)
]

K0 ∑3
j=1 CjX

σj
. (49)

We hope to realize the whole scheme of fitting of the model parameters in a special paper.

4.2.3. Admissible Asymptotic Regimes, and Constraints on the Model Parameters

There are three regimes of asymptotic behavior of the presented solutions.
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(i) If the maximal real root, say σ1, is positive and the set of initial data is general, we see that
W → ∞, E → ∞ and H → ∞, when x → ∞. The integral in (17) converges at a(t) → ∞, and the

scale factor a(t) follows the law a(t) = a∗(t∗ − t)−
2

σ1 , and reaches infinity at t = t∗. We deal in
this case with the so-called Big Rip asymptotic regime, and the Universe follows the catastrophic
scenario [11,19]. In particular, when σ1 > 0 and σ2 < 0, σ3 < 0, according to the Viète theorem,
we can definitely say only that σ1σ2σ3 = −D > 0, i.e., K0(Γ + γ) + 3νΓγ < 0. The asymptotic
value of the acceleration parameter is equal to −q(∞) = 1 + σ1

2 . The final ratio between the DM
and DE energy densities

ω(∞) =
σ2

1 + σ1(ν + 3Γ) + K0 + 3νΓ
K0

(50)

does not depend on the initial parameters W(1) and/or E(1).
(ii) If the maximal real root, say σ1, is equal to zero, we see that D = 0, and thus

K0(Γ + γ) + 3νΓγ = 0 . (51)

In this case, the Hubble function tends asymptotically to constant H∞, given by

H∞ =

√
Λ
3
+

κ (2K0 + 3νΓ)
3K0σ2σ3

{W(1) [σ2σ3 + 3Γ(σ2 + σ3) + 9Γ2 − K0] + K0E(1)} , (52)

thus providing the scale factor to be of the exponential form a(t) → a∞eH∞t; we deal in this case
with the Pseudo Rip, or in other words, the late-time Universe of the quasi-de Sitter type. Clearly,
the asymptotic value of the function −q(x), given by (45), is −q(∞) = 1. As for the asymptotic
value of the quantity ω(x) (see (46)), it is now equal to ω(∞) = − Γ

γ . Since ω is the non-negatively

defined quantity, this situation is possible only if the ratio Γ
γ is non-positive. Thus, the evolution

of the ratio E(x)
W(x) starts from the value E(1)

W(1) and finishes with
∣∣∣ Γ

γ

∣∣∣. One can add that, when σ1 = 0
and σ2 < 0, σ3 < 0, we obtain two supplementary inequalities:

A = −(σ2 + σ3) > 0 → ν + 3(Γ + γ) > 0 , (53)

B − A = σ2σ3 > 0 → 2K0 + 3ν(Γ + γ) + 9Γγ > 0 . (54)

These requirements restrict the choice of model parameters.

(iii) If all the roots are negative, we see that H → H0 ≡
√

Λ
3 , when x → ∞, thus we obtain

the classical de Sitter asymptote with −q(∞) = 1. When Λ = 0, all the roots are negative,
and, say, σ1 is the maximal among them, we see that W → 0, E → 0 at x → ∞. The scale

factor behaves asymptotically as the power-law function a(t) ∝ t
2

|σ1 | ; the acceleration parameter
−q(∞) = 1 − |σ1|

2 is positive, when |σ1| < 2. In particular, when σ1 < 0, σ2 < 0, σ3 < 0, we see
that, first, σ1σ2σ3 = −D < 0, i.e., K0(Γ + γ) + 3νΓγ > 0; second, A = −(σ1 + σ2 + σ3) > 0; third,
B − A = σ1σ2 + σ1σ3 + σ3σ2 > 0.

There are also cases related to the special choice of initial data W(1), E(1), as well as, of the choice
of parameters K0, ν, Γ, γ. For instance, if we deal with the situation indicated as (i) but now
C1 = 0 due to specific choice of W(1), E(1), (see (40)), we obtain the situation (ii) or (iii).

4.3. Solutions Corresponding to the Positive Discriminant, Δ > 0

Now one root, say σ1, is real and σ2,3 are complex conjugated:

σ1 = − A
3
+ (U + V) , σ2,3 = α ± iβ , α ≡ − A

3
− 1

2
(U + V) , β ≡

√
3

2
(U − V) , (55)
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where the auxiliary real parameters U and V

U ≡
[
− q

2
+
√

Δ
] 1

3 , V ≡
[
− q

2
−
√

Δ
] 1

3 (56)

are chosen so that UV = − p
3 . Similarly to the case with negative discriminant, we obtain the DE energy

density scalar
W(x) = C1xσ1 + xα [C2 cos β log x + C3 sin β log x] , (57)

the DM energy density

K0E(x) = C1xσ1
[
σ2

1 + σ1(ν + 3Γ) + (K0 + 3νΓ)
]
+

xα
{[

α2 − β2 + α(ν + 3Γ) + (K0 + 3νΓ)
]
[C2 cos β log x + C3 sin β log x] +

β(2α + ν + 3Γ) [C3 cos β log x − C2 sin β log x]} ,
(58)

where

C1 =
K0E(1) + W(1)

[
(α + 3Γ)2 + β2 − K0

]
[(σ1 − α)2 + β2]

, (59)

C2 =
−K0E(1) + W(1)

[
(σ1 − α)2 − (α + 3Γ)2 + K0

]
[(σ1 − α)2 + β2]

, (60)

C3 =
K0(α − σ1)E(1) + W(1)

{
(σ1 − α)K0 + (σ1 + 3Γ)

[
(α + 3Γ)(α − σ1)− β2]}

β [(σ1 − α)2 + β2]
. (61)

The square of the Hubble function can be extracted from the formula

3K0
κ

[
H2(x)− Λ

3

]
= C1xσ1

[
2K0 + σ2

1 + σ1(ν + 3Γ) + 3νΓ
]
+

xα
{[

α2 − β2 + α(ν + 3Γ) + 2K0 + 3νΓ
]
[C2 cos β log x + C3 sin β log x] +

β(2α + ν + 3Γ) [C3 cos β log x − C2 sin β log x]} .

(62)

Admissible Asymptotic Regimes

Clearly, all three asymptotic regimes: the Big Rip, Pseudo-Rip, power-law expansion, mentioned
above, also can be realized in this submodel. However, three new elements can be added into the
catalog of possible regimes.

(i) The first new regime can be indicated as a quasi-periodic expansion; it can be realized when σ1 = 0,
α is negative, and H2

∞ > |h|. The square of the Hubble function can be now rewritten as follows:

H2 → H2
∞ + hx−|α| sin [β log x + ψ] . (63)

Asymptotically, the Universe expansion tends to the Pseudo Rip regime; however, this process
has quasi-periodic features.

(ii) The second new regime relates to σ1 = 0, α = 0 and H2
∞ > |h|. The square of the Hubble function,

the DE and DM energy densities become now periodic functions (see, e.g., (63) with α = 0).
(iii) The third regime is characterized by the following specific feature: H2 takes zero value at finite

x = x∗. This regime can be effectively realized in two cases: first, when σ1 = 0, α < 0 and
H2

∞ < |h|; second, when σ1 = 0, α > 0. In both cases the size of the Universe is fixed by the
specific value of the scale factor a∗ = a(t0)x∗.
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4.4. Solutions Corresponding to the Vanishing Discriminant, Δ = 0

4.4.1. Two Roots Coincide, q �= 0

It is the case, when all roots are real, but two of them coincide:

σ1 = − A
3
+ 2

(
− q

2

) 1
3 , σ ≡ σ2 = σ3 = − A

3
−
(
− q

2

) 1
3 . (64)

The DE and DM energy-density scalars contain logarithmic functions

W(x) = C1xσ1 + xσ [C2 + C3 log x] , (65)

K0E(x) = C1xσ1
[
σ2

1 + σ1(ν + 3Γ) + (K0 + 3νΓ)
]
+

+xσ
{
(C2 + C3 log x)

[
σ2 + σ(ν + 3Γ) + (K0 + 3νΓ)

]
+ C3 (2σ + ν + 3Γ)

}
,

(66)

where the constants of integration are

C1 =
K0E(1) + W(1)

[
(σ + 3Γ)2 − K0

]
(σ1 − σ)2 , (67)

C2 = −K0E(1) + W(1)
[
(σ + 3Γ)2 − K0 − (σ1 − σ)2]
(σ1 − σ)2 , (68)

C3 =
K0E(1) + W(1) [(σ + 3Γ)(σ1 + 3Γ)− K0]

(σ − σ1)
. (69)

The square of the Hubble function is presented as follows:

H2(x) = Λ
3 +

κ
3K0

{
C1xσ1

[
σ2

1+σ1(ν+3Γ)+(2K0+3νΓ)
]
+C2xσ

[
σ2+σ(ν+3Γ)+(2K0+3νΓ)

]
+

C3xσ
[
log x

(
σ2 + σ(ν + 3Γ) + (2K0 + 3νΓ)

)
+ (2σ + ν + 3Γ)

]}
.

(70)

4.4.2. Three Roots Coincide, q = 0

Now all the roots coincide
σ1 = σ2 = σ3 = − A

3
= σ . (71)

The DE and DM energy-density scalars, the square of the Hubble function contain logarithmic
function and its square

W(x) = xσ
[
C1 + C2 log x + C3 log2 x

]
, (72)

K0E(x) = xσ
{(

C1 + C2 log x + C3 log2 x
) [

σ2 + σ(ν + 3Γ) + K0 + 3νΓ
]
+

(C2 + 2C3 log x)(2σ + ν + 3Γ) + 2C3} ,
(73)

H2(x) = Λ
3 + κ

3K0
xσ
{(

C1 + C2 log x + C3 log2 x
) [

σ2 + σ(ν + 3Γ) + (2K0 + 3νΓ)
]
+

(2σ + ν + 3Γ) (C2 + 2C3 log x) + 2C3} ,
(74)

C1 = W(1) , C2 = −W(1)(σ + 3Γ) , C3 =
1
2

{
K0E(1) + W(1)[(σ + 3Γ)2 − K0]

}
. (75)

4.4.3. Admissible Asymptotic Regimes

Since the Hubble function contains now the logarithmic terms log x and log2 x, a new asymptotic
regime, the so-called Little Rip, is possible. In the case of Little Rip we obtain that asymptotically
H(t) → ∞ and a(t) → ∞, the infinite values can be reached during the infinite time interval only.
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5. Three Examples of Explicit Model Analysis

As a preamble, we would like to recall that the set of model parameters (Γ, γ, K0, ν, Λ) is adequate
for the procedure of fitting of the acceleration parameter −q(T) � 0.55 and of the factor E(T)

W(T) � 23
73 .

Nevertheless, we do not perform this procedure in this paper, and do not accompany this procedure
by the detailed plots of q(t), ω(t), H(t), etc. However, we think that for demonstration of analytical
capacities of our new model, it is interesting to consider some exact solutions obtained for the set
of parameters specifically chosen. Of course, when we introduce the model parameters “by hands”,
we restrict the time interval, on which the solution is physically motivated and is mathematically
adequate. For instance, the super-inflationary solution discussed below can be applicable for the early
Universe, but is not appropriate for the late-time period. Nevertheless, the presented exact solutions
seem to be intriguing.

5.1. First Explicit Submodel, Δ < 0, q = 0 and Λ = 0; How Do the Initial Data Correct the Universe Destiny?

For illustration, let us consider the case with the following set of parameters:

Λ = 0 , Γ = 0 , ν =
3
2

γ , K0 = −9
4

γ2 . (76)

Let us recall that for Γ = 0 according to (12) we obtain P = −W, i.e., the pressure typical for the
Dark Energy. One deals with the Cold Dark Matter, when γ = 1; generally, γ ≥ 1. The (26) and (29) yield

q = 0 , ϕ =
π

2
, p = −27

4
γ2 , B = A =

9
2

γ , D = −27
4

γ3 , Δ = −
(

3γ

2

)6
< 0 . (77)

Thus, for γ > 0 one root of the characteristic equation is positive, and other two are negative:

σ1 =
3
2

γ(
√

3 − 1) > 0 , σ2 = −3
2

γ(
√

3 + 1) < 0 , σ3 = −3
2

γ < 0 . (78)

The constants of integration are, respectively,

C1 =
1
6

[
(2+

√
3)W(1)−E(1)

]
, C2 =

1
6

[
(2−

√
3)W(1)−E(1)

]
, C3 =

1
3
[W(1)+E(1)] . (79)

Clearly, there are three principal situations, which correspond to three ranges of values of the
initial parameter ω(1) = E(1)

W(1) .

(i) When ω(1) = 2 +
√

3, i.e., C1 = 0, and the growing mode is deactivated, the DE energy density,
DM energy density take, respectively, the form

W(x) =
W(1)√

3
x−

3
2 γ

[
(
√

3 + 1)− x−
3
√

3
2 γ

]
≥ 0 , (80)

E(x) =
E(1)√

3
x−

3
2 γ

[
(
√

3 − 1) + x−
3
√

3
2 γ

]
≥ 0 . (81)

The function ω(x) = E(x)
W(x) , which is given by

ω(x) = (2 +
√

3)

[
(
√

3 − 1) + x−
3
√

3
2 γ

]
[
(
√

3 + 1)− x−
3
√

3
2 γ

] , (82)
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is positive and monotonic; it starts from the value ω(1)=2+
√

3 and tends asymptotically to
ω(∞)=1. In other words, the energy density of the DM tends to the energy density of the DE due
to the interaction of the rheological type. The square of the Hubble function is also non-negative:

H2(x) =
κW(1)(

√
3 + 1)

3
√

3
x−

3
2 γ

(
2 + x−

3
√

3
2 γ

)
≥ 0 . (83)

The scale factor a(t) can be found from the quadrature:√
2κW(1)(

√
3 + 1)

3
√

3
(t − t0) =

∫ a(t)
a(t0)

1

dxx
3γ
4 −1√

1 + 1
2 x−

3
√

3
2 γ

. (84)

In the asymptotic regime the scale factor behaves as a(t) ∝ t
4

3γ , and the Hubble function H(t)
tends to zero as H(t) � 4

3γt .

(ii) When 0 < ω(1) < 2 +
√

3, i.e., C1 > 0, the integral
∫ ∞

1
dx

xH(x) converges, so the scale factor a(t)
reaches infinite value at finite value of the cosmological time. The growing mode, which relates
to the positive root σ1, become the leading mode, and we obtain the model of the Big Rip type.

(iii) When ω(1) > 2 +
√

3, i.e., C1 < 0, we obtain the model in which the square of the Hubble
function takes zero value at some finite time moment. In other words, the Universe expansion
stops, the Universe volume becomes finite.

5.2. Second and Third Explicit Submodels: The Case Δ = 0 and q = 0

For illustration we consider the model, in which all three roots coincide and are equal to zero,
σ1 = σ2 = σ3 = 0. Equivalently, we assume that the characteristic equation takes the form σ3 = 0, and,
thus, A = 0, B = 0, D = 0. Only one set of model parameters admits such solution, namely

γ + Γ = 0 ν = 0 , K0 =
9
2

Γ2 . (85)

In particular, this model covers the case, when γ = 1 and Γ = −1, i.e., the DM is pressureless,
Π = 0, and the DE pressure is described by the equation of state P = −2W. For this set of guiding
parameters we obtain

W(x) = W(1) (1 − 3Γ log x) +
9
4

Γ2 [W(1) + E(1)] log2 x , (86)

E(x) = E(1) (1 − 3γ log x) +
9
4

γ2 [W(1) + E(1)] log2 x . (87)

The square of the Hubble function is presented by the formula

H2(x) =
Λ
3
+

κ

3

(
1 +

9
2

Γ2 log2 x
)
[W(1) + E(1)] + κγ [W(1)− E(1)] log x , (88)

and the scale factor can now be found in elementary functions from the integral

(t − t0) =
∫ log a(t)

a(t0)

0

dz√
Λ
3 + κ

3
(
1 + 9

2 Γ2z2
)
[W(1) + E(1)] + κγ [W(1)− E(1)] z

. (89)

However, the integration procedure is faced with two principally different cases, W(1) + E(1) = 0,
and W(1) + E(1) �= 0. Let us consider them separately.
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5.2.1. The Case W(1) + E(1) = 0: Solution of the Bounce Type

While this case seems to be exotic (one of the energy densities should be negative), it is interesting
to study this case in detail. First, we fix that γ > 0, W(1) > 0. Then, integration gives immediately

a(t) = a(t∗) exp
[

1
2

γκW(1)(t − t∗)2
]

, (90)

where the following auxiliary parameters are introduced

a(t∗) = a(t0) exp
[
− Λ

6κW(1)γ

]
, t∗ = t0 −

√
Λ
3

κW(1)γ
. (91)

In terms of cosmological time the Hubble function is the linear one:

H(t) = κW(1)γ(t − t∗) . (92)

The corresponding acceleration parameter

− q(t) = 1 +
1

κW(1)γ(t − t∗)2 (93)

tends to one asymptotically at t → ∞. In the work [25] the solution of this type was indicated as
anti-Gaussian solution; also this solution is known as bounce (see, e.g., [12]).

The DE and DM energy densities behave as quadratic functions of cosmological time:

W(t)
W(1)

=
3
2

γ2κW(1)(t − t∗)2 + 1 − Λ
2κW(1)

, (94)

E(t)
W(1)

=
3
2

γ2κW(1)(t − t∗)2 − 1 − Λ
2κW(1)

. (95)

It is interesting to mention that the rates of evolution of the DE and DM energy density
scalars coincide:

Ė(t) = Ẇ(t) = 3γ2κW2(1)(t − t∗) . (96)

Clearly, both functions: ω(t) = E(t)
W(t) and −q(t) tend asymptotically to one, ω(∞) = 1, −q(∞) = 1.

The acceleration parameter −q(t) described by the simple monotonic function (93).

5.2.2. The Case W(1) + E(1) �= 0: Super-Inflationary Solution

For illustration we consider the simple submodel with Λ = 0, and assume that at t = t0 the DE
and DM energy densities coincide, i.e., E(1) = W(1). The integration in (89) yields now

log
a(t)
a(t0)

=

√
2

3γ
sinh

[
γ(t − t0)

√
3κW(1)

]
. (97)

This solution is of the super-inflationary type; at t → ∞ it behaves as

a(t)
a(t0)

= e
1

3
√

2γ
e
√

3κW(1) γ t

. (98)

It can be indicated as a Little Rip according to the classification given in [11]. Also this solution
appears in the model of Archimedean-type interaction between DE and DM [25].
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The DE and DM energy densities behave as follows:

W(t)
W(1)

= cosh2
[

γ(t − t0)
√

3κW(1)
]
+
√

2 sinh
[

γ(t − t0)
√

3κW(1)
]

, (99)

E(t)
W(1)

= cosh2
[

γ(t − t0)
√

3κW(1)
]
−
√

2 sinh
[

γ(t − t0)
√

3κW(1)
]

, (100)

so, the function ω(t) = E(t)
W(t) tends asymptotically to one. The Hubble function and acceleration

parameter are, respectively

H(t) =

√
2
3

κW(1) cosh
[

γ(t − t0)
√

3κW(1)
]

, (101)

− q(t) = 1 +
(

3γ√
2

) sinh
[
γ(t − t0)

√
3κW(1)

]
cosh2

[
γ(t − t0)

√
3κW(1)

] . (102)

When we study the time interval t ≥ t0, we see that the function −q(t) starts with −q(t0) = 1,
reaches the maximum −q(max) = 1 + 3γ

2
√

2
and then tends to one asymptotically, −q(∞) = 1.

6. Discussion

We established the model of DE/DM interaction based on the interaction kernel of the Volterra
type, as well as, classified and studied the obtained exact solutions. From our point of view, the results
are inspiring. Let us explain our optimism.

1. The model of kernel of the DE/DM interaction, which possesses two extra parameters, K0 and ν,
is able to describe many known interesting cosmic scenaria: Big Rip, Little Rip, Pseudo Rip, de
Sitter-type expansion; the late-time accelerated expansion of the Universe is the typical feature of
the presented model.

2. When 2K0+3νΓ �= 0, the solution of a new type appears, which is associated with the so-called
Effective Cosmological Constant. Indeed, if the standard cosmological constant vanishes, Λ = 0,
we obtain according to (52) that the parameter H∞ �= 0 plays the role of an effective Hubble
constant. It appears as the result of integration over the whole time interval; it can be associated
with the memory effect produced by the DE/DM interaction; we can introduce the effective
cosmological constant Λ∗ ≡ 3H2

∞, which appears just due to the interaction in the Dark sector of
the Universe.

3. The regular bounce-type (see (90)) and super-inflationary (see (97)) solutions appear, when the
characteristic polynomial of the key equation admits three coinciding roots σ = 0. Both exact
solutions belong to the class of solutions describing the Little Rip scenaria.

4. The model of the DE/DM coupling based on the Volterra-type interaction kernel can solve
the Coincidence problem. Indeed, the asymptotic value ω(∞) of the function ω(x) = E(x)

W(x) is
predetermined by the choice of parameters K0 and ν entering the integral kernel (13), (14). Even
if the initial value E(1) of the Dark Matter energy density is vanishing, the final value E(∞) is of
the order of the final value W(∞) due to the integral procedure of energy redistribution, which is
described by the Volterra operator (see, e.g., the example (50)). In other words, the DE component
of the Dark Fluid transmits the energy to the DM components during the whole evolution time
interval, and this action "is remembering" by the Dark Fluid.

5. Optimization of the model parameters K0, ν, Γ, γ using the observational data is the goal of
our next work. However, some qualitative comments concerning the ways to distinguish the
models of DE/DM interactions can be done based on the presented work. For instance, when one
deals with the standard ΛCDM model, the profile of the energy density associated with the Dark
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Energy is considered to be the horizontal straight line; the DM energy density profile decreases
monotonically, thus providing the existence of some cross-point at some finite time moment. For
this model the time derivative Ẇ(t) vanishes, so that Ẇ(t) = 0 and Ė(t) �= 0 never coincide. In
the model under discussion, the profiles E(t) and W(t) do not cross; these quantities tend to one
another asymptotically. As for the rates of evolution, the quantities Ẇ(t) and Ė(t) can coincide
identically (see, e.g., (96)), or can tend to one another asymptotically. In other words, one can
distinguish the models of DE/DM interaction if to analyze and compare the rates of evolution of
the DE and DM energy density scalars.
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Abstract: The cosmic expansion phenomenon is being studied through the interaction of newly
proposed dark energy models (Tsallis, Rényi and Sharma-Mittal holographic dark energy (HDE)
models) with cold dark matter in the framework of loop quantum cosmology. We investigate different
cosmic implications such as equation of state parameter, squared sound speed and cosmological plane
(ωd-ω′

d, ωd and ω′
d represent the equation of state (EoS) parameter and its evolution, respectively).

It is found that EoS parameter exhibits quintom like behavior of the universe for all three models of
HDE. The squared speed of sound represents the stable behavior of Rényi HDE and Sharma-Mittal
HDE at the latter epoch while unstable behavior for Tsallis HDE. Moreover, ωd-ω′

d plane lies in the
thawing region for all three HDE models.

Keywords: cosmoligical parameters; dark energy models; loop quantum cosmology

1. Introduction

Observational data from type Ia supernovae (SNIa) [1–4], the large scale structure (LSS) [5–8] and
the cosmic microwave background (CMB), anisotropies [9–11], tell us that the universe undergoes
an accelerated expansion at the present time. This expanding phase of the universe is supported
by an unknown component called dark energy (DE) [12–14]. The simplest candidate for DE is the
cosmological constant. This model consists of a fluid with negative pressure and positive energy
density. The cosmological constant suffers from some problems such as the fine-tuning problem
and the coincidence problem [12]. A feasible way to relieve the cosmic coincidence problem is to
suppose an interaction between dark matter and DE. The cosmic coincidence problem can also be
reduced by the appropriate choice of interaction between dark matter and DE [15–17]. The nature of
DE is mysterious and unknown. Therefore, people have suggested various models for DE such as
quintessence, tachyon [18], ghost [19], K-essence [20], phantom [21], Chaplygin gas [22], polytropic
gas [23,24] and holographic dark energy (HDE) [25–27].

A second approach for understanding this strange component of the universe is gravitational
modification in standard theories of gravity which results in modified theories of gravity that
involve some invariants depending upon specific features such as torsion, scalars, curvature etc.
The several modified theories are f (R) theory [28–30], where f is a general differentiable function
of the curvature scalar R, generalized teleparallel gravity, f (T) [31–33] theory, contributing in the
gravitational interaction through the torsion scalar T, Brans-Dicke theory, using a scalar field [34],
Gauss-Bonnet theory and its modified version involving the Gauss-Bonnet invariant G [35,36], f (R, T)

Symmetry 2018, 10, 635; doi:10.3390/sym10110635 www.mdpi.com/journal/symmetry101
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theory where T is the trace of the energy-momentum tensor [37], etc. For recent reviews on modified
gravity theories and dark energy problem, see, for instance [14,30,38–41].

The HDE is a promising candidate of DE, which has been studied extensively in the literature.
It is based upon the holographic principle [29,42,43] that states the number of degrees of freedom
of a system scales with its area instead of its volume. Cohen et al. studied that the DE should obey
the holographic principle and constrained by the infrared (IR) cut-off [44]. Li has examined three
choices for the IR cutoff as the Hubble horizon, the future event horizon and the particle horizon
and also shown that only the future event horizon is able to provide the sufficient acceleration for
the universe [45]. Sheykhi [46], developed the HDE model with Hubble horizon and argued that this
model possesses the ability to explain the present state of the universe with the help of interaction of
DE and cold dark matter (CDM).

Hu and Ling [47] studied the relationship between interacting, HDE and cosmological parameters
through observational constraints. They investigated that HDE model is justified with the present
observations in the low redshift region. They also tried to reduce the cosmic coincidence problem by
taking different possibilities of time rate of change of the ratio of dark matter to HDE densities for a
particular choice of interacting term. Ma et al. [48] explored observational signatures of interacting
and non-interacting HDE with dark matter. In these models they also observed the big rip singularity
in for different parameters by using a lot of recent observational schemes. They also found that the
HDE models are slightly compatible with the observations as compared to the ΛCDM model.

In the context of thermodynamics, horizon entropy and DE can be effected by each other. Recently,
due to the long-range nature of gravity, the mysterious nature of spacetime and pushed by the
fact that the Bekenstein entropy is a non-extensive entropy measure. The generalized entropies,
i.e., Tsallis and Rényi entropies have been assigned to the horizons to study the cosmological and
gravitational phenomenon.

To study the cosmological and and gravitational phenomena many generalized entropy formalism
has been applied but Tsallis and Rényi entropies generates the suitable model of universe. Sharma-
Mittal HDE is compatible with universe expansion and whenever it is dominant in cosmos it is stable.
Tsallis and Rényi entropies are attributed to the horizon to study the cosmic implications. Bekenstein
entropy is also can be obtained by applying Tsallis statistics to the system. However, Tsallis and
Rényi entropies can be recovered from Sharma-Mitall entropy by applying appropriate limits [49–51].
Recently, the HDE models such as Tsallis HDE [52] and Rényi HDE [53] and Sharma-Mittal HDE [54],
have been studied extensively.

In classical cosmology, an important role is played by inflationary paradigm in understanding the
problems of the big-bang model, by considering that the universe undergoes an expansion. However,
classical general relativity (GR) fails when spacetime curvature approaches the Planck scale, due to
the singularities where all physical quantities become infinite. So, the quantum gravity is considered
to be necessary To interpret the circumstances in which classical (GR) breaks down [55]. In the last
few decades, loop quantum gravity (LQG) has been widely applied to understand singularities in
different black holes and spacetimes. LQG is not a complete theory, nor has its full stability with GR
been established yet.

The loop quantum cosmology (LQC) is the application of LQG to the homogenous systems which
removes the singularities. It holds the properties of a non-perturbative and background independent
quantization of gravity [56]. The theory has numerous physical applications such as black hole physics
and others.Recently many DE models have been studied in the context of LQC.

Here, we discuss the cosmological implications of Tsallis HDE, Rényi HDE and Sharma-Mittal
HDE in the frame work of loop quantum cosmology (LQC) in the presence of the non-linear interaction
between DE and dark matter [57]. This paper is organized as follows. In Section 2, we provides basics
of LQC and DE models. Section 3 is devoted to cosmological parameters such as EoS parameter,
cosmological plane and squared sound speed for Tsallis HDE, Rényi HDE and Sharma-Mittal
HDEmodels. In the last section, we conclude the results.
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2. Basic Equations

In these days, DE phenomenon has been discussed in the framework of LQC to describe the
quantum effects on the universe. The LQC is the effective and modern application of quantization
techniques from loop quantum gravity. In the context of LQC, many DE models have been studied
in last few years. In modern cosmology, the cosmic coincidence problem by taking Chaplygin gas
into account with dark matter was studied by Jamil et al. [58]. Chakraborty et al. [59], explored the
modified Chaplygin gas in LQC. It is also found that with the help of Loop quantum effects one can
avoid the future singularities appearing in the standard cosmology. The Friedmann equation in case of
LQC [60–63] is given as

H2 =
ρe f f

3

(
1 −

ρe f f

ρc

)
, (1)

where, H = ȧ
a is the Hubble parameter and dot represents the derivative of a, with respect to t and

ρe f f = ρm + ρd, ρm is matter density and ρd is DE density. Also, ρc =
√

3
16π2β3G2h where, β represents

the dimensionless Barbero-Immirzi parameter and ρc stands for critical loop quantum density [60].
The different future singularities such as big bang and big rip can be avoided in LQC. It is observed
that phantom DE with the negative pressure can push the universe towards the big rip singularity
where all the physical objects loose the gravitational bounds and finally get dispersed.

We consider the interacting scenario between DE and cold dark matter (CDM) and thus the energy
conservation equation turns to the following equations (we refer to the reader to [64,65])

ρ̇m + 3Hρm = −Q, (2)

ρ̇d + 3H(ρd + pd) = Q. (3)

The cosmological evolution of the universe was analyzed by Arevalo and Acero [66], considering
a non-linear interaction term of the general form

Q = 3dHρa+b
e f f ρc

mρ−b−c
d . (4)

In the above equation the powers a, b and c characterize the interaction and d is a positive coupling
constant. For (a, b, c) = (1,−1, 1) we can get the interaction, Q = 3dHρm and for (a, b, c) = (1,−1, 0)
one can get, Q = 3dHρd. In this present work we choose the interaction is given by

Q = 3dH

(
ρ2

d
ρm + ρd

)
, (5)

this equation correspond to the choice (a, b, c) = (1,−2, 0) where, d is the coupling constant. The coupling
of the dark matter and DE is a method to describe the evolution of the universe. The coupling constant
sign decides the behavior of transformation between DE and dark matter. The positive sign indicates
the decomposition of DE into dark matter while the negative sign shows the decomposition into dark
matter to DE. However, the choice of positive sign of coupling constant is most favorable according to
observational data. The negative sign of coupling parameter should be avoided due to the violation of
laws of thermodynamics.

In this present work, we consider the power-law form of scale factor [67,68] as, a(t) = aotm and
H(t) = m

t where, m > 0. At different values of m, we have different phases of the universe

• 0 < m < 1 shows the decelerated phase of the universe.
• m = 2

3 , corresponds to the dust dominated era.
• m = 1

2 , leads to the radiation dominated era.
• m > 1, shows the accelerated phase of the universe.
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Next, we discuss the motivation and derivation of DE models.

2.1. Tsallis Holographic Dark Energy (HDE) Model

Li [45], has suggested the mathematical form of HDE as following constraint on its energy density
L3ρd ≤ Lmp

2. This inequality can be written as

ρd =
3C2mp

2

L2 , (6)

where, mp
2 = (8πG)−1 represents the reduced Plank mass, C is a dimensionless quantity and L denotes

the IR cutoff. HDE density provides the relation between Ultraviolet and IR cutoff. Many IR cutoffs
has been presented for explaining the accelerated expansion of the universe for example Hubble, event,
particle, Granda- Oliveros, Ricci scalar etc. Tsallis and Cirto [69], studied that the horizon entropy of
the black hole can be modified as Sδ = γAδ, where δ the is non-additivity parameter, γ is an unknown
constant and A = 4πL2, represents the area of the horizon. Cohen et al. [44], proposed the mutual
relationship between IR (L) cutoff, system entropy (S) and UV (Λ) cut off as

L3Λ3 ≤ (S)
3
4 , (7)

which leads to
Λ4 ≤ γ(4π)δL2δ−4, (8)

where, Λ4 is vacuum energy density and ρd ∼ Λ4. So, the Tsallis HDE density [52], is given as

ρd = BL2δ−4. (9)

Here, B is an unknown parameter and IR cutoff is Hubble radius which is L = 1
H . The density of

Tsallis HDE model using the scale factor is given as

ρd = B
t2δ−4

m2δ−4 . (10)

Inserting the value of ρd along with its derivative in Equation (3) it yields expression for pressure

pd =
1
3

B
t2δ−8

m4δ−3

⎛
⎜⎜⎝ −3t4

m−2δ−1 − 6Bm5dt2δ

ρc +

√
ρc

(
ρc +

12m2

t2

) − 2m2δt4(δ − 2)

⎞
⎟⎟⎠ . (11)

2.2. Rényi HDE Model

We consider a system with n, states with probability distribution Pi and satisfies the condition
Σn

i=1Pi = 1, Rényi and Tsallis entropies are well known parameters of generalized entropy is defined as

S =
1
δ

ln Σn
i=1P1−δ

i , ST =
1
δ

Σn
i=1(P1−δ

i − Pi), (12)

δ ≡ 1 − U, where, U is a real parameter. Now combining above set of equations we find their mutual
relation given as

S =
1
δ

ln(1 + δST). (13)

In Equation (13), S belongs to the class of most general entropy functions of homogenous system.
Recently, it is observed that Bekenstine entropy S = A

4 , is in fact Tsallis entropy which gives the
expression, S = 1

δ ln(1 + δ A
4 ), which is the Rényi entropy of the system.
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With the help of following assumption ρddv ∝ Tds we can get the Rényi HDE density as

ρd =
3C2H2

8π(1 + δπ
H2 )

. (14)

In our case, we suppose 8π = 1 and consider the power-law scale factor we have the following
expression for density

ρd =
3C2m4

t2(m2 + δπt2)
. (15)

The pressure for this case is also obtained from Equation (3) with the help of Equation (15)

pd = C2m3

t4(m2+πt2δ)
2 (−18C2m5d −

(
ρc +

√
ρc

(
ρc +

12m2

t2

))

× t2 (m2(3m − 2) + (3m − 4)πt2δ
)
)

(
ρc +

√
ρc

(
ρc +

12m2

t2

))−1

.
(16)

2.3. Sharma-Mittal HDE Model

From the Rényi entropy, we have the generalized entropy content of the system. Using Equation (12)
Sharma-Mittal introduced a two parametric entropy and is defined as

SSM =
1

1 − r

(
(Σn

i=1P1−δ
i )1−r/δ − 1

)
, (17)

where r is a new free parameter. We can observe that Rényi and Tsallis entropies can be recovered at
the proper limits. In the limit r → 1, Sharma-Mittal entropy becomes Rényi entropy while for r → δ,
it is Tsallis entropy. Using Equation (12), in Equation (17) we have

SSM =
1
R
((1 + δST)

R/δ − 1), (18)

here, R ≡ 1 − r. It has been recently argued that Bekenstine entropy is the proper candidate for Tsallis
entropy. It allow us to replace ST with SB in above equation we have

SSM =
1
R
((1 + δ

A
4
)R/δ − 1). (19)

The relation between UV (Λ) cutoff, IR (L) cut off and and system horizon (S) is given as Λ4 ∝ S
L4

Now, taking L ≡ 1
H =

√
A/4π, then the the energy density of DE given by

ρd =
3C2H4

8πR
[(1 +

δπ

H2 )
R/δ − 1], (20)

here, C2 is an unknown free parameter. According to our assumptions we get the following expression
for energy density

ρd =
3C2m4

Rt4 [(1 +
t2δπ

m2 )R/δ − 1]. (21)
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The expression for pressure is obtained as

pd =
C2m

t8

⎛
⎜⎜⎝−2πt6

(
1 +

πt2δ

m2

)−1+R/δ

+

⎛
⎜⎜⎝
(
−1 +

(
1 + πt2δ

m2

)R/δ
)

R

⎞
⎟⎟⎠

× m2t4(−3m + 4)−
18C2m7d

(
−1 +

(
1 + πt2δ

m2

)R/δ
)2

R2
(

ρc +

√
ρc

(
ρc +

12m2

t2

))
⎞
⎟⎟⎟⎠ . (22)

3. Cosmological Parameters

In this section, we will discuss the physical significance of cosmological parameters such as EoS
parameter, squared sound speed vs

2 and ωd − ω′
d plane.

3.1. EoS Parameter

To obtain EoS parameter we will use the following equation

ωd =
pd
ρd

. (23)

Here, ρd and pd represents DE density and pressure of HDE model respectively. EoS parameter is
used to categorized decelerated and accelerated phases of the universe. The DE dominated phase has
following eras:

• ωd = 0 corresponds to non-relativistic matter.
• −1 < ωd < − 1

3 ⇒ quintessence.
• ωd = −1 ⇒ cosmological constant.
• ωd < −1 ⇒ phantom.
• In this case ωd > −1, evolve across the boundary of cosmological constant shows the quintom behavior.

3.1.1. For Tsallis HDE

The EoS parameter for this model is evaluated by using Equations (10) and (11) in Equation (23)

ωd =
pd
ρd

= − 2Bm−2δ+4dt2δ−4

ρc +

√
ρc

(
ρc +

12m2

t2

) − 2(δ − 2)
3m

− 1. (24)

To check the region of the universe, we plot ωd versus z in Figure 1. The EoS parameter exhibits
the quintom-like behavior of the universe as it crosses the phantom barrier for δ = 1.3. However,
for other values of δ, it remains in the quintessence region of the universe.

3.1.2. For Rényi HDE

The EoS parameter for Rényi HDE is evaluated by using Equations (15) and (16) in (23) we get the
following expression

ωd = −
(

18C2m5d +

(
ρc +

√
ρc

(
ρc +

12m2

t2

))
t2 (m2(3m − 2)

+ (3m − 4)πt2δ
))

×
(

3m
(

ρc +

√
ρc

(
ρc +

12m2

t2

))
t4δ
(
m2 + π

))−1

.
(25)
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Figure 1. Plot of ωd versus z for Tsallis HDE at different values of δ. Here m = 2, ρc = 10, B = 2,
a0 = 1, C = 1, d = 1.

The plot of above parameter versus z is shown in Figure 2. The trajectories of EoS parameter show
the transition from phantom region to quintessence region by evolving the vacuum era of the universe.
This is called quintom-like nature of the universe.
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Figure 2. Plot of ωd versus z for Rényi HDE at different values of δ. Here m = 2, ρc = 10, C = 1,
a0 = 1, d = 1.

3.1.3. For Sharma-Mittal HDE

The EoS for Sharma-Mittal HDE is obtained by substituting Equations (21) and (22) in Equation (23)

ωd = R

(
−2πt6R

(
1 +

πt2δ

m2

)−1+R/δ

+ 4m2t4

(
−1 +

(
1 +

πt2δ

m2

)R/δ
)

− 3m3t4

(
−1 +

(
1 +

πt2δ

m2

)R/δ
)
−

18C2m7d
(
−1 +

(
1 + πt2δ

m2

)R/δ
)2

R
(

ρc +

√
ρc

(
ρc +

12m2

t2

))
⎞
⎟⎟⎟⎠ (26)

×
(

3m3t4

(
−1 +

(
1 +

πt2δ

m2

)R/δ
))−1

.

In Figure 3, the curves of EoS parameter shows quintom-like behavior of the universe.
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Figure 3. Plot of ωd versus z for Sharma-Mittal HDE at different values of δ. Here m = 2, ρc = 10,
C = 1, a0 = 1, d = 1, R = −2.

3.2. Stability Analysis

To analyze the stability of the HDE models in LQC scenario we evaluate the squared sound speed
which is given by

v2
s =

dpd
dρd

=
dpd/dt
dρd/dt

. (27)

The sign of v2
s determines the stability of HDE model. For v2

s > 0, the model is stable otherwise it
is unstable.

3.2.1. For Tsallis HDE

The expression for squared sound speed can be obtained by taking the derivative of
Equations (10) and (11) with respect to t, and then substitute in Equation (27) we have

vs
2 = m−2δ−1

6t4(δ−2)

⎛
⎜⎝−

72Bm7d
√

ρc

(
ρc+

12m2
t2

)
t2δ

(
ρc+

√
ρc

(
ρc+

12m2
t2

))2

(12m2+ρct2)

− 6m2δ+1t4(δ − 2)− 24Bm5dt2δ(δ−2)

ρc+

√
ρc

(
ρc+

12m2
t2

) − 4m2δt4(δ − 2)2

⎞
⎠ .

(28)

Figure 4 shows the graph between vs
2 and z. This graph is used to analyze the stability of the

Tsallis HDE model under different parametric values. From the figure one can see that vs
2 < 0 at the

early, present and latter epoch. Hence this model shows unstable behavior at the present, early and
latter epoch.
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Figure 4. Plot of vs
2 versus z for Tsallis HDE at different values of δ. Here m = 1.1, ρc = 10, C = 1,

B = −1.5, a0 = 1, d = 1.
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3.2.2. For Rényi HDE

The expression of squared sound speed for Rényi HDE model can be obtained by using
Equation (27) is given by

vs
2 = −

(
2ρc

(
t2

(
12ρcm2 + 6m2

√
ρc

(
ρc +

12m2

t2

)
+ ρ2

c t2 + ρct2

×
√

ρc

(
ρc +

12m2

t2

))(
m4(−2 + 3m) + 3m2(−2 + 3m)πt2δ

+ 2(3m − 4)π2t4δ2
)
+ 18C2m5d

(
2πt4δ

(
ρc +

√
ρc

(
ρc +

12m2

t2

))
(29)

+ 9m4 + m2t2

(
ρc +

√
ρc

(
ρc +

12m2

t2

)
+ 21πδ

))))(
3mt4

(
2πt2δ

+ m2
)(

ρc +

√
ρc

(
ρc +

12m2

t2

))2 (
m2 + πt2δ

)√
ρc

(
ρc +

12m2

t2

)⎞⎠−1

.

In the present model, we significantly investigate the stability analysis of the Rényi HDE model
which depends upon the different cosmological parameters. Here we take some specific values
ρc = 10, C = 1, d = 1 for different values of δ. In Figure 5, the curves for vs

2 shows the positive
behavior for different values of δ at latter epoch which shows the stability the Rényi HDE model at the
latter epoch.

3.2.3. For Sharma-Mittal HDE

Using Equation (27) and after some calculations we obtained the expression for squared sound
speed which is given by

vs
2 =

(
2C2m

(
3πt2(2 − m)

(
1 +

πt2δ

m2

)−1+R/δ

+
2m2π2t4(−R + δ)

(m2 + πt2δ)2

×
(

1 +
πt2δ

m2

R/δ
)
+

2m2

R
(3m − 4)

(
−1 +

(
1 +

πt2δ

m2

)R/δ
)

+
72C4m6d(

ρcR + R
√

ρc

(
ρc +

12m2

t2

))2

t9

(
ρc

(
πRt2

(
1 +

πt2δ

m2

)−1+R/δ

×
(

1 −
(

1 +
πt2δ

m2

)R/δ
)
+ 2m2

(
−1 +

(
1 +

πt2δ

m2

)R/δ
)2
⎞
⎠ (30)

+

√
ρc

(
ρc +

12m2

t2

)⎛⎜⎜⎜⎝
m2 (21m2 + 2ρct2) (−1 +

(
1 + πt2δ

m2

)R/δ
)2

12m2 + ρct2

+ πRt2
(

1 +
πt2δ

m2

)−1+R/δ
(

1 −
(

1 +
πt2δ

m2

)R/δ
))))(

6C2m2πt2

×
(

1 +
πt2δ

m2

)−1+R/δ

− 12C2m4

R

(
−1 +

(
1 +

πt2δ

m2

)R/δ
))−1

.
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Figure 5. Plot of vs
2 versus z for Rényi HDE at different values of δ. Here m = 1.1, ρc = 10, C = 1,

a0 = 1, d = 1.

To check the stability of the Sharma-Mittal HDE model we plot a graph of vs
2 against z. In Figure 6,

the curves for vs
2 shows the positive behavior for different values of δ at latter epoch which shows the

stability the Sharma-Mittal HDE model at the latter epoch.
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Figure 6. Plot of vs
2 versus z for Sharma-Mittal HDE at different values of δ. Here m = 2.5, ρc = 10,

C = 1, d = 1, R = −2, 3 and 4.

3.3. ωd-ω′
d Plane

Caldwell and Linder [70], proposed the ωd-ω′
d plane to explain the dynamical property of DE

model in quintessence scalar field. Here, ωd is EoS parameter and ω′
d is its evolutionary form where

prime denotes the derivative with respect to ln a. They divided the ωd-ω′
d plane in two parts, the

thawing part (ωd < 0, ω′
d > 0) is the region where EoS parameter nearly evolves from ωd < −1,

increases with time while its evolution parameter expresses positive behavior, and the freezing part
(ωd < 0, ω′

d < 0) is the evolution parameter for EoS parameter remains negative.

3.3.1. For Tsallis HDE

The expression ω′
d for THDE can be obtained by taking the derivative of Equation (24) with

respect to ln a for THDE.

ω′
d = 4ρcBm−2δ+3dt2δ−4

((
ρc +

√
ρc

(
ρc +

12m2

t2

))
(δ − 2) + 6m2(2δ − 3)

)

×

⎛
⎝(ρc +

√
ρc

(
ρc +

12m2

t2

))2√
ρc

(
ρc +

12m2

t2

)⎞⎠−1

. (31)
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In Figure 7, ωd − ω′
d, plane is used to check the region for this Tsallis HDE model. It can be seen

that the value of ω′
d decreases as we increase the value of ωd. We can see that ωd < 0 and ω′

d > 0 for
all values of δ, which corresponds to the thawing region of the universe.
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Figure 7. Plot of ωd versus ω′
d for Tsallis HDE at different values of δ. Here m = 2, ρc = 10, C = 1,

B = 2, a0 = 1, d = 1.

3.3.2. For Rényi HDE

The expression of ω′
d for Rényi HDE can be obtained by taking the derivative of EoS parameter in

Equation (25) with respect to ln a for Rényi HDE.

ω′
d = 4ρcπt2

(
12m2 + ρct2

)
δ + 3c2md

(
6m4

√
ρc

(
ρc +

12m2

t2

)
+

+ 6m2π(−2ρc + 3

√
ρc

(
ρc +

12m2

t2

))
t2δ + ρcπt4δ (−ρc (32)

+

√
ρc

(
ρc +

12m2

t2

)))
×
(

3ρc

(
12m2 + ρct2

) (
m2 + πt2δ

)2
)−1

In Figure 8, we find the region on the ωd − ω′
d, for the model under consideration. In this plane,

the EoS parameter corresponds to the quintessence era, also ωd − ω′
d shows that (ωd < 0, ω′

d > 0
which leads to the thawing region.
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Figure 8. Plot of ωd versus ω′
d for Rényi HDE at different values of δ. Here m = 2, ρc = 10, a0 = 1,

C = 1, d = 1.
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3.3.3. For Sharma-Mittal HDE

The expression of ω′
d for Sharma-Mittal HDE can be obtained by taking the derivative of

Equation (26) with respect to ln a for Sharma-Mittal HDE.

ω′
d = −

4πRt2
(

1 + πt2δ
m2

)R/δ
(
−πRt2 + m2

(
−1 +

(
1 + πt2δ

m2

)R/δ
))

3m2 (m2 + πt2δ)
2
(
−1 +

(
1 + πt2δ

m2

)R/δ
)2

+ 12C2m3d

⎛
⎜⎝ρc

⎛
⎜⎝−2 +

(
2m2 − πt2(R − 2δ)

) (
1 + πt2δ

m2

)R/δ

m2 + πt2δ

⎞
⎟⎠

+

√
ρc

(
ρc +

12m2

t2

)
(12m2 + ρct2) (m2 + πt2δ)

(
−2

(
9m2 + ρct2

) (
m2 + πt2δ

)
(33)

+

(
1 +

πt2δ

m2

)R/δ (
18m4 − ρcπt4(R − 2δ) + 2m2t2(ρc − 6πR + 9πδ)

)))

×

⎛
⎝R

(
ρc +

√
ρc

(
ρc +

12m2

t2

))2

t4

⎞
⎠−1

.

To find out the region of the ωd − ω′
d, for the model which is under consideration we construct

the ωd − ω′
d plane for different parametric values. In Figure 9 we can see that ωd − ω′

d shows that
(ωd < 0, ω′

d > 0) which corresponds to the thawing region.
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Figure 9. Plot of ω′
d versus ωd for Sharma-Mittal HDE at different values of δ. Here m = 2

3 , ρc = 10,
C = 1, a0 = 1, d = 1, R = −2

4. Concluding Remarks

In this paper, cosmological implications with the help of non-linear interaction terms between
dark matter and DE models have been discussed in the framework of LQC. For this purpose, we have
constructed the EoS parameter, the squared sound speed and ωd − ω′

d plane and discussed their
graphical behavior.

• The trajectories of EoS parameter in all three models HDE exhibit the quintom-like nature of the
universe as it shows transition of the universe from phantom era (at early and present) towards
quintessence era (latter epoch) by evolving phantom barrier.

• To analyze the stability of the Tsallis HDE, Rényi HDE and Sharma-Mittal HDE models we check
the graphical behavior of squared sound speed. For Tsallis HDE model, it is observed that vs

2 < 0
for all values of z which leads to the instability of this model. On the other hand, for Rényi HDE,
the squared speed of sound shows unstable behavior at the early and present epoch while leads

112



Symmetry 2018, 10, 635

to the stability at the latter epoch. The same behavior of the squared speed of sound has been
observed in case of Sharma-Mittal HDE model.

• Also, ωd − ω′
d corresponds to thawing region (ωd < 0 and ω′

d > 0) for all three models of HDE.
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Abstract: We present the regular cosmological models of the Lemaître class with time-dependent
and spatially inhomogeneous vacuum dark energy, which describe relaxation of the cosmological
constant from its value powering inflation to the final non-zero value responsible for the present
acceleration in the frame of one self-consistent theoretical scheme based on the algebraic classification
of stress-energy tensors and spacetime symmetry directly related to their structure. Cosmological
evolution starts with the nonsingular non-simultaneous de Sitter bang, followed by the Kasner-type
anisotropic expansion, and goes towards the present de Sitter state. Spacetime symmetry provides a
mechanism of reducing cosmological constant to a certain non-zero value involving the holographic
principle which singles out the special class of the Lemaître dark energy models with the global
structure of the de Sitter spacetime. For this class cosmological evolution is guided by quantum
evaporation of the cosmological horizon whose dynamics entirely determines the final value of the
cosmological constant. For the choice of the density profile modeling vacuum polarization in a
spherical gravitational field and the GUT scale for the inflationary value of cosmological constant,
its final value agrees with that given by observations. Anisotropy grows quickly at the postinflationary
stage, then remains constant and decreases to A < 10−6 when the vacuum density starts to dominate.

Keywords: dark energy; spacetime symmetry; de Sitter vacuum

1. Introduction

Observational data convincingly testify that our Universe is dominated at above 72% of its
density by a dark energy with a negative pressure p = wρ, w < −1/3 [1–4] (for a review [5]),
with the best fit w = −1 corresponding to the cosmological constant λ associated with the vacuum
density ρvac = (8πG)−1λ [6–11]. However, the Einstein cosmological term λgμν = 8πGρvacgμν

cannot be associated with the vacuum dark energy, for two reasons: (i) The quantum field theory
estimates ρvac by ρPl = 5 × 1093 g cm−3. Confrontation of this estimate with the observational value
ρobs � 1.4× 10−123ρPl produces the fine-tuning problem [12]. (ii) A large value Λ = 8πGρvac is needed
for powering the inflationary stage of the Universe evolution, the observational data yield its much
smaller today value, while the Einstein equations require ρvac = const.

The Planck density ρPl provides a natural cutoff on zero-point quantum vacuum fluctuations
in QFT which give rise to ρvac [12], as well as on applicability of classical General Relativity [13].
Proposals to solve the fine-tuning problem typically go beyond the classical General Relativity and
involve both its quantization and modifications and extensions on the classical level.

As early as in 1978 Hawking supposed that quantum fluctuations in spacetime topology at small
scales may provide a mechanism for vanishing a cosmological constant [14]. The point is that at
the very short distances a spacetime itself undergoes uncertainties typical for quantum systems that
implies impossibility to determine simultaneously a spacetime geometry and its changes. According
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to Wheeler, spacetime beyond the Planck scale has foam-like structure and may involve substantial
changes in geometry and topology [13] including, in particular, quantum wormholes [15,16].

On the other hand, the effective field theory still valid near the Planck energy scale, and the
question why the observed cosmological constant is so small as compared with ρPl is equivalent to the
question why the universe is accelerating at present [17]. In default of a some fundamental symmetry
which would reduce the value of λ to zero, most of proposals were focused on searching for physical
mechanisms which could provide its small value today.

The Causal Entropic Principle, which requires disregarding the causally disconnected spacetime
regions and maximizing the entropy produced within a causally connected region, has been applied for
calculation the expected value for a present cosmological constant in [18] in the reasonable agreement
with its observational value. Causality arguments were also used for analysis of relaxation of the
cosmological constant to its present value in the context of the eternal inflation in the multiverse and a
string landscape [19].

The non-singular model with the curvature square term, a cosmological term and a dilaton field
φ has been proposed in [20]. In this model the effective potential for a dilaton field demonstrates the
proper behavior to provide a successful inflationary stage with a graceful exit in the regime φ → ∞,
and a small value of the vacuum density responsible for the late time acceleration in the regime
φ → −∞, that appears as the "threshold" for the universe creation [20].

A way to solution of the fine-tuning problem involving the Higgs boson as the most likely
candidate for the inflaton field, has been proposed in [17] on the basis of an energy exchange between
the inflaton field and a time-dependent Λ. Although the mass of the Higgs boson is much smaller than
that needed for an inflaton, the hierarchy problem has been solved by introducing a coupling between
Λ(t) and the inflaton field, which even in the simplest form, Lint ∼ φΛ, can provide a solution of the
fine-tuning problem [17].

In the framework of the QFT model with a scalar and a fermion field and a physical cutoff
rendering the QFT finite it has been shown that the violation of the Lorentz invariance at the high
momentum scale can be made consistent with a suppression of the violation of the Lorentz invariance
at the low momenta. The fine tuning required to provide both the suppression and the existence of a
light scalar particle in the spectrum has been determined at the one loop level [21].

In the paper [22] it was noted that the extreme smallness of the gravitational fine structure constant
αg =

√
Gh̄Λ/c3 = 1.91 × 10−61 (ρvac/ρPl = (1/8π)αg) may suggest an essentially different structure

of a dark energy, which could not be entirely described by a cosmological constant.
The cosmological constant provides the empirically verified explanation for the present

accelerated expansion. The ΛCDM model includes a cosmological constant, inflationary initial
conditions, cold dark matter, standard radiation and neutrino content and Ωtot = 1, and demonstrates
a good agreement with the current cosmological observations [23]. Extensions of the ΛCDM model,
abbreviated as IΛCDM, involve the vacuum energy interacting with the cold dark matter [24,25]
(for a recent review [26]). However, theoretical difficulties including the fine-tuning problem [27,28]
enforced looking for alternative models of a dark energy (for a review [29]).

Most of the alternative models introduce a dark energy of a non-vacuum origin which behaves
like a cosmological constant when needed. Various models have been developed (for a review [30–33])
and checked out by the cosmography tests [34,35]. Among them phenomenological quintessence
models with −1 < w < −1/3 [4] and quintom models with two dynamical scalar fields, a canonical
field and a phantom field with w < −1 [36], supported by symmetry requirements [37], present the
dynamically viable dark energy models (for a dynamical analysis of the quintom models [38]).

Modified gravity models (for a review [39]) involve screening mechanisms that are characterized
by an effective value of the gravitational coupling GN for the regions with the different gravitational
potentials; the model predictions approach those typical for General Relativity in the regions of a
strong gravitational field [29].
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A general approach to the viable modified F(R) gravity describing the inflation and the current
accelerated expansion has been developed in [40] including investigation of the exponential models of
the modified gravity.

The holographic dark energy models [41,42] establish that the QFT ultraviolet cutoff produces
the dark energy density ρDE = 3C2M2

Pl L
−2 [43], where C is a numerical constant and L indicates the

infrared cutoff ([44] and references therein). The scale L−1 can be considered as the Hubble scale since
the resulting density is comparable with the current dark energy density [45,46]. Another option for L
is the particle and future horizons as the generalized holographic dark energy models for a specific
f (R) gravity model ([47] and references therein). In [48] a holographic dark energy model has been
constructed for the apparent horizon in a curved universe. The holographic models for the particle
and future horizons have been analyzed in [49] with the conclusion that the future horizon presents
more similarities with the dark energy behavior.

Models with −1 < w < −1/3 have been thoroughly tested with using the WMAP (Wilkinson
Microwave Anisotropy Probe) - CMB (Cosmic Microwave Background) data, which gave the constraint
wQ ≤ −0.7 and the best fit wQ = −1 [6–8,11]. CMB measurements [50] together with the BAO (Baryon
Acoustic Oscillations) data [51] and SNe (SuperNovae) Ia data [52] confirmed this result giving
w = −1.06 ± 0.06 at 68% CL [51].

Model-independent evidence for the character of the dark energy evolution obtained from the
BAO data distinguish theories with relaxation of Λ from a large initial value [53].

Relaxation of Λ has been considered in [54] on the basis of the adjustment mechanism proposed
in [55] in the model extending General Relativity by adding a class of the invariant terms that reduce
an arbitrary initial value of the cosmological constant to a needed value.

A unified description of the dark energy driving both the inflationary stage and the current
accelerated expansion is presented in [56] on the basis of a quadratic model of gravity which
includes an exponential F(R) gravity contribution with the high-curvature corrections coming from the
higher-derivative quantum gravity beyond the one-loop approximation.

Let us note that although the cosmological constant provides the convincing explanation for the
observed accelerated expansion, a clear justification of its small value does not exist until now [49].

In this paper we outline our approach to relaxation of a cosmological constant in the frame
of the model-independent self-consistent theoretical scheme which makes cosmological constant
intrinsically variable. A vacuum dark energy is introduced in general setting suggested by the
algebraic classification of stress-energy tensors and directly related to spacetime symmetry that
provides a mechanism of reducing a cosmological constant to a certain non-zero value involving the
holographic principle which singles out the special class of the Lemaître cosmological models with the
global structure of the de Sitter spacetime.

The quantum field theory in a curved spacetime does not contain a unique specification for the
vacuum state of a system, and the symmetry of the vacuum expectation value of a stress-energy tensor
does not always coincide with the symmetry of the background spacetime ([57] and references therein,
for a detailed discussion [58]). What is more important, QFT does not contain an appropriate symmetry
to zero out the cosmological vacuum density or to reduce it to a non-zero value.

The key point is that a relevant symmetry does exist in General Relativity as a spacetime
symmetry, directly related to the algebraic structure of stress-energy tensors which determine the
spacetime geometry as source terms in the Einstein equations. Algebraic classification of stress-energy
tensors [59,60] suggests a model-independent definition of a vacuum as a medium by the algebraic
structure of its stress-energy tensor and admits the existence of vacua whose symmetry is reduced as
compared with the maximally symmetric de Sitter vacuum associated with the Einstein cosmological
term Ti

k = ρvacδi
k (p = −ρvac; ρvac = const by Ti

k;i = 0) and responsible for the de Sitter geometry which
ensures accelerated expansion, isotropy and homogeneity independently of specific properties of the
particular models for ρvac [61,62]. To make Λ variable it is enough to reduce symmetry of Ti

k = ρvacδi
k

while keeping its vacuum identity (pk = −ρ for one of two spatial directions) [63,64]. The cosmological
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constant Λ becomes a time component Λt
t of a variable cosmological term Λi

k = 8πGTi
k [65],

which allows a vacuum energy density to be intrinsically dynamical, i.e., time-evolving and spatially
inhomogeneous (by virtue of Λi

k;i = 0).
A stress-energy tensor Ti

k with a reduced symmetry represents an intrinsically anisotropic vacuum
dark fluid which can be evolving and clustering, and provides the unified description of dark energy
and dark matter based on the spacetime symmetry [64,66] (for a review [67]). The relevant spherical
solutions to the Einstein equations are specified by Tt

t = Tr
r (pr = −ρ) and belong to the Kerr-Schild

class. Regular spherical solutions satisfying the weak energy condition, which implies non-negativity
of density as measured by an observer on a time-like curve, have obligatory de Sitter centers,
Ti

k = (8πG)−1Λδi
k. They describe regular cosmological models with time-evolving and spatially

inhomogeneous vacuum dark energy, and compact vacuum objects generically related to a dark energy
via their de Sitter vacuum interiors: regular black holes, their remnants and self-gravitating vacuum
solitons, which can be responsible for observational effects typically related to a dark matter [64,68].

This implies a natural phenomenological inclination with the ΛCDM model: Primordial black
hole remnants are considered as (cold) dark matter candidates for more than three decades [69,70].
The problem with singular black holes concerns the existence of the viable products of their
evaporation ([71] and references therein). Quantum evaporation of the regular black holes
(RBH) involves a 2-nd order phase transition followed by quantum cooling and resulting in
thermodynamically stable remnants ([72] and references therein; for a review [73]). Primordial RBH
remnants and self-gravitating vacuum solitons appear at the phase transitions in the early universe
where they can capture available de Sitter vacuum in their interiors and form graviatoms binding
electrically charged particles [74]. Their observational signatures as heavy dark matter candidates
generically related to a vacuum dark energy include the electromagnetic radiation whose frequency
depends on the scale of the interior de Sitter vacuum, within the range ∼ 1011 GeV available for
observations [68,74]. In graviatoms with the GUT scale interiors, where the baryon and lepton
numbers are not conserved, the remnant components of graviatoms can induce the proton decay,
which could in principle serve as their additional observational signature in heavy dark matter searches
at the IceCUBE experiment [68].

Regular cosmological models with the vacuum dark energy belong to the Lemaître class of
cosmological models and are able to describe evolution between different states dominated by the de
Sitter vacuum [58]. There exists infinitely many distributions of matter which satisfy Rik = Λgik and
hence model the cosmological constant [75], but in all cases it is ultimately de Sitter vacuum drives
the accelerated expansion due to the basic properties of the de Sitter geometry, independently on an
underlying particular model for Λ. In a similar way a dynamical vacuum dark energy associated
with a variable cosmological term, generates geometries whose basic properties involve in the natural
way restoration of the spacetime symmetry asymptotically or/and at certain stages of the universe
evolution. Such geometries describe the relaxation of the cosmological constant by the Lemaître
class anisotropic cosmological models, which reduce to the isotropic FLRW models at the stages
with the spacetime symmetry restored to the de Sitter group. This makes it possible to describe
on the common ground the currently observed accelerated expansion and the inflationary stages
predicted by the standard model and related to the phase transitions in the universe evolution [76].
Such a model involving the GUT and QCD vacuum scales has been presented in [58] on the basis of
the phenomenological density profile with the typical behavior for a cosmological scenario with an
inflationary stage followed by decay of the vacuum energy described by the exponential function.
The model parameters characterizing the decay rate are uniquely fixed by the requirements of the
causality and analyticity. Other model parameters are fixed by the values ρGUT , ρQCD, the currently
observed density ρλ and Ω = 1. The only remaining free parameter, the e-folding number for the first
inflation, was estimated by the observational constraints on the CMB anisotropy. It was shown that the
Lemaître class cosmological model with the vacuum dark fluid can describe the universe evolution in
the frame of one theoretical scheme which fairly well conforms to the basic observational features [58].
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The spacetime symmetry provides a mechanism of reducing the cosmological constant to a
certain non-zero value. The holographic principle distinguishes the special class of the Lemaître dark
energy models, for which the cosmological evolution is guided by the quantum evaporation of the
cosmological horizon whose dynamics entirely determines the final value of the cosmological constant.

Here we present the basic features of the Lemaître class dark energy models and outline in some
detail the special class of models singled out by the holographic principle. Section 2 presents the
spherically symmetric vacuum dark fluid and the generic properties of the spacetime generated by the
vacuum dark energy. Section 3 presents the basic equations and the generic properties of the Lemaître
class cosmological models with the vacuum dark energy, and the special class of the Lemaître models
favored by the holographic principle, including the detailed behavior of the anisotropy parameter in
the course of the universe evolution. Section 4 contains summary and discussion.

2. Algebraic Structure of Tress-Energy Tensors for Vacuum Dark Energy and Spacetime Symmetry

Stress-energy tensors of the spherically symmetric vacuum dark fluid have the algebraic structure
defined by [63]

Tt
t = Tr

r (pr = −ρ); Tθ
θ = Tφ

φ . (1)

The equation of state, following from the conservation equation Tk
i;k = 0, reads [63,77] pr = −ρ;

p⊥ = −ρ − r
2 ρ′, where ρ(r) = Tt

t is the energy density, pr(r) = −Tr
r is the radial pressure, and

p⊥(r) = −Tθ
θ = −Tφ

φ is the transversal pressure for the anisotropic vacuum dark fluid [64]. The
stress-energy tensors specified by (1) generate, as the source terms in the Einstein equations, the globally
regular spacetimes with the de Sitter centre (replacing the Schwarzschild singularity) provided that
the weak energy condition (WEC) is satisfied [78,79]. The spacetime symmetry breaks from the de
Sitter group in the origin [78].

The early proposals of replacing a singularity with the de Sitter core were based on the hypotheses
of a self-regulation of the geometry by the vacuum polarization effects [77], of the existence of
the limiting curvature [80], and of the symmetry restoration at the GUT scale in the course of the
gravitational collapse [63,81]. Later a loop quantum gravity and the noncommutative geometry
provided arguments in favor of a de Sitter interior in place of a singularity [82–87].

A metric generated by a source term specified by (1) belongs to the Kerr-Schild class [88]

ds2 = g(r)dt2 − dr2

g(r)
− r2dΩ2. (2)

For the regular spherical solutions with the de Sitter centre WEC leads to monotonical decreasing
of the density profile ρ(r) [78]. In the case of two vacuum scales we can thus separate in Tt

t the
background vacuum density ρλ = (8πG)−1λ, introducing Tt

t (r) = ρ(r)+ ρλ, where ρ(r) is a dynamical
density decreasing from the value at the center ρΛ = (8πG)−1Λ to zero at infinity; Tt

t evolves
from (8πG)−1(Λ + λ) to (8πG)−1λ and provides the intrinsic relaxation of a cosmological constant.
The metric function [89]

g(r) = 1 − 2GM(r)
r

− λr2

3
; M(r) = 4π

∫ r

0
ρ(x)x2dx (3)

is asymptotically de Sitter with λ as r → ∞ and with (Λ + λ) as r → 0.
Geometry has three basic length scales: rg = 2GM (M = 4π

∫ ∞
0 ρr2dr); rΛ =

√
3/Λ; rλ =

√
3/λ,

and an additional length scale r∗ = (r2
Λrg)1/3 characteristic for the geometry with the de Sitter

interior. The relation of rλ to rΛ represents the characteristic parameter relating two vacuum scales
q = rλ/rΛ =

√
Λ/λ =

√
ρΛ/ρλ.

Let us note that the characteristic scale r∗ = (r2
Λrg)1/3, introduced first in [77] as related to a

self-regulation of the geometry, appears explicitly in the simple semiclassical model of the vacuum
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polarization in the spherical gravitational field based on the fact that all fields are involved in a
collapse, therefore all of them contribute to the stress-energy tensor and hence to geometry [63,78,90].
The scale r∗ defines the zero gravity surface at which the strong energy condition is violated [63,90].
In thermodynamics of regular black holes this scale determines evolution during evaporation [72].
In the Nonlinear Electrodynamics coupled to Gravity the existence of zero gravity surface inside a
regular compact object allows to present a certain explanation of the appearance of the minimal length
scale in the electromagnetic reaction of the electron-positron annihilation [91].

In the Schwarzschild-de Sitter spacetime the similar scale with the background λ appears in the
minimum of the metric function g(r) (with M(r) = M = const) for the Kottler-Trefftz geometry [92],
and defines the boundary beyond which there are no bound orbits for test particles [93,94]. This scale
plays the fundamental role in the non-linear theories of massive gravity. The original model by Fierz
and Pauli described a massive spin-2 particle in the Minkovski space involving five degrees of freedom
but was incompatible with the Solar System tests. Nonlinear extensions of this theory, proposed first
by Vainshtein [95] include the mechanism of hiding some degrees of freedom and restoring General
Relativity below a certain scale rv called the Vainshtein radius which marks the transition to the regions
where the extra degrees of freedom become essential at the large distances ([96,97] and references
therein). In the cosmological context the Vainshtein scale rv involves the background λ and plays
the role of the astrophysical scale set by the cosmological constant λ as it was shown in [98] where
the general conditions were derived applicable for any theory of massive gravity and responsible for
the coincidence of rv with the relevant scale for the Schwarzshild-de Sitter spacetime obtained in the
GR frame with the dynamical metric involving all degrees of freedom. In the context of black hole
thermodynamics the basic conditions for an observer in massive gravity [99] provide agreement of the
obtained there results with those obtained in GR.

In the considered context of regular spacetimes with the vacuum dark energy the number of
the vacuum scales determines the maximal number of the horizons. In accordance with the Einstein
equations, the pressure p⊥ is related with the metric function g(r) as

8πGp⊥ =
g′′

2
+

g′

r
. (4)

It follows that an extremum of g(r) in the region where p⊥ > 0, is a minimum. The transversal
pressure p⊥ becomes negative in the vicinity of the de Sitter center with the characteristic scale rΛ
and in the asymptotically de Sitter region of large r with the scale rλ. Then there exists only one
region where p⊥ > 0. Since g(r) has different signs at r → 0 and r → ∞, the single minimum of
g(r) implies the existence of at most 3 zero points of the metric function g(r) and hence 3 horizons of
spacetime [100] and five possible configurations shown in Figure 1a [89]. Dependently on the mapping
(choice of the observers reference frame) spacetime geometry presents the black (white) hole with three
horizons, the internal horizon r−, the event black (white) hole horizon r+ and the cosmological horizon
r++, two extreme double-horizon states r− = r+, r+ = r++, and two one-horizon states shown in
Figure 1a [100]. Static observers exist in the R-regions 0 ≤ r < r− and r+ < r < r++.

The T-regions r > r++ open to infinity represent in the relevant mapping r → T, t → u the
regular homogeneous cosmological T-models of the Kantowski-Sachs type with the vacuum dark
fluid [101]. Typical features of these models are the existence of a Killing horizon, beginning of the
cosmological evolution with a null bang from the Killing horizon, and the existence of a regular static
pre-bang region visible to the cosmological observers [101]. The Kantowski-Sachs observers are shown
in Figures 1b and 2.
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Figure 2. Observers in the double horizon spacetimes: (a) r+ = r++, (b) r− = r+.

The Lemaître observers on the time-like radial geodesics, shown in Figures 1b and 2, have to their
disposal the whole manifold, 0 ≤ r ≤ ∞. Transition to their (geodesic) coordinates (R, τ), where R is
the congruence parameter of the geodesic family and τ is the proper time along a geodesic, is given by
the matrix relating the mapping [r, t] to the mapping [R, τ] which reads [100]

∂t
∂τ

=
E(R)
g(r)

;
∂r
∂R

=
√

E2(R)− g(r);
∂r
∂τ

= ± ∂r
∂R

;
∂t
∂R

= ±E2(R)− g(r)
E(R)g(r)

. (5)

The resulting metric has the form [58,100]

ds2 = dτ2 − [E2(R)− g(r(R, τ))]

E2(R)
dR2 − r2(R, τ)dΩ2. (6)

3. The Lemaître Class Models for Relaxing Cosmological Constant

3.1. Basic Equations

The cosmological models dominated by the anisotropic vacuum dark energy belong to the
Lemaître class models with the anisotropic fluid and are described by the metric [102]
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ds2 = dτ2 − e2ν(R,τ)dR2 − r2(R, τ)dΩ2. (7)

The coordinates R, τ are the Lagrange (comoving) coordinates. The function r(R, τ) is called the
luminosity distance. For the metric (7) the Einstein equations read [103]

8πGpr =
1
r2

(
e−2νr′2 − 2rr̈ − ṙ2 − 1

)
, (8)

8πGp⊥ =
e−2ν

r
(r′′ − r′ν′)− ṙν̇

r
− ν̈ − ν̇2 − r̈

r
, (9)

8πGρ = − e−2ν

r2

(
2rr′′ + r′2 − 2rr′ν′

)
+

1
r2

(
2rṙν̇ + ṙ2 + 1

)
, (10)

8πGTr
t =

2e−2ν

r
(
ṙ′ − r′ν̇

)
= 0. (11)

The component Tr
t zeros out in the comoving reference frame, and the Equation (11) yields [104]

e2ν =
r′2

1 + f (R)
, (12)

where f (R) is an arbitrary integration function. The dots and primes stand for ∂/∂τ and ∂/∂R,
respectively. Comparison of the metric (6) with the metric (7) shows that (6) corresponds to (7) with
f (R) = E2(R)− 1, and E2(R)− g(r) = [r′(R, τ)]2 = [ṙ(R, τ)]2 [100]. It follows that for the case of the
vacuum dark fluid with the anisotropic pressures satisfying (1), generic behavior of the Lemaître class
cosmological models is determined by the basic properties of the metric function g(r) in (3).

Putting (12) into (8), we obtain the equation of motion [105]

ṙ2 + 2rr̈ + 8πGprr2 = f (R). (13)

Taking into account that pr = −ρ for a source term (1), the first integration in (13) gives [100]

ṙ2 =
2GM(r)

r
+ f (R) +

F(R)
r

. (14)

A second arbitrary function F(R) should be chosen equal to zero for the models regular at r = 0
since M(r) → 0 as r3 for r → 0 where ρ(r) → ρΛ < ∞. The second integration in (13) gives

τ − τ0(R) =
∫ dr√

2GM(r)/r + f (R)
. (15)

The new arbitrary function τ0(R) is called the bang-time function [106].
For the expanding models ṙ =

√
E2(R)− g(r) = r′ and hence r is a function of (R + τ). We can

therefore choose τ0(R) = −R. For the small values of r the Equation (15) reduces to

τ + R =
∫ dr√

r2/r2
Λ + f (R)

(16)

that corresponds to the de Sitter geometry with r(R, τ) = rΛ cosh ((τ + R)/rΛ) for f (R) < 0; r(R, τ) =

rΛ exp ((τ + R)/rΛ) for f (R) = 0; r(R, τ) = rΛ sinh ((τ + R)/rΛ) for f (R) > 0.
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3.2. Basic Features of the Lemaître Cosmological Models With the Vacuum Dark Energy

For the case f (R) = 0 preferred by the observational data (Ω = 1), the cosmological evolution
starts from the regular time-like surface r(R, τ) = 0 where the Equation (16) gives [105]

r = rΛe(τ+R)/rΛ ; e2ν = r2/r2
Λ, (17)

and the metric (7) takes the FLRW form with the de Sitter scale factor

ds2 = dτ2 − r2
Λe2τ/rΛ

(
du2 + u2dΩ2

)
, (18)

where u = eR/rΛ . In accordance with (17), it describes a non-singular non-simultaneous de Sitter bang
from the surface r(τ + R → −∞) = 0 [100,105], as it is shown in Figure 3 which presents the global
structure of spacetime for the most general case of 3 horizons. The regions RC are the regular regions
asymptotically de Sitter as r → 0 at the scale of Λ replacing a singularity; the T-regions WH and BH
represent the white and black holes; the regions U are the R-regions restricted by the cosmological
horizons r++; the regions CC are the T-regions asymptotically de Sitter with the background λ as r → ∞.
The surfaces J− and J+ are the null (photon) boundaries in the past and the future, respectively.
The cosmological evolution starts from the regular de Sitter surface r = 0 in RC1 and goes through
WH and U1 towards r → ∞ in CC1.
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Figure 3. The global structure of the regular spacetime with 3 horizons.

Cosmological evolution is governed by dynamics of pressures. In the spacetime with the de
Sitter center the total density monotonically decreases to ρλ, hence the total radial pressure pr =

−ρ monotonically increases. Transversal pressure in the case of two vacuum scales evolves from
the value p⊥ = −ρΛ − ρλ at the inflation to the final value p⊥ = −ρλ, through one maximum in
between [100,105]. Typical behavior of pressures (normalized to ρΛ) dependently on q is shown
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in Figure 4; the variable τ + R is normalized to the GUT time tGUT = rΛ/c � 0.8 × 10−35 s for
MGUT � 1015 GeV.

The inflationary stage is followed by a strongly anisotropic Kasner-type stage. As follows from
the Lemaître metric in the form (6) corresponding to (7) with f (R) = E2(R)− 1, for any function f (R)
the expansion in the transversal direction with ∂τr > 0 is accompanied by shrinking in the radial
direction where ∂R|gRR| < 0 until dg(r)/dr < 0 [100]. For E2 = 1 ( f (R) = 0) the metric at this stage
(rΛ < r  rλ) takes the form [100,105]

ds2 = dτ2 − (τ + R)−2/3K(R)dR2 − L(τ + R)4/3dΩ2, (19)

where K(R) is a smooth regular function and L is a constant, which depend on the specific form of the
density profile and hence on the mass function in (3).
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Figure 4. Behavior of pr (lower curve) and p⊥ (upper curve), at the early and present stages.

The intrinsic anisotropy of the Lemaître class cosmological models is described by the mean
anisotropy parameter [107] (for a discussion of the different anisotropy characteristics [108])

A =
1

3H2

3

∑
i=1

H2
i ; Hi =

ȧi(τ)

ai(τ)
; H =

H1 + H2 + H3

3
, (20)

where Hi = ȧi/ai are the directional Hubble parameters corresponding to the scale factors ai(τ),
and H = (H1 + H2 + H3)/3 is the mean Hubble parameter. For the spherically symmetric models
with the vacuum dark energy specified by (1), e2ν = r′2 for f (R) = 0, and the scale factors are a1 = r′,
a2 = a3 = r. In terms of the mass function M the anisotropy parameter takes the form [58,109]

A = 2
(Ṁ/M(r)− 3ṙ/r)2

(Ṁ/M+ 3ṙ/r)2
. (21)

In the FLRW cosmology the deceleration parameter is introduced on the basis of the Friedmann
equations for one scale factor R(τ). In the case Ω = 1 it reads q0 = (ρ + 3p)/2ρ = (1 + 3w)/2,
where w refers to the equation-of-state parameter for an isotropic medium. For ρ+ 3p < 0 gravitational
acceleration becomes repulsive which is responsible for the accelerated expansion. This fact follows
directly from the strong energy condition which in general case of an anisotropic medium requires
ρ + ∑ pk ≥ 0. This guarantees, by the Raychaudhuri equation, the attractiveness of gravity [110],
and in the cosmological context is responsible for deceleration. Violation of the strong energy condition,
ρ + ∑ pk < 0, makes gravity repulsive and marks the transition from deceleration to acceleration.
In the anisotropic Lemaître cosmology with the vacuum dark energy specified by Tt

t = Tr
r (pr = −ρ),

the strong energy condition reads

ρ + 2p⊥ ≥ 0 → ρ(1 + 2w⊥) ≥ 0. (22)
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The transition from deceleration to acceleration occurs when (1 + 2w⊥) < 0. In the Lemaître
cosmology describing the unverse evolution from the inflationary beginning to the inflationary
end with the possible intermediate inflationary stage(s), the maximal number of acceleration-
deceleration-acceleration transitions is determined by the numbers of zeros of the pressure p⊥
which is determined by the number of vacuum (de Sitter) scales. In the case of two vacuum
scales p⊥ evolves between two inflationary (negative) pressures and can change its sign twice.
It results in not more than two transitions: acceleration-deceleration and deceleration-acceleration.
Each additional intermediate inflationary stage can add two zeros of p⊥ [58], and hence not more
than two additional transitions, acceleration-deceleration and deceleration-acceleration. In the next
subsection we consider acceleration-deceleration-acceleration transitions in the model distinguished
by the holographic principle.

3.3. The Lemaître Class Models Singled Out by the Holographic Principle

A family of one-horizon spacetimes with the global structure of the de Sitter spacetime contains
the special class distinguished by the holographic principle [111] (which leads to the conjecture that a
dynamical system can be entirely determined by the data stored on its boundary [112]) as governed by
the quantum evaporation of the cosmological horizon that determines the basic characteristics of the
final state in the horizon evaporation for any density profile [113].

Typical behavior of the metric function for this class is shown in Figure 5a. Quantum evaporation
of the horizon goes towards decreasing the mass M [72]. In this case it ends up in the triple-horizon
state M = Mcr which is absolutely thermodynamically stable: Its basic generic features are [113] zero
temperature, the infinite positive specific heat capacity, the finite entropy, zero transversal pressure,
zero curvature, and the infinite scrambling time (the time needed to thermalize information [114]).

Evolution governed by evaporation goes with increasing entropy from the state M > Mcr

towards the triple-horizon state M = Mcr that satisfies three algebraic equations: g(rt) = 0; g′(rt) =

0; g′′(rt) = 0, which determine uniquely the basic parameters: the mass Mt, the triple horizon radius
rt, and qt =

√
ρΛ/ρλ, so that the final non-zero value of the vacuum dark energy density ρλ is tightly

fixed by the quantum evaporation of the cosmological horizon for a chosen vacuum scale for ρΛ [113].
With using the density profile [63]

ρ(r) = ρΛe−r3/r2
Λrg , (23)

which describes the vacuum polarization in the spherically symmetric gravitational field in a
simple semiclassical model [78,90], we obtain [113]

Mcr = 2.33 × 1056 g; q2
cr = 1.37 × 10107; rt = 5.4 × 1028 cm. (24)

The cosmological evolution is described by the Lemaître metric (7) which can be written as

ds2 = dτ2 − b2(τ, R)dR2 − r2(τ, R)dΩ2, (25)

where the second scale factor b(τ, R) ≡ eν(R,τ) in accordance with (12). Behavior of two scale factors
is shown in Figure 5b for the case f (R) = 0 (Ω = 1) [109]. Distances and times are normalized to
r∗ = (r2

Λrg)1/3 = 1.26 × 10−7 cm, and tGUT � 0.8 × 10−35 s with MGUT � 1015 GeV.
Due to the isotropy of pressures (see Figure 4), at the very early and late times the behavior of two

scale factors is similar (curves run parallel and differ only by constant), the second stage of the parallel
running starts at rd � 3 × 1027 cm and (τ + R)d � 9, 5 × 1016 s (according to the observational data the
vacuum density starts to dominate at the age of about 3 × 109 years). The vacuum density approaches
its observed value at the triple horizon rt at (τ + R)t � 2, 9 × 1017 s. The metric (7) approaches the
FLRW form with the de Sitter scale factor ds2 = dτ2 − r2

t e2cτ/rt
(
du2 + u2dΩ2) where u = eR/rt .
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Figure 5. (a) Evolution of the metric function during evaporation. (b) Behavior of the scale factors:
r(τ + R) (upper curve) and b(τ + R) (lower curve).

To evaluate the vacuum dark energy density from q2
cr = ρΛ/ρλ, we adopt ρΛ = ρGUT . The Grand

Unification scale is estimated as MGUT ∼ 1015 − 1016 GeV, which results in the value for the vacuum
density ρΛ within the range 1.7 × 10−30gcm−3 − 1.7 × 10−26gcm−3, respectively.

The observational value ρλ (obs) � 6.45 × 10−30g cm−3 [11] corresponds, in the considered context,
to MGUT � 1.4 × 1015 GeV which gives ρGUT = 8.8 × 1077gcm−3, rΛ = 1.8 × 10−25 cm. For this scale
q2

cr gives the value of the present vacuum density ρλ in agreement with its observational value [109].
The behavior of two scale factors and of their derivatives at the early stage of evolution is shown

in Figures 6 and 7 [115]. The maximum in the scale factor b(τ + r) at τ + R � 0.4 tGUT = 0.32 × 10−35

s corresponds to the maximum of the transversal pressure at r � 1.5 × 10−7 cm in Figure 4.
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Behavior of the anisotropy parameter during the whole evolution, shown in Figure 8 [109],
was studied numerically with the density profile (23) and the model parameters (24).
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Figure 8. Behavior of the anisotropy parameter at the early and late stages.

The anisotropy develops quickly during the postinflationary stage. At the maximum of p⊥
and b(τ + r), the anisotropy parameter takes the value A � 0.4, grows further achieving A = 2 at
r � 2.5 × 10−7 cm, and starts to decrease at r � 6 × 1027 cm. The standard estimate A < 10−6 is
expected to be satisfied already at the recombination epoch, r ∼ 1025 cm (z ∼ 103). The curve in
Figure 7 predicts that the anisotropy starts to satisfy this criterion at approaching r ∼ 1028 cm when
the present vacuum density starts to dominate [109].

In the spacetime with two vacuum scales the pressure p⊥ changes its sign twice [58,100], so that
in any triple-horizon model the strong energy condition is violated (1 + 2w⊥ < 0 in Equation (22)) in
the inflationary stage, and the transition from acceleration to deceleration occurs when satisfaction
of the strong energy condition is restored; deceleration changes to acceleration at approaching the
current stage of accelerated expansion. The rates of these processes depend essentially on the density
profile. For the quickly decreasing density profile (23) the acceleration changes to deceleration after
the inflation at r1 � 0.4 × 10−7 cm, at the essentially anisotropic stage.

4. Summary and Discussion

Responsibility of the spacetime symmetry for reducing the cosmological constant to a certain value
in the course of the universe evolution, is suggested on general setting by the algebraic classification
for stress-energy tensors which allows for a model-independent definition of a vacuum as a medium
and implies the existence of vacua whose symmetry is reduced as compared with the maximally
symmetric de Sitter vacuum p = −ρ associated with the Einstein cosmological term. In the spherically
symmetric case their stress-energy tensors have the canonical form Tt

t = Tr
r (pr = −ρ) and generate the

Lemaître class cosmological models with the anisotropic pressures that allows to describe cosmological
evolution by intrinsically dynamical, time-dependent and spatially inhomogeneous vacuum dark
energy. In the Lemaître class dark energy models the characteristics of the vacuum dark energy
are determined by the algebraic structure of its stress-energy tensor and generically related to the
spacetime symmetry. The basic features of the Lemaître class dark energy models are the non-singular
non-simultaneous de Sitter bang, followed by the anisotropic Kasner-type stage and directed towards
the late-time de Sitter stage, representing the effective relaxation of the cosmological constant from the
initial inflationary value Λ to the final late-time inflationary value λ < Λ.

Among these models there is a special class of the one-horizon models distinguished by the
holographic principle. The cosmological evolution is governed by the quantum evaporation of the
cosmological horizon which determines uniquely the non-zero final value of the cosmological constant
in the restoration of the spacetime symmetry to the de Sitter group.

In the case of adopting for the dark energy the density profile representing semi-classically the
vacuum polarization in the spherical gravitational field and the GUT scale for the initial vacuum
density, its final value appears in agreement with the value given by observations.

Let us note that this special class of models is essentially different from the holographic dark
energy models with the isotropic fluid and the postulated density profile. The Lemaître cosmological
models are intrinsically anisotropic and describe evolution of the dark energy density represented by
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the T0
0 component of the variable cosmological term whose symmetry is reduced as compared with

the Einstein cosmological term.
The anisotropy parameter in the special class of the one-horizon Lemaître dark energy models

grows quickly during the postinflationary stage, then stays constant and decreases achieving A <

10−6 when the present vacuum density starts to dominate. Astronomical observations suggest that
our Universe can be deviated from the isotropy. The observed CMB anisotropy, interpreted as a
realization of a statistical process originating in the inflationary era [116–118] admit the statistical
anisotropy with the confidence level above 99% [116]. The anisotropy has been constrained at the
magnitude level of 2–5% by the SNe Ia data [119], and at the level of 4.4% by the Union2 data and the
high-redshift gamma-ray bursts [120]. The deviations from the homogeneity also can be confronted
with observations. The influence of inhomogeneities on the cosmological distance measurements has
been considered in [121].

The Lemaître class cosmological models provide an appropriate tool for the detailed analysis of
the anisotropy and inhomogeneity against observations.
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54. Bauer, F.; Solà, J.; S̆tefancic, H. Dynamically avoiding fine-tuning the cosmological constant: the “Relaxed
Universe”. J. Cosmol. Astropart. Phys. 2010, 1012, 29. [CrossRef]
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Abstract: In this paper, we reconstruct various solutions for the accelerated universe in the
Einstein-Aether theory of gravity. For this purpose, we obtain the effective density and pressure
for Einstein-Aether theory. We reconstruct the Einstein-Aether models by comparing its energy
density with various newly proposed holographic dark energy models such as Tsallis, Rényi
and Sharma-Mittal. For this reconstruction, we use two forms of the scale factor, power-law and
exponential forms. The cosmological analysis of the underlying scenario has been done by exploring
different cosmological parameters. This includes equation of state parameter, squared speed of sound
and evolutionary equation of state parameter via graphical representation. We obtain some favorable
results for some values of model parameters

Keywords: Einstein-Aether theory of gravity; dosmological parameters; dark energy models

1. Introduction

Nowadays, it is believed that our universe is undergoing an accelerated expansion with the
passage of cosmic time. This cosmic expansion has been confirmed through various observational
schemes such as supernova type Ia (SNIa) [1–4] and the cosmic microwave background (CMB) [5–9].
The source behind the expansion of the universe is a mysterious force called dark energy (DE) and
its nature is still ambiguous [10–13]. The current Planck data shows that DE accounts for 68.3% of
the total energy contents of the universe. The first candidate for describing the DE phenomenon
is the cosmological constant but it has fine tuning and cosmic coincidence problems. Due to this
reason, different DE models as well as theories of gravity with modifications have been suggested.
The dynamical DE models include a family of Chaplygin gas as well as holographic DE models, scalar
field models such as K-essence, phantom, quintessence, ghost, etc. [14–26].

One of the DE model is the holographic DE (HDE) model which becomes a favorable technique
now-a-days to study the DE mystery. This model is established in the framework of holographic
principle which corresponds to the area instead of volume for the scaling of the number of degrees
of freedom of a system. This model is an interesting effort in exploring the nature of DE in the
framework of quantum gravity. In addition, the HDE model gives the relationship between the energy
density of quantum fields in vacuum (as the DE candidate) to the cutoffs (infrared and ultraviolet).
Cohen et al. [27] provided a very useful result about the expression of the HDE model density which
is based on the vacuum energy of the system. The black hole mass should not be overcome by
the maximum amount of the vacuum energy. Taking into account the nature of spacetime along
with long term gravity, various entropy formalisms have been used to discuss the gravitational
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and cosmological setups [28–33]. Recently, some new HDE models are proposed, like Tsallis HDE
(THDE) [31], Rényi HDE model (RHDE) [32] and Sharma-Mittal HDE (SMHDE) [33].

The examples of theories with modification setups include f (R), f (T), f (R, T ), f (G) etc., where R
shows the Ricci scalar representing the curvature, T means the torsion scalar, T is the trace of the
energy-momentum tensor and G goes as the invariant of Gauss–Bonnet [34–45]. For recent reviews in
terms of DE problems including modified gravity theories, see, for instance [46–52]. The Einstein-Aether
theory is one of the modified theories of gravity [53,54] and accelerated expansion phenomenon of
the universe has also been investigated in this theory [55]. Meng et al. have also discussed the
current cosmic acceleration through DE models in this gravity [56,57]. Recently, Pasqua et al. [58] have
made versatile studies on cosmic acceleration through various cosmological models in the presence of
HDE models.

In the present work, we will develop the Einstein-Aether gravity models in the presence of
modified HDE models and well-known scale factors. For these models of modified gravity, we will
extract various cosmological parameters. In the next section, we will give a brief review of the
Einstein-Aether theory. In Section 3, we present the basic cosmological parameters as well as
well-known scale factors. We will discuss the cosmological parameters for modfied HDE models in
Sections 4–6. In the last section, we will summarize our results.

2. Einstein-Aether Theory

As our universe is full with many of the natural occurring phenomenons. One of them is
transfer of light from one place to another and second is how gravity acts. To explain these kinds
of phenomenons, many of the physicists were used the concept of Aether in many of the theories.
In modern physics, Aether indicates a physical medium that is spread homogeneously at each point
of the universe. Hence, it was considered that it is a medium in space that helps light to travel in
a vacuum. According to this concept, a particular static frame reference is provided by Aether and
everything has absolute relative velocity in this frame. That is suitable for Newtonian dynamics
extremely well. But, when Einstein performed different experiments on optics in his theory of relativity,
then Einstein rejected this ambiguity. When CMB was introduced, many of the people took it a modern
form of Aether. Gasperini has popularized Einstein-Aether theories [59]. This theory is said to be
covariant modification of general relativity in which unit time like vector field(aether) breaks the
Lorentz Invariance (LI) to examine the gravitational and cosmological effects of dynamical preferred
frame [53]. Following is the action of Einstein-Aether theory [60,61].

S =
∫

d4x
√
−g
(

R
4πG

+ LEA + Lm

)
, (1)

where LEA represents the Lagrangian density for the vector field and Lm indicates Lagrangian density
of matter field. Further, g, R and G indicate determinant of the metric tensor gμν, Ricci scalar and
gravitational constant respectively. The Lagrangian density for vector field can be written as

LEA =
M2

16πG
F(K) +

1
16πG

λ(Aa Aa + 1), (2)

K = M−2Kab
cd∇a Ac∇b Adc (3)

Kab
cd = c1gabgcd + c2δa

c δb
d + c3δa

dδb
c , a, b = 0, 1, 2, 3. (4)

where λ represents a Lagrangian multiplier, dimensionless constants are denoted by ci, M referred as
coupling constant parameter and Aa is a tensor of rank one, that is a vector. The function F(K) is any
arbitrary function of K. We obtain the Einstein field equations from Equation (1) for the Einstein-Aether
theory as follows
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Gab = TEA
ab + 8πGTm

ab, (5)

∇a

(
dF
dK

Ja
b

)
= 2λAb, (6)

where Ja
b = −2Kad

bc∇d Ac, TEA
ab shows energy momentum-tensor for vector field and Tm

ab indicates
energy-momentum tensor for mater field. These tensors are given as

Tm
ab = (ρ + p)uaub + pgab, (7)

TEA
ab =

1
2
∇d

(
(Jd

a Ab − Jd
a Ab − J(ab)Ad)

dF
dK

)
− Y(ab)

dF
dK

+
1
2

gab M2F + λAa Ab,
(8)

where p and ρ represent energy density and pressure of the matter respectively. Furthermore,
ua expresses the four-velocity vector of the fluid and given as ua = (1, 0, 0, 0) and Aa is time-like
unitary vector and is defined as Aa = (1, 0, 0, 0). Moreover Yab is defined as

Yab = c1

(
(∇d Aa)(∇d Ab)− (∇a Ad)(∇a Ad)

)
, (9)

where indices (a b) show the symmetry.
The Friedmann equations modified by the Einstein-Aether gravity are given as follows

ε

(
F

2K
− dF

dK

)
H2 +

(
H2 +

k
a2

)
=

(
8πG

3

)
ρ, (10)

ε
d
dt

(
H

dF
dK

)
+

(
− 2Ḣ +

2k
a2

)
= 8πG(p + ρ). (11)

Here K becomes K = 3εH2

M2 , where ε is a constant parameter. The energy density of Einstein-Aether
theory is denoted by ρEA and called the effective energy density, while the effective pressure in the
Einstein-Aether gravity is given by pEA. So, we can rewrite Equations (10) and (11) as(

H2 +
k
a2

)
=

(
8πG

3

)
ρ +

1
3

ρEA, (12)(
− 2Ḣ +

2k
a2

)
= 8πG(p + ρ) + (ρEA + pEA), (13)

where

ρEA = 3εH2
(

dF
dK

− F
2K

)
, (14)

pEA = −3εH2
(

dF
dK

− F
2K

)
− ε

(
Ḣ

dF
dK

+ H
dḞ
dK

)
. (15)

= ρEA − ρ̇EA
3H

. (16)

The equation of state (EoS) parameter for the Einstein-Aether can be obtained by using Equations (14)
and (15), and it is given by

ωEA =
pEA
ρEA

= −1 − Ḣ dF
dK + H dḞ

dK

3H2( dF
dK − F

2K )
. (17)
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3. Cosmological Parameters

To understand the geometry of the universe, the following are some basic cosmological parameters.

3.1. Equation of State Parameter

In order to categorize the different phases of the evolving universe, the EoS parameter is widely
used. In particular, the decelerated and accelerated phases contain DE, DM, radiation dominated eras.
This parameter is defined in terms of energy density ρ and pressure p as ω = p

ρ .

• In the decelerated phase, the radiation era 0 < ω < 1
3 and cold DM era ω = 0 are included.

• The accelerated phase of the universe has following eras: ω = −1 ⇒ cosmological constant,
−1 < ω < −1

3 ⇒ quintessence and ω < −1 ⇒ phantom era of the universe.

3.2. Squared Speed of Sound

To examine the behavior of DE models, there is another parameter which is known as squared
speed of sound. It is denoted by v2

s and is calculated by the following formula

v2
s =

ṗ
ρ̇

. (18)

The stability of the model can be checked by this relation. If its graph is showing negative values
then we may say that model is unstable and in case of non-negative values of the graph, it represents
the stable behavior of the model.

3.3. ω-ω′ Plane

There are different DE models which have different properties. To examine their dynamical
behavior, we use ω-ω′ plane, where prime denotes the derivative with respect to ln a and subscript
Λ indicates DE scenario. This method was developed by Caldwell and Linder [62] and divides
ω-ω′ plane into two parts. One is the freezing part in which evolutionary parameter gives negative
behavior for negative EoS parameter, i.e., ω′ < 0, ω < 0, while for positive behavior of evolutionary
parameter corresponding to negative EoS parameter yields the thawing part (ω′ > 0, ω < 0) of the
evolving universe.

3.4. Scale Factor

The scale factor is the measure of how much the universe has expanded since a given time. It is
represented by a(t). Since the latest cosmic observations have shown that the universe is accelerating
so a(t) > 0. As Einstein-Aether is one of the modified theory which may produce the accelerated
expansion of the universe, by using this theory, we can reconstruct various well-known DE models.
In order to do this, we take some modified HDE models such as THDE, RHDE and SMHDE models.
Since F(K) is a function that the Einstein-Aether theory contains, which can be determined by
comparing the densities with the above DE models. For this purpose, we use some well-known
forms of the scale factor, a(t). We consider two forms of scale factors a(t) in terms of power and
exponential terms. These are

(i) Power-law form: a(t) = a0tm, m > 0, where a0 is a constant which indicates the value of scale
factor at present-day [63,64]. From this scale factor, we get H, Ḣ, K as follows

H =
m
t

, Ḣ = −m
t2 , K =

3εm2

M2t2 . (19)
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(ii) Exponential form: a(t) = eαtθ
where α is a positive constant and θ lies between 0 and 1. This scale

factor gives

H = αθtθ−1, Ḣ = αθ(θ − 1)tθ−2, K =
3εα2θ2t2(θ−1)

M2 . (20)

4. Reconstruction from the Tsallis Holographic Dark Energy Model

The energy density of THDE model is given by [31]

ρD = BL2δ−4, (21)

where B is an unknown parameter. Taking into account Hubble radius as IR cutoff L, that is L = 1
H ,

we have
ρD = BH−2δ+4. (22)

In order to construct a DE model in the framework of Einstein-Aether gravity with THDE model,
we compare the densities of both models, (i.e., ρEA = ρD). This yields

dF
dK

− F
2K

=
B
3ε

H−2δ+2, (23)

which results the following form

F(K) =
2BM−2δ+2K−δ+2

(−2δ + 3)(3ε)−δ+2 + C1
√

K. (24)

Power-law form of scale factor:

Using the expression of F(K) along with Equation (19) in (14), we obtain the energy density and
pressure as

ρEA =

m2
(

3δ2BK
5
2−δ M2−2δεδ − 9ε2C1

)
6K

3
2 t2ε

,

pEA = m
(

4BM−2δεδ

(
− 3δK1−δ M2(4 − 9m − 2δ + 6mδ)− 12M2(−2

+ δ)(−1 + δ)

(
m2ε

M2t2

)1−δ)
(−3 + 2δ)−1 +

(
9(−1 + 6m)ε2

K
3
2

+
3
√

3
m4

× M4t4

√
m2ε

M2t2

)
C1

)
(36t2ε)−1.

(25)

Using these expressions of energy density and pressure, we find the values of some cosmological
parameters in the following. The EoS parameter takes the following form

ωEA = K
3
2

(
4BM−2δεδ

(
− 3δK1−δ M2(4 − 9m − 2δ + 6mδ)− 12M2(−2

+ δ)(−1 + δ)

(
m2ε

M2t2

)1−δ)
(−3 + 2δ)1 +

(
9(−1 + 6m)ε2

K
3
2

+
3
√

3M4

m4

× t4

√
m2ε

M2t2

)
C1

)(
6m
(

23δBK
5
2−δ M2−2δεδ − 9ε2C1

))−1

.

(26)

The derivative of EoS parameter with respect to ln a is given by
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ω′
EA = K

3
2 t
(96Bm2M−2δ(1 − δ)(−2 + δ)(−1 + δ)ε1+δ

(
m2ε
M2t2

)−δ

t3(−3 + 2δ)
+

(
− 3

√
3

m2

× M2tε√
m2ε
M2t2

+
12
√

3M4t3
√

m2ε
M2t2

m4

)
C1

)(
6m2

(
23δBK

5
2−δ M2−2δεδ − 9ε2C1

))−1

.

(27)

We plot the EoS parameter versus z using the relation t = 1
(1+z)

1
m

taking values of constants as

B = 5, M = 5, δ = 1.8, ε = 1 and C1 = 2. We plot ωEA for three different values of scale factor
parameter m as m = 2, 3, 4 as shown in Figure 1. All the three trajectories represent the phantom
behavior of the universe related to the redshift parameter. In Figure 2, we plot ω′

EA − ωEA plane
taking same values of the parameters for −1 ≤ z ≤ 1. For m = 2 and 3, the evolving EoS parameter
shows negative behavior with respect to negative EoS parameter which indicates the freezing region
of the universe. The trajectory of ω′

EA for m = 4 represents the positive behavior for negative EoS
parameter and expresses the evolving universe in thawing region of the universe.
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Figure 1. Plot of ωEA versus z taking power-law scale factor for the Tsallis holographic dark energy
(THDE) model.
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Figure 2. Plot of ω′
EA − ωEA taking the power-law scale factor for the THDE model.

Also the squared speed of sound in the underlying scenario becomes
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v2
s =

((
m2ε

M2t2

)−δ(
8Bm4εδ

(
− 12K

3
2+δm2(−2 + δ)2(−1 + δ)ε + 3δK

5
2 M2

× t2(4 − 9m − 2δ + 6mδ)

(
m2ε

M2t2

)δ)
+ 3Kδ M2δt2(−3 + 2δ)

(
m2ε

M2t2

)δ

×
(

6(1 − 6m)m4ε2 +
√

3K
3
2 M4t4

√
m2ε

M2t2

)
C1

))
/
(

12m5t2(−3 + 2δ)

×
(
− 23δBK

5
2 M2εδ + 9Kδ M2δε2C1

))
.

(28)

Figure 3 shows the plot of v2
s versus z to check the behavior of the Einstein-Aether model for

the THDE and power-law scale factor for same values of parameters. The trajectories represent the
negative behavior of the model which indicated the instability of the model.
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Figure 3. Plot of v2
s versus z taking power-law scale factor for the THDE model.

Exponential form of scale factor:

Following the same steps for the exponential form of the scale factor, we get energy density and
pressure as

ρEA =

t−2+2θα2θ2
(

23δBK
5
2−δ M2−2δεδ − 9ε2C1

)
6K

3
2 ε

,

pEA =
1

12ε
t−2+θαθ

(2tθαθ

(
− 23δBK

5
2−δ M2−2δεδ + 9ε2C1

)
K

3
2

− ε2(−1

+ θ)

(
8BM−2δ(−2 + δ)ε−2+δ

(
3δK1−δ M2 − 6M2(−1 + δ)

(
t−2+2θ

M2

× α2εθ2
)1−δ)(

3(−3 + 2δ)

)−1

+

(
− 3

K
3
2
+

√
t−2+2θα2εθ2

M2

α4ε2θ4

√
3M4

× t4−4θ

)
C1

))
.

(29)

Now, by using the above density and pressure, we obtain the EoS parameter and its derivative for
the Einstein-Aether gravity as follows
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ωEA =

(
K

3
2 t−θ

(2tθαθ

(
− 23δBK

5
2−δ M2−2δεδ + 9ε2C1

)
K

3
2

− ε2(−1 + θ)

×
(

8BM−2δ(−2 + δ)ε−2+δ

(
3δK1−δ M2 − 6M2(−1 + δ)

(
t−2+2θα2

M2

× εθ2
)1−δ)(

3(−3 + 2δ)

)−1

+

(
− 3

K
3
2
+

√
3M4t4−4θ

√
t−2+2θ α2εθ2

M2

α4ε2θ4

)

× C1

)))
/
(

2αθ

(
23δBK

5
2−δ M2−2δεδ − 9ε2C1

))
,

ω′
EA =

1

6α2θ

(
23δBK

5
2−δ M2−2δεδ − 9ε2C1

)K
3
2 t−2(1+θ)(−1 + θ)

(
8BK−δ

× M−2δ(−2 + δ)εδ

(
t−2+2θα2εθ2

M2

)−δ(
− 6Kδt2θα2(−1 + δ)ε(2 + 2δ

× (−1 + θ)− θ)θ + 3δKM2t2
(

t−2+2θα2εθ2

M2

)δ)(
− 3 + 2δ

)−1

− 3

× t2−4θ

(
3t4θα4ε2θ5 +

√
3K

3
2 M4t4(3 − 4θ)

√
t−2+2θα2εθ2

M2

)
C1

(
K

3
2 α4

× θ5
)−1)

.

The squared speed of sound for the second form of the scale factor is given by

v2
s = K

3
2 t−θ

(
8BM−2δεδ

(
− 6M2(−2 + δ)(−1 + δ)(4 + 2δ(−1 + θ)− 3θ)

×
(

t−2+2θα2εθ2

M2

)1−δ

− 3δK1−δ M2
(
(−2 + δ)(−2 + θ) + 3tθα(−3 + 2

× δ)θ

))
(−3 + 2δ)−1 + 3t−4θ

(
3t4θα4ε2(−2 + θ)θ4 + 36t5θα5ε2θ5 +

√
3

× K
3
2 M4t4

√
t−2+2θα2εθ2

M2 (−1 + 2θ)

)
C1(K

3
2 α4θ4)−1

)(
12αθ

(
23δB

× K
5
2−δ M2−2δεδ − 9ε2C1

))
.

Figure 4 represents the graph of the EoS parameter versus z for the exponential form of the scale
factor taking B = 5 = M, δ = 1.8, ε = 1, C1 = −0.5, θ = 0.5 and scale factor parameter α = 2, 3, 4.
This parameter represents the phantom behavior of the universe for α = 3 and after a transition from
quintessence to phantom era for α = 2. For α = 4, the trajectory of the EoS parameter corresponds
to the Λ-CDM model ωEA = −1. In Figure 5, the graph is plotted between ω′

EA and ωEA. The graph
represents initially freezing region and then indicates the thawing region of the evolving universe.
As we increase the value of α, the trajectories indicate the thawing region only. However, the graph of
v2

s versus z as shown in Figure 6 shows the unstable behavior.
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Figure 4. Plot of ωEA versus z, taking an exponential scale factor for the THDE model.
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Figure 5. Plot of ω′
EA − ωEA, taking an exponential scale factor for the THDE model.
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Figure 6. Plot of v2
s versus z, taking an exponential scale factor for the THDE model.

5. Reconstruction from Rényi Holographic Dark Energy Model

The energy density of the RHDE model is [33]

ρD =
3C2L−2

8π

(
1 + δπ

H2

) . (30)

142



Symmetry 2019, 11, 509

For the Hubble horizon, it takes the form

ρD =
3C2H2

8π

(
1 + δπ

H2

) . (31)

Now we compare the Einstein-Aether model energy density with the RHDE model density
(i.e., ρEA = ρD) in order to get the reconstructed equation,

dF
dK

− F
2K

=
C2

8πε(1 + δπ
H2 )

. (32)

The solution of this equation is given by

F(K) =
C2

4πMε

(
KM −

√
3Kδεπ arctan

(
M
√

K√
3επδ

))
+ C2

√
K. (33)

Power-law form of the scale factor:

Inserting all the corresponding values into Equations (14) and (15), we get density and pressure
of the Einstein-Aether gravity model as follows

ρEA =
1

8πt2 3C2m2
(

1 − 3
√

δεπ
√

Kδεπ
√

K
(

KM2 + 3δεπ

)).

pEA =
1

24πt5 C2m
(

9mt3
(
− 1 +

3
√

δεπ
√

Kδεπ
√

K
(

KM2 + 3δεπ

))− 1
M4 ε

(
3M3

× t3
(

M
(
− 2 +

3
√

δεπ
√

Kδεπ
√

K
(

KM2 + 3δεπ

))+

ArcTan
( √

KM√
3
√

δεπ

)
K

√
3

×
√

Kδεπ − C2√
K

)
(ε)−1 +

(
m2
(
− 3m2tδ2ε2π2

(
m2 − t2δπ

)
− 3

× mδ3/2ε2π
3
2

(
m2 + t2δπ

)2

ArcTan
(

m
t
√

δ
√

π

)
+
√

3Mt
√

δεπmε

×
√

δπ

M2t2

(
m2 + t2δπ

)2

C2

))
/
((

m2ε

M2t2

)3/2√
δεπ

√
m2δε2π

M2t2

(
m2

+ t2δπ

)2)))
.

In this case, the EoS parameter takes the form
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ωEA =

(
9mt3

(
− 1 +

3
√

δεπ
√

Kδεπ
√

K
(

KM2 + 3δεπ

))− 1
M4 ε

(
3M3t3

(
M
(
− 2

+
3
√

δεπ
√

Kδεπ
√

K
(

KM2 + 3δεπ

))+

√
3
√

KδεπArcTan
( √

KM√
3
√

δεπ

)
K

− C2√
K

)

× (ε)−1 +

(
m2
(
− 3m2tδ2ε2π2

(
m2 − t2δπ

)
− 3mδ

3
2 ε2π

3
2

(
m2 + t2

× δπ

)2

ArcTan
(

m
t
√

δ
√

π

)
+
√

3Mt
√

δεπ

√
m2δε2π

M2t2

(
m2 + t2δπ

)2

× C2

))
/
((

m2ε

M2t2

) 3
2 √

δεπ

√
m2δε2π

M2t2

(
m2 + t2δπ

)2)))
/
(

9t3
(

m

− 3m
√

δεπ
√

Kδεπ
√

K
(

KM2 + 3δεπ

))),

and ω′
EA is given as follows

ω′
EA = 3

(
6 −

4
√

m2δε2π
M2t2√

m2ε
M2t2

√
δεπ

+ m
(
− 9 +

27
√

δεπ
√

Kδεπ
√

K
(

KM2 + 3δεπ

))+
√

δεπ

×
(
− 9

√
Kδεπ

√
K
(

KM2 + 3δεπ

) +

4m2
√

m2ε
M2t2

(
m4 + 4m2t2δπ + t4δ2π2

)
√

m2δε2π
M2t2

(
m2 + t2δπ

)3

)

+

4t
√

δ
√

π
√

m2δε2π
M2t2 ArcTan

(
m

t
√

δ
√

π

)
m
√

m2ε
M2t2

√
δεπ

−
3
√

3
√

KδεπArcTan
( √

KM√
3
√

δεπ

)
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)

+

(
9 − 4

√
3
√

K√
m2ε

M2t2

)
C2

√
KM

(
9m
(

m − 3m
√

δεπ
√

Kδεπ
√

K
(

KM2 + 3δεπ

)))−1

.

The expression for squared speed of sound turns out as
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v2
s = −3

(
− 4 +

√
m2δε2π

M2t2√
m2ε
M2t2

√
δεπ

+ m
(

6 − 18
√

δεπ
√

Kδεπ
√

K
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√
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√
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√
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(

KM2 + 3δεπ
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m2
√

m2ε
M2t2

(
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√
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√

δ
√
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√
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m
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√

δ
√
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m
√
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√
δεπ

+

2
√

3
√

KδεπArcTan
( √

KM√
3
√

δεπ
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)

+

(
− 6 +

√
3
√

K√
m2ε

M2t2

)
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√
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(
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(

m − 3m
√

δεπ
√

Kδεπ
√
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(

KM2 + 3δεπ

)))−1

.

The plot of the EoS parameter is shown in Figure 7 with respect to z. All the trajectories of the EoS
parameter represent the quintessence phase of the universe. Figure 8 shows the graph of ωEA − ω′

EA
plane for same range of z. The trajectories of ω′

EA describe the negative behavior for all ωEA < 0 give
the freezing region of the universe. To check the stability of the underlying model, Figure 9 shows the
unstable behavior of the model. However, for m = 2, we get some stable points for z < −0.475.
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Figure 7. Plot of ωEA versus z, taking a power-law scale factor for the Rényi holographic dark matter
(RHDE) model.
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Figure 8. Plot of ω′
EA − ωEA, taking a power-law scale factor for the RHDE model.
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Figure 9. Plot of v2
s versus z, taking a power-law scale factor for the RHDE model.

Exponential form of scale factor:

Taking into account second scale factor Equation (15) along with F(K), we get the following
energy density and pressure

ρEA =

3C2t−2+2θα2θ2
(
− 3

√
δεπ

√
Kδεπ +

√
K
(

KM2 + 3δεπ

))

8
√
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(
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) (34)
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√
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√
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√
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√
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√
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( √
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√
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(35)

The EoS parameter is obtained from the above energy density and pressure. This parameter with
its derivative are given by
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√

Kδεπ
√

K
(

KM2 + 3δεπ

))

− 1
M2 ε(−1 + θ)

(
3Mt

(
M
(

2 − 3
√

δεπ
√

Kδεπ
√

K
(

KM2 + 3δεπ

))−
√

3
√

Kδεπ

×
ArcTan

( √
KM√

3
√

δεπ

)
K + C2√

K

)
(ε)−1 +

(
δπ

(
3tθαδ

3
2 ε2θπ

3
2

(
t1+θα

√
δ

× θ
√

π

(
t2θα2θ2 − t2δπ

)
+

(
t2θα2θ2 + t2δπ

)2

ArcTan
(

t−1+θαθ√
δ
√

π

))

−
√

3Mt
√

δεπ

√
t−2+2θα2δε2θ2π

M2

(
t2θα2θ2 + t2δπ

)2

C2

))
/
(

αθ
√

ε

×
√

t−2+2θ

M2 (δεπ)
3
2

√
t−2+2θα2δε2θ2π

M2

(
t2θα2θ2 + t2δπ

)2))))
/
(

9

× αθ

(
− 3

√
δεπ

√
Kδεπ +

√
K
(

KM2 + 3δεπ

)))
.

(36)
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√
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(37)

The correspond expression for v2
s is given by
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(38)

Figure 10 represents the graph of the EoS parameter versus z for the RHDE model taking
an exponential form of the scale factor. For α = 2, initially the trajectory expresses the transition
from decelerated phase to accelerated phase and then crosses the phantom divide line and gives the
phantom phase of the universe. For higher values of the α, that is for α = 3, 4, the trajectories of the EoS
parameter represents the quintessence phase. In Figure 11, we plot the graph of evolution parameter of
EoS versus EoS parameter which gives the freezing region of the universe. Figure 12 shows the graph
of v2

s for stability analysis of the model. Initially the graph gives the stability and then for decreasing z,
the model becomes unstable. As we increase the value of α, the trajectories give more stable points.

�0.5 �0.4 �0.3 �0.2 �0.1 0.0
�2.0

�1.5

�1.0

�0.5

0.0

0.5

1.0

z

Ω
E

A

Α�4

Α�3

Α�2

Figure 10. Plot of ωEA versus z, taking an exponential scale factor for the RHDE model.
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Figure 11. Plot of ω′
EA − ωEA taking an exponential scale factor for the RHDE model.
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Figure 12. Plot of v2
s versus z, taking an exponential scale factor for the RHDE model.

6. Reconstruction from the Sharma-Mittal Holographic Dark Energy Model

Sharma-Mittal introduced two parametric entropy and defined it as [32]

SSM =
1

1 − r

(
(Σn

i=1P1−δ
i )1−r/δ − 1

)
, (39)

where r is a new free parameter. The expression of the SMHDE model for the Hubble horizon is given by

ρD =
3εH4

8πR

(
(1 +

δπ

H2 )
R
δ − 1

)
. (40)

By comparing the energy densities of the SMHDE model and Einstein-Aether gravity model, we find

dF
dK

− F
2K

=
KM2

24επR

((
1 +

3επδ

KM2

) R
δ

− 1
)

, (41)

which leads us to the following solution

F(K) =
K2M2

(
− 1 + 2F1(− 3

2 ,− R
δ , −1

2 , −3πδε
KM2 )

)
36πRε

+ C3
√

K. (42)

Power-law form of scale factor:
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For this scale factor, we obtain
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The cosmological parameters are given by
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(47)

We plot the EoS parameter for the SMHDE model with respect to the redshift parameter as shown
in Figure 13 for the power-law scale factor. For m = 3 and 4, the trajectories represent the transition
from quintessence to phantom phase while m = 2 indicates the phantom era throughout for z. The plot
of this parameter with its evolution parameter is given in Figure 14, which shows the freezing region
of the evolving universe. However, for higher values of m, we may get thawing region (ω′

EA > 0).
Figure 15 gives the graph of squared speed of sound versus redshift. The trajectory for m = 2 shows
the stability of the model as redshift parameter decreases while other trajectories describe the unstable
behavior of the model.
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Figure 13. Plot of ωEA versus z, taking a power-law scale factor for the Sharma-Mittal holographic
dark matter (SMHDE) model.
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Figure 14. Plot of ω′
EA − ωEA, taking a power-law scale factor for the SMHDE model.
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Figure 15. Plot of v2
s versus z, taking a power-law scale factor for the SMHDE model.

Exponential form of scale factor:

Following the same steps, we obtain the following expressions for energy density, pressure and
parameters for exponential scale factor. These are:
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(52)

For the exponential scale factor for the SMHDE model, the plot of the EoS parameter in Figure 16
represents the phantom behavior initially, but converges to the cosmological constant behavior for
α = 2, 3, as z decreases. For α = 4, the EoS parameter gives the phantom behavior. Figure 17 represents
the graph of the ω′

EA − ωEA plane, which shows the positive behavior of ω′
EA versus negative ωEA

expressing thawing region of the universe. The squared speed of sound graph gives unstable behavior
of the SMHDE model in the framework of the Einstein-Aether theory of gravity as shown in Figure 18.
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Figure 16. Plot of ωEA versus z taking exponential scale factor for SMHDE model.
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Figure 17. Plot of ω′
EA − ωEA taking exponential scale factor for SMHDE model.
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Figure 18. Plot of v2
s versus z taking exponential scale factor for SMHDE model.

7. Summary

In this work, we have discussed Einstein-Aether gravity and utilized its effective density and
pressure. We have developed the Einstein-Aether models by using some holographic dark energy
models. In the presence of a free function F(K), we have treated the affective density and pressure as
DE. From the modified HDE models such as the THDE, RHDE and SMHDE models, we have formed
the unknown function F(K) for the Einstein-Aether theory by considering the power-law form and
exponential forms of scale factor. We have discussed some cosmological parameters, like the EoS
parameter with its evolutionary parameter and squared speed of sound to check the stability of the
reconstructed models for this theory.

The remaining results have been summarized as follows:
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EoS parameter for power-law scale factor:

• THDE ⇒ phantom behavior,
• RHDE ⇒ quintessence phase,
• SMHDE ⇒ transition from quintessence to phantom phase for m = 3, 4, phantom era for m = 2.

EoS parameter for exponential scale factor:

• THDE ⇒ transition from quintessence to phantom era for α = 2, phantom behavior for α = 3,
ΛCDM model for α = 4,

• RHDE ⇒ phantom phase for α = 2, quintessence phase for α = 3, 4
• SMHDE ⇒ cosmological constant behavior for α = 2, 3, phantom behavior for m = 4.

ω′-ω plane for power-law scale factor:

• THDE ⇒ freezing region for m = 2, 3, thawing region for m = 4,
• RHDE ⇒ freezing region,
• SMHDE ⇒ freezing region.

ω′-ω plane for exponential scale factor:

• THDE ⇒ freezing region to thawing region,
• RHDE ⇒ freezing region,
• SMHDE ⇒ thawing region.

Squared speed of sound for power-law scale factor:

• THDE ⇒ unstable,
• RHDE ⇒ unstable,
• SMHDE ⇒ stable for m = 2, unstable for m = 3, 4.

Squared speed of sound for exponential scale factor:

• THDE ⇒ unstable,
• RHDE ⇒ stability for higher values and instability for lower values,
• SMHDE ⇒ unstable.

It is mentioned here that for m = 2 for the power-law form of the scale factor in the case of the
SMHDE model, we obtain a phantom region with stable behavior in the freezing region which leads to
the most favorable result within the current cosmic expansion scenario.
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Abstract: We explore the cosmic evolution of the accelerating universe in the framework of dynamical
Chern–Simons modified gravity in an interacting scenario by taking the flat homogeneous and
isotropic model. For this purpose, we take some parametrizations of the equation of state parameter.
This parametrization may be a Taylor series extension in the redshift, a Taylor series extension
in the scale factor or any other general parametrization of ω. We analyze the interaction term
which calculates the action of interaction between dark matter and dark energy. We explore various
cosmological parameters such as deceleration parameter, squared speed of sound, Om-diagnostic
and statefinder via graphical behavior.

Keywords: dynamical Chern–Simons modified gravity; parametrizations; cosmological parameters

PACS: 95.36.+d; 98.80.-k

1. Introduction

It is believed that in present day cosmology, one of the most important discoveries is the
acceleration of the cosmic expansion [1–10]. It is observed that the universe expands with repulsive
force and is not slowing down under normal gravity. This unknown force, called dark energy (DE),
and is responsible for current cosmic acceleration. In physical cosmology and astronomy, DE is
a mysterious procedure of energy which is assumed to pervade all of space which tends to blast
the extension of the universe. However, the nature of DE is still unknown which requires further
attention [11] (for recent reviews on the so-called geometric DE, i.e., modified gravity theories to
explain the late-time cosmic acceleration, see, for example [12–17]). In the standard Λ-cold dark matter
(CDM) model of cosmology, the whole mass energy of the cosmos includes 4.9% of usual matter, 26.8%
of DM and 68.3% of a mysterious form of energy recognized as dark energy. In astrophysics, DM is
an unknown form of matter which appears only participating in gravitational interaction, but does
not emit nor absorb light [18]. The nature of DM is still unknown, but its existence is proved by
astrophysical observations [19]. The majority of DM is thought to be non-baryonic in nature [20].

In order to explain DE, a large number of models have been suggested such as quintessence [21],
quintom [22–24], Chaplygin gas with its modified model [25–27], K-essence [28–30], new agegraphic
DE [31,32], holographic DE model [33–35], pilgrim DE model [36–38], Tsallis holographic DE
(THDE) [39]. Among all of these, the simplest is the cosmological constant model and this model
is compatible with observations [1]. In the cosmological framework, the equation of state (EoS)
parameter, ω, gives the relation among energy density and pressure [40]. This is a dimensionless
parameter and descrbes the phases of the cosmos [41]. The EoS parameter might be used in
Friedmann–Robertson–Walker (FRW)’ equations to define the evolution of an isotropic universe

Symmetry 2019, 11, 1009; doi:10.3390/sym11081009 www.mdpi.com/journal/symmetry159
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filled with a perfect fluid. The EoS parameter governs not only the gravitational properties of DE
but also its evolution. The EoS parameter may be a constant or a time dependent function [1].
It is observed that this parameter gives constant ranges by using various observational schemes.
For deviating DE, a parametrized formation of ω is supposed. Parametrization may be a Taylor series
extension in the redshift, a Taylor series extension in the scale factor or any other parametrization
of ω [42–56]. Using different considerations of parametrization, the cosmological parameters can be
constrained [57–59].

On the other hand, different modified theories of gravity have been proposed in order to explain
cosmic acceleration. The dynamical Chern–Simons modified gravity has been recently proposed [60]
which is motivated from string theory and loop quantum gravity [61,62]. In this gravity, Jawad and
Rani [63] investigated various cosmological parameters and planes for pilgrim DE models in that
FRW universe. Jawad and Sohail [62] explored different cosmological planes as well as parameters
for modified DE. Till now, various works have been done on the investigation of cosmic expansion
scenario with different cosmological parameters [64–71]. In the present work, we use the constructed
models in the frame work of dynamical Chern–Simons modified gravity and investigate the different
cosmological parameters such as the deceleration parameter, squared speed of sound, state finder
parameters and Om-diagnostic.

This paper is organized as follows: in the next section, we provide the basic cosmological
scenario of dynamical Chern–Simons modified gravity and construct the field equations in for flat
FRW spacetime. We take interaction scenario for constitutes DE and DM with the help of conservation
equations. The holographic DE (HDE) density is used as DE model with Hubble horizon as IR cut-off.
In Section 3, we provide the parametrization model of EoS parameter and construct the setup to discuss
the cosmic evolution of the universe. Also, we analyze the interaction term for the corresponding
parametrizations. In Section 4, we discuss the cosmological parameters such as deceleration, squared
speed of sound, Om-diagnostic and statefinder. Last section comprises the results.

2. Dynamical Chern–Simons Modified Gravity

In this section, we describe the dynamical Chern–Simons modified gravity by the following action

S =
1

16πG

∫
V

d4x[
√
−gR +

l
4
∗RρσμνRρσμνθ − 1

2
gμν∇μθ∇νθ + V(θ)] + Smat, (1)

here R is the Ricci scalar, ∗RρσμνRρσμν is the topological invariant called the pontryagin term, l is the
coupling constant, θ is the dynamical variable, Smat is the action of matter and V(θ) is the potential.
Now in case of string theory, we take V(θ) = 0. The variation of Equation (1) corresponding to metric
gμν and scalar field θ, respectively, give the following field equations

Gμν + lCμν = 8πGTμν, (2)

gμν∇μ∇νθ = − l
64π

∗RρσμνRρσμν, (3)

where Gμν is known as Einstein tensor and Cμν appears as Cotton tensor which is defined as

Cμν = − 1
2
√−g

((∇ρθ)ε
(ρβτ

μ
∇τ

Rν
β) + (∇σ∇ρθ)∗Rρ(μν)σ. (4)

The energy–momentum tensor related to scalar field and matter are given by

T̂θ
μν = ∇μθ∇νθ − 1

2
gμν∇ρθ∇ρθ, (5)

Tμν = (ρ + p)uμuν + pgμν, (6)
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here T̂θ
μν shows the scalar field contribution and Tμν represents the matter contribution while p and ρ

indicate the pressure and energy density respectively. Also, uμ = (1, 0, 0, 0) is the four velocity. In case
of flat FRW universe, first Friedmann equation for dynamical Chern–Simons modified gravity becomes

H2 =
1
3
(ρm + ρd) +

1
6

θ̇2, (7)

where H = ȧ
a represents the Hubble parameter, a is the scale factor and dot indicates the derivative

with respect to cosmic time, ρ = ρm + ρd is the effective density and 8πG = 1. We assume pm = 0 then
for ordinary matter, the conservation equations are given as

ρ̇m + 3Hρm = 0, (8)

ρ̇d + 3H(ρd + pd) = 0. (9)

For FRW universe the pontryagin term vanishes, so the scalar field in Equation (3) reduces to the
following form

gμν∇μ∇νθ = gμν(∂ν∂μθ) = 0. (10)

By taking θ = θ(t), we get the following equation

θ̈ + 3Hθ̇ = 0. (11)

The solution of this equation for θ̇ is θ̇ = ba−3 where b is an integration constant. Using this
solution in Equation (6), we have

H2 =
1
3
(ρm + ρd) +

1
6

b2a−6. (12)

Taking into account the equation of continuity Equation (8), Equation (12) takes the form

−2Ḣ − 3H2 − 1
6

b2a−6 = pd. (13)

Equation (12) can be re-written as

E2(z) =
1

3H2
0
(ρm + ρd) +

1
6H2

0
b2a−6, (14)

where E(z) = H
H0

is a normalized Hubble parameter, z is the redshift function which is defined as
1 + z = a0

a . Interaction is an idea of two way action that occur when two or more objects have effect on
each other. The continuity equations for energy densities are defined as

ρm
′ −

(
3

1 + z

)
ρm = − Q

H0E(z)(1 + z)
, (15)

ρd
′ − 3

(
1 + ωd
1 + z

)
ρd =

Q
HoE(z)(1 + z)

. (16)

Here, prime denotes the derivative with respect to the redshift and Q is the interaction term which
calculates the action of interaction between the DM and DE. Basically, Q tells about the rate of energy
exchange between DM and DE. When Q > 0, it means that energy is being converted from DE to DM.
For Q < 0, the energy is being converted from DM to DE [72]. In the preceding prospectus of DE,
HDE is one of the sensational attempts to analyze the nature of DE in the frame of quantum gravity.
The HDE is based on holographic principle which states that all information relevant to a physical
system inside a spatial region can be observed on its boundary instead of its volume. The relation
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of ultra-violet UV (Λ) and infra-red IR (L) is introduced by Cohen et al. [73] which plays a key
role in the construction of HDE model [74]. The relation is about the energy of vacuum of a system
with particular size whose maximal quantity should not be greater than the black hole mass of the
similar size. This can be indicated as L3ρd ≤ LM2

p, here M2
p = (8πG)−1 and L represents the reduced

Planck mass and IR cutoff respectively [75]. From the above inequalities, the HDE density takes the
following form

ρd = 3c2H2
0 E2(z), (17)

where c is the constant parameter of the dimensionless HDE and describes the expansion of universe
and it lies in the interval 0 < c2 < 1 and L is taken as Hubble horizon. By inserting Equations (15)–(17)
in (14) we get the following expression

ωd = (1 + z)
dE2(z)

3c2E2(z)dz
− b2(1 + z)6

6c2H2
0 E2(z)

− 1
c2 , (18)

after some calculation we get the following result

dE2(z)
dz

− (3 + 3c2ωd)

(
E2(z)
1 + z

)
=

b2(1 + z)5

2H2
0

. (19)

3. Parametrizations of Equation of State Parameter

Parametrization is a process of choosing different parameters and is used for the comparison of
two datasets. In cosmological context, the EoS parameter is the relation between energy density and
pressure and it helps to classify the accelerated and decelerated phases of the universe. At ω = 0,
this parameter corresponds to non-relativistic matter and involves the radiation era 0 < ω < 1

3 for
the accelerated phase of the universe. At ω < −1, ω = −1 and −1 < ω < − 1

3 it represents the
phantom, cosmological constant and quintessence eras respectively. A parametrized formation of ω is
assumed for deviating DE. We construct two different models; one with a constant EoS parameter and
other with a dark fluid in the existence of DM [1,76]. By using a function of redshift the variation of
EoS parameter can be estimated and many parametrizations have been suggested so far. We use the
following parametrizations

ω1d = ω0, (20)

ω2d = ω0 + ω1q. (21)

At present, ω0 is the value of EoS parameter, ω1 is the parameter of the model that is determined by
using the observational data [76] and q is the deceleration parameter. By inserting Equation (20) in (19),
we have

E2(z) =
b2(1 + z)6

2H2
0(3 − 3c2ω0)

+ A(1 + z)3+3c2ω0 , (22)

where A is a constant of integration. Similarly by inserting Equation (21) in (19), we get the
following result

E2(z) =
b2

2H2
0(

3−3c2ω0−8c2ω1
1− 3

2 (c
2ω1)

)
(1 + z)

6−11c2ω1
1− 3

2 (c
2ω1) + B(1 + z)

3+3c2ω0−3c2ω1
1− 3

2 (c
2ω1) . (23)
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Now, we analyze the interaction term Q for the chosen parametrization of EoS parameter.
Using Equations (14) and (17), we obtain the energy density of DM in the following form

ρm = 3H2
0 E2(z)(1 − c2)− b2

2
(1 + z)6. (24)

Taking the derivative with respect to z of Equation (24) along with ρm in the continuity equation
related to DM, we have

(1 + z)
d
dz

ln(E2(z)) = 3 +
b2(1 + z)6

2H2
0 E2(z)(1 − c2)

− Q
3H3

0 E3(z)(1 − c2)
. (25)

Using Equations (14)–(16), we get the following result

(1 + z)
3

d
dz

ln(E2(z)) = 1 +
ωd

1 + r + b2(1+z)6

2

− b2(1 + z)6

2H2
0 E2(z)

, (26)

where r is the coincidence parameter which is defined as r = ρm
ρd

with the help of Equations (17) and (24).
Comparing the above equations, it yields

Q
9H3

0 E3(z)(1 − c2)
= − ωd

1 + r + b2(1+z)6

2

+
b2(1 + z)6

2H2
0 E2(z)

(
1 +

1
3(1 − c2)

)
. (27)

At present time, the above equation becomes

Q0 = −9(1 − c2)

(
ωd,0

1 + r0 +
b2

2

)
+

9b2(1 − c2)

2

(
1 +

1
3(1 − c2)

)
. (28)

It is significant to express that the value of Q-term predicts the rate at which the universe expands
and coincidence parameter decreases. Using the positivity condition of the Q-term at present time,
Equation (28) takes the following form

ωd,0 < (1 + r +
b2

2
)

(
3b2(1 − c2) + b2

b(1 − c2)

)
. (29)

The normalized Hubble parameter in terms of coincidence parameter is obtained by the ratio of
Equations (17) and (24) such that

E2(z) = − b2(1 + z)6

6H2
0 c2(r(z)− rc)

, (30)

where rc = (1−c2)
(c2)

is a constant quantity. This parameter shows the singular behavior at r(z) = rc.

At present time, rc =
ro+

b2
6

1− b2
6

, where c2 =
1− b2

6
1+r0

. For the coincidence parameter, we can consider a

CPL-type parametrization form [42] r(z) = ro + εo
z

1+z , where εo = r′o. We can notice that above
parametrization becomes singular at z = −1 and it has a linear behavior and bounded nature for low
and high value of redshift respectively. Taking into account the above parametrization, we get the
value of redshift zs, such that zs = − ro−rc

εo(1+
(ro−rc)

εo )
. For the singular behavior, we have the condition

−1 < zs < 0. After some manipulation, we obtain

r(z)− rc = εo

(
(z − zs)

(1 + zs)(1 + z)

)
� 0 =⇒ z � zs, (31)
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which yields (−εozs)
(1+zs)

≥ 0 at present time. Substituting these results in Equation (31), it can be written as

E2(z) = −ηb2 (1 + z)7

6H2
0(z − zs)

, (32)

here η := (1+zs)
c2εo

> 0 since εo > 0. Moreover, we define the function θ(z) := (1+z)
(z−zs)

and substitute
Equation (32) in (26), we get the following result

1 +
ωd

1 + r + b2(1+z)6

2

=
9 + ηθ(7 + θ)

3ηθ
. (33)

Using above result the expression (27) for the Q-term can be written as

Q
9H3

0 E3(z)
= (1 − c2)

(
9 − ηθ(4 + θ)

3ηθ

)
+

b2(1 + z)6(1 − c2)

2H2
0 E2(z)

+
b2(1 + z)6

6H2
0 E2(z)

. (34)

For ω1d the expression for the Q-term takes the following form

Q1 = 9H3
0

(
b2(1 + z)6

2H2
0(3 − 3c2ω0)

+ A(1 + z)3+3c2ω0

) 3
2

(1 − c2)

×
(
− ω0

1 + ro + εo
z

1+z +
b2(1+z)6

2

+
b2(1 + z)6

2H2
0(

b2(1+z)6

2H2
0 (3−3c2ω0)

+ A(1 + z)3+3c2ω0)

×
(

1 +
1

3(1 − c2)

))
. (35)

Similarly for ω2d, the Q-term is reduced in the following relation

Q2 =

(
b2

2H2
0(

3−3c2ω0−8c2ω1
1− 3

2 (c
2ω1)

)
(1 + z)

6−11c2ω1
1− 3

2 (c
2ω1) + B(1 + z)

3+3c2ω0−3c2ω1
1− 3

2 (c
2ω1)

) 3
2

× 9H3
0(1 − c2)

(
− ω0 + ω1q

1 + ro + εo
z

1+z +
b2(1+z)6

2

(
1 +

1
3(1 − c2)

)

+
b2(1 + z)6

2H2
0(

b2

2H2
0 (

3−3c2ω0−8c2ω1
1− 3

2 (c
2ω1)

)
(1 + z)

6−11c2ω1
1− 3

2 (c
2ω1) + B(1 + z)

3+3c2ω0−3c2ω1
1− 3

2 (c
2ω1) )

)
. (36)

In Figure 1, the plot of Q1 as a function of z is expressed for three different values of ω0 = −0.8,
−0.9,−1. The specific values for the other constants are b = 3, H0 = 67, c = 0.8, A = −0.002, εo = 0.1
and ro = 0.43. We can observe that Q1 inclines the positive trajectory. It is mentioned [77] that the
interaction term must not change its sign during cosmic evolution and is observationally verified.
The plot of Q2 versus z for ω2d as shown in Figure 2. The particular values of other constants are
ω1 = −0.2,−0.5,−0.8, B = 0.002 and remaining are same as in the above case. It can be seen that Q2

gives the positive behavior for all epochs related to z.
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Figure 1. Plot of Q1 corresponding to z for ω1d.
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Figure 2. Plot of Q2 corresponding to z for ω2d.

4. Cosmological Parameters

In this section, we construct some cosmological parameters such as the deceleration parameter,
stability analysis, statefinder and Om-diagnostic corresponding to parametrizations of EoS parameter
in the presence of dynamical Chern–Simons modified gravity.

4.1. Deceleration Parameter

The deceleration parameter can be described as follows

q = −1 − Ḣ
H2 . (37)

This parameter characterizes the accelerated as well as decelerated phases of the universe.
For q ∈ [−1, 0), it shows the accelerated phase of the universe and q ≥ 0 exhibits the decelerated
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phase of the universe. The time derivative of Hubble parameter gives the following relation in terms
of redshift function

Ḣ
H2 = − (1 + z)

E
dE
dz

. (38)

Inserting Equation (38) into (37), we have

q = −1 +
(1 + z)

E
dE
dz

. (39)

The deceleration parameter for ω1d can be evaluated by using Equations (22) and (39) such that

q1 = −1 +
(1 + z)

2( b2(1+z)6

2H2
0 (3−3c2ω0)

+ A(1 + z)3+3c2ω0)

×
(

3b2(1 + z)5

H2
0(3 − 3c2ω0)

+ A(1 + z)2+3c2ω0(3 + 3c2ω0)

)
. (40)

The plot of this equation in shown in Figure 3 (left) versus z for three different values of ω0.
The particular values of other constants are same as in above case. For z > 0, the deceleration parameter
transits towards the range for accelerated phase. For present and future epochs, this parameter
represents the accelerated phase of the evolving universe. Substituting the Equation (23) into (39),
the expression of deceleration parameter for ω2d takes the following form

q2 = −1 + (1 + z)
(

b2(1 + z)
6−11c2ω1

1− 3
2 (c

2ω1)

H2
0(

3−3c2ω0−8c2ω1
1− 3

2 (c
2ω1)

)
+ 2B(1 + z)

3+3c2ω0−3c2ω1
1− 3

2 (c
2ω1)

)−1

×
[
(3 − 3c2ω1 + 3c2ω0)B(1 + z)

−1+ 3−3c2ω1+3c2ω0
1− 3

2 (c
2ω1)

1 − 3
2 (c

2ω1)
+

6 − 11c2ω1

1 − 3
2 c2ω1

× b2(1 + z)
−1+ 6−11c2ω1

1− 3
2 (c

2ω1)

2H2
0

(
3 − 8c2ω1

1− 3
2 (c

2ω1)
− 3c2ω0

)]. (41)

For ω2d, we plot the deceleration parameter q2 as shown in Figure 3 (right) for same parametric
values. In this scenario, the deceleration parameter exhibits accelerated phase of the universe since it
remains between −1 and 0 for all values of (ω0, ω1).
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Figure 3. Plot of q1 for ω1d and q2 for ω2d corresponding to z taking (ω0, ω1) = (−0.8,−0.2),
(−0.9,−0.5), (−1,−0.8).
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4.2. Stability Analysis

The squared speed of sound can be described as follows

v2
s =

dp
dρ

. (42)

The squared speed of sound parameter is used to discuss the stability of model. That is, v2
s < 0

leads to the unstable behavior of the model while v2
s ≥ 0 corresponds to the stable behavior.

Inserting Equations (12), (13) and (22) in (42), we obtain the squared speed of sound for ω1d as follows

v2
s1 =

(
− 3b2(1 + z)5 + H2

0(1 + z)(
15b2(1 + z)4

H2
0(3 − 3c2ω0)

+ A(1 + z)1+3c2ω0

× (2 + 3c2ω0)(3 + 3c2ω0))− 2H2
0
( 3b2(1 + z)5

H2
0(3 − 3c2ω0)

+ A(1 + z)2+3c2ω0

+ (3 + 3c2ω0)
))(

3AH2
0(1 + z)2+3c2ω0(3 + 3c2ω0) +

3b2(1 + z)5c2ω0

1 − c2ω0

)−1

.

(43)

Taking into account Equations (12), (13) and (23) in (42), the relation of squared speed of sound
for ω2d takes the following form

v2
s2 =

[
− 3b2(1 + z)5 +

3b2(1 + z)
5− 11c2ω1

1− 3
2 c2ω1 (6 − 11c2ω1

1− 3
2 c2ω1

)

2(3 − 3c2ω0 − 8c2ω1
1− 3

2 c2ω1
)

+ 3BH2
0

× (1 + z)
2+3c2ω1−

3c2ω1
1− 3

2 c2ω1 (3 + 3c2ω1 −
3c2ω1

1 − 3
2 c2ω1

)

]−1[
− b2

2
(1 + z)6

− 3BH2
0(1 + z)

3+3c2ω1−
3c2ω1

1− 3
2 c2ω1 − 3b2(1 + z)

6− 11c2ω1
1− 3

2 c2ω1

2(3 − 3c2ω0 − 8c2ω1
1− 3

2 c2ω1
)

+
b2(1 + z)

6− 11c2ω1
1− 3

2 c2ω1 (6 − 11c2ω1
1− 3

2 c2ω1
)

(3 − 3c2ω0 − 8c2ω1
1− 3

2 c2ω1
)

+ 2BH2
0(1 + z)

3+3c2ω1−
3c2ω1

1− 3
2 c2ω1

× (3 + 3c2ω1
3c2ω1

1 − 3
2 c2ω1

)−
b2(1 + z)

5− 11c2ω1
1− 3

2 c2ω1 (6 − 11c2ω1
1− 3

2 c2ω1
)

2(3 − 3c2ω0 − 8c2ω1
1− 3

2 c2ω1
)

− H2
0 B(1 + z)

2+3c2ω1−
3c2ω1

1− 3
2 c2ω1 (3 + 3c2ω1 −

3c2ω1

1 − 3
2 c2ω1

)− 3b2(1 + z)5

+
b2(1 + z)

5− 11c2ω1
1− 3

2 c2ω1 (5 − 11c2ω1
1− 3

2 c2ω1
)(6 − 11c2ω1

1− 3
2 c2ω1

)

(3 − 3c2ω0 − 8c2ω1
1− 3

2 c2ω1
)

+ 2BH2
0

× (1 + z)
2+3c2ω1−

3c2ω1
1− 3

2 c2ω1 (2 + 3c2ω1 −
3c2ω1

1 − 3
2 c2ω1

)

× (3 + 3c2ω1 −
3c2ω1

1 − 3
2 c2ω1

)

]
. (44)
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The plot of v2
s1 is expressed in Figure 4 (left). It can be seen that the trajectories of squared speed

of sound show positive behavior for a positive range of z (except some values) which gives the stability
of the model. However, for a small range of positive values of z, z = 0 and z < 0, the model expresses
unstable behavior. In Figure 4 (right), the graph of squared speed of sound versus redshift parameter
is given. The trajectories for ω0 = −0.8,−0.9 give the positive behavior for all values of z while for
ω0 = −1, the squared speed of sound represents negative behavior for all values. This shows the
stable behavior in first case while in latter case, the model is unstable.
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Figure 4. Plot of v2
s1 for ω1d and v2

s2 for ω2d corresponding to z taking (ω0, ω1) = (−0.8,−0.2),
(−0.9,−0.5), (−1,−0.8).

4.3. Statefinder Parameters

The statefinder parameters (r, s) are two new cosmological parameters introduced by Sahni [78]
which are defined for flat universe model as

s =
r − 1

3(q − 1
2 )

, r = 1 +
3Ḣ
H2 +

Ḧ
H3 , (45)

which help in differentiating the DE models. That is, for (r, s) = (1, 0) then it shows the ΛCDM limit,
(r, s) = (1, 1) represents the CDM limit. Also, s > 0 and r < 1 represent the DE regions such that
phantom and quintessence and r > 1, s < 0 give the Chaplygin gas behavior. We can obtain statefinder
parameters (r, s) for ω1d by using Equations (22) and (38) in (45), such that

r1 = 1 +
3(1 + z)

2
(

b2(1+z)6

2H2
0 (3−3c2)ω0

+ A(1 + z)3+3c2ω0

) ×
(

9b2(1 + z)5

H2
0(3 − 3c2ω0)

+ 3A

× (1 + z)2+3c2ω0(3 + 3c2ω0)

)
−
(

1

2( b2(1+z)6

2H2
0 (3−3c2)ω0

+ A(1 + z)3+3c2ω0)

)

×
(

3b2(1 + z)6

H2
0(3 − 3c2ω0)

+ A(1 + z)3+3c2ω0(3 + 3c2ω0)

)(
15b2(1 + z)6

H2
0(3 − 3c2ω0)

+ A(1 + z)3+3c2ω0(3 + 3c2ω0)(2 + 3c2ω0)

)
, (46)

s1 =

[
3(1 + z)

b2(1+z)6

H2
0 (3−3c2)ω0

+ 2A(1 + z)3+3c2ω0
×
(

9b2(1 + z)5

H2
0(3 − 3c2ω0)

+ 3A

× (1 + z)2+3c2ω0(3 + 3c2ω0)

)
−
(

1
b2(1+z)6

H2
0 (3−3c2)ω0

+ 2A(1 + z)3+3c2ω0

)
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×
(

3b2(1 + z)6

H2
0(3 − 3c2ω0)

+ A(1 + z)3+3c2ω0(3 + 3c2ω0)

)(
15b2(1 + z)6

H2
0(3 − 3c2ω0)

+ A(1 + z)3+3c2ω0(3 + 3c2ω0)(2 + 3c2ω0)

)][
3
(
− 3

2
− (1 + z)

×
(

b2(1 + z)6

2H2
0(3 − 3c2)ω0

+ A(1 + z)3+3c2ω0

)−1

×
(

3b2(1 + z)5

H2
0(3 − 3c2ω0)

+ A(1 + z)2+3c2ω0(3 + 3c2ω0)

))]−1

. (47)

Inserting Equations (23) and (38) in (45), the statefinder parameters for ω2d take the following form

r2 = 1 + 3(1 + z)
(

b2

H2
0

(3 − 3c2ω0 − 8c2ω1

1 − 3
2 c2ω1

)
(1 + z)

6− 11c2ω1
1− 3

2 c2ω1 + 2B

× (1 + z)
3+3c2ω0−3c2ω1

1− 3
2 c2ω1

)−1[3b2(1 + z)
6− 11c2ω1

1− 3
2 c2ω1 (1 − 3

2 c2ω1)(6 − 11c2ω1
1− 3

2 c2ω1
)

2H2
0(3 − 3c2ω0 − 8c2ω1)

+ 3B(1 + z)
3+3c2ω0−

3c2ω1
1− 3

2 c2ω1

]
−
[

b2

H2
0
(

3 − 3c2ω0 − 8c2ω1

1 − 3
2 c2ω1

)(1 + z)
6−11c2ω1
1− 3

2 c2ω1

+ 2B(1 + z)
3+3c2ω0+3c2ω1

1− 3
2 c2ω1

]−1[( b2(1 + z)
6− 11c2ω1

1− 3
2 c2ω1 (1 − 3

2 c2ω1)(6 − 11c2ω1
1− 3

2 c2ω1
)

2H2
0(3 − 3c2ω0 − 8c2ω1)

+ B(1 + z)
3+3c2ω0−

3c2ω1
1− 3

2 c2ω1

)
+

(
B(1 + z)

3+3c2ω0−
3c2ω1

1− 3
2 c2ω1 (3 + 3c2ω0

− 3c2ω1

1 − 3
2 c2ω1

)(2 + 3c2ω0 −
3c2ω1

1 − 3
2 c2ω1

) +
b2(1 − 3

2 c2ω1)(6 − 11c2ω1
1− 3

2 c2ω1
)

2H2
0(3 − 3c2ω0 − 8c2ω1)

× (5 − 11c2ω1

1 − 3
2 c2ω1

)(1 + z)
6− 11c2ω1

1− 3
2 c2ω1

)]
, (48)

s2 = 3
(

(1 + z)

b2

H2
0
( 3−3c2ω0−8c2ω1

1− 3
2 c2ω1

)(1 + z)
6− 11c2ω1

1− 3
2 c2ω1 + 2B(1 + z)

3+3c2ω0−3c2ω1
1− 3

2 c2ω1

)

×
[3b2(1 + z)

6− 11c2ω1
1− 3

2 c2ω1 (1 − 3
2 c2ω1)(6 − 11c2ω1

1− 3
2 c2ω1

)

2H2
0(3 − 3c2ω0 − 8c2ω1)

+ 3B(1 + z)3+3c2ω0

× (1 + z)
− 3c2ω1

1− 3
2 c2ω1

]
−
[

b2

H2
0
(

3 − 3c2ω0 − 8c2ω1

1 − 3
2 c2ω1

)(1 + z)
6−11c2ω1
1− 3

2 c2ω1 + 2B

× (1 + z)
3+3c2ω0+3c2ω1

1− 3
2 c2ω1

]−1[( b2(1 + z)
6− 11c2ω1

1− 3
2 c2ω1 (1 − 3

2 c2ω1)(6 − 11c2ω1
1− 3

2 c2ω1
)

2H2
0(3 − 3c2ω0 − 8c2ω1)

+ B(1 + z)
3+3c2ω0−

3c2ω1
1− 3

2 c2ω1

)
+

(
B(1 + z)

3+3c2ω0−
3c2ω1

1− 3
2 c2ω1 (3 + 3c2ω0

− 3c2ω1

1 − 3
2 c2ω1

)(2 + 3c2ω0 −
3c2ω1

1 − 3
2 c2ω1

) +
b2(1 − 3

2 c2ω1)(6 − 11c2ω1
1− 3

2 c2ω1
)

2H2
0(3 − 3c2ω0 − 8c2ω1)
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× (5 − 11c2ω1

1 − 3
2 c2ω1

)(1 + z)
6− 11c2ω1

1− 3
2 c2ω1

)][
3
(
− 3

2
− (1 + z)

×
(

b2

2H2
0
(

3 − 3c2ω0 − 8c2ω1

1 − 3
2 c2ω1

)(1 + z)
6−11c2ω1
1− 3

2 c2ω1 + B(1 + z)
3+3c2ω0+3c2ω1

1− 3
2 c2ω1

)−1

×
(

3B(1 + z)
−1+ 3

1− 3
2 c2ω1

1 − 3
2 c2ω1

+
b2(6 − 11c2ω1)(1 + z)

−1+ 6−11c2ω1
1− 3

2 c2ω1

(1 − 3
2 c2ω1)H2

o (3 − 8c2ω1
1− 3

2 c2ω1
− 3c2ω0)

))]−1

. (49)

In Figure 5 (left), the graph of s1 displayed against r1 for three different values of ω0. We can
observe that the (r, s) parameters corresponds to Chaplygin gas behavior for the underlying scenario.
However, the trajectory for ω0 = −1 does not yield any result for some region which is related to r > 1,
s > 0. The model constitutes the ΛCDM limit (r, s) = (1, 0) for the trajectories of ω0 = −0.8,−0.9.
In the right side plot, we draw s2 versus r2 for ω2d which gives the r < 1 and s > 0 for the trajectory
ω0 = −0.9, ω1 = −0.5. This shows the DE eras, phantom and quintessence. The remaining two
trajectories do not give any fruitful results.
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Figure 5. Plot of r1 corresponding to s1 for ω1d and r2 corresponding to s2 for ω2d.

4.4. Om-Diagnostic

The Om-diagnostic is another tool to differentiate different phases of the universe. The positive
trajectory of Om-diagnostic represents the DE era like phantom while quintessence era is obtained
from negative behavior. This parameter is given by

Om =
( H

H0
)2 − 1

(1 + z)3 − 1
. (50)

The Om-diagnostic for ω1d and ω2d can be obtained by substitution of Equations (22) and (23) in
above relation, such that

Om1 =

b2(1+z)6

2H2
0 (3−3c2ω0)

+ A(1 + z)3+3c2ω0 − 1

(1 + z)3 − 1
, (51)

Om2 =

b2(1+z)

6−11c2ω1
1− 3

2 c2ω1

2H2
0

( 3−3c2ω0−8c2ω1
1− 3

2 c2ω1

) + B(1 + z)
3+3c2ω0−3c2ω1

1− 3
2 (c

2ω1) − 1

(1 + z)3 − 1
. (52)
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In Figure 6, we draw the Om-diagnostic versus z for ω1d in left plot and for ω2d in the right plot.
It can be observed that the trajectories of Om-diagnostic for both cases represent the negative slopes
at a past epoch which implies the quintessence era while give positive slopes at future epoch which
constitutes the phantom era of the universe.
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Figure 6. Plot of Om1 for ω1d and Om2 for ω2d corresponding to z.

5. Conclusions

In the framework of dynamical Chern–Simons modified gravity, we have assumed the flat FRW
spacetime and discussed different DE models by using a collection of observations at low redshift.
We have taken the parametrizations of EoS parameter to explore the cosmic evolution of accelerating
universe in interacting scenario. The parametrization may be a Taylor series extension in the redshift,
a Taylor series extension in the scale factor or any other parametrization of ω. We have evaluated
the different cosmological parameters, such as the deceleration parameter, squared speed of sound,
Om-diagnostic and statefinder parameters. The deceleration parameter is a cosmological parameter
which helps to classify the accelerated as well as decelerated phases of the universe. The squared
speed of sound is another cosmological parameter which is used to check the stability of the models.
The statefinder parameters differentiate various DE models, their behavior and cosmological evolution
at present time. The Om-diagnostic is used to differentiate the phantom and quintessence behavior.
The trajectories of the constructed models have been plotted with different constant parametric values.

The interaction term represented the positive behavior and is observationally verified that the
interaction term must not change its sign during cosmic evolution. The deceleration parameter
indicated the consistent result while squared speed of sound expressed some stable solutions.
The statefinder parameters for the first parametrization represented Chaplygin gas model behavior
and met the ΛCDM limit for specific choice of parameters and DE era is obtained for second choice
of parametrization. The Om diagnostic parameter indicated the phantom and quintessence eras of
the universe.
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Abstract: Recently, we have proposed models of topological field theory including gravity in Mod. Phys.
Lett. A 2016, 31, 1650213 and Phys. Rev. D 2017, 96, 024009, in order to solve the problem of the
cosmological constant. The Lagrangian densities of the models are BRS (Becchi-Rouet-Stora) exact and
therefore the models can be regarded as topological theories. In the models, the coupling constants,
including the cosmological constant, look as if they run with the scale of the universe and its behavior
is very similar to the renormalization group. Motivated by these models, we propose new models
with an the infrared fixed point, which may correspond to the late time universe, and an ultraviolet
fixed point, which may correspond to the early universe. In particular, we construct a model with the
solutions corresponding to the de Sitter space-time both in the ultraviolet and the infrared fixed points.

1. Introduction

In Mod. Phys. Lett. A 2016, 31, 1650213 [1] and Phys. Rev. D 2017, 96, 024009 [2], models of topological
field theory including gravity have been proposed in order to solve the cosmological constant problem.
The accelerating expansion of the present universe may be generated by the small cosmological constant.
Although the cosmological constant could be identified with a vacuum energy, the vacuum energy
receives very large quantum corrections from matters and therefore in order to obtain a realistic very small
vacuum energy, very fine-tuning of the counter term for the vacuum energy is necessary (The discussion
about the small but non-vanishing vacuum energy is given in [3], for example.) Motivated by this problem
of large quantum corrections to the vacuum energy, models of unimodular gravity [4–30] have been
proposed. There have been also proposed many scenarios, such as the sequestering mechanism [31–38].
Among of the possible scenarios, we have proposed the models of the topological field theory including
gravity in [1] and the cosmology described by these models has been discussed in [2].

The large quantum corrections from matter appear not only in the cosmological constant but
other coupling constants. Even if we include the quantum corrections only from matter, the following
coupling constants α, β, γ, and δ include large quantum corrections,

Lqc = αR + βR2 + γRμνRμν + δRμνρσRμνρσ . (1)

The coefficient α diverges quadratically and β, γ, and δ diverge logarithmically. We should note
that if we include the quantum corrections from the graviton, there appear infinite numbers of divergent
quantum corrections, which is one of the reasons why the general relativity is not renormalizable.
By using the formulation for the divergence in the cosmological constant proposed in [1,2], these
divergences can be tuned to be finite [2,39]. In this formulations, the coupling constants, α, β, γ, δ,
and other coupling constants including the cosmological constant are replaced by the scalar fields.
Then the divergences coming from the quantum corrections can be absorbed into a redefinition of the
scalar fields. The fields depend on the cosmological time, or the scale of the universe. In this sense,
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the scalar fields, which corresponds to the coupling constants, run with a scale as in the renormalization
group. Motivated by the above observation, in this paper, we propose new models where there appear
an infrared fixed point, which may correspond to the late time universe, and an ultraviolet fixed
point, which may correspond to the early universe. Especially we construct a model with solutions
connecting two asymptotic de Sitter space-times, which correspond to the ultraviolet and the infrared
fixed points.

In the next section, we review the models of topological gravity presented in [1,2,39]. In Section 3,
we propose new models where there appear an infrared fixed point, which may correspond to
the late time universe, and an ultraviolet fixed point, which may correspond to the early universe.
Especially we construct a model, where the solutions expresses the flow from the de Sitter space-time
corresponding to the ultraviolet fixed point to the de Sitter space-time both in the infrared fixed point.
The last section is devoted to the summary, where we mention on the problems which have not been
solved in this paper and some possibilities to solve them are shown in Appendix A.

2. Review of the Models of Topological Field Theory Including Gravity

We start to review the model proposed in [1]. The action of the model is given by

S′ =
∫

d4x
√
−g

{
Lgravity + LTP

}
+ Smatter , LTP ≡ −λ + ∂μλ∂μ ϕ − ∂μb∂μc . (2)

Here Lgravity is the Lagrangian density of gravity, which may be arbitrary. The Lagrangian density
Lgravity may include the cosmological constant. In the action (2), Smatter is the action of matters, λ and
ϕ are ordinary scalar fields while b is the anti-ghost field and c is the ghost field. The (anti-)ghost fields
b and c are fermionic (Grassmann odd) scalar. (The action without c and b has been proposed in [40]
in order to solve the problem of time. The cosmological perturbation in the model motivated in the
model (2) has been investigated in [41]). Please note that no parameter or coupling constant appear in
the action (2) except in the parts of Smatter and Lgravity.

We separate the gravity Lagrangian density Lgravity into the sum of some constant Λ, which
corresponds to the cosmological constant and may include the large quantum corrections from matter,
and the remaining part L(0)

gravity as Lgravity = L(0)
gravity − Λ. By shifting the scalar field λ by a constant Λ

as λ → λ − Λ, the action (2) can be rewritten as

S′ =
∫

d4x
√
−g

{
L(0)

gravity − λ + ∂μλ∂μ ϕ − ∂μb∂μc
}
− Λ

∫
d4x

√
−g∇μ∂μ ϕ + Smatter . (3)

Since the cosmological constant Λ appears as a coefficient of total derivative in the action (3),
there is no contribution from the constant Λ to any dynamics in the model. Thus we have succeeded
to tune the large quantum corrections from matter to vanish.

As a quantum field theory, the action (2) generates negative norm states [1], The negative norm
states can be, however, removed by defining the physical states which are annihilated by the BRS
(Becchi-Rouet-Stora) charge [42]. Please note that the action (2) is invariant under the following infinite
number of BRS transformations,

δλ = δc = 0 , δϕ = εc , δb = ε (λ − λ0) . (4)

Here ε is a Grassmann odd fermionic parameter and λ0 should satisfy,

0 = ∇μ∂μλ0 , (5)

which is just equation for λ:
(
0 = ∇μ∂μλ

)
obtained by the variation of the action (2) with respect to ϕ.

(The existence of the BRS transformation where λ0 satisfies Equation (5) was pointed out by R. Saitou.)
In the BRS formalism, the physical states are BRS invariant and the unphysical states including the
negative norm states are removed by the quartet mechanism proposed by Kugo and Ojima in the
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context of the gauge theory [43,44]. (We can assign the ghost number, which is conserved, 1 for c
and −1 for b and ε. The four scalar fields λ, ϕ, b, and c are called a quartet [43,44].) Because λ − λ0

in (4) is given by the BRS transformation of the anti-ghost b, however, the BRS invariance breaks
down spontaneously when λ − λ0 does not vanish and therefore it becomes difficult to remove the
unphysical states and keep the unitarity of the model. In the real universe, we find λ − λ0 �= 0 in
general because λ plays the role of the dynamical cosmological constant and therefore BRS symmetry
is spontaneously broken in general. We should note, however, that in the real universe, one and only
one λ satisfying the equation 0 = ∇μ∂μλ is realized. Then if we choose λ0 to be equal to the λ in the
real universe, one and only one BRS symmetry in the infinite number of the BRS symmetries given
in (4) remains [2]. The remaining BRS symmery is enough to eliminate the unphysical states. and the
unitarity is guaranteed.

We can regard the Lagrangian density LTP in the action (2) as the Lagrangian density of a topological
field theory proposed by Witten [45]. In a topological field theory, the Lagrangian density is given by
the BRS transformation of some quantity. We may consider the model where only one scalar field ϕ is
included but the Lagrangian density of the model vanishes identically and therefore the action is trivially
invariant under any transformation of ϕ. Then the transformation of ϕ can be regarded as a gauge
symmetry. We now fix the gauge symmetry by imposing the following gauge condition,

1 +∇μ∂μ ϕ = 0 . (6)

By following the procedure proposed by Kugo and Uehara [46], we can construct the gauge-fixed
Lagrangian with the Fadeev-Popov (FP) ghost c and anti-ghost b by the BRS transformation (4) of
−b
(
1 +∇μ∂μ ϕ

)
by choosing λ0 = 0,

δ
(
−b
(
1 +∇μ∂μ ϕ

))
= ε

(
− (λ − λ0)

(
1 +∇μ∂μ ϕ

)
+ b∇μ∂μc

)
= ε (L+ λ0 + (total derivative terms)) . (7)

Then we confirm that the Lagrangian density LTP in (2) is given by the BRS transformation of
−b
(
1 +∇μ∂μ ϕ

)
and the model is surely topological. Because λ does not vanish in the real universe,

the BRS invariance is broken. In this sense, the model (2) is not topological in the real universe, which
could be the reason why this model gives physical contributions.

The above mechanism can be applied to the divergences in (1) or more general divergences as
shown in [2]. When we consider the model in (1), the model in (2) is generalized as follows,

L = −Λ − λ(Λ) +
(

α + λ(α)

)
R +

(
β + λ(β)

)
R2 +

(
γ + λ(γ)

)
RμνRμν +

(
δ + λ(δ)

)
RμνρσRμνρσ

+∂μλ(Λ)∂
μ ϕ(Λ) − ∂μb(Λ)∂

μc(Λ) + ∂μλ(α)∂
μ ϕ(α) − ∂μb(α)∂μc(α)

+∂μλ(β)∂
μ ϕ(β) − ∂μb(β)∂

μc(β) + ∂μλ(γ)∂
μ ϕ(γ) − ∂μb(γ)∂μc(γ) + ∂μλ(δ)∂

μ ϕ(δ) − ∂μb(δ)∂μc(δ) .

(8)

We now shift the fields λ(Λ), λ(α), λ(β), λ(γ), and λ(δ) as follows,

λ(Λ) → λ(λ) − Λ , λ(α) → λ(α) − α , λ(β) → λ(β) − β , λ(γ) → λ(γ) − γ , λ(δ) → λ(δ) − δ , (9)

then the Lagrangian density (8) has the following form,

L =− λ(Λ) + λ(α)R + λ(β)R
2 + λ(γ)RμνRμν + λ(δ)RμνρσRμνρσ

+ ∂μλ(Λ)∂
μ ϕ(Λ) − ∂μb(Λ)∂

μc(Λ) + ∂μλ(α)∂
μ ϕ(α) − ∂μb(α)∂

μc(α)
+ ∂μλ(β)∂

μ ϕ(β) − ∂μb(β)∂
μc(β) + ∂μλ(γ)∂

μ ϕ(γ) (10)

− ∂μb(γ)∂
μc(γ) + ∂μλ(δ)∂

μ ϕ(δ) − ∂μb(δ)∂
μc(δ)

+ (total derivative terms) .
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Except the total derivative terms, the obtained Lagrangian density (10) does not include the
constants Λ, α, β, γ, and δ, which include the divergences from the quantum corrections. Therefore
we can absorb the divergences into the redefinition of the scalar fields λ(i), (i = Λ, α, β, γ, δ) and the
divergences becomes irrelevant for the dynamics.

In the initial model (1), the parameters are coupling constants but in the new models, (8) or (10),
the parameters are replaced by dynamical scalar fields. This is one of the reasons why the divergence
coming from the quantum corrections can be absorbed into the redefinition of the scalar fields.
Furthermore because the scalar fields are dynamical, as we will see later, the scalar fields play the role
of the running coupling constant.

The Lagrangian density (10) is also invariant under the following BRS transformations

δλ(i) = δc(i) = 0 , δϕ(i) = εc , δb(i) = ε
(

λ(i) − λ(i)0

)
, (i = Λ, α, β, γ, δ) , (11)

where λ(i)0’s satisfy the equation,
0 = ∇μ∂μλ(i)0 , (12)

as in (5). The Lagrangian density (10) is also given by the BRS transformation (11) with λ(i)0 = 0,

δ

(
∑

i=Λ,α,β,γ,δ

(
−b(i)

(
O(i) +∇μ∂μ ϕ(i)

)))
= ε (L+ (total derivative terms)) . (13)

As mentioned, due to the quantum correction from the graviton, an infinite number of divergences
appear. Let Oi be possible gravitational operators; then a further generalization of the Lagrangian
density (10) is given by

L = ∑
i

(
λ(i)O(i) + ∂μλ(i)∂

μ ϕ(i) − ∂μb(i)∂
μc(i)

)
. (14)

Then all the divergences are absorbed into the redefinition of λi. The Lagrangian density (14) is
invariant under the BRS transformation and given by the the BRS transformation of some quantity
and therefore the model can be regarded as a topological field theory, again.

Well-known higher derivative gravity can be renormalizable, but the ghosts appear and therefore
the higher derivative gravity model is not unitary. Although our model may be renormalizable
because the divergence does not appear, the problem of the unitarity remains because the Lagrangian
density (14) includes the higher derivative terms. In the viewpoint of string theory, for example,
we may expect that if we include the infinite number of higher derivative terms, the unitarity could be
recovered but this is out of scope in this paper.

Usually the problem of the renormalizability in quantum field theory is the predictability. Even if
we consider the quantum theory of gravity starting from the general relativity, if we include an infinite
number of the counterterms, the theory becomes finite but due to the infinite number of the counter
terms, the model loses predictability. In the model of (14), there could not be the problem of the
divergence but because λi’s become dynamical, we need infinite number of the initial conditions or
somethings and therefore even in the model (14), the predictability could be lost. If the λi’s have
infrared fixed points, however, the predictability could be recovered. In the original model (14),
however, we have not obtained non-trivial fixed points, which is one of the motivation why we
considered the model in next section, where we try to construct the models with the fixed points.
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3. Model Motivated by Renormalization Group

We assume that the space-time is given by the FRW (Friedmann-Robertson-Walker) universe with
flat spacial part and a scale factor a(t)

ds2 = −dt2 + a(t)2
3

∑
i=1

(
dxi
)2

. (15)

Equation (12) tells that the scalar fields λ(i) depend on the scale factor a(t) and then become
time-dependent. Because λ(i) correspond to the coupling with the operator O(i), Then the scale factor
dependence of λ(i) is similar to the scale dependence of the renormalized coupling λ(i) Motivated by
this observation, we consider the models with an infrared fixed point, which may correspond to the
late time universe, and an ultraviolet fixed point, which may correspond to the early universe.

We now assume the following BRS transformations instead of (4),

δλ(i) = δc(i) = 0 , δϕ(i) = εc , δb(i) = ελ(i) , (16)

and consider the Lagrangian density which is given by the BRS transformation (16) of some quantity,

δ

(
∑

i=Λ,α,β,γ,δ

(
b(i)

(
Oi +∇μ∂μ ϕ(i) + fi

(
λ(j)

)
ϕ(i)

)))
= ε (L+ (total derivative terms)) . (17)

Here Oi are possible gravitational operators as in (14). and fi

(
λ(j)

)
’s are functions of λ(j).

Then we obtain

L = ∑
i

(
λ(i)O(i) + ∂μλ(i)∂

μ ϕ(i) + λ(i) fi

(
λ(j)

)
ϕ(i) − ∂μb(i)∂

μc(i) − fi

(
λ(j)

)
b(i)c(i)

)
. (18)

The obtained model (18) is different from the original model (1), (8) or (10). We are using
a different gauge fixing and the background solution is not BRS invariant. Then, in this background,
the model (18) is not topological.

By the variation with respect to ϕ(i), we obtain the following equations,

−∇μ∇μλ(i) = λ(i) fi

(
λ(j)

)
. (19)

In the FRW space-time with flat spacial part (15), Equation (19) can be written as follows,

d2λ(i)

dt2 + 3H
dλ(i)

dt
= λ(i) fi

(
λ(j)

)
. (20)

Here H is the Hubble rate defined by using the scale factor in Equation (15) as H ≡ ȧ/a.
By defining τ by a = eτ , we find

d
dt

= H
d

dτ
,

d2

dt2 = H2 d2

dτ2 + Ḣ
d

dτ
, (21)

and therefore we obtain

H2

{
d2λ(i)

dτ2 +

(
3 +

Ḣ
H2

) dλ(i)

dτ

}
= λ(i) fi

(
λ(j)

)
. (22)
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Because the change of a can be identified with the scale transformation, we may compare (20)
with the renormalization group equation,

dλ(i)

dτ
= gi

(
λ(j)

)
. (23)

In cosmology, the Hubble rate H is usually used as energy scale but an analogy with the
renormalization group in the quantum field theory, suggest the possibility to use the scale factor
a as the energy. From

d2λ(i)

dτ2 = ∑
k

∂gi

(
λ(j)

)
∂λ(k)

gk

(
λ(j)

)
, (24)

we find

fi

(
λ(j)

)
=

H2

λ(i)

⎧⎨
⎩∑

k

∂gi

(
λ(j)

)
∂λ(k)

gk

(
λ(j)

)
+

(
3 +

Ḣ
H2

)
gi

(
λ(j)

)⎫⎬
⎭ . (25)

The interpretation of Equation (20) as a renormalization group equation requires fi

(
λ(j)

)
to be

time independent. Therefore the above identification (25) can have any meaning only if H is a constant
at least near the fixed points, that is, the space-time should be, at least asymptotically, the de Sitter
space-time. Later we consider the model where two fixed points are connected by the renormalization
group. The two fixed points correspond to the ultraviolet (UV) and infrared (IR) limits. Between the
two fixed points, H cannot be a constant because H takes different values in the two fixed points.
As we will see later, the scale dependence of H can be absorbed into the redefinition of fi

(
λ(j)

)
or

gi

(
λ(j)

)
. We may assume that the renormalization equations (23) has a ultraviolet or infrared fixed

point. If the universe asymptotically goes to the de Sitter universe in the early time or late time. Then if
we choose fi

(
λ(j)

)
by (25), the early universe corresponds to the ultraviolet (UV) fixed point and the

late time universe to the infrared (IR) fixed point. Because the shift of τ corresponds to the change of
the scale and τ is defined by using scale factor as a = eτ , the UV limit corresponds to τ → −∞ and
therefore a → 0 and the IR limit to τ → ∞, that is, a → ∞. In the neighborhood of the UV fixed point
λ∗

UV, we now assume,

dg(i)
(

λ(j)

)
dλ(i)

> 0 . (26)

Then g(i)
(

λ(j)

)
can be expressed as,

g(i)
(

λ(j)

)
≈ k(i)UV(λ(j))

(
λ(i) − λ(i)UV

)
, (27)

where k(i)UV(λ(j)) is a function of λ(j) and k(i)UV(λ(j)UV) > 0. By using the approximation that
k(i)UV(λ(j)) could be regarded as a constant when λ(i) ≈ λ(i)UV, that is, k(i)UV(λ(j)) ≈ k(i)UV(λ(j)UV),
the solution of (23) with (27) is given by

λ(i)≈λ(i)UV + λ(i)UV0a(t)k(i)UV(λ(j)UV) . (28)

Here λ(i)UV0 is a constant of the integration. On the other hand, near the IR fixed point, we replace
k(i)UV → −k(i)IR and λ(i)UV → λ(i)IR in (27) and (28) as follows,

g(i)
(

λ(j)

)
≈− k(i)IR(λ(j))

(
λ(i) − λ(i)IR

)
. (29)

Then we find
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λ(i) ≈ λ(i)IR + λ(i)IR0

(
1

a(t)

)k(i)IR((λ(j)IR))
. (30)

Here λ(i)IR0 is a constant of the integration. When a(t) → 0 in (28), and a(t) → ∞ in (30), λ(i) goes
to λ(i)UV and λ(i)IR, respectively. Thus, as long as the above condition in the neighborhood of UV (IR)

fixed point is satisfied, λ(i) = λ(i)UV (λ(i) = λ(i)IR) is surely the UV (IR) fixed point. When gi

(
λ(j)

)
behaves as (27) near the UV fixed point, Equation (25) tells that fi

(
λ(j)

)
behaves as

fi

(
λ(j)

)
= H2

λ(i)UV

(
k(i)UV(λ(j)UV) + 3

)
k(i)UV(λ(j)UV)

(
λ(i) − λ(i)UV

)
+O

((
λ(i) − λ(i)UV

)2
)

. (31)

On the other hand, when gi

(
λ(j)

)
behaves as (29) near the IR fixed point, fi

(
λ(j)

)
behaves as

fi

(
λ(j)

)
=

H2

λ(i)IR

(
k(i)IR(λ(j)IR)− 3

)
k(i)IR(λ(j)IR)

(
λ(i) − λ(i)IR

)
+O

((
λ(i) − λ(i)IR

)2
)

. (32)

When we consider the Einstein gravity with cosmological constant, the action is given by,

S =
∫

d4x
√−g

[
λ(α)R − λ(Λ) + ∑i=Λ,α

(
∂μλ(i)∂

μ ϕ(i) − ∂μb(i)∂μc(i) + λ(i) f(i)(λ(j))ϕ(i)

)]
+ Smatter . (33)

Here Smatter is the action of matters. Varying the action (33) with respect to the metric gμν,
we obtain the following equation,

λ(α)Gμν +
1
2 λ(Λ)gμν −

(
∇μ∇ν −∇2) λ(α) + ∑i=Λ,α

[
1
2 gμν

(
∂ρλ(i)∂

ρ ϕ(i) + λ(i) f(i)(λ(j))ϕ(i)

)
+ ∂μλ(i)∂ν ϕ(i)

]
= Tμν . (34)

We should note that if the FP ghost and anti-ghost has any classical value, which may correspond
to the vacuum expectation value, superselection rule or ghost number conservation is violated and
therefore we put them vanish. In (34), Gμν is the Einstein tensor and Tμν is the energy momentum
tensor of matters. In the spatially flat FRW background if we assume that λ(i) and ϕ(i) depend only on
the cosmological time t, the (0, 0)-component of Equation (34) has the following form,

H2 =
1

6λ(α)

{
λ(Λ) − 3Hλ̇(α) − ∑

i=Λ,α

(
λ̇(i) ϕ̇(i) − λ(i) fi(λj)ϕ(i)

)}
(35)

In the the neighborhood of the UV fixed point, substituting (25) and (28) into the above expression,
we obtain,

H2 ≈ 1
6λ(α)

(
λ(Λ)UV + λ(Λ)UV0a(t)k(Λ)UV(λ(j)UV) − 3Hλ̇(α)

+ ∑
i=Λ,α

k(i)(λ(j))Ha(t)k(i)(λ(j))λ(i)UV0 ϕ̇(i)

)
(36)

+
H2

6λ(α)
∑

i=Λ,α

⎧⎨
⎩∑

k

∂gi

(
λ(j)

)
∂λ(k)

gi

(
λ(j)

)
+

(
3 +

Ḣ
H2

)
gi

(
λ(j)

)⎫⎬
⎭ ϕ(i) ,

Then in the UV limit

a(t) → 0 , g(i) → 0 , λ(i) → λ(i)UV , (37)

we obtain the de-Sitter solution, where H is a constant,
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H = HUV =

√
λ(Λ)UV

6λ(α)UV
= const. (38)

On the other hand, near the IR fixed point, instead of (36), we obtain

H2 ≈ 1
6λ(α)

(
λ(Λ)IR + λ(Λ)IR0a(t)−k(Λ)IR

(
λ(j)IR

)

− 3Hλ̇(α) − ∑
i=Λ,α

k(i)
(

λ(j)

)
Ha(t)−k(i)(λ(j))λ(i)IR0 ϕ̇(i)

)
(39)

+
H2

6λ(α)
∑

i=Λ,α

⎧⎨
⎩∑

k

∂gi

(
λ(j)

)
∂λ(k)

gi

(
λ(j)

)
+

(
3 +

Ḣ
H2

)
gi

(
λ(j)

)⎫⎬
⎭ ϕ(i) ,

Then in the IR limit

a(t) → ∞ , g(i) → 0 , λ(i) → λ(i)IR , (40)

we obtain the de-Sitter solution, where

H = HIR =

√
λ(Λ)IR

6λ(α)IR
= const. (41)

We now try to construct a model, where the IR fixed point is connected with the UV fixed point
by the renormalization flow. As an example, we may consider the following model

f(i)
(

λ(j)

)
= C(i)

(
λ(j)

) (
λ(i) − λ(i)UV

) (
λ(i) − λ(i)IR

)
, (42)

Here C(i)

(
λ(j)

)
is a positive function. By using (38) and comparing (31) and (42), we find

λ(Λ)UV

6λ(α)UVλ(i)UV

(
k(i)UV(λ(j)UV) + 3

)
k(i)UV(λ(j)UV) = C(i)

(
λ(j)UV

) (
λ(i)UV − λ(i)IR

)
, (43)

which can be solved with respect to k(i)UV > 0, as follows,

k(i)UV = −3
2
+

1
2

√√√√
9 +

24λ(α)UVλ(i)UVC(i)

(
λ(j)UV

)
λ(Λ)UV

(
λ(i)UV − λ(i)IR

)
. (44)

On the other hand, by using (41) and comparing (32) and (42), we find

λ(Λ)IR

6λ(α)IRλ(i)IR

(
k(i)IR(λ(j)IR)− 3

)
k(i)IR(λ(j)IR) = −C(i)

(
λ(j)IR

) (
λ(i)UV − λ(i)IR

)
, (45)

which can be solved with respect to k(i)IR > 0, as follows,

k(i)IR =
3
2
± 1

2

√√√√
9 −

24λ(α)IRλ(i)IRC(i)

(
λ(j)IR

)
λ(Λ)IR

(
λ(i)UV − λ(i)IR

)
, (46)

which requires

9 ≥
24λ(α)IRλ(i)IRC(i)

(
λ(j)IR

)
λ(Λ)IR

(
λ(i)UV − λ(i)IR

)
. (47)

183



Symmetry 2018, 10, 396

Therefore, as long as we choose C(i)

(
λ(j)

)
to satisfy the constraint (47), the model (42) surely

connect the IR fixed point with the UV fixed point by the renormalization flow.

4. Summary

Motivated with the model in [1,2,39], we have proposed models of topological field theory
including gravity. In those models, the coupling constants are replaced by scalar fields, which run as
in the renormalization group following the scale of the universe. As an example, we have constructed
a model which connects the inflation in the early universe and the accelerating expansion of the
present universe or late time. The de Sitter space-times corresponding to the inflation and the late time
accelerating expansion appear as the ultraviolet and infrared fixed points, respectively. There remains,
however, several problems, which violate the good properties in the original models in [1,2,39].

1. Because the shift symmetry as in (8) is lost, the models in this paper do not solve the problem of
the large quantum correction.

2. Because λ(i) in (11) has a non-trivial value, the BRS symmetry in (11) should be broken.
3. Although the original model in [1,2,39] has no parameters, the models proposed in this paper

should have several parameters.

Therefore it could be interesting if we constructed any model which solves some of the above
problems by keeping the structure similar to the renormalization group. Some ideas that to try to solve
these problems are given in Appendix A.

In summary, we have not succeeded to solved all the problems but we may have shown that
there might be possibilities to solve them. In this paper, we have considered models where the scalar
fields λ(i)’s play the role of the running coupling constants as in the renormalization group. We have
treated the scalar fields classically although the renormalization group, of course, comes from the
quantum corrections. Therefore the models proposed in this paper might be realized by an effective
field theory connecting the low energy region with the high energy regions. If the models are really
given as effective theories, the models need not always to satisfy all the unitarity conditions.

We have anyway succeeded in constructing such models and we have shown that we can construct
the model with fixed point. The models have, however, arbitrariness, which could be removed by
the constraints from the observations and/or the consistencies of the models. We like to pursue the
problem in the future work.
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Appendix A. Some Propositions to Improve the Models

In this appendix, we consider models, which may solve the problem given in summary section.
We believe the models in this section may give some clues to solve the problems.

An example of the model, which may solve the second problem, could be

δ

(
∑i=Λ,α,β,γ,δ

(
b(i)
(
Oi +∇μ∂μ ϕ(i) ± k(0)i ϕ(i)

)))
= ε(L+ (total derivative terms)) ,

L = ∑i

(
λ(i)O(i) + ∂μλ(i)∂

μ ϕ(i) ± k(0)iλ(i)ϕ(i) − ∂μb(i)∂μc(i) ∓ k(0)ib(i)c(i)
)

.
(A1)
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Then λ(i) = 0 is a ultraviolet (infrared) fixed point for +k(0)i
(
−k(0)i

)
. By the variation of ϕ(i),

we obtain
0 = −∇μ∂μλ(i) ± k(0)iλ(i) . (A2)

Let a solution of (A2) be λ(i) = λcl
(i). Then the action given by the Lagrangian density L in (A1) is

invariant under the following BRS transformation instead of (16),

δλ(i) = δc(i) = 0 , δϕ(i) = εc , δb(i) = ε
(

λ(i) − λcl
(i)

)
, (A3)

Then because one of the solutions in λcl
(i) is realized in the real world, the BRS symmetry

corresponding to the solution λcl
(i) is not broken and the unitarity can be preserved.

Another kind of the solution may be given by the following kind of model,

S =
∫

d4x
√
−g

{
R

2κ2 − λ + L
(

gμν, X, Yμν

)}
, X ≡ −∂μλ∂μλ , Yμν ≡ ∇μ∂νλ . (A4)

Here L could be the Lagrangian density of the k-essence or the Galileon model. Because L is
invariant under the shift of λ by a constant λ0: λ → λ + λ0, the vacuum energy can be absorbed
into the definition of λ and the first problem could be solved. Then if we choose L to give a unitary
model, we need not to consider the second problem. When we consider L of the k-essence, L = L(X),
for simplicity, by the variation of λ, we obtain

0 = 1 − 2∇μ
(
∂μλL′ (X)

)
. (A5)

In the FRW universe with the flat spacial part (15), Equation (A5) has the following form,

0 = 1 + 2a(t)−3 d
dt

(
a(t)3λ̇L′

(
λ̇2
))

, (A6)

which tells that the fixed point, where λ̇ = 0 is not the solution.
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1. Introduction

The origin of galaxies can be testified [1] through semianalytic calculations for the growth of
supermassive black holes to discriminate between seeding models and pertinent accretion modes
according to the abundances and maximum masses of the formers.

Information about interstellar gas in high-redshift galaxies [2] is relevant in providing the tools
for the numerical simulation of pressure and energy and verifying the behavior of their celestial
bodies. The evolution of galactic structures and their compact objects in the vicinity of galaxy
centers, as well as the refinements of General Relativity (GR)tests [3], can be achieved by accurately
measuring the frequencies of the periapsis and Lense–Thirring precessions. By means of a single, linear
interferometer [4], the evolution of a binary system can be followed as described by their leading-order
quadrupole gravitational radiation by calculating the source rate (of gravitational radiation) and the
observation range. For coalescing neutron-star binary systems, optimization of recycling frequency
values can be calculated in the cases of the maximization of the detections rate or of the measurement
precision. The signal-to-noise ratio is improved in longer-time observations. Signal and noise
superpositions constitute probability volumes iff the likelihood ratio (i.e., the noise-to-signal ratio) has
a single extremum that either is close to the physical state of the signal or its series converges close to
the latter. Correlation coefficients and standard deviation should be accurate enough to compensate for
the neglect of the first Post-Newtonian (PN) order in source modelization. The properties of galaxies
and celestial bodies can also be accounted for by hypothesizing the existence of new particles and/or
novel features of existing particles. Such analyses allow one to exploit the specificities of particles and
of their aggregation states to further modelize the known characteristics of such bodies.

The studiedoptical quantum systems that rise by the quantum properties of particles, as well
as those caused by the quantum-gravitational nature of spacetime and their interaction, allow
one to also exploit such quantum properties for phenomena taking place at scales larger than the
Planckian. Lab experiments aimed at verifying these descriptions, as well as observational surveys for
astrophysical phenomena, are therefore affected by the quantum description of particles and spacetime
in the resulting optical systems [5–8]. The role of possible modifications of the dispersion relations
(such as those porposed in [9]) are therefore to be restricted to the analyzed length scales.
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The quantum description of spacetime at scales larger than Planck length can give rise to
phenomena ascribed to the semiclassical nature of the spacetime as well as its quantum properties,
which affect the description of physical phenomena above the Planckian scale. The evidence
for new physical phenomena at any scale larger than the Planckian can be described after the
phenomenological description of effective quantum properties of spacetime in the solution to the
gravitational-field equations.

The macroscopic appearance of the present universe as well as its matter content can
therefore be completed with the quantum corrections to the associated optical systems, to which
quantum-gravitational resulting corrections can also be applied.

For rapidly rotating stars, high angular resolution observations at near-IR regions and
temperature-difference detection between the poles and the equator are possible through these
techniques [10]. It is therefore possible to verify rotational instabilities by analysing the nature
of emissions and their asymmetry, and the mass-loss rate, in order to measure the critical speed of
the stellar wind(s)—by the brightness of the blobs, their size, and their morphology—at the poles
(that characterizes and accompany these events).

A laser-based system was designed [11] that, with the calibration of interferometers, is able to
compensate for dispersive technologies. The resulting device is suited for exoplanet detection by
stellar spectroscopy and velocimetry.

Active Galatic Nuclei (AGN’s) milliarcsecond-emission regions were shown to provide data
for measuring the mass function of quasar black holes [12]. This is achieved by combining
the phases observed in two identical telescopes to control the anisotropy of the UV emission
(i.e., from interstellar medium). At these frequencies, an interferometer-based baseline can individuate
the shape of the line-emitting region. The ratio of the total emission flux to that measured through a
single instrument sets a lower bound to the size of the region. The continuum spectrum does differently
correspond to the star background in the considered galaxy and/or continuum light scattered from
the nucleus.

By combining three telescopes, it is possible to calculate the phase off-set for a baseline
interferometer [13]. This techniques allows with the precision to resolve a pointlike source position of
a celestial body such as an Earth-like planet within the Solar System.

The devices of very-long-baseline interferometry are equipped [14] to routine disk-based recording
systems for Gbps data rates by both cm and mm networks. For this, receiver systems and coherence
time improve both baseline and image/noise sensitivity for fiber-based communication networks and
real-time networks in order to access the radio detection of microJy sky pixels to analyze needed sources,
such that phase-referencing preparation should not be especially required before each self-calibration
of the chosen target.

The Sagnac-Fabry-Pérot interferometer [15] is a device eligible both for the detection of
gravitational waves and as an instrument for particle physics experiments.

The paper is organized as follows.
In Section 2, several models predicting new features for particles, fundamental-symmetry

violations, and new particles are reviewed, and alternative verification experiments are proposed,
for which at least some features of these models can be tested.

In Section 3, cosmological theories for Solar System planet and exoplanet formation are revised;
the results of astrophysical experiments that are useful for the verification of such theories are outlined.

Concluding remarks about perspectives for the continuation of investigations are developed.

2. New-Particle Detection

The Berry geometrical phase is due to a nonrelativistic system, whose Hamiltonian
Hλ ≡ Hλ(λ1, λ2, ..., λn) depends continuously on a family of slowly changing parameters λi,
i = 1, ..., n [16]. In £ space dimensions, it determines a broken O(3) symmetry, as the Hamiltonian Hλ

does not commute with generators of an O(3) symmetry [17–19].
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Without following here the analyses of References [20,21], we report that, in curved spacetime,
the wavefunction can be factorized as

Φ(x) = e−iΦG(x)ϕ(x), (1)

with ΦG(x) being the gravitational part of the wavefunction,

ΦG(x) = −1
4

∫ x

P
dzσ(γασ,β(z)− γβσ,α(z))[(xα − zα)kβ − (xβ − zβ)kα] +

1
2

∫ x

P
dzσγασkσ, (2)

with plane-wave momentum kα satisfying kαkα = m2
k . This way, unless strong fine tunings are imposed

on ϕ(x) in Equation (1), there results broken O(3) 3-dimensional space symmetry.

2.1. Weak Gravitational Fields

In the case of broken O(3) space symmetry, the velocity-distribution function for velocities
characterizing the wavepackets is constructed originating quantum states describing asymptotical
(−∞) KLSZ states. In the case of a weak gravitational field, the velocity distribution for particles [22]
in the laboratory frame departs from that calculated on Minkowski flat spacetime as

fv =
1

8π3det[(ςv)2]
exp

[
−1

2
(�v −�v�)Tς−2

v (�v −�v�)
]

(3)

with ςv ≡ diag[ςx, ςy, ςz] as the velocity dispersion tensor, which encodes the solution to the Einstein
field equations (EFE’)speculiarity through its metric tensor components. This situation gives rise to a
velocity anisotropy:

β(r) ≡ 1 −
ς2

y + ς2
z

2ς2
x

(4)

which can be detected by a ionization chamber able to recover the track parameters (X, Y, Z, θ, φ, S).
For the detection of dark matter, given a weakly-interacting massive particle (WIMP)χ of mass mχ,

from parameter space (mχ, ςi) it is possible to evaluate the WIMP-nucleon cross section σW−nucleon .
In Reference [22], a model-independent cross section of dark matter on protons ςi,p is found as

ςi � 10−3 pb for scintillators targeted of CsI(Tl), 19 F [23,24], respectively.
F targets were studied in Reference [25] for Earth-based experiments analyzing atmospheric-origin

particles.
Detectors for anisotropic ultraenergetic cosmic rays of galactic origin are schematized in

References [26–28]; the dark-matter-induced symmetry violations are examined in [29].

2.2. Fractional Charge

An instrument aimed at detecting fractional-charge particles is the rotor electrometer. It was
designed as a Faraday container with an arbitrary high-impedance amplifier, endowed with copper
pads, for which different charges reach the container walls at different velocities, such that the time of
flight can be calculated, i.e., after a tuning the impedance suited for the charge to be detected [30,31].

For fractional quantum numbers, see also Reference [32].

2.3. Further Particles

Differently, the findings of References [33,34] can be compared. In Reference [34], the electric
dipole moment of the electron and that of the neutron are evaluated as a constraint to CP violation
arising from a broken SU(3)-symmetry, which can lead to theories characterized either by baryonic
number Nb or leptonic number Nl violation.

Proton–proton collision outcomes are interests of study at the LHC facility, see,
e.g., References [35,36], respectively.
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This phenomenon can be compared with broken spacial O(3) symmetry originating from a
geometrical Berry phase Equation (1) on curved spacetime, and the remaining degrees of freedom can
be used for further purposes. The difference can be confirmed by the individuation of sparticles whose
mass dispersion relation Δmij for masses mij is given by

Δm2
jk

m2
0

=
λjλ

∗
k

π2 ln
MPl
MG

, (5)

where λi factorizes the (requested) coupling constant, m0 is the mass of the common (standard-model)
scalar (normalized to Planck mass MPl), and MG is the mass for a (massive) gravitational mode.

Interacting Further Particles

After the breach of higher-dimensional structures [37–40], nonperturbative degrees of freedom
give rise to Compton-length waves (particles) whose masses MC are comparable with Planck mass
MPl ; they interact very weakly and gravitationally. In particular, masses MC are of order MC � R/MPl ,
with R the lower bound on the compactification (energy) scale, and their gravitational interaction can
modify ordinary Newtonian gravity.

A possibility was envisaged to verify the existence of particles such as those described by
Equation (5) by cantilever detectors and/or silicon-based microelectromechanical systems [38–40].
In the following, alternative procedures are proposed for the sake of comparison with other theories
and models.

2.4. Verifying New Particles by Alternative Experiments

Detectors for Earth-based experiments looking for WIMPs of mass mW , mW80Gev scattering on
smaller particles were proposed in Reference [41]; nevertheless, interaction signals happening in the
Sun are considered as well.

The main differences between generic light scalars and axions were discussed in Reference [42]
on the basis of P and T violations.The regions of the parameter space available for axions exclude,
by electric dipole moment bounds, those for a Fifth-Force recognition as spin-dependent and mediated
by an axion-like particle; nonetheless, for a generic scalar unaffected by CP violation, a Fifth-Force
description is still possible.

The signal containing a spin-flipping effect calculated after the cross section of the absorption by
a scanning Fabry-Pérot interferometer as a function of a ’relaxation time’ can be ’cleaned’ [43] in order
to obtain the true description of the emission rate and the absorption one.

For a beam of electrons prepared for a Fabry-Pérot interferometer according to a required velocity
distribution precision and (three-dimensional space) radial resolution, for Thomson scattering of
laser electrons from an electron beam, Doppler-shifted wavelength of photons backscattered under
180 degrees, velocity distribution radially resolved in space, absolute electron energy, and the degree
of space-charge compensation can be measured [44]. Measurement of longitudinal and transverse
electron temperature is determined up to a lower bound for the ratio, respectively, and it has an upper
bound (of 10/2) for velocity distribution. It further reveals fractional space-charge compensation;
moreover, it is suited for higher laser intensity, i.e., by appropriate placement and use of the cavity
mirrors of a confocal resonator.

This technique provides, for the first time, nondestructive measurement of velocity distribution
in an electron beam radially resolved in space. The results presented here comprise the direct
measurement of the absolute electron energy and the degree of space-charge compensation in the
electron beam. The determination of an upper bound of 10/2 for the ratio of longitudinal-to-transverse
electron temperature implies the first direct measurement of flattened velocity distribution.

Differently, it is also possible to look for new predicted particles by adapting previously proposed
experiments and apparati for the required tasks.
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Noise-minimization techniques involving changing mirror disposition for Michelson
interferometers were reviewed in Reference [45].

For nonlinear interferometers [46], optical switching (for example, but not only, of mirrors) can be
obtained via cross-phase modulation of a lossy (particle-beam) line, i.e., for a Sagnac interferometer.

The Sagnac effect can be explored by studying the role of spin-rotation coupling for circularly
polarized light in order to testify on the photon-helicity coupling to rotation: for this, an analogous
experiment of neutron interferometry can be performed [47]. The frequency shift and a constant optical
phase shift for the prepared beam of neutrons can be tested by multiplying angular velocity Ω by the
time of flight of a photon between two interferometers ends Δt = l/c to obtain helicity-rotation phase
shift ΔΦ = 2Ωl/c as the same phase shift predicted in the rotating frame at the detector.

The presence of different particles in the (Earth-based) lab system, such as those described for
Equation (5), can be revealed by a different helicity-rotation phase shift Δ̃Φ.

Their gravitational and other kinds of interaction with neutrons in the prepared beam would
modify neutron kinetic energy Kn. Indeed, velocities �v correspond to the average of the wavepacket of
the prepared neutron beam; should neutrons undergo interactions, their velocities after interaction(s)
�v′ = �vn interact �= �v might be changed, i.e., in any case of inelastic scattering interaction(s).
The helicity-rotation phase shift(s) can be measured by evaluating the requested time for end-to-end
interferometer path covering, Δt̃, their velocities �vn interact �= �vn i ≡ c2�ki/ωi and their velocity
distribution, being Φ ≡ Φ(�k) and Φ′ ≡ Φ(�kinteract).

Differently, in the case of a weak gravitational field, the velocities of the new interacting particles
(not prepared in the neutron beam) in the experiment environment would be further modified,
e.g., such as established in Equation (3), for which different helicity-rotation phase shift(s) Δ̃Φ ′′ would
be detected.

The presence of different kinds of particles would be predictable in the case of different values
for Δ̃Φ ′′.

The effectiveness of a gravitational (but not necessarily only Berry) phase, such as the one in
Equation (2), multiplying wavefunction Equation (1) (from which the neutron wavepacket is prepared),
would lead to two different results, Δ̃ΦG

′′′ and Δ̃Φ ′′′ for the measures of the helicity-rotation phase
shift(s) according to whether the new particles interact gravitationally or not.

2.5. Semiclassical Descriptions

Analysis of a semiclassical regime for the quantum nature of gravity based on the notion of
precausality was developed in Reference [48]. Among precausality requirements, the necessity
to imply quantum modifications to matter fields rather than on the geometrical description of
spacetime was also established for lab experiments in Minkowski spacetime. In curved spacetime,
EFE nonlinearity plays a crucial role in determining the viability of a geometrical gravitational theory,
and as far as quantum-gravity corrections to nongravitationally interacting high-energy matter fields
are concerned [49].

Quantum optical corrections for Maxwell equations [5] are predicted for short-distance
experiments, for which a Fock occupation space can be defined for the quantum optical system.
Such corrections [50] can be framed within models interpreting the statistical correlations as the
outcome of theories with local hidden variables.

An experiment with correlated light beams in coupled interferometers allows for
semiclassical-limit analysis [51].

Among quantum (nonsemiclassical) effects, the production of Planck-sized black holes can be
discerned in this way [52].

The modification of the thermodynamical properties of macroscopic materials [53] can, after these
controls, be exploited to study the possibility of modified energy–momentum relations.

For low-energy matter fields, the phenomenon of gravitational decoherence can be investigated
by studying a quantum system interacting with the external environment. This way, a modification to
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the quantum fields brought by the (Minkowski) lab gravitational field can be modeled as spacetime
fluctuations of quantum-gravitational origin acting on the matter fields [54], as well as for experiments
taking place in larger scales than Planck length.

Quantum-gravitational decoherence can, in this way, be differentiated from quantum decoherence
by experiment settings including cold-ion traps [55].

The interpretation possibilities trapped-ion crystals and the generating functionals for
self-interacting scalar fields [55,56] further be done for Reference [57] determining the corresponding
two-point correlation function.

The correlation between quantum signals and interferometers was schematized in Reference [58]
by setting the different theoretical interpretation of two-mode squeezed vacuum states and two
independent squeezed states by considering the output states as influenced by the transmission
coefficient of the beam splitter.

Quantum fluctuations of electrons in a storage ring can further be modeled as a Markov process
for lattice-gauge theories [59].

Helium properties in several different aggregation states, by taking advantage of their features as
macroscopic quantum states [60], have been exploited and proposed to be exploited for the detection
of gravitational waves [61]. From a theoretical point of view, such experiments [62] allow to obtain
hints about the topology of the Riemannian manifold generated as an EFE solution, not only in the
weak-field limit. Applications for the determination of the mass of white dwarfs [63] and about the
evolution of galaxy formation [63] have also been performed.

The experimental device, consisting of fiberoptic gyroscopes, allow establish a reliable offset with
regard to the Earth-rotation effects [64]; the remaining noise can be studied as a quantum property of
the aggregation state of the material [65].

Semiclassical Experiments

The modification of energy–momentum dispersion relations (as from analysis of its spectral
decomposition) was proposed in the literature with the aim to propose properties of quantum
spacetime foam and some of its semiclassical limits features.

In particular, it is possible to study the phenomenological implication of the foamy structure by
investigating the properties of macroscopic materials with regard to their reflection and refraction
specificities by comparing the atoms and molecules constituting the solid-state structure, either
crystalline or amorphous. This is done by approximating the corresponding potential (wells) as
black-hole-like potentials. In this case, the chosen interacting particle (photon) is small enough with
regard to the potential wells and the Planck scale, but the experiment is conducted at length sizes
larger than the Planck scale [7,8]. The overall gravitational regime of the lab system, however, is still
Minkowskian, and there exists a valid paradigm to discriminate and calibrate interaction(s) between
the system and the external environment.

Photon transit in a (macroscopic) block of diaelectric material is supposed to cause a (photon)
momentum transfer; there exist appropriate temperatures at which a momentum change caused by the
diffractive diaelectric index, for which the momentum transferred to the block can produce appreciable
(position) reaction shift of the block as the photon exits the block. The diffractive diaelectric properties,
caused by its solid-state structure, can be approximated to the effects of a lattice of (small-size) black
holes, which can account for quantum-gravitational properties of the spacetime inside the block and,
in particular, its foamy features. The described experiment [6] consists of letting a photon cross a
block of diaelectric material of mass M̃ and volume VM̃ = L1L2L3, whose refraction index nre f can
be evaluated after the absolute value of the Poynting vector, and whose center of mass should have
moved of displacement ΔXk at the exit of the photon after k double reflections, i.e.,

ΔXk = L1
hω

2πM̃c2 (n − 1 + 2k) (6)
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with ω being the frequency of the photon. Any modification to the measured displacement has to be
ascribed to quantum-gravitational phenomena, which can manifest in the modification of the photon
energy, in the modification of the diffraction index of the diaelectric block, and/or after the spacetime
foamy structure modifies the potential of the solid-state structure, photon energy, and their interaction.

3. Sky Investigations

3.1. ’Post-Keplerian’ Objects

The values of spin and of the orientation of the massive black hole at the galactic center can be
constrained by analyzing the motion of pulsars around it [66]. To do so, considering pulsar precession
or any other quantities averaged on it have proven less efficient than considering the pulsar as a test
particle moving in a Kerr metric. In the latter strategy at first PN order, no counterfilter has been
theorized that is able to remove the Keplerian [67] ’noise’ due to the other considered Newtonian
’material’ in the galactic region. In Reference [68], S stars are considered for their almost Keplerian
behavior from which perturbation due to a background Schwarzschild metric can be isolated; this way,
the black-hole-spin-induced quadrupole moment can be measured under the description of redshift
measurements distributed along the orbital path and more intensive at the pericenter. Under the
assumption of a different background metric, the orbit of the star is influenced by the spin of the
galactic black hole (BH) at PN order, as after analysis of photon-propagation delays, for which the
geodesics path is governed by a Hamiltonian

Hgeod = HMink + HSchw + HFD + Hq, (7)

where flat spacetime Hamiltonian, the Schwarzschild Hamiltonian, the frame-dragging Hamiltonian,
and the BH quadrupole moment have been defined, respectively: the Schwarzschild Hamiltonian is of
the v4 order, and both the frame-dragging Hamiltonian and the BH quadrupole moment one are of
the v6 order.

Further items of information can be obtained at the PN order for a star orbiting the galactic BH by
a Keplerian nonprecessing orbit by simplifying the stellar Doppler shift as described by PN parameter
β as β ≡ β(r; a)

β2 =
rs

r
− rs

2a
, (8)

with a being the orbital major semiaxis, and rs the Schwarzschild radius of the BH. The periapse shift
due to any kind of dark matter is negligible at this order.

The precession of a star orbiting the galactic BH can be expressed [69] as a function of astrometric
deviation δx, as a function of galactic BH spin χ and a, δx ≡ δx(χ, a)

δx = χ
1

a1/2(1 − e2)3/2 (9)

For double-neutron-star binaries, orbital-period derivatives of orbital period ṗ can acquire
improvements by wide-bandwidth coherent-dispersion devices, as pointed out in References [70–72].

Appropriate controls from binary pulsar systems can [73] set upper and/or lower bounds on the
parameters and/or the parameter space of theories whose low-energy limit admits a strong-field limit,
different from GR, a different value for universal and/or a running Newton constant G, and on the
energy density of the low-frequency (limit of) gravitational waves.

By studying the rate equation for the derivative of mass M growth of a large body, given as Ω,
the Keplerian orbital frequency of the large body orbiting a star of mass M∗ at orbital distance α and
ΣP the surface density of the field planetesimals, R the radius of the large body, [74,75]

dM
dt

= πR2ΩΣPFG, (10)
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(References [76,77]), with FG as the gravitational focusing factor.
The magnitude of Neptune’s orbital expansion [78] has imposed a lower limit of about 5 AU;

numerical results indicate the inclination distribution as sensitive to the rate of orbital evolution for
giant planets, for which longer timescales of orbit evolution are correlated to higher inclinations.

For this, optical interferometers, infrared long-baseline and long-baseline (sub)millimeter
interferometers, and high-sensitivity infrared observatories, are compared.

3.2. Verifying New Celestial Bodies by Alternative Experiments

3.2.1. Optical Interferometers

Optical interferometers are useful in the study of galaxies, celestial bodies in galaxies,
and Newtonian and Keplerian material in and around them. Protoplanetary disks (i.e., around
a star) can be analyzed for the information they carry for structure evolution [79] for the role of grains,
dust, polycyclic aromatic hydrocarbons, and minerals. Extinction cross-section Cexti of a radiation field
with solid (macroscopic) particles equals that for absorption Cabs, summed to that for scattering Csca,
and also equals the imaginary part of total electric polarizability α expressed as the sum of the latter,
αjk̂

, in the three direction of the semiaxes, i.e., j = jx̂, jŷ, jẑ, of the ellipsoid-shaped orbiting particle
describing the grain, such as

Cexti = Cabs + Cabs = Im(α) = Im

[
V(ε1 + iε2 − εm)

�=3

∑
�=1

1
(εm + L�(ε1 + iε2 − εm))

]
(11)

with ε as the dielectric function, L� geometrical factors such that ∑
�=3
�=1 L� = 1, and m the complex

refractive index individuating (also) a mass, as solid materials are described by their own optical
constants. The presence of different kinds of dust individuates different sizes for the formation of
planets, as well as for their size (mass). The composition of dust and dust grains reveals structure age.
Spectral analysis reveals the composition in brain minerals, dust, dust grains, different kinds of dust,
and crystalline and amorphous material. Grain growth [80] can be individuated both by spectroscopy
and by mm observation according to grain size.

Dust-temperature determination can be achieved by analysis of different vibrations of the lattices
of heavy ions, and/or groups of ions having low bond energies, and/or when the signal-to-noise ratio
is high.

3.2.2. Transition Lines

Studying CO transition lines CO(3-2) or CO(2-1) at submillimetric (submm) scales allows one
to infer the interaction properties between a BH and a spheroidal celestial body (of comparable
features with regard to the former) [81], and helps shed light on the role of quasars and quasarlike
objects in the evolution of galaxies. Galaxy emission lines were partially surveyed in Reference [82].
The same emission lines also provide information on star-disk size. An increased ratio among the
lines might indicate [83] an increase of the temperature of the gas corresponding to the upper layers
of the disks; higher angular resolution for scanning the dust region might indicate the presence of
a warp; nevertheless, the variation of disk thinness is unlikely to be due to photoevaporation, grain
growth, and binarity. Differently, the presence of a planet could be considered as responsible for warp
shaping, the creation of an inner whole, and different angular resolutions for emission lines. Analysis
of mm continuum can also detect azimuthal morphology. Emission-line analysis allows to control the
spectral-energy distribution model, followed by the studied mechanism. CO (1-0) line observations
have proven [84] effective in detecting galaxy-forming areas, and areas up to the optical range.
The possibility of gravitational lensing for CO lines was discussed in Reference [85]. The detection of
acoustic modes was discussed in Reference [86] as far as mirror suspensions are concerned.
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3.2.3. Laser Interferometers

The use of sapphire crystals in laser interferometers was analyzed in Reference [87]. In restrictions
due to the availability of the medium, which can be at least partially overcome by applying temperature
gradient techniques, the interest in the detection of gravitational waves has been pointed out.
Thermoelastic noise can be reduced [88] by changing the beam shape as a non-Gaussian mesa-shaped
center-flat circular intensity profile by modifying the mirror shapes. This is necessary [89,90] to
improve the techniques with center-flat mirrors and mesa-shaped beam optical cavities. Tests for the
angular resolution [91] of a six-antenna millimeter radio interferometer that is able to detect, in a binary
system of two stars with their each own disk, two different angular variables. Uniform probability
distribution was chosen to impose a lower limit to the spectral index of one of the stars (Star A) as a
function of the parameters of the other star (Star B), achieving a 99.7% (3 σ) confidence level, not only
to determine different angular positions for two disks for Star A, but also to infer that they were not
on the same plane by the nondetection in the scattered light images (within interstellar and galactic
media) of the primary disk.

The emission from the target stars has mostly been modelled as thermal; nevertheless,
other (and/or further) nonthermal mechanisms, i.e, in this case, free–free and gyrosynchrotron
emissions, are eligible candidates to be supposed as a non-negligible fraction of the millimeter flux
in the observations. The reached angular resolution enabled upper and lower bounds on disk-grain
distribution (of Star A), and allowed for dust-deposit probability.

By the same device, it is possible to analyze [92] gaseous CO emission by the far quasar, its mass,
density and temperature, and put lower bounds by comparing the CO line-flux ratios to those of a
one-component large velocity gradient [93]. Excitation evaluation allows to evaluate on the quasar’s
gas and metallic enrichment. Dust emission and gas density at the given redshift allow to infer that
not only was star formation possible at the observed time, but also rapid-growth black-hole formation
at early cosmological times.

Appropriate continuum observations (at a millimeter scale) and the choice of molecular transitions
allow to gain information about the core centers of stars and disks. Mm-continuum observations of
two intermediate-mass star-forming regions up to high-mass star-forming regions, while the CN and
CS molecular line shows chemical and physical effects [94] that cannot be confused with the opacity
properties of celestial bodies. An increase of the dust opacity index and a decrease of the optical
depth allows to hypothesize the presence of grains at the core and/or disk centers. The choice
of opportune molecular-transition [95] lines allows to classify disk properties in star formation.
To analyze continuum observations [96], the increase of the opacity index caused by an insufficient
signal-to-noise ratio and UV coverage was proposed to ameliorate observations by increasing the
baseline length. For proposals to refine the signal from line contamination (from bolometer data), see,
e.g., Reference [97]. For a better opacity index, see Reference [98].

3.2.4. Baseline Interferometers

The detection-rate statistics of compact radio sources were analyzed for particular choices of sky
pixelization [99]. For a single-baseline interferometer, they can be detected iff the most flux density
coincides with that of a compact structure. Smaller, i.e., thinner, structures could be missed within this
investigation pattern.

Arm-cavity-mirror mechanical modes of interferometric detectors might cause parametric
instabilities. This instability can be dumped by adding a spring made of piezoelectric material with the
task of dumping to the amplifier circuit attached to the detector material, and an extra resistor with the
purpose of shunting, then linked to the ground of the circuit by electric wire [100]. The piezoelectric
material has the anisotropic structure of Reference [101], such that strain-energy dissipation in the
shunted piezoelectric material depends on the material’s geometric shape.

Differently, this problem was proposed to be overcome by choosing a cooled silicon mass for the
detector material [102].
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As far as long-baseline interferometers are concerned, the dust-evaporation boundary region in
young-stellar-object disks can be sufficiently resolved [103], such that the physics underlying grain
formation can be schematized.

For a single-baseline Earth-based interferometer, differential astrometric observations are affected
by stellar aberration in angular resolution [104]; variations of calibration terms among pixels of
interest must be introduced to avoid correlations between calibration summands, and both azimuthal
derivatives of the position-variable sky and equatorial angle, for which the former implies the lower
bound for the accuracy of the velocity absolute value.

3.2.5. Redshift Role

At a redshift of z = 6.419, transition lines CO (6-5) and CO (7-6) indicate that the behavior of the
interstellar gas allows for quick metal and dust enrichment; from the area of the molecular region and
the brightness of the transition lines it is possible to infer [92] star and massive-BH formation can occur
at the same cosmological epoch.

The stellar photosphere is suited for optical photometry in order to individuate emission regions
by simple geometrical models for sources in the IR. By suitably expressing spectral-energy distribution
for dust disks [105], upper and lower bounds for the dust-sublimation temperatures can be imposed
after the calculation of the size of the region where the phenomenon takes place, whose radius can be
parameterized as a square inverse function of dust temperature.

Calibration of source data and location ones can allow to Fourier-transform the (time) delay to
the (event) rate domain, to which appropriate filters can be applied [106] to eliminate radio-frequency
interference for early-cosmological investigation. By letting imaging scale as O(Nlog(N)), with N
being the number of data samples, it is possible to individuate sources at redshifts z̃, z̃ = 7 to
z̃ = 11 [107] to investigate the first epoch of star formation and of reionization. Therefore, weaker
sources can also be detected.

Laser-photocathode uses [108] are advantageous in laser interferometry as a coherent transition
radiation that can generate radiation is fully characterized by the square modulus of the Fourier
transform. The energy spectrum emitted by transition radiation is uniform, such that, according to
Reference [109], the frequency spectrum is only a(n exponential) function of the electron-beam form
factor. For celestial bodies emitting in the IR spectrum, this is a consistent optimization criterion for
system alignment.

4. Outlook

Planet formation can be individuated [110] by the spectral-energy distribution of the observed
lines and in the spectrum in the continuum.

The distribution of major exoplanet axes is best accounted for nonlinear model fitting, for which
the parameter space can be applied (Bayesian filters, described Markov chains).

Analysis of lines CO(1-0), CO(3-2) and CO(2-1) [111] can reveal the presence of large, massive,
cold molecular clouds that exist with kinetic temperatures close to that of CMBtemperature (in the
inner disks). Radial velocities and (position) offsets from the center of the star are measured, as well as
the CO(3-2) spectrum in mm (wave) array-device observations.

By the same techniques and infrared observations [112,113], for CO (1-0) line observations, we
can make numerical simulations [114] of the hydrodynamical properties of dust and gas morphology
at the central region of ionizing stars, for which phenomena of star-formation account and compensate
for the presence of nuclear gas according to star-formation rate.

Laser-frequency measurements [115] help calibrate frequency absolute and the long-term stability
of a fiber Fabry-Pérot interferometer. For small temperatures, i.e., for a spectrum of 1–3 ms−1, it is
possible to characterize the Doppler radial velocity shifts at the 1 ms−1 of exoplanets.
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Laser interferometers have proven efficient [116] in detecting particle interactions linearly in g,
such as spin-gravity coupling, and P- and T-violating interactions from an astrophysical point of view.
It may also apply to (integral-spin) dark-matter searches, as well as other kinds of investigations.

The existence of continuous spectra within the search for gravitational waves has led to the
individuation of planets, for which several techniques have been set.

The needed hypotheses for for adding five parameters describing generic elliptical orbits,
i.e., for eccentricities e, such that e � 0.8 to computations for the computation of a monochromatic
source, were analyzed in Reference [117] for a radio pulsar orbiting a planet, both for Earth-based
detectors of gravitational waves as well as for interplanetary spacecrafts.

After pointing out spectral-analysis laser-frequency noise [118], time-delay-based interferometry
is effective in comparing different optical paths. By numerically simulating different times of travel,
it is possible to extract the spectrum signal of planets and other celestial bodies perturbing the gathered
signal in spacecraft interferometry in the Solar System. By numerically simulating parameterized
post-Newtonian (PPN) parameters β and γ for Solar System bodies for (geodesics) solutions to the
variation of the metric, the opportune time is delayed.

Within gravitational-wave observations, it is possible [119] to discover planets either orbiting
compact binaries or passing close to them, with masses of around ∼ 2 × 1030g, even at redshift z ∼ 1.
It is possible to resolve an inflation stochastic GW background in frequency range fmin ∼ 0.2 Hz
and fmax ∼ 1 Hz. By gravitational-wave-detecting in space, at fmin or lower frequency f ≤ fmin,
it is possible to resolve extragalactic white-dwarf binaries, and, at higher frequencies, f ≥ fmin,
cosmological double neutron-star binaries and double black-hole binaries or black hole–neutron star
binaries by assuming a nearly-flat noise spectrum.

Ultrashort-period exoplanets can be discovered [120] as weak sources of gravitational waves
close to binary systems, according to the frequencies of emitted gravitational waves fgr > 10−4 Hz.
By cumulative periastron shift, it is possible to express luminosity as a frequency function, as, usually,
the ratio between the apparent luminosities of exoplanets and other celestial bodies to other binary
systems reaching Earth-based detectors is widely resolved.

The atmosphere of extrasolar planets orbiting a star is possible by differential-phase measurements
near the IR spectrum [121] by the brightness ratio of the planet and star.Indeed, after the possibility
of angularly resolving the star, optimization of statistical tests for orbital and spectral parameters is
possible. In case the planet’s revolution time is not negligible, such optimization could, therefore,
be lowered.

In particular, it is possible [122] to evaluate atmosphere cross section as a wavelength function,
such as Rayleigh scattering and refraction, i.e., from 115 to 1000 nm, from UV O2 absorption. As a
result, it is possible to infer whether atmosphere for a given planet exists, and to establish the chemical
elements or process that determine the planetary radius to near-IR refraction.

Microarcsecond resolution allows for astrometry measurements about the nuclei of active galaxies,
and accretion disks of supermassive black holes and their the relativistic jets. Precision allows for the
verification of stellar and galactic structure, as well as hypotheses about dark matter and cosmology
back to star-formation times, small-scale investigations of quasar and AGN cores, and to investigate
binary supermassive black holes.

At microarcsecond precision, the astrometric revelation of quasar parallaxes is rendered
accessible [123], which allows to analytically investigate, at the cosmological scale, the parameter
space possibly needed to describe dark energy. Indeed, a direct geometric measurement is free of
astrophysical systematic effects. The particle-induced effects are summarizzed in [124–134].

By means of far-IR coherent interferometry, even close to quantum noise, it is possible for an
interferometer to individuate an Earth-like planet. At high spectral resolution, precise measurements
of atmospheric temperature and molecules, pressure, and composition are achievable.

Particle quantum properties and the quantum features of spacetime at Planckian lengths allow to
investigate the semiclassical limit of quantum-gravitational expressions. Quantum optical systems
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resulting in aggregation states of matter allow to account for such quantum features for phenomena
taking place at scales larger than the Planckian, for (lab) experiments, and for observational surveys
taking place in the background (Minkowski) flat spacetime [5–8].

The paper was organized as follows.
In Section 1, the main motivations for the paper were presented.
In Section 2, theories predicting new features for experimentally known particles and new particles

were recalled to specify which experiment systems could be useful for their verification.
In Section 3, experiment devices and techniques were recalled for the verification of fundamental

features, such as planet and exoplanet formation and structure, of standard cosmology, were outlined.
In Section 4, brief remarks about perspective investigations were proposed.
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Abstract: We discuss junction conditions across null hypersurfaces in a class of scalar–tensor gravity
theories (i) with second-order dynamics, (ii) obeying the recent constraints imposed by gravitational
wave propagation, and (iii) allowing for a cosmologically viable evolution. These requirements select
kinetic gravity braiding models with linear kinetic term dependence and scalar field-dependent
coupling to curvature. We explore a pseudo-orthonormal tetrad and its allowed gauge fixing with one
null vector standing as the normal and the other being transversal to the hypersurface. We derive
a generalization of the Lanczos equation in a 2 + 1 decomposed form, relating the energy density,
current, and isotropic pressure of a distributional source to the jumps in the transverse curvature
and transverse derivative of the scalar. Additionally, we discuss a scalar junction condition and its
implications for the distributional source.

Keywords: scalar–tensor gravity; junction conditions; null hypersurfaces

1. Introduction

Scalar–tensor gravity theories give viable modifications of general relativity in which accelerated
expansion could be recovered without dark energy at late times; well-tested solar system constraints
could be obeyed (for example through the Vainshtein mechanism); and the recent constraint from
gravitational wave detection [1–7] on the propagation speed of the tensorial modes could be
successfully implemented. Indeed, from the class of Hordeski theories ensuring second-order dynamics
for both the scalar field and the metric tensor [8,9], a subclass has been identified [10–13] in which
gravitational waves propagate with the speed of light (as verified both from the almost coincident
detection with accompanying γ-rays in the case of the neutron star binary merger and from a stringent
test of the dispersion relations disruling massive modes for the 10 black hole mergers). This subclass
contains cubic derivative couplings of the scalar field in the Lagrangian, known as kinetic gravity
braiding [14,15]. In the Jordan frame, the curvature couples with the scalar through an unspecified
function of the scalar field.

This class of scalar–tensor gravity models could be further restricted by the requirement to ensure
a viable cosmological evolution. In Ref. [16], it has been proven that for a kinetic gravity braiding
model with Lagrangian only linearly and quadratically depending on the kinetic term X = − (∇φ)2 /2,
an autonomous system of equations governs the dynamics, leading to a number of fixed points for
the background dynamics, with three of them representing consecutive radiation-, matter-, and dark
energy-dominated regimes (see for example Figure 1 of Ref. [16]). The same model was further
analyzed from the string theory-motivated point of view of avoiding de Sitter regimes, which are
not embeddable in string theory [17]. Cross-correlating this model class with the requirement of the
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propagation of tensorial modes with the speed of light, the quadratic dependence has to be dropped.
In this paper, we consider this class of kinetic gravity braiding models with only linear dependence on
the kinetic terms and analyze the junctions across null hypersurfaces.

Junction conditions in general relativity are known either for spatial or temporal hypersurfaces [18]
or for null hypersurfaces [19,20]. The latter are more sophisticated, as the normal to the hypersurface
is not suitable for a 3 + 1 space-time decomposition, being also tangent at the same time.
The decomposition can be done with respect to a transverse vector, with the gauge arising from
its non-unique choice dropping out from the final results [19], or by employing a pseudo-orthonormal
basis with two null vectors, one of them playing the role of the normal, the other being transversal [20].
The distributional contribution arising in the curvature from the possible discontinuity of the metric
derivative across the hypersurface is related to singular sources on the hypersurface through the
Lanczos equation. The same technique led to the derivation of the dynamics on a brane embedded in a
5-dimensional bulk [21–23].

In the full Horndeski class of scalar–tensor gravity theories, junction conditions across spatial
or temporal hypersurfaces have been derived [24,25], but the null case stays uncovered, despite its
importance being undoubted as all electromagnetic and gravitational shock-waves propagate along
such hypersurfaces.

Here we propose to derive such junction conditions for the class of kinetic gravity braiding
theories with a linear kinetic terms, which, as discussed above, are both cosmologically viable and obey
the gravitational wave constraints. This generalizes our earlier work on null junctions in Brans–Dicke
theories [26].

The notations are as follows: space-time indices are Greek, 2-dimensional spatial indices are
Latin capital letters. The soldering of any quantity A, with values A+ and A− on the two sides
of the hypersurface, is Ã = A+Θ ( f ) + A−Θ (− f ), where Θ is the step function. The average on
the hypersurface is denoted as 〈A〉 = (A+ + A−) /2 and the jump over the hypersurface as [A] =

A+ − A−.

2. Equations of Motion

The assumed Lagrangian

LGKGB = B(φ)X + V(φ)︸ ︷︷ ︸
L2

−2ξ(φ)�φX︸ ︷︷ ︸
L3

+
1
2

F(φ)R︸ ︷︷ ︸
L4

(1)

with B, ξ, F arbitrary functions of the scalar field yields the following expressions through the variation
of metric

E(2)
μν = −1

2
B(φ)

(
Xgμν − φμφν

)
− 1

2
V(φ)gμν, (2)

E(3)
μν = ξ(φ)�φφμφν + 2ξ ′(φ)X

(
φμφν + Xgμν

)
+ 2ξ(φ)X(μφν) − ξ(φ)Xκφκ gμν, (3)

E(4)
μν =

1
2
{

F(φ)Gμν +
(

F′(φ)�φ − 2F′′(φ)X
)

gμν − F′(φ)φμν − F′′(φ)φμφν

}
, (4)

and through the variation of the scalar field

E(2)
φ = B(φ)�φ − B′(φ)X + V′(φ), (5)

E(3)
φ = ξ(φ)

{
(�φ)2 − φμνφμν − Rμνφμφν

}
− 2ξ ′′(φ)X2, (6)

E(4)
φ =

1
2

F′(φ)R, (7)
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where φμ ≡ ∇μφ and φμν ≡ ∇ν∇μφ. The Ricci curvature tensor appears in the expression E(3)
φ through

the Ricci identity [∇μ,∇ν]Vκ = Rκ
λμνVλ, which has been used to get rid of third derivatives of φ.

These are the left-hand sides of the equations of motion (EoMs). The right-hand sides are half of
the energy–momentum tensor for the metric variation of the matter action and zero for the scalar field
variation, as in the Jordan frame the matter does not couple to the scalar field.

3. Junction Conditions

3.1. The Extrinsic Formulation

We employ a pseudo-orthonormal basis with two null vectors Nμ and Lμ, the first being the
normal (surface gradient, which is also tangent) to the hypersurface Σ and the other playing the
role of the transverse vector, with respect to which we perform a (2 + 1) + 1 decomposition [20].
The normalization is LμNμ = −1. The continuity of both the metric tensor gμν and scalar φ are
imposed over the hypersurface: [φ] =

[
gμν

]
= 0. Their first derivatives in the null transverse direction

φL ≡ Lμ∂μφ and Lρ∂ρgμν may have a jump

ζ = [φL] , cμν =
[
Lρ∂ρgμν

]
, (8)

and since all tangential derivatives are assumed to be continuous, we have

[φμ] = −Nμζ, [∂κ gμν] = −Nκcμν. (9)

The second-order derivatives appearing in the equations of motion

Eμν ≡ Ẽμν + Eμνδ ( f ) =
1
2
(
T̃μν +Tμνδ ( f )

)
, (10)

Eφ ≡ Ẽφ + Eφδ ( f ) = 0 (11)

lead to the distributional contributions Eμν and Eφ along the thin shell, arising from the derivative of
the step function. All quantities with a tilde are the regular contributions to the respective quantities.
For consistency, we also include a distributional energy–momentum tensor Tμν together with the
regular one T̃μν. In the argument of the delta distribution, f denotes a function which generates the
hypersurface as its zero set. For convenience, we also assume that Nμ = ∇μ f .

We introduce the notations

cμ = cμνNν, c† = cμNμ, c = cμ
μ (12)

and explicitly give the jump of the connection as

[Γκ
μν] = −1

2

(
Nμcκ

ν + Nνcκ
μ − Nκcμν

)
, (13)

hence the singular parts of the curvature tensor and its traces become

Rκ
λμν = −1

2

(
Nμcκ

νNλ − Nνcκ
μNλ + NνcμλNκ − NμcνλNκ

)
, (14)

Rμν = −1
2
(

Nμcν + Nνcμ − NμNνc
)

, (15)

R = −c†. (16)

In particular, the singular part of the Einstein tensor is

Gμν = −1
2

(
Nμcν + Nνcμ − NμNνc − c†gμν

)
. (17)
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We also give the jumps and singular parts of the quantities constructed from the scalar field. As
a calligraphic version of φ is not catchy, in the decomposition A = Ã + A δ( f ) we introduce the
alternative notation A ≡ Sing(A), denoting the singular part of the arbitrary quantity A.

For the scalar field, we have

Sing(φμν) = −ζNμNν, Sing(�φ) = −ζNμNμ = 0, [X] = φNζ, (18)

where φN = Nμφμ is the normal derivative. We note that the value of φN on the hypersurface is
unambigous, being a tangential derivative, which is continuous.

Explicit calculation gives the hypersurface contributions to the left-hand side of the tensorial EoMs:

E
(2)
μν = 0, (19)

E
(3)
μν = ξ(φ)ζ

(
2φN N(μ〈φν)〉 − φ2

N gμν

)
, (20)

E
(4)
μν =

1
2
(

F(φ)Gμν + F′(φ)ζNμNν

)
(21)

and the hypersurface contributions to the left-hand side of the scalar EoMs:

E
(2)
φ = 0, (22)

E
(3)
φ = ξ(φ)

(
2ζNμNν〈φμν〉+ φNcμ〈φμ〉 −

1
2

φ2
Nc
)

, (23)

E
(4)
φ = −1

2
F′(φ)c†. (24)

3.2. The Intrinsic Formulation

The above equations are expressed in a four-dimensional coordinate system smooth across the
hypersurface. Such coordinate systems may be difficult to construct, hence it would be more practical
to use coordinantes intrinsic to the junction hypersurface.

The hypersurface contributions to the left-hand side of the tensor EoMs (20) and (21) are tangential
in the sense that

E
(3)
μν Nν = E

(4)
μν Nν = 0. (25)

Hence, we may expand them in a basis adapted to the junction hypersurface Σ. We choose this basis
as
(

Lμ, Nμ, eμ
2 , eμ

3

)
, where the eμ

A are two spacelike tangent vector fields to Σ, satisfying

Nμeμ
A = Lμeμ

A = 0. (26)

For a fixed choice of Nμ, we may always choose eμ
A such that the vector fields (Nμ, eμ

2 , eμ
3 ) form a

holonomic set, but this is not imperative (we may also choose them to form a pseudo-orthonormal
system). The following statements are also valid in the anholonomic case. The inner products of the
spacelike vectors generate a spacelike induced metric

qAB = gμνeμ
Aeν

B (27)

on the two-dimensional subspaces spanned by the vectors eμ
A. Its inverse is denoted qAB (capital Latin

indices are raised and lowered by either the metric or its inverse). The completeness relation of the
adapted basis is

gμν = −LμNν − NμLν + qABeμ
Aeν

B. (28)
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We further denote eμ
1 = Nμ, with the Latin indices a, b, ... taking the values 1, 2, .... The extrinsic

curvature Kab = eμ
a eν

b
1
2LN gμν is unsuitable to describe the transversal change in the metric as Nμ is

also tangential. For this reason, we introduce the transverse curvature [20]:

Kab =
1
2

eμ
a eν

bLLgμν, (29)

with its jump related to cμν as

[Kab] =
1
2

eμ
a eν

bcμν. (30)

The singular part (hypersurface contribution) of the Einstein equation is but the generalized
Lanczos equation

E μν =
1
2
T μν, (31)

where E is the sum of the terms (20) and (21). As the left-hand side is purely tangential,
the distributional stress–energy–momentum tensor admits the decomposition

T μν = ρNμNν + jA
(

Nμeν
A + eμ

ANν
)
+ pABeμ

Aeν
B, (32)

where ρ, jA, and pAB are the energy density, current vector, and stress tensor of the distributional
source, respectively. These quantities, defined as the components emerging with respect to the intrinsic
triad of vectors, can be evaluated even when the bulk coordinates do not match smoothly along Σ.
They are defined as

ρ = 2EμνLμLν, jA = −2EμνLμeν
A, pAB = 2Eμνeμ

Aeν
B. (33)

The 2 + 1 decomposition of Equation (31) yields an isotropic pressure pAB = pqAB and

ρ = F(φ)[KAB]qAB + F′(φ)[φL]− 2ξ(φ)φN [φ
2
L], (34)

jA = −F(φ)[KNA] + 2ξ(φ)[φL]φNφA, (35)

p = F(φ)[KNN ]− 2ξ(φ)[φL]φ
2
N , (36)

where φA = eμ
Aφμ, KNA ≡ K1A, and KNN ≡ K11.

The scalar equation is

0 = ξ(φ)φ2
NqAB[KAB]− 2ξ(φ)φNφA[KNA]

+
(

F′(φ) + 2ξ(φ)φN〈φL〉
)
[KNN ]− 2ξ(φ)[φL] (φNN − 〈KNN〉φN) , (37)

which contains jumps and averages. However, by exploring the relation [A]〈B〉+ 〈A〉[B] = [AB], the
averages can be transformed away to obtain

0 = ξ(φ)φ2
NqAB[KAB]− 2ξ(φ)φNφA[KNA] + F′(φ)[KNN ]

− 2ξ(φ)[φL]φNN + 2ξ(φ)φN [φLKNN ]. (38)

Equations (34)–(36) provide generalizations of the Lanczos equation, and Equation (38) a
constraint on the distributional sources.

3.3. Gauge Fixing

At this point, it is worthwhile to remember that there is still gauge freedom in the tetrad choice.
The normal vector field is autoparallel [20]

Nν∇νNμ = κNμ (39)
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with the non-affinity parameter κ = KNN . If the null fields are rescaled as N̄μ = eαNμ and L̄μ = e−αLμ,
with some function α defined on the hypersurface, then the non-affinity parameter changes as

κ̄ = eα (Nν∇να + κ) , (40)

while
φL̄ = e−αφL.

Hence,
φL̄K̄N̄N̄ = φL (Nν∇να +KNN) . (41)

It is possible to achieve
[φL̄K̄N̄N̄ ] = 0 (42)

through any solution of the differential equation

∂α

∂λ
= −〈κ〉 − 〈φL〉

[φL]
[κ], (43)

where λ is a coordinate adapted to Nμ, and the ratio 〈φL〉/ [φL] is a function on the hypersurface, being
evaluated there. Hence, in this gauge, the last term of Equation (38) drops out.

4. Discussion of the Junction Conditions

From the 2 + 1 decomposed form of the tensorial junction conditions, we may express the jumps
in the components of the transverse curvature in terms of the distributional energy density, current,
and isotropic pressure, as well as the jump of the transverse derivative of the scalar field and its square,
as follows

[KAB]qAB =
ρ

F
− (ln F)′ [φL] +

2ξφN
F

[φ2
L], (44)

[KNA] = − jA
F

+
2ξφN

F
φA[φL], (45)

[KNN ] =
p
F
+

2ξφ2
N

F
[φL]. (46)

Then the scalar junction equation (in the gauge where [φLKNN ] = 0) becomes

F′p + ξφN

(
φNρ + 2φAjA

)
= ξ

(
2FφNN − F′φ2

N + 4ξφ2
NφAφA

)
[φL]− 2ξ2φ3

N [φ
2
L]. (47)

There are two cases when these equations simplify considerably: (A) when there is no cubic derivative
coupling ξ = 0, and (B) when the normal derivative of the scalar field vanishes φN = 0. In both cases,
the scalar Equation (47) shows that there is no isotropic pressure p = 0, that the third Lanczos Equation
(46) implies [KNN ] = 0, the second Lanczos Equation (45) gives the current as jA = −F (φ) [KNA],
and finally, the first Lanczos Equation (44) constrains the energy density as ρ = F (φ) [KAB]qAB +

F′ (φ) [φL].

5. Concluding Remarks

By exploring a formalism based on a transverse null vector to the null hypersurface, we derived
junction conditions across null shells in the kinetic gravity braiding theories with linear kinetic term
dependence, in which the curvature and the scalar couples through a generic scalar field-dependent
function. These scalar–tensor theories obey both the gravitational wave constraints and could exhibit a
viable cosmological evolution through radiation-, matter-, and dark energy-dominated fixed points.
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Our formalism gives the necessary equations to discuss energetic shock waves propagating with the
speed of light in these models.

The junction conditions contain the 2 + 1 decomposed form of the tensorial equation,
a generalization of the general relativistic Lanczos equation. This relates the jump in the transverse
curvature to the distributional energy density, current, and isotropic pressure. In the relations, the
jump of the transverse derivative of the scalar and its square are also involved. An additional scalar
equation, without counterpart in general relativity, constrains all of these functions.

If either there is no cubic derivative coupling term ξ = 0, or the scalar field does not change in
the normal direction to the null hypersurface φN = 0, the junction conditions simplify considerably,
leaving the possibility of a distributional source without pressure

T μν =
(

F (φ) [KAB]qAB + F′ (φ) [φL]
)

NμNν − F (φ) [KNA](Nμeν
A + eμ

ANν), (48)

together with the geometric condition [KNN ] = 0. These generalize the corresponding result found for
Brans–Dicke theories in the Jordan frame [26].
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Abstract: We investigate the massive vector field equation with the WKB approximation.
The tunneling mechanism of charged bosons from the gauged super-gravity black hole is observed.
It is shown that the appropriate radiation consistent with black holes can be obtained in general under
the condition that back reaction of the emitted charged particle with self-gravitational interaction is
neglected. The computed temperatures are dependant on the geometry of black hole and quantum
gravity. We also explore the corrections to the charged bosons by analyzing tunneling probability,
the emission radiation by taking quantum gravity into consideration and the conservation of charge
and energy. Furthermore, we study the quantum gravity effect on radiation and discuss the instability
and stability of black hole.

Keywords: higher dimension gauged super-gravity black hole; quantum gravity; quantum tunneling
phenomenon; Hawking radiation

1. Introduction

General relativity is associated with the thermodynamics and quantum effect which are strongly
supportive of each other. A black hole (BH) is a compact object whose gravitational pull is so intense
that can not escape the light. It was proved by Hawking that a BH has an additional property of
emitting radiation. Since Hawking’s great contribution on BH thermodynamics, the radiation from
the BH has attained the attention of many researchers. There are many different process to obtain
the Hawking radiation by applying the quantum field equations or the semi-classical phenomena.
Different accesses to quantum gravity, as well as BH physics predict a minimum measure length
or a maximum evident momentum and associated modifications of the principle of the Heisenberg
uncertainty which is called the generalized uncertainty principle (GUP).

The thermal radiation coming from any stationary metric are calculated [1]. The physical image
is that the radiation develops in the quasiclassical tunneling of particles from a gravitational barrier.
They obtained a thermal spectrum and twice the temperature for Hawking radiation of non-rotating
BH. The expression exp(−2Im(

∫
pdr)) is not invariant under canonical transformation in generally

and expressed that this implies half the correct temperature for BH [2]. In the setting of black rings
significance, the radiation of the Dirac particles can be calculated by applying the Dirac wave equation
in both the charged and uncharged case. The formulate of the field equations of uncharged and
charged Dirac particles by using the covariant Dirac wave equation [3]. E. T. Akhmedov et al. [4]
calculated Hawking radiation by using the quasi-classical phenomenon. The temporal contribution to
gravitational WKB-like calculations are discussed in [5]. The authors analyzed that the quasiclassical
method for gravitational backgrounds contains subtleties not found in the usual quantum mechanical
tunneling problem.
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V. Akhmedova et al. [6] compared the anomaly method and the WKB/tunneling method for
finding radiation through non-trivial space-time. They conclude that these both method are not valid
for all types of metrics. The discreteness space effect of the GUP are investigated in space [7]. Corda [8]
analyzed interferometric detection of gravitational waves: the definitive test for general relativity.
He conclude that accurate angular and frequency dependent response functions of interferometers
for gravitational waves arising from various theories of gravity will be the definitive test for general
relativity. The authors investigated insights and possible resolution to the information loss paradox
via the tunneling picture [9]. They observe that the quantum correction give zero temperature for the
radiation as the mass of the BH is zero.

From F(R) theory to Lorentz non-invariant models in modified gravity are investigated as [10].
The extended theories of gravity are discussed in [11]. The authors analyzed the problems of
gravitational waves and neutrino oscillations through extended gravity theory. The authors [12]
examined the rule to all alternative gravities, a particularly significance of scalar-tensor and f(R)
theories. Yale [13] analyzed the exact Hawking radiation of scalars, fermions and bosons 1-spin
particles applying quantum tunneling phenomena without back reaction. The different dark energy
models like Λ cold dark matter, Pseudo-Rip and Little Rip universes, non-singular dark energy
universes, the quintessence and phantom cosmologies with different types are analyzed [14].

Sharif and Javed [15] analyzed the Hawking radiation of fermion particles applying quantum
tunneling phenomena from traversable wormholes. Corda [16] studied the important issue that
the non-strictly continuous character of the Hawking radiation spectrum generates a natural
correspondence between Hawking radiation and quasi-normal modes BH. Jan and Gohar [17]
examined the Hawking temperature by quantum tunneling of scalars particles applying Klein-Gordon
equation in WKB approximation. Kruglov [18] calculated the Hawking radiation by quantum
tunneling of vector particles of BHs in 2 dimension applying Proca equation in WKB approximation.
Matsumoto et al. [19] analyzed the time evolution of a thin black ring via Hawking radiation.

The different writers [20] determined the Hawking temperature by Hamilton-Jacobi equation
of vector particles of Kerr and Kerr-Newman BHs by applying Proca and Lagrangian equations in
WKB approximation. Corda [21] analyzed precise model of Hawking radiation from the tunneling
mechanism and he found that pre-factor of the Parikh and Wilczek probability of emission depends
on the BH quantum level. Anacleto [22] analyzed the GUP in the tunneling phenomena through
Hamilton–Jacobi process to find the corrected temperature and entropy for three-dimensional
noncommutative acoustic BHs. Anacleto et al. [23] studied the Hawking temperature by the
Hamilton–Jacobi equation of spin 3

2 -particles of accelerating BHs, applying the Rarita–Schwinger
equation in the WKB approximation. Chen and Huang [24] determined the Hawking temperature by
quantum tunneling phenomena of vector particles of Vaidya BHs in applying the Proca equation
in WKB approximation. Anacleto et al. [25] examined the quantum-corrected of self-dual BH
entropy in tunneling phenomena with GUP. Li and Zu [26] analyzed the tunneling phenomena
by the Hamilton–Jacobi equation of scalar particles of Gibbons–Maeda–Dilation BHs, applying
the Klein–Gordon equation in the WKB approximation. Feng et al. [27] calculated the tunneling
phenomena by the Hamilton–Jacobi equation of scalar particles of 4D and 5D BHs, applying the Proca
equation in the WKB approximation. Saleh et al. [28] studied the Hawking radiation of 5D Lovelock
BH with the Hamilton–Jacobi equation by using the Klein–Gordon equation.
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The authors [29] analyzed the cosmology of inflation by modifying terms of gravity and
inflation in F(R) gravity. In the F(R) gravity, the Starobinsky inflation is discussed with the
geometry of gravitational theories to the inflationary models. Övgun and Jusufi [30] calculated
the tunneling phenomena by Hamilton–Jacobi process in a Lagrangian equation of spin-1 massive
particle noncommutative BHs. Jusufi and Övgun [31] examined the Hawking temperature of vector
and scalar particles from 5D Myers–Perry BHs and solved the Proca and Klein–Gordon equations by
using the WKB approximation and Hamilton–Jacobi process in these cases.

The cosmological solutions, BH solutions and spherically symmetric developing through F(T)
gravity were discussed in different cosmic expansion eras [32]. Singh et al. [33] discussed the Hawking
temperature of vector particles from Kerr–Newman BHs in the Proca equation by applying the WKB
approximation in the Hamilton–Jacobi process. Jusufi and Övgun [34] examined the Hawking radiation
of massive particles from rotating charged black strings. Li and Zhao [35] calculated the tunneling
process of massive particles from the neutral rotating anti-de Sitter BHs using the Proca wave equation
in the WKB approximation. The different authors [36,37] determined the temperature of massive
vector particles from the different types BHs by using tunneling phenomena. The nutshell, bounce,
late time evolution and inflation were studied through modified gravity theories [38]. The future of
gravitational theories in the framework of gravitational wave in astronomy was analyzed in [39]. The
charged vector particles tunneling from black ring and 5D BH [40] is studied by wave equation to
calculate the tunneling phenomena for charged particles as well as Hawking temperature. In this
article, the authors have calculated the tunneling probability/rate and Hawking temperature for
charged boson particles tunneling from horizon.

This paper is organization as follows: in Section 2 we discuss the tunneling rate and Hawking
temperature of charged vector W± boson particles for 4D gauged super-gravity BH and also calculate
quantum corrected tunneling probability and Hawking temperature. Section 3 is based on the analysis
of for 7D gauged super-gravity BH. In Section 4, we discuss the graphical behavior of radiation for
these types of BHs and visualize the stable and unstable state of BHs. In Section 5 we explain the
conclusions and discussion.

2. 4-Dimension Gauged Super-Gravity Black Holes

The super-gravity theory defined gauged theory through which the gauge boson, the super-partner
of the particle is charged in some internal gauge group. Moreover, this theory is more important as
compared to the ungauged case, therefore this theory has a negative cosmological constant (Λ), where
Λ is stated in an anti-de Sitter BH. Now, for the study of a boson particle tunneling process form a BH
in (3 + 1) dimension theory of gauged super-gravity, we calculate the Hawking temperature of BH by
tunneling phenomena at event horizon. The solution of BH occur in D = 4 N = 8 theory of gauged
super-gravity (symmetry) [41]. The metric for such theory is given by [41]

ds2 = − (H1H2H3H4)
− 1

2 f dt2 + (H1H2H3H4)
1
2
(

f−1dr2 + r2dΩ2
2,k

)
, (1)

where g = 1/L and L is related to the cosmological constant Λ = −3g2 = −3/L2 and the μ represent
the non-extremality parameter [42]

f = k − μ

r2 + g2r2H1H2H3H4, Hi =
qi
r2 + 1, (for i = 1, 2, 3, 4).

for radius k = 1 and k = 0, then dΩ2
2,k represents the metrics on S2 and R2 respectively. The four

electric potentials Ai
μ are defined as;

Ai
0 =

q̃i
r2 + qi

(for i = 1, 2, 3, 4),
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where qi and q̃i represent charges and physical charges of a BH. The line element from Equation (1)
can be rewritten as

ds2 = −F(r)dt2 + L−1(r)dr2 + M(r)dθ2 + N(r)dφ2, (2)

where

F(r) = f (H1H2H3H4)
− 1

2 L−1(r) = f−1(H1H2H3H4)
1
2

M(r) = r2(H1H2H3H4)
1
2 N(r) = r2 sin2 θ(H1H2H3H4)

1
2 .

The wave equation of motion comprises of GUP obtained from the Glashow–Weinberg–Salam
model [20,43]

∂μ(
√
−gΦνμ) +

√
−g

m2

h2 Φν +
√
−g

i
h

eAμΦνμ +
√
−g

i
h

eFνμΦμ + αh̄2∂0∂0∂0

(
√
−gg00Φ0ν)− αh̄2∂i∂i∂i(

√
−ggiiΦiν) = 0, (3)

where g is a determinant coefficient matrix, Φμν is anti-symmetric tensor and m is particles mass, since

Φνμ = (1 − αh̄2∂2
ν)∂νΦμ − (1 − αh̄2∂2

μ)∂μΦν + (1 − αh̄2∂2
ν)

ι

h̄
eAνΦμ

− (1 − αh̄2∂2
μ)

ι

h̄
eAμΦν

where α, Aμ, e and �μ are the quantum gravity parameter (dimensionless positive parameter), vector
potential of the charged BH, the charge of the particle and covariant derivative, respectively. As the
wave equations for the W+ and W− boson particles are alike, the tunneling actions should be alike
too (W+ = −W−). We will view the W+ boson particle case after simplification and the results of
such case can be changed to multiply negative sign W− boson particles due to the digitalization of the
metric. There value of Φμ and Φνμ are given by

Φ0 =
Φ0

F(r)
, Φ1 =

Φ1

L−1(r)
, Φ2 =

Φ2

M(r)
, Φ3 =

Φ3

N(r)
,

Φ01 =
Φ01

F(r)L−1(r)
, Φ02 =

Φ02

F(r)M(r)
, Φ03 =

Φ03

F(r)N(r)
,

Φ12 =
Φ12

L−1(r)M(r)
, Φ13 =

Φ13

L−1(r)N(r)
, Φ23 =

Φ23

M(r)N(r)
.

The WKB approximation is given in [44], i.e.,

Φν = cν exp[
i
h̄
⊕0 (t, r, θ, φ) +

i=n

∑
i=1

h̄i ⊕i (t, r, θ, φ)]. (4)

216



Symmetry 2019, 11, 631

Substituting the Equation (4) into the wave Equation (3), where i = 1, 2, 3, ... neglecting the terms.
We get the set of equations below:

L(r)[c1(∂0⊕0)(∂1⊕0) + c1α(∂0⊕0)
3(∂1⊕0)− c0(∂1⊕0)

2 − c0(∂1⊕0)
4α

+eA0c1(∂1⊕0) + eA0c1α(∂1⊕0)(∂0⊕0)
2] +

1
M(r)

[c2(∂0⊕0)(∂2⊕0) + αc2

(∂0⊕0)
3(∂2⊕0)− c0(∂2⊕0)

2 − αc0(∂2⊕0)
4 + eA0c2(∂2⊕0) + αeA0c2(∂0⊕0)

2

(∂2⊕0)] +
1

N(r)
[c3(∂0⊕0)(∂3⊕0) + αc3(∂0⊕0)

3(∂3⊕0) + c0(∂3⊕0)
2

+αc0(∂3⊕0)
4 + eA0c3(∂3⊕0) + αc3eA0(∂0⊕0)

2(∂3⊕0)]− m2c0 = 0 (5)
−1

F(r)
[c0(∂0⊕0)(∂1⊕0) + c0α(∂0⊕0)(∂1⊕0)

3 − c1(∂0⊕0)
2 − c1α(∂0⊕0)

4

−eA0c1(∂0⊕0)− αeA0c1(∂1⊕0)
2(∂0⊕0)] +

1
M(r)

[c2(∂1⊕0)(∂2⊕0)

+αc2(∂1⊕0)
3(∂2⊕0)− c1(∂2⊕0)

2 − αc1(∂2⊕0)
4] +

1
N(r)

[c3(∂1⊕0)(∂3⊕0)

+c3α(∂1⊕0)
3(∂3⊕0)− c1(∂3S0)

2 − c1α(∂3⊕0)
4]− m2c1 −

1
F

eA0

[c0(∂1⊕0) + αc0(∂1⊕0)
3 − c1(∂0⊕0)− αc1(∂0⊕0)

3 − c1eA0

−eA0αc1(∂1⊕0)
2] = 0 (6)

1
F(r)

[c0(∂0⊕0)(∂2⊕0) + αc0(∂0⊕0)(∂2⊕0)
3 − c2(∂0⊕0)

2 − αc2(∂0⊕0)
4

−eA0(∂0⊕0)c2 − eA0(∂0⊕0)
3c2α]− 1

L−1(r)
[c2(∂1⊕0)

2 + αc2(∂1⊕0)
4

−c1(∂1⊕0)(∂2⊕0)− αc1(∂1⊕0)(∂2⊕0)
3] +

1
N(r)

[c3(∂2⊕0)(∂3⊕0)

+αc3(∂2⊕0)
3(∂3⊕0)− c2(∂3⊕0)

2 − αc2(∂3⊕0)
4]− eA0

F(r)
[c0(∂2⊕0)

+αc0(∂2⊕0)
3 − c2(∂0⊕0)− αc2(∂0⊕0)

3 + c2eA0 + αc2eA0(∂0⊕0)
2]

−m2c2 = 0 (7)

1
F(r)

[c0(∂0⊕0)(∂3⊕0) + αc0(∂0⊕0)(∂3⊕0)
3 − c3(∂0⊕0)

2 − αc3(∂0⊕0)
4

−eA0(∂0⊕0)c3 − eA0(∂3⊕0)
2(∂0⊕0)c3α] +

1
L−1(r)

[c3(∂1⊕0)
2 + αc3(∂1⊕0)

4

−c1(∂3⊕0)(∂1⊕0)− αc1(∂1⊕0)(∂3⊕0)
3] +

1
M(r)

[c3(∂2⊕0)
2

+αc3(∂2⊕0)
4 − c2(∂2⊕0)(∂3⊕0)− αc2(∂3⊕0)

3(∂2⊕0)] +
eA0

F(r)
[c0(∂3⊕0)

+αc0(∂3⊕0)
3 − c3(∂0⊕0)− αc3(∂0⊕0)

3 − c3eA0 − αc3eA0(∂3⊕0)
2]

−m2c3 = 0. (8)

We can choose the separation of variables,

⊕0 = −(E − jΩ)t + W(r) + jφ + υ(θ), (9)
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where j, E and Ω represent angular momentum, energy and angular velocity of particle, respectively.
Here, W(r) and υ(θ) are two arbitrary functions. The matrix equation can be obtain from the
Equations (5)–(8),

K(c0, c1, c2, c3)
T = 0,

which gives “K” is a order of ‘4 × 4′ matrix and its components are given by:

K00 =
Ẇ2 + αẆ4

L−1(r)
− j2 + αj4

M(r)
+

υ̇3 + αυ̇4

N(r)
− m2,

K01 = −Ẇ(E − jΩ) + αẆ(E − jΩ)3

L−1(r)
+

ẆeA0 + αẆeA0(E − jΩ)2

L−1(r)
,

K02 = − (E − jΩ)j + α(E − jΩ)j
M(r)

+
eA0 j + α(E − jΩ)2eA0 j

M(r)
,

K03 = − υ̇(E − jΩ) + αυ̇(E − jΩ)3

N(r)
+

eA0υ̇ + αeA0υ̇(E − jΩ)2

N(r)
,

K10 =
(E − jΩ)Ẇ + α(E − jΩ)Ẇ3

F(r)
− eA0Ẇ + αeA0Ẇ3

F(r)
,

K11 =
(E − jΩ)2 + α(E − jΩ)4

F(r)
+

(E − jΩ)eA0 − αẆ(E − jΩ)eA0

F(r)

− j2 − αj4

M(r)
− υ̇2 − αυ̇4

N(r)
− m2 − 1

F(r)
eA0[(E − jΩ) + α(E − jΩ)3

− eA0 − αeA0Ẇ2],

K12 =
Ẇj + αẆ3 j

M(r)
, K13 =

υ̇Ẇ + υ̇αẆ3

N(r)
,

K20 = − j(E − jΩ) + αj3(E − jΩ)

F(r)
− eA0

j + αj3

F(r)
, K21 =

Ẇj + αẆj3

L−1(r)
,

K22 = − 1
F(r)

[−(E − jΩ)2 − α(E − jΩ)4 + eA0(E − jΩ) + eA0α(E − jΩ)3]

− Ẇ2 + αẆ4

L−1(r)
− υ̇2 + αυ̇4

N(r)
− m2, K23 =

jυ̇ + αj3υ̇

N(r)
,

K30 =
−1

F(r)
[(E − jΩ)υ̇ + α(E − jΩ)υ̇3] +

eA0υ̇ + eA0αυ̇3

F(r)
,

K31 =
−Ẇυ̇ − αẆυ̇3

L−1(r)
, K32 =

−jυ̇ − αjυ̇3

M(r)
,

K33 = − 1
F(r)

[(E − jΩ)2 + α(E − jΩ)4 − (E − jΩ)eA0 − α(E − jΩ)eA0υ̇3] +

Ẇ2 + αẆ4

L−1(r)
− j2 + αj4

M(r)
+

eA0

F(r)
[(E − jΩ) + α(E − jΩ)3 − eA0 − αeA0υ̇3]

−m2,

where Ẇ = ∂r⊕0, υ̇ = ∂θ⊕0 and j = ∂φ⊕0. The non-trivial solution is | K |= 0 and solving these
equations yields:

imW± = ±
∫ √√√√ (E − eA0 − jΩ)2 + X1(1 +

X2
X1

α)

L(r)
dr, (10)

where − and + denote the incoming and outgoing particles, respectively. The function ‘X′
1 can

be defined as X1 = j2

M(r) and X2 = α(E−jΩ)4

F(r) − α(E−jΩ)eA0υ̇3

F(r) − αẆ4

L−1(r) + α
j4

M(r) −
eA0
F(r) [α(E − jΩ)3 −
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αeA0υ̇3] + m2 represent the angular velocity at the event horizon. Integrating Equation (10) around the
pole, we get

imW± = ±iπ
(E − A0e − jΩ)

2κ(r+)
(1 + Ξα), (11)

and the surface gravity of the 4D gauged super-gravity BH [41] is given by

κ(r+) =
3r4

+ + 2r3
+q1q2q3q4 + r2

+(∑
4
i<j qiqj + 1)− q1q2q3q4

2r+
√

∏4
i=1(r+ + qi)

. (12)

The tunneling probability Γ(imW+) for boson vector particles is given by

Γ(imW+) =
Prob[emission]

Prob[absorption]
=

exp[−2(imW+ + imυ)]

exp[−2(imW− − imυ)]
= exp[−4imW+]

= exp

⎡
⎣−π

(E − eA0 − jΩ)r+
√

∏4
i=1(r+ + qi)

3r4
+ + 2r3

+q1q2q3q4 + r2
+(∑

4
i<j qiqj + 1)− q1q2q3q4

⎤
⎦

× (1 + Ξα). (13)

The particles that tunnel outside the event horizon will fall into the BH, and one has
Prob[emission] = 1 then imW− − imυ = 0.

Now, we can calculate the TH(imW+) by comparing the Γ(imW+) with the Boltzmann formula
ΓB(imW+) ≈ e−(E−eA0−jΩ)/TH(imW+), we get

TH(imW+) =
3r4

+ + 2r3
+q1q2q3q4 + r2

+(∑
4
i<j qiqj + 1)− q1q2q3q4

4πr+
√

∏4
i=1(r+ + qi)

× (1 + Ξα)−1. (14)

The Γ(imW+) depends on the radial coordinate at the outer horizon r+, A0 vector potentials, E
energy, j angular momentum, e charge of particles, qi charge of a 4D gauged super-gravity BHs, α

quantum gravity and Ω represent the angular velocity on this horizon.

3. 5-Dimension Gauged Super-Gravity Black Holes

This BH solution occurs for N = 8, D = 5, in gauged super-gravity theory (symmetry) [41].
Now, a particular case is discussed, where the solution was developed (STU-model) for the results of
N = 2, D = 5, gauged super-gravity theory wave equation of motion. The line element for 5D BH in
the theory of gauged super-gravity is given as [41]

ds2 = − f (H3H2H1)
− 2

3 dt2 + f−1 (H3H2H1)
1
3 dr2 + (H3H2H1)

1
3 r2dΩ2

3,k, (15)

where
f = g2r2H3H2H1 −

μ

r2 + k, Hi = 1 +
qi
r2 ,

here i = 1,2,3 and for radius k = 1 and k = 0, then dΩ2
3,k represents the metrics on S3 and R3 respectively.

It is connected to ADM mass i.e., g = 1/L, which indicates AdS5’s inverse radius and depends upon
the cosmological constant, Λ = −6/L2 = −6g2, and the qi are BH charges. The result of the wave
equation is the form of the three gauge potential field Ai

μ from

Ai
0 =

q̃i
qi + r2 , (16)
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here, i = 1, 2, 3 and q̃i are BH physical charges. It is observed that Gauss’s theorem is applicable for
these charges. The corrected temperature (T′

H) can be calculated as

T′
H(imW+) =

(Σ3
i=1qi + 1)r4

+ − ∏3
i=1 qi + 2r6

+

2πr2
+

√
∏3

i=1(qi + r2
+)

(1 + Ξα)−1. (17)

The corrected tunneling rate depends on energy (E), potential (A0), angular momentum (ΩH),
the outer horizon (r+) radial coordinate, correction parameter (α) and BH charge (qi). We notice that
the corrected temperature of boson particles denoted by Equation (17) is same as (α = 0), the 5D BH
temperature in the theory of gauged super-gravity in Equation (3.12) of Reference [43]. The TH(imW+)

is related to the radial coordinate on the outer horizon r+, α quantum gravity and charge qi of a 4D
gauged super-gravity BHs respectively.

4. 7-Dimension Black Holes in Theory of Gauged Super-Gravity

We calculate a boson particle’s quantum tunneling spectrum from a BH in 7D gauged
super-gravity theory and also determine the tunneling rate of boson particles and the corresponding
temperature at BH outer horizon r+. The solutions of BH occur when D = 7 and N = 4 in the gauged
super-gravity theory (symmetry) [41]. Firstly, this result was developed in as a special case of solutions
of cases when D = 7, N = 4 gauged super-gravity through the equations of motion. The metric of a
BH in 7D gauged super-gravity theory is [41]

ds2 = − (H1H2)
− 4

5 f dt2 + (H1H2)
1
5
(

f−1dr2 + r2dΩ2
5,k

)
, (18)

where
f = g2r2H1H2 −

μ

r4 + k, Hi =
qi

r4 + 1, (for i = 1, 2)

where g = 1/L = 1 and L is related to the cosmological constant Λ = −15/L2. The two gauge field
electric potentials Ai

μ through the result ofthe wave equation of motion are given by

Ai
0 =

q̃i

r4 + qi
(for i = 1, 2).

The corresponding Hawking temperature at the horizon can be obtained as

Ť(imW+) =

⎡
⎣3r8

+ + 2r6
+ + r4

+(q1 + q2)− q1q2

πr3
+

√
(r4

+ + q1)(r4
+ + q2)

⎤
⎦ (1 + Ξα)−1. (19)

The Hawking temperature depends on parameters r0, q2, and q1.

5. Graphical Analysis

In this section, we describe the graphical behavior of quantum corrected Hawking temperature in
Equations (14), (17) and (19) as shown in Figures 1–3, respectively, for arbitrary parameter Ξ = 1 and
also study the stable and unstable states of BHs.

220



Symmetry 2019, 11, 631

r

H

Figure 1. TH(imW+) versus r+ for q1 = q2 = q3 = q4 = 0.5 and q1 = q2 = q3 = q4 = 5.

r

H

Figure 2. T′
H(imW+) versus r+ for q1 = q2 = q3 = 0.5 and q1 = q2 = q3 = 5.

r

H

Figure 3. Ť(imW+) versus r+ for q1 = q2 = 0.5 and q1 = q2 = 5.

TH Versus r+

In this subsection, we analyze the graphical behavior of corrected Hawking temperature TH w.r.t
the horizon r+ for the 4D, 5D and 7D gauged super-gravity BHs. Moreover, we study the physical
significance of these graphs in the presence of correction parameter α and discuss the stable and
unstable condition of corresponding BHs.

The TH(imW+) slightly increase with increasing horizon and a slight change in the value of the
correction parameter α = 1 can cause a small increase in temperature, but the non-physical behavior
identifies the unstable state of BHs.
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In Figures 1–3, after initial increases in the particular range the temperature sharply increases
with positive value. The non-physical behavior of the temperature increases with increasing horizon
shows the instability of BH.

6. Conclusions and Discussion

In summary, applying the Hamilton–Jacobi phenomena of the tunneling formalism, we have
studied the metric of the four, five and seven dimensional gauged super-gravity BHs. For this
aim, we applied the Lagrangian wave equation with the setting of electromagnetism to analyze the
tunneling of a massive charged boson (1-spin) particles from four, five and seven dimensional gauged
super-gravity BHs having charges and physical charges. In this paper, we have extended the work of
massive vector particles tunneling probability/rate for more generalized BHs in four, five and seven
dimensional spaces and also observed the Hawking temperatures at which the particles tunnel through
horizons. We have applied the Lagrangian equation to study the tunneling probabilty/rate of massive
boson particles from four, five and seven dimensional gauged super-gravity BHs. In the Lagrangian
equation, we applied the WKB approximation and which implies to the set of field wave equations,
then apply separation of variables to find these wave equations.

The radial part can be obtained by applying the matrix of coefficients, whose determinant is equal
to zero. We have developed the tunneling probability and temperature for these BHs at the outer
horizon using surface gravity. The tunneling and temperature depend on the setting parameters of the
BHs and quantum gravity. It is worth to study that the back-reaction and self-gravitating effects of
boson charged particles on these BHs have been ignored, the calculated temperature are the parameters
of BHs and quantum gravity.

The significance of the BHs, for the all types of particles having charged and uncharged,
the tunneling rate will be change by viewing their semi-classical phenomenon and corresponding
temperatures must be same for all types of charged and uncharged particles. We analyzed the part of
the action which is imaginary, the tunneling probability/rate and temperature were introduced by
charged massive vector particles due to gravity near the outer horizon r+. Moreover, for the correction
to the energy and tunneling rate of the massive boson particle GUP was introduced near the outer
horizon r+ in our computation. From our analysis, we have analyzed that the corrected temperature at
which charged boson particles tunnel through the outer horizon r+ is independent of the dimension of
a BHs, and temperature is dependent on parameters of a metric and quantum gravity. The corrected
temperature is shown to depend on the quantum gravity effect α. Both temperatures have the standard
Hawking temperature limit when (α = 0), then the GUP effect completely vanished.

From our analysis we also concluded that the temperature at which particles tunnel through the
outer horizon r+ does not depend of the dimension of BHs in space. In particular the BH geometries,
for the particles having different spin up and spin down the tunneling probabilities will be discovered
to be the same by considering semi-classical phenomenon. Thus, their corresponding temperatures
must be the same for all spin up and spin down particles. For these cases, we have carried out
the calculations for more general BHs. Hence, the result still applies if the set BH parameters are
more general.

• In the presence of charges, the BH was initially stable and attained a stability in a small domain
and then becomes unstable till r+ → +∞.

• The 4D, 5D and 7D BHs remained stable and unstable in quantum gravity minima and maxima
respectively.

• The 4D, 5D and 7D BHs in the theory of gauged super-gravity remains unstable in the presence of
the charge and correction parameter α.
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