

Special Issue Reprint

Liquid Crystal on Silicon Devices: Modeling and Advanced Spatial Light Modulation Applications

www.mdpi.com/books/reprint/1806

Edited by Andrés Márquez Ángel Lizana

ISBN 978-3-03921-828-8 (Softback) ISBN 978-3-03921-829-5 (PDF)

Liquid Crystal on Silicon (LCoS) has become one of the most widespread technologies for spatial light modulation in optics and photonics applications. These reflective microdisplays are composed of a high-performance silicon complementary metal oxide semiconductor (CMOS) backplane, which controls the light-modulating properties of the liquid crystal layer. State-of-the-art LCoS microdisplays may exhibit a very small pixel pitch (below 4 μ m), a very large number of pixels (resolutions larger than 4K), and high fill factors (larger than 90%). They modulate illumination sources covering the UV, visible, and far IR, LCoS are used not only as displays but also as polarization, amplitude, and phase-only spatial light modulators, where they achieve full phase modulation. Due to their excellent modulating properties and high degree of flexibility, they are found in all sorts of spatial light modulation applications, such as in LCOS-based display systems for augmented and virtual reality, true holographic displays, digital holography, diffractive optical elements, superresolution optical systems, beam-steering devices, holographic optical traps, and quantum optical computing. In order to fulfil the requirements in this extensive range of applications, specific models and characterization techniques are proposed. These devices may exhibit a number of degradation effects such as interpixel cross-talk and fringing field, and time flicker, which may also depend on the analog or digital backplane of the corresponding LCoS device. The use of appropriate characterization and compensation techniques is then necessary.

Order Your Print Copy You can order print copies at www.mdpi.com/books/reprint/1806

MDPI Books offers quality open access book publishing to promote the exchange of ideas and knowledge in a globalized world. MDPI Books encompasses all the benefits of open access – high availability and visibility, as well as wide and rapid dissemination. With MDPI Books, you can complement the digital version of your work with a high quality printed counterpart.

Open Access

Your scholarly work is accessible worldwide without any restrictions. All authors retain the copyright for their work distributed under the terms of the Creative Commons Attribution License.

Author Focus

Authors and editors profit from MDPI's over two decades of experience in open access publishing, our customized personal support throughout the entire publication process, and competitive processing charges as well as unique contributor discounts on book purchases.

High Quality & Rapid Publication

MDPI ensures a thorough review for all published items and provides a fast publication procedure. State-of-the-art research and time-sensitive topics are released with a minimum amount of delay.

High Visibility

Due to our global network and well-known channel partners, we ensure maximum visibility and broad dissemination. Title information of books is sent to international indexing databases and archives, such as the Directory of Open Access Books (DOAB), and the Verzeichnis Lieferbarer Bücher (VLB).

Print on Demand and Multiple Formats

MDPI Books are available for purchase and to read online at any time. Our print-on-demand service offers a sustainable, cost-effective and fast way to publish MDPI Books printed versions.

MDPI AG St. Alban-Anlage 66 4052 Basel Switzerland Tel: +41 61 683 77 34 www.mdpi.com/books books@mdpi.com

