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Preface to “Applied Analysis of Ordinary Differential

Equations”

This book is a compilation of articles from a Special Issue of Mathematics devoted to the topic of

applied analysis of ordinary differential equations. My original goal in editing the Special Issue—and

now the book based on this—is in traversing the interesting boundary between the well-established

theory of ordinary differential equations and the applications of these. There are a multitude of

applications in the literature which are based on numerical work because differential equations are

often intractable to analysis. These are useful and have been widely used, but often possess many

parameters which are usually estimated in some way. Differential equations are, however, notorious

for their sensitivity to parameters and, therefore, results from these approaches are not necessarily

robust or absolutely compelling from the viewpoint of applications. On the other hand, differential

equations for which analysis is possible across all parameter values are, by their very nature, simple,

and are therefore less realistic. What is of interest to me is the intermediate ground, in which

the differential equations contain sufficient physics/biology to be relevant and, yet, are able to be

analyzed in certain ways if clever approaches are followed, leading to more confident results.

The chapters of this book comprise several articles within this realm. The applications include

molecular physics, epidemic modeling, cardiac arrhythmia, and nonlinear thermostats. The authors

use physical, biological, or other applied insights in obtaining mathematical models via differential

equations. Analysis is then used to relate mathematical properties to the applications at hand. I hope

that you enjoy these chapters.

Sanjeeva Balasuriya

Special Issue Editor
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Abstract: A well defined global surface of section (SOS) is a necessary first step in many studies
of various dynamical systems. Starting with a surface of section, one is able to more easily find
periodic orbits as well as other geometric structures that govern the nonlinear dynamics of the
system in question. In some cases, a global surface of section is relatively easily defined, but in
other cases the definition is not trivial, and may not even exist. This is the case for the electron
dynamics of a hydrogen atom in crossed electric and magnetic fields. In this paper, we demonstrate
how one can define a surface of section and associated return map that may fail to be globally well
defined, but for which the dynamics is well defined and continuous over a region that is sufficiently
large to include the heteroclinic tangle and thus offers a sound geometric approach to studying the
nonlinear dynamics.

Keywords: surface of section; transport; heteroclinic tangle

1. Introduction

For many dynamical systems, geometric structures lying within their phase spaces provide deep
insights into their behaviors [1–3]. In particular, one class of such structures consists of homoclinic and
heteroclinic tangles, which have played a crucial role in studying chaotic transport and mixing [4–11].
For dynamical systems defined by ordinary differential equations (ODEs), it is typically the case that
such tangles are easiest to study when there exists a “good” surface of section (SOS) which allows
one to define a continuous Poincaré return map. For two-degree-of-freedom Hamiltonian systems,
a SOS is a two-dimensional surface in phase space and a heteroclinic/homoclinic tangle consists of
one-dimensional stable and unstable manifolds within this surface. In many cases it is challenging,
or even impossible, to define a good SOS that captures all of the dynamics of the system in question.
In this paper, we will consider one such system: the dynamics of a hydrogenic electron in externally
applied perpendicular (crossed) electric and magnetic fields. Though there appears to be no truly
global SOS, we can define a SOS and associated Poinaré map over an area that is large enough to
encompass a heteroclinic tangle that controls the ionization process.

Chaotic ionization of a hydrogenic atom in crossed electric and magnetic fields has been of
scientific interest for many years [12–18]. Previous work on this problem focused on studying periodic
orbits and developing closed-orbit theory in order to explain the photo-absorption spectra [19–21].
Periodic orbits were also used to construct the action variables and obtain a semiclassical torus
quantization [13]. More recently, the crossed fields problem has been examined from the perspective of
classical monodromy [12,16]. The electron’s classical motion resembles the motion of the Moon in the
Sun-Earth-Moon three body system [22], and so this system has also been considered a stepping stone
to understanding escape in the classical gravitational three-body problem.

Mathematics 2018, 6, 185; doi:10.3390/math6100185 www.mdpi.com/journal/mathematics1



Mathematics 2018, 6, 185

For the case in which the electric and magnetic fields are parallel, it is relatively easy to define
a global SOS upon which the Poincaré map is well defined and continuous everywhere. For the
crossed fields case this simple construction fails to produce a good global SOS and, to the best of our
knowledge, a good global surface of section does not appear in the literature. Indeed this presents
one of the major challenges to studying chaotic ionization in this case. In this paper, when we say a
“good” SOS we mean an SOS that intersects all trajectories (excepting a set of measure zero) and on
which the Poincaré return map is well defined and continuous everywhere, i.e., the Poincaré map is
a homeomorphism of the SOS. For such good SOSs system trajectories never intersect the SOS at a
tangency as this would lead to a discontinuity in the map. We will present a prescription for defining a
SOS that is not truly global or continuous but is nevertheless “good enough” in that it captures all the
major hallmarks of chaotic dynamics including turnstiles that govern the ionization process.

This paper is organized as follows: In Section 2 we describe equations of motion for a hydrogenic
electron in crossed fields; In Section 3 we present a prescription for finding an SOS; Section 4 concludes
by finding a periodic orbit and its corresponding tangle and turnstile, which are responsible for the
ionization process.

2. Electron Equations of Motion

Consider an electron confined to a two-dimensional plane with a uniform magnetic field B

oriented perpendicular to the plane. The resulting electron trajectory will be a circle. Adding an electric
field E oriented perpendicular to the magnetic field changes the shape of the trajectory from a circle to a
cycloid, i.e., the motion is a combination of the circular trajectory and an E × B drift. Further inclusion
of a 1/r Coulomb potential changes the electron dynamics from regular to chaotic. This is the scenario
considered in the current paper. Orienting the magnetic field in the ẑ direction and the electric field in
the x̂ direction, the electron Hamiltonian in atomic units (e = me = h̄ = 1) is [14]

H =
p2

2
+

B
2

Lz +
B2

8

(
x2 + y2

)
− 1

r
− Fx, (1)

where F = |E| is the electric field strength, B is the magnetic field strength, and Lz is the z component
of the electron’s angular momentum. Equation (1) assumes a fixed infinitely massive nucleus. Since the
magnetic field is oriented in the ẑ direction, it is coupled to Lz by the BLz/2 term in the Hamiltonian.
Since we restrict the electron motion to the xy plane, p2 = p2

x + p2
y, and r =

√
x2 + y2. Finally, since the

Hamiltonian is independent of time, the total energy is conserved in this system.
To regularize the Coulomb singularity at the origin, we introduce the parabolic coordinates [13,21]

u = ±√
r + x , v = ±√

r − x ,

pu = vpy + upx , pv = upy − vpx ,
(2)

where u and v are the new position variables and pu and pv are their corresponding conjugate momenta.
We take the range of u and v to be (−∞,+∞), which represents a double cover of the physical xy
configuration space. We now define a transformed Hamiltonian h, as

h = 2r(H − E), (3)

where E is the electron energy, so h = 0 for physically relevant trajectories. Combining Equations (1)–(3),
the transformed Hamiltonian h is

h =
1
2

(
p2

u + p2
v

)
+

B
4

(
u2 + v2

)
(upv − vpu) +

B2

32

(
u2 + v2

)3
+

F
2

(
u4 − v4

)
− E

(
u2 + v2

)
− 2. (4)
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The transformation of the Hamiltonian in Equation (3) also transforms the time variable.
The relationship between the physical time t and the transformed time s is given by

dt
ds

= u2 + v2. (5)

In this new coordinate system, the equations of motion are

u̇ = pu − B
4

v
(

u2 + v2
)

,

v̇ = pv +
B
4

u
(

u2 + v2
)

,

ṗu =
B
4

[
2uvpu − pv

(
3u2 + v2

)]
− 3B2

16
u
(

u2 + v2
)2

+ 2Fu3 + 2uE ,

ṗv =
B
4

[
−2uvpv + pu

(
u2 + 3v2

)]
− 3B2

16
v
(

u2 + v2
)2 − 2Fv3 + 2vE ,

(6)

where the overdot represents differentiation with respect to s.
Finally, we introduce the vectors p, w, and A

p = [pu, pv] , (7)

A =
1
4

B
(

u2 + v2
)
[v,−u] , (8)

w = [u̇, v̇] = p − A , (9)

which allows us to rewrite the Hamiltonian in parabolic coordinates in a more compact form

h =
1
2
|p − A|2 − E

(
u2 + v2

)
− 1

2
F
(

u4 − v4
)
− 2 (10)

=
1
2
|w|2 − E

(
u2 + v2

)
− 1

2
F
(

u4 − v4
)
− 2 . (11)

The explicit dependence on the electric field strength F can be removed by rescaling the lengths by
F1/2, momenta by F−1/4, time by F3/4, magnetic field by F−3/4, and the energy by F−1/2. The resulting
effect on Equation (10) is equivalent to setting F = 1. The system then depends on only two
independent parameters: the magnetic field strength B and the electron energy E.

3. Construction of the Surface of Section

A global surface of section is easy to find for the case of hydrogen in parallel electric and magnetic
fields. In that case the Hamiltonian can again be transformed using parabolic coordinates as in Section 2
yielding an effective Hamiltonian

h =
1
2

(
p2

u + p2
v

)
− E

(
u2 + v2

)
+

1
8

B2
(

u4v2 + u2v4
)
− 1

2

(
u4 − v4

)
− 2 . (12)

In this case, the Hamiltonian can be decomposed into kinetic plus potential terms with no vector
potential in the kinetic term. The shape of the potential guarantees that any trajectory launched from
the u-axis will return to the u-axis crossing it transversely. Furthermore, every trajectory will intersect
the u-axis an infinite number of times. We therefore can use the u-axis to construct the SOS; the SOS
within the full four-dimensional phase space is the two-dimensional surface within the energy shell
h = 0 that projects to the u-axis. This surface has two connected components: one for trajectories
moving upward through the u-axis, and one for trajectories moving downward through the u-axis.
We formally identify these two components via reflection symmetry about the u-axis. The SOS thus has
canonical coordinates (u, pu). The corresponding Poincaré map returns the value of the coordinates
(u, pu) each time a trajectory crosses the u-axis, going either upward or downward [23–25].

3
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We can try the same approach in the crossed fields problem, defining a SOS with the u-axis.
However, this approach fails due to the presence of the vector potential term in Equation (10).
A trajectory launched tangent to the u-axis will curve away from it both forward and backward
in time, due to the presence of the magnetic field; this launch point thus constitutes a tangential
intersection with the u-axis (See Figure 1). Furthermore, the E × B drift causes some trajectories to
never return to the u-axis (Figure 1). Hence this SOS definition would suffer both from tangencies and
the failure to capture all possible trajectories.

0 1 2 3 4
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Figure 1. Three representative trajectories. Teal curve is the trajectory launched tangent to the u-axis
away from the nucleus. Grey curve represents a trajectory launched off the u-axis away from the
nucleus. Magenta trajectory is the trajectory launched away from the nucleus along the u-axis. The thick
magenta curve represents the portion of the trajectory used to define the surface of section (SOS). (B = 2,
E = −1.1, where B and E are the magnetic field strength and the energy in scaled coordinates.)

Returning to the parallel fields problem, we need to think more deeply about why the u-axis
generates a good SOS in the parallel fields problem. For parallel fields, a trajectory launched tangent
to the u-axis does not create a tangential intersection with the u-axis because it remains on the u-axis,
that is, the u-axis is itself a trajectory of the system. This is true regardless of the magnitude of the
momentum and whether the momentum points to the left or right. We adapt this idea for the crossed
fields problem by choosing the trajectory that begins at the nucleus (located at u = v = 0) and is
launched away from the nucleus along the u-axis to the right as shown in Figure 1. Locally at the
nucleus this trajectory corresponds to the trajectory used to define the Poincaré return map in the
parallel fields case. As the electron moves away from the nucleus, the electric and magnetic fields
create a trajectory that resembles a tapered cycloid with the larger radius closer to the nucleus.

Notice that when projected onto the uv-space this trajectory self intersects. Nevertheless, we take
the portion of the trajectory shown as bold in Figure 1 from the nucleus (u = v = 0) up to the
point where the tangent to the trajectory points in the v direction in uv-space. (One could extend
the trajectory up to the second time the trajectory passes through the first self-intersection point.
However for ease of implementation, we are using a simpler criterion of cutting off the trajectory
at the first vertical tangent line.) Next, we replicate this portion of the trajectory into the remaining
quadrants in uv-space, by first reflecting through the origin and then reflecting about the horizontal
axis (See Figure 2). Reflecting through the origin corresponds to launching a trajectory from the nucleus
along the u-axis to the left. On the other hand, reflecting about the u-axis is equivalent to time reversal
giving two trajectories that move toward the nucleus. In Figure 2, we show portions of the trajectories
launched away from the nucleus in blue, and the time-reversed partners in red. We call these the
SOS curves. The arrows denote the direction of time along the trajectory. Thus, a trajectory comes in
towards the nucleus from the upper left and continues smoothly into the trajectory in the upper right.

4
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Similarly a trajectory comes in from the lower right and exits on the lower left. These two trajectories
are analogous to trajectories moving either left or right along the u-axis in the parallel fields case. In the
parallel fields case these trajectories lie on top of one another, whereas here the vector potential splits
them into separate curves.

v

u

1

1

22

Figure 2. Trajectories defining the SOS (B = 1.5, E = −0.2). The thick black line represents the
boundary between the energetically allowed (white) and forbidden (shaded) regions. Crossing either
red or blue curves from region labeled 1 to region labeled 2 defines the SOS. Trajectories that cross from
region 2 to region 1 are not part of the SOS.

The SOS is now defined by recording the electron’s position and momentum whenever an electron
trajectory intersects either the red or the blue curves while moving from the region labeled 1 to the
region labeled 2. We do not consider crossings from region 2 to region 1 as part of the SOS. Thus we only
consider upward propagating trajectories on the lower right and downward propagating trajectories on
the upper right. For the parallel fields problem these two branches were identified, but this is no longer
possible in the crossed fields case due to the broken time-reversal symmetry. Nevertheless, the picture
can be simplified by taking advantage of another symmetry. There remains a reflection symmetry
through the origin in which the upper left branch is identified with the lower right branch, and the
lower left branch is identified with the upper right branch. We therefore compose the SOS from just
the two branches on the right.

This definition of the SOS is free of tangencies for any trajectory approaching from region 1. This is
because the curve that defines the SOS is a portion of a physical trajectory. To show this, suppose a
trajectory does intersect the SOS transversely at an isolated point d0 = [u, v]. Then the direction of
the velocity w = [u̇, v̇] is determined up to a minus sign at r. Furthermore, since the trajectory has a
fixed energy E, the magnitude of the velocity at d0 is determined by setting Equation (11) equal to
zero and solving for |w|. Thus, the velocity vector w is determined up to a minus sign. If the direction
of w coincides with the direction of the trajectory used to define the SOS, then by the uniqueness of
the ODE solution, the two trajectories are the same and the intersection d0 is not an isolated point.
Hence, we take w to point in the opposite direction. In this case, the trajectory will curve in the
opposite direction as the SOS curve, as shown in Figure 3. Therefore it intersects the SOS curve coming
from region 2. Thus, no trajectory coming from region 1 can intersect the SOS tangentially.

We next introduce canonical coordinates in two-dimensional SOS. We define the position variable
a to be the Euclidean length along the SOS trajectory as measured from the nucleus. Positive a
parametrizes the curve in the upper right quadrant, and negative a parametrizes the curve in the lower
right quadrant. The momentum coordinate pa is defined by projecting the momentum (pu, pv) onto
the tangent line to the SOS trajectory.

5
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Figure 3. Green curve represents the trajectory which maps the point d−1 on the portion of the red
SOS curve to the tangency d0 on the blue portion of the SOS curve.

We now define the Poincaré return map (a, pa) �→ (a′, p′a) in the following way. Given (a, pa) we
begin a trajectory at position a along the SOS trajectory and with the tangential momentum given
by pa. We determine |w| by setting Equation (11) equal to zero. Please note that the tangential
component of velocity is given by w · t̂ = pa − A · t̂, where t̂ is the unit tangent pointing forward
along the SOS trajectory (Equation (9)). Thus, the perpendicular component of velocity is given by

w⊥ = ±
√
|w|2 − (pa − A · t̂

)2 . The sign of w⊥ is determined by requiring the normal component of w

to point from region 1 to region 2 in Figure 2. This uniquely determines w, which uniquely determines
p via Equation (9). Now that an initial point (u, v, pu, pv) in the full phase space has been determined,
we evolve Hamilton’s Equations (6) forward until the trajectory intersects one of the four branches in
Figure 2 traveling from region 1 into region 2. If the intersection is with one of the two left branches,
we reflect the point and its momentum through the origin, i.e., (u, v, pu, pv) �→ −(u, v, pu, pv). At this
point we record the coordinates (a′, p′a) on the SOS. Please note that some trajectories will never return
to the SOS since the SOS is not globally defined. Such trajectories are easy to identify because they
spiral outward toward infinity, escaping the nucleus. See Figure 1.

A set of sample SOS plots is shown in Figure 4. One can notice the presence of periodic orbits and
stable islands immersed in the chaotic sea.

pa

pa

a a

B = 0 .1 E = −0 .05 B = 0 .5 E = −0 .5

B = 1 .3 E = −0 .5 B = 2 E = −0 .5

Figure 4. A sample of SOS plots for different values of the magnetic field strength and energy.
The values of the magnetic field B and the energy of the ensemble E are marked on top of the figures.
Electric field strength F is set to 1 in all four figures.
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4. Visualizing a Periodic Orbit and Its Tangle

The ionization dynamics of this system is governed by a symmetric pair of periodic orbits in the
left and right saddle regions of the potential in uv-space. (See Figure 5) In the original xy-coordinates
these two periodic orbits are identified into a single orbit near the Stark saddle. In uv-space this
orbit intersects the SOS curves in four places, but only two of those places intersect the SOS because
the orbit must move from region 1 to region 2 as marked with black dots in Figure 6. These two
intersection points form a period-2 orbit of the Poincaré map. This period-2 orbit is hyperbolic. Figure 7
shows a summary of the main results of this paper. The hyperbolic period-2 point has stable and
unstable manifolds, shown in red and blue respectively, which intersect to form a heteroclinic tangle.
Importantly the SOS for the parameters shown in Figure 7 is large enough to include not only the
period-2 orbit but also the entire resonance zone defined by the tangle. The resonance zone is the
domain bounded by the segments of the stable manifold (red) connecting zR to p0 and zL to p1 and by
the segments of the unstable manifold (blue) connecting zR to p1 and zL to p0.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 5. Left figure shows the potential for the parallel fields case, and the right figure shows the
potential for the crossed fields case. (E = −1.3, and B = 4.5.)

Figure 6. Symmetric unstable periodic orbits are shown in green. Two pairs of black dots mark the
intersections of the periodic orbit with the SOS. The thick black line represents the boundary between
the energetically allowed (white) and forbidden (shaded) regions.
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The heteroclinic tangle defines regions in phase space called lobes, which fall into two categories:
those governing the escape from the resonance zone, labeled Ek, and those governing the capture into
the resonance zone, labeled Ck. (See Figure 7.) The escape lobe E0, which is inside the resonance zone,
maps to the E1 lobe, which is outside the resonance zone. Similarly, the capture lobe C−1, which is
outside the resonance zone, maps to the C0 lobe, which is inside. These lobes define a phase space
turnstile which governs the ionization process [6].

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Figure 7. Surface of Section for B = 1.5, E = −0.5. Two big black dots represent the unstable period
two orbit. The red line is the portion of the stable manifold, and the blue line is the portion of the
unstable manifold. Thick black line defines the boundary between the energetically allowed (white)
and forbidden (shaded) regions.

We now return to discuss the issue of tangencies and discontinuities in the Poincaré map.
As mentioned before, there are no trajectories that intersect the SOS tangentially coming from region
1. However, in general there may be trajectories that map from the SOS to a tangential intersection
with the SOS coming from region 2. See Figure 3. At any point on the SOS, i.e., at any value of
the a coordinate, these tangential intersections correspond to the minimum value of momentum
pa. That is, the tangential intersections form the lower black boundary of the physically allowed
domain in Figure 7. Thus, the Poincaré map will be continuous on any topological disk D that maps
forward to a domain that does not intersect the lower boundary of the physically allowed region. It is
enough to check just the boundary of the domain D. That is, if the boundary of a domain D maps
forward to a closed curve that does not intersect the lower boundary of the physically allowed region,
then the Poincaré map is continuous over the entire domain D. The resonance zone of the tangle in
Figure 7 satisfies this property, and thus the Poincaré map is continuous over the entire resonance
zone. The same argument applies to the inverse Poincaré map.

To complete the picture, we have also included additional orbits (represented by black dots)
that are contained inside the heteroclinic tangle. One can observe a similar prominent chain of stable
islands contained inside this heteroclinic tangle as the one shown in Figure 4. It is important to note
that it is the heteroclinic tangle attached to the periodic orbit furthest away from the nucleus that
governs the ionization process. Any additional heteroclinic tangles that might exist in the system
would be contained inside this outermost tangle.

8
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As we have mentioned earlier, this SOS is not defined globally. For any given set of parameter
values, there are always trajectories that do not return to the SOS. For some set of parameter values,
the SOS is large enough to encompass the whole of the resonance zone of the heteroclinic tangle.
However, this does not hold for all parameter values but only for a certain range of magnetic field
strength and energy. Two opposing effects determine the range of validity: the Euclidean distance from
the nucleus where the trajectory has its first vertical tangent when projected to the uv-space, and the
position of the unstable periodic orbit. For a fixed value of electron energy increasing the magnetic
field decreases the Larmor radius of the SOS trajectory we use to define the Poincaré SOS and hence
decreases the range of the a coordinate in the local SOS. At the same time the unstable period-two
orbit moves away from the nucleus, and hence it its a coordinate increases, until it finally “slips off”
the SOS. Figure 8 shows the B-dependance of the position of the periodic orbit and the edge of the
SOS definition. For a critical value of the magnetic field strength, the periodic orbit falls off the surface
of section, and this ceases to be a useful local SOS for representing the heteroclinic tangle structure.
This happens at the value of B for which the blue and the green curves meet in Figure 8. (For E = −0.5
this failure occurs at B = 1.91.)

Since the portion of phase space that has been promoted from bound to ionized via a turnstile
never returns to the bound state, we argue that the local SOS is sufficient if one is interested in studying
the chaotic ionization mechanism in this system.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

5

10

15

20

25

Figure 8. The blue dots represent the value of a at the edge of the surface of section, and the green stars
represent the largest of the two absolute a values for the periodic orbit. (E = −0.5)

5. Conclusions

We have provided a prescription for defining a local surface of section for a nonlinear system
whose global surface of section is not known and may not exist. This local surface of section allows us
to capture all the main hallmarks of a chaotic system: an unstable periodic orbit, the most important
pieces of the heteroclinic tangle attached to the unstable periodic orbit, the phase space turnstile that
leads to ionization, as well as stable islands embedded in the chaotic sea. These structures can then be
used for future applications such as the construction of the symbolic dynamics using the homotopic
lobe dynamics approach, computation of topological entropy, periodic orbit computations of escape
rates and spectral oscillations in the density of states [3,19,20]. One of the reasons why this technique
works, which may be relevant for other applications, is that defining the SOS using an orbit of the
system eliminates tangencies from trajectories propagating in the same direction as the SOS trajectory.
Even though this approach fails for large magnetic field values, we believe it still offers valuable
insights into studying types of problems where one is unable to define a global surface of section.

9
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It would be interesting to see if this approach works in the circular restricted gravitational three-body
problem as well.
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Abstract: In this paper, we are concerned with the asymptotic stability of the nontrivial endemic
equilibrium of an age-structured susceptible-infective-recovered (SIR) epidemic model. For a special
form of the disease transmission function, we perform the reduction of the model into a four-dimensional
system of ordinary differential equations (ODEs). We show that the unique endemic equilibrium of the
reduced system exists if the basic reproduction number for the original system is greater than unity.
Furthermore, we perform the stability analysis of the endemic equilibrium and obtain a fourth-order
characteristic equation. By using the Routh–Hurwitz criterion, we numerically show that the endemic
equilibrium is asymptotically stable in some epidemiologically relevant parameter settings.
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1. Introduction

The mathematical modeling of epidemics in human populations has been studied for a long time [1].
In 1760, Bernoulli used a mathematical model of differential equations to discuss the benefit of smallpox
inoculation [2]. In 1911, Ross claimed that malaria could be eradicated by reducing the number of
mosquitoes, and constructed a mathematical model of differential equations to theoretically support
his claim [3]. In 1927, Kermack and McKendrick constructed the first susceptible-infective-recovered
(SIR) epidemic model, in which the total population is divided into three classes called susceptible,
infective, and recovered [4]. Since their work, the theory of various epidemic models such as a
susceptible-infective-susceptible (SIS) epidemic model [5], a susceptible-exposed-infective-recovered
(SEIR)epidemic model [6], and a susceptible-infective-recovered-susceptible (SIRS) epidemic model [7]
with various structures such as the age structure [8,9], the space structure [10], and the network
structure [11] has been developed from both mathematical and epidemiological points of view.

Epidemiologically, the basic reproduction number R0 for an infectious disease is defined by
the expected number of secondary cases produced by a typical infective individual in a completely
susceptible population ([9], Chapter 5). Mathematically, R0 is defined by the spectral radius of a linear
operator called the next-generation operator [12], and it determines the complete global dynamics of
each equilibrium for some basic epidemic models: if R0 < 1, then the trivial disease-free equilibrium is
globally asymptotically stable, whereas if R0 > 1, then the nontrivial endemic equilibrium is globally
asymptotically stable [13]. However, for some epidemic models, the endemic equilibrium can be stable
even if R0 < 1 due to the backward bifurcation [14], and it can be unstable even if R0 > 1, which
leads to a periodic solution due to the Hopf bifurcation [15].

In [16], some conjectures on the threshold property of R0 for an age-structured SIR epidemic
model were proposed, and they were proved in [17]: if R0 < 1, then the disease-free equilibrium is
globally asymptotically stable and no endemic equilibrium exists, whereas if R0 > 1, then the endemic
equilibrium uniquely exists and it is locally asymptotically stable under some additional conditions.

Mathematics 2018, 6, 147; doi:10.3390/math6090147 www.mdpi.com/journal/mathematics12
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However, in general, it is known that the endemic equilibrium cannot always be unique and stable for
R0 > 1. Several authors have studied some special cases where the endemic equilibrium is unstable,
and periodic solutions occur through the Hopf bifurcation for R0 > 1 [18–21]. From the viewpoint
of application, it is important to investigate when the endemic equilibrium of an age-structured SIR
epidemic model is stable and when it is not, as the age distribution of infective individuals in such a
model should be stable if one tries to estimate the basic reproduction number R0 for an endemic disease
by using statistical data that exhibit an almost unchanged age distribution of infective individuals.
The purpose of this study is to obtain a new condition under which the endemic equilibrium of an
age-structured SIR epidemic model is (locally) asymptotically stable.

Age-structured SIR epidemic models as stated above are systems of partial differential equations
(PDEs), and hence the stability analysis of them often requires a relatively difficult method such as
the spectral theory of positive operators ([17], §5). In this paper, we make some assumptions on the
parameters of an age-structured SIR epidemic model, under which we can perform the reduction of the
model into a four-dimensional system of ordinary differential equations (ODEs). We can then apply
the standard method of characteristic equations for the stability analysis of the endemic equilibrium.

This paper is organized as follows. In Section 2, we formulate an age-structured SIR epidemic
model, and perform the reduction of it into a four-dimensional system of ODEs. In Section 3, we
prove that the reduced system has a unique endemic equilibrium if the basic reproduction number R0

for the original system is greater than unity. Moreover, we investigate the asymptotic stability of the
endemic equilibrium, and obtain a fourth-order characteristic equation. As its coefficients have quite
complex forms, we only prove their positivity, and numerically show by using the Routh–Hurwitz
criterion that the endemic equilibrium is asymptotically stable in some epidemiologically relevant
parameter settings in Section 4. In the parameter settings, the essential supremum of the demographic
mortality rate is determined based on a dataset for Japan in 2015, and the recovery rate γ and the basic
reproduction number R0 are varied for the cases of an influenza-like disease (γ = 52 and 2 ≤ R0 ≤ 3),
a chlamydia-like sexually transmitted disease (γ = 1 and 1 < R0 ≤ 1.5), and a wider range of realistic
values of them (1/50 ≤ γ ≤ 365 and 1 < R0 ≤ 50). Finally, Section 5 is devoted to the discussion.

2. Reduction of an Age-Structured SIR Epidemic Model into ODEs

We first formulate an age-structured SIR epidemic model. Let S(t, a), I(t, a), and R(t, a) denote
the susceptible, infective, and recovered populations of age a ≥ 0 at time t ≥ 0, respectively.
Let b > 0 denote the birth rate, let μ(·) ∈ L∞

+(0,+∞) denote the age-specific mortality rate such
that

∫ +∞
0 μ(a)da = +∞, and let γ > 0 denote the recovery rate. As in [18], we focus on the

case where the disease transmission function is only dependent on the age of infective individuals:
κ = κ(·) ∈ L∞

+(0,+∞). In this case, the age-structured SIR epidemic model is formulated as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∂

∂t
+

∂

∂a

)
S(t, a) = −S(t, a)

∫ +∞

0
κ(a)I(t, a)da − μ(a)S(t, a), t > 0, a > 0,(

∂

∂t
+

∂

∂a

)
I(t, a) = S(t, a)

∫ +∞

0
κ(a)I(t, a)da − [μ(a) + γ] I(t, a), t > 0, a > 0,(

∂

∂t
+

∂

∂a

)
R(t, a) = γI(t, a)− μ(a)R(t, a), t > 0, a > 0,

S(t, 0) = b, I(t, 0) = R(t, 0) = 0, t > 0,

S(0, a) = S0(a), I(0, a) = I0(a), R(0, a) = R0(a), a ≥ 0,

(1)

where (S0(·), I0(·), R0(·)) ∈ L1
+(0,+∞)× L1

+(0,+∞)× L1
+(0,+∞) denotes the initial age distributions

of each population. It is easy to see that (1) has the demographic steady state P∗(a) = be−
∫ a

0 μ(σ)dσ,
a ≥ 0. Let

s(t, a) =
S(t, a)
P∗(a)

, i(t, a) =
I(t, a)
P∗(a)

, r(t, a) =
R(t, a)
P∗(a)

, t ≥ 0, a ≥ 0.
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We then can normalize (1) as follows.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∂

∂t
+

∂

∂a

)
s(t, a) = −s(t, a)

∫ +∞

0
κ(a)P∗(a)i(t, a)da, t > 0, a > 0,(

∂

∂t
+

∂

∂a

)
i(t, a) = s(t, a)

∫ +∞

0
κ(a)P∗(a)i(t, a)da − γi(t, a), t > 0, a > 0,(

∂

∂t
+

∂

∂a

)
r(t, a) = γi(t, a), t > 0, a > 0,

s(t, 0) = 1, i(t, 0) = r(t, 0) = 0, t > 0,

s(0, a) =
S0(a)
P∗(a)

, i(0, a) =
I0(a)
P∗(a)

, r(0, a) =
R0(a)
P∗(a)

, a ≥ 0.

(2)

As shown in [18], for a specific form of κ(·) such that κ(·)P∗(·) is sufficiently concentrated in one
particular age class, the endemic equilibrium of (2) can be destabilized even if it uniquely exists. Thus,
our interest in this paper is when it is stable. In this paper, we assume that κ(·) has the following form:

κ(a) =
β

b
ae−kae

∫ a
0 μ(σ)dσ, β > 0, k > μ∞ = ess.sup

a≥0
μ(a) > 0, a ≥ 0. (3)

Note that κ(·) ∈ L∞
+(0,+∞) is satisfied under this assumption. In this case, the equations of s and

i in (2) can be rewritten as follows.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∂

∂t
+

∂

∂a

)
s(t, a) = −s(t, a)β

∫ +∞

0
ae−kai(t, a)da, t > 0, a > 0,(

∂

∂t
+

∂

∂a

)
i(t, a) = s(t, a)β

∫ +∞

0
ae−kai(t, a)da − γi(t, a), t > 0, a > 0,

s(t, 0) = 1, i(t, 0) = 0, t > 0,

s(0, a) =
S0(a)
P∗(a)

, i(0, a) =
I0(a)
P∗(a)

, a ≥ 0.

(4)

Note that we can omit the equation of r, as it does not affect the dynamics of (4). As in [17],
without loss of generality, we can assume that 0 ≤ s(t, a) ≤ 1 and 0 ≤ i(t, a) ≤ 1 for all t ≥ 0 and
a ≥ 0.

As seen in [17,18], the stability analysis of age-structured PDE systems such as (4) requires
complex calculation. In this paper, we perform the reduction of (4) into a four-dimensional system of
ODEs. Let

X(t) =
∫ +∞

0
e−kas(t, a)da, Y(t) =

∫ +∞

0
e−kai(t, a)da,

L(t) = β
∫ +∞

0
ae−kas(t, a)da, Λ(t) = β

∫ +∞

0
ae−kai(t, a)da, t ≥ 0.

Note that these variables have no specific epidemiological implications except Λ(t), which implies
the force of infection at time t ≥ 0. By differentiating X(·), we have

dX(t)
dt

=
∫ +∞

0
e−ka ∂s(t, a)

∂t
da =

∫ +∞

0
e−ka

[
−∂s(t, a)

∂a
− s(t, a)Λ(t)

]
da

=
[
−e−kas(t, a)

]+∞

0
− k

∫ +∞

0
e−kas(t, a)da − X(t)Λ(t) (5)

=1 − [k + Λ(t)] X(t), t > 0.
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Similarly, we have

dY(t)
dt

=
∫ +∞

0
e−ka ∂i(t, a)

∂t
da =

∫ +∞

0
e−ka

[
−∂i(t, a)

∂a
+ s(t, a)Λ(t)− γi(t, a)

]
da

=
[
−e−kai(t, a)

]+∞

0
− k

∫ +∞

0
e−kai(t, a)da + X(t)Λ(t)− γY(t) (6)

= X(t)Λ(t)− (k + γ)Y(t), t > 0,

dL(t)
dt

= β
∫ +∞

0
ae−ka ∂s(t, a)

∂t
da = β

∫ +∞

0
ae−ka

[
−∂s(t, a)

∂a
− s(t, a)Λ(t)

]
da

= β
[
−ae−kas(t, a)

]+∞

0
+ β

∫ +∞

0
e−kas(t, a)da − k

∫ +∞

0
ae−kas(t, a)da − L(t)Λ(t) (7)

= βX(t)− [k + Λ(t)] L(t), t > 0,

and

dΛ(t)
dt

= β
∫ +∞

0
ae−ka ∂i(t, a)

∂t
da = β

∫ +∞

0
ae−ka

[
− ∂i(t, a)

∂a
+ s(t, a)Λ(t)− γi(t, a)

]
da

= β
[
−ae−kai(t, a)

]+∞

0
+ β

∫ +∞

0
e−kai(t, a)da − k

∫ +∞

0
ae−kai(t, a)da + L(t)Λ(t)− γΛ(t) (8)

= βY(t) + L(t)Λ(t)− (k + γ)Λ(t), t > 0.

Hence, combining (5)–(8), we obtain the following new four-dimensional system of ODEs:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX(t)
dt

= 1 − [k + Λ(t)] X(t), t > 0,

dY(t)
dt

= X(t)Λ(t)− (k + γ)Y(t), t > 0,

dL(t)
dt

= βX(t)− [k + Λ(t)] L(t), t > 0,

dΛ(t)
dt

= βY(t) + L(t)Λ(t)− (k + γ)Λ(t), t > 0,

X(0) = X0, Y(0) = Y0, L(0) = L0, Λ(0) = Λ0.

(9)

Note that (X0, Y0, L0, Λ0) ∈ R4
+ since (S0(·), I0(·)) ∈ L1

+(0,+∞)× L1
+(0,+∞). In what follows,

we perform the stability analysis of system (9).

3. Existence, Uniqueness, and Stability of the Endemic Equilibrium

Following the theory in [12], the basic reproduction number R0 for the original (normalized)
system (4) can be calculated as follows.

R0 =β
∫ +∞

0
ae−ka

∫ a

0
e−γ(a−σ)dσda =

β

γ

∫ +∞

0
ae−ka (1 − e−γa)da

=
β

γ

⎧⎨
⎩
[
− ae−ka

k

]+∞

0

+
1
k

∫ +∞

0
e−kada −

[
− ae−(k+γ)a

k + γ

]+∞

0

− 1
k + γ

∫ +∞

0
e−(k+γ)ada

⎫⎬
⎭ (10)

=
β

γ

[
1
k2 − 1

(k + γ)2

]
= β

2k + γ

k2 (k + γ)2 .
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We now prove that system (9) has the unique endemic equilibrium if R0 > 1. Let
E∗ : (X∗, Y∗, L∗, Λ∗) ∈ (R+ \ {0})4 denote the endemic equilibrium of system (9). The following
equations are satisfied: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 − (k + Λ∗) X∗ = 0,

X∗Λ∗ − (k + γ)Y∗ = 0,

βX∗ − (k + Λ∗) L∗ = 0,

βY∗ + L∗Λ∗ − (k + γ)Λ∗ = 0.

(11)

We prove the following theorem.

Theorem 1. Let R0 be defined by (10). If R0 > 1, then system (9) has the unique endemic equilibrium E∗.

Proof. By rearranging the first three equations in (11), we have

X∗ = 1
k + Λ∗ , Y∗ = X∗Λ∗

k + γ
=

Λ∗

(k + γ) (k + Λ∗)
, L∗ = βX∗

k + Λ∗ =
β

(k + Λ∗)2 . (12)

By substituting the equations of Y∗ and L∗ into the last equation in (11), we have

0 =
βΛ∗

(k + γ) (k + Λ∗)
+

βΛ∗

(k + Λ∗)2 − (k + γ)Λ∗.

Dividing both sides of this equation by Λ∗ and rearranging the equation, we have

1 =
β

k + γ

{
1

(k + γ) (k + Λ∗)
+

1

(k + Λ∗)2

}
. (13)

Let F(Λ∗) be a function defined by the right-hand side of this equation. Since F(Λ∗) is
monotonically decreasing to 0 as Λ∗ → +∞ and

F(0) =
β

k + γ

{
1

(k + γ) k
+

1
k2

}
= β

2k + γ

k2 (k + γ)2 = R0 > 1,

there exists the unique positive root Λ∗ > 0 of Equation (13). Substituting it into the three equations in (12),
we obtain the unique endemic equilibrium E∗. This completes the proof.

To investigate the asymptotic stability of the endemic equilibrium E∗, we consider the following
Jacobian matrix JE∗ around E∗:

JE∗ =

⎛
⎜⎜⎜⎝

−(k + Λ∗) 0 0 −X∗

Λ∗ −(k + γ) 0 X∗

β 0 −(k + Λ∗) −L∗

0 β Λ∗ L∗ − (k + γ)

⎞
⎟⎟⎟⎠ .

From (12), we have

k + Λ∗ = 1
X∗ , L∗ = β (X∗)2 . (14)
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Using (14), we derive the characteristic polynomial for E∗ as follows:

|λI − JE∗ | =

∣∣∣∣∣∣∣∣∣

λ + k + Λ∗ 0 0 X∗
−Λ∗ λ + k + γ 0 −X∗
−β 0 λ + k + Λ∗ L∗
0 −β −Λ∗ λ − L∗ + k + γ

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

λ + k + Λ∗ 0 0 X∗
λ + k λ + k + γ 0 0
−β 0 λ + k + Λ∗ β (X∗)2

−β −β λ + k λ + k + γ

∣∣∣∣∣∣∣∣∣
(15)

=

∣∣∣∣∣∣∣∣∣∣∣

λ +
1

X∗ 0 0 X∗

−γ λ + k + γ 0 0

−β (X∗λ + 2) 0 λ +
1

X∗ 0

0 −β λ + k λ + k + γ

∣∣∣∣∣∣∣∣∣∣∣
=

(
λ +

1
X∗

)2
(λ + k + γ)2 − βX∗

[
−γ

(
λ +

1
X∗

)
+ (λ + k) (λ + k + γ) (X∗λ + 2)

]

=λ4 + a3λ3 + a2λ2 + a1λ + a0,

where I denotes the identity matrix and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a3 =
2

X∗ + 2 (k + γ)− β (X∗)2 ,

a2 =
1

(X∗)2 + 4
k + γ

X∗ + (k + γ)2 − βX∗ {2 + (2k + γ)X∗} ,

a1 =
2 (k + γ)

(X∗)2 +
2 (k + γ)2

X∗ − βX∗ {−γ + k (k + γ) X∗ + 2 (2k + γ)} ,

a0 =
(k + γ)2

(X∗)2 − βX∗
{
− γ

X∗ + 2k (k + γ)
}

.

(16)

To apply the Routh–Hurwitz criterion, we prove the following proposition.

Proposition 1. Let R0 and ai (i = 0, 1, 2, 3) be defined by (10) and (16), respectively. If R0 > 1, then ai > 0
for all i = 0, 1, 2, 3.

Proof. By Theorem 1, the unique endemic equilibrium E∗ exists. From (12) and (13), we have

k + γ =
βX∗

k + γ
+ β (X∗)2 , (k + γ)2 = βX∗ + (k + γ) β (X∗)2 , 1 − kX∗ = 1 − k

k + Λ∗ > 0.

17



Mathematics 2018, 6, 147

We then have

a3 =
2

X∗ + 2
{

βX∗

k + γ
+ β (X∗)2

}
− β (X∗)2 =

2
X∗ +

2βX∗

k + γ
+ β (X∗)2 > 0,

a2 =
1

(X∗)2 +
4

X∗

{
βX∗

k + γ
+ β (X∗)2

}
+ βX∗ + (k + γ) β (X∗)2 − βX∗ {2 + (2k + γ)X∗}

=
1

(X∗)2 +
4β

k + γ
+ 3βX∗ − kβ (X∗)2 =

1

(X∗)2 +
4β

k + γ
+ 2βX∗ + (1 − kX∗) βX∗ > 0,

a1 =
2β

(k + γ) X∗ + 2β + 2β + 2 (k + γ) βX∗ + γβX∗ − k (k + γ) β (X∗)2 − 2kβX∗ − 2 (k + γ) βX∗

=
2β

(k + γ) X∗ + 2β (1 − kX∗) + 2β + (k + γ) βX∗ − kβX∗ − k (k + γ) β (X∗)2

=
2β

(k + γ) X∗ + 3β (1 − kX∗) + β + (k + γ) βX∗ (1 − kX∗) > 0,

a0 =
β

X∗ + (k + γ) β + γβ − 2k (k + γ) βX∗ = β

X∗ + 2 (k + γ) β − kβ − 2k (k + γ) βX∗

=
β

X∗ (1 − kX∗) + 2 (k + γ) β (1 − kX∗) > 0.

This completes the proof.

By Proposition 1, it follows from the Routh–Hurwitz criterion [15] (Proof of Theorem 3.1) that the
endemic equilibrium E∗ is asymptotically stable if and only if

Δ = a1a2a3 − a0a2
3 − a2

1 > 0. (17)

However, it seems that quite a long calculation is needed to show (17) analytically. Instead, in the
next section, we show (17) numerically in some epidemiologically relevant parameter settings.

4. Numerical Results

Let the unit time be 1 year. By the definition in (3), k should satisfy inequality
k > μ∞ = ess.supa≥0 μ(a) > 0. For the sake of simplicity, we regard a = 100 (years old) as the maximum
age of individuals. In a dataset available in [22], the mortality rate μ(a) is at most 0.39954 (at a = 100) for
males in Japan, 2015. Hence, we fix k = 0.4. By (10), we can determine β for chosen R0 and γ as follows:

β =
k2 (k + γ)2

2k + γ
R0.

We first consider an influenza-like disease which has an infectious period of about 1 week (see [23]).
Therefore, let γ = 52 so that the average infectious period is 1/γ = 1/52 year = 1 week. Following
the estimation result in [24], we vary the value of R0 from 2 to 3. In Figure 1a, we can confirm that
criterion Δ defined in (17) is always positive, and hence, the endemic equilibrium E∗ is asymptotically
stable. In fact, in Figure 1b, the force of infection Λ(t) converges to the positive equilibrium value
Λ∗ = 0.2339 > 0 as time evolves for R0 = 2.5.

We next consider a chlamydia-like sexually transmitted disease which has an infectious period of
about 1 year (see [25]). Therefore, γ = 1 so that the average infectious period is 1/γ = 1 year. Based
on the estimation result in [25], we vary the value of R0 from 1 to 1.5. In Figure 2a, we can confirm that
criterion Δ is always positive, and hence the endemic equilibrium E∗ is asymptotically stable. In fact,
in Figure 2b, the force of infection Λ(t) converges to the positive equilibrium value Λ∗ = 0.0539 > 0
as time evolves for R0 = 1.25.

Finally, we vary the values of γ from 1/50 to 365 (i.e., the average infectious period 1/γ is varied
from 1/365 year = 1 day to 50 years) and R0 from 1 to 50. In Figure 3, we can confirm that criterion Δ
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is always positive in this parameter region. Hence, we can conclude that the endemic equilibrium E∗

is asymptotically stable for epidemiologically relevant values of γ and R0.

Basic reproduction number R0
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Figure 1. Numerical confirmation of condition (17) and asymptotic stability of the endemic equilibrium
E∗ for the case of an influenza-like disease: (a) Variation of Δ defined in (17) for 2 ≤ R0 ≤ 3; (b) Time
variation of Λ(t) for R0 = 2.5.
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Figure 2. Numerical confirmation of condition (17) and asymptotic stability of the endemic equilibrium
E∗ for the case of a chlamydia-like sexually transmitted disease: (a) Variation of Δ defined in (17) for
1 < R0 ≤ 1.5; (b) Time variation of Λ(t) for R0 = 1.25.

Figure 3. Numerical confirmation of condition (17) for realistic values of recovery rate γ ∈ [1/50, 365]
and the basic reproduction number R0 ∈ (1, 50].
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5. Discussion

In this paper, we formulated an age-structured SIR epidemic model and performed its reduction
into a four-dimensional system of ODEs under an additional assumption on the disease transmission
function κ(·). We proved that if the basic reproduction number R0 is greater than 1, then the system has
the unique endemic equilibrium E∗ (Theorem 1). Moreover, we obtained a fourth-order characteristic
equation, and proved that all of its coefficients are positive (Proposition 1). By the Routh–Hurwitz
criterion, the endemic equilibrium E∗ is asymptotically stable if and only if Δ > 0. As it seems difficult
to show Δ > 0 analytically, we showed it numerically in Section 4 for some epidemiologically relevant
parameters. We showed that Δ > 0 holds for parameters for an influenza-like disease (γ = 52 and
2 ≤ R0 ≤ 3) and a chlamydia-like disease (γ = 1 and 1 < R0 ≤ 1.5). Furthermore, we showed
that Δ > 0 holds for a wider region of epidemiologically relevant parameters γ ∈ [1/50, 365] and
R0 ∈ (1, 50].

The results in this paper contribute to enlarge the stability region of the endemic equilibrium
E∗ for R0 > 1 to the set where we can perform our reduction method of the PDEs system into the
ODEs system. Epidemiologically, our results imply that E∗ can be stable for R0 > 1 with some realistic
parameters, and have broadened the possibilities of application of an age-structured SIR epidemic
model for the estimation of R0 based on the real data of endemic diseases.

In this study, we restricted our attention to the case where the disease transmission function
κ = κ(a) is only dependent on the age a of infective individuals. Of course, the case where it depends
on the ages of both susceptible and infective individuals is more general and epidemiologically realistic.
Nevertheless, the stability of the endemic equilibrium of age-structured SIR epidemic models has
not been clarified well enough even for the former case. In fact, the global asymptotic stability of
the endemic equilibrium E∗ of such models does not generally hold even if the basic reproduction
number R0 is greater than unity, as a special case where E∗ becomes unstable for R0 > 1 was obtained
in [18]. As an important future work, we will seek other forms of κ(·) for which we can apply a similar
reduction method to ODEs as in this study.

Funding: This research was funded by Grant-in-Aid for Young Scientists (B) of Japan Society for the Promotion of
Science (grant number 15K17585).
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Abstract: In this paper, we study the dynamics of a certain Hodgkin-Huxley model describing the
action potential (AP) of a cardiac muscle cell for a better understanding of the occurrence of a special
type of cardiac arrhythmia, the so-called early afterdepolarisations (EADs). EADs are pathological
voltage oscillations during the repolarisation or plateau phase of cardiac APs. They are considered as
potential precursors to cardiac arrhythmia and are often associated with deficiencies in potassium
currents or enhancements in the calcium or sodium currents, e.g., induced by ion channel diseases,
drugs or stress. Our study is focused on the enhancement in the calcium current to identify regions,
where EADs related to enhanced calcium current appear. To this aim, we study the dynamics of
the model using bifurcation theory and numerical bifurcation analysis. Furthermore, we investigate
the interaction of the potassium and calcium current. It turns out that a suitable increasing of the
potassium current adjusted the EADs related to an enhanced calcium current. Thus, one can use
our result to balance the EADs in the sense that an enhancement in the potassium currents may
compensate the effect of enhanced calcium currents.

Keywords: nonlinear dynamics; bifurcation analysis; ion current interactions; EADs; MATCONT

MSC: 37G15; 37N25; 65P30; 92B05

1. Introduction

The aim of this manuscript is the mathematical and numerical investigation of a three-dimensional
Hodgkin-Huxley model from [1] to study early afterdepolarisations (EADs) in a cardiac muscle cell.
Here, we are interested in the dynamics of this system and mainly in reasons for the occurrence of
EADs. More precisely, we are interested in the sudden change from a normal action potential (AP)
to this special type of cardiac arrhythmia. In general, EADs are additional small amplitude spikes
during the plateau or the repolarisation phase of the AP. The presence of EADs strongly correlates with
the onset of dangerous cardiac arrhythmias, including torsades de pointes (TdP), which is a specific
type of abnormal heart rhythm that can lead to sudden cardiac death, see [2–4]. Please see for more
(biological/physiological) details [5–11]. In this paper, we will use the bifurcation analysis similar
to [12–14] to study the system introduced in [1]. We want to highlight that we can use our approach to
investigate also more complex models, see for instance [15–17]. The numerical effort will be higher but
we can use this basic principle for further studies. Moreover, our approach can be utilised to study
the ion current interaction of all ion currents; this approach is not restricted to the investigation of
the potassium–calcium current interaction. In addition, the general aim is to extend this research to
models of the complete heart, cf. [18,19]. The main novelty of this paper is the consideration of a
bifurcation problem depending on two bifurcation parameters to investigate the ion current interaction
and the occurrence of EADs related to the calcium current. Furthermore, we want to mention that

Mathematics 2018, 6, 103; doi:10.3390/math6060103 www.mdpi.com/journal/mathematics22
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the intention of our manuscript is to present our results to a wide range of scientific researcher with
different background in biology, mathematics, physics and physiology.

In last decades, the mathematical investigation of phenomena from life science, especially
mathematical modelling and mathematical analysis, aroused more and more importance, as well
as interdisciplinary research involving mathematics. A very important topic in recent years is the
mathematical investigation of (human) diseases, e.g., tumor growth as well as diseases in neurons or
cardiac muscle cells. Also here we have the aim to push forward this progress using our knowledge
from mathematics to refine and extend existing theory and results. To this goal we choose the model
from [1] for our study of EADs, where the authors studies two types of cardiac arrhythmias for instance
EADs related to a deficit in the potassium current. Later we will give more details on their approach
and how it differs from our ansatz, please see Section 3.2. In this paper, the authors chose the model
from [20] and considered a modified reduced version, which they final reduced to a two-dimensional
model (fast subsystem) for their investigation. Using their approach the authors in [1] have shown that
EADs can occur during the transition between stable steady states. Moreover, they argued their study
shows that a stable limit cycle in the fast subsystem is not required for EAD generation. In Section 3.2,
we will explain and show why this approach is not applicable to study and to understand EADs
related to an enhancement in the calcium current.

Moreover, there are several cardiac cell models available, e.g., the famous Luo-Rudy model [17]
describing a cardiac muscle cell of guinea pigs. Furthermore, we want to refer to the review article on
cardiac cell modelling [16], where the authors give a nice overview on existing cardiac cell models,
as well as to the review article on cardiac tissue modelling [15].

In addition to the modelling of phenomena in the real life it is very important to analyse
the behaviour of the corresponding model and to study its dynamics. To this aim we are using
the bifurcation theory, since this theory provides a strategy for investigating the bifurcations
and the behaviour of the system, please see Section 3. Furthermore, we want to highlight the
monographs [12–14]. These monographs give a very good introduction and nice overview on this
topic. In [12] the author does not only explain and discuss the bifurcation theory, he also provides the
numerical background for the numerical bifurcation analysis. Moreover, the books [13,14] are focused
on the qualitative study of high-dimensional nonlinear dynamical systems and chaos. Beside these
books there are plenty of further good books dealing with the topics of dynamical systems, bifurcations
and chaos, but we cannot cite them all in this manuscript.

The paper is organised as follows. First of all in Section 2, we will give a brief introduction
into the topic of cardiac APs and arrhythmia, i.e., afterdepolarisations. Then, we will go on with the
mathematical modelling of the cardiac AP using a Hodgkin-Huxley type formalism, which is the
usual approach for the modelling of AP for neurons and cardiac muscle cells. In Sections 3 and 4,
we will explain the behaviour of the considered model using the bifurcation analysis. The desired
bifurcation diagram we will derive utilising MATLAB together with the toolboxes MATCONT and
CL_MATCONT [21–23], which are numerical continuation packages for the interactive bifurcation
analysis of dynamical systems. In Section 5, we show how we can compensate or control the occurrence
of EADs. Finally, we will finish this paper with a discussion.

2. Biological Background and Mathematical Modelling

Action potential. An AP is a temporary, characteristic variance of the membrane potential of an
excitable biological cell, e.g., neuron or cardiac muscle cell, from its resting potential. The molecular
mechanism of an AP is based on the interaction of voltage-sensitive ion channels. The reason for the
formation and the special properties of the AP is established in the properties of different groups
of ion channels in the plasma membrane. An initial stimulus activates the ion channels as soon as
a certain threshold potential is reached. Then, these ion channels break open and/or up such that this
interaction allows an ion current, which changes the membrane potential. A normal AP is always
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uniform and the cardiac muscle cell AP is typically divided in four phases, i.e., the resting phase,
the upstroke phase, the (long) plateau phase and the repolarisation phase, see Figure 1:
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Figure 1. One example of a normal characteristic action potential (AP) of a cardiac muscle cell.

The resting phase/potential is designated by high potassium (K+) currents, while after the initial
stimulus the sodium (Na+) conductance increases rapidly and the Na+ current flux into the cardiac
muscle cell until a spike potential (ca. +30 mV) is achieved. This spike potential is the so-called
upstroke or overshot. Then, the Na+ current inactivates rapidly followed by the activation of L-type
calcium (Ca2+) current. The Ca2+ current is more slowly than the Na+ current and plays a key role in
maintaining the long plateau phase, which is characteristic for the cardiac muscle cell. The overall
duration of this long AP is at 220–400 ms. Moreover, while the Ca2+ conductance increases the K+

conductance decreases. The plateau phase is followed by the repolarisation phase, where the intrinsic
K+ ion channels are activated and this is connected with the reduction of the Ca2+ conductance.
Finally, the K+ current increases until the resting potential respectively the resting phase is reached.
In contrast to the Na+ and Ca2+ currents is the K+ current an outward current.

Afterdepolarisation. If there are depolarising variations of the membrane voltage, then we
are speaking about afterdepolarisations. These afterdepolarisations are divided in early afterde-
polarisations (EADs) and delayed afterdepolarisations (DADs). This division depends on the timing
obtaining of the AP. EADs occur either in the plateau or the repolarisation phase of the AP. EADs are
benefited by an elongation of the AP, while the DADs occur after the repolarisation phase is completed.
EADs are additional small amplitude spikes during the plateau or the repolarisation phase of the AP,
cf. Figure 2.
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Figure 2. One example of an early afterdepolarisations (EADs).

They are resulting, e.g., from a reduction of the repolarising K+ currents or from an intensification
of depolarising Na+ currents or Ca2+ currents. Triggers for this are congenital disorders of the ion
channels (congenital Long- QT-Syndrome) or the ingestion of some medicaments. The elongation
of the AP could generate afterpolarisations by reactivation L-type Ca2+ influx. Also chronic cardiac
insufficiency could appear with an elongation of the AP by a reduction of the repolarising K+ currents.
This means, EADs are often associated with deficits in the potassium currents or enhancements in the
calcium currents.
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The model. In general, APs of excitable biological cells such as neurons and cardiac muscle
cells are often modelled as an ODE system using a Hodgkin-Huxley type formalism, please see the
paper of Hodgkin and Huxley [24] and the book of Izhikevich [25]. In this paper, we will study the
model from [1]—a toy model—which depends only on two ion currents, the potassium (K+) current
and the calcium (Ca2+) current, as a simplification for the study of EADs. Please notice that in this
model the sodium current is not considered. Furthermore, the system is self-oscillating, which means
that we do not need an initial stimulus. Nevertheless, this is a suitable starting point for the study
of EADs, since EADs appear either in the plateau or the repolarisation phase. Here, the potassium
(K+) and the calcium (Ca2+) currents are important, see [1,26]. The model is a three-dimensional
ODE system, which contains the potassium current IK = GK · x · (V − EK) and the calcium current
ICa = GCa · f · d∞(V) · (V − ECa), where V denotes the membrane voltage, d∞(V) is the steady state
of the gating variable d given in (2), GK = 0.05 mS

cm2 and GCa = 0.025 mS
cm2 denote the ion current

conductances, while x and f represent the gating variables, which are important for the opening and
closing of the different ion channels. Moreover, EK and ECa denote the Nernst potential of the ion
currents, cf. Table 1. The physical system (Figure 3) one has in mind is the following

Cm

EK

GK

ECa

GCa

extracellular

intracellular

IK ICa

V

Figure 3. Physical system.

and the corresponding mathematical model read as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dV
dt

= − IK + ICa

Cm
=: F1(V, f , x),

d f
dt

=
f∞(V)− f

τf
=: F2(V, f , x),

dx
dt

=
x∞(V)− x

τx
=: F3(V, f , x),

(1)

where τf = 80 ms and τx = 300 ms denote the relaxation time constant of the corresponding channel
gating variables. Further, the membrane capacitance is given by Cm = 1 μF/cm2, cf. [1,20,27]. As we
already mentioned, the gating variables are important for the opening and closing of the different ion
channels. This means (for instance explained for IK and x ∈ [0, 1]) that if x = 0 the potassium channel
is closed, i.e., there is no potassium current flow (IK = 0), while if x = 1 the potassium channel is
complete open. We have also to mention that the calcium current is depending on a second gating
variable d, which is assumed to be equal to its equilibrium, cf. (2).

Conductance-based models are based on an equivalent circuit representation of a cell membrane.
These models represent a minimal biophysical interpretation for an excitable biological cell in which
current flow across the membrane is due to charging of the membrane capacitance and movement
of ions across ion channels. Ion channels are selective for particular ionic species, such as calcium
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or potassium, giving rise to currents ICa or IK, respectively. In addition, the equilibria of the gating
variables are represented by

y∞(V) :=
(

1 + exp
(V − VTy

ky

))−1

, (2)

where y represents the gating variables d, f and x we will use the abbreviations y∞ := y∞(V) with

Table 1. System parameters of model (1).

Abbr. Value Unit Abbr. Value Unit Abbr. Value Unit

VTd −35.0 mV kd −6.24 mV EK −80.0 mV
VTf −20.0 mV k f 8.6 mV ECa 100.0 mV
VTx −40.0 mV kx −5 mV V (−80; 100) mV

In this setting there are no EADs, but it is well known that the reduction of the potassium or the
enhancements in the calcium current or a combination of both may yield EADs. In this manuscript we
are focused on the enhancements in the ICa current and the resulting behaviour of system (1).

3. Bifurcation Theory

A bifurcation of a dynamical system is a qualitative change in its dynamics produced by varying
parameters. We consider an autonomous system of ordinary differential equations, where the right
hand side of this system is depending on several state variables and parameter(s), cf. system (1).
V, f and x denote the state variables, while GK and GCa are the parameters of our interest. Since we
study the occurrence of EADs induced by an enhancement in the calcium current ICa, we will choose
the conductance GCa as the bifurcation parameter to be able to simulate the decreasing or mainly
the increasing of the current ICa. In general, a bifurcation occurs at some parameter p (in our case
GCa), if there are parameter values arbitrarily close to p with dynamics topologically inequivalent
from those at p. For example, an equilibrium of the considered system may lose or win stability at
a bifurcation, or a limit cycle may occur. The bifurcation theory provides a strategy for investigating
the bifurcations and the behaviour of the system. This basic idea we will use to study the dynamics
of (1) and the reasons for the appearing of EADs. Therefore, we choose the conductance GCa as
bifurcation parameter and we start determining the equilibrium of model (1). This yields f ≡ f∞(V)

and x ≡ x∞(V). Moreover, we have the following condition for the equilibrium of the voltage V:

−GK · x∞(V) · (V − EK)− GCa · f∞(V) · d∞(V) · (V − ECa) = 0. (3)

Please note that in system (1) we have at least four system parameters, which are important for
the behaviour of the system, i.e., GCa, GK, τf and τx. Here, we are focused mainly on the dependences
on GCa but also on GK. Further, we want to emphasise, if we change τf and/or τx, then this has also
an effect on the behaviour of the model (1).

At this stage, we see—cf. condition (3)—that the choice of GCa has a direct influence on the location
of the equilibrium and its stability (considering the corresponding eigenvalues). Therefore, varying the
bifurcation parameter GCa yields different equilibria with probably different stability. Figure 4 shows
the bifurcation diagram of system (1), where we use GCa as the bifurcation parameter for fixed
GK = 0.05 mS

cm2 . For our bifurcation analysis and the calculation of our bifurcation diagram we
are using MATCONT in combination with MATLAB. Please notice that all figures are produced
using MATLAB. Figure 4a shows the bifurcation diagram (GCa, V) with two limit cycle branches,
while Figure 4b shows the bifurcation diagram (GCa, f , V) with (only) the first limit cycle branch.
Furthermore, in Figure 4c we state the zoom of Figure 4a around the LPCs (lower limit cycle branches)
including two vertical dashed lines for an easier comprehension.
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(c)Zoom of Figure 4a around the LPCs (lower branch).

Figure 4. Bifurcation diagram of system (1) with GCa as bifurcation parameter. The black line denotes
the stable branch of the equilibrium curve, while the black dashed line the unstable one. The grey line
and grey dashed line represent the stable or unstable limit cycle branches, respectively.

This bifurcation diagram shows that the equilibrium curve loses stability via a subcritical
Andronov-Hopf bifurcation (grey dot) and wins stability via a supercritical Andronov-Hopf bifurcation
(black dot)—Figure 4a from right to left and Figure 4b from left to right. Moreover, an unstable limit
cycle branch bifurcates from the subcritical Andronov-Hopf bifurcation (positive first Lyapunov
coefficient), which becomes stable via a limit point bifurcation (LP) of cycles (also known as fold
or saddle-node bifurcation of cycles, which generically corresponds to a turning point of a curve
of limit cycles) and finally, disappears via the supercritical Andronov-Hopf bifurcation (negative
first Lyapunov coefficient). Please notice that after the supercritical Andronov-Hopf bifurcation the
steady state becomes an unstable saddle-focus for GCa values approximately between (0.080; 0.0138).
For values approximately between (0.0138; 0.0320) it turns into a saddle before it becomes again
an unstable saddle-focus and gains again stability via the subcritical Andronov-Hopf bifurcation.
Please note that the saddle has always two positive and one negative (real) eigenvalue, i.e., we have a
two-dimensional unstable and an one-dimensional stable manifold. From this bifurcation diagram it is
obvious that oscillations (in the sense of periodic orbits, which are not converging into an equilibrium
or which no more reach the resting potential) can occur only between the two Andronov-Hopf
bifurcations—also trajectories, which are not related to EADs. Notice that the system (1) exhibits also
oscillations for values of GCa close to the right hand side of the subcritical Andronov-Hopf bifurcation,
but the trajectory will either converge into a stable focus after a certain amount of time, which would

27



Mathematics 2018, 6, 103

be related to the sudden death if this behaviour spread over the heart, or oscillations occur, which
exhibit no resting phase and oscillate continuously (depending on the initial values). Since the aim
of this paper is to identify the region, where EADs appear, to be able to control them and to prevent
the sudden death, we are focused on the distinction of the spiking regions (related to normal AP) and
the bursting region (with periodic orbits related to EADs). However, EADs are in general complex
oscillatory phenomena and could have one or more additional small oscillations. For simplicity we
will analyse and point out, where system (1) have no additional small oscillations and for which values
of GCa EADs appear.

At this stage, we have to notice that increasing of GCa and therefore, increasing of the calcium
current ICa may yields EADs, which was expected. Moreover, this bifurcation diagram implies
that EADs can appear only for values of GCa between the subcritical Andronov-Hopf bifurcation
(GCa ≈ 0.0372 mS

cm2 ) and LP of cycles (GCa ≈ 0.0275 mS
cm2 ), which is the separatrix between EADs and

no EADs, since "after" the first LP of cycles there are no additional small oscillations. From this LP of
cycles we have the stable limit cycle branch, while from the first period doubling bifurcation again an
unstable limit cycle branch bifurcates, which becomes stable after a further LP of cycles, again unstable
via a third LP of cycles before this branch converges into the first unstable limit cycle branch. Please
notice that we do not have isolas as in [28] but we also have a similar splitting into a spiking and a
bursting region, see Figure 4c and its refined view in Figure 5.
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Figure 5. Refined view on Figure 4c at the transition of the first two limit cycle branches.

In Figure 5 we plot the continuation from the first PD (the second limit cycle branch) as a solid
blue line to illustrate in a better way the situation we mentioned above. Furthermore, we want
to highlight that such models (which exhibit one or more PD) might exhibit isolas as in [28] or a
PD cascade as in [27]. In the case that there exists a (stable) PD cascade then the model contains
chaos depending on the value of the bifurcation parameter. This is depending on the choices of the
system parameters, e.g., τf and τx. However, the (unforced) system (1) exhibits no chaotic pattern or
trajectories. But, chaotic trajectories may occur for different values of τf and τx. Please see for more
details [27], where we have shown that system (1) may have a (stable) PD cascade, which is usually
the route to chaos.

3.1. Bifurcation Analysis with GK as Bifurcation Parameter

Our next observation is, if we choose GCa = 0.03 mS
cm2 and GK = 0.05 mS

cm2 , since we know from
Figure 4c that we have two small oscillations (second LPC at GCa ≈ 0.029976 mS

cm2 ), i.e, an EAD—cf.
Figure 6a—and we use now GK as bifurcation parameter with fixed GCa = 0.03 mS

cm2 , it turns out that
increasing of the potassium current can balance the effect of an enhanced calcium current. From the
bifurcation diagram in Figure 6b, we get that there are no EADs for GCa = 0.03 mS

cm2 and GK values
greater than GK ≈ 0.0548 mS

cm2 (LP of cycles), while for values between GK ≈ 0.0408 mS
cm2 (subcritical

Andronov-Hopf bifurcation) and GK ≈ 0.0548 mS
cm2 there are EADs, similar to the discussion from
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above. Therefore, the effect of an enhanced calcium current ICa can be compensated by an increasing
of the potassium current IK.
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(a)trajectory for GK = 0.05 mS
cm2 , GCa = 0.03 mS
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Figure 6. Bifurcation diagram of (1) for the case GCa = 0.03 mS
cm2 and GK used as bifurcation parameter.

Regarding Figure 6b, we see that if we choose a GK value too close to the supercritical
Andronov-Hopf bifurcation, then the voltage does not reach the resting potential. This indicates
that we have normal AP as long as we choose a GK value such that this value is greater than the value
of the LP of cycles and the lower branch of the limit cycle branch is equal to the resting potential of
the voltage.

3.2. Multiple Time Scales

Here, we want to remark that for instance in [1,26] the occurrence of EADs via the reduction of
the potassium current is studied. The authors used a time scale separation argument (not explicit) to
identify the gating variable x as the slowest variable and then, they argued in principle that EADs
are Hopf-induced, cf. [29–31], by considering a fast subsystem using x as bifurcation parameter.
This approach is not applicable in our situation, since the gating variable f is much faster than x.
This one can realise since τf � τx, but we can show this also by the following time scale separation
argument. To this aim we introduce a new (dimensionless) time variable τ satisfying t := kt · τ, where
kt is a reference time we have to choose. Choosing kt = τx and re-writing system (1) we get:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ε
dV
dτ

= −(IK + ICa),

δ
d f
dτ

= ( f∞(V)− f ),

dx
dτ

= (x∞(V)− x),

(4)

where we divided also the first equation by G := max {GK, GCa} and defined ḠK := GK
G and ḠCa := GCa

G
to derive the dimensionless singular perturbation parameters ε := Cm

τx ·G and δ :=
τf
τx

. Please note that
we chose as reference time kt the maximum of all relaxation time constants. Using the setting from
above we have that 0 ≤ ε < δ � 1, i.e., three different time scales. Furthermore, we want to highlight
that also different choices of the singular perturbation parameters yield that the gating variable x is
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always the slowest variable and the corresponding fast subsystem is either 1 dimensional (if ε → 0 and
δ �= 0 fixed), i.e., it cannot exhibit an Andronov-Hopf bifurcation, or 2 dimensional (if δ ≡ ε, ε → 0):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dV
dτfast

= −(IK + ICa),

d f
dτfast

=
G

τf Cm
( f∞(V)− f ),

x = const.,

where we rescaled in time, i.e., τfast = τ/ε, and considered the singular limit τx → ∞ yielding ε → 0.
Therefore, EADs appearing in system (1) via an enhanced calcium current are not Hopf-induced in the
sense of geometric singular perturbation theory, please see the book of Kuehn [31] for more details.
Again, we want to highlight that EADs may occur as Hopf-induced mixed mode oscillations via a
reduction of the potassium current, but not via an enhancement in the calcium current.

4. Two bifurcation problem

Our next aim is to use the previous result to investigate the ion current interactions by considering
a two bifurcation problems. First of all, we have to notice that varying simultaneous the conductances
GK and GCa yields the equilibrium curves in Figure 7. For suitable values of GK and GCa the stable
equilibrium branch loses stability via an Andronov-Hopf bifurcation (sub- or supercritical) and
becomes stable via a further (supercritical) Andronov-Hopf bifurcation. The range, where system (1)
oscillates, increases for increased values of GK and GCa.

Figure 7. Bifurcation problem with GK and GCa as bifurcation parameters.

This has also a huge influence on the behaviour of the complete system. Moreover, for each new
limit cycle branch the trajectory has a further small oscillation (via a PD cascade or isolas), depending
on the choice of GCa. This means—cf. Figure 4—that the trajectory has one small oscillation for GCa

values approximately between [0.02754; 0.02997]. At this stage, we emphasise that our approach can be
extended to a multiple bifurcation problem of system (1) with up to five main important parameters,
i.e., GK, GCa, Cm, τf and τx. While the shape of the equilibrium curves are depending on GK and GCa,
the shape of the equilibrium curves remain the same by varying Cm, τf or τx, but the behaviour is
depending on these parameters, cf. Figure 8. Moreover, the Andronov-Hopf bifurcations in Figures 7
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and 8 form two “Hopf-curves”, which continuously depend on GK and GCa. This we can also prove
by the Routh-Hurwitz criterion, see [13]. For this aim we determine the characteristic equation

−det(A − λ13) = λ3 + a1λ2 + a2λ + a3 = 0, (5)

where A denotes the Jacobian of system (1) evaluated at the equilibrium of system (1). The Routh-
Hurwitz criterion implies that all characteristic exponents of Equation (5) have negative real parts if
and only if the conditions

Δ1 = a1 > 0, Δ2 = a1a2 − a3 > 0 and Δ3 = a3(a1a2 − a3) > 0

(a)Setting: τf = 80 ms, τx = 300 ms & Cm = 4 μF
cm2 . (b)Setting: τf = 18 ms, τx = 100 ms & Cm = 1.4 μF

cm2 .

Figure 8. 2-bifurcation problem: equilibrium curves of (1) for different settings showing the shape of
the equilibrium curves remain the same but the behaviour of the curves is depending on the choices of
the parameters τf , τx and Cm.

are satisfied, which implies that the equilibrium is asymptotically stable, where a1 =
(

1
τf

+ 1
τx

− ∂F1
∂V

)
,

a2 =
(

1
τf τx

−
(

1
τf

+ 1
τx

)
∂F1
∂V − 1

τf

∂ f∞
∂V

∂F1
∂ f − 1

τx
∂x∞
∂V

∂F1
∂x

)
, a3 = − 1

τf τx

(
∂x∞
∂V

∂F1
∂x + ∂ f∞

∂V
∂F1
∂ f + ∂F1

∂V

)
and

Δ2 =
1
τf

(
1
τf

− ∂F1

∂V

)(
1
τx

− ∂F1

∂V
− ∂ f∞

∂V
∂F1

∂ f

)
+

1
τx

(
1
τx

− ∂F1

∂V

)(
1
τf

− ∂F1

∂V
− ∂x∞

∂V
∂F1

∂x

)
.

Moreover, if Δ1 > 0, Δ2 = 0 and a3 > 0 the equilibrium of system (1) is an Andronov-Hopf
bifurcation with λ1,2 = ±iω0, where ω2

0 = a2 > 0 and λ3 = −a1, since

λ3 + a1λ2 + a2λ + a3 = λ3 + a1λ2 + a2λ + a1a2 = (λ2 + a2)(λ + a1) = 0,

where we used Δ2 = 0, cf. [14]. Furthermore, a1 > 0 implies that λ3 is negative. Especially, if Δ2 < 0
oscillations occur, which implies that X(t)− X(t + T) = 0, where X = {V, f , x} and T denotes the
period of the periodic orbit. Thus, the conditions a1 > 0, Δ2 = 0 and a3 > 0 with condition (3), f = f∞

and x = x∞ yields (numerically) in dependence on GK and GCa the “Hopf-curves” in Figure 7 or
Figure 9, respectively. Mainly, we are interested in the separatrix between EADs and no EADs.
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Figure 9. The two black lines represent the two “Hopf-curves”. Between these lines oscillations occur
(light grey area), while outside this area (dark grey areas) no oscillations (in the sense we mentioned in
Section 3) appear. Here, we have stable equilibria of system (1). Furthermore, the third area in Figure
9b represents the values of GK and GCa, where EADs appear.

In Figure 9 we see that also the region, where EADs appear, is linearly depending on GCa and
GK. Moreover, the dangerous region is also growing if we increase the two conductances GCa and GK.
Nevertheless, this investigation shows that one can balance EADs utilising the ion current interaction.

5. Controlling the Early Afterdepolarisations

Our final aim is to control the EADs. To this goal we use our observations from above and the
knowledge of the ion current interaction. From Figure 9 we know how we have to shift GK to smooth
out the impact of the enhanced calcium current. However, there are several possibilities to achieve
this. First, we can control the EADs by varying the conductance GK in the potassium current IK (in the
case that the choice of GCa yields an EAD) or we can introduce a control parameter pcontrol and replace
GK by

ḠK := (GK − pcontrol). (6)

Then, using pcontrol as control or bifurcation parameter, respectively, we can balance the EAD.
A further approach is to replace GCa and GK by

ḠCa := (GCa + pcontrol) and ḠK := (GK − pcontrol), (7)

respectively. In this case we control simultaneous both ion currents ICa and IK, i.e., we exploit the
ion current interaction. Here, we are now able to study the two bifurcation parameter problem
from above, but in this bifurcation problem we only vary one bifurcation parameter, i.e., the control
parameter. Moreover, we want to emphasise that we shift GCa and GK simultaneous. This yields
the same, which we showed exemplary in Figure 6 and corresponds to the regions in Figure 9.
Furthermore, we have to highlight that we have to choose the sign of pcontrol opposed in ḠCa and ḠK,
since we know that decreasing of IK and increasing of ICa may yield in both cases EADs. This means
that these ion currents behave in same sense reverse (outward and inward currents) and this we
want to exploit. The advantage in this approach is also that we do not have to change one current
“dramatically”. Please notice in both cases using (6) or (7) we get different values of pcontrol. However,
utilising the definitions of ḠK (and ḠCa) in (6) or (7) and relabelling ḠK (and ḠCa) by GK (and GCa)
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we get the conclusion of Figure 9. Finally, we are utilising a further approach, i.e., we consider the
following system

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dV
dt

= − ĪK + ICa

Cm
=: F1(V, f , x),

d f
dt

=
f∞(V)− f

τf
=: F2(V, f , x),

dx
dt

=
x∞(V)− x

τ̄x
=: F3(V, f , x),

(8)

with

ĪK := ḠK · x · (V − EK), ḠK := (GK − pcontrol), τ̄x := 0.75 · (τx + pcontrol).

Here, we again consider only the potassium current to control the effect of the enhanced calcium
current. However, we are not only focused on the conductance GK, we are paying attention also to
the relaxation time constant τx. This has influence on the gating variable x and therefore, again on the
potassium current, i.e., decreasing of pcontrol increases ḠK and x. The choices of the signs of the control
parameter in ḠK and τ̄x is again related to the aim to increase the potassium current. This yields the
regions in Figure 10.
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Figure 10. The black lines represent the two "Hopf-curves" of system (8) including the oscillatory area.

Here, we see that choosing the approach from (8) yields different region, where oscillations appear,
i.e., EADs and no EADs, please cf. Figure 9. We see that – regarding Figure 10a—we have a much
bigger range with respect to the conductances GCa and ḠK, where no EADs appear. To achieve this a
reduction of the time relaxation constant τx or τ̄x, respectively, is necessary, cf. Figure 10b. Moreover,
as a general remark we want to emphasise that all these approaches can be modified, i.e., we can add
weight to the control parameter depending on the system specific properties, as we already did in
system (8). In system (8), e.g., we can modify ḠK and τ̄x as follows

ḠK := (GK − a · pcontrol) and τ̄x := b · (τx + c · pcontrol), (9)

where a, c ∈ R+, a �= c and 0 < b or similar modifications. Especially, in this paper we are focused on
balancing the enhanced calcium current via the increasing the potassium current. Please remark also
that all these approaches we have for pcontrol = 0 and b = 1 the initial situation. Moreover, we know
that we can compensate the enhancement of the calcium current by increasing the potassium current.
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Furthermore, notice that to balance an EAD induced by an enhanced calcium current the control
parameter pcontrol in system (8) has to be negative. Using the approach (8) together with (9) and the
choices a = b = c = 1 yields also a different regions as in Figure 9, but the ”Hopf-curves” are still less
steep as in Figure 10. This means we can control the slope of the “Hopf-curves”.

Finally, we want to remark that this approach we can also use for more general systems,
e.g., including the sodium current INa or relaxation time constants, which are depending on the
voltage V, cf. [17]. This yields then more possible choices of the parameters and the parameter space
will grow, but this has also potential to study and to control cardiac arrhythmia in a more specific way.

6. Discussion

In this paper, we studied the Hodgkin-Huxley model from [1] to investigate the occurrence of
EADs related to an enhanced calcium current and the ion current interaction of the potassium and
calcium current. For this aim we used the bifurcation theory and the numerical bifurcation analysis to
derive a separatix between EADs, i.e., mixed mode oscillations [30,31] with one large and one or more
small oscillations, and no EADs in system (1), cf. Figure 9. It turns out that our system loses stability
and oscillates (in the sense of periodic orbits mentioned in Section 3) between two Andronov-Hopf
bifurcations, where EADs as well as no EADs appear (periodic orbits). In this region stable periodic
orbits occur, where the number of small oscillations are depending on the numbers of (unstable) limit
cycle branches, cf. Figure 4 and [28], where we adumbrated this fact.

Moreover, we showed that no EADs occur in a region between the supercritical Andronov-Hopf
bifurcation (related to small values of the conductance GCa) and the first LP of cycles of the first Hopf
continuation—which generically corresponds to a turning point of a curve of limit cycles—from this
supercritical Andronov-Hopf bifurcation, cf. Figure 4. This corresponds also with the circumstance that
EADs may appear by the enhancement in the calcium current. Please notice that also the phenomena
of isolas may occur for different settings of the system parameters, cf. for instance [28], but not in our
setting, please cf. Figure 5. Furthermore, we restricted our bifurcation diagram to the first two limit
cycle branches. The continuation from an Andronov-Hopf bifurcation is comparably easy and fast,
while already the continuation of the second limit cycle branch becomes challenging and needs a lot
of computational power. Since we are interested in the region, where EADs appear, and because of
these numerical efforts, it makes sense to focus on the first limit cycle branch (mainly if one consider
a multiple bifurcation problem).

Furthermore, we highlighted that the effect of an enhanced calcium current can be compensated
by an increasing of the potassium current, cf. Figure 6. Since we considered only the toy model (1)
depending on two ion currents our study is limited to the ion current interaction of the potassium and
the calcium current. However, a similar result, we can expect also from the interaction of the potassium
and sodium current. Then, these observations motivate the study of system (1) as a multiple bifurcation
problem, i.e., our investigation was not only focused on one bifurcation parameter. Please note that
EADs can be induced by an increase of the L-type calcium conductance and by the application of
potassium current blockers, cf. [3]. Using two bifurcation parameters, yields that the area, where
oscillations in system (1) appear, increases by increasing of GCa and GK (simultaneously), see Figure 9.

At this stage we want to emphasise, that the study of model (1) as a multiple bifurcation problem
with up to five (most important) parameters yields further cognitions, cf. Figures 8 and 9. Moreover, we
can use this approach to study more general Hodgkin-Huxley models or we can utilise this strategy to
show that EADs related to a reduction of the potassium current can be compensated by a decreasing
of the calcium current.

Summarising, we have shown four main result. Obviously, the increasing of the calcium current
may yield EADs. Second, one can use an increased potassium current (e.g., induced by some drug)
to compensate EADs derived by an enhanced calcium current (e.g., induced by ion channel disease).
On the other hand, one can also balance EADs induced by a reduced potassium current, via the
reduction of the calcium current. This means if one is not able to decline the influence of a potassium
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blocker, one may vanish the effect of the potassium blocker by a “calcium blocker”. Third, from our
study one can expect that EADs may occur via a combination of an enhanced calcium current and a
reduced potassium current, cf. [3]. Therefore, the effect of both phenomena can be mutually reinforcing.
Thus, EADs may also appear in a “safe region” focused only on one ion current. Fourth, we showed
that EADs related to an enhancement in the calcium current are not Hopf-induced in the sense of the
geometric singular perturbation theory [32].

Furthermore, in the paper we used several control approach to balance the effect of the
enhancement in the calcium current. Here, it turns out that EADs can be compensated using the
approach in (8) in a very effective way. The reason is that we increase simultaneous GK and τx, where
we added a weight to τx, i.e., we increased the speed of the gating variable x. This yields very different
regions if we compare Figures 9b and 10a.

In addition, if we study models containing also a sodium current, then the effects of the different
ion currents can be balanced by increasing or decreasing the other ion currents. The investigation
of the three main ion currents by considering three parameters GCa, GK and GNa will yield a three
dimensional parameter space and therefore, we will have more possible choices to prevent the EADs.
Even more, we are able to investigate and to understand the ion current interactions by means of
the bifurcation theory in a very general way, which is useful for the treatment of cardiac diseases.
This short study emphasise the importance of the inclusion of the two or three main ion currents, which
are related to the occurrence of EADs and the beneficing of bifurcation analysis in the investigation of
cardiac arrhythmia.

Finally, we want to outline that our study was only focused on a toy model of dimension three
containing two ion currents and it is as a future project mandatory to consider more complex models
to be able to understand all effects yielding EADs. Nevertheless, we can use our approach also in more
complex situations for the investigation of EADs. Beside the extension of this study to more general
ion current models, one has to think about to the study of multi-domain models to be able to study the
effect of EADs on the complete heart. A first good starting point would be to observe a mono-domain
model as in [4].
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Abstract: In this paper, the existence and uniqueness of the solutions to a fractional order nonlinear
coupled system with integral boundary conditions is investigated. Furthermore, Ulam’s type stability
of the proposed coupled system is studied. Banach’s fixed point theorem is used to obtain the existence
and uniqueness of the solutions. Finally, an example is provided to illustrate the analytical findings.
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1. Introduction

Fractional calculus is a branch of mathematical analysis, in which arbitrary order differential
and integral operators are studied. It started with a correspondence between L’Hospital and Leibnitz
in 1695. Presently, plenty of literature is available on theoretical as well as numerical work on this
topic. It has application in numerous fields, for example, control theory, signal and image processing,
aerodynamics and biophysics [1–3]. For the fundamental concepts of fractional calculus, books like
Kilbas et al. [4], Miller and Ross [5] and Halfer [6] are referred. Existence and uniqueness of solutions
for fractional order differential systems in finite dimensional as well infinite dimensional spaces were
studied by several authors [7–11]. Ahmad et al. [8] established existence results for nonlinear boundary
value fractional integro-differential equations with integral boundary conditions.

Integral boundary conditions have several applications in real-life problems such as population
dynamics, blood flow problems, underground water flow, and chemical engineering. For more details
on integral boundary conditions, we refer the reader to [12]. Here we would like to consider a practical
example of the integral boundary condition:

−x′′ = g(t) f (t, x), x(0) = 0, βx′(1) = x(η),

where t ∈ (0, 1), η ∈ (0, 1] and β is a positive constant. This is the model for a thermostat. Solutions of
the problem are stationary solutions for a one-dimensional heat equation, corresponding to a heated
bar, with a controller at 1, which adds or removes heat, depending on the temperature detected by a
sensor at η.

This problem can be generalized. One can consider the heat equation with nonlinear gradient
source terms that vary in time. Moreover, now, the heated bar, with a controller at 1, which adds
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or removes heat depending on the temperature detected by sensors located at any points of the bar
(it depends on how we define the function h). This problem can be written in the form

x′′ = f (t, x, x′), x(0) = 0, x′(1) =
∫ 1

0
x(s)dh(s)(η).

Recently, Ulam’s type stability has been of great interest to many researchers. In 1940, the above
mentioned stability was first introduced by Ulam [13]. Then, it was explained by Hyers [14] in the
subsequent years. Ulam and Hyers studied it for various kinds of differential equations with integer
order. Nowadays, we describe the result of Hyers simply saying that Cauchy functional equation
is Hyers-Ulam stable (or has the Hyers-Ulam stability). Next, Hyers and Ulam published some
further stability results for polynomial functions, isometries, and convex functions. The Hyers’ results
are extended and generalized by many researchers for integer order differential equations. Plenty of
significant results on Ulam’s type stability can be found in the literature, we refer [15–17] and references
cited therein.

To the best of our knowledge, there are only few manuscripts devoted to the study of Ulam’s
type stability for coupled system of fractional differential equations. Further, there is no manuscript
considering the Ulam’s stability for coupled system of fractional order α ∈ (1, 2] differential equations
with integral boundary conditions. Motivated by this fact, in this paper, the existence, uniqueness
of solutions as well as Ulam’s type stability for the considered coupled system involving Caputo
derivative is studied. The proposed system is given as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cDαx(t) = f (t, y(t)), α ∈ (1, 2], t ∈ J

cDβy(t) = g(t, x(t)), β ∈ (1, 2], t ∈ J

px(0) + qx′(0) =
∫ 1

0 a1(x(s))ds, px(1) + qx′(1) =
∫ 1

0 a2(x(s))ds,

p̃y(0) + q̃y′(0) =
∫ 1

0 ã1(y(s))ds, p̃y(1) + q̃y′(1) =
∫ 1

0 ã2(y(s))ds,

(1)

where J = [0, 1] and f , g : J ×R → R are continuous functions. Here, a1, a2, ã1, ã2 : R → R and
p, p̃ > 0; q, q̃ ≥ 0 are real numbers.

The plan of the paper is as follows. In the second section, some useful definitions, notations,
lemmas and results are given which will be required for the later sections. In the third section, existence
and uniqueness of the solutions for the coupled system (1) is studied. In the fourth section, Ulam’s type
stability results are obtained. In the last section, a few examples are given to show the application of
the obtained abstract results.

2. Preliminaries and Assumptions

In this section, some useful definitions, notations and lemmas are briefly reviewed.

Definition 1. [4] For any function z ∈ ((0, 1),R), the Caputo derivative of fractional order α ∈ R+ is
defined as

cDαz(t) =
1

Γ(n − α)

∫ t

0
(t − s)n−α−1z(n)(s)ds, n = [α] + 1,

where [α] denotes the integer part of α and Γ(·) is the gamma function.

Definition 2. [4] The Riemann-Liouville fractional integral of order α ∈ R+ is defined by

Jαz(t) =
1

Γ(α)

∫ t

0
(t − s)α−1z(s)ds,
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where z(t) ∈ L1([0, 1],R+).

Lemma 1. [4] For any α > 0, then the differential equations

cDαz(t) = 0

has solution given by

z(t) = c0 + c1t + c2t2 + · · ·+ cn−1tn−1, ci ∈ R, i = 0, 1, · · · , n − 1,

where n = [α] + 1.

Lemma 2. [4] For any α > 0, then the solution of the differential equations

cDαz(t) = h(t)

will be given by

Jα[cDαz(t)] = Jαz(t) + c0 + c1t + c2t2 + · · ·+ cn−1tn−1, ci ∈ R, i = 0, 1, · · · , n − 1,

where n = [α] + 1.

Lemma 3. [8] For any h, γ1, γ2 ∈ C([0, 1],R), the unique solution of the boundary value problem
{

cDαz(t) = h(t), α ∈ (1, 2], t ∈ [0, 1]
pz(0) + qz′(0) =

∫ 1
0 γ1(s)ds, pz(1) + qz′(1) =

∫ 1
0 γ2(s)ds,

(2)

is given by

z(t) =
∫ 1

0
Gα(t, s)h(s)ds +

1
p2

[
(p(1 − t) + q)

∫ 1

0
γ1(s)ds + (q + pt)

∫ 1

0
γ2(s)ds

]
, (3)

where Gα(t, s) is the Green’s function given by

Gα(t, s) =

⎧⎪⎪⎨
⎪⎪⎩

p(t−s)α−1+(q−pt)(1−s)α−1

pΓ(α) + q(q−pt)(1−s)α−2

p2Γ(α−1) , s ≤ t,

(q−pt)(1−s)α−1

pΓ(α) + q(q−pt)(1−s)α−2

p2Γ(α−1) , t ≤ s.

(4)

Lemma 4. The space B = {z(t) | z ∈ C(J )} is a Banach space under the defined norm ‖z‖B =

maxt∈J |z(t)|. Similarly, the norm on product space is defined by ‖(z, z̃)‖B×B = ‖z‖B + ‖z̃‖B .
Obviously (B × B, ‖(·, ·)‖B×B) is a Banach space. Further, the cone C ⊂ B × B is defined by

C = {(z, z̃) ∈ B × B | z(t) ≥ 0, z̃(t) ≥ 0}.

Here, the problem (1) is transformed into a fixed point problem. Let F : B × B → B ×B be the
operator defined as
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F (x, y)(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫ 1
0 Gα(t, s) f (s, y(s))ds + 1

p2

[
(p(1 − t) + q)

∫ 1
0 a1(x(s))ds

+(q + pt)
∫ 1

0 a2(x(s))ds
]

∫ 1
0 Gβ(t, s)g(s, x(s))ds + 1

p̃2

[
( p̃(1 − t) + q̃)

∫ 1
0 ã1(y(s))ds

+(q̃ + p̃t)
∫ 1

0 ã2(y(s))ds
]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎝Fα(y, x)(t)

Fβ(x, y)(t)

⎞
⎟⎠ . (5)

Then the fixed point of the operator F coincides with the solution of coupled system (1).
In order to prove the existence and uniqueness of solutions of coupled system (1),

following assumptions are taken:

(A1) For t ∈ J , there exist λ, μ ∈ C(J ,R+), such that

| f (t, y(t))| ≤ λ(t) + μ(t)|y(t)|, ∀ y(t) ∈ C(J ,R)

with λ∗ = supt∈J λ(t), μ∗ = supt∈J μ(t).
Similarly, for t ∈ J , there exist ν, ξ ∈ C(J ,R+), such that

|g(t, x(t))| ≤ ν(t) + ξ(t)|x(t)|, ∀ x(t) ∈ C(J ,R)

with ν∗ = supt∈J ν(t), ξ∗ = supt∈J ξ(t).
(A2) For t ∈ J , there exist positive constant La1 , La2 , such that

|a1(x(t))| ≤ La1 |x(t)| and |a2(x(t))| ≤ La2 |x(t)|, ∀ x(t) ∈ C(J ,R)

Similarly, For t ∈ J , there exist positive constant Lã1 , Lã2 , such that

|ã1(y(t))| ≤ Lã1 |y(t)| and |ã2(x(t))| ≤ Lã2 |y(t)|, ∀ y(t) ∈ C(J ,R)

(A3)

P1 =
∫ 1

0
|Gα(t, s)|λ(s)ds < ∞, Q1 =

∫ 1

0
|Gα(t, s)|μ(s)ds +

(p + q)(La1 + La2)

p2 <
1
2

and

P2 =
∫ 1

0
|Gβ(t, s)|ν(s)ds < ∞, Q2 =

∫ 1

0
|Gβ(t, s)|ξ(s)ds +

( p̃ + q̃)(Lã1 + Lã2)

p̃2 <
1
2

.

(A4) For all y, ỹ ∈ C(J , R) and for each t ∈ J there exists a positive constant K f , such that

| f (t, y)− f (t, ỹ)| ≤ K f |y − ỹ|.

Similarly, for all x, x̃ ∈ C(J , R) and for each t ∈ J there exists a positive constant Kg, such that

|g(t, x)− g(t, x̃)| ≤ Kg|x − x̃|.

(A5) For all x, x̃ ∈ C(J , R) and for each t ∈ J there exist positive constants Ka1 , Ka2 , such that

|a1(x)− a1(x̃)| ≤ Ka1 |x − x̃| and |a2(x)− a2(x̃)| ≤ Ka2 |x − x̃|.
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Similarly, for all y, ỹ ∈ C(J , R) and for each t ∈ J there exist positive constants Kã1 , Kã2 ,
such that

|ã1(y)− ã1(ỹ)| ≤ Kã1 |y − ỹ| and |ã2(y)− ã2(ỹ)| ≤ Kã2 |y − ỹ|.
(A6) Let

(i) φ1 = K(β p̃q̃)Kg + Kpq, where Kpq =
(p+q)(Ka1+Ka2 )

p2 and

K(β p̃q̃) = max
t∈[0,1]

∣∣∣ ∫ 1

0
Gβ(t, s)ds

∣∣∣
=

∣∣∣∣∣
∫ t

0

[
p̃(t − s)β−1 + (q̃ − p̃t)(1 − s)β−1

p̃Γ(β)
+

q̃(q̃ − p̃t)(1 − s)β−2

p̃2Γ(β − 1)

]
ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ 1

t

[
(q̃ − p̃t)(1 − s)β−1

p̃Γ(β)
+

q̃(q̃ − p̃t)(1 − s)β−2

p̃2Γ(β − 1)

]
ds

∣∣∣∣∣
=

1
Γ(β + 1)

+
2( p̃ + q̃)
Γ(β + 1)

+
2(q̃2 + p̃q̃)

p̃2Γ(β)
;

(ii) φ2 = K(αpq)K f + Kp̃q̃, where Kp̃q̃ =
( p̃+q̃)(Kã1+Kã2 )

p̃2 and

K(αpq) = max
t∈[0,1]

∣∣∣ ∫ 1

0
Gα(t, s)ds

∣∣∣
=

1
Γ(α + 1)

+
2(p + q)
Γ(α + 1)

+
2(q2 + pq)

p2Γ(α)
.

3. Existence and Uniqueness Analysis

Theorem 1. If all the assumptions (A1)–(A6) and φ = max{φ1, φ2} < 1 are fulfilled, then the fractional
order coupled system (1) has a unique solution.

Proof. For a positive number

δ = max
( 2P1

1 − 2Q1
,

2P2

1 − 2Q2

)
,

we define a set
W = {(x, y) ∈ B × B : ‖(x, y)‖B×B ≤ δ}.

First, in order to prove that F maps W into itself, we have

|Fα(y, x)(t)| ≤
∫ 1

0
|Gα(t, s)|| f (s, y(s))|ds

+
1
p2

[
|(p(1 − t) + q)|

∫ 1

0
|a1(x(s))|ds + |(q + pt)|

∫ 1

0
|a2(x(s))|ds

]

≤
∫ 1

0
|Gα(t, s)|λ(s)ds +

∫ 1

0
|Gα(t, s)|[μ(s)|y(s)|]ds

+
1
p2

[
(p + q)

∫ 1

0
|a1(x(s))|ds + (p + q)

∫ 1

0
|a2(x(s))|ds

]

≤
∫ 1

0
|Gα(t, s)|λ(s)ds + δ

[ ∫ 1

0
|Gα(t, s)|μ(s)ds +

(p + q)(La1 + La2)

p2

]

= P1 + δQ1 ≤ δ

2
. (6)
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Now taking maximum on both side of the inequality (6) over J , we obtain

‖Fα(y, x)‖B ≤ δ

2
.

Similarly, ‖Fβ(x, y)‖B ≤ δ
2 . Hence, we can conclude that

‖F (x, y)‖B×B ≤ δ. (7)

Inequality (7) shows that F maps W into itself. Next, in order to show that F is the contraction
operator when t ∈ J , we have

|Fα(y, x)(t)−Fα(ȳ, x̄)(t)| ≤
∫ 1

0
|Gα(t, s)|| f (s, y(s))− f (s, ȳ(s))|ds

+
1
p2

[
|(p(1 − t) + q)|

∫ 1

0
|a1(x(s))− a1(x̄(s))|ds

+ |(q + pt)|
∫ 1

0
|a2(x(s))− a2(x̄(s))|ds

]
≤ K(αpq)K f |y(t)− ȳ(t)|

+
(p + q)(Ka1 + Ka2)

p2 |x(t)− x̄(t)|. (8)

When we take maximum on both side of the inequality (8) over J , we obtain

‖Fα(y, x)−Fα(ȳ, x̄)‖B ≤ K(αpq)K f ‖y − ȳ‖B +
(p + q)(Ka1 + Ka2)

p2 ‖x − x̄‖B . (9)

Similarly, the following can be obtained

‖Fβ(x, y)−Fβ(x̄, ȳ)‖B ≤ K(β p̃q̃)Kg‖x − x̄‖B +
( p̃ + q̃)(Kã1 + Kã2)

p̃2 ‖y − ȳ‖B . (10)

From (9) and (9), we get

‖F (x, y)−F (x̄, ȳ)‖B×B ≤ φ‖(x, y)− (x̄, ȳ)‖B×B . (11)

Thus, the operator F is strict contraction. By Banach’s fixed point method, it has a unique fixed
point which is the unique solution of the considered coupled system (1).

4. Ulam’s Stability Analysis

In this section, we study Ulam’s type stability for the coupled system (1).
For some ε = (εα, εβ) > 0, we consider the following inequality

⎧⎪⎨
⎪⎩
∣∣cDαx(t)− f (t, y(t))

∣∣ ≤ εα, t ∈ J ,

∣∣cDβy(t)− g(t, x(t))
∣∣ ≤ εβ, t ∈ J .

(12)

The following definitions are inspired by Rus [18].

Definition 3. The coupled system (1) is said to be Ulam-Hyers stable, if there exist K(αβpqp̃q̃) =

(K(αpq),K(β p̃q̃)) > 0 such that for every solution (x, y) ∈ B × B of the inequality (12), there exists a
unique solution (ϑ, κ) ∈ B × B with∣∣(x, y)(t)− (ϑ, κ)(t)

∣∣ ≤ K(αβpqp̃q̃)ε, t ∈ J . (13)
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Definition 4. The coupled system (1) is said to be generalized Ulam-Hyers stable, if there exist Ψ ∈ C(R+,R+)

with Ψ(0) = 0, such that for every solution (x, y) ∈ B × B of the inequality (12), there exist a unique solution
(ϑ, κ) ∈ B × B of the system (1) which satisfies

∣∣(x, y)(t)− (ϑ, κ)(t)
∣∣ ≤ Ψ(ε), t ∈ J . (14)

Remark 1. Let (x, y) ∈ B × B is a solution of the system of inequality (12) if there exist functions
φ, ψ ∈ C(J ,R) which depend upon x and y respectively, such that

(R1) |φ(t)| ≤ εα, |ψ(t)| ≤ εβ, t ∈ J ;
(R2) and ⎧⎪⎨

⎪⎩
cDαx(t) = f (t, y(t)) + φ(t), t ∈ J ,

cDβy(t) = g(t, x(t)) + ψ(t), t ∈ J .

Lemma 5. Let (x, y) ∈ B × B be the solution of the inequality (12), then the following inequality will
be satisfied:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣x(t)− ∫ 1
0 Gα(t, s) f (s, y(s))ds − 1

p2

[
(p(1 − t) + q)

∫ 1
0 a1(x(s))ds

+(q + pt)
∫ 1

0 a2(x(s))ds
]∣∣∣ ≤ K(αpq)εα, t ∈ J ,

∣∣∣y(t)− ∫ 1
0 Gβ(t, s)g(s, x(s))ds − 1

p̃2

[
( p̃(1 − t) + q̃)

∫ 1
0 ã1(y(s))ds

+(q̃ + p̃t)
∫ 1

0 ã2(y(s))ds
]∣∣∣ ≤ K(β p̃q̃)εβ, t ∈ J .

Proof. By Remark 1 (R2), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cDαx(t) = f (t, y(t)) + φ(t), t ∈ J ,

cDβy(t) = g(t, x(t)) + ψ(t), t ∈ J ,

px(0) + qx′(0) =
∫ 1

0 a1(x(s))ds, px(1) + qx′(1) =
∫ 1

0 a2(x(s))ds

p̃y(0) + q̃y′(0) =
∫ 1

0 ã1(y(s))ds, p̃y(1) + q̃y′(1) =
∫ 1

0 ã2(y(s))ds

(15)

By Applying Lemma 3, the solution of (15) will be as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t) =
∫ 1

0 Gα(t, s) f (s, y(s))ds +
∫ 1

0 Gα(t, s)φ(s)ds + 1
p2

[
(p(1 − t) + q)

∫ 1
0 a1(x(s))ds

+(q + pt)
∫ 1

0 a2(x(s))ds
]
, t ∈ J ,

y(t) =
∫ 1

0 Gβ(t, s)g(s, x(s))ds +
∫ 1

0 Gα(t, s)ψ(s)ds + 1
p̃2

[
( p̃(1 − t) + q̃)

∫ 1
0 ã1(y(s))ds

+(q̃ + p̃t)
∫ 1

0 ã2(y(s))ds
]
, t ∈ J .

(16)

Considering first equation of the system (16), we have
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∣∣∣x(t)− ∫ 1

0
Gα(t, s) f (s, y(s))ds − 1

p2

[
(p(1 − t) + q)

∫ 1

0
a1(x(s))ds

+(q + pt)
∫ 1

0
a2(x(s))ds

]∣∣∣ ≤
∣∣∣ ∫ 1

0
Gα(t, s)φ(s)ds

∣∣∣
≤

∫ 1

0
|Gα(t, s)||φ(s)|ds.

By Remark 1 (R1) and using condition of (A6), we get

∣∣∣x(t)− ∫ 1

0
Gα(t, s) f (s, y(s))ds − 1

p2

[
(p(1 − t) + q)

∫ 1

0
a1(x(s))ds

+(q + pt)
∫ 1

0
a2(x(s))ds

]∣∣∣ ≤ K(αpq)εα. (17)

Repeating the same procedure for second equation of the system (16), we get

∣∣∣y(t)− ∫ 1

0
Gβ(t, s)g(s, x(s))ds − 1

p̃2

[
( p̃(1 − t) + q̃)

∫ 1

0
ã1(y(s))ds

+(q̃ + p̃t)
∫ 1

0
ã2(y(s))ds

]∣∣∣ ≤ K(β p̃q̃)εβ. (18)

Theorem 2. If all the assumptions (A4)–(A6) are fulfilled, then the fractional order coupled system (1) is
Ulam-Hyers stable and consequently generalized Ulam-Hyers stable provided that

(1 − Kpq)(1 − Kp̃q̃)− KαpqKβ p̃q̃ �= 0.

Proof. Let (x, y) ∈ B × B be the solution of the system (15) and (ϑ, κ) ∈ B × B be the unique solution
to the following considered system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cDαϑ(t) = f (t, κ(t)), t ∈ J ,

cDβκ(t) = g(t, ϑ(t)), t ∈ J ,

pϑ(0) + qϑ′(0) =
∫ 1

0 a1(ϑ(s))ds, pϑ(1) + qϑ′(1) =
∫ 1

0 a2(ϑ(s))ds

p̃κ(0) + q̃κ′(0) =
∫ 1

0 ã1(κ(s))ds, p̃κ(1) + q̃κ′(1) =
∫ 1

0 ã2(κ(s))ds

(19)

Using Lemma 3, the solution of (19)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϑ(t) =
∫ 1

0 Gα(t, s) f (s, κ(s))ds + 1
p2

[
(p(1 − t) + q)

∫ 1
0 a1(ϑ(s))ds

+(q + pt)
∫ 1

0 a2(ϑ(s))ds
]
, t ∈ J ,

κ(t) =
∫ 1

0 Gβ(t, s)g(s, ϑ(s))ds + 1
p̃2

[
( p̃(1 − t) + q̃)

∫ 1
0 ã1(κ(s))ds

+(q̃ + p̃t)
∫ 1

0 ã2(κ(s))ds
]
, t ∈ J .

(20)

We have
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|x(t)− ϑ(t)| =
∣∣∣x(t)− ∫ 1

0
Gα(t, s) f (s, κ(s))ds − 1

p2

[
(p(1 − t) + q)

∫ 1

0
a1(ϑ(s))ds

+ (q + pt)
∫ 1

0
a2(ϑ(s))ds

]∣∣∣
≤

∣∣∣x(t)− ∫ 1

0
Gα(t, s) f (s, y(s))ds − 1

p2

[
(p(1 − t) + q)

∫ 1

0
a1(x(s))ds

+ (q + pt)
∫ 1

0
a2(x(s))ds

]∣∣∣
+

∣∣∣ ∫ 1

0
Gα(t, s) f (s, y(s))ds −

∫ 1

0
Gα(t, s) f (s, κ(s))ds

∣∣∣
+

∣∣∣ 1
p2

[
(p(1 − t) + q)

∫ 1

0
a1(x(s))ds + (q + pt)

∫ 1

0
a2(x(s))ds

]

− 1
p2

[
(p(1 − t) + q)

∫ 1

0
a1(ϑ(s))ds + (q + pt)

∫ 1

0
a2(ϑ(s))ds

]∣∣∣
≤ Kαpqεα + Kαpq|y(t)− κ(t)|+ Kpq|x(t)− ϑ(t)|,

where Kαpq = K(αpq)K f .
Hence, we get

(1 − Kpq)‖x − ϑ‖B ≤ K(αpq)εα + Kαpq‖y − κ‖B . (21)

Similarly, we have

(1 − Kp̃q̃)‖y − κ‖B ≤ K(β p̃q̃)εβ + Kβ p̃q̃‖x − ϑ‖B , (22)

where Kβ p̃q̃ = K(β p̃q̃)Kg.
From (21) and (22), it can be written as⎧⎪⎨

⎪⎩
(1 − Kpq)‖x − ϑ‖B − Kαpq‖y − κ‖B ≤ K(αpq)εα

(1 − Kp̃q̃)‖y − κ‖B − Kβ p̃q̃‖x − ϑ‖B ≤ K(β p̃q̃)εβ

(23)

The matrix representation of (23) is as follows

⎛
⎜⎝(1 − Kpq) −Kαpq

−Kβ p̃q̃ (1 − Kp̃q̃)

⎞
⎟⎠
⎛
⎜⎝‖x − ϑ‖B

‖y − κ‖B

⎞
⎟⎠ ≤

⎛
⎜⎝K(αpq)εα

K(β p̃q̃)εβ

⎞
⎟⎠ .

After simplification of the above inequality, we have

⎛
⎜⎝‖x − ϑ‖B

‖y − κ‖B

⎞
⎟⎠ ≤

⎛
⎜⎝

(1−Kp̃q̃)
Δ

Kαpq
Δ

Kβ p̃q̃
Δ

(1−Kpq)
Δ

⎞
⎟⎠
⎛
⎜⎝K(αpq)εα

K(β p̃q̃)εβ

⎞
⎟⎠ ,

where Δ = (1 − Kpq)(1 − Kp̃q̃)− KαpqKβ p̃q̃ �= 0.
Further simplification gives

‖x − ϑ‖B ≤ (1 − Kp̃q̃)K(αpq)εα

Δ
+

KαpqK(β p̃q̃)εβ

Δ
(24)

‖y − κ‖B ≤ Kβ p̃q̃K(αpq)εα

Δ
+

(1 − Kpq)K(β p̃q̃)εβ

Δ
(25)
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From inequalities (24) and (25), we have

‖x − ϑ‖B + ‖y − κ‖B ≤ (1 − Kp̃q̃)K(αpq)εα

Δ
+

KαpqK(β p̃q̃)εβ

Δ
+

Kβ p̃q̃K(αpq)εα

Δ

+
(1 − Kpq)K(β p̃q̃)εβ

Δ

Therefore, we have

‖(x, y)− (ϑ, κ)‖B×B ≤ K(αβpqp̃q̃)ε, (26)

where ε = max{εα, εβ} and

K(αβpqp̃q̃) =
(1 − Kp̃q̃)K(αpq)

Δ
+

KαpqK(β p̃q̃)

Δ
+

Kβ p̃q̃K(αpq)

Δ
+

(1 − Kpq)K(β p̃q̃)

Δ
.

Hence, by inequality (26), we can conclude that the coupled system (1) is Ulam-Hyers stable.
Further, inequality (26) can be written as

‖(x, y)− (ϑ, κ)‖B×B ≤ Ψ(ε), where Ψ(0) = 0. (27)

By inequality (27), we further conclude that the coupled system (1) is generalized Ulam-Hyers stable.

5. Application

Example 1. We consider the following fractional order coupled system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cDαx(t) = 1
(t+7)2

|y(t)|
1+|y(t)| , α ∈ (1, 2], t ∈ J = [0, 1]

cDβy(t) = 1
100
[
t cos x(t) + x(t) sin t

]
, β ∈ (1, 2], t ∈ J = [0, 1]

x(0) + x′(0) =
∫ 1

0
|x(s)|

13+|x(s)|ds, x(1) + x′(1) =
∫ 1

0
|x(s)|

15+|x(s)|ds

y(0) + y′(0) =
∫ 1

0
1

26
[

cos y(s) + sin y(s)
]
ds, y(1) + y′(1) =

∫ 1
0

1
30
[

cos y(s) + sin y(s)
]
ds

(28)

By comparing the coupled systems (28) to (1), the following values are derived:

p = q = p̃ = q̃ = 1, Ka1 = Kã1 =
1
13

and Ka2 = Kã2 =
1
15

.

Here,

f (t, y(t)) =
1

(t + 7)2
|y(t)|

1 + |y(t)| and g(t, x(t)) =
1

100
[
t cos x(t) + x(t) sin t

]
.

As, | f (t, y)− f (t, ỹ)| ≤ 1
49 |y − ỹ| and |g(t, x)− g(t, x̃)| ≤ 1

50 |x − x̃|, therefore (A4) is satisfied with
K f =

1
49 and Kg = 1

50 . Further, we have

φ1 =

(
1

Γ(β + 1)
+

2( p̃ + q̃)
Γ(β + 1)

+
2(q̃2 + p̃q̃)

p̃2Γ(β)

)
Kg +

(p + q)(Ka1 + Ka2)

p2

=

(
1

Γ(β + 1)
+

4
Γ(β + 1)

+
4

Γ(β)

)
1

50
+ 2
( 1

13
+

1
15

)
< 1.
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Similarly, φ2 < 1. Hence, the coupled system (28) has a unique solution. Moreover, the condition
(1 − Kpq)(1 − Kp̃q̃)− KαpqKβ p̃q̃ �= 0 in Theorem 2 is also satisfied. Therefore, coupled system (28) is
Ulam-Hyers stable as well as generalized Ulam-Hyers stable.

6. Conclusions

Here we have studied the existence and uniqueness of the solutions as well as the stability for a
coupled system of fractional order α ∈ (1, 2] differential equation with integral boundary conditions.
We have discussed two types of stability, called Ulam-Hyers stability and generalized Ulam-Hyers
stability. As a future work, one can generalize the same concept of stability to a neutral time delay
system/inclusion as well as state delay system/inclusion (finite and infinite delay), which have some
useful scientific applications. This will enhance a new direction of research: a special kind of phase
space to be used for the study of controllability and stability of an infinite delay system/inclusion.
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10. Chalishajar, D.N.; Karthikeyan, K. Boundary value Problems for Impulsive Fractional Evolution

Integrodifferential Equations with Gronwall’s inequality in Banach spaces. J. Discontinuity Nonlinearity Complex.
2014, 3, 33–48. [CrossRef]

11. Chalishajar, D.N.; Karthikeyan, K. Existence and Uniqueness Results for Boundary Value Problems of Higher
order Fractional Integro-differential Equations Involving Gronwall’s Inequality in Banach spaces. Acta Math.
Sci. Ser. A 2013, 33B, 758–772. [CrossRef]

12. Ahmad, B.; Alsaedi, A.; Alghamdi, B.S. Analytic approximation of solutions of the forced Duffing equation
with integral boundary conditions. Nonlinear Anal. Real World Appl. 2008, 9, 1727–1740. [CrossRef]

13. Ulam, S.M. A Collection of the Mathematical Problems; Interscience: New York, NY, USA, 1960.
14. Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224.

[CrossRef] [PubMed]
15. Jung, S.M. Hyers-Ulam stability of linear differential equations of first order. Appl. Math. Lett. 2006,

19, 854–858. [CrossRef]
16. Wang, J.; Feckan, M. A general class of impulsive evolution equations. Topol. Methods Nonlinear Anal. 2015,

46, 915–933. [CrossRef]

47



Mathematics 2018, 6, 96
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I have found an error in Equation (17) in my paper [1], and thus I would like to make the
following correction: On page 7, Equation (17) should be changed from Δ = a1a2a3 − a0a2

3 − a3
1 > 0 to

the following correct version: Δ = a1a2a3 − a0a2
3 − a2

1 > 0. I apologize for any inconvenience caused to
the readers. This change does not affect the scientific results.
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