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Prediction of the Leaf Primordia of Potato Tubers Using Sensor Fusion and
Wavelength Selection
Reprinted from: J. Imaging 2019, 5, 10, doi:10.3390/jimaging5010010 . . . . . . . . . . . . . . . . . 8

Giuseppe Bonifazi, Giuseppe Capobianco, Claudia Pelosi and Silvia Serranti

Hyperspectral Imaging as Powerful Technique for Investigating the Stability of
Painting Samples
Reprinted from: J. Imaging 2019, 5, 8, doi:10.3390/jimaging5010008 . . . . . . . . . . . . . . . . . 21

Qian Yang, Shen Sun, William J. Jeffcoate, Daniel J. Clark, Alison Musgove, Fran L. Game

and Stephen P. Morgan

Investigation of the Performance of Hyperspectral Imaging by Principal Component Analysis
in the Prediction of Healing of Diabetic Foot Ulcers
Reprinted from: J. Imaging 2018, 4, 144, doi:10.3390/jimaging4120144 . . . . . . . . . . . . . . . . 40

Samuel Cadd, Bo Li, Peter Beveridge, William T. O’Hare and Meez Islam

Age Determination of Blood-Stained Fingerprints Using Visible Wavelength Reflectance
Hyperspectral Imaging
Reprinted from: J. Imaging 2018, 4, 141, doi:10.3390/jimaging4120141 . . . . . . . . . . . . . . . . 51

Florian Gruber, Philipp Wollmann, Wulf Grählert and Stefan Kaskel
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Abstract: The Special Issue on hyperspectral imaging (HSI), entitled “The Future of Hyperspectral
Imaging”, has published 12 papers. Nine papers are related to specific current research and three
more are review contributions: In both cases, the request is to propose those methods or instruments
so as to show the future trends of HSI. Some contributions also update specific methodological or
mathematical tools. In particular, the review papers address deep learning methods for HSI analysis,
while HSI data compression is reviewed by using liquid crystals spectral multiplexing as well as
DMD-based Raman spectroscopy. Specific topics explored by using data obtained by HSI include alert
on the sprouting of potato tubers, the investigation on the stability of painting samples, the prediction
of healing diabetic foot ulcers, and age determination of blood-stained fingerprints. Papers showing
advances on more general topics include video approach for HSI dynamic scenes, localization of plant
diseases, new methods for the lossless compression of HSI data, the fusing of multiple multiband
images, and mixed modes of laser HSI imaging for sorting and quality controls.

Keywords: hyperspectral imaging; medical imaging by HSI; HSI for biology; remote sensing;
hyperspectral microscopy; fluorescence hyperspectral imaging; Raman hyperspectral imaging;
infrared hyperspectral imaging; statistical methods for HSI; hyperspectral data mining and
compression; statistical methods for HSI; hyperspectral data mining and compression

1. Introduction to This Special Issue

Hyperspectral imaging (HSI) manages to gather images where any single pixel is associated a
full spectrum in a given range. Unlike multispectral techniques that are already capable of acquiring
similar data within a few spectral bands, a continuous spectrum is available through HSI. As research
on specific materials and their properties is commonly identified by spectral signatures, HSI exploits
the same objective down to the pixel level with the further advantage of possible classification and
segmentation of the overall spectral and imaging information, like for land analysis by satellite
observation showing distinct regions with water, mineral resources, or plant extensions. No prior
knowledge is usually needed except for what can be obtained exclusively from the dataset.

The remarkable mix of information is often represented by “hypercubes”, a multidimensional
representation of the obtained data along multiple axes providing a picture of the spatial distribution
of the observed information: Spectroscopic (one axis, with signal coming from reflectance, fluorescence,
Raman, or any other spectroscopic probe), structural (three axes), and also time (a possible further axis).

A single image pixel can range down to microscopic detail and, for HSI-based microscopes, up to
meters for satellite data. It should be noted that the spectral component does not have to be limited to
the visible range, for instance, the infrared spectral region can be a common choice.

The rapid increase of possible HSI applications and the availability of better spectral hardware
requires a much higher speed in acquisition, smart data elaboration, new set-ups, and new ideas, in
order to make HSI tools compatible with real time needs, for instance looking for food contamination
or for obtaining prompt cancer detection along routine medical checks.

J. Imaging 2019, 5, 84; doi:10.3390/jimaging5110084 www.mdpi.com/journal/jimaging1
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Mathematical tools and algorithms are also needed for HSI data across many different applications,
facilitating chemo-physical identification of materials on the basis of their unique spectral signature
that is usually buried under a huge amount of data.

The aim of this Special Issue is to offer a view of current topics that are believed to become more
significant in the future, hoping that the methods of acquisition and analysis shown in the articles can
be used as template cases or for a better understanding of a large variety of problems.

2. Contributions

Hyperspectral imaging offers great opportunities, but it requires careful handling of information
obtained in order to have a clear vision of the spectroscopic signatures that might become hidden
within a huge amount of data. Moreover, different sources of signals can be obtained simultaneously
to each other and a problem arises in how to meaningfully merge the different contributions.

Therefore, there are contributions related to fuse different spectral bands or deal with signals
originating from diverse decay channels (e.g., luminescence and Raman).

Likewise, in order to reduce the effort, various compression strategies in the spectroscopic realm
are well illustrated.

More theoretical smart tools are then introduced and reviewed that are sophisticated and at the
same time versatile so as to better investigate the intricacies of HIS hypercube in searching for specific
spectroscopic signatures.

Various specific applications are presented as well. Aside from their specific application areas,
their practical realization requires a high skill level from the technical set-up to the data analysis, to
make the presentation more widely interesting.

In particular, there are experimental and theoretical contributions for time series observations,
compression, and specific signatures, which are a very firm step toward 4D representation and usage
of HSI data.

In Radi et al. [1], data spectral fusion is shown as coming from a Visible and Near Infrared VIS/NIR
spectroscopic system and from a VIS/NIR hyperspectral imaging systems used respectively in interactance
mode and in reflection mode with the aim of acquiring the spectral information of whole tubers for
predicting the primordial leaf count of potatoes. In particular, the HSI unit uses an optical fiber to
illuminate a large portion of the sampled potato with the imaging spectrograph directly attached to a
CCD camera, acquiring spectral information along a line of the potato that is held by a scanner system,
therefore in push broom modality.

Results inferred from this study, with the aid of partial least squares (IPLS), initiate the possibility of
developing a portable or stationary electronic system aimed at obtaining a rapid and accurate prediction
of the sprouting activity of stored potatoes. Future steps could be in testing more growing seasons
for many cultivated varieties (cultivars), as well as improving the robustness and reproducibility of
the prediction models. Furthermore, an increase in the productivity of the method could be achieved
through improved data elaboration, for instance reducing the number of selected wavelengths, and
other IPLS models, such as moving average IPLS, synergy IPLS, backward/forward IPLS, or else a
genetic algorithm.

In Bonifazi et al. [2], a HSI set-up is used to evaluate the stability against light and UV ageing
of several painting materials, in particular powder pigments and commercial watercolors to be used
in retouching. In order to obtain HSI data, a pushbroom commercial system acquires hyperspectral
images in the short-wave infrared region, in the spectral wavelength interval between 1000 nm and
2500 nm. The pixel resolution by scanning the sample is between 30 micron and 300 micron, building
the image one line at a time while the sample is scanned on a moving sample tray in front of the camera.
The paper shows the possibility of evaluating minute spectral variations due to ageing times well
before the eyes can detect changes: The classification techniques based on principal component analysis
(PCA) and k-nearest neighbor (KNN) of hyperspectral data are effectively capable of monitoring the
changes occurring in the painting layers. Therefore, HSI coupled with a chemometric approach allows
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one to monitor ageing modifications of paint layers, showing the possibility of detecting damages
before its irreversibility, a result of great relevance in the field of cultural heritage and particularly
useful in monitoring artworks and restoration interventions over time at a lower cost compared
to similar methods. Future research lines are suggested, for instance in studying other restoration
materials, like synthetic resins, or the classification and forecast of material behavior involved in
cultural heritage artifacts.

Yang et al. [3], explore the medical implications of predicting the healing of diabetic foot ulcers
by a HSI instrument. Such a tool is presented as highly helpful because foot ulcers are indeed a major
complication of diabetes. Previously, the biomedical application of HSI has been able to anticipate wound
healing based on SpO2 values due to the different absorption spectra of oxy- and deoxyhemoglobin.
Here, PCA is addressed as an alternative approach to improving the prediction of wound healing.
A comparison is also made with the performance of SpO2 mapping. It is found that the PCA second
principal component elaborated on hyperspectral images appears superior to analysis in comparison to
SpO2 values in predicting the healing of wounds, taken at a baseline of 12 weeks. A HSI camera operating
in pushbroom mode, for which the images are taken one line at a time from the scene, is part of the
set-up that include a CCD camera coupled to an imaging spectrograph. Each 3D data cube taken in this
study, after a sweep from heel to toe, is reduced to simpler regions of interest of 50 pixels × 50 pixels, for
which the authors found enough information to characterize the wound and surrounding tissue for all
obtained images. The PC analysis is deeply discussed, pointing to PC2 discrimination in the oxy- and
deoxyhemoglobin spectra with superior performance to SpO2 measurement strategies.

In Cadd et al. [4], a novel application of visible wavelength reflectance HSI is shown for both
detection and age determination of blood-stained fingerprints on white ceramic tiles based on the
signature of hemoglobin in the visible absorption spectrum between 400 and 680 nm and for the
presence of a Soret peak at 415 nm. Blood-stained fingerprints were aged for over 30 days and analyzed
using HSI. Data produced results organized on a 24 h scale and a 30-day scale. A clear age estimation
of deposited blood-stained fingerprints has been shown to be therefore possible, while a similar visual
examination was not possible using a standard digital photographic camera. The HSI system used
in this study had the same setup as a previous one shown by the same authors consisting in a liquid
crystal tunable filter (LCTF), coupled to a digital camera, and a scene illumination with two LED light
sources, for VIS and UV. Control of the LCTF and the entire process by means of a custom software
takes approximately 30 s to acquire and process each image, demonstrating that HSI could be used
for the detection and identification of both blood stains and blood-stained fingerprints together with
determining their age. More rugged and portable instruments for use at crime scenes could be realized
in the future, which would be particularly beneficial for criminal investigations.

In Gruber et al. [5], a fast line-scanning hyperspectral imaging system is described. The experiments
carried out, shown by four different applications, demonstrate that a Laser-excited HSI system makes
possible the acquisition of Raman and fluorescence spectra on relatively large sample areas, with
fast and high spatial resolution scans. As it is clear and well known, it is not easy to detect the
weaker Raman signals compared to the higher fluorescence background as the two are competitive and
simultaneous. However, the observation is made that HSI only requires the highest possible spectral
variance data to work well for evaluation or classification purposes, so the exact knowledge of the
origin or a localized distinction of the signals is of secondary importance. The set-up presented opens
up interesting application possibilities in many areas. In fact, the modular design of the system makes
it possible to adapt the measuring range and spatial resolution to many different application areas, from
quality control in the food industry to surface inspection and recycling. The Laser-HSI system, as it is
called in the paper, operates as a pushbroom imager with the hypercube generated line by line while
the sample is scanned using a linear motion unit over tens of centimeters to millimeter ranges, with
a ad-hoc alignment of the dichroic mirror to achieve a balanced Raman and fluorescence intensities.
Classification of the measurements using machine learning algorithms was also demonstrated, after a
careful spectral calibration against reference substances. Results support the idea that Laser-HSI can
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be used for various applications in the field of process and food monitoring or sorting tasks just where
conventional HSI systems fail.

Behmann et al. [6], address the problem of characterization of plant disease. A method is presented
to spatially reference the time series of a close range of hyperspectral images, overcoming the inability
of previous studies of symptoms over time to detect early stages of a disease when they are still
invisible. Automatically tracked hyperspectral information could be a promising approach to overcome
this limitation.

Results have been shown for the first symptoms and their development in the presence of septoria
tritici blotch (STB) and brown rust as well, by using a VISNIR camera. The tracking of symptoms in
real space is obtained measuring reflectivity from plants between 400 nm and 1000 nm in pushbroom
mode, and, then, making a space reference on multiple hyperspectral image cubes along the time series
direction. Those spatially referenced images form therefore a new 4D data type with two spatial axis,
one spectral axis, and a fourth temporal axis (x, y, λ, t). Within this new data type, disease symptoms
can easily be traced back in time, even to the point when no symptom is visible to the human eye.
The point correspondence problem is solved through referencing by including the RANSAC algorithms
and multiple 2D geometric transformations in combination with a well-defined set of control points.

The possibility to annotate invisible symptoms by tracing visible symptoms back in time to the
invisible phase of pathogenesis shows that automated referencing of hyperspectral images is possible.
The training of machine learning models will also allow higher sensitivity even at the very early
symptom stages. The claim is that this is a really new approach in hyperspectral series imaging,
moving the focus from mature symptoms and their appearing in the visible bands to very early and
invisible stages of plant diseases.

In Bachmann et al. [7], hyperspectral image sequences are considered for the detection and
tracking of vehicles realizing low-rate video hyperspectral imaging systems. The vehicles are assumed
to be driving through the parking lot and passing behind various occlusions within the scene, such
as trees in the background and parked cars, at a specified maximum speed. The set-up includes an
integration of a high rate data acquisition hyperspectral line scanner with a high-speed maritime
pan-tilt unit that contains position and pointing information. Then, the realization of digital elevation
models (DEM) is devised: HSI time series imagery after integration onto a telescopic pole system from
multiple vantage points, stereo hyperspectral views, and the definition of bi-directional reflectance
distribution function can all be derived. Two examples of the low-rate hyperspectral video approach
are shown, that is the imaging of the dynamics of the surf zone in a coastal setting and moving vehicle
imaging in the presence of many occlusions. For future, the authors propose further improvements in
hyperspectral image acquisition rates by reducing the size of the across-track spatial dimension or the
adoption of already commercially available sensors with on-chip spectral binning.

In Arablouei [8], a new algorithm is proposed capable of simultaneously fusing multiple multiband
HSI images. The used method relies on a forward observation model together with a linear mixture
model. The low rank images produced will have a sparse representation in the spectral domain, while
preserving the edges and discontinuities in the spatial domain in agreement with the fact that HSI image
data are generally known to have a low-rank structure. It is noted, in fact, that, due to correlations
among the spectral bands and the fact that the spectrum of each pixel can often be represented as a
linear combination of relatively few spectral signatures, the images reside in a subspace that usually
has a much smaller dimension than the number of the spectral bands. As a result, it is possible to
decompose linearly a hyperspectral image into its constituent endmembers, spectral signatures of
the material present at the scene, down to fractional abundances of the endmembers for each pixel.
This linear decomposition is what the authors define as spectral unmixing and the corresponding
data model the linear mixture model. A comparison with the state-of-the-art fusion methods is made
in this paper, demonstrating the advantages of the proposed algorithm. In particular, they show
results from experiments with five real hyperspectral images that were done following the Wald’s
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protocol, a general paradigm for quality assessment of fused images regarding their consistency and
synthesis properties.

Shen et al. [9], have proposed a new predictive lossless compression algorithm for multiple
time series of time-lapse hyperspectral image data using a low-complexity sign algorithm with an
expanded prediction context. It is noted that HSI technology has been used for various remote sensing
applications due to its excellent capability of monitoring regions-of-interest over a period of time.
Simulation results have demonstrated the outstanding capability of this algorithm to compress a
temporal series of HSI data through spectral and temporal decorrelation. The actual compression
results are congruent with the information theoretic analysis and estimation based on conditional
entropy. The paper is about an information theoretical analysis to estimate the potential compression
performance gain with varying configurations of context vectors. In fact, it shows how compression
performance varies as a function of the initial set of spectral bands for prediction by exploiting the
spectral and temporal correlations in the datasets. As examples of future work, the authors propose a
full integration of the proposed algorithm and the analytic framework to achieve real-time compression
on streaming hyperspectral images, including an adaptive selection of bands to build up an optimal
context vector data. By extending a lossless compression of regions-of-interest in hyperspectral images,
it is also possible to gain a much higher compression than compressing the entire hyperspectral
image dataset.

A review by Oiknine et al. [10], shows the advances of a specific HSI system, the compressive
sensing miniature ultra-spectral imaging (CS-MUSI) camera. This article provides an evaluation of
the CS-MUSI camera, its evolution, and its different applications. The CS-MUSI camera has been
designed for using a liquid crystal (LC) phase retarder in order to modulate the spectral domain,
realizing therefore a spectral compression. The outstanding advantage of the CS-MUSI camera is that
at least one order of magnitude of fewer measurements are needed for the entire HSI image results in
comparison with conventional HSI images, as a consequence that the scene’s spectral properties are
often redundant in nature. This paper shows the reconstruction of HSI images for both cases when the
camera and scene are stationary as well as for when the camera is moving in the along-track direction,
demonstrating the ability to use the CS-MUSI camera for 4D spectral-volumetric imaging. Experiments
in these scenarios and applications have provided a spectral uncertainty of less than one nanometer.
Alternatively, this method can also be realized with other spectral modulators. Other compressive
methods, like Fabry-Perot resonator (mFPR), which has a much faster response time than LC cells, and
snapshot HS camera, by using parallel spectral multiplexing and including an array of mFPRs and a
lens array, are presented in the extensive references of the same authors, thus completing the topic.

Compressing Raman HSI data is reviewed in Cebeci et al. [11]. As noted by the authors, a fast
Raman analysis for real-time monitoring and hyperspectral imaging has a key bottleneck in the time
required to acquire and post-process HSI data. Multichannel detectors (CCD) are commonly used for
this task, although they are generally more expensive and less sensitive than single channel detectors.
The CCDs also require cooling because of the usual need for long integration times and low dark
counts. Consequently, a CCD-based Raman spectrometer cannot operate fast enough to be applicable
to dynamic system measurements. Using ordinary Raman HSI spectroscopy, where thousands to
millions of different spatial points are measured, would imply the collection of a one-megapixel
image over 12 days using 1 s of acquisition rate per spectrum, clearly an impossible task. Instead,
a compressive spectrometer with spatial light modulator (SLM) technology offers higher sensitivity and
speed, together with a lower-cost alternative to CCDs because of the single detector adoption. Most
notably, the compressive detection allows chemical imaging information in the very low signal limit,
which is simply impossible to achieve by a conventional CCD-based Raman spectroscope. The chosen
key technology is an optimized binary compressive detection strategy (OBCD) adopting a reflective
light modulator DMD (by Texas Instruments), widely used in standard computer projection systems.
A DMD is a semiconductor-based “light switch” array of hundreds of thousands of individually
switchable mirror pixels, which have switch speed, contrast ratio, and broad spectral capability
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outperforming analog-based SLMs. The light switching speeds in the order of kHz at which each
mirror can modulate between “on” and “off” states enable CD measurements at kHz frequencies.
Compressive digital (CD) Raman systems can reproduce the functionality of conventional array-based
Raman spectroscopy to collect full spectral information by raster-scanning each array column. The full
speed advantage of CD Raman is fully discussed in relation to the compressive detection modes, with
filter functions, and a low signal regime or high-speed conditions, all conditions for which a CCD
cannot work, while a single channel detector, such as a photomultiplier, instead increases dramatically
data SNR.

Finally, the merge of HSI and deep learning (DL) technologies is the subject of a review made
by Signoroni et al. [12]. HSI data constitutes an undeniable advantage for any research that benefits
from computer-assisted spectroscopic analysis. In fact, HSI images have plenty of information coded
that can be thought as a high-dimensional vector in a space and spectral dimension with much more
information than any RGB or multispectral data. Each pixel can keep measurements in relatively wide
spectral intervals, from VIS to NIR, resolved in hundreds of contiguous narrow band spectral channels
down to a few nm of spectral resolution. However, as any industrial or scientific technology, HSI
requires cost-benefit evaluations and any method to unlock its deployment potentialities is important
and needs careful consideration. As explained by the authors, the advantages introduced by DL
solutions in the HSI arena are in the automatic and hierarchical learning process of data itself. A model
with increasingly higher semantic layers can then be built, until the searched analysis, e.g., classification,
regression, segmentation, detection, or other indexes, has a useful representation. Some caution is
however needed to exploit the gain potentially detained by DL when it is applied to hyperspectral data,
as pointed out in this review. In particular, there is a need for a reasonably large dataset in HSI data
(e.g., hundreds of thousands of examples) that has to be congruent with the large amount of parameters
of DL models (typically in the tens of millions), to avoid overfitting, while an HSI dataset composed of
hundreds of examples can be considered too small. In conclusion, the deployment of HSI technologies
by means of DL solutions can be a possible driver enabling HSI for a wider spectrum of small-scale
applications in industry, biology and medicine, cultural heritage, and other professional fields.

3. Conclusions

Hopefully it is clear, from the lecture of the various contributions, that all authors have realized
a very serious effort in devising the perspective of their work in a broader realm than the proper
single activity.

Various compression and fusion methods, coupled with time series HSI acquisitions, embedded in
several real-world examples and theoretical tools, make this Special Issue “The Future of Hyperspectral
Imaging” a very interesting instrument to better understand the possible future of this versatile technique.
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Abstract: The sprouting of potato tubers during storage is a significant problem that suppresses
obtaining high quality seeds or fried products. In this study, the potential of fusing data obtained from
visible (VIS)/near-infrared (NIR) spectroscopic and hyperspectral imaging systems was investigated,
to improve the prediction of primordial leaf count as a significant sign for tubers sprouting. Electronic
and lab measurements were conducted on whole tubers of Frito Lay 1879 (FL1879) and Russet
Norkotah (R.Norkotah) potato cultivars. The interval partial least squares (IPLS) technique was
adopted to extract the most effective wavelengths for both systems. Linear regression was utilized
using partial least squares regression (PLSR), and the best calibration model was chosen using
four-fold cross-validation. Then the prediction models were obtained using separate test data
sets. Prediction results were enhanced compared with those obtained from individual systems’
models. The values of the correlation coefficient (the ratio between performance to deviation, or
r(RPD)) were 0.95(3.01) and 0.9s6(3.55) for FL1879 and R.Norkotah, respectively, which represented a
feasible improvement by 6.7%(35.6%) and 24.7%(136.7%) for FL1879 and R.Norkotah, respectively.
The proposed study shows the possibility of building a rapid, noninvasive, and accurate system
or device that requires minimal or no sample preparation to track the sprouting activity of stored
potato tubers.

Keywords: potatoes; sprouting; primordial leaf count; hyperspectral imaging; spectroscopy; fusion;
wavelength selection; PLSR; interval partial least squares

1. Introduction

Recent studies have shown various health-promoting nutritional resources in potato tubers
including protein, dietary fibers, minerals, ascorbic acids, anthocyanins, and antioxidants. Moreover,
phenolic compounds, contained in the tuber or the peel, are known for their anti-inflammatory and
anticarcinogenic effects on human health [1]. Due to the rapid change of lifestyles towards fast food
and ready-to-cook meals, the consumption of potatoes in the United States, especially frozen French
fries and chips, has shown a significant increase during the last four decades [2]. The U.S. per capita
French fry consumption jumped from 12.93 Kg in 1970 to 22.89 Kg in 2017 [2]. Hence, maintaining
the appropriate degree of tuber quality during handling and storage operations is a major concern for
growers and processors, to preserve a high level of marketability.

Storage significantly affects the chemical composition of tubers and subsequent processed
products. Potatoes, as other agricultural commodities, continue to perform several postharvest
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biological processes, among which respiration represents an important metabolic process that needs
to be controlled during storage, to extend the shelf life and reduce the accumulation of sugars [3,4].
Dormancy of potato tubers is the duration after harvest during which tubers will not sprout with
the presence of the suitable environmental and biochemical conditions. Dormancy usually lasts
from several weeks to months, depending on cultivar and storage conditions [5,6]. Following the
dormancy period and with warmer temperatures (10–20 ◦C), sprouts, i.e., the meristematic regions
of the tubers (eyes), begin to grow at a low rate that increases until one sprout dominates others [7].
Sprouting is affected by storage conditions, the cultivar, and the presence of damage. Sprouting
has shown a significant impact on the physiological status and age of potatoes during storage [7].
Levels of reducing sugars accumulated during low-temperature storage result in after-frying browning,
and excess sucrose content causes improper sweetening flavor of fried products [4]. On the other
hand, high levels of reducing sugars and sucrose result in an increase in sprouting [4]. Additionally,
unrestrained sprouting results in an increase of respiration rate, which leads into an increase of the
sprouting, physiological age, weight loss, and the glycoalkaloid levels that are known to be toxic [8].
Thus, uncontrolled storage sprouting causes a considerable decline in the marketability of raw and
subsequent processed potato products.

Various techniques have been used to control or inhibit potato sprouting during storage. Low
temperature storage is beneficial for minimizing the sprouting of seed tubers [9]. However, sugar
accumulation is an expected consequence of storing potatoes at a low temperature [10]. Chemical
inhibitors are commonly applied during storage, including isopropyl N-phenylcarbamate (ICP;
propham), isopropyl N-(3chlorophenyl) carbamate (CIPC; chloro-IPC, chloropropham), and maleic
hydrazide (MH) [10–12]. However, ICP and CIPC cannot be applied on seed potatoes for their
irreversible sprouting inhibition [13,14].

Near-infrared (NIR) spectroscopy has been studied for detecting chemical constituents and
physical properties of agricultural and food products, in addition to pharmaceutical, textiles, cosmetics,
and medicine domains [15]. The utilization of NIR technology in the agricultural domain included the
quality evaluation of grains [16,17], fruits, and vegetables [18–20]. More specifically, the possibility of
using NIR systems on determining several quality attributes of potatoes showed promising results.
Such properties include specific gravity [21,22], dry matter [23,24], and sugars [24–26]. Rady et al. [25]
stated that prediction models of leaf primordia for potato tubers had correlation coefficient (r) values
of 0.89 and 0.77 for FL1879 and R.Norkotah, respectively, using a VIS/NIR spectroscopic system in the
interactance mode. In the case of the VIS/NIR hyperspectral imaging system, the prediction models
yielded r values of 0.47 and 0.43 for FL1879 and R.Norkotah, respectively. Jeong et al. [27] investigated
the application of VIS/NIR diffuse reflectance spectroscopy (400–2500 nm) for estimating the sprouting
capacity of Atlantic and Superior potato cultivars. The authors stated that the sprouting capacity could
be evaluated by measuring the weight of sprouts grown under a standard sprouting method. Thus,
sprouting capacity was measured based on the weight percentage of sprouts for tubers stored for
30 days in the dark at 20 ◦C and 90% relative humidity. Results showed a good correlation between
lab measurements and predicted sprouting capacity, with r values falling between 0.87 and 0.97.

The fusion of data acquired from different electronic sensors has been studied for the potential
benefits of improving the prediction models of quality attributes of fruits, vegetables, and food
products. The data combined from each individual sensor should, however, provide distinguishing
and non-redundant information about the measured property. Consequently, the improvement
of prediction and classification models can be feasible. Data fusion can be conducted by either
concatenating the features from various sensors, then processing them, or by performing feature
selection before combining and processing [28].

The fusion of data obtained by stationary and prototype online hyperspectral imaging systems
was conducted by Mendoza et al. [29] to improve the prediction capability of firmness and soluble
solid content (SSC) for Golden Delicious (GD), Jonagold (JD), and Red Delicious (RD) apple cultivars.
Results showed a significant decrease of the standard error of prediction (SEP) values for firmness by
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6.6, 16.1, and 13.7% for GD, JG, and RD, respectively. The values of SEP for SSC decreased for GD, JG,
and RD by 11.2, 2.3%, and 3.0, respectively. Mendoza et al. [30] examined the fusion of visible and
shortwave NIR spectroscopy (400–1100 nm), spectral scattering obtained from hyperspectral imaging
(500–1000 nm), acoustic firmness, and bioyield firmness to assess the firmness and SSC of JG, GD, and
RD apple cultivars. In such studies, fused data improved firmness prediction models by reducing SEP
values by 14.6, 20.0, and 7.3% for JG, GD, and RD cultivars, respectively. In the case of SSC prediction
models, the fusion of spectroscopic and hyperspectral imaging systems showed a decrease in SEP
values by as much as 6.0%.

The data fusion approach has also been investigated with other agricultural products. Integrating
electronic tongue (e-tongue) and UV-VIS-NIR spectroscopic data has been applied for determining
the botanical origin of honey [31]. Ignat et al. [32] studied the fusion of VIS/NIR spectroscopic data
with VIS hyperspectral imaging features, relaxation and ultrasonic data, and color measurements for
predicting several maturity indices for bell peppers, including dry matter (DM), TSS, osmotic potential
(OP), ascorbic acid (AA), total chlorophylls, carotenoids, the coefficient of elasticity for compression
(CEc), and the coefficient of elasticity for rapture (CEr). Results illustrated the improvement of the
determination coefficient (R2) for fused data models. Values of R2 increased from 0.93 to 0.95 for
DM, 0.93 to 0.96 for TSS, 0.79 to 0.83 for AA, 0.87 to 0.90 for OP, 0.60 to 0.77 for total chlorophylls,
0.92 to 0.96 for carotenoids, 0.55 to 0.63 for CEc, and 0.52 to 0.54 for CEr. Several studies were also
conducted to boost the evaluation of various quality attributes for fruits and vegetables using data
fusion. Such commodities included bell peppers [33,34], tomatoes [35], apples [36–39], eggplants [40],
peaches [41,42], and oranges [43].

The main objective of this study was to investigate the potential of combining data obtained from
hyperspectral imaging and spectroscopic systems for building calibration and prediction models of
leaf primordia of potato tubers during storage.

2. Materials and Methods

2.1. Raw Materials, Sampling, and Measurement of Primordial Leaf Count

Electronic measurements were conducted on Frito Lay 1879 (FL1879) and Russet Norkotah
(R.Norkotah) potato cultivars used for chipping and baking, respectively. Samples were obtained from
a commercial farm in Southwest Michigan, United States. After discarding defected and deteriorated
tubers, samples were cleaned and stored at 7 ◦C for four weeks for periderm maturation [44]. Sampling
was first examined on 20 tubers per cultivar. Tubers were then stored at 7, 10, and 15 ◦C, and
sampled at 20, 80, and 130 days of storage with 60 tubers per cultivar. A total of 200 tubers tested
form FL1879 or R.Norkotah were tested. The reason for choosing such storage temperatures was to
create a broad distribution of leaf primordia, which increases the reliability of the prediction models.
The measurements of primordial leaf count (LC) took place as stated in Rady et al. [45].

2.2. Electronic Measurements

Whole tubers were electronically scanned using a VIS/NIR spectroscopic system in the
interactance mode and a VIS/NIR hyperspectral imaging in the reflectance mode. To obtain consistent
measurements, each tuber was placed such that the light beam struck the middle area of the
longitudinal axis. More detailed explanation of the scanning process for either system can be found in
Rady et al. [45].

2.2.1. VIS/NIR Interactance System

The VIS/NIR spectroscopic system in the interactance mode was used to acquire spectral
information of the whole tubers. The system, as shown in Figure 1, contained an Ocean optic
spectrometer (model No. USB 4000, Ocean Optics, Inc., Dunedin, FL, United States) connected
by a 200 μm diameter fiber optic cable, and has a 3648-element linear silicon CCD (charge-coupled
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device) array with an optical resolution of 0.3 nm (full width half maximum, or FWHM) and a detection
range of 200-1100 nm, as well as a radiometric power supply with a maximum power of 250 watts
(model No.68931, Oriel Inst., Irvine, CA, United States) and a light source (model No. 66881, Oriel Inst.,
Irvine, CA, United States) that contained a quartz tungsten halogen lamp and lens transmittance range
of 350–2500 nm. In the interactance mode, light photons illuminate the sample through a probe with a
concentric outer illumination ring and an inner receptor. A foam-sealing ring was placed between both
components for a separation between the light ring and the detector [45]. Thus, only the light passing
through the sample was measured. Using such a configuration, the incident light represents a circle
with a diameter of 24.7 mm. The interactance spectra for each sample was normalized using a Teflon
disc (~25 mm diameter) as a reference material, and the relative interactance was calculated as follows:

Relative Interactance =
Is − Id
Ir − Id

where Is is the intensity of the reflected light from the sample, Ir is the intensity of the reflected light
from the reference material, and Id is the intensity of the reflected light from the background.

Figure 1. Schematic representation of the visible (VIS)/near-infrared (NIR) interactance testing of Frito
Lay 1879 Frito Lay 1879 (FL1879) and Russet Norkotah (R.Burbank) potato cultivars.

2.2.2. VIS/NIR Hyperspectral Imaging System

The main target of using a hyperspectral imaging system (HSI) system in this study was to capture
the diffuse scattered light in the range of 400–1000 nm under the reflection mode for whole tubers.
The system, as shown in Figure 2, contained a Hamamatsu dual mode cooled CCD camera (model No.
C4880, Hamamatsu Photonics, Hamamatsu, Japan), an imaging spectrograph directly attached to the
CCD camera (ImSpector V10, Spectral Imaging Ltd., Oulu, Finland), a power supply control (model
No. 69931, Oriel Instruments Irvine, CA, United States), a digital exposure controller (model No. 68945,
Oriel Instruments, Irvine, CA, United States), and a light source (model No. 66881, Oriel Instruments,
Irvine, CA, United States) holding a 250 W Quartz Tungsten Halogen lamp and having a lens material
transmittance range of 350–2500 nm. A fiber optic cable coupled with a lens focusing assembly was
used to deliver a broadband light beam of 1.5 mm diameter, making a 15◦ angle away from the vertical
axis and 1.6 mm apart from the scanning line. The sample holder movement was controlled using a
step motor, and each sample was scanned 10 times with a distance of 1 mm between two successive
scans, which totally covered the 9 mm longitudinal distance along the sample. The acquisition time
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was adjusted for each sample at 200 ms, so the total scanning time for each scanning was 2 s. At each
scanning line, the spectrograph acquired the spectral information represented by a 256 × 256 pixel
image, with spatial and spectral resolutions of 0.2 mm/pixel and 2.35 nm, respectively.

Figure 2. Schematic representation of the VIS/NIR hyperspectral reflectance system used to test whole
FL1879 and R.Burbank potato cultivars.

2.3. Data Analysis and Fusion

2.3.1. Calculation of the Mean Reflectance Spectra and Wavelength Selection

The average reflectance spectra were calculated for the hyperspectral imaging data, using 256
wavelengths in the range of 400–1000 nm. For each image, the spectra were first averaged over the
spatial coordinates. The relative reflectance (RR) spectrum was then calculated as follows:

RR =
ASs − ASb
ASr − ASb

where ASs, ASb, and ASr are the average spectra for the sample, background, and reference (Teflon
cube), respectively.

Wavelength selection was conducted to reduce the number of variables involved in multivariate
regression, to overcome the possibility of the overfitting problem related to relatively high dimensional
data, such as spectroscopic data [46]. Therefore, using wavelength selection techniques improves the
robustness of the calibration models and reduces the computational time [47].

Interval partial least squares (IPLS) was adopted as a variable selection technique on the data
obtained from spectroscopic and hyperspectral imaging, following the results obtained by Rady and
Guyer [48]. The configuration of the applied IPLS included the forward mode, window width (W) of
one and two variables, and using 20 latent variables (LV).

2.3.2. Data Fusion

After obtaining the most influencing wavelengths, data from the spectroscopic and hyperspectral
imaging systems were normalized at each wavelength (column) by dividing all values at such a
wavelength by the maximum value at the same wavelength. For each sample (row), data obtained
from both systems was then concatenated to form the fused data matrix.
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2.3.3. Partial Least Squares Regression and the Preprocessing of Fused Data

Partial least squares regression (PLSR) was applied on the fused data to build calibration and
prediction models. PLSR is a linear regression technique known for handling high dimensional data
and overcoming the colinearity problem associated with such types of data [46].

According to Rinnan et al. [49], spectral data contains noisy signals resulting from various
electronic sources, and consequently data preprocessing is necessary to reduce such undesirable
electronic effects and increase the signal-to-noise ratio. Preprocessing was conducted in two stages.
The first stage included, in addition to non-processing, smoothing using a first derivative, smoothing
using a second derivative, normalization, a standard normal variate (SNV), multiplicative scattering
correction (MSC), and the median center. The second stage included the mean center, multiplicative
scattering correction, and orthogonal signal correction. Numerical transformation was also carried
out on the reference data (leaf primordia count) to obtain uniform distribution. Logarithmic (base 10)
and second degree power transformations were applied, in addition to the non-transformed reference
values. The regression analysis was carried out on calibration (80% or 160 tubers) and prediction
(20% or 40 tubers) sets of data. To reduce the possibility of overfitting and increase the robustness of
calibration models, a four-fold cross-validation technique was implemented on the calibration data
set, and the best calibration model was chosen as the one with the minimum root mean square error
of calibration for cross validation (RMSECcv). Prediction models were then obtained by applying
the optimal calibration models on the separate prediction data sets. A complete layout of the data
analysis operations is shown in Figure 3. The best prediction model was chosen based on the values of
the correlation coefficient (r), the root mean square error of prediction (RMSEP), and the ratio of the
standard deviation to the root mean square error of prediction (RPD).

Figure 3. Flow chart of acquiring data from VIS/NIR spectroscopic and VIS/NIR hyperspectral imaging
systems, wavelength selection, preprocessing, and building regression models of leaf primordia count
for FL1879 and R.Norkotah potato cultivars.
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3. Results

3.1. Constituent Distribution and Wavelength Selection Results

The minimum, maximum, mean, and standard deviation values of primordial leaf count (LC)
were calculated for FL1879 and R.Norkotah cultivars as shown in Table 1. Both cultivars showed close
minimum and mean values. Maximum and standard deviation, however, showed higher values in
the case of FL1879, which possibly shows more sprouting. The average LC values were 13.47 and
12.96 for FL1879 and R.Norkotah, respectively. Whereas the standard deviation values were 13.62 for
FL1879 and 8.61 for R.Norkotah. The high standard deviation values were intentionally conducted
using relatively higher storage temperatures to obtain a broad LC range, which helps develop more
comprehensive prediction models for LC.

Table 1. Statistical summary of primordial leaf count (LC) measured for Frito Lay 1879 (FL.1879) and
Russet Norkotah (R.Norkotah) potato cultivars.

Minimum Maximum Mean Standard Deviation

FL1879 4.33 57.66 13.47 13.62
R.Norkotah 4.33 45.67 12.96 8.61

Results of wavelength selection shown in Table 2 indicated that the FL1879 spectral data yielded
from the interactance system generally illustrated the highest number of selected wavelengths among
all spectral data. In contrast, the number of selected wavelengths obtained from the hyperspectral
imaging for R.Norkotah was higher than those obtained from the interactance system, except for W = 2,
at which a similar number of wavelengths was selected for both electronic systems. Moreover, the
number of selected wavelengths for the hyperspectral imaging was generally higher in the visible
spectrum than in the NIR range for both cultivars. In the case of the interactance system, results
showed a higher number of selected wavelengths in the NIR range, especially for the R.Norkotah.

Table 2. Number of selected wavelengths using the interval partial least squares (IPLS) technique
for primordial leaf count, using data obtained from VIS/NIR interactance and hyperspectral imaging
systems for Frito Lay 1879 (FL1879) and Russet Norkotah (R.Norkotah) potato cultivars. Shaded cells
show optimal models.

No. of Selected
Wavelengths

No. of Wavelengths in the
Visible Range

No. of Wavelengths in the
NIR Range

W = 1 W = 2 W = 3 W = 1 W = 2 W = 3 W = 1 W = 2 W = 3

VIS/NIR
interactance

FL1879 94 106 93 49 40 45 45 66 48
R.Norkotah 26 34 33 1 10 18 25 24 15

VIS/NIR
hyperspectral

FL1879 29 36 63 22 20 39 7 16 24
R.Norkotah 59 34 60 47 21 45 12 13 15

3.2. Partial Least Squares Regression Results

To make a comparison between the performance of prediction models, based on data obtained
from individual or fused sensors, we first illustrate the PLSR results using individual systems data for
whole Frito Lay 1879 (FL1879) and Russet Norkotah (R.Norkotah) potato cultivars in Table 3.

On the other side, the best PLSR calibration and prediction models of primordial leaf count for
FL1879 and R.Norkotah cultivars are shown in Table 4. The optimal models are shown in the shaded
cells. In the case of FL1879, the values of r(RPD) of prediction models were 0.95(3.01), 0.91(2.27), and
0.91(2.49) for W = 1, 2, and 3, respectively. Whereas, in the case of R.Norkotah, the r(RPD) values
were 0.96(3.55), 0.95(3.24), and 0.94(2.93), for W = 1, 2, and 3, respectively. The spectral preprocessing
methods for the optimal models were first derivative and MSC for FL1879, and second derivative and
mean center for R.Burbank. However, the preprocessing of the LC values for the same models was
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power transformation. The relationship between the measured and predicted LC values for FL1879
and R.Norkotah deduced from the optimal prediction models for W = 1 is shown in Figure 4a,b.

Table 3. Partial least squares regression (PLSR) results of the primordial leaf count, using data obtained
from either VIS/NIR interactance or hyperspectral imaging systems for Frito Lay 1879 (FL1879) and
Russet Norkotah (R.Norkotah) potato cultivars.

Optical System Cultivar
Calibration * Prediction **

Rcal RMSECV LVs Rpred RMSEPpred RPDpred

VIS/NIR interactance system FL1879 0.99 0.3055 18 0.89 0.3285 2.22
R.Norkotah 0.91 0.4183 18 0.77 0.3560 1.5

VIS/NIR hyperspectral imaging FL1879 0.49 13.124 7 0.47 11.7014 1.14
R.Norkotah 0.78 9.5766 5 0.43 7.8047 1.10

* Rcal: correlation coefficient for the calibration model; RMSEcv: root mean square error of calibration, using
cross validation for the calibration model; LVs: number of latent variables. ** Rpred: correlation coefficient for the
prediction model; RMSEpred: root mean square error of calibration, using cross validation for the prediction model;
RPDpred: ratio between standard deviation and the RMSEPpred.

Table 4. PLSR results for predicting primordial leaf count using data fused from VIS/NIR interactance
and VIS/NIR hyperspectral imaging systems for whole tubers for Frito Lay 1879 (FL1879) and Russet
Norkotah cultivars. Optimal results are shaded.

Interval Width
(W)

Cultivar
Preprocessing

Method a
Calibration Prediction

Rcal RMSECV LVs Rpred RMSEP RPDval

W = 1
FL1879 A5, B2; C2 0.99 0.1299 20 0.95 0.1662 3.01

R.Norkotah A6, B1; C2 0.98 0.1401 12 0.96 0.1411 3.55

W = 2
FL1879 A3, B1; C2 0.98 0.1815 13 0.91 0.2206 2.27

R.Norkotah A5, B2; C2 0.96 0.1775 11 0.95 0.1547 3.24

W = 3
FL1879 A1, B3; C2 0.98 0.1933 20 0.91 0.2012 2.49

R.Norkotah A5, B3; C2 0.98 0.1504 17 0.94 0.1709 2.93
a Ax: First stage spectra preprocessing. A0: No preprocessing. A1: First derivative. A2: Second derivative.
A3: Normalization. A4: Standard normal variate (SNV). A5: Multiplicative signal correction (MSC). A6: Median
center. Bx: Second stage spectra preprocessing. B1: Mean center. B2: Multiplicative scattering correction.
B3: Orthogonal signal correction. Cx: Reference data preprocessing. C0: No reference transformation. C1: Log
reference transformation. C2: Power reference transformation.

 
Figure 4. Cont.
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b 

Figure 4. Relationship between measured and predicted primordial leaf count using combined
VIS/NIR interactance spectroscopy and VIS/NIR hyperspectral imaging for (a) Frito Lay1879 and (b)
Russet Norkotah.

4. Discussion

The number of wavelengths selected using the IPLS technique was generally proportional
to the window size, especially for R.Norkotah cultivars in the case of data yielded from the two
electronic systems; this is expected, as the larger the window size is, the higher the number of selected
variables [50]. It was also noted that the interactance data for FL1879 required a higher number of
selected wavelengths to explain the variation of LC in comparison to R.Norkotah, except when W = 1
for the hyperspectral imaging. Furthermore, selected wavelengths based on the window width of
one variable (W = 1) that were almost the least compared to those obtained using W = 2 or W = 3
yielded the optimal prediction models. Such results illustrate that the small window width could
eliminate redundant variables that might be included during the IPLS search algorithm. Zhao et al. [51]
developed a modified IPLS method for variable selection, and their study showed a general conclusion
that with the low window width, the number of selected variables decreased, and the root mean
square error of prediction (RMSEP) improved. Moreover, Deng et al. [52] compared the number of
variables selected using different methods, including synergy interval PLS (siPLS), moving window
PLS (MWPLS), and genetic algorithm PLS (GA-PLS). Generally, it was obvious that the smaller the
window width, the greater the performance of the prediction models.

Using fused data from the two systems, the prediction of LC significantly improved for both
cultivars. In a previous study by Rady et al. [25], as shown in Table 1, the optimal prediction models
using the VIS/NIR interactance system showed r(RPD) values of 0.89(2.22) and 0.77(1.50) for FL1879
and R.Norkotah, respectively. Whereas, the r(RPD) values obtained from the VIS/NIR hyperspectral
imaging systems were 0.47(1.14) for FL1879 and 0.43(1.10) for R.Norkotah. Additionally, prediction
results obtained from the fused data in this study are comparable to the work conducted by Jeong et
al. [27] for estimating potato sprouting using NIR diffuse reflectance data. The latter study had r(RPD)
values of 0.94(2.0) for the calibration models using cross validation. In our study, data fusion led to
significant improvement of the prediction performance, which was mainly based on a separate set
of data in which the boosted prediction models yielded r(RPD) values of 0.95(3.01) and 0.96(3.55) for
FL1879 and R.Norkotah, respectively. The fusion of the data, along with wavelength selection, has not
been investigated before for the sprouting prediction of potatoes.

The above results indicate that there is a possibility of obtaining a robust prediction of sprouting
activity of potato tubers during the storage period, using fused from VIS/NIR spectroscopic and
hyperspectral imaging systems. One of the main restrictions of applying hyperspectral imaging
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systems in on-line sorting and quality inspection processes for food and agricultural products is the
relatively long acquisition time. The prediction models obtained in this study, however, were based
on selected wavelengths. Thus, decreasing the computation time is accomplished by using fewer
wavelengths to build a multispectral imaging system.

5. Conclusions

The main objective of this research study was to investigate the potential of utilizing fused data
from VIS/NIR spectroscopic and VIS/NIR hyperspectral imaging systems on predicting primordial
leaf count of potatoes. Leaf count is an important factor assessing the sprouting capability of tubers;
thus, continuous observation of such activity during storage is crucial to maintain the appropriate
physiological status of tubers, especially for processing or seeds. Electronic measurements were
performed on whole tubers of FL1879 and R.Norkotah potatoes stored at different temperatures,
to stimulate the real storage conditions and obtain wide ranges of LC. After obtaining the most
influential wavelengths from both electronic systems using IPLS, data from both systems were fused.
Results obtained from PLSR indicated a feasible application of the fusion method to considerably
improve LC prediction. Compared to the optimal results obtained from individual systems, values of
r(RPD) have been boosted by 6.7%(35.6%) and 24.7%(136.7%) for FL1879 and R.Norkotah, respectively,
which stands as a unique enhancement and application of data fusion for potato sprouting. Results
deduced from this study initiate the possibility of developing an electronic system, either portable or
stationary, that is composed from multispectral imaging along with an interactance sensors to obtain
rapid and accurate prediction of sprouting activity of stored potatoes. However, future steps are still
needed to reduce the number of selected wavelengths using different versions of IPLS, such as moving
average IPLS, synergy IPLS, backward/forward IPLS, and a genetic algorithm. More cultivars should
also be tested, and experiments should be conducted over several growing seasons to improve the
robustness and reproducibility of the prediction models.
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Abstract: The aim of this work is to present the utilization of Hyperspectral Imaging for studying
the stability of painting samples to simulated solar radiation, in order to evaluate their use in
the restoration field. In particular, ready-to-use commercial watercolours and powder pigments
were tested, with these last ones being prepared for the experimental by gum Arabic in order to
propose a possible substitute for traditional reintegration materials. Samples were investigated
through Hyperspectral Imaging in the short wave infrared range before and after artificial ageing
procedure performed in Solar Box chamber under controlled conditions. Data were treated and
elaborated in order to evaluate the sensitivity of the Hyperspectral Imaging technique to identify
the variations on paint layers, induced by photo-degradation, before they could be detected by
eye. Furthermore, a supervised classification method for monitoring the painted surface changes,
adopting a multivariate approach was successfully applied.

Keywords: Hyperspectral imaging; painting samples; retouching pigments; watercolours;
multivariate analysis

1. Introduction

Hyperspectral imaging (HSI) is a diagnostic tool deserving great interest in the field of cultural
heritage due to its non-invasive character and to the possibility of obtaining a lot of information with a
single technique [1–3]. If coupled with chemometric techniques, it allows for gathering qualitative
and/or quantitative information on the nature and physical-chemical characteristics of the investigated
materials, and to combine imaging with spectroscopy for evaluating the distribution of materials
on the surfaces [4–9]. By using classification methods, already applied in other research fields, it is
possible to create a predictive model that is able to identify little variations of the painting layers due to
the degradation phenomena of the constituent materials [10–15]. In conservation of cultural heritage,
these classification methods could have great relevance because they allow to monitor in real time
the surface changes by observing the spectra variation in respect to the calibration dataset. For these
reasons, in the present work, HSI was applied with the aims to evaluate the sensitivity of the technique
in order to identify the variations on paint layers, induced by photo-degradation, before they could be
observed by eye and to use, following a multivariate based approach, the supervised classification
methods for monitoring the painted surface changes [8,9]. As paint samples, a set of commercial
watercolours was chosen together with various powder pigments, mainly iron oxide based materials,
which were mixed with gum Arabic, without any additive, in order to verify their possible use in
painting retouching. Iron oxide based pigments were chosen, as they are stable and widely used for
millennia thanks to their durability [16–18]. However, when combined with gum Arabic and additives
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in commercial watercolours, the stability of paintings seems to be not the same [19,20]. The choice
of testing watercolours derived from their wide use as materials for painting retouching, together
with other products more or less recently introduced in the conservation field [21,22]. Watercolours
are frequently used for retouching, especially by Italian conservators that, in particular, commonly
choose Winsor&Newton as the preferred brand [20]. Watercolours are produced by the combination of
a pigment with gum Arabic and other substances not specified by the manufacturer to safeguard the
industrial patent [23–28]. The necessity to investigate the stability of retouching products is linked to the
unknown and unpredictable behaviour of the commercial mixtures whose composition is not declared
by suppliers [19,29–32]. Though watercolours are widely used in conservation, their stability in the long
run has not been sufficiently studied [33–38] or it is limited to the investigation of pigment modification
without examining the binder behaviour [39]. In general, even if retouching is a consolidated praxis in
restoration, the monitoring of behaviour of retouched artworks is not widely applied, especially due
to the high costs or lack of maintenance programs. However, several cases of chromatic alteration in
areas retouched through watercolours were found, especially in red and brown painting zones where
iron based pigments were used [20].

The evaluation of stability of commercial products, used in conservation, can be performed
through different analytic and diagnostic techniques, requiring the preparation of a lot of micro-samples
to perform the analyses [40]. The use of sampling based techniques is not always possible
in conservation and monitoring, especially due to the difficulty or impossibility to repeat the
measurements in the same points during the time. For this reason, non-invasive no-contact methods
were chosen to study and monitor the photo degradation processes in watercolours and pigment
powders. Specifically, HSI in the short ware infrared region (SWIR) was used with the aim to early
detect and monitor the degradation of the investigated painting materials. HSI techniques were
widely applied for the identification and characterization of paint layers but rarely for monitoring of
degradation patterns [41–47]. Infrared reflectance spectroscopy is a well-known technique to obtain
materials characterization and to set up a correct diagnostic plan based on non-destructive and
non-invasive approach [4,48–55]. In particular, the SWIR range provides information about vibrational
transitions, which are mostly overtones and combination bands whose fundamental transitions occur
in the mid-IR. These features are often related to functional groups, like hydroxyl (−OH), carbonate
(–CO3), and sulphate (–SO4) [56,57]. Absorption features from organic materials, like the paint binders,
can also be observed and used to map their spatial distribution [44,58,59].

Based on a previously published paper, the present work extends the HSI results to the entire set
of painting samples (totally 58) in order to make a comparison on a larger number of pigments [60].

In Section 2 (Materials and Methods), the experimental procedure will be reported. It is organized
as follows: Section 2.1 sample preparation and ageing; Section 2.2 hyperspectral imaging (HSI),
describing equipment and acquisition modalities; and, Section 2.3 spectral analysis, which reports
in detail the data elaboration and the definition of prediction model used in the work. The Section 3
concerns results and shows spectra, PCA score plots, and prediction models. Section 4 reports
discussion of the results shown in the Section 3. Last, Section 5 is devoted to the conclusions of
the paper and to further possible research lines to develop.

2. Materials and Methods

2.1. Sample Preparation and Ageing

As painting materials, commercial watercolours, professional series supplied by Winsor&Newton
both in form of tubes and pans, were selected in order to compare their stability, to light and UV
radiation, with that of iron oxide pigments [61] supplied by Chroma with the specification of the
country of origin, and two blue pigments in powder, all applied by gum Arabic (GA, by W&N) as
binder in order to have the same binder of commercial watercolours (see Tables 1 and 2 for pigment
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abbreviation and description). Only cobalt blue and ultramarine blue pigments were supplied by
Zecchi (Florence).

Table 1. W&N samples in pan and tube, abbreviation and description.

Abbreviation Visible Colour Description

GB1 Black Ivory black in pan
TB1 Black Ivory black in tube

GBr1 Dark brown Burnt umber in pan
TBr1 Dark brown Burnt umber in tube
GBr2 Light brown Natural umber in pan
TBr2 Light brown Natural umber in tube
GBr3 Reddish brown Burnt Sienna in pan
GBr4 Yellow-orange Natural Sienna in pan
TBr3 Reddish brown Burnt Sienna in tube
TBr4 Yellow-orange Natural Sienna in tube
GR1 Dark red Indian red in pan
TR1 Dark red Indian red in tube
GR2 Light red Venetian red in pan
TR2 Light red Venetian red in tube
GR3 Light red Cadmium red in pan
TR3 Light red Cadmium red in tube
GY1 Light Yellow Yellow ochre in pan
TY1 Light yellow Yellow ochre in tube
GG1 Green Bladder green in pan
TG1 Green Chrome green in tube
GG2 Green Viridian in pan
TG2 Green Viridian in tube
GC1 Blue Cobalt blue in pan
TC1 Blue Cobalt blue in tube
GU1 Blue Ultramarine blue in pan
TU1 Blue Ultramarine blue in pan

Table 2. Powder samples mixed with GA, abbreviation and description.

Abbreviation Visible Colour Description

Br1 Dark brown Burnt umber in powder + GA
Br2 Dark brown Burnt umber in powder + GA
Br3 Dark brown Natural umber in powder + GA
Br4 Dark brown Burnt umber in powder + GA
Br5 Dark brown Burnt umber in powder + GA
Br6 Dark brown Natural umber in powder + GA
Br7 Dark brown Natural umber in powder + GA
Br8 Dark brown Natural umber in powder + GA
Br9 Dark brown Burnt umber in powder + GA

Br10 Dark brown Natural umber in powder + GA
Br11 Dark brown Natural umber in powder + GA
R1 Light red Red ochre in powder + GA
R2 Dark red Red ochre in powder + GA
R3 Dark red Red ochre in powder + GA
R4 Dark red Red ochre powder + GA
R5 Dark red Red ochre powder + GA
R6 Light red Red ochre in powder + GA
R7 Light red Red ochre in powder + GA
Y1 Dark yellow Yellow ochre in powder + GA
Y2 Light yellow Yellow ochre in powder + GA
Y3 Light yellow Yellow ochre in powder + GA
Y4 Dark yellow Yellow ochre in powder + GA
Y5 Dark yellow Yellow ochre in powder + GA
Y6 Light yellow Yellow ochre in powder + GA
Y7 Dark yellow Yellow ochre in powder + GA
Y8 Light yellow Yellow ochre in powder + GA
Y9 Dark yellow Yellow ochre in powder + GA

Y10 Dark yellow Yellow ochre in powder + GA
Y11 Dark yellow Yellow ochre in powder + GA
Y12 Dark yellow Yellow ochre in powder + GA
CB1 Blue Cobalt blue in powder + GA
UB1 Blue Ultramarine blue in powder + GA

In the case of natural iron oxide pigments, more than one colour typology was found, for this
reason multiple samples are available for each kind of materials, i.e., five powders for burnt umber,
nine powders for dark yellow ochre, etc. (Table 2). Commercial watercolours were chosen in order to
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have, for each colour and when available, two typologies: tube and pan, which were chosen due to
their wide use in retouching (Table 1) [20]. The choice of samples for stability testing was also made on
the base of previous data reported in experimental theses [18,20].

According to these data, the traditional watercolours that were used by conservators were
classified between the less stable mixtures. For this reason, it was chosen to test the possibility of
substituting these watercolours with materials having the same or similar colour appearance but
prepared with natural pigments in powder and gum Arabic, without any additive.

The above described painting materials were homogeneously applied by brush on traditional
gypsum/glue ground in order to create colour check tables with the different chosen pigments.
Gypsum ground was chosen in order to simulate a painting repair to be covered by retouching,
as commonly occurs in the practice of restoration of painting lacuna (Figure 1) [20].

 

Figure 1. Painting samples with the corresponding abbreviations as explained in Tables 1 and 2.
GA and GG indicate gum Arabic and GG ground layer, respectively [60].

Artificial ageing was performed by a model 1500E Solar Box chamber (Erichsen Instruments
GmbH&Co, Hemer, Germany) simulating sunlight irradiation (visible and ultraviolet). The system
is equipped with a 2.5 kW xenon-arc lamp and UV filter that cuts off the spectrum at 280 nm [62,63].
The samples were exposed in the Solar Box chamber from 1 to 504 h at 550 W/m2, 55 ◦C, and the
UV filter at 280 nm. In these conditions, ageing was performed, evaluating the effects of light and
UV radiation without considering other environmental agents, such as relative humidity. Inside the
Solar Box chamber, relative humidity was constant (50%) and determined by the irradiation conditions.
Relative humidity was monitored by a data logger positioned inside the Solar Box.

Hyperspectral imaging data were acquired at the following ageing times: 0 h, 168 h, 336 h,
and 504 h, corresponding to 0 J/m2, 3.3 × 108 J/m2, 6.7 × 108 J/m2, and 1.0 × 109 J/m2, respectively,
of the total energy on the irradiated surfaces at the different times.

2.2. Hyperspectral Imaging (HSI)

Hyperspectral analyses were carried out on sample table at 0, 168, 336, and 504 h of exposure in the
wavelength interval 1000–2500 nm (SWIR). The acquisitions were performed utilizing the SISUChema
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XLTM (Specim, Oulu, Finland) device, equipped with a 31 mm lens allowing the acquisition of the
paint layer with a resolution of 300 micron/pixel.

The spectral resolution was 6.3 nm. Illumination was obtained by SPECIM’s diffuse line
illumination unit. Images were acquired through scanning each investigated sample line by line.
Instrument is delivered with spectral calibration. Image data is automatically calibrated to reflectance
by measuring an internal standard reference target before each sample scan.

The image correction was thus performed, adopting the following equation:

I =
I0 − B
W − B

× 100, (1)

where I is the corrected hyperspectral image, I0 is the original hyperspectral image, B is the black
reference image (~0% reflectance), and W is the white reference image (~99.9% reflectance).

2.3. Spectral Analysis

HSI derived spectral data were analyzed by adopting standard chemometric methods [64,65],
with the PLS_Toolbox (Version 8.2 Eigenvector Research, Inc., Manson, WA, USA) running inside
Matlab (Version 8.4, The Mathworks, Inc., Natick, WA, USA). More in details, the spectra preprocessing
was performed as follows: raw spectra were preliminary cut, at the beginning and at the end of the
investigated wavelength range, in order to eliminate unwanted effects due to lighting/background
noise. Preprocessing was adopted in order to reduce the noise and emphasize the spectral signal [66–69].
The following preprocessing algorithms were applied: standard normal variate (SNV) to reduce the
effect of light scattering; 1st derivative to emphasize the spectral absorption of the investigated paint
layers. Finally, Mean Center (MC) was adopted for centering the data before applying principal
component analysis.

Principal Component Analysis (PCA) was applied as a powerful and versatile method that is
capable of providing an overview of complex multivariate data. PCA can be used for revealing relations
existing between variables and samples (e.g., clustering), detecting outliers, finding and quantifying
patterns, generating new hypotheses, as well as many other things [70]. In this work, PCA was used
to decompose the “processed” spectral data into several principal components (PCs), embedding
the spectral variations of each collected spectral data set. The first few PCs, resulting from PCA,
are generally utilized to analyze the common features among samples and their grouping: in fact,
samples that are characterized by similar spectral signatures tend to aggregate in the score plot of the
first two or three components.

k-Nearest Neighbor (k-NN) is one of the most fundamental and simple “non parametric”
algorithm that is used in classification methods [71]. This algorithm has been used for creating the
prediction model that is used in the present work to establish the variations of painting surfaces over
time and at the different solar irradiation dose. Specifically, the proposed classification model is based
on the identification of a pictorial layer before ageing, i.e., at time 0 h.

 
(A) (B) 

Figure 2. Example of paint layer (R3) which does not exhibit variations during the whole ageing cycle
(A); example of paint layer (TBr3) showing significant spectral change after 168 h (B).
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If no spectral variations occur during irradiation in Solar Box (at times: 168 h, 336 h, and 504 h),
then the prediction model will identify the unchanged painting sample in all ageing times (Figure 2A).
Otherwise, if Solar Box irradiation causes chemical changes in a certain sample, the prediction model
will be able to identify the spectral variations in respect to time 0 and will highlight them (Figure 2B).

k-NN assumes that the data are in a feature space. More exactly, the data points are in a metric
space. The data can be scalars or possibly even multidimensional vectors. Since the points are in feature
space, they have a notion of distance. Each of the training data consists of a set of vectors and class
label associated with each vector [72]. Given a query vector x0 and a set of N labeled instances {xi, yi}
N1, the task of the classifier is to predict the class label of x0 on the predefined P classes [73]. The k-NN
classification algorithm tries to find the k nearest neighbors of x0 and it uses a majority vote to
determine the class label of x0. Without prior knowledge, the k-NN classifier usually applies Euclidean
distances as the distance metric [74]. The performance of a k-NN classifier is primarily determined by
the choice of k as well as the distance metric applied [75]. This number decides how many neighbors
(where neighbors are defined by a distance metric) influence the classification. However, it has been
shown that, when the points are not uniformly distributed, predetermining the value of k becomes
difficult. Generally, larger values of k are more immune to the noise presented and make boundaries
smoother between classes. The k-NN classification approach has been widely used in various types of
classification tasks. This classification approach has gained popularity based on low implementation
cost and high degree of classification effectiveness. However, its sample similarity computing is
very large, which limits its applications in some cases that have high dimensional spaces or very
large training sets [5,76]. In order to reduce the computation time and memory requirement without
sacrificing classification capability, we apply the k-NN algorithm to the score matrix T computed with
the PCA model.

3. Results

Preliminary results about the application of traditional techniques and HSI showed that, between
the four colours examined (burnt umber, raw Sienna, Venetian red, and yellow ochre), the pigment
powders mixed with gum Arabic are the most stable in regard to the artificial ageing [60]. This result
encouraged to apply the same elaboration of HSI data on the entire set of samples in order to verify if
effectively the pigment powders mixed with gum Arabic can be considered, in general, to be more
stable in respect to the commercial products of similar colours, but of different composition. In fact,
commercial mixtures contain additives and un-specified substances, added by supplier for improving
the characteristics of the products, which are not present in the mixtures prepared in our laboratory
only with powder and pure GA dissolved in water.

In Figure 3, the image of the sample set is shown, together with the false colour image representing
the acquired raw hypercube and the selected regions of interest (ROI). The false colours in Figure 3B
depend on the spectral information contained in each sample; as the data are not elaborated, it is not
possible, through these false colours, to see the little differences between the pigments that in many
cases are very similar in composition.

An example of ROI selection is also detailed in Figure 4. Different regions of interest were selected
in order to define, for each studied pigment, a specific area to investigate.
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Figure 3. Visible image of the sample set (A); false colour image representing the average values of the
raw hypercube after having imported it into Matlab (B) and the selected regions of interest (ROI) (C).

 

Figure 4. An example of ROI selection.

Subsequently, SWIR acquisition was performed, and the results have been shown as average and
pre-processed spectra. Pre-processing was adopted in order to better highlight the spectral differences
between the paintings (Figure 5A,B). The results of PCA are displayed in Figure 5C,D.

The full colour RGB (red, green and blue) images of painting samples, at the different ageing
times, are shown in Figure 6. They display the changes visible by eyes in painting samples,
but these images are not able to show little colour differences that could be associated to spectral
variations. The prediction/classification model, as described in the Section 2.3 named Spectral analysis,
was obtained in respect to time 0 h and displayed at 168 h, 336 h, and 504 h in order to highlight the
similarities or differences for each sample at the chosen ageing times. The calibration dataset of the
PCA-KNN classification model has been set by considering the spectra at time 0. PCA-KNN model,
applied in this modality, allows for seeing the variation of paint layers for each ageing time in respect
to time 0, based on the proximity of unknowns to the different groups in the training set [60,77–81].
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Figure 5. Average spectra of all painting samples (A); pre-processed spectra (B) and Principal
Component Analysis (PCA) score plots (C,D).
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Figure 6. Full colour RGB (red, green and blue) images of the sample set at the different ageing times.

The prediction for each painting sample is obtained and reported in Figures 7–11. Samples
were grouped, in each figure, according to their stability, as observed by applying the prediction/
classification model. The prediction map of each painting sample shows a logical (true/false) class
assignment to each specific class based on strict multiple-class assignment rules. The yellow colour
in Figures 7–11 identifies a specific painting sample at time zero and the painting samples with the
same spectral fingerprint. The blue colour is assigned to painting samples with different composition
and/or painting samples that degrade during ageing. i.e., that change the spectral profile.

Figure 7. The prediction model results for commercial watercolours exhibiting no variations
with ageing.
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Figure 8. Prediction model results for pigment powders, mixed with GA, exhibiting no variations
with ageing.

Figure 9. Prediction model results for painting samples exhibiting variations after 168 h of ageing.

Figure 10. Prediction model results for painting samples exhibiting variations after 336 h of ageing.

30



J. Imaging 2019, 5, 8

Figure 11. Prediction model results for painting samples exhibiting gradual variations until 504 h
of ageing.

4. Discussion

The average spectra in Figure 5A show the contribution of gypsum in all samples with the SWIR
absorption near 1450, 1490, and 1535 nm, and the OH/H2O features around 1750 and 1950 nm [44,77].
The presence, in the region 2000–2350 nm, of some absorption can be attributed to other inorganic
fractions. In this region, in fact, there are the absorption of calcium carbonate (around 2230, 2341,
2373 nm) and silicates (around 2200 and 2250 nm) [78]. In some cases, CaCO3 is contained in the
sample, as it was revealed by Fourier transform infrared (FT-IR ) spectroscopy [60].

Results of PCA are displayed in Figure 5C,D. They show a variance of 91.32% with the first three
principal components. The samples are grouped in different areas of the PCA score plot according to
the pigment colours and typologies. In some cases, pigments that are similar in colour and declared
composition, locate themselves in different regions of the score plot, such as, for example, samples Br1
and Br2 (both being burnt umber + GA). This behaviour can also be observed for samples in pan and
tube but with the same compositions, as also previously highlighted [60]. This is the case, for example,
of samples GY1 and TY1 (yellow ochre in pan and tube), samples GBr2 and TBr2 (natural umber in pan
and tube), GR2 and TR2 (Venetian red in pan and tube) and better in GC1 and TC1 (cobalt blue in pan
and tube) and in GG2/TG2 (Viridian in pan and tube). The difference that was observed between pan
and tube samples, of the same colour and typology has been attributed to the differences in additives
influencing the behaviour concerning ageing [60].

Differences can be observed also between natural iron oxide pigments, similar in colour and
composition, such as, for example, between the Y series (Y1-Y11). Samples Y4 and Y12 are well grouped
and differentiated in the PCA score plots (Figure 5C,D, respectively) as well as samples Y5 and Y7
(Figure 5C). These results demonstrated the great potentiality of PCA in separating and grouping
materials having very similar characteristics. GA and GG behaviour was widely discussed in the
previous paper and are not considered here [60].

Concerning the prediction model applied on the samples set, the results give double information.
Firstly, the prediction identifies the painting layer, starting from a calibration dataset composed of
58 pigments, with a low error related to pigments having similar fingerprint (i.e., similar composition).
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In the second step, the model evaluates the variation of the fingerprint in each sample in respect to time
0, highlighting how the spectral changes of the pigments occur during time. This double information is
particularly relevant in the field of restoration, because it allows for differentiating the retouched areas
in respect to the original painting, and also for monitoring the restored surfaces in order to evaluate
the possible degradation during the time. Moreover, another advantage of the prediction model is the
possibility for the restorer to select the retouching material with better performance in regard to ageing.

To deepen the behaviour of each single pigment, the test was applied on the different painting
areas at the chosen ageing time, as shown in Figures 7–11.

By observing the sample behaviour in Figures 7 and 8, it can be derived that the highest stability
against the artificial ageing can be seen in the following samples: GR1 (ivory black in pan), GBr1 (burnt
umber 1 in pan), GR1 (Indian red 1 in pan), GR2 (Venetian red 2 in pan), GBr3 (Burnt Sienna 3 in pan),
GY1 (yellow ochre 1 in pan), GG1 (bladder green 1 in pan), TR1 (Indian red 1 in tube), TBr1 (burnt
umber 1 in tube), GC1 (cobalt blue 1 in pan), GG2 (Viridian 2 in pan), TG1 (chrome green 1 in tube),
TG2 (Viridian 2 in tube), TC1 (cobalt blue 1 in tube), Br1 (burnt umber 1), Br4 (burnt umber 4),
Br5 (burnt umber 5), Y4 (yellow ochre 4), Y5 (yellow ochre 5), Y7 (yellow ochre 7), Y8 (yellow ochre
8), Y10 (yellow ochre), R1 (red ochre 1), R2 (red ochre 2), R3 (natural umber 3), R5 (red ochre 5),
Br6 (natural umber 6), Br10 (natural umber 10), and UB1 (ultramarine blue 1). These samples, in fact,
exhibit no variations during irradiation times, resulting in being stable also at high total energy dose,
i.e., 1.0 × 109 J/m2 reached at 504 h of ageing.

Samples having a similar composition seem to reduce the variability with the increasing of ageing
times. For example, the spectral signature of sample GBr2 (Figure 10) tends to overlap with that
of GBr1 (both burnt umber based pigments) after 336 h of ageing, corresponding to a total dose of
energy equal to 6.7 × 108 J/m2. The spectral signature of sample TR2 (Figure 9) overlaps with that of
sample GR2 (both Venetian red) after 168 h of ageing (total energy applied 3.3 × 108 J/m2). Sample
TR3 (Figure 9) spectral signature overlaps with that of GR3 (both cadmium red based pigments) after
168 h of ageing. Similar behaviour can be observed in samples TBr2 and TBr1 (two natural umber
watercolours in tube): the spectral signature of TBr2 (Figure 11) overlap to that of sample TBr1 after
336 h of ageing. Spectra of samples GBr4 (natural Sienna 4 in pan, Figure 9) and TBr3 (burnt Sienna 3
in tube, Figure 9) partially overlap with the spectral signature of sample Br1 (burnt umber 1) at 504 h of
ageing. Another observation can be derived by observing the spectral signature of sample Y12 (yellow
ochre 12, Figure 9), with the results being similar to that of Y7 (yellow ochre 7) at 336 h of irradiation in
Solar box. The spectral signature of sample Y11 (yellow ochre 11, Figure 10) appears similar to that of
R2 (red ochre 2) after 336 h of ageing. At last, the spectra of sample Br7 (natural umber 7, Figure 11)
and of sample Br3 (natural umber 3, Figure 9) appear to be similar to that of sample Br10 (natural
umber 10, Figure 8) after 336 h of ageing.

Samples GBr3 (burnt umber 3 in pan), TBr3 (burnt Sienna 3 in tube), Y9 (yellow ochre 9), and Y12
(yellow ochre 12) exhibit a definite variation after 168 h of ageing, whereas samples TR3 (cadmium red
3 in tube), Br3 (natural umber 3), and TR2 (Venetian red 2 in tube) show a partial degradation at 168 h
that becomes definite at 336 h of irradiation (Figure 9). Such degradation has been associated to Arabic
gum deterioration occurring between 168 h and 336 h of irradiation, combined with that of pigment
components, as previously discussed [60].

Some samples undergo degradation at 336 h of irradiation in Solar box (Figure 10). Specifically,
sample TBr4 (natural Sienna 4 in tube), TY1 (yellow ochre 1 in tube), GR2 (Venetian red 2 in pan),
TU1 (ultramarine blue 1 in tube), and Y11 (yellow ochre 11) show stability until 168 h of ageing and
then have a definite change at 336 h. Also, in this case, the changes can be associated to both gum
Arabic degradation (between 168 h and 336 h, energy range 3.3 × 108–6.7 × 108 J/m2) and to the
components of the watercolour and pigment mixtures.

A series of samples exhibits gradual variation until 504 h of ageing (Figure 11). In particular,
samples TB1 (ivory black 1 in tube), TBr2 (natural umber 2 in tube), Y1 (yellow ochre 1), Y2 (yellow
ochre 2), Y3 (yellow ochre 3), Y6 (yellow ochre 6), GU1 (ultramarine blue 1 in pan), R4 (red ochre 4),
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R6 (red ochre 6), R7 (red ochre 7), Br2 (burnt umber 2), Br7 (natural umber 7), Br8 (natural umber
8), and Br9 (burnt umber 9) exhibit partial degradation varying during the ageing times. It can be
hypothesized that the slow variation of the spectral signature is due to the unique degradation of gum
Arabic, whereas pigments seem stable and do not give clear changes at the measured time intervals.

For a better comprehension of the prediction test results, being a lot of samples, a final table is
reported (Table 3).

A general assessment derived from the Table 3 is that pigment powders mixed with gum Arabic
are stable to ageing apart from three samples: Br3, Y9, and Y12. This can be due to the presence of
additives in the powders or to the predominance of degradation of gum Arabic that could become
relevant in relation to the ratio pigment/binder.

The group of green watercolours exhibits high stability. In the case of the other watercolours,
the stability varies as function of colour and of watercolour typology, i.e., pan and tube, as also
previously found [60]. Sienna-based watercolours have in general low stability, both in pan and tube.

Table 3. Sample stability evaluation derived from the prediction model.

Commercial Watercolours Pigment Powders+Gum Arabic

Abbreviation Stability Abbreviation Stability

GB1 High Br1 High
TB1 Medium-high Br2 Medium-high

GBr1 High Br3 Medium-low
TBr1 High Br4 High
GBr2 Medium Br5 High
TBr2 Medium-high Br6 High
GBr3 Low Br7 Medium-high
GBr4 Low Br8 Medium-high
TBr3 Low Br9 Medium-high
TBr4 Medium Br10 High
GR1 High Br11 High
TR1 High R1 High
GR2 High R2 High
TR2 Medium-low R3 High
GR3 High R4 Medium-high
TR3 Medium-low R5 High
GY1 High R6 Medium-high
TY1 Medium R7 Medium-high
GG1 High Y1 Medium-high
TG1 High Y2 Medium-high
GG2 High Y3 Medium-high
TG2 High Y4 High
GC1 High Y5 High
TC1 High Y6 Medium-high
GU1 Medium-high Y7 High
TU1 Medium Y8 High

Y9 Low
Y10 High
Y11 Medium
Y12 Low
CB1 High
UB1 High

5. Conclusions

Hyperspectral Imaging (HSI) in the short-wave infrared was utilized to evaluate the stability to
light and UV ageing of a conspicuous number of painting materials, in particular powder pigments
and commercial watercolours to be used in retouching.
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The new methodological approach that was chosen for monitoring the ageing behaviour of
watercolour samples and pigment powder applied by gum Arabic, produced interesting results that
should be further discussed and investigated. Different degradation patterns have been observed
for the different pigments and also between tube and pan of the same watercolour. As previously
demonstrated, gum Arabic alone clearly showed degradation occurring between 168 and 336 h of
irradiation. However, when we observe the behaviour of gum Arabic/pigments mixtures, we found
that it depends both on the pigment itself but also probably on the combination pigment-gum Arabic
and furthermore on the presence of organic additives.

In some cases, the variation of paintings with ageing times is due to gum Arabic, such as in Y1-3,
R4, R6-7, Br7-9, Br2, TB1, TBr2, and GU1 and appear as a gradually occurring phenomenon from time
0 h to 504 h of irradiation in Solar box. In this case, the combination pigment-GA seems to create a
mixture that degrades slowly during time.

For other samples, the degradation of gum Arabic is the main cause of the observed variation in
the prediction model, specifically in samples TBr4, TY1, TU1, GBr2, and Y11. These samples, in fact,
show variations between 168 h and 336 h in the prediction model, i.e., the same range of degradation
of gum Arabic.

A group of painting samples exhibits a definite change at 168 h (GBr2, TBr3, Y9, and Y12) that
can be associated in part to the degradation of gum Arabic but also to that of pigment components.
This time corresponds to a total solar dose of 3.3 × 108 J/m2. In this same group we included other
three samples, TR3, TR2, and Br3, whose changes are observed at 168 h but become complete at 336 h
of ageing.

A conspicuous group (totally 31) of painting samples demonstrated high stability to ageing,
as shown in Figures 6 and 7 and Table 3, demonstrating. Fourteen of these samples are commercial
watercolours and seventeen are pigment powders mixed with gum Arabic. In this case, the combination
of gum Arabic, pigments, and additives (for commercial watercolours) creates stable mixtures that
also prevent the degradation of gum Arabic. In fact, some authors, through surface investigations,
suggested that a thin gum binder layer is present on the surface of watercolour paintings and that other
components, such as pigments and additives, are located within the gum layer [82]. So, they concluded
that the main changes should be attributed to gum Arabic binder. However, this result depends on
pigment typology, on extender, such as calcium carbonate, and additives, which could influence the
response of gum Arabic to ageing.

In general, it can be affirmed that the thirty-two investigated powder pigments mixed with gum
Arabic have high or medium-high stability to ageing under simulated solar radiation, apart from three
samples exhibiting low and medium-low stability and one having medium stability.

Tube and pan samples have different behaviour in relation to pigment. For example, green
watercolours were demonstrated to be very stable to ageing, whereas Sienna-based mixtures have,
in general, low stability. Some differences have been observed also between pan and tube of the same
watercolour, such as the case of GR2 and TR2, GR3, and TR3. As previously discussed, these differences
can be due to the different composition of pan and tube mixtures [60], in particular to the presence of
additives in the tube watercolours necessary for obtaining the desired rheological characteristics.

The results point out the potentiality of powder pigments to be used for obtaining stable
watercolours, without additives: these ones, in fact, as highlighted in other papers [19,20],
are responsible for the variability and degradation in watercolours and they should be better known in
order to evaluate the overall stability to ageing of these commercial materials [37,83], especially if they
should be used in retouching of artworks, as commonly occurs, especially in the case of wall paintings.

As final conclusion, it can be affirmed that HSI coupled with chemometric approach allow for
monitoring paint layers modifications during ageing time. Furthermore, the classification techniques
based on PCA-KNN, utilizing the hyperspectral data collected by HSI, clearly outlined the potentiality
of this approach for monitoring the changes occurring in the painting layers; this was possible thanks to
the evaluation of little variations in the spectra during ageing times before changes can be seen by eyes.
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We think that this result has great relevance in the cultural heritage field because it demonstrated the
possibility of detecting damages before they become irreversible. This approach could be particularly
useful in monitoring artworks and restoration interventions over times at relatively low cost in respect
to other analytical methods.

As future research lines, we think to apply the developed approach to other restoration materials
and reintegration products based on synthetic resins that have been introduced in the conservation
applications, as also suggested by conservators. The same approach in classification and predication
of material behaviour in regard to ageing can be applied on protective products for cultural heritage
artifacts, with the aim of testing both traditional and innovative products.

Author Contributions: Conceptualization C.P. and G.C.; methodology, G.B., G.C., C.P. and S.S.; software, G.C.;
validation, G.C.; formal analysis, G.C.; investigation, C.P. and G.C.; resources, G.B., S.S. and C.P.; data curation,
C.P. and G.C.; writing—original draft preparation, C.P. and G.C.; writing—review and editing, G.B., G.C., C.P. and
S.S.; visualization, C.P. and G.C.; supervision, G.B. and S.S.; project administration, G.B., S.S. and C.P.; funding
acquisition, G.B., S.S. and C.P.

Funding: This research was partially founded by MIUR (Italian Ministry for Education, University and Research)
with the special funding for the basic research activities of Claudia Pelosi (Law 232/2016), and by Lazio Region
(Grant No. G06970, 30 May 2018) for the Project ADAMO.

Acknowledgments: The authors would like to thank the staff members of the Laboratory of Diagnostics and
Materials Science of University of Tuscia for the technical support in preparing the samples used for the
experimental tests.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Polak, A.; Kelman, T.; Murray, P.; Marshall, S.; Stothard, D.J.M.; Eastaugh, N.; Eastaugh, F. Hyperspectral
imaging combined with data classification techniques as an aid for artwork authentication. J. Cult. Herit.
2017, 26, 1–11. [CrossRef]

2. Zucco, M.; Pisani, M.; Cavaleri, T. Fourier transform hyperspectral imaging for cultural heritage. In Fourier
Transforms–High-Tech Application and Current Trends; INTECH: London, UK, 2017; pp. 215–234.

3. Bonifazi, G.; Serranti, S.; Capobianco, G.; Agresti, G.; Calienno, L.; Picchio, R.; Lo Monaco, A.; Santamaria, U.;
Pelosi, C. Hyperspectral imaging as a technique for investigating the effect of consolidating materials on
wood. J. Electron. Imaging 2016, 26, 011003. [CrossRef]

4. Capobianco, G.; Bonifazi, G.; Prestileo, F.; Serranti, S. Pigment identification in pictorial layers by
Hyper-spectral Imaging. Proc. SPIE 2014, 9106, 91060B. [CrossRef]

5. Capobianco, G.; Bracciale, M.P.; Sali, D.; Sbardella, F.; Belloni, P.; Bonifazi, G.; Serranti, S.; Santarelli, M.L.;
Cestelli Guidi, M. Chemometrics approach to FT-IR hyperspectral imaging analysis of degradation products
in artwork cross-section. Microchem. J. 2017, 132, 69–76. [CrossRef]

6. Fischer, C.; Kakoulli, I. Multispectral and hyperspectral imaging technologies in conservation: Current
research and potential applications. Stud. Conserv. 2006, 51, 3–16. [CrossRef]

7. Catelli, E.; Randeberg, L.L.; Alsberg, B.K.; Gebremariam, K.F.; Bracci, S. An explorative chemometric
approach applied to hyperspectral images for the study of illuminated manuscripts. Spectrochim. Acta A
2017, 177, 69–78. [CrossRef]

8. Agresti, G.; Bonifazi, G.; Calienno, L.; Capobianco, G.; Lo Monaco, A.; Pelosi, C.; Picchio, R.;
Serranti, S. Surface investigation of photo-degraded wood by colour monitoring, infrared spectroscopy and
hyperspectral imaging. J. Spectrosc. 2013, 1, 380536. [CrossRef]

9. Bonifazi, G.; Calienno, L.; Capobianco, G.; Lo Monaco, A.; Pelosi, C.; Picchio, R.; Serranti, S. Modelling
color and chemical changes on normal and red heart beech wood by reflectance spectrophotometry, Fourier
Transform infrared spectroscopy and hyperspectral imaging. Polym. Degrad. Stab. 2015, 113, 10–21.
[CrossRef]

10. Westad, F.; Marini, F. Validation of chemometric models—A tutorial. Anal. Chim. Acta 2015, 893, 14–24.
[CrossRef]

11. De la Ossa, M.Á.; García-Ruiz, C.; Amigo, J.M. Near infrared spectral imaging for the analysis of dynamite
residues on human handprints. Talanta 2014, 130, 315–321. [CrossRef]

35



J. Imaging 2019, 5, 8

12. Bonifazi, G.; Capobianco, G.; Serranti, S. Asbestos containing materials detection and classification by the
use of hyperspectral imaging. J. Hazard. Mater. 2017, 344, 981–993. [CrossRef] [PubMed]

13. Burger, J.; Geladi, P. Hyperspectral NIR image regression part II: Dataset preprocessing diagnostics.
J. Chemometr. 2006, 20, 106–119. [CrossRef]

14. Van Ruth, S.M.; Villegas, B.; Akkermans, W.; Rozijn, M.; van der Kamp, H.; Koot, A. Prediction of the identity
of fats and oils by their fatty acid, triacylglycerol and volatile compositions using PLS-DA. Food Chem. 2010,
118, 948–955. [CrossRef]

15. Basri, K.N.; Hussain, M.N.; Bakar, J.; Sharif, Z.; Khir, M.F.A.; Zoolfakar, A.S. Classification and quantification
of palm oil adulteration via portable NIR spectroscopy. Spectrochim. Acta A 2017, 173, 335–342. [CrossRef]
[PubMed]

16. Clarke, J. Two aboriginal rock art pigments from western Australia: Their properties, use, and durability.
Stud. Conserv. 1976, 21, 134–142. [CrossRef]

17. Levison, H.W. Artists’ Pigments: Lightfastness Tests and Ratings: The Permanency of Artists’ Colors and an
Evaluation of Modern Pigments; Colorlab: Hallandale, FL, USA, 1976; p. 107.

18. Rossi, S. Studio Della Stabilità di Acquerelli Commerciali e Pigmenti Naturali per la Reintegrazione dei Beni
Culturali. Bachelor’s Thesis, University of Tuscia, Viterbo, Italy, 2016.

19. Lo Monaco, A.; Marabelli, M.; Pelosi, C.; Picchio, R. Colour measurements of surfaces to evaluate the
restoration materials. Proc. SPIE 2011, 8084, 1–14.

20. Di Marcello, S.; Notarstefano, C. La verifica della durabilità dei colori ad acquerello impiegati nella
reitegrazione pittorica dei dipinti murali. In A Scuola di Restauro; Bonelli, M., D’Agostino, L., Mercalli, M., Eds.;
Gangemi Editore: Roma, Italy, 2011; pp. 71–81, ISBN 978-88-492-2111-4.

21. Stoner, J.H.; Rischfield, R. Conservation of Easel Paintings (Routledge Series in Conservation and Museology),
1st ed.; Taylor & Francis: London, UK, 2012; ISBN 9780750681995.

22. Rebecca, E.; Smithen, P.; Turnbull, R. (Eds.) Mixing and Matching. Approaches to Retouching Paintings;
Archetype Publications in Association with the Icon Paintings Group and the British Association of Paintings
Conservators-Restorers (BAPCR): London, UK, 2010; ISBN 9781904982500.

23. Größl, M.; Harrison, S.; Kaml, I.; Kenndler, E. Characterisation of natural polysaccharides (plant gums) used
as binding media for artistic and historic works by capillary zone electrophoresis. J. Chromatogr. A 2005,
1077, 80–89. [CrossRef] [PubMed]

24. Ormsby, B.A.; Townsend, J.H.; Singer, B.W.; Dean, J.R. British watercolour cakes from the eighteenth to the
early twentieth century. Stud. Conserv. 2005, 50, 45–66. [CrossRef]

25. Caruso, S. Caratterizzazione e Invecchiamento di Leganti Pittorici a Base di Gomme Vegetali. Ph.D. Thesis,
University of Torino, Torino, Italy, 2006.

26. Bonaduce, I.; Brecoulaki, H.; Colombini, M.P.; Lluveras, A.; Restivo, V.; Ribechini, E. Gas chromatographic-
mass spectrometric characterisation of plant gums in samples from painted works of art. J. Chromatogr. A
2007, 1175, 275–282. [CrossRef]

27. Kokla, V.; Psarrou, A.; Konstantinou, V. Watercolour identification based on machine vision analysis.
e-Preserv. Sci. 2010, 7, 22–28.

28. Riedo, C.; Scalarone, D.; Chiantore, O. Advances in identification of plant gums in cultural heritage by
thermally assisted hydrolysis and methylation. Anal. Bioanal. Chem. 2010, 396, 1159–1569. [CrossRef]

29. Russell, W.; de Abney, W. Report on the Action of Light on Watercolours to the Science and Art Department of the
Committee of Council on Education; HMSO: London, UK, 1888.

30. Brommelle, N.S. The Russell and Abney report on the action of light on watercolours. Stud. Conserv. 1964, 9.
[CrossRef]

31. Whitmore, P.M.; Bailie, C. Studies on the photochemical stability of synthetic resin-based retouching paints:
The effect of white pigments and extenders. Stud. Conserv. 1990, 35, 144–149. [CrossRef]

32. Digney-Peer, S.; Thomas, K.; Perry, R.; Townsend, J.; Gritt, S. The imitative retouching of easel paintings.
In Conservation of Easel Paintings (Routledge Series in Conservation and Museology), 1st ed.; Routledge:
Abingdon-on-Thames, UK, 2012; pp. 607–634, ISBN 9780750681995.

33. Lerwill, A.; Townsend, J.H.; Thomas, J.; Hackney, S.; Caspers, C.; Liang, H. Photochemical colour change for
traditional watercolour pigments in low oxygen levels. Stud. Conserv. 2015, 60, 15–32. [CrossRef]

34. Lewill, A. Micro-Fading Spectrometry: An Investigation into the Display of Traditional Watercolour Pigments
in Anoxia. Ph.D. Thesis, Nottingham Trent University, Nottingham, UK, 2011.

36



J. Imaging 2019, 5, 8

35. Callede, B. Stabilité des Couleurs Utilisées en Restauration, Pigments Bleus; Comité pour la Conservation de
l’ICOM 4éme Reunion Triennale, ICOM: Venise, Italy, 1975.

36. De La Rie, E.R.; Lomax, S.Q.; Palmer, M.; Deming Glinsman, L.; Maines, C.A. An investigation of the
photochemical stability of urea-aldehyde resin retouching paints: Removability tests and colour spectroscopy.
Stud. Conserv. 2000, 45, 51–59. [CrossRef]

37. Korenberg, C. The photo-ageing behaviour of selected watercolour paints under anoxic conditions. Br. Mus.
Tech. Res. Bull. 2008, 2, 49–57.

38. Dellaportas, P.; Papageorgiou, E.; Panagiaris, G. Museum factors affecting the ageing process of organic
materials: Review on experimental designs and the INVENVORG project as a pilot study. Herit. Sci. 2014, 2,
1–11. [CrossRef]

39. Bailão San Andrés, A.; Calvo, A. Colorimetric analysis of two watercolours used in retouching. Int. J.
Conserv. Sci. 2014, 5, 329–342.

40. Ropret, P.; Zoubek, R.; Sever Škapin, A.; Bukovec, P. Effects of ageing on different binders for retouching
and on some binder–pigment combinations used for restoration of wall paintings. Mater. Charact. 2007, 58,
1148–1159. [CrossRef]

41. Pelosi, C.; Marabelli, M.; Patrizi, F.; Ortenzi, F.; Giurlanda, F.; Falcucci, C. Valutazione della Stabilità degli
Acquerelli nel Restauro Attraverso Misure di Colore; Atti della V Conferenza Nazionale del Gruppo Colore,
StarryLink Editrice: Brescia, Italy, 2009; pp. 141–149.

42. Kubik, M. Hyperspectral imaging: A new technique for the non-invasive study of artworks. Phys. Tech.
Study Art Archaeol. Cult. Herit. 2007, 2, 199–259. [CrossRef]

43. Aceto, M.; Agostino, A.; Fenoglio, G.; Idone, A.; Gulmini, M.; Picollo, M.; Ricciardi, P.; Delaney, J.K.
Characterisation of colourants on illuminated manuscripts by portable fibre optic UV-visible-NIR reflectance
spectrophotometry. Anal. Methods 2014, 6, 1488–1500. [CrossRef]

44. Delaney, J.K.; Zeibel, J.G.; Thoury, M.; Littleton, R.; Palmer, M.; Morales, K.M.; De la Rie, E.R.; Hoenigswald, A.
Visible and infrared imaging spectroscopy of Picasso’s Harlequin musician: Mapping and identification of
artist materials in situ. Appl. Spectrosc. 2010, 64, 584–594. [CrossRef]

45. Rosi, F.; Grazia, C.; Gabrieli, F.; Romani, A.; Paolantoni, M.; Vivani, R.; Brunetti, B.G.; Colomban, P.; Miliani, C.
UV–Vis-NIR and micro Raman spectroscopies for the non destructive identification of Cd1-xZnxS solid
solutions in cadmium yellow pigments. Microchem. J. 2016, 124, 856–867. [CrossRef]

46. Miliani, C.; Rosi, F.; Brunetti, B.G.; Sgamellotti, A. In situ noninvasive study of artworks: The MOLAB
multitechnique approach. Acc. Chem. Res. 2010, 43, 728–738. [CrossRef] [PubMed]

47. Balas, C.; Papadakis, V.; Papadakis, N.; Papadakis, A.; Vazgiouraki, E.; Themelis, G. A novel hyper-spectral
imaging apparatus for the non-destructive analysis of objects of artistic and historic value. J. Cult. Herit.
2003, 4, 330–337. [CrossRef]

48. Rusu, R.D.; Simionescu, B.; Oancea, A.V.; Geba, M.; Stratulat, L.; Salajan, D.; Ursu, L.E.; Popescu, M.C.;
Dobromir, M.; Murariu, M.; et al. Analysis and structural characterization of pigments and materials used in
Nicolae Grigorescu heritage paintings. Spectrochim. Acta A 2016, 168, 218–229. [CrossRef]

49. Arrizabalaga, I.; Gómez-Laserna, O.; Aramendia, J.; Arana, G.; Madariaga, J.M. Applicability of a diffuse
reflectance infrared Fourier transform handheld spectrometer to perform in situ analyses on cultural heritage
materials. Spectrochim. Acta A 2014, 129, 259–267. [CrossRef]

50. Arrizabalaga, I.; Gómez-Laserna, O.; Aramendia, J.; Arana, G.; Madariaga, J.M. Determination of the
pigments present in a wallpaper of the middle nineteenth century: The combination of mid-diffuse reflectance
and far infrared spectroscopies. Spectrochim. Acta A 2014, 124, 308–314. [CrossRef]

51. Von Aderkas, E.L.; Barsan, M.M.; Gilson, D.F.; Butler, I.S. Application of photoacoustic infrared spectroscopy
in the forensic analysis of artists’ inorganic pigments. Spectrochim. Acta A 2010, 77, 954–959. [CrossRef]

52. Maynez-Rojas, M.A.; Casanova-González, E.; Ruvalcaba-Sil, J.L. Identification of natural red and purple
dyes on textiles by fiber-optics reflectance spectroscopy. Spectrochim. Acta A 2017, 178, 239–250. [CrossRef]
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Abstract: Diabetic foot ulcers are a major complication of diabetes and present a considerable burden
for both patients and health care providers. As healing often takes many months, a method of
determining which ulcers would be most likely to heal would be of great value in identifying
patients who require further intervention at an early stage. Hyperspectral imaging (HSI) is a tool
that has the potential to meet this clinical need. Due to the different absorption spectra of oxy-
and deoxyhemoglobin, in biomedical HSI the majority of research has utilized reflectance spectra to
estimate oxygen saturation (SpO2) values from peripheral tissue. In an earlier study, HSI of 43 patients
with diabetic foot ulcers at the time of presentation revealed that ulcer healing by 12 weeks could be
predicted by the assessment of SpO2 calculated from these images. Principal component analysis
(PCA) is an alternative approach to analyzing HSI data. Although frequently applied in other
fields, mapping of SpO2 is more common in biomedical HSI. It is therefore valuable to compare
the performance of PCA with SpO2 measurement in the prediction of wound healing. Data from
the same study group have now been used to examine the relationship between ulcer healing by
12 weeks when the results of the original HSI are analyzed using PCA. At the optimum thresholds,
the sensitivity of prediction of healing by 12 weeks using PCA (87.5%) was greater than that of SpO2

(50.0%), with both approaches showing equal specificity (88.2%). The positive predictive value of
PCA and oxygen saturation analysis was 0.91 and 0.86, respectively, and a comparison by receiver
operating characteristic curve analysis revealed an area under the curve of 0.88 for PCA compared
with 0.66 using SpO2 analysis. It is concluded that HSI may be a better predictor of healing when
analyzed by PCA than by SpO2.

Keywords: hyperspectral imaging; principal component analysis; oxygen saturation; wound healing;
diabetic foot ulcer

1. Introduction

Diabetic foot ulcers are thought to affect 15–25% of people with diabetes during their lifetime [1]
and are a major source of suffering and cost. The principal pathological conditions contributing to foot
ulceration are peripheral neuropathy, peripheral artery disease, pre-existing deformity, and trauma,
but the contributions of each vary considerably. While some ulcers heal relatively quickly, others fail
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to heal and deteriorate. An accurate prediction of those ulcers least likely to heal quickly can therefore
be useful, because it would enable consideration of more intensive intervention at an earlier stage and
thereby improve overall outcome.

Peripheral artery disease can both cause ulceration and delay its healing by reducing the delivery
of oxygen to peripheral tissues. While there are a number of approaches to assessing the extent of
disease in larger arteries (including pulse palpation, pressure measurements, and angiography),
none are routinely used to investigate associated dysfunction of smaller arteries, arterioles,
and capillaries. One option that has been explored is hyperspectral imaging (HSI).

HSI is a noninvasive technique by which images are formed at different wavelengths to produce a
hypercube (x, y, λ). Due to the different absorption spectra of oxy- and deoxyhemoglobin, in biomedical
HSI the majority of research has utilized the reflectance hypercube to estimate oxygen saturation (SpO2)
values from peripheral tissue [2–9].

Greenman and colleagues used HSI to investigate whether oxygen delivery and muscle
metabolism were factors in diabetic foot disease. That study included 108 individuals without
ulceration, comparing three groups: volunteers without diabetes, diabetic patients without neuropathy,
and patients with both diabetes and neuropathy [5]. SpO2 was reduced in people with diabetes,
and especially in those with neuropathy. Yudovsky et al. [6] also used HSI in the visible spectrum
(450–700 nm) to predict tissue breakdown. A two-layer (epidermis, dermis) skin model was used to fit
to the measured data and obtain an index of SpO2. The algorithm was able to predict tissue at risk of
ulceration with a sensitivity and specificity of 95% and 80% respectively, 58 days before breakdown is
visible to the naked eye [6].

A formula to derive an indication of SpO2 from HSI was also used by Khaodhiar et al. [7] to
estimate oxyhemoglobin and deoxyhemoglobin of 10 patients with type 1 diabetes with foot ulcers,
13 without ulcers, and 14 subjects without diabetes. A spectrum for each pixel was compared with
standard tissue to determine measures of oxyhemoglobin and deoxyhemoglobin. Using this approach,
the sensitivity and specificity of HSI in predicting ulcer healing were 93% and 86%, while the positive
and negative predictive values for ulceration were calculated as 93% and 86%. Nouvong et al. [8]
used a similar approach to estimate relative values of tissue oxyhemoglobin and deoxyhemoglobin in
66 people with diabetic foot ulcers and reported that the sensitivity of HSI to predict healing within
6 months was 80% and the specificity was 74%. As discussed in our previous work [9], both of these
papers had weaknesses, which helps to explain the differences between results of [7–9]. The first
study [7] was very small and acknowledged to be simply a pilot, and both studies based their analysis
on outcome per ulcer rather than outcome per person. The population included in the second study [8]
was also highly selected, with a mean age of participants of just over 50 years, much younger than a
representative population with diabetic foot ulcers.

Principal component analysis (PCA) is an alternative approach to analyzing HSI data. Although
frequently applied in other fields, such as remote sensing and the food industry, mapping of SpO2 is
more common in biomedical HSI. It is therefore valuable to compare the performance of PCA with
SpO2 measurement in the prediction of wound healing. PCA is a process that converts a number of
possibly correlated variables into a set of linearly uncorrelated variables called principal components.
PCA has been demonstrated to be an effective and efficient preprocessing method, as retaining only the
first few principal components significantly reduces data [10]. In the food industry, PCA and HSI have
been applied to tea classification [11], detection of bruise damage on mushrooms [12], and estimation
of the quality of pork [13]. Some examples of the application of PCA in in vivo biomedical HSI are
provided in useful reviews [14–16], with a focus on laparoscopic imaging [11,12]. PCA has also been
used as a dimension-reduction algorithm for wavelet-based segmentation of hyperspectral colon tissue
imagery [17]. For tissue measurement, the contiguous bands of a hypercube are highly correlated,
as they are dominated by the oxy- and deoxyhemoglobin spectra. This has the benefit of being a
data-reduction method for the hypercubes obtained from the tissues of feet affected by ulcers.
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This study performed a novel investigation by comparing the performance of PCA with more
widely used SpO2 measurements in predicting whether a wound will heal within 12 weeks of
presentation. More accurate prediction of wound healing will support earlier intervention and
better treatment.

2. Method

2.1. Experimental Setup

The HSI setup is shown in Figure 1. Illumination of the foot was via 16 × 1 W white light-emitting
diodes (LEDs) (LXHL-MWEC, LumiledsTM Lighting, San Jose, CA, USA) with 8 units placed on either
side of the camera. Light scattered from the foot was passed through an aperture, which controlled
the amount of collected light and was focused onto a detector by a C-mount lens (f = 15 mm,
f# = 2.2; Schneider).

 
Figure 1. Hyperspectral imaging setup for imaging the foot (foot-to-lens distance typically 25–30 cm).

The HSI camera is a “push-broom” type that images a line from the scene onto a diffraction grating,
which splits the light into a range of colors across the photosensor array. The camera comprises
a Peltier cooled charge-coupled device (CCD) (Sensicam QE, PCO imaging, Cooke Corporation,
Auburn Hills, MI, USA) coupled to an imaging spectrograph (ImSpector V10E, Specim Ltd., Oulu,
Finland), which contains an input slit and a prism–grating–prism system. The input slit defines the
field of view for the spatial scan, while the prism–grating–prism diffracts the light from the aperture
into its spectrum. Scanning the line allows a 3D data cube that is transmitted to a PC via a peripheral
component interface (PCI) for storage and future analysis. For the measurements taken in this study,
each 3D data cube contained 2D spatial images (120 × 170 pixels) over a wavelength range from 430 nm
to 750 nm (272 values). The sweep of the system moves from heel to toe and takes ~30 s to obtain
an image, with an exposure time of 100 ms per row. Calibration images of white (99% reflectance
Spectralon; Labsphere, Inc., North Sutton, NH, USA) and black (lens cap on camera) targets are
recorded to take into account the effects of the nonuniform spectrum of the light source and dark noise,
respectively. In order to reduce noise but not lose significant features in the reflected light spectra,
a 9 point moving average filter is applied to the spectra.

For a certain position in the image plane (x, y) at a wavelength λ, the calibrated attenuation value
is calculated as:

A(x, y, λ) = − log
Isample(x, y, λ)− Idark(x, y, λ)
Iwhite(x, y, λ)− Idark(x, y, λ)

(1)

where Isample is the intensity measured from the raw image, and Iwhite and Idark are the intensities of
the white and dark references, respectively.
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2.2. Clinical Protocol

The data used to compare prediction of wound healing via SpO2 and PCA were obtained in a
clinical study described previously [9]. The published study received research ethics approval and all
participants provided written informed consent. Recruitment was of a consecutive cohort, and the only
major prespecified exclusions were those with a unilateral major amputation and those who withheld
or were unable to give informed consent [9]. There was therefore no control of gender balance, as one
would expect a predominance of male patients in all studies of foot ulcers. There was also no control
of diabetes type, as this is not a recognized significant factor associated with the outcome of diabetic
foot ulcers.

Participants attending an imaging session were required to avoid drinking tea or coffee and
smoking tobacco for at least 2 hours prior to the visit, as these stimulants could lead to a change in
blood flow. Capillary glucose was determined on arrival, and patients who were hypoglycemic were
excluded from the study. All the studies were undertaken in a temperature-controlled clinic room at
22 ◦C and the test time was between 09:00 and 12:00. Prior to any assessments, participants lay on an
examination couch for at least 15 minutes after removing their shoes and socks. Intensity hypercubes
of the ulcer site were obtained for each participant, and the data were processed using SpO2 algorithms
and PCA, as described in Sections 2.3 and 2.4, respectively.

2.3. SpO2 Data Processing

Oxygen saturation is defined as:

SpO2 =
HbO2

HbO2 + Hb
× 100% (2)

where HbO2 is the concentration of oxyhemoglobin (mole L−1) and Hb is the concentration of
deoxyhemoglobin (mole L−1).

Due to the different absorption spectra of the dominant absorbers, oxy- and deoxyhemoglobin, it is
possible to extract information about the oxygen saturation of tissues based on optical measurements
such as HSI.

The absorption coefficient (μa(λ)) and attenuation (A(λ)) can be expressed as [18]:

μa(λ) = α(λ)[HbO2] + β(λ)[Hb] (3)

A(λ) = (α(λ)[HbO2] + β(λ)[Hb])d (4)

where α(λ) is the specific absorption of oxyhemoglobin (cm−1 mole−1 L), β(λ) is the specific absorption
of deoxyhemoglobin (cm−1 mole−1 L), and d is the path length of the light (cm).

If μa(λ) is known at 2 wavelengths, then it is straightforward to calculate SpO2 from Equations (3)
and (2), as α(λ) and β(λ) are known from literature values. A challenge is to relate measurements
of A(λ) and μa(λ). In the absence of light scattering, the path length is the geometric path length
through the sample and the relationship is the Lambert–Beer law. In practice, the relationship between
attenuation and absorption is nonlinear due to light scattering. An approximation is therefore needed
to relate A(λ) and μa(λ) in the presence of light scattering. The most commonly applied is the modified
Lambert–Beer law [19,20]:

A(λ) = μa(λ)d + G (5)

where an offset G is used to take into account attenuation due to scattering. Alternative relationships
include a parabolic model [21]:

A(λ) = −a(μa(λ)d)
2 + bμa(λ)d + G (6)
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where a and b are fitting parameters, as well as a power law model derived from photon diffusion
theory [22]:

A(λ) = aμ
1
2
a (λ) + G (7)

Here, a model is applied based on the power law approximation [18]:

A(λ) = aμb
a(λ) + G (8)

where a and b are fitting parameters. It should be noted that when b = 1, this equation is same as
the modified Lambert–Beer Law (Equation (5)) and when b = 0.5 the equation becomes the power
law model described in Equation (7). Using Equation (8) to fit to the measured data and applying
Equations (3) and (2) enabled images of oxygen saturation to be obtained. The fit is performed with a
nonlinear search algorithm that uses the simplex search method [18,23]. This is a direct search method
that does not use numerical or analytic gradients. For n unknown parameters of the fitting equation,
the simplex in n-dimensional space is characterized by the n + 1 distinct vectors that are its vertices.
At each step of the search, a new point in or near the current simplex is generated. The function’s
value at the new point is compared with its values at the vertices of the simplex, and usually one of the
vertices is replaced by the new point, giving a new simplex. This step is repeated until the diameter of
the simplex is less than the specified tolerance. The fitting algorithm and model have been previously
validated using Monte Carlo data that simulate light propagation in tissue [18]. In the presence of
noise, this method was found to be robust and was subsequently applied to tissue measurement.

Similar to [9], tissue oxygenation was assessed by HSI at a site measuring 1 cm2 in an area of
intact skin adjacent (typically 1–5 mm) to the edge of the ulcer and unaffected by callus.

2.4. Principal Component Analysis

The method applied in the wound study follows a similar approach to that described in the
literature for applications in the food industry [11–13]. A cropped region of interest of 50 × 50 pixels
was selected, as this was found to be sufficient to extract the wound and surrounding tissue for all the
images obtained. Where background pixels remained in the image (e.g., when a wound was close to or
on a toe), these were removed by thresholding, as the attenuation of the background was lower than
that of tissue.

The process of converting the three-dimensional data cube into images of each of the principal
components is shown in Figure 2. The data cube is first unfolded into a two-dimensional matrix,
where each column represents all pixels contained in one spectral band of the original image cube and
each row represents each pixel’s spectrum (Figure 2). Mathematically this is expressed as [24]:

Ai = [A(λi)1, A(λi)2, . . . , A(λi)N ]
T
i (9)

where N is the total number of pixels in the image, A(λi) is the attenuation at each pixel, i represents
the wavelength bin number of the spectrum, and T denotes the transpose.

To calculate the principal components, it is necessary to calculate the eigenvectors and eigenvalues
of the 2D matrix (Figure 2c). The mean vector is given by:

m =
1
N

N

∑
i=1

Ai (10)

The covariance matrix of Ai is expressed as:

Cov(A) =
1
N

N

∑
i=1

(Ai − m)(Ai − m)T (11)
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Figure 2. Principal component analysis (PCA) applied to a hypercube, where e-vector means
eigenvector and e-value means eigenvalue: unfold (a) 3-D datacube into (b) 2-D matrix; (c) obtain
eigenvectors and eigenvalues from covariance matrix; (d) multiply the 2-D matrix by the eigenvectors
to obtain a score matrix; (e) refold the score matrix to form images at each principal component.

PCA is dependent on the eigenvalue decomposition of the covariance matrix, and Cov(x) can be
denoted in another form as:

Cov(A) = UDUT (12)
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D = diag (P1, P2, . . . , PN) (13)

U = (u1, u2, . . . uN) (14)

where D is the diagonal matrix, P is the eigenvalues of the covariance matrix, and U is the orthonormal
matrix that contains the eigenvectors of the covariance matrix.

Multiplying the 2-D matrix Ai by the eigenvector matrix provides a score matrix vi (Figure 2d),
which can then be refolded to form a data cube that represents images of principal components.

vi = UT Ai (i = 1, 2, . . . , M) (15)

Arranging these images according to the magnitude of the eigenvector (P1 � P2 � . . . � PN)
enables data reduction, as usually only information is contained in the first few principal components.
In this case, the oxy- and deoxyhemoglobin spectra are correlated and only the first two principal
components (PC1 and PC2) are used for image classification.

In order to compare the classification performance of using SpO2 values or PCA, receiver operating
characteristic (ROC) curves are used to express the performance of a binary classifier system due to
a varying discrimination threshold. An ROC curve is obtained by plotting true positive rate (TPR)
against false positive rate (FPR). TPR is the fraction of true positives out of the total actual positives.
FPR is the fraction of false positives out of the total actual negatives.

3. Results

A total of 43 volunteers participated in the clinical study, as previously reported [9]. There were
12 women and 31 men; mean age was 62.7 years. Six of the 43 patients had type 1 diabetes and 37 had
type 2 diabetes; 9 were smokers and 39 patients were judged to have neuropathy. Median (range)
ankle brachial pressure index (ABPI) was 1.06 (0.15–1.63). Median (range) estimated duration of ulcers
prior to assessment was 4.97 (1–26) weeks. 24 healed by 12 weeks and a further 7 healed between 12
and 24 weeks. Ten ulcers did not heal within 24 weeks of follow-up.

3.1. Oxygen Saturation Analysis

As previously reported [9], the SpO2 results from baseline were significantly different between
ulcers that did and did not heal within 12 weeks, but not between those that did and did not by
24 weeks. Figure 3 shows measured SpO2 at a point adjacent to the wound site against healing time
(healed by 12 weeks represented by blue diamonds, unhealed at 12 weeks represented by red triangles).
The dashed line shows the optimum threshold using Youden’s index [25] obtained from the ROC
curve shown in the next section. An R2 value of 0.4 was obtained when applying a linear fit to the data
obtained for healing within the first 12 weeks.

For the SpO2 classifier with the threshold set to 59.5%, the black dashed line (shown in Figure 3)
can be used as the decision line where patients with SpO2 values adjacent to the wound site lower than
the threshold are classified as healing by 12 weeks. Only two of the unhealed ulcers were grouped
incorrectly. The TPR was 50.0% (12 of 24) and the FPR was 11.8% (2 of 17). When using SpO2 values to
predict the healing of diabetic ulcers in 12 weeks, the sensitivity was 50% (12 of 24), the specificity was
88.2% (15 of 17), and the positive predictive value was 85.7% (12 of 14).
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Figure 3. Relationship between time to healing (days) and oxygen saturation in a region adjacent to
the wound. In order to plot unhealed ulcers, their healing days were set at 200 (higher than all the
healing days of the healed ulcers). The dashed line represents the optimum threshold calculated from
Youden’s index.

3.2. Principal Component Analysis

PC1 and PCs greater than 2 did not provide any indication of wound healing, so it was not
possible to identify a threshold for classification of wound healing in these cases. There was, however,
clustering of data corresponding to healing within 12 weeks in the second principal component (PC2)
scores and thresholds could be selected. Figure 4 shows PC2 against time to healing for all patients
(healed by 12 weeks represented by blue diamonds, unhealed at 12 weeks represented by red triangles).
Using Youden’s index sets the upper and lower PC2 thresholds to +0.62 and −0.62. In this case,
the TPR was 87.5% and the FPR was 11.8%. The sensitivity was 87.5% (21 of 24), the specificity was
88.2% (15 of 17), and the positive predictive value was 91.3% (21 of 23).

Figure 4. Relationship between time to healing (days) and principal component 2 (PC2). In order to
plot unhealed ulcers, healing days was set at 200 (higher than all the healing days of the healed ulcers).
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In order to further compare the performance of SpO2 and PC2 classifiers, the ROC curve in
Figure 5 shows the PCA classifier (blue line) much closer to the ideal right-angled case than the SpO2

classifier (red line). A common method to compare classifiers in a single scalar value is to calculate the
area under the ROC curve (AUC) [26]. The AUC under the PCA classifier is 0.88, which is 33% more
than the AUC for the SpO2 classifier (0.66).

Figure 5. Receiver operating characteristic (ROC) analysis: red line indicates classification based on
SpO2 values adjacent to the wound site and blue line represents classification based on the absolute
value of the PC2 score. Black dashed line is the worst case.

4. Discussion and Conclusions

Hyperspectral imaging is a tool that has the potential to predict healing of diabetic foot ulcers.
Such a tool would be highly beneficial, as foot ulcers represent a major complication of diabetes and
are a considerable burden for both patients and health care providers. Healing often takes many
months and accurate prediction of those ulcers least likely to heal quickly can therefore be useful,
because it would enable more intensive intervention at an earlier stage, which could improve overall
outcome. Due to the different absorption spectra of oxy- and deoxyhemoglobin, biomedical HSI
has previously predicted wound healing based on SpO2 values. Principal component analysis is an
alternative approach that has not been investigated in the prediction of wound healing. It is therefore
of value to investigate whether PCA improves the prediction of wound healing and to compare this
with the performance of SpO2 mapping.

Hyperspectral images from a previous study of 43 patients with wounds were analyzed by using
both SpO2 values and PCA, and the principal finding was that classification of time to healing by
12 weeks based on PCA (sensitivity = 87.5%, specificity = 88.2%) outperformed that using SpO2

(sensitivity = 50%, specificity = 88.2%). Comparison by receiver operating characteristic (ROC) analysis
revealed an area under the curve of 0.88 for PCA, compared with 0.66 using oxygen saturation analysis.
Thus, PCA based on the second principal component appeared superior to analysis using SpO2 values
in predicting healing of wounds by 12 weeks based on hyperspectral images taken at baseline.

Although one cannot uniquely map a physical property onto a principal component, it is
interesting to consider how physical properties influence PCs. The absorption spectra over the range
of interest (430–750 nm) are dominated by oxy- and deoxyhemoglobin. These have broadly similar
features, i.e., high absorption in the blue/green region, reducing into the red/near-infrared range.
We believe that these features are captured by PC1. Differences in the oxy- and deoxyhemoglobin
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spectra are then characterized by PC2, which provides discrimination of wound healing with superior
performance to that achieved by more widely applied SpO2 measurement approaches. Due to the
dominance of oxy- and deoxyhemoglobin, PCs greater than 2 provide no discriminatory value.

The classification performance obtained in this study is slightly better than that of our earlier
publication [9] and is comparable to that obtained by another [7], which reported estimates of sensitivity
and specificity of 93% and 86%, respectively, in a rather smaller group of patients. SpO2 values may still
be useful in cases where a hyperspectral camera is not available (as, for example, when making single
point measurements using a lower-cost spectrometer-based method or when making measurements
with a wound dressing with a fiber optic probe placed adjacent to the wound site). Furthermore, the
previous demonstration that SpO2 values on the top of the foot are well correlated with those on the
underside means that precisely locating the fiber optic probe may not be necessary.
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Abstract: The ability to establish the exact time a crime was committed is one of the fundamental
aims of forensic science. The analysis of recovered evidence can provide information to assist in age
determination, such as blood, which is one of the most commonly encountered types of biological
evidence and the most common fingerprint contaminant. There are currently no accepted methods
to establish the age of a blood-stained fingerprint, so progress in this area would be of considerable
benefit for forensic investigations. A novel application of visible wavelength reflectance, hyperspectral
imaging (HSI), is used for the detection and age determination of blood-stained fingerprints on white
ceramic tiles. Both identification and age determination are based on the unique visible absorption
spectrum of haemoglobin between 400 and 680 nm and the presence of the Soret peak at 415 nm.
In this study, blood-stained fingerprints were aged over 30 days and analysed using HSI. False colour
aging scales were produced from a 30-day scale and a 24 h scale, allowing for a clear visual method
for age estimations for deposited blood-stained fingerprints. Nine blood-stained fingerprints of
varying ages deposited on one white ceramic tile were easily distinguishable using the 30-day false
colour scale.

Keywords: fingerprints; blood detection; age determination; hyperspectral imaging

1. Introduction

The reliable and accurate determination of when a crime was committed is one of the fundamental
aims of forensic research. The analysis of recovered evidence from a crime scene can provide
information to assist in this determination. At violent crime scenes, blood is one of the most commonly
encountered types of biological evidence [1] and is the most common fingerprint contaminant [2].
The initial objective when dealing with suspected blood evidence is to conclusively establish that
the substance is actually blood [3]. Dark substrates can pose considerable problems, due to the low
contrast between the substrate and the fingerprint, due to the high amount of incident light absorbed
by the surface [3]. Other colours or patterns that are particularly similar to the stain can also cause
issues for identification through visual examination alone. Presumptive tests are therefore used as
part of the current forensic workflow to indicate the presence of blood [2]. Despite a high sensitivity
to blood, these wet chemical tests are not specific to blood and can generate false positives [2]. Wet
chemical testing can also contaminate the stain, potentially having a detrimental effect on subsequent
DNA analysis [4]. Previous and current research has therefore focused on the development of alternate
methods for the non-destructive identification of blood [1,5–13].

The ability to establish the age of a fingerprint is a highly relevant factor in criminal
investigations [14]. Convictions can largely depend on the ability to show whether a fingerprint
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was deposited at the time a crime was committed or from a previous legitimate visit, as is often
claimed by the defence team [15,16]. There are currently no accepted analytical methods for reliably
establishing a time frame when a fingerprint was deposited, and speculation around age is subject to
considerable error [17]. This is primarily due to the unreliability of previously proposed methods [14].
Successful identification of blood and estimation of the age of a blood-stained fingerprint could provide
the first indication to investigators as to when a crime was committed [18]. This could be especially
beneficial if a blood-stained fingerprint is the only evidence available.

Early research made small steps forward in scientific knowledge, including exploring the solubility
of blood in water over time, as the solubility rapidly drops over time before decreasing more slowly [19].
Other techniques have also furthered the understanding of the effect of time on blood stains, including
the use of oxygen electrodes to establish the changes that occur to the oxyhaemoglobin–haemoglobin
ratio in blood stains [20]. Other methods have also been explored, including the analysis of RNA
degradation to establish the age of blood stains [21–23]. Spectroscopic methods were explored over the
past decade, including atomic force microscopy, which was used to explore the elasticity of blood stains
on glass slides through coagulation over time [11]. A clear increase in the stiffness of blood samples over
time was identified, although several limitations to the method were identified. Research exploring
electron spin resonance spectroscopy established a relationship between the electron paramagnetic
resonance (EPR) of ferric non-heme species and the number of days from bleeding [24]. An error range
within 25% of the actual number of days was obtained under controlled conditions, but environmental
factors, such as light exposure and temperature, had effects on the analysis of EPR-active compounds.

It has been established that the colour of a blood stain changes from red to brown over time [6].
This indicates that optical methods could be used to quantify the colour of blood stains. This was first
explored using the reflectance spectra of blood stains, whereby the effects of environmental variables
on the colour of the blood stain were recognised [25]. Further research quantified absorption bands
independent of the amount of blood present as a possible approach for age determination [26] or for
the use of a small spectral window [27].

Previous research has clearly established changes to the physical and chemical properties of
blood over time [6]. The optimum technique will require a high selectivity to blood; a high level of
sensitivity, even with diluted blood; and a high level of precision to determine the age of a blood stain
or blood-stained fingerprint in practice. One method is the use of visible wavelength hyperspectral
imaging. This was first reported for the detection and age determination of horse blood stains between
442 and 585 nm as proof of concept research [28]. The determination of age was obtained through
linear discriminant analysis from data based on the progressive changes in the absorption spectra over
time as the composition of the blood stain altered. This approach used training and test datasets from
the same blood stain in order to determine the age with a high level of accuracy. With different blood
stains, the accuracy was considerably lower, although this research demonstrated the potential of the
method to establish an age estimation non-destructively. A similar method by a different research
group also successfully demonstrated the identification of blood stains [29,30]. The proposed method
allowed for rapid, non-destructive presumptive blood stain detection. Other research has explored
forensic traces across a range of substrates [31]. Most recently, a new blood stain identification and age
determination approach was proposed based on the Soret γ band absorption in haemoglobin [3,32]
and indicated a higher sensitivity and specificity for the detection and identification of blood stains
over previously proposed methods [3].

Previous research has identified the need for a non-contact and non-destructive method for the
determination of the age of a blood-stained fingerprint. An ideal method should function across a
practical range of ages of blood, have a high specificity to blood so as to prevent false positives, and
have a clear and accurate method for determining the age of a blood-stained fingerprint, so as to allow
for reliable age estimations.

The visible wavelength hyperspectral imaging method proposed in this paper meets all of these
requirements. In this study, we present a novel application of visible wavelength hyperspectral imaging
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(HSI) based on the absorption spectrum of haemoglobin between 400 and 680 nm for the non-contact,
non-destructive detection, identification and age determination of blood-stained fingerprints on
white tiles. False colour scales are presented based on the ratio of the 525 nm peak to the trough at
550 nm in the absorption spectrum. The 30-day colour scale is demonstrated with nine blood-stained
fingerprints deposited on a single white tile to demonstrate the effectiveness of such a method for
age determination.

This work follows on from [33,34] where hyperspectral imaging was used for the first time to
detect, identify, and visualise ridge detail in blood-stained fingerprints across a wide range of substrates.
The research presented in this paper again demonstrates the potential of HSI, through successful
non-destructive detection, identification, and age determination of blood-stained fingerprints.

2. Materials and Methods

2.1. Production of Blood-Stained Fingerprints

Horse blood was used to produce blood-stained fingerprints in this study and was deposited into
a Petri dish containing a small sponge. The right middle finger was pressed against the sponge to
evenly coat the digit, and the blood-stained fingerprint was then deposited onto the white tile. The
fingerprints were left to age under controlled conditions in an environmental chamber at 23–24 ◦C
(Qualicool LR202, LTE Scientific, Oldham, UK) between analyses.

2.2. HSI System

The HSI system used in this study had the same setup as that detailed in [3,33,34], consisting
of a liquid crystal tuneable filter (LCTF) coupled to a 2.3 megapixel Point Grey camera and a light
source for scene illumination. The light source was comprised of two 40 W LEDs—one violet giving an
output at 410 nm and one white giving an output between 450 and 700 nm. Control of the LCTF and
image capture was performed using custom developed software written in C++ (Microsoft, Redmond,
WA, USA). Images were captured between 400 and 680 nm with spectral sub-sampling at 5 nm
intervals, resulting in an image cube at 56 wavelengths for each scan. Spectra from the image cube
were subsequently analysed using custom routines developed in Visual Studio (Microsoft, USA) and
Spyder (Python, Wilmington, DE, USA). The time required to acquire and process each image was
approximately 30 s.

2.3. Hyperspectral Reflectance Image Acquisition and Pre-Processing

The hyperspectral reflectance measurements were made following the method detailed in [3]
and [33,34]. A reference image (R0) was obtained using a blank ceramic tile. This image was recorded
in a 5 nm series of 56 discrete wavelengths between 400 and 680 nm. The sample image (Rs) was
recorded at the same wavelengths under the same illumination conditions and integration time settings
on the camera. The hyperspectral reflectance image (R) consisted of a data cube of 1280 × 1024 pixel
values at 56 discrete wavelengths.

2.4. Criteria for the Identification of Blood Stains

The blood reflectance spectrum in the visible region is dominated by the presence of
haemoglobin [28,32]. The spectrum contains a strong narrow absorption at 415 nm called the Soret
or γ band with two weaker and broader absorptions between 500 and 600 nm known as the β and α

bands [3]. The Soret band results in the distinctive red colour of blood, due to the absorption in the
blue part of the visible spectrum. Other red substances also absorb between 400 and 680 nm in the
blue region, although these absorption features tend to not be centred at 415 nm and are much broader.
This is the basis of the methodology used to identify and discriminate blood stains from other similarly
coloured substances. Further information is detailed in [3]. From the reflectance images obtained, the
pixels which satisfied the criteria were marked in black, whilst all other pixels were marked in white.
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This allowed regions of the image where the blood-stained fingerprint was present to be identified,
as well as clear distinction of the ridge detail.

2.5. Age Determination Methodology for Blood-Stained Fingerprints

The age of the blood-stained fingerprints was explored through the effect of time on the
composition of the fingerprint. This has already been established as the only potentially viable
method for age determination, due to the numerous variables that affect fingerprint composition
over time [14]. This research explored the compositional changes that occur within a blood-stained
fingerprint using hyperspectral imaging. After deposition of a blood-stained fingerprint, specific
chemical changes occur which result in a colour change from bright red to dark brown. This is
attributed to the complete oxidation of haemoglobin (Hb) to oxy-haemoglobin (HbO2), which then
auto-oxidises to met-haemoglobin (met-Hb) and denatures to hemichrome (HC) [6,35], as shown in
Figure 1. As this process occurs, the concentration of haemoglobin decreases, which can be observed
in the visible spectrum through the decrease of the Soret band at 415 nm, as shown in Figure 2.

After the HSI analysis, the absorption spectra of the blood-stained fingerprints were analysed,
and the ratio of the peak at 525 nm to the trough at 550 nm was determined. This ratio was used to
produce false colour Red-Green-Blue aging scales, as shown with ten false coloured fingerprints in
Figure 3, with the values determining the values assigned to red, green, and blue in the image.

 
Figure 1. Reaction of haemoglobin in blood stains.

 
Figure 2. Spectrum of blood from 400–680 nm.
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Figure 3. Use of Red-Green-Blue colours to produce false colour scales based on the 525/550 nm ratio.

2.6. Digital Single Lens Reflex (DSLR) Setup

The images used in this report were taken using a digital single lens reflex (DSLR) camera
mounted on a Kaiser RS1 copy stand. The DSLR was a Canon EOS 700D which was fitted with a
Canon Angle Finder C 90◦ viewfinder with a 1.25–2.5× optical magnification and a Canon TC-80N3
remote control external shutter release to avoid camera motion. Images were taken using two sizes
of macro-lenses—a 50 mm lens for overview shots of the substrates and a 100 mm lens for high
magnification macro-shots of individual fingerprints. The 50 mm lens was used as it is recognised as
being generally equivalent to the view seen by the human eye [36]. The lenses used were a Canon EF
50 mm f2.5 macro lens and a Canon EF 100 mm f2.8L macro IS USM lens. Substrates were lit using
oblique lighting from two Daylight Twist Portable Lamps with a white light output of 6500 K.

2.7. Age Estimation Intervals

2.7.1. Aging of Blood-Stained Fingerprints over 30 Days

Deposited blood fingerprints were aged under controlled conditions in an environmental chamber
at 23–24 ◦C, as detailed in Section 2.1. Analyses were carried out daily for thirty days and false colour
aging scales were produced after 7, 16, 24, and 30 days.

2.7.2. Aging of Blood-Stained Fingerprints over 24 h

Deposited blood fingerprints were also analysed over a 24 h period. Blood-stained fingerprints
were deposited and analysed every hour for 12 h. A second set of fingerprints was then deposited and
left overnight for 12 h. This set was then analysed from 12 h to 24 h. The results from both sets were
combined to produce the 24 h aging scale.

2.7.3. Age Estimations of Nine Blood-Stained Fingerprints

Nine blood-stained fingerprints were deposited between 0 to 28 days onto one white tile, as shown
in Figure 4. These were deposited in a random arrangement on the white tile. The fingerprints were
aged under controlled conditions in an environmental chamber at 23–24 ◦C, as detailed in Section 2.1.
Analyses were carried out using his, and the results were manually coloured using the 30-day false
colour scale for a visual representation of the ages.

 

Figure 4. Nine blood-stained fingerprints from 0 to 28 days old.
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3. Results

3.1. Aging of Blood-Stained Fingerprints over 30 Days

Blood-stained fingerprints were successfully detected and identified using hyperspectral imaging
for the full 30 days explored. Clear ridge detail was identified for all scans, a selection of which are
shown in seven day increments from 0 to 28 days in Figure 5. The level of clear ridge detail observable
even after 30 days demonstrates the advantage of HSI over existing chemical methods, as not only can
blood be conclusively identified, as opposed to an indication as occurs with presumptive tests, but
ridge detail is preserved and photographed for potential comparison in one step.

 

Figure 5. Visible ridge detail for blood-stained fingerprints with hyperspectral imaging (HSI) on day 0,
7, 14, 21, and 28.

The analysis of the absorption spectrum between 400 and 680 nm showed a clear decrease in
the Soret band and the β and α bands between 500 and 600 nm over the aging period. This change
forms the basis for the age estimation methodology. False colour scales were produced to represent the
changes in the 525/550 nm ratio over 30 days, as shown in Figure 6.

 

Figure 6. 30-day false colour aging scale.
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3.2. Aging of Blood-Stained Fingerprints over 24 h

Blood-stained fingerprints were successfully detected using hyperspectral imaging for the full
24 h explored. Clear ridge detail was identified for all scans and the absorption spectrum was analysed
to produce a false colour scale, as shown in Figure 7. This scale represents the changes that occurred in
the absorption spectrum over the 24 h aging period, as shown in Figure 8. The logarithmic conversion
also shown demonstrates the clear relationship between the 525/550 nm ratio and time.

 

Figure 7. 24 h false colour aging scale.

Figure 8. Effect of time on the absorption ratio of 550 and 525 nm (left) and the logarithmic conversion
(right) over 24 h.
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3.3. Age Estimations of Nine Blood-Stained Fingerprints

From a visual examination of the nine blood stains alone, it was very difficult to determine
any significant differences that may allow for age estimations. The analysis carried out using HSI
successfully detected and conclusively identified the blood ridge detail. Using the data obtained from
the HSI analysis and the false colour scales produced, a clear visual representation of the different ages
of the blood-stained fingerprints was produced, as shown in Figure 9. The DSLR images show minimal
variation between the fingerprints. Using the false colour scales, all recently deposited fingerprints
could be easily distinguished due to the significant differences in colour, such as fingerprints 5, 8, 7, and
3, which correspond to 0, 1, 3, and 6 days respectively. After 14 days, the variation in the composition
of the blood-stained fingerprint was less, so the difference between the colours was smaller and harder
to distinguish by eye. This was apparent for fingerprints 2, 4, and 6, which were all shades of purple,
despite varying by eleven days. The use of this false colour method for age estimations is therefore
most effective for blood-stained fingerprints deposited within 14 days, as the increased variation over
the first seven days results in significant differences in the false colour images produced.

 
Figure 9. Digital single lens reflex (DSLR) (left) and false colour images manually coloured from HSI
analysis (right) of blood-stained fingerprints based on a 30-day false colour scale.

4. Discussion

Results have been presented on the application of a visible wavelength reflectance hyperspectral
imaging system for the detection of blood-stained fingerprints and the determination of the fingerprint
age on white tiles. The method used for the detection and identification of blood as well as the
age determination was based on use of the main narrow absorption peak in blood at approximately
415 nm (Soret band), and the ratio of the peak at 525 nm to the trough at 550 nm was also determined.
This was used to produce a false colour aging scale over 30 days. A second false colour scale was
also produced over 24 h, allowing for highly accurate estimations of the age of freshly deposited
blood-stained fingerprints.

Nine blood stains of varying ages deposited on one tile were able to be distinguished using the
30-day false colour scale. With visual examination alone, there were minimal differences between
deposited fingerprints in the DSLR image, making it very difficult to establish any significant
differences for age estimations. The analysis carried out using HSI successfully detected and identified
the ridge detail. The analysis using the 30-day false colour scale established a clear visual representation
of the different ages of the blood-stained fingerprints. Recently deposited fingerprints were easier to
distinguish due to the greater differences in colour. After 14 days, this variation reduced, due to the
slower changes in the blood composition, and the colours were slightly more difficult to distinguish.
Previous research has demonstrated the success of using hyperspectral imaging as a method for
establishing the age of blood stains, although a clear visual approach using false colour scales has not
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been carried out. The approach presented in this study demonstrates the considerable potential of HSI
to both conclusively identify a blood-stained fingerprint and to determine its age.

5. Conclusions

A novel application of visible wavelength reflectance hyperspectral imaging (HSI) was used for
both the detection and age determination of blood-stained fingerprints on white ceramic tiles. Both
the identification of blood and the age determination were based on the unique visible absorption
spectrum of haemoglobin between 400 and 680 nm and the presence of the Soret peak at 415 nm. In the
processed hyperspectral images, pixels where blood was identified were coloured black, whilst all
other pixels were coloured white, thus enhancing the location of ridge detail in blood fingerprints.

Blood-stained fingerprints were aged over 30 days and analysed using HSI. From these results,
a 30-day scale and a 24 h scale were produced, allowing for a clear visual method for age estimations
of deposited blood-stained fingerprints. This was demonstrated with nine blood-stained fingerprints
deposited on one white tile. From a visual examination using DSLR, no significant differences
between the deposited fingerprints could be identified to allow for age estimations. The application
of HSI demonstrated several advantages, as the analysis successfully detected and identified the
blood ridge detail. Additionally, the application of the 30-day false colour scale allowed for the
deposited blood-stained fingerprints to be coloured corresponding to their age. This identified clear
distinctions between the nine blood-stained fingerprints in the false colour image produced, with the
greatest differences in colour occurring among the most recently deposited fingerprints as the greatest
differences in composition occur over the first 24 h after deposition [37,38].

Overall, HSI has significant benefits for both the detection and age determination of blood-stained
fingerprints and blood stains. Preliminary work exploring both human and horse blood demonstrated
minimal differences, indicating that the findings of this research are applicable to crime scenes
involving human blood. Further work is required, however, to confirm that the age determination
methodology demonstrated here is effective across both blood stains and blood-stained fingerprints
with both human and horse blood. Large scale blind tests are also required to establish the effectiveness
and reliability of the age determination method on white tiles, as well as other substrates, including
other colours and porosities, and as a function of environmental variables, such as temperature and
humidity. Previous work with this setup has already demonstrated the successful detection and
identification of blood-stained fingerprints on a range of substrates [33,34]. A full comparison of the
technique against existing chemical enhancement methods would be beneficial to allow a comparison
of the sensitivity of the setups. Development of a more rugged instrument could allow for the
production of a robust portable device for use at crime scenes, which would be particularly beneficial
for criminal investigations. HSI could then be used for the detection and identification of both blood
stains and blood-stained fingerprints, as well as for the reliable establishment of the age of a stain
or fingerprint.
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Abstract: A hyperspectral measurement system for the fast and large area measurement of Raman
and fluorescence signals was developed, characterized and tested. This laser hyperspectral imaging
system (Laser-HSI) can be used for sorting tasks and for continuous quality monitoring. The system
uses a 532 nm Nd:YAG laser and a standard pushbroom HSI camera. Depending on the lens selected,
it is possible to cover large areas (e.g., field of view (FOV) = 386 mm) or to achieve high spatial
resolutions (e.g., 0.02 mm). The developed Laser-HSI was used for four exemplary experiments:
(a) the measurement and classification of a mixture of sulphur and naphthalene; (b) the measurement
of carotenoid distribution in a carrot slice; (c) the classification of black polymer particles; and, (d) the
localization of impurities on a lead zirconate titanate (PZT) piezoelectric actuator. It could be shown
that the measurement data obtained were in good agreement with reference measurements taken
with a high-resolution Raman microscope. Furthermore, the suitability of the measurements for
classification using machine learning algorithms was also demonstrated. The developed Laser-HSI
could be used in the future for complex quality control or sorting tasks where conventional HSI
systems fail.

Keywords: hyperspectral imaging; Raman; fluorescence; sorting; quality control; black polymers;
PZT; classification; machine learning

1. Introduction

Hyperspectral imaging (HSI) technologies are increasingly being used in the fields of remote
sensing [1], agriculture [2,3], pharmaceuticals [4,5], and medicine [6,7]. Example uses include analyzing
nitrogen and water stress in wheat fields [8], measuring the coating thickness of tablets [9], and the
in vivo detection of cancer [10].

For industrial applications, hyperspectral imaging methods are mainly used in the ultraviolet
(UV), visible (VIS) and near-infrared (NIR) spectral ranges, because they are reasonably inexpensive,
readily available, and ideally suited and proven for on-line or in-line quality control [11,12]. These
methods allow a fast and extensive inspection of samples or continuous processes. Common HSI
methods use broadband lighting for a sufficient excitation in the whole spectral range of interest, while
other methods, such as laser-induced fluorescence (LIF) and Raman his, are not very common in the
field of macroscopic HSI, although they are widely used for microscopic imaging [13–15].

LIF is a spectroscopic technology with high sensitivity, a wide dynamic range, and low detection
limits [16]. It can be utilized, for example, for live cell microscopy of cells, using the high spectral
resolution to increase the number of fluorophores that can be measured simultaneously [17].
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Raman spectroscopy (RS) is a highly selective technology providing narrow and non-overlapping
peaks of the measured sample. In contrast to near infrared spectroscopy, the signals are not interfered
with by carbon or water absorption and nearly no sample pre-treatment is necessary. The main
drawback of RS is the low fraction of scattered photons (typically < 0.0001%), which leads to low
signal-to-noise ratios and long acquisition times. Some applications are, for example label-free imaging
of cells [18] or high-resolution imaging of single-walled carbon nanotubes [19].

Fluorescence and Raman scattering are two competing effects and often occur together. Therefore,
it is sometimes difficult to detect the weak Raman signals due to the high fluorescence background [20].

The aim of this paper is to use the simultaneously appearing fluorescence and Raman signals
after laser excitation for chemical imaging of large surfaces in short periods of time. Because HSI
for evaluation or classification tasks requires the highest possible variance in the underlying spectral
data, the exact knowledge of the origin of the signals is of secondary importance. A distinction
between fluorescence and Raman events is desirable but not absolutely necessary. The idea is that the
technology, from here on called Laser-HSI, can be used for various applications in the field of process
and food monitoring or sorting. Previous work has mainly focused on Raman imaging using NIR
lasers to reduce the fluorescence background [21,22], while the focus of this work is the combination of
Raman and fluorescence imaging. This is reflected mainly in the choice of the excitation laser and the
imaging spectrometer used.

In this paper, the design of the Laser-HSI system is described, and the system is calibrated
and characterized. Furthermore, some sample measurements are presented to illustrate possible
applications in different areas.

2. Materials and Methods

2.1. System Design and Software

The developed Laser-HSI system is schematically illustrated in Figure 1. The illumination is
accomplished using a frequency-doubled Nd:YAG laser with a wavelength of 5322 nm and a maximum
output power of 300 mW (GLK 32XX TS, LASOS Lasertechnik, Jena, Germany). The spectral linewidth
of the laser is ≤ 1 MHz, the beam quality is M2 < 1.2, and the power stability is stated by the
manufacturer as ≤±2%. The laser beam is guided through a laser clean-up filter (LL01-532, Semrock,
Rochester, NY, USA), which is used to remove spontaneous emission noise. The beam then impinges a
scanning mirror (dynAxis S, Scanlab, Puchheim, Germany) with variable scanning length. The scanning
rate can be adjusted to the measurement task. The scanning mirror reflects the beam again and spreads
the laser to form a divergent line. After passing an achromatic collimation lens with a focal length
of f = 300 mm (AC508-300-A-ML, Thorlabs, Newton, MA, USA), the line passes a dichroic mirror
(LPD02-532RU, Semrock, USA) with a length of 6 cm, which reflects light with a wavelength below
537 nm and allows the transmittance of light coming back from the sample with a wavelength greater
than 537 nm. The dichroitic mirror is mounted at 45◦ to the laser plane and projects the beam to the
sample surface, creating an excitation line of variable length, ranging from 0.5 cm up to 10 cm.
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Figure 1. Schematic illustration of the developed laser hyperspectral imaging system (Laser-HSI) system.

The hyperspectral imaging system is mounted directly above the excitation line. It consists
of a holographic imaging spectrometer (Hyperspec VNIR, Headwall Photonics, Bolton, MA, USA)
and a high-performance EMCCD (electron multiplying charge-coupled device) camera (Andor Luca
R, Andor Technology, Belfast, UK). The spectral pixel dispersion of the imaging spectrometer is
0.7 nm. A C-mount lens is placed in front of the camera. Three different lenses were used for the
experiments: two standard lenses (Cinegon 8 mm f/1.4 and Xenoplan 28 mm f/1.4, Jos. Schneider
Optische Werke, Germany) and a telecentric lens with fixed working distance of 86 mm (S5LPJ2426,
Sill Optics, Wendelstein, Germany) for small samples. To eliminate the excitation wavelength of the
laser, a 532 nm long-pass filter is mounted before the lens (LP03-532RE, Semrock, USA).

The imaging spectrometer is built in the Offner design and optimized for a wavelength range
from 400 to 1000 nm. The spectrometer can be equipped with optical slits of different widths ranging
from 25 μm to 60 μm. The Si-EMCCD-detector has 1004 × 1002 pixels with a pixel size of 8 × 8 μm
and 14-bit depth. The rows and columns of the sensor can be binned together up to 8× to increase the
signal-to-noise ratio of the measurement, sacrificing resolution. The sensor is cooled to −20 ◦C and
can be connected and controlled using USB. To reduce the read-out noise of the camera and to increase
the signal-to-noise ratio (SNR), an electron multiplication gain between 2× and 200× can be activated.

For sample movement, a linear motion unit (VT 80, PI Micos, Eschbach, Germany) is positioned
underneath the hyperspectral camera. The linear stage has a travel length of 200 mm and a step size of
0.5 μm. The whole system is housed with blackboards to minimize ambient light.

The camera, the linear motion unit, and the laser can be controlled using the imanto®pro software
package (version 3.7, Fraunhofer IWS, Dresden, Germany). This program allows the configuration of
the camera, the movement of the linear motion unit, and the image acquisition, as well as the display
of the live image from the camera and the current measurement. In addition, the generated spectral
images can be viewed, pre-processed and saved as .envi or .hsi.jpg formats. The latter is a new data
format for hyperspectral data, which includes metadata and a preview picture from the measurement
in the file. Furthermore, it is possible to integrate machine learning models in the software. In this
work, most data evaluation was done using Matlab® version R2017a (Mathworks, Natick, MA, USA).

The Laser-HSI system operates as a pushbroom imager. This means that the hypercube is
generated line by line and, therefore, the sample is moved underneath the camera system during the
measurement using the linear motion unit. To achieve a sufficient Raman and fluorescence intensity,
the imaging plane of the camera has to be aligned to the excitation laser line. Therefore, the dichroitic
mirror has to be adjusted prior to the measurement.
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2.2. Spectral Calibration and Spectral Resolution

The aim of the spectral calibration of the Laser-HSI is to assign correct absolute wavelength or
relative Raman shifts to the rows of the detector array. For the absolute wavelength calibration, a neon
lamp calibration source with characteristic emission lines between 550 nm and 750 nm (Renishaw,
Wotton-under-Edge, UK) is used. The calibration source is placed underneath the camera and the
spectrum is averaged 200 times using slit widths of 25, 40 and 60 μm, the Cinegon lens and no binning.
For each measurement, the positions of the measured lines are used to fit a linear function between the
known wavelengths of the calibration source and the row indices of the detector array. The calibration
can be done automatically using an own-written Matlab® script.

To obtain the spectral resolution of the imaging system, two sharp peaks of the neon lamp
(583.4 nm and 701.6 nm) were used. In theory, these peaks should cover only one pixel of the
detector. Due to the point spread function of the imaging system, the measured peaks are broadened.
The resolution of the imaging system can therefore be calculated using the full width at half maximum
(FWHM) of the measured peaks.

2.3. Spatial Resolution

The spatial resolution perpendicular to the measurement line depends on the speed of the moving
stage and the frame-rate of the camera, and can, therefore, be easily controlled and adjusted to achieve
squared pixels. The spatial resolution parallel to the measurement line depends on several factors,
namely the working distance, the focal length of the used lens, and the number of detector pixels in
the spatial dimension of the camera. The fixed structure of the spectrograph and camera allows the
spatial resolution required for the application to be adjusted with a lens with an appropriate focal
length, which simultaneously results in a certain field of view (FOV). To measure the spatial resolution,
a calibration target (R2L2S1P1, Thorlabs, Newton, MA, USA) with black and white lines is placed
underneath the camera and illuminated with halogen light. One line of the target is measured 200 times
and averaged. The measured black and white transitions of the sample at a wavelength of 600 nm
are differentiated and the FWHM of the obtained peaks is taken as the spatial resolution. The spatial
resolution for the three different lenses was determined with working distances of 330 mm and 82.7 mm
and FOVs of 386 mm, 104 mm and 4 mm. A slit width of 40 μm was used for the measurements.

2.4. Example Measurements

To evaluate the developed Laser-HSI, four samples from quite different fields of application were
measured: (a) a mixture of sulphur and naphthalene; (b) a carrot slice; (c) black polymer particles; and,
(d) a lead zirconate titanate (PZT) piezoelectric actuator with contaminations. The specific experimental
conditions are shown in Table 1.

Table 1. Experimental conditions.

Experiment Lens
Laser
Power
(mW)

Integration
Time (ms)

Speed
(mm·s−1)

Frame
rate (Hz)

Binning
(Lateral ×
Spectral)

Total
Time (s)

Total Area
(cm2)

(a) sulphur and
naphthalene Xenoplan 150 25 2.4 24 2 × 1 20 50

(b) carrot slice Xenoplan 300 100 0.8 8 2 × 1 50 42
(c) black

polymers Xenoplan 150 25 2.4 24 2 × 1 42 105

(d) PZT
actuator Sill 300 100 0.013 8 4 × 1 170 2.3

For referencing the experiments (a) and (d), a Raman microscope (inVia, Renishaw GmbH,
Wotton-under-Edge, UK) with a 514.5 nm argon ion laser source was used. In case of (a), a 100×
magnification lens was used and the spectra were accumulated for 10 s and measured between
150 cm−1 and 3500 cm−1.
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In case of (d), areas with suspected contaminations were mapped using a 50× magnification lens
and a spatial resolution of approximately 5 μm. The integration time was 0.1 s and the spectra were
measured between 150 cm−1 and 2000 cm−1.

For referencing the experiment (b), the same Raman microscope with a 785 nm diode laser
(to reduce fluorescence) and 50× magnification lens was used. The spectra were measured between
800 cm−1 and 1800 cm−1 and accumulated ten times for 1 s.

2.5. Classification Experiments

To show that the system can be used for process monitoring and sorting tasks, classification
experiments were performed for the experiments (a), (c), and (d). Therefore, 500 spectra per class
were selected at random and a random forest [23] model was trained using the fitcensemble function
of Matlab® using default hyperparameters. Prior to the training, a principal component analysis
was conducted and only the scores of the first five principal components were used. To estimate the
accuracy of the trained model, 10-fold cross validation was used and the cross-validated accuracy was
used as a measure of the quality of the model. Finally, the trained model was applied to all spectra in
the hyperspectral measurement to generate a classification image of the sample.

3. Results

3.1. System Design

The individual components of the Laser-HSI were selected and optimized with regard to the
specific application requirements. With a wavelength of 532 nm, the frequency-doubled Nd:YAG
laser used offers a good compromise between the expected intensity of the Raman scattering and the
fluorescence intensity. Furthermore, the wavelength of the light emitted by the samples is in the range
of the optimum quantum efficiency of the used silicon detector. If Raman measurements are made, this
wavelength is particularly suitable for inorganic or weakly fluorescent samples. A near-infrared laser
(e.g., 785 nm) would be more suitable for organic or highly fluorescent samples, but this would also
further decrease the Raman intensity. Compared to argon ion lasers, which emit a similar wavelength,
the Nd:YAG laser offers low power consumption, easy handling and a compact design, which facilitates
industrial use (e.g., in recycling plants).

To generate the laser line, a scanning mirror was used. Alternatively, one could use a cylindrical or
Powell lens [24] to generate the excitation line. Both approaches have advantages and disadvantages.
If a cylindrical lens is used, no moving parts are required and a compact design can be achieved.
On the other hand, a cylinder lens produces a non-uniform intensity distribution along the excitation
line. This can be reduced by using a Powell lens, but these lenses must be optimized for a certain beam
diameter and fan angle, which reduces the flexibility of the system. A disadvantage of the scanning
mirror is an increased intensity at the reversal points of the mirror (at the edges of the excitation line)
and the limited scanning speed, which can lead to problems using short integration times for the
detector. Because the setup presented here should be as flexible as possible, a scanning mirror was
used. For later industrial applications, the use of cylindrical or Powell lenses can be considered.

The used imaging spectrometer is optimized for spectroscopy in the visible and near-infrared
wavelength range (400–1000 nm). Therefore, the spectral resolution is quite low for Raman spectroscopy
(see Section 3.2). This has a negative effect on the usability of the device for tasks where a high spectral
resolution is required. On the other hand, it is possible to measure a much larger wavelength range than
with a Raman spectrometer. This could be useful for some questions; for example, when fluorescence
signals are to be measured, which often extend over a wider wavelength range (see experiment (c)).
In addition, the used imaging spectrometer is cheaper and more readily available then a Raman
imaging spectrometer.

The EMCCD detector used enables a reduction of the readout noise due to the built-in
amplification and thus enables the measurement of weak Raman and fluorescence signals.
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The disadvantage is the relatively low frame rate of ~12 Hz using the full detector, which can, however,
be increased using binning.

The C-mount connection allows flexibility regarding the FOV and the spatial resolution of
the measurement. In summary, due to the modular design of the Laser-HSI system an individual
adaptation to the respectively specific measuring application is possible.

3.2. Spectral Calibration and Spectral and Spatial Resolution

The results of the spectral calibration for different slit widths are shown in Table 2. For all three
slit widths, a similar covered wavelength range of approximately 330 nm to just over 1100 nm is
obtained. A wavelength interval of about 0.8 nm per pixel is determined for all three slits. The quality
of the spectral calibration can be determined from the mean absolute error of the line positions to
the reference line positions. The mean absolute error is relatively small for all three measurements,
but increases with wider slits. The reason for this is the decreasing spectral resolution, which leads to
broader lines and makes the automated peak selection more difficult, resulting in larger calibration
errors. The spectral resolution of the system was measured for the peaks at 583.4 nm and 701.6 nm,
and ranges from about 2 nm for 25 μm slit width, to over 4 nm for 60 μm slit width. It can also be seen
that the spectral resolution decreases slightly for larger slit widths.

Table 2. Results of the spectral calibration of the Laser-HSI.

Slit Width
(μm)

Wavelength
Interval (nm)

Mean Absolute
Error (nm)

FWHM
(583 nm) (nm)

FWHM
(702 nm) (nm)

FWHM
(583 nm) (cm−1)

FWHM
(702 nm) (cm−1)

25 0.79 0.25 1.8 2.0 52.9 40.6
40 0.8 0.58 2.8 3.1 82.3 63.0
60 0.79 1.28 4.1 4.5 120.5 91.4

Because the used spectrometer is optimized for visible and near-infrared hyperspectral
imaging, the spectral resolution (in nanometers) decreases inherently due to the equidistant
wavelength-resolution of the detector. In addition, it is possible to cover a much wider spectral
range, from 535 nm up to 1000 nm, compared to a classic Raman spectrometer. Because of the low
spectral resolution of the system, the typical calibration for Raman spectrometer, using reference
substances like sulphur or naphthalene, could not be applied. Sometimes it was not possible to clearly
assign the measured signals to the bands of the reference spectra. Therefore, the typical calibration
could not be performed and the Raman shifts in the measurements were only calculated using the
wavelengths obtained by the absolute calibration with the neon lamp calibration source.

The results for the determination of the spatial resolution for different lenses and FOVs are shown
in Table 3. The measured resolutions are 1.31 mm for the Cinegon lens, 0.41 mm for the Xenoplan and
17 μm for the Sill telecentric lens with FOVs of 386 mm, 104 mm, and 4 mm, respectively. This shows
the versatility of the developed laser-hyperspectral imager in terms of resolution and measurement
area. It can be used to measure small samples with high resolution or to measure larger samples; e.g.,
in a conveyer belt application for sorting and recycling tasks. The FOV and the achievable resolution
mostly depend on the used optics. Nevertheless, it has to be taken into account that with increasing
FOV and working distance, more laser power is needed to maintain the signal intensity.

Table 3. Results of the spatial calibration of the Laser-HSI.

Lens Working Distance (mm) FOV (mm) FWHM (pixel) Spatial Resolution (mm)

Cinegon, f/1.4, 8 mm 330 386 3.49 1.34
Xenoplan, f/1.4, 28 mm 330 104 3.97 0.41

Sill, S5LPJ2426 85.7 4 4.18 0.02
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3.3. Example Measurements

3.3.1. Spatial Distribution of Naphthalene Granules in a Sulphur Matrix (a)

A mixture of sulphur and naphthalene was measured using the Laser-HSI and the results are
summarized in Figure 2. A picture of the sample (Figure 2a,c) shows a false color image of the
measured intensity at ~180 cm−1. At this wavenumber there is a slight overlap between the peaks
of the two materials, but the intensity of sulphur is much higher than the intensity of naphthalene,
so the position of the naphthalene can be clearly identified in the false color image. Despite the low
resolution of the spectrograph, the characteristic peaks of both sulphur and naphthalene are clearly
visible and the spectra show good agreement with reference spectra (Figure 2b). Fine spectral features
like the sulphur peaks at 154 cm−1 and 219 cm−1 are not resolved. In addition, a precise determination
of the peak position is not possible due to the low spectral resolution. Nonetheless, it is possible to
determine the spatial distribution of the two materials in the sample. The measurement of the sample
area of ~16 cm2 only took around 20 s with a spatial resolution of approximately 0.4 mm. The acquired
spectra were used to train a classification model to discriminate between sulphur and naphthalene.
The resulting model has a high cross-validation accuracy of 99.9%. The classification image is shown
in Figure 2d.

Figure 2. Laser-HSI of mixture of sulphur and naphthalene. (a) Picture of the sample with laser
excitation line. (b) Normalized example spectra of sulphur and naphthalene with reference spectra
acquired with the Raman microscope. (c) False color image of the measured intensity at ~180 cm−1

(sulphur). (d) Results of the Laser-HSI classification (blue = sulphur; red = naphthalene).
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3.3.2. Carotenoid Distribution in a Carrot Slice (b)

A carrot slice was measured with the Laser-HSI and the results are shown in Figure 3. A picture of
the sample (Figure 3a,c) shows a false color image of the measured intensity at ~1000 cm−1 before any
pre-processing. This image, therefore, shows the fluorescence of the carrot slice. Figure 3b shows an
example spectrum of the carrot slice scan after fluorescence background removal with two characteristic
carotenoid peaks at 1156 cm−1 and 1521 cm−1, which originate from C=C stretching vibrations of the
carotenoids [25]. The background was removed fitting a polynomial of fourth degree to the spectra
using a non-quadratic cost function [26]. The peaks are also in good agreement with the peaks from
the reference spectra acquired with the Raman microscope. The intensity of the peaks is proportional
to the carotenoid concentration. The band at 1521 cm−1 was used to calculate the distribution of
the relative carotenoid concentration (Figure 3d). The image shows an uneven distribution of the
carotenoid in the carrot slice. The concentration in the xylem is relatively low and increases towards
the cambium. Towards the outer areas of the slice (phloem), the concentration decreases again. This is
in good agreement with previous findings and shows the potential of the Laser-HSI in the area of food
surveillance, quality control, and research [25]. When comparing images Figure 3c and d, it can be seen
that there is a correlation between the distribution of the fluorescence and the carotenoid distribution
in the inner part of the slice. However, at the edge of the slice, the carotenoid concentration is very low,
but a strong fluorescence can be observed. This shows that it can be useful to measure Raman and
fluorescence signals at the same time to get the information with only one measurement, which could
be especially useful for time-critical tasks.

Figure 3. Laser-HSI of the carrot slice. (a) Picture of the carrot slice. (b) Normalized example
spectra of the carrot slice from the phloem and reference spectra acquired with the Raman microscope.
(c) False color image of the measured intensity at ~1000 cm−1 before any pre-processing of the spectra.
(d) Color-coded relative intensity of the carotenoid peak at 1521 cm−1.
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3.3.3. Black Polymer Sorting (c)

The appearance of black polymers is achieved by adding filling materials like carbon black.
The recycling of black polymers to high purity recycled materials is difficult because sorting techniques
fail due to the low recognition rates of common sensor techniques like near-infrared spectroscopy.
Laser-HSI is a promising technology to solve this problem because many black polymers show
characteristic fluorescence signals. Therefore, three different kind of black polymer particles, namely
polyamide 6 (PA6), polyamide 66 (PA66), and thermoplastic polyurethane (TPU) were imaged using
the Laser-HSI. A picture of the three black polymers (Figure 4a,b) shows a false color image of the
measured intensity at 580 nm. Figure 4d shows some Laser-HSI example spectra of the polymers. It is
evident that there are clear differences in the spectral signatures which may be used to classify and,
in consequence, sort the polymer particles.

The obtained classification model for the polymers shows a cross validation accuracy of 99.6%,
which is very promising for the use of the Laser-HSI for sorting black plastics for recycling. The trained
model was applied to all spectra in the hyperspectral measurement to generate a classification image
of the sample (Figure 4c).

 

Figure 4. Laser-HSI measurement of the black polymer samples. (a) Picture of the sample showing
the different kind of black polymer particles. (b) False color image of the measured intensity at
580 nm. (c) Classification result of the Laser-HSI measurement (green = PA66 (polyamide 66);
blue = PA6 (polyamide 6); red = TPU (thermoplastic polyurethane). (d) Example spectra of the
three black polymers.
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3.3.4. Contaminations on PZT Piezoelectric Actuators (d)

For the last experiment, a PZT piezoelectric actuator was investigated with a high-resolution
Laser-HSI measurement. The actuator is contaminated with organic substances of unknown origin
and the aim of the experiment is to locate these impurities, using the Laser-HSI. Figure 5a shows
a picture of the PZT piezoelectric actuator and Figure 5b shows a section of a measurement of a
contaminated sample acquired with the Laser-HSI. Figure 5c shows a section of the same area, which
was measured with the Raman microscope. Both figures show a false color representation of the
Raman intensity at 230 cm−1. Figure 5d shows spectra of the PZT ceramic and the contamination,
measured with the Laser-HSI and the Raman microscope. The PZT spectra shows the typical bands
of the PZT ceramic [27]. In the areas of contamination, strong fluorescence caused by the organic
impurities can be seen. The shape and dimensions of the contamination show a good agreement for
both measurements. The trained classification model shows a cross validation accuracy of 100% and
the classification image is shown in Figure 5e. If needed, the peaks of the PZT ceramic bands could be
used to find, for example, defects in the layers of the piezoelectric actuator.

This experiment shows that the developed Laser-HSI provides equivalent results to a Raman
microscope for this task. While the Laser-HSI measurement takes about three min per sample,
a complete mapping with the Raman microscope would take several hours. Therefore, the Laser-HSI
could be used as a fast tool for the high-resolution quality control of small components.

Figure 5. Results of the fourth experiment. (a) Picture of the measured PZT piezoelectric actuator.
(b) False color image of the measured intensity at ~230 cm−1 measured with the Laser-HSI.
(c) False color image of the measured intensity at ~230 cm−1 measured with the Raman microscope.
(d) Normalized example spectra of the PZT ceramic and the contamination and reference spectra
acquired with the Raman microscope. (e) Classification result of the Laser-HSI measurement
(blue = contamination; red = PZT ceramic).
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4. Conclusions

In this paper a fast, line-scanning hyperspectral imaging system with laser excitation using
fluorescence or/and Raman scattered light for imaging analysis was introduced.

Four different application examples demonstrate the wide range of possible applications.
The experiments carried out show that the described Laser-HSI system makes it possible to measure
the Raman or fluorescence spectra of relatively large sample areas, with a high spatial resolution
and in a relatively short amount of time. This opens up interesting application possibilities in many
areas, from quality control in the food industry to surface inspection and recycling. The modular
design of the system makes it possible to adapt the measuring range and spatial resolution to the
problem at hand. In the experiments, measuring widths between 38 cm and 4 mm, with resolutions
between 1.3 mm and 20 mm, were achieved. Furthermore, the system was spectrally calibrated and
it could be shown that the spectra obtained for a number of test substances are in good agreement
with literature or reference measurements. The minimal spectral resolution of approximately 1.8 nm at
583 nm is below the resolution of a conventional Raman spectrometer. On the other hand, the spectral
range covered is much larger. This will be used in future attempts to obtain further information
about the samples; for example, by measuring reflective properties in the spectral ranges in which
no Raman or fluorescence signals are expected. Future developments will focus, in particular, on the
investigation of the application for the recycling of black polymers. In addition, it will be investigated
how measurements can be further accelerated. Other hyperspectral cameras and stronger lasers with
different wavelengths could be used for this purpose.

5. Patents

In reference to the work presented here, two patents with the patent numbers DE102018210019.5
and DE102018210015.2 have been filed.
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Abstract: The characterization of plant disease symptoms by hyperspectral imaging is often limited
by the missing ability to investigate early, still invisible states. Automatically tracing the symptom
position on the leaf back in time could be a promising approach to overcome this limitation. Therefore
we present a method to spatially reference time series of close range hyperspectral images. Based on
reference points, a robust method is presented to derive a suitable transformation model for each
observation within a time series experiment. A non-linear 2D polynomial transformation model has
been selected to cope with the specific structure and growth processes of wheat leaves. The potential
of the method is outlined by an improved labeling procedure for very early symptoms and by
extracting spectral characteristics of single symptoms represented by Vegetation Indices over time.
The characteristics are extracted for brown rust and septoria tritici blotch on wheat, based on time
series observations using a VISNIR (400–1000 nm) hyperspectral camera.

Keywords: hyperspectral imaging; plant phenotyping; disease detection; spectral tracking; time series

1. Introduction

Hyperspectral images of plants are suitable to assess the health and vitality state of plants [1,2].
Leaf diseases show characteristic symptoms, allowing a hyperspectral characterization of symptom
development [1,3]. The spectral dynamic of symptom development during pathogenesis has been
described for numerous plant-pathogen systems [4]. Therefore, hyperspectral imaging has been applied
on multiple scales from the leaf level via full plants up to the field and landscape scale [5–8]. Platforms,
microscope stands, laboratory systems, high-throughput facilities, as well as Unmanned Aerial Vehicles
(UAVs), planes, and satellites are used [5–7,9,10].

This publication focuses on tracking leaf diseases of wheat at the leaf scale. Wheat (Triticum aestivum)
is the second most cultivated crop worldwide which is threatened by various pathogens infecting root,
stem, leaves, and ears [11]. At the leaf scale, a limiting factor is the natural variability in the spatial
and temporal development of disease symptoms [12]. The exact position of symptom appearance and
dynamics of development are bound to multiple parameters and, to a certain extent, unpredictable [13,14].
Therefore, symptoms of different development steps are present at a certain point in time, hampering the
clear extraction of the typical symptom development.

At best, each symptom has to be traced during the different observation days on its own to have a
clearer look on the different steps of pathogenesis. Performing this task is extremely labor intensive
and in many situations not feasible, e.g., for the early parts of the pathogenesis before expression of a
visible symptom. Few studies have focused this task [5,6], but are restricted to the characterization of
single symptoms instead of extracting a representative description of the pathogenesis.

A further advantage of spatially referenced hyperspectral time series is the generation of large
amounts of training data with high quality annotation for the training of machine learning models [15].
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Even very early effects of the disease could be included as positions on the leaves showing symptoms
at a later point in time are known. The underlying assumption is that if disease symptoms are visible,
the first changes could most probably be recorded by the hyperspectral camera a few days earlier.

Prerequisite for these applications is a common measurement coordinate system for every image,
but its generation on leaf scale is challenging due to leaf movements and growing. The spatial
assignment of two images is a common task in computer vision and addressed by the terms image
matching or image referencing [16–18].

In remote sensing a joint spatial reference system for multiple observations is often provided
by the data distributor. Images are georeferenced by an automatic process to localize reflectance
characteristics and perform multi-temporal analyses based on repetitive observations of a location.
Space and airborne images are georeferenced either by ground control points with known coordinates
or by additional sensors determining the location and orientation of the sensor platform. Usually
Global Navigation Satellite System (GNSS) receiver are combined with Inertial Measurement Systems
(IMS) to reach sufficient global accuracy as well as local continuity [19,20]. Ortho-rectified images
are generated by projecting the reflectance information obtained from the 3D earth surface on a 2D
reference plane using the determined camera models. By this approach, spatial distortion within the
images can be removed [20].

However, in close range scenarios with plants, the image referencing relies typically on the image
content instead of external sensors as the measured object cannot be assumed to be solid. Therefore the
joint coordinate system is a new concept on the leaf scale. Most of the approaches of extracting geometrical
features aim at the classification of plant species based on the shape of its leaf or organs [21–23] but the
generated features can be transferred to the image matching problem. Gupta et al. [24] investigated the
growing characteristics of multiple species using a dense grid of ink markers on the leaves. Based on
reference points on a separate reference object, camera models have been further determined for the
combination of reflectance and 3D surface data of plants [25,26].

Generally, three method groups to establish correspondence between RGB images can be
identified: Point approaches [27], area/contour approaches [28,29], and global approaches in pixel [30]
or frequency space [31]. The point approaches detect relevant suitable points within the images
and describe their local neighborhood by robust descriptors (e.g., Scale-invariant feature transform,
SIFT [32]) allowing an assignment of points from different images. Such methods are rarely used for
plant leaves (e.g., [27]) but are the standard procedure for RGB image matching for 3D reconstruction.
Area and contour approaches at first extract the leaf within the image and perform an assignment based
on the shape or texture characteristics of the leaf surface [29]. Yin et al. [33] used chamfer matching
to perform the assignment of Arabidopsis leaves based on their shape. Bar-Sinai et al. [28] used a
matching of the local graph of leaf veins to investigate the response of the leaf to mechanical stress.
An approach for the multi-modal registration of RGB images and thermal images of plants based on
extracted silhouettes in both image types has been developed [34]. There, a non-rigid spline model
was used to match the silhouettes and generate the data for the detection of diseased plant tissue [35].

These methods for spatial image matching rely on characteristic shapes or textures. In the present
case of parts of wheat leaves none of that is informative. In monocot plants the leaf veins are arranged
in parallel and provide no intersections to detect. Moreover, the low spatial resolution of hyperspectral
images compared to RGB images prevents the extraction of detailed surface texture information.
Disease symptoms may be suitable patterns at later time points but are not present at the earlier days.
The silhouette of the fixated leaf parts matches approximately a rectangle, especially for larger leaves
where the leaf tip is not captured.

To handle this challenge, artificial reference points of white color have been applied on the leaf
surface to allow the image referencing within this study. Leaves are fixated to reduce the complexity to
a 2D case approximating the leaf surface by a horizontal 2D plane. In such a case, transformations
between different image coordinate systems can be performed by 2D transformation like Affine,
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Similarity, or Polynomial transformation models [36]. The optimal choice depends on the required
model flexibility.

We introduce an approach to spatially reference multiple hyperspectral image cubes of time series
experiments. These spatially referenced images form a new 4 dimensional data type with two spatial
axis (x and y), one spectral axis (λ), and a fourth temporal axis (t). Within this new data type disease
symptoms can easily be traced back in time, even to the point when no symptom is visible for the
human eye.

The referencing is performed using an algorithm robust against missing or non-stable reference
points by including the RanSaC algorithms [37] and multiple 2D geometric transformations [36] in
combination with a well-defined set of control points. As data, time series measurements of wheat
leaves fixated in a grid frame assessed by a VISNIR hyperspectral pushbrom camera sensible in the
visible (400–680 nm) and near-infrared part of the electro-magnetic spectrum (680–1000 nm) were used.
Two relevant diseases of wheat with different symptom expressions were covered: Septoria tritici
blotch and brown rust (Figure 1).

Figure 1. RGB images of the symptoms of (A) brown rust caused by Puccinia triticina and (B) septoria
tritici blotch caused by Zymoseptoria tritici. Brown rust symptoms are dominated by reddish spore
stocks whereas necrotic lesions are characteristic for septoria tritici blotch.

2. Materials and Methods

2.1. Plant Material & Fungal Pathogens

2.1.1. Plant Material

Wheat plants (triticum aestivum), cv. Taifun and cv. Chamsin (KWS SAAT SE, Einbeck, Germany)
were grown in plastic pots in substrate ED73 (Balster Erdenwerk GmbH, Sinntal-Altengronau,
Germany). The plants were grown under greenhouse conditions with 22/20 ◦C day/night temperature,
60 ± 10% RH and a photoperiod of 16 h per day. Plants were inoculated after reaching BBCH growth
stage 30 (sprouting) [38].

2.1.2. Fungal Pathogens

Inoculations of wheat plants were done with isolates of Zymoseptoria tritici and Puccinia triticina.
The isolate of Z. tritici was cultured on artificial ISP2 media. As obligate biotrophic pathogen, P. triticina
was maintained on living plants.

2.2. Hyperspectral Measurements

A hyperspectral line scanning spectrograph (ImSpector V10E, Spectral Imaging Ltd., Oulu,
Finland), covering the VISNIR spectral range from 400–1000 nm has been used for image assessment [6].
Images had a spectral resolution of up to 2.8 nm and a spatial resolution of 0.14 mm per pixel. This
results in a hyperspectral datacube with 211 bands and 1600 px per image line. A homogeneous
illumination was ensured by using six ASD-Pro-Lamps (Analytical Spectral Devices Inc., Boulder, CO,
USA). Camera and illumination were installed on a motorized line scanner (Spectral Imaging Ltd.).
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Camera settings and motor control were adapted using the SpectralCube software (Version 3.62, 2000,
Spectral Imaging Ltd.).

Leaves have been horizontally fixed in a tray using strings allowing imaging of around 20 cm of
each leaf. Multiple leaves have been placed side by side within a single image. White color spots are
applied as reference points on the leaves to allow image referencing. As shown in Figure 2, six spots in
two rows are applied to each leaf section of approximately 4 cm. Observing five leaf sections limited
by the fixating strings results in 30 white color spots on each leaf.

As background material, blue cardboard has been selected as it supports background
segmentation. For brown rust, time series measurements from 2 to 12 days after inoculation (dai)
have been captured. Contrarily, for septoria tritici blotch 15 to 27 dai were covered due to the
deviating process of pathogenesis. The data has been normalized, i.e., reflectance was calculated
relative to a barium sulphate white reference (Spectral Imaging Ltd.) and a dark current measurement.
Normalization has been performed following [39] using ENVI 4.6 + IDL 7.0 (EXELIS Visual Information
Solutions, Boulder, CO, USA).

Figure 2. Scheme of the referenced hyperspectral time series of a single leaf observed at four exemplary
days. Reference points (white spots), fixating strings (in black), and the developing disease symptoms
are included.

2.3. Algorithm for Hyperspectral Image Referencing

The proposed algorithm is divided into four steps: 1. background segmentation, 2. reference point
detection, 3. matching of reference points, and 4. the spatial transformation (Figure 3).

2.3.1. Background Segmentation

The background segmentation relies on the classification method Random Forest algorithm [40]
to separate leaf regions and background. The model was trained by manual annotation of a single
hyperspectral image. As training data 1000 pixels of the blue background, 1000 pixels of healthy
leaf tissue, 1000 pixels of chlorotic leaf tissue, and 500 pixels of spore stocks were randomly sampled
from the annotation in which the human expert has tried to represent the class variability. Remaining
artifacts of misclassified pixels causing very small regions and holes within large regions were corrected
using connected components approach. Leaf regions were extracted and identified by corresponding
leaf number based on the position within the image.

2.3.2. Reference Point Extraction

For the selection of the reference points, the Random Forest algorithm was applied as well. By
manual annotation 100 pixels of the white reference points and 1000 pixels of plant material (balanced
mixture of healthy, chlorotic, and spore stock tissue) were selected and used to train the model.
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Classified regions within a size range of 3 to 40 pixels were regarded and the center of gravity was
extracted as the pixel position. To exclude mixed pixels, the reference point region has been extended
by 3 pixel and removed from the leaf regions.

Figure 3. Dataflow of the proposed algorithm for geometric referencing of hyperspectral images.

2.3.3. Assignment of Reference Points

Point correspondence was used to derive the geometric transformation model between two images
of a leaf recorded at different observation days. Following, the assignment of single reference points
between the different observation dates is a prerequisite for image transformation. In our approach, the
Random Sample Consensus (RanSaC) algorithm [37] determines a preliminary nonreflective similarity
transformation by assigning two random reference points in the base image to two random points in
the image to reference. The models were evaluated by projecting each reference point of the origin
image to the target image and assess the distance to the closest reference points of the target image.
Reference points within a distance of 20 px are assumed to be correct and, therefore, support the
model. By repeating this process and selecting the transformation model with the maximum number
of supporting reference points, a preliminary referencing was performed. Using nearest neighbor
assignment with a distance threshold of 20 px, reference points were assigned and reference points
without counterpart were excluded from the further process.

2.3.4. Spatial Image Transformation Models

A transformation model was derived using the corresponding reference points. It is used to
reference all images of a time series to the first observation day. The type and flexibility need to be
adapted to the specific task. We compared different transformation types [36]: Nonreflective Similarity,
Affine, Projective, Polynomial, and Local Weighted Mean (LWM).

Nonreflective Similarity transformation is defined by rotation, translation, and scaling. Adding
a shearing parameter and another scale factor results in an Affine transformation. The Projective
transformation represents a central-projective transformation between the two image coordinate
systems and is defined by eight coefficients [36]. The Polynomial model relates the coordinates within
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the two images by a mathematical description based on two 2D polynomials. We selected polynomials
of order 3 as they are able to represent the assumed leaf movements. The LWM model differs from the
mentioned transformation due to its local character. The image is divided into regions in which a local
polynomial transformation model is applied [41].

All steps of the algorithm have been performed using Matlab 2013a (The Mathworks, Natick, MA,
USA) and the corresponding Image Processing Toolbox.

2.3.5. Evaluation of Transformation Accuracy

Evaluation of the transformation accuracy was performed by the Root Mean Square Error (RMSE)
on Euclidean deviations of n reference points

RMSE =

√√√√∑i

√
(xi − xre f )2 + (yi − yre f )2

2

n
. (1)

To evaluate the transformation quality, assessing the mean accuracy of projected reference points
is not sufficient. Large distortions or missing image information can occur in parts of the leaf without
affecting the RMSE parameter. Therefore, two further quality parameters were introduced: Stability
and Extrapolation. The first is defined as the RMSE of an inner point, if it is not included into
the transformation model. This approximates the transformation quality of arbitrary points of the
leaf. The extrapolation parameter approximates the transformation quality at the leaf border by
the transformation accuracy of the four outer points point in the first and last point columns at the
leaf base and the leaf tip (cv. Figure 2). The evaluation has been performed on the full time series
(11 images) of a representative leaf showing brown rust symptoms. For the accuracy measurement
11 × 30 = 330, for the extrapolation 11 × 4 = 44, and for the stability 11 × 5 = 55 reference points have
been used. The hold out reference points for stability calculation have been evenly distributed within
the inner points.

2.4. Vegetation Indices

For characterization of the spectral development of symptomatic areas, Vegetation Indices based
on selected spectral bands (λi) have been used. The Normalized Difference Vegetation Index (NDVI)
uses a combination of a red band (670 nm) and a NIR band (800 nm) according to formula 2 to
extract information about plant vitality and Chlorophyll content [10]. In addition, the Photochemical
Reflectance Index (PRI) was calculated, using the difference between two bands in the green color
range (531 nm and 570 nm) [42] as well as the Anthocyanin Reflectance Index (ARI) that uses a green
(550 nm) and a NIR (700 nm) band which is sensitive to changes in carotenoid pigments [43].

NDVI =
λ670 − λ800

λ670 + λ800
(2)

PRI =
λ531 − λ570

λ531 + λ570
(3)

ARI =
1

λ550
− 1

λ700
(4)

The selected Vegetation Indices are correlated to different plant-physiological parameters
(chlorophyll content, photochemical activity, anthocyanin content) which are significantly influenced
during disease development.

2.5. Presymptomatic Labeling

To demonstrate the advantages of a fully referenced data set, we used spatial referencing to move
the border of symptoms that can be annotated retrospectively regarding the infection time. At first a
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supervised classification model (Random Forest algorithm [40]) has been derived on the full spectral
information based on manual annotations of vital plant material, chlorotic regions, and spore stocks
of brown rust (training data composition given in Section 2.3.1). Such models reproduce the visual
annotation with good accuracy but are not able to detect invisible effect.

Here, spectra of pixels that were two days later detected as diseased were include in the training data
and the Random Forest model is retrained. Furthermore, only pixels were included that are observed at
every observation day to guarantee continuous time series observation for every point on the leaf surface
within the data set. The extended annotations are used to retrain the classification model.

3. Results

This section presents the obtained results of the spatial referencing algorithm for hyperspectral
images and the proposed applications tracing of symptoms and advanced labeling. The referencing
approach has been applied to time series observations of two different diseases: Septoria tritici blotch
and brown rust, each represented by twelve leaves. Figure 4 shows the effect of referencing by the
RGB visualization of hyperspectral images showing a progressing brown rust infection 2–12 dai.

Figure 4. Effect of the spatial referencing. (A) shows the time series of unaligned hyperspectral images
and (B) the same time series after the application of the proposed algorithm. To illustrate the result,
identical points within the images were connected by red lines.

Figure 5 shows the results of tracing mature symptoms back in time. For brown rust and septoria
tritici blotch, a continuous transition starting from healthy tissue has been extracted. The final state
represents the deviating symptom appearance of the diseases (cv. Figure 1) .

3.1. Background Segmentation and Reference Point Detection

Parts of the algorithm are common and well understood steps in many image analysis pipelines.
1. background segmentation and 2. reference point detection did not limit the accuracy or performance
of the algorithm. The used Random Forest classifier was trained on manually annotated but
representative training data and reached on this data an accuracy of more than 99%. The derived
class images “background vs. leaf” and “leaf vs. reference point” showed a high level of concordance
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with the visual impression. In transfer regions, e.g., the unsharp transition of leaf tissue to the white
color of the reference points, a true region boundary is not defined. Consequences are neglectable
as the center of gravity of the reference point region showed a high level of reproducibility within
the different images.

Figure 5. Visualization of the tracing results by using RGB visualizations of a symptom and
the corresponding Vegetation indices anthocyanin reflectance index (ARI), normalized difference
vegetation index (NDVI), and photochemical reflectance index (PRI) for brown rust (A,C) and septoria
tritici blotch (B,D). For visualization purposes the NDVI was multiplied by 10 and the PRI by 40.
Timeseries of spectral characteristics are derived to uncover the deviating spectral dynamics of
the diseases.

In contrast, the matching of the reference points to the base image of day 1 is challenging if larger
movement had occur or missing points complicate the assignment process. The RanSaC algorithm
determines a preliminary non-reflective similarity transformation and allows a nearest neighbor
assignment. More flexible transformations tend to degenerated cases assigning multiple reference
point to a single base point. Using the RanSaC with 10,000 iteration, an optimum has been found in
each case, whereas using only 1000 iteration led to a suboptimal result in around 10% of the runs.

3.2. Transformation Model

The flexibility and robustness of a transformation model type determines the suitability of the
model for a specific task. Average quality parameters of the different models for the full time series of
a representative leaf of the brown rust data set are given in Table 1.

Table 1. Performance parameters (accuracy, stability, and extrapolation) of the five transformation
model types assessing the suitability for the spatial referencing of wheat leaves. The accuracy
is measured by the reprojection error of used reference points. The stability is measured by the
reproduction error of unused control points within the leaf and the ability to extrapolate is measured by
the root mean square error (RMSE) of unused control points at the base and the tip of the leaf. Displayed
are the mean results during the whole time series of eleven days (standard deviation in brackets).

Similarity Affine Projective Polynomial LWM

Accuracy (px) 1.24 (0.75) 1.23 (0.76) 1.09 (0.75) 0.26 (0.092) 0.19 (0.07)
Stability (px) 1.06 (0.62) 1.08 (0.61) 0.97 (0.60) 0.47 (0.17) 0.36 (0.15)

Extrapolation (px) 2.61 (1.57) 2.61 (1.59) 2.37 (1.59) 0.83 (0.31) 0.76 (0.30)

The extracted quality parameters indicate advantages of using transformation functions with
higher flexibility and more model parameters. In each of the three performance parameters accuracy,
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stability, and extrapolation, the LWM transformations reached the lowest error rates whereas Similarity
and Affine transformation obtained the highest error rates.

3.3. Presymptomatic Labeling

The effect of the extended labeling is shown in Figure 6. The manual annotation allows to detect
the spore stocks with good accordance with the visual impression. The highly chlorotic tissue at the
later observation data was also selected whereas the transition areas to the vital plant tissue is mostly
assigned to the healthy class. The extended labelling allows to move this border between vital and
chlorotic tissue. The transition areas are now separated from the vital area and regions showing no
visual symptoms are detected.

Non-continuously observed points of the leaf surface were excluded causing that the covered
area by the fixation strings are widened as it is summed up for each day.

Figure 6. RGB visualization and corresponding classification results of a brown rust time series.
Compared are the classification results based on a manual annotation and an improved annotation
including the data two days before detection.

4. Discussion

The results show that automated referencing of hyperspectral images is possible. The shown
approach enables the tracking of spatial symptoms regarding size and reflection in particular for the
spectral area between 400–1000 nm. Furthermore, tracking of the spectral characteristics of diseases
over time gives new insights for a biological interpretation and an improved detection. This has been
shown for brown rust for periods between 2–10 days after inoculation and for 15–30 days for septoria
tritici blotch (Figure 5). The time series uncover similarities as well as differences within the type of
effect and its dynamics. For both diseases the NDVI is reduced and the ARI increased indicating the
degradation of chlorphylls and the production of anthocyanins, but the change by septoria tritici blotch
is much sharper. The PRI shows contrary effects if the two disease: Brown rust induces a decrease
whereas septoria tritici blotch induces an increase. PRI is related to the photochemical activity meaning
the productivity of photosynthesis [42]. This is surprising as the brown rust permits vital leaf tissue
whereas septoria tritici blotch causes necrotic tissue. Such response may be explained by the pigments
of the produced brown rust spores interfering with the used bands of PRI [44].

The extended labeling showed high potential to train machine learning models with higher
sensitivity even in very early symptom stages (Figure 6). To the best of our knowledge, this is a new
approach in hyperspectral close range imaging. In non-imaging setups the early symptoms has been
classified [45]. In such scenario a spatial referencing is not required, however, this neglects the high
sensitivity for small scale symptoms [6].
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Conditions for tracing are proper measurement setup and suitable background material allowing
a clear background separation. The background material has to differ significantly from the plant
material, wilted leaves, reference points, and disease symptoms. The selected blue paper material
fulfills these demands. Minor errors occur at reflecting metal edges of the tray but these can be filtered
out by a minimal region size. Same applies for the reference points. They need to be durable enough
over the experimental period and, furthermore, need to differ significantly from plant material, wilted
leaves, and disease symptoms.

Critical parts include the selection of the transformation model as it is always a compromise between
robustness and accuracy. The LWM model provides the highest accuracy (Table 1). Nevertheless, the
Polynomial transformation model was selected as it reached very similar results compared to the LWM
model which tends to produce distorted image areas due to its local character. As local transformation
models depend always on a small part of the information, they are less stable but have the ability to
represent also local changes due to wilting. In the present data set, the resulting distortions and twisting
effects could not be represented by any of the models. Advantages of the local model were therefore very
rare whereas negative effects occur much more frequent especially at the leaf borders.

One disadvantage of the showed method is the use of markers on the leaf tissue. Effects of the
marker material on the underlying leaf tissue cannot be completely excluded as well as a possible
change of the disease development. However, differences were not observed between marked leaves
and unmarked control plants.

Limitations for the method are given by the size of the reference points. Using the shortwave-infrared
camera (1000–2500 nm; Specim Spectral Imaging Ltd., Oulu, Finland) of the measurement platform,
it was not possible to detect them with the required accuracy. The spatial resolution of the
shortwave-infrared camera is by a factor of 10 lower than the spatial resolution of the VISNIR camera [25].
Upcoming hyperspectral cameras may be able to allow the spectral referencing also within different
spectral regions.

Further research will focus on the use of interest operators on image data as they are used
for motion tracking. In particular the use of the SIFT [32] operator for tracking within RGB Image
sequences could be an applicable alternative. This could be adapted to the needs of hyperspectral
image sequences using different bands and their spectral relation.

Spatial tracking of markers is a key capability for transferring the findings of the shown
experiments to the high throughput greenhouse scale (e.g., [46]). Tracking is needed due to leaf
movement (external) and plant growth (internal) which leads to a complex transformation of the
complete plant. At the moment, the method is limited to 2D leaves due to the integrated geometrical
transformations. Even since the data fusion of hyperspectral images and 3D models is possible [25,26],
the referencing has many more degrees of freedom. Changes in the shape of the leaf over time has to
be represented within the transformation model having the potential to result in a runaway model
complexity. Furthermore, reference points within the 3D model has to be selected, described (e.g., by
RIFT descriptor [47]), and assigned to image locations. However, extensive studies are required
to represent leaf growing and leaf movements by a compact and applicable model. Modelling the
complete development of not only geometry, but also nutrient supply and changes in reflectance is
possible when using L-Systems [48] or FSP models (FSPM–functional-structural-plant-models) [49]
which use substitution in a grammar structure to model the plant development. By this, the continuous
geometric referencing of hyperspectral images provides valuable input data for modelling plant
growing and development.

5. Conclusions

This publication introduces a method for referencing of hyperspectral images. Field of application
is the improved tracking of hyperspectral information of disease symptoms and their development
over time. Results have been shown for symptoms and their development of septoria tritici blotch and
brown rust, using a VISNIR camera measuring between 400 and 1000 nm. The potential of the method
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has been demonstrated by extracting the dynamic of spectral indices of a single symptom over time.
Furthermore, the possibility to annotate invisible symptoms by tracing visible symptoms back in time
to the invisible phase of pathogenesis. The concept of spectral tracking over time can contribute to a
more dynamic research of disease development instead of focusing to mature symptoms and their
appearing in the visible bands.

Author Contributions: J.B., A.K.M. and D.B. conceived and designed the experiments; J.B. and D.B. performed
the experiments and analyzed the data; J.B., D.B. and S.P. contributed Figures; J.B., S.P., D.B. and A.K.M. wrote
the paper.

Funding: This work was financially supported by BASF Digital Farming.

Acknowledgments: We acknowledge the detailed and constructive remarks of the reviewers.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ARI Anthocyanin Reflectance Index
LWM Local Weighted Mean
NDVI Normalized Difference Vegetation Index
PRI Photochemical Reflectance Index
RMSE Root Mean Square Error
UAV Unmanned Aerial Vehicle
VISNIR Visual-nearinfrared

References

1. Mahlein, A.K.; Kuska, M.; Behmann, J.; Polder, G.; Walter, A. Hyperspectral sensors and imaging technologies
in phytopathology: State of the art. Annu. Rev. Phytopathol. 2018, 56, 535–558. [CrossRef] [PubMed]

2. Blackburn, G.A. Hyperspectral remote sensing of plant pigments. J. Exp. Bot. 2006, 58, 855–867. [CrossRef]
[PubMed]

3. Bock, C.; Poole, G.; Parker, P.; Gottwald, T. Plant disease severity estimated visually, by digital photography
and image analysis, and by hyperspectral imaging. Crit. Rev. Plant Sci. 2010, 29, 59–107. [CrossRef]

4. Mahlein, A.K. Plant disease detection by imaging sensors–parallels and specific demands for precision
agriculture and plant phenotyping. Plant Dis. 2016, 100, 241–251. [CrossRef]

5. Kuska, M.; Wahabzada, M.; Leucker, M.; Dehne, H.W.; Kersting, K.; Oerke, E.C.; Steiner, U.; Mahlein, A.K.
Hyperspectral phenotyping on the microscopic scale: Towards automated characterization of plant-pathogen
interactions. Plant Methods 2015, 11, 28. [CrossRef] [PubMed]

6. Mahlein, A.K.; Rumpf, T.; Welke, P.; Dehne, H.W.; Plümer, L.; Steiner, U.; Oerke, E.C. Development of
spectral indices for detecting and identifying plant diseases. Remote Sens. Environ. 2013, 128, 21–30,
doi:10.1016/j.rse.2012.09.019. [CrossRef]

7. Aasen, H.; Burkart, A.; Bolten, A.; Bareth, G. Generating 3D hyperspectral information with lightweight
UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS J.
Photogramm. Remote Sens. 2015, 108, 245–259. [CrossRef]

8. Honkavaara, E.; Rosnell, T.; Oliveira, R.; Tommaselli, A. Band registration of tuneable frame format
hyperspectral UAV imagers in complex scenes. ISPRS J. Photogramm. Remote Sens. 2017, 134, 96–109.
[CrossRef]

9. Burkart, A.; Aasen, H.; Alonso, L.; Menz, G.; Bareth, G.; Rascher, U. Angular dependency of hyperspectral
measurements over wheat characterized by a novel UAV based goniometer. Remote Sens. 2015, 7, 725–746.
[CrossRef]

10. Rouse, J., Jr.; Haas, R.; Schell, J.; Deering, D. Monitoring vegetation systems in the Great Plains with ERTS.
In Proceedings of the Third Earth Resources Technology Satellite-1 Symposium, Washington, DC, USA,
10–14 December 1973.

11. Bockus, W.W.; Bowden, R.; Hunger, R.; Murray, T.; Smiley, R. Compendium of Wheat Diseases and Pests, 3rd ed.;
American Phytopathological Society (APS Press): Sao Paulo, MN, USA, 2010.

84



J. Imaging 2018, 4, 143

12. Camargo, A.; Smith, J. An image-processing based algorithm to automatically identify plant disease visual
symptoms. Biosyst. Eng. 2009, 102, 9–21. [CrossRef]

13. West, J.S.; Bravo, C.; Oberti, R.; Lemaire, D.; Moshou, D.; McCartney, H.A. The potential of optical canopy
measurement for targeted control of field crop diseases. Annu. Rev. Phytopathol. 2003, 41, 593–614. [CrossRef]
[PubMed]

14. Bravo, C.; Moshou, D.; West, J.; McCartney, A.; Ramon, H. Early Disease Detection in Wheat Fields using
Spectral Reflectance. Biosyst. Eng. 2003, 84, 137–145, doi:10.1016/s1537-5110(02)00269-6. [CrossRef]

15. Behmann, J.; Mahlein, A.K.; Rumpf, T.; Römer, C.; Plümer, L. A review of advanced machine learning
methods for the detection of biotic stress in precision crop protection. Precis. Agric. 2015, 16, 239–260.
[CrossRef]

16. Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press:
Cambridge, UK, 2003.

17. Zitova, B.; Flusser, J. Image registration methods: A survey. Image Vis. Ccomput. 2003, 21, 977–1000.
[CrossRef]

18. Salvi, J.; Matabosch, C.; Fofi, D.; Forest, J. A review of recent range image registration methods with accuracy
evaluation. Image Vis. Comput. 2007, 25, 578–596. [CrossRef]

19. Eling, C.; Klingbeil, L.; Kuhlmann, H. Real-time single-frequency GPS/MEMS-IMU attitude determination
of lightweight UAVs. Sensors 2015, 15, 26212–26235. [CrossRef] [PubMed]

20. Toutin, T. Geometric processing of remote sensing images: Models, algorithms and methods. Int. J. Remote Sens.
2004, 25, 1893–1924. [CrossRef]

21. Gwo, C.Y.; Wei, C.H. Plant identification through images: Using feature extraction of key points on leaf
contours1. Appl. Plant Sci. 2013, 1, 1200005. [CrossRef]

22. Mouine, S.; Yahiaoui, I.; Verroust-Blondet, A. Combining leaf salient points and leaf contour descriptions for
plant species recognition. In Proceedings of the International Conference Image Analysis and Recognition,
Povoa do Varzim, Portugal, 26–28 June 2013; Springer: Berlin, Germany, 2013; pp. 205–214.

23. Kolivand, H.; Fern, B.M.; Rahim, M.S.M.; Sulong, G.; Baker, T.; Tully, D. An expert botanical feature
extraction technique based on phenetic features for identifying plant species. PLoS ONE 2018, 13, e0191447.
[CrossRef]

24. Gupta, M.D.; Nath, U. Divergence in patterns of leaf growth polarity is associated with the expression
divergence of miR396. Plant Cell 2015. [CrossRef]

25. Behmann, J.; Mahlein, A.K.; Paulus, S.; Kuhlmann, H.; Oerke, E.C.; Plümer, L. Calibration of hyperspectral
close-range pushbroom cameras for plant phenotyping. ISPRS J. Photogramm. Remote Sens. 2015, 106, 172–182.
[CrossRef]

26. Behmann, J.; Mahlein, A.K.; Paulus, S.; Dupuis, J.; Kuhlmann, H.; Oerke, E.C.; Plümer, L. Generation and
application of hyperspectral 3D plant models: Methods and challenges. Mach. Vis. Appl. 2016, 27, 611–624.
[CrossRef]

27. De Vylder, J.; Douterloigne, K.; Vandenbussche, F.; Van Der Straeten, D.; Philips, W. A non-rigid registration
method for multispectral imaging of plants. In Proceedings of the 2012 SPIE Defense, Security, and Sensing,
Baltimore, MD, USA, 23–27 April 2012; Volume 8369, p. 836907.

28. Bar-Sinai, Y.; Julien, J.D.; Sharon, E.; Armon, S.; Nakayama, N.; Adda-Bedia, M.; Boudaoud, A. Mechanical
stress induces remodeling of vascular networks in growing leaves. PLoS Comput. Boil. 2016, 12, e1004819.
[CrossRef] [PubMed]

29. Balduzzi, M.; Binder, B.M.; Bucksch, A.; Chang, C.; Hong, L.; Iyer-Pascuzzi, A.S.; Pradal, C.; Sparks, E.E.
Reshaping plant biology: Qualitative and quantitative descriptors for plant morphology. Front. Plant Sci.
2017, 8, 117. [CrossRef] [PubMed]

30. Wang, X.; Yang, W.; Wheaton, A.; Cooley, N.; Moran, B. Efficient registration of optical and IR images for
automatic plant water stress assessment. Comput. Electron. Agric. 2010, 74, 230–237. [CrossRef]

31. Henke, M.; Junker, A.; Neumann, K.; Altmann, T.; Gladilin, E. Automated alignment of multi-modal plant
images using integrative phase correlation approach. Front. Plant Sci. 2018, 9, 1519. [CrossRef] [PubMed]

32. Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110,
doi:10.1023/b:visi.0000029664.99615.94. [CrossRef]

85



J. Imaging 2018, 4, 143

33. Yin, X.; Liu, X.; Chen, J.; Kramer, D.M.; others. Multi-leaf alignment from fluorescence plant images.
In Proceedings of the IEEE 2014 IEEE Winter Conference on Applications of Computer Vision (WACV),
Steamboat Springs, CO, USA, 24–26 March 2014; pp. 437–444.

34. Raza, S.E.A.; Sanchez, V.; Prince, G.; Clarkson, J.P.; Rajpoot, N.M. Registration of thermal and visible
light images of diseased plants using silhouette extraction in the wavelet domain. Pattern Recognit. 2015,
48, 2119–2128. [CrossRef]

35. Raza, S.E.A.; Prince, G.; Clarkson, J.P.; Rajpoot, N.M. Automatic detection of diseased tomato plants using
thermal and stereo visible light images. PLoS ONE 2015, 10, e0123262. [CrossRef]

36. Luhmann, T.; Robson, S.; Kyle, S.; Harley, I. Close Range Photogrammetry: Principles, Techniques and Applications;
Whittles: Dunbeath, UK, 2006.

37. Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to
image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]

38. Meier, U. Growth Stages of Mono-and Dicotyledonous Plants; Blackwell, Wissenschafts-Verlag: Berlin,
Germany, 1997.

39. Grahn, H.; Geladi, P. Techniques and Applications of Hyperspectral Image Analysis; John Wiley Sons: Hoboken,
NJ, USA, 2007.

40. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
41. Goshtasby, A. Image registration by local approximation methods. Image Vis. Comput. 1988, 6, 255–261.

[CrossRef]
42. Gamon, J.; Penuelas, J.; Field, C. A narrow-waveband spectral index that tracks diurnal changes in

photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [CrossRef]
43. Gitelson, A.A.; Merzlyak, M.N.; Chivkunova, O.B. Optical properties and nondestructive estimation of anthocyanin

content in plant leaves. Photochem. Photobiol. 2001, 74, 38, doi:10.1562/0031-8655(2001)074<0038:opaneo>2.0.co;2.
[CrossRef]

44. Wang, E.; Dong, C.; Park, R.F.; Roberts, T.H. Carotenoid pigments in rust fungi: Extraction, separation,
quantification and characterisation. Fungal Boil. Rev. 2018, 32, 166–180. [CrossRef]

45. Rumpf, T.; Mahlein, A.K.; Steiner, U.; Oerke, E.C.; Dehne, H.W.; Plümer, L. Early detection and classification
of plant diseases with Support Vector Machines based on hyperspectral reflectance. Comput. Electron. Agric.
2010, 74, 91–99. [CrossRef]

46. Kuska, M.T.; Behmann, J.; Grosskinsky, D.K.; Roitsch, T.; Mahlein, A.K. Screening of barley resistance against
powdery mildew by simultaneous high-throughput enzyme activity signature profiling and multispectral
imaging. Front. Plant Sci. 2018, 9, 1074. [CrossRef]

47. Lazebnik, S.; Schmid, C.; Ponce, J. A sparse texture representation using local affine regions. IEEE Trans.
Pattern Anal. Mach. Intell. 2005, 27, 1265–1278. [CrossRef] [PubMed]

48. Prusinkiewicz, P.; Lindenmayer, A. The Algorithmic Beauty of Plants; Springer: Berlin/Heidelberg,
Germany, 1996.

49. Vos, J.; Evers, J.B.; Buck-Sorlin, G.H.; Andrieu, B.; Chelle, M.; de Visser, P.H.B. Functional-structural plant
modelling: A new versatile tool in crop science. J. Exp. Bot. 2009, 61, 2101–2115, doi:10.1093/jxb/erp345.
[CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

86



Journal of

Imaging

Article

A Low-Rate Video Approach to Hyperspectral
Imaging of Dynamic Scenes

Charles M. Bachmann 1,*, Rehman S. Eon 1, Christopher S. Lapszynski 1, Gregory P. Badura 1,

Anthony Vodacek 1, Matthew J. Hoffman 2, Donald McKeown 1, Robert L. Kremens 1,

Michael Richardson 1,†, Timothy Bauch 1 and Mark Foote 1

1 Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology,
Rochester, NY 14623-5603, USA; rse4949@rit.edu (R.S.E.); csl3172@rit.edu (C.S.L.); gpb6751@rit.edu (G.P.B.);
vodacek@cis.rit.edu (A.V.); mckeown@cis.rit.edu (D.M.); kremens@cis.rit.edu (R.L.K.);
richardson@cis.rit.edu (M.R.); tdbpci@cis.rit.edu (T.B.); mlf9871@rit.edu (M.F.)

2 School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY 14623-5603, USA;
mjhsma@rit.edu

* Correspondence: bachmann@cis.rit.edu; Tel.: +1-585-475-7238
† Current address: Harris Corporation, Rochester, NY 14623, USA.

Received: 10 November 2018; Accepted: 26 December 2018; Published: 31 December 2018

Abstract: The increased sensitivity of modern hyperspectral line-scanning systems has led to the
development of imaging systems that can acquire each line of hyperspectral pixels at very high data
rates (in the 200–400 Hz range). These data acquisition rates present an opportunity to acquire full
hyperspectral scenes at rapid rates, enabling the use of traditional push-broom imaging systems as
low-rate video hyperspectral imaging systems. This paper provides an overview of the design of
an integrated system that produces low-rate video hyperspectral image sequences by merging a
hyperspectral line scanner, operating in the visible and near infra-red, with a high-speed pan-tilt
system and an integrated IMU-GPS that provides system pointing. The integrated unit is operated
from atop a telescopic mast, which also allows imaging of the same surface area or objects from
multiple view zenith directions, useful for bi-directional reflectance data acquisition and analysis.
The telescopic mast platform also enables stereo hyperspectral image acquisition, and therefore,
the ability to construct a digital elevation model of the surface. Imaging near the shoreline in a
coastal setting, we provide an example of hyperspectral imagery time series acquired during a field
experiment in July 2017 with our integrated system, which produced hyperspectral image sequences
with 371 spectral bands, spatial dimensions of 1600 × 212, and 16 bits per pixel, every 0.67 s. A second
example times series acquired during a rooftop experiment conducted on the Rochester Institute
of Technology campus in August 2017 illustrates a second application, moving vehicle imaging,
with 371 spectral bands, 16 bit dynamic range, and 1600 × 300 spatial dimensions every second.

Keywords: hyperspectral; video; imaging; coastal dynamics; moving vehicle imaging; bi-directional
reflectance distribution function (BRDF); hemispherical conical reflectance factor (HCRF);
stereo imaging; digital elevation model; Virginia Coast Reserve Long Term Ecological Research
(VCR LTER)

1. Introduction

Hyperspectral imaging has been a powerful tool for identifying the composition of materials
in scene pixels. Over the years, a large number of applications have been considered, ranging from
environmental remote sensing to identification of man-made objects [1–10]. Some applications involve
dynamic scenes which naturally would be well addressed by hyperspectral imaging systems operated
at very high data rates. For example, coastal regions with rapidly changing conditions due to the
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persistent action of tides provide an example of a dynamic landscape where both the water and the
land near shore change from moment to moment. Similarly, imaging of moving vehicles provides a
challenging but different set of demands which would benefit from a system which can image rapidly.

The coastal zone, in particular, offers a range of important applications where hyperspectral
imaging at video rates can have an impact. A wide variety of imaging systems have been used to study
near-shore dynamics [11–13]. Considerable effort also has been made to develop hydrodynamic models
that attempt to capture the dynamics of flowing sediment in the littoral zone [14], and models of
flowing sediment are critical to understanding erosion and accretion processes. At the shoreline,
modeling sediment transport and in particular accurately characterizing frictional effects is challenging
due to the complicated dynamics as waves break on shore and then retreat [15].

Imaging of the coastal zone has taken many forms. For example, multi-spectral and hyperspectral
imaging systems have been used to characterize in water constituents, bottom type, and bathymetry
using radiative transfer models [7,16]. In addition, video imaging has been used to estimate flow of the
water column and its constituents using video imaging (monochromatic and 3-band multi-spectral)
through particle imaging velocimetry (PIV) [17–19]. Limitations of these past approaches are that
traditional airborne and satellite remote sensing, while providing important details about sediment
concentrations near shore, have produced essentially an instantaneous look at what is in fact a
dynamical system. At the same time, while video systems have been used to image the water column
and model its flow, the limited number of bands has meant that little information is available from
these systems regarding in water constituents or bottom properties.

Relatively recently, the commercial marketplace has begun to deliver sensors which are advancing
toward the long-term goal of high-frame rate hyperspectral imagery. Several different approaches have
been taken, which include the use of so-called “snapshot” imaging systems [20,21]. Some hyperspectral
imaging systems that fall into this category use a Fabry–Perot design [22]. However, the signal-to-noise
ratio (SNR) that has been achieved by existing systems or those under development [23] is
typically lower than that obtained with conventional hyperspectral imaging systems. In some cases,
other trade-offs must be made to obtain comparable performance such as using fewer spectral bands
or spatial pixels. Recently reported results using a snapshot imaging system based on a Fabry–Perot
design indicate other issues such as mis-registration of band images during airborne data acquisition
since whole band images are acquired sequentially in time [24]; this same system delivers image
cubes that have 1025 × 648 spatial pixels with only 23 spectral bands and 12 bits per pixel acquired
within 0.76 s, meaning that the data volumes recorded are only 9% of the data rates achieved below
by our approach in comparable time (0.67 s). For our applications and the scientific goals described
later in this Section, the 12-bit dynamic range found in the system described in [24] and in other
snapshot hyperspectral imaging systems [25] is too limited, and this is one of the motivating factors
for our having designed an overall system uses a hyperspectral line scanner with 16-bit dynamic
range. On the other hand, progress has been made in co-registration of the mis-aligned band images
captured via snapshot hyperspectral imaging, with one recent work demonstrating mis-registration
errors of ≤0.5 pixels [26]. Some designs have included much smaller conventional hyperspectral
imaging arrays that have been resampled then to a panchromatic image acquired simultaneously [27].
Of course, the potential limitation for these systems is that they may not produce hyperspectral
image sequences that are truly representative of what would be recorded in an actual full-resolution
imaging spectrometer.

At the same time, among conventional imaging spectrometer designs, the commercial marketplace,
driven by consumer demand for portable imaging technologies as well as unmanned aerial systems
(UAS) in a number of important commercial application areas, has led to cost-effective improvements
to spectrographs with progressively greater sensitivity, and this in combination with improvements
to data capture capabilities have together led to hyperspectral imaging systems that can frame at
high rates while maintaining high data quality (low aberration) as well as excellent spectral and
spatial resolution [28,29]. The current generation of conventional imaging systems requires shorter
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integration times, and therefore can record a line of hyperspectral pixels at much higher rates, in the
200–400 Hz range. Most of these spectrometers are incorporated in systems that operate as line
scanners. The hyperspectral line-scanner incorporated in the system described in this paper is an
example of a system operating with data rates in this range [30]. Line scanners such as this have been
the norm in so called “push-broom” imaging system design, used in hyperspectral imaging from space-
and air-borne systems [31–39], where the motion of the platform produces one spatial dimension,
the along-track spatial dimension, of the image data cube.

In developing a system such as the the one described here in this paper, we had several specific
objectives. For coastal applications, our objectives included: (1) to be able to acquire short-time-interval
hyperspectral imagery time series to support long-term goals of modeling both dynamics of the
near-shore water column including the mapping of in water constituents (suspended sediments,
color-dissolved organic matter (CDOM), chlorophyll, etc.) and their transport, (2) to capture near-shore
land characteristics (sediments and vegetation) and in particular change in sediments on short time
scales due to the influence of waves and tides, (3) more broadly to be able to image from a variety
of geometries from the same location in order to obtain multi-view imagery from samples of the
bi-directional reflectance distribution function for use in retrieval of geophysical parameters of the
surface through inversion of radiative transfer models [40] and for construction of digital surface
models (DSM) to enhance derived products and contribute to validation, (4) to image at very fine-scale
spatial resolutions (mm to cm in the near range) in order to derive water-column and land surface
products as just described on scales where variation might occur and to consider how products derived
at these resolutions then scale up to more traditional scales so often used in remote sensing from
airborne and satellite platforms where resolutions have often been measured in meters, to tens of
meters, or greater; and (5) to acquire imagery for all of these purposes with a hyperspectral imager
with sufficient dynamic range that retrieval in both the water column and on land would be possible.

Our objectives for moving vehicle applications overlap a number of those just described for the
water column, especially goals (1), (3) and (5) listed above. Our objectives here were: (a) to obtain
short-time interval hyperspectral imagery, which is critical to identification and tracking of moving
vehicles while minimizing distortion due to vehicle movement; (b) to be able to characterize BRDF
effects for moving vehicles, and (c) to ensure that shadows due to occlusions and nearby structures in
the vicinity of moving vehicles could be better characterized.

Our approach in this paper uses the very high data rates found in modern hyperspectral line
scanners to achieve a low-rate hyperspectral video acquisition system. Our overall system design
incorporates a modern hyperspectral imaging spectrometer integrated into a high-speed pan tilt system
with onboard Inertial Measurement Unit Global Positioning System (IMU-GPS) for pointing and data
time synchronization. In field settings, the system is deployed from a telescopic mast, meeting our
objectives (3) and (4). By combining these components into one integrated system, we describe how
a time sequence of hyperspectral images can be acquired at ∼1.5 Hz, thus operating as a low-rate
hyperspectral video of dynamic scenes and satisfying objectives (1), (2), and (a). In order to meet
objectives (5) and (c) above, the imaging system that we selected had 16-bit dynamic range. Traditional
video systems have been used to examine coastal regions in the past, however, these have been
primarily monochromatic [15] or multi-spectral imaging systems [17] with a very limited number of
spectral bands (typically 3 bands); these systems provide a more limited understanding of the dynamics
of the littoral zone and have been primarily used to estimate current flow vectors. Similarly, previous
studies have recognized the potential of spectral information to improve persistent vehicle tracking,
but most tracking studies have used panchromatic or RGB imaging due to the cost and availability of
spectral imaging equipment [41–47].
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2. Approach

2.1. Low-Rate Hyperspectral Video System

At the heart of our approach is a state-of-the-art Headwall micro High Efficiency (HE)
Hyperspec [30]. This system is advertised to achieve “frame rates” of up to 250 Hz. Here the term
“frame rate” refers to the rate at which a line of hyperspectral pixels can be acquired and stored in a
data capture unit. Our Headwall micro HE Hyperspec E-Series is a hyperspectral line scanner with
1600 across-track spatial pixels and 371 spectral pixels, with 16-bit dynamic range. Headwall currently
manufactures both visible and near infrared (VNIR) as well as short-wave infrared (SWIR) versions
of the Hyperspec. This paper describes an overall system design in which a VNIR Hyperspec is the
imaging unit of the system.

Our design integrates (Figure 1) a Headwall Hyperspec into a high-speed maritime-rated General
Dynamics Vector 20 pan-tilt unit [48]. Along-track motion of the Headwall Hyperspec line-scanner is
accomplished by nodding of the pan-tilt unit. A Vectornav VN-300 IMU-GPS [49] is also integrated to
provide pointing information for the system as well as GPS time-stamps for acquired hyperspectral
data. In field settings, we mount the integrated Headwall Hyperspec and General Dynamics pan-tilt
and the Headwall compact data unit atop a BlueSky AL-3 telescopic mast [50] which can raise the
system from 1.5–15 m above the ground. Integration of the Hyperspec, General Dyanmics pan-tilt,
and Vectornav VN-300 GPS-IMU was accomplished by Headwall under contract to RIT, and under
the same contract, Headwall modified their Hyperspec data acquisition software to meet our RIT
data acquisition specifications. The key data acquisition features allow direct user control of camera
parameters such as integration time as well as rates of azimuthal slewing and nodding in the zenith
direction of the pan-tilt system. Additional engineering, including development of custom mounting
plate for the General Dynamics pan-tilt containing the Headwall Hyperspec and the Vectornav
GPS-IMU components, as well as development of a field portable power supply to provide power to all
components, was undertaken at RIT to further integrate the Headwall/General-Dynamics/Vectornav
configuration onto the BlueSky AL-3 telescopic mast to make the final configuration field-ready.

The control software allows a variety of scan sequences to be implemented. This includes nodding
at the same azimuthal orientation, typical for hyperspectral video modes, where bi-directional scanning
is used to maximize hyperspectral data acquisition rates, as well as scanning sequences that step in
azimuth between image frames, in combination with the normal zenith nodding mode used to produce
the along track motion for each full hyperspectral image frame.

Our current instrument configuration incorporates a 12 mm lens on the Headwall Hyperspec
imaging system. When operated from our telescopic mast with this lens, the Headwall system provides
very fine scale hyperspectral imagery with a GSD in the millimeter to centimeter range. A table of
GSD values obtainable with our system at various mast heights and distances from the mast appears
in Table 1.

We note that in its current configuration, when the General Dynamics pan-tilt housing is leveled,
it has a maximum deflection angle above or below the horizontal of 34◦. This, however, is not a
permanent limitation as the addition of a rotational stage in future planned upgrades will allow the
system to reach and measure hyperspectral data from a much broader range of zenith angles.

2.2. System Calibration

To characterize the system, we used our calibration facility, which includes a LabSphere Helios
(Labsphere, North Sutton, NH, USA) 0.5 m diameter integrating sphere [51] paired with a calibrated
spectrometer to collect radiance data in order to derive system calibration curves, signal-to-noise ratio
(SNR), and noise-equivalent spectral radiance (NESR). In the examples provided here, we show results
for an integration time of 2.5 ms, which is the integration time used in the surf zone hyperspectral
imagery time series example provided below.
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Figure 1. Hyperspectral video imaging concept. (a) Headwall Hyperspec HE E-Series hyperspectral
line scanner and Vectornav 300 GPS/IMU integrated into the General Dynamics Vector 20 high-speed
pan-tilt unit. (b) Nodding motion of the pan-tilt provides the along-track motion normally produced
by movement of an aircraft when these types of imaging systems are used in an airborne platform.

Table 1. GSD (m).

Height of Camera (m) 1 2 3 4 5 6 7 8 9 10 15

Distance from Mast (m)

1 0.0008 0.0012 0.0017 0.0022 0.0028 0.0033 0.0038 0.0044 0.0049 0.0054 0.0081

2 0.0012 0.0015 0.0020 0.0024 0.0029 0.0034 0.0039 0.0045 0.0050 0.0055 0.0082
5 0.0028 0.0029 0.0032 0.0035 0.0038 0.0042 0.0047 0.0051 0.0056 0.0061 0.0086

10 0.0054 0.0055 0.0057 0.0058 0.0061 0.0063 0.0066 0.0069 0.0073 0.0077 0.0098

15 0.0081 0.0082 0.0083 0.0084 0.0086 0.0088 0.0090 0.0092 0.0095 0.0098 0.0115

20 0.0109 0.0109 0.0110 0.0111 0.0112 0.0113 0.0115 0.0117 0.0119 0.0121 0.0136

25 0.0136 0.0136 0.0136 0.0137 0.0138 0.0139 0.0141 0.0142 0.0144 0.0146 0.0158

30 0.0163 0.0163 0.0163 0.0164 0.0165 0.0166 0.0167 0.0168 0.0170 0.0171 0.0182

35 0.0190 0.0190 0.0190 0.0191 0.0192 0.0192 0.0193 0.0195 0.0196 0.0197 0.0206

40 0.0217 0.0217 0.0217 0.0218 0.0218 0.0219 0.0220 0.0221 0.0222 0.0223 0.0232

45 0.0244 0.0244 0.0244 0.0245 0.0245 0.0246 0.0247 0.0248 0.0249 0.0250 0.0257

50 0.0271 0.0271 0.0271 0.0272 0.0272 0.0273 0.0274 0.0274 0.0275 0.0276 0.0283

55 0.0298 0.0298 0.0299 0.0299 0.0299 0.0300 0.0301 0.0301 0.0302 0.0303 0.0309

60 0.0325 0.0325 0.0326 0.0326 0.0326 0.0327 0.0327 0.0328 0.0329 0.0330 0.0335

Through various system ports, our integrating sphere is configured with three different light
sources (a quartz tungsten halogen (QTH) bulb and two highly stable xenon plasma arc lamps), a VNIR
spectrometer (Ocean Optics, Largo, FL, USA), and two single point broad band detectors, one silicon
detector (Hamamatsu Photonics, Hamamatsu City, Japan) measuring in the visible portion of the
spectrum, and an Indium Gallium Arsenide (InGaAs) detector (Teledyne Judson, Montgomeryville,
PA, USA) measuring the total energy in the shortwave infrared. The external illumination sources
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allow the instrument to be utilized as a source capable of outputting a constant illumination across the
entire 0.2 m exit port, and the radiometrically calibrated detectors are capable of measuring internal
illumination conditions. For calibration purposes, the sphere operates as a source, utilizing the two
high intensity plasma lamps (Labsphere, North Sutton, NH, USA), which are capable of producing
almost full daylight illumination conditions through the exit port.

In our calibration, we use typically in the range of 10–30 different illumination levels, and we
average 255 scans at the desired integration time. The Xenon plasma lamps provide a highly stable
illumination source for the measurements, however, in order to minimize any residual instrument drift,
we use two sets of dark current measurements, one before and one after imaging system measurements
for the various illumination levels provided by the integrating sphere. According to manufacturer
specifications each lamp maintains an approximate correlated color temperature of 5100 K ± 200 K
with rated lifetime of 30,000 h. Because the Plasma External Lamps (PEL) are microwave induced
sources the emitter requires feedback to maintain desired light levels. This fluctuation results in
a 0.1 Hz sawtooth shaped waveform. In rest mode short term stability is ±3% from peak to peak
(P-P) resulting in 6% change in magnitude of desired output. To further reduce error, Labsphere
has implemented a Test Mode, during which the short term drift is ±0.5% P-P, (0.6% magnitude).
Test Mode can only be maintained for a 30 min period, after which the system requires a minimum of
5 min before the next activation cycle. The long term stability reported by Labsphere for every 100 h is
less than 1%. Correlated Color Temperature (CCT) change for the same time period was reported to be
<100 K. Lastly observed spectral stability had fluctuations <0.5 nm for every 10 h. The quoted stability
values provided here are manufacturer specifications, indicating expected performance. To obtain the
results provided below, we used the Test Mode during data collection.

To develop calibrations for each wavelength, we perform a linear regression between the
NIST-traceable light levels (radiance) as recorded by the onboard spectrometer attached to our
integrating sphere and the recorded radiance at each wavelength in our Headwall Hyperspec imaging
system. We measure system dark current by blocking the entrance aperture with the lens cap in the
dark room of the calibration facility. Figure 2 shows the noise equivalent spectral radiance (NESR)
and signal-to-noise ratio (SNR) for the 2.5 ms integration time used by our Headwall system during
the acquisition of the hyperspectral imagery time series of the surf zone described later in this paper.
The curves correspond to different illumination levels, varying from the base noise of the system to
just below the saturation limit of the detector at 30,000 electrons. The SNR curves in Figure 2 show that
at near full daylight levels, the peak SNR in the visible part of the spectrum is around 150, while at
0.9 μm in the near infra-red, the SNR drops to around 40. Note that the spatial resolution of our system
is usually quite high (mm to cm range, as shown in Table 1, depending on the height of the mast and
proximity of the ground element to the sensor). Thus, if higher SNR is desired, spatial binning by even
a modest amount can provide significant enhancements; for example a 3 × 3 spatial window would
provide a peak SNR of 450 at the peak in the visible and 120 at 0.9 μm.

2.3. Imaging the Dynamics of the Surf Zone

Imaging of the coastal zone has taken many forms. For example, multi-spectral and hyperspectral
imaging systems have been used to quantify concentrations of water constituents and characterize
bottom type and bathymetry using radiative transfer models [7,52]. In addition, video imaging has been
used to estimate flow of the water column and its constituents using video imaging (monochromatic
and 3-band multi-spectral) through particle imaging velocimetry (PIV) [18,19]. Limitations of these
past approaches are that traditional airborne and satellite remote sensing, while providing important
details about sediment concentrations near shore, have produced essentially an instantaneous look at
what is in fact a dynamical system. At the same time, while video systems have been used to image
the water column and model its flow, the limited number of bands has meant that little information is
available from these systems regarding in water constituents or bottom properties.
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Figure 2. (a) Labsphere Helios 0.5 m diameter integrating sphere in our Rochester Institute of
Technology (RIT) calibration laboratory. Plasma lamps, attached to the sphere, are visible on the
top shelves to the left and right. (b) Our Headwall imaging system in the pan-tilt unit in front of the
sphere during calibration. (c) typical NESR curves for 10 light levels up to the maximum output of
the two plasma lamps, near daylight levels. (d) Typical SNR obtained over the same 30 light levels
for a 2.5 × 10−3 s integration time. Hyperspectral video sequences shown in this paper used either a
2.5 × 10−3 s or 3.0 × 10−3 s integration time.

The dynamics of sediment flow in coastal settings plays a significant role in the evolution of
shorelines, determining processes such as erosion and accretion. As sea levels continue to rise,
improved modeling of the evolution of coastal regions is a priority for environmental stewards,
natural resource managers, urban planners, and decision makers. Understanding the details of
this evolution is critical and improved knowledge of the dynamics of flowing sediment near shore
can contribute significantly to hydrodynamic models that ultimately predict the future of coastal
regions. Imaging systems have been used to acquire snapshots of the coastal zone from airborne
and satellite platforms. Multi-spectral and especially hyperspectral imaging systems can provide
an instantaneous look at the distribution of in-water constituents, bottom-type, and depth; however,
these have not produced a continuous time series that looks at the short time scale dynamics of the
flowing sediment. Video systems have also been used to examine coastal regions, however, these have
been primarily monochromatic [15] or multi-spectral imaging systems [17] with a very limited number
of spectral bands (typically 3 bands); these systems provide a more limited understanding of the
dynamics of the littoral zone and have been primarily used to estimate current flow vectors without
the ability to determine local particle densities. In the Results section below, we demonstrate a low-rate
hyperspectral video time series. This imaging demonstration offers the advantage of bringing together
the power of spectral imaging to estimate in water constituents and bottom type along with low-rate
video that offers the potential to track the movement of these in-water constituents on very short
time scales.
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2.4. Real-Time Vehicle Tracking Using Hyperspectral Imagery

In recent years, vehicle detection and tracking has become important in a number of
applications, including analyzing traffic flow, monitoring accidents, navigation for autonomous
vehicles, and surveillance [41,47,53–55]. Most traffic monitoring and vehicle movement applications
use relatively high-resolution video and have a high number of pixels on each vehicle, which allows
tracking algorithms to rely on appearance features in the spatial domain for detection and identification.
Tracking from airborne imaging platforms, on the other hand, poses several unique challenges.
Airborne imaging systems typically have fewer pixels representing each vehicle within the scene
due to the longer viewing distance, as well as being prone to blur or smear due to the relative
motion of the sensor and the object and parallax error [41,56]. Beyond imaging system limitations,
vehicle tracking/detection algorithms also must be able to handle complex, cluttered scenes that
include traffic congestion and occlusions from the environment [41,47]. Occlusions are more common
in airborne images and are particularly challenging for persistent vehicle tracking. When a tracked
vehicle is obscured by a tree or a building, it is common for it to be assigned a new label once it
reemerges. This can be avoided if the vehicle can be uniquely identified, however while traditional
tracking methods can rely on high-resolution spatial features, the low resolution of airborne imagery,
where the object is only represented by 100–200 or fewer pixels, makes reidentification by spatial
features difficult and can lead to the tracker following a different vehicle or dropping the track
entirely [41,56].

Compared to panchromatic or RGB systems, hyperspectral sensors can more effectively identify
different materials based on their spectral signature and can thereby provide additional spectral
features that can reidentify vehicles. Vodacek et al. [47] and Uzkent et al. [56] suggested using a
multi-modal sensor design consisting of a wide field of view (FOV) panchromatic system alongside
a narrow FOV hyperspectral sensor for real-time vehicle tracking and developed a tracking method
leveraging the spectral information. Due to the lack of hyperspectral data, the method—along with
subsequent additions to the tracking system—has only been tested on synthetic hyperspectral images
generated by the Digital Imaging and Remote Sensing Image Generation model [41,56]. Results
using the synthetic data have demonstrated that the spectral signatures can provide the necessary
information to isolate targets of interest (TOI) in occluded backgrounds. This can be especially
important when tracking vehicles in highly congested traffic or in the presence of dense buildings
or trees within the scene. Experiments in cluttered synthetic scenes have shown that utilizing the
spectral data outperforms other algorithms for persistent airborne tracking [56]. In addition, there has
been increased recent interest in using advanced computer vision and machine learning algorithms to
efficiently exploit the large amount of information contained in hyperspectral video, but no data sets
currently exist with which to train—much less validate—a neural network model.

3. Results

3.1. Hyperspectral Data Collection Experiment

The first demonstration of the hyperspectral low-rate video imaging concept that we have
described took place during an RIT experiment on Hog Island, VA, a barrier island which is part of
the Virginia Coast Reserve (VCR) [57], a National Science Foundation Long-Term Ecological Research
(LTER) site [58]. Over an 11-day period, the imaging system was used repeatedly from atop the
BlueSky telescopic mast system (Figure 3) to acquire a wide variety of hyperspectral imagery of the
island. By integrating the system onto the telescopic mast, the system is also able to acquire imagery
from the same region on the ground, or of the water, from multiple viewing geometries, allowing the
bi-directional reflectance distribution function (BRDF) of the surface to be sampled in collected imagery
(Figure 4). For field data collections such as these, the term hemispherical conical reflectance factor
(HCRF) is also sometimes used as a descriptor since: (a) the sediment radiance is compared with the
radiance of a Lambertian standard reference (Spectralon panel), (b) the sensor has a finite aperture,

94



J. Imaging 2019, 5, 6

and (c) the primary illumination source is not a single point source but contains both direct (solar) and
indirect sources of illumination (skylight and adjacency effects) [59–61]. In our experiment, described in
greater detail below, we deployed our hyperspectral field-portable goniometer system, the Goniometer
of the Rochester Institute of Technology-Two (GRIT-T) [62] for direct comparison with hyperspectral
imagery acquired from our Headwall integrated hyperspectral imaging system at varying heights on
the telescopic mast. HCRF of the surface provides information on the geophysical state of the surface,
such as the fill factor, which can be inferred by inverting radiative transfer models [40], which has been
done previously using GRIT-T hyperspectral multi-angular data [63].

Figure 3. Data collection with the integrated imaging system: Headwall Hyperspec imaging system,
General Dynamics maritime pan-tilt, and Vectornav-300 GPS IMU atop a BlueSky AL-3 telescopic
mast. (a) on the western shore of Hog Island, VA while imaging littoral zone dynamics; (b) on the
eastern shore imaging coastal wetlands; (c) close-ups of the imaging system while in operation at
Hog Island and in the lab during testing. Closer to the shoreline in (a), white Spectralon calibration
panels are deployed; also visible are various fiducials (orange stakes) used for image registration and
geo-referencing. Fiducials were surveyed with real-time kinematic GPS.

Figure 4. (a) Hyperspectral HCRF imagery sequences from our integrated hyperspectral Hyperspec
imaging system atop a telescopic mast. Mast height determines view zenith angle. (b) The Hyperspec
imaging a salt panne region during the July 2017 experiment on Hog Island while the Goniometer of
the Rochester Institute of Technology-Two (GRIT) [62] records HCRF from the surface.
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3.2. Digital Elevation Model and HCRF from Hyperspectral Stereo Imagery

The hyperspectral imagery acquired from differing viewing geometries of the same surface
also allows us to develop digital elevation models (DEMs) of the surface which can be merged with
the hyperspectral imagery and used in modeling and retrieval of surface properties. An example
DEM-derived from the multi-view hyperspectral imagery that we acquired at our study site on
Hog Island in July 2017 appears in Figure 5, which shows the resulting DEM from a set of fourteen
hyperspectral scenes acquired from our mast-mounted system. DEM construction used the structure
from motion (SFM) algorithm PhotoScan developed by AgiSoft LLC [64]. Similar results have been
obtained from stereo views of a surface from unmanned aerial system (UAS) platforms [38] as well as
from a ground-based hyperspectral imaging system [65], although the latter result was obtained from
significantly longer distances, requiring the use of atmospheric correction algorithms. The example
provided in Figure 5 was for stand-off distances significantly less than those for which atmospheric
correction would be necessary.

Figure 5. (a) DEM-derived from multi-view imagery from our mast-mounted hyperspectral system.
(b) the fourteen hyperspectral scenes used as input to a Structure-from-Motion (SFM) algorithm. These
hyperspectral scenes had spatial dimensions 1600 × 971 with 371 spectral bands.
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Each image of the set of 14 used in creating the DEM is a hyperspectral scene acquired with the
full 371 spectral bands from 0.4–1.0 μm, 1600 across track spatial pixels, and 971 spatial pixels in the
second spatial dimension produced by the nodding of the pan-tilt. Each row was produced from
a series of scans that overlapped in azimuth and were acquired at different mast heights. In these
examples, the height of the hyperspectral imager above the surface during image acquisition was
respectively 1.5 m, 2.5 m, 4.5m, and 5.5 m. Each scene shows a salt panne surrounded by coastal salt
marsh vegetation, predominantly Spartina alterniflora.

Having the ability to produce a DEM as part of the data collection workflow has potential
advantages. Lorenz et al. [65] used this information to correct for variations in illumination over
rocky outcrops by determining the true angle of the sun to the surface normal derived from the DEM.
For our own workflow, which is focused on problems such as inversion of radiative transfer models
to retrieve geophysical properties of the surface [40,63], we require both the true viewing zenith and
azimuth angles of our imaging system in the reference frame of the tilted surface normal as well
as the incident zenith and azimuth angles of solar illumination within this tilted coordinate system.
The onboard GPS-IMU of our mast-mounted imaging system, provides pointing (view orientation)
and timestamps which together with the DEM allow the calculation of these angles. Fiducials placed
in the scene enhance the overall accuracy of these angle calculations.

The fourteen scenes portrayed in Figure 5 also represent another important aspect of our overall
approach described earlier in Section 3.1: the acquisition of multi-view imagery that sub-sample the
HCRF distributions that form the core of inversion of radiative transfer models to retrieve geophysical
properties of the surface [40,63] and satisfy goal (3) stated in the Introduction. Figure 6 shows examples
of the spectral reflectance derived from 4 of the 14 scenes acquired from the salt panne at different
mast heights, which as Figure 4 illustrates, provide us with a sub-sample of the HCRF. We have
previously demonstrated an approach to retrieving sediment fill factor from laboratory bi-conical
reflectance factor (BCRF) measurements [63] and then extended this to retrieval from multi-view
hyperspectral time-series imagery acquired by NASA G-LiHT and multi-spectral time series imagery
from GOES-R [40]; in each case, these retrievals represented a more restricted sub-sample of points
from the HCRF distribution. Imagery from our mast-mounted system can allow us to more completely
validate the inversion of this modified radiative transfer model to retrieve and map sediment fill factor
from imagery and in particular help in assessing how many and which views of the surface are most
critical for successful inversion.

3.3. Low-Rate Hyperspectral Video Image Sequence of the Surf Zone

On 14 July 2017, our integrated system was used for the first time in the low-rate video mode to
acquire imagery of the surf zone on the eastern shore of Hog Island, VA. One such image sequence
is shown in Figure 7, which shows a subset of a longer sequence of images acquired every 0.67 s.
Each image in the scene is 1600 across-track pixels (horizontal dimension) with 371 spectral bands
each by 212 along-track pixels (vertical dimension produced by the nodding motion of the General
Dynamics pan-tilt unit). The integration time for each line of 1600 across-track spatial pixels with
371 spectral pixels each was approximately 2.5 ms. Once other latencies in data acquisition are
accounted for and the necessary time is allowed for the pan-tilt to reverse direction, the acquisition rate
of 0.67 s for the full hyperspectral scene is achieved. We emphasize that there is no specific limitation
of the system that prevents longer integration times and/or slower slewing rates from being used,
and other data collected during the experiment did use slower scan rates to obtain larger scenes (see
for example the 14 hyperspectral scenes in Figure 5 and the long scan in the lower right portion of
Figure 7 which shows a scene with 1600 × 2111 spatial pixels and 371 spectral bands acquired over a
12-s interval during a very slow scan with a longer integration time). The latter hyperspectral scene, in
particular, represents our goal (4) stated in the Introduction of being able to produce mm- to cm-scale
imagery in the near range to better characterize the land surface at scales typical of the variation found
near the waterline. However, in the hyperspectral low-rate video mode, image frames of the size
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shown in Figure 7 are typical. The quality of the spectra obtained in the imagery is indicated by the
spectral time series derived from a small 5 × 5 window near the shoreline over time. A well-known
local minimum in the liquid water absorption spectrum [66] normally appears in very shallow waters
as a peak in the reflectance spectrum around 810 nm. This peak is well correlated with shallow water
bathymetry typically in depths that are ≤1 m , and this feature was previously used in a shallow
water bathymetry retrieval algorithm and demonstration which compared favorably with bathymetry
directly measured in situ [67]. Obtaining spectral data of sufficient quality is important to the success
of retrievals based on spectral features, such as the 810 nm feature just described, band combinations
and regressions based on band combinations [68,69], “semi-analytical” models [70,71], or inversion
of forward-modeled look-up tables generated from radiative transfer models such as Hydrolight [7],
which rely on the spectral and radiometric accuracy of the hyperspectral data. These short-time-scale
hyperspectral imagery sequences satisfy our stated goals (1) and (2).

Figure 6. (a) Enlargement of four hyperspectral scenes acquired from four mast heights in the set of
fourteen shown in Figure 5. (b,c) Set of spectra from the same location in each of the four scenes for
(b) a position (red dot) in the salt panne , and (c) a position (green dot) in the salt marsh vegetation.
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Figure 7. (a) Hyperspectral video image sequence using our integrated Headwall micro-HE VNIR
hyperspectral imaging system on Hog Island, VA on 14 July 2017. The representative sequence
subset (from a time series of 30 images) shown here contains hyperspectral image frames with
spatial dimensions 1600 × 212 each with 371 spectral bands. Each hyperspectral scene was acquired
approximately once every 0.67 s. Two Spectralon reference panels used in reflectance calculations and
several orange fiducial stakes used in geo-referencing are also visible. (b) Spectral reflectance captured
by the integrated system for a co-registered pixel in the swash zone of the hyperspectral video image
sequence. The spectral reflectance, for a 5 × 5 spatial window, is shown over all 30 hyperspectral images,
which were acquired once every 0.67 s. The 810 nm peak indicated corresponds to a well-known
minimum in the water absorption spectrum [66], well-correlated with shallow water bathymetry [67].
(c) Slow scan/longer integration time hyperspectral scene with 1600 × 2111 spatial pixels and 371
spectral channels acquired closer to the waterline with the system deployed at 1.5 m height, showing
the mm- to cm-scale resolution possible: the details of footprints can be clearly seen.
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3.4. Time Series Hyperspectral Imagery of Moving Vehicles

A second test of the video capabilities of our hyperspectral imaging system was performed
on 9 August 2017 at RIT. For this experiment, imaging of moving vehicles was the primary focus.
The same instrument configuration was used from atop the Chester F. Carlson Center for Imaging
Science at RIT (Figure 8). Slewing rates of the pan-tilt as well as integration time of the Headwall
micro HE were adjusted to achieve a larger image in the along-track dimension (zenith or nodding
dimension). The integration time for this data collection was 3.0 ms, and the images in the sequence
were acquired once every second. These images have 1600 across-track pixels and 299 along-track
pixels with 371 spectral bands.

Figure 8. (a) Our integrated system deployed on the roof of the Chester F. Carlson Center for Imaging
Science on the RIT campus on 9 August 2017 during a second test focused on imaging of moving
vehicles. Shown also is a Spectralon panel deployed on the roof and elevated to be within the field of
view of the imaging system. (b) Hyperspectral image time series (top to bottom) of the RIT parking lot
showing five moving vehicles in a cluttered environment. The yellow boxes outline the positions of the
test vehicles over time, but a box is drawn only when a test vehicle is clearly visible.
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The objective of the data collection was to obtain hyperspectral image sequences that would be
useful for studies of the detection and tracking of vehicles driving through the parking lot at ∼2.75 mps
and passing behind various occlusions within the scene, such as the trees in the background and
parked cars. An example sequence of hyperspectral image frames from the experiment appear in
Figure 8. Each image contains the calibration panel. Note the partly cloudy conditions leading to
potential rapid changes to the illumination state. Yellow boxes are drawn around the test vehicles
controlled for the experiment. Note that vehicles are occluded at times so the number of boxes drawn
can change from image to image. The figure illustrates the complexity of vehicle tracking when a
large number of occlusions are present. Video sequences such as this will be produced in future
experiments but with a longer duration and with coincident intensive reference data collection to
serve as community resources. Such data sequences of short-time interval data of moving vehicles
are especially useful for modeling purposes to address the challenge of occlusions (our objective (c)
stated in the Introduction) and mixtures that appear in the spectral imagery. Similarly, as vehicles
move through the scene, the imaging geometry changes significantly leading to BRDF effects that must
be properly modeled for successful extraction and tracking of moving vehicles. The imagery shown,
therefore, is important to be able to meet objectives (a) and (b) described in the Introduction.

4. Conclusions

We have described an approach to acquiring full hyperspectral data cubes at low video rates.
Our approach integrated a state-of-the-art hyperspectral line scanner capable of high data acquisition
rates into a high speed maritime pan-tilt unit. The system also included an integrated GPS/IMU to
provide position and pointing information. The entire system is integrated onto a telescopic mast
system that allows us to acquire hyperspectral time series imagery from multiple vantage points.
This feature also makes possible the creation of a DEM from the resulting stereo hyperspectral views,
an approach which was illustrated in this study. Similarly, the multi-view capability also allows the
system to sample the bi-directional reflectance distribution function. We provided two examples of
the low-rate hyperspectral video approach, showing hyperspectral imagery time series acquired in
two different settings for very different applications: imaging of the dynamics of the surf zone in a
coastal setting and moving vehicle imaging in the presence of many occlusions. We evaluated SNR and
NESR and found values within acceptable limits for the data rates and integration times used in the
examples. We noted that SNR could be further improved by spatial binning, an acceptable trade-off in
some applications given the very high spatial resolution that we obtain with this system. Within the
present system architecture, we noted that further improvements in hyperspectral image acquisition
rates could be achieved by reducing the size of the across-track spatial dimension. Our particular
system does not allow spectral binning on-chip, however, such capabilities do exist in commercially
available systems and could be used to further accelerate image acquisition rates.
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Abstract: High-resolution hyperspectral images are in great demand but hard to acquire due to
several existing fundamental and technical limitations. A practical way around this is to fuse
multiple multiband images of the same scene with complementary spatial and spectral resolutions.
We propose an algorithm for fusing an arbitrary number of coregistered multiband, i.e., panchromatic,
multispectral, or hyperspectral, images through estimating the endmember and their abundances
in the fused image. To this end, we use the forward observation and linear mixture models
and formulate an appropriate maximum-likelihood estimation problem. Then, we regularize the
problem via a vector total-variation penalty and the non-negativity/sum-to-one constraints on
the endmember abundances and solve it using the alternating direction method of multipliers.
The regularization facilitates exploiting the prior knowledge that natural images are mostly composed
of piecewise smooth regions with limited abrupt changes, i.e., edges, as well as coping with potential
ill-posedness of the fusion problem. Experiments with multiband images constructed from real-world
hyperspectral images reveal the superior performance of the proposed algorithm in comparison
with the state-of-the-art algorithms, which need to be used in tandem to fuse more than two
multiband images.

Keywords: alternating direction method of multipliers; Cramer–Rao lower bound; forward observation
model; linear mixture model; maximum likelihood; multiband image fusion; total variation

1. Introduction

The wealth of spectroscopic information provided by hyperspectral images containing hundreds
or even thousands of contiguous bands can immensely benefit many remote sensing and computer
vision applications, such as source/target detection [1–3], object recognition [4], change/anomaly
detection [5,6], material classification [7], and spectral unmixing [8,9], commonly encountered in
environmental monitoring, resource location, weather or natural disaster forecasting, etc. Therefore,
finely-resolved hyperspectral images are in great demand [10–14]. However, limitations in light
intensity as well as efficiency of the current sensors impose an inexorable trade-off between the spatial
resolution, spectral sensitivity, and the signal-to-noise ratio (SNR) of existing spectral imagers [15].
As a results, typical spectral imaging systems can capture multiband images of high spatial resolution
at a small number of spectral bands or multiband images of high spectral resolution with a reduced
spatial resolution. For example, imaging devices onboard Pleiades or IKONOS satellites [16] provide
single-band panchromatic images with spatial resolutions of less than a meter and multispectral images
with a few bands and spatial resolutions of a few meters while NASA’s airborne visible/infrared
imaging spectrometer (AVIRIS) [17] provides hyperspectral images with more than 200 bands but with
a spatial resolution of several ten meters.

One way to surmount the abovementioned technological limitation of acquiring high-resolution
hyperspectral images is to capture multiple multiband images of the same scene with practical spatial
and spectral resolutions, then fuse them together in a synergistic manner. Fusing multiband images
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combines their complementary information obtained through multiple sensors that may have different
spatial and spectral resolutions and cover different spectral ranges.

Initial multiband image fusion algorithms were developed to fuse a panchromatic image with
a multispectral image and the associated inverse problem was dubbed pansharpening [18–22].
Many pansharpening algorithms are based on either of the two popular pansharpening strategies:
component substitution (CS) and multiresolution analysis (MRA). The CS-based algorithms substitute a
component of the multispectral image obtained through a suitable transformation by the panchromatic
image. The MRA-based algorithms inject the spatial detail of the panchromatic image obtained
by a multiscale decomposition, e.g., using wavelets [23], into the multispectral image. There also
exist hybrid methods that use both CS and MRA. Some of the algorithms originally proposed for
pansharpening have been successfully extended to be used for fusing a panchromatic image with a
hyperspectral image, a problem that is called hyperspectral pansharpening [21].

Recently, significant research effort has been expended to solve the problem of fusing a
multispectral image with a hyperspectral one. This inverse problem is essentially different from the
pansharpening and hyperspectral pansharpening problems since a multispectral image has multiple
bands that are intricately related to the bands of its corresponding hyperspectral image. Unlike a
panchromatic image that contains only one band of reflectance data usually covering parts of the
visible and near-infrared spectral ranges, a multispectral image contains multiple bands each covering
a smaller spectral range, some being in the shortwave-infrared (SWIR) region. Therefore, extending the
pansharpening techniques so that they can be used to inject the spatial details of a multispectral image
into a hyperspectral image is not straightforward. Nonetheless, an effort towards this end has led to
the development of a framework called hypersharpening, which is based on adapting the MRA-based
pansharpening methods to multispectral–hyperspectral image fusion. The main idea is to synthesize
a high-spatial-resolution image for each band of the hyperspectral image by linearly combining the
bands of the multispectral image using linear regression [24].

In some works on multispectral–hyperspectral image fusion, it is assumed that each pixel on
the hyperspectral image, which has a lower spatial resolution than the target image, is the average
of the pixels of the same area on the target image [25–29]. Clearly, the size of this area depends on
the downsampling ratio. Based on this pixel-aggregation assumption, one can divide the problem of
fusing two multiband images into subproblems dealing with smaller blocks and hence significantly
decrease the complexity of the overall process. However, it is more realistic to allow the area on the
target image corresponding to a pixel of the hyperspectral image to span as many pixels as determined
by the point-spread function of the sensor, which induces spatial blurring. The downsampling ratio
generally depends on the physical and optical characteristics of a sensor and is usually fixed. Therefore,
spatial blurring and downsampling can be expressed as two separate linear operations. The spectral
degradation of a panchromatic or multispectral image with respect to the target image can also be
modeled as a linear transformation. Articulating the spatial and spectral degradations in terms of
linear operations forms a realistic and convenient forward observation model to relate the observed
multiband images to the target image.

Hyperspectral image data is generally known to have a low-rank structure and reside in a subspace
that usually has a dimension much smaller than the number of the spectral bands [8,30–33]. This is
mainly due to correlations among the spectral bands and the fact that the spectrum of each pixel can
often be represented as a linear combination of a relatively few spectral signatures. These signatures,
called endmembers, may be the spectra of the material present at the scene. Consequently, a
hyperspectral image can be linearly decomposed into its constituent endmembers and the fractional
abundances of the endmembers for each pixel. This linear decomposition is called spectral unmixing
and the corresponding data model is called the linear mixture model. Other linear decompositions
that can be used to reduce the dimensionality of a hyperspectral image in the spectral domain are
dictionary-learning-based sparse representation and principle-component analysis.
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Many recent works on multiband image fusion, which mostly deal with fusing a multispectral
image with a hyperspectral image of the same scene, employ the abovementioned forward observation
model and a form of linear spectral decomposition. They mostly extract the endmembers or the
spectral dictionary from the hyperspectral image. Some of the works use the extracted endmember
or dictionary matrix to reconstruct the multispectral image via sparse regression and calculate the
endmember abundances or the representation coefficients [34]. Others cast the multiband image
fusion problem as reconstructing a high-spatial-resolution hyperspectral datacube from two datacubes
degraded according to the mentioned forward observation model. When the number of spectral
bands in the multispectral image is smaller than the number of endmembers or dictionary atoms, the
linear inverse problem associated with the multispectral–hyperspectral fusion problem is ill-posed
and needs be regularized to have a meaningful solution. Any prior knowledge about the target image
can be used for regularization. Natural images are known to mostly consist of smooth segments with
few abrupt changes corresponding to the edges and object boundaries [35–37]. Therefore, penalizing
the total-variation [38–40] and sparse (low-rank) representation in the spatial domain [41–44] are
two popular approaches to regularizing the multiband image fusion problems. Some algorithms,
developed within the framework of the Bayesian estimation, incorporate the prior knowledge or
conjecture about the probability distribution of the target image into the fusion problem [45–47].
The work of [48] obviates the need for regularization by dividing the observed multiband images into
small spatial patches for spectral unmixing and fusion under the assumption that the target image is
locally low-rank.

When the endmembers or dictionary atoms are induced from an observed hyperspectral
image, the problem of fusing the hyperspectral image with a multispectral image boils down
to estimating the endmember abundances or representation coefficients of the target image, a
problem that is often tractable (due to being a convex optimization problem) and has a manageable
size and complexity. The estimate of the target image is then obtained by mixing the induced
endmembers/dictionary and the estimated abundances/coefficients. It is also possible to jointly
estimate the endmembers/dictionary and the abundances/coefficients from the available multiband
data. This joint estimation problem is usually formulated as a non-convex optimization problem of
non-negative matrix factorization, which can be solved approximately using block coordinate-descent
iterations [49–52].

To the best of our knowledge, all existing multiband image fusion algorithms are designed to fuse
a pair of multiband images with complementary spatial and spectral resolutions. Therefore, fusing
more than two multiband images using the existing algorithms can only be realized by performing a
hierarchical procedure that combines multiple fusion processes possibly implemented via different
algorithms as, for example, in [53,54]. In addition, there are potentially various ways to arrange the
pairings and often it is not possible to know beforehand which way will provide the best overall
fusion result. For instance, in order to fuse a panchromatic, a multispectral, and a hyperspectral
image of a scene, one can first fuse the panchromatic and multispectral images, then fuse the resultant
pansharpened multispectral image with the hyperspectral image. Another way would be to first fuse
the multispectral and hyperspectral images, then pansharpen the resultant hyperspectral image with
the panchromatic image. Apart from the said ambiguity of choice, such combined pair-wise fusions
can be slow and inaccurate since they may require several runs of different algorithms and may suffer
from propagation and accumulation of errors. Therefore, the increasing availability of multiband
images with complementary characteristics captured by modern spectral imaging devices has brought
about the demand for efficient and accurate fusion techniques that can handle multiple multiband
images simultaneously.

In this paper, we propose an algorithm that can simultaneously fuse an arbitrary number of
multiband images. We utilize the forward observation and linear mixture models to effectively model
the data and reduce the dimensionality of the problem. Assuming matrix normal distribution for
the observation noise, we derive the likelihood function as well as the Fisher information matrix
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(FIM) associated with the problem of recovering the endmember abundance matrix of the target
image from the observations. We study the properties of the FIM and the conditions for existence of a
unique maximum-likelihood estimate and the associated Cramer–Rao lower bound. We regularize
the problem of maximum-likelihood estimation of the endmember abundances by adding a vector
total-variation penalty term to the cost function and constraining the abundances to be non-negative
and add up to one for each pixel. The total-variation penalty serves two major purposes. First, it
helps us cope with the likely ill-posedness of the maximum-likelihood estimation problem. Second, it
allows us to take into account the spatial characteristics of natural images that is they mostly consist
of piecewise plane regions with few sharp variations. Regularization with a vector total-variation
penalty can effectively advocate this desired feature by promoting sparsity in the image gradient,
i.e., local differences between adjacent pixels, while encourages the local differences to be spatially
aligned across different bands [37]. The non-negativity and sum-to-one constraints on the endmember
abundances ensure that the abundances have practical values. They also implicitly promote sparsity
in the estimated endmember abundances.

We solve the resultant constrained optimization problem using the alternating direction method
of multipliers (ADMM) [55–60]. Simulation results indicate that the proposed algorithm outperforms
several combinations of the state-of-the-art algorithms, which need be cascaded to carry out fusion of
multiple (more than two) multiband images.

2. Data Model

2.1. Forward Observation Model

Let us denote the target multiband image by X ∈ R
L×N where L is the number of spectral bands

and N is the number of pixels in the image. We wish to recover X from K observed multiband images
Yk ∈ R

Lk×Nk , k = 1, . . . , K, that are spatially or spectrally downgraded and degraded versions of X.
We assume that these multiband images are geometrically coregistered and are related to X via the
following forward observation model

Yk = RkXBkSk + Pk (1)

where

Lk ≤ L and Nk = N/D2
k with Dk being the spatial downsampling ratio of the kth image;

Rk ∈ R
Lk×N is the spectral response of the sensor producing Yk;

Bk ∈ R
N×N is a band-independent spatial blurring matrix that represents a two-dimensional

convolution with a blur kernel corresponding to the point-spread function of the sensor
producing Yk;
Sk ∈ R

N×Nk is a sparse matrix with Nk ones and zeros elsewhere that implements a
two-dimensional uniform downsampling of ratio Dk on both spatial dimensions and satisfies
S�

k Sk = IN ;
Pk ∈ R

Lk×Nk is an additive perturbation representing the noise or error associated with the
observation of Yk.

We assume that the perturbations Pk, k = 1, . . . , K, are independent of each other and have matrix
normal distributions expressed by

Pk ∼ MNLk×Nk

(
0Lk×Nk , Σk, INk

)
(2)

where 0Lk×Nk is the Lk × Nk zero matrix, INk is the Nk × Nk identity matrix, and Σk ∈ R
Lk×Lk is a

diagonal matrix that represents the correlation among rows of Pk, which correspond to different
spectral bands. Note that we consider the column-covariance matrices to be identity assuming that
the perturbations are independent and identically-distributed in the spatial domain. However, by
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considering diagonal row-covariance matrices, we assume that the perturbations are independent in
the spectral domain but may have nonidentical variances at different bands. Moreover, the instrument
noise of an optoelectronic device can also have a multiplicative nature. A prominent example is the
shot noise that is generally modeled using the Poisson distribution. By virtue of the central limit
theorem and since a Poisson distribution with a reasonably large mean can be well approximated
by a Gaussian distribution, our assumption of additive Gaussian perturbation for the acquisition
noise/error is a sensible working hypothesis given that the SNRs are adequately high.

Note that Yk, k = 1, . . . , K, in (1) contain the corrected (preprocessed) spectral values, not the
raw measurements produced by the spectral imagers. The preprocessing usually involves several
steps including radiometric calibration, geometric correction, and atmospheric compensation [61].
The radiometric calibration is generally performed to obtain radiance values at the sensor. It converts
the sensor measurements in digital numbers into physical units of radiance. The reflected sunlight
passing through the atmosphere is partially absorbed and scattered through a complex interaction
between the light and various parts of the atmosphere. The atmospheric compensation counters
these effects and converts the radiance values into ground-leaving radiance or surface reflectance
values. To obtain accurate reflectance values, one additionally has to account for the effects of the
viewing geometry and sun’s position as well as the surfaces structural and optical properties [10].
This preprocessing is particularly important when the multiband images to be fused are acquired via
different instruments, from different viewpoints, or at different times. After the preprocessing, the
images should also be coregistered.

2.2. Linear Mixture Model

Under some mild assumptions, multiband images of natural scenes can be suitably described by a
linear mixture model [8]. Specifically, the spectrum of each pixel can often be written as a linear mixture
of a few archetypal spectral signatures known as endmembers. The number of endmembers, denoted
by M, is usually much smaller than the spectral dimension of a hyperspectral image, i.e., M 	 L.
Therefore, if we arrange M endmembers corresponding to X as columns of the matrix E ∈ R

L×M,
we can factorize X as

X = EA + P (3)

where A ∈ R
M×N is the matrix of endmember abundances and P ∈ R

L×N is a perturbation matrix
that accounts for any possible inaccuracy or mismatch in the linear mixture mode. We assume that P is
independent of Pk, k = 1, . . . , K, and has a matrix normal distribution as

P ∼ MNL×N(0L×N , Σ, IN) (4)

where Σ ∈ R
L×L is its row-covariance matrix. Every column of A contains the fractional abundances

of the endmembers at a pixel. The fractional abundances are non-negative and often assumed to add
up to one for each pixel.

The linear mixture model stated above has been widely used in various contexts and applications
concerning multiband, particularly hyperspectral, images. Its popularity can mostly be attributed to
its intuitiveness as well as relative simplicity and ease of implementation. However, remotely-sensed
images of ground surface may suffer from strong nonlinear effects. These effects are generally due
to ground characteristics such as non-planar surface and bidirectional reflectance, artefacts left by
atmospheric removal procedures, and the presence of considerable atmospheric absorbance in the
neighborhood of the bands of interest. The use of images of the same scene captured by different
sensors, although coregistered, can also induce nonlinearly mainly owing to difference in observation
geometry, lighting conditions, and miscalibration. Therefore, it should be taken into consideration that
the mentioned nonlinear phenomena can impact the results of any procedure relying on the linear
mixture model in any real-world application and the scale of the impact depends on the severity of
the nonlinearities.
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There are a few other caveats regarding the linear mixture model that should also be kept in
mind. First, X in model (3) corresponds to a matrix of corrected (preprocessed) values, not raw ones
that would typically be captured by a spectral imager of the same spatial and spectral resolutions.
However, whether these values are radiance or reflectance has no impact on the validity of the
model, though it certainly matters for further processing of the data. Second, the model (3) does
not necessarily require each endmember to be the spectral signature of only one (pure) material.
An endmember may be composed of the spectral signatures of multiple materials or may be seen as
the spectral signature of a composite material made of several constituent materials. Additionally,
depending on the application, the endmembers may be purposely defined in particular subjective
ways. Third, in practice, an endmember may have slightly different spectral manifestations at different
parts of a scene due to variable illumination, environmental, atmospheric, or temporal conditions.
This so-called endmember variability [62] along with possible nonlinearities in the actual underlying
mixing process [63] may introduce inaccuracies or inconsistencies in the linear mixture model and
consequently in the endmember extraction or spectral unmixing techniques that rely on this model.
Lastly, the sum-to-one assumption on the abundances of each pixel may not always hold, especially,
when the linear mixture model is not able to account for every material in a pixel possibly because of
the effects of endmember variability or nonlinear mixing.

2.3. Fusion Model

Substituting (3) into (1) gives
Yk = RkEABkSk + P̌k (5)

where the aggregate perturbation of the kth image is

P̌k = Pk + RkPBkSk. (6)

Instead of estimating the target multiband image X directly, we consider estimating its abundance
matrix A from the observations Yk, k = 1, ..K, given the endmember matrix E. We can then obtain
an estimate of the target image by multiplying the estimated abundance matrix by the endmember
matrix. This way, we reduce the dimensionality of the fusion problem and consequently the associated
computational burden. In addition, by estimating A first, we attain an unmixed fused image obviating
the need to perform additional unmixing, if demanded by any application utilizing the fused image.
However, this approach requires the prior knowledge of the endmember matrix E. The columns of
this matrix can be selected from a library of known spectral signatures, such as the U.S. Geological
Survey digital spectral library [64], or extracted from the observed multiband images that have the
appropriate spectral dimension.

3. Problem

3.1. Maximum-Likelihood Estimation

In order to facilitate our analysis, we define the following vectorized variables

yk = vec{Yk} ∈ R
Lk Nk×1 (7a)

a = vec{A} ∈ R
MN×1 (7b)

pk = vec
{

P̌k
} ∈ R

Lk Nk×1 (7c)

where vec{·} is the vectorization operator that stacks the columns of its matrix argument on top of each
other. Applying vec{·} to both sides of (5) while using the property vec{ABC} =

(
C� ⊗

A
)
vec{B} gives

yk =
(

S�
k B�

k
⊗

RkE
)

a + pk (8)
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where
⊗

denotes the Kronecker product.
Since Pk and P have independent matrix normal distributions (see (2) and (4)), pk has a

multivariate normal distribution expressed as

pk ∼ NLk Nk

(
0Lk Nk , INk

⊗
Σk + S�

k B�
k BkSk

⊗
RkΣR�

k

)
(9)

where 0Lk Nk stands for the Lk Nk × 1 vector of zeroes. Using the approximation S�
k B�

k BkSk ≈ ξkINk

with ξk > 0, we get
pk ∼ NLk Nk

(
0Lk Nk , INk

⊗
Λk

)
(10)

where
Λk = Σk + ξkRkΣR�

k (11)

In view of (9) and (10), we have

yk ∼ NLk Nk

([
S�

k B�
k
⊗

RkE
]
a, INk

⊗
Λk

)
. (12)

Hence, the probability density function of yk parametrized over the unknown a can be written as

fyk (yk; a) =
∣∣2πINk

⊗
Λk

∣∣− 1
2

× exp
{
− 1

2
[
yk −

(
S�

k B�
k
⊗

RkE
)
a
]�(

INk

⊗
Λk

)−1[
yk −

(
S�

k B�
k
⊗

RkE
)
a
]}

.
(13)

Since the perturbations pk, k = 1, . . . , K, are independent of each other, the joint probability density
function of the observations is written as

fy1,...,yK (y1, . . . , yK ; a) = ∏K
k=1 fyk (yk ; a)

= ∏K
k=1

∣∣2πINk

⊗
Λk

∣∣− 1
2 exp

{
− 1

2

K
∑

k=1
||
(

INk

⊗
Λ−1/2

k

) [
yk −

(
S�

k B�
k
⊗

RkE
)
a
] ||2} (14)

and the log-likelihood function of a given the observed data as

l(a|y1, . . . , yK) = ln fy1,...,yK (y1, . . . , yK ; a)

= − 1
2 ln

(
∏K

k=1
∣∣2πINk

⊗
Λk

∣∣)− 1
2

K
∑

k=1
||
(

INk

⊗
Λ−1/2

k

)[
yk −

(
S�

k B�
k
⊗

RkE
)

a
]
||2.

(15)

Accordingly, the maximum-likelihood estimate of a is found by solving the following
optimization problem

â = argmax
a

l(a|y1, . . . , yK)

= argmin
a

1
2

K
∑

k=1
||
(

INk

⊗
Λ−1/2

k

)[
yk −

(
S�

k B�
k
⊗

RkE
)
a
] ||2.

(16)

This problem can be stated in terms of A = vec−1{a} as

Â = argmin
A

1
2

K

∑
k=1

||Λ−1/2
k (Yk − RkEABkSk) ||2F. (17)

The Fisher information matrix (FIM) of the maximum-likelihood estimator â in (16) is calculated as

F = −E[Hl(a)] (18)
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where Hl(a) denotes the Hessian, i.e., the Jacobian of the gradient, of the log-likelihood function
l(a|y1, . . . , yK). The entry on the ith row and the jth column of Hl(a) is computed as

∂2

∂ai∂aj
l(a|y1, . . . , yK) (19)

where ai and aj denote the ith and jth entries of a, respectively. Accordingly, we can show that

F =
K

∑
k=1

(
BkSkS�

k B�
k
⊗

E�R�
k Λ−1

k RkE
)

. (20)

If F is invertible, the optimization problem (16) has a unique solution given by

â =

[
K

∑
k=1

(
BkSkS�

k B�
k
⊗

E�R�
k Λ−1

k RkE
)]−1 K

∑
k=1

(
BkSk

⊗
E�R�

k Λ−1
k

)
yk (21)

and the Cramer–Rao lower bound for the estimator â, which is a lower bound on the covariance of â,
is the inverse of F . The FIM F is guaranteed to be invertible when, for at least one image, the matrix
BkSkS�

k B�
k
⊗

E�R�
k Λ−1

k RkE is full-rank.
The matrix SkS�

k has a rank of Nk hence for Dk > 1 is rank-deficient. The blurring matrix
Bk does not change the rank of the matrix that it multiplies from the right. In addition, as Λ−1

k is
full-rank, E�R�

k Λ−1
k RkE has a full rank of M when the rows of RkE are at least as many as its columns,

i.e., Lk ≥ M. Therefore, A and consequently X is guaranteed to be uniquely identifiable given Yk,
k = 1, . . . , K, only when at least one observed image, say the qth image, has full spatial resolution,
i.e., Nq = N, with the number of its spectral bands being equal to or larger than the number of
endmembers, i.e., Lq ≥ M, so that, at least for the qth image, BqSqS�

q B�
q
⊗

E�R�
q Λ−1

q RqE is full-rank.
In practice, it is rarely possible to satisfy the abovementioned requirements as multiband images

with high spectral resolution are generally spatially downsampled and the number of bands of the
ones with full spatial resolution, such as panchromatic or multispectral images, is often less than the
number of endmembers. Hence, the inverse problem of recovering A from Yk, k = 1, . . . , K, is usually
ill-posed or ill-conditioned. Thus, some prior knowledge need be injected into the estimation process
to produce a unique and reliable estimate. The prior knowledge is intended to partially compensate
for the information lost in spectral and spatial downsampling and usually stems from experimental
evidence or common facts that may induce certain analytical properties or constraints. The prior
information is commonly incorporated into the problem in the form of imposed constraints or additive
regularization terms. Examples of prior knowledge about A that are regularly used in the literature
are non-negativity and sum-to-one constraints, matrix normal distribution with known or estimated
parameters [45], sparse representation with a learned or known dictionary or basis [41], and minimal
total variation [38].

3.2. Regularization

To develop an algorithm for effective fusion of multiple multiband images with arbitrary spatial
and spectral resolutions, we employ two mechanisms to regularize the maximum-likelihood cost
function in (17).

As the first regularization mechanism, we impose a constraint on A such that its entries are
non-negative and sum to one in all columns. We express this constraint as A ≥ 0 and 1�MA = 1�N
where A ≥ 0 means all the entries of A are greater than or equal to zero. As the second regularization
mechanism, we add an isotropic vector total-variation penalty term, denoted by ||∇A ||2,1 , to the cost
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function. Here, ||· ||2,1 is the l2,1-norm operator that returns the sum of l2-norms of all the columns of
its matrix argument. In addition, we define

∇A =

[
ADh
ADv

]
∈ R

2M×N (22)

where Dh and Dv are discrete differential matrix operators that, respectively, yield the horizontal and
vertical first-order backward differences (gradients) of the row-vectorized image that they multiply
from the right. Consequently, we formulate our regularized optimization problem for estimating A as

min
A

1
2

K

∑
k=1

||Λ−1/2
k (Yk − RkEABkSk) ||2F + α||∇A ||2,1

subject to : A ≥ 0 and 1�MA = 1�N

(23)

where α ≥ 0 is the regularization parameter.
The non-negativity and sum-to-one constraints on A, which force the columns of A to reside on

the unit (M − 1)-simplex, are naturally expected and help find a solution that is physically plausible.
In addition, they implicitly induce sparseness in the solution. The total-variation penalty promotes
solutions with a sparse gradient, a property that is known to be possessed by images of most natural
scenes as they are usually made of piecewise homogeneous regions with few sudden changes at object
boundaries or edges. Note that the subspace spanned by the endmembers is the one that the target
image X lives in. Therefore, through the total-variation regularization of the abundance matrix A, we
regularize X indirectly.

4. Algorithm

Defining the set of values for A that satisfy the non-negativity and sum-to-one constraints as

S =
{

A
∣∣∣A ≥ 0, 1�MA = 1�N

}
(24)

and making use of the indicator function ıS (A) defined as

ıS (A) =

{
0 A ∈ S
+∞ A /∈ S ,

(25)

we rewrite (23) as

min
A

1
2

K

∑
k=1

||Λ−1/2
k (Yk − RkEABkSk) ||2F + α||∇A ||2,1 + ıS (A). (26)

4.1. Iterations

We use the alternating direction method of multipliers (ADMM), also known as the split-Bregman
method, to solve the convex but nonsmooth optimization problem of (26). We split the problem to
smaller and more manageable pieces by defining the auxiliary variables, Uk ∈ R

M×N , k = 1, . . . , K,
V ∈ R

2M×N , and W ∈ R
M×N , and changing (26) into

min
A,U1,...,UK ,V,W

1
2

K

∑
k=1

||Λ−1/2
k (Yk − RkEUkSk) ||2F + α||V ||2,1 + ıS (W)

subject to : Uk = ABk, V = ∇A, W = A.

(27)
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Then, we write the augmented Lagrangian function associated with (27) as

L(A, U1, . . . , UK , V, W, F1, . . . , FK , G, H) =
1
2

K

∑
k=1

||Λ−1/2
k (Yk − RkEUkSk) ||2F + α||V ||2,1 + ıS (W)

+
μ

2

K

∑
k=1

||ABk − Uk − Fk||2F +
μ

2
||∇A − V − G ||2F +

μ

2
||A − W − H ||2F

(28)

where Fk ∈ R
M×N , k = 1, . . . , K, G ∈ R

2M×N , and H ∈ R
M×N are the scaled Lagrange multipliers and

μ ≥ 0 is the penalty parameter.
Using the ADMM, we minimize the augmented Lagrangian function in an iterative fashion.

At each iteration, we alternate the minimization with respect to the main unknown variable A and
the auxiliary variables; then, we update the scaled Lagrange multipliers. Hence, we compute the
iterates as

A(n) = argmin
A

L
(

A, U
(n−1)
1 , . . . , U

(n−1)
K , V(n−1), W(n−1), F

(n−1)
1 , . . . , F

(n−1)
K , G(n−1), H(n−1)

)
(29)

{
U
(n)
1 , . . . , U

(n)
K , V(n), W(n)

}
= argmin

U1,...,UK ,V,W
L
(

A(n), U1, . . . , UK , V, W, F
(n−1)
1 , . . . , F

(n−1)
K , G(n−1), H(n−1)

)
(30)

F
(n)
k = F

(n−1)
k −

(
A(n)Bk − U

(n)
k

)
, k = 1, . . . , K (31a)

G(n) = G(n−1) −
(
∇A(n) − V(n)

)
(31b)

H(n) = H(n−1) −
(

A(n) − W(n)
)

(31c)

where superscript (n) denotes the value of an iterate at iteration number n ≥ 0. We repeat the iterations
until convergence is reached up to a maximum allowed number of iterations.

Since we define the auxiliary variables independent of each other, the minimization of the
augmented Lagrangian function (28) with respect to the auxiliary variables can be realized separately.
Thus, (30) is equivalent to

U
(n)
k = argmin

Uk

1
2
||Λ−1/2

k (Yk − RkEUkSk) ||2F +
μ

2
||A(n)Bk − Uk − F

(n−1)
k ||2F, k = 1, . . . , K (32)

V(n) = argmin
V

α||V ||2,1 +
μ

2
||∇A(n) − V − G(n−1)||2F (33)

W(n) = argmin
W

ıS (W) +
μ

2
||A(n) − W − H(n−1)||2F. (34)

4.2. Solutions of Subproblems

Considering (28), (29) can be written as

A(n) = argmin
A

K

∑
k=1

||ABk − U
(n−1)
k − F

(n−1)
k ||2F + ||∇A − V(n−1) − G(n−1)||2F + ||A − W(n−1) − H(n−1)||2F . (35)

Calculating the gradient of the cost function in (35) with respect to A and setting it to zero gives

A(n) =

[
K

∑
k=1

(
U
(n−1)
k + F

(n−1)
k

)
B�

k + Q
(n−1)
1 D�

h + Q
(n−1)
2 D�

v + W(n−1) + H(n−1)

]

×
(

K

∑
k=1

BkB�
k + DhD�

h + DvD�
v + IN

)−1 (36)
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where, for the convenience of presentation, we define Q
(n−1)
1 and Q

(n−1)
2 as[

Q
(n−1)
1

Q
(n−1)
2

]
= V(n−1) + G(n−1). (37)

To make the computation of A(n) in (36) more efficient, we assume that the two-dimensional
convolutions represented by Bk, k = 1, . . . , K, are cyclic. In addition, we assume that the differential
matrix operators Dh and Dv apply with periodic boundaries. Consequently, multiplications by B�

k ,

D�
h , and D�

v as well as by
(

∑K
k=1 BkB�

k + DhD�
h + DvD�

v + IN

)−1
can be performed through the use

of the fast Fourier transform (FFT) algorithm and the circular convolution theorem. This theorem states
that the Fourier transform of a circular convolution is the pointwise product of the Fourier transforms,
i.e., a circular convolution can be expressed as the inverse Fourier transform of the product of the
individual spectra [65].

Equating the gradient of the cost function in (32) with respect to Uk to zero results in

E�R�
k Λ−1

k RkEU
(n)
k SkS�

k + μU
(n)
k = E�R�

k Λ−1
k YkS�

k + μ
(

A(n)Bk − F
(n−1)
k

)
. (38)

Multiplying both sides of (38) from the right by the masking matrix Mk = SkS�
k and its complement

IN − Mk yields

U
(n)
k Mk =

(
E�R�

k Λ−1
k RkE + μIN

)−1[
E�R�

k Λ−1
k YkS�

k + μ
(

A(n)Bk − F
(n−1)
k

)
Mk

]
(39)

and
U
(n)
k (IN − Mk) =

(
A(n)Bk − F

(n−1)
k

)
(IN − Mk), (40)

respectively. Note that we have S�
k Sk = IN and Mk is idempotent, i.e., MkMk = Mk. Summing both

sides of (39) and (40) gives the solution of (32) for k = 1, . . . , K as

U
(n)
k = U

(n)
k Mk + U

(n)
k (IN − Mk)

=
(

E�R�
k Λ−1

k RkE + μIN

)−1[
E�R�

k Λ−1
k YkS�

k + μ
(

A(n)Bk − F
(n−1)
k

)
Mk

]
+
(

A(n)Bk − F
(n−1)
k

)
(IN − Mk).

(41)

The terms
(

E�R�
k Λ−1

k RkE + μIN

)−1
and E�R�

k Λ−1
k YkS�

k do not change during the iterations and can
be precomputed.

The subproblem (33) can be decomposed pixelwise and its solution is linked to the so-called
Moreau proximity operator of the 
2,1-norm given by column-wise vector-soft-thresholding [66,67].
If we define

Z(n) = ∇A(n) − G(n−1), (42)

the jth column of V(n), denoted by v
(n)
j , is given in terms of the jth column of Z(n), denoted by z

(n)
j , as

v
(n)
j =

max
{
||z(n)j ||2 − α

μ , 0
}

||z(n)j ||2
z
(n)
j . (43)

The solution of (34) is the value of the proximity operator of the indicator function ıS (W) at the
point A(n) − H(n−1), which is the projection of A(n) − H(n−1) onto the set S defined by (24). Therefore,
we have

W(n) = argmin
W∈S

|| A(n) − H(n−1) − W ||2F
= ΠS

{
A(n) − H(n−1)

} (44)

where ΠS{·} denotes the projection onto S . We implement this projection onto the unit
(M − 1)-simplex employing the algorithm proposed in [68].
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Algorithm 1 presents a summary of the proposed algorithm.

Algorithm 1 The proposed algorithm

1: initialize
2: E ← VCA(Yl) % if E is not known and Yl has full spectral resolution
3: A(0) ← upscale and interpolate the output of SUnSAL(Yl , E)

4: for k = 1, . . . , K
5: U

(0)
k = A(0)

6: F
(n)
k = 0M×N

7: V(0) = A(0), W(0) = A(0)

8: G(0) = 0M×N , H(0) = 0M×N
9: for n = 1, 2, . . . % until a convergence criterion is met or a given maximum number of iterations is reached

10:

[
Q

(n−1)
1

Q
(n−1)
2

]
= V(n−1) + G(n−1)

11: A(n) =
[
∑K

k=1

(
U
(n−1)
k + F

(n−1)
k

)
B�

k + Q
(n−1)
1 D�

h + Q
(n−1)
2 D�

v + W(n−1) + H(n−1)
]

×
(

∑K
k=1 BkB�

k + DhD�
h + DvD�

v + IN

)−1

12: for k = 1, . . . , K

13: U
(n)
k =

(
E�R�

k Λ−1
k RkE + μIN

)−1[
E�R�

k Λ−1
k YkS�

k + μ
(

A(n)Bk − F
(n−1)
k

)
Mk

]
+
(

A(n)Bk − F
(n−1)
k

)
(IN − Mk)

14: Z(n) = ∇A(n) − G(n−1)

15: for j = 1, . . . , N

16: v
(n)
j =

max
{
|| z

(n)
j ||2−α

μ ,0
}

||z(n)j ||2
z
(n)
j

17: W(n) = ΠS
{

A(n) − H(n−1)
}

18: for k = 1, . . . , K
19: F

(n)
k = F

(n−1)
k −

(
A(n)Bk − U

(n)
k

)
20: G(n) = G(n−1) −

(
∇A(n) − V(n)

)
21: H(n) = H(n−1) −

(
A(n) − W(n)

)
22: calculate the fused image
23: X̂ = EA(n)

4.3. Convergence

By defining
U = [U1, · · · , UK, V, W]� (45)

and
C = [B1, · · · , BK, Dh, Dv, IN ]

�, (46)

(27) can be expressed as
min

A
f (U )subject to U = CA� (47)

where

f (U ) = 1
2

K

∑
k=1

||Λ−1/2
k (Yk − RkEUkSk) ||2F + α||V ||2,1 + ıS (W). (48)

The function f (U ) is closed, proper, and convex as it is a sum of closed, proper, and convex
functions and C has full column rank. Therefore, according to Theorem 8 of [56], if (47) has a solution,
the proposed algorithm converges to this solution, regardless of the initial values as long as the penalty
parameter μ is positive. If no solution exists, at least one of A(n) and U (n) will diverge.
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5. Simulations

To examine the performance of the proposed algorithm in comparison with the state-of-the-art,
we simulate the fusion of three multiband images, viz. a panchromatic image, a multispectral
image, and a hyperspectral image. To this end, we adopt the popular practice known as the Wald’s
protocol [69], which is to use a reference image with high spatial and spectral resolutions to generate
the lower-resolution images that are fused and evaluate the fusion performance by comparing the
fused image with the reference image.

We obtain the reference images of our experiments by cropping five publicly available
hyperspectral images to the spatial resolutions given in Table 1. These images are called Botswana [70],
Indian Pines [71], Washington DC Mall [71], Moffett Field [17], and Kennedy Space Center [70].
The Botswana image has been captured by the Hyperion sensor aboard the Earth Observing 1 (EO-1)
satellite, the Washington DC Mall image by the airborne-mounted Hyperspectral Digital Imagery
Collection Experiment (HYDICE), and the Indian Pines, Moffett Filed, and Kennedy Space Center
images by the NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) instrument. All images
cover the visible near-infrared (VNIR) and short-wavelength-infrared (SWIR) ranges with uncalibrated,
excessively noisy, and water-absorbed bands removed. The spectral resolution of each image is also
given in Table 1. The data as well as the MATLAB code used to produce the results of this paper can
be found at [72].

Table 1. The spatial and spectral dimensions of the considered hyperspectral datasets (reference images)
and the value of the regularization parameter used in the proposed algorithm with each dataset.

Image No. of Rows No. of Columns No. of Bands α

Botswana 400 240 145 5
Indian Pines 400 400 200 7

Washington DC Mall 400 300 191 5
Moffett Field 480 320 176 22

Kennedy Space Center 500 400 176 28

We generate three multiband images (panchromatic, multispectral, and hyperspectral) using
each reference image. We obtain the hyperspectral images by applying a rotationally-symmetric 2D
Gaussian blur filter with a kernel size of 13 × 13 and a standard deviation of 2.12 to each reference
image followed by downsampling with a ratio of 4 in both spatial dimensions for all bands. For the
multispectral images, we use a Gaussian blur filter with a kernel size of 7 × 7 and a standard deviation
of 1.06 and downsampling with a ratio of 2 in both spatial dimensions for all bands of each reference
image. Afterwards, we downgrade the resultant images spectrally by applying the spectral responses
of the Landsat 8 multispectral sensor. This sensor has eight multispectral bands and one panchromatic
band. Figure 1 depicts the spectral responses of all the bands of this sensor [73]. We create the
panchromatic images from the reference images using the panchromatic band of the Landsat 8 sensor
without applying any spatial blurring or downsampling. We add zero-mean Gaussian white noise
to each band of the produced multiband images such that the band-specific signal-to-noise ratio
(SNR) is 30 dB for the multispectral and hyperspectral images and 40 dB for the panchromatic
image. In practice, SNR may vary along the bands of a multiband sensor and the noise may be
non-zero-mean or non-Gaussian. Our use of the same SNR for all bands and zero-mean Gaussian
noise is a simplification adopted for the purpose of evaluating the proposed algorithm and comparing
it with the considered benchmarks.
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Figure 1. The spectral responses of the Landsat 8 multispectral and panchromatic sensors.

Note that we have selected the standard deviations of the abovementioned 2D Gaussian blur
filters such that the normalized magnitude of the modulation transfer function (MTF) of both filters
is approximately 0.25 at the Nyquist frequency in both spatial dimensions [74] as shown in Figure 2.
We have also selected the filter kernel sizes in accordance with the downsampling ratios and the
selected standard deviations. In our simulations, we use symmetric 2D Gaussian blur filters for
simplicity and ease of computations. Gaussian blur filters are known to well approximate the real
acquisition MTFs, which may be affected by a number of physical processes. With a pushbroom
acquisition, the MTF is different in the across-track and along-track directions. This is because, in
the along-track direction, the blurring is due to the effects of the spatial resolution and the apparent
motion of the scene. On the other hand, in the across-track direction, the blurring is mainly attributable
to the resolution of the instrument, fixed by both detector and optics. There is also the contribution to
MTF by the propagation trough a scattering atmosphere.

Figure 2. The modulation transfer function (normalized spatial-frequency response) of the used 2D
Gaussian blur filters in both spatial dimensions. The solid curve corresponds to the filter used to
generate the multispectral images and the dashed curve corresponds to the filter used to generate the
hyperspectral images.
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The current multiband image fusion algorithms published in the literature are designed to fuse
two images at a time. In order to compare the performance of the proposed algorithm with the
state-of-the-art, we consider fusing the abovementioned three multiband images in three different
ways, which we refer to as Pan + HS, Pan + (MS + HS), and (Pan + MS) + HS, using the existing
algorithms for pansharpening, hyperspectral pansharpening, and hyperspectral-multispectral fusion.
In Pan + HS, we only fuse the panchromatic and hyperspectral images. In Pan + (MS + HS), and (Pan +
MS) + HS, we fuse the given images in two cascading stages. In Pan + (MS + HS), first, we fuse the
multispectral and hyperspectral images. Then, we fuse the resultant hyperspectral image with the
panchromatic image. We use the same algorithm at both stages, albeit with different parameter values.
In (Pan + MS) + HS, we first fuse the panchromatic image with the multispectral one. Then, we fuse
the pansharpened multispectral image with the hyperspectral image. We use two different algorithms
at each of the two stages resulting in four combined solutions.

For pansharpening, which is the fusion of a panchromatic image with a multispectral one, we use
two algorithms called the band-dependent spatial detail (BDSD) [75] and the modulation-transfer-function
generalized Laplacian pyramid with high-pass modulation (MTF-GLP-HPM) [76–78]. The BDSD
algorithm belongs to the class of component substitution methods and the MTF-GLP-HPM algorithm
falls into the category of multiresolution analysis. In [18], where several pansharpening algorithms
are studied, it is shown that the BDSD and MTF-GLP-HPM algorithms exhibit the best performance
among all the considered ones.

For fusing a panchromatic or multispectral image with a hyperspectral image, we use
two algorithms proposed in [38,79,80], which are called HySure and R-FUSE-TV, respectively.
These algorithms are based on total-variation regularization and are among the best performing
and most efficient hyperspectral pansharpening and multispectral–hyperspectral fusion algorithms
currently available [21,81].

We use three performance metrics for assessing the quality of a fused image with respect to its
reference image. The metrics are the relative dimensionless global error in synthesis (ERGAS) [82],
spectral angle mapper (SAM) [83], and Q2n [84]. The metric Q2n is a generalization of the universal
image quality index (UIQI) proposed in [85] and an extension of the Q4 index [86] to hyperspectral
images based on hypercomplex numbers.

We extract the endmembers (columns of E) from each hyperspectral image using the vertex
component analysis (VCA) algorithm [87]. The VCA is a fast unsupervised unmixing algorithm
that assumes the endmembers as the vertices of a simplex encompassing the hyperspectral data
cloud. We utilize the SUnSAL algorithm [88] together with the extracted endmembers to unmix each
hyperspectral image and obtain its abundance matrix. Then, we upscale the resulting matrix by a
factor of four and apply two-dimensional spline interpolation on each of its rows (abundance bands)
to generate the initial estimate for the abundance matrix A(0). We initialize the proposed algorithm as
well as the HySure and R-FUSE-TV algorithms by this matrix.

To make our comparisons fair, we tune the values of the parameters in the HySure and R-FUSE-TV
algorithms to yield the best possible performance in all experiments. In addition, in order to use the
BDSD and MTF-GLP-HPM algorithms to their best potential, we provide these algorithms with the
true point-spread function, i.e., the blurring kernel, used to generate the multispectral images.

Apart from the number of endmembers, which can be estimated using, for example, the HySime
algorithm [31], the proposed algorithm has two tunable parameters, the total-variation regularization
parameter α and the ADMM penalty parameter μ. The automatic tuning of the values of these
parameters is an interesting and challenging subject. There are a number of strategies that can be
employed such as those proposed in [66,89]. We found through experimentations that although
the value of μ impacts the convergence speed of the proposed algorithm, as long as it is within an
appropriate range, it has little influence on the accuracy of the proposed algorithm. Therefore, we set it
to μ = 1.5 × 103 in all experiments. The value of α affects the performance of the proposed algorithm
in subtle ways as shown in Figure 3 where we plot the performance metrics, ERGAS, SAM, and Q2n,
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against α for the Botswana and Washington DC Mall images. The results in Figure 3 suggest that, for
different values of α, there is a trade-off between the performance metrics, specifically, ERGAS and
Q2n on one side and SAM on the other. Therefore, we tune the value of α for each experiment only
roughly to obtain a reasonable set of values for all three performance metrics. We give the values of α
used in the proposed algorithm in Table 1.

 
Botswana 

 
Washington DC Mall 

Figure 3. The values of the performance metrics versus the regularization parameter α for the
experiments with Botswana and Washington DC Mall images. The left y-axis corresponds to ERGAS
and SAM and the right y-axis to Q2n.

In Table 2, we give the values of the performance metrics to assess the quality of the images fused
using the proposed algorithm and the considered benchmarks. We provide the performance metrics
for the case of considering only the bands within the spectrum of the panchromatic image as well
as the case of considering all bands, i.e., the entire spectrum of the reference image. We also give
the time taken by each algorithm to produce the fused images. We used MATLAB (The MathWorks,
Natick, MA, USA) with a 2.9-GHz Core-i7 CPU and 24 GB of DDR3 RAM and ran each of the proposed,
HySure, and R-FUSE-TV algorithms for 200 iterations as they always converged sufficiently after
this number of iterations. According to the results in Table 2, the proposed algorithm significantly
outperforms the considered benchmarks. It is also evident from the required processing times that the
computational (time) complexity of the proposed algorithm is lower than those of its contenders.
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Table 2. The values of the performance metrics for assessing the fusion quality as well as the runtimes
of the considered algorithms for different datasets.

Botswana

Fusion Algorithm(s)
Spectrum of Pan Entire Spectrum

Time (s)
ERGAS SAM (◦) Q2n ERGAS SAM (◦) Q2n

Pan + MS + HS proposed 0.900 1.355 0.980 1.637 1.575 0.956 47.01

Pan + HS
HySure 1.273 1.975 0.967 1.839 2.435 0.946 61.20
R-FUSE-TV 1.272 1.974 0.967 1.840 2.436 0.946 61.17

Pan + (MS + HS)
HySure 1.256 1.721 0.962 1.992 2.101 0.937 78.28
R-FUSE-TV 1.265 1.734 0.961 2.002 2.113 0.937 79.44

(Pan + MS) + HS

BDSD & HySure 1.393 1.971 0.955 2.458 2.359 0.912 62.58
BDSD & R-FUSE-TV 1.392 1.977 0.956 2.461 2.365 0.912 62.10
MTF-GLP-HPM & HySure 1.441 2.120 0.957 2.181 2.442 0.931 62.78
MTF-GLP-HPM & R-FUSE-TV 1.440 2.124 0.957 2.185 2.446 0.931 62.20

Indian Pines

Fusion Algorithm(s)
Spectrum of Pan Entire Spectrum

Time (s)
ERGAS SAM (◦) Q2n ERGAS SAM (◦) Q2n

Pan + MS + HS proposed 0.304 0.293 0.990 0.500 0.761 0.969 80.21

Pan + HS
HySure 0.420 0.547 0.986 0.813 1.108 0.632 106.75
R-FUSE-TV 0.425 0.555 0.986 0.813 1.113 0.632 106.47

Pan + (MS + HS)
HySure 0.656 0.641 0.961 0.834 1.117 0.594 134.79
R-FUSE-TV 0.695 0.642 0.953 0.875 1.120 0.573 134.32

(Pan + MS) + HS

BDSD & HySure 0.538 0.517 0.972 0.803 1.183 0.670 108.33
BDSD & R-FUSE-TV 0.539 0.520 0.972 0.794 1.182 0.674 107.34
MTF-GLP-HPM & HySure 0.566 0.563 0.972 0.959 1.268 0.626 108.48
MTF-GLP-HPM & R-FUSE-TV 0.567 0.567 0.972 0.947 1.270 0.628 107.51

Washington DC Mall

Fusion Algorithm(s)
Spectrum of Pan Entire Spectrum

Time (s)
ERGAS SAM (◦) Q2n ERGAS SAM (◦) Q2n

Pan + MS + HS proposed 0.731 1.116 0.997 2.484 2.795 0.970 59.52

Pan + HS
HySure 1.171 2.047 0.992 3.822 4.539 0.930 79.02
R-FUSE-TV 1.171 2.042 0.992 3.832 4.537 0.930 78.38

Pan + (MS + HS)
HySure 0.937 1.718 0.994 3.233 3.592 0.949 99.74
R-FUSE-TV 1.204 1.738 0.991 3.270 3.664 0.947 100.53

(Pan + MS) + HS

BDSD & HySure 1.114 2.039 0.992 4.174 5.048 0.918 79.68
BDSD & R-FUSE-TV 1.104 2.060 0.992 4.251 5.033 0.916 78.41
MTF-GLP-HPM & HySure 1.308 1.870 0.991 4.380 5.147 0.911 79.28
MTF-GLP-HPM & R-FUSE-TV 1.298 1.884 0.991 4.440 5.114 0.910 78.13

Moffett Field

Fusion Algorithm(s)
Spectrum of Pan Entire Spectrum

Time (s)
ERGAS SAM (◦) Q2n ERGAS SAM (◦) Q2n

Pan + MS + HS proposed 0.572 0.786 0.992 4.232 3.148 0.885 77.37

Pan + HS
HySure 0.902 1.151 0.985 6.507 4.233 0.823 107.73
R-FUSE-TV 0.914 1.152 0.984 6.416 4.210 0.827 106.20

Pan + (MS + HS)
HySure 0.826 1.004 0.986 5.078 3.603 0.868 134.78
R-FUSE-TV 0.964 1.014 0.977 5.100 3.670 0.845 135.20

(Pan + MS) + HS

BDSD & HySure 1.061 1.135 0.980 5.325 4.065 0.829 108.91
BDSD & R-FUSE-TV 1.058 1.134 0.980 5.244 4.039 0.834 106.12
MTF-GLP-HPM & HySure 1.396 1.122 0.968 5.924 4.384 0.824 108.98
MTF-GLP-HPM & R-FUSE-TV 1.396 1.123 0.969 5.835 4.360 0.830 106.28

Kennedy Space Center

Fusion Algorithm(s)
Spectrum of Pan Entire Spectrum

Time (s)
ERGAS SAM (◦) Q2n ERGAS SAM (◦) Q2n

Pan + MS + HS proposed 1.024 1.628 0.984 2.468 3.211 0.909 99.94

Pan + HS
HySure 1.451 2.426 0.979 3.544 3.995 0.890 138.16
R-FUSE-TV 1.518 2.496 0.974 3.680 3.795 0.886 134.97

Pan + (MS + HS)
HySure 1.462 2.203 0.967 2.851 3.546 0.909 172.18
R-FUSE-TV 1.875 2.343 0.939 2.986 4.155 0.878 172.25

(Pan + MS) + HS

BDSD & HySure 1.738 2.594 0.949 3.727 4.824 0.850 138.66
BDSD & R-FUSE-TV 1.691 2.547 0.953 3.534 4.584 0.865 135.74
MTF-GLP-HPM & HySure 6.801 3.250 0.912 9.532 5.183 0.805 138.60
MTF-GLP-HPM & R-FUSE-TV 8.143 3.264 0.914 11.130 5.197 0.816 135.58
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In Figures 4 and 5, we plot the sorted per-pixel normalized root mean-square error (NRMSE)
values of the proposed algorithm and the best performing algorithms from each of the Pan + HS,
Pan + (MS + HS), and (Pan + MS) + HS categories. Figure 4 corresponds to the case of considering
only the spectrum of the panchromatic image and Figure 5 to the case of considering the entire
spectrum. We define the per-pixel NRMSE as ||xj − x̂j||2 /||xj ||2 where xj and x̂j are the jth column
of the reference image X and the fused image X̂, respectively. We sort the NRMSE values in the
ascending order.

  
Botswana Indian Pines 

  
Washington DC Mall Moffett Field 

 
Kennedy Space Center 

Figure 4. The sorted per-pixel NRMSE of different algorithms measured only on the spectrum of the
panchromatic image in experiments with different images.
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Botswana Indian Pines 

  
Washington DC Mall Moffett Field 

 
Kennedy Space Center 

Figure 5. The sorted per-pixel NRMSE of different algorithms measured on the entire spectrum in
experiments with different images.

In Figure 6, we show RGB renderings of the reference images together with the panchromatic,
multispectral, and hyperspectral images generated from them and used for the fusion. We also
show the fused images yielded by the proposed algorithm and Pan + (MS + HS) fusion using
the HySure algorithm, which generally performs better than the other considered benchmarks.
The multispectral images are depicted using their red, green, and blue bands. The RGB representations
of the hyperspectral images are rendered through transforming the spectral data to the CIE XYZ color
space and then transforming the XYZ values to the sRGB color space. From visual inspection of the
reference and fused images shown in Figure 6, it is observed that the images fused by the proposed
algorithm match their corresponding reference images better than the ones produced by the Pan +
(MS + HS) fusion using the HySure algorithm do.
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Figure 6. The panchromatic, multispectral, and hyperspectral images that are fused together, the
reference hyperspectral image, and the fused images produced by the proposed algorithm and the Pan
+ (MS + HS) method using the HySure algorithm.
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6. Conclusions

We proposed a new image fusion algorithm that can simultaneously fuse multiple multiband
images. We utilized the well-known forward observation model together with the linear mixture
model to cast the fusion problem as a reduced-dimension linear inverse problem. We used a vector
total-variation penalty as well as non-negativity and sum-to-one constraints on the endmember
abundances to regularize the associated maximum-likelihood estimation problem. The regularization
encourages the estimated fused image to have low rank with a sparse representation in the spectral
domain while preserving the edges and discontinuities in the spatial domain. We solved the regularized
problem using the alternating direction method of multipliers. We demonstrated the advantages of the
proposed algorithm in comparison with the state-of-the-art via experiments with five real hyperspectral
images that were done following the Wald’s protocol.
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Abstract: Hyperspectral imaging (HSI) technology has been used for various remote sensing
applications due to its excellent capability of monitoring regions-of-interest over a period of time.
However, the large data volume of four-dimensional multitemporal hyperspectral imagery demands
massive data compression techniques. While conventional 3D hyperspectral data compression
methods exploit only spatial and spectral correlations, we propose a simple yet effective predictive
lossless compression algorithm that can achieve significant gains on compression efficiency, by also
taking into account temporal correlations inherent in the multitemporal data. We present an
information theoretic analysis to estimate potential compression performance gain with varying
configurations of context vectors. Extensive simulation results demonstrate the effectiveness of the
proposed algorithm. We also provide in-depth discussions on how to construct the context vectors in
the prediction model for both multitemporal HSI and conventional 3D HSI data.

Keywords: lossless compression; multitemporal hyperspectral images; information theoretic analysis;
predictive coding

1. Introduction

Hyperspectral imaging (HSI) technologies have been widely used in many applications of remote
sensing (RS) owing to the high spatial and spectral resolutions of hyperspectral images [1]. In some
applications (e.g., hyperspectral imaging change detection [2–5]), we need to collect a sequence of
hyperspectral images over the same spatial area at different times. The set of hyperspectral images
collected over one location at varying time points is called multitemporal hyperspectral images [6,7].
From these multitemporal images, changes of observed locations over time can be detected and
analyzed. Figure 1 illustrates a typical multitemporal hyperspectral image dataset. Each stack
represents one 3D HSI. A sequence of 3D HSI stacks are captured by the HSI sensor over time.

Hyperspectral datasets tend to be of very large sizes. In the case of 4D multitemporal HSI
datasets, the accumulated data volume increases very rapidly (to the Gigabyte or even Terabyte
level), thereby making data acquisition, storage and transmission very challenging, especially when
network bandwidth is severely constrained. As the number of hyperspectral images grows, it is clear
that data compression techniques play a crucial role in the development of hyperspectral imaging
techniques [8,9]. Lossy compression can significantly improves the compression efficiency, albeit at
the cost of selective information loss. However, the fact that human visual systems are not sensitive
to certain types and levels of distortions caused by information loss makes lossy compression useful.
While lossy compression methods typically provide much larger data reduction than lossless methods,
they might not be suitable for many accuracy-demanding hyperspectral imaging applications, where

J. Imaging 2018, 4, 142; doi:10.3390/jimaging4120142 www.mdpi.com/journal/jimaging131



J. Imaging 2018, 4, 142

the images are intended to be analyzed automatically by computers. Since lossless compression
methods can strictly guarantee no loss in the reconstructed data, lossless compression would be more
desirable in these applications.

Z

X Y

T

Figure 1. A multitemporal hyperspectral image dataset, where X and Y are the spatial directions, Z is
the spectral direction, and T is the temporal direction.

Many efforts have been made to develop efficient lossless compression algorithms for 3D HSI
data. LOCO-I [10] and 2D-CALIC [11] utilize spatial redundancy to reduce the entropy of prediction
residuals. To take advantage of strong spectral correlations in HSI data, 3D compression methods have
been proposed, which includes 3D-CALIC [12], M-CALIC [13], LUT [14] and its variants, SLSQ [15]
and CCAP [16]. Also, some transform-based methods, such as SPIHT [17], SPECK [18], etc., can be
easily extended to lossless compression even though they were designed for lossy compression.

Recently, clustering techniques have been introduced into 3D HSI data lossless compression and
produced state-of-the-art performance over publicly available datasets. In [19], B. Aiazzi et al. proposed
a predictive method leveraging crisp or fuzzy clustering to produce state-of-the-art results. Later,
authors in both [20,21] again utilized the K-means clustering algorithm to improve the compression
efficiency. Although these methods can yield higher compression, their computational costs are
significantly higher than regular linear predictive methods. Plus, it is very difficult to parallel the
process to leverage hardware acceleration if clustering technique is required as a preprocessing step
in those approaches. In addition to the goal of reducing the entropy of either prediction residuals
or transform coefficients, low computational complexity is another influential factor because many
sensing platforms have very limited computing resources. Therefore, a low-complexity method called
the “Fast Lossless” (FL) method, proposed by the NASA Jet Propulsion Lab (JPL) in [22], was selected
as the core predictor in the Consultative Committee for Space Data Systems (CCSDS) new standard for
multispectral and hyperspectral data compression [23], to provide efficient compression on 3D HSI
data. This low-complexity merit also enables efficient multitemporal HSI data compression.

Multitemporal HSI data has an additional temporal dimension compared to 3D HSI data.
Therefore, we can take advantage of temporal correlations to improve the overall compression efficiency
of 4D HSI data. Nonetheless, there is very sparse work on lossless compression of multitemporal
HSI data in the literature. Mamun et al. proposed a 4D lossless compression algorithm in [24], albeit
lacking details on the prediction algorithms. In [25], a combination of Karhunen-Loève Transform
(KLT), Discrete Wavelet Transform (DWT), and JPEG 2000 was applied to reduce the spectral and
temporal redundancy of 4D remote sensing image data. However, the method can only achieve lossy
compression. Additionally, Zhu et al. proposed another lossy compression approach for multitemporal
HSI data in [7], based on a combination of linear prediction and a spectral concatenation of images.
For the first time, we addressed lossless compression of multitemporal HSI data in [6], by introducing
a correntropy based Least Mean Square filter for the Fast Lossless (FL) predictor. While the benefit
of exploiting temporal correlations in compression has been demonstrated by some papers such
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as [26,27], in this work, we conduct an in-depth information-theoretic analysis on the amount of
compression achievable on multitemporal HSI data, by taking into account both the spectral and
temporal correlations. On the other hand, this additional temporal decorrelation definitely poses a
greater challenge to data processing speed especially for those powerful but computationally expensive
algorithms, e.g., [19–21]. Therefore, we propose a low-complexity linear prediction algorithm, which
extends the well-known FL method into a 4D version to achieve higher data compression, by better
adapting to the underlying statistics of multitemporal HSI data. Note that most existing 3D HSI
compression methods can be extended into 4D versions with proper modifications. However, this is
beyond the scope of this paper.

The remainder of this paper is organized as follows. First, in Section 2, we give an overview of
the multitemporal HSI datasets used in the study, which include three publicly available datasets,
as well as two multitemporal HSI datasets we generated by using hyperspectral cameras. In Section 3,
we present the information-theoretic analysis, followed by the introduction of a new algorithm for
multitemporal HSI data lossless compression in Section 4. Finally, we present simulation results in
Section 5 and make some concluding remarks in Section 6.

2. Datasets

Since there is little prior work on multi-temporal hyperspectral image compression, publicly
available multi-temporal HSI datasets are very rare. Currently, the time-lapse hyperspectral radiance
images of natural scenes [28] are the only available datasets to our best knowledge. Therefore,
we created another two datasets capturing two scenes of Alabama A&M University campus using
the portable Surface Optics Corporation (SOC) 700 hyperspectral camera [29] to enrich the relevant
resources and facilitate further research. Hence, we introduce both data sources especially our datasets
in detail before the actual analysis and algorithm development.

2.1. Time-Lapse Hyperspectral Imagery

Time-lapse hyperspectral imaging technology has been used for various remote sensing
applications due to its excellent capability of monitoring regions-of-interest over a period of time.
Time-lapse hyperspectral imagery is a sequence of 3D HSIs captured over the same scene but at
different time stamps (often at a fixed time interval). Therefore, time-lapse hyperspectral imagery can
be considered as a 4D dataset, whose size increases significantly with the total number of time stamps.

In [28], the authors made public several sequences of hyperspectral radiance images of scenes
undergoing natural illumination changes. In each scene, hyperspectral images were acquired at about
one-hour intervals. We randomly selected three 4D time-lapse HSI datasets, Levada, Gualtar and
Nogueiro. Basic information of these three datasets are listed in the Table 1. Detailed information
of these datasets can be found in [30]. Each single HSI has the same spatial size, 1024 × 1344,
with 33 spectral bands. Both Gualtar and Nogueiro have nine time stamps while Levada has seven.
Note that the original data for these datasets was linearly mapped into [0, 1] and stored using “double”
floating point format (64 bits) [28]. In order to evaluate the prediction-based lossless compression
performance of algorithms, we pre-process the datasets by re-mapping the data samples back to their
original precision of 12 bits. The resulting sizes of the datasets range from 454.78 MB (for seven frames)
to 584.71 MB (for nine frames).

Figure 2 shows the Levada, Noguerio and Gualtar sequences from top to bottom. Detailed
information about the Levada sequence can be found in [28]. Note that only 2D color-rendered RGB
(Red, Green and Blue) images are shown in Figure 2 instead of the actual HSI data for display purpose.
Since time-lapse HSIs are captured over the same scene at different time instants with gradually
changing natural illumination, we can see that images at different time instants are very similar in
Figure 2. These temporal correlations can be exploited to improve the overall compression efficiency.
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Table 1. Multitemporal hyperspectral image datasets.

Dataset Size The Number of Time Frames Precision (bits)

Levada 1024 × 1344 × 33 7 12
Gualtar 1024 × 1344 × 33 9 12

Noguerio 1024 × 1344 × 33 9 12
Scene-1 640 × 640 × 120 21 12
Scene-2 640 × 640 × 120 16 12

Figure 2. Some sample images at different time instants from the time-lapse hyperspectral image
datasets (from top to bottom: Levada, Nogueiro and Gualtar).

2.2. AAMU Datasets

Due to very few 4D HSI datasets available in the public domain, we created some new datasets
to increase the data diversity of our study. To this end, we used a SOC 700 hyperspectral camera
(manufactured by Surface Optics Corporstion, CA, USA) and produced 4D datasets for two scenes
on the campus of Alabama A&M University (AAMU). The SOC 700 camera can record and process
hyperspectral imagery at a rate of 15 megabytes of data every second (120-band elements per second
at 12-bit resolution, 640 pixels per row, 100 rows per second). The imaging system’s spectral response
covers the visible and near-infrared spectral range (from 0.43 to 0.9 microns), and can be used in
normal to low lighting conditions with variable exposure times and display gains. More detailed about
the SOC 700 system can be found at [29].

We placed the camera at two distinct locations of the AAMU campus and generated two datasets,
which we call Scene-1 and Scene-2. 3D HSI cubes in Scene-1 and Scene-2 are of the same size:
640 × 640 × 120 with 21 and 16 time frames, respectively. The overall dataset sizes of Scene-1 and
Scene-2 are roughly 1.70 GB and 850 MB, respectively. Compared to three time-lapse datasets discussed
earlier, these two AAMU datasets are much larger, making themselves more suitable for evaluating
compression efficiencies. In contrast to the time-lapse datasets, the images of the AAMU datasets
were acquired at time-varying rates of approximately one per five minutes or one per minute, thereby
introducing time-varying temporal correlations through the entire dataset. This special feature will
allow us to investigate the relationship between prediction accuracy and correlations at different levels.

Figure 3 shows the 2D color-rendered RGB images for a few time instants for the AAMU
multitemporal HSI datasets. While changing illumination conditions over time can be observed
in both datasets, temporal similarity in both pixel intensity and image structure is also obvious,
similar to the three time-lapse datasets shown in Figure 2. In order to quantify the potential gain on
compression achievable by exploiting the temporal correlations in 4D HSI datasets, we conducted an
information-theoretic analysis as detailed in the next section.
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Figure 3. Sample images at different time instants from the AAMU hyperspectral image datasets
(top: Scene-1, and bottom: Scene-2).

3. Problem Analysis

While the actual amount of compression achieved depends on the choice of specific compression
algorithms [31], information theoretic analysis can provide us an upper bound on the amount of
compression achievable. Here we focus on analyzing how temporal correlation can help improve the
compression of 4D hyperspectral image datasets, as opposed to the baseline 3D-compression case
where only spatial and spectral correlations are considered.

Let Xt
j be a 4D hyperspectral image at the tth time instant and jth spectral band where X represents

a two-dimensional image with K distinct pixel values vi (i ∈ {1, · · · , K}) within each band. Then the
entropy of this source can be obtained based on the probabilities p(vi) of these values by

H(Xt
j) = −

K

∑
i=1

p(vi) · log2 [p(vi)] . (1)

If we assume that there are no dependencies between pixels of Xt
j , at least H(Xt

j) bits must be
spent on average for each pixel of this image. However, for typical 4D hyperspectral images, this
assumption does not hold given the existence of spatial, spectral and temporal correlations. The value
of a particular pixel might be similar to some other pixels from its spatial, spectral or temporal
neighborhoods (contexts). Considering these correlations can lead to reduced information (fewer bits
to code each pixel on average) than the entropy H(Xt

j). The conditional entropy of the image captures
the correlations as follows:

H(Xt
j |Ct

j ) = −
K

∑
i=1

p(vi|Ct
j ) · log2

[
p(vi|Ct

j )
]

. (2)

where Ct
j denoted as context, which represents a group of correlated pixels. In general, conditioning

reduces entropy, H(Xt
j |Ct

j ) ≤ H(Xt
j).

The choice of context largely determines how much compression we can achieve by using
prediction-based lossless compression schemes. One should include highly-correlated pixels into the
context. Spectral and temporal correlations are typically much stronger than spatial correlations in
multitemporal hyperspectral images. For example, ref. [20] claims that explicit spatial de-correlation
is not always necessary to achieve good compression [31]. Ref. [31] shows that a linear prediction
scheme was adequate for spectral and/or temporal prediction because of high degree of correlations,
in contrast to non-linearity nature of spatial de-correlation. Therefore, we construct the context vector
Ct

j using only pixels from previous bands at the same spatial location, as well as pixels from the
same spectral band at the same location but at previous time points. Specifically, we denote pixels
from previous Nb bands at the same spatial location as Xt

j−m, m ∈ {1, 2, ..., Nb} (yellow pixels in
Figure 1), and pixels from the same spectral band at the same location but from previous Nt temporal
positions Xt−n

j , n ∈ {1, 2, ..., Nt}(green pixels in Figure 1), respectively. Then, the conditional entropy
in Equation (2) becomes
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H(Xt
j |Xt

j−m, Xt−n
j ) = −

K

∑
i=1

p(vi|Xt
j−m, Xt−n

j ) · log2

[
p(vi|Xt

j−m, Xt−n
j )

]
. (3)

By using the relation between joint entropy and conditional entropy, we can further rewrite
Equation (3) as

H(Xt
j |Xt

j−m, Xt−n
j ) = H(Xt

j , Xt
j−m, Xt−n

j )− H(Xt
j−m, Xt−n

j ), (4)

which enables a simple algorithm for estimation of the conditional entropies. It suffices to estimate
the above two joint entropies by counting the occurrence frequency of each (Nt + Nb + 1)-tuple
in the set (Xt

j , Xt
j−m, Xt−n

j ), and (Nt + Nb)-tuple in the set (Xt
j−m, Xt−n

j ), respectively. However, as
pointed out in [31], the entropy estimates become very inaccurate when two or more previous bands
are used for prediction in practice. The reason is that, as the entropy is conditioned upon multiple
bands, the set (Xt

j , Xt
j−m, Xt−n

j ) takes on values from the alphabet χ(Nt+Nb+1), whose size can become

extremely large, e.g., (212)Nt+Nb+1 for our datasets. As a consequence, a band might not contain
enough pixels to provide statistically meaningful estimates of the probabilities. Similar to the “data
source transform” trick proposed in [31], we consider each bit-plane of Xt

j as one separate binary
source. Although binary sources greatly reduce the alphabet size, which makes it possible to obtain
accurate entropy estimates, results obtained for the binary source are not very representative of the
actual bit rates obtained by a practical coder since statistical dependencies between those bit-planes
cannot be neglected. However, using bit-plane sources would be useful for our study since our main
goal is to evaluate the relative instead of the absolute performance gain achievable by using different
contexts based on various combinations of spectral and temporal bands. Therefore, we will compute
the conditional entropy in Equation 3, for all the bit-planes separately, and then take their average to
be the overall performance gain for a specific prediction context. In this sense, we extend the algorithm
in [31] by incorporating previous temporal bands into the context vector, which allows us to estimate
also the temporal correlations.

We applied this estimation algorithm on five multitemporal HSI datasets to estimate the potential
compression performance of multitemporal hyperspectral image with a combination of various spectral
and temporal bands. H(p, q) is the entropy conditioned to p previous bands at the current time
point and q bands at current spectral band but from previous time points for prediction. Using the
binary-source based estimation method, we summed up the conditional entropies of all the bit-planes
(a total of 12 bit-planes for all our datasets) as the estimation of H(p, q) for each band of the dataset.
Then the averages of H(p, q) over all bands are reported in Figure 4 for all five datasets. Due to limited
space, we only show results for parameters p and q chosen between 0 and 5. More detailed results for
other datasets can be found in Tables A1–A5 in Appendix A.

From Figure 4, we can observe that as either p or q increases, the general trend is that the
conditional entropy decreases; however, as p or q further increases (e.g, from 4 to 5), the reduction
of entropy becomes smaller than the case of either p or q going from 0 to 1. This means that
including a few previous bands either spectrally or temporally in the context can be very useful
to improving the performance of the prediction-based compression algorithms, but the return of
adding more bands from distant past will diminish as the correlations get weaker, let alone the
increased computational cost associated with involving excessive number of bands for prediction.
In addition, the conditional entropy tends to decrease faster with an increased p than with an increased
q. This is indicative of stronger spectral correlations than temporal correlations. For example, the
fourth image in the first row of Figure 3 represents a dramatic change of illumination conditions during
image capturing, thereby weakening the temporal correlations. However, there still exist significant
temporal correlations which, if exploited properly, can lead to improved compression by considering
only spectral correlations. To this end, we propose a compression algorithm, which exploits temporal
correlations in multitemporal HSI data to enhance the overall compression performance.
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(a) Levada. (b) Nogueiro. (c) Gualtar.vada. (b) No

(d) AAMU Scene 1.

g ( )

(e) AAMU Scene 2.

Figure 4. Conditional entropies over five datasets for different P and Q combination.

4. Proposed Algorithm

Our lossless compression algorithm is based on predicting the pixels to be coded, by using a linear
combination of those pixels already coded (in a neighboring causal context). Prediction residuals are
obtained by subtracting the actual pixel values from their estimates. The residuals are then encoded
using entropy coders.

For multitemporal hyperspectral image, the estimate of a pixel value can be obtained by

x̂j,t
p,q = wT

j,ty
j,t
p,q. (5)

where x̂j,t
p,q represents an estimate of a pixel, xj,t

p,q, at spatial location (p, q), the jth band and the tth time

point, while wj,t denotes the weights for linearly combining the pixel values y
j,t
p,q. These pixels are

drawn from a causal context of several previously coded bands either at the same time point or at
previous time points. More specifically, y

j,t
p,q =

[
x

j−m,t
p,q , x

j,t−n
p,q

]
, m ∈ {1, 2, ..., Nb}, n ∈ {1, 2, ..., Nt}.

For accurate prediction, weights should be able to adapt to locally changing statistics of pixel
values in the multitemporal HSI data. For this sake, learning algorithms were introduced for lossless
compression of 3D HSI data [22,32]. Adaptive learning was also used in the so-called Fast Lossless
(FL) method. Due to its low-complexity and effectiveness, the FL method has been selected as a new
compression standard for multispectral and hyperspectral data by CCSDS (Consultative Committee
for Space Data Systems) [23]. The core learning algorithm of the FL method is the sign algorithm,
which is a variant of least mean square (LMS). In prior work, we proposed another LMS variant, called
correntropy based LMS (CLMS) algorithm, which uses the Maximum Correntropy Criterion [6,8] for
lossless compression of 3D and multi-temporal HSI data. By replacing the cost function for LMS based
learning with correntropy [33], the CLMS method introduces a new term in the weight update function,
which allows the learning rate to change, in order to improve on the conventional LMS based method
with a constant learning rate. However, good performance of the CLMS method depends heavily on
proper tuning of the kernel variance, which is an optimization parameter used by the “kernel trick”
associated with the correntropy. To avoid the excessive need to tune the kernel variance for various
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types of images in the multitemporal HSI datasets, we adopted the sign algorithm used by the FL
predictor with an expanded context vector.

In order to exploit spatial correlations also found in hyperspectral datasets, we follow the simple
approach in [22], where local-mean-removed pixel values are used as input to our linear predictor.
Specifically, for an arbitrary pixel xj,t

p,q in a multi-temporal HSI, the spatial local mean is

μ
j,t
p,q = [xj,t

p−1,q−1 + xj,t
p−1,q + xj,t

p,q−1]/3. (6)

After mean subtraction, the causal context becomes

U
j,t
p,q =

[
x

j−m,t
p,q − μ

j−m,t
p,q , x

j,t−n
p,q − μ

j,t−n
p,q

]
, (7)

where m ∈ {1, 2, ..., Nb}, and n ∈ {1, 2, ..., Nt}. To simplify the notation, we represent the spatial
location (p, q) with a single index, k, in that k = (p − 1) ∗ Ny + q, where Ny refers to number of pixels
in each row within one band. In other words, we line up the pixels in a 1D vector, where the pixels
will be processed sequentially in the iterative optimization process of the sign algorithm. Now the
predicted value for an arbitrary pixel in each band of multi-temporal HSI dataset is given by

x̂j,t
k = μ

j,t
k + wT

j,tU
j,t
k , (8)

where wT
j,t are the weights to be adapted sequentially for each band. If follows that the prediction

residual can be obtained as

ej,t
k = xj,t

k − x̂j,t
k = xj,t

k −
(

μ
j,t
k + wT

j,tU
j,t
k

)
. (9)

We apply the sign algorithm to iteratively update the weights as

wk+1
j,t = wk

j,t + ρ(k) · sign(ej,t
k ) · U

j,t
k , (10)

where ρ(k) is an adaptive learning rate proposed in [23] to achieve fast convergence to solutions close
to the global optimum. Our study found that using this adaptive learning rate can provide good
results on multitemporal datasets. Note that we need to reset the weights and learning rate for each
new band in the dataset to account for potentially varying statistics.

After prediction, all the residuals are mapped to non-negative values [23] and then coded into
bitstream losslessly by using the Golomb-Rice Codes (GRC) [34]. Although GRC is selected as the
entropy coder because of its computational efficiency [35], we observed that using arithmetic coding
can offer slightly lower bitrates, albeit at a much higher computational cost. Pseudo Algorithm 1 of
this 4D extension of Fast-Lossless is given to better show its structure and workflow.

Algorithm 1 Fast-Lossless-4D Predictor

Input:
1) 4D HSI data X.
2) T (Total # of time frames of X).
3) B (Total # of spectral bands for each time frame of X)
4) P (# of previous spectral bands).
5) Q (# of bands from previous time frames).
6) μ (learning rate).
for t = 1:T do

for b = 1:B do
Local mean subtracted data U using Equations (6) and (7).
initialize: wj,t = 0.
for each pixel in this band in raster scan order do

Output residual ej,t using Equation (9).
Updating wj,t using Equation (10).

end for
end for

end for
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5. Simulation Results

We tested the proposed algorithm on all five multitemporal HSI datasets (Levada, Gualtar,
Nogueiro, AAMU scene_1 and AAMU scene_2). To show the performance of our algorithm, we
present the bitrates after compression in Figure 5 (Detailed results can be found in Tables A6–A10).
Similar to the conditional entropy estimation results in Section 3, the bitrates were obtained by using
various combinations of p (spectral) and q (temporal) number of bands for causal contexts.

We can see that for the case of p = 0 and q = 0, where we simply use mean subtraction (for spatial
decorrelation) without spectral and temporal decorrelation, we can already achieve significant amount
of compression on the input data by lowering the original bitrate from 12 bits/pixel to about 6 bits/pixel.
If we consider either spectral or temporal correlations, or both, we can achieve additional compression
gains on multitemporal HSI data. For example, the bit rate can be reduced by approximately 1 bit/pixel
or 0.2 bit/pixel by including in the prediction context one more previous band spectrally or temporally.
Generally, the bitrates decrease with more bands being included in the context, which agrees well with
the results on condition entropy estimation in Section 3. Furthermore, if we fix the p value and increase
the q value, and vice versa, we can achieve better compression. However, the return on including
more bands will diminish gradually as p and q further increase. In some cases, we can even have less
compression if the context includes some remote bands that might be weakly correlated with the pixels
to be predicted. For example, in Table A7, when p = 5 and q = 4, the corresponding bit rate is 4.4953,
which is 0.0026 higher than 4.4927 (when p = 5 and q = 3). Similar examples can be found in Table A9
(when p = 5 and q = 4) and in Table A10 (when p = 5 and q = 1). Including weakly correlated or
totally uncorrelated pixels might lower the quality of the context, leading to degraded compression
performance. In this same spirit, we can see that spectral decorrelation turns out to be more effective
in reducing the bitrates than temporal decorrelation. This means that spectral correlations are stronger
than temporal correlations in the datasets we tested. The reason can be that each hyperspectral image
cube in these multitemporal HSI datasets was captured at time intervals of at least a few minutes,
during which significant change of pixel values (e.g, caused by illumination condition changes) might
have taken place. If the image capturing time interval is reduced, then we expect the stronger temporal
correlations.

On the other hand, prediction using only one previous spectral band, and/or the same spectral
band but from previous time instance can offer a low-complexity compressor with sufficiently good
compression performance. The bitrate results show the wide range of tradeoffs for us to explore in
order to balance compression performance with computational complexity.

We also compared the proposed algorithm (based on Fast-Lossless algorithm) with our previous
work (based on correntropy LMS learning) in [6], namely CLMS, which seems to be the only existing
work on lossless compression of multitemporal HSI data. For fair comparison, we use the same
parameter setting in [6]. Although it would be straightforward to show the bitrates for both algorithms
in multiple tables, we choose to visualize bitrates changes as number of previous bands or number of
previous time frames increases for both algorithms. To reduce the complexity of this visualization,
we only present P = 3 case since it is the default setting in the FL method. Figure 6 shows the bitrate
changes for the five datasets. Note that when Q = 0, our method is essentially equivalent to 3D FL
method. Therefore, we use green dashed line to mark FL method performance in Figure 6. While blue,
green and red curves represent CLMS, FL method and ours respectively, it is clear that our methods
produce the lowest bitrates consistently. Although bitrates of our method was only slightly lower than
applying FL method directly to each one of time framed HSI, it outperformed CLMS method by a
significant margin. The improvements on time-lapse datasets are more significant than on AAMU
datasets in general. Consistent with results shown previously, we have higher compression gains in
the spectral dimension than the temporal dimension. However, the results show that our algorithm
can take advantage of the temporal correlations available to bring additional improvements on the
overall compression performance.
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Figure 5. Bitrates over five datasets for different P and Q combination.

(a) Levada. (b) Nogueiro. (c) Gualtar.vada. (b) No

(d) AAMU Scene 1.

gueiro. (c) Gu

(e) AAMU Scene 2.

Figure 6. Bitrates comparison with CLMS and FL methods over five datasets for different Q when
P = 3.

6. Conclusions

We have proposed a new predictive lossless compression algorithm for multitemporal time-lapse
hyperspectral image data using a low-complexity sign algorithm with an expanded prediction context.
Simulation results have demonstrated the outstanding capability of this algorithm to compress

140



J. Imaging 2018, 4, 142

multitemporal HSI data through spectral and temporal decorrelation. The actual compression results
are congruent with the information theoretic analysis and estimation based on conditional entropy.
We show that increasing the number of previous bands for prediction can yield better compression
performance, by exploiting the spectral and temporal correlations in the datasets.

As future work, we intend to study how to adaptively select bands to build an optimal context
vector for prediction. Also, we will investigate how to fully integrate the proposed algorithm
and the analytic framework to achieve real-time compression on streaming hyperspectral data.
Furthermore, the proposed algorithm can be extended to lossless compression of regions-of-interest
in hyperspectral images, which can offer much higher compression than compressing the entire
hyperspectral image dataset.
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Appendix A. Condition Entropy Estimation Empirical Experimental Results

Table A1. Conditional entropies H(p, q) (bits/pixels), computed for various values of p and q,
over “Levada”.

p q = 0 q = 1 q = 2 q = 3 q = 4 q = 5

0 10.2558 9.5120 9.3905 9.3022 9.2279 9.1827
1 8.7675 8.4673 8.3744 8.3141 8.2663 8.2366
2 8.5951 8.3063 8.2192 8.1633 8.1179 8.0895
3 8.4613 8.1782 8.0949 8.0410 7.9979 7.9719
4 8.3440 8.0707 7.9908 7.9394 7.8984 7.8742
5 8.2414 7.9733 7.8977 7.8497 7.8113 7.7888

Table A2. Conditional entropies H(p, q) (bits/pixels), computed for various values of p and q,
over “Gualtar”.

p q = 0 q = 1 q = 2 q = 3 q = 4 q = 5

0 10.8137 10.6057 10.4057 10.3266 10.2818 10.2387
1 9.0550 8.9657 8.9007 8.8638 8.8393 8.8176
2 8.8388 8.7553 8.6971 8.6623 8.6374 8.6155
3 8.7107 8.6283 8.5715 8.5362 8.5100 8.4870
4 8.6375 8.5534 8.4964 8.4592 8.4310 8.4064
5 8.5837 8.4956 8.4371 8.3975 8.3670 8.3406

Table A3. Conditional entropies H(p, q) (bits/pixels), computed for various values of p and q,
over “Nogueiro”.

p q = 0 q = 1 q = 2 q = 3 q = 4 q = 5

0 9.7167 9.3381 9.2314 9.1641 9.1023 9.0740
1 8.2400 8.1105 8.0619 8.0304 8.0064 7.9918
2 8.1165 7.9890 7.9395 7.9080 7.8841 7.8695
3 8.0343 7.9097 7.8603 7.8292 7.8054 7.7904
4 7.9722 7.8497 7.8005 7.7695 7.7453 7.7299
5 7.9200 7.7979 7.7492 7.7180 7.6936 7.6775
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Table A4. Conditional entropies H(p, q) (bits/pixels), computed for various values of p and q,
over “Scene-1”.

p q = 0 q = 1 q = 2 q = 3 q = 4 q = 5

0 8.7785 7.8624 7.7055 7.6271 7.5834 7.5548
1 7.1538 6.9037 6.8398 6.8070 6.7836 6.7671
2 7.0491 6.8166 6.7555 6.7233 6.6999 6.6829
3 6.9839 6.7599 6.7003 6.6683 6.6448 6.6272
4 6.9190 6.7052 6.6475 6.6160 6.5923 6.5736
5 6.8533 6.6513 6.5956 6.5646 6.5402 6.5193

Table A5. Conditional entropies H(p, q) (bits/pixels), computed for various values of p and q,
over “Scene-2”.

p q = 0 q = 1 q = 2 q = 3 q = 4 q = 5

0 8.1367 7.5082 7.3654 7.3194 7.2787 7.2397
1 6.9248 6.7109 6.6466 6.6202 6.5955 6.5719
2 6.7897 6.6004 6.5421 6.5169 6.4945 6.4731
3 6.7126 6.5362 6.4812 6.4568 6.4354 6.4148
4 6.6461 6.4810 6.4289 6.4052 6.3843 6.3637
5 6.5892 6.4334 6.3836 6.3601 6.3390 6.3173

Table A6. Bit rates (bits/pixels), obtained for various values of p and q, on “Levada”.

p q = 0 q = 1 q = 2 q = 3 q = 4 q = 5

0 5.7538 5.5248 5.4193 5.3400 5.2689 5.1784
1 4.3876 4.3674 4.3422 4.3313 4.3122 4.2987
2 4.3029 4.2878 4.2660 4.2570 4.2395 4.2293
3 4.2813 4.2679 4.2471 4.2389 4.2218 4.2125
4 4.2704 4.2578 4.2377 4.2298 4.2131 4.2043
5 4.2631 4.2508 4.2312 4.2235 4.2070 4.1985

Table A7. Bit rates (bits/pixels) obtained for various values of p and q, on “Gualtar”.

p q = 0 q = 1 q = 2 q = 3 q = 4 q = 5

0 6.0941 5.9463 5.7547 5.7057 5.6541 5.6218
1 4.7064 4.6928 4.6802 4.6754 4.6732 4.6695
2 4.5655 4.5577 4.5518 4.5495 4.5505 4.5487
3 4.5214 4.5155 4.5117 4.5102 4.5121 4.5113
4 4.5057 4.5006 4.4977 4.4966 4.4990 4.4984
5 4.5004 4.4960 4.4936 4.4927 4.4953 4.4948

Table A8. Bit rates (bits/pixels), obtained for various values of p and q, on “Nogueiro”.

p q = 0 q = 1 q = 2 q = 3 q = 4 q = 5

0 5.6329 5.3524 5.2312 5.1521 5.0874 4.9953
1 4.3070 4.2769 4.2545 4.2407 4.2324 4.2186
2 4.2013 4.1800 4.1631 4.1520 4.1463 4.1355
3 4.1701 4.1515 4.1364 4.1260 4.1212 4.1112
4 4.1586 4.1413 4.1272 4.1171 4.1127 4.1031
5 4.1525 4.1363 4.1228 4.1131 4.1088 4.0994
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Table A9. Bit rates (bits/pixels), obtained for various values of p and q, on “AAMU Scene-1”.

p q = 0 q = 1 q = 2 q = 3 q = 4 q = 5

0 6.1097 6.0844 6.0691 6.0478 6.0322 6.0156
1 5.0580 5.0557 5.0534 5.0518 5.0492 5.0491
2 4.9186 4.9181 4.9168 4.9133 4.9126 4.9122
3 4.8727 4.8717 4.8711 4.8701 4.8695 4.8694
4 4.8555 4.8537 4.8517 4.8507 4.8502 4.8501
5 4.8491 4.8495 4.8506 4.8538 4.8556 4.8556

Table A10. Bit rates (bits/pixels), obtained for various values of p and q, on “AAMU Scene-2”.

p q = 0 q = 1 q = 2 q = 3 q = 4 q = 5

0 5.3202 5.2791 5.2429 5.2363 5.2045 5.1977
1 4.8675 4.8597 4.8569 4.8554 4.8475 4.8461
2 4.7615 4.7599 4.7586 4.7572 4.7569 4.7569
3 4.7167 4.7156 4.7148 4.7140 4.7138 4.7137
4 4.6953 4.6939 4.6928 4.6920 4.6919 4.6920
5 4.6842 4.6862 4.6936 4.6940 4.6925 4.6925
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Abstract: Hyperspectral (HS) imaging involves the sensing of a scene’s spectral properties, which are
often redundant in nature. The redundancy of the information motivates our quest to implement
Compressive Sensing (CS) theory for HS imaging. This article provides a review of the Compressive
Sensing Miniature Ultra-Spectral Imaging (CS-MUSI) camera, its evolution, and its different
applications. The CS-MUSI camera was designed within the CS framework and uses a liquid
crystal (LC) phase retarder in order to modulate the spectral domain. The outstanding advantage
of the CS-MUSI camera is that the entire HS image is captured from an order of magnitude fewer
measurements of the sensor array, compared to conventional HS imaging methods.

Keywords: compressive sensing; hyperspectral imaging; multiplexing system; liquid crystal;
three-dimensional imaging; integral imaging; remote sensing; point target detection; CS-MUSI

1. Introduction

Hyperspectral (HS) imaging has gained increasing interest in many fields and applications.
These techniques can be found in airborne and remote sensing applications [1–4], biomedical and
medical studies [5–7], food and agricultural monitoring [8–10], forensic applications [11,12], and many
more. The HS images captured for these applications are usually arranged in three-dimensional
(3D) datacubes, which include two dimensions (2D) for the spatial information and one additional
dimension (1D) for the spectral information. With a 2D spatial domain of megapixel size and with
the third (spectral) dimension typically containing hundreds of spectral bands, the HS data is usually
huge. Consequently, its scanning, storage and digital processing is challenging.

Studies have shown that the huge HS datacubes are often highly redundant [13–17] and,
therefore, very compressible or sparse. This gives the incentive to implement Compressive Sensing
(CS) theory in HS systems. CS is a sampling framework that facilitates efficient acquisition of sparse
signals. Numerous techniques that employ the CS framework for spectral imaging [18–26] have been
proposed in order to reduce the scanning efforts. Most of these techniques involve spatial–spectral
multiplexing, which is suitable for CS; however, this multiplexing inevitably impairs both the spatial
and spectral domains. In References [27,28], we introduced a novel CS HS camera dubbed the
Compressive Sensing Miniature Ultra-Spectral imaging (CS-MUSI) camera. The CS-MUSI camera
overcomes the impairment in the spatial domain by performing only spectral multiplexing without
any spatial multiplexing. Figure 1 provides a schematic description of HS datacubes that undergo
only spectral multiplexing. The figure presents three examples of a HS datacube modulated at three
different exposures. Different spectral multiplexing is obtained by applying different conditions on the
modulator. The spectrally multiplexed data is ultimately integrated by a focal plane array (FPA).

J. Imaging 2019, 5, 3; doi:10.3390/jimaging5010003 www.mdpi.com/journal/jimaging146
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Figure 1. Spectral multiplexing. The figure represents three different examples of spectral multiplexing.
Each sub-figure illustrates multiplexing of a few spectral bands onto a FPA.

Within the framework of CS, the CS-MUSI camera can reconstruct HS images with hundreds of
spectral bands from only spectrally multiplexed shots, numbering an order of magnitude less than
would be required using conventional systems. Furthermore, the CS-MUSI camera benefits from high
optical throughput, small volume, light weight, and reduced acquisition time. In this paper, we review
the evolution of the CS-MUSI camera and its different applications.

In this article, we first review the innovative concept behind our CS-MUSI camera. We describe
spectral multiplexing within the CS framework using a liquid crystal (LC) phase retarder, and expand
on the sensing and reconstruction processes. In the following, we outline the optical setup of the
CS-MUSI camera and its realization. Lastly, we describe different possible applications for the CS-MUSI
camera, including HS staring imaging, HS scanning imaging, 4D imaging, and target detection tasks.

2. Spectral Modulation for CS with LC

The core of the CS-MUSI camera is a single LC phase retarder (Figure 2), which we designed
to work as a spectral modulator that is compliant with the CS framework [27]. By using the LC
phase retarder, the signal multiplexing is accomplished entirely in the spectral domain, and no
spectral-to-spatial transformations are required. The LC phase retarder is built by placing a LC cell
between two polarizers. The spectral transmission is controlled by the voltage applied on the LC
cell, causing variations in the cell’s birefringence, which, in turn, cause refractive index changes.
For the case where the optical axis of the LC cell is at 45◦ to two perpendicular polarizers, the spectral
transmission response of the LC phase retarder can be described by [29]:

φLC(λ, Vi) =
1
2
− 1

2
cos

(
2πΔn(Vi)d

λ

)
, (1)

where Δn(Vi) is the birefringence produced by voltage Vi, d is the cell thickness and λ is the wavelength.
The voltage applied to the LC cell is an AC voltage, usually in the form of sine or square wave and
with a typical frequency in the order of kHz.

We designed the LC cell to have a relatively thick cavity (tens of microns) to facilitate modulation
over a broad spectrum with oscillatory behavior, as can been seen in the different spectral responses
presented in Figure 3. The figure presents 15 plots of 15 different measured spectral responses for
different AC voltages (2 kHz square wave) applied on the LC cell. It can be noticed that as the voltage
decreases [higher birefringence, Δn(Vi)], the number of peaks in the spectral transmission graphs rises.
Theoretically, these spectral responses should follow expression (1), spanning the entire range from
0 to 1 for all the wavelength range. However, in practice, we can see that the modulation depths in
Figure 3 are not equal for all the peaks. This is due to the quality of the polarizers.
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Figure 2. LC cell phase retarder. The LC phase retarder is made of a Nematic LC layer (blue arrow)
sandwiched between two glass plates and two linear polarizers (green layers). The glass plates are
coated with Indium Tin Oxide (ITO, pink layers) and a polymer alignment layer (purple layers).

Figure 3. Measured spectral responses (intensity transmission vs. wavelength in nm) of the fabricated
LC phase retarder. Each graph represents the spectral modulation with a different voltage applied on
the LC cell (15 different voltages).

The acquisition process and the optical scheme of the CS-MUSI camera are shown in Figure 4.
The spatial–spectral power distribution of the HS object, F(x, y, λ), is modulated by the LC phase
retarder transmittance function, φLC(λ, Vi) (the graph from Figure 3). The i’th modulated spectral
signal is spectrally multiplexed and integrated at each pixel in the 2D sensor array, which gives the
encoded measurements:

Gi(x, y) =
∫

φLC(λ, Vi)F(x, y, λ)dλ. (2)
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Figure 4. (a) CS-MUSI acquisition process. (b) CS-MUSI optical scheme diagram. The HS object
F(x, y, λ) is modulated according to φLC(λ, Vi), yielding the multiplexed measurement Gi(x, y).

As the sensor samples discrete values, and for CS analysis and reconstruction purposes, it is more
convenient to present the sensing process from Equation (2) in a matrix-vector format. Let us denote
the spectral signal with N spectral bands by f ∈ �N×1 and the multiplexed measured spectral signal
with M entries by g ∈ �M×1. By using these vectors, the measurement process can be described by:

g=Φf, (3)

where Φ ∈ �M×N represents the CS sensing matrix. Compressive sensing [22,30–32] provides
a framework to capture and to recover signals from fewer measurements than required by the
Shannon-Nyquist sampling theorem (i.e., M < N). The CS framework relies on three main ingredients.
First, the sparsity of the signal, namely, the spectral signal with N spectral bands can be expressed by
f=Ψα, where α is a K-sparse vector (containing K << N non-zero elements) and Ψ is the sparsifying
operator. In accordance with the CS framework, Equation (3) can be written as:

g=ΦΨα=Ωα, (4)

where Ω=ΦΨ. Second, the CS systems needs an appropriate sensing design, which is represented
by the system sensing matrix, Φ. Third, the CS framework relies on the existence of an appropriate
reconstruction algorithm, upon which we will expand in the next section.

3. Reconstruction Process

The CS-MUSI camera was designed in accordance with the CS framework. Consequently, the captured
data is a compressed version of the scene’s HS datacube. Therefore, a reconstruction process that solves
Equation (4) should be performed. Over the years, several CS algorithms have been developed [32–37] in
order to recover the original signal. A common class of these reconstruction algorithms solve the �2 − �1

minimization problem:

α̃ = argmin
α

{
1
2
‖g − ΦΨα‖2

2 + τ‖α‖1

}
. (5)

where α̃ ∈ �N×1 is the estimated K-sparse signal, τ is a regularization parameter and ‖ · ‖p is the
lp norm. The algorithms recover the original signal by using the known system sensing matrix,
Φ, and the signal sparsifying operator, Ψ [22,37–39]. The sparsifying operator can be a mathematical
transform (DCT, Wavelet, Curvelets etc.) or a learned dictionary; the latter has shown promising
results [40] and will be described in the next subsection. Common algorithms developed to solve
Equation (5) are TwIST [33], GPSR [34], SpaRSA [35], TVAL3 [36], etc.
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Dictionary for Sparse Representation

The first ingredient that the CS framework relies on is the sparsity of the signal. The sparser the
representation of the signal is, the better the CS reconstruction algorithms perform. We found [40] that
using a learned dictionary [38] as the sparsifying operator can significantly improve the reconstruction
accuracy in comparison to using a mathematical basis. In addition, using a dictionary can reduce
both the time and the number of measurements required in order to reconstruct the original signal.
A dictionary is a learned sparsifier from exemplars. In order to be able to use a dictionary in CS
algorithms, a preprocessing stage has to be performed, and it is done only once.

First, a large database of spectral signals, S ∈ �N×NS , is collected. This database contains
NS spectra with N spectral bands:

S =
[
s1, s2, . . . , sNS

]
, (6)

where si is the i’th spectrum in the database. Then, an over-complete spectral dictionary with Nd atoms
to train, Ψd ∈ �N×Nd , is created by applying a dictionary-learning algorithm, such as the K-SVD
algorithm [38], to the spectral database S:

Ψd= K-SVD{S}. (7)

Ψd is a dictionary that relates the spectral data f to its sparse representation, f=Ψdα. Each column
of Ψd is referred to as an atom of the dictionary. Therefore, the spectrum f can be viewed as a linear
combination of atoms in Ψd according to weights in α. Based on Equation (7), a corresponding system
dictionary Ωd ∈ �M×Nd is created by the inner products of the spectral dictionary with the CS-MUSI
sensing matrix, Φ:

Ωd = ΦΨd. (8)

After the dictionary has been prepared, it can be used as the sparsifying operator to reconstruct
the original spectral signal by finding the estimated atom weights vector, α̃d. These weights could be
found, for example, by the l2 − l1 minimization problem from Equation (5) that becomes:

α̃d = argmin
α

{
1
2
‖g − Ωdα‖2

2 + τ‖α‖1

}
. (9)

Once the atom weights are found the original spectral signal is estimated by applying the atom
weights on the spectral dictionary we created, Ψd (Equation (7)):

f̃ = Ψdα̃d. (10)

For more details on the utilization of dictionaries for CS-MUSI data reconstruction and its
advantages over other sparsifiers, the reader is referred to [40].

4. Compressive Hyperspectral and Ultra-Spectral Imaging

The CS-MUSI camera we built is shown in Figure 5a. It is slightly different from the optical setup
that was designed and presented in Figure 4, but is optically equivalent. It has a 1:1 optical relay that
projects the LC plane onto a 2D sensor array, thus avoiding the need to attach the LC cell to the 2D
sensor array. A LC cell is placed in the image plane of a zoom lens. The light transmitted through
the LC cell is conjugated to a sensor array using a 1:1 relay lens. The optical sensor of the camera is a
uEye CMOS UI-3240CP-C-HQ with 1280 × 1024 pixels, with a pixel size of 5.3 μm × 5.3 μm and 8-bit
grayscale level radiometric sampling. The camera LC cell from Figure 5b was manufactured in-house
and has a cell gap of approximately 50 μm and a clear aperture of about 8 mm × 8 mm. The LC cell
was fabricated from two flat glass plates coated with Indium Tin Oxide (ITO) and a polymer alignment
layer. The cavity is filled with LC material E44 (Merck, Darmstadt, Germany). Together with two
linear polarizers on both sides of the LC cell, the LC phase retarder is created (Figure 2).
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Figure 5. (a) Realization of the CS-MUSI camera. (b) In-house manufactured LC cell.

4.1. Camera Calibration

The theoretical expression in Equation (1) cannot be used directly in order to obtain the
system-sensing matrix, because the dependence of the birefringence on the voltage and the material
dispersion are unknown. Consequently, a calibration process in which the spectral responses of the
camera were precisely measured, was performed once. Using a point light source as the object and by
replacing the sensor of the camera with a commercial high-precision grating spectrometer, the spectral
responses of the camera were measured. The calibration process was performed by using a halogen
light source with a pre-measured spectrum and by applying voltages from 0 V to 10 V on the LC cell
with steps of 2 mV. Figure 6, presents the CS-MUSI system’s spectral response map that was measured
in the calibration process.

Figure 6. CS-MUSI spectral response map for voltages from 0 V to 10 V (left map) and a zoom in on
the area where the voltages are from 1.3 V to 3.5 V (right map).

The system sensing matrix, Φ, is obtained by selecting M rows from the CS-MUSI system’s
spectral response map (Figure 6, left). This is done by using a sequential forward floating selection
method [28,41] that aims to achieve a highly incoherent set of measurements.

4.2. Staring Mode

The basic imaging mode of the CS-MUSI camera is the staring mode, so that the camera and
scene do not move. Scanning mode acquisition is described in the next subsection. In staring
mode, each spectrally multiplexed shot covers the same field-of-view (FOV) and, by taking M shots,
a compressed HS datacube is captured. Figures 7–9 demonstrate the reconstruction of spectral
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images (HS and ultra-spectral images) attained by the CS-MUSI camera in staring mode. Figure 7
presents the results of an experiment where the emission spectra of three arrays of red, green and blue
light sources (Thorlabs LIU001, LIU002 and LIU003 LED arrays) were imaged using the CS-MUSI
camera. Figure 7a shows the image of the light sources captured by a standard RGB color camera.
The imaging experiment was performed by capturing 32 spectrally multiplexed images containing
1024 × 1280 pixels. Figure 7b–e shows four captured images that represent four single grayscale
frames from the spectrally-compressed measurements. The images show the total optical intensity that
has passed through the LC phase retarder and was collected by the sensor array at a given shot with a
given LC voltage. From the captured data, a window of 700 × 700 pixels was used in the reconstruction
process. Using the TwIST solver [33] and orthogonal Daubechies-5 wavelet as the sparsifying operator,
a HS datacube with 391 spectral bands (410–800 nm) was reconstructed, yielding a compression ratio
of about 12:1. Figure 7f presents a pseudo-color image obtained by projecting the reconstructed HS
datacube onto the RGB space. Figure 7g–i displays three images from the reconstructed datacube at
different wavelengths (460 nm, 520 nm and 650 nm). Figure 7k–m demonstrate spectrum reconstruction
for three points in the HS datacube and a comparison to the measured spectra of the three respective
LEDs with a commercial grating-based spectrometer. The reconstruction PSNR is 32.4 dB, 34.8 dB and
27.9 dB for the blue, green and red LED points, respectively.

Figure 7. Staring mode reconstruction result of three LED arrays. (a) RGB color image of three
LED arrays that were used as objects to be imaged with CS-MUSI. (b–e) Representative single
exposure images for LC cell voltage of 0 V, 5.8373 V, 7.6301 V and 8.6552 V, respectively. (f) RGB
representation of the reconstructed HS image (700 × 700 pixels× 391 bands). (g–i) Reconstructed
images at 460 nm, 520 nm and 650 nm, respectively. (k–m) Spectrum reconstruction for three points
in the HS datacube and comparison to the measured spectra of the three respective LEDs with a
commercial grating-based spectrometer.
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Figure 8. Staring mode reconstruction result of six different markers. (a) RGB representation of the
reconstructed HS image (800 × 900 pixels × 1171 bands). (b) Four reconstructed images at four different
wavelengths (470 nm, 530 nm, 580 nm, and 630 nm).

 
Figure 9. Staring mode reconstruction results with the dictionary of (a) outdoor and (b) indoor HS
images taken with CS-MUSI camera. The figures show RGB representation of the reconstructed
HS datacube.

Figure 8 presents an indoor scene where six different markers are imaged using the CS-MUSI
camera. The imaging experiment was performed by capturing 100 spectrally multiplexed images
containing 1024 × 1280 pixels. From the captured data, a window of 800 × 900 pixels was used in
the reconstruction process. Using the TwIST solver [33] and orthogonal Daubechies-5 wavelet as the
sparsifying operator, a HS datacube with 1171 spectral bands (410–800 nm) was restored, yielding
a compression ratio of almost 12:1. Figure 8a presents a pseudo-color image obtained by projecting the
reconstructed HS datacube onto the RGB space. Figure 8b displays four images from the reconstructed
datacube at different wavelengths (470 nm, 530 nm, 580 nm and 630 nm).

The quality and time expenditure of reconstructed HS images depends significantly on the
sparsifying operator. We found that by using a learned dictionary as the sparsifying operator [40]
the quality and time improves. Figure 9 illustrates the reconstruction of HS images attained by the
CS-MUSI camera using a spectral dictionary as the sparsifying operator (Section 3). The size of this
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dictionary was Nd = 1000 atoms and was computed by using NS > 100,000 spectrum exemplars
taken form a large database of HS images [42] and from a library of different spectra [40,43]. The HS
images reconstructed from the CS-MUSI camera are in the range of 500 nm to 700 nm with 579 spectral
bands, and were reconstructed from only 32 measurements, thus yielding a compression ratio of
approximately 18:1. Figure 9a,b shows an RGB representation of the reconstructed HS images of
outdoor and indoor scenes, respectively.

4.3. Scanning Mode

The CS-MUSI camera can also be applied in a mode where the camera, the scene, or objects in the
scene, are not stationary [44]. Such scenarios include microscope applications with moving cells or
scanning platforms, and airborne and remote sensing systems. By capturing a sequence of spectrally
multiplexed shots and tracking the object, it is possible to reconstruct HS data by an appropriate
registration. It is required that the object appears in M shots. For example, in the case of along-track
scanning [44] (Figure 10) the CS-MUSI camera needs 2M measurements in order to capture a scene
of the size of the camera FOV. A second requirement is image registration, since the FOV of each
shot is slightly different. As a result, before solving Equation (4) it is necessary to register all the
measured images along a common spatial grid. This can be done with one of the many available
algorithms [45–47].

 
Figure 10. CS-MUSI camera along-track scanning. Each shot of the CS-MUSI camera, Gi, captures
a shifted scene with a different LC spectral transmission (which depends on the voltage vi).

Figure 11 shows experimental results that demonstrate the ability to reconstruct HS images in
a scanning mode. In this experiment, the scanning is along-track [44], which is similar to the push
broom scanning technique [3]. The spectral multiplexed imaging acquisition process was conducted
while the CS-MUSI camera was moving in front of three arrays of LED light sources (Thorlabs LIU001,
LIU002, and LIU003) (Figure 11a). While the CS-MUSI camera was moving, a set of 100 voltages
between 0 V and 10 V was applied repetitively. Figure 11b–e presents four representative spectrally
multiplexed intensity measurements (shot #30, #100, #150 and #300, respectively) from a total of 300
measurements (Supplementary Materials). These images illustrated the along-track scanning of the
camera from right to left, where in the first shot only part of the blue and red LEDs appears in the
spectral multiplexed image, and in the last shot only the green LED appears.
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Figure 11. Scanning mode (Figure 10) reconstruction result. (a) RGB color image of three LED arrays.
(b–e) representative single exposure images (frame #30, #90, #150 and #300, respectively) and (f–i) the
RGB representation of the reconstructed HS image up to the appropriate column.

Since the reconstruction was performed column by column [48], the reconstruction process can
start before the scanning process is completed. Once a column is measured in M = 100 shots it can be
reconstructed. Figure 11f–i shows an RGB representation of the reconstructed HS images up to different
shot numbers. It can be noticed that at 30 shots (Figure 11f), no image column can be reconstructed as
the total number of shots is smaller than M and no object column has enough measurements in order to
be reconstructed. However, after M = 100 shots, some of the column images can be reconstructed after
they have been measured M times. In this example, the HS image was reconstructed using the SpaRSA
solver [35] and orthogonal Daubechies-4 wavelet as the sparsifying operator. From the 100 shots of
each column, a HS image with 1171 spectral bands (410–800 nm) was restored, yielding a compression
ratio of almost 12:1.

5. 4D Imaging

Integrating the CS-MUSI camera with an appropriate 3D imaging technique enables achieving a
four-dimensional (4D) camera that can efficiently capture 3D spatial images together with their
spectral information [49–52]. Joint spectral and volumetric data can be very useful for object
shape detection [51,52] and material classification in various engineering and medical applications.
The CS approach facilitated the acquisition effort associated with the huge dimensionality of the 4D
spectral-volumetric data.

For 3D imaging we used Integral Imaging (InIm) [53–56], since its implementation is relatively
simple. The first step of InIm is the acquisition of an actual 3D scene. In this step, multiple 2D images
from slightly different perspectives are captured. Each of these images is called an elemental image
(EI). Generally, the acquisition process can be implemented by a lenslet array (or pinhole array) or by
synthetic aperture InIm. Synthetic aperture InIm (Figure 12) can be realized by an array of cameras
distributed on the image plane, or by a single moving camera which moves perpendicularly to the
system’s optical axis. Replacing the moving camera with our CS-MUSI camera enables capturing 3D
spatial images together with their spectral information. By using the captured InIm data it is possible
to synthesize depth maps, virtual perspectives and refocused images.
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Figure 12. Compressive HS synthetic aperture InIm acquisition setup.

After the acquisition of the data and reconstruction of the spectral information from its compressed
version, acquired with the moving CS-MUSI camera, the 3D image for each spectral channel (in terms
of focal-stack) can be reconstructed numerically in different ways [49,56–58]. One of the most popular
methods is based on back-projection, also known as shift-and-add. In the case of synthetic aperture
InIm, the refocusing process can be performed as follows [49]:

Ĩ(x, y, z, λ) =
1

o(x, y, z, λ)

P

∑
j=1

Ij,λ
(
x + Shx,z,j, y + Shy,z,j

)
, (11)

where Ĩ(x, y, z, λ) is the reconstructed data tesseract, Ij,λ is the EI at wavelength λ showing the
perspective from camera j. o(x, y, z, λ) is a normalizing matrix that normalizes each pixel in the image
Ĩ(x, y, z, λ) according to the number of EIs that the pixel appears in, and P is the overall number of
EIs. Shx,z,j and Shy,z,j are the scaled size of the shifts in the horizontal and vertical directions of the
CS-MUSI camera [49].

In the 4D imaging application, we acquired spectrally compressed images with our CS-MUSI
camera from six perspectives, where in each perspective we captured 29 compressed images.
Then, by using the TwIST solver [27], a HS datacube with 261 spectral bands (430–690 nm) was
reconstructed. Next, we generated refocused images at different depths by using a shift-and-add
algorithm [49]. The data can be ordered as a tesseract, as shown in Figure 13. Figure 13a demonstrates
the reconstruction results at three selected depths for four selected wavelengths. The zoom on the
HS datacube from the depth of 270 cm illustrates the spectral reconstruction quality, which can be
observed from the fact that the laser beam appears clearly only at 635 nm, whereas it is completely
filtered out in the other spectral bands (520 nm, 580 nm and 626 nm). From the grayscale images from
Figure 13b it can be observed that the closest object was a green alien toy, whose best focus is at 225 cm;
the Pinocchio toy’s best focus is at 254 cm and the best focus of the different colored shape objects and
red laser is at 270 cm.
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Figure 13. (a) 4D Spectro-Volumetric imaging. (b) Grayscale representation of HS images at three
different depths (225 cm, 254 cm and 270 cm).

6. Target Detection

One key usage of spectral imagery is subpixel target detection, when an a priori known spectral
signature is sought in each pixel of the spectral datacube. Previous researches dealt with target
detection in the reconstructed domain [59], but in the case of the CS-MUSI camera, target detection can
be applied in the compressed domain [60,61] since the CS-MUSI camera performs compression only in
the spectral domain, without any spatial multiplexing. This yields a significant reduction of processing
time and memory storage compared to non-compressing systems, of around an order of magnitude.

In order to test the subpixel target detection performance, we used the match filter (MF)
algorithm [62], which can be derived by maximizing the SNR, or even by simply considering two
hypotheses, as shown in Equation (12).

H0 : x=W

H1 : x=S+W
(12)

where H0 assumes that no target, S = [s1, s2, . . . , sn]
T , is present in the pixel and the pixel contains

only background, W ∼ N(0, σ2 In×n). H1 assumes that both background and target are present in the
pixel. For simplicity, both hypotheses are modeled as multidimensional Gaussian distributions.

By applying the log likelihood ratio test for H0 and H1 we may derive the MF, which is equal to:

MF(x) = tTΓ−1(x−m), (13)

where x is the pixel signature, t is the target spectral signature and m is the estimated background. Γ is
the covariance matrix, which holds the statistics of the background and can be approximated using:

Γ =
1
L∑(x − m)(x−m)T , (14)

where L is the number of pixels in the datacube. For a pixel that does not include the target, the MF
takes the form of Equation (13). However, when the target is present we use an additive, as shown in
Equation (15), and the MF takes the form of Equation (16):

x′ = x + pt, (15)
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MF(x′) = tTΓ−1(x′ − m), (16)

where x’ is a pixel that contains the target and p is the ratio of the target present in the pixel.
In order to assess the algorithm’s performance, we adopt the performance metric that is mentioned

in References [60,63]. Finally, we compare the Receiver Operating Characteristics (ROC) curve of
the algorithm applied to an original HS datacube and the ROC curve of the same algorithm applied
to a simulated compressed CS-MUSI datacube. The curve presents the positive detection vector as
a function of false alarm probability, using the calculated value per threshold. The simulation is
performed by applying a measured CS-MUSI sensing matrix, Φ, to each voxel of the HS datacube.

Figure 14 presents results of CS-MUSI camera target detection performance. Figure 14a shows the
comparison of ROC curves obtained from conventional HS datacubes (solid lines) to those captured
with the CS-MUSI camera (dotted lines). Four pairs of ROC curves are presented for the four images
shown in Figure 14b (from [42,64,65]). The compression ratio sets for the compressed datacube varied
between 3.5:1 (lowest) and 25:1 (highest). From the ROC curves it can be seen that the performance is
not degraded by the compression. Moreover, the detection speed in the compressed HS datacubes is
increased due to lower computational complexity.

 
Figure 14. (a) Comparison of ROC curves for target detection in conventional (dotted lines) and
CS-MUSI (solid lines) HS datacubes. (b) RGB representation of the four HS datacubes in the
comparison [42,64,65].

7. Discussion

We have overviewed an evaluation of the CS-MUSI camera [28] together with its different
applications. We demonstrated reconstruction of HS images in the case where the camera and
scene are stationary and for the case where the camera moves in the along-track direction.
Furthermore, we demonstrated the ability to use the CS-MUSI camera for 4D spectral-volumetric
imaging. Experiments in these scenarios and applications have demonstrated compressibility of at
least an order of magnitude. Moreover, the results provide a spectral uncertainty of less than one
nanometer, e.g., in Reference [28] we demonstrated an example that has a spectral localization accuracy
of 0.44 ± 0.04 nm.

Additionally, we presented a remarkable property of the CS-MUSI camera showing that the target
detection algorithm performs similarly with the CS-MUSI camera as with traditional HS systems,
despite the fact that the CS-MUSI data is up to an order of magnitude less than that in conventional
HS datacubes. Another important advantage of the CS-MUSI camera is its high optical throughput,
due to the Fellgett’s multiplex advantage [66]. Furthermore, the CS-MUSI camera (Figure 5a) can be
built with a small geometrical form and low weight by fabricating the LC cell to be attached to the
sensor array.
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It should be mentioned that the reviewed CS-MUSI camera has some limitations. The response
time for a thick LC cell is relatively slow (in the order of a few seconds), which limits the acquisition
frame rate. This limitation can be reduced by operating the cell in its transition state or with
specially designed electronic functions, or by using faster LC structures such as ferroelectric LCs.
Another limitation of the camera is the requirement for large computational resources for processing
the data. This limitation can be mitigated by using parallel processing using GPU or multi-core CPU
systems. Additionally, as with any HS processing algorithm, our reconstruction algorithm demands
high memory capacity, since the storage of HS images can require gigabit sized memory. The additional
memory requirements associated with the CS implementation are negligible compared to those of the
HS data storage. From a theoretical CS point of view, the fact that there is no encoding in the spatial
domain can be viewed as a limitation, since the compression obtained with the spectral encoding
is lower than could have been theoretically obtained with encoding in all the three spatial-spectral
domains [18]. On the other hand, the lack of spatial encoding makes it possible to maintain the full
spatial resolution, allows parallel processing and facilitates the spectral imaging of moving objects.

The method of spectral multiplexing used in the CS-MUSI camera was carried out with a LC phase
retarder as the spectral modulator. This method can be also realized with other spectral modulators [67].
In References [68,69], we used a modified Fabry-Perot resonator (mFPR) for spectrometry [68] and
for imaging [69], which has a much faster response time compared to the LC cell. The method of
spectral multiplexing can also be performed in parallel in order to achieve a snapshot HS camera.
Lastly, in Reference [70] we presented a snapshot compressive HS camera that uses an array of mFPRs
together with a lens array in order to acquire an array of spectrally multiplexed modulated sub-images.

8. Patents

In reference to the work presented here, a patent with the patent number US10036667 has
been granted.

Supplementary Materials: The following are available online at http://www.mdpi.com/2313-433X/5/1/3/s1,
Video S1: Along-track scanning measurement. Each frame represents a multiplexed intensity measurement (total
of 300 shots).
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Abstract: The collection of high-dimensional hyperspectral data is often the slowest step in the
process of hyperspectral Raman imaging. With the conventional array-based Raman spectroscopy
acquiring of chemical images could take hours to even days. To increase the Raman collection speeds,
a number of compressive detection (CD) strategies, which simultaneously sense and compress the
spectral signal, have recently been demonstrated. As opposed to conventional hyperspectral imaging,
where full spectra are measured prior to post-processing and imaging CD increases the speed of data
collection by making measurements in a low-dimensional space containing only the information of
interest, thus enabling real-time imaging. The use of single channel detectors gives the key advantage
to CD strategy using optical filter functions to obtain component intensities. In other words, the filter
functions are simply the optimized patterns of wavelength combinations characteristic of component
in the sample, and the intensity transmitted through each filter represents a direct measure of the
associated score values. Essentially, compressive hyperspectral images consist of ‘score’ pixels
(instead of ‘spectral’ pixels). This paper presents an overview of recent advances in compressive
Raman detection designs and performance validations using a DMD based binary detection strategy.

Keywords: Raman spectroscopy; chemical imaging; compressive detection; spatial light modulators
(SLM); digital micromirror device (DMD); digital light processor (DLP); optimal binary filters;
Chemometrics; multivariate data analysis

1. Introduction

Raman spectroscopy may be used to study the chemical composition and construction of spectral
images of various compounds, and has proven to be a useful tool for a variety of scientific fields.
However, Raman scattering has intrinsically low cross-section, yielding low signals. Furthermore,
conventional Raman spectroscopy with a multichannel array detector, such as the charged-couple
device (CCD) camera, is limited by the inherent read noise of the detector electronics. These array-based
spectrometers disperse different wavelengths of light onto separate detector pixels (or wavelength
channels). Because of the inherent read-noise associated with CCD measurements, array-based
Raman spectrometers have a major drawback in the low-signal regime. For example, if 100 photons
are distributed over 100 pixels of a CCD detector, then the resulting signal in each pixel would
be well below the typical CCD read-noise (of a few counts per channel), essentially rendering the
Raman photons undetectable. As a result, Raman measurements often require collection times on
the orders of hundreds of milliseconds or longer to obtain a spectrum with decent signal-to-noise
ratio. This limitation hinders the use of Raman spectroscopy for hyperspectral imaging applications,
where thousands to millions of different spatial points are measured. For example, the collection of a
one-megapixel image would take 12 days with a typical 1 s per spectrum acquisition rate.
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Recent advances in spatial light modulators (SLM) bring about a paradigm shift in the way that
Raman imaging is performed. SLMs provide a means of producing variable programmable filter
functions. Raman light is modulated by the filter functions loaded on SLMs, sent to the single-channel
detector and recorded. The introduction of compressive data collection strategies enabled by SLMs
allow fast Raman measurements by multiplexing Raman photons from different wavelengths onto a
low-noise single channel detector [1–10]. Therefore, the scanning speed is basically only defined by
the limits of the count rate of the detector. These recent studies have led to the conclusion that digital
(binary) SLM optical filters created using the Digital Micromirror Device (DMD, Texas Instruments,
Dallas, TX, USA ) can be as effective in data compression as analogue SLMs, with a simpler and more
robust optical design [1,3,4,6–10]. Moreover, two detectors can be used to detect all the collected
Raman photons, and thus increase compression speed, with appropriately optimized digital filters [7].

Hyperspectral Raman imaging is the combination of two technologies: spectroscopy and imaging,
whereas compressive hyperspectral imaging combines three technologies: spectroscopy, imaging,
and signal processing. In the hyperspectral imaging mode, an image is acquired by recording the
full spectrum at each x, y point on the sample, which produces ‘data cubes’, where signal intensity is
measured as a function of the x and y spatial dimensions and a spectral (wavenumber, cm−1) dimension.
More generally, in hyperspectral imaging each pixel contains two-dimensional spatial information (x
and y), and a third dimension of spectral information (e.g., wavenumbers). Subsequently, to derive
the sought information from this large, multidimensional data set, in order to obtain a chemical
image, it is necessary to transform it to lower-dimensional space through multivariate data analysis
algorithms, such as principal component analysis (PCA), partial least squares (PLS), multivariate curve
resolution (MCR), or total least-squares (TLS) [11,12], or in some cases through univariate analysis if a
component of interest has a unique spectral peak (that has not overlapped with peaks due to other
components) [13]. Generally, in a univariate analysis a property of interest is calculated based on a
single value, which is correlated to the property to which that peak corresponds, such as the amount of
that component at each image pixel location. In other words, the area (intensity) of the peak of interest
is used as a measure of the amount of that component at each spatial location in the image. When an
isolated peak of the investigated component does not exist, then more advanced multivariate data
analysis techniques are typically used to extract the desired information. In fact, even when one or
more components do have an isolated peak it can still be advantageous to perform a multivariate data
analysis, as this will make use of the information contained in the entire measured spectrum.

Compressive Raman spectroscopy is similar to conventional hyperspectral Raman spectroscopy,
except that the array detector is replaced by a spatial light modulator (SLM), and one or two
single channel detectors, such as photon counting amplified photodiodes or photomultiplier tube
detectors. In the compressive detection (CD) mode, instead of recording the full spectrum at each
pixel, the spectral response (a score value) for each SLM filter function is recorded. In other words,
CD differs from the conventional Raman detection in that the scores are directly detected using the
hardware, rather than by obtaining scores after post-processing the full spectra. The total number of
photons transmitted through each filter on the SLM is counted using a photon-counting detector, to
obtain a direct measure of the score value. More specifically, CD effectively measures the dot-product
of the filter vectors and the spectral vector coming from the sample. Chemometric techniques may
be used to create optical filter functions, which are trained using full-spectral reference spectra.
Once the filters are generated, photon counting is performed in each pixel (instead of full-spectral
acquisition as in conventional systems). Because all the light transmitted by SLMs is measured by
a single-channel detector rather than being separately detected by multiple channels (often >1000
channels), CD benefits from Felgett’s (or multiplex) signal-to-noise ratio (SNR) advantage. Thus,
for example, a Raman spectrum with a total number of 100 photons would have a SNR of ~10 on a
single-channel detector while, as previously noted, the same 100 photons would have been practically
undetectable on a multi-channel CCD detector.
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Here we review the latest advances in the design and performance of compressive hyperspectral
Raman strategies, which facilitate the rapid collection of chemical images by directly applying
programmable optical filters optimized to distinguish compounds of interest using spatial light
modulators and single channel detectors.

2. Compressive Detection (CD) Strategies

Two design strategies were recently described for compressive Raman detection, in which filter
functions are applied to either a digital micromirror array device (DMD) [1,3,14–16] or analog-based
liquid crystal [2,6,17] spatial light modulators (LC-SLM). DMDs provide binary states, as each mirror
pixel can be programmed to be either “on” or “off”, corresponding to a mirror tilt of ±12◦. LC-SLMs,
on the other hand, use light polarization to produce either phase or amplitude modulated variable
analog filters [18]. Each pixel on LC-SLMs is a separately addressable optical phase modulator, which is
used to rotate the polarization of the detected light between 0 (p-polarized) and 90 (s-polarized).
The filter functions on liquid crystal cell control the degree to which, for example, the input p-polarized
signal is rotated to s-polarization and thus reflected into the detection optical path. In this way, the
spectral component that became s-polarized by means of the liquid crystal cell is entirely transmitted
to the single channel detector while no p-polarized light reaches the detector. Earlier applications using
transmissive LC-SLMs in compressive spectroscopy suffered from low light throughput of ~20% [6].
Recent developments in reflectance LC-SLM with higher light throughput (~80%) and fill factor [19]
made possible for better performing spectrometers [2,20].

The data obtained in CD technology is fundamentally photon counts, which essentially
corresponds to the dot product of filter functions and the spectra vectors. The filter functions are
simply the combination of wavelengths specifically designed to regenerate the eigenvectors (often
referred to principal component) obtained from chemometric algorithms. Multivariate techniques
like PLS and PCA are appropriate to use to generate the optimal eigenvectors for a given experiment
when the components are known [21,22]. These techniques use pure component samples as a built-in
calibration set [23–25]. However, if components are not known then techniques like MCR may be more
valuable to extract component information [26]. The amplitude of the measured signal is proportional
to the amplitude of the eigenvectors, and thus to the amount of the corresponding compound.

Filter functions ensure that only the photons with certain wavelengths that are the most effective
in discriminating the components of interest are detected. Irrelevant photons are disposed. To create
filters for a given application, one must first obtain a high SNR training spectrum of each component
of interest. Both LC-SLM and DMD-based CD systems can also function as a general Raman
spectrometer to obtain full Raman spectra by notch scanning the SLM arrays one array column
at a time. In DMD-based systems notch scanning could be performed by sequentially directing one
mirror column towards the detector while all others are directed away, and count the number of
photons at each notch position. In LC-SLM systems, SLM is used to produce band-pass filters with
variable center wavelengths. However, the efficiency of band-pass scanning (or notch-scanning) is
quite low since most Raman photons are discarded. An advantageous alternative to notch-scanning
may be to use Hadamard [27] filter functions to obtain full spectra at higher SNR [2,17,23,24,28].
The efficiency of Hadamard strategy comes from that half of the Raman photons is always detected by
each Hadamard filter.

The present review is focused primarily on recent developments in DMD-based CD systems.

Digital Micromirror Device (DMD)-Based Compressive Raman Detection

DMD is a micro-electronic mechanical system (MEMS) which consists of thousands of individually
addressable moving micromirrors controlled by underlying electronics. DMD is also an SLM as the
mirrors are highly reflective and are used to modulate light; to rotate the light to either a +12 degree
or −12 degree position relative to the flat state of the array depending on the binary state of the cell
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below each pixel. These two positions determine the direction that light is deflected. Each tiltable
mirror-pixel can be moved to reflect light to, or away from an intended target [29–32].

In DMD-based Raman detection systems the micromirrors on DMDs are horizontally binned (x
mirrors/pixels) and vertically fully binned. That is, all mirrors in each column of the array are set
to the same angle of either −12 or +12 and mirrors in each row are divided into adjacent groupings.
Bins are defined by bands of photon energy, then groups of x adjacent columns are set in unison.
The filter functions on DMD, then tells which columns of pixels are turned “on”, sending those selected
photons to the detector and which columns are turned “off”, directing those photons away from the
detector. More specifically, while photons with certain energy levels corresponding to “on” columns
are collected in a single-channel detector and recorded, photons with wavelengths reaching “off”
columns are disposed.

The first reported use of DMD SLMs in spectrometry dates back to 1995 by Wagner et al. [33].
In this early work the contrast ratio of the DMD was only about 60:1; today it goes as high
as 2000:1 with a higher fill factor, allowing the design of better performing compressive Raman
systems. Two approaches were reported recently to construct binary filters for DMD based-Raman
systems [15,34]. The filter design developed by Scotte et al. is based on maximizing the precision of
the components proportion estimates [15,35] using a new Cramer-Rao lower bound based algorithm.
Buzzard and Lucier’s approach was to minimize the error in estimating photon emission rates of
the chemical species investigated [34,36]. Both approaches based their theory on the fact that the
photons transmitted through filter functions are modeled by Poisson random variables when the
measurements are photon-noise limited [1,7,15,34–37]. Here, optimized binary compressive detection
(OBCD) procedures based on Buzzard and Lucier’s approach is overviewed.

OBCD design: The recently-developed optimized binary compressive detection (OBCD) method
relies on binary filters, which provides optimal measurement settings. Input data to be modeled to
generate filter functions are photon counts, modeled by Poisson random variables whose variances
equal to their means. Photon emission rates are correlated to the concentration of components of
interest. In other words, concentrations are not directly measured, rather photon emission rates of
each compound are estimated and the concentrations are calculated from this estimation. Objective is
to minimize the mean square error between estimated and true emission rates.

OBCD design has been shown to enable high-speed chemical classification, quantitation,
imaging [1,36,37], as well as facilitating Raman classification in the presence of fluorescence
background [8]. The design of an OBCD Raman spectrometer with 785 nm laser excitation whose
schematic is shown in Figure 1A is described in detail in reference [1]. This design is configured to
collect backscattered Raman photons with the same objective lens used to focus the excitation laser
onto the sample. After separating Rayleigh photons using dichroic and notch filters, then Raman
light is directed to the spectrometer module. It is then dispersed onto the DMD ((Texas Instruments,
DLP D4000, 1920 × 1080 aluminum mirror array with 10.8 μm mirror pitch) after passing through
volume holographic grating (VHG). In this design, 15 columns of adjacent mirrors are binned to yield a
total of 128 bins, each bin corresponding to ~30 cm−1 and the whole spectral window being ~200–1700
cm−1. The Raman light transmitted by the “on” mirrors (corresponding to +12 degree tilt of mirrors)
is then sent to the low-noise photon-counting avalanche photodiode (APD) module (dark count rate
of ~200 photons/s and no read noise). The input binary optical filters tell which mirrors will point
toward (assigned value of one) or point away (assigned value of zero) the detector. Authors have
demonstrated that the OBCD with 785 nm excitation can be used to rapidly quantify binary and tertiary
liquid mixtures with known components, and also to generate chemical images of mixed powders as
well as generating filter functions using the MCR algorithm to facilitate high speed chemical imaging
of samples for which pure components spectra are not available. [37]. They reported that with the
OBCD strategy, a mixture of glucose and fructose is discriminated with as low as ~10 photons per
pixel, corresponding to pixel dwell time of ~ 30 μs.
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In order to demonstrate the accuracy of the OBCD detection mode, pairs of liquid mixtures with
various degrees of spectral overlap were tested. Classification error was found to vary both with the
degree of overlap and acquisition time. Low to moderately overlapping spectra (benzene/acetone
with a correlation coefficient of 0.12, and n-hexane/methylcyclohexane with a correlation coefficient of
0.71) were accurately classified with as few as 10–25 photons per measurement in tens to hundreds
of microseconds. The highly overlapped case of n-heptane/n-octane mixture with a correlation
coefficient of 0.99, correct classification was achieved with ~200 photons in a few milliseconds.
These acquisition times obtained using OBCD strategy were not accessible using comparative
CCD-based Raman spectroscopy.

Another OBCD Raman spectrometer prototype with 514 nm laser excitation with similar design
to the 785 nm system mentioned above was also prototyped in Ben-Amotz’s lab [8]. For this design,
a DMD chip of 608 × 684 mirror array with 10.8 μm mirror pitch was used. Two columns of
adjacent mirrors were binned to give a total of 342 bins with each bin corresponding to 12 cm−1

and yielding a spectrometer with a ~200–4100 cm−1 spectral window. As a single channel detector,
a photomultiplier tube (PMT) with a dark count rate of ~500 photons/s was used in this design. In this
work [8] the feasibility of the OBCD strategy for Raman imaging of moderately fluorescing samples
was demonstrated. A strategy for fitting a fluorescence background to the third-degree Bernstein
polynomials was adopted to train OBCD filters, which were then used to quantitatively separate
Raman signals from the fluorescence background, facilitating Raman imaging of chemicals in the
presence of a fluorescence background.

OBCD2 design: In the OBCD detection strategy only a fraction of Raman photons, which were
transmitted by “on” (+12 degrees) stage of micromirrors, were read by the detector. Raman light
reaching to “off” (−12 degrees) micromirrors on DMD was disposed. A new strategy, termed as
OBCD2, was proposed to increase the efficiency of Raman detection, wherein binary filters were
generated in pairs [7]. Two detectors were used to count all Raman photons transmitted by two
complimentary OB filters. OBCD2 is considered a derivative of OBCD, accordingly many of the
assumption made in formulating the OBCD strategy [1,7,36] remain valid for OBCD2 strategy, as well.

A schematic of this technique is shown in Figure 1B. In the OBCD2 strategy, when one OBCD filter
is generated corresponding to the “on” mirrors on DMD, the exact complement of that filter is also
generated for implementation to “off” mirrors. To describe a system with n components a minimum
of 2(n − 1) filters, which constitutes to n − 1 pairs of complementary filters, are required. Photons of
different wavelengths are selectively reflected by micromirrors either positive 12 degrees or negative 12
degrees to the surface of the DMD and are directed to either one or the other PMT detector (dark count
of ~500 photons/s) shown in Figure 1B. With OBCD2 filtering strategy all Raman photons are detected.
As a result, Raman scattering rates recovered using OBCD2 filters have lower variance than those
using OBCD filters [7]. In order to quantify the performance advantage of the OBCD2 over OBCD
strategy, a ternary system of benzene, hexane, and methylcyclohexane were analyzed in [7]. For this
system there were three OBCD filters and 2 × (3 − 1) = 4 OBCD2 filters (or two complementary pairs).
The standard deviations of the estimated recovered Raman scattering rates are shown to improve
~63%, ~23%, and ~24% for benzene, hexane, and methylcyclohexane, respectively.
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3. Assessment of DMD-Based Raman vs. CCD-Based Raman Detection

The performance of compressive Raman detection has been assessed compared to conventional
Raman measurements by Scotte et al. in a recent paper [15], and by Ben-Amotz et al. in a forthcoming
publication. Scotte et al. evaluated the performance of a custom-built DMD-based system with two
commercially available spectrometers with different detectors (CCD and EMCCD) for the detection of
low concentrations of biologically relevant components (microcalcification powders relevant to human
breast cancer) [15]. They reported that in the high signal regime CD technology outperformed Raman
imaging of the biological system they studied with a ×100 to ×10 speed improvements compared with
CCD and EMCCD-based Raman imaging, respectively. In the low signal regime where noise is the
limiting factor, they chose to compare the systems’ limits of detection (LOD). The LOD is defined as
the minimum Raman light needed to reach on the detector to be able to correctly estimate component
proportions. LOD for a compressive system is found to be similar to EMCCD and up to ×100 higher
than CCD system. At equal signal-to-noise ratio CD is still faster than hyperspectral imaging. However,
it is important to note that the custom-built DMD-Raman system in this work can further be improved
as PMT used only has 40% quantum efficiency (QE) while two cameras used in commercial systems
reach 90 to 95% QE.

Figure 2 shows the classification of acetone and benzene using full spectral acquisition using a
CCD detector. Figure 3 corresponds to optimized binary compressive detection (OBCD) measurements,
and Figure 4 shows the results for OBCD2 strategy performed under otherwise identical conditions to
those used to obtain the results in Figure 2. In all three figures (Figures 2–4), panel A shows training
spectra obtained using 30 mW of laser power and an integration time of 1 s, while panel B shows
classification results obtained using lower laser powers and integration times. More specifically, Panel A
in Figures 2–4 shows the normalized training spectra of acetone (red, top left) and benzene (blue, top
right). Training spectra for the OBCD and OBCD2 measurements were obtained by measuring counts
through Hadamard filters applied on the DMD for 1 s each (again with 30 mW of laser power). The
counts were then invers Hadamard transformed to produce the high SNR spectra shown in Panels A
of Figures 3 and 4.

Panel B in Figures 2–4 are each subdivided into three sub panels a, b, and c corresponding to
the classification of acetone and benzene in 1 ms using 30 mW, 3 mW, and 1 mW of laser power at
the sample, respectively. The normalized spectrum of acetone (red) and benzene (blue) at each laser
power are shown on the top and the right of the two-dimensional classification plot in each sub panel.
The ellipses represent the 95% confidence interval.

Note that the CCD cannot collect spectra faster than 1 ms, which is why the laser power is chosen
to be reduced rather than reducing integration. However, the CD measurements can be performed
using the PMT detectors with integration times as short as ~3μs—this is a key advantage of CD-based
(OBCD or OBCD2) measurements as opposed to conventional full spectral CCD-based measurements.

In the assessment of CCD based-Raman in Panel B of Figure 2, each cloud consists 1000
independently measured spectra classified by post processing the spectra using least squares to extract
the lower dimension concentration information. The bottom of panel B shows the dimension reduced
linear discriminant analysis (LDA) histograms, which make it visually clear that the classification
error increases with the reduction in signal (Raman scattered photons). Note Panel B of Figure 2 also
includes the full spectra obtained in 1 ms of integration using the three laser powers. These spectra
clearly reveal that no spectral peaks are evident at laser powers of 3 mW and below. However, the LDA
histogram reveal that it is still possible to accurately discriminate the acetone and benzene spectra at a
power of 3 mW using such extremely noisy spectra.

Figure 3 shows the results obtained using OBCD filtering strategies for the same classification
problem. OBCD filters are shaded in gray in panel A of Figure 3. These shaded wavelengths are
the OB wavelengths, that were applied programmatically onto a DMD, then multiplexed onto one
PMT. Each cloud consists of 1000 independently measured intensities (photon counts) obtained using
two sequentially applied filters onto one PMT detector. OBCD2 filters are shaded in red and blue in
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panel A of Figure 4 All Raman photons reflected by the DMD are detected using two PMTs in OBCD2
strategy. The photons from both PMTs are used to transform counts to concentration space and are
shown in the classification plots in panel B of Figure 4 Panel B shows OBCD2 classification plots and
LDA histograms of acetone and benzene. Comparison of these LDA histogram results with those
in Figure 2 clearly reveals the greater discriminating power of CD-based as opposed to CCD-based
measurements, as well as the fact that OBCD2 outperforms OBCD.

Table 1 compares the resolution of LDA histograms of acetone and benzene produced by different
classification strategies and using different laser powers. The resolution (R) was calculated using
Equation (1) below. It is defined by the ratio of the absolute separation in the mean values (μ) of
the clouds obtained from the acetone and benzene histograms divided by the sum of the standard
deviation (σ) of each of the histograms. The higher the resolution, the greater the separation between
the histograms and the better the classification between the two chemicals.

R =
|μ1 − μ2|
σ1 + σ2

(1)

The best resolution is achieved for the highest laser power at the sample. This makes sense because
higher laser power generates more Raman photons yielding a higher signal-to-noise. The resolution
for the three classification methods are comparable at the higher laser power. However, for lower laser
powers, the resolution of classification of acetone and benzene is greatest for the OBCD2 classification,
followed by OBCD and CCD classifications.

Figure 5 compares the relative standard deviations (RSD, Equation (2)) in the classification
using CCD and optimal binary CD measurements. The higher the RSD the worse the classification.
The x-axis in Figure 5 represents the total photon counts, which were measured by adjusting both the
laser power and the integration times. The same Raman photons were sent to the CD spectrometer
as the CCD spectrometer by using a flip mirror to direct the light either towards the CCD or OBCD
detection systems.

RSD =
σ

μ
× 100 (2)

In the high intensity (photon count) limit, the RSD for all three methods were comparable.
However, below about 1000 photons the OBCD classification has lower RSD. Below about 2000 photons
the OBCD2 classification has lower RSD. Thus, although full hyperspectral CCD measurements are
always a bit better than OBCD and OBCD2 measurements in the high intensity limit, in the low
signal regime both OBCD and OBCD2 far outperform CCD-based measurements, and OBCD2 is
slightly better than OBCD. Additional measurements (not shown) performed using components that
are more highly overlapped Raman spectra have been found to have similar crossover points. Thus,
it appears to be generally true that OBCD/OBCD2 measurements outperform conventional full spectral
CCD-based measurements when the integrated number of photoelectrons in the spectra is below a few
thousand counts.

Table 1. The table compares the resolution of the linear discriminant analysis (LDA) histograms of
acetone and benzene produced by different classification strategies and using different laser powers.

Classification Strategy 30 mW, 1 ms 3 mW, 1 ms 1 mW, 1 ms

CCD 26 3 1
OBCD 22 7 4
OBCD2 32 13 6
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Figure 5. The figure compares the relative standard deviation in the classification using CCD, OBCD
and OBCD2. The instrument was set to laser powers 30, 3, and 1 mW and counts were measured at
nine integration times; 100, 80, 60,40, 10, 8, 6, 4, and 1 ms at each power.

4. Discussion

A key bottleneck to fast Raman analysis, including real-time monitoring and hyperspectral
imaging, is the time required to acquire multivariate hyperspectral data and post-processing the full
spectra. Multichannel detectors (e.g., CCD) are generally more expensive and less sensitive than
single channel detectors and also require cooling when long integration time and low dark counts
are needed. A CCD-based Raman spectrometer cannot operate fast enough to be applicable for
dynamic system measurements. A compressive spectrometer, which incorporates SLM technology and
a single channel detector, offers not only higher sensitivity and speed, but also a potentially lower-cost
alternative to CCD-based Raman imaging. Most importantly, compressive detection can be used to
obtain chemical imaging information in the very low signal limit at which conventional CCD-based
Raman spectroscopy is completely impossible.

Here we overviewed the latest advances in compressive Raman detection with focus on the
optimized binary compressive detection (OBCD) strategy. At the heart of OBCD strategy, is the widely
adopted reflective light modulator DMD used in standard computer projection systems (manufactured
by Texas Instruments), whose switch speed, contrast ratio, and broad spectral capability outperforms
analog-based SLMs. DMD is a semiconductor-based “light switch” array of hundreds of thousands
of individually switchable mirror pixels. The light switching speeds in the order of kHz at which
each mirror can modulate between “on” and “off” states enable CD measurements at kHz frequencies.
DMDs have faster modulation rates [38]. Analog-based SLMs, on the other hand, do not have the
speed and precision capability which make the DMD more attractive for use in Raman spectroscopy.
Also, they have slower pixel response and have to operate on linearly polarized light. DMDs maintain
higher throughput due to polarization insensitivity.

Rapid evaluation of chemical species in complex chemical matrices is of high importance in
a diverse array of applications. The projected advances brought about by DMD use in Raman
spectroscopy will make real-time measurement possible, for example real-time imaging systems for
medical and scientific communities, in-line quality inspections to evaluate chemical compositions, etc.
DMD-based Raman systems are shown to effectively suppress laser-induced fluorescence backgrounds,
which makes fast Raman mapping of samples with large background possible [8,9]. In a very recent
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publication by Scotte et al., the performance of DMD-based compressive Raman technology is assessed
on a biologically relevant sample mimicking microcalcification in breast cancer [15]. For this study,
four micromirrors on DMD were binned horizontally, giving a spectrometer with spectral resolution
of 40 cm−1 and the spatial resolution of 1.4 μm with 532 nm laser excitation. At these parameters,
compressive Raman spectroscopy is reported to be a very useful technique correlating the state of the
cancer to the chemical composition of microcalcification.

In addition, the studies in references [23,24] showed the potential of compressive Raman
detection as a process analytical technology (PAT) tool for pharma industry. Non-invasive, real-time
measurement systems for qualitative and quantitative analysis of raw, in-process, and finished
products in continuous pharmaceutical manufacturing settings are quite critical in the success of
PAT program initiated by US FDA in 2004 [39]. CD-Raman spectroscopy speeds up the collection
of Raman data, which makes it attractive as a PAT tool for real-time measurement applications in
continuous manufacturing.

CD-Raman systems can reproduce the functionality of conventional array-based Raman
spectroscopy to collect full spectral information by raster-scanning each array column. However,
it is important to emphasize that the full speed advantage is only realized when it is used in a
compressive detection mode with filter functions. Furthermore, compressive Raman detection is most
advantageous when it is used in low signal regime or high-speed conditions. A CCD cannot acquire
at high speeds, but a single channel detector such as PMT can. Full spectral measurements may be
preferred under high-signal conditions where dark and read-noise do not affect SNR of spectra or in
cases where the number of filter functions may be too many to be practical. With CCD measurements,
there is no loss of data due to information compression and full spectral data can be further investigated
in the future. However, in low photon budget OBCD is advantageous because multiplexing on a single
channel detector increases the SNR dramatically.
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Abstract: Modern hyperspectral imaging systems produce huge datasets potentially conveying
a great abundance of information; such a resource, however, poses many challenges in the analysis
and interpretation of these data. Deep learning approaches certainly offer a great variety of
opportunities for solving classical imaging tasks and also for approaching new stimulating problems
in the spatial–spectral domain. This is fundamental in the driving sector of Remote Sensing where
hyperspectral technology was born and has mostly developed, but it is perhaps even more true in
the multitude of current and evolving application sectors that involve these imaging technologies.
The present review develops on two fronts: on the one hand, it is aimed at domain professionals who
want to have an updated overview on how hyperspectral acquisition techniques can combine with
deep learning architectures to solve specific tasks in different application fields. On the other hand,
we want to target the machine learning and computer vision experts by giving them a picture of how
deep learning technologies are applied to hyperspectral data from a multidisciplinary perspective.
The presence of these two viewpoints and the inclusion of application fields other than Remote
Sensing are the original contributions of this review, which also highlights some potentialities and
critical issues related to the observed development trends.

Keywords: deep learning; hyperspectral imaging; neural networks; machine learning; image processing

1. Introduction

In the last few decades, hyperspectral imaging (HSI) has gained importance and a central role
in many fields of visual data analysis. The concept of spectroscopy combined with imaging was first
introduced in the late 1970s in the Remote Sensing (RS) field [1]. Since then HSI has found applications
in an increasing number of fields for a variety of specific tasks, and nowadays it is also largely used,
other than in RS [2], in biomedicine [3], food quality [4], agriculture [5,6] and cultural heritage [7],
among others [8].

Hyperspectral images are able to convey much more spectral information than RGB or other
multispectral data: each pixel is in fact a high-dimensional vector typically containing reflectance
measurements from hundreds of contiguous narrow band spectral channels (full width at half
maximum, FWHM between 2 and 20 nm) covering one or more relatively wide spectral intervals
(typically, but not exclusively, in the 400–2500 nm wavelength range) [9]. Current HSI acquisition
technologies are able to provide high spectral resolution while guaranteeing enough spatial resolution
and data throughput for advanced visual data analysis [10] in a variety of quality demanding
application contexts [8].

However, the great richness of HSI come with some data handling issues that, if not correctly
addressed, limits its exploitation. The main problem for the computational interpretation of
hyperspectral data is the well-known curse of dimensionality, related to the great number of channels
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and to the fact that data distribution becomes sparse and difficult to model as soon as the space
dimensionality increases. Nevertheless, the presence of data redundancy (due to the fine spectral
resolution and, in some cases, to fairly high spatial resolution) enables the adoption of dimensionality
reduction strategies. Doing this while preserving the rich information content is not a simple task, since
the spectral–spatial nature of the hyperspectral data is complex, as it can also be observed in terms of
inter- and intra-class variability of spectral signatures arising in non-trivial classification problems.

While these difficulties inevitably have repercussions on the performance of traditional machine
learning methods, which strongly depend on the quality of (hand-crafted) selected features, relevant
solutions to the above issues have been appearing in recent years with the spread of representation
learning approaches [11] and their implementation through Deep Learning (DL) architectures.

1.1. Hyperspectral Data Analysis Meets Deep Learning

Traditional learning-based approaches to HSI data interpretation rely on the extraction of
hand-crafted features on which to hinge a classifier. Starting early on with simple and interpretable
low-level features followed by a linear classifier, subsequently both the feature set and the classifiers
started becoming more complex. This is the case, for instance, of Scale-Invariant Feature Transform
(SIFT) [12], Histogram of Oriented Gradients (HOG) [13] or Local Binary Patterns [14], in conjunction
with kernel-based Support Vector Machines (SVM) [15], Random Forests [16] or statistical learning
methods [17]. It is interesting to look at the new trend of DL as something whose clues were
already embedded in the pathway of Computer Vision and Digital Signal Processing [11,18].
For example, Neural Networks (NN) can approximate what a traditional bag-of-local-features does
with convolutional filters [19] very well and SVM can be seen as a single layer NN with a hinge loss.
At the same time DL solutions cannot be seen as the ultimate solution for the fundamental questions
Computer Vision is called to answer [20].

The advantages introduced with DL solutions lie in the automatic and hierarchical learning
process from data itself (or spatial–spectral portions of it) which is able to build a model with
increasingly higher semantic layers until a representation suitable to the task at hand (e.g., classification,
regression, segmentation, detection, etc.) is reached. Despite these potentials, some attention is needed
when DL is applied to hyperspectral data. Most importantly, given the large amount of parameters
of DL models (typically of the order of tens of millions), a sufficiently large dataset is needed to
avoid overfitting. Hereinafter, large datasets are meant to be composed of hundreds of thousands
examples (where a typical example can consist of a spectral signature associated to a pixel or to
a small area or a HSI sub-volume). Conversely, a dataset composed of hundreds of examples can
be considered small. The very limited availability, where not complete lacking, of public (labeled)
datasets is the most evident shortcoming in the current "DL meets HSI" scenario. Due to the curse
of dimensionality, the effects of the shortage of labeled training data is amplified by the high data
dimensionality and may lead to effects spanning from the so-called Hughes phenomena (classification
performance sub-optimalities) to the models’ complete inability to generalize (severe overfitting).
Other pitfalls hidden behind limited availability of data for research purposes are limitations in terms
of breadth of the studied solutions that may be limited to the scope of the dataset itself. This also leads
to the necessity to work with unsupervised algorithms to partially overcome the lack of labeled data.
Data augmentation techniques (such as in [21,22]) in conjunction with the use of some specific DL
architectures (such as Convolutional Neural Networks and Autoencoders) also play an important role
in handling the above data-driven issues.

1.2. Purpose and Relations with Other Surveys

The purpose of this survey is to give an overview of the application of DL in the context of
hyperspectral data processing and to describe the state-of-the-art in this context. While this review is
not meant to gain further insight into technical aspects of specific application fields and instrumentation,
its objective is to be at the intersection of these two important trends: DL, driver of disruptive
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innovation, especially in computer vision and natural language processing, and exploitation of HSI
technologies and data analysis, which is expected to have a high growth even beyond the RS field.
This two trends meet up in a field where data is at the same time a challenge (for its dimensionality)
and a precious resource (for its informative wealth).

Highly informative reviews about DL methods in the RS field have been produced [23–25] where
there are several references or sections dedicated to HSI data. Conversely, recent work dedicated
to reviewing HSI data analysis comprises DL methods [10,26–29] but their scope is strictly limited
to the RS field. With the present work we want to provide an overview of the main principles and
advances related to the use of DL in HSI, not only in RS (from airborne or spaceborne platform),
but also in other relevant small-scale (from micro to macro ground based acquisitions) applications of
HSI data, where DL is already finding fertile terrain for its exploitation. The aim is to define a complete
framework to which even non-RS professionals can refer. With this aim in mind, this review has
been conceived (and schematized in Figure 1) to be accessible to different categories of readers while
maintaining a single and coherent logical flow.

DL HSI
RS (3.1)


Biomed (3.2)

Food&agri (3.3)

Data handling (4.1)

CNN (4.2)


Semi/Unsupervised (4.3)

Recurrent (4.5)

Discussion (5)

Applications (3)

Solutions (4)

Acquisition (2)Architectures (A1)

Figure 1. Graphical structure of the article.

In order to create the context for what follows, in Section 2 we provide a concise overview about
the main ways to acquire HSI datasets. This also gives the opportunity to evidence the possibility
of exploiting DL solutions in the creation of HSI data from undersampled spectral representations.
In Section 3, we adopt the point of view of “what” has been done until now by using DL approaches
on HSI data in different application fields. This part is meant to be more accessible to domain expert
readers. On the other hand, Machine learning and Computer Vision experts could be more interested
in Section 4, which aims to review “how” different DL architectures and their configurations are used
on HSI data for different analysis and interpretation tasks. With the final discussion in Section 5,
we also want to draw conclusive remarks aimed at pointing out some residual issues and trying to
envisage the future developments and challenges to address from the joint exploitation of HSI and
DL technologies. Finally, a basic introduction to DL architectures, in particular those mentioned in
this work, is provided in Appendix A in order to give additional context and references, especially to
domain expert readers.

2. HSI Acquisition Systems

In this section we give a concise review of the most diffused approaches that can be exploited for
the formation of HSI datasets. Interestingly, we also include a review of recent DL-based solutions
conceived for the production of HSI volumes starting from RGB or other sparse spectral representations.

2.1. HSI Formation Methods

Hyperspectral imaging (HSI) refers to imaging methods also able to acquire, other than 2D
spatial information xy, a densely sampled spectral information λ. The prefix hyper is used when
the acquired contiguous spectral bands are of the order of 102 to 103, as opposed to Multispectral

180



J. Imaging 2019, 5, 52

imaging (MSI) aimed at the acquisition of order of dozens of bands (with typical FWHM of 100–200 nm),
not necessarily contiguous/isometric. Thus, HSI makes it possible to finely capture absorption features,
facilitating the identification of the presence of specific substances; while with MSI (and even worse
with RGB imaging) physico-chemical absorption features are spread over the channel bandwidth and
become much less detectable. Available HSI devices are able to acquire the 3D xyλ volumes by means
of 2D sensors ij by converting in time, or arranging in space, the spectral dimension. There are various
ways to acquire HSI volumes in practice. Here we review the main and most widespread, each one
involving physical limitations requiring a balance between key parameters, such as spectral and spatial
resolution, acquisition time (or temporal resolution), device compactness, computational complexity
among the main ones.

Relative motion between the HSI sensor and the sample are exploited in whiskbroom (area raster
scan) and pushbroom (linear) scanners to respectively acquire the spectrum λ of a single point xiyj
(at time tij) or of a line xyj (at time tj) of the sample. This is typically done by means of a prism
or a diffraction grating able to disperse the incoming light. For whiskbroom mode, the temporal
resolution is highly penalized especially if one wants to obtain decent spatial resolution and this
prevents, in most cases, the practical use of point-wise spectrography for HSI production. In Figure 2a
a pushbroom acquisition is depicted which is far more interesting and widespread since high spatial
and spectral resolution can be obtained at the cost of the time needed for the linear scanning over
the sample. Commercial pushbroom HSI cameras are currently able to offer easy balancing between
frame-rate and spectral resolution (See, for example http://www.specim.fi/fx/ (last visit March 2019)).

S   S   λ
MR H/MR HR

(a)

S   S   λ
HR  HR L/MR

(b)

S S  λ
LR    LR

…

…

(c)

Mapping

S   S   λ
HR  HR  HR

(d)

Figure 2. Basic schemes of HSI formation methods. H/M/LR: High/Medium/low Resolution. S: space,
either x or y. λ: spectral dimension. (a) Pushbroom linear scanner. (b) Spectral selective acquisition.
(c) Spectrally resolved detector array (snapshot). (d) HSI from RGB images.

Selective spectral acquisition in time is at the basis of another acquisition mode that requires the
incoming images to be filtered to produce a xyλk image at time tk (see Figure 2b). The main trade-off
here is between spectral and temporal resolution, where spectral filtering can be done with mechanical
filter wheels (typically limited to MSI) or by means of acusto-optical or liquid-crystal tunable filters
(enabling HSI at a higher cost).

The possibility of obtaining a spectral image by just taking a snapshot is highly attractive for
time-constrained applications and this has driven a lot of research [30]. In these cases, physical
limitations due to the simultaneous use of spatial and spectral divisions, severely limit both resolutions.
Relatively economic systems have been commercialized recently by exploiting a technology able to
deposit filter mosaics directly onto the image acquisition chip (See, for example https://www.imec-
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int.com/en/hyperspectral-imaging (last visit March 2019)). Figure 2c depicts this idea of spectrally
resolved detector array, while we refer to [31] for a complete and up-to-date review.

An alternative way to rapidly obtain a HSI dataset from single shots is to derive a pixelwise
estimation of λ̂ by means of an inverse mapping starting from highly subsampled (snapshot) spectral
measures, such as RGB images taken by commercial digital cameras. This idea, pioneered in [32,33],
has attracted some research interest in the CV community especially toward systems able to simulate
the production of HSI images in a very cheap and effective way starting from single RGB images
(see Figure 2d). Since in many cases this involved the exploitation of Deep Learning solutions we
provide a review of this domain in the next subsection.

2.2. HSI from RGB

The possibility to use deep learning approaches to generate hyperspectral images just starting
from RGB images, or other sparse spectral representations, has been investigated recently [34,35]
and generated a certain interest, especially in the Computer Vision community. The intent is to
find alternative solutions to the cost issues and spatial resolution limitations of HSI acquisition
devices, by introducing learned inverse mappings from a highly subsampled space to a dense
spectral representation.

Different DL solutions (CNN [36,37], 3D CNN [38], Dense and Residual Networks [39], Dirichlet
networks [40], Generative Adversarial Networks [41]) have been proposed to improve the mapping
and the spectral reconstruction by leveraging spatial context. Following results in [42], which show
a non negligible dependency of the spectral reconstruction quality to the colour spectral sensitivity
(CSS) functions of the camera, some approaches include the CSS functions to either jointly learn
optimal CSS and spectral recovery maps [43], or to produce CSS estimates directly from the RGB
images in unknown settings, to better condition the spectral reconstruction [44], or even to learn an
optimal filter to construct an optimized multispectral camera for snapshot HSI [45]. A review of recent
initiatives in this field can be also found in the report of the first challenge on spectral reconstruction
from single RGB images (NITRE 2018 workshop [46]). In a recent work, exploiting properties of
computational snapshot multispectral cameras [47], Wang et al. [48] proposed a DL-based HSI volume
reconstruction from single 2D compressive images by jointly optimizing the coded aperture pattern
and the reconstruction method.

Of course, while these approaches produce interesting results for some applications, their validity
is actually limited to the visible spectrum. In fact, to our knowledge no DL-based MSI-to-HSI
spectral upsampling has been proposed in the NIR-SWIR spectrum (750–3000 nm) where, because of
technological reasons related to currently available detectors, both cost-based and spatial-resolution
conditions change and do not lead to the same convenience considerations.

3. HSI Applications Meet DL Solutions

In this section we present an overview of DL applications to HSI data subdivided into the main
working fields. There is still an imbalance between the number of RS related papers with respect to
other application fields. This is due to many factors, including the origins of the development of HSI
technologies, the dimension of the RS research community, and the existence of specialized venues.
Despite the greater variety and average maturity of works related to RS, in our multidisciplinary
review we try to give the greatest value even to exploratory works in other fields being aware that,
as it frequently happens, some works done in one domain may inspire other works in another sector.

3.1. Remote Sensing

The main purposes of HSI data analysis for RS focus on image processing (comprising
calibration and radiometric corrections), feature extraction, classification, target recognition and scene
understanding. All these steps are a breeding ground for the exploitation of DL approaches, especially
for the potential advantages they bring in terms of data management and feature extraction with
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a consequent performance boost. Past and future missions (for an updated overview see [49] (Ch. 1))
will feed application professionals with an increasing number of HSI data and big interpretation
challenges to address (starting from proper handling of the volume of generated data). Conversely,
most of the technological breakthroughs coming from representation learning studies and DL
architectures have been quite rapidly tested in RS applications, and RS-related HSI does not represent
an exception to this.

3.1.1. Classification

Many DL approaches in the literature include classification as a final goal, while land cover
classification is one of the main task in RS. The main classes are related to crops (corn, grass, soybean, ...)
or urban areas (asphalt, trees, bricks, ...) and, according to available labels in the benchmark datasets,
a combination of those classes is considered in the majority of RS-HSI classification works that exploit
DL methods.

DL classification architectures have feature extraction capability by design. Conversely, classical
techniques consider classification on top of a separate hand-crafted feature extraction and remains
critical for the representativeness and robustness of the selected features with respect to the task at hand.
HSI-DL classification and feature extraction solutions have been recently explored using very different
approaches in terms of feature extraction and exploitation. HSI data offer different opportunities
to approach the analysis using a pure spectral or a joint spectral–spatial approach. In this section,
few works are usually selected as representative of the main paradigms, while in Section 4 many
other works are considered according to technological and methodological criteria.Pixel classification
can be based on the exploitation of the spectral features thanks to their richness and abundance.
Representative studies adopting this approach are [50–53]. Another kind of classification is based
on spatial features, since RS data have a contiguity in space so that classification can exploit the
similarities and patterns of neighbouring pixels as in [54,55]. Moreover, jointly considering spectral
and spatial features has been proven to enhance the classification, as described for example in [56–59].
Moreover, the introduction of multiscale spatial features could improve the performance slightly more
as demonstrated in [60–62]. Yang et al. in [63] tested four DL models ranging from 2D-CNN up to a
3D recurrent CNN model, producing a near-perfect classification result.

Labeled and publicly available HSI datasets (for training and benchmarking) are very few and
also quite outdated. The ones considered in the majority of RS land cover classification works are
Salinas, Pavia, Indian Pines, and Kennedy Space Center (Information about these datasets can be
found at http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes (last
visit March 2019)). Moreover, this problem is exacerbated by the current practice in the remote sensing
community which carries out training and testing on the same image due to limited available datasets,
possibly introducing a bias in the evaluation. Therefore, when this practice is used, this makes fair
comparison difficult, since improved accuracy does not always necessarily mean a better approach.
As a side effect, this soon leads to accuracy performance that has already compressed and tending to
an asymptotic optimal value, and what can generate confusion is that this has happened with very
different DL approaches in terms, for example, of number of levels, weights and hyper-parameters
to learn. Therefore, even if benchmarking is always valuable, near-perfect results (even obtained
taking care of overfitting issues) should not be interpreted as if all land cover classification issues
can be considered solved. To reduce the bias deriving from indirect influence of training data on test
data when they are taken from the same image (even when random sampling is adopted), a spatially
constrained random sampling strategy has been proposed in [64], which can be used in case of limited
available labeled HSI volumes.

3.1.2. Segmentation

DL approaches have also been used in RS-HSI for segmentation purposes. Hypercube segmentation
can be exploited in several ways, and it is useful to better handle a subsequent image classification in
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several situations. In [65], Alam et al. presented a technique that operates on a superpixel partitioning
based on both spectral and spatial properties; in [66] the segmentation of the image was used as a
preliminary step to focus the subsequent classification on meaningful and well circumscribed regions.

3.1.3. Target Detection and Anomaly Detection

In RS target detection and recognition is receiving increasing interest. In [67,68], parallelized and
multiscale approaches were respectively proposed for vehicle detection from satellite images. In [69]
Zhang et al. described an oil tank detection system, while in [70] a building detection method
was presented.

Target detection could be treated in an unsupervised way as well. In this case, it can be seen,
depending on the objective, as anomaly detection and usually, it does not need prior information about
target objects. These approaches are especially useful, for instance, in the case of forest fire, oil spills
in the sea or more in general to detect targets with low probabilities or significant changes that have
occurred with respect to a previous acquisition in a certain image scene. Elective areas of application
for these methods include, for example, disaster monitoring and defense applications, as well as food
processing and various manufacturing related quality controls. Approaches to anomaly detection were
found in [71] taking advantage of stacked autoencoders and in [72] where Deep Belief Networks were
employed. In [72,73] two different approaches to perform real-time and classical anomaly detection
were proposed. Similar to them, in [74], a method exploiting change detection was described. In [75]
instead, a DL solution based on Deep Belief Networks and a wavelet texture extraction technology
outperformed many baseline models on two HSI datasets.

3.1.4. Data Enhancement: Denoising, Spatial Super-Resolution and Fusion

The physical limitations that characterize the HSI acquisition phase (see Section 2) can relate to
issues affecting the quality of the acquired data. This can be partially addressed with data enhancement
solutions aimed to increase the practical value or the possibility to exploit the data. A recent example
of DL-based solutions in this field is described for restoration and denoising in [76], where authors use
encoding-decoding architectures as intrinsic image priors to effectively acting as an HSI restoration
algorithm with no training needed. With this set-up, they demonstrated the superior capability of
2D priors compared to 3D-convolutional ones, outperforming single-image algorithms and obtaining
performance comparable to trained CNNs. A denoising technique powered by CNN is also presented
in [77] and related advancements [78,79], where improved noise removal has been obtained with
concurrent spectral profile preservation and reduced computational time.

Another popular enhancement task for HSI is (spatial) super-resolution. This is aimed to overcome
resolution limitations so that, starting from a lower resolved HSI data, high resolution hyperspectral
images are produced by exploiting high spatial resolution information coming from another imaging
source. This is similar to what happens with pan-sharpening [80] where panchromatic images are used
to enhance the spatial resolution of satellite MSI data (DL methods have also been applied in this
field [81,82]). In general HSI super-resolution comes from the exploitation of RGB or other high-spatial
low-spectral images at least in a training phase. To this end, in [83], a simple transfer-learning
approach was applied, while in [76,84,85] complete end-to-end architectures were presented. In [86]
an end-to-end approach based on 3D convolutions was suggested instead. Within the scope of this
work the term end-to-end refers to network architectures that take the HSI volume as input and
produce the target data without using separate pre- or post- processing stages. Other approaches are
composed of multiple stages in which CNNs are applied extensively as in [87,88] or, more interestingly,
without requiring auxiliary images, as in [89].

In certain applications the information provided by HSI alone is not sufficient or, in general,
the presence of different and complementary data sources can be exploited to improve results or to
enable the accomplishment of specific tasks. This is the case in multi-branch DL solutions conceived
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to enable data fusion, especially involving Lidar and HSI images as in [90–94]. Similarly, in [95] data
fusion was carried out on three different data sources, with the inclusion of RGB images as well.

3.2. Biomedical Applications

The synergy between HSI and DL can also be exploited in the biomedical sector. For example,
the possibility to extract and analyze spectral signatures, spatial maps and joined spatial–spectral
representations from specimens in a wide variety of specific application fields (e.g., clinical
microbiology, histopathology, dermatology, to name a few) allows the development of (supportive)
diagnostic tools in either invasive or non-invasive (or reduced invasiveness) settings. Likewise for RS,
where the cover-type classification task is the prominent application, classification operated on the
surface of different kinds of specimens, acquired through HSI systems at various scales (from micro to
macro), is gaining high interest [3]. Concurrently, the adoption of DL solutions is rapidly becoming the
first choice when approaching the majority of medical image analysis tasks [96]. However, despite the
high potential, the number of studies able to fully take advantage of both HSI and DL technologies is
still relatively low. This may be due to the fact that HSI acquisitions in many biomedical fields are still
experimental and unconventional, other than leading to a high amount of data that may be difficult to
handle. There are also cost factors and other experimental challenges in terms of infrastructure and
experimental setup that, despite the conceptual non-invasiveness of HSI acquisitions, still interfere
with a wider usage of HSI systems. However, the interest in HSI and modern DL-based handling
of the produced data can grow towards well integrated, safe and effective investigation procedures,
and the emerging studies we examine below are proof of this.

3.2.1. Tissue Imaging

The discrimination between normal and abnormal conditions was pursued in an exploratory
study [97] to assess the presence of corneal epithelium diseases by means of CNN. In [98,99] different
2D-CNN solutions were considered to classify head and neck cancer from surgical resections and
animal models, respectively. Other studies further investigated the possibility of delineating tumor
margins on excised tissues [58] and to demonstrate a richer "optical biopsy" classification of normal
tissue areas into sub-categories like epithelium, muscle, mucosa [100], also by means of deeper CNN
architectures and full spatial–spectral patches. In an interesting study, where a dual-mode endoscopic
probe was developed for both 3D reconstruction and hyperspectral acquisitions [101], a CNN-based
system was proposed to obtain super-resolved HSI data from dense RGB images and sparse HSI
snapshot acquisitions. The latter were obtained by exploiting linear unbundling of a circular optical
fiber bundle.

3.2.2. Histology

The task of cell classification is another conceptually similar discrimination that was explored
in [102,103] to recognize white blood cells in microscopy images, where different bands were acquired
by exploiting Liquid Crystal Tunable Filters (LCTFs). Conversely, in [104], an two-channel global-local
feature end-to-end architecture was proposed for blood cell segmentation and classification. Increased
spectral information at pixel level can also be exploited as a sample-preserving alternative to invasive
chemical procedures, such as in [105], where a virtual staining network was tested to possibly avoid
chemical staining of histopathological samples.

3.2.3. Digital Microbiology

In the field of clinical microbiology, multi-class classifications, based on CNN and softmax output,
were used for the recognition of bacteria species over VNIR (visible near-infrared, 400–1400 nm) HSI
acquisitions of bacteria culture plates where spectral signatures was extracted from single bacterial
colonies [106,107]. Interestingly, the exploitation of spectral signatures at a colony level can be seen
as an alternative to another form of chemical staining taking place when so called chromogenic
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culturing plates (filled with agar media enriched with species-selective pigmentation agents) are used
to introduce some colour differentiation among bacteria species. This is also significant in recent years
since clinical microbiology laboratories are interested by an epochal change in terms of automation and
digitization of the whole culturing processes [108]. As a side issue of possible massive usage of HSI
data one should consider data conservation needs, typically arising in biomedical domains, which can
lead to data handling (storage and transfer) problems especially for high spatial–spectral resolution HSI
volumes, each one typically occupying hundreds of MB in raw format. Therefore studying adequate
compression techniques and strategies capable of guaranteeing the preservation of the classification
and discrimination performance is of high interest, especially in contexts characterized by a high data
throughput, such as digital microbiology, where bacteria culturing is massively performed for routine
exams and a great volume of digital data is created on a daily basis [109].

3.2.4. Vibrational Spectroscopic Imaging

Despite our focus on HSI, it is worth observing that, especially in the biomedical field, vibrational
spectral imaging techniques [110,111] have also recently started to benefit from the possibility offered
by representation learning approaches to directly analyze raw spectra (avoiding pre-processing
and/or manual-tuning), even improving performance with respect to more classical machine learning
solutions [112]. In [113], automatic differentiation of normal and cancerous lung tissues was obtained
by a deep CNN model operating on coherent anti-Stokes Raman scattering (CARS) images [114]. In the
context of histological applications of Fourier Transform Infrared (FTIR) spectroscopic imaging [115],
CNN-based approaches have been introduced to leverage both spatial and spectral information for
the classification of cellular constituents [116] and to accomplish cellular-level digital staining to the
micrometer scale [117].

3.3. Food and Agriculture

HSI techniques are widely recognized for their added value in the agricultural field for a variety
of monitoring, modeling, quantification and analysis tasks [6], while in the food industry sector,
noninvasive and nondestructive food quality testing can be carried out on the production and
distribution chain by means of HSI-based inspection [118]. Examples of HSI-DL techniques were used
to assess the freshness of shrimps [119,120] and to prevent meat adulteration [121]. In agriculture
either pre- or post-harvesting controls can be conducted. In the first case nutrient inspection [122]
or early pathogenic diagnosis [123] were tested, while the possibility of post-harvesting controls
were investigated with the assessment of fruit ripening indicators [124], to help segregate damaged
fruits [125] and to detect the presence of plant diseases [126]. The main rationale of adopting DL-based
data analysis and interpretation combined with HSI is the need to fully exploit the richness of spectral
(frequently linked to chemometric principles in the NIR range) and spatial (usually related to the
complexity and non-uniformity of the samples) information, contrasting the complexity of hand-crafted
feature extraction by relying on representation learning and DL abstraction hierarchies. Additional
complexity can also derive from environmental variables that interfere in case of acquisition in the
open field, as in [123]. Discrimination among different (plant) species is another salient application
that was trialled in the case of cereal [127] or flower [128] varieties.

3.4. Other Applications

HSI-DL works in other application fields are still very rare. The authors of a recent review
of HSI applications [8] proposed a solution for ink analysis based on CNN for automated forgery
detection [129] in hyperspectral document analysis [130]. Interesting developments can be expected
within the scope of historical and artistic document analysis (manuscripts, paintings, archaeological
artifacts and sites), forensic analysis, anti-counterfeiting and authentication domains, surveillance and
homeland security, to name a few.
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4. Deep Learning Approaches to HSI

In recent years, a variety of DL approaches and architectures have been proposed to address
the HSI analysis task described in the previous section. We will mainly focus on Convolutional
Neural Networks (CNN) in different configurations (spectral, spatial, spectral–spatial) which have
primarily been employed with the aim of feature extraction and classification. In doing so, we will
introduce various methods, from classical networks to the integration with multiscale and fusion
strategies, as in [131]. Other significant architectures we consider are Autoencoders, Deep Belief
Networks, Generative Adversarial Networks and Recurrent Neural networks (all concisely revised in
Appendix A). These architectures are flexible and adaptable to different data analysis tasks and suit
HSI analysis as well. Dataset augmentation, post-processing solutions and an overview about new
directions in HSI data handling conclude this section.

4.1. Data Handling

Hyperspectral data can be treated according to different spatial–spectral viewpoints. Most of the
early DL methods only exploit data pixel-wise (1-dimensional approaches), working in the spectral
direction. This can be done by extracting spectral signatures from single pixels or from groups of them
either surrounding a central pixel or belonging to an object area. The latter approach generally needs
some a-priori knowledge and a pre-processing phase to detect the object of interest (by segmentation).
In [107] a spectral cosine distance transform is exploited to identify and weight pixels belonging to objects
of interest in a biomedical application.

Dimensionality reduction is used to tackle the spectral information redundancy. Of the different
dimensionality reduction techniques, PCA is still a classic way to proceed. Depending on the context,
other approaches can be used as well, such as ICA [132] and stacked autoencoders [66].

Otherwise, a 2-dimensional process can be applied. In this case a preliminary dimensionality
reduction is usually carried out as well. Spatial processing is exploited to extract spatial features from
the whole bands or on 2D patches.

Finally, HSI data can be handled as a whole with the aim of extracting both spatial and spectral
features (3-dimensional). Some of these approaches still use a pre-processing stage to condition
the data, but often the final goal is to work directly on the "raw" hypercubes. Since this can be
a computationally expensive and complex way to proceed, operating on 3D patches (i.e., sub-volumes)
is often a preferred method.

4.2. Convolutional Neural Networks

Nowadays CNNs are the most popular DL approach in computer vision, thanks to their ability to
include additional meaningful restriction in the learning process, like space-invariant features and
robustness to slight rotation and deformation. They can also work with a limited training dataset thanks
to new and powerful regularization techniques, which are one of the most important characteristics
behind their success. In the following subsections we first consider CNNs when they are mainly used
as feature extractors (Section 4.2.1). We then map the remaining CNN-based approaches according
to whether they work with only one (spectral or spatial) data characteristic (Section 4.2.2) or if they
jointly exploit the spectral–spatial nature of HSI data (Section 4.2.3). Where not otherwise specified,
classification objectives are related to pixel labeling according to the land cover classes defined in the
benchmark datasets (see Section 3.1.1). In Table 1 the HSI-DL papers reviewed in the current section
are subdivided into their application domain categories.
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Table 1. HSI-DL studies exploiting CNNs represented by target use (columns) and field—task (raws).

Feature Extractor Spectral or Spatial Spectral–spatial

RS–Classification [68,133–138] [50,54,61,139–141] [57,62,142–164]
RS–Data fusion [90–92,94,95]
RS–Detection [67]
RS–Image processing [55,79]
Biomedical [97] [102,103,107] [58,100,113]
Food-agriculture [123,127,128] [121,126]

4.2.1. Cnn as a Feature Extractor

CNNs have often been combined with classical ML methods, especially SVM. In this setup a CNN
is used as a way to dynamically learn a feature extractor from data. This approach has the advantage
of exploiting the ability to automatically retrieve a good feature set, from the CNN side, and the
robustness to overfitting even on small datasets, from the classical machine learning side. In [136]
Leng et al. described a hybrid CNN-SVM for hyperspectral land-cover classification, in which a target
pixel and the spectral information of its neighbours are organized into a spectral–spatial multi-feature
cube without extra modification of the CNN. In [97] a CNN was combined with SVM to perform
binary classification (injured vs healthy) on a small ophthalmic dataset. In [67,68], the introduction of
a multiscale approach has proved to be important for the extraction of robust features.

More complex architectures were proposed to jointly handle the space and spectral dimensions
in order to produce a more complete feature representation. For instance, in [138] a two-channel
deep CNN was used to produce spectral–spatial features from hyperspectral images for land cover
classification. Wei et al. [137] proposed a hierarchical framework called spectral–spatial Response that
jointly learns spectral and spatial features directly from the images.

In order to perform a robust feature extraction which squeezes all information within HSI data,
many methods proposed to optimize and join spatial and spectral features in a single setup. The fusion
may also involve features extracted from multiple sources and at different levels to make full use of
HSI and, for instance, Lidar images as in [91,92,94]. Similarly, in [90] Chen et al. proposed a method in
which spatial and spectral features are extracted through CNNs from HSI and Lidar images respectively,
and then are fused together by means of a fully connected network. Instead, Xu et al. [95] presented
a pixel-wise classification method based on a simple two-channel CNN and multi-source feature
extraction. In particular, a 2-D CNN is used to focus on spatial feature extraction and a 1-D CNN
is used for spectral features. Eventually, a cascade network is used to combine features at different
levels from different sources (HSI, Lidar, RGB). In [134] a two-stream CNN was trained with two
separate streams that process the PolSAR and hyperspectral data in parallel before fusing them in
a final convolutional layer for land cover classification. A recent effort in this field has been made
in [135], in which Jiao et al. proposed a framework for hyperspectral image classification that uses a
fully-convolutional network based on VGG-16 to predict spatial features starting from multiscale local
information and to fuse them with spectral features through a weighted method. Classification is then
carried out with a classical method (SVM). A similar approach was taken in [133] with the addition of
a new objective function that explicitly embeds a regularization term into SVM training.

4.2.2. Spectral or Spatial Approaches

Supervised 1D-CNN working at pixel level was proposed in different domains [50,123,128,139]
to directly exploit the information relative to each spectral signature. This usually leads to better
results with respect to classical ML approaches. For instance in [140], authors proposed an ad-hoc
model, carefully tuned to avoid overfitting, providing better results with respect to a comprehensive
set of shallow methods. However, especially in the RS domain, performance of pixel-wise methods
can be affected by noise [50]. To cope with noise, averaged spectra can be extracted by a group of
pixels belonging to an object of interest. This approach is particularly suitable in small-scale domains
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as in the case of segmented rice seeds [127]. In [107], a similar approach was used in a biomedical
scenario, where signatures were obtained by a cosine distance weighted average of pixels belonging to
segmented bacterial colonies.

Principal Component Analysis (PCA) is a technique highly exploited in RS to handle data
dimensionality and it is used to pre-process data in many DL pipelines as well. In [102], CNN
classification of pixel patches obtained after PCA reduction was proposed for cell classification.
PCA was used also in [103] to pre-process medical HSI data and improved performance was obtained
by the combination or modulation of CNN kernels with Gabor kernels in the preliminary network
layers, as suggested in [165].

A different approach for spatial feature extraction was presented by Zhao et al. in [54], and its
evolution in [61], in which a multiscale CNN was introduced to learn spatial features. With respect
to other methods, data are reorganized into a pyramidal structure containing spatial information at
multiple scales. In [55], a band selection method based on spatial features was proposed in order
to maximize the HSI classification under the small training set constraint. Similarly, in [141], band
selection was performed by means of a distance density measure. The produced spectral signature
was then fed to a CNN trained on full bands, exploiting the advantage of a rectified linear unit (only
activated for non-zero values), in order to test the band combinations without retraining the model.

4.2.3. Spectral–spatial Approaches

Working jointly with both spectral and spatial features generally leads to improved results.
In [163], Zhang et al. described a dual-stream CNN that exploits spectral features using a method
similar to [50], spatial features with the approach presented in [139], and a softmax regression
classifier to combine them. A similar dual-input approach exploiting a concatenation of spectral
and spatial features extracted with 1D-CNN and 3D-CNN respectively was proposed in [121], in a food
adulteration detection context. A three-dimensional CNN-based approach can be exploited to extract
combined features directly from the hyperspectral images to be used in classification, as done in [126]
for plant disease identification. In [157], this allowed to obtain important results in the RS domain,
also thanks to a combined L2 regularization to avoid overfitting and the use of sparse constraints.
A similar approach was also described in [144,147] where spectral–spatial feature extraction and
consequent classification were done directly on hypercubes and without any pre-processing. The work
in [146] presented a similar approach, but with a Siamese CNN [166].

In [58,100], Halicek et al. proposed an effective 3-D CNN based on AlexNet, trained with 3-D
patches and an extended version with an inception block (i.e., with filters of multiple sizes operating
at the same network level). While in [164], Gao et al. introduced a network with an alternate small
convolution and a feature reuse module able to improve the rate of the high-dimensional features
in the network, thus allowing a better extraction. In the last few years, RS-HSI research has been
particularly focused on this kind of architectures. Densenet-like architectures and VGG16 were also
exploited in [135,156], respectively, for classification. In [158], Liu et al. described a 3-D CNN trained
via deep few-shot learning [167] to learn a metric space that causes the samples of the same class to be
close to each other. This approach has proven to be effective in cases of few labeled data.

An interesting improvement to a CNN-based model was introduced by Paoletti et al. in [150],
where the redundant information present in hidden layers was used in order to exploit additional
connections between them in an efficient way, generally enhancing the learning process. One additional
3-D approach was proposed in [159] and recently in [160]. In the latter case a complex scheme was
proposed, in which virtual sample creation and transfer-learning were adopted in order to mitigate
data shortage during training.

Other examples of spatial–spectral approaches were found in [148,153], in which CNN pixel
classification methods that hierarchically construct high level features were presented. Furthermore,
in [145] a sparse representation method was employed to reduce the computational cost and to
increase the inter-class discrimination after the feature extraction from CNN while, in [155], this step
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was followed by a spectral feature reduction method. In [151] an architecture that extracts band specific
spectral–spatial features and performs land cover classification was presented. Yang et al. [152] used
a two stream spatial–spectral network to perform transfer-learning, by fine-tuning only final layers,
producing an improvement with respect to excluding the transfer-learning part. In [143] Lee et al. first
tried to use a very deep CNN, proposing a Contextual Deep CNN for classification, which is able to
jointly optimize the spectral and spatial information together.

A multiscale-based approach is presented in [154], in which multiscale object features, obtained
from an initial SLIC (simple linear iterative clustering) superpixel segmentation [168], were combined
with spectral features and used as input to a CNN for classification. Instead, in [57] authors proposed
a Diverse-region-based CNN (DR-CNN), which uses a joint representation from diverse regions in
the proposed CNN framework, simultaneously taking advantage of both spectral and spatial features.
Furthermore, they adopted a multiscale summation module designed to combine multiple scales and
different level features from unequal layers.

In [161], Ouyang et al. demonstrated that networks augmented by reconstruction pathways
can bring some advantages to feature extraction and classification. The reconstruction is established
by the decoding channel with reconstruction loss computation, which is then used jointly with the
classification loss as the loss function for network training. Finally, the high-level features from the
encoding and decoding channels are combined by a designed control gate. This is somewhat similar
to what can be achieved with the deconvolutional network used in [162] aimed at recovering images
starting from the intermediate features in order to improve the training.

The introduction of sensor-specific feature learning (a model is trained to learn the separability
of a sensor using a specific dataset) leads to architectures able to produce good feature sets for
classification purposes. In [149] Mei et al. created a sensor-specific five layer structure integrating both
spatial and spectral features. Fang et al. [142] proposed a new architecture that is capable of adaptively
selecting meaningful maps for classification produced by a multi-bias module that decouples input
patches into multiple response maps.

Recently in [62], 1D, 2D, and 3D multiscale approaches were compared with a new multiscale-
convolutional layer, demonstrating the superiority of the proposed 3D approach.

4.3. Autoencoders and Deep Belief Networks

Autoencoders (AEs) and Stacked Autoencoders (SAEs) have been widely used in hyperspectral
imagery for different tasks, mainly in RS but also in food-quality applications. This is due, as in Deep
Belief Networks (DBN), to the fact that they tackle the problem of small labeled datasets by attempting
to exploit an unsupervised or semi-supervised approach before the desired training, thus producing
a well initialized architecture that is suited to HSI tasks.

In [59] this approach was used and tested on RS-HSI for the first time by Lin et al. They
proposed a framework in which PCA on spectral components is combined with SAEs on the other two
dimensions to extract spectral–spatial features for classification. In line with this in [169] Chen et al.
presented different architectures where spectral, spatial (flattened to 1-D vector by using PCA) or jointly
driven classifications are obtained by a Logistic Regression (LR) layer operating on features computed
with SAEs. Similarly, in [170,171] a SAE was used, followed respectively by a SVM and a Multi Layer
Perceptron (MLP) for the classification. In the food quality domain, SAE-based approaches were used
in combination with regression methods to predict and quantify the presence of chemical indicators of
food freshness [119,120,122] or to assess edible quality attributes [124]. In [172], Ma et al. proposed
an effective method called Contextual Deep Learning (CDL) which can extract spectral–spatial features
directly from HSI. In order to exploit spectral feature extraction in [52] Karalas et al. used sparse AE
composed of a single hidden layer, as well as stacked in a greedy layer-wise fashion; in [66] the same
goal was reached using a segmented SAE by employing a dimensionality reduction.

An improvement to plain SAE was introduced by Ma et al. [173] in order to deal with parameter
instability when a small training set was used. In particular a SAE is modified not only to minimize
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the classification error as usual, but also to minimize the discrepancy within each class and maximize
the difference between different classes. In [174] an improved version with deep SAE was presented.
Zhang et al. [71] proposed a stacked autoencoder suitable for hyperspectral anomaly detection.

Multiscale approaches were also introduced to support AE. In [54] Zhao et al. proposed
a combination of AEs and LR. In particular they introduced a method that combines PCA to extract
spectral features, multiscale convolutional AEs to extract high-level features and LR to classify them.
In [175] a mixture between SAEs and CNN was used. In particular SAEs are exploited to generate
deep spectral features (1-D) which are then combined with spatial features extracted with a pyramid
pool-based CNN able to manage features at different scales. On top of it, a LR classifier is used.

Many works use stacked denoising AEs, which are SAEs trained on noisy input. Liu et al. [176]
used them to generate feature maps that are then classified trough a superpixel segmentation approach
and majority voting. In [53], Xing et al. presented a pre-trained network using stacked denoising AEs
joined with a logistic regression to perform supervised classification. Conversely, in [82] modified
sparse denoising AEs were used to train a mapping between low-resolution and high-resolution
image patches for pan-sharpening. Inspired by denoising AEs, an unsupervised DL framework,
namely Relit Spectral Angle-Stacked AE (RSA-SAE), was employed in [177] to map hyperspectral
image pixels to low-dimensional illumination invariant encodings. In Ball et al. [178], a complete
classification pipeline was presented, in which a denoising SAE is fed using an augmentation technique,
and a final post-processing provides robust image classification. Lan et al. [179] proposed a framework
integrating k-sparse denoising AEs and spectral–restricted spatial characteristics for hyperspectral
image classification.

Thanks to their dimensionality reduction capabilities DBN can be used to extract features. In [180]
DBN were combined with LR classification, similarly to how SAEs were exploited in [169]. In [56]
1-layer-DBN and 2-layer-DBN with spatial–spectral information were both used after a preliminary
PCA. Recently, an unsupervised DBN was presented in [72] by Ma et al. to develop a real-time
anomaly detection system able to detect interesting local objects. Instead, in [75], DBNs were fed with
a 3D discrete wavelet transformation on the input HSI data. Autoencoders also find applications in
non-linear spectral unmixing, for endmember extraction and abundance map estimation. In [181] a
solution that relies on the given data and does not require supervision is presented, while in [182]
an end-to-end learning method called EndNet is introduced based on an AE network exploiting
additional layers and a Spectral Angle Distance metric.

4.4. Generative Adversarial Networks

Generative Adversarial Networks (GANs) have gained a lot of interest for their ability to learn to
generate samples from data distribution using two competing neural networks, namely a generator
and a discriminator. In [183], authors used the discriminator network of a trained GAN to perform
classification. This method has proven to be effective when the number of training examples is small.
Similarly, [184–186] applied GANs in order to use their discriminator outputs for the final classification
phase. In [105] a conditional generative adversarial network (cGAN) was used to build a mapping
from PCA reduced HSI data and RGB images of chemically stained tissue samples.

4.5. Recurrent Neural Networks

Other DL approaches worth mentioning are those based on Recurrent Neural Networks (RNNs),
i.e., neural network architectures specifically designed to handle time dependencies. In this case,
hyperspectral data can be treated as if they were video sequences (with spectral bands as video
frames) and a RNN can be applied to model the dependencies between different spectral bands,
as in [187]. In [51], Mou et al. presented a supervised classification method which focuses on the
use of RNN and parametric rectified tanh as an activation function. In [146] Liu et al. introduced
a bidirectional-convolutional long short term memory (LSTM) network in which a convolution
operator across the spatial domain is incorporated into the network to extract the spatial feature,
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and a bidirectional recurrent connection is proposed to exploit the spectral information. Recently,
Shi et al. [188] presented a 3-D RNN able to address the problem of the mixed spectral pixel in order
to remove the noise in the classification stage.

4.6. Dataset Augmentation, Transfer-Learning, and Unsupervised Pre-Training

A way to address the lack of availability of labeled pixels is by using different data augmentation
strategies. Among them, random pixel-pair features (PPF) was introduced in [21], which exploits
the similarity of the pixels of the same class to augment the training data, where a deep CNN with
multi layers is then employed to learn these PPF. This approach was improved in [22], in which
Ran et al. proposed a spatial pixel-pair feature, SPFF, with a flexible multi-stream CNN-based
classification. In [189] Windrim et al. proposed a data augmentation strategy based on relighting
for training samples of the CNN which consists of simulating the spectral appearance of a region
under different illumination during training. While in [190], Li et al. made an extensive comparison
of common augmentation techniques and proposed a new one that helps the CNN to better learn
intra-class correspondences.

Another way to handle this data availability problem is to exploit big labeled datasets containing
similar data with a transfer-learning approach. The reasoning is that usually the first part of a DNN
learns generic filters that are reusable in many contexts. In [191], Windrim et al. used this approach
by creating a pre-trained CNN on a similar but more complete HSI dataset and then fine-tuning it on
the ground-truth dataset. The advantage is that the ground-truth dataset can be now considerably
smaller and the training procedure faster. Similarly a transfer-learning approach was employed in [73]
to build an anomaly detection system that works on the difference between pixel pairs or in [192] for
classification on both homogeneous and heterogeneous HSI data.

As mentioned above, the lack of training sets makes unsupervised and semi-supervised methods
increasingly interesting. For example, in [193], Ratle et al. proposed a semi-supervised neural network
framework for large scale HSI classification. In [194], Romero et al. presented a layer-wise unsupervised
pre-training for CNN, which leads to both performance gains and improved computational efficiency.
In [195], Maggiori et al. introduced an end-to-end framework for dense pixel-wise classification
with a new initialization method for the CNN. During initialization, a large amount of possibly
inaccurate reference data was used, then a refinement step on a small amount of accurately labeled
data was performed. In [196], Mou et al. proposed, for the first time in HSI, an end-to-end 2-D fully
Convolution-Deconvolution network for unsupervised spectral–spatial feature learning. It is composed
of a convolutional sub-network to reduce the dimensionality, and a deconvolutional sub-network to
reconstruct the input data.

Advanced training strategies that use semi-supervised schemes were also presented. These made
use of abundant unlabeled data, associating pseudo labels in order to work with a limited labeled
dataset as in [197], where a deep convolutional recurrent neural networks (CRNN) for hyperspectral
image classification was described. Instead, in [93], a ResNets architecture capable of learning from the
unlabeled data was presented. It makes use of the complementary cues of the spectral–spatial features
to produce a good HSI classification.

4.7. Post-Processing

Conditional Random Fields (CRF) have been used in several works thanks to their ability to
refine CNN results for different tasks. In [65], Alam et al. presented a technique that combines
CNN and CRF operating on a superpixel partitioning based on both spectral and spatial properties,
while in [198], CNNs were combined with Restricted CRF (CNN-RCRF) to perform high-resolution
classification, refining the superpixel image into a pixel-based result. Recently, in [199], a decision
method based on fuzzy membership rules applied to single-object CNN classification was adopted to
increase classification performance with a considerable gain in accuracy.
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4.8. New Directions

Finally, we consider other recent solutions that manage HSI data in a more sophisticated way or
that can be considered interesting directions deserving further investigation.

Training sample restrictions Specific DL models and training methods have been proposed to
improve accuracy when the number of training samples is not abundant. In [200], the inherent
spatial–spectral properties of HSI data were exploited to drive the construction of the network model.
The use of an edge preserving filter allows us to better explore the contextual structure in a resilient
way with respect to noise and small details. An extension of this approach has been proposed in [201]
with the introduction of a multi-grain and semi-supervised approach. A self-improving CNN was
described in [202] that is able to handle data dimensionality and the lack of training samples by
iteratively selecting the most informative bands. In [203] a domain adaptation method was used to
exploit the discriminative information of a source image to a neural network for HSI classification.

Active transfer learning is an iterative procedure of selecting the most informative examples
from a subset of unlabeled samples and can be used to train deep networks efficiently [204]
also with small training sets. Active learning was used in [205] in order to search for salient
samples and is able to exploit high-level feature correlations on both training and target domains.
Instead, Haut et al. [206] performed spectral–spatial classification using Active Learning coupled with
a Bayesan-CNN, where the idea was to add a prior distribution, allowing a probability or likelihood to
be defined on the output.

HSI enhancement As discussed in Section 3.1.4, many sources of degradation negatively impinge
on the overall quality of HSI. Thus, different solutions has been proposed in order to recover a
high-quality HSI both in the spectral and spatial dimensions. In the area of super-resolution, it is worth
mentioning the work by Yuan et al. [83] in which a transfer-learning procedure was applied, and the
method in [207] that combined both spectral and spatial constraints with a CNN model. Conversely,
in [84], a super-resolution network was employed to improve a classification module in an end-to-end
fashion. Remarkably, this approach only used a small amount of training data. Instead, Lin et al. [101]
proposed a new architecture called SSRNet (super-spectral-resolution network) that is able to estimate
dense hypercubes from standard endoscope RGB images and sparse hyperspectral signals from
a RGB to HSI base reconstruction and a sparse to dense HSI refinement. Similarly, an image recovery
CNN from spectrally undersampled projections was proposed in [35]. Another HSI super-resolution
method [208] took inspiration from deep laplacian pyramid networks (LPN). The spatial resolution is
enhanced by an LPN and then refined, taking into account the spectral characteristics between the low-
and high-resolution with a non-negative dictionary learning. In [79] Xie et al. presented a promising
quality enhancement method. It combines the theory of structure tensors with a deep convolutional
neural network (CNN) to solve an HSI quality enhancement problem.

Capsule Networks A new kind of approach in the computer vision field that is currently growing
is Capsule Neural Network. This kind of network has the aim of improving the CNN robustness to
geometric transformations using Capsules, a nested set of neural layers that provide the model with a
greater ability to generalize. Examples are found in [209–212]. In particular, in [210], Wang et al.
proposed a 2-D CapsNet for HSI classification by using both spatial and spectral information,
while in [212] Yin et al. introduced a CapsNet architecture with pretraining and initialization stages to
improve speed and convergence while avoiding overfitting.

Classification related tradeoffs In real systems, other requirements/limitations, e.g., in terms of
data occupancy or power consumption, can conflict with (classification) performance maximization.
The high data flow imposed by HSI in quality inspection or high throughput diagnostic procedures
is a challenge when mid- or long-term data conservation is a requirement: for example in [109]
authors evaluated the combined use of classification and lossy data compression. To this end,
after selecting a suitable wavelet-based compression technology, they tested coding strength-driven
operating points, looking for configurations likely able to prevent any classification performance
degradation. The result showed that it is possible to derive guidelines for using lossy compression to
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concurrently guarantee the preservation of the classification quality and the highest compression rate.
When computational complexity or power consumption restrictions do emerge, it becomes relevant to
evaluate classification performance trade-offs with respect to model implementations on low-power
consumption architectures [213]. Concerning computational speed, in [214], Paoletti et al. proposed an
implementation of 3-D CNN by integrating a mirroring strategy to effectively process the border areas
of the image.

5. Discussion and Future Perspectives

An imbalance that clearly emerged from this overview is the one between the number of HSI-DL
studies in the scope of RS with respect to the ones in other application fields. This is depicted in
more detail in Figure 3 where, on an annual basis, we subdivided HSI-DL works in this survey by
application areas, with RS related studies further split into sub-fields. In this count we did our best to
include literature works and their subject mapping. In case of large overlaps of content in multiple
works only the most representative works were included. The aforementioned disparity derives from
multiple factors: historical and technological reasons (hyperspectral imaging started and developed
first and foremost in the RS sector); the development of a wide scientific community; the existence of
many venues (journals and conferences) dedicated to RS research themes.

Figure 3. Number of HSI-DL articles per year. The last column comprises published and in-press
papers found up to 31 January 2019.

Almost all HSI-DL RS scientific papers, however, still refer to a limited amount of publicly
available datasets. While this has proved to be a powerful enabling factor and a stimulus for
relevant technological advancements and benchmarking, it can be associated to the risk of incremental
and self-referential scientific production as well. Therefore, despite an apparent abundance and
exponentially increasing trend (see Figure 3) in the number of RS-related studies (especially for land
cover classification), there is still considerable scope and need for the development of workable
supervised and unsupervised (or semi-supervised) HSI-DL solutions dedicated to classification studies
in specific sub-fields (like soil and geology, water resources and environmental studies, agriculture and
vegetation, urban and land development, etc.) as well as vast potential to work on other relevant tasks
like change, target, and anomaly detection, analysis of data coming from different sensors (data fusion),
spectral unmixing and physico-chemical parameter estimation. Moreover, segmentation is a path not
yet well traveled. Architectures like U-net or V-net (for a volumetric approach) can be a good choice to
start with, but its formulation in this scenario is yet to be investigated. There is a large variety of HSI
classification problems requiring a tailored design or an accurate assessment of existing DL solutions.
To comply with the specific application requirements, complexity and computational issues as well
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as hardware optimization must enter the selection of suitable approaches in addition to pursuing
satisfactory accuracy performance. Unfortunately, however, the limited amount of available data also
involves difficulties in comparing different methods that lead to similar results, and this again happens
for RS image classification studies on benchmark datasets, where near perfect results have been
obtained by several, more or less complex, architectures [27,29]. Additional generalization problems
arise for data characterized by a relatively high intra-class spectral–spatial variability, not only due to
intrinsic target variability but also to atmospheric and daylight conditions. To mitigate these issues,
specific data augmentation techniques deserve further investigation, where new generative networks
based on GANs can produce very good synthetic data and new and more powerful augmentation
techniques. Reinforcement learning could play an interesting role in the near feature in this field
as well.

With due proportion, the development in non-RS applications fields seems to be following
an important increasing trend as well. This could be the beginning of a successful era in the field of
HSI data analysis characterized by a virtuous circle of new industry and professional usages and the
development of new acquisition and lighting devices. The market penetration of these systems needs to
be backed up by equipment cost reductions, commitment to the generation of representative datasets,
the development of advanced DL-based data analysis solutions, and the exploitation of optimized
HW/SW computational platforms. This scenario could lead to favourable cost-benefit evaluations
and to a greater diffusion of HSI-DL technologies in industrial and professional fields. This could
eventually lead to a desirable expansion of dedicated research communities as well. For example,
since HSI analysis is still relatively new in many fields related to Computer Vision, there shall be great
potential in the future for further investigations in this area from different perspectives, such as 3D
modelling and reconstruction, object detection, motion and tracking, multi-sensor data analysis and
fusion, etc.

In the professional and industrial fields, datasets are acquired with a precise application purpose
and the parameters of the acquisition setup can normally be well controlled by favouring the design
of ad-hoc solutions. Although small-scale HSI scenarios can present a high variability, the collection
of data is sometimes facilitated as well as the commitment to find resources for data labeling or
metadata production by factors such as the race to product development or the mandatory nature
of the diagnostic processes. In case of over-abundant availability of data this can be exploited with
unsupervised or semi-supervised labeling methods.

Furthermore, for small-scale applications we can identify some peculiarities or aspects that can be
addressed differently from what happens in RS. Lighting, for instance, can be controlled and optimized:
we think that the exploitation of broadband LED illumination sources in VNIR (400–1400 nm) and
SWIR (1400–3000 nm) that are starting to appear on the market (https://www.metaphase-tech.com/
hyperspectral-illumination/ (last visit March 2019)) can lead to a further expansion of applications,
especially in the biomedical field or where power consumption and temperatures of the halogen lamps
can be a problem. This is an interesting development perspective since HSI with LEDs has been often
considered unfeasible.

Unlike RS, the problem of data transmission from satellites and the need for on-board compression
is not present for small-scale applications. Still, the huge amount of collected data requires compression
technologies as well, especially if there are medium- long-term data storage needs arising from
statistical needs (e.g., in agricultural studies) or rather from exigencies related to food-traceability or
medico-legal regulations. The relationship between compression effects and DL performance demands
awareness, experimental validations and methods to guarantee the sought data quality. One pilot
example in this direction can be considered the assessment of coding strength aimed at preserving
DL-based classification performance in a biomedical application, as proposed in [109].
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6. Conclusions

The richness of information contained in HSI data constitutes an indubitable appealing factor
especially in sectors that benefit from computer assisted interpretation of visible and invisible (to
the human eye) phenomena. However, industrial and professional HSI technologies are subject to
cost-benefit evaluations which lead to the need for enabling factors to activate their deployment
potentialities. In these years, machine learning technologies are rapidly extending their range and,
boosted by the advent of Deep Learning, they are revolutionizing the world of digital data analysis.
In this review, we tried to analyze what is currently happening with the meeting of HSI and DL
technologies by adopting a multidisciplinary perspective and making our work accessible to both
domain experts, machine learning scientists, and practitioners.

Although mitigated by the fact that pixel- and spectral-based analysis tasks can count on an order
of thousands training samples for HSI volume, one of the main issues that emerged as an obstacle
for quality scientific production is the limited number of publicly available datasets. More in general,
the number and quality of acquired data in the various disciplines remains a central issue for the
development of sound, effective and broad scope HSI-DL solutions. Rather, the exploration of different
DL approaches for the RS field can stimulate efforts and investments in the provision of quality HSI
datasets. Moreover, for other application fields where the penetration of HSI technologies is still way
behind, the possibility to approach complex visual tasks by means of DL solutions can be seen as an
enabling factor and a possible driver for a new era in the deployment of HSI technologies for a wide
spectrum of small-scale applications in industry, biology and medicine, cultural heritage and other
professional fields.
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Appendix A. DL Methods for HSI in Brief

Here, we give a brief introduction to the deep learning world to provide context and references to
the core parts of this review. For a more extensive introduction to deep neural networks the reader can
refer to [215], while the book [216] is a more comprehensive reference. In a RS perspective, valuable
overviews of DL approaches can be found in [23–25].

DL is a branch of representational learning in which models are composed of multiple layers to
learn representations from data in an end-to-end fashion. These methods have had a terrific impact to
date and are expected to continue revolutionizing the way complex data analysis tasks are approached
in domains such as natural language processing, speech recognition, visual object detection and
recognition and many others. Together with the classical supervised and unsupervised learning
approaches other paradigms have become relevant in the context of DL, where large amounts of
data (order of hundreds of thousands) are supposed to be necessary to carry out correct learning
of the high number of parameters characterizing a Deep model and to avoid overfitting. In fact,
both sufficiently exhaustive data acquisition and labeling (supervision) can be costly or even unfeasible
in some contexts. Different data augmentation strategies and techniques can be adopted and are
common practice in many cases. Moreover, exploiting the fact that Deep architectures usually build a
hierarchical bottom-up representation of the information, in many cases typically the lowest portion of
a model trained on somehow related data in a source domain can be transferred to the target domain
model, and so called transfer-learning approaches only require a residual estimation of a reduced
portion of the parameters or allow a significant reduction of the learning epochs. Other ways to exploit
knowledge, this time from the same target domain, belong to the wide family of semi-supervised
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learning methods. They allow to exploit the typical imbalanced presence of unlabeled data due to
the difficulties, also characterizing many HSI domains, to produce large enough and high-quality
labelled datasets. Semi-supervised learning can be operated for example by training a classifier
with an additional penalty term coming from an Autoencoder (AE) or other unsupervised data
embedding methods [217].

Appendix A.1. Fully-Connected

When we refer to fully-connected, we are dealing with networks (or layers of a network) in which
each node of a layer is connected to all the nodes in the following one without almost any constraints
(see Figure A1a). Each neuron acts as a summation node with respect to its inputs. Eventually,
a non-linear activation function is applied to the output. Fully-connected is one of the simplest layers
and usually is used in the last part of the network for the final classification or regression.

Feature extraction Classification

Input

a. b.

c.

Output cellHidden cell Convolution Recurrent cell

Figure A1. Network architectures. (a) Fully-connected; (b) Convolutional neural network; (c) Recurrent
neural network.

Appendix A.2. Convolutional Neural Networks

Convolutional neural networks (CNNs) [218] are particular types of deep feed-forward networks
that are simpler to train, and more effective, on sampled data sources (Figure A1b). This is due
to the constraints introduced in the hypothesis space that force a structure and reduce the number
of parameters. The enforced structure creates features that are spatially invariant and robust to
rotation and deformations (up to a certain amount). This is made possible thanks to local connections,
shared weights and the use of pooling layers as well. CNNs are designed to process matrices or tensors
such as colour images. Many data sources are in the form of multiple arrays: from 1D for sequences
and signals, like audio or spectral signatures; 2D for images; and 3D for video or volumetric images.

Notable architectures are: AlexNet [219], which won the ImageNet competition in 2012,
outperforming its competitor; GoogleLeNet [220], based on inception blocks which create sub-networks
in the main network and increase either depth and width with respect to AlexNet; VGG [221] with its
very small (3 × 3) and widely used convolution filter, and a simple and repetitive structure growing in
depth; ResNet [222] that builds a very deep structure in which there are skip connections to let the
information flow jump over a set or layers, solving the problem of vanishing gradients (i.e., the inability
to propagate the error function backwards in very deep networks). This is because it has become
too small after a certain point, and thus producing a potential stop of network training). If, instead,
skip connections interconnect every following block, the architecture is called DenseNet [223]. Recently,
many other networks focusing on low computational devices appear, such as MobileNet [224] and
SqueezeNet [225], to name a few.
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Appendix A.3. Recurrent Neural Networks

Recurrent neural networks (RNNs) belong to an important branch of the DL family and are mainly
designed to handle sequential data (see Figure A1c). A plain RNN is indeed not so powerful and
seldom used in works nowadays. Rather, very high performance can be achieved with recurrent hidden
units like LSTM (Long Short Term Memory) [226] or GRU (Gate Recurrent Unit) [227]. These units are
composed of different internal data paths that can store and release information when needed and are
capable of alleviating the vanishing gradient problem.

Appendix A.4. Autoencoders

An autoencoder (AE) [228] is composed of: one visible layer of inputs, one hidden layer of units,
one reconstruction layer of units, and an activation function (Figure A2a). During training, it first
projects the input to the hidden layer and produces the latent vector. The network corresponding to
this step is called the encoder. Then, the output of the encoder is mapped by a decoder to an output
layer that has the same size as the input layer. The power of AEs lies in this form of training that is
unsupervised and forces a meaningful compressed representation in its core. During reconstruction,
AE only uses the information in hidden layer activity, which is encoded as features from the input.
Stacking trained encoders (SAE, see Figure A3) is a way to minimize information loss while preserving
abstract semantic information and improving the final model capacity.

=
=
=
=
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P
P

P
P

=
=
=
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= PEqual to input Probabilistic hidden cell

a. b.

Figure A2. Network architectures. (a) Autoencoders; (b) Deep belief networks.
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=
=

Encoder 1 Decoder 1

Encoder 2 Decoder 2

Figure A3. Network architecture of a Stacked Autoencoder

Appendix A.5. Deep Belief Networks

Deep Belief Networks (DBN) can be viewed as a composition of simple, unsupervised networks
such as Restricted Boltzmann machines (RBM) [229] or autoencoders [230], in which each sub-network
hidden layer serves as the visible layer for the next one (see Figure A2b). If necessary, a feed-forward
network is appended for the fine-tune phase.

Appendix A.6. Generative Adversarial Networks

Generative Adversarial Networks (GANs) have recently emerged as a promising approach to
constructing and training generative models. In this framework there are two adversarial neural
networks that are jointly trained: a generator G and a discriminator D (see Figure A4). The generator is
supposed to learn to generate the samples of a data distribution given random inputs, while D tries
to discriminate between real data and artificially generated ones. The two networks are trained in a
two-player minmax game scheme until the generated data are not distinguishable from the real ones.
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After a proper training procedure, D can be used as a well trained feature extractor, and applied to
a specific problem with the addition of a final block that exploits the needed output (for instance a
fully connected layer for classification).

P

Generator Discriminator

G G

G G

G G

G G
G G

G G

Figure A4. Architecture of Generative adversarial networks.
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