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Preface to ”Differential Geometry”

Differential geometry is the field of mathematics that is concerned with studies of geometrical

structures on differentiable manifolds using techniques of differential calculus, integral calculus, and

linear algebra. Starting from some classical examples (e.g., open sets in Euclidean spaces, spheres,

tori, projective spaces, and Grassmannians) one may construct new manifolds by using algebraic

tools: product of manifolds, quotient spaces, pullback of manifolds by smooth functions, tensor

product of submanifolds, and numerous others.

Differential geometry became a field of research in late 19th century, but it is still very relevant

due to its applications and the development of new approaches. In order to determine the lengths of

curves, areas of surfaces, and volumes of manifolds, the geometers have considered Riemannian

manifolds or, more generally, pseudo-Riemannian manifolds. On such manifolds, distinguished

vector fields (Killing, conformal, concurrent, torse-forming vector fields) have interesting applications

in geometry and relativity.

Curvature invariants are the most natural and most important Riemannian invariants as they

play key roles in physics and biology. Among the Riemannian curvature invariants, the most

investigated are the sectional curvature, scalar curvature, Ricci curvature, and Chen invariants.

Mostly studied are the Riemannian manifolds endowed with certain endomorphisms of their tangent

bundles: almost complex, almost product, almost contact, and almost paracontact manifolds.

More general manifolds, for instance, affine manifolds and statistical manifolds, are also considered.

On the other hand, the geometry of submanifolds in Riemannian manifolds is an important

topic of research in differential geometry. Its origins are in the theory of curves and surfaces in

the three-dimensional Euclidean space. Obstructions to the existence of minimal, Lagrangian, slant

submanifolds were obtained in terms of their Riemannian curvature invariants.

The purpose of the Special Issue “Differential Geometry” of the journal Mathematics was to

provide a collection of papers that reflect modern topics of research and new developments in the

field of differential geometry and explore applications in other areas. We are very obliged to the

journal Mathematics for the opportunity to publish this book.

Ion Mihai

Special Issue Editor
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The Characterization of Affine Symplectic Curves
in R4
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Abstract: Symplectic geometry arises as the natural geometry of phase-space in the equations of
classical mechanics. In this study, we obtain new characterizations of regular symplectic curves with
respect to the Frenet frame in four-dimensional symplectic space. We also give the characterizations
of the symplectic circular helices as the third- and fourth-order differential equations involving the
symplectic curvatures.

Keywords: symplectic curves; circular helices; symplectic curvatures; Frenet frame

1. Introduction

As the Riemannian geometry involves the length as the fundamental quantity, symplectic
geometry involves the directed area, and contact geometry involves the twisting behavior as the
fundamental quantities. Since contact geometry is always odd-dimensional and symplectic geometry
is always even-dimensional, they are dual in the sense that they have many common results. Hence,
studying the twisting behavior in symplectic geometry helps us to obtain connections between these
two geometries.

The even-dimensional symplectic geometry has been found in numerous areas of mathematics and
physics. It arises as the natural geometry of phase-space in the equations of classical mechanics, which
are called Hamilton’s equations, and treating mechanical problems in phase-space greatly simplifies
the problem [1]. Besides, the symplectic numerical methods are known to be fast and accurate [2–5].
Symplectic geometry also arises in microlocal analysis [6–8], in time series analysis [9,10], analysis of
random walks on euclidean graphs [11], and applications of Clifford algebras [12–14].

Geometrical optics has been recognized as a semi-classical limit of wave optics with a small
parameter; it has nevertheless been constantly considered as a self-consistent theory for light rays,
borrowing much from differential geometry and, more specifically, from Riemannian and symplectic
geometries. Geometrical optics provides, indeed, a beautiful link between both previously-mentioned
geometries: (i) Light travels along geodesics of an optical medium, a three-dimensional manifold
whose Riemannian structure is defined by a refractive index; (ii) The set of all such geodesics is
naturally endowed with the structure of four-dimensional symplectic manifolds [15,16].

The aim of this paper is to study some characterization for a special class of symplectic curves
called affine symplectic helices, which are a very important tool for both physics and geometric optics.
The helix is a symplectic similarity of non-symbolic full toric diversity, whereby algebraic geometry
accounts for the effects of uniformity near the focus-focus singularities. The characterization of the
helices in different geometries has also been studied by several researchers [17–21]. Proceeding the
same way, we study symplectic regular curves, which are parameterized by the symplectic arc length
and analyzed by their Frenet-type symplectic frame. In Section 2, we present the preliminaries on the
symplectic geometry in terms of isometry groups and inner products. In Section 3, we give the general

Mathematics 2019, 7, 110; doi:10.3390/math7010110 www.mdpi.com/journal/mathematics1
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properties of affine symplectic curves in R4, which was firstly studied in [22]. Finally, in Section 4,
we present the results that we obtain on the characterizations of symplectic curves in R4 and study
symplectic helices.

2. Preliminaries

In the following, we use similar notations and concepts as in [22].
Let R4 be endowed with standard symplectic form Ω given in global Darboux coordinates:

z =
(

x1, x2, y1, y2) by
Ω = dx1 ∧ dy1 + dx2 ∧ dy2. (1)

Given two vector fields:

u = x1 ∂

∂x1 + x2 ∂

∂x2 + y1 ∂

∂y1 + y2 ∂

∂y2

and:
v = ξ1 ∂

∂ξ1 + ξ2 ∂

∂ξ2 + ω1 ∂

∂ω1 + ω2 ∂

∂ω2

the symplectic form (1) induces a symplectic inner product, which is a non-degenerate,
skew-symmetric, bilinear form, on each fiber of tangent bundle TR4. with:

< u, v >= Ω(u, v) =
2

∑
i=1

(
xiωi − yiξ i

)
. (2)

The isometry group of the inner product (2) is the 10-dimensional symplectic group
Sp(4) = Sp(4,R) ⊂ GL(4,R). The Lie algebra sp(4) of Sp(4) is the vector space consisting of all
4 × 4 matrices of the form: (

U V
W −UT

)
, (3)

where U,V, and W are 2 × 2 matrices satisfying:

W = WT , V = VT .

The semi-direct product G = Sp(4,R)� R4 of the symplectic group by the translations is called
the group of rigid symplectic motions [22]. Hence, a rigid symplectic motion acting on z ∈ R4 with
z �→ Az + b for (A, b) ∈ Sp(4,R) is an affine symplectic transformation.

Definition 1. A symplectic frame is a smooth section of the bundle of linear frames over R4, which assigns to
every point z ∈ R4 an ordered basis of tangent vectors a1, a2, a3,a4 with the property that:〈

ai, aj
〉

=
〈

a2+i, a2+j
〉
= 0 , 1 ≤ i, j ≤ 2,〈

ai, a2+j
〉

= 0 , 1 ≤ i 	= j ≤ 2, (4)

〈ai, a2+i〉 = 1 , 1 ≤ i ≤ 2.

The structure equations for a symplectic frame are therefore of the form:

dai =
2

∑
k=1

wikak +
2

∑
k=1

θika2+k (5)

da2+i =
2

∑
k=1

φikak −
2

∑
k=1

wkia2+k

2
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for 1 ≤ i ≤ 2. By a consequence of the conditions in (4), the one forms satisfy:

θij = θ ji, φij = φji. (6)

3. General Properties of Affine Symplectic Curves in R4

We consider parametrized smooth curves z : I → R4 defined on an open interval I ⊂ R. As is
customary in classical mechanics, we use the notation ż to denote differentiation with respect to the
parameter t, that is:

ż =
dz
dt

. (7)

Definition 2. Let z : I → R4 be a smooth curve. If the second-order osculating spaces of z satisfy the
non-degeneracy condition:

< ż, z̈ > 	= 0

for all t ∈ I, then z : I → R4 is called an affine symplectic regular curve.

Definition 3. Let t0 ∈ I. The symplectic arc length s of a symplectic regular curve z starting at t0 is defined by:

s(t) =
∫ t

t0

〈ż, z̈〉1/3 dt (8)

for t ∈ I.

We shall note that symplectic arc length may be negative. However, with no loss of generality, we
may assume that < ż, z̈ >> 0 throughout the paper.

Taking the exterior differential of the (8), we obtain the symplectic arc length element as:

ds = 〈ż, z̈〉1/3 dt. (9)

In the following, primes are used to denote differentiation with respect to the symplectic arc
length derivative operator (9) as:

z′ = dz
ds

.

Definition 4. A symplectic regular curve is parameterized by the symplectic arc length if:

〈ż, z̈〉 = 1 (10)

for all t ∈ I.

Proposition 1. Every symplectic regular curve can be parameterized by the symplectic arc length.

Proposition 2. Let z : I → R4 be a symplectic regular curve, which is parameterized by the symplectic arc
length, and such that H2(s) 	= 0. Then, the symplectic frame {a1(s), a2(s), a3(s), a4(s)} defined along the
image of z satisfies the following structure equations:

a
′
1(s) = a3(s)

a
′
2(s) = H2(s)a4(s) (11)

a
′
3(s) = k1(s)a1(s) + a2(s)

a
′
4(s) = a1(s) + k2(s)a2(s),

where H2(s), k1(s), k2(s) are symplectic curvatures of z.

3
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In general, we call the equations in (11) symplectic Frenet equations.

4. The Characterizations of Symplectic Curves in R4

Definition 5. Let z : I → R4 be a symplectic regular curve, which is parameterized by the symplectic arc
length, and {a1(s), a2(s), a3(s), a4(s)} be the Frenet frame of this curve. A symplectic curve z that satisfies the
following condition:

k1(s)
k2(s)

= const.

is called a general helix with respect to the Frenet frame.

Example 1. Let z : I → R4 be defined with z(t) =
(

t,
t2

2
,

t3

3
,

t3

3
+

t5

5

)
. Since Ω(dz, dz) 	= 0 and:

k1(t)
k2(t)

= constant

with:
ds = 〈ż, z̈〉1/3 dt,

z is a symplectic polynomial helix.

Example 2. Let z : I → R4 be defined with z(s) = (cosh s, 0, sinh s, 0). Since Ω(dz, dz) 	= 0 and:

k1(s)
k2(s)

= constant

with:
< ż, z̈ >= 1,

z is a symplectic arc length parameterized circular helix.

Definition 6. Let z : I → R4 be a symplectic regular curve, which is parameterized by the symplectic arc
length, and { a1(s), a2(s), a3(s), a4(s)} be the Frenet frame of z. If both k1(s) and k2(s) are positive constants
along z, then z is called a circular helix with respect to the Frenet frame.

Theorem 1. Let z(s) be a symplectic regular curve, which is parameterized by the symplectic arc length. z(s)
is a general helix with respect to the Frenet frame {a1(s), a2(s), a3(s), a4(s)} such that H2(s) = const 	= 0 if
and only if:

a(iv)1 (s) = [k
′′
1(s) + k2

1(s) + H2(s)]a1(s) + 2k
′
1(s)a3(s) (12)

Proof. Suppose that z(s) is a general helix with respect to the Frenet frame {a1(s), a2(s), a3(s), a4(s)}.
Then, from (11), we have:

a(ıv)1 (s) = [k
′′
1(s) + k2

1(s) + H2(s)]a1(s) + [k1(s) + (13)

k2(s)H2(s)]a2(s) + 2k
′
1(s)a3(s) + H

′
2(s)a4(s)

Now, H2(s) = cons( 	= 0), and z(s) is a general helix with respect to the Frenet frame; we suppose that:

k1(s)
k2(s)

= −H2(s) (14)

If we substitute Equation (14) in (13), we obtain (12).

4
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Conversely, let us assume that Equation (12) holds. We show that the curve z(s) is a general helix.
From (11), we obtain:

a1(s) =
1

k1(s)
[a

′
3(s)− a2(s)] (15)

Differentiating covariantly (15), we obtain:

a
′
1(s) =

(
−k

′
1(s)

k1(s)

)
a1(s) +

(
1

k1(s)

)
[a

′′
3(s)− a

′
2(s)] (16)

and so:

a
′′
1(s) =

(
−k

′
1(s)

k1(s)

)′

a1(s) +

(
−k

′
1(s)

k1(s)

)
a3(s). (17)

+

(
1

k1(s)

)′

[a
′′
3(s)− a

′
2(s)] +

(
1

k1(s)

)
[a

′′′
3 − a

′′
2 ]

If we use (7) in (17) and after routine calculations, we have:

H
′
2(s)

k1(s)
= 0 (18)

and: −H2(s)k2(s)
k1(s)

= 1. (19)

Hence, we obtain H2(s) = const. and k1(s)
k2(s)

= const. This shows that z(s) is a general helix.

The hypotheses of Theorem 1 and the definition of a circular helix lead us to the following corollary:

Corollary 1. Let z(s) be a symplectic regular curve, which is parametrized by the symplectic arc length. z(s) is
a circular helix with respect to the Frenet frame {a1(s), a2(s), a3(s), a4(s)} if and only if:

a(iv)1 (s) = λa1(s), (20)

where λ = k2
1(s) + H2(s) = const.

Theorem 2. Let z(s) be a symplectic regular curve, which is parametrized by the symplectic arc length. z(s) is
a circular helix with respect to the Frenet frame {a1(s), a2(s), a3(s), a4(s)} if and only if:

a
′′′
4 (s) =

(
1 + k

′′
2(s)− k1(s)k2(s)

)
a2(s) +

(
2k

′
2(s)H2(s)

)
a4(s). (21)

Corollary 2. Let z(s) be a symplectic regular curve, which is parametrized by the symplectic arc length. z(s)
is a general helix with respect to the Frenet frame {a1(s), a2(s), a3(s), a4(s)} such that H2(s) = const 	= 0 if
and only if:

a
′′′
4 (s) = μa2(s), (22)

where μ = (1 − k1(s)k2(s)) = const.

Theorem 3. Let z(s) be a symplectic regular curve, which is parametrized by the symplectic arc length. z(s)
is a general helix with respect to the Frenet frame {a1(s), a2(s), a3(s), a4(s)} such that H2(s) = const 	= 0 if
and only if:

a
′′′
2 (s) = H2(s)a3(s) + H2(s)K

′
2(s)a2(s)− H2(s)K1(s)a4(s) (23)

5
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Corollary 3. Let z(s) be a symplectic regular curve, which is parametrized by the symplectic arc length. z(s)
is a general helix with respect to the Frenet frame {a1(s), a2(s), a3(s), a4(s)} such that H2(s) = const 	= 0 if
and only if:

a
′′′
2 (s) = c1a3(s) + c2a4(s) (24)

c1 = H2(s) = const. and c2 = H2(s)K1(s) = const.

In the rest of this section, we discuss symplectic regular curves with constant local symplectic
invariants. The theorem of Cartan states that the curves with constant symplectic curvatures are precisely
the orbits of the one-parameter subgroups of the affine symplectic group in four variables [23,24]. In order
to determine such one-parameter subgroups, we shall directly integrate the symplectic Frenet equations
of affine symplectic helices. Now, let us consider the symplectic Frenet equations given by (11) with
the matrix form as:

d
ds

⎛⎜⎜⎜⎝
a1

a2

a3

a4

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0 0 1 0
0 0 0 H2

k1 1 0 0
1 k2 0 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

a1

a2

a3

a4

⎞⎟⎟⎟⎠ , (25)

with the constant symplectic curvatures k1, k2, H1. It is well known that the eigenvalues of the Frenet
matrix appearing in the right-hand side of (25) are:

μ1 =
1√
2

√
λ1 +

√
λ2, μ2 = −μ2

μ3 =
1√
2

√
λ1 −

√
λ2, μ4 = −μ3,

where λ1 = k2H2 + k1 and λ2 = (k2H2 − k1)
2 + 4H2 [22].

Now, let us assume that z : I → R4 is a symplectic general helix with constant positive curvatures
k1, k2. Then, by Theorem 1, k1 = −k2H2. Therefore, the eigenvalues of the Frenet matrix appearing
in (25) become:

μ1 =
1
2

4√
λ, μ2 = −μ2

μ3 =
i
2

√
λ, μ4 = −μ3,

where λ =
(
k2

1 + H1
)

and i =
√−1. Thus, if H1 < −k2

1, then the eigenvalues are distinct complex
conjugates. Similarly, if H1 > −k2

1, then the eigenvalues are distinct reals. Depending on the two
cases involving symplectic curvatures, we obtain symplectic general helices of the euclidean or
hyperbolic type.

5. Conclusions

In our three-dimensional world, the four-dimensional Frenet formulae may seem irrelevant and
useless. However, in many areas, including the classical mechanics of physics, the Frenet formulae
have been applied. In this study, we study four-dimensional symplectic curves by using the Frenet
frames. Our results show that a symplectic helix involves non-zero constant symplectic curvature
if and only if the fourth derivative of its first component of the position vector can be described as
in Equation (12). Besides, the symplectic circular helices can be characterized directly by the first
component of the position vector with the fourth-order derivative.

The characterization of the symplectic helices not only depends on the first component of the
position vector. The third derivatives of the second and fourth components of the position vector can be
characterized as in Equations (21) and (23). Similarly, symplectic circular helices can be characterized
directly by their second and fourth components of the position vector with the third-order derivatives.

6
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Helices are natural twisting structures; hence, studying the symplectic helix may shed light on
the connection of contact and symplectic geometries.
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20. Yılmaz, M.Y.; Bektaş, M. Helices of the 3-dimensional Finsler manifold. J. Adv. Math. Stud. 2009, 2, 107–113.
21. Valiquette, F. Geometric affine symplectic curve flows in R4. Differ. Geom. Its Appl. 2012, 30, 631–641.

[CrossRef]
22. Kamran, N.; Olver, P.; Tenenblat, K. Local symplectic invariants for curves. Commun. Contemp. Math. 2009,

11, 165–183. [CrossRef]

7



Mathematics 2019, 7, 110

23. Fels, M.; Olver, P.J. Moving coframes: I. A practical algorithm. Acta Appl. Math. 1998, 51, 161–213. [CrossRef]
24. Fels, M.; Olver, P.J. Moving coframes: II. Regularization and theoretical foundations. Acta Appl. Math. 1999,

55, 127–208. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

8



mathematics

Article

Euclidean Submanifolds via Tangential Components
of Their Position Vector Fields

Bang-Yen Chen

Department of Mathematics, Michigan State University, East Lansing, MI 48824-1027, USA;
bychen@math.msu.edu; Tel.: +1-517-515-9087

Academic Editor: Ion Mihai
Received: 6 September 2017; Accepted: 10 October 2017; Published: 16 October 2017

Abstract: The position vector field is the most elementary and natural geometric object on a Euclidean
submanifold. The position vector field plays important roles in physics, in particular in mechanics.
For instance, in any equation of motion, the position vector x(t) is usually the most sought-after
quantity because the position vector field defines the motion of a particle (i.e., a point mass):
its location relative to a given coordinate system at some time variable t. This article is a survey
article. The purpose of this article is to survey recent results of Euclidean submanifolds associated
with the tangential components of their position vector fields. In the last section, we present some
interactions between torqued vector fields and Ricci solitons.
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1. Introduction

For an n-dimensional submanifold M in the Euclidean m-space Em, the most elementary and
natural geometric object is the position vector field x of M. The position vector is a Euclidean vector
x =

−→
OP that represents the position of a point P ∈ M in relation to an arbitrary reference origin

O ∈ Em.
The position vector field plays important roles in physics, in particular in mechanics. For instance,

in any equation of motion, the position vector x(t) is usually the most sought-after quantity because
the position vector field defines the motion of a particle (i.e., a point mass): its location relative to a
given coordinate system at some time variable t. The first and the second derivatives of the position
vector field with respect to time t give the velocity and acceleration of the particle.

For a Euclidean submanifold M of a Euclidean m-space, there is a natural decomposition of the
position vector field x given by:

x = xT + xN , (1)

where xT and xN are the tangential and the normal components of x, respectively. We denote by |xT |
and |xN | the lengths of xT and of xN , respectively. Clearly, we have |xN | = √|x|2 − |xT |2. In [1], the
author provided a survey on several topics in differential geometry associated with position vector
fields on Euclidean submanifolds.

In this paper, we discuss Euclidean submanifolds M whose tangential components xT admit some
special properties such as concurrent, concircular, torse-forming, etc. Moreover, we will also discuss
constant-ratio submanifolds, as well as Ricci solitons on Euclidean submanifolds with the potential
fields of the Ricci solitons coming from the tangential components of the position vector fields. In the
last section, we present some interactions between torqued vector fields and Ricci solitons.

Mathematics 2017, 5, 51; doi:10.3390/math5040051 www.mdpi.com/journal/mathematics9
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2. Preliminaries

Let x : M → Em be an isometric immersion of a Riemannian manifold M into a Euclidean m-space
Em. For each point p ∈ M, we denote by Tp M and T⊥

p M the tangent space and the normal space of M
at p, respectively.

Let ∇ and ∇̃ denote the Levi–Civita connections of M and Em, respectively. Then, the formulas
of Gauss and Weingarten are given respectively by (cf. [2–6]):

∇̃XY = ∇XY + h(X, Y), (2)

∇̃Xξ = −Aξ X + DXξ, (3)

for vector fields X, Y tangent to M and ξ normal to M, where h is the second fundamental form, D the
normal connection and A the shape operator of M.

At a given point p ∈ M, the first normal space of M in Em, denoted by Im hp, is the subspace
given by:

Im hp = Span{h(X, Y) : X, Y ∈ Tp M}. (4)

For each normal vector ξ at p, the shape operator Aξ is a self-adjoint endomorphism of Tp M.
The second fundamental form h and the shape operator A are related by:〈

Aξ X, Y
〉
= 〈h(X, Y), ξ〉 , (5)

where 〈 , 〉 is the inner product on M, as well as on the ambient Euclidean space. The covariant
derivative ∇̄h of h with respect to the connection on TM ⊕ T⊥M is defined by:

(∇̄Xh)(Y, Z) = DX(h(Y, Z))− h(∇XY, Z)− h(Y,∇XZ). (6)

For a given point p ∈ M, we put:

Im (∇̄hp) = {∇̄Xh)(Y, Z) : X, Y, Z ∈ Tp M}. (7)

The subspace Im ∇̄hp is called the second normal space at p.
The equation of Gauss of M in Em is given by:

R(X, Y; Z, W) = 〈h(X, W), h(Y, Z)〉 − 〈h(X, Z), h(Y, W)〉 (8)

for X, Y, Z, W tangent to M, where R is the Riemann curvature tensors of M defined by:

R(X, Y; Z, W) = 〈∇X∇YZ, W〉 − 〈∇Y∇XZ, W〉 −
〈
∇[X,Y]Z, W

〉
.

The equation of Codazzi is:

(∇̄Xh)(Y, Z) = (∇̄Yh)(X, Z). (9)

The mean curvature vector H of a submanifold M is defined by:

H =
1
n

trace h, n = dim M. (10)

A Riemannian manifold is called a flat space if its curvature tensor R vanishes identically. Further,
a submanifold M is called totally umbilical (respectively, totally geodesic) if its second fundamental
form h satisfies h(X, Y) = 〈X, Y〉 H identically (respectively, h = 0 identically).
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A hypersurface of a Euclidean (n + 1)-space En+1 is called a quasi-umbilical hypersurface if its
shape operator has an eigenvalue κ of multiplicity mult(κ) ≥ n − 1 (cf. ([2], p. 147)). On the subset
U of M on which mult(κ) = n − 1, an eigenvector with eigenvalue of multiplicity one is called a
distinguished direction of the quasi-umbilical hypersurface.

The following lemmas can be found in [7].

Lemma 1. Let x : M → Em be an isometric immersion of a Riemannian n-manifold into a Euclidean m-space
Em. Then, x = xT holds identically if and only if M is a conic submanifold with the vertex at the origin.

Lemma 2. Let x : M → Em be an isometric immersion of a Riemannian n-manifold into Em. Then, x = xN

holds identically if and only if M lies in a hypersphere centered at the origin.

In view of Lemmas 1 and 2, we make the following.

Definition 1. A submanifold M of Em is called proper if it satisfies x 	= xT and x 	= xN almost everywhere.

3. Euclidean Submanifolds with Constant |xT| or Constant |xN|
Euclidean submanifolds with constant |xT | are called T-constant submanifolds in [8]. These

submanifolds were first introduced and studied by the author in [8].
One important property of a T-constant proper hypersurface M is that the tangential component

xT of the position vector field x of M defines a principal direction for the hypersurface. Moreover,
the normal component xN of M is nowhere zero (see, ([8], p. 66)).

T-constant Euclidean proper submanifolds were classified in [8] as follows.

Theorem 1. Let x : M → Em be an isometric immersion of a Riemannian n-manifold into the Euclidean
m-space. Then, M is a T-constant proper submanifold if and only if there exist real numbers a, b and local
coordinate systems {s, u2, . . . , un} on M such that the immersion x is given by:

x(s, u2, . . . , un) =
√

a2 + b + 2as Y(s, u2, . . . , un), (11)

where Y = Y(s, u2, . . . , un) satisfies the following conditions:

(a) Y = Y(s, u2, . . . , un) lies in the unit hypersphere Sm−1(1),
(b) the coordinate vector field Ys is perpendicular to coordinate vector fields Yu2 , . . . , Yun and
(c) Ys satisfies |Ys| =

√
b + 2as/(a2 + b + 2as).

Now, we provide some examples of T-constant proper hypersurfaces in Rn+1.

Example 1. For a given real number a > 0 and for s > 0, we define Y = Y(s, u2, . . . , un) by:

Y =
1√

a2 + 2as

(
a sin

(√
2as
a

)
−
√

2as cos
(√

2as
a

)
,{

a cos
(√

2as
a

)
+
√

2as sin
(√

2as
a

)}
n

∏
j=2

cos uj, (12)

{
a cos

(√
2as
a

)
+
√

2as sin
(√

2as
a

)}
sin u2, . . . ,{

a cos
(√

2as
a

)
+
√

2as sin
(√

2as
a

)}
sin un

n−1

∏
j=2

cos uj

)

11
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in En+1. Then, |Y| = 1, and Y = Y(s, u2, . . . , un) satisfies the conditions (a), (b) and (c) of Theorem 1. An easy
computation shows that:

x =
√

a2 + 2as Y(s, u2, . . . , un) (13)

satisfies |xT | = a. Thus, (13) defines a proper T-constant submanifold in En+1.

Similarly, one may also consider Euclidean submanifolds with constant |xN |. Such submanifolds
are called N-constant submanifolds in [8].

Proper N-constant Euclidean submanifolds were classified in [8] as follows.

Theorem 2. Let x : M → Em be an isometric immersion of a Riemannian n-manifold into the Euclidean
m-space. Then, M is an N-constant proper submanifold if and only if there exist a positive number c and local
coordinate systems {s, u2, . . . , un} on M such that the immersion x is given by:

x(s, u2, . . . , un) =
√

s2 + c2 Y(s, u2, . . . , un), (14)

where Y = Y(s, u2, . . . , un) satisfies the conditions:

(1) Y = Y(s, u2, . . . , un) lies in the unit hypersphere Sm−1(1),
(2) Ys is perpendicular to coordinate vector fields Yu2 , . . . , Yun and
(3) Ys satisfies |Ys| = c/(s2 + c2).

Here are some examples of N-constant proper hypersurfaces of En+1.

Example 2. For a given positive numbers c, we define:

Y =
1√

s2 + c2

(
c, s

n

∏
j=2

cos uj, s sin u2, . . . , s sin un

n−1

∏
j=2

cos uj

)
(15)

in En+1. Then, 〈Y, Y〉 = 1, and Y = Y(s, u2, . . . , un) satisfies the conditions (1), (2) and (3) of Theorem 2.
An easy computation shows that:

x =
√

s2 + c2 Y(s, u2, . . . , un) (16)

satisfies
〈

xN , xN〉
= c2, which provides an example of a proper N-constant submanifold.

4. Euclidean Submanifolds with Constant Ratio |xT| : |xN|
Euclidean submanifolds with the ratio |xT | : |xN | being constant are called constant ratio

submanifolds. The study of such submanifolds was initiated by the author in [9,10].
As we mentioned in [1], constant-ratio curves in a plane are exactly the equiangular curves

in the sense of D’Arcy Thompson’s biology theory on growth and form [11]. Thus, constant-ratio
submanifolds can be regarded as a higher dimensional version of Thompson’s equiangular curves.
For this reason, constant-ratio submanifolds are also known in some literature as equiangular
submanifolds (see, e.g., [12,13]).

Constant-ratio submanifolds were completely classified by the author in [9,10] as follows.

Theorem 3. Let x : M → Em be an isometric immersion of a Riemannian n-manifold into the Euclidean
m-space. Then, M is a constant-ratio proper submanifold if and only if there exists a number b ∈ (0, 1) and
local coordinate systems {s, u2, . . . , un} on M such that the immersion x is given by:

x(s, u2, . . . , un) = bs Y(s, u2, . . . , un), (17)

where Y = Y(s, u2, . . . , un) satisfies the conditions:

12
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(a) Y = Y(s, u2, . . . , un) lies in the unit hypersphere Sm−1(1),
(b) Ys is perpendicular to Yu2 , . . . , Yun and
(c) |Ys| =

√
1 − b2/(bs).

We give the following examples of constant-ration hypersurfaces.

Example 3. Let b be a real number in (0, 1) and s > 0. We define:

Y(s, u2, . . . , un) =

(
sin

(√
1 − b2

b
ln s

)
, cos

(√
1 − b2

b
ln s

)
n

∏
j=2

cos uj,

cos

(√
1 − b2

b
ln s

)
sin u2, . . . , cos

(√
1 − b2

b
ln s

)
sin un

n−1

∏
j=2

cos uj

)

in En+1. Then, |Y| = 1, and Y = Y(s, u2, . . . , un) is a local parametrization of the unit sphere Sn. Moreover,
Y(s, u2, . . . , un) satisfies Conditions (b) and (c) of Theorem 3.

An easy computation shows that x(s, u2, . . . , un) = bsY(s, u2, . . . , un) satisfies |x| = bs and |xT | = b2s.
Hence, |xT | = b|x|. Consequently, x defines a constant-ratio hypersurface in En+1.

Remark 1. Constant-ratio curves also relate to the motion in a central force field that obeys the inverse-cube
law. In fact, the trajectory of a mass particle subject to a central force of attraction located at the origin that obeys
the inverse-cube law is a curve of constant-ratio. The inverse-cube law was originated from Sir Isaac Newton
(1642–1727) in his letter sent on 13 December 1679 to Robert Hooke (1635–1703). This letter is of great historical
importance since it reveals the state of Newton’s development of dynamics at that time (see, for instance, [14,15],
pp. 266–271, [16,17], Book I, Section II, Proposition IX).

Let ρ denote the distance function of a submanifold M in Em, i.e., ρ = |x|. It was proven in [18]
that the Euclidean submanifold M is of constant-ratio if and only if the gradient of the distance function
ρ has constant length.

Remark 2. Constant ratio submanifolds are related to the notion of convolution manifolds introduced by the
author in [18,19], as well.

5. Rectifying Euclidean Submanifolds with Concurrent xT

Let α : I → E3 be a unit speed curve in the Euclidean three-space E3 with Frenet–Serret apparatus
{κ, τ, T, N, B}, where κ, τ, T, N and B denote the curvature, the torsion, the unit tangent T, the unit
principal normal N and the unit binormal of α, respectively. Then, α is called a Frenet curve if the
curvature and torsion of α satisfy κ > 0 and τ 	= 0.

The famous Frenet formulas of α are given by:⎧⎪⎪⎨⎪⎪⎩
t′ = κn,

n′ = −κt + τb,

b′ = −τn.

(18)

At each point of the curve, the planes spanned by {t, n}, {t, b} and {n, b} are known as the
osculating plane, the rectifying plane and the normal plane, respectively.

It is well known in elementary differential geometry that a curve in E3 lies in a plane if its position
vector x lies in its osculating plane at each point; and it lies on a sphere if its position vector lies in its
normal plane at each point. In view of these basic facts, the author defined a rectifying curve in E3 as a
Frenet curve whose position vector field always lie in its rectifying plane [20]. Moreover, he completely
classified in [20] rectifying curves in E3. Furthermore, he proved in [21] that a curve on a general
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cone (not necessarily a circular one) in E3 is a geodesic if and only if it is a rectifying curve or an open
portion of a ruling of the cone. In [22], several interesting links between rectifying curves, centrodes
and extremal curves were established by B.-Y. Chen and F. Dillen. Some further results in this respect
were also obtained recently in [23,24].

Clearly, it follows from the definition of a rectifying curve α : I → E3 that the position vector field
x of α satisfies:

x(s) = λ(s)t(s) + μ(s)b(s) (19)

for some functions λ and μ.
For a Frenet curve γ : I → E3, the first normal space of γ at s0 is the line spanned by the principal

normal vector n(s0). Hence, the rectifying plane of γ at s0 is nothing but the plane orthogonal to the
first normal space at s0. For this reason, for a submanifold M of Em and a point p ∈ M, we call the
subspace of TpEm the rectifying space of M at p if it is the orthogonal complement to the first normal
space Im σp.

According to [7], a submanifold M of a Euclidean m-space Em is called a rectifying submanifold
if the position vector field x of M always lies in its rectifying space. In other words, M is called a
rectifying submanifold if and only if: 〈

x(p), Im hp
〉
= 0 (20)

holds for each point p ∈ M. A non-trivial vector field Z on a Riemannian manifold M is called
concurrent if it satisfies ∇XZ = X for any vector X tangent to M, where ∇ is the Levi–Civita connection
of M (cf. [25–28]).

The following results on rectifying submanifolds were proven in [7,29].

Theorem 4. If M is a proper submanifold of Em, then M is a rectifying submanifold if and only if xT is a
concurrent vector field on M.

Theorem 5. A proper hypersurface M of En+1 is rectifying if and only if M is an open portion of a hyperplane
L of En+1 with o /∈ L, where zero denotes the origin of En+1.

Theorem 6. Let M be a rectifying proper submanifold of Em. If m ≥ 2 + dim M, then with respect to some
suitable local coordinate systems {s, u2, . . . , un} on M, the immersion x of M in Em takes the form:

x(s, u2, . . . , un) =
√

s2 + c2 Y(s, u2, . . . , un), 〈Y, Y〉 = 1, c > 0, (21)

such that the metric tensor gY of the spherical submanifold defined by Y satisfies:

gY =
c2

(s2 + c2)2 ds2 +
s2

s2 + c2

n

∑
i,j=2

gij(u2, . . . , un)duiduj. (22)

Conversely, the immersion defined by (21) and (22) is a rectifying proper submanifold.

Remark 3. For the pseudo-Euclidean version of Theorem 5, see [30].

6. Euclidean Submanifolds with Concircular xT

A non-trivial vector field Z on a Riemannian manifold M is called a concircular vector field if it
satisfies (cf., e.g., [5,31,32]):

∇XZ = ϕX, X ∈ TM, (23)
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where ϕ is a smooth function on M, called the concircular function. Obviously, a concircular vector
field with ϕ = 1 is a concurrent vector field. For simplicity, we call a Euclidean submanifold with
concircular xT a circular submanifold.

The following result from [33] classifies concircular submanifolds completely.

Theorem 7. Let M be a proper submanifold of a Euclidean m-space Em with origin zero. If n = dim M ≥ 2,
then M is a concircular submanifold if and only if one of the following three cases occurs:

(a) M is an open portion of a linear n-subspace Ln of Em such that o /∈ L.
(b) M is an open portion of a hypersphere Sn of a linear (n + 1)-subspace Ln+1 of Em such that the origin of

Em is not the center of Sn.
(c) m ≥ n + 2. Moreover, with respect to some suitable local coordinate systems {s, u2, . . . , un} on M,

the immersion x of M in Em takes the following form:

x(s, u2, . . . , un) =
√

2ρ Y(s, u2, . . . , un), 〈Y, Y〉 = 1, (24)

where Y : M → Sm−1
o (1) ⊂ Em is an immersion of M into the unit hypersphere Sm−1

o (1) such that the
induced metric gY via Y is given by:

gY =
2ρ − ρ′2

4ρ2 ds2 +
ρ′2

2ρ

n

∑
i,j=2

gij(u2, . . . , un)duiduj. (25)

where ρ = ρ(s) satisfies 2ρ > ρ′2 > 0 on an open interval I.

Next, we provide one explicit example of a concircular surface in E4.

Example 4. If we choose n = 2 and ρ(s) = 3
8 s2, then (33) reduces to:

gY =
1

3s2 ds2 +
3
4

du2. (26)

Let us define Y : I1 × I2 → S3
o(1) ⊂ E4 to be the map of I1 × I2 into S3

o(1) given by:

Y(s, u) =
1√
2

(
cos

(√
2√
3

ln s
)

, sin
(√

2√
3

ln s
)

, cos
(√

6
2 u

)
, sin

(√
6

2 u
))

. (27)

Then, the induced metric tensor of I1 × I2 via the map Y is given by (34). Therefore, P2 = (I1 × I2, gY)

with the induced metric tensor gY being a flat surface.
Now, consider x(s, u) : I1 × I2 → E4 given by x(s, u) = F(s)Y(s, u), i.e.,

x(s, u) =
√

3s
2
√

2

(
cos

(√
2√
3

ln s
)

, sin
(√

2√
3

ln s
)

, cos
(√

6
2 u

)
, sin

(√
6

2 u
))

. (28)

Then, it is easy to verify that the induced metric via x is:

g = ds2 +
9

16
s2du2. (29)

Hence, the Levi–Civita connection of M = (I1 × I2, g) satisfies:

∇ ∂
∂s

∂

∂s
= 0, ∇ ∂

∂u

∂

∂s
=

1
s

∂

∂u
. (30)
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Using (28) and (29), it is easy to verify that the tangential component xT = 3
4 s ∂

∂s of the position
vector field x is a concircular vector field satisfying ∇ZxT = 3

4 Z for Z ∈ TM. Consequently, M is a
concircular surface in E4.

Remark 4. Concircular vector fields play some important roles in general relativity. For instance, it was proven
in [34] that a Lorentzian manifold is a generalized Robertson–Walker spacetime if and only if it admits a timelike
concircular vector field. For the most recent surveys on generalized Robertson–Walker spacetimes, see [5,35].

Remark 5. It was proven in [36] that every Kaehler manifold M (or more generally, pseudo-Kaehler manifold)
with dimC M > 1 does not admit a non-trivial concircular vector field.

7. Euclidean Submanifolds with Torse-Forming xT

In [37], K. Yano extended concurrent and concircular vector fields to torse-forming vector fields.
According to K. Yano, a vector field v on a Riemannian (or pseudo-Riemannian) manifold M is called a
torse-forming vector field if it satisfies:

∇Xv = ϕX + α(X)v, ∀X ∈ TM, (31)

for a function ϕ and a one-form α on M. The one-form α is called the generating form, and the function
ϕ is called the conformal scalar (see [38]). A torqued vector field is a torse-forming vector field v
satisfying (31) with α(v) = 0 (see [39,40]).

Generalized Robertson–Walker (GRW) spacetimes were introduced by L. J. Alías, A. Romero and
M. Sánchez in [41]. The first author proved in [34] that a Lorentzian manifold is a GRW spacetime
if and only if it admits a time-like concircular vector field. For further results in this respect, see an
excellent survey on GRW spacetimes by C. A. Mantica and L. G. Molinari [35] (see also [5]).

Twisted products are natural extensions of warped products in which the warping functions were
replaced by twisting functions (cf. [5,42]). It was proven in [39] that a Lorentzian manifold is a twisted
space of the form I ×λ F with time-like base I if and only if it admits a time-like torqued vector field.
Recently, C. A. Mantica and L. G. Molinari proved in [43] that such a Lorentzian twisted space can also
be characterized as a Lorentzian manifold admitting a torse-forming time-like unit vector field.

Before we state the results for Euclidean hypersurfaces with torse-forming xT , we give the
following simple link between Hessian of functions and torse-forming vector fields.

Theorem 8. Let f be a non-constant function on a Riemannian manifold M. Then, the gradient ∇ f of f is a
torse-forming vector field if and only if the Hessian H f satisfies:

H f = ϕg + γd f ⊗ d f (32)

where ϕ and γ are functions on M.

Proof. Let f be a non-constant function on a Riemannian manifold M. Assume that the gradient ∇ f
of f is a torse-forming vector field so that:

∇X(∇ f ) = ϕX + α(X)∇ f (33)

for some function ϕ and one-form α on M. Then, for any vector fields X, Y on M, the Hessian H f of
f satisfies:

H f (X, Y) = XY f − (∇XY) f = X 〈Y,∇ f 〉 − 〈∇XY,∇ f 〉
= 〈Y,∇X(∇ f )〉 = ϕ 〈Y, X〉+ α(X) 〈Y,∇ f 〉
= ϕ 〈Y, X〉+ α(X)d f (Y).

(34)
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Since the Hessian H f (X, Y) is symmetric in X and Y, we derive from (34) that:

〈Y,∇X(∇ f )〉 = X 〈Y,∇ f 〉 − 〈∇XY,∇ f 〉 = H f (X, Y)

= 〈Y, ϕ, X + γd f (X)∇ f 〉

for vector field X, Y. Therefore, we obtain (32) with α = γd f . Consequently, the gradient ∇ f of f is a
torse-forming vector field.

The following corollary is an easy consequence of Theorem 8.

Corollary 1. Let f be a non-constant function on a Riemannian manifold M. If the gradient ∇ f of f is a
torqued vector field, then it is a concircular vector field on M.

Remark 6. Theorem 8 extends Lemma 4.1 of [31].

Next, we present the following results from [44] for Euclidean hypersurfaces with torse-forming xT.

Proposition 1. Let M be a proper hypersurface of Em. If the tangential component xT of the position
vector field x of M is a torse-forming vector field, then M is a quasi-umbilical hypersurface with xT as its
distinguished direction.

For quasi-umbilical hypersurfaces in Em we refer to [2,45].
A rotational hypersurface M = γ × Sn−1 in En+1 is an O(n − 1)-invariant hyper-surface, where

Sn−1 is a Euclidean sphere and:

γ(x) = (x, g(x)), g(x) > 0, x ∈ I, (35)

is a plane curve (the profile curve) defined on an open interval I and the x-axis is called the axis of
rotation. The rotational hypersurface M can expressed as:

x = (u, g(u)y1, · · · , g(u)yn) with y2
1 + · · ·+ y2

n = 1. (36)

The hypersurfaces is called a spherical cylinder if its profile curve γ is a horizontal line segment
(i.e., g = constant 	= 0). Additionally, it is called a spherical cone if γ is a non-horizontal line segment
(i.e., g = cu, 0 	= c ∈ R). For simplicity, we only consider rotational hypersurfaces M, which contain
no open parts of hyperspheres, spherical cylinders or spherical cones.

A torse-forming vector field v is called proper torse-forming if the one-form α in (31) is nowhere
zero on a dense open subset of M.

The simple link between rotational hypersurfaces and torse-forming xT is the following.

Theorem 9. Let M be a proper hypersurface of En+1 with n ≥ 3. Then, the tangential component xT of the
position vector field x of M is a proper torse-forming vector field if and only if M is an open part of a rotational
hypersurface whose axis of rotation contains the origin [44].

8. Rectifying Submanifolds of Riemannian Manifolds

In [39], the notion of rectifying submanifolds of Euclidean spaces was extended to rectifying
submanifolds of Riemannian manifolds.

Definition 2. Let V be a non-vanishing vector field on a Riemannian manifold M̃, and let M be a submanifold
of M̃ such that the normal component VN of V is nowhere zero on M. Then, M is called a rectifying submanifold
(with respect to V) if and only if: 〈

V(p), Im hp
〉
= 0 (37)
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holds at each p ∈ M.

Definition 3. A submanifold M of a Riemannian manifold M̃ is said to be twisted if:

Im ∇̄hp � Im hp (38)

holds at each point p ∈ M.

A vector field on a Riemannian manifold M is called a gradient vector field if it is the gradient ∇ f
of some function f on M.

In terms of gradient vector fields, Corollary 1 can be restated as the follows.

Proposition 2. If a torqued vector field on a Riemannian manifold M is a gradient vector field, then it is a
concircular vector field.

The following result from [39] is an extension of Theorem 4.

Theorem 10. Let M be a submanifold of a Riemannian manifold M̃, which admits a torqued vector field T.
If the tangential component TT of T is nonzero on M, then M is a rectifying submanifold (with respect to T ) if
and only if TT is torse-forming vector field on M whose conformal scalar is the restriction of the torqued function
and whose generating form is the restriction of the torqued form of T on M.

In [39], we also have the following results.

Theorem 11. Let M be a submanifold of a Riemannian manifold M̃ endowed with a concircular vector field
Z 	= 0 with ZT 	= 0 on M. Then, M is a rectifying submanifold with respect to Z if and only if the tangential
component ZT of Z is a concircular vector field with the concircular function given by the restriction of the
concircular function of Z on M.

The following result is an immediate consequence of Theorem 11.

Corollary 2. Let M be a submanifold of a Riemannian manifold M̃ endowed with a concurrent vector field
Z 	= 0 such that ZT 	= 0 on M. Then, M is a rectifying submanifold with respect to Z if and only if the
tangential component ZT of Z is a concurrent vector field on M.

Moreover, from Theorem 11, we also have the following.

Proposition 3. Let M̃ be a Riemannian m-manifold endowed with a concircular vector field Z. If M is a
rectifying submanifold of M̃ with respect to Z, then we have:

(1) ZN is of constant length 	= 0.
(2) The concircular function ϕ of ZT is given by ϕ = ZT(ln ρ), where ρ = |ZT |.

9. Euclidean Submanifolds with xT as Potential Fields

A smooth vector field ξ on a Riemannian manifold (M, g) is said to define a Ricci soliton if
it satisfies:

1
2
Lξ g + Ric = λg, (39)

where Lξ g is the Lie-derivative of the metric tensor g with respect to ξ, Ric is the Ricci tensor of (M, g)
and λ is a constant (cf. for instance [46–48]). We shall denote a Ricci soliton by (M, g, ξ, λ).

A Ricci soliton (M, g, ξ, λ) is called shrinking, steady or expanding according to λ > 0, λ = 0,
or λ < 0, respectively. A trivial Ricci soliton is one for which ξ is zero or Killing, in which case the
metric is Einstein.
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A Ricci soliton (M, g, ξ, λ) is called a gradient Ricci soliton if its potential field ξ is the gradient of
some smooth function f on M.

For a gradient Ricci soliton, the soliton equation can be expressed as:

Ric f = λg, (40)

where
Ric f := Ric + Hess( f ) (41)

is known as the Bakry–Émery curvature, where Hess( f ) denotes the Hessian of f . Hence, a gradient
Ricci soliton has constant Bakry–Émery curvature; a similar role as an Einstein manifold.

Compact Ricci solitons are the fixed points of the Ricci flow:

∂g(t)
∂t

= −2Ric(g(t)) (42)

projected from the space of metrics onto its quotient modulo diffeomorphisms and scalings and often
arise as blow-up limits for the Ricci flow on compact manifolds. Further, Ricci solitons model the
formation of singularities in the Ricci flow, and they correspond to self-similar solutions (cf. [47]).

During the last two decades, the geometry of Ricci solitons has been the focus of attention of many
mathematicians. In particular, it has become more important after Grigory Perelman [48] applied Ricci
solitons to solve the long-standing Poincaré conjecture posed in 1904. G. Perelman observed in [48]
that the Ricci solitons on compact simply connected Riemannian manifolds are gradient Ricci solitons
as solutions of Ricci flow.

The next result from ([31], Theorem 5.1) classifies Ricci solitons with concircular potential field.

Theorem 12. A Ricci soliton (M, g, v, λ) on a Riemannian n-manifold (M, g) with n ≥ 3 has concircular
potential field v if and only if the following three conditions hold:

(a) The function ϕ in (31) is a nonzero constant, say b;
(b) λ = b;
(c) M is an open portion of a warped product manifold I ×bs+c F, where I is an open interval with arc-length

s, c is a constant and F is an Einstein (n − 1)-manifold whose Ricci tensor satisfies

RicF = (n − 2)b2gF,

where gF is the metric tensor of F.

By combining Theorem 12 with some results from [31], we have the following .

Corollary 3. The only Riemannian manifold of constant sectional curvature admitting a Ricci soliton with
concircular potential field is a Euclidean space [31].

Now, we present results on Ricci solitons of Euclidean hypersurfaces such that the potential field
ξ is the tangential components xT of the position vector field of the hypersurfaces.

For Ricci solitons on a Euclidean submanifold with the potential field given by xT , we have the
following result from ([49], Theorem 4.1, p. 6).

Theorem 13. Let (M, g, ξ, λ) be a Ricci soliton on a Euclidean submanifold M of Em. If the potential field ξ is
the tangential component xT of the position vector field of M, then the Ricci tensor of (M, g) satisfies:

Ric(X, Y) = (λ − 1) 〈X, Y〉 − 〈h(X, Y), xN 〉 (43)

for any X, Y tangent to M.
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Let ξ be a normal vector field of a Riemannian submanifold M. Then, M is called ζ-umbilical if its
shape operator satisfies Aζ = ϕI, where ϕ is a function on M and I is the identity map.

The following are some simple applications of Theorem 13.

Corollary 4. A Ricci soliton (M, g, xT , λ) on a Euclidean submanifold M is trivial if and only if M
is x⊥-umbilical.

Corollary 5. Every Ricci soliton (M, g, xT , λ) on a totally umbilical submanifold M of Em is a trivial
Ricci soliton.

Corollary 6. If (M, g, xT , λ) is a Ricci soliton on a minimal submanifold M in Em, then M has constant scalar
curvature given by 1

2 n(λ − 1) with n = dim M.

Corollary 7. Every Ricci soliton (M, g, xT , λ) on a Euclidean submanifold M is a gradient Ricci soliton with
potential function ϕ = 1

2 g̃(x, x).

The next result was also obtained in ([49], Proposition 4.1, p. 6).

Theorem 14. If (M, g, ξ, λ) is a Ricci soliton on a hypersurface of M of En+1 whose potential field ξ is xT,
then M has at most two distinct principal curvatures given by:

κ1, κ2 =
nα + ρ ± √

(nα + ρ)2 + 4 − 4λ

2
, (44)

where α is the mean curvature and ρ is the support function of M, i.e., ρ = 〈x, N〉 and H = αN with N being a
unit normal vector field.

The following result from ([50], Theorem 4.2) classifies the Ricci soliton of Euclidean hypersurfaces
with the potential field given by xT (see also [51,52]).

Theorem 15. Let (M, g, xT , λ) be a Ricci soliton on a hypersurface of M of En+1. Then, M is one of the
following hypersurfaces of En+1 :

(1) A hyperplane through the origin zero.
(2) A hypersphere centered at the origin.
(3) An open part of a flat hypersurface generated by lines through the origin zero;
(4) An open part of a circular hypercylinder S1(r)×En−1, r > 0;
(5) An open part of a spherical hypercylinder Sk(

√
k − 1)×En−k, 2 ≤ k ≤ n − 1,

where n = dim M.

10. Interactions between Torqued Vector Fields and Ricci Solitons

In this section, we present some interactions between torqued vector fields and Ricci solitons on
Riemannian manifolds from [40].

First, we recall the following definition.

Definition 4. The twisted product B × f F of two Riemannian manifolds (B, gB) and (F, gF) is the product
manifold B × F equipped with the metric:

g = gB + f 2gF, (45)

where f is a positive function on B × F, which is called the twisting function. In particular, if the function f
in (45) depends only B, then it is called a warped product, and the function f is called the warping function.
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The following result from ([40], Theorem 2.1, p. 241) completely determined those Riemannian
manifolds admitting torqued vector fields.

Theorem 16. If a Riemannian manifold M admits a torqued vector field T, then M is locally a twisted product
I × f F such that T is always tangent to I, where I is an open interval. Conversely, for each twisted product
I × f F, there exists a torqued vector field T such that T is always tangent to I.

In view of Theorem 16, we made in [40] the following.

Definition 5. A torqued vector field T is said to be associated with a twisted product I × f F if T is always
tangent to I.

We have the following result from [40].

Theorem 17. Every torqued vector field T associated with a twisted product I × f F is of the form:

T = μ f
∂

∂s
, (46)

where s is an arc-length parameter of I, μ is a nonzero function on F and f is the twisting function.

Theorem 18. A torqued vector field T on a Riemannian manifold M is a Killing vector field if and only if T is a
recurrent vector field that satisfies:

∇XT = α(X)T and α(T) = 0, (47)

where α is a one-form.

As an application of Theorem 17, we have the following classification of torqued vector fields on
Einstein manifolds.

Theorem 19. Every torqued vector field T on an Einstein manifold M is of the form:

T = ζZ, (48)

where Z is a concircular vector field on M and ζ is a function satisfying Zζ = 0. Conversely, every vector field
of the form (48) is a torqued vector field on M.

Another application of Theorem 17 is the following.

Corollary 8. Up to constants, there exists at most one concircular vector field associated with a warped product
I ×η F.

A Riemannian manifold (M, g) is called a quasi-Einstein manifold if its Ricci tensor Ric satisfies:

Ric = ag + bα ⊗ α (49)

for functions a, b, and one-form α.
A Riemannian manifold (M, g) is called a generalized quasi-Einstein [53] (resp., mixed

quasi-Einstein [54] or nearly quasi-Einstein [55]) manifold if its Ricci tensor satisfies:

Ric = ag + bα ⊗ α + cβ ⊗ β,

(resp., Ric = ag + bα ⊗ β + cβ ⊗ α or Ric = ag + bE)
(50)
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where a, b, c are functions, α, β are one-forms and E is a non-vanishing symmetric (0, 2)-tensor on M.
In [40], we made the following definition.

Definition 6. A pseudo-Riemannian manifold is called almost quasi-Einstein if its Ricci tensor satisfies:

Ric = ag + b(β ⊗ γ + γ ⊗ β) (51)

for some functions a, b and one-forms β and γ.

For Ricci solitons with torqued potential field, we have the following result from [40].

Theorem 20. If the potential field of a Ricci soliton (M, g,T, λ) is a torqued vector field T, then (M, g) is an
almost quasi-Einstein manifold.

The following result from [40] provides a very simple characterization for a Ricci soliton with
torqued potential field to be trivial.

Theorem 21. A Ricci soliton (M, g,T, λ) with torqued potential field T is trivial if and only if T is a concircular
vector field.

In view of Theorem 16, we made the following.

Definition 7. For a twisted product I × f F, the torqued vector field f ∂/∂s is called the canonical torqued vector
field of I × f F, where s is an arc-length parameter on I.

We denote the canonical vector field f ∂/∂s by T
f
ca.

Recall from Theorem 16 that if a Riemannian manifold M admits a torqued vector field, then it
is locally a twisted product I × f F, where F is a Riemannian (n − 1)-manifold and f is the twisting
function. In [40], we proved the following.

Theorem 22. If (I × f F, g,T f
ca, λ) is a Ricci soliton with the canonical torqued vector field T

f
ca as its potential

field, then we have:

(a) T
f
ca is a concircular vector field and

(b) (I × f F, g) is an Einstein manifold.

Remark 7. Ricci solitons (M, g, Z, λ) with concircular potential field Z have been completely determined
in ([31], Theorem 5.1).

Remark 8. If the potential field of the Ricci soliton defined on (I × f F, g) in Theorem 16 is an arbitrary torqued
vector field T associated with I × f F, then it follows from Theorem 17 that T = μ f ∂/∂s for some function μ

defined on F. In this case, we may consider the twisted product I × f̃ F̃ instead, where f̃ = μ f and F̃ is the
manifold F with metric g̃F = μ−2gF. Then, (I × f̃ F̃, g̃,T, λ) with g̃ = ds2 + f̃ 2 g̃F is a Ricci soliton whose

potential field T is the canonical torqued vector field T
f̃
ca of I × f̃ F̃.

An important application of Theorem 22 is the following.

Corollary 9. Let (I × f F, g,T f
ca, λ) be steady Ricci solitons with the canonical torqued vector field T

f
ca as its

potential field. If dim F ≥ 2, then we have:

(a) T
f
ca is a parallel vector field,

(b) f is a constant, say c,
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(c) (I ×c F, g) is a Ricci-flat manifold and
(d) F is also Ricci-flat.

11. Conclusions

The position vector field x is the most elemantary and natural object on a Euclidean submanifold.
Similarly, the tangential component xT of the position vector field is the most natural vector field
tangent to the sumanifold. From the results we mentioned above, we conclude that the tangential
component xT of the position vector field of the Euclidean submanifold is the most important vector
field naturally associated with the Euclidean submanifold. The author believes that many further
important properties of xT can be proved.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: In an earlier paper, we gave a proof of the conjecture of the pinching of the bisectional
curvature mentioned in those two papers of Hong et al. of 1988 and 2011. Moreover, we proved that
any compact Kähler–Einstein surface M is a quotient of the complex two-dimensional unit ball or the
complex two-dimensional plane if (1) M has a nonpositive Einstein constant, and (2) at each point,
the average holomorphic sectional curvature is closer to the minimal than to the maximal. Following
Siu and Yang, we used a minimal holomorphic sectional curvature direction argument, which made
it easier for the experts in this direction to understand our proof. On this note, we use a maximal
holomorphic sectional curvature direction argument, which is shorter and easier for the readers who
are new in this direction.

Keywords: Kähler–Einstein metrics; compact complex surfaces; pinching of the curvatures

1. Introduction

In [1], the authors conjectured that any compact Kähler–Einstein surface with negative bisectional
curvature is a quotient of the complex two-dimensional unit ball. They proved that there is a number
a ∈ (1/3, 2/3) such that if at every point P, Kav − Kmin ≤ a(Kmax − Kmin), then M is a quotient of the
complex ball. Here, Kmin (Kmax, Kav) is the minimal (maximal, average) of the holomorphic sectional
curvature. The number a they obtained is a < 2

3[1+
√

6/11]
(almost 0.38; see [2], p. 398). In [3], Yi Hong

pointed out that this is also true if a ≤ 2
3[1+

√
1/6]

< 0.476. (For this part, this is due to Professor Hong.

One note that he was the first author there.) We also observed in Theorem 2 that if a ≤ 1
2 , then there is

a ball-like point P. That is, at P, Kmax = Kmin. We notice that
√

1/6 > 1/3. Therefore, we conjectured
in [3] that M is a quotient of the complex ball if a = 1

2 . In general, we believe that we might not obtain
a quotient of the complex ball if a > 1

2 . In [2,4], the author used a different method and proved that

a can be (3 + 4
√

3
3 )/11 (almost 0.48 according to [5], p. 2628, just before Theorem 1.2); see [4] (p. 669)

or [2] (p. 398). In [5], the authors improved the constant to a < 1
2 , which gave a proof of a weaker

version of the conjecture.
In [6], we proved the following:

Proposition 1. Let M be a connected compact Kähler–Einstein surface with nonpositive scalar
curvature; if we have

Kav − Kmin ≤ 1
2
[Kmax − Kmin]

at every point, then M is a compact quotient of either the complex two-dimensional unit ball or the
complex two-dimensional complex plane.

For important mathematics work, it is common practice to give different and (possibly) simpler
proofs (for certain experts and readers). For examples, see [7–14] and so forth.
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This note is for the experts who are new in this direction. In the second section, we review the
basic material from [1] with an emphasis on the maximal holomorphic sectional direction instead
of the minimal holomorphic sectional direction in [1,3,5,6]. We prove the existence of the ball-like
points, as we did in the second section in [6], by using a different but similar function. In the third
section, we again use Hong-Cang Yang’s function and a different but similar calculation with respect
to the maximal direction instead of the minimal direction. We give some detailed calculations in the
Appendix as the last section of this paper.

2. Existence of Ball-Like Points

Here, we repeat the argument in the proof of our Proposition 1 given in [6] by using a different
but similar argument:

Proposition 1 (cf. [3] pp. 597–599; [6] Proposition 1) Suppose that

Kav − Kmin ≤ 1
2
[Kmax − Kmin]

for every point on the compact Kähler–Einstein surface with nonpositive Ricci curvatures. There is at
least one ball-like point.

Proof of Proposition 1. Throughout this section, as in [1,5,6], we assume that {e1, e2} is a unitary basis
at a given point P with

R11̄11̄ = R22̄22̄ = Kmin, R11̄12̄ = R22̄21̄ = 0

A = 2R11̄22̄ − R11̄11̄ ≥ 0, B = |R12̄12̄|
As in [1], we always have that A ≥ |B|, and we assume that B ≥ 0. This also implies, if

the sectional curvatures have a 1/4 pinching, that is, the section curvature is inside an interval
[− 1

4 a(P),−a(P)] at every point P for a nonnegative function a(P), that M is covered by a ball. This was
pointed out in [5]. This is because if we let a(P) = −R11̄11̄, ei = Xi +

√−1Yi, then at least one of
R(X1, X2, X1, X2) and R(X1, Y2, X1, Y2) is greater than or equal to − 1

4 a(P). The same argument works
for the higher-dimensional case. Our proposition is a kind of the generalization of the 1/4 pinching.

If P is not a ball-like point, according to [1], we can do the above for a neighborhood U(P) of P
whenever A > B (case 1 in [1], p. 475). In [6], we took great effort in handling the case in which A = B.
We write

α = e1 = ∑ ai∂i, β = e2 = ∑ bi∂i

and
S11̄11̄ = R(e1, ē1, e1, ē1) = ∑ Rij̄kl̄ ai ājak āl

and so on. In particular, we have

S11̄11̄ = S22̄22̄ = Kmin, S11̄12̄ = S22̄21̄ = 0

According to [1], we have

Kmax = Kmin +
1
2
(A + B), Kav = Kmin +

1
3

A

1
3
[Kmax − Kmin] ≤ Kav − Kmin ≤ 2

3
[Kmax − Kmin]

This also shows that A and B are independent of the choice of e1 and e2. Additionally, our
condition in Proposition 1 is therefore the same as A ≤ 3B.

In this section, we denote the maximal direction by e1∗ and use ∗ in the notation of the
corresponding terms’ minimal direction case. We assume that P is not a ball-like point. Under our

26



Mathematics 2018, 6, 21

assumption, B > 0. According to ([1], p. 474), e1∗ could be 1√
2
(e1 + e2). We could pick up

e2∗ =
i√
2
(e1 − e2). We have

A∗ = 2R1∗ 1̄∗2∗ 2̄∗ − R1∗ 1̄∗1∗ 1̄∗ = −1
2
(A + 3B)

B∗ = R1∗ 2̄∗1∗ 2̄∗ =
1
2
(A − B)

In our case, we have A∗ + 3B∗ = A − 3B ≤ 0, that is, −A∗ ≥ 3B∗. Moreover, from both the
arguments in [1] (pp. 474–475), the choices of the directions of e1∗ are isolated on the projective
holomorphic tangent space. These two cases are case 1: A > B; and case 2: A = B. In case 1, there is
only one direction for the minimal holomorphic sectional curvature, and there is only one direction for
the maximal holomorphic sectional curvature, because, by our assumption, A ≤ 3B; that is, B is not
zero at a nonball-like point. The second statement also follows from the argument in [1] by applying it
to the maximal direction instead of the minimal direction. In case 2, there is a circle for the minimal
direction, but there is a unique maximal direction. That is, one could always have a smooth frame of
e1∗ . This might make the proof simpler. However, near the points with B∗ = A − B = 0, we might
still have difficulty to obtain a smooth frame nearby such that B∗ ≥ 0. Therefore, we only assume that
B∗ ≥ 0 at P, but this is not necessary true nearby if B∗(P) = 0.

In [3,6], we let Φ1 = |B|2
A2 = τ2. Here, we let Φ∗

1 = |B∗|2
(A∗)2 = (τ∗)2 and τ∗ = −|B∗|

A∗ ≥ 0.
Our condition is the same as τ∗ ≤ 1/3. If there is no ball-like point, there is a maximal point.
Now, τ∗ = A−B

A+3B = 1
3 (−1 + 4

1+3τ ). The maximal of τ∗ is just the minimal of τ.
The calculation of the Laplace of Φ1 at a minimal point, which is not a ball-like point, and A 	= B

in [6] showed that B∗ = 0.
A similar calculation of the Laplacian of Φ∗

1 with B∗ 	= 0 shows that

ΔΦ∗
1 = 6A∗(τ∗)2((τ∗)2 − 1) + h∗ (1)

Here ΔΦ∗
1 has two general terms, just as for the formula for ΔΦ1 in [6]; see the Appendix at

the end of this paper. The first term is always nonnegative, as τ∗ ≤ 1
3 ≤ 1. The second term is

a Hermitian form h∗ to y∗. We can separate y∗ into two groups: y∗2j in one group and y∗1j in the other.
These two groups of variables are orthogonal to each other with respect to this Hermitian form. That is,
h∗ = h∗1 + h∗2 with h∗1 (or h∗2) only depends on the first (second) group of variables.

We need to check the nonnegativity for each of these.
For y∗11, y∗12, the corresponding matrix of h∗2 is[

2(9(τ∗)2 − 1)((τ∗)2 − 1) 0
0 0

]

and the matrix for h∗1 of y∗21, y∗22 is[
0 0
0 2(9(τ∗)2 − 1)((τ∗)2 − 1)

]

When P is a critical point of Φ∗
1, the matrices on y∗ are clearly semipositive. Therefore, if there is

no ball-like point, then we have that at the maximal point of Φ∗
1, τ∗ = 0 or A∗ = 0, because τ∗ ≤ 1

3 .
If A∗ = 0, then we have a ball-like point. Thus we are done.
On the other hand, if τ∗ = 0, we have B∗ = 0 at P. Because P is a maximal point for τ∗, this

implies that B∗ = 0 on the whole manifold. In this case, we could always assume that B∗ ≥ 0.
According to [1] (p. 475, case 2), that is, when A = B, we have smooth coordinates with

Kmax = R11̄11̄ (this fortunately always works when A = B. In general, the original argument might
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not always work, as one might not have A = B always nearby. However, as [1], case 1 also works
for the maximal direction instead of the minimal direction, this implies that under our condition, the
directions for Kmax are always isolated. Therefore, it might be better for one to choose Kmax instead
of Kmin from the very beginning). Using this new coordinate, we can define the similar functions
A∗ and B∗. In general, B∗ = 1

2 (A − B) and A∗ = − 1
2 (A + 3B). In our case, B∗ = 0 and A∗ = −2A.

Using this new coordinate, one can do the calculation for any of the functions in [1,2,4] (or [5]; see the
next section), for which the set of ball-like points is the whole manifold. If one does not like Polombo’s
function Φα ([2], p. 418) with α = − 8

7 (e.g., [2], p. 417, Lemma), then one might simply use the function
with α = −1 (in [2,4]; not the vector we mentioned in this paper earlier), that is, the new function is

proportional to Φ2 = (3B − A)A. In our case, this is just 2A2. We can apply Φ
1
3
2 . This is relatively easy;

thus we leave it to the readers (or see Equation (4) in the generalization). Actually, this paragraph is
not needed for the proofs of Corollary 1 and Lemma 1. Additionally, in this special case, the original
frame in [1] works. Thus, one could simply apply [1].

One can also use the function in [1] (p. 477):

3γ2 − γ2
1 =

1
2
(A2 + 3B2)

We can also still use the argument in [1], case 1, in which the minimal vectors are no longer
isolated but are points in a smooth circle bundle over the manifold, such that we could choose
a smooth section instead.

This paragraph is also not needed in the following Corollary 1 and Lemma 1, as in these two
propositions, we already have A = 3B. With A = B, one can readily obtain that A = B = 0.

If A = 0, Kmax = Kmin and P is a ball-like point, we have a contradiction. Therefore, the set of
ball-like points is not empty.

Q. E. D.

We observe that if A = 3B at P, then Φ1 achieves the minimal value at P and A 	= B unless P
is a ball-like point. That is, the first part of the proof of Proposition 1 goes through; thus, P must be
a ball-like point.

Corollary 1. Assuming the above, if Kav − Kmin = 1
2 (Kmax − Kmin) at P, then P is a ball-like point.

Therefore, we have the following:

Lemma 1. If Kav − Kmin ≤ 1
2 [Kmax − Kmin] on M, then we have Kav − Kmin < 1

2 [Kmax − Kmin] on
M − N, where N is the subset of all the ball-like points.

Therefore, we can apply the argument of [5]. To do this, one needs the following Proposition 4
in [1]:

Proposition 2. (cf. [1,3], Theorem 3.) If N 	= M, then N is a real analytic subvariety and codim N ≥ 2.

As in [1], Proposition 2 gives us a way to the conjecture by finding a superharmonic function on
M, which was obtained by Hong-Cang Yang around 1992. In [1,3], the authors used Φ = 6B2 − A2.
In [2], Polombo used (11A − 3B)(B − A) + 16AB; see [2] (p. 417, Lemma. One might ask why we
need another function but do not use our Φ1; the answer is that by a power of Φ1, we can only correct
the Laplace by |∇Φ1|2. However, this could only change the upper left coefficients of our matrices
as it only provides |x|2 terms. In the case of Φ1, it does not work, as τ

A 	= 0 but the coefficients of
|y12|2, |y21|2 are zeros.

Therefore, we need another function, which was provided by Hong-Cang Yang.
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Remark 1. Whenever there is a bounded continuous nonnegative function f on M such that (1) f (N) = 0, (2)
f is real analytic on M − N, and (3) Δ f ≤ 0 on M − N, then f = 0. Here N could be just a codimension 2
subset. This is true in general for extending continuous superharmonic functions over a codimension 2 subset;
see [1,3,5]. Here, we wish to give our own reasons as to why this is true in these special cases. If we define
Ms = {x ∈ M|dist(x,N)≥s} and hs = ∂Ms, then the measure of hs is smaller than O(s) when s tends to zero.
Therefore,

0 ≥ ln 2
∫

M2δ

Δ f ωn ≥
∫ 2δ

δ
[
∫

Ms
Δ f ωn]s−1ds =

∫ 2δ

δ
[
∫

hs

∂ f
∂n

dτ]s−1ds

However, by applying an integration by parts to the single-variable integral, the last term is about
(δ)−1

∫
h2δ

( f − g)dτ → 0, as f is bounded and f − g tends to 0 near N, where g is the f value of the
corresponding point on hδ. For example, if f = ra with a > 0, then

∂ f
∂n

= ara−1 = asa−1

and ∫
hs

∂ f
∂n

dτ = O(sa) → 0

Therefore, Δ f = 0 on M − N. Therefore f extends over N as a harmonic function. This implies that f = 0
on M.

Now, letting f = (3B − A)a, which is natural after the proof of Proposition 1, we show in the next
section that Δ f ≤ 0 for a ≤ 1

3 (see also a proof in [5]). Therefore, A = 3B always. By Corollary 1, we
have A = B = 0. This function is also related to the functions in [2] (p. 417) with a1 = a3 = 0. In [2],
Polombo had to pick up functions with a1 = a2 to avoid a complication of the singularities; see [2]
(p 406 and the first paragraph on p. 418); see also [4] (the last paragraph of p. 668). However, we
completely resolve the difficulty in the next section.

3. Generalized Hong-Cang Yang’s Function

We let Ψ = 3B − A = −A∗ − 3B∗. Around 1992, Hong-Cang Yang considered f = Ψ
1
3 . In [5],

the authors had a formula for the Laplacian of Ψ. To apply the method to the maximal direction, we
notice that the same formula holds. Moreover, if we let Ψk = 3B + kA, then Ψ = Ψ−1 and we have
the following:

Lemma 2. (cf. [5], p. 2630, Equation (13).) We have A = 3B∗−A∗
2 ,

B = − A∗ + B∗

2

and

Δ(3B + kA) = 3[ΨkR11̄22̄ − B(3A + kB)]

+
3
B
|∇(ImR12̄12̄)|2 + 6[(B + kA)∑ |y|2 + 2(A + kB)Re ∑ yi1ȳi2]

In particular, we have

ΔΨ = 3[ΨR1∗ 1̄∗2∗ 2̄∗ + B∗(3A∗ + B∗)]

− 3
B∗ |∇(ImR1∗ 2̄∗1∗ 2̄∗)|2 − 6(A∗ + B∗)∑ |y∗i1 + y∗i2|2

It is clear that in the case of the maximal direction, we have to assume B∗ 	= 0. That is, we still
need to deal with the case in which A = B. This is because, in general, one cannot calculate the second
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derivatives of B∗ even if we could obtain a smooth frame near the considered point. Therefore, we still
need deal with the singularities, as we did in our earlier paper.

To make things easier for us, in the rest of this section and in the next section (except for Remark 2), we use
notation without ∗ for the maximal direction instead of the minimal direction if there is no confusion.

We let zi = ∇iΨ. Then

−z1 = ∇1(3B + A) =
3
2
∇1(R12̄12̄ + R21̄21̄ − 2R11̄11̄)

√−1∇1(ImR12̄12̄) =
1
2
∇1(R12̄12̄ − R21̄21̄)

= −1
3

z1 −∇1R21̄21̄ +∇1R11̄11̄

= −1
3

z1 −∇2R̄11̄12̄ −∇2R11̄12̄

= −1
3

z1 + (A + B)y22 + (B + A)y21

−z2 = ∇2(3B + A) =
3
2
∇2(R21̄21̄ + R12̄12̄ − 2R11̄11̄)

√−1∇2(ImR12̄12̄) =
1
2
∇2(R12̄12̄ − R21̄21̄)

=
1
3

z2 −∇2R11̄11̄ +∇2R12̄12̄

=
1
3

z2 −∇1R21̄11̄ −∇1R11̄12̄

=
1
3

z2 + (B + A)y12 + (A + B)y11

We can write the formula in Lemma 2 as

ΔΨ = 3[ΨR11̄22̄ + B(B + 3A)] (2)

+ 3
A + B

B
Ψ ∑ |yi1 + yi2|2

− 2
A + B

B
Re[(y12 + y11)z̄2 − (y22 + y21)z̄1]− ∑

1
3B

|z|2

Similarly to what we have in the last section, we have two general terms: the first is negative as
the constant term of z and y; the second is a Hermitian form on z and y. We can let wi = yi∗1 − yi∗2 with
i∗ 	= i. Then the second term is a sum of two Hermitian forms. One of these is on w1, z1, and the other
is on w2, z2. We notice that the second term is also nonpositive on y (or nonpositive on w, if we assume
that z = 0). We can modify the coefficient of |z|2 (only) by taking the power of Ψ. More precisely, if we
let g = Ψa, to make sure that Δg < 0, after taking out a factor 3 A+B

B , we need∣∣∣∣∣ Ψ 1/3

1/3 − 1+3Ψ−1(1−a)B
9(A+B)

∣∣∣∣∣ ≥ 0

That is,
A + 3B − 3(1 − a)B − A − B = (3a − 1)B ≤ 0

We have 1 − 3a ≥ 0. Thus, a ≤ 1/3.
Therefore, we have the following:

Lemma 3. Δg < 0 for a ≤ 1/3 on M − N.
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This is exactly the same as what was obtained in [5]. In fact, the number 1/6 was already used
in [1–4] for those quadratic functions.

Thus, finally we have the following:

Theorem 1. If Kav − Kmin ≤ 1
2 [Kmax − Kmin], then M has a constant holomorphic sectional curvature.

Remark 2. The reason we did not come to this earlier was that there was a difficulty when A = B. In that case,
the argument in [1] (p. 475, case 2) seems not to work. Polombo resolved the problem by using a function that
is symmetric to λ1 = − A

3 and λ2 = A−3B
6 (see [2], p. 418, first paragraph and the end of p. 397). However,

Hong-Cang Yang’s function Ψ is only −6λ2 and therefore is not symmetric after all. To overcome the difficulty,
we let Ω = {x ∈ M|A=B}. Then according to [1], all our calculations are sound on M − Ω, because N ⊂ Ω.
In [5] (p. 2632), there was a suggestion to prove that codim Ω ≤ 2, although it was not very well explained.
Then, everything went through. The relation was that if we use the argument in [1] (p. 475, case 2), using the
maximal instead of the minimal, we let B1 = |R12̄12̄| (or B∗ as we did earlier); then 2B1 = A − B. That is,
Ω = {x ∈ M|B1=0}. The argument goes as follows:

Case 1: If Ω is a closed region, we have

0 ≥
∫

M−Ω
Δg

= a
∫
−∂Ω

Ψa−1 ∂(−A1 − 3B1)

∂n

≥ a
∫
−∂Ω

(2A)a−1 ∂(−A1)

∂n

= −
∫

Ω
ΔF1 ≥ 0

where F1 can be chosen from one of the functions in [2] that satisfies the symmetric condition on M, for example,
a power of Φ2 as in the proof of Proposition 1, or one of our functions with a calculation using the new smooth
coordinate in [1] (p. 475) with R11̄11̄ = Kmax (see Equation (4) in the next section). In fact, A1 itself is
proportional to λ2 in [2] and is symmetric in the sense of Polombo. On Ω, F1 is just our g, as B1 = 0. We notice
that there is a sign difference for the Laplace operator in [2]. Again, on Ω, because A = B on a neighborhood, the
set of minimal directions is a S1 bundle over Ω; therefore, one might choose a smooth section of it locally such
that the calculation of [1] still works in our case. That is, one could simply choose F1 to be g.

Case 2: If Ω is a hypersurface, the same argument goes through, except that
∫

∂(M−Ω)(A)a−1 ∂A
∂n = 0,

because A 	= 0 outside a codimension 1 subset, and on Ω1 = {x ∈ Ω|A 	=0}, the integral is integrated from
both sides.

Therefore, Ω is a subset of codimension 2, and we can apply Remark 1. By the calculation in
Remark 1, we see that g is harmonic on M − Ω. Now, by Lemma 2, this implies that B(B − 3A) = 0,
and hence A = B = 0 by our assumptions.

4. The Generalization

In fact, in the first section of [1], the authors did not require any negativity. We also see that in our
second section, we also do not need any negativity, except when we apply the formula in Lemma 2 in
Section 3.

In the first section of [1], they also considered the coordinate in which R11̄11̄ achieves the maximal
instead of the minimal. By using the maximal direction, it is much easier to see that the constant term
in the Laplacian is negative. We only need to check the following:
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C = R11̄22̄

= k − R11̄11̄ (3)

= k/2 − (Kmax − k/2)

= k/2 − (Kmax − Kmin)

= k/2 + A/3 ≤ 0

One might compare this with [6] to see the advantage of this new method.
Now, with C ≤ 0, we could also easily cover the arguments both at the end of the proof of

Proposition 1 and in Remark 2 in the case of B = 0 (using the maximal direction). Similarly to the
calculation in Section 2, we obtain the following (see also [15] (p. 27) for a good calculation of this
Laplacian at a maximal direction for any complex dimension):

ΔR11̄11̄ = −AC + B2 = −AC ≤ 0

We also have
∇R11̄12̄ = −A∇a2 − B∇ā2 = −A∇a2,

ΔS11̄11̄ = −2A ∑ |y|2 − AC

∇1 A = −3∇S11̄11̄ = −3Ay21,

∇2 A = 3Ay12

∇1̄R12̄12̄ = −Aȳ22 = 0,

∇2R12̄12̄ = Ay11 = 0

Δ(|A|a) = 3a|A|a−1ΔS11̄11̄ + a(a − 1)|A|a−2|∇A|2
= 3a × (−A)a−1(−2A ∑ |y|2 − AC)

+ 9a(a − 1)(−A)a ∑ |y|2 (4)

= 3a(−A)a[(2 − 3(a − 1))∑ |y|2 + C]

This is nonpositive when a ≤ 1/3. This is the same as in Lemma 3 and for that in [5].
Therefore, we conclude the general case. One might conjecture that our theorem is also true in the

higher-dimensional cases.

Remark 3. We note that this generalization essentially covers the results in [2,4] for the Kähler–Einstein
case (see [2], p. 398, Corollary; see also [16], p. 415, Proposition 2 for W+ for a Kähler surface). One
might ask whether our result could be generalized to the Riemannian manifolds with closed half
Weyl curvature tensors. This is out of the scope of this paper, although a similar result is true, that
is, if λ2 ≤ 0 at every point. To make the relation between this paper and [2,4] clearer to the readers,
we mention that any one of the half Weyl tensors is harmonic if and only if it is closed, because the
tensor is dual to either itself or the negative of itself. Remark (i) in [2] (p. 397) states that if M is
Riemannian–Einsteinian, the second Bianchi identity states that the half Weyl tensors are closed (see
also [16], p. 408, Equation (9) and p. 411, Remark 1).

5. Appendix

Here, we repeat the argument in the proof of Proposition 1 in [6] by using a different but
similar argument.

Throughout this Appendix, as in [1,5,6], we assume that {e1, e2} is a unitary basis at a given point
P with

R11̄11̄ = R22̄22̄ = Kmin
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or Kmax.
R11̄12̄ = R22̄21̄ = 0

A = 2R11̄22̄ − R11̄11̄ ≥ 0

or ≤ 0 in the maximal direction case.
B = |R12̄12̄|

As in [1], we always have that A ≥ |B| or −A ≥ |B|. We assume that B ≥ 0.

If P is not a ball-like point, we write

α = e1 = ∑ ai∂i, β = e2 = ∑ bi∂i

S11̄11̄ = R(e1, ē1, e1, ē1) = ∑ Rij̄kl̄ ai ājak āl

and so on.
In particular, we have

S11̄11̄ = S22̄22̄, S11̄12̄ = S22̄21̄ = 0

We calculate the Laplace of Φ1 = τ2 = |B|2
A2 at a critical point.

We let
xi = ∇iΦ1 = 2

τ

A
[Re∇iS12̄12̄ + 3τ∇iS11̄11̄]

As in [1,3,5], we have
ΔR11̄11̄ = −AR11̄22̄ + B2

ΔR12̄12̄ = 3(R11̄22̄ − A)B

At P, we have a1 = b2 = 1 and a2 = b1 = 0, ∇a1 = ∇b2 = 0, ∇a2 +∇b̄1 = 0. Therefore, we write
yi1 = ∇ia2 and yi2 = ∇i ā2. We also have

Δ(a1 + ā1) = −|∇a2|2, Δ(a2 + b̄2) = 0

∇iR11̄12̄ = −Ayi1 − Byi2

because
0 = ∇S11̄12̄ = ∇R11̄12̄ + 2R21̄12̄∇a2 + B∇ā2 + R11̄11̄∇b̄1

that is,
∇R11̄12̄ = −A∇a2 − B∇ā2

This also gives a similar formula for ∇īR11̄12̄. Similarly,

∇S11̄11̄ = ∇R11̄11̄

∇S12̄12̄ = ∇R12̄12̄

ΔS11̄11̄ = −2A ∑ |y|2 − 4BRe ∑ yi1ȳi2 − AR11̄22̄ + B2

ReΔS12̄12̄ = 4A ∑ Reyi1ȳi2 + 2B ∑ |y|2 + 3(R11̄22̄ − A)B

∇1̄S12̄12̄ = −Aȳ22 − Bȳ21

∇2S12̄12̄ = Ay11 + By12

∇1S12̄12̄ = −A(6τ2 − 1)y22 − 5Aτy21 + x1

∇2̄S12̄12̄ = 5Aτȳ12 + A(6τ2 − 1)ȳ11 + x̄2

As in [3] (p. 598), at P we have
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ΔΦ1 =
2τΔB

A
+

6τ2

A
ΔS11̄11̄

+ 1
A2 ∑(|∇S12̄12̄|2 + |∇̄S12̄12̄|2) + 54τ2

A2 ∑ |∇S11̄1̄|2

+ 12τ
A2 ∑ Re(∇iS11̄11̄(∇ī(S12̄12̄ + S21̄21̄))

= 2τ[3Aτ(τ2 − 1)− 4τ ∑ |y|2 + 4(1 − 3τ2)∑ Re(yi1ȳi2)]

+ |y22 + τy21|2 + |y11 + τy12|2

+ 1
A2 [|x1 + A[(1 − 6τ2)y22 − 5τy21]|2 + |x2 + A[(6τ2 − 1)y11 + 5τy12]|2

− 18τ2[y12 + τy11|2 + |y21 + τy22|2]
+ 12τ

A [Re[(y21 + τy22)x̄1]− Re[(y21 + τy11)x̄2]]

(5)

Here we notice that ΔΦ1 has two general terms. The first term has nothing to do with x or y
and therefore can be regarded as a constant term to these. This term is always nonpositive, because
1
3 ≤ τ ≤ 1.

The second term can be regarded as a Hermitian form h to x and y. We can separate x and y into
two groups: x1, y2j in one group and x2, y1j in the other. These two groups of variables are orthogonal
to each other with respect to this Hermitian form. That is, h = h1 + h2 with h1 (or h2) only depends on
the first (second) group of variables.

We need to check the nonpositivity for each of these.
For x2, y11, y12, the corresponding matrix of h2 is⎡⎢⎣ 1

A2 − 1
A − τ

A
− 1

A 2(9τ2 − 1)(τ2 − 1) 0
− τ

A 0 0

⎤⎥⎦
The matrix for h1 of x1, y21, y22 is⎡⎢⎣ 1

A2
τ
A

1
A

τ
A 0 0
1
A 0 2(9τ2 − 1)(τ2 − 1)

⎤⎥⎦
When P is a critical point of Φ1, then x1 = x2 = 0. The matrices on y are clearly semidefinite.
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1. Introduction

A real hypersurface is a submanifold of a Riemannian manifold with a real co-dimensional one.
Among the Riemannian manifolds, it is of great interest in the area of Differential Geometry to study
real hypersurfaces in complex space forms. A complex space form is a Kähler manifold of dimension n
and constant holomorphic sectional curvature c. In addition, complete and simply connected complex
space forms are analytically isometric to complex projective space CPn if c > 0, to complex Euclidean
space Cn if c = 0, or to complex hyperbolic space CHn if c < 0. The notion of non-flat complex space
form refers to complex projective and complex hyperbolic space when it is not necessary to distinguish
between them and is denoted by Mn(c), n ≥ 2.

Let J be the Kähler structure and ∇̃ the Levi–Civita connection of the non-flat complex space
form Mn(c), n ≥ 2. Consider M a connected real hypersurface of Mn(c) and N a locally defined
unit normal vector field on M. The Kähler structure induces on M an almost contact metric structure
(φ, ξ, η, g). The latter consists of a tensor field of type (1, 1) φ called structure tensor field, a one-form η,
a vector field ξ given by ξ = −JN known as the structure vector field of M and g, which is the induced
Riemannian metric on M by G. Among real hypersurfaces in non-flat complex space forms, the class of
Hopf hypersurfaces is the most important. A Hopf hypersurface is a real hypersurface whose structure
vector field ξ is an eigenvector of the shape operator A of M .

Takagi initiated the study of real hypersurfaces in non-flat complex space forms. He provided the
classification of homogeneous real hypersurfaces in complex projective space CPn and divided them
into five classes (A), (B), (C), (D) and (E) (see [1–3]). Later, Kimura proved that homogeneous real
hypersurfaces in complex projective space are the unique Hopf hypersurfaces with constant principal
curvatures, i.e., the eigenvalues of the shape operator A are constant (see [4]). Among the above real
hypersurfaces, the three-dimensional real hypersurfaces in CP2 are geodesic hyperspheres of radius r,

0 < r <
π

2
, called real hypersurfaces of type (A) and tubes of radius r, 0 < r <

π

4
, over the complex

Mathematics 2018, 6, 84; doi:10.3390/math6050084 www.mdpi.com/journal/mathematics36
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quadric called real hypersurfaces of type (B). Table 1 includes the values of the constant principal
curvatures corresponding to the real hypersurfaces above (see [1,2]).

Table 1. Principal curvatures of real hypersurfaces in CP2.

Type α λ1 ν mα mλ1
mν

(A) 2 cot(2r) cot(r) - 1 2 -
(B) 2cot(2r) cot(r − π

4
) − tan(r − π

4
) 1 1 1

The study of Hopf hypersurfaces with constant principal curvatures in complex hyperbolic space
CHn, n ≥ 2, was initiated by Montiel in [5] and completed by Berndt in [6]. They are divided into two
types: type (A), which are open subsets of horospheres (A0), geodesic hyperspheres (A1,0), or tubes
over totally geodesic complex hyperbolic hyperplane CHn−1 (A1,1) and type (B), which are open
subsets of tubes over totally geodesic real hyperbolic space RHn. Table 2 includes the values of the
constant principal curvatures corresponding to above real hypersurfaces for n = 2 (see [6]).

Table 2. Principal curvatures of real hypersurfaces in CH2.

Type α λ ν mα mλ mν

(A0) 2 1 - 1 2 -
(A1,1) 2coth(2r) coth(r) - 1 2 -
(A1,2) 2coth(2r) tanh(r) - 1 2 -

(B) 2tanh(2r) tanh(r) coth(r) 1 1 1

The Levi–Civita connection ∇̃ of the non-flat complex space form Mn(c), n ≥ 2 induces on M
a Levi–Civita connection ∇. Apart from the last one, Cho in [7,8] introduces the notion of the k-th
generalized Tanaka–Webster connection ∇̂(k) on a real hypersurface in non-flat complex space form
given by

∇̂(k)
X Y = ∇XY + g(φAX, Y)ξ − η(Y)φAX − kη(X)φY, (1)

for all X, Y tangent to M , where k is a nonnull real number. The latter is an extension of the
definition of generalized Tanaka–Webster connection for contact metric manifolds given by Tanno in [9]
and satisfying the relation

∇̂XY = ∇XY + (∇Xη)(Y)ξ − η(Y)∇Xξ − η(X)φY.

The following relations hold:

∇̂(k)η = 0, ∇̂(k)ξ = 0, ∇̂(k)g = 0, ∇̂(k)φ = 0.

In particular, if the shape operator of a real hypersurface satisfies φA + Aφ = 2kφ, the generalized
Tanaka–Webster connection coincides with the Tanaka–Webster connection.

The k-th Cho operator on M associated with the vector field X is denoted by F̂(k)
X and given by

F̂(k)
X Y = g(φAX, Y)ξ − η(Y)φAX − kη(X)φY, (2)

for any Y tangent to M. Then, the torsion of the k-th generalized Tanaka–Webster connection ∇̂(k) is
given by

T(k)(X, Y) = F̂(k)
X Y − F̂(k)

Y X,

for any X, Y tangent to M. Associated with the vector field X, the k-th torsion operator T(k)
X is defined

and given by
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T(k)
X Y = T(k)(X, Y),

for any Y tangent to M.
The existence of Levi–Civita and k-th generalized Tanaka–Webster connections on a real

hypersurface implies that the covariant derivative can be expressed with respect to both connections.
Let K be a tensor field of type (1, 1); then, the symbols ∇K and ∇̂(k)K are used to denote the covariant
derivatives of K with respect to the Levi–Civita and the k-th generalized Tanaka–Webster connection,
respectively. Furthermore, the Lie derivative of a tensor field K of type (1, 1) with respect to Levi–Civita
connection LK is given by

(LXK)Y = ∇X(KY)−∇KYX − K∇XY + K∇YX, (3)

for all X, Y tangent to M . Another first order differential operator of a tensor field K of type (1, 1) with
respect to the k-th generalized Tanaka–Webster connection L̂(k)K is defined and it is given by

(L̂
(k)
X K)Y = ∇̂(k)

X (KY)− ∇̂(k)
KYX − K(∇̂(k)

X Y) + K(∇̂(k)
Y X), (4)

for all X, Y tangent to M .
Due to the existence of the above differential operators and derivatives, the following questions

come up

1. Are there real hypersurfaces in non-flat complex space forms whose derivatives with respect to
different connections coincide?

2. Are there real hypersurfaces in non-flat complex space forms whose differential operator L̂(k)

coincides with derivatives with respect to different connections?

The first answer is obtained in [10], where the classification of real hypersurfaces in complex
projective space CPn ,n ≥ 3, whose covariant derivative of the shape operator with respect to the
Levi–Civita connection coincides with the covariant derivative of it with respect to the k-th generalized
Tanaka–Webster connection is provided, i.e., ∇X A = ∇̂(k)

X A, where X is any vector field on M.
Next, in [11], real hypersurfaces in complex projective space CPn, n ≥ 3, whose Lie derivative of the
shape operator coincides with the operator L̂(k) are studied, i.e., LX A = L̂

(k)
X A, where X is any vector

field on M. Finally, in [12], the problem of classifying three-dimensional real hypersurfaces in non-flat
complex space forms M2(c), for which the operator L̂(k) applied to the shape operator coincides with
the covariant derivative of it, has been studied, i.e., L̂(k)

X A = ∇X A, for any vector field X tangent to M.

In this paper, the condition LX A = L̂
(k)
X A, where X is any vector field on M is studied in the case

of three-dimensional real hypersurfaces in M2(c).
The aim of the present paper is to complete the work of [11] in the case of three-dimensional real

hypersurfaces in non-flat complex space forms M2(c). The equality LX A = L̂
(k)
X A is equivalent to the

fact that T(k)
X A = AT(k)

X . Thus, the eigenspaces of A are preserved by the k-th torsion operator T(k)
X ,

for any X tangent to M . First, three-dimensional real hypersurfaces in M2(c) whose shape operator A
satisfies the following relation:

L̂
(k)
X A = LX A, (5)

for any X orthogonal to ξ are studied and the following Theorem is proved:

Theorem 1. There do not exist real hypersurfaces in M2(c) whose shape operator satisfies relation (5).

Next, three-dimensional real hypersurfaces in M2(c) whose shape operator satisfies the following
relation are studied:
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L̂
(k)
ξ A = Lξ A, (6)

and the following Theorem is provided.

Theorem 2. Every real hypersurface in M2(c) whose shape operator satisfies relation (6) is locally congruent
to a real hypersurface of type (A).

As an immediate consequence of the above theorems, it is obtained that

Corollary 1. There do not exist real hypersurfaces in M2(c) such that L̂(k)
X A = LX A, for all X ∈ TM.

Next, the following tensor field P of type (1, 1) is introduced:

PX = φAX − AφX,

for any vector field X tangent to M. The relation P = 0 implies that the shape operator commutes with
the structure tensor φ. Real hypersurfaces whose shape operator A commutes with the structure tensor
φ have been studied by Okumura in the case of CPn, n ≥ 2, (see [13]) and by Montiel and Romero
in the case of CHn, n ≥ 2 (see [14]). The following Theorem provides the above classification of real
hypersurfaces in Mn(c), n ≥ 2.

Theorem 3. Let M be a real hypersurface of Mn(c), n ≥ 2. Then, Aφ = φA, if and only if M is locally
congruent to a homogeneous real hypersurface of type (A). More precisely:
In the case of CPn

(A1) a geodesic hypersphere of radius r , where 0 < r <
π

2
,

(A2) a tube of radius r over a totally geodesic CPk,(1 ≤ k ≤ n − 2), where 0 < r <
π

2
.

In the case of CHn,

(A0) a horosphere in CHn, i.e., a Montiel tube,
(A1) a geodesic hypersphere or a tube over a totally geodesic complex hyperbolic hyperplane CHn−1,
(A2) a tube over a totally geodesic CHk (1 ≤ k ≤ n − 2).

Remark 1. In the case of three-dimensional real hypersurfaces in M2(c), real hypersurfaces of type (A2) do
not exist.

It is interesting to study real hypersurfaces in non-flat complex spaces forms, whose tensor field P
satisfies certain geometric conditions. We begin by studying three-dimensional real hypersurfaces in
M2(c) whose tensor field P satisfies the relation

(L̂
(k)
X P)Y = (LXP)Y, (7)

for any vector fields X, Y tangent to M.
First, the following Theorem is proved:

Theorem 4. Every real hypersurface in M2(c) whose tensor field P satisfies relation (7) for any X orthogonal
to ξ and Y ∈ TM is locally congruent to a real hypersurface of type (A).

Next, we study three-dimensional real hypersurfaces in M2(c) whose tensor field P satisfies
relation (7) for X = ξ, i.e.,

(
ˆ

L
(k)
ξ P)Y = (Lξ P)Y, (8)
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for any vector field Y tangent to M. Then, the following Theorem is proved:

Theorem 5. Every real hypersurface in M2(c) whose tensor field P satisfies relation (8) is a Hopf hypersurface.
In the case of CP2, M is locally congruent to a real hypersurface of type (A) or to a real hypersurface of type (B)
with α = −2k and in the case of CH2 M is a locally congruent either to a real hypersurface of type (A) or to a

real hypersurface of type (B) with α =
4
k

.

This paper is organized as follows: in Section 2, basic relations and theorems concerning real
hypersurfaces in non-flat complex space forms are presented. In Section 3, analytic proofs of Theorems 1
and 2 are provided. Finally, in Section 4, proofs of Theorems 4 and 5 are given.

2. Preliminaries

Throughout this paper, all manifolds, vector fields, etc. are considered of class C∞ and all
manifolds are assumed to be connected.

The non-flat complex space form Mn(c), n ≥ 2 is equipped with a Kähler structure J and G is the
Kählerian metric. The constant holomorphic sectional curvature c in the case of complex projective
space CPn is c = 4 and in the case of complex hyperbolic space CHn is c = −4. The Levi–Civita
connection of the non-flat complex space form is denoted by ∇.

Let M be a connected real hypersurface immersed in Mn(c), n ≥ 2, without boundary and N be a
locally defined unit normal vector field on M. The shape operator A of the real hypersurface M with
respect to the vector field N is given by

∇X N = −AX.

The Levi–Civita connection ∇ of the real hypersurface M satisfies the relation

∇XY = ∇XY + g(AX, Y)N.

The Kähler structure of the ambient space induces on M an almost contact metric structure
(φ, ξ, η, g) in the following way: any vector field X tangent to M satisfies the relation

JX = φX + η(X)N.

The tangential component of the above relation defines on M a skew-symmetric tensor field of
type (1, 1) denoted by φ known as the structure tensor. The structure vector field ξ is defined by ξ = −JN
and the 1-form η is given by η(X) = g(X, ξ) for any vector field X tangent to M. The elements of the
almost contact structure satisfy the following relation:

φ2X = −X + η(X)ξ, η(ξ) = 1, g(φX, φY) = g(X, Y)− η(X)η(Y) (9)

for all tangent vectors X, Y to M. Relation (9) implies

φξ = 0, η(X) = g(X, ξ).

Because of ∇J = 0, it is obtained

(∇Xφ)Y = η(Y)AX − g(AX, Y)ξ and ∇Xξ = φAX

for all X, Y tangent to M. Moreover, the Gauss and Codazzi equations of the real hypersurface are
respectively given by
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R(X, Y)Z =
c
4
[g(Y, Z)X − g(X, Z)Y + g(φY, Z)φX − g(φX, Z)φY

−2g(φX, Y)φZ] + g(AY, Z)AX − g(AX, Z)AY,
(10)

and

(∇X A)Y − (∇Y A)X =
c
4
[η(X)φY − η(Y)φX − 2g(φX, Y)ξ], (11)

for all vectors X, Y, Z tangent to M, where R is the curvature tensor of M.
The tangent space Tp M at every point p ∈ M is decomposed as

Tp M = span{ξ} ⊕D, (12)

where D = ker η = {X ∈ Tp M : η(X) = 0} and is called (maximal) holomorphic distribution (if n ≥ 3).
Next, the following results concern any non-Hopf real hypersurface M in M2(c) with local

orthonormal basis {U, φU, ξ} at a point p of M.

Lemma 1. Let M be a non-Hopf real hypersurface in M2(c). The following relations hold on M:

AU = γU + δφU + βξ, AφU = δU + μφU, Aξ = αξ + βU,

∇Uξ = −δU + γφU, ∇φUξ = −μU + δφU, ∇ξξ = βφU, (13)

∇UU = κ1φU + δξ, ∇φUU = κ2φU + μξ, ∇ξU = κ3φU,

∇UφU = −κ1U − γξ, ∇φUφU = −κ2U − δξ, ∇ξφU = −κ3U − βξ,

where α, β, γ, δ, μ, κ1, κ2, κ3 are smooth functions on M and β 	= 0.

Remark 2. The proof of Lemma 1 is included in [15].

The Codazzi equation for X ∈ {U, φU} and Y = ξ implies, because of Lemma 1, the following relations:

ξδ = αγ + βκ1 + δ2 + μκ3 +
c
4
− γμ − γκ3 − β2, (14)

ξμ = αδ + βκ2 − 2δκ3, (15)

(φU)α = αβ + βκ3 − 3βμ, (16)

(φU)β = αγ + βκ1 + 2δ2 +
c
2
− 2γμ + αμ, (17)

and for X = U and Y = φU

Uδ − (φU)γ = μκ1 − κ1γ − βγ − 2δκ2 − 2βμ. (18)

The following Theorem refers to Hopf hypersurfaces. In the case of complex projective space CPn,
it is given by Maeda [16], and, in the case of complex hyperbolic space CHn, it is given by Ki and Suh
[17] (see also Corollary 2.3 in [18]).

Theorem 6. Let M be a Hopf hypersurface in Mn(c), n ≥ 2. Then,

(i) α = g(Aξ, ξ) is constant.
(ii) If W is a vector field, which belongs to D such that AW = λW, then

(λ − α

2
)AφW = (

λα

2
+

c
4
)φW.
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(iii) If the vector field W satisfies AW = λW and AφW = νφW, then

λν =
α

2
(λ + ν) +

c
4

. (19)

Remark 3. Let M be a three-dimensional Hopf hypersurface in M2(c). Since M is a Hopf hypersurface relation
Aξ = αξ, it holds when α = constant. At any point p ∈ M, we consider a unit vector field W ∈ D such
that AW = λW. Then, the unit vector field φW is orthogonal to W and ξ and relation AφW = νφW holds.
Therefore, at any point p ∈ M, we can consider the local orthonormal frame {W, φW, ξ} and the shape operator
satisfies the above relations.

3. Proofs of Theorems 1 and 2

Suppose that M is a real hypersurface in M2(c) whose shape operator satisfies relation (5),
which because of the relation of k-th generalized Tanaka-Webster connection (1) becomes

g((AφA + A2φ)X, Y)ξ − g((Aφ + φA)X, Y)Aξ + kη(AY)φX + η(Y)AφAX

−η(AY)φAX − kη(Y)AφX = 0, (20)

for any X ∈ D and for all Y ∈ TM.
Let N be the open subset of M such that

N = {p ∈ M : β 	= 0, in a neighborhood of p}.

The inner product of relation (20) for Y = ξ with ξ due to relation (13) implies δ = 0 and the
shape operator on the local orthonormal basis {U, φU, ξ} becomes

Aξ = αξ + βU, AU = γU + βξ and AφU = μφU. (21)

Relation (20) for X = Y = U and X = φU and Y = ξ due to (21) yields, respectively,

γ = k and μ = 0. (22)

Differentiation of γ = k with respect to φU taking into account that k is a nonzero real number
implies (φU)γ = 0. Thus, relation (18) results, because of δ = μ = 0, in κ1 = −β. Furthermore,
relations (14)–(17) due to δ = 0 and relation (22) become

αk +
c
4

= 2β2 + kκ3, (23)

κ2 = 0, (24)

(φU)α = β(α + κ3), (25)

(φU)β = αk − β2 +
c
2

. (26)

The inner product of Codazzi equation (11) for X = U and Y = ξ with U and ξ implies because
of δ = 0 and relation (21),

Uα = Uβ = ξβ = ξγ = 0. (27)

The Lie bracket of U and ξ satisfies the following two relations:

[U, ξ]β = U(ξβ)− ξ(Uβ),

[U, ξ]β = (∇Uξ −∇ξU)β.
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A combination of the two relations above taking into account relations of Lemma 1 and (27) yields

(k − κ3)[(φU)β] = 0.

Suppose that k 	= κ3, then (φU)β = 0 and relation (26) implies αk +
c
2
= β2. Differentiation of

the last one with respect to φU results, taking into account relation (25), in κ3 = −α. The Riemannian
curvature satisfies the relation

R(X, Y)Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y]Z,

for any X, Y, Z tangent to M. Combination of the last relation with Gaussian Equation (10) for X = U,
Y = φU and Z = U due to relation (22) and relation (24), κ1 = −β, κ3 = −α and (φU)β = 0 implies
c = 0, which is a contradiction.

Therefore, on M, relation k = κ3 holds. A combination of R(X, Y)Z = ∇X∇YZ −∇Y∇XZ −
∇[X,Y]Z with Gauss Equation (10) for X = U, Y = φU and Z = U because of relations (22) and (26)
and κ1 = −β yields

k2 = −αk − 3c
2

.

A combination of the latter with relation (23) implies

β2 + k2 = −5c
8

.

Differentiation of the above relation with respect to φU gives, due to relation (26) and k2 =

−αk − 3c
2

,

β2 + k2 = − c
2

.

If the ambient space is the complex projective space CP2 with c = 4, then the above relation leads
to a contradiction. If the ambient space is the complex hyperbolic space CH2 with c = −4, combination

of the latter relation with β2 + k2 = −5c
8

yields c = 0, which is a contradiction.
Thus, N is empty and the following proposition is proved:

Proposition 1. Every real hypersurface in M2(c) whose shape operator satisfies relation (5) is a Hopf
hypersurface.

Since M is a Hopf hypersurface, Theorem 6 and remark 3 hold. Relation (20) for X = W and for
X = φW implies, respectively,

(λ − k)(ν − α) = 0 and (ν − k)(λ − α) = 0. (28)

Combination of the above relations results in

(ν − λ)(α − k) = 0.

If λ 	= ν, then α = k and relation (λ − k)(ν − α) = 0 becomes

(λ − α)(ν − α) = 0.

If ν 	= α, then λ = α and relation (19) implies that ν is also constant. Therefore, the real
hypersurface is locally congruent to a real hypersurface of type (B). Substitution of the values of
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eigenvalues in relation λ = α leads to a contradiction. Thus, on M, relation ν = α holds. Following
similar steps to the previous case, we are led to a contradiction.

Therefore, on M, we have λ = ν and the first of relations (28) becomes

(λ − k)(λ − α) = 0.

Supposing that λ 	= k, then λ = ν = α. Thus, the real hypersurface is totally umbilical, which
is impossible since there do not exist totally umbilical real hypersurfaces in non-flat complex space
forms [18].

Thus, on M relation λ = k holds. Relation (20) for X = W and Y = φW implies, because of
λ = ν = k, λ = α. Thus, λ = ν = α and the real hypersurface is totally umbilical, which is a
contradiction and this completes the proof of Theorem 1.

Next, suppose that M is a real hypersurface in M2(c) whose shape operator satisfies relation (6),
which, because of the relation of the k-th generalized Tanaka-Webster connection (1), becomes

(Aφ − φA)AX − g(φAξ, AX)ξ + η(AX)φAξ + kφAX + g(φAξ, X)Aξ

−η(X)AφAξ − kAφX = 0, (29)

for any X ∈ TM.
Let N be the open subset of M such that

N = {p ∈ M : β 	= 0, in a neighborhood of p}.

The inner product of relation (29) for X = U with ξ implies, due to relation (13), δ = 0 and the
shape operator on the local orthonormal basis {U, φU, ξ} becomes

Aξ = αξ + βU, AU = γU + βξ and AφU = μφU. (30)

Relation (29) for X = ξ yields, taking into account relation (30), γ = k. Finally, relation (29) for
X = φU implies, due to relation (30) and the last relation,

(μ2 − 2kμ + k2) + β2 = 0.

The above relation results in β = 0, which implies that N is empty. Thus, the following proposition
is proved:

Proposition 2. Every real hypersurface in M2(c) whose shape operator satisfies relation (6) is a Hopf hypersurface.

Due to the above Proposition, Theorem 6 and Remark 3 hold. Relation (29) for X = W and for
X = φW implies, respectively,

(λ − k)(λ − ν) = 0 and (ν − k)(λ − ν) = 0.

Suppose that λ 	= ν. Then, the above relations imply λ = ν = k, which is a contradiction.
Thus, on M, relation λ = ν holds and this results in the structure tensor φ commuting with

the shape operator A, i.e., Aφ = φA and, because of Theorem 3 M , is locally congruent to a real
hypersurface of type (A), and this completes the proof of Theorem 2.
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4. Proof of Theorems 4 and 5

Suppose that M is a real hypersurface in M2(c) whose tensor field P satisfies relation (7) for
any X ∈ D and for all Y ∈ TM. Then, the latter relation becomes, because of the relation of the k-th
generalized Tanaka-Webster connection (1) and relations (3) and (4),

g(φAX, PY)ξ − η(PY)φAX − g(φAPY, X)ξ + kη(PY)φX − g(φAX, Y)Pξ

+η(Y)PφAX + g(φAY, X)Pξ − kη(Y)PφX = 0, (31)

for any X ∈ D and for all Y ∈ TM.
Let N be the open subset of M such that

N = {p ∈ M : β 	= 0, in a neighborhood of p}.

Relation (31) for Y = ξ implies, taking into account relation (13),

β{g(AX, U) + g(AφU, φX)}ξ + PφAX + β2g(φU, X)φU − kPφX = 0, (32)

for any X ∈ D.
The inner product of relation (32) for X = φU with ξ due to relation (13) yields δ = 0. Moreover,

the inner product of relation (32) for X = φU with φU, taking into account relation (13) and δ = 0,
results in

β2 + k(γ − μ) = μ(γ − μ). (33)

The inner product of relation (32) for X = U with U gives, because of relation (13) and δ = 0,

(γ − k)(γ − μ) = 0.

Suppose that γ 	= k, then the above relation implies γ = μ and relation (33) implies β = 0,
which is impossible.

Thus, relation γ = k holds and relation (33) results in

β2 + (γ − μ)2 = 0.

The latter implies β = 0, which is impossible.
Thus, N is empty and the following proposition has been proved:

Proposition 3. Every real hypersurface in M2(c) whose tensor field P satisfies relation (7) is a Hopf hypersurface.

As a result of the proposition above, Theorem 6 and remark 3 hold. Thus, relation (31) for X = W
and Y = ξ and for X = φW and Y = ξ yields, respectively,

(λ − k)(λ − ν) = 0 and (ν − k)(λ − ν) = 0.

Supposing that λ 	= ν, the above relations imply λ = ν = k, which is a contradiction.
Therefore, relation λ = ν holds and this implies that Aφ = φA. Thus, because of Theorem 3, M is

locally congruent to a real hypersurface of type (A) and this completes the proof of Theorem 4.
Next, we study three-dimensional real hypersurfaces in M2(c) whose tensor field P satisfies

relation (8). The last relation becomes, due to relation (2),

F(k)
ξ PY − PF(k)

ξ Y + φAPY − PφAY = 0, (34)
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for any Y tangent to M.
Let N be the open subset of M such that

N = {p ∈ M : β 	= 0, in a neighborhood of p}.

The inner product of relation (34) for Y = ξ implies, taking into account relation (13), β = 0,
which is impossible. Thus, N is empty and the following proposition has been proved

Proposition 4. Every real hypersurface in M2(c) whose tensor field P satisfies relation (8) is a Hopf hypersurface.

Since M is a Hopf hypersurface, Theorems 6 and 3 hold. Relation (34) for Y = W implies, due to
AW = λW and AφW = νφW,

(λ − ν)(ν + λ − 2k) = 0.

We have two cases:
Case I: Supposing that λ 	= ν, then the above relation implies ν + λ = 2k. Relation (19) implies,

due to the last one, that λ, ν are constant. Thus, M is locally congruent to a real hypersurface with
three distinct principal curvatures. Therefore, it is locally congruent to a real hypersurface of type (B).

Thus, in the case of CP2, substitution of the eigenvalues of real hypersurface of type (B) in
ν + λ = 2k implies α = −2k. In the case of CH2, substitution of the eigenvalues of real hypersurface of

type (B) in ν + λ = 2k yields α =
4
k

.
Case II: Supposing that λ = ν, then the structure tensor φ commutes with the shape operator A,

i.e., Aφ = φA and, because of Theorem 3, M is locally congruent to a real hypersurface of type (A) and
this completes the proof of Theorem 5.

As a consequence of Theorems 4 and 5, the following Corollary is obtained:

Corollary 2. A real hypersurface M in M2(c) whose tensor field P satisfies relation (7) is locally congruent to a
real hypersurface of type (A).

5. Conclusions

In this paper, we answer the question if there are three-dimensional real hypersurfaces in non-flat
complex space forms whose differential operator L(k) of a tensor field of type (1, 1) coincides with
the Lie derivative of it. First, we study the case of the tensor field being the shape operator A of
the real hypersurface. The obtained results complete the work that has been done in the case of real
hypersurfaces of dimensions greater than three in complex projective space (see [11]). In Table 3 all the
existing results and also provides open problems are summarized.

Table 3. Results on condition L̂
(k)
X A = LX A.

Condition M2(c) CPn, n ≥ 3 CHn, n ≥ 3

L̂
(k)
X A = LX A, X ∈ D does not exist does not exist open
L̂
(k)
ξ A = Lξ A type (A) type (A) open

L̂
(k)
X A = LX A, X ∈ TM does not exist does not exist open

Next, we study the above geometric condition in the case of the tensor field being P = Aφ − φA,
which is introduced here. In Table 4, we summarize the obtained results.
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Table 4. Results on condition L̂
(k)
X P = LX P.

Condition CP2 CH2

L̂
(k)
X P = LX P, X ∈ D type (A) type (A)

L̂
(k)
ξ P = Lξ P type (A) and type (A) and

type (B) with α = −2k type (B) with α =
4
k

L̂
(k)
X P = LX P, X ∈ TM type (A) type (A)
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Abstract: A statistical structure is considered as a generalization of a pair of a Riemannian metric
and its Levi-Civita connection. With a pair of conjugate connections ∇ and ∇∗ in the Sasakian
statistical structure, we provide the normalized scalar curvature which is bounded above from
Casorati curvatures on C-totally real (Legendrian and slant) submanifolds of a Sasakian statistical
manifold of constant ϕ-sectional curvature. In addition, we give examples to show that the total
space is a sphere.

Keywords: Sasakian statistical manifold; conjugate connection; Casorati curvature

1. Introduction

A statistical model in information geometry has a Fisher metric as a Riemannian metric with an
affine connection, whose connection is constructed from the average of the probability distribution.
In the statistical models, a pair of a Fisher information metric and an affine connection gives
the geometric structure, called the Chentsov-Amari connection [1], whose geometric structure is
a generalization of a pair of a Riemannian metric and a Levi-Civita connection. By generalizing the
geometric structure, a statistical structure has been studied in information geometry. Applying this idea
to Sasakian manifolds, one arrived at the definition of a Sasakian statistical structure as a generalization
of a Sasakian structure. In other words, it is a triple of an affine connection, a Riemannian metric,
and a Sasakian structure on an odd dimensional manifold [2]. The geometry of such a manifold is
closely related to affine geometry and Hessian geometry. In such manifolds, there are the fundamental
equations such as Gauss formula, Weingarten formula and the equations of Gauss, Codazzi and Ricci
in submanifolds of a statistical manifold [3].

On the other hand, it is well-known that the Casorati curvature as a new extrinsic invariant is
defined as the normalized square of the length of the second fundamental form, introduced by Casorati
([4,5]). Geometric meanings of Casorati curavature were found in visual perception of shape and
appearance ([6–8]). Some optimal inequalities involving Casorati curvatures were proved in [9–15]
for several submanifolds in real, complex and quaternionic space forms with various connections.
Moreover, Lee et al. established that the normalized scalar curvature is bounded by Casorati curvatures
of submanifolds in a statistical manifold of constant curvature [16]. In Kenmotsu statistical manifolds,
Decu et al. investigate curvature properties and establish optimizations in terms of a new extrinsic
invariant (the normalized δ-Casorati curvature) and an intrinsic invariant (the scalar curvature) [17].

In our paper, we establish optimizations of the normalized scalar curvature (the intrinsic
invariant) for a new extrinsic invariant (generalized normalized Casorati curvatures) on Legendrian
and slant submanifolds in a Sasakian statistical space form. Moreover, we provide some examples for
special Sasakian statistical sphere S2m+1 of statistical sectional curvature 1.

Mathematics 2018, 6, 259; doi:10.3390/math6110259 www.mdpi.com/journal/mathematics48
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2. Preliminaries

Let (Mm, g) be a m-dimensional Riemannian manifold with an affine connection ∇. We denote by
Γ(TM) the collection of all vector fields on M.

Definition 1 ([18]). A pair
(∇, g

)
is called a statistical structure on M if ∇ is a torsion free connection on M

and the covariant derivative ∇g is symmetric.

Definition 2. A statistical manifold (M, g,∇) is a Riemannian manifold, endowed with a pair of torsion-free
affine connections ∇ and ∇∗ satisfying

Zg (X, Y) = g
(∇ZX, Y

)
+ g

(
X,∇∗

ZY
)

(1)

for any vector fields X, Y and Z. The connections ∇ and ∇∗ are called dual connections.

Remark 1.

(a)
(
∇∗)∗

= ∇.

(b) If
(∇, g

)
is a statistical structure, then so is

(
∇∗

, g
)

.

(c) Any torsion-free affine connection ∇ always has a dual connection satisfying

∇+∇∗
= 2∇0

, (2)

where ∇0 is the Levi-Civita connection for M.

Let R and R∗ be the curvature tensor fields of ∇ and ∇∗
, respectively.

Definition 3 ([18,19]). Let
(∇, g

)
be a statistical structure on M. We define

S(X, Y)Z =
1
2
{R(X, Y)Z + R∗

(X, Y)Z}

for X, Y, Z ∈ Γ(TM), called the statistical curvature tensor of
(∇, g

)
. In particular, a statistical manifold(

M,∇, g
)

is to be of constant statistical curvature c ∈ R if S(X, Y)Z = c{g(Y, Z)X − g(X, Z)Y} for
X, Y, Z ∈ Γ(TM).

By the direct calculation, the curvature tensor fields R and R∗ satisfy

g
(

R∗
(X, Y) Z, W

)
= −g

(
Z, R (X, Y)W

)
, X, Y, Z, W ∈ Γ(TM).

Therefore, if
(∇, g

)
is a statistical structure of constant curvature c, so is

(
∇∗

, g
)

.
For submanifolds in statistical manifolds, we have pairs of induced connections ∇,∇∗, second

fundamental forms h, h∗, shape operators A, A∗, and normal connections D, D∗ satisfying equations
analogous to the Gauss and the Weingarten ones for ∇ and ∇∗

, respectively. Moreover, the induced
metric g is unique, and (∇, g) and (∇∗, g) are induced dual statistical structures on the submanifold.
The fundamental equations for statistical submanifolds are given by Vos ([3]).

Let (M, g) be an n-dimensional submanifold of a statistical manifold
(

M, g
)

and g the induced
metric on M. Then for any vector fields X, Y, the Gauss formulas are given respectively by

∇XY = ∇XY + h(X, Y)

∇∗
XY = ∇∗

XY + h∗(X, Y).
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The corresponding Gauss equations with respect to ∇ and ∇∗
are given by the following result.

Theorem 1 ([3]). Let ∇ and ∇∗ be dual connections on (M, g) and ∇ and ∇∗ the induced dual connections
by ∇ and ∇∗ by a submanifold M of (M, g), respectively. Let R, R, R∗ and R∗ be the Riemannian curvature
tensors of ∇, ∇, ∇∗ and ∇∗, respectively. Then

g
(

R (X, Y) Z, W
)
= g (R (X, Y) Z, W)

+ g (h (X, Z) , h∗ (Y, W))− g (h∗ (X, W) , h (Y, Z))
(3)

g
(

R∗
(X, Y) Z, W

)
= g (R∗ (X, Y) Z, W)

+ g (h∗ (X, Z) , h (Y, W))− g (h (X, W) , h∗ (Y, Z))
(4)

If {e1, ..., en} is an orthonormal basis of the tangent space Tp M and {en+1, ..., em} is an orthonormal
basis of the normal space T⊥

p M, then the scalar curvature τ at p is defined as

τ(p) = ∑
1≤i<j≤n

g
(
S

(
ei, ej

)
ej, ei

)
and the normalized scalar curvature ρ of M is defined as

ρ =
2τ

n(n − 1)
.

We denote by H, H∗ the mean curvature vectors, that is,

H(p) =
1
n

n

∑
i=1

h(ei, ei), H∗(p) =
1
n

n

∑
i=1

h∗(ei, ei) (5)

and we also set
hα

ij = g(h(ei, ej), eα), h∗ij
α = g(h∗(ei, ej), eα),

i, j ∈ {1, ..., n}, α ∈ {n + 1, ..., m}.
Then it is well-known that the squared mean curvatures of the submanifold M in M are defined by

‖H‖2 =
1
n2

m

∑
α=n+1

(
n

∑
i=1

hα
ii

)2

, ‖H∗‖2 =
1
n2

m

∑
α=n+1

(
n

∑
i=1

h∗ii
α

)2

and the squared norms of h and h∗ over dimension n is denoted by C and C∗ are called the Casorati
curvatures of the submanifold M, respectively. Therefore, we have

C =
1
n

m

∑
α=n+1

n

∑
i,j=1

(
hα

ij

)2
and C∗ = 1

n

m

∑
α=n+1

n

∑
i,j=1

(
h∗ij

α
)2

.

The normalized δ-Casorati curvatures δC(n− 1) and δ̂C(n− 1) of the submanifold M are defined as

[δC(n − 1)]p =
1
2
Cp +

(n + 1)
2n

inf{C(L)|L a hyperplane of Tp M},

and [
δ̂C(n − 1)

]
p
= 2Cp − (2n − 1)

2n
sup{C(L)|L a hyperplane of Tp M}.
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Similarly, the dual normalized δ∗-Casorati curvatures δ∗C(n − 1) and δ̂∗C(n − 1) of the submanifold
M are defined as

[δ∗C(n − 1)]p =
1
2
C∗

p +
(n + 1)

2n
inf{C∗(L)|L a hyperplane of Tp M},

and [
δ̂∗C(n − 1)

]
p
= 2C∗

p −
(2n − 1)

2n
sup{C∗(L)|L a hyperplane of Tp M}.

The generalized normalized δ-Casorati curvatures δC(t; n − 1) and δ̂C(t; n − 1) of the submanifold
M are defined for any positive real number t 	= n(n − 1) as

[δC(t; n − 1)]p = tCp +
(n − 1)(n + t)(n2 − n − t)

nt
inf{C(L)|L a hyperplane of Tp M},

if 0 < t < n2 − n, and[
δ̂C(t; n − 1)

]
p
= tCp − (n − 1)(n + t)(t − n2 + n)

nt
sup{C(L)|L a hyperplane of Tp M},

if t > n2 − n.
Moreover, the dual generalized normalized δ-Casorati curvatures δ∗C(t; n − 1) and δ̂∗C(t; n − 1) of

the submanifold M are defined for any positive real number t 	= n(n − 1) as

[δ∗C(t; n − 1)]p = tC∗
p +

(n − 1)(n + t)(n2 − n − t)
nt

inf{C∗(L)|L a hyperplane of Tp M},

if 0 < t < n2 − n, and[
δ̂∗C(t; n − 1)

]
p
= tC∗

p −
(n − 1)(n + t)(t − n2 + n)

nt
sup{C∗(L)|L a hyperplane of Tp M},

if t > n2 − n.

The following lemma plays a key role in the proof of our main theorem.

Lemma 1 ([20]). Let

Γ = {(x1, x2, · · · , xn) ∈ Rn : x1 + x2 + · · ·+ xn = k}

be a hyperplane of Rn, and f : Rn −→ R a quadratic form, given by

f (x1, x2, · · · , xn) = a
n−1

∑
i=1

(xi)
2 + b (xn)

2 − 2 ∑
1≤i<j≤n

xixj, a > 0, b > 0.

Then, the constrained extremum problem min
x∈Γ

f (x) has a global solution as follows:

x1 = x2 = · · · = xn−1 =
k

a + 1
, xn =

k
b + 1

=
k(n − 1)
(a + 1)b

= (a − n + 2)
k

a + 1
,

provided that

b =
n − 1

a − n + 2
.
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Definition 4. A triple (g, ϕ, ξ) is called an almost contact metric structure on M if the following equations hold

ϕξ = 0, g(ξ, ξ) = 1, ϕ2X = −X + g(X, ξ)ξ, g(ϕX, Y) + g(X, ϕY) = 0, X, Y ∈ Γ(TM)

where ϕ is a section of TM ⊗ TM∗ and ξ is the structure vector field on M.

Definition 5. A quadraple
(∇, g, ϕ, ξ

)
is called a Sasakian statistical structure on M if

(∇, g
)

is a statistical
structure.

Theorem 2 ([2]). Let
(∇, g, ϕ, ξ

)
be a Sasakian statistical structure on M. Then, so is

(
∇∗

, g, ϕ, ξ
)

.

Definition 6. Let
(∇, g, ϕ, ξ

)
be a Sasakian statistical structure on M, and c ∈ R. The Sasakian statistical

structure is said to be of constant ϕ-sectional curvature if

S(X, Y)Z =
c + 3

4
{g(Y, Z)X − g(X, Z)Y}+ c − 1

4
{g(ϕY, Z)ϕX

− g(ϕX, Z)ϕY − 2g(ϕX, Y)ϕZ − g(Y, ξ)g(Z, ξ)X

+ g(X, ξ)g(Z, ξ)Y + g(Y, ξ)g(Z, X)ξ − g(X, ξ)g(Z, Y)ξ},

(6)

X, Y, Z ∈ Γ(TM).

A submanifold Mn normal to ξ in a Sasakian statistical manifold M2m+1 is said to be a C-totally
real submanifold. In this case, ϕ

(
Tp M

) ⊂ T⊥
p M, p ∈ M. In particular, if n = m, then M is called

a Legendrian submanifold.
For submanifolds tangent to ξ, there is a θ-slant submanifold of a Sasakian statistical manifold as

follows [21]:
A submanifold Mn tangent to ξ in a Sasakian statistical manifold is called a θ-slant submanifold

if for any vector X ∈ Tp M, linearly independent on ξp, the angle between ϕX and Tp M is a constant
θ ∈ [0, π

2 ], called the slant angle of M in M. In particular, if θ = 0 and θ = π
2 , M is invariant and

anti-invariant, respectively.

3. Inequalities with Casorati Curvatures

Let M be an n-dimensional C-totally real submanifold of a (2m + 1)-dimensional Sasakian
statistical manifold

(
M,∇, g, ϕ, ξ

)
.

Let p ∈ M and the set {e1, e2, · · · , en} and {en+1, en+2, · · · , e2m, e2m+1 = ξ} be orthonormal bases
of Tp M and T⊥

p M, respectively. Then, we have the scalar curvature as follows:

2τ(p) = 2 ∑
1≤i<j≤n

g
(
S

(
ei, ej

)
ej, ei

)
= ∑

1≤i<j≤n
{g

(
R(ei, ej)ej, ei

)
+ g

(
R∗(ei, ej)ej, ei

)}
= ∑

1≤i<j≤n
{ c + 3

2
+ g

(
h(ei, ei), h∗(ej, ej)

)
+ g

(
h∗(ei, ei), h(ej, ej)

)
− 2g

(
h∗(ei, ej), h(ei, ej)

)}
=

n(n − 1)(c + 3)
4

+ n2g(H, H∗)−
n

∑
i,j=1

g
(
h∗(ei, ej), h(ei, ej)

)
(7)

Since 2H0 = H + H∗ and the definition of Casorati curvature, 4‖H0‖2 = ‖H‖2 + ‖H∗‖2 +

2g(H, H∗), we obtain that
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2τ(p) =
n(n − 1)(c + 3)

4
+ 2n2‖H0‖2

− n2

2

(
‖H‖2 + ‖H∗‖2

)
− 2nC0 +

n
2
(C + C∗) ,

(8)

where C0 = 1
2 (C + C∗).

Define a quadratic polynomial in the components of the second fundamental form h0 by

P = tC0 +
(n − 1)(n + t)(n2 − n − t)

nt
C0(L) +

1
2

n (C + C∗)

− n2

2

(
‖H‖2 + ‖H∗‖2

)
− 2τ(p) +

n(n − 1)(c + 3)
4

,

where L is a hyperplane of Tp M. Without loss of generality, we can assume that L is spanned by
e1, · · · , en−1. Then we derive

1
2
P =

m

∑
α=n+1

n−1

∑
i=1

[
n2 + n(t − 1)− 2t

r

(
h0α

ii

)2
+

2(n + t)
n

(
h0α

in

)2
]

+
m

∑
α=n+1

[
2(n + t)(n − 1)

t

n−1

∑
1=i<j

(
h0α

ij

)2 − 2
n

∑
1=i<j

h0α
ii h0α

jj +
t
n

(
h0α

nn

)2
]

≥
m

∑
α=n+1

[
n−1

∑
i=1

n2 + n(t − 1)− 2t
t

(
h0α

ii

)2 − 2
n

∑
1=i<j

h0α
ii h0α

jj +
t
n

(
h0α

nn

)2
]

.

(9)

For α = n + 1, · · · , m, let us consider the quadratic form fα : Rn −→ R defined by

fα

(
h0α

11, · · · , h0α
nn

)
=

n2 + n(t − 1)− 2t
t

n−1

∑
i=1

(
h0α

ii

)2

− 2
n

∑
1=i<j

h0α
ii h0α

jj +
t
n

(
h0α

nn

)2
,

(10)

and the constrained extremum problem
min fα

subject to Fα : h0α
11 + · · ·+ h0α

nn = cα,

where cα is a real constant. Comparing (10) with the quadratic function in Lemma 1, we see that

a =
n2 + n(t − 1)− 2t

t
, b =

t
n

.

Therefore, we have the critical point
(
h0α

11, · · · , h0α
nn

)
, given by

h0α
11 = h0α

22 = · · · = h0α
n−1 n−1 =

tcα

(n + t)(n − 1)
, h0α

nn =
ncα

n + t
,

is a global minimum point by Lemma 1. Moreover, fα

(
h0α

11, · · · , h0α
nn

)
= 0. Therefore, we have

P ≥ 0, (11)

which implies

2τ(p) ≤tC0 +
(n − 1)(n + t)(n2 − n − t)

nt
C0(L) +

1
2

n (C + C∗)

− n2

2

(
‖H‖2 + ‖H∗‖2

)
+

n(n − 1)(c + 3)
4

.
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Therefore, we derive

ρ ≤ 1
n(n − 1)

{tC0 +
(n − 1)(n + t)(n2 − n − t)

nt
C0(L)}

+
1

2(n − 1)
(C + C∗)− n

2(n − 1)

(
‖H‖2 + ‖H∗‖2

)
+

c + 3
4

.

Therefore, we have the following theorem:

Theorem 3. Let M be an n-dimensional C-totally real submanifold of a (2m + 1)-dimensional Sasakian
statistical manifold

(
M,∇, g, ϕ, ξ

)
. When 0 < t < n2 − n, the generalized normalized δ-Casorati curvature

δ0
C(t, n − 1) on M satisfies

ρ ≤ 1
n(n − 1)

δ0
C(t, n − 1) +

1
2(n − 1)

(C + C∗)

− n
2(n − 1)

(
‖H‖2 + ‖H∗‖2

)
+

c + 3
4

,

where 2δ0
C(t, n − 1) = δC(t, n − 1) + δ∗C(t, n − 1). The equality case holds identically at any point p ∈ M if

and only if h = −h∗.

For a unit hypersphere S2n+1 in R2n+2, the unit normal vector field N of S2n+1 provides the
structure vector field ξ = −JN with the standard almost complex structure J on R2n+2 = Cn+1.
In addition, ϕ = π ◦ J is the natural projection of the tangent space of R2n+2 onto the tangent space of
S2n+1. Then we obtain the standard Sasakian structure (g, ϕ, ξ) on S2n+1. From [2], we can construct
a Sasakian statistical structures on S2n+1 of constant statistical sectional curvature 1. Therefore, we
have the following optimal inequality:

Example 1. Let M be an n-dimensional C-totally real submanifold of S2m+1. Then, the generalized normalized
δ-Casorati curvature δ0

C(t, n − 1) on Mn satisfies

ρ ≤ 1
n(n − 1)

δ0
C(t, n − 1) +

1
2(n − 1)

(C + C∗)

− n
2(n − 1)

(
‖H‖2 + ‖H∗‖2

)
+ 1.

When t = n(n−1)
2 in Theorem 3, we have an optimization for a normalized δ-Casoratic curvature

as follows:

Corollary 1. Let M be an n-dimensional C-totally real submanifold of a (2m + 1)-dimensional Sasakian
statistical manifold

(
M,∇, g, ϕ, ξ

)
. Then, the normalized δ-Casorati curvature δ0

C(n − 1) on M satisfies

ρ ≤ δ0
C(n − 1) +

1
2(n − 1)

(C + C∗)− n
2(n − 1)

(
‖H‖2 + ‖H∗‖2

)
+

c + 3
4

.

Proof. Taking t = n(n−1)
2 in δ0

C(t, n − 1), we have the following relation:[
δ0

C

(
n(n − 1)

2
; n − 1

)]
p
= n(n − 1)

[
δ0

C(n − 1)
]

p

in any point p ∈ M. Therefore, we have an optimal inequality for the normalized δ-Casorati curvature
δ0

C(n − 1).
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Theorem 4. Let M be an n-dimensional θ-slant submanifold of a (2m + 1)-dimensional Sasakian statistical
manifold

(
M,∇, g, ϕ, ξ

)
. When 0 < t < n2 − n, the generalized normalized δ-Casorati curvature δ0

C(t, n − 1)
on M satisfies

ρ ≤ 1
n(n − 1)

δ0
C(t, n − 1) +

1
2(n − 1)

(C + C∗)− n
2(n − 1)

(
‖H‖2 + ‖H∗‖2

)
+

n(n − 1)(c + 3)
4

+
3(n − 1)(c − 1) cos2 θ

4
− (n − 1)(c − 1)

2
.

Proof. Let p ∈ M and the set {e1, e2, · · · , en−1, en = ξ} and {en+1, en+2, · · · , e2m, e2m+1} be
orthonormal bases of Tp M and T⊥

p M, respectively. Then, we have the scalar curvature as follows:

2τ(p) = 2 ∑
1≤i<j≤n

g
(
S

(
ei, ej

)
ej, ei

)
= ∑

1≤i<j≤n
{g

(
R(ei, ej)ej, ei

)
+ g

(
R∗(ei, ej)ej, ei

)}
=

n(n − 1)(c + 3)
4

+
3(n − 1)(c − 1) cos2 θ

4
− (n − 1)(c − 1)

2

+ n2g(H, H∗)−
n

∑
i,j=1

g
(
h∗(ei, ej), h(ei, ej)

)
(12)

By using a similar argument as in the proof of Theorem 3, we get

2τ(p) ≤tC0 +
(n − 1)(n + t)(n2 − n − t)

nt
C0(L)

+
1
2

n (C + C∗)− n2

2

(
‖H‖2 + ‖H∗‖2

)
+

n(n − 1)(c + 3)
4

+
3(n − 1)(c − 1) cos2 θ

4
− (n − 1)(c − 1)

2
.

Therefore, we have an ineqaulity as follows:

ρ ≤ 1
n(n − 1)

δ0
C(t, n − 1) +

1
2(n − 1)

(C + C∗)− n
2(n − 1)

(
‖H‖2 + ‖H∗‖2

)
+

n(n − 1)(c + 3)
4

+
3(n − 1)(c − 1) cos2 θ

4
− (n − 1)(c − 1)

2
.

If M is an invariant submanifold, then θ = 0. Then we obtain

Corollary 2. Let Mn be an n-dimensional invariant submanifold of a (2m+ 1)-dimensional Sasakian statistical
manifold

(
M,∇, g, ϕ, ξ

)
. When 0 < t < n2 − n, we derive

ρ ≤ 1
n(n − 1)

δ0
C(t, n − 1) +

1
2(n − 1)

(C + C∗)

− n
2(n − 1)

(
‖H‖2 + ‖H∗‖2

)
+

n(n − 1)(c + 3)
4

+
(n − 1)(c − 1)

4
.

If M is an anti-invariant submanifold, then θ = π
2 . Then we obtain
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Corollary 3. Let Mn be an n-dimensional anti-invariant submanifold of a (2m + 1)-dimensional Sasakian
statistical manifold

(
M,∇, g, ϕ, ξ

)
. When 0 < t < n2 − n, we derive

ρ ≤ 1
n(n − 1)

δ0
C(t, n − 1) +

1
2(n − 1)

(C + C∗)

− n
2(n − 1)

(
‖H‖2 + ‖H∗‖2

)
+

n(n − 1)(c + 3)
4

− (n − 1)(c − 1)
2

.

Example 2. Let M be an n-dimensional θ-slant submanifold of S2m+1. Then, the generalized normalized
δ-Casorati curvature δ0

C(t, n − 1) on Mn satisfies

ρ ≤ 1
n(n − 1)

δ0
C(t, n − 1) +

1
2(n − 1)

(C + C∗)

− n
2(n − 1)

(
‖H‖2 + ‖H∗‖2

)
+ n(n − 1).

Remark 2.

(1) Taking t = n(n−1)
2 as Corollary 1, we have optimal inequalities for θ-slant submanifold of a Sasakian

statistical manifold.
(2) In any optimization throughout our paper, the equality cases hold if and only if a submanifold is totally

geodesic from h = −h∗.
(3) In the case for t > n2 − n, the methods of finding the above inequalities are analogous.
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1. Introduction

Bochner [1] introduced the Bochner tensor in Kähler manifolds by analogy to the Weyl conformal
curvature tensor. The Bochner tensor is equal to the 4-th order Chern–Moser curvature tensor in
CR-manifolds by Webster [2]. In contact manifolds, the Bochner tensor was reinterpreted by Matsumoto
and Chuman [3] as a C-Bochner curvature tensor in Sasakian manifolds. They showed that a Sasakian
space form is a space with a vanishing C-Bochner curvature tensor. A Sasakian manifold with a
non-constant ϕ-sectional curvature and a vanishing C-Bochner curvature tensor was constructed by
Kim [4]. Tano showed that the C-Bochner curvature tensor is invariant in terms of D-homothetic
deformations [5].

On the other hand, F. Casorati introduced a new extrinsic invariant of submanifolds in a
Riemannian manifold, called the Casorati curvature. This curvature is defined as the normalized square
of the length of the second fundamental form ([6,7]). Moreover, there are very interesting optimizations
involving Casorati curvatures, proved in [8–19] for various basic submanifolds in different spaces (real,
complex, and quaternionic space forms) with several connections.

In our paper, we investigate new optimal inequalities involving Casorati curvatures for some
submanifolds of a Sasakian manifold with a zero C-Bochner curvature tensor and characterize those
submanifolds for which the equalities hold.

2. Preliminaries

In this section, we recall some results on almost contact manifolds and give a brief review of basic
facts of C-Bochner curvature tensor.

A manifold M = (M, ϕ, ξ, η, g) is called an almost contact metric manifold if there exist structure
tensors (ϕ, ξ, η, g), where ϕ is a tensor field of type (1, 1), ξ is a vector field, η is a 1-form, and g is the
Riemannian metric on M satisfying [20]

ϕξ = 0, η ◦ ϕ = 0, η(ξ) = 1

ϕ2 = −I + η ⊗ ξ, and g(ϕX, ϕY) = g(X, Y)− η(X)η(Y)

Mathematics 2018, 6, 231; doi:10.3390/math6110231 www.mdpi.com/journal/mathematics58
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where I : TM −→ TM is the identity endomorphism, and X, Y are vector fields on M. In particular,
if M is Sasakian [21], then we have

(∇X ϕ)Y = −g(X, Y)ξ + η(Y)X and ∇Xξ = ϕX

where ∇ is the Levi–Civita connection on M.
Let Mn be an n-dimensional submanifold of a Riemannian manifold (M, g). If ∇ is the induced

covariant differentiation on M of the Levi–Civita connection ∇ on M, then we have the Gauss and
Weingarten formulas:

∇XY = ∇XY + h(X, Y)∀X, Y ∈ Γ(TM)

and
∇X N = −AN X +∇⊥

X N, ∀X ∈ Γ(TM), ∀N ∈ Γ(T⊥M)

where h is the second fundamental form of M, ∇⊥ is the connection on T⊥M, and AN is the shape
operator of M with respect to a normal section N. If we denote by R and R the curvature tensor fields
of ∇ and ∇, respectively, then we have the Gauss equation:

R(X, Y, Z, W) = R(X, Y, Z, W) + g(h(X, W), h(Y, Z))

− g(h(X, Z), h(Y, W))
(1)

for all X, Y, Z, W ∈ Γ(TM).
Let Mn be an n-dimensional Riemannian submanifold of a Sasakian manifold (M, g, ϕ, ξ, η).

A plane section π ⊂ Tp M, p ∈ M of a Sasakian manifold M is called a ϕ-section if π = span{X, ϕX}
for X ∈ Γ(TM) orthogonal to ξ at each point p ∈ M. The sectional curvature K(π) with respect to
a ϕ-section π is called a ϕ-sectional curvature. If {e1, ..., en, ξ} is an orthonormal basis of Tp M and
{en+1, ..., em} is an orthonormal basis of T⊥

p M, then the scalar curvature τ and the normalized scalar
curvature ρ at p are defined, respectively, as

τ(p) = ∑
1≤i<j≤n

K(ei ∧ ej) ρ =
2τ

n(n − 1)
.

We denote by H the mean curvature vector, that is

H(p) =
1
n

n

∑
i=1

h(ei, ei),

and we also set
hα

ij = g(h(ei, ej), eα), i, j ∈ {1, ..., n}, α ∈ {n + 1, ..., m}.

It is well-known that an intrinsic invariant of the submanifold M in M is defined by

‖H‖2 =
1
n2

m

∑
α=n+1

(
n

∑
i=1

hα
ii

)2

,

and the squared norm of h over the dimension n is denoted by C, called the Casorati curvature of the
submanifold M. That is,

C =
1
n

m

∑
α=n+1

n

∑
i,j=1

(
hα

ij

)2
.

The submanifold M is said to be invariantly quasi-umbilical if there exist m− n mutually orthogonal
unit normal vectors ξn+1, ..., ξm such that the shape operator with respect to each direction ξα has an
eigenvalue of multiplicity n − 1 and the distinguished eigendirection is the same for each ξα.
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Suppose now that L is a s-dimensional subspace of Tp M, and s ≥ 2. Let {e1, ..., es} be an
orthonormal basis of L. Then the scalar curvature τ(L) of the s-plane section L is given by

τ(L) = ∑
1≤α<β≤s

K(eα ∧ eβ),

and the Casorati curvature C(L) of the subspace L is defined as

C(L) =
1
s

m

∑
α=n+1

s

∑
i,j=1

(
hα

ij

)2
.

The normalized δ-Casorati curvatures δc(n − 1) and δ̂c(n − 1) of the submanifold Mn are given by

[δc(n − 1)]p =
1
2
Cp +

n + 1
2n

inf{C(L)|L a hyperplane of Tp M}

and [
δ̂c(n − 1)

]
p
= 2Cp − 2n − 1

2n
sup{C(L)|L a hyperplane of Tp M}.

The generalized normalized δ-Casorati curvatures δC(t; n − 1) and δ̂C(t; n − 1) of the submanifold
Mn are defined for any positive real number t 	= n(n − 1) as

[δC(t; n − 1)]p = tCp +
(n − 1)(n + t)(n2 − n − t)

nt
inf{C(L)|L a hyperplane of Tp M},

if 0 < t < n2 − n, and[
δ̂C(t; n − 1)

]
p
= tCp − (n − 1)(n + t)(t − n2 + n)

nt
sup{C(L)|L a hyperplane of Tp M}

if t > n2 − n.
The C-Bochner curvature tensor [22] on a Sasakian manifold is defined by

B(X, Y)Z = R(X, Y)Z +
1

2n + 4
{g(X, Z)QY − Ric(Y, Z)X

− g(Y, Z)QX + Ric(X, Z)Y + g(ϕX, Z)QϕY

− Ric(ϕY, Z)ϕX − gϕY, Z)QϕX + Ric(ϕX, Z)ϕY

+ 2Ric(ϕX, Y)ϕZ + 2g(ϕX, Y)QϕZ + η(Y)η(Z)QX

− η(Y)Ric(X, Z)ξ + η(X)Ric(Y, Z)ξ − η(X)η(Z)QY}
− D + 2n

2n + 4
{g(ϕX, Z)ϕY − g(ϕY, Z)ϕX + 2g(ϕX, Y)ϕZ}

+
D + 2n
2n + 4

{η(Y)g(X, Z)ξ − η(Y)η(Z)X + η(X)η(Z)Y

− η(X)g(Y, Z)ξ} − D − 4
2n + 4

{g(X, Z)Y − g(Y, Z)X}

(2)
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for all X, Y, Z, W ∈ Γ(TM), where D = τ+2n
2n+2 , and R, Ric, and Q are the Riemannian curvature tensor,

the Ricci tensor, and the Ricci operator, respectively. If the C-Bochner curvature tensor vanishes,
from Equation (5), we have

R(X, Y, Z, W) = − 1
2n + 4

{g(X, Z)Ric(Y, W)− Ric(Y, Z)g(X, W)

− g(Y, Z)Ric(X, W) + Ric(X, Z)g(Y, W)

+ g(ϕX, Z)Ric(ϕY, W)− Ric(ϕY, Z)g(ϕX, W)

− g(ϕY, Z)Ric(ϕX, W) + Ric(ϕX, Z)g(ϕY, W)

+ 2Ric(ϕX, Y)g(ϕZ, W) + 2g(ϕX, Y)Ric(ϕZ, W)

+ η(Y)η(Z)Ric(X, W)− η(Y)η(W)Ric(X, Z)

+ η(X)η(W)Ric(Y, Z)− η(X)η(Z)Ric(Y, W)}
+

D + 2n
2n + 4

{g(ϕX, Z)g(ϕY, W)− g(ϕY, Z)g(ϕX, W)

+ 2g(ϕX, Y)g(ϕZ, W)} − D + 2n
2n + 4

{η(Y)η(W)g(X, Z)

− η(Y)η(Z)g(X, W) + η(X)η(Z)g(Y, W)

− η(X)η(W)g(Y, Z)}+ D − 4
2n + 4

{g(X, Z)g(Y, W)

− g(Y, Z)g(X, W)}

. (3)

Now, we recall some definitions from literature on submanifolds.

Definition 1. Let (M, ϕ, ξ, η) be an almost contact metric manifolds and M be a submanifold isometrically
immersed in M tangent to the structure vector field ξ. Then M is said to be invariant (anti-invariant) if
ϕ(Tp M) ⊆ Tp M

(
ϕ(Tp M) ⊂ T⊥

p M
)

for every p ∈ M, where Tp Ms denote the tangent space of M at the
point p. Moreover, M is called a slant submanifold if for all non-zero vector U ∈ Tp M at a point p, and
the angle of θ(U) between ϕU and Tp M is constant (i.e., it does not depend on the choice of p ∈ M and
U ∈ Γ

(
Tp M

)− < ξ(p) >).

Let Mn be an n-dimensional submanifold of a Sasakian manifold (M, g, ϕ, ξ, η). For X ∈ Γ(TM),
we can write ϕX = PX + QX, where PX and QX are the tangential and the normal components
of ϕX, respectively. The submanifold is said to be an anti-invariant (invariant) submanifold if
P = 0(Q = 0, respectively). The squared norm of P at p ∈ M is defined as

||P||2 =
n

∑
i,j=1

g2(ϕei, ej)

where {e1, · · · , en} is an orthonormal basis of Tp M. The structure vector field ξ can be decomposed as

ξ = ξ� + ξ⊥

where ξ� and ξ⊥ are the tangential and the normal components of ξ, respectively.
The following constrained extremum problem plays a key role in the proof of our theorems.

Lemma 1. [23] Let
Γ = {(x1, x2, · · · , xn) ∈ Rn : x1 + x2 + · · ·+ xn = k}
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be a hyperplane of Rn, and f : Rn −→ R a quadratic form given by

f (x1, x2, · · · , xn) = a
n−1

∑
i=1

(xi)
2 + b (xn)

2 − 2 ∑
1≤i<j≤n

xixj, a > 0, b > 0.

Then, f has the global extreme at the following point:

x1 = x2 = · · · = xn−1 =
k

a + 1
, xn =

k
b + 1

=
k(n − 1)
(a + 1)b

= (a − n + 2)
k

a + 1

provided that

b =
n − 1

a − n + 2

by the constrained extremum problem.

3. Inequalities Involving a Vanishing C-Bochner Curvature Tensor

Let M be a submanifold of a Sasakian manifold (M, g, ϕ, ξ, η) with a vanishing C-Bochner
curvature tensor. Let p ∈ M and the set {e1, ..., en} and {en+1, ..., em} be orthonormal bases of Tp M and
T⊥

p M, respectively. From Equation (3), we have

n

∑
i,j=1

R(ei, ej, ej, ei) =
7n2 + n − 8 + 2(n − 1)||ξ⊥||2

4(n + 1)(n + 2)
τ

− 3
n + 2

n

∑
i,j=1

g(ϕei, ej)Ric(ei, ϕej)

+
n(n − 1)(2n + 3)
(n + 1)(n + 2)

||ξ⊥||2 − 3n + 4
2(n + 1)(n + 2)

. (4)

Combining Equation (1) and Equation (4), we obtain

2τ = n2||H||2 − nC +
7n2 + n − 8 + 2(n − 1)||ξ⊥||2

4(n + 1)(n + 2)
τ

− 3
n + 2

n

∑
i,j=1

g(ϕei, ej)Ric(ei, ϕej)

+
n(n − 1)(2n + 3)
(n + 1)(n + 2)

||ξ⊥||2 − 3n + 4
2(n + 1)(n + 2)

. (5)

We now consider a quadratic polynomial in the components of the second fundamental form:

P = tC +
(n − 1)(n + t)(n2 − n − t)

nt
C(L)− n2 + 23n + 24 − 2(n − 1)||ξ⊥||2

4(n + 1)(n + 2)
τ

− 3
n + 2

n

∑
i,j=1

g(ϕei, ej)Ric(ei, ϕej) +
n(n − 1)(2n + 3)
(n + 1)(n + 2)

||ξ⊥||2 − 3n + 4
2(n + 1)(n + 2)
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where L is a hyperplane of Tp M. Without loss of generality, we may assume that L = span{e1, ..., en−1}.
Then we derive

P =
m

∑
α=n+1

n−1

∑
i=1

[
n2 + n(t − 1)− 2t

r
(hα

ii)
2 +

2(n + t)
n

(hα
in)

2
]

+
m

∑
α=n+1

[
2(n + t)(n − 1)

t

n−1

∑
1=i<j

(
hα

ij

)2 − 2
n

∑
1=i<j

hα
iih

α
jj +

t
n
(hα

nn)
2

]

≥
m

∑
α=n+1

[
n−1

∑
i=1

n2 + n(t − 1)− 2t
t

(hα
ii)

2 − 2
n

∑
1=i<j

hα
iih

α
jj +

t
n
(hα

nn)
2

]. (6)

For α = n + 1, · · · , m, we consider the quadratic form fα : Rn −→ R defined by

fα (hα
11, · · · , hα

nn) =
n2 + n(t − 1)− 2t

t

n−1

∑
i=1

(hα
ii)

2 − 2
n

∑
i<j=1

hα
iih

α
jj +

t
n
(hα

nn)
2 . (7)

We then have the constrained extremum problem

min fα

subject to Fα : hα
11 + · · ·+ hα

nn = cα

where cα is a real constant. Comparing Equation (7) with the quadratic function in Lemma 1, we get

a =
n2 + n(t − 1)− 2t

t
, b =

t
n

.

Therefore, we have the critical point
(
hα

11, · · · , hα
nn

)
, given by

hα
11 = hα

22 = · · · = hα
n−1 n−1 =

tcα

(n + t)(n − 1)
, hα

nn =
ncα

n + t
,

which is a global minimum point by Lemma 1. Moreover, fα

(
hα

11, · · · , hα
nn

)
= 0. Therefore, we have

P ≥ 0,

which implies

n2 + 23n + 24 − 2(n − 1)||ξ⊥||2
4(n + 1)(n + 2)

τ ≤ tC +
(n − 1)(n + t)(n2 − n − t)

nt
C(L)

− 3
n + 2

n

∑
i,j=1

g(ϕei, ej)Ric(ei, ϕej)

+
n(n − 1)(2n + 3)
(n + 1)(n + 2)

||ξ⊥||2 − 3n + 4
2(n + 1)(n + 2)

.

Therefore, we derive

63



Mathematics 2018, 6, 231

ρ ≤ 8(n + 1)(n + 2)
n(n − 1)

(
n2 + 23n + 24 − 2(n − 1)||ξ⊥||2)

(
tC +

(n − 1)(n + t)(n2 − n − t)
nt

C(L)
)

− 24(n + 1)
n(n − 1)

(
n2 + 23n + 24 − 2(n − 1)||ξ⊥||2) n

∑
i,j=1

g(ϕei, ej)Ric(ei, ϕej)

+
4(2n + 3)||ξ⊥||2

n2 + 23n + 24 − 2(n − 1)||ξ⊥||2 − 4(3n + 4)
n(n − 1)

(
n2 + 23n + 24 − 2(n − 1)||ξ⊥||2)

.

Summing up, we obtain the following theorem:

Theorem 1. Let M be a submanifold of a Sasakian manifold (M, g, ϕ, ξ, η) with a vanishing C-Bochner
curvature tensor. When 0 < t < n2 − n, the generalized normalized δ-Casorati curvature δC(t, n − 1) on
Mn satisfies

ρ ≤ 8(n + 1)(n + 2)
n(n − 1)

(
n2 + 23n + 24 − 2(n − 1)||ξ⊥||2) δC(t, n − 1)

− 24(n + 1)
n(n − 1)

(
n2 + 23n + 24 − 2(n − 1)||ξ⊥||2) n

∑
i,j=1

g(ϕei, ej)Ric(ei, ϕej)

+
4(2n + 3)||ξ⊥||2

n2 + 23n + 24 − 2(n − 1)||ξ⊥||2 − 4(3n + 4)
n(n − 1)

(
n2 + 23n + 24 − 2(n − 1)||ξ⊥||2)

.

Moreover, the equality case holds if and only if Mn is an invariantly quasi-umbilical submanifold with the
trivial normal connection in a Sasakian manifold (M, g, ϕ, ξ, η), such that the shape operators Ar ≡ Aξr and
r ∈ {n + 1, · · · , m} take the following forms:

An+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a 0 0 ... 0 0
0 a 0 ... 0 0
0 0 a ... 0 0
...

...
...

. . .
...

...
0 0 0 ... a 0
0 0 0 ... 0 n(n−1)

t a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, An+2 = · · · = Am = 0 (8)

with respect to a suitable orthonormal tangent frame {ξ1, · · · , ξn} and a normal orthonormal frame
{ξn+1, · · · , ξm}.

When a submanifold M is Einstein of a Sasakian manifold (M, g, ϕ, ξ, η), the Ricci curvature
tensor ρ(X, Y) = λg(X, Y) for X, Y ∈ Γ(TM), where λ is some constant. Therefore, we have the
following corollary:

Corollary 1. Let M be an Einstein submanifold of a Sasakian manifold (M, g, ϕ, ξ, η) with a vanishing
C-Bochner curvature tensor. Then, for a Ricci curvature λ, we obtain

ρ ≤ 8(n + 1)(n + 2)
n(n − 1)

(
n2 + 23n + 24 − 2(n − 1)||ξ⊥||2) δC(t, n − 1)

+
24(n + 1)||P||2λ

n(n − 1)
(
n2 + 23n + 24 − 2(n − 1)||ξ⊥||2)

+
4(2n + 3)||ξ⊥||2

n2 + 23n + 24 − 2(n − 1)||ξ⊥||2 − 4(3n + 4)
n(n − 1)

(
n2 + 23n + 24 − 2(n − 1)||ξ⊥||2)

.
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Moreover, the equality case holds if and only if Mn is an invariantly quasi-umbilical submanifold with the
trivial normal connection in a Sasakian manifold (M, g, ϕ, ξ, η), such that with respect to a suitable orthonormal
tangent frame {ξ1, · · · , ξn} and a normal orthonormal frame {ξn+1, · · · , ξm}, the shape operators Ar ≡ Aξr

and r ∈ {n + 1, · · · , m} take the form of Equation (8).

For a slant submanifolds (g(ϕei, ej) = cos θ with the slant angle θ) of a Sasakian manifold
(M, g, ϕ, ξ, η) with a vanishing C-Bochner curvature tensor, we have following corollaries.

Corollary 2. Let M be a slant submanifold of a Sasakian manifold (M, g, ϕ, ξ, η) with a vanishing C-Bochner
curvature tensor. We then obtain

ρ ≤ 8(n + 1)(n + 2)
n(n − 1)

(
n2 + 23n + 24 − 2(n − 1)||ξ⊥||2) δC(t, n − 1)

+
24(n + 1) cos θ

n(n − 1)
(
n2 + 23n + 24 − 2(n − 1)||ξ⊥||2) n

∑
i,j=1

Ric(ei, ϕej) +
4(2n + 3)||ξ⊥||2

n2 + 23n + 24 − 2(n − 1)||ξ⊥||2

− 4(3n + 4)
n(n − 1)

(
n2 + 23n + 24 − 2(n − 1)||ξ⊥||2)

where θ is a slant function. Moreover, the equality case holds if and only if, with respect to a suitable frames
{e1, ..., en} on M and {en+1, ..., em} on T⊥

p M, p ∈ M, the components of h satisfy

hα
11 = hα

22 = · · · = hα
n−1 n−1 = t

n(n−1)hα
nn, α ∈ {n + 1, · · · , m},

hα
ij = 0, i, j ∈ {1, 2, · · · , n}(i 	= j), α ∈ {n + 1, · · · , m}.

When the slant angle is zero in Corollary 2, we have the following corollary:

Corollary 3. Let M be an invariant submanifold of a Sasakian manifold (M, g, ϕ, ξ, η) with a vanishing
C-Bochner curvature tensor. We then obtain

ρ ≤ 8(n + 1)(n + 2)
n(n − 1)

(
n2 + 23n + 24 − 2(n − 1)||ξ⊥||2) δC(t, n − 1)

+
4(6n2 − 3n − 10)

n(n − 1)
(
n2 + 23n + 24 − 2(n − 1)||ξ⊥||2) +

4(2n + 3)||ξ⊥||2
n2 + 23n + 24 − 2(n − 1)||ξ⊥||2

.

Moreover, the equality case holds if and only if, with respect to a suitable frames {e1, ..., en} on M and
{en+1, ..., em} on T⊥

p M, p ∈ M, the components of h satisfy

hα
11 = hα

22 = · · · = hα
n−1 n−1 = t

n(n−1)hα
nn, α ∈ {n + 1, · · · , m},

hα
ij = 0, i, j ∈ {1, 2, · · · , n}(i 	= j), α ∈ {n + 1, · · · , m}.

When the slant angle is π
2 in Corollary 1, we have the following corollary:

Corollary 4. Let M be an anti-invariant submanifold of a Sasakian manifold (M, g, ϕ, ξ, η) with a vanishing
C-Bochner curvature tensor. We then obtain

ρ ≤ 8(n + 1)(n + 2)
n(n − 1)

(
n2 + 23n + 24 − 2(n − 1)||ξ⊥||2) δC(t, n − 1)

+
4(2n + 3)||ξ⊥||2

n2 + 23n + 24 − 2(n − 1)||ξ⊥||2 − 4(3n + 4)
n(n − 1)

(
n2 + 23n + 24 − 2(n − 1)||ξ⊥||2)

.
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Moreover, the equality case holds if and only if, with respect to a suitable frames {e1, ..., en} on M and
{en+1, ..., em} on T⊥

p M, p ∈ M, the components of h satisfy

hα
11 = hα

22 = · · · = hα
n−1 n−1 = t

n(n−1)hα
nn, α ∈ {n + 1, · · · , m},

hα
ij = 0, i, j ∈ {1, 2, · · · , n}(i 	= j), α ∈ {n + 1, · · · , m}.

Remark 1. In the case for t > n2 − n, the methods of finding the above inequailities is analogous. Thus, we
leave these problems for readers.

Taking t = n(n−1)
2 in δC(t, n − 1), we have the following relation:[

δC

(
n(n − 1)

2
; n − 1

)]
p
= n(n − 1) [δC(n − 1)]p

in any point p ∈ M. Therefore, we have following optimal inequalities for the normalized δ-Casorati
curvature δC(n − 1).

Corollary 5. Let M be a submanifold of a Sasakian manifold (M, g, ϕ, ξ, η) with a vanishing C-Bochner
curvature tensor. The normalized δ-Casorati curvature δC(n − 1) on Mn satisfies

ρ ≤ 8(n + 1)(n + 2)(
n2 + 23n + 24 − 2(n − 1)||ξ⊥||2) δC(n − 1)

− 24(n + 1)
n(n − 1)

(
n2 + 23n + 24 − 2(n − 1)||ξ⊥||2) n

∑
i,j=1

g(ϕei, ej)Ric(ei, ϕej)

+
4(2n + 3)||ξ⊥||2

n2 + 23n + 24 − 2(n − 1)||ξ⊥||2 − 4(3n + 4)
n(n − 1)

(
n2 + 23n + 24 − 2(n − 1)||ξ⊥||2)

.

Corollary 6. Let M be an Einstein submanifold of a Sasakian manifold (M, g, ϕ, ξ, η) with a vanishing
C-Bochner curvature tensor. Then, for a Ricci curvature λ, we obtain

ρ ≤ 8(n + 1)(n + 2)(
n2 + 23n + 24 − 2(n − 1)||ξ⊥||2) δC(n − 1)

+
24(n + 1)||P||2λ

n(n − 1)
(
n2 + 23n + 24 − 2(n − 1)||ξ⊥||2) +

4(2n + 3)||ξ⊥||2
n2 + 23n + 24 − 2(n − 1)||ξ⊥||2

− 4(3n + 4)
n(n − 1)

(
n2 + 23n + 24 − 2(n − 1)||ξ⊥||2)

.

Corollary 7. Let M be a slant submanifold of a Sasakian manifold (M, g, ϕ, ξ, η) with a vanishing C-Bochner
curvature tensor. We then obtain

ρ ≤ 8(n + 1)(n + 2)(
n2 + 23n + 24 − 2(n − 1)||ξ⊥||2) δC(n − 1)

+
24(n + 1) cos θ

n(n − 1)
(
n2 + 23n + 24 − 2(n − 1)||ξ⊥||2) n

∑
i,j=1

Ric(ei, ϕej)

+
4(2n + 3)||ξ⊥||2

n2 + 23n + 24 − 2(n − 1)||ξ⊥||2 − 4(3n + 4)
n(n − 1)

(
n2 + 23n + 24 − 2(n − 1)||ξ⊥||2)

where θ is a slant function.
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Corollary 8. Let M be an invariant submanifold of a Sasakian manifold (M, g, ϕ, ξ, η) with a vanishing
C-Bochner curvature tensor. We then obtain

ρ ≤ 8(n + 1)(n + 2)(
n2 + 23n + 24 − 2(n − 1)||ξ⊥||2) δC(n − 1)

+
4(6n2 − 3n − 10)

n(n − 1)
(
n2 + 23n + 24 − 2(n − 1)||ξ⊥||2) +

4(2n + 3)||ξ⊥||2
n2 + 23n + 24 − 2(n − 1)||ξ⊥||2

.

Corollary 9. Let M be an anti-invariant submanifold of a Sasakian manifold (M, g, ϕ, ξ, η) with a vanishing
C-Bochner curvature tensor. We then obtain

ρ ≤ 8(n + 1)(n + 2)(
n2 + 23n + 24 − 2(n − 1)||ξ⊥||2) δC(n − 1)

+
4(2n + 3)||ξ⊥||2

n2 + 23n + 24 − 2(n − 1)||ξ⊥||2 − 4(3n + 4)
n(n − 1)

(
n2 + 23n + 24 − 2(n − 1)||ξ⊥||2)

.
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1. Introduction

It is well-known that curvature invariants play the most fundamental role in Riemannian geometry.
Curvature invariants provide the intrinsic characteristics of Riemannian manifolds which affect the
behavior in general of the Riemannian manifold. They are the main Riemannian invariants and the
most natural ones. Curvature invariants also play key roles in physics. For instance, the magnitude
of a force required to move an object at constant speed, according to Newton’s laws, is a constant
multiple of the curvature of the trajectory. The motion of a body in a gravitational field is determined,
according to Einstein’s general theory of relativity, by the curvatures of spacetime. All sorts of shapes,
from soap bubbles to red cells are determined by various curvatures.

Classically, among the curvature invariants, the most studied were sectional, scalar and
Ricci curvatures.

Chen [1] established a generalized Euler inequality for submanifolds in real space forms. Also a sharp
relationship between the Ricci curvature and the squared mean curvature for any Riemannian submanifold
of a real space form was proved in [2], which is known as the Chen-Ricci inequality.

Statistical manifolds introduced, in 1985, by Amari have been studied in terms of information
geometry. Since the geometry of such manifolds includes the notion of dual connections, also called
conjugate connections in affine geometry, it is closely related to affine differential geometry.
Further, a statistical structure is a generalization of a Hessian one.

In [3], Aydin and the present authors obtained geometrical inequalities for the scalar curvature
and the Ricci curvature associated to the dual connections for submanifolds in statistical manifolds of
constant curvature. We want to point-out that, generally, the dual connections are not metric; then one
cannot define a sectional curvature with respect to them by the standard definitions. However there
exists a sectional curvature on a statistical manifold defined by B. Opozda (see [4]).

We mention that in [5] we established a Wintgen inequality for statistical submanifolds in statistical
manifolds of constant curvature by using another sectional curvature.

As we know, submanifolds in Hessian manifolds have not been considered until now.

Mathematics 2018, 6, 44; doi:10.3390/math6030044 www.mdpi.com/journal/mathematics69
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In the present paper we deal with statistical submanifolds in Hessian manifolds of constant
Hessian curvature c. It is known [6] that such a manifold is a statistical manifold of null constant
curvature and also a Riemannian space form of constant sectional curvature −c/4 (with respect to the
sectional curvature defined by the Levi-Civita connection).

2. Statistical Manifolds and Their Submanifolds

A statistical manifold is an m-dimensional Riemannian manifold (M̃m, g) endowed with a pair of
torsion-free affine connections ∇̃ and ∇̃∗ satisfying

Zg̃ (X, Y) = g̃
(∇̃ZX, Y

)
+ g̃

(
X, ∇̃∗

ZY
)

, (1)

for any X, Y, Z ∈ Γ(TM̃m). The connections ∇̃ and ∇̃∗ are called dual connections (see [7–9]), and it is
easily shown that (∇̃∗)∗ = ∇̃. The pair (∇̃, g) is said to be a statistical structure. If (∇̃, g) is a statistical
structure on M̃m, then (∇̃∗, g) is a statistical structure too [8].

On the other hand, any torsion-free affine connection ∇̃ always has a dual connection given by

∇̃+ ∇̃∗ = 2∇̃0, (2)

where ∇̃0 is the Levi-Civita connection on M̃m.
Denote by R̃ and R̃∗ the curvature tensor fields of ∇̃ and ∇̃∗, respectively.
A statistical structure (∇̃, g) is said to be of constant curvature ε ∈ R if

R̃(X, Y)Z = ε{g(Y, Z)X − g(X, Z)Y}. (3)

A statistical structure (∇̃, g) of constant curvature 0 is called a Hessian structure.
The curvature tensor fields R̃ and R̃∗ of the dual connections satisfy

g(R̃∗(X, Y)Z, W) = −g(Z, R̃(X, Y)W). (4)

From (4) it follows immediately that if (∇̃, g) is a statistical structure of constant curvature ε,
then (∇̃∗, g) is also a statistical structure of constant curvature ε. In particular, if (∇̃, g) is Hessian,
(∇̃∗, g) is also Hessian [6].

On a Hessian manifold (M̃m, ∇̃), let γ = ∇̃ − ∇̃0. The tensor field Q̃ of type (1, 3) defined by
Q̃(X, Y) = [γX , γY], X, Y ∈ Γ(TM̃m) is said to be the Hessian curvature tensor for ∇̃ (see [4,6]). It satisfies

R̃(X, Y) + R̃∗(X, Y) = 2R̃0(X, Y) + 2Q̃(X, Y).

By using the Hessian curvature tensor Q̃, a Hessian sectional curvature can be defined on
a Hessian manifold.

Let p ∈ M̃m and π a plane in Tp M̃m. Take an orthonormal basis {X, Y} of π and set

K̃(π) = g(Q̃(X, Y)Y, X).

The number K̃(π) is independent of the choice of an orthonormal basis and is called the Hessian
sectional curvature.

A Hessian manifold has constant Hessian sectional curvature c if and only if (see [6])

Q̃(X, Y, Z, W) =
c
2
[g(X, Y)g(Z, W) + g(X, W)g(Y, Z)],

for all vector fields on M̃m.

If (M̃m, g) is a statistical manifold and Mn an n-dimensional submanifold of M̃m, then (Mn, g) is
also a statistical manifold with the induced connection by ∇̃ and induced metric g. In the case that
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(M̃m, g) is a semi-Riemannian manifold, the induced metric g has to be non-degenerate. For details,
see [10].

In the geometry of Riemannian submanifolds (see [11]), the fundamental equations are the Gauss
and Weingarten formulas and the equations of Gauss, Codazzi and Ricci.

Let denote the set of the sections of the normal bundle to Mn by Γ(T⊥Mn).
In our case, for any X, Y ∈ Γ (TMn) , according to [10], the corresponding Gauss formulas are

∇̃XY = ∇XY + h(X, Y), (5)

∇̃∗
XY = ∇∗

XY + h∗(X, Y), (6)

where h, h∗ : Γ(TMn)×Γ(TMn) → Γ(T⊥Mn) are symmetric and bilinear, called the imbedding curvature tensor
of Mn in M̃m for ∇̃ and the imbedding curvature tensor of Mn in M̃m for ∇̃∗, respectively.

In [10], it is also proved that (∇, g) and (∇∗, g) are dual statistical structures on Mn.
Since h and h∗ are bilinear, there exist linear transformations Aξ and A∗

ξ on TMn defined by

g(Aξ X, Y) = g(h(X, Y), ξ), (7)

g(A∗
ξ X, Y) = g(h∗(X, Y), ξ), (8)

for any ξ ∈ Γ(T⊥Mn) and X, Y ∈ Γ(TMn). Further, see [10], the corresponding Weingarten
formulas are

∇̃Xξ = −A∗
ξ X +∇⊥

X ξ, (9)

∇̃∗
Xξ = −Aξ X +∇∗⊥

X ξ, (10)

for any ξ ∈ Γ(T⊥Mn) and X ∈ Γ(TMn). The connections ∇⊥
X and ∇∗⊥

X given by (9) and (10) are
Riemannian dual connections with respect to induced metric on Γ(T⊥Mn).

Let {e1, ..., en} and {en+1, ..., em} be orthonormal tangent and normal frames, respectively, on Mn.
Then the mean curvature vector fields are defined by

H = 1
n ∑n

i=1 h(ei, ei) =
1
n ∑m

α=n+1
(
∑n

i=1 hα
ii
)

eα, hα
ij = g(h(ei, ej), eα), (11)

and
H∗ = 1

n ∑n
i=1 h∗(ei, ei) =

1
n ∑m

α=n+1
(
∑n

i=1 h∗α
ii

)
eα, h∗α

ij = g(h∗(ei, ej), eα), (12)

for 1 ≤ i, j ≤ n and n + 1 ≤ α ≤ m.
The corresponding Gauss, Codazzi and Ricci equations are given by the following result.

Proposition 1. [10] Let ∇̃ and ∇̃∗ be dual connections on a statistical manifold M̃m and ∇ the induced
connection by ∇̃ on a statistical submanifold Mn. Let R̃ and R be the Riemannian curvature tensors for ∇̃ and
∇, respectively. Then

g(R̃(X, Y)Z, W) = g(R(X, Y)Z, W) + g(h(X, Z), h∗(Y, W))− g(h∗(X, W), h(Y, Z)), (13)

(R̃(X, Y)Z)⊥ = ∇⊥
X h(Y, Z)− h(∇XY, Z)− h(Y,∇XZ)−

−{∇⊥
Y h(X, Z)− h(∇YX, Z)− h(X,∇YZ)},

g(R⊥(X, Y)ξ, η) = g(R̃(X, Y)ξ, η) + g([A∗
ξ , Aη ]X, Y), (14)
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where R⊥ is the Riemannian curvature tensor of ∇⊥ on T⊥Mn, ξ, η ∈ Γ(T⊥Mn) and [A∗
ξ , Aη] = A∗

ξ Aη − Aη A∗
ξ .

For the equations of Gauss, Codazzi and Ricci with respect to the connection ∇̃∗ on Mn, we have

Proposition 2. [10] Let ∇̃ and ∇̃∗ be dual connections on a statistical manifold M̃m and ∇∗ the induced
connection by ∇̃∗ on a statistical submanifold Mn. Let R̃∗ and R∗ be the Riemannian curvature tensors for ∇̃∗

and ∇∗, respectively. Then

g(R̃∗(X, Y)Z, W) = g(R∗(X, Y)Z, W) + g(h∗(X, Z), h(Y, W))− g(h(X, W), h∗(Y, Z)), (15)

(R̃∗(X, Y)Z)⊥ = ∇∗⊥
X h∗(Y, Z)− h∗(∇∗

XY, Z)− h∗(Y,∇∗
XZ)−

−{∇∗⊥
Y h∗(X, Z)− h∗(∇∗

YX, Z)− h∗(X,∇∗
YZ)},

g(R∗⊥(X, Y)ξ, η) = g(R̃∗(X, Y)ξ, η) + g([Aξ , A∗
η ]X, Y), (16)

where R∗⊥ is the Riemannian curvature tensor of ∇⊥∗ on T⊥Mn, ξ, η ∈ Γ(T⊥Mn) and
[

Aξ , A∗
η

]
= Aξ A∗

η − A∗
η Aξ .

Geometric inequalities for statistical submanifolds in statistical manifolds with constant curvature
were obtained in [3].

3. Euler Inequality and Chen-Ricci Inequality

First we obtain a Euler inequality for submanifolds in a Hessian manifold of constant
Hessian curvature.

Let M̃m(c) be a Hessian manifold of constant Hessian curvature c. Then it is flat with respect to
the dual connections ∇̃ and ∇̃∗. Moreover M̃m(c) is a Riemannian space form of constant sectional
curvature −c/4 (with respect to the Levi-Civita connection ∇̃0).

Let Mn be an n-dimensional statistical submanifold of M̃m(c) and {e1, ..., en} and {en+1, ..., em} be
orthonormal tangent and normal frames, respectively, on Mn.

We denote by τ0 the scalar curvature of the Levi-Civita connection ∇0 on Mn. Gauss
equation implies

2τ0 = n2‖H0‖2 − ‖h0‖2 − n(n − 1) c
4 , (17)

where H0 and h0 are the mean curvature vector and the second fundamental form, respectively,
with respect to the Levi-Civita connection.

Let τ be the scalar curvature of Mn (with respect to the Hessian curvature tensor Q).
Then, from (13) and (15), we have:

2τ =
1
2

n

∑
i,j=1

[g(R(ei, ej)ej, ei) + g(R∗(ei, ej)ej, ei)− 2g(R0(ei, ej)ej, ei)] =

= n2g(H, H∗)−
n

∑
i,j=1

g(h(ei, ej), h∗(ei, ej))− 2τ0 =

= n2g(H, H∗)−
m

∑
r=n+1

n

∑
i,j=1

hr
ijh

∗r
ij − 2τ0 =

= n2g(H, H∗)− 1
4

m

∑
r=n+1

n

∑
i,j=1

[(hr
ij + h∗r

ij )
2 − (hr

ij − h∗r
ij )

2]− 2τ0 =

72



Mathematics 2018, 6, 44

= n2g(H, H∗)− ‖h0‖2 +
1
4

m

∑
r=n+1

n

∑
i,j=1

(hr
ij − h∗r

ij )
2 − 2τ0.

By (17), it follows that

2τ ≥ n2g(H, H∗)− n2‖H0‖2 + n(n − 1)
c
4
=

= n2g(H, H∗)− n2

4
g(H + H∗, H + H∗) + n(n − 1)

c
4
=

=
n2

2
g(H, H∗)− n2

4
g(H, H)− n2

4
g(H∗, H∗) + n(n − 1)

c
4
=

= −n2

4
‖H − H∗‖2 + n(n − 1)

c
4

.

Summing up, we proved the following.

Theorem 1. Let Mn be a statistical submanifold of a Hessian manifold M̃m(c) of constant Hessian curvature c.
Then the scalar curvature satisfies:

2τ ≥ −n2

4
‖H − H∗‖2 + n(n − 1)

c
4

.

Moreover, the equality holds at any pont p ∈ Mn if and only if h = h∗. In this case, the scalar curvature is
constant, 2τ = n(n − 1) c

4 .

We want to point-out that τ is non-positive on standard examples of Hessian manifolds.

Next we establish a Chen-Ricci inequality for statistical submanifolds in Hessian manifolds of
constant Hessian curvature.

Recall that

2τ =
1
2

n

∑
i,j=1

[g(R(ei, ej)ej, ei) + g(R∗(ei, ej)ej, ei)− 2g(R0(ei, ej)ej, ei)] =

= n2g(H, H∗)−
n

∑
i,j=1

g(h(ei, ej), h∗(ei, ej))− 2τ0.

Then

2τ =
n2

2
[g(H + H∗, H + H∗)− g(H, H)− g(H∗, H∗)]−

−1
2
[g(h(ei, ej) + h∗(ei, ej), h(ei, ej) + h∗(ei, ej))−

−g(h(ei, ej), h(ei, ej))− g(h∗(ei, ej), h∗(ei, ej))]− 2τ0 =

= 2n2g(H0, H0)− 2
∥∥∥h0

∥∥∥2 − 2τ0−

−n2

2
g(H, H)− n2

2
g(H∗, H∗) + 1

2
‖h‖2 +

1
2
‖h∗‖2 ,

where H0 and h0 are the mean curvature vector and the second fundamental form, respectively,
with respect to the Levi-Civita connection.

By using (17), we get

2τ = n(n − 1) c
2 + 2τ0 − n2

2 g(H, H)− n2

2 g(H∗, H∗) + 1
2 ‖h‖2 + 1

2 ‖h∗‖2 . (18)

73



Mathematics 2018, 6, 44

On the other hand, we may write:

‖h‖2 =
m

∑
α=n+1

[(hα
11)

2 + (hα
22 + ... + hα

nn)
2 + 2 ∑

1≤i<j≤n
(hα

ij)
2 − 2 ∑

2≤i 	=j≤n
hα

iih
α
jj] =

=
1
2

m

∑
α=n+1

[(hα
11 + hα

22 + ... + hα
nn)

2 + (hα
11 − hα

22 − ... − hα
nn)

2]−

−
m

∑
α=n+1

∑
2≤i 	=j≤n

[hα
iih

α
jj − (hα

ij)
2] + 2

m

∑
α=n+1

n

∑
j=1

(hα
1j)

2 ≥

≥ n2

2
‖H‖2 −

m

∑
α=n+1

∑
2≤i 	=j≤n

[hα
iih

α
jj − (hα

ij)
2].

In the same manner, one obtains

‖h∗‖2 ≥ n2

2
‖H∗‖2 −

m

∑
α=n+1

∑
2≤i 	=j≤n

[h∗α
ii h∗α

jj − (h∗α
ij )

2].

Substituting the above inequalities in (18), it follows that

2τ ≥ n(n − 1)
c
2
+ 2τ0 − n2

4
‖H‖2 − n2

4
‖H∗‖2 −

−1
2

m

∑
α=n+1

∑
2≤i 	=j≤n

[hα
iih

α
jj − (hα

ij)
2]− 1

2

m

∑
α=n+1

∑
2≤i 	=j≤n

[h∗α
ii h∗α

jj − (h∗α
ij )

2] =

= n(n − 1)
c
2
+ 2τ0 − n2

4
‖H‖2 − n2

4
‖H∗‖2 −

−1
2

m

∑
α=n+1

∑
2≤i 	=j≤n

[(hα
ii + h∗α

ii )(h
α
jj + h∗α

jj )− (hα
ij + h∗α

ij )
2]+

+
1
2

m

∑
α=n+1

∑
2≤i 	=j≤n

(hα
iih

∗α
jj − hα

ijh
∗α
ij ) +

1
2

m

∑
α=n+1

∑
2≤i 	=j≤n

(h∗α
ii hα

jj − hα
ijh

∗α
ij ) =

= n(n − 1)
c
2
+ 2τ0 − n2

4
‖H‖2 − n2

4
‖H∗‖2 −

−2
m

∑
α=n+1

∑
2≤i 	=j≤n

[h0α
ii h0α

jj − (h0α
ij )

2] +
1
2 ∑

2≤i 	=j≤n
[g(R(ei, ej)ej, ei) + g(R∗(ei, ej)ej, ei)].

Gauss equation for the Levi-Civita connection and the definition of the Hessian sectional
curvature imply

2τ ≥ n(n − 1)
c
2
+ 2τ0 − n2

4
‖H‖2 − n2

4
‖H∗‖2 −

−(n − 1)(n − 2)
c
2
− 2 ∑

2≤i 	=j≤n
K0(ei ∧ ej) + ∑

2≤i 	=j≤n
[K(ei ∧ ej) + K0(ei ∧ ej)].

But the Ricci curvature R0 with respect to the Levi-Civita connection is given by

2Ric0(X) = 2τ0 − ∑
2≤i 	=j≤n

K0(ei ∧ ej),
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and, similarly,
2Ric(X) = 2τ − ∑

2≤i 	=j≤n
K(ei ∧ ej).

Consequently

Ric(X) ≥ (n − 1)
c
2
− n2

8
‖H‖2 − n2

8
‖H∗‖2 + Ric0(X).

The vector field X = e1 satisfies the equality case if and only if⎧⎨⎩hα
11 = hα

22 + ... + hα
nn, hα

1j = 0, ∀j ∈ {2, ..., n}, ∀α ∈ {n + 1, ..., m},

h∗α
11 = h∗α

22 + ... + h∗α
nn, h∗α

1j = 0, ∀j ∈ {2, ..., n}, ∀α ∈ {n + 1, ..., m},

or, equivalently,{
2h(X, X) = nH(p), h(X, Y) = 0, ∀Y ∈ Tp Mn orthogonal to X,

2h∗(X, X) = nH∗(p), h∗(X, Y) = 0, ∀Y ∈ Tp Mn orthogonal to X.

Therefore, we proved the following Chen-Ricci inequality.

Theorem 2. Let Mn be a statistical submanifold of a Hessian manifold M̃m(c) of constant Hessian curvature c.
Then the Ricci curvature of a unit vector X ∈ Tp Mn satisfies:

Ric(X) ≥ (n − 1)
c
2
− n2

8
‖H‖2 − n2

8
‖H∗‖2 + Ric0(X).

Moreover, the equality case holds if and only if{
2h(X, X) = nH(p), h(X, Y) = 0, ∀Y ∈ Tp Mn orthogonal to X,

2h∗(X, X) = nH∗(p), h∗(X, Y) = 0, ∀Y ∈ Tp Mn orthogonal to X.
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Abstract: In this survey note, we discuss the notion of completeness for statistical structures. There are
at least three connections whose completeness might be taken into account, namely, the Levi-Civita
connection of the given metric, the statistical connection, and its conjugate. Especially little is known
on the completeness of statistical connections.
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1. Introduction

In affine differential geometry, which is still the main source of statistical structures, the affine
completeness of a nondegenerate affine hypersurface has always been meant as the completeness
of the metric being the second fundamental form. In particular, Calabi’s famous conjecture deals
with affine completeness. Complete affine spheres are those whose Blaschke metric is complete, see,
e.g., Reference [1]. This affine completeness has been opposed to Euclidean completeness, that is,
completeness relative to the first fundamental form on a hypersurface. The completeness of the
induced connections on affine hypersurfaces has never been studied. However, even if we restrict
to the completeness of the second fundamental form and we switch from the geometry of affine
hypersurfaces to the geometry of statistical structures, the situation becomes immediately much more
complicated. It follows from the fact that, on a hypersurface, the induced structure has very strong
properties that, in general, are not satisfied by an arbitrary statistical structure. In other words, not all
statistical structures, even Ricci-symmetric, are realizable (even locally) on hypersurfaces. As examples
of results on affine complete affine spheres, here we cite two classical theorems and three other
theorems, being their analogs and generalizations in the category of statistical manifolds.

As for statistical connections, the first attempt to the study of their completeness was made by
Noguchi [2]. He gave a procedure of constructing a complete statistical connection on a complete
Riemannian manifold by using just one function. Statistical connections on compact manifolds are not
necessarily complete. We provide a simple example on a torus. We also give a theorem generalizing
the situation from this concrete simple example.

2. Preliminaries

We recall only those notions of statistical geometry that are needed in this note (for more
information, see [3]). Let g be a positive definite Riemannian tensor field on a manifold M. Denote by
∇̂ the Levi-Civita connection for g. A statistical structure is a pair (g,∇), where ∇ is a torsion-free
connection such that the following Codazzi condition is satisfied:

(∇X g)(Y, Z) = (∇Yg)(X, Z) (1)
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for all X, Y, Z ∈ Tx M, x ∈ M. A connection ∇ satisfying (1) is called a statistical connection for g.
A statistical structure (g,∇) is trivial if the statistical connection ∇ coincides with the Levi-Civita
connection ∇̂.

For any connection ∇ one defines its conjugate connection ∇ relative to g by the following formula:

g(∇XY, Z) + g(Y,∇XZ) = Xg(Y, Z). (2)

It is known that if (g,∇) is a statistical structure, then so is (g,∇). From now on, we assume that
∇ is a statistical connection for g.

If R is the curvature tensor for ∇, and R is the curvature tensor for ∇, then we have

g(R(X, Y)Z, W) = −g(R(X, Y)W, Z). (3)

Denote by Ric and Ric the corresponding Ricci tensors. Note that, in general, these Ricci tensors
are not symmetric. The curvature and the Ricci tensors of ∇̂ are denoted by R̂ and R̂ic . The function

ρ = tr gRic (·, ·) (4)

is called the scalar curvature of (g,∇). Similarly, one can define the scalar curvature ρ for (g,∇) but,
by (3), ρ = ρ. The function ρ is called the scalar statistical curvature. We also have the usual scalar
curvature ρ̂ for g.

We define the cubic form A by

A(X, Y, Z) = −1
2
∇g(X, Y, Z), (5)

where ∇g(X, Y, Z) stands for (∇X g)(Y, Z). It is clear that a statistical structure can be equivalently
defined as a pair (g, A), where A is a symmetric cubic form.

The condition characterized by the following lemma plays a crucial role in our considerations.

Lemma 1. Let (g,∇) be a statistical structure. The following conditions are equivalent:
(1) R = R,
(2) ∇̂A is symmetric,
(3) g(R(X, Y)Z, W) is skew-symmetric relative to Z, W.

The family of statistical structures satisfying one of the above conditions is as important in
the geometry of statistical structures as the family of affine spheres in affine differential geometry.
A statistical structure satisfying Condition (2) in the above lemma was called conjugate symmetric
in [4]. We adopt this name here. Note that condition R = R easily implies the symmetry of Ric .

A statistical structure is called trace-free if tr g A(X, ·, ·) = 0 for every X ∈ TM. This condition is
equivalent to the condition that ∇νg = 0, where νg is the volume form determined by g.

In [3], we introduced the notion of the sectional ∇-curvature. Namely, the tensor field

R =
1
2
(R + R) (6)

satisfies the following condition:

g(R(X, Y)Z, W) = −g(R(X, Y)W, Z).
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If we denote by the same letter R the (0, 4)-tensor field given by R(X, Y, W, Z) = g(R(W, Z)Y, X),
then this R has the same symmetries as the Riemannian (0, 4) curvature tensor. Therefore, we can
define the sectional ∇-curvature by

k(π) = g(R(e1, e2)e2, e1) (7)

for a vector plane π ∈ Tx M, x ∈ M, where e1, e2 is any orthonormal basis of π. It is a well-defined
notion, but it is not quite analogous to the Riemannian sectional curvature. For instance, in general,
Schur’s lemma does not hold for the sectional ∇-curvature. However, if a statistical structure is
conjugate-symmetric (in this case R = R) some type of the second Bianchi identity holds and,
consequently, the Schur lemma holds [3].

The theory of affine hypersurfaces in Rn+1 is a natural source of statistical structures. For the
theory, we refer to [1] or [5]. We recall here only some basic facts.

Let f : M → Rn+1 be a locally strongly convex hypersurface. For simplicity, assume that M is
connected and orientable. Let ξ be a transversal vector field on M. The induced volume form νξ on M
is defined as follows:

νξ(X1, ..., Xn) = det (f∗X1, ..., f∗Xn, ξ).

We also have the induced connection ∇ and second fundamental form g given by the
Gauss formula:

DXf∗Y = f∗∇XY + g(X, Y)ξ,

where D is the standard flat connection on Rn+1. Since the hypersurface is locally strongly convex,
g is definite. By multiplying ξ by −1, if necessary, we can assume that g is positive definite.
A transversal vector field is called equiaffine if ∇νξ = 0. This condition is equivalent to the fact
that ∇g is symmetric, i.e., (g,∇) is a statistical structure. It means, in particular, that for a statistical
structure obtained on a hypersurface by a choice of an equiaffine transversal vector field, the Ricci
tensor of ∇ is automatically symmetric. A hypersurface equipped with an equiaffine transversal vector
field is called an equiaffine hypersurface.

Recall now the notion of the shape operator and the Gauss equations. Having a chosen equiaffine
transversal vector field and differentiating it, we get the Weingarten formula:

DXξ = −f∗SX.

The tensor field S is called the shape operator for ξ. If R is the curvature tensor for the induced
connection ∇, then

R(X, Y)Z = g(Y, Z)SX − g(X, Z)SY. (8)

This is the Gauss equation for R. The Gauss equation for R is the following:

R(X, Y)Z = g(Y,SZ)X − g(X,SZ)Y. (9)

It follows that the conjugate connection is projectively flat if n > 2. The conjugate connection is
also projectively flat for two-dimensional surfaces equipped with an equiaffine transversal vector field,
that is, that the cubic form ∇Ric is symmetric.

We have the volume form νg determined by g on M. In general, this volume form is not covariant
constant relative to ∇. The central point of the classical affine differential geometry is the theorem
saying that there is a unique equiaffine transversal vector field ξ, such that νξ = νg. This unique
transversal vector field is called the affine normal vector field or the Blaschke affine normal. The second
fundamental form for the affine normal is called the Blaschke metric. A hypersurface endowed with
the affine Blaschke normal is called a Blaschke hypersurface. Note that conditions ∇νξ = 0 and νξ = νg

imply that the statistical structure on a Blaschke hypersurface is trace-free.

79



Mathematics 2019, 7, 104

If the affine lines determined by the affine normal vector field meet at one point or are
parallel, then the hypersurface is called an affine sphere. In the first case, the sphere is called
proper, in the second one improper. The class of affine spheres is very large. There exist a lot of
conditions characterizing affine spheres. For instance, a hypersurface is an affine sphere if and only
if R = R. Therefore, conjugate symmetric statistical manifolds can be regarded as generalizations of
affine spheres. For connected affine spheres, the shape operator S is a constant multiple of the identity,
i.e., S = k id . In particular, for affine spheres we have:

R(X, Y), Z = k{g(Y, Z)X − g(X, Z)Y}. (10)

It follows that the statistical sectional curvature on a connected affine sphere is constant. If, as we
have already done, we choose a positive definite Blaschke metric on a locally strongly convex affine
sphere, then we call the sphere elliptic if k > 0, parabolic if k = 0, and hyperbolic if k < 0.

As we have already mentioned, if ∇ is a connection on a hypersurface induced by an equiaffine
transversal vector field, then the conjugate connection ∇ is projectively flat. Therefore, the projective
flatness of the conjugate connection is a necessary condition for (g,∇) to be realizable as the induced
structure on a hypersurface equipped with an equiaffine transversal vector field. In fact, roughly
speaking, it is also a sufficient condition for local realizability. Note that, if (g,∇) is a conjugate
symmetric statistical structure, then ∇ and ∇ are simultaneously projectively flat. It follows that,
if (g,∇) is conjugate symmetric, then it is locally realizable on an equiaffine hypersurface if and only
if ∇ or ∇ is projectively flat, and the realization is automatically on an affine sphere.

In [3,6], a few examples of conjugate symmetric statistical structures that are not realizable (even
locally) on affine spheres were produced.

3. Statistical Structures with Complete Metrics

The following theorems are attributed to Blaschke, Deicke and Calabi (see e.g., [1]).

Theorem 1. Let f : M → Rn+1 be an elliptic affine sphere whose Blaschke metric is complete. Then, M is
compact and the induced structure on M is trivial. Consequently, the affine sphere is an ellipsoid.

Theorem 2. Let f : M → Rn+1 be a hyperbolic or parabolic affine sphere whose Blaschke metric is complete.
Then, the Ricci tensor of the metric is negative semidefinite.

The theorems can be generalized to the case of statistical manifolds in the following manner:

Theorem 3. Let (g,∇) be a trace-free conjugate symmetric statistical structure on a manifold M. Assume
that g is complete on M. If the sectional ∇-curvature is bounded from below and above on M, then the Ricci
tensor of g is bounded from below and above on M. If the sectional ∇-curvature is non-negative everywhere,
then the statistical structure is trivial, that is, ∇ = ∇̂. If the statistical sectional curvature is bounded from 0 by
a positive constant then, additionally, M is compact and its first fundamental group is finite.

Let us explain why Theorem 3 is a generalization of Theorems 1 and 2. The induced structure on
an affine sphere is a conjugate symmetric trace-free statistical structure. Moreover, the statistical
connection on an affine sphere is projectively flat and its ∇-sectional curvature is constant.
In Theorem 3, we do not need the projective flatness of the statistical connection, which means
that the manifold with a statistical structure can be nonrealizable on any Blaschke hypersurface,
even locally. Moreover, the assumption about the constant curvature is replaced by the assumption
that the curvature satisfies some inequalities.

More precise and more general formulations of this theorem give the two following results:
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Theorem 4. Let (g,∇) be a trace-free conjugate symmetric statistical structure on an n-dimensional manifold
M. Assume that (M, g) is complete and the sectional ∇-curvature k(π) satisfies the inequality

H3 +
n − 2

2
ε ≤ k(π) ≤ H3 +

n
2

ε (11)

for every tangent plane π, where H3 is a non-positive number and ε is a non-negative function on M. Then,
the Ricci tensor R̂ic of g satisfies the following inequalities:

(n − 1)H3 +
(n − 1)(n − 2)

2
ε ≤ R̂ic ≤ −(n − 1)2H3 +

(n − 1)n
2

ε. (12)

The scalar curvature ρ̂ of g satisfies the following inequalities:

n(n − 1)H3 +
(n − 1)(n − 2)n

2
ε ≤ ρ̂ ≤ n2(n − 1)

2
ε. (13)

Theorem 5. Let (M, g) be a complete Riemannian manifold with conjugate symmetric trace-free statistical
structure (g,∇). If the sectional ∇-curvature is non-negative on M, then the statistical structure is trivial,
i.e., ∇ = ∇̂. Moreover, if the sectional ∇-curvature is bounded from 0 by a positive constant, then M is compact
and its first fundamental group is finite.

Proofs of Theorems 3–5 can be found in [6].

4. Completeness of Statistical Connections

Very tittle is known about the completeness of statistical connections. The difference between the
completeness of metrics and that of affine connections is huge. In particular, a statistical connection on
a compact manifold does not have to be complete. Indeed, we can offer the following simple example:

Example 1. Take R2 with its standard flat Riemannian structure. Let U, V be the canonical frame field on R2.
Define a statistical connection ∇ as follows:

∇UU = U, ∇UV = −V, ∇VV = −U. (14)

This statistical structure can be projected on the standard torus T2. A curve γ(t) = (x(t), y(t)) is a
∇-geodesic if and only if

ẍ + (ẋ)2 − (ẏ)2 = 0, ÿ − 2ẋẏ = 0. (15)

Let y0 be a fixed real number. Consider the curve

γ(t) = (ln(1 − t), y0) (16)

for t ∈ [0, 1). It is a ∇-geodesic. We have ‖γ̇(t)‖ = 1
1−t → +∞ if t → 1. Hence, this geodesic cannot be

extended beyond 1. The connection ∇ is not complete on T2.

In the above example, the cubic form A of the statistical structure is ∇̂-parallel. This is the reason
why the statistical connection is not complete. More precisely, we have:

Theorem 6. ([7]) Let (g,∇) be a non-trivial statistical structure such that

∇̂A(U, U, U, U) ≤ 0

for every U ∈ UM, where UM is the unit sphere bundle over M. The statistical connection ∇ is not complete.

As a corollary, we get:
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Corollary 1. Let (g,∇) be a statistical structure for which ∇ is complete and (∇̂A)(U, U, U, U) ≤ 0 for each
U ∈ UM. Then, the statistical structure must be trivial.

Let us now cite a positive result first proved by Noguchi [2].

Theorem 7. Let (M, g) be a complete Riemannian manifold, and A be a cubic form given by:

A = sym(dσ ⊗ g) (17)

for some function σ on M. Assume that the function σ is bounded from below on M. Then, the statistical
connection of statistical structure (g, A) is complete.

In particular, any function on a compact Riemannian manifold M gives rise to a statistical structure
on M whose statistical connection is complete. In fact, we have a more general fact:

Corollary 2. Let (M, g) be a compact Riemannian manifold. Each function σ on M gives rise to a statistical
structure whose statistical connection and its conjugate are complete.
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1. Introduction

The Stokes theorem or the Green formula plays a very important role in geometry and analysis
on manifolds. For example, we recall the proof of the Bochner vanishing theorem (e.g., [1] p. 185,
Theorem 4.5.2).

Theorem 1 (Bochner vanishing theorem). Let (M, g) be a connected oriented closed Riemannian manifold.
If the Ricci curvature Ric > 0 on M, then the first cohomology group H1(M;R) = 0.

From the proof of the Bochner vanishing theorem, it follows that, if the Stokes theorem does not
hold on an incomplete Riemannian manifold of positive Ricci curvature, then the Bochner vanishing
theorem for it might not hold. It is a natural question to ask whether or not the Stokes theorem
on general incomplete Riemannian manifolds holds. Indeed, Cheeger in [2] studied the Stokes
theorem and the Hodge theory on Riemannian manifolds with conical singularities, more generally,
Riemannian pseudomanifolds. The analysis on pseudomanifolds is, by definition, the L2-analysis on
the regular set that excludes the singular points. Then, there are many valuable results on Riemannian
pseudomainfolds (e.g., [3,4]). Indeed, Cheeger, Goresky and MacPherson in [4] stated that the
L2-cohomology groups of the regular sets of Riemannian pseudomanifolds are isomorphic to the
intersection cohomology groups with the lower middle perversities. These studies have still been
developing by many mathematicians (see [5–8]). Recently, Albin, Leichtnam, Mazzeo and Piazza in [9]
studied the Hodge theory on more general singular spaces, which were called Cheeger spaces.

On the other hand, Cheeger ([2] p. 140, Theorem 7.1 and [10] p. 34, Theorem 3) proved that
generalized Bochner-type vanishing theorems hold on some Riemannian pseudomanifolds with a
kind of “positive curvature”. This kind of “positive curvature” seems to behave like a positive
curvature operator.

However, it seems that there are no concrete examples where a Bochner-type vanishing theorem does
not hold. Thus, we construct a simple concrete example where a Bochner-type vanishing theorem does not
hold. Note that a Bochner-type vanishing theorem holds for complete Riemannian manifolds [11].
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In the present paper, we give an incomplete Riemannian manifold with positive Ricci curvature
for which a Bochner-type vanishing theorem does not hold. The construction of our manifold is the
following way. Let (Nn, h) be a connected oriented closed Riemannian manifold of dimension n.
We consider the suspension Σ(N) of N, and equip the smooth set of Σ(N) with a Riemannian metric g.
We denote by M the suspension of N:

M := Σ(N) = [0, π]× N
/

∼,

where the equivalent relation is

(r1, y1) ∼ (r2, y2)
equiv.⇐⇒ r1 = r2 = 0 or π

for (r1, y1), (r2, y2) ∈ [0, π]× N. Let M = Mreg be the regular set of M, which consists of all smooth
points of M, i.e., Mreg = (0, π) × N. The singular set is Msing := M \ Mreg, i.e., two vertices
corresponding to r = 0, π. We define an incomplete Riemannian metric g on this smooth part
M = (0, π)× N as

g := dr2 ⊕ sin2a(r)h

for some constant 0 < a < 1. In fact, we take a = 1
n . This metric is a warped product metric with the

warping function sina(r). Then, our main theorem is stated as follows:

Theorem 2. There exists an incomplete Riemannian manifold (Mm, g) of dimension m ≥ 2 satisfying the
following four properties:

(1) the Ricci curvature of (M, g) is Ric ≥ K > 0 for some constant K > 0;
(2) there exist non-trivial L2-harmonic p-forms on (M, g) for all 1 ≤ p ≤ m − 2;
(3) the L2-Stokes theorem for all 1 ≤ p ≤ m − 2 does not hold on (M, g);
(4) the capacity of the singular set satisfies Cap(Msing) = 0.

Remark 1. (i) In the case of p =1, Theorem 2 implies that a Bochner-type vanishing theorem does not hold
for an incomplete Riemannian manifold with Ric ≥ K > 0.

(ii) The curvature operator on (M, g) is not positive. However, we do not know whether or not the
Weitzenböck curvature tensor Fp is positive, where Fp is the curvature term in the Weitzenböck formula
for p-form ϕ:

−1
2

Δ(|ϕ|2g) = −〈Δϕ, ϕ〉g + |∇ϕ|2g + 〈Fp ϕ, ϕ〉g. (1)

Therefore, we do not apply the Bochner-type vanishing theorem for all p-forms by Gallot and Meyer [12],
p. 262, Proposition 0.9. Note that the Weitzenböck curvature tensor is estimated below by a lower bound
of the curvature operator (e.g., [13], p. 346, Corollary 9.3.4).

(iii) For harmonic 1-form ϕ = dθ on Tn, by the Equation (1) and F1 = Ric, there exists non-constant
subharmonic function |dθ|2g = sin−2/n(r) on M = (0, π)×Tn, that is, Δ(|ϕ|2g) ≤ 0 on M.

The present paper is organized as follows: In Section 2, we recall two important closed extensions
of the exterior derivative d, which are dmax and dmin, and the L2-Stokes theorem on Riemannian
manifolds with conical singularity by Cheeger [2]. In Section 3, we calculate L2-harmonic forms on a
warped product Riemannian manifold and the capacity of the vertex. In Section 4, the final section, we
prove Theorem 2.
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2. L2-Stokes Theorem

Let (Mm, g) be a connected oriented (possibly incomplete) Riemannian manifold of dimension m.
We denote by Ωp

0 (M) the set of all smooth p-forms on M with compact support, and by dp the exterior

derivative acting on smooth p-forms. We consider the de Rham complex dp : Ωp
0 (M) −→ Ωp+1

0 (M)

for p = 0, 1, 2, . . . , m − 1 with dp+1 ◦ dp ≡ 0. By using the Riemannian metric g, we define the L2-inner
product on Ωp

0 (M) as

(ϕ, ψ)L2(Λp M,g) :=
∫

M
〈ϕ, ψ〉g dμg

for any ϕ, ψ ∈ Ωp
0 (M), where dμg is the Riemannian measure and 〈 , 〉g is the fiber metric on the

exterior bundle ΛpT∗M induced from the Riemannian metric g. The space of L2 p-forms L2(Λp M, g)
is the completion of Ωp

0 (M) with respect to this L2-norm.
Next, we consider the completion of the exterior derivative dp, which induces a Hilbert complex

introduced by Brüning and Lesch [14], p. 90. (See also Bei [5], pp.6–8). There are two important
closed extensions of dp, one of which is the maximal extension dp,max and the other is the minimal
extension dp,min.

Definition 1 (maximal extension dp,max). The maximal extension dp,max is the operator acting on the domain:

Dom(dp,max) :=
{

ϕ ∈ L2(Λp M, g)
∣∣∣ There exists ψ ∈ L2(Λp+1M, g) such that

(ϕ, δp+1η)L2(Λp M,g) = (ψ, η)L2(Λp+1 M,g) for any η ∈ Ωp+1
0 (M)

}
,

and, in this case, we write

dp,max ϕ = ψ.

In other words, Dom(dp,max) is the largest set of differential p-forms ϕ ∈ L2(Λp M, g) such that the
distributional derivative dp ϕ is also in L2(Λp+1M, g).

Definition 2 (minimal extension dp,min). The minimal extension dp,min is given by the closure with respect
to the graph norm of dp in L2(Λp M, g), that is,

Dom(dp,min) :=
{

ϕ ∈ L2(Λp M, g)
∣∣∣ There exists {ϕi}i ∈ Ωp

0 (M) such that

ϕi → ϕ, dp ϕi → ψ ∈ L2(Λp+1M, g) (L2-strongly)
}

,

and, in this case, we write

dp,min ϕ = ψ.

In other words, dp,min is the smallest closed extension of dp, that is, dp,min = dp.

It is obvious that

Ωp
0 (M) ⊂ Dom(dp,min) ⊂ Dom(dp,max).

85



Mathematics 2018, 6, 75

In the same manner, from the co-differential operator δp := (−1)mp+m+1 ∗ dm−p∗ : Ωp
0 (M) −→

Ωp−1
0 (M), where ∗ is the Hodge ∗-operator on (M, g), we can define the maximal extension δp,max and

the minimal extension δp,min. These operators are mutually adjoint, that is,

(δp+1,min)
∗ = dp,max, (δp+1,max)

∗ = dp,min. (2)

Note that min and max are exchanged.
Now, we recall the definition of the L2-Stokes theorem for p-forms (see Cheeger [2] p. 95 (1,7), [15]

p. 72, Definition 2.2, [16] p. 40, Definition 4.1).

Definition 3 (L2-Stokes theorem). Let (Mm, g) be a connected oriented Riemannian manifold. The L2-Stokes
theorem for p-forms holds on (M, g), if

(dp,max ϕ, ψ)L2(Λp+1 M,g) = (ϕ, δp+1,maxψ)L2(Λp M,g) (3)

for any ϕ ∈ Dom(dp,max) and ψ ∈ Dom(δp+1,max).

For complete Riemannian manifolds, the L2-Stokes theorem for all p-forms always holds
(Gaffney [17,18]).

Since the Equation (3) implies dp,max = (δp+1,max)
∗, the L2-Stokes theorem for p-forms holds if

and only if dp,min = dp,max, i.e., a closed extension of dp is unique.
Now, for any ϕ ∈ Dom(dp,max) and ψ ∈ Dom(δp+1,max), we see that

(dmax ϕ, ψ)L2(Λp+1 M,g) − (ϕ, δmaxψ)L2(Λp M,g) =
∫

M
〈dmax ϕ, ψ〉dμg −

∫
M
〈ϕ, δmaxψ〉dμg

=
∫

M
dL1,max(ϕ ∧ ∗gψ),

where the last dL1,max is the maximal extension of dm−1 between L1(Λ∗ M, g), that is, the domain is
{ω ∈ L1(Λm−1 M, g)

∣∣ dω ∈ L1(Λm M, g) (in the distribution sense) }. Therefore, we have

Lemma 1. The L2-Stokes theorem for p-forms holds on (M, g) if and only if∫
M

dL1,max(ϕ ∧ ∗gψ) = 0

for any ϕ ∈ Dom(dp,max) and ψ ∈ Dom(δp+1,max).

Remark 2. Gaffney ([18] p. 141, Theorem) proved the L1-Stokes theorem, or the special Stokes theorem, for
oriented complete Riemannian manifolds: If any smooth (m − 1)-form ω on an oriented complete Riemannian
manifold of dimension m such that ω, dω are in L1(Λ∗ M, g), then∫

M
dω = 0.

This L1-Stokes theorem implies the L2-Stokes theorem for all p-forms, but the inverse does not hold
(see Grigor’yan and Masamune [19] p. 614, Proposition 2.4).

We recall connected oriented compact Riemannian manifolds with conical or horn singularity
(Cheeger [2,3]). Let (Nn, h) be a connected oriented closed Riemannian manifold of dimension n,
and let Mm

1 be a connected oriented compact manifold of dimension m = n + 1 with the boundary
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∂M1 = N. Let f : I = [0, l] −→ R+ be a smooth function with f (0) = 0 and f (r) > 0 for r > 0.
The metric f -horn Cf (N) over (N, h) is defined as the metric space

Cf (N) = I × N
/

∼,

where the equivalent relation is

(r1, y1) ∼ (r2, y2)
equiv.⇐⇒ r1 = r2 = 0

for (r1, y1), (r2, y2) ∈ I × N. The Riemannian metric g f on the regular set Cf (N)reg = (0, l] × N is
defined as

g f := dr2 ⊕ f 2(r)h on (0, l]× N.

Then, we glue M1 to Cf (N) along their boundary N, and the resulting manifold denotes M :=
M1 ∪N Cf (N). We introduce a smooth Riemannian metric g on the regular part Mreg = M1 ∪N
Cf (N)reg such that g smoothly extends to M1 from the f -horn metric g f on Cf (N)reg = (0, l] × N.
Thus, we obtain a connected oriented compact Riemannian manifold with f -horn singularity

(Mm, g) = (M1, g) ∪N (Cf (N), g f ).

Then, Cheeger proved the L2-Stokes theorem on a compact Riemannian manifold with
f -horn singularity.

Theorem 3. We use the same notation as above. Let (Mm, g) = (M1, g) ∪N (Cf (N), g f ) be a connected
oriented compact Riemannian manifold with f -horn singularity. Suppose that the function f (r) = ra

with positive constant a ≥ 1. Then, for a compact Riemannian manifold with ra-horn singularity (Mm, g),
the following hold [Cheeger [2]] :

(1) If n = 2k + 1, the L2-Stokes theorem holds for all p-forms on (M, g);
(2) If n = 2k, the L2-Stokes theorem holds for all p-forms except p = k on (M, g);
(3) If n = 2k, and if Hk(N;R) = 0, the L2-Stokes theorem holds for k-forms on (M, g);
(4) If n = 2k, and if Hk(N;R) 	= 0, the L2-Stokes theorem does not hold for k-forms on (M, g).

Thus, Cheeger gave a necessary and sufficient condition that the L2-Stokes theorem holds on a
compact Riemannian manifold with ra-horn singularity for a ≥ 1.

Moreover, when n = 2k, Brüning and Lesch [20] p. 453, Theorem 3.8, gave a choice of ideal
boundary conditions. More precisely,

Theorem 4. In the case of a = 1 as in Theorem 3 [Brüning and Lesch [20]], we have

Dom(dp,max)
/

Dom(dp,min) ∼=
{

Hk(N;R), if n = 2k and p = k,

0, otherwise.

Remark 3. (i) Since dimHk(N;R) is finite, closed extensions of dp,min are at most finite.
(ii) In the case of more complicated singularities, Hunsicker and Mazzeo [21] proved the L2-Stokes theorem

on Riemannian manifolds with edges (see [21] p. 3250, Corollary 3.11, or [16] p. 64, Theorem 5.11).

3. Warped Product Manifolds

We consider L2-harmonic forms, the Ricci curvature, and the capacity of the Cauchy boundary for
a general warped product Riemannian manifold.
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Let (Nn, h) be a connected oriented closed Riemannian manifold of dimension n. Let f : (0, l) −→
R+ be a smooth positive function with f (+0) = 0. Suppose that f (r) is the same order of ra for some
constant 0 < a < 1, that is, there exists a positive constant C > 0 such that

C−1ra ≤ f (r) ≤ Cra (0 < r < l).

Then, we consider the warped product Riemannian manifold

Mf = (Mm, g) := ((0, l)× N, dr2 ⊕ f (r)2h)

of dimension m := dim Mf = n + 1. This Riemannian manifold (M, g) is incomplete at r = +0. We
denote by x0 the vertex of the f -horn Cf (N) corresponding to r = 0.

Now, we can naturally extend p-forms on N to the p-forms on M = (0, l)× N: Ωp(N) ⊂ Ωp(M).

Lemma 2. For any harmonic p-form ϕ on (N, h), the natural extension ϕ on M is also a harmonic p-form
on (M, g).

Proof. First, we have dM ϕ = dN ϕ = 0 on M. Next, it is easy to see that

∗g(ϕ) = (−1)p f (r)n−2pdr ∧ ∗h(ϕ).

Hence, since dN(∗h(ϕ)) = 0 by the harmonicity of ϕ on (N, h), we have

dM(∗g ϕ) = (−1)p dM
(

f (r)n−2pdr ∧ ∗h(ϕ)
)

= (−1)p+1 f (r)n−2pdr ∧ dN
( ∗h ϕ

)
= 0.

Therefore, we find that ϕ is harmonic on (M, g)

Lemma 3. If p < 1
2
(
n + 1

a
)
, then any smooth p-form ϕ on N naturally extends to L2(Λp M, g).

Proof. For any ϕ ∈ Ωp(N), we have

‖ϕ‖2
L2(Λp M,g) =

∫ l

0

∫
N
|ϕ|2g dμg =

∫ l

0

∫
N
|ϕ|2f 2h f (r)n drdμh

=
∫ l

0
f n−2p(r)dr

∫
N
|ϕ|2h dμh ≤ Cn−2p

∫ l

0
ra(n−2p) dr‖ϕ‖2

L2(Λp N,h).

Since a(n − 2p) > −1, the integral
∫ l

0
ra(n−2p) dr converges. Thus, we find ϕ ∈ L2(Λp M, g).

Now, we take a cut-off function χ ∈ C∞(M) such that

χ(r) :=

{
1, if r ≤ l

4 ,

0, if l
2 ≤ r.

If we set

ϕ̃ := χ(r)ϕ on M = (0, l)× N, (4)

then we see that ϕ̃ ∈ Ωp(M) and the support supp(ϕ̃) ⊂ (0, l
2 ]× N.

Lemma 4. For any harmonic p-form ϕ ∈ Ωp(N), the p-form ϕ̃ on M satisfies

(1) ϕ̃ ∈ Dom(dp,max), if p <
1
2

(
n +

1
a

)
;
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(2) f (r)2p−ndr ∧ ϕ̃ ∈ Dom(δg p+1,max), if p >
1
2

(
n − 1

a

)
.

Proof. (1) First, since p < 1
2 (n + 1

a ), by Lemma 3, the p-form ϕ̃ ∈ Dom(dp,max) is in L2(Λp M, g).
Next, since dN ϕ = 0 by the harmonicity of ϕ on (N, h), then we have

dϕ̃ = d(χϕ) = dχ ∧ ϕ + χdN ϕ = χ′(r)dr ∧ ϕ on
[ l

4 , l
2
] × N.

Hence, since

‖dϕ̃‖2
L2(Λp+1 M,g) = ‖dϕ̃‖2

L2(Λp+1[ l
4 , l

2 ]×N,g)
< ∞,

we see that dϕ̃ ∈ L2(Λp+1 M, g). Thus, we find ϕ̃ ∈ Dom(dp,max).

(2) We prove f (r)2p−ndr ∧ ϕ̃ ∈ Dom(δg p+1,max), if p > 1
2 (n − 1

a ). It is easy to see that

∗g ( f (r)2p−ndr ∧ ϕ̃) = ∗h(ϕ̃). (5)

Since ∗h(ϕ) ∈ Ωn−p(N) and n − p < 1
2 (n + 1

a ), by Lemma 3, we see ∗h(ϕ) ∈ L2(Λn−p M, g).
Thus, from the Equation (5), it follows that

‖ f (r)2p−ndr ∧ ϕ̃‖2
L2(Λp+1 M,g) = ‖ ∗h (ϕ̃)‖2

L2(Λn−p M,g) ≤ ‖ ∗h (ϕ)‖2
L2(Λn−p M,g) < ∞.

Hence, we see f (r)2p−ndr ∧ ϕ̃ ∈ L2(Λp+1 M, g).
Next, since dN(∗h ϕ) ≡ 0 by the harmonicity of ϕ on (N, h), we have

dM(∗h ϕ̃) = dM(χ ∗h (ϕ)) = χ′dr ∧ (∗h ϕ). (6)

Hence, from the proof of Lemma 4 (1), it follows that

‖δg( f (r)2p−ndr ∧ ϕ̃)‖2
L2(Λp M,g) = ‖d ∗g ( f (r)2p−ndr ∧ ϕ̃)‖2

L2(Λm−p M,g)

= ‖d ∗h (ϕ̃)‖2
L2(Λm−p M,g) (by the Equation (5))

= ‖χ′dr ∧ (∗h ϕ)‖2
L2(Λm−p M,g) (by the Equation (6))

= ‖χ′dr ∧ (∗h ϕ)‖2
L2(Λm−p [ l

4 , l
2 ]×N,g)

< ∞.

Therefore, we find f (r)2p−ndr ∧ ϕ̃ ∈ Dom(δg p+1,max).

If we make good choices of N and a, we have the following lemma.

Lemma 5. If Hp(N;R) 	= 0 for some p satisfying 1
2
(
n − 1

a
)
< p < 1

2
(
n + 1

a
)
, then the L2-Stokes theorem

for p-forms does not hold on (M, g).

Proof. Since Hp(N,R) 	= 0, by the de Rham–Hodge–Kodaira theory, there exists a non-zero harmonic
p-form ϕ 	= 0 on N. From Lemma 4, it follows that ϕ̃ ∈ Dom(dmax,p) and that f (r)2p−ndr ∧ ϕ̃ ∈
Dom(δgmax,p+1). Then, by the Equation (5), we have

ϕ̃ ∧ ∗g( f (r)2p−ndr ∧ ϕ̃) = ϕ̃ ∧ ∗h(ϕ̃) = χ2(r)|ϕ|2hvh,
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where vh is the volume form of (N, h). Since χ ≡ 1 on (0, l
4 ]× N, we have∫

M
d(ϕ̃∧ ∗g ( f (r)2p−ndr ∧ ϕ̃)) =

∫
M

d(χ2(r)|ϕ|2hvh)

=
∫
(0, l

4 ]×N
d(|ϕ|2hvh) +

∫
[ l

4 , l
2 ]×N

d(χ2(r)|ϕ|2hvh).

Since d(|ϕ|2hvh) is an (n + 1)-form on Nn, the first term is 0. Next, by the usual Stokes theorem,
the second term is∫

[ l
4 , l

2 ]×N
d(χ2(r)|ϕ|2hvh) =

∫
{ l

2 }×N
χ2( l

2 )|ϕ|2h vh −
∫
{ l

4 }×N
χ2( l

4 )|ϕ|2h vh

= −
∫
{ l

4 }×N
|ϕ|2h vh (since χ( l

4 ) = 1, χ( l
2 ) = 0)

= −‖ϕ‖2
L2(Λp N,h) 	= 0.

Therefore, we have ∫
M

d
(

ϕ̃ ∧ ∗g( f 2p−n(r)dr ∧ ϕ̃)
) 	= 0.

From Lemma 1, the L2-Stokes theorem for p-forms does not hold on (M, g).

Now, we recall the Ricci curvature of a warped product Riemannian manifold (M, g) (e.g., [22],
p. 266, Proposition 9.106).

Lemma 6 (Ricci curvature). Let {e1, . . . , en} be a local orthonormal frame of (Nn, h). We set the local
orthonormal local frame of (M, g) as {ẽ0 := ∂

∂r , ẽ1 := f−1e1, . . . , ẽn := f−1en}. Then, the Ricci operator on
(Mn+1, g) is given by

(1) Ricg(ẽ0) = −n
f ′′(r)
f (r)

ẽ0;

(2) Ricg(ẽi) = Rich(ẽi)−
{

f ′′(r)
f (r)

+ (n − 2)
(

f ′(r)
f (r)

)2
}

ẽi, (i = 1, . . . , n).

We recall the definition of the capacity of a subset (see [23] 2.1 pp. 64–65 or [19] p. 612).

Definition 4 (capacity). For any open subset U ⊂ M, the capacity, or 1-capacity, of U is defined as

Cap(U) := in f
{
‖u‖2

H1(M,g)

∣∣∣ u ∈ H1(M, g) and u ≥ 1 a.e. U
}

,

where ‖u‖2
H1(M,g) = ‖u‖2

L2(M,g) + ‖du‖2
L2(Λ∗ M,g) is the Sobolev norm of u in the Sobolev space H1(M, g).

If there exist no such functions, then we define Cap(U) := ∞. For any subset A ⊂ M, we define

Cap(A) := in f
{

Cap(U)
∣∣∣ any open subset U with A ⊂ U ⊂ M

}
.

Now, we compute the capacity of the Cauchy boundary ∂c M := M \ M = {x0}, where M is the
completion as the metric space M with respect to the Riemannian distance dg.

Lemma 7. If a ≥ 1
n , then we have Cap(∂c M) = 1.
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Proof. We take the cut-off function χε : [0, l) → [0, 1] such that

χε(r) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, (0 ≤ r ≤ ε),

1 +
2

log ε
log

( r
ε

)
, (ε ≤ r ≤ √

ε),

0, (
√

ε ≤ r).

(7)

Set χε(x) := χε(dg(x0, x)) for x ∈ M. Then, χε ∈ H1(M, g) and |χε| ≤ 1 on the geodesic ball of
radius

√
ε > 0 centered at x0.

We prove that ‖χε‖2
L2(M,g) → 0 as ε → 0. First, it is easy to see that

‖χε‖2
L2(M,g) =

∫
M
|χε(r)|2dμg =

∫ √
ε

0
|χε(r)|2 f (r)ndr

∫
N

dμh

≤
∫ √

ε

0
f (r)ndr vol(N, h) ≤ Cn vol(N, h)

∫ √
ε

0
rnadr

≤ Cn vol(N, h)
∫ √

ε

0
1 dr (by na ≥ 1)

= Cn vol(N, h)
√

ε −→ 0 (as ε → 0).

(8)

Next, we prove that ‖dχε‖2
L2(Λ1 M,g) → 0 as ε → 0. From dχε = χ′

εdr and |dr|g = 1, it follows that

|dχε|2g = |χ′
εdr|2g = |χ′

ε|2. Since a ≥ 1
n , we obtain

∫
M
|dχε|2g dμg =

∫ l

0

∫
N
|χ′

ε(r)|2 f n(r) drdμh

≤ Cn vol(N, h)
∫ √

ε

ε
|χ′

ε|2 ran dr ( by f (r) ≤ Cra)

=
4Cn vol(N, h)

| log ε|2
∫ √

ε

ε

∣∣∣1
r

∣∣∣2
ran dr

=
4Cn vol(N, h)

| log ε|2
∫ √

ε

ε
ran−2dr

=
4Cn vol(N, h)

| log ε|2

⎧⎨⎩
1

an − 1
[
ran−1]√ε

ε
if an > 1,

[log r]
√

ε
ε if an = 1

= 4Cn vol(N, h)

⎧⎪⎪⎨⎪⎪⎩
1

an − 1
· ε

an−1
2 − εan−1

| log ε|2 if an > 1,

1
2| log ε| if an = 1

−→ 0 (as ε → 0).

(9)

Therefore, from the Equations (8) and (9), we find that Cap(∂c M) = Cap({x0}) = 0.

4. The Proof of Theorem 2

Proof of Theorem 2. Finally, we prove Theorem 2. We take an n-dimensional closed manifold (Nn, h) as
the flat n-torus (Tn, h), where h is a flat metric on Tn. We take the interval I = (0, π) (i.e., l = π) and
the warping function f (r) := sin1/n(r), where a := 1

n . Of course, this function f (r) satisfies f (r) > 0
on (0, π) and f (+0) = f (−π) = 0. Furthermore, there exists a positive constant C > 0 such that
C−1ra ≤ f (r) ≤ Cra on (0, π).

Then, we consider the warped product Riemannian manifold (Mn+1, g) = ((0, π)× Tn, dr2 ⊕
sin2a(r)h), which is homeomorphic to the regular set of the suspension Σ(Tn) of Tn. This
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incomplete Riemannian manifold (Mn+1, g) is gluing two copies of the regular set Csina(r)(T
n)reg

along their boundaries:

(Mn+1, g) = Csina(r)(T
n)reg ∪Tn

(
− Csina(r)(T

n)reg

)
,

where − means the opposite orientation. By means of the partition of the unity, it is enough to show
the properties (1) through (4) in Theorem 2 on the one side horn Csina(r)(T

n)reg = ((0, π
2 )×Tn, dr2 ⊕

sin2a(r)h).
Indeed,

(1) Since f (r) = sina(r) with a = 1
n and Rich ≡ 0, by Lemma 6, we have

• Ricg(ẽ0, ẽ0) = g(Ricg(ẽ0), ẽ0) = na
{

1 + (1 − a)
cos2(r)
sin2(r)

}
≥ 1 > 0;

• Ricg(ẽi, ẽi) = g(Ricg(ẽi), ẽi) ≥ a
{

1 + (1 − na)
cos2(r)
sin2(r)

}
=

1
n
> 0,

(i = 1, . . . , n).

Hence, we see that the Ricci curvature of (M, g) satisfies Ricg ≥ 1
n
=: K > 0.

(2) Since Hp(Tn;R) 	= 0, by Lemmas 2 and 3, there exist non-trivial L2 harmonic p-forms on (M, g)
for all 1 ≤ p ≤ n − 1.

(3) In Lemma 5, since a =
1
n

, the range of p is 0 < p < n. Hence, the L2-Stokes theorem for p-forms

with all 1 ≤ p ≤ n − 1 does not hold on (M, g).
(4) From Lemma 7, we see Cap(Msing) = 0.

5. Conclusions

A closed, more generally, complete Riemannian manifold with positive Ricci curvature satisfies
the Bochner vanishing theorem. But, as we mentioned above, an incomplete Riemannian manifold
does not satisfy a Bochner-type theorem in general. A key point is that the L2-Stokes theorem does
not hold. So, the author thinks that it would be important to study incomplete Riemannian manifolds
where the L2-Stokes theorem does not hold. Therefore, new phenomena might be discovered in
geometry and analysis on manifolds with singularities.

Acknowledgments: The author is grateful to Jun Masamune for valuable discussion. The author is also grateful
to the referees for helpful comments. The author is supported by the Grants-in-Aid for Scientific Research (C),
Japan Society for the Promotion of Science, No. 16K05117.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jost, J. Riemannian Geometry and Geometric Analysis. In Universitext, 6th ed.; Springer: Berlin, Germany, 2011.
2. Cheeger, J. On the Hodge theory of Riemannian pseudomanifolds. In Proceedings of Symposia in Pure

Mathematics; AMS: Providence, RI, USA, 1980; Volume 36, pp. 91–146.
3. Cheeger, J. Spectral geometry of singular Riemannian spaces. J. Differ. Geom. 1983, 18, 575–657. [CrossRef]
4. Cheeger, J.; Goresky, M.; MacPherson, R. L2-cohomology and intersection homology of singular algebraic

varieties, Seminar on Differential Geometry. Ann. Math. Stud. 1982, 102, 303–340.
5. Bei, F. General perversities and L2 de Rham and Hodge theorems for stratified pseudomanifolds.

Bull. Sci. Math. 2014, 138, 2–40. [CrossRef]
6. Kirwan, F.; Woolf, J. An Introduction to Intersection Homology Theory, 2nd ed.; Chapman & Hall/CRC: London,

UK, 2006.
7. Nagase, M. L2-cohomology and intersection homology of stratified spaces. Duke Math. J. 1983, 50, 329–368.

[CrossRef]

92



Mathematics 2018, 6, 75

8. Youssin, B. Lp cohomology of cones and horns. J. Differ. Geom. 1994, 39, 559–603. [CrossRef]
9. Albin, P.; Leichtnam, E.; Mazzeo, R.; Piazza, P. Hodge theory on Cheeger spaces. J. Reine Angew. Math. 2018,

in press. doi:10.1515/crelle-2015-0095. [CrossRef]
10. Cheeger, J. A vanishing theorem for piecewise constant curvature spaces. In Curvature and Topology of

Riemannian Manifolds (Katata, 1985); Lect. Notes in Math.; Springer: Berlin, Germany, 1986; Volume 1201,
pp. 33–40.

11. Dodziuk, J. Vanishing theorems for square-integrable harmonic forms. Proc. Indian Acad. Sci. Math. Sci. 1981,
90, 21–27. [CrossRef]

12. Gallot, S.; Meyer, D. Opérateur de courbure et laplacien des formes différentielles d’une variété riemannienne.
J. Math. Pures Appl. 1975, 54, 259–284.

13. Petersen, P. Riemannian Geometry. In GTM, 3rd ed.; Springer: Berlin, Germany, 2016; Volume 171.
14. Brüning, J.; Lesch, M. Hilbert complexes. J. Funct. Anal. 1992, 108, 88–132. [CrossRef]
15. Grieser, D.; Lesch, M.L. On the L2-Stokes theorem and Hodge theory for singular algebraic varieties. Math.

Nachr. 2002, 246–247, 68–82. [CrossRef]
16. Behrens, S. The L2 Stokes Theorem on Certain Incomplete Manifolds. Diploma Thesis, Univ. Bonn, Bonn,

Germany, 2009.
17. Gaffney, M.P. The harmonic operator for exterior differential forms. Proc. Natl. Acad. Sci. USA 1951, 37,

48–50. [CrossRef] [PubMed]
18. Gaffney, M.P. A special Stokes’ theorem for complete Riemannian manifolds. Ann. Math. 1954, 60, 140–145.

[CrossRef]
19. Grigor’yan, A.; Masamune, J. Parabolicity and stochastic completeness of manifolds in terms of the Green

formula. J. Math. Pures Appl. 2013, 100, 607–632. [CrossRef]
20. Brüning, J.; Lesch, M. Kähler-Hodge theory for conformal complex cones. Geom. Funct. Anal. 1993, 3,

439–473. [CrossRef]
21. Hunsicker, E.; Mazzeo, R. Harmonic forms on manifolds with edges. Int. Math. Res. Not. 2005, 52, 3229–3272.

[CrossRef]
22. Besse, A. Einstein Manifolds. In Ergebnisse der Mathematik und ihrer Grenzgebiete; Band 10; Springer: Berlin,

Germany, 1987.
23. Fukushima, M.; Oshima, Y.; Takeda, M. Dirichlet Forms and Symmetric Markov Processes, de Gruyter Studies in

Math; Walter de Gruyter: Berlin, Germany, 1994; Volume 19.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

93



Article

On Angles and Pseudo-Angles in
Minkowskian Planes

Leopold Verstraelen

Department of Mathematics, Katholieke Universiteit Leuven, 3001 Leuven, Belgium;
leopold.verstraelen@wis.kuleuven.be

Received: 1 March 2018; Accepted: 22 March 2018; Published: 3 April 2018

Abstract: The main purpose of the present paper is to well define Minkowskian angles and
pseudo-angles between the two null directions and between a null direction and any non-null direction,
respectively. Moreover, in a kind of way that will be tried to be made clear at the end of the paper,
these new sorts of angles and pseudo-angles can similarly to the previously known angles be seen as
(combinations of) Minkowskian lengths of arcs on a Minkowskian unit circle together with Minkowskian
pseudo-lengths of parts of the straight null lines.

Keywords: Minkowski plane; Minkowskian length; Minkowskian angle; Minkowskian pseudo-angle

1. Introduction

In his 1908 lecture “Raum und Zeit" (cfr. Figure 1), Hermann Minkowski presented his indefinite geometry,
which made possible the development of Lorentzian geometry and, more generally, of pseudo-Euclidean
geometry and of pseudo-Riemannian geometry; (for references on these geometries, see e.g., [1–9] and the
references in these books and chapters of books and articles).

Figure 1. From Minkowski’s “Raum und Zeit”.

In the course of time, in Minkowskian planes, proper definitions have been given for the angles
between any two spacelike directions and for the angles between any two timelike directions (which two
cases geometrically are the same, of course) and for the angle between any spacelike direction and any
timelike direction. A notion of such angles as equivalence classes under Minkowskian rotations, and
their therefrom coming measure of angles has proper meaning only for two spacelike directions and
equivalently for two timelike directions which direct to one and the same branch of a Minkowskian
circle, or, still, to one and the same branch of a Euclidean orthogonal hyperbola with the two
null directions of the Minkowskian plane as asymptotic directions, centered at the center of such

Mathematics 2018, 6, 52; doi:10.3390/math6040052 www.mdpi.com/journal/mathematics94
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rotations. And the measures of such angles then in fact are given by the Minkowskian lengths of the
corresponding arcs on the concerned branches of this unit Minkowskian circle, in a perfect double
analogy with the Euclidean angles between any two directions and their measure as central angles
on a unit Euclidean circle. For the other above-mentioned Minkowskian angles then, the term angle
essentially refers just to a measure of angle in some generalised above sense whereby trying to deal a
bit cautiously with positive and negative arcs on Minkowskian circles. And further on, geometrically,
the terms Minkowskian angles between any spacelike and any timelike directions—angles involving
directions of one or both causal characters alike—will always refer to this common interpretation as
central Minkowskian angles.

The main purpose of the present paper is to moreover well define Minkowskian angles and
pseudo-angles between the two null directions and between a null direction and any non-null direction,
respectively. Moreover, in a kind of way that will be tried to be made clear at the end of the paper,
these new sorts of angles and pseudo-angles can similarly to the previously known angles be seen
as (combinations of) Minkowskian lengths of arcs on a Minkowskian unit circle together with Minkowskian
pseudo-lengths of parts of the straight null lines.

While all above central Minkowskian angles are invariant under Minkowskian rotations, the central
Minkowskian pseudo-angles are not. However, in all cases—at least in the author’s opinion—all of
these Minkowskian angles and pseudo-angles may turn out not to be without some uses in geometry
and in applications of geometry. In this respect, for instance: (i) they may give some geometrical
interpretations of the so far merely algebraical or analytical conditions that did occur in some articles
on geometry and its applications; (ii) they may lead to extensions of several theories about Riemannian
submanifolds in which Euclidean angles play a role to corresponding theories in pseudo-Riemannian
geometry; (iii) they may be studied by working out a corresponding trigonometry; (iv) they may
be extended to suitable notions for angles and pseudo-angles between higher-dimensional linear
subspaces of various causal natures in general pseudo-Euclidean spaces; etcetera.

For related literature on geometry and its applications, see, e.g., also [10–26].
The point of departure of this paper is the definition of the pseudo-angles or “angles" between any

two vectors in a Minkowskian plane as given by Garry Helzer in his relativistic version of the formula of
Gauss-Bonnet [27].

In the present paper, like in several of his other recent papers, when it seems to the author of real
importance for a better understanding of the text, he included a number of handmade figures. In his
experience, so much more than artificially made illustrations, such figures do essentially contribute to
the readability of the paper. This is very related to the real value of the drawings made on blackboards
during proper lectures on mathematics and on the exact sciences. The author is very grateful for the
editors of the journal Mathematics having been so kind to include the scans of ten handmade figures
in the present paper.

2. The Pseudo-Angles of Helzer

Let E2
1 be the Minkowskian plane (R2, g) fixed by the (+,−) metric

g(−→v ,−→w ) = v1w1 − v2w2 (1)

on the standard two-dimensional real vector space R2, whereby −→v = (v1, v2) and −→w = (w1, w2)

here denote arbitrary vectors in R2 expanded with respect to the standard oriented orthonormal basis
B = {−→e1 ,−→e2 }. Next, let ϕB be the real valued function which is defined on the set S of the unit vectors and of
the null vectors in E2

1, that is, on the set of the vectors −→z = z1
−→e1 + z2

−→e2 for which z2
1 − z2

2 = ±1 (i.e.,
on the two Euclidean unit orthogonal hyperbola’s H1 : z2

1 − z2
2 = 1 and H2 : z2

1 − z2
2 = −1) and on the

vectors −→z = z1
−→e1 + z2

−→e2 	= −→o for which z2
1 − z2

2 = 0 (i.e., on the first and second diagonals or Euclidean
bisectrices D1 : z1 − z2 = 0 and D2 : z1 + z2 = 0, "minus" the origin O), by
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ϕB(
−→z ) =

{
ln |z1 + z2|, when z1 + z2 	= 0,

− ln |z1 − z2|, when z1 + z2 = 0.
(2)

And finally, let ψB be the real valued function which is defined on the pairs of vectors from S, say −→v and −→w , by

ψB(
−→v ,−→w ) = ϕB(

−→w )− ϕB(
−→v ). (3)

when similarly defining functions ϕB′ and ψB′ corresponding to any other ordered orthonormal basis B′

of E2
1, then ψB′ = ψB or ψB′ = −ψB, depending on B′ and B having the same or opposite orientations,

respectively; (as a kind of intermediate step in this having ϕB′(−→z ) = ϕB(
−→z ) + ϕB′(−→e 1) and

ϕB′(−→z ) = −ϕB(
−→z ) + ϕB′(−→e 1), respectively).

Therefore, the following makes good sense indeed: the oriented pseudo-angle ψ(−→v ,−→w ) of Helzer [27]
from −→v to −→w , (−→v ,−→w ∈ S), is defined by

ψ(−→v ,−→w ) = ψB(
−→v ,−→w ). (4)

According to this definition, clearly

ψ(−→v ,−→w ) = ψ(−−→v ,−→w ) = ψ(−→v ,−−→w ) = ψ(−−→v ,−−→w ). (5)

And for any number k of unit or null vectors −→v1 ,−→v2 , . . . ,−→vk in E2
1, one has

ψ(−→v1 ,−→v2 ) + ψ(−→v2 ,−→v3 ) + · · ·+ ψ(−→v k−1,−→vk ) + ψ(−→vk ,−→v1 ) = 0. (6)

3. The Minkowskian Angles between Spacelike and Timelike Directions

The following result shows that for unit spacelike or timelike vectors −→v and −→w in a Minkowskian plane
E2

1 the oriented pseudo-angle ψ(−→v ,−→w ) of Helzer is equal to what O’Neill in [5] called the oriented Lorentz
angle between two spacelike unit vectors −→v and −→w , or is equal to what Birman and Nomizu in [28,29] simply
called the oriented angle between two timelike unit vectors −→v and −→w , or is equal to what in [30,31] was called
the oriented hyperbolic angle between a spacelike unit vector −→v and a timelike unit vector −→w , depending on the
causal characters of −→v and −→w .

Before giving the formulation and a proof of this result, I would like to make the following
proposal concerning terminology: let us use the term “Minkowskian angles” when dealing with the
above kind of angles between unit vectors, and also between their directions in a Minkowskian
plane, (rather than just “angles”, since angles as such are commonly used for the common angles of
Euclidean geometry, and rather than “Lorentzian angles”, since also on Lorentzian surfaces the angles
are essentially defined in the tangent planes to such surfaces and these are Minkowskian planes,
and also rather than “hyperbolic angles”, which seem better to be reserved for use in the geometry of
Lobachevsky-Bolyai; see also Section 7 concerning this matter).

Theorem 1. Let −→v and −→w be unit vectors in a Minkowskian plane E2
1 and let ψ(−→v ,−→w ) be the oriented

pseudo-angle of Helzer from −→v to −→w . Then, when (v1, v2) and (w1, w2) are the co-ordinates of −→v and −→w with
respect to the standard basis B in E2

1 and when D is the Euclidean reflection in the first diagonal of B, in terms
of the hyperbolic functions cosh and sinh, this pseudo-angle ψ is related to the Minkowskian metric g in the
following way:
(i) if −→v and −→w are both spacelike,

cosh ψ(−→v ,−→w ) =

{
−g(−→v ,−→w ) when sgn v1 	= sgn w1

g(−→v ,−→w ) when sgn v1 = sgn w1,
(7)

sinh ψ(−→v ,−→w ) =

{
−g(−→v , D−→w ) when sgn v1 	= sgn w1

g(−→v , D−→w ) when sgn v1 = sgn w1;
(8)
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(ii) if −→v and −→w are both timelike,

cosh ψ(−→v ,−→w ) =

{
g(−→v ,−→w ) when sgn v2 	= sgn w2

−g(−→v ,−→w ) when sgn v2 = sgn w2,
(9)

sinh ψ(−→v ,−→w ) =

{
g(−→v , D−→w ) when sgn v2 	= sgn w2,

−g(−→v , D−→w ) when sgn v2 = sgn w2;
(10)

(iii) if −→v is spacelike and −→w is timelike,

cosh ψ(−→v ,−→w ) =

{
−g(−→v , D−→w ) when sgn v1 	= sgn w2

g(−→v , D−→w ) when sgn v1 = sgn w2,
(11)

sinh ψ(−→v ,−→w ) =

{
−g(−→v ,−→w ) when sgn v1 	= sgn w2

g(−→v ,−→w ) when sgn v1 = sgn w2.
(12)

Proof. For any pair of unit vectors −→v = (v1, v2) and −→w = (w1, w2) according to (1)–(4),

ψ(−→v ,−→w ) = ln |w1 + w2| − ln |v1 + v2|
= ln |w1 + w2

v1 + v2
|

= ln | (w1 + w2)(v1 − v2)

v2
1 − v2

2
|

= ln |(w1 + w2)(v1 − v2)|
= ln |v1w1 − v2w2 + v1w2 − v2w1|,

and, so, since D−→w = D(w1, w2) = (w2, w1),

ψ(−→v ,−→w ) = ln |g(−→v ,−→w ) + g(−→v , D−→w )|. (13)

Hence, by the very definitions of the functions cosinushyperbolicus and sinushyperbolicus,

cosh ψ(−→v ,−→w ) =
[g(−→v ,−→w ) + g(−→v , D−→w )]2 + 1

2|g(−→v ,−→w ) + g(−→v , D−→w )| (14)

and

sinh ψ(−→v ,−→w ) =
[g(−→v ,−→w ) + g(−→v , D−→w )]2 − 1

2|g(−→v ,−→w ) + g(−→v , D−→w )| . (15)

In the cases (i) and (ii), i.e., if −→v and −→w either are both spacelike (i) or are both timelike (ii),

g(−→v ,−→w )2 − g(−→v , D−→w )2 = 1, (16)

which combined with (14) and (15), yields

cosh ψ(−→v ,−→w ) = ε g(−→v ,−→w ) (17)

and
sinh ψ(−→v ,−→w ) = ε g(−→v , D−→w ), (18)

whereby ε = sgn[g(−→v ,−→w ) + g(−→v , D−→w )]. In addition, then formulae (7) and (8) and formulae (9)
and (10) follow from formulae (17) and (18) since, when −→v and −→w are both spacelike, ε = 1 when
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sgn v1 = sgn w1 and ε = −1 when sgn v1 	= sgn w1, and when −→v and −→w are both timelike, ε = 1 when
sgn v2 	= sgn w2 and ε = −1 when sgn v2 = sgn w2.

Finally, in case (iii), i.e., if −→v and −→w do have different causal characters, say if −→v is spacelike and −→w
is timelike,

g(−→v ,−→w )2 − g(−→v , D−→w )2 = −1, (19)

which, combined with (14) and (15), now yields

cosh ψ(−→v ,−→w ) = ε g(−→v , D−→w ) (20)

and
sinh ψ(−→v ,−→w ) = ε g(−→v ,−→w ). (21)

In addition, then formulae (11) and (12) follow from formulae (20) and (21) since, for a spacelike
unit vector −→v and a timelike unit vector −→w , ε = −1 when sgn v1 	= sgn w2 and ε = 1 when sgn v1 =

sgn w2.

From here on, we agree to systematically use the notation θ(−→v ,−→w ) for the oriented Minkowskian
angles between unit vectors −→v and −→w for any causal characters, (rather than the former ψ(−→v ,−→w ), keeping
on the use of ψ though for the pseudo-angles of Helzer in general, cfr. definition (3)).

In the Minkowskian geometry on a plane, unit vectors −→v and −→w for which g(−→v ,−→w ) = 0,
apart from pairs of vectors ±−→e1 and ±−→e2 , are not at all orthogonal or perpendicular to each other in
accordance with our common visual senses, or, still, in accordance with the Euclidean geometry on
this plane. However, such unit vectors in a Minkowskian plane, i.e., unit vectors in E2

1 with vanishing
Minkowskian scalar product, nevertheless, conventionally often remain said to be mutually orthogonal.
All in all, this terminology may not be so recommendable (but, unfortunately, it is to be expected
that this terminology will continue to be used, like; for instance, one has been going on to speak of
“the orthogonal group” when speaking of “the orthonormal group”...). Actually, such vectors are
each other’s Euclidean reflections in the first or second diagonals D = D1 and D2 of the standard
orthonormal basis B = {−→e1 ,−→e2 }, or, put otherwise, such vectors are pairs of vectors lying on the
Euclidean orthogonal hyperbola’s H : u2

1 − u2
2 = ±1 with Euclidean unit axes and which are bisected

either by the first or second diagonals or bisectrices D1 and D2 (cfr. Figure 2). It could be observed here in
passing, and it will become more clear later on, that the just used expressions that refer to bisecting,
however, do enjoy their proper meanings in the sense of the angles in the geometries of Euclid and of
Minkowski alike. In any case, based on Theorem 1, one has the following.

Corollary 1. While in a Minkowskian plane any two unit vectors with the same causal character can never be
mutually orthogonal, a timelike and a spacelike unit vector are mutually orthogonal if and only if their oriented
Minkowskian angle is zero.

For two arbitrary (non-null) vectors −→a = (a1, a2) and
−→
b = (b1, b2) of Minkowskian lengths ||−→a || =

|g(−→a ,−→a )| 1
2 ( 	= 0) and ||−→b || = |g(−→b ,

−→
b )| 1

2 ( 	= 0), from −→a to
−→
b the oriented Minkowskian angle θ(−→a ,

−→
b )

is defined as the oriented Minkowskian angle of their normalised corresponding unit vectors −→v = −→a /||−→a ||
and −→w =

−→
b /||−→b ||; θ(−→a ,

−→
b ) = θ(−→v ,−→w ) , (cfr. Figure 3). Thus, according to (13), in terms of the

Minkowskian scalar product:

θ(−→a ,
−→
b ) = ln | g(−→a ,

−→
b ) + g(−→a , D

−→
b )

||−→a || · ||−→b ||
|. (22)

Further, based on relations (1)–(6), for all pairs of arbitrary non-null vectors −→a and
−→
b we recover

the following formulae which relate these oriented Minkowskian angles θ(−→a ,
−→
b ) to the Minkowskian metric by

means of the hyperbolic functions, (cfr. [28]).
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Figure 2. “Orthogonality”.

Figure 3. Angles between non-null vectors.
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Theorem 2. (i) If −→a and
−→
b are both spacelike,

cosh θ(−→a ,
−→
b ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− g(−→a ,

−→
b )

||−→a || · ||−→b ||
when sgn a1 	= sgn b1

g(−→a ,
−→
b )

||−→a || · ||−→b ||
when sgn a1 = sgn b1,

(23)

sinh θ(−→a ,
−→
b ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− g(−→a , D

−→
b )

||−→a || · ||−→b ||
when sgn a1 	= sgn b1

g(−→a , D
−→
b )

||−→a || · ||−→b ||
when sgn a1 = sgn b1;

(24)

(ii) if −→a and
−→
b are both timelike,

cosh θ(−→a ,
−→
b ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
g(−→a ,

−→
b )

||−→a || · ||−→b ||
when sgn a2 	= sgn b2

− g(−→a ,
−→
b )

||−→a || · ||−→b ||
when sgn a2 = sgn b2,

(25)

sinh θ(−→a ,
−→
b ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
g(−→a , D

−→
b )

||−→a || · ||−→b ||
when sgn a2 	= sgn b2

− g(−→a , D
−→
b )

||−→a || · ||−→b ||
when sgn a2 = sgn b2;

(26)

(iii) if −→a is spacelike and
−→
b is timelike,

cosh θ(−→a ,
−→
b ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− g(−→a , D

−→
b )

||−→a || · ||−→b ||
when sgn a1 	= sgn b2

g(−→a , D
−→
b )

||−→a || · ||−→b ||
when sgn a1 = sgn b2,

(27)

sinh θ(−→a ,
−→
b ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− g(−→a ,

−→
b )

||−→a || · ||−→b ||
when sgn a1 	= sgn b2

g(−→a ,
−→
b )

||−→a || · ||−→b ||
when sgn a1 = sgn b2.

(28)

Based on the definitions given above for the oriented Minkowskian angles between any two
spacelike or timelike vectors, and also in view of (5), the oriented Minkowskian angle θ(L1, L2) between any
two non-null directions or between any non-null lines L1 and L2 passing through the origin of a Minkowskian
plane E2

1 may be well defined as the oriented Minkowskian angle θ(
−→
l1 ,

−→
l2 ) between a unit vector

−→
l1

on the line L1 and a unit vector
−→
l2 on the line L2; θ(L1, L2) = θ(

−→
l1 ,

−→
l2 ).

As a kind of transition to the definition of Minkowskian angles involving one or two null vectors
and also in a way continuing the former comment on perpendicular vectors in a Minkowskian plane,
now, (hereby somewhat following O’Neill [5], p. 48, Figure 3), one may visualise, for instance, the
following pair of vectors that are mutually orthogonal in E2

1: {(n, m), D(n, m) = (m, n)|n ∈ R+
0 , m ∈]0, n[}.

A null vector like −→v = (n, n) may thus be seen to originate as the limit of the pair of the mutually
orthogonal vectors formed by the spacelike vector (n, m) and the timelike vector (m, n) for m going to
n: (n, n) = limm→n(n, m) = limm→n(m, n), this limit thus yielding a non-trivial vector −→n that is
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perpendicular to itself; (cfr. Figure 4). And of course, similarly one may think of the null vectors
of the second diagonal too as non-trivial auto-orthogonal vectors.

Figure 4. Auto-orthogonal vectors.

4. The Minkowskian Pseudo-Angles between A Null Direction and Any Spacelike or
Timelike Direction

Any spacelike or timelike vector −→a = (a1, a2) has a well determined Minkowskian
length or norm ||−→a || = |a2

1 − a2
2|

1
2 which is essentially non-zero and thus such a vector

can be normalised to the corresponding unit spacelike or timelike vector −→v = −→a /||−→a ||.
For null vectors −→n1 = (n, n) of D1 and −→n2 = (−n, n) of D2, (n ∈ R0), this kind of
normalisation of course is not possible, since actually ||−→n1 ||2 = ||−→n2 ||2 = |n2 − n2| = 0.
Then, for null vectors in a Minkowskian plane choosing as a way of standardi-
sation the individual normalisation of their two components, from now on, we propose to consider,
respectively

−→
d1 = (1, 1) = −→n1 /|n| in case n > 0 and −−→

d1 = (−1,−1) = −→n1 /|n| in case n < 0, and−→
d2 = (−1, 1) = −→n2 /|n| in case n > 0 and −−→

d2 = (1,−1) = −→n1 /|n| in case n < 0, as the normalised
null vectors corresponding to given null vectors −→n1 and −→n2 ; (cfr. Figures 5 and 6). And while for spacelike
and timelike vectors −→a = (a1, a2) their norm equals their length ||−→a ||, for null vectors −→n1 = (n, n) and−→n2 = (−n, n), n ∈ R0, their lengths ||−→n1 || and ||−→n2 || being zero, we propose to define their pseudo-norms
|−→n1 | and |−→n2 | to be equal to the absolute value |n| = | − n| 	= 0 of their co-ordinates: |−→n1 | = |−→n2 | = |n|.
Thus, we have the normalisations

−→
di = ±−→ni /|−→ni |, + or − depending on n being positive or

negative, respectively.
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Figure 5. Two normalised null vectors.

Figure 6. The two other normalised null vectors.

The oriented Minkowskian pseudo-angles θ between unit spacelike or timelike vectors −→u = (u1, u2),
(u2

1 − u2
2 = ±1), and normalised null vectors ±−→

d1 or ±−→
d2 are defined to be given by their pseudo-angles ψ of

Helzer. In order to establish the formulae for these angles in terms of the hyperbolic functions, next the
angles θ(−→u ,

−→
d1 ) and θ(

−→
d2 ,−→u ) will be dealt with explicitly; (thereby, in view of (5) and (6), essentially
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all possibilities are taken care of). The oriented Minkowskian pseudo-angle θ(−→u ,
−→
d1 ) from −→u to

−→
d1 is defined

to be given by the pseudo-angle ψ(−→u ,
−→
d1 ) from −→u to

−→
d1 such that according to (1)–(4),

θ(−→u ,
−→
d1 ) = ln 2 − ln |u1 + u2|

= ln | 2
u1+u2

|
= ln | 2(u1−u2)

u2
1−u2

2
|

= ln |2(u1 − u2)|
= ln |2g(−→u ,

−→
d1 )|

(= ln |g(−→u ,
−→
d1 ) + g(−→u , D

−→
d1 )|).

(29)

And, the oriented Minkowskian pseudo-angle θ(
−→
d2 ,−→u ) from

−→
d2 to −→u is defined to be given by the pseudo-angle

ψ(
−→
d2 ,−→u ) from

−→
d2 to −→u such that, according to (1)–(4),

θ(
−→
d2 ,−→u ) = ln |u1 + u2|+ ln 2

= ln |2(u1 + u2)|
= ln |2g(

−→
d2 ,−→u )|

(= ln |g(−→d2 ,−→u ) + g(
−→
d2 , D−→u )|).

(30)

Hence, in analogy with Theorem 1, from (29) and (30), one has the following.

Theorem 3. Let θ(−→u ,
−→
d1 ) and θ(

−→
d2 ,−→u ) be the oriented Minkowskian pseudo-angles from a unit vector −→u to

the normalised null vector
−→
d1 and from the normalised null vector

−→
d2 to a unit vector −→u , respectively. Then,

cosh θ(−→u ,
−→
d1 ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 + 4g(−→u ,

−→
d1 )

2

4g(−→u ,
−→
d1 )

when u1 − u2 > 0

−1 + 4g(−→u ,
−→
d1 )

2

4g(−→u ,
−→
d1 )

when u1 − u2 < 0,

(31)

sinh θ(−→u ,
−→
d1 ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 − 4g(−→u ,

−→
d1 )

2

4g(−→u ,
−→
d1 )

when u1 − u2 < 0

−1 − 4g(−→u ,
−→
d1 )

2

4g(−→u ,
−→
d1 )

when u1 − u2 > 0;

(32)

cosh θ(
−→
d2 ,−→u ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 + 4g(

−→
d2 ,−→u )2

4g(
−→
d2 ,−→u )

when u1 + u2 > 0

−1 + 4g(
−→
d2 ,−→u )2

4g(
−→
d2 ,−→u )

when u1 + u2 < 0,

(33)

sinh θ(
−→
d2 ,−→u ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 − 4g(

−→
d2 ,−→u )2

4g(
−→
d2 ,−→u )

when u1 + u2 < 0

−1 − 4g(
−→
d2 ,−→u )2

4g(
−→
d2 ,−→u )

when u1 + u2 > 0.

(34)

In connection with a general comment made in the Introduction concerning potential applications
of the contents of this paper in semi-Riemannian geometry, based on Theorems 1 and 3, it may be good
to explicitly formulate the following.
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Corollary 2. For any two different normalised spacelike, timelike or null vector fields, their Minkowskian scalar
product is constant if and only if their Minkowskian angle or pseudo-angle is constant.

For any spacelike or timelike vector −→a of Minkowskian length ||−→a ||, −→u = −→a /||−→a || is the
corresponding normalised spacelike or timelike vector, and for any null vector −→n1 = (n, n) or
−→n 2 = (−n, n), (n ∈ R0), ±−→

d1 = −→n1 /|−→n1 | or ±−→
d2 = −→n2 /|−→n2 |, (+ when n > 0 and − when n < 0)

is the corresponding normalised null vector, and the oriented Minkowskian pseudo-angles between such
vectors −→a and −→ni , (i = 1, 2), are defined as the oriented Minkowskian pseudo-angles between their corresponding
normalised vectors −→u and ±−→

di ; θ(−→a ,−→ni ) = θ(−→u ,±−→
di ). In addition, following this definition, the above

expressions (31)–(34) may readily be adapted to corresponding formulae involving the Minkowskian
scalar products g(−→a ,−→ni ) as follows.

Theorem 4. Let θ(−→a ,−→n1) and θ(−→n2 ,−→a ) be the oriented Minkowskian pseudo-angles from a non-null vector−→a = (a1, a2) of arbitrary length ||−→a || 	= 0 to an arbitrary null vector −→n1 = (n, n), n ∈ R0 and from an
arbitrary null vector −→n2 = (−n, n) to a non-null vector −→a , respectively. Then,

cosh θ(−→a ,−→n1) =

⎧⎪⎪⎨⎪⎪⎩
|n|2||−→a ||2 + 4g(−→a ,−→n1)

2

4|n|||−→a ||g(−→a ,−→n1)
when n(a1 − a2) > 0

−|n|2||−→a ||2 + 4g(−→a ,−→n1)
2

4|n|||−→a ||g(−→a ,−→n1)
when n(a1 − a2) < 0,

(35)

sinh θ(−→a ,−→n1) =

⎧⎪⎪⎨⎪⎪⎩
|n|2||−→a ||2 − 4g(−→a ,−→n1)

2

4|n|||−→a ||g(−→a ,−→n1)
when n(a1 − a2) < 0

−|n|2||−→a ||2 − 4g(−→a ,−→n1)
2

4|n|||−→a ||g(−→a ,−→n1)
when n(a1 − a2) > 0;

(36)

cosh θ(−→n2 ,−→a ) =

⎧⎪⎪⎨⎪⎪⎩
|n|2||−→a ||2 + 4g(−→a ,−→n2)

2

4|n|||−→a ||g(−→a ,−→n2)
when n(a1 + a2) > 0

−|n|2||−→a ||2 + 4g(−→a ,−→n2)
2

4|n|||−→a ||g(−→a ,−→n2)
when n(a1 + a2) < 0,

(37)

sinh θ(−→n2 ,−→a ) =

⎧⎪⎪⎨⎪⎪⎩
|n|2||−→a ||2 − 4g(−→a ,−→n2)

2

4|n|||−→a ||g(−→a ,−→n2)
when n(a1 + a2) < 0

−|n|2||−→a ||2 − 4g(−→a ,−→n2)
2

4|n|||−→a ||g(−→a ,−→n2)
when n(a1 + a2) > 0.

(38)

Based on the definitions given above for the oriented Minkowskian pseudo-angles between any
null vector and any spacelike or timelike vector, and also in view of (5), the oriented Minkowskian
pseudo-angle θ(Di, L) between a null direction and any spacelike or timelike direction or between one of the
null lines D1, D2 and any non-null line L passing through the origin of a Minkowskian plane E2

1, may be well

defined as the oriented Minkowskian pseudo-angle θ(
−→
d i,

−→
l ), whereby

−→
l is a unit vector on the line

L; θ(Di, L) = θ(
−→
d i,

−→
l ).

5. The Minkowskian Angles between Null Directions

Finally, to deal with the situation involving two null vectors, of course, two cases are to be
considered: (i) the null vectors are co-linear and (ii) they are not. To begin with, for the normalised null
vectors ±−→

d i, the oriented Minkowskian angles θ(±−→
d i,±

−→
d j), (i, j ∈ {1, 2}) , are defined to be given by

their pseudo-angles ψ(±−→
d i,±

−→
d j) of Helzer. In addition, based on (5) and (6), it then suffices to look at

the angles θ(
−→
d 1,

−→
d 1), θ(

−→
d 2,

−→
d 2) and θ(

−→
d 2,

−→
d 1). (i) In the case of normalised null vectors on the same

diagonal, since ψ(−→v ,−→v ) = 0 for all −→v 	= −→o ,

θ(
−→
d 1,

−→
d 1) = θ(

−→
d 2,

−→
d 2) = 0. (39)
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(ii) In the case of normalised null vectors on different diagonals,

θ(
−→
d 2,

−→
d 1) = ln 2 + ln 2 = 2 ln 2. (40)

In case (i), matters are well in agreement with what we commonly expect to be natural enough the
way it is, while, later on, there will follow some geometrical comments that may make the value 2 ln 2
occurring in case (ii) not to appear as too unnatural after all. For the time being and for the sake of
more easy reference, (39) and (40) will be put together in the following.

Theorem 5. For the normalised null vectors
−→
d1 = (1, 1) and

−→
d2 = (−1, 1) their oriented Minkowskian angles

are given by θ(
−→
d1 ,

−→
d1 ) = θ(

−→
d2 ,

−→
d2 ) = 0 and θ(

−→
d2 ,

−→
d1 ) = 2 ln 2.

At this stage, without further expanding on it, since (29) and (30) in particular imply that

θ(±−→
di ,±−→ei ) = ± ln 2, (41)

we may conclude the following.

Proposition 1. In a Minkowskian plane E2
1 the standard basic vectors {±−→e1 ,±−→e2 } are the only unit vectors

which bisect the null vectors {±−→
d1 ,±−→

d2}.

Next, for an arbitrary pair of null vectors, their oriented Minkowskian angle is defined as to
be given by the oriented Minkowskian angle between their normalised null vectors. In addition,
for any pair of null directions or diagonals Di and Dj, their Minkowskian angle is defined to be the

Minkowskian angle between their normalised vectors
−→
d i and

−→
d j; θ(Di, Dj) = θ(

−→
di ,

−→
dj ).

6. The Unoriented Minkowskian Angles and Pseudo-Angles

For two vectors −→v and −→w of any causal characters each and in whatever combination together,
let θ(−→v ,−→w ) be their oriented Minkowskian angle when both −→v and −→w are non-null vectors or when
both are null vectors (cfr. Sections 3 and 5) or their oriented Minkowskian pseudo-angle when one of the
vectors −→v and −→w is null and the other one is non-null (cfr. Section 4). In any case, from (6), it follows
that θ(−→w ,−→v ) = −θ(−→v ,−→w ), so that it makes sense to define θ(−→v ,−→w ) = |θ(−→v ,−→w )| = |θ(−→w ,−→v )| as
the unoriented or absolute Minkowskian angle or Minkowskian pseudo-angle between these vectors. And, the
unoriented or absolute Minkowskian angles between two non-null directions and between two null directions
and the unoriented or absolute Minkowskian pseudo-angles between one null and one non-null direction are
likewise defined.

In a Minkowskian plane E2
1, geometrically, the two most distinguished directions may very well

be the null directions D1 and D2; their absolute Minkowskian angle is given by θ(D1, D2) = 2 ln 2. The
absolute Minkowskian pseudo-angles between the co-ordinate axes A1 and A2 (spanned respectively by the
standard unit vectors ±−→e1 and ±−→e2 ) and the null diagonals D1 and D2 (spanned by ±−→

d1 and ±−→
d2 ) being

given by θ(Ai, Dj) = ln 2, (i, j ∈ {1, 2}), and, further also taking into account (29) and (30), in a way,
Proposition 1 may be reformulated as follows.

Proposition 2. In a Minkowskian plane E2
1, the co-ordinate axes A1 and A2 are geometrically characterised as

the only two bisectrices of the null lines D1 and D2.

7. A Geometrical Meaning of the Minkowskian Angles and Pseudo-Angles

Let us recall that the Minkowskian arclengths L on the unit Minkowskian circle H : z2
1 − z2

2 = ±1, say,
for simplicity, from e1 = (1, 0) to the points −→p = (p1, p2) on its upper branch H+

2 : z2 = (z2
1 − 1)

1
2 , z1 ≥ 1,

are given by
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L(−→e 1,−→p ) =
∫ p1

1 |1 − (dz2/dz1)
2|−1/2dz1

=
∫ p1

1 (z2
1 − 1)−1/2dz1

= ln{z1 + (z2
1 − 1)1/2}∣∣p1

1

= ln(p1 + p2),

(42)

cfr. Figure 7; (the readers likely will have thought about this already when observing the former
formulae (2) and (3), from Helzer). And for geometrical interpretations of oriented Minkowskian angles
and pseudo-angles, it is good “to count" Minkowskian lengths on and of arcs on the Euclidean hyperbola’s H
taking into account their orientations as indicated in Figure 8.

Figure 7. Arclengths on the unit circle.

Next, Minkowskian pseudo-distances d̃ between two points on the same half straight null line
z2 = ±z1, z1 > 0 or z1 < 0, and the Minkowskian pseudo-lengths of the corresponding parts on the diagonals
D1 and D2 are defined by the Minkowskian lengths of arcs on H that are determined thereupon by the Euclidean
orthogonal projections of these points on D1 or D2. To be more concrete, say, for points −→q = (q, q) and−→r = (r, r), (q, r ∈ R+

0 ), on D1 : z2 = z1, z1 > 0, their Minkowskian pseudo-distance d̃(−→q ,−→r ) is
defined by the Minkowskian arclength L(−̃→q , −̃→r ) on H+

1 between the Euclidean projections −̃→q and −̃→r
on H+

1 of the points −→q and −→r of D1 orthogonal in the Euclidean sense to D1, cfr. Figure 9:

d̃(−→q ,−→r ) = L(−̃→q , −̃→r )

= θ(−̃→q , −̃→r ).
(43)

And, finally, let us—in maybe too primitive a way—think C = H ∪ {±−→
d 1,±−→

d 2} as a closed central
curve, centered at the origin O of the Minkowskian plane E2

1, having precisely one point in each radial
direction going out of O. Then, any pair of directions in this plane well determines a pair of points on
C. In addition, the oriented Minkowskian angles or pseudo-angles between these directions then correspond to
the oriented arclengths on H and the oriented pseudo-lengths of parts of the null lines D1 and D2, whereby these
pseudo-lengths come about in an oriented way as suggested in Figure 10. By way of examples, here are
the Minkowskian angles or pseudo-angles θ between some unit spacelike or timelike vectors and
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some normalised null vectors as well, whereby −→u 1 = ( 5
4 , 3

4 ),
−→u 2 = ( 3

4 , 5
4 ),

−→u 3 = (−3
4 , 5

4 ) and −→u 4 =

(−5
4 , 3

4 ) : θ(−→e 1,
−→
d 1) = ln 2, θ(−→u 1,

−→
d 1) = 0, θ(

−→
d 1,

−→
d 2) = −2 ln 2, θ(−→e 1,−→u 2) = ln 2, θ(−→e 1,−→e 2) =

0, θ(−→e 1,−→u 3) = − ln 2, θ(
−→
d 1,−→u 2) = 0, θ(

−→
d 1,−→u 3) = −2 ln 2, θ(−→e 1,−→u 4) = − ln 2, θ(−→e 1,−→p ) =

ln(p1 + p2), θ(−→e 1,−→u 1) = ln 2, θ(−→u 1,−→p 1) = ln(p1 + p2)− ln 2 ; (cfr. Figure 11).

Figure 8. On orienting the unit circle.

Figure 9. Minkowskian pseudo-lengths.
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Figure 10. The central angles basic curve.

Figure 11. Some examples.

8. Conclusions

The 4D physical space-time of Minkowski with co-ordinates (x, y, z; t) is the 4D pseudo-Euclidean
geometrical space that is the product of a negative definite Euclidean line (R,−dt2) and a
positive definite 3D Euclidean space (R3, dx2 + dy2 + dz2), whereby the time-space scaling
“i seconds = 300 000 kilometers” is taken into account. At any given moment of time t, the angles
between any two directions in the physical 3D Euclidean (x, y, z) space at that moment are their
standard original Euclidean angles; they are algebraically determined in terms of the group of the
Euclidean rotations in a plane around a same point in this plane and they are geometrically measured
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by the Euclidean lengths of corresponding arcs on a Euclidean unit circle. From a natural scientific
point of view there has been no immediate need to be occupied with looking for meaningful angles
between two directions with arbitrary causal characters in planes of Minkowski. However, for two
spacelike directions and geometrically equivalently for two timelike directions in a Minkowskian plane
that belong to a same branch of the Minkowskian unit circle -an Euclidean orthogonal hyperbola-,
their Minkowskian angles classically have been determined algebraically and measured geometrically
by the straightforward adaptation of the traditional Euclidean approaches, now making use of the
Minkowskian rotations with a same center and with Minkowskian lengths of corresponding arcs on a
Minkowskian unit circle.

On the other hand, the algebraical definition in Minkowskian geometry of a proper notion of
angle in the Euclidean way fails for directions that from a center point toward different branches of a
Minkowskian unit circle with this center and also fails when null directions are involved. In the present
paper, a geometrical generalisation of the Euclidean measure of angles between any two directions
as the Euclidean lengths of corresponding arcs on a Euclidean unit circle is given for any two
directions with arbitrary causal characters in a Minkowskian plane, by a well-defined notion of the
Minkowskian angles or pseudo-angles of these two directions. This notion bases on the measurements
of Minkowskian lengths and pseudo-lengths of corresponding parts of a Minkowskian unit circle
and of parts of the asymptotes of this Euclidean orthogonal hyperbola. However imperfect that this
extension of Euclidean angles to Minkowskian angles and pseudo-angles cannot help to be, it does
have qualities of generality and of geometrical naturalness (up to an eventual change of calibration
related to the choice of normalisation of the null vectors). And, of course, the classical Minkowskian
angles between any two spacelike directions and between any two timelike directions within a same
branch of the Minkowskian unit circle do properly fit in well into the above given notion of central
Minkowskian angles and pseudo-angles.
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1. Introduction

Curves, which are the basic objects of study, have attracted much attention from many
mathematicians and physicists [1–3]. Due to the need to observe the properties of special curves, a
renewed interest in curves has developed, such as rectifying curves in different spaces. The space curves
whose position vectors always lie in their rectifying planes are called rectifying curves. B.Y. Chen gave
the notion of rectifying curves in [4]. In [5], the relationship between centrodes of space curves and
rectifying curves was revealed by F. Dillen and B.Y. Chen. In kinematics, the centrode is the path
traced by the instantaneous center of rotation of a rigid plane figure moving in a plane, and it has wide
applications in mechanics and joint kinematics (see [6–9]).

Since B.Y. Chen’s important work, the notion of rectifying curves was extended to other ambient
spaces [10–13]. As we know, regular curves determine the curvature functions and torsion functions,
which can provide valuable geometric information about the curves by the Frenet frames of the original
curves. If space curves have singular points, the Frenet frames of these curves cannot be constructed.
However, S. Honda and M. Takahashi [14] gave the definition of framed curves. Framed curves are
space curves with moving frames, and they may have singular points. They are the generalizations of
not only Legendrian curves in unit tangent bundles, but also regular curves with linear independent
conditions (see [15]).

Inspired by the above work, in order to investigate the properties of rectifying curves with
singular points, we should give the concept of framed rectifying curves. The difficulties arise because
tangent vectors vanish at singular points, so it is impossible to normalize tangent vectors, principal
normal vectors, and binormal vectors in the usual way. Here, we define the generalized tangent vector,
the generalized principle normal vector, and the generalized binormal vector, respectively. Actually,
at regular points, they are just the usual tangent vector, principle vector, and binormal vector. We
obtain moving adapted frames for framed rectifying curves, and some smooth functions similar to
the curvature of regular curves are defined by using moving adapted frames. These functions are
referred to as framed curvature, which is very useful to analyze framed rectifying curves. On this
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basis, we investigate the properties of framed rectifying curves and give some sufficient and necessary
conditions for the judgment of framed rectifying curves. Moreover, we give a method for constructing
framed rectifying curves. In this paper, framed helices are also defined. We discuss the relationship
between framed rectifying curves and framed helices in terms of the ratio of framed curvature. In
particular, the ratio of framed curvature for framed rectifying curves has extrema at singular points. In
addition, we give the notions of the centrodes of the framed curves and circular rectifying curves and
reveal the relationships between framed rectifying curves and these special curves.

The organization of this paper is as follows. We review the concept of the framed curve and define
an adapted frame and framed curvature for the framed curve in Section 2. We provide some sufficient
and necessary conditions for the judgment of framed rectifying curves in Section 3. An important
result, which explicitly determines all framed rectifying curves, is given in Section 4. Moreover, the
relationships between framed rectifying curves and framed helices and framed rectifying curves and
centrodes are given in Sections 5 and 6, respectively. At last, we consider the contact between framed
rectifying curves and model curves (circular rectifying curves) in Section 7.

2. Framed Curve and Adapted Frame

Let R3 be the three-dimensional Euclidean space, and let γ : I → R3 be a curve with singular
points. In order to investigate this curve, we will introduce the framed curve (cf., [14]). We denote the
set Δ2 as follows:

Δ2 = {μ = (μ1, μ2) ∈ R3 ×R3|μi · μj = δij, i, j = 1, 2}.

Then, Δ2 is a three-dimensional smooth manifold. Let μ = (μ1, μ2) ∈ Δ2. We define a unit vector
ν = μ1 × μ2 in R3. This means that ν is orthogonal to μ1 and μ2.

Definition 1. We say that (γ, μ) : I → R3 × Δ2 is a framed curve if 〈γ′(s), μi(s)〉 = 0 for all s ∈ I and
i = 1, 2. We also say that γ : I → R3 is a framed base curve if there exists μ : I → Δ2 such that (γ, μ) is a
framed curve.

Let (γ, μ1, μ2) : I → R3 × Δ2 be a framed curve and ν(s) = μ1(s)× μ2(s). Then, we have the
following Frenet–Serret formula:⎧⎪⎨⎪⎩

μ′
1(s) = l(s)μ2(s) + m(s)ν(s)

μ′
2(s) = −l(s)μ1(s) + n(s)ν(s)

ν′(s) = −m(s)μ1(s)− n(s)μ2(s).

Here, l(s) = 〈μ′
1(s), μ2(s)〉, m(s) = 〈μ′

1(s), ν(s)〉 and n(s) = 〈μ′
2(s), ν(s)〉. In addition, there exists

a smooth mapping α : I → R such that:

γ′(s) = α(s)ν(s).

The four functions (l(s), m(s), n(s), α(s)) are called the curvature of γ. If m(s) = n(s) = 0,
then ν′(s) = 0. In this paper, we consider the case ν′(s) 	= 0. Obviously, α(s0) = 0 if and only if s0 is a
singular point of γ. We can use the curvature of the framed curve to analyze the singular points.

In [14], the theorems of the existence and uniqueness for framed curves were shown as follows:

Theorem 1. Let (l, m, n, α) : I → R4 be a smooth mapping. There exists a framed curve (γ, μ) : I → R3 × Δ2

whose associated curvature of the framed curve is (l, m, n, α).

Theorem 2. Let (γ, μ) and (γ, μ) : I → R3 × Δ2 be framed curves whose curvatures of the framed curves
(l, m, n, α) and (l, m, n, α) coincide. Then, (γ, μ) and (γ, μ) are congruent as framed curves.
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Let (γ, μ1, μ2) : I → R3 × Δ2 be a framed curve with the curvature (l(s), m(s), n(s), α(s)). μ1 and
μ2 are the base vectors of the normal plane of γ(s), as a case similar to the Bishop frame for regular
curves [16]. We define (μ1, μ2) ∈ Δ2 by:(

μ1(s)
μ2(s)

)
=

(
cos θ(s) − sin θ(s)
sin θ(s) cos θ(s)

) (
μ1(s)
μ2(s)

)
.

Here, θ(s) is a smooth function. Obviously, (γ, μ1, μ2) → R3 × Δ2 is also a framed curve, and we have:

ν(s) = μ1(s)× μ2(s) = μ1(s)× μ2(s) = ν(s).

By straightforward calculations, we have:

μ′
1(s) =(l(s)− θ′(s)) sin θ(s)μ1(s) + (l(s)− θ′(s)) cos θ(s)μ2(s)

+ (m(s) cos θ(s)− n(s) sin θ(s))ν(s),

μ′
2(s) =− (l(s)− θ′(s)) cos θ(s)μ1(s) + (l(s)− θ′(s)) sin θ(s)μ2(s)

+ (m(s) sin θ(s) + n(s) cos θ(s))ν(s).

Let θ : I → R be a smooth function that satisfies m(s) sin θ(s) = −n(s) cos θ(s). Assume that
m(s) = −p(s) cos θ(s), n(s) = p(s) sin θ(s), then we have:

ν′(s) = −m(s)μ1(s)− n(t)μ2(s) = p(s)(cos θ(s)μ1(s)− sin θ(s)μ2(s)) = p(s)μ1(s),

μ′
1(s) =(l(s)− θ′(s)) sin θ(s)μ1(s) + (l(s)− θ′(s)) cos θ(s)μ2(s) + (m(s) cos θ(s)− n(s) sin θ(s))ν(s)

=− p(s)ν(s) + (l(s)− θ′(s))μ2(s)

and:

μ′
2(s) =− (l(s)− θ′(s)) cos θ(s)μ1(s) + (l(s)− θ′(s)) sin θ(s)μ2(s) + (m(s) sin θ(s) + n(s) cos θ(s))ν(s)

=− (l(s)− θ′(s))μ1(s).

The vectors ν(s), μ1(s), μ2(s) form an adapted frame along γ(s), and we have the following
Frenet–Serret formula: ⎛⎜⎝ ν′(s)

μ′
1(s)

μ′
2(s)

⎞⎟⎠ =

⎛⎜⎝ 0 p(s) 0
−p(s) 0 q(s)

0 −q(s) 0

⎞⎟⎠
⎛⎜⎝ ν(s)

μ1(s)
μ2(s)

⎞⎟⎠ .

We call the vectors ν(s), μ1(s), μ2(s) the generalized tangent vector, the generalized principle
normal vector, and the generalized binormal vector of the framed curve, respectively, where p(s) =
|ν′(s)| > 0 and q(s) = l(s) − θ′(s). The functions (p(s), q(s), α(s)) are referred to as the framed
curvature of γ(s).

Proposition 1. Let (γ, μ1, μ2) : I → R3 × Δ2 be a framed curve. The relationships among the curvature κ(s),
the torsion τ(s), and the framed curvature (p(s), q(s), α(s)) of a regular curve are given by:

κ(s) =
p(s)
|α(s)| , τ(s) =

q(s)
α(s)

.

Proof. By straightforward calculations, we have:

γ′(s) = α(s)ν(s),
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γ′′(s) = α′(s)ν(s) + α(s)p(s)μ1(s),

γ′′′(s) = (α′′(s)− α(s)p2(s))ν(s) + (2α′(s)p(s) + α(t)p′(s))μ1(s) + α(s)p(s)q(s)μ2(s).

It follows:

|γ′(s)| = |α(s)|,

|γ′(s)× γ′′(s)| = α2(s)p(s),

det(γ′(s), γ′′(s), γ′′′(s)) = α3(s)p2(s)q(s).

Therefore, the relationships are shown by:

κ(s) =
|γ′(s)× γ′′(s)|

|γ′(s)|3 =
p(s)
|α(s)| ,

τ(s) =
det(γ′(s), γ′′(s), γ′′′(s))

|γ′(s)× γ′′(s)|2 =
q(s)
α(s)

.

3. Framed Rectifying Curves

In this section, the framed rectifying curves are defined, and we investigate their properties.

Definition 2. Let (γ, μ1, μ2) : I → R3 × Δ2 be a framed curve. We call γ a framed rectifying curve if its
position vector γ satisfies:

γ(s) = λ(s)ν(s) + ξ(s)μ2(s)

for some functions λ(s) and ξ(s).

Some properties of the framed rectifying curves are shown in the following theorem.

Theorem 3. Let (γ, μ1, μ2) : I → R3 × Δ2 be a framed curve with p(s) > 0. The following statements
are equivalent.

(i) The relation between the framed curvature and the framed curve is as follows:

〈γ(s), ν(s)〉′ = α(s).

(ii) The distance squared function satisfies f (s) = 〈γ(s), γ(s)〉 = 〈γ(s), ν(s)〉2 + C for some positive
constant C.

(iii) 〈γ(s), μ2(s)〉 = ξ, ξ is a constant.

(iv) γ(s) is a framed rectifying curve.
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Proof. Let γ(s) be a framed rectifying curve. By definition, there exist some functions λ(s) and ξ(s)
such that:

γ(s) = λ(s)ν(s) + ξ(s)μ2(s). (1)

By using the Frenet–Serret formula and taking the derivative of (1) with respect to s, we have:

λ′(s) = α(s), λ(s)p(s) = ξ(s)q(s), ξ ′(s) = 0. (2)

From the first and third equalities of (2), we have that 〈γ(s), ν(s)〉′ = λ′(s) = α(s). This proves
Statement (i). Since ξ ′(s) = 0, we can obtain Statement (iii). From (1) and (2), we have that
〈γ(s), γ(s)〉 = λ2(s) + ξ2 = 〈γ(s), ν(s)〉2 + C, C = ξ2 is positive. This proves Statement (ii).

Conversely, let us assume that Statement (i) holds.

〈γ(s), ν(s)〉′ = 〈α(s)ν(s), ν(s)〉+ p(s)〈γ(s), μ1(s)〉 = α(s).

Since p(s) > 0, by assumption, we have 〈γ(s), μ1(s)〉 = 0. This means the curve is a framed
rectifying curve.

If Statement (ii) holds, 〈γ(s), γ(s)〉 = 〈γ(s), ν(s)〉2 + C, where C is a positive constant.
Then, we have:

2〈γ(s), α(s)ν(s)〉 = 2〈γ(s), ν(s)〉(α(s) + p(s)〈γ(s), μ1(s)〉)

and 〈γ(s), μ1(s)〉 = 0. Therefore, γ(s) is a framed rectifying curve. Statement (iii) implies that the
curve is a framed rectifying curve by an appeal to the Frenet–Serret formula.

Remark 1. s0 is a singular point of the framed rectifying curve γ if and only if α(s0) = 0. From (2) and
Statement (ii), we know that the ratio q(s)/p(s) and the distance squared function f (s) have extrema at s0.

4. Construction Approach of Framed Rectifying Curves

In [4], the construction approach of regular rectifying curves is given by B. Y. Chen in Theorem 3,
but it is not suitable for the non-regular case. In this section, a new construction approach is provided,
which can be applied to both regular rectifying curves and non-regular rectifying curves. Moreover,
it explicitly determines all framed rectifying curves in Euclidean three-space. First, we introduce the
notion of the framed spherical curve.

Definition 3. Let (γ, μ1, μ2) : I → R3 × Δ2 be a framed curve. We call γ a framed spherical curve if the
framed base curve γ is a curve on S2.

We show the key theorem in this section as follows.

Theorem 4. Let (γ, μ1, μ2) : I → R3 × Δ2 be a framed curve with p(s) > 0. Then, γ is a framed rectifying
curve if and only if:

γ(s) = ρ(tan2(
∫

|g′(s)|ds + C) + 1)
1
2 g(s), (3)

where C is a constant, ρ is a positive number, and g(s) is a framed spherical curve.

Proof. Let γ be a framed rectifying curve. From Theorem 3, we have 〈γ(s), γ(s)〉 = λ2(s) + ρ2,
where ρ is a positive number. The framed rectifying curve γ(s) can be written as:

γ(s) = (λ2(s) + ρ2)
1
2 g(s), (4)
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where g(s) is a framed spherical curve. By taking the derivative of (4), we have:

γ′(s) = λ(s)α(s)

(λ2(s) + ρ2)
1
2

g(s) + (λ2(s) + ρ2)
1
2 g′(s). (5)

As γ′(s) = α(s)ν(s), g′(s) is orthogonal to g(s). Therefore, Equality (5) implies:

|g′(s)| = | ρα(s)
λ2(s) + ρ2 |,

and we have ∫
|γ′(s)|ds + C = arctan(

λ(s)
ρ

).

Then, λ(s) = ρ tan(
∫ |g′(s)|ds + C), and substituting this equality into (4) yields (3).

Conversely, assume γ(s) is a framed curve defined by:

γ(s) = ρ(tan2(
∫

|g′(s)|ds + C) + 1)
1
2 g(s) (6)

for a constant C, a positive number ρ, and a framed curve g(s) on S2. Let λ̃(s) = ρ tan(
∫ |g′(s)|ds + C)

and λ̃′(s) = α̃′(s). Then,
∫ |g′(s)|ds + C = arctan( λ̃(s)

ρ ). By taking the derivative of this equality,
we get:

ρα̃(s)
λ̃2(s) + ρ2

= |g′(s)| (7)

and:

γ′(s) = λ̃(s)α̃(s)

(λ̃2(s) + ρ2)
1
2

g(s) + (λ̃2(s) + ρ2)
1
2 g′(s). (8)

Equality (7) and Equality (8) imply that |g′(s)| = α̃(s), since g′(s) = λ(s)ν(s). We have
α̃(s) = ±λ(s), λ̃(s) = ±λ(s). Then:

γ(s) = (λ2(s) + ρ2)
1
2 g(s), (9)

which shows that the distance squared function satisfies Statement (ii) in Theorem 3. It follows that
γ(s) is a framed rectifying curve.

Framed rectifying curves include regular rectifying curves and non-regular rectifying curves.
We will give two examples.

Example 1. Let g1(s) = ( 1
2 cos 2s, 1

2 sin 2s,
√

3
2 ), s ∈ (−π

2 , π
2 ), then g1(s) is a space curve on S2. We have

|g′1(s)| = 1. Let ρ = 1 and C = 0. By Theorem 4, we know that the curve:

γ1(s) = (
cos 2s
2 cos s

, sin s,

√
3

2 cos s
), s ∈ (−π

2
,

π

2
)

is a regular rectifying curve in R3 (Figure 1).
If γ(s) is a framed curve with singular points, this is different from the case that γ(s) is a regular curve.

Example 2. Let g2(s) = (cos s2 cos s3, sin s2 cos s3, sin s3), then g2(s) is a curve in S2 and |g′2(s)| =

(4s2 cos2 s3 + 9s4)
1
2 . Let ρ = 1 and C = 0. By Theorem 4, we know that the curve:

γ2(s) = (tan2(
∫
(4s2 cos2 s3 + 9s4)

1
2 ds) + 1)

1
2 (cos s2 cos s3, sin s2 cos s3, sin s3)
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is a framed rectifying curve with a cusp in R3 (Figure 2).

Figure 1. The red curve γ1(s) is the regular rectifying curve, and the green curve g1(s) is a curve on S2.

Figure 2. The red curve γ2(s) is the framed rectifying curve, and the green curve g2(s) is a curve on S2.

5. Framed Rectifying Curves versus Framed Helices

In this section, we define the framed helices and investigate the relations between framed helices
and framed rectifying curves.

Definition 4. Let (γ, μ1, μ2) : I → R3 × Δ2 be a framed curve with p(s) > 0. We call γ a framed helix if
there exists a fixed unit vector ζ satisfying:

〈ν(s), ζ〉 = cos ω

for some constant ω.

We now consider the ratio (q/p)(s) of the framed helix.

〈ν(s), ζ〉 = cos ω. (10)

By taking the derivative of (10), as p(s) > 0 and 〈ν(s), ζ〉′ = p(s)〈μ1(s), ζ〉, we have:

〈μ1(s), ζ〉 = 0. (11)

We know that ζ is in the plane whose basis vectors are ν(s) and μ2(s). As 〈ν(s), ζ〉 = cos ω, we
have 〈μ2(s), ζ〉 = ± sin ω. By taking the derivative of (11), we get:

−p(s)〈ν(s), ζ〉+ q(s)〈μ2(s), ζ〉 = 0,

then:

q(s)
p(s)

= ± cot ω. (12)
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For framed rectifying curves, a simple characterization in terms of the ratio q(s)/p(s) is shown in
the following theorem.

Theorem 5. Let (γ, μ1, μ2) : I → R3 × Δ2 be a framed curve with p(s) > 0, then γ(s) is a framed rectifying
curve if and only if q(s)/p(s) = c1

∫
α(s)ds + c2 for some constants c1 and c2, with c1 	= 0.

Proof. The proof is similar to that of Theorem 2 in [4]. If γ(s) is a framed rectifying curve, from (2),
we have that q(s)/p(s) = λ(s)/ξ(s) = λ(s)/ξ for some constant ξ. Since λ′(s) = α(s) and ξ 	= 0,
then the ratio of q(s) and p(s) satisfies q(s)/p(s) = c1

∫
α(s)ds + c2 for some constants c1 and c2,

with c1 	= 0.
Conversely, suppose that (γ, μ1, μ2) : I → R3 × Δ2 is a framed curve with p(s) > 0,

and q(s)/p(s) = c1
∫

α(s)ds + c2 for some constants c1 and c2, with c1 	= 0. If we put ξ = 1/c1

and λ(s) =
∫

α(s)ds + c2/c1, hence, by invoking the Frenet–Serret formula, we obtain:

d
ds

[γ(s)− λ(s)ν(s)− ξμ2(s)] = (ξq(s)− λ(s)p(s))μ1(s) = 0.

This means that γ(s) is congruent to a framed rectifying curve.

Remark 2. If γ is a framed rectifying curve, we have λ(s)p(s) = ξq(s) for some constant ξ. If ξ = 0,
then λ(s)p(s) = 0, as p(s) > 0, so λ(s) ≡ 0. This means that γ(s) is a point.

After that, we reveal the relationship between the framed rectifying curves and the framed helices.
We have the following theorem:

Theorem 6. Let (γ, μ1, μ2) : I → R3 × Δ2 be a framed curve with p(s) > 0, the framed curvature functions
satisfying (q/p)(s) = c1

∫
α(s)ds + c2, for some constants c1 and c2. If c1 = 0, we will get framed helices;

otherwise, we get framed rectifying curves.

6. Framed Rectifying Curves versus Centrodes

The centrodes play important roles in joint kinematics and mechanics (see [5]). We can define the
centrodes of framed curves. For a framed curve γ in R3, the curve defined by the vector d = qν + pμ2,
which is called the centrode of framed curve γ.

The following results establish some relationships between framed rectifying curves
and centrodes.

Theorem 7. The centrode of a framed curve with nonzero constant framed curvature function p(s) and
nonconstant framed curvature function q(s) is a framed rectifying curve. Conversely, the framed rectifying
curve in R3 is the centrode of some framed curve with nonconstant framed curvature function q(s) and nonzero
constant framed curvature function p(s).

Proof. Let γ(s) be a framed curve with nonzero constant framed curvature p(s) and nonconstant
framed curvature q(s). Consider the centrode of γ(s):

d(s) = q(s)ν(s) + p(s)μ2(s).

d(s) can also be seen as a framed curve. Let the vectors μd,1(s), μd,2(s), νd(s) be the adapted frame
along d(s). By differentiating the centrode, then we have d′(s) = q′(s)ν(s), which implies that unit
vector νd(s) and unit vector ν(s) at the corresponding points are parallel. Then, the first equality
in Frenet–Serret formula implies that μd,1(s) and μ1(s) at the corresponding points are also parallel.
Hence, μd,2(s) and μ2(s) are parallel, as well. Therefore, by definition, the centrode d(s) is a framed
rectifying curve.
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Conversely, let γ(s) be a framed rectifying curve in R3. From Theorem 3, we have:

λ′(s) = α(s), λ(s)p(s) = cq(s) (13)

for some constant c.
Let f (s) = 1

c
∫ s

s0
p(u)du. There exists a framed curve β(t) whose framed curvature satisfies

pβ(t) = c and qβ(t) = λ(t).
Let us consider the centrode of β, which is given by dβ(t) = λ(t)νβ(t) + cμβ,2(t), and its

reparametrization χ(s) = dβ( f (s)). Then:

χ(s) = λ( f (s))νβ( f (s)) + cμβ,2( f (s)).

This means that χ′(s) = α(s)νβ( f (s)); thus, νχ(s) = νβ( f (s)). Differentiating twice, the
framed curvature functions of χ are given by αχ(s) = α(s), pχ(s) = pβ(s) f ′(s) = p(s) and
qχ(s) = qβ(s) f ′(s) = q(s).

Therefore, the framed curves γ(s) and χ(s) have the same framed curvature functions. From
the existence theorem and the uniqueness theorem, it follows that χ is congruent to γ. Consequently,
the framed rectifying curve γ is the centrode of a framed curve with nonconstant framed curvature
q(s) and nonzero constant framed curvature p.

The framed curve in Theorem 7 can be replaced by a framed curve with nonzero constant framed
curvature q and nonconstant framed curvature p(s). In fact, we also have the following theorem:

Theorem 8. The centrode of a framed curve with nonzero constant framed curvature function q(s) and
nonconstant framed curvature function p(s) is a framed rectifying curve. Conversely, one framed rectifying
curve in R3 is the centrode of some framed curve with nonconstant framed curvature function p(s) and nonzero
constant framed curvature function q(s).

The proof can be given in as similar way as Theorem 7.

Remark 3. The centrode of a framed curve with nonzero constant framed curvature function p(s) and nonzero
constant framed curvature function q(s) is a point.

7. Contact between Framed Rectifying Curves

In this section, the contact between framed rectifying curves is considered. We now introduce the
notion of circular rectifying curves as follows.

Definition 5. Let γ(s) be a framed rectifying curve and:

γ(s) = ρ(tan2(
∫

|g′(s)|ds + C) + 1)
1
2 g(s),

where ρ is a positive number and C is a constant. We call γ a circular rectifying curve if g(s) is a circle on S2.

Let (γ, μ1, μ2) : I → S2 × Δ2 be a framed spherical curve. We choose μ1 = γ, then ν = γ × μ2 and
γ′(s) = α(s)ν(s). We show that the spherical Frenet–Serret formula of γ is as follows:⎧⎪⎨⎪⎩

γ′(s) = α(s)ν(s)
μ′

2(s) = l(s)ν(s)
ν′(s) = −α(s)γ(s)− l(s)μ2(s),

where 〈μ′
2(s), ν(s)〉 = l(s). By the curvature functions α(s) and l(s), we show the following proposition

for framed spherical curves:
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Proposition 2. Let (γ, γ, μ2) : I → S2 × Δ2 be a framed spherical curve, then γ is a circle if and only if
α(s) 	= 0 and l(s)/α(s) = constant.

Proof. If α(s) 	= 0 and (l/α)(s) = k, where k is a constant, then we consider a normal vector field
N(s) = k2

k2+1 γ(s)− k
k2+1 μ2(s). By taking the derivative of N(s), we have N ′(s) = k2

k2+1 (α(s)ν(s)−
α(s)ν(s)) = 0. This means that N(s) is a constant vector. Moreover, we have:

〈N(s), γ(s)− N(s)〉 = 〈 k2

k2 + 1
γ(s)− k

k2 + 1
μ2(s),

1
k2 + 1

γ(s) +
k

k2 + 1
μ2(s)〉 = 0.

This means that γ is the intersection of a plane and S2, so γ is a circle.
Let γ be a circle on S2. Obviously, γ is a plane curve and α(s) 	= 0, so that 〈γ′(s), γ′′(s)×γ′′′(s)〉 =

0. Then, we can calculate that 〈γ′(s), γ′′(s) × γ′′′(s)〉 = α4(s)l′(s) − α3(s)α′(s)l(s). Since α(s) 	= 0,
we have α(s)l′(s)− α′(s)l(s) = 0. This is equivalent to (l/α)′(s) = 0. Thus, l(s)/α(s) = constant. �

As a corollary of Proposition 2, we have the following result:

Corollary 1. Let (γ, γ, μ2) : I → S2 × Δ2 be a framed spherical curve, then γ is a great circle on S2 if and
only if α(s) 	= 0 and l(s) = 0.

Now, we review the notions of contact between framed curves [14]. Let (γ, μ1, μ2) : I → R3 × Δ2;
s → (γ(s), μ1(s), μ2(s)) and (γ̃, μ̃1, μ̃2) : Ĩ → R3 × Δ2; u → (γ̃(u), μ̃1(u), μ̃2(u)) be framed curves.
We say that (γ, μ1, μ2) and (γ̃, μ̃1, μ̃2) have kth order contact at s = s0, u = u0 if:

(γ, μ1, μ2)(s0) = (γ̃, μ̃1, μ̃2)(u0),
d
ds

(γ, μ1, μ2)(s0) =
d

du
(γ̃, μ̃1, μ̃2)(u0), . . . ,

dk−1

dsk−1 (γ, μ1, μ2)(s0) =
dk−1

duk−1 (γ̃, μ̃1, μ̃2)(u0),
dk

dsk (γ, μ1, μ2)(s0) 	= dk

duk (γ̃, μ̃1, μ̃2)(u0).

In addition, we say that (γ, μ1, μ2) and (γ̃, μ̃1, μ̃2) have at least kth order contact at s = s0, u = u0

if:

(γ, μ1, μ2)(s0) = (γ̃, μ̃1, μ̃2)(u0),
d
ds

(γ, μ1, μ2)(s0) =
d

du
(γ̃, μ̃1, μ̃2)(u0), . . . ,

dk−1

dsk−1 (γ, μ1, μ2)(s0) =
dk−1

duk−1 (γ̃, μ̃1, μ̃2)(u0).

We generally say that (γ, μ1, μ2) and (γ̃, μ̃1, μ̃2) have at least first order contact at any point s = s0,
u = u0, up to congruence as framed curves. As a conclusion of Theorem 3.7 in [14], we show the
following proposition:

Proposition 3. Let (γ, γ, μ2) : I → S2 × Δ2, s → (γ(s), γ(s), μ2(s)) and (γ̃, γ̃, μ̃2) : Ĩ → S2 × Δ2,
u → (γ̃(u), γ̃(u), μ̃2(u)) be framed spherical curves. If (γ, γ, μ2) and (γ̃, γ̃, μ̃2) have at least (k + 1)th order
contact at s = s0, u = u0, we have:

α(s0) = α̃(u0),
d
ds

α(s0) =
d

du
α̃(u0), . . . ,

dk−1

dsk−1 α(s0) =
dk−1

duk−1 α̃(u0), (14)

l(s0) = l̃(u0),
d
ds

l(s0) =
d

du
l̃(u0), . . . ,

dk−1

dsk−1 l(s0) =
dk−1

duk−1 l̃(u0). (15)

Conversely, if the conditions (14) and (15) hold, then (γ, γ, μ2) and (γ̃, γ̃, μ̃2) have at least (k + 1)th order
contact at s = s0, u = u0, up to congruence as framed spherical curves.

120



Mathematics 2019, 7, 37

Now, we consider the contact between circles and framed spherical curves. We have a corollary
of Propositions 2 and 3 as follows:

Corollary 2. Let (γ, γ, μ2) : I → S2 × Δ2 be a framed spherical curve. γ and a circle have at least (k + 1)th

order contact at s = s0 if and only if there exists a constant σ such that:

l(s0) = σα(s0),
d
ds

l(s0) = σ
d
ds

α(s0), . . . ,
dk−1

dsk−1 l(s0) = σ
dk−1

dsk−1 α(s0).

For the construction of the framed rectifying curve in Theorem 4, we fix positive number ρ and
constant C. Let gi : I → S2 (i = 1, 2) be framed spherical curves. We know γ1, γ2 have kth order contact
at s0 if and only if g1, g2 have kth order contact at s0. By Corollary 2, we have the following theorem,
which can describe the contact between framed rectifying curves and circular rectifying curves.

Theorem 9. Let γ be a framed rectifying curve and α(s) and l(s) be curvature functions of the corresponding
framed spherical curve. Then, γ and a circular rectifying curve have at least kth order (k ≥ 2) contact at s0 if
and only if there exists a constant σ such that:

l(s0) = σα(s0),
d
ds

l(s0) = σ
d
ds

α(s0), . . . ,
dk−2

dsk−2 l(s0) = σ
dk−2

dsk−2 α(s0).
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Abstract: In this paper, we study submanifolds in a Euclidean space with a generalized 1-type Gauss
map. The Gauss map, G, of a submanifold in the n-dimensional Euclidean space, En, is said to be
of generalized 1-type if, for the Laplace operator, Δ, on the submanifold, it satisfies ΔG = f G + gC,
where C is a constant vector and f and g are some functions. The notion of a generalized 1-type Gauss
map is a generalization of both a 1-type Gauss map and a pointwise 1-type Gauss map. With the
new definition, first of all, we classify conical surfaces with a generalized 1-type Gauss map in E3.
Second, we show that the Gauss map of any cylindrical surface in E3 is of the generalized 1-type.
Third, we prove that there are no tangent developable surfaces with generalized 1-type Gauss maps
in E3, except planes. Finally, we show that cylindrical hypersurfaces in En+2 always have generalized
1-type Gauss maps.

Keywords: conical surface; developable surface; generalized 1-type Gauss map; cylindrical hypersurface

1. Introduction

The notion of finite type submanifolds in a Euclidean space or a pseudo-Euclidean space was
introduced by Chen in the 1980s [1]. He also extended this notion to a general differential map, namely,
the Gauss map, on the submanifolds. The notions of finite type immersion and finite type Gauss map
are useful tools for investigating and characterizing many important submanifolds [1–12]. Moreover,
Chen et al. dealed with the finite type Gauss map as an immersion and with its relation to the topology
of some submanifolds [13,14].

The simplest type of finite type Gauss map is the 1-type. A submanifold, M, of a Euclidean space
or a pseudo-Euclidean space has a 1-type Gauss map if the Gauss map, G, of M satisfies

ΔG = λ(G + C) (1)

for some λ ∈ R and has a constant vector, C, where Δ denotes the Laplace operator defined on M.
Planes, circular cylinders and spheres in E3 are typical examples of surfaces with 1-type Gauss maps.

As a generalization of a 1-type Gauss map, the first and third authors introduced the notion
of a pointwise 1-type Gauss map of submanifolds in reference [15]. A submanifold is said to have
a pointwise 1-type Gauss map if the Laplacian of its Gauss map, G, takes the form

ΔG = f (G + C) (2)

for a non-zero smooth function, f , and a constant vector, C. More precisely, a pointwise 1-type Gauss
map is said to be of the first kind if C = 0 in (2); otherwise, it is said to be of the second kind. A helicoid,
a catenoid and a right cone in E3 are typical examples of surfaces with pointwise 1-type Gauss maps.

Mathematics 2018, 6, 130; doi:10.3390/math6080130 www.mdpi.com/journal/mathematics123
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Many results of submanifolds with pointwise 1-type Gauss maps in ambient spaces were obtained
in references [6,16–27]. On the other hand, it is well-known that a circular cylinder in E3 has a usual
1-type Gauss map. However, we consider the following cylindrical surface parameterized by

x(s, t) =
( s

2
cos(ln s) +

s
2

sin(ln s),− s
2

cos(ln s) +
s
2

sin(ln s), t
)

.

Then, the Gauss map, G, of the surface is given by

G = (− sin(ln s), cos(ln s), 0).

We can easily show that the Gauss map, G, satisfies

ΔG =
1
s2 (1 + cot(ln s)) G − 1

s2 csc(ln s)(0, 1, 0),

which yields a Gauss map, G, that is neither of usual 1-type, nor of pointwise 1-type.

In this reason, we have the following definition:

Definition 1. A submanifold, M, of a Euclidean space is said to have a generalized 1-type Gauss map if the
Gauss map, G, on M satisfies the equation

ΔG = f G + gC (3)

for some smooth functions ( f , g) and has a constant vector, C.

If both f and g are constant in (3), then M has a 1-type Gauss map. If f = g in (3), then M has
a pointwise 1-type Gauss map. Hence, the notion of a generalized 1-type Gauss map is a generalization
of both a 1-type Gauss map and a pointwise 1-type Gauss map.

In [22], Dursun studied flat surfaces in E3 with a pointwise 1-type Gauss map and proved the
following proposition.

Proposition 1. Let M be a flat surface in E3. Then, M has a pointwise 1-type Gauss map of the second kind if
and only if M is an open part of one of the following surfaces:

(1) A plane in E3,
(2) A right circular cone in E3,
(3) A cylinder, up to a rigid motion, parameterized by

x(s, t) = γ(s) + tβ,

where γ = γ(s) is a unit speed planar base curve with curvature k = k(s) satisfying the ordinary
differential equation

(
dk
ds

)2 = k4(s){ak2(s) + 2bk(s)− 1}
for some real numbers, a and b( 	= 0), and the director vector β = (0, 0, 1).

In this paper, we study developable surfaces in E3: cylindrical surfaces, conical surfaces
and tangent developable surfaces. In Section 3, we completely classify developable surfaces with
generalized a 1-type Gauss map and give some examples. In the last section, we prove that cylindrical
hypersurfaces in En+2 always have generalized 1-type Gauss maps.

Throughout this paper, we assume that all objects are smooth and all surfaces are connected
unless mentioned.
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2. Preliminaries

Let x : M −→ Em be an isometric immersion from an n-dimensional Riemannian manifold, M,
into Em. Denote the Levi–Civita connections of M and Em by ∇ and ∇̃, respectively. Let X and Y be
vector fields tangent to M, and let ξ be a unit normal vector field of M. Then, the Gauss and Weingarten
formulas are given by

∇̃XY = ∇XY + h(X, Y), (4)

∇̃Xξ = −Aξ X + DXξ, (5)

respectively. Here, h is the second fundamental form; D is the normal connection defined on the
normal bundle; and Aξ is the shape operator (or the Weingarten operator) in the direction of ξ on M.
Note that the second fundamental form, h, and the shape operator, Aξ , are related by

〈h(X, Y), ξ〉 = 〈Aξ X, Y〉. (6)

The mean curvature vector field,
−→
H , is defined by

−→
H =

1
n

trh, (7)

where trh is the trace of h. The mean curvature, H, of M is given by H =

√
〈−→H ,

−→
H 〉.

Moreover, the Laplace operator, Δ, acting on a scalar valued function, φ, is given by

Δφ = −
n

∑
i=1

(∇̃ei∇̃ei φ − ∇̃∇ei ei φ), (8)

where {e1, ..., en} is an orthonormal local tangent frame on M. Or, locally, it is expressed as

Δφ = − 1√
g

n

∑
i,j=1

∂

∂xi
(
√

ggij ∂φ

∂xj
), (9)

where (gij) and g denote the inverse matrix and the determinant of the matrix (gij), respectively,
with the coefficients gij of the Riemannian metric 〈·, ·〉 on M induced from that of Em.

3. Surfaces with Generalized 1-Type Gauss Maps

In this section, we completely classify developable surfaces inE3 with a generalized 1-type Gauss map.
A regular surface in E3 whose Gaussian curvature vanishes is called a developable surface, whose

surface is a cylindrical surface, a conical surface or a tangent developable surface [28].
For a hypersurface in a Euclidean space, the next lemma plays an important role in our paper [21].

Lemma 1. Let M be a hypersurface of En+2. Then, the Laplacian of the Gauss map, G, is given by

ΔG = ||AG||2G + (n + 1)∇H, (10)

where ∇H is the gradient of the mean curvature, H; AG is the shape operator of M; and ||AG||2 = tr(A2
G).

Suppose that a developable surface in E3 has a generalized 1-type Gauss map, that is, the Gauss
map G of the surface satisfies the condition

ΔG = f G + gC (11)
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for some smooth functions, f , g, and a constant vector, C. It follows from (10) that M has generalized
1-type Gauss map with C = 0, that is, M has a pointwise 1-type Gauss map of the first kind if and
only if M has a constant mean curvature, H. If f and g are equal to each other with C 	= 0, then M has
a pointwise 1-type Gauss map of the second kind and the results occur in [22]. Therefore, sometimes,
in the proof of this paper, we assume that f 	= g has non-zero functions and C 	= 0.

By combining (10) and (11) and taking the inner product with the orthonormal local frame e1, e2

and G, respectively, we have
2e1 (H) = gC1,

2e2 (H) = gC2,

||AG||2 = f + gC3,

(12)

where C = C1e1 + C2e2 + C3G with C1 = 〈C, e1〉, C2 = 〈C, e2〉 and C3 = 〈C, G〉.

3.1. Conical Surfaces

A conical surface, M, in E3 can be parametrized by

x(s, t) = α0 + tβ(s), s ∈ I, t > 0,

such that 〈β(s), β(s)〉 = 〈β′(s), β′(s)〉 = 1, where α0 is a constant vector. We take the orthonormal
tangent frame, {e1, e2}, on M such that e1 = 1

t
∂
∂s and e2 = ∂

∂t . The Gauss map of M is given by
G = e1 × e2. Through a direct calculation, we have

∇̃e1 e1 = −1
t

e2 −
κg(s)

t
G, ∇̃e1 e2 =

1
t

e1,

∇̃e2 e1 = ∇̃e2 e2 = 0, ∇̃e1 G =
κg

t
e1, ∇̃e2 G = 0,

(13)

where κg(s) = 〈β(s), β′(s) × β′′(s)〉 denotes the geodesic curvature of β in the unit sphere, S2(1).
We may assume that κg(s) 	= 0, s ∈ I; otherwise, the conical surface is an open part of a plane.
Furthermore, by reversing the orientation of the spherical curve, β, we may assume that the geodesic
curvature, κg, of β is positive. It follows from (13) that the mean curvature, H, and the trace, ||AG||2,
of the square of the shape operator are given by

H = −κg(s)
2t

, ||AG||2 =
κ2

g(s)
t2 . (14)

Suppose that M has a generalized 1-type Gauss map, that is, the Gauss map, G, of the conical
surface satisfies (11). Then, since C1 = 〈C, β′〉, C2 = 〈C, β〉 and C3 = 〈C, β′ × β〉, the components
Ci(i = 1, 2, 3) of the constant vector, C, are functions of only s. Let us differentiate C1, C2 and C3 with
respect to e1. Then, from (13), we have the following:

C′
1(s) + C2(s) + κg(s)C3(s) = 0, (15)

C′
2(s)− C1(s) = 0, (16)

C′
3(s)− κg(s)C1(s) = 0. (17)

With the help of (14), (12) can be written as

− 1
t2 κ′g(s) = gC1, (18)

κg(s)
t2 = gC2, (19)
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κ2
g(s)
t2 = f + gC3. (20)

By combining (18) and (19) and using (16), we have

g
(
κg(s)C2

)′
= 0.

Since g 	= 0, κg(s)C2 is a non-zero constant, say c, we obtain

C2 =
c

κg(s)
. (21)

Together with (19), this implies

g =
κ2

g(s)
ct2 , (22)

and hence, from (18), we get

C1 = − cκ′g(s)
κ2

g(s)
. (23)

Thus, it follows from (15) that we have

C3 =
c
(

κg(s)κ′′g (s)− 2κ′g(s)
2 − κ2

g(s)
)

κ4
g(s)

. (24)

Note that the function f is determined by (20), (22) and (24).
Now, we have ϕ(s) = 1/κg(s) > 0. Then, (21) and (23) become, respectively,

C2 = cϕ (25)

and
C1 = cϕ′. (26)

Furthermore, it follows from (17) and (24) that

C3 = −c(ϕϕ′′ + ϕ2) (27)

and

C′
3 = c

ϕ′

ϕ
. (28)

Thus, from (27) and (28) we see that the function ϕ must satisfy the following nonlinear differential
equation of order 3:

ϕ2 ϕ′′′ + ϕϕ′ϕ′′ + 2ϕ2 ϕ′ + ϕ′ = 0. (29)

In order to solve (29), first, we put p = dϕ/ds. Then the differential equation (29) becomes

p
(

ϕ2 p
d2 p
dϕ2 + ϕ2(

dp
dϕ

)2 + ϕp
dp
dϕ

+ 2ϕ2 + 1
)
= 0,

which can be rewritten as

ϕp
(

d
dϕ

(ϕp
dp
dϕ

) + 2ϕ +
1
ϕ

)
= 0. (30)

Since ϕ > 0, we divide into two cases, as follows.

Case 1. p = dϕ/ds = 0. The geodesic curvature, κg, is a nonzero constant, that is, the spherical
curve, β(s), is a small circle. Therefore, M is an open part of a right circular cone, and M has a pointwise
1-type Gauss map.

127



Mathematics 2018, 6, 130

Case 2. p = dϕ/ds 	= 0.

From (30), we obtain
d

dϕ
(ϕp

dp
dϕ

) + 2ϕ +
1
ϕ
= 0, (31)

which yields

ϕp
dp
dϕ

+ ϕ2 + ln ϕ =
a
2

(32)

for some constant, a. By integrating (32), we have

p2 = a ln ϕ + b − ϕ2 − (ln ϕ)2 (33)

for some constant, b. Recalling p = dϕ/ds, from (33), one gets

dϕ

ds
= ±

(
a ln ϕ + b − ϕ2 − (ln ϕ)2

) 1
2 , (34)

which is equivalent to
dϕ

(a ln ϕ + b − ϕ2 − (ln ϕ)2)
1
2
= ±ds. (35)

Hence, for an indefinite integral, F(t), of the function ψ(t) =
(
a ln t + b − t2 − (ln t)2)−1/2,

we see that
F(ϕ) = ±s, (36)

where the signature is determined according to whether the derivative of ϕ is positive or not. Thus we get

κg(s) =
1

ϕ(s)
=

1
F−1(±s)

. (37)

Furthermore, it follows from (25)–(27) that C can be expressed as

C = c
(

ϕ′e1 + ϕe2 − (ϕϕ′′ + ϕ2)G
)

, (38)

or equivalently,

C = c

(
−κ′g

κ2
g

e1 +
1
κg

e2 +
κg(s)κ′′g (s)− 2κ′g(s)

2 − κ2
g(s)

κ4
g(s)

G

)
. (39)

Conversely, for some constants, a and b, such that the function

ψ(t) =
(

a ln t + b − t2 − (ln t)2
)−1/2

(40)

is well-defined on some interval, J ⊂ (0, ∞), we take an indefinite integral, F(t), of the function ψ(t).
If we denote the image of the function, F, by I, then F : J → I is a strictly increasing function with
F′(t) = ψ(t). Let us consider the function ϕ = ϕ±, defined by ϕ±(s) = F−1(±s), which maps the
interval, ±I, onto J, respectively. Here −I means the interval {−s|s ∈ I}. Then, the function ϕ = ϕ±
is positive for the interval I± (say, I) and satisfies F(ϕ) = ±s.

For any unit speed spherical curve β(s) in the unit sphere S2(1) with the geodesic curvature
κg(s) = 1/ϕ(s), we consider a surface M in E3 to be parametrized by

x(s, t) = α0 + tβ(s), s ∈ I, t > 0, (41)
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where α0 is a constant vector. Given any non-zero constant, c, we put

f (s, t) =
1

t2 ϕ2(s)

(
ϕ(s)ϕ′′(s) + ϕ2(s) + 1

)
, g(s, t) =

1
ct2 ϕ2(s)

. (42)

For the orthonormal tangent frame, {e1, e2}, on M, such that e1 = 1
t

∂
∂s and e2 = ∂

∂t and the Gauss
map of M given by G = e1 × e2, we put

C = c{ϕ′(s)e1 + ϕ(s)e2 −
(

ϕ(s)ϕ′′(s) + ϕ2(s)
)

G}. (43)

Note that it follows from the definition of ϕ that the function ϕ satisfies (29). Hence, by using (13),
it is straightforward to show that

∇̃e1 C = ∇̃e2 C = 0, (44)

which implies that C is a constant vector. Furthermore, similar to the first part of this subsection,
the Gauss map, G, of the conical surface, M, satisfies

ΔG = f G + gC,

where f , g and C are given in (42) and (43), respectively. This shows that M has a generalized 1-type
Gauss map.

Thus, we have the following theorem 1:

Theorem 1. A conical surface in E3 has a generalized 1-type Gauss map if and only if it is an open part of one
of the following surfaces:

(1) A plane,
(2) A right circular cone,
(3) A conical surface parameterized by

x(s, t) = α0 + tβ(s),

where α0 is a constant vector and β(s) is a unit speed spherical curve in the unit sphere S2(1)
with a positive geodesic curvature, κg, which for some indefinite integral F(t) of the function

ψ(t) =
(
a ln t + b − t2 − (ln t)2)−1/2 with a, b ∈ R, is given by

κg(s) =
1

F−1(±s)
.

3.2. Cylindrical Surfaces

In this subsection, we prove the following theorem:

Theorem 2. All cylindrical surfaces in E3 have a generalized 1-type Gauss map.

Proof. Let M be a cylindrical surface in E3 generated by a base curve, α(s), and a constant vector, β.
Then, M can be parametrized by

x(s, t) = α(s) + tβ,

such that 〈α′(s), α′(s)〉 = 1, 〈α′(s), β〉 = 0 and 〈β, β〉 = 1. Hence, the base curve, α(s), is a unit speed
plane curve. Let us denote the curvature function of α(s) by κ(s).
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Consider an orthonormal frame {e1, e2} on M such that e1 = ∂
∂t and e2 = ∂

∂s . Then, the Gauss
map, G, of M is given by G = e1 × e2. By direct calculation, we obtain

∇̃e1 e1 = ∇̃e1 e2 = ∇̃e2 e1 = 0, ∇̃e2 e2 = κ(s)G,

∇̃e1 G = 0, ∇̃e2 G = −κ(s)e2.
(45)

It follows from (45) that the mean curvature, H, and the trace ||AG||2 of the square of the shape
operator are given by

H =
κ(s)

2
, ||AG||2 = κ2(s), (46)

which are functions of only s.
First, suppose that M has a generalized 1-type Gauss map. Together with (46), the first equation

of (12) shows that C1 = 0. Hence, (12) can be rewritten as

κ2(s) = f + gC3,

κ′(s) = gC2.
(47)

Since C2 = 〈C, α′(s)〉 and C3 = 〈C, β × α′(s)〉, C2 and C3 are functions of only s. By differentiating
C2 and C3 with respect to e2, the component functions of C satisfy the following equations:

C′
2(s)− κ(s)C3(s) = 0,

C′
3(s) + κ(s)C2(s) = 0,

(48)

which yield C2
2(s) + C2

3(s) = c2 for some non-zero constant, c. We may put

C2(s) = c sin θ(s), C3(s) = c cos θ(s) (49)

with θ′(s) = κ(s). Therefore, the constant vector, C, becomes

C = c sin θ(s)e2 + c cos θ(s)G. (50)

By combining (47) and (49), one also gets

g =
κ′(s)

c sin θ(s)
, f = κ2(s)− κ′(s) cot θ(s). (51)

Conversely, for any cylindrical surface, we choose a curve, α(s), and a unit vector, β, such that
the cylindrical surface is parametrized by x(s, t) = α(s) + tβ with 〈α′(s), α′(s)〉 = 1, 〈α′(s), β〉 = 0.
Then, for a non-zero constant, c, and an indefinite integral, θ(s), of the curvature function, κ(s), of α,
we put

C = c sin θ(s)e2 + c cos θ(s)G, (52)

where e1 = ∂
∂t , e2 = ∂

∂s and G = e1 × e2. It follows from (45) that ∇̃e1 C = 0 and ∇̃e2 C = 0, which
shows that C is a constant vector. Furthermore, it is straightforward to show that the Gauss map, G,
of the cylindrical surface satisfies

ΔG = f G + gC,

where f , g and C are given in (51) and (52), respectively. This shows that the cylindrical surface has
a generalized 1-type Gauss map.

Example 1. We consider the surface to be parameterized by

x(s, t) =
(
2 cos(

√
s) + 2

√
s sin(

√
s), 2 sin(

√
s)− 2

√
s cos(

√
s), t

)
.
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Then, the surface is cylindrical, generated by the plane curve with the curvature κ(s) = 1
2
√

s , and its Gauss map
G is given by

G =
(
sin(

√
s),− cos(

√
s), 0

)
.

From this, the Laplacian of G can be expressed as

ΔG =

(
1

4s
√

s
cos(

√
s) +

1
4s

sin(
√

s),
1

4s
√

s
sin(

√
s)− 1

4s
cos(

√
s), 0

)
=

1
4s

(
1 +

cot(
√

s)√
s

)
G +

csc(
√

s)
4s
√

s
C,

where C = (0, 1, 0).

The plane curve and the cylindrical surface in Example 1 are shown in Figures 1 and 2, respectively.

Figure 1. The plane curve in Example 1.

Figure 2. The cylindrical surface in Example 1.

3.3. Tangent Developable Surfaces

In this subsection, we prove the following theorem:

Theorem 3. A tangent developable surface in E3 with a generalized 1-type Gauss map is an open part of a plane.

Proof. Let M be a tangent developable surface in E3. Then, M is locally parametrized by

x(s, t) = α(s) + tα′(s), s ∈ I, t 	= 0,
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where α(s) is a unit speed curve with non-zero curvature κ(s) in E3. Let us denote the unit tangent
vector, principal normal vector and binormal vector of α(s), by T, N and B, respectively. The natural
frames, {xs, xt} of x, are given by

xs = T + tκ(s)N, xt = α′(s) = T.

The parametrization x is regular whenever tκ(s) 	= 0. We take the orthonormal frame, {e1, e2},
on M such that

e1 =
∂

∂t
= T,

e2 =
1

tκ(s)

(
∂

∂s
− ∂

∂t

)
= N.

(53)

Then, the Gauss map, G, of M is given by G = e1 × e2 = T × N = B. By direct calculation, we obtain

∇̃e1 e1 = ∇̃e1 e2 = 0, ∇̃e2 e1 =
1
t

e2,

∇̃e2 e2 = −1
t

e1 +
τ

tκ
G, ∇̃e1 G = 0, ∇̃e2 G =

τ

tκ
e2,

(54)

which yields

H =
τ

2tκ
, ||AG||2 =

( τ

tκ

)2
. (55)

Now, we suppose that the tangent developable surface, M, has a generalized 1-type Gauss map.
Since C1 = 〈C, T〉, C2 = 〈C, N〉 and C3 = 〈C, B〉, the components of C are functions of s only. Hence,
it follows from (54) that the components of C satisfy the following:

C′
1 − κC2 = 0, (56)

C′
2 + κC1 − τC3 = 0, (57)

C′
3 + τC2 = 0. (58)

Due to (55), (12) can be rewritten as

− τ

t2κ
= gC1, (59)

1
t2κ

((τ

κ

)′
+

τ

tκ

)
= gC2, (60)

τ2

t2κ2 = f + gC3. (61)

By combining (59) and (14), one finds that

τC2 +

((τ

κ

)′
+

τ

tκ

)
C1 = 0, (62)

or equivalently, ((τ

κ

)′
C1 + τC2

)
tκ + τC1 = 0. (63)

Since the parameter t( 	= 0) is arbitrary, from (63), we have(τ

κ

)′
C1 + τC2 = 0,

τC1 = 0.
(64)
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Finally, we suppose that the torsion, τ(s), of the curve, α(s), does not vanish identically. Then,
since the set J = {s ∈ I|τ(s) 	= 0} is non-empty, (64) shows that C1 = 0 and C2 = 0. From this
and (57), we have C3 = 0. In the long run, one gets C = 0. It follows from (12) and (55) that the
mean curvature, H = τ(s)/ (2tκ(s)), is constant, which shows that τ must vanish identically. That is,
J = {s ∈ I|τ(s) 	= 0} is empty, which leads a contradiction. This yields that α(s) is a plane curve, and
hence, M is an open part of a plane. This completes the proof of Theorem 6.

Note that a plane is a kind of cylindrical surface and also a kind of circular right cone.
Thus, by summarizing all the results in this section, we established the following classification theorem
for developable surfaces with generalized 1-type Gauss maps:

Theorem 4. (Classification Theorem) A developable surface, M, in E3 has a generalized 1-type Gauss map if
and only if it is an open part of one of the following:

(1) A cylindrical surface,
(2) A circular right cone,
(3) A conical surface parameterized by

x(s, t) = α0 + tβ(s),

where α0 is a constant vector and β(s) is a unit speed spherical curve in the unit sphere,
S2(1), with a positive geodesic curvature, κg, which is, for some indefinite integral, F(t), of the

function ψ(t) =
(
a ln t + b − t2 − (ln t)2)−1/2 with a, b ∈ R, given by

κg(s) =
1

F−1(±s)
.

4. Cylindrical Hypersurfaces with Generalized 1-Type Gauss Maps

In this section, we study cylindrical hypersurfaces with generalized 1-type Gauss maps in En+2.
Suppose that a hypersurface, M, in En+2 has a generalized 1-type Gauss map, that is, the Gauss map,
G, of the hypersurface satisfies the condition

ΔG = f G + gC (65)

for some non-zero smooth functions, f , g, and a non-zero constant vector, C. By combining (10) and
(65) and taking the scalar product with the orthonormal local frame, e1, e2, . . . , en+1 of M and the Gauss
map, G, respectively, we obtain

(n + 1)ei (H) = gCi, i = 1, 2, . . . , n + 1 (66)

and
||AG||2 = f + gCn+2, (67)

where, for i = 1, 2, . . . , n + 1, Ci = 〈C, ei〉 and Cn+2 = 〈C, G〉.
By extending Theorem 3.3, finally, we prove the following theorem:

Theorem 5. A cylindrical hypersurface, M, in En+2 has a generalized 1-type Gauss map.

Proof. Let M be a cylindrical hypersurface in the (n + 2)-dimensional Euclidean space, En+2. Then,
M can be parametrized by

x (s, t1, . . . , tn) = α(s) +
n

∑
i=1

tiβi
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such that 〈α′, α′〉 = 1, 〈α′, βi〉 = 0 and 〈βi, β j〉 = δij, i, j = 1, . . . , n. Then, the generator α is a plane
curve with the Frenet frame T, N and we have the orthonormal frame {e1, e2, . . . , en+1} on M, such that
ei =

∂
∂ti

, i = 1, . . . , n and en+1 = ∂
∂s = T. Hence, by rearranging βi, if necessary, we may assume that

the Gauss map, G, of M is given by G = e1 × · · · × en+1 = N. By direct calculation, we get

∇̃ei ej = ∇̃en+1 ej = ∇̃ei en+1 = 0, i, j = 1, . . . n,

∇̃ei G = 0, i = 1, . . . n, ∇̃en+1 en+1 = κG, ∇̃en+1 G = −κen+1,
(68)

where κ is the curvature function of the generator, α. (68) implies that

H =
κ

n + 1
, ||AG||2 = κ2, (69)

which are the functions of only s.
Now, suppose that M has a generalized 1-type Gauss map. That is, G satisfies (65). Then, C in

En+2 can be expressed as C = ∑n+1
j=1 Cjej + Cn+2G in the frame {e1, e2, . . . , en+1, G}. Together with (69),

(66) implies that Ci = 0 because ei(H) = 0, but g 	= 0 for i = 1, . . . , n. Hence, we have

C = Cn+1en+1 + Cn+2G = Cn+1T + Cn+2N. (70)

By differentiating (70) with respect to ei for i = 1, . . . , n, (68) shows that

ei(Cn+1) = ei(Cn+2) = 0, i = 1, . . . , n. (71)

Hence, Cn+1 and Cn+2 are functions of s only. By differentiating (70) with respect to en+1, (68)
also gives

en+1 (Cn+1)− κ(s)Cn+2 = 0,

en+1 (Cn+2) + κ(s)Cn+1 = 0
(72)

with C2
n+1(s) + C2

n+2(s) = d2 for some non-zero constant, d. Hence, we may put

Cn+1(s) = d sin θ(s), Cn+2(s) = d cos θ(s), (73)

where θ(s) is an indefinite integral of the curvature function κ(s). Therefore, the constant vector, C,
is given by

C = d sin θ(s)en+1 + d cos θ(s)G = d sin θ(s)T + d cos θ(s)N. (74)

Furthermore, it follows from (66), (67) and (69) that

f = κ2(s)− κ′(s) cot θ(s),

g =
κ′

d sin θ(s)
.

(75)

Conversely, for a cylindrical hypersurface, M, in En+2, we may choose a curve, α(s), and n unit
vectors β1, . . . , βn such that M is parametrized by

x (s, t1, . . . , tn) = α(s) +
n

∑
i=1

tiβi

such that 〈α′, α′〉 = 1, 〈α′, βi〉 = 0 and 〈βi, β j〉 = δij, i, j = 1, . . . , n. For a non-zero constant, d,
and an indefinite integral, θ(s), of the curvature function κ(s) of α, we put

C = d sin θ(s)en+1 + d cos θ(s)G, (76)
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where ei = ∂
∂ti

, en+1 = ∂
∂s and G = e1 × e2 × · · · × en+1 for i = 1, . . . , n. It follows from (68) that

∇̃e1 C = 0 and ∇̃e2 C = 0, and hence, C is a constant vector. Furthermore, it is straightforward to show
that the Gauss map of M satisfies

ΔG = f G + gC,

where f , g and C are given in (75) and (76), respectively. This shows that the cylindrical hypersurface
has a generalized 1-type Gauss map.

5. Conclusions

To find the best possible estimate of the total mean curvature of a compact submanifold of
Euclidean space, Chen introduced the study of finite type submanifolds. Specifically, minimal
submanifolds are characterized in a natural way. In our example, a cylindrical surface has neither
a usual 1-type, nor a pointwise 1-type Gauss map. In this reason, we defined a new definiton,
the generalized 1-type Gauss map. After that, we characterized developable surfaces with a generalized
1-type Gauss map in E3.
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Abstract: In this paper, we study inextensible flows of a curve on a lightlike surface in Minkowski
three-space and give a necessary and sufficient condition for inextensible flows of the curve as a partial
differential equation involving the curvatures of the curve on a lightlike surface. Finally, we classify
lightlike ruled surfaces in Minkowski three-space and characterize an inextensible evolution of a
lightlike curve on a lightlike tangent developable surface.

Keywords: inextensible flow; lightlike surface; ruled surface; Darboux frame

1. Introduction

It is well known that many nonlinear phenomena in physics, chemistry and biology are described
by dynamics of shapes, such as curves and surfaces, and the time evolution of a curve and a surface
has significance in computer vision and image processing. The time evolution of a curve and a surface
is described by flows, in particular inextensible flows of a curve and a surface. Physically, inextensible
flows give rise to motion, for which no strain energy is induced. The swinging motion of a cord of
fixed length or of a piece of paper carried by the wind can be described by inextensible flows of a curve
and a surface. Furthermore, the flows arise in the context of many problems in computer vision and
computer animation [1–4].

Chirikjian and Burdick [1] studied applications of inextensible flows of a curve. In [5], the authors
derived the time evolution equations for an inextensible flow of a space curve and also studied
inextensible flows of a developable ruled surface. In [6], the author investigated the general description
of the binormal motion of a spacelike and a timelike curve in a three-dimensional de Sitter space
and gave some explicit examples of a binormal motion of the curves. Schief and Rogers [4] studied
the binormal motions of curves with constant curvature and torsion. Many authors have studied
geometric flow problems [7–11].

The outline of the paper is organized as follows: In Section 2, we give some geometric concepts in
Minkowski space and present the pseudo-Darboux frames of a spacelike curve and a lightlike curve
on a lightlike surface. In Sections 3 and 4, we study inextensible flows of a spacelike curve and a
lightlike curve on a lightlike surface. In the last section, we classify lightlike ruled surfaces and study
inextensible flows of lightlike tangent developable surfaces.

2. Preliminaries

The Minkowski three-space R3
1 is a real space R3 with the indefinite inner product 〈· , ·〉 defined

on each tangent space by:
〈x, y〉 = −x0y0 + x1y1 + x2y2,

where x = (x0, x1, x2) and y = (y0, y1, y2) are vectors in R3
1.

A nonzero vector x in R3
1 is said to be spacelike, timelike or lightlike if 〈x, x〉 > 0, 〈x, x〉 < 0 or

〈x, x〉 = 0, respectively. Similarly, an arbitrary curve γ = γ(s) is spacelike, timelike or lightlike if all of

Mathematics 2018, 6, 224; doi:10.3390/math6110224 www.mdpi.com/journal/mathematics137
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its tangent vectors γ′(s) are spacelike, timelike or lightlike, respectively. Here “prime” denotes the
derivative with respect to the parameter s.

Let M be a lightlike surface in Minkowski three-space R3
1, that is the induced metric of M is

degenerate. Then, a curve γ on M is spacelike or lightlike.
Case 1: If γ is a spacelike curve, we can reparametrize it by the arc length s. Therefore, we have

the unit tangent vector t(s) = γ′(s) of γ(s). Since M is a lightlike surface, we have a lightlike normal
vector n along γ. Therefore, we can choose a vector g satisfying:

〈n, g〉 = 1, 〈t, g〉 = 〈g, g〉 = 0.

Then, we have pseudo-orthonormal frames {t, n, g}, which are called the Darboux frames along
γ(s). By standard arguments, we have the following Frenet formulae:

d
ds

⎛⎜⎝ t(s)
n(s)
g(s)

⎞⎟⎠ =

⎛⎜⎝ 0 κg(s) κn(s)
−κn(s) τg(s) 0
−κg(s) 0 −τg(s)

⎞⎟⎠
⎛⎜⎝ t(s)

n(s)
g(s)

⎞⎟⎠ , (1)

where κn = 〈t′(s), n(s)〉, κg = 〈t′(s), g(s)〉 and τg = −〈n(s), g′(s)〉.
Case 2: Let γ be a lightlike curve parametrized by a pseudo arc length parameter s on a lightlike

surface M in R3
1. Since a normal vector n of a lightlike surface M is lightlike, we can choose a vector g

such that:
〈g, g〉 = 1, 〈t, g〉 = 〈g, n〉 = 0.

Furthermore, we consider:
〈t, n〉 = 1.

Then, we have pseudo-orthonormal Darboux frames {t, n, g} along a nongeodesic lightlike curve
γ(s) on M and get the following Frenet formulae:

d
ds

⎛⎜⎝ t(s)
n(s)
g(s)

⎞⎟⎠ =

⎛⎜⎝ κn(s) 0 κg(s)
0 −κn(s) τg(s)

−τg(s) −κg(s) 0

⎞⎟⎠
⎛⎜⎝ t(s)

n(s)
g(s)

⎞⎟⎠ , (2)

where κn = 〈t′(s), n(s)〉, κg = 〈t′(s), g(s)〉 and τg = −〈n(s), g′(s)〉.

3. Inextensible Flows of a Spacelike Curve

We assume that γ : [0, l]× [0, w] → M ⊂ R3
1 is a one-parameter family of the smooth spacelike

curve on a lightlike surface in R3
1, where l is the arc length of the initial curve. Let u be the curve

parametrization variable, 0 ≤ u ≤ l. We put v = || ∂γ
∂u ||, from which the arc length of γ is defined by

s(u) =
∫ u

0 vdu. Furthermore, the operator ∂
∂s is given in terms of u by ∂

∂s = 1
v

∂
∂u , and the arc length

parameter is given by ds = vdu.
On the Darboux frames {t, n, g} of the spacelike curve γ on a lightlike surface M in R3

1, any flow
of γ can be given by:

∂γ

∂t
= f1t + f2n + f3g, (3)

where f1, f2, f3 are scalar speeds of the spacelike curve γ on a lightlike surface M, respectively. We put
s(u, t) =

∫ u
0 vdu; it is called the arc length variation of γ. From this, the requirement that the curve is

not subject to any elongation or compression can be expressed by the condition:

∂

∂t
s(u, t) =

∫ u

0

∂v
∂t

du = 0 (4)

for all u ∈ [0, l].
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Definition 1. A curve evolution γ(u, t) and its flow ∂γ
∂t of a spacelike curve in R3

1 are said to be inextensible if:

∂

∂t

∣∣∣∣∣∣∣∣∂γ

∂u

∣∣∣∣∣∣∣∣ = 0.

Now, we give the arc length preserving condition for curve flows.

Theorem 1. Let M be a lightlike surface in Minkowski three-space R3
1 and {t, n, g} be the Darboux frames of a

spacelike curve γ on M. If ∂γ
∂t = f1t + f2n + f3g is a flow of γ on a lightlike surface M in R3

1, then we have the
following equation:

∂v
∂t

=
∂ f1

∂u
− v f2κn − v f3κg. (5)

Proof. From the definition of a spacelike curve γ, we have v2 =
〈

∂γ
∂u , ∂γ

∂u

〉
. Since u and t are

independent coordinates, ∂
∂u and ∂

∂t commute. Therefore, by differentiating v2, we have:

2v
∂v
∂t

=
∂

∂t

〈
∂γ

∂u
,

∂γ

∂u

〉
= 2

〈
∂γ

∂u
,

∂

∂u
(

∂γ

∂t
)

〉
= 2

〈
∂γ

∂u
,

∂

∂u
( f1t + f2n + f3g)

〉
= 2v

〈
t, (

∂ f1

∂u
− v f2κn − v f3κg)t + (

∂ f2

∂u
+ v f1κg + v f2τg)n + (

∂ f3

∂u
+ v f1κn − v f3τg)g

〉
= 2v

(
∂ f1

∂u
− v f2κn − v f3κg

)
.

This completes the proof.

Corollary 1. Let ∂γ
∂t = f1t + f2n + f3g be a flow of a spacelike curve γ on a lightlike surface M in R3

1. If the
curve γ is a geodesic curve or an asymptotic curve, then the following equation holds, respectively:

∂v
∂t

=
∂ f1

∂u
− v f2κn

or:
∂v
∂t

=
∂ f1

∂u
− v f3κg.

Theorem 2. (Necessary and sufficient condition for an inextensible flow)
Let ∂γ

∂t = f1t + f2n + f3g be a flow of a spacelike curve γ on a lightlike surface M in R3
1. Then, the flow is

inextensible if and only if:
∂ f1

∂s
= f2κn + f3κg. (6)

Proof. Suppose that the flow of a spacelike curve γ on M is inextensible. From (4) and (5), we have:

∂

∂t
s(u, t) =

∫ u

0

∂v
∂t

du =
∫ u

0

(
∂ f1

∂u
− v f2κn − v f3κg

)
du = 0.

It follows that:
∂ f1

∂u
= v f2κn + v f3κg.

Since ∂
∂s = 1

v
∂

∂u , we can obtain (6).
Conversely, by following a similar way as above, the proof is completed.
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Theorem 3. Let ∂γ
∂t = f1t + f2n + f3g be a flow of a spacelike curve γ on a lightlike surface M in R3

1. If the
flow is inextensible, then a time evolution of the Darboux frame {t, n, g} along a curve γ on a lightlike surface
M is given by:

d
dt

⎛⎜⎝ t

n

g

⎞⎟⎠ =

⎛⎜⎝ 0 ϕ1 ϕ2

−ϕ2 ϕ3 0
−ϕ1 0 −ϕ3

⎞⎟⎠
⎛⎜⎝ t

n

g

⎞⎟⎠ , (7)

where:
ϕ1 =

∂ f2

∂s
+ f1κg + f2τg,

ϕ2 =
∂ f3

∂s
+ f1κn − f3τg,

ϕ3 = 〈∂n

∂t
, g〉.

(8)

Proof. Noting that:

∂t

∂t
=

∂

∂t

(
∂γ

∂s

)
=

∂

∂s
( f1t + f2n + f3g)

=

(
∂ f2

∂s
+ f1κg + f2τg

)
n +

(
∂ f3

∂s
+ f1κn − f3τg

)
g.

(9)

On the other hand,

0 =
∂

∂t
〈t, n〉 = 〈∂t

∂t
, n〉+ 〈t, ∂n

∂t
〉 = ∂ f3

∂s
+ f1κn − f3τg + 〈t, ∂n

∂t
〉

0 =
∂

∂t
〈t, g〉 = 〈∂t

∂t
, g〉+ 〈t, ∂g

∂t
〉 = ∂ f2

∂s
+ f1κg + f2τg + 〈t, ∂n

∂t
〉

because of 〈n, n〉 = 〈g, g〉 = 0 and 〈n, g〉 = 1.
Thus, we have:

∂n

∂t
= −

(
∂ f3

∂s
+ f1κn − f3τg

)
t + ϕ3n, (10)

∂g

∂t
= −

(
∂ f2

∂s
+ f1κg + f2τg

)
t − ϕ3g, (11)

where ϕ3 = 〈 ∂n
∂t , g〉. This completes the proof.

Now, by using Theorem 3, we give the time evolution equations of the geodesic curvature,
the normal curvature and the geodesic torsion of a spacelike curve on a lightlike surface.

Theorem 4. Let ∂γ
∂t = f1t + f2n + f3g be a flow of a spacelike curve γ on a lightlike surface M in R3

1. Then,
the time evolution equations of the functions κg, κn and τg for the inextensible spacelike curve γ are given by:

∂κg

∂t
=

∂ϕ1

∂s
+ ϕ1τg − ϕ3κg,

∂κn

∂t
=

∂ϕ2

∂s
− ϕ2τg + ϕ3κn

∂τg

∂t
=

∂ϕ3

∂s
+ ϕ1κn − ϕ2κg + 2ϕ3τg.

(12)
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Proof. It is well known that the arc length and time derivatives commute. This implies the
inextensibility of γ. Accordingly, the compatibility conditions are ∂

∂s

(
∂t
∂t

)
= ∂

∂t

(
∂t
∂s

)
, etc. On the

other hand,
∂

∂s

(
∂t

∂t

)
=

∂

∂s
(ϕ1n + ϕ2g)

= (−ϕ1κn − ϕ2κg)t + (
∂ϕ1

∂s
+ ϕ1τg)n + (

∂ϕ2

∂s
− ϕ2τg)g,

and:
∂

∂t

(
∂t

∂s

)
=

∂

∂t
(κgn + κng)

= (−ϕ1κn − ϕ2κg)t + (
∂κg

∂t
+ ϕ3κg)n + (

∂κn

∂t
− ϕ3κn)g.

Comparing the two equations, we find:

∂κg

∂t
=

∂ϕ1

∂s
+ ϕ1τg − ϕ3κg,

∂κn

∂t
=

∂ϕ2

∂s
− ϕ2τg + ϕ3κn.

It follows from (8) that we can obtain the first and the second equation of (12).
Furthermore by using ∂

∂s

(
∂n
∂t

)
= ∂

∂t

(
∂n
∂s

)
and following a similar way as above, we can obtain

the third equation of (12). The proof is completed.

Remark 1. As applications of inextensible flows of a spacelike curve on a lightlike surface, we can consider
geometric phases of the repulsive-type nonlinear Schödinger equation (NLS−) (cf. [12]).

4. Inextensible Flows of a Lightlike Curve

Let γ be a lightlike curve on a lightlike surface M in R3
1. We note that a lightlike curve γ(u) satisfies

〈γ′′(u), γ′′(u)〉 ≥ 0. We say that a lightlike curve γ(u) is parametrized by the pseudo arc length if
〈γ′′(u), γ′′(u)〉 = 1. If a lightlike curve γ(u) satisfies 〈γ′′(u), γ′′(u)〉 	= 0, then 〈γ′′(u), γ′′(u)〉 > 0, and:

s(u) =
∫ u

0
〈γ′′(u), γ′′(u)〉 1

4 du

becomes the pseudo arc length parameter. Let us consider a lightlike curve γ(u) on a lightlike surface
M in R3

1 with 〈γ′′(u), γ′′(u)〉 	= 0.
Let γ : [0, l]× [0, w] → M ⊂ R3

1 be a one-parameter family of smooth lightlike curves on a lightlike
surface in R3

1, where l is the arc length of the initial curve. We put v4 = 〈γ′′(u), γ′′(u)〉, from which
the pseudo arc length of γ is defined by s(u) =

∫ u
0 vdu. Furthermore, the operator ∂

∂s is given in terms
of u by ∂

∂s = 1
v

∂
∂u , and the pseudo arc length parameter is given by ds = vdu.

On the other hand, a flow ∂γ
∂t of γ can be given by:

∂γ

∂t
= f1t + f2n + f3g (13)

in terms of the Darboux frames {t, n, g} of the lightlike curve γ on a lightlike surface M in R3
1,

where f1, f2, f3 are scalar speeds of the lightlike curve γ, respectively. We put s(u, t) =
∫ u

0 vdu, it is
called the pseudo arc length variation of γ. From this, we have the following condition:

∂

∂t
s(u, t) =

∫ u

0

∂v
∂t

du = 0 (14)

for all u ∈ [0, l].
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Definition 2. A curve evolution γ(u, t) and its flow ∂γ
∂t of a lightlike curve γ in R3

1 are said to be inextensible if:

∂

∂t

〈
∂2γ

∂u2 ,
∂2γ

∂u2

〉 1
4

= 0.

Theorem 5. Let M be a lightlike surface in Minkowski three-space R3
1 and {t, n, g} be the Darboux frames

along a lightlike curve γ on M. If ∂γ
∂t = f1t + f2n + f3g is a flow of γ on a lightlike surface M, then we have

the following equation:

∂v
∂t

=
1

2v3

[
(

∂v
∂u

+ v2κn)

(
∂Φ2

∂u
− vκnΦ2 − vκgΦ3

)
+ v2κg

(
∂Φ3

∂u
+ vκgΦ1 + vτgΦ2

)]
, (15)

where:
Φ1 =

∂ f1

∂u
+ v f1κn − v f3τg,

Φ2 =
∂ f2

∂u
− v f2κn − v f3κg,

Φ3 =
∂ f1

∂u
+ v f1κg + v f2τg.

Proof. From the definition of a lightlike curve γ, we have v4 =
〈

∂2γ
∂u2 , ∂2γ

∂u2

〉
. By differentiating v4,

we have:

4v3 ∂v
∂t

=
∂

∂t

〈
∂2γ

∂u2 ,
∂2γ

∂u2

〉
= 2

〈
∂2γ

∂u2 ,
∂2

∂u2 (
∂γ

∂t
)

〉
. (16)

On the other hand,

∂2γ

∂u2 =
∂

∂u

(
∂γ

∂u

)
=

∂

∂u
(vt) =

(
∂v
∂u

+ v2κn

)
t + v2κgg

and:

∂2

∂u2 (
∂γ

∂t
) =

∂2

∂u2 ( f1t + f2n + f3g)

=

[
∂Φ1

∂u
+ vκnΦ1 − vτgΦ3

]
t +

[
∂Φ2

∂u
− vκnΦ2 − vκgΦ3

]
n +

[
∂Φ3

∂u
+ vκgΦ1 + vτgΦ2

]
g.

Thus, (16) implies (15). This completes the proof.

Theorem 6. Let ∂γ
∂t = f1t + f2n + f3g be a flow of a lightlike curve γ on a lightlike surface M in R3

1. Then, the
flow is inextensible if and only if:(

∂v
∂s

+ vκn

)
∂Φ2

∂s
+ vκg

∂Φ3

∂s
=

(
∂v
∂s

+ vκn

)
(κnΦ2 + κgΦ3)− vκg(κgΦ1 + τgΦ2). (17)

Proof. Suppose that the flow of a lightlike curve γ on M is inextensible. By using (15) and ∂
∂s = 1

v
∂

∂u ,
(14) gives (17). Conversely, by following a similar way as above, the proof is completed.

Next, we give the time evolution equations of the Darboux frame of a lightlike curve on a
lightlike surface.
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Theorem 7. Let ∂γ
∂t = f1t + f2n + f3g be a flow of a lightlike curve γ on a lightlike surface M in R3

1. If the
flow is inextensible, then a time evolution of the Darboux frame {t, n, g} along a curve γ on a lightlike surface
M is given by:

d
dt

⎛⎜⎝ t

n

g

⎞⎟⎠ =

⎛⎜⎝
Φ1
v 0 Φ3

v
0 −Φ1

v Θ
−Θ −Φ3

v 0

⎞⎟⎠
⎛⎜⎝ t

n

g

⎞⎟⎠ , (18)

where Θ = 〈 ∂n
∂t , g〉.

Proof. The proof can be obtained by using a similar method of proof of Theorem 3.

Theorem 8. Let ∂γ
∂t = f1t + f2n + f3g be a flow of a lightlike curve γ on a lightlike surface M in R3

1. Then,
the time evolution equations of the functions κg, κn and τg for the inextensible spacelike curve γ are given by:

∂κg

∂t
=

∂

∂s
(

1
v

Φ3) +
1
v

(
κgΦ1 − κnΦ3

)
,

∂κn

∂t
=

∂

∂s
(

1
v

Φ1) + κgΘ − 1
v

τgΦ3,

∂τg

∂t
=

∂Θ
∂s

+ κnΘ − 1
v

τgΦ1.

(19)

Proof. The proof can be obtained by using a similar method of proof of Theorem 4.

5. Lightlike Ruled Surfaces

In this section, we investigate inextensible flows of ruled surfaces, in particular lightlike ruled
surfaces in Minkowski three-space R3

1.
Let I be an open interval on the real line R. Let α be a curve in R3

1 defined on I and β a transversal
vector field along α. For an open interval J of R, we have the parametrization for M:

X(u, v) = α(u) + vβ(u), u ∈ I, v ∈ J.

Here, α is called a base curve and β a director vector field. In particular, the director vector field
β can be naturally chosen so that it is orthogonal to α, that is 〈α′, β〉 = 0. It is well known that the
ruled surface is developable if det(α′ββ′) is identically zero. A developable surface is a surface whose
Gaussian curvature of the surface is everywhere zero.

On the other hand, the tangent vectors are given by:

Xu =
∂X
∂u

= α′(u) + vβ′(u), Xv =
∂X
∂v

= β(u),

which imply that the coefficients of the first fundamental form of the surface are given by:

E = 〈Xu, Xu〉 = 〈α′, α′〉+ 2v〈α′, β′〉+ v2〈β′, β′〉,
F = 〈Xu, Xv〉 = 0,

G = 〈Xv, Xv〉 = 〈β, β〉.

Suppose that the ruled surface is lightlike. Then, we get E = 0 or G = 0.
First of all, we consider E = 0; it implies that:

〈α′, α′〉 = 0, 〈α′, β′〉 = 0, 〈β′, β′〉 = 0. (20)

Thus, a base curve α is lightlike, and a director vector β is constant or β′ is lightlike.
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Case 1: If β is constant, from 〈α′, β〉 = 0, β is a lightlike vector or a spacelike vector. If β is lightlike,
there exists a smooth function k such that β = kα′. This is a contradiction because G = 0. If β is
spacelike as a constant vector, then the lightlike cylindrical ruled surface is parametrized by:

X(u, v) = α(u) + vβ,

where α is a lightlike curve and β is a constant spacelike vector.
Case 2: Let β′ be a lightlike vector. Since 〈α′, β′〉 = 0, there exists a smooth function k such that

β′ = kα′. Thus, a lightlike non-cylindrical ruled surface is parametrized by:

X(u, v) = α(u) + vβ(u), (21)

where α and β satisfy the condition (20).
Next, we consider G = 〈β, β〉 = 0, since β 	= 0, a director vector β must be lightlike. Furthermore,

since 〈α′, β〉 = 0, α is a spacelike curve or a lightlike curve.
Case 1: If α is a spacelike curve, then a lightlike non-cylindrical ruled surface is parametrized by:

X(u, v) = α(u) + vβ(u), (22)

where α is a spacelike curve and β is a lightlike vector.
Case 2: Let α be a lightlike curve. Then, there exists a smooth function k such that β′ = kα′, and a

lightlike ruled surface as a tangent developable surface is parametrized by:

X(u, v) = α(u) + vkα′(u), (23)

where α and α′′ are a lightlike curve and a spacelike vector, respectively.
In [5], the authors gave the following:

Definition 3. A surface evolution X(u, v, t) and its flow ∂X
∂t are said to be inextensible if the coefficients of the

first fundamental form of the surface satisfy:

∂E
∂t

=
∂F
∂t

=
∂G
∂t

= 0.

This definition states that the surface X(u, v, t) is, for all time t, the isometric image of the original
surface X(u, v, t0) defined at some initial time t0.

Now, we study inextensible flows of a lightlike tangent developable surface in Minkowski
three-space.

Consider a lightlike tangent developable surface parametrized by:

X(u, v) = α(u) + vα′(u), (24)

where α is a lightlike curve. Suppose that the parameter u is a pseudo-arc length of α. In this case,
we get E = v2||α′′||2 and F = G = 0.

Thus, we have:

Theorem 9. Let X(u, v) be a lightlike tangent developable surface given by (24). The surface evolution
X(u, v, t) = α(u, t) + vα′(u, t) is inextensible if and only if:

∂

∂t
||α′′||2 = 0.

As a consequence, we have the following results:
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Theorem 10. Let X(u, v, t) = α(u, t) + vα′(u, t) be a surface evolution of a lightlike tangent developable
surface given by (24) in R3

1. Then, we have the following statements:
(1) α(u, t) is an inextensible evolution of a lightlike curve α(u) in R3

1.
(2) An inextensible evolution of a lightlike tangent developable surface can be completely characterized by

the inextensible evolutions of a lightlike curve α(u) in R3
1.

Proof. In fact, 0 = ∂
∂t ||α′′||2 = 2||α′′|| ∂

∂t ||α′′|| and α′′ 	= 0, and we get ∂
∂t ||α′′|| = 0; it implies

∂
∂t ||α′′||

1
2 = 0. This means that α(u, t) satisfies the condition for Definition 2.

Theorem 11. Let X(u, v, t) = α(u, t) + vα′(u, t) be a surface evolution of a lightlike tangent developable
surface given by (24) in R3

1, and ∂α
∂t = f1t + f2n + f3g, where t, n, g are the Darboux frames along a

lightlike curve α on a lightlike surface. If the surface evolution X(u, v, t) is inextensible, then f1, f2, f3 satisfy
Equation (19).

6. Conclusions

We study an inextensible flow of a spacelike or a lightlike curve on a lightlike surface in Minkowski
three-space and investigate a time evolution of the Darboux frame {t, n, g} (see Theorems 3 and 7)
and the functions κn, κg and τg (see Theorems 4 and 8). Furthermore, in Theorems 2 and 6, we give a
necessary and sufficient condition of inextensible flows of a spacelike curve and a lightlike curve on a
lightlike surface in terms of a partial differential equation involving the curvatures of the curve on a
lightlike surface. Finally, we completely classify lightlike ruled surfaces in Minkowski three-space and
characterize an inextensible evolution of a lightlike curve on a lightlike tangent developable surface
(see Theorems 9 and 10).
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Abstract: Let M be a three-dimensional trans-Sasakian manifold of type (α, β). In this paper, we obtain
that the Ricci operator of M is invariant along Reeb flow if and only if M is an α-Sasakian manifold,
cosymplectic manifold or a space of constant sectional curvature. Applying this, we give a new
characterization of proper trans-Sasakian 3-manifolds.

Keywords: trans-Sasakian 3-manifold; Reeb flow symmetry; Ricci operator

1. Introduction

A trans-Sasakian manifold is usually denoted by (M, φ, ξ, η, g, α, β), where both α and β are
smooth functions and (φ, ξ, η, g) is an almost contact metric structure. M is said to be proper if either
α = 0 or β = 0. When β = 0, α is a constant if dimM ≥ 5 (see [1]) and in this case M becomes an
α-Sasakian manifold if α ∈ R∗ or a cosymplectic manifold if α = 0. This conclusion is not necessarily
true for dimension three. However, unlike the above case, when α = 0, β is not necessarily a constant
even if dimM ≥ 5 or M is compact for dimension three (see [2]). The set of all trans-Sasakian manifolds
of type (0, β) coincides with that of all f -cosymplectic manifolds (see [3]) or f -Kenmotsu manifolds
(see [4–6]). A trans-Sasakian manifold of dimension ≥ 5 must be proper (see [1]). In the geometry of
trans-Sasakian 3-manifolds, there exists a basic interesting problem, that is:

Under what condition is a trans-Sasakian 3-manifold proper?

De [7–12], Deshmukh [13–15], Wang and Liu [16] and Wang [2,17] answered this question from
various points of view. In this paper, we study this question under a new geometric condition. Before
stating our main results, we recall some results related with such a condition.

On an almost contact metric manifold (M, φ, ξ, η, g), the Ricci operator of M is said to be Reeb
flow invariant if it satisfies

Lξ Q = 0, (1)

where L, ξ and Q are the Lie derivative, Reeb vector field and the Ricci operator, respectively. Cho
in [18] proved that a contact metric 3-manifold satisfies Equation (1) if and only if it is Sasakian
or locally isometric to SU(2) (or SO(3)), SL(2, R) (or O(1, 2)), the group E(2) of rigid motions of
Euclidean 2-plane. Cho in [19] proved that an almost cosymplectic 3-manifold satisfies (1) if and only if
it is either cosymplectic or locally isometric to the group E(1, 1) of rigid motions of Minkowski 2-space.
In addition, Cho and Kimura in [20] proved that an almost Kenmotsu 3-manifold satisfies (1) if and
only if it is of constant sectional curvature −1 or a non-unimodular Lie group. Reeb flow invariant
Ricci operators were also investigated on the unit tangent sphere bundle of a Riemannian manifold
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(see [21]), even on real hypersurfaces in complex two-plane Grassmannians (see [22]). In this paper,
we obtain a new characterization of proper trans-Sasakian 3-manifolds by employing (1) and proving

Theorem 1. The Ricci operator of a trans-Sasakian 3-manifold is invariant along Reeb flow if and only if the
manifold is an α-Sasakian manifold, cosymplectic manifold or a space of constant sectional curvature.

According to calculations shown in Section 3, we observe that Ricci parallelism with respect
to the Levi–Civita connection (i.e., ∇Q = 0) is stronger than a Reeb flow invariant Ricci operator.
Thus, we have

Remark 1. Theorem 1 is an extension of Wang and Liu [16] (Theorem 3.12).

Some corollaries induced from Theorem 1 are also given in the last section.

2. Trans-Sasakian Manifolds

On a smooth Riemannian manifold (M, g) of dimension 2n + 1, we assume that φ, ξ and η are
(1, 1)-type, (1, 0)-type and (0, 1)-type tensor fields, respectively. According to [23], M is called an
almost contact metric manifold if

φ2X = −X + η(X)ξ, η(ξ) = 1, η(φX) = 0,

g(φX, φY) = g(X, Y)− η(X)η(Y), η(X) = g(X, ξ)
(2)

for any vector fields X and Y. An almost contact metric manifold is said to be normal if [φ, φ] =

−2dη ⊗ ξ, where [φ, φ] denotes the Nijenhuis tensor of φ.
A normal almost contact metric manifold is called a trans-Sasakian manifold (see [1]) if

(∇Xφ)Y = α(g(X, Y)ξ − η(Y)X) + β(g(φX, Y)ξ − η(Y)φX) (3)

for any vector fields X, Y and two smooth functions α, β. In particular, a three-dimensional almost
contact metric manifold is trans-Sasakian if and only if it is normal (see [24,25]).

A normal almost contact metric manifold is called an α-Sasakian manifold if dη = αΦ and dΦ = 0,
where α ∈ R∗ (see [26]). An α-Sasakian manifold reduces to a Sasakian manifold (see [23]) when α = 1.
A normal almost contact metric manifold is called a β-Kenmotsu manifold if it satisfies dη = 0 and
dΦ = 2βη ∧ Φ, where β ∈ R∗ (see [26]). A β-Kenmotsu manifold becomes a Kenmotsu manifold when
β = 1. A normal almost contact metric manifold is called a cosymplectic manifold if it satisfies dη = 0
and dΦ = 0.

Putting Y = ξ into (3) and using (2), we have

∇Xξ = −αφX + β(X − η(X)ξ) (4)

for any vector field X. In this paper, all manifolds are assumed to be connected.

3. Reeb Flow Invariant Ricci Operator on Trans-Sasakian 3-Manifolds

In this section, we give a proof of our main result Theorem 1. First, we introduce the following
two important lemmas (see [12]) which are useful for our proof.

Lemma 1. On a trans-Sasakian 3-manifold of type (α, β) we have

ξ(α) + 2αβ = 0. (5)
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Lemma 2. On a trans-Sasakian 3-manifold of type (α, β), the Ricci operator is given by

Q =
( r

2
+ ξ(β)− α2 + β2

)
id −

( r
2
+ ξ(β)− 3α2 + 3β2

)
η ⊗ ξ

+ η ⊗ (φ(∇α)−∇β) + g(φ(∇α)−∇β, ·)⊗ ξ,
(6)

where by ∇ f we mean the gradient of a function f .

We also need the following lemma (see [17])

Lemma 3. On a trans-Sasakian 3-manifold of type (α, β), the following three conditions are equivalent:

(1) The Reeb vector field is minimal or harmonic.
(2) The following equation holds: φ∇α −∇β + ξ(β)ξ = 0 (⇔ ∇α + φ∇β + 2αβξ = 0).
(3) The Reeb vector field is an eigenvector field of the Ricci operator.

Lemma 4. The Ricci operator on a cosymplectic 3-manifold is invariant along the Reeb flow.

The above lemma can be seen in [19]

Lemma 5. The Ricci operator on an α-Sasakian 3-manifold is invariant along the Reeb flow.

Proof. According to Lemma 2 and the definition of an α-Sasakian 3-manifold, the Ricci operator is
given by

QX =
( r

2
− α2

)
X −

( r
2
− 3α2

)
η(X)ξ, (7)

for any vector field X and certain nonzero constant α. Moreover, according to [16] (Corollary 3.10),
we observe that the scalar curvature r is invariant along the Reeb vector field ξ, i.e., ξ(r) = 0. In fact,
such an equation can be deduced directly by using the formula divQ = 1

2∇r and (7). Applying
ξ(r) = 0, it follows directly from (7) that Lξ Q = 0.

Proof of Theorem 1. Let M be a trans-Sasakian 3-manifold and e be a unit vector field orthogonal
to ξ. Then, {ξ, e, φe} forms a local orthonormal basis on the tangent space for each point of M.
The Levi–Civita connection ∇ on M can be written as the following (see [12])

∇ξ ξ =0, ∇ξe = λφe, ∇ξ φe = −λe,

∇eξ =βe − αφe, ∇ee = −βξ + γφe, ∇eφe = αξ − γe,

∇φeξ =αe + βφe, ∇φee = −αξ − δφe, ∇φe = −βξ + δe,

(8)

where λ, γ and δ are smooth functions on some open subset of the manifold. We assume that the Ricci
operator is invariant along the Reeb flow. From (1) and (4), we have

0 = (Lξ Q)X = (∇ξ Q)X + αφQX − αQφX + βη(QX)ξ − βη(X)Qξ (9)

for any vector field X.
By using the local basis {ξ, e, φe} and Lemma 2, the Ricci operator can be rewritten as the following:

Qξ =φ∇α −∇β + (2α2 − 2β2 − ξ(β))ξ,

Qe =
( r

2
+ ξ(β)− α2 + β2

)
e − (φe(α) + e(β))ξ,

Qφe =
( r

2
+ ξ(β)− α2 + β2

)
φe + (e(α)− φe(β))ξ.

(10)
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Replacing X in (9) by ξ, we obtain

∇ξ(φ∇α −∇β) + ξ(2α2 − 2β2 − ξ(β))ξ + α(−∇α + ξ(α)ξ − φ∇β)

+2β(α2 − β2 − ξ(β))ξ − β(φ∇α −∇β)− β(2α2 − 2β2 − ξ(β))ξ = 0.
(11)

Taking the inner product of the above equation with ξ, e and φe, respectively, we obtain

ξ(ξ(β)) + 2βξ(β) + 4α2β =0,

αe(α)− βφe(α)− βe(β)− αφe(β) =0,

βe(α) + αφe(α) + αe(β)− βφe(β) =0,

(12)

where we have employed Lemma 1. The addition of the second term of (12) multiplied by α to the
third term of (12) multiplied by β gives

(α2 + β2)(e(α)− φe(β)) = 0. (13)

Following (13), we consider the following several cases.
Case i: α2 + β2 = 0, or equivalently, α = β = 0. In this case, the manifold becomes a cosymplectic

3-manifold. The proof for this case is completed because of Lemma 4.
Case ii: α2 + β2 	= 0. It follows immediately from (13) that e(α) − φe(β) = 0, or equivalently,

g(∇α + φ∇β, e) = 0. Because e is assumed to be an arbitrary vector field, it follows that ∇α + φ∇β =

η(∇α + φ∇β)ξ, i.e.,
∇α + φ∇β + 2αβξ = 0, (14)

or equivalently, φ∇α −∇β + ξ(β)ξ = 0, where we have used Lemma 1. When β = 0, it follows
from (14) that α is a nonzero constant. Thus, the proof can be done by applying Lemma 5. In what
follows, we consider the last case.

Case iii: α2 + β2 	= 0 and β 	= 0. In this context, (10) becomes

Qξ =2(α2 − β2 − ξ(β))ξ,

Qe =
( r

2
+ ξ(β)− α2 + β2

)
e,

Qφe =
( r

2
+ ξ(β)− α2 + β2

)
φe.

(15)

Replacing X by e in (9) and using (8), (15), we acquire

0 = (Lξ Q)e = ξ
( r

2
+ ξ(β)− α2 + β2

)
e.

With the aid of Lemma 1 and the first term of (12), from the previous relation, we have

ξ(r) = 0. (16)

From (15), we calculate the derivative of the Ricci operator as the following:

(∇ξ Q)ξ =0,

(∇eQ)e =e(A)e − βAξ + 2β(α2 − β2 − ξ(β))ξ,

(∇φeQ)φe =φe(A)φe − βAξ + 2β(α2 − β2 − ξ(β))ξ,

(17)

where we have used the first term of (8) and (12) and, for simplicity, we put

A =
r
2
+ ξ(β)− α2 + β2. (18)
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On a Riemannian manifold, we have divQ = 1
2∇r. In this context, it is equivalent to

g((∇ξ Q)ξ + (∇eQ)e + (∇φeQ)φe, X) =
1
2

X(r) (19)

for any vector field X. Replacing X in (19) by ξ and recalling (16) and the first term of (12), we obtain
2β(A − 2α2 + 2β2 + 2ξ(β)) = 0, or equivalently,

ξ(β)− α2 + β2 = − r
6

, (20)

where we have used the assumption β 	= 0 and (18). According to (15), it is clear to see that the
manifold is Einstein, i.e, Q = r

3 id. Because the manifold is of dimension three, then it must be of
constant sectional curvature.

A Riemannian manifold is said to be locally symmetric if ∇R = 0 and this is equivalent to
∇Q = 0 for dimension three. Wang and Liu in [16] proved that a trans-Sasakian 3-manifold is
locally symmetric if and only if it is locally isometric to the sphere space S3(c2), the hyperbolic space
H3(−c2), the Euclidean space R3, product space R× S2(c2) or R×H2(−c2), where c is a nonzero
constant. According to [16], on a locally symmetric trans-Sasakian 3-manifold, the Reeb vector field
is an eigenvector field of the Ricci operator. Thus, following Lemma 3 and relations (9) and (10), we
observe that Ricci parallelism is stronger than the Reeb flow invariant Ricci operator. Hence, our main
result in this paper extends [16] (Theorem 3.12).

From Theorem 1, we obtain a new characterization of proper trans-Sasakian 3-manifolds.

Theorem 2. A compact trans-Sasakian 3-manifold with Reeb flow invariant Ricci operator is homothetic to
either a Sasakian manifold or a cosymplectic manifold.

Proof. As seen in the proof of Theorem 1, a trans-Sasakian 3-manifold with Reeb flow invariant Ricci
operator is a α-Sasakian manifold, a cosymplectic manifold or a space of constant sectional curvature.
It is well known that an α-Sasakian manifold is homothetic to a Sasakian manifold. Moreover, there do
exist compact Sasakian and cosymplectic manifolds. To complete the proof, we need only to prove
that Case iii in the proof of Theorem 1 cannot occur.

Let M be a trans-Sasakian 3-manifold satisfying Case iii. According to (14) and Lemma 5, we know
that the Reeb vector field is minimal or harmonic. It has been proved in [17] (Lemma 5.1) that when
ξ of a compact trans-Sasakian 3-manifold is minimal or harmonic, then α is a constant. Because the
manifold is of constant sectional curvature, then the scalar curvature r is also a constant. Therefore,
the differentiation of (20) along ξ gives

ξ(ξ(β)) + 2βξ(β) = 0. (21)

Adding the above equation to the first term of (12) implies that α = 0 because of β 	= 0. Using this
in (14), we have ∇β = ξ(β)ξ. The following proof follows directly from [2]. For sake of completeness,
we present the detailed proof.

Applying ∇β = ξ(β)ξ and (7), we obtain

∇X∇β = X(ξ(β))ξ + ξ(β)(βX − βη(X)ξ) = 0

for any vector field X. Contracting X in the previous relation and using (21), we obtain Δβ = ξ(ξ(β)) +

2βξ(β) = 0. Because the manifold is assumed to be compact, the application of the divergence theorem
gives that β is a non-zero constant. Next, we show that this is impossible. In fact, the application
of (4) gives that divξ = 2β. Since the manifold is assumed to be compact, it follows that β = 0,
a contradiction. This completes the proof.
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Theorem 2 can also be written as follows.

Theorem 3. A compact trans-Sasakian 3-manifold with Reeb flow invariant Ricci operator is proper.

The curvature tensor R of a trans-Sasakian 3-manifold is given by (see [10,27])

R(X, Y)Z

=B(g(Y, Z)X − g(X, Z)Y)− Cg(Y, Z)η(X)ξ

+ g(Y, Z)(η(X)(φ∇α −∇β)− g(∇β − φ∇α, X)ξ)

+ Cg(X, Z)η(Y)ξ − g(X, Z)(η(Y)(φ∇α −∇β)− g(∇β − φ∇α, Y)ξ)

− (g(∇β − φ∇α, Z)η(Y) + g(∇β − φ∇α, Y)η(Z))X − Cη(Y)η(Z)X

+ (g(∇β − φ∇α, Z)η(X) + g(∇β − φ∇α, X)η(Z))X + Cη(X)η(Z)Y

(22)

for any vector fields X, Y, Z, where, for simplicity, we set

B =
r
2
+ 2ξ(β)− 2α2 + 2β2, C =

r
2
+ ξ(β)− 3α2 + 3β2. (23)

Substituting (14) and (20) into (22), with the aid of (23), we get

R(X, Y)Z =
r
6
(g(Y, Z)X − g(X, Z)Y)

for any vector fields X, Y, Z. This implies that, on a trans-Sasakian 3-manifold satisfying Case iii in
the proof of Theorem 1, we do not know whether α = 0 or not. In view of this, we introduce an
interesting question:

Problem 1. Is there a non-proper and non-compact trans-Sasakian 3-manifold of constant sectional curvature?

Remark 2. According to De and Sarkar [10] (Theorem 5.1), we observe that a compact trans-Sasakian
3-manifold of constant sectional curvature is either α-Sasakian or β-Kenmotsu.

Remark 3. Given a trans-Sasakian 3-manifold, following proof of Theorem 1, we still do not know whether β is
a constant or not even when α = 0 and the manifold is compact (see [2]).
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