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Preface to ”Numerical and Evolutionary Optimization

2018”

This volume was inspired by the 6th International Workshop on Numerical and Evolutionary

Optimization (NEO) hosted by the Instituto Politécnico Nacional (IPN), located in downtown Mexico

City, Mexico. The workshop was held from September 26 to 28, 2018, and was attended by a total of

around 70 researchers and students.

Solving scientific and engineering problems from the real world is nowadays a very complicated

task; that is why the development of powerful search and optimization techniques is of great

importance. Two well-established fields focus on this duty; they are (i) traditional numerical

optimization techniques and (ii) bio-inspired metaheuristic methods. Both general approaches have

unique strengths and weaknesses, allowing researchers to solve some challenging problems but still

failing in others. The goal of NEO is to gather people from both fields to discuss, compare, and merge

these complementary perspectives. Collaborative work allows researchers to maximize strengths

and to minimize the weaknesses of both paradigms. NEO also intends to help researchers in these

fields to understand and tackle real-world problems like pattern recognition, routing, energy, lines of

production, prediction, modeling, among others.

Papers one to four of this book are about exciting applications of the differential

evolution (DE) heuristic. In the first paper, [https://www.mdpi.com/2297-8747/23/3/34] R.

Akararungruangkul et al. consider a particular case of the location routing problem (SLRP). Here,

the objective function is fuel consumption, while the problem faces variations in vehicle speeds

and admits time constraints regarding the kind of the carried material. The second paper [https://

www.mdpi.com/2297-8747/23/3/40] by U. Ketsripongsa et al. concerns the economic crop planning

problem, considering transportation logistics to maximize the profit from cultivated activities. In this

case, income comes from the selling price and production rate, while costs are due to operating

and transportation expenses. In the third paper [https://www.mdpi.com/2297-8747/23/4/79],

P. Sresracoo et al. aim to solve the U-shaped assembly line balancing problem Type 1 (UALBP-1).

They apply DE for balancing production lines while minimizing the number of workstations.

The fourth paper by P. Sriboonchandr et al. [https://www.mdpi.com/2297-8747/24/3/80] compares

metaheuristics performance on the flexible job-shop scheduling problem (FJSP).

The following two papers focus on genetic programming (GP) based techniques. Starting with

paper five [https://www.mdpi.com/2297-8747/24/3/78], by P. Juarez-Smit et al., it approaches GP

combining a numerical local search method and a bloat-control mechanism within a distributed

model for evolutionary algorithms. After that, paper six [https://www.mdpi.com/2297-8747/23/

2/19] by R. Lopez et al. is about considering computational models that can score the behavior of a

driver based on a risky–safety scale. Potential applications of these models include car rental agencies,

insurance companies, or transportation service providers.

Next, paper seven [https://www.mdpi.com/2297-8747/23/2/25] by W. Limmun et al. is

Construction of a Model-Robust IV-Optimal Mixture Designs Using a Genetic Algorithm (GA).

Their obtained results show that the GA-generated designs studied are robust across a set of potential

mixture models. It is followed by paper eight [https://www.mdpi.com/2297-8747/23/4/60], where

J. Guerrero et al. present a shape optimization workflow. This proposal considers fault-tolerant and

software agnostics, and allows asynchronous simulations with a high degree of automation. The test

focuses on a practical maritime industry case, aiming to optimize the shape of a bulbous bow to

ix



minimize the hydrodynamic resistance.

The last three papers address some aspects of multiobjective optimization. First, in paper

nine [https://www.mdpi.com/2297-8747/23/2/30], S. Peitz and M. Dellnitz present an overview

of recent developments in accelerating multiobjective optimal control. The results are about

complex problems, where either PDE constraints are present or where there is a necessity of archive

feedback behavior.

Second, in paper ten [https://www.mdpi.com/2297-8747/23/3/51], J. M. Bogoya et al. extend

the two-parameter-based performance indicator delta p,q to asses multiobjective optimization

algorithms. This extension applies to bounded subsets of the n-dimensional space, which makes

it suitable for applications in the scope of NEO.

Finally, in paper eleven [https://www.mdpi.com/2297-8747/24/3/82], O. Cuate et al. propose

a selection strategy for multiobjective evolutionary algorithms that aims to maintain diversity both

in objective space—which is the commonly used space—as well as in decision variable space. This is

done since a variation in decision space may represent valuable information such as backup solutions

for the decision-maker in some instances.

Finally, we thank all participants at NEO 2018 and hope that this book can be a contemporary

reference regarding the field of numerical evolutionary optimization and its exciting applications.

Adriana Lara, Marcela Quiroz, Efrén Mezura-Montes, Oliver Schütze

Special Issue Editors
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Abstract: This research article aims to solve the special case of the location routing problem (SLRP)
when the objective function is the fuel consumption. The fuel consumption depends on the distance
of travel and the condition of the road. The condition of the road causes the vehicle to use a different
speed, which affects fuel usage. This turns the original LRP into a more difficult problem. Moreover,
the volume of the goods that are produced in each node could be more or less than the capacity
of the vehicle, and as the case study requires the transportation of latex, which is a sensitive good
and needs to be carried within a reasonable time so that it does not form solid before being used
in the latex process, the maximum time that the latex can be in the truck is limited. All of these
attributes are added into the LRP and make it a special case of LRP: a so-called SLRP (a special case of
location routing problem). The differential evolution algorithms (DE) are proposed to solve the SLRP.
We modified two points in the original DE, which are that (1) the mutation formula is introduced
and (2) the new rule of a local search is presented. We call this the modified differential evolution
algorithm (MDE). From the computational result, we can see that MDE generates a 13.82% better
solution than that of the original version of DE in solving the test instances.

Keywords: location routing problem; rubber; modify differential evolution algorithm;
vehicle routing problem

1. Introduction

More than 14% of the Thai GDP comes from the transportation and logistics sector. More than
60% of the transportation cost incurred in Thailand is by one actor: the agricultural supply chain. This is
because Thailand is known as an agricultural country. The major agricultural industry is the rubber
industry. More than 80% of rubber is produced in the southern part of Thailand, with the remaining
part of rubber production mainly in the northeastern part of Thailand. The rubber industry in the South
has a long history, and much suitable infrastructure has been developed. Aside from the northeastern
part of Thailand, the infrastructure and knowledge, including technology, knowledge, instruments
and so forth, are not yet sufficient for the high growth of the rubber industry. The transportation
costs in the rubber industry are not paid by the government or the person who takes care of this issue;
farmers still deliver latex themselves to sell at the rubber collecting points. This activity generates
a very high transportation cost for the whole country. Our research team is engaged in a project to
design the latex collection system. This system comprises of finding the location of the collection
points and the transportation route of the vehicles. This problem is actually similar to the vehicle
routing problem which was first proposed by Dantzig and Ramser [1] and has been proven to be
an NP-hard problem [2]. Apart from the vehicle routing problem (VRP), this problem must also
decide the collection point of the latex; thus, the VRP turns out to be a location routing problem (LRP).
Location routing [3].

Math. Comput. Appl. 2018, 23, 34; doi:10.3390/mca23030034 www.mdpi.com/journal/mca1
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The proposed problem is not the general LRP that we found in the literature but has a few
characteristics that make it a special case of LRP. These characteristics are as follows:

(1) The volume of latex which is available in the rubber field can be more or less than the capacity of
the vehicles;

(2) The potential location and the rubber fields have different attributes such as different road
conditions which can affect the speed used and the fuel consumption rate of the truck.

(3) The maximum duration or distances used for each vehicle are limited due to the latex’s fast
transformation to solid;

(4) We focus the objective function on minimizing the total fuel consumption instead of the total
distance as we often see in the literature.

These four special attributes make this problem a special case of the LRP problem (SLRP).
The SLRP has never been found in the literature due to its 4 special attributes explained above.
This problem can be found in many real-world applications. Nakorn Panom Province is one of the
cities that has the fastest growing rate of development in the agricultural industry. The rubber cultural
area has increased by more than 150% in the last 5 years in Nakorn Panom Province. We will take
Nakorn Panom Province as the case study. The method which is presented here is customized to the
rubber field industry, and it is also applicable to other industries where it has the same attributes as
mentioned above.

In this study, the effective modified differential evolution algorithm will be presented to solve the
proposed problem. The article is organized as follows; Section 2 is the literature review; Section 3 is the
problem definition, and current practice procedures will be presented; Section 4 presents the proposed
heuristics; and Section 5 gives the conclusions and outlook of the article.

2. Literature Review

Dantzig and Ramser [1] introduced the vehicle routing problem (VRP) and Lenstra and
Rinnooy [2] proved that it is an NP-hard problem. Various types of VRP have been presented in
many research articles. Braekers and Ramaekers [4] have given an overview of the scenario and the
problem’s physical characteristics, extending the basic uncapacitated VRP. Besides the various types
of VRP problems, there are also various types of methods for solving the VRP. The metaheuristic
method is one of the solution methods that is very popular for solving VRP as it is fast and effective.
The solution approaches presented in many articles are simulated annealing [5].

The location routing problem (LRP) is one of many various types of VRP. This problem has two
decision variables which need to be solved. These two decision variables are (1) the suitable location to
be used and (2) the routing of the field or the clients that are assigned to that location [6,7]. The optimal
value of the suitable location can be determined before or during the assignment of the clients to
the locations.

There are many researchers that have presented a methodology to solve the LRP. Most of the
algorithms proposed in the literature are two-phase heuristics, which are (1) cluster first, (2) route
second or (1) route first, (2) cluster second [8]. From the literature, both choices perform well in many
test problems; thus, selecting one will not affect the solution quality. In our research, the proposed
heuristics employ the idea of using two-phase heuristics. We select cluster first, route second as the
starting point of our algorithm.

There are many researchers who have focused on developing metaheuristics to solve the problem
such as tabu search [9] and the simulated annealing (SA) technique [10,11].

In this research, the differential evolution algorithm (DE) is presented as it is a fast and
effective algorithm.

The differential evolution (DE) algorithm is a branch of the evolutionary algorithm developed
by Rainer Storn and Kenneth Price [12] for optimization problems over continuous optimization.
Thereafter, DE has been successfully used in combinatorial optimization such as in assembly line
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balancing [13,14], the location-allocation problem [15], machine layout [16,17], and the manufacturing
problem [18].

The DE has been applied to VRP problem [19–25]. The design of DE to solve VRP problem has
both the traditional [20] way or the slight modification of some mechanism to get a more effective
algorithm. Key successes of DE are the good designing of vectors to represent the problem, the encoding
and decoding methods, the setting of good predefined parameters in the DE mechanism and the
effectiveness of the mutation, recombination, and selection procedure [23–25]. Moreover, with DE,
it is also easy to add some procedure to increase its performance such as add local search [19],
adjust decoding method [21], and self-adaptive some parameters [23]. Though there are many articles
proposing DE to solve VRP, we cannot find an effective DE to solve the LRP [22]. So it is our contribution
to present the effective DE to solve the special case of LRP. When all key successes have been introduced
to DE, DE will be very effective compared with other metaheuristics proposed in the literature.
Moreover, DE has the advantage that it is fast and efficient; thus, in this article, we will present the
modified version of it to solve the problem.

This article is organized as follows: in the next section, the problem definition and the current
practice heuristics is presented. Section 3 presents the proposed heuristics. Section 4 proposes the
computational results and Section 5 is the conclusion of the article.

3. The Problem Definition and the Current Practice Heuristics

3.1. The Problem Definition

The case study is composed of 110 rubber fields and 30 potential areas that can be set as the
collecting points. All connections between the location and fields have different road conditions,
with different speed limits and road condition factors. The example of the case study is shown
in Figure 1.

Rubber field Potential location Road condition (different size
implied different road condition)

Figure 1. The problem definition.

From Figure 1, we can see that one field can be visited by direct shipping (which can be visited
more than once by direct shipping) and routing or even combined direct shipping and routing.
This makes the problem much harder than the normal LRP. The different size of the arrows used
implies different road conditions and speed limits that are permissible to use, and the speed used on
the road affects the fuel consumption of the vehicle. The objective function which is used here is the
total fuel consumption, and the conditions that need to be satisfied are as follows:

3
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(1) The speed limit of the road need to be controlled;
(2) All fields must be visited at least one time;
(3) The maximum duration of traveling has to be under a limit;
(4) The total working hours of the truck needs to be controlled.

The objective function and the constraints addressed above make the LRP harder to solve. The current
practice method which is used in the Nakorn Panom Province will be explained in the next section.

The types of road are set to seven types, distinguished by using the average driving speed
and the fuel consumption rate, as shown in Table 1. The consumption rate is calculated from
https://en.wikipedia.org/wiki/Fuel_economy_in_automobiles.

Table 1. The road type and its consumption rate.

Road Type Ave. Speed Litre/km

S 30 0.118
T 40 0.107
V 50 0.112
W 60 0.090
X 70 0.098
Y 80 0.098
Z 90 0.102

Ave. Speed is the average speed of the vehicle that can be driven on the particular road types.
In the case study, the historical data of the average speed used for that road is collected for two
weeks. After that, the average speed is converted into road type and the fuel used using Table 1.
The consumption rate is assigned to the road, then multiplied by the distance of the connection road.
The average fuel used on that road will be obtained. For example, if the connection between fields 1
and 2 has a distance of 50 km and is a type C road. Thus, the fuel needed to travel on this road is
0.112 × 50 = 5.6 L. This mechanism will be applied to all connections. Finally, the metric of the fuel
consumption of the road will be obtained.

3.2. The Current Practice Procedure

Previously, the practice procedure has not taken into account the fuel consumption rate and the
speed limit. Thus, the current practice procedure will be decided based on the information given in
the distance matric. The example used to explain the current procedure and the proposed heuristics
composed of 5 potential locations (A, B, C, D, E) and 6 rubber fields. The traveling time of the locations
to fields and fields to field is given in Tables 2 and 3 respectively. The road type of all locations and
field connections is shown in Tables 6 and 7. The maximum traveling time per round of the 12-ton
truck is 60 min and when the truck needs to travel more than one round, it cannot travel for more than
100 min. The procedure practice procedure can be explained as follows:

(1) Select the current location to be used. Start by using the potential location that has the highest Sk
when Sk is calculated by Formula (1):

Sk =
Ck
Fk

(1)

where Ck is the capacity of location k and Fk is the operating cost per day of location k. For example,
if a particular location has a capacity of 80 tons per day and an operating cost of 1500 baht per
day, the Sk is 0.533. If we have five locations (A–E) with a capacity of 30, 20, 50, 40, and 50 tons
and an operation cost of 1200, 1100, 1400, 1000, and 1200, then we get the Sk of each location as
0.025, 0.018, 0.035, 0.04, and 0.041, respectively. Location E will be selected to be the location first,
then step 2 will be executed.

4
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(2) Assign the field to the current location that is in use. This step simply assigns the fields according
to the closest distance to the location that is in use. For example, if we have six fields, we have
five locations; if we have six fields to travel, the traveling time between fields is calculated using
the average speed of the road. The traveling times from locations to the fields are calculated and
shown in Table 2, while the traveling time between the fields is shown in Table 3. Each field has a
volume of latex of 5, 20, 40, 10, 5, and 13 tons, respectively. From step 1, location E is opened and it
has a 50-ton capacity; thus, the closest fields to it that have a cumulative volume of latex of fewer
than 50 tons are field 1 (5), 4 (10), 6 (13), and 5 (5). After all possible fields are assigned to location E
and location E is full, then the next location will be opened (redo step 1). The second highest Sk
is location D, which has a capacity of 40 tons. The remaining field will be assigned to location D.
The closest field to D is field 2, which has a latex volume of 20, and we cannot assign field 3 to
location D due to location D not having enough capacity. Step 1 will be performed again and we
will open location C which has a capacity of 50. Field 3 will be assigned to this location. To conclude
steps 1 and 2, the result of the assignment of the fields to the locations is shown in Table 4.

Table 2. The traveling times of the locations to the fields.

- 1 2 3 4 5 6

A 12 12 14 19 12 17
B 19 6 10 21 20 21
C 21 19 19 17 7 18
D 17 10 15 27 5 19
E 13 22 20 14 19 16

Table 3. The raveling times between fields.

- 1 2 3 4 5 6

1 0 11 15 14 6 9
2 11 0 13 9 6 16
3 15 13 0 27 11 15
4 14 9 27 0 16 25
5 6 6 11 16 0 14
6 9 16 15 25 14 0

Table 4. The result of steps 1 and 2 in the current practice procedure.

Location Field Full Cap. Used Cap.

E 1, 4, 6, 5 50 33
D 2 40 20
C 3 50 40

(3) Route the fields in the opened locations using the nearest neighbor heuristics. Please note that a
vehicle can travel more than one route, as long as it has enough time to travel in one day. If the
truck has a capacity of 12 tons, the time limit per round is 60 min (including the loading-in and
out time of (0.5 + 0.5 = 1) minutes per ton), and the maximum time per day that the truck can be
in operation is 100 min. The loading time of latex to the collecting point is 1 min per ton.

Routing location E: A truck that has a capacity of 12 tons has to travel less than 60 min per round
and the cumulative time used per day of that truck must not exceed 100 min. This truck will be sent to
pick up the latex. The route is formed based on the nearest neighbor heuristics (the shortest route is
preferred). Please note that the traveling time is different from the distance. Truck 1 will go out to pick
up 5 tons from field 1 and 7 tons from field 4; then, it comes back to location E.

5
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This route carries 12 tons and uses 41 min of traveling time and 12 min of loading time, thus the
total time used in the first route is 53 min. Truck 1 still has a total time of less than 100 min, and so
truck 1 will then go out to pick up 3 tons from field 4 and 5 tons from field 5. This route uses 57 min
and carries 8 tons. The first truck has a total time of 98 min. This means that the second truck needs to
start working. Truck 2 will be sent to field 6 two times due to field 6 having a latex volume of 13 tons,
which cannot be carried back to E in only one route. The result of the current practice for the example
is shown in Table 5.

From Table 5, we can see that the total time used is 438 min. This has a loading time of 93 min;
thus, the traveling time total is 345 min.

The type of road for each connection is shown in Table 6 (location–field) and Table 7 (field–field).

Table 5. The result of the routing of the example.

Loc. Truck Route T.U. V.L.

E

1 E-1-4-E 41 12
1 E-4-5-E 57 8
2 E-6-E 44 12
2 E-6-E 44 1

D
1 D-2-D 32 12
1 D-2-D 28 8

C

1 C-3-C 50 12
1 C-3-C 50 12
2 C-3-C 50 12
2 C-3-C 42 4

Total 438 93

Remark: Loc. is location, T.U. is time used in the route, V.L. is volume carried in that route.

Table 6. The road type from location to the field.

- 1 2 3 4 5 6

A S T V W S V
B V T S V W V
C W X V V W V
D T S X T S X
E X X T Y Y V

Table 7. The road type from field to field.

- 1 2 3 4 5 6

1 - S W V T W
2 S - S X T S
3 W S - V X W
4 V X V - X S
5 T T X X - X
6 W S W S X -

The traveling distance of each connection is shown in Tables 8 and 9.
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Table 8. The distance (km) from locations to fields.

- 1 2 3 4 5 6

A 6 8 11.7 19 6 14.2
B 15.8 4 5 17.5 20 17.5
C 21 22.2 15.8 14.2 8.17 15
D 11.3 5 17.5 18 2.5 22.2
E 15.2 25.7 13.3 18.7 25.3 13.3

Table 9. The distance (km) from field to field.

- 1 2 3 4 5 6

1 0 5.5 15 11.7 4 9
2 5.5 0 6.5 10.5 4 8
3 15 6.5 0 22.5 12.8 15
4 11.7 10.5 22.5 0 18.7 12.5
5 4 4 12.8 18.7 0 16.3
6 9 8 15 12.5 16.3 0

From the distances given in Tables 8 and 9, when we combine these distances with the road
types of each connection given in Tables 6 and 7 and use the fuel consumption rate shown in Table 1,
the fuel use in the traveled connections in Table 5 can be calculated. For example, for location E,
route 1 of truck 1, the route is E-1-4-E, which has three connections. These are E-1, 1-4, and 4-E,
which have distances of 15.2 km, 11.7 km, and 18.7 km, respectively. These connections have fuel
consumptions of 0.098(X), 0.112(V), and 0.098(Y) liters per kilometer, respectively. Therefore, the fuel
used in these three connections total 1.4896, 1.3104, and 1.8326 L, respectively. In total, in location E,
route 1, truck 1 consumes 4.6324 L. The same mechanism will be performed with all trucks, routes,
and locations. The result of fuel consumption using the current practice procedure is shown in Table 10.

Table 10. The fuel consumption of all routes.

Loc. Truck Route Fuel Consumption (L)

E

1 E-1-4-E 4.6324
1 E-4-5-E 6.1446
2 E-6-E 2.9792
2 E-6-E 2.9792

D
1 D-2-D 1.18
1 D-2-D 1.18

C

1 C-3-C 3.5392
1 C-3-C 3.5392
2 C-3-C 3.5392
2 C-3-C 3.5392

Total 33.2522

From Table 10, the total fuel consumption for all locations is 33.2522 L per day.

4. The Proposed Heuristic

The proposed heuristic is designed to solve the problem. Many metaheuristics are available in the
literature. The differential evolution algorithm (DE) is selected to solve this problem because it is a fast
and effective heuristic. Generally, DE is composed of four steps:

7
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(1) Randomly generate the initial vector or solution;
(2) Use the mutation process;
(3) Use the recombination process;
(4) Use the selection process.

Steps (2) to (4) will be iteratively executed. Details of each step are explained in Section 4.1.

4.1. Randomly Generated Vector or Solution

The solution can be obtained by generating a set of vectors. Each vector is composed of D positions,
where D is the number of fields. The number of the population is 5 (or NP = 5). Table 11 shows an
example of the values in each position of five vectors which are randomly generated in the first iteration.

When the vectors are generated, obtaining the solution of the problem, the decoding method
needs to be executed. There are five steps of decoding (transferring) the vector into the problem’s
solution, which are explained in Sections 4.1.1–4.1.4.

Table 11. The example of five random vectors.

Farmer 1 2 3 4 5 6

Vector

Volume
5 20 40 10 5 13

NP1 0.39 0.10 0.42 0.35 0.31 0.89
NP2 0.48 0.33 0.81 0.26 0.86 0.64
NP3 0.41 0.93 0.77 0.02 0.37 0.18
NP4 0.01 0.57 0.62 0.17 0.53 0.42
NP5 0.98 0.14 0.64 0.76 0.12 0.17

Figure 1: Assigning random code numbers to each vector in each position.

4.1.1. Finding the Order of the Fields

In this step, we need to sort the value of the position of each vector to get the order of the fields.
The position’s value is sorted according to the increasing order. For example, for vector 4, the original
value of positions 1, 2, 3, 4, 5, and 6 are 0.01, 0.57, 0.62, 0.17, 0.53, and 0.42. The order of the value in
each position according to increasing order is 0.01, 0.17, 0.42, 0.53, 0.57, and 0.62. This order of value
generates an order of position for vector 4 of 1, 4, 6, 5, 2, and 3.

4.1.2. Randomly Select the Location

The method of selecting the opened location is explained in the following example. The probability
of selecting the location can be calculated using Formula (2):

pk =
Sk

∑K
k=1 Sk

(2)

where pk is the probability of location k and Sk is the heuristics information as explained in Section 3.2.
From the example, the probabilities pk of locations A, B, C, D, and E are 0.16, 0.11, 0.22, 0.25,

and 0.26, respectively. In the next step, the cumulative probability of each location is 0.16, 0.27, 0.49,
0.74, and 1. If the random number is 0.57, then location D is selected to be the first opened location.
We can apply this mechanism to get the order of the location. The order of the locations in this step is
D, E, A, B, and C; then, the next step, the decoding method, will be executed.

8
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4.1.3. Assigning the Field to the Location According to Their Place in the Order

For example, the field order is 1, 4, 6, 5, 2, and 3 and the location order is D, A, E, B, and C. We start
to assign the field to the location by adding the field in the very first order until this location is full,
and then we move forward to the next possible location and continue doing this until all fields are
assigned to exactly one location.

In this example, field 1 will be assigned to location D, and the capacity of D is updated whenever
an assignment has been done. The location will close when it loads a volume of latex in the field
reaching the full capacity level. The result of the assignment is shown in Table 12.

Table 12. The result of the decoding method of the differential evolution (DE) algorithm.

Location Field Cap Load

D 1, 4, 6, 5 40 33
A 2 30 20
E 3 50 40

From Table 12, locations D, A, and E will be in use while the remaining locations will be closed.

4.1.4. Routing All Fields in the Locations

In this step, we construct the route of the fields that are assigned to the locations according to the
capacity of the truck per round, the longest distance or traveling time per round and the total distance
or time that the truck can travel per day. The result of Section 4.1.1 is the same as in Table 10 because
the routing phase (Section 4.1.1) is the same as the routing phase of the current practice procedure and
the order of the fields and locations are the same as in the current practice example.

4.2. Mutation Process

4.2.1. The Original Mutation Process

In this step, after we get the initial solution, we apply the mutation process formulas. In the
proposed heuristic, the mutation formula is Formula (3):

Vi,j,G = Xbest,j,G + F
(
Xr1,j,G − Xr2,j,G

)
(3)

where F = 1.5, Xi,j,G is a randomly selected target vector and Xbest,j,G is the vector that has the best
solution compared among all target vectors.

4.2.2. The Modified Mutation Process

Originally, all vectors were random; we take them from the current iteration target vectors, and the
best solution is the set of best vectors obtained from the best among all target vectors. The modified
version of the mutation process is one in which we add one set of the best vectors. The number
of the best vectors in this set is equal to the number of the population in the normal DE method.
For example, if there are 10 target vectors (NP = 10), there will be 10 vectors in the best vectors set
as well. The set of best vectors is obtained by collecting the best vectors that are found during the
simulation. These vectors are not the same as the normal target vectors due to the collection of all good
vectors, even if they come from the same vector number. The target vector of vector 1 at the current
iteration is the best vector that obtains the best solution for vector 1. The second best for vector 1 is
the vector from the last iteration if the current iteration found a new solution. This vector will forget
the last best solution whenever it finds a better solution, even if the last best solution is better than
that of the other vector in the set of target vectors. In the modified version of the mutation process,
the second-best vector of a vector can be kept in the best vectors set if it is better than that of the other
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target vectors. The mutant vector used in the modified mutation process is generated from both the
normal target vector and the set of best vectors, as shown in Figure 2.

From Figure 2, the mutant vector of vector 2 is generated from the best vector (assuming that
vector 1 is the best vector) and the two random vectors are vector 3 (from the set of target vectors)
and 5 (from the set of best vectors) and the result is given in Figure 2. The switching between using
the set of best vectors or the set of target vectors can be executed by randomly choosing the using
probability. Each vector is randomly chosen before the mutant process is executed. The probability
function of the use of the set of best vectors is shown in Formula (4):

C = 1 − exp−[ (It− MaxIt
2 )

2
] (4)

If the random number is less than or equal to C, then the random vector used in the mutant
process is drawn from the set of best vectors instead of the set of target vectors.

The updating of the set of best vectors can be done by getting rid of the worst vector in the set
and putting the new best vector in if the new best vector is better than at least one vector in the set of
best vectors. This is done whenever a new best vector (better than at least the worst vector in the set of
best vectors) is found. The result of the mutant process is mutant vector Vi,j,G, where i is the number of
the vector, j is the position number, and G is the current iteration.

Farmer 1 2 3 4 5 6 Farmer 1 2 3 4 5 6

Volume
Vector

5 20 40 10 5 13
Volume

Vector
5 20 40 10 5 13

NP1 0.39 0.10 0.42 0.35 0.31 0.89 NP1 0.39 0.10 0.42 0.35 0.31 0.89
NP2 0.08 0.62 0.97 0.32 0.70 0.31 NP2 0.48 0.33 0.81 0.26 0.86 0.64
NP3 0.07 0.76 0.04 0.17 0.99 0.24 NP3 0.41 0.93 0.77 0.02 0.37 0.18
NP4 0.79 0.17 0.16 0.36 0.72 0.21 NP4 0.01 0.57 0.62 0.17 0.53 0.42
NP5 0.98 0.14 0.64 0.76 0.12 0.17 NP5 0.98 0.14 0.64 0.76 0.12 0.17

Target vector Best vector
 
 
 

 
  
 
 
 

        
 
 
 
 
 
 

NewMutant vector

Farmer 1 2 3 4 5 6

Volume
Vector

5 20 40 10 5 13

NP1 0.47 1.29 0.62 0.76 0.69 0.91
NP2 0.36 0.39 0.68 0.40 1.42 1.60
NP3 0.50 0.80 0.48 0.71 1.05 1.58
NP4 1.08 0.87 1.04 0.40 0.62 0.28
NP5 0.50 0.80 0.48 0.71 1.05 1.58

Figure 2. The modified mutant process.

4.3. Recombination Process

The recombination process can be executed by randomly assigning one number for each position
in a vector; if this random number is less than or equal to the predefined parameter CR, then the value
in position j of vector i is taken from the value of position j in vector i of the mutant vector. On the
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other hand, if the random number is higher than that of CR, the value in that position is taken from the
target vector. The formula of the original version of DE is shown in Formula (5):

Ui,j,G =

{
Vi,j,G i f randi,j ≤ CR
Xi,j,G i f randi,j > CR

(5)

When it is executed, the set of trial vectors (Ui,j,G) will be obtained.
In this article, a new recombination formula is presented in Formula (6).

Ui,j,G =

⎧⎪⎨⎪⎩
Vi,j,G i f randi,j ≤ CR1

Xi,j,G i f CR1 < randi,j ≤ CR2

Bi,j,G ≥ CR2

(6)

Predefined parameters CR1 and CR2 have to be set first and lie between 0 and 1. If the random
number randi,j is less than CR1, then the value in position j of vector i is drawn from the mutant vector.
If it is greater than CR1 but less than CR2, the value in position j, vector i will be taken from the target
vector. Finally, if the random number is higher than CR2, that position will take the value from the set
of best vectors (Bi,j,G ). After the trial vector is obtained, the local search will be applied for all vectors.

4.4. The Local Search

The local search that we use in the proposed heuristic is the SWAP algorithm. The swap algorithm
will be executed in the order of the fields and the locations generated in the decoding method.
For example, in Figure 3, the current interchange of the fields is order 1 and 2, which is now fields 5
and 4. The exchange is performed and obtains the order of fields as 4, 5, 1, 2, 6, and 3, respectively.
The new order will use the decoding method using the location order E, A, D, C, and B, which is the
exchange order between the locations B and C. The order of location has to exchange all positions,
such as E exchanging with A, D, C, and B. After the exchange, the new order will be used to decode
with the current order of the fields being 4, 5, 1, 2, 6, and 3.

After all possible exchanges of location are performed with the current order of fields, then the
new order of the fields is generated by exchanging the next position in the field order.

Figure 3. An example of the local search.
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4.5. Selection Process

The selection process is according to Equation (7).

Xi,j,G+1 =

{
Ui,j,G i f f

(
Ui,j,G

) ≤ f
(
Xi,j,G

)
Xi,j,G otherwise

(7)

When the selection process is finished, we will get the target vectors of the next
generation (iteration).

The procedure of the proposed heuristics is shown in Figure 4.

Set NP, CR, CR1, CR2, F, D (size of vector)
Generate Initial Solution
Begin
For G = 1 to Gmax when G = iterations and Gmax = Maximum iteration
For N = 1 to NP
Random Generate Random Number r1, r2, r3: r1, r2, r3 [1..NP], r1 r2 r3 N
Produce Mutant Vector N (Mutation Process)
For i = 1..D

Next Produce Trial Vector N (Recombination Process)

     (optional)

(optional)

     Next Produce New Target Vector (Selection Process)
Apply Decoding Method (4.1.1–4.1.4)
Apply SWAP
Selection Process
Collect Best Vector

End

Figure 4. The pseudo code of the modified DE.

5. Computational Results

The computational results are obtained by testing the DE (original version), the modified DE
(MDE), and the current practice procedure with 10 test instances and one case study. The test instances
are named N-1 to N-10 and the case study is named Case. The detail of the number of locations
(#location) and the number of fields (#field) of each test instance is shown in Table 13.
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Table 13. Parameter setting of test instances.

Test Instance #Location #Field

N-1 10 15
N-2 10 15
N-3 10 25
N-4 20 30
N-5 20 40
N-6 20 60
N-7 30 80
N-8 30 90
N-9 30 90
N-10 30 100
Case 30 110

CR is set to 0.6, F is set to 2 [13], CR1 is set to 0.6, and CR2 is set to 0.8. The simulation has been
executed five times, and the best solutions among all five results are drawn to be representative of the
algorithm. The simulation was performed in a Computer notebook Core™ i5-2467M CPU 1.6 GHz.

The stopping criterion which is used in the first test is the runtime limitation, which is set to 10 min.
The computational result of the 11 test instances is shown in Table 14.

Table 14. The comparison of the current practice and the modified DE (MDE) results.

- Fuel Used (L)

Instance Current Practice DE MDE

N-1 20.3 18.47 16.2
N-2 21.4 19.2 16.1
N-3 39.4 37.1 32.1
N-4 45.8 46.3 40.2
N-5 55.4 55.6 49.2
N-6 70.3 69.4 60.1
N-7 80.4 82.5 71.3
N-8 90.4 94.3 80.2
N-9 95.4 94.2 80.5

N-10 102.1 109.4 92.4
CASE 112.3 110.1 95.4

From Table 14, DE and MDE outperform the current practice procedure. To prove that they are
outperforming it statistically, the result of the statistical test using the Wilcoxon signed-rank test with a
95% confident interval is shown in Table 15.

Table 15. The statistical result of the proposed heuristics.

- Current Practice DE MDE

Current Practice - > >
DE < - <

MDE < < -

From Table 15, DE and MDE generate a significantly better solution than that of the current
practice. The solution obtained from MDE is statistically better than that of DE.

Now, the performance of DE and MDE will be tested to draw the contribution of the proposed
heuristics. The proposed heuristics are split into 4 sub-heuristics, which are DE (original DE),
MDE-1 (DE + new mutation Formula (6)), MDE-2 (DE + local search), and MDE-3 (DE + new mutation
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Formula (6) + local search). The stopping criterion in this test is the runtime limitation, which is set to
10 min. The results of all proposed heuristics are shown in Table 16.

Table 16. The results of the proposed heuristics.

- Fuel Used (L)

Instance DE MDE-1 MDE-2 MDE-3

N-1 18.47 17.82 17.98 16.2
N-2 19.2 18.2 18.03 16.1
N-3 37.1 35.3 35.63 32.1
N-4 46.3 45.02 44.5 40.2
N-5 55.6 54.61 52.3 49.2
N-6 69.4 67.31 66.5 60.1
N-7 82.5 80.57 79.14 71.3
N-8 94.3 88.9 84.3 80.2
N-9 94.2 92.3 89.5 80.5
N-10 109.4 104.2 102.56 92.4
CASE 110.1 108.76 106.85 95.4

The significance test has been executed for all results using the Wilcoxon signed-rank test with a
95% confident interval as shown in Table 17.

Table 17. The statistic test for the proposed heuristics.

- DE MDE-1 MDE-2 MDE-3

DE - > > >
MDE-1 - - > >
MDE-2 - - - >
MDE-3 - - - -

From Table 17, all MDE algorithms outperform the original version of DE, and MDE-3 outperforms
MDE-1 and MDE-2. This means that both the local search and the new mutation formula should be
combined to get a better solution. The local search alone can improve the solution better than that
of DE using the new mutation formula. The new mutation formula works well in the DE due to it
statistically improving the solution from the original DE. The percentage difference of each proposed
heuristic to the best solution (MDE-3) is shown in Table 18.

Table 18. The percentage difference between the proposed heuristics to the best-proposed
heuristics (MDE-3).

- Fuel Used (L)

Instance DE MDE-1 MDE-2 MDE-3

N-1 14.012 10.000 10.988 0.000
N-2 19.255 13.043 11.988 0.000
N-3 15.576 9.969 10.997 0.000
N-4 15.174 11.990 10.697 0.000
N-5 13.008 10.996 6.301 0.000
N-6 15.474 11.997 10.649 0.000
N-7 15.708 13.001 10.996 0.000
N-8 17.581 10.848 5.112 0.000
N-9 17.019 14.658 11.180 0.000
N-10 18.398 12.771 10.996 0.000
CASE 15.409 14.004 12.002 0.000
Ave. 16.056 12.116 10.173 0.000
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From Table 18, we can see that the best heuristic (MDE-3) has a percentage difference of fuel usage
less than that of MDE-2, MDE-1, and DE of 10.173%, 12.116%, and 16.056%, respectively.

6. Conclusions

This research presents solution approaches to solving a special case of the location routing
problem (SLRP). The SLRP could have a volume of latex more or less than the capacity of the vehicle.
The objective function of SLRP is to minimize the fuel usage, and the fuel usage depends on the road
condition and the distance of the road.

We developed a differential evolution algorithm to solve the problem. The new mutation formula
is presented in the article. The new rule of applying SWAP is presented and is used as the local search
in the proposed heuristics.

The heuristics proposed in the article are split into four sub-heuristics, which are DE (original DE),
MDE-1 (DE + new mutation Formula (6)), MDE-2 (DE + local search), MDE-3 (DE + new mutation
Formula (6) + local search). The best heuristic is MDE-3, which has a 16.056% difference from the
original version of DE and is 10.173 and 12.116 better than MDE-2 and MDE-1, respectively.

From the computational result, we can see that using the new mutation formula and the local
search is beneficial to the original DE. The new mutation formula and the local search is designed
based on the idea of increasing the intensification of DE. This makes MDE-1, MDE-2, and MDE-3
outperform the original DE.
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Abstract: This research aimed to solve the economic crop planning problem, considering
transportation logistics to maximize the profit from cultivated activities. Income is derived from the
selling price and production rate of the plants; costs are due to operating and transportation expenses.
Two solving methods are presented: (1) developing a mathematical model and solving it using
Lingo v.11, and (2) using three improved Differential Evolution (DE) Algorithms—I-DE-SW, I-DE-CY,
and I-DE-KV—which are DE with swap, cyclic moves (CY), and K-variables moves (KV) respectively.
The algorithms were tested by 16 test instances, including this case study. The computational results
showed that Lingo v.11 and all DE algorithms can find the optimal solution eight out of 16 times.
Regarding the remaining test instances, Lingo v.11 was unable to find the optimal solution within
400 h. The results for the DE algorithms were compared with the best solution generated within
that time. The DE solutions were 1.196–1.488% better than the best solution generated by Lingo v.11
and used 200 times less computational time. Comparing the three DE algorithms, MDE-KV was the
DE that was the most flexible, with the biggest neighborhood structure, and outperformed the other
DE algorithms.

Keywords: differential evolution algorithm; crop planning; economic crops; improvement differential
evolution algorithm

1. Introduction

A variety of important, world-class economic crops are planted throughout the different regions
in Thailand, including rice, cassava, sugarcane, rubber, and palm. Factors including land, soil, water,
and weather influence the decisions of Thai farmers as to where such crops are planted [1]. Currently,
these high-value crops play an important role in the economic growth of the country. Crop planting
in the northeastern region of Thailand is valued at 63.84 million rai or approximately 23.27 rai per
household, indicating that this region has high planting crop numbers. There is an imbalance, however,
between the high rate of supply and the demand, which has caused a variety of problems. Rice farmers
have been invading Bangkok to protest delayed payments for the rice subsidy program, sugarcane
farmers and Para rubber farmers have closed a main road to protest low prices. The main causes of these
problems appear to be unsuitable crop planting, high investment with low profits, unbalanced supply
and demand, poor plantation knowledge, unsuitable marketing, and inconvenient transportation.
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Thus, crop allotment, supply and demand, cost and profit, marketing, and transportation distance are
crucial factors that need to be considered when planting crops.

Thailand is an agricultural country; most people make a living from selling their agricultural
products. Therefore, their lives depend on the income generated from their product and the amount
of product they can produce. Higher productivity can be obtained by growing the right plants in
the right place, thus reducing the transportation cost by having the plants closer to the secondary
producer. Therefore, selecting the ideal agricultural types to grow in a suitable area will generate higher
productivity with lower transportation costs. A suitable area to grow a certain type of vegetation means
having an available water supply, the correct earth type, and growing temperatures, for example.
These can cause different production rates per area for each type of plant.

Thailand is composed of four main regions: the north, northeastern, middle, and south regions.
The northeastern region is the main area where most of the agricultural products are grown. The three
main plants produced to sell are rubber, rice, and sugarcane. These three types of plants have been
cultivated widely in the whole northeastern part of Thailand. Some farmers grow rice because they
are familiar with it, grow sugarcane for its high income, or grow rubber for the government subsidies.
These planting choices can cause the problems mentioned above, such as the selling price of rice
dropping due to oversupply in some areas, the sugarcane delivery is too far from the mill, or the latex
quality is not good enough to produce a high-end product. These issues could be due to the farmer not
growing a crop in the appropriate area. This study’s research focuses on placing the correct plants in
suitable areas to achieve high productivity and low transportation costs to provide the highest profit
to the farmer.

The article has been organized as follows: Section 2 describes the intensive literature review.
Section 3 outlines the mathematical model formulation of the problem, whereas Sections 4 and 5 are
used to explain the proposed heuristics. Section 6 shows the computational results. The last section,
Section 7, concludes the article.

2. Literature Review

Many different methods have been proposed to solve the crop planning model. Research has
focused on the forecasting of agricultural products and some have attempted to match demand for the
product to the supply to be planted. In this study, to address the crop planning problem, we focused
on matching the earth types (different types of soil contributes to varying production rates in assorted
types of plants), level of rain (water supply), experience of the farmer, and the transportation of the
goods to the secondary producer in the agricultural chain. The required data were collected from the
historical data from the area of interest. The proposed problem is similar to the special case of the
generalized assignment problem, a location-allocation problem that has been widely investigated by
researchers such as Thongdee and Pitakaso [2], who presented a multi-objective location-allocation
problem to solve the agricultural transportation in Northeastern Thailand. Sethanan and Pitakaso [3]
introduced an improved differential evolution algorithm to solve the generalized assignment problem.

Metaheuristics are methods widely used to solve difficult problems, such as crop planning
transportation problems, or production challenges. The well-known metaheuristics include the Krill
Herd (KH) algorithm [4–6], the Cuckoo algorithm [7,8], and the Monarch Butterfly Optimization
(MBO) [9,10], which can improve efficiency by using the Lévy flight operator and fly straight
operator [11], the Hybridizing Harmony Search [12], the Bat algorithm [13], the Elephant Herding
Optimization (EHO) [14], or the Earthworm optimization algorithm (EWA) [15].

Metaheuristics are applicable to many types of problems and researchers are continuously
improving its quality and capability to perform better searches. Many researchers paid attention
to refining the quality of the original version. Wang published many articles about enhancing the
capabilities of the original versions of many of the metaheuristics, especially Krill Herd (KH) [16].
There are many ways to improve the solution quality given by KH, such as adding new attributes to
the algorithm [17], using the KH hybrid with other methods [18–21], exchanging information between
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top krill during the motion calculation process [22], using the best parameters [23], and adding local
searches to improve search ability [24]. Aside from KH being applicable to many types of problems,
it is also valid for function optimization [25]. An excellent review of the KH method was published by
Want et al. [26].

The newly developed heuristics that have been used to solve real world problems include the
parallel hurricane optimization algorithm [27], firefly-inspired krill herd (FKH) [28], Moth Search (MS)
algorithm [29], Monarch Butterfly Optimization [30–32], Across Neighborhood Search (ANS) [33],
Chaotic particle-swarm krill herd (CPKH) [34], Chaotic cuckoo search (CCS) [35], self-adaptive
probabilistic neural network [36], and Differential Evolution algorithm (DE) [37].

Price and Storn [37] introduced the DE algorithm in 1995. Furthermore, using DE to solve
logistics problems has attracted the attention of researchers and a program was developed in 2009
by Erbao and Mingyong [38] to solve vehicle routing problems (VRPs) and fuzzy demands by using
DE. The program was used to design models in stochastic simulations and to create an algorithm
using hybrid intelligence. The result of the study was an index of dispatcher settings returning the
best value by using crossover parameters to develop different answers from the local optimum. Later,
Dechampai et al. [39] presented a DE algorithm for a VRP, which had a vehicle capacity limit for
the poultry industry, using two heuristics. Both heuristics were used for grouping customers before
arranging transportation routes, which provided 7.59–31.28% lower costs than the present method and
was better than the first heuristic by 0.84–13.15%. A year later, Sethanan and Pitakaso [40] presented
a DE algorithm for scheduling raw milk transportation. The purpose was to find the lowest fuel cost,
cleaning cost, and cost of disinfecting raw milk tanks in vehicles by presenting a modification of five
DE methods with a two-step emerging and survival process called the re-born vector. The results
were shorter routes and less truck transportation. Later the same year, Sethanan and Pitakaso [3]
presented the development of DE in solving general operations by using three local search techniques
to find better answers. Those three techniques were developed into seven other methods. They also
measured the effectiveness of each method to find the best method to compare them with the BEE
and Tabu algorithms in an experimental set of Gapa-Gape. DE was found to be better than the other
two methods.

During the literature review, we studied the following problems related to DE for crop planning:
the crop planning problem [41], plant production patterns [42], cropping patterns focused on the
selection of crops and the allocation of cultivated areas using DE and gradient-based methods [43,44],
the use of DE to solve crew rostering problems [45], the use of DE for multi-objective crop planning [46],
the use of strategies of differential evolution algorithms (EPSDE) using parameters, mutation,
and crossover [47], the development of multi-objective algorithms for optimal crop planning [48],
and the use of DE for crop planning single and multi-objective optimization models [49]. Furthermore,
we examined an application of DE presented by Pant et al. [50] to determine an optimal crop plan
for the Pamba-Achankovil-Vaippar (PAV) link project area. Finally, the authors reviewed a study
by Yi et al. [51], who used three improved hybrid metaheuristic algorithms for engineering design
optimization. It can be seen from the abovementioned studies that DE is a highly effective algorithm
for finding answers, which was an important part of the current authors’ decision to use DE.

Improving the capability of DE involves many options. The hybrid DE has been widely used
to improve the solution quality of the original DE search, like hybrid DE with Bat Algorithm [52],
KH [53], or Particle Swarm Optimization [54]. DE uses some techniques to enhance the search capacity,
such as using multi-population [55] or variable reduction [56] strategies.

Metaheuristics algorithms are effective for both single objectives [57–60] and multi-objectives [61–64].
Due to the success of metaheuristics in many numerical and combinatorial optimization problems

such as those above, DE is a type of metaheuristics that is easy and powerful. It uses less computational
time, fewer parameters, improves solution quality, and generates excellent results for many problems.
Therefore, DE was selected to implement with this study’s crop planning problem.
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The contribution of this research is three-fold: (1) The transportation logistics are integrated
into the model as well as selecting the suitable area to grow an appropriate plant, enabling higher
productivity and reducing logistics costs; (2) The DE is modified by enhancing the diversification and
intensification of the original DE, adding three local search techniques to the original DE; (3) It presents
an excellent decoding method that can perform the assignment and transportation decision in the
same code.

3. Mathematical Model for Crop Planning

During planting of the three economic crops, each farmer was assigned to plant only one crop
and each farmer was allocated a transport vehicle, considering the lowest transport costs to maximize
profit. The products of each farmer were sent to the factory or purchased on-site according to the type
of crop (Figure 1).

Factory (K) 
(K1 = rice mill, 

K2 = cassava mill,
K3 = sugarcane 

mill) 
Crop type (i) 

(1 = rice, 2 = cassava,
3 = sugarcane) 

Maximize Profit in System 

Farmer (j) 
(1293 sub-district) 

Figure 1. Model of transport of economic crops from the farmer to the factory.

The mathematical model for economic crop planning follows.

3.1. Indices

i stands for crop type (1 = rice, 2 = cassava, 3 = sugarcane)
j stands for planning area/famer (j = 1, 2, . . . , J)
K stands for factory (K = K1, . . . , Ki, when K1 = rice mill, K2 = cassava mill, K3 = sugarcane mill)

3.2. Parameters

Pij stands for crop price i planted by farmer j (Baht/Kilogram)
C1

ij stands for cost of planning i planted by farmer j (Baht/Rai)
Bij stands for rate of crop yield i planted by farmer j (Ton/Rai)
Aj stands for planning area in each district (Rai)
Djk stands for distance from planning area j to factory k (kilometer)
C2

i stands for transportation costs of each crop i (Baht/Kilometer)
CK stands for factory purchase capacity (Ton)
C3

ij stands for cost of crop cultivation i planted by farmer j (Baht/Rai)
Vj stands for transportation capacity (Ton)
M stands for maximum production capacity

3.3. Decision Variables

Xijk =
{

1, if there is transportation i from farmer j to factory k
0, other cases

Yij =
{

1, if there is assignment of planting crop i by farmer j
0, other cases
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Hijk = Quantity factory k is given from crop i from farmer j
T1

ij = Number of transport cycles, which must be an integer (Round)
T2

ij = Number of crop transportation i by farmer j (Round)

3.4. Objective Function

We designed and developed a mathematical model to maximize the profits for the farmers.
The related factors considered were crop price, cost of each crop’s cultivation, yield rate of each crop,
planning area in each district, transportation distance from planning area to factory, cost of each crop’s
transportation, amount of each crop’s transportation, and cost of cultivation, which are expressed
as follows:

Maximize Z =
I

∑
i=1

J

∑
j=1

(Pij − C1
ij)YijBij Aj −

I

∑
i=1

J

∑
j=1

K

∑
k=1

XijkDjkC2
iT2

ij

−
I

∑
i=1

J

∑
j=1

YijC3
ij

(1)

The objective function focused on economics to maximize profits for the farmers. Equation (1)
consists of three main sequences: Sequence (1) is a function of raw materials cost, which depends
on the purchase price of each crop, the cost of planting each crop, the size of planting area, and the
yield rate; Sequence (2) is a function of transportation cost, which depends on the amount of raw
materials, the transportation distance to factory, the cost of transportation for each crop, and the
number of transportation rounds for each crop; Sequence (3) is a function of the cost of raising crops,
which depends on the budget for raising each crop.

3.5. Constraints

I

∑
i=1

Yij = 1 j ∈ J ∀j ∈ J (2)

where the constraints function consists of Equation (2), which limits each farmer to planting only
one crop.

J

∑
j=1

Yij ≥ 1 ∀i ∈ I (3)

where Equation (3) is a limit requiring each crop to be assigned to at least one farmer.

∑
K∈Ki

Hijk = YijBij Aj ∀i ∈ I ∀j ∈ J (4)

where Equation (4) is a limit requiring that the amount of crop yield to be delivered to the factory must
be equal to the number of crops planted by each farmer.

Hijk ≤ MXijk ∀i ∈ I ∀j ∈ J ∀k ∈ K (5)

where Equation (5) is a limit requiring that the amount of crop yield to be delivered to the factory must
not exceed the number of crops planted by each farmer.

K

∑
k=1

Xijk ≤ 1 ∀i ∈ I ∀j ∈ J (6)
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where Equation (6) is a limit requiring that a farmer can only use one transport route to the factory.

J

∑
j=1

Hijk ≤ CK ∀i ∈ I ∀K ∈ Ki (7)

where Equation (7) is a limit requiring that the number of crops must not exceed the purchase capacity
of the factory.

T2
ij ≥ T1

ij ∀i ∈ I ∀j ∈ J (8)

where Equation (8) limits the number of transportation rounds, which must come from the yield rate
multiplied by the crop area and divided by the capacity of the transport vehicle.

T1
ij =

YijBij Aj

Vj
∀i ∈ I ∀j ∈ J (9)

where Equation (9) is a limit requiring that the number of transportation rounds be an integer (round).

Yij M ≥
K

∑
K∈Ki

Xijk ∀i ∈ I ∀j ∈ J (10)

where Equation (10) is a limit requiring that the maximum yield rate delivered when a farmer is
assigned crop planting must not be less than the amount of yield rate sent from the farmer to the factory.

Yij(bin) ∀i ∈ I ∀j ∈ J (11)

where Equation (11) is a limit requiring that a farmer who plants each crop be assigned a value of 0 or
1 only; 1 for plant and 0 for others.

Xijk(bin) ∀i ∈ I ∀j ∈ J ∀k ∈ K (12)

where Equation (12) represents the decision variables for when farmer j transports each crop to the
factory k; value 0 or 1 only.

Hijk(gin) ∀i ∈ I ∀j ∈ J ∀k ∈ K (13)

where Equation (13) is a limit requiring that, for the amount of crop i from farmer j to the factory k,
the value is an integer.

T2
ij(gin) ∀i ∈ I ∀j ∈ J (14)

where Equation (14) is a limit requiring that the number of transportation rounds be an integer.

4. Original Differential Evolution Algorithm

We used a DE algorithm to find the solution for the crop planning problem. There were four steps
involved, which are outlined below.

4.1. Initial Population

The population number (NP) is determined by a process of random sample selection from the
population under a certain limit. The population group is calculated for the answer and is called the
fitness value, which entails creating the preliminary answer by using the initial population. The vector
is designed based on the problem statement. The proposed crop planning problem involves deciding
which famers will grow which type of plant. Considering this case study, three types of plants were
used: (1) rice, (2) cassava, and (3) sugarcane. Table 1 shows the vector generated by the condition of
having 10 farmers, 3 types of plants, and 5 populations for each iteration.
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Table 1. Five vectors of the size 1 × 10.

Farmer Vector 1 2 3 4 5 6 7 8 9 10

1 0.84 0.39 0.92 0.56 0.06 0.72 0.85 0.19 0.27 0.09
2 0.71 0.45 0.40 0.63 0.78 0.07 0.49 0.81 0.71 0.30
3 0.55 0.20 0.63 0.34 0.39 0.14 0.50 0.43 0.69 0.17
4 0.80 0.75 0.49 0.76 0.74 0.55 0.11 0.34 0.65 0.51
5 0.22 0.20 0.12 0.42 0.74 0.90 0.49 0.44 0.73 0.40

Table 1 shows the example of 5 vectors (NP = 5), with each vector having a dimension of 1 × 10
due to there being 10 farms for which to make decisions. There is one rice mill (which has a capacity
of 120 tons), two sugar mills (each sugar mill has a capacity of 80 tons), and one tapioca starch mill
(which has a capacity of 90 tons). Ten fields have an expected production output (in tons) if they grow
different types of plants, as shown in Table 2.

Table 2. Amount of product produced from each field if they grow different types of plants (ton).

- 1 2 3 4 5 6 7 8 9 10

Rice 15 20 18 8 15 13 19 21 19 15
Sugarcane 18 18 20 10 12 16 23 21 23 15
Cassava 25 16 29 9 14 20 30 19 23 16

The distance between each field to the factory is given in Table 3.

Table 3. Distance from fields to factories. RM is rice mill, SM1 and SM2 are the two sugar mills, and TS
is the tapioca starch mill.

Factory Field RM SM1 SM2 TS

1 279 210 148 141
2 319 186 252 332
3 107 316 199 234
4 305 323 202 272
5 285 150 158 308
6 200 245 203 179
7 189 283 173 301
8 185 122 102 326
9 291 130 141 229
10 320 125 111 141

4.2. Decoding Method

Tables 1 and 2 as well as the information given above, were used to decode the continuous number
to get the problem’s solution by the following steps:

(1) Arrange the numbers in the vectors (value in position of each vector) in increasing order.
For example, for Vector 1, the result of sorting is shown in Table 4.

Table 4. Sorting result of Vector 1.

Farmer
Vector

5 10 8 9 2 4 6 1 7 3

1 0.06 0.09 0.19 0.27 0.39 0.56 0.72 0.84 0.85 0.92

Taken from Table 3, it can be seen that the order of the fields is 5, 10, 8, 9, 2, 4, 6, 1, 7, and 3,
which is the order according to the sorting result of the value in the position of Vector 1.
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(2) Assign the type of plant to a field and assign the field to the factory. The roulette wheel idea
was used to assign the plants to the field. The probability of each plant to be selected can be
determined by any idea, such as: (1) equal probability (0.333 each); (2) average productivity rate,
such as rice, sugarcane, and cassava having average productivity rates of 19, 17, and 23 tons/km2,
with probabilities of 0.32, 0.29, and 0.39, respectively; (3) price per kilogram of the plants, for
example, if the prices of rice, sugarcane, and cassava are 1000, 1200, and 900 baht per ton,
the probability of each plant is 0.32, 0.39, and 0.29, respectively; (4) the ratio of factories that will
take all the products. There is one rice mill, which has a capacity of 120 tons. There are two sugar
mills, each of which has a capacity of 80 tons and, thus, a combined total capacity of 160 tons.
There is one tapioca starch mill, which has a capacity of 90 tons. Therefore, each type of plant
has a probability of 0.32, 0.43, and 0.25, respectively. During this research, we used the price per
kilogram of the plants as the probability to select the plants to maximize the profits generated
from the algorithm. Taken from the probability above (using price as the probability), a plant
will be assigned to a field according to the value in the position of vector and that field will be
assigned to the closest factory, as long as it has enough capacity. The assignment process is shown
in Steps (a)–(d).

(a) Calculate the probability of assigning the plants to the fields. Using the proposed
algorithm, we applied the price of the plants to calculate this. The probabilities of assigning
rice, sugarcane, and cassava were 0.32, 0.39, and 0.29, respectively, for the current example.

(b) Calculate the cumulative probability of each type of plant. Taken from Step (2),
the cumulative probabilities of rice, sugarcane, and cassava were 0.32, 0.71, and 1.0,
respectively. Use the value in the vector position to decide which plants to grow. The Vector
1 position, which is Field 5, had value of 0.06. This value (0.06) falls in the rice area of
the roulette wheel; therefore, Field 5 is assigned to grow rice. Then, Field 5 is assigned to
the rice factory (using the information shown in Table 3). This rice factory has a 120-ton
capacity and Field 5 can produce 15 tons. Thus, the rice mill has 105 tons remaining to
receive rice from other fields.

(c) Redo Step (b) until all fields are assigned to grow exactly one type of plant. This step is
needed to evaluate whether a factory has enough capacity to receive the product from all
fields that fall into the area of that type of plant. When the factory does not have enough
capacity, the field that has a higher value in that position needs to be changed to grow
other types of plants. Fields 6, 1, 7, and 3 grow cassava because the values in the Vector 1
positions for these fields were 0.72, 0.84, 0.85, and 0.92, which fall in the area of cassava,
for example. However, if all addressed fields grow cassava, this will generate 104 tons of
cassava. The tapioca starch mill has only a 90-ton capacity, thus the last field needs to be
changed to produce other types of plants. Field 3 needs to change to produce rice in this
case. The total cassava that will be produced will decrease from 104 to 75 tons and the
amount of rice that will be produced in the plan will increase from 60 to 78 tons (using the
information given in Table 2). The assignment of the field to the factory, in case there is
more than one factory to select, can be executed by selecting to deliver the product to the
factory from that field. Field 4, which grows sugarcane, needs to deliver the sugarcane
to the sugar mill and there are two sugar mills, for example. Field 4 has a distance to
SM1 and SM2 of 323 and 202 km, respectively (using the information given in Table 3).
Therefore, Field 4 will deliver sugarcane to SM2 at a distance of 202 km.

(d) Calculate all profit and cost terms according to the assignment obtained from Step (b).

The results of the assignment phase (Steps (a) and (b)) are shown in Table 5.
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Table 5. The assignment results.

Factory Field Plant

RM 5, 10, 8, 9, 3 Rice
SM1 2 Sugarcane
SM2 4 Sugarcane
TS 6, 1, 7 Cassava

4.3. Mutation Process

The mutation process was executed using Equation (15), where Vi,j,G is the mutant vector of i
position j iteration G + 1; Xr1,j,G, Xr2,j,G, and Xr3,j,G are random target vectors 1, 2, and 3, respectively;
and F is the predefined scaling factor.

Vi,j,G = Xr1,j,G + F
(
Xr2,j,G − Xr3,j,G

)
(15)

The value of the weighting factor (F) can range from 0 to 2 and was set to F = 2.0 [65]. The value
in the vector coordinate was changed by using random numbers and then entered into the mutation
process (mutant vector). This conventionally is called DE/rand/1/bin.

4.4. Crossover or Recombination Process

This is a mixed species process that produces new species of better or worse results for the
selection of decision variables. The result is the trial vector (Ui,j,G).

Set CR = 0.8 [7,19], then enter the value exchange with Equation (16):

Ui,j,G =

{
Vi,j,G i f Randi,j ≤ CR
Xi,j,G i f Randi,j > CR

(16)

4.5. Selection Process

This is the selection process for the best answer between the target vector and the trial vector
using Equation (17), which was accomplished by comparing the function value or the cost value of the
trial vector with the target vector. When the function value of the trial vector was better than the target
vector, it was replaced by the trial vector in the next generation.

Xi,j,G+1 =

{
Ui,j,G i f f

(
Ui,j,G

) ≤ f
(
Xi,j,G

)
Xi,j,G otherwise

(17)

Then, the answers are adjusted in each NP to determine if a better answer can be found.
The answer (objective) was found from the calculation, compared against others, and the best answer
was chosen from the entire population.

5. Improved Differential Evolution Algorithm

This section outlines developing and improving algorithms with DE and using Dev-C++ for
testing three different-sized problems. DE is used with local search to develop the algorithm by
adding a specific search step after the value exchange process in the recombination. The algorithms are
developed to provide better results. There were three methods: (1) the swap algorithm, adapted from
the method of Diaz and Fernandez [66]; (2) the cyclic move algorithm; and (3) the K-variable move
algorithm. Figure 2 illustrates how these methods improved the steps of DE. The DE that is used in
this article is conventionally called DE/rand/1/bin.
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Figure 2. Steps using improved Differential Evolution (DE) algorithm with three local search methods.

5.1. Swap Algorithm

The swap algorithm is a method used to improve a heuristic-based solution by switching pair
positions between groups of members. Assuming originally that Farmer 10 is assigned to plant rice,
the algorithm will switch this farmer with Farmer 24 who plants cassava to make a greater profit.
Then, it will switch Farmer 8, who planted cassava, with Farmer 30, who planted sugarcane, relocating
all the positions using the same process. The amount of output that the farmer sells must not exceed
the capacity of the factory. The switched pairs increase the profit, as seen in Figure 3.

Figure 3. An example of developing an answer by the swap algorithm.

5.2. Cyclic Move Algorithm

This method selects one farmer from each group then switches each farmer in a circle. Farmer 6,
who is originally assigned to plant rice, for example, is changed to cassava. Next, Farmer 8, who plants
cassava, is changed to sugarcane. Additionally, Farmer 11, who plants sugarcane, is changed to
rice, relocating all the positions using the same method by randomizing all rounds. Once again,
the switched pairs increase the profit, as seen in Figure 4.
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Figure 4. An example of developing an answer by the cyclic move algorithm.

5.3. K-Variable Move Algorithm

To use this algorithm, K = 5 (from randomly testing all rounds), then one crop is chosen from each
group, and the farmer is switched to another crop. Farmer 17, for example, is originally assigned to
plant cassava and then changed to sugarcane. Next, Farmer 33, who plants sugarcane, is changed to
cassava. Farmer 8, who plants cassava, is changed to sugarcane. Farmer 24, who plants sugarcane,
is changed to rice. Farmer 1, who plants rice, is changed to cassava. All the positions are relocated in
the same process, but the amount of output that the farmers sell must not exceed the capacity of the
factory. Once again, the switched pairs increase the overall profit, as seen in Figure 5.

Figure 5. An example of developing an answer by the K-variable move algorithm.

6. Computational Experiment and Results

The computational results are divided into two parts. First, the result of the comparison of the
proposed method (DE) with the result generated by Lingo v.11 is presented to check if the proposed
heuristics are reliable and trustable. Second, a simulation is used to check if the improved DE (I-DE) is
better than that of the original DE to determine if the contribution of adding three local search methods
to the original DE has any benefit compared to the original algorithm.

6.1. Experimental Results of Differential Evolution Algorithm (DE) Compared with Lingo V.11

We used a general DE and a developed DE to apply to and solve problems by using Dev-C++ in
design algorithms, which were calculated to compare the outcome with the processing unit (Intel®

CoreTM i5-2410M 2.3 GHz and 4 GB memory). DE ran five replicates and the best solution among
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all five runs was the solution represented in Table 6. The problem instances were categorized into
three groups: (1) small problem group, 5–20 farmers; (2) medium problem group, 40–70 farmers;
and (3) large problem group, 80–500 farmers. Four test instances were randomly generated for the
small-size instances, whereas three test instances were generated for medium- and large-size test
instances. One real case study was used in the simulation test. The authors had 11 test instances in
total. The stopping criterion for Lingo was set to when it found the optimal solution, with a maximum
duration of 250 h. The stopping criterion of DE was the number of iterations, with a threshold of 500
iterations. Set NP = 50, F = 2.0, and CR = 0.8 [7,19]. The results of DE compared with Lingo v.11 are
shown in Table 6.

Table 6. Experimental results of the Differential Evolution (DE) algorithm compared with Lingo v.11.

Problem
Group

Farmer or
Subdistrict

Rice Cassava Sugarcane Methods

Number of
Factories

Number of
Factories

Number of
Factories

Lingo
Differential Evolution

Algorithm (DE)

- - - - - Solution (Baht) Time (s) Solution Time (s)

1 (Small Size)

5 3 3 4 153,040 00:00:02 153,040 00:00:01
10 3 3 4 538,909 00:00:05 538,909 00:00:03
15 3 3 4 704,463 00:00:27 704,463 00:00:05
20 7 7 5 1.1175 × 106 00:00:46 1.1175 × 106 00:00:14

2
(Medium size)

40 16 30 5 2.4585 × 106 00:03:39 2.4585 × 106 00:00:23
60 30 50 5 3.73617 × 106 00:06:50 3.73617 × 106 00:01:38
70 35 55 3 4.31865 × 106 00:10:25 4.31865 × 106 00:03:37

3 (Large Size)

80 45 60 5 4.3341 × 106 250 h * 4.45924 × 106 00:02:13
80 50 70 7 4.3378 × 106 250 h * 4.75384 × 106 00:03:26
80 55 70 10 4.3467 × 106 250 h * 4.68498 × 106 00:03:69
100 60 70 10 4.3593 × 106 250 h * 4.54516 × 106 00:10:16
100 60 80 10 4.4355 × 106 250 h * 4.61473 × 106 00:13:10
100 60 80 10 4.4355 × 106 250 h * 4.51473 × 106 00:13:10
500 70 85 13 5.13148 × 106 250 h 5.18148 × 106 00:16:34

Case study 1293 95 98 19 1.39234 × 107 250 h * 1.41761 × 107 00:21:82

Remarks: * Best solution generated in 250 h.

Looking at the results in Table 6, it can be seen that the small- and medium-sized test instances of
DE can find the same solution as Lingo v.11, using lower computational time. Regarding the large-size
instances (including the case study), DE generated a better solution than that of Lingo v.11, which ran
for 250 h, whereas DE ran for a maximum of 21.82 min to obtain the result. DE used less computational
time in all test instances than Lingo v.11. The Wilcoxon signed-rank test was applied using a 95%
confidence interval to compare the results of DE and Lingo v.11, which provided significant evidence to
conclude that the results generated by Lingo v.11 and DE were different (p-value = 0.004 and α = 0.05).
Therefore, we concluded that DE can find a better solution than Lingo v.11 when Lingo v.11 has
a computational limit time set to 250 h (p-value = 0.043 and α = 0.05).

6.2. Experimental Results of DE Compared with Modified DE

The authors had three improved DE algorithms (I-DE), which were I-DE-SW (DE + swap
algorithm), I-DE-CY (DE + cyclic move algorithm), and I-DE-KV (DE + K-variable move algorithm).
The stopping criterion used in this session was a 2 h simulation time. Five simulation runs were
performed and the best solution among all runs is shown in Table 7.

Table 7 shows the experiment used to compare the efficiency of the original DE with the I-DEs
using the same duration (two hours). I-DE-KV provided the most effective answer and most
comprehensive range of answers compared with the other methods, especially for the large-size
problems and the case study for 1293 farmers. The best answer for the case study generated by
I-DE-KV was 14,596,430 baht per crop cycle. I-DE-KV could also show the factory location and areas
for economic crop planning.
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Table 7. Overall profitability for the general DE and Improved DE (I-DE) methods with equal duration.

Problem Size
N Solution (Profit: Baht)

(A-B-C) DE I-DE-SW I-DE-CY I-DE-KV

Small size

5
(3-3-4) 153,040 208,933 153,040 208,933

10
(3-3-4) 538,909 565,109 554,117 565,109

15
(3-3-4) 704,463 704,463 704,219 704,219

20
(7-7-5) 1.1175 × 106 1.10857 × 106 1.11875 × 106 1.11877 × 106

Medium size

40
(16-30-5) 2.4585 × 106 2.4585 × 106 2.4585 × 106 2.4585 × 106

60
(30-50-5) 3.73617 × 106 3.73617 × 106 3.73617 × 106 3.73711 × 106

70
(35-55-3) 4.31865 × 106 4.31865 × 106 4.31865 × 106 4.31865 × 106

Large size

80
(45-60-5) 4.55924 × 106 4.55924 × 106 4.55924 × 106 4.56032 × 106

80
(50-70-7) 4.47249 × 106 4.65214 × 106 4.69214 × 106 4.71241 ×106

80
(55-70-10) 4.78129 × 106 4.79241 × 106 4.79201 × 106 4.84542 × 106

100
(60-70-10) 4.55681 × 106 4.60241 × 106 4.61042 × 106 4.72124 × 106

100
(60-80-10) 4.64981 × 106 4.76292 × 106 4.75124 × 106 4.78419 × 106

100
(60-80-10) 4.65924 × 106 4.71105 × 106 4.70924 × 106 4.72149 × 106

500
(70-85-13) 5.23148 × 106 5.36866 × 106 5.3548 × 106 5.37866 × 106

Case study 1293
(95-98-19) 1.427614 × 107 1.457129 × 107 14.32278 × 106 14.59643 × 106

Note: N stands for Farmers, A stands for rice mill, B stands for cassava mill, and C stands for sugarcane mill.

The pair t-test has been executed using significant level α = 0.05 and the result is shown in
Table 8. The statistical test was performed only with the large instances. Considering the small and
medium instances, it can be seen that DE and the proposed algorithm were not different (all results are
the same).

Table 8. Pair t-test results (sign (p-value)).

Method I-DE-SW I-DE-CY I-DE-KV

DE ≤(0.02 *) ≤(0.012 *) ≤(0.009 *)
I-DE-SW - =(0.403) ≤(0.038 *)
I-DE-CY - - ≤(0.036 *)

Note: * means significantly different.

Viewing the statistical test shown in Table 8, I-DE-SW and I-DE-CY were significantly different to
I-DE-KV. Thus, the K-variable move improved the solution quality of the DE algorithm. Additionally,
I-DE-SW and I-DE-CY performance was not significantly different, which can be interpreted that
when a local search in DE is added, it can improve the efficiency of DE (all proposed methods were
significantly different from DE). This might be changed if a local search does not perform differently,
especially when the neighborhood size is unaltered.
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The last experiment tested I-DE-KV (computational time is set to two hours), which was the best
proposed algorithm with the upper bound (maximization problem), and the best solution generated
from Lingo v.11 within 200, 250, 300, 350, and 400 h. The result is shown in Table 9. The simulation
considers only the large problem and the case study.

Table 9. Result of Lingo v.11 (Upper Bound and Best Objective) and I-DE algorithm using K-variable
move (I-DE-KV).

Time
Method 200 h 250 h 300 h 350 h 400 h

Instance

80
(45-60-5)

Upper Bound 4.58894 × 106 4.58894 × 106 4.58894 × 106 4.57591 × 106 4.57591 × 106

Best Objective 4.55145 × 106 4.55145 × 106 4.55981 × 106 4.55981 × 106 4.55981 × 106

I-DE-KV 4.56032 × 106

80
(50-70-7)

Upper Bound 4.80512 × 106 4.80512 × 106 4.78214 × 106 4.78214 × 106 4.76542 × 106

Best Objective 4.56821 × 106 4.56995 × 106 4.58912 × 106 4.60156 × 106 4.60156 × 106

I-DE-KV 4.71241 × 106

80
(55-70-10)

Upper Bound 4.90124 × 106 4.90259 × 106 4.899128 × 106 4.899128 × 106 4.899128 × 106

Best Objective 4.71249 × 106 4.71249 × 106 4.71249 × 106 4.71249 × 106 4.71249 × 106

I-DE-KV 4.84542 × 106

100
(60-70-10)

Upper Bound 4.98241 × 106 4.85215 × 106 4.79242 × 106 4.79242 × 106 4.79242 × 106

Best Objective 4.61983 × 106 4.62488 × 106 4.62488 × 106 4.62488 × 106 4.63245 × 106

I-DE-KV 4.72124 × 106

100
(60-80-10)

Upper Bound 4.88812 × 106 4.88812 × 106 4.85289 × 106 4.85289 × 106 4.81457 × 106

Best Objective 4.62388 × 106 4.62388 × 106 4.62388 × 106 4.64514 × 106 4.64514× 106

I-DE-KV 4.73419 × 106

100
(60-80-10)

Upper Bound 4.8190 × 106 4.8190 × 106 4.8024 × 106 4.8024 × 106 4.79842 × 106

Best Objective 4.6786 × 106 4.69782 × 106 4.70113 × 106 4.70113 × 106 4.70113 × 106

I-DE-KV 4.71105 × 106

500
(70-85-13)

Upper Bound 5.46991 × 106 5.46991 × 106 5.46892 × 106 5.46892 × 106 5.44412 × 106

Best Objective 5.34917 × 106 5.35178 × 106 5.35178 × 106 5.35980 × 106 5.35991 × 106

I-DE-KV 5.37866 × 106

1293
(95-98-19)

Upper Bound 14.7919 × 106 14.7919 × 106 14.7919 × 106 14.7814 × 106 14.7814 × 106

Best Objective 14.56891 × 106 14.56891 × 106 14.57129 × 106 14.57643 × 106 14.57610 × 106

I-DE-KV 14.59643 × 106

Concerning Table 9, “Upper Bound” is the upper bound found by Lingo v.11 within the predefined
computational times (200, 250, 300, 350, and 400 h) and “Best Objective” is the best objective found
by Lingo v.11 within the predefined computational times. The I-DE-KV result is the outcome of the
proposed heuristics using two hours as the computational time. Taken from Table 9, it can be simplified
into %di f f , which can be calculated from Equation (18):

%di f f . =
Result f rom Candidate Method − Result f rom I − DE − KV

Result f rom I − DE − KV
× 100% (18)

Table 10 shows the %di f f of the Upper Bound and the Best Objective found by Lingo v.11 using
different computational times.

Table 10 shows that the Upper Bound has all positive %di f f values, and Best Objective has
negative %di f f values. This means that Upper Bound generates more profit to the system than I-DE-KV,
but Best Objective has lower profits than I-DE-KV. Upper Bound can be a feasible or an infeasible
solution. Therefore, it generates a better solution than the DE algorithm. The Best Objective is a feasible
solution and it is the best solution found during the simulation. Taken from this, we concluded that the
DE algorithm can find a better solution than Lingo v.11, and Lingo v.11 uses a computational time of
200–400 h and DE runs for only two hours. The average %di f f of I-DE-KV and Upper Bound generated
by Lingo v.11, when using 200, 250, 300, 350, and 400 h of computational time were 2.232, 1.891, 1.523,
1.479, and 1.265%, respectively. The %di f f of Best Objective and I-DE-KV ranged from −1.488 to
−1.196%. Further, I-DE-KV had a gap of only 0.342–5.532% from the Upper Bound, from which we
concluded that it is an effective algorithm. The pair t-test was used to see if I-DE-KV performed
differently than Upper Bound and Best Objective found by Lingo v.11. The result is shown in Table 11.
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Table 10. %di f f of the candidate method and I-DE-KV.

Time
Method 200 h 250 h 300 h 350 h 400 h

Instance

80
(45-60-5)

Upper Bound 0.628 0.628 0.628 0.342 0.342
Best Objective –0.195 −0.195 −0.011 −0.011 −0.011

80
(50-70-7)

Upper Bound 1.967 1.967 1.480 1.480 1.125
Best Objective −3.060 −3.023 −2.616 −2.352 −2.352

80
(55-70-10)

Upper Bound 1.152 1.180 1.108 1.108 1.108
Best Objective −2.743 −2.743 −2.743 −2.743 −2.743

100
(60-70-10)

Upper Bound 5.532 2.773 1.508 1.508 1.508
Best Objective −2.148 −2.041 −2.041 −2.041 −1.881

100
(60-80-10)

Upper Bound 3.251 3.251 2.507 2.507 1.698
Best Objective −2.330 −2.330 −2.330 −1.881 −1.881

100
(60-80-10)

Upper Bound 2.291 2.291 1.939 1.939 1.855
Best Objective −0.689 −0.281 −0.211 −0.211 −0.211

500
(70-85-13)

Upper Bound 1.697 1.697 1.678 1.678 1.217
Best Objective −0.548 −0.500 −0.500 −0.351 −0.349

1293
(95-98-19)

Upper Bound 1.339 1.339 1.339 1.267 1.267
Best Objective −0.189 −0.189 −0.172 −0.137 −0.139

Average Upper Bound 2.232 1.891 1.523 1.479 1.265
Best Objective −1.488 −1.413 −1.328 −1.216 −1.196

Table 11. Statistical test of I-DE-KV and Upper Bound and Best Objective found by Lingo v.11.

Method Best Objective I-DE-KV

Lingo Upper Bound ≥(0.001 *) ≥(0.003 *)
Best Objective - ≤(0.003 *)

Note: * means significantly different.

Looking at Table 11, it can be seen that Upper Bound has a significantly higher benefit than Best
Objective and I-DE-KV. Upper Bound normally contains an infeasible solution. The Best Objective has
significantly lower benefit than I-DE-KV with a 95% confidence interval.

7. Conclusions

This study aimed to solve the economic crop planning allotment problem for farmers in eight
provinces in the lower northeast region of Thailand by improving mathematical models and algorithms
and by considering the economic value of maximizing profits for the farmers. The study focused on
three economic crops—rice, cassava, and sugarcane—and used a DE algorithm to solve the problems to
maximize profits for the farmers. The outcomes and running times of the DE algorithms were compared
with Lingo v.11. When comparing the performance of all algorithms using DE in small-size problem
simulations, DE had the best performance and enhanced the chance of finding a better outcome.

Three improved DE algorithms were proposed in this article: I-DE-SW, I-DE-CY, and I-DE-KV.
Viewing the computational results, I-DE-KV generated the best method compared to all other methods
proposed, including the original DE algorithm. All the I-DE algorithms found better solutions than the
original DE. We concluded that a DE algorithm that includes local search can improve the efficiency of
the original version. The swap algorithm limited the number of entities involved to two, the cyclic
move algorithm had three entities involved, and the K-variable move algorithm can have two, three,
four, or more depending on the random value of K. This attribute makes the K-variable move algorithm
freer and more flexible, thus enabling it to generate the best solution among all proposed heuristics
while using the same computational time.

Comparing I-DE-KV with Upper Bound, the proposed method resulted in a 1.265–2.232%
difference from the Upper Bound. I-DE-KV found a 1.196–1.488% higher profit than that of the best
solution found by Lingo v.11 using 400 h computational time, whereas DE only required two hours.
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Therefore, the proposed heuristic is an effective algorithm for finding a good solution to the crop
planning problem. It uses more than 200 times less computational time than that of Lingo v.11 while
generating a better solution. Future work should focus on using different kinds of attractiveness to
assign the plants to the fields.

The advantage of the proposed heuristic is that it is fast and can find a better solution in
comparison to the results generated from Lingo v.11 when the problem size is large. The computational
times when the problem size is small are not much different from that of Lingo v.11. Due to DE
working on the random environment using a guided search, sometimes the guided search leads to
a bad search area, which can result in local optimization and generate a worse solution than that of
Lingo v.11—the optimization tool which always finds the lowest cost. The decision-maker must clarify
the problem size first before making the decision to use optimization tools or metaheuristics to obtain
the optimal solution.
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Abstract: The objective of this research is to develop metaheuristic methods by using the differential
evolution (DE) algorithm for solving the U-shaped assembly line balancing problem Type 1
(UALBP-1). The proposed DE algorithm is applied for balancing the lines (manufacturing a single
product within a fixed given cycle time), where the aim is to minimize the number of workstations.
After establishing the method, the results from previous research studies were compared with the
results from this study. For the UALBP, two groups of benchmark problems were used for the
experiments: (1) For the medium-sized UALBP (21–45 tasks), it was found that the DE algorithm
DE/best/2 to Exponential Crossover 1 produced better solutions when compared to the other
metaheuristic methods: it could generate 25 optimal solutions from a total of 25 instances, and
the average time used for the calculation was 0.10 seconds/instance; (2) for the large-scale UALBP
(75–297 tasks), it was found that the basic DE algorithm and improved differential evolution algorithm
generated better solutions, and DE/best/2 to Exponential Crossover 1 generated the optimal solutions
and achieved the minimum solution search time when compared to the other metaheuristic methods:
it could generate 36 optimal solutions from a total of 62 instances, and the average time used for
the calculation was 4.88 seconds/instance. From the comparison of the DE algorithms, it was
found that the improved differential evolution algorithm generated optimal solutions with a better
solution search time than the search time of the basic differential evolution algorithm. The basic and
improved DE algorithm are the effective methods for balancing UALBP-1 when compared to the
other metaheuristic methods.

Keywords: U-shaped assembly line balancing; basic differential evolution algorithm; improved
differential evolution algorithm; optimal solutions

1. Introduction

Nowadays, the degree of competition in many industries is very high. Therefore, organizations
that respond quickly to changes in their customers’ needs, require less effort to control the storage of
their inventory, and spend less time in production will certainly achieve business advantages over their
competitors. Moreover, organizations need to show continuous improvement and development of their
products’ values in order to respond to the needs of their customers by reducing costs and improving
product quality during the production process. This has resulted in changes to the production system,
such as the change from the push system to the pull system, which has reduced the volume of each
batch size produced. The changes also include replacing the traditional production layout of straight
lines with U-shaped production lines or U-lines. When compared to the traditional production layout of
straight lines, it was found that using U-lines was more advantageous in terms of balanced production
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lines, improved worker visibility, better communications, fewer workstations, higher flexibility, shorter
operation travel, and easier material handling, among other benefits. Relevant research studies on
simple assembly line balancing using a single model and mixed model were first published in 1955,
and the subject has been researched intensively since then. Meanwhile, research studies on U-shaped
assembly line balancing have not received much interest from researchers, with few studies conducted.
Therefore, there are many interesting areas under the topic of U-shaped assembly line balancing that
require further research studies [1].

The assembly line balancing problem (ALBP) is considered a problem of the NP-hard class of
combinatorial optimization problems [2], which are complicated to solve. If using mathematics with
exact methods for finding optimal solutions, a lot of time will be spent on calculations and expenses,
especially of large-scale problems with more variables and limitations. Hence, many heuristic methods
for obtaining good solutions have been developed [3]. In the last 10 years, the development of the
heuristic methods known as metaheuristic methods has been of great interest to many researchers
because the methods were used to obtain results for the general assembly line balancing problem
(GALBP) and simple assembly line balancing problem (SALBP) [4]. The assembly line balancing
problem (ALBP) has come to be considered a classic problem that interests many researchers and
research studies on this problem have been carried out since 1955. Many researchers have developed
mathematics methods (exact methods) and heuristic methods, including metaheuristic methods. [5]
A new hybrid GSA-GA algorithm is presented for the constraint nonlinear optimization problems
with mixed variables. In it, firstly the solution of the algorithm is tuned up with the gravitational
search algorithm and then each solution is upgraded with the genetic operators such as selection,
crossover, and mutation [6]. The main objective of this paper is to present a hybrid technique named
as a PSO-GA for solving the constrained optimization problems. In this algorithm, particle swarm
optimization (PSO) operates in the direction of improving the vector while the genetic algorithm (GA)
has been used for modifying the decision vectors using genetic operators. However, only a small
number of metaheuristic methods have been developed for solving the problems discussed in this
study. Therefore, it is of interest to develop metaheuristic methods for solving the ALBP and thus
increase the chance of finding an effective solution of this problem [7]. The objective of this paper is
to solve the reliability redundancy allocation problems of series parallel system under the various
nonlinear resource constraints using the penalty guided based biogeography based optimization. In
the same year, [8] The main goal of the present paper is to present a penalty based cuckoo search (CS)
algorithm to get the optimal solution of reliability e redundancy allocation problems (RRAP) with
nonlinear resource constraints.

Hence, this research is a study on U-shaped assembly line balancing for the manufacture of
a single product with a given fixed cycle time (c), where the aim is to minimize the number of
workstations (m). The U-line assembly line balancing problem type 1 (UALBP-1) was studied, and a
new metaheuristic method was developed for finding the solution by using the differential evolution
algorithm (DE) [9]. The aim of this new method is to generate good solutions or the optimal solutions
to this classic problem.

The main contribution of this work includes: (1) background; (2) the assembly line balancing
problem; and (3) objective of the work.

2. Literature Review

2.1. U-Shape Assembly Line Balancing by Using Other Metaheuristic Methods

The previous studies on the UALBP were reviewed and are summarized in this section. The
first UALBP study in the literature was conducted in 1994 by [10]. In their study entitled “The U-line
Line Balancing Problem”, the mathematical formulation of the problem established by using dynamic
programming for the single-model U-line to minimize the number of stations, and the RPWT (ranked
positional weight technique) for solving a large-sized UALBP (111 tasks), which contained problems
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derived from previous research studies. These problems were more complicated than traditional
problems because the tasks could be placed from forward to backward, from backward to forward, or
from both directions simultaneously according to a sequential flowchart. A year later, [11] developed
three mathematical exact algorithms to solve the UALBP. The dynamic programming (DP) formulation
was used in the first algorithm, and the other two were breadth-first and depth-first branch and
bound (B&B) algorithms. The results of the calculation revealed that B&B was more effective than the
DP-based algorithm, and breadth-first spent less time on calculation than depth-first, but depth-first
could find the optimal solutions faster. Later, [12] conducted research entitled “The Mixed-Model
U-line Balancing Problem” and developed a heuristic method for solving the mixed-model UALBP
with a precedence graph of each batch size with 25 tasks. In the same year, [13] presented a formulation
for Integer Programming (IP) for finding the optimal balance to solve the UALBP. This formulation
solved the large-scale problems better than the traditional ones. Later, [14] proposed a DP formulation
for solving problems of numerous U-lines with a maximum of 22 tasks. The objective was to assign
the tasks to workstations in various ways, aiming to minimize the number of workstations and time
wasting [15,16]. This integrated model was solved with a black hole optimization based algorithm. The
quality of the heuristic solution was checked with special data sets. A year later, proposed a black hole
optimization (BHO) based algorithm dealing with a multi objective supply chain model is presented.
The sensitivity of the enhanced algorithm is tested with benchmark functions. Numerical results with
different datasets demonstrate the efficiency of the proposed model and validate the usage of Industry
4.0 inventions in first mile and last mile (FMLM) delivery.

The principles proposed could be effective methods for ALB and Rebalancing the UALBP.
Later, [17] developed a heuristic method for solving the UALBP with nine U-lines, where there were
18 tasks in each U-line with the same cycle time. The time between work and the time between U-lines
were used in the consideration. A year later, [18] produced a thesis called “Incorporating Ergonomics
Criteria into Assembly Line Balancing” and developed three heuristic methods: (1) multiple ranking
heuristic, (2) combinatorial genetic algorithm (GA), and (3) problem-space GA. These methods were
developed by employing the criteria for ergonomic designs (such as a reduction in cycle time and the
loss of grip strength due to fatigue at workstations) for the consideration of solutions of the I-shaped
and U-shaped line ALB in order to obtain the lowest values. Consequently, many industrial factories
benefited from the results of the study in terms of both production and ergonomics. Later, [19] carried
out a study entitled “ULINO: Optimally balancing U-shaped JIT assembly lines” by implementing
a B&B method that was developed from the simple assembly line balancing optimization method
(SALOME). The SALOME method, which had been previously used for solving straight-line problems,
was used for solving U-line problems with 297 tasks. This new method was called ULINO (U-line
optimizer). The method was based on depth-first branch and bound and dominance rules. The purpose
was to minimize the number of workstations, cycle time, or both. In 2003, a method for obtaining the
optimal solution of UALB with parallel stations was developed by using multiple lower bounding and
a new heuristic method for finding the upper bounding. The results from the two developed methods
were improved over the traditional methods.

A year later, [20] applied the genetic algorithm (GA), which had been used for solving the SALBP,
for solving the UALBP-1. Then, the optimal solutions from previous studies were compared. The
results from the study showed that the GA could generate the optimal solutions or nearest solutions
in the very first rounds of the experiment. Later, [21] published “A Shortest Route Formulation of
Simple U-Type Assembly Line Balancing Problem”, which applied the theory of the shortest route
formulation. The theory was proposed by [22] for solving the SALBP. However, the principles of the
theory were further developed to solve the UALBP. In addition, some examples of the calculations
of this method were published in many research articles and, In the same year, [23] achieved the
goal of developing an equation formulation for the UALBP that was based on the integer linear
programming formulation developed for the UALBP, as well as an equation formulation for the SALBP.
The principles were flexible, helping in decision making in the UALBP for cases with many conditions.
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In the same year, [24] carried out research called “The Stochastic U-line Balancing Problem: A Heuristic
Procedure”. The authors explained the reason why the U-lines were popular: it was because the JIT
(just-in-time) production system played a major role in production. Therefore, U-shaped assembly
lines were replacing the traditional straight assembly lines. The issue that was emphasized as needing
consideration in the UALBP was the unreliability of the task time due to workers and other factors
with unpredictable timing.

The developed heuristic approach was divided into two parts: finding basic solutions and
improving basic feasible solutions. The results of the calculation revealed the effectiveness of the
method used. In another study, conducted by [25], simulated annealing (SA) was developed for
solving the UALBP. This method is widely used at present. The aim of this method is to minimize the
number of workstations (Type-I). The effectiveness of the principles was evaluated by a solution search
for large-scale problems and by comparing the results with ULINO (U-Line optimizer), which was
B&B based on the heuristic procedure. In addition, [26] the authors proposed recommendations for
further research studies as follows: (1) SA methods should be used for more difficult problems, such as
mixed-/multi-model lines, stochastic task time, and U-line with other characteristics; (2) the principles
of other metaheuristic methods should be utilized for solving the UALBP; (3) exact methods for solving
U-line problems at a large scale should be developed; (4) the principles of other metaheuristic methods
should be used for solving problems of Type-II (min. c, given m). Since the study, many researchers
have explored methods for solving the UALBP by developing GA metaheuristic methods. In [27],
a GA was presented for solving the UALBP by using the Just-In-Time (JIT) approach for solving
the UALBP. The results were better than those of the traditional approaches that were employed for
solving the UALBP. Therefore, the GA was used for solving UALBP. The results from the verification
showed that greater effectiveness was achieved. The criteria used for consideration were the number
of workstations of assembly lines and the variation of the workloads. The results from the experiment
showed that the proposed method was effective because the workstations were well grouped and the
workload formats were improved.

Moreover, many researchers used metaheuristic methods for solving the UALBP. They proposed
the ant colony system (ACS) algorithm for finding solutions and proposed four heuristic methods:
the method of Kilbridge and Wester (K&W), ranked positional weight (RPW), maximum task time
(Max. T. T.), and total maximum number of following tasks (Max. N.F.). The four methods were then
compared to the metaheuristic method of ACS for finding solutions, and it was found that the ACS
method generated better solutions than the four heuristic methods. Later, other researchers studying
methods for solving the UALBP developed a heuristic method and metaheuristic method by using
the max-min ant system (MMAS) of max. task time and min. task time, together with a local search
method for solving the SALBP and UALBP. For the SALBP, a large-scale benchmark problem set with
45–111 tasks and the large-scale benchmark problem set of Lapierre’s Tabu Search (TS) with 297 tasks
were tested. For solving the UALBP, experiments were conducted on the benchmark problem set using
Max. RPW and the medium-sized UALBP with 21–45 tasks, and the benchmark problem set with
some given information consisted of a large-scale problem with 75–297 tasks. From the results of the
study, it was concluded that the developed Max-Min Ant system was the most efficient method when
compared to the heuristic method and Max. RPW method. From the experiments, Min. task time
generated the worst solution. When compared to other methods, and when there was a change that
increased cycle time, the results showed that there was no effect on the capacity of the Max-Min Ant
system for finding the solution. Therefore, it was concluded that the developed method was highly
efficient. After that, other methods for solving the UALBP were researched by other researchers.

2.2. U-Shape Assembly Line Balancing by Using Differential Evolution Algorithm

Assembly line balancing (ALB) by using the differential evolution algorithm for solving the
ALBP has been studied by many researchers. In [28], the differential evolution algorithm was studied
and proposed for solving the SALBP from the benchmark problem (retrieved from http://www.
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assembly-line-balancing.de) with 7–111 tasks. The purpose was to find the minimum number of
workstations with the condition that the time of each station must not exceed the production cycle
time and the preceding conditions must be met. The results of the study revealed that the proposed
method generated a good solution with a minimum search time. This generated an initial solution
from the sampling of real numbers, and the solution was further optimized. Later, [29] carried out
research by using the differential evolution (DE) algorithm for solving the SALPB-1. The proposed
heuristic is composed of four main steps: (1) initialization, (2) mutation, (3) crossover, and (4) selection
processes. In the study, the mutation and crossover processes were combined, and a new method was
found. The computational results based on many tests using a set of standard instances showed that
the proposed DE algorithm was very competitive for solving the SALPB-1.

2.3. Differential Evolution Algorithm for Solving Other Problems

Differential evolution (DE) algorithms have been used for solving other research problems which
aim to generate solutions as follows. The mutation DE algorithm was used in [24] and involved
the positions of the optimal vectors in the population of each batch and employed the crossover
or recombination of positions which were exchanged between vectors through the comparison of
the crossover rate (CR) with random positions. This method was found to be effective and, in
2011, [30] developed the DE algorithm for solving assignment problems by improving two main
crucial parameters in the DE process: the weighting factor (F) and crossover rate (CR). The improved
differential evolution (IDE) was used for allowing an adjustable F, and the CR changed in terms
of taxonomy steps. The sample problems were compared with the solutions of opposition-based
differential evolution (ODE) and adaptive differential evolution (JADE). The results revealed that
the developed IDE generated better solutions than the other two methods in terms of cost reduction
and increased performance in the system. A year later, [31] developed the Pareto Utility Discrete
Differential Evolution (PUDDE) algorithm for handling operator allocation problems (OAP) in order
to allocate jobs appropriately for the balance control of assembly lines when multiobjective functions
and conditions were formulated, and a decision based on only a single objective cannot be made.
The procedure, which included the discrete event simulation DES model, was used in the general
simulation, and PUDDE was employed for solving OAPs by improving the operator condition in two
ways: decreasing the number of operators or increasing the number of operators. The results from the
experiment concluded that PUDDE could find the solutions effectively. However, this method was
suitable for decreasing the number of operators. When compared to the traditional DE, the PUDDE
algorithm had a much better performance when finding objectives of multi-assembly lines in the
same problem.

From the literature and related research studies above, it can be concluded that the DE algorithm
was the method able to find the optimal solutions for large-scale complicated problems within the
possible solution area by using a short search time when compared to the other metaheuristic methods.
It was reported by [32] that DE algorithms with an evolution algorithm procedure were a new technique
for increasing the efficiency of and capacity for handling problems with nondifferentiable, nonlinear,
and multimodal objective functions, particularly large-scale complicated problems. It was found that
the speed of the solution search of DE was better than that of other methods. Therefore, the DE method
can be used for solving the ALBP and increasing the efficiency of the solution search for the ALBP.
Hence, DE was chosen for solving the UALBP-1 in the current study.

3. U-line Assembly Line Balancing Problem Pattern and Mathematical Model

Only the UALBP-1 was focused on in this study, and the details of the problem are as follows:

3.1. U-line Assembly Line Balancing Problem (UALBP)

The UALBP-1 can be divided into three problem versions which are similar to the divisions of the
Simple Assembly Line Balancing Problem [10,19]:
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1. UALBP-1: Given the cycle time (c), minimize the number of stations (m);
2. UALBP-2: Given the number of stations (m), minimize the cycle time (c).;
3. UALBP-E: Maximize the line efficiency (E) for c and m being variable.

U-line Assembly Line Balancing Problem (UALBP) Pattern: The UALBP of each task can be
located at only one station and is performed before its predecessor and after its successor tasks. The
total time of each station cannot exceed more than the cycle time according to the conditions of the
workstation assignment in the UALBP-1. The UALBP-1 can be explained using the benchmark problem
called the Jackson Problem, shown in Figure 1, which is illustrated as a precedence diagram of the
ALBP (11 tasks): the number inside each box represents the name of each task, and the number above
each box represents the time of that task. When applying the example of Figure 1 to the UALBP, given
c = 10, an optimal solution with m = 5 can be found, which is shown in Figure 2. The begging of process
line balancing, the task 1 and task 11 are in station 1. It can generate a feasible line balance with a cycle
time of c = 10 and with m = 5 stations given by the station loads S1 = {1, 11}, S2 = {2, 4, 5}, S3 = {6, 7, 9},
S4 = {3, 10}, and S5 = {8}. While no idle time occurs in stations 1, 2, 3, and 4, station 5 shows an idle
time of 4.

Figure 1. Precedence diagram with assembly network [33].

Figure 2. Completed line assignments for the U-shaped assembly line.

3.2. Mathematical Model of the U-Shaped Assembly Line

This section presents the mathematical model for the UALBP-1, adapted from Bowman [34]. The
indices, parameters, and decision variables are as defined below.

3.2.1. Indices

n denotes the index of a task, where n = 1 . . . . N
k denotes the index of workstation k, where k = 1 . . . M
N denotes the total number of tasks
M denotes the total number of workstations
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3.2.2. Parameter

Pn denotes the processing time of task n
CT denotes the cycle time of a workstation
Pnj denotes the relationship of task n to task j

Fnj =

{
1 if task n is predecessor of task j
0 otherwise

3.2.3. Decision Variables

Xnk =

{
1 if task n is assigned to station k
0 otherwise

Yk =

{
1 if station k is opened
0 otherwise

Objective function:

Min Z =
M

∑
k=1

Yk (1)

subject to
M

∑
k=1

Xnk = 1 ∀n = 1 . . . N, (2)

M
∑

k=1
(K × Xjk)− (K × Xnk) ≥ 0

∀n = 1 . . . N, k = 1 . . . M, Fnj = 1
(3)

N
∑

n=1
Xnk×Pn ≤ CT × Yk

∀k = 1 . . . M
(4)

Yk ≤ Yk−1 ∀k = 2 . . . M (5)

Equation (1) represents an objective function of the model to minimize the number of stations.
Equation (2) guarantees that task n must be assigned to exactly one workstation. Equation (3) ensures
that the precedence constraints are not violated on the U-line. Equation (4) ensures that the total
processing time used by all tasks assigned to a particular workstation must not exceed a prespecified
cycle time (CT). Finally, Equation (5) ensures that the station will be opened successively according to
the station number.

4. General Differential Evolution Algorithm

4.1. Differential Evolution Algorithm

DE is a population-based random search method where an initial population of size N of
D-dimensional vector is randomly generated, and a new population is generated through the cycles of
calculations. A solution in DE algorithm is represented by D-dimensional vector, and each value in
the D-dimensional space is represented as a real number. The key idea behind DE which makes the
algorithm from other evolutionary algorithms (EAs) is its mechanisms for generating new solutions,
called trial vectors, by mutation and crossover operation. In DE, each vector is served as a target
vector which is then combined with other vectors in the population to form a new vector, called a
mutant vector. Next, the mutant vector is crossover with its corresponding occurs only if the trial
vector outperforms its corresponding target vector. The evolution process of DE population continues
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through repeated cycles of three main operator; mutation, crossover, and selection until some stopping
criteria are met [30].

The general procedure of DE consists of several steps: (1) construct a set of initial target vectors, (2)
perform a mutation process, (3) perform a recombination process, and (4) perform a selection process.
The design of the procedure application is shown in Figure 3.

 

Figure 3. General Differential Evolution Algorithm Procedure.

From the general differential evolution algorithm procedure in Figure 3, an initial vector is
generated and the designed vector is further optimized by mutation, recombination, and selection
processes. The procedure can be illustrated using the Bowman problem as an example, as shown in
Figure 4.

 

Figure 4. Precedence Diagram of the Bowman Problem [34].

4.2. Procedure of UALB-1 by Using Differential Evolution Algorithm

The procedure of UALB-1 using the general differential evolution algorithm from the Bowman
problem set in Figure 4, which presents the precedence diagram of the ALBP (8 tasks), can be interpreted
as follows. The number in each circle represents the name of each task and the number above each circle
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represents the time of that task. Before balancing assembly lines, the values used in the calculation
must be set. The variables are as follows: R = Round, NP = Numbers of tasks, F = Scaling factor,
and CR = Crossover rate. In this problem’s calculation, these suitable variables were set from the
experiment as R = 1, NP = 5, F = 0.8, CR = 0.8 [35], and CT (Cycle Time) = 20. The General Differential
Evolution Algorithm “DE/rand/1” and binomial crossover were used in the calculation as follows.

4.2.1. Calculation Using the General Differential Evolution Algorithm DE/rand/1 and Binomial
Crossover

(1) Initial population. In this step, a randomized real number between 0 and 1 for each task is
obtained. This is the formulation of the target vector or initial solutions for the decision value in
the workload allocation to the workstations, and the initial vector will be used further in Mutation
and crossover, as shown in Table 1. In the table, the initial population calculation is presented by a
randomized real number between 0 and 1 for each task. A target vector will be generated for each
task in order to generate the initial solution and decision value in the workload allocation to the
workstations. The workload allocation to the workstations must in line with the conditions of UALB by
arranging the random numbers in ascending order for workstation allocation. From the table, NP = 5
vectors. The benchmark problem is illustrated in Figure 4, and it is described in Table 1.

Table 1. Result of initial population NP = 5 vectors.

Vector 1

Station 1 2 3 4 5

Work 1, 8 6, 4 2 3, 5 7

Time 11, 3 12, 5 17 9, 8 10

Target Vector 0.30, 0.57 0.44, 0.61 0.72 0.53, 0.68 0.92

Vector 2

Station 1 2 3 4 5

Work 7, 5 1, 8 6 3 4, 2

Time 10, 8 11, 3 12 12 5, 11

Target Vector 0.57, 0.32 0.74, 0.92 0.21 0.44 0.69, 0.82

Vector 3

Station 1 2 3 4 5

Work 1, 8 7, 5 6, 4 3 2

Time 11, 3 10, 8 12, 5 9 17

Target Vector 0.51, 0.96 0.88, 0.67 0.84, 0.62 0.41 0.92

Vector 4

Station 1 2 3 4 5

Work 1, 8 7, 5 2 3, 4 6

Time 11, 3 10, 8 17 9, 5 12

Target Vector 0.13, 0.26 0.58, 0.81 0.64 0.42, 0.21 0.69

Vector 5

Station 1 2 3 4

Work 8, 6, 4 7, 5 3, 1 2

Time 3, 12, 5 10, 8 9, 11 17

Target Vector 0.84, 0.41, 0.59 0.91, 0.76 0.32, 0.98 0.48

(2) Mutation. In this step, a position of the vector is mutated to obtain new solutions that differ
from the initial population number by targeting the mutation. The calculation for the mutant vector
(Vi,j,G+1) is shown in Equation (6), and an example of a mutation is illustrated in Table 2.

Vi,j,G = Xr1,j,G + F(Xr2,j,G − Xr3,j,G) (6)

where:
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Vi,j,G = Mutant Vector

Xr1,j,G, Xr2,j,G, Xr3,j,G = Random vector from G round

F = Scaling factor (random real number between 0 and 2)

Table 2. Results of Mutation in Vector 1 by using DE/rand/1.

Vector 1

Position 1 2 3 4 5 6 7 8

Work 1 8 6 4 2 3 5 7

Time 11 3 12 5 17 9 8 10

Target
Vector 0.3 0.57 0.44 0.61 0.72 0.53 0.68 0.92

Vector 2

Position 1 2 3 4 5 6 7 8

Work 7 5 1 8 6 3 4 2

Time 10 8 11 3 12 12 5 11

Target
Vector 0.57 0.32 0.74 0.92 0.21 0.44 0.69 0.82

Vector 3

Position 1 2 3 4 5 6 7 8

Work 1 8 7 5 6 4 3 2

Time 11 3 10 8 12 5 9 17

Target
Vector 0.51 0.96 0.88 0.67 0.84 0.62 0.41 0.92

Mutant Vector 1 0.35 0.06 0.33 0.81 0.22 0.39 0.90 0.84

The results of the mutation in Vector 1 by using “DE/rand/1” are depicted in Table 2.
Table 2 presents the results of Mutation in Vector 1 by using the DE/rand/1 method, where Xr1,j,G,

Xr2,j,G, and Xr3,j,G are randomized to form Vectors 1, 2, and 3, respectively, and F = 0.8 is set so that at
position 6, Xr1,j,G = 0.53, Xr2,j,G = 0.44, and Xr3,j,G = 0.62 substituted into the equation as Vi,j,G = Xr1,j,G +
F(Xr2,j,G - Xr3,j,G) will be Vi,j,G = 0.53 + 0.8(0.44 − 0.62) = 0.39. Therefore, Mutant Vector 1’s position 6 is
0.39. After that, the calculation for every position is done until all eight positions are calculated.

(3) Crossover or Recombination. In this step, vector positions are exchanged. New vectors, both
better and worse, are generated. The Trial Vector (Ui,j,G+1) is formulated, and the Trial Vectors are
compared and exchanged as in Equation (7). The examples are presented in Tables 3 and 4.

Ui,j,G =

{
Vi,j,G i f Randi,j ≤ CR or j = Irand
Xi,j,G i f Randi,j > CR or j �= Irand

(7)

where:

Vi,j,G = Mutant Vector

Xi,j,G = Target Vector

CR = Crossover Constant (real number in the range 0–1)
rand j [0,1) = random real number between 0 and 1 in every position, j = 1, 2, 3, ..., G (G = number
of position).

45



Math. Comput. Appl. 2018, 23, 79

Table 3. Results of Binomial Crossover in Vector 1 with the DE/rand/1 Method.

Vector Position 1 2 3 4 5 6 7 8

1

Work 1 8 6 4 2 3 5 7

Time 11 3 12 5 17 9 8 10

Target
Vector 0.3 0.57 0.44 0.61 0.72 0.53 0.68 0.92

Vector Position 1 2 3 4 5 6 7 8

1

Mutant
Vector 0.35 0.06 0.33 0.81 0.22 0.39 0.90 0.84

rand(j) 0.40 0.40 0.06 0.96 0.47 0.40 0.94 0.33

Trial
Vector 0.35 0.06 0.33 0.61 0.22 0.39 0.68 0.84

Table 4. The results of UALB by using the Trial Vector from Table 3.

Vector 1

Station 1 2 3 4 5

Work 8, 6 1, 3 2 4, 5 7

Time 3, 12 11, 9 17 5, 8 10

Trial Vector 0.06, 0.33 0.35, 0.39 0.22 0.61, 0.68 0.84

Table 3 shows the results of binomial crossover in Vector 1 if CR = 0.8; therefore, the value of the
target vector will be used in the Trial Vector at positions 4 and 7. For other positions, the values of the
mutant vector are used.

From Table 4, when employing the trial vector obtained for UALB according to the preceding
conditions, the total time of each workstation must not exceed the production cycle time, which can
be satisfied by considering a Trial Vector with low values before assigning the tasks to workstations.
Therefore, a solution of 5 workstations is found.

(4) Selection. In this step, the next generation is selected (G + 1): only better solutions are selected
by comparing the results of the Target Vector with the Trial Vector for cases in which the number of
workstations of the Trial Vector is lower than/equal to that of the Target Vector. Therefore, the Trial
Vector is selected as the next generation, as in Equation (8):

Xi,j,G+1 =

{
Ui,j,G i f f (Ui,j,G) ≤ f (Xi,j,G)

Xi,j,G otherwise
(8)

where:

Ui,j,G = Trial Vector

Xi,j,G+1 = Target Vector in the next generation, i = 1,2,...n

In sum, from the selection step for selecting the next generation, the Trial Vector of the 5 assigned
workstations is found with the values higher than those of the Target Vector for 4 workstations.
Therefore, the Target Vector is selected as the optimal solution, and the process is repeated for the
next generation.

4.2.2. Procedure of UALB-1 by Using the Improved Differential Evolution Algorithm

(1) Improved DE. In mutation process, a mutant vector (Vi,j,G) will be calculated from one or
more selected target vector (Xi,j,G). Traditionally, the mutation process of DE is performed using
Equations (6) [30]. Improved DE was developed by applying the four Mutation Equations DE/best/1,
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DE/rand-to-best/1, DE/best/2, and DE/rand/2, as seen from Equations (9), (10), (11) and (12),
respectively, as follows:

Vi,j,G = Xbest,j,G + F(Xr1,j,G − Xr2,j,G) (9)

Vi,j,G = Xi,j,G + F
(

Xbest,j,G − Xi,j,G

)
+ F

(
Xr1,j,G − Xr2,j,G

)
(10)

Vi,j,G = Xbest,j,G + F
(
Xr1,j,G − Xr2,j,G

)
+ F

(
Xr3,j,G − Xr4,j,G

)
(11)

Vi,j,G = Xr1,G + F(Xr2,G − Xr2,G) + F(Xr4,G − Xr5,G) (12)

Let r1, r2, r3, r4, and r5 denote the vectors which are randomly selected from a set of target vectors
j. represent the best vector found so far in the algorithm. F is a predefined integer parameter (scaling
factor). In the proposed heuristics, F is set to 2; i is vector number which starts from 1 to NP, and j is
position of a vector which run from 1 to D.

(2) Improved DE. The result of mutation process is a set of mutant vector Vi,j,G (i run from
1 to NP). Then a mutant vector will apply recombination equations (13) and (14) to yield trial
vector (Ui,j,G) as a product of recombination processes. In traditional DE for UALBP–1, a binomial
recombination Equations (7) is applied in the basic differential evolution algorithm [30]. Improved
DE was developed by applying two crossover or recombination equations: Exponential Crossover 1
position and Exponential Crossover 2 position, as seen in Equations (13) and (14), as follows:

Ui,j,G =

{
Vi,j,G when randbi ≤ j

Xi,j,G i f randbi > j
(13)

Ui,j,G =

{
Vi,j,G when j ≤ randbi,1 and j ≥ randbi,2

Xi,j,G when randbi,1 < j < randbi,2
(14)

Let randbi, to be random number between 0 and 1, and CR is recombination probability which is
the predefined parameters in the proposed heuristics. randbi, randbi,1 and randbi,2 are random integer
numbers which are used to represent position of a vector and these random numbers ranges from 1
to D.

On the basis of the explanations in steps 1–4, the Improved Diff. is shown in Algorithm 1.
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Algorithm 1. Pseudo-code of the DE for (UALBP-1)

Setup initial DE parameter
Do while from first iteration to final iteration

Do while from first DE to final DE
Setup initial parameters: cycle time, remaining time, station number
Do while from first task to final task

Find start/following task with task time is less than or equal to
Remaining time, and proper precedence to data list
Input scaling factor, crossover rate and NP to data list
Select task randomly to list
Update remaining time/station number
Produce the four Mutation Equations

Vi,j,G = Xbest,j,G + F(Xr1,j,G − Xr2,j,G)

Vi,j,G = Xi,j,G + F
(

Xbest,j,G − Xi,j,G

)
+ F

(
Xr1,j,G − Xr2,j,G

)
Vi,j,G = Xbest,j,G + F

(
Xr1,j,G − Xr2,j,G

)
+ F

(
Xr3,j,G − Xr4,j,G

)
Vi,j,G = Xr1,G + F(Xr2,G − Xr2,G) + F(Xr4,G − Xr5,G)

Developed by applying the two Crossover or Recombination Equations

Ui,j,G =

{
Vi,j,G when randbi ≤ j

Xi,j,G i f randbi > j

Ui,j,G =

{
Vi,j,G when j ≤ randbi,1 and j ≥ randbi,2

Xi,j,G when randbi,1 < j < randbi,2

Produce new target vector (selection\process)

Xi,j,G+1 =

{
Ui,j,G i f f (Ui,j,G) ≤ f (Xi,j,G)

Xi,j,G otherwise

End do

End do

Select best solution from all DE in the iteration
End do

Show/select best solution from all DE in all iteration

5. Analysis of the Results from the Experiment on DE for Solving UALBP

The results obtained from the experiment on DE for solving the UALBP by using the basic
DE algorithm and improved DE algorithm were analyzed. Six methods from the 15 methods for
generating optimal solutions with the minimum search time were selected through the experiment.
Then, the selected methods were compared. The results from the experiment were compared with
other metaheuristic methods.

DE for solving the UALBP: the basic DE algorithm and improved DE algorithm consisted of six
methods as follows:

1. DE/rand/1 to Binomial Crossover (Basic)
2. DE/rand/1 to Exponential Crossover 1 Position (improved)
3. DE/rand/1 to Exponential Crossover 2 Position (improved)
4. DE/ rand-to-best/1 to Binomial Crossover (improved)
5. DE/Best/2 to Exponential Crossover 1 Position (improved)
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6. DE/Best/2 to Exponential Crossover 2 Position (improved)

The ALBP can be solved by applying the Java program (operated on a computer with Core i3,
2.3 GHz, 2 GB RAM, and the operating system Windows 7). The metaheuristic methods developed,
including the Basic UALB and Improved UALB for solving the U-shaped Assembly Line Balancing
Problem Type 1 (UALBP-1), used the data retrieved from http://www.assembly-line-balancing.de

The variables used in the calculation for ALB were defined as follows: R = Round, NP = Number
of tasks, F = Scaling factor, and CR = Crossover rate. In this problem’s calculation, these variables were
set at R = 30, NP = 30, F = 0.8, and CR = 0.8 [35]. Then, the experiment for finding the optimal solutions
was conducted as follows.

1) The benchmark problems of Sawyer (30 tasks, 8 instances) and Arcus 1 (83 tasks, 16 instances)
were used. The results of the experiment on the UALBP-1 by using the basic DE algorithm and
improved DE algorithm are depicted in Table 5.

Table 5. The results of the experiment on the UALBP-1 by using the basic DE algorithm and improved
DE algorithm with the Sawyer and Arcus 1 problems.

Problem c m*

DE1* DE2** DE3*** DE4**** DE5***** DE6******

m Cal Time
(s)

m Cal Time
(s)

m Cal Time
(s)

m Cal Time
(s)

m Cal Time
(s)

m Cal Time
(s)

Sawyer
30

25 14 14 1.87 14 0.67 14 0.11 14 1.87 14 0.07 14 0.08

27 13 13 1.11 13 0.44 13 0.13 13 0.98 13 0.12 13 0.09

30 11 11 1.23 11 0.83 11 0.42 11 0.77 11 0.08 11 0.10

33 10 10 1.11 10 0.67 10 0.67 10 0.44 10 0.18 10 0.11

36 10 10 1.34 10 0.55 10 0.55 10 0.34 10 0.05 10 0.15

41 8 8 1.96 8 0.59 8 0.59 8 0.50 8 0.04 8 0.19

54 6 6 1.61 6 0.78 6 0.38 6 0.61 6 0.09 6 0.38

75 5 5 1.94 5 0.53 5 0.07 5 0.57 5 0.06 5 0.35

Arcus 183

3786 21 21 0.91 21 0.31 21 0.54 21 0.31 21 0.30 21 0.14

3985 20 20 0.89 20 0.89 20 0.17 20 0.89 20 0.06 20 0.11

3786 21 21 0.91 21 0.31 21 0.54 21 0.31 21 0.30 21 0.14

4454 18 18 0.85 18 0.55 18 0.31 18 0.55 18 0.10 18 0.98

4732 17 17 0.46 17 0.98 17 0.89 17 0.46 17 0.28 17 0.16

5048 16 16 0.31 16 0.77 16 0.64 16 0.31 16 0.08 16 0.25

5408 15 15 0.89 15 0.44 15 0.06 15 0.89 15 0.12 15 0.06

5824 14 14 0.64 14 0.34 14 1.98 14 0.64 14 0.04 14 1.98

5853 13 13 0.06 13 0.50 13 0.24 13 0.06 13 0.06 13 0.24

6309 13 13 1.98 13 0.61 13 0.55 13 1.98 13 0.09 13 0.55

6842 12 12 0.64 12 0.57 12 0.54 12 0.24 12 0.19 12 0.54

6883 12 12 0.79 12 0.99 12 0.47 12 0.59 12 0.38 12 0.16

7571 11 11 0.74 11 0.44 11 0.98 11 0.54 11 0.35 11 0.25

8412 10 10 1.97 10 0.34 10 1.98 10 0.47 10 0.22 10 0.06

8898 9 9 1.89 9 0.50 9 0.24 9 0.51 9 0.45 9 1.66

10816 7 7 1.98 7 0.61 7 0.55 7 0.98 7 0.71 7 0.78

Total Optimal
Solutions Found from
24 Problem Instances

24 1.16 24 0.61 24 0.53 24 0.67 24 0.17 24 0.40

Notes: m is the number of station (m* is the optimal). c is the cycle time. DE1* = DE/rand/1 to Binomial Crossover.
DE2** = DE/rand/1 to Exponential Crossover 1 position. DE3*** = DE/rand/1 to Exponential Crossover 2 position.
DE4**** = DE/rand-to-best/1 to Exponential Crossover 1 position. DE5***** = DE/best/2 to Exponential Crossover
1 position. DE6****** = DE/best/2 to Exponential Crossover 2 position.

From Table 5, the results from the experiment on the UALBP-1 by using the basic method and
improved DE algorithm with the Sawyer and Arcus 1 problems show that all six DE algorithms
generated the optimal solution of 24 instances from a total of 24 instances. The DE or DE/Best/2
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Exponential Crossover 1 position was the best method to calculate the optimal solutions with the
minimum average times (0.17 seconds).

The comparison of the basic and improved DE algorithm using the optimal solution search time
with the Sawyer problem (30 tasks, 8 instances) is shown in Figure 5.

Figure 5. Comparison of Basic and Improved DE Algorithm Using Optimal Solution Search Time with
Sawyer Problem.

Figure 5 shows that the improved DE algorithm DE/Best/2 to Exponential Crossover 1 with
the Sawyer problem (30 tasks, 8 instances) was the best method for generating the optimal solutions
with the minimum solution search time when compared to the other DE methods, and the average
optimal solution search time was 0.09 seconds. The comparison between the basic and improved DE
algorithms in terms of optimal solution search time with the Arcus 1 problem (83 tasks, 16 instances) is
presented in Figure 6.

Figure 6. Comparison of Basic and improved DE Algorithm Using Optimal Solution Search Time with
Arcus 1 Problem.
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From Figure 6, it is seen that the Improved DE algorithm DE/Best/2 to Exponential Crossover 1
was the best method for generating optimal solutions with the minimum solution search time when
compared to the other DE methods. The average optimal solution search time was 0.22 seconds.

6. The Results from the Comparison of DE Algorithm and Other Metaheuristic Methods

From the experimental results, it can be seen that the DE algorithm DE/Best/2 to Exponential
Crossover 1 was the method for the optimal solution search when finding the number of workstations
and minimizing the solution search time. Therefore, the DE algorithm DE/Best/2 to Exponential
Crossover 1 was compared with other metaheuristic methods in order to determine the efficiency
of the optimal solution search. MMAS (no local search) was used for the comparison [36] with the
benchmark problems of the medium-sized UALBP-1 (21–45 tasks), which is presented in Table 3, and
of the large-scale UALBP-1 (75–297 tasks), which is presented in Table 6.

Table 6. The Results of Using the Proposed DE Compared with Using MMAS (No Local Search) in
UALBP-1 Benchmark Problems with the Medium-Sized UALBP-1 (21–45 tasks).

Problems Size
Cycle
Time

IP*
Solution

MMAS** DE1***

m* m %
cal. Time

(s)
E m %

cal. Time
(s)

E

Mitchell 21

14 8 8 0 1.50 93.75 8 0 0.05 93.75

15 8 8 0 1.63 87.75 8 0 0.03 87.75

21 5 5 0 5.43 100.00 5 0 0.01 100.00

Heskiaoff 28

114 9 10 11.11 30.00 79.33 9 11.11 0.04 89.82

128 8 9 12.50 30.00 81.28 8 12.50 0.08 88.89

138 8 8 0 1.71 92.75 8 0 0.09 92.75

205 5 5 0 1.68 99.99 5 0 0.07 99.99

216 5 5 0 2.36 94.81 5 0 0.13 94.81

256 4 4 0 5.52 100.00 4 0 0.16 100.00

324 4 4 0 2.35 79.01 4 0 0.09 79.01

342 3 3 0 2.45 99.81 3 0 0.12 99.81

Sawyer 30

25 14 14 0 1.22 92.57 14 0 0.07 92.57

27 13 13 0 0.96 92.31 13 0 0.12 92.31

30 11 11 0 7.48 98.18 11 0 0.08 98.18

33 10 10 0 20.15 98.18 10 0 0.18 98.18

36 10 10 0 2.08 90.00 10 0 0.05 90.00

41 8 8 0 14.67 98.78 8 0 0.04 98.78

54 6 6 0 5.56 100.00 6 0 0.09 100.00

75 5 5 0 2.97 86.84 5 0 0.06 86.84

Kilbridge
and

Wester
45

57 10 10 0 1.33 96.84 10 0 0.11 96.84

79 7 8 14.28 30.00 90.67 7 0 0.12 99.82

92 6 7 16.67 30.00 89.28 6 0 0.14 100.00

110 6 6 0 1.48 83.64 6 0 0.10 83.64

138 4 4 0 4.08 100.00 4 0 0.14 100.00

184 3 3 0 6.73 100.00 3 0 0.15 100.00

Total Optimal Solution (or Lower
Bound) Found from 25 Problem

Instances
21 2.18/inst. 9.19/inst. 95.51/inst. 25 0.94/inst.0.10/inst. 97.84/inst.

Notes: E = ∑ t
mc × 100; E = Efficiency of Balance. m* is the optimal solution (data set) MMAS** (no local search).

DE1*** = DE/best/2 to Exponential 1 position. m is the number of stations. % is the average relative deviation from
the best-known solution.

From Table 6, the experimental results of the ULAB benchmark problems with the medium-sized
UALBP-1 (21–45 tasks) by using the DE algorithm DE/Best/2 to Exponential Crossover 1 with
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MMAS (no local search) (operated on a computer with Pentium 4, 3.0 GHz, 512 MB RAM, and the
operating system Window XP) are presented. Four sets of the medium-sized UALBP (21–45 tasks) were
tested: Mitchell’s, Heskiaoff’s, Sawyer’s, and Kilbridge and Wester’s problems, which were retrieved
from http://www.assembly-line-balancing.de. Twenty-five instances resulted from calculating the
minimum number of workstations, as depicted in the table. It was found that the DE algorithm
DE/Best/2 to Exponential Crossover 1 can generate 25 optimal solutions from 25 instances. The
method can find optimal solutions better than MMAS (no local search), which can generate 21 optimal
solutions from 25 instances. The average solution search time of DE/Best/2 to Exponential Crossover
1 was 0.10 seconds, which is less than the solution search time of MMAS (no local search), which was
9.19 seconds.

Table 7 presents the experimental results of the ULAB benchmark problem with the large-scale
UALBP-1 (75–297 tasks) by using the DE algorithm DE/Best/2 to Exponential Crossover 1 with
MMAS (no local search) (operated on a computer with Pentium 4, 3.0 GHz, 512 MB RAM, and
the operating system Window XP). Three sets of the large-scale UALBP (75–297 tasks) were used:
Wee-mag’s, Arcus 1’s, and Scholl’s problems were used, and the problems were retrieved from
http://www.assembly-line-balancing.de. Sixty-two instances resulted from calculating the minimum
number of workstations, as presented in the Table. It was found that the DE algorithm DE/Best/2 to
Exponential Crossover 1 can generate 36 optimal solutions from 62 instances. The method can find
optimal solutions better than MMAS (no local search), which can generate 35 optimal solutions from 62
instances. The average solution search time of DE/Best/2 to Exponential Crossover 1 was 4.88 seconds,
which is less than the solution search time of MMAS (no local search), which was 5.70 seconds.

Table 7. The Results of Using the Proposed DE Compared to Using MMAS (No Local Search) [36] in
UALBP-1 Benchmark Problems with the Large-Scale UALBP-1 (75–297 tasks).

Problems Size
Cycle
Time

IP*

Solution
MMAS** DE1***

m* m %
cal. Time

(s)
E m %

cal.
Time(s)

E

Wee-mag 75

28 63 63 0 1.19 93.75 63 0 0.12 93.75

29 63 63 0 1.19 87.75 63 0 0.14 87.75

30 62 62 0 1.23 100.00 62 0 0.07 100.00

31 62 62 0 1.14 89.82 62 0 0.05 89.82

32 61 61 0 1.16 88.89 61 0 0.10 88.89

33 61 61 0 1.22 92.75 61 0 0.28 92.75

34 61 61 0 1.22 99.99 61 0 0.08 99.99

35 60 60 0 1.22 94.81 60 0 0.12 94.81

36 60 60 0 1.25 100.00 60 0 0.04 100.00

37 60 60 0 1.23 79.01 60 0 0.06 79.01

38 60 60 0 1.19 99.81 60 0 0.22 99.81

39 60 60 0 1.14 92.57 60 0 0.08 92.57

40 60 60 0 1.25 92.31 60 0 0.19 92.31

41 59 59 0 1.19 98.18 59 0 0.10 98.18

42 55 55 0 1.16 98.18 55 0 0.11 98.18

43 50 50 0 1.30 90.00 50 0 0.15 90.00

45 38 38 0 4.31 98.78 38 0 0.19 98.78

46 34 34 0 3.59 100.00 34 0 0.38 100.00

52 31 31 0 2.59 86.84 31 0 0.35 86.84

54 31 31 0 1.17 96.84 31 0 0.22 96.84
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Table 7. Cont.

Problems Size
Cycle
Time

IP*

Solution
MMAS** DE1***

m* m %
cal. Time

(s)
E m %

cal.
Time(s)

E

Wee-mag 75 56 30 30 0 1.55 99.82 30 0 0.45 99.82

Arcus 1 83

3786 21 21 0 1.03 100.00 21 0 0.30 100.00

3985 20 20 0 1.00 83.64 20 0 0.06 83.64

4206 19 19 0 1.08 89.82 19 0 0.07 89.82

4454 18 18 0 1.03 88.89 18 0 0.10 88.89

4732 17 17 0 1.02 92.75 17 0 0.28 92.75

5048 16 16 0 1.05 99.99 16 0 0.08 99.99

5408 15 15 0 1.08 94.81 15 0 0.12 94.81

5824 14 14 0 1.10 100.00 14 0 0.04 100.00

5853 13 14 7.69 1.05 79.01 13 0 0.06 89.63

6309 13 13 0 1.07 99.81 13 0 0.09 99.81

6842 12 12 0 1.03 92.57 12 0 0.19 92.57

6883 12 12 0 1.03 92.31 12 0 0.38 92.31

7571 11 11 0 1.04 98.18 11 0 0.35 98.18

8412 10 10 0 1.05 98.18 10 0 0.22 98.18

8898 9 9 0 1.03 90.00 9 0 0.45 90.00

10816 7 8 14.29 1.04 98.78 8 14.29 0.71 98.78

Scholl 297

1394 50 51 2.00 12.08 100.00 51 2.00 12.28 100.00

1452 48 49 2.08 16.10 86.84 49 2.08 11.08 86.84

1483 47 48 2.13 11.30 96.84 48 2.13 11.30 96.84

1515 46 47 2.17 11.55 99.82 47 2.17 11.55 99.82

1548 45 46 2.22 11.92 89.82 46 2.22 11.92 89.82

1584 44 45 2.27 11.63 88.89 45 2.27 11.63 88.89

1620 43 44 2.33 11.91 92.75 44 2.33 11.91 92.75

1659 42 43 2.38 11.97 99.99 43 2.38 11.97 99.99

1699 41 42 2.44 12.28 94.81 42 2.44 12.28 94.81

1742 40 41 2.50 11.08 100.00 41 2.50 11.08 100.00

1787 39 40 2.56 11.96 79.01 40 2.56 11.96 79.01

1834 38 39 2.63 11.45 99.81 39 2.63 11.55 99.81

1883 37 38 2.70 12.22 92.57 38 2.70 12.30 92.57

1935 36 37 2.77 12.30 92.31 37 2.77 12.10 92.31

>1991 >35 >36 >2.86 >12.10 >98.18 >36 >2.86 >11.55 >98.18

2049 34 35 2.94 11.55 98.18 35 2.94 12.03 98.18

2111 33 34 3.03 12.30 90.00 34 3.03 12.85 90.00

Scholl 297

2177 32 33 3.13 12.10 98.78 33 3.13 11.55 98.78

2247 31 32 3.23 11.55 100.00 32 3.23 11.92 100.00

2322 30 31 3.33 12.03 86.84 31 3.33 11.63 86.84

2402 29 30 3.45 12.85 96.84 30 3.45 11.91 96.84

2488 28 29 3.57 12.84 99.82 29 3.57 11.97 99.82

2580 27 28 3.70 12.81 92.57 28 3.7 12.28 92.57

2680 26 27 3.85 11.77 92.31 27 3.85 11.08 92.31

2787 25 26 4.00 12.63 98.18 26 4.00 11.99 98.18

Total Optimal Solution (or Lower Bound)
Found from 62 Problem Instances

35 1.49/inst. 5.70/inst. 94.61/inst. 36 0.94/inst. 4.88/inst. 95.51/inst.

Notes: E = ∑ t
mc × 100 E = Efficiency of Balance. m* is the optimal solution (data set). MMAS** (no local search).

DE1*** = DE/best/2 to Exponential 1 position. m is the number of stations. % is the average relative deviation from
the best-known solution.
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7. Conclusions and Suggestions

Recently, the U-shaped line has been utilized in many production lines in place of the traditional
straight-line configuration due to the use of the just-in-time principle. The shape of U-lines improves
visibility and allows for the construction of stations containing tasks on both sides of the line. This
arrangement, combined with cross-trained operators, provides greater flexibility in station construction
than is available with a comparable straight production line. The UALBP and the DE algorithm
of the metaheuristic for assigning tasks to stations are presented in this paper. The performance
of the metaheuristic was applied to solve a large number of benchmark problems obtained from
previously published research. The computational results indicate that one of the metaheuristic rules
(DE algorithm) can be satisfied by the proposed algorithm, and the computational requirements are
not high. This study has taken a step in the direction of finding good metaheuristic rules for solving
the UALBP-1. For further research, it would be interesting to use other metaheuristics, (e.g., bee
algorithm, particle swarm optimization, simulated annealing, etc.) and find more flexible solutions of
the larger UALBP.

The improved DE algorithm DE/Best/2 to Exponential Crossover 1 was the most effective method
with the minimum search time for finding optimal solutions, and the basic DE algorithm was the worst
because it spent the maximum amount of time searching for optimal solutions when compared to the
other DE methods. In the optimal solution search for the number of workstations, it was found that
every method received the same answer when compared to the other DE methods.

The comparison of the method in this paper, UALBP-1 by using the DE algorithm, with other
metaheuristic methods for the medium-sized UALBP (21–45 tasks) and large-scale UALBP (75–297
tasks) leads to the conclusion that the basic DE algorithm and the improved DE algorithm is better at
generating optimal solutions in the search for workstations and spends less time searching for optimal
solutions than MMAS (no local search).

Further studies should develop the DE algorithm methods with more difficult problems, such as
the mixed-/multi-model line, stochastic task time, and U-lines with other characteristics, as well as
develop other metaheuristic principles for solving the large-scale UALBP and develop the principles
of other metaheuristic methods or other types of methods for solving the UALBP-2, i.e., given the
number of stations (m), minimize the cycle time (Min. c, given m), and the UALBP-E, i.e., maximize
the line efficiency (E) for c and m being variable (Max. E, given c, m).

In addition, the proposed DE algorithms in this study [37] can be applied to solve more realistic
assembly line balancing problem in many industries; garment, automobile, electronical appliance; etc.
for productivity improvement by minimizing the workstations and labor costs.
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Abstract: This research project aims to study and develop the differential evolution (DE) for use
in solving the flexible job shop scheduling problem (FJSP). The development of algorithms were
evaluated to find the solution and the best answer, and this was subsequently compared to the
meta-heuristics from the literature review. For FJSP, by comparing the problem group with the
makespan and the mean relative errors (MREs), it was found that for small-sized Kacem problems,
value adjusting with “DE/rand/1” and exponential crossover at position 2. Moreover, value adjusting
with “DE/best/2” and exponential crossover at position 2 gave an MRE of 3.25. For medium-sized
Brandimarte problems, value adjusting with “DE/best/2” and exponential crossover at position 2 gave
a mean relative error of 7.11. For large-sized Dauzere-Peres and Paulli problems, value adjusting
with “DE/best/2” and exponential crossover at position 2 gave an MRE of 4.20. From the comparison
of the DE results with other methods, it was found that the MRE was lower than that found by Girish
and Jawahar with the particle swarm optimization (PSO) method (7.75), which the improved DE
was 7.11. For large-sized problems, it was found that the MRE was lower than that found by Warisa
(1ST-DE) method (5.08), for which the improved DE was 4.20. The results further showed that basic
DE and improved DE with jump search are effective methods compared to the other meta-heuristic
methods. Hence, they can be used to solve the FJSP.

Keywords: improved differential evolution algorithm; flexible job shop scheduling problem;
local search and jump search

1. Introduction

Nowadays, the goal of businesses and industry is to reduce costs, and this is affected by production
scheduling. Efficient production scheduling can reduce production expenses and time, resulting in
on-schedule delivery of goods to customers and a competitive advantage for the firm. The issues of
production scheduling concern the sequencing and machine assignment for each order. Owing to the
requirement of the modern manufacturing processes for greater flexibility, the job shop scheduling
problem (JSP) is an important type of production scheduling; furthermore, the flexible job shop
scheduling problem (FJSP) was developed from the classical JSP. Job operations are allocated to every
given machine in the production process. It is possible to assign any job to more than one machine
as per the machine’s capability and, consequently, constructing an environment that is similar to the
actual industry [1]. FJSP is an NP-Hard problem of the combinatorial optimization type, which has a
complex solution. Applying a mathematical method to determine the exact algorithms for an optimal
solution takes a moderate amount of time and wastes money; in particular, there is a big problem with
the great number of variables and the limitations of the method. Metaheuristics are developed to solve
FJSP to find a near optimal production schedule and to shorten the time required to solve the problem.
It includes Tabu Search, the genetic algorithm (GA), particle swarm optimization (PSO), and ant colony
optimization (ACO).
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Differential evolution was proposed by Storn and Price [2]. It involves the optimization algorithm
by using a population of each generation to search for the solution. Differential evolution calls the
member of any generation vector and component of the vector point. Furthermore, it calls a number
of points for each vector dimension. Each point can be compared to a gene from the GA method.
The method of differential evolution is widely popular owing to its simplicity, various types of solution,
and appropriate solutions. In some cases, DE results represent the global optimum.

Hence, in this research, we develop the differential evolution algorithm for solving in the flexible
job shop scheduling problem with the target of minimizing the makespan.

This paper is structured as follows: In Section 2, the literature review is presented; Section 3
presents the mathematical model of the FJSP; Section 4 describes the general structure of the DE;
Section 5 presents the results of the experiment on DE to solve the FJSP; Section 6 presents the
comparison of DE with other metaheuristics; and Section 7 presents the conclusions and suggestions.

2. Literature Review

2.1. Flexible Job Shop Scheduling Problems by Using Other Metaheuristic Methods

To summarize the relevant literature and research on the solution to the flexible job shop scheduling
problem by using metaheuristics, Xia and Wu [3] studied a hybrid of the PSO and SA methods for
multiple purposes. Kanate [4] researched the development of a metaheuristic called the makespan
tree for sequencing jobs on machines. Subsequently, two metaheuristics, the genetic algorithm and
particle swarm optimization, were developed. Both metaheuristics use the makespan tree as a
part of their method to solve the flexible job shop problems with the objective of minimizing the
makespan. The findings for the job scheduling problems showed that the makespan tree outperformed
the non-delay by 11.80%, improved the earliest finish time by 13.60%, and reduced the shortest
processing time by 17.41%. In comparison, PSO had better results than GA by 0.97%. Tang et al. [5]
researched the use of a hybrid algorithm for the flexible job-shop scheduling problem by combining
chaos particle swarm optimization with the genetic algorithm in order to minimize the makespan.
Wannaporn and Arit [6] applied the modified genetic algorithm to the flexible job-shop scheduling
problem. This included the following processes: (1) Selecting chromosomes by the fuzzy roulette wheel
selection method; (2) operating the crossover by the cluster-crossover operator to calculate the similarity
between chromosomes for the crossover; (3) processing mutations using the mutation-local search
operator to determine the diversity of the population, resulting in an optimal solution. The objective of
this research was to minimize the makespan. Thanyaporn et al. [7] developed and improved the mixed
integer programming (MIP) for an advanced planning and scheduling (APS) problem as a technique
for production planning and scheduling. Its various considered constraints were the machine capacity,
operation sequence, multi-machine due dates, multi-order, and product structure, comprising multiple
steps and items. Each item could be processed by any given set of machines, and there was an extension
to involve the considered constraints as a preventive maintenance time window. The objective was
to minimize the total costs from idle production time, earliness, and tardiness, and furthermore, to
optimize production scheduling. Examples of solutions were presented in four models which were
(1) APS1, APS without alternative machines, (2) APS1PM, APS without alternative machines and PM,
being similar to model 1 but with preventive maintenance included, (3) APS2, APS with alternative
machines, and (4) APS2PM, APS with alternative machines and PM, being similar to model 3 but with
preventive maintenance included. Hamid et al. [8] studied the machine scheduling in production—a
content analysis. Which found that there were 132 surveyed papers regarding machine scheduling
problems in production. The results were applied as an approach for proposing future research. It was
found that, generally, the objective was to minimize the makespan. For the problem-solving approach,
simple heuristics, as the shortest processing time first (SPT), and meta-heuristics, as the genetic
algorithm, were employed. Li and Gao [9] studied an effective hybrid genetic algorithm and Tabu
Search for flexible job shop scheduling problem. Luan et al. [10] studied improved whale algorithm
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for solving the flexible job shop scheduling problem and Li et al. [11] studied the hybrid artificial bee
colony algorithm with a rescheduling strategy for solving the flexible job shop scheduling problems.

2.2. Flexible Job Shop Scheduling Problems by Using Differential Evolution Algorithm

Based on a study of the literature and research regarding the solutions to flexible job shop scheduling
problems by using the differential evolution algorithm, Wisittipanich [12] proposed the application of
adapted differential evolution algorithms to minimize the makespan in the FJSP. The modification of
algorithms aimed to improve the efficiency of original DE by balancing its exploration and exploitation
abilities to avoid the common problem of premature convergence. The first adapted DE was called the
DE with subgroup strategy. In this algorithm, the population is divided into groups, and the population
in each group employs different strategies to search for the new solution simultaneously in order to
extract the strength of any strategy and compensate for the weakness of each strategy. This led to an
increase in the overall performance efficiency. The second adapted DE was the DE with the switching
strategy. This algorithm allowed the entire population to change searching strategies when there was
no improvement to the solution. Thus, the chance of being trapped at a local optimum was decreased.
The efficiency of two modified DEs was examined in solving an experimental problem and compared
with the result of the original DE. The solutions provided by both modified DE algorithms were
comparable or of a higher quality than the solutions from the original DE. Yuan and Xu [13] studied
flexible job shop scheduling using hybrid differential evolution algorithms. Hybridization comprised
the development of a mechanism to use the discrete differential evolution algorithm to solve the flexible
job shop scheduling problem and second, enhancement of the local search ability in the DE framework.
The objective was to find minimize the makespan. Bhaskara et al. [14] on the use of the differential
evolution algorithm for the flexible job shop scheduling problem, applied the local search algorithm
with the objective of minimizing the makespan.

2.3. Differential Evolution Algorithm for Solving Other Problems

The differential evolution algorithm is perceived as a modern method. It has become a favorable
method to employ in various areas including operational research problems, such as application in the
blocking flow shop scheduling problems to reduce production time [15]. Furthermore, in was applied
in job shop production. Zhang et al. [16] adapted this method to deal with the job shop problem in
order to minimize the total tardiness. For applications in the supply chain management problem, in
particular, for the vehicle routing problem in the supply chain, the relevant studies have been carried
out with different objectives and constraints under various conditions. For example, Cao and Lai [17]
adapted the method to the open vehicle routing problem with fuzzy demands to reduce the total
traveled distance. Lai and Cao [18] applied the method to solve the VRP with pickups and deliveries
and time windows aimed at minimizing the total traveled distance. Xu and Wen [19] employed the
DE in the unidirectional logistics distribution vehicle routing problem with no time windows and
achieved the shortest total distance. By adapting DE with the agricultural management problem,
Cruz et al. [20] applied the optimal control problem to determine the optimal control of nitrogen gas
in lettuce. Moreover, DE was employed in a proposal on crop planning using the multi-objective
differential evolution algorithm. This study had the objective of minimizing irrigation water usage
and maximizing the total yield and net profit planting under various conditions [21]. DE was further
applied to other problems, for example, in the electric power system, it was used to solve the optimal
power flow, resulting in voltage stability enhancement and cost minimization [22]. In the wireless
sensor network system, DE was proposed to prolong the lifetime of the system by preventing it from
overloading [23]. An adaptation of DE, moreover, was used in the chemical industry in order to
determine the optimal criteria for a chemical process [24].

3. Flexible Job Shop Scheduling Problem Pattern and Mathematical Model

We only focused on the FJSP in this study, and the details of the problem are as follows:
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3.1. Flexible Job Shop Scheduling Problem (FJSP)

This production system is similar to the job shop scheduling problem but with more flexibility.
As an explanation, any job includes a specific operation that can be processed by 1 or more machines
owing to the various capabilities of the individual machine. As shown in Table 1, there are 3 jobs, each
with a different set of operations. Every operation is allowed to select any machine from a given set,
for example, in job 2, operation 1 can be performed on 2 machines, with M2 processing 10 time units
and M3 processing 7 time units, while M1 shows “-”, referring to an inability to operate.

Table 1. Example of flexible job shop scheduling problem pattern.

Job Operation
Machines

M1 M2 M3

J1

O1,1 5 - 3

O1,2 - 5 10

O1,3 5 9 -

J2

O2,1 - 10 7

O2,2 20 6 -

O3,3 2 - 11

J3
O3,1 2 5 4

O3,3 2 5 10

Figure 1 shows the general pattern of flexible job shop scheduling problem systems, which consist
of a system with C work stations. In each work station, there will be a number of identical parallel
machines. Each work station has its own specific route and can choose to perform the tasks assigned
to one of the parallel machines and can be at the same work station. Considering the complexity of
the model, the model of the flexible job shop scheduling problem systems that allows for recursive
operation is the most redundant model.

Figure 1. Flexible job shop scheduling problem pattern.

To measure the production scheduling efficiency, there are various effective evaluations based
on the production characteristics such as determining the minimization of the makespan (Cmax), the
number of tardy jobs, and the maximum lateness. This paper employed the minimized makespan
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(Cmax) for evaluation in accordance with Equation (1). While C1, C2, . . . , Cp are possible solutions
to produce scheduling, the solution resulting in the longest processing time was selected. Moreover,
Z refers to the objective of production scheduling—to achieve the lowest value—as described in
Equation (1). Figure 2 shows a sample of solutions from the total processing time of entire jobs:

Minimize Z = f (C1, C2, . . . , Cp). (1)

Figure 2. Gantt chart of solutions.

The relative error is the difference between the measured and actual values, and it is generally
expressed as a percentage (%). When the measured value is proximate to the actual value, this indicates
high correctness or accuracy. The relative error is calculated using Equation (2), as follows;

%Relative Error : RE =
Cmin − BKS

BKS
× 100 (2)

where Cmin is the optimal solution to the algorithm, and BKS is the best known solution.

3.2. Mathematical Model of the Flexible Job Shop Scheduling Problem

The mathematical model of the FJSP, proposed by Kanate [4], includes many relevant binary
variables, which are as follows:

3.2.1. Indices

i Machine
j, k Job
h, l Operation

3.2.2. Parameter

M Mathematically large real number
Pi, j,h Processing time for operation h of job j on machine i
Oi, j,h Operation h of job j on machine i
ai, j,h Constant to define if job j at operation h is able to be processed by i—equal to 1 for the

ability to process and 0 for the inability to process

3.2.3. Decision Variables

Cmax Makespan
tj,h Start time of the processing operation h of job j on any machine
f j,h Finish time of the processing operation h of job j on any machine
yi, j,h Binary variable equal to 1 while processing operation h of job j on machine i
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Xi, j,h,k,l Binary decision variable equal to 1 while processing operation h of job j on machine(
Oi, j,h

)
, which comes before operation l of job k on machine i

(
Oi,k,l
)
.

The mathematical model of the flexible job shop scheduling problem can be written as:

Minimize Cmax = max {Ci}, i = 1, 2, 3, . . . , n
st.

(3)

tj,h + yi, j,h × Pi, j,h ≤ fi,h; ∀(i, j, h) (4)

f j,h ≤ tj,h+1; ∀( j, h) (5)

f j,h ≤ Cmax; ∀( j, h) (6)

yi, j,h ≤ ai, j,h; ∀(i, j, h) (7)

tj,h + Pi, j,h ≤ tk.l +
(
1− xi, j,h,k,l

)
M; ∀(i, j, h, k, l) (8)∑

i

yi, j,h = 1; ∀(h, j) (9)

∑
j

∑
h

xi, j,h,k,l = yi,k,l; ∀(i, k, l) (10)

∑
k

∑
j

xi, j,h,l,k = yi, j,h; ∀(i, j, h) (11)

xi, j,h, j,h = 0; ∀(i, j, h) (12)

tj,h ≥ 0; ∀( j, h) (13)

f j,h ≥ 0; ∀( j, h) (14)

yi, j,h ∈ {0, 1} (15)

xi, j,h,k,l ∈ {0, 1} (16)

Equation (3) is a target equation to produce the minimum makespan, in order to reduce the
production time, contributing to lower costs and product delivery time. Next, Equations (4) and (5)
restrict the order based on the priority order in which each job is processed (precedence constraint).
Equation (6) imposes a constraint on the makespan, whereby all job operations must be finished in
a time less than or equal to the makespan. For Equation (7), only machines available for processing
can be selected. Equation (8) is used to ensure that each machine can process, at most, one job at a
time. Constrained by Equation (9), any job operation can be assigned to process on one machine only.
Equations (10) and (11) create the sequence of job priority on machine i—Equation (10) selects the
predecessor job and Equation (11) selects the next job. Equation (12) is the constraint that ensures
that each job operation cannot be processed before its release time on machine i. Subsequently,
Equations (13) and (14) restrict the start and finish times of every job to positive real numbers.
Furthermore, Equations (15) and (16) specify yi, j,h and xi, j,h,k,l as binary variables.

4. General Differential Evolution Algorithm

The general differential evolution algorithm has general procedures [25], as shown in Figure 3.
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Figure 3. General differential evolution algorithm procedure.

The procedures of the differential evolution algorithm consist of (1) the initial population, and (2)
mutation to generate mutant vector by differentiating a dimension of the vector. The calculation for
mutating a vector’s dimensions is shown in Equation (17):

Vm,n,G = Xr1,n,G + F(Xr2,n,G −Xr3,n,G) (17)

where m is the number of vectors of each generation, n is vector dimension, G is the iteration round,
such as round 1, 2, or 3, and r1, r2, and r3 are 3 random vectors. F is the scaling factor, where Vm,n,G is
a mutant vector for vector m at vector dimension n in iteration round G. Moreover, Xr1,n,G is firstly
the random target vector at dimension n in iteration round G. Xr2,n,G and Xr3,n,G are, respectively, the
second and third random target vectors. Thus, the mutant vector of vector m at dimension n in round
G equals the value of target vector r1 at dimension n round G plus scaling factor F times the difference
between target vectors r2 and r3. (3) Recombination of the trial vector is generated by exchanging
vector dimensions. The equation employed for generating a trial vector is Equation (18):

Um,n,G =

{
Vm,n,G i f randmn ≤ CR or Dm = Dmrand

Xm,n,G, else.
(18)

where Um,n,G is the trial vector of vector m at dimension n in round G, randmn is a random real number
between [0, 1] of vector m at dimension n, CR refers to the crossover rate, Dm is the dimension of vector
m. Furthermore, Dmrand denotes a random integer number of vector m in the range [1, N], where N is
the vector size. Consequently, the value of trial vector m in dimension n in iteration round G equals the
mutant vector when there is a random number of vector m at dimension n that is less than CR; in other
words, Dmrand equals Dm. (4) The formula for selecting a target vector for the next round described in
Equation (19). To solve the equation for the minimum target value (minimization), the less than or
equal to sign is used:

Xm,n,G+1 =

{
Um,n,G i f f (Um,n,G) ≤ f (Xm,n,G)

Xm,n,G, else.
(19)

where, Xm,n,G+1 is the target vector m at dimension n in round G + 1, where the vector with a better
fitness function value is selected in comparison with the value of the target vector and trial vector in
round G.
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4.1. Procedure of FJSP by Using Differential Evolution Algorithm

The procedure of FJSP uses the general differential evolution algorithm. The values used in the
calculation must be set. The variables are as follows: Iterate = round, NP = number in population,
F = scaling factor, and CR = crossover rate. In this problem’s calculation, these suitable variables were
set from the experiment as Iterate = 1, NP = 5, F = 0.8, and CR = 0.8. The general differential evolution
algorithm “DE/rand/1” and binomial crossover were used in the calculation.

4.1.1. Calculation Using the General Differential Evolution Algorithm DE/rand/1 and Binomial Crossover

The flexible job shop scheduling problem in Table 2 provides the details of the processing time on
each machine. By explanation,

Row 1 indicates the numbers of jobs and machines, including 4 jobs and 5 machines.
Row 2 shows the data on job 1, comprising 3 operations. In operation 1, there are 5 available

machines, which are machine 1 with a processing time of 2, machine 2 with a processing time of 5,
machine 3 with a processing time of 4, machine 4 with a processing time of 1, and machine 5 with a
processing time of 2. Operation 2 includes machine 1 with a processing time of 5, machine 2 with a
processing time of 4, machine 3 with a processing time of 5, machine 4 with a processing time of 7, and
machine 5 with a processing time of 5. Furthermore, operation 3 has machine 1 with a processing time
of 4, machine 2 with a processing time of 5, machine 3 with a processing time of 5, machine 4 with a
processing time of 4, and machine 5 with a processing time of 5.

Rows 3–5 show the data on jobs 2–4. The processing time of each operation can be likewise
described, as shown in row 2, and put into categories, as shown in Table 3.

Table 2. Sample problems of Kacem et al. [26,27].

45.
35. 1 2 2 5 3 4 4 1 5 2 5 1 5 2 4 3 5 4 7 5 5 5 1 4 2 5 3 5 4 4 5 5
35. 1 2 2 5 3 4 4 7 5 8 5 1 5 2 6 3 9 4 8 5 5 5 1 4 2 5 3 4 4 54 5 5
45. 1 9 2 8 3 6 4 7 5 9 5 1 6 2 1 3 2 4 5 5 4 5 1 2 2 5 3 4 4 2 5 4 5 1 4 2 5 3 2 4 1 5 5
25. 1 1 2 5 3 2 4 4 5 12 5 1 5 2 1 3 2 4 1 5 2

Table 3. Sample problem with four jobs and five machines.

Jobs Operations
Machines

M1 M2 M3 M4 M5

J1
O1,1 2 5 4 1 2
O1,2 5 4 5 7 5
O1,3 4 5 5 4 5

J2
O2,1 2 5 4 7 8
O2,2 5 6 9 8 5
O2,3 4 5 4 54 5

J3

O3,1 9 8 6 7 9
O3,2 6 1 2 5 4
O3,3 2 5 4 2 4
O3,4 4 5 2 1 5

J4 O4,1 1 5 2 4 12
O4,2 5 1 2 1 2

To improve the solution to round 1, the following procedure is completed:

Step 1: Generate the initial population
The initial population is randomized from a number between [0, 1], where the dimension or

position (D) equals the number of operations (12), and the number of populations (P; 5) results in the
target vector of a sample, as shown in Table 4.
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Table 4. Target vectors of sample problems.

NP
Dimensions, D

1 2 3 4 5 6 7 8 9 10 11 12

1 0.55 0.32 0.70 0.12 0.64 0.89 0.96 0.81 0.38 0.55 0.27 0.71
2 0.17 0.80 0.94 0.93 0.44 0.36 0.77 0.35 0.13 0.42 0.17 0.11
3 0.42 0.35 0.15 0.61 0.10 0.34 0.93 0.51 0.08 0.59 0.63 0.50
4 0.65 0.72 0.30 0.58 0.02 0.74 0.59 0.17 0.14 0.07 0.73 0.31
5 0.72 0.32 0.04 0.20 0.89 0.28 0.42 0.67 0.15 0.49 0.09 0.81

Step 2: Differentiation of a dimension or mutation
Three vectors, r1, r2, and r3, are randomly picked from the total population equal to 5 in order

to generate a mutant vector of the entire 5 target vectors. As indicated by the sample problems, the
randomized vectors (r1, r2, r3) from target vector 1 consist of vectors 2, 5, and 3. The other concerned
target vectors are demonstrated in Table 5.

Table 5. Randomized vectors r1, r2, and r3.

Random Vector r1 r2 r3

1 2 5 3
2 3 3 5
3 4 2 2
4 5 1 1
5 1 4 4

Calculation of the mutant vector (Vm,n,G) can be performed by substituting the randomized vector
into Equation (20). Thus, the mutant vectors of sample problems are presented in Table 6.

Vm,n,G = Xr1,n,G + F(Xr2,n,G −Xr3,n,G) (20)

Table 6. Mutant vectors of sample problems in round 1.

Mutation 1 2 3 4 5 6 7 8 9 10 11 12

1 0.77 0.74 0.42 0.11 2.02 0.24 −0.25 0.67 0.27 0.22 −0.91 0.73
2 0.80 0.13 0.74 0.24 1.78 0.50 −0.47 0.04 1.81 0.38 −0.43 0.37
3 0.16 0.70 0.56 0.61 1.45 0.43 −0.74 0.24 1.30 −0.08 0.02 0.40
4 0.81 0.43 0.24 −0.36 0.03 0.09 0.97 0.69 −0.70 1.04 1.19 1.04
5 0.87 1.30 0.65 0.69 1.05 1.39 0.23 −0.86 1.31 0.60 0.31 0.91

Step 3: Crossover
The number in the range [0, 1] at the target vector position is randomly picked and is comparative

to the crossover rate (CR) predefined for the crossover. Table 7 shows the random numbers for
the crossover.

Table 7. Random numbers for the crossover.

Vector 1 2 3 4 5 6 7 8 9 10 11 12

1 0.83 0.05 0.75 0.80 0.95 0.39 0.29 0.60 0.30 0.44 0.59 0.65
2 0.68 0.36 0.48 0.47 0.70 0.96 0.04 0.76 0.64 0.42 0.16 0.44
3 0.32 0.40 0.97 0.38 0.63 0.69 0.71 0.92 0.65 0.83 0.92 0.49
4 0.56 0.18 0.06 0.38 0.47 0.23 0.11 0.85 0.80 0.30 0.65 0.02
5 0.81 0.35 0.70 0.50 0.89 0.89 0.84 0.29 0.01 0.21 0.41 0.83
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Subsequently, the trial vector is calculated with Equation (21). In comparison, if a random number
is less than or equal to CR = 0.8, the mutant vector in the same position will be selected as the obtained
trial vector of that position. For differential cases, the target vector in the same position is the answer
to the trial vector of the concerned position. Table 8 shows the obtained trial vectors.

Uji,G+1 =

{
Vji,G+1 i f (randb( j) ≤ CR) or j = rnbr (i)
Xji,G i f (randb( j) > CR) or j � rnbr (i)

(21)

Table 8. Trial vectors from round 1.

Trial Vector 1 2 3 4 5 6 7 8 9 10 11 12

1 0.55 0.74 0.42 0.12 0.64 0.24 −0.25 0.67 0.27 0.22 −0.91 0.73
2 0.80 0.13 0.74 0.24 1.78 0.50 −0.47 0.04 1.81 0.38 −0.43 0.37
3 0.16 0.70 0.56 0.61 1.45 0.43 −0.74 0.24 1.30 −0.08 0.02 0.40
4 0.65 0.72 0.30 0.58 0.02 0.74 0.59 0.17 0.14 0.07 0.73 0.31
5 0.72 0.32 0.04 0.20 0.89 0.28 0.42 0.67 0.15 0.49 0.09 0.81

Step 4: Fitness Evaluation
To decode the value of each dimension, the values are sorted based on the rank order value (ROV)

in ascending order. Furthermore, the values are positioned in accordance with the vector order, as
described in Table 9.

Table 9. Results of decoding.

Vector 11 7 4 10 6 9 3 1 5 8 12 2

1 −0.91 −0.25 0.12 0.22 0.24 0.27 0.42 0.55 0.64 0.67 0.73 0.74
Oi,j 1, 1 1, 2 1, 3 2, 1 2, 2 2, 3 3, 1 3, 2 3, 3 3, 4 4, 1 4, 2

As a consequence of the sequencing machine operation, the machine with the earliest completion
time is selected. If the machine operation consumes time equally, selection becomes random. This is
described in Table 10 and illustrated by the Gantt chart in Figure 4.

Table 10. Results of the sequencing machine operation.

Vector 1 2 3 4 5 6 7 8 9 10 11 12

1 0.55 0.74 0.42 0.12 0.64 0.24 −0.25 0.67 0.27 0.22 −0.91 0.73
Oi,j 3,2 4,2 3,1 1,3 3,3 2,2 1,2 3,4 2,3 2,1 1,1 4,1
M 2 2 4 1 1 5 2 4 3 1 4 1
PT 1 1 6 4 2 5 4 1 4 2 1 1

Figure 4. Gantt chart of sample problems.

Figure 4 presents a Gantt chart for solving the problem of a sample with 4 jobs, 5 machines,
12 operations, and a makespan of 17. The machines on the critical part are machines 1, 5, and 2 which
consequentially interfere with solutions using the local search method.
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Step 5: Selection
By comparing the fitness factor values of target vectors (Table 11) with the fitness factor values of

the trial vectors (Table 12), the better vectors are selected as the target values for the next round. This is
shown in Table 13.

Table 11. Target vectors of round 1.

Target Vector 1 2 3 4 5 6 7 8 9 10 11 12 Target

1 0.55 0.32 0.70 0.12 0.64 0.89 0.96 0.81 0.38 0.55 0.27 0.71 21
2 0.17 0.80 0.94 0.93 0.44 0.36 0.77 0.35 0.13 0.42 0.17 0.11 20
3 0.42 0.35 0.15 0.61 0.10 0.34 0.93 0.51 0.08 0.59 0.63 0.50 22
4 0.65 0.72 0.30 0.58 0.02 0.74 0.59 0.17 0.14 0.07 0.73 0.31 24
5 0.72 0.32 0.04 0.20 0.89 0.28 0.42 0.67 0.15 0.49 0.09 0.81 19

Table 12. Trial vectors of round 1.

Trial Vector 1 2 3 4 5 6 7 8 9 10 11 12 Target

1 0.55 0.74 0.42 0.12 0.64 0.24 −0.25 0.67 0.27 0.22 −0.91 0.73 18
2 0.80 0.13 0.74 0.24 1.78 0.50 −0.47 0.04 1.81 0.38 −0.43 0.37 25
3 0.16 0.70 0.56 0.61 1.45 0.43 −0.74 0.24 1.30 −0.08 0.02 0.40 16
4 0.65 0.72 0.30 0.58 0.02 0.74 0.59 0.17 0.14 0.07 0.73 0.31 17
5 0.72 0.32 0.04 0.20 0.89 0.28 0.42 0.67 0.15 0.49 0.09 0.81 26

Table 13. Target vectors for the next round.

Vector 1 2 3 4 5 6 7 8 9 10 11 12 Target

1 0.55 0.74 0.42 0.12 0.64 0.24 −0.25 0.67 0.27 0.22 −0.91 0.73 18
2 0.17 0.80 0.94 0.93 0.44 0.36 0.77 0.35 0.13 0.42 0.17 0.11 20
3 0.16 0.70 0.56 0.61 1.45 0.43 −0.74 0.24 1.30 −0.08 0.02 0.40 16
4 0.65 0.72 0.30 0.58 0.02 0.74 0.59 0.17 0.14 0.07 0.73 0.31 17
5 0.72 0.32 0.04 0.20 0.89 0.28 0.42 0.67 0.15 0.49 0.09 0.81 19

4.1.2. Procedure of FJSP by Using the Improved Differential Evolution Algorithm

(1) The improved DE was developed by applying four mutation equations [28],
DE/rand-to-best/1/bin, DE/rand/2/bin, DE/rand/1/exp 2 position, and DE/best/2/exp 2 position, as
seen in Equations (22), (23), (24), and (25), as follows:

Vm,n,G = Xr1,n,G + F1(Xr2,n,G −Xr3,n,G) + F2
(
Xbest,n,G −Xr1,n,G

)
(22)

Vm,n,G = Xr1,n,G + F(Xr2,n,G −Xr3,n,G + Xr4,n,G −Xr5,n,G) (23)

Vm,n,G = Xr1,n,G + F(Xr2,n,G −Xr3,n,G + Xr4,n,G −Xr5,n,G) (24)

Vm,n,G = Xbest,n,G + F(Xr2,n,G −Xr3,n,G + Xr4,n,G −Xr5,n,G) (25)

Let r1, r2, r3, r4, and r5 denote the vectors which are randomly selected from a set of target vectors
j, which represents the best vector found so far in the algorithm. F is a predefined integer parameter
(scaling factor). In the proposed heuristics, F is set to 2; i is the vector number which ranges from 1 to
NP, and j is the position of a vector which runs from 1 to D.

(2) The improved DE was developed by applying one crossover or recombination equation at
exponential crossover position 2, as seen in Equation (26) [29], as follows:

Ui, j,G =

{
Vi, j,G when j ≤ randi,1 and j ≥ randi,2

Xi, j,G when randi,1 < j < randi,2
(26)

67



Math. Comput. Appl. 2019, 24, 80

As the predefined parameters in the proposed heuristics, let randbi be a random number between
0 and 1 and let CR be the recombination probability. randbi, randbi,1, and randbi,2 are random integer
numbers which represent the position of a vector; these random numbers range from 1 to D.

On the basis of the explanations in steps 1–4, the improved DE is shown in Algorithm 1.

Algorithm 1. Pseudo-code of the improved DE for the FJSP

Setup the initial DE parameter
Do while from first iteration to final iteration

Do while from first DE to final DE
Setup the initial parameters: job, operation, machine, processing time,
operation sequence, machine assignment.
Do while from first task to final task

Find the start/following task where the fitness is the makespan of the data instances
Input the scaling factor, crossover rate, NP, job assignment, machine assignment, and
local search to data list
Produce the four mutation equations:

Vm,n,G = Xr1,n,G + F1
(
Xr2,n,G −Xr3,n,G

)
+ F2

(
Xbest,n,G −Xr1,n,G

)

Vm,n,G = Xr1,n,G + F
(
Xr2,n,G −Xr3,n,G + Xr4,n,G −Xr5,n,G

)
Vm,n,G = Xr1,n,G + F

(
Xr2,n,G −Xr3,n,G + Xr4,n,G −Xr5,n,G

)
Vm,n,G = Xbest,n,G + F

(
Xr2,n,G −Xr3,n,G + Xr4,n,G −Xr5,n,G

)
Developed by applying the two crossover or recombination equations:

Ui,j,G =

{
Vi,j,G when j ≤ randi,1 and j ≥ randi,2

Xi,j,G when randi,1 < j < randi,2
.

Produce the new target vector (selection/process):

Xm,n,G+1 =

⎧⎪⎪⎨⎪⎪⎩
Um,n,G if f

(
Um,n,G

)
≤ f
(
Xm,n,G

)
Xm,n,G, else

.

End do

End do

Select the best solution from all DEs in the iteration
End do

Show/select the best solution from all DEs in all iterations

4.1.3. Procedure of FJSP by the Using Local Search with the Jump Search

The flexible job shop scheduling problem points to the optimal target of the minimum makespan.
Considering the pathway of any latest complete operation, it denotes the critical pathway for flexible
job shop scheduling. As shown in Figures 5 and 6, the critical pathway is S→ O2,1 → O4,1 → O4,2 →
O4,3 → O2,2 → O2,3 → O2,4 → T.
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Figure 5. Disjunction graph of flexible job shop scheduling.

Figure 6. Critical pathway for flexible job shop scheduling.

Figure 6 reveal the critical pathway for flexible job shop scheduling. This pathway is able to
determine solutions using the local search and jump search methods through an algorithm that
identifies target values from the sorted critical pathway by thoroughly checking any operation on the
critical pathway. In Figure 6, operation O2,1 is checked for possible intervention by a predecessor under
these circumstances and priorities with a lower processing time and compatibility with an operating
machine. Accordingly, operations are checked in the following consecutive order O4,1 → O4,2 → O4,3

→ O2,2 → O2,3 → O2,4. Then, the fitness value is calculated in each round until completion of a set
number of iterations.

5. Analysis of the Results from the Experiment on DE for Solving FJSP

To solve the flexible job shop scheduling problem, the Matlab program running on a personal
computer (Core i5, 2.5 GHz, 8.00 GB RAM, Windows 7 operating system) was applied. It was developed
by metaheuristic algorithms for the solutions focusing on the makespan.

Calculation factors were derived from the experiment based on optimization and relevant
research. The findings were as follows: NP = 150, Iterate = 200, F = 2, CR = 0.8,
number of iterated local search = 500 rounds. Moreover, the operation sequence that gave priority to
operating the most remaining operations as well as machine assignment by choosing a machine with
the minimum workload (MWL) were determined.

5.1. Results of Solving the Flexible Job Shop Scheduling Problem with Sample Problems from Kacem et al.

The results of solving the flexible job shop scheduling problem with sample problems from
Kacem et al. [26,27] are shown in Table 14, and a Gantt chart of solutions to problem K01 is shown
in Figure 7.
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Table 14. Summary of solving the flexible job shop scheduling problem with sample problems from
Kacem et al. [26,27].

Problem BKS
Mutation Strategy

DE * DE ** DE *** DE ****

K01 11 12
(9.09)

12
(9.09)

11
(0.00)

11
(0.00)

K02 14 15
(7.14)

15
(7.14)

15
(7.14)

15
(7.14)

K03 11 11
(0.00)

11
(0.00)

11
(0.00)

11
(0.00)

K04 7 7
(0.00)

7
(0.00)

7
(0.00)

7
(0.00)

K05 11 12
(9.09)

12
(9.09)

12
(9.09)

12
(9.09)

MRE 5.06 5.06 3.25 3.25

* DE/rand to best/1/Bin; ** DE/rand/2/Bin; *** DE/rand/1/Exp Crossover Position 2/Local Search with Jump Search;
**** DE/best/2/Exp Crossover Position 2/Local Search with Jump Search; Mean relative error (MRE); Best known
solution (BKS).

In Table 14, the result of solving the flexible job shop scheduling problem with small size
problems [26,27] is revealed. The solutions optimizing differential evolution algorithms that provide
the most optimal solutions are a combination of DE/rand/1 and exponential position 2 as well as a
combination of DE/best/2 and exponential position 2, resulting in a makespan of 11. These solutions
are illustrated in the Gantt chart in Figure 7 for problem K01. A further finding is that the lowest MRE
is 3.25.

Figure 7. Gantt chart of solutions to flexible job shop scheduling problem K01 presented by
Kacem et al. [26,27].

5.2. Results of Solving the Flexible Job Shop Scheduling Problem with Sample Problems of Brandimarte

The results of solving the flexible job shop scheduling problem with the sample problems of
Brandimarte [30] can be found in Table 15 and the Gantt chart of solutions for problem Mk1 (Figure 8).
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Table 15. Summary of solving the flexible job shop scheduling problem with sample problems
Brandimarte [30].

Problem BKS
Mutation Strategy

DE * DE ** DE *** DE ****

Mk1 40 43
(7.50)

43
(7.50)

40
(0.00)

40
(0.00)

Mk2 27 28
(7.69)

28
(7.69)

28
(7.69)

28
(7.69)

Mk3 204 204
(0.00)

204
(0.00)

204
(0.00)

204
(0.00)

Mk4 60 71
(18.33)

71
(18.33)

71
(18.33)

71
(18.33)

Mk5 174 178
(2.30)

178
(2.30)

179
(2.87)

179
(2.87)

Mk6 59 73
(23.73)

73
(23.73)

73
(23.73)

73
(23.73)

Mk7 143 149
(4.20)

149
(4.20)

148
(3.50)

146
(2.10)

Mk8 523 528
(0.96)

528
(0.96)

528
(0.96)

528
(0.96)

Mk9 307 324
(5.54)

321
(4.56)

323
(5.21)

321
(4.56)

Mk10 212 234
(10.38)

233
(9.90)

236
(11.32)

235
(10.85)

MRE 8.06 7.92 7.36 7.11

* DE/rand to best/1/Bin; ** DE/rand/2/Bin; *** DE/rand/1/Exp Crossover Position 2/Local Search with Jump Search;
**** DE/best/2/Exp Crossover Position 2/Local Search with Jump Search; Mean relative error (MRE).

Table 15 shows the results of solving the flexible job shop scheduling problem for medium size
problems using the sample problems of Brandimarte [30]. The solution optimizing the differential
evolution algorithm that provides the most optimal solution is DE/best/2 combined with exponential
position 2 and DE/rand/1 combined with exponential position 2, which results in a makespan of 40 and
204. This value is equal to the BKS value of the data set from sample Mk1 and Mk3. Furthermore,
the lowest MRE value obtained is 7.11, as shown in the Gantt chart in Figure 8.

 
Figure 8. Gantt chart of solutions for flexible job shop scheduling problem Mk1 presented by
Brandimarte [30].

5.3. Results of Solving the Flexible Job Shop Scheduling Problem with Sample Problems of Dauzere-Peres and Paulli

The results of solving the flexible job shop scheduling problem with the sample problems of
Dauzere-Peres and Paulli [31] can be found in Table 16.
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Table 16. Summary of solving the flexible job shop scheduling problem with sample problems
Dauzere-Peres and Paulli.

Problem BKS
Mutation Strategy

DE * DE ** DE *** DE ****

01a 2530 2895
(14.42)

2750
(8.70)

2615
(3.36)

2645
(4.55)

04a 2555 2859
(11.90)

2770
(8.41)

2650
(3.72)

2610
(2.15)

07a 2396 2759
(15.15)

2650
(10.60)

2650
(10.60)

2510
(4.76)

09a 2074 2281
(9.98)

2269
(9.40)

2210
(6.56)

2150
(3.66)

11a 2078 2378
(14.44)

2366
(13.86)

2221
(6.88)

2200
(5.87)

MRE 13.18 10.19 6.22 4.20

* DE/rand to best/1/Bin; ** DE/rand/2/Bin; *** DE/rand/1/Exp Crossover Position 2/Local Search with Jump Search;
**** DE/best/2/Exp Crossover Position 2/Local Search with Jump Search; Mean relative error (MRE).

Table 16 shows the results of solving the flexible job shop scheduling problem for large size
problems using the sample problems of Dauzere-Peres and Paulli [31]. The solution optimizing the
differential evolution algorithm that provides the best solution is DE/best/2 combined with exponential
position 2, which results in a makespan of 2610. When compared with the other DE algorithm,
it obtained the lowest value that is 4.20.

6. The Results of the Comparison of the DE Algorithm with Other Metaheuristic Methods

6.1. Results of Solving the Flexible Job Shop Scheduling Problem with Sample Problems of Brandimarte

A comparison of the differential evolution algorithm with other metaheuristic algorithms, GA and
PSO, for the 10 comparative sample problems of Brandimarte [30] is given in Table 17.

Table 17. Summary of comparing the differential evolution algorithm with other metaheuristic algorithms.

Problem n ×m × k *
BKS ** Chen et al. (GA) [32] Girish and Jawahar (PSO) [33] DE-FJSP

Cmax Cmax Cmax Cmax

Mk01 10 × 6 × 55 40 40
(0.00)

40
(0.00)

40
(0.00)

Mk02 10 × 6 × 58 27 29
(6.89)

27
(0.00)

28
(7.69)

Mk03 15 × 8 × 150 204 204
(0.00)

204
(0.00)

204
(0.00)

Mk04 15 × 8 × 90 60 63
(4.76)

62
(3.22)

71
(18.33)

Mk05 15 × 4 × 106 174 181
(3.86)

178
(2.24)

179
(2.87)

Mk06 10 × 15 × 150 59 60
(1.66)

78
(24.35)

73
(23.73)

Mk07 20 × 5 × 100 143 148
(3.38)

147
(2.72)

146
(2.10)

Mk08 20 × 10 × 225 523 523
(0.00)

523
(0.00)

528
(0.96)

Mk09 20 × 10 × 240 307 308
(0.32)

341
(9.97)

321
(4.56)

Mk10 20 × 15 × 240 212 212
(0.00)

252
(15.07)

235
(10.85)

MRE 2.08 7.75 7.11

* n = Job, m =Machine, k = Operation; ** Best known solution (BKS) ; FJSP = Flexible job shop scheduling problem;
GA = Genetic algorithm; PSO = Particle swarm optimization.

72



Math. Comput. Appl. 2019, 24, 80

Table 17 shows the comparative results for solving the flexible job shop scheduling problem using
the differential evolution algorithm versus various dimension-optimizing algorithms. The value of
mean of relative error (MRE) is lower than the value obtained by Girish and Jawahar [33] with PSO
(7.75), while the improved DE has a value of 7.11. The work by Chen et al. [32] showed a value of 2.08
with the, while DE provided a greater value of 7.11. However, some problems, including Mk1 and
Mk3, resulted in an equally good makespan in comparison with the BKS value of the data set.

6.2. Results of Solving the Flexible Job Shop Scheduling Problem with Sample Problems of Dauzere-Peres and Paulli

A comparison of the differential evolution algorithm with other metaheuristic algorithms, 1ST-DE,
for the 5 comparative sample problems of Dauzere-Peres and Paulli [31] is given in Table 18.

Table 18. Summary of comparing the differential evolution algorithm with other metaheuristic algorithms.

Problem n ×m × k *
BKS ** Wisittipanich (1ST-DE) [12] DE-FJSP

Cmax Cmax Cmax

01a 10 × 5 × 196 2530 2645
(4.55)

2645
(4.55)

04a 10 × 5 × 196 2555 2616
(2.39)

2610
(2.15)

07a 15 × 8 × 293 2396 2582
(7.76)

2510
(4.76)

09a 15 × 8 × 293 2074 2153
(3.81)

2150
(3.66)

11a 15 × 8 × 293 2078 2221
(6.88)

2200
(5.87)

MRE 5.08 4.20

* n = Job, m =Machine, k = Operation; ** Best known solution (BKS); FJSP = Flexible job shop scheduling problem.

Table 18 shows the comparative results for solving the flexible job shop scheduling problem using
the differential evolution algorithm versus various dimension-optimizing algorithms. The value of
mean of relative error (MRE) is lower than the value obtained by Wisittipanich [12] with 1ST-DE
(5.08), while the improved DE has a value of 4.20. From the computational results, we can see that the
improved DE algorithms with jump search are effective methods when compare with the basic DE and
some meta-heuristic method.

7. Conclusions and Suggestions

This section presents the conclusions of this study. The differential evolution algorithm was
used to solve the flexible job shop scheduling problem and optimize the dimensions. Among sample
problems, the makespan and the BKS value of the data set were compared and the mean of relative
error (MRE) was calculated. The sample problems of Kacem et al. were used as examples of small-sized
problems. The dimensions were optimized by using “DE/rand/1” combined with exponential crossover
position 2, as well as “DE/best/2” combined with exponential crossover position 2, which resulted in
the minimum MRE value of 3.25. The sample problems of Brandimarte were used as examples of
medium-sized problems. The dimensions were optimized with the combination of “DE/best/2” and
exponential crossover position 2, providing a minimized MRE value of 7.11. Furthermore, the sample
problems of Dauzere-Peres and Paulli were used as examples of large-sized problems. The dimensions
were optimized with the combination of “DE/best/2” and exponential crossover position 2, providing a
minimized MRE value of 4.20. Hence, the improved differential evolution in this research was able to
solve the flexible job shop scheduling problem.

The DE algorithm proposed in this study can be applied to solve problems in the manufacturing
industry in Thailand, such as mold and die manufacturing, the flexible job shop scheduling problem of
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the work center (FJSSPWC), or flexible job shop scheduling problem with preventive maintenance of
the machine.
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Abstract: This work presents a unique genetic programming (GP) approach that integrates a
numerical local search method and a bloat-control mechanism within a distributed model for
evolutionary algorithms known as EvoSpace. The first two elements provide a directed search
operator and a way to control the growth of evolved models, while the latter is meant to exploit
distributed and cloud-based computing architectures. EvoSpace is a Pool-based Evolutionary
Algorithm, and this work is the first time that such a computing model has been used to perform
a GP-based search. The proposal was extensively evaluated using real-world problems from
diverse domains, and the behavior of the search was analyzed from several different perspectives.
The results show that the proposed approach compares favorably with a standard approach,
identifying promising aspects and limitations of this initial hybrid system.

Keywords: Genetic Programming; Bloat; NEAT; Local Search; EvoSpace

1. Introduction

Within the field of Evolutionary Computation (EC), the Genetic Programming (GP) paradigm
includes a variety of algorithms that can be used to evolve computer code or mathematical models,
and has had success in a variety of domains. Even the first version of GP, proposed by Koza in the
1990s and commonly referred to as tree-based GP or standard GP [1], is still being used today. This
paper focuses on a recent variant of GP called neat-GP-LS [2] that integrates what we consider as
fundamental elements of any state-of-the-art GP method, e.g., bloat control and local search (LS)
techniques.

However, one discouraging aspect of integrating LS methods into a GP search is the increase in
algorithm complexity (execution time might increase if the total number of generations is kept constant,
but, since the algorithm converges more quickly, fewer generations are required to reach the same level
of performance). One way to minimize this issue is by porting the search process to massively parallel
architectures [3]. However, another approach is to move towards distributed EC systems (dEC) [4–6].
There are several possible benefits from this approach. First, it is much simpler to develop and use
a distributed system than developing low-level code for GPUs or FPGAs [3,7]. The need for strict
synchronization policies, for instance, is greatly reduced in a distributed framework compared to a
GPU or FPGA implementation. Second, it is possible to leverage cheaper computing power that is
already accessible, rather than investing in specialized hardware [8,9]. Finally, the robustness and
asynchronous nature of an evolutionary search can easily deal with unexpected errors or dropped
connections in a distributed environment. In this work, we use a distributed platform designed to run
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using heterogeneous computing resources called EvoSpace, a conceptual model for the development of
distributed pool-based algorithms [8–10]. While it has been applied in standard black-box optimization
benchmarks and collaborative-interactive evolutionary algorithms [11], it has not been studied in a
GP-based search.

To summarize, the present paper proposes a hybrid distributed GP system that integrates a recent
bloat control mechanism and a LS operator for parameter optimization of GP trees. Bloat control is
performed by neat-GP, which uses speciation and the well-known method of fitness sharing to control
the growth of program trees [12]. For the LS process, the method from [13,14] is used, where the
individual trees are enhanced with numerical weights in each node, and these are then optimized
using a trust region optimizer [15]; this strategy has proven to be beneficial in several recent learning
problem [16,17]. This work shows that the EvoSpace model can easily exploit the speciation process
performed by neat-GP, maintaining the same level of performance as the sequential version even
though evolution is now performed in an asynchronous manner.

The remainder of this work is organized as follows. Section 2 presents relevant background and
related research. Section 3 describes how the proposed system is ported to a distributed framework.
A summary and conclusions are outlined in Section 4.

2. Background

This section described the neat-GP algorithm and a method to integrate LS in GP. In addition,
a brief overview of EvoSpace model is provided.

2.1. neat-GP

The neat-GP algorithm [12] is based on the operator equalization [18] family of bloat control
methods, in particular the Flat-OE [19] algorithms and the NeuroEvolution of Augmenting Topologies
algorithm (NEAT) [20].

The neat-GP algorithm has the following main features: The initial population only contains
shallow trees (3 levels), while most GP algorithms initialize the search with small- and medium-sized
trees (depth of 3–6 levels).

Individual trees are grouped into species, using a similarity measure that is based on their size
and shape. With the following measure we can group individuals: given a tree T, let nT represent the
size of the tree (number of nodes) and dT its depth (number of levels). Moreover, let Si,j represent the
shared structure between both trees starting from the root node (upper region of the trees), which is
also a tree, as seen in Figure 1. Then, the dissimilarity between two trees Ti and Tj is given by

δT
(
Ti, Tj

)
= β

Ni,j−2nsi,j
Ni,j−2 + (1 − β)

Di,j−2dsi,j
Di,j−2 , (1)

where Ni,j = nTi + nTj , Di,j = dTi + dTj , and β ∈ [0, 1]; a degenerate case arises when both trees have a
single node (only the root node), in this case δT = 0.

Sij

Ti Tj

sin

xx

/

*

*

cos x

+

-

Figure 1. Example of the shared structure Si,j between two trees Ti and Tj ([2], with permission
from Springer).
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Each time an individual Ti is produced, it is compared to a randomly chosen individual Tj,
sequentially from different species. This is done by first randomly shuffling the species, and then if
δT(Ti, Tj) < h, with threshold h an algorithm parameter, then the tree Ti is assigned to the species of Tj,
and no further comparisons are carried out. When the condition described above is never satisfied, a
new species is created for the tree Ti.

To promote the formation of several species fitness sharing is used, in this way the individuals in
large species (with many trees) are penalized more than individuals from smaller (with fewer trees)
species. Assuming a minimization problem, neat-GP penalizes individuals with

f
′
(Ti) = |Su| f (Ti), (2)

where f (Ti) is the raw fitness of the tree, f ′(Ti) is the penalized or adjusted fitness, Su is the species to
which Ti belongs, and |Su| is the number of individuals in species Su. However, the best individual
(with the best fitness) from each species are not penalized, this protects the elite individuals from each
species. Moreover, penalization is most important during selection for parents, which considered the
computed adjusted value of fitness. Selection is done deterministically, sorting the population based
on adjusted fitness. In this way, individuals with very bad adjusted fitness will not produce offspring,
but this high selective pressure is offset by protecting the elite individuals from each species, such that
the best individual from each species has a good chance of producing offspring.

2.2. Local Search in Genetic Programming

Particularly, we focus on symbolic regression problems, where the goal is to search for the
symbolic expression KO : Rp → R that best fits a particular training set T = {(x1, y1), . . . , (xn, yn)} of
n input/output pairs with xi ∈ Rp and yi ∈ R defined as

(KO, θO) ← arg min
K∈G;θ∈Rm

f (K(xi, θ), yi) with i = 1, . . . , n , (3)

where G is the solution or syntactic space defined by the primitive set P of functions and terminals;
f is the fitness function that is based on the difference between a program’s output K(xi, θ) and the
desired output yi; and θ is a particular parametrization of the symbolic expression K, assuming m
real-valued parameters. The goal of the LS method is to optimize the parameters of each GP solution.

Following [13,14], the search includes on additional search operator which is not common in GP,
an LS process that is used to optimize the implicit parameters in GP individuals. This allows the search
to use subtree mutation and crossover to explore the search space, or syntax space, and uses the LS
process to perform fine tuning of the individuals in parameter space.

As suggested in [21], for each individual K in the population, we add a small linear upper tree
above the root node, such that K′ = θ2 + θ1(K) where K′ represents the new program output, while θ1

and θ2 are the first two parameters from θ, as shown in Figure 2.

Figure 2. Example of the tree transformation for the LS process ([2], with permission from Springer).
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In this way, for all the other nodes nk in the tree K we add a weight coefficient θk ∈ R, such that
each node is now defined by n′

k = θknk , where n′
k is the new modified node, k ∈ {1, ..., r}, r = |Q| and

Q is the tree representation. Notice that each node has a unique parameter that can be modified to
help meet the overall optimization criteria of the non-linear expression. When the search starts, the
parameters are initialized to θk = 1. Then, during the evolutionary process, when subtree mutation or
crossover exchange genetic material (syntax) between individuals, these also include the corresponding
parameter values. In general, each GP individual is considered to be a nonlinear expression that the
LS operator must fit to the problem data. This can be done using different methods, but here a trust
region optimizer is used [22], following [13,14].

One of the most important things to consider is that the local search optimizer can substantially
increase the underlying computational cost of the search, particularly when individual trees are very
large. While applying the local search strategy to all trees might produce good results [13], it is
preferable to reduce to a minimum the amount of trees to which it is applied.

2.3. Integration LS into neat-GP

The neat-GP-LS algorithm was recently proposed to integrate the neat-GP search with an LS
process [2], showing the ability to improve performance and generate compact and simple solutions.
Figure 3 shows the main modules in this algorithm. Another interesting result reported in [2] was
that neat-GP-LS exhbited very little performance variance on all tested problems, suggesting that the
meta-heuristic search is robust.

Given the reliance of neat-GP-LS on the speciation process, as defined for neat-GP, the following
observations are of note. First, species tend to grow in size when the individuals in the species
have good fitness, and they grow more when they include the best solution in the entire population.
Second, while species with bigger trees tend to appear as evolution progresses, diversity is maintained
throughout the search. Third, while species are different, in terms of the size and shape of individuals
they contain, it is common for all species to include at least some highly fit individuals. Finally, species
grow in size when they contain highly fit individuals, and this increased exploitation is beneficial
because the LS tends to produce high levels of improvement in those particular species.

Figure 3. General flow diagram of the neat-GP-LS algorithm ([2], with permission from Springer).
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2.4. EvoSpace

The EvoSpace model for evolutionary algorithms (EA) follows a pool-based approach [8,9],
where the search process is conducted by a collection of possibly heterogeneous processes that
cooperate using a shared memory or population pool. We refer to such algorithms as pool-based EAs
(PEAs) and highlight the fact that such systems are intrinsically parallel, distributed and asynchronous.

In EvoSpace, distributed nodes (called EvoWorkers) asynchronously interact with the pool;
their job is to take a subset of individuals from the central pool, which is called a sample, and evolve
them for a certain number of generations (or until a given termination criterion is met), and return the
new population of offspring back to the pool. The general scheme is depicted in Figure 4.

This means that EvoSpace has two main components, a set of EvoWorkers and a single instance
of an EvoStore. The EvoStore container manages a set of objects representing individuals in a EA
population. EvoWorkers pull a subset of individuals from the EvoStore making them unavailable to
other workers. Moreover, individuals are removed from the EvoStore as a random subset or sample
of the population. Once a EvoWorker has a sample to work on, it can perform a partial evolutionary
process, and then return the newly evolved subpopulation to the EvoStore where the new individuals
replace those found in the original sample; at this point, replaced or reinserted individuals can be
taken by others clients. Figure 5 shows the distributed architecture of the EvoSpace model with GP.
The figure shows that on the Server the EvoSpace manager and HTTP communication framework are
performed, while different samples of individuals from the population are sent to EvoWorkers where
evolution takes place.

Figure 4. Main components and data flow within the EvoSpace model.
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Figure 5. EvoSpace distributed architecture.

EvoSpace was conceived as a model for cloud-based evolutionary algorithms and is general
enough to be amenable to any type of population-based algorithm. Several works have shown that
this general approach can solve standard black-box optimization problems [9] and even interactive
evolution tasks [11]. It has been shown, as expected, that distributing costly fitness function evaluations
will help reduce the total run-time of the algorithm [9].

3. Distributing neat-GP-LS into the EvoSpace Model

In this work, we present the first implementation of a GP algorithm on EvoSpace.
Since neat-GP-LS already divides the population into species, it seems straightforward to exploit

this structure and distribute individuals to EvoWorkers by sending complete species to each.

3.1. The Intra-Species Distance and Re-Speciation

One aspect of neat-GP-LS that is not asynchronous is the speciation process. In the sequential and
synchronous versions, speciation occurs at specific moments during the search, as shown in Figure 3.
However, since EvoSpace is asynchronous, EvoWorkers return samples to the population pool at
different moments in time. When an EvoWorker returns a sample, it is not correct to assume that all of
the new individuals actually belong in the same species. It is possible that the species diverged during
the local evolution carried out on the EvoWorker.

To solve this issue, we track the level of homogeneity within each species, which is measured
before a species leaves the pool and when the new species returns from the EvoWorker. If a significant
change is detected, then a flag is raised that tells EvoSpace that the population should go through a new
speciation process or re-speciation. This is done by computing what is referred to as the intra-species
distance. Basically, in each species, we compute the dissimilarity measure using Equation (1),
between each tree Ti and its nearest neighbor Tj (the individual with which Equation (1) is minimum
within the species), calling this value nnTi . Then, the intra-species distance DSl for species Sl is the
average of all nnTi considering all Ti ∈ S.

The DSl values could be used in different ways to trigger a re-speciation process. In this work,
we can say that DSl is the intra-species distance before Sl is taken as a sample by an EvoWorker, and we
can define D̂Sl as the intra-species distance of species Sl computed with the population returned
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by the EvoWorker. If D̂Sl > DSl for any species in the population, then a re-speciation event is
triggered. Basically, this causes a synchronization event, where the EvoStore waits for all species to
return and the population goes through the speciation process once more. Figure 6 shows the basic
scheme of the proposes implementation. Compared to Figure 5, the new implementation in Figure 6
accounts for specific elements of the neat-GP algorithm. In particular, the speciation process is carried
out on the server, such that instead of sending random samples of individuals to the EvoWorkers,
complete species are sent and a local evolutionary process is carried out. In this case, the number of
EvoWorkers used depends on the number of species in the population.

EvoStore

Population

EvoSpace

manager

HTTP

framework

GP

EvoWorker

GP

EvoWorker

GP

EvoWorker

GP

EvoWorker

Local

Computer

Speciation

Specie 1

Specie 2

Specie 3

Specie n

Figure 6. Implementation of the neat-GP-LS algorithm in EvoSpace, where the samples taken by each
EvoWorker correspond to a complete species.

3.2. Experiments and Results

We analyzed and evaluated the integration of the neat-GP-LS algorithm in a PEA known as
the EvoSpace model. EvoSpace was designed for problems where fitness computation might be
expensive; in this work, we were only interested in studying the effects of implementing neat-GP-LS
as a PEA. In particular, we wanted to determine if there are any significant and substantial effects on
the convergence of the algorithm, the solutions qualities on all the population and the behavior of the
bloating phenomena.

For simplicity, the distributed framework was simulated using multiple CPU threads, such that
each EvoWorker was assigned to a specific thread. When the number of EvoWorkers exceeded the
number of threads, then several workers could share a single thread.

All experiments were carried out using real world symbolic regression problems, where the
objective is to minimize the fitness function. All problems are summarized in Table 1.

When a species was sent to an EvoWorker, we performed a short local evolutionary search,
basically a standard GP search using the parameters specified in Table 2. The number of EvoWorkers
depended on the number of species in the EvoStore, and we assumed that an EvoWorker was always
available for any species in the EvoStore. In addition, the local evolution performed in an EvoWorker
iterated for 10 generations, applying the LS operator with probability of 0.50.
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Table 1. Symbolic regression real world problems.

Problems
No.
Instances

No.
Features Description

Housing [23] 506 14 Concerns housing values in suburbs of Boston.

Concrete [24] 1030 9
The concrete compressive strength is a highly
nonlinear function of age and ingredients.

Energy Heating [25] 768 9
This study looked into assessing the heating load
requirements of buildings as a function of building parameters.

Energy Cooling [25] 768 9
This study looked into assessing the cooling load
requirements of buildings as a function of building parameters.

Tower [26] 5000 26
An industrial data set of a gas chromatography measurement
of the composition of a distillation tower.

Yacht [27] 308 7
Delft data set, used to predict the hydodynamic performance
of sailing yachts from dimensions and velocity.

Table 2. Parameters used in real world problems.

Parameter neat-GP-LS

Runs 30
Population 100
Generations 10
Training set 70%
Testing set 30%
Operators
Crossover (pc), Mutation (pm) pc=0.9, pm=0.1

Tree initialization
Ramped Half-and-Half,
maximum depth 6.

Function set +,-,x,sin,cos,log,sqrt,tan,tanh, constants
Terminal set Input variables and constants as indicated in each real-world problem.

Selection for reproduction
Eliminate the pworst = 50% worst
individuals of each species.

Elitism
Do not penalize the best individual
of each species.

Species threshold value h = 0.15 with β = 0.5
Local optimization probability Ps = 0.5

Figure 7 shows a single run of the PEA version of neat-GP-LS on the Housing, Concrete and
Energy Cooling problems. The plots show the convergence of the training and testing RMSE, as well
as the average size of the population given in number of tree nodes. The horizontal axis represents the
number of samples taken from the EvoStore. Note that the number of samples over different problems
and over different runs l varied due to the randomness of the individual population and the speciation
process, and due to the asynchronous nature of the EvoSpace model, which makes it unfeasible to
aggregate the behavior of multiple runs into a single plot. Therefore, these plots only show a single
run, but the behavior of the algorithm in these examples is in fact representative of the convergence
behavior of most runs. One notable observation is the almost identical behavior of both training and
testing MAE in all of the runs, showing that the algorithm generalizes in a consistent manner relative
to training performance. The size of the population is also quite informative. Notice that, while the
average size fluctuates in all cases, the algorithm is in general producing compact solutions. This is
particularly clear when the search process terminates and the final sample is returned to the EvoStore.

The results are summarized in Figures 8 and 9, which show a box plot comparisons between the
sequential neat-GP-LS algorithm and the PEA implementation in EvoSpace, respectively, for test RMSE
and the average size of the population. Table 3 presents the p-values of the Friedman test, where bold
values indicate that the null hypothesis is rejected at the α = 0.05 confidence level. The null hypothesis
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states that the medians of the two groups are the same. Notice that, on three (Concrete, Energy Heating
and Tower) out of the six problems, the EvoSpace version performed worse than the sequential
algorithm in terms of RMSE, since the null-hypothesis were rejected. Conversely, if we consider the
three problems in which the PEA version and the sequential algorithm performed equivalently based
on test RMSE (i.e., the null hypothesis is not rejected), the Housing Energy Cooling and Yacht problems,
EvoSpace produced smaller trees and thus was more effective at bloat control. Therefore, we can state
with some confidence that the modified search dynamics introduced in the distributed version of the
algorithm do alter the effectiveness of the search. On the one hand, the quality of the results seemed to
depend on the problem. On the other hand, in all cases where the EvoSpace implementation achieved
equivalent performance, it was significantly and substantially less affected by bloat, producing more
parsimonious and compact solutions.

(a) Housing (b) Housing

(c) Concrete (d) Concrete

(e) Energy Cooling (f) Energy Cooling

Figure 7. Performance of a single run of the PEA implementation of neat-GP-LS in EvoSpace for:
Housing (a), (d); Concrete (b), (e); and Energy Cooling (d), (f). The plots in the left column show the
evolution of the training and testing RMSE. The plots in the right column show the evolution of the
average program size. All plots are ordered based on the number of samples taken from the EvoStore.
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Figure 8. Box plot comparison of the sequential and the EvoSpace implementation of the neat-GP-LS
algorithm on the testing RMSE.

Figure 9. Box plot comparison of the sequential and the EvoSpace implementation of the neat-GP-LS
algorithm on the average size of individuals given in number of nodes.

It is reasonable to assume that larger learning problems, in terms of number of instances and
features, are in general more difficult to solve. Moreover, difficult problems usually require more
complex or larger solutions to effectively model their structure. The three problems where RMSE
performance of the EvoSpace implementation was statistically worse (Concrete, Energy Heating and
Tower) are also three of the four largest problems used in our experiments, in terms of total number
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of instances and number of features (see Table 1). Since the EvoSpace search dynamics pushes the
search towards smaller program sizes, with statistical significance in five of the six problems (including
all problems in which RMSE performance was worse), a plausible explanation of the results can be
formulated. The EvoSpace implementation is controlling bloat too aggressively, severely impacting
learning in the more difficult test cases. Therefore, future variants of the implementation will need to
allow the search to explore large program sizes to evolve more accurate models.

Table 3. Friedman test p-values, comparing the sequential neat-GP-LS and the EvoSpace implementation
based on test RMSE and average size of the final population. Bold indicates that the null-hypothesis
was rejected at the α = 0.05 significance level.

test size

Problem p-value

Housing 0.2733 0.0114

Concrete 0.0010 0.0010

Energy Cooling 0.0578 0.0285

Energy Heating 0.0114 1.000

Tower 0.0285 0.0114

Yacht 0.2059 0.0114

Finally, Figure 10 analyzes the re-speciation process based on the intra-species distance. The plot
shows how DSl changes over for each of the species in the population, using a single run of the
algorithm on the Housing problem, zooming in on the first 225 samples taken by the EvoWorkers.
Each vertical line represents the difference between DSl and D̂Sl . When a line is black (shorter lines),
it means that a re-speciation event was not triggered, and when a line is red (longer lines) this means
that a re-speciation event could have been triggered by a sample. We can see that, at the beginning
of the run, speciation events are more frequent and, as the search progresses begins to converge,
these events become infrequent.

Figure 10. Analysis of the re-speciation process using the intra-species distance.
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4. Conclusions and Future Work

This work presents, to the authors’ knowledge, the first implementation of a GP system in a
Pool-based EA, using the EvoSpace model. The PEA approach is particularly well suited for the
speciation-based neat-GP search, allowing for a straightforward strategy to distribute the population
over the processing elements of the system (EvoWorkers). It is notable that the performance of the
PEA version was not equivalent to the sequential one, in two key respects. On the one hand, it did not
reach the same level of performance on some problems. On the other hand, on the problems where it
performed equivalently, or better, it was able to reduce solution size significantly.

Future work will center around eliminating the synchronization required by the speciation process
in the EvoSpace implementation. Another interesting extension is to consider other elements in the
speciation process besides program size and shape, such as program semantics, program behavior or
solution novelty. Moreover, we would like to integrate a wider range of parameter local search methods,
particularly gradient free methods, and to combine them with other forms of local optimizers that
work at the level of syntax or semantics. Finally, it will be important to deploy the proposed algorithms
in high-performance computing platforms, to tackle large scale big data problems, where distributing
the computational load becomes a requirement.
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Abstract: Road traffic injuries are a serious concern in emerging economies. Their death toll and
economic impact are shocking, with 9 out of 10 deaths occurring in low or middle-income countries;
and road traffic crashes representing 3% of their gross domestic product. One way to mitigate these
issues is to develop technology to effectively assist the driver, perhaps making him more aware about
how her (his) decisions influence safety. Following this idea, in this paper we evaluate computational
models that can score the behavior of a driver based on a risky-safety scale. Potential applications of
these models include car rental agencies, insurance companies or transportation service providers.
In a previous work, we showed that Genetic Programming (GP) was a successful methodology to
evolve mathematical functions with the ability to learn how people subjectively score a road trip.
The input to this model was a vector of frequencies of risky maneuvers, which were supposed to be
detected in a sensor layer. Moreover, GP was shown, even with statistical significance, to be better
than six other Machine Learning strategies, including Neural Networks, Support Vector Regression
and a Fuzzy Inference system, among others. A pending task, since then, was to evaluate if a more
detailed comparison of different strategies based on GP could improve upon the best GP model.
In this work, we evaluate, side by side, scoring functions evolved by three different variants of GP.
In the end, the results suggest that two of these strategies are very competitive in terms of accuracy
and simplicity, both generating models that could be implemented in current technology that seeks
to assist the driver in real-world scenarios.

Keywords: genetic programming; driving scoring functions; driving events; risky driving; intelligent
transportation systems

1. Introduction

It is a well known problem that reckless driving affects society in a variety of ways,
with noteworthy impacts on health, economic and social issues. Government offices in charge of
planning and deploying urban programs could largely benefit by technological tools which can provide
decision-support information to develop appropriate public policies. On their part, taxicab companies
or on-line transportation services could also benefit from such tools to optimize resources or reduce
economic risks related to insurance or maintenance. At the same time, insurance companies could
work on coverage plans designed according to a driver’s profile which could, at least partially, be based
on automatic tools that exploit useful information obtained from regular driving trips [1,2].
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For these reasons, there has been a growing amount of interest in the development of approaches
that can extract information from sensors embedded in almost every modern mobile device, such as
GPS, gyroscope, magnetometer and accelerometer. This opens the possibility for a broad spectrum
of new applications that exploit different ways of collecting and analyzing sensor data. In particular
several works have proposed to transform sensor readings to deliver a driving safety score, with a
small but varied set of techniques, such as simple penalty functions [3], fuzzy classifiers [4] or Bayesian
models [5]. Moreover, other authors have suggested to expand the amount of sensors used to score
driving behaviors, such as using real time data about weather, road conditions and traffic density,
among others [6].

The problem of calculating a driving score based on the performance of the driver could be
seen as a computational learning task, where given a feature vector that contains the frequency of
risky maneuvers the goal is to assign a score to represent the driver’s performance in a risk-safety
scale (this problem could also be seen as a machine learning problem for human-rating). Recently,
in [7] the authors presented the evaluation of seven different Machine Learning (ML) approaches
to learn how individuals assigned a driving score. From this comparison a clear winner emerged,
this being the Genetic Programming (GP) approach. Since then, a question that remained open was
to evaluate if other variants of GP could attain better results. In this manuscript we approach this
question by evaluating three different GP variants that have proved to be successful for a variety of
problems, namely GPTIPS [8], neatGP [9] and neat-GP-LS [10]. The first method generates models
linear in parameters, the second builds non-linear models using a bloat control mechanism, and the
last one extends neat-GP by including a local search operator. Results suggest that GPTIPS as well as
neatGP-LS are very competitive at evolving mathematical scoring functions, and given their accuracy
and simplicity could be integrated in current car technology to assist the driver.

The rest of the paper is organized as follows. In Section 2 we overview related work on the
problem domain. Next, in Section 3 we describe our proposed approach, including building the
dataset, posing the learning problem and applying GP to solve it. In Section 4 we detail the results
obtained, and finally in Section 5 we present the main conclusions.

2. Related Work

The exponential growth of the world population has increased traffic flow in all cities worldwide.
Therefore, new and improved urban policies must be implemented, and the use of current technology is
becoming a mandatory requirement to alleviate the social impact of road accidents [11]. Recent works
deal with detecting and classifying sensor data from mobile devices, as well as sensors embedded
in automobiles [3]. Due to the increase availability of such devices, there is a surge of possible
applications for the data gathered by them. Opportunely determining the mental and physical state
of a driver through an analysis of their behavior might help mitigate the number of car accidents.
For instance the work in [6] details the social impact of traffic accidents in the UK, and approaches
the problem via a context-aware architecture that links data from sensors, driver behavior and road
infrastructure to jointly help decrease the possibility of road accidents. While most works attempt to
distinguish between aggressive from calm driving, drunk and careless driving might also be identified.
For example, Dai et al. [12] tried to detect drunk driving through an inexpensive platform using mobile
phone sensors, sending notifications to the proper authorities and to the driver.

However, modeling the behavior of a driver is a very complex task, it involves a large number
of variables and subjective data. Self perception of driving skills is very biased, some drivers
might believe that their driving style is safe, whilst a driving companion may have an entirely
different opinion. Detecting aggressive behavior while driving is a problem that has been addressed
through several ML techniques, that exploit specific types of sensor data. In a large study presented
in [1], a mobile application was designed using a crowd-sourcing approach. Data from sensors
embedded in mobile devices was recorded by the application and used in conjunction with automobile
characteristics and road conditions. This distributed telematics platform allowed the authors to
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successfully gather data regarding unsafe behaviors whilst driving. Their approach used a multivariate
Gaussian model to determine the likelihood of normal versus abnormal driving maneuvers. The work
detailed in [13,14] also deals with classification of unsafe driving practices, from sensor data within
mobile phones. The use of such sensors is extremely prevalent due to the deep penetration of the
aforementioned devices among current drivers. Most of the works that attempt to detect aggressive or
reckless behaviors while driving, focus on accurately detecting specific driving events, like sudden
stops, intrusive lane changes or speeding. This is usually done by posing a classification problem.
ML approaches that have been used to solve this problem include Fuzzy Logic Systems and Time Series
analysis [4,13,15–17], to mention two prominent techniques. However, we argue that classifying these
events is only the first step towards properly determining unsafe driving behaviors. To properly score
a driving trip, one should account for the total frequency of the events with regards to the total length
of the trip. The nature of these events are vastly studied under the concept of Insurance Telematics [2],
where they are called Figure of Merits (FoMs). Once these FoMs or risky maneuvers are detected, a new
regression problem appears, which is related to calculating a driving score. For instance, in the work
of [5] the authors attempt to score driving trips using a Bayesian classifier to differentiate between risky
and safe maneuvers. In [7], the authors compared a Fuzzy Inference System [1], a Safety Index [13],
a Bayesian regressor [5], a Multi-layer perceptron, a Random Forrest, a Support Vector regressor and a
GP approach to learn how individuals score 200 virtual road trips, where each trip was represented by
a feature vector containing the frequency of risky maneuvers. Results showed that the GP strategy
was superior than competitors, even in some cases with statistical significance. We depart from this
point, where a main comparison of approaches was already done, positioning GP as the best performer.
On top of these results this manuscript compares the performance of three flavors of GP, with the aim
to know if a better performance can be found.

3. Methodology

In this section we briefly describe the datasets that will be used. We also present the different
flavors of GP that are compared. Finally, we present the performance metric and the statistical test that
is used to validate the analysis.

3.1. The Dataset

Given that our aim is to compared GP-strategies on the first place, but also to contextualize our
results given prior results, we will use the same dataset employed in [7]. This dataset is composed
of 200 virtual trips, where each trip is characterized by a vector of frequencies, with each position of
the vector associated to a particular risky maneuver. Each trip (vector) is also associated to a Driving
score (target value) that was computed as the mean value of all scores given to it by a group of drivers.
The risky maneuvers considered in the vector are analogous to those found in [18], which suggests
those types of incidents are closely related to safety on the road. As an example, Table 1 shows how a
single road trip was characterized by a human observer based on the frequency of each risky maneuver.
To establish the ground truth for the driving score, the descriptive vector of each trip was shown to
several human observers (a total of 40) who were then asked to provide a subjective score for the
trip on a scale of 1 (very unsafe) to 10 (very safe). This means that each observer imposed subjective
criteria when deriving their score, based on what events they considered to be the most correlated
with driving safety.

91



Math. Comput. Appl. 2018, 23, 19

Table 1. A sample of the survey used to evaluate each driving event as safe or unsafe, based on the
frequency of each DE.

Driving Event (id Number in the Feature Vector) Value (Frequency) Score for the Travel

Distance (x1) 7
Avg. Velocity (x2) 6
# of acceleration events (x3) 5
# of sudden starts (x4) 3 8
# of abrupt lane changes (x5) 2
# of intense brakes (x6) 7
# of sudden stops (x7) 0
# of abrupt steerings (x8) 1

To compare approaches, two experiments were envisioned. In the first experiment, now called
1–10 scale, the dataset was used the way it is, since the target values for all the feature vectors contains
a score in the range [1, 10]. For the second experiment, the targets were fitted to a 1–4 scale following
the criteria proposed in [3]. Both experiments were planned to analyzed the performance of the
approaches in a fine and coarse version of the dataset. Note that, for both scales, the minimum value
corresponds to a totally reckless trip, and the highest value to a totally safe trip.

3.2. Genetic Programming and Tested Flavors

GP uses an evolutionary search to derive small programs, operators or models. In most cases,
GP is used to solve different kinds of ML tasks, with the most common being symbolic regression,
producing Symbolic Regression Models (SRMs). These models represent the relation between the
input variables and the dependent output variable. Therefore, in this work the problem is posed as
a symbolic regression one, where GP is used to evolve the scoring functions, taking as input each
of the frequency features described above. In standard GP, and all the variants used here, the SRMs
are represented using a tree structure, where internal nodes contain elements from a set of basic
mathematical operations called the function set. Tree leaves contain input values, in this case each
of the xi features and random constants. The fitness function used in all cases is the Root Mean

Squared Error (RMSE) (RMSE =

√
1
n Σn

i=1

(
predi − targeti

)2
, where targeti is the score in the survey

for the i − th road trip, predi is the predicted score given by a particular scoring function.) between
the estimated score given by an individual SRM and the ground truth score on all of the samples in
a training set. As for any other evolutionary algorithm, in GP, special genetic operators are used to
build new SRMs (offspring) from previous ones (parents) that were chosen stochastically, with a bias
that is based on the fitness of the solution. In order to be a self-contained manuscript, the general
pseudocode of a GP search is summarized in Algorithm 1. The specific strategies of GP evaluated in
this manuscript are described next.

Algorithm 1 Genetic Programming pseudocode.

1: for i = 1 to NumO f Generations (or until an acceptable solution is found) do
2: if 1st generation then
3: generate initial population with primitives (variables, constants and elements from the

function set)
4: end if
5: Calculate fitness (minimize RMSE) of population members
6: Select n parents from population (based on fitness)
7: Stochastically apply Genetic operators to generate n offspring
8: end for
9: Return best individual (based on fitness) found during search
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3.2.1. GPTIPS V2

GPTIPS implements a multi-gene strategy to represent individuals in the population. Basically,
the representation of a single individual includes a collection of trees, and the final SRM is constructed
as a linear combination of all the trees. This is a linear in parameter model, with the model weights fitted
with linear regression. GPTIPS also uses a multi-objective selection pressure, where model complexity
(size) is also included as a selection criterion. A good aspect of the GPTIPS tool is that it offers a variety
of post execution reports, such as summary information about the latest generation, the best solutions
on the Pareto front, considering both the training and testing partitions, the complexity of the proposed
solutions in terms of number of nodes, RMSE and R2 of the best programs, among other useful stats [8]
(http://gptips.sourceforge.net/).

3.2.2. neatGP

The neatGP method [9] combines GP with the NeuroEvolution of Augmenting Topologies
algorithm (NEAT) [19]. It was proposed as a bloat-free GP search based on the results obtained
by Flat Operator Equalization (Flat-OE) [20]. In general, neatGP preserves a diverse population
of individuals of different shapes and sizes, by using speciation techniques and standard fitness
sharing. Results on both regression and classification tasks have show that neatGP can produce very
accurate models that are orders of magnitude smaller than the ones produced by standard GP [9].
The implementation used in this paper was developed on top of the DEAP Library [21].

3.2.3. neatGP-LS

One way to enhance a global search algorithm or metaheuristic is by embedding additional
search operators that can improve the overall exploitation ability of the search process. In particular,
GP utilizes search operators that operate at the level of syntax, i.e., they modify the syntactic
representation of the programs or SRMs. This can make the search more inefficient when what
is required are small steps in the solution space. That is one of the reasons that GPTIPS, for instance,
uses linear regression to fit the linear parameters of the evolved models. Similarly, neatGP-LS integrates
a local search (LS) mechanism within neatGP, by first parameterizing each solution by adding a
real-valued weight θ to each node and fitting those weights using a trust region optimizer [10].
In standard GP these weights are usually ignored and considered to be θ = 1, in neat-GP this
represents their initial value but the numerical optimizer can tune the weights as required. One effect
of embedding a LS method within GP is that smaller solutions in the population have a better chance
of surviving after the LS is applied, since they are more susceptible to suboptimal parameter values.

3.3. Statistical Analysis: Friedman Test and Critical Difference Diagram

To validate the differences in the output generated by each GP strategy, we will conduct the
Friedman test [22], which is a non-parametric test that helps identify if there are statistical differences
in the variances of multiple treatments. For all the experiments, we will use a significance level of
α = 0.05. To present this analysis, we will make use of a Critical Difference Diagram (CDD), proposed
by [23]. CDD shows in an intuitively manner how different approaches are ranked, being favored
those that are located rightmost in the horizontal bar. It also shows when no statistical difference was
found between a group of treatments, joining them with a thick bar.

4. Results

In this section we present the results of the execution of each GP strategy applied to the problem
of finding suitable scoring functions for driving trips. A 10-fold cross validation scheme was applied
in all the experiments, where the same data partitions were used by all algorithms. All of the common
parameters were set to the same values, summarized in Table 2. All other parameters were set to their
default values as reported in the original references.
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Table 2. Parameters for GPTIPS, neatGP and neatGP-LS.

Parameter Value Units

Population size 100 items
Max. # of generations 100 items
Input variables 8 items
Range of Constants [−10, 10] items
Training instances 180 road trips
Testing instances 20 road trips
Crossover probability 85 percentage (%)
Mutation probability 15 percentage (%)
Function set ×,−,+,÷,

√
x, functions

tanh, exp, log, x3,
MULT3, ADD3,
negexp, neg, |x|

Experiment 1: Targets in the 1–10 scale. The performance of each GP strategy is given in
Tables 3–5, for GPTIPS, neatGP and neatGP-LS, respectively. The format for all comparison tables
present the performance on each fold, showing the best training RMSE, the RMSE of the best solution
found, the size of the best individual given in number of nodes, and the average size of the population.
Summary statistics are also given, showing the minimum, maximum, mean, standard deviation,
median and linear correlation coefficient of the best solutions, between the ground truth and the
model output.

Figure 1 presents a scatter plot analysis of the best model found, plotting the ground truth score
and the model output for each training and testing sample of that particular fold, respectively for
GPTIPS (a) and neatGP-LS (b), neatGP was omitted in this comparison since it achieved the poorest
results. The corresponding linear correlation coefficient, for the training and testing data, are given in
the previous tables.

As a concluding remark for this subsection let us examine the distribution of the RMSE scores for
all three approaches. Figure 2 shows through boxplots how GP-Tips and neatGP-LS generate models
with less error than neatGP.

Table 3. Root Mean Squared Error (RMSE) for the 10-fold cross validation performance of GPTIPS on
the 1–10 scale dataset.

GPTIPS

Fold Best Train Best Test Size Best Ind Avg. Pop. Size

1 1.1219 1.2211 22 21.1200
2 1.1168 1.2188 25 22.6067
3 1.1329 1.0482 22 20.0633
4 1.0978 1.4509 26 23.6000
5 1.1479 1.0034 25 22.7067
6 1.1296 1.1546 24 24.3533
7 1.1367 1.1857 24 23.2800
8 1.0650 1.7854 25 23.0167
9 1.1356 1.3130 23 22.2233
10 1.0595 1.5560 22 21.1667

Minimum 1.0595 1.0034 22 20.0633
Maximum 1.1479 1.7854 26 24.3533

mean 1.1144 1.2937 23.8000 22.4137
SD 0.0306 0.2408 1.4757 1.2994

median 1.1257 1.2199 24.0000 22.6567
Correlation Coefficient 0.8030 0.2868

94



Math. Comput. Appl. 2018, 23, 19

Table 4. RMSE for the 10-fold cross validation performance of neatGP on the 1–10 scale dataset.

neatGP

Fold Best Train Best Test Size Best Ind Avg. Pop. Size

1 1.2093 1.5795 46 39.1850
2 1.2584 1.1488 64 45.9650
3 1.8291 1.9927 183 124.3400
4 1.3928 1.3015 132 100.0250
5 1.3064 1.5171 44 27.9500
6 1.2969 1.9753 61 44.3100
7 0.8505 1.5701 625 211.0900
8 1.2261 1.6290 69 54.6200
9 1.2496 1.9254 66 47.0100
10 1.2546 1.4381 44 29.5650

Minimum 0.8505 1.1488 44 27.9500
Maximum 1.8291 1.9927 625 211.0900

mean 1.2874 1.6077 133.4000 72.4060
SD 0.2378 0.2845 178.4204 57.7911

median 1.2565 1.5748 65.0000 46.4875
Correlation Coefficient 0.6432 0.6337

Table 5. RMSE for the 10-fold cross validation performance of neatGP-LS on the 1–10 scale dataset.

neatGP-LS

Fold Best Train Best Test Size Best Ind Avg. Pop. Size

1 1.1690 1.6912 30 11.5900
2 1.2195 1.1623 40 11.9700
3 1.1622 1.2626 22 16.0000
4 1.2188 1.0513 31 18.8400
5 1.1756 1.5657 29 16.1750
6 1.1813 1.0310 36 20.1050
7 1.3758 1.3739 1 3.4200
8 1.1822 1.1456 18 18.5950
9 1.1326 1.4899 31 13.2200
10 1.1917 1.2202 35 16.5700

Minimum 1.1326 1.0310 1 3.4200
Maximum 1.3758 1.6912 40 20.1050

mean 1.2009 1.2994 27.3000 14.6485
SD 0.0666 0.2236 11.2551 4.8923

median 1.1818 1.2414 30.5000 16.0875
Correlation Coefficient 0.7735 0.5012

(a) GPTIPS

Figure 1. Cont.
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(b) neatGP-LS

Figure 1. Scatter plot of the ground truth scores and the model outputs for the training and testing
partitions of the best solution found computed for the dataset with a 1–10 scale.

Figure 2. Box plot comparison of all methods based on testing fitness on the dataset with a 1–10 scale.

Experiment 2: Targets in scale 1–4. Tables 6–8 summarize the performance of GPTIPS, neatGP
and neatGP-LS, respectively.

The performance over all cross-validation folds is shown in Figure 3, which is a box plot for
the testing RMSE. Notice that in the scale 1–4 GPTIPS does not only presents the best performance,
but also it shows the less variance.

Table 6. RMSE for the 10-fold cross validation performance of GPTIPS on the 1–4 scale dataset.

GPTIPS

Fold Best Train Best Test Size Best Ind Avg. Pop. Size

1 0.6445 0.7347 22 22.0300
2 0.6567 0.6591 18 17.7833
3 0.6474 0.7408 21 21.8767
4 0.6215 0.9530 23 23.9733
5 0.6604 0.6833 29 24.4567
6 0.6491 0.7931 20 18.0233
7 0.6630 0.5913 22 20.8233
8 0.6524 0.6400 29 22.3667
9 0.6402 0.7241 21 19.9933
10 0.6176 0.9286 23 21.7733

Minimum 0.6176 0.5913 18 17.7833
Maximum 0.6630 0.9530 29 24.4567

mean 0.6453 0.7448 22.8000 21.3100
SD 0.0153 0.1182 3.5839 2.2205

median 0.6482 0.7294 22.0000 21.8250
Correlation Coefficient 0.7505 0.6219

96



Math. Comput. Appl. 2018, 23, 19

Table 7. RMSE for the 10-fold cross validation performance of neatGP on the 1–4 scale dataset.

neatGP

Fold Best Train Best Test Size Best Ind Avg. Pop. Size

1 0.6070 2.6656 234 174.0650
2 0.5770 0.9034 276 169.5550
3 0.8056 0.8421 464 266.4800
4 0.6513 1.1010 176 118.1200
5 0.4705 0.5493 236 151.3600
6 0.5038 1.1317 245 160.8900
7 0.6748 0.7746 159 110.3400
8 0.7093 0.7463 55 42.1850
9 0.5284 0.9176 205 146.1850
10 0.5491 1.4260 139 65.5550

Minimum 0.4705 0.5493 55 42.1850
Maximum 0.8056 2.6656 464 266.4800

mean 0.6077 1.1058 218.9000 140.4735
SD 0.1034 0.5991 107.1888 62.4507

median 0.5920 0.9105 219.5000 148.7725
Correlation Coefficient 0.8805 0.5857

Table 8. RMSE for the 10-fold cross validation performance of neatGP-LS on the 1–4 scale dataset.

neatGP-LS

Fold Best Train Best Test Size Best Ind Avg. Pop. Size

1 0.6387 0.9852 30 18.9650
2 0.7240 0.7477 29 16.7000
3 0.6675 0.7854 28 14.3150
4 0.6291 0.9384 37 20.5550
5 0.6321 0.7810 21 16.1550
6 0.6611 0.7851 41 24.1900
7 0.7217 0.4519 29 19.7950
8 0.6337 0.6387 34 19.5900
9 0.6622 0.9408 29 15.8750
10 0.6323 1.0198 17 14.0850

Minimum 0.6291 0.4519 17 14.0850
Maximum 0.7240 1.0198 41 24.1900

mean 0.6603 0.8074 29.5000 18.0225
SD 0.0359 0.1738 6.9960 3.1629

median 0.6499 0.7852 29.0000 17.8325
Correlation Coefficient 0.7598 0.3352

Figure 3. Box plot comparison of all methods based on testing fitness on the dataset with a 1–4 scale.
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To ilustrate a resulting evolved model of GP, Table 9 presents one of the best models found by
GPTIPS from the perspective of accuracy and complexity.

Table 9. ith Best model in the Pareto front, from the stand point of accuracy and complexity (1–4 scale)
(GPTIPS).

RMSE Testing
Complexity
(# of Nodes)

Model

0.919 37
y =

0.4486 e−1.0 x1 (x1 − 1.0 x1 (x2 − 9.9))
x2

− 0.05036 x8

− 0.02518 tanh(tanh(x4)) (tanh(tanh(x4))− 1.0 x1 (x2 − 9.9))

− 0.2356 x2 + 3.443

Statistical analysis. To formally compare the results from each algorithm in terms of test
performance (RMSE), we applied a Friedman test [22] and present this results using a Critical Difference
Diagram [23], as previously stated.

Figure 4 shows a summary of the results for the 1–10 scale, showing the average rank of each
method, indicating that there is no statistically significant difference between the test performance
results of all GP variants.

Figure 4. Critical Difference Diagram (CDD) of the Friedman test for the 1–10 scale problem.

Figure 5 presents the same analysis for the 1–4 scale. For the 1–10 scale, neatGP-LS is the top
performer, although with no statistical difference. In the 1–4 scale, GPTIPS seems to have advantage,
with no statistical difference with neatGP-LS but with statistical difference with neatGP.

Figure 5. CDD of the Friedman test for the 1–4 scale problem.

Analysis of Features Frequency. To gain some insight about how each method is deriving the
predictions of the driving score, Figure 6 plots the frequency with which each input feature appears
in all of the best solutions found (a total of 10, one for each fold). Such an analysis can be useful,
particularly since the models are quite compact. In the case of neatGP, where the models are larger,
the frequency is notably heftier. However, probably the most useful way in which to read this plot is
to consider the relative importance of each feature for each method. To associate each feature with
its corresponding index variable see Figure 1. In the case of neatGP, feature x1 is the most used by
the models, followed by x2, and then x6 and x8. On the other hand, neatGP-LS prefers x2, x4 and
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x6. Additionally GPTIPS uses a smaller number of features, focusing on x1 and x2. Notice that some
features are practically ignored by neat-GP or GPTIPS, namely x5 by both and x5, x3 and x4 by GPTIPS.
This suggest that these features are not required and may be omitted by a real-time system that must
first detect these features before scoring a driving trip.

(a) 1–10 scale

(b) 1–4 scale

Figure 6. Frequency of appearance of each DE (feature variables x1 to x8) in the best solutions found
by each method on the dataset.

5. Conclusions

As cities and urban areas continue to grow, the need for smart technologies that can improve
safety is always of great importance. One source of great health and economic impact are traffic
accidents, that can range from minor fender benders to life threatening situations. One way to help
mitigate these type of accidents is to be able to automatically detect when a person is driving in an
unsafe manner, to help bring about the proper corrective measures. This problem can be solved in
a two-step process. First, to detect specific types of driving events that are highly correlated with
safety. Second, to use the frequency of detected events to derive a safety score for a given driving trip.
This paper deals with the latter, building upon previous results were the former has been solved using
sensors from mobile devices [24].

This work presents an experimental evaluation of three GP algorithms to solve a difficult
real-world problem. GP search is used to evolve scoring functions that take as input the frequency with
which a set of driving events are detected during a trip. The goal is to have models that can accurately
predict how a human observer would grade a particular trip, based on features such as average speed,
distance of a trip, number of lane changes, abrupt steering, sudden stops, among others. A dataset
was built, comprised by a total of 200 road trips, each one assembled as a collection of DE, and several
human observers graded the trips, with the final score being an average of all scores received.

Using GP, we generated models, expressed as mathematical equations that are able to predict the
scores given by humans. Three variants were tested, namely neatGP, neatGP-LS and GPTIPS. In terms
of predictive accuracy no statistically significant difference was detected among the methods. However,
neatGP did show the largest variance and larger number of outliers from a 10-fold cross validation
evaluation. On the other hand, in terms of model size (or complexity) a clear trend was apparent,
neatGP produced the largest models, while neatGP-LS and GPTIPS produced similarly concise and
compact models. All three methods use a form of bloat control, neatGP and neatGP-LS use speciation
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and fitness sharing, while GPTIPS uses a multi-objective selection pressure. However, neatGP does
not include a numerical local search optimizer, while the other two methods include one, GPTIPS uses
linear regression and neatGP-LS a trust region optimizer. This indicates that in real-world problems,
traditional bloat control is not sufficient. Local search methods help the evolutionary process tune
smaller solutions and improve their chances of survival, curtailing bloat in favor of simpler solutions
with properly tuned parameter values. A further analysis about what events are important to construct
the scoring functions offers interesting insights. For GPTIPS, the distance (x1) and average velocity of
the trip (x2) are important features. On its part, neatGP-LS considers the same features, but also the
number of abrupt steerings (x8) and frequency of intense brakes (x6). In summary, it is clear that GP is
a viable approach to solve this problem, and the evolved models are candidates for real-world testing
given their accuracy and compact (efficient) form.
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GP Genetic Programming
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FIS Fuzzy Inference Systems
BRR Bayesian Ridge Regression
SVR Support Vector Regression
LS Local Search
NEAT NeuroEvolution of Augmenting Topologies algorithm
Flat-OE Flat Operator Equalization
DE Driving Event
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Abstract: Among the numerous alphabetical optimality criteria is the IV-criterion that is focused on
prediction variance. We propose a new criterion, called the weighted IV-optimality. It is similar to
IV-optimality, because the researcher must first specify a model. However, unlike IV-optimality, a suite
of “reduced” models is also proposed if the original model is misspecified via over-parameterization.
In this research, weighted IV-optimality is applied to mixture experiments with a set of prior weights
assigned to the potential mixture models of interest. To address the issue of implementation, a genetic
algorithm was developed to generate weighted IV-optimal mixture designs that are robust across
multiple models. In our examples, we assign models with p parameters to have equal weights, but
weights will vary based on varying p. Fraction-of-design-space (FDS) plots are used to compare the
performance of an experimental design in terms of the prediction variance properties. An illustrating
example is presented. The result shows that the GA-generated designs studied are robust across a set
of potential mixture models.

Keywords: mixture experiments; single component constraints; genetic algorithm; IV-optimality
criterion

1. Introduction

Industrial product formulations (e.g., food processing, chemical formulations, textile fibers, and
pharmaceutical drugs) frequently involve the blending of multiple mixture components. Mixture
experiments form a special class of response surface experiments in which the product under
investigation is comprised of several components. In this research, we assume that the response
of interest is a function only of the proportions of the components that are present in the mixture.
The levels of the q experimental factors (xi; i = 1, 2, . . . , q) in a mixture experiment are component
proportions. Thus, each xi is between zero and one, and the sum of the q component proportions is one.
Under these conditions, the experimental region involving q proportions is a regular q − 1-dimensional
simplex. Typically, there are also single-component constraints (SCCs) defined by lower Li and upper
Ui bounds on the component proportions:

0 ≤ Li ≤ xi ≤ Ui ≤ 1 for i = 1, 2, . . . , q. (1)

If SCCs are imposed on the component proportions, the experimental region will now be an irregularly
shaped polyhedron within the simplex. For a general review of the design and analysis of mixture
experiments, see [1,2].

When the mixture region is a simplex, the standard mixture designs such as simplex lattice and
simplex centroid designs are often suitable for implementation. However, they are not applicable in
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situations involving SCCs. When SCCs exist, an extreme vertices design (McLean and Anderson [3]) is
one possibility. However, these designs may be very inefficient with respect to prediction variance
properties. To improve the prediction variance properties, an algorithmically generated design focused
on optimizing an optimality design criterion is commonly used. Optimal designs, however, are,
in general, optimal only for a specified model. Numerous approaches have been developed for
constructing optimal designs, such as ACED [4], XVERT [5], CONSIM [6], Fedorov [7], DETMAX [8],
exchange algorithms [9,10], and genetic algorithms (GAs) [11–15]. GAs have the advantage of being
adaptive search algorithms [14]. Recent applications of GAs provide alternative approaches to classic
exchange-point algorithms to generate designs. Examples of using GAs to generate designs can be
found in Borkowski [11], Heredia-Langner et al. [12,13], Park et al. [15], and Limmun et al. [16].

In this research, we develop and employ a GA that extends the work in Limmun et al. [16] that
focused on a single model when constructing an IV-optimal design where the experimental region
was an irregularly shaped polyhedral region that is a subspace of a simplex. Their procedure offered
a degree of flexibility in its way of constructing designs that allowed it to overcome restrictions that
may limit the applicability of other algorithms. The first aim of our research is to consider model
misspecification and introduce a weighted IV-optimality criterion determined over a set of potential
mixture models, and it will serve to address our second aim: develop a design-generating GA using
weighted IV-optimality as its objective function.

The rest of this paper is organized as follows. In Section 2, the Scheffé mixture models and
relevant theory relating to mixture experiments of interest are reviewed, and weighted IV-efficiency is
defined. Section 3 includes a brief introduction to GAs for constructing designs and an illustration of
the steps used in our GA. In Section 4, the proposed scheme is demonstrated with examples, and with
concluding statements in Section 5.

2. The Mixture Model and Design Optimality

2.1. Notation and Models

The most common forms of mixture models are the Scheffé (canonical) polynomials. For example,
the Scheffé linear model is given by

y =
q

∑
i=1

βixi + ε (2)

and the Scheffé quadratic model is given by

y =
q

∑
i=1

βixi +
q−1

∑
i=1

q

∑
j=i+1

βijxixj + ε. (3)

In these models, y is the response variable; each βi coefficient represents the expected response when
the proportion of the i-th component equals unity; each βij coefficient represents the nonlinear blending
properties of the i-th and the j-th component proportions, and ε is a random error. In this paper, we
focus on the Scheffé quadratic model mixture model and possible model misspecification.

The Scheffé mixture models are linear models and can be expressed in the matrix form as

y = Xβ + ε (4)

where y = (y1, y2, . . . , yn)
′ is the response vector, X is the N × p model matrix with columns associated

with the p model terms (such as linear and cross-products terms), β is the p × 1 vector of model
parameters, and ε = (ε1, ε2, . . . , εn)

′ is the vector of random errors associated with natural variation of
y around the underlying surface assumed to be independent and identically normally distributed with
zero mean and variance σ2In. The prediction properties of a design, specifically the scaled prediction
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variance, is dependent on the chosen model through model matrix X. The scaled prediction variance
v(x0) is defined as

v(x0) =
NVar(ŷ(x))

σ2 = Nx′0
(
X′X

)−1x0 (5)

where x′0 is the expansion of a mixture x =
(
x1, x2, . . . , xq

)
to vector form corresponding to the

p columns of X; N is the design size, which penalizes prediction variances for larger designs,
and Var(ŷ(x)) is the variance of the estimated response at x. For example, if there are three components
and the model is the Scheffé quadratic model, then x = (x1, x2, x3), x0

′ = (x1, x2, x3, x1x2, x1x3, x2x3),
and X is an N × 6 model matrix.

2.2. Optimality Criteria

Design optimality criteria are single valued criteria that represent different variance or parameter
estimation properties of a design. Several criteria have been advanced with the purpose of constructing
and comparing and designs. Four commonly used optimality criteria are the D, A, G, and IV criteria.
These four criteria are functions of the information matrix (X′X) for a given design. The D and A
criteria are focused on parameter estimation, while G and IV criteria are focused on the prediction
variance. When a design is being considered for implementation, several of its properties can be
evaluated by computing measures of design efficiency. Common D, A, G, and IV design optimality
measures are

D − efficiency =
100|X′X|1/p

N
, A − efficiency =

100p

trace[N(X′X)
−1

]

G − efficiency =
100p

max
xεχ

[v(x0)]
, IV − efficiency =

V∫
χ v(x0)dx1dx2 . . . dxq

where χ is the design space and V is the volume of χ. The D and A criteria are the simplest to handle
computationally, and they were the criteria considered in the earliest design generating algorithms
(e.g., exchange algorithms). Because designs with high IV or G efficiencies also tend to have good
D- and A-efficiencies, this paper will focus on designs that minimize the average prediction variance
(i.e., minimize the denominator in the IV-efficiency over the entire experimental region). Designs that
minimize the IV-optimality criterion include the IV-optimal design, the Q-optimal design [17], the
V-optimal design [18], and the I-optimal design [19,20].

In a review of software approaches to evaluating average prediction variances (APVs),
Borkowski [21] showed that it is common for software packages to estimate the APV =∫

χ v(x0)dx1dx2 . . . dxq by taking the sample mean of v(x0) over a fixed set of points (e.g., the candidate
set for an exchange algorithm). He demonstrated that estimation of the APV based instead on a random
set of evaluation points is unbiased and superior to estimation based on a fixed set of evaluation
points. This is one flaw in using software using exchange algorithms to generate IV-optimal designs:
the estimated APV is an overestimation of the integral. In our proposed GA, the APV measure is
calculated by averaging v(x0) over a random set of points and will provide an unbiased estimate of
the IV-optimality criterion. Additionally, the variability of the estimator will decrease as the size of the
random evaluation set increases. In this paper, we use 5000 random points in the evaluation set. Several
authors have provided results for the IV-optimal designs, including Borkowski [11], Syafitri et al. [20],
and Coetzer and Haines [22]. Further details on the motivation and uses of the optimality criteria can
be found in Box and Draper [23], Atkinson et al. [18], and Fedorov [7].

2.3. Weighted IV-Optimality

In this paper, we develop and propose the weighted IV-efficiency, which is defined as
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Weighted IV − efficiency = ∑r
i=1 wi IVi (6)

where IVi =
V∫

χ v(x0) dx1 dx2...dxq
is the IV-efficiency for model i, χ is the design space, V is the volume of

χ, N is the number of design points, r is the number of reduced models for a given full model, and wi
is the weight for model i.

In terms of design generation, the goal is to use weighted IV-optimality to find a set of points
that will minimize the weighted average of the average of the scaled prediction variance over the
design region across a set of reduced models. Practically speaking, the goal is to generate a design
that protects against having a final model with poor prediction variance properties. Similar to finding
an IV-optimal design, the researcher must specify a model. This serves as the “full” model when we
consider the weighted IV-optimality. However, unlike IV-optimality, a suite of “reduced” models are
also proposed if the full model is misspecified via over-parameterization. Examining Equation (6), note
that weighted IV-optimality is not restricted to a particular full model nor is it restricted to mixture
models. It easily generalizes to other response surface designs and the associated models that can be
fitted by those designs.

The experimenter has the freedom to choose the weighting factors for the full model, the most
parsimonious or smallest model, as well as all other intermediate models. To exemplify the use of
weighted IV-optimality, a “full” quadratic mixture model and a “smallest” linear mixture model will
be considered.

Although there are numerous ways to assign weights in the weighted optimality criterion, in
this paper, we assume (i) that not all models should be weighted equally and (ii) that only models
having an equal number of model parameters receive equal weight. Here are the reasons for assuming
(i) and (ii). Before running the experiment, the experimenter believes that the full model may be
the most appropriate, so he/she chooses the maximum weighting factor for the full model. In the
analysis phase, however, the full model might be inappropriate because of misspecification due to
overparameterization. Thus, it seems reasonable that the weights be reduced as we move further
away from the full (or the experimenter’s most likely a priori) model via model reduction, and stop
with the smallest weight assigned to the model with the fewest number of parameters. We also
treat each parameter as equally important under the assumption that the researcher has no prior
knowledge or make an educated guess regarding which terms would most likely be removed if
a model reduction occurs. Therefore, we assign uniform weights among all models resulting after
removal of one term, and then assign a decreasing but uniform weight to all models resulting when two
terms are moved, and so on. Therefore, models with more parameters have weights that reflect their
greater importance relative to models with fewer parameters. For the proposed method of calculating
a weighted IV-efficiency, it is necessary to have a complete enumeration of the set of subset models
(reduced models) of interest. If an experimenter has justification for another weighting scheme, then it
should certainly be implemented.

One specific weighting scheme consistent with (i) and (ii) above is to use weights for each reduced
model based on the numbers of model parameters. Suppose model i has j parameters. The weight we
assigned to model i is then defined as

wi =
ψj

mj
(7)

where ψj is the jth weighting factor, and j = q, q + 1, . . . , s − 1, s, where q is the number of parameters
of the linear mixture model in Equation (2); s is the number of parameters of the quadratic model
in Equation (3), and mj is the number of reduced models with j parameters. The model i weight
(wi, i = 1, 2, . . . , r) is nonnegative and the weights satisfy ∑r

i=1 wi = 1. The relative weighting factor
for computing the weighting factors (supplied by the experimenter) is defined as

R =
ψs

ψq
. (8)
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In this paper, we assume that the experimenter weights the quadratic mixture model 100 times the
weight to be assigned to the linear mixture model; therefore, we use R = 100 as the relative weighting
factor. The weighting factors are positive and subject to the restriction

ψq + ψq+1 + . . . + ψs−1 + ψs = 1. (9)

There are k equispaced levels of the weighting factor, and k = s − q + 1 is the number of levels for a
weighting factor. Therefore, the range of the weighting factor is defined as

ψk = ψs − ψq = Rψq − ψq = (R − 1)ψq. (10)

The increment value of the weighting factor can be expressed as

INCR =
ψk

k − 1
=

(R − 1)ψq

k − 1
. (11)

The values of the weighting factor can be represented as follows:

ψq+c = ψq + cINCR; c = 0, 1, . . . , k − 1. (12)

Again, the weighting factor must sum to one. The weighting factor can be rewritten in the form:

s

∑
i=q

ψi = kψq +

(
k
2

)
INCR = 1. (13)

Therefore, the minimum weighting factor can be expressed as

ψq =
(k − 1)INCR

R − 1
. (14)

After simplifying, the increment value of the weighting factor is defined as

INCR =
2(R − 1)

k(k − 1)(R + 1)
. (15)

For example, suppose the full model is the quadratic mixture model with three component
proportions. This model can be expressed as

E(y) = β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3 + β23x2x3.

There are 8 reduced models (the full model and the seven reduced models as shown in Table 1). A 1
or a 0 in any “Terms in Model” column represents the presence or absence of that term in the model,
respectively. The column p is the number of model parameters. Using 100 as the relative weighting
factor, the increment value of the weighting factor is 0.1634. The weighting factor value and the weight
for each model are shown in the ψj and wi columns, respectively. If the 2nd, 3rd, and 4th models
have five parameters, then m5 = 3, and the 5-parameter model weighting factor ψ5 = 0.3318 and the
individual model weights w2, w3, and w4 = ψ5/3 = 0.1106.
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Table 1. The set of reduced models the Scheffé quadratic model with three components.

Model
Terms in Model

p ψj wi
x1 x2 x3 x1x2 x1x3 x2x3

1st 1 1 1 1 1 1 6 0.4950 0.4950

2nd 1 1 1 0 1 1 5
0.3318

0.1106
3rd 1 1 1 1 0 1 5 0.1106
4th 1 1 1 1 1 0 5 0.1106

5th 1 1 1 0 0 1 4
0.1683

0.0561
6th 1 1 1 0 1 0 4 0.0561
7th 1 1 1 1 0 0 4 0.0561

8th 1 1 1 0 0 0 3 0.0049 0.0049

3. Genetic Algorithms and Constructing IV-Optimal Mixture Designs

3.1. Development of the Genetic Algorithm

Heuristic optimization has been used to solve a variety of experimental design problems.
One popular optimization algorithm that is based on the general principle of local improvement
is the genetic algorithm (GA). The genetic algorithm was developed by John Holland in 1975 and
was popularized through the work of Goldberg in 1989 [24]. Since then, GAs have been used to solve
optimization problems for many applications because it is very efficient over a variety of search spaces.
Bäck et al. [25] mention that GAs often yield excellent results when applied to complex optimization
problems where other methods are either not applicable or turn out to be unsatisfactory. GAs have
been successfully applied to experimental design problems using various optimality criteria. For an
introduction to GAs, see Michaelewicz [26] and Haupt and Haupt [27].

A GA is a search and optimization technique developed by mimicking the evolutionary principles
and the chromosomal processing in the natural selection. A GA takes an initial population of potential
solutions to a problem (parent chromosomes). Through evolutionary reproduction operators, the
current parent population then passes some of its properties (genes) to produce offspring chromosomes.
A subset of the best parent and offspring is retained for the next generation, and the reproduction
process is repeated for many generations until an acceptable chromosome has evolved. A GA uses
an objective function as a measure of a chromosome’s fitness as a solution to the problem of interest.
Although a GA is not guaranteed to find the global optimum in a finite number of generations, it is
less likely to get trapped at a local optimum than traditional gradient-based search methods when the
objective function is not smooth and generally well behaved.

GAs can be very useful for construction of a design when the optimality criterion (objective
function) is difficult to work with and/or where there are constraints on the experimental region such
as in mixture experiments. We now describe a GA used to generate optimal designs for a mixture
experiment with single component constraints (SCCs) that is based on weighted IV-optimality, which
extends and modifies the GA approach of Limmun et al. [16] who generated optimal designs for a
specified mixture model. Throughout this research paper, we have encoded GA chromosomes using
real-value encoding instead of another encoding (e.g., binary) because real-value encoding is easy
to interpret, can be modified for many applications, and is flexible enough to allow for a unique
representation for every variable.

A chromosome C will represent a potential design (solution) and is encoded as an N × q matrix,
where N is the number of the design points, and q is the number of mixture components. Each row
in C is a gene xi =

[
xi1 xi2 . . . xiq

]
and represents one experimental mixture. The objective function

F measures a chromosome’s fitness as a solution to the function that we wish to optimize. That is,
F takes a chromosome as input and outputs an objective function value. Our GA’s objective function F
is a weighted IV-efficiency. The goal using a weighted IV-efficiency is to find a set of points that will
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minimize the weighted average of the scaled prediction variance throughout the entire experimental
region for a set of reduced models representing possible model misspecification. Specifically, the goal
is to find a design that maximizes objective function F where

F =
r

∑
i=1

wi IVi (16)

where IVi =
V∫

χ v(x0)dx1dx2...dxq
is the IV-efficiency for model i, χ is the design space, V is the volume of

χ, r is the number of reduced models for a given full model, and wi is the weight for model i. The GA
that we employed includes several genetic operators. Prior to running a GA, the experimenter must
specify the r models of interest and the model weights wi. The steps and operators in our GA are
as follows:

Step 1 Specify the GA parameters: population size (M), number of iterations (I), selection method
(elitism with random parent pairing), blending rate (αb), crossover rates (αbc and αwc), and
mutation rate (αm).

Step 2 Generate an initial population of M chromosomes (mixture designs). We use the real-value
encoding with four decimal places to encode each chromosome. Assume M is odd. To generate
the initial population, a random sample is first taken in a hypercube. Then each sampled
point in a hypercube is mapped to the constrained mixture space by applying the function
used by Borkowski and Piepel [28]. Each experimental mixture is recorded to four-decimal
place accuracy.

Step 3 Calculate the IV-efficiency objective function F for each chromosome in the initial population.
Step 4 Find the elite chromosome which is the chromosome that has the largest weighted IV-efficiency

F. The remaining M − 1 chromosomes are randomly paired for the reproduction process.
Step 5 Produce offspring of the next generation by using genetic operators: blending, between-parent

crossover, within-parent crossover, and mutation. Larger values of genetic parameters are used
for the early iterations and the smaller values of genetic parameters are used for the later.

Step 6 Calculate objective function F for each parent/offspring pair. The fitter chromosome in the
pair is retained for the next generation.

Step 7 Repeat Steps 5 and 6 for I generations.
Step 8 Apply a local grid search to the best design to further improve objective function F yielding

the IV-optimal design. A local grid search searches designs in a small neighborhood of the best
design. This is accomplished by perturbing the component proportions by small increments to
search for further improvements in F. This continues until no further improvement is found.

3.2. Illustration: A Genetic Algorithm for Constructing an Optimal Mixture Design

To illustrate our algorithm, consider a three-component mixture (q = 3) with the goal of
generating a weighted IV-optimal design having N = 7 design points. We create an initial population
of M = 5 chromosomes (C1, C2, C3, C4, C5) each having 7 genes where the genes of each chromosome
(mixture design) are drawn randomly from the mixture space. One possible realization of the initial
population and the associated objective function values are presented in Table 2. C1 is the elite
chromosome because it has the largest F value. Next, the remaining four chromosomes are randomly
paired for the reproduction process. Suppose that (C5, C4) and (C2, C3) are the randomly formed pairs.
Applying the reproduction process to C5 and C4 yields offspring C∗

5 and C∗
4 . Table 3 contains a set of

random uniform deviates for C5 and C4. Boldfacing indicates a probability test is passed (PTIP) at rates
αb, αbc, αwc and αm = 0.02, and that reproduction operation will be performed where αb, αbc, αwc, and
αm represent the success probabilities of blending, between-parent crossover, within-parent crossover,
and mutation, respectively.
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Table 2. Initial population of five chromosomes.

C1 C2 C3 C4 C5

x1 x2 x3 x1 x2 x3 x1 x2 x3 x1 x2 x3 x1 x2 x3

0.6531 0.2958 0.0511 0.5242 0.2016 0.2742 0.5771 0.1605 0.2624 0.5160 0.1979 0.2861 0.6705 0.0536 0.2759
0.3612 0.2765 0.3623 0.5858 0.2007 0.2135 0.5229 0.1136 0.3635 0.6487 0.1443 0.2070 0.5256 0.0173 0.4571
0.5077 0.1156 0.3767 0.5367 0.2877 0.1756 0.7316 0.1828 0.0856 0.4404 0.0682 0.4914 0.4927 0.1614 0.3459
0.4479 0.1197 0.4324 0.5214 0.0236 0.455 0.4780 0.2241 0.2979 0.5488 0.2372 0.2140 0.4754 0.0946 0.4300
0.7274 0.0546 0.2180 0.3942 0.1999 0.4059 0.7514 0.2388 0.0098 0.6744 0.1869 0.1387 0.6723 0.0354 0.2923
0.6519 0.2764 0.0717 0.7271 0.1305 0.1424 0.7969 0.1201 0.0830 0.7693 0.2281 0.0026 0.5367 0.0700 0.3933
0.7612 0.2179 0.0209 0.7569 0.1026 0.1405 0.5422 0.2942 0.1636 0.5322 0.1513 0.3165 0.6342 0.1343 0.2315

F = 0.2050 F = 0.1344 F = 0.0848 F = 0.0400 F = 0.0285

Table 3. Random deviates for probability tests on C5 and C4.

Blending Between-Parent Crossover Within-Parent Crossover Mutation

Parent 1 Parent 1 Parent 1 Parent 2 Parent 1 Parent 2

0.9563 0.7198 0.2807 0.4561 0.8851 0.0049
0.5209 0.7448 0.5894 0.5453 0.9218 0.9710
0.0158 0.6830 0.0179 0.6338 0.1266 0.2420
0.6306 0.6609 0.1799 0.7857 0.0155 0.0400
0.1155 0.4510 0.6985 0.0769 0.3290 0.6497
0.6471 0.0017 0.6031 0.5732 0.8324 0.0840
0.8924 0.0509 0.9297 0.0095 0.6498 0.3173

The first generation is summarized in Table 4 where boldfacing indicates that a gene was changed.
For the blending operator, Row 3 of C5 is blended with a random row (e.g., Row 4) of C4 with random
blending value β = 0.4438. For the between-parent crossover, Row 6 of C5 will crossover with a
random row (e.g., Row 3) of C4. For the within-parent crossover, Row 3 of C5 and Row 7 of C4 will
have within-row crossovers based on random permutations of (1, 2, 3) (e.g., (3, 2, 1), and (1, 3, 2),
respectively). For mutation, Row 4 of C5 and Row 1 of C4 will be mutated. Then, Components 1, 2, and
3 are randomly selected from Row 4 of C5 (e.g., (3, 1, 2)) and Row 1 of C4 (e.g., (2, 3, 1)), respectively.
Two N(0, 0.1) values are generated (e.g., ε43 = −0.0175, and ε12 = 0.102, respectively), yielding new
components x∗43 = 0.43 − 0.0175 = 0.4125 and x∗12 = 0.1979 + 0.102 = 0.2999. Respectively, the
final component values for offspring Row 4 of C5 and Row 1 of C4 are (0.5534, 0.2885, 0.1581) and
(0.4721, 0.2999, 0.2800).

The reproduction process continues for the C2 and C3 pair, yielding offspring chromosomes
C∗

2 and C∗
3 . The objective function F values at the end of the first generation are summarized in

Table 5. Because parents C2 have a larger F value than its offspring C∗
2 , C2 will appear again in the

next generation. However, offspring C∗
3 , C∗

4 , and C∗
5 will replace their parents C3, C4, and C5 in the

next generation because they have larger objective function F values. The elite chromosome C1 is now
replaced with C∗

3 , which now has the largest F value. Hence, chromosome C1 will be a part of the
reproduction process in the second generation. This process will continue for I generations.
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4. A Three-Component Mixture Example

Consider the three-component mixture experiment in Crosier [29]. The three SCCs are

0.2 ≤ x1 ≤ 0.7; 0.05 ≤ x2 ≤ 0.65; 0.1 ≤ x3 ≤ 0.3.

The boundary is formed by six vertices. The full model under consideration is the quadratic mixture
model. Weighted IV optimal designs with N = 7, 10, and 14 points were generated by the GA using
a relative weighting factor R = 100. These designs are labeled GA7, GA10, and GA14, respectively.
The set of possible reduced models are those in Table 1. We choose M = 25 designs to comprise the
GA population of chromosomes. In a preliminary study, we investigated the choice of GA parameter
values and the number of generations to observe convergence when running the GA. Based on these
results, the number of generations was set to 6000, and the ranges of genetic parameter values were
0.02 ≤ αb ≤ 0.2; 0.03 ≤ αbc, αwc ≤ 0.15; 0.05 ≤ αm ≤ 0.2, where αb, αbc, αwc, and αm represent the
success probabilities of blending, between-parent crossover, within-parent crossover, and mutation,
respectively. Initially, the parameter values are set to the largest level, and after every 1500 generations,
these parameter values are systematically reset to smaller values. The optimal choice operators and
the GA parameters across operators is an open research area.

Because no software package can generate weighted IV-optimal designs, we studied how well our
weighted IV-optimal designs would fare with respect to D-, A-, G-, and IV-efficiencies. Therefore, we
generated IV-optimal designs using the design-generating statistical software package Design-Expert
11 (Stat-Ease (2017)) to generate their versions of IV-optimal designs. These 7, 10, and 14 point designs
are labeled DX7, DX10, and DX14, respectively.

The mixtures from the GA and DX designs in the constrained SCC mixture space are shown
in Figure 1. The patterns of points are quite different. The majority of points in the GA designs are
distributed around the boundary with replications near the overall centroid, while the DX designs also
tend to place design points on the boundary but at different locations and the number of replicates
differ from the GA designs. Additionally, the DX designs select multiple mixtures as interior points,
while the interior points of the GA designs are concentrated with replicates at only one mixture.
The fact that the mixtures selected differ between DX and GA designs is based on the fact the DX
designs were constructed only to optimize with respect to one model (the quadratic mixture model),
while the GA design considered eight potential models when optimizing. Additionally, DX designs
were generated using exchange algorithms that restrict mixture selection from only a finite candidate
set of mixtures, while GA designs explore the continuum of points in the entire mixture space.

      
(a) DXI7 (b) DXI10 (c) DXI14 (d) GAI7 (e) GAI10 (f) GAI14 

Figure 1. The genetic algorithm (GA) designs and Design-Expert (DX) designs.

The next comparison is summarized in Table 6, which contains D-, A-, G- and IV-efficiencies
for the six designs. Based on the D-, A, G-, and IV-efficiency, the GA designs are superior to the DX
designs. What is interesting about these results is that, even though Design-Expert generated designs
with the goal of optimizing the IV-efficiency for the quadratic mixture model, the GA design was more
IV-efficient (despite weighting over eight models) for the quadratic model.
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Table 6. The D-, A-, G-, and IV-efficiency.

N Design D-Efficiency A-Efficiency G-Efficiency IV-Efficiency

7
DX7 0.2329 0.0036 32.4052 0.2152
GA7 0.2729 0.0038 57.1217 0.2503

10
DX10 0.2443 0.0045 37.2507 0.2291
GA10 0.2989 0.0057 75.7591 0.2642

14
DX14 0.2284 0.0039 36.0426 0.2226
GA14 0.2900 0.0047 68.8525 0.2592

The final comparison uses fraction-of-design-space (FDS) plots to examine model robustness.
A model-robust design should perform consistently well with respect to the scaled predictions in the
design region for all possible reduced models. The vertical axis represents possible scaled prediction
variance v(x0) values (Equation (5)) and the horizontal axis represents the fraction of the mixture
design space that has scaled prediction variance values less than or equal to v(x0). Thus, a FDS plot
is equivalent to a cumulative distribution function plot but with the axes reversed. For additional
information of the FDS plots for examining model robustness, see Ozol-Godfrey et al. [30].

Although an FDS plot can be made for each model, we restrict the study to the quadratic
(full) mixture model and the most parsimonious linear mixture model because these curves give
a manageable summary of that design’s prediction variance performance at the extremes in terms of
model parameters. These FDS plots are presented in Figure 2.

  
(a) = 7 (b) = 10 

 
(c) = 14 

Figure 2. The fraction-of-design-space (FDS) plots for all competing designs.

For the linear mixture model, the GA and the DX designs have similar scaled prediction variance
distributions for most of the design space. However, for the quadratic mixture model, the DX designs
performs poorly for most of the design space compared to the GA designs. This provides evidence for
why the IV-efficiencies are smaller for the GA designs compared to the DX designs. For most of the
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design space, the GA designs appear to have good robustness properties because it has much flatter
and lower FDS curves for both the quadratic and linear mixture models, indicating more desirable
prediction variance distributions.

5. Conclusions

In this paper, we introduced the concept of a weighted IV-efficiency, which was then used as the
objective function of a GA when generating IV-efficient designs robust to a set of reduced models.
The goal of the weighted IV-optimality criterion is to find a set of points that will minimize the
weighted average of the average of the scaled prediction variance over the design region across
a set of reduced models. The IV-efficiencies are calculated over a set of points randomly selected
in the experimental region rather than a fixed set of points to get unbiased estimates of weighted
IV-efficiencies. Additional assumptions—(i) that not all models should be weighted equally and (ii)
that only models having an equal number of model parameters receive equal weight—were adopted
for calculating the weighted IV-efficiency.

We studied the problem of generating weighted IV-optimal designs for mixture experiments
where the experimental region in an irregularly shaped polyhedron is formed by single component
constraints. The proposed methodology allows movement through a continuous region that includes
highly constrained mixture regions and does not require selecting points from a user-defined candidate
set of mixtures unlike traditional exchange algorithm approaches.

The GA presented in this research paper is effective for generating model-robust designs.
The results from the example show that GA designs performed better than the Design Expert designs
when examining the model robustness using FDS plots, as well as the D-, A-, G- and IV-efficiencies.
When the experimenter believes that the initial model may not turn out to be the model adopted
in the final analysis of the experimental data, GA designs based on weighted IV-efficiency are
suggested because they protect against the possibility of having a final model with poor prediction
variance properties.

Future research will look for alternatives to using random points to estimate the integrals in the
definition of the IV-criterion, additional full and reduced model situations, and alternative schemes for
weighting these models when calculating IV-efficiency.
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Abstract: Shape optimization is a very time-consuming and expensive task, especially if experimental
tests need to be performed. To overcome the challenges of geometry optimization, the industry
is increasingly relying on numerical simulations. These kinds of problems typically involve the
interaction of three main applications: a solid modeler, a multi-physics solver, and an optimizer. In
this manuscript, we present a shape optimization work-flow entirely based on open-source tools; it is
fault tolerant and software agnostic, allows for asynchronous simulations, and has a high degree of
automation. To demonstrate the usability and flexibility of the proposed methodology, we tested it in
a practical case related to the naval industry, where we aimed at optimizing the shape of a bulbous
bow in order to minimize the hydrodynamic resistance. As design variables, we considered the
protrusion and immersion of the bulbous bow, and we used surrogate-based optimization. From the
results presented, a non-negligible resistance reduction is obtainable using the proposed work-flow
and optimization strategy.

Keywords: surrogate-based optimization; numerical simulations; shape morphing; bulbous bow;
open-source framework

1. Introduction

Engineering design and product development using shape optimization can be a very daunting
task, especially if the design approach is experimental, where cost and time constraints usually limit
the number of prototypes that are possible to construct and test. Moreover, it is required to have an
in-depth know-how of the problem being studied to choose which configurations to analyze. In this
view, the continuous development of numerical methods and the increase in computing performance
have suggested the use of simulation software able to model complex multi-physics problems and
optimize the design space, thereby reducing the costs related to prototypes, physical experiments, and
field/operational tests.

Proprietary numerical simulation tools allow very detailed analysis, but their use often requires
the acquisition of expensive licenses. An alternative to commercial software is the use of free and
open-source technology (e.g., GNU General Public License, BSD license, MIT license). This type of
software licensing model gives users the freedom to use, read, write, and redistribute the source code,
with no price tag attached. More importantly, open-source software has the same capabilities as their
commercial counterparts, and it is mature enough so that it can be used in the design and certification
process of new products.

With this in mind, we address in this manuscript the implementation of an open-source framework
for shape optimization. In particular, we focus our attention on fluid dynamics problems applied to
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ship design. Nevertheless, the same methodology can be used in any engineering field. In doing so,
essentially four tasks need to be addressed:

• How to efficiently and accurately simulate the physics involved.
• How to modify the geometry or mesh.
• How to search the optimal configuration.
• How to interface the applications involved in the optimization loop.

In the context of naval architecture design, the adoption of shape optimization using numerical
simulations is not new. The advantages of hull optimization and related devices optimization (such as
propellers and hydrofoils) have been demonstrated by several authors. Many design optimization
approaches have been used in the design of traditional propellers [1,2], unconventional propulsion
systems [3,4], appendages [5], and the optimization of the entire hull shape [6,7]. Recently, a lot of
development has been done on the design of unconventional vessels with special mission profiles,
from the standard mono-hull shapes [8,9], to unconventional multi-hulls [10,11], or hulls with special
shapes, such as the Small Waterplane Area Twin Hull or SWAT [12]. However, even if these design
methods have reached a satisfactory maturity level, the hull shape optimization is still confined to the
research level due to its high complexity.

One of the main drawbacks of shape optimization for complex industrial applications is the large
computational times required to get the outcomes. In naval architecture design (where we are mainly
interested in evaluating resistance and seakeeping, among other things), this is usually overcome by the
use of highly efficient low-fidelity or medium-fidelity methods, such as the boundary element methods
(BEM). However, such approaches are not able to predict the wave pattern generated by the ship, do
not include viscous effects, or neglect other nonlinear behaviors (which can be important in order to
obtain a proper performance prediction for certain ships). Even though successful applications with
low-fidelity methods have been previously reported in the literature [10], the adoption of high-fidelity
solvers (such as finite volume method or finite element method solvers) in the design loop can increase
the accuracy and reliability of the design process. In this field, many studies have been conducted, for
example, Serani et al. [13] successfully used a viscous solver for addressing the shape optimization of
a high-speed catamaran with excellent results; however, the computational cost in terms of CPU time
(for the whole optimization loop and each single simulation) and the complexity of the optimization
loop was too big to be implemented by a manufacturer (particularly small ones, which have limited
resources). In light of this, innovative optimization methods to simplify and speed up the entire
optimization process are under investigation, such as multi-level optimization [14], surrogate-based
optimization [15], proper orthogonal decomposition and dynamic mode decomposition [16], machine
learning for interactive design and fluid dynamics simulations [17], data-driven simulations and
optimization [18], and generative design [19].

In the shipbuilding industry, the bulbous bow shape is usually designed to reduce the ship
wave-making resistance. The hull drag resistance can be split into three main contributions: the
wave-making drag, the friction drag, and the wake drag. Depending on the ship speed, the contribution
of each component to the total resistance value can be drastically different. Considering the present
case, the wave-making component is one of the most important; therefore, its reduction by optimizing
the bulbous bow shape can give a not negligible contribution to the whole design (for example,
a reduction of some percentage of the fuel consumption). Following the guidelines proposed by
Kracht [20], the bulbous bow shape can be defined by six non-dimensional parameters. With the
goal of decreasing the computational cost by reducing the design space, and at the same time being
able to represent the bulbous bow shape without losing geometrical information, only two design
parameters are considered in this study. Nevertheless, the proposed approach can be extended to
more complex cases where, for instance, one is interested in having more local control of the bulbous
bow shape by using more design variables. Previous work addressing bulbous bow optimization
using computational fluid dynamics (CFD) can be found in References [21–25]. The aforementioned
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sources show the benefits of CFD optimization, but most of them fail in explaining the importance of
the application interfacing tool, automation of the loop, and real-time analytics.

Hereafter, we propose a vertical work-flow that could potentially simplify and automate the
design and optimization process. All the tools used in this work are open-source, and this translates
to cost savings, as no commercial licenses are used. To generate the domain mesh and to compute
the hydrodynamic resistance of the hull (including the bulbous bow), we used the multi-physics
solver OpenFOAM [26] (version 5.0). To create new geometry candidates, we used the free-form
deformation application MiMMO [27]. To reduce the number of optimization iterations and to get
an initial screening of the design space, we used surrogate-based optimization. The optimization
algorithms and the code coupling interface is provided through the Dakota library [28] (version 6.7).
Finally, all the real-time data analytics, quantitative post-processing, and data analytics were performed
using Python and bash scripting. Previous attempts in coupling OpenFOAM and Dakota to deal with
shape optimization problems are described in References [29–36], but none of them have addressed
how to interface different applications in an optimization loop (besides OpenFOAM and Dakota),
how to deal with concurrent simulations, work-flow automation, fault-tolerant loops, real-time data
analytics, and the importance of knowledge extraction. We aim at coupling all tools needed for shape
optimization studies in a streamlined work-flow, with a high degree of automation and flexibility,
and using efficient optimization techniques that allow engineers to explore, exploit, and optimize the
design space from a limited number of training observations.

2. Description of the Optimization Framework and Optimization Strategy

In a typical shape optimization study, many applications can live together (e.g., solid modeler,
shape morpher, mesh generator, multi-physics solver, optimizer, knowledge extraction tools, coupling
utilities, and so on), making the optimization loop very difficult to set up, monitor, and control.
Moreover, the optimization loop must be fault tolerant, that is, in the event of an unexpected failure of
the system (hardware or software), the user should be able to restart from a previously saved state. The
optimizer should also be flexible, in the sense that it should provide a variety of optimization methods,
design of experiment techniques, and code coupling interfaces to different simulation software and
programming languages. Finally, to reduce the long execution times inherent to computational
fluid dynamics (CFD) optimization studies, the optimization loop should be able to work in parallel
and deploy many simulations at the same time. Furthermore, everything should be done without
overwhelming the user. We aim at addressing the findings and recommendations reported in the
NASA contractor report “CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences”
[37], where the authors state: “A single engineer/scientist must be able to conceive, create, analyze, and
interpret a large ensemble of related simulations in a time-critical period (e.g., 24 hours), without individually
managing each simulation, to a pre-specified level of accuracy”.

In this work, we successfully coupled many applications used in traditional CFD work-flows
to efficiently conduct general CFD optimization studies. We used the library Dakota [28,38] as the
optimizer and application interface tool. The Dakota library provides a flexible and extensible interface
between simulation codes and iterative analysis methods. This library contains many gradient-based
methods and derivative-free methods for design optimization studies, uncertainty quantification, and
parameter estimation capabilities. Dakota also contains many design of experiment methods to conduct
sensitivity studies. With Dakota, the user is not obliged to use the optimization and space exploration
methods implemented on it: one can easily interface Dakota with a third-party optimization library.
The library also offers restart capabilities and solution monitoring. Most important, it is software
neutral, in the sense that it can interface any application that it is able to parse input/output files via a
command line interface.

The optimization loop is illustrated in Figure 1. In this work-flow, the starting point is the initial
geometry which is manipulated with a free-form deformation tool to generate new shapes. The
MiMMO library [27], which uses radial basis functions (RBF) to shape the geometry [39–42], was used
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as geometry manipulation tool. With MiMMO, the user is only asked to define a series of control
points, these control points are then moved in the design space, and together with the RBF function,
they generate a smooth displacement field that represents the new geometry. To have more control
over the deformation, the user can define a deformable region using a control box. Then, the continuity
between the region to be deformed and the area labeled as undeformed is ensured by using continuous
level set functions. In Figure 2, we illustrate the original geometry (left image), where we highlight the
control points and the selection box used to deform the base geometry. In this figure (right image), we
also show two deformed geometries. In the figure depicted, we only used one control point to deform
the geometry, but more control points can be used with no problem. It is worth mentioning that in
this framework, we only take one initial geometry. Then, starting from this geometry, we can generate
many variations of it. In general, the shape morphing task is computationally inexpensive. We would
like to emphasize that, at this point, any geometry manipulation tool can be used; the main reasons
in using MiMMO are that the input files used by this library can be easily parameterized and it also
offers mesh morphing capabilities (which are not discussed in this manuscript).

Shape morpher
(MiMMO)

Mesher
(OpenFOAM)

Solver
(OpenFOAM)

Optimizer
(DAKOTA)

Mesh quality
(OpenFOAM and VTK)

Data collection
(python and bash)

Not satisfactory

Automatic postprocessing
(python and bash)

Single input geometry

Figure 1. Optimization loop. Notice that it only takes one single geometry. During the whole
optimization loop, data are continuously collected.

Figure 2. Left: undeformed geometry. The green sphere represents the control point used to deform
the geometry; this control point can move in the plane XZ. The surface region within the selection box
is free to deform. Right: two deformed geometries.
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After generating the input geometry, we can move to the meshing phase. To mesh the
computational domain, we used the meshing tools distributed with the open-source OpenFOAM
library [26,43], namely, blockMesh and snappyHexMesh. These tools generate high-quality
hexahedral-dominant meshes and can be easily parameterized. The whole meshing process is fully
automatic and, to some extent, fault tolerant. During the meshing stage, we always monitored the
quality of the far-field mesh, the quality of the inflation layers close to the body, and the transition
between regions with different cell sizes. In the case of mesh quality problems (such as high
non-orthogonality, high skewness, too aggressive expansion ratios between cells, or discontinuous
inflation layers in critical areas), the mesh was automatically recomputed using more robust predefined
parameters, which generates better meshes but at the cost of a higher cell count. The meshing
parameters were determined using the original geometry, and two additional geometries representing
the worst case scenarios (highly deformed bulbs). The possibility of using the meshing tools in parallel
and concurrently allowed us to obtain fast outcomes.

All the numerical simulations were conducted using the open-source OpenFOAM library [26,43],
which is a multi-physics solver based on the cell-centered finite volume method. This library has been
extensively validated, counts with a wide community, is highly scalable in parallel architectures, and
the simulation setup can be easily parameterized. As soon as the optimization loop was started, the
simulations did not require continuous user supervision. Several quantities of interest (QoI) were
sampled during each computation, and in the case of anomalies (such as high oscillations in the forces,
unbounded quantities, or mass imbalance), the simulation parameters were automatically changed
to a more robust and stable discretization scheme. The default and modified solver parameters were
determined after conducting an extensive validation of the solver (as explained in Section 4). All the
simulations were run in parallel, and as the optimization method used did not require the computation
of gradients, we were able to run many simulations concurrently. The whole framework was deployed
in an out-of-the-box workstation, with 16 cores and 128 GB of RAM. As all the tools used require only
publicly available compilers and libraries, the same framework can be easily deployed in distributed
memory HPC architectures.

At this point, we need to define the optimization strategy. One major obstacle to the use of
optimization in CFD is the long CPU times of the simulations and, depending on the method used,
the need for computing gradients or the need for running a large number of simulations to obtain
the design space sensitivities. Therefore, due to the long computational times and the lack of analytic
gradients, optimization in CFD is a slow iterative-converging task. With this in mind, we need
to choose an optimization method that is reliable, computationally affordable, and will meet our
deadlines.

Gradient-based methods have good converging rates, but they require the computation of the
gradients (and depending o the method used, they might require the computation of the Hessians),
and in the presence of a large design space these quantities can be very expensive to compute.
Gradient-based methods also require some basic knowledge of the problem, as well as some input
parameters (e.g., starting point in the parameter space, bounds of the design variables, iterative
and gradients tolerances, how to compute the derivatives, and so on), and they do not give much
information regarding the global behavior of the design space. Additionally, they do not guarantee the
convergence to a global optimal value. On the other hand, global derivative-free methods have slow
convergence rates, but they are more likely to converge to the global optimal value than local methods.
Also, since they do not require the computation of the gradients, they behave quite well in the presence
of numerical noise. However, to reach the optimal value, they need to perform a large number of
function evaluations, which can impose serious time limitations, especially if we are running unsteady
CFD simulations.

Another approach to conduct optimization is the so-called surrogate-based optimization (SBO),
which is the method used in this study. The SBO method consists of constructing a mathematical
model (also known as a surrogate, response surface, meta-model, emulator) from a limited number
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of observations (CFD simulations, in our case). After building the surrogate, the optimization can be
performed at this level. Furthermore, during the design space exploration process, SBO provides a
better global understanding of the problem, allowing the use of exploratory data analysis techniques
and machine learning methods to get more insight, discover hidden patterns, and detect anomalies in
the design space. In Figure 3, we illustrate the basic work-flow of the SBO method. The work-flow
is rather simple; we start by conducting a limited number of simulations (design space exploration).
After gathering the information at the design points, we can use those observations to construct the
mathematical model or surrogate. At this point, we can validate the surrogate by comparing the values
obtained from the high-fidelity simulations against the predicted values using the surrogate, or we can
refine the surrogate by adding more training points. After building, validating, and improving the
meta-model, we can use any optimization method to find the optimal value. Working at the surrogate
level is orders of magnitude faster than working at the high-fidelity level [44].

It is important to mention that more sophisticated SBO techniques exist, such as efficient global
optimization (EGO), gradient-enhanced meta-models, and adaptive sampling response surfaces [38,
44–47]. We did not use any of those state-of-the-art SBO approaches, because we were more interested
in showing that complicated code coupling and complex optimization studies using traditional
meta-models methods could be achieved using the Dakota library. However, the library gives the
possibility to use EGO and gradient-enhanced Kriging emulators; if these methods are not enough, the
user can add an external library to the optimization loop.

As already stated, surrogate models are inexpensive approximate models that are intended to
capture the salient features of expensive high-fidelity experiments or observations. To construct the
surrogate or meta-model, many methods are available, just to name a few: polynomial regression,
Kriging interpolation, radial basis functions, neural networks, adaptive splines, and so on. In this work,
we used Kriging interpolation, which is an interpolation method for which the interpolated values
are modeled by a Gaussian process [44,48]. The implementation details of the Kriging interpolation
method used in this work (universal Kriging), can be found in References [38,44,45,48–52]. In the
Kriging interpolation method, the meta-model is forced to pass by all the observations, and in the
presence of noise in the response, the surrogate can be smoothed. Kriging interpolation is well fitted
for engineering design optimization problems which usually are nonlinear, multivariate, multi-modal,
and noisy.
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Figure 3. Surrogate-based optimization work-flow.

To get a better idea of how the SBO method works, let us use a toy function to go through every
step of the work-flow. We will use the Branin function, which is defined as follows:

f (x, y) =
(

y − 5.1
4π2 x2 +

5
π

x − 6
)2

+ 10
(

1 − 1
8π

)
cos(x) + 10

s.t. − 5 ≤ x ≤ 10

s.t. 0 ≤ y ≤ 15

(1)

this equation with the given bounds has three minima, located at

(x, y) = (−π, 12.275), (π, 2.275), (9.42478, 2.475) (2)

where the minimum value in the three locations is equal to

f (x, y) = 0.397887 (3)

The Branin function (which is highly nonlinear and multi-modal) can easily represent the output
of a CFD study. In SBO, the first step consists of exploring the design space in a precise and economical
way. In Figure 4, we present the output of two sampling methods, namely, a full-factorial experiment
and a space-filling experiment using Latin hypercube sampling (LHS) [44]. In each point illustrated in
Figure 4 (bottom images), high-fidelity function evaluations were computed.
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The next step consists of generating the surrogate model using the information gathered from
the sampling plan. In Figure 4, we show the surrogates for both sampling experiments and the
analytical solution. As it can be seen, there is no discernible difference between both models and the
analytical solution, and this is an indication that the models are accurate. However, to construct a
well-fitted surrogate, the full-factorial experiment needs more observation points (especially in high
multi-dimensional cases, where the number of experiments increases to the power of the number of
design variables), and this translates into higher computing times. It is clear that the quality of the
surrogate depends on the number of observations; therefore, if at this point we observe differences
between the meta-model and the analytical solution, we can add new points and compute a better
surrogate. In SBO, the model can be trained as we gather the data, and we can even use multi-fidelity
models and a mixture of physical experiments and computational experiments to construct the
surrogate. Finally, after constructing the meta-model, we can conduct the optimization study at the
surrogate level using any optimization method.

Figure 4. Top: analytical solution. Bottom-left: surrogate model using a full-factorial experiment with
64 training points. Bottom-right: surrogate model using a space-filling experiment with 30 training
points (Latin hypercube sampling, LHS).

To demonstrate the advantages of using SBO, we compared its performance against the
performance of a gradient-based method (method of feasible directions [53]), and a derivative-free
method (single-objective genetic algorithm or SOGA [54]). All methods used were able to find the
three minima; the main difference was the number of iterations used and the information provided
by the user to start the optimization algorithm. The gradient-based method used 217 high-fidelity
function evaluations, where we used a multi-start technique in which multiple start locations were
given (this was needed in order to find the multiple minima), and we computed the gradients using
forward differences. The derivative-free method used 1200 high-fidelity iterations and did not require
any input information from the user (we used the recommended default parameters). Finally, the SBO
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method used 30 high-fidelity observations (space-filling experiment). These observations were used to
construct the meta-model, then, at the surrogate level, derivative-free and gradient-based methods
were used to find the minimum. The SBO method has the added value of showing information about
the global design space.

As a final example, let us use the high-dimensional Rosenbrock function to demonstrate the ability
of the SBO method in dealing with multivariate problems. The Rosenbrock function can be written in
general form as

f (x) =
d−1

∑
i=1

[
100

(
xi+1 − x2

i

)2
+ (xi − 1)2

]
s.t. − 2 ≤ x ≤ 2

(4)

this equation with the given bounds has one global minimum, defined as follows:

f (x) = 0, at x = (1, ..., 1) (5)

To conduct the SBO study, we proceed in the same way as for the Branin function. At the
high-fidelity level, we used two gradient-based methods, namely, the method of feasible directions [53]
and the quasi-Newton BFGS update method [55]. Both methods converged to the global minimum,
but the BFGS method showed a better convergence rate. At the surrogate level we used three methods:
two gradient-based methods (same methods as in the high-fidelity study) and one derivative-free
method, namely, the DIRECT method (DIvide a hyperRECTangle [56]). The surrogate was constructed
using 500 observations, which roughly correspond to the same number of function evaluations in the
best case of the high-fidelity optimization studies (refer to Table 1). It is noteworthy that as we have a
mathematical representation of the design space, the gradients were computed analytically during the
SBO study.

The outcome of this SBO study is presented in Table 1. As it can be seen in this table, at the
surrogate level, we get values close to the global minimum; but, due to a noisy and under-fitted
surrogate, the optimal value is under-predicted. We can also observe that the values of the design
variables 4–6 are a little bit over-predicted, but in general they follow the trend of the high-fidelity
values. One way to improve the results could be to construct a better surrogate by using a larger
number of observations. However, as the number of observations will be much higher than the number
of function evaluations in the best case of the high-fidelity optimization studies, the use of SBO is
not very attractive, especially if the computation of the QoI is expensive. Another way to improve
the surrogate is by using infilling, which consists of adding new points to the training set and then
reconstructing the surrogate. For example, we can add a new point in the location of the predicted
optimal value and a few new points in areas where high nonlinearities are observed or are close to the
optimal value, recompute the surrogate, and find the new optimal value. It is worth mentioning that
we also used 200 experiments to conduct the SBO study, but due to the coarseness of the space-filling
sampling, the surrogate was under-fitted; therefore, the optimization studies failed to converge or give
similar trends to the ones shown in Table 1.
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Table 1. Outcome of the optimization study of the high-dimensional Rosenbrock function. In the
table, observations refer to the number of experiments used to construct the surrogate. Note that the
same starting point (x = 0) was used for all the design variables in the gradient-based optimization
studies. In the table, DV stands for design variable, HF stands for high-fidelity simulations, SBO
stands for surrogate-based optimization, MFD stands for method of feasible directions, QN stands for
quasi-Newton BFGS method, and DR stands for division of rectangles derivative-free method.

- HF-MFD HF-QN SBO-MFD SBO-QN SBO-DR

DV-1 0.999 0.999 0.958 0.958 0.993

DV-2 0.999 0.999 0.992 0.994 1.007

DV-3 0.998 0.999 1.004 0.999 0.998

DV-4 0.997 0.998 1.115 1.091 1.037

DV-5 0.995 0.996 1.208 1.189 1.058

DV-6 0.989 0.992 1.317 1.251 1.108

QoI 0.00003 0.00002 −48 −48 −44

Function Evaluations 1238 420 - - -

Observations - - 500 500 500

Another advantage of SBO is that we can use exploratory data analysis and machine learning
techniques to interrogate the data obtained during the design space exploration stage. These techniques
can be used for knowledge extraction and anomaly detection. In Figure 5, we show one of the many
plots that can be used to visualize the data [57,58]. This plot is called a scatter matrix, and in one
single illustration, it shows the correlation information, the data distribution (using histograms and
scatterplots), and regression models of the responses of the QoI. The reader should be aware that,
in the context of design space exploration, exploratory data analysis and machine learning methods
should not be used with biased data, e.g., data coming from a gradient-based or derivative-free
optimization study.

By conducting a quick inspection of the scatterplot matrix displayed in Figure 5, we can see
evidence that the data is distributed uniformly in the design space (meaning that the sampling plan
is unbiased), and this is evidenced by the diagonal of the plot. By looking at the scatterplot of the
experiments (lower triangular part of the matrix), we see the distribution of the data in the design
space. If at this point we observe regions in the design space that remain unexplored, we can simply
add new training points to cover those areas. In the case of outliers (anomalies), we can remove them
from the dataset with no major inconvenience. However, we should be aware that outliers are telling
us something, so it is a good idea to investigate the cause and effect of the outliers. In the upper
triangular part of the plot, the correlation information is shown (Spearman correlation, in this case).
This information tells us how correlated or uncorrelated the data are. For example, by looking at the
last row of the plot that shows the response of the QoI, if we see a strong correlation between two
variables, it is clear that this variable cannot be excluded from the study. The opposite is also true, that
is, uncorrelated variables can be excluded from the study; therefore, the complexity of the problem is
reduced. One should be aware that for data exclusion using correlation information, we should use the
response of the QoI and not the design space distribution of the sampling plan. For a well-designed
experiment, the design space distribution is uncorrelated. Additionally, the last row of the scatter
matrix plot also shows the regression model (a quadratic model, in this case). As can be seen, this
simple plot can be used to gather a deep understanding of the problem.

To close the optimization framework discussion, we would like to stress the fact that the
optimization loop implemented is fault tolerant, so in the event of hardware or software failure,
the optimization task can be restarted from the last saved state. Moreover, during the optimization
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loop, all the data monitored are made available immediately to the user, even when running multiple
simulations at the same time (real-time data analytics). Therefore, anomalies and trends can be detected
in real time, and corrections/decisions can be made.

Figure 5. Scatterplot matrix of the high-dimensional Rosenbrock function space exploration study
(d = 6). The Spearman correlation is shown in the upper triangular part of the matrix. In the diagonal
of the matrix, the histograms showing the data distribution are displayed. In the lower triangular part
of the matrix, the data distribution is shown using scatterplots. In the last row of the matrix plot, the
response of the quantity of interest (QoI) in function of the design variables is illustrated, together with
a quadratic regression model.

3. Description of the CFD Model

All the numerical simulations described in this manuscript were conducted using the open-source
OpenFOAM library [26,43] (version 5.0). This toolbox is based on the cell-centered finite volume
method, and consists of a series of numerical discretization schemes, linear systems solvers,
velocity–pressure coupling methods, and physical models that can be used to solve multi-physics
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problems. To find the approximated numerical solution of the governing equations, and to deal with
the physics of segregated multi-phase flows, we used the solver interFoam, which is distributed with
OpenFOAM. This solver uses the volume of fluid (VoF) phase-fraction method to resolve the interface
between phases and has extensive turbulence modeling capabilities. In this work, we used the k − ω

SST turbulence model, as described in Reference [59].

3.1. Reference Geometry and Modeling Assumptions

The baseline geometry used in this study was provided by the ship manufacturer Fincantieri
and is illustrated in Figure 6. The model is scaled 1/20 in reference to the full-scale prototype, and
experimental data from towing tank tests were also provided. Due to the intellectual property of
Fincantieri on the prototype and the experimental data, this information cannot be disclosed. Therefore,
all the reference values are presented using non-dimensional numbers.

Figure 6. The baseline geometry.

During the experimental campaign, the following Froude number values were used: 0.294, 0.312,
0.331, 0.349, 0.367, and 0.386. The Froude number is defined as follows:

Fr =
V√
gL

(6)

where V is the velocity, g is the gravity, and L is a reference length. Hereafter, we used the length
between perpendiculars or LPP (in naval design, LPP is defined as the distance measured along the
load waterline between the after and fore perpendiculars) as the reference length.

The setup of the towing tank tests allowed for the model to dynamically adjust its trim angle (or
pitch angle). Conversely, the simulations reported in this manuscript were performed with a fixed
trim condition. Even if this simplification can affect the accuracy of the force prediction, it can be
considered minor in the context of this optimization study. This is chiefly due to the fact that the bulb
shape modifications can be assumed to be uninfluential to the final dynamic trim. Furthermore, low
trim angle values are recorded in the experimental data. These values are less than two degrees for
the most critical case, that is, high Froude number (or off-design conditions). In addition, the use of a
rigid-body motion solver would have considerably increased the computational requirements and
CPU time.

Hereafter, we summarize the main assumptions used during this study:

1. All simulations were performed at model scale (1/20).
2. No propeller nor appendages were modeled (bare hull).
3. Only half of the hull was simulated (we used symmetry).
4. A fixed trim condition of zero degrees was imposed.
5. All the simulations were conducted in calm water conditions and no incoming waves.
6. The thermophysical properties of the working fluids are constant (refer to Table 2).
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7. The simulations were conducted at the same Froude number as in the towing tank experiments.

Table 2. Phases transport properties used in this study.

Phase Density ρ [
kg
m3 ] Kinematic Viscosity ν [m2

s ]

Water 998.3 1.02 × 10−6

Air 1.2 1.48 × 10−5

As we are conducting a bulbous bow optimization study, we must define the design variables.
In this study, we used the parameters proposed by Kracht [20]. Kracht defined six parameters to
characterize a bulbous bow, namely, length, depth, and breadth (all linear); the cross-section; and lateral
and volumetric parameters (which are nonlinear). Hereafter, the bulb geometry was parameterized
using the length parameter CLPR (or protrusion) and depth parameter CZB (or immersion). These
parameters are defined as follows (as illustrated in Figure 7):

CLPR =
LPR
LPP

, CZB =
ZB
TFT

, (7)

These two parameters were enough to deform the geometry, and as we only used two design
variables, the design space was greatly simplified. The choice of these two parameters (in reference
to Figure 7), was driven by the interest of only moving point B in the plane x-z, as recommended by
Fincantieri. This together with the suggested bounds (0.031 ≤ CLPR ≤ 0.131 and 0.283 ≤ CZB ≤ 1.038)
will ensure that the bulbous bow volume variations remain within the acceptable values, without the
need for introducing additional design variables and nonlinear constraints.

Figure 7. Sketch showing the characteristic lengths used to define the geometry parameters. Adapted
from Reference [20].
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3.2. Computational Domain and Boundary Conditions

The computational domain is aligned with the reference system and is made up of a rectangular
box in which half of the hull geometry was placed (as depicted in Figure 8). In the domain, the x-max
face represents the inlet (where air and water enter the domain at a given velocity), the x-min face is the
outlet (where air and water go out of the domain and the water level is maintained at the same level
of the inlet level), the y-max face is the symmetry plane, the y-min face is a lateral slip wall, the z-min
face is the bottom of the domain modeled as a slip wall, and the z-max face is the top of the domain,
which is defined as an opening where only the air phase is allowed to enter or exit the domain. The
inlet and outlet patches are located 2.5 × LPP and 6 × LPP away from the bow and stern. The top and
bottom faces are placed at 1 × LPP and 3 × LPP away from the sea level. The lateral face is placed at
5 × LPP away from the symmetry plane to avoid lateral reflection of the Kelvin waves. In general, the
boundaries were placed far enough of the hull surface so there are no significant gradients normal
to the boundaries or wave reflection. When setting the domain, we followed the practical guidelines
given in Reference [60].

Figure 8. Top: coordinate system. Bottom: computational domain and boundary faces.

The hull was modeled as a no-slip wall, where we imposed wall function boundary conditions for
the turbulence variables. The forces on the hull were computed by integrating the viscous and pressure
forces over the hull surface. Finally, all the simulations were started using uniform initial conditions
for both phases. In the domain, the water phase is located below the origin of the coordinates system,
whereas the air phase is located above the coordinate system origin. All the turbulence variables were
initialized following the guidelines given by Wilcox [59].

3.3. Numerical Schemes

Hereafter, we describe the numerical setup used with OpenFOAM. During this study, a robust,
stable, and high-resolution numerical scheme was used. The cell-centered values of the variables are
interpolated at the face locations using a second-order centered differences scheme for the diffusive
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terms. The convective terms are discretized by means of a second-order linear-upwind scheme, and
to prevent spurious oscillations, a multi-dimensional slope limiter was used. To resolve the interface
between the two phases, the second-order accurate bounded total variation diminishing (TVD) scheme
of van Leer was used. For computing the gradients at the cell centers, the least squares cell-based
reconstruction method was employed. The pressure–velocity coupling was achieved by means of the
pressure-based PISO method. For turbulence modeling, the κ − ω SST turbulence model with wall
functions was used [59].

As stated earlier, one of the biggest restrictions when conducting optimization studies in CFD is
the long simulation times, especially if unsteady simulations are involved. To overcome this hurdle,
we aimed at accelerating the solution of the governing equations by looking for steady-state solutions.
In this study, we used the local time-stepping (LTS) method. In this method, the governing equations
are integrated in time using the largest possible time step for each cell. As a result, the convergence to
the steady state is considerably accelerated; however, the transient solution is no longer time accurate.
The stability and accuracy of the method are driven by the local CFL number of each cell, which was
fixed to 0.1 during the initial iterations and then gradually increased until reaching a value of 0.9. To
avoid further instabilities due to large conservation errors caused by sudden changes in the time-step
of each cell, the local time-step was smoothed and damped across the domain.

4. Calibration and Validation of the Solver

The purpose of this section is twofold. First, we validate the solver against the experimental data
available, and secondly, we calibrate the parameters of the solver and the mesher. In other words, we
look for the best parameters to be used during the optimization study, and in the case of meshing or
convergence problems, these parameters are automatically adjusted without user intervention.

In Table 3, we list the cell count and average y+ of the coarse and fine mesh used in this study.
We used at least five inflation layers to resolve the boundary layer, and we targeted for a y+ value
between 40 and 200. The results obtained from transient simulations and steady simulations using the
LTS method are displayed in Figure 9. The results illustrated correspond to the base geometry and a
Froude number equal to 0.331. Due to the intellectual property of the experimental data, from this
point on, all the results are normalized using as a reference the experimental value corresponding to
this operating condition.

Table 3. Mesh cell count and average y+.

Mesh Number of cells Average y+

Coarse ≈ 800000 ≈ 80
Fine ≈ 2800000 ≈ 7

In Figure 9, we can observe that the outcome of the steady simulations using both meshes are in
good agreement with the experimental values. Both solutions reached a steady state approximately
after 4000 iterations. Nevertheless, we let the simulations run for longer times to ascertain that
we reached good iterative convergence. Regarding the unsteady simulations, we can see that the
simulation using the fine mesh reached periodic iterative convergence after approximately 40,000
iterations. On the other hand, the unsteady simulation using the coarse mesh reached a periodic
iterative convergence after about 20,000 iterations. However, the results are slightly over-predicted
due to numerical diffusion and turbulence model uncertainties. For the unsteady simulations, the
time-step was chosen in such a way that the maximum CFL number is equal to 2, whereas, for the
steady simulations (where we used the LTS method), the CFL number was gradually increased until
reaching the value of 0.9.
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Figure 9. Comparison of the normalized resistance as a function of the iteration number for the
coarse and fine meshes. In the legend, LTS (local time-stepping) corresponds to the steady solution,
and GTS (global time-stepping, i.e., a time-step identical for all control volumes) corresponds to the
transient solutions.

In Table 4, we show the percentage error (computed with respect to the experimental data) and
the CPU time measured at 8000 iterations for each simulation plotted in Figure 9. From these results,
it becomes clear why it is important to find steady solutions when conducting optimization studies
in CFD. If we had conducted this optimization study using an unsteady solver, the computing time
of each simulation would have been about 2 times the computing time of the corresponding steady
simulation (for the same number of iterations); therefore, the total computing time of the optimization
loop would have been at least 2 times higher.

Table 4. Percentage error (with respect to the experimental data) and CPU time of the benchmark cases.
All the simulations were run in parallel with four processors. In all cases, the reported CPU time was
measured at 8000 iterations.

Benchmark Case Percentage Error CPU Time (seconds)

Steady - Coarse mesh 1.8% ≈ 12000
Steady - Fine mesh 1.1% ≈ 20000

Unsteady - Coarse mesh 6.8% ≈ 27000
Unsteady - Fine mesh 4.3% ≈ 35000

In Figure 10, we present the normalized resistance as a function of the Froude number. The results
reported were obtained using the coarse mesh and the LTS method. In the figure, a good agreement
with the experimental results is observed up to a value of Fr = 0.349, then, the percentage error starts
to increase, and this is mainly due to the fixed trim condition assumption used in this study. Moreover,
the prototype is not meant to operate at such high Froude numbers, which corresponds to off-design
conditions. In the light of this optimization study, where we know there are many uncertainties
involved, errors of this order of magnitude are acceptable given the assumptions that were taken. Also,
these discrepancies can be neglected because it is reasonable to consider that this error is constant for
each bulb shape to be simulated and is, therefore, irrelevant for the optimization loop.
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Figure 10. Comparison of the normalized resistance as a function of the Froude number. The numbers
next to the markers indicate the percentage error between the numerical results and the experimental
data.

Based on these results, we decided to use the coarse mesh as the base mesh, and in the case of
mesh quality problems, the domain mesh was automatically recomputed using improved meshing
parameters. As for the iterative method concerns, all the simulations were executed using the LTS
method, and if proper iterative convergence was reached, the simulations were automatically stopped
at 8000 iterations or until statistically stable results were obtained. These choices allowed us to obtain
fast outcomes with good accuracy.

5. Results and Discussion

Hereafter, we discuss the results obtained from the surrogate-based optimization study. All the
simulations presented in this section were conducted at a Froude number of 0.294. We would like to
stress that to get the optimization loop started, we only need one input geometry. Then, this geometry is
deformed by the shape morpher to generate new candidates. Also, the whole optimization framework
was deployed using asynchronous simulations: that is, we executed many parallel simulations at the
same time. Everything was controlled using the application coupling interface provided by Dakota.
The average time of each simulation was between 4 and 5 hours.

As discussed previously, the first step when conducting SBO studies is to generate a sampling plan
of the design space. The sampling plan should cover the design space in a uniform and well-distributed
way, without leaving large areas unexplored; also, it should be cheap to compute. It is clear that the
more information we gather during the initial sampling, the better the surrogate will be, but at the cost
of longer computing times. In this study, we used a full-factorial experiment, where we conducted
25 experiments uniformly spaced in the design space. In Figure 11, we illustrate the sampling plan,
where the uniform spaced points represent the locations where the high-fidelity computations were
computed. The sampling plan illustrated in Figure 11 was chosen because it is inexpensive to compute
(as we reduced the number of design variables to two), and it explores design points without missing
too much information between observations.
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Figure 11. Sampling plan used in this study. The square represents the original geometry, whereas
the circles represent the different geometry variations. Every point in the sampling plan represents a
location where a high-fidelity computation was computed. All the simulations were conducted at a
Froude number of 0.294.

The next step in our work-flow is to construct the surrogate (or meta-model) after conducting
the high-fidelity simulations at the sampling locations. In this study, we used Kriging interpolation
[38,44,45,48–52], which has been demonstrated to be a very reliable and accurate interpolation method
when conducting SBO studies. The only drawback of this method (if it can be considered a drawback) is
that it forces the meta-model to pass by all the points of the sampling plan; therefore, in the presence of
numerical noise, we can have surrogates with many valleys and peaks that can make the optimization
task difficult when using gradient-based methods. Nevertheless, as we are working at the surrogate
level, we can use derivative-free methods which behave better in the presence of numerical noise.

In Figure 12, we illustrate two surrogates obtained during this study. In the figure, the surrogate
in the left image was constructed using Kriging interpolation, and the one in the right image was
build using a second-order polynomial function. The color scale represents the resistance variation in
reference to the original geometry (where negative values indicate resistance reduction and positive
values indicate resistance increment). As it can be seen, the Kriging model managed to capture the
nonlinearities of the design space; we can even distinguish a valley region where the optimal solution
(or solutions) might be located. On the other hand, the polynomial model is very smooth; however, it
is not very accurate (it does not capture the nonlinearities). Nevertheless, it gives us a rough idea of
how the design space behaves.
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Figure 12. Left: surrogate model constructed using Kriging interpolation. Right: surrogate model
constructed using quadratic polynomial interpolation. In the image, the uniform spaced points
represent the locations where the high-fidelity computations were computed. The square represents
the starting geometry and the circles represent the new geometries. In both images, the color scale
represents the resistance variation in reference to the original geometry (where negative values indicate
resistance reduction, and positive values indicate resistance increment).

At this stage, we already have a surrogate of the design space, or in other words, a mathematical
representation of the design space. Our next tasks consist of validating the surrogate and conducting
the optimization study at the surrogate level. The validation merely consists of computing the predicted
value at the surrogate level in a location that has not been included in the sampling plan. Then, this
value can be compared with the value obtained using high-fidelity simulations in the same location,
and the percentage error can be computed. The optimization consists of doing the actual optimization
at the surrogate level. Remember, as we are working using a mathematical representation of the design
space, we can use any optimization method, disregarding how expensive it can be.

In this study, we found a global minimum and a local minimum; this situation is illustrated
in Figure 13. These results suggest that there is a bifurcation in the valley region, where the global
minimum is obtained when increasing the value of the design variable CZB, and the local minimum
is obtained when decreasing the value of the design variable CZB. Notice also that as we increase
the value of the design variable CZB, smaller increments of the design variable CLPR are required in
order to obtain larger resistance reduction. In Figure 13 (right image), we show the iterative path
followed by the optimization algorithm when starting from two different initial positions, where each
optimization task used about 40 iterations (function evaluations and gradient evaluations). As we
used a gradient-based method to optimize the surrogate (method of feasible directions [53]), it is clear
that we need to start the optimization algorithm from different initial locations if we want to find
the global and local minima. If we were to perform this study by directly resorting to high-fidelity
simulations, the number of simulations would be much higher than the number of simulations used
during the sampling plan.

As previously mentioned, the SBO method gives the possibility of conducting an initial screening
(or visualization) of the design space. This initial screening can be extremely helpful, especially when
dealing with high multi-dimensional optimization problems. By screening the surrogate, designers
can explore and exploit the surrogate in a more efficient way. Different optimal candidates can be
immediately identified through the subjective opinion of the designer or on the basis of external
constraints (such as manufacturing process, increased weight due to the added surface, the volume of
the new bulb, structural loads, clearances, and so on), without the need of resorting to high-fidelity
simulations (with the exception of the validation of the surrogate).

To demonstrate the validity of the surrogate, in Table 5, we show the numerical values of the
resistance reduction and the percentage error between the surrogate value and the high-fidelity
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simulations outcome. The values presented in this table were measured in five different points; namely,
the global minimum, the local minimum, and three points in the proximity of the global and local
minima. From the table, we observe that all values listed effectively reduce the resistance. We also
observe that the percentage error between the surrogate level and the high-fidelity level is about 2%
for the global and local minima cases. On the other hand, for the values measured in the vicinity of the
global and local minima, the percentage error is much larger, and this is presumably because in this
region the nonlinearities are more significant.

Table 5. Resistance reduction and percentage error (with respect to the high-fidelity simulations) of
five cases not included in the original sampling plan.

CLPR CZB Resistance Reduction Percentage Error Note

0.119 0.660 ≈ 5% ≈ 7% -
0.131 0.566 ≈ 5% ≈ 7% -
0.131 0.755 ≈ 5% ≈ 6% -
0.109947 0.762845 ≈ 7% ≈ 2% Global minima
0.14 0.515651 ≈ 6% ≈ 2% Local minima

Figure 13. Left: the × symbol represents the global minimum, and the + symbol represents the local
minimum. The square represents the starting geometry and the circles represent the new geometries.
Right: the two squares represent two different starting points of the optimization algorithm. The yellow
circles represent the path followed by the gradient-based algorithm when starting from the topmost
position, whereas the green circles represent the path followed by the gradient-based algorithm when
starting from the bottom-most position. In both images, the color scale represents the resistance
variation in reference to the original geometry (where negative values indicate resistance reduction,
and positive values indicate resistance increment).

We can also improve the surrogate by adding new points to it (this is known as infilling). For
example, we can add the points listed in Table 5 (CLPR and CZB) and recompute a new surrogate (and
optimal values). This situation is illustrated in Figure 14, where the triangle symbols represent the
new training points. In the surrogate pictured in the figure, we are able to capture with more details
the behavior of the design space close to the region where the global minimum is located. Also, we
still can see the bifurcation, where there is a clear optimal solution when we increase the value of CZB;
however, when decreasing the value CZB, the location of the new minimum is not very clear. It may be
necessary to add a new training point in this region in order to get a better surrogate. Nevertheless,
the resistance reduction values in this region are smaller; therefore, we can focus our attention on the
cases where we increase the value of CZB.
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For completeness, in Figure 15, we show the shape of the optimal bulbs at the design conditions
corresponding to the global minimum and the local minimum. From all the results presented in this
section, it is clear that surrogate-based optimization is an effective design tool for engineering design.
However, the user should be cautious when constructing the surrogate, because the whole method
depends on the quality of the meta-model. It is always recommended to validate the surrogate, do
infilling using the optimal solutions, and add a couple of extra points in areas where high nonlinearities
are observed or are close to the optimal values.

Figure 14. Improved surrogate using infilling. The square represents the starting geometry and the
circles represent the new geometries. The triangles represent the infill points used. The color scale
represents the resistance variation in reference to the original geometry (where negative values indicate
resistance reduction, and positive values indicate resistance increment).

Figure 15. Bulbous bow shapes. Left: original shape. Middle: shape obtained at global minimum.
Right: shape obtained at local minimum.

6. Conclusions and Future Perspectives

In this manuscript, we present an open-source optimization framework to perform industrial
optimization studies. The optimization loop implemented allows for asynchronous simulations (i.e.,
many simulations can be run at the same time), and each simulation can be run in parallel; this allows
to considerably reduce the output time of the optimization iterations. The optimization loop is fault
tolerant and software agnostic, and it can be interfaced with any application able to interact using
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input/output files via a command line interface. The code coupling capabilities were provided by the
library Dakota [28], and all the tools used in this work are open-source and free.

As for the optimization strategy concerns, we used surrogate-based optimization; this technique
is very well suited to engineering design, as it allows designers and engineers to efficiently optimize
and explore the design space from a limited number of training observations, without resorting to too
many expensive high-fidelity simulations. To demonstrate the usability and flexibility of the proposed
framework, we tested it in a practical case related to the naval industry, where we aimed at optimizing
the shape of a bulbous bow to minimize the hydrodynamic resistance. We must highlight that the
framework discussed in this work is general enough so that it may be used in any engineering design
application.

During the optimization at the surrogate level, we found a global minimum. The shape of the
optimal solution at the global minimum corresponds to a longer bulb and slightly shifted upwards.
The resistance reduction at the global minimum design conditions is on the order of 7% at the
surrogate level. The difference in resistance reduction between the global minimum at the surrogate
level and the corresponding high-fidelity value is on the order of 2% (which is deemed more than
acceptable). However, as optimization can be very abstract (e.g., balance between aesthetics and
usability, operational requirements related to clearances, constraints related to weather conditions,
ease of manufacturing new shapes, and so on), we further explored the meta-model and we found
a local minimum corresponding to a configuration where we decreased the value of the design
variable CZB in reference to the original geometry. At this design condition, the resistance reduction
is on the order of 6%, with a difference between the local minimum at the surrogate level, and the
corresponding high-fidelity value on the order of 2%. At this point, the optimal solution depends
on the designer criteria and external constraints. These results demonstrate that design candidates
showing considerable resistance reduction can be found using surrogate-based optimization, with
very affordable computational times for the overall optimization task.

Finally, the results presented are limited to fixed trim, two design variables of the bulbous bow,
and a single Froude number for the optimization study. We envisage the extension of the current work
to rigid body simulations, and the exploration of the design space at different Froude numbers to
determine if there is a dependence between protrusion and immersion of the bulbous bow and Froude
number. We also look upon using a more complex parameterization of the bulbous bow geometry and
conducting multi-objective optimization.
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Abstract: Multiobjective optimization plays an increasingly important role in modern applications,
where several criteria are often of equal importance. The task in multiobjective optimization and
multiobjective optimal control is therefore to compute the set of optimal compromises (the Pareto
set) between the conflicting objectives. The advances in algorithms and the increasing interest in
Pareto-optimal solutions have led to a wide range of new applications related to optimal and feedback
control, which results in new challenges such as expensive models or real-time applicability. Since
the Pareto set generally consists of an infinite number of solutions, the computational effort can
quickly become challenging, which is particularly problematic when the objectives are costly to
evaluate or when a solution has to be presented very quickly. This article gives an overview of recent
developments in accelerating multiobjective optimal control for complex problems where either PDE
constraints are present or where a feedback behavior has to be achieved. In the first case, surrogate
models yield significant speed-ups. Besides classical meta-modeling techniques for multiobjective
optimization, a promising alternative for control problems is to introduce a surrogate model for the
system dynamics. In the case of real-time requirements, various promising model predictive control
approaches have been proposed, using either fast online solvers or offline-online decomposition.
We also briefly comment on dimension reduction in many-objective optimization problems as another
technique for reducing the numerical effort.

Keywords: multiobjective optimization; optimal control; model order reduction; model predictive
control

MSC: 90C29; 49M37

1. Introduction

There is hardly ever a situation where only one goal is of interest at the same time.
When performing a purchase for example, we want to pay a low price while getting a high quality
product. In the same manner, multiple goals are present in most technical applications, maximizing
quality versus minimizing the cost being only one of many examples. This dilemma leads to the field
of multiobjective optimization, where we want to optimize all relevant objectives simultaneously.
However, this is obviously impossible as the above example illustrates. Generically, the different
objectives contradict each other such that we are forced to choose a compromise. While we are usually
satisfied with one optimal solution in the scalar-valued setting, there exists in general an infinite
number of optimal compromises in the situation where multiple objectives are present. The set of these
compromise solutions is called the Pareto set, the corresponding points in the objective space form the
Pareto front.
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Since the solution to a Multiobjective Optimization Problem (MOP) is a set, it is significantly more
expensive to compute than the optimum of a single objective problem, and many researchers devote
their work to the development of algorithms for the efficient numerical approximation of Pareto sets.
These advances have opened up new challenging application areas for multiobjective optimization.
In optimal control, the optimization variable is not finite-dimensional, but rather a function, typically
depending on time. The goal is to steer a dynamical system in such a way that one (or multiple)
objective is minimized. Two particularly challenging control problems are feedback control and control
problems constrained by Partial Differential Equations (PDEs). In the first case, the time for computing
the Pareto set is strictly limited, often to a small fraction of a second. In the latter case, even the
solution of single objective problems is often extremely time consuming so that the development of
new algorithmic ideas is necessary to make these problems computationally feasible.

In fact, in situations like these, surrogate models or dimension reduction techniques are a
promising approach for significantly reducing the computational effort and thereby enabling real-time
applicability. This article gives an overview of recent advances in surrogate modeling for multiobjective
optimal control problems, where the approach is to replace the underlying system dynamics by
a reduced order model, which can be solved much faster. On the other hand, it introduces an
approximation error, which has to be taken into account when analyzing convergence properties.
The article is structured as follows. In Section 2, we are going to review some basics about multiobjective
optimization, including the most popular solution methods. The two main challenges are addressed
individually in the next sections, starting with expensive models in Section 3. There are also surrogate
modeling approaches for MOPs that directly provide a mapping from the control variable to the
objective function values. Since there already exist extensive surveys for this case (cf. [1–3], for instance),
these are summarized only very briefly. In Section 4, real-time feedback control is discussed. Finally,
we briefly discuss the question of dimension reduction in the number of objectives in Section 5 before
concluding with a summary of further research directions in Section 6.

2. Multiobjective Optimization

In this section, the concepts of multiobjective optimization and Pareto optimality will be
introduced and some widely-used solution methods will be summarized. More detailed introductions
to multiobjective optimization can be found in, e.g., [4,5].

2.1. Theory

In multiobjective optimization, we want to minimize multiple objectives at the same time.
Consequently, the fundamental difference from scalar optimization is that the objective function
J : U → Rk is vector-valued. Hence, the general problem is of the form:

min
u∈U

J(u) =min
u∈U

⎛⎜⎝ J1(u)
...

Jk(u)

⎞⎟⎠
s.t. gi(u) ≤ 0, i = 1, . . . , l,

hj(u) = 0, j = 1, . . . , m,

(MOP)

where u ∈ U is the control variable and g : U → Rl , g(u) = (g1(u), . . . , gl(u))� and h : U → Rm,
h(u) = (h1(u), . . . , hm(u))�, are inequality and equality constraints, respectively. The space of the
control variables U is also called the decision space (according to the term decision variable for u
in classical multiobjective optimization), and the objective function maps u to the objective space.
Depending on the problem setup, U can either be finite-dimensional, i.e., U = Rn, or some appropriate
function space.
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Remark 1. It is common in finite-dimensional optimization to use the notation x for the control or optimization
variable and F for the objective function. In contrast to that, u and J are more common for control problems.
In order to unify the notation, the latter will be used throughout this article for all optimization and optimal
control problems.

In contrast to classical optimization, in optimal control, we have to compute an input in such a
way that a dynamical system behaves optimally with respect to some specified cost functional. Hence,
we have the system dynamics as an additional constraint, very often in the form of ordinary (ODEs) or
partial differential equations (PDEs):

ẏ(x, t) = G(y(x, t), u(t)), (x, t) ∈ Ω × (t0, te],

a(x, t)
∂y
∂n

(x, t) + b(x, t)y(x, t) = c(x, t), (x, t) ∈ Γ × (t0, te],

y(x, t0) = y0(x), x ∈ Ω,

(PDE)

where the domain of interest Ω ⊂ Rnx is a connected open set with spatial dimension nx and the
boundary is denoted by Γ = ∂Ω with outward normal vector n. The coefficients a(x, t), b(x, t) and
c(x, t) in the boundary condition are given by the problem definition. The operator G is a partial
differential operator describing the evolution of the system. The cost functional Ĵ : U × Y → Rk

of an optimal control problem consequently depends on the control u, as well as the system state y,
which results in a multiobjective optimal control problem:

min
u∈U ,y∈Y

Ĵ(u, y) = min
u∈U ,y∈Y

⎛⎜⎜⎝
∫ te

t0
C1(y(x, t), u(t)) dt + Φ1(y(x, te))

...∫ te
t0

Ck(y(x, t), u(t)) dt + Φk(y(x, te))

⎞⎟⎟⎠
s.t. (PDE)

gi(y, u) ≤ 0, i = 1, . . . , l,

hj(y, u) = 0, j = 1, . . . , m.

(MOCP)

There are articles on multiobjective optimal control that specifically address the implications of
multiple objectives for optimal control [6,7]; see also [8] for a short survey of methods. However, for
many problems, there exists a unique solution y for every u such that (MOCP) can be simplified
by introducing a so-called control-to-state operator S : U → Y ; see [9] for details. By setting
Ĵ(u, y) = Ĵ(u,Su) = J(u), the problem is transformed into (MOP). For this reason, we will from
now on only consider (MOP).

In the situation where U is a function space (i.e., in the case of optimal control), the problem can
be numerically transformed into a high-, yet finite-dimensional problem in a direct solution method
via discretization, cf. [10,11]. This results in a large number of control variables, which can be very
challenging on its own in multiobjective optimization. If the system dynamics are governed by a PDE,
then the spatial discretization of the state y results in an even higher number of unknowns, which can
easily reach several millions or more [12].

In contrast to single objective optimization problems, there exists no total order of the objective
function values in Rk with k ≥ 2 (unless they are not conflicting). Therefore, the comparison of values
is defined in the following way [4]:

Definition 1. Let v, w ∈ Rk. The vector v is less than w (denoted by v < w), if vi < wi for all i ∈ {1, . . . , k}.
The relation ≤ is defined in an analogous way.
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A consequence of the lack of a total order is that we cannot expect to find isolated optimal points.
Instead, the solution to (MOP) is the set of optimal compromises (also called the Pareto set or set of
non-dominated points):

Definition 2. Consider the multiobjective optimization problem (MOP). Then:

1. a point u∗ dominates a point u, if J(u∗) ≤ J(u) and J(u∗) �= J(u).
2. a feasible point u∗ is called globally Pareto optimal if there exists no feasible point u ∈ U dominating u∗.

The image J(u∗) of a globally Pareto optimal point u∗ is called a globally Pareto optimal value. If this
property holds in a neighborhood U(u∗) ⊂ U , then u∗ is called locally Pareto optimal.

3. the set of non-dominated feasible points is called the Pareto set PS and its image the Pareto front PF.

A consequence of Definition 2 is that for each point that is contained in the Pareto set (the red line in
Figure 1a), one can only improve one objective by accepting a trade-off in at least one other objective.
Figuratively speaking, in a two-dimensional problem, we are interested in finding the “lower left”
boundary of the feasible set in objective space (cf. Figure 1b).

(a)

J1(u)

J
2
(u

)

J
∗

(b)

Figure 1. The red lines are the Pareto set (a) and Pareto front (b) of an exemplary multiobjective
optimization problem (two paraboloids) of the form minu∈R J(u), J : R2 → R2. The point J∗ = (0, 0)�

is called the utopian point.

Similar to single objective optimization, a necessary condition for optimality is based on the
gradients of the objective functions. The first order conditions were independently discovered by
Karush in 1939 [13] and by Kuhn and Tucker in 1951 [14]. Due to this, they are widely known as the
Karush–Kuhn–Tucker (KKT) conditions:

Theorem 1 ([14]). Let u∗ be a Pareto-optimal point of Problem (MOP), and assume that ∇hj(u∗) for
j = 1, . . . , m and ∇gs(u∗) for s = 1, . . . , l are linearly independent. Then, there exist non-negative scalars
α1, . . . , αk ≥ 0 with ∑k

i=1 αi = 1, γ ∈ Rm and μ ∈ Rl such that:
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k

∑
i=1

αi∇Ji(u∗) +
m

∑
j=1

γj∇hj(u∗) +
l

∑
s=1

μs∇gs(u∗) = 0,

hj(u∗) = 0, j = 1, . . . , m,

gs(u∗) ≤ 0, s = 1, . . . , l,

μsgs(u∗) = 0, s = 1, . . . , l,

μs ≥ 0, s = 1, . . . , l.

(KKT)

The set of points satisfying these conditions is called the set of substationary points PS,sub [4].
Obviously, PS,sub is a superset of the Pareto set PS. Many algorithms for MOPs compute the set of
substationary points, in particular gradient-based methods, as we will see in the next section. This set
can be reduced to the Pareto set in a consecutive step by performing a (comparatively inexpensive)
non-dominance test.

2.2. Solution Methods

Many researchers in multiobjective optimization focus their attention on developing efficient
algorithms for the computation of Pareto sets. Algorithms for solving MOPs can be compiled
into several fundamentally different categories of approaches. The first category is based on
scalarization techniques, where ideas from single objective optimization theory are extended to
the multiobjective situation. All scalarization techniques have in common that the Pareto set
is approximated by a finite set of Pareto-optimal points, which are computed by solving scalar
subproblems. Consequently, the resulting solution methods involve solving multiple optimization
problems consecutively. Scalarization can be achieved by various approaches such as the weighted-sum
method, the ε-constraint method, normal boundary intersection or reference point methods [4,5,15].

Continuation methods make use of the fact that under certain conditions, the Pareto set is a
smooth manifold of dimension k − 1 [16]. This means that one can compute the tangent space in each
point of the set, and a predictor step is performed in this space. The resulting point then has to be
corrected to a Pareto-optimal solution using a descent method [17].

Another prominent approach is based on evolutionary algorithms [18,19], where the underlying
idea is to evolve an entire population of solutions during the optimization process. Significant advances
have been made concerning Multiobjective Evolutionary Algorithms (MOEAs) in recent years [20,21]
(see also [22] for a survey) such that they are nowadays the most popular choice for solving MOPs
due to the applicability to very complex problems and being easy to use in a black box fashion.
Since convergence rates can be relatively slow for MOEAs, they can be coupled with locally fast
methods close to the Pareto set. These approaches are known as memetic algorithms; see, e.g., [23–26].

Set-oriented methods provide an alternative deterministic approach to the solution of MOPs.
Utilizing subdivision techniques, the desired Pareto set is approximated by a nested sequence of
increasingly refined box coverings [27–29]. This way, a superset is computed, which converges to the
desired solution, even in situations where the Pareto set is disconnected. However, their complexity
depends on both the dimension of the Pareto set, as well as the decision space dimension. Due to this,
one has to take additional steps to apply these algorithms for multiobjective optimal control problems.

Depending on the method of choice, gradient information can be used to accelerate convergence.
While this is widely accepted in scalar-valued optimization, this is less the case when multiple
objectives are present [30]. Nonetheless, many approaches exist where gradients are exploited,
for example in order to create sequences converging to single points [31–33], to compute the entire set of
valid decent directions [30,34], to obtain superlinear or quadratic convergence [35,36] or in combination
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with evolutionary approaches (memetic algorithms) [37–41]. In many of the gradient-based methods,
the descent direction for all objectives is a convex combination of the individual gradients:

q(u) =
k

∑
i=1

α̂i∇Ji(u). (1)

Here, α̂ is a fixed weight vector, which is determined in such a way that:

〈q(u),∇Ji(u)〉 < 0 ∀ i = 1, . . . , k, (2)

see, e.g., [31,32]. In the unconstrained case, there exists no u satisfying (2) only if ‖q(u)‖ = 0,
which implies that u is substationary, cf. (KKT).

3. Surrogate Models

The ever-increasing computational capabilities allow us to analyze more and more complicated
systems with a very large number of degrees of freedom, also in the context of optimal control, where
practical problems range from process control [42,43] and energy management [15] over space mission
design [44] to mobility and autonomous driving [45–48].

The above-mentioned examples can all be described by ordinary differential equations with a
finite-dimensional state space Y . In contrast to these problems, many phenomena in physics such
as mechanical strain, heat flow, electromagnetism, fluid flow or even multi-physics simulations
are governed by partial differential equations. Using numerical discretization schemes for the
approximation of the spatial domain (such as finite elements or finite volumes) results in a very large
number of degrees of freedom and a heavy computational burden. For more complex systems (such as
turbulent flows [49]), simulating the dynamics is already very costly. Consequently, optimal control
of these systems is all the more challenging, and considering multiple objectives further increases
the cost. Due to this reason, only a few problems have been addressed directly; see, e.g., [50–53].
A method exploiting the special structure in the system dynamics has been proposed in [54], and a
special case of Pareto-optimal solutions, namely Nash equilibria, has been computed in [55,56] (When
not using a priori selection methods such as scalarization or Nash equilibria, a decision maker selects
the appropriate solution. This is called Multi-Criteria Decision Making (MCDM) [57] and is an entire
area of research on its own. Thus, we will not go into further details about the decision making
process here.).

A very popular approach to circumvent the problem of prohibitively large computational cost
is the use of surrogate models. Here, the exact objective function J(u) is replaced by a surrogate
Jr(u), where the superscript r stands for reduced. In many situations, this surrogate function can
be evaluated faster by several orders of magnitude. The challenge here is to find a good trade-off
between acceleration and model accuracy, and many approaches have been proposed over the past
two decades.

In optimal control, there are two fundamentally different ways for model reduction. The first
case, which is equivalently applicable to multiobjective optimization problems, is to directly derive
a surrogate for the objective function, i.e., Jr : U → Rk is constructed by polynomials, radial basis
functions or other means. In optimal control, an alternative way of reducing the computational effort
is by introducing a reduced model for the system dynamics:

Jr(u) = Ĵr(u, y) = Ĵ(u,S ru),

where the reduced control-to-state operator S r indicates that the model reduction is due to a surrogate
model for the system dynamics.

In both situations, we cannot expect that Jr(u) = J(u) holds for all u ∈ U . Instead, we introduce an
error, which has to be taken into account. This is closely related to questions concerning uncertainty and
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noise. In this context, many researchers have addressed inaccuracies. In [58], the notion of ε-efficiency
(cf. Definition 3) was first introduced in order to handle uncertain objective values. Uncertainty has also
been considered in the context of multiobjective evolutionary computation (see, e.g., [59–61]. Alternative).
Methods such as probabilistic [62,63], deterministic [64] or set-oriented approaches [65,66] have also
been proposed. The special case of many-objective optimization is covered in [67], and applications are
addressed in [68,69]. A different approach to uncertainties is via robust algorithms. Several examples
from multiobjective optimization, as well as optimal control can be found in [43,70–72].

In the following, we will first introduce some results concerning inaccuracies in multiobjective
optimization in Section 3.1 and then give an overview of existing methods for both of the
above-mentioned approaches, i.e., surrogate models for the objective function (Section 3.2) or for the
system dynamics (Section 3.3). Since the first approach has already been covered extensively in several
surveys [1–3], we only give a brief overview of the existing methods and the corresponding references.

3.1. Inaccuracies and ε-Dominance

When using surrogate models in order to accelerate the solution process, we have to accept an
error both in the objective function, as well as the respective gradients. Furthermore, inaccuracies
may occur due to stochastic processes or due to unknown model parameters. In these situations,
the objective function and the corresponding gradients are only known approximately, which has to
be taken into account.

Suppose now that we only have approximations Jr(u),∇Jr(u) of the objectives Ji(u) and the
gradients ∇Ji(u), i = 1, . . . , k, respectively. Furthermore, let us assume that upper bounds ε, κ ∈ Rk

for these errors are known:

‖Jr
i (u)− Ji(u)‖2 ≤ εi ∀u ∈ U , (3)

‖∇Jr
i (u)−∇Ji(u)‖2 ≤ κi ∀u ∈ U . (4)

In this situation, we need to replace the dominance property 2 by an inexact version, also known
as ε-dominance (see also [58,69]):

Definition 3 ([66]). Consider the multiobjective optimization problem (MOP) where the objective function
J(u) is only known approximately according to (3). Then:

1. a point u∗ confidently dominates a point u, if Jr(u∗) + ε ≤ Jr(u)− ε and Jr
i (u

∗) + εi < Jr
i (u)− εi for

at least one i ∈ 1, . . . , k.
2. The set of almost non-dominated points, which is a superset of the Pareto set PS, is defined as:

PS,ε =
{

u∗ ∈ U
∣∣∣�u ∈ U which confidently dominates u∗

}
. (5)

The concept of ε-dominance is visualized in Figure 2. Theoretically, the true point could be
anywhere inside the box defined by ε such that in the cases (a)–(c), the lower left point does not
confidently dominate the other point. The necessary condition is violated for one component in (a)
and (b), respectively, and for both components in (c). The gray points in Figure 2a show a possible
realization of the true points in which no point is dominated by the other. In (d), the orange point
confidently dominates the black one, and in (e), we see the implications for the computation of
Pareto fronts. Due to the inexactness, the number of points that are not confidently dominated
is larger than in the exact case. This is also evident in Figure 3, where the exact and the inexact
solution of an example problem from production [32] have been computed with an extension of the
subdivision technique presented in [27], cf. [66] for details. Here, inexactness is introduced due to
uncertainties in pricing. ε-dominance can be used for the development of algorithms for MOPs with
uncertainties [59,61–63,65,67,68], for accelerating expensive MOPs [60,66,73], as well as for increasing
the number of compromise solutions for the decision maker [63–65,69].
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When considering gradient-based methods, inaccuracies in the gradients (Equation (4)) have to be
taken into account. Since only approximations of the true gradient are known, these result in an inexact
descent direction qr(u). The inaccuracy in the gradients introduces an upper bound for the angle
between the individual gradients ∇Jr

i (u) and the descent direction qr(u). This is equivalent to a lower
bound α̂min for the weight vector, i.e., α̂i ∈ [0, 1] in Equation (1) has to be replaced by α̂r

i ∈ [α̂min,i, 1] for
i = 1, . . . , k:

qr(u) =
k

∑
i=1

α̂r
i∇Jr

i (u); (6)

see [66] for a detailed discussion. The additional constraint ensures that if qr(u) is a descent direction
for the inexact problem, it is also a descent direction for the true problem. Furthermore, we obtain a
criterion for the accuracy up to which we can compute PS,sub based on inexact gradient information.

(a) (b)

(c) (d) (e)

Figure 2. Example for the ε-dominance property. A point-wise comparison is illustrated in (a)–(d).
The uncertainties are marked by the dashed boxes. Only in case (d), the lower left point confidently
dominates the other point. In (e), the entirety of Pareto fronts for the exact problem (PF) and the inexact
problem (PF,ε) are shown in red and orange, respectively.
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Figure 3. Example for an Multiobjective Optimization Problem (MOP) from production [32] where
inexactness is introduced due to uncertainties in pricing. The Pareto set PS for the exact problem is
shown in (a), and the inexact set PS,ε is shown in (b).
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Theorem 2 ([66]). Consider the multiobjective optimization problem (MOP) without constraints. Only
approximate gradients according to (4) are available, and consequently, the descent direction is also only known
approximately according to Equation (6). Assume that ‖qr(u)‖2 �= 0 and ‖∇Jr

i (u)‖2 �= 0 for i = 1, . . . , k. Let:

α̂min,i =
1

‖∇Jr
i (u)‖2

2

⎛⎜⎜⎝‖qr(u)‖2κi −
k

∑
j=1
j �=i

α̂j (∇Jr
i (u) · ∇Jr

i (u))

⎞⎟⎟⎠ , i = 1, . . . , k.

Then, the following statements are valid:

(a) If ∑k
i=1 α̂min,i > 1 then there exists no direction q(u) with:

〈q(u),∇Ji(u)〉 < 0 ∀ i = 1, . . . , k,

i.e., no descent direction for the exact problem.
(b) All points u with ∑k

i=1 α̂min,i = 1 are contained in the set:

PS,κ =

{
u ∈ Rn

∣∣∣ ∥∥∥ k

∑
i=1

α̂i∇Ji(u)
∥∥∥

2
≤ 2‖κ‖∞

}
. (7)

A combination of Theorem 2 with the subdivision algorithm from [27] is shown in Figure 4.
The algorithm constructs a nested sequence of increasingly refined box coverings, which converges to
the set of substationary points where in the unconstrained case, ‖q(u∗)‖ = 0 holds for all u∗ ∈ PS,sub.
The set PS,sub is shown in red in Figure 4a. Due to the inexactness, we can no longer guarantee
‖q(u∗)‖ = 0. Instead, we obtain the set PS,κ , which is shown in green. The background is colored
according to the optimality condition ‖q(u)‖ of the exact problem, and the dashed white line indicates
the error bound (7) from the above theorem.
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Figure 4. Exact and inexact solutions (PS and PS,κ) for a simple example with J : R2 → R2, cf. [66]
for details. (a) The sets PS and PS,κ (for a random error with κ = (0.01, 0.01)�) are shown in red and
green, respectively. The background is colored according to the optimality condition ‖q(u)‖, which
has to be zero for all substationary points. The dashed white line shows the error bound as derived in
Theorem 2. (b) The corresponding Pareto fronts.

3.2. Surrogate Models for the Objective Function

The most straight-forward approach for introducing a surrogate model is to directly construct a
map from the control to the decision space. This means that only the essential input-output behavior
is covered, whereas internal states, as well as the system dynamics are neglected. Using such a meta
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model, one can very quickly obtain the objective function value for every u. This approach is equally
applicable in finite-dimensional multiobjective optimization and has been used extensively in this
context. To this end, we will only briefly cover the main questions that have to be addressed when
using such models.

In special cases, one can exploit some structure in the problem formulation that yields a simplified
analytic expression. However, in most cases, even if the equations can be written down in closed
form, this approach requires a deep understanding of the underlying system, which is often hard to
obtain. Moreover, small changes in the problem setup may result in having to repeat this tedious
process all over. Due to these reasons, data-based approaches are used much more frequently. They are
often easy to apply and much more general. In these approaches, the original objective function (or
even a real-world experiment) is evaluated for a small number of inputs that are contained in the
set Uref = {u1, . . . , up}, where p is the number of function evaluations (or experiments). The data
points J(u1)–J(up) are then used to fit the meta model such as, e.g., the coefficients of a polynomial
basis. Obviously, the choice of suitable ansatz functions is essential for the success of a meta modeling
strategy. Popular choices are:

• Response Surface Models (RSM);
• Radial Basis Functions (RBF);
• statistical models such as Kriging or Gauss regression;
• machine learning methods such as artificial neural networks or support vector machines;

See [1] for an extensive survey in the context of multiobjective optimization. Additional surveys
can be found in [74], where different statistical methods are compared, in [3,75] in relation to MOEAs
or in [76], where RSM and RBF are compared for crashworthiness problems.

Besides selecting the correct meta model, questions concerning the training dataset have to
be answered:

1. How large does the set Uref have to be?
2. How can we pick the correct elements for Uref?
3. Do we define Uref in advance or online during the model building process?

In addition to the meta model, Point 1 significantly depends on the problem under consideration.
The more non-linear a problem is, the more data points are generally required to accurately construct a
meta model. Obviously, the number also depends on Point 2, the locations u1–uk of these evaluations.
The question of choosing the correct location is closely related to the field of optimum experimental
design or Design of Experiments (DoE); see, e.g., [77,78]. The relevant question there is how to optimally
pick a set of experiments such that the overall approximation error becomes minimal. Such approaches
have successfully been coupled with multiobjective optimization in [79,80]. Point 3 depends both
on the meta modeling approach, as well as the problem under consideration. In some situations
(e.g., for real-world experiments), it may not be possible to iteratively determine the experiments.
Instead, a batch approach has to be used. In computer experiments, flexibility is often higher such
that an interplay between model building and high-fidelity evaluations can help to further reduce
the number of experiments. In the context of machine learning, this process is also known as active
learning [81,82].

Many algorithms combining multiobjective optimization and meta modeling have been proposed,
and there exists a vast literature concerning this topic. Table 1 on page 17 mentions both survey articles
and a (non-exhaustive) selection of popular methods.

3.3. Surrogate Models for the Dynamical System

The above-mentioned meta modeling methods are widely studied and have been successfully
applied in a large variety of multiobjective optimization problems. In the context of control, there exists
an alternative option, which is to derive a surrogate model for the system dynamics, i.e., to replace the
high-fidelity control-to-state operator S by a less expensive surrogate model S r. Since the largest part
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of the computational effort is due to solving the dynamical system, by this, the reduced cost function
Jr(u) = Ĵr(u, y) = Ĵ(u,S ru) is also much less expensive to evaluate.

The use of Reduced Order Models (ROMs) is not limited to control, but has been used successfully
in a large variety of multi-query problems [12], and several extensive surveys have been written on
reduced order modeling and using ROMs in prediction, uncertainty quantification or optimization;
see [83–85]. For nonlinear problems, the two most widely-used approaches are the reduced basis
method and Proper Orthogonal Decomposition (POD) (also known as Principal Component Analysis
(PCA) or Karhunen–Loève decomposition).

3.3.1. ROMS via Proper Orthogonal Decomposition or the Reduced Basis Method

Numerically solving a PDE is generally realized by discretizing the spatial domain with a
numerical mesh using finite differences, finite elements or finite volumes. By this, the infinite-dimensional
state space Y is transformed into a finite-dimensional space YN via Galerkin projection:

y(x, t) ≈ yN(x, t) =
N

∑
i=1

zN
i (t)φi(x). (8)

Here, N denotes the number of degrees of freedom, and φi(x) are basis functions with local
support such as indicator functions or hat functions. This transforms the PDE into an N-dimensional
ordinary differential equation for the coefficients z. For complex domains, as well as complex dynamics,
the dimension can easily reach the order of millions such that solving the problem in YN can quickly
become very expensive, which is particularly challenging in the multi-query case.

The general concept in projection-based model reduction is therefore to find an appropriate
space Y r with dimension � � N in which the system dynamics can nevertheless be approximated
with sufficient accuracy. The two most common approaches to do this are the Reduced Basis (RB)
method and Proper Orthogonal Decomposition (POD). In both cases, we compute s so-called snapshots
of the high-dimensional system and then use the dataset {yN

1 , . . . , yN
s } to construct a reduced basis

ψ = {ψ1, . . . , ψ�} such that:

y(x, t) ≈ yN(x, t) ≈ yr(x, t) =
�

∑
i=1

z�i (t)ψi(x).

The following example describes this approach in more detail. For an extensive introduction,
the reader is referred to [86,87].

Example 1 (Heat equation). Suppose we want to solve the time-dependent heat equation on a domain Ω with
homogeneous Neumann conditions on the boundary Σ:

yt(x, t)− λΔy(x, t) = 0, (x, t) ∈ Ω × (t0, te],

y(x, 0) = y0(x), x ∈ Ω,

yn(x, t) = 0, (x, t) ∈ Σ × (t0, te].

(9)

Here, y is the temperature, and λ is the heat conductivity. The subscripts t and n indicate the derivatives
with respect to time and the outward normal vector of the boundary, respectively. We now derive the weak
form of (9) by multiplying with a test function ϕ and integrating over the domain Ω. Using Gauss’s theorem,
we obtain the following equation:∫

Ω
yt(·, t)ϕ − λ∇y(·, t) · ∇ϕ dx = 0, (x, t) ∈ Ω × (t0, te]. (10)
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If we want to solve (10) using the finite element method, we have to insert the Galerkin ansatz (8) into
(10) and individually take each of the basis functions as a test function. By this, we obtain the following system
of equations: ∫

Ω

N

∑
i=1

zN
i,t(t)φiφj − λzN

i (t)∇φi · ∇φj dx = 0, j = 1, . . . , N. (11)

Introducing the mass matrix M ∈ RN×N and the stiffness matrix K ∈ RN×N with:

Mi,j =
∫

Ω
φiφj dx, Ki,j =

∫
Ω
∇φi · ∇φj dx,

this yields the following N-dimensional linear system:

MzN
t (t)− λKzN(t) = 0.

If we now want to compute a reduced order model instead of a high-dimensional finite element approximation,
we can apply the same procedure, except that now, we have to use the reduced basis in the Galerkin ansatz,
as well as for test functions.

The most important difference between RB and POD is the area of application, although this
is not a strict separation. RB is mostly applied to parameter-dependent, yet time-independent
(i.e., elliptic) problems, whereas POD (introduced in [88]) is applied to time-dependent problems
described by parabolic or hyperbolic PDEs. Consequently, in RB, the snapshots {yN

1 , . . . , yN
s } are

solutions corresponding to parameters {u1, . . . , us}, and in POD, they are snapshots in time, collected
at the time instants {t0, . . . , ts−1}. Using an equidistant time grid h, the snapshots are taken at
{t0, t0 + h . . . , t0 + (s − 1)h}. In RB, the snapshots {yN

1 , . . . , yN
s } often directly serve as the basis ψ.

For time-dependent problems, this can cause numerical difficulties since some snapshots might
be very similar (e.g., for very slow systems or periodic dynamics) such that the snapshot matrix
S = (yN

1 , . . . , yN
s ) is ill-conditioned. Due to this, a singular value decomposition is performed on S, and

the � leading left singular vectors are taken as the basis ψ. This results in an orthonormal basis, which
can be shown to be optimal with respect to the L2 projection error [87,88]. Furthermore, the truncation
error is given by the sum over the neglected singular values:

ε� =
∑s

i=�+1 σi

∑s
j=1 σj

.

Whereas the error between the infinite-dimensional solution and the solution via a standard
discretization approach can be neglected in many situations, the error of the ROM depends on several
factors such as the reference data, the basis size and the parameter or control for which the ROM is
evaluated. Consequently, this error can be significant such that proper care has to be taken. The most
common approach is to derive bounds either for the error of the reduced state ‖yr − yN‖ or, in the case
of optimal control, of the optimal solution ‖ur − uN‖ obtained using the ROM; see, e.g., [89–93] for
POD or [94–97] for RB methods. In addition, there are other measures that can be taken such as deriving
balanced input-output behavior [98,99] or introducing additional terms [100] or modifications [101] in
the POD-based ROM. For more detailed introductions to RB and POD, the reader is referred to [97]
and [87,88], respectively.

3.3.2. Optimal Control Using Surrogate Models

There is a rich literature on optimal control of PDEs using surrogate models. The approaches can
be summarized into three main categories:
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1. build a model once,
2. construction of regular updates in a trust region approach,
3. construction of regular updates using error estimators.

Whereas the first category is the most efficient one (see, e.g., [102] for optimal control
of the Navier–Stokes equations), it is in general not possible to prove the convergence of the
resulting algorithm.

In the second approach (which was developed by Fahl [103] for POD-based ROMs and one
objective), one defines a trust region within which the current surrogate model is considered as
trustworthy; see Figure 5 for an illustration. The ROM-based optimal control problem is then
solved with the additional constraint that the solution has to remain within the trust region,
i.e., ‖ui − uref‖ ≤ δi, where i is the current step of the iterative optimization scheme and δi is the
current trust region radius. After having obtained ui, the high-dimensional system is evaluated,
and the improvement of the full system is determined:

ρ =
|JN(ui)− JN(ui−1)|
|Jr(ui)− Jr(ui−1)| .

If ρ is close to one, then the ROM is sufficiently accurate, and the iterate ui is accepted. We then
use the high-dimensional solution to construct the next ROM at uref = ui. If, on the other hand, ρ is
close to zero, then the ROM accuracy was bad, and the iterate ui is rejected. Instead, the trust region
radius δi is reduced, and the optimal control problem is solved again. Using the Trust Region (TR-POD)
approach, one can ensure convergence to the optimal solution of the high-dimensional problem. In the
case of the Navier–Stokes equations, this has been shown for different problem setups [103,104].

(a) (b) (c) (d)

Figure 5. Trust region method. (a) The Reduced Order Model (ROM)-based optimal control problem is
solved within the trust region δ0. (b) If the improvement is poor for the full system (i.e., ρ is small),
then the trust region radius is reduced, and we repeat the computation with the same problem. (c) If
the improvement is acceptable (intermediate values of ρ), then we compute a new model and proceed
with a smaller trust region δ1 < δ0. (d) If the improvement is good (i.e., ρ ≈ 1), then the trust region
radius is increased.

In the third approach, error estimators ΔJ for the current iterate ui are required. By evaluating
ΔJ(ui), it is possible to efficiently estimate the error between the high- and the low-dimensional
solution, since:

|Jr(ui)− JN(ui)| < ΔJ .

If this error estimate is larger than some prescribed upper bound ε, then the ROM has to be
updated using data from a high-dimensional solution. Detailed information on error estimates can be
found in, e.g., [91–97].

3.4. ROM-Based Multiobjective Optimal Control of PDEs

All three approaches for using ROMs in optimal control have recently been extended to
multiobjective optimal control problems. Besides different ROM techniques, different algorithms
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for MOPs have been used, as well, such that a variety of methods has evolved, each of which is well
suited for certain situations.

3.4.1. Scalarization

A natural and widely-used approach to MOPs is via scalarization. By this, the vector of objectives
is synthesized into a scalar objective function, and the MOP is transformed into a sequence of scalar
optimization problems for different scalarization parameters. In terms of ROM-based optimal control,
this is advantageous because many techniques from scalar-valued optimal control can be extended.
The main difference is now that the objective function may have a more complicated structure.
In [105,106], the weighted sum method has been used in combination with RB in order to solve
MOPs constrained by elliptic PDEs. In the weighted sum method, scalarization is achieved via convex
combination of the individual objectives using the weight vector α:

min
u∈U

J(u) = min
u∈U

k

∑
i=1

αi Ji(u). (12)

The weighted sum method is probably the most straight-forward approach for including ROMs
in MOPs. However, the method has strong limitations in the situation of non-convex problems, where
it is impossible to compute the entire Pareto set [5].

A more advanced approach is the so-called reference point method [5] (cf. Figure 6 for an
illustration), where the distance to an infeasible target point T with T < J(u) has to be minimized:

min
u∈U

J(u) = min
u∈U

‖T − Ji(u)‖. (13)

By adjusting the target, we can move along the Pareto front and hence obtain an approximately
equidistant covering of the front. The reference point method has been coupled with all three of the
above-mentioned ROM approaches. In [107], it was used for multiobjective optimal control of the
Navier–Stokes equations using one reduced model (cf. Figure 7a). Here, the objectives are to stabilize a
periodic solution (the well-known von Kármán vortex street) and to minimize the control cost at the
same time. In [73], the trust region framework by Fahl (TR-POD, [103]) was extended (cf. Figure 7b–c
for a heat flow problem with a tracking and a cost minimization objective). The third ROM approach
was used in [108,109]. The difficulty here is that the minimization of the distance to the target point
results in a more complicated objective function, which has to be treated carefully.

(a) (b)

Figure 6. Reference point method. (a) Determination of a Pareto-optimal solution by solving (13).
(b) Determination of the consecutive point on the Pareto front by adjusting the target and solving the
next scalar problem.

Scalarization techniques generally have the same limitations on the decision space dimension as
scalar-valued optimal control problems. This means that very efficient techniques (both direct and
indirect) exist for high-dimensional controls. However, the number of objectives is limited because the
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parametrization in the scalarization step becomes extremely tedious, and it is almost impossible to
obtain a good approximation of the entire Pareto set for more than three objectives.
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Figure 7. (a) Pareto front for an MOCP involving the Navier–Stokes equations (flow stabilization
vs. cost), solved by coupling of an ROM (created once in advance) with the reference point method.
Although we observe acceptable agreement, convergence cannot be guaranteed. (b) Pareto front for
a heat flow MOCP (reference tracking vs. cost), solved by the TR-POD approach coupled with the
reference point method. Convergence is achieved while reducing the number of expensive finite
element (FEM) evaluations by a factor of ≈ 22, cf. (c).

3.4.2. Set-Oriented Approaches with ε-Dominance

In contrast to scalarization, in set-oriented techniques, the Pareto set is approximated by a box
covering [27–29]. Here, the limitations are contrary, meaning that the dimension of the decision space
is rather limited, while the number of objectives does not pose any problems for the algorithms.
In practice, however, the computational cost increases exponentially with the number of objectives
(i.e., the dimension of the Pareto set) such that we are still limited to a moderate number of objectives.

First results coupling the subdivision algorithm developed in [27] with error estimates for
POD-based ROMs have recently appeared [110,111]. In the subdivision algorithm, the decision
space is divided into boxes, which are alternatingly subdivided and selected. In the subdivision step,
each existing box is subdivided into two smaller boxes. In the selection step, all boxes are eliminated
that are dominated, i.e., they do not cover any part of the Pareto set. Numerically, this is realized by
representing a box by a finite number of sample points and then marking a box as dominated if all
sample points are dominated by samples from another box in the covering; see [27] for details.

The subdivision algorithm can be extended to inaccuracies by replacing the strict dominance test
by an ε-dominance test as presented in Section 3.1 (see also Figure 3). After fixing an upper bound
ε, we have to ensure that the surrogate models we use do not violate this bound anywhere in the
control domain. Since this cannot be achieved with a single ROM, one has to use multiple, locally valid
ROMs instead (cf. Figure 8c). The covering by local ROMs is managed in such a way that all points
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in the neighborhood around the reference uref at which the data for the ROM were collected satisfy
the prescribed error bound ε. This way, the number of solutions of the high-dimensional system can
be reduced significantly. A comparison between the exact and the ROM-based solution is shown in
Figure 8 for a semilinear heat flow MOCP with two tracking type objectives and a cost minimization
objective. Due to the ROM approach, the number of evaluations of the FEM model could be reduced
by a factor of ≈1000.

(a) (b)

(c) (d)

Figure 8. (a) Pareto set of a semilinear heat flow MOP with four controls (coloring according to u4),
solved directly including an FEM model in the subdivision algorithm. (b) Pareto set of the same
problem, solved with localized ROMs. (c) The reference controls for which the local ROMs have been
computed are shown in black, and the colored dots are sample points at which the objective function
was evaluated. The colorings denote assignments to a specific ROM. (d) The corresponding Pareto
fronts, where the FEM solution is shown in green and the ROM solution in red.

3.5. Summary

Before moving on to feedback control, a summary of the relevant publications where
multiobjective optimization and meta modeling interact is given in Table 1. The references are
categorized into surveys, algorithms using surrogate models for the objective function, the system
dynamics and specific reduction approaches for MOPs. Furthermore, some applications are referenced.
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Table 1. Overview of publications (in chronological order) where surrogate modeling and
multiobjective optimization are combined. MOEA, Multiobjective Evolutionary Algorithm; RSM,
Response Surface Model; POD, Proper Orthogonal Decomposition; TR, Trust Region.

Surveys

Tabatabei et al. [2], Chugh et al. [3] Extensive surveys on meta modeling for MOEAs

Voutchkov and Keane [74], Surveys on meta modeling approaches from statistics (RSM,
Knowles and Nakayama [1], Jin [75] RBF) and machine learning in combination with MOEAs

Benner et al. [83], Taira et al. [85], Surveys on reduced order modeling of dynamical systemsPeherstorfer et al. [84]

Algorithms Using Meta Models for the Objective Function

Ong et al. [112], Ray et al. [113] Combination of RBF and MOEA

Chung and Alonso [114], Keane [115] Combination of kriging models and MOEA

Karakasis and Giannakoglou [116] RBF as an inexpensive pre-processing step in a MOEA

Knowles [117] Combination of DoE and an interactive method

Zhang et al. [118] Combination of Gaussian process models and scalarization

Telen et al. [79] Combination of DoE and scalarization and MOEA

Chugh et al. [119] Kriging model in combination with reference vector approach for
MOPs

Meta Models Specifically Tailored to Multiobjective Optimization

Shimoyama et al. [120] Kriging surrogate for hypervolume approximation (MOEA)

Pan et al. [121] Surrogate model for dominance relations with uncertainties

Algorithms Using Surrogate Models for the System Dynamics

Iapichino et al. [105] Combination of POD and weighted sum

Banholzer et al. [108,109] Combination of POD and reference point method

Iapichino et al. [106] Combination of RB and weighted sum

Peitz [73] Combination of TR-POD and reference point method

Beermann et al. [110,111] Combination of POD and set-oriented method

Applications

Albunni et al. [53] POD and MOEA applied to the Maxwell equation

Ma and Qu [80] MO of a switched reluctance motor by coupling RSM and
MOEA (particle swarm optimization)

Peitz et al. [107] POD-based multiobjective optimal control of the Navier–
Stokes equations via scalarization and set-oriented methods

Wang et al. [122] MOEA with multi-fidelity surrogate-management and
offline-online decomposition applied to a trauma system

4. Feedback Control

Even when the objective function is not very expensive to evaluate, MOCPs often have a
large computational cost; see, e.g., [123] for various examples. This becomes a limiting factor in
situations where the solution time is critical as is the case in real-time applications. Due to the
increasing computational power, as well as the advances in algorithms, Model Predictive Control
(MPC) (see [124,125] for extensive introductions) has become a very powerful and widely-used method
for realizing model-based feedback control of complex systems.

In MPC, an optimal control problem is solved in a short time horizon (the prediction horizon)
while the real system (the plant) is running. Then, the first entry of the optimal control is applied
to the plant, and the process is repeated with the time frame moving forward by one sample time h;

156



Math. Comput. Appl. 2018, 23, 30

see Figure 9 for an illustration. This way, a closed-loop behavior is achieved. On the downside, we have
to solve the optimal control problem within the sample time h. This can be in the order of seconds
or minutes (in the case of chemical processes) down to a few microseconds, for example in power
electronics applications.

Figure 9. Sketch of the MPC method. Due to the real-time constraints, the optimization problem has to
be solved faster than the sample time h.

In many MPC problems, stabilization of the system with respect to some reference state is the most
important aspect. Nevertheless, there exist variations where stability is not an issue such that other
(more economic) objectives can be pursued. These methods are known as economic MPC [126,127].
Another variation is the so-called explicit MPC [128], where the optimal control is computed in advance
for a large number of different states and stored in a library. This way, the computational effort is
shifted to an offline phase, and during operation, we only have to select the optimal control from
the library.

As in multiobjective optimal control, there are numerous applications where multiple objectives
are interesting in feedback control. This means that we would have to solve the problem (MOCP) with
t0 = ts and te = ts+p repeatedly within the sample time h. It is immediately clear that even the simplest
MOCPs cannot be solved fast enough to allow for real-time applicability. Consequently, efficient
algorithms have to be developed, which can be divided into approaches where one Pareto optimal
solution is computed online and approaches with an offline phase during which the MOCP is solved
(in this article, algorithms where Artificial Neural Networks (ANN) have to be trained beforehand are
nonetheless assigned to the first category if the optimization is performed entirely online).

When implementing a multiobjective MPC (MOMPC) algorithm, one should keep in mind that,
regardless of the algorithm used, the resulting trajectory need not be Pareto optimal, even if each
single step is, cf. [129]. A remedy to this issue is presented in [130], where the selection of compromise
solutions is restricted to a part of the Pareto front that is determined in the first MPC step. Due to this,
upper bounds for the objective function values can be guaranteed.

4.1. Online Multiobjective Optimization

In the classical MPC framework, the optimal control problem is solved online within the sample
time h. Since it is in general impossible to approximate the entire Pareto set sufficiently accurately
within this time frame, there are three alternatives:

1. compute a single Pareto-optimal solution according to some predefined preference,
2. compute only a rough approximation of the Pareto set,
3. compute an arbitrary Pareto-optimal control that satisfies additional constraints (e.g., stability).

In the first approach, the objective function is scalarized using, for instance, the weighted sum
method (12) or the reference point method (13). In this situation, well-established approaches from
scalar-valued MPC exist on which one can build. First results using the weighted sum method have
appeared in [131]. In [132,133], the authors use the same scalarization for an MPC problem with
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convex objective functions. In this situation, it is guaranteed that any Pareto-optimal solution can be
computed using weighted sums, and the weights can be adapted online according to a decision maker’s
preference. Due to the convexity, stability can be proven for the resulting MPC algorithm. In [134],
this approach is extended by providing gradient information of the objectives with respect to the weight
vector α. This way, the weights can be adapted in such a way that a desired change in the objective
space is realized. For non-convex problems, the weighted sum method is incapable of computing the
entire Pareto set. Therefore, in [135], a variation of the reference point method is applied, where the
target T is the utopian point J∗, i.e., the vector of the individual minima. This way, also non-convex
problems can be treated. In fact, due to the reference point method, the objective function is always
convex [109], which can be exploited during the optimization. Alternative scalarization methods are
the ε-constraint method [136] or lexicographic ordering [137].

A disadvantage of a priori scalarization is that it is often difficult to select the scalarization
parameter in such a way that a desired trade-off solution is obtained, and the remedy proposed in [134]
is only applicable to a specific class of problems. Therefore, an alternative approach is to quickly
compute a rough approximation of the entire Pareto set and then select the desired control online.
Such methods have been proposed by many authors. The general approach is to us an MOEA and
stop the computation after a few iterations. In the next step, one of these suboptimal solutions is
selected. This selection is realized by specifying a weight vector for the objectives in [138–141] and by
the satisficing trade-off method in [142].

As a third option, we can compute a single Pareto-optimal point without specifying which one
we are specifically interested in as long as it satisfies additional constraints such as the stability of the
system. Approaches of this type have been developed in [136,143], where a game theoretic approach
is used.

4.2. Offline-Online Decomposition

A well-known trick to avoid heavy online computations is to introduce an offline-online
decomposition (very similar to meta modeling approaches where surrogate models are constructed
before solving the MOCP). This means that the Pareto set is computed beforehand, and in the online
phase, an optimal compromise is selected according to a decision maker’s preference or some heuristic
based on the system state or the environment.

Many of the approaches that fall into this category use a standard feedback controller instead
of MPC; see [144] for a short review concerning methods using scalarization and offline PID
controller optimization. In the offline phase, a Pareto set is computed for the controller parameters.
Possible objectives are, among many others, overshooting behavior, energy efficiency or robustness.
Algorithms of this type have been proposed in [145–147] using MOEAs and in [148–150] using
set-oriented methods.

An alternative approach is motivated by explicit MPC, i.e., the idea of solving many MOPs offline
such that the correct solution can be extracted from a library in the online phase. Such a method has
been proposed in [48]. In the offline phase, one has to identify all possible scenarios that can occur in
the online phase. Such a scenario consists of both system states, as well as constraints. This results
in a large number of MOPs that have to be solved. In order to reduce this number, symmetries in
the problem are exploited. To this end, a concept known as motion primitives [151,152] is extended.
In short, this means that if:

arg min
u∈U

MOP1 = arg min
u∈U

MOP2,

where MOP1 and MOP2 are two problem instances from the offline library, then we only have to solve
one of the problems in order to have a Pareto-optimal solution for both. Moreover, if two problem
instances vary only slightly, one can use a previously-computed solution as a good initial guess for the
next MOCP to further decrease the computational effort [73]. In the online phase, the correct Pareto
set is selected from the library (according to the system state and the constraints), and an optimal
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compromise is selected according so a decision maker’s preference α. In contrast to the affine linear
solutions, which can be computed in explicit MPC for linear-quadratic problems, one has to rely on
interpolation between solutions in the nonlinear setting.

4.2.1. Example: Autonomous Driving

We here want to demonstrate the superiority of multiobjective approaches over scalar-valued
MPC using the example of autonomously-driving electric vehicles [47,48,153]. The problem there is
to find the set of optimal engine torque profiles such that the velocity is maximized while the energy
consumption is minimized. Additional constraints have to be taken into account such as speed limits
or stop signs. The system dynamics are described by a four-dimensional, highly nonlinear ODE for
the vehicle velocity, the battery state of charge and two battery voltage drops, cf. [153] for details.
Numerical investigations reveal several symmetries in the system such that the only relevant state for
a scenario is the current velocity, whereas all other states only have a minor influence on the solution
of the MOP. Consequently, the velocity, as well as the constraints form the above-mentioned scenarios;
see Figure 10a for an illustration. For example, a scenario could be that the current velocity is 60 km/h
and that the speed limit is currently increasing from 50–100 km/h, cf. Scenario (II) in Figure 10a.
We then solve the MOP for this scenario and store the Pareto set in a library. By discretizing the
velocity into steps of 0.1 (i.e., v(t0) = . . . , 59.9, 60.0, 60.1, . . .), we have to solve 1727 MOPs in total in
the offline phase.
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Figure 10. Results for the offline-online MPC approach from [48]. (a) Different constraint scenarios
((I)–(VI)), i.e., constant velocity, acceleration, deceleration and stopping. (b) Example track driven with
the MPC algorithm. The red lines define the velocity bounds; the black dashed lines are trajectories
corresponding to a constant weight α; and the green line is a trajectory where the weight is changed from
0 (energy efficient) over 0.5 (average) to 1 (fast). (c) Comparison between the MPC algorithm (coupled
with a simple heuristic for the weighting) and the global optimum obtained via dynamic programming.
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Table 2. Overview of publications (in chronological order) for multiobjective feedback control.

Algorithms without Offline Phase: Computation of Single Points

Kerrigan et al. [131], Scalarization via Weighted Sum (WS)Wojsznis et al. [154]

Kerrigan and Maciejowski [155], Scalarization via lexicographic orderingHe et al. [137]

Bemporad and Muñoz Scalarization via WS for convex objectives, guaranteed stability for
de la Peña [132,133] large gain vs. noise robust stabilizing objectives

Geisler and Trächtler [134] WS, online adaptation of weights using gradient information

Maestre et al. [143] Scalarization via game-theoretic approach

Zavala and Flores- Scalarization via reference point approachTlacuahuac [135]

Hackl et al. [129] Scalarization via WS for Linear Time-Invariant (LTI) systems

Zavala [136] Scalarization via ε-constraint: economic objective, stability as constraint

Grüne and Stieler [130] Economic objectives, performance bounds via selection criterion

Algorithms without Offline Phase: Approximation of the Entire Pareto Set

Laabidi et al. [138,140], ANN for state prediction, optimization via
Garcìa et al. [141] MOEA, selection of Pareto point via WS

Bouani et al. [139] ANN for state prediction, comparison of two MOEAs and WS for MOP

Nakayama et al. [142] Few MOEA iterations online, selection via satisficing trade-off method

Algorithms with Offline Phase

Fonseca [145], Offline computation of Pareto optimal controller parameters
Herreros et al. [146] using MOEA

Scherer et al. [156] Robust control using a common Lyapunov function for multiple
stability criteria

Ben Aicha et al. [147] Offline computation of Pareto optimal controllers parameters via EA
and WS, online selection according to geometric mean of objectives

Krüger et al. [148] Offline computation of Pareto optimal controllers parameters via Set
oriented methods, parametric model reduction for increased efficiency

Hernández et al. [149], Offline computation of Pareto-optimal controllers parameters via
Xiong et al. [150] simple cell mapping

Peitz et al. [48] Offline-online decomposition similar to explicit MPC

Applications

Zambrano and Camacho [157] MOMPC of a solar refrigeration plant via scalarization

Porfírio et al. [158] MOMPC of an industrial splitter using a min-max reformulation

Pedersen and Yang [159] MO PID controller design for magnetic levitation systems via MOEA

Li et al. [160] Multiobjective adaptive cruise control for vehicles

Hu et al. [161] MOMPC of high-power converters via WS

Núñez et al. [162] MOMPC of dynamic pickup and delivery problems using MOEA

Peitz et al. [163] MOMPC of an industrial laundry, scalarization of a traveling
salesman problem via WS

In the online phase, we now select the relevant Pareto set from the library and, according to a
decision maker’s preference, apply one of the Pareto-optimal controls to the electric vehicle. This is
done repeatedly such that a feedback loop is realized. The result is illustrated in Figure 10b for an
example track, where the black lines correspond to constant weighting of the two criteria and the green
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line corresponds to a varying weight. This way, a flexible cruise control is established where the driver
can quickly adapt, for instance, to changing energy requirements.

As has been mentioned before, an alternative to interactively choosing a weight is to implement
some heuristic that automatically chooses a weight based on the current situation. Such an approach is
visualized in Figure 10c, where the weighting depends on the vehicle velocity, as well as on current and
future velocity constraints. For a simpler track, it is possible to compute a globally optimal solution
for a scalarized objective using dynamic programming. We see that with the heuristic, the MOMPC
approach yields trajectories close to the global optimum while only having finite horizon information.

4.3. Summary

We again conclude the section by giving a summary of publications where multiobjective
optimization is applied in a real-time context, cf. Table 2. The publications are divided into four
categories. The first two contain algorithms where the MOP is solved online. The categories differ in
whether a single point is computed or the entire set is approximated. Consequently an offline phase is
not required except in the case where surrogate models are trained in order to accelerate the online
computations. The third category then contains the methods with an offline optimization phase, and
some applications are mentioned in the fourth category.

5. Reduction Techniques for Many-Objective Optimization Problems

Another important restricting factor in multiobjective optimization is the number of
objectives [164]. For MOPs with four or more objectives, the term Many-Objective Optimization (MaOP)
has been coined, and over the past few years, many researchers have dedicated their work to address
MaOPs and the issues arising from the curse of dimensionality, cf. [165] for an overview, [166,167] for
new concepts for identifying non-dominated solutions and [168–172] for evolutionary approaches.

A popular approach for MaOPs is comprised of interactive methods [173–178]. These methods
do not compute the entire set of optimal compromises, but instead interactively explore the Pareto
set. Starting at the current Pareto-optimal solution, a decision maker can choose in which direction to
proceed, i.e., which objective to improve at the expense of some other, currently less important objective.
The approach in [178], for example, allows for Pareto-optimal movements both in the decision and
objective space. One of the main advantages of interactive methods is the reduced computational
effort, especially in the presence of many criteria, since it is not affected significantly by the dimension
of the Pareto set. Moreover, this way, decision making from a vast number of Pareto-optimal solutions
is avoided, which can be overwhelming for a decision maker. Consequently, interpretability and
usability are increased.

Besides interactive methods, several reduction techniques have been proposed in the context of
many-objective optimization, and although it is not the main theme of this review article, we want to
give a brief overview of these reduction approaches since they also aim at increasing the efficiency
of solving MOPs. These reduction techniques can be divided into two main categories. The first one
is objective reduction, where the aim is to reduce the number of objectives while (approximately)
preserving the Pareto set. The observation behind this is that not all objectives are of equal importance
to the structure of the Pareto set, which is measured by the degree of conflict [179]. Consequently,
when it is possible to identify the main contributors to the Pareto set, then one can solve a reduced
problem taking into account only these most important objectives. Different approaches have been
proposed for this identification step, all of which use a set of sample points. In [179], both exact and
inexact algorithms are proposed for selecting a subset of objectives such that only those points in the
Pareto set are lost that are worse in all remaining objectives by a constant δ or more. This approach
is also exploited in [180]. In [181,182], POD (cf. Section 3.3) is used to identify such a subset, and a
related concept is implemented in [183] using hyperplanes. In [184], an entropy-based approach is
presented, and in [185], the relevant subset is selected multiple times within an evolutionary procedure.
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A slightly different approach is pursued in [186], where the authors split large decision spaces into
several smaller ones according to the relevance of decision variables for specific objectives.

The method proposed in [187] possesses characteristics of the first category, namely objective
reduction, as well as of the second category, which is the exploitation of the structure of Pareto sets and
front. Therein, first the corners of the Pareto front are identified, and this information is used to select
the relevant objectives. Algorithms of the second type all exploit this hierarchical structure. This means
that under certain assumptions, the Pareto front is bounded by the Pareto fronts of subproblems where
one or more objectives have been neglected, cf. [188,189]. This way, the solution can be computed
by a hierarchical approach where, starting with scalar problems, the boundary is computed before,
finally, the interior is obtained. Very recently, results about the hierarchical structure of the Pareto
set, i.e., in decision space, have appeared; see [73,190] for details. This approach is illustrated in
Figure 11 where the solution to an MOP with four objectives is shown, as well as the Pareto sets of the
subproblems with three and two objectives, respectively.

(a) (b) (c)

Figure 11. Visualization of the hierarchical structure of Pareto sets. (a) Pareto set of an example
problem with J : R3 → R4. (b) The four Pareto sets taking only three objectives into account form
the boundary of the original Pareto set. (c) The Pareto sets in (b) are again bounded by the respective
bi-objective subproblems.

6. Future Directions

This survey has given an overview of recent advances in the context of accelerating multiobjective
optimization. These are surrogate models, feedback control and objective reduction techniques.
Similar to almost every other field of science, it can be expected that the immense developments
in data-based methods will also have a major impact on research in multiobjective optimization, in
particular in the context of surrogate modeling. A very large number of researchers from the dynamical
systems community is working on data-based methods using the Koopman operator, which is an
infinite-dimensional, but linear operator describing the dynamics of observables [191,192]. Significant
effort has been put into the development of numerical methods for approximating this operator from
data; see, e.g., [193,194]. This way, the dynamics of observations can be reconstructed entirely from
data and without any knowledge of the underlying system dynamics. In a way, this allows us to
merge the two surrogate modeling categories from Sections 3.2 and 3.3 since we can approximate
the dynamics not only of the state, but directly of the objectives. Several methods have recently been
proposed to use the Koopman operator for data-based controller design, both in simulations [195–198],
as well as experiments [199,200]. The results are very promising, such that it is just a matter of time
until these methods are utilized for multiobjective optimal control.

In the same manner, machine learning techniques [201] will very likely gain more and more
attention, both in multiobjective optimization, as well as optimal control. There are already many
papers on this topic or related ones, and the number is growing quickly.
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Abstract: The Hausdorff distance is a widely used tool to measure the distance between different sets.
For the approximation of certain objects via stochastic search algorithms this distance is, however,
of limited use as it punishes single outliers. As a remedy in the context of evolutionary multi-objective
optimization (EMO), the averaged Hausdorff distance Δp has been proposed that is better suited as
an indicator for the performance assessment of EMO algorithms since such methods tend to generate
outliers. Later on, the two-parameter indicator Δp,q has been proposed for finite sets as an extension
to Δp which also averages distances, but which yields some desired metric properties. In this paper,
we extend Δp,q to a continuous function between general bounded subsets of finite measure inside
a metric measure space. In particular, this extension applies to bounded subsets of Rk endowed with
the Euclidean metric, which is the natural context for EMO applications. We show that our extension
preserves the nice metric properties of the finite case, and finally provide some useful numerical
examples that arise in EMO.

Keywords: averaged Hausdorff distance; evolutionary multi-objective optimization; power means;
metric measure spaces; performance indicator; Pareto front

1. Introduction

The Hausdorff distance dH (see [1]) is an established and widely used tool to measure the
proximity of different sets. It is, among others, used in several research fields such as image matching
(e.g., [2–4]), the approximation of manifolds in dynamical systems ([5–7]), in fractal geometry ([8]),
or in the context of convergence analysis in multi-objective optimization ([9–13]). One major reason
for the use of dH is that it defines a metric on the set of all nonempty bounded closed sets in a metric
space. However, one characteristic of the Hausdorff distance is that it heavily punishes single outliers
which is a severe drawback in many cases. For instance, it is known that stochastic search algorithms
are generally quite effective in the (global) approximation of certain objects, however, it is also known
that these approximations may come with a few outliers (e.g., [14]). For those cases, the approximation
quality is not reflected by the value of the Hausdorff distance.

As a remedy, in the context of evolutionary multi-objective optimization, Schütze et al. [14]
have made a first effort to propose the averaged Hausdorff distance Δp. As opposed to dH , this indicator
averages the distances involved in the proximity measure of the given sets and is hence much more
suitable in the context of stochastic search as single (or few) outliers in a candidate solution set are not
punished hard any more. On the other hand, compared to dH , Δp has two shortcomings: (i) it only
defines an inframetric instead of a metric; and (ii) it is only defined for finite approximations of
the solution set. In the particular context of continuous multi-objective optimization, it is known
that the solution set, the so-called Pareto set, and its image, the Pareto front, form manifolds of
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certain dimensions. Hence, it is natural that the candidate solution set (i.e., the set computed
by a given solver) is not restricted to finitely many points, but may also form a continuous set.
This is in fact already the case for set-based optimization techniques such as the cell-to-cell mappings
([15–17]) and the subdivision techniques ([10,18,19]). In the context of evolutionary multi-objective
optimization, typically a finite set of candidate solutions (a population) is generated ([20–23]). However,
also here it is a rather natural approach to construct a continuous set out of the final population using,
e.g., interpolation techniques (see [24,25]).

In [26], a modification of the Δp indicator called the (p, q)-averaged Hausdorff distance Δp,q

has been introduced by the first two authors. This indicator generalizes the averaged Hausdorff
distance Δp, is strongly related to the Hausdorff distance dH , and admits an expression in terms
of the matrix �p,q-norm ‖ · ‖p,q. Moreover, when 1 � p, q < ∞ it is a proper metric, while for the
remaining cases where |p|, |q| � 1 it is still an inframetric. In addition, when finding optimal archives
the parameters p and q play crucial geometrical roles. More precisely, in the context of EMO, p handles
the closeness to the Pareto front and q handles the dispersion. The indicator, however, is restricted to
finite sets.

In this work, we propose a more general version of the Δp,q indicator that can be applied to
general measurable subsets and that preserves the useful advantages of the finite case. Consideration
is also given to the Pareto-compliance of an intermediate indicator GDp,q that is employed to define
Δp,q. The indicator is hence the first one that can be used in the context of multi-objective optimization
using continuous approximations of the Pareto set/front as described above. Numerical results on
two well known evolutionary algorithms will show the benefit of such continuous archives compared
to discrete ones that have been used so far in lack of a suitable performance indicator.

This paper is organized as follows: In Section 2, we briefly state the background required for the
understanding of this work. In Section 3, we introduce the extended version of the GDp,q and Δp,q

indicators, discussing their properties and providing some sufficient criteria for the Pareto compliance
of the first one. In Section 4, we present some numerical results that show the applicability and the
benefit of the novel indicator in particular in the context of multi-objective optimization. Finally,
we draw our conclusions and present possible paths for future research in Section 5.

2. Preliminaries

In this section, we briefly present the required background on integral power means and
multi-objective optimization that will be needed for our purposes. Throughout the document we
employ the notation R× := R K {0} and R := [−∞, ∞] for simplicity.

2.1. Integral Power Means

The theory can be presented in the general setting of metric measure spaces, briefly outlined below,
but for simplicity the reader may assume that the specific context of our interest is that of well-behaved
bounded subsets of the n-dimensional Euclidean space Rn endowed with its standard Lebesgue
measure which gives rise to the conventional notion of volume (when it is defined). For a quick review
of measure spaces see [27] (Section 1.4), and for a simple explanation of the Lebesgue measure see [28]
(Chapter 2). Integral means appear already in [29] (Chapter 6). A comprehensive account on the
properties of means can be found in [30].

For greater generality, we recall that (Σ, d, μ) is called a metric measure space if (Σ, d) is a metric
space with a measure μ defined on its Borel σ-algebra M(Σ), i.e., the smallest σ-algebra containing all
the open subsets of the metric topology of (Σ, d). A measure μ is said to be finite if μ(Σ) < ∞, and in
this case Σ is called a finite-measure space.
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Now, given p ∈ R× and any measurable function f : X ⊂ Σ → [0, ∞) over a finite-measure set X,
we can define the p-average of f over X (or the p-power mean of f over X), by

Mp
x∈X

( f (x)) :=
(

1
μ(X)

∫
X

f (x)p dμ

) 1
p

. (1)

Henceforth, the integral at the RHS will be abbreviated as

−
∫

X
f p dμ :=

1
μ(X)

∫
X

f (x)p dμ.

If necessary, when the measure μ is clear from the context, the element dμ will be written as
dx to emphasize the variable of integration x. In addition, the notation Mp( f (X)) ≡ Mp

x∈X
( f (x)) and

|X| ≡ μ(X) will also be employed to simplify expressions whenever appropriate.
Let us note that for p � 1 we have Mp( f (X)) = μ(X)−

1
p ‖ f ‖p, where ‖ · ‖p denotes the p-norm

of the Lebesgue space Lp(X, μ). Furthermore, it is not difficult to show, with the aid of L’Hôpital’s
rule, that the integral power mean Mp can be extended to the cases p = ±∞. Indeed, if f �≡ 0,

denoting the essential supremum and essential infimum of f on X by ‖ f ‖∞ := ess supx∈X f (x) and
‖1/ f ‖−1

∞ := ess infx∈X f (x), respectively, it follows that

M∞
x∈X

( f (x)) := lim
p→∞

(
−
∫

X
f p dμ

)1
p

= ‖ f ‖∞ lim
p→∞

(
−
∫

X

(
f (x)
‖ f ‖∞

)p

dμ

)1
p

= ‖ f ‖∞,

because the last integrand is smaller than 1 and the limit is 1. Similarly,

M−∞
x∈X

( f (x)) := lim
p→−∞

(
−
∫

X
f p dμ

)1
p

= lim
p→∞

(
−
∫

X

(
1
f

)p

dμ

)− 1
p

=

∥∥∥∥ 1
f

∥∥∥∥−1

∞
.

We recall that ‖ · ‖∞ is precisely the norm of the Lebesgue space L∞(X, μ). We can also define Mp

when p = 0 as follows:

M0
x∈X

( f (x)) := exp
(
−
∫

X
log f dμ

)
.

It can be considered the integral generalization of the notion of geometric mean for finitely
many elements.

2.2. Multi-objective Optimization

As an application of the (p, q)-distances, we will consider in this work continuous multi-objective
optimization problems (MOPs). Problems of this kind can be expressed mathematically as

min {F(x) : x ∈ Q ⊂ Rn}, (2)

where the function F is defined as a vector of objective functions

F : Q ⊂ Rn → Rk, F(x) := ( f1(x), . . . , fk(x)).

We will assume here that all objectives fi : X → R, for i ∈ {1, . . . k}, are continuous. The optimality
of MOPs is typically defined via the concept of dominance (see [31]).

Definition 1. In the context of MOPs the following are standard notions:

(i) Let v = (v1, . . . , vk) and w = (w1, . . . , wk) ∈ Rk. Then the vector v is less than w (denoted v <P w),
if vi < wi for all i ∈ {1, . . . , k}. The relation �P is defined analogously.
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(ii) A vector y ∈ Q is dominated by a vector x ∈ Q (in short: x ≺ y) with respect to (2) if F(x) �P F(y)
and F(x) �= F(y), i.e., there exists a j ∈ {1, . . . , k} such that fj(x) < fj(y).

(iii) A point x ∈ Q is called Pareto optimal or a Pareto point if there is no y ∈ Q which dominates x.
(iv) The set of all Pareto optimal solutions is called the Pareto set, denoted by PQ.
(v) The image of the Pareto set, F(PQ), is called the Pareto front.

It is known that under certain mild smoothness assumptions the Pareto set and the Pareto
front define (k − 1)-dimensional objects [32]. Hence, for set oriented solvers such as cell mapping,
subdivision techniques, and evolutionary algorithms, the question naturally arises as to how to
measure the approximation quality of the obtained solution set with respect to the Pareto set/front.
To accomplish this task, several performance indicators have been proposed in the specialized literature.
There exist, for instance, the hypervolume indicator [21,33], the R2 indicator [34], the IGD+ [35], and the
DOA [36]. Moreover, in the context of multi-criteria decision-making processes, the properties of
some distance measures, as the Hamming, Euclidean, and Hausdorff metrics, is investigated in [37,38].
In this work, we will focus on a new variant of the Hausdorff distance [6]. For convenience of the
reader, we recall in the following the most important definitions.

Definition 2. Let u, v ∈ Rn, arbitrary A, B ⊂ Rn, and ‖ · ‖ be a vector norm. The Hausdorff distance dH(·, ·)
is defined as follows:

(i) dist(u, A) := inf {‖u − v‖ : v ∈ A},
(ii) dist(B, A) := sup {dist(u, A) : u ∈ B},
(iii) dH(A, B) := max {dist(A, B), dist(B, A)}.

The Hausdorff distance dH is widely used in many fields. It is, however, of limited practical use
when measuring the distance of the outcome of a stochastic search method such as an evolutionary
algorithm to the Pareto set/front. The main reason for this is that evolutionary algorithms may
generate outliers that are punished too strongly by dH . As a remedy, the averaged Hausdorff distance
has been proposed in [14]. In this study the vector norm is the 2-norm, i.e., the Euclidean norm.

Definition 3 (Schütze et al. [14]). For p ∈ N, and finite sets A, B ⊂ Rn the value

Δp(A, B) := max {GDp(A, B), IGDp(A, B)},

where

GDp(A, B) :=
(

1
|A| ∑

a∈A
d(a, B)p

)1
p

and IGDp(A, B) :=
(

1
|B| ∑

b∈B
d(b, A)p

)1
p

,

is called the averaged Hausdorff distance between A and B.

The indicator Δp can be viewed as a composition of slight variations of the Generational Distance
(GD, see [39]) and the Inverted Generational Distance (IGD, see [40]). It is Δ∞ = dH , but for finite
values of p the indicator Δp averages the distances considered in dH . More precisely, the larger the
value of p, the harder single outliers will be punished by Δp. Hence, as opposed to dH , the distance
Δp does not punish single (or few) outliers in a candidate set. For more discussion about Δp and its
relation to other indicators we refer to [14,41].

Definition 4 (Vargas–Bogoya [26]). For p, q ∈ R×, and finite sets A, B ⊂ Rn the value

Δp,q(A, B) := max {GDp,q(A, B K A), GDp,q(B, A K B)},
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where GDp,q(A, B) :=
(

1
|A| ∑

a∈A

(
1
|B| ∑

b∈B
d(a, b)q

)p
q
)1

p

is called the (p, q)-averaged Hausdorff distance

between A and B.

For finite sets, the indicator Δp,q, introduced in [26] was also defined for p or q = 0, and even for
p or q = ±∞. It is a generalization of Δp in the sense that between disjoint subsets we have

lim
q→−∞

Δp,q = Δp.

The parameters p and q can be independently modified in order to produce customary spread
archives (depending on q) located with customary closeness (depending on p) to the Pareto front.

Finally, let us recall that one characteristic of a performance indicator is Pareto compliance: for two
subsets A and B we say that A � B if for every b ∈ B there exists an element a ∈ A such that a � b.
If this does not hold, we write A � B. We say that a performance indicator I is Pareto compliant if for
any two sets A and B with A � B and B � A it follows I(A) � I(B). We refer to [42] for details.

3. The (p, q)-Averaged Hausdorff Distance for Measurable Sets

3.1. Properties of Integral Power Means

We start summarizing some fundamental properties of integral power means that we will need
for our subsequent calculations.

Theorem 1. Let X and Y denote finite-measure spaces, f , g : X → [0, ∞) non-negative measurable functions,
and d : X × Y → [0, ∞) a measurable function with respect to the product measure on X × Y. The integral
power mean M satisfies the following properties:

(i) If p ∈ R and k ∈ [0, ∞), then Mp
x∈X

(k) = k and Mp
x∈X

(k f (x)) = k Mp
x∈X

( f (x)).

(ii) For any p ∈ R, we have Mp
x∈X

(
Mp

y∈Y
(d(x, y))

)
= Mp

y∈Y

(
Mp

x∈X
(d(x, y))

)
.

(iii) If 1 � p � ∞, then Mp
x∈X

( f (x) + g(x)) � Mp
x∈X

( f (x)) +Mp
x∈X

(g(x)).

(iv) If p ∈ R and f (x) � g(x) for all x ∈ X, then Mp
x∈X

( f (x)) � Mp
x∈X

(g(x)).

(v) For p, q ∈ R with 0 < p � q, we have that Mp
x∈X

( f (x)) � Mq
x∈X

( f (x)).

Proof. The proofs of (i) and (ii) are straightforward. To prove (iii) we only need the Minkowski inequality,

Mp
x∈X

( f (x) + g(x)) = μ(X)−
1
p ‖ f + g‖p

� μ(X)−
1
p

(
‖ f ‖p + ‖g‖p

)
= Mp

x∈X
( f (x)) +Mp

x∈X
(g(x)).

The proof of (iv) is also straightforward from the definitions and a simple proof of (v) can be given
as a particular case of [43] (Theorem 3) which we recall here for completeness. For a positive real v,
consider the function

ωr(v) :=
∫ v

1
tr−1 dt =

⎧⎪⎨⎪⎩
vr − 1

r
, r �= 0;

log v, r = 0.
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Since the function tu, with t a positive constant and u � 0 is increasing with respect to u, we easily
get ωr(v) � ωs(v) for 0 � r � s and every v � 0. Consider the following linear integral operator

J [ f ] :=
1

μ(X)

∫
X

f dμ = −
∫

X
f dμ.

Assume first, that p �= 0, then for any x ∈ X,

J
[

ωp

(
f (x)

Mp( f (X))

)]
=

1
p

(
J
[

f (x)
Mp( f (X))

]p

−J [1]
)

=
1
p

(
1

(Mp( f (X)))p −
∫

X
f p dμ −−

∫
X

dμ

)
= 0.

Similarly, if p = 0 we have

J
[

ω0

(
f (x)

M0( f (X))

)]
= J [log( f (x))− log(M0( f (X))]

= −
∫

X
log f dμ − log(M0( f (X))J [1] = 0.

Suppose that 0 � p < q. Since ωp(·) � ωq(·) implies J (ωp(·)) � J (ωq(·)), we obtain

0 � J
[

ωq

(
f (x)

Mp( f (X))

)]
=

1
q

[(Mq( f (X))

Mp( f (X))

)q

− 1
]

,

from which it follows that Mp
x∈X

( f (x)) � Mq
x∈X

( f (x)).

3.2. Definition of Δp,q for Measurable Sets

With the aid of Theorem 1 we generalize the results of [26] (Section 3). For easy reference,
we provide here slightly abbreviated but complete proofs. Given a metric measure space (Σ, d, μ),
let M(Σ) denote the σ-algebra of all measurable subsets of Σ and let M<∞(Σ) refer to those elements of
M(Σ) having finite measure. As it should be expected from the context, any set relation obtained from
calculations involving an underlying measure μ should be understood to hold in a measure-theoretic
sense, i.e., almost everywhere (a.e.). For example, for X, Y ∈ M<∞(Σ), a result saying X = Y, or X ⊂ Y
actually holds almost everywhere, which means that μ{X �= Y} = 0, or μ{X � Y} = 0, respectively.
Thus, it is convenient in this setting to identify a set X ∈ M<∞(Σ) with the whole equivalence class
[X] := {Y | X = Y, a.e.}, and think of these classes as the elements of M<∞(Σ) to remove the need
for the a.e. abbreviation. Also, to avoid an overload of parentheses in the forthcoming expressions,
the distance d(x, y) between x, y ∈ Σ will be abbreviated by dx,y.

Definition 5. For p, q ∈ R×, the generational (p, q)-distance GDp,q(X, Y) between two sets X, Y ∈ M<∞(Σ)
is given by

GDp,q(X, Y) := Mp
x∈X

(
Mq

y∈Y
(dx,y)

)
=

(
−
∫

X

(
−
∫

Y
d q

x,y dy
)p

q

dx
)1

p

,

where the sets X and Y are implicitly assumed to be disjoint when p < 0 or q < 0.

As in the finite case, the definition of GDp,q can be easily extended for p, q ∈ R, but still has two
undesirable drawbacks, first GDp,q(X, X) can be different from zero, and second, in general the values
of GDp,q(X, Y) and GDp,q(Y, X) can be different, thus this indicator does not define a metric. To obtain
a proper metric we introduce the following modification.
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Definition 6. The (p, q)-averaged Hausdorff distance is the map Δp,q : M<∞(Σ) × M<∞(Σ) → [0, ∞)

given by
Δp,q(X, Y) := max {GDp,q(X, Y K X), GDp,q(Y, X KY)}.

Remark 1. For finite subsets X, Y ⊂ Rn endowed with the standard counting measure μ, the previous notions
of GDp,q and Δp,q coincide with the ones in Definition 4.

Figure 1 illustrates how the shape of Δp,q-metric balls Bε := {x ∈ R2 : Δp,q(A, x) � ε} around
a discrete set A of ten points (that approximates a segment of negative slope in the plane) varies as p
and q take several different values. Notice that for negative values of p and q the balls’ shape resemble
the shape of A and enclose all of its points.

q
p

-10 -2 -1 1 2 10

-10

-2

-1

1

2

10

Figure 1. Table of Δp,q-neighborhoods of increasing radius around a discrete set of ten equidistant
points along the line y = −x in R2, showing how their shape change for different values of p and q.

3.3. Metric Properties

The extension of Δp,q to measurable sets given in Definition 6 preserves the nice metric properties
of the finite version considered in [26] (Section 3). In particular, Theorem 1 enables us to show a result
analogous to [26] (Theorem 3.3).
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Theorem 2. Suppose that 1 � p, q < ∞. Then the generational (p, q)-distance GDp,q satisfies the triangle
inequality, namely

GDp,q(X, Z) � GDp,q(X, Y) + GDp,q(Y, Z)

for any sets X, Y, Z ∈ M<∞(Σ).

Proof. From the triangle inequality for the metric d(·, ·) we have

dx,z � dx,y + dy,z (x ∈ X, y ∈ Y, z ∈ Z).

Taking the q-average over Z at both sides and using Theorem 1 (i)–(iii), yields

Mq
z∈Z

(dx,z) � Mq
z∈Z

(dx,y + dy,z) � Mq
z∈Z

(dx,y) +Mq
z∈Z

(dy,z) = dx,y +Mq
z∈Z

(dy,z). (3)

Now, we consider two cases for the parameters 1 � p, q < ∞, independently.
Case p � q: Taking at both sides of (3) the p-average over X and using Theorem 1 (i), (iii), and (iv),

we get
Mp

x∈X

(
Mq

z∈Z
(dx,z)

)
� Mp

x∈X

(
dx,y +Mq

z∈Z
(dy,z)

)
= Mp

x∈X
(dx,y) +Mq

z∈Z
(dy,z). (4)

In this expression, the LHS is precisely GDp,q(X, Z) which does not depend on Y. We now take
the p-average over Y at both sides of (4) and use Theorem 1 (i), (iii), and (iv), to obtain

GDp,q(X, Z) � Mp
y∈Y

(
Mp

x∈X
(dx,y) +Mq

z∈Z
(dy,z)

)
= Mp

y∈Y

(
Mp

x∈X
(dx,y)

)
+ GDp,q(Y, Z).

To finish this case note that from Theorem 1 (ii), (iv), and (v), we have that

Mp
y∈Y

(
Mp

x∈X
(dx,y)

)
= Mp

x∈X

(
Mp

y∈Y
(dx,y)

)
� Mp

x∈X

(
Mq

y∈Y
(dx,y)

)
= GDp,q(X, Y)

which proves the claim.
Case q � p: Here, we note that the LHS of (3) does not depend on Y, and take at both sides of (3)

the q-average over Y. Hence, Theorem 1 (i), (iii)–(v) yield

Mq
z∈Z

(dx,z) � Mq
y∈Y

(
dx,y +Mq

z∈Z
(dy,z)

)
� Mq

y∈Y
(dx,y) + GDp,q(Y, Z).

Lastly, we take the p-average over X and use Theorem 1 (ii)–(iv), to obtain

GDp,q(X, Z) � Mp
x∈X

(
Mq

y∈Y
(dx,y) + GDp,q(Y, Z)

)
= GDp,q(X, Z) + GDp,q(Y, Z),

which is the required result.

Corollary 1. For p, q ∈ R× the (p, q)-averaged Hausdorff distance Δp,q is a semimetric on the collection
M<∞(Σ) of all measurable subsets of Σ with finite measure. Moreover, between disjoint sets, Δp,q is a proper
metric on M<∞(Σ) for 1 � p, q < ∞.

Proof. Definition 6 easily implies that Δp,q(·, ·) � 0 as well as Δp,q(X, Y) = Δp,q(Y, X), for every pair
X, Y ∈ M<∞(Σ) and all p, q ∈ R×. From Definition 5 we can see that GDp,q(X, Y K X) = 0 if and only if
X = ∅ or Y ⊆ X (and hence Y K X = ∅). We thus find, for X, Y �= ∅, that

Δp,q(X, Y) = 0 if and only if X = Y.
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We have shown that Δp,q is a semimetric on M<∞(Σ), and since the maximum of two functions
satisfying the triangle inequality also satisfies it, Theorem 2 shows that Δp,q satisfies the triangle
inequality when 1 � p, q < ∞.

Theorem 3. Suppose that for any sets X, Y, Z ∈ M<∞(Σ) there exist some constants 0 < r < R such
that r � du,v � R holds for all pairs (u, v) in X × Y, X × Z, or Y × Z. Then, for all non-simultaneously
positive p, q ∈ R× with |p|, |q| � 1 the generational (p, q)-distance GDp,q satisfies the following relaxed
triangle inequality

GDp,q(X, Z) � R2

r2

(
GDp,q(X, Y) + GDp,q(Y, Z)

)
.

Proof. We prove the theorem in three steps.
Step 1: Take p ∈ R× and assume that q < 0, we will show that

GDp,|q|(X, Y) � R
r

GDp,q(X, Y). (5)

For any x ∈ X and all y1, y2 ∈ Y we have r
R
� dx,y1

dx,y2
� R

r
, thus

R
r
�
(
−
∫

Y
−
∫

Y

[
dx,y1

dx,y2

]|q|
dy1 dy2

) 1
|q|
=

(
−
∫

Y
d|q|

x,y1 dy1

) 1
|q|
(
−
∫

Y
d −|q|

x,y2 dy2

) 1
|q|

.

Using the fact that q = −|q|, we get

(
−
∫

Y
d|q|

x,y1 dy1

) 1
|q|
� R

r

(
−
∫

Y
dq

x,y2 dy2

)1
q

,

which by (1), proves that M|q|
y∈Y

(dx,y) � R
r
Mq
y∈Y

(dx,y). Calculating the p-average Mp
x∈X

of both sides, and from

Theorem 1 (i) and (iv), we finally get Mp
x∈X

(
M|q|
y∈Y

(dx,y)
)
� R

r
Mp

x∈X

(
Mq

y∈Y
(dx,y)

)
, which, by Definition 5,

is precisely (5).
Step 2: Now, take q ∈ R× and assume that p < 0, we will show that

GD|p|,q(X, Y) � R
r

GDp,q(X, Y). (6)

By hypothesis, for any y ∈ Y and all x1, x2 ∈ X we have r
R
� dx1,y

dx2,y
� R

r
. Therefore, proceeding as

before and applying again Theorem 1 (i) and (iv) we conclude that Mq
y∈Y

(dx1,y) � R
r
Mq

y∈Y
(dx2,y). Hence,

(
−
∫

X

(
Mq

y∈Y
(dx1,y)

)|p|
dx1

) 1
|p|(

−
∫

X

(
Mq

y∈Y
(dx2,y)

)p
dx2

) 1
|p|
=

(
−
∫

X
−
∫

X

[
Mq

y∈Y
(dx1,y)

Mq
y∈Y

(dx2,y)

]|p|
dx1 dx2

) 1
|p|

� R
r

,

from which we deduce(
−
∫

X

(
Mq

y∈Y
(dx1,y)

)|p|
dx1

) 1
|p|
� R

r

(
−
∫

X

(
Mq

y∈Y
(dx2,y)

)p
dx2

)1
p

.

Using (1), the previous inequality can be written as

M|p|
x∈X

(
Mq

y∈Y
(dx,y)

)
� R

r
Mp

x∈X

(
Mq

y∈Y
(dx,y)

)
,
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which, by Definition 5, is precisely (6).
Step 3: From the previous two steps we easily obtain

GD|p|,|q|(X, Y) � R
r

GD|p|,q(X, Y) � R2

r2 GDp,q(X, Y). (7)

Theorem 1 (iv) and Definition 5 imply that GDp,q(X, Z) � GD|p|,|q|(X, Z). Finally, the triangle inequality
for GD|p|,|q| (Theorem 2) and (7), produces the desired relation

GDp,q(X, Z) � GD|p|,|q|(X, Y) + GD|p|,|q|(Y, Z) � R2

r2

(
GDp,q(X, Y) + GDp,q(Y, Z)

)
.

Remark 2. When the pair (p, q) lies in the light-gray or violet regions of Figure 2, the distance GDp,q

satisfies a relaxed triangle inequality, with the drawback that the constant R2/r2 depends on the condition that
r � du,v � R, for all pairs (u, v) ∈ X × Y, X × Z, or Y × Z. For bounded and separated sets this condition
always holds, and on those sets the associated (p, q)-averaged Hausdorff distance Δp,q becomes an inframetric as
the following corollary implies.

Corollary 2. Under the same hypothesis of Theorem 3 we have

Δp,q(X, Z) � R2

r2

(
Δp,q(X, Y) + Δp,q(Y, Z)

)
.

Proof. It follows immediately from Theorem 3 and Definition 6.

Theorem 4. Let X, Y ∈ M<∞(Σ) and suppose that p, p′, q, q′ ∈ R satisfy p � p′ and q � q′. Then

Δp,q(X, Y) � Δp′,q(X, Y) and Δp,q(X, Y) � Δp,q′(X, Y).

Proof. It follows easily from Theorem 1 (v) and Definition 6.

0 1−1

1

−1

p

q

∞

∞

−∞

−∞

Figure 2. Representation of key regions on the (p, q)-plane. Corollary 1 shows that Δp,q is a proper
metric in the violet region and Corollary 2 shows that it is an inframetric in the orange and light-gray
ones. Numerical evidence suggests that Δp,q is still a proper metric in the orange regions.
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3.4. Pareto-Compliance

We return now to the setting of MOPs to consider the behavior of the generalized GDp,q and
Δp,q distances as performance indicators by studying their Pareto-compliance. A discussion of the
Pareto-compliance for the indicators GDp and Δp appeared in [14] (Section 3). Similar observations
are valid for these new (p, q)-indicators, but a detailed and complete account of the details is part of
ongoing research and will appear elsewhere. Here, as a first approach to the compliance question we
present a basic result that describes the behavior of the indicator GDp,q under stronger assumptions
than the compliance notion mentioned at the end of Section 2.2.

Let us assume that given a decision space Q ⊂ Rn, a MOP has an associated objective function
F : Q → Rk, with objective space F(Q) ⊂ Rk endowed with the Euclidean distance d(·, ·) and the
inherited Lebesgue measure μ. Furthermore, let PQ denote the Pareto set and F(PQ) ⊂ Rk the
corresponding Pareto front. If X ⊂ Q denotes an approximating subset (or archive), the explicit
GDp,q-performance indicators assigned to X is given by

IGD
p,q (X) := GDp,q(F(X), F(PQ)).

For the following statement, let us recall here that a partition of a set X is a collection of disjoint
and non-empty subsets of X whose union is the whole of X. Furthermore, for any q ∈ R we abbreviate
the q-averaged distance of F(u) ∈ F(Q) to the Pareto front F(PQ) by δq(u) := Mq

v∈PQ
(d(F(u), F(v))).

Theorem 5. Suppose that for fixed p, q ∈ R a pair of measurable archives X, Y ⊂ Q, satisfy that:

(i) X and Y admit finite partitions X =
⊔m

i=1 Xi and Y =
⊔m

i=1 Yi such that for each i ∈ {1, . . . , m}:

(a) Xi ⊂ X and Yi ⊂ Y are subsets of non-null finite measure.

(b) ∀x ∈ Xi, ∀y ∈ Yi: x � y,

(ii) ∀x ∈ X, ∀y ∈ Y: if x � y =⇒ δq(x) � δq(y).

Then IGD
p,q (X) � IGD

p,q (Y).

Proof. From condition (i) the archives X and Y admit partitions into the same number m of subsets
and from (ii) it is clear that for any i ∈ {1, . . . , m} if x ∈ Xi and y ∈ Yi then δq(x) � δq(y). Hence,
taking integral p-averages over Xi, and then over Yi of the quantities at both sides of this inequality we
obtain for each i that

ap
i :=

1
|Xi|

∫
Xi

δq(x)p dx � 1
|Yi|

∫
Yi

δq(y)p dy =: bp
i . (8)

Now, for each i ∈ {1, . . . , m} for which the inequality |Xi |
|X| � |Yi |

|Y| does not hold, we can further

subdivide Xi into a sufficiently large partition of mi non-null finite measure subsets Xi,1, Xi,2, . . . , Xi,mi ,
so that for all j ∈ {1, . . . , mi} we can guarantee that

wi,j :=
|Xi,j|
|X| � |Yi|

|Y| =: w̃i. (9)

Please note that this should be possible due to the assumption that Xi has non-null finite measure.
Since part (b) of condition (i) still holds for these subsets, (i.e., ∀x ∈ Xi,j, ∀y ∈ Yi: x � y), an analogous
relation to Inequality (8) is valid for them. Explicitly, for each i ∈ {1, . . . , n} and all j ∈ {1, . . . , mi}
we have

ap
i,j :=

1
|Xi,j|

∫
Xi,j

δq(x)p dx � 1
|Yi|

∫
Yi

δq(y)p dy =: bp
i .

Due to the chosen partitions of X and Y, it is clear that |X| = ∑m
i=1 |Xi|, where |Xi| = ∑mi

j=1 |Xi,j|,
and |Y| = ∑m

i=1 |Yi|. Therefore, with the notation of (9) it follows ∑m
i=1 ∑mi

j=1 wi,j = ∑m
i=1 w̃i = 1,
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which implies that the quantities wi,j and w̃i can be regarded as normalized weights appropriate for
taking weighted averages. Using that 0 � ai,j � bi and 0 � wi,j � w̃i � 1, simple properties of (discrete)
weighted power means ensure that ∑m

i=1 ∑mi
j=1 wi,j ap

i,j � ∑m
i=1 w̃i bp

i . Thus, we can finally write

IGD
p,q (Y)

p =
1
|X|

m

∑
i=1

mi

∑
j=1

∫
Xi,j

δq(x)p dx =
m

∑
i=1

mj

∑
j=1

|Xi,j|
|X| ap

i,j =
m

∑
i=1

mi

∑
j=1

wi,j ap
i,j

�
m

∑
i=1

w̃i bp
i =

m

∑
i=1

|Yi|
|Y| bp

i =
1
|Y|

m

∑
i=1

∫
Yi

δq(y)p dy = IGD
p,q (Y)

p,

proving the statement.

Remark 3. Condition (i) of Theorem 5 implies the simpler (and weaker) dominance conditions:

(a’) X � Y (i.e., ∀y ∈ Y, ∃x ∈ X such that x � y), and
(b’) ∀x ∈ X, ∃y ∈ Y such that x � y.

In many simple examples for which (a’) and (b’) hold, it is not difficult to find the partitions needed for
Theorem 5 (i), however this is not always possible, and the question of when such partitions exist will not be
considered here. Figure 3, show examples where (a’) and (b’) hold and the inequality IGD

p,q (X) � IGD
p,q (Y) is both,

true (left) and false (right). In these cases it can be shown that X and Y satisfy (left), and do not satisfy (right)
the requirements of Theorem 5 (i), respectively.

Remark 4. Another important observation is that condition (ii) of Theorem 5 allows for some freedom in
the choice of an appropriate q ∈ R such that the inequality δq(x) � δq(y) holds for x � y, ensuring the
compliance to Pareto optimality. This freedom is not available for the indicator GDp because in that case δq(x)
should be replaced by the corresponding quantity when q → ∞ which is the standard distance from a set to a
point d(F(x), F(PQ)). The possibility to choose a value of q according to the problem is clearly an advantage,
and provides an argument in favor of the generalized version GDp,q.

F(X)

F(Y)

F(PQ)

F(X)

F(Y)

F(PQ)

Figure 3. (Left) Example of a Pareto front F(PQ) with two archives satisfying condition (i) of Theorem 5
for which IGD

p,q (X) � IGD
p,q (Y). (Right) Example of a Pareto front F(PQ) with two archives satisfying

conditions (a’) and (b’) of Remark 3 but for which IGD
p,q (X) � IGD

p,q (Y). In this case partitions of the
archives satisfying Theorem 5 (i) do not exist.

4. Numerical Examples

In this section, we demonstrate the applicability and usefulness of the new distance measure on
two examples.
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4.1. General Example

As a first example we consider the following sets within the Euclidean plane R2: the first set,
A, is a line segment connecting two points a = (−1, 0) and b = (1, 0), i.e.,

A = ab. (10)

Next, for some given δ > 0 and any fixed value of ε > 0 we consider sets Bδ defined as the union of
line segments

Bδ = cdδ ∪ eδ fδ ∪ gδh, (11)

where c = (−1, ε), dδ = (−δ, ε), eδ = (−δ, 1), fδ = (δ, 1), gδ = (δ, ε), and h = (1, ε) are the segment
end-points in R2. Hereby, a set Bδ can be seen as a certain approximation of A, where the segment eδ fδ

can be considered to be the outlier in the approximation.
Figure 4 shows the sets A and Bδ for the values δ ∈ {0.05, 0.10, 0.20, 0.40} and ε = 0.10. Apparently,

for smaller δ, the outlier region gets smaller, and hence, the approximation Bδ of A gets “better”. This is
reflected by the values of the (p, q)-distance in Table 1.

-1.0 -0.5 0.0 0.5 1.0

0.0
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0.4

0.6

0.8

1.0 δ = 0.05
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0.0
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0.8

1.0 δ = 0.10
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1.0 δ = 0.20

-1.0 -0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0 δ = 0.40

Figure 4. Example of four approximations of A (black horizontal segment) with Bδ (blue piecewise
function) for four different values of δ and fixed ε = 0.10.

Table 1. Δp,q values for A and Bδ in (10) and (11), for different values of p, q, and δ, with fixed ε = 0.10.

p q Δpq(A, B0.05) Δpq(A, B0.10) Δpq(A, B0.20) Δpq(A, B0.40)

1 1 0.7149 0.7464 0.8091 0.9324
1 −1 0.4105 0.4506 0.5311 0.6945
1 −100 0.1503 0.1961 0.2878 0.4711
1 −200 0.1479 0.1934 0.2844 0.4663
1 −10, 000 0.1451 0.1901 0.2802 0.4602
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On the other hand, if choosing the classical Hausdorff distance, all values of dH(A, Bδ) are equal
to 1, regardless of the choice of δ > 0. Hence, the (p, q)-distance is more appropriate in this example to
identify “better” approximations.

4.2. Approximation of Pareto Sets/Fronts

As a second example we consider the approximation of the Pareto set and front of
a given MOP. For this, we define the following bi-objective problem that is known as the Lamé
super-sphere function [32]:

min
x

F : Rn → R2, (12)

where F(x) = ( f1(x), f2(x)) is given by

f1(x) =
(

1
n

n

∑
i=1

x2
i

)γ
2

and f2(x) =
(

1
n

n

∑
i=1

(xi − 1)2
)γ

2

for x ∈ Rn and γ ∈ R. Figures 5 and 6 show the Pareto sets and fronts for the special cases n = 2 with
γ = 2 and γ = 1/2, respectively.

Figure 5. Pareto set (left) and front (right) of MOP (12) for n = 2 with γ = 2.

Figure 6. Pareto set (left) and front (right) of MOP (12) for n = 2 with γ = 1/2.
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For the first step, we consider a simple hypothetical example to illustrate the concept of continuous
archives in the context of evolutionary multi-objective optimization. For these, assume we are given
the discrete archive A = {x1, . . . , x5} ⊂ R2, where

x1 = (−0.0129,−0.0421), x2 = (0.2525, 0.2912), x3 = (0.4903, 0.4035),

x4 = (0.6258, 0.6912), x5 = (1.0212, 0.9930).

The set A is hence consisting of only five candidate solutions. Analogously, the image F(A) of A can
be considered as an approximation of the Pareto front that consists as well of five candidate solutions.
Now, in order to improve the quality of the approximation, instead of A one can consider the polygon
that is defined by the elements of A, namely

B := x1x2 ∪ · · · ∪ x4x5. (13)

In what follows, we will call this polygon the continuous archive. The approximations A, B, F(A),
and F(B) can be seen in the Figures 7 and 8. By visual inspection, the approximation qualities increase
significantly when using the linear interpolation, in particular in objective space. This is reflected by
the (p, q)-distances which are shown in Table 2 where we can find the following general behavior:
first, the distances within decision and objective spaces, decreases from finite to continuous archives,
and this phenomena is stronger in the objective space; and second, following the result of Theorem 4,
the distances decreases as q decreases.

In a next step, we consider discrete and continuous archives resulting from two of the most
famous EMO algorithms: NSGA-II [44] and MOEA/D [45], see Table 3 for the parameter setting of
these algorithms. To this end, we first consider the result of NSGA-II with a population size of 12 after
500 generations, see Figures 9 and 10 and Table 4 for the numerical results. Finally, we consider the
MOEA/D generational algorithm to get 500 finite archives of 12 elements each, see Figures 11 and 12
and Table 5 for the numerical results.

For both EMO algorithms, it can be observed that the indicator values for the continuous archives
are significantly better than for the respective discrete archives. Next, note that the Δp,q values oscillate
for NSGA-II which is a typical behavior for this dominance-based algorithm. These oscillations,
however, are less distinct for the continuous archives.

Table 2. Δp,q values for the Pareto set/front approximations for MOP (12).

p q Decision Space Objective Space

Finite Archive Continuous Archive Finite Archive Continuous Archive

γ = 2

1 1 0.5314 0.4841 0.4369 0.3943
1 −1 0.2732 0.1750 0.2095 0.0945
1 −100 0.1140 0.0213 0.0893 0.0018
1 −200 0.1131 0.0208 0.0886 0.0017
1 −10, 000 0.1122 0.0202 0.0879 0.0017

γ =
1
2

1 1 0.5314 0.4841 0.5629 0.5024
1 −1 0.2732 0.1750 0.2807 0.1072
1 −100 0.1140 0.0213 0.1202 0.0015
1 −200 0.1131 0.0208 0.1192 0.0015
1 −10, 000 0.1122 0.0202 0.1183 0.0014
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Figure 7. Left: Approximations A (blue dots) and B (blue polygon line) of the Pareto set (green thick
line) of MOP (12) for n = 2. Right: corresponding approximations F(A) and F(B) of the Pareto front,
for γ = 2.

Figure 8. Left: Approximations A (blue dots) and B (blue polygon line) of the Pareto set (green thick
line) of MOP (12) for n = 2. Right: corresponding approximations F(A) and F(B) of the Pareto front,
for γ = 1/2.

Table 3. Parameter setting for NSGA-II and MOEA/D.

Algorithm Parameter Value

NSGA-II

Population size 12
Number of generations 500
Crossover probability 0.8
Mutation probability 1/n
Distribution index for crossover 20
Distribution index for mutation 20

MOEA/D

Population size 12
# weight vectors 12
Number of generations 500
Crossover probability 1
Mutation probability 1/n
Distribution index for crossover 30
Distribution index for mutation 20
Aggregation function Tchebycheff
Neighborhood size 3
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Figure 9. Left: approximations A (blue dots) corresponding to the 500th generation of the NSGA-II
algorithm, and B (blue polygon line) of the Pareto set (green thick line) of MOP (12) for n = 2.
Right: respective approximations F(A) and F(B) of the Pareto front for γ = 2.

Figure 10. Left: approximations A (blue dots) corresponding to the 500th generation of the NSGA-II
algorithm, and B (blue polygon line) of the Pareto set (green thick line) of MOP (12) for n = 2.
Right: respective approximations F(A) and F(B) of the Pareto front for γ = 1/2.

Table 4. Δp,q values for the Pareto front approximations for MOP (12) using the NSGA-II archives and
with p = 1, q = −10.

Generation
γ = 1/2 γ = 2

Finite Archive Continuous Archive Finite Archive Continuous Archive

50 0.0439 0.0147 0.0696 0.0160
100 0.0498 0.0109 0.0540 0.0102
200 0.0613 0.0118 0.0716 0.0207
250 0.0651 0.0265 0.0572 0.0061
400 0.0602 0.0102 0.0723 0.0276
450 0.0630 0.0154 0.0584 0.0088
460 0.0612 0.0154 0.0658 0.0098
470 0.0523 0.0102 0.0566 0.0083
480 0.0754 0.0269 0.0684 0.0241
490 0.0510 0.0091 0.0584 0.0118
500 0.0722 0.0097 0.0560 0.0103
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Figure 11. Left: approximations A (blue dots) corresponding to the 500th generation of the MOEA/D
algorithm), and B (blue polygon line) of the Pareto set (green thick line) of MOP (12) for n = 2.
Right: respective approximations F(A) and F(B) of the Pareto front for γ = 2.

Figure 12. Left: approximations A (blue dots) corresponding to the 500th generation of the MOEA/D
algorithm), and B (blue polygon line) of the Pareto set (green thick line) of MOP (12) for n = 2.
Right: respective approximations F(A) and F(B) of the Pareto front for γ = 1/2.

Table 5. Δp,q values for the Pareto front approximations for MOP (12) using the MOEA/D archives
and with p = 1, q = −10.

Generation
γ = 1/2 γ = 2

Finite Archive Continuous Archive Finite Archive Continuous Archive

50 0.0610 0.0171 0.0648 0.0119
100 0.0519 0.0051 0.1093 0.0016
200 0.0536 0.0037 0.0781 0.0009
250 0.0522 0.0037 0.0790 0.0008
400 0.0511 0.0017 0.0784 0.0009
450 0.0511 0.0017 0.0784 0.0009
460 0.0509 0.0012 0.0784 0.0009
470 0.0509 0.0012 0.0784 0.0009
480 0.0509 0.0010 0.0783 0.0009
490 0.0509 0.0010 0.0783 0.0009
500 0.0509 0.0010 0.0783 0.0009
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To further investigate the last statement, we consider finally the convex bi-objective problem
f1, f2 : R3 → R, where x = (x1, x2, x3) and

f1(x) = (x1 + 1)2 + x2
2 + x2

3

f2(x) = (x1 − 1)2 + x2
2 + x2

3. (14)

The Pareto set of MOP (14) is the line segment connecting the points (0, 0, 0) and (1, 0, 0), and the
Pareto front is as shown in Figure 13.

x1

x2

x3

f1

f3

Figure 13. Pareto set (left) and front (right) of MOP (14).

Figure 14 and Table 6 show the Δp,q values for both the discrete and continuous archives obtained
by NSGA-II using a population size of 20. As it can be seen, again the continuous archives achieve
much better indicator values, and the amplitudes of the oscillations are significantly smaller compared
to the discrete archives. This is confirmed by Figures 15–17 that show the results of the discrete and
continuous archives after 300, 400, and 500 generations, respectively. As it can be seen, NSGA-II is able
to compute solutions along the Pareto front, however, with varying distribution along this set (In fact,
it is known that there is no “limit archive” for NSGA-II since this algorithm is not indicator-based).
In turn, for each of the results of NSGA-II, all of the continuous archives represent—at least by visual
inspection—perfect approximations of the Pareto front, which is reflected by the good Δp,q values.

Concluding, the results presented in this section strongly indicate the convenience of the new
indicator that is able to assess the performance of continuous archives. Though in principle also
other indicators can be extended to continuous sets, this has not been done so far, and this is
not a straightforward task. Hence, no comparisons to other indicators can be considered here.
The presented results further indicate the benefit of the use of continuous archives instead of discrete
ones that are being used classically. This would, among others, allow for the usage of smaller
population sizes which would in turn allow to reduce the computational burden of the evolutionary
algorithms (note that the time complexity for all MOEAs in each generation is quadratic in the
population size). The verification of this statement, however, is left for future work as this goes beyond
the scope of this study.
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Generations

Δp,q

Figure 14. Δp,q values for the discrete (black curve) and the continuous archives (blue curve) of NSGA-II
for MOP (14).

Table 6. Δp,q values for the discrete and continuous archives of NSGA-II for MOP (14). The results are
averaged over 20 independent runs.

Generation Continuous Archive Finite Archive

20 0.1333 0.2401
40 0.0176 0.1451
60 0.0090 0.1561
80 0.0088 0.1355
100 0.0065 0.1472
120 0.0074 0.1412
140 0.0081 0.1395
160 0.0075 0.1549
180 0.0092 0.1468
200 0.0074 0.1429
220 0.0066 0.1408
240 0.0075 0.1397
260 0.0066 0.1460
280 0.0074 0.1439
300 0.0084 0.1421
320 0.0070 0.1352
340 0.0070 0.1373
360 0.0081 0.1454
380 0.0079 0.1413
400 0.0066 0.1388
420 0.0063 0.1400
440 0.0097 0.1384
460 0.0067 0.1418
480 0.0067 0.1421
500 0.0076 0.1426
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x1

x2

x3

f1

f3

Figure 15. Left: Approximations A (blue dots) and B (blue continuous polygon line) of the Pareto
set of MOP (14) in the 300th generation. Right: corresponding approximations F(A) and F(B) of the
Pareto front.
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Figure 16. Left: Approximations A (blue dots) and B (blue continuous polygon line) of the Pareto
set of MOP (14) in the 400th generation. Right: corresponding approximations F(A) and F(B) of the
Pareto front.

x1

x2

x3

f1

f3

Figure 17. Left: Approximations A (blue dots) and B (blue continuous polygon line) of the Pareto
set of MOP (14) in the 500th generation. Right: corresponding approximations F(A) and F(B) of the
Pareto front.
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5. Conclusions and Future Work

In this work, we have proposed extensions of the existing GDp,q and Δp,q performance indicators
that allow to compute the distance between two general measurable sets. In particular, this is a natural
setting in multi-objective optimization because the solution of such a problem typically forms a set
of certain dimension (and is thus not given by finitely many points). We have shown that the
extended indicators keep the nice metric properties from its finite-version predecessors (see [14,26]).
Moreover, for GDp,q, sufficient conditions have been provided ensuring that certain compliance to
Pareto optimality of this indicator can be guaranteed. Further study is needed to determine the precise
relation between these conditions and other ones appearing in the literature.

We have demonstrated the applicability and usefulness of the novel indicator on examples related
to evolutionary multi-objective optimization.

As part of future work, we intend to further investigate the use of Δp,q within evolutionary
multi-objective optimization. For instance, it might be interesting to integrate this performance
indicator within an evolutionary multi-objective optimization algorithm as it was done, e.g., in [46]
for its predecessor Δp. Although it is clear that the individual roles of p and q are related with the
convexity of the metric neighborhoods of point and sets, further research is needed to elucidate more
precisely useful ways to take advantage of their joint behavior in concrete situations. Additionally,
to understand the behavior of Δp,q in relation to Pareto compliance and to complete the partial results
that have been established in Section 3.4 for GDp,q, consideration should be given to the inverted
generational indicator IGDp,q. Finally, one interesting aspect is to see if the indicator can be used as
a proximity measure in other research fields.
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Abstract: The performance of a multi-objective evolutionary algorithm (MOEA) is in most cases
measured in terms of the populations’ approximation quality in objective space. As a consequence,
most MOEAs focus on such approximations while neglecting the distribution of the individuals of
their populations in decision space. This, however, represents a potential shortcoming in certain
applications as in many cases one can obtain the same or very similar qualities (measured in
objective space) in several ways (measured in decision space). Hence, a high diversity in decision
space may represent valuable information for the decision maker for the realization of a given project.
In this paper, we propose the Variation Rate, a heuristic selection strategy that aims to maintain
diversity both in decision and objective space. The core of this strategy is the proper combination of
the averaged distance applied in variable space together with the diversity mechanism in objective
space that is used within a chosen MOEA. To show the applicability of the method, we propose the
resulting selection strategies for some of the most representative state-of-the-art MOEAs and show
numerical results on several benchmark problems. The results demonstrate that the consideration of
the Variation Rate can greatly enhance the diversity in decision space for all considered algorithms
and problems without a significant loss in the approximation qualities in objective space.

Keywords: evolutionary computation; multi-objective optimization; decision space diversity

1. Introduction

In many areas such as Economy, Finance, or Industry, the problem arises naturally that several
conflicting objectives have to be optimized concurrently [1,2]. Such problems are called multi-objective
optimization problems (MOPs) in literature [3–5]. The solution set of an MOP (in decision space)
is called the Pareto set and its image (defined in objective space) the Pareto front. One important
characteristic of continuous MOPs is that their Pareto sets and fronts typically form (k − 1)-dimensional
objects, where k is the number of objectives considered in the problem. In many applications, the
Pareto front is of primary interest as it contains information about the desired qualities of each selected
solution. As a consequence, almost all existing MOEAs focus on approximations in objective space
while entirely neglecting the distribution of the individuals in decision space. There exist, however,
also applications where the values of the solutions in decision variable space are of great importance.
As an example, consider that the amount of a certain resource (i.e., the value of a variable xi) used to
obtain the desired quality (measured in objective space) is important. For two solutions that are equal
or similar in objective space, one may prefer the one that has a lower value of xi. Another example is
that the variable xi could represent the launch date of a project, as, e.g., in [6] in the context of space
mission design. For such problems, different values of xi directly relate to different timescales in the
realization of the project. In that case, the decision maker may select one “optimal” realization of the
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project, and keep solutions with similar objective values but later launch dates as back-up solutions.
For such problems, the sole consideration of the approximation quality in objective space represents a
potential shortcoming. On the one hand, it is of course possible to formulate all such problems via
additional constraints and objectives. On the other hand, such re-modellations of the problem lead in
general to a higher complexity compared to the original problem. For instance, by each added objective,
the dimension of the Pareto set/front increases by one. Hence, in this context, there exists an additional
challenge in solving a given MOP, since we have to find a suitable approximation to the optimal set
both in objective and decision space, in order to provide a satisfying overview of the possible solutions
to the decision maker. Another application can be found in [7], where data analysis techniques are used
to discover patterns and rules. Here, authors conclude that such process of innovation by optimization
(“innovization”) has an enormous potential to revolutionize the engineering of the design process in
the industry.

In this paper, we propose a framework for equipping MOEAs with a mechanism that performs
an exploration of both decision and objective spaces. The underlying idea of this proposal, called
Variation Rate, is to measure the spread via using the averaged distance in decision space for elements
for which function values are close in objective space. After discussion of the general framework,
we present implementations of variants of NSGA-II [8] (elitist algorithm), SMS-EMOA [9] (indicator
based algorithm), MOEA/D [10] (decomposition based algorithm), and NSGA-III [11] (designed
for the treatment of MOPs with many objectives). Further on, we demonstrate the effectiveness of
our approach on several benchmark problems, where we show that, compared to the base variants,
we greatly improve the approximation qualities in decision space without any significant loss in the
qualities in objective space. A preliminary study of this work can be found in [12], where the discussion
on the proposed method is reduced, and where it has only been applied to NSGA-III.

The remainder of the paper is organized as follows: in Section 2, we briefly present the background
required for the understanding of this paper and discuss the related work. In Section 3, we first present
the general framework of the Variation Rate and further on provide particular implementations for
four different MOEAs that are representative of the state-of-the-art. In Section 4, we present some
numerical results on selected benchmark problems using both the four base MOEAs as well as their
variants that use the Variation Rate. Finally, in Section 5, we discuss the advantages of the proposed
approach and discuss possible paths for future research.

2. Background and Related Work

Optimization refers to finding the best possible solution to a problem given a set of constraints [4].
Multi-objective optimization refers to the simultaneous optimization of multiple and usually conflicting
objectives. More precisely, a multi-objective optimization problem (MOP) with k objectives is
mathematically defined as follows:

min
x∈D

F(x), (1)

where D ⊂ Rn is the domain and F : D ⊂ Rn → Rk is called the objective function.
The optimality of an MOP is defined by the concept of strict dominance. Let v, w ∈ Rk, the vector v

is less than w (v <p w), if vi < wi for all i ∈ {1, . . . , k}; the relation ≤p is defined analogously. A vector
y ∈ D is dominated by a vector x ∈ D (x ≺ y) with respect to (1) if F(x) ≤p F(y) and F(x) �= F(y),
else y is called non-dominated by x. A point x∗ ∈ Rn is Pareto optimal to (1) if there is no y ∈ D that
dominates x. The set of all the Pareto optimal points PD is called the Pareto set and its image F(PD)

is called the Pareto front. Typically, i.e., under certain mild smoothness assumption on the model,
both Pareto set and front form at least locally (k − 1)-dimensional objects.
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Unlike evolutionary algorithms for single objective optimization problems (SOPs), maintaining
diversity in decision space is not a priority for most MOEAs; most of the performance
indicators are developed in order to measure the accuracy based only on the objective function
(e.g., the hypervolume [13] and the Degree of Approximation [14]). As exceptions, we have some of
the measures used for multimodal optimization (see [15]) and two particular examples. The first one is
the Δp indicator [16,17], which can be viewed as an averaged Hausdorff distance and which actually
measures the distance between two general sets and we can use it as an indicator both in objective space
as well as in decision space. The other work that can deal with this aspect is the diversity integrating
multiobjective optimizer (DIOP) [18], which is user-defined and concurrently optimizes two set-based
diversity measures, one in decision space and the other in objective space. In this work, the relationship
between the two set-based diversity measures is conceived as a bi-objective optimization problem and
it is solved via a weighted sum of the two diversity indicators. In particular, the authors consider the
Solow–Polasky measure as it satisfies three requirements: monotonicity in varieties, twinning, and
monotonicity in the distance.

Although works that explicitly consider at the same time variables and objectives are scarce,
one can find some related work on this topic in [19] and some specific algorithms. For instance,
the NSGA [20] (the algorithm that precedes the well-known NSGA-II) uses fitness sharing in decision
space. In [21], some possible techniques are proposed to spread out solutions both in objective and
decision decision space: pointwise expansion, threshold sharing, sequential sharing, simultaneous sharing
multiplicative, and simultaneous sharing additive. It is important to point out that the above approaches are
only part of the discussion of the paper and they were not implemented; the implemented algorithm
was the Niched Pareto GA, a method with phenotypic sharing. In addition, all of the described
techniques depend on the normal fitness sharing method, that is, two additional parameters must be
provided or approximated (the niche radius σshare in both decision and objective spaces).

The omni-optimizer algorithm [22] is proposed as a procedure that aims at solving a wide variety
of optimization problems (single or multi-objective and uni- or multi-modal problems). The authors
argue that, to solve different kinds of problems, it is necessary to know different specialized algorithms.
Thus, it is desirable to have an algorithm that adapts itself for handling any number of conflicting
objectives, constraints, and variables. The omni-optimizer is important in the context of this work as it
uses a two-tier fitness assignment scheme based on the crowding distance of the NSGA-II. The primary
fitness is computed using the phenotypes (objectives and constraint values) and the secondary fitness is
computed using both phenotypes and genotypes (decision variables). The modified crowding distance
computes the average crowding distance of the population in objective and decision spaces. If the
crowding value for some individual is above average (at any space), it is assigned the larger of the two
distances; otherwise, the smaller of the two distances is assigned. However, we must not lose sight of
the fact that omni-optimizer was developed not only to maintain diversity in decision space but with a
more general purpose (it adapts itself to solve different kinds of problems).

An algorithm that explicitly promotes the diversity of the decision space is the MOEA/D with
Enhanced Variable-Space Diversity (MOEA/D-EVSD), proposed in [23]. This method is an extension
of the MOEA/D [10] but with an enhanced variable-space diversity control. In the first generations,
the MOEA/D-EVSD tries to induce a larger diversity via promoting the mating of dissimilar
individuals. Similarly to MOEA/D, a new individual is created for each subproblem. Then, instead of
randomly selecting two individuals of the neighborhood, a pool of α candidate parents is randomly
filled from the neighborhood with probability δ, and with probability 1 − δ from the whole population.
The two selected parents are the ones in the pool that have the largest distance among them. As the δ

parameter is dynamically set, a gradual change between exploration and exploitation can be induced.
Additionally, a final phase to further promote intensification is included, which is essentially a
traditional MOEA/D coupled with Differential Evolution (DE) operators. For the last generations
of MOEA/D-EVSD, the traditional mating selection of MOEA/D is conserved together with the
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Rand/1/bin scheme for the DE operators. The authors of this paper show that, by inducing a gradual
loss of diversity in the decision space, the state-of-the-art of MOEAs can be improved.

Finally, in [24], the diversity integrating hypervolume-based search algorithm (DIVA) is proposed.
Here, the authors proposed a modified hypervolume indicator, which is integrated into an evolutionary
algorithm. They employ a so-called diversity function, which fulfills certain requirements such that
the modified hypervolume indicator remains compliant with the underlying preference relation.

3. Proposed Framework

State-of-the-art MOEAs that measure the approximation quality of their outcome entirely in
objective space work typically well if there is a 1:1 relationship between Pareto set and Pareto front
(that is, if, for every y ∈ F(PD), there exists exactly one x ∈ PD such that F(x) = y). That is,
if a good finite size approximation of the Pareto front is found by the MOEA (the goodness can
be measured, e.g., by any existing performance indicator), the respective finite size approximation
of the Pareto set is in many cases also satisfying. This, however, does not hold any more if there
is an m : 1 relationship between Pareto set and front (i.e., if there are multiple xi ∈ PD such that
F(xi) = y for a y ∈ F(PD)). If, for instance, there are several connected components of the Pareto set
that map to the same part of the Pareto front, a good Pareto front approximation does not imply a
good (or at least satisfying) approximation of the Pareto set. To see this, consider the hypothetical
bi-objective problem that is shown in Figure 1. The Pareto set of this problem consists of two disjunct
connected components that map both to the same Pareto front (that is, every y ∈ F(PD) has exactly
two pre-images). Figure 2 shows four possible approximations in decision and objective space. As it
can be seen, the approximation quality is very high for all sets in objective space, while this is not the
case for the Pareto set approximations. Out of them, only the last one is “complete” according to the
given discretization. MOEAs that merely measure their outcomes in objective space cannot distinguish
between those solutions, and, consequently, the Pareto set approximation is left to chance. MOPs of
this kind are termed Type III problems in [25].

To overcome this problem, we propose to perform a density estimator that aims to obtain a good
distribution both in objective and decision space. Usually, a classical density estimator groups the
population considering only the objective values. Such classification is commonly used to define
selection criteria for its elements, giving them certain reference value based on its distribution in
objective space. According to the design of each algorithm, the individual with either lower or higher
reference value is chosen. The idea is to define a relationship between this reference value in objective
space and a certain measurement in decision space. In this way, the first grouping phase identifies
promising solutions in objective space; meanwhile, the second phase favors solutions with the most
different values in the decision space. Our goal is to properly represent the trade-off between these
two aspects.

x1

x
2

(a)

f1

f
2

(b)

Figure 1. (a) Pareto set and (b) Pareto front of a hypothetical bi-objective problem where the Pareto set
consists of two connected components that both map to the entire Pareto front.
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Figure 2. Four different Pareto set/front approximations, where all Pareto front approximations are
good (e.g, in the Hausdorff sense), but where only in case (d) the Pareto set approximation is complete.

3.1. Using the Averaged Distance in Variable Space

In the following, we discuss why we think that the usage of the averaged distance is an adequate
measure in decision space that serves our purpose.

Let I = {x1, . . . , xs} ⊂ R be a finite set, then the averaged distance d̄ between each element xi ∈ I
and the rest of the elements in I is given by

d̄(xi, I) =
1

s − 1

s

∑
j=1
j �=i

d(xi, xj), (2)

where d(xi, xj) is the desired metric for the distance between the two elements xi and xj in the decision
space that can vary according to the codification or the used norm. In this work, we consider the
Euclidean distance, i.e., d(xi, xj) = ‖xi − xj‖2.

Though the averaged distance is defined for every finite set I ∈ Rn, we will apply it on sets where
the values of their images, F(xi), i = 1, . . . , s, are close to each other.

As an illustrative example, consider again the Type III bi-objective problem whose Pareto set and
front are shown in Figure 3. The set I is given by the three points �, �, and �. All three images are
relatively close to the given reference point Z point Z in objective space; assume, for simplicity, that the
distances of all three images to Z are given by one (i.e., ‖Z − F(�)‖ = ‖Z − F(�)‖ = ‖Z − F(�)‖ = 1).
Furthermore, we assume that, for the distances in variable space, we have d(�,�) = 0.4, d(�,�) = 2,
and d(�,�) = 2.2. Then, we obtain

d̄(�, I) =
2.6
2

= 1.3, d̄(�, I) =
2.4
2

= 1.2, and d̄(�, I) =
4.2
2

= 2.1.

Notice that the point with the biggest average distance in variable space is also the most different
individual in this space. In other words, elements with the maximum average distance in decision
space have the desired behavior for Type III problems.
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Figure 3. Illustrative example.

However, it is not sufficient to only take into account the average distance of the variables as a
selection criterion. Our problem now is how to select an individual that has both a good quality in
objective space as well as a good distribution in variable space. We discuss this issue in the following.

3.2. Variation Rate

As explained before, the generic selection criterion of most MOEAs prefers individuals with
“the best” reference value in objective space, and this could be a maximum or a minimum value
according to the selection procedure. For instance, the selection criterion of the NSGA-II prefers
individuals with the biggest crowding distance, while the niching procedure of the NSGA-III favors
individuals with the least distance to an induced line. On our part, we have to consider both the
reference value provided by the classical selection criterion, as well as the average distance in variables
to solve Type III problems.

We first consider selection mechanisms that prefer small reference values. For this, let I be a set of
points in decision space whose images are close to each other, let vi be the reference value in objective
space for each xi ∈ I and let d̄(xi, I) as defined as in (2) (in decision space). Then, the variation rate ri
for each element xi is stated as follows:

ri =
vi

d̄(xi, I)
. (3)

This makes sense because for Type III problems the elements of the neighborhood I will have a
similar reference value in objectives while the average distances will be larger for the most different
solutions in decision space. Hence, its quotient (the variation rate) will tend to be smaller than for the
rest of the quotients. Thus, through the variation rate, we have a way to relate the objective and the
decision spaces in order to choose the best individual in each group.

Next, we address selection mechanisms that prefer large reference values. For this, we have two
options. The first one is to edit the selection criterion to prefer small values in order to use the variation
rate. The second alternative is to use a product instead of a quotient. We decide to conserve the essence
of each MOEA; for this reason, we implement the second option in this work, which we call the inverse
variation rate. More precisely, for a set I as above with reference values vi for each xi ∈ I and d̄(xi, I) as
defined in (2), the inverse variation rate r̃i is defined as follows:

r̃i = vi · d̄(xi, I). (4)

Using this definition, elements with the largest values are hence preferred.
In order to illustrate these two approaches, we go back to the example shown in Figure 3 where

we already have the values of d̄ and vi for all the three elements of the set I. Suppose that we have to
select two out of the three individuals �, �, and �.
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If we work with an MOEA that has a selection criterion that prefers individuals with the least
distance to Z in objective space, then the only option we have is randomly choosing them (since
v� = ‖Z − F(�)‖ = 1, v� = ‖Z − F(�)‖ = 1, and v� = ‖Z − F(�)‖ = 1). However, if we use the
variation rate, then the values change to:

r� =
1

1.3
≈ 0.7692 r� =

1
1.2

≈ 0.8333, and r� =
1

2.1
≈ 0.4762.

In this way, we select � as the preferred solution and the second one is �, which preserves
individuals in both of the disconnected regions in decision space.

The desired two-element population is hence given by

P = {�, �}.

Otherwise, if we work with an MOEA that has a selection criterion that prefers individuals with
the largest distance to Z in objective space (maybe in order to preserve diversity), then the option we
have again is randomly choosing two of them. However, if we use the inverse variation rate, that is:

r̃� = 1 · 1.3 = 1.3, r̃� = 1 · 1.2 = 1.2, and r̃� = 1 · 2.1 = 2.1,

then it also leads � and � as the selected individuals.
The desired two-element population is again given by

P = {�, �}.

Observe that, in both cases, we conserve one individual in each disconnected component of the
Pareto set. This is something that we can not guarantee with the use of a standard approach.

Notice that, for all MOPs with a 1:1 relationship of the Pareto set and the Pareto front, it is expected
that solutions in the same neighborhood have similar reference values in objective space and also
a similar average distance in decision space. Thus, it is also likely that making the quotient or the
product of these values does not significantly affect the original selection criterion. This will be shown
in Section 4 on several classical benchmark problems.

We can now state a general framework. A pseudocode of the Variation Rate is shown in
Algorithm 1.

Algorithm 1 Framework to include the Average Distance in Variables within any MOEA

Require: Parameters of the selected MOEA
Ensure: Final population Pt

1: t ← 0
2: P0 ← InitializePopulation()
3: while the stop criterion is not satisfied do

4: Mt ← VariationOperator(Pt)
5: Vt ← SelectProcedure(Pt ∪ Mt)
6: Pt ← SelectByVariationRate(Vt)
7: t ← t + 1
8: end while

In Algorithm 1, the procedure SelectByVariationRate takes the reference values Vt in objective
space provided by SelectProcedure (we assume it is based on a classical selection criterion), and then
it updates such values according to the variation rate or the inverse variation rate in order to improve
the selection mechanism to deal with Type III problems.
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As we can see, this framework can be used in principle within any MOEA; however, the particular
use of the variation rate or the inverse variation rate will depend on the given MOEA. In the following,
we explain how to adapt the Variation Rate for four of the most representative MOEAs. The reader can
find the pseudocode of these four variants in Appendix A.

3.3. Integration into NSGA-II

The first algorithm that we consider is the classical NSGA-II, which has been used successfully
for the treatment of a large number of applications. This is a domination-based multi-objective
evolutionary algorithm; that is, this method directly applies the Pareto dominance relation and an
elitism strategy to preserve the best individuals along the optimization process. The elitism operator is
incorporated via a special parent selection based on two mechanisms: fast-non-dominated-sorting

and crowding distance. The former conserves best individuals based on the Pareto dominance relation,
whereas the latter is used to promote the preservation of the diversity.

We consider the classification in fronts performed by the fast-non-dominated-sorting as our
neighborhood structure because the crowding distance is applied only in the last front that can
contribute elements to the next population. This means that we have to integrate the diversity into
decision space into the crowding distance. The crowding distance procedure sorts the elements in
the last front according to the values of objectives; then, the crowding distance of an individual pi is
the average distance in objective space from the previous and the next individuals (according to the
induced order), that is, the individuals pi−1 and the pi+1. In order to preserve the extreme individuals,
the crowding distance of the first and the last element is set as a big value. This means that the
crowding distance prefers elements with big values, and, hence, we use the inverse variation rate.

The pseudocode of the modification of the NSGA-II with the variation rate (VR-NSGA-II) is
shown in Algorithm A1 of Appendix A.1.

3.4. Integration into NSGA-III

We consider this algorithm here because it is able to properly deal with MOPs with many
objectives. This algorithm is similar to its predecessor, the NSGA-II in the variation operators and in
the classification of the fronts via the fast-non-dominated-sorting; however, the crowding distance is
replaced by a more sophisticated procedure.

Here, the idea is to take advantage of the association method of the NSGA-III, which defines a
“neighborhood” structure in a very convenient way for our purpose. The association method assigns
each element of Fj (the last front classified after the fast-non-dominated-sorting) to the nearest induced
line by some weight wi ∈ Z, where Z is a set of reference points. Each weight can have more than one
associated element, forming a neighborhood.

In the original NSGA-III, the niching is realized by sorting the obtained groups in the association
stage according to its cardinality in ascending order. The element with the least distance to the induced
line in each group is selected, and the algorithm continues with the next group until the population
is filled. Thus, we modify the niching method. To include the diversity in decision space, our new
niching procedure does not prefer the element with the least distance value. Instead, it prefers the one
with the smallest variation rate.

The pseudocode of an iteration of the VR-NSGA-III algorithm with variation rate is shown in
Algorithm A2 of Appendix A.2.

3.5. Integration into MOEA/D

MOEA/D is part of the Decomposition-Based Evolutionary Algorithms, which transform the
original multi-objective optimization problem into a set of single-objective optimization problems that
are simultaneously solved. In particular, this method takes a set of weights to define neighborhoods.
The set of nearest weights defines one neighborhood and the best individuals are selected based
on the value of a certain aggregative function. MOEA/D considers the weighted aggregation of
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objectives as an elitism mechanism. Furthermore, the neighborhood structure promotes the mating of
close solutions. Different aggregative functions can be used in the MOEA/D framework, However,
individuals with the least values are selected. In this work, we employ the Tchebycheff function, which
is the most popular approach.

In order to include variation rate to the MOEA/D, we modify the selection criterion. Instead of
preferring individuals with the least aggregative function value, we use the least value of the variation
rate. For this, we employ the neighborhood structure of the original MOEA/D.

The pseudocode of VR-MOEA/D is shown in Algorithm A3 of Appendix A.3.

3.6. Integration into SMS-EMOA

SMS-EMOA is an indicator based algorithm; this means that it uses as a selection criterion the
value of a certain performance indicator. In the case of SMS-EMOA, it is the hypervolume indicator.

This algorithm is similar to the NSGA-II, but it replaces the crowding distance by the contribution
to the hypervolume of each individual in the last front. That is, the individuals of the last front with
the biggest contribution to the hypervolume are preferred.

In this case, to adapt the SMS-EMOA, we consider the inverse variation rate, as the original
mechanism criterion of this algorithm prefers high values. Again, we use the last front as our
neighborhood structure.

The pseudocode of this method is shown in Algorithm A4 of Appendix A.4.

4. Numerical Results

In this section, we show some numerical results and comparisons to the state-of-the-art to
demonstrate the benefit and strength of the variation rate. To this end, we first compare the original
version of each algorithm against its corresponding version that uses the variation rate (respectively,
the inverse variation rate) on some widely used (non-Type III) benchmark problems. This is done
in order to show that the performance of each algorithm is not significantly affected for standard
problems. In the next step, we test again the original and variation rate versions of the selected MOEAs
on some Type III problems, where the advantage of the variation rate becomes apparent.

The benchmark problems that we use for the first part of these experiments are the well known
test problems DTLZ 1-4 [26], IDTLZ 1 and IDTLZ2 [27], as well as the test problems WFG 1-5 [28].
For the second part, we use following six Type III problems.

The first Type III problem is taken from [22], which is defined as follows:

f1(x) =
n

∑
i=1

sin(πxi), f2(x) =
n

∑
i=1

cos(πxi), (5)

where 0 ≤ xi ≤ 6. This problem, denoted as OMNI1 in this work, has a total of 243 different
disconnected components that form the Pareto set, and all of these components map to the same
Pareto front.

The second problem, also taken from [22], is defined as follows:

f1(x) = sin

(
π

n

∑
i=1

xi

)
, f2(x) = cos

(
π

n

∑
i=1

xi

)
, (6)

where 0 ≤ xi ≤ 1, and i = 1, 2, . . . , 6. This problem is denoted as OMNI2 in this work. Let y = ∑6
i=1 xi

be the sum of the variables, then the Pareto set consists of the points x where 1 ≤ y ≤ 1.5 or 3 ≤ y ≤ 3.5.
In addition, here, both connected components map to the same Pareto front. That is, every point on the
Pareto front can be obtained in different infinite ways via the combinations of the variables mentioned.
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The third Type III problem is the application stated in [29,30], where subdivision techniques have
been used to tackle the problem. It is stated as follows: for f1, f2 R5 → R, it is:

f1(x) =
n

∑
i=1

xi,

f2(x) = 1 −
n

∏
i=1

(1 − wi(xi)),
(7)

where

wi(z) =

⎧⎪⎨⎪⎩
0.01 · exp

(
−
( z

20

)2.5
)

, for i = 1, 2,

0.01 · exp
(
− z

15

)
, for 3 ≤ i ≤ 5.

(8)

Finally, we consider the methodology from [25] to construct three more problems, denoted in this
paper as RPH1, RPH2, and RPH3. These are bi-objective problems with two variables. In order to
properly define them, we use the following functions.

First, we define the objective functions for the RPH1-3 problems

f1(x) = (x1 + a)2 + x2
2,

f2(x) = (x1 − a)2 + x2
2,

(9)

where x ∈ R2 and a ∈ R+. The variants of the RPH problems are obtained with the following functions.
Let t1(x) and t2(x), with x ∈ R2, be the tile identifiers that are determined via:

t̂1(x) = sgn(x1) ·
⌈
|x1| −

(
a + c

2
)

2a + c

⌉
,

t̂2(x) = sgn(x2) ·
⌈
|x2| − b

2
b

⌉
,

(10)

which restrict the problem to nine tiles using the relation ti = sgn(t̂i(x)) · min{|t̂i|, 1}, with i = 1, 2.
Then, RPH1 is defined as f (1)i (x) = f (x̂(x)), where x̄ : R2 → R2 is defined by the

following transformation:
x̂1(x1) = x1 − t1 · (c + 2a),
x̂2(x2) = x2 − t2 · b.

(11)

For the RPH1-3 problems, we fix the constant values a = 4, b = 10, and c = 4.
The RPH2 problem is defined as the RPH1, but it rotates the variables. That is, for an angle θ,

we have

r(x) =

(
cos θ − sin θ

sin θ cos θ

)
x, (12)

and then f (2)i (x) = f (1)i (r(x)). In this paper, we use θ = π
4 .

Finally, via the following transformation d : R2 → R

d(x) = x1 ·
(

x2 − L + ε

U − L

)
, (13)

for some small ε > 0 and where U and L denote the upper and lower bound of the search space,
respectively; we can define the RPH3 as: f (3)i (x) = f (2)i (d(x), x2), which is a rotated and transformed
problem. In this paper, we use ε = 0.1 for the RPH3 problem, while L = −20 and U = 20 are the the
upper and lower bounds of each variable for the RPH1-3 problems.
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We use the PlatEMO platform [31] to make our test. The parameter settings of all the used
algorithms are shown in Table 1. For all experiments, we have executed 30 independent runs.
The numerical results with the mean and standard deviation of the hypervolume and Δp indicators
are shown in Tables 2 and 3. In these tables, we have put in bold the best value between each pair of
algorithms (the original version and the version with variation rate). We also performed the Wilcoxon
test [32] as statistical significance proof to validate the results. For this, we consider the value α = 0.05.
We put in gray the cell where such difference has statistical significance according to this test.

Table 1. Parameter configuration for each algorithm. Mutation probability mp, crossover probability
cp, neighborhood size T, and number of reference points #Z.

Parameter NSGA-II NSGA-III MOEA/D SMS-EMOA

mp 1/n 1/n 0.1 1/n
cp 0.8 0.8 1.0 0.8
T - - 20 -

#Z - 200 - -

From the tables, we obtain that, for the classical benchmark problems, the original version of the
selected MOEAs has a better Δp value than the variation rate version in 27 out of the 44 combinations,
where only 19 out of these values have statistical significance, which is an expected result. However,
it is important to notice that the variation rate versions do not always lose, according to the Δp

indicator values, the variation rate versions are better in 17 out of 44 cases, but only in two with
statistical significance.

For the hypervolume indicator, something similar happens. Here, the original version of the
MOEAs is better than the variation rate version in 33 out of 44 runs, with statistical significance in
21 cases, while the variation rate version wins in 11 out of 44 cases for this indicator, where three of
them have statistical significance.

In total, from the 88 possible combinations (algorithms, indicators and problems), we have
statistical significance in 45 cases; this means that, almost 50% of the time, it is not possible to say that
the original version is different than the variation rate version. Moreover, in the cases when we have
statistical significance, we can see in Table 2 that the averaged values are very similar.

We observe the advantages of the variation rate versions with the Type III problems (see Table 3).
For these problems, we use the Δp both in objective and decision space (we denote this in the table
as Obj. Δp and Var. Δp, respectively). We observe a similar behavior in objective space, here 16
out of 24 possible combinations are better for the original MOEAs (but only 6 out of these 34 have
statistical significance). However, in decision space, the variation rate versions are better than the
original versions; we have that 18 out of 24 combinations have better Δp values, almost all of them
with statistical significance (only, in one case, we can not reject the null hypothesis).

Graphical results are shown in Figures 4–9; we plot the original MOEA and its corresponding
variation rate version with the best value for each problem (according to the median of all runs using
the Var. Δp).
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Table 2. Numerical results for the original and variation rate version of some MOEAs in standard
benchmark test problems. We show the mean and standard deviation (up and down in the cell,
respectively). We put in bold the best value and in gray the cells with statistical significance according
to the Wilcoxon test.

Problem Ind.
NSGA-II NSGA-III MOEAD SMSEMOA

Original VR Original VR Original VR Original VR

DTLZ1
Δp

0.0155 0.0181 0.0105 0.0105 0.0105 0.0105 0.0358 0.0719
0.0004 0.0006 0.0000 0.0000 0.0000 0.0000 0.0639 0.1213

HV 0.8473 0.8454 0.8576 0.8575 0.8571 0.8572 0.8359 0.8351
0.0013 0.0012 0.0003 0.0006 0.0005 0.0004 0.0081 0.0079

DTLZ2
Δp

0.0410 0.0410 0.0277 0.0277 0.0277 0.0280 0.0539 0.0536
0.0008 0.0014 0.0000 0.0000 0.0000 0.0000 0.0041 0.0041

HV 0.5630 0.5641 0.5813 0.5813 0.5814 0.5793 0.5593 0.5588
0.0018 0.0015 0.0000 0.0001 0.0000 0.0001 0.0013 0.0020

DTLZ3
Δp

0.0666 0.0572 0.0301 0.0295 0.0316 0.0308 0.0687 0.1386
0.0780 0.0855 0.0021 0.0015 0.0027 0.0019 0.0522 0.2410

HV 0.5577 0.5598 0.5714 0.5730 0.5660 0.5677 0.5526 0.5456
0.0052 0.0074 0.0060 0.0044 0.0068 0.0053 0.0066 0.0213

DTLZ4
Δp

0.0400 0.0450 0.0277 0.0277 0.1359 0.0293 0.0719 0.0725
0.0007 0.0015 0.0000 0.0000 0.2069 0.0000 0.1096 0.1095

HV 0.5650 0.5676 0.5812 0.5813 0.5287 0.5721 0.5521 0.5522
0.0013 0.0013 0.0001 0.0001 0.0971 0.0002 0.0483 0.0481

IDTLZ1
Δp

0.0156 0.0187 0.1542 0.0774 0.0177 0.0181 0.0371 0.0422
0.0005 0.0011 0.2459 0.1318 0.0000 0.0001 0.0708 0.0984

HV 0.2301 0.2268 0.2331 0.2326 0.2287 0.2275 0.2218 0.2217
0.0017 0.0018 0.0007 0.0006 0.0001 0.0002 0.0035 0.0038

IDTLZ2
Δp

0.0394 0.0406 0.0412 0.0412 0.0475 0.0456 0.0513 0.0510
0.0008 0.0012 0.0008 0.0010 0.0008 0.0007 0.0035 0.0048

HV 0.5495 0.5425 0.5550 0.5533 0.5565 0.5548 0.5410 0.5408
0.0011 0.0019 0.0020 0.0017 0.0001 0.0002 0.0023 0.0018

WFG1
Δp

0.1626 0.2488 0.2143 0.2392 0.2495 0.7113 0.3413 0.3408
0.0224 0.0405 0.0266 0.0342 0.0176 0.0929 0.0353 0.0283

HV 0.9257 0.8582 0.8740 0.8629 0.8892 0.5933 0.8697 0.8725
0.0095 0.0249 0.0157 0.0198 0.0237 0.0428 0.0170 0.0152

WFG2
Δp

0.1270 0.1329 0.0830 0.0830 0.2166 0.2222 0.1405 0.1377
0.0072 0.0083 0.0012 0.0013 0.0335 0.0320 0.0069 0.0067

HV 0.9356 0.9334 0.9393 0.9392 0.9203 0.9200 0.9309 0.9307
0.0009 0.0010 0.0006 0.0006 0.0061 0.0049 0.0015 0.0011

WFG3
Δp

0.5261 0.7354 0.7229 0.7200 0.8110 0.8788 0.4541 0.4633
0.0241 0.0234 0.0180 0.0224 0.0261 0.0462 0.0488 0.0653

HV 0.4131 0.4080 0.4013 0.4006 0.3826 0.3613 0.3672 0.3649
0.0013 0.0023 0.0016 0.0018 0.0163 0.0142 0.0052 0.0033

WFG4
Δp

0.1641 0.1968 0.1142 0.1147 0.1361 0.2240 0.2349 0.2301
0.0044 0.0053 0.0007 0.0007 0.0028 0.0053 0.0099 0.0136

HV 0.5502 0.5328 0.5751 0.5741 0.5550 0.5180 0.5336 0.5339
0.0026 0.0029 0.0008 0.0008 0.0028 0.0029 0.0026 0.0031

WFG5
Δp

0.1857 0.1927 0.1385 0.1388 0.1515 0.1549 0.2191 0.2181
0.0038 0.0041 0.0004 0.0003 0.0013 0.0014 0.0149 0.0131

HV 0.5178 0.5148 0.5396 0.5393 0.5225 0.5200 0.5168 0.5166
0.0032 0.0029 0.0003 0.0002 0.0023 0.0029 0.0021 0.0027

208



Math. Comput. Appl. 2019, 24, 82

Table 3. Numerical results for the original and variation rate version of some MOEAs in Type III test
problems. We show the mean and standard deviation (up and down in the cell, respectively). We put
in bold the best value and in gar the cells with statistical significance according to the Wilcoxon test.

Problem Ind.
NSGA-II NSGA-III MOEAD SMSEMOA

Original VR Original VR Original VR Original VR

OMNI1
Obj Δp

0.0218 0.0220 0.0293 0.0306 0.1605 0.2363 0.0210 0.0206
0.0006 0.0005 0.0030 0.0046 0.0145 0.0547 0.0017 0.0012

Var Δp
2.2071 1.8804 1.8876 1.9313 4.3767 3.2976 2.2525 2.0409

0.2928 0.1603 0.1852 0.2480 0.6295 0.7931 0.2978 0.2544

OMNI2
Obj Δp

0.0038 0.0039 0.0048 0.0048 0.0237 0.0278 0.0039 0.0039
0.0001 0.0001 0.0000 0.0000 0.0000 0.0076 0.0001 0.0000

Var Δp
1.1649 0.7206 0.8714 0.7576 1.2561 0.9800 0.9073 0.7366

0.0360 0.0075 0.0956 0.0312 0.1039 0.1302 0.0853 0.0071

SCM1
Obj Δp

0.3149 0.3138 0.3599 0.3594 81.3852 81.3853 0.2852 0.2681
0.0135 0.0123 0.0198 0.0303 0.0043 0.0042 0.0297 0.0252

Var Δp
3.7266 3.7751 3.5737 3.6209 38.5910 38.5912 2.5058 2.4572

0.1461 0.1440 0.1586 0.1468 0.0020 0.0022 0.0309 0.0261

RPH1
Obj Δp

0.1636 0.1653 0.4323 0.4334 2.6365 3.3847 0.1551 0.1535
0.0042 0.0040 0.0028 0.0042 0.0027 0.7119 0.0023 0.0026

Var Δp
6.8061 4.2771 1.6001 1.0450 8.0157 5.2802 2.7075 5.3446

2.5349 0.7180 1.3496 0.8738 2.8617 0.7714 1.9102 0.4255

RPH2
Obj Δp

0.1725 0.1745 0.4302 0.4365 2.6459 3.1017 0.1580 0.1574
0.0027 0.0051 0.0109 0.0141 0.0175 0.6411 0.0038 0.0035

Var Δp
2.6822 3.0836 1.4661 1.2051 11.3906 6.6796 1.2333 1.1097

0.9276 0.7577 0.5815 0.6150 3.0919 1.5272 0.5085 0.5499

RPH3
Obj Δp

0.1701 0.1732 0.4314 0.4340 2.6572 3.1012 0.1555 0.1564
0.0040 0.0047 0.0182 0.0140 0.0360 0.6169 0.0038 0.0032

Var Δp
6.3361 2.8003 3.0233 2.1521 8.6873 4.7500 2.8545 1.6417

1.7299 0.8529 1.9181 0.9408 2.0764 1.5926 1.1084 0.5711

In Figure 4, we can see that the obtained distribution is better for the variation rate version; it looks
similar to that obtained by the original algorithm. However, we have to recall that this problem has
243 different disconnected components in the Pareto set, and some of them are overlapping in the
plot. In Figure 5, we notice that the variation rate version can obtain points at the two regions in this
representation (we plot y on both axes, where y = ∑6

i=1 xi), while the original version is only able to
compute points in one of them. On the other hand, in Figure 6, we can see that both the original and
the variation rate versions can approximate the disconnected components of this problem well (except
by the MOEA/D algorithm). However, the variation rate version is better in this problem, according
to the values of Table 3.
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(a)

Figure 4. Graphical results of the run with the median values for the OMNI1 function for NSGA-II.
(a) Objective Space Original; (b) Objective Space VR; (c) Decision Space, pairwise plot of each variable.
The left-down and red marks correspond to the original algorithm, while the right-up and blue ones
are the VR version.
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Figure 5. Graphical results of the run with the median values for the OMNI2 function for the
NSGA-II algorithm. (a) Decision Space Original; (b) Objective Space Original; (c) Decision Space
VR; (d) Objective Space VR.
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Figure 6. Graphical results of the run with the median values for the SCM1 function for the
SMS-EMOA algorithm. (a) Decision Space Original; (b) Objective Space Original; (c) Decision Space
VR; (d) Objective Space VR.

For the RPH problems, we can see in Figure 7 that the variation rate version of the NSGA-II can
obtain four out of the nine disconnected components of the Pareto set, while the original version only
gets three out of them; moreover, the distribution in decision space is also improved. In Figure 8,
we can see again a similar behavior between the variation rate and the original version of the NSGA-III
algorithm, which is also confirmed by the values of Table 3, where the variation rate version wins
in three out of the four baseline algorithms for the RPH2 problem, but only in one does it have
statistical significance. Finally, for the RPH3 problem, we can see in Figure 9 how the variation rate
can significantly improve the performance of the MOEA/D algorithm in its distribution in decision
space, as the original version only obtains points in one out of the nine disconnected components of
the Pareto set, while the variation rate version obtains five out of them.
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Figure 7. Graphical results of the run with the median values for the RPH1 function for the
NSGA-II algorithm. (a) Decision Space Original; (b) Objective Space Original; (c) Decision Space
VR; (d) Objective Space VR.
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Figure 8. Graphical results of the run with the median values for the RPH2 function for the
NSGA-III algorithm. (a) Decision Space Original; (b) Objective Space Original; (c) Decision Space VR;
(d) Objective Space VR.
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Figure 9. Graphical results of the run with the median values for the RPH3 function for the
MOEA/D algorithm. (a) Decision Space Original; (b) Objective Space Original; (c) Decision Space VR;
(d) Objective Space VR.

5. Conclusions and Future Work

In this work, we have addressed the problem of computing diverse solutions both in decision and
objective space for a given multi-objective optimization problem via specialized evolutionary strategies.
While so far quite a few good diversity mechanisms exist to obtain a spread in objective space,
the consideration of the Pareto set approximations has been mainly neglected so far. This represents a
possible shortcoming in particular for Type III problems where points in the Pareto front may have
multiple pre-images. To achieve this goal, we have first presented the general framework of the
variation rate that combines the usage of the averaged distance in variable space with the selection
operator that is given by the multi-objective evolutionary algorithm (MOEAs). We have demonstrated
further on possible integration of the variation rate into four MOEAs that represent the state-of-the-art.

Numerical results have shown that the use of the variation rate improves the performance of the
standalone algorithms for Type III problems, while the variation rate algorithms are not significantly
worse for the standard benchmark problems (i.e., problems with a 1:1 relationship between Pareto set
and Pareto front), even in some cases variation rate improves the performance of the original algorithm.
Of course, the behavior of variation rate by itself is not enough for the treatment of every kind of MOP
as this depends on the operators of every algorithm. That is, the variation rate can enhance the overall
performance of a certain algorithm, but if, for instance, such algorithm is not conceived to deal with
MOPs with many objectives, the addition of the variation rate would be not enough to solve them.
We can, for instance, consider some of the algorithms and test functions of [33], in order to show if the
variation rate provides some advantages when dealing with MOPs with many objectives.

As future work, it will be mandatory to adapt the genetic operators of the evolutionary algorithms to
exploit the diversity in decision space. As the above results have shown, the diversity in decision space has
already increased significantly; however, the variation rate is only a selection mechanism. In order to obtain
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optimal solutions in particular in decision space, the exploration will have to be increased. Furthermore,
it will be necessary to develop a particular indicator for problems of Type III. In general, performance
indicators evaluate an approximation based on the value of the objectives, but, for problems such as
OMNI1, this does not provide enough information. Once we have such an indicator, we can validate better
performance of our methods in decision space. However, it is ad hoc not clear which property has to be
satisfied with this approximation. We also need to test this approach in problems with different properties
in decision space, in particular problems with disconnected Pareto sets.
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Appendix A. Pseudo-Codes

The appendix contains the pseudocode of all the variation rate algorithms that were used in
this work.

Appendix A.1. VR-NSGA-II

The differences between the original NSGA-II and the VR-NSGA-II are lines 12 and 20. In line 12,
we compute the inverse variation rate values of the last front, while, on line 20, we perform the
selection according to these values.

Algorithm A1 Pseudocode of VR-NSGA-II

Require: Population size (Ps), crossover probability (Pc), mutation probability (Pm)
Ensure: Final Population

1: Population ← InitializePopulation(Ps)
2: FastNondominatedSorting(Population)
3: Selected ← SelectParentsByRank(Population, Ps)
4: Children ← CrossoverAndMutation(Selected, Pc, Pm)
5: while StopCondition() do
6: Union ← Merge(Population, Children)
7: Fronts ← FastNondominatedSorting(Union)
8: Parents ← ∅
9: FrontL ← ∅

10: for Fronti ∈ Fronts do
11: Vt ← CrowdingDistanceAssignment(Fronti)
12: Rt ← InverseVariationRateAssigment(Vt)
13: if Size(Parents)+Size(Fronti) > Ps then
14: FrontL ← i
15: break
16: else
17: Parents ← Merge(Parents, Fronti)
18: end if
19: if Size(Parents) < Ps then
20: FrontL ← SortByRankAndInverseVariationRate(FrontL)
21: for P1 to PPs−Size(FrontL)

do
22: Parents ← Pi
23: end for
24: end if
25: Selected ← SelectParentsByRankAndDistance(Parents, Ps)
26: Population ← Children
27: Children ← CrossoverAndMutation(Selected, Pc, Pm)
28: end for
29: end while
30: return Children
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Appendix A.2. VR-NSGA-III

We only show the iteration as the complete code is basically identical to NSGA-II with a different
selection mechanism. Here, the main difference of the variation rate version, compared to the
original NSGA-III, is on line 14; while the original NSGA-III uses the ninching as selection criterion,
the VR-NSGA-III employs the variation rate, as it is stated on line 14.

Algorithm A2 Iteration of the VR-NSGA-III

Require: Reference points Z, current population Pt
Ensure: Next, population Pt+1

1: St = ∅, i = 1
2: Qt = apply variation operators to Pt
3: Mt = Pt ∪ Qt
4: (F1, F2 . . . , ) = fast-non-dominated-sorting(Mt)
5: while |St| ≤ N do
6: t = St ∪ Fi
7: i = i + 1
8: end while
9: Add first fronts to Pt+1

10: Fi := last added front
11: Normalize Fi
12: Associate elements of Fi with each Z
13: Vt := Niching of Fi
14: Rt := SelectByVariationRate(Vt)
15: Pt+1 : St ∪ Rt

Appendix A.3. VR-MOEA/D

The change in this algorithm, concerning the original MOEAD, is very subtle. On lines 9 and 10,
we compute the variation rate of the elements of the neighborhood and the offspring (B(i) ∪ y) instead
of only computing the values of the aggregative function.

Algorithm A3 Pseudocode of VR-MOEA/D

Require: N number of solutions and weight vectors; T neighborhood size.
Ensure: Final Population

1: Initialize N weight vectors λ1λ2, · · · , λN

2: Set N subproblems defined by the N weight vectors
3: Set N neighborhoods B(i) = {wi,1, · · · , wi,T}, where wi,j = λj are the closest weight vectors to λi

4: {x1, · · · , xN} ← InitializePopulation(N)
5: while StopCondition() do
6: for i ∈ N do
7: Randomly select two solutions from B(i) to generate an offspring y
8: Apply using variation operators to y
9: Compute the values Vr of B(i) ∪ y via the aggregative function g.

10: Compute Variation Rate Vt of the elements of B(i) ∪ y
11: for x in B(i) do
12: if ry < rx then
13: Replace x with y
14: end if
15: end for
16: end for
17: end while
18: return Children
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Appendix A.4. VR-MOEA/D

Again, in this case, we only show an iteration of the method as the rest of the algorithm is basically
the NSGA-II. We observe that, on line 12, we substitute the values of the hypervolume contributions
with the variation rate and we use them for the selection mechanism.

Algorithm A4 Iteration of the VR-SMS-EMOA

Require: Current population Pt
Ensure: Next, population Pt+1

1: St = ∅, i = 1
2: Qt = apply variation operators to Pt
3: Mt = Pt ∪ Qt
4: (F1, F2 . . . , ) = fast-non-dominated-sorting(Mt)
5: while |St| ≤ N do
6: t = St ∪ Fi
7: i = i + 1
8: end while
9: Add first fronts to Pt+1

10: Fi := last added front
11: Vt ← ComputeHypervolumeContributions(Fi)
12: Rt := SelectByVariationRate(Vt)
13: Pt+1 : St ∪ Rt
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