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Symmetry in Quantum Optics Models

Lucas Lamata

Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, Apartado 1065,
41080 Sevilla, Spain; lucas.lamata@gmail.com

Received: 16 October 2019; Accepted: 17 October 2019; Published: 18 October 2019

This editorial introduces the successful invited submissions [1–5] to a Special Issue of Symmetry
on the subject area of “Symmetry in Quantum Optics Models”.

Quantum optics techniques can be regarded as the physical background of quantum technologies.
These techniques are most often enhanced by symmetry considerations, which can simplify calculations
as well as offer new insight into the models.

This Special Issue includes the novel techniques and tools for Quantum Optics Models and
Symmetry, such as:

• Quasiprobability distribution functions employing fractional Fourier transforms [1].
• Ultrastrong coupling regime combined with parity symmetry for the nonclassical state of light

generation [2].
• Employment of quantum optics models as the spin-boson system for simulating another quantum

optics platform, as non-Markovian multi-photon Jaynes–Cummings models [3].
• Floquet topological techniques for analyzing optically driven semiconductors [4].
• Symmetries of the quantum Rabi model for its analysis in all possible parameter regimes [5].

Response to our call had the following statistics:

• Submissions (5);
• Publications (5);
• Article types: Research Article (5).

Authors’ geographical distribution (published papers) is:

• China (2)
• Spain (2)
• Germany (2)
• Mexico (1)
• UK (1)
• Chile (1)
• USA (1)

Published submissions are related to the aforementioned techniques and tools, and represent a
selection of current topics in quantum optics models and their symmetries.

We found the edition and selections of papers for this book very inspiring and rewarding. We also
thank the editorial staff and reviewers for their efforts and help during the process.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: The quantum Rabi model is the simplest and most important theoretical description of
light–matter interaction for all experimentally accessible coupling regimes. It can be solved exactly
and is even integrable due to a discrete symmetry, the Z2 or parity symmetry. All qualitative properties
of its spectrum, especially the differences to the Jaynes–Cummings model, which possesses a larger,
continuous symmetry, can be understood in terms of the so-called “G-functions” whose zeroes yield the
exact eigenvalues of the Rabi Hamiltonian. The special type of integrability appearing in systems with
discrete degrees of freedom is responsible for the absence of Poissonian level statistics in the spectrum
while its well-known “Juddian” solutions are a natural consequence of the structure of the G-functions.
The poles of these functions are known in closed form, which allows drawing conclusions about the
global spectrum.

Keywords: light–matter interaction; integrable systems; global spectrum

1. Introduction

The spectacular success of quantum optics [1] is based to a considerable extent on the fact that the
light quanta do not interact among themselves. On the other hand, the interaction of quantized radiation
with matter is quite complicated because even the simplest model, an atomic two-level system coupled to a
single radiation mode via a dipole term, does not conserve the excitation number. This model, the quantum
Rabi model (QRM) [2–4], is of central importance as basically all experimental observations in the field can
be traced to a variant of it [5]. The QRM Hamiltonian reads

HR = ωa†a + gσx(a + a†) + Δσz. (1)

Here, a† and a are the creation and annihilation operators of the bosonic mode and energy is measured
in units of frequency (h̄ = 1). 2Δ denotes the energy splitting of the two-level system, which is coupled
linearly to the electric field (∼ (a + a†)) with interaction strength g. The QRM has just two degrees of
freedom, one continuous (the radiation mode) and one discrete (the two-level system), described by Pauli
matrices σz, σx. Even better known than the QRM is a famous approximation to it, the Jaynes–Cummings
model (JCM),

HJC = ωa†a + g(σ+a + σ−a†) + Δσz, (2)

with σ± = (σx ± iσy)/2. In this model, the “counter-rotating terms” g(σ+a† + σ−a) are missing, so that
it conserves the excitation number Ĉ = a†a + σ+σ− and can be solved analytically in closed form [4].
The QRM, including these terms, was long considered to be unsolvable by analytical means and also
non-integrable [6], until its exact solution was discovered [7].

The JCM provides very good agreement with experiments in atom optics where the dipole coupling
strength is many orders of magnitude smaller than the mode frequency. Its characteristic feature manifests

Symmetry 2019, 11, 1259; doi:10.3390/sym11101259 www.mdpi.com/journal/symmetry

3



Symmetry 2019, 11, 1259

itself for example in the vacuum Rabi splitting, observable if the coupling is larger than the cavity decay
rates. This was achieved in an experiment from 1992 with a ratio g/ω = 10−8 between dipole coupling
and mode frequency [8]. Since then, there has been tremendous progress in the experimental techniques
to enhance the coupling strength between light and matter within a wide range of different platforms,
ranging from cavity quantum electrodynamics, using optical and microwave frequencies, to circuit QED,
which implements the radiation mode in a transmission line, while the coupled two-level system is
realized in various ways, e.g. via superconducting qubits or quantum dots, as excitonic or intersubband
polaritons [9,10]. Within the last 27 years, the ratio g/ω has been raised by eight orders of magnitude,
finally reaching the so-called deep strong coupling regime (DSC) [11], g ∼ ω within a circuit QED
framework [12].

For these coupling strengths, the JCM is no longer applicable and gives even qualitatively wrong
results. Already for 0.1 � g/ω � 0.3, called the perturbative ultra-strong coupling regime (pUSC) [10],
there are measurable deviations [13], although these can still be accounted for by the Bloch–Siegert
Hamiltonian [14,15], a solvable extension of the JCM. For g/ω > 0.3, one enters the non-perturbative
ultra-strong coupling regime (USC), where also the Bloch–Siegert Hamiltonian fails.

Part of the interest in the USC and DSC regimes originates in the natural identification of the two-level
system with a qubit, the building block of quantum information theory [16]. The strong coupling between
the qubit and light field allows for novel technologies such as nondestructive readout [17] and remote
entanglement [18] besides the possibility to implement quantum error correcting codes [19]. However,
the strong coupling regimes are also fascinating from the viewpoint of fundamental research, because
the light–matter system behaves in unexpected and sometimes counter-intuitive ways: the vacuum state
contains virtual photons [20] and in the DSC the Purcell effect disappears [21] while the standard collapse
and revival dynamics of the two-level system becomes dominated by the mode frequency [11].

2. The Rotating-Wave Approximation and Its Symmetry

These developments have renewed the interest in the analytical understanding of the QRM beyond a
brute-force diagonalization of the Hamiltonian in a truncated, finite-dimensional Hilbert space. To this end,
several improvements of the rotating-wave approximation underlying the JCM have been proposed [22–24]
which should be reliable even for strong coupling. However, all methods, while being quantitatively
in reasonable agreement with the numerical diagonalization, deviate qualitatively from it by predicting
degeneracies absent in the true spectrum of the QRM.

The JCM reproduces the exact spectrum with great accuracy almost up to the first level crossings
(counted from the left of the spectral graph in Figure 1), which is a true crossing, actually the first Juddian
solution [25]. However, the next crossings of the JCM which appear for g � 0.5 (marked with small
green circles in Figure 1) are avoided in the QRM. The reason is the much larger symmetry of the JCM
compared to the QRM. Because [HJC, Ĉ] = 0, each eigenstate of the JCM is also an eigenstate of Ĉ and
labeled by corresponding eigenvalue λĈ = 0, 1, 2, . . . of Ĉ. The eigenspace of Ĉ with fixed λĈ = n for
n ≥ 1 is two-dimensional while the ground state of the JCM (for sufficiently small g) is the unique state
|vac〉 = |0〉 ⊗ |↓〉 with λĈ = 0. In other words, the Hilbert space H = L2[R]⊗C2 decays into a direct sum
of dynamically invariant subspaces

H = |vac〉 ⊕
∞

∑
n=1

Hn, (3)

where each Hn is two-dimensional.
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Figure 1. (Left) The QRM spectrum for ω = 1, Δ = 0.7 as function of the coupling constant g. Instead of
the energy, the spectral parameter x = E + g2 is displayed on the ordinate. States with negative (positive)
parity are displayed in blue (red). Within the same parity subspace all level crossings are avoided (green
circles). (Right) The Jaynes–Cummings-spectrum for the same parameters. In this case, corresponding
states do cross due to the enhanced symmetry of the JCM (small green circles).

Thus, the eigenstates with λĈ > 0 can be labeled by two quantum numbers, the first gives the
eigenvalue of Ĉ, and the second takes just two values 0 and 1, corresponding to the two states in Hn,
forming the so-called Jaynes–Cummings doublets. As the infinitely many subspaces are dynamically
disconnected for all values of g, the energies En,j and Em,j′ may become degenerate whenever n 
= m.
The two crossings selected in Figure 1 are degeneracies between the JC-states |1, 1〉 and |3, 0〉 and between
|2, 1〉 and |4, 0〉, respectively. In contrast to these degeneracies that are lifted by the counter-rotating terms,
the crossings between the JC-states |1, 1〉 and |2, 0〉 are also present in the spectral graph of the QRM.

Because the algebra A = 〈11, Ĉ, Ĉ2, . . .〉 generated by Ĉ is infinite dimensional, the operators

Û(φ) = exp(iφĈ) =
∞

∑
n=0

(iφĈ)n

n!
= eiφa†a ⊗

(
eiφ 0
0 1

)
(4)

are linearly independent for all 0 ≤ φ < 2π. However, because the spectrum of a†a is integer-valued,
we have Û(2π) = 11 and the Û(φ) form an infinite dimensional representation of the continuous compact
group U(1) in H with composition law Û(φ1)Û(φ2) = Û(φ1 + φ2). We have for any φ the relation
U†(φ)HJCU(φ) = HJC, as

U†(φ)aU(φ) = eiφa, U†(φ)a†U(φ) = e−iφa†, U†(φ)σ±U(φ) = e∓iφσ±, 0 ≤ φ < 2π. (5)

This means that the “rotating” interaction term a†σ− + aσ+ is invariant for the whole group but the
“counter-rotating” term a†σ+ + aσ− is invariant only for φ = π. Indeed, the set {11, Û(π)} forms a discrete
subgroup of U(1). Because

Û(π) = −(−1)ia†a ⊗ σz = −P̂, with P̂2 = 11, (6)

it is the group with two elements {11, P̂} = Z/2Z ≡ Z2 (the sign of the “parity” operator P̂ is chosen here
to conform with the convention in [7]). The QRM is invariant under the finite group Z2, P̂HRP̂ = HR.

The character group of U(1) is Z, therefore each one-dimensional irreducible representation of U(1)
is labeled by an integer n ∈ Z. In the representation in Equation (4), the space Hn spanned by the vectors
|n− 1〉 ⊗ |↑〉 and |n〉 ⊗ |↓〉 for n ≥ 1 is invariant and Û(φ) acts on it as einφ112. Therefore, the decomposition

5
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in Equation (3) corresponds to the irreducible representations of U(1) in H for integers n ≥ 0 and the
spectral problem for the JCM reduces to the diagonalization of 2 × 2-matrices in the spaces Hn [4]. If one
parameter of the model is varied, say the coupling g, the spaces Hn do not change, only the eigenvectors
|n, j〉 ∈ Hn, j = 0, 1 and the eigenenergies En,j. The spectral graph as function of g consists of infinitely
many ladders with two rungs, intersecting in the E/g-plane as shown for 2Δ = ω in Figure 2.

Figure 2. The JCM spectrum at resonance 2Δ = ω = 1 as a function of g. Each color corresponds to an
invariant subspace Hn. The state |vac〉 = |0〉 ⊗ |↓〉 spans the (trivial) irreducible representation of U(1)
with character 0.

We find that the continuous symmetry of the JCM allows to classify the eigenstates according to
infinitely many irreducible representations, thereby effectively eliminating the continuous (bosonic) degree
of freedom, the radiation mode. The remaining discrete degree of freedom (the two-level system) has
a two-dimensional Hilbert space and, after application of the U(1)-symmetry, the Hamiltonian acts
non-trivially only in the two-dimensional Hn. The JCM possesses an additional conserved quantity, Ĉ,
besides the Hamiltonian HJC. As it has two degrees of freedom, it is therefore integrable according to the
classical criterion by Liouville [26], because the number of phase-space functions (operators) in involution
equals the number of degrees of freedom.

What about the QRM? We have [P̂, HR] = 0, but the associated symmetry is discrete and has only
two irreducible representations, corresponding to the eigenvalues λP̂ = ±1 of P̂. It follows that the Hilbert
space decomposes into the direct sum

H = H+ ⊕H−. (7)

Both H± are infinite dimensional and the spectral problem appears as complicated as before. However,
in each parity subspace (usually called parity chain [11]), the discrete degree of freedom has been eliminated
and only the continuous degree of freedom remains. According to the standard reasoning, a conservative
system with only one degree of freedom is integrable. From this point of view, advocated in [7], the QRM
is integrable because the discrete Z2-symmetry has eliminated the discrete degree of freedom. This is only
possible because the number of irreducible representations of Z2 matches precisely the dimension of the
Hilbert space C2 of the two-level system. Other models with one continuous and one discrete degree
of freedom such as the Dicke models with Hilbert space L2[R]⊗Cn are not integrable according to this
criterion, because their Z2-symmetry is not sufficient to reduce the model to a single continuous degree
of freedom if n > 2 [27]. On the other hand, the continuous symmetry introduced by the rotating-wave
approximation is so strong that it renders the Dicke model integrable for all n [28].

6
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The criterion on quantum integrability proposed in [7] is especially suited to systems with a single
continuous and several discrete degrees of freedom and states then that a system is quantum integrable
if each eigenstate can be labeled uniquely by a set of quantum numbers |ψ〉 = |n; m1, m2, . . .〉 where
0 ≤ n < ∞ corresponds to the continuous degree of freedom and the number of different tuples
{m1, m2, . . .} equals the dimension d of the Hilbert space belonging to the discrete degrees of freedom.
This unique labeling allows then for degeneracies between states belonging to different tuples {m1, m2, . . .},
which characterize the different decoupled subspaces H{m1,m2,...}. Within the space H{m1,m2,...}, which is
infinite dimensional and isomorphic to L2[R], the states are labeled with the single number n and level
crossings are usually avoided between states |n; m1, m2, . . .〉 and |n′; m1, m2, . . .〉 if no continuous symmetry
is present. This happens in the QRM, where the spectral graph is composed of two ladders each with
infinitely many rungs (see Figure 1). The situation is in some sense dual to the JCM, where we have
infinitely many intersecting ladders with two rungs. The stronger symmetry of the JCM renders it therefore
superintegrable [29].

With a stronger symmetry, more degeneracies are to be expected. Especially going from a discrete to a
continuous symmetry by applying the rotating-wave approximation inevitably introduces unphysical level
crossings in the spectral graph. This applies especially to those methods which apply the rotating-wave
approximation on top of unitary transformations such as the GRWA [22–24]. In Figure 3, it is seen that the
spectral graph provided by the GRWA indeed reproduces correctly all level crossings of the QRM in the
E/g-plane but exhibits unphysical level crossings in the E/Δ-plane.

Figure 3. (Left) The QRM spectrum (blue) and the approximation by the GRWA (green) as function of g
for Δ = 0.7. The GRWA reproduces the qualitative properties of the spectral graph also for large coupling.
(Right) The QRM and GRWA spectra as function of Δ for g = 0.25. The blue (red) level lines correspond to
negative (positive) parity in the QRM. In this case, the GRWA shows level crossings (small black circles)
where the QRM has none (black circles) because there are no degeneracies for fixed parity. All apparent
degeneracies of the QRM within the same parity chain are narrow avoided crossings.

3. Integrability of Systems with Less Than Two Continuous Degrees of Freedom

The notion of integrability in quantum systems is still controversial [30] and based mainly either on
the Bethe ansatz [31] or on the statistical criterion by Berry and Tabor [32]. While it was demonstrated by
Amico et al. [6] and Batchelor and Zhou [33] that the QRM is not amenable to the Bethe ansatz, its level
statistics deviate markedly from the Poissonian form for the average distance ΔE = En+1 − En between
energy levels. According to Berry and Tabor [32], the distribution of ΔE in a quantum integrable system
should read P(ΔE) ∼ exp(−ΔE/〈ΔE〉), where 〈ΔE〉 is the average level distance in a given energy

7
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window. This distribution is not present in the QRM [34], whose level distances are shown in Figure 4 up
to n ∼ 5000.

Figure 4. The distribution of level distances ΔE = En+1 − En of the QRM for positive parity as function of
the level number n. Parameters are ω = 1, g = Δ = 5. A clear deviation from the exponential law predicted
in [32] is visible.

Due to this deviation from the expected behavior for integrable systems and likewise from the Wigner
surmise [35], it was unclear whether the QRM belongs to the integrable or chaotic systems [34]. If the
QRM is integrable as argued above, why does the Berry–Tabor criterion not apply? The reason lies in the
fact that this criterion has been derived for classically integrable systems with N continuous degrees of
freedom, which can be quantized with the Bohr–Sommerfeld method. In this case the energy eigenvalues
are labeled by N integers nj. The classical Hamiltonian can be written as an in general non-linear function
of N action variables I1, . . . , IN , H = f (I1, . . . , IN). Then the quantized energies read

En1,...,nN = f (h̄(n1 + α1/4), . . . , h̄(nN + αN/4)) = f̃ (n1, . . . , nN), (8)

where the αj are Maslov indices. The level distance distribution follows then from the statistics of vectors
(n1, . . . , nN) with integer entries belonging to the energy shell E ≤ f̃ (n1, . . . , nN) ≤ E + δE. This is shown
for N = 2 in Figure 5.

Berry and Tabor showed that the occurrences of the (n1, . . . , nN) in the shell [E, E + δE] are essentially
uncorrelated provided f̃ (n1; . . . , nN) is a non-linear function of its arguments and N ≥ 2. f̃ is linear for
linearly coupled harmonic oscillators [32] and in this case the level statistics is not Poissonian. The criterion
applies thus only to systems with at least two continuous degrees of freedom. If one of the degrees of
freedom is discrete, the corresponding action variable takes only finitely many values. This has the same
effect as a linear f̃ . A deviation from Poissonian statistics would therefore be expected even if the QRM
would be the quantum limit of a classically integrable system. However, this is not the case. The weak
symmetry of the QRM may have a counterpart in the classical limit but then it would not suffice to make
the classical model (which must have at least two continuous degrees of freedom) integrable. The QRM
is integrable only as a genuine quantum model. The Hilbert space of the quantum degree of freedom
must not be larger than two—otherwise the model becomes non-integrable similar to the Dicke model [27].
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Figure 6 shows on the left the spectral graph of the Dicke model for three qubits (which is also exactly
solvable by the method described in the next section) with Hamiltonian

HD = a†a + 2g(a + a†) Ĵz + 2Δ Ĵx, (9)

where Ĵz an Ĵx are generators of SU(2) in the spin- 3
2 representation. The QRM spectrum is depicted on the

right. It is apparent that most of the regular features of the Rabi spectrum are absent in the Dicke spectrum,
although it has the same Z2-symmetry.

Figure 5. (Left) The energy shell [E, E + δE] (red lines) contains the integer-valued vectors (n1, n2) (blue
crosses) belonging to the quantization of the action variables I1 = h̄(n1 + α1/4) and I2 = h̄(n2 + α2/4).
The distance of adjacent energies f̃ (n1, n2)− f̃ (n′

1, n′
2) is statistically unrelated for large quantum numbers

if f̃ is non-linear. (Right) If the second action variable I2 can take only two values as would be the case
for a discrete degree of freedom with dimH = 2, the average level distance is the same as for linear f̃ and
Poisson statistics does not apply.
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Figure 6. (Left) The Dicke spectrum for spin 3/2 and Δ = 0.7 as function of g. The spectral parameter is
x = E + g2/3, making the “baselines of the first kind” [27] horizontal while the baselines of the second kind
are given as dashed lines. (Right) The QRM spectrum at Δ = 0.7 for comparison (x = E + g2). All level
crossings are located on the horizontal baselines with x = const.

4. The Global Spectrum of the QRM

As shown in Figure 6, the spectral graph of the QRM has an intriguingly simple structure. The
level lines cross only for different parity on the so-called “baselines” with x = n for n = 1, 2, . . ..
Moreover, the degenerate states are quasi-exact solutions whose wave function can be expressed through
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polynomials [25]. These features can be explained in a unified way by the properties of the spectral
determinant or G-function of the QRM, G±(x), whose zeroes give the exact eigenvalues of the Hamiltonian
in each parity chain [7]. The G-function of the QRM is given as the following function (ω = 1),

G±(x; g, Δ) =
∞

∑
n=0

Kn(x)
[

1 ∓ Δ
x − n

]
gn, (10)

where the Kn(x) are defined recursively,

nKn = fn−1(x)Kn−1 − Kn−2, (11)

with

fn(x) = 2g +
1

2g

(
n − x +

Δ2

x − n

)
, (12)

and initial condition K0 = 1, K1(x) = f0(x). Note that G−(x; g, Δ) = G+(x; g,−Δ). The G-functions can
be written in terms of confluent Heun functions [36], namely

G±(x) =
(

1 ∓ Δ
x

)
Hc(α, γ, δ, p, σ; 1/2)− 1

2x
H′

c(α, γ, δ, p, σ; 1/2). (13)

where H′
c(α, γ, δ, p, σ; z) denotes the derivative of Hc(α, γ, δ, p, σ; z) with respect to z. The parameters are

given as [37],

α = −x, γ = 1 − x, δ = −x,

p = −g2, σ = x(4g2 − x) + Δ2.

From Equations (11) and (12) one may deduce that G±(x) has simple poles at x = 0, 1, 2, . . . and
therefore its zeroes are usually not located at integers but pinched between the poles. G±(x; g, Δ) can be
written as

G±(x; g, Δ) = G̃±(x; g, Δ) +
∞

∑
n=0

h±n (Δ, g)
x − n

, (14)

where G̃±(x; g, Δ) is analytic in x and G̃±(x; g, Δ) ≈ e2g2
2−x for small Δ. The coefficients h±n (Δ, g) vanish

for Δ = 0. Indeed, the sign of h±n determines whether the zero of G±(x) in the vicinity of x = n is located
to the right or to the left of n in the two adjacent intervals n − 1 < x < n and n < x < n + 1. This leads to
the following conjecture about the distribution of zeroes of G±(x):

Conjecture 1. The number of zeros in each interval [n, n + 1], n ∈ IN0 is restricted to be 0, 1, or 2. Moreover, an
interval [n, n + 1] with two roots of G±(x) = 0 can only be adjacent to an interval with one or zero roots; in the
same way, an empty interval can never be adjacent to another empty interval.

Figure 7 shows on the left G+(x) for g = 0.4 and Δ = 1 together with the analytic approximation for
Δ = 0. The G-conjecture appears to be valid for arbitrary Δ as is shown on the right of Figure 7.

10
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Figure 7. (Left) G+(x) and its entire approximation G+(x; 0.4, 0) for Δ = 1. (Right) G+(x) for Δ = 1 (blue),
2 (red), 4 (green) and 7 (orange).

The G-conjecture has not yet been proven in general, although it is possible to prove it for small
Δ, which, however, is equivalent with perturbation theory in the operator σz, the natural bounded
perturbation of the QRM, in contrast to the unbounded coupling operator σx(a + a†). Preliminary steps in
the direction of a general proof are given in [38].

Assuming the G-conjecture to be valid also for generalizations of the QRM showing the “spectral
collapse” phenomenon [39] allows deriving the continuous spectrum at the collapse point [40],
where numerical methods fail due to the proliferation of low-lying eigenstates.

The G-functions are derived by using the analyticity properties of the eigenfunctions in the
Bargmann space, which also explains the degenerate spectrum (the Juddian solutions) in a natural way
simply by doing a Frobenius analysis of the relevant differential equations in the complex domain [7].
Let H+ denote HR restricted to the subspace with positive parity. In the Bargmann representation,
the Schrödinger equation (H+ − E)ψ(z) = 0 is equivalent to a linear but non-local differential equation in
the complex domain,

z
d
dz

ψ(z) + g
(

d
dz

+ z
)

ψ(z) = Eψ(z)− Δψ(−z). (15)

With the definition ψ(z) = φ1(z) and ψ(−z) = φ2(z), we obtain the coupled local system,

(z + g)
d
dz

φ1(z) + (gz − E)φ1(z) + Δφ2(z) = 0, (16)

(z − g)
d
dz

φ2(z)− (gz + E)φ2(z) + Δφ1(z) = 0. (17)

This system has two regular singular points at z = ±g and an (unramified) irregular singular point
of s-rank two at z = ∞ [36]. With x = E + g2, the Frobenius exponents of φ1(z) at the regular singular
point g (−g) are {0, 1 + x} ({0, x}), while for φ2(z) the exponents at g (−g) are {0, x} ({0, 1 + x}) [41].
The eigenfunctions have to be analytic in all of C, therefore the spectrum of H+ separates naturally in
a regular part with x /∈ IN0 and the exceptional part with x ∈ IN0 [7]. For general values of g, Δ, the
exceptional part is empty and all eigenstates are regular.

For x /∈ IN0, one of the two linearly independent solutions for φ1(z) is not admissible. That means
that φ1(z) will in general develop a branchpoint with exponent 1 + x at z = g even if it is analytic with
exponent 0 at z = −g. G+(x) vanishes at those x for which both φ1(z) and φ2(z) have exponent 0 at g and
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−g, rendering ψ(z) analytic. To find the exceptional spectrum, we define y = z + g, φ1,2 = e−gy+g2
φ̄1,2.

Then,

y
d

dy
φ̄1 = xφ̄1 − Δφ̄2, (18)

(y − 2g)
d

dy
φ̄2 = (x − 4g2 + 2gy)φ̄2 − Δφ̄1. (19)

A Frobenius solution with exponent 0 at y = 0 may be written as φ̄2(y) = ∑∞
n=0 Kn(x)yn. Then,

the integration of Equation (18) yields

φ̄1(y) = cyx − Δ
∞

∑
n=0

Kn(x)
yn

n − x
. (20)

If x /∈ IN0, c must be zero. This determines φ̄1(z) uniquely in terms of φ̄2(z) and the Kn are thus given
by the recurrence in Equation (11), leading to the regular spectrum.

Now, let us assume x = n ∈ IN0. In this case, a solution for φ̄2(y) analytic at y = 0 may be written
as φ̄2(y) = ∑∞

m=n+1 Km(x)ym because x + 1 > 0 [41]. In this case, the c in (20) need not to be zero, the Km

satisfy still the recurrence in Equation (11), but with initial condition Kn = 0, Kn+1 = (n + 1)−1cΔ/(2g)
depending on c. φ̄1(y) reads then

φ̄1(y) = cyn − Δ
∞

∑
m=n+1

Km
ym

m − n
. (21)

Because c multiplies both φ̄1 and φ̄2, it may be set to 2g(n + 1)/Δ. The solution will have parity
σ ∈ {1,−1} and be analytic in all of C, if the G-function

G(n)
σ (g, Δ) = −σ

2(n + 1)
Δ

+
∞

∑
m=1

Kn+m

(
1 + σ

Δ
m

)
gm−1 (22)

vanishes for parameters g, Δ. One sees immediately that G(n)
+ = G(n)

− = 0 entails φ̄1(z+ g) = φ̄2(z+ g) ≡ 0,
thus this state is non-degenerate if it exists. States of this type comprise the non-degenerate exceptional
spectrum [42] and are characterized by a lifting of the pole of G+(x) (resp. G−(x)) at x = n for special
values of g, Δ, satisfying G(n)

± (g, Δ) = 0. The exceptional G-functions in Equation (22) are given in terms
of absolutely convergent series expansions as the regular G-functions in Equation (10). The other possible
Frobenius solution at y = 0, φ̄2(y) = ∑∞

m=0 Kmym, leads to

φ̄1(y) = cyn − Δ
∞

∑
m 
=n

Km
ym

m − n
− ΔKnyn ln(y), (23)

where the Km for m ≤ n are determined with the same recurrence as above and initial conditions K−1 = 0,
K0 = 1, which fixes the overall factor of the wavefunction. This solution is only independent from the
first and admissible if n ≥ 1 and Kn(n) = 0. If so, the Km for m ≥ n + 1 are computed recursively
via Equation (11) with initial conditions Kn = 0, Kn+1 = (n + 1)−1[cΔ/(2g)− Kn−1]. Parity symmetry
determines now the constant c(σ),

∞

∑
m 
=n

Km

(
1 + σ

Δ
m − n

)
gm − c(σ)gn = 0. (24)
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Equation (24) imposes no additional constraint on g, Δ besides Kn(n) = 0, which is therefore sufficient
for the presence of a doubly degenerate solution with x = n. Because n ≥ 1, this type of degenerate
solution cannot occur for x = 0, whereas non-degenerate solutions with x = 0 are possible.

For the choice c = 2gKn−1/Δ, one of the degenerate solutions reads

φ̄2(y) =
n−1

∑
m=0

Kmyn,

φ̄1(y) = Δ
n−1

∑
m=0

Km
ym

n − m
+

2gKn−1

Δ
yn. (25)

The φ̄j(y) are polynomials in y, therefore Equation (25) is a quasi-exact solution with polynomial
wave function, apart from the factor e−gz multiplying φ̄1,2 in φ1,2. This quasi-exact solution is not a parity
eigenstate but a linear combination of them. The parity eigenstates are in turn a linear combination of
Equation (25) and states having the form of non-degenerate exceptional solutions. It is clear that the
possibility of quasi-exact solutions in the QRM depends on the fact that the coefficients of the Frobenius
solutions are determined by a three-term recurrence relation (Equation (11)). Otherwise, the single free
integration constant c would not suffice to break off the series expansions for φ̄1,2 at finite order. This is
the reason a quasi-exact spectrum does not exist in the isotropic Dicke model [27] but is possible in the
anisotropic Dicke models, where more parameters can be adjusted to eliminate the higher orders in
expansions given by recurrence relations with more than three terms [43].

5. Conclusions

The quantum Rabi model is the most simple theoretical description of the interaction between
light and matter at strong coupling. Despite its simplicity, its spectrum displays many interesting
and unusual features such as two-fold degeneracies confined to baselines, the almost equally spaced
distribution of eigenvalues along the real axis and the quasi-exact spectrum. All these peculiarities
can be traced back to the integrability of the quantum Rabi model, i.e. the fact that the Hilbert space
of the discrete degree of freedom is two-dimensional and therefore equals the number of irreducible
representations of its symmetry group, Z2. This symmetry also causes the qualitative deviations of
the Rabi spectrum from the Jaynes–Cummings spectrum, although they coincide almost perfectly for
small coupling. The Jaynes–Cummings model possesses a much larger continuous U(1)-symmetry
and therefore many more level crossings in the spectral graph. Any approximation of the QRM which
employs a kind of rotating-wave approximation introduces automatically this U(1)-symmetry and the
concomitant unphysical level crossings, even if they do not occur in certain parameter ranges to which
these approximations are thus confined.
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Abstract: Spatially uniform optical excitations can induce Floquet topological band structures within
insulators which can develop similar or equal characteristics as are known from three-dimensional
topological insulators. We derive in this article theoretically the development of Floquet topological
quantum states for electromagnetically driven semiconductor bulk matter and we present results
for the lifetime of these states and their occupation in the non-equilibrium. The direct physical
impact of the mathematical precision of the Floquet-Keldysh theory is evident when we solve the
driven system of a generalized Hubbard model with our framework of dynamical mean field theory
(DMFT) in the non-equilibrium for a case of ZnO. The physical consequences of the topological
non-equilibrium effects in our results for correlated systems are explained with their impact on
optoelectronic applications.

Keywords: topological excitations; Floquet; dynamical mean field theory; non-equilibrium;
stark-effect; semiconductors

PACS: 71.10.-w theories and models of many-electron systems; 42.50.Hz strong-field excitation of optical
transitions in quantum systems; multi-photon processes; dynamic Stark shift; 74.40+ Fluctuations;
03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices,
and topological excitations; 72.20.Ht high-field and nonlinear effects; 89.75.-k complex systems

1. Introduction

Topological phases of matter [1–3] have captured our fascination over the past decades, revealing
properties in the sense of robust edge modes and exotic non-Abelian excitations [4,5]. Potential
applications of periodically driven quantum systems [6] are conceivable in the subjects of semiconductor
spintronics [7] up to topological quantum computation [8] as well as topological lasers [9,10] in optics
and random lasers [11]. Already topological insulators in solid-state devices such as HgTe/CdTe
quantum wells [12,13], as well as topological Dirac insulators such as Bi2Te3 and Bi2Sn3 [14–16] were
groundbreaking discoveries in the search for the unique properties of topological phases and their
technological applications.

In non-equilibrium systems, it has been shown that time-periodic perturbations can induce
topological properties in conventional insulators [17–20] which are trivial in equilibrium otherwise.
Floquet topological insulators include a very broad range of physical solid state and atomic realizations,
driven at resonance or off-resonance. These systems can display metallic conduction, which is enabled
by quasi-stationary states at the edges [17,21,22]. Their band structure may have the form of a

Symmetry 2019, 11, 1246; doi:10.3390/sym11101246 www.mdpi.com/journal/symmetry16
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Figure 1. ZnO structure (ab-plane). (a) non-centrosymmetric, hexagonal, wurtzite configuration;
(b) centrosymmetric, cubic, rocksalt configuration (Rochelle salt) [30–32]. The rocksalt configuration
is distinguished by a tunable gap from 1.8 eV up to 6.1 eV, a gap value of 2.45 eV is typical for
the monocrystal rocksalt configuration without oxygen vacancies [33,34]. As such, the rocksalt
configuration could be suited for higher harmonics generation under non-equilibrium topological
excitation [35,36].

Dirac cone in three-dimensional systems [23,24], and Floquet Majorana fermions [25] have been
conceptionally developed. Graphene and Floquet fractional Chern insulators have been recently
investigated [26–28].

In this article, we show that Floquet topological quantum states can evolve in correlated electronic
systems of driven semi-conductors in the non-equilibrium. We investigate ZnO bulk matter in the
centrosymmetric, cubic rocksalt configuration, see Figure 1. The non-equilibrium is in this sense
defined by the intense external electromagnetic driving field, which induces topologically dressed
electronic states and the evolution of dynamical gaps, see Figure 2. These procedures are expected to
be observable in pump-probe experiments on time scales below the thermalization time. We show that
the expansion into Floquet modes [29], see Figure 3, is leading to results of direct physical impact in
the sense of modeling the coupling of a classical electromagnetic external driving field to the correlated
quantum many body system. Our results derived by Dynamical Mean Field Theory (DMFT) in the
non-equilibrium provide novel insights in topologically induced phase transitions of driven otherwise
conventional three-dimensional semiconductor bulk matter and insulators.

2. Quantum Many Body Theory for Correlated Electrons in the Non-Equilibrium

We consider in this work the wide gap semiconductor bulk to be driven by a strong
periodic-in-time external field in the optical range which yields higher-order photon absorption
processes. The electronic dynamics of the photo-excitation processes, see Figure 2, is theoretically
modelled by a generalized, driven, Hubbard Hamiltonian, see Equation (1). The system is solved
with a Keldysh formalism including the electron-photon interaction in the sense of the coupling of the
classical electromagnetic field to the electronic dipole and thus to the electronic hopping. This yields an
additional kinetic contribution. We solve the system by the implementation of a dynamical mean field
theory (DMFT), see Figure 4, with a generalized iterative perturbation theory solver (IPT), see Figure 5.
The full interacting Hamiltonian, Equation (1), is introduced as follows:

H = ∑
i,σ

εic†
i,σc†

i,σ +
U
2 ∑

i,σ
c†

i,σci,σc†
i,−σci,−σ

−t ∑
〈ij〉,σ

c†
i,σc†

j,σ (1)

+i�d · �E0 cos(ΩLτ) ∑
<ij>,σ

(
c†

i,σc†
j,σ − c†

j,σc†
i,σ

)
.
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Figure 2. Insulator to metal transition caused by photo-excitation. (a) schematic split of energy bands
due to the local Coulomb interaction U. The gap is determined symmetrically to the Fermi edge EF;
(b) the periodic in time driving yields an additional hopping contribution T(τ) of electrons on the
lattice (black) and the renormalization of the local potential, E(τ), as a quasi-energy. Colors of the
lattice potential represent the external driving in time.
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Figure 3. Schematic representation of the Floquet Green’s function and the Floquet matrix in terms
of absorption and emission of external energy quanta h̄Ω. Gα β

00 (ω) represents the sum of all balanced

contributions; Gα β
02 (ω) describes the net absorption of two photons. α, β are the Keldysh indices.

In our notation, see Equation (1), c†, (c) are the creator (annihilator) of an electron. The subscripts
i, j indicate the site, 〈i, j〉 implies the sum over nearest neighboring sites.

The term U
2 ∑i,σ c†

i,σci,σc†
i,−σci,−σ results from the repulsive onsite Coulomb interaction U between

electrons with opposite spins. The third term −t ∑〈ij〉,σc†
i,σc†

j,σ describes the standard hopping processes
of electrons with the amplitude t between nearest neighboring sites. Those contributions form
the standard Hubbard model, which is generalized for our purposes in what follows. The first
term ∑i,σεic†

i,σc†
i,σ generalizes the Hubbard model with respect to the onsite energy, see Figure 2.

The electronic on-site energy is noted as εi. The external time-dependent electromagnetic driving
is described in terms of the field �E0 with laser frequency ΩL, τ, which couples to the electronic
dipole d̂ with strength |d|. The expression i�d · �E0 cos(ΩLτ)∑<ij>,σ

(
c†

i,σc†
j,σ − c†

j,σc†
i,σ

)
describes the

renormalization of the standard electronic hopping processes, as one possible contribution T(τ) in
Figure 2, due to external influences.

2.1. Floquet States: Coupling of a Classical Driving Field to a Quantum Dynamical System

By introducing the explicit time dependency of the external field, we solve the generalized Hubbard
Hamiltonian, see Equation (1). It yields Green’s functions which depend on two separate time arguments
which are Fourier transformed to frequency coordinates. These frequencies are chosen as the relative
and the center-of-mass frequency [38,39] and we introduce an expansion into Floquet modes

Gαβ
mn(ω) =

⎧⎭dτα
1dτ

β
2 e−iΩL(mτα

1 −nτ
β
2 )eiω(τα

1 −τ
β
2 )G(τα

1 , τ
β
2 )

≡ Gαβ(ω − mΩL, ω − nΩL). (2)
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Figure 4. Schematic representation of non-equilibrium dynamical mean field theory. (a) the
semiconductor behaves in the here considered regime as an insulator: Optical excitations by an
external electromagnetic field with the energy h̄Ω yield additional hopping processes. These processes
are mapped onto the interaction with the single site on the background of the surrounding lattice bath in
addition to the regular kinetic processes and in addition to on-site Coulomb repulsion; (b) DMFT idea:
The integration over all lattice sites leads to an effective theory including non-equilibrium excitations.
The bath consists of all single sites and the approach is thus self-consistent. The driven electronic
system may in principal couple to a surface-resonance or an edge state. The coupling to these states
can be enhanced by the external excitation.

In general, Floquet [29] states are analogues to Bloch states. Whereas Bloch states are due to the
periodicity of the potential in space, the spatial topology, the Floquet states represent the temporal
topology in the sense of the temporal periodicity [35,38–46]. The Floquet expansion is introduced in
Figure 3 as a direct graphic representation of what is described in Equation (2). The Floquet modes are
labelled by the indices (m, n), whereas (α, β) refer to the branch of the Keldysh contour (±) and the
respective time argument. The physical consequence of the Floquet expansion, however, is noteworthy,
since it can be understood as the quantized absorption and emission of energy h̄ΩL by the driven
quantum many body system out of and into the classical external driving field.

In the case of uncorrelated electrons, U = 0, the Hamiltonian can be solved analytically and the
retarded component of the Green’s function Gmn(k, ω) reads

GR
mn(k, ω) = ∑

ρ

Jρ−m (A0ε̃k) Jρ−n (A0ε̃k)

ω − ρΩL − εk + i0+
. (3)

Here, ε̃k is the dispersion relation induced by the external driving field. ε̃k is to be distinguished
from the lattice dispersion ε. Jn are the cylindrical Bessel functions of integer order, A0 = �d · �E0, ΩL is
the external laser frequency. The retarded Green’s function for the optically excited band electron is
eventually given by

GR
Lb(k, ω) = ∑

m,n
GR

mn(k, ω). (4)

2.2. Dynamical Mean Field Theory in the Non-Equilibrium

The generalized Hubbard model for the correlated system, U 
= 0, in the non-equilibrium,
Equation (1), is numerically solved by a single-site Dynamical Mean Field Theory (DMFT) [37,46–59].
The expansion into Floquet modes with the proper Keldysh description models the external time
dependent classical driving field, see Section 2.1, and couples it to the quantum many body system.
We numerically solve the Floquet-Keldysh DMFT [37,46] with a second order iterative perturbation
theory (IPT), where the the local self-energy Σαβ is derived by four bubble diagrams; see Figure 5.
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The Green’s function for the interaction of the laser with the band electron GR
Lb(k, ω), Equation (4),

is characterized by the wave vector k, where k describes the periodicity of the lattice. It depends on
the electronic frequency ω and the external driving frequency ΩL, see Equation (2), captured in the
Floquet indices (m, n). The DMFT self-consistency relation assumes the form of a matrix equation
of non-equilibrium Green’s functions, which is of dimension 2 × 2 in regular Keldysh space and of
dimension n × n in Floquet space. The numerical algorithm is efficient and stable also for all values of
the Coulomb interaction U.

In previous work [37,46,56], we considered an additional kinetic energy contribution due to a
lattice vibration. Here, we take into account a coupling of the microscopic electronic dipole moment to
an external electromagnetic field [38,39] for a correlated system. We introduce the quantum-mechanical
expression for the electronic dipole operator d̂, see the last term r.h.s. Equation (1), and this coupling
reads as i�d · �E0 cos(ΩLτ)∑<ij>,σ

(
c†

i,σc†
j,σ − c†

j,σc†
i,σ

)
. This kinetic contribution is conceptually different

from the generic kinetic hopping of the third term of Equation (1). The coupling d̂ · �E0 cos(ΩLτ)

generates a factor ΩL that cancels the 1/ΩL in the renormalized cylindrical Bessel function in
Equation (7) of Ref. [37] in the Coulomb gauge, �E(τ) = − ∂

∂τ
�A(τ) that is written in Fourier space as

�E(ΩL) = iΩL · �A(ΩL). The Floquet sum, which is a consistency check, is discussed in Section 3.3.
It has been shown by Ref. [49] that the coupling of an electromagnetic field modulation to the

onsite electronic density ni = c†
i,σci,σ in the unlimited three-dimensional translationally invariant

system alone can be gauged away. This type of coupling can be absorbed in an overall shift of the local
potential while no additional dispersion is reflecting any additional functional dynamics of the system.
Therefore, such a system [26,60] will not show any topological effects as a topological insulator or
a Chern insulator. In contrast, the coupling of the external electromagnetic field modulation to the
dipole moment of the charges, and thus to the hopping term, see Equation (1), as a kinetic energy
of the fermions, cannot be gauged away and is causing the development of topological states in the
three-dimensional unlimited systems. A boundary as such is no necessary requirement. Line 3 of
Equation (1) formally represents the electromagnetically induced kinetic contribution

i�d · �E0 cos(ΩLτ) ∑
<ij>,σ

(
c†

i,σc†
j,σ − c†

j,σc†
i,σ

)
= e ∑

�r
ĵind(�r) · �A(�r, τ), (5)

which is the kinetic contribution of the photo-induced charge current in-space dependent with�r

�jind(�r)δ = − t
i ∑

σ

(c†
�r,σc�r+δ,σ − c†

�r+δ,σc�r,σ). (6)

The temporal modulation of the classical external electrical field in the (111) direction always causes
a temporally modulated magnetic field contribution �B(�r, τ) = ∇× �A(�r, τ) with �B(�r, ΩL) in Fourier
space, as a consequence of Maxwell’s equations. In the following, we derive the non-equilibrium local
density of states (LDOS) which comes along with the dynamical life-time of non-equilibrium states as
an inverse of the imaginary part of the self-energy τ ∼ 1/�ΣR. A time reversal procedure induced by
an external field will never be able to revise the non-equilibrium effect. The photon-electron coupling
and thus the absorption will be modified and overall profoundly differing material characteristics
are created. Conductivity and polarization of excited matter in the non-equilibrium are preventing
any time-reversal processes in the sense of closing the Floquet fan again in this regime. The initial
electromagnetic field thus causes a break of the time-reversal symmetry, and the current leads to
the acquisition of a non-zero Berry flux. A Wannier-Stark type ladder [61] is created, which can be
characterized by its Berry phase [62] as a Chern or a winding number or the Z2 invariants in three
dimensions respectively [63].
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Figure 5. Local self-energy Σαβ within the iterated perturbation theory (IPT). The IPT as a second
order diagrammatic solver with respect to the electron electron interaction U is here generalized to
non-equilibrium, ± indicates the branch of the Keldysh contour. The solid lines represent the bath in
the sense of the Weiss-field Gαβ; see Ref. [37].

3. Floquet Spectra of Driven Semiconductors

From the numerically computed components of the Green’s function, we define [37] the local
density of states (LDOS), N(ω, ΩL), where momentum is integrated out and Floquet indices are summed

N(ω, ΩL) = − 1
π ∑

mn

∫
d3kIm GR

mn(k, ω, ΩL). (7)

In combination with the lifetime as the inverse of the imaginary part of the self-energy, τ ∼ 1/�ΣR,
and the non-equilibrium distribution function

Fneq(ω, ΩL) =
1
2

(
1 +

1
2i

∑m GKeld
0m (ω, ΩL)

∑n ImGA
0n(ω, ΩL)

)
, (8)

the local density of states N(ω, ΩL) can be experimentally determined as the compelling band structure
of the non-equilibrium system.

We show results for optically excited semiconductor bulk, with a band gap in the equilibrium of
2.45 eV and typical parameters for ZnO. ZnO in either configuration [33,34,64–66] is a very promising
material for the construction of micro-lasers, quantum wells and optical components. In certain
geometries and in connection to other topological insulators, it is already used for the engineering of
ultrafast switches. ZnO, see Figure 1, is broadly investigated in the non-centro-symmetric wurtzite
configuration and very recently in the centro-symmetric rocksalt configuration [31,32]. Its bandgap
is estimated to be of 1.8 eV up to 6.1 eV depending on various factors as the pressure during the
fabrication process. In either crystal configuration, the production of second or higher order harmonics
under intense external excitations [67] is searched. It is of high interest for novel types of lasers.

3.1. Development and Lifetimes of Floquet Topological Quantum States in the Non-Equilibrium

In Figure 6, we investigate a wide gap semi-conductor band structure, and the band
gap in equilibrium is assumed to be 2.45 eV. The semiconductor bulk shall be exposed to an
external periodic-in-time driving field. The system is so far considered as pure bulk, so we are
investigating Floquet topological effects in the non-equilibrium without any other geometrical
influence. The excitation intensity in the results of Figure 6a is considered to be 5.0 MW/cm2 and
10.0 MW/cm2 in Figure 6b. DMFT as a solver for correlated and strongly correlated electronics as such
is a spatially independent method. It is designed to derive bulk effects, whereas all k-dependencies
have been integrated as the fundamental methodology. Therefore, we are not analyzing the k-resolved
information of the Brillouin zone. As long as no artificial coarse graining with a novel length scale
in the sense of finite elements or finite volumes is included, DMFT results in one, two and three
dimensions are independent of any spatial information. In fact, however, the energy dependent
LDOS profoundly changes with a varying excitation frequency and with a varying excitation intensity
as well, which gives evidence that also the underlying k-dependent band structure is topologically
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Figure 6. Floquet topological quantum states of the semiconductor bulk in the non-equilibrium.
(a) the evolution of the LDOS in the non-equilibrium for varying excitation laser frequencies ΩL up to
ΩL = 4.0 eV is shown. The excitation intensity 5.0 MW/cm2 is constant. The bandgap of ZnO rocksalt
in equilibrium is 2.45 eV, see Figure 2, the gap is vanishing with the increase of the driving frequency and
dressed states emerge as a consequence of the non-equilibrium AC-Stark effect [82,83]. The split bands
are superposed by a doublet of Floquet fans which intersect. The formation of topological subgaps, see
e.g., at h̄ΩL = 0.9 eV occurs; (b) the evolution of the LDOS for the excitation intensity of 10.0 MW/cm2

is shown. Spectral weight is shifted to a multitude of higher order Floquet-bands, while the original
split band characteristics almost vanishes apart from the near-gap band edges. A variety of Floquet gaps
is formed. At any crossing point, topologically induced transitions are possible, and the generation of
higher harmonics can be enhanced. Panels on the right display the topology of the LDOS. The subgaps
are very pronounced and the intersection of bands is visible as an increase of the LDOS which can be
measurable in a pump-probe experiment. For a detailed discussion, please see Section 3.

modulated. A non-trivial topological structure of the Hilbert space is generated by external excitations
even though our system in equilibrium is fully periodic in space and time. The time dependent
external electrical field generates a temporally modulated magnetic field which results in a dynamical
Wannier-Stark effect and the generation of Floquet states. Floquet states are the temporal analogue to
Bloch states, and thus the argumentation by Zak [61] in principle applies for the generation of the Berry
phase γm, since the solid is exposed to an externally modulated electromagnetic potential [62,68–70].
The Floquet quasi-energies, see Figure 3, are labeled by the Floquet modes in dependency to the
external excitation frequency, and to the external excitation amplitude. The topological invariants,
the Chern number as a sum over all occupied bands n = ∑ν

m=1 nm 
= 0 and the Z2 invariants include
the Berry flux nm = 1/2π

∫
d2�k(∇×γm). The winding number is also consistently associated with the

argument of collecting a non-zero Berry flux. We consider both regimes, where the driving frequency
is smaller than the width of the semiconductor gap in equilibrium and also where it is larger and
a very pronounced topology of states is generated. While the system is excited and thus evolving
in non-equilibrium, a Berry phase is acquired and a non-zero Berry flux and thus a non-zero Chern
number are characterizing the topological band structure as to be non-trivial. For one-dimensional,
models [61,71] with the variation of the external excitation frequency ΩL replica of Floquet bands
with a quantized change of the Berry phase γ = π emerge in the spectrum. In three dimensions,
the Berry phase is associated with the Wyckoff positions of the crystal and the Brillouin zone [61],
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and, as such, it cannot be derived by the pure form of the DMFT.�k-dependent information can be
derived by so-called real-space or cluster DMFT solutions (R-DMFT or CDMFT) [72–75]; however,
they have not been generalized to the non-equilibrium for three-dimensional systems. It is important
to note that the system out of equilibrium acquires a non-zero Berry phase and Coulomb interactions
lead to a Mott-type gap that closes due to the superposition by crossing Floquet bands; however, the
opening of non-equilibrium induced Mott-gap replica can also be found for ΩL = 0.95 eV. The replica
are complete at ΩL = 1.9 eV; see Figure 6a. For the increase of �E0, these gap replica are again
intersected by the next order of Floquet sidebands. The closing of the Mott-gap and the opening of
side Mott-gaps, in the spectrum due to topological excitation, are classified as non-trivial topological
effects. In Figure 7a, we present results of the LDOS for the same system of optically excited cubic
ZnO rocksalt excited by an external laser energy of 1.75 eV and an increasing excitation intensity,
Figure 7b shows the corresponding inverse lifetime �ΣR and Figure 7c shows the corresponding
non-equilibrium distribution of electrons Fneq. In addition, for very small excitation intensities, the
result for the non-equilibrium distribution function Fneq shows a profound deviation from the Fermi
step in equilibrium. These occupied non-equilibrium states have a finite lifetime, especially at the
inner band edges, which is a sign of the Franz-Keldysh effect [76–79], here in the sense of a topological
effect, which is accessible in a pump-probe experiment.

The change of the polarization of the external excitation modifies the physical situation and the
result. In particular, circular and elliptically polarized light can be formally written as a superposition
of linear polarized waves. Thus, in the pure uncorrelated case, U = 0, one could think that the setup
can be formally implemented in the sense of coupled matrices. In the strongly correlated system at
hand, the physics is fundamentally different. The solution for the strongly correlated case, U 
= 0,
in the non-equilibrium, including DMFT, will become more sophisticated since the coupled matrices
will result in the entanglement of processes in some sense. This can be deduced from the result
in Figure 7b, which displays the modification of non-equilibrium life-times of electronic states due
to the varying excitation amplitudes. Such a modification is also qualitatively found for varying
excitation frequencies.

The classification of correlated topological systems is an active research field [26,80,81]. At this
point, we refer to Section 3.3 in this article, where we show, in our theoretical results the analysis of the
single Floquet modes. For the investigation of the LDOS and the occupation number Fneq, as well as
for the lifetimes of the non-equilibrium states, an artificial cut-off of the Floquet series, as it is described
in the literature, does not make sense from the numerical physics point of view of DMFT in frequency
space. This would hurt basically conservation laws and the cut-off would lead to a drift of the overall
energy of the system; see Section 3.3. However, according to the bulk-boundary correspondence [2,3],
the results of this work for bulk will be observed in a pump-probe experiment at the surface of the
semiconductor sample. In the following, we discuss the development of Floquet topological states
for an increasing external driving frequency ΩL, see Figure 6, and, for an increasing amplitude of the
driving, see Figure 7.
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Figure 7. (a) energy spectra of Floquet topological quantum states of the semiconductor bulk in the
non-equilibrium. The evolution of the LDOS is displayed for the single excitation energy of h̄ΩL =

1.75 eV, wavelength λ = 710.0 nm and an increasing external driving intensity up to 10.0 MW/cm2.
Spectral weight is shifted by excitation to Floquet sidebands and a sophisticated sub gab structure
is formed. In the non-equilibrium, such topological effects in correlated systems are non-trivial.
The bandgap in equilibrium is 2.45 eV, the Fermi edge is 1.225 eV, and the width of each band is 2.45 eV
as well; (b) inverse lifetime �ΣR of Floquet states of electromagnetically driven ZnO rocksalt bulk in
the non-equilibrium; (c) non-equilibrium distribution function Fneq of electrons in optically driven bulk
ZnO rocksalt. Parameters in (b,c) are identical to (a). For a detailed discussion, please see Section 3.

3.2. Topological Generation of Higher Harmonics and of Optical Transparency

When we increase the external excitation energy of the system ΩL from 0 eV to 4.0 eV, Floquet
topological quantum states as well as the topologically induced Floquet band gaps for bulk matter
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are developed. Both valence and conduction band split in a multitude of Floquet sub-bands which
cross each other. In Figure 6a, the evolution of a very clear Floquet fan for the valence as well
as for the conduction band of the correlated matter in the non-equilibrium is found. When the
excitation energy is increased up to 0.45 eV, the original band gap is subsequently closing, and the first
crossing point in the semiconductor gap along the Fermi edge is found at 0.45 eV. With the increase
of the excitation intensity, see Figure 6b, higher order Floquet sidebands are gaining spectral weight,
and we find the next prominent crossing point at the Fermi edge for 0.2 eV. Band edges of higher
order Floquet bands form crossing points with those of the first order. For an excitation energy
of 0.42 eV, the crossing points of the first side bands (02) with the higher number side bands are
found at the atomic energy of 1.08 eV and 2.3 eV, so above the valence band edge and deep in
the gap of the semiconductor. Semiconductors are well known for fundamental absorption at the
band edge of the valence band. We find here that the absorption coefficient of the semiconductor is
topologically modulated. Non-trivial transitions at the crossing points of Floquet-valence subbands
and Floquet-conduction subbands become significant. A higher order Floquet subband is usually
physically reached by absorption or generation of higher harmonic procedures and we find a high
probability for a topologically induced direct transitions from the fundamental to higher order bands
for those points in the spectrum where a Floquet band edge intersects with the inner band edge
of the equilibrium valence band. At any band edge directional scattering can be expected if the
lifetimes of states are of a value that is applicable to the expected scattering processes. In general,
the optical refractive index is topologically modulated, and electromagnetically induced transparency
will become observable for intense excitations. The topologically induced Floquet bands overlap and
cross each other. Consequentially, very pronounced features and narrow subgaps are formed in the
LDOS, which correspond with sharp spikes in the expected life-times in the non-equilibrium. Floquet
replica of valence and conduction bands are formed and the dispersion is renormalized. We also find
regions for excitation energies from h̄ΩL = 0.5 eV up to h̄ΩL = 0.85 eV and from h̄ΩL = 1.1 eV up to
h̄ΩL = 1.45 eV, which can be interpreted as a topologically induced metallic phase. These states are the
result of the Franz-Keldysh effect [76–79] or AC-Stark effect, which is well known for high intensity
excitation of semiconductor bulk and quantum wells [82,83].

From the viewpoint of correlated electronics in the non-equilibrium, we interpret our results as
follows. For finite excitation frequencies, an instantaneous transition to the topologically induced
Floquet band structure and a renormalized dispersion is derived. In the bulk system clear Floquet
bands develop, if the sample is excited by an intense electrical field. This is observable in Figure 6.

In Figure 7, we display the same system as in Figure 6 for constant driving energy of 1.75 eV and
an increasing driving intensity up to 10.0 MW/cm2. We find the development of side bands and an
overall vanishing semiconductor gap is found, which marks the transition from the semi-conductor to
the topologically highly variable and switchable conductor in the non-equilibrium.

In this article, we do not investigate the coupling to a geometrical edge or a resonator mode.
This will lead in the optical case to additional contributions in Equation (1) for the mode itself
h̄ωoa†a† and the coupling term of the resonator or edge mode to the electron system of the bulk
g∑i,σ c†

i,σc†
i,σ(a†+ a). a† and a are the creator and the annihilator of the photon, and g is the variable

coupling strength of the photonic mode to the electronic system [84]. From our results, here we
can conclude already that, for semi-conductor cavities and quantum wells as well as for structures
which enhance so called edge states, these geometrical edge or surface resonances will induce an
additional topological effect within the full so far excitonic spectrum. It is an additional effect that
occurs beyond the bulk boundary correspondence. Dressed states may release energy quanta, e.g.,
light, or an electronic current into the resonator component [38]. Thus, we expect from our results that
such modes may become a sensible switch in non-equilibrium.

It can be expected as well that novel topological effects in the non-equilibrium occur from the
geometry. If the energy of the system is conserved, these modes will have always an influence on
the full spectrum of the LDOS, when the system is otherwise periodic in space and time. Thus, it is
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to clarify whether such modes may be of technological use. For the investigation of ZnO as a laser
material, the influences of surface resonators will be subject to further investigations. It is on target to
find out all the signatures of a topologically protected edge mode in correlated and strongly correlated
systems out of equilibrium, and to classify the significance of topological effects for the occurrence of
the electro-optical Kerr effect, the magneto-optical Kerr effect (MOKE) or the surface magneto-optical
Kerr effect (SMOKE). We believe that in correlated many-body systems out of equilibrium a bulk
boundary correspondence is given and will be experimentally found. Those results become modified
or enhanced by a coupling of bulk states with the geometry of a micro- or a nanostructure and their
geometrical resonances.

3.3. Consistency of the Numerical Framework

The consistency of the numerical formalism is generally checked by the sum over all Floquet
indices with the physical meaning that energy conservation must be guaranteed in the non-equilibrium.
Consequentially, we do not take into account thermalization procedures and the system’s temperature
remains constant. The analysis of the numerical validity as the normalized and frequency integrated
density of states

Ni(ΩL) :=
∫

dωN(ω, ΩL) = 1 (9)

is confirmed in this work for summing over Floquet indices up to the order of 10. We discuss in
Figure 8 on the l.h.s. the Floquet contributions with increasing number in steps of n = 0, 2, 4, 6, 8, 10.
With an increasing order of the Floquet index, the amplitude of the Floquet contribution decreases
towards the level of numerical precision of the DMFT self-consistency. This is definitely reached for
n = 10 and thus it is the physical argument to cut the Floquet expansion off for n = 10. As a systems
requirement, the Floquet contributions G0±n are perfectly mirror symmetric with respect to the Fermi
edge, whereas the sum of both contributions is directly symmetric with respect to the Fermi edge.
These symmetries are generally a proof of the validity of the numerical Fourier transformation and
the numerical scheme. The order of magnitude of each Floquet contribution with a higher order than
n = 4 is almost falling consistently with the rising Floquet index. We display results for the external
laser wavelength of λ = 710.0 nm and the laser intensity of 3.8 MW/cm2; the ZnO gap is assumed to
be 2.45 eV, which is ZnO rocksalt as a laser active material. We include Floquet contributions up to a
precision of 10−3 with regard to their effective difference from the final result on the r.h.s of Figure 8 as
the sum to the nth-order. It corresponds to the accuracy of the self-consistent numerics.

The Floquet contributions, Figure 8, as such consequentially do not have a direct physical
interpretation, however, the sum of all contributions is the local density of states, the LDOS, as a
material characteristics. Whereas the lowest order Floquet contribution, compare Equation (2), G00 is
symmetric to the Fermi edge but strictly positive, higher order contributions G0±n are mirror symmetric
to each other and in sum they can have negative contributions to the result of the LDOS. The order
of the Floquet contribution n numbers the evolving Floquet side bands which emerge in the LDOS,
compare Figure 6a. The increase of mathematical and numerical precision has direct consequences for
the finding and the accuracy of physical results, and the investigation of the coupling of the driven
electronic system of the bulk with edge and surface modes will therefore profit. Bulk-surface coupling
effects in nanostructure and waveguides are of great technological importance and the advantage of
this numerical approach in contrast to time dependent DMFT frameworks in this respect is obvious.
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Figure 8. Floquet contributions and accuracy check of the numerical results for the LDOS of driven
semiconductor bulk. The bandgap in equilibrium is 2.45 eV, the Fermi edge is 1.225 eV. For discussion,
please see Section 3.3.
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4. Conclusions

We investigated in this article the development of Floquet topological quantum states in wide
band gap semiconductor bulk as a correlated electronic system with a generalized Hubbard model
and with dynamical mean field theory in the non-equilibrium. We found that optical excitations
induce a non-trivial band structure and, in several frequency ranges, a topologically induced metal
phase is found as a result of the AC-Stark effect. The intersection of Floquet bands and band edges
induces novel transitions, which may lead to up- and downconversion effects as well as to higher
harmonic generation. The semiconductor absorption coefficient is topologically modulated. Non-trivial
transitions at the crossing points of the underlying equilibrium band structure with the intersecting
Floquet fans become possible and their efficiency is depending on the excitation power. We also find
the development of pronounced novel sub gaps as areas of electromagnetically induced transparency.
We also presented a consistency check as a physical consequence of the Floquet sum, which ensures
numerically energy conservation. Our results for semiconductor bulk can be tested optoelectronic and
magneto-optoelectronic experiments; they may serve as a guide towards innovative laser systems.
The bulk semiconductor under topological non-equilibrium excitations as such has to be reclassified.
It will be of great interest to investigate the interplay of topological bulk effects with additional surface
resonances, a polariton coupling, or a surface magneto-optical modulation.
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Abstract: The paradigmatic spin-boson model considers a spin degree of freedom interacting with
an environment typically constituted by a continuum of bosonic modes. This ubiquitous model is
of relevance in a number of physical systems where, in general, one has neither control over the
bosonic modes, nor the ability to tune distinct interaction mechanisms. Despite this apparent lack
of control, we present a suitable transformation that approximately maps the spin-boson dynamics
into that of a tunable multiphoton Jaynes-Cummings model undergoing dissipation. Interestingly,
the latter model describes the coherent interaction between a spin and a single bosonic mode via the
simultaneous exchange of n bosons per spin excitation. Resorting to the so-called reaction coordinate
method, we identify a relevant collective bosonic mode in the environment, which is then used to
generate multiphoton interactions following the proposed theoretical framework. Moreover, we show
that spin-boson models featuring structured environments can lead to non-Markovian multiphoton
Jaynes-Cummings dynamics. We discuss the validity of the proposed method depending on the
parameters and analyse its performance, which is supported by numerical simulations. In this manner,
the spin-boson model serves as a good analogue quantum simulator for the inspection and realization
of multiphoton Jaynes-Cummings models, as well as the interplay of non-Markovian effects and, thus,
as a simulator of light-matter systems with tunable interaction mechanisms.

Keywords: spin-boson model; Jaynes-Cummings model; multiphoton processes; quantum simulation

1. Introduction

The rapid technological progress we have experienced during the last few decades has made possible
previously inconceivable experiments at the quantum regime, boosting their degree of precision, isolation
and control to unprecedented limits [1]. Currently, quantum systems can be inspected in a very controllable
manner in a number of distinct setups. This experimental breakthrough has therefore stimulated the
emergence of research areas such as quantum information and computation and quantum simulation,
where the exploitation of quantum effects will allow us to surpass both the capabilities of their classical
counterparts in the near future [2]. In particular, quantum simulation considers a scenario in which
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a well-controlled quantum system serves as a simulator of other inaccessible systems [3–5]. In this
manner, interesting quantum dynamics (i.e., the target dynamics) may be explored using, for example,
optical lattices [6] or trapped ions [7]. The target dynamics can be obtained either by decomposing the
time-evolution propagator in a set of simple quantum operations (digital quantum simulation) or by
finding a map that brings the Hamiltonian into the desired form of the model to be simulated (analogous
to quantum simulation) [5]. In this article, we will consider the latter method, by using as a quantum
simulator the paradigmatic spin-boson model [8,9].

The spin-boson model describes a spin immersed in an environment formed by a large, typically
infinite, number of bosonic modes, in contrast to the quantum Rabi or Jaynes-Cummings models where
the interaction comprises a single bosonic mode [10–13]. The spin-boson model encompasses very rich
physics depending on how the spin couples with the distinct bosonic modes. Hence, while it is a minimal
model to scrutinize the quantum effects of dissipation, it has application in a broad range of systems [8,9],
ranging from defects in solid state platforms to quantum emitters in biological systems [14]. Moreover,
much effort inspecting the spin-boson model has dealt with its critical behaviour, that is with the emergence
of a quantum phase transition between a delocalized and a localized phase of the spin degree of freedom as
one increases the spin-environment coupling [8]. The simulation of the spin-boson model (or of a generic
open quantum system) in the strong coupling regime is however computationally very demanding,
as acknowledged in [15–21], since the spin and the bosonic modes become entangled, forming a truly
quantum many-body system. In some situations, one can still resort to analytical methods, which may
simplify the problem considerably. Among these methods one finds the so-called reaction coordinate
mapping [22–28], which can be viewed as a first step of the more general semi-infinite chain mapping of
the environmental degrees of freedom [29,30]. The reaction coordinate is defined as a collective mode of
the original environment oscillators. In this manner, one can bring the spin-boson model into the form of
a generalized quantum Rabi model [10,11,13] whose bosonic mode undergoes dissipation as it interacts
with the residual environment. In particular cases, upon rearranging the original environmental degrees
of freedom, the dissipation acquires a Markovian character, hence simplifying considerably the complexity
of the problem (see for example [24]). It is also worth mentioning other attempts to capture quantum
dynamics effectively with complex system-environment interactions, as for example the recent work
relying on pseudo-modes [31], which builds on the proven equivalence for the dynamics of the system in
both frames [32].

The quantum Rabi model (QRM), as well as its simplified version known as the Jaynes-Cummings
model (JCM) [12] play a central role in the description of light-matter interacting systems and in quantum
information science [2,13]. In these models, the interaction mechanism between the spin and bosonic
degrees of freedom has a linear form, namely the spin gets excited or deexcited by absorbing or emitting
one bosonic excitation. While this interaction is ubiquitous in quantum physics and with application
in various experimental platforms [33], other forms of a spin-boson exchange mechanisms beyond this
simple case are also of interest. On the one hand, interactions beyond the linear fashion are of relevance
for several applications in quantum computation and simulation (e.g., the Kerr effect [34]). Furthermore,
these exchange mechanisms may unveil interesting phenomena in light-matter systems [35,36], as well
as in their multiple spin counterparts [37]. One possible generalization of the QRM or JCM consists
of considering a spin-multiphoton interaction, where the spin exchanges n excitations simultaneously
with the bosonic mode. Such a generalization is often regarded as n-photon QRM or JCM, (nQRM or
nJCM), and it has recently attracted attention mainly in its n = 2 form [35,36,38–41], although models
with n > 2 have been also analysed [42]. From an experimental point of view, however, such multiphoton
terms are typically hard to attain. Thus, its realization may benefit from quantum simulation protocols,
allowing for enough tunability and control over multiphoton interaction terms, as proposed using optical
trapped ions [35,38] or superconducting qubits [40]. These latter schemes realize effective multiphoton
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exchange terms by exploiting the nonlinear fashion in which the spin and bosonic degrees of freedom
couple. It is however still possible to realize such multiphoton models even when the setup comprises
solely a linear, i.e., standard, interaction mechanism, and thus, it is not suited for a direct simulation of
these models, as shown in [43].

In this article, we follow the theoretical framework developed in [43,44], combining the ideas of
the reaction-coordinate mapping [22–28] to show that the paradigmatic spin-boson model, featuring
a continuum of bosonic modes, can serve as an analogue quantum simulator for the realization of different
dissipative multiphoton Jaynes-Cummings models by tuning the frequency and bias parameter of the
spin. In this manner, we demonstrate the emergence of a connection between the dynamics of these
paradigmatic and fundamental quantum models, which was not previously unveiled. Moreover, as the
spin-boson model is of considerable experimental significance, i.e., it describes the ubiquitous scenario
of a two-level system interacting with an arbitrary environment, our method paves the way for the
simulation of multiphoton Jaynes-Cummings models in distinct setups. In particular, by considering
a full spin-boson model, we naturally extend the theoretical framework beyond the standard local master
equation description of dissipation effects in the simulator, as considered in [44]. Furthermore, we show
that the simulated multiphoton Jaynes-Cummings models may acquire non-Markovian behaviours when
the spin-boson model features a structured environment, thus highlighting the suitability of the proposed
theoretical framework to explore aspects of non-Markovianity in distinct light-matter interacting systems.

The article is organized as follows. In Section 2, we introduce the spin-boson model, while in
Section 3, we explain how to map the spin-boson model into a different Hamiltonian comprising the
desired spin-multiphoton interaction terms and discuss how the dissipative effects must be transformed
into the aimed model. For that, we first introduce the reaction coordinate mapping in Section 3.1, while in
Section 3.2, we explain how to extend the theoretical framework to incorporate further bosonic modes
in the realization of the desired multiphoton model. After having provided the theoretical derivation of
how to perform the analogue quantum simulation, we present examples and numerical results for the
simulation of different multiphoton Jaynes-Cummings models in Section 4. Finally, we summarize the
main conclusions of this article in Section 5.

2. The Spin-Boson Model

The spin-boson model describes a two-level system interacting with a large, typically infinite, number
of bosonic modes, which constitute the environment. This model has been acknowledged as a paradigm
for the inspection of quantum dissipation and quantum-to-classical transition [8,9]. As many physical
systems can be well approximated as a two-level system for sufficient low temperature, the spin-boson
model has become a cornerstone in the description of quantum effects in diverse physical realizations,
ranging from quantum-based setups [8,9] to biological complexes [14]. In addition, this model has played
a key role in the development of the theory of open quantum systems [45], providing a suitable test-bed to
benchmark distinct approximations and tools aimed to deal with the large number of environment degrees
of freedom efficiently. Moreover, the relevance of the spin-boson model also encompasses the context of
critical systems, as it features a quantum phase transition between spin localized and delocalized phases
(see References [46,47] and the references therein). Hence, the spin-boson model exhibits rich physics, and
it is of fundamental relevance in many different areas of research.

The Hamiltonian of the spin-boson model can be written as:

HSB = HS + HE + HS−E (1)
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where each contribution reads as:

HS =
ε0

2
σz +

Δ0

2
σx, (2)

HE = ∑
k

ωkc†
k ck, (3)

HS−E = σx ∑
k

fk(ck + c†
k). (4)

The first two terms represent the free-energy Hamiltonians of the spin and environment, while the
last describes the interaction between them. Here, we consider that the frequency splitting of the spin is
given by Δ0, while ε0 accounts for the bias between the eigenstates of the two-level system |±〉 and with
�σ = (σx, σy, σz) the usual spin- 1

2 Pauli matrices (see Figure 1a). Hence, σx |±〉 = ± |±〉, σz |e〉 = |e〉 and
σz |g〉 = − |g〉. The interaction with the environment is dictated by HS−E, where the kth mode with energy
ωk is coupled to the spin with a strength fk. These bosonic modes fulfil the usual commutation relation
[ck, c†

k′ ] = δk,k′ . Remarkably, the system-environment interaction can be completely characterized in terms
of the spectral density, JSB(ω) = ∑k f 2

k δ(ω − ωk), which here is assumed to be known. In anticipation
of the developed theoretical framework that allows us to bring HSB into the form of a multiphoton
Jaynes-Cummings model, we comment that while the frequency splitting Δ0 tunes the multiphoton order
of the interaction, the bias parameter ε0 will be proportional to the interacting strength of the simulated
model (see Section 3).

In addition, we comment that one could consider the application of nd drivings onto the spin.
As discussed in [43,44], under certain conditions that we will explain in the following section, applying
spin drivings enables the simultaneous realization of different multiphoton Jaynes-Cummings interaction
terms. In this manner, while a multiphoton Jaynes-Cummings model can be attained without the need
for any driving, nd = 0, the realization of a multiphoton quantum Rabi model requires the application
of at least one, i.e., nd = 1. In general, the free-energy Hamiltonian of the spin under nd drivings with
amplitude εj and detuning Δj with respect to the spin frequency splitting Δ0 reads as:

HS,d =
Δ0

2
σx +

nd

∑
j=0

εj

2
[
cos(Δj − Δ0)t σz + sin(Δj − Δ0)t σy

]
. (5)

Clearly, setting εj>0 = 0 (or Δj = Δ0), we recover the form of the standard drivingless HS given in
Equation (2). For the sake of simplicity, in this article, we will focus on cases with nd = 0, i.e., aiming to
realize multiphoton Jaynes-Cummings models. However, we stress that the procedure explained in the
following can be applied in a straightforward manner when nd > 0.
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(a)
E

RC

(c) E'

...

(b)

+an+H.c.
+a†n+H.c.

(d)

RC1 RC2

E1' E2'

S+RC S'=S+RC1+RC2

Figure 1. (a) Spin-boson model in the customary star configuration, where each of the circles corresponds to
a harmonic oscillator of the environment with frequency ωk interacting with the spin through σx fk(ck + c†

k),
before the reaction coordinate mapping. In (b), we show an underdamped spin-boson spectral density
JSB(ω), peaked at ω0 (cf. Equation (8)). Upon the reaction coordinate mapping, a collective degree of
freedom is included into the system, which in turn interacts with the residual environment, as sketched in
(c) (see the main text for further details). For an underdamped JSB(ω), JRC(ω) adopts a Markovian
form, as depicted in (b). Such interaction with a collective coordinate can be exploited to realize
Hamiltonians containing multiphoton interaction terms, as indicated in (c) and explained in detail in
Section 3. For structured environments, one can still rearrange the original environment using more
collective coordinates into the augmented system S′, where each of them interacts now with its own
residual environment, as sketched in (d) (see Section 3.2 for further details).

3. Analogue Simulation of Multiphoton Spin-Boson Interactions

The task now consists of bringing the spin-boson Hamiltonian HSB into the form of a n-photon model,
i.e, into a model containing interaction terms of the form σ±an and σ±(a†)n. For that, one could perform
the approximate mapping used in [43,44] directly onto HSB. This would require the selection of a particular
bosonic mode out of the environment with frequency ωq to now play the role of a in the interaction with the
spin (cq → a), while treating the rest of ck 
=q as a residual environment. Here, however, we resort to a more
sophisticated procedure, based on the so-called reaction coordinate (RC) mapping [22–28], which consists
of rearranging the environment degrees of freedom, such that a small number of collective coordinates can
be included in the Hamiltonian part, which in turn interact with the residual environment. In certain cases,
the open-quantum system description of the augmented system is considerably simplified with respect to
the original system plus environment. Clearly, if the spin-boson model involves just a discrete number of
modes, the reaction-coordinate procedure then trivially retrieves the original discrete environment.

3.1. Reaction Coordinate Mapping

In the following, we summarize how to make use of the RC mapping for a spin-boson model,
which has been studied previously in different works [24,25], while referring to Appendix A and
References [22–28] for further details of the calculations and of the RC mapping.
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We shall start by defining a collective mode or reaction coordinate, described by the annihilation and
creation operators a and a†, such that:

λ(a + a†) = ∑
k

fk(ck + c†
k), (6)

while the residual environmental degrees of freedom transform into bk and b†
k , requiring that the latter

appear in a normal form in the Hamiltonian. In this manner, the original spin-boson Hamiltonian adopts
the form of HSB = HS+RC + HRC−E′ + HE′ , where the former is given by:

HS+RC =
Δ0

2
σx + Ωa†a + λσx(a + a†) +

nd

∑
j=0

εj

2
[
cos(Δj − Δ0)t σz + sin(Δj − Δ0)t σy

]
, (7)

and the other two terms are HRC−E′ + HE′ = (a + a†)∑k gk(bk + b†
k ) + (a + a†)2 ∑k

g2
k

ωk
+ ∑k ωkb†

k bk.
The reaction coordinate map is completed upon the identification of the parameters λ, Ω, and gk or,
thus, JRC(ω) = ∑k g2

kδ(ω − ωk). For certain cases, such mapping allow for an exact relation between
the original and transformed parameters [28]. Indeed, considering an underdamped spin-boson spectral
density in the initial spin-boson model,

JSB(ω) =
αΓω2

0ω

(ω2
0 − ω2)2 + Γ2ω2

, (8)

one can show that the resulting spectral density for the residual environment interacting with the reaction
coordinate reads as:

JRC(ω) = γωe−ω/Λ (9)

provided Λ/ω � 1 and where the parameters are related according to γ = Γ/(2πω0), Ω = ω0, and λ =√
παω0/2 (see Appendix A or [22–24,28] for further details of this derivation). Here, the frequency

ω0 in JSB(ω) denotes the position at which the spectral density features a maximum, while Γ and α

account for its width and strength, respectively. For JRC(ω), the coupling strength is given by γ. In this
manner, by augmenting the system incorporating a collective mode, the original spin-boson model with
JSB(ω) is transformed into a spin plus reaction coordinate, which now in turn interacts with a Markovian
environment, where the standard Born-Markov approximations can be performed [45]. Indeed, the master
equation governing the dynamics of the augmented system, spin plus reaction coordinate, reads as
(see Appendix A for the details of the calculation, which closely follows [24]):

ρ̇S+RC(t) =− i [HS+RC, ρS+RC(t)]− [x, [χ, ρS+RC(t)]] + [x, {Θ, ρS+RC(t)}] . (10)

with x = a + a†, while the quantities χ and Θ define the rates affecting the reaction coordinate. They are
defined as:

χ ≈ π

2 ∑
jk

JRC(ξ jk) coth(βξ jk/2)xjk
∣∣φj

〉
〈φk| , (11)

Θ ≈ π

2 ∑
jk

JRC(ξ jk)xjk
∣∣φj

〉
〈φk| , (12)

where xjk =
〈
φj
∣∣ x |φk〉, HS+RC

∣∣φj
〉
= ϕj

∣∣φj
〉
, and ξ jk = ϕj − ϕk.
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Having obtained the reaction coordinate Hamiltonian, we undertake the transformation of HS+RC,
and thus, of Equation (10), to achieve a model that comprises spin-multiphoton interaction terms. For that
purpose, we will introduce two auxiliary Hamiltonians Ha and Hb, which will arise in the intermediate
steps by moving into a suitable interaction picture and transforming them accordingly. The first step
consists indeed of moving to a rotating frame in which HS+RC ≡ HI

a,1 where Ha = Ha,0 + Ha,1 with
Ha,0 = −Δ0/2σx. In this manner, we find:

Ha = Ωa†a + λσx(a + a†) +
nd

∑
j=0

εj

2
[
cos Δjtσz + sin Δjtσy

]
. (13)

while Equation (10) transforms into:

ρ̇a(t)=− i [Ha, ρa(t)]− [x, [χ̂, ρa(t)]] + [x, {Θ̂, ρa(t)}]. (14)

where χ̂ = Ua,0χU†
a,0 and Θ̂ = Ua,0ΘU†

a,0, such that Ux = T e−i
∫ t

0 dsHx(s) is the time-evolution operator of
a Hamiltonian Hx. Then, we perform a further transformation using the unitary operator T(α), defined
as T(α) = 1/

√
2
[
D†(α) (|e〉 〈e| − |g〉 〈e|) + D(α) (|g〉 〈g|+ |e〉 〈g|)

]
with D(α) = eαa†−α∗a the standard

displacement operator. Hence, Hb ≡ T†(−λ/Ω)HaT(−λ/Ω) such that ρb = T†ρaT, which leads to
(see Appendix B for further details):

ρ̇b = −i [Hb, ρb]−
[

T†xT,
[

T†χ̂T, ρb(t)
]]

+
[

T†xT,
{

T†Θ̂T, ρb(t)
}]

, (15)

where the Hamiltonian Hb can be written as:

Hb = Ωa†a +
nd

∑
j=0

εj

2

[
σ+e2λ(a−a†)/Ωe−iΔj t + H.c.

]
. (16)

Hence, the dissipator acting on ρb has the same form as in Equation (14), but with transformed
operators, namely T†xT, T†χ̂T, and T†Θ̂T, where T ≡ T(−λ/Ω). Finally, by moving to an interaction
picture with respect to Hb,0 = (Ω − ν̃)a†a − ω̃σz/2 and expanding the exponential in Equation (16)
(the latter requires that |2λ/Ω|

√
〈(a + a†)2〉 � 1 for truncating the exponential to a finite number of

terms), we arrive at a Hamiltonian containing multiphoton interaction terms. The latter condition is
commonly known as the Lamb-Dicke regime. In addition, we consider the driving frequencies to be
Δj = ±nj(ν̃ − Ω)− ω̃ with |Ω − ν̃| � εj/2, so that one can safely perform a rotating-wave approximation
keeping only those terms that are resonant, i.e., time independent (see Appendix B for further details
of the calculation). Note that, as Hb is similar to the Hamiltonian describing an optical trapped ion
under the action of lasers driving vibrational sidebands [48], the procedure to obtain Jaynes-Cummings
or quantum Rabi models is analogous to those cases [35,49,50]. In this manner, we can approximate
HI

b,1 ≡ U†
b,0Hb,1Ub,0 ≈ Hn, where Hn contains the aimed at multiphoton interactions,

Hn =
ω̃

2
σz + ν̃a†a + ∑

j∈r

εj(2λ)nj

2Ωnj nj!
[
σ+anj + H.c.

]
+ ∑

j∈b

εj(2λ)nj

2Ωnj nj!

[
σ+(−a†)nj + H.c.

]
. (17)

Note that the sets r and b encompass the terms with amplitude εj driving red- and blue-sidebands,
that is those terms in Equation (5) with frequency Δj∈r = +nj(ν̃ − Ω)− ω̃ and Δj∈b = −nj(ν̃ − Ω)− ω̃.
Each of these drivings will contribute with a multiphoton interaction, either σ+anj + H.c. for j ∈ r or
σ−anj + H.c. for j ∈ b, which produce transitions between the states |m〉 |g〉 ↔

∣∣m ∓ nj
〉
|e〉. We stress that
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for a time-independent spin-boson model, as given in Equations (1)–(4) (or equivalently with nd = 0 in
HS,d as given in Equation (5), one obtains a single n-photon [anti]-Jaynes-Cummings interaction term,
σ+an + H.c. [σ+(−a†)n + H.c.], by choosing Δ0 = n(ν̃ − Ω)− ω̃ [Δ0 = −n(ν̃ − Ω)− ω̃] in the original
spin-boson Hamiltonian HSB. Thus, one needs the knowledge of the relevant bosonic frequency Ω to
simulate multiphoton interaction terms properly.

In order to show how the dissipative part transforms, it is advisable to introduce the time-dependent
unitary operator:

Φ = U†
b,0T†Ua,0. (18)

Then, one can see that, defining χ̃ = ΦχΦ†, Θ̃ = ΦΘΦ† and x̃ = Φ(a + a†)Φ†, the resulting master
equation for ρn(t) is:

ρ̇n(t) = −i[Hn, ρn(t)]− [x̃, [χ̃, ρn(t)]] + [x̃, {Θ̃, ρn(t)}] (19)

where the state ρn(t) of the multiphoton model is related to the original spin-boson upon the reaction
coordinate mapping, ρS+RC(t), through a unitary transformation:

ρn(t) ≈ ΦρS+RC(t)Φ†. (20)

From the previous expression, it follows that the purity of the total state ρS+RC and that of ρn are
approximately equal. Moreover, the reduced spin state in the different frameworks are related according
to TrB[ρSB(t)] = TrRC[ρS+RC(t)] ≈ TrRC[Φ†ρn(t)Φ], where TrB[·] and TrRC[·] denote the trace over the
environment degrees of freedom and reaction coordinate, respectively. In this manner, having access to
the spin degree of freedom, one can have access to the dissipative spin dynamics dictated by the master
Equation (19) under a multiphoton Hamiltonian Hn, given in Equation (17), whose parameters can be
tuned. In addition, we remark that the initial state at t0 = 0 in the multiphoton frame is related to that of
the spin-boson model as ρn(0) = T†ρS+RC(0)T.

At this stage, a few comments regarding the validity of Equation (20) are in order. While the steps
performed from HS+RC to Hb are exact, Hn is attained in an approximate manner. The good functioning
of the simulation depends on how these approximations are met. That is, Equation (20) holds within the
Lamb-Dicke regime |2λ/Ω|

√
〈(a + a†)2〉 � 1 and for parameters satisfying |Ω − ν̃| � εj/2 ∀j, so that one

can perform a rotating-wave approximation. As a consequence, this approximation also sets a constraint on
the total duration for a good simulation (see Appendix B). Note that, as the parameters λ and Ω are directly
related to the original spin-boson spectral density, these conditions set constraints onto the accessible
parameters, as well as on the temperature of the environment. Furthermore, in order to observe coherent
multiphoton dynamics, the noise rates in Equation (19) must be small compared to the parameters involved
in Hn. For the considered shape of JSB(ω), this translates into Γ � ν̃, g̃n, where g̃n = ε0(2λ)n/(2Ωnn!) for
an nd = 0 and Δ0 = ±n(ν̃ − Ω)− ω̃ (cf. Equation (17).

Finally, we comment that the previous scheme can be carried out beyond the Lamb-Dicke regime [44].
Admittedly, when the Lamb-Dicke approximation does not hold, the Hamiltonian Hn is no longer a good
approximation to the dynamics. In this case, the Hamiltonian Hn must be replaced by a suitable nonlinear
Jaynes-Cummings or quantum Rabi model, whose coupling constants crucially depend on the Fock-state
occupation number in a nonlinear fashion [51–54]. These nonlinear, yet multiphoton Hamiltonians appear
then as a good approximation to Hb, and thus to HSB whenever |2λ/Ω|

√
〈(a + a†)2〉 � 1 is not fulfilled,

as recently shown in [44]. In this article, however, we will constrain ourselves to parameters within the
Lamb-Dicke regime.
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3.2. Structured Environments

As previously mentioned, the simulation of multiphoton spin-boson interactions is not restricted
to a determined form of JSB(ω). Here, we show the derivation of the procedure to obtain an effective
multiphoton Hamiltonian when the initial spin-boson model features a more complicated interaction
with the environment. For simplicity, we consider that JSB(ω) can be split in two parts, JSB(ω) =

JSB,1(ω) + JSB,2(ω), although its generalization to more is straightforward. The first contribution, JSB,1(ω),
is considered here to be suitable for the realization of multiphoton interactions as described in Section 3.1.
In addition, we will work under the assumption that the environment degrees of freedom corresponding
to JSB,2(ω) can be treated and simplified using again a collective or reaction coordinate, as sketched
in Figure 1c.

As discussed previously, we identify a collective coordinate for each of the contributions to the
spectral density JSB(ω). In this manner, we augment the system to include both reaction coordinates,
denoted here by S′ = S + RC1 + RC2. Hence, its Hamiltonian is given by:

HS′ = HS,d + Ω1a†
1a1 + λ1σx(a1 + a†

1) + Ω2a†
2a2 + λ2σx(a2 + a†

2), (21)

where HS,d is the original spin Hamiltonian, which may contain spin rotations, introduced in Equation (5),
while the subscripts denote the corresponding reaction coordinate. The parameters λi and Ωi are
determined by the spectral density JSB,i(ω). The dynamics of the augmented system S′ is governed
by the following master equation:

ρ̇S′(t) = −i [HS′ , ρS′(t)]− [x1, [χ1, ρS′(t)]]− [x2, [χ2, ρS′(t)]]

+ [x1, {Θ1, ρS′(t)}] + [x2, {Θ2, ρS′(t)}] , (22)

where xi = ai + a†
i for i = 1, 2, and χi and Θi are defined in analogy to Equations (11) and (12).

In order to find a suitable transformation to realize multiphoton interaction terms from HS′ ,
we proceed in a similar manner as for a single reaction coordinate. That is, we first move to a rotating frame
where HS′ ≡ HI

a,1, with Ha = Ha,0 + Ha,1 and Ha,0 = −Δ0/2σx. Therefore, the transformed Hamiltonian
reads as:

Ha = ∑
k=1,2

Ωka†
k ak + λkσx(ak + a†

k) + ∑
j

εj

2
[
cos Δjtσz + sin Δjtσy

]
. (23)

The next step is to perform the transformation using the unitary operator T(α). As previously
mentioned, we consider that the first reaction coordinate is suitable for the quantum simulation of
multiphoton interaction terms, due to the form of its spectral density. This argument enables one to
choose α ≡ −λ1/Ω1, hence Hb ≡ T†(−λ1/Ω1)HaT(−λ1/Ω1). This transformation acts trivially on the
second reaction coordinate, but it does affect the coupling between the latter and the spin. Finally, if we
move to an interaction picture with respect to Hb,0 = (Ω1 − ν̃1)a†

1a1 − ω̃σz/2, we obtain the Hamiltonian
Hn,2 ≈ HI

b,1 ≡ U†
b,0Hb,1Ub,0,

Hn,2 =
ω̃

2
σz + ν̃a†

1a1 + Ω2a†
2a2 − λ2σz(a2 + a†

2) + ∑
j∈r

εj

2nj!

(
2λ1

Ω1

)nj [
σ+a

nj
1 + H.c.

]

+ ∑
j∈b

εj

2nj!

(
2λ1

Ω1

)nj [
σ+(−a†

1)
nj + H.c.

]
, (24)
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where we have considered Δj = ±nj(ν̃ − Ω1) − ω̃ and assumed the Lamb-Dicke regime

|λ1/Ω1|
√
〈(a1 + a†

1)
2〉 � 1, and |Ω1 − ν̃| � εj/2 to perform a rotating-wave approximation. Note that,

while the multiphoton terms are identical to those of Hn in Equation (17), the second reaction coordinate
interacts with the spin degree of freedom. Indeed, depending on the parameters of Hn,2, the effect of such
an interaction may turn effectively into non-Markovian effects for the reduced state of the spin and first
reaction coordinate, ρn = Tr2[ρn,2]. The final master equation governing the dynamics of ρn,2 is:

ρ̇n,2(t) = −i[Hn,2, ρn,2(t)]− [x̃1, [χ̃1, ρn,2(t)]]− [x̃2, [χ̃2, ρn,2(t)]]

+
[
x̃1,

{
Θ̃1, ρn,2(t)

}]
+

[
x̃2,

{
Θ̃2, ρn,2(t)

}]
(25)

where the operators involved are defined as in the case involving a single reaction coordinate
(cf. Equation (19)). It is worth stressing that the relation between the states given in Equation (20) still
holds. From the previous derivation, one can observe that the extension to more collective coordinates
is straightforward.

4. Examples and Numerical Simulations

In this section, we provide examples of the previously-explained general theoretical framework
to investigate the performance of the quantum simulation of different multiphoton Hamiltonians Hn,
as well as to discuss the limitation in the parameter regime for their realization. In particular, in Section 4.1,
we first consider the case in which the original spin-boson model interacts just with a discrete number
of modes, which can be viewed as a limit of vanishing spectral broadening Γ → 0. This scenario
will allow us to examine the validity of the required approximations without the effect of dissipation.
Then, in Section 4.2, we will consider Γ 
= 0, where the reaction-coordinate mapping appears as a key
step to realize a desired multiphoton Jaynes-Cummings model. The dynamics of each model is obtained
by a standard numerical integration (fourth-order Runge-Kutta) of the corresponding master equation,
namely Equations (10) and (19) for the spin-boson and multiphoton Jaynes-Cummings model, respectively.
Note that for a structured environment, the master equations are given in Equations (22) and (25).

In all cases, we assess the performance of the realization of the targeted multiphoton Jaynes-Cummings
models by means of the fidelity F(t) between two states,

F(t) = Tr

[√√
ρ1(t)ρ2(t)

√
ρ1(t)

]2

. (26)

In particular, we will analyse to what extent is the relation given in Equation (20) satisfied. In other
words, we will compare the aimed state of a multiphoton Jaynes-Cummings model ρn(t) with the one
retrieved using the analogue simulator, ΦρS+RC(t)Φ†, that is ρ1(t) → ρn(t) and ρ2(t) → ΦρS+RC(t)Φ†

in Equation (26). We remark that when two reaction coordinates are included, the state ρn(t) obeys the
master equation given in Equation (25), whose Hamiltonian is Hn,2, Equation (24), while ρS+RC(t) must be
replaced by ρS′ , as explained in Section 3.2.

In addition, we will show that the theoretical framework allows us to realize non-Markovian
multiphoton Jaynes-Cummings models. Among the different measures for non-Markovianity [55],
we resort to the one based on the trace distance [56], defined as:

D(ρx, ρy) =
1
2

Tr
[∣∣ρx − ρy

∣∣] . (27)
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where |A| =
√

A† A. Then, non-Markovian evolutions can be characterized as those for which
D(ρx(t), ρy(t)) increases during certain time intervals, that is for those for which the time-derivative
of the trace distance for a pair of states ρx,y,

σ(t, ρx,y) =
d
dt
D(ρx(t), ρy(t)), (28)

is σ(t, ρx,y) > 0. In general, one has to maximize over all possible pairs of states ρx,y in order to find
a suitable non-Markovian measure [56]. For our purpose, however, it will be sufficient to show that
σ(t, ρx,y) > 0 for a certain pair of states in a multiphoton Jaynes-Cummings model and that it can
be retrieved using a spin-boson model. That is, we calculate σ(t, ρx,y) using two initial states ρx,y in
the multiphoton Jaynes-Cummings model and corroborate that σ(t, ρx,y) is obtained to a very good
approximation when the states ρx,y(t) are replaced by their simulated ones using the spin-boson model,
namely ρx(t) → Φρx,S+RC(t)Φ† and ρy(t) → Φρy,S+RC(t)Φ†. In this manner, we offer a proof-of-principle
that non-Markovian multiphoton models can be realized.

4.1. Dissipationless Multiphoton Jaynes-Cummings Models

We start considering the simplest case, namely when the spin-boson model simply involves the
interaction with a discrete number of modes. This corresponds to either considering Γ → 0 in the
underdamped spectral density JSB(ω) or, equivalently, assuming that dissipation effects are sufficiently
small so that they can be discarded. Note that for a single bosonic mode with Γ = 0, the spin-boson model
adopts the form of a generalized quantum Rabi model, which is indeed HS+RC, as given in Equation (7).
Recall that in this particular case, HSB ≡ HS+RC, as there are no further modes in the system. In particular,
we set nd = 0 in Equation (5) as we aim to realize a single multiphoton Jaynes-Cummings interaction.
The Hamiltonian for a nJCM can be written in general as:

HnJCM =
ω̃

2
σz + ν̃a†a + g̃n

(
σ+an + σ−(a†)n

)
. (29)

At resonant condition, ω̃ = nν̃, the coupling constant g̃n fixes the time required to transfer the
population from the state |e〉 |0〉 to |g〉 |n〉, denoted as τn = π/(2g̃n

√
n!). Both are related to the spin-boson

parameters as (cf. Equation (17)):

g̃n =
ε0

2 n!

(
2λ

Ω

)n
(30)

τn =

√
n!

ε0

(
Ω
2λ

)n
. (31)

Clearly, as 2λ/Ω must be small to lie within the Lamb-Dicke regime, the coupling g̃n decreases
considerably for increasing n, requiring longer evolution times under the spin-boson Hamiltonian to
observe a significant effect, that is an evolution time of the order of τn.

In Figure 2, we show the results for the realization of 2JCM and 3JCM models using a spin-boson
model interacting with a single bosonic mode. In order to observe the paradigmatic Rabi oscillations
between the states |e〉 |0〉 and |g〉 |n〉, we choose ρS+RC(0) = |−〉 〈−| ⊗ ρth

RC as an initial state for the
spin-boson model, where ρth

RC is a thermal state at temperature β−1 for the reaction coordinate mode,
containing nth = (eβΩ − 1)−1 bosons. Recall that, as we consider here a single spectral density with Γ = 0,
the reaction coordinate mode is simply the unique mode that interacts with the spin degree of freedom.
In this manner, the initial state for the simulated multiphoton models reads as ρnJCM(0) = T†ρS+RC(0)T,
which approximately amounts to ρnJCM(0) ≈ |e〉 〈e| ⊗ |0〉 〈0| for sufficiently low temperature and small
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2λ/Ω. The chosen parameters for the simulation of the 2JCM, plotted in Figure 2a,b, are πα = ε0 = 0.02ω0;
recalling that Ω = ω0, it results in 2λ/Ω = 0.2. Choosing ν̃ = 10−3Ω and ω̃ = 2ν̃, the coupling in 2JCM
amounts to g̃2 = 0.2ν̃. The initial reaction-coordinate thermal state, ρth

RC, contains nth = 10−3 bosons.
In Figure 2b, we show how the quantum simulation of the 2JCM model deteriorates for increasing number
of bosons, as a large nth will eventually break down the Lamb-Dicke regime.

Figure 2. Dynamics of the simulated multiphoton Jaynes-Cummings models, n = 2 (top) and n = 3
(bottom). In Panels (a) and (c), we show the targeted dynamics (solid lines) and the one obtained using
the spin-boson Hamiltonian (points) for

〈
a†a

〉
and 〈σz〉, as indicated in the plots and as a function of

the time rescaled by τn (Equation (31)). In Panels (b) and (d), we plot the infidelity 1 − F(t) between
the ideal ρnJCM(t) state and its approximated one ΦρS+RC(t)Φ† for different conditions, namely in
(b) for different temperatures (or mean occupation number nth) and in (d) for different values of ε0/Ω.
See Section 4.1 for further details regarding the parameters and states considered in the simulation. JCM,
Jaynes-Cummings model.

For the 3JCM, we choose again πα = 0.02ω0, which leads to 2λ/Ω = 0.2. Then, we select the aimed
coupling strength of the multiphoton interaction to be g̃3 = 0.1ν̃ with ω̃ = 3ν̃, while we vary ε0/ω0.
The temperature is set to βΩ ≈ 100 so that ρth

RC ≈ |0〉 〈0|. As in the previous case, the dynamics are well
retrieved; see Figure 2c, where we have set ε0/ω0 = 2 · 10−3. Note however that, as a consequence of
the rotating-wave approximation performed to achieve a resonant third order (see Appendix B and cf.
Equation (17)) and due to the longer times required to simulate a 3JCM compared to the 2JCM, the condition
|Ω − ν̃| � ε0 must be better satisfied. Indeed, for ε0/ω0 = 10−2, we already see a clear departure from
the targeted dynamics, as indicated by a large infidelity 1 − F(t) � 10−1, as shown in Figure 2d.

In the following, we consider a spin interacting with two bosonic modes, again with Γ1,2 = 0.
As explained in Section 3.2, we perform the map onto the first bosonic mode to attain a multiphoton
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interaction. Upon suitable transformations and approximations, the spin-boson model will take the form of
a multiphoton Jaynes-Cummings model HnJCM,2, where the subscript 2 indicates the presence of a second
reaction coordinate in the system. The Hamiltonian HnJCM,2 reads as:

HnJCM,2 =
ω̃

2
σz + ν̃a†

1a1 + Ω2a†
2a2 + g̃n

(
σ+an

1 + σ−(a†
1)

n
)
− λ2σz(a2 + a†

2). (32)

In this manner, the spin exchanges n quanta with the first bosonic mode as in HnJCM, while the
last term effectively shifts the spin frequency depending on the state of the second mode. The reduced
state for the spin and first bosonic mode is given then by ρnJCM(t) = Tr2[ρnJCM,2(t)]. Indeed, due to
the interaction with the second bosonic mode, the multiphoton Jaynes-Cummings model may exhibit
non-Markovian features. For that, we consider the spin-boson Hamiltonian HS′ given in Equation (21),
which then approximately realizes HnJCM,2. In particular, we select Δ0 = −2Ω1, so that the simulated
model involves two-photon interaction terms, i.e., a 2JCM. The results are plotted in Figure 3, while the
parameters are παi = 0.02Ωi such that 2λi/Ωi = 0.2 for i = 1, 2, ε0/Ω1 = 10−2. The coupling strength
in H2JCM,2 is given by g̃2 = 0.2ν̃ with ν̃ = Ω2. As in the single-mode case, Rabi oscillations will be
clearly visible selecting ρS′(0) = |−〉 〈−| ⊗ ρth

RC1
⊗ ρth

RC2
. After its transformation, this state corresponds

approximately to an initial spin state |e〉 in the nJCM frame. In the same manner, in order to analyse the
emergence of non-Markovian behaviour, we consider the initial states |g〉 〈g| and |e〉 〈e| for the spin in HS′ .
This implies initial spin states |±〉 in the nJCM frame, which for pure dephasing noise, it has been shown to
be the pair of states maximizing σ(t) [56]. The results plotted in Figure 3 have been performed considering
a sufficiently low temperature such that ρth

RC1,2
≈ |0〉 〈0|. We then compute the trace distance D(ρx, ρy)

using the states ρx,y(t) resulting in tracing out the second mode, Tr2[ρ2JCM,2(t)], for the two different initial
states ρ2JCM,2(0) ≈ |±〉 〈±| ⊗ ρth

RC1
⊗ ρth

RC2
. As shown in Figure 3b, the time-derivative of the trace distance,

σ(t), becomes positive during certain intervals, a clear indication of the non-Markovian behaviour of the
simulated multiphoton Jaynes-Cummings model. In addition, we also calculate the non-trivial evolution
of the purity for the states ρS+RC1(t) and ρS(t) = TrRC1 [ρS+RC1(t)], which is shown in Figure 3c. According
to our theoretical framework, their purity is approximately equal to that of ρ2JCM(t) and the reduced
spin state upon tracing both bosonic degree of freedom in the 2JCM, Tr[ρ2JCM(t)], respectively. Finally,
the infidelity 1 − F(t) between the targeted state ρ2JCM,2(t) and its reconstructed one ΦρS+RC1+RC2(t)Φ

†

in Figure 3d.

Figure 3. Cont.
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Figure 3. Non-Markovian dynamics for a 2JCM and its simulation using a spin-boson model HS′ . In Panel
(a), we show the dynamics for the expectation values 〈a†

i ai〉 with i = 1, 2 and 〈σz〉 for the target 2JCM
model (solid lines) and its reconstructed values using HS′ (points). The considered initial state reads as
ρS′ (0) = |−〉 〈−| ⊗ ρth

RC1
⊗ ρth

RC2
, with β very large such that ρth ≈ |0〉 〈0|. In (b), we plot the time-derivative

of the trace distance, σ(t), after tracing out the second bosonic mode and considering the initial states
|e〉 and |g〉 for the spin in HS′ , while both reaction coordinates find themselves in their vacuum. Clearly,
σ(t) > 0 during certain intervals, revealing the non-Markovianity introduced due to the interaction with
the second mode. Panel (c) shows the evolution of purity for the state upon tracing the second mode,
Tr[ρ2

S+RC1
(t)] and for the reduced state of the spin, Tr[ρ2

S(t)], for the same case shown in (a). In Panel (d),
we compare the infidelity 1 − F(t) between the ideal state and the simulated one using HS′ for the three
different initial states employed here. We refer to Section 4.1 for further details regarding the parameters
and states considered in the simulation.

4.2. Dissipative Multiphoton Jaynes-Cummings Models

We now consider a more realistic scenario in which the spin-boson model interacts with an
environment whose spectral density has an underdamped shape, i.e., JSB(ω) has the form of Equation (8)
with Γ 
= 0. In this manner, we extend the theoretical framework beyond the standard local master
equation description [44]. As explained in Section 3.1, this situation can be mapped using a reaction
coordinate, which now in turn interacts with a Markovian residual environment. The evolution of the state
of the augmented system, spin and reaction coordinate, evolves according to the master equation given in
Equation (10). Indeed, the effect of spectral broadening, Γ 
= 0, introduces dissipation into the simulated
multiphoton Jaynes-Cummings model, whose state now obeys the master Equation (19). We remark
that the performance of the simulated dissipative model is not altered when the effect of dissipation is
taken into account correctly. Nevertheless, whenever Γ � ν̃, dissipation dominates the dynamics, and the
paradigmatic Rabi oscillations will eventually fade away. In Figure 4, we show the results of numerical
simulations aimed to retrieve a 2JCM with different Γ/ν̃ values and for different quantities. As for Figure 2,
we used πα = ε0 = 0.02ω0, so that 2λ/Ω = 0.2. We chose again ν̃ = 10−3Ω and ω̃ = 2ν̃, and therefore,
the coupling in 2JCM amounts to g̃2 = 0.2ν̃, while the temperature is such that ρth

RC contains nth = 10−3

bosons. The spin is initialized in the |−〉 state, so that ρS+RC(0) = |−〉 〈−| ⊗ ρth
RC. In particular, the value

Γ/ν̃ = 2 · 10−1 considered in Figure 4a already produces a significant departure from the Rabi oscillation
between the states |e〉 |0〉 and |g〉 |2〉 in the dissipationless 2JCM (cf. Figure 2a for Γ = 0). Note that
the results plotted in Figure 4a correspond to a critically-damped 2JCM since Γ = g̃2. As plotted in
Figure 4b, the effect of the dissipation is clearly visible in the evolution of the purity for both the total state
(spin plus bosonic mode) and the reduced spin state, namely Tr[ρ2

S+RC(t)] and Tr[ρ2
S(t)]. As in previous

cases, the purity of these states is directly related to those of the simulated model as a consequence of
the relation ρ2JCM(t) ≈ ΦρS+RC(t)Φ†. Furthermore, Rabi oscillations or population revivals appear in
the evolution of von Neumann entropy, SvN(ρ) = −ρ log2 ρ for the reduced spin state. In particular,
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for an initial state ρnJCM(0) ≈ |e〉 〈e| ⊗ |0〉 〈0| and due to the n-photon interaction with a bosonic degree
of freedom, the spin state oscillates between a pure (SvN = 0) and a maximally-mixed state (SvN = 1)
in a time τn/2. This further corroborates that one can witness the multiphoton transitions of the aimed
multiphoton Jaynes-Cummings model monitoring the spin even without access or control on the bosonic
environment. This is plotted in Figure 4c for different Γ/ν̃ values. Finally, we note that the performance of
the quantum simulation is independent of the dissipation as demonstrated by the good fidelities attained
in these cases (cf. Figure 4d), allowing for the simulation of different parameter regimes in a nJCM.

Figure 4. Dynamics of a dissipative 2JCM using a spin-boson model. In Panel (a), we show the dynamics
of the expectation values of

〈
a†a

〉
and 〈σz〉, as in Figure 2, for the dissipative 2JCM (solid lines) and its

simulation using the spin-boson model (points), for Γ/ν̃ = 2 · 10−1 and ρS+RC(0) = |−〉 〈−| ⊗ ρth
RC with

nth = 10−3. For the same case, we also show in (b) the evolution of the purities for the spin state Tr[ρ2
S(t)]

and for the total state Tr[ρ2
S+RC(t)]. In (c), we compare the different behaviour as Γ/ν̃ varies for the von

Neumann entropy of the reduced spin state, SvN(ρS(t)). The values of Γ/ν̃ are indicated close to each
curve. Finally, the state infidelity 1 − F(t) between the targeted ρ2JCM and its approximate simulation,
ΦρS+RC(t)Φ†, is plotted in Panel (d) for different Γ/ν̃. See the main text for further details on the parameters
employed for the simulation.

5. Conclusions

We have proposed a theoretical scheme to realize multiphoton Jaynes-Cummings models using the
paradigmatic spin-boson model, which contains a continuum of bosonic modes, as an analogue quantum
simulator. While the spin-boson model naturally lacks these multiphoton interaction terms, we make use
of a suitable transformation that approximately maps the spin-boson model into a dissipative multiphoton
Jaynes-Cummings model. Importantly, the parameters of the multiphoton model, as well as the order
of the interaction can be controlled by tuning the frequency splitting and bias parameter of the spin in
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the original spin-boson model. In order to bring the spin-boson model, typically interacting with an
infinite number of bosonic modes, into the form of the aimed multiphoton model, we first rearrange the
environment degrees of freedom using the so-called reaction-coordinate method [22–28]. This method
allows us to include a set of collective bosonic modes into the coherent description of the problem,
which then in turn interact with the residual environment. For certain types of interactions between
the spin and the environment, characterized by the spectral density, the reaction coordinate mapping
emerges as a powerful tool to reduce the complexity of the problem. In particular, for an underdamped
spectral density, the reaction coordinate takes a simple form as it interacts with the residual environment
in a Markovian fashion. The resulting Hamiltonian is then used to generate multiphoton interaction
terms, following the theory explained in [43,44], while the dissipation effects must be transformed
accordingly. Furthermore, we extend the scheme to spin-boson models with structured environments.
In these cases, the original spin-boson Hamiltonian can be mapped onto the one of a spin interacting
with more reaction coordinates. In this manner, we show how to extend the theoretical framework to
account for these additional modes. In particular, due to the presence of two or more reaction coordinates,
the attained multiphoton Jaynes-Cummings model can exhibit non-Markovian features. We perform
numerical simulations starting from the spin plus reaction-coordinate Hamiltonians and aiming to realize
different multiphoton Jaynes-Cummings models. We first perform simulations considering one reaction
coordinate without dissipation to better illustrate the performance of the required approximations to
achieve two- and three-photon Jaynes-Cummings models. We then demonstrate that non-Markovian
multiphoton Jaynes-Cummings models can be indeed attained when a second reaction coordinate is
included, as unveiled by the standard trace distance measure [56]. Finally, we provide numerical
simulations investigating the interplay between spectral broadening, dissipation and the decoherence in
the targeted multiphoton models.

Author Contributions: Conceptualization R.P. and J.C.; investigation, R.P., G.Z., I.A., E.S., M.P. and J.C.; supervision,
E.S., M.P. and J.C.; writing R.P.; writing, review and editing, G.Z., I.A., E.S., M.P. and J.C.

Funding: G.Z. is supported by the H2020-MSCA-COFUND-2016 project SPARK(Grant No. 754507). R.P. and M.P.
acknowledge the support by the SFI-DfEInvestigator Programme (Grant 15/IA/2864). M.P. acknowledges the H2020
Collaborative Project TEQ(Grant Agreement 766900), the Leverhulme Trust Research Project Grant UltraQuTe (Grant
No. RGP-2018-266) and the Royal Society Wolfson Fellowship (RSWF\R3\183013). J.C. acknowledges support
by the Juan de la Cierva Grant IJCI-2016-29681. I.A. acknowledges support by Basque Government Ph.D. Grant
No. PRE-2015-1-0394. We also acknowledge funding from Spanish MINECO/FEDER FIS2015-69983-P and Basque
Government IT986-16. This material is also based on work supported by the U.S. Department of Energy, Office of
Science, Office of Advance Scientific Computing Research (ASCR), Quantum Algorithm Teams (QAT) Program under
Field Work Proposal Number ERKJ333. J.C. and E.S. acknowledge support from the projects QMiCS(820505) and
OpenSuperQ(820363) of the EU Flagship on Quantum Technologies.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study;
in the collection, analyses, or interpretation of data; in the writing of the manuscript; nor in the decision to publish
the results.

Appendix A. Reaction Coordinate Mapping

In this Appendix, we provide the necessary steps for the reaction coordinate mapping, as well as
for the derivation of the master equation given in Equation (10), following closely [24]. As outlined in
Section 3.1, given the Hamiltonian of the spin-boson system HSB = ε0

2 σz +
Δ0
2 σx + σx ∑k fk(ck + c†

k) +

∑k ωkc†
k ck, one can achieve the RC mapping by defining a collective coordinate such that λ(a + a†) =

∑k fk(ck + c†
k), where a and a† are respectively the annihilation and creation operators of the RC. This

transformation leads to a new Hamiltonian where the original system interacts with the residual
environment only through the RC,

H = HS+RC + HRC−E′ + HE′ , (A1)
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where HS+RC is given by Equation (7), while HRC−E′ = (a + a†)∑k gk(bk + b†
k ) + (a + a†)2 ∑k

g2
k

ωk
,

HE′ = ∑k ωkb†
k bk.

The crucial point of this procedure is to find an explicit relation between the spectral density of
the original configuration, i.e. JSB(ω) = ∑k f 2

k δ(ω − ωk), and the analogue quantity of the transformed
system JRC(ω) = ∑k g2

kδ(ω − ωk). In order to obtain this relation, one can rephrase the problem classically.
Indeed, since the spectral density only depends on the interaction between the system and the environment,
one can momentarily regard the spin as a continuous coordinate q subject to a potential V(q). After solving
the corresponding Hamilton equations of motion in the Fourier space, one obtains an equation of the form
L̂SB(z)q̂(z) = −V̂′(z), where L̂SB(z) = −z2

(
1 +

∫ +∞
0 dω

2JSB(ω)
ω(ω2−z2)

)
. Therefore, using the so-called Leggett

prescription, one gets:

JSB(ω) =
1
π

lim
ε→0+

Im
[
L̂SB(ω − iε)

]
. (A2)

One can reproduce the same calculation also after performing the RC mapping and express JRC(ω)

in terms of the corresponding kernel L̂0(z). However, since at this stage, we are just rearranging the
environment in a more convenient way by using a suitable normal mode transformation, the integral
kernel must be the same before and after the mapping; hence, one can use L̂0(z) instead of L̂SB(z) in
Equation (A2). By considering the Ohmic spectral density JRC(ω) = γωe−ω/Λ, one obtains:

JSB(ω) =
4γΩ2λ2ω

(Ω2 − ω2)2 + (2πγΩω)2 . (A3)

It is easy to see that one exactly recovers the underdamped spectral density given by Equation (8)
by simply requiring that γ = Γ/(2πω0), Ω = ω0, and λ =

√
παω0/2. Furthermore, one also needs

to solve the dynamics, i.e., writing down the corresponding master equation for the mapped system,
system plus reaction coordinate. The guiding idea is to treat exactly the coupling between the spin and
the RC, while the interaction between the latter and the residual environment is treated perturbatively
up to the second order. This enables us to rely on the standard Born-Markov approximation, provided
that either the coupling between the augmented system and the residual environment is weak or the
residual environment correlation time is short compared to the relevant time scale of the system. Within
this approximation, one can work out a master equation that, in the Schrödinger picture, reads as:

ρ̇(t) = −i [HS+RC, ρ(t)]−
∞∫

0

dτ

∞∫
0

dω JRC(ω) cos ωτ coth
(

βω

2

)
[A, [A(−τ), ρ(t)]]

−
∞∫

0

dτ

∞∫
0

dω JRC(ω)
cos ωτ

ω
[A, {[A(−τ), HS+RC] , ρ(t)}] ,

where ρ ≡ ρS+RC, A = a + a†, and the residual environment is assumed to be in a thermal state, i.e., ρE′ =

e−βHE′ /TrE′ {e−βHE′ }.
In order to obtain an expression for the interaction picture operators, one can proceed by truncating

the space of the augmented system up to n basis states and numerically diagonalising the Hamiltonian
HS+RC. To this end, let |φn〉 be an eigenstate of HS+RC, i.e., HS+RC

∣∣φj
〉
= ϕj

∣∣φj
〉
; therefore, the operator A

can be expanded as A = ∑jk Ajk
∣∣φj

〉
〈φk|, while in the interaction picture, one has:

A(t) = ∑
jk

Ajkeiξ jkt ∣∣φj
〉
〈φk| , (A4)
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where Ajk =
〈
φj
∣∣ A |φk〉, and ξ jk = ϕj − ϕk. Finally, by plugging Equation (A4) into Equation (A4) and

assuming the imaginary parts to be negligible, one gets the final form of the master equation given
by Equation (10).

Appendix B. Derivation of Hb and Hn

In this Appendix, we show how to obtain the Hamiltonians Hb and Hn, given in Equations (16)
and (17), respectively. In particular, for Hb, the following expressions are needed:

T†(α)a†aT(α) = a†a + |α|2 − σz(aα∗ + a†α),

T†(α)σxT(α) = −σz,

T†(α)σyT(α) = −iD(2α)σ+ + H.c.,

T†(α)σzT(α) = D(2α)σ+ + H.c.,

T†(α)σx(a + a†)T(α) = −σz(a + a†) + 2Re[α].

Thus, the resulting Hamiltonian Hb = T†HaT, with Ha = Ωa†a + λσx(a + a†) + ∑j εj/2(cos Δjtσz +

sin Δjtσy), reads:

Hb = = Ωa†a − Ωσz(aα + a†α∗)− λσz(a + a†) +
nd

∑
j=0

εj

2

[
σ+D(2α)e−iΔj t + H.c.

]
, (A5)

where we have neglected a constant energy shift. Therefore, by selecting α = −λ/Ω, we obtain a simple
Hamiltonian to pursue multiphoton interactions, namely:

Hb = Ωa†a + ∑
j

εj

2

[
σ+e2λ(a−a†)/Ωe−iΔj t + H.c.

]
, (A6)

which is indeed Equation (16). Moving now to an interaction picture w.r.t. Hb,0 = (Ω − ν̃)a†a − ω̃σz/2,
we obtain:

HI
b,1 = ν̃a†a +

ω̃

2
σz + ∑

j

εj

2

[
σ+e−i(Δj+ω̃)te2λ(a(t)−a†(t))/Ω + H.c.

]
(A7)

with a(t) = ae−i(Ω−ν̃)t. Requiring |2λ/Ω|
√
〈(a + a†)2〉 � 1 and selecting Δj = Δ±

n ≡ ±n(ν̃ − Ω)− ω̃,
we resonantly drive multiphoton Jaynes-Cummings interaction terms, while the rest of the terms in the
expansion of the exponential term are off-resonant and rotating with a large frequency compared to its
amplitude, i.e., n|Ω − ν̃| � εj/2 (for zeroth order) where n is the selected order of the interaction σ±an.
In this manner, performing these two approximations, one obtains:

Hn =
ω̃

2
σz + ν̃a†a + ∑

j∈r

εj(2λ)nj

2Ωnj nj!
[
σ+anj + H.c.

]
+ ∑

j∈b

εj(2λ)nj

2Ωnj nj!

[
σ+(−a†)nj + H.c.

]
, (A8)

where Δj∈r = nj(ν̃ − Ω)− ω̃ and Δj∈b = −nj(ν̃ − Ω)− ω̃, which corresponds to Equation (17). The largest
error committed in the previous approximation stems from the zeroth order in the expansion of the
exponential. These contributions are of the form εj/2(σ+einj(Ω−ν̃)t +H.c.), which will produce a significant
effect after a time t ≈ nj(Ω − ν̃)/ε2

j . For a single n-photon interaction term, population transfer occurs in

a characteristic time τn =
√

n!(Ω/2λ)n/ε0 (see Section 4.1). Hence, we can provide a rough estimate for
the duration of a correct simulation of the desired multiphoton Jaynes-Cummings model to be t = kτn

with k ≈ (2λ/Ω)nn(Ω − ν̃)/(ε0
√

n!).
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Abstract: We propose a method to generate nonclassical states of light in multimode microwave
cavities. Our approach considers two-photon processes that take place in a system composed of
N extended cavities and an ultrastrongly coupled light–matter system. Under specific resonance
conditions, our method generates, in a deterministic manner, product states of uncorrelated photon
pairs, Bell states, and W states in different modes on the extended cavities. Furthermore, the numerical
simulations show that the generation scheme exhibits a collective effect which decreases the
generation time in the same proportion as the number of extended cavity increases. Moreover,
the entanglement encoded in the photonic states can be transferred towards ancillary two-level
systems to generate genuine multipartite entanglement. Finally, we discuss the feasibility of our
proposal in circuit quantum electrodynamics. This proposal could be of interest in the context of
quantum random number generator, due to the quadratic scaling of the output state.

Keywords: microwave photons; quantum entanglement; superconducting circuits; circuit quantum
electrodynamics; quantum Rabi model

1. Introduction

The state-of-the-art devices exhibiting quantum behaviour has grown extensively in the last
two decades. Remarkable platforms such as superconducting circuits [1–3] and circuit quantum
electrodynamics (QED) [4,5] have allowed the implementation of microwave quantum photonics [6,7],
where superconducting electrical circuits mimic the behavior of atoms and cavities [8–10]. In this
manner, the capability of tailoring internal circuit parameters to obtain devices with long
coherence times and switchable coupling strengths yielded quantum optics experiments such as
electromagnetically induced transparency [11], photon blockade [12], and lately to manipulate
the parity symmetric of an artificial atom in situ [13] to name a few. A distinctive aspect of
microwave photonics is the inherent nonlinearity coming from Josephson junction devices that makes
possible to build photonic crystals with Kerr and Cross–Kerr nonlinearities much larger than the one
observed in optical devices [14–18]. This allows for enhancing processes such as parametric down
conversion [19–22], and the generation of nonclassical states of light [23–27]. Likewise, the notable
features of superconducting circuits have also triggered a bunch of proposals for microwave photon
generation in systems composed of a large number of cavities. In this context, it is possible to find
proposals for the generation of entangled photon states such as NOON (MOON), corresponding to
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a photonic state where the resonator A has N (M) or zero quanta, entangled with resonator B with zero
or N quanta [28–32] states, studies of correlated photons emitted from a cascade system [33], as well
as the implementation of a controlled NOT gate (CNOT) gate between qubits encoded in a cavity [34],
among other applications [35–37].

On the other hand, circuit QED has also made it possible to achieve light–matter coupling
strengths such as the ultrastrong (USC) [38–43] and deep-strong (DSC) [44,45] regimes of light–matter
coupling [46,47]. In both cases, as the coupling strength between the light and matter becomes comparable
(USC) or larger than the frequency of the field mode (DSC), the rotating wave approximation breaks
down and the simplest model that describes the physical situation is the quantum Rabi model [46,48,49].
This model exhibits a discrete parity symmetry and an anharmonic energy spectrum that provide a set of
resources for quantum information tasks and quantum simulations [50–60].

Unlike the previous proposal based on microwave photonic state generation, where the considered
system works in the single-mode approximation [61–64], and the generation time remains constant
independently of the number of subsystems [65], we propose a method to generate nonclassical states
of light in multimode microwave cavities. Our approach considers two-photon processes taking
place in a system composed of two extended cavities and an ultrastrongly coupled light–matter
system, hereafter called quantum Rabi system. Under specific resonance conditions, our method
allows a deterministic generation of identical photonic quantum states on different modes, which can
be uncorrelated photon state or correlated Bell and W states. Furthermore, we could extend our
protocol to N (up to six) cavities. The extension of our system gives rise to a decrease in the generation
time of the photonic states. This collective effect arises from the form of the effective coupling
obtained in the effective model. In addition, the numerical simulations show that the generation times
decrease in the same proportion as the number of extended cavities increases, reducing the detrimental
effect due to the interaction of the system with the environment. On the other hand, we show the
generation of genuine multipartite entangled states when coupling an ancillary system to each cavity.
Finally, we propose a physical implementation of our scheme considering near-term technology of
superconducting circuits.

This paper is organized as follows: in Section 2, we introduce our physical scheme. In Section 3,
we discuss about the main aspects of the physics of the quantum Rabi system, that is, its parity
symmetry and the underlying selection rules for state transitions. In Section 4, we discuss the
two-photon processes presented in our physical system, and the generation of nonclassical states
of light. In Section 5, we show that our model allows for generating copies of density matrices.
In Section 6, we study swapping processes for the generation of genuine multipartite entanglement.
In Section 7, we present a physical implementation of our method in superconducting circuits. Finally,
in Section 8, we present our concluding remarks.

2. The Model

Let us consider a two-level system of frequency ωq interacting with a quantized electromagnetic
field mode of frequency ωcav in the USC regime. This system is described by the quantum Rabi
Hamiltonian [48,49] (h̄ = 1)

HQRS = ωcava†a +
ωq

2
σz + gσx(a† + a). (1)

Here, a†(a) is the creation (annihilation) boson operator for the field mode, the operators σx and
σz are the Pauli matrices describing the two-level system, and g is the light–matter coupling strength.
In addition, N two-mode resonators [66], each supporting M = 2 modes of frequencies ω�

1 and ω�
2,

are coupled to the edges of the quantum Rabi system through field quadratures. Notice that each mode
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couples to the quantum Rabi system with coupling strengths J�1 and J�2, respectively. This physical
situation will be described by the Hamiltonian

H = HQRS +Hc +HI , (2)

Hc =
N

∑
�=1

(ω�
1b†

�b� + ω�
2c†

� c�), (3)

HI =
N

∑
�=1

[
J�1(b

†
� + b�) + J�2(c

†
� + c�)

]
(a + a†), (4)

where b†
� (b�) and c†

� (c�) are the creation (annihilation) boson operators for the first and second field
mode of the �th cavity, respectively. Notice that the coupling strength between resonators J�1,2 can
be several orders of magnitude smaller than ω�

1,2 [67]. Hence, the counter-rotating terms present in
Equation (4) can be neglected through the rotating wave approximation (RWA) [68] leading to the
following interaction Hamiltonian:

HI =
N

∑
�=1

[
(J�1b� + J�2c�)a† + (J�1b†

� + J�2c†
� )a

]
. (5)

In what follows, we will discuss the features of the energy spectrum of the quantum Rabi system,
that is, its anharmonicity and the internal symmetry arising in the USC regime.

3. Parity Symmetry Z2 and Selection Rules

The energy spectrum of the quantum Rabi system presents interesting features, which promises to
be useful for quantum information processing [50–55]. These features correspond to the anharmonicity
of the energy levels and the selection rules imposed by the Z2 symmetry arising in the USC regime.
In Figure 1, we show the first four energy levels of quantum Rabi system as a function of g/ωcav,
where we see an anharmonic energy spectrum. Moreover, in the quantum Rabi system, it is possible
to define the parity operator P = −σz ⊗ eiπa†a that has a discrete spectrum p = ±1. Notice
that P commutes with the quantum Rabi system Hamiltonian, [HQRS,P ] = 0, thus enabling the
diagonalization of both operators in a common basis {|E, p〉}∞

E=0. We label each quantum state
regarding two quantum numbers, E corresponds to the energy level while p denotes its parity value.
In Figure 1, states with parity +1(−1) are denoted by the continuous orange (dashed blue) line.
As a consequence, the Hilbert space of the quantum Rabi system is divided into two parts, the even
and the odd parity subspaces. This allows, depending on the kind of driving, the possibility of
connecting states with different or equal parity. For instance, it has been proven that drivings like
HD ∼ (a† + a) and HD ∼ σx connect states belonging to different subspaces [55]. This happens
because the matrix element 〈E,±|HD|E′,∓〉 
= 0. Moreover, for a driving like HD ∼ σz, only states
with equal parity can be connected since the matrix element 〈E,±|HD|E′,±〉 
= 0.
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(a)
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Figure 1. (a) energy spectrum of the Hamiltonian in Equation (1) as a function of the coupling strength
g. Blue dashed lines stand for states with parity p = +1. Orange continuous lines correspond to states
with parity p = −1; (b) diagram of the energy levels at g = 0.6 ωcav. In these numerical calculations,
we use ωq = 0.8 ωcav.

4. Two Photon Process Mediated by a Quantum Rabi System

Here, we propose the implementation of a two-photon process mediated by the quantum Rabi
system, which relies on its anharmonicity and the selection rules previously discussed. In particular,
we provide specific resonance conditions between the two-mode cavities and the quantum Rabi system
to achieve the phase matching condition analogue to the usual parametric down-conversion process in
optical systems.

Let us consider the following set of parameters for quantum Rabi system ωq = 0.8 ωcav and
g = 0.6 ωcav. In this case, as shown in Figure 1, the first three energy levels form a cascade Ξ system
similar to Rydberg atoms studied in cavity quantum electrodynamics [69,70]. The ground and second
excited state have parity p = +1, while the first excited state has parity p = −1 (see Figure 1b). Notice
that this behaviour on the energy levels is valid for g < 0.4 ωcav. Otherwise, the parity value of
the lowest energy levels does not resemble a cascade energy configuration. In such a case, it is not
possible to implement a two-photon process. According to the type of interaction of the two-mode
cavities with the quantum Rabi system, see Equation (4), a single photon will not be able to produce
a transition between the second excited state |2,+〉 and the ground state |0,+〉 since it is forbidden by
parity. However, these states can be connected through a second-order process. The latter may occur
when the sum of frequencies of the modes, belonging to a cavity, matches that of the energy transition
between the ground and the second excited state of the quantum Rabi system, i.e., ω�

1 + ω�
2 = ν20.

Moreover, the frequency of each mode must be far-off-resonance with respect to the frequency of
the first excited state ω�

1,2 � ν10. Under these conditions, the intermediate level can be adiabatically
eliminated leading to the effective Hamiltonian

H�
eff = HQRS +Hc +

N

∑
�,�′=1

J �′
� (b†

� c†
�′S− + b�c�′S+), (6)

which describes simultaneous two-photon processes in both cavities. Here, S+ = |2,+〉〈0,+|
corresponds to the ladder operator of the quantum Rabi system in the effective two-level basis.
Furthermore, the effective coupling strength J �′

� is defined as follows:

J �′
� = J�1 J�

′
2 χ01χ21

[
1

Δ1
10

+
1

Δ2
21

]
. (7)

Here, we define the matrix element of the operator a in the quantum Rabi system basis as
χ±

kj = 〈k,+|a|j,−〉 and the quantum Rabi system-mode detuning Δ1,2
kj = ω�

1,2 − νkj. The Hamiltonian
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in Equation (6) gives rise to several parametric down conversion processes mediated by the quantum
Rabi system, i.e., by starting with one excitation on the quantum Rabi system of energy ν20, it may
produce a pair of photons of frequencies ω1 and ω2. The photons generated by this scheme will
distribute on the two-mode cavities according to the relation ω�

1 + ω�′
2 = ν20. Depending on the

number of cavities N, this condition enables us to generate two uncorrelated single-photons (N = 1),
or produce identical entangled states of different frequencies such as Bell states (N = 2) or W states
(N ≥ 3). For the cases, N = {1, 2, 3}, the effective Hamiltonians read

H1
eff = J 1

2
[
b†

1c†
1S− + b1c1S+

]
, (8a)

H2
eff = J 1

2
[
b†

1c†
1 + b†

2c†
2 + b†

1c†
2 + b†

2c†
1
]
S− + H.c, (8b)

H3
eff = J 1

2
[
b†

1c†
1 + b†

2c†
2 + b†

3c†
3 + b†

1c†
2 + b†

1c†
3 + b†

2c†
1 + b†

2c†
3 + b†

3c†
1 + b†

3c†
2
]
S− + H.c. (8c)

The protocol works as follows: we initially consider the entire system in its ground state i.e.,
|Ψ(0)〉 = |0,+〉⊗N

�,�′ |0�, 0�′ 〉. Afterwards, one may excite the quantum Rabi system with a microwave
pulse with frequency ν = ν20. Notice that ν20 is not resonant with the frequency of the two-mode
resonators. Thus, the resonator modes coupled dispersively to the quantum Rabi system remaining
in the vacuum state. This interaction can be modelled by the Hamiltonian HD = Ω cos(ν20t)σz.
Notice that HD preserves the Z2 symmetry of the quantum Rabi system, thus enabling transitions
between states of equal parity. The state of the system, after an interaction time t = π/Ω, is given
by |Ψ(π/Ω)〉 = |2,+〉⊗N

�,�′ |0�, 0�′ 〉. Then, the system evolves under the Hamiltonian (2) for a time
tS = π/(2J 1

2 ), tB = π/(4J 1
2 ), or tW = π/(6J 1

2 ), for generating uncorrelated single photons, pair of
Bell states, or pair of W states, respectively. As a result, the quantum Rabi system excitation generates
two photons distributed on the cavities satisfying the relation ω�

1 + ω�′
2 = ν20. The wave functions of

the system after algebraic manipulation read

|Ψ(π/Ω + π/2J 1
2 )〉S = |+, 0〉 ⊗ |1ω1〉 ⊗ |1ω2〉, (9a)

|Ψ(π/Ω + π/4J 1
2 )〉B = |+, 0〉 ⊗ |Ψ+

ω1
〉 ⊗ |Ψ+

ω2
〉, (9b)

|Ψ(π/Ω + π/6J 1
2 )〉W = |+, 0〉 ⊗ |Wω1〉 ⊗ |Wω2〉, (9c)

where |Ψ+
ωn〉 is the Bell state for photons of frequency ωn distributed over different resonators, that is,

|Ψ+
ωn〉 = 1√

2
[|1ωn〉|0ωn〉 + |0ωn〉|1ωn〉]. In addition, the state |Wωn〉 stands for a W state of a single

photon of frequency ωn distributed over different cavities. For the case of three cavities, |Wωn〉 is given
by [71]

|Wωn〉 =
1√
3

(
|1ωn〉|0ωn〉|0ωn〉+ |0ωn〉|1ωn〉|0ωn〉+ |0ωn〉|0ωn〉|1ωn〉

)
. (10)

This state represents one photon of frequency ωn which can be distributed over three different
cavities In Figure 2, we show the numerical calculations of the above-mentioned protocol. Here,
we compute the population evolution of states |Ψ(0)〉, and states |Ψ〉S, |Ψ〉B, and |Ψ〉W given in
Equation (9). The parametric interaction can produce either uncorrelated photon states of different
frequency or identical entangled states of modes belonging to distinct cavities. Furthermore,
the simulations show that the state generation time decreases as 1/N. This can be explained
by analysing the structure of Equation (8). As the effective Hamiltonians describe a quantum
dynamics in a reduced two-dimensional Hilbert space, the matrix elements between the initial
state |Ψ(0)〉 and |Ψ〉S, |Ψ〉B, and |Ψ〉W are proportional to the normalization of the desired state,
that is,

√
N ×

√
N, where N = 1 stands for single photons, N = 2 for Bell states, and N ≥ 3 for

W states. In other words, the matrix elements of the effective Hamiltonians are proportional to the
number of two-mode cavities. By considering the following parameters for the quantum Rabi system,
ωcav = 2π × 13.12 GHz [38], qubit frequency ωq = 0.8ωcav, and light–matter coupling strength
g = 0.6ωcav, we can estimate |χ10| = 0.8188 and |χ21| = 1.235. In addition, we choose ωn

1 = 0.25ν20,
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ωn
2 = 0.75ν20, Jn

1 = 0.0075ν20, and Jn
2 = 0.0053ν20. In this case, the state generation times are about

tS ≈ 25.10(8) (ns), tB ≈ 12.55(4) (ns), tW ≈ 8.369(4) (ns) for N = 3, and tW ≈ 6.28 (ns) for N = 4
(see Figure 2).

(a) (b)

(c) (d)

Po
pu
la
tio
n

Po
pu
la
tio
n

Figure 2. Population evolution of the Hamiltonian in Equation (2) for initial state |Ψ(0)〉 =

|2,+〉⊗N,M
�,n |0n

� 〉 with cases N = 1 (a), N = 2 (b), N = 3 (c), and N = 4 (d) two-mode cavities.
Blue continuous line is the evolution of the initial state |Ψ(0)〉. (a) orange dotted line denotes
the population of |Ψ〉S = |0,+〉 ⊗ |1ω1 〉 ⊗ |1ω2 〉; (b) green dotted line stands for the population
of |Ψ〉B = |0,+〉 ⊗ |Ψ+

ω1
〉 ⊗ |Ψ+

ω2
〉; and (c) red dotted line stands for |Ψ〉W = |0,+〉 ⊗ |Wω1 〉 ⊗ |Wω2 〉;

(d) purple dotted line stand for the |Ψ〉W = |0,+〉 ⊗ |Wω1 〉 ⊗ |Wω2 〉, where this W contains four modes.
The parameters for these calculations can be found in the main text.

It is interesting to mention that Bell and GHZ states have been proposed to be generated in
coupled systems in the USC regime of cQED [72]. The authors consider the two-level system and the
field modes as separate entities. In such a case, the USC regime only contributes to counter-rotating
terms allowing multi-photon interaction terms. Our work considers the USC system formed by a field
mode and a qubit as a whole. Thus, the properties on the energy spectrum of the USC system allow us
to generate multi-photon states by coupling the USC system to two-mode resonators in a second order
process to specific resonance conditions. Finally, our scheme allows for generating copies of W states
spatially distributed in the two-mode resonator setups.

5. Copies of Density Matrices

In the above section, we have demonstrated that our system can generate identical copies of pure
microwave photon states (N = 1, 2, 3). Here, we demonstrate that even including loss mechanisms our
protocol can still generate copies of density matrices with high fidelity. Since our proposal includes
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an ultrastrongly coupled light–matter system, the dissipative dynamics will be described by the master
equation [73]

ρ̇(t) = i[ρ(t),H] +
N

∑
�=1

κ�D[b�]ρ(t) +
N

∑
�=1

κ�D[c�]ρ(t)

+ ∑
E,E>E′

(ΓEE′
κ + ΓEE′

γ + ΓEE′
γφ

)D[|E, p〉〈E′, p′|]ρ(t). (11)

Here, H is the Hamiltonian of Equation (2) and D[O]ρ = 1/2(2OρO† − ρO†O − O†Oρ) is the
Liouvillian operator. Furthermore, κn

� stands for photon loss rate for each cavity mode. ΓEE′
κ , ΓEE′

γ

and ΓEE′
γφ

are the dressed decay rates associated with the quantum Rabi system, and they are defined

as ΓEE′
κ = κ

ωcav
νEE′ |XEE′ |2, ΓEE′

γ = γ
ωq

νEE′ |σx
EE′ |2 and ΓEE′

γφ
=

γφ

ωq
νEE′ |σz

EE′ |2, where κ, γ and γφ are the
bare photon leakage, relaxation, and depolarizing noise rates, respectively. In the derivation of the
master equation, it has to be assumed that the spectral densities describing the system–environment
interactions correspond to an ohmic bath [74,75]. In this case, the impedance Z(ω) of each circuit
element can be modelled as a resistor [76].

To study the robustness of our protocol under loss mechanisms, first we will examine the
generation of copies of density matrices for the cases of N = 1, 2, 3 two-mode cavities. As mentioned
in the previous section, the whole system is initialized in the state |Ψ(0)〉 = |0,+〉⊗N

�,�′ |0�, 0�′ 〉.
Then, we let the system to evolve under Equation (11) for three different times: tS = π/(2J 1

2 ),
tB = π/(4J 1

2 ), and tW = π/(6J 1
2 ), for N = 1, N = 2, and N = 3 two-mode cavities, respectively.

Once the corresponding density matrix ρ(t) is obtained, we trace over the quantum Rabi system and
modes ω2 (ω1) to obtain the reduced density matrix ρω1 (ρω2 ), which contains only degrees of freedom
associated with the mode ω1 (ω2) distributed on different two-mode cavities. Table 1, first row, shows
the fidelity between both reduced density matrices F (ρω1 , ρω2) = Tr(ρω1 ρω2). These results allow
us to conclude that both quantum states are identical up to 99% fidelity for a single cavity, and up
to 98% fidelity for two and three cavities. Table 1 also shows the fidelities of generating the states
of Equation (9), which is, FS = Tr(ρ(tS)ρS), FB = Tr(ρ(tB)ρS), and FW = Tr(ρ(tW)ρS), where ρ(t)
have been numerically calculated from Equation (11). The high fidelities of our protocol are mainly
due to the fast state generation times as compared with the loss rates. Our numerical calculations
have been carried out with realistic circuit QED parameters at temperature T = 15 mK [77]. For the
quantum Rabi system decay rates, we consider values κ = 2π × 0.10 MHz, γ = 2π × 15 MHz and
γφ = 2π × 7.69 MHz and for the cavities κn

� = κ.
The way to cease the system dynamics once we have obtained the entangled states is to tune the

frequency of the two-level system forming the QRS. In such a case, the QRS becomes far off-resonant
with the two-mode cavities, and the state does not evolve anymore. The time at which the system
maintains the quantum state must be of the order of the decay time of the cavity. We do not expect that
the decay time of the QRS affects this process, due to the fact that the QRS is in its ground state |0,+〉.

Table 1. Summarized fidelity values between the states ρω� obtained through of the master
Equation (17) with the fictitious states ρprobe and ρtensor for the case where the quantum Rabi system is
coupled to n = {1, 2, 3} two-mode cavity.

N = 1 N = 2 N = 3

F (ρω1 , ρω2 ) 0.9898 0.9818 0.9832
FS 0.9892 - -
FB - 0.9945 -
FW - - 0.9904
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6. Entanglement Swapping between Distant Superconducting Qubits

In this section, we study the transfer of entanglement generated into the field modes towards
distant superconducting circuits. Let us consider a pair of two-level systems coupled at the end of each
cavity. As we shall see later in Section 7, our physical implementation will consider λ/4 transmission
line resonators, and superconducting flux qubits to guarantee strong coupling between them. In such
a case, we describe the system with the following Hamiltonian

HES = H+
2

∑
�=1

ωn
q�

2
σz
� +

2

∑
�=1

λ�σ
x
� (b� + b†

� ) + λ
′
�σ

x
� (c� + c†

� ), (12)

where H is the Hamiltonian defined in Equation (2). Moreover, σx
� and σz

� are Pauli matrices
describing the two-level systems, {b�, c�}, are the annihilation boson operators of the extended
cavities. Additionally, λ�, and λ

′
� are the coupling strength between the two-level system with

the first and second field mode cavity, respectively. Depending on whether the two-level systems
are resonant with either mode ω1

� or ω2
� , the process with the coupling strength λ� or λ

′
� becomes

dispersive |ω1
� − ωn

q�| � {λ�, λ
′
�} [78], and therefore we neglect it via the rotating wave approximation.

The following master equation describes the system dynamics

ρ̇(t) = i[ρ(t),HES] +
N

∑
�=1

γ�D[σ−
� ]ρ(t) +

N

∑
�=1

γφ�
D[σz

� ]ρ(t). (13)

The last two terms describe the loss mechanisms acting on the two-level system, i.e., relaxation on
the qubit at a rate γ and depolarizing noise at rate γφ. The entanglement swapping protocol is the
following; we initialize the whole system in its ground state

ρ0 = |0,+〉〈0,+|
N⊗
�,�′

|0�, 0�′ 〉〈0�, 0�′ |
N⊗
�

|g�〉〈g�|. (14)

We dispersively couple the two-level systems with the field modes on the cavities (|ω1,2
� − ωq�| �

(λ�, λ
′
�)) [78]. Then, we drive the quantum Rabi system to prepare it in the second excited state |2,+〉

ρ1 = |2,+〉〈2,+|
N⊗
�,�′

|0�, 0�′ 〉〈0�, 0�′ |
N⊗
�

|g�〉〈g�|. (15)

This state is the initial condition of our scheme. Afterwards, we let the system evolve under the
Hamiltonian in Equation (13). Due to the dispersive qubit–resonator interaction, the two-level systems
do not evolve. After a time t = π/(2Jeff), the density matrix of the system reads

ρ2 = |0,+〉〈0,+|
N⊗
�

|Ψ+
ω�
〉〈Ψ+

ω�
|

N⊗
�

|g�〉〈g�|. (16)

The next step is to avoid the generated photons coming back to the quantum Rabi system.
To achieve it, we tune far-off resonance the quantum Rabi system and the resonators by changing the
qubit frequency that belongs to the quantum Rabi system. Afterwards, we put into resonance the
external two-level system with either ω1

� or ω2
� field modes. In such a case, for a time t = π/(2λ�)

(t = π/(2λ
′
�)), the system evolves to
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ρ3 = |0,+〉〈0,+|
N⊗
�=1

|0ω�
1
〉〈0ω�

1
| ⊗ |Ψω�

2
〉〈Ψω�

2
| ⊗ |Φ〉〈Φ|, (17)

ρ3 = |0,+〉〈0,+|
N⊗
�=1

|Ψω�
2
〉〈Ψω�

2
| ⊗ |0ω�

2
〉〈0ω�

2
| ⊗ |Φ〉〈Φ|. (18)

Here, |Φ〉 = (|g1e2〉+ |e1g2〉)/
√

2 is a Bell state of the pair of qubits. This protocol is illustrated
in Figure 3. On the other hand, Figure 4 shows the real and imaginary part of the reduced density
matrix for the pair of qubits after performing the protocol. As the figure shows, even though the
loss mechanisms act on the system, the entanglement of the modes can be transferred to the qubits
with high fidelity. For the two-level systems coupled to the first mode (ω�

1), the fidelity is F = 0.9960,
and F = 0.9976 when the qubit is resonant with the second mode (ω�

2). This transfer occurs at the time
scale of tS1 = 23.08 [ns] and tS2 = 16.32 [ns], respectively.

Z
UEff

UES

|0,+〉
|0ω1, 0ω1〉
|0ω2, 0ω2〉
|g1〉
|g2〉

|0,+〉
|0ω1, 0ω1〉
|Ψ+

ω2〉

|Φ〉}

Figure 3. Gate sequence for the entanglement swapping protocol. At first, the quantum Rabi system
is initialized from |0,+〉 to |2,+〉 via a driving acting on σz. Afterwards, the system evolves under
the gate Ueff = exp(−itHeff/h̄). Then, the auxiliary two-level systems are tuned to the mode ω1 (ω2).
Thus, the system starts to evolve under HES to entangle the qubits.
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Figure 4. Real and imaginary part of the reduced density matrix composed of the two qubits coupled
to the field mode of frequency ω1 (a) and mode ω2 (b). The fidelity between the simulated state and
the Bell state |Φ〉 = (|eg〉+ |eg)〉/

√
2 is (a) F = 0.9960 and (b) F = 0.9976.
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7. Implementation in Circuit QED

We depict the schematic implementation of our system in Figure 5. The circuit is composed of
a non-uniform λ/2 transmission line resonator of length d galvanically coupled to a four-junction
flux qubit at the middle of the resonator. The non-uniform shape of the resonator produces
an increasing on its inductance in the vicinity of the qubit. In addition, the additional junction
on the flux-qubit in the shared wire also produces an increase on the inductance of the resonator.
As a result, the qubit-resonator coupling strength can achieve the USC regime [38]. Moreover,
at the edges of this λ/2 resonator, one may couple up to six additional λ/4 transmission line
resonator also of length d via capacitances. The capacitive coupling follows the same procedure
as in Ref. [79]. In such a case, the finger pattern between the superconducting metal and the substrate
form the capacitive coupling at the end of these resonators. The orthogonal arrangement between
the two-mode cavity reduces the crosstalk between these resonators, reducing the cavity–cavity
interaction. The Lagrangian representing this situation for N = 2 resonators (extension to more
two-mode resonators is straightforward) reads

L = LQRS + Lc + LI , (19)

where LQRS is the quantum Rabi system Lagrangian constituted by the λ/2 transmission line resonator
coupled to a four-junction flux qubit, Lc is the two-mode λ/4 transmission line resonator Lagrangian,
whereas LI stands for the resonator-resonator coupling Lagrangian obtained from the capacitive
coupling. The quantum Rabi system Lagrangian is given by

LQRS =
∫ d

0
dz

[
c
2
[∂tψ(z, t)]2 − 1

2l
[∂zψ(z, t)]2

]
+

4

∑
k=1

[
CJ,k

2
ϕ̇2

k + EJ,k cos
(

ϕk
φ0

)]
. (20)

Here, ψ(z, t), and ϕk correspond to the flux nodes for the λ/2 transmission line resonator and
the four-Josephson flux qubit, respectively. These variables are related with the voltage drop through
the specific branch component by means the relation ψ(z, t) =

∫ t
−∞ V(t′)dt′ [80,81]. Furthermore,

c and l are the capacitance and inductance per unit length of the resonator, while CJ,k and EJ,k are the
capacitance and energy describing the k-th Josephson junction. The two-mode resonator Lagrangian is
given by

Lc =
N=2

∑
�=1

{∫ d

0
dz

[
c�
2
[∂tφ�(z, t)]2 − 1

2l�
[∂zφ�(z, t)]2

]}
+

Cr

2
[∂tφ1(d, t)]2 +

Cr

2
[∂tφ2(0, t)]2, (21)

where φ�, � = 1, 2 is the flux node describing the �th two-mode resonator. Moreover, c�, and l� stand
for the capacitance and inductance per unit length of the �th two-mode resonator. Furthermore, Cr is
the coupling capacitance between the two-mode resonators with the QRS resonator. Finally, LI is the
interaction Lagrangian given by

LI = −Cr

[
φ̇1(d, t)ψ̇(0, t) + ψ̇(d, t)φ̇2(0, t)

]
. (22)

As the two-level system with the resonator forming the quantum Rabi system is ultrastrongly
coupled, we will expect in principle that the qubit also couples with the two-mode resonators. However,
this does not occur due to the nature of the coupling between the flux-qubit with the transmission
line resonator; as the λ/2 couples to the flux-qubit through the current, the latter should be placed
at the position where the current reaches its maximum to achieve the USC coupling regime. In the
λ/2 resonator, this position corresponds to the centre of the line. Thus, the edges of the QRS resonator
have zero current and the qubit two-mode resonator coupling vanishes. As a result, the two-mode
resonators couple to the QRS only through the resonator.
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Figure 5. Schematic illustration of our superconducting circuit implementation. Here, the quantum
Rabi system is composed of a λ/2 transmission line resonator (grey resonator) interacting with
a superconducting flux qubit located at the middle point to achieve the USC regime. In addition,
the λ/2 resonator is coupled at its edges forming a finger pattern to two-mode transmission lines
(blue resonators) through capacitive coupling. The limitation to keep up to six resonators relies on the
reduction of the crosstalk between the resonators. The crosstalk induces a mutual-inductance effect
that leads to a resonator–resonator coupling given by the following Hamiltonian. Furthermore, at the
end of the two-mode transmission line resonator superconducting flux qubit Q� are coupled.

7.1. Rabi System Hamiltonian

For this derivation, we assume EJ,1 = EJ,2 = EJ , EJ,3 = αEJ and EJ,4 = γEJ . Moreover, the fluxoid
quantization relation on the superconducting loop is given by

ϕ1 − ϕ2 + ϕ3 + ϕ4 = −2π fx, (23)

where fx is the frustration parameter defined as fx = φext/Φ0. On the other hand, we assume that
the Josephson inductance of the fourth junction is smaller than the inductance of the flux-qubit loop,
thus most of the current flowing through the resonator [38]. As a consequence, the qubit acts as
a small perturbation of the transmission line resonator. Thus, the phase difference is given by ϕ4 = Δψ,
where Δψ = ψ(zi, t) − ψ(zi−1, t) corresponds to the phase difference of the λ/2 transmission line
resonator at the position where the four Josephson junction is placed. Thus, the Lagrangian takes the
following form

LQRS =
∫ d

0 dz
[

c
2 [∂tψ(z, t)]2 − 1

2l [∂zψ(z, t)]2
]
+

CJ
2

[
ϕ̇1

2 + ϕ̇2
2 + α(ϕ̇2 − ϕ̇1 − Δψ̇)2 + γΔψ̇2

]

+ EJ

[
cos

(
ϕ1
φ0

)
+ cos

(
ϕ2
φ0

)
+ γ cos

(
Δψ
φ0

)
+ α cos

(
ϕ2−ϕ1+φext−Δψ

φ0

)]
.

(24)

We are assuming the superconducting phase on the loop is well localized, thus the potential
energy can be expanded in powers of Δψ/φ0 [51], allowing us to express the quantum Rabi system
Lagrangian in the following form

LQRS = Lr + Lq + Lqr, (25)
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where Lr is the Lagrangian of the resonator with an embedded junction

Lr =
∫ d

0
dz

[
c
2
[∂tψ(z, t)]2 − 1

2l
[∂zψ(z, t)]2

]
+

CJ(α + γ)

2
Δψ̇ + γEJ cos

(
Δψ

φ0

)
. (26)

Moreover, Lq is the usual three-junction flux qubit Lagrangian [8]

Lq =
CJ

2

[
(1 + α)(ϕ̇1

2 + ϕ̇2
2)− 2αϕ̇2 ϕ̇1

]
+ EJ

[
cos

(
ϕ1

φ0

)
+ cos

(
ϕ2

φ0

)
+ α cos

(
ϕ2 − ϕ1 + φext

φ0

)]
. (27)

Finally, Lqr is the qubit-resonator Lagrangian; this term has two contributions: capacitive and
galvanic coupling, and reads

Lqr = −αCJ(ϕ̇1 + ϕ̇2)Δψ̇ − αEJ

φ0
sin

(
ϕ1 − ϕ2 + φext

φ0

)
Δψ. (28)

In the flux qubit, the capacitive energy is smaller than the inductive energy [38]. Thus, we neglect
the capacitive term, obtaining

Lqr = −αEJ

φ0
sin

(
ϕ1 − ϕ2 + φx

φ0

)
Δψ. (29)

We obtain the Lagrangian for the transmission line resonator by computing its equation of motion.
In such a case, the flux ψ(z, t) obeys the wave equation whose solution for the λ/2 transmission line
resonator is given by

ψ(z, t) = ∑
m
Um(z)Gm(t), (30)

ψ(z, t) = ∑
m

[
Am cos km(z − d/2) + Bm sin km(z + d/2)

]
Gm(t), (31)

where km is the wave vector of the resonator with the embedded junction, which is obtained through
the dispersion relation

km tan
(

kmd
2

)
=

2l
LJ

[
1 −

(
vkm

ωp

)2]
, (32)

with v =
√

1/lc is the transmission line resonator wave velocity, LJ = γφ2
0/EJ is the Josephson

inductance. In addition, ωp = 1/
√

LJCJ is the plasma frequency of the embedded junction. Replacing
the flux ψ(z, t) on the Lagrangian given in Equation (21), we arrive at

Lr = ∑
m

[
ηmĠm(t)2

2
− η2

mω2
mG2

m(t)
2

]
, (33)

where ηm is the effective capacitance [17]. By applying the Legendre transformation, we arrive at the
classical Hamiltonian

Hr = ∑
m

[
Π2

m
2ηm

+
η2

mω2
mG2

m
2

]
. (34)
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Here, Πm = ∂L/∂[Ġm] is the canonical conjugate momenta. We proceed to quantize the
Hamiltonian promoting the following operators:

Πm =

√
h̄

2ηmωm
(a†

m + am), (35)

Gm = i

√
h̄ηmωm

2
(a†

m − am). (36)

Replacing these operators in the Hamiltonian Hr we arrive at the transmission line resonator
quantum Hamiltonian

Hr = ∑
m

h̄ωm

(
a†

mam +
1
2

)
. (37)

Now, let us consider the Lagrangian of the four-junction flux qubit given in Equation (27). Close to
the degeneracy point φx = φ0/2, the system can be truncated to the two lowest eigenstates, whose
Hamiltonian is given by

Hq =
h̄ωq

2
σz, (38)

where ωq =
√

Δ2 + ε2, with Δ the qubit gap, and ε = 2Ip(φx − φ0/2), where Ip is the persistent current
on the superconducting loop. Furthermore, the interacting Lagrangian given in Equation (29) can be
written in the two-level basis, in such case, the quantized Hamiltonian reads

Hqr = i
αEJΔUm

φ0

√
h̄ηmωm

2
S01σx(am − a†

m), (39)

S01 = 〈0|
[

sin
(

ϕ1 − ϕ2 + φx

φ0

)]
|1〉. (40)

Thus, the quantum Rabi Hamiltonian is given by

HQRS = ∑
m

h̄ωma†
mam +

h̄ωq

2
σz + h̄ ∑

m
gmσx(a†

m + am). (41)

Notice that the coupling strength between the transmission line resonator and the artificial atom
depends on two factors: the position at which the two-level system is placed, and the nature of the
coupling, i.e., galvanic or capacitive. In our case, as the artificial atom corresponds to a flux-qubit, it
is coupled to the current on the transmission line resonator. As a consequence, the two-level system
only couples to even modes because the odd modes have a node [39] in the flux qubit position as
illustrated in Figure 6a. The spectrum of the multi-mode Rabi system is depicted in Figure 6b. Notice
that the energy spectrum of the multimode quantum Rabi system preserves the parity symmetry
exhibited by the single mode quantum Rabi system (see Figure 1). Furthermore, for a wide range of
coupling strength g, the low-lying energy states exhibit the same selection rules observed in the single
mode Rabi system. Thus, by adding more complexity to the mediator system (quantum Rabi system),
our proposed generation scheme is still useful due to the preserve of the selection rules on the system:

HQRS = h̄ωcava†a +
h̄ωq

2
σz + h̄gσx(a† + a). (42)
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Figure 6. (a) sketch of the current distribution of the first three resonator modes for the λ/2 transmission
line resonator. The vertical black line corresponds to the position at which the artificial atom is placed.
(b) Energy spectrum of the Hamiltonian in Equation (41) considering the first three field modes. Orange
lines corresponds to energy levels with parity p = +1, whereas blue dashed line stands for energy
levels with parity p = −1.

7.2. Multimode Cavity Hamiltonian

To obtain the Hamiltonian of the two-mode cavities, let us consider the Lagrangian given in
Equation (21) for N = 2 resonators

Lc =
N=2

∑
�=1

{∫ d

0
dz

[
c�
2
[∂tφ�(z, t)]2 − 1

2l�
[∂zφ�(z, t)]2

]}
+

Cr

2
[∂tφ1(d, t)]2 +

Cr

2
[∂tφ2(0, t)]2. (43)

For the specific implementation, we consider boundary conditions defining a λ/4 resonator,
where the current at the ends where the two-mode resonator coupled to the QRS resonator is zero,
and the voltage reaches its maximum. These conditions are given by

−∂zφ1(0, t) = −∂zφ2(d, t) = 0, (44)

∂tφ1(d, t) = ∂tφ2(0, t) = 0. (45)

By solving the wave equation with the previous boundary conditions, we obtain the expression
for the flux on the �th λ/4 transmission line resonator

φ1 = ∑
n

An cos(qn,�z)Gn(t); φ2 = ∑
n

Bn cos qn,�(z − d)Gn(t), (46)

where Gn satisfy the time-dependent part of the wave equation. Moreover, qn,� corresponds to
a quasi-momentum satisfying the following dispersion relation:

qn,� =
1

v�l�Cr
cot(qnd). (47)

By replacing the expression of the fluxes φ1, and φ2 and performing the Legendre transformation,
we arrive at the quantum λ/4 transmission line resonator Hamiltonian

Hc =
N

∑
�=1

∑
n

h̄ω�,n
(

b†
�,nb�,n +

1
2

)
. (48)

Here, the index n runs over all the mode on the transmission line, whereas the index � stands
for the number of multi-mode resonator coupled to the QRS. Notice that in principle all the modes
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of the λ/4 are involved in the system dynamics. However, numerical simulations show that, due to
the resonance condition on our system, the field mode greater than three does not induce dynamics
in the system. Thus, by keeping the notation given in Equation (1), we rewrite the Hamiltonian in
Equation (48) as follows:

Hc =
N

∑
�=1

[
h̄ω�

1

(
b†
�b� +

1
2

)
+ h̄ω�

2

(
c†
� c� +

1
2

)]
, (49)

where ω�
1 and ω�

2 correspond to the frequency of the first and second field mode of the �th λ/4,
respectively. Likewise, b� and c� are the boson operator for the first and second field mode, respectively.

7.3. Complete Model

With the Hamiltonian of the free system already obtained in the previous section, we are able
to write the interacting Hamiltonian of the complete system. Before the application of the Legendre
transformation, the Lagrangian in Equation (22) turns on the interaction Hamiltonian

HI = Cr

[
φ̇1(d, t)ψ̇(0, t) + ψ̇(d, t)φ̇2(0, t)

]
. (50)

By replacing the expression of the fluxes ψ(z, t) and φ�(z, t) already obtained, we arrive at the
quantum interaction Hamiltonian

HI =
N

∑
�=1

∑
m

[
J�,m
1 (b†

� + b�) + J�,m
2 (c†

� + c�)
]
(am + a†

m), (51)

J�,m
1 =

h̄Cr

2

√
1

ηmη̄n,�ωmω�
1

ψ(0)φ1(d), (52)

J�,m
2 =

h̄Cr

2

√
1

ηmη̄n,�ωmω�
2

ψ(d)φ1(0). (53)

Here, η̄n,� is the effective capacitance of the λ/4 transmission line resonator. Notice that capacitive
coupling strength between resonators is commonly at least one order of magnitude smaller than the
bare frequency of the field mode frequency. Thus, for resonator in the Giga Hertz regime, coupling
strength J�,m

1,2 are within the Mega Hertz regime. In the single mode approximation for the QRS
resonator, we obtain

HI =
N

∑
�=1

[
J�1(b

†
� + b�) + J�2(c

†
� + c�)

]
(a + a†). (54)

Thus, the complete system Hamiltonian is given by

H = h̄ωcava†a +
h̄ωq

2
σz + h̄gσx(a† + a) +

N

∑
�=1

[
h̄ω�

1

(
b†
�b� +

1
2

)
+ h̄ω�

2

(
c†
� c� +

1
2

)]

+
N

∑
�=1

[
J�1(b

†
� + b�) + J�2(c

†
� + c�)

]
(a + a†). (55)

To assure that our approximations are valid, we compute the system dynamics for the case of
N = 1 resonator that contains three modes. As we see in Figure 7, due to the third mode, it is not
resonant with the QRS energy transition. This contribution does not affect the generation scheme.
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Figure 7. Population evolution of the Hamiltonian in Equation (2) for the case where the multi-mode
resonator contains three modes. The system is prepared in the state |Ψ(0)〉 = |2,+〉⊗N,M

�,n |0n
� 〉.

The blue continuous line is the evolution of the initial state |Ψ(0)〉. The orange dotted line denotes the
population of |Ψ〉S = |0,+〉 ⊗ |1ω1 〉 ⊗ |1ω2 〉. The parameters for these calculations can be found in the
main text.

7.4. Driving the Superconducting Qubit

We can drive the two-level system by applying a time-dependent magnetic field on the
superconducting loop (see Figure 5). In such case, the energy gap ωq can be expressed as

ωq(t) =
√

Δ2 + ε2(t), (56)

where ε(t) = εDC + εAC cos(ωLt) is the time-dependent energy on the system, which contains DC and
AC contributions [82]. For εDC � εAC, we can write the flux-qubit energy as

ωq =
√

Δ2 + ε2
DC +

εDCεAC√
Δ2 + ε2

DC

cos(ωLt). (57)

Thus, the flux-qubit driving Hamiltonian is given by

Hq(t) =
ωq

2
σz + Ω cos(ωLt) σz. (58)

8. Conclusions

In summary, we have shown the usefulness of the quantum Rabi system to generate photons under
suitable configuration. Based on the selection rules and the anharmonicity present in the quantum
Rabi system, it is possible to find the specific matching condition for producing two-photon processes,
analogous to the observed in the parametric frequency conversion. This condition allows us to generate
in a deterministic manner uncorrelated or correlated photon states, Bell and W states. The protocol
mentioned above, together with available optical to microwave photon converter technologies, may be
a useful resource to perform tasks as distributed quantum computing or quantum cryptography.

On the other hand, the proposed protocol could work as a quantum random number generator
(QRNG) in the microwave regime. Unlike the optical regime where QRNGs are based on single
mode and polarization states of photons, our proposal considers two-mode states of photons.
As a consequence, we observe a quadratic increase in the amount of possible quantum random
numbers that would be generated in comparison with the single-mode case. Moreover, due to the fact
that our system generates simultaneously identical maximally entangled photonic states of different
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frequency, this state resembles a N2-side dice, where each side is associated with the probability to
find the photons of frequency ω1 and ω2 in one of the two modes in N cavities. Thus, the multiphoton
process mediated by the quantum Rabi system occurring on the two-mode cavities provides an efficient
way to produce quantum random numbers. This efficiency relies on two main aspects of our protocol.
The former is concerned with the collective effect producing a decrease of the generation time as the
number of cavities increases, permitting the avoidance of the bias produced by the interaction of the
system with the environment. The latter concerns the multimode configuration of our scheme. As we
previously mentioned, the inclusion of the multimode systems allows us to increase the amount of
possible quantum random numbers as the number of devices required decrease. Finally, we have also
proposed a possible experimental implementation of our scheme considering near-term technology on
circuit quantum electrodynamics in the ultrastrong coupling regime.
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Abstract: We show, in a formal way, how a class of complex quasiprobability distribution functions
may be introduced by using the fractional Fourier transform. This leads to the Fresnel transform
of a characteristic function instead of the usual Fourier transform. We end the manuscript by
showing a way in which the distribution we are introducing may be reconstructed by using
atom-field interactions.

Keywords: quasiprobability distribution functions; fractional Fourier transform; reconstruction of
the wave function

1. Introduction

It has been already shown that quasiprobability distribution functions may be reconstructed by
the measurement of atomic properties in ion-laser interactions [1] and two-level atoms interacting with
quantized fields [2,3]. Such measurements of the wave function are realized usually by measuring
atomic observables, namely, the atomic inversion and polarization [4–7].

Although the first quasiprobability distribution functions were introduced in the quantum
realm [8–12], and are useful among other things to visualize the nonclassicality of states, for instance,
the squeezing of quadratures [13,14], they may be also used to analyze classical signals [15,16].

Ideal interactions, i.e., without taking into account an environment, have shown to lead to the
reconstruction of the Wigner function [3] by taking advantage of its expression in terms of the parity
operator. However, the interaction of a system with its environment [17] leads to s-parametrized
quasiprobability distribution functions [18–20]

F(α, s) =
2

π(1 − s)

∞

∑
k=0

(
s + 1
s − 1

)k
〈k|D†(α)ρD(α)|k〉 (1)

where D(α) = exp(αa† − α∗a), with a and a† the annihilation and creation operators of the harmonic
oscillator, respectively, is the Glauber displacement operator [21]. The state D(α)|k〉 = |α, k〉 is a
so-called displaced number state [22]. Note that, in order to reconstruct a given quasiprobability
function it is needed to displace the system by an amplitude α and then measure the diagonal elements
of the displaced density matrix.

The parameter s defines different orderings and therefore different quasiprobability distribution
functions (QDF). The Glauber-Sudarshan P-function [21,23] is given for s = 1, and is used to obtain
averages of functions of normal ordered creation and annihilation operators; s = −1 gives the Husimi
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Q-function, used to obtain averages of functions of anti-normal ordered creation and annihilation
operators, while s = 0 is used for the symmetric ordering and gives the Wigner function.

Equation (1) may be rewritten as

F(α, s) =
2

π(1 − s)
Tr

{(
s + 1
s − 1

)a†a
D†(α)ρD(α)

}
, (2)

that, by using the commutation properties under the symbol of trace, and if the system is in a pure
state |ψ〉, may be casted into

F(α, s) =
2

π(1 − s)
Tr

{
D(α)

(
s + 1
s − 1

)a†a
D†(α)ρ

}
=

2
π(1 − s)

〈ψ|D(α)

(
s + 1
s − 1

)a†a
D†(α)|ψ〉. (3)

Recent studies have openned the possibility of measuring, instead of observables, non-Hermitian
operators [24]. It would be plausible that such measurements could be related to complex quasiprobability
distributions like the McCoy-Kirkwood-Rihaczek-Dirac distribution functions [9,10,12,25].

In this contribution we would like to introduce other kind of complex quasiprobabilities that,
although they could be introduced simply by taking s as a complex number, we introduce them in a
formal way by considering the fractional Fourier transform (FrFT) [26–28] of a signal. Then, by writing
the Dirac-delta function in terms of its FrFT, we are able to write a general expression for complex
quasiprobability distributions in terms of the Fresnel transform. Indeed, the representation of these
complex quasiprobability distributions in terms of a Fresnel transform implies that they are solutions of
a paraxial wave equation [3]. Finally, by using an effective Hamiltonian for the atom-field interaction,
we show how this quasiprobability distribution function may be reconstructed.

2. Fractional Fourier Transform

Up to a phase, the fractional Fourier Transform of a signal ψ(x) can be written by the
following expression [26–28]

Fω [ψ(x)] = exp
(
−iωâ† â

)
ψ(x) , (4)

that may be expressed in terms of an integral transform as

Fω [ψ(x)] =
∫ +∞

−∞
dx′K(x, x′; ω)ψ(x′), (5)

where

K(x, x′; ω) =
1√
2πi

√
eiω

sin ω
exp

[
i
x2

2
cot ω + i

x′2

2
cot ω − ixx′ csc ω

]
. (6)

Then, if we consider Equation (6) as a propagator, Dirac’s delta distribution function takes
the form

δ(x − x′) =
∫ +∞
−∞ dx′′K(x, x′′;−ω)K(x′′, x′; ω)

= 1
2π sin ω ei x′2

2 cot ω−i x2
2 cot ω

∫ +∞
−∞ dx′′eix′′(x−x′) csc ω

= 1
2π exp

[
i x′2

2 cot ω − i x2

2 cot ω
] ∫ +∞

−∞ dx′′ exp [ix′′(x − x′)] .

(7)

Now, if we apply the fractional Fourier transform to the Dirac delta function we obtain

Fω [δ(x − y)] =
∫ +∞

−∞
dx′K(x, x′; ω)δ(x′ − y) = K(x, y; ω). (8)
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Then, applying the inverse fractional Fourier transform to Equation (8) we obtain an alternative
representation of the Dirac delta distribution function

δ(x − y) = F−ω [Fω [δ(x − y)]] =
∫ +∞

−∞
dx′′K(x, x′′;−ω)K(x′′, y; ω)

=
1

2π
exp

[
i
y2

2
cot ω − i

x2

2
cot ω

] ∫ +∞

−∞
dx′ exp

[
ix′(x − y)

]
. (9)

From the above equation it may be seen that there is a phase multiplying the usual integral
representation of the Dirac delta function, that although could be omitted by using properties of
the delta function, we keep in order to obtain a quasiprobability distribution function as a fractional
Fourier (Fresnel) transform of the characteristic function.

3. Probability Distribution in the Phase Space

We define J (q, p), a probability distribution in the phase space, as

J (q, p) =
∫ +∞

−∞

∫ +∞

−∞
dq′dp′P(q′, p′)δ(q′ − q)δ(p − p′) , (10)

and then, by using Equation (9), this distribution may be rewritten as

J (q, p) =
1

4π2 ei q2
2 cot α−i p2

2 cot β
∫ +∞

−∞

∫ +∞

−∞
dudv eiup−ivq Tr

{
ρ̂eivq̂−iup̂+i p̂2

2 cot β−i q̂2
2 cot α

}
, (11)

that because

eivq̂−iup̂+i p̂2
2 cot β−i q̂2

2 cot α = e−i u2
2 tan βei v2

2 tan αeiu tan βq̂e−iv tan α p̂ei p̂2
2 cot β−i q̂2

2 cot αeiv tan α p̂e−iu tan βq̂ , (12)

Equation (11) takes the form

J (q, p) =
1

4π2 ei q2
2 cot α−i p2

2 cot β
∫ +∞

−∞

∫ +∞

−∞
dudv eiup−ivqe−i u2

2 tan βei v2
2 tan α ×

×Tr
{

ρ̂eiu tan βq̂e−iv tan α p̂ei p̂2
2 cot β−i q̂2

2 cot αeiv tan α p̂e−iu tan βq̂
}

. (13)

Now, by using the equivalence

eiu tan βq̂e−iv tan α p̂ = e
i
2 uv tan α tan βeiu tan βq̂−iv tan α p̂ , (14)

Equation (13) may be casted into the final expression

J (q, p) =
1

4π2 ei q2
2 cot α−i p2

2 cot β
∫ +∞

−∞

∫ +∞

−∞
dudv eiup−ivqe−i u2

2 tan βei v2
2 tan α ×

×Tr
{

ρ̂eiu tan βq̂−iv tan α p̂ei p̂2
2 cot β−i q̂2

2 cot αeiv tan α p̂−iu tan βq̂
}

. (15)

Case cot α = − cot β = π

The above quasiprobability distribution function is defined for a range of parameters α and β,
however, for the sake of simplicity, we will consider the case cot α = − cot β = π.

We may relate the quasiprobability distribution function J (q, p) to the Wigner function, by noting
that, for cot α = − cot β = π, Equation (15) has the form

J (q, p) =
1

4π2i
e

iπ
(

p2
2 +

q2
2

) ∫ +∞

−∞

∫ +∞

−∞
dudv eiup−ivqei u2

2π +i v2
2π Tr

{
ρ̂e−i uq̂

π −i vp̂
π (−1)n̂ei uq̂

π +i vp̂
π

}
. (16)
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According to trace representation of Wigner function [20]

W
( v

π
,− u

π

)
= Tr

{
ρ̂

1
π

e−i uq̂
π −i vp̂

π (−1)n̂ei uq̂
π +i vp̂

π

}
, (17)

we write the distribution J (q, p) as the Fresnel transform of the Wigner function

J (q, p) =
1

4πi
e

iπ
(

p2
2 +

q2
2

) ∫ +∞

−∞

∫ +∞

−∞
dudv eiup−ivqei u2

2π +i v2
2π W

( v
π

,− u
π

)
. (18)

It is easy to show that the quasiprobability distribution (18) can be normalized

∫ +∞
−∞

∫ +∞
−∞ dqdpJ (q, p) = π

2

∫ +∞
−∞

∫ +∞
−∞ dxdy

[
1

2π

∫ +∞
−∞ dpeixp

] [
1

2π

∫ +∞
−∞ dqe−iyq

]
e−i x2

2π −i y2
2π Tr

{
ρ̂ eiyq̂−ixp̂}

= π
2

∫ +∞
−∞

∫ +∞
−∞ dxdy δ(x)δ(y)e−i x2

2π −i y2
2π Tr

{
ρ̂ eiyq̂−ixp̂} = π

2 Tr {ρ̂} = π
2 .

(19)

Therefore, for normalization reasons, the quasiprobability distribution is finally given in the form

J (q, p) =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
du dv eiup−ivqe−i u2

2π −i v2
2π Tr

{
ρ̂ eivq̂−iup̂

}
, (20)

that, by applying the change of variables β = u/
√

2 + iv/
√

2 takes the form

J (α) =
1

2π2

∫
d2β eαβ∗−α∗βe−

i
π |β|2 Tr

{
ρ̂ D̂(β)

}
, (21)

with α = q/
√

2 + ip/
√

2.
From the above expression it is direct to show that the Wigner function

W(α) =
∫

d2βeαβ∗−α∗β{ρD(β)}, (22)

and the function J (α) may be easily related by the differential relation

J (α) = exp
{

i
π

∂2

∂α∂α∗

}
W(α). (23)

The above quasiprobability function may be written as a trace by noting that

1
2π2

∫
d2β exp

(
− i

π
|β|2

)
D̂(β) =

1
2i + π

(
2i − π

2i + π

)n̂
(24)

that leads to the trace representation of J (q, p)

J (q, p) =
1

2i + π
Tr

{
ρ̂ D̂(α)

(
2i − π

2i + π

)n̂
D̂†(α)

}
. (25)

Last equation allows us to show that J (q, p) is correctly normalized, for this we do the
double integration

∫ +∞

−∞

∫ +∞

−∞
J (q, p)dqdp = Tr

{
ρ̂

2
π + 2i

∫
d2αD̂(α)D̂†

(
αeiθ

)
eiθn̂

}
= Tr

{
ρ̂ Â eiθn̂

}
, (26)

where we have defined
eiθ =

2i − π

2i + π
, (27)
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and

Â =
2

π + 2i

∫
d2α ei sin θ|α|2 D̂

(
α
(

1 − eiθ
))

=
1

π2

∫ ∫
d2z1d2z2 |z1〉 〈z2| B(z1, z2, z∗1, z∗2) , (28)

with

B(z1, z2, z∗1, z∗2) =
2

π + 2i

∫
d2α ei sin θ|α|2

〈
z1

∣∣∣ D̂
(

α
(

1 − eiθ
)) ∣∣∣ z2

〉
=

2 〈z1|z2〉
π + 2i

∫ +∞

−∞
dαx exp

(
−

(
1 − eiθ

)
α2

x + αx

((
1 − eiθ

)
z∗1 −

(
1 − e−iθ

)
z2

))
×

×
∫ +∞

−∞
dαy exp

(
−

(
1 − eiθ

)
α2

x + iαy

((
1 − eiθ

)
z∗1 +

(
1 − e−iθ

)
z2

))
(29)

=
2 〈z1|z2〉
π + 2i

π

1 − eiθ

[
−

(
1 − e−iθ

)
z∗1z2

]
=

(
−|z1|2

2
−

∣∣z2e−iθ
∣∣2

2
+ z∗1

(
e−iθz2

))

〈z1|e−iθn̂|z2〉 .

By replacing Equation (29) into Equation (28) we obtain

Â = e−iθn̂ , (30)

that shows that Equation (26) is correctly normalized

∫ +∞

−∞

∫ +∞

−∞
J (q, p)dqdp = Tr

{
ρ̂ e−iθn̂ eiθn̂

}
= Tr {ρ̂} = 1 . (31)

4. Kirkwood Distribution and J (q, p) Distribution

The Kirkwood distribution is defined as [12,25,29,30]

K(q, p) =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
du dv eiup−ivqei uv

2 Tr
{

ρ̂eivq̂−iup̂
}

, (32)

or an alternative way to write it as an expectation value [31] is

K(q, p) =
1√
2π

e
q2
2 +

p2
2 +iqp

〈
−i

√
2p

∣∣∣∣ e
â2
2 ρ̂e−

â† 2
2

∣∣∣∣√2q
〉

. (33)

The Kirkwood function belongs to a class of QDFs that although is complex, still has the
same amount of information as other real QDFs, namely Wigner, Glauber Sudarshan or Husimi
distribution functions.

Being the QDF J (q, p) and Kirkwood distributions complex functions we show now some
differences between them.

4.1. Number State

The Kirkwood K(q, p) and J (q, p) distributions for number state |n〉, are represented by the
following equations

Kn(q, p) =
in

2nn!π
√

2
e−

q2
2 − p2

2 +iqpHn(q)Hn(p) (34)

and

Jn(q, p) =
1

2i + π

(
2i − π

2i + π

)n
exp

(
−π(q2 + p2)

2i + π

)
Ln

(
2π2(q2 + p2)

4 + π2

)
, (35)
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where, Hn(x) and Ln(x) are Hermite and Laguerre polynomials, respectively.

4.2. Superposition of Two Coherent States

Now, we consider a superposition of two coherent states as:

|ψ±〉 =
1√

2 ± 2Re 〈α1|α2〉
(|α1〉 ± |α2〉) , (36)

where αk = qk/
√

2 + ipk/
√

2, such that the Kirkwood K(q, p) and the J (q, p) distributions for the
superposition of two coherent states, |ψ±〉, is given by

J±(q, p) =
1

2i + π

1
2 ± 2Re 〈α1|α2〉

(
exp

(
− π

2i + π

(
(q − q1)

2 + (p − p1)
2
)))

1
2i + π

1
2 ± 2Re 〈α1|α2〉

(
exp

(
− π

2i + π

(
(q − q2)

2 + (p − p2)
2
)))

± 1
2i + π

1
2 ± 2Re 〈α1|α2〉

(
exp

(
i
2
(q (p1 − p2)− p (q1 − q2))

)〈
α2 − α

∣∣∣ eiθ(α1 − α)
〉)

(37)

± 1
2i + π

1
2 ± 2Re 〈α1|α2〉

(
exp

(
− i

2
(q (p1 − p2)− p (q1 − q2))

)〈
α1 − α

∣∣∣ eiθ(α2 − α)
〉)

and

K±(q, p) = 1√
2π

exp
(
− q2

2 − p2
2 +iqp

)
2±2Re〈α1|α2〉

(
exp

(
− 1

2 (q
2
1 + p2

1) + (qq1 − pp1) +
i
2 q1(p1 + 2p) + i

2 p1(q1 − 2q)
))

+ 1√
2π

exp
(
− q2

2 − p2
2 +iqp

)
2±2Re〈α1|α2〉

(
exp

(
− 1

2 (q
2
2 + p2

2) + (qq2 − pp2) +
i
2 q2(p2 + 2p) + i

2 p2(q2 − 2q)
))

± 1√
2π

exp
(
− q2

2 − p2
2 +iqp

)
2±2Re〈α1|α2〉

(
exp

(
− 1

2 (q
2
1 + p2

2) + (qq1 − pp2) +
i
2 q2(p2 + 2p) + i

2 p1(q1 − 2q)
))

± 1√
2π

exp
(
− q2

2 − p2
2 +iqp

)
2±2Re〈α1|α2〉

(
exp

(
− 1

2 (q
2
2 + p2

1) + (qq2 − pp1) +
i
2 q1(p1 + 2p) + i

2 p2(q2 − 2q)
))

,

respectively.
We plot both distribution in Figures 1 and 2. In both figures a more uniform behaviour may be

seen in the QDF J±(q, p) than in the Kirkwood function. In fact, the real and imaginary parts of the
distribution we have introduced here, look like Wigner function for number states (Figure 1) and
Scrhödinger cat states (Figure 2).
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Figure 1. In figures (a,c) we can see the phase space distribution of the real and imaginary parts of the
Kirkwood function for a number state |n = 3〉. In figures (b,d) we see the distribution J (q, p), for the
same number state, again, the real and imaginary parts, respectively.

Figure 2. In figures (a,c) we can see the phase space distribution of the real and imaginary parts of the
Kirkwood function for two superposition of coherent states |ψ+〉 wiht q1 = −q2 = 4 and p1 = p2 = 0.
In figures (b,d) we see the distribution J (q, p), again, the real and imaginary parts, respectively.

5. Reconstruction of Distribution J (α)

It is not difficult to show that the real part of QDF J (α) may be measured. This can be achieved
by measuring the atomic polarization in the dispersive interaction between an atom and a quantized
field [3], whose Hamiltonian reads

H = −χa†aσz, (38)
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with σz = |e〉〈e| − |g〉〈g|, the Pauli matrix corresponding to the atomic inversion operator, where |g〉
and |e〉 represent the ground and excited states of the two-level atom. The parameter χ is the dispersive
coupling constant. The above Hamiltonian yields the evolution operator

U(t) = exp{−iχta†aσz}, (39)

from which we can obtain the evolved wavefunction |ψ(t)〉 = U(t)|ψ(0)〉, that allows the calculation
of averages of different observables.

The average of observable σx = |e〉〈g|+ |g〉〈e| then can be obtained for an arbitrary initial field,
which we conveniently write as |ψF(0)〉 = D̂†(α)|φ(0)〉 and the atom is initially in a superposition of
atomic states, |ψA(0)〉 = 1√

2
(|g〉+ |e〉). Then we write

〈σx(t)〉 =
1
2

(
〈φ(0)|D̂(α) exp{2iχta†a}D̂†(α)|φ(0)〉+ c.c.

)
. (40)

Of course, if in this equation we set t = π/(2χ), we would recover the Wigner distribution
function [3,18,32,33], as 〈

σx

(
π

2χ

)〉
= 〈φ(0)|D̂(α) cos{πa†a}D̂†(α)|φ(0)〉, (41)

is proportional to the s-parametrized quasiprobability distribution function of Equation (2) for
s = 0 [1–3,32,33].

It is also easy to show that the imaginary part of the QDF may be associated to the observable
σy = i(|e〉〈g| − |g〉〈e|)

〈σy(t)〉 =
i
2

(
〈φ(0)|D̂(α) exp{2iχta†a}D̂†(α)|φ(0)〉 − c.c.

)
. (42)

If we set the interaction time t =
arctan 4π

π2−4
2χ , we obtain that

Re{J (α)} ∝ 〈σx〉, Im{J (α)} ∝ 〈σy〉. (43)

Therefore, by measuring the polarizations σx and σy we are able to measure the QDF J (α).

6. Conclusions

We have introduced a set of parametrized (in terms of α and β) quasiprobability distribution
functions, Equation (15), by using the fractional Fourier transform. This has lead us to generalize QDF
to Fresnel transforms of the characteristic function instead of their usual Fourier transforms. We have
also shown how such QDF may be reconstructed in the dispersive atom-field interaction. We have
also given a (differential) relation that allows the calculation of the newly introduced QDF from the
Wigner function.

Finally, we would like to stress that the distribution function we are introducing may be of
importance in problems in which non-Hermitian operators are measured.
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