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some normalised null vectors as well, whereby −→u 1 = ( 5
4 , 3

4 ),
−→u 2 = ( 3

4 , 5
4 ),

−→u 3 = (−3
4 , 5

4 ) and −→u 4 =

(−5
4 , 3

4 ) : θ(−→e 1,
−→
d 1) = ln 2, θ(−→u 1,

−→
d 1) = 0, θ(

−→
d 1,

−→
d 2) = −2 ln 2, θ(−→e 1,−→u 2) = ln 2, θ(−→e 1,−→e 2) =

0, θ(−→e 1,−→u 3) = − ln 2, θ(
−→
d 1,−→u 2) = 0, θ(

−→
d 1,−→u 3) = −2 ln 2, θ(−→e 1,−→u 4) = − ln 2, θ(−→e 1,−→p ) =

ln(p1 + p2), θ(−→e 1,−→u 1) = ln 2, θ(−→u 1,−→p 1) = ln(p1 + p2)− ln 2 ; (cfr. Figure 11).

Figure 8. On orienting the unit circle.

Figure 9. Minkowskian pseudo-lengths.
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Figure 10. The central angles basic curve.

Figure 11. Some examples.

8. Conclusions

The 4D physical space-time of Minkowski with co-ordinates (x, y, z; t) is the 4D pseudo-Euclidean
geometrical space that is the product of a negative definite Euclidean line (R,−dt2) and a
positive definite 3D Euclidean space (R3, dx2 + dy2 + dz2), whereby the time-space scaling
“i seconds = 300 000 kilometers” is taken into account. At any given moment of time t, the angles
between any two directions in the physical 3D Euclidean (x, y, z) space at that moment are their
standard original Euclidean angles; they are algebraically determined in terms of the group of the
Euclidean rotations in a plane around a same point in this plane and they are geometrically measured
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by the Euclidean lengths of corresponding arcs on a Euclidean unit circle. From a natural scientific
point of view there has been no immediate need to be occupied with looking for meaningful angles
between two directions with arbitrary causal characters in planes of Minkowski. However, for two
spacelike directions and geometrically equivalently for two timelike directions in a Minkowskian plane
that belong to a same branch of the Minkowskian unit circle -an Euclidean orthogonal hyperbola-,
their Minkowskian angles classically have been determined algebraically and measured geometrically
by the straightforward adaptation of the traditional Euclidean approaches, now making use of the
Minkowskian rotations with a same center and with Minkowskian lengths of corresponding arcs on a
Minkowskian unit circle.

On the other hand, the algebraical definition in Minkowskian geometry of a proper notion of
angle in the Euclidean way fails for directions that from a center point toward different branches of a
Minkowskian unit circle with this center and also fails when null directions are involved. In the present
paper, a geometrical generalisation of the Euclidean measure of angles between any two directions
as the Euclidean lengths of corresponding arcs on a Euclidean unit circle is given for any two
directions with arbitrary causal characters in a Minkowskian plane, by a well-defined notion of the
Minkowskian angles or pseudo-angles of these two directions. This notion bases on the measurements
of Minkowskian lengths and pseudo-lengths of corresponding parts of a Minkowskian unit circle
and of parts of the asymptotes of this Euclidean orthogonal hyperbola. However imperfect that this
extension of Euclidean angles to Minkowskian angles and pseudo-angles cannot help to be, it does
have qualities of generality and of geometrical naturalness (up to an eventual change of calibration
related to the choice of normalisation of the null vectors). And, of course, the classical Minkowskian
angles between any two spacelike directions and between any two timelike directions within a same
branch of the Minkowskian unit circle do properly fit in well into the above given notion of central
Minkowskian angles and pseudo-angles.
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1. Introduction

Curves, which are the basic objects of study, have attracted much attention from many
mathematicians and physicists [1–3]. Due to the need to observe the properties of special curves, a
renewed interest in curves has developed, such as rectifying curves in different spaces. The space curves
whose position vectors always lie in their rectifying planes are called rectifying curves. B.Y. Chen gave
the notion of rectifying curves in [4]. In [5], the relationship between centrodes of space curves and
rectifying curves was revealed by F. Dillen and B.Y. Chen. In kinematics, the centrode is the path
traced by the instantaneous center of rotation of a rigid plane figure moving in a plane, and it has wide
applications in mechanics and joint kinematics (see [6–9]).

Since B.Y. Chen’s important work, the notion of rectifying curves was extended to other ambient
spaces [10–13]. As we know, regular curves determine the curvature functions and torsion functions,
which can provide valuable geometric information about the curves by the Frenet frames of the original
curves. If space curves have singular points, the Frenet frames of these curves cannot be constructed.
However, S. Honda and M. Takahashi [14] gave the definition of framed curves. Framed curves are
space curves with moving frames, and they may have singular points. They are the generalizations of
not only Legendrian curves in unit tangent bundles, but also regular curves with linear independent
conditions (see [15]).

Inspired by the above work, in order to investigate the properties of rectifying curves with
singular points, we should give the concept of framed rectifying curves. The difficulties arise because
tangent vectors vanish at singular points, so it is impossible to normalize tangent vectors, principal
normal vectors, and binormal vectors in the usual way. Here, we define the generalized tangent vector,
the generalized principle normal vector, and the generalized binormal vector, respectively. Actually,
at regular points, they are just the usual tangent vector, principle vector, and binormal vector. We
obtain moving adapted frames for framed rectifying curves, and some smooth functions similar to
the curvature of regular curves are defined by using moving adapted frames. These functions are
referred to as framed curvature, which is very useful to analyze framed rectifying curves. On this
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Mathematics 2019, 7, 37

basis, we investigate the properties of framed rectifying curves and give some sufficient and necessary
conditions for the judgment of framed rectifying curves. Moreover, we give a method for constructing
framed rectifying curves. In this paper, framed helices are also defined. We discuss the relationship
between framed rectifying curves and framed helices in terms of the ratio of framed curvature. In
particular, the ratio of framed curvature for framed rectifying curves has extrema at singular points. In
addition, we give the notions of the centrodes of the framed curves and circular rectifying curves and
reveal the relationships between framed rectifying curves and these special curves.

The organization of this paper is as follows. We review the concept of the framed curve and define
an adapted frame and framed curvature for the framed curve in Section 2. We provide some sufficient
and necessary conditions for the judgment of framed rectifying curves in Section 3. An important
result, which explicitly determines all framed rectifying curves, is given in Section 4. Moreover, the
relationships between framed rectifying curves and framed helices and framed rectifying curves and
centrodes are given in Sections 5 and 6, respectively. At last, we consider the contact between framed
rectifying curves and model curves (circular rectifying curves) in Section 7.

2. Framed Curve and Adapted Frame

Let R3 be the three-dimensional Euclidean space, and let γ : I → R3 be a curve with singular
points. In order to investigate this curve, we will introduce the framed curve (cf., [14]). We denote the
set Δ2 as follows:

Δ2 = {μ = (μ1, μ2) ∈ R3 ×R3|μi · μj = δij, i, j = 1, 2}.

Then, Δ2 is a three-dimensional smooth manifold. Let μ = (μ1, μ2) ∈ Δ2. We define a unit vector
ν = μ1 × μ2 in R3. This means that ν is orthogonal to μ1 and μ2.

Definition 1. We say that (γ, μ) : I → R3 × Δ2 is a framed curve if 〈γ′(s), μi(s)〉 = 0 for all s ∈ I and
i = 1, 2. We also say that γ : I → R3 is a framed base curve if there exists μ : I → Δ2 such that (γ, μ) is a
framed curve.

Let (γ, μ1, μ2) : I → R3 × Δ2 be a framed curve and ν(s) = μ1(s)× μ2(s). Then, we have the
following Frenet–Serret formula:⎧⎪⎨⎪⎩

μ′
1(s) = l(s)μ2(s) + m(s)ν(s)

μ′
2(s) = −l(s)μ1(s) + n(s)ν(s)

ν′(s) = −m(s)μ1(s)− n(s)μ2(s).

Here, l(s) = 〈μ′
1(s), μ2(s)〉, m(s) = 〈μ′

1(s), ν(s)〉 and n(s) = 〈μ′
2(s), ν(s)〉. In addition, there exists

a smooth mapping α : I → R such that:

γ′(s) = α(s)ν(s).

The four functions (l(s), m(s), n(s), α(s)) are called the curvature of γ. If m(s) = n(s) = 0,
then ν′(s) = 0. In this paper, we consider the case ν′(s) 	= 0. Obviously, α(s0) = 0 if and only if s0 is a
singular point of γ. We can use the curvature of the framed curve to analyze the singular points.

In [14], the theorems of the existence and uniqueness for framed curves were shown as follows:

Theorem 1. Let (l, m, n, α) : I → R4 be a smooth mapping. There exists a framed curve (γ, μ) : I → R3 × Δ2

whose associated curvature of the framed curve is (l, m, n, α).

Theorem 2. Let (γ, μ) and (γ, μ) : I → R3 × Δ2 be framed curves whose curvatures of the framed curves
(l, m, n, α) and (l, m, n, α) coincide. Then, (γ, μ) and (γ, μ) are congruent as framed curves.
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Let (γ, μ1, μ2) : I → R3 × Δ2 be a framed curve with the curvature (l(s), m(s), n(s), α(s)). μ1 and
μ2 are the base vectors of the normal plane of γ(s), as a case similar to the Bishop frame for regular
curves [16]. We define (μ1, μ2) ∈ Δ2 by:(

μ1(s)
μ2(s)

)
=

(
cos θ(s) − sin θ(s)
sin θ(s) cos θ(s)

) (
μ1(s)
μ2(s)

)
.

Here, θ(s) is a smooth function. Obviously, (γ, μ1, μ2) → R3 × Δ2 is also a framed curve, and we have:

ν(s) = μ1(s)× μ2(s) = μ1(s)× μ2(s) = ν(s).

By straightforward calculations, we have:

μ′
1(s) =(l(s)− θ′(s)) sin θ(s)μ1(s) + (l(s)− θ′(s)) cos θ(s)μ2(s)

+ (m(s) cos θ(s)− n(s) sin θ(s))ν(s),

μ′
2(s) =− (l(s)− θ′(s)) cos θ(s)μ1(s) + (l(s)− θ′(s)) sin θ(s)μ2(s)

+ (m(s) sin θ(s) + n(s) cos θ(s))ν(s).

Let θ : I → R be a smooth function that satisfies m(s) sin θ(s) = −n(s) cos θ(s). Assume that
m(s) = −p(s) cos θ(s), n(s) = p(s) sin θ(s), then we have:

ν′(s) = −m(s)μ1(s)− n(t)μ2(s) = p(s)(cos θ(s)μ1(s)− sin θ(s)μ2(s)) = p(s)μ1(s),

μ′
1(s) =(l(s)− θ′(s)) sin θ(s)μ1(s) + (l(s)− θ′(s)) cos θ(s)μ2(s) + (m(s) cos θ(s)− n(s) sin θ(s))ν(s)

=− p(s)ν(s) + (l(s)− θ′(s))μ2(s)

and:

μ′
2(s) =− (l(s)− θ′(s)) cos θ(s)μ1(s) + (l(s)− θ′(s)) sin θ(s)μ2(s) + (m(s) sin θ(s) + n(s) cos θ(s))ν(s)

=− (l(s)− θ′(s))μ1(s).

The vectors ν(s), μ1(s), μ2(s) form an adapted frame along γ(s), and we have the following
Frenet–Serret formula: ⎛⎜⎝ ν′(s)

μ′
1(s)

μ′
2(s)

⎞⎟⎠ =

⎛⎜⎝ 0 p(s) 0
−p(s) 0 q(s)

0 −q(s) 0

⎞⎟⎠
⎛⎜⎝ ν(s)

μ1(s)
μ2(s)

⎞⎟⎠ .

We call the vectors ν(s), μ1(s), μ2(s) the generalized tangent vector, the generalized principle
normal vector, and the generalized binormal vector of the framed curve, respectively, where p(s) =
|ν′(s)| > 0 and q(s) = l(s) − θ′(s). The functions (p(s), q(s), α(s)) are referred to as the framed
curvature of γ(s).

Proposition 1. Let (γ, μ1, μ2) : I → R3 × Δ2 be a framed curve. The relationships among the curvature κ(s),
the torsion τ(s), and the framed curvature (p(s), q(s), α(s)) of a regular curve are given by:

κ(s) =
p(s)
|α(s)| , τ(s) =

q(s)
α(s)

.

Proof. By straightforward calculations, we have:

γ′(s) = α(s)ν(s),
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γ′′(s) = α′(s)ν(s) + α(s)p(s)μ1(s),

γ′′′(s) = (α′′(s)− α(s)p2(s))ν(s) + (2α′(s)p(s) + α(t)p′(s))μ1(s) + α(s)p(s)q(s)μ2(s).

It follows:

|γ′(s)| = |α(s)|,

|γ′(s)× γ′′(s)| = α2(s)p(s),

det(γ′(s), γ′′(s), γ′′′(s)) = α3(s)p2(s)q(s).

Therefore, the relationships are shown by:

κ(s) =
|γ′(s)× γ′′(s)|

|γ′(s)|3 =
p(s)
|α(s)| ,

τ(s) =
det(γ′(s), γ′′(s), γ′′′(s))

|γ′(s)× γ′′(s)|2 =
q(s)
α(s)

.

3. Framed Rectifying Curves

In this section, the framed rectifying curves are defined, and we investigate their properties.

Definition 2. Let (γ, μ1, μ2) : I → R3 × Δ2 be a framed curve. We call γ a framed rectifying curve if its
position vector γ satisfies:

γ(s) = λ(s)ν(s) + ξ(s)μ2(s)

for some functions λ(s) and ξ(s).

Some properties of the framed rectifying curves are shown in the following theorem.

Theorem 3. Let (γ, μ1, μ2) : I → R3 × Δ2 be a framed curve with p(s) > 0. The following statements
are equivalent.

(i) The relation between the framed curvature and the framed curve is as follows:

〈γ(s), ν(s)〉′ = α(s).

(ii) The distance squared function satisfies f (s) = 〈γ(s), γ(s)〉 = 〈γ(s), ν(s)〉2 + C for some positive
constant C.

(iii) 〈γ(s), μ2(s)〉 = ξ, ξ is a constant.

(iv) γ(s) is a framed rectifying curve.
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Proof. Let γ(s) be a framed rectifying curve. By definition, there exist some functions λ(s) and ξ(s)
such that:

γ(s) = λ(s)ν(s) + ξ(s)μ2(s). (1)

By using the Frenet–Serret formula and taking the derivative of (1) with respect to s, we have:

λ′(s) = α(s), λ(s)p(s) = ξ(s)q(s), ξ ′(s) = 0. (2)

From the first and third equalities of (2), we have that 〈γ(s), ν(s)〉′ = λ′(s) = α(s). This proves
Statement (i). Since ξ ′(s) = 0, we can obtain Statement (iii). From (1) and (2), we have that
〈γ(s), γ(s)〉 = λ2(s) + ξ2 = 〈γ(s), ν(s)〉2 + C, C = ξ2 is positive. This proves Statement (ii).

Conversely, let us assume that Statement (i) holds.

〈γ(s), ν(s)〉′ = 〈α(s)ν(s), ν(s)〉+ p(s)〈γ(s), μ1(s)〉 = α(s).

Since p(s) > 0, by assumption, we have 〈γ(s), μ1(s)〉 = 0. This means the curve is a framed
rectifying curve.

If Statement (ii) holds, 〈γ(s), γ(s)〉 = 〈γ(s), ν(s)〉2 + C, where C is a positive constant.
Then, we have:

2〈γ(s), α(s)ν(s)〉 = 2〈γ(s), ν(s)〉(α(s) + p(s)〈γ(s), μ1(s)〉)

and 〈γ(s), μ1(s)〉 = 0. Therefore, γ(s) is a framed rectifying curve. Statement (iii) implies that the
curve is a framed rectifying curve by an appeal to the Frenet–Serret formula.

Remark 1. s0 is a singular point of the framed rectifying curve γ if and only if α(s0) = 0. From (2) and
Statement (ii), we know that the ratio q(s)/p(s) and the distance squared function f (s) have extrema at s0.

4. Construction Approach of Framed Rectifying Curves

In [4], the construction approach of regular rectifying curves is given by B. Y. Chen in Theorem 3,
but it is not suitable for the non-regular case. In this section, a new construction approach is provided,
which can be applied to both regular rectifying curves and non-regular rectifying curves. Moreover,
it explicitly determines all framed rectifying curves in Euclidean three-space. First, we introduce the
notion of the framed spherical curve.

Definition 3. Let (γ, μ1, μ2) : I → R3 × Δ2 be a framed curve. We call γ a framed spherical curve if the
framed base curve γ is a curve on S2.

We show the key theorem in this section as follows.

Theorem 4. Let (γ, μ1, μ2) : I → R3 × Δ2 be a framed curve with p(s) > 0. Then, γ is a framed rectifying
curve if and only if:

γ(s) = ρ(tan2(
∫

|g′(s)|ds + C) + 1)
1
2 g(s), (3)

where C is a constant, ρ is a positive number, and g(s) is a framed spherical curve.

Proof. Let γ be a framed rectifying curve. From Theorem 3, we have 〈γ(s), γ(s)〉 = λ2(s) + ρ2,
where ρ is a positive number. The framed rectifying curve γ(s) can be written as:

γ(s) = (λ2(s) + ρ2)
1
2 g(s), (4)
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where g(s) is a framed spherical curve. By taking the derivative of (4), we have:

γ′(s) = λ(s)α(s)

(λ2(s) + ρ2)
1
2

g(s) + (λ2(s) + ρ2)
1
2 g′(s). (5)

As γ′(s) = α(s)ν(s), g′(s) is orthogonal to g(s). Therefore, Equality (5) implies:

|g′(s)| = | ρα(s)
λ2(s) + ρ2 |,

and we have ∫
|γ′(s)|ds + C = arctan(

λ(s)
ρ

).

Then, λ(s) = ρ tan(
∫ |g′(s)|ds + C), and substituting this equality into (4) yields (3).

Conversely, assume γ(s) is a framed curve defined by:

γ(s) = ρ(tan2(
∫

|g′(s)|ds + C) + 1)
1
2 g(s) (6)

for a constant C, a positive number ρ, and a framed curve g(s) on S2. Let λ̃(s) = ρ tan(
∫ |g′(s)|ds + C)

and λ̃′(s) = α̃′(s). Then,
∫ |g′(s)|ds + C = arctan( λ̃(s)

ρ ). By taking the derivative of this equality,
we get:

ρα̃(s)
λ̃2(s) + ρ2

= |g′(s)| (7)

and:

γ′(s) = λ̃(s)α̃(s)

(λ̃2(s) + ρ2)
1
2

g(s) + (λ̃2(s) + ρ2)
1
2 g′(s). (8)

Equality (7) and Equality (8) imply that |g′(s)| = α̃(s), since g′(s) = λ(s)ν(s). We have
α̃(s) = ±λ(s), λ̃(s) = ±λ(s). Then:

γ(s) = (λ2(s) + ρ2)
1
2 g(s), (9)

which shows that the distance squared function satisfies Statement (ii) in Theorem 3. It follows that
γ(s) is a framed rectifying curve.

Framed rectifying curves include regular rectifying curves and non-regular rectifying curves.
We will give two examples.

Example 1. Let g1(s) = ( 1
2 cos 2s, 1

2 sin 2s,
√

3
2 ), s ∈ (−π

2 , π
2 ), then g1(s) is a space curve on S2. We have

|g′1(s)| = 1. Let ρ = 1 and C = 0. By Theorem 4, we know that the curve:

γ1(s) = (
cos 2s
2 cos s

, sin s,

√
3

2 cos s
), s ∈ (−π

2
,

π

2
)

is a regular rectifying curve in R3 (Figure 1).
If γ(s) is a framed curve with singular points, this is different from the case that γ(s) is a regular curve.

Example 2. Let g2(s) = (cos s2 cos s3, sin s2 cos s3, sin s3), then g2(s) is a curve in S2 and |g′2(s)| =

(4s2 cos2 s3 + 9s4)
1
2 . Let ρ = 1 and C = 0. By Theorem 4, we know that the curve:

γ2(s) = (tan2(
∫
(4s2 cos2 s3 + 9s4)

1
2 ds) + 1)

1
2 (cos s2 cos s3, sin s2 cos s3, sin s3)
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is a framed rectifying curve with a cusp in R3 (Figure 2).

Figure 1. The red curve γ1(s) is the regular rectifying curve, and the green curve g1(s) is a curve on S2.

Figure 2. The red curve γ2(s) is the framed rectifying curve, and the green curve g2(s) is a curve on S2.

5. Framed Rectifying Curves versus Framed Helices

In this section, we define the framed helices and investigate the relations between framed helices
and framed rectifying curves.

Definition 4. Let (γ, μ1, μ2) : I → R3 × Δ2 be a framed curve with p(s) > 0. We call γ a framed helix if
there exists a fixed unit vector ζ satisfying:

〈ν(s), ζ〉 = cos ω

for some constant ω.

We now consider the ratio (q/p)(s) of the framed helix.

〈ν(s), ζ〉 = cos ω. (10)

By taking the derivative of (10), as p(s) > 0 and 〈ν(s), ζ〉′ = p(s)〈μ1(s), ζ〉, we have:

〈μ1(s), ζ〉 = 0. (11)

We know that ζ is in the plane whose basis vectors are ν(s) and μ2(s). As 〈ν(s), ζ〉 = cos ω, we
have 〈μ2(s), ζ〉 = ± sin ω. By taking the derivative of (11), we get:

−p(s)〈ν(s), ζ〉+ q(s)〈μ2(s), ζ〉 = 0,

then:

q(s)
p(s)

= ± cot ω. (12)
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For framed rectifying curves, a simple characterization in terms of the ratio q(s)/p(s) is shown in
the following theorem.

Theorem 5. Let (γ, μ1, μ2) : I → R3 × Δ2 be a framed curve with p(s) > 0, then γ(s) is a framed rectifying
curve if and only if q(s)/p(s) = c1

∫
α(s)ds + c2 for some constants c1 and c2, with c1 	= 0.

Proof. The proof is similar to that of Theorem 2 in [4]. If γ(s) is a framed rectifying curve, from (2),
we have that q(s)/p(s) = λ(s)/ξ(s) = λ(s)/ξ for some constant ξ. Since λ′(s) = α(s) and ξ 	= 0,
then the ratio of q(s) and p(s) satisfies q(s)/p(s) = c1

∫
α(s)ds + c2 for some constants c1 and c2,

with c1 	= 0.
Conversely, suppose that (γ, μ1, μ2) : I → R3 × Δ2 is a framed curve with p(s) > 0,

and q(s)/p(s) = c1
∫

α(s)ds + c2 for some constants c1 and c2, with c1 	= 0. If we put ξ = 1/c1

and λ(s) =
∫

α(s)ds + c2/c1, hence, by invoking the Frenet–Serret formula, we obtain:

d
ds

[γ(s)− λ(s)ν(s)− ξμ2(s)] = (ξq(s)− λ(s)p(s))μ1(s) = 0.

This means that γ(s) is congruent to a framed rectifying curve.

Remark 2. If γ is a framed rectifying curve, we have λ(s)p(s) = ξq(s) for some constant ξ. If ξ = 0,
then λ(s)p(s) = 0, as p(s) > 0, so λ(s) ≡ 0. This means that γ(s) is a point.

After that, we reveal the relationship between the framed rectifying curves and the framed helices.
We have the following theorem:

Theorem 6. Let (γ, μ1, μ2) : I → R3 × Δ2 be a framed curve with p(s) > 0, the framed curvature functions
satisfying (q/p)(s) = c1

∫
α(s)ds + c2, for some constants c1 and c2. If c1 = 0, we will get framed helices;

otherwise, we get framed rectifying curves.

6. Framed Rectifying Curves versus Centrodes

The centrodes play important roles in joint kinematics and mechanics (see [5]). We can define the
centrodes of framed curves. For a framed curve γ in R3, the curve defined by the vector d = qν + pμ2,
which is called the centrode of framed curve γ.

The following results establish some relationships between framed rectifying curves
and centrodes.

Theorem 7. The centrode of a framed curve with nonzero constant framed curvature function p(s) and
nonconstant framed curvature function q(s) is a framed rectifying curve. Conversely, the framed rectifying
curve in R3 is the centrode of some framed curve with nonconstant framed curvature function q(s) and nonzero
constant framed curvature function p(s).

Proof. Let γ(s) be a framed curve with nonzero constant framed curvature p(s) and nonconstant
framed curvature q(s). Consider the centrode of γ(s):

d(s) = q(s)ν(s) + p(s)μ2(s).

d(s) can also be seen as a framed curve. Let the vectors μd,1(s), μd,2(s), νd(s) be the adapted frame
along d(s). By differentiating the centrode, then we have d′(s) = q′(s)ν(s), which implies that unit
vector νd(s) and unit vector ν(s) at the corresponding points are parallel. Then, the first equality
in Frenet–Serret formula implies that μd,1(s) and μ1(s) at the corresponding points are also parallel.
Hence, μd,2(s) and μ2(s) are parallel, as well. Therefore, by definition, the centrode d(s) is a framed
rectifying curve.
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Conversely, let γ(s) be a framed rectifying curve in R3. From Theorem 3, we have:

λ′(s) = α(s), λ(s)p(s) = cq(s) (13)

for some constant c.
Let f (s) = 1

c
∫ s

s0
p(u)du. There exists a framed curve β(t) whose framed curvature satisfies

pβ(t) = c and qβ(t) = λ(t).
Let us consider the centrode of β, which is given by dβ(t) = λ(t)νβ(t) + cμβ,2(t), and its

reparametrization χ(s) = dβ( f (s)). Then:

χ(s) = λ( f (s))νβ( f (s)) + cμβ,2( f (s)).

This means that χ′(s) = α(s)νβ( f (s)); thus, νχ(s) = νβ( f (s)). Differentiating twice, the
framed curvature functions of χ are given by αχ(s) = α(s), pχ(s) = pβ(s) f ′(s) = p(s) and
qχ(s) = qβ(s) f ′(s) = q(s).

Therefore, the framed curves γ(s) and χ(s) have the same framed curvature functions. From
the existence theorem and the uniqueness theorem, it follows that χ is congruent to γ. Consequently,
the framed rectifying curve γ is the centrode of a framed curve with nonconstant framed curvature
q(s) and nonzero constant framed curvature p.

The framed curve in Theorem 7 can be replaced by a framed curve with nonzero constant framed
curvature q and nonconstant framed curvature p(s). In fact, we also have the following theorem:

Theorem 8. The centrode of a framed curve with nonzero constant framed curvature function q(s) and
nonconstant framed curvature function p(s) is a framed rectifying curve. Conversely, one framed rectifying
curve in R3 is the centrode of some framed curve with nonconstant framed curvature function p(s) and nonzero
constant framed curvature function q(s).

The proof can be given in as similar way as Theorem 7.

Remark 3. The centrode of a framed curve with nonzero constant framed curvature function p(s) and nonzero
constant framed curvature function q(s) is a point.

7. Contact between Framed Rectifying Curves

In this section, the contact between framed rectifying curves is considered. We now introduce the
notion of circular rectifying curves as follows.

Definition 5. Let γ(s) be a framed rectifying curve and:

γ(s) = ρ(tan2(
∫

|g′(s)|ds + C) + 1)
1
2 g(s),

where ρ is a positive number and C is a constant. We call γ a circular rectifying curve if g(s) is a circle on S2.

Let (γ, μ1, μ2) : I → S2 × Δ2 be a framed spherical curve. We choose μ1 = γ, then ν = γ × μ2 and
γ′(s) = α(s)ν(s). We show that the spherical Frenet–Serret formula of γ is as follows:⎧⎪⎨⎪⎩

γ′(s) = α(s)ν(s)
μ′

2(s) = l(s)ν(s)
ν′(s) = −α(s)γ(s)− l(s)μ2(s),

where 〈μ′
2(s), ν(s)〉 = l(s). By the curvature functions α(s) and l(s), we show the following proposition

for framed spherical curves:
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Proposition 2. Let (γ, γ, μ2) : I → S2 × Δ2 be a framed spherical curve, then γ is a circle if and only if
α(s) 	= 0 and l(s)/α(s) = constant.

Proof. If α(s) 	= 0 and (l/α)(s) = k, where k is a constant, then we consider a normal vector field
N(s) = k2

k2+1 γ(s)− k
k2+1 μ2(s). By taking the derivative of N(s), we have N ′(s) = k2

k2+1 (α(s)ν(s)−
α(s)ν(s)) = 0. This means that N(s) is a constant vector. Moreover, we have:

〈N(s), γ(s)− N(s)〉 = 〈 k2

k2 + 1
γ(s)− k

k2 + 1
μ2(s),

1
k2 + 1

γ(s) +
k

k2 + 1
μ2(s)〉 = 0.

This means that γ is the intersection of a plane and S2, so γ is a circle.
Let γ be a circle on S2. Obviously, γ is a plane curve and α(s) 	= 0, so that 〈γ′(s), γ′′(s)×γ′′′(s)〉 =

0. Then, we can calculate that 〈γ′(s), γ′′(s) × γ′′′(s)〉 = α4(s)l′(s) − α3(s)α′(s)l(s). Since α(s) 	= 0,
we have α(s)l′(s)− α′(s)l(s) = 0. This is equivalent to (l/α)′(s) = 0. Thus, l(s)/α(s) = constant. �

As a corollary of Proposition 2, we have the following result:

Corollary 1. Let (γ, γ, μ2) : I → S2 × Δ2 be a framed spherical curve, then γ is a great circle on S2 if and
only if α(s) 	= 0 and l(s) = 0.

Now, we review the notions of contact between framed curves [14]. Let (γ, μ1, μ2) : I → R3 × Δ2;
s → (γ(s), μ1(s), μ2(s)) and (γ̃, μ̃1, μ̃2) : Ĩ → R3 × Δ2; u → (γ̃(u), μ̃1(u), μ̃2(u)) be framed curves.
We say that (γ, μ1, μ2) and (γ̃, μ̃1, μ̃2) have kth order contact at s = s0, u = u0 if:

(γ, μ1, μ2)(s0) = (γ̃, μ̃1, μ̃2)(u0),
d
ds

(γ, μ1, μ2)(s0) =
d

du
(γ̃, μ̃1, μ̃2)(u0), . . . ,

dk−1

dsk−1 (γ, μ1, μ2)(s0) =
dk−1

duk−1 (γ̃, μ̃1, μ̃2)(u0),
dk

dsk (γ, μ1, μ2)(s0) 	= dk

duk (γ̃, μ̃1, μ̃2)(u0).

In addition, we say that (γ, μ1, μ2) and (γ̃, μ̃1, μ̃2) have at least kth order contact at s = s0, u = u0

if:

(γ, μ1, μ2)(s0) = (γ̃, μ̃1, μ̃2)(u0),
d
ds

(γ, μ1, μ2)(s0) =
d

du
(γ̃, μ̃1, μ̃2)(u0), . . . ,

dk−1

dsk−1 (γ, μ1, μ2)(s0) =
dk−1

duk−1 (γ̃, μ̃1, μ̃2)(u0).

We generally say that (γ, μ1, μ2) and (γ̃, μ̃1, μ̃2) have at least first order contact at any point s = s0,
u = u0, up to congruence as framed curves. As a conclusion of Theorem 3.7 in [14], we show the
following proposition:

Proposition 3. Let (γ, γ, μ2) : I → S2 × Δ2, s → (γ(s), γ(s), μ2(s)) and (γ̃, γ̃, μ̃2) : Ĩ → S2 × Δ2,
u → (γ̃(u), γ̃(u), μ̃2(u)) be framed spherical curves. If (γ, γ, μ2) and (γ̃, γ̃, μ̃2) have at least (k + 1)th order
contact at s = s0, u = u0, we have:

α(s0) = α̃(u0),
d
ds

α(s0) =
d

du
α̃(u0), . . . ,

dk−1

dsk−1 α(s0) =
dk−1

duk−1 α̃(u0), (14)

l(s0) = l̃(u0),
d
ds

l(s0) =
d

du
l̃(u0), . . . ,

dk−1

dsk−1 l(s0) =
dk−1

duk−1 l̃(u0). (15)

Conversely, if the conditions (14) and (15) hold, then (γ, γ, μ2) and (γ̃, γ̃, μ̃2) have at least (k + 1)th order
contact at s = s0, u = u0, up to congruence as framed spherical curves.
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Now, we consider the contact between circles and framed spherical curves. We have a corollary
of Propositions 2 and 3 as follows:

Corollary 2. Let (γ, γ, μ2) : I → S2 × Δ2 be a framed spherical curve. γ and a circle have at least (k + 1)th

order contact at s = s0 if and only if there exists a constant σ such that:

l(s0) = σα(s0),
d
ds

l(s0) = σ
d
ds

α(s0), . . . ,
dk−1

dsk−1 l(s0) = σ
dk−1

dsk−1 α(s0).

For the construction of the framed rectifying curve in Theorem 4, we fix positive number ρ and
constant C. Let gi : I → S2 (i = 1, 2) be framed spherical curves. We know γ1, γ2 have kth order contact
at s0 if and only if g1, g2 have kth order contact at s0. By Corollary 2, we have the following theorem,
which can describe the contact between framed rectifying curves and circular rectifying curves.

Theorem 9. Let γ be a framed rectifying curve and α(s) and l(s) be curvature functions of the corresponding
framed spherical curve. Then, γ and a circular rectifying curve have at least kth order (k ≥ 2) contact at s0 if
and only if there exists a constant σ such that:

l(s0) = σα(s0),
d
ds

l(s0) = σ
d
ds

α(s0), . . . ,
dk−2

dsk−2 l(s0) = σ
dk−2

dsk−2 α(s0).
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Abstract: In this paper, we study submanifolds in a Euclidean space with a generalized 1-type Gauss
map. The Gauss map, G, of a submanifold in the n-dimensional Euclidean space, En, is said to be
of generalized 1-type if, for the Laplace operator, Δ, on the submanifold, it satisfies ΔG = f G + gC,
where C is a constant vector and f and g are some functions. The notion of a generalized 1-type Gauss
map is a generalization of both a 1-type Gauss map and a pointwise 1-type Gauss map. With the
new definition, first of all, we classify conical surfaces with a generalized 1-type Gauss map in E3.
Second, we show that the Gauss map of any cylindrical surface in E3 is of the generalized 1-type.
Third, we prove that there are no tangent developable surfaces with generalized 1-type Gauss maps
in E3, except planes. Finally, we show that cylindrical hypersurfaces in En+2 always have generalized
1-type Gauss maps.

Keywords: conical surface; developable surface; generalized 1-type Gauss map; cylindrical hypersurface

1. Introduction

The notion of finite type submanifolds in a Euclidean space or a pseudo-Euclidean space was
introduced by Chen in the 1980s [1]. He also extended this notion to a general differential map, namely,
the Gauss map, on the submanifolds. The notions of finite type immersion and finite type Gauss map
are useful tools for investigating and characterizing many important submanifolds [1–12]. Moreover,
Chen et al. dealed with the finite type Gauss map as an immersion and with its relation to the topology
of some submanifolds [13,14].

The simplest type of finite type Gauss map is the 1-type. A submanifold, M, of a Euclidean space
or a pseudo-Euclidean space has a 1-type Gauss map if the Gauss map, G, of M satisfies

ΔG = λ(G + C) (1)

for some λ ∈ R and has a constant vector, C, where Δ denotes the Laplace operator defined on M.
Planes, circular cylinders and spheres in E3 are typical examples of surfaces with 1-type Gauss maps.

As a generalization of a 1-type Gauss map, the first and third authors introduced the notion
of a pointwise 1-type Gauss map of submanifolds in reference [15]. A submanifold is said to have
a pointwise 1-type Gauss map if the Laplacian of its Gauss map, G, takes the form

ΔG = f (G + C) (2)

for a non-zero smooth function, f , and a constant vector, C. More precisely, a pointwise 1-type Gauss
map is said to be of the first kind if C = 0 in (2); otherwise, it is said to be of the second kind. A helicoid,
a catenoid and a right cone in E3 are typical examples of surfaces with pointwise 1-type Gauss maps.
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Many results of submanifolds with pointwise 1-type Gauss maps in ambient spaces were obtained
in references [6,16–27]. On the other hand, it is well-known that a circular cylinder in E3 has a usual
1-type Gauss map. However, we consider the following cylindrical surface parameterized by

x(s, t) =
( s

2
cos(ln s) +

s
2

sin(ln s),− s
2

cos(ln s) +
s
2

sin(ln s), t
)

.

Then, the Gauss map, G, of the surface is given by

G = (− sin(ln s), cos(ln s), 0).

We can easily show that the Gauss map, G, satisfies

ΔG =
1
s2 (1 + cot(ln s)) G − 1

s2 csc(ln s)(0, 1, 0),

which yields a Gauss map, G, that is neither of usual 1-type, nor of pointwise 1-type.

In this reason, we have the following definition:

Definition 1. A submanifold, M, of a Euclidean space is said to have a generalized 1-type Gauss map if the
Gauss map, G, on M satisfies the equation

ΔG = f G + gC (3)

for some smooth functions ( f , g) and has a constant vector, C.

If both f and g are constant in (3), then M has a 1-type Gauss map. If f = g in (3), then M has
a pointwise 1-type Gauss map. Hence, the notion of a generalized 1-type Gauss map is a generalization
of both a 1-type Gauss map and a pointwise 1-type Gauss map.

In [22], Dursun studied flat surfaces in E3 with a pointwise 1-type Gauss map and proved the
following proposition.

Proposition 1. Let M be a flat surface in E3. Then, M has a pointwise 1-type Gauss map of the second kind if
and only if M is an open part of one of the following surfaces:

(1) A plane in E3,
(2) A right circular cone in E3,
(3) A cylinder, up to a rigid motion, parameterized by

x(s, t) = γ(s) + tβ,

where γ = γ(s) is a unit speed planar base curve with curvature k = k(s) satisfying the ordinary
differential equation

(
dk
ds

)2 = k4(s){ak2(s) + 2bk(s)− 1}
for some real numbers, a and b( 	= 0), and the director vector β = (0, 0, 1).

In this paper, we study developable surfaces in E3: cylindrical surfaces, conical surfaces
and tangent developable surfaces. In Section 3, we completely classify developable surfaces with
generalized a 1-type Gauss map and give some examples. In the last section, we prove that cylindrical
hypersurfaces in En+2 always have generalized 1-type Gauss maps.

Throughout this paper, we assume that all objects are smooth and all surfaces are connected
unless mentioned.
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2. Preliminaries

Let x : M −→ Em be an isometric immersion from an n-dimensional Riemannian manifold, M,
into Em. Denote the Levi–Civita connections of M and Em by ∇ and ∇̃, respectively. Let X and Y be
vector fields tangent to M, and let ξ be a unit normal vector field of M. Then, the Gauss and Weingarten
formulas are given by

∇̃XY = ∇XY + h(X, Y), (4)

∇̃Xξ = −Aξ X + DXξ, (5)

respectively. Here, h is the second fundamental form; D is the normal connection defined on the
normal bundle; and Aξ is the shape operator (or the Weingarten operator) in the direction of ξ on M.
Note that the second fundamental form, h, and the shape operator, Aξ , are related by

〈h(X, Y), ξ〉 = 〈Aξ X, Y〉. (6)

The mean curvature vector field,
−→
H , is defined by

−→
H =

1
n

trh, (7)

where trh is the trace of h. The mean curvature, H, of M is given by H =

√
〈−→H ,

−→
H 〉.

Moreover, the Laplace operator, Δ, acting on a scalar valued function, φ, is given by

Δφ = −
n

∑
i=1

(∇̃ei∇̃ei φ − ∇̃∇ei ei φ), (8)

where {e1, ..., en} is an orthonormal local tangent frame on M. Or, locally, it is expressed as

Δφ = − 1√
g

n

∑
i,j=1

∂

∂xi
(
√

ggij ∂φ

∂xj
), (9)

where (gij) and g denote the inverse matrix and the determinant of the matrix (gij), respectively,
with the coefficients gij of the Riemannian metric 〈·, ·〉 on M induced from that of Em.

3. Surfaces with Generalized 1-Type Gauss Maps

In this section, we completely classify developable surfaces inE3 with a generalized 1-type Gauss map.
A regular surface in E3 whose Gaussian curvature vanishes is called a developable surface, whose

surface is a cylindrical surface, a conical surface or a tangent developable surface [28].
For a hypersurface in a Euclidean space, the next lemma plays an important role in our paper [21].

Lemma 1. Let M be a hypersurface of En+2. Then, the Laplacian of the Gauss map, G, is given by

ΔG = ||AG||2G + (n + 1)∇H, (10)

where ∇H is the gradient of the mean curvature, H; AG is the shape operator of M; and ||AG||2 = tr(A2
G).

Suppose that a developable surface in E3 has a generalized 1-type Gauss map, that is, the Gauss
map G of the surface satisfies the condition

ΔG = f G + gC (11)
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for some smooth functions, f , g, and a constant vector, C. It follows from (10) that M has generalized
1-type Gauss map with C = 0, that is, M has a pointwise 1-type Gauss map of the first kind if and
only if M has a constant mean curvature, H. If f and g are equal to each other with C 	= 0, then M has
a pointwise 1-type Gauss map of the second kind and the results occur in [22]. Therefore, sometimes,
in the proof of this paper, we assume that f 	= g has non-zero functions and C 	= 0.

By combining (10) and (11) and taking the inner product with the orthonormal local frame e1, e2

and G, respectively, we have
2e1 (H) = gC1,

2e2 (H) = gC2,

||AG||2 = f + gC3,

(12)

where C = C1e1 + C2e2 + C3G with C1 = 〈C, e1〉, C2 = 〈C, e2〉 and C3 = 〈C, G〉.

3.1. Conical Surfaces

A conical surface, M, in E3 can be parametrized by

x(s, t) = α0 + tβ(s), s ∈ I, t > 0,

such that 〈β(s), β(s)〉 = 〈β′(s), β′(s)〉 = 1, where α0 is a constant vector. We take the orthonormal
tangent frame, {e1, e2}, on M such that e1 = 1

t
∂
∂s and e2 = ∂

∂t . The Gauss map of M is given by
G = e1 × e2. Through a direct calculation, we have

∇̃e1 e1 = −1
t

e2 −
κg(s)

t
G, ∇̃e1 e2 =

1
t

e1,

∇̃e2 e1 = ∇̃e2 e2 = 0, ∇̃e1 G =
κg

t
e1, ∇̃e2 G = 0,

(13)

where κg(s) = 〈β(s), β′(s) × β′′(s)〉 denotes the geodesic curvature of β in the unit sphere, S2(1).
We may assume that κg(s) 	= 0, s ∈ I; otherwise, the conical surface is an open part of a plane.
Furthermore, by reversing the orientation of the spherical curve, β, we may assume that the geodesic
curvature, κg, of β is positive. It follows from (13) that the mean curvature, H, and the trace, ||AG||2,
of the square of the shape operator are given by

H = −κg(s)
2t

, ||AG||2 =
κ2

g(s)
t2 . (14)

Suppose that M has a generalized 1-type Gauss map, that is, the Gauss map, G, of the conical
surface satisfies (11). Then, since C1 = 〈C, β′〉, C2 = 〈C, β〉 and C3 = 〈C, β′ × β〉, the components
Ci(i = 1, 2, 3) of the constant vector, C, are functions of only s. Let us differentiate C1, C2 and C3 with
respect to e1. Then, from (13), we have the following:

C′
1(s) + C2(s) + κg(s)C3(s) = 0, (15)

C′
2(s)− C1(s) = 0, (16)

C′
3(s)− κg(s)C1(s) = 0. (17)

With the help of (14), (12) can be written as

− 1
t2 κ′g(s) = gC1, (18)

κg(s)
t2 = gC2, (19)
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κ2
g(s)
t2 = f + gC3. (20)

By combining (18) and (19) and using (16), we have

g
(
κg(s)C2

)′
= 0.

Since g 	= 0, κg(s)C2 is a non-zero constant, say c, we obtain

C2 =
c

κg(s)
. (21)

Together with (19), this implies

g =
κ2

g(s)
ct2 , (22)

and hence, from (18), we get

C1 = − cκ′g(s)
κ2

g(s)
. (23)

Thus, it follows from (15) that we have

C3 =
c
(

κg(s)κ′′g (s)− 2κ′g(s)
2 − κ2

g(s)
)

κ4
g(s)

. (24)

Note that the function f is determined by (20), (22) and (24).
Now, we have ϕ(s) = 1/κg(s) > 0. Then, (21) and (23) become, respectively,

C2 = cϕ (25)

and
C1 = cϕ′. (26)

Furthermore, it follows from (17) and (24) that

C3 = −c(ϕϕ′′ + ϕ2) (27)

and

C′
3 = c

ϕ′

ϕ
. (28)

Thus, from (27) and (28) we see that the function ϕ must satisfy the following nonlinear differential
equation of order 3:

ϕ2 ϕ′′′ + ϕϕ′ϕ′′ + 2ϕ2 ϕ′ + ϕ′ = 0. (29)

In order to solve (29), first, we put p = dϕ/ds. Then the differential equation (29) becomes

p
(

ϕ2 p
d2 p
dϕ2 + ϕ2(

dp
dϕ

)2 + ϕp
dp
dϕ

+ 2ϕ2 + 1
)
= 0,

which can be rewritten as

ϕp
(

d
dϕ

(ϕp
dp
dϕ

) + 2ϕ +
1
ϕ

)
= 0. (30)

Since ϕ > 0, we divide into two cases, as follows.

Case 1. p = dϕ/ds = 0. The geodesic curvature, κg, is a nonzero constant, that is, the spherical
curve, β(s), is a small circle. Therefore, M is an open part of a right circular cone, and M has a pointwise
1-type Gauss map.
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Case 2. p = dϕ/ds 	= 0.

From (30), we obtain
d

dϕ
(ϕp

dp
dϕ

) + 2ϕ +
1
ϕ
= 0, (31)

which yields

ϕp
dp
dϕ

+ ϕ2 + ln ϕ =
a
2

(32)

for some constant, a. By integrating (32), we have

p2 = a ln ϕ + b − ϕ2 − (ln ϕ)2 (33)

for some constant, b. Recalling p = dϕ/ds, from (33), one gets

dϕ

ds
= ±

(
a ln ϕ + b − ϕ2 − (ln ϕ)2

) 1
2 , (34)

which is equivalent to
dϕ

(a ln ϕ + b − ϕ2 − (ln ϕ)2)
1
2
= ±ds. (35)

Hence, for an indefinite integral, F(t), of the function ψ(t) =
(
a ln t + b − t2 − (ln t)2)−1/2,

we see that
F(ϕ) = ±s, (36)

where the signature is determined according to whether the derivative of ϕ is positive or not. Thus we get

κg(s) =
1

ϕ(s)
=

1
F−1(±s)

. (37)

Furthermore, it follows from (25)–(27) that C can be expressed as

C = c
(

ϕ′e1 + ϕe2 − (ϕϕ′′ + ϕ2)G
)

, (38)

or equivalently,

C = c

(
−κ′g

κ2
g

e1 +
1
κg

e2 +
κg(s)κ′′g (s)− 2κ′g(s)

2 − κ2
g(s)

κ4
g(s)

G

)
. (39)

Conversely, for some constants, a and b, such that the function

ψ(t) =
(

a ln t + b − t2 − (ln t)2
)−1/2

(40)

is well-defined on some interval, J ⊂ (0, ∞), we take an indefinite integral, F(t), of the function ψ(t).
If we denote the image of the function, F, by I, then F : J → I is a strictly increasing function with
F′(t) = ψ(t). Let us consider the function ϕ = ϕ±, defined by ϕ±(s) = F−1(±s), which maps the
interval, ±I, onto J, respectively. Here −I means the interval {−s|s ∈ I}. Then, the function ϕ = ϕ±
is positive for the interval I± (say, I) and satisfies F(ϕ) = ±s.

For any unit speed spherical curve β(s) in the unit sphere S2(1) with the geodesic curvature
κg(s) = 1/ϕ(s), we consider a surface M in E3 to be parametrized by

x(s, t) = α0 + tβ(s), s ∈ I, t > 0, (41)
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where α0 is a constant vector. Given any non-zero constant, c, we put

f (s, t) =
1

t2 ϕ2(s)

(
ϕ(s)ϕ′′(s) + ϕ2(s) + 1

)
, g(s, t) =

1
ct2 ϕ2(s)

. (42)

For the orthonormal tangent frame, {e1, e2}, on M, such that e1 = 1
t

∂
∂s and e2 = ∂

∂t and the Gauss
map of M given by G = e1 × e2, we put

C = c{ϕ′(s)e1 + ϕ(s)e2 −
(

ϕ(s)ϕ′′(s) + ϕ2(s)
)

G}. (43)

Note that it follows from the definition of ϕ that the function ϕ satisfies (29). Hence, by using (13),
it is straightforward to show that

∇̃e1 C = ∇̃e2 C = 0, (44)

which implies that C is a constant vector. Furthermore, similar to the first part of this subsection,
the Gauss map, G, of the conical surface, M, satisfies

ΔG = f G + gC,

where f , g and C are given in (42) and (43), respectively. This shows that M has a generalized 1-type
Gauss map.

Thus, we have the following theorem 1:

Theorem 1. A conical surface in E3 has a generalized 1-type Gauss map if and only if it is an open part of one
of the following surfaces:

(1) A plane,
(2) A right circular cone,
(3) A conical surface parameterized by

x(s, t) = α0 + tβ(s),

where α0 is a constant vector and β(s) is a unit speed spherical curve in the unit sphere S2(1)
with a positive geodesic curvature, κg, which for some indefinite integral F(t) of the function

ψ(t) =
(
a ln t + b − t2 − (ln t)2)−1/2 with a, b ∈ R, is given by

κg(s) =
1

F−1(±s)
.

3.2. Cylindrical Surfaces

In this subsection, we prove the following theorem:

Theorem 2. All cylindrical surfaces in E3 have a generalized 1-type Gauss map.

Proof. Let M be a cylindrical surface in E3 generated by a base curve, α(s), and a constant vector, β.
Then, M can be parametrized by

x(s, t) = α(s) + tβ,

such that 〈α′(s), α′(s)〉 = 1, 〈α′(s), β〉 = 0 and 〈β, β〉 = 1. Hence, the base curve, α(s), is a unit speed
plane curve. Let us denote the curvature function of α(s) by κ(s).
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Consider an orthonormal frame {e1, e2} on M such that e1 = ∂
∂t and e2 = ∂

∂s . Then, the Gauss
map, G, of M is given by G = e1 × e2. By direct calculation, we obtain

∇̃e1 e1 = ∇̃e1 e2 = ∇̃e2 e1 = 0, ∇̃e2 e2 = κ(s)G,

∇̃e1 G = 0, ∇̃e2 G = −κ(s)e2.
(45)

It follows from (45) that the mean curvature, H, and the trace ||AG||2 of the square of the shape
operator are given by

H =
κ(s)

2
, ||AG||2 = κ2(s), (46)

which are functions of only s.
First, suppose that M has a generalized 1-type Gauss map. Together with (46), the first equation

of (12) shows that C1 = 0. Hence, (12) can be rewritten as

κ2(s) = f + gC3,

κ′(s) = gC2.
(47)

Since C2 = 〈C, α′(s)〉 and C3 = 〈C, β × α′(s)〉, C2 and C3 are functions of only s. By differentiating
C2 and C3 with respect to e2, the component functions of C satisfy the following equations:

C′
2(s)− κ(s)C3(s) = 0,

C′
3(s) + κ(s)C2(s) = 0,

(48)

which yield C2
2(s) + C2

3(s) = c2 for some non-zero constant, c. We may put

C2(s) = c sin θ(s), C3(s) = c cos θ(s) (49)

with θ′(s) = κ(s). Therefore, the constant vector, C, becomes

C = c sin θ(s)e2 + c cos θ(s)G. (50)

By combining (47) and (49), one also gets

g =
κ′(s)

c sin θ(s)
, f = κ2(s)− κ′(s) cot θ(s). (51)

Conversely, for any cylindrical surface, we choose a curve, α(s), and a unit vector, β, such that
the cylindrical surface is parametrized by x(s, t) = α(s) + tβ with 〈α′(s), α′(s)〉 = 1, 〈α′(s), β〉 = 0.
Then, for a non-zero constant, c, and an indefinite integral, θ(s), of the curvature function, κ(s), of α,
we put

C = c sin θ(s)e2 + c cos θ(s)G, (52)

where e1 = ∂
∂t , e2 = ∂

∂s and G = e1 × e2. It follows from (45) that ∇̃e1 C = 0 and ∇̃e2 C = 0, which
shows that C is a constant vector. Furthermore, it is straightforward to show that the Gauss map, G,
of the cylindrical surface satisfies

ΔG = f G + gC,

where f , g and C are given in (51) and (52), respectively. This shows that the cylindrical surface has
a generalized 1-type Gauss map.

Example 1. We consider the surface to be parameterized by

x(s, t) =
(
2 cos(

√
s) + 2

√
s sin(

√
s), 2 sin(

√
s)− 2

√
s cos(

√
s), t

)
.
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Then, the surface is cylindrical, generated by the plane curve with the curvature κ(s) = 1
2
√

s , and its Gauss map
G is given by

G =
(
sin(

√
s),− cos(

√
s), 0

)
.

From this, the Laplacian of G can be expressed as

ΔG =

(
1

4s
√

s
cos(

√
s) +

1
4s

sin(
√

s),
1

4s
√

s
sin(

√
s)− 1

4s
cos(

√
s), 0

)
=

1
4s

(
1 +

cot(
√

s)√
s

)
G +

csc(
√

s)
4s
√

s
C,

where C = (0, 1, 0).

The plane curve and the cylindrical surface in Example 1 are shown in Figures 1 and 2, respectively.

Figure 1. The plane curve in Example 1.

Figure 2. The cylindrical surface in Example 1.

3.3. Tangent Developable Surfaces

In this subsection, we prove the following theorem:

Theorem 3. A tangent developable surface in E3 with a generalized 1-type Gauss map is an open part of a plane.

Proof. Let M be a tangent developable surface in E3. Then, M is locally parametrized by

x(s, t) = α(s) + tα′(s), s ∈ I, t 	= 0,
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where α(s) is a unit speed curve with non-zero curvature κ(s) in E3. Let us denote the unit tangent
vector, principal normal vector and binormal vector of α(s), by T, N and B, respectively. The natural
frames, {xs, xt} of x, are given by

xs = T + tκ(s)N, xt = α′(s) = T.

The parametrization x is regular whenever tκ(s) 	= 0. We take the orthonormal frame, {e1, e2},
on M such that

e1 =
∂

∂t
= T,

e2 =
1

tκ(s)

(
∂

∂s
− ∂

∂t

)
= N.

(53)

Then, the Gauss map, G, of M is given by G = e1 × e2 = T × N = B. By direct calculation, we obtain

∇̃e1 e1 = ∇̃e1 e2 = 0, ∇̃e2 e1 =
1
t

e2,

∇̃e2 e2 = −1
t

e1 +
τ

tκ
G, ∇̃e1 G = 0, ∇̃e2 G =

τ

tκ
e2,

(54)

which yields

H =
τ

2tκ
, ||AG||2 =

( τ

tκ

)2
. (55)

Now, we suppose that the tangent developable surface, M, has a generalized 1-type Gauss map.
Since C1 = 〈C, T〉, C2 = 〈C, N〉 and C3 = 〈C, B〉, the components of C are functions of s only. Hence,
it follows from (54) that the components of C satisfy the following:

C′
1 − κC2 = 0, (56)

C′
2 + κC1 − τC3 = 0, (57)

C′
3 + τC2 = 0. (58)

Due to (55), (12) can be rewritten as

− τ

t2κ
= gC1, (59)

1
t2κ

((τ

κ

)′
+

τ

tκ

)
= gC2, (60)

τ2

t2κ2 = f + gC3. (61)

By combining (59) and (14), one finds that

τC2 +

((τ

κ

)′
+

τ

tκ

)
C1 = 0, (62)

or equivalently, ((τ

κ

)′
C1 + τC2

)
tκ + τC1 = 0. (63)

Since the parameter t( 	= 0) is arbitrary, from (63), we have(τ

κ

)′
C1 + τC2 = 0,

τC1 = 0.
(64)
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Finally, we suppose that the torsion, τ(s), of the curve, α(s), does not vanish identically. Then,
since the set J = {s ∈ I|τ(s) 	= 0} is non-empty, (64) shows that C1 = 0 and C2 = 0. From this
and (57), we have C3 = 0. In the long run, one gets C = 0. It follows from (12) and (55) that the
mean curvature, H = τ(s)/ (2tκ(s)), is constant, which shows that τ must vanish identically. That is,
J = {s ∈ I|τ(s) 	= 0} is empty, which leads a contradiction. This yields that α(s) is a plane curve, and
hence, M is an open part of a plane. This completes the proof of Theorem 6.

Note that a plane is a kind of cylindrical surface and also a kind of circular right cone.
Thus, by summarizing all the results in this section, we established the following classification theorem
for developable surfaces with generalized 1-type Gauss maps:

Theorem 4. (Classification Theorem) A developable surface, M, in E3 has a generalized 1-type Gauss map if
and only if it is an open part of one of the following:

(1) A cylindrical surface,
(2) A circular right cone,
(3) A conical surface parameterized by

x(s, t) = α0 + tβ(s),

where α0 is a constant vector and β(s) is a unit speed spherical curve in the unit sphere,
S2(1), with a positive geodesic curvature, κg, which is, for some indefinite integral, F(t), of the

function ψ(t) =
(
a ln t + b − t2 − (ln t)2)−1/2 with a, b ∈ R, given by

κg(s) =
1

F−1(±s)
.

4. Cylindrical Hypersurfaces with Generalized 1-Type Gauss Maps

In this section, we study cylindrical hypersurfaces with generalized 1-type Gauss maps in En+2.
Suppose that a hypersurface, M, in En+2 has a generalized 1-type Gauss map, that is, the Gauss map,
G, of the hypersurface satisfies the condition

ΔG = f G + gC (65)

for some non-zero smooth functions, f , g, and a non-zero constant vector, C. By combining (10) and
(65) and taking the scalar product with the orthonormal local frame, e1, e2, . . . , en+1 of M and the Gauss
map, G, respectively, we obtain

(n + 1)ei (H) = gCi, i = 1, 2, . . . , n + 1 (66)

and
||AG||2 = f + gCn+2, (67)

where, for i = 1, 2, . . . , n + 1, Ci = 〈C, ei〉 and Cn+2 = 〈C, G〉.
By extending Theorem 3.3, finally, we prove the following theorem:

Theorem 5. A cylindrical hypersurface, M, in En+2 has a generalized 1-type Gauss map.

Proof. Let M be a cylindrical hypersurface in the (n + 2)-dimensional Euclidean space, En+2. Then,
M can be parametrized by

x (s, t1, . . . , tn) = α(s) +
n

∑
i=1

tiβi
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such that 〈α′, α′〉 = 1, 〈α′, βi〉 = 0 and 〈βi, β j〉 = δij, i, j = 1, . . . , n. Then, the generator α is a plane
curve with the Frenet frame T, N and we have the orthonormal frame {e1, e2, . . . , en+1} on M, such that
ei =

∂
∂ti

, i = 1, . . . , n and en+1 = ∂
∂s = T. Hence, by rearranging βi, if necessary, we may assume that

the Gauss map, G, of M is given by G = e1 × · · · × en+1 = N. By direct calculation, we get

∇̃ei ej = ∇̃en+1 ej = ∇̃ei en+1 = 0, i, j = 1, . . . n,

∇̃ei G = 0, i = 1, . . . n, ∇̃en+1 en+1 = κG, ∇̃en+1 G = −κen+1,
(68)

where κ is the curvature function of the generator, α. (68) implies that

H =
κ

n + 1
, ||AG||2 = κ2, (69)

which are the functions of only s.
Now, suppose that M has a generalized 1-type Gauss map. That is, G satisfies (65). Then, C in

En+2 can be expressed as C = ∑n+1
j=1 Cjej + Cn+2G in the frame {e1, e2, . . . , en+1, G}. Together with (69),

(66) implies that Ci = 0 because ei(H) = 0, but g 	= 0 for i = 1, . . . , n. Hence, we have

C = Cn+1en+1 + Cn+2G = Cn+1T + Cn+2N. (70)

By differentiating (70) with respect to ei for i = 1, . . . , n, (68) shows that

ei(Cn+1) = ei(Cn+2) = 0, i = 1, . . . , n. (71)

Hence, Cn+1 and Cn+2 are functions of s only. By differentiating (70) with respect to en+1, (68)
also gives

en+1 (Cn+1)− κ(s)Cn+2 = 0,

en+1 (Cn+2) + κ(s)Cn+1 = 0
(72)

with C2
n+1(s) + C2

n+2(s) = d2 for some non-zero constant, d. Hence, we may put

Cn+1(s) = d sin θ(s), Cn+2(s) = d cos θ(s), (73)

where θ(s) is an indefinite integral of the curvature function κ(s). Therefore, the constant vector, C,
is given by

C = d sin θ(s)en+1 + d cos θ(s)G = d sin θ(s)T + d cos θ(s)N. (74)

Furthermore, it follows from (66), (67) and (69) that

f = κ2(s)− κ′(s) cot θ(s),

g =
κ′

d sin θ(s)
.

(75)

Conversely, for a cylindrical hypersurface, M, in En+2, we may choose a curve, α(s), and n unit
vectors β1, . . . , βn such that M is parametrized by

x (s, t1, . . . , tn) = α(s) +
n

∑
i=1

tiβi

such that 〈α′, α′〉 = 1, 〈α′, βi〉 = 0 and 〈βi, β j〉 = δij, i, j = 1, . . . , n. For a non-zero constant, d,
and an indefinite integral, θ(s), of the curvature function κ(s) of α, we put

C = d sin θ(s)en+1 + d cos θ(s)G, (76)
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where ei = ∂
∂ti

, en+1 = ∂
∂s and G = e1 × e2 × · · · × en+1 for i = 1, . . . , n. It follows from (68) that

∇̃e1 C = 0 and ∇̃e2 C = 0, and hence, C is a constant vector. Furthermore, it is straightforward to show
that the Gauss map of M satisfies

ΔG = f G + gC,

where f , g and C are given in (75) and (76), respectively. This shows that the cylindrical hypersurface
has a generalized 1-type Gauss map.

5. Conclusions

To find the best possible estimate of the total mean curvature of a compact submanifold of
Euclidean space, Chen introduced the study of finite type submanifolds. Specifically, minimal
submanifolds are characterized in a natural way. In our example, a cylindrical surface has neither
a usual 1-type, nor a pointwise 1-type Gauss map. In this reason, we defined a new definiton,
the generalized 1-type Gauss map. After that, we characterized developable surfaces with a generalized
1-type Gauss map in E3.
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Abstract: In this paper, we study inextensible flows of a curve on a lightlike surface in Minkowski
three-space and give a necessary and sufficient condition for inextensible flows of the curve as a partial
differential equation involving the curvatures of the curve on a lightlike surface. Finally, we classify
lightlike ruled surfaces in Minkowski three-space and characterize an inextensible evolution of a
lightlike curve on a lightlike tangent developable surface.
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1. Introduction

It is well known that many nonlinear phenomena in physics, chemistry and biology are described
by dynamics of shapes, such as curves and surfaces, and the time evolution of a curve and a surface
has significance in computer vision and image processing. The time evolution of a curve and a surface
is described by flows, in particular inextensible flows of a curve and a surface. Physically, inextensible
flows give rise to motion, for which no strain energy is induced. The swinging motion of a cord of
fixed length or of a piece of paper carried by the wind can be described by inextensible flows of a curve
and a surface. Furthermore, the flows arise in the context of many problems in computer vision and
computer animation [1–4].

Chirikjian and Burdick [1] studied applications of inextensible flows of a curve. In [5], the authors
derived the time evolution equations for an inextensible flow of a space curve and also studied
inextensible flows of a developable ruled surface. In [6], the author investigated the general description
of the binormal motion of a spacelike and a timelike curve in a three-dimensional de Sitter space
and gave some explicit examples of a binormal motion of the curves. Schief and Rogers [4] studied
the binormal motions of curves with constant curvature and torsion. Many authors have studied
geometric flow problems [7–11].

The outline of the paper is organized as follows: In Section 2, we give some geometric concepts in
Minkowski space and present the pseudo-Darboux frames of a spacelike curve and a lightlike curve
on a lightlike surface. In Sections 3 and 4, we study inextensible flows of a spacelike curve and a
lightlike curve on a lightlike surface. In the last section, we classify lightlike ruled surfaces and study
inextensible flows of lightlike tangent developable surfaces.

2. Preliminaries

The Minkowski three-space R3
1 is a real space R3 with the indefinite inner product 〈· , ·〉 defined

on each tangent space by:
〈x, y〉 = −x0y0 + x1y1 + x2y2,

where x = (x0, x1, x2) and y = (y0, y1, y2) are vectors in R3
1.

A nonzero vector x in R3
1 is said to be spacelike, timelike or lightlike if 〈x, x〉 > 0, 〈x, x〉 < 0 or

〈x, x〉 = 0, respectively. Similarly, an arbitrary curve γ = γ(s) is spacelike, timelike or lightlike if all of

Mathematics 2018, 6, 224; doi:10.3390/math6110224 www.mdpi.com/journal/mathematics137
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its tangent vectors γ′(s) are spacelike, timelike or lightlike, respectively. Here “prime” denotes the
derivative with respect to the parameter s.

Let M be a lightlike surface in Minkowski three-space R3
1, that is the induced metric of M is

degenerate. Then, a curve γ on M is spacelike or lightlike.
Case 1: If γ is a spacelike curve, we can reparametrize it by the arc length s. Therefore, we have

the unit tangent vector t(s) = γ′(s) of γ(s). Since M is a lightlike surface, we have a lightlike normal
vector n along γ. Therefore, we can choose a vector g satisfying:

〈n, g〉 = 1, 〈t, g〉 = 〈g, g〉 = 0.

Then, we have pseudo-orthonormal frames {t, n, g}, which are called the Darboux frames along
γ(s). By standard arguments, we have the following Frenet formulae:

d
ds

⎛⎜⎝ t(s)
n(s)
g(s)

⎞⎟⎠ =

⎛⎜⎝ 0 κg(s) κn(s)
−κn(s) τg(s) 0
−κg(s) 0 −τg(s)

⎞⎟⎠
⎛⎜⎝ t(s)

n(s)
g(s)

⎞⎟⎠ , (1)

where κn = 〈t′(s), n(s)〉, κg = 〈t′(s), g(s)〉 and τg = −〈n(s), g′(s)〉.
Case 2: Let γ be a lightlike curve parametrized by a pseudo arc length parameter s on a lightlike

surface M in R3
1. Since a normal vector n of a lightlike surface M is lightlike, we can choose a vector g

such that:
〈g, g〉 = 1, 〈t, g〉 = 〈g, n〉 = 0.

Furthermore, we consider:
〈t, n〉 = 1.

Then, we have pseudo-orthonormal Darboux frames {t, n, g} along a nongeodesic lightlike curve
γ(s) on M and get the following Frenet formulae:

d
ds

⎛⎜⎝ t(s)
n(s)
g(s)

⎞⎟⎠ =

⎛⎜⎝ κn(s) 0 κg(s)
0 −κn(s) τg(s)

−τg(s) −κg(s) 0

⎞⎟⎠
⎛⎜⎝ t(s)

n(s)
g(s)

⎞⎟⎠ , (2)

where κn = 〈t′(s), n(s)〉, κg = 〈t′(s), g(s)〉 and τg = −〈n(s), g′(s)〉.

3. Inextensible Flows of a Spacelike Curve

We assume that γ : [0, l]× [0, w] → M ⊂ R3
1 is a one-parameter family of the smooth spacelike

curve on a lightlike surface in R3
1, where l is the arc length of the initial curve. Let u be the curve

parametrization variable, 0 ≤ u ≤ l. We put v = || ∂γ
∂u ||, from which the arc length of γ is defined by

s(u) =
∫ u

0 vdu. Furthermore, the operator ∂
∂s is given in terms of u by ∂

∂s = 1
v

∂
∂u , and the arc length

parameter is given by ds = vdu.
On the Darboux frames {t, n, g} of the spacelike curve γ on a lightlike surface M in R3

1, any flow
of γ can be given by:

∂γ

∂t
= f1t + f2n + f3g, (3)

where f1, f2, f3 are scalar speeds of the spacelike curve γ on a lightlike surface M, respectively. We put
s(u, t) =

∫ u
0 vdu; it is called the arc length variation of γ. From this, the requirement that the curve is

not subject to any elongation or compression can be expressed by the condition:

∂

∂t
s(u, t) =

∫ u

0

∂v
∂t

du = 0 (4)

for all u ∈ [0, l].
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Definition 1. A curve evolution γ(u, t) and its flow ∂γ
∂t of a spacelike curve in R3

1 are said to be inextensible if:

∂

∂t

∣∣∣∣∣∣∣∣∂γ

∂u

∣∣∣∣∣∣∣∣ = 0.

Now, we give the arc length preserving condition for curve flows.

Theorem 1. Let M be a lightlike surface in Minkowski three-space R3
1 and {t, n, g} be the Darboux frames of a

spacelike curve γ on M. If ∂γ
∂t = f1t + f2n + f3g is a flow of γ on a lightlike surface M in R3

1, then we have the
following equation:

∂v
∂t

=
∂ f1

∂u
− v f2κn − v f3κg. (5)

Proof. From the definition of a spacelike curve γ, we have v2 =
〈

∂γ
∂u , ∂γ

∂u

〉
. Since u and t are

independent coordinates, ∂
∂u and ∂

∂t commute. Therefore, by differentiating v2, we have:

2v
∂v
∂t

=
∂

∂t

〈
∂γ

∂u
,

∂γ

∂u

〉
= 2

〈
∂γ

∂u
,

∂

∂u
(

∂γ

∂t
)

〉
= 2

〈
∂γ

∂u
,

∂

∂u
( f1t + f2n + f3g)

〉
= 2v

〈
t, (

∂ f1

∂u
− v f2κn − v f3κg)t + (

∂ f2

∂u
+ v f1κg + v f2τg)n + (

∂ f3

∂u
+ v f1κn − v f3τg)g

〉
= 2v

(
∂ f1

∂u
− v f2κn − v f3κg

)
.

This completes the proof.

Corollary 1. Let ∂γ
∂t = f1t + f2n + f3g be a flow of a spacelike curve γ on a lightlike surface M in R3

1. If the
curve γ is a geodesic curve or an asymptotic curve, then the following equation holds, respectively:

∂v
∂t

=
∂ f1

∂u
− v f2κn

or:
∂v
∂t

=
∂ f1

∂u
− v f3κg.

Theorem 2. (Necessary and sufficient condition for an inextensible flow)
Let ∂γ

∂t = f1t + f2n + f3g be a flow of a spacelike curve γ on a lightlike surface M in R3
1. Then, the flow is

inextensible if and only if:
∂ f1

∂s
= f2κn + f3κg. (6)

Proof. Suppose that the flow of a spacelike curve γ on M is inextensible. From (4) and (5), we have:

∂

∂t
s(u, t) =

∫ u

0

∂v
∂t

du =
∫ u

0

(
∂ f1

∂u
− v f2κn − v f3κg

)
du = 0.

It follows that:
∂ f1

∂u
= v f2κn + v f3κg.

Since ∂
∂s = 1

v
∂

∂u , we can obtain (6).
Conversely, by following a similar way as above, the proof is completed.
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Theorem 3. Let ∂γ
∂t = f1t + f2n + f3g be a flow of a spacelike curve γ on a lightlike surface M in R3

1. If the
flow is inextensible, then a time evolution of the Darboux frame {t, n, g} along a curve γ on a lightlike surface
M is given by:

d
dt

⎛⎜⎝ t

n

g

⎞⎟⎠ =

⎛⎜⎝ 0 ϕ1 ϕ2

−ϕ2 ϕ3 0
−ϕ1 0 −ϕ3

⎞⎟⎠
⎛⎜⎝ t

n

g

⎞⎟⎠ , (7)

where:
ϕ1 =

∂ f2

∂s
+ f1κg + f2τg,

ϕ2 =
∂ f3

∂s
+ f1κn − f3τg,

ϕ3 = 〈∂n

∂t
, g〉.

(8)

Proof. Noting that:

∂t

∂t
=

∂

∂t

(
∂γ

∂s

)
=

∂

∂s
( f1t + f2n + f3g)

=

(
∂ f2

∂s
+ f1κg + f2τg

)
n +

(
∂ f3

∂s
+ f1κn − f3τg

)
g.

(9)

On the other hand,

0 =
∂

∂t
〈t, n〉 = 〈∂t

∂t
, n〉+ 〈t, ∂n

∂t
〉 = ∂ f3

∂s
+ f1κn − f3τg + 〈t, ∂n

∂t
〉

0 =
∂

∂t
〈t, g〉 = 〈∂t

∂t
, g〉+ 〈t, ∂g

∂t
〉 = ∂ f2

∂s
+ f1κg + f2τg + 〈t, ∂n

∂t
〉

because of 〈n, n〉 = 〈g, g〉 = 0 and 〈n, g〉 = 1.
Thus, we have:

∂n

∂t
= −

(
∂ f3

∂s
+ f1κn − f3τg

)
t + ϕ3n, (10)

∂g

∂t
= −

(
∂ f2

∂s
+ f1κg + f2τg

)
t − ϕ3g, (11)

where ϕ3 = 〈 ∂n
∂t , g〉. This completes the proof.

Now, by using Theorem 3, we give the time evolution equations of the geodesic curvature,
the normal curvature and the geodesic torsion of a spacelike curve on a lightlike surface.

Theorem 4. Let ∂γ
∂t = f1t + f2n + f3g be a flow of a spacelike curve γ on a lightlike surface M in R3

1. Then,
the time evolution equations of the functions κg, κn and τg for the inextensible spacelike curve γ are given by:

∂κg

∂t
=

∂ϕ1

∂s
+ ϕ1τg − ϕ3κg,

∂κn

∂t
=

∂ϕ2

∂s
− ϕ2τg + ϕ3κn

∂τg

∂t
=

∂ϕ3

∂s
+ ϕ1κn − ϕ2κg + 2ϕ3τg.

(12)
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Proof. It is well known that the arc length and time derivatives commute. This implies the
inextensibility of γ. Accordingly, the compatibility conditions are ∂

∂s

(
∂t
∂t

)
= ∂

∂t

(
∂t
∂s

)
, etc. On the

other hand,
∂

∂s

(
∂t

∂t

)
=

∂

∂s
(ϕ1n + ϕ2g)

= (−ϕ1κn − ϕ2κg)t + (
∂ϕ1

∂s
+ ϕ1τg)n + (

∂ϕ2

∂s
− ϕ2τg)g,

and:
∂

∂t

(
∂t

∂s

)
=

∂

∂t
(κgn + κng)

= (−ϕ1κn − ϕ2κg)t + (
∂κg

∂t
+ ϕ3κg)n + (

∂κn

∂t
− ϕ3κn)g.

Comparing the two equations, we find:

∂κg

∂t
=

∂ϕ1

∂s
+ ϕ1τg − ϕ3κg,

∂κn

∂t
=

∂ϕ2

∂s
− ϕ2τg + ϕ3κn.

It follows from (8) that we can obtain the first and the second equation of (12).
Furthermore by using ∂

∂s

(
∂n
∂t

)
= ∂

∂t

(
∂n
∂s

)
and following a similar way as above, we can obtain

the third equation of (12). The proof is completed.

Remark 1. As applications of inextensible flows of a spacelike curve on a lightlike surface, we can consider
geometric phases of the repulsive-type nonlinear Schödinger equation (NLS−) (cf. [12]).

4. Inextensible Flows of a Lightlike Curve

Let γ be a lightlike curve on a lightlike surface M in R3
1. We note that a lightlike curve γ(u) satisfies

〈γ′′(u), γ′′(u)〉 ≥ 0. We say that a lightlike curve γ(u) is parametrized by the pseudo arc length if
〈γ′′(u), γ′′(u)〉 = 1. If a lightlike curve γ(u) satisfies 〈γ′′(u), γ′′(u)〉 	= 0, then 〈γ′′(u), γ′′(u)〉 > 0, and:

s(u) =
∫ u

0
〈γ′′(u), γ′′(u)〉 1

4 du

becomes the pseudo arc length parameter. Let us consider a lightlike curve γ(u) on a lightlike surface
M in R3

1 with 〈γ′′(u), γ′′(u)〉 	= 0.
Let γ : [0, l]× [0, w] → M ⊂ R3

1 be a one-parameter family of smooth lightlike curves on a lightlike
surface in R3

1, where l is the arc length of the initial curve. We put v4 = 〈γ′′(u), γ′′(u)〉, from which
the pseudo arc length of γ is defined by s(u) =

∫ u
0 vdu. Furthermore, the operator ∂

∂s is given in terms
of u by ∂

∂s = 1
v

∂
∂u , and the pseudo arc length parameter is given by ds = vdu.

On the other hand, a flow ∂γ
∂t of γ can be given by:

∂γ

∂t
= f1t + f2n + f3g (13)

in terms of the Darboux frames {t, n, g} of the lightlike curve γ on a lightlike surface M in R3
1,

where f1, f2, f3 are scalar speeds of the lightlike curve γ, respectively. We put s(u, t) =
∫ u

0 vdu, it is
called the pseudo arc length variation of γ. From this, we have the following condition:

∂

∂t
s(u, t) =

∫ u

0

∂v
∂t

du = 0 (14)

for all u ∈ [0, l].
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Definition 2. A curve evolution γ(u, t) and its flow ∂γ
∂t of a lightlike curve γ in R3

1 are said to be inextensible if:

∂

∂t

〈
∂2γ

∂u2 ,
∂2γ

∂u2

〉 1
4

= 0.

Theorem 5. Let M be a lightlike surface in Minkowski three-space R3
1 and {t, n, g} be the Darboux frames

along a lightlike curve γ on M. If ∂γ
∂t = f1t + f2n + f3g is a flow of γ on a lightlike surface M, then we have

the following equation:

∂v
∂t

=
1

2v3

[
(

∂v
∂u

+ v2κn)

(
∂Φ2

∂u
− vκnΦ2 − vκgΦ3

)
+ v2κg

(
∂Φ3

∂u
+ vκgΦ1 + vτgΦ2

)]
, (15)

where:
Φ1 =

∂ f1

∂u
+ v f1κn − v f3τg,

Φ2 =
∂ f2

∂u
− v f2κn − v f3κg,

Φ3 =
∂ f1

∂u
+ v f1κg + v f2τg.

Proof. From the definition of a lightlike curve γ, we have v4 =
〈

∂2γ
∂u2 , ∂2γ

∂u2

〉
. By differentiating v4,

we have:

4v3 ∂v
∂t

=
∂

∂t

〈
∂2γ

∂u2 ,
∂2γ

∂u2

〉
= 2

〈
∂2γ

∂u2 ,
∂2

∂u2 (
∂γ

∂t
)

〉
. (16)

On the other hand,

∂2γ

∂u2 =
∂

∂u

(
∂γ

∂u

)
=

∂

∂u
(vt) =

(
∂v
∂u

+ v2κn

)
t + v2κgg

and:

∂2

∂u2 (
∂γ

∂t
) =

∂2

∂u2 ( f1t + f2n + f3g)

=

[
∂Φ1

∂u
+ vκnΦ1 − vτgΦ3

]
t +

[
∂Φ2

∂u
− vκnΦ2 − vκgΦ3

]
n +

[
∂Φ3

∂u
+ vκgΦ1 + vτgΦ2

]
g.

Thus, (16) implies (15). This completes the proof.

Theorem 6. Let ∂γ
∂t = f1t + f2n + f3g be a flow of a lightlike curve γ on a lightlike surface M in R3

1. Then, the
flow is inextensible if and only if:(

∂v
∂s

+ vκn

)
∂Φ2

∂s
+ vκg

∂Φ3

∂s
=

(
∂v
∂s

+ vκn

)
(κnΦ2 + κgΦ3)− vκg(κgΦ1 + τgΦ2). (17)

Proof. Suppose that the flow of a lightlike curve γ on M is inextensible. By using (15) and ∂
∂s = 1

v
∂

∂u ,
(14) gives (17). Conversely, by following a similar way as above, the proof is completed.

Next, we give the time evolution equations of the Darboux frame of a lightlike curve on a
lightlike surface.
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Theorem 7. Let ∂γ
∂t = f1t + f2n + f3g be a flow of a lightlike curve γ on a lightlike surface M in R3

1. If the
flow is inextensible, then a time evolution of the Darboux frame {t, n, g} along a curve γ on a lightlike surface
M is given by:

d
dt

⎛⎜⎝ t

n

g

⎞⎟⎠ =

⎛⎜⎝
Φ1
v 0 Φ3

v
0 −Φ1

v Θ
−Θ −Φ3

v 0

⎞⎟⎠
⎛⎜⎝ t

n

g

⎞⎟⎠ , (18)

where Θ = 〈 ∂n
∂t , g〉.

Proof. The proof can be obtained by using a similar method of proof of Theorem 3.

Theorem 8. Let ∂γ
∂t = f1t + f2n + f3g be a flow of a lightlike curve γ on a lightlike surface M in R3

1. Then,
the time evolution equations of the functions κg, κn and τg for the inextensible spacelike curve γ are given by:

∂κg

∂t
=

∂

∂s
(

1
v

Φ3) +
1
v

(
κgΦ1 − κnΦ3

)
,

∂κn

∂t
=

∂

∂s
(

1
v

Φ1) + κgΘ − 1
v

τgΦ3,

∂τg

∂t
=

∂Θ
∂s

+ κnΘ − 1
v

τgΦ1.

(19)

Proof. The proof can be obtained by using a similar method of proof of Theorem 4.

5. Lightlike Ruled Surfaces

In this section, we investigate inextensible flows of ruled surfaces, in particular lightlike ruled
surfaces in Minkowski three-space R3

1.
Let I be an open interval on the real line R. Let α be a curve in R3

1 defined on I and β a transversal
vector field along α. For an open interval J of R, we have the parametrization for M:

X(u, v) = α(u) + vβ(u), u ∈ I, v ∈ J.

Here, α is called a base curve and β a director vector field. In particular, the director vector field
β can be naturally chosen so that it is orthogonal to α, that is 〈α′, β〉 = 0. It is well known that the
ruled surface is developable if det(α′ββ′) is identically zero. A developable surface is a surface whose
Gaussian curvature of the surface is everywhere zero.

On the other hand, the tangent vectors are given by:

Xu =
∂X
∂u

= α′(u) + vβ′(u), Xv =
∂X
∂v

= β(u),

which imply that the coefficients of the first fundamental form of the surface are given by:

E = 〈Xu, Xu〉 = 〈α′, α′〉+ 2v〈α′, β′〉+ v2〈β′, β′〉,
F = 〈Xu, Xv〉 = 0,

G = 〈Xv, Xv〉 = 〈β, β〉.

Suppose that the ruled surface is lightlike. Then, we get E = 0 or G = 0.
First of all, we consider E = 0; it implies that:

〈α′, α′〉 = 0, 〈α′, β′〉 = 0, 〈β′, β′〉 = 0. (20)

Thus, a base curve α is lightlike, and a director vector β is constant or β′ is lightlike.
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Case 1: If β is constant, from 〈α′, β〉 = 0, β is a lightlike vector or a spacelike vector. If β is lightlike,
there exists a smooth function k such that β = kα′. This is a contradiction because G = 0. If β is
spacelike as a constant vector, then the lightlike cylindrical ruled surface is parametrized by:

X(u, v) = α(u) + vβ,

where α is a lightlike curve and β is a constant spacelike vector.
Case 2: Let β′ be a lightlike vector. Since 〈α′, β′〉 = 0, there exists a smooth function k such that

β′ = kα′. Thus, a lightlike non-cylindrical ruled surface is parametrized by:

X(u, v) = α(u) + vβ(u), (21)

where α and β satisfy the condition (20).
Next, we consider G = 〈β, β〉 = 0, since β 	= 0, a director vector β must be lightlike. Furthermore,

since 〈α′, β〉 = 0, α is a spacelike curve or a lightlike curve.
Case 1: If α is a spacelike curve, then a lightlike non-cylindrical ruled surface is parametrized by:

X(u, v) = α(u) + vβ(u), (22)

where α is a spacelike curve and β is a lightlike vector.
Case 2: Let α be a lightlike curve. Then, there exists a smooth function k such that β′ = kα′, and a

lightlike ruled surface as a tangent developable surface is parametrized by:

X(u, v) = α(u) + vkα′(u), (23)

where α and α′′ are a lightlike curve and a spacelike vector, respectively.
In [5], the authors gave the following:

Definition 3. A surface evolution X(u, v, t) and its flow ∂X
∂t are said to be inextensible if the coefficients of the

first fundamental form of the surface satisfy:

∂E
∂t

=
∂F
∂t

=
∂G
∂t

= 0.

This definition states that the surface X(u, v, t) is, for all time t, the isometric image of the original
surface X(u, v, t0) defined at some initial time t0.

Now, we study inextensible flows of a lightlike tangent developable surface in Minkowski
three-space.

Consider a lightlike tangent developable surface parametrized by:

X(u, v) = α(u) + vα′(u), (24)

where α is a lightlike curve. Suppose that the parameter u is a pseudo-arc length of α. In this case,
we get E = v2||α′′||2 and F = G = 0.

Thus, we have:

Theorem 9. Let X(u, v) be a lightlike tangent developable surface given by (24). The surface evolution
X(u, v, t) = α(u, t) + vα′(u, t) is inextensible if and only if:

∂

∂t
||α′′||2 = 0.

As a consequence, we have the following results:
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Theorem 10. Let X(u, v, t) = α(u, t) + vα′(u, t) be a surface evolution of a lightlike tangent developable
surface given by (24) in R3

1. Then, we have the following statements:
(1) α(u, t) is an inextensible evolution of a lightlike curve α(u) in R3

1.
(2) An inextensible evolution of a lightlike tangent developable surface can be completely characterized by

the inextensible evolutions of a lightlike curve α(u) in R3
1.

Proof. In fact, 0 = ∂
∂t ||α′′||2 = 2||α′′|| ∂

∂t ||α′′|| and α′′ 	= 0, and we get ∂
∂t ||α′′|| = 0; it implies

∂
∂t ||α′′||

1
2 = 0. This means that α(u, t) satisfies the condition for Definition 2.

Theorem 11. Let X(u, v, t) = α(u, t) + vα′(u, t) be a surface evolution of a lightlike tangent developable
surface given by (24) in R3

1, and ∂α
∂t = f1t + f2n + f3g, where t, n, g are the Darboux frames along a

lightlike curve α on a lightlike surface. If the surface evolution X(u, v, t) is inextensible, then f1, f2, f3 satisfy
Equation (19).

6. Conclusions

We study an inextensible flow of a spacelike or a lightlike curve on a lightlike surface in Minkowski
three-space and investigate a time evolution of the Darboux frame {t, n, g} (see Theorems 3 and 7)
and the functions κn, κg and τg (see Theorems 4 and 8). Furthermore, in Theorems 2 and 6, we give a
necessary and sufficient condition of inextensible flows of a spacelike curve and a lightlike curve on a
lightlike surface in terms of a partial differential equation involving the curvatures of the curve on a
lightlike surface. Finally, we completely classify lightlike ruled surfaces in Minkowski three-space and
characterize an inextensible evolution of a lightlike curve on a lightlike tangent developable surface
(see Theorems 9 and 10).
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Abstract: Let M be a three-dimensional trans-Sasakian manifold of type (α, β). In this paper, we obtain
that the Ricci operator of M is invariant along Reeb flow if and only if M is an α-Sasakian manifold,
cosymplectic manifold or a space of constant sectional curvature. Applying this, we give a new
characterization of proper trans-Sasakian 3-manifolds.
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1. Introduction

A trans-Sasakian manifold is usually denoted by (M, φ, ξ, η, g, α, β), where both α and β are
smooth functions and (φ, ξ, η, g) is an almost contact metric structure. M is said to be proper if either
α = 0 or β = 0. When β = 0, α is a constant if dimM ≥ 5 (see [1]) and in this case M becomes an
α-Sasakian manifold if α ∈ R∗ or a cosymplectic manifold if α = 0. This conclusion is not necessarily
true for dimension three. However, unlike the above case, when α = 0, β is not necessarily a constant
even if dimM ≥ 5 or M is compact for dimension three (see [2]). The set of all trans-Sasakian manifolds
of type (0, β) coincides with that of all f -cosymplectic manifolds (see [3]) or f -Kenmotsu manifolds
(see [4–6]). A trans-Sasakian manifold of dimension ≥ 5 must be proper (see [1]). In the geometry of
trans-Sasakian 3-manifolds, there exists a basic interesting problem, that is:

Under what condition is a trans-Sasakian 3-manifold proper?

De [7–12], Deshmukh [13–15], Wang and Liu [16] and Wang [2,17] answered this question from
various points of view. In this paper, we study this question under a new geometric condition. Before
stating our main results, we recall some results related with such a condition.

On an almost contact metric manifold (M, φ, ξ, η, g), the Ricci operator of M is said to be Reeb
flow invariant if it satisfies

Lξ Q = 0, (1)

where L, ξ and Q are the Lie derivative, Reeb vector field and the Ricci operator, respectively. Cho
in [18] proved that a contact metric 3-manifold satisfies Equation (1) if and only if it is Sasakian
or locally isometric to SU(2) (or SO(3)), SL(2, R) (or O(1, 2)), the group E(2) of rigid motions of
Euclidean 2-plane. Cho in [19] proved that an almost cosymplectic 3-manifold satisfies (1) if and only if
it is either cosymplectic or locally isometric to the group E(1, 1) of rigid motions of Minkowski 2-space.
In addition, Cho and Kimura in [20] proved that an almost Kenmotsu 3-manifold satisfies (1) if and
only if it is of constant sectional curvature −1 or a non-unimodular Lie group. Reeb flow invariant
Ricci operators were also investigated on the unit tangent sphere bundle of a Riemannian manifold

Mathematics 2018, 6, 246; doi:10.3390/math6110246 www.mdpi.com/journal/mathematics147
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(see [21]), even on real hypersurfaces in complex two-plane Grassmannians (see [22]). In this paper,
we obtain a new characterization of proper trans-Sasakian 3-manifolds by employing (1) and proving

Theorem 1. The Ricci operator of a trans-Sasakian 3-manifold is invariant along Reeb flow if and only if the
manifold is an α-Sasakian manifold, cosymplectic manifold or a space of constant sectional curvature.

According to calculations shown in Section 3, we observe that Ricci parallelism with respect
to the Levi–Civita connection (i.e., ∇Q = 0) is stronger than a Reeb flow invariant Ricci operator.
Thus, we have

Remark 1. Theorem 1 is an extension of Wang and Liu [16] (Theorem 3.12).

Some corollaries induced from Theorem 1 are also given in the last section.

2. Trans-Sasakian Manifolds

On a smooth Riemannian manifold (M, g) of dimension 2n + 1, we assume that φ, ξ and η are
(1, 1)-type, (1, 0)-type and (0, 1)-type tensor fields, respectively. According to [23], M is called an
almost contact metric manifold if

φ2X = −X + η(X)ξ, η(ξ) = 1, η(φX) = 0,

g(φX, φY) = g(X, Y)− η(X)η(Y), η(X) = g(X, ξ)
(2)

for any vector fields X and Y. An almost contact metric manifold is said to be normal if [φ, φ] =

−2dη ⊗ ξ, where [φ, φ] denotes the Nijenhuis tensor of φ.
A normal almost contact metric manifold is called a trans-Sasakian manifold (see [1]) if

(∇Xφ)Y = α(g(X, Y)ξ − η(Y)X) + β(g(φX, Y)ξ − η(Y)φX) (3)

for any vector fields X, Y and two smooth functions α, β. In particular, a three-dimensional almost
contact metric manifold is trans-Sasakian if and only if it is normal (see [24,25]).

A normal almost contact metric manifold is called an α-Sasakian manifold if dη = αΦ and dΦ = 0,
where α ∈ R∗ (see [26]). An α-Sasakian manifold reduces to a Sasakian manifold (see [23]) when α = 1.
A normal almost contact metric manifold is called a β-Kenmotsu manifold if it satisfies dη = 0 and
dΦ = 2βη ∧ Φ, where β ∈ R∗ (see [26]). A β-Kenmotsu manifold becomes a Kenmotsu manifold when
β = 1. A normal almost contact metric manifold is called a cosymplectic manifold if it satisfies dη = 0
and dΦ = 0.

Putting Y = ξ into (3) and using (2), we have

∇Xξ = −αφX + β(X − η(X)ξ) (4)

for any vector field X. In this paper, all manifolds are assumed to be connected.

3. Reeb Flow Invariant Ricci Operator on Trans-Sasakian 3-Manifolds

In this section, we give a proof of our main result Theorem 1. First, we introduce the following
two important lemmas (see [12]) which are useful for our proof.

Lemma 1. On a trans-Sasakian 3-manifold of type (α, β) we have

ξ(α) + 2αβ = 0. (5)
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Lemma 2. On a trans-Sasakian 3-manifold of type (α, β), the Ricci operator is given by

Q =
( r

2
+ ξ(β)− α2 + β2

)
id −

( r
2
+ ξ(β)− 3α2 + 3β2

)
η ⊗ ξ

+ η ⊗ (φ(∇α)−∇β) + g(φ(∇α)−∇β, ·)⊗ ξ,
(6)

where by ∇ f we mean the gradient of a function f .

We also need the following lemma (see [17])

Lemma 3. On a trans-Sasakian 3-manifold of type (α, β), the following three conditions are equivalent:

(1) The Reeb vector field is minimal or harmonic.
(2) The following equation holds: φ∇α −∇β + ξ(β)ξ = 0 (⇔ ∇α + φ∇β + 2αβξ = 0).
(3) The Reeb vector field is an eigenvector field of the Ricci operator.

Lemma 4. The Ricci operator on a cosymplectic 3-manifold is invariant along the Reeb flow.

The above lemma can be seen in [19]

Lemma 5. The Ricci operator on an α-Sasakian 3-manifold is invariant along the Reeb flow.

Proof. According to Lemma 2 and the definition of an α-Sasakian 3-manifold, the Ricci operator is
given by

QX =
( r

2
− α2

)
X −

( r
2
− 3α2

)
η(X)ξ, (7)

for any vector field X and certain nonzero constant α. Moreover, according to [16] (Corollary 3.10),
we observe that the scalar curvature r is invariant along the Reeb vector field ξ, i.e., ξ(r) = 0. In fact,
such an equation can be deduced directly by using the formula divQ = 1

2∇r and (7). Applying
ξ(r) = 0, it follows directly from (7) that Lξ Q = 0.

Proof of Theorem 1. Let M be a trans-Sasakian 3-manifold and e be a unit vector field orthogonal
to ξ. Then, {ξ, e, φe} forms a local orthonormal basis on the tangent space for each point of M.
The Levi–Civita connection ∇ on M can be written as the following (see [12])

∇ξ ξ =0, ∇ξe = λφe, ∇ξ φe = −λe,

∇eξ =βe − αφe, ∇ee = −βξ + γφe, ∇eφe = αξ − γe,

∇φeξ =αe + βφe, ∇φee = −αξ − δφe, ∇φe = −βξ + δe,

(8)

where λ, γ and δ are smooth functions on some open subset of the manifold. We assume that the Ricci
operator is invariant along the Reeb flow. From (1) and (4), we have

0 = (Lξ Q)X = (∇ξ Q)X + αφQX − αQφX + βη(QX)ξ − βη(X)Qξ (9)

for any vector field X.
By using the local basis {ξ, e, φe} and Lemma 2, the Ricci operator can be rewritten as the following:

Qξ =φ∇α −∇β + (2α2 − 2β2 − ξ(β))ξ,

Qe =
( r

2
+ ξ(β)− α2 + β2

)
e − (φe(α) + e(β))ξ,

Qφe =
( r

2
+ ξ(β)− α2 + β2

)
φe + (e(α)− φe(β))ξ.

(10)
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Replacing X in (9) by ξ, we obtain

∇ξ(φ∇α −∇β) + ξ(2α2 − 2β2 − ξ(β))ξ + α(−∇α + ξ(α)ξ − φ∇β)

+2β(α2 − β2 − ξ(β))ξ − β(φ∇α −∇β)− β(2α2 − 2β2 − ξ(β))ξ = 0.
(11)

Taking the inner product of the above equation with ξ, e and φe, respectively, we obtain

ξ(ξ(β)) + 2βξ(β) + 4α2β =0,

αe(α)− βφe(α)− βe(β)− αφe(β) =0,

βe(α) + αφe(α) + αe(β)− βφe(β) =0,

(12)

where we have employed Lemma 1. The addition of the second term of (12) multiplied by α to the
third term of (12) multiplied by β gives

(α2 + β2)(e(α)− φe(β)) = 0. (13)

Following (13), we consider the following several cases.
Case i: α2 + β2 = 0, or equivalently, α = β = 0. In this case, the manifold becomes a cosymplectic

3-manifold. The proof for this case is completed because of Lemma 4.
Case ii: α2 + β2 	= 0. It follows immediately from (13) that e(α) − φe(β) = 0, or equivalently,

g(∇α + φ∇β, e) = 0. Because e is assumed to be an arbitrary vector field, it follows that ∇α + φ∇β =

η(∇α + φ∇β)ξ, i.e.,
∇α + φ∇β + 2αβξ = 0, (14)

or equivalently, φ∇α −∇β + ξ(β)ξ = 0, where we have used Lemma 1. When β = 0, it follows
from (14) that α is a nonzero constant. Thus, the proof can be done by applying Lemma 5. In what
follows, we consider the last case.

Case iii: α2 + β2 	= 0 and β 	= 0. In this context, (10) becomes

Qξ =2(α2 − β2 − ξ(β))ξ,

Qe =
( r

2
+ ξ(β)− α2 + β2

)
e,

Qφe =
( r

2
+ ξ(β)− α2 + β2

)
φe.

(15)

Replacing X by e in (9) and using (8), (15), we acquire

0 = (Lξ Q)e = ξ
( r

2
+ ξ(β)− α2 + β2

)
e.

With the aid of Lemma 1 and the first term of (12), from the previous relation, we have

ξ(r) = 0. (16)

From (15), we calculate the derivative of the Ricci operator as the following:

(∇ξ Q)ξ =0,

(∇eQ)e =e(A)e − βAξ + 2β(α2 − β2 − ξ(β))ξ,

(∇φeQ)φe =φe(A)φe − βAξ + 2β(α2 − β2 − ξ(β))ξ,

(17)

where we have used the first term of (8) and (12) and, for simplicity, we put

A =
r
2
+ ξ(β)− α2 + β2. (18)
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On a Riemannian manifold, we have divQ = 1
2∇r. In this context, it is equivalent to

g((∇ξ Q)ξ + (∇eQ)e + (∇φeQ)φe, X) =
1
2

X(r) (19)

for any vector field X. Replacing X in (19) by ξ and recalling (16) and the first term of (12), we obtain
2β(A − 2α2 + 2β2 + 2ξ(β)) = 0, or equivalently,

ξ(β)− α2 + β2 = − r
6

, (20)

where we have used the assumption β 	= 0 and (18). According to (15), it is clear to see that the
manifold is Einstein, i.e, Q = r

3 id. Because the manifold is of dimension three, then it must be of
constant sectional curvature.

A Riemannian manifold is said to be locally symmetric if ∇R = 0 and this is equivalent to
∇Q = 0 for dimension three. Wang and Liu in [16] proved that a trans-Sasakian 3-manifold is
locally symmetric if and only if it is locally isometric to the sphere space S3(c2), the hyperbolic space
H3(−c2), the Euclidean space R3, product space R× S2(c2) or R×H2(−c2), where c is a nonzero
constant. According to [16], on a locally symmetric trans-Sasakian 3-manifold, the Reeb vector field
is an eigenvector field of the Ricci operator. Thus, following Lemma 3 and relations (9) and (10), we
observe that Ricci parallelism is stronger than the Reeb flow invariant Ricci operator. Hence, our main
result in this paper extends [16] (Theorem 3.12).

From Theorem 1, we obtain a new characterization of proper trans-Sasakian 3-manifolds.

Theorem 2. A compact trans-Sasakian 3-manifold with Reeb flow invariant Ricci operator is homothetic to
either a Sasakian manifold or a cosymplectic manifold.

Proof. As seen in the proof of Theorem 1, a trans-Sasakian 3-manifold with Reeb flow invariant Ricci
operator is a α-Sasakian manifold, a cosymplectic manifold or a space of constant sectional curvature.
It is well known that an α-Sasakian manifold is homothetic to a Sasakian manifold. Moreover, there do
exist compact Sasakian and cosymplectic manifolds. To complete the proof, we need only to prove
that Case iii in the proof of Theorem 1 cannot occur.

Let M be a trans-Sasakian 3-manifold satisfying Case iii. According to (14) and Lemma 5, we know
that the Reeb vector field is minimal or harmonic. It has been proved in [17] (Lemma 5.1) that when
ξ of a compact trans-Sasakian 3-manifold is minimal or harmonic, then α is a constant. Because the
manifold is of constant sectional curvature, then the scalar curvature r is also a constant. Therefore,
the differentiation of (20) along ξ gives

ξ(ξ(β)) + 2βξ(β) = 0. (21)

Adding the above equation to the first term of (12) implies that α = 0 because of β 	= 0. Using this
in (14), we have ∇β = ξ(β)ξ. The following proof follows directly from [2]. For sake of completeness,
we present the detailed proof.

Applying ∇β = ξ(β)ξ and (7), we obtain

∇X∇β = X(ξ(β))ξ + ξ(β)(βX − βη(X)ξ) = 0

for any vector field X. Contracting X in the previous relation and using (21), we obtain Δβ = ξ(ξ(β)) +

2βξ(β) = 0. Because the manifold is assumed to be compact, the application of the divergence theorem
gives that β is a non-zero constant. Next, we show that this is impossible. In fact, the application
of (4) gives that divξ = 2β. Since the manifold is assumed to be compact, it follows that β = 0,
a contradiction. This completes the proof.
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Theorem 2 can also be written as follows.

Theorem 3. A compact trans-Sasakian 3-manifold with Reeb flow invariant Ricci operator is proper.

The curvature tensor R of a trans-Sasakian 3-manifold is given by (see [10,27])

R(X, Y)Z

=B(g(Y, Z)X − g(X, Z)Y)− Cg(Y, Z)η(X)ξ

+ g(Y, Z)(η(X)(φ∇α −∇β)− g(∇β − φ∇α, X)ξ)

+ Cg(X, Z)η(Y)ξ − g(X, Z)(η(Y)(φ∇α −∇β)− g(∇β − φ∇α, Y)ξ)

− (g(∇β − φ∇α, Z)η(Y) + g(∇β − φ∇α, Y)η(Z))X − Cη(Y)η(Z)X

+ (g(∇β − φ∇α, Z)η(X) + g(∇β − φ∇α, X)η(Z))X + Cη(X)η(Z)Y

(22)

for any vector fields X, Y, Z, where, for simplicity, we set

B =
r
2
+ 2ξ(β)− 2α2 + 2β2, C =

r
2
+ ξ(β)− 3α2 + 3β2. (23)

Substituting (14) and (20) into (22), with the aid of (23), we get

R(X, Y)Z =
r
6
(g(Y, Z)X − g(X, Z)Y)

for any vector fields X, Y, Z. This implies that, on a trans-Sasakian 3-manifold satisfying Case iii in
the proof of Theorem 1, we do not know whether α = 0 or not. In view of this, we introduce an
interesting question:

Problem 1. Is there a non-proper and non-compact trans-Sasakian 3-manifold of constant sectional curvature?

Remark 2. According to De and Sarkar [10] (Theorem 5.1), we observe that a compact trans-Sasakian
3-manifold of constant sectional curvature is either α-Sasakian or β-Kenmotsu.

Remark 3. Given a trans-Sasakian 3-manifold, following proof of Theorem 1, we still do not know whether β is
a constant or not even when α = 0 and the manifold is compact (see [2]).
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