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A timely topic in mathematics and its applications is the theory of differential equations of 
fractional order. Many real-world problems lead to such mathematical models. The contributions 
in this book study some problems from different fractional calculus approaches ranging from 
the classical Riemann–Liouville and Caputo classical fractional calculus to the most recent ones 
such as q-difference calculus or Fabrizio–Caputo–Losada–Nieto fractional calculus. Some of 
the real-world problems considered are Burgers equation, thermostat model, Navier–Stokes 
equations, or Kirchhoff–Schrödinger-type equations. Therefore, different approaches and techniques 
have been proposed to model these types of problems. This book is a collection of the papers 
published in the journal Symmetry within one Special Issue: ‘’Fractional Differential Equations: 
Theory, Methods, and Applications”. The book consists of eleven contributions.
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Abstract: The synchronization problem for impulsive fractional-order neural networks with both
time-varying bounded and distributed delays is studied. We study the case when the neural networks
and the fractional derivatives of all neurons depend significantly on the moments of impulses and we
consider both the cases of state coupling controllers and output coupling controllers. The fractional
generalization of the Razumikhin method and Lyapunov functions is applied. Initially, a brief
overview of the basic fractional derivatives of Lyapunov functions used in the literature is given.
Some sufficient conditions are derived to realize the global Mittag–Leffler synchronization of
impulsive fractional-order neural networks. Our results are illustrated with examples.

Keywords: fractional-order neural networks; delays; distributed delays; impulses; Mittag–Leffler
synchronization; Lyapunov functions; Razumikhin method

1. Introduction

Over the last few decades, fractional differential equations have gained considerable importance
and attention due to their applications in science and engineering, i.e., in control, in stellar interiors,
star clusters [1], in electrochemistry, in viscoelasticity [2] and in optics [3]. For example, the control
of mechanical systems is currently one of the most active fields of research and the use of fractional
order calculus increases the flexibility of controlling any system from a point to a space. Applications
of fractional quantum mechanics cover dynamics of a free particle and a new representation for a free
particle quantum mechanical kernel (see, for example, [4]).

The stability of fractional order systems is quite a recent topic (see, for example, Ref. [5] for the
Ulam–Hyers–Mittag–Leffler stability of fractional-order delay differential equations, Ref. [6] for the
Mittag–Leffler stability of impulsive fractional neural network, Ref. [7] for the Mittag–Leffler stability
of fractional systems, Ref. [8] for the Mittag–Leffler stability for fractional nonlinear systems with
delay, and Ref. [9] for the Mittag–Leffler stability of nonlinear fractional systems with impulses).
One of the most useful approaches in studying stability for nonlinear fractional differential equations
is the Lyapunov approach. Its application to fractional differential equations is connected with several
difficulties. One of the main difficulties is connected with the appropriate definition of derivative
of Lyapunov functions among thedifferential equations of fractional order. Impulsive differential

Symmetry 2018, 10, 473; doi:10.3390/sym10100473 www.mdpi.com/journal/symmetry1
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equations arise in real world problems to describe the dynamics of processes in which sudden,
discontinuous jumps occur.

Most research on the synchronization of delayed neural networks has been restricted to the case
of discrete delays (see, for example, [10]) Since a neural network usually has a spatial nature due to
the presence of an amount of parallel pathways of a variety of axis sizes and lengths, it is desirable
to model them by introducing distributed delays. Note in [11] that both time-varying delays and
distributed time delays are taken into account in studying fractional neural networks with impulses
and constant strengths between two units. In all models of neural networks, one considers the case of
constant rate with which the i-th neuron resets its potential to the resting state in isolation, and the
constant synaptic connection strength of the i-th neuron to the j-th neuron (see, for example, [10]).
In our paper, we consider the general case of time varying coefficients in the model that allows more
appropriate modeling of the connections between the neurons. These more complicated mathematical
equations lead to an application of new types of fractional derivatives of Lyapunov functions and new
stability results.

In this paper, Caputo fractional delay differential equations with impulses and two types of
delays-variable in time and distributed ones are studied. Some results for piecewise continuous
Lyapunov functions based on the Razumikhin method are obtained. Appropriate derivatives of
Lyapunov functions among the studied fractional equations are used. Our results are applied to
study the synchronization of neural networks with Caputo fractional derivatives, variable delays,
distributed delays, and impulses. We study the case when the lower limit of the fractional derivative
is changing after each impulsive time. To the best of our knowledge, this is the first model of neural
networks of this type studied in the literature. Additionally, we study the general case of variables in
time strengths of the j-th unit on the i-th unit and nonlinear impulsive functions. Both the cases of
state coupling controllers and output coupling controllers are considered. Our sufficient conditions
naturally depend significantly on the fractional order of the model (compare with sufficient conditions
in [11,12]).

2. Impulses in Fractional Delay Differential Equations

Let a sequence {tk}∞
k=1 : 0 ≤ tk−1 < tk ≤ tk+1, limk→∞ tk = ∞ be given. Let t0 �= tk,

k = 1, 2, . . . be the given initial time and r > 0. Without loss of generality we can assume t0 ∈ [0, t1).
Let E = C([−r, 0],Rn

) with ||φ||0 = maxs∈[−r,0] ||φ(s)|| for φ ∈ E, and ||.|| is a norm in R
n.

In many applications in science and engineering, the fractional order q is often less than 1, so we
restrict q ∈ (0, 1) everywhere in the paper.

1: The Riemann–Liouville (RL) fractional derivative of order q ∈ (0, 1) of m(t) is given by (see, for
example, [13–15])

RL
t0

Dq
t m(t) =

1
Γ (1 − q)

d
dt

t∫
t0

(t − s)−q m(s)ds, t ≥ t0,

where Γ (.) denotes the Gamma function.
2: The Caputo fractional derivative of order q ∈ (0, 1) is defined by (see, for example, [13–15])

C
t0

Dq
t m(t) =

1
Γ (1 − q)

t∫
t0

(t − s)−q m
′
(s)ds, t ≥ t0.

3: The Grünwald–Letnikov fractional derivative is given by (see, for example, [13–15]))

GL
t0

Dq
t m(t) = lim

h→0+

1
hq

[
t−t0

h ]

∑
r=0

(−1)r (qCr) m (t − rh) , t ≥ t0.

2
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The Mittag–Leffler function with one parameter is defined as

Eα(z) =
∞

∑
i=0

zi

Γ(1 + α i)
, α > 0, z ∈ C.

Definition 1. ([16]) The function m(t) ∈ Cq([t0, T],Rn
) if m(t) is differentiable on [t0, T] (i.e., m′(t)

exists) and the Caputo derivative C
t0

Dqm(t) exists for t ∈ [t0, T].
Consider the initial value problem (IVP) for the nonlinear impulsive Caputo fractional delay

differential equation (IFrDDE)

C
t0

Dqx(t) = F(t, xt) for t ≥ t0, t �= tk, k = 1, . . . ,

Δx(t)|t=tk = Ik(x(tk − 0)) for k = 1, 2, . . . ,

x(t0 + s) = φ(s), s ∈ [−r, 0],

(1)

where 0 < q < 1, Δx(t)|t=tk = x(tk + 0) − x(tk), xt = x(t + s), s ∈ [−r, 0], F : [0, ∞) ×R
n → R

n,
Ik : Rn → R

n, (k = 1, 2, 3, . . . ), φ ∈ E, where x(tk + 0) = limt→tk , t>tk x(t) < ∞, x(tk − 0) =

limt→tk , t<tk x(t) = x(tk).
Denote Φk(x) = x + Ik(x), k = 1, 2, . . . , x ∈ R

n.
We will denote the solution of the IVP for IFrDDE (1) by x(t; t0, φ) for t ≥ t0. The solution of

IFrDDE (1) is a piecewise continuous function. In connection with this, we introduce the following
sets of functions:

PC(a, b) =
{

x : [a, b] → R
n such that x(t) ∈ C([a, b]/{tk}),

x(tk) = x(tk − 0) = lim
t→tk−0

x(t), x(tk + 0) = lim
t→tk+0

x(t) < ∞
}

,

PC1(a, b) =
{

x ∈ PC(a, b) such that x(t) ∈ C1([a, b]/{tk}),

x′(tk) = x′(tk − 0) = lim
t→tk−0

x′(t), x′(tk + 0) = lim
t→tk+0

x′(t) < ∞
}

.

The fractional derivatives depend significantly on their lower limit and it allows different
interpretations of piecewise continuous solutions of impulsive differential equations. This phenomena
is not characteristic for ordinary derivatives. In the literature, there are two main approaches to
interpret the solutions of impulsive fractional delay differential equations:

First approach to the solutions of (1) (A1 for IFrDDE).

The solution of the IVP for IFrDDE (1) satisfies the equalities (integral)

x(t) = x(t; t0, φ) =⎧⎪⎨⎪⎩
φ(t − t0), t ∈ [t0 − r, t0],
φ(0) + 1

Γ(q)

∫ t
t0
(t − s)q−1F(s, xs)ds

+∑k
i=1 Ii(x(ti − 0)), t ∈ (tk, tk+1], k = 0, 1, 2, . . . .

(2)

Formula (2) is given and used in [17]. It is a generalization to the formula proved in [18] for the
solution of impulsive fractional differential equations without delays.

Second approach to the solutions of (1) (A2 for IFrDDE).

The idea of this approach is based on the dependence of the Caputo fractional derivative on the
initial time point of the interval of differential equation, i.e., the lower limit of the Caputo fractional
derivative is changing at each moment of impulse of the differential equation. Sometimes, Equation (1)
in this case is written by

3
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C
tk

Dqx(t) = F(t, xt) for t ∈ (tk, tk+1], k = 0, 1, . . . ,

Δx(t)|t=tk = Ik(x(tk − 0)) for k = 1, 2, . . . ,

x(t0 + s) = φ(s), s ∈ [−r, 0].

(3)

Then, the solution of the IVP for IFrDDE (1), respectively (3), is given by

x(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

φ(t − t0), t ∈ [t0 − r, t0],

φ(0) + 1
Γ(q)

∫ t
t0
(t − s)q−1F(s, xs)ds for t ∈ (t0, t1],

Φk(x(tk − 0)) + 1
Γ(q)

∫ t
tk
(t − s)q−1F(s, xs)ds

for t ∈ (tk, tk+1], k = 1, 2, . . . .

(4)

Remark 1. Both Formulas (2) and (4) differ for fractional differential equations and they are generalizations to
impulsive ordinary differential equations. Both formulas coincide in the case of the ordinary derivative (q = 1)
because in this case we have

Φk(x(tk − 0)) +
∫ t

tk

F(s, xs)ds = x(tk − 0) + Ik(x(tk − 0)) +
∫ t

tk

f (s, xs)ds

= φ(0) +
∫ tk

t0

F(s, xs)ds +
k−1

∑
i=1

Ii(x(ti − 0)) + Ik(x(tk − 0)) +
∫ t

tk

f (s, xs)ds

= φ(0) +
∫ t

t0

F(s, xs)ds +
k

∑
i=1

Ii(x(ti − 0)),

(5)

but

Φk(x(tk − 0)) +
1

Γ(q)

∫ t

tk

(t − s)q−1F(s, xs)ds

= x(tk − 0) + Ik(x(tk − 0)) +
1

Γ(q)

∫ t

tk

F(s, xs)ds

=
(

φ(0) +
1

Γ(q)

∫ tk

t0

(tk − s)q−1F(s, xs)ds +
k−1

∑
i=1

Ii(x(ti − 0))
)

+ Ik(x(tk − 0)) +
1

Γ(q)

∫ t

tk

(t − s)q−1F(s, xs)ds

�= φ(0) +
1

Γ(q)

∫ t

t0

(t − s)q−1F(s, xs)ds +
k

∑
i=1

Ii(x(ti − 0)).

(6)

Remark 2. In the case q = 1, the solution of the impulsive ordinary differential equation on each interval
of continuity could be considered as a solution of the same differential equation with a new initial condition,
defined by the impulsive function. It allows the application of induction w.r.t. the interval of continuity.

This is different for fractional differential equation.
If A1 for IFrDDE is applied, then C

t0
Dqx(t) �= C

tk
Dqx(t) for t ∈ (tk, tk+1) and induction w.r.t. the interval

of continuity is not useful.
If A2 for IFrDDE is applied, then induction w.r.t. the interval of continuity could be used.

A detailed explanation of advantages/disadvantages of both the above approaches for equations
without delays is given in [19,20]. The definition of the solution x(t; t0, φ) of the IVP for IFrDDE (1)
depends on your point of view.

In this paper, we will use approach A2 for IFrDDE.

4
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3. Lyapunov Functions and Their Fractional Derivatives

In this paper, we will use piecewise continuous Lyapunov functions [21]):

Definition 1. Let α < β ≤ ∞ be given numbers and D ⊂ R
n, 0 ∈ D be a given set. We will say that the

function V(t, x) : [α − r, β)×D → R+ belongs to the class Λ([α − r, β),D) if

1. The function V(t, x) is continuous on [α, β)/{tk} × D and it is locally Lipschitz with respect to its
second argument;

2. For each tk ∈ (α, β) and x ∈ D, there exist finite limits

V(tk, x) = V(tk − 0, x) = lim
t↑tk

V(t, x), and V(tk + 0, x) = lim
t↓tk

V(t, x).

In connection with the Caputo fractional derivative, it is necessary to define in an appropriate way
the derivative of the Lyapunov functions among the studied equation. The choice dV(t,x)

dt is adapted
from the case of ordinary differential equations, but it is not applicable since it does not depend on the
initial time point (such as the Caputo fractional derivative).

We will give a brief overview of the three main types derivatives of Lyapunov functions V(t, x) ∈
Λ([t0 − r, T),D) among solutions of fractional differential equations in the literature:

- first type– Let x(t) ∈ D, t ∈ [t0 − r, T), be a solution of the IVP for the IFrDDE (3) (according
to A2 for IFrDDE). Then, we can consider the Caputo fractional derivative of the function
V(t, x) ∈ Λ([t0 − r, T),D) defined by

c
tk

DqV(t, x(t)) =
1

Γ (1 − q)

t∫
tk

(t − s)−q d
ds

(
V(s, x(s))

)
ds,

t ∈ Jk = (tk, tk+1), k = 1, 2, · · · : tk ∈ (t0, T).

(7)

This type of derivative is applicable for continuously differentiable Lyapunov functions.
- second type– Let ψ ∈ C([−τ, 0],D). Then, the Dini fractional derivative of the Lyapunov function

V(t, x) ∈ Λ([t0 − r, T),D) is defined by

tk Dq
(3)V(t, ψ(0), ψ)

= lim sup
h→0

1
hq

[
V(t, ψ(0))−

[
t−tk

h ]

∑
r=1

(−1)r+1
qCrV(t − rh, ψ(0)− hqF(t, ψ0))

]
t ∈ Jk, k = 1, 2, · · · : tk ∈ (t0, T),

(8)

where ψ0 = ψ(s), s ∈ [−r, 0].

The Dini fractional derivative (8) keeps the concept of fractional derivatives because it has
a memory.

Note that Dini fractional derivative, defined by (8), is based on the notation

D+V(t, ψ(0), ψ) = lim sup
h→0

1
hq

[
V(t, ψ(0))− V(t − h, ψ(0)− hqF(t, ψ0))

]
. (9)

In [17], the notation (9) is used directly. However, the notation (9) does not depend on the order q
of the fractional derivative nor on the initial time t0, which is typical for the Caputo fractional
derivative. The operator defined by (9) has no memory. In addition, if x(t) is a solution of (3),
then D+V(t, x(t), x) �= c

tk
DqV(t, x(t)).

5
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For fractional differential equations without any impulses, notation similar to (9) is defined and

V(t − h, x − hqF(t, x)) = ∑
[

t−t0
h ]

r=1 (−1)r+1
qCrV(t − rh, x − hqF(t, x)) is applied [16].

- third type—let the initial data (t0, φ0) ∈ R+ × C([−τ, 0],D)), D) ⊂ R
n, of IVP for IFrDDE (3)

and ψ ∈ C([−τ, 0],D) be given. Then, the Caputo fractional Dini derivative of the Lyapunov
function V(t, x) ∈ Λ([t0 − r, T),D) is defined by:

c
tk

Dq
(3)V(t, ψ; t0, φ0(0))

= lim sup
h→0+

1
hq

{
V(t, ψ(0))− V(t0, φ0(0))

−
[

t−tk
h ]

∑
r=1

(−1)r+1
qCr

(
V(t − rh, ψ(0)− hqF(t, ψ0))− V(t0, φ0(0))

)}
,

for t ∈ Jk,

(10)

where ψ0 = ψ(s), s ∈ [−r, 0],

or its equivalent

c
tk

Dq
(3)V(t, ψ; tk, φ0(0))

= lim sup
h→0+

1
hq

{
V(t, ψ(0)) +

[
t−tk

h ]

∑
r=1

(−1)r
qCrV(t − rh, ψ(0)− hq f (t, ψ0))

}
− V(t0, φ0(0))

(t − tk)
qΓ(1 − q)

, for t ∈ Jk.

(11)

The derivative c
tk

Dq
(3)V(t, ψ; t0, φ0(0)) given by (11) depends significantly on both the fractional

order q and the initial data (t0, φ0) of IVP for IFrDDE (3) and it makes this type of derivative close
to the idea of the Caputo fractional derivative of a function.

Remark 3. For any initial data (t0, φ0) ∈ R+ ×C([−τ, 0],D) of the IVP for IFrDDE (3), the relation between
the Dini fractional derivative defined by (8) and for any t ∈ Jk, ψ ∈ C([−τ, 0],D) and the Caputo fractional
Dini derivative defined by (11) is given by

c
t0

Dq
(3)V(t, ψ; t0, φ0(0)) = tk Dq

(3)V(t, ψ(0), ψ)− V(t0, φ0(0))
(t − tk)

qΓ(1 − q)

or
c
tk

Dq
(3)V(t, ψ; t0, φ0(0)) = tk Dq

(3)V(t, ψ(0), ψ)− RL
t0

Dq
(

V(t0, φ0(0))
)

.

In the next example, to simplify the calculations and to emphasize the derivatives and their
properties, we will consider the scalar case, i.e., n = 1.

Example 1. (Quadratic Lyapunov function). Let V(t, x) = x2, with x ∈ R.
Case 1. Caputo fractional derivative: Let x(t) = x(t; t0, φ0), t ∈ [t0 − τ, T) be a solution of the IVP for

IFrDDE (3) with n = 1 and φ0 ∈ C([−τ, 0],R) and we get

c
tk

DqV(t, x(t)) =
2

Γ (1 − q)

t∫
tk

(t − s)−q x(s)
d
ds

(
x(s)

)
ds ≤ 2x(t)F(t, xt), t ∈ Jk. (12)

Case 2. Dini fractional derivative. Consider IVP for IFrDDE (3) with given initial data (t0, φ0) ∈
R+ × C([−τ, 0],R). Let ψ ∈ C([−τ, 0],R) be any function. Apply (8) and we obtain

6
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tk Dq
(3)V(t, ψ(0), ψ) = 2ψ(0)F(t, ψ0) +

(ψ(0))2

(t − tk)
qΓ(1 − q)

, t ∈ Jk, (13)

where ψ0 = ψ(s), s ∈ [−r, 0].
Note, if we apply (9) directly, we obtain D+V(t, ψ(0), ψ) = 2ψ(0)F(t, ψ0).
Case 3. Caputo fractional Dini derivative. Use (11), Case 2 and Remark 3 and we obtain

c
tk

Dq
(3)V(t, ψ; t0, φ0) = 2ψ(0)F(t, ψ0) + ((ψ(0))2 − (φ0(0))2)

(t − tk)
−q

Γ(1 − q)

= tk Dq
(3)V(t, ψ(0), ψ)− RL

tk
Dq

(
V(t0, φ0(0))

)
, for t ∈ Jk, ψ ∈ C([−τ, 0],R).

(14)

Example 2. (Lyapunov function depending directly on the time variable). Let V(t, x) = m(t) x2 where
m ∈ C1(R+,R+).

Case 1. Caputo fractional derivative. Let x(t) = x(t; t0, φ0) be a solution of the IVP for IFrDDE (3).
The fractional derivative

c
tk

DqV(t, x(t)) = c
tk

Dq
(

m(t) x2(t)
)
=

1
Γ(1 − q)

∫ t

tk

m′(s)x2(s) + 2m(s)x(s)x′(s)
(t − s)q ds

is difficult to obtain in the general case for any solution of (3). In addition, its upper bound is difficult to find.
Case 2. Dini fractional derivative. Let ψ ∈ C([−τ, 0],D) be given. Applying (8), we obtain

tk Dq
(3)V(t, ψ(0), ψ) = ψ(0) m(t)F(t, ψ0) + (ψ(0))2 RL

tk
Dq

(
m(t)

)
. (15)

Note that if we use (9) directly, then D+V(t, ψ(0), ψ) = 2ψ(0) m(t)F(t, ψ0), which unusually is missing
the derivative of the function m(t) (compare with the case of ordinary derivatives).

Case 3. Caputo fractional Dini derivative. Use (11) and we obtain

c
tk

Dq
(3)V(t, ψ; t0, φ0(0))

= 2ψ(0)m(t)F(t, ψ0) + (ψ(0))2 RL
tk

Dq
(

m(t)
)
− (φ0(0))2m(t0)

(t − tk)
−q

Γ(1 − q)

= tk Dq
(3)V(t, ψ(0), ψ)− V(t0, φ0(0))

(t − tk)
−q

Γ(1 − q)

= tk Dq
(3)V(t, ψ(0), ψ)− RL

tk
Dq

(
V(t0, φ0(0))

)
.

(16)

4. Some Comparison Results for Lyapunov Functions

4.1. Comparison Results for Delay Fractional Differential Equations

First, we will prove several comparison results for fractional delay differential equation without
any impulses. We will use Lyapunov function with the Razumikhin condition V(t + Θ, ψ(Θ)) ≤
p(V(t, ψ(0))), Θ ∈ [−r, 0] for ψ ∈ C([−τ, 0],Rn

), where p ∈ C([0, ∞),R+), p(s) > s for s > 0.

Remark 4. A comparison result is given in Theorem 4.5 [22] by applying definition (9) for the derivative of V
and incorrectly replacing it with the Caputo derivative in the proof. Some comparison results applying A1 for
IFrDDE are obtained in [17], but induction w.r.t. the interval of continuity is incorrectly used (see Remark 2).

Consider the IVP for the following delay fractional differential equation (FrDDE)

C
τ0

Dqx(t) = F(t, xt) for t ∈ (τ0, Θ],

x(τ0 + s) = φ(s), s ∈ [−r, 0],
(17)

7
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where x ∈ Rn, φ ∈ C([−r, 0],D), D ⊂ R
n.

Lemma 1. (Comparison result with the Caputo fractional derivative) Assume:

1. The function x(t) = x(t; τ0, φ) ∈ Cq([τ0, Θ],D) is a solution of the IVP for FrDDE (17).
2. The function V ∈ Λ([τ0 − r, Θ],D), D ⊂ R

n is such that there exist positive numbers p, α : p > 1
Eq(−αrq)

such that, for any point t ∈ [τ0, Θ] : V(t + s, x(t + s)) < pV(t, x(t)), s ∈ [−r, 0), the fractional
derivative c

τ0
DqV(t, x(t)) exists and the inequality

c
τ0

DqV(t, x(t)) ≤ −αV(t, x(t)) (18)

holds.

Then, V(t, x(t; τ0, φ)) ≤ maxs∈[−r,0] V(t0 + s, φ(s))Eq(−α(t − t0)
q) for t ∈ [τ0, Θ].

Proof. Denote B = maxs∈[−r,0] V(τ0 + s, φ0(s)). Let ε > 0 be an arbitrary number. Define the functions
m(t) = V(t, x(t)) for t ∈ [τ0 − r, Θ]. We will prove that

m(t) < BEq(−α(t − τ0)
q) + ε, t ≥ τ0. (19)

For t = τ0, the inequality m(τ0) ≤ B < B + ε holds. Assume (19) is not true and, therefore,
there exists a point t∗ ∈ (τ0, Θ) such that

m(t) < BEq(−α(t − τ0)
q) + ε, t ∈ [τ0, t∗) and m(t∗) = BEq(−α(t∗ − τ0)

q) + ε. (20)

Let s ∈ [−r, 0].
Case 1. Let t∗ + s ∈ [τ0, t∗].
Then, t∗ + s ≥ τ0 − r, t∗ − τ0 > 0 and 0 ≤ t∗ − τ0 − r ≤ t∗ − τ0 + s. Using the inequality

Eq(−αaq)Eq(−α(t − a)q) ≤ Eq(−αtq) for t ≥ a with α > 0, a ≥ 0 and the choice of p, we obtain

p(m(t∗)) = pBEq(−α(t∗ − τ0)
q) + pε > B

Eq(−α(t∗ − τ0)
q)

Eq(−αrq)
+ ε

≥ BEq(−α(t∗ − τ0 − r)q) + ε ≥ BEq(−α(t∗ + s − τ0)
q) + ε > m(t∗ + s).

(21)

Case 2. Let t∗ − r ≤ t∗ + s < τ0.
Then, t∗ − τ0 < −s ≤ r and we get

p(m(t∗)) > B
Eq(−α(t∗ − τ0)

q)

Eq(−αrq)
+ ε ≥ B + ε > B ≥ m(t∗ + s). (22)

From (21), (22) and condition 2 of Lemma 1, it follows that the fractional derivative c
τ0

Dqm(t∗) exists.
From (20), it follows that

c
τ0

Dq
(

m(t∗)− BEq(−α(t∗ − τ0)
q)− ε

)
> 0. (23)

Then, using c
τ0

DqEq(−α(t − τ0)
q) = −aEq(−α(t − τ0)

q), we get c
τ0

Dqm(t∗) > −BαEq(−α(t∗ − τ0)
q).

From inequality (18), we get c
τ0

DqV(t∗, x(t∗)) ≤ −αV(t∗, x(t∗)). Therefore, the inequality
−BαEq(−α(t∗ − τ0)

q) < c
τ0

Dqm(t∗) ≤ −αm(t∗) holds or BEq(−α(t∗ − τ0)
q) > m(t∗),

which contradicts (20). Therefore, inequality (19) holds for an arbitrary ε > 0. Thus, the claim
in our Lemma is true.

Remark 5. If p = 1 in condition 2 of Lemma 1 then since Eq(−αaq)Eq(−α(t − a)q) �= Eq(−αtq) for t ≥ a
(see [23]), the inequality (21) is not true and the claim of Lemma 1 is not true.

8
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Note the comparison result for Lyapunov functions is true if the Caputo fractional derivative in
Lemma 1 is replaced by any of the other two derivatives. In the proof, we will use the following result.

Lemma 2. [22] Let m ∈ C([τ0, Θ],R) and there exists ξ ∈ (τ0, Θ] such that m(ξ) = 0 and m(t) < 0 for
t ∈ [τ0, ξ). Then, GL

τ0
Dq
+m(ξ) > 0.

Lemma 3. (Comparison result with the Dini fractional derivative) Assume the function V ∈ Λ([τ0 − r, Θ],D),
D ⊂ R

n, is such that there exist positive numbers p, α : p > 1
Eq(−αrq)

such that for any point t ∈ [τ0, Θ] and

any function ψ ∈ C([−r, 0],Rn
) : V(t + s, ψ(s)) < pV(t, ψ(0)), s ∈ [−r, 0) the inequality

τ0 Dq
(17)V(t, ψ(0), ψ) ≤ −αV(t, ψ(0)) (24)

holds.
Then, V(t, x(t; τ0, φ)) ≤ maxs∈[−r,0] V(t0 + s, φ(s))Eq(−α(t− t0)

q) for t ∈ [τ0, Θ] where x(t; τ0, φ) ∈
Cq([τ0, Θ],D is a solution of the IVP for FrDDE (17).

Proof. The proof is similar to that in Lemma 1. The main difference is in connection with inequality (23).
Follow the proof in Lemma 1 and in this case we use Lemma 2 and obtain

GL
τ0

Dq
+

(
m(t∗)− BEq(−α(t∗ − τ0)

q)− ε
)
> 0. (25)

Now, using c
τ0

Dqu(t) = GL
τ0

Dq
+(u(t)− u(τ0)) =

GL
τ0

Dq
+u(t)− u(τ0)

(t−τ0)qΓ(1−q) , we get

GL
τ0

Dq
+m(t∗) > GL

τ0
Dq
+

(
BEq(−α(t∗ − τ0)

q)− B
)
+

B + ε

(t − τ0)qΓ(1 − q)

> c
τ0

Dq
(

BEq(−α(t∗ − τ0)
q) = −BαEq(−α(t∗ − τ0)

q).
(26)

It remains to show that we have a contradiction. To see this for any t ∈ [τ0, t∗] and h > 0, we let

S(x(t), h) =
[

t−τ0
h ]

∑
r=1

(−1)r+1
qCr

[
x(t − rh)− φ(0)

]
.

Now, C
τ0

Dq
+x(t) =GL

τ0
Dq
+

(
x(t) − x(τ0)

)
= lim suph→0+

1
hq

[
x(t) − x(τ0) − S(x(t), h)

]
= F(t, xt).

Therefore, S (x(t), h) = x(t)− φ(0)− hqF(t, xt)− Λ(hq) or

x(t)− hqF(t, xt) = S (x(t), h) + φ(0) + Λ(hq) (27)

with ||Λ(hq)||
hq → 0 as h → 0. Then, for any t ∈ [t0, t∗], we obtain

GL
τ0

Dq
+m(t) = m(t)−

[
t−τ0

h ]

∑
r=1

(−1)r+1
qCrm(t − rh)

=

{
V(t, x(t))−

[
t−τ0

h ]

∑
r=1

(−1)r+1
qCrV(t − rh, x(t)− hqF(t, xt)

}

+
[

t−τ0
h ]

∑
r=1

(−1)r+1
qCr

{
V(t − rh, S (x(t), h) + φ(0) + Λ(hq))

− V(t − rh, x(t − rh))
}

.

(28)

9
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Since V is locally Lipschitzian in its second argument with a Lipschitz constant L > 0, we obtain

[
t−τ0

h ]

∑
r=1

(−1)r+1
qCr

{
V(t − rh, S (x(t), h) + φ(0) + Λ(hq))− V(t − rh, x(t − rh))

}

≤ L
∣∣∣∣∣∣ [ t−τ0

h ]

∑
r=1

(−1)r+1
qCr

[
t−τ0

h ]

∑
j=1

(−1)j+1
qCj

(
x(t − jh)− φ(0)

)

−
[

t−τ0
h ]

∑
r=1

(−1)r+1
qCr

(
(x(t − rh)− φ(0))

)∣∣∣∣∣∣+ L||Λ(hq)||
∣∣∣ [ t−τ0

h ]

∑
r=1

(−1)r+1
qCr

∣∣∣
= L

∣∣∣∣∣∣( [
t−τ0

h ]

∑
r=0

(−1)r+1
qCr

)( [
t−τ0

h ]

∑
j=1

(−1)j+1
qCj

(
x(t − jh)− φ(0)

))∣∣∣∣∣∣
+ L||Λ(hq)||

∣∣∣ [ t−τ0
h ]

∑
r=1

(−1)r+1
qCr

∣∣∣.

(29)

Substitute (29) in (28), divide both sides by hq, take the limit as h → 0+, use ∑∞
r=0 qCrzr = (1+ z)q

if |z| ≤ 1, and we obtain for any t ∈ [τ0, t∗] the inequality

GL
τ0

Dq
+m(t) ≤ lim

h→0+

1
hq

{
V(t, x(t))

−
[

t−τ0
h ]

∑
r=1

(−1)r+1
qCrV(t − rh, x(t)− hq f (t, x∗(t))

}

+ L lim
h→0+

||Λ(hq)||
hq lim

h→0+

∣∣∣ [ t−τ0
h ]

∑
r=1

(−1)r+1
qCr

∣∣∣
+ L lim

h→0+
sup

∣∣∣ [ t−τ0
h ]

∑
r=1

(−1)r+1
qCr

∣∣∣ ∣∣∣∣∣∣ 1
hq

[
t−τ0

h ]

∑
j=1

(−1)j+1
qCj

(
x(t − jh)− φ(0)

)∣∣∣∣∣∣
≤ lim

h→0+

1
hq

{
V(t, x(t))−

[
t−τ0

h ]

∑
r=1

(−1)r+1
qCrV(t − rh, x(t)− hq f (t, x∗(t))

}
.

(30)

Let t = t∗. Define the function ψ(Θ) = x(t∗ + Θ), θ ∈ [−τ, 0]. Applying condition 2 to (30) for
t = t∗, we get

GL
t0

Dq
+m(t∗) ≤ lim

h→0+

1
hq

{
V(t∗, ψ(0))−

[
t∗−τ0

h ]

∑
r=1

(−1)r+1
qCrV(t∗ − rh, ψ(0)− hqF(t∗, ψ)

}
= τ0 Dq

(17)V(t∗, ψ(0), ψ0) ≤ −αV(t∗, u(0)) = −αm(t∗) = −αBEq(−α(t∗ − τ0)).

(31)

Inequality (31) contradicts (26).

Remark 6. (Comparison result with the Caputo fractional Dini derivative) Lemma 3 remains true if
the Dini fractional derivative in inequality (24) is replaced by the Caputo fractional Dini derivative

c
τ0

Dq
(17)V(t, ψ; τ0, φ0(0)).

4.2. Comparison Results for Impulsive Delay Fractional Differential Equations

Now, we will prove some comparison result for IFrDDE (3) using approach A2 for IFrDDE.

10
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Lemma 4. (Comparison result with the Caputo fractional derivative) Assume:

1. The function x(t) = x(t; t0, φ0) ∈ PCq([t0, Θ],D) is a solution of the IVP for FrDDE (3) with φ0 ∈
C([−r, 0],D).

2. The function V ∈ Λ([t0 − r, Θ],D), D ⊂ R
n is such that there exist positive numbers p, α : p >

1
Eq(−αrq)

:

(i) for any k = 0, 1, . . . and any point t ∈ [tk, tk+1]
⋂
(t0, Θ] such that V(t+ s, x(t+ s)) < pV(t, x(t)),

s ∈ [−r, 0) the fractional derivative c
tk

DqV(t, x(t)) exists and the inequality

c
tk

DqV(t, x(t)) ≤ −αV(t, x(t)) (32)

holds;
(ii) for all k = 1, 2, . . . : tk ∈ (t0, Θ) and x ∈ D, the inequality V(tk, x + Ik(x)) ≤ V(tk, x).

Then,

V(t, x(t; t0, φ0)) ≤ max
s∈[−r,0]

V(t0 + s, φ0(s))
( k

∏
i=1

Eq(−α(ti − ti−1)
q)
)

Eq(−α(t − tk)
q),

t ∈ (tk, tk+1]
⋂
[t0, Θ].

Proof. Let ε > 0 be an arbitrary number. Define the functions m(t) = V(t, x(t)) for t ∈ [τ0 − r, Θ].
We use Lemma 1 and induction w.r.t. to the interval (see Remark 2) to prove the claim.

For t ∈ [t0, t1], the claim follows directly from Lemma 1, i.e.,

m(t) = V(t, x(t)) ≤ max
s∈[−r,0]

V(t0 + s, φ0(s))Eq(−α(t − t0)
q), t ∈ [t0, t1]. (33)

Let t ∈ (t1, t2]. Denote B1 = m(t1). Let ε > 0 be an arbitrary number. According to (33),
the inequality B1 ≤ maxs∈[−r,0] V(t0 + s, φ0(s))Eq(−α(t1 − t0)

q) holds.
We will prove

m(t) < B1Eq(−α(t − t1)
q) + ε, t ∈ (t1 + 0, t2]. (34)

From condition 2(ii), we get m(t1 + 0) ≤ m(t1) < m(t1) + ε. Assume (34) is not true on (t1, t2],
i.e., there exists a point t∗ ∈ (t1, t2) such that

m(t) < B1Eq(−α(t − t1)
q) + ε, t ∈ [t1, t∗) and m(t∗) = B1Eq(−α(t∗ − t1)

q) + ε. (35)

Let s ∈ [−r, 0].
Case 1. Let t∗ + s ∈ [t1, t∗].
Then, t∗ + s ≥ t1 − r. Then, t∗ − t1 > 0 and 0 ≤ t∗ − t1 − r ≤ t∗ − t1 + s. Using the inequality

Eq(−αaq)Eq(−α(t − a)q) ≤ Eq(−αtq) for t ≥ a with α > 0, a ≥ 0 and (35), we get

p m(t∗) = pB1Eq(−α(t∗ − t1)
q) + pε > B1

Eq(−α(t∗ − t1)
q)

Eq(−αrq)
+ ε

≥ B1Eq(−α(t∗ − t1 − r)q) + ε ≥ B1Eq(−α(t∗ + s − t1)
q) + ε > m(t∗ + s).

(36)

Case 2. Let t∗ − r ≤ t∗ + s < t1.
Then, t∗ − t1 < −s ≤ r and we get

p m(t∗) > B1
Eq(−α(t∗ − t1)

q)

Eq(−αrq)
+ ε ≥ B1 + ε > B1 ≥ m(t∗ + s), s ∈ [−r, 0]. (37)

11
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From (36), (22) and condition 2 (i) of Lemma 4, it follows that the fractional derivative
c
t1

Dqm(t∗) exists.
Similar to the proof in Lemma 1 with τ0 = t1 and B = B1, we obtain a contradiction.
Therefore, inequality (34) holds for an arbitrary ε > 0. Thus, for t ∈ (t1, t2],

m(t) ≤ B1Eq(−α(t − t1)
q) ≤ max

s∈[−r,0]
V(t0 + s, φ0(s))Eq(−α(t1 − t0)

q)Eq(−α(t − t1)
q).

Using induction, we prove the claim.

In the case when the Dini fractional derivative, defined by (8), is applied instead of the Caputo
fractional derivative by using Lemma 3, we obtain the following result:

Lemma 5. (Comparison result with the Dini fractional derivative) Assume the function V ∈ Λ([τ0 − r, Θ],D),
D ⊂ R

n is such that there exist positive numbers p, α : p > 1
Eq(−αrq)

:

(i) for any k = 0, 1, . . . and any point t ∈ [tk, tk+1]
⋂
(t0, Θ] and any function ψ ∈ C([−r, 0],Rn

) :
V(t + s, ψ(s)) < pV(t, ψ(0)), s ∈ [−r, 0) the inequality

tk Dq
(3)V(t, ψ(0), ψ) ≤ −αV(t, ψ(0)) (38)

holds;
(ii) for all k = 1, 2, . . . : tk ∈ (t0, Θ) and x ∈ D the inequality V(tk, x + Ik(x)) ≤ V(tk, x).

Then,

V(t, x(t; t0, φ0)) ≤ max
s∈[−r,0]

V(t0 + s, φ0(s))
( k

∏
i=1

Eq(−α(ti − ti−1)
q)
)

Eq(−α(t − tk)
q),

t ∈ (tk, tk+1]
⋂
[t0, Θ],

(39)

where x(t; τ0, φ0) ∈ PCq([τ0, Θ],D) is a solution of the IVP for FrDDE (3) with φ0 ∈ C([−r, 0],D).

Remark 7. (Comparison result with the Caputo fractional Dini derivative) Lemma 5 remains true if the Dini
fractional derivative in inequality (38) is replaced by Caputo fractional Dini derivative c

tk
Dq
(3)V(t, ψ; τ0, φ0(0)).

5. Application to Neural Networks

5.1. Problem Formulation

We will study neural networks modeled by impulsive Caputo fractional differential equations
with bounded time dependent delays and distributed delays. We will consider the case when the lower
limit of the fractional derivative is changed after each impulse, i.e., we will use approach A2 for IFrDDE.
Following the notations in (3), we consider the general model of Hopfield’s graded response neural
networks with impulses and bounded delays and distributed delays (INND)

C
tk

Dq
t xi(t) = −ci(t)xi(t) +

n

∑
j=1

aij(t) f j(xj(t)) +
n

∑
j=1

bij(t)gj(xj(t − τj(t)))

+
n

∑
j=1

dij(t)
∫ 0

−r
Kij(s)hj(xj(t + s))ds + Ii(t)

for t ∈ (tk, tk+1], k = 0, 1, 2, . . . ,

Δxi(t)|t=tk = Ik,i(xi(tk − 0)), k = 1, 2, . . . ,

xi(t) = φ0
i (t − t0), t ∈ [t0 − r, t0], i = 1, 2, . . . n,

(40)

12
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where n represents the number of neurons in the network, xi(t) is the pseudostate variable denoting
the average membrane potential of the i-th neuron at time t, x(t) = (x1(t), x2(t), . . . , xn(t)) ∈ R

n,
q ∈ (0, 1), ci(t) > 0, i = 1, 2, . . . , n, is the self-regulating parameter of the i-th unit,
they correspond to the rate with which the i-th neuron rests its potential in the resting state
in isolation, aij(t), bij(t), i, j = 1, 2, . . . , n, correspond to the synaptic connection strength of the
i-th neuron to the j-th neuron at time t and t − τj(t), respectively, f j(x), gj(x), hj(x) are nonlinear
activation functions such that f (x) = ( f1(x1), f2(x2), . . . , fn(xn)), h(x) = (h1(x1), h2(x2), . . . , hn(xn)),
g(x) = (g1(x1), g2(x2), . . . , gn(xn)); I = (I1, I2, . . . , In) is an external bias vector, τj(t) represents the
transmission delay along the axis of the j-th unit and satisfies 0 ≤ τj(t) ≤ r, the tk, k = 1, 2, . . . ,
are points of acting the state displacements, the functions Φk,i(t, u, v), k = 1, 2, . . . are the impulsive
functions giving the impulsive perturbation of the i-th neuron on the point tk, the numbers
xi(tk − 0) = xi(tk) and xi(tk + 0) are the state of the i-th neuron before and after impulsive perturbation
at time tk; Kij(.) is the delay kernel with

∫ 0
−r |Kij(s)|ds = 1, φ0

i ∈ C([−r, 0],R), i = 1, 2, . . . , n are the
initial functions.

The slave system is given by

C
tk

Dq
t yi(t) = −ci(t)yi(t) +

n

∑
j=1

aij(t) f j(yj(t)) +
n

∑
j=1

bij(t)gj(yj(t − τj(t)))

+
n

∑
j=1

dij(t)
∫ 0

−r
Kij(s)hj(yj(t + s))ds − ui(t) + Ii(t)

for t ∈ (tk, tk+1], k = 0, 1, 2, . . . ,

Δyi(t)|t=tk = Ik,i(yi(tk − 0)), k = 1, 2, . . . ,

yi(t) = ϕ0
i (t − t0), t ∈ [t0 − r, t0], i = 1, 2, . . . n,

(41)

where ui(t), i = 1, 2, . . . , n are the suitable controllers at time t, ϕ0
i ∈ C([−r, 0],R), i = 1, 2, . . . , n.

5.2. Mittag–Leffler Synchronization

Definition 2. The master impulsive Caputo fractional system (40) and the slave impulsive Caputo fractional
system (41) are globally Mittag–Leffler synchronized if for any initial functions φ0

i , ϕ0
i ∈ C([−r, 0],R) there

exist constants C, K > 0 such that

||x(t; t0, φ0)− y(t; t0, ϕ0)|| ≤ {m(φ0 − ϕ0)Eq(−C(t − tk)
q)

k−1

∏
j=0

Eq(−C(tj+1 − tj)
q)}K,

t ∈ Jk = (tk, tk=1], k = 0, 1, 2, . . . ,

where m ∈ C(Rn
+,R+) (with m(0) = 0) is Lipschitz.

Remark 8. The synchronization of the problem (40) is studied in [11] and the authors consider the case of
constant strengths between the neurons and linear impulsive functions. They used approach A1 for IFrDDE.
The main result is based on incorrectly citing and using the Lemma from [17] where they use the derivative (9),
which is different than the Caputo fractional derivative (see Remarks 2 and 4).

The main goal of the paper is to implement appropriate controllers ui(t), i = 1, 2, . . . , n for the
response system, such that the controlled response system (41) could be synchronized with the drive
system (40).

13
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5.2.1. Output Coupling Controller

Inspired by the ideas in [24], the control inputs in the response system are taken as output
coupling uj(t) = ∑n

j=1 mij( f j(yj(t)) − f j(xj(t))), i = 1, 2, . . . , n. The synchronization via output
coupling is important because, in many real systems, only output signals can be measured.

Define the synchronization error ei(t) = yi(t)− xi(t). Therefore, the error dynamics between (40)
and (41) can be expressed by

C
tk

Dq
t ei(t) = −ci(t)ei(t) +

n

∑
j=1

(aij(t)− mij)Fj(ej(t)) +
n

∑
j=1

bij(t)Gj(ej(t − τj(t)))

+
n

∑
j=1

dij(t)
∫ 0

−r
Kij(s)Hj(ej(t + s))ds for t ∈ (tk, tk+1], k = 0, 1, 2, . . . ,

Δei(t)|t=tk = Lk,i(ei(tk − 0)), k = 1, 2, . . . ,

ei(t) = Φ0
i (t − t0), t ∈ [t0 − r, t0], i = 1, 2, . . . n,

(42)

where Fj(ej(t)) = f j(yj(t)) − f j(xj(t)), Gj(ej(t)) = gj(yj(t)) − gj(xj(t)), Hj(ej(t)) = hj(yj(t)) −
hj(xj(t)) for t ∈ (tk, tk+1], k = 0, 1, 2, . . . , Lk,i(ej(tk − 0)) = Lk,i(yj(tk − 0)) − Lk,i(xj(tk − 0)),
i = 1, 2, . . . , n, k = 1, 2, . . . , and Φ0

i (s) = ϕ0
i (s)− φ0

i (s), s ∈ [−r, 0].
We assume the following:
Assumption A1. The neuron activation functions are Lipschitz, i.e., there exist positive numbers

λi, μi, νi i = 1, 2, . . . , n such that | fi(u) − fi(v)| ≤ λi|u − v|, |gi(u) − gi(v)| ≤ μi|u − v| and
|hi(u)− hi(v)| ≤ νi|u − v|, i = 1, 2, . . . , n for u, v ∈ R.

Assumption A2. There exist positive numbers Mi,j, Ci,j, Dij i, j = 1, 2, . . . , n such that
|ai,j(t)| ≤ Mi,j, |bi,j(t)| ≤ Ci,j, |di,j(t)| ≤ Di,j for t > 0.

Assumption A3. There exists a constant η > 0 such that ci(t) ≥ η, i = 1, 2, . . . , n, t ≥ 0.
Assumption A4. The impulsive functions Φk,i(u) = u + Ik,i(u) are Lipschitz with constants

Ak,i ∈ (0, 1], i.e., |Φk,i(u)− Φk,i(v)| ≤ Ak,i|u − v|, i = 1, 2, . . . , n, k = 1, 2, . . . for u, v ∈ R.
Assumption A5. The inequality

2η >
n

∑
i=1

(
max

j=1,2,...,n
(Mij + |mij|)λj +

n

∑
j=1

(Dijνj + Cijμj)
)

+ max
i=1,2,...,n

n

∑
j=1

[
(Mij + |mij|)λj + Cijμj + Dijνj

] (43)

holds.

Remark 9. If assumption A1 is satisfied, then the functions F, G, H in (42) satisfy |Fj(u)| ≤ λj|u|,
|Gj(u)| ≤ μj|u|, |Hj(u)| ≤ νj|u|, j = 1, 2, . . . , n for any u ∈ R. If assumption A4 is satisfied, then the
impulsive functions Lk,i in (42) satisfy |u + Lk,i| ≤ Ak,i|u| i = 1, 2, . . . , n, k = 1, 2, . . . for any u ∈ R.

The case of multiple time constant delays (no distributed delays) and the constant synaptic
connection strength between neurons is studied in [22] by using quadratic Lyapunov function. We will
study the case of variable bounded synaptic connection strength and nonlinear impulsive functions.

Theorem 1. Let assumptions A1–A5 be satisfied.
Then, the master impulsive Caputo fractional system (40) and the slave impulsive Caputo fractional

system (41) are globally Mittag–Leffler synchronized.

14
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Proof. According to condition A5, there exists a positive constant α such that α ≤ 2η−B1−B2
B3

, where

B1 =
n

∑
i=1

(
max

j=1,2,...,n
(Mij + |mij|)λj +

n

∑
j=1

(Dijνj + Cijμj)
)

,

B2 = max
i=1,2,...,n

n

∑
j=1

[
Cijμj + Dijνj + (Mij + |mij|)λj

]
,

B3 = 1 +
rq

Γ(1 + q)

n

∑
i=1

n

∑
j=1

(Dijνj + Cijμj).

Choose the positive constants p = 1 + αrq

Γ(1+q) . Then, 1
Eq(−αrq)

≤ 1 + αrq

Γ(1+q) = p ( see (3.8) and
(3.11) [23]).

Consider the quadratic functions V(t, x) = xTx. Let the point t > 0 : t ∈ (tm, tm+1], m ≥ 0
being an integer, be such that sups∈[−r,0] V(t + s, e(t + s)) = sups∈[−r,0] ∑n

j=1 e2
j (t + s) = p ∑n

j=1 e2
j (t) =

pV(t, e(t)) where e(t) is a solution of (42). Then, since τj(t) ∈ [0, r], t ≥ 0, we have pV(t, e(t)) =

p ∑n
j=1(ej(t))2 ≥ ∑n

j=1(ej(t − τj(t)))2 ≥ (ei(t − τj(t)))2, i = 1, 2, . . . , n. In addition, (ej(t + s))2 ≤
sups∈[−r,0] V(t + s, e(t + s)) = pV(t, e(t)), s ∈ [−r, 0].

From conditions A1,A2, A3, A5, the choice of the constants α, p, and Remark 9, we get for the
chosen above point t:

C
tm Dq

t V(t, e(t)) = C
tm Dq

t eT(t)e(t) ≤ 2
n

∑
i=1

ei(t) C
tm Dq

t ei(t)

≤ −2
n

∑
i=1

cie2
i (t) + 2

n

∑
i=1

n

∑
j=1

(|aij(t) + |mij|)|Fj(ej(t))||ei(t)|

+ 2
n

∑
i=1

n

∑
j=1

|bij(t)||Gj(ej(t − τ(t)))|ei(t)|

+ 2
n

∑
i=1

n

∑
j=1

|dij(t)|
∫ 0

−r
|Kij(s)||Hj(ej(t + s))|ds|ei(t)|

≤ −2
n

∑
i=1

cie2
i (t) +

n

∑
i=1

n

∑
j=1

(Mij + |mij|)λj((ej(t))2 + (ei(t))2)

+
n

∑
i=1

n

∑
j=1

Cijμj((ej(t − τ(t)))2 + (ei(t))2)

+
n

∑
i=1

n

∑
j=1

|dij(t)|
∫ 0

−r
|Kij(s)|νj((ej(t + s)))2 + (ei(t))2)ds

≤
{
− 2η +

n

∑
i=1

max
j=1,2,...,n

(Mij + |mij|)λj

+ max
i=1,2,...,n

n

∑
j=1

[
(Mij + |mij|)λj + Cijμj + Dijνj

]
+ p(

n

∑
i=1

n

∑
j=1

(Dijνj + Cijμj)
}

V(t, e(t)) ≤ −αV(t, e(t)).

(44)

Let t = tk, k be a natural number and x ∈ R
n, x − (x1, x2, . . . , xn). Then, according to condition

A4 and Remark 9, the inequalities

V(t, x + Lk(x)) =
n

∑
i=1

(xi + Lk,i(x))2 ≤
n

∑
i=1

A2
k,ix

2
i ≤ V(t, x) (45)
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hold.
Inequalities (44), (45) and Lemma 4 prove the claim.

In the case when the conditions A3 and A5 are not satisfied (i.e., the bounds of the functions ci(t)
are not small enough), we introduce:

Assumption A6. There exists a continuous positive function m(t) ∈ C([0, ∞), (0, ∞)) such that
0 < β ≤ m(t) ≤ γ, β, γ are constants, the fractional derivative RL

tk
Dq

t m(t) exists for t ∈ (tk, tk+1),
k = 0, 1, 2, . . . ,

2 min
i=1,2,...,n

ci(t)−
RL
tk

Dq
(

m(t)
)

m(t)
≥ ξ > 0 for t ∈ (tk, tk+1), k = 0, 1, 2, . . . ,

and

ξ >
n

∑
i=1

(
max

j=1,2,...,n
(Mij + |mij|)λj +

1
β

n

∑
j=1

(Dijνj + Cijμj)
)

+ max
i=1,2,...,n

n

∑
j=1

[
(Mij + |mij|)λj + Cijμj + Dijνj

]
.

Theorem 2. Let ssumptions A1, A2, A4 and A6 be satisfied.
Then, the master impulsive Caputo fractional system (40) and the slave impulsive Caputo fractional

system (41) are globally Mittag–Leffler synchronized.

Proof. According to condition A6, there exists a positive constant α such that α ≤ ξ−B4−B2
B5

where B2 is
defined in Theorem 1 and

B4 =
n

∑
i=1

(
max

j=1,2,...,n
(Mij + |mij|)λj +

1
β

n

∑
j=1

(Dijνj + Cijμj)
)

,

B5 = 1 +
rq

βΓ(1 + q)

n

∑
i=1

n

∑
j=1

(Dijνj + Cijμj).

Choose the positive constants p = 1 + αrq

Γ(1+q) and consider the Lyapunov function V(t, x) =

m(t)∑n
i=1 x2

i , x = (x1, x2, . . . , xn) where the function m(t) is defined in Assumption A6.
Let k be any nonegative integer, the point t ∈ (tk, tk+1) and the function ψ ∈ C([−r, 0],Rn

) be such
that V(t + s, ψ(s)) = m(t + s)∑n

i=1(ψi(s))2 < pm(t)∑n
i=1(ψi(0))2 = pV(t, ψ(0)), s ∈ [−r, 0). Then, we

have (ψi(s))2 ≤ 1
β β(ψi(s))2 ≤ 1

β m(t + s)(ψi(s))2 ≤ 1
β m(t + s)∑n

i=1(ψi(s))2 = 1
β V(t + s, ψ(s)) <

p 1
β V(t, ψ(0)) = p 1

β m(t)∑n
i=1(ψi(0))2, s ∈ [−r, 0].

From conditions A1, A2, A6, the choice of the constants α, p, Example 2, Case 2 and Equation (15),
we get for the chosen above point t and function ψ:

16
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tk Dq
(3)V(t, ψ(0), ψ)

≤ m(t)
n

∑
i=1

{
− 2

n

∑
i=1

ci(t)|ψi(0)|2 + 2
n

∑
i=1

n

∑
j=1

|aij(t) + mij||Fj(ψj(0))|ψi(0)|

+ 2
n

∑
i=1

n

∑
j=1

|bij(t)||Gj(ψj(τ(0)))|ψi(0)|+ RL
tk

Dq
(

m(t)
) n

∑
i=1

(ψ(0))
2

+ 2
n

∑
i=1

n

∑
j=1

|dij(t)|
∫ 0

−r
|Kij(s)||Hj(ψj(s))|ds|ψi(0)|

}

≤
{
− 2 min

i=1,2,...,n
ci(t) +

n

∑
i=1

max
j=1,2,...,n

(Mij + |mij|)λj +

RL
tk

Dq
(

m(t)
)

m(t)

+ max
i=1,2,...,n

n

∑
j=1

[
(Mij + |mij|)λj + Cijμj + Dijνj

]
+ p

1
β
(

n

∑
i=1

n

∑
j=1

(Dijνj + Cijμj)
}

V(t, ψ(0)) < −αV(t, ψ(0)).

(46)

For any natural number k and x ∈ R
n, x = (x1, x2, . . . , xn) according to condition A4 and Remark 9,

we have V(tk, x + Lk(x)) ≤ ∑n
i=1 A2

k,ix
2
i ≤ V(t, x).

According to Lemma 5, the claim of Theorem 2 follows.

Example 3. Consider the master impulsive Caputo fractional system (40) with n = 3, ci(t) ≡ ci, with the
activation functions fj(s) = gj(s) = hj(s) = 0.5 tanh(s), the delays τi(t) = |sin(t)| ≤ 1, i.e., r = 1 and
|aij(t)| ≤ Mij, |bij(t)| ≤ Cij, |dij(t)| ≤ Dij i, j = 1, 2, 3, t ≥ 0, where M = {Mij}, C = {Cij} are given by

M =

⎛⎜⎝0.1 0.5 0.3
0.2 0.3 0.2
0.4 0.2 0.1

⎞⎟⎠ , C =

⎛⎜⎝0.1 0.1 0.2
0.3 0.2 0.1
0.2 0.5 0.3

⎞⎟⎠ , D =

⎛⎜⎝0.2 0.1 0.1
0.1 0.2 0.1
0.2 0.3 0.1

⎞⎟⎠ .

Let the output coupling controller be uj(t) = (tanh(yj(t))− tanh(xj(t))∑3
j=1 mij, i = 1, 2, 3 with

m =

⎛⎜⎝0.1 0.2 0.1
0.2 0.1 0.1
0.1 0.2 0.1

⎞⎟⎠ .

Then, λi = μi = νi = 0.5 and ∑3
i=1

(
maxj=1,2,3(Mij + mij)λj + ∑3

j=1(Dijνj + Cijμj)
)

= 2.5

and maxi=1,2,3 ∑3
j=1

[
(Mij + mij)λj + Cijμj + Dijνj

]
= 0.5 maxi=1,2,3 ∑3

j=1

[
(Mij + mij)λj + Cijμj +

Dijνj

]
= 1.35.

Therefore, if ci >
3.85

2 = 1.925, i = 1, 2, 3 then, according to Theorem 1, the master impulsive Caputo
fractional system (40) and the slave impulsive Caputo fractional system (41) are globally Mittag–Leffler
synchronized.

Example 4. Consider the master impulsive Caputo fractional system (40) with n = 2, q = 0.3, tk = k, k =

0, 1, 2, . . . , ci(t) = 0.55
(t−k)0.3Γ(0.7) for t ∈ (k, k+ 1], with the activation functions fj(s) = gj(s) = hj(s) = 1

1+e−s ,
the delays τi(t) = |sin(t)| ≤ 1, i.e., r = 1 and |aij(t)| ≤ Mij, |bij(t)| ≤ Cij, |dij(t)| ≤ Dij i, j = 1, 2, t ≥ 0
where M = {Mij}, C = {Cij} are given by

M =

(
0.1 0.03

0.02 0.3

)
, C =

(
0.001 0.002
0.003 0.001

)
, D =

(
0.002 0.001
0.001 0.002

)
.
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Let the output coupling controller be uj(t) = ( 1
1+e−yj(t)

− 1
1+e−xj(t)

)∑3
j=1 mij, i = 1, 2 with

m =

(
0.1 0.02

0.02 0.1

)
M + m =

(
0.2 0.05

0.04 0.4

)
.

Let m(t) = E0.3(−(t − k)0.3) + 0.1 with β = 0.1. Then, RL
tk

Dq
(

m(t)
)

= −E0.3(−(t − k)0.3) +

1.1
(t−k)0.3Γ(0.7) and 2 mini=1,2,...,n ci(t)−

RL
tk

Dq
(

m(t)
)

m(t) = E0.3(−(t − k)0.3) > E0.3(−1) = ξ = 0.456594 > 0.

Then, λi = μi = νi = 0.25 and 0.25 ∑2
i=1

(
maxj=1,2(Mij + |mij|) + 10 ∑2

j=1(Dij + Cij)
)
= 0.1775,

0.25 maxi=1,2 ∑2
j=1

[
(Mij + |mij|) + Cij + Dij

]
= 0.114. Then, E0.3(−1) > 0.1775 + 0.114 and according

to Theorem 2 the master impulsive Caputo fractional system (40) and the slave impulsive Caputo fractional
system (41) are globally Mittag–Leffler synchronized.

5.2.2. State Coupling Controllers

Note that in [25] the state coupling was used to achieve the exponential lag synchronization of
chaotic neural networks with impulsive effects. Now, we will consider the case when the control inputs
are uj(t) = Nj(yj(t))− xj(t)), j = 1, 2, . . . , n. Then, the synchronization error ei(t) = yi(t) − xi(t)
will satisfy

C
tk

Dq
t ei(t) = −ci(t)ei(t) +

n

∑
j=1

aij(t)Fj(ej(t)) +
n

∑
j=1

bij(t)Gj(ej(t − τj(t)))

+
n

∑
j=1

dij(t)
∫ 0

−r
Kij(s)Hj(ej(t + s))ds − Niei(t) for t ∈ (tk, tk+1], k = 0, 1, 2, . . . ,

Δei(t)|t=tk = Lk,i(ei(tk − 0)), k = 1, 2, . . .

ei(t) = Φ0
i (t − t0), t ∈ [t0 − r, t0], i = 1, 2, . . . n.

(47)

In this case, we can derive the following result (its proof is similar to the one in Theorem 1 and
we omit it). We assume the following:

Assumption A7. The inequality

2(η + min
i=1,2,...,n

Ni) >
n

∑
i=1

(
max

j=1,2,...,n
Mijλj +

n

∑
j=1

(Dijνj + Cijμj)
)

+ max
i=1,2,...,n

n

∑
j=1

[
Mijλj + Cijμj + Dijνj

] (48)

holds.

Theorem 3. Let assumptions A1–A4 and A7 be satisfied.
Then, the master impulsive Caputo fractional system (40) and the slave impulsive Caputo fractional

system (41) are globally Mittag–Leffler synchronized.

In the case when assumptions A3 and A7 are not satisfied, we introduce the following:
Assumption A8. There exists a continuous positive function m(t) ∈ C([0, ∞), (0, ∞)) such that

0 < β ≤ m(t) ≤ γ, β, γ are constants, the fractional derivative RL
tk

Dq
t m(t) exists for t ∈ (tk, tk+1),

k = 0, 1, 2, . . . ,

18



Symmetry 2018, 10, 473

2 min
i=1,2,...,n

(ci(t) + Ni)−
RL
tk

Dq
(

m(t)
)

m(t)
≥ ξ > 0 for t ∈ (tk, tk+1), k = 0, 1, 2, . . . ,

and

ξ >
n

∑
i=1

(
max

j=1,2,...,n
Mijλj +

1
β

n

∑
j=1

(Dijνj + Cijμj)
)

+ max
i=1,2,...,n

n

∑
j=1

[
Mijλj + Cijμj + Dijνj

]
.

Theorem 4. Let assumptions A1, A2, A4 and A8 be satisfied.
Then, the master impulsive Caputo fractional system (40) and the slave impulsive Caputo fractional

system (41) are globally Mittag–Leffler synchronized.

6. Conclusions

The paper presents sufficient conditions for the global Mittag–Leffler synchronization of a
fractional-order neural network with time-varying and distributed delay and with impulsive effects.
We consider the case of two types of controllers, output coupling controller and state
coupling controller. The study is based on the application of the fractional generalization of the
Lyapunov–Razumikhin technique. We study the case of the time varying rate with which the i-th
neuron resets its potential to the resting state in isolation and time varying synaptic connection strength
of the i-th neuron to the j-th neuron. The case when the lower bound of the Caputo fractional derivative
is changeable at each point of impulse is investigated. Consequently, our results are significant for
various applications in engineering and technology.

It would be interesting to extend our results to the case of non-Lipschitz discontinuous activation
functions applying both approaches for the interpretation of solutions of fractional equations
with impulses. This would lead to wider possibilities for appropriate modeling of the connections
between neurons in the networks. This topic goes beyond the scope of this paper and will be a
challenging issue for future research.
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Abstract: In the present work we introduced a new method and name it the conformable double
Laplace decomposition method to solve one dimensional regular and singular conformable functional
Burger’s equation. We studied the existence condition for the conformable double Laplace transform.
In order to obtain the exact solution for nonlinear fractional problems, then we modified the double
Laplace transform and combined it with the Adomian decomposition method. Later, we applied
the new method to solve regular and singular conformable fractional coupled Burgers’ equations.
Further, in order to illustrate the effectiveness of present method, we provide some examples.

Keywords: conformable fractional derivative; conformable partial fractional derivative; conformable
double Laplace decomposition method; conformable Laplace transform; singular one dimensional
coupled Burgers’ equation

1. Introduction

The fractional partial differential equations play a crucial role in mathematical and physical
sciences. In [1], the authors studied the solution of some time-fractional partial differential equations
by using a method known as simplest equation method. In this work, we deal with Burgers’ equation,
these type of equations have appeared in the area of applied sciences such as fluid mechanics and
mathematical modeling. In fact, Burgers’ equation was first proposed in [2], where the steady state
solutions were discussed. Later it was modified by Burger, in order to solve the descriptive certain
viscosity of flows. Today in the literature it is widely known as Burgers’ equation, see [3]. Several
researchers focused and concentrated to study the exact as well as the numerical solutions of this
type of equation. In the present work, we considered and modified the conformable double Laplace
transform method which was introduced in [4] in order to solve the fractional partial differential
equations. The authors in [5] applied the first integral method to establish the exact solutions for
time-fractional Burgers’ equation. In [6], the researchers applied the generalized two-dimensional
differential transform method (DTM) and obtained the solution for the coupled Burgers’ equation with
space- and time-fractional derivatives. Recently in [7], the conformable fractional Laplace transform
method was applied to solve the coupled system of conformable fractional differential equations.
Thus the aim of this study is to propose an analytic solution for the one dimensional regular and
singular conformable fractional coupled Burgers’ equation by using conformable double Laplace

Symmetry 2019, 11, 417; doi:10.3390/sym11030417 www.mdpi.com/journal/symmetry21
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decomposition method (CDLDM). In [8], the following space-time fractional order coupled Burgers’
equation, were considered

∂βu
∂tβ − ∂2αu

∂x2α + ηu ∂α

∂xα u + ζ ∂α

∂xα (uv) = f
(

xα

α , tβ

β

)
∂βv
∂tβ − ∂2αv

∂x2α + ηv ∂α

∂xα v + μ ∂α

∂xα (uv) = g
(

xα

α , tβ

β

)
.

(1)

Conformable fractional derivatives were studied in [9] and extended in [10]. Next, we recall the
definition of conformable fractional derivatives, which are used in this study.

Definition 1. Let f : (0, ∞) → R then the conformable fractional derivative of f order β is defined by

dβ

dtβ
f
(

tβ

β

)
= lim

ε→0

f
(

tβ

β + εt1−β
)
− f

(
tβ

β

)
ε

,
tβ

β
> 0, 0 < β ≤ 1,

see [9,11,12].

Conformable Partial Derivatives:

Definition 2. ([13]): Given a function f
(

xα

α , tβ

β

)
: R × (0, ∞) → R. Then, the conformable space fractional

partial derivative of order α a function f
(

xα

α , tβ

β

)
is defined as:

∂α

∂xα
f
(

xα

α
,

tβ

β

)
= lim

ε→0

f
(

xα

α + εx1−α, t
)
− f

(
xα

α , tβ

β

)
ε

,
xα

α
,

tβ

β
> 0, 0 < α, β ≤ 1.

Definition 3. ([13]): Given a function f
(

xα

α , tβ

β

)
: R × (0, ∞) → R. Then, the conformable time fractional

partial derivative of order β a function f
(

xα

α , tβ

β

)
is defined as:

∂β

∂tβ
f
(

xα

α
,

tβ

β

)
= lim

σ→0

f
(

xα

α , tβ

β + σt1−β
)
− f

(
xα

α , tβ

β

)
σ

,
xα

α
,

tβ

β
> 0, 0 < α, β ≤ 1.

Conformable fractional derivatives of certain functions:

Example 1. We have the following

∂α

∂xα

(
xα

α

)(
tβ

β

)
=

(
tβ

β

)
,

∂α

∂xα

(
xα

α

)n ( tβ

β

)
= n

(
xα

α

)n−1 ( tβ

β

)
∂β

∂tβ

(
xα

α

)(
tβ

β

)
=

(
xα

α

)
,

∂β

∂tβ

(
xα

α

)n ( tβ

β

)m

= m
(

xα

α

)n ( tβ

β

)m−1

∂β

∂tβ

(
sin

(
xα

α

)
sin

(
tβ

β

))
= sin

(
xα

α

)
cos

(
tβ

β

)
,

∂α

∂xα

(
sin a

(
xα

α

)
sin

(
tβ

β

))
= a cos

(
xα

α

)
sin

(
tβ

β

)
∂α

∂xα

(
eλ xα

α + τtβ

β

)
= λeλ xα

α + τtβ

β ,
∂β

∂tβ

(
eλ xα

α + τtβ

β

)
= τeλ xα

α + τtβ

β .
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Conformable Laplace transform:

Definition 4. ([14]): Let f : [0, ∞) → R be a real valued function. The conformable Laplace transform of f is
defined by

Lβ
t

(
f
(

tβ

β

))
=

∫ ∞

0
e−s tβ

β f
(

tβ

β

)
tβ−1dt

for all values of s, provided the integral exists.

Definition 5. ([4]): Let u
(

xα

α , tβ

β

)
be a piecewise continuous function on the interval [0, ∞)× [0, ∞) having

exponential order. Consider for some a, b ∈ R sup xα

α , tβ

β > 0,

∣∣∣∣u( xα

α , tβ

β

)∣∣∣∣
e

axα
α + btβ

β

. Under these conditions the

conformable double Laplace transform is given by

Lα
x Lβ

t

(
u
(

xα

α
,

tβ

β

))
= U (p, s) =

∫ ∞

0

∫ ∞

0
e−p xα

α −s tβ

β u
(

xα

α
,

tβ

β

)
tβ−1xα−1dtdx

where p, s ∈ C, 0 < α, β ≤ 1 and the integrals are by means of conformable fractional with respect to xα

α and
tβ

β respectively.

Example 2. The double fractional Laplace transform for certain functions given by

1. Lα
x Lβ

t

[(
xα

α

)n ( tβ

β

)m]
= LxLt [(x)n(t)m] =

n!m!
pn+1sm+1 .

2. Lα
x Lβ

t

[
eλ xα

α + τtβ

β

]
= LxLt

[
eλx+τt

]
=

1
(p − λ) (s − τ)

.

3. Lα
x Lβ

t

[(
sin(λ

xα

α

)
sin

(
τ

tβ

β

)]
= LxLt [sin(x) sin(t)] =

1
p2 + λ2

1
s2 + τ2 .

4. If a(> −1) and b(> −1) are real numbers, then double fractional Laplace transform of the function

f
(

xα

α
,

tβ

β

)
=

(
xα

α

)a ( tβ

β

)b

is given by

Lα
x Lβ

t

[
(

xα

α
)a(

tβ

β
)b
]
=

Γ (a + 1) Γ (b + 1)
pa+1sb+1 .

Theorem 1. Let 0 < α, β ≤ 1 and m, n ∈ N such that u
(

xα

α , tβ

β

)
∈ Cl (R+ ×R+), l = max (m, n).

Further let the conformable Laplace transforms of the functions given as u
(

xα

α , tβ

β

)
, ∂mαu

∂xmα and ∂nβu
∂tnβ . Then

Lα
x Lβ

t

(
∂mαu
∂xmα

)
= pmU (p, s)− pm−1U (0, s)−

m−1

∑
i=1

pm−1−iLβ
t

(
∂iα

∂xiα u
(

0,
tβ

β

))

Lα
x Lβ

t

(
∂nβ

∂tnβ
u
(

xα

α
,

tβ

β

))
= snU (p, s)− sn−1U (p, 0)−

n−1

∑
j=1

sn−1−jLα
x

(
∂jβ

∂tjβ u
(

xα

α
, 0
))

where
∂mαu
∂xmα

and
∂nβv
∂tnβ

denotes m, n times conformable fractional derivatives of function u
(

xα

α , tβ

β

)
, for more

details see [4].

In the following theorem, we study double Laplace transform of the function(
xα

α

)n ∂β

∂tβ
f
(

xα

α
,

tβ

β

)
as follows:
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Theorem 2. If conformable double Laplace transform of the partial derivatives
∂β

∂tβ
f
(

xα

α
,

tβ

β

)
is given by

Equation (27), then double Laplace transform of
(

xα

α

)n ∂β

∂tβ
f
(

xα

α
,

tβ

β

)
and

(
xα

α

)n
g
(

xα

α
,

tβ

β

)
are given by

(−1)n dn

dpn

(
Lα

x Lβ
t

[
∂β

∂tβ
f
(

xα

α
,

tβ

β

)])
= Lα

x Lβ
t

[(
xα

α

)n ∂β

∂tβ
f
(

xα

α
,

tβ

β

)]
(2)

and

(−1)n dn

dpn

(
Lα

x Lβ
t

[
g
(

xα

α
,

tβ

β

)])
= Lα

x Lβ
t

[(
xα

α

)n
g
(

xα

α
,

tβ

β

)]
, (3)

where n = 1, 2, 3, . . ..

Proof. Using the definition of double Laplace transform of the fractional partial derivatives one gets

Lα
x Lβ

t

[
∂β

∂tβ
f (

xα

α
,

tβ

β
)

]
=

∫ ∞

0

∫ ∞

0
e−p xα

α −s tβ

β

(
∂β

∂tβ
f
(

xα

α
,

tβ

β

))
tβ−1xα−1dt dx, (4)

by taking the nth derivative with respect to p for both sides of Equation (4), we have

dn

dpn

(
Lα

x Lβ
t

[
∂β

∂tβ
f
(

xα

α
,

tβ

β

)])
=

∫ ∞

0

∫ ∞

0

dn

dpn

(
e−p xα

α −s tβ

β
∂β

∂tβ
f
(

xα

α
,

tβ

β

))
tβ−1xα−1dtdx

= (−1)n
∫ ∞

0

∫ ∞

0

(
xα

α

)n
e−p xα

α −s tβ

β tβ−1xα−1 ∂β

∂tβ
f
(

xα

α
,

tβ

β

)
dt dx

= (−1)n Lα
x Lβ

t

[(
xα

α

)n ∂β

∂tβ
f (

xα

α
,

tβ

β
)

]
,

thus we obtain

(−1)n dn

dpn

(
Lα

x Lβ
t

[
∂β

∂tβ
f
(

xα

α
,

tβ

β

)])
= Lα

x Lβ
t

[(
xα

α

)n ∂β

∂tβ
f
(

xα

α
,

tβ

β

)]
.

Similarly, we can prove Equation (3).

Existence Condition for the conformable double Laplace transform:

If f
(

xα

α
,

tβ

β

)
is an exponential order a and b as xα

α → ∞, tβ

β → ∞, if there exists a positive

constant K such that for all x > X and t > T∣∣∣∣ f
(

xα

α
,

tβ

β

)∣∣∣∣ ≤ Kea xα

α +b tβ

β , (5)

it is easy to get,

f
(

xα

α
,

tβ

β

)
= O

(
ea xα

α +b tβ

β

)
as

xα

α
→ ∞,

tβ

β
→ ∞.

Or, equivalently,

lim
xα

α →∞
tβ

β →∞

e−μ xα

α −η tβ

β

∣∣∣∣ f
(

xα

α
,

tβ

β

)∣∣∣∣ = K lim
xα

α →∞
tβ

β →∞

e−(μ−a) xα

α −(η−b) tβ

β = 0,
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where μ > a and η > b. The function f (
xα

α
,

tβ

β
) is called an exponential order as xα

α → ∞, tβ

β → ∞,

and clearly, it does not grow faster than Kea xα

α +b tβ

β as xα

α → ∞, tβ

β → ∞.

Theorem 3. If a function f
(

xα

α , tβ

β

)
is a continuous function in every finite intervals (0, X) and (0, T)

and of exponential order ea xα

α +b tβ

β , then the conformable double Laplace transform of f ( xα

α , tβ

β ) exists for all
Re(p) > μ, Re(s) > η.

Proof. From the definition of the conformable double Laplace transform of f ( xα

α , tβ

β ), we have

|U (p, s)| =

∣∣∣∣∫ ∞
0

∫ ∞
0 e−p xα

α −s tβ

β f ( xα

α , tβ

β )t
β−1xα−1dt dx

∣∣∣∣
≤ K

∣∣∣∣∫ ∞
0

∫ ∞
0 e−(p−a) xα

α −(s−b) tβ

β tβ−1xα−1dt dx
∣∣∣∣

= K
(p−a)(s−b) .

(6)

For Re(p) > μ, Re(s) > η, from Equation (6), we have

lim
p→∞
s→∞

|U (p, s)| = 0 or lim
p→∞
s→∞

U (p, s) = 0.

2. One Dimensional Fractional Coupled Burgers’ Equation

In this section, we discuss the solution of regular and singular one dimensional conformable
fractional coupled Burgers’ equation by using conformable double Laplace decomposition methods
(CDLDM). We note that if α = 1 and β = 1 in the following problems, one can obtain the problems
which was studied in [15]:

The first problem: One dimensional conformable fractional coupled Burgers’ equation is given by

∂βu
∂tβ − ∂2αu

∂x2α + ηu ∂α

∂xα u + ζ ∂α

∂xα (uv) = f
(

xα

α , tβ

β

)
∂βv
∂tβ − ∂2αv

∂x2α + ηv ∂α

∂xα v + μ ∂α

∂xα (uv) = g
(

xα

α , tβ

β

)
,

(7)

subject to

u
(

xα

α
, 0
)
= f1

(
xα

α

)
, v

(
xα

α
, 0
)
= g1

(
xα

α

)
. (8)

for t > 0. Here, f
(

xα

α
,

tβ

β

)
, g

(
xα

α
,

tβ

β

)
, f1

(
xα

α

)
and g1

(
xα

α

)
are given functions, η, ζ and μ are

arbitrary constants depend on the system parameters such as; Peclet number, Stokes velocity of
particles due to gravity and Brownian diffusivity, see [16]. By taking conformable double Laplace
transform for both sides of Equation (7) and conformable single Laplace transform for Equation (8),
we have

U(p, s) =
F1(p)

s
+

F(p, s)
s

+
1
s

Lα
x Lβ

t

[
∂2αu
∂x2α

− ηu
∂α

∂xα
u − ζ

∂α

∂xα
(uv)

]
, (9)

and

V(p, s) =
G1(p)

s
+

G(p, s)
s

+
1
s

Lα
x Lβ

t

[
∂2αv
∂x2α

− ηv
∂α

∂xα
v − μ

∂α

∂xα
(uv)

]
. (10)
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The conformable double Laplace decomposition methods (CDLDM) defines the solution of one

dimensional conformable fractional coupled Burgers’ equation as u
(

xα

α
,

tβ

β

)
and v

(
xα

α
,

tβ

β

)
by the

infinite series

u
(

xα

α
,

tβ

β

)
=

∞

∑
n=0

un

(
xα

α
,

tβ

β

)
, v

(
xα

α
,

tβ

β

)
=

∞

∑
n=0

vn

(
xα

α
,

tβ

β

)
. (11)

We can give Adomian’s polynomials An, Bn and Cn respectively as follows

An =
∞

∑
n=0

unuxn, Bn =
∞

∑
n=0

vnvxn, Cn =
∞

∑
n=0

unvn. (12)

In particular, the Adomian polynomials for the nonlinear terms uux, vvx and uv can be computed
by the following equations

A0 = u0u0x

A1 = u0u1x + u1u0x

A2 = u0u2x + u1u1x + u2u0x, (13)

A3 = u0u3x + u1u2x + u2u1x + u3u0x,

A4 = u0u4x + u1u3x + u2u2x + u3u1x + u4u0x,

B0 = v0v0x

B1 = v0v1x + v1v0x,

B2 = v0v2x + v1v1x + v2v0x, (14)

B3 = v0v3x + v1v2x + v2v1x + v3v0x,

B4 = v0v4x + v1v3x + v2v2x + v3v1x + v4v0x.

and

C0 = u0v0

C1 = u0v1 + u1v0

C2 = u0v2 + u1v1 + u2v0. (15)

C3 = u0v3 + u1v2 + u2v1 + u3v0,

C4 = u0v4 + u1v3 + u2v2 + u3v1 + u4v0.

By applying the inverse conformable double Laplace transform on both sides of Equations (9)
and (10), making use of Equation (12), we have

∞
∑

n=0
un

(
xα

α , tβ

β

)
= f1 (x) + L−1

p L−1
s

[
F(p,s)

s

]
+ L−1

p L−1
s

[
1
s Lα

x Lβ
t

[
∂2αun
∂x2α

]]
−L−1

p L−1
s

[
1
s Lα

x Lβ
t [ηAn]

]
− L−1

p L−1
s

[
1
s Lα

x Lβ
t [ζ (Cn)]

]
,

(16)

and
∞
∑

n=0
vn

(
xα

α , tβ

β

)
= g1 (x) + L−1

p L−1
s

[
G(p,s)

s

]
+ L−1

p L−1
s

[
1
s Lα

x Lβ
t

[
∂2αvn
∂x2α

]]
−L−1

p L−1
s

[
1
s Lα

x Lβ
t [ηBn]

]
− L−1

p L−1
s

[
1
s Lα

x Lβ
t [μ (Cn)]

]
.

(17)
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On comparing both sides of the Equations (16) and (17) we have

u0 = f1 (x) + L−1
p L−1

s

[
F(p,s)

s

]
,

v0 = g1 (x) + L−1
p L−1

s

[
G(p,s)

s

]
.

(18)

In general, the recursive relation is given by the following equations

un+1 = L−1
p L−1

s

[
1
s

Lα
x Lβ

t

[
∂2αun

∂x2α

]]
− L−1

p L−1
s

[
1
s

Lα
x Lβ

t [ηAn]

]
− L−1

p L−1
s

[
1
s

Lα
x Lβ

t [ζ (Cn)]

]
, (19)

and

vn+1 = L−1
p L−1

s

[
1
s

Lα
x Lβ

t

[
∂2αvn

∂x2α

]]
− L−1

p L−1
s

[
1
s

Lα
x Lβ

t [ηBn]

]
− L−1

p L−1
s

[
1
s

Lα
x Lβ

t [μ (Cn)]

]
, (20)

provided that the double inverse Laplace transform with respect to p and s exist in the above equations.
In order to illustrate this method for one dimensional conformable fractional coupled Burgers’ equation
we provide the following example:

Example 3. Consider the homogeneous one dimensional conformable fractional coupled Burgers’ equation

∂βu
∂tβ − ∂2αu

∂x2α − 2u ∂α

∂xα u + ∂α

∂xα (uv) = 0
∂βv
∂tβ − ∂2αv

∂x2α − 2v ∂α

∂xα v + ∂α

∂xα (uv) = 0,
(21)

with initial condition

u
(

xα

α
, 0
)
= sin

(
xα

α

)
, v

(
xα

α
, 0
)
= sin

(
xα

α

)
. (22)

By using Equations (18)–(20) we have

u0 = sin
(

xα

α

)
, v0 = sin

(
xα

α

)
u1 = L−1

p L−1
s

[
1
s

Lα
x Lβ

t

[
∂2αu0

∂x2α
+ 2u0

∂αu0

∂xα
− ∂α

∂xα
(u0v0)

]]
= L−1

p L−1
s

[
1
s

Lα
x Lβ

t

[
− sin

(
xα

α

)]]
= L−1

p L−1
s

[
1

s2 (p2 + 1)

]
= − tβ

β
sin

(
xα

α

)
,

v1 = L−1
p L−1

s

[
1
s

Lα
x Lβ

t

[
∂2αv0

∂x2α
+ 2v0

∂αv0

∂xα
− ∂α

∂xα
(u0v0)

]]
= L−1

p L−1
s

[
1
s

Lα
x Lβ

t

[
− sin

(
xα

α

)]]
= L−1

p L−1
s

[
1

s2 (p2 + 1)

]
= − tβ

β
sin

(
xα

α

)

u2 = L−1
p L−1

s

[
1
s

Lα
x Lβ

t

[
∂2αu1

∂x2α
+ 2

(
u0

∂αu1

∂xα
+ u1

∂αu0

∂xα

)
− ∂α

∂xα
(u0v1 + u1v0)

]]

= L−1
p L−1

s

[
1
s

Lα
x Lβ

t

[
tβ

β
sin

(
xα

α

)]]
= L−1

p L−1
s

[
1

s3 (p2 + 1)

]
=

(
tβ

β

)2

2
sin

(
xα

α

)
,

v2 = L−1
p L−1

s

[
1
s

Lα
x Lβ

t

[
∂2αv1

∂x2α
+ 2

(
v0

∂αv1

∂xα
+ v1

∂αv0

∂xα

)
− ∂α

∂xα
(u0v1 + u1v0)

]]

= L−1
p L−1

s

[
1
s

Lα
x Lβ

t

[
tβ

β
sin

(
xα

α

)]]
= L−1

p L−1
s

[
1

s3 (p2 + 1)

]
=

(
tβ

β

)2

2
sin

(
xα

α

)
,
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and

u3 = L−1
p L−1

s

[
1
s

Lα
x Lβ

t

[
∂2αu2

∂x2α
+ 2

(
u0

∂αu2

∂xα
+ u1

∂αu1

∂xα
+ u2

∂α

∂xα
u0

)]]
−L−1

p L−1
s

[
1
s

Lα
x Lβ

t

[
∂α

∂xα
(u0v2 + u1v1 + u2v0)

]]

= −
(

tβ

β

)3

6
sin

(
xα

α

)
,

v3 = L−1
p L−1

s

[
1
s

Lα
x Lβ

t

[
∂2αv2

∂x2α
+ 2

(
v0

∂αv2

∂xα
+ v1

∂αv1

∂xα
+ v2

∂α

∂xα
v0

)]]
−L−1

p L−1
s

[
1
s

Lα
x Lβ

t

[
∂α

∂xα
(u0v2 + u1v1 + u2v0)

]]

= −
(

tβ

β

)3

6
sin

(
xα

α

)
,

and similar to the other components. Therefore, by using Equation (11), the series solutions are given by

u
(

xα

α
,

tβ

β

)
= u0 + u2 + u3 + ... =

⎛⎜⎝1 −
(

tβ

β

)
+

(
tβ

β

)2

2!
−
(

tβ

β

)3

3!
+ ...

⎞⎟⎠ sin
(

xα

α

)

v
(

xα

α
,

tβ

β

)
= v0 + v2 + v3 + ... =

⎛⎜⎝1 −
(

tβ

β

)
+

(
tβ

β

)2

2!
−
(

tβ

β

)3

3!
+ ...

⎞⎟⎠ sin
(

xα

α

)

and hence the exact solutions become

u
(

xα

α
,

tβ

β

)
= e−

tβ

β sin
(

xα

α

)
, v

(
xα

α
,

tβ

β

)
= e−

tβ

β sin
(

xα

α

)
.

By taking α = 1 and β = 1, the fractional solution become

u
(

xα

α
,

tβ

β

)
= e−t sin x, v

(
xα

α
,

tβ

β

)
= e−t sin x.

The second problem: Now consider the singular one dimensional conformable fractional coupled
Burgers’ equation with Bessel operator

∂βu
∂tβ − α

xα
∂α

∂xα

(
xα

α
∂α

∂xα u
)
+ ηu ∂α

∂xα u + ζ ∂α

∂xα (uv) = f
(

xα

α , tβ

β

)
∂βv
∂tβ − α

xα
∂α

∂xα

(
xα

α
∂α

∂xα v
)
+ ηu ∂α

∂xα v + μ ∂α

∂xα (uv) = g
(

xα

α , tβ

β

)
,

(23)

and with initial conditions

u
(

xα

α
, 0
)
= f1

(
xα

α

)
, v

(
xα

α
, 0
)
= g1

(
xα

α

)
, (24)

where the linear terms
α

xα

∂α

∂xα

(
xα

α

∂α

∂xα

)
is known as conformable Bessel operator where ζ, μ and

η are real constants. Now to obtain the solution of Equation (23), First, we multiply both sides of
Equation (23) by xα

α and obtain
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xα

α
∂βu
∂tβ − ∂α

∂xα

(
xα

α
∂α

∂xα u
)
+ η xα

α u ∂α

∂xα u + ζ xα

α
∂α

∂xα (uv) = xα

α f
(

xα

α , tβ

β

)
xα

α
∂βv
∂tβ − ∂α

∂xα

(
xα

α
∂α

∂xα v
)
+ η xα

α v ∂α

∂xα v + μ xα

α
∂α

∂xα (uv) = xα

α g
(

xα

α , tβ

β

)
.

(25)

Second: we apply conformable double Laplace transform on both sides of Equation(25) and single
conformable Laplace transform for initial condition, we get

Lα
x Lβ

t

[
xα

α
∂βu
∂tβ

]
= Lα

x Lβ
t

[
∂α

∂xα

(
xα

α
∂α

∂xα u
)
− η xα

α u ∂α

∂xα u − ζ xα

α
∂α

∂xα (uv) + xα

α f
(

xα

α , tβ

β

)]
,

Lα
x Lβ

t

[
xα

α
∂βv
∂tβ

]
= Lα

x Lβ
t

[
∂α

∂xα

(
xα

α
∂α

∂xα v
)
− η xα

α v ∂α

∂xα v − μ xα

α
∂α

∂xα (uv) + xα

α g
(

xα

α , tβ

β

)] (26)

by applying Theorems 1 and 2, we have

−s d
dp U(p, s) + d

dp Lα
x [ f1 (x)] = Lα

x Lβ
t

[
∂α

∂xα

(
xα

α
∂α

∂xα u
)
− η xα

α u ∂α

∂xα u − ζ xα

α
∂α

∂xα (uv)
]

− d
dp

(
Lα

x Lβ
t

[
f
(

xα

α , tβ

β

)])
,

−s d
dp V(p, s) + d

dp Lα
x [g1 (x)] = Lα

x Lβ
t

[
∂α

∂xα

(
xα

α
∂α

∂xα v
)
− η xα

α v ∂α

∂xα v − μ xα

α
∂α

∂xα (uv)
]

− d
dp

(
Lα

x Lβ
t

[
g
(

xα

α , tβ

β

)])
,

(27)

simplifying Equation (27), we obtain

d
dp U(p, s) = 1

s
d

dp Lα
x [ f1 (x)]− 1

s Lα
x Lβ

t

[
∂α

∂xα

(
xα

α
∂α

∂xα u
)
− η xα

α u ∂α

∂xα u − ζ xα

α
∂α

∂xα (uv)
]

+ 1
s

d
dp

(
Lα

x Lβ
t

[
f
(

xα

α , tβ

β

)])
.

d
dp V(p, s) = 1

s
d

dp Lα
x [g1 (x)]− 1

s Lα
x Lβ

t

[
∂α

∂xα

(
xα

α
∂α

∂xα v
)
− η xα

α v ∂α

∂xα v − μ xα

α
∂α

∂xα (uv)
]

+ 1
s

d
dp

(
Lα

x Lβ
t

[
g
(

xα

α , tβ

β

)])
.

(28)

Third: integrating both sides of Equation (28) from 0 to p respect to p, we have

U(p, s) = 1
s
∫ p

0

(
d

dp Lα
x [ f1 (x)]

)
dp − 1

s
∫ p

0 Lα
x Lβ

t

[
∂α

∂xα

(
xα

α
∂α

∂xα u
)
− η xα

α N1 − ζ xα

α N2

]
dp

+ 1
s
∫ p

0

(
d

dp

(
Lα

x Lβ
t

[
f
(

xα

α , tβ

β

)]))
dp,

V(p, s) = 1
s
∫ p

0

(
d

dp Lα
x [g1 (x)]

)
dp − 1

s
∫ p

0 Lα
x Lβ

t

[
∂α

∂xα

(
xα

α
∂α

∂xα v
)
− η xα

α N3 − μ xα

α N2

]
dp

+ 1
s
∫ p

0

(
d

dp

(
Lα

x Lβ
t

[
g
(

xα

α , tβ

β

)]))
dp.

(29)

Using conformable double Laplace decomposition method to define a solution of the system as
u
(

xα

α , tβ

β

)
and v( xα

α , tβ

β ) by infinite series

u
(

xα

α
,

tβ

β

)
=

∞

∑
n=0

un

(
xα

α
,

tβ

β

)
, v

(
xα

α
,

tβ

β

)
=

∞

∑
n=0

vn

(
xα

α
,

tβ

β

)
. (30)

Here the nonlinear operators can be defined as

N1 =
∞

∑
n=0

An, N2 =
∞

∑
n=0

Cn N3 =
∞

∑
n=0

Bn (31)
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∞
∑

n=0
un

(
xα

α , tβ

β

)
= f1 (x) + L−1

p L−1
s

[
1
s
∫ p

0 dF (p, s)
]

−L−1
p L−1

s

[
1
s
∫ p

0

(
Lα

x Lβ
t

[
∂α

∂xα

(
xα

α
∂α

∂xα

(
∞
∑

n=0
un

))])
dp
]

+L−1
p L−1

s

[
1
s
∫ p

0

(
Lα

x Lβ
t

[
η xα

α

∞
∑

n=0
An

])
dp
]

+L−1
p L−1

s

[
1
s
∫ p

0

(
Lα

x Lβ
t

[
ζ xα

α

∞
∑

n=0
Cn

])
dp
]

,

(32)

and
∞
∑

n=0
vn

(
xα

α , tβ

β

)
= g1 (x) + L−1

p L−1
s

[
1
s
∫ p

0 dG (p, s)
]

−L−1
p L−1

s

[
1
s
∫ p

0

(
Lα

x Lβ
t

[
∂α

∂xα

(
xα

α
∂α

∂xα

(
∞
∑

n=0
vn

))])
dp
]

+L−1
p L−1

s

[
1
s
∫ p

0

(
Lα

x Lβ
t

[
η xα

α

∞
∑

n=0
Bn

])
dp
]

+L−1
p L−1

s

[
1
s
∫ p

0

(
Lα

x Lβ
t

[
μ xα

α

∞
∑

n=0
Cn

])
dp
]

.

(33)

The first few components can be written as

u0 = f1 (x) + L−1
p L−1

s

[
1
s
∫ p

0 dF (p, s)
]

,

v0 = g1 (x) + L−1
p L−1

s

[
1
s
∫ p

0 dG (p, s)
]

,
(34)

and

un+1

(
xα

α , tβ

β

)
= −L−1

p L−1
s

[
1
s
∫ p

0

(
Lα

x Lβ
t

[
∂α

∂xα

(
xα

α
∂α

∂xα

(
∞
∑

n=0
un

))])
dp
]

+L−1
p L−1

s

[
1
s
∫ p

0

(
Lα

x Lβ
t

[
η xα

α

∞
∑

n=0
An

])
dp
]

+L−1
p L−1

s

[
1
s
∫ p

0

(
Lα

x Lβ
t

[
ζ xα

α

∞
∑

n=0
Cn

])
dp
]

,

(35)

and

vn+1

(
xα

α , tβ

β

)
= −L−1

p L−1
s

[
1
s
∫ p

0

(
Lα

x Lβ
t

[
∂α

∂xα

(
xα

α
∂α

∂xα

(
∞
∑

n=0
vn

))])
dp
]

+L−1
p L−1

s

[
1
s
∫ p

0

(
Lα

x Lβ
t

[
η xα

α

∞
∑

n=0
Bn

])
dp
]

+L−1
p L−1

s

[
1
s
∫ p

0

(
Lα

x Lβ
t

[
ζ xα

α

∞
∑

n=0
Cn

])
dp
]

.

(36)

Provided the double inverse Laplace transform with respect to p and s exist for Equations (34)–(36).

Example 4. Singular one dimensional conformable fractional coupled Burgers’ equation

∂βu
∂tβ − α

xα
∂α

∂xα

(
xα

α
∂α

∂xα u
)
− 2u ∂α

∂xα u + ∂α

∂xα (uv) =
(

xα

α

)2
e

tβ

β − 4e
tβ

β

∂βv
∂tβ − α

xα
∂α

∂xα

(
xα

α
∂α

∂xα v
)
− 2v ∂α

∂xα v + ∂α

∂xα (uv) =
(

xα

α

)2
e

tβ

β − 4e
tβ

β ,
(37)

subject to

u (x, 0) =
(

xα

α

)2
, v (x, 0) =

(
xα

α

)2
. (38)

By following similar steps, we obtain
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∞
∑

n=0
un

(
xα

α , tβ

β

)
=

(
xα

α

)2
e

tβ

β − 4e
tβ

β + 4

−L−1
p L−1

s

[
1
s
∫ p

0

(
Lα

x Lβ
t

[
∂α

∂xα

(
xα

α
∂α

∂xα

(
∞
∑

n=0
vn

))])
dp
]

−L−1
p L−1

s

[
1
s
∫ p

0

(
Lα

x Lβ
t

[
2 xα

α

∞
∑

n=0
An

])
dp
]

+L−1
p L−1

s

[
1
s
∫ p

0

(
Lα

x Lβ
t

[
xα

α
∂α

∂xα

(
∞
∑

n=0
Cn

)])
dp
]

,

(39)

and
∞
∑

n=0
vn

(
xα

α , tβ

β

)
=

(
xα

α

)2
e

tβ

β − 4e
tβ

β + 4

−L−1
p L−1

s

[
1
s
∫ p

0

(
Lα

x Lβ
t

[
∂α

∂xα

(
xα

α
∂α

∂xα

(
∞
∑

n=0
vn

))])
dp
]

−L−1
p L−1

s

[
1
s
∫ p

0

(
Lα

x Lβ
t

[
2 xα

α

∞
∑

n=0
Bn

])
dp
]

+L−1
p L−1

s

[
1
s
∫ p

0

(
Lα

x Lβ
t

[
xα

α

∞
∑

n=0
Cn

])
dp
]

(40)

where An, Bn and Cn are defined in Equations (14)–(16) respectively. On using Equations (34)–(36) the
components are given by

u0 =

(
xα

α

)2
e

tβ

β − 4e
tβ

β + 4, v0 =

(
xα

α

)2
e

tβ

β − 4e
tβ

β + 4,

u1 = −L−1
p L−1

s

[
1
s

∫ p

0
Lα

x Lβ
t

[
∂α

∂xα

(
xα

α

∂αu0

∂xα

)
+ 2

xα

α
u0

∂αu0

∂xα
− xα

α

∂α

∂xα
(u0v0)

]
dp
]

u1 = −L−1
p L−1

s

[
1
s

∫ p

0
Lα

x Lβ
t

[(
4

xα

α
e

tβ

β

)]
dp
]
= 4e

tβ

β − 4,

v1 = −L−1
p L−1

s

[
1
s

∫ p

0
Lα

x Lβ
t

[
∂α

∂xα

(
xα

α

∂αv0

∂xα

)
+ 2

xα

α
v0

∂αv0

∂xα
− xα

α

∂α

∂xα
(u0v0)

]
dp
]

v1 = −L−1
p L−1

s

[
1
s

∫ p

0
Lα

x Lβ
t

[(
4

xα

α
e

tβ

β

)]
dp
]
= 4e

tβ

β − 4.

In a similar way, we obtain

u2 = −L−1
p L−1

s

[
1
s

∫ p

0
Lα

x Lβ
t

[
∂α

∂xα

(
xα

α

∂αu0

∂xα

)]
dp
]

−L−1
p L−1

s

[
1
s

∫ p

0
Lα

x Lβ
t

[
2

xα

α

(
u0

∂αu1

∂xα
+ u1

∂αu0

∂xα

)]
dp
]

+L−1
p L−1

s

[
1
s

∫ p

0
Lα

x Lβ
t

[
xα

α

∂α

∂xα
(u0v1 + u1v0)

]
dp
]

u2 = 0,

v2 = 0.

Thus it is obvious that the self-canceling some terms appear among various components and following
terms, then we have,

u
(

xα

α
,

tβ

β

)
= u0 + u1 + u2 + ..., v

(
xα

α
,

tβ

β

)
= v0 + v1 + v2 + ...

Therefore, the exact solution is given by

u
(

xα

α
,

tβ

β

)
=

(
xα

α

)2
e

tβ

β and v
(

xα

α
,

tβ

β

)
=

(
xα

α

)2
e

tβ

β .

31



Symmetry 2019, 11, 417

By taking α = 1 and β = 1, the fractional solution becomes

u
(

xα

α
,

tβ

β

)
= x2et,

v
(

xα

α
,

tβ

β

)
= x2et.

3. Conclusions

In this work some properties and conditions for existence of solutions for the conformable
double Laplace transform are discussed. We give a solution to the one dimensional regular and
singular conformable fractional coupled Burgers’ equation by using the conformable double Laplace
decomposition method, which is the combination between the conformable double Laplace and
Adomian decomposition methods. Further, two examples were given to validate the present method.
This method can also be applied to solve some nonlinear time-fractional differential equations having
conformable derivatives. The present method can also be used to approximate the solutions of
the nonlinear differential equations with the linearization of non-linear terms by using Adomian
polynomials.
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1. Introduction

In this paper, we investigate a fractional nonlocal boundary value problem (BVP){
cDα

0+x(t) + λg(t) f (x(t)) = 0, t ∈ (0, 1),

x′(0) = 0, βcDα−1
0+ x(1) + x(η) = 0,

(1)

where 1 < α ≤ 2, β > 0, 0 ≤ η ≤ 1, βΓ(α) > (1 − η)α−1, cDα
0+ is the Gerasimov–Caputo fractional

derivative of order α, λ > 0 is a parameter, f ∈ C([0,+∞), [0,+∞)), g ∈ C((0, 1), [0,+∞)), and
0 <

∫ 1
0 g(t)dt < +∞.

One motivation is that the thermostat model{
x′′(t) + g(t) f (t, x(t)) = 0, t ∈ (0, 1),

x′(0) = 0, βx′(1) + x(η) = 0,
(2)

which is a special case with α = 2 and λ = 1, has been discussed by Infante and Webb [1,2].
They established multiplicity results of BVP (2). These types of problems have been investigated
by various scholars, see References [3–17].

Recently, the thermostat model was extended to the fractional case{
cDα

0+x(t) + f (t, x(t)) = 0, t ∈ (0, 1), α ∈ (1, 2],

x′(0) = 0, βcDα−1
0+ x(1) + x(η) = 0,

(3)

where β > 0, 0 ≤ η ≤ 1, f ∈ C([0, 1] × [0,+∞), [0,+∞)). Nieto and Pimentel [18] proved the
existence of positive solutions based on the Krasnosel’skii fixed point theorem. Cabada and Infante [19]
discussed the multiplicity results of positive solutions for BVP (3).

In Reference [20], Shen, Zhou, and Yang studied a fractional thermostat model{
cDα

0+x(t) + λ f (t, x(t)) = 0, t ∈ (0, 1), 1 < α ≤ 2,

x′(0) = 0, βcDα−1
0+ x(1) + x(η) = 0,

Symmetry 2019, 11, 122; doi:10.3390/sym11010122 www.mdpi.com/journal/symmetry34
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where β > 0, 0 ≤ η ≤ 1, βΓ(α) > (1 − η)α−1, λ > 0, f : [0, 1]× [0,+∞) → [0,+∞) is continuous.
The authors obtained intervals of parameter λ that correspond to at least one and no positive solutions.
Similar fractional thermostat problems have been studied in References [21–24].

In this paper, we deal with positive solutions for the fractional thermostat model (1). The
existence, multiplicity, and uniqueness results are established by the fixed point index theory and
iterative method. The properties of positive solutions depending on a parameter are also discussed.
Some of the ideas in this paper are from References [25,26]. Let us remark that the definition of the
Gerasimov–Caputo derivative was first introduced and applied by Gerasimov in 1947 and then by
Caputo in 1967, see for example, the overview by Novozhenova in Reference [27]. For details on the
theory and applications of the fractional derivatives and integrals and fractional differential equations,
see References [28–31].

2. Preliminaries

Lemma 1 ([20]). Given u(t) ∈ C(0, 1) ∩ L1(0, 1), the solution of the problem{
cDα

0+x(t) + u(t) = 0, t ∈ (0, 1),

x′(0) = 0, βcDα−1
0+ x(1) + x(η) = 0

is

x(t) =
∫ 1

0
G(t, s)u(s)ds, t ∈ [0, 1],

where

G(t, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β − (t − s)α−1

Γ(α)
+

(η − s)α−1

Γ(α)
, 0 ≤ s ≤ η, s ≤ t,

β +
(η − s)α−1

Γ(α)
, 0 ≤ s ≤ η, s ≥ t,

β − (t − s)α−1

Γ(α)
, η ≤ s ≤ 1, s ≤ t,

β, η ≤ s ≤ 1, s ≥ t,

and G(t, s) satisfies:

(i) G(t, s) : [0, 1]× [0, 1] → (0,+∞) is continuous;
(ii) ∂

∂t G(t, s) ≤ 0, t, s ∈ [0, 1];
(iii) γG = G ≤ G(1, s) ≤ G(t, s) ≤ G(0, s) ≤ G, t, s ∈ [0, 1],

where

γ =
βΓ(α)− (1 − η)α−1

βΓ(α) + ηα−1 , G =
βΓ(α)− (1 − η)α−1

Γ(α)
, G =

βΓ(α) + ηα−1

Γ(α)
.

Denote E = C[0, 1] and ‖x‖ = supt∈[0,1] |x(t)|. We define the cone

P = {x ∈ E : x(t) ≥ 0, inf
t∈[0,1]

x(t) ≥ γ‖x‖}.

For any 0 < r < +∞, let Pr = {x ∈ P : ‖x‖ < r}. We define T : (0,+∞)× E → E as

T(λ, x)(t) = λ
∫ 1

0
G(t, s)g(s) f (x(s))ds, t ∈ [0, 1].

It is obvious from Lemma 1 that if x ∈ P is a fixed point of operator T, then x is a positive solution
of Problem (1). By regularity arguments, we can show that T is completely continuous and T(P) ⊂ P.
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Define the linear operator L : E → E by

Lx(t) =
∫ 1

0
G(t, s)g(s)x(s)ds, t ∈ [0, 1].

By the Krein–Rutman theorem, we see that the spectral radius r(L) of the operator L is positive,
and L has positive eigenfunction ϕ1 corresponding to its first eigenvalue μ1 = (r(L))−1.

Lemma 2 ([32]). Let P be a cone in Banach space E. Suppose that T : P → P is a completely continuous
operator. (i) If Tu �= μu for any u ∈ ∂Pr and μ ≥ 1, then i(T, Pr, P) = 1. (ii) If Tu �= u and ‖Tu‖ ≥ ‖u‖ for
any u ∈ ∂Pr, then i(T, Pr, P) = 0.

Denote

f0 = lim
s→0

f (s)
s

, f∞ = lim
s→∞

f (s)
s

, A =
∫ 1

0
G(0, s)g(s)ds, l = min

s∈(0,∞)

f (s)
s

.

We assume that:

(H1) f is nondecreasing on [0,+∞);
(H2) there exists a function φ : (0, 1] → [0, 1] continuous nondecreasing, such that f (κx) ≥ φ(κ) f (x) for

0 < κ < 1, x > 0, and F(κ) := κ
φ(κ)

is strictly increasing on (0, 1] and F(1) = 1.

Lemma 3. Suppose that (H1) holds, f0 = ∞ and l > 0. If 0 < λ1 < λ2 < 1
lA , then there exist x1, x2 ∈

P \ {θ}, x1 ≤ x2, such that T(λ1, x1)(t) = x1(t) and T(λ2, x2)(t) = x2(t).

Proof. Assume s0 ∈ (0, ∞) such that f (s0) = ls0. Since 0 < λ1 < λ2 < 1
lA , we have l < 1

λ2 A < 1
λ1 A .

We define

x0(t) =
s0

A

∫ 1

0
G(t, s)g(s)ds, t ∈ [0, 1],

then

‖x0‖ = x0(0) = s0, x0(t) ≥ s0

A

∫ 1

0
γG(0, s)g(s)ds = γ‖x0‖, t ∈ [0, 1].

Therefore, x0 ∈ P and ‖x0‖ = s0. Direct computations yield

T(λ1, x0)(t) =λ1

∫ 1

0
G(t, s)g(s) f (x0(s))ds ≤ λ1

∫ 1

0
G(t, s)g(s) f (‖x0‖)ds

=λ1ls0

∫ 1

0
G(t, s)g(s)ds <

s0

A

∫ 1

0
G(t, s)g(s)ds = x0(t), t ∈ [0, 1].

Define

x1
1(t) = T(λ1, x0)(t), xj

1(t) = T(λ1, xj−1
1 )(t) = Tj(λ1, x0)(t), j = 2, 3, · · · , t ∈ [0, 1].

Direct calculations show that x0 > x1
1 > x2

1 > · · · > xj
1 > xj+1

1 > · · · ≥ θ. Hence, sequence

{xj
1}∞

j=1 is decreasing and bounded from below, limj→∞ xj
1(t) exists and convergence is uniform for

t ∈ [0, 1]. Assume that limj→∞ xj
1 = x1, we claim that x1(t) > 0. Otherwise, since x1 ∈ P, x1(t) = 0,

i.e., limj→∞ xj
1(t) = 0, t ∈ [0, 1], and hence from xj

1 ∈ P, we deduce ‖xj
1‖ → 0. Since f0 = ∞, for any

H > 1
λ1γA , there is integral Z > 0 such that for j > Z, we have f (xj

1(t)) > Hxj
1(t), and hence
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xj+1
1 (0) =λ1

∫ 1

0
G(0, s)g(s) f (xj

1(s))ds

>λ1Hγ
∫ 1

0
G(0, s)g(s)‖xj

1‖ds

≥xj
1(0)λ1HγA > xj

1(0).

The contradiction shows that x1 ∈ P \ {θ} and x1 = T(λ1, x1).
Similarly, from x1

2(t) = T(λ2, x0)(t) and xj
2(t) = T(λ2, xj−1

2 )(t), j = 2, 3, · · · , we deduce

x0 > x1
2 > x2

2 > · · · > xj
2 > xj+1

2 > · · · ≥ θ,

limj→∞ xj
2 = x2 ∈ P \ {θ}, and x2 = T(λ2, x2). It follows from x1

1 = T(λ1, x0) < T(λ2, x0) = x1
2 and

the monotonicity of f that xj
1 ≤ xj

2, j = 2, 3, · · · . Therefore, x1 ≤ x2.

Lemma 4. If f∞ = ∞, then for any μ > 0, the set Sμ = {x ∈ P : T(λ, x) = x, λ ∈ [μ, ∞)} is bounded.

Proof. Otherwise, there exists xn ∈ Sμ corresponding to λn ∈ [μ, ∞) such that

T(λn, xn) = xn, lim
n→∞

‖xn‖ = ∞.

Because f∞ = ∞, there is X > 0 such that f (s) > Hs for s > X, where H > 1
μγA . Since

limn→∞ ‖xn‖ = ∞, there exists N0 > 0 such that ‖xn‖ > X
γ for n > N0, and xn(t) ≥ γ‖xn‖ > X, t ∈

[0, 1]. Then, for any n > N0, we obtain

‖xn‖ > λn

∫ 1

0
G(0, s)g(s)Hxn(s)ds > μHγ‖xn‖A > ‖xn‖,

which is absurd, and hence Sμ is bounded.

Lemma 5. Assume that (H1) holds, and that f0 = f∞ = ∞. Then, T admits a fixed point for λ = 1
lA .

Proof. Choosing a sequence 0 < λ1 < λ2 < · · · < λn < λn+1 < · · · < 1
lA such that limn→∞ λn = 1

lA .
By Lemma 3, there exists a nondecreasing sequence {xn}∞

n=1 ⊂ P \ {θ} such that xn = T(λn, xn).
By Lemma 4, we know that {xn}∞

n=1 is uniformly bounded and equicontinuous. By using the
Arzela–Ascoli theorem, we can prove that there exists {xnk}∞

k=1 ⊂ {xn}∞
n=1 such that xnk → x̃ ∈ E

uniformly on [0, 1]. Therefore, xnk satisfies

xnk (t) = T(λnk , xnk )(t) = λnk

∫ 1

0
G(t, s)g(s) f (xnk (s))ds, t ∈ [0, 1].

Passing to the limit as k → ∞, we obtain

x̃(t) =
1

lA

∫ 1

0
G(t, s)g(s) f (x̃(s))ds, t ∈ [0, 1].

Hence, x̃ = T
(

1
lA , x̃

)
.

Lemma 6. Assume that (H1) holds, and that f (0) > 0. Then, for any x ∈ P, there exist Ux ≥ V > 0
such that

VKλ ≤ T(λ, x)(t) ≤ UxKλ, t ∈ [0, 1],

where

Kλ = λ
∫ 1

0
g(t)dt.
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Proof. By (H1), for any x ∈ P and t ∈ [0, 1], we have

T(λ, x)(t) ≥ G f (0)λ
∫ 1

0
g(t)dt := VKλ,

and

T(λ, x)(t) ≤ G f (‖x‖)λ
∫ 1

0
g(t)dt := UxKλ.

3. Main Results

Theorem 1. Assume that f∞ = ∞ and 0 < f0 < ∞. Then, for any 0 < λ < μ1
f0

, BVP (1) admits a
positive solution.

Proof. Since 0 < λ < μ1
f0

, there exist ε > 0 small enough and r > 0 such that λ( f0 + ε) < μ1,

and f (s)
s < f0 + ε for s ∈ (0, r]. We claim that

T(λ, x) �= μx, x ∈ ∂Pr, μ ≥ 1.

Otherwise, there exist x0 ∈ ∂Pr and μ0 ≥ 1 such that T(λ, x0) = μ0x0. Since 0 < γr ≤ x0(t) ≤
‖x0‖ = r, we have

μ0x0(t) ≤ λ( f0 + ε)
∫ 1

0
G(t, s)g(s)x0(s)ds = λ( f0 + ε)Lx0(t),

then Lx0(t) ≥ μ0
λ( f0+ε)

x0(t). Thus, r(L) ≥ μ0
λ( f0+ε)

≥ 1
λ( f0+ε)

. It follows that μ1 ≤ λ( f0 + ε), which is a
contradiction. Then, i(T, Pr, P) = 1.

Next, we prove that i(T, PR, P) = 0 for some R > r. In fact, f∞ = ∞ implies that f (s) > Ms for
some large R1 > 0 and s ≥ R1, where M > (λγA)−1. Let R > max{r, R1

γ }. For x ∈ ∂PR, we have
x(t) ≥ γ‖x‖ = γR > R1, t ∈ [0, 1], then

‖T(λ, x)‖ ≥ λM
∫ 1

0
G(0, s)g(s)x(s)ds ≥ λMγ‖x‖A > ‖x‖.

Hence, i(T, PR, P) = 0, and i(T, PR \ Pr, P) = −1. Therefore, T admits a fixed point x∗ ∈ PR \ Pr.

Theorem 2. Assume that (H1) holds, and that f0 = f∞ = ∞. Then, BVP (1) has at least one and two positive
solutions for λ = 1

lA and λ ∈ (0, 1
lA ), respectively.

Proof. By Lemma 5, BVP (1) admits a positive solution for λ = 1
lA . For λ ∈ (0, 1

lA ), by Lemmas 3 and
5, there exist x̃, xλ ∈ P \ {θ}, xλ ≤ x̃ such that

T
(

1
lA

, x̃
)
(t) = x̃(t), T(λ, xλ)(t) = xλ(t), t ∈ [0, 1].

If xλ = x̃, we have

T(λ, xλ) = xλ = x̃ = T
(

1
lA

, x̃
)
= T

(
1

lA
, xλ

)
.

This contradiction shows that xλ < x̃.
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Define Ω1 = {x ∈ E : −r < x(t) < x̃(t), t ∈ [0, 1]}, where r > 0 is the same as in the first part of
Theorem 1. For any x ∈ P ∩ ∂Ω1, we obtain ‖x‖ = ‖x̃‖, and

‖T(λ, x)‖ <
1

lA

∫ 1

0
G(0, s)g(s) f (x̃(s))ds = x̃(0) = ‖x̃‖.

Therefore,
‖T(λ, x)‖ < ‖x‖, x ∈ P ∩ ∂Ω1.

As in the proof in Theorem 1, there is R > 0 large enough such that

‖T(λ, x)‖ > ‖x‖, x ∈ P ∩ ∂Ω2,

where Ω2 = {x ∈ E : ‖x‖ < R}. By compression expansion fixed point theorem, we see that T has a
fixed point xλ ∈ P∩ (Ω2 \Ω1). Since xλ ∈ Ω1, xλ �= xλ, problem (1) has a second positive solution.

Theorem 3. Assume that (H1) and (H2) hold, and that f (0) > 0. Then, for any λ ∈ (0, ∞), BVP (1) admits
a unique positive solution ẋλ(t), and ẋλ(t) satisfies:

(i) ẋλ(t) is nondecreasing with respect to λ;
(ii) limλ→0+ ‖ẋλ‖ = 0, limλ→∞ ‖ẋλ‖ = ∞;
(iii) ‖ẋλ − ẋλ0‖ → 0 as λ → λ0.

Proof. Since T is nondecreasing, for u ∈ P, we have

T(λ, κx)(t) ≥ φ(κ)λ
∫ 1

0
G(t, s)g(s) f (x(s))ds = φ(κ)T(λ, x)(t), t ∈ [0, 1]. (4)

Define x̂(t) = Kλ, where Kλ is given by Lemma 6, then x̂ ∈ P and VKλ ≤ T(λ, x̂)(t) ≤ UxKλ.
Denote

V = sup{μ : μKλ ≤ T(λ, x̂)(t)}, U = inf{μ : μKλ ≥ T(λ, x̂)(t)},

then V ≥ V and U ≤ Ux. Select Ṽ and Ũ so that

0 < Ṽ < min{1, F−1(V)}, 0 <
1
Ũ

< min
{

1, F−1
(

1
U

)}
.

We define
x1(t) = ṼKλ, xk+1(t) = T(λ, xk)(t), t ∈ [0, 1], k = 1, 2, · · · ,

y1(t) = ŨKλ, yk+1(t) = T(λ, yk)(t), t ∈ [0, 1], k = 1, 2, · · · .

Combining the properties of T and (4), we get

ṼKλ = x1(t) ≤ x2(t) ≤ · · · ≤ xk(t) ≤ · · · ≤ yk(t) ≤ · · · ≤ y2(t) ≤ y1(t) = ŨKλ. (5)

Let d = Ṽ
Ũ

, obviously 0 < d < 1. We claim that

xk(t) ≥ φk−1(d)yk(t), t ∈ [0, 1], k = 1, 2, · · · , (6)

where φ0(d) = d, φk(d) = φ(φk−1(d)), k = 1, 2, · · · . In fact, x1(t) = dy1(t) = φ0(d)y1(t), t ∈ [0, 1].
Suppose xn(t) ≥ φn−1(d)yn(t) for t ∈ [0, 1], then

xn+1(t) ≥ T(λ, φn−1(d)yn)(t) ≥ φ(φn−1(d))T(λ, yn)(t) = φn(d)yn+1(t).
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Hence, it follows by induction that (6) is true. According to (5) and (6), one has

0 ≤ xn+m(t)− xn(t) ≤ yn(t)− xn(t) ≤ (1 − φn−1(d))y1(t) = (1 − φn−1(d))ŨKλ,

where m ≥ 0 is an integer. Thus,

‖xn+m − xn‖ ≤ ‖yn − xn‖ ≤ (1 − φn−1(d))ŨKλ. (7)

We claim that limn→∞ φn(d) = 1. From (H2) and 0 < d < 1, we see that φ(d) ∈ (d, 1) and
d = φ0(d) < φ1(d) < · · · < φn(d) < · · · < 1. Sequence {φn(d)}∞

n=1 is increasing and bounded, there is
p ∈ [d, 1] such that limn→∞ φn(d) = p. By the continuity of φ and φn(d) = φ(φn−1(d)), we conclude
that p = φ(p), i.e., F(p) = 1. It follows that p = 1. Inequality (7) implies that there exists x ∈ P
such that limn→∞ xn(t) = limn→∞ yn(t) = x(t) for t ∈ [0, 1]. Clearly, x(t) is a positive solution of
problem (1).

Suppose that x̄1(t) and x̄2(t) are positive solutions of problem (1), then T(λ, x̄1)(t) = x̄1(t) and
T(λ, x̄2)(t) = x̄2(t), t ∈ [0, 1]. Define δ̃ = sup{δ : x̄1(t) ≥ δx̄2(t)}, then x̄1(t) ≥ δ̃x̄2(t). We claim that
δ̃ ≥ 1. Otherwise, δ̃ < 1. Assumption (H2) implies that f (δ̃x̄2(t)) > ϕ(δ̃) f (x̄2(t)), t ∈ [0, 1]. Since f
is nondecreasing,

x̄1(t) = T(λ, x̄1)(t) ≥ T(λ, δ̃x̄2)(t) > φ(δ̃)T(λ, x̄2)(t) > δ̃x̄2(t), t ∈ [0, 1],

a contradiction. Then, x̄1(t) ≥ x̄2(t) for t ∈ [0, 1]. Similarly, x̄2(t) ≥ x̄1(t). Therefore, x̄1(t) = x̄2(t), t ∈
[0, 1]. This proves the uniqueness result.

Next, we show that (i)− (iii) hold. Let

(Hx)(t) =
∫ 1

0
G(t, s)g(s) f (x(s))ds, t ∈ [0, 1],

then T(λ, x) = λHx. Since Po = {x ∈ P : x(t) > 0, t ∈ [0, 1]} is nonempty, the operator H : Po → Po

is increasing, and H(κx) ≥ φ(κ)Hx for 0 < κ < 1. Let ω = 1
λ . We now write Hxω = ωxω instead of

λHxλ = xλ. Assume 0 < ω1 < ω2, then xω1 ≥ xω2 . Indeed, denote ω = sup{t > 0 : xω1 ≥ txω2}, then
ω ≥ 1. Otherwise 0 < ω < 1. Direct computations yield ω1xω1 = Hxω1 ≥ H(ωxω2) ≥ φ(ω)Hxω2 =

φ(ω)ω2xω2 , then xω1 ≥ ω2
ω1

φ(ω)xω2 > ωxω2 . This is a contradiction to the definition of ω. Thus,
ω ≥ 1, xω1 ≥ xω2 , and further

xω1 =
1

ω1
Hxω1 ≥ 1

ω1
Hxω2 =

ω2

ω1
xω2 � xω2 , 0 < ω1 < ω2. (8)

Then, xω(t) is strong decreasing in ω, that is, xλ(t) is strong increasing in λ. Let ω2 = ω and fix
ω1 in (8), for ω > ω1, we have xω1 ≥ ω

ω1
xω, and

‖xω‖ ≤ Nω1

ω
‖xω1‖,

where N > 0 is a normal constant of cone P. Because ω = 1
λ , then limλ→0+ ‖xλ‖ = 0. Let ω1 = ω and

fix ω2 in (8), we obtain limλ→+∞ ‖xλ‖ = +∞.
Finally, for given ω0, by (8), we have

xω � xω0 , ω > ω0. (9)

Let tω = sup{t > 0 : xω ≥ txω0 , ω > ω0}, then 0 < tω < 1 and xω ≥ tωxω0 . Direct computations
yield ωxω = Hxω ≥ H(tωxω0) ≥ φ(tω)Hxω0 = φ(tω)ω0xω0 . By the definition of tω, we have
ω0
ω φ(tω) ≤ tω, and
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tω ≥ F−1
(ω0

ω

)
, ∀ω > ω0. (10)

Combining (9) with (10), one has that

‖xω0 − xω‖ ≤ N
[
1 − F−1

(ω0

ω

)]
‖xω0‖ → 0, ω → ω0 + 0.

Similarly, ‖xω0 − xω‖ → 0, ω → ω0 − 0. Hence, ‖xω0 − xω‖ → 0 as ω → ω0.
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Abstract: In the present work we study the oscillatory behavior of three dimensional α-fractional
nonlinear delay differential system. We establish some sufficient conditions that will ensure all
solutions are either oscillatory or converges to zero, by using the inequality technique and generalized
Riccati transformation. The newly derived criterion are also used to establish a new class of systems
with delay which are not covered in the existing study of literature. Further, we constructed some
suitable illustrations.

Keywords: oscillation; nonlinear differential system; delay differential system; α-fractional derivative

1. Introduction

In the literature there are many advanced strategies in the expansion of ordinary and partial
differential equations of fractional order and they have been used as excellent sources and tools in
order to model many phenomena in the different fields of engineering, science and technology. Further,
these tools are also used in fields such as chemical processes, polymer rheology, mathematical biology,
industrial robotics, viscoelasticity, and many more, see the monographs [1–7].

At the end of the nineteenth century, Henry Poincare initiated the method and used the qualitative
analysis of nonlinear systems of integer order differential equations. Since then, there has been
significant development in the theory of oscillation of integer order differential systems [8–18].

In a study [19], Vreeke et al. applied the differential systems in the application of physics in order
to solve the problem of a nuclear reactor which involved two temperature feedback. In the current
literature there are many established results in the oscillation theory of classical differential systems (see
[20–24]). However, in the nonlinear fractional differential system development is relatively slow due
to the occurrence of nonlocal behavior of fractional derivatives that possess weakly singular kernels.

In 2014, Khalil et al. introduced the idea of conformable fractional derivative as a kind of local
derivative with no memory (see [25–27]). By following the idea of Khalil, an interesting application of
the conformable fractional derivative in physics was discussed and the action principle for particles
under the frictional forces were formulated, see [28].

The idea of conformable fractional derivatives was generalized by Katugampola, and today it is
known as the Katugampola fractional derivative. Nowadays, many researchers have interest in this
type of derivative for their useful properties (see [29–31]). In this respect, we list the contributions of

Symmetry 2018, 10, 769; doi:10.3390/sym10120769 www.mdpi.com/journal/symmetry43
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Spanikova [32], Sadhasivam [33] and Chatzarakis [34] where the oscillation of α-fractional nonlinear
three dimensional delay differential systems were also studied.

Now we study oscillatory behavior of the following system having the form

Dα (u(t)) = p(t)g (v(σ(t))) ,

Dα (v(t)) = −q(t)h (w(t))) , (1)

Dα (w(t)) = r(t) f (u(δ(t))) , t ≥ t0,

where 0 < α ≤ 1, Dα denotes the α-fractional derivative respect to t.

Based on the following assumptions:

(A1) p(t) ∈ C2α([t0, ∞),R+), q(t) ∈ Cα([t0, ∞),R+), r(t) ∈ C([t0, ∞),R+), p(t), q(t) and r(t) are
not identically zero on any interval of [T0, ∞), T0 ≥ t0, r(t) and q(t) are decreasing and positive;
(A2) g ∈ Cα(R,R), vg(v) > 0, Dαg(v) ≥ l

′
> 0, h ∈ Cα(R,R), wh(w) > 0, Dαh(w) ≥ m

′
> 0, f ∈

C(R,R), y f (y) > 0 and f (y)
y ≥ k > 0 for y �= 0;

(A3) σ(t) ≤ t with Dασ(t) ≥ l > 0, δ(t) ≤ t and satisfies limt→∞ σ(t) = ∞, limt→∞ δ(t) = ∞;
(A4) The case will be considered as∫ ∞

t0

sα−1 1
b(s)

ds = ∞,
∫ ∞

t0

sα−1 1
a(s)

ds = ∞,

where b(t) = 1
q(t) , a(t) = 1

p(t) and c(t) = l2l
′
m

′
r(t), a(t), b(t) and c(t) are positive real-valued

continuous functions with b(t)t1−α < 1.
The solution implies that, it is a vector-valued function such that U(t) = (u(t), v(t), w(t)) with

T1 = min {δ(t1), σ(t1)} for some t1 ≥ t0 which has the property such that b(t)Dα (a(t)Dαu(t)) ∈
Cα([T1, ∞),R) and satisfies the system (1) on [T1, ∞). Denote by P, the set of all solutions U(t) of (1)
which exist on some half line [T1, ∞), T1 > t0. The researchers only focus to the nontrivial solutions
of system (1) and satisfy sup {|u(ξ)|+ |v(ξ)|+ |w(ξ)|, t ≤ ξ < ∞} > 0 for any t ≥ T1. We make a
standing hypothesis that (1) has such a solution.

A proper solution U(t) ∈ P for the system (1) is called oscillatory if all the components are
oscillatory, otherwise it is nonoscillatory. Further, the system (1) is said to be oscillatory if all proper
solutions oscillate.

The main goal of this paper is to establish some new oscillation criteria for the system (1) by
making use of the generalized Riccati transformation and inequality technique. The study is structured
as follows. In Section 2, we recall some preliminary concepts relative to the α- fractional derivative.
In Section 3, some new conditions for the oscillatory behavior of the solutions of system (1) were
presented. Illustrative examples are included in the final part of the paper in order to demonstrate the
efficiency of new theorems.

2. Preliminaries

We begin this section with the following definition of the operator Dα.

Definition 1. [30] Let y : [0, ∞) → R, then α-fractional derivative of y is defined by

Dα(y)(t) := lim
ε→0

y(teεt−α
)− y(t)
ε

for t > 0 and α ∈ (0, 1]. (2)

If y is differentiable α-times in some (0, a) with a > 0, lim
t→0+

Dα(y)(t) exists, then we have

Dα(y)(0) := lim
t→0+

Dα(y)(t).
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α-fractional derivative satisfies the following properties. [30]
Let α ∈ (0, 1] and g, h be α- differentiable for t > 0. Then

(p1) Dα(tn) = ntn−α for all n ∈ R.
(p2) Dα(C) = 0 for all constant functions, g(t) = C.
(p3) Dα(gh) = gDα(h) + hDα(g).
(p4) Dα( g

h ) =
hDα(g)−gDα(h)

h2 .
(p5) Dα(g ◦ h)(t) = g

′
(h(t))Dαh(t), for g is differentiable at h(t).

(p6) If g is differentiable, then Dα(g)(t) = t1−α dg
dt (t).

Definition 2. [30] Let a ≥ 0, t ≥ a and a function y defined on (a, t] with α ∈ R. Then, α-fractional integral
as follows

Iα
a (y)(t) :=

∫ t

a

y(x)
x1−α

dx (3)

provided improper integral exists.

3. Main Results

In this section, the oscillatory behavior of solutions for the system (1) under certain conditions are
established. Next we give the following lemmas that will be used in our further discussion.

Lemma 1. If U(t) ∈ P is a nonoscillatory solution for (1), then the component function x(t) is always
nonoscillatory.

Lemma 2. Suppose that (A1) and (A4) holds. Then there exists a t1 ≥ t0 such that either
(I) u(t) > 0, Dαu(t) > 0, Dα(a(t)Dαu(t)) > 0 for t ≥ t1.
or
(I I) u(t) > 0, Dαu(t) < 0, Dα(a(t)Dαu(t)) > 0 for t ≥ t1 holds.

Proof. Let u(t) be an eventually positive solution for (1) on [t0, ∞). Now, system (1) will be reduced to
the following inequality

Dα

(
1

q(t)
Dα

(
1

p(t)
Dαu(t)

))
+ l2l

′
m

′
r(t) f (u(δ(σ(t)))) ≤ 0, t ≥ t1, (4)

which implies,

Dα (b(t)Dα (a(t)Dαu(t))) + c(t) f (u(δ(σ(t)))) ≤ 0, t ≥ t1. (5)

From (5), we get Dα(b(t)Dα(a(t)Dαu(t))) ≤ 0 for t ≥ t0. Then b(t)Dα(a(t)Dαu(t)) is decreasing on
(t0, ∞). Thus the proof completes on using the Lemma 3.2 in [34].

The following notations are employed in the sequel.

(Aα)∗ := lim inf
t→∞

t
∞∫

t

sα−1 Aα(s)ds and (Bα)∗ := lim inf
t→∞

1
t

t∫
t0

sα+1 Aα(s)ds, (6)

where Aα(t) = k
2

c(t)
a(t)

δ(σ(t))−T
t (δ(σ(t)))α.

d := lim inf
t→∞

tw(t) and D := lim sup
t→∞

tw(t). (7)
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Theorem 1. Suppose that (A1)− (A4) hold. Assume also that

∞∫
t2

c(s)(s − T)δ(σ(s))ds = ∞, (8)

there exists a positive function ρ ∈ Cα([0, ∞);R+) such that

lim sup
t→∞

t∫
t0

(
sα−1ρ(s)Aα(s)− 1

4
(ρ

′
(s))2

ρ(s)
s1−αb(s)

)
ds = ∞. (9)

Then every solution of system (1) is oscillatory.

Proof. Suppose that (1) has a nonoscillatory solution (u(t), v(t), w(t)) on [t0, ∞). From Lemma 1, u(t)
is always nonoscillatory. Without loss of generality, we shall assume that u(t) > 0, u(δ(t)) > 0 and
u(δ(σ(t))) > 0 for t ≥ T ≥ t0, since similar arguments can be made for u(t) < 0 eventually. Suppose
that Case (I) of Lemma 2 holds for t ≥ t1. Define

w(t) = ρ(t)
b(t)Dα(a(t)Dαu(t))

a(t)Dαu(t)
, t ≥ t1. (10)

Thus w(t) > 0, differentiating α times with respect to t, using (5) and (A2), we have

Dαw(t) ≤ Dαρ(t)
ρ(t)

w(t)− kρ(t)c(t)
a(t)

u(δ(σ(t)))
Dαu(t)

− 1
ρ(t)b(t)

w2(t). (11)

Now, let z1(t, T) = (t− T), z2(t, T) = (t−T)2

2 and define U(t) := (t− T)t1−αu(t)− z2(t, T)Dαu(t).
Then U(T) = 0 and differentiating the above, we get

DαU(t) = t1−α

(
t1−αu(t) + (t − T)(1 − α)t−αu(t) + (t − T)t1−αu

′
(t)

− z
′
2(t, T)Dαu(t)− z2(t, T)(Dαu(t))

′
)

,

which implies

U
′
(t) ≥ t1−αu(t)− z2(t, T)(Dαu(t))

′
. (12)

By Taylor’s Theorem, we have

∫ t

T
s1−αu

′
(s)ds = z1(t, T)Dαu(T) +

∫ t

T
z1(t, s)(Dαu(s))

′
ds,

since Dα(a(t)Dαu(t)) is decreasing, we get

t1−αu(t) ≥ t1−αu(T) + z1(t, T)Dαu(T) + (Dαu(t))
′
∫ t

T
z1(t, s)ds.

Thus U
′
(t) > 0 on [T, ∞). From this we get U(t) > 0 on [T, ∞), which implies that

u(t)
Dαu(t)

>
z2(t, T)

(t − T)t1−α
=

t − T
2

t1−α, t ∈ [T, ∞). (13)
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Next, define V(t) := Dαu(t)− t(Dαu(t))
′
. In view of the fact that DαV(t) = −t2−α(Dαu(t))

′′
,

which implies V
′
(t) = −t2−α(Dαu(t))

′′
> 0 for t ∈ [T, ∞), therefore V(t) is strictly increasing on

[T, ∞).
We claim that there is a t1 ∈ [T, ∞) such that V(t) > 0 on [t1, ∞). Suppose not, V(t) < 0 on [t1, ∞).

Hence,

Dα

(
Dαu(t)

t

)
= − t1−α

t2 (t(Dαu(t))
′ − Dαu(t)),

which gives

(
Dαu(t)

t

)′

= − 1
t2 V(t) > 0, t ∈ [t1, ∞).

Choose t2 ∈ (t1, ∞), for t ≥ t2, δ(σ(t)) ≥ δ(σ(t2)). Since, Dαu(t)
t is strictly increasing,

Dαu(δ(σ(t)))
δ(σ(t))

≥ Dαu(δ(σ(t2)))

δ(σ(t2))
:= m > 0,

the Equation (13) implies that

u(δ(σ(t))) ≥ t − T
2

t1−αmδ(σ(t)). (14)

Now, integrating (5) from t2 to t, using (A2) and inequality in (14), we have

t∫
t2

(
(b(s)Dα(a(s)Dαu(s)))

′
+

km
2

c(s)(s − T)δ(σ(s))
)

ds ≤ 0.

Then

b(t2)Dα(a(t2)Dαu(t2)) ≥ km
2

t∫
t2

c(s)(s − T)δ(σ(s))ds,

which contradicts to (8). Hence V(t) > 0 on [t1, ∞). Accordingly,

t1−α

(
Dαu(t)

t

)′

= − t1−α

t2 (t(Dαu(t))
′ − Dαu(t)) = − t1−α

t2 V(t) < 0, t ∈ (t1, ∞),

which gives t(Dαu(t))
′
< Dαu(t). Then δ(σ(t)) ≤ δ(t) ≤ t,

Dαu(δ(σ(t)))
δ(σ(t))

≥ Dαu(t)
t

, (15)

since Dαu(t)
t is strictly increasing. Using (13) and (15) in (11), we get

Dαw(t) ≤ Dαρ(t)
ρ(t)

w(t)− kρ(t)c(t)
ta(t)

(δ(σ(t)))α(δ(σ(t))− T)
2

− 1
ρ(t)b(t)

w2(t). (16)

Therefore

Dαw(t) ≤ − kρ(t)c(t)
ta(t)

(δ(σ(t)))α(δ(σ(t))− T)
2

+
1
4

b(t)
(Dαρ(t))2

ρ(t)
,
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using (6) and (p6), we get

w
′
(t) ≤ −tα−1ρ(t)Aα(t) +

1
4
(ρ

′
(t))2

ρ(t)
t1−αb(t). (17)

Integrating,

t∫
t1

(
sα−1ρ(s)Aα(s)− 1

4
(ρ

′
(s))2

ρ(s)
s1−αb(s)

)
ds ≤ w(t1),

which contradicts the hypothesis (9).

We now derive various oscillatory criteria on using the earlier results and we can generalize the
Philos type kernel. Let us define a class of functions Ω. Consider

D0 = {(t, s) : t > s ≥ t0} , and D = {(t, s) : t ≥ s ≥ t0} .

The function H ∈ C(D,R) belongs to the class Ω, if

(T1) H(t, t) = 0 for t ≥ t0, and H(t, s) > 0 for (t, s) ∈ D0.

(T2) The nonpositive partial derivative ∂H
∂s exist on D0 such that h(t, s) = H(t, s) ρ

′
(s)

ρ(s) + ∂H
∂s (t, s).

Theorem 2. Assume that (A1)− (A4) hold. Further there exists ρ ∈ Cα([0, ∞);R+) such that

lim sup
t→∞

1
H(t, t1)

t∫
t1

(
H(t, s)sα−1ρ(s)Aα(s)− 1

4
ρ(s)b(s)
H(t, s)

s1−αh2(t, s)
)

ds = ∞. (18)

Then each solution of system (1) is oscillatory.

Proof. As we proceed in the proof of Theorem 1 and from (16), we have the inequality

w
′
(t) ≤ ρ

′
(t)

ρ(t)
w(t)− tα−1ρ(t)Aα(t)− tα−1

ρ(t)b(t)
w2(t). (19)

Integrating,

t∫
t1

H(t, s)sα−1ρ(s)Aα(s)ds

≤
t∫

t1

H(t, s)
ρ
′
(s)

ρ(s)
w(s)ds −

t∫
t1

H(t, s)w
′
(s)ds −

t∫
t1

H(t, s)
sα−1

ρ(s)b(s)
w2(s)ds,

≤ H(t, t1)w(t1) +

t∫
t1

(
H(t, s)

ρ
′
(s)

ρ(s)
+

∂H
∂s

(t, s)
)

w(s)ds −
t∫

t1

H(t, s)
sα−1

b(s)ρ(s)
w2(s)ds,

≤ H(t, t1)w(t1) +

t∫
t1

(
w(s)h(t, s)− H(t, s)

sα−1

ρ(s)b(s)
w2(s)

)
ds,
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≤ H(t, t1)w(t1) +

t∫
t1

1
4

ρ(s)b(s)
H(t, s)

s1−αh2(t, s)ds.

From this we conclude that

t∫
t1

(
H(t, s)sα−1ρ(s)Aα(s)− 1

4
ρ(s)b(s)
H(t, s)

s1−αh2(t, s)
)

ds ≤ H(t, t1)w(t1).

Since 0 < H(t, s) ≤ H(t, t1) for t > s > t1, we have 0 < H(t,s)
H(t,t1)

≤ 1, hence

1
H(t, t1)

t∫
t1

(
H(t, s)sα−1ρ(s)Aα(s)− 1

4
ρ(s)b(s)
H(t, s)

s1−αh2(t, s)
)

ds ≤ w(t1).

Letting t → ∞,

lim sup
t→∞

1
H(t, t1)

t∫
t1

(
H(t, s)sα−1ρ(s)Aα(s)− 1

4
ρ(s)b(s)
H(t, s)

s1−αh2(t, s)
)

ds ≤ w(t1).

Therefore assumption (18) is contradicted. Thus every solution of (1) oscillates.

We immediately obtain the following oscillation result for (1).

Theorem 3. Assume that (A1)–(A4) hold. Also assume that there exists a function ρ ∈ Cα([0, ∞);R+) such
that

lim sup
t→∞

1
H(t, t1)

t∫
t1

(
H(t, s)sα−1ρ(s)Aα(s)− 1

4
H(t, s)(ρ

′
(s))2

ρ(s)
s1−αb(s)

)
ds = ∞. (20)

Then every solution of system (1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 1, multiplying inequality (17) by H(t, s) and integrating,
we get

t∫
t1

(
H(t, s)sα−1ρ(s)Aα(s)− 1

4
H(t, s)(ρ

′
(s))2

ρ(s)
s1−αb(s)

)
ds ≤ −

t∫
t1

H(t, s)w
′
(s)ds ≤ H(t, t1)w(t1).

Taking limsup as t → ∞, and hence

lim sup
t→∞

1
H(t, t1)

t∫
t1

(
sα−1ρ(s)Aα(s)H(t, s)− 1

4
H(t, s)(ρ

′
(s))2

ρ(s)
s1−αb(s)

)
ds ≤ w(t1),

which contradicts the hypothesis in (20).

The following theorem is to be proved using the techniques employed in the previous theorems.
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Theorem 4. Suppose that the assumptions (A1)–(A4) and (8) hold. Further assume also that Case (I) of
Lemma 2 holds, then

(Aα)∗ ≤ d − tα−1 1
b(s)

d2, (21)

and

(Bα)∗ ≤ D − D2. (22)

Proof. Let u(t) be a nonoscillatory solution of (5) such that u(t) > 0, u(δ(t)) > 0 and
u(δ(σ(t))) > 0 for t ≥ T > t0, consider the case (I) of Lemma 2 holds, u(t) satisfies the inequality
Dα (b(t)Dα (a(t)Dαu(t))) ≤ 0, t ∈ [T, ∞). Define Riccati transformation

w(t) =
b(t)Dα(a(t)Dαu(t))

a(t)Dαu(t)
.

Thus w(t) > 0, differentiating α times with respect to t, using (5) and (A2), we have

Dαw(t) ≤ − kc(t)
a(t)

u(δ(σ(t)))
Dαu(t)

− 1
b(t)

w2(t).

By using (15), (13) and (6), we obtain the above inequality

w
′
(t) + tα−1 Aα(t) + tα−1 1

b(t)
w2(t) ≤ 0. (23)

Given that Aα(t) > 0 and w(t) > 0, which gives w
′
(t) ≤ 0 and

−b(t)(w
′
(t)t1−α/w2(t)) > 1.

which yields that

(
1

w(t)

)′

> tα−1 1
b(t)

.

Integrating the above inequality and denote tα−1
1

1
b(t1)

= M, we have

M(t − t1)w(t) < 1. (24)

which implies that

lim
t→∞

w(t) = 0, lim
t→∞

tw(t) = 0. (25)

From (9) and (24), 0 < d < 1 and 0 < D < 1. Even though if d = 0 and D = 0, there is nothing to
prove. Now, to claim (21). Integrating (23) from t to ∞ and use (25), we get

w(t) ≥
∞∫

t

sα−1 Aα(s)ds +
∞∫

t

sα−1 1
b(s)

w2(s)ds.
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Multiplying by t and taking liminf as t → ∞, by (25), d ≥ (Aα)∗. For given ε > 0, there exists a
t2 ≥ t1 as

d − ε < tw(t) < d + ε and t
∞∫

t

sα−1 Aα(s)ds ≥ (Aα)∗ − ε, t ≥ t2. (26)

Again from (26),

tw(t) ≥ t
∞∫
t

sα−1 Aα(s)ds + t
∞∫
t

sα−1 1
b(s)w2(s)ds

≥ t
∞∫
t

sα−1 Aα(s)ds + tα 1
b(t)

∞∫
t

(sw(s))2

s2 ds

≥ t
∞∫
t

sα−1 Aα(s)ds + tα 1
b(t) (d − ε)2

∞∫
t

1
s2 ds

= t
∞∫
t

sα−1 Aα(s)ds + tα−1 1
b(t) (d − ε)2.

(27)

Therefore from (26) and (27), d ≥ (Aα)∗ − ε + (d − ε)2. Then

d ≥ (Aα)∗ + tα−1 1
b(t)

d2,

since ε is arbitrarily small. Next to prove that (22). Multiply (23) by s2, integrating from t1 to t,
and integration by parts follows that

t∫
t1

sα+1 Aα(s)ds ≤ −
t∫

t1

s2w
′
(s)ds −

t∫
t1

sα+1 1
b(s)

w2(s)ds

≤ −t2w(t) + t2
1w(t1) + 2

t∫
t1

sw(s)ds −
t∫

t1

sα+1 1
b(s)

w2(s)ds,

implies

t2w(t) ≤ t2
1w(t1)−

t∫
t1

sα+1 Aα(s)ds +
t∫

t1

(
2sw(s)− sα+1 1

b(s)
w2(s)

)
ds. (28)

Thus, we obtain

tw(t) ≤ t2
1w(t1)

t − 1
t

t∫
t1

sα+1 Aα(s)ds + 1
t

t∫
t1

s1−αb(s)ds,

≤ t2
1w(t1)

t − 1
t

t∫
t1

sα+1 Aα(s)ds + 1
t t1−αb(t)

t∫
t1

ds.
(29)

By (A4), (29) imply that

tw(t) ≤ t2
1w(t1)

t
− 1

t

t∫
t1

sα+1 Aα(s)ds +
1
t
(t − t1).
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Thus

lim sup
t→∞

tw(t) ≤ 1 − lim inf
t→∞

1
t

t∫
t1

sα+1 Aα(s)ds.

Hence from (6), (7), D ≤ 1 − (Bα)∗. For any ε > 0, there exists a t2 ≥ t1 such that

D − ε < tw(t) < D + ε and
1
t

t∫
t0

sα+1 Aα(s)ds > (Bα)∗ − ε, t ≥ t2. (30)

Now, from (28) and (30) we get

D ≤ −(Bα)∗ + ε(D + ε)(2 − D + ε), t ≥ t2,

since ε is arbitrarily small, we have

(Bα)∗ ≤ D − D2,

which proves (22).

Lemma 3. Suppose that (A1)–(A4) and (8) hold. Also assume that Case (II) of Lemma 2 holds. If

∞∫
t2

ηα−1 1
a(η)

( ∞∫
η

∞∫
μ

sα−1c(s)dsdμ

)
dη = ∞. (31)

Then lim
t→∞

u(t) = 0.

Proof. We consider the Case (II) of Lemma 2, Dαu(t) < 0, Dα(a(t)Dαu(t)) > 0 for t ≥ t1. Since
u(t) is positive and decreasing, we have lim

t→∞
u(t) = d

′ ≥ 0. Suppose not, d
′
> 0. Given that

u(δ(σ(t))) ≤ δ(t) ≤ t, then u(δ(σ(t))) ≥ u(t) > d
′

for t ≥ t2 ≥ t1 sufficiently large, u(t) is decreasing.
Integrating (5) from t to ∞ and using u(δ(σ(t))) ≥ d

′
, we get

∫ ∞

t

(
b(s)Dα (a(s)Dαu(s))

)′

ds ≤ −
∫ ∞

t
ksα−1c(s)u(δ(σ(s)))ds ≤ −kd

′
∫ ∞

t
sα−1c(s)ds,

then,

b(t)Dα (a(t)Dαu(t)) ≥ kd
′
∫ ∞

t
sα−1c(s)ds.

By (A4), we get

(a(t)Dαu(t))
′ ≥ kd

′ 1
b(t)t1−α

∫ ∞

t
sα−1c(s)ds ≥ kd

′
∫ ∞

t
sα−1c(s)ds.

Again integrating, we obtain

−a(t)Dαu(t) ≥ kd
′
∫ ∞

t

∫ ∞

μ
sα−1c(s)dsdμ,
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this implies that,

−u
′
(t) ≥ kd

′
tα−1 1

a(t)

∫ ∞

t

∫ ∞

μ
sα−1c(s)dsdμ.

By integrating, once again it is get as

u(t2) ≥ kd
′
∫ ∞

t2

(
ηα−1 1

a(η)

∫ ∞

η

∫ ∞

μ
sα−1c(s)dsdμ

)
dη,

which contradicts to (31). Thus d
′
= 0 and hence lim

t→∞
u(t) = 0.

From Theorem 4, Nehari type oscillation criteria for (1).

Theorem 5. Assume that (A1)− (A4), (8) and (31) hold. If

lim inf
t→∞

1
t

t∫
t0

(
ksα+1 c(s)

a(s)
u(δ(σ(s)))− T

s
(u(δ(σ(s))))α

)
ds >

1
2

, (32)

then u(t) is oscillatory or satisfies u(t) = 0 as t → ∞.

4. Examples

In this section, we provide some examples in order to see the effect of the main results.

Example 1. Consider 1
2 -fractional delay differential system

D
1
2 (u(t)) =

1√
t
g(v(

t
2
))

D
1
2 (v(t)) = − 1√

t
h(w(t)), (33)

D
1
2 (w(t)) =

1√
t

f (u(
t
2
)), t ≥ t0,

where C1 = cos(ln 2), C2 = sin(ln 2), A1 = cos(ln 4), A2 = sin(ln 4).
Here α = 1

2 , p(t) = 1
a(t) =

1√
t
, q(t) = 1

b(t) =
1√

t
, r(t) = 1√

t
, f (u) = A1

√
(1 − u2)− A2u, g(v) = v and

h(w) = w.
It is easy to see that

Dαg(v) =
1√

t
(C1 + C2) ≥ l

′
> 0,

Dαh(w) =
1√

t
(C1 − C2) ≥ m

′
> 0,

f (u)/u = A1

√
1
u2 − 1 − A2 ≥ 0.2579 = k > 0,

since u2 < 1, σ(t) = δ(t) = t
2 and Dασ(t) =

√
t

2 ≥ l > 0, c(t) = C2
1−C2

2
4
√

t
, Aα(t) = 0.2579

16

t
4−T√

t
. Now it is

considered as,

∞∫
t2

c(s)(s − T)δ(σ(s))ds =
C2

1 − C2
2

4

∞∫
t2

(s − T)√
s

s
4

ds → ∞ as t → ∞.
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By taking ρ(t) = 16/k then ρ
′
(t) = 0. Consider

lim sup
t→∞

t∫
t1

(
sα−1ρ(s)Aα(s)− 1

4
(ρ

′
(s))2

ρ(s)
s1−αb(s)

)
ds

= lim sup
t→∞

t∫
t1

(
s−

1
2

16
k

k( s
4 − T)
16

1√
s

)
ds

= lim sup
t→∞

1
4

t∫
t1

(
s − 4T

s

)
ds → ∞ as t → ∞.

Since, each of the conditions are verified in Theorem 1, all solutions of (33) are oscillatory. Thus
(u(t), v(t), w(t)) = (sin(ln t), C1 cos(ln t)− C2 sin(ln t), C1 sin(ln t) + C2 cos(ln t)) is one such solution.

Note: The decreasing condition imposed on q(t) and r(t) is only a sufficient condition, however
it is not a necessary one. The following example ensures the oscillatory behavior of the system (34)
even though q(t) and r(t) is nondecreasing.

Example 2. Consider 1
3 -fractional following differential system

D
1
3 (u(t)) =

t
2
3

1 + 3
4 cos

5
3 (t)

g(v(t − 2π)),

D
1
3 (v(t)) = −t

2
3 w(t), (34)

D
1
3 (w(t)) =

t
2
3

1 + cos2(t)
f (u(t − 3π

2
)), t ≥ t0.

Here α = 1
3 , p(t) = 1

a(t) = t
2
3

1+ 3
4 cos

5
3 (t)

, q(t) = 1
b(t) = t

2
3 , r(t) = t

2
3

1+cos2(t) , f (u) = u(1 + u2), g(v) =

v(1 + 3
4 v

5
3 ) and h(w) = w. It is easy to see that Dαg(v) = v

1
3 + 2v2 ≥ 1 = l

′
> 0 such that y2 > 1, y

′
> 1

3 ,
Dαh(w) ≥ 1 = m

′
> 0, f (u)/u = 1 + u2 ≥ 1 = k > 0, σ(t) = t − 2π, δ(t) = t − 3π

2 and Dασ(t) = t
2
3 ≥

l such that t1 = l
2
3 , t ≥ t1, c(t) = l2 t

2
3

1+cos2(t) , Aα(t) = l2

2
1+ 3

4 cos
5
3 (t)

1+cos2(t)
t− 3π

2 −T
t (t − 3π

2 )
1
3 . Now consider,

∞∫
t2

c(s)(s − T)δ(σ(s))ds =
∞∫

t2

l2 s
2
3

1 + cos2(s)
(s − T)(s − 3π

2
)ds

≥ l2

2

∞∫
t2

s
2
3 (s − T)(s − 3π

2
)ds → ∞ as t → ∞.
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If we take ρ(t) = 1 then ρ
′
(t) = 0. Consider

lim sup
t→∞

t∫
t1

(
sα−1ρ(s)Aα(s)− 1

4
(ρ

′
(s))2

ρ(s)
s1−αb(s)

)
ds

= lim sup
t→∞

t∫
t1

(
s−

2
3 l2 s

2
3

1 + cos2(s)
1
2

1 + 3
4 cos

5
3 (s)

1 + cos2(s)
s − 3π

2 − T
s

(s − 3π

2
)

1
3

)
ds

≥ lim sup
t→∞

7l2

16

t∫
t1

(
(1 −

3π
2 − T

s
)(s − 3π

2
)

1
3

)
ds → ∞ as t → ∞.

Theorem 1 are satisfying the new conditions arriving at the solution for (34) is oscillatory and it is given
as (u(t), v(t), w(t)) = (sin t, cos t, sin t).

Example 3. Consider the 1
2 -fractional differential system

D
1
2 (u(t)) = e2tt

1
2 g(v(t − 1)),

D
1
2 (v(t)) = −e−2tt

1
2 w(t), (35)

D
1
2 (w(t)) = (et)

1
2 f (u(t − 1

2
)), t ≥ t0.

Here α = 1
2 , 1

a(t) = p(t) = e2tt
1
2 , 1

b(t) = q(t) = e−2tt
1
2 , r(t) = (et)

1
2 , g(v) = v, h(w) = w and

f (u) = u. Now it is easy to check that Dαg(v) = v
1
2 = e− t

2 = l
′
> 0, Dαh(w) = w

1
2 = e

t
2 = m

′
> 0,

f (u)/u = 1 = k > 0, σ(t) = t − 1, δ(t) = t − 1
2 and Dασ(t) = t

1
2 ≥ l such that t1 = l

1
2 for t ≥ t1,

c(t) = l2(et)
1
2 , Aα(t) = l2

2 e
1
2 e2t(t − 1

2 − T)(t − 1
2 )

1
2 . Now,

∞∫
t2

c(s)(s − T)δ(σ(s))ds =
∞∫

t2

l2(es)
1
2 (s − T)(s − 1

2
)ds = l2e

1
2

∞∫
t2

s
1
2 (s − T)(s − 1

2
)ds → ∞.

Taking ρ(t) = 1

t
7
2 e2t

then ρ
′
(t) = − t

7
2

2t7e2t (4t + 7). Consider

lim sup
t→∞

t∫
t1

(
sα−1ρ(s)Aα(s)− 1

4
(ρ

′
(s))2

ρ(s)
s1−αb(s)

)
ds

= lim sup
t→∞

t∫
t1

(
s−

1
2

l2e
1
2

s
7
2 e2s

1
2

e2s(s − 1
2
− T)(s − 1

2
)

1
2 − (4s + 7)2

4s9e4s e4ss
7
2

)
ds

≤ lim sup
t→∞

t∫
t1

(
l2e

1
2

2s
7
2

s − s2

4s
11
2

)
ds ≤ lim sup

t→∞

t∫
t1

(
l2e

1
2

2s
5
2
− 1

4s
7
2

)
ds < ∞.

Here further the condition (9) of the above Theorem 1 seems to be not satisfied, in view of the fact that (A4)

fails to hold, and hence the system (35) is not oscillatory. In fact, (u(t), v(t), w(t)) = (et, e−t, et) it is a solution
for (35), and nonoscillatory.
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Remark 1. The results obtained in this article further can be extended to a neutral system with forced term

Dα (u(t) + p(t)u(δ(t))) = a(t)h1 (v(τ(t))) ,

Dα (v(t)) = −b(t)h2 (w(t))) ,

Dα (w(t)) = c(t)h3 (u(σ(t))) + e(t), t ≥ t0,

for the cases ∫ ∞

t0

a(s)dαs < ∞,
∫ ∞

t0

b(s)dαs = ∞,

and ∫ ∞

t0

a(s)dαs < ∞,
∫ ∞

t0

b(s)dαs < ∞.

5. Conclusions

Through this article, we have derived some new oscillation results for a certain class of nonlinear
three-dimensional α-fractional differential systems by using the Riccati transformation and inequality
technique. This work extends and also improves some classical results in the literature [16,18,32] to the
α-fractional systems and studied the oscillation criteria. Further, the present results are essentially new
and, in order to illustrate the validity of the obtained results, we have provided three examples.
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Abstract: A class of function called sub-b-s-preinvex function is defined as a generalization of
s-convex and b-preinvex functions, and some of its basic properties are presented here. The sufficient
conditions of optimality for unconstrainded and inquality constrained programming are discussed
under the sub-b-s-preinvexity. Moreover, some new inequalities of the Hermite—Hadamard type for
differentiable sub-b-s-preinvex functions are presented. Examples of applications of these inequalities
are shown.
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1. Introduction

Convex functions play an important role in economics, management science, engineering, finance,
and optimization theory. Many interesting generalizations and extensions of classical convexity
have been used in optimization and mathematical inequalities. Generalized convex functions called
b-vex functions were introduced by Bector and Singh [1], and some of their basic properties have
been discussed. Choa et al. [2] investigated a new class of functions called sub-b-convex functions
and proved the sufficient conditions of optimality for both unconstrained and inequality-constrained
sub-b-convex programming. Hudzik and Maligranda [3] studied certain classes of functions introduced
by Orlicz [4], namely, the classes of s-convex functions. Meftah [5] introduced a new class of
non-negative functions called s-preinvex functions in the second sense with respect to η, for some
s ∈ (0, 1] . Jiagen and Tingsong Du [6] presented a class of generalized convex function has some
similar properties of sub-b-convex function and s-convex functions.

Ben-Isreal and Mond [7] defined preinvex functions, and, in [8], Weir and Mond studied how and
where preinvex functions could replace convex functions. Mohan and Neogy [9] presented certain
properties of preinvex functions. Suneja et al. [10] considered a class of function called b-preinvex
functions that are generalizations of preinvex and b-vex functions. A generalization of the b-vex
function, called semi-b-preinvex, was given by Long et al. [11]. Refinements of the mathematical
inequalities on convex and generalized convex functions have been investigated [12–20].

Motivated by earlier research works [6,12,21–23], the purpose of this article is to present a new
class of functions, called sub-b-s-preinvex functions, that can be reduced to sub-b-preinvex when
s = 1. Some of their properties are studied. Furthermore, a new class of sets, called sub-b-s-preinvex
sets, is defined. A new sub-b-s-preinvex programming is introduced, and the sufficient conditions
of optimality under this type of function is established. Moreover, some examples of applications
are given.

2. Preliminaries

Throughout the paper, the convention bellow will be followed:

Symmetry 2018, 10, 493; doi:10.3390/sym10100493 www.mdpi.com/journal/symmetry58
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Let Rn denote the n-dimensional Euclidean space, and let K be a non-empty convex subset in Rn.
In addition, let b(u1, u2, t) : K × K × [0, 1] −→ R and η : K × K −→ Rn be two fixed mappings.

The following definitions about b-vex, sub-b-convex, s-convex, sub-b-s-convex, and preinvex
functions that will be used throughout the paper are given:

Definition 1 ([1]). The function h : K −→ Rn is called

1. a b-vex function on K with respect to (w.r.t. in short) b if

h (tu1 + (1 − t)u2) ≤ tbh(u1) + (1 − tb)h(u2), ∀u1, u1 ∈ K, t ∈ [0, 1]

2. and a b-linear function on K w.r.t. b if

h (tu1 + (1 − t)u2) = tbh(u1) + (1 − tb)h(u2), ∀u1, u1 ∈ K, t ∈ [0, 1].

Definition 2 ([2]). The function h : K −→ Rn is called a sub-b-convex function on K w.r.t. b if

h (tu1 + (1 − t)u2) = th(u1) + (1 − t)h(u2) + b(u1, u2, t), ∀u1, u1 ∈ K, t ∈ [0, 1].

Definition 3 ([3]). The function h : K −→ Rn is called an s-convex function in the second sense if

h (tu1 + (1 − t)u2) = tsh(u1) + (1 − t)sh(u2), ∀u1, u1 ∈ K, t ∈ [0, 1], s ∈ (0, 1] .

Definition 4 ([6]). A function h : K −→ R is called a sub-b-s-convex function on a non-empty convex set
K ⊂ Rn w.r.t. b: K × K × [0, 1] −→ R if

h (tu1 + (1 − δ)u2) ≤ tsh(u1) + (1 − t)sh(u2) + b(u1, u2, t)

and ∀u1, u2 ∈ K, t ∈ [0, 1], s ∈ (0, 1] .

Recall [9] that, by definition, a set K ⊂ Rn is called an invex set w.r.t η if u2 + tη(u1, u2) ∈ K,
∀u1, u2 ∈ K and t ∈ [0, 1].

Ben-Israel and Mond [7] defined a class of functions called preinvex in the non-empty invex set
K ⊂ Rn w.r.t. η, as follows:

Definition 5. A function h : K −→ R is preinvex on K w.r.t. η if there exists an n-dimensional vector function
η such that

h (u2 + δη(u1, u2)) ≤ th(u1) + (1 − t)h(u2),

∀u1, u2 ∈ K, t ∈ [0, 1].

3. Sub-b-s-Preinvex Function and Their Properties

In this section, the concepts of sub-b-s-preinvex function and sub-b-s-preinvex set are given.
Furthermore, some of their properties are studied.

Definition 6. A function h : K −→ R is called a sub-b-s-preinvex function on a non-empty invex set K ⊂ Rn

w.r.t. η, b if

h (u2 + tη(u1, u2)) ≤ tsh(u1) + (1 − t)sh(u2) + b(u1, u2, t) (1)

where b : K × K × [0, 1] −→ R, ∀u1, u2 ∈ Kt ∈ [0, 1], s ∈ (0, 1] .
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Remark 7.

1. If η(u1, u2) = u1 − u2 in Equation (1), then sub-b-s-preinvex w.r.t. η, b becomes a sub-b-s-convex
function. Moreover, if s = 1, then Equation (1) becomes a sub-b-convex function.

2. When η(u1, u2) = u1 − u2 and b(u, u, t) ≤ 0 in Equation (1), then the sub-b-s-preinvex function becomes
a convex function.

Theorem 8. If h1, h2 : K −→ R are sub-b-s-preinvex functions w.r.t. η,b, then h1 + h2 and βh1(β ≥ 0) are
also sub-b-s-preinvex functions w.r.t. η,b.

Corollary 9. If hk : K −→ R, where k = 1, 2, · · · , n are sub-b-s-preinvex functions w.r.t. η,bk, then the
function which is H = ∑n

k=1 akhk,ak ≥ 0 (k = 1, 2, · · · , n) is also sub-b-s-preinvex function w.r.t. η,
b where b = ∑n

k=1 akbk.

Proposition 10. If hk : K −→ R, where k = 1, 2, · · · , n are sub-b-s-preinvex functions w.r.t. η,bk, then the
function which is H = max hk,k = 1, 2, · · · , n is also a sub-b-s-preinvex function w.r.t. η,b, where b = max bk.

Theorem 11. Let h1 : K −→ R be a sub-b-s-preinvex function w.r.t. η,b1 and h2 : R −→ R be an increasing
function. Then h1oh2 is a sub-b-s-preinvex function w.r.t.η, b where b = h2ob1 if h2 satisfies the following
conditions:

1. h2 (βu1) = βh2(u1), ∀u1 ∈ R, β ≥ 0;
2. h2 (u1 + u2) = h2(u1) + h2(u2), , ∀u1, u2 ∈ R, β ≥ 0.

Proof.

(h2oh1) (u2 + δη(u1, u2)) = h2 (h1 (u2 + tη(u1, u2)))

≤ h2 (tsh1(u1) + (1 − t)sh1(u2) + b1(u1, u2, t))

= tsh2 (h1(u1)) + (1 − t)sh2 (h1(u2)) + h2 (b1(u1, u2, t))

= ts (h2oh1) (u1) + (1 − t)s (h2oh1) (u2) + b(u1, u2, t),

which means that h2oh1 is a sub-b-s-preinvex function w.r.t.η, b.

We introduce a definition of a sub-b-s-preinvex set w.r.t.η, b as follows.

Definition 12. A set K ⊆ Rn+1 is called a sub-b-s-preinvex set w.r.t.η, b if

(u2 + tη(u1, u2), tsβ1 + (1 − t)sβ2 + b(u1, u2, t)) ∈ K.

∀(u1, β1), (u2, β2) ∈ K, u1, u2 ∈ Rn, t ∈ [0, 1], s ∈ (0, 1] and b : Rn ×Rn × [0, 1] −→ R.

The epigraph of the sub-b-s-preinvex function h : k −→ R can be given as

G(h) = {(u, β) : u ∈ K, β ∈ R, h(u) ≤ β} .

Now, we are going to investigate characterizations of the sub-b-s-preinvex function in terms of
their epigraph G(h), and we start with sufficient and necessary conditions for h to be a sub-b-s-preinvex
function w.r.t.η,b.

Theorem 13. h : k −→ R is a sub-b-s-preinvex function w.r.t.η, b iff its epigraph is also a sub-b-s-preinvex set
w.r.t.η, b.
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Proof. Let h be a sub-b-s-preinvex and let (u1, β1), (u2, β2) ∈ G(h). Then, by using the hypothesis,
we have h(u1) ≤ β1 and h(u2) ≤ β2.

Moreover,

h (u2 + tη(u1, u2)) ≤ tsh(u1) + (1 − t)sh(u2) + b(u1, u2, t)

≤ tsβ1 + (1 − t)sβ2 + b(u1, u2, t). (2)

Hence,
(u2 + tη(u1, u2), β1 + (1 − t)sβ2 + b(u1, u2, t)) ∈ G(h).

Therefore, G(h) is sub-b-s-preinvex set w.r.t.η, b.
Now, assume that G(h) is a sub-b-s-preinvex set w.r.t.η, b. Then

(u1, h(u1)), (u2, h(u2)) ∈ G(h),

where u1, u2 ∈ K.
(u2 + tη(u1, u2), tsh(u1) + (1 − t)sh(u2) + b(u1, u2, δ)) ∈ G(h), which means that

h (u2 + tη(u1, u2)) ≤ tsh(u1) + (1 − t)sh(u2) + b(u1, u2, t).

Then h is sub-b-s-preinvex function w.r.t.η, b.

Proposition 14. Assume that Ki is a family of is sub-b-s-preinvex sets w.r.t.η, b. Then ∩i∈IKi is also a
sub-b-s-preinvex set w.r.t.η, b.

Proof. Consider (u1, β1), (u2, β2) ∈ ∩i∈IKi. Then we have (u1, β1), (u2, β2) ∈ Ki, ∀i ∈ I

(u2 + tη(u1, u2), β1 + (1 − t)sβ2 + b(u1, u2, t)) ∈ Ki, ∀i ∈ I.

⇒
(u2 + tη(u1, u2), β1 + (1 − t)sβ2 + b(u1, u2, t)) ∈ ∩i∈IKi.

Hence, ∩i∈IKi is a sub-b-s-preinvex set.

According to Theorem 13 and Proposition 14, the following proposition holds:

Proposition 15. Let hi be a sub-b-s-preinvex function w.r.t.η, b. Then a function H = supi∈I hi is also a
sub-b-s-preinvex function w.r.t.η, b.

Theorem 16. Let h : k −→ R be a non-negative differentiable sub-b-s-preinvex function w.r.t.η, b. Then

1. dhu2 η(u1, u2) ≤ ts−1 (h(u1) + h(u2)) + limt−→0+
b(u1,u2,t)

t ;

2. dhu2 η(u1, u2) ≤ ts−1 (h(u1)− h(u2)) +
h(u2)

t + limt−→0+
b(u1,u2,t)

t .

Proof.

1. By using the hypothesis, we can write

h (u2 + tη(u1, u2)) = h(u2) + tdhu2 η(u1, u2) + O(t).

Additionally,
h (u2 + tη(u1, u2)) ≤ tsh(u1) + (1 − t)sh(u2) + b(u1, u2, t).
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Furthermore,

h (u2 + tη(u1, u2)) ≤ tsh(u1) + (1 − t)sh(u2) + b(u1, u2, t)

≤ tsh(u1) + (1 + ts)h(u2) + b(u1, u2, t).

Then
h(u2) + tdhu2 η(u1, u2) + O(t) ≤ tsh(u1) + (1 + ts)h(u2) + b(u1, u2, t)

by taking limδ−→0+
b(u1,u2,t)

t , which is the maximum of b(u1,u2,t)
t − O(t)

t . The first result is thus
obtained.

2. Similarly,

h(u2) + tdhu2 η(u1, u2) + O(t)

≤ tsh(u1) + (1 + ts)h(u2) + b(u1, u2, t)

= tsh(u1) + (1 + ts)h(u2)− tsh(u2) + tsh(u2) + b(u1, u2, t)

= ts (h(u1)− h(u2)) + b(u1, u2, t) + ((1 − t)s + ts) h(u2).

However, we know that (1 − t)s + δs, ∀t ∈ [0, 1], and s ∈ (0, 1] and since h is non-negative
function; hence,

h(u2) + δhu2 η(u1, u2) + O(t) ≤ ts (h(u1)− h(u2)) + 2h(u2) + b(u1, u2, t).

Then, by dividing the last inequality by t and taking limt−→0+ , we obtain the second part of
the theorem.

Theorem 17. Let h : k −→ R be a negative differentiable sub-b-s-preinvex function w.r.t.η, b. Then

dhu2 η(u1, u2) ≤ ts−1 (h(u1)− h(u2)) + lim
t−→0+

b(u1, u2, t)
t

.

Proof. We obtain the result by using the hypotheses, since

dhu2 η(u1, u2) ≤ ts−1 (h(u1)− h(u2)) +
b(u1, u2, t)

t
− O(t)

t
.

Then, by taking limt−→0+
b(u1,u2,t)

t , which is the maximum of b(u1,u2,t)
t − O(t)

t , we obtain the result.

Corollary 18. Assume that h : k −→ R is a differentiable sub-b-s-preinvex function w.r.t.η, b, and

1. h is a non-negative function, then

d (hu2 − hu1) η(u1, u2) ≤ h(u1) + h(u2)

t
+ lim

t−→0+

b(u1, u2, t) + b(u2, u1, t)
t

,

2. h is a negative function, then

d (hu2 − hu1) η(u1, u2) ≤ lim
t−→0+

b(u1, u2, t)− b(u2, u1, t)
t

.

Proof.
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1. Since h is a non-negative function and by using Theorem 16,

dhu2 η(u1, u2) ≤ ts−1 (h(u1)− h(u2)) +
h(u2)

t
+ lim

t−→0+

b(u1, u2, t)
t

.

Additionally,

dhu1 η(u1, u2) ≤ ts−1 (h(u2)− h(u1)) +
h(u1)

t
+ lim

t−→0+

b(u2, u1, t)
t

.

Thus,

d (hu2 − hu1) η(u1, u2) ≤ h(u1) + h(u2)

t
+ lim

t−→0+

b(u1, u2, t) + b(u2, u1, t)
t

.

2. Since h is a negative function, and according to Theorem 17, the second result can be obtained
directly.

4. Hermite–Hadamard-Type Integral Inequalities for Differentiable Sub-B-S-Preinvex Functions

There are a great deal of inequalities related to the class of convex functions. For example,
Hermite–Hadamard’s inequality is one of the well-known results in the literature, which can be stated
as follows.

Theorem 19. (Hermite–Hadamard’s inequality) Let h be a convex function on [u1, u2] with u1 < u2. If h is an
integral on [u1, u2], then

h
(

u1 + u2

2

)
≤ 1

u2 − u1

∫ u2

u1

h(x)dx ≤ h(u1) + h(u2)

2
. (3)

For more properties about the above inequality, we refer the interested readers to [24,25].
Dragomir and Fitzpatrick [26] demonstrated a variation of Hadamard’s inequality, which holds
for s-convex functions in the second sense.

Theorem 20. Theorem Let h : R+ −→ R+ be an s-convex function in the second sense s ∈ (0, 1) and
u1, u2 ∈ R+, u1 < u2. If h ∈ L1([u1, u2]), then

2s−1h
(

u1 + u2

2

)
≤ 1

u2 − u1

∫ u2

u1

h(x)dx ≤ h(u1) + h(u2)

s + 1
.

Now, we will present new inequalities of Hermite–Hadamard for functions whose derivatives in
absolute value are sub-b-s-preinvex functions. Our results generalize those results presented in [27]
concerning Hermite–Hadamard type inequalities for preinvex functions.

Lemma 21 ([27]). Assume that K ⊂ R is an open invex subset w.r.tη and u1, u2 ∈ K with u1 < u1 + η(u2, u1).
Let h : K −→ R be a differentiable mapping on K such that h′ ∈ L ([u1, u1 + η(u2, u1)]). Then the following
equality holds:

− h(u1) + h(u1 + η(u2, u1))

2
+

1
η(u2, u1)

∫ u1+η(u2,u1)

u1

h(x)dx

=
η(u2, u1)

2

∫ 1

0
(1 − 2t)h′ (u1 + tη(u2, u1)) dt.
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Theorem 22. Assume that K ⊂ [0, c], c > 0 is an open invex subset w.r.tη and u1, u2 ∈ K with
u1 < u1 + η(u2, u1). Let h : K −→ R be a differentiable mapping on K such that h′ ∈ L ([u1, u1 + η(u2, u1)]).
If |h′| is a sub-b-s-preinvex function on K, then we have the following inequality:∣∣∣∣ h(u1) + h(u1 + η(u2, u1))

2
− 1

η(u2, u1)

∫ u1+η(u2,u1)

u1

h(x)dx
∣∣∣∣

≤ η(u2, u1)

2

[
(2s+1 − 1)(s + 1) + (1 − 2s)(s + 2)

2s(s + 1)(s + 2)
[∣∣h′(u2)

∣∣+ ∣∣h′(u1)
∣∣]+ 1

2
|b(u1, u2, t)|

]
. (4)

Proof. From Lemma 21, we have∣∣∣∣h(u1) + h(u1 + η(u2, u1))

2
− 1

η(u2, u1)

∫ u1+η(u2,u1)

a
h(x)dx

∣∣∣∣
≤ η(u2, u1)

2

∫ 1

0
|1 − 2t| ∣∣h′(u1 + tη(u2, u1))

∣∣ dt. (5)

Since |h′| is a sub-b-s-preinvex on K, for every u1, u2 ∈ K, ∈ (0, 1] and s ∈ (0, 1), we obtain∣∣h′(u1 + tη(u2, u1))
∣∣ ≤ ts|h′(u2)|+ (1 − t)s|h′(u1)|+ |b(u1, u2, t)|.

Hence, we have∣∣∣∣h(u1) + h(u1 + η(u1, u2))

2
− 1

η(u1, u2)

∫ u1+η(u1,u2)

a
h(x)dx

∣∣∣∣
≤ η(u1, u2)

2

[
|h′(u2)|

∫ 1

0
|1 − 2t|tsdt + |h′(u1)|

∫ 1

0
|1 − 2t|(1 − t)sdt + |b(u1, u2, t)|

∫ 1

0
|1 − 2t|dt

]
. (6)

since ∫ 1

0
1 − 2t|(1 − t)sdt =

∫ 1

0
1 − 2t|tsdt

=
∫ 1

2

0
(1 − 2t)tsdt −

∫ 1

1
2

(1 − 2t)tsdt

=
(2s+1 − 1)(s + 1) + (1 − 2s)(s + 2)

2s(s + 1)(s + 2)
.

Additionally,

∫ 1

0
|1 − 2t|dt =

1
2

.

Therefore, the proof of Theorem 22 is complete.

Corollary 23. If η(u2, u1) = u2 − u1 in Theorem 22, then Inequality 4 reduces to the following inequality:∣∣∣∣ h(u1) + h(u2)

2
− 1

u2 − u1

∫ u2

u1

h(x)dx
∣∣∣∣

≤ u2 − u1

2

[
(2s+1 − 1)(s + 1) + (1 − 2s)(s + 2)

2s(s + 1)(s + 2)
[∣∣h′(u2)

∣∣+ ∣∣h′(u1)
∣∣]+ 1

2
|b(u1, u2, t)|

]
. (7)
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Theorem 24. Assume that K ⊂ [0, c], c > 0 is an open invex subset w.r.tη and u1, u2 ∈ K with
u1 < u1 + η(u2, u1). Let h : K −→ R be a differentiable mapping on K such that h′ ∈ L ([u1, u1 + η(u2, u1)]).
If |h′|q is a sub-b-s-preinvex function on K for q > 1, then we have the following inequality:∣∣∣∣h(u1) + h(u1 + η(u2, u1))

2
− 1

η(u2, u1)

∫ u1+η(u2,u1)

u1

h(x)dx
∣∣∣∣

≤ η(u2, u1)

2(p + 1)
1
p

[ |h′(u2)|q + |h′(u1)|q
s + 1

+ |b(u1, u2, t)|
] 1

q

(8)

where 1
p + 1

q = 1.

Proof. From Lemma 21 and using the Hölder’s integral inequality, we have∣∣∣∣h(u1) + h(u1 + η(u2, u1))

2
− 1

η(u2, u1)

∫ u1+η(u2,u1)

a
h(x)dx

∣∣∣∣
≤ η(u2, u1)

2

(∫ 1

0
|1 − 2t|p dt

) 1
p
(∫ 1

0

∣∣∣h́(u1 + tη(u2, u1))
∣∣∣q dt

) 1
q

. (9)

Since |h′|q is a sub-b-s-preinvex on K, for every u1, u2 ∈ K, ∈ (0, 1] and s ∈ (0, 1), we obtain∣∣h′(u1 + tη(u2, u1))
∣∣q ≤ ts|h′(u2)|q + (1 − t)s|h′(u1)|q + |b(u1, u2, t)|.

Hence,∫ 1

0
|h′(u1 + tη(u2, u1))|qdt ≤ [|h′(u2)|q + |h′(u1)|q

] ∫ 1

0
tsdt + |b(u1, u2, t)|

=
1

s + 1
[|h′(u2)|q + |h′(u1)|q

]
+ |b(u1, u2, t)|.

Moreover, via basic calculus, we obtain
∫ 1

0 |1 − 2t|pdt = 1
p+1 . Thus, the proof of Theorem 24

is complete.

Corollary 25. If η(u2, u1) = u2 − u1 in Theorem 24, then Inequality 8 reduces to the following inequality:∣∣∣∣ h(u1) + h(u2)

2
− 1

u2 − u1

∫ u2

u1

h(x)dx
∣∣∣∣

≤ u2 − u1

2(p + 1)
1
p

⎡⎢⎣
∣∣∣h́(u2)

∣∣∣q + ∣∣∣h́(u1)
∣∣∣q

s + 1
+ |b(u1, u2, t)|

⎤⎥⎦
1
q

(10)

where 1
p + 1

q = 1.

5. Application

In this section, we apply our results to the non-linear programming problem and to special means.
Let us consider the unconstraint problem (P)

(P) : min {h(u), u ∈ K} . (11)
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Theorem 26. Consider that h : k −→ R is a non-negative differentiable sub-b-s-preinvex function w.r.t.η, b.
If u∗ ∈ K and

dhu∗η(u, u∗) ≥ h(u∗)
t

+ lim
t−→0+

b(u, u∗, t)
t

, ∀u ∈ K, t ∈ [0, 1], s ∈ (0, 1] , (12)

then u∗ is the optimal solution to (P) with respect to h on K.

Proof. By using the hypothesis and the second pair of Theorem 16, we obtain

dhu∗η(u, u∗)− h(u∗)
t

− lim
t−→0+

b(u, u∗, t)
t

≤ ts−1 (h(u)− h(u∗)) ,

∀t ∈ [0, 1], s ∈ (0, 1] , and since

dhu∗η(u, u∗) ≥ h(u∗)
t

+ lim
t−→0+

b(u, u∗, t)
t

.

That is h(u)− h(u∗) ≥ 0, which means that u∗ is the optimal solution.

Example 27. Let us take the following function h : R+ −→ R such that h(u) = 2us, where s ∈ (0, 1] .
Additionally, let b(u1, u2, t) = tu2

1 + 4tu2
2 and

η(u1, u2) =

{
−u2; u1 = u2

1 − u2; u1 �=2 .

Since b(u1, u2, t) ≥ 0, ∀t ∈ (0, 1] , it is easy to say that h is a sub-b-s-preinvex function. Additionally,
h(u) is a non-negative differentiable, and limt−→0+

b(u1,u2,t)
t exists for every u1, u2 ∈ R+ and t ∈ (0, 1] . Thus,

the following unconstraint sub-b-s-preinvex programming can be given as

(P) : min
{

h(u), u ∈ R
+
}

.

dhu∗η(u, u∗) = 2s(u∗)s−1η(u, u∗), h(u∗)
t

=
2(u∗)s

t
and

lim
t−→0+

b(u, u∗, t)
t

= u2 + 4(u∗)2.

Thus, we see that u∗ = 0 and

dhu∗η(u, u∗) ≥ h(u∗)
t

+ lim
t−→0+

b(u, u∗, t)
t

holds ∀u ∈ K, t ∈ (0, 1] , s ∈ (0, 1). Hence, according to Theorem 26, the minimum value of h(u) at zero.

Corollary 28. Assume that h : K −→ R is a strictly non-negative differentiable sub-b-s-preinvex function
w.r.t. η, b. If u∗ ∈ K and satisfies the condition of Equation (12), then u∗ is the unique optimal solution of h
on K.

Proof. Since h is a strictly non-negative differentiable sub-b-s-preinvex function w.r.t.η, b and by using
Theorem 16, we obtain

dhu2 η(u1, u2) < ts−1 (h(u1)− h(u2)) +
h(u2)

t
+ lim

t−→0+

b(u1, u2, t)
t

. (13)
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Let v1, v2 ∈ K where v1 �= v2 be optimal solutions of (P). Then h(v1) = h(v2), and Equation (13)
yields that

dhv2 η(v1, v2)− h(v2)

t
− lim

t−→0+

b(v1, v2, t)
t

< ts−1 (h(v1)− h(v2)) .

By using Equation (12), we have ts−1 (h(v1)− h(v2)) > 0, but h(v1) = h(v2). Thus, v1 = v2 = u∗.
It follows that u∗ is the unique optimal optimal solution of h on K.

Now, grant nonlinear programming as follows:

(P∗) : min {h(u) : u ∈ R
n, fi(u) ≤ 0, i ∈ I, whereI = 1, 2, · · · , m} .

Fe is the feasible set of (P∗), which is given as

S f = {u ∈ R
n : fi(u) ≤ 0, i ∈ I} .

In addition, for u∗ ∈ S f , we define N(u∗) = {i : fi(u∗) = 0, i ∈ I}.

Theorem 29 (Karush-Kuhn-Tucker Sufficient Conditions). Assume that h : Rn −→ R is a non-negative
differentiable sub-b-s-preinvex function w.r.t.η, b and fi : Rn −→ R are differentiable sub-b-s-preinvex
functions w.r.t.η, bi, i ∈ I. Additionally, let

dhu∗η(u, u∗) + ∑
i∈I

vid fiu∗η(u, u∗) = 0, u∗ ∈ S f , vi ≥ 0, i ∈ I. (14)

If

h(u∗)
t

+ lim
t−→0+

b(u, u∗, t)
t

≤ − ∑
i=1

vilimt−→0+
b(u, u∗, t)

t
, (15)

then u∗ is an optimal solution of (P∗).

Proof. For any u ∈ S f , then we obtain fi(u) ≤ 0 = fi(u∗), ∀u ∈ S f . Therefore, from the
sub-b-s-preinvexity of fi and Theorem 17, we get

d fiu∗η(u, u∗)− lim
t−→0+

b(u, u∗, t)
t

≤ ts−1 ( fi(u)− fi(u∗)) ≤ 0. (16)

From Equation (14), we obtain

dhu∗η(u, u∗) = −∑
i∈I

vid fiu∗η(u, u∗)

= − ∑
i∈N(u∗)

vid fiu∗η(u, u∗). (17)

Equations (15) and (17) yields that

dhu∗η(u, u∗)− h(u∗)
t

− lim
t−→0+

b(u, u∗, t)
t

≥ − ∑
i∈N(u∗)

vi

(
d fiu∗η(u, u∗)− lim

t−→0+

b(u, u∗, t)
t

)
. (18)

Here, we use Equations (16) and (18) to obtain

dhu∗η(u, u∗) ≥ h(u∗)
t

+ lim
t−→0+

b(u, u∗, t)
t
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and according to Theorem 26, one has

h(u) ≥ h(u∗), ∀u ∈ S f .

Hence, u∗ is an optimal solution of (P∗).

Now, some applications to special means are given. The following result is established in [28].
Assume that H : I1 −→ I2 ⊂ [0, ∞) is a non-negative convex function on I1. Then Hs(x) is

s-convex on I1, where s ∈ (0, 1). For arbitrary positive real numbers u1, u2(u1 �= u2), the following
special means are given:

1. The arithmetic mean:
A = A(u1, u2) =

u1 + u2

2
, u1, u2 ≥ 0.

2. The logarithmic mean:

L = L(u1, u2) =

{
u1 i f u1 = u2,

u2−u1
ln u1,ln u2

i f u1 �= u2,
.u1, u2 > 0

3. The P-logarithmic mean:

Lp = Lp(u1, u2) =

⎧⎪⎨⎪⎩
u1 i f u1 = u2,[

up+1
2 −up+1

1
(p+1)(u2−u1)

] 1
p

i f u1 �= u2,
p ∈ R{−1, 0}, u1, u2 > 0.

It is well known that Lp is monotonic non-decreasing over p ∈ R with L−1 = L and L0 = 1.
In particular, we have the following inequality

L ≤ A.

Now, some new inequalities are derived for the above means
Let h : [u1, u2] −→ R, 0 < u1 < u2, h(x) = xs and s ∈ (0, 1] , Then

1
u2 − u1

∫ u2

u1

h(x)dx = Ls
s(u1, u2)

h(u1) + h(u2)

2
= A(us

1, us
2).

1. From Corollary 23,

|A(us
1, us

2)− Ls
s(u1, u2)|

≤ u2 − u1

2

[
(2s+1 − 1)(s + 1) + (1 − 2s)(s + 2)

2s(s + 1)(s + 2)

[∣∣∣h́(u2)
∣∣∣+ ∣∣∣h́(u1)

∣∣∣]+ 1
2
|b(u1, u2, t)|

]
. (19)

2. From Corollary 25,

|A(us
1, us

2)− Ls
s(u1, u2)| ≤ u2 − u1

2(p + 1)
1
p

⎡⎢⎣
∣∣∣h́(u2)

∣∣∣q + ∣∣∣h́(u1)
∣∣∣q

s + 1
+ |b(u1, u2, t)|

⎤⎥⎦
1
q

. (20)

If s = 1, then
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|A(u1, u2)− L(u1, u2)| ≤ u2 − u1

4

[
1
2
[|h′(u2)|+ |h′(u1)|] + |b(u1, u2, t)|

]
|A(u1, u2)− L(u1, u2)| ≤ u2 − u1

2(p + 1)
1
p

[
1
2
[|h′(u2)|q + |h′(u1)|q] + |b(u1, u2, t)|

]
where q > 1 and 1

p + 1
q = 1.

6. Conclusions

In this paper, we introduce a new class of functions and sets called sub-b-s-preinvex functions
and sub-b-s-preinvex sets and discuss some of their properties. In addition, the optimality conditions
for a non-linear programming problem are also established. Hermite–Hadamard-type integral
inequalities for differentiable sub-b-s-preinvex functions have been studied. Relationships between
these inequalities and the classical inequalities have been established. The ideas and techniques of this
paper may motivate further research, for example, in manifolds.
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Abstract: We herein discuss the following elliptic equations: M
( ∫

RN

∫
RN

|u(x)−u(y)|p
|x−y|N+ps dx dy

)
(−Δ)s

pu+

V(x)|u|p−2u = λ f (x, u) inRN, where (−Δ)s
p is the fractional p-Laplacian defined by (−Δ)s

pu(x) =

2 limε↘0
∫
RN\Bε(x)

|u(x)−u(y)|p−2(u(x)−u(y))
|x−y|N+ps dy, x ∈ RN . Here, Bε(x) := {y ∈ RN : |x − y| < ε},

V : RN → (0, ∞) is a continuous function and f : RN × R → R is the Carathéodory function.
Furthermore, M : R+

0 → R+ is a Kirchhoff-type function. This study has two aims. One is to study
the existence of infinitely many large energy solutions for the above problem via the variational
methods. In addition, a major point is to obtain the multiplicity results of the weak solutions for our
problem under various assumptions on the Kirchhoff function M and the nonlinear term f . The other
is to prove the existence of small energy solutions for our problem, in that the sequence of solutions
converges to 0 in the L∞-norm.

Keywords: fractional p-Laplacian; Kirchhoff-type equations; fountain theorem; modified functional
methods; Moser iteration method

1. Introduction

Significant attention has been focused on the study of fractional-type operators in view of
the mathematical theory to some phenomena: the social sciences, quantum mechanics, continuum
mechanics, phase transition phenomena, game theory, and Levy processes [1–5].

Herein, we discuss the results regarding the existence and multiplicity of nontrivial weak solutions
for Kirchhoff-type equations

M
( ∫

RN

∫
RN

|u(x)− u(y)|p
|x − y|N+ps dx dy

)
(−Δ)s

pu + V(x)|u|p−2u = λ f (x, u) in R
N , (1)

where (−Δ)s
p is the fractional p-Laplacian operator defined by

(−Δ)s
pu(x) = 2 lim

ε↘0

∫
RN\Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))
|x − y|N+ps dy

for x ∈ RN , with 0 < s < 1 < p < ∞, ps < N, Bε(x) := {y ∈ RN : |x − y| < ε}, V : RN → (0, ∞) is a
continuous function and f : RN ×R → R is the Carathéodory function. Furthermore, M ∈ C(R+

0 ,R+)

is a Kirchhoff-type function.

Symmetry 2018, 10, 436; doi:10.3390/sym10100436 www.mdpi.com/journal/symmetry71
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Considering the effects of the change in the length of the stings that occurred by transverse
vibrations, Kirchhoff in [6] originally proposed the following equation:

ρ
∂2u
∂t2 −

(ρ0

h
+

E
2L

∫ L

0

∣∣∣∣∂u
∂x

∣∣∣∣dx
)∂2u

∂x2 = 0,

which is the generalization of the classical D’Alembert’s wave equation.
Subsequently, most researchers have extensively studied Kirchhoff-type equations associated with

the fractional p-Laplacian problems in various ways; see [7–14] and the references therein. The critical
point theory, originally introduced in [15] is critical in obtaining the solutions to elliptic equations of
the variational type. It is considered that one of the crucial aspects for assuring the boundedness of the
Palais–Smale sequence of the Euler–Lagrange functional, which is important to apply the critical point
theory, is the Ambrosetti and Rabinowitz condition ((AR)-condition, briefly) in [15].

(AR) There exist positive constants C and ζ such that ζ > p and

0 < ζF (x, t) ≤ f (x, t)t for x ∈ Ω and |t| ≥ C,

where F (x, t) =
∫ t

0 f (x, s) ds and Ω is a bounded domain in RN .

Most results for our problem (1) are to establish the existence of nontrivial solutions
under the (AR)-condition; see [7,10,14,16] for bounded domains and [11] for a whole space RN .
The (AR)-condition is natural and important to guarantee the boundedness of the Palais–Smale
sequence; this condition, however, is too restrictive and gets rid of many nonlinearities. Many authors
have attempted to eliminate the (AR)-condition for elliptic equations associated with the p-Laplacian;
see [17–20] and also see [21–25] for the superlinear problems of the fractional Laplacian type.

In this regard, we show that problem (1) permits the existence of multiple solutions under
various conditions weaker than the (AR)-condition. In particular, following ([17], Remark 1.8), there
exist many examples that do not fulfill the condition of the nonlinear term f in [18,19,21,22,24–26].
Thus, motivated by these examples, the first aim of this paper is to demonstrate the existence of
infinitely many large solutions for the problem above using the fountain theorem. One of novelties
of this study is to obtain the multiplicity results for problem (1) when f contains mild assumptions
different from those of [18,19,21,22,24–26] (see Theorem 1). The other is to demonstrate this result with
sufficient conditions for the modified Kirchhoff function M, and the assumption on f similar to that in
[18,26] (see Theorem 2). As far as we are aware, none have reported such multiplicity results for our
problem under the assumptions given in Theorem 2 of Section 2.

The second aim is to investigate that the existence of small energy solutions for problem (1),
whose L∞-norms converge to zero, depends only on the local behavior and assumptions on f (x, t),
and only sufficiently small t are required. Wang [27] initially investigated that nonlinear boundary
value problems {

−Δu = λ |u|q−1 u + f (x, u), in Ω,

u = 0, on RN\Ω,

admit a sequence of infinitely many small solutions where 0 < q < 1, and the nonlinear term f
was considered as a perturbation term. He employed global variational formulations and cut off
techniques to obtain this existence result that is a local phenomenon and is forced by the sublinear
term. Utilizing the argument in [27], Guo [28] showed that the p-Laplacian equations with indefinite
concave nonlinearities have infinitely many solutions. In this regard, lots of authors have considered
the results for the elliptic equations with nonlinear terms on a bounded domain in RN ; see [29–31]. It is
well known that the studies in [14,17,19,21,22,26,29,32,33] as well as our first primary result essentially
demand some global conditions on f (x, t) for t, such as oddness and behavior at infinity, for applying
the fountain theorem to allow an infinite number of solutions. In contrast to these studies that yield
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large solutions in that they form an unbounded sequence, by modifying and extending the function
f (x, t) to a adequate function f̃ (x, t), the authors in [27–29] investigated the existence of small energy
solutions to equations of the elliptic type. A natural question is whether the results in [27–31] may
be extended to Equation (1). As is known, such a result for Kirchhoff–Schrödinger-type equations
involving the non-local fractional p-Laplacian on the whole space RN has not been much studied,
although a given domain is bounded. In particular, no results are available even though the fractional
p-Laplacian problems without Kirchhoff function M are considered, and we are only aware of paper
[34] in this direction. In comparison with the papers [27–29], the main difficulty to obtain our second
aim is to show the L∞-bound of weak solutions for problem (1). We remark that the strategy for
obtaining this multiplicity is to assign a regularity-type result based on the work of Drábek, Kufner,
and Nicolosi in [35]. Furthermore, it is noteworthy that the conditions on f (x, t) are imposed near
zero; in particular, f (x, t) is odd in t for a small t, and no conditions on f (x, t) exist at infinity.

This paper is structured as follows. In Section 2, we state the basic results to solve the
Kirchhoff-type equation, and review the well-known facts for the fractional Sobolev spaces. Moreover,
under certain conditions on f , our problem admits a sequence of infinitely many large energy solutions
of our problem (1) via the fountain theorem. Moreover, we assign the existence of nontrivial weak
solutions for our problem with new conditions for the modified Kirchhoff function M and the nonlinear
term f . In Section 3, we present the existence of small energy solutions for our problem in that the
sequence of solutions converges to 0 in the L∞-norm. Hence, we employ the regularity result on the
L∞-bound of a weak solution and the modified functional method.

2. Existence of Infinitely Many Large Energy Solutions

In this section, we recall some elementary concepts and properties of the fractional Sobolev spaces.
We refer the reader to [4,36–38] for the detailed descriptions.

Suppose that

(V1) V ∈ C(RN), infx∈RN V(x) > 0.
(V2) meas

{
x ∈ RN : V(x) ≤ V0

}
< +∞ for all V0 ∈ R.

Let 0 < s < 1 and 1 < p < +∞. We define the fractional Sobolev space Ws,p(RN) by

Ws,p(RN) :=
{

u ∈ Lp(RN) :
∫
RN

∫
RN

|u(x)− u(y)|p
|x − y|N+ps dxdy < +∞

}
,

endowed with the norm

||u||pWs,p(RN)
:= |u|pWs,p(RN)

+ ||u||pLp(RN)
with |u|pWs,p(RN)

:=
∫
RN

∫
RN

|u(x)− u(y)|p
|x − y|N+ps dxdy.

Furthermore, we denote the basic function space W(RN) by the completion of C∞
0 (RN) in

Ws,p(RN), equipped with the norm

||u||pW(RN)
:= |u|pWs,p(RN)

+ ||u||pp,V with ||u||pp,V :=
∫
RN

V(x)|u|p dx.

Following a similar argument in [11,12], we can easily show that the space W(RN) is a separable
and reflexive Banach space.

We recall the continuous or compact embedding theorem in ([11], Lemma 1) and ([24], Lemma 2.1).

Lemma 1. Let 0 < s < 1 < p < +∞ with ps < N. Then, there exists a positive constant C = C(N, p, s)
such that, for all u ∈ Ws,p(RN),

||u||Lp∗s (RN)
≤ C |u|Ws,p(RN),
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where p∗s = Np
N−sp is the fractional critical exponent. Consequently, the space Ws,p(RN) is continuously

embedded in Lq(RN) for any q ∈ [p, p∗s ]. Moreover, the space Ws,p(RN) is compactly embedded in Lq
loc(R

N)

for any q ∈ [p, p∗s ).

Lemma 2. Let 0 < s < 1 < p < +∞ with ps < N. Suppose that the assumptions (V1) and (V2) hold.
If r ∈ [p, p∗s ], then the embeddings

W(RN) ↪→ Ws,p(RN) ↪→ Lr(RN)

are continuous with ||u||pWs,p(RN)
≤ C||u||pW(RN)

for all u ∈ W(RN). In particular, there exists a constant

Kr > 0 such that ||u||Lr(RN) ≤ Kr||u||W(RN) for all u ∈ W(RN). If r ∈ [p, p∗s ), then the embedding

W(RN) ↪→ Lr(RN)

is compact.

Definition 1. Let 0 < s < 1 < p < +∞. We say that u ∈ W(RN) is a weak solution of problem (1) if

M(|u|pWs,p(RN)
)
∫
RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))
|x − y|N+ps dxdy (2)

+
∫
RN

V(x) |u|p−2 uv dx = λ
∫
RN

f (x, u)v dx

for any v in W(RN).

We assume that the Kirchhoff function M : R+
0 → R+ satisfies the following conditions:

(M1) M ∈ C(R+
0 ,R+) satisfies inft∈R+

0
M(t) ≥ m0 > 0, where m0 is a constant.

(M2) There exists θ ∈ [1, N
N−ps ) such that θM(t) ≥ M(t)t for any t ≥ 0, where M(t) :=

∫ t
0 M(τ)dτ.

A typical example for M is given by M(t) = b0 + b1tn with n > 0, b0 > 0 and b1 ≥ 0.
Next, we consider the appropriate assumptions for the nonlinear term f . Let us denote F (x, t) =∫ t

0 f (x, s) ds and let θ ∈ R be given in (M2).

(F1) f : RN ×R → R satisfies the Carathéodory condition.

(F2) There exist nonnegative functions ρ ∈ Lp′(RN) ∩ L∞(RN) and σ ∈ L
p∗s

p∗s −q (RN) ∩ L∞(RN)

such that
| f (x, t)| ≤ ρ(x) + σ(x) |t|q−1 , q ∈ (θp, p∗s )

for all (x, t) ∈ RN ×R.
(F3) lim|t|→∞

F (x,t)
|t|θp = ∞ uniformly for almost all x ∈ RN .

(F4) There exist real numbers c0 > 0, r0 ≥ 0, and κ > N
ps such that

|F (x, t)|κ ≤ c0 |t|κp F(x, t)

for all (x, t) ∈ RN ×R and |t| ≥ r0, where F(x, t) = 1
θp f (x, t)t −F (x, t) ≥ 0.

(F5) There exist μ > θp and � > 0 such that

μF (x, t) ≤ t f (x, t) + �tp

for all (x, t) ∈ RN ×R.
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For u ∈ W(RN), the Euler–Lagrange functional Eλ : W(RN) → R is defined by

Eλ(u) = As,p(u)− λΨ(u),

where
As,p(u) :=

1
p
(M(|u|pWs,p(RN)

) + ||u||pp,V) and Ψ(u) :=
∫
RN

F (x, u) dx.

Then, it is easily verifiable that As,p ∈ C1(W(RN),R) and Ψ ∈ C1(W(RN),R). Therefore,
the functional Eλ is Fréchet differentiable on W(RN) and its (Fréchet) derivative is as follows:

〈E ′
λ(u), v〉 = 〈A′

s,p(u)− λΨ′(u), v〉

= M(|u|pWs,p(RN)
)
∫
RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))
|x − y|N+ps dxdy

+
∫
RN

V(x) |u|p−2 uv dx − λ
∫
RN

f (x, u)v dx

(3)

for any u, v ∈ W(RN). Following Lemmas 2 and 3 in [11], the functional As,p is weakly lower
semi-continuous in W(RN) and Ψ is weakly continuous in W(RN).

We now show that the functional Eλ satisfies the Cerami condition ((C)c-condition, briefly),
i.e., for c ∈ R, any sequence {un} ⊂ W(RN) such that Eλ(un) → c and ||E ′

λ(un)||W∗(RN)(1 +

||un||W(RN)) → 0 as n → ∞ has a convergent subsequence. Here, W∗(RN) is a dual space of W(RN).
This plays a decisive role in establishing the existence of nontrivial weak solutions.

Lemma 3. Let 0 < s < 1 < p < +∞ and ps < N. Assume that (V1), (V2), (M1), (M2), and (F1)–(F4)
hold. Then, the functional Eλ satisfies the (C)c-condition for any λ > 0.

Proof. For c ∈ R, let {un} be a (C)c-sequence in W(RN), that is,

Eλ(un) → c and ||E ′
λ(un)||W∗(RN)(1 + ||un||W(RN)) → 0 as n → ∞, (4)

which implies that
c = Eλ(un) + o(1) and

〈E′
λ(un), un

〉
= o(1), (5)

where o(1) → 0 is n → ∞. If {un} is bounded in W(RN), it follows from the proceeding as in the
proof of Lemma 6 in [11] that {un} converges strongly to u in W(RN). Hence, it suffices to verify that
the sequence {un} is bounded in W(RN). However, we argue by contradiction and suppose that the
conclusion is false, i.e., {un} is a unbounded sequence in W(RN). Therefore, we may assume that

||un||W(RN) > 1 and ||un||W(RN) → ∞, as n → ∞. (6)

Define a sequence {wn} by wn = un/||un||W(RN). Then, it is clear that {wn} ⊂ W(RN) and
||wn||W(RN) = 1. Hence, up to a subsequence (still denoted as the sequence {wn}), we obtain wn ⇀ w
in W(RN) as n → ∞. Furthermore, by Lemma 2, we have

wn(x) → w(x) a.e. in R
N and wn → w in Lr(RN) as n → ∞ (7)

for p ≤ r < p∗s . Owing to the condition (5), we have

c = Eλ(un) + o(1) =
1
p
(M(|un|pWs,p(RN)

) + ||un||pp,V)− λ
∫
RN

F (x, un) dx + o(1).
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Since ||un||W(RN) → ∞ as n → ∞, we assert that

∫
RN

F (x, un) dx =
1

λp
(M(|un|pWs,p(RN)

) + ||un||pp,V)−
c
λ
+

o(1)
λ

≥ 1
λp

(
1
θ
M(|un|pWs,p(RN)

)|un|pWs,p(RN)
+ ||un||pp,V)−

c
λ
+

o(1)
λ

≥ min{m0/θ, 1}
λp

||un||pW(RN)
− c

λ
+

o(1)
λ

→ ∞ as n → ∞. (8)

The assumption (F3) implies that there exists t0 > 1 such that F (x, t) > |t|θp for all x ∈ RN

and |t| > t0. From the assumptions (F1) and (F2), there is a constant C > 0 such that |F (x, t)| ≤ C
for all (x, t) ∈ RN × [−t0, t0]. Therefore, we can choose C0 ∈ R such that F (x, t) ≥ C0 for all
(x, t) ∈ RN ×R; thus,

F (x, un)− C0

M(|un|pWs,p(RN)
) + ||un||pp,V

≥ 0, (9)

for all x ∈ RN , and for all n ∈ N. Set Ω =
{

x ∈ RN : w(x) �= 0
}

. By the convergence (7), we know that
|un(x)| = |wn(x)| ||un||W(RN) → ∞ as n → ∞ for all x ∈ Ω. Therefore, it follows from the assumptions
(M2), (F3), and the relation (6) that, for all x ∈ Ω,

lim
n→∞

F (x, un)

M(|un|pWs,p(RN)
) + ||un||pp,V

≥ lim
n→∞

F (x, un)

M(1) |un|θp
Ws,p(RN)

+ ||un||pp,V

≥ lim
n→∞

F (x, un)

M(1)||un||θp
W(RN)

+ ||un||pW(RN)

≥ lim
n→∞

F (x, un)

M(1)||un||θp
W(RN)

+ ||un||θp
W(RN)

= lim
n→∞

F (x, un)

(M(1) + 1)||un||θp
W(RN)

= lim
n→∞

F (x, un)

(M(1) + 1) |un(x)|θp |wn(x)|θp

= ∞, (10)

where we use the inequality M(|un|pWs,p(RN)
) ≤ M(1) |un|θp

Ws,p(RN)
. Hence, we obtain meas(Ω) = 0.

If meas(Ω) �= 0, according to relations (8)–(10) and Fatou’s lemma, we deduce that

1
λ
= lim inf

n→∞

∫
RN F (x, un) dx

λ
∫
RN F (x, un) dx + c − o(1)

= lim inf
n→∞

∫
RN

pF (x, un)

M(|un|pWs,p(RN)
) + ||un||pp,V

dx

≥ lim inf
n→∞

∫
Ω

pF (x, un)

M(|un|pWs,p(RN)
) + ||un||pp,V

dx − lim sup
n→∞

∫
Ω

pC0

M(|un|pWs,p(RN)
) + ||un||pp,V

dx

= lim inf
n→∞

∫
Ω

p(F (x, un)− C0)

M(|un|pWs,p(RN)
) + ||un||pp,V

dx

≥
∫

Ω
lim inf

n→∞

p(F (x, un)− C0)

M(|un|pWs,p(RN)
) + ||un||pp,V

dx
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=
∫

Ω
lim inf

n→∞

pF (x, un)

M(|un|pWs,p(RN)
) + ||un||pp,V

dx −
∫

Ω
lim sup

n→∞

pC0

M(|un|pWs,p(RN)
) + ||un||pp,V

dx

= ∞, (11)

which yields a contradiction. Thus, w(x) = 0 for almost all x ∈ RN .
Observe that, for a sufficiently large n,

c + 1 ≥ Eλ(un)− 1
θp

〈E′
λ(un), un

〉
=

1
p
(M(|un|pWs,p(RN)

) + ||un||pp,V)− λ
∫
RN

F (x, un) dx

− 1
θp

(M(|un|pWs,p(RN)
)|un|pWs,p(RN)

+ ||un||pp,V) +
λ

θp

∫
RN

f (x, un)un dx

≥ λ
∫
RN

F(x, un) dx, (12)

where F is given in (F4). Let us define Ωn(a, b) := {x ∈ RN : a ≤ |un(x)| < b} for a ≥ 0. By the
convergence (7),

wn → 0 in Lr(RN) and wn(x) → 0 a.e. in R
N as n → ∞ (13)

for p ≤ r < p∗s . Hence, from the relation (8), we obtain

0 <
1

λp
≤ lim sup

n→∞

∫
RN

|F (x, un)|
M(|un|pWs,p(RN)

) + ||un||pp,V
dx. (14)

Meanwhile, from the assumptions (M2), (F2), the relation (13), and Lemma 2, we obtain

∫
Ωn(0,r0)

F (x, un)

M(|un|pWs,p(RN)
) + ||un||pp,V

dx

≤
∫

Ωn(0,r0)

ρ(x) |un(x)|+ σ(x)
q |un(x)|q

M(|un|pWs,p(RN)
) + ||un||pp,V

dx

≤
||ρ||Lp′ (RN)

||un||Lp(RN)

M(|un|pWs,p(RN)
) + ||un||pp,V

+
||σ||L∞(RN)

min{1, m0/θ}q

∫
Ωn(0,r0)

|un(x)|q−p |wn(x)|p dx

≤
||ρ||Lp′ (RN)

||un||Lp(RN)

M(|un|pWs,p(RN)
) + ||un||pp,V

+
||σ||L∞(RN)

min{1, m0/θ}q
rq−p

0

∫
RN

|wn(x)|p dx

≤
Kp||ρ||Lp′ (RN)

||un||W(RN)

min{1, m0/θ}||un||pW(RN)

+
||σ||L∞(RN)

min{1, m0/θ}q
rq−p

0

∫
RN

|wn(x)|p dx

≤ C1

min{1, m0/θ}||un||p−1
W(RN)

+
||σ||L∞(RN)

min{1, m0/θ}q
rq−p

0

∫
RN

|wn(x)|p dx → 0, as n → ∞, (15)

where C1 is a positive constant, r0 is given in (F4), and we use the following inequality:

M(|un|pWs,p(RN)
) + ||un||pp,V ≥ min{1, m0/θ}||un||pW(RN)

.
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We set κ′ = κ/(κ − 1). Since κ > N/ps, we have p < κ′p < p∗s . Hence, it follows from (F4),
estimates (12) and (13) that

∫
Ωn(r0,∞)

|F (x, un)|
M(|un|pWs,p(RN )

) + ||un||pp,V
dx ≤

∫
Ωn(r0,∞)

|F (x, un)|
min{1, m0/θ} |un(x)|p |wn(x)|p dx

≤ 1
min{1, m0/θ}

{∫
Ωn(r0,∞)

( |F(x, un)|
|un(x)|p

)κ

dx

} 1
κ
{∫

Ωn(r0,∞)
|wn(x)|κ′ p

} 1
κ′

≤ c
1
κ
0

min{1, m0/θ}

{∫
Ωn(r0,∞)

F(x, un) dx

} 1
κ
{∫

RN
|wn(x)|κ′ p

} 1
κ′

≤ c
1
κ
0

min{1, m0/θ}
(

c + 1
λ

) 1
κ

{∫
RN

|wn(x)|κ′ p
} 1

κ′
→ 0, as n → ∞. (16)

Combining the relation (15) with the convergence (16), we have

∫
RN

|F (x, un)|
M(|un|pWs,p(RN)

) + ||un||pp,V
dx =

∫
Ωn(0,r0)

|F (x, un)|
M(|un|pWs,p(RN)

) + ||un||pp,V
dx

+
∫

Ωn(r0,∞)

|F (x, un)|
M(|un|pWs,p(RN)

) + ||un||pp,V
dx → 0

as n → ∞, which contradicts inequality the convergence (14). The proof is completed.

Lemma 4. Let 0 < s < 1 < p < +∞ and ps < N. Assume that (V1), (V2), (M1), (M2), (F1)–(F3),
and (F5) hold. Then, the functional Eλ satisfies the (C)c-condition for any λ > 0.

Proof. For c ∈ R, let {un} be a (C)c-sequence in W(RN) satisfying (4). Then, relation (5) holds.
As in the proof of Lemma 3, we only prove that {un} is bounded in W(RN). However, arguing by
contradiction, suppose that ||un||W(RN) → ∞ as n → ∞. Let vn = un/||un||W(RN). Then, ||vn||W(RN) = 1
and ||vn||Lr(RN) ≤ Kr||vn||W(RN) = Kr for p ≤ r ≤ p∗s by the continuous embedding in Lemma 2.
Passing to a subsequence, we may assume that vn ⇀ v in W(RN) as n → ∞; then, by compact
embedding, vn → v in Lr(RN) for p ≤ r < p∗s , and vn(x) → v(x) for almost all x ∈ RN as n → ∞.
By the assumption (F5), one obtains

c + 1 ≥ Eλ(un)− 1
μ

〈E′
λ(un), un

〉
=

1
p
(M(|un|pWs,p(RN)

) + ||un||pp,V)− λ
∫
RN

F (x, un) dx

− 1
μ
(M(|un|pWs,p(RN)

)|un|pWs,p(RN)
+ ||un||pp,V) +

λ

μ

∫
RN

f (x, un)un dx

≥
( 1

θp
− 1

μ

)
M(|un|pWs,p(RN)

)|un|pWs,p(RN)
+

(
1
p
− 1

μ

)
||un||pp,V − λ�

μ

∫
RN

|un(x)|p dx

≥ min{1, m0}
( 1

θp
− 1

μ

)
||un||pW(RN)

− λ�

μ

∫
RN

|un(x)|p dx, (17)

which implies

1 ≤ λ�θp
min{1, m0}(μ − θp)

lim sup
n→∞

||vn||pLp(RN)
=

λ�θp
min{1, m0}(μ − θp)

||v||pLp(RN)
. (18)

Hence, it follows from the inequality (18) that v �= 0. From the same argument as in Lemma
3, we can verify the relations (8)–(10), and hence yield the relation (11). Therefore, we arrive at a
contradiction. Thus, {un} is bounded in W(RN).
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Next, based on the fountain theorem in ([39], Theorem 3.6), we demonstrate the infinitely many
weak solutions for problem (1). Hence, we let X be a separable and reflexive Banach space. It is well
known that there exists {en} ⊆ X and { f ∗n} ⊆ X∗ such that

X = span{en : n = 1, 2, · · · }, X∗ = span{ f ∗n : n = 1, 2, · · · },

and

〈
f ∗i , ej

〉
=

{
1, if i = j,

0, if i �= j.

Let us denote Xn = span{en}, Yk =
⊕k

n=1 Xn, and Zk =
⊕∞

n=k Xn. Then, we recall the
fountain lemma.

Lemma 5. Let X be a real reflexive Banach space, E ∈ C1(X ,R) satisfies the (C)c-condition for any c > 0, and
E is even. If for each sufficiently large k ∈ N, there exist ρk > δk > 0 such that the following conditions hold:

(1) bk := inf{E(u) : u ∈ Zk, ||u||X = δk} → ∞ as k → ∞,
(2) ak := max{E(u) : u ∈ Yk, ||u||X = ρk} ≤ 0.

Then, the functional E has an unbounded sequence of critical values, i.e., there exists a sequence {un} ⊂ X
such that E′(un) = 0 and E(un) → ∞ as n → ∞.

Using Lemma 5, we demonstrate the existence of infinitely many nontrivial weak solutions for
our problem.

Theorem 1. Let 0 < s < 1 < p < +∞ and ps < N. Assume that (V1), (V2), (M1), (M2), and (F1)–(F4)
hold. If f (x,−t) = − f (x, t) satisfies for all (x, t) ∈ RN × R, then the functional Eλ has a sequence of
nontrivial weak solutions {un} in W(RN) such that Eλ(un) → ∞ as n → ∞ for any λ > 0 .

Proof. Clearly, Eλ is an even functional and satisfies the (C)c-condition. Note that W(RN) is a
separable and reflexive Banach space. According to Lemma 5, it suffices to show that there exists
ρk > δk > 0 such that

(1) bk := inf{Eλ(u) : u ∈ Zk, ||u||W(RN) = δk} → ∞ as k → ∞;
(2) ak := max{Eλ(u) : u ∈ Yk, ||u||W(RN) = ρk} ≤ 0,

for a sufficiently large k. We denote

αk := sup
u∈Zk ,||u||W(RN )

=1

( ∫
RN

1
q
|u(x)|q dx

)
, θp < q < p∗s .

Then, we know αk → 0 as k → ∞. Indeed, suppose to the contrary that there exist ε0 > 0 and a
sequence {uk} in Zk such that

||uk||W(RN) = 1,
∫
RN

1
q
|uk(x)|q dx ≥ ε0

for all k ≥ k0. Since the sequence {uk} is bounded in W(RN), there exists an element u in W(RN) such
that uk ⇀ u in W(RN) as k → ∞, and

〈 f ∗j , u〉 = lim
k→∞

〈 f ∗j , uk〉 = 0

79



Symmetry 2018, 10, 436

for j = 1, 2, · · · . Hence, u = 0. However, we obtain

ε0 ≤ lim
k→∞

∫
RN

1
q
|uk(x)|q dx =

∫
RN

1
q
|u(x)|q dx = 0,

which yields a contradiction.
For any u ∈ Zk, it follows from assumptions (M2), (F2), and the Hölder inequality that

Eλ(u) =
1
p
(M(|u|pWs,p(RN)

) + ||u||pp,V)− λ
∫
RN

F (x, u) dx

≥ 1
p
(M(|u|pWs,p(RN)

) + ||u||pp,V)− λ
∫
RN

|ρ(x)| |u(x)| dx − λ
∫
RN

|σ(x)|
q

|u(x)|q dx

≥ 1
p
(M(|u|pWs,p(RN)

) + ||u||pp,V)− λ||ρ||Lp′ (RN)
||u||Lp(RN) −

λ

q
||σ||L∞(RN)

∫
RN

|u(x)|q dx

≥ 1
p
(M(|u|pWs,p(RN)

) + ||u||pp,V)− λC2||u||W(RN) −
λ

q
C3||u||qLq(RN)

≥ min{1, m0/θ}
p

||u||pW(RN)
− λC2||u||W(RN) −

λ

q
α

q
kC4||u||qW(RN)

, (19)

where C2, C3 and C4 are positive constants. We choose δk = (2λC4α
q
k/ min{1, m0/θ})1/(p−q). Since p < q

and αk → 0 as k → ∞, we assert δk → ∞ as k → ∞. Hence, if u ∈ Zk and ||u||W(RN) = δk, then we
deduce that

Eλ(u) ≥
(

1
p
− 1

q

)
δ

p
k − 2λC2δk → ∞ as k → ∞,

which implies the condition (1).
Next, suppose that condition (2) is not satisfied for some k. Then, there exists a sequence {un} in

Yk such that

||un||W(RN) > 1 and ||un||W(RN) → ∞ as n → ∞ and Eλ(un) ≥ 0. (20)

Let wn = un/||un||W(RN). Then, it is obvious that ||wn||W(RN) = 1. Since dim Yk < ∞, there exists
w ∈ Yk \ {0} such that, up to a subsequence,

||wn − w||W(RN) → 0 and wn(x) → w(x)

for almost all x ∈ RN as n → ∞. For x ∈ Ω :=
{

x ∈ RN : w(x) �= 0
}

, we obtain |un(x)| → ∞ as
n → ∞. Hence, it follows from the assumption (F3) that

lim
n→∞

F (x, un)

M(|un|pWs,p(RN)
) + ||un||pp,V

≥ lim
n→∞

F (x, un)

(M(1) + 1) |un(x)|θp |wn(x)|θp = ∞. (21)

As shown in the proof of Lemma 3, we can choose C1 ∈ R such that

F (x, un)− C1

M(|un|pWs,p(RN)
) + ||un||pp,V

≥ 0 (22)

for x ∈ Ω. Considering the inequalities (21), (22) and Fatou’s lemma, we assert by a similar argument
to the inequality (10) that

lim
n→∞

∫
Ω

F (x, un)

M(|un|pWs,p(RN)
) + ||un||pp,V

dx ≥ lim inf
n→∞

∫
Ω

F (x, un)− C1

M(|un|pWs,p(RN)
) + ||un||pp,V

dx
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≥
∫

Ω
lim inf

n→∞

F (x, un)

M(|un|pWs,p(RN)
) + ||un||pp,V

dx = ∞. (23)

Therefore, using the relation (23), we have

Eλ(un) ≤ 1
p
(M(|un|pWs,p(RN)

) + ||un||pp,V)− λ
∫

Ω
F (x, un) dx

=
M(|un|pWs,p(RN)

) + ||un||pp,V

p

⎛⎝1 − λp
∫

Ω

F (x, un)

M(|un|pWs,p(RN)
) + ||un||pp,V

dx

⎞⎠ → −∞

as n → ∞, which yields a contradiction to the relation (20). The proof is complete.

Remark 1. Although we replaced (F4) with (F5) in the assumption of Theorem 1, we assert that the problem
(1) admits a sequence of nontrivial weak solutions {un} in W(RN) such that Eλ(un) → ∞ as n → ∞.

Lastly, we investigate the existence of nontrivial weak solutions for our problem by replacing the
assumptions (F4) and (F5) with the following condition, which is from the work of L. Jeanjean [40]:

(F6) There exists a constant ν ≥ 1 such that

νF̂(x, t) ≥ F̂(x, st)

for (x, t) ∈ RN ×R and s ∈ [0, 1], where F̂(x, t) = f (x, t)t − θpF (x, t).

When the Kirchhoff function M is constant, and the condition (F6) with θ = 1 holds, the author
in [24] obtained the existence of at least one nontrivial weak solution for the superlinear problems of
the fractional p-Laplacian, which is motivated by the works of [18,26].

To the best of our belief, such existence and multiplicity results are not available for the elliptic
equation of the Kirchhoff type under the assumption (F6). Hence, we obtain the following lemma
with the sufficient conditions for the modified Kirchhoff function M and the assumption (F6).

Lemma 6. Let 0 < s < 1 < p < +∞ and ps < N. Assume that (V1), (V2), (M1), (M2), (F1)–(F3),
and (F6) hold. Furthermore, we assume that

(M3) H(st) ≤ H(t) for s ∈ [0, 1], where H(t) = θM(t)−M(t)t for any t ≥ 0 and θ is given in (M2).

Then, the functional Eλ satisfies the (C)c-condition for any λ > 0.

Proof. For c ∈ R, let {un} be a (C)c-sequence in W(RN) satisfying the convergence (4). Then, the
relation (5) holds. By Lemma 3, we only prove that {un} is bounded in W(RN). Therefore, we argue
by contradiction and suppose that the conclusion is false, i.e., ||un||W(RN) > 1 and ||un||W(RN) → ∞ as
n → ∞. In addition, we define a sequence {ωn} by ωn = un/||un||W(RN). Then, up to a subsequence
(still denoted as the sequence {ωn}), we obtain ωn ⇀ ω in W(RN) as n → ∞,

ωn(x) → ω(x) a.e. in R
N , ωn → ω in Lq(RN), and ωn → ω in Lp(RN) as n → ∞,

where θp < q < p∗s .
We set Ω =

{
x ∈ RN : ω(x) �= 0

}
. From the similar manner as in Lemma 3, we obtain meas(Ω) = 0.

Therefore, ω(x) = 0 for almost all x ∈ RN . Since Eλ(tun) is continuous at t ∈ [0, 1], for each n ∈ N,
there exists tn ∈ [0, 1] such that

Eλ(tnun) := max
t∈[0,1]

Eλ(tun).

Let {�k} be a positive sequence of real numbers such that limk→∞ �k = ∞ and �k > 1 for any k.
Then, it is clear that ||�kωn||W(RN) = �k > 1 for any k and n. Fix k, since ωn → 0 strongly in Lq(RN) as
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n → ∞, the continuity of the Nemytskii operator implies F (x, �kωn) → 0 in L1(RN) as n → ∞. Hence,
we assert

lim
n→∞

∫
RN

F (x, �kωn) dx = 0. (24)

Since ||un||W(RN) → ∞ as n → ∞, we obtain ||un||W(RN) > �k for a sufficiently large n. Thus,
we know by (M2) and the convergence (24) that

Eλ(tnun) ≥ Eλ

(
�k

||un||W(RN)
un

)
= Eλ(�kωn)

=
1
p
(M(|�kωn|pWs,p(RN)

) + ||�kωn||pp,V)− λ
∫
RN

F (x, �kωn) dx

≥ 1
pθ

M(|�kωn|pWs,p(RN)
)|�kωn|pWs,p(RN)

+
1
p
||�kωn||pp,V − λ

∫
RN

F (x, �kωn) dx

≥ min{1, m0}
pθ

||�kωn||pW(RN)
− λ

∫
RN

F (x, �kωn) dx

≥ min{1, m0}
pθ

�
p
k

for a large enough n. Then, letting n, k → ∞, we get

lim
n→∞

Eλ(tnun) = ∞. (25)

Since Eλ(0) = 0 and Eλ(un) → c as n → ∞, it is obvious that tn ∈ (0, 1), and
〈E′

λ(tnun), tnun
〉
= 0.

Therefore, owing to the assumptions (M3) and (F6), for all sufficiently large n, we deduce that

1
ν
Eλ(tnun) =

1
ν
Eλ(tnun)− 1

pθν

〈E′
λ(tnun), tnun

〉
+ o(1)

=
1
pν

(M(|tnun|pWs,p(RN)
) + ||tnun||pp,V)−

λ

ν

∫
RN

F (x, tnun) dx

− 1
pθν

(M(|tnun|pWs,p(RN)
)|tnun|pWs,p(RN)

+ ||tnun||pp,V) +
λ

pθν

∫
RN

f (x, tnun)tnun dx + o(1)

=
1

pθν
H(tnun) +

1
pν

||tnun||pp,V − 1
pθν

||tnun||pp,V +
λ

pθν

∫
RN

F̂(x, tnun) dx + o(1)

≤ 1
pθ

H(un) +
1
p
||tnun||pp,V − 1

pθ
||tnun||pp,V +

λ

pθ

∫
RN

F̂(x, un) dx + o(1)

=
1
p
(M(|un|pWs,p(RN)

) + ||un||pp,V)− λ
∫
RN

F (x, un) dx

− 1
pθ

(M(|un|pWs,p(RN)
)|un|pWs,p(RN)

+ ||un||pp,V) +
λ

pθ

∫
RN

f (x, un)un dx + o(1)

= Eλ(un)− 1
pθ

〈E′
λ(un), un

〉
+ o(1) → c as n → ∞,

which contradicts the convergence (25). This completes the proof.

We give an example regarding a function M with the assumptions (M1)–(M3).

Example 1. Let us see

M(t) = 1 +
1

e + t
, t ≥ 0.

Then, it is easily checked that this function M complies with the assumptions (M1)–(M3).
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Theorem 2. Let 0 < s < 1 < p < +∞ and ps < N. Assume that (V1), (V2), (M1)–(M3), (F1)–(F3),
and (F6) hold. If f (x,−t) = − f (x, t) holds for all (x, t) ∈ RN ×R, then, for any λ > 0, the functional Eλ

has a sequence of nontrivial weak solutions {un} in W(RN) such that Eλ(un) → ∞ as n → ∞.

Proof. The proof is essentially the same as that of Theorem 1.

3. Existence of Infinitely Many Small Energy Solutions

In this section, we prove the existence of a sequence of small energy solutions for the problem (1)
converging to zero in L∞-norm based on the Moser bootstrap iteration technique in ([35], Theorem 4.1)
(see also [34]). First, we state the following additional assumptions:

(F7) There exists a constant s0 > 0 such that pF (x, t)− f (x, t)t > 0 for all x ∈ RN and for 0 < |t| < s0.
(F8) lim|t|→0

f (x,t)
|t|p−2t

= +∞ uniformly for all x ∈ RN .

Because problem (1) includes the potential term and the nonlinear term f is slightly different from
that of [35], a more complicated analysis has to be carefully performed when we apply the bootstrap
iteration argument.

Proposition 1. Assume that (V1), (M1), and (F1)–(F2) hold. If u is a weak solution of the problem (1),
then u ∈ Lr(RN) for all r ∈ [p∗s , ∞].

Proof. Suppose that u is non-negative. For K > 0, we define

vK(x) = min{u(x), K}

and choose v = vmp+1
K (m ≥ 0) as a test function in the equality (2). Then, v ∈ W(RN) ∩ L∞(RN), and

it follows from the equality (2) that

M(|u|pWs,p(RN)
)
∫
RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))(vmp+1
K (x)− vmp+1

K (y))
|x − y|N+ps dxdy

+
∫
RN

V(x) |u|p−2 uvmp+1
K dx = λ

∫
RN

f (x, u)vmp+1
K dx. (26)

The left-hand side of the relation (26) can be estimated as follows:

M(|u|pWs,p(RN)
)
∫
RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))(vmp+1
K (x)− vmp+1

K (y))
|x − y|N+ps dxdy

+
∫
RN

V(x) |u|p−2 uvmp+1
K dx

≥ m0

∫
RN

∫
RN

|u(x)− u(y)|p−1
∣∣∣vmp+1

K (x)− vmp+1
K (y)

∣∣∣
|x − y|N+ps dxdy +

∫
RN

V(x)v(m+1)p
K dx

≥ m0C5

∫
RN

∫
RN

|vm+1
K (x)− vm+1

K (y)|p
|x − y|N+ps dxdy +

∫
RN

V(x)v(m+1)p
K dx

≥ min{m0C5, 1}||vm+1
K ||pW(RN)

≥ min{m0C5, 1}C6

(∫
RN

|vK|(m+1)p∗s dx
) p

p∗s
(27)

for some positive constants C5 and C6. Using the assumption (F2), the Hölder inequality and the
relation (27), the right-hand side of the relation (26) can be estimated:

λ
∫
RN

f (x, u)vmp+1
K dx ≤ λ

∫
RN

| f (x, u)||u|mp+1 dx
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≤ λ
∫
RN

ρ(x)|u|mp+1 + σ(x)|u|mp+q dx

≤ λ
∫
RN

ρ(x)(|u|mp+p + |u|m+1) dx

+ λ

(∫
RN

σγ1 (x) dx
) 1

γ1
(∫

RN
|u|(m+1)pγ′

1 |u|(q−p)γ′
1 dx

) 1
γ′1 (28)

≤ λ||ρ||L∞(RN)

∫
RN

|u|(m+1)p dx + λ||ρ||Lp′ (RN)

(∫
RN

|u|(m+1)p dx
) 1

p

+ λ

(∫
RN

σγ1 (x) dx
) 1

γ1
(∫

RN
|u|(m+1)β dx

) p
β
(∫

RN
|u|(q−p)γ′

1
β

β−pγ′1 dx
) β−pγ′1

βγ′1 ,

where γ1 = p∗s
p∗s −q , and β =

pp∗s γ′
1

p∗s −(q−p)γ′
1
. Obviously β ≤ p∗s , 1 < β

pγ′
1
, and (q−p)γ′

1β

β−pγ′
1

= p∗s , and hence the
estimate (28) yields

λ
∫
RN

f (x, u)vmp+1
K dx ≤ λ||ρ||L∞(RN)

∫
RN

|u|(m+1)p dx + λ||ρ||Lp′ (RN)

(∫
RN

|u|(m+1)p dx
) 1

p

+ λ

(∫
RN

σγ1(x) dx
) 1

γ1
(∫

RN
|u|p∗s dx

) β−pγ′1
βγ′1

(∫
RN

|u|(m+1)β dx
) p

β

. (29)

It follows from relations (26), (27), (29), and the Sobolev inequality that there exists positive
constants C7, C8 and C9 (independent of K and m > 0) such that

(∫
RN

|vK|(m+1)p∗s dx
) p

p∗s ≤ C7

∫
RN

|u|(m+1)p dx + C8

(∫
RN

|u|(m+1)p dx
) 1

p
+ C9

(∫
RN

|u|(m+1)β dx
) p

β

,

which implies

||vK||(m+1)p
L(m+1)p∗s (RN)

≤ C7||u||(m+1)p
L(m+1)p(RN)

+ C8||u||m+1
L(m+1)p(RN)

+ C9||u||(m+1)p
L(m+1)β(RN)

. (30)

To apply the argument that is critical in L∞-estimates, we first assume that ||u||L(m+1)p(RN) ≥ 1.
From the estimate (30), we have

||vK||(m+1)p
L(m+1)p∗s (RN)

≤ C7||u||(m+1)p
L(m+1)p(RN)

+ C8||u||m+1
L(m+1)p(RN)

+ C9||u||(m+1)p
L(m+1)β(RN)

≤ (C7 + C8)||u||(m+1)p
L(m+1)p(RN)

+ C9||u||(m+1)p
L(m+1)β(RN)

, (31)

which implies

||vK||L(m+1)p∗s (RN)
≤ C

1
(m+1)p
10 ||u||L(m+1)t(RN) (32)

for some positive constant C10 and for any positive constant K, where t is either p or β. The expression
in the estimate (32) is a starting point for a bootstrap technique. Since u ∈ W(RN), hence u ∈ Lp∗s (RN)

and we can choose m := m1 in the estimate (32) such that (m1 + 1)t = p∗s , i.e., m1 = p∗s
t − 1. Then,

we have

||vK||L(m1+1)p∗s (RN)
≤ C

1
(m1+1)p
10 ||u||L(m1+1)t(RN)

(33)

for any positive constant K. Owing to u(x) = lim
K→∞

vK(x) for almost every x ∈ RN , Fatou’s lemma and

the estimate (33) imply

||u||L(m1+1)p∗s (RN)
≤ C

1
(m1+1)p
10 ||u||L(m1+1)t(RN)

. (34)
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Thus, we can choose m = m2 in the estimate (32) such that (m2 + 1)t = (m1 + 1)p∗s = (p∗s )2

t .
By repeating the similar manner, we obtain

||u||L(m2+1)p∗s (RN)
≤ C

1
(m2+1)p
10 ||u||L(m2+1)t(RN)

.

By the mathematical induction, we have

||u||L(mn+1)p∗s (RN)
≤ C

1
(mn+1)p
10 ||u||L(mn+1)t(RN) (35)

for any n ∈ N, where mn + 1 =
(

p∗s
t

)n
. It follows from relations (34) and (35) that

||u||L(mn+1)p∗s (RN)
≤ C

1
p ∑n

j=1
1

mj+1

10 ||u||Lp∗s (RN)
. (36)

However, ∑n
j=1

1
mj+1 = ∑n

j=1

(
t

p∗s

)j
and t

p∗s < 1. Hence, it follows from the estimate (36) that there
exists a constant C11 > 0 such that

||u||Lrn (RN) ≤ C11||u||Lp∗s (RN)
(37)

for rn = (mn + 1)p∗s → ∞ when n → ∞. An indirect argument concludes that

||u||L∞(RN) ≤ C11||u||Lp∗s (RN)
≤ C12

for some constant C12 > 0. Meanwhile, we assume that ||u||L(m+1)p(RN) < 1. From the relation (30),
we have

||vK||(m+1)p
L(m+1)p∗s (RN)

≤ C7 + C8 + C9||u||(m+1)p
L(m+1)β(RN)

≤ C13||u||(m+1)p
L(m+1)β(RN)

,

which implies

||vK||L(m+1)p∗s (RN)
≤ C

1
(m+1)p
13 ||u||L(m+1)β(RN)

for some positive constant C13. Repeating the iterations as in the arguments above, we derive
||u||L∞(RN) ≤ C14 for some positive constant C14.

If u changes sign, we set positive and negative parts as u+(x) = max{u(x), 0} and u−(x) =

min{u(x), 0}. Then, it is obvious that u+ ∈ W(RN) and u− ∈ W(RN). For each K > 0, we define
vK(x) = min{u+(x), K}. Taking again v = vmp+1

K as a test function in W(RN), we obtain

M(|u|pWs,p(RN)
)
∫
RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))(vmp+1
K (x)− vmp+1

K (y))
|x − y|N+ps dxdy

+
∫
RN

V(x) |u|p−2 uvmp+1
K dx = λ

∫
RN

f (x, u)vmp+1
K dx,

which implies that

M(|u+|pWs,p(RN)
)
∫
RN

∫
RN

|u+(x)− u+(y)|p−2(u+(x)− u+(y))(vmp+1
K (x)− vmp+1

K (y))
|x − y|N+ps dxdy

+
∫
RN

V(x)
∣∣u+

∣∣p−2 u+vmp+1
K dx = λ

∫
RN

f (x, u+)vmp+1
K dx.

Proceeding with the similar way as above, we obtain u+ ∈ L∞(RN). Similarly, we obtain
u− ∈ L∞(RN). Therefore, u = u+ + u− is in L∞(RN). The proof is complete.
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The following result can be found in [41].

Lemma 7. Let E ∈ C1(X ,R) where X is a Banach space. We assume that E satisfies the (PS)-condition, is
even and bounded from below, and E(0) = 0. If, for any n ∈ N, there exist an n-dimensional subspace Xn and
ρn > 0 such that

sup
Xn∩Sρn

E < 0,

where Sρ := {u ∈ X : ||u||X = ρ}, then E possesses a sequence of critical values cn < 0 satisfying cn → 0 as
n → ∞.

Based on the work of [27,29], we provide the following two lemmas.

Lemma 8. Assume that (V1), (M1) and (F1)–(F2) hold. Furthermore, we assume that M(t) ≤ M(t)t for
any t ≥ 0, where M is given in (M2). Furthermore, if

pF (x, t)− f (x, t)t > 0 (38)

for all x ∈ RN and for t �= 0. Then,

Eλ(u) = 0 =
〈E′

λ(u), u
〉

if and only if u = 0.

Proof. Let Eλ(u) =
〈E′

λ(u), u
〉
= 0. Then,

0 =− pEλ(u)

=−M(|u|pWs,p(RN)
)−

∫
RN

V(x)|u|p dx + λp
∫
RN

F (x, u) dx, (39)

and 〈E′
λ(u), u

〉
= M(|u|pWs,p(RN)

)|u|pWs,p(RN)
+
∫
RN

V(x) |u|p dx − λ
∫
RN

f (x, u)u dx = 0. (40)

It follows from the relations (39) and (40) that∫
RN

{pF (x, u)− f (x, u)u} dx ≤ 0.

Consequently, the assumption (38) implies u = 0.

Lemma 9. Assume that (F1)–(F2) and (F7)–(F8) are fulfilled. Then, there exist 0 < t0 < min{s0, 1}/2
and f̃ ∈ C1(RN ×R,R) such that f̃ (x, t) is odd in t and satisfies

F̃(x, t) := pF̃ (x, t)− f̃ (x, t)t ≥ 0,

F̃(x, t) = 0 iff t = 0 or |t| ≥ 2t0,

where ∂
∂t F̃ (x, t) = f̃ (x, t).

Proof. Let us define a cut-off function κ ∈ C1(R,R) satisfying κ(t) = 1 for |t| ≤ t0, κ(t) = 0 for
|t| ≥ 2t0, |κ′(t)| ≤ 2/t0, and κ′(t)t ≤ 0. Therefore, we define

F̃ (x, t) = κ(t)F (x, t) + (1 − κ(t))ξ|t|p and f̃ (x, t) =
∂

∂t
F̃ (x, t), (41)

where ξ > 0 is a constant. It is straightforward that

pF̃ (x, t)− f̃ (x, t)t = κ(t)F(x, t)− κ′(t)tF (x, t) + κ′(t)tξ|t|p,
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where F(x, t) := pF (x, t) − f (x, t)t. For 0 ≤ |t| ≤ t0 and |t| ≥ 2t0, the conclusion is as follows.
Owing to (F8), we choose a sufficiently small t0 > 0 such that F (x, t) ≥ ξtp for t0 ≤ |t| ≤ 2t0.
By assuming κ′(t)t ≤ 0, we obtain the conclusion.

Now, with the aid of Proposition 1, and Lemmas 7 and 9, we are ready to prove the second
primary result.

Theorem 3. Assume that (V1), (M1), (F1)–(F2), and (F7)–(F8) hold. Moreover, assume that M(t) ≤
M(t)t for any t ≥ 0 and f (x, t) is odd in t for a small t. Then, there is a positive λ∗ such that the problem (1)
admits a sequence of weak solutions {un} satisfying ||un||L∞(RN) → 0 as n → ∞ for every λ ∈ (0, λ∗).

Proof. We can modify and extend the given function f (x, t) to f̃ ∈ C1(RN × R,R) satisfying all
properties given in Lemma 9. First, we will show that Ẽλ := As,p − λΨ̃ is coercive on W(RN).
Let u ∈ W(RN) and ||u||W(RN) > 1. By Lemma 9, it is easily shown that Ẽλ ∈ C1(W(RN),R) and is
even on W(RN). Moreover, it follows from (F2) that, for |u(x)| ≤ 2t0, there exists a positive constant
K1 such that ρ(x) |u|+ K1|u|p ≥ |F(x, u)|.

We set Ω1 :=
{

x ∈ RN : |u(x)| ≤ t0
}

, Ω2 :=
{

x ∈ RN : t0 ≤ |u(x)| ≤ 2t0
}

, and Ω3 :={
x ∈ RN : 2t0 ≤ |u(x)|}, where t0 is given in Lemma 9. From the relation (41) and the conditions of κ,

we have

Ẽλ(u) :=
1
p
(M(|u|pWs,p(RN )

) + ||u||pp,V)− λ
∫
RN

F̃ (x, u) dx

≥ min{1, m0/θ}
p

||u||pW(RN )
− λ

∫
Ω1

F (x, u) dx − λ
∫

Ω2

{κ(u)F (x, u) + (1 − κ(u))ξ|u|p} dx − λ
∫

Ω3

ξ|u|p dx

≥ min{1, m0/θ}
p

||u||pW(RN )
− λ

∫
Ω1∪Ω2

F (x, u) dx − λ
∫

Ω2∪Ω3

ξ|u|p dx

≥ min{1, m0/θ}
p

||u||pW(RN )
− λ

∫
Ω1∪Ω2

ρ(x)|u| dx − λ
∫

Ω1∪Ω2

K1|u|p dx − λ
∫

Ω2∪Ω3

ξ|u|p dx

≥ min{1, m0/θ}
p

||u||pW(RN )
− 2λ||ρ||Lp′ (RN )

||u||Lp(RN ) − λ (K1 + ξ)
∫
RN

|u|p dx

≥ min{1, m0/θ}
p

||u||pW(RN )
− λ

(
2C15||ρ||Lp′ (RN )

+ K1 + ξ
)
||u||pW(RN )

for some positive constant C15. If we set

λ∗ :=
1

p(2C15||ρ||Lp′ (RN)
+ K1 + ξ)

,

then we deduce that for any λ ∈ (0, λ∗), Ẽλ is coercive, that is, Ẽλ(u) → ∞ as ||u||W(RN) → ∞.
Next, we claim that the functional Ψ̃′ : W(RN) → W∗(RN), defined by

〈
Ψ̃′(u), ϕ

〉
=

∫
RN

f̃ (x, u)ϕ dx for any ϕ ∈ W(RN),

is compact in W(RN). Let us assume that un ⇀ u in W(RN) as n → ∞. Since the measures of Ω2

and Ω3 are finite, we can write Ω2 = Ω̃2 ∪ N2 and Ω3 = Ω̃3 ∪ N3, where Ω̃2 and Ω̃3 are bounded
sets and N2, N3 are of measure zero. Let us denote BR(0) := {x ∈ RN : |x| ≤ R} contained in the
bounded sets Ω̃2 and Ω̃3 for a sufficiently large R ∈ N. Then, from the definition of f̃ (x, u), we have
f̃ (x, u) = f (x, u) on RN \ (Ω2 ∪ Ω3). Thus, we deduce that for any ϕ ∈ W(RN)

sup
||ϕ||W(RN )

≤1

∣∣〈Ψ̃′(un)− Ψ̃′(u), ϕ〉∣∣ = sup
||ϕ||W(RN )

≤1

∣∣∣∫
RN

( f̃ (x, un)− f̃ (x, u))ϕ dx
∣∣∣
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≤ sup
||ϕ||W(RN )

≤1

∣∣∣∫
BR(0)

( f̃ (x, un)− f̃ (x, u))ϕ dx
∣∣∣

+ sup
||ϕ||W(RN )

≤1

∣∣∣∫
RN\(BR(0)∪N4∪N5)

( f (x, un)− f (x, u))ϕ dx
∣∣∣. (42)

Owing to Lemma 1, the compact embedding

W(RN) ↪→ Lp(BR(0)) implies un → u in Lp(BR(0)) as n → ∞.

The above, together with the continuity of the Nemytskij operator with f̃ and acting from
Lp(BR(0)) into Lq′(BR(0)), it is clearly shown that the first term on the right side of the inequality (42)
tends to 0 as n → ∞. For the second term in the inequality (42), we have∣∣∣∫

RN\(BR(0)∪N2∪N3)
( f (x, un)− f (x, u))ϕdx

∣∣∣
≤

∫
RN\(BR(0)∪N2∪N3)

σ(x)(|un(x)|q−1 + |u(x)|q−1) |ϕ| dx

≤ ||σ||
L

p∗s
p∗s −q (RN\(BR(0)∪N2∪N3))

(||un||q−1
Lp∗s (RN)

+ ||u||q−1
Lp∗s (RN)

)||ϕ||Lp∗s (RN)
.

From the assumption (F2), for ε > 0, there exists N(R) ∈ R such that

||σ||
L

p∗s
p∗s −q (RN\(BR(0)∪N2∪N3))

< ε

for R > N(R). As the sequence {un} is bounded in W(RN), according to Lemma 1, one has {un}
bounded in Lp∗s (RN). Thus,∣∣∣∣∫

RN\(BR(0)∪N2∪N3)
( f (x, un)− f (x, u))ϕ dx

∣∣∣∣ ≤ C16ε (43)

for a positive constant C16. Owing to the estimate (43), we can deduce that∫
RN

( f (x, un)− f (x, u))ϕ dx → 0 as n → ∞.

This implies that Ψ̃′ is compact in W(RN), as claimed.
Since the derivative of Ψ̃ is compact, it follows from the coercivity of Ẽλ that the functional Ẽλ

satisfies the (PS)-condition. The weak lower semicontinuity and the coercivity of Ẽλ ensure that Ẽλ is
bounded from below. To utilize Lemma 7, we only need to obtain for any n ∈ N, a subspace Xn and
ρn > 0 such that supXn∩Sρn

Ẽλ < 0. For any n ∈ N, we obtain n independent smooth functions φi for
i = 1, · · · , n, and define Xn := span {φ1, ..., φn}. Owing to Lemma 9, when ||u||W(RN) < 1, we have

Ẽλ(u) =
1
p
(M(|u|pWs,p(RN)

) + ||u||pp,V)− λ
∫
RN

F̃ (x, u) dx

≤ 1
p
||u||pW(RN)

− λC17

∫
RN

F (x, u) dx,

for C17 > 0. Taking the assumption (F8) into account, it follows that there exists δ0 > 0 such that
|t| < δ0, which implies ∫

RN
F (x, t) dx ≥ K2

p

∫
RN

|t|p dx (44)
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for a sufficiently large K2 > 0. Using the inequality (44) and the fact that all norms on Xn are equivalent,
we can choose a appropriate constant C17 and a small enough ρn > 0 to obtain

sup
Xn∩Sρn

Ẽλ < 0.

According to Lemma 7, we obtain a sequence cn < 0 for Ẽλ satisfying cn → 0 when n goes to ∞.
Then, for any un ∈ W(RN) satisfying Ẽλ(un) = cn and Ẽ ′

λ(un) = 0, {un} is a (PS)-sequence of Ẽλ(u),
and {un} has a convergent subsequence. From Lemmas 8 and 9, we deduce that 0 is the only critical
point with 0 energy, and the subsequence of {un} has to converge to 0. Using an indirect argument,
we show that {un} has to converge to 0. Meanwhile, we obtain un ∈ Lr(RN) for all p∗s ≤ r ≤ ∞ owing
to Proposition 1. Since ||un||L∞(RN) → 0, by Lemma 9 again, we have ||un||L∞(RN) ≤ t0 for a large n.
Thus, {un} is a sequence of weak solutions of problem (1). This completes the proof.

4. Conclusions

In summary, this paper is devoted to the study of weak solutions for Kirchhoff–Schrödinger-type
equations involving the fractional p-Laplacian. In the first part of the present paper, under various
assumptions on M and f , we show that our problem admits a sequence of the weak solutions whose
energy functional converges to infinity. As we know, a typical example for Kirchhoff function M is
M(t) = b0 + b1tn (n > 0, b0 > 0, b1 ≥ 0) and, based on this example, most results for the multiplicity of
solutions are presented. From a different point of view, an infinite number of solutions is proved when
M contains new conditions different from those studied in previous related works; see Example 1.
The second part is to investigate the existence of small energy solutions for the given problem whose
L∞-norms converge to zero. As mentioned in the Introduction, the main difficulty is to show the
L∞-bound of weak solutions. Our approach is new to the fractional p-Laplacian problems even if
we utilize the well known Moser bootstrap iteration method to overcome this. To the best of our
knowledge, such results have not been studied much in these situations.
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Abstract: In this research paper, a hybrid method called Laplace Adomian Decomposition Method
(LADM) is used for the analytical solution of the system of time fractional Navier-Stokes equation.
The solution of this system can be obtained with the help of Maple software, which provide LADM
algorithm for the given problem. Moreover, the results of the proposed method are compared with
the exact solution of the problems, which has confirmed, that as the terms of the series increases the
approximate solutions are convergent to the exact solution of each problem. The accuracy of the
method is examined with help of some examples. The LADM, results have shown that, the proposed
method has higher rate of convergence as compare to ADM and HPM.

Keywords: Laplace Adomian Decomposition Method (LADM); Navier-Stokes equation; Caputo Operator

1. Introduction

In engineering and natural sciences many problems are modeled by linear and non linear parabolic
and hyperbolic partial differential equations. For these classical partial differential equations LADM
can be used effectively with initial as well as boundary conditions. The present method was initially
used by Suheil-A-khuri for the solution of ordinary differential equations [1]. It is slightly difficult
to find the exact solutions of non linear differential equations, due to which the combination of two
powerful methods, laplace transform and Adomian Decomposition Method called LADM has been
used to find the exact solutions of non linear differential equations. The analytical solution of the well
known non linear fractional diffusion and wave equations by using LADM are presented in [2,3].

Adomian Decomposition Method (ADM) was first introduced by Gorge Adomian in 1980. It was
used very effectively on a wide range of physical models of partial differential equations, such as
Burger’s equation is a non linear PDE of second order, which have many applications in sciences and
technology. The numerical solutions of three dimensional Burger’s equation and Riccati differential
equations by using LADM have been discussed in [4,5]. LADM is also used for the numerical solution
of a special mathematical model for vector born diseases [6]. Delay differential equation have a vital
role in the field of biology and economics has been solved by LADM [7,8]. Nonlinear Volterra integral
and integro-differential equation solving for Modification LADM [9].

Fractional calculus is a branch of mathematical analysis which can be used in modeling to define
derivatives and integrations of fractional order. The fractional calculus is considered an old topic,
which is started from some observations of G.W. Leibniz (1695, 1697), and L. Euler (1730). After this,
fractional calculus has gained much interest of the researchers towards this subject. This including
the contributions of well known mathematicians such as P.S. Laplace (1812), J.B.J. Fourier (1822),
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N.H. Abel (1823–1826), J. Liouville (1832–1873). Although it is considered an old topic, but for the
last few decade, fractional calculus is launched as an important topic by the scientists and researchers
[10,11].

The Navier-Stokes equation is known as Newton second Law for fluid substance, has been derived
in 1822 by Claude Louis Navier and Gabriel Stokes. Navier-Stokes equation is an important model to
describe many physical phenomena in applied sciences. This model have the capacity of modelling
weather, ocean current, water flow in pipes and air flow around a wing. A very special case was
considered, which has established the relationship between pressure and external forces acting on
the fluid to the responses of fluid flow [12]. The Navier-Stock equation is also used to derive the
connection between viscous fluid with rigid bodies and considered a best tool in the field of thermo-
hydraulics, meteorology, petroleum industry, plasma physics and technology [13].

Several mathematicians have applied different techniques for the solution of Navier-Stock
equation. Among these methods, Kumar et al. have implemented modified Laplace decomposition
method for the analytical solution of fractional Navier-Stokes equation [14] coupled method is the
combination of He-Laplace transform (HLT) and Fractional Complex Transform (FCT) is used to solve
Navier-Stock equation [15]. Fractional Reduced Differential Transformation Method (FRDM) is also
implemented for the numerical solution of time fractional Navier-Stock equation [16], see also [17].

2. Definitions and Preliminaries Concepts

In this unit, among few definitions of fractional calculus, presented in the article due to Riemann
Liouville, Grunwald Letnikov, Caputo, etc., first folks simple descriptions and introductions are
reconsidered, which we want to comprehend our education.

Definition 1. The fractional integral of Riemann Liouville f ∈ Cn of the direction β ≥ 0 is defined by

Iβ
x g(x) =

⎧⎨⎩g(x) if β = 0
1

Γ(β)

∫ x
0 (x − υ)β−1g(υ)dυ if β > 0,

where Γ denote the gamma function define by,

Γ(ω) =
∫ ∞

0
e−xxτ−1dx ω ∈ C,

In this study, Caputo et al. [18] suggested a revise fractional derivative operator in order to overcome
inconsistency measured in Riemann Liouville derivative [19,20]. The above mathematical statement described
Caputo fractional derivative operator of initial and boundary condition for fractional as well as integer
order derivative.

Definition 2. The Caputo definition of fractional derivative of order β is given by the following
mathematical expression

Dβ
x g(x) =

1
Γ(n − β)

∫ x

0
(x − t)n−β−1g(n)(t)dt.

for n − 1 < β ≤ n, n ∈ N, x > 0, g ∈ Ct,t ≥ −1.
Hence, we require the subsequent properties given in next Lemma.
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Lemma 1. If n − 1 < β ≤ n with n ∈ N and g ∈ Cx with x ≥ −1, then

Dβ
x Iβ

x g(x) = g(x),

Iβxλ =
Γ(λ + 1)

Γ(β + λ + 1)
xβ+λ, β > 0, λ > −1, x > 0,

Dβ
x Iβ

x g(x) = g(x)−
n

∑
k=0

g(k)(0+)
xk

k!
, for x > 0.

In this study, Caputo fractional derivative operator is reasonable because other fractional
derivative operators have certain disadvantages. Further information about fractional derivatives,
are found in [20].

Definition 3. The Laplace transform of g(x), x > 0 is defined by

G(s) = L[g(x)] =
∫ ∞

0
e−sxg(x)dx,

where s can be either real or complex.

Definition 4. The Laplace transform in term of convolution is given by

L[g1 × g2] = L[g1(x)]×L[g2(x)],

where g1 × g2, define the convolution between g1 and g2 ,

(g1 × g2)x =
∫ x

0
g1(t)g2(x − t)dx.

The Laplace transform of fractional derivative is given by

L
[

Dβ
x g(x)

]
= sβG(s) −

n−1

∑
k=0

sβ−1−kg(k)(0), n − 1 < β < n,

where G(s) is the Laplace transform of g(x).

Definition 5. The Mittag-Leffler function Eβ(p) for β > 0 is defined by the following subsequent series

Eβ(p) =
∞

∑
n=0

pn

Γ(βn + 1)
, β > 0, p ∈ C.
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3. Laplace Adomian Decomposition Method

In this unit, we present, Laplace Adomian decomposition method for solving, multi dimensional
Naiver-Stokes equation written in an operator form

Dβ
t ( f1) + f1

∂ f1

∂x1
+ f2

∂ f1

∂x2
+ f3

∂ f1

∂x3
= ρ

[
∂2 f1

∂x2
1
+

∂2 f1

∂x2
2
+

∂2 f1

∂x2
3

]

− 1
ρ

∂p
∂x1

,

Dβ
t ( f2) + f1

∂ f2

∂x1
+ f2

∂ f2

∂x2
+ f3

∂ f2

∂x3
= ρ

[
∂2 f2

∂x2
1
+

∂2 f2

∂x2
2
+

∂2 f2

∂x2
3

]

− 1
ρ

∂p
∂x2

,

Dβ
t ( f3) + f1

∂ f3

∂x1
+ f2

∂ f3

∂x2
+ f3

∂ f3

∂x3
= ρ

[
∂2 f3

∂x2
1
+

∂2 f3

∂x2
2
+

∂2 f3

∂x2
3

]

− 1
ρ

∂p
∂x3

,

(1)

with initial conditions ⎧⎪⎪⎨⎪⎪⎩
f1(x1, x2, x3, 0) = f (x1, x2, x3),

f2(x1, x2, x3, 0) = h(x1, x2, x3),

f3(x1, x2, x3, 0) = g(x1, x2, x3).

(2)

Applying the Laplace transform to (1), we have

L
[

Dβ
t ( f1)

]
+ L

[
f1

∂ f1

∂x1
+ f2

∂ f1

∂x2
+ f3

∂ f1

∂x3

]
= Lρ

[
∂2 f1

∂x2
1
+

∂2 f1

∂x2
2
+

∂2 f1

∂x2
3

]

−L
[

1
ρ

∂p
∂x1

]
,

L
[

Dβ
t ( f2)

]
+ L

[
f1

∂ f2

∂x1
+ f2

∂ f2

∂x2
+ f3

∂ f2

∂x3

]
= Lρ

[
∂2 f2

∂x2
1
+

∂2 f2

∂x2
2
+

∂2 f2

∂x2
3

]

−L
[

1
ρ

∂p
∂x2

]
,

L
[

Dβ
t ( f3)

]
+ L

[
f1

∂ f3

∂x1
+ f2

∂ f3

∂x2
+ f3

∂ f3

∂x3

]
= Lρ

[
∂2 f3

∂x2
1
+

∂2 f3

∂x2
2
+

∂2 f3

∂x2
3

]

−L
[

1
ρ

∂p
∂x3

]
,

(3)
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and using the differentiation property of Laplace transform, we get

L( f1) =
f (x1, x2, x3)

s
− 1

sβ
L
[

f1
∂ f1

∂x1
+ f2

∂ f1

∂x2
+ f3

∂ f1

∂x3

]
+

ρ

sβ
L
[

∂2 f1

∂x2
1
+

∂2 f1

∂x2
2
+

∂2 f1

∂x2
3

]
− 1

sβ
L
[

1
ρ

∂p
∂x1

]
,

L( f2) =
h(x1, x2, x3)

s
− 1

sβ
L
[

f1
∂ f2

∂x1
+ f2

∂ f2

∂x2
+ f3

∂ f2

∂x3

]
+

ρ

sβ
L
[

∂2 f2

∂x2
1
+

∂2 f2

∂x2
2
+

∂2 f2

∂x2
3

]
− 1

sβ
L
[

1
ρ

∂p
∂x2

]
,

L( f3) =
g(x1, x2, x3)

s
− 1

sβ
L
[

f1
∂ f3

∂x1
+ f2

∂ f3

∂x2
+ f3

∂ f3

∂x3

]
+

ρ

sβ
L
[

∂2 f3

∂x2
1
+

∂2 f3

∂x2
2
+

∂2 f3

∂x2
3

]
− 1

sβ
L
[

1
ρ

∂p
∂x3

]
,

(4)

Adomian solutions are ⎧⎪⎪⎨⎪⎪⎩
f1(x1, x2, x3, t) = ∑∞

j=0 uj,

f2(x1, x2, x3, t) = ∑∞
j=0 vj,

f3(x1, x2, x3, t) = ∑∞
j=0 wj,

(5)

and the nonlinear terms are define by the infinite series of Adomian polynomials,⎧⎪⎪⎨⎪⎪⎩
N1( f1) = ∑∞

j=0 Aj,

N2( f2) = ∑∞
j=0 Bj,

N3( f3) = ∑∞
j=0 Cj.

(6)

Aj =
1
j!

[
dj

dλj

[
N1

∞

∑
i=0

(λjuj)

]]
λ=0

,

Bj =
1
j!

[
dj

dλj

[
N2

∞

∑
i=0

(λjvj)

]]
λ=0

,

Cj =
1
j!

[
dj

dλj

[
N3

∞

∑
i=0

(λjwj)

]]
λ=0

.

(7)
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using LADM solutions in equation (4), we get

L
(

∞

∑
j=0

uj+1

)
=

f (x1, x2, x3)

s
− 1

sβ
L
(

1
ρ

∂p
∂x1

)

− 1
sβ
L
⎡⎣( ∞

∑
j=0

f1 j

)
∂(∑∞

j=0 f1 j)

∂x1
+

(
∞

∑
j=0

f2 j

)
∂(∑∞

j=0 f1 j)

∂x2
+

(
∞

∑
j=0

f3 j

)
∂
(

∑∞
j=0 f1 j

)
∂x3

⎤⎦
+

ρ

sβ
L
[

∂2(∑∞
j=0 f1 j)

∂x2
1

+
∂2(∑∞

j=0 f1 j)

∂x2
2

+
∂2(∑∞

j=0 f1 j)

∂x2
3

]
,

L
(

∞

∑
j=0

vj+1

)
=

h(x1, x2, x3)

s
− 1

sβ
L
(

1
ρ

∂p
∂x1

)

− 1
sβ
L
⎡⎣( ∞

∑
j=0

f1 j

)
∂(∑∞

j=0 f2 j)

∂x1
+

(
∞

∑
j=0

f2 j

)
∂(∑∞

j=0 f2 j)

∂x2
+

(
∞

∑
j=0

f3 j

)
∂
(

∑∞
j=0 f2 j

)
∂x3

⎤⎦
+

ρ

sβ
L
[

∂2(∑∞
j=0 f2 j)

∂x2
1

+
∂2(∑∞

j=0 f2 j)

∂x2
2

+
∂2(∑∞

j=0 f2 j)

∂x2
3

]
,

L
(

∞

∑
j=0

wj+1

)
=

g(x1, x2, x3)

s
− 1

sβ
L
(

1
ρ

∂p
∂x1

)

− 1
sβ
L
⎡⎣( ∞

∑
j=0

f1 j

)
∂(∑∞

j=0 f3 j)

∂x1
+

(
∞

∑
j=0

f2 j

)
∂(∑∞

j=0 f3 j)

∂x2
+

(
∞

∑
j=0

f3 j

)
∂
(

∑∞
j=0 f3 j

)
∂x3

⎤⎦
+

ρ

sβ
L
[

∂2(∑∞
j=0 f3 j)

∂x2
1

+
∂2(∑∞

j=0 f3 j)

∂x2
2

+
∂2(∑∞

j=0 f3 j)

∂x2
3

]
.

(8)

Applying the linearity of the Laplace transform,⎧⎪⎪⎪⎨⎪⎪⎪⎩
L(uo) =

f (x1,x2,x3)
s + 1

sβ L
(

1
ρ

∂p
∂x1

)
,

L(vo) =
h(x1,x2,x3)

s + 1
sβ L

(
1
ρ

∂p
∂x2

)
,

L(wo) =
g(x1,x2,x3)

s + 1
sβ L

(
1
ρ

∂p
∂x3

)
.

(9)
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L
(

∞

∑
j=0

uj+1

)
= − 1

sβ
L[
(

∞

∑
j=0

f1 j

)
∂(∑∞

j=0 f1 j)

∂x1
+

(
∞

∑
j=0

f2 j

)
∂(∑∞

j=0 f1 j)

∂x2

+

(
∞

∑
j=0

f3 j

)
∂
(

∑∞
j=0 f1 j

)
∂x3

] +
ρ

sβ
L
[

∂2(∑∞
j=0 f1 j)

∂x2
1

+
∂2(∑∞

j=0 f1 j)

∂x2
2

+
∂2(∑∞

j=0 f1 j)

∂x2
3

]
,

L
(

∞

∑
j=0

vj+1

)
= − 1

sβ
L[
(

∞

∑
j=0

f1 j

)
∂(∑∞

j=0 f2 j)

∂x1
+

(
∞

∑
j=0

f2 j

)
∂(∑∞

j=0 f2 j)

∂x2

+

(
∞

∑
j=0

f3 j

)
∂
(

∑∞
j=0 f2 j

)
∂x3

] +
ρ

sβ
L
[

∂2(∑∞
j=0 f2 j)

∂x2
1

+
∂2(∑∞

j=0 f2 j)

∂x2
2

+
∂2(∑∞

j=0 f2 j)

∂x2
3

]
,

L
(

∞

∑
j=0

wj+1

)
= − 1

sβ
L[
(

∞

∑
j=0

f1 j

)
∂(∑∞

j=0 f3 j)

∂x1
+

(
∞

∑
j=0

f2 j

)
∂(∑∞

j=0 f3 j)

∂x2

+

(
∞

∑
j=0

f3 j

)
∂
(

∑∞
j=0 f3 j

)
∂x3

] +
ρ

sβ
L
[

∂2(∑∞
j=0 f3 j)

∂x2
1

+
∂2(∑∞

j=0 f3 j)

∂x2
2

+
∂2(∑∞

j=0 f3 j)

∂x2
3

]
.

(10)

For j = 0, and j = 1, 2.......∞.

L(u1) = − 1
sβ
L
[

u0
∂(u0)

∂x1
+ v0

∂(v0)

∂x2
+ w0

∂(u0)

∂x3

]
+

ρ

sβ
L
[

∂2(u0)

∂x2
1

+
∂2(u0)

∂x2
2

+
∂2(u0)

∂x2
3

]
,

L(v1) = − 1
sβ
L
[

u0
∂(v0)

∂x1
+ v0

∂(v0)

∂x2
+ w0

∂(v0)

∂x3

]
+

ρ

sβ
L
[

∂2(v0)

∂x2
1

+
∂2(v0)

∂x2
2

+
∂2(v0)

∂x2
3

]
,

L(w1) = − 1
sβ
L
[

u0
∂(w0)

∂x1
+ v0

∂(v0)

∂x2
+ w0

∂(w0)

∂x3

]
+

ρ

sβ
L
[

∂2(w0)

∂x2
1

+
∂2(w0)

∂x2
2

+
∂2(w0)

∂x2
3

]
.

(11)

Next applying the inverse Laplace transform, we can calculate uj , vj and wj (j > 0). In specific
cases the exact result in the closed form can also be achieve.

Example 1. Consider time-fractional order of two-dimensional Navier-Stock equation with q1 = −q2 = q as,

Dβ
t ( f1) + f1

∂ f1

∂x1
+ f2

∂ f1

∂x2
= ρ

[
∂2 f1

∂x2
1
+

∂2 f1

∂x2
2

]
+ q,

Dβ
t ( f2) + f1

∂ f2

∂x1
+ f2

∂ f2

∂x2
= ρ

[
∂2 f2

∂x2
1
+

∂2 f2

∂x2
2

]
− q,

(12)

with initial conditions {
f1(x1, x2, 0) = − sin(x1 + x2),

f2(x1, x2, 0) = sin(x1 + x2).
(13)
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Applying the Laplace transform to (12), we have

L
(

∞

∑
j=0

uj+1

)
=

f1 j

s
− 1

sβ
L
[(

∞

∑
j=0

f1 j

)
∂(∑∞

j=0 f1 j)

∂x1
+

(
∞

∑
j=0

f1 j

)
∂(∑∞

j=0 f1 j)

∂x2

]

+
ρ

sβ
L
[

∂2(∑∞
j=0 f1 j)

∂x2
1

+
∂2(∑∞

j=0 f1 j)

∂x2
2

]
,

L
(

∞

∑
j=0

vj+1

)
=

f2 j

s
− 1

sβ
L
[(

∞

∑
j=0

f1 j

)
∂(∑∞

j=0 f2 j)

∂x1
+

(
∞

∑
j=0

f1 j

)
∂(∑∞

j=0 f2 j)

∂x2

]

+
ρ

sβ
L
[

∂2(∑∞
j=0 f2 j)

∂x2
1

+
∂2(∑∞

j=0 f2 j)

∂x2
2

]
.

(14)

uo = L−1
[− sin(x1 + x2)

s

]
= − sin(x1 + x2),

vo = L−1
[

sin(x1 + x2)

s

]
= sin(x1 + x2),

(15)

L(u1) = − 1
sβ
L
[
− sin(x1 + x2)

∂(− sin(x1 + x2))

∂x1
+ sin(x1 + x2)

∂(sin(x1 + x2))

∂x2

]
+

1
sβ
Lρ

[
∂2(− sin(x1 + x2))

∂x2 +
∂2(− sin(x1 + x2))

∂x2
2

]
+

1
sβ
L(q),

L(v1) = − 1
sβ
L
[
− sin(x1 + x2)

∂(sin(x1 + x2))

∂x1
+ sin(x1 + x2)

∂(sin(x1 + x2))

∂x2

]
+

1
sβ
Lρ

[
∂2(sin(x1 + x2))

∂x2 +
∂2(sin(x1 + x2))

∂x2
2

]
− 1

sβ
L(q),

(16)

⎧⎨⎩ u1 = L−1
[

2ρ sin(x1+x2)

sβ+1 + q
sβ+1

]
,

v1 = L−1
[−2ρ sin(x1+x2)

sβ+1 − q
sβ+1

]
,

(17)

u1 = 2ρ sin(x1 + x2)
tβ

Γ(β + 1)
+

q
Γ(β + 1)

,

v1 = −2ρ sin(x1 + x2)
tβ

Γ(β + 1)
+

q
Γ(β + 1)

,⎧⎨⎩ u2 = −4ρ2 sin(x1 + x2)
t2β

Γ(2β+1) ,

v2 = 4ρ2 sin(x1 + x2)
t2β

Γ(2β+1) .
(18)

The LADM solution for example (1) is

f1(x1, x2, t) = u0(x1, x2, t) + u1(x1, x2, t) + u2(x1, x2, t) + u3(x1, x2, t) + ...un(x1, x2, t),

f2(x1, x2, t) = v0(x1, x2, t) + v1(x1, x2, t) + v2(x1, x2, t) + v3(x1, x2, t) + ...vn(x1, x2, t),
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f1(x1, x2, t) = − sin(x1 + x2) + 2ρ sin(x1 + x2)
tβ

Γ(β + 1)
+

q
Γ(β + 1)

− 4ρ2 sin(x1 + x2)
t2β

Γ(2β + 1)
+ ...

f2(x1, x2, t) = sin(x1 + x2)− 2ρ sin(x1 + x2)
tβ

Γ(β + 1)
+

q
Γ(β + 1)

+ 4ρ2 sin(x1 + x2)
t2β

Γ(2β + 1)
+ ...

(19)

when β = 1, then LADM solution is

f1(x1, x2, t) = −e2ρt(sin(x1 + x2)),

f2(x1, x2, t) = e2ρt(sin(x1 + x2)).

For q = 0 gave the exact result of classical Navier-Stokes equation for the velocity. The velocity profile of
the ordinary Naiver-Stokes equation is shown in Figures, and the velocity profile of Naiver-Stokes equation with
β = 1, 0.5 and 0.8 is shown in Figures 1–3.

Figure 1. For example 1, the velocity profiles f1, f2 of NS equation at β = 0.8, q = 0, ρ = 0.5, t = 3.
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Figure 2. For example 1, the velocity profiles f1, f2 of NS equation at β = 0.5, q = 0, ρ = 0.5, t = 3.

Figure 3. For example 2, the velocity profiles f1, f2 of NS equation at β = 0.5, q = 0, ρ = 0.5, t = 0.05.
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Example 2. The study of time fractional of order two dimensional Naiver-Stokes Equation (12) with
initial conditions {

u(x, y, 0) = −ex1+x2 ,

v(x, y, 0) = ex1+x2 .
(20)

Taking Laplace transform of (12)

{
L(uo) =

−ex1+x2
s ,

L(vo) =
ex1+x2

s ,
(21)

L(u1) = − 1
sβ
L
[
−ex1+x2

∂(−ex1+x2)

∂x1
+−ex1+x2

∂(ex1+x2)

∂x2

]
+

ρ

sβ
L
[

∂2(−ex1+x2)

∂x2
1

+
∂2(−ex1+x2)

∂x2
2

]
+

1
sβ
L(q),

L(v1) = − 1
sβ
L
[
−ex1+x2

∂(ex1+x2)

∂x1
+ ex1+x2

∂(ex1+x2)

∂x2

]
+

ρ

sβ
L
[

∂2(ex1+x2)

∂x2
1

+
∂2(ex1+x2)

∂x2
2

]
− 1

sβ
L(q),

(22)

L(u1) =

[−2ρex1+x2

sβ+1

]
+

q
sβ+1 , L(v1) =

[
2ρex1+x2

sβ+1

]
− q

sβ+1 , (23)

L(u2) =

[−4ρ2ex1+x2

s2β+2

]
, L(v2) =

[
4ρ2ex1+x2

s2β+2

]
. (24)

Applying the inverse Laplace transform,

uo = L−1
[−ex1+x2

s

]
= −ex1+x2 ,

vo = L−1
[

ex1+x2

s

]
= ex1+x2 ,

u1 = L−1
[−2ρex1+x2

sβ+1

]
+ L−1

[
q

sβ+1

]
= −2ρex1+x2

tβ

Γ(β + 1)
+

q
Γ(β + 1)

v1 = L−1
[

2ρex1+x2

sβ+1

]
−L−1

[
q

sβ+1

]
= 2ρex1+x2

tβ

Γ(β + 1)
+

q
Γ(β + 1)

u2 = L−1
[−4ρ2ex1+x2

s2β+2

]
= −(2ρ)2ex1+x2

t2β

Γ(2β + 1)
,

v2 = L−1
[

4ρ2ex1+x2

s2β+2

]
= (2ρ)2ex1+x2

t2β

Γ(2β + 1)
,

The LADM solution for example (2) is

u(x1, x2, t) = u0(x1, x2, t) + u1(x1, x2, t) + u2(x1, x2, t) + u3(x1, x2, t) + ...un(x1, x2, t),

v(x1, x2, t) = v0(x1, x2, t) + v1(x1, x2, t) + v2(x1, x2, t) + v3(x1, x2, t) + ...vn(x1, x2, t),
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f1(x1, x2, t) = −ex1+x2 − 2ρex1+x2
tβ

Γ(β + 1)
+

q
Γ(β + 1)

− (2ρ)2ex1+x2
t2β

Γ(2β + 1)
+ ...

f2(x1, x2, t) = ex1+x2 + 2ρex1+x2
tβ

Γ(β + 1)
− q

Γ(β + 1)

+ (2ρ)2ex1+x2
t2β

Γ(2β + 1)
+ ...

(25)

when β = 1, then LADM solution is

f1(x1, x2, t) = −ex1+x2+2ρt,

f2(x1, x2, t) = ex1+x2+2ρt.

The exact result of usual Navier-Stokes problem for the velocity profile. The activities of velocity profile of
the Navier-Stokes problem is shown for β = 1 and 0.5 in Figure 4 correspondingly.

Figure 4. For example 3, the velocity profiles f1, f2, f3 of NS equation at β = 0.5, x3 = 0.5, t = 0.1.

Example 3. The study time fractional order three dimensional Navier-Stokes Equation (3.1) by q1 = q2 = q3
= 0, with initial conditions ⎧⎪⎪⎨⎪⎪⎩

u(x1, x2, x3, 0) = −0.5x1 + x2 + x3,

v(x1, x2, x3, 0) = x1 − 0.5x2 + x3,

w(x1, x2, x3, 0) = x1 + x2 − 0.5x3.

(26)
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Taking Laplace transform of (1),

L(uo) =
−0.5x1 + x2 + x3

s
,

L(vo) =
x1 − 0.5x2 + x3

s
,

L(wo) =
x1 + x2 − 0.5x3

s
,

(27)

L(u1) =
−2.25x1

sβ+1 ,

L(v1) =
−2.25x2

sβ+1 ,

L(w1) =
−2.25x3

sβ+1 ,

(28)

L(u2) =
−(2.25)2x1

s3β+3 ,

L(v2) =
−(2.25)2x2

s3β+3 ,

L(w2) =
−(2.25)2x3

s3β+3 .

(29)

Applying the inverse Laplace transform,

uo = L−1
[−0.5x1 + x2 + x3

s

]
= −0.5x1 + x2 + x3,

vo = L−1
[

x1 − 0.5x2 + x3

s

]
= x1 − 0.5x2 + x3,

wo = L−1
[

x1 + x2 − 0.5x3

s

]
= x1 + x2 − 0.5x3,

u1 = L−1
[−2.25x1

sβ+1

]
= −2.25x1

tβ

Γ(β + 1)
,

v1 = L−1
[−2.25x2

sβ+1

]
= −2.25x2

tβ

Γ(β + 1)
,

w1 = L−1
[−2.25x3

sβ+1

]
= −2.25x3

tβ

Γ(β + 1)
,

u2 = L−1
[−(2.25)2x1

s3β+3

]
= −(2.25)2x1

t3β

Γ(3β + 1)
,

v2 = L−1
[−(2.25)2x2

s3β+3

]
= −(2.25)2x2

t3β

Γ(3β + 1)
,

w2 = L−1
[−(2.25)2x3

s3β+3

]
= −(2.25)2x3

t3β

Γ(3β + 1)
,

The LADM solution for example (3) is

f1(x1, x2, x3, t) = u0(x1, x2, x3, 0) + u1(x1, x2, x3, 0) + u2(x1, x2, x3, 0) + u3(x1, x2, x3, 0)

+ ...uj(x1, x2, x3, 0),

f2(x1, x2, x3, t) = v0(x1, x2, x3, 0) + v1(x1, x2, x3, 0) + v2(x1, x2, x3, 0) + v3(x1, x2, x3, 0)

+ ...vj(x1, x2, x3, 0),

f3(x1, x2, x3, t) = w0(x1, x2, x3, 0) + w1(x1, x2, x3, 0) + w2(x1, x2, x3, 0) + w3(x1, x2, x3, 0)

+ ...wj(x1, x2, x3, 0),
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f1(x1, x2, x3, t) = −0.5x1 + x2 + x3 − 2.25x1
tβ

Γ(β + 1)
− (2.25)2x1

t3β

Γ(3β + 1)
− (2.25)4x1

t7β

Γ(7β + 1)

− (2.25)6x1
t15β

Γ(15β + 1)
+ ...

f2(x1, x2, x3, t) = x1 − 0.5x2 + x3 − 2.25x2
tβ

Γ(β + 1)
− (2.25)2x2

t3β

Γ(3β + 1)
− (2.25)4x2

t7β

Γ(7β + 1)

− (2.25)6x2
t15β

Γ(15β + 1)
+ ...

f3(x1, x2, x3, t) = x1 + x2 − 0.5x3 − 2.25x3
tβ

Γ(β + 1)
− (2.25)2x3

t3β

Γ(3β + 1)
− (2.25)4x3

t7β

Γ(7β + 1)

− (2.25)6x3
t15β

Γ(15β + 1)
+ ...

when β = 1, then LADM solution is

f1(x1, x2, x3, t) =
−0.5x1 + x2 + x3 − 2.25x1t

1 − 2.25t2 ,

f2(x1, x2, x3, t) =
x1 − 0.5x2 + x3 − 2.25x2t

1 − 2.25t2 ,

f3(x1, x2, x3, t) =
x1 + x2 − 0.5x3 − 2.25x3t

1 − 2.25t2 .

4. Description of Figures

Figure 1 is consists of two graphs namely Graph 1 and Graph 2. Graph 1 and Graph 2 represents
the velocity profile f1 and f2 of the Navier-Stokes equation respectively in example 3.1 at β = 1.

Figure 2 is consists of two graphs namely Graph 3 and Graph 4. Graph 3 and Graph 4 represents
the velocity profile f1 and f2 of the Navier-Stokes equation respectively in example 3.1 at β = 0.8.

Figure 3 is consists of two graphs namely Graph 5 and Graph 6. Graph 5 and Graph 6 represents
the velocity profile f2 and f2 of the Navier-Stokes equation respectively in example 3.1 at β = 0.5.

Similarly in example 3.2, the plot of two velocity profiles f1 and f2 for the Navier-Stoke equation
are represented by Graph 7 and Graph 9 at β = 1 and Graph 8 and Graph 10 at β = 0.5 respectively.

Also, in example 3.3, the plot of three velocity profiles f1 , f2 and f3 for the Navier-Stoke equation
are represented by Graph 11, Graph 12 and Graph 13 at β = 1 and Graph 14, Graph 15 and Graph 16
at β = 0.5 respectively.

5. Conclusions

In this paper, Laplace Adomian decomposition technique is assumed for the time-fractional
classical Navier-Stokes solution of with given initial conditions. The analytical solution is given in for
the power series for the given problem. The solution of the above three problems has shown, that the
rate of convergence of the present method is overlapping or high than ADM and HAM. Moreover
LADM have minimum calculations, simplifications as compared to ADM [12] and HPM [6].
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Abstract: In this paper, the a priori estimate method, the so-called energy inequalities method based
on some functional analysis tools is developed for a Caputo time fractional 2mth order diffusion
wave equation with purely nonlocal conditions of integral type. Existence and uniqueness of the
solution are proved. The proofs of the results are based on some a priori estimates and on some
density arguments.

Keywords: energy inequality; integral conditions; fractional wave equation; existence and uniqueness;
initial boundary value problem

1. Introduction

Classical initial boundary value problems for partial differential equations with integer and
noninteger order have been widely studied during the last three decades by using different methods.
One of the most important methods used and applied to linear and nonlinear partial differential
equations with integer order supplemented with classical conditions is the functional analysis method.
However, for equations with Caputo time fractional order and nonlocal conditions, there are only
a few results obtained by using the mentioned method. The Caputo fractional derivative is a nonlocal
operator since it is an integral which is a nonlocal operator. Caputo time fractional derivative can be
used to model systems with memory, since it requires all the past history. Time fractional order partial
differential equations play a great role in reducing the errors coming from the neglected parameters
while modeling real life phenomena.

One of the most important classes of the above equations are the fractional diffusion-wave
equations that have been studied and used in different branches of Science. Problem (1) constitutes
a large class of time fractional diffusion wave equations of even order such as second and fourth
order time fractional wave equations that have numerous applications in physics and engineering
as mentioned below. In our problem, local conditions at 0 and 1 are replaced by other conditions on
the moments of order 1, 2, ..., 2m − 1 which are non-local integral conditions. Although mathematical
models in two and three-dimensions are of big significance for applications, most of the recent research
articles are devoted to the fractional order diffusion wave equations in one-dimensional settings.
These equations model, for example, propagation of mechanical waves in viscoelastic media [1–4],
a non-Markovian diffusion process with memory [5], and a model governing the propagation of
mechanical diffusive waves in viscoelastic media that exhibit a power-law creep [2–4].

For various applications of fractional calculus, the reader could refer to [4,6–13].
In the literature, many researchers used the functional analysis method to investigate the well

posedness of initial boundary value problems for partial differential equations with time and space
integer order having nonlocal conditions—we cite, for example, the references [14–17]. For the

Symmetry 2019, 11, 305; doi:10.3390/sym11030305 www.mdpi.com/journal/symmetry107
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fractional diffusion wave equations case with higher order derivatives and classical boundary
conditions, there are only few papers dealing with the existence and uniqueness of solution such
as [18–20]. In this paper, an initial boundary value problem with purely nonlocal constraints of integral
type for a Caputo time fractional 2mth order diffusion wave equation is studied by applying the
functional analysis method, the so-called energy inequality method based mainly on some a priori
estimates and on the density of the range of the operator generated by the studied problem. This work
can be considered as a contribution to the development of the functional analysis method used to
prove the well posedness of problems with fractional order. The obtained results show the efficiency of
this method to study the existence and uniqueness of solution for the time fractional order differential
equations with nonlocal conditions.

This paper is organized as follows: in Section 2, we set our fractional initial boundary value
problem. In Section 3, we give some preliminaries concerning the used function spaces, some useful
tools and write down the given problem in its operator form. In Section 4, we establish an a priori
estimate for the solution and deduce some consequences about the uniqueness of the solution and
its dependence on the free term and the given data. Section 5 provides proofs of the main result
concerning the solvability of the posed problem. We end our problem with conclusions.

2. Problem Setting

In the domain Q = (0, 1) × (0, T) where 0 ≤ T < ∞, we consider the time fractional initial
boundary problem of higher order with purely integral conditions⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Lv = ∂α+1
t v + (−1)mθ(t) ∂2mv

∂x2m = f (x, t) , x ∈ (0, 1) t ∈ (0, T),

l1v = v(x, 0) = g(x), l2v = vt(x, 0) = h(x), x ∈ (0, 1),
1∫

0
xiv(x, t)dx = 0 , i = 0, 2m − 1, t ∈ (0, T),

(1)

where θ(t), f (x, t), g(x) and h(x) are given functions that satisfy certain conditions which will be
specified later on, and the operator ∂α+1

t denotes the Caputo left fractional derivative of order 1 + α

with 0 < α < 1 defined by (see [21])

∂α+1
t v(x, t) =

1
Γ(1 − α)

t∫
0

vττ(x, τ)

(t − τ)α
dτ, t > 0, (2)

where Γ(1 − α) is the Gamma function.
The Riemann–Liouville integral of order 0 < α < 1 is defined by (see [21])

D−α
t v(t) =

1
Γ(α)

t∫
0

v(τ)
(t − τ)1−α

dτ. (3)

Different properties of the Caputo fractional derivative and Riemann fractional-Liouville integral
can be found in [21–23] and the references therein.

3. Preliminaries

In this section, we introduce some important lemmas and inequalities needed throughout the
sequel, and write the posed problem in its operator form.

Lemma 1 (Poincare type inequality). For m ∈ N, we have

‖I2m
x v‖2

L2(0,A) ≤ (
A
2
)2m‖v‖2

L2(0,A), (4)
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where

I2m
x v =

x∫
0

ξ1∫
0

...

ξ2m−1∫
0

v(η, t)dηdξ2m−1...dξ1 =

x∫
0

(x − ξ)2m−1

(2m − 1)!
v(ξ, t)dξ.

Lemma 2 ([24]). For any absolutely continuous function J(s) on the interval [0, T], the following
inequality hold

J(s) ∂α
s J(s) ≥ 1

2
∂α

s J2(s), 0 < α < 1. (5)

Lemma 3 ([25]). Let ϕ(t) be nonnegative and absolutely continuous on [0, T], and, for almost all t ∈ [0, T],
satisfies the inequality

dϕ

dt
≤ C(t)ϕ(t) + B(t), (6)

where the functions C(t) and B(t) are summable and nonnegative on [0, T]. Then,

ϕ(t) ≤ e

t∫
0

C(τ)dτ

⎛⎜⎝ϕ(0) +
t∫

0

B(ξ).e

ξ∫
0

C(τ)dτ

dξ

⎞⎟⎠
≤ e

t∫
0

C(τ)dτ

⎛⎝ϕ(0) +
t∫

0

B(τ)dτ

⎞⎠ . (7)

Lemma 3 can be generalized as

Lemma 4 ([24]). Let a nonnegative absolutely continuous function Z(t) satisfy the inequality

∂α
t Z(t) ≤ c1Z(t) + c2(t), 0 < α < 1, (8)

for almost all t ∈ [0, T], where c1 is a positive constant and c2(t) is an integrable nonnegative function on
[0, T]. Then,

Z(t) ≤ Z(0)Eα(c1tα) + Γ(α)Eα,α(c1tα)D−α
t c2(t), (9)

where

Eα(x) =
∞

∑
n=0

xn

Γ(αn + 1)
and Eα,α∗(x) =

∞

∑
n=0

xn

Γ(αn + α∗) , (10)

are Mittag–Leffler functions.

Lemma 5 ([14]). Let Zi(τ) (i = 1, 2, 3) be nonnegative functions on the interval [0, T], Z1(τ), Z2(τ) are
integrable functions, and Z3(τ) is nondecreasing. Then,

t∫
0

Z1(τ)d(τ) + Z2(t) ≤ Z3(t) + C
t∫

0

Z2(τ)d(τ)

implies
t∫

0

Z1(τ)d(τ) + Z2(t) ≤ eCtZ3(t).

Young’s inequality with ε: For any ε > 0 , we have the inequality

λβ ≤ 1
p
|ελ|p + p − 1

p

∣∣∣∣ β

ε

∣∣∣∣
p

p−1
, λ, β ∈ R, p > 1, (11)
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where λ and β are nonnegative numbers.
A special case of (11) is the Cauchy inequality with ε:

λβ ≤ ε

2
λ2 +

1
2ε

β2, ε > 0, (12)

The solution of the problem (1) can be regarded as the solution of operator equation

Mv = W = ( f , g, h), (13)

where M = (L, l1, l2), and M : B −→ Y is an unbounded operator with domain of definition

D(M) =

⎧⎪⎪⎨⎪⎪⎩
v ∈ L2(Q), ∂α+1

t v, ∂2mv
∂x2m ∈ L2(Q),

1∫
0

xivdx = 0, i = 0, 2m − 1, t ∈ (0, T),
(14)

such that v satisfies the initial conditions and where B is a Banach space of functions v endowed with
the finite norm

‖v‖2
B = sup

0≤t≤T

⎛⎝Dα−1
t ‖Im

x vt(x, t)‖2
L2(0,1) +

1∫
0

v2(x, t)dx

⎞⎠ (15)

and Y is Hilbert space constituting of the elements W = ( f , g, h) equipped with the norm

‖W‖2
Y = ‖g‖2

L2(0,1) + ‖h‖2
L2(0,1) + ‖ f ‖2

L2(Q). (16)

Here, L denotes the time fractional differential operator

L=C∂α+1
t + (−1)mθ(t)

∂2m

∂x2m .

4. A Priori Estimate for the Solution and Uniqueness

To prove the uniqueness of solution of problem (1), we establish an energy inequality for the
solution from which we deduce the uniqueness of solution of the posed problem.

Theorem 1. Assume that the function θ(t) satisfies the conditions

i) c2 ≤ θ(t) ≤ c1, ii) c4 ≤ θ′(t) ≤ c3, ∀t ∈ [0, T], (17)

where c1, c2, c3, and c4 are positive constants. Then, for any v ∈ D(M), there exists a positive constant K such
that the following a priori estimate is satisfied:

sup
0≤t≤T

⎛⎝Dα−1
t ‖Im

x vt(x, t)‖2
L2(0,1) +

1∫
0

v2(x, t)dx

⎞⎠
≤ K

(
‖g‖2

L2(0,1) + ‖h‖2
L2(0,1) + ‖ f ‖2

L2(Q)

)
, (18)

where K = K(η, δ, ρ) is given by

K = ρ

(
1 +

Tα

Γ(1 + α)

)
, (19)

with η, δ and ρ are respectively given by (30), (34) and (37).
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Proof. For v ∈ D(L), we consider the scalar product in L2(0, 1) of the differential equation in
problem (1) and the integrodifferential operator Nv = 2(−1)mI2m

x vt, we have

2(−1)m(∂α+1
t v, I2m

x vt)L2(0,1) + 2(θ(t)
∂2mv
∂x2m , I2m

x vt)L2(0,1)

= (Lv, Nv)L2(0,1). (20)

We separately consider the inner products on the left-hand side of Equation (20) and we integrate
by parts and taking into account boundary and initial conditions in Problem (1), we obtain

2(−1)m(∂α+1
t v, I2m

x vt)L2(0,1) = 2(−1)m(∂α
t vt, I2m

x vt)L2(0,1)

= 2(∂α
t (Im

x vt), Im
x vt)L2(0,1), (21)

2
(

θ(t)
∂2mv
∂x2m , I2m

x vt

)
L2(0,1)

= 2
1∫

0

θ(t)
∂2mv
∂x2m I2m

x vtdx

= 2(−1)m(θ(t)
∂mv
∂xm , Im

x vt)L2(0,1)

= 2(θ(t)v, vt)L2(0,1). (22)

Substitution of (21) and (22) into (20) yields

2(∂α
t (Im

x vt), Im
x vt)L2(0,1) + 2(θ(t)v, vt)L2(0,1

= (Lv, Nv)L2(0,1) = 2(−1)m( f , I2m
x vt)L2(0,1). (23)

By Lemmas 1 and 2 and inequality (12), identity (23) reduces to

∂α
t ‖Im

x vt‖2
L2(0,1) + (θ(t)v, vt)L2(0,1 ≤ ‖ f ‖2

L2(0,1) +
1

2m ‖Im
x vt‖2

L2(0,1). (24)

Replacing t by τ , integrating with respect to τ from zero to t and using given conditions, we obtain

t∫
0

∂α
τ‖Im

x vτ‖2
L2(0,1)dτ +

t∫
0

1∫
0

θ(τ)vvτdxdτ

≤
t∫

0

‖ f (x, τ)‖2
L2(0,1)dτ +

1
2m

t∫
0

‖Im
x vτ‖2

L2(0,1)dτ. (25)

The second term on the left-hand side can be evaluated as

2
t∫

0

1∫
0

θ(τ)vvτdxdτ =

1∫
0

θ(t)v2dx − θ(0)
1∫

0

g2(x)dx

−
t∫

0

1∫
0

θ′2v2dxdτ. (26)
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Hence, inequality (25) becomes

t∫
0

∂α
τ‖Im

x vτ‖2
L2(0,1)dτ +

1
2

1∫
0

θ(t)v2dx

≤ θ(0)
1∫

0

g2(x)dx +

t∫
0

1∫
0

θ′2v2dxdτ +

t∫
0

‖ f (x, τ)‖2
L2(0,1)dτ (27)

+
1

2m

t∫
0

‖Im
x vτ‖2

L2(0,1)dτ.

Now, since

t∫
0

∂α
τ‖Im

x vτ‖2
L2(0,1)dτ = Dα−1‖Im

x vt‖2
L2(0,1)

− t1−α

(1 − α)Γ(1 − α)
‖Im

x h‖2
L2(0,1), (28)

evoking conditions (17) and using (28), we infer from (26) that

Dα−1‖Im
x vt‖2

L2(0,1) + ‖v‖2
L2(0,1)

≤ η

⎛⎝‖h‖2
L2(0,1) + ‖g‖2

L2(0,1) +

t∫
0

‖ f ‖2
L2(0,1)dτ (29)

+

t∫
0

‖Im
x vτ‖2

L2(0,1)dτ +

t∫
0

1∫
0

v2(x, τ)dxdτ

⎞⎠ ,

where

η =
max

(
1, c1, c2

3, 2−m, T1−α2−m

(1−α)Γ(1−α)

)
min (1, c2)

. (30)

If, in Lemma 3, we set

ϕ(t) =
t∫

0

1∫
0

v2(x, τ)dxdτ, ϕ′(t) = ‖v‖2
L2(0,1), and ϕ(0) = 0, (31)

then it yields

t∫
0

1∫
0

v2(x, τ)dxdτ ≤ TeηTη

⎛⎝ t∫
0

‖ f (x, τ)‖2
L2(0,1)dτ +

t∫
0

‖Im
x vτ‖2

L2(0,1)dτ

+‖g(x)‖2
L2(0,1) + ‖h(x)‖2

L2(0,1)

)
. (32)
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Consequently, (30) transforms to

Dα−1‖Im
x vt‖2

L2(0,1) + ‖v‖2
L2(0,1)

≤ δ

⎛⎝ t∫
0

‖ f (x, τ)‖2
L2(0,1)dτ +

t∫
0

‖Im
x vτ‖2

L2(0,1)dτ

+‖g(x)‖2
L2(0,1) + ‖h(x)‖2

L2(0,1)

)
, (33)

where
δ = max

{
η, η2Teη

}
. (34)

Now, by dropping the second term on the left-hand side of (33) then setting Z(t) =
t∫

0
‖Im

x vτ‖2
L2(0,1)dτ, ∂α

t Z(t) = Dα−1‖Im
x vt‖2

L2(0,1) in Lemma 4, we obtain

t∫
0

‖Im
x vτ‖2

L2(0,1)dτ

≤ δΓ(α)Eα,α (δtα)

(
D−α−1

t ‖ f ‖2
L2(0,1) +

T
αΓ(α)

‖h‖2
L2(0,1) +

T
αΓ(α)

‖g‖2
L2(0,1)

)
(35)

≤ δΓ(α)Eα,α (δtα)max
{

1,
T

αΓ(α)

}
×
(

D−α−1
t ‖ f ‖2

L2(0,1) + ‖h‖2
L2(0,1) + ‖g‖2

L2(0,1)

)
.

Combination of (33) and (36) leads to

Dα−1‖Im
x vt‖2

L2(0,1) + ‖v‖2
L2(0,1)

≤ ρ

⎛⎝ t∫
0

‖ f (x, τ)‖2
L2(0,1)dτ + D−α−1

t ‖ f ‖2
L2(0,1) (36)

+‖h‖2
L2(0,1) + ‖g‖2

L2(0,1)

)
,

where

ρ = δ max
(

1, δΓ(α)Eα,α (δtα)max
{

1,
T

αΓ(α)

})
. (37)

It is obvious that

D−α−1
t ‖ f ‖2

L2(0,1) ≤ tα

Γ(1 + α)

∫ t

0
‖ f ‖2

L2(0,1) dt,

≤ Tα

Γ(1 + α)

∫ T

0
‖ f ‖2

L2(0,1) dt. (38)

Then, it follows from (37) and (38) that

Dα−1‖Im
x vt‖2

L2(0,1) + ‖v‖2
L2(0,1)

≤ K
(
‖ f ‖2

L2(Q) + ‖h‖2
L2(0,1) + ‖g‖2

L2(0,1)

)
, (39)

where

K = ρ

(
1 +

Tα

Γ(1 + α)

)
.
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Observe that the right-hand side of (39) is independent of the variable t, so we are allowed to take
the least upper bound of the left-hand side with respect to t over [0, T], and the a priori estimate (18)
then follows and from which we deduce the uniqueness and continuous dependence of the solution
on the input data of problem (1).

5. Existence of Solution

In this section, we prove the main result concerning the existence of solution of problem (1)
The a priori estimate (18) shows that the unbounded operator M has an inverse M−1 : R(M) →B.
Since R(M) is a subset of Y , we therefore can construct its closure M in a manner that the estimate (18)
holds for this extension and R(M) coincides with the whole space B. Hence, the following:

Corollary 1. The operator M : B→ Y admits a closure (the proof is similar to that in [14]).
Estimate (18) can be then extended to

sup
0≤t≤T

⎛⎝Dα−1
t ‖Im

x vt(x, t)‖2
L2(0,1) +

1∫
0

v2(x, t)dx

⎞⎠
≤ K

(
‖g‖2

L2(0,1) + ‖h‖2
L2(0,1) + ‖ f ‖2

L2(Q)

)
(40)

for all v ∈ D(M).

It follows from (40) that the strong solution of problem (1) is unique, that is, Mv = Y . We also
deduce from estimate (40) the following:

Corollary 2. R(M) is a closed subset in Y and R(M) =R(M) and M−1
= M−1.

We are now ready to give the result of existence of the solution of problem (1).

Theorem 2. Suppose that conditions of Theorem 4.1 are satisfied. Then, for all W = ( f , g, h) ∈ Y , there exists
a unique strong solution v = M−1W = M−1W of problem (1).

Proof. Estimate (40) asserts that, if a strong solution of (1) exists, it is unique and depends continuously
on the data. Corollary 2 says that, in order to prove that problem (1) admits a strong solution for any
W = ( f , g, h) ∈ Y , it suffices to show that the closure of the range of the operator M is dense in Y .
To establish the existence of the strong solution of problem (1), we use a density argument. That is,
we show that the range R(M) of the operator M is dense in the space Y for every element v in the
Banach space B. For this, we consider the following special case of density.

Theorem 3. Suppose that conditions of Theorem 1 are satisfied. If for all functions v ∈ D(M) such that
l1v = v(x, 0) = 0, l2v = vt(x, 0) = 0 and for some function ψ ∈ L2(Q), we have

T∫
0

(Lv, ψ)L2(0,1) dt = 0, (41)

then ψ vanishes a.e in Q.

Proof. Identity (40) is equivalent to

T∫
0

(
∂α+1

t v + (−1)mθ(t)
∂2mv
∂x2m , ψ

)
L2(0,1)

dt = 0. (42)
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Assume that a function σ(x, t) verifies conditions boundary and initial conditions in (1) and such
that σ, σx, Itσ, ItI2m

x σ, I2
t σ and ∂

β+1
t σ ∈ L2(Q), we then set

v(x, t) = I2
t σ =

t∫
0

s∫
0

σ(x, z)dzds. (43)

Equation (42) then becomes

T∫
0

(
∂α+1

t I2
t σ + (−1)mθ(t).

∂2m

∂x2m (I2
t σ), ψ

)
L2(0,1)

dt = 0. (44)

We now introduce the function

ψ(x, t) = Itσ + (−1)mI2m
x Itσ. (45)

Equation (44) then reduces to

T∫
0

(
∂α+1

t I2
t σ, Itσ

)
L2(0,1)

dt +
T∫

0

(
∂α+1

t I2
t σ, (−1)mI2m

x Itσ
)

L2(0,1)
dt

+

T∫
0

(
(−1)mθ(t).

∂2m

∂x2m (I2
t σ), Itσ

)
L2(0,1)

dt (46)

+

T∫
0

(
θ(t).

∂2m

∂x2m (I2
t σ), I2m

x Itσ

)
L2(0,1)

dt

= 0.

Recall that the function σ satisfies boundary conditions in (1) and then, computing the inner
products in (45), one has (

∂α+1
t I2

t σ, Itσ
)

L2(0,1)
= (∂α

t Itσ, Itσ)L2(0,1) ,

≥ 1
2

∂α
t ‖Itσ‖2

L2(0,1), (47)(
∂α+1

t I2
t σ, (−1)mI2m

x Itσ
)

L2(0,1)
= (∂α

t Im
x Itσ, Im

x Itσ)L2(0,1) ,

≥ 1
2

∂α
t ‖Im

x Itσ‖2
L2(0,1), (48)(

(−1)mθ(t).
∂2m

∂x2m (I2
t σ), Itσ

)
L2(0,1)

=

(
θ(t)

∂m

∂xm (I2
t σ),

∂m

∂xm (ItP)
)

L2(0,1)
(49)

=
1
2

d
dt

1∫
0

θ(t)
(

∂m

∂xm (I2
t σ)

)2
dx − 1

2

1∫
0

θ′(t)
(

∂m

∂xm (I2
t σ)

)2
dx,
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(
θ(t).

∂2m

∂x2m (I2
t σ), I2m

x Itσ

)
L2(0,1)

=
(

θ(t)(I2
t σ), Itσ

)
L2(0,1)

=
1
2

d
dt

1∫
0

θ(t)(I2
t σ)2dx (50)

−1
2

1∫
0

θ′(t)(I2
t σ)2dx.

Evoking (47)–(51), replace t by τ, integrating with respect to τ from zero to t and using
conditions (17), we obtain

Dα−1
t ‖Itσ‖2

L2(0,1) + Dα−1
t ‖Im

x Itσ‖2
L2(0,1) +

1∫
0

(
∂m

∂xm (I2
t σ)

)2
dx

+

1∫
0

(I2
t σ)2dx (51)

≤ c3

min(1, c1)

⎛⎝ t∫
0

1∫
0

(
∂m

∂xm (I2
τ σ)

)2
dxdτ +

t∫
0

1∫
0

(I2
τ σ)2dxdτ

⎞⎠ .

By dropping the first two terms on the left-hand side of (50) and applying Gronwall’s Lemma 5,
by setting Z1(t) = 0, Z3(t) = 0 and

Z2(t) =
1∫

0

(
∂m

∂xm (I2
t σ)

)2
dx +

1∫
0

(I2
t σ)2dx,

we have
1∫

0

(
∂m

∂xm (I2
t σ)

)2
dx +

1∫
0

(I2
t σ)2dx ≤ 0 (52)

for all t ∈ [0, T]. Hence, ψ = 0 a.e in Q.

To complete the proof of Theorem 2, and prove the density (R(M) = Y) in a general case,
suppose that, for some element (F1, θ1, θ2) ∈ R(M)⊥, we have

T∫
0

(Lv, F1)L2(0,1) ds + (l1v, θ1)L2(0,1) + (l2v, θ2)L2(0,1) = 0, (53)

and then we prove that F1 = 0, θ1 = 0, θ2 = 0. If we put v ∈ D(M) satisfying conditions
l1v = v(x, 0) = 0 and l2v = vt(x, 0) = 0 into (53), we obtain

T∫
0

(Lv, F1)L2(0,1) ds = 0, ∀v ∈ D(M). (54)

By Theorem 3, Equation (54) implies that F1 = 0 a.e in Q. Then, (53) becomes

(l1v, θ1)L2(0,1) + (l2v, θ2)L2(0,1) = 0 ∀θ ∈ D(M). (55)

Since the range of the trace operator l1 and l2 is dense in L2(0, 1), it follows then from (55) that
θ1 = 0, θ2 = 0. This ends the proof of Theorem 2.
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6. Conclusions

The existence and uniqueness of a generalized solution for a higher order fractional diffusion
wave equation in Caputo sense subject to initial and weighted integral boundary conditions are
established. It is found that the method of energy inequalities is successfully applied to obtaining
a priori bounds for the solution of fractional initial boundary value problems of higher order with
nonlocal constraints as in the classical case. The obtained results will contribute to the development
of the functional analysis method and enrich the existing non-extensive literature on the non local
fractional mixed problems in the Caputo sense.
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1. Introduction and Preliminaries

One of the generalizations of classical differentiation and integration is fractional calculus.
The contribution of fractional calculus presents in diverse fields, such as pure mathematics, economics,
and physical and engineering sciences. The role of inequalities found to be very significant in all fields
of mathematics and an attractive and active field of research. Recently, convexity has become the major
part in different fields of science. A function g : I ⊂ R → R is named as convex, if the inequality

g (ωx + (1 − ω) y) ≤ ωg (x) + (1 − ω) g (y)

holds for all x, y ∈ I and ω ∈ [0, 1] . In fact, large number of articles has been written on inequalities
using classical convexity, but one of the most important and well known is Hermite– Hadamard’s
inequality. In [1], this double inequality is stated as: Let g : I ⊂ R → R be a convex function on the
interval I of real numbers and x, y ∈ I with x < y. Then,

g
(

x + y
2

)
≤ 1

y − x

∫ y

x
g(t) dt ≤ g(x) + g(y)

2
.

Both inequalities hold in the reversed direction for g to be concave. In the field of mathematical
inequalities, Hermite–Hadamard’s inequality has been given more attention by many mathematician
due to its applicability and usefulness. Many researchers have extended the Hermite–Hadamard’s
inequality, to different forms using the classical convex function. For further details involving
Hermite–Hadamard’s type inequality on different concept of convex function and generalizations,
the interested reader is referred to [2–12] and references therein.

First, we recall some important definitions and results that will be used in the sequel.

Symmetry 2019, 11, 137; doi:10.3390/sym11020137 www.mdpi.com/journal/symmetry119
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Definition 1. For g ∈ L1[x, y]. The left-sided and right-sided Riemann–Liouville fractional integrals
of order α > 0 with a ≥ 0 are defined as Jα

a+ g(x) = 1
Γ(α)

∫ x
a (x − t)α−1g(t)dt, f ora < x,

and Jα
b− g(x) = 1

Γ(α)

∫ b
x (t − x)α−1g(t)dt, f or x < b , respectively, where Γ(.) is Gamma function and

is defined as Γ(α) =
∫ ∞

0 e−uuα−1du. It is to be noted that J0
a+ g(x) = J0

b− g(x) = g(x).

In the case of α = 1, the fractional integral reduces to the classical integral.
Properties relating to these operators can be found in [7]. For useful details on Hermite–Hadamard

type inequalities connected with fractional integral inequalities, the readers are directed to [8–14].
In [15], Özdemir et. al proved some inequalities related to Hermite–Hadamard’s inequalities

for functions whose second derivatives in absolute value at certain powers are s-convex functions
as follows:

Theorem 1. Let f : I ⊂ [0, ∞) → R be a twice differentiable mapping on I0 (where I0 is the interior of I) such
that f ′′ ∈ L [a, b] , where a, b ∈ I with a < b. If | f ′′| is s-convex on [a, b], for some fixed s ∈ (0, 1] , then the
following inequality holds:∣∣∣∣ f

(
a + b

2

)
− 1

b − a

∫ b

a
f (x)dx

∣∣∣∣ ≤ (b − a)2

8 (s + 1) (s + 2) (s + 3)
×{

| f ′′(a)|+ (s + 1) (s + 2) | f ′′( a + b
2

)|+ | f ′′(b)|
}

≤
[
1 + (s + 2) 21−s] (b − a)2

8 (s + 1) (s + 2) (s + 3)
{| f ′′(a)|+ | f ′′(b)|} .

Corollary 1. Under the assumptions of Theorem 1, if s = 1 , then we get∣∣∣∣ f
(

a + b
2

)
− 1

b − a

∫ b

a
f (x)dx

∣∣∣∣ ≤ (b − a)2 [| f ′′(a)|+ | f ′′(b)|]
48

. (1)

Theorem 2. Let f : I ⊂ [0, ∞) → R be a twice differentiable mapping on I0 (where I0 is the interior of I) such
that f ′′ ∈ L [a, b] , where a, b ∈ I with a < b. If | f ′′| is s-concave on [a, b], for some fixed s ∈ (0, 1] and for
q > 1 with 1

p + 1
q , then the following inequality holds:

∣∣∣∣ 1
b − a

∫ b

a
f (x)dx − f

(
a + b

2

)∣∣∣∣ ≤ (b − a)2

16
2

s
q

(2p + 1)1/p

[∣∣∣∣ f ′′
(

3a + b
4

)∣∣∣∣+ ∣∣∣∣ f ′′
(

a + 3b
4

)∣∣∣∣] . (2)

Corollary 2. Under the assumptions of Theorem 2, if we choose s = 1 and 1
3 < 1

(2p+1)1/p < 1, for p > 1,

we have ∣∣∣∣ 1
b − a

∫ b

a
f (x)dx − f

(
a + b

2

)∣∣∣∣ ≤ (b − a)2

16

[∣∣∣∣ f ′′
(

3a + b
4

)∣∣∣∣+ ∣∣∣∣ f ′′
(

a + 3b
4

)∣∣∣∣] . (3)

In [6], Sarikaya et al. proved some inequalities related to Hermite–Hadamard’s inequalities for
functions whose derivatives in absolute value at certain powers are convex as follows:
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Theorem 3. Let I ⊂ R be an open interval, a, b ∈ I with a < b and f : [a, b] → R be a twice differentiable
function such that f ′′ is integrable and 0 < λ ≤ 1 on (a, b) with a < b. If | f ′′|q is convex on [a, b], for q ≥ 1 ,
then the following inequality holds:

∣∣∣∣(λ − 1) f
(

a + b
2

)
− λ

f (a) + f (b)
2

+
1

b − a

∫ b

a
f (x)dx

∣∣∣∣

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(b−a)2

2

(
λ3

3 + 1−3λ
24

)1−1/q

×
{([

λ4

6 + 3−8λ
3×26

]
| f ′′(a)|q +

[
(2−λ)λ3

6 + 5−16λ
3×26

]
| f ′′(b)|q

)1/q

+

([
(1+λ)(1−λ)3

6 + 48λ−27
3×26

]
| f ′′(a)|q +

[
λ4

6 + 3−8λ
3×26

]
| f ′′(b)|q

)1/q
}

, for 0 ≤ λ ≤ 1/2;

(b−a)2

2

(
3λ−1

24

)1−1/q
{(

8λ−3
3×26 | f ′′(a)|q + 16λ−5

3×26 | f ′′(b)|q
)1/q

+
(

16λ−5
3×26 | f ′′(a)|q + 8λ−3

3×26 | f ′′(b)|q
)1/q

}
, for 1/2 ≤ λ ≤ 1.

Corollary 3. Under the assumptions of Theorem 3, if λ = 0, then we get the following inequality,∣∣∣∣ 1
b − a

∫ b

a
f (x)dx − f

(
a + b

2

)∣∣∣∣ ≤ (b − a)2

48

(
5| f ′′(a)|q + 3| f ′′(b)|q

8

)1/q

+
(b − a)2

48

(
3| f ′′(a)|q + 5| f ′′(a)|q

8

)1/q

. (4)

The aim of this article is to establish Hermite–Hadamard type inequalities for Riemann–Liouville
fractional integral using the convexity as well as concavity, for functions whose absolute values
of second derivative are convex. We derive a general integral inequality for Riemann–Liouville
fractional integral.

2. Main Results

To prove our main results, we need to prove the following lemma, which plays the key role in the
next developments:

Lemma 1. Let f : [a, b] → R be a twice differentiable function on (a, b) with a < b. If f ′′ ∈ L [a, b] and
n ∈ N, then the following equality for fractional integrals holds with 0 < α ≤ 1:

Γ(α + 2)

(n + 1)2 (b − a)α

[
Jα

( n
n+1 a+ 1

n+1 b)
− f (a) + Jα

( 1
n+1 a+ n

n+1 b)
+ f (b)

]
− f

(
n

n + 1
a +

1
n + 1

b
)

=
(b − a)2

(n + 1)α+3 (α + 1)

[∫ 1

0
(1 − ω)α+1

(
f ′′(n + ω

n + 1
a +

1 − ω

n + 1
b + f ′′(1 − ω

n + 1
a +

n + ω

n + 1
b)
)

dω

∫ 1

0
((1 + ω)α+1 − 2α (1 + ω) + α2α (1 − ω)) f ′′(1 − ω

n + 1
a +

n + ω

n + 1
b) + f ′′(n + ω

n + 1
a +

1 − ω

n + 1
b)dω

]
.

Proof. To compute each integral, we use integration by parts successively and get
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P1 =
∫ 1

0
(1 − ω)α+1 f ′′(n + ω

n + 1
a +

1 − ω

n + 1
b)dω

=
(n + 1) (1 − ω)α+1 f ′( n+ω

n+1 a + 1−ω
n+1 b)dω

a − b

∣∣∣∣1
0

+
(n + 1) (a + 1)

a − b

∫ 1

0
(1 − ω)α f ′(n + ω

n + 1
a +

1 − ω

n + 1
b)dω

=
(n + 1)
b − a

f ′
(

n
n + 1

a +
1

n + 1
b
)
+

(n + 1) (α + 1)
a − b

[
2 (1 − ω)α f ′( 1+w

n+1 a + 1−ω
n+1 b)dω

a − b

∣∣∣∣1
0

+
(n + 1) α

a − b

∫ 1

0
(1 − ω)α f (

n + ω

n + 1
a +

1 − ω

n + 1
b)dω

]
=

(n + 1)
b − a

f ′
(

n
n + 1

a +
1

n + 1
b
)
+

(n + 1) (α + 1)
a − b

[ −2
a − b

f
(

n
n + 1

a +
1

n + 1
b
)

− (n + 1) α

b − a

∫ 1

0
(1 − ω)α−1 f (

n + ω

n + 1
a +

1 − ω

n + 1
b)dω

]

=
(n + 1)
b − a

f ′
(

n
n + 1

a +
1

n + 1
b
)
− (n + 1)2 (α + 1)

(b − a)2 f
(

n
n + 1

a +
1

n + 1
b
)

+
(n + 1)α+2

(b − a)α+2 Γ(α + 2)Jα
n

n+1 a+ 1
n+1 b− f (a).

P2 =
∫ 1

0
((1 + ω)α+1 − 2α (1 + ω) + α2α (1 − ω)) f ′′(1 − ω

n + 1
a +

n + ω

n + 1
b)dω

=
2
[
(1 + ω)α+1 − 2α (1+ω) + α2α (1 − ω)

]
f ′( 1−ω

n+1 a + n+ω
n+1 b)dω)

b − a

∣∣∣∣1
0

+
2 (α + 1)

b − a

∫ 1

0

[
(α + 1) (1 + ω)α − 2α − α2α

]
f ′(1 − ω

n + 1
a +

n + ω

n + 1
b)dω)

= −n + 1
b − a

[1 + 2α (α − 1)] f ′
(

1
n + 1

a +
n

n + 1
b
)

+
(n + 1) (α + 1)

b − a

∫ 1

0

[
(α + 1) (1 + ω)α − 2α − α2α

]
f ′(1 − ω

n + 1
a +

n + ω

n + 1
b)dω)

= −n + 1
b − a

[1 + 2α (α − 1)] f ′
(

1
n + 1

a +
n

n + 1
b
)

+
(n + 1) (α + 1)

b − a

[
(n + 1)

[
(α + 1) (1 + ω)α − 2α − α2α

]
f ′( 1−ω

n+1 a + n+ω
n+1 b)dω)

b − a

∣∣∣∣1
0

−α (n + 1) (α + 1)
b − a

∫ 1

0
(1 + ω)α−1 f

(
1 − ω

n + 1
a +

n + ω

n + 1
b
)

dω

]
= −n + 1

b − a
[1 + 2α (α − 1)] f ′

(
1

n + 1
a +

n
n + 1

b
)
+

(n + 1)2 (α + 1)

(b − a)2 (2α − 1)

× f
(

1
n + 1

a +
n

n + 1
b
)
− (n + 1)α+2

(b − a)α+2 Γ(α + 2)Jα
1

n+1 a+ n
n+1 b− f (b).

Analogously: P3 = − n+1
b−a f ′

(
n

n+1 a + 1
n+1 b

)
− (n+1)2(α+1)

(b−a)2 f
(

n
n+1 a + 1

n+1 b
)
+ (n+1)α+2

(b−a)α+2 Γ(α +

2)Jα

( n
n+1 a+ 1

n+1 b)
− f (a).

P4 = − n+1
b−a [2

α (1 − α)− 1] f ′
(

1
n+1 a + n

n+1 b
)
− (n+1)2(α+1)

(b−a)2
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× (2α − 1) f
(

1
n+1 a + n

n+1 b
)
+ (n+1)α+2

(b−a)α+2 Γ(α + 2)Jα

( 1
n+1 a+ n

n+1 b)
+ f (b).

Adding above equalities, we get

n + 1
b − a

f
(

n
n + 1

a +
1

n + 1
b
)
− Γ(α + 2)

(n + 1)2 (b − a)α

[
Jα

( n
n+1 a+ 1

n+1 b)
− f (a) + Jα

( 1
n+1 a+ n

n+1 b)
+ f (b)

]
= P1 + P2 + P3 + P4.

This completes the proof.

Theorem 4. Let f : [a, b] → R be a twice differentiable function on (a, b) with a < band n ∈ N∗.
If f ′′ ∈ L [a, b] and | f ′′| is convex on [a, b], then the following inequality for Riemann–Liouville fractional
integrals holds:∣∣∣∣ Γ(α + 2)

(n + 1) (b − a)α

[
Jα

( n
n+1 a+ 1

n+1 b)
− f (a) + Jα

( 1
n+1 a+ n

n+1 b)
+ f (b)

]
− f

(
n

n + 1
a +

1
n + 1

b
)∣∣∣∣

≤ (b − a)2 2α−1 (2 + (α − 1) α)

(n + 1)α+3 (α + 1) (α + 2)
( | f ′′(a)|+ | f ′′(b)| ). (5)

Proof. Using Lemma 1 and properties of modulus, we have∣∣∣∣ Γ(α + 2)
(n + 1) (b − a)α

[
Jα

( n
n+1 a+ 1

n+1 b)
− f (a) + Jα

( 1
n+1 a+ n

n+1 b)
+ f (b)

]
− f

(
n

n + 1
a +

1
n + 1

b
)∣∣∣∣

≤ (b − a)2

(n + 1)α+3 (α + 1)

4

∑
i=1

|Pi|.

Now, using convexity of | f ′′|, we have∣∣∣∣ Γ(α + 2)
(n + 1) (b − a)α

[
Jα

( n
n+1 a+ 1

n+1 b)
− f (a) + Jα

( 1
n+1 a+ n

n+1 b)
+ f (b)

]
− f

(
n

n + 1
a +

1
n + 1

b
)∣∣∣∣

≤
∣∣∣∣∣ (b − a)2

(n + 1)α+3 (α + 1)

∫ 1

0
(1 − ω)α+1 f ′′(n + ω

n + 1
a +

1 − ω

n + 1
b)dω

∣∣∣∣∣
+

∣∣∣∣∣ (b − a)2

(n + 1)α+3 (α + 1)

∫ 1

0
(1 − ω)α+1 f ′′(1 − ω

n + 1
a +

n + ω

n + 1
b)dω

∣∣∣∣∣
+

∣∣∣∣∣ (b − a)2

(n + 1)α+3 (α + 1)

∫ 1

0
((1 + ω)α+1 − 2α (1 + ω) + α2α (1 − ω)) f ′′(n + ω

n + 1
a +

1 − ω

n + 1
b)dω

∣∣∣∣∣
+

∣∣∣∣∣ (b − a)2

(n + 1)α+3 (α + 1)

∫ 1

0
((1 + ω)α+1 − 2α (1 + ω) + α2α (1 − ω)) f ′′(1 − ω

n + 1
a +

n + ω

n + 1
b)dω

∣∣∣∣∣
=

(bv − a)2

(n + 1)α+3 (α + 1)

∫ 1

0
(1 − ω)α+1 | f ′′(n + ω

n + 1
a +

1 − ω

n + 1
b)|dω

+
(b − a)2

(n + 1)α+3 (α + 1)

∫ 1

0
(1 − ω)α+1 | f ′′(1 − ω

n + 1
a +

n + ω

n + 1
b)|dω

+
(b − a)2

(n + 1)α+3 (α + 1)

∫ 1

0
((1 + ω)α+1 − 2α (1 + ω) + α2α (1 − ω))| f ′′(n + ω

n + 1
a +

1 − ω

n + 1
b)|dω
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+
(b − a)2

(n + 1)α+3 (α + 1)

∫ 1

0
((1 + ω)α+1 − 2α (1 + ω) + α2α (1 − ω))| f ′′(1 − ω

n + 1
a +

n + ω

n + 1
b)|dω

≤ (b − a)2

(n + 1)α+3 (α + 1)

∫ 1

0
(1 − ω)α+1

[(
n + ω

n + 1

) ∣∣ f ′′(a)
∣∣+(

1 − ω

n + 1

) ∣∣ f ′′(b)
∣∣] dω

+
(b − a)2

(n + 1)α+3 (α + 1)

∫ 1

0
(1 − ω)α+1

[(
1 − ω

n + 1

) ∣∣ f ′′(a)
∣∣+(

n + ω

n + 1

) ∣∣ f ′′(b)
∣∣] dω

+
(b − a)2

(n + 1)α+3 (α + 1)

∫ 1

0
((1 + ω)α+1 − 2α (1 + ω) + α2α (1 − ω))

×
[(

n + ω

n + 1

) ∣∣ f ′′(a)
∣∣+(

1 − ω

n + 1

) ∣∣ f ′′(b)
∣∣] dω

+
(b − a)2

(n + 1)α+3 (α + 1)

∫ 1

0
((1 + ω)α+1 − 2α (1 + ω) + α2α (1 − ω))

×
[(

1 − ω

n + 1

) ∣∣ f ′′(a)
∣∣+(

n + ω

n + 1

) ∣∣ f ′′(b)
∣∣] dω.

This completes the proof.

Remark 1. If we take α = n = 1 in Theorem 4, then the inequality (5) reduces to the inequality (1).
The inequality (1) was obtained by Ozdemir [15].

The corresponding version for powers of the absolute value of the derivative is incorporated in
the following theorem.

Theorem 5. Let f : [a, b] → R be a twice differentiable function on (a, b) with a < b and n ∈ N . If f ′′ ∈
L [a, b] and | f ′′|q is convex on [a, b], then the following inequality for Riemann–Liouville fractional integrals
holds with 0 < α ≤ 1 :

∣∣∣∣∣ Γ(α + 2)

(n + 1)2 (b − a)α

[
Jα

( n
n+1 a+ 1

n+1 b)
− f (a) + Jα

( 1
n+1 a+ n

n+1 b)
+ f (b)

]
− f

(
n

n + 1
a +

1
n + 1

b
)∣∣∣∣∣

≤ (b − a)2

(n + 1)α+3 (α + 1)

[
(U5)

1−1/q

{(
U1| f ′′(a)|q + U2| f ′′(b)|q

(n + 1)

)1/q

+

(
U2| f ′′(a)|q + U1| f ′′(b)|q

(n + 1)

)1/q
}
+

(U6)
1−1/q

{(
U3| f ′′(a)|q + U4| f ′′(b)|q

(n + 1)

)1/q

+

(
U4| f ′′(a)|q+ U3| f ′′(b)|q

(n + 1)

)1/q
}]

.

(6)

where

U1 =
nα + 3n + 1

(α + 2) (α + 3)
, U2 =

1
α + 3

,

U3 =
6 + 2α

(
α3 + 5α − 6

)
+ 3n (α + 3) (−2 + 2α (2 + (α − 1) α))

6 (α + 2) (α + 3)

U4 =
−3 (α + 4) + 2α (12 + (α − 1) α (α + 4))

3 (α + 2) (α + 3)
, U5 =

1
α + 2

,

and U6 =
2α+2 − 1

α + 2
− 2α+1 + α2α−1 + 2α−1 − 3α2α−1.
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Proof. Using Lemma 1, well-known power-mean integral inequality and the fact that | f ′′|q is convex ,
we have∣∣∣∣∣ Γ(α + 2)

(n + 1)2 (b − a)α

[
Jα

( n
n+1 a+ 1

n+1 b)
− f (a) + Jα

( 1
n+1 a+ n

n+1 b)
+ f (b)

]
− f

(
n

n + 1
a +

1
n + 1

b
)∣∣∣∣∣

≤ (b − a)2

(n + 1)α+3 (α + 1)

(∫ 1

0
(1 − ω)α+1 dω

)1−1/q

×
(∫ 1

0
(1 − ω)α+1

∣∣∣∣ f ′′(n + ω

n + 1
a +

1 − ω

n + 1
b)
∣∣∣∣q dω

)1/q

+
(b − a)2

(n + 1)α+3 (α + 1)

(∫ 1

0
(1 − ω)α+1 dω

)1−1/q

×
(∫ 1

0
(1 − ω)α+1

∣∣∣∣ f ′′(1 − ω

n + 1
a +

n + ω

n + 1
b)
∣∣∣∣q dω

)1/q

+
(b − a)2

(n + 1)α+3 (α + 1)

(∫ 1

0
((1 + ω)α+1 − 2α (1 + ω) + α2α (1 − ω))dω

)1−1/q

×
(∫ 1

0
((1 + ω)α+1 − 2α (1 + ω) + α2α (1 − ω))

∣∣∣∣ f ′′(n + ω

n + 1
a +

1 − ω

n + 1
b)
∣∣∣∣q dω

)1/q

+
(b − a)2

(n + 1)α+3 (α + 1)

(∫ 1

0
((1 + ω)α+1 − 2α (1 + ω) + α2α (1 − ω))dω

)1−1/q

×
(∫ 1

0
((1 + ω)α+1 − 2α (1 + ω) + α2α (1 − ω))

∣∣∣∣ f ′′(1 − ω

n + 1
a +

n + ω

n + 1
b)
∣∣∣∣q dω

)1/q

=
(b − a)2

(n + 1)α+3 (α + 1)

(∫ 1

0
(1 − ω)α+1 dω

)1−1/q (∫ 1

0
(1 − ω)α+1

∣∣∣∣ f ′′(n + ω

n + 1
a +

1 − ω

n + 1
b)
∣∣∣∣q dω

)1/q

+
(b − a)2

(n + 1)α+3 (α + 1)

(∫ 1

0
(1 − ω)α+1 dω

)1−1/q (∫ 1

0
(1 − ω)α+1

∣∣∣∣ f ′′(1 − ω

n + 1
a +

n + ω

n + 1
b)
∣∣∣∣q dω

)1/q

+
(b − a)2

(n + 1)α+3 (α + 1)

(∫ 1

0
((1 + ω)α+1 − 2α (1 + ω) + α2α (1 − ω))dω

)1−1/q

×
(∫ 1

0
((1 + ω)α+1 − 2α (1 + ω) + α2α (1 − ω))

∣∣∣∣ f ′′(n + ω

n + 1
a +

1 − ω

n + 1
b)
∣∣∣∣q dω

)1/q

+
(b − a)2

(n + 1)α+3 (α + 1)

(∫ 1

0
((1 + ω)α+1 − 2α (1 + ω) + α2α (1 − ω))dω

)1−1/q

×
(∫ 1

0
((1 + ω)α+1 − 2α (1 + ω) + α2α (1 − ω))

∣∣∣∣ f ′′(1 − ω

n + 1
a +

n + ω

n + 1
b)
∣∣∣∣q dω

)1/q
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≤ (b − a)2

(n + 1)
α+3

q (α + 1)

(
1

α + 2

)1−1/q (∫ 1

0
(1 − ω)α+1

(
(n + ω)

∣∣ f ′′(a)
∣∣q + (1 − ω)

∣∣ f ′′(b)
∣∣q) dω

)1/q

+
(b − a)2

(n + 1)
α+3

q (α + 1)

(
1

α + 2

)1−1/q (∫ 1

0
(1 − ω)α+1

(
(1 − ω)

∣∣ f ′′(a)
∣∣q + (n + ω)

∣∣ f ′′(b)
∣∣q) dω

)1/q

+
(b − a)2

(n + 1)
α+3

q (α + 1)

(
2α+2 − 1

α + 2
− 2α+1 + α2α−1 + 2α−1 − 3α2α−1

)1−1/q

×
(∫ 1

0
((1 + ω)α+1 − 2α (1 + ω) + α2α (1 − ω))

(
(n + ω)

∣∣ f ′′(a)
∣∣q + (1 − ω)

∣∣ f ′′(b)
∣∣q) dω

)1/q

+
(b − a)2

(n + 1)
α+3

q (α + 1)

(
2α+2 − 1

α + 2
− 2α+1 + α2α−1 + 2α−1 − 3α2α−1

)1−1/q

×
(∫ 1

0
((1 + ω)α+1 − 2α (1 + ω) + α2α (1 − ω))

(
(n + ω)

∣∣ f ′′(a)
∣∣q + (1 − ω)

∣∣ f ′′(b)
∣∣q) dω

)1/q

.

Simple computations give

∫ 1

0
(1 − ω)α+1 (n + ω) dω =

nα + 3n + 1
(α + 2) (α + 3)

= U1,∫ 1

0
(1 − ω)α+1 (1 − ω) dω =

1
α + 3

= U2,

∫ 1

0
((1 + ω)α+1 − 2α (1 + ω) + α2α (1 − ω)) (n + ω) dω

=
6 + 2α

(
α3 + 5α − 6

)
+ 3n (α + 3) (−2 + 2α (2 + (α − 1) α))

6 (α + 2) (α + 3)
= U3,

∫ 1

0
((1 + ω)α+1 − 2α (1 + ω) + α2α (1 − ω)) (1 − ω) dω

=
−3 (α + 4) + 2α (12 + (α − 1) α (α + 4))

3 (α + 2) (α + 3)
= U4,∫ 1

0
(1 − ω)α+1 dω =

1
α + 2

= U5,∫ 1

0
((1 + ω)α+1 − 2α (1 + ω) + α2α (1 − ω))dω

=
2α+2 − 1

α + 2
− 2α+1 + α2α−1 + 2α−1 − 3α2α−1 = U6.

This completes the proof.

Remark 2. If we take α = n = 1 in Theorem 5, then the inequality (6) reduces to the inequality (4).
The inequality in (1) was obtained by Sarikaya [6].

In the following theorem, we obtain estimate of Hermite–Hadamard inequality for
concave function.
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Theorem 6. Let f : [a, b] → R be a twice differentiable function on (a, b) with a < b and n ∈ N . If f ′′ ∈
L [a, b] and | f ′′|q is concave on [a, b], then the following inequality for Riemann–Liouville fractional integrals
holds with 0 < α ≤ 1 :∣∣∣∣∣ Γ(α + 2)

(n + 1)2 (b − a)α

[
Jα

( n
n+1 a+ 1

n+1 b)
− f (a) + Jα

( 1
n+1 a+ n

n+1 b)
+ f (b)

]
− f

(
n

n + 1
a +

1
n + 1

b
)∣∣∣∣∣

≤ (b − a)2

(n + 1)α+3 (α + 1)
×
[

U5

{∣∣∣∣ f ′′
({

U1 (a) + U2 (b)
U5 (n + 1)

})∣∣∣∣+ ∣∣∣∣ f ′′
({

U1 (b) + U2 (a)
U5 (n + 1)

})∣∣∣∣}
+U6

∣∣∣∣ f ′′
({

(U3 (a) + U4 (b)
U6 (n + 1)

})∣∣∣∣+ ∣∣∣∣ f ′′
({

(U3 (b) + U4 (a)
U6 (n + 1)

})∣∣∣∣] .

(7)

Proof. Using the concavity of | f ′′|q and the power-mean inequality, we obtain

| f ′′(λa + (1 − λ)b)|q > λ| f ′′(a)|q + (1 − λ)| f ′′(b)|q
≥ (

λ| f ′′(a)|+ (1 − λ)| f ′′(b)|)q .

Hence,
| f ′′(λa + (1 − λ)b)| ≥ λ| f ′′(a)|+ (1 − λ)| f ′′(b)|,

thus | f ′′| is also concave. Using Jensen integral inequality, we have∣∣∣∣∣ Γ(α + 2)

(n + 1)2 (b − a)α

[
Jα

( n
n+1 a+ 1

n+1 b)
− f (a) + Jα

( 1
n+1 a+ n

n+1 b)
+ f (b)

]
− f

(
n

n + 1
a +

1
n + 1

b
)∣∣∣∣∣

≤ (b − a)2

(n + 1)α+3 (α + 1)

(∫ 1

0
(1 − ω)α+1 dω

) ∣∣∣∣∣∣∣ f ′′

⎛⎜⎝
∫ 1

0 (1 − ω)α+1
∣∣∣( n+ω

n+1 a + 1−ω
n+1 b)

∣∣∣q dω∫ 1
0 (1 − ω)α+1 dω

⎞⎟⎠
∣∣∣∣∣∣∣
q

+
(b − a)2

(n + 1)α+3 (α + 1)

(∫ 1

0
(1 − ω)α+1 dω

) ∣∣∣∣∣∣∣ f ′′

⎛⎜⎝
∫ 1

0 (1 − ω)α+1
∣∣∣( 1−ω

n+1 a + n+ω
n+1 b)

∣∣∣q dω∫ 1
0 (1 − ω)α+1 dω

⎞⎟⎠
∣∣∣∣∣∣∣
q

+
(b − a)2

(n + 1)α+3 (α + 1)

(∫ 1

0
((1 + ω)α+1 − 2α (1 + ω) + α2α (1 − ω))dω

)

×
∣∣∣∣∣ f ′′

(∫ 1
0 ((1 + ω)α+1 − 2α (1 + ω) + α2α (1 − ω))( n+ω

n+1 a + 1−ω
n+1 b)dω∫ 1

0 ((1 + ω)α+1 − 2α1 + ω + α2α (1 − ω))dω

)∣∣∣∣∣
q

+
(b − a)2

(n + 1)α+3 (α + 1)

(∫ 1

0
((1 + ω)α+1 − 2α (1 + ω) + α2α (1 − ω))dω

)

×
∣∣∣∣∣ f ′′

(∫ 1
0 ((1 + ω)α+1 − 2α (1 + ω) + α2α (1 − ω))( 1−ω

n+1 a + n+ω
n+1 b)dω∫ 1

0 ((1 + ω)α+1 − 2α (1 − ω) + α2α (1 − ω))dω

)∣∣∣∣∣
q

≤ (b − a)2

(n + 1)α+3 (α + 1)
(U5)

∣∣∣∣ f ′′
(

U1 (a) + U2 (b)
U5 (n + 1)

)∣∣∣∣q + (b − a)2

(n + 1)α+3 (α + 1)
(U5)

∣∣∣∣ f ′′
(

U1 (b) + U2 (a)
U5 (n + 1)

)∣∣∣∣q
+

(b − a)2

(n + 1)α+3 (α + 1)
(U6)

∣∣∣∣ f ′′
(
(U3 (a) + U4 (b)

U6 (n + 1)

)∣∣∣∣q + (b − a)2

(n + 1)α+3 (α + 1)
(U6)

∣∣∣∣ f ′′
(
(U3 (b) + U4 (a)

U6 (n + 1)

)∣∣∣∣q

∣∣∣∣∣ Γ(α + 2)

(n + 1)2 (b − a)α

[
Jα

( n
n+1 a+ 1

n+1 b)
− f (a) + Jα

( 1
n+1 a+ n

n+1 b)
+ f (b)

]
− f

(
n

n + 1
a +

1
n + 1

b
)∣∣∣∣∣

≤ (b − a)2

(n + 1)α+3 (α + 1)
×
[

U5

{∣∣∣∣ f ′′
({

U1 (a) + U2 (b)
U5 (n + 1)

})∣∣∣∣+ ∣∣∣∣ f ′′
({

U1 (b) + U2 (a)
U5 (n + 1)

})∣∣∣∣}
+U6

∣∣∣∣ f ′′
({

(U3 (a) + U4 (b)
U6 (n + 1)

})∣∣∣∣+ ∣∣∣∣ f ′′
({

(U3 (b) + U4 (a)
U6 (n + 1)

})∣∣∣∣] .

127



Symmetry 2019, 11, 137

The proof is completed.

Corollary 4. On letting α = n = 1 in Theorem 6, the inequality in Equation (8) becomes:∣∣∣∣ 1
b − a

∫ b

a
f (x)dx − f

(
a + b

2

)∣∣∣∣ ≤ (b − a)2

48

∣∣∣∣ f ′′
(

5a + 3b
8

)∣∣∣∣+ ∣∣∣∣ f ′′
(

3a + 5b
8

)∣∣∣∣ . (8)

Remark 3. The inequality in (8) is an improvement of the obtained inequality in Corollary 4 of [15]. This gives
us a comparatively better estimate.

3. Conclusions

We have derived some inequalities of Hermite–Hadamard type by establishing more general
inequalities for functions that possesses second derivative on interior of an interval of real numbers,
by using the Holder inequality and the assumptions that the mappings |( f ′′)|q, for q ≥ 1 are convex,
as well as concave. The results presented here, certainly, provided refinements of those results proved
in [6,15], since, by putting α = n = 1 in our obtained inequalities, we achieve the already-presented
inequalities in [6,15].
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Abstract: In this paper we investigate an implementation of new model order reduction techniques to
linear time-invariant discrete-time commensurate fractional-order state space systems to obtain lower
dimensional fractional-order models. Since the models of physical systems correctly approximate the
physical phenomena of the modeled systems for restricted time and frequency ranges only, a special
attention is given to time- and frequency-limited balanced truncation and frequency-weighted methods.
Mathematical formulas for calculation of the time- and frequency-limited, as well as frequency-weighted
controllability and observability Gramians, are extended to fractional-order systems. An instructive
simulation experiment corroborates the potential of the introduced methodology.

Keywords: fractional-order system; model order reduction; controllability and observability Gramians

1. Introduction

In the field of modeling and simulation of fractional-order systems there are two different
approaches to application of model order reduction (MOR) techniques: (1) Approximation of
fractional-order systems by high integer-order models and their reduction to the low integer-order
ones, and (2) reduction of the fractional-order systems without changing the class of the model, i.e.,
the reduced model is also the fractional-order one.

The first approach can be implemented by either determination of the fractional-order
derivative/difference approximators involved in a fractional-order system [1,2] or by selection of
integer-order approximators to the whole fractional-order systems [3–8]. In both approaches, a very
high integer-order model is usually obtained, which is not effective from the computational point of
view due to large memory requirements and long simulation times. For these reasons, classical model
reduction techniques can be used to reduce integer-order model dimensions [8–10]. Therefore, the term
MOR for fractional-order systems is usually related to order reduction of integer-order approximators
to fractional-order systems.

This paper tackles the issue of MOR for commensurate fractional-order systems where a final
result of using the MOR technique is the fractional-order model of lower dimensions. This issue
has not been systematically studied and only a few approaches for reduction of continuous-time
fractional-order systems have been published [11–14].

The classical Balanced Truncation (BT) method introduced for classical integer-order systems has
been extended to discrete-time fractional-order systems [15]. The reduction paradigms used by the BT
method enforce an accurate approximation for the whole range of frequencies. However, models of
physical systems, e.g., models for mechanical, electrical and biological systems, characterize a certain

Symmetry 2019, 11, 258; doi:10.3390/sym11020258 www.mdpi.com/journal/symmetry130
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adequacy scope, determined by the frequency range, for which the models correctly approximate the
physical phenomena of the modeled systems. Likewise, when the reduced model is used to carry out
a simulation in the determined time interval, an appropriate approximation accuracy of the output
signal y(t) is required only for t lower than a specified final time of simulation. For these reasons,
the reduction aims to determine such a reduced model which is particularly accurate in the given
frequency range [ωmin, ωmax] and/or time interval [tmin, tmax]. Such an approach allows for larger
errors outside these specified intervals, without negative impact on the usefulness of the obtained
reduced model. The time and frequency boundaries can be applied either by using frequency- and
time-limited controllability and observability Gramians [16–19] or by frequency-weighted functions
connected to the model which are the subject to the reduction process [20–26]. In this paper, we focus on
the generalization of such approaches to reduction and an accurate approximation in given frequency
and time intervals for the discrete-time commensurate fractional-order systems.

The remainder of this paper is structured as follows. A description of fractional-order state space
systems considered in the paper is introduced in Section 2. Section 3 includes fundamentals of the MOR
concept, in particular for the BT method. Section 4 contains the main result of the paper concerning
definitions of controllability and observability Gramians in the time- and frequency-domains for
fractional-order systems. Numerical examples of Section 5 illustrate the use of the introduced Gramians
in the model reduction process. The paper is completed with the conclusion section.

2. System Representation

Consider a linear discrete-time commensurate fractional-order (DTCFO) state space system
G = {A f , B, C, D} described by

Δαx(k + 1) = A f x(k) + Bu(k), x(0) = x0

y(k) = Cx(k) + Du(k)
(1)

where k = 0, 1, . . . , is the discrete time, x(k) ∈ �n is the state vector, u(k) and y(k) are the input
and output signals, respectively. Matrices A f ∈ �n×n, B ∈ �n×nu , C ∈ �ny×n, D ∈ �ny×nu

describe the system properties, with nu and ny being the numbers of inputs and outputs, respectively.
Δαx(k + 1) defines the fractional-order difference of order α ∈ (0, 2) which can be represented by the
Grünwald-Letnikov fractional difference ([27], ch. 3.5)

Δαx(k + 1) =
k+1

∑
j=0

(−1)j
(

α

j

)
x(k − j + 1) k = 0, 1, . . . (2)

with (
α

j

)
=

{
1 j = 0

α(α−1)...(α−j+1)
j! j > 0

Assuming the zero initial condition, that is Δαx(0) = 0, the Z-transform of the system (1) is
given by

w(z)X(z) = A f X(z) + BU(z)

Y(z) = CX(z) + DU(z)
(3)

where w(z) is the Z-transform of the “forward-shifted” fractional-order difference

w(z) = z(1 − z−1)α =
k+1

∑
j=0

(−1)j
(

α

j

)
z−j+1 (4)
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Remark 1. The above formulation can be extended to discretized models of continuous time systems. In the case
of use of the forward-shifted Euler discretization operator ([27], ch. 3.5) we have

sα ≈ 1
hα

w(z) (5)

where sα is the Laplace transform of the fractional-order derivative and h is the sampling period. Discretized
models of continuous-time fractional-order systems

Δαx(t + h) = hα Ā f x(t) + hα B̄u(t), x(0) = x0

y(t) = Cx(t) + Du(t)
(6)

where t = kh, can simply be transferred to the system (1) by using the following substitutions

A f → hα Ā f B → hα B̄ (7)

Implementation of the Grünwald–Letnikov difference (2) results in increasing computational
burden at each time step, which finally becomes computationally infeasible. Therefore, in practical
implementations, finite-length expansions are used, for instance finite fractional difference [6,8] ([28], ch. 7)

Δαx(k + 1) ≈
L

∑
j=0

(−1)j
(

α

j

)
x(k − j + 1) k = 0, 1, . . . (8)

with x(l) = 0 ∀ l < 0 and L being the implementation length.
It is worth emphasizing that precise approximation of the Grünwald–Letnikov difference with

the finite fractional difference needs a very high length L [6].

3. Model Order Reduction

Let us shift now to the MOR problem for the DTCFO system (1). The fractional-order MOR issue
aims towards finding a DTCFO model G̃ with reduced dimension r < n

Δα x̃(k + 1) = Ã f x̃(k) + B̃u(k), x̃(0) = x̃0

ỹ(k) = C̃x̃(k) + D̃u(k)
(9)

where Ã f ∈ �r×r, B̃ ∈ �r×nu , C̃ ∈ �ny×r, D̃ ∈ �ny×nu , x̃(k) ∈ �r are such that the approximation
errors both in the time domain ‖y(k)− ỹ(k)‖ and in the frequency domain ‖G(z)− G̃(z)‖ are small
for the chosen norm ‖ · ‖.

In this paper, we concentrate on the BT technique, which is based on the concept of the balanced
model realization [29,30], ([31], ch. 7.1). In order to arrive at the balanced system, the linear state
transformation x → Tx is applied to diagonalize the controllability P and observability Q Gramians of
the system

TPTT = (TT)−1QT−1 = diag (σ1, . . . , σn) (10)

where σi, i = 1, ..., n, are the square roots of the eigenvalues for the product of P and Q, which are
called the Hankel singular values (HSV). The magnitude of HSV classifies a degree of reachability and
observability of states in the system. On this basis, reduction eliminates states corresponding to small
values σi, which means that they have a weak impact on the system properties. The balanced model is
obtained by applying transformation matrices in the following way:

TA f T−1 =

[
Ã f Ã12

Ã21 Ã22

]
, TB =

[
B̃
B̃2

]
, CT−1 =

[
C̃ C̃2

]
, D̃ = D (11)
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The order r can be selected on the basis of an approximation error of the reduced system. For the
BT method, the H∞ norm of the approximation error is upper bounded as follows [30], ([31], ch. 7.2):

∥∥G(z)− G̃(z)
∥∥H∞

≤ 2
n

∑
j=r+1

σj (12)

Calculation of the transformation matrix T is not a unique operation. The exemplary algorithms
can be found in References [23,30] ([31], ch. 7.3), [32].

The BT reduction method enforces an accurate approximation for all times t ∈ (0, ∞) and
frequencies ω ∈ �. If it is necessary to determine a model (9) which is particularly accurate in a
given frequency range [ωmin, ωmax] and/or time interval [kmin, kmax], then frequency- or time-limited
controllability and observability Gramians can be used to calculate the transformation matrix T instead
of infinite ones. Higher model accuracy can be obtained now, especially when the optimal values of
the parameters of the weighting functions and frequency-/time-intervals are used [33].

4. Controllability and Observability Gramians for Discrete-Time Fractional-Order Systems

In this section, the definitions of controllability and observability Gramians both in the time-
and frequency-domains are recalled. Based on the definitions for integer-order systems, the Gramian
generalizations to fractional-order systems are derived here.

4.1. Gramians in the Time Domain

The definition of the controllability Gramian is connected to the minimal energy required for
the transfer of the system from the zero initial state x(0) = 0 to the final state x(k) = xp, whereas
the observability Gramian is defined with relation to the energy generated by the nonzero initial
state x(0) = x0 with the zero input signal u(k) = 0. For asymptotically stable systems, the infinite
controllability and observability Gramians are respectively defined as

P =
∞

∑
k=0

ξ(k)ξT(k), Q =
∞

∑
k=0

ηT(k)η(k) (13)

where ξ(k) is the state of the discrete-time system resulting from the input in the form of the Kronecker
delta, and η(k) is the output of the system produced by the nonzero initial conditions and the zero
input signal.

For asymptotically stable integer-order systems, we obtain the well-known formulas for the
controllability and observability Gramians, respectively:

P =
∞

∑
i=0

AiBBT
(

AT
)i

, Q =
∞

∑
i=0

(
AT

)i
CTCAi (14)

where A = A f + I. Finally, the Gramians P and Q are the solutions to the discrete-time Lyapunov
equations, respectively, are

APAT − P = −BBT , ATQA − Q = −CTC. (15)

Based on definitions (13), it is easy to formulate the generalized form of the controllability and
observability Gramians for the fractional-order systems.
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Lemma 1. Consider an asymptotically stable discrete-time commensurate fractional-order state space system (1),
with the Grünwald–Letnikov fractional-order difference (2). Then the controllability and observability Gramians
at finite time kL < ∞ are as follows

P(kL) =
kL

∑
k=1

φ(k − 1)BBTφT(k − 1), Q(kL) =
kL

∑
k=0

φT(k) CTC φ(k) (16)

where φ(k), k = 0, 1, ..., are calculated as

φ(k) =

⎧⎪⎨⎪⎩
I k = 0

(A f + αI)φ(k − 1)− k
∑

j=2
(−1)j(α

j)φ(k − j) k > 0

Proof. The state space equations of the system as in Equation (1) can be rewritten as ([27], ch. 3.5)

x(k + 1) = (A f + αI)x(k)−
k+1

∑
i=2

(−1)i
(

α

i

)
x(k + 1 − i) + Bu(k)

y(k) = Cx(k) + Du(k)

(17)

The state response for the DTCFO system (17), with the zero initial condition and the Kronecker
delta input signal, is as follows:

ξ(k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 k = 0
B k = 1

(A f + αI)ξ(k − 1)− k
∑

j=2
(−1)j(α

j)ξ(k − j) k > 1
(18)

The output response for the DTCFO system (17), with the nonzero initial condition x(0) = x0 and
the zero input signal, is now

y(k) = η(k)x(0) (19)

where

η(k) =

⎧⎪⎨⎪⎩
C k = 0

C

(
(A f + αI)x(k − 1)− k

∑
j=2

(−1)j(α
j)x(k − j))

)
k > 0

(20)

The responses (18) and (20) immediately result in Equation (16), which completes the proof.

Remark 2. As mentioned before, both the minimal energy required for the transfer of the system from the
zero initial state to x(k) = xp and the energy generated by the nonzero initial state are obtained for kL → ∞.
Implementation of Equation (16) in order to calculate controllability and observability Gramians implies the
infinite number of elements φ(k). Furthermore each of φ(k) requires the determination of the Grünwald–Letnikov
difference calculated from 0 to k + 1, which is computationally infeasible. Therefore, in contrast to integer-order
systems for which the solution of Equation (13) can be determined by solving Lyapunov Equation (15),
the Gramians for the fractional-order systems can be calculated for the finite length only.

If the response of the reduced model (9) is expected to match the original fractional-order model (1)
in some interval [k1, k2], then the balancing of the model can be executed on the basis of the Gramians
calculated within this restricted time interval. As the controllability and observability Gramians for
the asymptotically stable systems are positive definite, then it can be shown that

P(k2) ≥ P(k1) Q(k2) ≥ Q(k1) for k2 ≥ k1 (21)
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Therefore, the time-limited Gramians are also positive definite, and within the restricted time
interval [k1, k2] they can be calculated as follows:

P(k1, k2) = P(k2)− P(k1), Q(k1, k2) = Q(k2)− Q(k1) (22)

where P(k) and Q(k) are given from Equation (16).

4.2. Gramians in the Frequency Domain

In addition to the definition (13) given in the time domain, the Gramians can also be expressed
in the frequency domain. The connection can be made on the basis of the Plancherel’s theorem,
which states that the integral of the inner product of two functions in the time domain is equal to
the integral of their frequency spectrum. In particular, for the asymptotically stable discrete-time
integer-order systems, applying the Plancherel’s theorem to Equation (14) yields ([31], ch. 4.3)

P =
1

2π

∫ 2π

0

(
ejθ I − A

)−1
BBT

(
(e−jθ I − AT

)−1
dθ

Q =
1

2π

∫ 2π

0

(
e−jθ I − AT

)−1
CTC

(
ejθ I − A

)−1
dθ

(23)

Based on definitions (23), it is easy to formulate the generalized form of the controllability and
observability Gramians for the fractional-order systems.

Lemma 2. Consider an asymptotically stable discrete-time commensurate fractional-order state space system (1),
with the Grünwald–Letnikov fractional-order difference (2). Then the infinite controllability and observability
Gramians of the fractional-order system are respectively given as

P =
1

2π

∫ +π

−π

(
w(z) I − A f

)−1
BBT

(
w∗(z) I − AT

f

)−1
dθ

Q =
1

2π

∫ +π

−π

(
w∗(z) I − AT

f

)−1
CTC

(
w(z) I − A f

)−1
dθ

(24)

where w(z) is as in Equation (4), with z = eiθ , θ ∈ [−π, π], and ∗ denotes the complex conjugate transpose.

Proof. For continuous-time fractional-order systems referred to in Remark 1, the input-to-state map
becomes (sα I − Ā f )

−1B̄, while the state-to-output map is C(sα I − Ā f )
−1. Then the controllability and

observability Gramians are as follows:

P =
1

2π

∫ ∞

−∞

(
sα I − Ā f

)−1
B̄B̄T

(
(sα)∗ I − ĀT

f

)−1
dω

Q =
1

2π

∫ ∞

−∞

(
(sα)∗ I − ĀT

f

)−1
CTC

(
sα I − Ā f

)−1
dω

(25)

where s = iω, ω ∈ (−∞, ∞). Using the forward-shifted Euler discretization operator as referred to in
Remark 1 results immediately in (24), which completes the proof.

If the response of the reduced model is expected to match the full fractional-order model
output within a restricted frequency range, then the balancing of the model can be executed on
the basis of the Gramians calculated for that specific interval. Similarly, as for time-limited Gramians,
the frequency-limited Gramians in restricted frequency interval [Θ1, Θ2] can be calculated as follows:

P(Θ1, Θ2) = P(Θ2)− P(Θ1), Q(Θ1, Θ2) = Q(Θ2)− Q(Θ1) (26)
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where P(Θ) and Q(Θ) are given as

P(Θ) =
1

2π

∫ +Θ

−Θ

(
w(z) I − A f

)−1
BBT

(
w∗(z)I − AT

f

)−1
dθ

Q(Θ) =
1

2π

∫ +Θ

−Θ

(
w∗(z) I − AT

f

)−1
CTC

(
w(z)I − A f

)−1
dθ

(27)

4.3. Frequency Weighted Gramians

The required approximation accuracy in the given frequency interval [Θ1, Θ2] can also be
achieved by implementation of the frequency weighting functions in a form of the external systems
connected to the inputs and/or outputs of the full fractional-order model ([31], ch. 7.6). Such an
approach, called Frequency Weighted (FW) method, is a generalization to the BT method designed for
asymptotically stable models with asymptotically stable input and output weighting functions with
minimal realizations.

Consider an asymptotically stable discrete-time integer- or fractional-order LTI MIMO state space
system as an input weighting function Hi = {Ai, Bi, Ci, Di}

Δαi xi(k + 1) = Aixi(k) + Biui(k),

yi(k) = Cixi(k) + Diui(k)
(28)

and as an output weighting function Ho = {Ao, Bo, Co, Do}

Δαo xo(k + 1) = Aoxo(k) + Bouo(k),

yo(k) = Coxo(k) + Douo(k)
(29)

of orders ni and no, respectively. Assuming that no pole-zero cancellations occur during the design of
the augmented systems GHi and HoG, we arrive at [22,25], ([31], ch. 7.6)

GHi =

[
Ãi B̃i

C̃i D̃i

]
=

⎡⎢⎣ A f BCi
0 Ai

BDi
Bi

C DCi DDi

⎤⎥⎦
HoG =

[
Ão B̃o

C̃o D̃o

]
=

⎡⎢⎣ A f 0
BoC Ao

B
BoD

DoC Co DoD

⎤⎥⎦
(30)

It is well known that the frequency weighted controllability and observability Gramians are
computed on the basis of the system connected to the input weight GHi and to the output weight
HoG, respectively.

Lemma 3. Consider asymptotically stable augmented systems GHi and HoG as in Equation (30) consisting
of asymptotically stable discrete-time commensurate fractional-order state space system (1), with the
Grünwald–Letnikov fractional-order difference (2) and the weighting functions as in Equations (28) and (29).
The controllability and observability Gramians of such systems at finite time kL < ∞ are as follows:

Pi(kL) =
kL

∑
k=1

φi(k − 1) B̃i B̃T
i φT

i (k − 1), Qo(kL) =
kL

∑
k=0

φT
o(k) C̃T

o C̃o φo(k) (31)
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where φi(k), φo(k), k = 0, 1, ..., are calculated in a recurrent way:

φi(k) =

⎧⎪⎨⎪⎩
I k = 0(

Ãi + α̃i
)

φi(k − 1)− k
∑

j=2
ψi(j)φi(k − j) k > 0

φo(k) =

⎧⎪⎨⎪⎩
I k = 0(

Ão + α̃o
)

φo(k − 1)− k
∑

j=2
ψo(j)φo(k − j) k > 0

with α̃i = diag(α, . . . , α︸ ︷︷ ︸
n

, αi, . . . , αi︸ ︷︷ ︸
ni

), α̃o = diag(α, . . . , α︸ ︷︷ ︸
n

, αo, . . . , αo︸ ︷︷ ︸
no

) and

ψi(j) = (−1)jdiag

⎛⎜⎜⎜⎝
(

α

j

)
, . . . ,

(
α

j

)
︸ ︷︷ ︸

n

,
(

αi
j

)
, . . . ,

(
αi
j

)
︸ ︷︷ ︸

ni

⎞⎟⎟⎟⎠

ψo(j) = (−1)jdiag

⎛⎜⎜⎜⎝
(

α

j

)
, . . . ,

(
α

j

)
︸ ︷︷ ︸

n

,
(

αo

j

)
, . . . ,

(
αo

j

)
︸ ︷︷ ︸

no

⎞⎟⎟⎟⎠
Proof. The proof directly stems from proof for Lemma 1 with substitution of the system matrices by
the matrices of the augmented systems GHi and HoG.

Note that the application of the weighting functions influences the order of the controllability
Pi and observability Qo Gramians for the augmented systems. Therefore, they are partitioned into
two-by-two blocks, so that the dimension of the P11 ∈ �n×n and Q11 ∈ �n×n are the same as the state
matrix A f

Pi =

[
P11 P12

PT
12 P22

]
, Qo =

[
Q11 Q12

QT
12 Q22

]
(32)

Finally, the frequency-weighted controllability P̃ and observability Q̃ Gramians of dimensions
n × n can be assumed as [20]

P̃ = P11, Q̃ = Q11 (33)

The proposed solution, despite its simplicity, may lead to the instability of the reduced model in
case of two-sided weighting. Therefore, several modifications to this approach have been proposed to
cope with this problem [21–25].

The frequency-weighted Gramians as in Equation (33) can also be defined in the frequency
domain. Given that the input-to-state map and the state-to-output map of the fractional-order system
are modified by the connected weighting functions, it is possible to generalize the definitions of the
infinite controllability and observability Gramians for the fractional-order system (Lemma 2) to the
frequency-weighted Gramians.

Lemma 4. Consider asymptotically stable augmented systems GHi and HoG as in Equation (30), consisting
of asymptotically stable discrete-time commensurate fractional-order state space system (1), with the
Grünwald–Letnikov fractional-order difference (2) and the weighting functions as in Equations (28) and (29).
Then the frequency-weighted controllability P̃ and observability Q̃ Gramians are defined as
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P̃ =
1

2π

∫ π

−π

(
w(z)I − A f

)−1
B Hi(wi(z)) HT

i (w∗
i (z)) BT

(
w∗(z)I − AT

f

)−1
dθ

Q̃ =
1

2π

∫ π

−π

(
w∗(z)I − AT

f

)−1
CT HT

o (w
∗
o (z)) Ho(wo(z)) C

(
w(z)I − A f

)−1
dθ

(34)

where Hi(wi(z)) = Di + Ci(wi(z)I − Ai)
−1Bi, Ho(wo(z)) = Do + Co(wo(z)I − Ao)−1Bo and

w(z) = z(1 − z−1)α, wi(z) = z(1 − z−1)αi , wo(z) = z(1 − z−1)αo , with z = eiθ , θ ∈ [−π, π].

Proof. Given that the input-to-state map for the augmented system GHi and the
state-to-output map for HoG become

(
w̃i(z)− Ãi

)−1 B̃i and C̃o
(
w̃o(z)− Ão

)−1, where

w̃i(z)=diag

⎛⎜⎝w(z), . . . , w(z)︸ ︷︷ ︸
n

, wi(z), . . . , wi(z)︸ ︷︷ ︸
ni

⎞⎟⎠ and w̃o(z)=diag

⎛⎜⎝w(z), . . . , w(z)︸ ︷︷ ︸
n

, wo(z), . . . , wo(z)︸ ︷︷ ︸
no

⎞⎟⎠,

respectively. The P̃ and Q̃ are the submatrices of the Gramians for the augmented systems (32)
partitioned into two-by-two blocks. Therefore, the proof for the frequency-weighted controllability
Gramian follows by noticing that

(
I 0

)([ w(z)I 0
0 wi(z)I

]
−
[

A f BCi
0 Ai

])−1 [
BDi
Bi

]
=

(
I 0

) [ w(z)I − A f −BCi
0 wi(z)I − Ai

]−1 [
BDi
Bi

]
=

(
I 0

) [ (w(z)I − A f )
−1 (w(z)I − A f )

−1BCi(wi(z)I − Ai)
−1

0 (wi(z)I − Ai)
−1

] [
BDi
Bi

]
=

(w(z)I − A f )
−1B(Di + Ci(wi(z)I − Ai)

−1Bi) = (w(z)I − A f )
−1BHi(wi(z))

while for the frequency-weighted observability Gramian,

[
DoC Co

] ([ w(z)I 0
0 wo(z)I

]
−
[

A f 0
BoC Ao

])−1 (
I
0

)
=

[
DoC Co

] [ w(z)I − A f 0
−BoC wo(z)I − Ao

]−1 (
I
0

)
=

[
DoC Co

] [ (w(z)I − A f )
−1 0

(wo(z)I − Ao)−1BoC(w(z)I − A f )
−1 (wo(z)I − Ao)−1

](
I
0

)
=

(Do + Co(wo(z)I − Ao)
−1Bo)(w(z)I − A f )

−1B = Ho(wo(z))(w(z)I − A f )
−1B

Therefore, the frequency-weighted Gramians are the blocks P11 and Q11 of the controllability Pi and
observability Qo Gramians for the augmented systems, respectively, which completes the proof.

Remark 3. It is important to note that Lemmas 1 to 4 introduce various definitions of controllability and
observability Gramians. However, the calculations of the Gramians directly from the above definitions for
large-scale DTCFO systems are computationally demanding. In particular, time-domain Gramian definitions
as in Lemma 1 and 3 are infeasible for large-scale systems due to the requirement of calculation of the
Grünwald–Letnikov difference from 0 to k+ 1. The common practice for integer order systems when nu, ny << n
is to compute low-rank approximations of the Gramians such that P ≈ SYST with S ∈ �n×l , Y ∈ �l×l ,
l << n. It is motivated by the typical rapid decay of HSV [34,35], which can also be assumed for fractional-order
systems. There exists various algorithms for calculating the low-rank Gramian factorizations for integer-order
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systems [17,19,35,36]. Therefore, future works will be carried out towards the extension of the low-rank approach
to increase the efficiency of Gramians calculations for DTCFO systems.

5. Simulation Examples

In this section, examples of model order reduction for a fractional-order system are presented.
All reduced models were obtained by using the BT method with the Gramians calculated within various
time- and frequency-intervals, as well as with different frequency-weighted functions. In particular,
to calculate transformation matrix T the following Gramians are selected: (1) indefinite Gramians
defined in the frequency domain as in Equation (24) - denoted as the BT, (2) frequency-limited
Gramians as in Equation (26), denoted as the FLBT, (3) time-limited Gramians as in Equation (16),
denoted as the TLBT, (4) frequency-weighted Gramians as in Equation (34), denoted as the FW.
The examined discrete-time fractional-order model is an extension of the continuous-time model for
a simple mechanical system presented in [16] and (moderate) large-scale dynamical system of order
1006 as in [36].

Example 1. Consider the DTCFO state space system (6) with the sampling period h = 0.01, fractional order
α = 0.85 and

[
Ā f B̄
C D

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

−5.4545 4.5455 0 −0.0545 0.0455 0 0.0909
10 −21 11 0.1 −0.21 0.11 0.4
0 5.5 −6.5 0 0.055 −0.065 −0.5
2 −2 3 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Model order reduction is performed from the original six states variables to the reduced four ones. Frequency

responses for the full fractional-order system and the reduced models in addition to approximation errors are
depicted in Figure 1. Figure 2 shows step responses and their approximation errors for the same models. It is
clearly visible that the reduction based on infinite and time-limited Gramians for the time interval t ∈ [0, 10] (s)
cannot properly approximate the low-frequency properties of the system. For this reason, in order to improve
the approximation for low frequencies, the frequency-interval for frequency-limited Gramians is chosen as
Θ ∈ [0, 0.01] (rad/s). For the same purpose, the low-pass Butterworth filter of order n f = 5 and cut-off
frequency ω f = 0.01 (rad/s) is selected as a frequency weighted function. Table 1 presents approximation
errors for the considered models, where DCE is the steady state approximation error, MSEω is the mean square
approximation error for the frequency responses in the frequency range ω ∈ [10−3, 1] (rad/s), H∞ is the norm
approximation error and MSEt is the mean square error for system step response in the discrete-time range
t ∈ [0, 100] (s).

Figure 3 presents frequency responses and approximation errors for the reduced models obtained in order
to improve the quality of approximation for high frequencies. In particular, the third resonance frequency
ω = 6.5 (rad/s) is considered. Figure 4 shows the impulse responses and their approximation errors for the same
models. For this purpose, the time interval t ∈ [0, 0.1] (s) and frequency interval Θ ∈ [0.1, 100π] (rad/s) are
selected for time- and frequency-limited Gramians. Similarly, the frequency weighted function is chosen in a
form of a high-pass Butterworth filter of order n f = 5 and cut-off frequency ω f = 0.1 (rad/s). Table 2 presents
approximation errors for the analyzed models, in terms of MSEω for ω > 3 (rad/s), H∞-norm and MSEt for
system impulse responses within t ∈ [0, 1] (s).
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Figure 1. (left) Frequency responses for full- and reduced-order models and (right) approximation errors.

Figure 2. (left) Step responses for full- and reduced-order models and (right) approximation errors.
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Figure 3. (left) Frequency responses for full- and reduced-order models and (right) approximation errors.
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Table 1. Frequency and step approximation errors for the reduced models.

DCE MSEω H∞ MSEt

BT 22.2 × 10−3 4.58 × 10−4 53.0 × 10−3 4.62 × 10−4

FLBT 1.88 × 10−5 2.68 × 10−10 88.8 × 10−3 6.37 × 10−6

TLBT 28.1 × 10−3 7.33 × 10−4 54.9 × 10−3 7.40 × 10−4

FW 4.52 × 10−5 1.42 × 10−9 83.7 × 10−3 5.60 × 10−6
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Figure 4. (left) Impulse responses for full- and reduced-order models and (right) approximation errors.

Table 2. Frequency and impulse approximation errors for the reduced models.

MSEω H∞ MSEt

BT 2.54 × 10−4 0.053 9.21 × 10−8

FLBT 3.46 × 10−5 0.538 3.23 × 10−8

TLBT 3.68 × 10−5 0.385 5.05 × 10−14

FW 4.31 × 10−5 0.539 2.24 × 10−8

Example 2. Consider the system as in reference [36] with fractional-order α = 0.95 which is discretized using
the sampling period h = 0.002. The calculation of controllability and observability Gramians in the time domain
is very computationally demanding for systems of order n = 1006 . Therefore, the reduced models obtained by
using only the BT, FLBT and FW methods are compared. All reduced models are of order r = 6. Frequency
responses for the full fractional-order system and the reduced models as well as approximation errors are presented
in Figure 5. Like in Example 1, it is clearly visible that the reduction based on the infinite Gramians cannot
properly approximate the low-frequency properties of the system. For this reason, the frequency-interval for
frequency-limited Gramians and frequency weighting functions are chosen the same as in Example 1. In Table 3,
approximation errors are listed for the analyzed models, in terms of DCE, MSEω and H∞-norm.

Table 3. Frequency and step approximation errors for the reduced models.

DCE MSEω H∞

BT 5.538 29.93 5.538
FLBT 4.94 × 10−4 1.90 × 10−7 11.12
FW 6.30 × 10−4 3.14 × 10−7 11.35
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Figure 5. (left) Frequency responses for full- and reduced-order models and (right) approximation errors.

The Matlab scripts used to compute the presented results can be obtained from Supplementary
Materials.

6. Conclusions

This paper presents new results in BT model order reduction in limited time- and frequency-
intervals for DTCFO systems. The main contribution of the paper is an introduction of new
definitions for controllability and observability Gramians for the fractional-order systems both in
the time and frequency domains. These results enable new implementations of the Gramians in the
balanced truncation model order reduction method in limited time and frequency intervals as well
as in the frequency weighted reduction method. As a result of the reduction process, accurate
low-dimension fractional-order approximators in given frequency and/or time intervals can be
calculated. Simulation examples confirm the effectiveness of the introduced methodology for order
reduction of DTCFO systems.

Supplementary Materials: The Matlab scripts used to compute the presented results can be obtained from:
http://doi.org/10.5281/zenodo.2322833.
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1. Introduction

We will deal with a fractional q-difference equation subject to three-point boundary conditions{
Dα

q x(t) + f (t, x(t), x(t)) + g(t, x(t)) = 0, 0 < t < 1, 2 < α < 3,
x(0) = Dqx(0) = 0, Dqx(1) = βDqx(η),

(1)

where 0 < βηα−2 < 1, 0 < q < 1, Dα
q is the Riemann–Liouville fractional q-derivative of order α.

Due to fast development in fractional calculus, many researchers studied q-difference calculus or
quantum calculus. For this topic, the earlier results can be seen in Al-Salam [1] and Agarwal [2],
and some recent results related to q-difference calculus in [3–15] and some references therein.
Nowadays, fractional q-difference calculus has been given in wide applications of different science
areas, which include basic hyper-geometric functions, mechanics, the theory of relativity, combinatorics
and discrete mathematics. So many mathematical models have been abstracted out(see [16–18]) and
problem (1) is one of the models. Therefore, fractional q-difference calculus has been of great interest
and many good results can be found in [5–8] and references therein. Recently, the fruits about
fractional q-difference equation boundary value problems emerge continuously. For different problems
of fractional q-difference equations, the existence and the uniqueness of solutions have been always
considered in literature. To solve these boundary value problems, some techniques have been applied,
such as the monotone iterative technique, the lower-upper solution method, the Schauder fixed point
theorem and the Krasnoselskii fixed point theorem. For details, one can see [13–15,19–25].

In [15], Liang and Zhang considered the existence and uniqueness of positive nondecreasing
solutions for a fractional q-difference equation involving three-point boundary conditions{

Dα
q x(t) + f (t, x(t)) = 0, 2 < α < 3, 0 < t < 1,

x(0) = Dqx(0) = 0, Dqx(1) = βDqx(η),
(2)
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where 0 < βηα−2 < 1. They gave some sufficient conditions for Label (2), and their tool is a fixed point
theorem in partially ordered sets.

In [19], Sriphanomwan et al. investigated the problem of fractional q-difference equations⎧⎨⎩ Dα
q (Dβ

q (1 + p(t)))x(t) = f (t, x(t), Dμ
θ x(t), Ψv

ωx(t)),

x(0) = x(η), Iγ
r x(T) =

∫ T
0

(T−rs)(γ−1)

Γr(γ)
x(s)drs = g(x),

(3)

where t ∈ IT
χ := {χkT : k ∈ N ∪ {0, T}}, 0 < α, β, μ ≤ 1, 1 < α + β ≤ 2, v, γ > 0, η ∈ IT

χ − {0, T},
and p, q, r, θ, ω are simple fractions. The existence and uniqueness of solutions for Label (3) was
obtained. The used methods are the Banach contraction mapping principle and Krasnosel’skii fixed
point theorem.

By using Schauder fixed point theorem and the Banach fixed point theorem, Yang [25] discussed
a fractional q-difference equation with three-point boundary conditions:{

Dα
q x(t) + f (t, x(t)) = 0, 0 ≤ t ≤ 1, 1 < α ≤ 2,

x(0) = 0, x(1) = βx(ξ),
(4)

where 0 < βξα−1 < 1, 0 < ξ < 1. The author gave the existence and uniqueness of positive solutions
for Label (4).

In a very recent paper [24], the authors considered a special fractional q-difference equation with
a three-point problem {

Dα
q u(t) + f (t, u(t)) = b, 0 < t < 1, 2 < α < 3,

u(0) = Dqu(0) = 0, Dqu(1) = βDqu(η),
(5)

where 0 < βηα−2 < 1, 0 < q < 1, b ≥ 0 is a constant. The existence and uniqueness of solutions for
Label (5) by using fixed point theorems for ψ-(h, r)-concave operators.

Motivated by [15,26], we consider the existence and uniqueness of positive solutions for Label (1).
Different from the methods mentioned above, our tools are two fixed point theorems for mixed
monotone operators. To the authors’ knowledge, Label (1) is a new form of fractional q-difference
equations. We can give the existence and uniqueness of solutions for Label (1). Furthermore, we can
make an iteration to approximate the unique solution.

2. Preliminaries

Here, we list some concepts and lemmas of fractional q-calculus. One can see [1–8], for example.
For 0 < q < 1 and f defined on [a, b], let

(Iq f )(t) =
∫ t

0
f (s)dqs = (1 − q)

∞

∑
n=0

f (tqn)tqn, t ∈ [0, b].

Then, ∫ b

a
f (t)dqt =

∫ c

a
f (t)dqt +

∫ b

c
f (t)dqt, ∀c ∈ [a, b].

Definition 1. (See [3]). α ≥ 0 and f is defined on [0, 1]. The Riemann–Liouville fractional q-integral is
(I0

q f )(t) = f (t) and

(Iα
q f )(t) =

1
Γq(α)

∫ t

0
(t − qs)(α−1) f (s)dqs, α > 0.

Clearly, (Iα
q f )(t) = (Iq f )(t) when α = 1.
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Lemma 1. (See [22]). If f , g are continuous on [0, s] and f (t) ≤ g(t) for t ∈ [0, s], then

(i)
∫ s

0 f (t)dqt ≤ ∫ s
0 g(t)dqt. In addition, if α > 1, then Iα

q f (s) ≤ Iα
q g(s), t ∈ [0, s],

(ii)
∣∣∫ s

0 f (t)dqt
∣∣ ≤ ∫ s

0 | f (t)|dqt, t ∈ [0, s].

Definition 2. (See [3]). The Riemann–Liouville fractional q-derivative of order α ≥ 0 is

(Dα
q f )(t) = (Dn

q In−α
q f )(t), α > 0, t ∈ [0, 1],

where n denotes the smallest integer greater than or equal to α.
When α = 1, (Dα

q f )(t) = Dq f (t). Furthermore,

(Iα
q Dp

q f )(t) = (Dp
q Iα

q f )(t)−
p−1

∑
n=0

tα−p+n

Γq(α − p + n + 1)
(Dn

q f )(0), p ∈ N.

Lemma 2. If f (t) is continuous with f (t) ≥ 0 for t ∈ [0, 1], and there is t0 ∈ (0, 1) such that f (t0) �= 0.
Then, ∫ 1

0
f (t)dqt > 0, t ∈ [0, 1],

where ∫ 1

0
f (t)dqt = (1 − q)

∞

∑
n=0

qn f (qn), q ∈ (0, 1).

Proof. Because f (t) ≥ 0 and f (t0) �= 0, there is n0 ∈ N such that t0 = qn0 , then

f (qn0)qn0 > 0, 0 < q < 1,

and thus

(1 − q)
∞

∑
n=0

qn f (qn) ≥ (1 − q) f (qn0)qn0 = (1 − q) f (t0)t0 > 0.

Hence, we have
∫ 1

0 f (t)dqt > 0.

Here, we list other facts that are important in the sequel. See [26–30] for instance.
(X, ‖ · ‖) is a real Banach space, its partial order induced by a cone K of X, i.e., x ≤ y if and only

if y − x ∈ K. If there is N > 0 such that ‖x‖ ≤ N‖y‖ for θ ≤ x ≤ y, x, y ∈ X, then K is called normal,
where θ denotes the zero element of X. The notation x–y denotes that there exist μ, ν > 0 such that
μx ≤ y ≤ νx, ∀ x, y ∈ X. For fixed h > θ, define a set Kh = {x ∈ E | x ∼ h}. Then, Kh ⊂ K.

Definition 3. (See [27]). Suppose T : K → K is a given operator. If

T(tx) ≥ tTx, ∀t ∈ (0, 1), x ∈ K, (6)

then T is said to be sub-homogeneous.

Definition 4. (See [27]). Let 0 ≤ γ < 1. An operator T : K → K satisfies

T(tx) ≥ tγTx, ∀t ∈ (0, 1), x ∈ K. (7)

Then, T is said to be γ-concave.
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Lemma 3. (See [27]). Let h > θ, 0 < γ < 1, T1 : K × K → K be a mixed monotone operator and

T1(tx, t−1y) ≥ tγT1(x, y), ∀t ∈ (0, 1), x, y ∈ K. (8)

T2 : K → K is an increasing sub-homogeneous operator. Moreover,

(i) there exists h0 ∈ Kh such that T1(h0, h0), T2h0 ∈ Kh;
(ii) there exists σ > 0 such that T1(x, y) ≥ σT2x, x, y ∈ K.

Then:

(a) T1 : Kh × Kh → Kh and T2 : Kh → Kh;
(b) there are u0, v0 ∈ Kh and τ ∈ (0, 1) satisfying

τv0 ≤ u0 < v0, u0 ≤ T1(u0, v0) + T2u0 ≤ T1(v0, u0) + T2v0 ≤ v0;

(c) T1(x, x) + T2x = x exists a unique solution x∗ in Kh;
(d) for x0, y0 ∈ Kh, set

xn = T1(xn−1, yn−1) + T2xn−1, yn = T1(yn−1, xn−1) + T2yn−1, n = 1, 2, . . . ,

then xn → x∗, yn → x∗ as n → ∞.

Lemma 4. (See [27]). Let h > θ, 0 < γ < 1, T1 : K × K → K be a mixed monotone operator and

T1(tx, t−1y) ≥ tT1(x, y), ∀t ∈ (0, 1), x, y ∈ K. (9)

T2 : K → K is an increasing γ-concave operator. Moreover,

(i) there exists h0 ∈ Kh such that T1(h0, h0), T2h0 ∈ Kh;
(ii) there exists σ > 0 such that T1(x, y) ≤ σT2x, x, y ∈ K.

Then:

(a) T1 : Kh × Kh → Kh and T2 : Kh → Kh;
(b) there are u0, v0 ∈ Kh and τ ∈ (0, 1) satisfying

τv0 ≤ u0 < v0, u0 ≤ T1(u0, v0) + T2u0 ≤ T1(v0, u0) + T2v0 ≤ v0;

(c) T1(x, x) + T2x = x exists a unique solution x∗ in Kh;
(d) for x0, y0 ∈ Kh, set

xn = T1(xn−1, yn−1) + T2xn−1, yn = T1(yn−1, xn−1) + T2yn−1, n = 1, 2, . . . ,

then xn → x∗, yn → x∗ as n → ∞.

Remark 1. From Lemmas 3 and 4, we have two special cases:

(i) Let T2 = θ in Lemma 3, we get the corresponding conclusion (see Corollary 2.2 in [27]);
(ii) Let T1 = θ in Lemma 4, we have the corresponding conclusion (see Theorem 2.7 in [31]).

3. Main Results

By using Lemmas 3 and 4, we will establish our main results for Label (1). Consider a Banach
space X = C[0, 1], the norm is ‖u‖ = sup{|u(t)| : t ∈ [0, 1]}. Set K = {x ∈ C[0, 1]|x(t) ≥ 0, t ∈ [0, 1]},
a normal cone.
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Lemma 5. (See [15]). Let g ∈ C[0, 1], βηα−2 �= 1 and 0 < η < 1, then the unique solution of following
three-point problem {

Dα
q x(t) + g(t) = 0, 0 < t < 1, 2 < α < 3,

x(0) = Dqx(0) = 0, Dqx(1) = βDqx(η)
(10)

is

x(t) =
∫ 1

0
G(t, qs)g(s)dqs +

βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs)g(s)dqs, (11)

where

G(t, s) =
1

Γq(α)

{
(1 − s)(α−2)tα−1 − (t − s)(α−1), 0 ≤ s ≤ t ≤ 1,
(1 − s)(α−2)tα−1, 0 ≤ t ≤ s ≤ 1,

(12)

H(t, s) = tDqG(s, t)

=
[α − 1]q
Γq(α)

{
(1 − s)(α−2)tα−2 − (t − s)(α−2), 0 ≤ s ≤ t ≤ 1,
(1 − s)(α−2)tα−2, 0 ≤ t ≤ s ≤ 1.

Lemma 6. (See [15]). For G(t, qs) in (11), we obtain

(1) G(t, qs) is continuous and G(t, qs) ≥ 0, t, s ∈ [0, 1]× [0, 1];
(2) G(t, qs) is strictly increasing in t ∈ [0, 1].

Remark 2. For G(t, qs) in (11), we can easily get

G(t, qs) ≤ 1
Γq(α)

(1 − qs)(α−2)tα−1, t, s ∈ [0, 1]× [0, 1].

By (2) in Lemma 6, we have tDqG(qs, t) ≥ 0, that is, H(t, qs) ≥ 0. Obviously,

H(t, qs) ≤ [α − 1]q
Γq(α)

(1 − qs)(α−2)tα−2 ≤ [α − 1]q
Γq(α)

, t, s ∈ [0, 1]× [0, 1].

Next, four assumptions are listed:

(H1) f : [0, 1]× [0,+∞)× [0,+∞) → [0,+∞) and g : [0, 1]× [0,+∞) → [0,+∞) are continuous;
(H2) f (t, u, v) is increasing relative to u for fixed t ∈ [0, 1] and v ∈ [0,+∞), decreasing relative to v for fixed

t ∈ [0, 1] and u ∈ [0,+∞); g(t, u) is increasing relative to u for fixed t ∈ [0, 1];
(H3) for λ ∈ (0, 1), t ∈ [0, 1], u ≥ 0, g(t, λu) ≥ λg(t, u) is satisfied, and there is γ ∈ (0, 1) such that

f (t, λu, λ−1v) ≥ λγ f (t, u, v) for u, v ≥ 0. In addition, g(t, 0) �≡ 0;
(H4) there exists σ > 0 such that f (t, u, v) ≥ σg(t, u), ∀t ∈ [0, 1], u, v ∈ [0,+∞).

Theorem 1. Let (H1)− (H4) be satisfied, then

(a) there are u0, v0 ∈ Kh and τ ∈ (0, 1) satisfying τv0 ≤ u0 < v0 and

u0(t) ≤ βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs)[ f (s, u0(s), v0(s)) + g(s, u0(s))]dqs

+
∫ 1

0
G(t, qs)[ f (s, u0(s), v0(s)) + g(s, u0(s))]dqs, t ∈ [0, 1],

v0(t) ≥ βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs)[ f (s, v0(s), u0(s)) + g(s, v0(s))]dqs

+
∫ 1

0
G(t, qs)[ f (s, v0(s), u0(s)) + g(s, v0(s))]dqs, t ∈ [0, 1],
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where h(t) = tα−1 and G(t, qs), H(t, qs) are defined as in Lemma 5;

(b) BVP (1) has a unique positive solution u∗ ∈ Kh;
(c) for x0, y0 ∈ Kh, set

xn+1(t) =
βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs)[ f (s, xn(s), yn(s)) + g(s, xn(s))]dqs

+
∫ 1

0
G(t, qs)[ f (s, xn(s), yn(s)) + g(s, xn(s))]dqs, n = 1, 2, . . . ,

yn+1(t) =
βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs)[ f (s, yn(s), xn(s)) + g(s, yn(s))]dqs

+
∫ 1

0
G(t, qs)[ f (s, yn(s), xn(s)) + g(s, yn(s))]dqs, n = 1, 2, . . . ,

then ‖xn − u∗‖ → 0, ‖yn − u∗‖ → 0 as n → ∞.

Proof. By Lemma 5, the solution u of BVP (1) can be written by

u(t) =
βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs)[ f (s, u(s), u(s)) + g(s, u(s))]dqs

+
∫ 1

0
G(t, qs)[ f (s, u(s), u(s)) + g(s, u(s))]dqs.

Now, we give two operators T1 : K × K → X and T2 : K → X by

T1(u, v)(t) =
βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs) f (s, u(s), v(s))dqs

+
∫ 1

0
G(t, qs) f (s, u(s), v(s))dqs,

(T2u)(t) =
βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs)g(s, u(s))dqs

+
∫ 1

0
G(t, qs)g(s, u(s))dqs.

Obviously, u is a solution of Label (1) if and only if u = T1(u, u) + T2u. By (H1), one has
T1 : K × K → K and T2 : K → K. We will prove that T1, T2 satisfy all the assumptions of Lemma 3.
The proof consists of three steps.

Step 1. The aim of this step is to prove that T1 is a mixed monotone operator.
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For ui, vi ∈ K, i = 1, 2 with u1 ≥ u2, v1 ≤ v2, then u1(t) ≥ u2(t), v1(t) ≤ v2(t) for t ∈ [0, 1].
From (H2) and Lemma 6,

T1(u1, v1)(t) =
βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs) f (s, u1(s), v1(s))dqs

+
∫ 1

0
G(t, qs) f (s, u1(s), v1(s))dqs

≥ βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs) f (s, u2(s), v2(s))dqs

+
∫ 1

0
G(t, qs) f (s, u2(s), v2(s))dqs

= T1(u2, v2)(t).

Thus, T1(u1, v1) ≥ T1(u2, v2), that is, T1 is mixed monotone.

Step 2. Our aim of this step is to show that T1 satisfies the condition (8) and the operator T2 is
sub-homogeneous.

From (H2) and Lemma 6, T2 is increasing. Furthermore, for λ ∈ (0, 1) and u, v ∈ P, by (H3),

T1(λu, λ−1v)(t) =
βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs) f (s, λu(s), λ−1v(s))dqs

+
∫ 1

0
G(t, qs) f (s, λu(s), λ−1v(s))dqs

≥ λγβtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs) f (s, u(s), v(s))dqs

+λγ
∫ 1

0
G(t, qs) f (s, u2(s), v2(s))dqs

= λγT1(u, v)(t),

and thus T1(λu, λ−1v) ≥ λγT1(u, v) for λ ∈ (0, 1), u, v ∈ K. Hence, the operator T1 satisfies (8).
In addition, for any λ ∈ (0, 1), u ∈ K, by (H3),

T2(λu)(t) =
βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs)g(s, λu(s))dqs +

∫ 1

0
G(t, qs)g(s, λu(s))dqs

≥ λβtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs)g(s, u(s))dqs + λ

∫ 1

0
G(t, qs)g(s, u(s))dqs

= λT2u(t),

that is, T2(λu) ≥ λT2u, u ∈ P. Thus, the operator T2 is sub-homogeneous.

Step 3. The purpose of this step is to prove that T1(h, h), T2h ∈ Kh. Furthermore, we also prove
that there exists σ > 0 such that T1(x, y) ≥ σT2x, ∀x, y ∈ K.

Firstly, in view of (H1), (H2) and Lemma 6, for t ∈ [0, 1],

T1(h, h)(t) =
βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs) f (s, h(s), h(s))dqs +

∫ 1

0
G(t, qs) f (s, h(s), h(s))dqs

=
βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs) f (s, sα−1, sα−1)dqs +

∫ 1

0
G(t, qs) f (s, sα−1, sα−1)dqs

≤ βh(t)
(1 − βηα−2)Γq(α)

∫ 1

0
(1 − qs)(α−2) f (s, 1, 0)dqs +

h(t)
Γq(α)

∫ 1

0
(1 − qs)(α−2) f (s, 1, 0)dqs.
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By the same arguments, for t ∈ [0, 1],

T1(h, h)(t) =
βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs) f (s, sα−1, sα−1)dqs +

∫ 1

0
G(t, qs) f (s, sα−1, sα−1)dqs

≥ h(t)
Γq(α)

∫ 1

0
[(1 − qs)(α−2) − (1 − qs)(α−1)] f (s, 0, 1)dqs.

From (H2), (H4), ∫ 1

0
f (s, 1, 0)dqs ≥

∫ 1

0
f (s, 0, 1)dqs ≥ σ

∫ 1

0
g(s, 0)dqs > 0.

Set

l1 =

(
1

Γq(α)
+

β

(1 − βηα−2)Γq(α)

) ∫ 1

0
(1 − qs)(α−2) f (s, 1, 0)dqs,

l2 =
1

Γq(α)

∫ 1

0

[
(1 − qs)(α−2) − (1 − qs)(α−1)

]
f (s, 0, 1)dqs.

Then, l2h(t) ≤ T1(h, h)(t) ≤ l1h(t), t ∈ [0, 1]. It follows that T1(h, h) ∈ Kh. Similarly,

T2h(t) ≥ h(t)
Γq(α)

∫ 1

0

[
(1 − qs)(α−2) − (1 − qs)(α−1)

]
g(s, 0)dqs,

and

T2h(t) ≤
(

1
Γq(α)

+
β

(1 − βηα−2)Γq(α)

)
h(t)

∫ 1

0
(1 − qs)(α−2)g(s, 1)dqs.

Since g(t, 0) �≡ 0, we also get T2h ∈ Kh. Thus, the condition (i) of Lemma 3 holds. Next, we will
indicate that (ii) of Lemma 3 is still satisfied. For t ∈ [0, 1], u, v ∈ K, from (H4),

T1(u, v)(t) =
βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs) f (s, u(s), v(s))dqs +

∫ 1

0
G(t, qs) f (s, u(s), v(s))dqs

≥ σβtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs)g(s, u(s))dqs + σ

∫ 1

0
G(t, qs)g(s, u(s))dqs

= σT2u(t).

Then, T1(u, v) ≥ σT2u for u, v ∈ K. Therefore, by Lemma 3, we have: u0, v0 ∈ Kh and τ ∈
(0, 1) satisfying τv0 ≤ u0 < v0, u0 ≤ T1(u0, v0) + T2u0 ≤ T1(v0, u0) + T2v0 ≤ v0; the equation
T1(u, u) + T2u = u has a unique solution u∗ in Kh; for x0, y0 ∈ Kh, set

xn = T1(xn−1, yn−1) + T2xn−1, yn = T1(yn−1, xn−1) + T2yn−1, n = 1, 2, . . . ,

one obtains xn → u∗, yn → u∗ as n → ∞. Namely,

u0(t) ≤ βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs)[ f (s, u0(s), v0(s)) + g(s, u0(s))]dqs

+
∫ 1

0
G(t, qs)[ f (s, u0(s), v0(s)) + g(s, u0(s))]dqs, t ∈ [0, 1],

v0(t) ≥ βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs)[ f (s, v0(s), u0(s)) + g(s, v0(s))]dqs

+
∫ 1

0
G(t, qs)[ f (s, v0(s), u0(s)) + g(s, v0(s))]dqs, t ∈ [0, 1];
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Label (1) has a unique positive solution u∗ ∈ Kh; for x0, y0 ∈ Kh, the sequences

xn+1(t) =
βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs)[ f (s, xn(s), yn(s)) + g(s, xn(s))]dqs

+
∫ 1

0
G(t, qs)[ f (s, xn(s), yn(s)) + g(s, xn(s))]dqs, n = 1, 2, . . . ,

yn+1(t) =
βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs)[ f (s, yn(s), xn(s)) + g(s, yn(s))]dqs

+
∫ 1

0
G(t, qs)[ f (s, yn(s), xn(s)) + g(s, yn(s))]dqs, n = 1, 2, . . .

satisfy ‖xn − u∗‖ → 0, ‖yn − u∗‖ → 0 as n → ∞.

Theorem 2. Let (H1), (H2) and the following conditions be satisfied:

(H5) for t ∈ [0, 1], λ ∈ (0, 1), u ≥ 0, there is γ ∈ (0, 1) such that g(t, λu) ≥ λγg(t, u) and f (t, λu, λ−1v) ≥
λ f (t, u, v) for t ∈ [0, 1], λ ∈ (0, 1), u, v ≥ 0;

(H6) f (t, 0, 1) �≡ 0 for t ∈ [0, 1], and there is σ > 0 satisfying f (t, u, v) ≤ σg(t, u), ∀t ∈ [0, 1], u, v ≥ 0.

Then:

(a) there is u0, v0 ∈ Ph and τ ∈ (0, 1) such that τv0 ≤ u0 < v0 and

u0(t) ≤ βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs)[ f (s, u0(s), v0(s)) + g(s, u0(s))]dqs

+
∫ 1

0
G(t, qs)[ f (s, u0(s), v0(s)) + g(s, u0(s))]dqs, t ∈ [0, 1],

v0(t) ≥ βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs)[ f (s, v0(s), u0(s)) + g(s, v0(s))]dqs

+
∫ 1

0
G(t, qs)[ f (s, v0(s), u0(s)) + g(s, v0(s))]dqs, t ∈ [0, 1],

where h(t) = tα−1 and G(t, qs), H(t, qs) are defined as in Lemma 5;

(b) BVP (1) has a unique positive solution u∗ ∈ Kh;
(c) for any x0, y0 ∈ Kh, set

xn+1(t) =
βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs)[ f (s, xn(s), yn(s)) + g(s, xn(s))]dqs

+
∫ 1

0
G(t, qs)[ f (s, xn(s), yn(s)) + g(s, xn(s))]dqs, n = 1, 2, . . . ,

yn+1(t) =
βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs)[ f (s, yn(s), xn(s)) + g(s, yn(s))]dqs

+
∫ 1

0
G(t, qs)[ f (s, yn(s), xn(s)) + g(s, yn(s))]dqs, n = 1, 2, . . . ,

and we get ‖xn − u∗‖ → 0, ‖yn − u∗‖ → 0 as n → ∞.
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Proof. We also consider two operators T1, T2. Given in the proof of Theorem 1, it has been shown that
T1 : K × K → K is mixed monotone and T2 : K → K is increasing. By (H5),

T1(λu, λ−1v) ≥ λT1(u, v), T2(λu) ≥ λγT2u, λ ∈ (0, 1), u, v ∈ K.

From (H2), (H6),

g(s, 0) ≥ 1
σ

f (s, 0, 1), f (s, 1, 0) ≥ f (s, 0, 1), s ∈ [0, 1].

Since f (t, 0, 1) �≡ 0, we obtain

∫ 1

0
f (s, 1, 0)dqs ≥

∫ 1

0
f (s, 0, 1)dqs > 0,

∫ 1

0
g(s, 1)dqs ≥

∫ 1

0
g(s, 0)dqs ≥ 1

σ

∫ 1

0
f (s, 0, 1)dqs > 0,

so (
1

Γq(α)
+ β

(1−βηα−2)Γq(α)

) ∫ 1
0 (1 − qs)(α−2) f (s, 1, 0)dqs

≥ 1
Γq(α)

∫ 1
0

[
(1 − qs)(α−2) − (1 − qs)(α−1)

]
f (s, 0, 1)dqs > 0,

and (
1

Γq(α)
+ β

(1−βηα−2)Γq(α)

) ∫ 1
0 (1 − qs)(α−2)g(s, 1)dqs

≥ 1
Γq(α)

∫ 1
0

[
(1 − qs)(α−2) − (1 − qs)(α−1)

]
g(s, 0)dqs > 0.

It can easily prove that T1(h, h), T2h ∈ Kh. Furthermore, by (H6),

T1(u, v)(t) =
βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs) f (s, u(s), v(s))dqs +

∫ 1

0
G(t, qs) f (s, u(s), v(s))dqs

≤ σβtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs)g(s, u(s))dqs + σ

∫ 1

0
G(t, qs)g(s, u(s))dqs

= σT2u(t).

Hence, T1(u, v) ≤ T2u, for u, v ∈ K. By Lemma 4, we can claim: there are u0, v0 ∈ Ph and
τ ∈ (0, 1) satisfying τv0 ≤ u0 < v0, u0 ≤ T1(u0, v0) + T2u0 ≤ T1(v0, u0) + T2v0 ≤ v0; the equation
T1(u, u) + T2u = u has a unique solution u∗ in Kh; for x0, y0 ∈ Kh, set

xn = T1(xn−1, yn−1) + T2xn−1, yn = T1(yn−1, xn−1) + T2yn−1, n = 1, 2, . . . ,

one has xn → u∗, yn → u∗ as n → ∞. Namely,

u0(t) ≤ βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs)[ f (s, u0(s), v0(s)) + g(s, u0(s))]dqs

+
∫ 1

0
G(t, qs)[ f (s, u0(s), v0(s)) + g(s, u0(s))]dqs, t ∈ [0, 1],

v0(t) ≥ βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs)[ f (s, v0(s), u0(s)) + g(s, v0(s))]dqs

+
∫ 1

0
G(t, qs)[ f (s, v0(s), u0(s)) + g(s, v0(s))]dqs, t ∈ [0, 1];
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Label (1) has a unique positive solution u∗ ∈ Kh; for x0, y0 ∈ Ph, the sequences

xn+1(t) =
βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs)[ f (s, xn(s), yn(s)) + g(s, xn(s))]dqs

+
∫ 1

0
G(t, qs)[ f (s, xn(s), yn(s)) + g(s, xn(s))]dqs, n = 1, 2, . . . ,

yn+1(t) =
βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs)[ f (s, yn(s), xn(s)) + g(s, yn(s))]dqs

+
∫ 1

0
G(t, qs)[ f (s, yn(s), xn(s)) + g(s, yn(s))]dqs, n = 1, 2, . . .

satisfy ‖xn − u∗‖ → 0, ‖yn − u∗‖ → 0 as n → ∞.

In the sequel, we consider special cases of Label (1) with g ≡ 0 or f ≡ 0. Similar to the proofs of
Theorems 1 and 2 and according to Remark 1, we can draw the following conclusions:

Corollary 1. Assume f satisfies (H1)− (H4) and f (t, 0, 1) �≡ 0, for t ∈ [0, 1]. Then: (a) there are u0, v0 ∈ Kh
and τ ∈ (0, 1) such that τv0 ≤ u0 < v0 and

u0(t) ≤ βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs) f (s, u0(s), v0(s))dqs

+
∫ 1

0
G(t, qs) f (s, u0(s), v0(s))dqs, t ∈ [0, 1],

v0(t) ≥ βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs) f (s, v0(s), u0(s))dqs

+
∫ 1

0
G(t, qs) f (s, v0(s), u0(s))dqs, t ∈ [0, 1],

where h(t) = tα−1 and G(t, qs), H(t, qs) are given as in Lemma 5; (b) the following BVP{
Dα

q x(t) + f (t, x(t), x(t)) = 0, 0 < t < 1, 2 < α < 3,
x(0) = Dqx(0) = 0, Dqx(1) = βDqx(η),

(13)

has a unique positive solution u∗ ∈ Kh; (c) for x0, y0 ∈ Kh, set

xn+1(t) =
βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs) f (s, xn(s), yn(s))dqs

+
∫ 1

0
G(t, qs) f (s, xn(s), yn(s))dqs, n = 1, 2, . . . ,

yn+1(t) =
βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs) f (s, yn(s), xn(s))dqs

+
∫ 1

0
G(t, qs) f (s, yn(s), xn(s))dqs, n = 1, 2, . . . ,

and we get ‖xn − u∗‖ → 0, ‖yn − u∗‖ → 0 as n → ∞.
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Corollary 2. Assume g satisfies (H1), (H2) and (H5), (H6), g(t, 0) �≡ 0, for t ∈ [0, 1]. Then:
(a) there are u0, v0 ∈ Kh and τ ∈ (0, 1) such that τv0 ≤ u0 < v0 and

u0(t) ≤ βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs)g(s, u0(s))dqs

+
∫ 1

0
G(t, qs)g(s, u0(s)), t ∈ [0, 1],

v0(t) ≥ βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs)g(s, v0(s))dqs

+
∫ 1

0
G(t, qs)g(s, v0(s))dqs, t ∈ [0, 1],

where h(t) = tα−1 and G(t, qs), H(t, qs) are given as in Lemma 5; (b) the following problem{
Dα

q x(t) + g(t, x(t)) = 0, 0 < t < 1, 2 < α < 3,
x(0) = Dqx(0) = 0, Dqx(1) = βDqx(η),

(14)

has a unique positive solution u∗ ∈ Kh; (c) for x0, y0 ∈ Kh, set

xn+1(t) =
βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs)g(s, xn(s))dqs

+
∫ 1

0
G(t, qs)g(s, xn(s))dqs, n = 1, 2, . . . ,

yn+1(t) =
βtα−1

[α − 1]q(1 − βηα−2)

∫ 1

0
H(η, qs)g(s, yn(s))dqs

+
∫ 1

0
G(t, qs)g(s, yn(s))dqs, n = 1, 2, . . . ,

and we obtain ‖xn − u∗‖ → 0, ‖yn − u∗‖ → 0 as n → ∞.

Remark 3. In literature, we have not found such results as Theorems 1 and 2, and Corollaries 1 and 2 on
fractional q-difference equation boundary value problems. The used methods in literature were not fixed point
theorems for mixed monotone operators. Thus, our method is different from previous ones. We should point out
that we can not only give the existence and uniqueness of solutions but also make an iteration to approximate the
unique solution.

4. Examples

Example 1. We consider a problem:{
D

5
2
q u(t) + u

1
5 (t) + [u(t) + 4]−

1
3 + u(t)

2+u(t) t3 + 3a = 0, t ∈ (0, 1),

u(0) = Dqu(0) = 0, Dqu(1) = 1
2 Dqu( 1

2 ),
(15)

where q = 1
2 , α = 5

2 , β = η = 1
2 , a > 0. Take 0 < b < a and let

f (t, u, v) = u
1
5 + [v + 4]−

1
3 + b, g(t, u) =

u
2 + u

t3 + 3a − b, γ =
1
3

.

Then, f : [0, 1]× [0,+∞)× [0,+∞) → [0,+∞) and g : [0, 1]× [0,+∞) → [0,+∞) are continuous,
g(t, 0) = 3a − b > 0. Furthermore, f (t, u, v) is increasing relative to u for fixed t ∈ [0, 1] and v ∈ [0,+∞),
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decreasing relative to v for fixed t ∈ [0, 1] and u ∈ [0,+∞), g(t, u) is increasing relative to u for fixed t ∈ [0, 1].
On the other hand, for λ ∈ (0, 1), t ∈ [0, 1], u, v ≥ 0,

g(t, λu) =
λu(t)

2 + λu(t)
t3 + 3a − b ≥ λu(t)

2 + u(t)
t3 + λ(3a − b) = λg(t, u),

and

f (t, λu, λ−1v) = λ
1
5 u

1
5 + λ

1
3 [v + 4λ]−

1
3 + b ≥ λ

1
3

{
u

1
5 + [v + 4]−

1
3 + b

}
= λγ f (t, u, v).

Then, (H1)–(H3) holds. Moreover, taking σ ∈ (0, b
3a−b ], one has

f (t, u, v) = u
1
5 + [v + 4]−

1
3 + b ≥ b =

b
3a − b

· (3a − b) ≥ σ

[
u

2 + u
t3 + 3a − b

]
= σg(t, u),

then (H4) holds. By means of Theorem 1, problem (15) has a unique positive solution u∗ ∈ Kh, where
h(t) = t

3
2 , t ∈ [0, 1].

Example 2. In Example 4.1, we replace the nonlinear term u
1
5 (t) + [u(t) + 4]−

1
3 + u(t)

2+u(t) t3 + 3a by

sin2 t + u
1
3 (t) +

1
2 + u(t)

+
u(t)

1 + u(t)
+ 3.

By Theorem 2, we can also show that problem (4.1) has a unique positive solution u∗ ∈ Kh, where
h(t) = t

3
2 , t ∈ [0, 1]. In fact, let

f (t, u, v) = sin2 t +
1

2 + v
+

u
1 + u

, g(t, u) = u
1
3 + 3, γ =

1
3

.

It is easy to check that (H1), (H2) hold. We only show (H5), (H6) are satisfied. For λ ∈ (0, 1), t ∈
[0, 1], u, v ≥ 0,

g(t, λu) = λ
1
3 u

1
3 + 3 ≥ λ

1
3 [u

1
3 + 3] = λγg(t, u),

and
f (t, λu, λ−1v) = sin2 t +

1
2 + λ−1v

+
λu

1 + λu
≥ sin2 t +

λ

2 + v
+

λu
1 + u

≥ λ f (t, u, v).

Furthermore, f (t, 0, 1) = sin2 t + 1
3 �≡ 0 and

f (t, u, v) ≤ 3 ≤ u
1
3 + 3 = g(t, u).

Take σ ∈ [1, ∞) and then (H5), (H6) hold.

Remark 4. From Theorems 1 and 2 and Examples 1 and 2, we see that many boundary value problems can be
studied by our methods under mixed monotone conditions. We can find that there are many functions that satisfy
our conditions. In some works, the nonlinear terms required were super-linearity, sub-linearity or boundness,
which guarantee existence of solutions, but the uniqueness has not been obtained.

5. Conclusions

In this article, we investigate a fractional q-difference equation with three-point boundary
conditions (1). We obtain the existence and uniqueness of positive solutions in a special Kh,
where h(t) = tα−1. The used methods here are some theorems for operator equation T1(x, x) + T2x = x,
where T1 is a mixed monotone operator and T2 is an increasing operator. Our methods are new to
fractional q-difference equation boundary value problems. Thus, we can claim that we give an
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alternative answer to fractional problems and our results are very limited in the literature. Finally,
two interesting examples are presented to illustrate the main results. We should note that, to get the
uniqueness, we must need the conditions of mixed monotonicity and monotonicity for nonlinear terms.
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