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Preface to “Application of Bioinformatics in Cancers”

Bioinformatics applications in cancer have rapidly evolved over the past several years.
Ever since its initial implementation, next generation sequencing has altered our understanding of
cancer biology, and the approaches to analyze more and more complex datasets have also become
increasingly complex. Routine bioinformatics pipelines now range from those that rapidly detect
and predict functional impact of molecular alterations to those that quantify changes to the tumor
microenvironment. For example, several tools that analyze tumor-immune interactions have been
successfully developed to assess tumor infiltrating lymphocyte content, microsatellite instability,
total mutational burden and neoantigen presentation. Further complexity of integrated omics-based
analysis is also now coupled with the emergence of modern machine learning and network-based
approaches to analyze large datasets in the context of publicly available resources, such as the cancer
genome atlas.

While much of the focus has so far been on annotating molecular alterations as well as infiltrating
cell types or cell states in ideal sequencing conditions, alternative and application-specific approaches
are now emerging that improve on a wide variety of established analysis techniques. These include
techniques that range from improved quantification of copy number and gene expression from
formalin fixed tissues as well as applications that require high sensitivity such as the quantification of
tumor mutations from liquid biopsies (circulating cell free DNA). Further novel applications attempt
to improve the ability to analyze the distribution and molecular impact of complicated genetic
features such as repetitive or transposable endogenous elements (e.g., LINE-1) as well as exogenous
genetic elements (e.g., human papilloma virus).

As we develop a better understanding of the limitations of these new informatics approaches, we
can ultimately hope to apply these techniques to existing datasets and build well-annotated databases
of easily accessible information that can be leveraged in multi-variable analysis pipelines. Similar to
the success of SIGdb and cBioPortal, this should help yield new diagnostic and prognostic/predictive
biomarkers for standard interventional modalities as well as emerging areas like immuno-oncology,
and areas of unmet clinical need. This Special Issue will highlight the current state of the art in
bioinformatics applications in cancer biology, and infer future prospects for improving informatics

applications through artificial intelligence and machine learning approaches.

Chad Brenner
Special Issue Editor
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This series of 25 articles (22 original articles, 3 reviews) is presented by international leaders
in bioinformatics and biostatistics. This original series of articles details emerging approaches that
leverage artificial intelligence and machine learning algorithms to improve the utility of bioinformatics
applications in cancer biology. Importantly, the issue also addresses the limitations of current
approaches to analyzing high throughput datasets by providing support for novel methods that
can be used to improve complex multi-variable analysis. For example, in order to help identify
clinically meaningful genes, Shen et al. demonstrate how the implementation of a knockoff procedure
can control false discovery rates in next-generation datasets with relatively small sample sizes [1].
Additionally, tools were developed and validated to address complex problems ranging from tumor
heterogeneity to mutation signature analysis. For example, intertumor heterogeneity scores were
characterized from >2800 tumors and used to identify genes associated with high heterogeneity
including histone methyltransferase SETD2 and DNA methyltransferase DNMT3A, which were
then validated by CRISPR/CAS9 in experimental systems [2]. Likewise, a tool was derived to infer
tumor RNA expression signatures of genes with copy loss to support gene-loss driven biomarker
analysis [3], and, a weight-matrix based approach was used to highlight the distribution of APOBEC
and AlD-related gene signatures in multiple cancers that drive subsets of the somatic mutation
spectra [4]. Together these manuscripts demonstrate how novel tools and statistical approaches are
being used to refine analysis of large next generation sequencing datasets. Extending these concepts,
Veronesi et al. also develop an R-script based tool box for efficient analysis of gene signatures with
diagnostic and prognostic variable that highlights how tools are being rapidly adapted into easy-to-use
application packages [5].

Several papers in this series also demonstrate the potential to integrate large and diverse
datasets and use machine learning approaches to develop significantly improved multi-variable
predictors of clinical outcome. For example, deep learning artificial intelligence-based approaches
were shown to be highly effective at integrating genomic data from multiple sources using de-noising
auto-encoders to curate deep features associated with breast cancer clinical characteristics and
outcomes [6]. Moreover, artificial intelligence-driven classification techniques were also used on
multiple independent colorectal cancer datasets to identify and verify biomarkers of diagnosis and
prognosis that may have important implications for the disease [7]. As another example, the Taiwan
Cancer Registry database was analyzed to evaluate the value of the Wu co-morbidity score for accuracy
in assessing curative-surgery-related 90-day mortality risk and overall survival in patients with

Cancers 2019, 11, 1630; doi:10.3390/cancers11111630 1 www.mdpi.com/journal/cancers
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locoregionally advanced head and neck cancer [8]; and, in an alternative approach, Ferroni et al.
demonstrate the utility of using machine learning-driven decision support systems to extract data
from electronic health records and refine prognostic variables [9]. As an alternative approach, and to
understand how gene sets may correlate with outcome, Locati et al. utilized self-organizing map
approaches to curate publicly available HPV+ cancer data and inferred gene signatures associated with
three biological subtypes of the disease [10]. Novel datasets comparing the molecular composition
of primary colorectal cancer and brain metastases were also generated [11]. In an interesting
informatics approach, analysis of steroid hormone-related gene sets in publicly available data identified
steroidogenic acute regulatory protein as a potential prognostic biomarker in breast cancer [12].
Likewise, a meta-analysis of GEO and TCGA miRNA datasets led to the prioritization of candidate
biomarkers of prognosis and overall survival in oral cancer [13]. Machine learning approaches were
similarly used to prioritize relevant miRNAs and validate the high performance of highly ranked
miRNAs in classification models, suggesting that prioritization of targets from expression data is a
highly effective strategy [14]. Analysis of miRNA data using an observed survival interval was reported
to overcome issues with clinical outcome associations [15]. Collectively suggesting the potential of
these approaches in this new era of machine learning approaches. Finally, additional analysis of similar
datasets also highlighted the role of detailed characterization of clinical characteristics in avoiding
biological and the clinical outcome analysis bias in large dataset analysis was well demonstrated in the
analysis of pancreatic cancer TCGA data by Nicolle et al. [16].

More broadly, machine learning-driven informatics approaches, which were demonstrated to have
utility in improving statistical analysis of integrated histopathologic datasets, were implemented to
analyze the TCGA lung adenocarcinoma dataset as an alternative approach to modeling outcomes [17].
Furthermore, using both the lung adenocarcinoma and hepatocellular carcinoma datasets to analyze the
utility of integrated gene and imaging data, multiple individual genes, conditional on imaging features,
were shown to drive significant improvement in prognosis modeling [18]. These improvements in
integrated multi-feature image analysis and molecular analysis for outcome modeling suggest that
complex models incorporating diverse variables may be key to making substantial improvements to
clinical outcome models in the future.

Interestingly, several of the articles also highlight the ability to use emerging bioinformatic
techniques, high throughput small molecule screening data, and/or outcomes data to make improved
predictive models. Lu et al. leveraged a support vector machine learning algorithm to analyze datasets
from the Cancer Cell Line Encyclopedia and identify a 10-gene predictive model of recurrence-free
survival and overall survival in epithelial ovarian cancer, validated on two independent datasets [19].
Diverse bioinformatics approaches were used to demonstrate how Bufadienolide-like chemicals may
contribute to cardiotoxicity and function as anti-neoplastic agents providing a roadmap for prioritizing
the mechanisms of action of small molecules with recent informatics techniques [20]. Further, a novel
pipeline was developed to predict acquired resistance to EGFR inhibition, in which the team built
a meta-analysis-based, multivariate model that leveraged eight independent studies and had high
predictive performance [21]. Network pharmacologic analysis was used as an approach to nominate
herb-derived compounds for their potential efficacy in tumor immune microenvironment regulation
and tumor prevention [22], showing the utility of informatics approaches for deconvolution of drug
screening data.

The collection also includes insightful reviews discussing major bioinformatics approaches involved
in the analysis of cell-free DNA sequencing data for detecting genetic mutation, copy number alteration,
methylation change, and nucleosome positioning variation [23]; how bioinformatics approaches can
be used to understand the functional effects of TERT regulation by alternative splicing [24]; and how
automatic computer-assisted methods and artificial intelligence-based approaches may be leveraged for
brain cancer characterization in a machine and deep learning paradigm [25].

The diversity of approaches and datasets highlighted in this collection of articles underscore
the broad range of bioinformatics techniques that are being developed to answer complex questions
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ranging from how to better predict clinical outcomes to prioritizing lead compounds capable of
disrupting the tumor-immune microenvironment. The articles collectively demonstrating the machine
learning approaches can be used to make significant advances in cancer biology. Indeed, as we develop
a better understanding of how different machine learning approaches are best suited to pursue critical
questions as outlined in the articles of this series, we can ultimately hope to improve research efficiency
and make substantial improvements to the overall health of patients.

Funding: C.B. received funding from NIH Grants U01-DE025184 and R01-CA194536 and the American
Cancer Society.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: The discovery of biomarkers that are informative for cancer risk assessment, diagnosis,
prognosis and treatment predictions is crucial. Recent advances in high-throughput genomics make
it plausible to select biomarkers from the vast number of human genes in an unbiased manner.
Yet, control of false discoveries is challenging given the large number of genes versus the relatively
small number of patients in a typical cancer study. To ensure that most of the discoveries are true,
we employ a knockoff procedure to control false discoveries. Our method is general and flexible,
accommodating arbitrary covariate distributions, linear and nonlinear associations, and survival
models. In simulations, our method compares favorably to the alternatives; its utility of identifying
important genes in real clinical applications is demonstrated by the identification of seven genes
associated with Breslow thickness in skin cutaneous melanoma patients.

Keywords: cancer biomarker; diseases genes; variable selection; false discovery rate; knockoffs

1. Introduction

The discovery of biomarkers that are informative for cancer risk assessment, diagnosis, prognosis
and treatment predictions is crucial. Many biomarkers have been proven to be very informative for
clinical usage, with prominent examples such as BRCA1 and HER2 in breast cancer [1,2], EGFR in
non-small-cell lung carcinoma [3] and PSA in prostate cancer [4]. Recent advances in high-throughput
genomics make it plausible to select biomarkers from the vast number of human genes in an unbiased
manner. For instance, genes associated with disease-related clinical outcomes can be identified
by linking a patient’s gene expression to the disease progression [5] or other disease phenotypes.
Furthermore, by understanding the regulatory roles of these associated genes on various cancers,
treatment strategies may be developed. For these reasons, many gene signatures have been discovered
for a variety of cancers.

However, many challenges exist for the selection of genes from the high-throughput and
high-dimensional expression data at a genomic scale. Besides computational challenges due to
the large size of data, a critical statistical difficulty is the control of false discoveries of all identified
genes mainly due to the large number of genes versus the relatively small number of patients in a typical
cancer study. The conventional method for genomic data analysis is known as univariate analysis,
that is, exploring the relationship of the disease-related outcomes with one gene at a time. Due to its
simplicity and intuitiveness, univariate analysis has been widely used in gene selection. However,
high correlations exist among genes induced by co-expression activities, and hence genes correlated
with disease-related genes are also correlated with disease outcomes (a.k.a. spurious correlation).
Therefore they will be selected via univariate analysis, leading to high false discoveries. Another issue
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of univariate analysis is its low statistical power of identifying any disease-related genes due to the
multiplicity of hypothesis testing [6] as well as noise that is unaccounted for. That is, relatively fewer
genes that are truly associated with the outcome will be identified from univariate analysis than that
with multivariate analysis. For the reasons above, penalized multivariate analysis approaches such as
the lasso regression [7] and its extensions such as penalized generalized linear models and the Cox
proportional hazard model with elastic-net penalty [8,9] have been applied recently to genomic data
analysis [10,11]. Nevertheless, because cross-valuation is typically used for the selection of the optimal
tuning parameters, such approaches often fail to control false discoveries [12]. This aspect has been
clearly illustrated in our simulations in Section 3.1.

For prediction purposes, genes with spurious correlations to the disease outcomes may be useful.
However, they are unsuitable when the goal is to understand the disease etiology, or to identify
potential treatment targets, where genes that are genuinely associated with the disease are required.
In other words, when the number of false discoveries is high, the discoveries are not scientifically
replicable. Due to the high cost to experimentally validate the selected genes, there is an urgent need to
control for false discoveries in gene selection procedures. The false discovery rate (FDR) [13], defined as
the expected proportion of false discoveries among all discoveries, is a widely used method to control
for false discoveries in genomic studies, due to its high statistical power compared with conventional
methods that control for family-wise error rates (FWER) such as the Bonferroni correction. Controlling
for FDR leads to limited proportion of non-true findings among all findings produced by a given
analysis and discovery procedure, which translates to reliable scientific discoveries as well as reduced
attempts and costs to validate non-true findings. The importance of controlling for the false discovery
rate in lasso regression has also been recognized. Recently, [12] proposed a bootstrap/resampling
method to control the FDR in lasso type variable selection. The smoothness of the limiting distributions
of the bootstrap, which is the standard assumption for the bootstrap, is needed for such methods [14].
In [15], a knockoff procedure was introduced to control the FDR in linear regression when the number
of variables is not too large; knockoff variables are constructed to mimic the correlation structure
found within the existing variables. In a follow-up paper [16], the method was further expanded to
a general framework and a high-dimensional situation for Gaussian variables was studied extensively.
However, there is still a gap between the generally simple knockoff framework and the complicated
data structures in real world applications.

In this paper, we propose several novel strategies based on the knockoff framework for variable
selection subject to control for the false discovery rate. The proposed method is general and flexible,
accommodating arbitrary covariate distributions, linear and nonlinear associations, and survival
models. Simulation experiments and a real data example on gene identification for Breslow thickness
in skin cutaneous melanoma patients demonstrate the utility of the proposed method.

2. Methodology

In many practical situations, identification of a set of explanatory variables which are truly
associated with the response is a primary interest in investigation. This is particularly true in
biomedical research when genes are selected from a pool of candidate genes that are potentially
associated with a disease. To assure that most of the discoveries are true and replicable, one must know
whether the false discovery rate, or the expected fraction of false discoveries among all discoveries,
as defined in Definition 1, is acceptable or too large. In other words, the false discovery rate in this
discovery process needs to be controlled at a desirable level.

Definition 1 (False discovery). Let S be the true set of variables associated with an outcome, and S be the
set of variables selected based on a dataset. The false discovery proportion (FDP) is defined as the proportion of
false discoveries among all discoveries, i.e., FDP :=|8\S|/|S|, where || is the size of a set, with the convention
0/0 = 0. The false discovery rate (FDR) [13] is defined as the expectation of FDP, i.e., FDR := E[FDP].
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The method proposed in this paper is based on the knockoff framework first proposed in [15]
and later generalized in [16]. The knockoff framework provides a recipe for building algorithms to
control for FDR in variable selection. Under certain mild conditions, the FDR can be theoretically
guaranteed to be controlled at a pre-specified level. The key contribution of the knockoff framework is
the introduction of the concept of knockoff variables, as defined in Definition 2.

Definition 2 (Knockoff variables). A set of random variables ()~(1, e, )~(p) is said to be model-free knockoffs [16]
for (X1,--+,Xp) with respect to response Y if they are constructed without looking at Y, and for any j €
{1,---,p}, the pﬂir (Xj, ij) is exchangeable conditioned on all the other variables ()~(1, .- ~)~(p) and (Xy,---, Xp)
excluding (X;, X;).

In layman’s terms, each knockoff variable ij can be considered as a “fake” duplicate of the
corresponding variable Xj, in that the relationship between X ;j and all the other variables and their
knockoffs excluding X; is indistinguishable from the relationship between X and all the other variables
and their knockoffs excluding X j- Furthermore, the knockoff variables are constructed without using
the outcome variable, and therefore are guaranteed not to be associated with the outcome. As a result,
in a variable selection procedure, a knockoff variable )?j has equal chance of being selected as the
“original” variable X; when X; is not associated with the outcome, which makes the knockoff variables
robust benchmarks for FDR control. In this paper, we propose several novel strategies based on the
knockoff framework for variable selection subject to control for the false discovery rate.

2.1. Construction of Model-Free Knockoff Variables

The first step for variable selection based on the knockoff framework is to construct knockoff
variables. In [15,16], algorithms for constructing knockoff variables for low and high dimensional
multivariate Gaussian distributions were proposed, respectively. In particular, an approximated
algorithm was proposed in [16] to construct knockoffs by sampling from a multivariate Gaussian
distribution with the same first two moments as that of the original variables. When the joint
distribution of the original variables is known, the conditional distributions can be derived, based on
which random samples can be drawn directly and can be used as knockoffs.

Although built on a multivariate Gaussian distribution, the performance of the knockoff variables
constructed using the algorithm in [16] is reported to be quite robust against deviations from the
Gaussian assumption, as long as the first two moments are approximated well. We also have the same
observations in our experiments (See Appendix C). Therefore, we use the algorithm in [16] for the
construction of knockoff variables for all the simulated and real data experiments in this paper, unless
otherwise noted. Moreover, we propose another algorithm for constructing knockoff variables without
the Gaussian assumption with much higher computational burden (See Appendix A), which may be
used in situations when the Gaussian assumption is severely violated.

2.2. Model-Free Statistics

The knockoff framework guarantees that the FDR is controlled at a desirable level for variable
selection. However, the statistical power for variable selection depends on the specific statistic
being used in the knockoff framework. In [16], the lasso coefficient difference (LCD) statistic was
proposed and shown to be very powerful for variable selection based on the lasso regression model.
However, it assumes a linear relationship between the response variable and the predictors. When such
relationship does not hold, the statistical power will be compromised. In this section, we propose two
novel statistics to accommodate arbitrary relationships between the response and predictor variables,
thereby realizing our goal of model-free variable selection. In contrast to the lasso regression model
in [16], we incorporate machine learning techniques, such as support vector regression [17] and
boosting [18], to allow for more flexible and complex model settings.
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2.2.1. Difference in R-Squared (DRS) Statistic

Intuitively, variable importance can be measured by the amount of variability of the response data
explained by each specific variable. In practice, we can define a statistic named difference in R-squared
(DRS) based on the difference between the R? value achieved by the full model and that by a partial
model where one predictor variable is excluded at a time. See Appendix B for details.

2.2.2. Risk Reduction in Boosting (RRB) Statistic

This statistic stems from the mboost R package which implements a functional gradient descent
algorithm for model-based boosting. This method uses component-wise least squares estimates or
regression trees as base-learners to optimize general risk functions. The algorithm is quite flexible
in that it allows for various kinds of base-learners to be used, for example, linear, P-spline, and tree
based base-learners, as well as a variety of loss functions and corresponding risk functions to be
optimized. In a fitted boosting model, the accumulated in-bag risk reductions per boosting step for each
base-learner or variable can be used to reflect variable importance. The amount of risk reduction can
be provided by a function called varimp in the mboost R package with appealing computing efficiency.
Similar to DRS, the risk reduction in boosting (RRB) statistic W; can be constructed by the difference
between the risk reduction of variable X; and that of its corresponding knockoff X j- Again, W; here
attains the anti-symmetry property and a symmetric distribution under the null hypothesis. The high
flexibility of the boosting method allows us to model arbitrarily complex relationships between y
and (X, X). The computational efficiency also makes this statistic favorable for our high-dimensional
variable selection purpose. In our simulations, compared with the DRS statistic, we found that the
RRB statistic achieves better performance in terms of FDR control and of statistical power for variable
selection (See Appendix C), with much lower computational burden. Therefore, we use the RRB
statistic for all the simulated and real data experiments in this paper, unless otherwise noted.

2.3. Nonlinear Screening

As genomic datasets are often high-dimensional, that is, the number of genes p is much larger
than the sample size 1, computing the statistics W; for each variable X; will take a lot of time. Here,
we propose a nonlinear screening strategy to accelerate this procedure. In particular, when 2p > n,
we perform univariate fitting of i to each X; as well as X j, using nonlinear regression based on
B-splines. In particular, we rank all the variables and their knockoffs based on the L, norm of the
block-wise gradient vector. The top variables are corresponding to the steepest descent directions,
which minimizes the direction derivative, and hence, provides the largest decrease in the linear
approximation of the objective function. We then retain the top n variables for computing their W;’s
subsequently using a chosen statistic, and set the W;’s for all the remaining 2p — n variables to be
zero. In our simulations, we found that this nonlinear screening strategy can substantially reduce
computational time while maintaining the FDR control as well as statistical power for variable selection
(See Appendix C). Therefore, we use this nonlinear screening strategy for all the simulated and real
data experiments in this paper, unless otherwise noted.

3. Results

3.1. Simulations

We first use simulation studies to evaluate the performance of our proposed method against two
other existing methods: the knockoff method with lasso coefficient difference (LCD) [16] and lasso
regression [7] with cross-validation (CV), a widely used variable selection approach. In simulations,
we examine several situations to demonstrate that the proposed method performs well in terms of
FDR control with increased statistical power. These simulations support the usage of the proposed
method for analyzing a real dataset in Section 3.2. All simulations are performed in R.
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In particular, we consider three cases of linear and nonlinear associations as well as survival
models. In each case, we apply our proposal of using the boosting method with P-spline base-learners
to approximate linear or nonlinear associations. We use the knockoff construction algorithm introduced
in [16], the RRB statistic described in Section 2.2.2, and the nonlinear screening described in Section 2.3.
Specifically, we use the mboost R package to fit y against the augmented design matrix (X, X ). For fitting
lasso penalized models in the knockoff with the LCD method of [16] and in lasso regression with
cross-validation, we use the glmnet R package [8,9] with five-fold cross-validation for selection of the
regularization parameter of lasso in simulations for linear (Section 3.1.1) and nonlinear (Section 3.1.2)
associations and the Cox proportional hazards regression [19] in simulations for survival analysis
(Section 3.1.3).

3.1.1. Linear Associations

The first simulation study focuses on linear associations in regression. In particular, the data were
simulated from a linear regression model

P
Y = Zx,-ﬁj +¢ &e~N(0,6%), 1)
j=1

in which X = (Xq,---, XP)T is distributed according to a p-dimensional Gaussian distribution N(0,X),
with the ij-th element of T being p//l, following an auto-regressive variance structure with the
auto-regressive coefficient p. Moreover, X and ¢ are independent. Of p variables, we randomly
choose k variables X, Xy and set the corresponding f i = Cj,A, where A, called amplitude, is
a varying magnitude given in Figure 1, {;, is a random sign, and §; = 0if j ¢ {ji, ..., jx}. The amplitude
represents the association strength (e.g., correlation) between a biomarker and the outcome. In this
case, we simulate p = 2000, k = 10, p = 0.3, and 2 = 1 from (1) with sample size n = 300. This mimics
the real data analysis in Section 3.2. We use the multivariate Gaussian distribution for its simplicity in
simulating correlated covariates and the fact that the knockoff framework is robust against deviations
from this distributional assumption, as long as the first two moments are approximated well [16].
Furthermore, the relationship between outcome and covariates can be arbitrary.

As suggested by Figure 1, the FDR is controlled around our target value of 20% for the proposed
method (knockoff + mboost). The FDR for the knockoff + LCD method is slightly higher. In contrast,
the FDR of the lasso + CV method is so high that the discovery is unreliable. All three methods have
similar statistical power, and power increases and gets close to 1 as the signal strength gets stronger.
A statistical power of 1 means the ideal situation that all genes that are truly associated with the
outcome are identified. Although Lasso + CV has the highest power, it is not desirable for discovery,
given the uncontrollable FDR levels. Thus, lasso + CV is not a suitable approach for gene selection.

As will be seen in the cases of nonlinear associations (Section 3.1.2) and survival models
(Section 3.1.3), the proposed method becomes more powerful when the model assumption of linear
associations is violated.
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Figure 1. Simulation results for linear associations (top panel), nonlinear associations (middle panel)
and survival analysis (bottom panel). Left panel: averaged false discovery proportion (FDP,
the empirical version of FDR) and the standard error bars for knockoff variable selection with
mboost (red), lasso coefficient difference (LCD) (black) and lasso regression with cross-validation (CV)
(blue) as a function of amplitude (association strength (e.g., correlation) between a biomarker and the
outcome) based on 30 simulation replications. The reference lines indicate the target false discovery
rate of 20%. Right panel: corresponding empirical statistical power of the three methods.
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3.1.2. Nonlinear Associations

Our second simulation study deals with nonlinear relationships in regression, in which we again
compare the proposed knockoff + mboost method with the knockoff + LCD method of [16] as well as
lasso + CV. Here, we replace Z’]ﬂ,zl X;Bjin (1) by Z};:l Xfﬁ i to accommodate nonlinear associations.
All other settings are the same as in Section 3.1.1.

As indicated in Figure 1, the FDR for the proposed method (knock + mboost) is controlled under
the target value of 20%, as marked by the horizontal dotted line, whereas the FDRs for the other two
methods are above the target level. In terms of statistical power, the proposed method is much better
than the other two methods, which assume a linear predictor while the proposed method is more
flexible without such assumptions.

3.1.3. Survival Analysis

Our third simulation study concerns the Cox proportional hazards regression [19] with a nonlinear
predictor Z’;:l X28 ; as in Section 3.1.2. Specifically, we generate y from the Cox model with a baseline
hazard rate equals to 0.002 and a hazard rate of censoring equals to 0.004. The event time follows
a Weibull distribution with the shape parameter equals to 1 and scale parameter equals to the baseline
hazard rate multiplied by the exponential of the predictor, i.e., exp(Z?:1 X]zﬁ ;). The censoring time is
also sampled from a Weibull distribution with the shape parameter equals to 1 and scale parameter
equals to the hazard rate of censoring. The actual observation time is the smaller value between the
event and censoring times.

As shown in Figure 1, all three methods roughly achieve the objective of controlling the FDR at
the desired level of 20% with slight inflation. The proposed method exhibits much higher power than
the other two as was the case in Section 3.1.2.

Based on the simulation studies, we conclude that the proposed method performs well for linear
and nonlinear associations as well as survival models. In practice, we do not need to assume linear
or non-linear association between the biomarkers and the outcome, and our method will identify
biomarkers with high statistical power and well controlled FDR regardless of the type of association
that is present in the dataset.

3.2. Cancer Data

In this section we apply our proposed method as described in Section 3.1 to a real dataset from
a cancer study for the identification of genes that are associated with clinical outcomes. We investigate
a skin cutaneous melanoma (SKCM) dataset, which contains the expression levels of 20,531 genes from
355 melanoma patients measured by RNA-Seq. The datasetis a part of The Cancer Genome Atlas (TCGA)
project and publicly available from the TCGA data portal at https://portal.gdc.cancer.gov/. The aim is
to identify a set of genes associated with the clinical variable of interest, called Breslow thickness.

Due to the large number of genes and the relatively small sample size, to expedite computation
while enhancing the accuracy of identification, we apply a filtering rule to select genes whose mean
expression levels exceed 1 normalized transcripts per million (TPM) and the g-value (corrected using
the BH procedure [13]) from univariate correlation tests with the response less than 0.2. This leaves us
4171 genes to which to apply our method with the log-transformed Breslow thickness as the response.
The predictor variables are measured in log-transformed gene expression values (in TPM).

In this case, at a target FDR of 20%, our method identifies seven genes BOLA1 (BolA Family
Member 1), CLDN16 (Claudin 16), EBF2 (EBF Transcription Factor 2), KCTD16 (Potassium Channel
Tetramerization Domain Containing 16), KRT14 (Keratin 14), LOC100240735 (Uncharacterized
LOC100240735), and MAP4K4 (Mitogen-Activated Protein Kinase 4). In the literature, the CLDN
(Claudin) gene family is known to be associated with tumor suppressor genes; for example,
hypermethylation of the CLDN11 promoter occurs frequently in malignant melanoma of the skin [20],
which may encode a novel melanoma-specific tumor suppressor gene [21]. CLDN16 has been found to

11
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be associated with breast [22], thyroid [23], ovarian [24] and lung [25] cancers. Our finding suggests
that CLDN16 is also associated with cutaneous melanoma of the skin, which seems consistent with
the role of CLDN in terms of tumor suppression. Moreover, MAP4k4 belongs to the mammalian
STE20/MAP4K family, which is often overexpressed in many types of human cancer and cancer cell
lines, including malignant melanoma [26], because of its crucial role in transformation, invasiveness,
adhesion, and cell migration [27]. KRT14 has been found to be associated with melanoma [28]. EBF2
has been found to be associated with prostate [29], bone [30], hematological and epithelial [31] cancers.
KCTD16 has been found to be associated with thyroid cancer [32], while KCTD12, a member of the
KCTD family, has been found to be associated with uveal melanoma [33]. BOLA1 and LOC100240735
(an RNA gene) are not known to be associated with any malignancies. To further understand the roles
of these genes in melanoma, experimental follow-up studies are needed.

As a comparison, we also run Lasso + CV on the same dataset, for which a total of 140 genes are
identified. Five of the seven genes identified by Knockoff + mboost are also identified by Lasso + CV.
The two genes not identified by Lasso + CV are KRT14 and LOC100240735. Given the high false
discovery rates of Lasso + CV in simulations (top-left panel of Figure 1), we expect a large proportion
of these 140 genes to be false positives.

Furthermore, to demonstrate the performance of our approach in non-Gaussian data, we randomly
pick 500 genes and assign 10 random genes among them to be truly associated genes with the remaining
490 genes to be null genes. We then randomly assign coefficients for the 10 truly associated genes
by sampling from Uniform(1,5) with a random sign. To make the problem even more challenging
and to demonstrate the ability of our approach working with non-quantitative data, we dichotomize
the resulting linear predictor Y = Z?:l X;B; at the median of its distribution so that the outcomes are
binary (i.e., two groups of equal sizes). After running Knockoff + mboost at a target FDR level of 20%,
a total of seven genes are identified, with five true positives and two false positives, which corresponds
to an FDP of 28.6% and a statistical power of 50%.

4. Discussion

An advantage of our method is that no prior specification of the type of association (i.e., linear
or non-linear) is needed, which is usually unknown for a given dataset. The knockoff construction
algorithm in [16] is based on Gaussian assumption. Nevertheless, it seems robust for non-Gaussian
data in our experiments. We also present a knockoff construction algorithm which does not require the
Gaussian assumption in case such assumption is severely violated.

The statistical power depends both on the statistic being used and the correlation structure among
covariates, which was also noted in [16]. As the correlation among covariates increases, the statistical
power decreases. Therefore, a future research direction may be developing methods for the detection
of highly correlated gene clusters that are associated with the outcome of interest. Furthermore, due to
the high computational cost of building the knockoff variables, right now we can only practically use
our method with up to around 5000 pre-selected genes. Thus, developing more efficient computational
algorithms for building knockoff variables may be another future research direction.

The datasets and R programs for producing the results in this paper are available at http:
//www-personal.umich.edu/~jianghui/knockoff/.

5. Conclusions

The results in this paper demonstrate that our proposed approach can provide reliable false
discovery rate control for variable selection in various statistical models. Such rigorous false discovery
rate control is crucial for improving replicability of the findings and avoiding wasting resources for
attempts to validate false discoveries. With additional enhancements, our method offers a promising
avenue to identify reliable gene markers in cancer studies.

12
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Appendix A New Algorithm for Model-Free Knockoff Variable Construction

We propose a new algorithm for constructing knockoff variables without Gaussian assumption,
by obtaining the conditional distributions empirically through regression models, regardless of the
joint distribution of the covariates. Knockoff construction is independent from the response and the
form of associations between response and covariates. Our proposal is to generate random samples
from the conditional distributions by simply permuting the residuals, assuming that the residuals are
approximately independently and identically distributed. Details of the algorithm are summarized in
Algorithm A.1.

Algorithm A.1 (Algorithm for construction of model-free knockoff variables).

For each covariate Xj, i=1-,p

(1) Fit Xion (X, )A(‘l:j,l) with a regression model, where X_; denotes (X1, , X1, Xj11,*+, Xp)
and Xp.j_1 represents existing knockoffs. No knockoffs are taken into consideration for Xj.

(2) Compute residuals ¢ = (e,---,&n) by subtracting the predicted value for X; from the
corresponding observed values, ie., & = Xj, - Xﬂ,l = 1,...,n, where Xﬂ is the predicted
value of Xj; by the regression model.

(3) Permute the residuals randomly, denoted by the permuted residuals ¢* = (¢}, , €},).

(4) Construct knockoff variable X i by adding the corresponding permuted residual to the predicted
value for Xj, ie., )~(ﬂ = )?j, +e,l=1,...,n

(5) Proceed to the next covariate until all knockoffs are constructed.

Unlike [15,16], our proposed algorithm does not assume the multivariate Gaussian joint
distributions of the covariates. The only requirement is the independence of the residuals, which may
require an appropriate choice of regression model for fitting. For example, lasso [7] would be a good
choice when X; is linearly dependent on (X_j, X, j-1), and supervised machine learning techniques like
support vector regression [17] and gradient boosting [18] are flexible enough to approximate nonlinear
functional dependence. To avoid the problem of over-fitting, we may use K-fold cross-validation on
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test sets for prediction in subsequent calculations. Cross-validation may also help select optimal tuning
parameters in the regression model and thus enable the method to be well adaptive to the observed
covariate data.

Given the construction algorithm, we can generate knockoff variables from an arbitrary distribution,
thus, effectively increasing the level of flexibility on the covariate distribution. For instance, for a binary
response, we can simply replace the aforementioned regression models by classification models and
then permute the binary response within the same prediction group to generate random samples
for knockoffs.

The drawback of Algorithm A.1 is an increased computational burden. In our simulations,
we noticed that the moments-based knockoff construction algorithm proposed in [16] is not
very sensitive to the multivariate Gaussian assumption, and achieve similar performance as our
regression-based knockoff construction algorithm in most cases (See Appendix C). Therefore, to save
computing times, we use the algorithm in [16] for all the simulations and real data experiments,
unless otherwise noted. Nevertheless, our regression-based knockoff construction algorithm has
the potential to be used in broader scenarios, including situations when the Gaussian assumption is
severely violated.

Appendix B Difference in R-Squared (DRS) Statistic
Algorithm B.1 gives the complete procedure for calculating the DRS statistics.
Algorithm B.1 (The DRS algorithm).

(1) Fity with (X, ;() using a prediction model and obtain R?, where X = (X;,...,X;) contains the
original predictor variables and X = (551, ., ip) contains the corresponding knockoff variables.
(X, X) is considered as an augmented design matrix with 2p columns.

(2) For each variable or knockoff variable in (X, )~(), j=1,...,2p, fity with (X, )~() excluding the j-th
variable with the same prediction model as in step 1) and obtain R]z.‘ Calculate the absolute value

of the difference between the two R-squared values, Z j= ‘Rz - R?|, j=1,...,2p, and record it as
the importance score for the j-th variable (or knockoff variable).

(3) Forj=1,...,p, the DRS statistic for X j can be derived as Wi=Zj=Zjp, that is, the difference in
Z between a variable and its knockoff.

The anti-symmetry requirement for feature statistics in [16] is fulfilled by the way we construct
the DRS statistic. A large positive value of W; provides evidence that variable X; is strongly associated
with the response y, while the statistic for a null variable is equally likely to take on a small positive or
negative value, i.e., to have a symmetric distribution around zero. Similar to Algorithm A.1, we can
apply various prediction methods for fitting in steps (1) and (2), for example, lasso for the linear
relationship between y and (X, )~(), and supervised machine learning techniques such as support vector
regression and gradient boosting for nonlinear associations. To avoid the problem of over-fitting,
we can use K-fold cross-validation and summarize the predictive power of the models by mean squared
prediction error which can produce a cross-validated R?. Cross-validation can also help select the
tuning parameters in the prediction model and thereby enable the method to be well adaptive to the
observed data.

Appendix C Additional Simulations

We conduct additional simulation experiments to compare four approaches: (1) knockoff
construction using Gaussian based algorithm in [16] with RRB statistics in Section 2.2.2 (named
Knockoff + mboost), (2) knockoff construction using model-free algorithm in Appendix A with RRB
statistics (named Model-free knockoff + mboost), (3) knockoff construction using Gaussian based
algorithm with DRS statistics in Appendix B (named Knockoff + DRS), and (4) knockoff construction
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using Gaussian based algorithm with RRB statistics but without nonlinear screening in Section 2.3
(named Knockoff + mboost + no screening). The simulation setting is similar to that of Section 3.1.1,
except that here we exponentiate each element of the design matrix X, so that the covariates follow
multivariate log-normal distribution. Furthermore, to save computing time, we let n = 100 and
p = 100. The comparison results are shown in Figure A1l. We can see that except for Knockoff + DRS
which has an inflated FDP and a lower power, all three other methods have similar performance.

FDP

o o
— 7|2 Knockoeff + mboost -
-#=-  Model-free knockoff + mboost
-# - Knockoff + DRS

Knockoff + mboost + no screening

08
1
+*
I
08

06
06

04
Power
04

0.2
|
0.2

0.0
|
0.0
|

Amplitude Amplitude

Figure Al. Simulation results for linear associations with log-normal covariates. Left panel: averaged
false discovery proportion (FDP, the empirical version of FDR) and the standard error bars for
knockoff variable selection with Knockoff with mboost (red), Model-free knockoff with mboost (black),
Knockoff with DRS (blue) and Knockoff with mboost without screening (dark green) as a function of
amplitude (association strength (e.g., correlation) between a biomarker and the outcome) based on
10 simulation replications. The reference lines indicate the target false discovery rate of 20%. Right
panel: corresponding empirical statistical power of the four methods.
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Abstract: Intratumor genetic heterogeneity (ITH) is the main obstacle to effective cancer treatment and
a major mechanism of drug resistance. It results from the continuous evolution of different clones of
a tumor over time. However, the molecular features underlying the emergence of genetically-distinct
subclonal cell populations remain elusive. Here, we conducted an exhaustive characterization of
ITH across 2807 tumor samples from 16 cancer types. Integration of ITH scores and somatic variants
detected in each tumor sample revealed that mutations in epigenetic modifier genes are associated
with higher ITH levels. In particular, genes that regulate genome-wide histone and DNA methylation
emerged as being determinant of high ITH. Indeed, the knockout of histone methyltransferase SETD2
or DNA methyltransferase DNMT3A using the CRISPR/Cas9 system on cancer cells led to significant
expansion of genetically-distinct clones and culminated in highly heterogeneous cell populations.
The ITH scores observed in knockout cells recapitulated the heterogeneity levels observed in patient
tumor samples and correlated with a better mitochondrial bioenergetic performance under stress
conditions. Our work provides new insights into tumor development, and discloses new drivers
of ITH, which may be useful as either predictive biomarkers or therapeutic targets to improve
cancer treatment.

Keywords: cancer; intratumor heterogeneity; genomic instability; epigenetics; mitochondrial
metabolism

1. Introduction

The expansion of genetically-distinct cell populations within a tumor creates a subclonal
architecture that varies dynamically throughout cancer progression [1]. This acquired cancer trait,
termed intratumor heterogeneity (ITH), is the substrate for Darwinian evolution to act upon, selecting
subclones carrying phenotypes that favor tumor progression [2]. The outgrowth of such subclones
impacts cancer development, drug resistance and tumor relapse [3-6]. Despite the key role ITH plays in
cancer, important questions regarding its magnitude, origin and genetic drivers across different cancer
types remain largely unanswered. By facilitating the emergence of nucleotide sequence mutations,
copy-number alterations, chromosomal translocations or aneuploidies, genomic instability has been
regarded as the major source of ITH [4,7-9]. However, discrepancies in the rates of genomic instability
and ITH observed in previous comprehensive studies [3] suggest that additional events congregate to
increase genetic heterogeneity in tumors.
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Besides mutations, cancer cells invariably present with some degree of epigenetic alterations
that contribute to the acquisition of the cancer hallmarks [10,11]. Indeed, there is evidence that
epigenomic reprogramming plays a seminal role in tumorigenesis by creating a progenitor-like
cell state that facilitates expression of driver mutations and tumor initiation [12]. High-resolution
genome-sequencing efforts have identified driver mutations in genes that regulate the epigenome,
namely, genome-wide chromatin and DNA methylation [13,14]. For instance, acute monocytic
leukemias frequently (20.5%) carry mutations in the de novo DNA methyltransferase gene DNMT3A,
displaying aberrant genome-wide DNA methylation profiles [15]. Ten percent of kidney renal clear
cell carcinomas (KIRC) have mutations in SETD2, the methyltransferase responsible for trimethylation
of Lys36 in histone H3 (H3K36me3), which is necessary for accurate gene expression and DNA
repair [16-19]. H3K36me3 is also involved in targeting DNMT3A to chromatin [20], highlighting the
finely tuned epigenetic interplay between histone and DNA methylation that is needed for normal cell
function and is frequently disrupted in cancer cells.

While epigenetic deregulation in cancer arises primarily as a consequence of DNA mutations,
the view that altered epigenomes may also change DNA mutation rates highlights reciprocal
interactions that contribute to cancer development [14,21]. Accordingly, epigenomic disruption
should favor the development of genetically-diverse tumor cell populations, fueling ITH [21]. In fact,
a possible relationship between genomic and epigenomic alterations during clonal evolution of
tumors has recently been suggested in esophageal squamous cell carcinoma and glioma, where high
concordance was observed between the evolution of genetic and epigenetic diversification [22,23].
In this study, we reasoned that analysis of whole-exome datasets of The Cancer Genome Atlas (TCGA)
would disclose patterns of covariation between specific epigenetic modifier genes and ITH levels.
Our integrative pan-cancer characterization of somatic variants and ITH identified mutations in
epigenetic modifier genes that display an association with increased clonal evolution across several
cancer types. Experimental ablation of specific loci provided direct evidence that loss of SETD2 or
DNMT3A drives the emergence of genetically-distinct subclonal cell populations. Knockout cells
showed increased mitochondrial bioenergetic performance under stress conditions, a phenotypic
trait that fosters the Darwinian selection of clones. Our results provide an unprecedented pan-cancer
portrait of the major determinants of ITH and an experimental validation of the role of specific
epigenetic modifier genes, laying a foundation for more effective cancer prognoses and treatment.

2. Results

2.1. Genomic Instability Does Not Predict ITH in Many Cancer Types

To estimate correlations between genomic instability and ITH in different cancers, we examined
2807 tumor whole-exome sequences from 16 cancer types of TCGA. We assigned an overall genomic
instability score to each tumor, defined as the number of somatic point mutations and small insertions
and deletions (INDELs) ranging from 1 to 100 bp in length. The ITH score was obtained using
the mutant-allele tumor heterogeneity (MATH) method (Figure 1A and Table S1) [24]. MATH
evaluates the variability of the mutant-allele fractions among all tumor-specific mutated loci. Therefore,
homogeneous tumors with high mutation incidence have a narrower distribution of mutant-allele
fractions than heterogeneous tumors. In agreement with previous reports [3], we found that the
degree of genomic instability is highly variable across tumors types (Figure 1A). Notably, high levels of
genomic instability were not positively correlated with ITH in several tumors (Figure 1B). Individual
analysis of each cancer type revealed that only thyroid carcinoma (THCA), pancreatic adenocarcinoma
(PAAD) and kidney renal clear cell carcinoma (KIRC) exhibited a statistically significant positive
correlation between genomic instability and ITH (Figure 1B). Moreover, we found a significant
negative correlation between these two features in kidney renal papillary cell carcinoma (KIRP) and
adrenocortical carcinoma (ACC) (Figure 1B). This finding suggests that factors other than increased
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mutability determine the development and expansion of genetically-distinct subclonal cell populations
within a tumor.
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Figure 1. Pan-cancer correlations reveal that genomic instability does not predict ITH. (A) Distribution
of genomic instability (logl0 transformed) and ITH across 16 TCGA cancer types: THCA (thyroid
carcinoma), KICH (kidney Chromophobe), BRCA (breast invasive carcinoma), PRAD (prostate
adenocarcinoma), UCEC (uterine Corpus Endometrial Carcinoma), PAAD (pancreatic adenocarcinoma),
KIRC (kidney renal clear cell carcinoma), KIRP (kidney renal papillary cell carcinoma), CESC (cervical
squamous cell carcinoma and endocervical adenocarcinoma), LIHC (liver hepatocellular carcinoma),
ACC (adrenocortical carcinoma), HNSC (head and neck squamous cell carcinoma), STAD (stomach
adenocarcinoma), BLCA (bladder urothelial carcinoma), LUAD (lung adenocarcinoma), LUSC (lung
squamous cell carcinoma). Cancers are ordered according to genomic instability levels. (B) Pearson
correlation between genomic instability (log10 transformed) and ITH for each cancer type. Each point
represents one patient and the line shows the fitted linear model.

2.2. Mutations in Epigenetic Modifier Genes Are Strong Determinants of ITH

To investigate whether epigenomic deregulation drives the development of tumors with high
levels of ITH, we focused our analysis on KIRC, the cancer type with the highest frequency of mutations
in epigenetic modifiers (Figure 2A). The important role of epigenomic deregulation in the development
and progression of KIRC is illustrated by the finding that patients with mutations in epigenetic
modifiers have worse overall survival compared to those without mutations in these genes (p < 0.05,
log-rank test; Figure 2B). To investigate how epigenomic deregulation compares with other specific
cellular processes in influencing ITH in KIRC, we analyzed significantly mutated genes grouped in
broad functional categories as previously described [25]. The linear model revealed that mutations in
epigenetic modifiers are the most strongly associated with high ITH in KIRC, amongst all categories
of genes analyzed (Figure 2C). Moreover, the presence of mutations in epigenetic modifier genes
correlates positively with increased ITH across different cancer types (Figure 2D and Table S2). Next,
we aimed at identifying the individual genes that, when mutated, more accurately predict ITH. To this
end, we used generalized linear models previously applied to infer the association of genetic alterations
with other phenotypic variables [26]. The strongest predictor of high ITH in both KIRC alone or across
several cancer types was the presence of mutations in SETD2, DNMT1 and DNTM3A (Figure 2E).
Importantly, we could model 32% of variability in KIRC ITH using only mutations in SETD2, DNMT1
and DNTM3A (Figure 2F). The optimal model showed a significant correlation between the observed
and predicted ITH levels based on the tumor mutation profiles (Figure 2FG). These data suggest
that epigenomic deregulation is an important determinant of ITH and identify mutations in SETD?2,
DNMT1 and DNTM3A as candidate drivers of ITH.
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Figure 2. Driver mutations of pan-cancer ITH. (A) Pan-cancer analysis of the percentage of somatic
mutations in epigenetic modifier genes across 16 TCGA cancer types. The vertical axis shows
the percentage of mutations in epigenetic modifier genes whereas the different cancer types are
ordered on the horizontal axis from the lowest to the highest percentage of mutations in these genes.
(B) Kaplan-Meier plot comparing the survival of KIRC patients segregated according to the presence
(red) or absence (black) of mutations in epigenetic modifiers. The log-rank test was used for statistical
analysis. (C) Statistical significance (—log 10 Benjamini-Hochberg Adj. p-value) of the linear model
coefficients estimated for each gene group in KIRC. The vertical dashed line corresponds to the
significance level (BH adj. p-value of 0.05). (D) Heatmap of the linear model coefficients estimated
for each cancer type and gene group. Only statistically significant coefficients are represented (BH
adj. p-value < 0.05). (E) Heatmap of driver mutations of ITH across several cancer types depicted by
a LASSO penalized model. LASSO-selected coefficients are colored according to the effect of each
standardized covariate in the optimal model. The numbers on each tile denote the order in which
variables are included indicating their relative importance. The top bar plot indicates the frequency
at which each driver-gene mutation occurs in the ITH fitted model. The right bar plot shows the
explained variance. An asterisk (*) denotes models where the explained variance (R?) is greater than
zero by a margin of more than one standard deviation. (F) Variance explained by selected driver genes
(black line + 1 standard deviation) ordered by their occurrence in a LASSO penalized model for ITH in
KIRC using only the mutated genes DNMT1, DNMT3A and SETD2. The optimal model maximizes the
explained variance R2. The right axis indicates the effect of each standardized covariate in the optimal
model (red dots). (G) Scatter plot of predicted and observed ITH for KIRC (Estimate and statistical
significance of the Pearson correlation are presented).
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2.3. Knockout of SETD2 or DNMT3A Expands the Clonal Diversity of Cancer Cell Populations

We next sought to experimentally validate the role of SETD2, DNMT1 and DNMT3A mutations in
driving the emergence of genetically-distinct subclonal cell populations. The mutations found in these
genes were predicted as deleterious causing loss of function (Table S3). To recapitulate this phenotype,
we employed CRISPR/Cas9 system to specifically knockout each of these genes in KIRC Caki-2 cell
lines. Insertion of small INDELs at the target sites was confirmed by DNA sequencing and efficiency of
gene knockout evaluated by measuring protein levels (Figure 3A). Decreased H3K36me3 levels were
used as a surrogate for SETD2 depletion (Figure 3A). Importantly, knockout of DNMTT1 rendered KIRC
cells senescent (Figure 3B), in contrast to DNMT3A and SETD2 depletion, which were well tolerated
and did not significantly affect cell proliferation (Figure 3C). This finding suggests that additional
compensatory mutations are required to allow the proliferation of DNMT1 mutant cells within tumors.
Alternatively, DNMT1 mutant clones could be selected during tumor evolution due their ability to
promote carcinogenesis through the senescence-associated secretory phenotype [27-29].
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Figure 3. CRISPR/Cas9 knockout of candidate ITH-driver genes in cancer cells. (A) The levels
of DNMT3A and H3K36me3 were estimated by western blot 1, 3 and 6 months after knockout.
(B) The percentage of senescent cells in control and mutant conditions (SETD2, DNMT1 and DNMT3A
knockouts) was assessed by (3-galactosidase staining (error bars indicate SEM; n = 3 counting regions
of 150 cells/condition in triplicate; Student -test). (C) The proliferation rate of the indicated cells was
measured by AlamarBlue dye reduction at the indicated time points. All data are presented as mean
(four technical replicates in the same experiment) - SEM.

To investigate whether loss of DNMT3A or SETD2 drives the acquisition of
genetically-heterogeneous cell populations over time, we performed whole-exome sequencing of
control and knockout cells cultured during 1, 3 and 6 months (Figure 4A). ITH levels of three different
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cell populations per experimental condition (control, SETD2 and DNMT3A knockout) were measured
at each time point using MATH. Compared to control cells, loss of either SETD2 or DNMT3A
resulted in significantly increased and comparable levels of ITH after just one month (Figure 4B and
Table S4). However, while ITH rose for up to three months after SETD2 depletion, it remained constant
through time in DNMT3A knockout cells (Figure 4B). Bayesian cluster analysis of mutations using
PyClone [30] identified 25 mutation clusters that are distributed in each cell population at a frequency
that permits segregation according to the knockout gene (Figure 4C). ITH scores observed in SETD2
and DNMT3A knockout cell lines were not significantly different from those determined in TCGA
samples carrying SETD2 and DNMT3A mutations, respectively (Figure 4D). This finding reveals that
the clonal dynamics of cancer cells grown in vitro recapitulates the in vivo scenario. Altogether, these
data suggest that loss of SETD2 or DNMT3A drives specific patterns of clonal evolution that culminate
in tumors with increased levels of ITH.

2.4. Epigenomic Deregulation Drives Favorable Metabolic Phenotypic Variation

The increased ITH observed knockout of SETD2 or DNMT3A knockout suggests that new clones
carrying phenotypic traits that confer selective advantage within the cell populations have expanded
and were selected. In cancer cells, mitochondria play important roles in energy production, redox
and calcium homeostasis, transcriptional regulation and cell death [31]. Changes in mitochondrial
metabolism constitute an important source of variability for natural selection to act upon [32,33]. To test
whether epigenomic deregulation drives altered mitochondrial metabolic functions, we evaluated
the ability of cells to adapt to shifts in energy demands by measuring mitochondrial respiration rates
using an oxygen electrode on the Seahorse platform. In this assay, the oxygen consumption rate was
measured before and after the addition of inhibitors to derive parameters of mitochondrial respiration
in baseline and stress conditions (Figure 5A). Basal mitochondrial respiration in knockout and parental
cells was equally efficient (Figure 5B), indicating that no major intrinsic metabolic alterations were
caused upon loss of either SETD2 or DNMT3A. We then measured the maximal respiratory capacity
and spare capacity rate (SCR) of cells challenged with the mitochondrial uncoupler FCCP and the
Complex I and Complex III specific inhibitors rotenone and antimycin A, respectively. Both parameters
were significantly increased in SETD2 and DNMT3A knockout cells when compared to parental cells
under similar conditions (Figure 5C,D). Analysis of SETD2 and DNMT3A knockout cells revealed
mutations in genes involved in mitochondria biogenesis and function (Table S5); however, inspection
of mitochondria network in knockout cells using fluorescence confocal microscopy did not reveal
any major alterations (Figure 5E). These data rule out altered morphology as a causing factor for the
observed increase in the spare capacity rate. Instead, our data suggest that gain-of-function mutations
in genes involved in mitochondrial function drive higher spare capacity rates in knockout cells. Such an
association between epigenetics, altered nuclear DNA expression and mitochondrial function has
already been demonstrated in previous studies [34]. Altogether, these data provide direct experimental
evidence for the emergence of favorable characteristics in SETD2 and DNMT3A depleted cells that
may foster the increased number of genetically-distinct clones within the cell population.
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Figure 4. SETD2 and DNMT3A knockout drive ITH. (A) Schematic representation of the experimental
setup. Control and knockout cells were cultured during the indicated time periods before DNA
extraction and whole-exome sequencing (WES). ITH was inspected after three independent clonal
expansions (C1-C3) for each knockout at each time point. (B) ITH levels of SETD2 and DNMT3A
knockout cells after 1, 3 and 6 months. WES data of the indicated conditions were used to calculate ITH,
as described in the Methods. Data from three independent clonal expansions analyzed per group are
presented as mean 4 SEM. Statistical analysis was a two-tailed Student’s t-test (* p < 0.05, ** p < 0.01,
*** p < 0.001). (C) Hierarchical cluster analysis of the mean variant allele frequency estimated with
PyClone in control, SETD2 and DNMT3A knockout cells. (D) Distribution and comparison of the ITH
levels across KIRC patients from TCGA and Caki-2 cell lines for the indicated conditions (control,
SETD2 and DNMT3A knockouts). The bar graph displays mean ITH values and s.e.m. (standard error
of the mean). Statistical analysis was performed with Wilcox-test but no statistical significance was
observed between TCGA patients and each cell line.
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Figure 5. SETD2 and DNMT3A knockout increase bioenergetic performance. Oxygen Consumption
Rates (OCR) trace and respiration parameters were measured in control, SETD2 and DNMT3A knockout
cells. Seahorse extracellular flux measurements of OCR was normalized to basal respiration (A). Basal
respiration (B), maximal respiration (C) and spare capacity rate (SCR) (D) of Caki-2 cell lines were
obtain by OCR values representative of 3 independent experiments in which each data point represents
replicates of three to five wells each cell line. Statistical analysis was performed using the unpaired
Student’s t-test, where * p < 0.05; ** p <0.01; *** p < 0.001; **** p < 0.0001, data were represented as
the mean £ SD. Olig: Oligomycin; FCCP; carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone;
Rot+AntA; Rotenone+Antimycin A. (E) Mitochondria morphology of Caki-2 control, DNMT3A KO
and SETD2 KO cell lines. Cells were fixed and stained with the mitochondrial marker Hsp60 (red) and
with the nucleus marker DAPI (blue). Cells were imaged on an inverted Zeiss LSM 880 microscope. Fiji
software was used to calculate scale bar (10 um or 5 um for zoom-in). Selected image is representative
of three independent experiments.
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3. Discussion

Tumors evolve through multiple rounds of clonal expansion, diversification and selection
that enable the acquisition of metabolic and bioenergetic phenotypes better adapted to the local
microenvironment. Such evolutionary adaptation also accounts for therapeutic failure as drug-resistant
tumor clones may be selected during therapy. High ITH is the substrate for this Darwinian model of
cancer evolution and therapeutic resistance, and hence, highlights the need for further understanding
of drivers and mechanisms of clonal evolution. Despite the major discrepancies observed in their
covariance rates [3], genomic instability is still considered a major source of ITH [4,7-9]. In this
study we show that genomic instability is not positively correlated with ITH in most cancer types.
In fact, there is a significant negative correlation in some cancers, suggesting that additional processes
must congregate to drive genetic heterogeneity. Our results are in agreement with previous studies,
where ITH was associated with different forms of instability [35]. Recently, high concordance was
observed between the evolution of genetic and epigenetic diversification in esophageal squamous
cell carcinoma and in glioma, disclosing possible relationships between genomic and epigenomic
alterations during the clonal evolution of tumors [22,23]. An interesting hypothesis linking DNA
mutations and epigenetics in cancer is that altered DNA methylation or chromatin modifications
may accelerate mutation rates. Examples of such relationship were already described. For example,
abnormal DNA hypomethylation near guanine quadruplexes (G4s)-rich regions is a common signature
for many DNA breakpoints associated with somatic copy-number alterations [36]. This finding
suggests that DNA hypomethylation in genomic regions enriched for G4s acts as a mutagenic factor in
cancer. Additionally, the genome organization into heterochromatin and euchromatin-like domains is
a dominant determinant of mutation rates, as illustrated by the finding that H3K9me3 levels alone can
predict over 40% of somatic mutation loci in human cancer samples [37]. Conversely, we and others
have shown that H3K36me3 protects active coding sequences of the genome from error-prone DNA
double-strand break repair mechanisms by promoting homologous recombination [17,38,39]. Together,
these data establish a strong association between epigenomic deregulation—namely, DNA and histone
methylation and genomic mutations, which we show play important roles during clonal evolution
and genetic diversification of tumors. In fact, we found that mutations in epigenetic modifier genes
are the strongest determinants of ITH amongst a panel of 17 distinct cellular pathways. Particularly,
we identified and validated mutations in the methyltransferase genes SETD2 and DNMT3A as potent
drivers of ITH. Other epigenetic modifiers were also associated with high levels of ITH in KIRC (e.g.,
PBRM1 or KDM5C), but correlated with lower heterogeneity in a pan-cancer analysis or in other
cancer types. Our findings add direct experimental evidence to previous studies implicating SETD2
loss-of-function in mechanisms that generate ITH [40,41].

As tumor cells adapt to the environment, they acquire distinctive bioenergetic features to take
advantage of available fuels. For instance, tumor cells growing in an environment rich in adipocytes
could use fatty acids as a major energy source [33]. This remarkable versatility arises from clonal
evolution, during which genetic heterogeneity would eventually impact the function of metabolic
enzymes [32,33]. We thus reasoned that the increased ITH observed upon SETD2 or DNMT3A
knockout likely underpins phenotypic variations in mitochondrial metabolism upon which natural
selection could act. In agreement with this, we observed that both SETD2 and DNMT3A depleted cell
populations have increased bioenergetic performance under stress conditions, a phenotype that was
accompanied by mutations in genes involved in mitochondria function.

4. Materials and Methods

4.1. Cell Culture

Caki-2 cells (Cell Line Services, Eppelheim, Germany) that do not have SETD2 mutations were
selected as a cellular model of KIRC. Caki-2 and human embryonic kidney (HEK) 293T (ATCC,
Manassas, VA, USA) cells were grown as monolayers in Dulbecco’s modified Eagle medium (DMEM,
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Invitrogen, Carlsbad, CA, USA), supplemented with 10% (v/v) FBS, 1% (v/v) nonessential amino acids,
1% (v/v) L-glutamine and 100U/mL penicillin-streptomycin and maintained at 37 °C in a humidified
atmosphere with 5% CO,.

4.2. Gene Knockout by CRISPR/Cas9

To establish knockout cell lines, we used the genome editing one vector system (lentiCRISPR-v2)
(Addgene #52961). sgRNAs were designed by GenScript and the potential off-target effects
was confirmed using the CRISPR tool (http://crispr.mit.edu). The following sgRNA sequences
were selected: DNMTI CRISPR guide RNA 1: CTAGACGTCCATTCAC TTCC; DNMT3A
CRISPR guide RNA 2: TGGCGCTCCTCCTTGCCACG and SETD2 CRISPR guide RNA 1:
AGTTCTTCTCGGTGTCCAAA. As a control we used a pCas-Scramble CRISPR Vector (SantaCruz,
sc-418922). Recombinant lentiviruses were produced by co-transfecting HEK293T cells with each
lentiCRISPR-v2 expression plasmid together with packaging plasmid pCMV-dR8.91 (Addgene) and
the envelope plasmid pCMV-VSV-G (Addgene #8454) using Lipofectamine™ 3000 (Thermo Fisher
Scientific, Waltham, MA, USA) as a transfection reagent and Opti-MEM (Invitrogen), according
to the manufacturer’s instructions. Infectious lentiviruses were collected 48 h after transfection.
The supernatant was filtered through 0.45 pm filters (GE Healthcare, Chicago, IL, USA) and
concentrated by ultra-centrifugation at 25,000 rpm, 4 °C for 90 min. Cells were infected with lentivirus
at approximately 60% confluence. After 24 h, cells were incubated with 5 ug/mL of puromycin
(InvivoGen, San Diego, CA, USA) for 2 days. To identify KO clones, infected cells were single-cell
cloned in 96-well plates. Several clones from 96-well plates were selected and the presence of DNMTT1,
DNMT3A and SETD2 was verified by western blot and Sanger sequencing. Genomic DNA was
extracted from each clone and a segment surrounding the DNMT1, DNMT3A and SETD?2 edited region
was amplified with specific primers (Table S6). Target sites and specificity were validated using the
UCSC Genome Browser (https://genome.ucsc.edu/).

4.3. Western Blot

Whole cell protein extracts were prepared by cell lysis with SDS-PAGE buffer (80 mM Tris-HCL
pH 6.8, 16% glycerol, 4.5% SDS, 450 mM DTT, 0.01% bromophenol blue) with 200 U/mL benzonase
(Sigma-Aldrich, St. Louis, MO, USA), 50 uM MgCI2 and were boiled for 5 min. Equal amounts of
protein extracts were resolved by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred
to a nitrocellulose membrane. After 1 h blocking with 5% non-fat dry milk in 1x PBS, 0.1% Tween20 at
room temperature, membranes were incubated with antibodies as follows: anti-DNMTT1 (2 pg/mL,
Active Motif, Carlsbad, CA, USA), anti-DNMT3A (1:1000, Cell Signaling), anti-H3K36me3 (1:500,
Abcam, Cambridge, UK), x-tubulin (1:15,000, Sigma-Aldrich) and anti-histone H3 (1:1000, Abcam).
Detection was performed with the appropriate secondary antibodies (Bio-Rad, Hercules, CA, USA)
and enhanced luminescence substrate (Pierce ECL, Thermo Fisher Scientific, Waltham, MA, USA).
Details of antibodies used are mentioned in Table Sé6.

4.4. Cell Senescence and Proliferation Assays

Senescent cells were identified by 3-galactosidase staining in low-density culture. Caki-2 cells
(controls and KOs) were seeded in 6-well plates at 10 x 10* cells/cm?. In the next day, cells were washed
with PBS 1 x, fixed for 5 min (RT) in 2% formaldehyde/0.2% glutaraldehyde, washed, and incubated at
37 °C (with no CO,) with senescence cells histochemical staining kit (Sigma-Aldrich, CS0030) according
to manufacturer’s recommendations for 12 h. Blue-stained cells and total number of cells was counted
under the phase contrast microscope (Leica DM2500, Leica Biosystems, Wetzlar, Germany).

Cellular proliferation for human cancer cell lines (controls and KOs) was measured every
24 h for four days, using AlamarBlue™ (Thermo Fisher Scientific). Briefly, 10 x 10* cells/well
were seeded on 96-well plates in a final volume of 100 uL per well. This is a reliable method
for measuring cell viability, using the metabolic activity of cells to reduce resazurin (oxidized
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form: 7-hydroxy-3H-phenoxazin-3-1-10-oxide) to resorufin. The fluorescence of these two forms
is measured at 560 nm as excitation wavelength and at 590 nm emission wavelength was measured
every 24 h for 72 h, using a microplate reader (Microplate Reader TECAN Infinite M200, Tecan,
Mannedorf, Switserland).

4.5. Mitochondria Oxygen Consumption Rate

Mitochondria oxygen consumption rate (OCR) was measured with the XF24 Extracellular Flux
Analyzer (Seahorse Bioscience, Agilent, Santa Clara, CA, USA), according to the standard protocol.
Briefly, at least 3 months after each knockout, cells were seeded one day prior to the assay in a 24-well
XF plates at a density of 2 x 10° cell/well and incubated overnight at 37 °C, 5% CO,. Twenty-four
hours later, cells were incubated with Seahorse XF Base medium supplemented with 10 mM glucose,
2 mM L-glutamine and 1mM sodium pyruvate at pH 7.4 and calibrated for 1 h at 37 °C in the absence
of CO,. Hydration of the sensor cartridge was performed one day prior to the assay at 37 °C in
the absence of CO,. OCR was evaluated in a time course set-up where the following compounds
were sequentially injected in the following order: oligomycin (1 uM final concentration), carbonyl
cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) (0.5 uM final concentration), and rotenone plus
antimycin A (0.5 uM final concentration). Rates were normalized to protein concentration measured
according to the Bradford method (Bio-Rad, Hercules, CA, USA). Three to five wells from each cell
line were measure in a total of n = 3 experimental assays. Values for each parameter were calculated as
the difference of OCR measures after and before injection:

a.  Non-mitochondrial respiration was calculated as the average of OCR measurements after
rotenone and antimycin A injection;

b.  Basal respiration is calculated as the difference between non-mitochondrial respiration and the
third point of baseline cellular oxygen consumption;

c.  Maximal respiration corresponds to the difference between the average OCR value after FCCP
injection and the non-mitochondria respiration;

d.  Spare capacity rate (SCR) is the difference between maximal and basal respiration values.

4.6. Determination of Mitochondrial Morphology

Caki-2 control, Caki-2 DNMT3A and Caki-2 SETD2 cells were seeded on 13 mm coverslips.
Twenty-four hours post seeding, cells were washed three times in PBS, fixed in 4% paraformaldehyde
for 20 min, washed three times in PBS, permeabilized in 0.1% Triton X-100 in PBS for 10 min, followed
by three washes in PBS. Cells were blocked in blocking buffer (0.2% gelatin, 2% fetal bovine serum,
2% BSA, 0.3% bovine serum albumin, 0.3% Triton X-100 in PBS) with 5% goat serum (DAKO) for 1 h.
Cells were stained using the primary antibody mouse anti-hsp60 at 1/250 dilution (BD Bioscience) for
2 h. After 3 washes in PBS, cells were incubated with the secondary antibody Alexa Fluor 568 goat
anti-mouse at 1/500 dilution (Life Technologies, Carlsbad, CA, USA) for 1 h and with DAPI at
1/10,000 dilution for 10 min. Images were visualized with a confocal laser point-scanning microscope
Zeiss LSM 880 with airyscan through an objective of 63 x 1.40 oil dipping lens (Zeiss, Oberkochen,
Germany). Images were acquired using the ZEN software package (Zeiss) and analyzed in open source
Fiji software (https:/ /fiji.sc/).

4.7. Pan-Cancer Data Sets

WES data published in the context of TCGA was downloaded from Broad Institute
MAF dashboard https:/ /confluence.broadinstitute.org/display /GDAC/MAF+Dashboard, released
(14 April 2017). A total of 2807 patients corresponding to 16 different carcinomas were analyzed:
71 adrenocortical carcinoma (ACC), 270 bladder urothelial carcinoma (BLCA), 228 breast invasive
carcinoma (BRCA), 101 cervical squamous cell carcinoma (CESC), 196 head and neck squamous cell
carcinoma (HNSC), 167 liver hepatocellular carcinoma (LIHC), 324 lung adenocarcinoma (LUAD),
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118 lung squamous cell carcinoma (LUSC), 58 kidney chromophobe (KICH), 274 kidney renal clear cell
carcinoma (KIRC), 149 kidney renal papillary cell carcinoma (KIRP), 46 pancreatic adenocarcinoma
(PAAD), 349 prostate adenocarcinoma (PRAD), 181 stomach adenocarcinoma (STAD), 163 thyroid
carcinoma (THCA), 112 uterine corpus endometrial carcinoma (UCEC). None of the patients were
subjected to neoadjuvant therapies (neither chemotherapy or radiotherapy or immunotherapy) before
tumor resection. A complete list of samples is given in Table S1. The effect mutations were predicted
using cBioportal (Table S3) [42].

4.8. Pan-Cancer Characterization of Genomic Instability and Intratumor Heterogeneity

Genomic instability and ITH were determined using all the somatic point mutations and INDELs
downloaded from the Broad Institute MAF dashboard. Genomic instability was calculated as the
absolute number of mutations and INDEL observed in each tumor sample. The ITH defined as
the genetic heterogeneity was measured considering the same somatic mutations and using the
mutant-allele tumor heterogeneity (MATH) approach [24] (see Supplementary Methods for details).
Briefly, for each individual tumor we: (1) obtained the mutant-allele fraction (MAF) values of the
somatic mutations (the fraction of DNA that shows the mutated allele at a locus), (2) calculated the
center (median) and the width of the distribution (median absolute deviation, MAD); (3) multiplied the
median by a factor of 1.4826, so that the expected MAD of a normally distributed variable is equal to its
standard deviation; (4) calculated the MATH value as the percentage ratio of the MAD to the median
distribution of MAFs among the tumor’s genomic loci (MATH = 100 x MAD/median). Correlation
between genomic instability and ITH was determined using Pearson method as implemented in
cor.test function of R package [43].

4.9. Pan-Cancer Discovery of Driver-Gene Mutations of ITH

To identify driver-gene mutations, a binary matrix was produced representing the
presence/absence of mutations for each gene on each tumor sample, eliminating the bias introduced
by hypermutated genes. First, mutated genes were classified according to cancer specific
pathways previously defined: epigenetic modifiers, transcription factors/regulators, genome integrity,
RTK signaling, cell cycle, MAPK signaling, PI(3)K signaling, TGF-{ signaling, Wnt/ 3-catenin signaling,
proteolysis, splicing, HIPPO signaling, metabolism, NFE2L, protein phosphatase, ribosome, TOR [25].
By doing this, we reduced noise from passenger mutations and discover which group of genes is the
major contributor of ITH in a wide range of carcinomas. Then, we applied a linear model per cancer
type, extracting: explained variance, estimated coefficients, Benjamin-Hochberg adjusted p-values
for the fitted model and for each estimated coefficient (Table S2). Second, to identify specific gene
driver-events we used generalized linear models previously applied to infer association of genetic
alterations with other variables [26] (see Supplementary Methods for details). Briefly, ITH for each
individual cancer type and all cancers was modelled by Lasso regression as implemented in glmnet
R package [44]. Significance of the explained variance by each model was determined for values
greater than zero by a margin of more than one standard deviation. Finally, the fitted models were
evaluated by comparing the observed and predicted ITH levels based on the tumor mutation profiles
and assessing the Pearson correlation.

4.10. Whole-Exome Sequencing from Human Cancer Cell Lines

The genomic DNA from cells was prepared using the QlAamp DNA Mini Kit (Qiagen, Hilden,
Germany) following the manufacturer’s instructions and the quality and quantity of purified DNA
was assessed by NanoDrop™ 2000 (Thermo Fisher Scientific) and gel electrophoresis. Genomic
DNA was extracted from control, DNMT3A and SETD2 KOs carcinoma cell lines following 1, 3 and
6 months in culture and then used for WES. Whole-exome capture libraries were constructed using
100 ng of DNA from Caki-2 cells (controls and KOs) sequenced as paired-end 151-bp sequence tags
with coverage of 30x. Samples were barcoded and prepared for sequencing by GATC Biotech AG
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(www.gatc-biotech.com) using Illumina protocols. Integrity and quantity of the starting material was
determined by appropriate methods (e.g., volume measurement, gel electrophoresis and fluorimeter
measurements). Library preparation incorporated adaptor sequences and indexing compatible for
Illumina sequencing technology, using proprietary methods of GATC Biotech. Enrichment was
performed using Agilents SureSelectXT Human All Exon V6 technology. The quality of the final library
was assessed by determination of size distribution and by quantification, following GATC Biotech
protocols. Sequencing was carried out on the Illumina HiSeq platform. Delivered raw data is the
result of a primary analysis using Illumina CASAVA software (http://cancan.cshl.edu/labmembers/
gordon/fastq_illumina_filter/).

4.11. Variant Calling from Whole-Exome Sequencing

Whole-exome sequence data processing and analysis were performed by RubioSeq software
(http:/ /rubioseq.bioinfo.cnio.es/) using default parameters for somatic variation analysis [45]. Briefly,
sequencing data were first checked by FastQC for quality control checks on raw sequence data and then
aligned to the human reference genome (GRCh37/hg19) using Burrows-Wheeler alignment (BWA) [46].
Reads unmapped by BWA were realigned using BFAST [47]. Sequenced samples presented 71% of
bases in the targeted exome above 30x coverage (see Supplementary Methods for details and Table S7).
For variant calling we used GATK Unified Genotyper v2 [48] applying the “Discovery” genotyping
mode and default parameters for filtering. The GATK QUAL field was employed for ranking selected
somatic variants. Mutations were filtered to ensure that each variant had at least 5 reads supporting
the mutant allele and coverage of >30. Single-nucleotide variants reported in dbSNP150 were filtered
out from VCF output files, unless they were also present in COSMICv85 [49]. Only single nucleotide
variants were used for downstream analyses. The filtered variants were annotated with SnpEff
(VEP) [50]. Finally, to remove the germinal variants (i.e., present in the original cell population)
we filtered out variants present in the earliest replicate (1 month) from each experiment (individual
knockouts or control) and with MAF equal to 1.

4.12. Assessing ITH and Subclones Number from Whole-Exome Sequencing

The ITH from control and knockout cell lines was determined using the mutant-allele tumor
heterogeneity (MATH) approach [24]. A Bayesian clustering approach was also used to infer clonal
population structures present in control and knockout cell lines as implemented in Pyclone [30] (see
Supplementary Methods for details). Pyclone analysis was performed jointly on all samples using
variants supported at least by 50 reads and with copy number information estimated by RubioSeq and
processed using CopyWriteR Bioconductor package [51].

4.13. Statistical Analysis and Graphical Representation

Figures were produced using ggplot R package [52] and default packages from R environment [43]
and also Graph Pad Prism5 Software (https://www.graphpad.com/scientific-software/prism/).
The statistical significance of differences between groups was evaluated using unpaired Student’s
t-test and Mann-Whitney-Wilcoxon test (* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001). Results
are depicted either as mean =+ standard deviation (SD) or median =+ SD, of minimum 3 independent
replicates. Survival was analyzed by Kaplan-Meier curve comparison using a log-rank test and with
a multivariate Cox proportional hazards analysis as implemented in the survival R package [53].
Statistical significance was determined using p-value < 0.05 as cut-off.

5. Conclusions

Our pan-cancer analyses revealed that mutations in epigenetic modifiers, namely SETD2 and
DNMT3A, are major determinants of ITH. These genes are recurrently mutated in several cancer types.
For instance, SETD2 mutations are found in 10% of KIRC [16], 9% of non-small cell lung carcinomas [54],
15% of pediatric high-grade gliomas and 8% of adult high-grade gliomas [55], whereas mutations in
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DNMT3A are observed in over 20% acute monocytic leukemias [15]. These numbers illustrate the
broad significance of our findings, which provide an unprecedented pan-cancer portrait of the major
determinants of ITH. Our experimental validation of the role of specific epigenetic modifier genes in
driving ITH reveals novel biomarkers and/or therapeutic targets that may contribute to more effective
cancer prognoses and treatment.
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Abstract: The characterization of a gene product function is a process that involves multiple
laboratory techniques in order to silence the gene itself and to understand the resulting cellular
phenotype via several omics profiling. When it comes to tumor cells, usually the translation process
from in vitro characterization results to human validation is a difficult journey. Here, we present
a simple algorithm to extract mRNA signatures from cancer datasets, where a particular gene has
been deleted at the genomic level, ICAro. The process is implemented as a two-step workflow.
The first one employs several filters in order to select the two patient subsets: the inactivated one,
where the target gene is deleted, and the control one, where large genomic rearrangements should
be absent. The second step performs a signature extraction via a Differential Expression analysis
and a complementary Random Forest approach to provide an additional gene ranking in terms of
information loss. We benchmarked the system robustness on a panel of genes frequently deleted
in cancers, where we validated the downregulation of target genes and found a correlation with
signatures extracted with the L1000 tool, outperforming random sampling for two out of six L1000
classes. Furthermore, we present a use case correlation with a published transcriptomic experiment.
In conclusion, deciphering the complex interactions of the tumor environment is a challenge that
requires the integration of several experimental techniques in order to create reproducible results.
We implemented a tool which could be of use when trying to find mRNA signatures related to a gene
loss event to better understand its function or for a gene-loss associated biomarker research.

Keywords: transcriptional signatures; copy number variation; copy number aberration; TCGA
mining; cancer CRISPR; firehose; gene signature extraction; gene loss biomarkers; gene inactivation
biomarkers; biomarker discovery

1. Background

Translational research has been hard at work trying to find a way to characterize genes and gene
product functions for decades. One successful approach is the study of particular contexts where
the gene expression of interest is perturbed. In the past, biologists mostly tried to characterize gene
functions by overexpressing its mRNA, whereas more recently, several tools have been introduced
in the field of Cellular and Molecular Biology to erase a gene (or its mRNA). Furthermore, a rapid
evolution of induced DNA/RNA ablation techniques have emerged from perfectible approaches
including siRNA /shRNA to highly specific ones such as TALEN and CRISPRs/Cas9 [1,2].

An induced gene deletion (or mRNA ablation) event brings about a series of phenotypes, both
as direct consequences of the gene/protein absence and as epiphenomena mediated by the cellular
environment response of such a relevant change.

Cancers 2019, 11, 256; d0i:10.3390/ cancers11020256 35 www.mdpi.com/journal/cancers
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The granular study of these phenotypes has been accelerated dramatically by the introduction
of omic technologies in basic and translational research. For instance, we can easily take a
transcriptome-wide picture of the mRNA status or the profile of a large panel of metabolites. All these
data can easily help the investigators to apply the “guilt by association” approach in order to better
understand a gene function by looking at the correlated omic response [3]. In spite of the elegant
workflow (perturbation — omics — understanding), the process is hindered by a series of issues.

In regards to silencing technologies, while CRISPRs have promised to lead much less off-target
effects than shRNAs, they still are a challenging technique for several laboratories worldwide and
even show little correlation with RNA interference screens, a worrying scenario since thousands of
mechanistic papers on cellular and molecular biology are based on these tools [4]. Furthermore, most
of these characterizations are conducted in vitro, where the reproducibility of results is being pointed
out as a major issue [5-7].

Several efforts have been made towards also automating and standardizing in vitro results to make
them reproducible. Among these proposals, the L1000 connectivity map [8,9] is a clear example of a
thorough characterization of the mRNA response of thousands of compounds (shRNA, overexpression,
and drugs) in several cell lines.

However, when the whole question shifts to a difficult cellular context such as cancer, the situation
worsens. The network of intercellular and intracellular interactions of the tumor macroenvironment is
extremely complex and inevitably fails to be modeled by a simple mono-population cell line. In relation
to this, organoids are an interesting promise [10], but most medium- and small-sized laboratories
worldwide still do not have access to these kinds of models.

On the other hand, one resource that is available to any oncology-based research group is access
to public cancer datasets. Only The Cancer Genome Atlas (TCGA) contains several molecular profiles
from more than 11,000 patients at the time of the writing [11]. We tried to reason whether we could
extract huge amounts of data to make the process of elucidating gene functions in cancer contexts
easier and more robust. For this reason, we implemented ICAro (gene signature Inference system from
Copy number Aberrations), a framework that enables researchers to extract putative gene signatures
from publicly available Cancer Genomic datasets.

This overall idea involves treating cancer as a Cas9 model by using Copy Number Variations
(CNVs) and inactivating mutations data on a particular gene target to split the patient dataset in
control and inactivated groups. Then, we obtained RNA (RNA-seq) expression levels to extract a gene
deletion signature. Here, we show that this method can still be a useful resource as an integrated tool
for molecular knowledge mining.

2. Implementation

The algorithm is based on the workflow shown in Figure 1: the main inputs of the model are
the gene of interest & and the particular tissue context X (chosen from the available TCGA cohort
codes, e.g., ACC and COAD). Next, the inactivated and control sample sets are built. In the first step,
only samples for which both CNV and mRNA-seq data are present in the TCGA database are included.
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Figure 1. A schematic representation of the ICAro (gene signature Inference system from Copy number
Aberrations) workflow. The first part relies on sample filtering based on deletions and inactivating
mutations spanning the gene target « in order to build the inactivated and the control sample sets.
They are used as input for the signature extraction process, performed via a differential gene expression
analysis (the voom function from limma) and a Random Forest classification (randomForest R package).

The inactivated sample selection is performed following two different strategies: in the first one,
both deletions and inactivating mutations if provided are used to include samples; in the second one,
samples are selected only by inactivating mutations.

The deletion-based filter extracts inactivated samples by selecting CNVs that overlap the gene
o location and in which the CNV-GISTIC score [12,13] is lower than —1. An optional filter allows
to include only deletions larger than a given threshold. The second filter is based on inactivating
mutations and requires an input file containing a list of protein substitution variants in the standard
format according to Sequence Variant Nomenclature amino_acid/position/new_amino_acid (e.g.,
Cys28Ser). Unlike the first filter, it incorporates samples with variations present in the inactivating
mutation list. Moreover, the specific format “STOP N” can be added to the list, where N is a number
representing the rightmost stop-gain mutation allowing a sample to be included in the set.

The control set is built starting from only samples with both CNV and mRNA-seq data.
Other exclusion criteria for the control set include outside the gene &, samples containing CNVs
larger than a given threshold (e.g., 1 Mb), or mutations inside the same gene .. With these filters,
we tried to minimize the genomic interference of having huge structural rearrangements in the
control set.

The downstream analysis is executed only if there are at least five samples in the inactivated set
and if the ratio between such a set and the control set is higher than a given threshold (0.05).
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RNA-seq raw count data are transformed in count per millions (CPM), and only genes for which
CPM is greater than 5 in at least 5 samples are kept.

The second part regarding the signature extraction is performed in two separated methods: the
first one is a Differential Expression (DE) strategy in order to fetch up- and downregulated genes with
regards to the inactivated set. Secondly, a Random Forest approach (RF) is employed with the aim
of building activated and inactivated sets from a binary classifier. From the RF, we extracted a gene
ranking list that allows to understand the most discriminatory genes in the classification process and
the most likely to be part of our signature.

In the DE approach, the voom function of the limma package is executed on the data and a linear
model followed by empirical bayesian statistics are performed in order to find differentially expressed
genes between the two sets. On the other hand, Random Forests are built via the randomForest
function of the randomForest package which implements the Breiman’s random forest algorithm for
classification. The preprocessing part is performed via custom Python scripting, whereas the filtered
sets are provided as input to an R script that will perform the second step with the voom limma
and randomForest [14,15] packages. The data fetch process is automated thanks to the Firebrowse
package [16].

The DE output file contains a list of genes with some features, such as the log fold-change
and g-value, where the user can observe the putative differentially expressed genes. We appended
additional columns to the differential output file in order to give more information on the kind of
induction adopted, e.g., two columns with a median expression for each group. The RF output file
contains a list of genes ranked by their meanDecreaseGini value, thus having the most important genes
in terms of loss of information on top.

The tool is freely available at https:/ /gitlab.com/bioinfo-ire-release/icaro.

3. Results

In order to demonstrate the accuracy of our approach, we extracted 50 pairs of frequently
deleted genes (and their matching datasets) from the cBioPortal [17] (Tables S1 and S2) to run the
workflow with. Afterwards, from the output signature, we extracted the fold change and the adjusted
p-value of the target gene to understand whether we are selecting samples in which the target gene
is significantly downregulated. Indeed, almost all of the targets are significantly downregulated
(94.0%) and have a strong induction (i.e., logo FC < —0.58, meaning a 50% regulation, 93.6%) (Figure 2).
We performed a similar benchmarking for the RF results on the same genes. When visualizing the
meanDecreaseAccuracy (MDA) and meanDecreaseGini (MDG) of such genes, we observed that only
5/50 (10%) gene-dataset pairs had an MDG higher than 1%, while only 2/50 (4%) pairs showed an
MDG over 5% (Figure S1).
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Figure 2. The performance of the ICAro Differential Expression for 50 executions on frequently deleted
gene-dataset pairs: Every point represents one ICAro execution on a gene-dataset pair (e.g., TP53 on
COADREAD). The different colors represent several TCGA datasets. X-axis: log2FC (gene induction),
Y-axis: transformed g-value (statistical significance). Most tests fall in the upper region, meaning that
they are significant, and on the center of the X-axis, i.e., they are downregulated. The downregulation
of deleted genes is a first step towards the in vivo validation of the ICAro process. For a complete key
of datasets please refer to Table S1.

We pointed out that inactivated set sizing was the main failure in the workflow. That is, for most
datasets, it was difficult to find a high number of patients with focal deletions inside a particular
gene. For the RF classification task, it seemed that the deleted gene expression level did not contain a
sufficient amount of information in this in vivo setting in order to build a good classifier by itself.

Next, we attempted to demonstrate that the algorithm was able to correlate with other data that
were more similar to the typical laboratory approach. The idea involved testing whether the ICAro
signature had significant similarities to shRNA knockout perturbations, the routine approach, or other
drugs and kinase signatures. To this purpose, we used the aforementioned 50 signatures and we
queried L1000 via the Enrichr API [8,9,18] for correlating with the Chemical, Kinase, and Ligand
Perturbation. We divided the signatures into up- and downregulated genes; therefore, for each
gene-dataset pair, we extracted a L1000 table, 300 in total (Figure 3). On average, every signature
correlated with 5 significant terms (adjusted p-value < 0.05, median: 5 terms, and mean: 306 terms).
When analyzing the particular sub-signatures, up-signatures tended to poorly overlap (median: 0)
while down-signatures had better correlation (median from 2 to 660) (Table S3). This difference is to be
clearly attributed to the nature of the model that we tested. In fact, our focus is on deletions; therefore
a direct gene downregulation trend will overlap better than an in-trans upregulation event.
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L1000 significant term count from ICAro signatures
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Figure 3. The amount of significant terms for down and up-regulated genes when compared to L1000
signatures: Every point is an ICAro execution with a significant gene set (up or down). Every signature
is compared with the amount of significant terms when sampling random gene sets of equal size.
Legend: * significant increase between random sampling and ICAro.

In order to show a comparison on the difference between this performance and random
distribution, we ran a parallel script, where given N;, M;, the number of significant genes from
each signature S;, we extracted N;, M; random genes and executed the Enrichr analysis on them.
The median number of significant signatures was 0 (adjusted p-value < 0.05, median: 0 terms, and mean:
36 terms), and five out of six classes had a median term number 0 (Figure 3 and Table S3). The mean
amount of terms resulted significantly more in 2 out of 6 cases, particularly in the Chemical Perturbation
Down and the Ligand Perturbation Down clusters, confirming the aforementioned hypothesis of the
ICAro applicability.

As a second validation process, without focusing on frequently deleted genes, we applied
the workflow on the genes of interest in tumor genomics, i.e., cancer driver genes. We focused
on 459 mutational cancer driver genes (Table S4), deriving from the Integrative Onco Genomics
(intOgen) list [19]. Among those, we excluded 23 of them, which were located in sexual chromosomes.
Given that we did not separate patients by gender, this would have had a strong bias in the
CNV/mRNA separation. The analysis was carried out on 35 datasets (Table S5): only on UCS
(Uterine Carcinosarcoma), no results were obtained. For the other datasets, there was a high variability
in the number of analyses successfully performed, starting from 2 for CHOL (Cholangiocarcinoma) and
DLBC (Diffuse Large B-cell Lymphoma) to 100 for OV (Ovarian serous cystadenocarcinoma), with a
mean of 22 successful runs per dataset. From a gene-centered perspective (Table S6), we obtained at
least 1 result from 148 genes (34%) and f in which the minimum is 1 for 60 genes and the maximum is
31 for the WNKI1 gene, with a mean of 5 analyses for each gene. The main challenge in performing
an ICAro analysis is the lack of CNVs on the genes of interest: 59% of analyses failed for this reason.
Subsequently, the second main cause for this failure is the absence or the low amount of inactivated
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mRNA samples: 88% of samples which had passed the previous filters were rejected at this step.
Eight analyses were not performed due to a missing control sample. In conclusion, on the whole, only
5% of analyses were successfully performed.

The final step of ICAro modeling features also a Random Forest analysis in addition to the
Differential Expression. The aim is to overcome the limitations of linear modeling and to provide
a clean gene rank in terms of importance. In order to further describe the relationship among the
two analyses, we compared the results of ICAro executions of the aforementioned 50 gene-datasets
pairs in terms of the Differential Expression vs. Random Forest results. This profiling presents
different scenarios, in which in some cases, the RF approach can massively extend the scope of the
DE, that features only a few significant genes (5 out of the top 100 RF genes are significant in DE,
Figure 4A). In other cases, the situation is the opposite, and the RF is only an extension of the strong
amount of significant DE genes (75 out of the 100 top RF genes are significant in DE, Figure 4B). The
full 50 plots are available at the application’s webpage.

CDKN2B-ACC - DE gvalue vs RF MDG LPAR6-BLCA - DE qvalue vs RF MDG

-log10(qvalue DE)
-log10(qvalue DE)

Figure 4. (A,B) Two representative plots of the Differential Expression against the Random Forest
analysis on the ICAro system. Blue line: the top 100 genes from the Random Forest analysis, ranked by
the meanDecreaseGini (MDG). Red line: the adjusted p-value significance threshold. Left: only a few
genes are significantly regulated in the DE analysis, but more can be studied from the top 100 genes on
the RF analysis. Right: the opposite situation where most information lies in the differential expression,
and just most of the top 100 RF genes are significant in DE terms.

Finally, in order to present the scope and the possible applications of our system, we produced a
use case. We exploited a public transcriptomic dataset (GSE76689), a silencing experiment designed
to dissect the role of RB1 in Ovarian carcinoma [20]. We reproduced the DE analysis of the paper.
Globally, 2 down- and 8 upregulated genes are confirmed to be significant by the system, thus stressing
the importance of these mRNAs to discriminate signatures of RB1 loss in Ovarian carcinoma (Table 1).
Furthermore, the Random Forest modeling returned 5/10 of the significant genes to be in the top
100 Gini index ranking.
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Table 1. The significant genes validated in the GSE76689 dataset from the ICAro system.

Gene Log2FC siRB1 Log2FC ICAro adj PVal siRB1 adj P Val ICAro
RB1 —0.83 ~1.12 573 x 104 1.81 x 10~°
SH3BP4 —0.64 —0.63 821 x 1074 3.35 x 102
NUDT21 0.67 0.29 1.22 x 1073 446 x 1072
SLC27A3 0.64 0.40 5.70 x 1073 3.45 x 102
C150rf38 0.77 0.42 1.40 x 1073 3.82 x 1072
ADCY3 0.76 0.49 7.18 x 107+ 1.78 x 1072
TMEM106C 0.66 0.51 2.69 x 1073 2.70 x 1072
FANCE 0.47 0.57 292 x 1072 236 x 1073
WDR34 0.53 0.59 1.31 x 1072 494 x 1074
TCF19 0.49 0.99 2.68 x 1072 1.81 x 10~°

Taken together, these results highlighted that the algorithm is able to extract a few significantly
correlated regulation signatures for genes that are frequently deleted in cancer. The workflow
performed better than random sampling and could be used by researchers to extract several “parent”
signatures from the target gene in a tumor environment. From the cancer gene driver’s point-of-view,
a small fraction could be queried for gene signatures thanks to ICAro. Finally, it can be exploited to

select a subset of genes of interest in a mRNA profiling experiment.

4. Discussion

The intricate patterns of transcriptional networks are complex to decipher for the biomedical
researcher, and in our experience, researchers struggle to find evidence to confirm a regulatory
hypothesis. This is one of the main reasons that led us to develop a simple algorithm to help
investigators in the field of Cancer Transcriptomics.

The other motivation comes from our experience in handling NGS data and bioinformatic analysis
of a medium-sized genomic facility. Translational projects are often designed to start with a whole
transcriptomic or a whole epigenomic experiment (e.g., RNA-seq and ChIP-seq), intended to be the
hypothesis driver for further investigations. As a matter of fact, the process risks to be interrupted
when bioinformaticians present researchers with enormous lists of genes and ontologies. We impute
this matter to three main factors: the lack of computational biologists in research groups, the intrinsic
difficulty of summarizing large quantity of data, and a slow validation process due to the high number
of possible targets as starting points. ICAro comes as an aid for the latter issues, providing hints on
mRNA targets that could indeed be validated in vivo.

Many confounding factors are not taken into account in the patient partitioning. These are, for
instance, patient stratification by demographic data. This is an issue of many algorithmic signatures
of the transcriptomic field that do not seem to care even if they are designed to stratify patients into
clinical settings [21,22]. In our case, the scarcity of the inactivated set, usually falling below the count
of 5, prevents us in further dividing the patient strata.

In addition, most TCGA mutation datasets do not carry Variant Allele Frequency (VAF)
information. For this reason, we may erroneously include a few patients in the inactivation set
(that is already suffering from typical smaller size) that carry a stop-gain mutation in only a small
fraction of tumor cells (e.g., VAF < 10%). This limitation also applies to CNV data, where the GISTIC
threshold output are decided on a sample by sample basis [23]. Furthermore, it should be noted that
every sample profiled in the TCGA had a tumor cellularity of at least 80% (recently shifted to 60%)
and is not available metadata for which we could correct the CNV /Mutation status.
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Our implementation process also lacks some features that we plan to employ in the future.
The most obvious one is the lack of a gene amplification study. That is, the possibility to extract
a signature when a gene has more copies. This could be a valuable experiment mirroring another
frequent laboratory approach such as overexpression models. Another interesting add-on would be
appending genomic coordinates of each gene locus to the final output in order to understand whether
the differential effect is mostly guided by the CNV itself or by some other regulation pathways. Finally,
one more aspect that could be improved in the future is the simple automatization of functional APIs
from the result dataset, such as LINCs Cloud and ENRICHR, allowing researchers to better investigate
the mechanisms involved.

ICAro testing on a list of mutational cancer driver genes pointed out that the main problem is
that less than half of such genes are affected by CNVs, and among the samples with these deletions,
only 1 over 12 contains related mRNA experiments, thus preventing us from performing the analysis
on a larger set of data.

5. Conclusions

Mining knowledge regarding gene function or seeking inactivation biomarkers is not so trivial
tasks. It is for this reason, we developed an automated tool to integrate and mine knowledge from
third-level TCGA data. Our testing showed that this workflow is able to extract several transcriptional
signatures for a discrete set of genes.

From a biological perspective, the authors are aware that (a) the amount of patients with focal
deletions for a given gene will be discrete for the time being, (b) the cancer genomic and transcriptomic
background is a disorderly environment very different from engineered cell lines, and (c) it is known
that most frequent gene losses have recurrent breakpoints [12]. Nevertheless, we remain confident in
the value and feasibility of the presented approach due to the rapid increase in the amount of available
high-throughput data and in the vast disappointing failures of in vitro derived models.

We are currently working on an extended version for miRNA signature extraction that will be
useful for researchers in the non-coding RNA field. Investigators will fetch via ICAro differential
miRNA classes that are up-and downregulated by a particular gene deletion, providing additional
insights on miRNA-mRNA interaction.

In a real-life setting, we trust that the ICAro approach would be of value when paired with several
other approaches such as in vitro or in vivo knockout models, for instance when understanding
biomarkers for the inactivation of a particular gene. In this scenario, it will be useful to implement a
novel branch of the workflow to take into account also other emerging large-scale omic approaches
such as Reverse-Phase Protein Arrays (RPPA).

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/2072-6694/11/2/256/s1,
Figure S1: Performance of ICAro Random Forest classification for 50 executions on frequently deleted gene-dataset
pairs. MDA: meanDecreaseAccuracy and MDG: meanDecreaseGini, Table S1: The list of gene-dataset pairs used
for benchmarking purposes in Figures 2 and 3, Table S2: A full key of TCGA dataset names from Firebrowse at
the time of the writing, Table S3: The average number of significant L1000 signature overlaps from the ICAro
output and random sampling. The cpd, kpd, etc. stand for classes abbreviations for Chemical Perturbation Down,
etc., Table S4: The list of mutational cancer driver autosomal genes used for testing ICAro on each dataset, Table
S5: A dataset-centered summary of the ICAro tests using cancer driver genes. The column fotal contains the genes
analyzed for each dataset; no_cnv is the number of samples without CNVs on the queried gene; no_or_few_mrna is
the number of samples for which there are no mRNA data, the samples are less than 5, or the ratio between them
and the control samples is less than 0.05; 1no_control is the number of samples without mRNA control data; success
is the number of analysis successfully performed; and perc_success is the percentage of succeeded analysis on the
total number of analysis attempted for each dataset, Table S6: A gene-centered summary of the ICAro tests using
cancer driver genes. The columns follow the same nomenclature as Table S5 but on a gene-centered analysis.

Author Contributions: M.P. conceived the idea, implemented the beta version of the Python algorithm, and wrote
the validating script resulting in Figure 3. D.A. tested and extended the first part of the workflow, implemented
the whole automated signature extraction in R, and evaluated the algorithm resulting in Figures 1 and 2. M.E.
provided the Molecular Biology supervision of the whole process. M.P,, D.A., and M.F. wrote the manuscript.
All authors read and approved this version of the manuscript.

43



Cancers 2019, 11, 256

Funding: Work and publication costs were supported by Ministero della Salute—Ricerca Corrente 2018,
Italian Association for Cancer research (AIRC) to ML.F. (Grant number 19949) and Alleanza Contro il
Cancro-Immunotherapy (ACC-Immuno).

Acknowledgments: We thank Tania Merlino for the editorial assistance. We thank the members of our
laboratory for critically reading the manuscript. We thank Eng. Sara Errigo for the critical discussion and
data visualization support. We acknowledge the CINECA award under the ISCRA initiative for the availability of
the high-performance computing resources and support.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

DE Differential Expression
RF Random Forest

CNV Copy Number Variations
CNA Copy Number Aberration

siRNA small interfering RNA
shRNA short hairpin RNA

CPM

count per million

TALEN Transcription Activator-Like Effector Nucleases
CRISPR Clustered Regulatory Interspaced Short Palindromic Repeats

VAF Variant Allele Frequency
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Abstract: Cancer genomes accumulate nucleotide sequence variations that number in the tens of
thousands per genome. A prominent fraction of these mutations is thought to arise as a consequence
of the off-target activity of DNA/RNA editing cytosine deaminases. These enzymes, collectively
called activation induced deaminase (AID)/APOBECs, deaminate cytosines located within defined
DNA sequence contexts. The resulting changes of the original C:G pair in these contexts (mutational
signatures) provide indirect evidence for the participation of specific cytosine deaminases in a given
cancer type. The conventional method used for the analysis of mutable motifs is the consensus
approach. Here, for the first time, we have adopted the frequently used weight matrix (sequence
profile) approach for the analysis of mutagenesis and provide evidence for this method being a
more precise descriptor of mutations than the sequence consensus approach. We confirm that
while mutational footprints of APOBEC1, APOBEC3A, APOBEC3B, and APOBEC3G are prominent
in many cancers, mutable motifs characteristic of the action of the humoral immune response
somatic hypermutation enzyme, AID, are the most widespread feature of somatic mutation spectra
attributable to deaminases in cancer genomes. Overall, the weight matrix approach reveals that
somatic mutations are significantly associated with at least one AID/APOBEC mutable motif in all
studied cancers.

Keywords: DNA sequence profile; Monte Carlo; mixture of normal distributions; somatic mutation;
tumor; mutable motif; activation induced deaminase; AID/APOBEC

Cancers 2019, 11, 211; d0i:10.3390/ cancers11020211 46 www.mdpi.com/journal/cancers



Cancers 2019, 11, 211

1. Introduction

The sequencing of genomes of solid tumors and liquid malignancies associated with different
types and stages of cancer has revealed a plethora of genetic changes, from nucleotide substitutions and
insertions/deletions to chromosomal rearrangements and chromosome copy number alterations [1-3].
As predicted decades ago by the mutator theory of cancer [4], the elevated mutability in tumors
contributes both to their onset and to their further evolution. The underlying causes of this mutagenesis
are diverse, from the appearance of mutator mutations to DNA damage by intrinsic or environmental
mutagens (e.g., oxidative stress, tobacco smoke, UV light, etc.) [5]. Somatic genome instability leads to
the activation of oncogenes and inactivation of tumor suppressors and helps tumor cells to emerge,
proliferate, elude immune surveillance, and acquire resistance to anticancer drugs.

In some cancers, the number of single nucleotide variations (SNVs) is in the order of tens of
thousands per genome. A few driver mutations [6,7] ultimately lead to cancer, while the role, if
any, of the vast majority of mutations, termed “passengers”, during tumor development is poorly
understood [8,9]. One crucial principle stands out: mutations can be classified into ‘families” based
upon their flanking DNA sequences [10,11]. Different mutagenic processes generate mutations within
different contexts of a neighboring nucleotide sequence (the bases upstream and/or downstream of the
mutations, termed “mutation signatures”). Sophisticated approaches have been developed to extract
the most prominent signatures from a complex mix of mutational targets resulting from the action of
a variety of mutagens, both exogenous and endogenous, operating during tumor evolution [12,13].
Both driver and passenger mutations have been used in the analysis. One of the clearest mutational
signatures, found in breast and other cancers [14,15], is characterized by C:G to T:A or C:G to G:C
substitutions that are found predominantly in the 5'-TC sequence motif (signatures #2 and 13; listed in
the COSMIC database). These signatures have been attributed to the action of nucleic acid-editing
enzymes, cytosine deaminases. These enzymes, collectively called APOBECs, deaminate cytosine
in single-stranded DNA, yielding uracil. DNA replication past the uracil leads to the insertion of A,
thereby giving rise to the C-to-T transition. Also, abasic sites that are produced as intermediates of
uracil repair are bypassed by the cytidine transferase activity of REV1 translesion DNA polymerase,
leading to C:G to G:C transversions. Cytosine deaminases possess inherent sequence specificity. Thus,
for example, activation induced deaminase (AID) prefers to deaminate within 5-WRC motifs (W
=AorT, R = A or G), whereas APOBEC3G acts preferentially on the last cytosine in the 5'-CCC
motif, while two other APOBEC3 enzymes, APOBEC3A and APOBEC3B, exhibit a preference for
5'-TC sequences. Another prominent feature of APOBEC enzymes is their ability to act in a processive
fashion, i.e., to catalyze multiple deamination events per substrate-binding event [16], thereby inducing
kataegis (clustered mutations); however, it should be noted that APOBEC action is only one possible
explanation for kataegis in cancer cells [17]. Mutational signatures of cytosine deaminases are detected
in many cancers [15]. It is unlikely to be a mere coincidence that the APOBEC3 enzymes are frequently
upregulated in tumors [18,19]. It should be noted that if deaminases act on 5-methylcytosine generating
“T”, a specialized G:T mismatch repair mechanism operates, and the genetic consequences could be
different because of the disappearance of an epigenetic mark [20]. There is evidence for the contribution
of this process to cancer [21].

Cancer genome studies necessitate working with huge datasets; the obvious problems posed
by the analysis of such data are partially solved by the advent of the “mutational signature”
technique [12,22,23]. It is not usually possible to define the DNA strand upon which the vast majority
of mutations has occurred (but see [24,25]); for example, both a C>T change on one strand and a
G>A change on the opposite strand lead to the same CG to TA transition. Therefore, in practice, the
analysis may be reduced to the study of only six different types of substitution. Similarly, there are 96
context-dependent mutations (mutation types) that consider two nucleotides in the flanking 5’ and
3’ positions of the mutated nucleotide [23]. Analysis of the mutational spectra of context-dependent
mutations in cancer genomes involves pooling all the mutations from cancer samples into a discrete
distribution according to the mutation types, while further analysis involves the so-called non-negative
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matrix factorization (NMF) method [12,22,23]. There are some variations of this basic technique;
indeed, Temiz et al. [26] presented a 32 x 12 mutation matrix, which captures the nucleotide pattern
two nucleotides upstream and downstream of each mutation. In this study, a somatic autosomal
mutation matrix (SAMM) representing tumor-specific mutations and mechanistic template mutation
matrices (MTMMs) representing oxidative DNA damage, ultraviolet-induced DNA damage, (5m)CpG
deamination, and APOBEC-mediated cytosine mutation were constructed. MTMMs were mapped
to the individual tumor SAMMs to identify mutational mechanisms corresponding to each overall
mutational pattern. The method appeared to be sensitive enough to retrospectively allocate the origins
of tumors to specific tissues [26].

In an attempt to increase the specificity and sensitivity of the arsenal of techniques available
for mutation analysis in whole genomes, we have employed mutable motifs of cytosine deaminases
represented in the form of weight matrices (sequence profiles) [27-29]. This approach may be expected
to be a more general descriptor of nucleotide sequences as compared to the sequence consensus
approach, because it takes into account the variability in the information content (“conservation”)
across neighboring positions. Control experiments using various constrained samples of randomly
selected sequences indicated that the level of false positives obtained using this approach is even lower
than the expected false discovery rate (~0.05, see Sections 4.5-4.8 for details). These analyses suggest
that the weight matrices method is a powerful tool for the analysis of genomic mutations. Further,
we identified prominent mutational footprints of APOBECA and APOBECB in many human cancers.
Mutable motifs attributable to AID are less pronounced but are nevertheless present ubiquitously in
cancer genomes.

2. Results

2.1. Weight Matrices of AID/APOBEC Mutable Motifs

The information content of AID/APOBEC mutable motifs is shown in Figure 1 (the list and
sources of the mutated sequences are shown in Supplementary Table S1). AID/APOBEC cytosine
deaminases exhibit substantial variability in terms of their mutable motifs. T in position —1 (number 5
in Figure 1) was the most prominent feature of the APOBEC1, APOBEC3A, and APOBEC3B enzymes,
consistent with previous studies (reviewed in [23]). APOBEC3C has a distinct mutable motif with T in
position —2. Additionally, APOBEC1 has an excess of T in position —3 (number 3 in Figure 1).

APOBEC3G has a distinct mutation pattern weCCw (lower case w and ¢ mean substantially lower
information content as compared with the upper case, Figure 1), which is a variation of the previously
described CCC motif and CCR motif [7,30]. The AID deaminase has the expected context specificity,
WRC [16,31].

It is hard to demarcate the mutational signatures of APOBECs using the consensus approach
due to the high variability of information content across sites. For example, APOBEC3G has a highly
conserved C in positions —4 and —5; however, there is also a less conserved C (and lower information
content) in position —3 that may or may not be included in a consensus sequence (Figure 1). We opted
to employ the widely used weight matrix technique (see Section 4) in order to avoid uncertainties with
the less informative positions.

We compared the nucleotide composition of mutation sites (£5 nucleotides, Supplemental Figure
S1) for all the studied AID/APOBEC proteins using the x? test (Table 1). We found that all six
AID/APOBEC proteins studied were significantly different with respect to the DNA sequence context
of the mutation sites expressed in the form of nucleotide frequency matrices (Table 1). Thus, weight
matrices properly represent the DNA sequence context of mutations induced by various AID/APOBEC
proteins, as noted in previous studies [5] where a simple consensus approach was used. We aimed to
differentiate between the mutable motifs associated with the various AID/APOBEC proteins, although
this was not always possible (for example, the sequence contexts of the APOBEC3A, APOBEC3B, and
APOBEC3C targets are not as different as other pairwise comparisons, see Table 1).
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Figure 1. Information content and derived consensus sequences of the DNA context of mutations
induced by AID/APOBEC deaminases in yeast genomes (frequencies of nucleotides were used as
input). (A) APOBEC1, (B) APOBEC3A, (C) APOBEC3C, (D) APOBEC3B, (E) APOBEC3G, and (F)
AID. Position 6 is the position of the somatic mutations. AID/APOBEC weight matrices are shown in
Supplementary Figure S1.

Table 1. Pairwise differences between the DNA context (position-specific nucleotide frequencies across
+5 surrounding bases) of the studied AID/APOBEC proteins.

AID APOBEC3G APOBEC3C APOBEC3B APOBEC3A
APOBEC1 1986.8 2299.2 203.2 378.6 344.1
APOBEC3A 1674.4 2057.0 1384 175.7
APOBEC3B 1764.5 2316.8 175.7
APOBEC3C 237.2 327.5

APOBEC3G 2711.8

The critical x? values = 71.1 (after Bonferroni correction P = 0.05/15 = 0.0033, degrees of freedom = 42). The X test
was applied to raw numbers of nucleotides.

We performed four control experiments (for details, see Sections 4.5-4.8): (1) analysis of the
sequence context of somatic mutations in mitochondrial DNA as a negative control [32]; (2) analysis of
the correlation between the matrices of shuffled sites of mutations and the sites of somatic mutation
in cancer cells using the expected false discovery rate approach [33]; (3) analysis of the correlation
between matrices of randomly sampled sites from the yeast genome and somatic mutations in cancer
cells using the expected false discovery rate approach [33]; and (4) analysis of somatic mutations in
human immunoglobulin genes as a positive control [34-36]. The results of all four control experiments
(Supplementary Tables S2-S5) strongly support our contention that the weight matrix technique is
applicable to the studied AID/APOBECs (for details, see Section 4).

2.2. Analysis of the Correlation between AID/APOBEC Mutable Motifs and Somatic Mutations in Cancer
Cells: C:G>T:A Transitions

We examined the correlation of the sites of C:G>T:A mutations in cancers and AID/APOBEC
mutable motifs. A correlation between a mutable motif and the DNA context of somatic mutations
from the COSMIC database was claimed when the results of two statistical tests (Monte Carlo test and

t-test, see Section 4) were both significant. A correlation between the mutable motifs of (at least one)
deaminase(s) and the sites of somatic C:G>T:A mutations was found for all cancer tissues (Figure 2 and
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Supplementary Table S6). AID activity was the most ubiquitous according to the enzyme characteristic
signature in various cancer types, whereas the APOBEC1, APOBEC3A, APOBEC3B, and APOBEC3G
signatures were detected less frequently, although their signatures were stronger, most notably in
breast, lung, cervix, skin, and bladder cancer (Figure 2).
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Figure 2. Correlation between AID/APOBEC mutable motifs and the sequence context of somatic
C:G>T:A mutations. For the actual data, see Supplementary Table S6. The intensities of the gray color
correspond to the ratio values (the ratio being the mean weight of the mutated sites divided by the mean
weight of the non-mutated sites). The unweighted pair group method with arithmetic mean (UPGMA)
clustering of ratio values for the AID/APOBEC footprints and tissues is shown as dendrograms.

We attempted to estimate the fraction of somatic mutations associated with AID/APOBEC
deamination using a mixture of two normal distributions (see Sections 3 and 4 for details). For example,
estimated fractions of APOBEC1-associated mutations (0.66, 0.48, 0.74, 0.39, and 0.62) look consistent
with the smallest value of 0.39 corresponding to the lowest ratio value (1.064, APOBECI, lung),
although this method sometimes yielded potentially underestimated values (0.17, APOBEC3G, cervix,
ratio = 1.113) and overestimated values (0.92, APOBEC3G, bladder, ratio = 1.101) (Supplementary Table
S6). The overall distribution of fractions for APOBEC1, APOBEC3A, ABOPECB, and AID deaminases
is shown in Supplementary Figure S2. The mean of the fractions in Figure S2 is 0.42 (Supplementary
Table S6). This result suggests that a substantial proportion of somatic mutations is associated with
AID/APOBEC mutagenesis.

2.3. Analysis of the Correlation between AID/APOBEC Mutable Motifs and Somatic Mutations in Cancer
Cells: C:G>G:C and C:G>A:T Transversions

Many C:G > G:C transversions were suggested to be the result of processing abasic sites after
the removal of uracils originating via DNA deamination by AID/APOBEC proteins [37]. Consistent
with this idea, a significant correlation of these mutations with mutable motifs was found in many
cancers (Figure 3 and Supplementary Table S7). The transversions associated with APOBECI,

50



Cancers 2019, 11, 211

APOBEC3A, and APOBEC3B were found to be more abundant in comparison with APOBEC3G
and AID, suggesting a role of these three deaminases in generating C:G>G:C somatic mutations in
human cancer. The correlation with the three APOBEC motifs was again strongest for breast, bladder,
cervix, and lung cancer.
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Figure 3. Correlation between AID/APOBEC mutable motifs and the sequence context of somatic
C:G>G:C mutations. For actual data, see Supplementary Table S7. The intensities of the gray color
correspond to the ratio values (the ratio being the mean weight of the mutated sites divided by the
mean weight of the non-mutated sites).

Although it has been proposed that C:G>A:T mutations are a less likely outcome of AID/APOBEC
enzymatic action, we found a significant excess of these transversions in many cancers (Figure 4 and
Supplementary Table S8), suggesting that a significant portion of C:G>A:T mutations may be caused
by processes initiated by deamination by AID/APOBEC enzymes. That the APOBEC3A, APOBEC3B,
and APOBEC3G footprints are more abundant in comparison with the APOBEC1 and AID motifs
suggests an important role for these three deaminases in generating somatic C:G>A:T mutations in
human cancers.

The unweighted pair group method with arithmetic mean (UPGMA) clustering of ratio values for
AID/APOBEC footprints and tissues (Figures 2—4) suggests that AID/APOBEC3G form one clade,
whereas APOBEC1/3A/3B form another clade according to the distributions of the ratios across
tissues (graphs above heatmaps at Figures 2—4). This can be explained by the high similarity of
APOBEC1/3A/3B signatures (Figure 1). Breast, bladder, and colon tend to form a separate group
according to the distributions of ratios across the AID/APOBEC footprints (graphs above heatmaps
at Figures 2—4). In general, these classifications are not consistent, reflecting large variations in
transition/transversion ratios (Supplementary Tables S6-S8) and are likely to be a result of variation in
the efficiency of DNA repair of such sites in different tissues [5,36,38].
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Figure 4. Correlation between AID/APOBEC mutable motifs and the sequence context of somatic
C:G>A:T mutations. For actual data, see Supplementary Table S8. The intensities of the gray color
correspond to the ratio values (the ratio being the mean weight of the mutated sites divided by the
mean weight of the non-mutated sites).

2.4. Analysis of Various Tumor Types in Blood and Skin

Cancers of the blood system were found to be associated with AID and APOBEC3A (Figures 2—4
and Supplementary Tables S6-S8). No other putative associations with APOBEC enzymes were
identified. We performed an analysis of two blood cancer subtypes with the highest representation in
the COSMIC dataset (see Section 4): acute myeloid leukemia and germinal center B-cell-like (GCB)
lymphomas (Table 2). A significant excess of somatic mutations in AID mutable motifs was detected in
acute myeloid leukemia (Table 2). In GCB lymphomas, a significant excess of somatic mutations was
detected in both AID and APOBEC3A mutable motifs (Table 2). These results suggest that there is
variability of mutation context specificity across the same tissue, as seen previously [39].

We also performed an analysis of two skin cancer subtypes with the highest representation in
the COSMIC dataset (see Section 4.3) (Table 2): skin cutaneous melanoma and skin adenocarcinoma.
Both tumor types yielded somewhat similar results. An overwhelming excess of somatic mutations
in APOBEC1 and APOBEC3A /B/G mutable motifs (Table 2) is likely to be due to the known excess
of mutations in dipyrimidine dinucleotides (for example, TC) in skin cutaneous melanoma caused
by mutagenic UV photoproducts [40]. Accordingly, we interpreted the excess of mutations in the
AID/APOBEC3A /B/G contexts (Table 2) to be the result of false positives (as was already suggested
by the results of the control experiments; for details, see Section 4.7), but we are also aware of evidence
for the direct role of deaminases in skin cancer [41]. We observed a much lower excess of mutations
in the mutable motifs observed in skin adenocarcinoma (Table 2). These results are likely to reflect
the participation of AID/APOBEC deaminases in mutagenesis, because UV photoproducts do not
play any role in the mutagenesis of skin adenocarcinomas [39]. Thus, APOBECs may play a role in a
proportion of cases of squamous cell carcinoma [42].
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Table 2. Correlation between AID/APOBEC mutable motifs and the context of somatic mutations in

C:G sites in various blood and skin tumor types.

Cancer Tissue

Number of

: Test APOBEC1 APOBEC3A APOBEC3B APOBEC3G  AID
Type Mutations
Ratio 0.920 0.978 0.958 0.977 1.031
Blood: aFute t-test NSE # NSE NSE NSE 6.5*
myeloid 6844 MC test <0.001
leukemia Fraction
Ratio 0.967 1.030 0.979 0.980 1.091
Blood: GCB t-test NSE 34% NSE NSE 12.3%
lymphomas 2747 MC test <0.001 <0.001
Fraction 0.208
) Ratio 1.388 1.308 1.334 1.138 1.026
Skin: t-test 321.3* 292.8 * 344.6* 176.2* 35.8 *
. 235043 MC test <0.001 <0.001 <0.001 <0.001 <0.001
melanoma Fraction 0.608 0.508 0.982 0.687
Ratio 1.045 1.073 1.088 1.075 1.025
Skin: 780 t-test NSE 44 48* 4.6* NSE
adeno-carcinoma MC test <0.001 <0.001 <0.001
Fraction 0.213

#—NSE (no significant excess) indicates the absence of a significant excess of mutations in the mutable motifs,
suggesting that there is no association between mutagenesis and the motifs. The significance of any excess
was measured using the Student t and Monte Carlo (MC) tests. The bold font and asterisk (*) denote that the
corresponding P < 0.002 (critical value = 3.1); this is a conservative estimate of the critical overall value of the
t-test having allowed for multiple testing by means of the Bonferroni correction (4 x 6 = 24). The “Ratio” is the
mean weight of the mutated sites divided by the mean weight of the non-mutated sites. The predicted fraction of
mutations induced by AID/APOBEC proteins (“Fraction”) is shown when a significant excess of somatic mutations
in the mutable motif comparisons was detected; all cases where there was a significant difference between the

observed and expected distributions (P > 0.05) were discarded.

The mixture of two normal distributions yielded fairly predictable results (0.168-0.687, Table 2,
see Section 2.2) except for the APOBEC3G mutable motifs in skin cutaneous melanoma samples where
the fraction of sites potentially associated with the APOBEC3G mutable motifs is extremely large
(0.982, Table 2). The distribution of weights for this case is shown in Figure 5A. A putative component
(normal distribution) corresponding to the APOBEC3G mutable motifs (large weights, the rightmost
distribution) was less obvious compared with Figure 5B, which can be classified as a reasonable result,
because the fraction of sites potentially associated with the APOBEC1 mutable motifs (0.65) is close
to the mean of the fractions estimated above (0.42, Supplementary Figure 52). This distorted normal
distribution (another problem is a much larger number of sites in the last bin compared with the
previous bin) may be a reason why two distributions (Figure 5A) were incorrectly classified (mixed
together) yielding an obvious overestimate for the APOBEC3G mutable motifs (see Section 3). This is a

known problem in classification analyses of this kind [43,44].
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Figure 5. The weight distribution obtained using (A) the APOBEC3G weight matrix for skin
adenocarcinoma (Table 2) and (B) the APOBEC1 weight matrix for bladder tissue (Supplementary Table
S6). X axis: 0 stands for 0-9 interval of weights, 1 stands for the 10-19 interval, 2 stands for 20-29, etc.

3. Discussion

The advantage of our approach is that we used a unified computational technique that allowed an
objective and accurate comparison of the mutational contribution of various APOBEC enzymes under
the same experimental conditions and for the same datasets. We confirm that while the mutational
footprints of APOBEC1, APOBEC3A, APOBEC3B, and APOBEC3G are prominent in many cancers,
mutable motifs characteristic of the humoral immune response somatic hypermutation machine, AID,
are the most widespread feature of the somatic mutation spectra attributed to APOBECs in cancer
genomes. It is important to note that the suggested technique does not depend on expert opinion as to
the exact consensus sequences and, therefore, objectively represents mutable motifs.

Somatic mutations in all 18 studied cancer types are significantly associated with at least one
AID/APOBEC mutable motif. The blood subset of mutations stands apart because only AID mutable
motifs are detected (Figures 2-4 and Table 2). Although there are significant differences between
the contexts of AID/APOBEC-induced mutations manifested in frequency matrices (Table 1), there
are many tissues where mutable sites have been found to be targeted by two or more deaminases
(Figures 2—4). In such cases, we cannot reliably differentiate between different deaminases with
similar mutable motifs (Figure 1). For example, the frequency matrices of APOBEC1, APOBEC3A, and
APOBEC3B are quite similar to each other (Figure 1 and Table 1), and this represents a major problem.
To resolve this issue, it may be possible to use additional information, for example, gene expression
data. However, the addition of expression data was not particularly informative for the AID and DNA
polymerase 1 mutational footprints [21,39]. The same conclusion was reached in several other studies,
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because the genomic level of cytosine deamination does not necessarily correlate with the expression
of the corresponding AID/APOBEC genes [15,23,45]. For this reason, we did not attempt to compare
expression data from different tissue types and relate these data to the results we obtained.

In order to take into account the differences in the base composition between the yeast and human
genomes, we used the simplest normalization procedure by taking the frequencies of nucleotides
in the non-informative positions —5, —4, +4, and +5 as a null model (Figure 1, see Section 4.7 for
details). Although the control experiments suggest that this normalization tends to yield results that
are consistent with our expectations (with the exception of bladder, cervix, and skin tumors; see
Section 4.7), we cannot exclude the possibility that more sophisticated normalization schemes might
be required to generate more accurate results.

In addition, the role of APOBEC3C in mutagenesis remains uncertain and requires further
investigation. Another potential methodological problem (at least, for complex computational
techniques) is that we have a “positive” set (sites of mutations: sites that contain characteristic
features of mutable motifs) and do not have a “negative” set (sites of mutations: sites that do not
contain characteristic features of mutable motifs). Randomly sampled sites from yeast chromosomes
are far from being a good “negative” set, because distributions of mutations across yeast chromosomes
are too sparse and may contain a lot of mutable motifs. This is not a problem for the weight matrix
technique, which does not use negative sets as a part of its learning procedures. However, this is the
major problem for more sophisticated methods. For example, it is an obstacle for the application of
supervised learning methods (e.g., hidden Markov models or support vector machine), because the
training of these artificial intelligence (Al) algorithms requires classified or labeled data. However,
unsupervised learning methods (such as k-means clustering), which do not need classified data, may
be applied to this problem. Another issue is the need to take into account the much higher A:T
content of the mutation sites in the yeast genome as compared with the human genome; this should be
implemented as a part of a learning procedure.

The results of all the control experiments and somatic mutations in cancers strongly suggest that
the weight matrix technique is applicable to various types of mutational signatures. The suggested
approach complimented with clustering techniques (Figures 2—4) allows for comparison between the
studied enzymes and tissues. The suggested approach can be applied to various exciting questions
in cancer genomics, including the underlying causes of the non-uniform distribution of somatic
mutations across the human genome and asymmetries of mutagenesis with respect to leading/lagging
and non-transcribed /transcribed DNA strands.

We estimated the impact of mutagenesis associated with AID/APOBEC deamination by
representing distributions of weights as mixtures of two normal distributions. This approach is
based on the method of estimating the protein coding density in a corpus of DNA sequence data,
in which a “protein-coding coding statistic’ (which is similar to distributions of weights of somatic
mutation contexts) is calculated for a large number of windows for the sequences under study,
and the distribution of the statistic is decomposed into two normal distributions, assumed to be
the distributions of the coding statistic in the coding and non-coding fractions of the sequence
windows [43]. The distribution with the largest mean was assumed to reflect the fraction of protein
coding fragments [43]. Similarly, the fraction of sites in a distribution with the largest mean was
assumed to be the fraction of mutations induced by the AID/APOBEC enzymes. We noted problems
with such an approach for some cases (see Section 2.4). However, the method tends to produce
reasonable estimates. Rare deviations from normality caused by the natural boundaries of weight
distributions (0 and 100, see the last bin in Figure 5A) is a possible explanation for the problems
associated with the use of this classification technique in some cases.

Our analysis suggested that initial deamination events lead to both transitions and transversions.
This is already known for somatic mutations initiated by AID in immunoglobulin genes and for
APOBEC enzymes in cancer [5,38]. A large variation in transition/transversion ratios (Supplementary
Tables S6-S8) is likely to be a result of peculiarities in the relative abundance of proper DNA substrates
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for deamination and the various efficiency of the DNA repair of such sites [5,36,38]. Overall, our
results suggest that AID/APOBEC proteins make a major contribution to several different types of
somatic mutations in cancer. The idea that APOBECs can be carcinogenic was originally proposed by
Neuberger et al. in early 2000s [46], after the discovery that these proteins can edit DNA [47,48] and,
therefore, are by definition mutators. Under normal conditions, deaminases are involved in adaptive
(AID) and innate (APOBEC3s) immunity, lipid metabolism (APOBEC1), and possibly even active DNA
demethylation [49-51] both in developing and in terminally differentiated cells. Extremely precise,
tight, and complex (and therefore, not surprisingly, poorly understood) regulation of AID/APOBEC
proteins ensures that in normal cells, they edit cytosines at very specific sites, such as immunoglobulin
genes or viral DNA. However, when the regulatory constraints fail, these housekeepers can become
much more promiscuous and edit DNA genome-wide.

The overexpression of active APOBECs is highly toxic in human cell lines [18,52], indicating that
a precise balance of deaminase production and other factors is required in order to cause non-lethal
genome-wide hypermutagenesis and kataegis. This is apparently also true in the case of APOBECs,
where only a small fraction of cells with unfettered deaminases and a fine-tuned environment survive
and give rise to malignant clones. It is also possible that the sudden overproduction of deaminases
in tumor cells with genomes shaped by other mutagenic processes will kill the tumor by extensively
damaging its genome, unless the tumor cells can protect themselves against APOBEC.

4. Materials and Methods

4.1. Mutations in Yeast Genomes

Coordinates and types of mutations induced by various APOBEC/AID proteins in yeast were
obtained from previously published SNV datasets (see legend to Supplementary Table S1) [37,53-56].
To extract the sequence context of the mutations, we used the getfasta tool from the bedtools package
(http:/ /bedtools.readthedocs.org/en/latest/). These datasets are available upon request from I.B.R.
The logo description of mutable motifs was constructed using the Weblogo website (http:/ /weblogo.
berkeley.edu/logo.cgi).

4.2. Analysis of Mutable Motifs

Several approaches have been developed for the analysis of a set of mutated sequences [27-29].
A mononucleotide weight matrix is a simple and straightforward way to present the structure of a
functional signal and to calculate weights for the signal sequence. Each matrix includes information
on a normalized frequency of A, T, G, C bases in each of the 10 positions surrounding the detected
sites of mutation (5 bases downstream and 5 bases upstream). We calculated the weight matrices for 6f
different AID/APOBEC mutational signatures in the yeast genome (Supplementary Table S1).

A simple formula for W(b,j) was used for data analysis: W(b,j) = log2[f(b,j)/e(b)], where f(b)j) is
the observed frequency of the nucleotide b in position j and e(b,j) is the expected frequency of the
nucleotide b in position j, calculated as the mean nucleotide frequencies of positions —5,—4, +4, +5
for sites of mutations in the yeast genome; the resulting W(b,i) matrices are shown in Supplementary
Figure S1.

The matching score S(bl, ..., bL) of a sequence b1, ..., bL is as follows:

L
S(b1, ..., bL) = £ W(b,) 1)
j=1

The matching score between sequence b1, ..., bL and a weight matrix can be further expressed as
a percentage:
% matching score = 100 x (S(b1, ..., bL) — Smin)/(Smax — Smin) 2)
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L L
Smin = £ MIN W(bj) Smax =X MAX W(b)) 3)
i=1b j=1 b

Hereafter, we use the term “weight” instead of “% matching score”. We used the positions —3:+3
to estimate the weights of the sites.

In addition to the analyses of AID/APOBEC mutational signatures in cancer genomes, we
performed a control experiment: we randomly shuffled a dataset of AID/APOBEC contexts in the yeast
genome (Supplementary Table S1), keeping position 6 (the position of mutations) intact. Each sequence
was shuffled separately; thus, the overall base composition and the base compositions of each sequence
were the same. We also performed another control experiment: we randomly extracted sequences
from the yeast genome, maintaining the nucleotide composition and the size of sequence sets for each
set of mutation sites with AID/ APOBEC-induced mutations. Weight matrices were derived from these
sampled sites. Where there was a significant difference between an extracted set and the analyzed set
(the 2-tailed t-test), the sampling procedure was repeated.

4.3. Datasets and Analysis of Somatic Mutations

Somatic mutation data from the ICGC and TCGA cancer genome projects were extracted from
the Sanger COSMIC Whole Genome Project v75 (http://cancer.sanger.ac.uk/wgs). The ICGC/TCGA
datasets are almost exclusively passenger mutations, and they are unlikely to be subject to selection
to promote cellular proliferation. Thus, they are more likely to reflect the original AID/APOBEC
mutational spectrum [23]. The tissues and cancer types were defined according to the primary tumor
site and the cancer project in question [12,13]. A dataset of somatic mutations in mitochondrial DNA
in various cancer types was extracted from [32]. In this set, no excess of mutations in known mutable
motifs is to be expected, because the mutation landscape in mitochondrial DNA is shaped by its
very specific mode of replication [32]. The mitochondrial mutation set can, therefore, be used as a
negative control.

DNA sequences surrounding the mutated nucleotide represent the mutation context.
We compared the frequency of known mutable motifs for somatic mutations with the frequency
of these motifs in the vicinity of the mutated nucleotide. Specifically, for each base substitution, the
121 bp sequence centered at the mutation was extracted (the DNA neighborhood). We used only the
nucleotides immediately flanking the mutations, because the AID/APOBEC enzymes are thought
to scan a very limited region of DNA to deaminate (methyl)cytosines in a preferred motif [16,57,58].
This approach does not exclude any specific area of the genome, but rather uses the areas within each
sample where mutagenesis has occurred (taking into account the variability in the mutation rates across
the human genome) and then evaluates whether the mutagenesis in these samples were enriched
for AID/APOBEC motifs [58]. This approach was thoroughly tested, and the high accuracy of the
analysis was demonstrated [58]. The mean weight of the mutable motifs (Supplementary Figure S1)
in the positions of somatic mutations was compared to the mean weight of the same motifs in the
DNA neighborhood using the t-test (2-tail test) and Monte Carlo test (MC, 1-tail test) similar to the
consensus method, as previously described [58].

4.4. Impact of AID/APOBEC Mutagenesis

In order to estimate the proportion of mutated sites that are likely to be caused by the
AID/APOBEC enzymes, we applied a mixture model of two normal distributions [43] to distributions
of weights of somatic mutation contexts. An example of such a distribution is shown in Figure 5B.
This approach is based on the method of estimating the protein coding density in a corpus of DNA
sequence data, in which a “protein-coding coding statistic’ (which is similar to distributions of weights
of somatic mutation contexts) is calculated for a large number of windows of the sequence under
study. The distribution of the statistic is decomposed into two normal distributions and assumed
to be distributions of the coding statistic in the coding and non-coding fractions of the sequence
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windows [43]. The distribution with the largest mean was assumed to reflect the fraction of protein
coding fragments [43]. Similarly, the fraction of sites in a distribution with the largest mean was
assumed to be the fraction of mutations induced by the AID/APOBEC enzymes. The results were
considered to be reliable only if no significant difference was found between the observed and expected
distributions according to the x? test. The suggested classification approach for normal distributions
had been tested by Fickett and Guigo and showed good accuracy [43]. All the details of the suggested
methodology and underlined statistical Bayesian framework were previously described for analyses
of normal and binomial distributions [43,44].

Heatmap visualization analysis for each of the AID/APOBEC pseudo-mutable motifs groups
was performed. The R (https:/ /www.R-project.org/) software package heatmap.2 (https://CRAN.
R-project.org/package=gplots) was employed to generate the heatmaps for each group. For each
group, a specific range of values was established in grayscale representation, from the lowest values
to the highest values. For the pseudo-mutable motifs in somatic mutation in the C:G sites group,
the range was from 0.01 to 0.84 with intervals between 0.05. Values <0.01 were denoted as white.
For the pseudo-mutable motifs in somatic mutation in the C:G>T:A sites group, the range was from
1 to 1.573 with intervals between 0.01. Values <1 were denoted as white. For the pseudo-mutable
motifs in somatic mutation in the C:G>C:G sites group, the range was from 1 to 1.802 with intervals
between 0.01. Values <1 were denoted as white. For the pseudo-mutable motifs in somatic mutation in
the C:G>A:T sites group, the range was from 1 to 1.362 with intervals between 0.02. Values <1 were
denoted as white.

4.5. Control Experiment 1: Analysis of Somatic Mutations in Mitochondrial DNA

In the first control experiment, we analyzed the sequence context of somatic mutations in
mitochondrial DNA. In this set, no excess of mutations in known mutable motifs was to be expected,
because the mutation landscape in mitochondrial DNA is shaped by its very specific mode of
replication [32]. Thus, the mitochondrial mutation set can be used as a negative control. No significant
excess of AID/APOBEC mutable motifs was found (Supplementary Table S2). This is consistent with
a previous study [32]. In all the studied tissues, the ratio of the mean weight of the mutated sites vs.
the mean weight of the non-mutated sites was less than or close to 1; this is expected when there is
no correlation between mutable motifs and mutation (Supplementary Table S2). We observed only a
single case where the Monte Carlo test yielded a significant P-value (P = 0.031, APOBEC3B/brain), but
this result was not confirmed by use of the t-test and is likely to be an isolated false positive. Thus, the
weight matrix appears to be a reliable method for the analysis of somatic mutations.

4.6. Control Experiment 2: Correlation between the Matrices of Shuffled Sites of Mutations and the Sites of
Somatic Mutation in Cancer Cells

In order to allow for differences in nucleotide content between the yeast and human genomes, we
used normalized weight matrices (see above). To test the robustness of the normalization, a simple
control experiment was designed: we randomly shuffled the sequences of the AID/APOBEC mutation
sites (Supplementary Table S1). We identified rare cases of a significant deviation from the expected
value of the ratio (1.0, the ratio is the mean weight of the mutated sites divided by the mean weight of
the non-mutated sites), but those cases constituted only 2.6% of all the studied cases (Supplementary
Table S3). This result establishes that the weight matrix technique yields an expected proportion of
false positives (the expected false discovery rate should be around 5% according to the standard in
the field [33]) and hence is robust with respect to the biased nucleotide composition of mutated sites
in the yeast genome. However, the results for colon, skin, and stomach cancers may not be reliable
for some APOBECs (the fractions of false positives were found to be large, for example, 0.96 for
APOBEC3C/skin; Supplementary Table S3). In general, the APOBEC3C weight matrix tends to yield
the largest number of false positives, suggesting that this matrix might be problematic. We conclude
that such controls should always be performed when starting work with a new mutation set.
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4.7. Control Experiment 3: Correlation between Matrices of Randomly Sampled Sites from the Yeast Genome
and Somatic Mutations in Cancer Cells

To check for a potential influence of nucleotide content biases and the extent of a correlation
between positions in yeast and human genomes, we randomly extracted sequences from the yeast
genome, maintaining the nucleotide composition and size of sequence sets for each set of mutation
sites. Weight matrices were derived from these sampled sites. We identified numerous examples
of a substantial deviation from the expected values that produced significant results that should be
considered to be false positives (Figure 6 and Supplementary Table 54), because we did not expect
any meaningful association between randomly sampled sites and somatic mutations. The APOBEC3C
weight matrix yielded a large number of significant yet spurious results (false positives) for all the
studied tissues (Figure 6 and Supplementary Table S4) and therefore cannot be recommended for the
analysis of somatic mutation. This effect may have been due to the much smaller number of mutations
in the dataset, a lack of highly informative positions and a high A/T content of sites for APOBEC3C
(Figure 1). The results for APOBEC3C are likely to be false positives in this and previous control
experiments and were included in the Supplementary Materials only.
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Figure 6. Fraction of random matrices with a significant correlation between AID/APOBEC
pseudo-mutable motifs (randomly sampled sites from the yeast genome) and the sequence context of
somatic mutations in C:G sites. For the actual data, see Supplementary Table S2. The intensities of the
gray color correspond to the fractions of cases with a significant correlation between pseudo-mutable
motifs (represented as weight matrices) and the context of somatic mutations in C:G sites.

The analysis of mutations in various tissues suggested that the weight matrix technique may also
produce misleading results for bladder, cervix, and skin tumors (Figure 6). The skin tissue consistently
produced a high rate of false positives in control experiments 3 and 4; thus, weight matrices should
be used with great caution for this tissue. The analysis of nucleotide frequencies for the region +3
suggested that skin, cervix, and bladder tumors are characterized by a high frequency of T nucleotides
around the sites of mutation (Supplementary Table S5), and this is likely to be a reason for the high
rate of false positives. It should be noted that other techniques are also likely to produce a high rate
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of false positives for these tissues, although this type of control experiment has, to our knowledge,
never been performed before except for analysis of somatic mutations in normal tissues [21]. The likely
reason for high rates of false positives is that APOBEC mutable motifs tend to be A/T-rich (even C-rich
APOBECSG sites contain excessive amounts of A and T nucleotides in positions —3, +1, +2, and +3;
Figure 1 and Supplementary Figure S1). We attempted to take this into account by removing sites
with a high A/T content (>50% A+T in the 10-nucleotide region around sites of somatic mutations,
Supplementary Table S4). Although there was a substantial improvement in the accuracy of prediction
(rates of false positives were much smaller, Supplementary Table S4), problems with the accuracy of
prediction for skin tumors persisted (Supplementary Table S4).

4.8. Control Experiment 4: Analysis of Somatic Mutations in Human Immunoglobulin Genes

Somatic mutations in human immunoglobulin genes are known to be associated with AID
mutable motifs [35], and these mutations can be used as a positive control set. Indeed, a significant
association between the AID mutable motif and mutations was found in all three studied sets of
somatic mutations [34,35] (Table 3), suggesting that the AID weight matrix is a reliable descriptor
of AID-induced mutagenesis. The APOBEC1/3A/3B/3G weight matrices did not, however, yield
significant results for all the studied cases (Table 3). This is consistent with the absence of any traces of
APOBEC1/3A/3B/3G-induced mutation in the somatic hypermutation profiles of immunoglobulin
genes [36]. The results of all four control experiments suggested that the weight matrix technique is
applicable to studied APOBECs.

Table 3. Correlation between the AID/ APOBEC mutable motifs and the sequence context of somatic
mutations in fragments of human immunoglobulin genes.

Locus Number of Test APOBEC1 APOBEC3A APOBEC3B APOBEC3G  AID
Mutations

Ratio 0.931 0.986 0.919 0.908 1.162

f-test NSE # NSE NSE NSE 11.1%

V26 708 MC test <0.001

Fraction 0.477

» Ratio 0.927 0.957 0.887 0.870 1.331

Ju “;m;“' 177 t-test NSE NSE NSE NSE 11.9 *

) 3‘?“,;0 | MC test <0.001

individuals Fraction 0.559

ik intron Ratio 0.981 1.008 0.957 0.930 1.266

Ty -~ t-test NSE NSE NSE NSE 9.6%

atients MC test <0.001

P Fraction 0.366

#—NSE (no significant excess) indicates the absence of a significant excess of mutations in mutable motifs, suggesting
that there is no association between mutagenesis and the motifs. The significance of any excess was measured
using the Student t and Monte Carlo (MC) tests. The bold font and asterisk (*) denote that the corresponding P <
0.003 (critical value = 3.1); this is a conservative estimate of the critical overall value of the t-test having allowed for
multiple testing by means of the Bonferroni correction (3 x 6 = 18). The “Ratio” is the mean weight of the mutated
sites divided by the mean weight of the non-mutated sites. The predicted fraction of mutations induced by the
AID/APOBEC proteins (“Fraction”) is shown when a significant excess of somatic mutations in the mutable motif
comparisons was detected; all the cases where there was a significant difference between the observed and expected
distributions (P > 0.05) were discarded.

5. Conclusions

For the first time, we have adopted the weight matrix (sequence profile) approach for the analysis
of mutations in cancer genomes, and we provide evidence for this method being a more precise
descriptor of mutations than the commonly used sequence consensus approach. Control experiments
using shuffled sites and constrained samples of randomly sampled sequences from the yeast genome
yielded a low level of false positives.

We confirm that while mutational footprints of APOBEC1, APOBEC3A, APOBEC3B, and
APOBEC3G are prominent in many cancers, mutable motifs characteristic of the action of the humoral
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immune response somatic hypermutation enzyme, AID, are the most widespread feature of the somatic
mutation spectra attributed to APOBECs in cancer genomes. The AID and APOBEC3A mutable motifs
are the most prominent features of the C:G>T:A transitions that constitute the vast majority of somatic
mutations in studied cancers. We also demonstrated an abundance of APOBEC3A /3B/3G mutable
motifs in DNA contexts of C:G>A:T transversions. A potential association of AID and APOBEC3A in a
certain type of blood cancers is another interesting outcome of our study. Overall, the weight matrix
approach revealed that somatic mutations are significantly associated with at least one AID/ APOBEC
mutable motif in the studied cancer types.

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/2072-6694/11/2/211/s1,
Figure S1:AID/APOBEC weight matrices W(b,j).itle; Figure S2: The overall distribution of fraction of somatic
C:G>T:A mutations associated with AID/APOBEC deamination (APOBEC1, APOBEC3A, ABOPEC3B, and AID
deaminases); Table S1: Datasets of mutations induced by overexpression of AID/APOBEC enzymes in the
yeast genome; Table S2: Control study: correlation between AID/APOBEC mutable motifs and the context of
somatic mutations in C:G sites in mitochondrial DNA; Table S3: Control study: fractions of random matrices
with a significant correlation between AID/APOBEC pseudo-mutable motifs (shuffled sites of mutations) and the
context of somatic mutations at C:G sites; Table S4: Control study: fraction of random matrices with a significant
correlation between AID/APOBEC pseudo-mutable motifs (randomly sampled sites from the yeast genome) and
the context of somatic mutations at C:G sites; Table S5: Nucleotide composition of the DNA context of somatic
mutations (£3 nucleotides); Table S6: Correlation between AID/APOBEC mutable motifs and the context of
C:G>T:A somatic mutations; Table S7: Correlation between AID/APOBEC mutable motifs and the context of
C:G>G:C somatic mutations; and Table S8: Correlation between AID/APOBEC mutable motifs and the context of
C:G>A:T somatic mutations.
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Abstract: The identification of biomarker signatures is important for cancer diagnosis and prognosis.
However, the detection of clinical reliable signatures is influenced by limited data availability, which
may restrict statistical power. Moreover, methods for integration of large sample cohorts and signature
identification are limited. We present a step-by-step computational protocol for functional gene
expression analysis and the identification of diagnostic and prognostic signatures by combining
meta-analysis with machine learning and survival analysis. The novelty of the toolbox lies in its
all-in-one functionality, generic design, and modularity. It is exemplified for lung cancer, including a
comprehensive evaluation using different validation strategies. However, the protocol is not restricted
to specific disease types and can therefore be used by a broad community. The accompanying R
package vignette runs in ~1 h and describes the workflow in detail for use by researchers with limited
bioinformatics training.

Keywords: Bioinformatics tool; R package; machine learning; meta-analysis; biomarker signature;
gene expression analysis; survival analysis; functional analysis

1. Introduction

The combination of biomarkers (so-called biomarker signature) allows us to represent
the information contained in biological samples and fluids, supporting clinical decisions [1].
Numerous studies demonstrated the clinical usefulness of diagnostic (disease detection) and prognostic
(disease outcome) gene-expression signatures derived from microarray analysis [2,3]. For instance,
MammaPrint is a 70 gene-expression prognostic signature for powerful disease outcome prediction in
breast cancer [4]. The diagnostic miR-Test shows promising results for lung cancer early detection [5].

However, reliable clinical signatures are restricted by dataset availability, which often reduces
their statistical power [3,6]. Artificially increasing the number of samples by combining different large
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cohorts using dataset merging (meta-analysis) is a beneficial solution enabling numerous insights into
biological systems [7-10], but methods for biomarker signature identification are currently limited.
For instance, the R packages virtualArray [11] and inSilicoMerging [12] allow virtual array merging
but are no longer available and are removed from current Bioconductor releases [13]. On the other
hand, database tools such as SurvExpress [14] and SurvMicro [3] allow for the assessment of a
prognostic signature in cancer. Similarly, the miRpower tool provides survival analysis for miRNA
biomarkers using expression data from 2178 breast cancer patients [15] and GOBO based on 1881
breast cancer dataset [16], whereas the Kaplan-Meier Plotter enables outcome analysis for ovarian
cancer based on 1287 patients [17]. However, these tools focus on specific diseases and signature types.
More importantly, they allow only online analysis, requiring a gene list as input, but not the calculation
of signatures from in-house data. These characteristics limit them as stand-alone tools, suggesting new
bioinformatics approaches.

Machine learning (ML) approaches have been demonstrated to be useful in medicine. For example,
studies report that ML could be used in cancer diagnosis [18] and prognosis [19] as well as prediction
of optimal cancer therapies [20]. It can also improve the prediction of heart failure readmissions [21].

Regularized Generalized Linear Models such as L1/L2 regularized and Elastic net regression
address overfitting and aim to balance between accuracy and simplicity of a model [22,23]. The Least
Absolute Shrinkage and Selection Operator (LASSO) uses L1 regularization, whereas Elastic net
implements a mixture of L1 and L2 regularization. Applying these regularization techniques to fit
a Generalized Linear Model is widely used for feature selection and is extremely effective when
dealing with high dimensional data, which contains a large set of features. The LASSO model allows
the shrinkage of the coefficients of the less contributive variables to be exactly zero (the penalty
term L1-norm) [22]. Thereby, the tuning parameter lambda controls the strength of the penalization
(regularization). The cross-validation calculates the lambda.min value, which reflects the model with
the lowest prediction error, whereas the lambda.1se value represents a simpler model but within one
standard error of the optimal model. However, the LASSO regression tends to over-regularization and
has limited strength in highly correlated data.

The Elastic net balances between LASSO (L1-norm) and ridge penalties (L2-norm) shrinking some
coefficients close to zero (like ridge) and some exactly to zero (similar to LASSO) [23]. This model is
powerful in datasets with e.g., correlations between variables. For this, the hyper-parameter alpha
controls the mixing between the two penalty techniques (alpha = 0 for ridge; alpha = 1 for LASSO) and
can be set manually between 0 and 1 to receive a model with the desired size, whereas the parameter
lambda fine-tunes the amount of shrinkage [23]. Therefore, the Elastic net is a powerful method for
feature selection and can operate with continuous as well as categorical features.

Several statistical methods have been developed for survival data analysis [24,25]. The Cox
Proportional Hazard model is the most popular multivariate approach to investigate survival time in
medical research [24,26]. It describes the relation between event incidence (hazard function, survival
probability) and covariates [24,25].

We previously introduced a sample merging approach that is compatible with current Bioconductor
releases [27]. It allows the use of datasets from databases such as Gene Expression Omnibus (GEO),
The Cancer Genome Atlas (TCGA), and own experimental data [27], greatly enhancing the number
of available datasets for analysis. Starting from this, we developed a protocol for the systematical
calculation of diagnostic and prognostic gene signatures that combines (i) meta-analysis (multiple
dataset integration) with (ii) functional gene expression analysis and (iii) ML approaches. Our aim
was to develop a general framework for functional analysis and signature calculation with high
predictive performance that is not restricted to specific disease types and can therefore be used by a
broad community.
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2. Results

2.1. Meta-Analysis (Dataset Download, Normalization, Merging, Batch Effect Correction)

We demonstrate the workflow of our toolbox by analyzing three lung cancer datasets from
microarray profiling downloaded from the GEO database. The datasets GSE18842 (45 non-tumor,
46 tumor samples) and GSE19804 (60 tumor/60 non-tumor samples) were downloaded (getGEO) and
are already GCRMA normalized deposited in GEO. For the datasets GSE19188 (91 tumor/ 65 non-tumor
samples), we downloaded the raw data (CEL files). The files were imported into the R environment
and subsequently GCRMA normalized (resulting “ExpressionSet” object) using the gcrma package
version 2.56.0 [28] (Figure S1; datasets from Chip GPL570, Affymetrix Human Genome U133 Plus 2.0).
The merged dataset contained 54,675 transcripts and 367 samples (197 tumor/170 non-tumor samples;
no gene transcripts were excluded during the merging procedure). The batch effect detection using a
gPCA (Top) and the resulting boxplot of the merged dataset after batch effect correction (Bottom) are
shown in Figure S2.

2.2. Functional Gene Expression Analysis

The differentially expressed genes (DEG) analysis after batch correction resulted in 699 significantly
deregulated transcripts (Table S1; g-value < 0.05, logFC > 2/< -2 as standard criterion for selecting
significantly deregulated genes [29]). Figure 1 shows the heatmap of the DEGs, illustrating a clear
separation of tumor and non-tumor samples in two expression clusters. Many of them are known key
players in lung cancer, for instance G Protein-Coupled Receptor Kinase 5 (GRKS5) [30], Solute Carrier
Family 46 Member 2 (SLC46A2) [31], and Collagen Type XI Alpha 1 Chain (COL11A1) [32] function as
oncogenic factors in lung cancer.

Figure 1. Overview of the differentially expressed genes (DEGs). Heatmap of the 699 DEGs derived
from the meta-analysis with the merged datasets GSE18842, GSE19804 and GSE19188 (samples on the
x-axis, DEGs on the y-axis; red color represents tumor, blue non-tumor (control) samples).

We further tested the 699 DEGs for enriched Gene Ontology (GO) terms and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways (Figure 2, enriched GO terms and KEGG pathways after False
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Discovery Rate (FDR) control are shown). For instance, the analysis shows enriched functions such as
hormone receptor binding and protein serine/threonine kinase activity (Left) and enriched pathways
such as Phosphatidylinositol 3-Kinase-Akt (PI3K-Akt) signaling pathway and Mitogen-Activated
Protein Kinase (MAPK) signaling pathway (Middle). Moreover, specific pathways depending on the
interest of the users can be further investigated. As an example, we show the PI3K-Akt signaling
pathway (hsa04151) from the KEGG database including the expression values of the involved DEGs
(Figure 2, Right; red: upregulated, green: downregulated).

Figure 2. Functional Gene Ontology (GO) term and pathway enrichment analysis. (Left) Enriched GO
terms including adjusted p-value as color code. (Middle) Enriched Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways including adjusted p-value as color code. (Right) The phosphatidylinositol
3-kinase (PI3K)-Akt signaling pathway (hsa04151) from the KEGG database including the differentially
expressed genes (DEGs) are highlighted considering differential expression.

2.3. Calculation of Diagnostic and Prognostic Signatures

We next analyzed the merged dataset (54,675 transcripts) for a diagnostic signature. We divided the
merged dataset into a training dataset (80%; 294 samples) and test dataset (20%, 73 samples). We used
a L1/L2 regularized logistic regression to fit a Generalized Linear Model in order to perform a feature
selection to include only the potentially most predictive variables (here genes) in the model. The 10-fold
cross-validation results in a lambda of 0.009260 and 0.059521 (Figure 3; alpha = 1). The lambda.min
identifies a selection of 64 transcript variables (55 unique gene symbols) whose coefficients were not
forced to be zero, whereas the lambda.1se identifies a 26 gene transcript signature (24 unique gene
symbols) (Table S2). Figure 3 shows the cross-validation error (Left) and the confusion matrix (Right)
for the calculated LASSO signatures predicting the test data samples.
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Figure 3. Mean-Squared error for 10-fold cross-validation according to the log of lambda on the training
lung cancer dataset. (Left) The cross-validation errors and the upper and lower standard deviation along
the lambda values of the Least Absolute Shrinkage and Selection Operator (LASSO) regression model are
shown. The vertical dotted lines represent the two selected lambdas. The lambda.min value (left line)
minimizes the prediction error (MSE), whereas lambda.1se (right line) gives the most regularized model
(most simple model within one standard deviation of the optimal model). Values above the plot show the
number of variables included in the model. (Right) Confusion matrix depicting the diagnostic potential of
the signatures validated on the test dataset (0 = healthy, 1 = tumor).
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We further applied the Elastic net regression. The 10-fold cross-validation shows a lambda of
0.010288 and 0.063129 (alpha = 0.9). Notably, we manually set alpha = 0.9 as the grid search for
lambda (0 to 0.0001 with 100 intervals) calculates an alpha = 0.1 (lambda = 0.521401), resulting in a
signature without an improved predictive performance. The Elastic net regression model identified,
for lambda.min, an 80 gene transcript signature (69 unique gene symbols), and for lambda.lse,
a 41 transcript signature (36 unique gene symbols) (Table S2). The calculated cross-validation error
(Left) and resulting confusion matrix (Right) of the predicted test data samples by the Elastic net model
are shown in Figure 4.

92 86 B0 69 64 48 43 31 25 19 8 4

v
° N Elastic net (Amin) test data
- 0 1
e ] : predicted 0 32 2
5 : 2| a7
2 s
v :
§ 2 2
a 7
) Elastic net (A.se) test data
= - ol 1
' predicted 0 34 2
T T T - .
5 4 3 2 1 1 0 37
log{Lambda)

Figure 4. Elastic net regression model. (Left) The plot displays the 10-fold cross-validation errors and
the upper and lower standard deviation along to the lambda values of the Elastic net regression model.
The vertical dotted lines represent the two selected lambdas. The lambda.min value (left line) minimizes
the prediction error (MSE), whereas lambda.1se (right line) gives the most regularized model (most simple
model within one standard deviation of the optimal model). Values above the plot show the number
of variables included in the model. (Right) Confusion matrix depicting the diagnostic potential of the
signatures validated on the test dataset (0 = healthy, 1 = tumor).

To address overfitting and reduce model instability, the framework allows to include further
datasets for validation. We validated the gene signatures in three independent datasets (GSE30219,
293 lung/14 non lung cancer samples; GSE102287, 32 lung/34 non lung cancer samples; GSE33356,
60 lung/60 non lung cancer samples; 54,675 genes). The GSE30219 contains <5% non-cancerous
samples, whereas the GSE102287 and GSE33356 are more balanced validation datasets. The results of
the validation are depicted in Figure 5 (confusion matrices) and Supplementary Table S3 (diagnostic
values), showing a high diagnostic power to classify between lung cancer and non-lung cancer samples.

After determining the diagnostic signature, we tested for a relevant prognostic signature. For
this, we analyzed the significant influence of the 699 DEGs on the patient survival outcome using a
Univariate Cox Proportional Hazard Model (82 patient survival outcome data from GSE19188). The
Cox regression analysis revealed 22 DEGs that have a significant influence (effect size) on the patient
survival (Table S4; p-value < 0.05). We found known lung cancer drivers such as Lipoprotein Lipase
(LPL) [33] and CC Chemokine Receptor 2 (CCL2) [34].
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A: Confusion matrix independent dataset GSE30219  B: Confusion matrix independent dataset GSE102287 C: Confusion matrix independent dataset GSE33356
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Figure 5. Confusion matrices of the identified diagnostic signatures in independent datasets. The plots
illustrate the diagnostic classification using the identified signatures in the independent validation
dataset (54,675 genes; 0 = healthy, 1 = tumor). (A) GSE30219, 293 lung cancer samples, 14 non lung
cancer samples. (B) GSE102287, 32 lung cancer samples, 34 non lung cancer samples. (C) GSE33356,
60 lung cancer samples, 60 non lung cancer samples.

Next, we trained the prognostic 22 gene classifier using an algorithm comparing the expression
profiles between tumor and healthy samples of the merged datasets GSE18842 and GSE19804
(we excluded GSE19188 for classification to avoid selection bias, as it is the dataset for the identification
of survival correlated genes). We additionally validated the identified 22 prognostic gene signature in
two independent datasets (GSE30219: 278 from 293 patients with survival data, GSE50081: 181 patients
with survival data) to evaluate its impact on the patient outcome. Here, we tested whether the 22 gene
signature can classify patients with high and low mortality risk. Therefore, we classified the patient
samples into high risk and low risk groups using the trained classifier.

The Kaplan-Meier estimators in Figure 6 demonstrate the significant patient classification
achieved regarding high and low risk groups for the 22 genes in the validation dataset GSE30219
(Left: p-value = 0.0002166) and GSE50081 (Right: p-value = 0.02919). This indicates that the identified
22 gene classifier reflects a common prognostic signature of dominant tumor factors that can differentiate
between high and low risk tumor disease.

7%—_'_"1

Figure 6. Kaplan-Meier estimators with computed 95% confidence interval to evaluate the patient
classification in high and low risk groups deploying the 22 gene signature on two independent datasets.
The classification in high and low risk groups is based on the expression profiles between tumor and
healthy samples of the merged datasets (GSE18842, GSE19804). (Left) The plot shows a classification in
high and low risk groups for the 293 patients from the validation dataset GSE30219 based on the 22
survival correlated genes (p-value = 0.0002166; low risk: 121 samples, high risk: 172 samples, number
of events/deaths: 188). (Right) The 22 gene signature can classify the 181 patients in the validation
dataset GSE50081 in high and low risk groups (p-value = 0.02919; low risk: 88 samples, high risk:
93 samples, number of events/deaths: 75).
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3. Discussion

Our intention was to develop a general and easy to use toolbox that identifies reliable diagnostic and
prognostic signatures including the important steps of data augmentation and validation, especially for
users with limited bioinformatics resources. It is therefore a step-by-step protocol rather than an
improved algorithm or ML method approach.

The tool applies a comparison between the two ML models LASSO and Elastic net, which aim
to balance between accuracy and simplicity of a model. LASSO and Elastic net regularization are
well-established methods for gene expression analysis, allowing to construct predictive models from
datasets with non-linear and large dimensional variable numbers [21]. Especially for generalization of
data with additive variable and outcome dimensions or a low number of training datasets they generate
predictive results similar to complex ML algorithms [19]. Complex ML approaches such as support
vector machines, neural networks, random forest, and gradient boosting algorithms allow unbiased
predictive models using complex variable selection and huge datasets but tend to overfitting in the
identification of large biomarker combinations [1,19,35]. However, the combinations of biomarkers
show better discriminatory power for clinical decision support rather than a single biomarker [1].

The use of ML implies the need for a substantial amount of data in order to train the model,
in which the integration of different datasets might be required. However, gene expression analysis
often suffers from selection bias, poor sample quality, and poor sample size estimation, influencing the
statistical power and validity of downstream analysis [1,36,37]. Combing different gene expression
datasets using meta-analysis has been shown to increase statistical power and overcome selection
biases including the identification of diagnostic and prognostic biomarkers [7-10,38-40]. However,
differentially gene expression selection using meta-analysis is mostly based on univariate p-value
statistics which introduces the problem to identify sets of genes with non-redundant information and
to find the correct number of genes that describe the data [8]. This limits application for diagnostic
and prognostic signatures that integrate several feature selections and covariates such as patient
characteristics (e.g., survival) and histology [8]. We overcome this by implementing a meta-analysis for
the integration of multiple gene expression datasets into a merging array and then applied ML methods
to identify biomarker signatures from datasets with non-linear and large dimensional variable numbers.

Several studies calculate signatures using ML approaches, but often fail during independent
validation stages [36]. To overcome overfitting and reduce model instability, we identified a classifier in
the training dataset and applied a comprehensive evaluation using different validation strategies—in
particular, a split sample, internal validation (cross-validation) and testing in independent datasets.
Moreover, we applied a multiple-testing correction using the Benjamini and Hochberg method and set
a stringent q-value of 0.05. We recommend using a stringent g-value (can be set by the user) to reduce
the false positives and find real biologically deregulated genes but also considering sample size and
power estimation approaches based on statistical and clinical significance [1,41]. This strengthens the
robustness for the biomarker signature identification capability and validity for clinical usefulness.

In our example, the identified gene signatures from two different ML models show a high
diagnostic power and might be promising for the clinic to classify between lung cancer and non-cancer
samples. The confusion matrix for the LASSO and Elastic net regression models are similar. Comparing
the calculated signatures shows a common set of 12 transcripts (12 unique gene symbols), and similar
accuracy and predictive performance. However, this is of course not always the case. For example,
studies in breast cancer reported two independent prognostic signatures identified with similar
approaches showing only few common genes, which were experimentally validated [42]. This illustrates
that different mathematical models should be applied to find the most reliable signature rather than
using only one method. Hence, using several methods reduces false positive results even for challenging
datasets and avoids misclassification in experimental and clinical testing. This strengthens the validity
and clinical usefulness of signatures extracted from large gene expression datasets.

The common gene set contains known cancer markers. For instance, TMEM106B has been shown
to be a valuable marker of lung cancer metastasis [43], whereas COL10A1 [44] plays a diagnostic role of
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circulating extracellular matrix-related proteins. However, LGR4 [45] is known as a diagnostic marker
in prostate cancer. This highlights that our analysis approach allows the identification of reliable
diagnostic signatures. The next step is then to validate and iteratively refine the marker signature
derived from our tool in prospective clinical studies to find an optimal biomarker signature, with the
help of more complex ML models.

The significance and novelty of the toolbox lies in its functionality as an ,,all-in-one tool”: it offers an
analysis path combining meta-analysis with functional gene expression analysis and robust diagnostic
and prognostic signature calculation. The code is implemented in an R package. The four main
functions—sigidentDEG, sigidentEnrichment, sigidentDiagnostic, and sigidentPrognostic—are wrapper
functions around all included smaller functions to execute the analysis steps. However, these can also
be run separately, depending on the interests of the users.

The toolbox benefits from its generic design and modularity. We designed it for Affymetrix as a
widely used microarray profiling platform [46] and illustrate the generality of the approach using lung
cancer gene expression datasets (tumor/healthy) downloaded from the GEO database. The generic
design of the tool allows the analysis of different types of gene expression signatures, e.g., mRNA,
IncRNA, and miRNA. Furthermore, it supports analysis in front of the high biological complexity of
tumors, for instance analysis of tumor subtypes and heterogeneity.

We demonstrated the method’s power to be applied to datasets containing a large number of
gene probes using the Affymetrix HG-U133 Plus 2.0 platform. However, the merging algorithm is not
restricted to this platform, allowing the potential integration of other popular microarray profiling
platforms such as HG-U133A, HG-U133B, and HG-U133A 2.0. Moreover, the modularity of the
framework allows the future incorporation of additional platforms, such as Illumina, but also other
high-throughput data such as genomic, proteomic, metabolomic, and radiomic data. For instance, the
Elastic net model shows applicability to genome-scale data such as the identification of genomic markers
of drug sensitivity [8,47]. Indeed, the implementation of this complex data requires programming skills
and is therefore recommended only for experienced users. Such a broad applicability is in principle
possible but was not the intention of the current version of the framework and should be the focus of
future work. Further efforts should also focus on the integration of the toolbox into a web application
to provide its functionality to users without R programming skills.

Existing tools such as SurvMicro [3] and SurvExpress [14] allow for the online validation of
prognostic signatures, but are restricted to datasets from TCGA and limited to cancer. Our toolbox has
the advantage to be disease independent and allows the integration of data from TCGA and GEO,
but also from in-house experiments.

The framework from Hughey et al. 2015 identifies a diagnostic signature combining meta-analysis
with an Elastic net regression [8]. This approach is similar to our method, but our tool calculates
prognostic signatures as a further relevant biomarker signature for clinical application. Additionally,
the regularization methods LASSO and Elastic net can be applied for the aim of feature selection to
identify variables correlated to the desired response variable. The toolbox also integrates an automated
method to identify DEGs, including a summary table with gene annotations and functional enrichment
analysis. In this way, our method can also be used to perform a functional DEG analysis from merged
datasets without the calculation of signatures. In conclusion, the user-friendly R package, the all-in-one
functionality, and modularity make the framework useful to a broad community.

4. Materials and Methods

Figure 7 illustrates the workflow of our toolbox. It has been developed and tested on R
version 3.6.1 (R Bioconductor version 3.9). We implemented the code into the R package “sigident”
(https://gitlab.miracum.org/clearly/sigident), which provides the four main functions—sigidentDEG,
sigidentEnrichment, sigidentDiagnostic, and sigidentPrognostic. The whole workflow is documented in
detail in the R package vignette.
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Supplementary Table S5 lists the used R packages. The newly created “sigident” R package
integrates a (i) meta-analysis (multiple dataset integration), (ii) functional gene expression analysis,
and (iii) the calculation of statistically robust multi-gene signature combinations. As an application
example, we used lung cancer datasets from the GEO database (GSE18842, GSE19804, and GSE19188).
After merging, we divided the dataset into a training (80%) and test (20%) dataset for the calculation
of the diagnostic signature. Moreover, we validated the diagnostic signature in three independent
datasets (GSE30219, GSE102287, GSE33356). For the prognostic signature, we performed a survival
analysis using the GSE19188 which includes survival information and validated the signature in two
independent datasets (GSE30219, GSE50081).

For the meta-analysis (dataset download, normalization, merging) and the functional gene
expression analysis (analysis for DEGs, heatmap), we used our previously published sample merging
approach, which is based on a modified code of the inSilicoMerging package combined with the
limma package [27]. This approach has been developed further in order to integrate it into the
“sigident” R package framework. In detail, it uses the R package GEOquery version 2.52.0 for
dataset downloading [48], gcrma package version 2.56.0 for CEL file loading, background correction,
quantile normalization, and log2-transformation [28], Biobase package version 2.44.0 for integration
of standardized data structures [13], gplots package version 3.0.1.1 for graphical representation [49],
and the limma package version 3.40.6 for the DEG analysis [50]. We extended the code by detecting
batch effects using a guided principal component analysis from the gPCA package version 1.0 [51].
For batch effect correction, we used empirical Bayes framework applying the ComBat function from the
sva package version 3.32.1 [52] considering different groups (tumor, ctrl). As a DEG analysis is known
to generate false positive results [36], we applied a multiple-testing correction using the Benjamini and
Hochberg approach to control the FDR [53]. We used a stringent g-value (adjusted FDR value) of 0.05.

Furthermore, for the DEGs we added a functional gene ontology (GO) and KEGG pathway
enrichment analysis using the goana and kegga functions from the limma package (Entrez IDs as
input). A further GO and pathway over-representation test is implemented using the clusterProfiler
package version 3.12.0 [54] (including FDR control, DEGs are mapped to their Entrez-IDs as input),
whereas specific pathways can be further investigated using the pathview package version 1.24.0 [55].

The calculation of statistically robust multi-gene signature combinations focuses on diagnostic
and prognostic signatures. For diagnostic signatures, we used the LASSO and Elastic net penalty as
implemented in the R package glmnet version 2.0.18 [56]. The hyper-parameter alpha can manually
be set to a value between 0 and 1 or can automatically be calculated in combination with the tuning
parameter lambda based on cross-validation and a grid search applying the wrapper function train
as implemented in the caret package version 6.0.84 [57]. In the case of a fixed value for alpha,
lambda is determined by 10-fold cross-validation, and a leave-one-out cross-validation is also possible.
For calculation of the Receiver Operating Characteristics (ROC) and the Area Under the Curve (AUC)
value of the ML models we used the pROC package version 1.15.3 [58].

For the prognostic signature detection we applied a survival and risk assessment analysis using
a Cox Proportional Hazard Model as implemented in the survival R package version 2.44.1.1 [59].
The Cox Proportional Hazard regression analysis identifies genes that have a significant effect size
on the survival outcome. To generate a prognostic signature, we applied a classification algorithm
that assigns patients in high and low risk groups based on the expression profiles of the identified
survival correlated genes between tumor and non-tumor samples. Survival curves were plotted using
the survminer package version 0.4.5 [60].
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5. Conclusions

We developed an efficient toolbox for the identification of diagnostic and prognostic gene
signatures. It is the first R package tool that combines meta-analysis with gene expression analysis and
ML approaches for the systematical calculation of statistically robust gene signatures. This helps to
reduce study biases and improves the statistical power for the identification of reliable signatures from
large sample cohorts. Importantly, the tool is not restricted to a specific disease. We believe that our
toolbox will be useful for the research community and opens new windows for an effective analysis of
data and a better clinical management of diseases.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/10/1606/s1,
Figure S1. Boxplots of the GCRMA normalized expression data (training and test dataset). The dataset GSE18842
contains 45 non-tumor and 46 tumor samples (Left), the GSE19804 dataset 60 non-tumor and 60 tumor samples
(Middle) and the GSE19188 dataset 65 non-tumor and 91 tumor samples (Right). (GCRMA normalized; datasets
from Chip GPL570, Affymetrix Human Genome U133 Plus 2.0); Figure S2. Plots for the batch effect detection
using the gPCA (training and test dataset). (Top) The merged dataset contains 54,675 transcripts and 367 samples
(170 non-tumor (control), 197 tumor samples; no gene transcript were excluded during the merging process).
The plots show the gPCA before (Left) and after (Right) batch correction. (Bottom) Boxplots of the merged datasets
before (left) and after (right) batch effect removal; Table S1. List of the 699 DEGs. The table lists the 699 DEGs
(g-value < 0.05, logFC > 2/< —2) in the merged dataset after batch effect correction (517 unique gene symbols
of total 699 ID transcripts); Table S2. Overview of the calculated signatures from the LASSO and Elastic net
regression models; Table S3. Predictive parameters of the identified diagnostic signatures in the independent
dataset. (A) GSE30219, 293 lung cancer samples, 14 non lung cancer samples. (B) GSE102287, 32 lung cancer
samples, 34 non lung cancer samples. (C) GSE33356, 60 lung cancer samples, 60 non lung cancer samples. total:
54,675 genes; Table S4. List of the 22 DEGs. The table lists the 22 DEGs that are significantly associated with the
survival outcome (affy gene ID according to affy_hg u133_plus_2; p-value < 0.05; 20 unique genes of total 22
transcripts, two variants of each DLC1 and LPL; HR > 1: poor prognosis, HR < 1: good prognosis, HR = 1: no
effect); Table S5. Overview of the used R packages (for details see https://gitlab.miracum.org/clearly/sigident).

Data Availability: The toolbox is publicly available as R package under the URL https://gitlab.miracum.org/
clearly/sigident.
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Abstract: Artificial intelligence-based unsupervised deep learning (DL) is widely used to mine
multimodal big data. However, there are few applications of this technology to cancer genomics. We
aim to develop DL models to extract deep features from the breast cancer gene expression data and
copy number alteration (CNA) data separately and jointly. We hypothesize that the deep features
are associated with patients’ clinical characteristics and outcomes. Two unsupervised denoising
autoencoders (DAs) were developed to extract deep features from TCGA (The Cancer Genome Atlas)
breast cancer gene expression and CNA data separately and jointly. A heat map was used to view
and cluster patients into subgroups based on these DL features. Fisher’s exact test and Pearson’
Chi-square test were applied to test the associations of patients’ groups and clinical information.
Survival differences between the groups were evaluated by Kaplan-Meier (KM) curves. Associations
between each of the features and patient’s overall survival were assessed using Cox’s proportional
hazards (COX-PH) model and a risk score for each feature set from the different omics data sets
was generated from the survival regression coefficients. The risk scores for each feature set were
binarized into high- and low-risk patient groups to evaluate survival differences using KM curves.
Furthermore, the risk scores were traced back to their gene level DAs weights so that the three gene
lists for each of the genomic data points were generated to perform gene set enrichment analysis.
Patients were clustered into two groups based on concatenated features from the gene expression and
CNA data and these two groups showed different overall survival rates (p-value = 0.049) and different
ER (Estrogen receptor) statuses (p-value = 0.002, OR (odds ratio) = 0.626). All the risk scores from the
gene expression and CNA data and their concatenated one were significantly associated with breast
cancer survival. The patients with the high-risk group were significantly associated with patients’
worse outcomes (p-values < 0.0023). The concatenated risk score was enriched by the AMP-activated
protein kinase (AMPK) signaling pathway, the regulation of DNA-templated transcription, the
regulation of nucleic acid-templated transcription, the regulation of apoptotic process, the positive
regulation of gene expression, the positive regulation of cell proliferation, heart morphogenesis, the
regulation of cellular macromolecule biosynthetic process, with FDR (false discovery rate) less than
0.05. We confirmed DAs can effectively extract meaningful genomic features from genomic data
and concatenating multiple data sources can improve the significance of the features associated with
breast cancer patients’ clinical characteristics and outcomes.

Keywords: denoising autoencoders; breast cancer; feature extraction and interpretation; concatenated
deep feature
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1. Introduction

Advanced hardware technologies have highly increased computational power, which makes the
implementation of computation-consuming algorithms possible. At the same time, the development
of biological technologies has greatly reduced the cost of genomic sequencing, which produced a
huge amount of high-dimensional genomic data. Under these circumstances, bioinformatics becomes
an exciting research field for researchers to explore the possibility to interpret genomic data using
advanced computational technologies [1].

Different types of high-dimensional genomic data have been associated with cancer clinical
characteristics and outcomes. The most commonly used ones are gene expression data and copy
number alteration (CNA) data [2]. The activity of gene expression in tumor tissues is quite different
from that in normal tissues [3] and has been established to have the ability to distinguish the
characteristics of cancers [4]. There are some repeated segments in normal DNA, and during the
process of cancer development, the repeated number of the segments may be changed due to abnormal
DNA replication in tumor cells. This phenomenon is called copy number alteration [5]. CNA may
result in chromosome structure changes in the forms of duplication or deletion in DNA segments.
It has been shown that CNA plays an important role in the development of many types of cancers
including breast cancer [6]. Therefore, it is highly necessary to mine the prognostic and diagnostic
significance of the genome-wide cancer genomic data. From a clinical point of view, the prognosis of
the genomic factors is always a necessary consideration because of its importance in making treatment
plans [7]. In previous studies, prognosis significance was evaluated mainly based on clinical features,
such as tumor grades and tumor subtypes [7] and molecular features, such as expression related gene
signatures (e.g., PAM50 subtypes) [8,9]. Results from these studies showed that the gene signatures
tend to have better prognosis significance than traditional pathological assessment [7]. This might
be due to the integration ability of these gene signatures. For instance, PAM50 can combine the
information from the tumor stage, tumor grade and tumor subtype together [9]. However, the known
gene signatures are only based on single genomic data source such as gene expression. This might be
not adequate since other types of genomic data such as copy number alterations should also include
important cancer prognosis information [9]. Advanced algorithms now give us new tools to explore
the possibility of integrating different data sources together. For example, Chi, et al. identified several
genes and pathways with a high prognostic significance for young breast cancer patients based on
their gene expression and copy number alteration data using a graph-based machine learning (ML)
method [9].

Traditional ML methods such as artificial neural networks (ANN) and support vector machines
(SVM) may suffer some problems in dealing with the high-dimensional, noisy and massive genomic
data [10]. Recently, a special case of ANN with more nodes and layers has emerged as an efficient
method to handle these high-dimensional and noisy data. The idea of ANN was originated from the
information processing and communication patterns in a human nervous system [11]. As the new
development of the traditional ANN, deep learning (DL) presents a large group of interconnected
artificial neurons with many more layers. Like other learning methods, DL could be implemented
in a supervised or unsupervised way, which depends on whether the input data is labeled or not.
Although both supervised and unsupervised DL algorithms have been successfully applied to the
analysis of genomic data, they could be used to solve different biology problems. Supervised learning
algorithms are often used to predict gene functions and gene-gene interactions or to identify new
driver genes [12], while unsupervised learning algorithms are often used to cluster the strong signals
in the data [13,14]. Among the unsupervised learning algorithms, autoencoder is a new technology
that uses the data itself as the learning objective or label. Therefore, it is also known as self-labeled
or self-supervised deep learning. Traditional autoencoders may face the invalid learning problem
when the number of hidden nodes is larger than the input size. To avoid this potential risk, denoising
autoencoders (DAs) came up with the solution of adding some noise into the input data on purpose.

80



Cancers 2019, 11, 494

Vincent, et al. brought the concept of DAs into DL and built a specialized feature extraction DL
architecture [15]. The key idea of DAs as mentioned above is to add random noise into the raw data
before it is input into the network. After the encode and decode processes, the raw data would be
reconstructed from the noisy data, while the compact and efficient representations from the raw data
could be learned as well [15]. These representations are the DAs-based genomic features.

DL as a special case of ML and ANN has been applied to mine deep information from complex
genomic data and has generated interesting results [16]. Its high integration and reconstruction abilities
give us large flexibility to combine different types of genomic data to extract valuable information from
them. It has been expected that deep features extracted by DL models would perform better in clinical
association and prognosis prediction than standard gene or pathway signatures [17]. For example,
Tan, et al. reported a deep feature representing ER status and a deep feature with high prognosis
significance based on breast cancer gene expression data [13]. These deep features were constructed by
a DAs and performed better in the downstream analyses [13]. However, these studies were based on
only a single genomic source.

This study aims to extract the integrated features from both the gene expression and CNA data
by a concatenated DAs model. As a comparison, we also built a standard DAs model to extract deep
features from gene expression and CNA data separately. The comparisons were made in terms of
the performance in association analysis as well as prognosis analysis. The study design and analysis
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Figure 1. A flowchart illustrating the analysis procedures in this study.

2. Materials and Methods

2.1. Data Sources

Datasets used in this study came from The Cancer Genome Atlas (TCGA) [18], which is one of
the most comprehensive genomic databases. TCGA provides 1098 breast cancer patients’ clinical
data along with their genomic data. These genomic data include gene expressions, CNA, protein
expressions, micro RNA (miRNA) expressions, and somatic mutations.

For gene expression data, the sequencing, alignment, quality control and quantification were
performed previously [18]. Using the TCGA-Assembler tool [19], we downloaded the gene expression
raw count, then filtered out unexpressed genes and those genes with a count per million (CPM) less
than 1 in 3 patients. We performed normalization of the data using Upper Quartile Fragments per
Kilobase of transcript per Million mapped reads (FPKM-UQ) [20]. FPKM-UQ is a modified FPKM
algorithm in which the total read count is replaced by the 75th percentile read count for a given sample.

Similar to the gene expression data, upstream processes of CNA data were done previously as
well [18]. Using the downloaded chromosome-region specific log2 copy number data, we calculated
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the gene-level CNA values using the TCGA-Assembler tool. Several data cleaning procedures such as
removing all-NAs were also performed to avoid potential format issues in the follow-up analysis.

After normalization and preprocessing, there were 18,163 genes from each of the 1095 patients
left for gene expression data and 23,563 genes from the 1098 patients left for CNA data. To
keep the gene dimension and scale matched in the two data sources, both of them were linearly
transformed into a range between 0 and 1, resulting in the decreasing of the data dimension to
16,197 (genes) x 1085 (patients) for both data sources.

2.2. DA Models

Two DAs models were developed using Keras [21] with Tensorflow [22] as the backend to extract
deep genomic features. One model was for feature extraction from a single genomic source, named as
one-input DAs model (Figure 2). The other, named as the two-input DAs model (Figure 3), was for
concatenated feature extraction from the integrated genomic sources.

input: | (None, 16197)
output: | (None, 16197)

Input_Layer: InputLayer

input: | (None, 16197)
output: (None, 100)

Encode_Layerl: Dense

|

input: | (None, 100)

dropout_3: Dropout
I P output: | (None, 100)

)

Decode_Layer2: DenseTransposeTied

input: (None, 100)

output: | (None, 16197)

Figure 2. The one-input denoising autoencoders model. There are two hidden layers in the encode
phase and two decode layers. The input can be either gene expression data or copy number
alteration data.

input: | (None, 16197) input: | (None, 16197)
Gene_Expression_Input_Layer: InputLayer CNA_Input_Layer: InputLayer
output: | (None, 16197) output: | (None, 16197)
input: | (None, 16197) input: [ (None, 16197)
Gene_Expression_encode_Layer: Dense CNA_encode_Layer: Dense
output: | (None, 1000) output: | (None, 1000)

[ input: [ 1¥one. 1000). (None. 1000] |

G _Layer: C
| output: ‘ (None, 2000) |

input: | (None, 2000)

Concatenate_encode_Layer: Dense

!

input: | (None, 100)
output: | (None, 100)

!

Concatenate_decode_Layer: Dense.

/

input: | (None, 1000) input: | (None, 1000)
Gene_Expression_Decode_Layer: Dense Transpose Tied CNA_Decode_Layer: DenseTransposeTicd
output: | (None, 16197) output: | (None, 16197)

output: | (None, 100)

dropout_1: Dropout

input: | (None, 100)
output: | (None, 1000)

Figure 3. The two-input DAs model. There are two hidden layers in the encode phase and one decode
layer. Concatenation was performed between the two encode layers.
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2.2.1. One-Input DAs Model

This architecture was composed of one input layer, one fully connected encode hidden layer with
100 nodes which were chosen to be the deep features used in this study and one decode layer which
uses the transpose of encoding layer” weights. This procedure can be formulated as below:

encode = sigmoid (W x input + b)
decode = sigmoid (W’ x encode + b’)

¢y

where W is the weight metrics between the layers with the size of 16,197 x 100, b is the bias for each
node, and the sigmoid function is sigmoid (x) =1 / (1 + e~¥). The counterparts with the superscript
refer to the transpose metrics. A dropout layer was added after the encode layer, which randomly set
50% of the output of encode layer to 0 to prevent overfitting. The encode item was chosen to be the
activity values of the deep features in this model.

2.2.2. Two-Input DAs Model

Literally, the two-input DAs model contained two input layers, followed by one encode layer with
1000 nodes for each input layer, then followed by a concatenated layer, and another encode layer with
100 nodes which were chosen to be the deep concatenated features. Finally, there were two decode
layers. The procedure can be formulated as follow:

input;_encode; = sigmoid (input;_W; x inputy + input;_by)
input,_encode; = sigmoid (input, _W; X inputy + inputy_by)
concate_encode; = concatenate (input;_encode;, input,_encode;)
concate_encode; = sigmoid (concate_W, x concate_encode;+ concate_b,)
output; = sigmoid (input;_W;’ X concate_encode, + input;_b;’)
output, = sigmoid (input, Wy’ x concate_encode; + input,_b;')

@

where input; Wy, input,_Wj, and concate_W, are the weight metrics between the layers with the size
of 16,197 x 1000, 16,197 x 1000, 2000 x 100 respectively. The input,_by, input;_b;, and concate_b, are
the biases for each node. The counterparts with superscript refer to the transpose metrics. A dropout
layer was added after concate_encode; layer, which randomly set 50% of the output of that layer to 0.
The concate_encode, was chosen to be the activity values of the deep features in this model.

2.3. Train the Models

Before the training process, the input data sets were disrupted by a noise factor of 0.25, which is
the proportion of the number of genes in the data sources. These genes were selected randomly and
their values were set to 0. The binary cross-entropy function shown below was used to measure the
difference between the input layer and the output layer:

L (input, output) = —(1/N) Z (inputy x log(outputy) + (1 — inputy) x log(l — outputy)) (©))

where L (input, output) is the binary cross-entropy, K is the index of batches, N is the total number of
batches. Thus, the training task is to minimize the L (input, output).

For the optimizer, e.g., the strategy to update the weights and bias so that the minima could be
found, we selected stochastic gradient descent (SGD), which has several arguments to be set freely.
After having different trials, the learning rate was finally set to 0.1; the batch size and epoch were set
to 64 and 100 respectively. The models were finally trained under the parameters mentioned above.
The activity values and weight metrics related to deep features were read out.
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2.4. Visualization and Clustering

Heatmap3 [23] was used to visualize the activity values of these deep feature sets. We used the
complete linkage function in the hierarchical clustering process and visual-guided criteria by analysis
of the dendrogram to decide the number of clusters. First, the clinical data downloaded from TCGA
were carefully scanned and the most clinical-relevant characteristics such as pathological status (T, N,
M), tumor stage, estrogen receptor (ER) status, progesterone receptor (PR) status, human epidermal
growth factor receptor 2 (HER?2) status, triple negative status, and PAM50 subtypes (i.e., Luminal A,
Luminal B, Basal-like, HER2-en