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Preface to ”Agricultural Irrigation”

Agriculture is certainly the most important food supplier, globally accounting for more than

70% of used water and contributing significantly to water pollution. Irrigated agriculture is facing

rising competition worldwide regarding access to reliable, low-cost, and high-quality water resources.

However, irrigation, as the major tool and determinant of affecting agricultural productivity and

environmental resources, plays a critical role in food security and environment sustainability.

Innovative irrigation technologies and practices may enhance agricultural water efficiency and

production, simultaneously mitigating water demand and quality issues.

This Special Issue brings together a collection of ten cutting-edge studies focusing on recent

advancements in agricultural irrigation which assess the current challenges and offer approaches,

tools, and opportunities for the improvement of future irrigation. Haghverdi and co-workers report

cotton crop yield response to irrigation and the spatial heterogeneity of soil physical attributes in a

humid region. Zikalala and co-workers present a root zone salinity model for vegetable crops. My

group and I report a preliminary viability assessment of using drip irrigation for organic spinach

production and the management of spinach downy mildew disease. Francaviglia and co-worker

outline the effects of deficit irrigation strategies on crop yields and irrigation water utilization

efficiency of processing tomato. Handa and co-workers report the results of their investigation on

the efficiencies, environmental footprint, and economics of irrigation pumping in two Oklahoma

areas that rely heavily on groundwater resources. Bekmirzaev and co-workers outline the effect

of irrigation water regimes on Tetragonia tetragonioides productivity in a semi-arid region. Lu and

co-workers present a model developed for optimal sprinkler irrigation management in tea fields

of the Yangtze River region. Muema and co-workers report a combination of benchmarking and

principal component analysis for evaluating the efficiency of irrigation schemes in Kenya. Dalias and

co-workers outline the required adjustment of irrigation schedules as a strategy to mitigate climate

change impacts on agriculture in Cyprus. And, finally, Zheng and co-workers discuss an evaluation

of management practices (cover crops, mulcting, and using city water for irrigation) on improving

thermal protection with low input sustainable practices in lettuce production. I hope this Special

Issue will be useful to researchers, professionals, and students, as well as contribute to developments

in future irrigation.

Aliasghar Montazar

Special Issue Editor
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Studying Crop Yield Response to Supplemental
Irrigation and the Spatial Heterogeneity of Soil
Physical Attributes in a Humid Region
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Abstract: West Tennessee’s supplemental irrigation management at a field level is profoundly affected
by the spatial heterogeneity of soil moisture and the temporal variability of weather. The introduction
of precision farming techniques has enabled farmers to collect site-specific data that provide valuable
quantitative information for effective irrigation management. Consequently, a two-year on-farm
irrigation experiment in a 73 ha cotton field in west Tennessee was conducted and a variety of farming
data were collected to understand the relationship between crop yields, the spatial heterogeneity
of soil water content, and supplemental irrigation management. The soil water content showed
higher correlations with soil textural information including sand (r = −0.9), silt (r = 0.85), and clay
(r = 0.83) than with soil bulk density (r = −0.27). Spatial statistical analysis of the collected soil
samples (i.e., 400 samples: 100 locations at four depths from 0–1 m) showed that soil texture and soil
water content had clustered patterns within different depths, but BD mostly had random patterns.
ECa maps tended to follow the same general spatial patterns as those for soil texture and water
content. Overall, supplemental irrigation improved the cotton lint yield in comparison to rainfed
throughout the two-year irrigation study, while the yield response to supplemental irrigation differed
across the soil types. The yield increase due to irrigation was more pronounced for coarse-textured
soils, while a yield reduction was observed when higher irrigation water was applied to fine-textured
soils. In addition, in-season rainfall patterns had a profound impact on yield and crop response
to supplemental irrigation regimes. The spatial analysis of the multiyear yield data revealed a
substantial similarity between yield and plant-available water patterns. Consequently, variable
rate irrigation guided with farming data seems to be the ideal management strategy to address
field level spatial variability in plant-available water, as well as temporal variability in in-season
rainfall patterns.

Keywords: farming data; precision agriculture; site-specific irrigation

1. Introduction

1.1. Supplemental Irrigation Management in Humid Regions

Irrigated agriculture has been playing a globally significant role in providing roughly one-third of
the total food and fiber supply [1]. While irrigated acreage is shrinking in some arid regions in the

Agriculture 2019, 9, 43; doi:10.3390/agriculture9020043 www.mdpi.com/journal/agriculture1
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US due to increasing competition for water, supplemental irrigation is expanding in humid regions
as a means to avoid unpredicted periods of water stress and maintain high yields [2]. For example,
in west Tennessee, row crop irrigation has expanded rapidly from twenty-five center pivot irrigation
systems installed in 2007 to 270 systems installed in 2012. This represents an expansion of 16,000 ha of
cropland per year under supplemental irrigation [3], which necessitates an essential demand to study
supplemental irrigation management of different crops in this region.

Precipitation is the main source of moisture in west Tennessee. However, severe in-season drought
conditions for short periods are likely to occur, which could substantially reduce yields under rainfed
agricultural practices. Supplemental irrigation is an irrigation strategy that attempts to maintain
maximum yield production by irrigating during periods of insufficient rainfall to fulfill the crop
water requirements. The application of supplemental irrigation management is a complex problem
in west Tennessee, where precipitation patterns are temporally variable within and across cropping
seasons and interact with the spatial mosaic of the physical and hydrological attributes of alluvial and
windblown loess deposited soils. Soil properties, such as texture and bulk density, greatly affect soil
water retention and movement and govern readily available soil water for crop irrigation management.
Excess water content within the root zone could occur if irrigation adds to unpredicted rainfall events.
This may cause insufficient aeration and consequent yield reduction. Moreover, runoff and deep
percolation may lead to accelerated nutrient loss and soil erosion that in turn, increases the risk of
contamination of nearby surface and/or groundwater.

Crop yield has been proven to be strongly related to soil physical properties. For example, Ref. [4]
considered plant-available water (PAW: volumetric water content between the field capacity and the
permanent wilting point within the root zone) as an input predictor of the wheat yield. They reported
PAW as one of the dominant factors governing the spatiotemporal variation of yields. Soil texture
was discussed by [5] as one of the greatest factors affecting the cotton yield. They found a relatively
stable spatial pattern of yield over time, although yield and soil properties had stronger relationships
during dry seasons than wet seasons. Graveel et al. [6] studied the response of corn to variations in
soil erosion and sandy and silt textured profiles in west Tennessee and found a substantial difference
in yield.

Cotton is a major crop in west Tennessee that is grown in more than 15 states and is vital
to the US economy because it is a critical export-oriented product [7]. Currently, some 40% of
US cotton is under irrigation, with the area expanding throughout the mid to southern US. Given
the limited water resources in many cotton-growing areas, a considerable amount of research has
recently been performed on cotton irrigation to improve the water use efficiency [8]. However,
inconsistent cotton yields have been observed in response to irrigation in the humid portion of the
US [9]. Suleiman et al. [10] studied the use of cotton deficit irrigation in a humid climate using FAO’s
56-crop coefficient method in Georgia and suggested establishing a 90 % irrigation threshold for the
full irrigation of cotton in humid climates. Bajwa and Vories [11] evaluated the cotton canopy response
to irrigation in a moderately humid area in Arkansas and found that under wet conditions, excessive
irrigation decreased the yield of cotton lint. A similar result was reported by [12], who also found
that excessive rainfall limited the yields from irrigation. Gwathmey et al. [13] conducted a four-year
supplemental irrigation study in Jackson, Tennessee, and found a 38% improvement in lint yields at a
2.54 cm wk−1 supplemental irrigation rate compared to three of four years of the rainfed irrigation
scenario. Grant et al. [14] used a surface drip irrigation system to investigate the response of the
cotton yield to irrigation across different soil types with different PAW. This study illustrated that
uniform irrigation is not the optimum management decision for the cotton wherever field-level soil
heterogeneity affects the spatial distribution of PAW.

1.2. Farming Data and Precision Agriculture

Traditionally, irrigation studies were limited to small plots at research stations, mostly due to
economic and computational limitations. Additionally, contemporary constraints to irrigation studies
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include the personnel time and expense for data collection, as well as the limitations of conventional
computing infrastructure and statistical methods to analyze the increasingly larger spatiotemporal
datasets that have inherent noise and uncertainty. In west Tennessee, the inherent heterogeneity and the
spatiotemporal changes in soil and weather-related attributes of the region make it hard to extrapolate
the results of design-based experiments on small plots to real field conditions. Supplemental irrigation
scheduling is a site-specific irrigation management question where each field has its own irrigation
management challenge that requires unique solutions. On-farm experimentation is an alternative
for design-based experiments, since collecting site-specific information is becoming more and more
common and affordable in US agriculture.

In contemporary agriculture, precision farming enables farmers to locally collect various site-specific
information, such as the yield and soil apparent electrical conductivity (ECa). Crop yield maps provide
valuable quantitative information on crop production, change in production, and the response of crop
production to different agricultural inputs, including irrigation and fertilizer. Soil survey maps; soil
sampling; on-the-go sensors; and remote sensing from field, airborne, and satellite sensors are the most
widely used methods to obtain information on the spatial distribution of different soil attributes [15].
Soil sampling at the field-level provides valuable information on the spatial variation of soil attributes,
but collecting this data has become laborious and expensive. ECa is a proxy for less accessible soil
attributes, including soil texture and soil available water [16], and thus has created substantial interest
in its use for soil mapping and management zone delineation in precision agriculture. ECa is measured
in a simple and inexpensive way, where an electrical current is induced into the soil while the field
is traversed. However, there are some inconsistencies in the literature concerning factors that affect
the variability of ECa in non-saline fields [17]. This suggests the need to investigate the practical
utility of using ECa for site-specific management in different regions, particularly because most of
the supporting ancillary datasets including topographic edaphic features (e.g., elevation, slope, and
aspect) are freely available. If not, these site-specific attributes can be measured and mapped without
spending a considerable amount of time and money. Recently, new wireless technologies have enabled
progressive farmers to remotely and continuously monitor soil properties over time, including soil
temperature, soil water content, and soil matric potential.

Consequently, this study was carried out to understand the relationship between the spatial
heterogeneity of soil and crop yields to better inform the management of site-specific supplemental
irrigation in west Tennessee. The objectives of this study were to conduct an on-farm experiment and
analyze yield maps to:

1. Assess the impact of the spatial heterogeneity of soil water content on the pattern of yield using
on-farm data that was collected by the farmer’s soil moisture sensors and yield monitor systems;

2. Compare the cotton lint yield under different supplemental irrigation regimes across different
soil types;

3. Assess the temporal stability of low/high yield zones by combining the measured historical yield
data of different crops with available cotton yield data.

2. Materials and Methods

2.1. Study Area

The study area was a 73 ha irrigated field that is located in southwestern Dyer County in west
Tennessee along the Mississippi river (Figure 1). The field was equipped with two center pivot
irrigation systems that were used for the irrigation of no-till cotton during each cropping season.
The field is on Mississippi river terrace alluvial deposits from which Robinsonville loam and fine
sandy loam, Commerce silty clay loam, and Crevasse sandy loam soils have been produced (Figure 1).
Figure 2 illustrates the long-term variability in regional climate. The mean monthly growing season
precipitation and temperature is 97-mm month−1 and 21 ◦C from May to November, respectively
(Figure 2). Rainfall is relatively high, even in dry years. Temperature changes are less pronounced
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and to some extent, inversely proportional to rainfall. The supplemental irrigation strategy has been
growing in this region since rainfall events are not usually temporally well-scattered to fulfill the crop
water requirement over the entire growing season.

 
Figure 1. The 73-ha supplemental irrigation study field is located in southwestern Dyer County in
west Tennessee along the Mississippi river. Soil samples were collected at four depths from 0–1 meter
at 100 locations.

Figure 2. The long-term climatic variation in rainfall (dashed line) and temperature (column) in west
Tennessee. Temperature columns show the mean monthly minimum (in black) and the mean monthly
maximum (in white).

2.2. Soil Data Collection and Lab Analysis

Haghverdi et al. [18] described the soil data collection where one hundred undisturbed samples
(100 cm deep) were collected by a truck-mounted soil sampler between 21 and 22 March 2014 (Figure 1).
Some 86 of these samples were collected using a grid sampling scheme where samples were about
100-m apart (i.e., half the mean semivariogram range of proxies). The rest of the samples (=14) were
randomly collected from underneath the center pivot circles. The field sampling occurred after rainfall
events, when the soil water status was assumed to be close to the field capacity.

Each 67-mm diameter core was sub-sampled at four depths between 0–100 cm in 25-cm increments,
i.e., 0–25 cm, 25–50 cm, 50–75 cm, and 75–100 cm, with adjustments in respect to the available horizons.
The mean depth across samples approximated 25 cm for all the layers. Hereafter, the word “layer” is
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used to describe subsamples rather than real soil horizons. The soil texture of each depth was estimated
in the laboratory using a hydrometer [19]. The soil water content was estimated by subtracting
oven-dried weights from wet weights. Bulk density (BD) was estimated as the oven dry weight to
volume of each subsample. ECa was collected using a Veris 3100 (Veris Technologies, Salina, KS,
USA) instrument on March 20, 2014 with 10 m and 20 m spacing between points in the same row
and adjacent rows, respectively. The Veris 3100 has six rolling coulters for electrodes and collects two
simultaneous ECa measurements from shallow (~0–30 cm) and deep depths (~0–90 cm).

2.3. Descriptive and Spatial Analysis of Soil Properties

The correlation between the volumetric water content at the time of sampling and soil texture,
i.e., sand, silt, and clay percentages, and bulk density was investigated. A soil texture triangle
was plotted for each of the four depths, with each depth layer being approximately 25-cm thick.
The relationship between ECa data and soil physical information, obtained from soil samples, was
studied. To match ECa and soil basic data, the ECa data were interpolated to each sample using an
ordinary kriging approach [20].

The spatial analysis was done using ARCGIS 10.2.2 [21]. To examine the spatial autocorrelation of
the attributes, the semivariogram (Equation (1)) and Global Moran’s I statistic (Equation (2), [22]) were
obtained as follows:

γ(h) =
1

2N(h)

{
N(h)

∑
i = 1

[Z(xi + h)− Z(xi)]
2

}
(1)

where γ(h) is the semivariance; h is the interval class; N(h) is the number of pairs separated by the lag
distance; and Z(xi) and Z(xi + h) are measured attributes at spatial location i and i + h, respectively.
The nugget effect, sill, and range are the basic parameters of a semivariogram to describe the spatial
structure. The nugget effect mostly represents sampling/measurement errors and variation at scales
smaller than the sampling interval. The total variance is called the sill and the range is the maximum
distance at which variables are spatially dependent.

The Global Moran’s I statistic is calculated as:

I =
n

∑n
i = 1 ∑n

j = 1 wi,j
× ∑n

i = 1 ∑n
j = 1 wi,jzizj

∑n
i = 1 z2

i
(2)

where z is the deviation of an attribute from its mean, wi,j is the spatial weight between the ith and
jth point, and n is equal to the number of points. Moran’s I is used to measure the degree of spatial
autocorrelation or trend based on both feature locations and feature values simultaneously. Given
a set of features and an associated attribute, it evaluates whether the pattern expressed is clustered,
dispersed, or random [22]. The null hypothesis of this analysis states that the attribute being analyzed
is randomly distributed among the features in the study area. Ordinary kriging was applied to samples
of the ECa to generate maps that were compared and assessed against each other. A higher positive
Moran’s Index for an attribute indicates a stronger spatial structure. The z-score changes in line with
the Moran’s Index. A z-score from −1.65 to 1.65 shows that the spatial pattern is not significantly
different than a random one. A z-score less than −1.65 is an indicator of a dispersed process, while a
z-score greater than 1.65 displays a spatially clustered attribute.

2.4. On-Farm Irrigation Experiment

There were two center pivot systems available for irrigation within the 73-ha field. The on-farm
experiment was conducted for two years and designed to study the supplemental irrigation-cotton
lint yield relationship across different soil types. The farmer used a no-tillage method to plant
‘PHY375’ cotton variety on 30 May 2013 and ‘Stoneville 4946’ on 5 May 2014. The farmer used soil
test recommendations for applications of variable rate potassium (K) and phosphorus (P). However,
nitrogen was applied uniformly. Crop pest management was implemented following state extension
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recommendations and the field was harvested on 2 and 3 December 2013 and in the second year on
18–20 October 2014.

Throughout the experiment, we used the Management of Irrigation Systems in Tennessee (MOIST)
program (http://www.utcrops.com/irrigation/irr_mgmt_moist_intro.htm) to discuss the efficiency
of irrigation management with the farmer. MOIST is an irrigation decision support tool that delivers
irrigation recommendations by simultaneously measuring and monitoring soil water status and
calculating water balance through a deployed wireless soil sensor network. An on-farm weather and
soil monitoring station contained a number of METER Devices (METER Group, Inc., Pullman, WA,
USA), including an EM50G remote data logger, a VP-3 temperature and relative humidity sensor, an
ECRN-100 high-resolution rain gauge, and a pyranometer: a solar radiation sensor, was installed in
2013 and run through 2014 using the MOIST program. Three additional stations with rain gauges and
soil moisture sensors were added in 2014. Each station also had two MPS-2 soil matric potential and
temperature sensors (METER Group, Inc., Pullman, WA, USA) installed at approximately 10 and 46 cm
depths to monitor the soil water status. MOIST calculates the daily reference evapotranspiration (ETref)
using Turc’s 1961 equation (developed for regions with relative humidity > 50%, [23]) as follows [24]:

ETre f = 0.013 ×
(

T
T + 15

)
× (Rs + 50) (3)

where ETref is the daily reference evapotranspiration (mm d−1), Rs is the daily solar radiation
(Cal cm−2 d−1), and T is the daily mean air temperature (◦C). The data for each station were recorded
once per hour, stored in the logger, and then transmitted to a web-based interface. The farmer managed
irrigation applications. At the same time, we wanted to make sure that he was provided with sufficient
information to irrigate appropriately, while maintaining statistical variability of the supplemental
irrigation water applied (IW) across the field to fulfill our research purpose. In 2014, we started sending
out weekly MOIST reports to the farmer. The report contained information on the soil water status
and irrigation scheduling based on soil sensors and water balance calculations.

Two different methods were used to create irrigation application zones across the field: programming
the two pivots (pie shape zones) and partially swapping the sprinkler nozzles (arc shape zones). Table 1
summarizes the information on the irrigation programs at each pivot. The farmer’s routine irrigation
schedule was 15.50 mm and 9.91 mm per revolution for the east and west pivots, respectively. The east
(west) pivot panel was programmed to apply ±5.08 (±1.78) mm variation in irrigation per revolution
on some pie shape zones. The control panels of pivots were Valley Select2 (Valmont Industries, Inc.)
that were programmable for up to nine different pie shape zones. The program changes the irrigation
rate by adjusting the pivot’s travel speed, where speeding up the pivot causes less irrigation and
slowing it down applies additional irrigation. Based on the pivots’ characteristics and soil spatial
variation, multiple banks of sprinklers were also selected and re-nozzled to form arc-shape irrigation
zones. The center pivots can be operated both clockwise and counterclockwise, but were programmed
only in the clockwise direction (Table 1).
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Table 1. Detailed information on the supplemental irrigation programs for the two center pivots within
the 73-ha supplemental irrigation field that is located in southwestern Dyer County in west Tennessee
for one revolution.

East Pivot West Pivot

Program
Sector

Start Angle 1

(degree)
Stop Angle

(degree)
Depth of Water

(mm)
Start Angle

(degree)
Stop Angle

(degree)
Depth of water

(mm)

1 90 110 10.41 275 315 9.91
2 110 0 15.49 315 335 11.68
3 0 1 20 20.57 335 355 8.38
4 20 40 10.41 355 235 9.91
5 40 70 15.49 235 255 11.68
6 70 90 20.57 255 275 8.38

1 The zero degree was at north and pivots traveled clockwise.

We installed three Agspy (AquaSpy Inc., San Diego, CA, USA) soil moisture probes at three
randomly selected points each year to monitor the soil water status, across pie-shape zones throughout
the irrigation seasons. The AgSpy soil moisture capacitance probes were 1-m in length and obtained
measurements at 10 depths at 0 to 100 cm, with 10 cm increments. The sensor output is a dimensionless
number in the range 0 to 100, called the scaled frequency (SF), which is defined as:

SF =
(Fa − Fs)

(Fa − Fw)
× 100 (4)

where Fa is the frequency of oscillation in air (air count), Fs is the frequency of oscillation in soil (soil
count), and Fw is the frequency of oscillation in water (water count). The Fa and Fw are calculated during
the manufacturing of each sensor. The frequency of oscillation is related to the capacitance between
sensor plates that is in turn influenced by the relative permittivity of the soil media. The relative
permittivity of water is significantly greater than that of air and soil, thereby changes in soil water
content will be detected by the sensor [25].

Table 2 summarizes irrigation and weather data for the 2013 and 2014 cropping seasons.
The sensors were installed a couple of weeks after planting and were removed prior to the harvest
period. Consequently, in situ data were not available for the whole cropping seasons. However,
temperature and precipitation data from the closest weather station were obtained from the National
Climate Data Center [26] to fill these gaps.

Table 2. Growing season summary of weather and supplemental irrigation data in the 73-ha study
area for the 2013 and 2014 growing seasons, in comparison to the 30-year mean for these variables.
The study area is located in southwestern Dyer County in west Tennessee.

Year Variable
Month

May June July August September October November

2013 Rain, mm 23 150 190 95 79 112 63
IW-East, mm 40 31 62
IW-West, mm 15 20 30

ETref
1, mm day−1 4.33 4.43 3.92 2.49 1.28

2014 Rain, mm 143 172 56 124 120 18
IW-East, mm 62 31
IW-West, mm 20 30

ETref
1, mm day−1 4.15 4.42 4.86 4.51 3.47 2.94

30 year Rain, mm 120 101 102 74 82 82 117
Tmean, ◦C 21 25 27 26 22 16 10

1 ETref: Reference evapotranspiration data that were calculated using the Turc equation (Equation (3)) from 19 July
2013 (7 May 2014) to 30 November 2013 (5 October 2014), IW: irrigation water applied by the farmer. The 30-year
mean data collected from the closest weather station [26].
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2.5. Multiyear Yield Data Analysis

To better understand the spatiotemporal dynamics of changes in yield, several years with different
crops should also be considered [27]. Except for 2011, yield data from 2007 to 2012 (i.e., corn 2007, corn
2008, soybean 2009, cotton 2010, cotton 2012) had been collected by the producer using appropriate
yield-monitor-equipped harvesters (Table 3). We combined these data with the 2013 and 2014 yield
data to analyze the relative difference and temporal variance of yield on the study site under both
rainfed and supplemental irrigation.

Table 3. Descriptive statistics on yield data (Mg ha−1) at the field of study located in southwestern
Dyer County in west Tennessee.

Year Crop Mean SD

2007 Corn 7.137 4.158
2008 Corn 3.420 0.903
2009 Soybean 3.221 0.860
2010 Cotton 0.947 0.306
2012 Cotton 0.913 0.494
2013 Cotton 0.871 0.329
2014 Cotton 1.244 0.493

A multistep filtering process was designed and implemented in Microsoft Excel and ArcGIS
10.2.2 [21] to process the yield data and produce final yield maps. First, the yield maps were visually
assessed using the farmer’s knowledge of field conditions to identify potential unexpected patterns.
Second, the data were color-coded based on harvest time to investigate the GPS tracks and movement
of the harvester. Then, multiple filters were designed (e.g., using swath width, distance, speed of the
harvester, change in speed) to remove outliers and erroneous data points. Last, yield data that were
>±3 standard deviations of the mean were assumed to be outliers and removed from the analysis.
Then, the field was divided into 100 m2 cells, and relative yield difference (Equation (5)) and yield
temporal variance (Equation (6)) across years were calculated as follows [28]:

yi =
1
n

n

∑
k = 1

[
yi,k − yk

yk

]
× 100 (5)

where n is the number of years with yield data available, yi is the average percentage yield difference
at cell i, yk is the average yield (Mg ha−1) across cells at year k, and yi,k is the yield value (Mg ha−1) at
cell i at year k.

σ2
i =

1
n

n

∑
k = 1

(
yi,k − yi,n

)2
(6)

where σ2
i is the temporal variance at cell i, yi,n is the average yield across the n years, and other

variables are as previously defined.

3. Results and Discussion

3.1. Field-Level Soil Heterogeneity and Application of Soil ECa

Table 4 contains descriptive statistics for the measured soil properties. The BD had its highest mean
value at the deepest layer, while the mean value was almost identical among other layers. The mean
water content decreased with depth, while its standard deviation slightly increased. The higher water
content in the surface layer is likely attributed to textural differences among layers and also rainfall
events prior to the sampling, which built the moisture level up within the top layers, but perhaps did
not fully penetrate to the deeper layers. The mean sand percentage increased with depth, which was
inversely proportional to a decline in silt and clay. The mean and standard deviation of the deep ECa
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readings (27.52 ± 18.73) were greater than those of shallow readings (24.64 ± 10.66). The standard
deviation among deep ECa reading was almost twice that of shallow readings. The same result was
reported by [29] on differences between the standard deviation and distribution of shallow versus
deep ECa readings.

Table 4. Descriptive statistics for selected soil properties from different soil sampling layers. Soil
samples were collected at four depths from 0–1 meter at 100 locations.

Variable 1 Layer Min. Max. Mean SD

BD, g cm−3 1th 1.12 1.66 1.36 0.10
2nd 1.11 1.70 1.35 0.12
3rd 1.06 1.86 1.34 0.12
4th 1.17 1.78 1.40 0.13

total 1.06 1.86 1.36 0.12
WC, % 1th 10.75 59.74 28.35 7.43

2nd 7.27 43.12 26.02 10.78
3rd 5.98 42.38 21.64 11.08
4th 5.67 45.32 20.18 11.15

total 3.94 47.61 17.94 8.49
Sand, % 1th 8.77 88.25 38.07 20.11

2nd 0.00 94.98 46.39 31.57
3rd 2.50 95.70 61.38 31.10
4th 5.46 96.86 69.90 26.09

Clay, % 1th 7.37 47.56 27.55 9.04
2nd 2.50 56.60 22.18 14.17
3rd 1.26 47.72 14.27 11.44
4th 0.34 37.10 11.00 7.80

Silt, % 1th 4.38 54.06 34.38 12.75
2nd 0.00 66.51 31.43 19.85
3rd 0.00 72.81 24.35 21.76
4th 0.00 69.23 19.10 19.83

ECa, mS m−1 shallow 1.60 48.70 24.64 10.66
ECa, mS m−1 deep 1.70 162.20 27.52 18.73

1 BD: soil bulk density, WC: soil volumetric water content at the time of sampling, ECa: apparent soil electrical
conductivity, SD: standard deviation.

The soil texture drastically varied across the field such that almost the entire soil texture triangle
was covered by the collected samples, except for the silt and clay textures (Figure 3). There was a shift
from fine to coarse textures by depth, with sand showing the greatest particle increase. The sand had
the highest absolute correlation with the soil moisture of the samples, while there was a weak negative
correlation between BD and the water content (Figure 4), showing that soil texture was the dominant
attribute governing water content. There was a clear pattern in clay and silt percentage plots versus
water content; the majority of the samples with lower clay and silt contents belonged to the deeper
layers (a cluster of black dots in the soil texture triangle), while samples from the shallower layers
were more likely to have higher clay and silt contents. The opposite was seen in the sand versus water
content plot.
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Figure 3. The textural distribution of soil samples from four different depths between 0 to 1 meter,
where the darker colors correspond to the deepest depths. The samples were collected from a 73-ha
two-pivot irrigation field that is located in southwestern Dyer County, Tennessee.

Figure 4. The relationship of 400 samples at four depths from 0–1 meter of soil texture (% Clay, Silt, &
Sand) and bulk density (BD) to volumetric water content from a 73-ha two-pivot field in west Tennessee.
The light to darker colors of the data markers correspond to 0–1 meter depths.

Table 5 presents the semivariogram and Global Moran’s Index parameters for the selected
attributes for each soil layer. The highest range did not belong to the same layer across soil properties.
The average range varied from 200 m to 300 m among attributes, which was two to three times greater
than the sampling intervals. The percent of nugget ranged from 18 to 50% among soil properties in
the study of [30], who investigated the spatial variability of soil physical properties of alluvial soils
in a 162 ha cotton field in Mississippi. This was somewhat similar to what was found for all the
attributes except BD, which reached a nugget percent as high as 73 percent. The z-scores revealed all
the attributes except BD within different layers had clustered patterns. BD only showed a clustered
pattern at the third layer and had a random pattern at other layers.
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Table 5. Semivariogram and Moran’s I parameters of soil properties for different soil layers. Soil
samples were collected at four depths from 0–1 meter at 100 locations.

Variable Layer Nugget Sill Range (m) Moran’s I z-Score

* BD, g cm−3 1th 0.008 0.011 526 0.087 1.181
2nd 0.01 0.015 95 −0.086 −0.929
3rd 0.011 0.016 280 0.137 1.802
4th 0 0.017 100 0.091 1.221

total 0 0.007 95 −0.007 0.038
WC, % 1th 0 44 100 0.175 2.266

2nd 12 129 332 0.327 4.063
3rd 0 131 206 0.284 3.545
4th 56 125 212 0.284 3.556

total 0 88 316 0.326 4.049
Sand, % 1th 115 446 360 0.421 5.213

2nd 440 1119 300 0.365 4.510
3rd 401 1037 219 0.320 3.978
4th 413 717 260 0.300 3.747

Clay, % 1th 19 92 389 0.392 4.861
2nd 123 215 428 0.239 3.016
3rd 68 138 177 0.321 4.034
4th 35 63 216 0.335 4.227

Silt, % 1th 39 174 334 0.382 4.740
2nd 165 453 279 0.396 4.887
3rd 211 484 200 0.270 3.366
4th 6 10 341 0.266 3.332

ECa, mS m−1 shallow 38 133 253 0.816 65.436
ECa, mS m−1 deep 126 388 223 0.846 67.899

* BD: soil bulk density, WC: soil volumetric water content at the time of sampling, ECa: apparent soil electrical conductivity.

Figure 5 shows maps interpolated by ordinary kriging. The white strip expanding from the
northwest to southeast of the field is a surface drainage pathway. There are three major sandy regions
within the field of study at the surface layer located at: (i) surrounding pivot points at the eastern
part of the field; (ii) south of the field, mostly outside of the irrigated zones; and (iii) northwest part
of the field. The sequence of sand maps from the first to fourth layers illustrate how these coarse
soil regions expanded across the field by depth such that sand covered the majority of the field in
deeper layers. The sandy regions could be either river flood-induced sand boils or earthquake-induced
sand blows. The vertical arrangement of soil textural components was not consistent across the field.
The clay had its highest influence from 0–50 cm, yet sand was the dominant particle from 50–100 cm.
The observed depth to sand during sampling ranged from 15–75 cm across the field, with an average
depth of 40 cm for almost 40% of the sampling spots. For the rest of the samples (60%), either there
was no clear immediate change from fine texture to coarse texture or sand appeared at the surface
soil. The silt contributed highly in subsurface layers (25–75 cm), where it reached its highest quantity
and SD (Table 4). The majority of the samples from subsurface layers (50–75 cm) with a high silt
content were compacted to some extent. This compaction was also projected in relatively higher BD
values from the same layers (Table 4). The BD map of the third layer corresponded well to the textural
patterns, where higher BD matched coarse samples. However, it was difficult to identify a trend from
the rest of the BD maps, as was expected from the results of the spatial analysis (Table 5).
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Clay1 (11-42%) Clay2 (5-41%) Clay3 (5-35%) Clay4 (4-26%) 

Silt1 (12-50%) Silt2 (12-50%) Silt3 (1-57%) Silt4 (1-43%) 

Sand1 (12-50%) Sand2 (12-50%) Sand3 (1-57%) Sand4 (1-43%) 

BD1 (1.27-1.46 g cm-3) BD2 (1.23-1.50 g cm-3) BD3 (1.22-1.50 g cm-3) BD4 (1.17-1.80 g cm-3) 

WC1 (19-34%) WC2 (10-42%) WC-3 (5-42%) WC4 (7-37%) 

ECa-S (2-46 mS m-1) ECa-D (2-147 mS m-1) WC-0-1 m (9-40%)  

Figure 5. Maps of six different soil properties and their range of variation within a 73-ha two-pivot
field in west Tennessee. These attributes include percent silt, sand, and clay, bulk density (BD, g cm−3),
volumetric water content (WC, %), and apparent electrical conductivity shallow (ECa-S, mS m−1) and
deep (ECa-D, mS m−1). Numbers 1-4 denote layers 1–4 (layer 1: 0–25 cm, layer 2: 25–50 cm, layer 3:
50–75 cm, and layer 4: 75–100 cm). The maps were generated using ordinary kriging. The darker colors
correspond to greater values for each attribute.
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The soil water content is a dynamic property of soil with time. However, it is expected that a
one-time measurement of water content values across a field provides a useful insight into the relative
spatial pattern of soil hydraulic properties [31]. The water content map of the surface soil clearly
showed the sandy textured areas as regions with a lower water content (Figure 5). At deeper depths,
the water content maps almost exactly matched the spatial pattern of the sand maps. This occurred
because coarse soils tend to dry out faster and hold less water than finer textured soils. This suggests
that a one-time measurement of water content during the sampling process may be mathematically
transformable to a PAW map. Overall, the water content map for the entire profile (0–100 cm) was
similar to maps of individual layers.

The ECa maps tended to follow the same general spatial patterns as those for soil basic properties
and water content (Figure 5). Table 6 illustrates the correlation coefficient between ECa values and soil
basic data. The ECa data were moderately correlated to soil texture and water content information.
The lowest correlation was between BD and ECa data. The correlation between shallow ECa and other
attributes declined from layer 1 to 4, as expected, while the opposite was true for ECa deep readings.
Sudduth et al. [29] showed that 90% of the shallow and deep reading responses in Veris machines
were approximately obtained from the soil above the 30 cm and 100 cm depths, respectively. The sand
increased with depth, hence regions with high conductivity became less pronounced in the deep ECa
map as opposed to the shallow ECa map.

Table 6. Correlation coefficient between soil apparent soil electrical conductivity (ECa, mS m−1) data
and soil basic information at the four layers (L1–L4).

Clay (%) Sand (%) Silt (%)

L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4
ECa-S 0.75 0.55 0.35 0.40 −0.75 −0.63 −0.45 −0.39 0.65 0.60 0.46 0.36
ECa-D 0.59 0.61 0.52 0.57 −0.62 −0.73 −0.63 −0.63 0.56 0.72 0.63 0.60

* BD (g cm−3) WC (%)

L1 L2 L3 L4 L1 L2 L3 L4
ECa-S −0.01 −0.15 −0.31 −0.02 0.66 0.61 0.47 0.47
ECa-D 0.06 −0.20 −0.45 −0.13 0.63 0.71 0.64 0.65

* BD: soil bulk density, WC: soil volumetric water content at the time of sampling.

This study demonstrated that ECa is a useful surrogate for both soil texture and water content.
Sudduth et al. [29] studied ECa readings on 12 fields in six states of the north-central US. They found a
good relationship between ECa data and soil cation exchange capacity (CEC), as well as clay content at
different times and locations, thus suggesting a general calibration equation of CEC and clay content
to ECa readings. They found the most variation in ECa values in Iowa fields that had the widest range
in soil texture, from loam to clay loam. In contrast, [17] reported water content as the main factor
influencing ECa readings in a rainfed field, but they did not find soil texture to be a significant predictor
of ECa. They found a weak correlation between water content and clay content and found that other
factors including elevation and organic matter, may govern the amount of soil water content [17].
In theory, multiple factors, including the relative fractions occupied by soil, water and air, geometry
and distribution of particles, and soil solution attributes, affect ECa [32]. The current introduced to
measure the ECa of soil, in fact, travels through liquid, soil-liquid, and solid pathways [33]. We believe
an accurate understanding of field-level soil texture variability and soil water status during the ECa
measurement process is crucial to efficiently interpret ECa maps. Brevik et al. [34] studied the temporal
stability of ECa data with respect to soil water content. They observed a strong influence of water
content on ECa readings and found that ECa’s power to differentiate soils was proportional to soil
moisture. They mentioned that soil water content should be reported as an essential part of ECa
studies. In this study site, the spatial heterogeneity of soil texture was the main factor that governed
the spatial distribution of water content. Further studies, however, are needed to examine the efficacy
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of ECa for other typical field-level heterogeneity in the region, where the infiltration and redistribution
of water within the root zone is governed by topography rather than soil textural variability.

3.2. Cotton Supplemental Irrigation

Table 7 summarizes the correlation coefficients between yield data and some soil properties
across the field of study. To evaluate the effect of variable rate fertilizer application by the farmer on
yield spatial variation, we also obtained correlation information for P and K. In general, correlation
coefficients were higher for 2014 data than for 2013 data. The correlations between P and K with yield
data were negligible. Given the high correlation between ECa data and PAW [18], the ECa data were
used to group cotton lint yield information into four soil-based zones (Figure 6). The results illustrated
in Figure 6 include irrigated areas, as well as corners of the field that were rainfed. In general, there
was an increase in yield from soils with lower ECa to soils with higher ECa in 2014, but not in 2013.
This is in line with the relatively higher correlation between water content/soil texture and the yield
data in 2014 compared to 2013.

Table 7. Correlation coefficient values between cotton lint yield data (2013 and 2014 cropping seasons),
soil properties at four depths from 0–1 m, and fertilizer application.

2013 2014

Layer 1 2 3 4 Total 1 2 3 4 Total

* BD, g cm−3 −0.16 −0.04 −0.09 −0.07 0.00 −0.23 −0.49 −0.18
WC, % 0.22 0.08 0.03 0.12 0.47 0.51 0.46 0.51

Sand, % −0.12 −0.03 −0.03 −0.08 −0.44 −0.52 −0.50 −0.53
Clay, % 0.16 0.03 −0.03 0.01 0.40 0.44 0.42 0.47
Silt, % 0.07 0.03 0.06 0.10 0.42 0.53 0.51 0.53
WC33 0.18 0.06 0.05 0.12 0.40 0.50 0.52 0.51

WC1500 0.19 0.05 0.01 0.11 0.40 0.48 0.48 0.50
ECa-S, mS m−1 0.12 0.49
ECa-D, mS m−1 0.08 0.58

P, Mg ha−1 −0.02 0.07
K, Mg ha−1 −0.11 −0.23

* WC33 and WC1500: predicted volumetric water content at soil matric potentials −33 and −1500 kPa,
respectively [18]; WC: volumetric water content at the time of sampling. Layers 1, 2, 3, and 4 were from 0–25 cm,
25–50 cm, 50–75 cm, and 75–100 cm, respectively. ECa shallow and deep readings represented approximately
0–30 cm and 0–90 cm of the soil profile, respectively.

 
Figure 6. The effects of supplemental irrigation (blue bars, right-hand y-axis) on cotton lint yield
(orange lines, left-hand y-axis) in 2013 and 2014 within a 73-ha two-pivot field in west Tennessee.
The white and black five-point start symbols denote actual irrigation applications by the farmer for the
west and east pivots, respectively. The deep ECa data were used to group cotton lint yield information
into four zones, where ECa increases from zone 1 to zone 4, zone 1: 2–8 mS m−1, zone 2: 8–18 mS m−1,
zone 3: 18–35 mS m−1, and zone 4: 35–162 mS m−1.
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In 2013, only for coarse-textured soils (soils with lower ECa readings; zones 1 and 2), there was an
overall positive response to supplemental irrigation. We observed no consistent positive response to
higher irrigation levels for soils with higher ECa readings (i.e., zone 3 and 4 repressing fine-textured soil
with higher PAW). In 2014, overall, cotton responded favorably to higher supplemental irrigation levels
for the first three ECa zones, with coarse-textured soil showing the highest yield increase. The highest
yield for the fine-textured zone (zone 4) did not belong to the greatest irrigation applications.

Figures 7 and 8 depict the dynamic of soil moisture (Agspy sensors) at different depths and
locations over the 2013 and 2014 growing seasons, respectively. There were some missing data and bad
readings mostly in 2014. In 2013, soil moisture probes a, b, and c were located underneath the east pivot,
representing the pie shape zone with extra irrigation, pie shape zone with lower irrigation, and farmer’s
irrigation application, respectively. The soil moisture probes a, b, and c received 163 mm, 90 mm, and
133 mm seasonal IW, respectively. The average predicted PAW throughout the effective root zone
(i.e., 1 m) was 0.28 m3 m−3, 0.22 m3 m−3, and 0.30 m3 m−3 for probes a, b, and c, respectively [18].
The pattern of soil moisture was dynamic and varied among sensors at different locations and depths.
At probe a, soil moisture depletion and replenishment occurred for sensors up to 40 cm deep during
the monitoring period (i.e., days after planting (DAP): 42-133). Soil water status remained almost
unchanged for deeper sensors for about 100 DAP, and then gradually exhibited a reduction, indicating
that roots started to pull out water from deeper layers as the ET demand increased. At probe b, rainfall
plus irrigation kept the soil moisture at a fairly constant level up to about 80 DAP for all sensors, while
fluctuations decreased by depth, as expected. After that, there was a substantial depletion in soil
moisture for sensors up to 50 cm, which even expanded to deeper sensors at about 95 DAP. At probe c,
the overall trend was similar to that of probe a. Toward the end of the growing season, much rainfall
at 112 DAP occurred that refilled the shallow layers for all soil moisture probes and also penetrated to
deeper layers such that there was an increase in readings by the soil moisture sensors at 30 and 40 cm
and no decrease for deeper sensors up to the end of the monitoring period.

In 2014, soil moisture probes a, b, and c were mainly located underneath the west pivot,
representing the central area irrigated by both pivots, pie shape zone with lower irrigation, and
farmer’s irrigation application, respectively. Soil moisture probes a, b, and c (Figure 8) received 142,
42, and 50 mm of IW, respectively, during the 2014 cropping season. Within the effective root zone
(i.e., 1m), the average PAW values predicted for probes a, b, and c were 0.19 m3 m−3, 0.33 m3 m−3,
and 0.23 m3 m−3, respectively [18]. Unlike 2013, most of the deeper sensors in 2014 showed some
fluctuations starting at about 70 DAP, meaning that the crop started to use water from deeper layers as
the crop water requirement increased. We attribute this to (i) bigger plants with larger canopies, and
hence a higher ET demand; (ii) lower irrigation in 2014 compared to 2013; and (iii) lower irrigation
under the west pivot (where we had sensors installed in 2014) compared to the east pivot (where we
had sensors installed in 2013). Trends in probes b and c were similar. There were more fluctuations
in the shallow sensors in probe a, since this sensor was irrigated by both pivots and was located on
a coarse-textured soil with a low PAW. In both years, heavy rainfall events were responsible for big
changes in the soil water status within the soil profile and considering sensor fluctuations, they usually
penetrated deep down to 50 cm. Irrigation events, however, mostly refilled shallow layers up to 20 cm
and barley influenced sensors deeper than 30 cm.
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Probe a-2013

Probe b-2013

Probe c-2013 

Figure 7. The change in soil moisture, measured as scale frequency (SF, Equation (4)), from 42 days
after planting throughout the 2013 growing season in a 73-ha two-pivot supplemental irrigation field in
west Tennessee. Light and dark blue bars show irrigation and rainfall, respectively. SF was measured
using Agspy soil sensor probes at different locations and 10 depths from 0–1 m. In 2013, soil moisture
probes a, b, and c were located underneath the east pivot, representing the pie shape zone with extra
irrigation, pie shape zone with lower irrigation, and farmer’s irrigation application, respectively.

The cotton lint response to supplemental irrigation differed across soil types. For soils with a
lower PAW, there was a positive response to irrigation in comparison to rainfed, where soil moisture
deficit is expected to reduce the boll number and yield [9]. The cotton response to irrigation was
not consistent for soils with a higher PAW, except that a yield reduction occurred underneath both
pivots for high irrigation rates in both cropping seasons. This is in line with the reported results
in the literature, indicating that under wet conditions, excessive irrigation decreased the yield of
cotton lint [11,12]. In 2013, the cotton lint yield was only 12% higher where we placed probe a
(IW = 163 mm, predicted PAW = 0.28 m3 m−3) in comparison to the yield at probe b (IW = 90 mm,
predicted PAW = 0.22 m3 m−3), even though there was a remarkable difference in soil water status
throughout the growing season between the two soil moisture probes (Figure 7). On the other hand,
in 2014, the yield difference between the exact same spots with a similar relative difference in IW
increased by 44%. We attribute this to the wet season and delayed planting in 2013, which significantly
affected the cotton response to irrigation. Delayed planting influences heat unit accumulation and
distribution, which was underscored as an important factor for the short season cotton response to
supplemental irrigation by [13]. Moreover, irrigation is expected to increase the number of bolls, but
delays cutout (i.e., cessation of flowering) since irrigation continues the vegetative growth for a longer
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period. We believe that rapid canopy expansion occurred on soil with a higher PAW in 2013 due to
excessive water within the crop effective root zone.

    
Probe a-2014 

    
Probe b

    
Probe c-2014

Figure 8. The change in soil moisture capacitance, measured as scale frequency (SF, Equation (4)),
from 53 days after planting throughout the 2014 growing season in a 73-ha two-pivot supplemental
irrigation field in west Tennessee. Light and dark blue bars show irrigation and rainfall, respectively.
SF was measured using Agspy soil sensor probes at different locations and 10 depths from 0–1 m.
In 2014, soil moisture probes a, b, and c were mainly located underneath the west pivot, representing
the central area irrigated by both pivots, pie shape zone with lower irrigation, and farmer’s irrigation
application, respectively.

Both 2013 and 2014 were relatively wet years. In fact, the rainfall was always above the long term
average, except for July 2014. There were some heavy rainfall events during the growing seasons, which
caused a significant increase in the soil water content. This is a typical situation in west Tennessee, with
unexpected rainfall events, where temporal changes in rainfall patterns significantly affect the yield
response to supplemental irrigation across years. Bajwa and Vories [11] reported the same complexity
on cotton irrigation scheduling in a moderately humid area in Arkansas when rainfall was plentiful
and caused a yield reduction for high irrigated crops. Monitoring the soil water status revealed that
rainfall events refilled the top soil and penetrated into deeper layers, while supplemental irrigation
mostly influenced the shallow layer up to 20 cm. Therefore, any sustainable irrigation management in
this region should take effective rainfall into account for site-specific irrigation scheduling. Sensors
indicated fast depletion for soils with lower PAWs. This caused the crop to start using water from
deeper layers as the cropping season advanced and ET demand increased. The sensor located on the
overlap region of the two pivots showed that more frequent irrigation could prevent the shallow soil
layer from substantial depletion and possible yield reduction due to water stress and thus should
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be considered as a potential irrigation strategy for coarse-textured soils with low PAWs throughout
the study site. On the other hand, days with no rainfall and irrigation could be beneficial for soils
with high PAWs since cotton usually responds favorably to periods of water stress adequate to reduce
vegetation expansion. The farmer’s goal was to tailor irrigation decisions to dominant soil areas, while
avoiding over and under irrigation as much as possible. The results, however, show that uniform
irrigation management can be detrimental to the field’s overall production and water use efficiency.
Consequently, variable rate irrigation strategies were predicted to enhance cotton production compared
to current uniform irrigation management practiced by the grower [35]. There may be a requirement
to practice a dynamic zoning strategy considering available water for the crop within its effective
root zone during growing seasons [36]. Soil moisture data will be instrumental to making the most
informed decisions for each soil and to determining how much different soils of a variable texture
need to be irrigated to maximize production.

3.3. Multiyear Yield Analysis

Figure 9 illustrates the cotton yield maps for 2012, 2013, and 2014; mean yield map (from Equation (5));
and standard deviation yield map (from Equation (6)). We included the 2012 yield map, a year before this
experiment when uniform irrigation had been applied by the farmer, to better represent the effect of soil
spatial variation on the cotton yield. Thematic cotton yield maps for 2012 and 2014 cropping seasons
followed the same spatial distribution as soil texture and water content maps, but the 2013 yield map
showed a different pattern. This finding agrees with the low correlation observed between cotton
yield data in 2013 and soil properties (Table 7). The spatial analysis of the multiyear mean yield map
(ranged from −79 to 98) showed substantial similarity to the PAW map developed for the field of study
by [18]. There were three regions with a lower yield and all on coarse-textured soils with lower PAW.
The highest yield temporal stability also belonged to the regions with low PAW, (i) in the southern
part of the field outside pivots coverage and (ii) in an area surrounding the east pivot point. The yield
temporal stability was lower for other parts of the field, but it was hard to identify any cluster of cells
with a similar temporal variance. We mainly attribute this to different rainfall patterns and irrigation
regimes across years, and their effects on the yield across soil types, which caused substantial mean
yield variability across years (Table 3). For instance, for cotton and corn, there was as much as 43%
and 110% temporal differences between mean yields across years, respectively. However, it is known
that other attributes related to management, water, crop, and climate affect the crop yield in a complex
manner and the crop yield maps per se only provide limited information about the influence of each
attribute [31]. In 2012 and 2014, the mean yield and standard deviation were higher than those for 2013,
indicating a decline in yield on soils with higher available water in 2013 due to the delayed planting
and excessive rainfall throughout the growing season.
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Figure 9. The cotton lint yield map (Mg ha−1) time series from 2012 to 2014 (a–c), plus mean ((d), using
Equation (5)) and standard deviation cotton yield maps ((e), using Equation (6)) that were derived
from the producer’s harvester data (Table 3, seven years of data for cotton, corn and soybean) for a
73-ha field in west Tennessee. The map of plant available water content (f) within the crop effective
root zone (i.e., 100 cm) is adapted from the study by [18].

4. Conclusions

Irrigation investment has been expanding across the humid areas of the US Cotton Belt for the
last 20 years because of the stabilization of yields and high commodity prices. Recent advances in
modern instrumentation and measurement techniques, such as on-the-go sensing, remote sensing, and
wireless networks of sensors, make site-specific on-farm experimentation possible for farmers. This is
essential for field-level cotton irrigation management in humid areas as a complex problem due to
substantial spatiotemporal heterogeneity in soil and weather-related parameters. In this study, we
used a variety of information that is relatively easily collected by farmers, to investigate the impact of
the spatial and temporal heterogeneity of soil attributes, including field-collected soil texture, moisture,
ECa, and bulk density, on the cotton response to supplemental irrigation. We found that ECa was a
useful proximal attribute to understand field-level spatial variability of alluvial soils in the region.
Analyzing crop yield against maps of soil characteristics revealed that soil texture and soil water
content remarkably influenced yield patterns, suggesting that variable rate irrigation is the appropriate
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irrigation scenario for this mixture of soils. We also found that other factors, including cropping season
length and in-season rainfall pattern, may change or even reverse the expected lint yield from an
irrigation treatment for a specific soil type. While soil variation is inherent and not controlled by
farmers, irrigation, if well-scheduled, could be the key factor to optimizing the crop production and
water use efficiency. The use of soil moisture sensors can help monitor soil water status and adjust
irrigation application based on in-season rainfall patterns and within-field soil variability.
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Abstract: Treated wastewater irrigation began two decades ago in the Salinas Valley of California and
provides a unique opportunity to evaluate the long-term effects of this strategy on soil salinization.
We used data from a long-term field experiment that included application of a range of blended water
salinity on vegetables, strawberries and artichoke crops using surface and pressurized irrigation
systems to calibrate and validate a root zone salinity model. We first applied the method of
Morris to screen model parameters that have negligible influence on the output (soil-water electrical
conductivity (ECsw)), and then the variance-based method of Sobol to select parameter values and
complete model calibration and validation. While model simulations successfully captured long-term
trends in soil salinity, model predictions underestimated ECsw for high ECsw samples. The model
prediction error for the validation case ranged from 2.6% to 39%. The degree of soil salinization due
to continuous application of water with electrical conductivity (ECw) of 0.57 dS/m to 1.76 dS/m
depends on multiple factors; ECw and actual crop evapotranspiration had a positive effect on ECsw,
while rainfall amounts and fallow had a negative effect. A 50-year simulation indicated that soil
water equilibrium (ECsw ≤ 2dS/m, the initial ECsw) was reached after 8 to 14 years for vegetable
crops irrigated with ECw of 0.95 to 1.76. Annual salt output loads for the 50-year simulation with
runoff was a magnitude greater (from 305 to 1028 kg/ha/year) than that in deep percolation (up to
64 kg/ha/year). However, for all sites throughout the 50-year simulation, seasonal root zone salinity
(saturated paste extract) did not exceed thresholds for salt tolerance for the selected crop rotations for
the range of blended applied water salinities.

Keywords: treated wastewater irrigation; salinization; model simulation; global sensitivity analysis

1. Introduction

Salinization of soils, groundwater, and surface waters from irrigation is a well-known problem
often associated with the decline of ancient civilizations dependent on irrigated agriculture around the
world, such as Mesopotamia [1]. Today, the salinity problem associated with irrigation in low rainfall
regions continues to have numerous grave economic, social, and political consequences. For example,
there is a high economic cost associated with salinity; the US Bureau of Reclamation spends $32 million
annually to limit salt additions to the Colorado River and the Natural Resource Natural Resource
Conservation Service-US Department of Agriculture (USDA-NRCS) spends some $13 million annually
to control salinity in irrigation programs across the upper Colorado River Basin [2]. Simultaneously,
as competition for available freshwater resources intensifies and use of treated wastewater (recycled
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water) having greater salinity grows to meet agricultural water demands, a key question inevitably
remains, is long-term use of recycled water sustainable? In the 1980s, discussions about “sustainable
agriculture” raised questions about changes in soil quality. Soil-water salinity is a transient condition
whereby salts concentrate in the soil following root water uptake by plants as well as water loss by
evaporation at the soil surface. Subsequent irrigation or rainfall can dilute the soil-water salinity or the
solutes can be removed from the system by leaching to subsurface drains, or through deep percolation
below the root zone. In areas having fine-textured soils overlying a shallow water table, additional
root zone salinization can occur through capillary rise from the saline water table [3–5]. Salinity risks
also increase when saline water is used for irrigation and when poor fertilizer and poor irrigation
management are combined.

Salinity hazards caused by irrigation depend on the type of salts, soil, and climatic conditions,
crop species, and the amount, quality, and frequency of water applications [6]. Increased irrigation
efficiency through adoption of advanced irrigation technologies such as micro-irrigation and sprinkler
systems may result in less water used in fields but may also decrease the leaching required to maintain
satisfactory root zone salinity during the growing season. While advanced irrigation technologies
are beneficial for increasing water productivity and protecting groundwater resources from pollutant
leaching, the low leaching fractions may lead to soil salinization. In addition, surface runoff pickup of
salts and leaching enable accumulated field salts to degrade river and groundwater resources. These
trade-offs also suggest that refined guidelines for use of treated wastewater for irrigation are needed
and could be aided through root zone salinity modeling.

Groundwater salinization is occurring in aquifers along the California coast [7] and is especially
critical in the Salinas Valley of the Central Coast as seawater intrusion threatens groundwater supplies
critical for irrigation of high-value fruit and vegetable crops. As a means to limit seawater intrusion,
tertiary treated wastewater was made available for agricultural use in the Salinas Valley since 1998
as an alternative or supplement to groundwater and concerns are growing about possible root
zone salinization in fields receiving recycled water. Accumulation of salinity in the crop root zone
progressively decreases yields. For example, during a 13-year field experiment in the Castroville area,
Platts and Grismer [8] observed an upward trend in soil electrical conductivity (EC) and chloride
(Cl) indicating a soil salinization threat and a possible growing Cl toxicity threat to crop production
in the Salinas Valley. The range of increase in EC in the root zone for sites irrigated with blended
well and treated wastewater was 18 to 63% and an increase in Cl ranged from 48 to 510%. Moreover,
agricultural return flows account for an estimated 33% of annual recharge to groundwater in the
Valley [9]. In a geochemical analysis, Vengosh and others [10] suggested that 3–10 mm/year of vertical
seepage associated with agriculture adversely affects the Valley’s groundwater quality. On the other
hand, Platts and Grismer [11] found that annual winter rainfall of roughly 250 mm was required to
adequately leach accumulated salts associated with recycled water use for irrigation in the Valley.
Moreover, from the lower Salinas River at Gonzales to the estuary, salinity is listed under EPA 303d
indicating that salinity in the Salinas Valley threatens sensitive surface water supply and ecosystems.

Root zone soil-water models have been developed in an effort to gain both an understanding
of the complex processes associated with soil–water–chemistry dynamics in the root zone and to
provide guidance for water managers and growers. Dynamic soil-water models quantify many
physical-chemical-biological interactions in irrigated agricultural systems and enable predictions to
assess spatio-temporal changes in soil salinity during and between growing seasons [12]. Soil EC is one of
nineteen measures advocated by the Soil Health Institute [13] as a measure of agricultural sustainability
and is a critical output parameter from these models. Further, Maas and Hoffman [14] and Rhoades and
others [15] developed crop-threshold EC values to assure successful use of saline water for irrigation.
Important factors in such models include daily rain depths and evapotranspiration (ET) demands,
soil properties, crops and irrigation method, water application depths and quality, and chemical factors
such as salt precipitation and dissolution rates within the root zone. Understanding and predicting how
root zone salinity changes in time under different irrigation methods and cropping systems provides
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insight into possible groundwater and surface water salinization. Several models have been developed
to estimate the soil water balance of the soil–plant-atmosphere system, Decision Support System for
Agrotechnology Transfer (DSSAT) for example is best suited to simulate process-based crop growth and
development; the model does not include a salinity module and this model uses a “tipping bucket” water
balance approach for soil hydrologic and water redistribution processes [16]. HYDRUS-1D simulates
water flow in soils using the numerical solutions of the Richards equation, however, its simulation of
crop-related processes is limited. Moreover, for long-term, multi-cropping simulations, HYDRUS-1D
requires loose coupling with an external crop model for estimations of evapotranspiration. As such,
we elected to use a simple daily time-step soil salinity model based on soil-water storage in four rootzone
quarters and applicable to long records of meteorological data. This enables us to take into account
a number of site-specific factors including soil properties, rainfall patterns, crop type, and irrigation
methods to establish the effect of these factors on long-term soil salinity.

While dynamic soil-water processes can be simulated at multiple time scales, a daily time step is
typically deployed because it represents the time scale at which rainfall, water application, and ET
information is more readily available and because many of the actual root zone processes occur within
hours to a day timeframe. While [11] employed a daily soil-water balance model to examine the
effects of various hydrologic factors on soil salinity over the 13-year study, they did not include
root zone soil-water chemistry, upward flow from shallow water tables and fertilizer management
processes. Isidoro and Grattan [17] developed a root zone soil salinity and water balance model with
root-water-extraction assumptions similar to foundational models of the past [18]. We extend this
model to further account for drainage under shallow groundwater conditions to enable inclusion of
saline water table effects on root zone soil water and salinity as similarly described in Reference [19].

Due in part to the greater capillary rise in finer-textured soils, greater upward flow rates from
shallow water tables has been found in loamy soils than in sandy soils having small capillary rise, or in
clayey soils with very slow permeability [20]. Crop water use from shallow water tables is controlled
by its depth and water quality, crop type, growth stage and salt tolerance, and water application
frequency and depth as affected by the vadose zone hydraulic conductivity [4,5,19,21–25]. In the
Salinas Valley study area, groundwater depths range from 7.5 to 11.6 m (24.4 to 38 feet) below ground
surface with maximum groundwater depths occurring in the fall following the summer irrigation
season. In the 13-year study by Reference [8], they noted that observed Cl accumulation in the soil
profile may have resulted from upward flow of saline groundwater.

Any modeling effort is a representation that necessarily simplifies reality; however, simulations
enable investigation of “what if?” questions. Previous analyses by References [8,11] of overall soil
salinity changes and leaching during the 13-year field study suggested that root zone salinity levels
could be managed by winter rains when irrigating with blended recycled water. However, they
underscored that more detailed process analyses were required to better elucidate what applied water
salinity levels were tolerable. Here, we seek to quantify (model) long-term (50 years) trends in soil
salinity within the Castroville area of the Salinas Valley when shallow groundwater is present as
affected by irrigation with recycled water of varying salinity. Further, model applicability to a region,
requires model calibration and validation for the study-site conditions so we explore use of a new
two-step process that first identifies the critical model parameters and then focuses on those to calibrate
the model. Use of models enables a comparatively inexpensive and environmentally-safe technique to
evaluate the long-term effects of various agricultural management scenarios on soil salinity while also
providing an aid for water managers considering these complex processes.

We use observations from the 13-year field experiment evaluating the long-term effects from
use of varying fractions of recycled water (i.e., salinity) for vegetable and strawberry production
on soil salinity in the Castroville area building on the previous efforts by Platts and Grismer [8,11].
Study objectives were to:

• Perform global sensitivity analysis of the modified Isidoro and Grattan [17] root zone salinity
model to find the parameters most sensitive to model outputs:
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• Complete a model calibration and validation using parameters to which model outputs are most
sensitive as a guide: and

• Predict long-term (five decades) root zone salinity, salt output load with deep percolation and salt
output load with surface runoff from fields using treated wastewater for irrigation.

2. Materials and Methods

2.1. Study Area

The study area in Castroville, overlies two main aquifers referred to as the “180-foot” and
“400-foot” aquifers, respectively. These were formed from fluvial sands and gravels associated with
the old Salinas River channel and possible delta conditions. Above and between the two aquifers are
deposits of blue clay overlying the “180-foot” aquifer range from 8-m thick at Salinas to more than
30-m thick at Castroville [26–28]. The typical overlying soil profile in the study area is comprised of
Pacheco sandy to clay loams as summarized in Table 1.

Table 1. Average soil profile texture variations in the study region [29].

Texture Depth (m)
Textural Fractions (%) Conductivity Ks

(mm/d)

Bulk Density
(kg/m3)

Sand Clay Silt OM

Clay loam 0–0.6 20–45 27–35 20–53 2 121–363 1660
Sandy loam 0.6–0.9 35–70 15–27 3–44 0.5 363–1218 1640

Loam 0.9–1.2 30–50 20–27 28–50 0.5 363–1218 1640
Silty clay loam 1.2–3 15–20 27–35 45–58 0.5 36–121 1700

We assembled the base data for the model using the estimates for saturated hydraulic conductivity,
organic matter content, soil texture, and bulk density from SoilWeb [29] an interactive webtool to access
detailed soil survey data (SSURGO). We then determined saturation water content (Ts), wilting point
(Twp), and field capacity (Tfc) according to soil texture using artificial neural networks techniques
implemented in Hydrus-1D [30]. Meteorological records for 1983 to 2014 were taken from the local
(California Irrigation Management Information System (CIMIS) station number 19 [31] and the average
monthly rainfall and grass-reference ETo are shown in Figure 1. Average monthly reference ETo

exceeded average monthly rainfall during April through November, annual ETo ranged from 862.3
mm to 1072.6 mm (±5.3%). Rainfall was concentrated from November to March (87% of annual rainfall)
with annual rainfall depths ranging from 134.5 mm to 1026 mm (±47.1%) as shown in Figure 2.

The main crops grown in the project area are cool-season vegetables (lettuce, broccoli, cauliflower,
artichoke, cabbage, spinach, celery) and strawberries. In 1995, the Monterey County Water Resources
Agency (MCWRA) passed an ordinance prohibiting extraction of groundwater between sea level and
−76.2 m in Salinas and Castroville. In 1998, Monterey County Water Recycling Projects (MCWRP)
began delivering recycled water to 486 hectares (12,000 acres) in the northern Salinas Valley. Crop
rotations and management practices at the eight sites of the study area are listed in Table A1;
the crops include lettuce, broccoli, cauliflower, cabbage, celery, spinach, artichokes, and strawberries.
Drip irrigation was used at the control site and vegetable crops were established with sprinklers for 20
to 30 days. At site 2, sprinkler irrigation switched to drip after plant establishment in 2002 while site 3
used sprinklers for vegetables and drip for strawberry. Sites 4 and 5 used sprinklers and drip and sites
6 and 7 used sprinklers for plant establishment and followed by furrow irrigation.
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Figure 1. Mean monthly rainfall (P) and reference ETo from the California Irrigation Management
Information System (CIMIS) station 19 in Castroville, CA.

Figure 2. Annual rainfall and reference ETo from CIMIS station 19 in Castroville, CA.

Tertiary treated wastewater effluent from Monterey Regional Water Pollution Control Agency,
(MRWPCA) was sampled on a weekly basis to determine the levels of salt present in it before blending
with the supplemental well water used to meet peak irrigation demand. Monthly delivery system
sampling confirmed the quality of the water received by growers after supplemental well water was
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added to the recycled water. In addition, the quality of the well water delivered to the control site
was sampled monthly. The water samples were analyzed for pH, ECw, Na, Mg, Cl and K (potassium)
by an accredited laboratory run by MRWPCA. The one control and seven test sites were randomly
distributed throughout Castroville, USA area and were chosen based on soil characteristics, drainage
systems, types of crops grown (lettuce, cole crops and strawberries), irrigation method and farming
practices. At each site, soil samples were collected from depths of 0.03 to 0.30 m, 0.30 to 0.61 m and
0.61 to 0.91 m at four different locations within 1 m of a designated global positioning system (GPS)
point. Sample analysis was done by an independent accredited lab (Valley Tech, Tulare, CA, USA) and
included pH, soil water electrical conductivity (ECsw), extractable cations B (boron), Ca, Mg, Na and K,
and extractable anions Cl, NO3 (nitrate) and SO4 (sulphate).

Irrigation water salinity varied between sites and years as recycled water was blended with
groundwater (2000–2009) or diverted Salinas River water (2010–2012) and the average applied water
EC (ECw) at the different sites for these time periods are summarized in Table 2. Tertiary treated
wastewater in the study had on average Sodium Adsorption Ratio (SAR) value of 5.58, containing
192.1 mg/L of Na, 246.1 mg/L of Cl, and EC of 1.4 dS/m. The rain salinity (ECp) values were taken
from the National Atmospheric Deposition Program station in the Pinnacles National Park located
~322 km east of the study site. The ECp varies by month ranging from 0.001 dS/m to 0.004 dS/m with
May having the highest ion deposits with rain.

Table 2. Average electrical conductivity (EC) of applied water (ECw) at different sites from 2000–2012.

Site #
2000–2009 2010–2012

% Recycled Water ECw (dS/m) % Recycled Water ECw (dS/m)

Control 0 0.63 0 0.78
2 46 0.75 92 1.12
3 94 1.52 98 1.19
4 58 0.94 96 1.17
5 93 1.51 100 1.21
6 70 1.14 90 1.09
7 96 1.56 90 1.17

2.2. Root Zone Salinity Model

We coupled crop growth and soil water models applied across the root- and vadose-zones
to simulate both upward flow from shallow water tables as well as downward percolation to the
groundwater (see Appendix B for a detailed description of the model). These were combined with
a root zone salinity model and used to predict root zone soil salinity (see model configuration in
Figure 3). The two driving criteria for model selection included the simplification required to describe
the processes mathematically without losing the detail needed to develop realistic results, and the
model reliance on readily available input data. The Isidoro and Grattan [17] daily time-step model
uses a closed-form solution of Reference [32] to describe vertical unsaturated water movement in the
root zone and unsaturated zone (Equations (A1) to (A4)). A number of closed-form formulas have
been proposed to empirically describe the dependence of unsaturated hydraulic conductivity and
water content on pressure head [33–37]. We used the Clapp and Hornberger equation [32] to extend
vertical flow through a continuous soil profile to compute the movement of water and salt across the
entire vadose zone to the account for shallow groundwater flow processes. Thus, two additional layers
from the root zone to the groundwater table were added for both unsaturated and saturated zones.

The crop component of the model includes crop development stages (Table A2), root growth
(Equation (A8)), root water uptake and water stress response functions (Equations (A5)–(A7)).
Evapotranspiration (ET) includes a combination of two separate processes whereby water is lost
from the soil surface by evaporation and from the root zone by crop transpiration. The crop ET is
calculated as the product of the reference ETo and the estimated crop coefficient (Kc) that depends on
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crop characteristics, vegetative growth state, canopy cover, and height as well as surface-soil properties
(Equations (A5)–(A7). In each layer (k), the actual crop ET can be lower than potential ETc(k) due to
water stress, which depends on the soil water content and the sensitivity of the crop to low water
contents, accounted for through the crop-specific parameter p: the ratio of readily available soil water
(RAW) to total available water (TAW) (p = RAW/TAW) [38].

Figure 3. Main components of the soil–water and salinity balance model across the soil–water–plant–
atmosphere–aquifer continuum.

The model domain consists of a one-dimensional vertical 7.7-m soil profile, representing the crop
root zone and the unsaturated zone that overly a fixed saturated (water table) zone. The domain
is discretized so that the clay loam root zone is divided into four quarters of equal depth to
enable determination of plant water uptake fractions. The unsaturated zone below the root zone is
divided into two layers: a sandy-loam layer immediately below the root zone and a silty clay-loam
between the sandy-loam and the capillary fringe. Both upward flow from and downward flow to
shallow groundwater is possible in the model. Surface runoff depths were calculated using the Soil
Conservation Service (SCS) runoff method [39,40] see Equations (A9) and (A10). Equations (A11) and
(A12) detail the soil–water balance simulations.

Salt balance calculations were performed in conjunction with the soil–water balance
assuming complete mixing of water entering each layer with that already stored in that layer
(Equations (A13)–(A19)). The soil–water EC is used as a salinity indicator, implicitly assuming there is
a unique relationship between EC and total dissolved solids (TDS), and that EC behaves as a non-reactive
(conservative) solute. Salinity of irrigation water (ECw) and precipitation (ECp) are input values.
The mass of salts in layer k (Z(k)) is estimated from the product ECsw(k) W(k), where ECsw is the
electrical conductivity of the soil water in that layer.

Plant water uptake was assumed to be a descending extraction pattern that depends on irrigation
frequency such that greater uptake is at the top quarter of the root zone [18,41–43]. Plant growth
and root development parameters are summarized in Table A2 and Equation (A8) [38,44–47] and
we assumed that strawberries were planted on 1.3 m wide raised beds as is common in the region.
The model was calibrated for soil salinity generation due to dissolution and a dissolution rate is used
to account for these processes. Irrigation and rainwater salinity are specified by the user and the model
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neglects plant root uptake of salts. While preferential flow and irrigation non-uniformity may also be
important features, they were beyond the scope of this model.

Each simulation extended for a period of 13 and 50 water years (1 October to 30 September)
and more importantly the model simulates carry over effect from one year to the next. The surface
boundary conditions of rainfall, irrigation and ETo were specified daily together with irrigation
and rain water EC. The lower boundary conditions were specified as fixed water table depth and
groundwater salinity ECgw; though fixed water table depths are unlikely in the field, water table
fluctuations are assumed to be dampened by capillary rise and evaporation from the water table.
The model is written in R to make it more widely accessible to water managers and possibly growers.

2.3. Calibration and Sensitivity Analyses

Parameter sensitivity analyses provide insight into those model parameters that are most
critical towards approximating measured results and are often used to help focus field sampling
or measurement efforts and/or refinement of modeled processes. Here, we take a different approach
and first used a global sensitivity analysis that considers variations within the entire variability space
of the input factors. We used the elementary effect (EE) method for screening important input factors
among the 33 factors initially considered important. Finally, the variance-based “Sobol” method was
used with those factors determined to be significant from the Morris screening method for factor
fixing and to identify those factors which, left free to vary over their range of uncertainty, make no
significant contribution to the variance of the output results of interest. We applied the modified
Isidoro and Grattan model to the 13 years of soil salinity observations up to 91.4 cm below the ground
surface. Measured data from the control site, irrigated only with available groundwater, was used
for calibration and one of the other eight test sites using predominantly recycled water (94–98%
recycled/freshwater blend) was used for model validation so as to bracket possible model predictions.
The calibrated model was then used to assess the long-term (50 years) salinity outcomes of variable
management strategies including cropping patterns, irrigation technology, and irrigation water quality.

We use the Morris and Sobol’s methods to support model calibration as shown in Figure 4.
The sensitivity analysis was used to address the following questions:

• What input parameters or factors cause the largest variation in the output?
• Are there any factors whose variability has a negligible effect on the output?
• Are there interactions that amplify or dampen the variability induced by individual factors?

Figure 4. Workflow for calibration of the soil-water water and salt balance model.

Sensitivity Analysis Library (SALib version 1.1.3) an open source library written in Python,
was used for performing the sensitivity analyses [48]. The model input variables considered for the
sensitivity analysis are listed in Table 3 and parameters showing the greatest sensitivity were selected
for calibration.
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Table 3. Model parameters used in the sensitivity analysis. (Note: rz—root zone layers 1–4; 5—unsaturated
zone layer 5; 6—unsaturated zone layer 6).

Property Model Code Model Units
Range

Min. Max.

Soil Hydraulic Parameters

Saturated water content
Tsrz cm3/cm3 0.439 0.486

Ts5 cm3/cm3 0.357 0.37

Ts6 cm3/cm3 0.36 0.38

Water content at field capacity
Tfcrz cm3/cm3 0.324 0.367

Tfc5 cm3/cm4 0.240 0.320

Tfc6 cm3/cm5 0.250 0.270

Water content at wilting point Twprz cm3/cm3 0.154 0.177

Residual water content
Tr5 cm3/cm5 0.11 0.14

Tr6 cm3/cm5 0.066 0.08

Saturated hydraulic conductivity
Ksrz cm/day 12.1 36.3

Ks5 cm/day 36.3 121.8

Ks6 cm/day 3.6 12.1

Fraction of excess water drained the first day
Arz % 0.81 0.83

A5 % 0.85 0.87

A6 % 0.8 0.82

Runoff Curve Number for fallow periods CNf - 91 94

Growing season Curve Number CNc - 88 91

Capillary fridge height above the water table Hd cm 83 183

Depth to groundwater table Hwt M 7.45 11.57

Depth of surface soil layer subjected to drying
by evaporation Ze mm 100 150

Plant Parameters

Root water uptake for layers 1–3
RWU1 % 60 71

RWU2 % 20 30

RWU3 % 6 7

Rooting depth of lettuce, broccoli, cabbage and
cauliflower

ZrL cm 30 50

ZrBrc cm 40 60

ZrCabb cm 50 80

ZrCau cm 40 70

Fraction of total available water that can be
depleted from the root zone before moisture

stress for lettuce
pL - 0.3 0.7

Fraction of total available water that can be
depleted from the root zone before moisture
stress for broccoli, cabbage, and cauliflower

pBCC - 0.45 0.7

Soil Chemical Parameter

Rate of dissolution at 2.5–30.5 cm depth k1 dSm−1/day 0 0.014

Rate of dissolution at 30.5–61 cm depth k2 dSm−1/day 0 0.022

Salinity at shallow water table ECgw dSm−1 0.35 1.58

Initial ECsw ECsw dSm−1 0.29 4.1
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Different crops have different water uptake patterns, but all take water from wherever it is
most readily available within the rooting depth. The root zone water-uptake pattern depends on
irrigation frequency. With infrequent irrigations, the typical extraction fractions by root zone layer
is 40–30–20–10%. For frequent drip or sprinkler irrigation, the water uptake fractions are skewed
towards greater uptake from the upper root zone, or a 60–30–7–3% uptake pattern [18]; this pattern is
assumed in many classical analysis of saline soils [42]. Some have suggested use of an exponential
model that specifies a greater proportion of uptake near the soil surface, that is, uptake fractions of
71–20–6–3% [41,43]. Ranges for the crop related data, including crop coefficients (Kc), rooting depths
(Zr), and average fractions of total available water that can be depleted from the root zone before
moisture stress (p), were taken from the Food and Agriculture Organization of the United Nations
(FAO)-56 [38]. Estimates of strawberry crop coefficients were found in Reference [47].

All field sites considered were situated on Pacheco clay, clay-loam, and sandy loam soils with
ranges of soil texture, available water content, bulk density, organic matter content, and saturated
hydraulic conductivity (Ks) taken from SSURGO soil surveys as summarized previously in Table 1.
Soil hydraulic properties required for model application were inferred from the soil survey information.
We fitted that information to the van Genuchten model using a Multiobjective Retention Curve
Estimator (MORE) based on the Multiobjective Shuffle Complex Evolution Metropolis (MOSCEM-AU)
algorithm implemented in HYDRUS-1D [30]. The fraction “α” of the excess water that drained the first
day (0 < α < 1) was calculated from the soil texture in the layer through an empirical relation obtained
to match the results presented in [49]. Grismer [20] provides a relationship between capillary fringe
heights (Hd) and saturated intrinsic permeability for different soil textures. Groundwater levels were
taken from regular measurements by the MCWRA at well 13S/02E-32E05 about 5 km west of study
area. Estimated range of groundwater salinity was taken from Reference [50].

The primary output variable of concern was the soil–water ECsw as determined for root zone
layers up to 0.91 m deep. As the Isidoro and Grattan model is a dynamic model, the “output” term in
the sensitivity analysis does not refer to the range of spatial and temporal distribution of ECsw but
to a summary variable. In this case, the root mean square error (RMSE) that is obtained as a scalar
function of the simulated time series output ECsw values. As such, for calibration, the objective
function minimized the RMSE associated with model prediction.

2.3.1. Model Parameter Screening-Elementary Effects Method

The elementary effects (EE) method is an effective way of screening for important input factors
contained in a model [51]. The fundamental concept of this method involves deriving measures of
global sensitivity from a set of local derivatives, or elementary effects, sampled on a grid throughout
the parameter space [52]. It is based on one-at-a-time (OAT) analysis, in which each parameter Xi is
perturbed along a grid of size Δi to create a trajectory through the parameter space. For a given value
of X, the elementary effect of the ith input factor is defined as:

EEi =
[Y(X1, X2, . . .., Xi−1 + Xi + Δ, . . . , Xk) − Y(X1, X2, . . . , Xk)]

Δ
(1)

where Y(X1, X2, . . . , Xk) is a prior point in the trajectory and X = X1, X2, . . . , Xk is any selected value
in the parameter space such that the transformed point is still in the parameter range for each index
i = 1, . . . , k. The sensitivity measures μ and σ are the mean and the standard deviation of the
distribution of EEi proposed by Morris. Mean parameter (μ) assesses the overall influence of the
factor on the output parameter of interest; σ assesses the extent to which parameters interact. Thus,
a small σ value implies that the effect of Xi is almost independent of the values taken by other factors;
on the other hand, a large σ indicates that a factor is interacting with others because its sensitivity
changes across the variability space. Campolongo and others [53] suggest that μ* is a good proxy of
the total sensitivity index, a measure of the overall effect of a factor on the output parameter inclusive
of interactions. We analyzed μ* for all input factors to screen out non-influential factors, and then
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performed a variance-based analysis with the remaining important factors. Once trajectories are
sampled, the resulting r elementary effects per input are available, the statistics μ, σ2 and μ* for each
factor are computed as:

μi =
1
r

r

∑
j = 1

EEj
i (2)

μ∗i =
1
r

r

∑
j = 1

|EE j
i| (3)

σ∗i =
1

r − 1

r

∑
j = 1

(EE j
i −μ)

2
(4)

2.3.2. Factor Fixing-Sobol’s Variance Method

Sobol’s sensitivity analysis is a global-variance based method. Sensitivity measures are based on
the decomposition of the model output variance to individual parameters and the interaction between
parameters [54,55]. Variance-based sensitivity analysis relies on three principles:

• input factors are assumed to be stochastic variables of the model that induce a distribution in the
output space;

• the variance of the output distribution is a good proxy of its uncertainty; and
• the contribution to the output variance from a given input factor is a measure of sensitivity.

Contribution to total output variance by individual input factors and their interaction can be
written using an ANOVA high-dimensional model representation (HDMR) decomposition [51]:

V(Y) =
k

∑
i

Vi + ∑
1≤i<j≤k

Vij+ . . . + V12...k (5)

where V(Y) is the total or unconditional variance of the output, the conditional variance; Vi is the
conditional variance or first-order effect of Xi on Y; Vij is the joint effect of Xi and Xj minus the
first order-effects for the same factors. Several variance-based indices can be defined; the first order
index represents the main contribution effect of each input factor to the output variance can be
determined from:

Si =
Vi

V(Y)
(6)

The total order index, ST, a measure of the overall contribution to output variance from an input
factor considering its direct effect and its interactions with all other factors and is determined from:

STi = 1 − V∼i

V(Y)
(7)

where V∼i is the conditional variance with respect to all the factors but one, i.e., X∼i. The condition
STi = 0 is necessary and sufficient for Xi to be a noninfluential factor on the output. That is, if STi ∼= 0,
then Xi can be fixed at any value within it range of uncertainty without appreciably affecting the value
of the output variance V(Y). Here, we calculated all of the indices to determine the factors that can be
fixed in the calibration process. A recommended sampling technique uses sequences of quasi-random
numbers generating n, 2k matrix of random numbers where n is called a base sample and k is the
number of input factors. This scheme allows for n (k + 2) model evaluations. We evaluated up to
n = 12 and found no changes occurred after n = 10 and concluded that it was sufficient.
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2.4. Long-Term Salinity Indicators

Salt output loads with deep percolation were used to assess the potential for groundwater
resources deterioration and salt output loads with runoff indicate the salinity threats posed by treated
wastewater irrigation on the salinization of the Salinas River. Similarly, crops respond to the salinity in
the root zone over the entire growing season [18]. Thus, we used seasonal-averaged root zone EC of
the saturated extract or ECeS (dS/m), deep percolation Sd (kg/ha), and surface runoff Sr (kg/ha) salt
output loads as key output state variables to describe long-term (decadal) impacts of irrigation with
treated wastewater and farm management practices (i.e., applied water quality and depths, irrigation
technology, and crop rotations). Annual rainfall mitigates impacts of irrigating with saline water as
such accounting for rainfall leaching is important for evaluating long-term dynamics.

Daily EC of the saturated extract (ECe) in the root zone layers (k) is calculated as:

ECe(k)t =
ECsw(k)t × θ(k)t

SP(k)
(8)

where SP(k) is the saturation percentage (water content of the saturated soil paste expressed on a dry
weight basis) for layer k. Traditionally, for most mineral soils it is assumed that field capacity is half
of SP, so ECet is the mean ECe of the 4 rootzone layers; daily values ECet are then averaged over the
entire growing season yielding the seasonal-averaged root zone ECe (ECeS):

ECeS =
∑Growing season ECet

Days in the growing season
(9)

We applied the model to both meteorological series and management practices for 13 years of
cropping practices in the study area. The objective was to simulate a 13-year continuous cropping and
provide a multiple-year record of seasonal ECeS and related parameters. Following [15], we assumed
a factor of 640 to convert EC (dS/m) into TDS (mg/L) for EC ≤ 5 dS/m and a factor of 800 for
EC > 5 dS/m.

The model estimates daily lower boundary water flux (D) along with an estimate of soil–water
EC in the bottom layer to determine the daily salt output load associated with deep percolation water
calculated as:

Sd= D × ECsw(4)× 6.4 (10)

where Sd is the daily drainage salt output load in kg/ha; ECsw(4) is the EC of soil water in the bottom
root zone layer in dS/m and 6.4 is the conversion factor assuming a factor of 640 to convert EC (dS/m
into TDS (mg/L) and flux in mm. Additionally, the model estimates daily runoff volumes (SR) from
the soil surface along with the runoff water EC such that the daily salt output load associated with
runoff is calculated as:

Sr= SR × ECsr × 6.4 (11)

where Sr is the daily runoff salt output load in kg/ha; ECsr is the EC of surface runoff in dS/m and 6.4
is the conversion factor.

2.5. Calibration and Validation

The primary objective of model calibration was to capture the long-term soil salinity dynamics
in the fields irrigated with treated wastewater in the study region by satisfactorily reproducing the
2000 to 2012 soil-water salinity (ECsw) data set described by [11]. The study consisted of six test sites
and one control site randomly distributed across the Castroville region that were chosen to provide
a typical range of soil characteristics, drainage systems, types of crops grown, irrigation methods,
and farming practices found in the region. Average annual water quality delivered to each site was
determined as well as soil samples collected from depths of 0.03–0.30 m, 0.30–0.61 m, and 0.61 to
0.91 m at four different locations within 1 m of a designated global positioning system (GPS) point.
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Soil samples were collected following winter rains before the spring planting, during and at the end of
the summer growing season prior to winter rains. Saturated paste extracts from these soil samples
were analyzed for EC and solute concentrations. The control site received only well (2000–2009) or
surface (2010–2012) water and this site was used for calibration, while site 3 received 94–98% recycled
water and this site was used for validation (see Table 2). Annual crop rotations that included lettuce,
broccoli, cauliflower, cabbage, and strawberry are shown in Figure A1. Control site vegetables were
established with sprinklers for 20–30 days and drip irrigated, while at site 3, vegetables were sprinkler
irrigated and then drip irrigation was used for strawberries.

Sensitivity analysis, calibration and validation were performed for soil–water EC (ECsw) at
three depth intervals. The goodness-of-fit measures of the model predictions were evaluated using
a set of statistical indices including root-mean-squared-error (RMSE), Nash-Sutcliffe efficiency (NSE),
coefficient of determination (R2), coefficient of regression (b), and mean relative error (MRE). A perfect
fit between observations and model predictions yields a RMSE = 0.0, NSE = 1.0, R2 = 1.0, b = 1.0 and
MRE = 0.0.

3. Results

3.1. Sensitivity Analysis

The sensitivity analyses were performed on the 33 model parameters as indicated in Table 3.
We measure the sensitivity of the root mean squared error (RMSE) metric, calculated using the sampled
soil water salinity (ECsw) at the three depth intervals to ensure that our sensitivity indices are grounded
relative to the observed soil salinity. The sample sizes and corresponding number of model evaluations
required for both the Elementary Effect (EE) and Sobol’ methods are listed in Table 4. For the EE method,
a sample size of n = 1000 with 10 optimal trajectories were used resulting in 340 model evaluations.
Since the Sobol analysis was performed with the reduced parameter space results determined from
the prior EE approach, the number of samples selected ranged from 10 to 12 and iterations were
discontinued at the point where the sensitivity results converged. The Latin Hypercube sampling
design was used with n = 50 sampling points to generate a near-random sample of parameter values
as proposed by Reference [56]. The open-source implementations were used for both methods [48].
Convergence was considered acceptable when within the 95% confidence interval.

Table 4. Sampling sizes and number of model runs performed for each sensitivity analysis method.

Method Sample Size Model Evaluations

Elementary Effect (EE) w/10 trajectories 1000 340

Sobol’s
10 200
11 220
12 240

Among the 33 rootzone model parameters (Table 3), the EE method revealed that only nine
strongly influenced the output soil–water EC (ECsw) as summarized in Table 5. Table 5 indicates
parameter sensitivity values μ, μ*, μ*_conf and Σ/EE from the elementary effect analysis. The mean of
the distribution of EEi (Σ/EE) is a proxy for a total sensitivity index of ith input factor and μ*_conf is
the confidence interval of the μ* at 95%. We chose these nine parameters based on the combination
of small μ* values with corresponding large σ values (Figure 5). High σ value indicates that the
EE are strongly affected by the choice of the sample points at which they are computed, therefore
a non-negligible interaction with other factor values as illustrated in Figures 5 and 6.

Next, we applied Sobol’s sensitivity analysis to determine factor fixing using the nine influential
factors from the EE results as summarized in Table 6, we reported the first-order (Si) and total order
sensitivity (STi). Of the nine factors, only two were non-influential by this analysis, that is, they resulted
in ST = 0. These non-influential parameters towards average root zone salinity included the capillary
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fringe height (Hd) and depth to groundwater (Hwt), so these were fixed at average values for the model
calibration analysis. Interestingly, ST values for Tsrz for layer 2 and layer 3 indicate that saturated soil
moisture content is more influential for these layers than Ks, and especially that Tsrz in layer 2 is the
most influential parameter in the model. Given that we used the control site for model calibration and
irrigation of vegetables for this site is managed with sprinklers for establishment and then drip for the
rest of the plant development stages, we suspect that plant water uptake is mainly from the bottom
layers. However, in our model plant water uptake even with drip is assumed to be mainly from the
top layer: 60–30–7–3% uptake pattern. Root water uptake (RWU) although included in the sensitivity
analysis was not influential. Mostly likely, upward flow of soil water from the second layer provides
water required for uptake in the top layer. Soil moisture is directly related to unsaturated conductivity
(a driving force for soil water from wet to dry soil layer). As such the water saturated water content in
the second layer ended up being most influential in our calibration. It is important to note that with
respect to the crop rooting depth, it is likely that the lettuce rootzone depth is important for the control
site specifically as it was the main crop grown for the majority of the experiment period. For other
sites, it may be important to include variability of the crop rooting depth.

Table 5. Parameter sensitivity based on Morris indices.

Code Parameter μ* μ μ*_Conf Σ/EE

Root zone Sampling Depth of 0.03–0.3 m

k1 Rate of dissolution at 0.03–0.30 m depth 0.16 −0.14 0.07 0.15
ZrL Rooting depth of lettuce 0.1 −0.10 0.06 0.1
Tsrz Root zone saturated water content 0.09 −0.07 0.08 0.14
Ksrz Root zone saturated hydraulic conductivity 0.08 0.03 0.06 0.12

Twprz Root zone water content at wilting point 0.05 −0.05 0.03 0.05
Hd Capillary fringe height 0.04 0.04 0.08 0.12
pL Fraction of depletable moisture for lettuce 0.04 0.03 0.02 0.04

Root zone Sampling Depth of 0.30–0.61 m

k1 Rate of dissolution at 0.03–0.30 m depth 0.12 −0.1 0.07 0.13
Ksrz Root zone saturated hydraulic conductivity 0.07 −0.03 0.04 0.11
Tsrz Root zone saturated water content 0.07 −0.05 0.06 0.12
Tfc5 Unsaturated zone saturated water content 0.05 −0.02 0.04 0.08
k2 Rate of dissolution at 0.3–0.61 m depth 0.05 −0.05 0.02 0.04

ZrL Rooting depth of lettuce 0.05 −0.04 0.03 0.06
Twprz Root zone water content at wilting point 0.04 −0.02 0.02 0.05

Hd Capillary fringe height 0.04 0.03 0.06 0.1
Tr5 Unsaturated zone residual water content 0.03 −0.03 0.02 0.04

Root zone Sampling Depth of 0.61–0.91 m

k1 Rate of dissolution at 0.03–0.30 m depth 0.13 −0.08 0.06 0.16
Tsrz Root zone saturated water content 0.09 −0.05 0.06 0.14
Ksrz Root zone saturated hydraulic conductivity 0.08 −0.01 0.06 0.13
Tfc5 Unsaturated zone saturated water content 0.06 −0.03 0.06 0.11

Twprz Root zone water content at wilting point 0.05 −0.03 0.03 0.07
Hwt Depth to groundwater table 0.05 0.05 0.06 0.1
ZrL Rooting depth of lettuce 0.05 −0.04 0.04 0.07
k2 Rate of dissolution at 0.3–0.61 m depth 0.05 −0.04 0.03 0.04
Hd Capillary fringe height 0.04 0.04 0.07 0.13
Tr5 Unsaturated zone residual water content 0.03 −0.03 0.02 0.04

μ* is a good proxy of the total sensitivity index [53].
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Figure 5. Morris method μ* (the absolute of the mean elementary effect) values for soil depth layers.
(a) 0.03–0.30 m; (b) 0.3–61 m; (c) 0.61–0.91 m depths.
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Figure 6. Morris method μ* (the absolute of the mean elementary effect) vs. σ (the standard deviation
of the elementary effect) for the different soil depths.

Table 6. Sobol’s sensitivity indices.

Code Parameter ST ST_conf Si Si_conf

Root zone Sampling Depth of 0.03–0.3 m

k1 Rate of dissolution at 0.03–0.30 m depth 0.65 0.42 0.42 0.33
ZrL Rooting depth of lettuce 0.43 0.47 −0.10 0.29

Tfcrz Unsaturated zone saturated water content 0.07 0.06 −0.04 0.13
Ksrz Root zone saturated hydraulic conductivity 0.05 0.08 −0.01 0.06
Tsrz Root zone saturated water content 0.04 0.05 −0.07 0.11

Twprz Root zone water content at wilting point 0.02 0.02 −0.08 0.07
k2 Rate of dissolution at 0.3–0.61 m depth 0.01 0.01 0.03 0.05

Hwt Depth to groundwater table 0 0 0 0.02
Hd Capillary fringe height 0 0 0 0.02

Root zone Sampling Depth of 0.30–0.61 m

Tsrz Root zone saturated water content 3.38 9.1 0.01 0.11
k1 Rate of dissolution at 0.03–0.30 m depth 0.86 0.53 0.31 0.5
k2 Rate of dissolution at 0.3–0.61 m depth 0.27 0.19 0.28 0.28

ZrL Rooting depth of lettuce 0.24 0.49 0.03 0.24
Tfcrz Unsaturated zone saturated water content 0.05 0.06 0 0.14
Ksrz Root zone saturated hydraulic conductivity 0.04 0.07 0.01 0.13

Twprz Root zone water content at wilting point 0.02 0.02 −0.03 0.07
Hwt Depth to groundwater table 0 0.01 −0.02 0.05
Hd Capillary fringe height 0 0.01 −0.02 0.05

37



Agriculture 2019, 9, 31

Table 6. Cont.

Code Parameter ST ST_conf Si Si_conf

Root zone Sampling Depth of 0.61–0.91 m

k1 Rate of dissolution at 0.03–0.30 m depth 0.89 0.68 0.05 0.44
ZrL Rooting depth of lettuce 0.36 0.48 0.05 0.21
k2 Rate of dissolution at 0.3–0.61 m depth 0.29 0.17 0.09 0.24

Tsrz Root zone saturated water content 0.12 0.22 0.02 0.08
Ksrz Root zone saturated hydraulic conductivity 0.07 0.1 −0.03 0.08
Tfcrz Unsaturated zone saturated water content 0.06 0.07 0.03 0.1

Twprz Root zone water content at wilting point 0.03 0.03 −0.01 0.04
Hd Capillary fringe height 0 0.01 0 0.01

Hwt Depth to groundwater table 0 0.01 0 0.01

3.2. Calibration and Validation

Model calibration was performed allowing the parameters k1, k2, ZrL, Tsrz, Ksrz, Tfcrz, and
Twprz identified as most sensitive to model determination of soil–water EC (ECsw) to vary within their
ranges and output compared to the measured soil salinity at the control site. Model validation was
completed by simulating ECsw for site 3. The inclusion of the saturated soil water content and saturated
hydraulic conductivity in the calibration was crucial as infiltration rates were expected to vary with
changes in exchangeable sodium in the soil. O’Geen [57] provides classification of salt-affected soils
based on trends of soil water EC, exchangeable sodium percentage (ESP), and SAR. We assessed
the potential infiltration problems caused by irrigation water quality following Reference [6] (p. 44)
and found that slight-to-moderate reduction in infiltration rates due to irrigation water salinity were
expected for the control site and site 4 (Figure A2). It is however interesting to note that blending well
water and recycled water alleviated the possible adverse effects of well water on soil infiltration rates.

The latin hypercube sampling design was used with N = 50 sampling points as proposed by
Reference [56]. Intervals were sampled without replacement to ensure even distribution of points with
respect to each variable. We executed the model 50 times and computed the corresponding RMSE
associated with model predictions. An open-source global optimization code DEoptim written in
R was used to find a global minimum RMSE [58]. DEoptim implements the differential evolution
algorithm for global optimization. The estimated best fits with the least RMSE values are listed in
Table 7.

Table 7. Best-fit parameter values estimated with calibration for ECsw.

Property Code Units Value

Soil Hydraulic Parameters

Root zone saturated water content Tsrz m3/m3 0.467
Root zone water content at field capacity Tfcrz m3/m3 0.361
Root zone water content at wilting point Twprz m3/m3 0.172

Root zone saturated hydraulic conductivity Ksrz mm/day 347

Plant Parameters

Rooting depth of lettuce ZrL m 0.5

Soil–Water Chemistry Parameters

Rate of dissolution at 0.03–0.30 m k1 dSm−1/day 0.014
Rate of dissolution at 0.30–0.61 m k2 dSm−1/day 0.022

Summarized in Table 8 are the indices associated with comparisons between ECsw measured
in the field and model predicted values at different soil depths. For all depth intervals, the sum
of first-order effects and sum of total order indices is greater than one, indicating that there are
interactions among model factors. Moreover, for factors that have total indices greater than their
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first-order values, other factors are taking part in the interaction such that throughout the soil profile
the root zone hydraulic parameters, rooting depth and dissolution rate are taking part in determination
of the soil-water EC, with the dissolution rate accounting for the largest fraction of output variance.
This observation provides insight about how well water flow and salinity is modeled.

Table 8. Statistical indices for simulated vs. observed soil water EC (ECsw).

Index RMSE MRE NSE R2 b

Optimal value 0 0 1 1 1

Control Site (Calibration)

0.03–0.30 m 0.45 0.23 0.72 0.73 0.89
0.30–0.61 m 0.41 0.25 0.52 0.52 0.89

0.61 – 0.91 m 0.34 0.26 0.16 0.27 0.95

Site 3 (Validation)

0.03–0.30 m 0.95 0.24 0.56 0.60 0.87
0.30–0.61 m 0.70 0.21 0.24 0.39 0.88
0.61–0.91 m 0.60 0.20 0.48 0.51 0.94

Model realizations for the calibration and validation runs were compared with measured ECsw

and shown in Figure 7. Model predictions did not capture large values of observed ECsw though
model performance improved with increased soil depth. The RMSE index indicated large discrepancies
between predicted and measured values, hence the greater values at site 3. Whereas R2 values reflect
the combined dispersion against the single dispersion of the observed and predicted values. The mean
relative error (MRE < 30%) for all layers indicates satisfactory model performance, while the larger
NSE values for the top soil layer indicate that the modeling effort is worthwhile in predicting near
surface salinity to depths of 0.3 m.

Figure 7. Predicted vs. measured ECsw at 2.5–30.5 cm, 30.5–61 cm and 61–91.4 cm soil depths for
control site (calibration) and site 3 (validation).
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For all calibrated model runs, regressions of the predicted vs. observed values resulted in
a non-zero intercept, b of nearly 1 dS/m. Taken together with the low R2-values, we conclude that
the model persistently underestimates ECsw, especially those observed ECsw values greater than
~2 dS/m. Based on the relatively small MRE values that provide an indication of the magnitude
of the error relative to observed values without considering the error direction, the model captures
salinity dynamics for all layers in the root zone. However, the Figure 8 plot of residuals vs. predicted
ECsw for the calibration and validation results exhibits heteroscedasticity, that is, residuals grow as
the predicted ECsw values increase. Overall, this latter observation suggests that although the NSE,
RMSE, and MRE statistics show that the model has some predictive capacity, it does not capture some
processes apparently involved in the soil salinity dynamics.

Figure 8. Predicted ECsw vs. standardized residuals at 2.5–30.5 cm, 30.5–61 cm, and 61–91.4 cm soil
depths for control site (calibration) and site 3 (validation).

The possible explanation for the differences in measured and predicted soil salinity is that the
model does not account for fertilizer and soil amendment management, or plant root uptake of solutes
and fertilizer. Generally, transformation (e.g., dissolution) in the soil of different chemicals added
during fertigation will increase soil salinity. For example, urea is converted to ammonium that is
adsorbed in the soil depending on sol temperature; ammonium is converted to nitrate by nitrification
that depends on soil temperature, soil moisture, pH and oxygen content, and nitrate is highly mobile
but ammonium, potassium, and phosphorus remain relatively immobile in the root zone. Although
the salt index (SI) based on equivalent units of sodium nitrate (developed in 1943 to evaluate the salt
hazard of fertilizers) alone cannot be used to evaluate the effect of increased soil salinity from fertilizer
applications, it can be used as indicator for the long-term effects on soil salinity. The most commonly
used fertilizers in the study region (from California Department of Food and Agriculture annual
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reports) were nitrogen fertilizers that included urea ammonium nitrate solution (SI = 95), ammonium
nitrate (SI =102) and calcium nitrate (SI = 53); phosphorus fertilizer (SI = 7.8-29), potassium sulfate
(SI = 46), gypsum, and lime. Sodium nitrate was arbitrarily set at 100, where EC of 0.5 to 40 mass
percentage of sodium nitrate is 0.54 to 17.8 dS/m and for a mixture of materials it is reasonable to
assume EC is additive for horticulture. As such, the lower the index value the smaller the contribution
the fertilizer makes to the level of soluble salts. Thus, fertilizer applications likely add to soil salinities
exacerbating the problem over time.

Although the model underestimates ECsw, it adequately captures salinity trends in the leaching of
salt during winter months and an increase in salinity water applications and ET during the crop season.
In an effort to evaluate performance of transient vs. steady state models, Reference [12] concluded that
the transient models better predict the dynamics of the chemical–physical–biological interactions in
an agricultural system. However, since we account for irrigation water salinity, rainfall salinity and
dissolution of salts in the soil and exclude additions of fertilizer and soil amendment our simulated
ECsw values can be viewed as a likely lower bound of soil salinity associated with the irrigation and
farm management practices considered in the model description.

Another complexity possible affecting model prediction is the spatial distribution of salinity with
drip irrigation as noted by Reference [59]. They used the transient Hydrus-2D model to compare
results between field experiments having both drip and sprinkler irrigated processing tomatoes under
shallow water table conditions for a wide range of irrigation water salinities. Both field and model
results showed that soil-wetting patterns occurring under drip irrigation caused localized leaching
which was concentrated near the drip line. In addition, a high-salinity soil volume was found near the
soil surface that increased with increasing applied water EC. Overall, localized leaching occurred near
the drip line while soil salinity increased with increasing distance from the emitter and with increasing
soil depth. Such localized non-uniformities in leaching are not captured in the one-dimensional model
but may have affected field soil sampling in the drip–irrigated fields of our study region. That is,
soil samples collected some distance from where dripline emitters were previously operating would
likely have greater salinities than would otherwise occur under the uniform leaching and dissolution
conditions assumed in the model. Nonetheless, it is important to note that this model is user-friendly
and less data intensive and it can be very useful for setting reference benchmarks of long-term salinity
impacts of using saline water for irrigation.

3.3. Long-Term Salinity with Treated Wastewater Irrigation

We used the calibrated and validated model to simulate the long-term (50-year periods) soil
salinity in the fields irrigated with varying fractions of treated wastewater, that is, we applied the
model to control site and sites 2 to 7 (Tables 2 and 3). Fifty-year simulations assumed randomly
selected rainfall and ETo data from historical records (1983 to 2014) from 2013 to 2049 and the 13-year
cropping patterns and irrigation management. In the model calibration, the groundwater table height
(Hwt) and groundwater salinity (ECgw) were found to be non-influential parameters with respect
to the measured soil water EC (ECsw). As such average values of measured Hwt and ECgw from
the monitoring well located ~5 km west of the study site were used, that is, 0.95 m and 0.97 dS/m,
respectively. For each simulated case, the three output variables of interest were averaged root zone
salinity over the growing season expressed as ECeS (dS/m), annual drainage salt output load as Sd
(kg/ha/year), and annual runoff salt output load Sr (kg/ha/year).

Values for the annual average water-balance terms over the 13-water year simulation at each site
are summarized in Table 9a and for the 50-water year simulation in Table 9b. Somewhat greater actual
crop water uptake (ET) is achieved under drip and sprinkler irrigated fields with similar crop rotations
(sites 2 and 3 as compared to 6 and 7). Leaching fractions were generally very low for all sites at less
than 2%. The greatest leaching occurred in the vegetable–strawberry rotation that was first sprinkler
than drip irrigated, while the other irrigation and cropping practices yielded similar leaching volumes

41



Agriculture 2019, 9, 31

with the exception of no leaching from drip-irrigated artichokes. Similarly, surface runoff is smaller
from drip or sprinkler irrigated fields as compared to sprinkler-furrow irrigated fields.

Table 9. Summary of annual average water balance and salinity variables for the different field
management scenarios.

a. 13 Years Simulations

Site No.
Control

Site
2 3 4 5 6 7

Crop management Vegetables Vegetables Vegetables and
strawberry Perennial artichoke Vegetables and

strawberry Vegetables

Irrigation
management

Sprinkler
then drip

Sprinkler
or drip

Sprinkler then
drip Sprinkler or drip Sprinkler then

furrow
Sprinkler then

furrow
Irrigation (mm/yr) 652 597 682 648 694 656
Seasonal
Evapotranspiration
ET (mm/year)

254 200 252 392 204 177

Surface runoff
(mm/year) 299 232 236 158 315 265

Leaching (mm/yr) 7.1 4.4 16.3 0 23.7 12.7
Irrigation water
electrical conductivity
ECW (dS/m)

0.71 0.94 1.36 1.06 1.36 1.1 1.37

Root zone ECSW
(dS/m) 1.48 1.74 2.45 2.4 2.89 1.76 1.95

Root zone
seasonal-averaged
electrical conductivity
of the saturated
extract ECeS (dS/m)

0.09 0.13 0.19 0.15 0.18 0.15 0.17

Salt output load with
deep percolation Sd
(kg/ha/year)

61 42 207 0 0 153 104

Salt output load with
runoff Sr
(kg/ha/year)

304 851 1860 648 1012 1073 1465

b. 50 Years Simulations

Site No.
Control

Site
2 3 4 5 6 7

Seasonal ET
(mm/year) 187 128 188 395 141 131

Surface runoff
(mm/year) 323 295 236 163 275 250

Leaching (mm/year) 8.0 7.2 9.4 1.0 13.0 8.8
ECW (dS/m) 0.71 0.94 1.36 1.06 1.36 1.1 1.37
Root zone ECSW
(dS/m) 1.12 1.20 1.86 2.05 2.52 1.34 1.50

Root zone ECeS
(dS/m) 0.14 0.19 0.27 0.20 0.23 0.24 0.26

Sd (kg/ha/year) 27 20 64 0.8 1.0 56 38
Sr (kg/ha/year) 305 491 1028 339 518 598 764

Simulated average (50-year) annual root zone soil water salinity for all sites is shown in Figure 9.
Sites managed with sprinkler or drip irrigation and with higher salinity water (ECw) had higher
estimated annual average ECsw, for example, at sites 3, 4, and 5, ECsw was 2.94 dS/m, 3.15 dS/m,
and 3.44 dS/m, respectively. For sites 6 and 7 that used sprinklers for germination then furrow
irrigation, the latter site received water with higher salinity than the former 1.37 dS/m compared to
1.1 dS/m on vegetable and strawberry rotation, but the resulting average annual soil water salinity
differed little, that is, 2.05 versus 2.89 dS/m, respectively. The control site irrigated with well water
had the least annual average rootzone soil–water salinity. Furthermore, soil–water salinity equilibrium
ECsw ≤ 2.0 dS/m was reached throughout the 50-year horizon for the control site irrigated with well
water and after 12 years of irrigated with blended wastewater for sites 2, 6, and 7, whereas for sites
3, 4, and 5 soil water EC increased above 2.0 dS/m in the simulation period. Using Mann–Kendall
analysis we found that actual ET had a positive and significant association whereas irrigation amounts
had a negative and significant association with ECsw ≤ 2.0 dS/m (Tau = 0.321, p-value = 0.016 and

42



Agriculture 2019, 9, 31

Tau = −0.268, p-value = 0.046 respectively). The Mann–Kendall Tau values indicate the strength and
direction of monotonic trends, with −1 and 1 representing perfectly negative and positive monotonic
trends, respectively, while the p-value indicates relative significance [60].

Figure 9. Annual average soil–water salinity for sites irrigated with varying fractions of treated
wastewater (2000 to 2049).

As Platts and Grismer [11] found that salt leaching to deeper soil layers occurred during the rainy
season (October–March), while during the growing season soil–water EC increases in soil layers near
the surface due to evapo-concentration, on the other hand, applied water salinity causes soil–water EC
spikes during the growing season. Rainfall was important towards salt leaching from the root zone at
all sites as evident during the wet years 2010, 2016, 2025, 2026, 2038, and 2046 when average annual soil
water EC decreased. With the exception of sites 3, 4, and 5, there were no upward trends in soil water
salinity over the 50-year period. Overall, relatively constant soil–water EC after 50 years simulation of
ECsw < initial ECsw of 2.19 dS/m for all sites except site 5 suggest that there was adequate soil leaching
in the region for sustained use of the treated wastewater for irrigation. However, the question remained
as to what level of soil salinity would be acceptable especially for annual strawberry production.

Crops are generally assumed to respond to seasonal-averaged root zone salinity of the saturated
paste (ECeS) and yield loss thresholds and rates of decline with increasing salinity have been
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determined based on salinity thresholds in [61]. We calculated ECeS for all the sites and plot the
range of ECeS in Figure 10. The maximum seasonal-averaged saturated paste EC for each site was 0.19,
0.27, 0.20, 0.23, 0.24, and 0.26 dS/m for sites 2, 3, 4, 5, 6, and 7, respectively. These values are less than
half that of the lowest Mass–Hoffman threshold value of EC∗

e= 1.0 dS/m associated the most sensitive
crop (strawberry) in the rotations considered. As such, it is unlikely that long-term irrigation with
treated wastewater in the region will adversely affect crop yields significantly.

Figure 10. Range of estimated growing season saturated paste EC in the root zone for each site.

In terms of possible adverse environmental effects associated with salinization of surface and
ground waters in the region, we determined the cumulative salt output load with deep percolation
(Sd) and salt output load with runoff (Sr) during the 50-water year simulation period for the different
sites as shown in Figure 11. Salts accompanying surface runoff pose a larger threat in the watershed
as these are an order-of-magnitude greater than the cumulative salt output loads to groundwater.
Salt loading with deep percolation for the 50-year simulation range up to 3,377 kg/ha with the greatest
loads from site 3 and minimal loading for sites 4 and 5 (40 kg/ha and 49 kg/ha respectively) on which
annual artichoke crops were grown. Cumulative salt loads accompanying runoff ranged from 19,918
to 59,552 kg/ha, with the greatest loading emanating from site 3 and least from site 4. In comparison
to the control site irrigated with well water cumulative salt output loading with deep percolation was
1325 kg/ha and salt output load with runoff 21,505 kg/ha.

To clarify what factors were key to affecting adverse environmental salinization within the region,
we tested the effect of applied water EC (ECw) and depths, rainfall depths, actual crop ET and potential
crop ET, and number of days fallow on soil water EC (ECsw) and salt output loads with runoff (Sr) or
deep percolation (Sd) using the non-parametric Mann–Kendall trend analysis (the ‘Kendall’ test in the
R package [60]. With respect to the Mann–Kendall Tau values (Table 10), the applied water EC (ECw)
and rainfall depths had positive and significant effects on annual average soil water EC (ECsw) and
annual salt output loads with runoff (Sr) and deep percolation (Sd). Calculated actual crop ET had
a positive and significant effect on ECsw; this is expected as water uptake by the plant and evaporation
leave salts behind. On the other hand, actual crop ET had a negative and significant effect on Sd,
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and had no significant effect on Sr. Applied water depths had positive and significant effect on Sd
and Sr. The number of days fields were fallowed had a negative effect on ECsw and a positive effect on
Sd and Sr. Overall, these observations were consistent with that expected from the field observations
and described above.

Figure 11. Cumulative salt output loads with runoff and deep percolation from each site.

Table 10. Mann–Kendall trend analysis for average annual soil water EC (ECsw), annual salt output
load with runoff (Sr), and with deep percolation (Sd).

Parameter
ECsw (dS/m) Sr (kg/ha/year) Sd (kg/ha/year)

Tau
p-Value

a Tau
p-Value

a Tau
p-Value

a

ECw (dS/m) 0.33 *** 0.49 *** 0.04 ns
Rainfall (mm/year) −0.18 * 0.03 ns 0.06 ns

Potential crop ET (mm/year) 0.03 ns 0.24 ** 0.17 *
Actual crop ET (mm/year) 0.44 *** −0.11 ns −0.33 ***

Irrigation (mm/year) 0 ns 0.41 *** 0.24 **
Days fallow (days) −0.44 *** 0.26 ** 0.39 ***

a Two-sided p-value ranges: 0 ≤ *** ≤ 0.001; 0.001 < ** ≤ 0.01; 0.01 < * ≤ 0.05; ns > 0.05.

4. Discussion

We calibrated and validated a modified root zone salinity model originally developed by Isidoro
and Grattan [17], which was then applied to estimate long-term soil salinity in fields irrigated with
treated wastewater. We conducted a global sensitivity analysis using the elementary effect/Morris and
Sobol’s methods to first reduce the number of influential model parameters important to calibration

45



Agriculture 2019, 9, 31

and that need to be acquired from the field. Seven of the thirty-three model parameters were found to
be critical to root zone soil salinity dynamics. These were parameters accounting for salt dissolution
in the soil, root zone hydraulic parameters, and crop rooting depth. Model calibration resulted in
a satisfactory fit to the observed field data; however, the model underestimated soil water salinity
(ECsw), especially for large ECsw > 2 dS/m measured during the growing season. We attributed this
error to the model’s failure to account for fertilizer and soil amendment applications and transformation
thereof (e.g., gypsum dissolution) in the soil. In addition, drip irrigation leads to very localized
variations in soil salinity that depend on the distance from the emitter that are not considered in
the model and may have affected field soil sampling between plantings and harvests. Nonetheless,
the model adequately captured soil–water EC trends that were congruent with observed data.

Sites irrigated with greater salinity water (ECw) combined with sprinkler or drip had greater
estimated annual average soil–water salinity (ECsw). Sites that combined sprinkler irrigation for
germination with furrow for the remaining development stages resulted in lower annual average ECsw

in the root zone even when more saline irrigation water was applied. Rainfall played an important
role in the leaching of salts from the root zone as during wet years average annual soil water EC
decreased at all sites. Moreover, rainfall had a negative and significant effect on annual average root
zone ECsw. We found that for all sites use of treated wastewater for irrigation over the 50-year period
does not affect strawberry yields, the most salt sensitive of the crops in the rotations encountered.
Overall irrigation water EC (ECw), rainfall amounts, actual calculated crop ET and the number of days
fields were fallowed had significant effects on annual average soil water EC (ECsw). ECw, rainfall and
actual crop ET effects were positive and fallowing decreased average root zone ECsw. On the other
hand, irrigation amounts and number of days fallowed had positive and significant effects on salt
output loads associated with runoff and deep percolation. Moreover, soil water salinity equilibrium
ECsw ≤ 2.0 dS/m is reached throughout the 50-year horizon for the control site irrigated with well
water and after 8, 9 and 14 years of irrigated with blended wastewater for sites 2, 6, and 7 respectively.
For sites 3, 4, and 5 soil water EC increased above 2.0 dS/m in the simulation period. Actual ET
had a positive and significant association whereas irrigation amounts had a negative and significant
association with ECsw ≤ 2.0 dS/m.

While we believe that the modeling results can inform recommendations about irrigation
management practices and for estimating salt output loading resulting from use of saline waters
for irrigation, difficulties in linking field observations of soil salinity and model predictions remain
troubling. However, since we account for irrigation water salinity, rainfall salinity, and dissolution
of salts in the soil and exclude additions of fertilizer and soil amendment our simulated ECsw values
are likely a lower bound of soil salinity associated with the irrigation and farm management practices
considered in the modeling. Nonetheless, it is important to note that this model is user-friendly and
less data intensive and it can be very useful for setting reference benchmarks of long-term salinity
impacts of using saline water for irrigation.
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Appendix A

Table A1. Cropping patterns for the control site and sites irrigated with treated wastewater.

Site # Cropping Pattern Crop
Planting
Month

Harvest
Month

Average
Growing Days

Control
Lettuce, Broccoli,

Cauliflower, Cabbage

Lettuce Mar–Aug Jun–Nov 72
Broccoli Jul–Aug Oct–Dec 101

Cauliflower Jul–Nov Apr–Oct 118
Cabbage Apr Jul 98

2
Lettuce, Broccoli,

Cauliflower, Spinach,
Celery

Lettuce Jan–Sep Apr–Nov 74
Broccoli Jan–Jun May–Oct 104

Cauliflower May–Aug Aug–Nov 94
Spinach Sep Oct 49
Celery Jul Oct 93

3
Lettuce, Broccoli,

Cauliflower, Strawberry

Lettuce Mar–Jul May–Oct 73
Broccoli Feb–Jul Jun–Oct 104

Cauliflower Feb–Apr May–Jul 94
Strawberry Nov Oct–Nov 344

4 & 5 Artichoke
1st crop May

Annual2nd crop Oct–Nov

6
Lettuce, Broccoli,

Cauliflower, Strawberry,
Celery

Lettuce Jan–Jul Apr– Sep 74
Broccoli Apr–Jul Jul–Oct 92

Cauliflower Jan–Jul May–Nov 99
Strawberry Nov Nov 344

Celery May–Jul Aug–Oct 95

7 Lettuce, Cauliflower,
Broccoli

Lettuce Mar–Aug May–Oct 72
Cauliflower Apr–Aug Jul–Aug 92

Broccoli Jul Oct 97

Table A2. Time-averaged crop coefficients and maximum rooting depth.

Crop
Kc Values

Rooting Depth (cm)
Initial Midseason Late

Artichoke 0.5 1 0.95 90
Broccoli 0.7 1.05 0.95 60

Cauliflower 0.7 1.05 0.95 70
Celery 0.7 1.05 1 50
Lettuce 0.7 1 0.95 50
Spinach 0.7 0.9 0.95 50

Strawberry 0.4 0.9 0.85 30
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Figure A1. Crop rotation schedule for the control site and site 3.

Figure A2. Effect of salinity and sodium adsorption ratio of irrigation water on infiltration rate.
(Modified from Reference [6] (p. 44)).
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Appendix B

Unsaturated Soil Water Movement

The soil matric potential (ψ) was related to the volumetric water content (θ) by means of Equation
(A1) [32]:

ϕ = ϕs × (
θ

θs
)
−b

(A1)

Where θs was the volumetric water content at saturation, ψs is the water entry potential or “saturation”
water potential and b is the slope of the water retention curve on a logarithmic plot. For each soil type,
b and ψs were calculated from the volumetric water content at field capacity and wilting point and
their respective potentials in absolute value (ψFC = 316 cm and ψWP = 15,849 cm; so that pF (FC) = 2.5
and pF (WP) = 4.2). Taking logarithms, the expression of the potentials for FC and WP become
linear equations:

log(ϕFC) = 2.5 = logϕs − b. log(θFC
θs

)

log(ϕWP) = 4.2 = logϕs − b. log(θWP
θs

)
(A2)

from which, b and ψs are estimated. The unsaturated hydraulic conductivity for a given θ was
given by:

K = Ks × (
θ

θs
)

2b+3
(A3)

where Ks is the saturated hydraulic conductivity. Thus, unsaturated flow between layers (U) can be
calculated as:

U = K(
Δϕ
ΔZ

) (A4)

where ΔZ is the center to center simulation distance selected between layers and neglecting the
gravitational gradient.

Crop Water Uptake

Non-stressed crop ET is calculated as:

ETc = Kc × ETo (A5)

where Kc is the crop coefficient and varies with the crop development stages (Table A2) and ETo is the
reference ET. Between cropping seasons, all ET or evaporation E was assumed to take place from the
upper layer. For this period Kc was calculated from the mean interval between precipitation events of
each month and the mean precipitation event in each month and ETo [38].

In each layer (k), the actual crop ET can be lower than ETc(k) due to water stress, which depends
on the soil water content and the sensitivity of the crop to low water contents, accounted for through the
crop-specific parameter p: the ratio of readily available soil water (RAW) to total available water (TAW)
(p = RAW/TAW) [38]. When the soil water content (W(k)) in a layer fell below We(k) = WP + (1 − p)
TAW, the ET from that layer actual crop ET(k) dropped below the ETc(k), and the actual ET of the layer
was calculated as:

actual crop ET = Ks×ETc (A6)

where Ks is a stress coefficient [38]:

Ks =

1 if W(k) > We(k)
W(k) − We(k)

We(k) − WP(k) if WP(k) < W(k) < We(k)

0, if W(k) < WP(k)

(A7)
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when one layer was stressed during the growing season (W(k) < We(k)), the model allowed increase in
the extraction coefficient of the lower layer to supply the ET demand of the day. The root zone water
uptake pattern depends on irrigation frequency. Root uptake patterns were taken from [18,42,43].

Root length increase a function time is calculated as [45]:

Lz = Lo + (Lmax − L0)×
√√√√ (t − t0

2 )

(t Lmax
− t0

2 )
(A8)

where Lz is the rooting depth at time t, Lo is the starting root depth, Lmax is the maximum root length,
tLmax time after planting when Lmax is reached and to is time to reach 90% crop emergence. This is
a linear root expansion; the method assumes that once half of the time required for crop emergence is
passed by to

2 , the rooting depth starts to increase from an initial depth Lo till Lmax is reached.

Water Balance

Surface runoff for winter rainfall and a fraction of applied water is modelled using the SCS
method. We define curve number (CN) associated with row crop cover for the growing season and
bare soil for non-growing season from the SCS tables and calculate precipitation runoff as:

SR(p) =
0 if P ≤ 0.2S

(P − 0 .2S)2

P + 0.8S if P > 0.2S
(A9)

where P is runoff producing precipitation and S is the potential maximum retention after runoff begins
related to CN by:

S = 254 × (
100
CN

− 1) (A10)

Daily water balance for the 4-layered root zone and 2-layered vadose zone is performed.
To account for the slow water movement between layers for low water content below field capacity,
a slow upward or downward flow U is calculated dependent upon the difference in matric potential
between soil layers (Equations B4). In the first quarter of the root zone inflows and outflows include
applied water (I) and rainfall (P), the drainage above field capacity (D (1)) to layer 2, actual crop ET and
U. For the underlying root zone layers, inflows and outflows include drainage (D) from the overlying
layer, U and actual crop ET and finally for the unsaturated layers below the root zone inflows and
outflows include D and U.

When the soil water content in layer “k” is above field capacity, the excess water drains to the
lower layer over a two-day period, the higher flow in the first day than the second. The fraction α of
the excess water that drains the first day is calculated from the soil texture in the layer through an
empirical relation obtained to match results presented by approximately 0.9 for sand, 0.85 for loam
and 0.7 for clay [49]. Two arbitrary water contents were defined from field capacity to saturation for
each layer Wa and Wb defined as:

Wa = (1 − α) × (W s − WFC) + WFC
Wb = (1 − α) × (W S − WFC) + WFC

(A11)

Drainage (D) is calculated as:

D =

α× (W s − WFC) if W > Wb
(1 − α)× (W s−WFC) if Wa < W < Wb

W − WFC if W < Wa

(A12)
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where WFC and Ws define field capacity and saturation of a soil layer. After taking out actual crop ET
and D outflows from the layer, we also need to account for upwards or downward movement of water
(U) dependent upon the difference in matric potential between soil layers (Equation (A4)).

Salt Balance

Salt balance was performed in conjunction with the water balance assuming complete mixing of
water entering each layer with that already stored in that layer. The electrical conductivity of water
(EC) was used as an indicator of salinity, assuming implicitly that there was a unique relationship
between EC and total dissolved solids (TDS) in these dilute solutions and that the EC behaves like
a non-reactive solute. Salinity of the input waters (irrigation water (ECw) and precipitation (ECp))
must be known. The mass of salts in layer k (Z(k)) is estimated from the product ECsw(k) W(k), where
ECsw is the electrical conductivity of the soil water in that layer. The mass of salts in layer k in day
1 (t + 1) results from the salinity in day 0 (or t) and the salt fluxes in day 1 that are added sequentially.
Accounting for layer 1 for example is as follows: salts in I, P, and mineral dissolution (kd) are added to
the salt mass in layer 1 to obtain Za(1)1:

Za(1)1= Z(1)0 + ECw × I1+ECp × P1 + kd (A13)

This results in a soil water concentration of:

ECa
sw(1)1= Za(1)1/(W(1) 0 + I1 + P1) (A14)

Drainage takes place with concentration ECa
sw so that the new mass of salts is:

Zb(1)1= Za(1)1− ECa
sw(1)1 × D(1)1 (A15)

and the new soil water concentration is:

ECb
sw(1)1= Zb(1)1/(W(1) t + I1 + P1 − D(1)1) (A16)

The soil at this state is evapo-concentrated by crop water uptake (actual crop ET):

ECc
sw(1)1= Zb(1)1/(W(1) t + I1 + P1 − D(1)1 − actual crop ET (1)1

)
(A17)

The mass of salts in the slow flow U are then added or removed to obtain the final mass of salts in
the layer:

Z(1)1 =
Zb(1)1− U1−2 × ECc

sw(2)1 if U1−2 < 0
Zb(1)1−U1−2 × ECc

sw(1)1 if U1−2 > 0
(A18)

which allows for calculating the final soil water concentration:

ECsw(1)1= Z(1)1/W(1)1 (A19)
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Abstract: The main objective of this study was to explore the viability of drip irrigation for
organic spinach production and the management of spinach downy mildew disease in California.
The experiment was conducted over two crop seasons at the University of California Desert Research
and Extension Center located in the low desert of California. Various combinations of dripline
spacings and installation depths were assessed and compared with sprinkler irrigation as control
treatment. Comprehensive data collection was carried out to fully understand the differences between
the irrigation treatments. Statistical analysis indicated very strong evidence for an overall effect of
the irrigation system on spinach fresh yields, while the number of driplines in bed had a significant
impact on the shoot biomass yield. The developed canopy crop curves revealed that the leaf density
of drip irrigation treatments was slightly behind (1–4 days, depending on the irrigation treatment
and crop season) that of the sprinkler irrigation treatment in time. The results also demonstrated
an overall effect of irrigation treatment on downy mildew, in which downy mildew incidence was
lower in plots irrigated by drips following emergence when compared to the sprinkler. The study
concluded that drip irrigation has the potential to be used to produce organic spinach, conserve
water, enhance the efficiency of water use, and manage downy mildew, but further work is required
to optimize system design, irrigation, and nitrogen management practices, as well as strategies to
maintain productivity and economic viability of utilizing drip irrigation for spinach.

Keywords: downy mildew; drip irrigation; irrigation management; organic production; spinach

1. Introduction

Spinach (Spinacia oleracea L.) is a fast-maturing, cool-season vegetable crop. In California, spinach
is mainly produced in four areas of the southern desert valleys, the southern coast, the central coast,
and the central San Joaquin Valley. The farm gate value of Californian non-processing spinach from a
total planted area of 13,557 ha was nearly 242 million dollars in 2017 [1]. The area in California under
spinach production increased more than 30% over the last 10 years; the planted area increased from
1478 ha in 2008 to 3893 ha in 2017 in the Imperial Valley [2,3].

Water and nitrogen are generally essential drivers for plant growth and survival, and for spinach,
are two key factors that considerably affect yield and quality [4]. Spinach is highly responsive to
nitrogen fertilization [5] and accumulates as much as 134 kg ha−1 of nitrogen in 30 days [6]. Spinach
yield was shown to increase as a result of high nitrogen application rates but decreased when nitrogen
application rate was excessive [6]. Researchers reported that with the increase of nitrogen fertilizer
application, nitrogen use efficiency of spinach was significantly decreased; however, water use efficiency
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(as the ratio of yield to the seasonal crop water use) of spinach was increased in most cases [5,7].
Reducing nitrogen fertilizer use in spinach will be a challenge. The crop has a shallow root system, a
high N demand, which occurs over a short period, and strict quality standards for a deep green color
that tends to encourage N applications beyond the agronomic requirements to maximize yield [6].
Addressing these challenges requires that nitrogen fertilizer is applied at the optimal time and rate
based on crop uptake and the soil–nitrogen test, and that irrigation water is efficiently applied to
minimize leaching. The unpublished data from a survey conducted by the University of California
Cooperative Extension Monterey county indicates that spinach-growers generally apply more water
than that needed by crop water (100% to 150% more).

Downy mildew on spinach is a widespread and very destructive disease in California. It is a
disease that is the most significant issue facing the spinach industry, and crop losses can be significant
in all areas where spinach is produced [8]. Peronospora effusa is an obligate oomycete that causes
downy mildew of spinach. Spinach growers rely on host resistance and fungicides to manage downy
mildew. This dependence on resistance was relatively effective until recently, when malignant forms of
P. effusa began to emerge in rapid succession [9]. In recent years, several new downy mildew races
have appeared in the state of California, raising concerns about the ability to manage this threat and
causing the industry to consider research strategies to address the problem. Organic spinach producers
are especially vulnerable to these virulent strains because synthetic fungicide use is prohibited, and
choice in regard to variety is determined at planting. This has led to significant yield losses in organic
spinach production.

Like all downy mildew pathogens, P. effusa requires cool and wet conditions for infection and
disease development [8,10]. The California industry is known for using very high planting densities and
a large number of seed lines per bed [10]. For the baby leaf or clipped markets, the planting density is
usually 8.6–9.8 million seeds per hectare [11]. The dense canopy of spinach retains much moisture, and
creates ideal conditions for infection and disease development. Spores (called sporangia) are dispersed
at short distances via wind or splashing water, or at medium distances via wind. In addition, most
conventional and organic spinach fields are irrigated by sprinkler irrigation in California. Overhead
irrigation deposits free moisture on leaf surfaces and increases relative humidity in the canopy, which
contributes to the speed and severity of downy mildew epidemics within a field when other conditions,
such as temperature, are favorable. Production practices that reduce the favorability of the spinach
canopy for downy mildew development are needed to reduce losses to downy mildew in both organic
and conventional production.

Because most conventional and organic spinach fields are irrigated by sprinkler irrigation in
California, overhead irrigation could contribute to the speed and severity of downy mildew epidemics
within a field when other conditions, such as temperature, are favorable. While preventing downy
mildew on spinach is of high interest of organic vegetable production in California, integrated
approaches are greatly required to reduce yield losses from this major disease. New irrigation
management techniques and practices in spinach production may have a significant economic impact
to the leafy greens industry through the control of downy mildew. In addition to losses from plant
pathogens, new irrigation practices could reduce risks to food safety caused by overhead application
of irrigation water.

Drip irrigation has revolutionized crop production systems in western states of the US by
increasing yields and water-use efficiency in many crops [12]. Sub-surface drip irrigation was
successfully implemented on vegetable crops, such as processing tomato, where yields have increased
by 20–50% over recent years since this practice was adapted [13]. While sub-surface drip irrigation
has been utilized primarily for high-value specialty crops, several studies have reported the benefits
of its application for agronomic low-value crops [12–16]. Drip irrigation was evaluated versus
micro-sprinkler irrigation in spinach [17]. The drip was found to be better than the micro-sprinkler
because of greater yields and the lower installation cost. The effectiveness of drip fertigation for
reducing nitrate in spinach was reported by Takebe et al. [18]. Drip fertigation was considered to reduce
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nitrate more stably. In addition to higher yield, sub-surface and surface drip irrigation can reduce risks
of plant diseases in vegetables by minimizing leaf wetness and waterlogged soil conditions.

Adapting drip irrigation for high-density spinach plantings may be a possible solution to reduce
losses from downy mildew, improve crop productivity and quality, and conserve water and fertilizer.
Currently, drip irrigation is not used for producing spinach in California, and there is a lack of
information on the viability of this technology and optimal practices for irrigating spinach with drips.
In fact, to our knowledge, few studies have been conducted to assess the potential benefit of drip
irrigation for this high-density planted spinach. As an initial test, the main objective of this project
was to evaluate the viability of adapting drip irrigation for organic spinach production. The project
was particularly aimed at understanding the system design to successfully produce spinach, and to
conduct a preliminary assessment on the impact of drip irrigation on the management of spinach
downy mildew.

2. Materials and Methods

The field experiments were carried out over two crop seasons at the organic field of the University
of California Desert Research and Extension Center (UC DREC) (32◦48′35” N; 115◦ 26′39” W; 22 m
below mean sea level) located in the Imperial Valley, California. The field had a silty clay soil (the top
30 cm soil surface contains 14% sand, 42% silt, and 44% clay). Soil characteristics referring to three
genetic horizons selected from the soil survey are presented in Table 1. Soil pH ranged between 7.94
and 8.04, and its electric conductivity was from 1.3 to 2.9 dS m−1. The area has a desert climate with a
mean annual rainfall of 76 mm and air temperature of 22 ◦C. Spinach can typically grow from October
to March in this region. The average pH and electrical conductivity of water supply (surface water
from the Colorado River) was 8.0 and 1.18 ds/m during the experiment, respectively.

Table 1. Soil characteristics of the study site.

Soil Parameters Soil Depth

Generic horizon (cm) 0–30 30–60 60–90
Texture silty clay clay loam clay
Sand (%) 14 21 8
Silt (%) 42 41 34
Clay (%) 44 38 58
pH 7.94 8.04 8.02
EC (dS m−1) 1.3 1.4 2.9
Cation exchange capacity (meq/1000 g) 48.6 50.7 54.0
Bulk density (g cm−3) 1.54 1.48 1.45
Exchange sodium percentage (%) 3.5 4.1 6

2.1. Experimental Design and Treatments

Experiment 1 (fall experiment): Land preparation was conducted in late September 2018, and
untreated Viroflay spinach seeds were planted at a rate of 37 kg ha−1 on 31st October. For the research
trial (Figure 1a), five irrigation system treatments consisted of two drip depths (driplines on the soil
surface and driplines at 3.8 cm depth), two dripline spacings (three driplines on a 203 cm bed and
four driplines on an 203 cm bed), and sprinkler irrigation (203 cm bed). The experiment was arranged
in a randomized complete block with four replications. Each drip replication had three beds, and
each sprinkler replication had six beds. The beds were 61 m long. Figure 2 presents the individual
experimental beds with four driplines at 3.8 cm and on the soil.

All treatments were germinated by sprinklers (two sets of five-hour irrigations). A flow control
drip tape from the Toro company was used with a hose diameter of 15.88 mm, wall thickness of
0.154 mm, emitter spacing of 20.3 cm, and operating emitter flowrate of 0.49 L/h using the Nelson
sprinklers R200WF Rotator (280 L/h @ 3.45 Bar) were used with spacings of 12.2 m × 9.1 m. Water
distribution uniformity was measured for the sprinkler irrigation using the ASABE (American Society
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of Agricultural and Biological Engineers) standard method [19]. The average distribution uniformity
for the sprinkler irrigation was 80%, and an average of 92% was assumed as water distribution
uniformity of the drip irrigation.

True 6-6-2 (a homogeneous pelleted fertilizer from True Organic Products) was applied at a rate
of 89 kg of N per hectare as pre-plant fertilizer, and True 4-1-3 (a liquid fertilizer from True Organic
Products) was applied as complementary fertilizer through injection into the irrigation system. For the
drip treatments, True 4-1-3 was applied three times after germination (by crop harvest) at a rate of 45,
33, and 44 kg of N per hectare. This liquid fertilizer was applied at a rate of 56, 42, and 50 kg of N per
hectare for the sprinkler irrigation system. Soil tests conducted before planting were used to determine
the status of available nitrogen/nutrients to develop fertilizer recommendations to achieve optimum
crop production and prevent nitrogen deficiency. Initially, the crop was irrigated with more water
than required, as determined by following crop evapotranspiration (ET, as the sum of soil evaporation
and plant transpiration), and using soil moisture data, we tried to irrigate spinach trials more than
crop water requirements to make sure there was no water stress for the entire crop season. However,
according to our data, this led to over-irrigation at some points in the early and mid-crop season.
Irrigation events were typically scheduled once a week for the sprinkler treatments and twice a week
for the drip treatments at the required running times of each system/treatment.

(a) 

(b) 

Figure 1. The fall (a) and winter (b) experiment layouts (not to scale). Sprinkler: treatment irrigated
by sprinklers; 3.8D-3B: treatment with three driplines in each bed installed at 3.8 cm depth; 3.8D-4B:
treatment with four driplines in each bed installed at 3.8 cm depth; 0D-4B: treatment with four driplines
in each bed on the soil surface; 0D-3B: treatment with three driplines in each bed on the soil surface.

 

(a) (b) 

Figure 2. Beds with four driplines in the fall crop season. The pictures demonstrate individual beds
with four driplines at 3.8 cm depth 30 days after planting (a) and on the soil surface 12 days after
planting (b).

Experiment 2 (winter experiment): Untreated Viroflay spinach seeds were planted at a rate of
38 kg ha−1 on 28th January. For the research trial (Figure 1b), three irrigation system treatments
consisted of two dripline spacings (three driplines on a 203 cm bed and four driplines on a 203 cm bed),
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and sprinkler irrigation (203 cm bed). All driplines were installed at 3.8 cm depth. The experiment was
arranged in a randomized complete block with four replications. Each drip and sprinkler treatment
replication consisted of three beds × 61 m length. All treatments were germinated by sprinklers (two
sets of five hours). The buffer beds located between sprinkler and drip treatments were not planted.
The drip treatments were more frequently irrigated (three times a week with shorter irrigation events)
than the drip treatments in the fall trial.

True 6-6-2 organic fertilizer was applied before planting at a rate of 78 kg of N per hectare, and the
crop was supplemented with True 4-1-3 liquid fertilizer injection into irrigation system. For the drip
system, True 4-1-3 was applied four times after germination (by crop harvest) at a rate of 34, 45, 33, and
44 kg of N per hectare. In the sprinkler system, the same fertilizer was applied at a rate of 45, 45, 50,
and 45 kg of N per hectare.

2.2. Field Measurements and Analysis

The actual crop ET (evapotranspiration) was measured using Tule Technology sensor (www.
tuletechnologis.com) which uses the residual of energy balance method as surface renewal equipment.
Using the actual crop water-use data measured and spatial California Irrigation Management
Information System (CIMIS) data (http://wwwcimis.water.ca.gov/SpatialData.aspx), the actual crop
coefficient curve was developed for each crop season. The reference ET (ETo) was retrieved from spatial
CIMIS as well. Images were taken on weekly basis utilizing an infrared camera (NDVI digital camera,
NDVI stands for the Normalized Difference Vegetation Index) to quantify the development of the
crop canopy of each treatment over the crop seasons. The images were analyzed using PixelWrench2
software. Decagon 5TE sensors were installed at three depths (20, 30, and 45 cm) to monitor soil water
content on a continuous basis. The numerous horizontal roots of spinach typically remain in the top
30 cm of soil with a spread of approximately 40 cm, while soil water storage at the top 45 cm (spinach
crop root zone) was calculated using the soil water content data. The applied water for the irrigation
treatments was measured throughout the crop seasons using magnetic flowmeters. The NDVI values
and plant leaf wetness values were measured using Spectral Reflectance sensors (combination of SRS-Pi
Hemispherical Sensor and SRS-Pr Field Stop Sensor) and dielectric leaf wetness sensors (PHYTOS 31),
respectively (METER Group, Inc. USA) on a continuous basis. Leaf chlorophyll was measured using
an atLEAF CHL STD sensor (FT Green LLC: Wilmington, DE, USA) on a weekly basis.

Shoot biomass (sum of the weight of leaves and stem represents shoot biomass) measurements at
the final harvests were carried out in three sample areas of 0.56 m2 (0.92 m × 0.61 m) per replicate and
treatment. The bed located in the center of each replication in each of the treatments was selected as the
sample bed (four sample beds per each treatment, a total of 20 sample beds for five irrigation treatments
in the fall trial and 14 sample beds for three irrigation treatments in the winter trial). Fresh weight was
measured in order to determine shoot biomass accumulation. Leaf chlorophyll content was measured
on 20 individual leaves in each of the sample beds. Weekly plant samples (shoots) were analyzed
for total nitrogen at the UC Davis Analytical Lab. The statistical significances were performed using
generalized linear mixed model using the GLIMMIX (generalized linear mixed models) procedure in
SAS 9.4. (SAS Institute Inc., Cary, NC, USA)

2.3. Downy Mildew

Both replicate runs of the experiment were visually scouted by walking down arbitrarily selected
rows of all treatments. When disease symptoms were observed, the number of plants exhibiting
downy mildew symptoms was counted for the entire length of two of the three beds in each plot.
To calculate disease incidence, or the percentage of plants affected by downy mildew, the number of
plants in each bed was divided by the estimated plant population. The estimated plant population was
determined from the seeding rate and the germination rate averaged over each treatment at emergence.
Downy mildew incidence was analyzed in a generalized linear mixed model using the GLIMMIX
procedure in SAS 9.4. A block was treated as a random effect, and options in the model statement
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included use of the beta distribution and the logit link function. Due to evidence for a significant effect
of treatment, means were separated using the lsmeans statement with the Tukey-Kramer adjustment
for multiple comparisons.

3. Results and Discussion

3.1. Weather Conditions

The daily air temperature, relative humidity, and wind speed variations were different over the
fall and the winter experiments (Figure 3). At the fall trial, we observed a mean daily air temperature of
18.8 ◦C at the early- and mid-seasons when the temperature stayed above 6.5 ◦C at nighttime. The mean
daily temperature decreased to 12.1 ◦C during the late season, and relative humidity dramatically
increased over the last 10 days before the final harvest. An average daily wind speed of 1.5 m s−1 was
observed during the fall experiment.

While a more variable air temperature was observed at the winter experiment, the mean daily
temperature was 12.6 ◦C at the early- and mid-seasons, and the temperature fell below 1.0 ◦C for a few
nights. Higher daytime relative humidity was measured during the early- and mid-seasons compared
to the fall. Although there was not a significant difference between the average wind speed of the crop
seasons, several windy days occurred during the winter season (hours with a wind speed of more than
8 m s−1). The cumulative ETo for the fall and winter crops was 122 and 177 mm, respectively.

(a) 

(b) 

Figure 3. Daily air temperature (a), relative humidity (a), and wind speed (b) over the fall season
(October through December, left side of the figures) and the winter season (January through March,
right side of the figures).

3.2. Crop Water Use and Applied Water

Total crop water use (seasonal ET) of 92.3 and 154.9 mm was measured in the fall and the winter
trials, respectively. Variable daily crop ET and crop coefficient values were measured during the entire
crop season (Figure 4). The maximum and minimum crop ET observed was 3.8 and 0.7 mm d−1 in
the fall experiment and 5.3 and 0.3 mm d−1 in the winter experiment, respectively. A similar range
of crop coefficient value (0.2–1.2) was obtained for both crop seasons. Piccinni et al. reported a crop
water use of 157.5 mm and crop coefficient range of 0.2–1.5 for winter spinach in Texas using lysimeter
measurements [20].

The total applied water for the sprinkler treatment was 144.8 and 225.2 mm in the fall and
the winter trials, respectively. The total applied water for the drip treatments was 130.5 mm over
the fall season and 202.4 mm over the winter season. Overall, an average of 11% more water was
applied through the sprinkler system compared with the drip system to compensate for the lower
water application uniformity of sprinkler irrigation system. A well-designed and properly managed
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drip irrigation usually has high distribution uniformity, and unlike conventional sprinkler irrigation
systems, has the potential to conserve water because of a lower potential for tailwater runoff and deep
percolation losses.

(a1) 

(b1) 

(a2) 

(b2) 

Figure 4. Daily spinach crop evapotranspiration or ET (a1,a2) and crop coefficient (b1,b2) values
in the experimental seasons. The subfigures a1 and a2 show crop ET in the fall and spring trials,
respectively, and the subfigures b1 and b2 show crop coefficient values in the fall and spring experimental
seasons, respectively.

Soil water storage in the profile was calculated, assuming that the water content sensed at each
depth was representative of the soil from that depth to the midpoint between the next upper and lower
depths. A comparison of the soil water storage between sprinkler and drip (3.8–4B) treatments versus
soil water storage in the average field capacity (FC) of the top 45 cm of the soil is shown in Figure 5.
Even though there were differences between the daily available soil water in both treatments and crop
seasons, the soil water storage amounts were uniformly maintained at around the average soil water
storage of field capacity (19.35 cm at the top 45 cm of the soil). More uniform soil water availability in
the drip treatment over the winter experiment could be as a result of more frequent irrigation events
with shorter durations.

(a) (b) 

Figure 5. Soil water storage at the surface to a 45 cm-deep profile at the drip (3.8–4B) and sprinkler
treatments in the fall (a) and winter (b) crop seasons. The blue line shows the soil water storage
calculated using an average field capacity of the top 45 cm of the soil (0.43 m3 m−3).

3.3. Crop Canopy over the Season

Crop canopy cover is defined as the percentage of plant material which covers the soil surface,
and can be a very useful index for estimating the crop coefficient. Here, the canopy cover percentage
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was developed for each of the irrigation treatments (Figure 6). Canopy cover percentages show that the
leaf density of drip irrigation treatments was slightly behind (1–4 days depending upon the irrigation
treatment and crop season) than that of the sprinkler irrigation treatments.

(a) 

(b) 

Figure 6. Canopy crop curve for the different irrigation treatments in the (a) winter crop season and (b)
the fall crop season.

The individual canopy cover curves for each season demonstrate that spinach crop water
requirements and irrigation scheduling could be different in fall and winter seasons. For instance, in
this study, an average of 52% and 70% of canopy crop coverage was observed 30 days after planting in
the winter and the fall crop season, respectively. We may expect a longer season for spinach planted in
the winter than the fall in the Imperial Valley, though it may change depending on the specific weather
conditions. Figure 6 shows the canopy cover for individual experimental beds with four driplines
planted at two different dates.

3.4. Crop Growth and Greenness

Few differences between drip and sprinkler treatments were visible for the winter planted trial,
while more differences were observed in the fall experiment in November. Leaves began to yellow in
between the drip laterals in plots with the three-dripline treatments. A possible reason for this may be
that the fertigation did not move the N in between the driplines. The total plant tissue N content of
the drip treatments with three driplines in bed was less than the sprinkler treatment on the 30th of
November (1.8% N for the drip vs. 3.2% N for the sprinkler), while the difference in N content of the
tissue was less between the sprinkler treatment and the drip treatment with four driplines in the bed
(Figure 7). Overall, a higher plant-tissue nitrogen content was observed for the sprinkler treatment
compared to drip treatments.
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Figure 7. The trends of total plant nitrogen content over the fall crop season. The results are presented
for the individual irrigation treatments.

The leaf chlorophyll content (Figure 8) was also higher in the sprinkler treatments compared to
the drip treatments, though the drip treatment with four driplines at 3.8 cm depth was numerically
more similar to sprinkler treatments and sometime had a greater leaf chlorophyll content during the
crop seasons. A greater level of leaf chlorophyll content in the late season was observed at the winter
experiment than the fall experiment for both sprinkler and drip treatments. For instance, the total
leaf chlorophyll content of the sprinkler treatment two days before the final harvest at the winter trial
was 4 μg cm−2 more than leaf chlorophyll content of sprinkler treatment at the fall trial. Variable
leaf chlorophyll content was observed over the plant development in each of the treatments, which
corresponds to the plant N accumulation over the growing seasons.

(a) (b) 

Figure 8. The trends of average leaf chlorophyll content of spinach at different irrigation treatments
over (a) the fall crop season and (b) winter crop season.

Figure 9 shows the average day NDVI values for the drip treatment with four driplines (the
3.8D-4B treatment) and the sprinkler treatment for the fall season experiment. The results indicated
that the NDVI values varied from 0.2 (two weeks after planting) to 0.84 (the day before final harvest).
By late November, the NDVI values were very similar in both irrigation treatments, where this index
had higher values in the drip treatment even over a short period. The results demonstrated lower
NDVI values in the drip treatment than sprinkler treatment over the last two weeks of the crop season.

Figure 9. NDVI values of sprinkler and drip (3.8D-4B) treatments over the fall crop season. The daily
values vary between a maximum during daytime and zero during nighttime.
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The values of total plant nitrogen content, leaf chlorophyll content of spinach, and NDVI confirmed
that N uptake at the drip treatments was not entirely as effective as the sprinkler treatment, particularly
in the fall experiment. The nutrient management issue in spinach drip irrigation in combination with
water management is likely a critical issue that we need to learn more about, since it may affect the
adoption and viability of the drip for spinach production. Spinach is a very fast short-season crop, and
hence, water and nitrogen management may significantly influence the leaf as the major organ for
important physiological processes and essential indicator used to measure the growth and yield of
the crop. While the leaf area and shoot biomass of spinach are greatly affected by water and nitrogen
levels [4], this dependency is likely more critical in organic spinach.

3.5. Leaf Wetness

Figure 10 shows the probe output of the leaf wetness sensors placed in the sprinkler treatment
and drip treatment (3.8D-4B) for a period of 12 days during the fall season experiment. At this period,
there were two irrigation events in each of the treatments, and two rainy days. The sensor output
from dew was typically lower (less than 700 counts) than that from the rain or the irrigation event.
The results revealed that sprinkler-irrigated crop canopies remained wet 24.3% (= (70 h/288 h) × 100)
times longer during this period than the crop canopy irrigated with drip treatment.

irrigation + dew rain irrigation 

dew dew 

Figure 10. The row counts of leaf wetness sensors at the sprinkler and drip (3.8D-4B) treatments over a
12-day period in the fall crop season.

Spinach downy mildew requires a cool environment with long periods of leaf wetness or high
humidity. Wet foliage is especially favorable. Considering the above analysis, and in the case where
the weather and farming conditions are similar, there is higher risk for infection and downy mildew
disease development in spinach irrigated by sprinklers in comparison with spinach irrigated by drips.
The air temperature and relative humidity pattern (Figure 2) indicate that there was a desirable weather
condition and more possibility for downy mildew disease in mid-December, but the fall experiment
was just terminated at the time. The next desirable period was mid-February when temperatures had
cooled to the range believed to be optimal for downy mildew, days became windier, and there was a
period of leaf surface wetness caused by sprinkler irrigation, rainfall, or high relative humidity.

3.6. Shoot Biomass

The effects of various irrigation treatments on spinach shoot biomass yield over the two
experimental seasons are summarized in Table 2 and Figure 11. In the fall trial, the mean biomass yield
in the sprinkler treatment was 13,905 kg ha−1, approximately 9% more than the 3.8D-4B treatment.
The lowest mean yield (11,136 kg ha−1) was observed in the 0D-3B treatment. Statistical analysis
indicated very strong evidence (p = 0.001) for an overall effect of the irrigation system on spinach yield.
A significant difference between the individual treatments was investigated using the Tukey-HSD
analysis. The results demonstrated a significant yield difference between the sprinkler irrigation and
each of the drip irrigation treatments (p values of 0.0001 to 0.0009). Even though no significant yield
difference was obtained between the surface drip and sub-surface drip (driplines at 3.8 cm depth)
with the same dripline number in bed (p value of 0.8276 for the three-dripline and 0.1995 for the
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four-dripline), the number of driplines in bed had a very significant impact on spinach biomass yield
(p values of 0.0001 to 0.0009).

In the winter trial, the mean biomass yield in the sprinkler treatment was 14,886 kg ha−1,
approximately 7% more than the 3.8D-4B treatment. Statistical analysis indicated strong evidence
(p = 0.0424) for an overall effect of irrigation system on spinach fresh yield. While we could not find a
significant difference between the impact of the sprinkler and the 3.8D-4B irrigation treatments on
spinach yield (p = 0.1161), there was a statistically significant yield difference between the sprinkler
and the 3.8D-3B irrigation treatments (p = 0.04147).

Table 2. Mean spinach fresh yield values of each irrigation treatment in each of the fall and winter
experiments. Yields with different letters significantly differ (p < 0.05) by Tukey’s test.

Fall 2018 Winter 2019

Irrigation Treatment Fresh Yield (kg ha−1) Irrigation Treatment Fresh Yield (kg ha−1)

Sprinkler 13,905 a Sprinkler 14,886 a

3.8D-4B 12,753 b 3.8D-4B 13,914 ab

0D-4B 12,273 b 3.8D-3B 13,580 b

0D-3B 11,136 c - -
3.8D-3B 11,351 c - -

(a) (b) 

Figure 11. Mean yield data of the sample beds in each of the irrigation treatments at the fall experiment
and (a) and the winter experiment (b). Horizontal red lines indicate the average for each treatment.

The yield reduction in drip irrigation treatments compared to the sprinkler irrigation ranged
between 7% (the 3.8D-4B treatment against the sprinkler treatment in the winter trial) and 24.8% (the
0D-3B treatment against the sprinkler treatment in the fall trial). The yield difference may have likely
been caused by suboptimal irrigation and nutrient management conditions of the drip treatments.
Since drip irrigation was tested for the first time for spinach in this study, subsequent trials need to
plan for irrigation and nutrient improvements and be conducted in different aspects. These practices
had to be adjusted in real time as the study progressed. The biomass yield reported here are related
to a final harvest, which was on the same day for all the treatments. Since the findings showed that
the leaf density of drip irrigation treatments was more behind than sprinkler treatment, scheduling a
different harvest time for the drip treatments may compensate for some of the yield reductions against
the sprinkler treatment.

Several factors influence appropriate drip irrigation management, including system design, soil
characteristics, and environmental conditions. The influences of these factors can be integrated into
a practical and efficient system which determine the quantity and timing of drip irrigation. Drip
irrigation offers the potential for precise water management, and also provides the ideal vehicle to
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deliver nutrients in a timely and efficient manner. However, achieving high water and nutrient use
efficiency while maximizing crop productivity requires intensive and proper management.

However, the 7% through 13% shoot biomass difference between the four dripline treatments
and the sprinkler treatment demonstrates the potential of sub-surface drip irrigation for profitable
spinach production. This yield difference could be reduced through optimal system design and better
irrigation and nutrient management practices for the drip system.

Optimizing water and nitrogen management had not been an objective for this study, therefore,
evaluating water use efficiency of the treatments may not be an interest to be discussed. With the 7%
lower biomass yield and 11% less applied water in the 3.8D-4B than the sprinkler treatment, we may
simply conclude that drip irrigation may have the potential to enhance the efficiency of water use
in spinach production or at least at this point, there is no major difference between the two systems
regarding this indicator. High water use efficiency for sub-surface drip irrigation was reported by
researchers for multiple crops [12,13,15,21].

3.7. Downy Mildew Incidence

Downy mildew was not observed in the fall experiment. In the winter experiment, downy mildew
activity was first confirmed in the study area on 5 March. Disease incidence was rated on 11 March.
Downy mildew incidence was low on this date, with only two beds (0.12% and 0.20%) exhibiting
incidence values above 0.1% (Figure 12). Mean downy mildew incidence in plots irrigated with
sprinklers following emergence was 0.08%, approximately 4 to 5× higher than treatments irrigated
with drip following emergence. Statistical analysis indicated evidence (p = 0.0461) for an overall effect
of irrigation treatment on downy mildew.

Analysis of means suggested that all three treatments were statistically similar. However, a
pairwise comparison revealed some evidence that downy mildew incidence was lower in plots irrigated
with 3.8D-4B (p = 0.0671) or 3.8D-3B (p = 0.1139) following emergence when compared to the sprinkler.

The likely mechanism causing this effect was a reduction under drip irrigation of leaf wetness,
which is critical for infection and sporulation by the downy mildew pathogen. Additional repetitions
of this experiment in higher disease pressure situations are needed for further evaluation of the ability
of drip irrigation to reduce downy mildew. Another mechanism that could partially account for
the observed differences among the treatments is that the leaf density in drip-irrigated plots was
slightly behind that of the sprinkler irrigated plots in time. A less dense canopy could reduce the leaf
wetness potential, and in turn, disease incidence potential. However, it is unclear if the magnitude
of differences in density could account for the magnitude in differences in downy mildew incidence
between sprinkler- and drip-irrigated treatments.

Figure 12. Raw data (all plots and beds within plots) of downy mildew incidence. Horizontal bars and
labels indicate the mean for each treatment. Points are jittered to reduce overlap. The top line of x-axis
labels indicate what the plot was germinated with, and the bottom row indicates the irrigation used
following emergence.
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Perhaps the most important benefit of drip for spinach production could be less yield loss as a
result of downy mildew management. Spinach is a high-value crop—for instance, the value of spinach
per kg was about $2 in 2016 [22]. While more data are needed to conduct an economic feasibility
analysis of drip irrigation for spinach production, the results of this study demonstrated a positive
impression. The initial cost associated with a drip system for spinach fields is estimated at about $3000
to $4000 per hectare in the region.

4. Conclusions

This study demonstrated the potential for drip irrigation to be used to produce organic spinach,
conserve water, enhance the efficiency of water use, and reduce incidence of downy mildew. Further
work is needed to comprehensively evaluate the viability of utilizing drips—specifically, the optimal
system design, the impacts of irrigation and nitrogen management practices in various soil types and
climates, and strategies to maintain productivity and economic viability at spinach. Assessing drip
irrigation for the entire crop season, including germination, could be another research interest since
spinach is a short-season crop and combining the sprinkler for crop germination and drip for such a
short period might cause some practical issues.
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Abstract: In this study, the effects of deficit irrigation (DI) on crop yields and irrigation water
utilization efficiency (IWUE) of processing tomato are contrasting. This study aimed at analyzing a set
of field experiments with drip irrigation available for Mediterranean Italy in terms of marketable yields
and IWUE under DI. Both yields and IWUE were compared with the control treatment under full
irrigation, receiving the maximum water restoration (MWR) in each experiment. The study also aimed
at testing the effect of climate (aridity index) and soil parameters (texture). Main results indicated that
yields would marginally decrease at 70–80% of MWR and variable irrigation regimes during the crop
cycle resulted in higher crop yields. However, results were quite variable and site-dependent. In fact,
DI proved more effective in fine textured soils and semiarid climates. We recommend that further
research should address variable irrigation regimes and soil and climate conditions that proved more
unfavorable in terms of crop response to DI.

Keywords: deficit irrigation; Mediterranean region; tomato fruit yield; irrigation water use efficiency

1. Introduction

Water resources are extremely scarce in many areas of the world, and water saving has become a
priority due to the increase in population and global climate change [1,2]. Agriculture is a major water
consumer in regions where irrigation is required for profitable yields, and strategies to reduce water use
have the potential to increase sustainability of production. Globally, agricultural irrigation is responsible
for 70–80% of freshwater consumption [3,4]. Increased water savings and optimization of irrigation
management as much as possible are, thus, urgently needed. A small amount of water saved can be used
for other purposes. Therefore, in recent decades, agricultural water use efficiency has been improved
by innovations in technology and plant breeding. Irrigation systems and scheduling mainly affect
crop yields. Thus, the knowledge of crop water requirement, the reference crop evapotranspiration,
and the rainfall of the target region is recommended [5]. While full irrigation (FI) aims to meet
crop water requirements to maximize crop yield, in deficit irrigation (DI) water use is optimized in
relation to crop yield per volume of water consumed. Modest yield reductions can be acceptable
if connected to a significant reduction in water use [6]. DI has been found suitable for grapevine
and fruit crops, but vegetables might suffer from losses in yield and quality. DI effects on crop yield
and water efficiency have been studied on several crops, including tomato (Solanum lycopersicum L.),
though with contrasting results that can be ascribed to the different cultivars cultivated or the period
of DI application during the crop cycle [6]. Although farm income is higher with increasing yields
when more water is supplied with irrigation, water availability is continuously decreasing due to the
competing requirements of agriculture, industry, recreation, and the environment. In addition, DI
provides an effective adaptive response to water scarcity within a climate change perspective [7], and
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lower yields might be compensated by the increased production and farm income from additional
lands irrigated with the water saved by DI [8,9].

Most of horticultural production areas are in hot and dry climates due to favorable weather
conditions (high light, high temperature), as in Mediterranean regions, however, soil water deficit
is rather frequent. Tomato is considered one of the most commonly consumed vegetables and
economically important crops in the world, and has the highest planted areas of all vegetables
worldwide. It is characterized by high-water needs [10] due to the high temperatures and the large
gap between rainfall and evapotranspiration (ET) during the long spring-summer growing season [2].
Tomato is a drought sensitive plant because its yield decreases considerably after short periods of water
deficiency [5]. The application of DI strategies during tomato growing season may greatly contribute
to saving irrigation water [11,12] without affecting tomato yield, compared with (FI) receiving the
maximum water restoration (MWR), at a rate of 100% ET [13]. Nevertheless, water deficits at different
growth stages can differentially affect tomato yield. Results of crop simulation models showed that
certain tomato life stages, such as the flowering and fruiting stages, were more susceptible to water
stress than the seedling stage [14].

According to the World Processing Tomato Council [15] (an international non-profit organization
representing the tomato processing industry), Italy is ranked as the second producer of processing
tomato worldwide, after California and followed by China. Italy is the leading country in Europe,
contributing to 44% of the total amount, followed by Spain (27%), Turkey (12%) and Portugal (11%).
The total national production in 2018 was 4,811,955 t, cultivated on a surface of 72,504 ha (average
marketable yield is 66 t ha−1). The two most important production regions are Emilia-Romagna in the
north and Apulia in the south (concentrated in the Capitanata plain, in Foggia province). The two
regions contributed in 2018 to 35 and 32% respectively of the national production of processing tomato,
as reported by official statistics [16]. Average yields were 69 and 85 t ha−1, respectively. In these areas
processing tomato cultivation is highly intensive due to large and regular application of irrigation
water and nutrient inputs during flowering and fruit formation [17,18], which may create the potential
for negative side-effects on the environment [19]. Thus, the application of water saving strategies is
of particular interest where water availability is limited and to save water while maximizing tomato
yields under water deficit conditions [20,21]. Since the price of water is increasing, DI is an effective
strategy to provide an adequate economic profit for farmers in Mediterranean environments [22].
Moreover, results of crop simulation models in southern Italy have shown that climate change would
decrease tomato yields due to the shorter crop cycle induced by the temperature increase [23,24].
Besides water savings, gains in fruit quality (higher soluble solid contents and fruit color intensity) can
often compensate for the losses in fruit yields [11,21]. However, the contrasting results available in
the scientific literature suggest the need to better understand site-dependent plant responses to water
deficit with DI [25,26].

A quantitative analysis is important to provide suggestions for improving crop yield and
recommendations of irrigation water inputs in processing tomato cultivation under Mediterranean
conditions. The present study is aimed at evaluating the effect of DI irrigation on processing tomato in
field experiments derived from a literature search. Data were analyzed in terms of marketable yields,
water restoration, and irrigation water use efficiency (IWUE) under DI compared with the control
treatment under full irrigation, receiving the MWR in each experiment. The study also aimed at testing
the effect of climate (aridity index) and soil parameters (texture).

2. Materials and Methods

2.1. Data Collection and Case Studies

To assess the effect of deficit drip irrigation on tomato yields, a data search of existing field studies
was performed. The literature search was performed with SCOPUS with no source limitations (all
years, article types, and access types). Literature was screened by searching three fields in the title,
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abstract, and keywords of the source reference: “Mediterranean” AND “Italy” AND “tomato”. Results
referring to greenhouse studies, pot experiments, Life Cycle Assessment, and simulation studies
addressing crop development and water dynamics were excluded from the data analysis.

Information derived from field experiments included: region, province, altitude (m above sea
level), long-term mean annual temperature (MAT ◦C) and total rainfall (MAP mm), aridity index, rainfall
and irrigation during the growth cycle, marketable yield as fresh and dry matter, irrigation treatments,
and soil texture group (Table S1). Crop evapotranspiration (ETc) in the different field experiments was
estimated by the authors as the product of reference evapotranspiration (ETo), calculated with the FAO
Penman–Monteith equation [27] or using Class A pan evaporation and Kpan [28], and tomato-specific
crop coefficient (Kc). All experiments preformed were under drip irrigation.

Using these criteria 10 studies, totaling 54 yield observations, were found in four regions of Italy:
Apulia (3), Basilicata (3), Latium (2), and Sicily (2).

2.1.1. Apulia

A two-year field research (2011–2012) was carried out at Valenzano (41◦03’N, 16◦52’E, altitude
72 m a.s.l) in Bari Province [29]. MAT and MAP were 16.2◦C and 523 mm, respectively. Tomato
(cv. Tomato F1) was grown under three irrigation regimes: full recover of crop evapotranspiration
(I100), 50% of full irrigation supply (I50), and rainfed (I0). Tomato was transplanted in mid-April, and
fertilized with 100, 120, and 150 kg ha−1 of N, P2O5, and K2O, respectively.

A field research was carried out in 2011 in Foggia province (41◦45’N, 15◦50’E, altitude 90 m a.s.l),
with MAT and MAP of 15.8◦C and 526 mm, respectively [22]. Four irrigation regimes re-establishing
125% (ET125), 100% (ET100), 75% (ET75), and 50% (ET50) of ETc were considered. Tomato (cv. Defender
F1) was transplanted in mid-May and fertilized with 133, 75, and 90 kg ha−1, respectively, of N, P2O5,
and K2O.

A two-year experiment (2009–2010) was carried out in Foggia province (41◦24’N, 15◦45’E., altitude
30 m a.s.l) with MAT and MAP of 15.8◦C and 526 mm respectively [30]. Tomato was cultivated under
four irrigation regimes: DI, constant regime with restoration of 60% of maximum ETc during the crop
cycle; RDI, variable irrigation regime with 60%, 80%, and 60% of maximum ETc through the three main
phenological stages of the crop cycle; FI, full irrigation regime with the restoration of 100% ETc; FaI,
farmer irrigation regime based on usual farming routine. Tomato (cv. Genius F1) was transplanted in
the first decade of May and fertilized with 154 and 56 kg ha−1 of N and P2O5, respectively.

2.1.2. Basilicata

A two-year experiment (2002–2003) was carried out in Lavello (41◦03’N, 15◦42’E, altitude 180 m a.s.l)
in Potenza province [31]. MAT and MAP were 14.5◦C and 518 mm, respectively. Tomato was cultivated
under six irrigation regimes: (i) four constant irrigation regimes with restoration of 0 (T0), 50 (T1), 75
(T2), and 100% (T3) of ETc during the whole crop cycle; (ii) two variable irrigation regimes with 100%
restoration of ETc during the first period of the crop growth, followed by 75 or 50% restoration of ETc in
the second part of the cycle (T4 and T5 treatments respectively). Tomato (cv. Pullrex) was transplanted
after mid-May, and fertilized with 182, 214, and 160 kg ha−1 of N, P2O5, and K2O, respectively.

A first field experiment carried out at Metaponto (40◦24’N, 16◦48’E, altitude 10 m a.s.l) in Matera
province [32] reported the results related to 2007 and 2009 growing cycles. MAT and MAP were 16.5◦C
and 493 mm, respectively. Three irrigation treatments were compared: re-establishing 50 (I1), 75 (I2),
and 100% (I3) of the crop evapotranspiration (ETc). Tomato (cv Tomito) was transplanted in mid-May
and fertilized with 180 kg ha−1 of N.

A second two-year experiment (2008–2009) in the same area compared three irrigation regimes:
V100, full restoration (100%) of ETc, V50, 50% restoration of ETc, and V0, no water restoration [33].
Tomato (cv. Faino F1) was transplanted in late May and fertilized with 160 kg ha−1 of N.
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2.1.3. Latium

Two field experiments were carried out in Viterbo province (42º43’N, 12◦07’E, altitude 310 m a.s.l).
MAT and MAP were 14.4◦C and 746 mm respectively. The first research [34] was conducted in 1997,
and compared four irrigation regimes: 50–75, 50–100, 75–50, and 100–75 % restitution of ETc in the
first (from planting to fruit set) and in the second (from fruit set to harvest) growth period. Tomato
(hybrid PS 1296) was transplanted at the end of May with three fertilization treatments: control (no
fertilization), D1 with 79, 68, and 107 kg ha−1 of N, P2O5, and K2O respectively, and D2 (double the
doses of D1).

The second experiment [35] was carried out in 2006–2007 and compared two irrigation treatments:
full irrigation (FULL) restoring 100% of ETc, and deficit irrigation (DI), restoring 50% of ETc. Tomato
(cv. Carioca). which were transplanted in mid-May and fertilized with 152, 200, and 150 kg ha−1 of N,
P2O5, and K2O, respectively.

2.1.4. Sicily

A two-year field experiment [12] was carried out in 2001–2002 in Enna province (37◦27’N, 14◦14’E,
altitude 550 m a.s.l.). MAT and MAP were 15.4◦C and 514 mm respectively. Four irrigation treatments
were compared: no irrigation after plant establishment (V0), 100% (V100) or 50% (V50) ETc restoration
up to fruit maturity, 100% ETc restoration up to flowering, then 50% ETc restoration (V100-50). Tomato
(cv. Brigade) was transplanted in early May and fertilized with 150, 229, and 120 kg ha−1 of N, P2O5,
and K2O, respectively.

A field experiment [26] was conducted in 2002 in Siracusa province (37◦03’N, 15◦18’E, altitude
10 m a.s.l.). MAT and MAP were 17.8◦C and 504 mm, respectively. Five irrigation regimes were
compared: no irrigation after plant establishment (NI), long-season full irrigation with 100% ETc
restoration (LF), long-season deficit irrigation with 50% ETc restoration (LD), short-season full irrigation
up to first fruit set with 100% ETc restoration (SF), and short-season deficit irrigation up to first fruit set
with 50% ETc restoration (SD). Tomato (cv. Brigade) was transplanted in early May and fertilized with
150, 229, and 120 kg ha−1 of N, P2O5, and K2O respectively.

2.2. Data Evaluation

Marketable fruit yields (Mg ha−1 fresh weight) under deficit irrigation (DI) were compared with
yields of the control treatment with the maximum water restoration (MWR) of each experiment,
including rainfall:

Yield (%) = YieldDI/YieldMWR × 100 (1)

Irrigation water use efficiency (IWUE) of the different treatments was calculated according to [36]:

IWUE = Yield/TWS (2)

where Yield is the fruit dry biomass at harvest (kg ha−1), and TWS is the total water supply including
irrigation and rainfall from planting to harvest (m3 ha−1).

The Aridity index [37] was calculated with the formula Aridity index = MAP/(MAT+10) that
defines aridity classes as humid (30–60), sub-humid (20–30), semi-arid (15–20), arid (5–15), and
strongly-arid (< 5). Total water supplies with deficit irrigation during the crop cycle were divided
in five classes based on the % of maximum water restoration (MWR): 0–20, 20–40, 40–60, 60–80, and
80–100%. Soil texture group was evaluated according to Soil Taxonomy [38] as (C) coarse (sandy loam,
sandy clay loam, loamy sand), (M) medium (clay loam, loam, silty clay loam, silt, silt loam), and (F)
fine (clay, silt clay, sandy clay).

Statistical analyses were performed using Statistica 7.0 (Statsoft, Tulsa, OK, USA). Significant
differences among means were evaluated through the Fisher’s protected least significant difference test
(LSD post hoc test).
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3. Results

A summary of maximum marketable fruit yields (Mg fresh weight ha−1) under full irrigation and
the related total water supply (mm) by rainfall and irrigation during the crop cycle in the different
provinces are shown in Figures 1 and 2. Marketable yields ranged from 114.2 to 51.0 Mg ha−1,
respectively, at Matera and Siracusa. Total water supplies ranged from 768 to 395 mm at Foggia and
Enna, respectively. The result for Matera, coupling a high marketable fruit yield (114.2 Mg ha−1) and a
low water supply (517 mm), are an indication of a proper irrigation schedule when fully restoring crop
evapotranspiration. Conversely, at Foggia a slightly lower marketable fruit yield (95.2 Mg ha−1) was
coupled with a higher water supply (768 mm), indicating the ineffectiveness in productive terms of
water supplies following the farmer routine, using more water than the full irrigation regime, restoring
100% of ETc [30].
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Figure 1. Maximum marketable fruit yield (Mg fresh weight ha−1) in the different provinces under full
irrigation. Boxes represent mean values, whiskers represent Min–Max interval.
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Figure 2. Total water supply (mm) under full irrigation in the different provinces. Boxes represent
mean values, whiskers represent Min–Max interval.
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3.1. Marketable Yield and Water Restoration

When comparing marketable fruit yields under DI with the control treatment (Equation (1)),
average yields (%) significantly differed among irrigation classes (p = 0.0000). In detail (Figure 3),
yields were significantly lower in 0–20 and 20–40 irrigation classes (31.5 and 27.3 % respectively) and
higher in 40–60, 60–80, and 80–100 classes (74.9, 72.6, and 87.4% respectively).
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Figure 3. Tomato fresh fruit yield (%) compared with the control treatment based on the irrigation
classes as % of maximum water restoration (MWR), F (4;35) = 14.1531; p = 0.00000. Boxes represent
mean values, whiskers Min–Max interval.

Average yields (%) significantly differed among irrigation regimes (p = 0.0000). As expected,
yields (Figure 4) were significantly lower with none irrigation excluding rainfall during the crop cycle
(26.8%), and did not differ between constant and variable regimes with the regulated deficit irrigation
(RDI) but were lower under constant irrigation (74.0%) in comparison with RDI (85.7%).
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Figure 4. Tomato fresh fruit yield (%) based on the irrigation regimes, F (2;37) = 25.6319; p = 0.00000.
Boxes represent mean values, whiskers represent Min–Max interval.

Fresh fruit yield (%) and maximum water restoration (%) supplied with DI were interpolated
(Figure 5) with a polynomial equation: y=−0.0039x2 + 1.2053x+ 16.8326 (R2 = 0.7045). The interpolating
function indicated that yields would decrease by 6.3, 8.9, and 11.7% at 90, 85, and 80% of maximum
water restoration (MWR), but would still be acceptable at 75 and 70% of MWR with decreases of 14.7
and 17.9%.
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Figure 5. Tomato fresh fruit yield (%) as a function of maximum water restoration (%).

Marketable fruit yields (Mg fresh weight ha−1) under DI significantly differed among the provinces
(p = 0.00006) where the field experiments were conducted (Figure 6). Average yields were significantly
lower at Bari, Siracusa, Enna, Viterbo, and Potenza (22.2, 27.4, 36.0, 41.1, and 50.3 Mg ha−1, respectively)
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compared to Foggia and Matera (75.4 and 92.7 Mg ha−1, respectively). Compared with marketable
yields under full irrigation (Figure 1), decreases were as follows: Bari (67%), Siracusa (46%), Enna
(32%), Viterbo (31%), Potenza (29%), Foggia (21%), and Matera (19%).
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Figure 6. Marketable yield (Mg fresh weight ha−1) in the different provinces under DI, F (6;33) = 7.1298;
p = 0.00006. Boxes represent mean values, whiskers represent Min–Max interval.

Marketable fruit yields (Mg fresh weight ha−1) under DI also significantly differed among soil
texture groups (p = 0.0049) and average yields (Figure 7) were significantly lower in field experiments
with coarse and medium texture (32.5 and 51.7 Mg fresh weight ha−1, respectively) compared to fine
textured soils (75.4 Mg fresh weight ha−1). This result is coherent with the soil textures of the field
experiments, which were fine and medium at Foggia and Matera, respectively, and also showed the
lowest yield decreases; conversely, at Bari soils were coarse textured and presented the highest yield
decrease under DI (Figure 6).
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Figure 7. Marketable yield (Mg fresh weight ha−1) under DI based on soil texture groups according to
United States Department of Agriculture (USDA), F (2;37) = 6.1615; p = 0.0049. Boxes represent mean
values, whiskers represent Min–Max interval.
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3.2. Irrigation Water Use Efficiency and Water Restoration

Irrigation water use efficiency (IWUE in kg dry weight m−3) was weakly significantly different
(p = 0.0683) among irrigation classes (Figure 8). Average IWUE was significantly higher only in 0–20
irrigation class (1.67 kg m−3) compared to the other classes.
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Figure 8. Irrigation Water Use Efficiency (IWUE) (kg dry weight m−3) based on the irrigation classes as
% of maximum water restoration (MWR), F (4;35) = 2.403; p = 0.0683. Boxes represent mean values,
whiskers represent Min–Max interval.

In relation to irrigation regimes (Figure 9), IWUE was not significantly different (p = 0.2366).
IWUE was higher with no irrigation (1.18 kg m−3) and decreased with constant and variable irrigation
regimes (0.86 and 0.66 kg m−3, respectively).
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Figure 9. Irrigation Water Use Efficiency (IWUE) (kg dry weight m−3) based on irrigation regimes, F
(2;37) = 1.4992; p = 0.2366. Boxes represent mean values, whiskers represent Min–Max interval.
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IWUE significantly differed among the provinces (p = 0.0000) where the field experiments were
conducted (Figure 10). In detail, average IWUE was significantly lower at Viterbo, Bari, Potenza,
Foggia Siracusa, and Enna (0.47, 0.49, 0.61, 0.75, 0.80, and 0.98 kg m−3, respectively) compared to
Matera (2.31 kg m−3). Results for Matera are in agreement with the low decreases observed in
marketable yields.
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Figure 10. Irrigation Water Use Efficiency (IWUE) (kg dry weight m−3) in the different provinces, F
(6;33) = 11.5912; p = 0.0000. Boxes represent mean values, whiskers represent Min–Max interval.

IWUE also significantly differed among aridity classes (p= 0.0092) and on average was significantly
lower (Figure 11) in field experiments under humid and sub-humid climates (0.47 and 0.75 kg m−3,
respectively) compared to semiarid conditions (1.34 kg m−3). Considering the location of field
experiments, humid climate conditions are related to Viterbo in Latium, and semiarid conditions to
Matera in Basilicata.
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Figure 11. Irrigation Water Use Efficiency (IWUE) (kg dry weight m−3) based on the aridity classes [37],
F (2;37) = 5.3391; p = 0.0092. Boxes represent mean values, whiskers represent Min–Max interval.
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4. Discussion

In the environments typical of the Mediterranean area the use of water resources for irrigation is a
priority to be managed through sustainable regulation of water supplies, contributing to water savings
with environmental and economic benefits [39] but avoiding high productivity losses to maintain profit
for farmers [6,30]. Research also indicated that DI may have positive side effects, such as contributing
to decreased soil CO2 emissions and enhanced C sequestration in soils, by decreasing microbial activity
in response to decreased soil moisture levels [39]. In addition, nitrogen fertilization also results in
lower N2O emissions in Mediterranean regions with drip irrigation systems that are commonly used
in tomato cultivation compared with sprinkler irrigation methods [40].

Results from the different field experiments examined in this study are in contrast with each
other. Data obtained in a study at Foggia in Apulia [30] indicated that farmers tend to over irrigate
tomato crops, with no significant increase in the marketable fruit yield and quality, as reported in
other research [20]. Moreover, the same authors [30] indicated that the adoption of variable irrigation
regimes as RDI restoration of 60%, 80%, and 60% of the maximum ETc during the three main tomato
phenological stages (i.e., from plant establishment to flowering of the first truss, from flowering of
the first truss to fruit breaking colors of the first truss, and from fruit breaking colors of the first truss
to harvest), was effective to save water, as shown by other authors [31,34] at Viterbo (Latium) and
Lavello (Basilicata). A study at Matera in Basilicata [32] indicated that water restoration of 50, 75, and
100% of crop evapotranspiration showed no statistical differences among the irrigation volumes in
relation to tomato yield and quality. Conversely, in the same environment another study [33] reported
statistically significant differences in both marketable yields and fruit quality when restoring 0, 50, and
100% of ETc.

The study conducted at Enna in Sicily [12] showed that marketable yields were strongly decreased
by early soil water deficit following plant establishment, while a reduced irrigation rate after the initial
stages or after flowering did not induce any significant loss. The study also indicated that DI has
beneficial effects on fruit quality. In particular, a high total solids content of the fruit improves the
efficiency of the industrial process due to the lower energy required to evaporate water from fruit.
Tomato yield also proved more sensitive to the length of the irrigation period rather than to the total
water supplied during DI experiments in Sicily [26]. In fact, the long-season deficit irrigation (LD) with
50% ETc restoration and the short-season full irrigation (SF) with 100% ETc restoration received about
the same amount of water, but yields decreased by 46% in SF. In addition, irrigation cut-off during the
ripening period did not significantly affect marketable yields and enhanced fruit quality [31].

In the case of Foggia and Viterbo, the average irrigation supplied (Figure 2) was the highest (768
and 655 mm, respectively). However, marketable yields with full irrigation (Figure 1) were higher in
Foggia than in Viterbo (95 and 59 Mg fresh weight ha−1). This result can be ascribed firstly to the lower
fertilization supplied at Viterbo (average N fertilization was about two thirds compared to the amount
supplied at Foggia), and secondly to other environmental conditions that can positively or negatively
affect crop yields (e.g., air temperature). In fact, average temperature is 15.8 ◦C at Foggia and climate is
sub-humid; at Viterbo temperature is 14.4 ◦C and climate is humid. The same consideration is valid
in relation to IWUE. In fact, average IWUE was higher at Matera (Figure 10), where temperature is
16.5 ◦C and climate is semi-arid (Figure 11).

Generally, our data-analysis has confirmed that results are quite variable and strongly
site-dependent due to different climate and soil conditions that may mask the actual effect of the
irrigation regime, and consequently cannot be generalized. Based on the field experiments considered,
a limited decrease in water restoration according to the calculated interpolating function (Figure 5)
would marginally decrease yield by 17.9% and 11.7%, at 70 and 80% of maximum water restoration,
respectively. Marketable yields did not differ significantly at 40–60% and 60–80% of maximum water
restoration (Figure 3) but were higher when 80–100% of maximum water restoration was supplied
with DI, in agreement with previous research [20]. In addition, variable irrigation regimes during
the crop cycle showed a higher and significant response to crop yields (Figure 4). Yield responses
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to DI were significantly lower in soils with coarse and medium textures (Figure 7). Irrigation water
use efficiency was weakly significantly different among irrigation classes and water regimes but was
significantly higher in the experiment conducted at Matera (Figure 10), coupled with semiarid climate
conditions (Figure 11).

5. Conclusions and Recommendations

Under Mediterranean conditions, water management is a crucial factor for tomato crops, due
to the limited availability of water resources during the growing season, when evapotranspiration
is not balanced by the moderate amount of rainfall. Therefore, in this environment, the sustainable
use of water resources is a priority. A proper application of DI can save huge amounts of water,
particularly in semi-arid environments where water scarcity is an increasing concern and water costs
are continuously rising.

Our results provide practical guidelines for irrigation water use in processing tomato cultivation
that can be easily addressed by farmers to avoid over-irrigation and to adopt reduced irrigation
rates during the less sensitive growth stages. Our recommendation is that further research should
address the response of crop yield under variable irrigation regimes adopting RDI, and in relation
either to coarse and medium soil textures and sub-humid climate conditions that are very frequent in
Mediterranean Italy.

Alternative strategies to reduce irrigation water use can be recommended, namely sensor-based
irrigation scheduling [41] or partial root-zone drying [35]. However, their implementation involves
higher costs for farmers in terms of irrigation equipment and management compared to deficit or
regulated deficit irrigation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0472/9/4/79/s1, Table
S1: Main details of field experiments.
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Abstract: Irrigation pumping is a major expense of agricultural operations, especially in arid/semi-arid
areas that extract large amounts of water from deep groundwater resources. Studying and improving
pumping efficiencies can have direct impacts on farm net profits and on the amount of greenhouse
gases (GHG) emitted from pumping plants. In this study, the overall pumping efficiency (OPE),
the GHG emissions, and the costs of irrigation pumping were investigated for electric pumps extracting
from the Rush Springs (RS) aquifer in central Oklahoma and the natural gas-powered pumps tapping
the Ogallala (OG) aquifer in the Oklahoma Panhandle. The results showed that all electric plants and
the majority of natural gas plants operated at OPE levels below achievable standard levels. The total
emission from the plants in the OG region was 49% larger than that from plants in the RS region.
However, the emission per unit irrigated area and unit total dynamic head of pumping was 4% smaller
for the natural gas plants in the OG area. A long-term analysis conducted over the 2001–2017 period
revealed that 34% and 19% reductions in energy requirements and 52% and 20% decreases in GHG
emissions can be achieved if the OPE were improved to achievable standards for plants in the RS and
OG regions, respectively.

Keywords: pumping plants; energy audit; life cycle assessment; greenhouse gas emission;
center-pivot irrigation

1. Introduction

Irrigated agriculture around the world relies heavily on energy resources to extract freshwater
and to convey it to application sites. This is especially the case in arid/semi-arid regions, where large
amounts of irrigation water are required to sustain crop production. As a result, the availability and
cost of energy are among major factors influencing the economic viability of irrigated agriculture in
these regions. In addition, energy consumption for irrigation has major environmental consequences,
mainly due to the emission of greenhouse gases [1,2]. Wang et al. [3] have reported that pumping
groundwater for irrigation accounts for 3% of total emissions from agriculture in China. A similar
study in Iran has found that groundwater pumping is responsible for 3.6% of total carbon emissions in
the country [4]. In India, groundwater pumping is estimated to be the source of nearly 6% of India’s
total emissions [5]. In the U.S., carbon emissions due to pumping irrigation water have been reported
to be about three million metric tons per year, with electric pumps responsible for 46% of the total
emission, followed by diesel (32%) and natural gas (19%) [6].

Energy consumption and its associated costs and greenhouse gas emissions can be reduced by
improving pumping efficiency [7]. In a study in central Tunisia, improving pumping efficiency was
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found to result in 33% cost reduction on average [8]. An average cost saving of 17% following efficiency
improvement was also reported in [9] for an irrigated area in southeastern Spain. Pump efficiency is
primarily dependent on operating conditions such as total dynamic head (TDH) and the condition of
the pump. Any deviation from optimum conditions can lead to reduced efficiency and increased costs
and emissions.

One deviation from optimum conditions is the change in TDH, caused by declines in groundwater
levels. This is especially the case in irrigated areas that experience large declines due to increasing
groundwater extraction. In the North China Plain, Qui et al. [10] estimated that groundwater declines
from 1996 to 2013 have led to a 22% increase in energy consumption and a 42% increase in greenhouse
gas emissions. Increases in groundwater depth will not only increase TDH and consequently energy
use, but will also result in a gradual deviation from design parameters used in selecting the most
efficient pump and hence a reduction in system efficiency.

Irrigated agriculture in Oklahoma has been facing similar energy-related challenges. In 2013,
Oklahoma producers spent over USD 22 million to power more than 5,300 pumps [11]. Electricity was
the main source of pumping energy, supplying water to 46% of all irrigated areas in the state. This
was closely followed by natural gas, which powers pumps to irrigate 42% of all irrigated lands [11].
The remainder of irrigation pumps typically use diesel or propane units. In addition, Oklahoma
producers who rely on groundwater resources have been experiencing a decline in water availability,
reflected in a reduction in average well flow rates from 0.032 m3 s−1 in 2008 to 0.026 m3 s−1 in 2013 [11].
The groundwater decline has been significant in the Panhandle region due to increased usage, drought
periods, and negligible recharge rates. Identifying energy consumption efficiencies and improved
practices can have a considerable impact on the profitability of agricultural production in Oklahoma.

The goal of this study was to identify the overall efficiency and environmental impact of
irrigation pumping in two agricultural regions of central and western Oklahoma that rely on two
aquifers with significantly different depths to groundwater. The more specific objectives included:
(i) to estimate the overall pumping efficiency for several pumping plants in each region; (ii) to
conduct a life cycle assessment and calculate greenhouse gas emissions under existing and achievable
efficiencies; and (iii) to investigate the impacts of changing groundwater depths and energy prices
on the economics and emissions of irrigation pumping plants over a 17-year period. To the best
of our knowledge, only a few previous studies have identified the overall efficiency of agricultural
irrigation pumping. For example, Luc [8] has determined the efficiency of 18 electric pumps in central
Tunisia. The lack of data in this field is most probably due to large human, technical, and financial
resources required to carry out field evaluations of pumping plants. As a result, many previous life
cycle assessment studies have assumed or approximated pumping efficiencies in their analysis as
opposed to using measured values [2–4,7,10]. This study combines efficiencies measured through
field audits with greenhouse gas analysis and uses the results to explore long-term effects of changing
groundwater levels on energy costs and emissions. The results will give Oklahoma agricultural
producers, water managers, and other decision makers an insight into current economics and the
environmental footprint of irrigation pumping in the study areas, as well as potentials for improvement.
Moreover, the results will be transferable to areas with similar agro-climatological and groundwater
resources conditions.

2. Materials and Methods

2.1. Study Area

A total of 24 irrigation pumping plants in central and Panhandle regions of Oklahoma were tested
between 2015 and 2018 with the aim of determining their energy consumption efficiencies, emissions,
and expenses. Of the pumping plants evaluated, fourteen were located within the Ogallala (OG) aquifer
and ten within the Rush Springs (RS) aquifer (Figure 1). The OG sites were all natural gas internal
combustion powered and the RS sites were electricity-powered pumping plants. The Ogallala is one
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of the most important aquifers in Oklahoma, supplying more than 98% of total water demand in the
Panhandle regions. It is classified as an unconfined bedrock aquifer composed of semi-consolidated
clay, silt, sand, and gravel layers [12]. The maximum thickness of the aquifer is 213 m and the
groundwater flow direction is toward the east/southeast, similar to the land surface elevation
gradient. OG water quality is considered good, with an average pH of 7.3 and specific conductance
of 0.64 decisiemens per metre (dS m−1) [12]. RS is another important bedrock aquifer in the state
and provides irrigation water to numerous fields in central Oklahoma. This aquifer is composed of
Rush Springs sandstone on top of the Marlow formation. The maximum thickness of RS is 101 m,
with groundwater moving in a south/southeast direction [12]. Similar to OG, the water quality of
RS is good, with an average pH of 7.2 and specific conductance of 1.08 dS m−1 [12]. The depth to
groundwater, however, is much larger in the OG (with a 2018 average of 57.1 m), and it has experienced
a steady decline over the past several decades, while RS is shallower (with a 2018 average of 18.2 m)
and is more sensitive to inter-annual variations in precipitation [11,12].

 

Figure 1. Location of tested pumping plants and their corresponding aquifers.

2.2. Energy Audits

The energy audits included determining several basic irrigation well and pump parameters such
as groundwater depth (GWD), water pressure, and discharge rate. These parameters were then used
to estimate the overall pumping efficiency (OPE), a widely used metric for assessing the efficiency of
irrigation pumping plants. The OPE is the ratio of the output work the pump exerts on the water at the
pump outlet, known as water horsepower (WHP), to the required energy input or energy horsepower
(EHP) of the driving unit required to pump the measured water output [13], and is calculated as

OPE =
Water output (WHP)
Energy input (EHP)

× 100 (1)

The WHP (kW) can be determined as

WHP =
Q × TDH

F
(2)

where Q is the discharge rate (m3 s−1), TDH is the total dynamic head (m) and F is a conversion
factor equal to 0.102 (m4 s−1 kW−1). In this study, Q was measured using an ultrasonic flow meter
(Portaflow-C, Fuji Electric Co., Japan) on the discharge pipe from the pump. The accuracy of
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the ultrasonic flow meter was tested previously against a calibrated flow device and found to be
acceptable [14].

The TDH is the total equivalent pressure that must be applied to the water column being pumped
while also taking into account the losses due to friction [13]. It may be expressed as

TDH = pumping lift + pressure head (3)

where pumping lift is the vertical distance between the pumping water level and center of the pump
outlet (m) and pressure head is the pressure required at the pump outlet (m). The pumping lift was
measured by lowering a water level meter (model 102, Solinst Canada Ltd., Canada) probe through
an access hole in the pump base-plate while a pressure gauge close to the pump outlet was used to
measure the pressure head [15].

The estimation procedure for energy horsepower (EHP) depends on the type of energy used and
differs among electric motors in the Rush Springs aquifer region and natural gas engine driven pumps
in the Ogallala aquifer region.

2.2.1. Electric Motors

In Oklahoma, electric motor driven irrigation pumps tend to be used where the ground water
depth is less than 80 m and three-phase power is available. These pumps usually require less
maintenance and operational activity than internal combustion engines. For electric motors, the energy
input (kW) is the electrical power supplied to the motor and can be calculated using the following
equation for a three-phase motor [16]:

EHP =
V × I × PF × 1.732

1000
(4)

where V is voltage (V), I is current (A), PF is the power factor, and 1.732 is a conversion factor. In this
study V, I, and PF were measured using a three-phase electric meter. The current of each of the three
legs was first measured individually and then averaged together. The voltage was measured across all
three legs and also averaged.

2.2.2. Natural Gas Engines

The natural gas consumption of the internal combustion engines was measured by a rotary gas
meter (Dresser Roots® Series B, General Electric, Boston, MA, USA). The gas meter was installed by
first turning off the gas supply to the engine at the gas meter. Next, the main fuel line running to the
intake manifold was disconnected and the rotary meter was installed in-line with this gas line, which
was then reconnected to the engine. The engine was allowed to run until in steady state operating
temperature. The irrigation water pump was also allowed to bring the entire irrigation system up to
operating pressure (with water delivery from all nozzles). Then the engine and pump system were
allowed to run for 30–45 min, at which time average fuel consumption readings and correction factors
were recorded. Removing the rotary meter was the reverse of the installation procedure. The meter
auto-corrects for gas pressure, density, and temperature. The display gives readings of cubic feet per
minute, which were converted to mechanical power and used as the input fuel power.

The estimated OPE of the audited pumping plants was compared against the widely used
Nebraska Pumping Plant Performance Criteria (NPPPC). According to the NPPPC, the OPE of
accurately designed and appropriately maintained electricity- and natural gas-driven pumping plants
should be 66% and 17%, respectively [16]. With the electric pumping plants, their OPE was also
compared against thresholds proposed by Hanson [17] for different required corrective actions.
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2.3. Life Cycle Assessment

The greenhouse gas (GHG) emissions for the pumping sites were calculated using the
GREET® (GREET.NET version 2017, Argonne National Laboratory, Argonne, IL, USA) and the U.S.
Environmental Protection Agency (EPA) Greenhouse Gas Inventory Guidance [18]. The GREET Life
Cycle Assessment (LCA) tool is an online resource that is well established and supported in the LCA
focus area. While the GREET model is basically a transportation LCA tool used to model vehicle
emissions due to different energy sources (e.g., biofuels, natural gas, electricity, etc.), it can also provide
a good approximation for stationary power systems. The GREET model examines fuels and energy
production from raw materials (e.g., coal or crude oil), extraction and processing (the “well”), to storage
(the “pump”). This technique in GREET is called “well to pump” (WTP).

In the case of electricity where the end-use is essentially emission-free for both stationary and
vehicle uses, the WTP model can be used alone for stationary irrigation pumping plants without
the need for any additional modification. The “U.S. Central and Southern Pains” Utility Mix
category was chosen to represent the electrical grid generator composition for Oklahoma. In all
cases, the emissions were calculated for 1000 h of irrigation system operation. In the case of natural
gas, there are on-site emissions due to the engine combustion process. Therefore, the GREET WTP
analysis (extraction, transmission, and distribution) was added to an established EPA stationary
engine emissions calculation technique [18] to give an approximation of the total GHG emissions
for stationary engines from raw material extraction to end-use combustion. In short, the electricity
production generates its GHGs at different points from the natural gas engines. Both generate GHGs
in preparing the fuel/energy, but the natural gas engines contribute large percentages of GHGs at
the end-use (combustion) phase. Of course, current electrical production also generates combustion
GHGs at the generation phase depending on the generator technology mix. GREET captures this in
the electrical WTP technique.

The EPA end-use GHG estimation for the natural gas methodology employed was based on
using the natural gas volume consumed (measured) during the audit field tests with a gas flow meter.
The methodology is may be given as

Em = Fuel × HHV × EF (5)

where Em is the mass of CO2, CH4, or N2O emitted, Fuel is the mass or volume of fuel combusted,
HHV is the fuel heat content (higher heating value) in units of energy per mass of fuel, and EF is
the emission factor of CO2, CH4, or N2O per energy unit. The HHV and EF values reported in [18]
for natural gas combustion were used in this study. For the total GHG emissions from combustion,
CO2 equivalence factors of 25 for CH4 and 298 for N2O were applied. As with electric motor pumps,
the emissions for natural gas pumping engines were reported for 1000 h of irrigation system operation.
Readers should be aware that the LCA approach implemented in this study has uncertainties beyond
those caused by errors in the input data, mainly due to assumptions and simplifications adopted in
the procedure.

2.4. Long-Term Trends

Irrigated agriculture in the study area relies heavily on groundwater. Hence, it is of great
importance to investigate the impacts of long-term fluctuations in groundwater levels on the
efficiencies, emissions, and economics of irrigation pumping. The first step to conducting this analysis
was to estimate variations in energy requirement in response to changes in groundwater depth for
each of the studied aquifers (Ogallala and Rush Springs). Several previous studies have investigated
energy required for pumping groundwater as a function of depth to groundwater [4,7,19,20]. These
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studies have used the following equation or a variation of it; it has been selected in the present study
and applied to estimate annual energy requirements over the 17-year period from 2001 to 2017:

Energy =
TDH × M × g

3.62 × 106 × OPE
(6)

where energy is in kWh, M is the total mass of groundwater pumped for irrigation (kg), g is the
gravitational acceleration (9.8 m s−2), and other parameters are as they were defined above.

Since actual long-term TDH data for audited systems were not available, this parameter was
approximated through developing a linear regression model to predict TDH from groundwater depth
based on the data collected during energy audits. The assumption was that GWD is by far the largest
portion of TDH, especially since all tested center pivot systems were of mid-elevation spray application
type and thus required significantly lower operating pressures compared to center pivots equipped
with impact sprinklers. The close proximity of irrigation wells to irrigation systems meant that pressure
losses during water conveyance were small too. Once this relationship was developed it was applied
to the average annual GWD estimated during the 2001–2017 period based on readings reported by the
Oklahoma Water Resources Board at 42 and 22 observation wells in the Ogallala and Rush Springs
aquifers, respectively. The readings were made on an annual basis (in winter) using electric tapes.
The observation wells were selected in a way as to to represent the entire aquifer. The number of wells
with continuous GWD data dropped quickly for years before 2001, which is why the 17-year period
from 2001 to 2017 was selected for analysis in this study.

The discharge rates obtained during the energy audits were averaged for each studied aquifer
and used in obtaining M, assuming 1000 h of pump operation per year. The OPE was estimated in
a similar fashion, assuming that the average OPE of audited systems in each region was a reasonable
representative of the average OPE of all systems in that region. In addition, this average OPE was
assumed to be an acceptable representative of average OPE over the long-term period considered
(2001–2017). After obtaining annual energy requirements, the LCA analysis explained in the previous
section was implemented to estimate variations in GHG emissions as impacted by fluctuations in
groundwater depth.

2.5. Economic Analysis

The economic implications of improving OPE at studied pumping plants was also investigated.
Irrigation energy costs can be one of the largest categories of costs a producer in Oklahoma will incur
over a season, reaching about 22 million USD [11]. Improving OPE to the levels recommended by the
NPPPC could decrease irrigation pumping costs. In this study, energy cost analysis was conducted
in two parts. The first part focused on estimating the energy cost of pumping 1000 h per year under
current efficiencies and potential savings if the OPE of each tested pumping plant was improved
to NPPPC levels. Unit energy costs of 0.05 USD per kWh for electricity-powered and 3.30 USD per
1000 cubic feet (MCF) of fuel for natural gas-powered plants were used in the analysis based on costs
reported in the U.S. Energy Administration Information web portal for Oklahoma for the year when
the tests were conducted [21].

The second part examined changes in long-term (2001–2017) pumping costs for the average OPE
in each aquifer region by taking into account annual variations in groundwater depth and energy
costs. The cost of electricity in Oklahoma varied from 0.04 USD kWh−1 in 2002 to 0.06 USD kWh−1

in 2008 and 2014 [21]. It should be noted that the actual blended rates would be higher than the
projected rates used here. Hence, the actual pumping costs for these plants will be larger than those
estimated in the present study. Compared to the cost of electricity, greater inter-annual variations were
observed in natural gas costs in Oklahoma, ranging from 2.94 USD MCF−1 in 2016 to 13.03 USD MCF−1

in 2008 [21]. Finally, the energy costs for all electric and natural gas pumping plants in Oklahoma
were approximated by assuming the estimates for audited sites are statistically representative of all
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corresponding plants in the state. This assumption may not be accurate, but it provides an estimate of
the magnitude of statewide energy expenses for irrigation pumping.

3. Results and Discussion

3.1. Energy Audits

The measured parameters showed significant differences among audited sites in the Rush Springs
and Ogallala aquifer regions. The average static groundwater depths for instance, were 24.4 and 79.7 m
for RS and OG, respectively. Barefoot [22] has tested 13 natural gas irrigation pumping plants in the
Oklahoma Panhandle region (OG) and reported a similar average pumping lift of 80.4 m. The average
dynamic GWD, measured 15 min after starting the pump, was 30.7 and 89.1 m for the same aquifers,
respectively. The measured water pressure was larger for irrigation systems in RS, resulting in a smaller
difference in TDH compared to GWD. The average TDH was 67.8 and 105.9 m for the RS and OG
aquifers, respectively.

The difference in TDH was accompanied by a corresponding difference in input energy. With
an average value of 270 kW (362 Hp), the input power requirement in the OG was nearly five times
larger than that in the RS region, which had an average of 56 kW (75 Hp). This probably explains the
preference of natural gas engines over electric motors as an energy source for powering OG pumping
plants since large electric motors have specific wiring and utility constraints. The water discharge rates
were similar in the two study regions, with average values of 36.2 and 36.0 l s−1 for the RS and OG
aquifers, respectively. The average discharge reported in [22] was 47.9 l s−1 in the OG aquifer region,
about 33% larger than the value found in the present study.

The overall pumping efficiency of the sites in the RS aquifer region (electricity-powered) varied
from 24.9% to 62.6%. Of the ten pumping plants evaluated, seven had an OPE of less than 50%,
which was proposed in [17] as the threshold below which repairing or replacing the pump should
be considered. All of the systems had efficiencies smaller than the recommended OPE of 66% by the
NPPPC standard. The average OPE for the RS region was 43.3%. The difference between the estimated
OPE and the NPPPC standard implies that nearly 23% of electrical energy is wasted on average due
to poor efficiency of the pumping plant in the RS region. The average OPE in this study compares
well with the average OPE of 42.6% reported in [23] and 47.0% in [24] for pumping plants in the High
Plains and Trans-Pecos areas of Texas. The range of efficiencies in [24] was also similar to that in this
study, with values varying from 16.8% to 70.6%. However, DeBoer et al. [25] have reported a larger
average OPE of 58% in for electricity-driven pumping plants in west central Minnesota, North Dakota,
and South Dakota. The plants tested in DeBoer’s study were fairly new, with 74% being less than six
years old. The younger age of the pumps could be the cause of higher average efficiency.

The OPE of the natural gas-powered pumping plants in the OG aquifer region ranged from 5.7%
to 21.4%. Out of 14 audited pumping plants, ten had an OPE less than the NPPPC recommended
standard of 17% for natural gas internal combustion engines pumping plants. The average OPE for
the OG region was 13.6%, close to average OPEs of 13.2%, 11.7%, and 13.1% as reported for natural
gas-powered pumping plants in Oklahoma and Texas by Barefoot [22], Fipps et al. [23], and New and
Schneider [24], respectively. The range of OPEs in [24] was 2.2–21.6%, similar to the range of OPEs
estimated in the present study.

Linear regression analysis conducted on data collected at each site and the two sites combined
revealed no significant relationship between OPE and the two parameters of TDH and discharge rate
(p values larger than 0.37). This suggests that the performance of audited systems was impacted by
other factors such as the type, age, and condition of the pumping plants. Small sample sizes of systems
tested may have also contributed to the lack of correlation. Table 1 presents the average values of key
parameters for tested plants in the two study areas.
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Table 1. Average values of the main characteristics of studied pumping plants in the Rush Springs (RS)
and Ogallala (OG) aquifer regions.

Parameter RS OG

Static groundwater depth (m) 24.4 79.7
Dynamic groundwater depth (m) 30.7 89.1

Total dynamic head (m) 67.8 105.9
Discharge (l s−1) 36.2 36.0

Overall pumping efficiency (%) 43.3 13.6

3.2. Life Cycle Assessment

The LCA of electric motor pumps in the RS region examined the greenhouse gas (GHG) emissions
at an electric generation station for 1000 h of pump operation. The total emissions from these pumping
plants ranged from 28.4 to 52.9 and averaged 40.1 metric tons of equivalent CO2 (t CO2e) emissions.
In order to facilitate comparison with other studies, it is useful to report emissions for the unit irrigated
area and unit TDH. The pumping plants in the present study were all serving a standard-size center
pivot system, with an irrigated area of about 50.8 ha per system. Hence, the average emission from
electrical pumps per unit area of irrigated land and unit TDH would be 11.8 kg CO2 e ha−1 m−1.
This is within the range of 4–93 kg CO2 e ha−1 m−1 reported in [7] for a variety of crops irrigated by
electrical pumps in the Haryana state of India.

LCA of natural gas driven pumps examined the emissions through a two-part analysis that used
GREET WTP and EPA calculations for stationary engines. The first part of the analysis provided
estimates for natural gas extraction, processing, storage, and transportation (off-site), while the second
part resulted in emission estimates for end-use at the irrigation field (on-site). The total off-site GHG
emissions estimated for natural gas pumping plants in the OG region averaged 11.0 and had a range of
6.0–17.6 t CO2e. The on-site emissions varied from 26.7 to 78.1 and averaged 48.8 t CO2e. The average
total emission from off- and on-site analyses was 59.8 t CO2e. This is equal to 11.4 kg CO2e ha−1 m−1

when expressed in terms of emission per unit area of irrigated land and unit TDH. The maximum total
emission was 95.7 t CO2e and belonged to a pumping plant that had the fourth lowest OPE and the
seventh largest groundwater depths, a combination resulting in the maximum amount of energy use.

On average, the total GHG emission from pumping plants in the OG region was 49% larger
than that of the pumping plants in the RS region. However, the emission per unit irrigated land
and unit TDH was 4% smaller. This indicates that TDH, which is greatly impacted by groundwater
depth, plays a significant role in determining the GHG emissions from agricultural pumping plants.
The emissions can also be reported per unit volume of water extracted from aquifers. This analysis
resulted in emission ranges of 0.20–0.45 and 0.34–0.99 kg CO2 e m−3 for pumping plants in the RS and
OG regions, respectively. These estimates are similar to the range of 0.18–0.60 kg CO2 e m−3 reported
in [3] for all 31 provinces in China with variable proportions of electricity and diesel driven pumps.

3.3. Long-Term Trends

Examination of the observed groundwater depth data showed that the Rush Springs aquifer levels
varied between 18.2 and 21.0 m below the ground surface over the 17-year period, with a net decline
of 1.5 m (Figure 2a). On the other hand, the Ogallala aquifer GWD experienced a steady decline from
56.6 to 62.3 m below the ground surface (Figure 2b). The OG aquifer has significantly smaller recharge
rates. As a result, no rise in water level was observed in the OG aquifer during wet periods in 2005,
2007–2009, and 2015–2017, while the RS aquifer experienced rises in groundwater level. The rate of
decline in water levels was greater during the drought years of 2011–2014 compared to wet and normal
years for both aquifers, an indication of increased pumping for irrigation during this dry period.
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(b) 

Figure 2. Annual variations in groundwater depth (GWD) for plants in the (a) Rush Springs,
and (b) Ogallala aquifers.

The TDH and GWD measurements at audited sites were strongly correlated, with a Pearson
coefficient of 0.88. The linear relationship developed based on TDH and GWD is presented below:

TDH = 0.67 × GWD + 53.76, (7)

This relationship was statistically significant (p < 0.001) and had a coefficient of determination
(R2) of 0.78, suggesting that over three-fourths of variability in TDH could be explained by changes in
GWD. A similar approach was employed in [3], where the slope, intercept, and R2 were 0.91, 21.75,
and 0.62 for a linear relationship between pump lift and GWD.

As expected, the variations in energy requirement during the 2001–2017 period had a pattern
similar to that of GWD in each aquifer region. In the case of RS, the energy requirement for 1000 h
of pump operation per year varied from 53,721 to 55,247 kWh during the 17 years considered and
had an average of 54,344 kWh. The energy requirement was much larger at OG and increased over
time, with a range of 233,175–242,980 kWh and an average of 237,277 kWh (Figure 3). This was more
than four times larger than the average in RS. When considering energy requirements per unit volume
of pumped water, the RS and OG regions had average rates of 0.42 and 1.84 kWh m−3, respectively.
These values are similar to energy use rates of 0.21 to 0.66 kWh m−3 reported in [3] across all provinces
in China.

 

(a) 

 

(b) 

Figure 3. Annual variations in energy requirements for 1000 h of operation per year for plants in the
(a) Rush Springs, and (b) Ogallala aquifers.

In OG, the increase in energy requirements due to increases in GWD over the 17-year period
was 4% of the initial (2001) amount. Qiu et al. [10] have reported a significantly larger increase of
22% in energy use in China between 1996 and 2013. However, the rate of groundwater level decline
in their study was 0.6 m year−1, two times larger than the drop rate of 0.3 m year−1 observed in the
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present study. The results also revealed that improving the OPE in each region to achievable levels
recommended by the NPPPC would result in 34% and 19% reductions in average energy requirements
in the RS and OG regions, respectively.

The increase in energy requirements in the OG aquifer region over the long-term period resulted
in a continuous increase in total GHG emissions from 51.7 t CO2e in 2001 to 53.9 t CO2e in 2017. In the
RS aquifer region, the total GHG emissions varied between 38.3 t CO2e in 2009 and 39.4 t CO2e in
2015, the year that marked the end of a severe drought that caused significant declines in groundwater
levels. Apart from the groundwater level, the OPE had a large influence on the energy use rate and
emissions. Improving the OPE of electricity-powered pumping plants in the RS aquifer region to the
NPPPC recommended standard of 66% could on an average reduce total GHG emissions by nearly
52%. Similarly, improving the OPE of natural gas-powered pumping sites from an average of 13.75%
to the NPPPC recommended 17% level in the OG aquifer region could potentially reduce emissions by
20%. In India, it has been reported that improving electric pumping system efficiency (OPE) to 51%
from an existing 34.7% level could lead to a decline of 32% in CO2 emissions [7].

3.4. Economic Analysis

Based on the audit results, the current seasonal pumping cost for 1000 h was highly variable
among pumping plants, with an average of 2827 USD for electricity-powered pumping sites in the
RS aquifer region. The pumping expense was also variable among natural gas-powered pumping
sites, with an average of 3042 USD, which was only 8% larger than that of electric plants. Such a small
difference despite significant differences in energy use is due to low natural gas prices during the
study period. It should be also noted that producers may run their pumps longer than 1000 h per year
depending on crop type, weather conditions, and well yield. A longer operating hour will result in
a linear increase in energy consumption costs. A significant potential for reduction in pumping costs
was estimated if OPE was improved to meet NPPPC standards. The average saving for electric pumps
was 35% of the current pumping costs. With the prices at the time of study, this amount of saving was
equal to 1000 USD or one USD per every hour of pumping. For natural gas-powered pumping plants,
the average saving was 23% of existing pumping costs, equal to 711 USD (71 cents per every hour
of pumping). As mentioned before, this study was conducted when natural gas prices were among
the smallest in the past several years in Oklahoma. Higher costs would have resulted in larger dollar
values of saving. The results obtained here are consistent with the findings of Hardin and Lacewell [26]
who reported significant decreases in fuel costs and increases in farm profits if the OPE of irrigation
pumping plants in the Texas High Plains was improved to achievable levels.

Our long-term analysis showed that pumping cost for electric plants ranged from 2052 USD in
2002 to 3219 USD in 2014 and averaged 2788 USD for 1000 h of pumping per year (Figure 4). In the
case of natural gas, inter-annual fluctuations were significantly larger. The pumping costs for these
plants varied between 2429 USD in 2016 and 10,482 USD in 2008 and averaged 6490 USD for 1000
h of pumping per year (Figure 4). According to the most recent Farm and Ranch Irrigation Survey
(FRIS) conducted by the U.S. Department of Agriculture, 3456 electricity-powered and 1354 natural
gas-powered pumping plants are used for irrigation in Oklahoma [27]. Assuming that these plants
have pumping costs similar to those estimated in this study, the total annual cost of irrigation pumping
in Oklahoma can be approximated at 9.6 and 8.8 million USD for electric and natural gas plants,
respectively. These estimates are similar to the total energy expenditure of 9.5 and 10.5 million USD
reported for the same two sources of energy in [27], respectively.
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Figure 4. Annual variations in pumping cost for 1000 h of operation per year for the Ogallala and Rush
Springs aquifers.

4. Conclusions

The future of irrigated agriculture is largely dependent on its financial and environmental
sustainability. In arid/semi-arid regions where large amounts of irrigation water is required to meet
crop demand and where available water resources are usually limited or difficult to extract, energy
consumption for irrigation pumping can play a significant role in both environmental and financial
sustainability of agricultural production. In this study, the efficiencies, environmental footprint, and
economics of irrigation pumping were investigated in two Oklahoma areas that rely heavily on
groundwater resources. The first area was in central Oklahoma where electric pumps are used to
extract water from the Rush Springs aquifer and the second area was in the Oklahoma Panhandle
where natural gas-powered pumps remove water from the declining Ogallala aquifer. Field visits were
conducted in the period from 2015 to 2018 to collect required data for analysis. The results confirmed
significant differences among the regions in terms of depth to groundwater. It was also revealed that
all electric pumps and the majority of natural gas plants had an overall pumping efficiency below
the standard rates achievable under field conditions. The range and average OPE obtained in this
study were similar to those reported in previous studies, including those that were conducted a few
decades ago.

The life cycle assessment results showed a significant difference in total emissions, with natural
gas-powered plants emitting 49% more greenhouse gases when considering the entire process from the
extraction and transportation of natural gas to its combustion at the pump site. However, the average
emission expressed per unit irrigated area and unit total dynamic head of pumping was slightly
smaller for the natural gas plants in the OG region. In the same region, the energy required for
pumping increased by 4% between 2001 and 2017 due to continuous declines in OG water levels.
The results showed that improving the OPE to achievable standards could have resulted in 34% and
19% reductions in average energy consumption during the 2001–2017 period in the RS and OG regions,
respectively. The reductions in GHG emissions would have been 52% and 20% for the same study
areas, respectively.

The cost of irrigation pumping was also estimated for the pumping plants tested and for the
two regions over the 2001–2017 period. Compared to RS, large inter-annual variations in the cost of
pumping were found for agricultural producers in the OG, mainly due to the large fluctuations in the
natural gas price. Assuming that the pumping plants audited in the present study represent all electric
and natural gas plants in Oklahoma, the statewide energy expenses were estimated and found to be
in good agreement with those reported in surveys conducted by the U.S. Department of Agriculture.
The results of this study highlight the need for regular evaluation of pumping plant efficiencies to
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identify systems with poor performance and taking corrective actions to improve farm profitability
and reduce environmental consequences of energy consumption for irrigation extraction.
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Abstract: The main purpose of this experiment was to study the effect of several irrigation water
regimes on Tetragonia tetragonioides (Pall) O. Kuntze in semi-arid regions. During the experiment
period, it was measured that several irrigation regimes were affected in terms of growth, biomass
production, total yield, mineral composition, and photosynthetic pigments. The experiment was
conducted in the greenhouse at the University of Algarve (Portugal). The study lasted from February
to April in 2010. Three irrigation treatments were based on replenishing the 0.25-m-deep pots to field
capacity when the soil water level was dropped to 70% (T1, wet treatment), 50% (T2, medium
treatment), and 30% (T3, dry treatment) of the available water capacity. The obtained results
showed that the leaf mineral compositions of chloride and sodium, the main responsible ions for soil
salinization and alkalization in arid and semi-arid regions, enhanced with the decrease in soil water
content. However, the minimum amounts of chlorophyll, carotenoids, and soluble carbohydrates
in the leaf content were obtained in the medium and driest treatments. On the other hand, growth
differences among the several irrigation regimes were very low, and the crop yield increased in the
dry treatment compared to the medium treatment; thus, the high capacity of salt-removing species
suggested an advantage of its cultivation under dry conditions.

Keywords: irrigation water regimes; leaf mineral composition; semi-arid regions; available water
capacity; biomass production; total yield

1. Introduction

In arid and semi-arid regions, such as the Mediterranean, supplies of good-quality water allocated
to agriculture are expected to decrease because most available fresh/potable water resources were
already mobilized [1]. According to the Food and Agriculture Organization (FAO) [2], due to the
shortage of water, there is an enlargement of saline land in agricultural areas in some developing
countries. As a result, yield is decreasing, provoking an increasing cost of agricultural products [3].

Soil salinization is recognized worldwide as being among the most important problems for crop
production in arid and semi-arid regions [4]. Water deficit and salinity are the major limiting factors for
plant productivity, affecting more than 10% of arable land on our planet, resulting in a yield reduction
of more than 50% for most major crop plants [5]. The usually noted abiotic stresses that include
a component of cellular water deficit are salinity and low temperature; stresses can also severely
limit crop production [6]. Abiotic stresses, such as drought, salinity, extreme temperatures, chemical
toxicity, and oxidative stress are serious threats to agriculture, and result in the deterioration of the
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environment. Abiotic stress is the primary cause of crop loss [7,8]. This problem is intensified in coastal
areas due to sea-water intrusion. This results from reduced ground-water levels as the water demand
exceeds the annual groundwater recharge [9]. As reported above, some of the emerging regions in
risk of increasing levels of salinization of their soils are located in the Mediterranean Basin [10,11],
Australia [12], Central Asia [13], and Northern Africa [14]. Salinity is one of the rising problems
causing tremendous yield losses in many regions of the world, especially in arid and semi-arid regions.
The use of halophytes can be an effective way of accumulating the salt in soil [15].

Intensive irrigation of agricultural crops with a high level of water mineralization causes salts to
accumulate in the root zones, which adversely affects the crop productivity. In order to reduce such
negative impacts, a regulated deficit irrigation (RDI) technique was adopted to combat salinization in
arid and semi-arid environments by reducing the water application during certain growth stages of
the crops [16].

When RDI is not feasible, halophyte crops might be a solution for the salinization of agricultural
land. These crops can be irrigated by, for example, seawater, salt-contaminated phreatic sheets, brackish
water, wastewater, or drainage water from other plantations [17,18].

Hence, our aims were to choose a salt-removing crop, tolerant to salinity, along with interest
as a food crop, and to test its drought tolerance through its response to several water regimes.
Tetragonia tetragonioides was the selected crop. In a previous experiment, its capability as a high
biomass horticultural leaf crop was demonstrated, producing a plant dry weight of 40,000–50,000 dry
mass (DM) kg·ha−1 if the plant population density is around 75,000 plants·ha−1 [19].

2. Materials and Methods

2.1. Experimental Procedure

The experimental work was conducted in the greenhouse of Horto at the University of Algarve,
Faro, Portugal (37◦2′37.1 N 7◦58′30.8 W), from February to April in 2010. The salt-removing species
T. tetrogonioides was selected. Plants were transplanted to 7-L pots when they had four leaves
(10 February). The number of plants per pot was three, with four replications. The species were irrigated
with tap water every three days until the beginning of the treatments (1 February–8 March). A nitrogen
fertigation treatment was started on 8 March, with daily applied concentrations of 2 mM NO3

− and
2 mM NH4

+ as the cumulative amount of NO3NH4 (g·plant−1) to the end of the experimental studies
(22 April). The electrical conductivity (ECw) of irrigation water was 0.6 dS·m−1 and pH 7.

The treatments consisted of three irrigation regimes in a randomized complete block design
with three replicated treatments based on replenishing the 0.25-m-deep pots to field capacity when
the soil water level dropped to 70% (T1, wet treatment), 50% (T2, medium treatment), and 30%
(T3, dry treatment) of the available water capacity (aw). This concept was developed by Reference [20],
where “aw” is the range of available water that can be stored in soil and is available for growing crops.
It was assumed by the same authors that the soil water content readily available to plants (θaw) is the
difference between the volume of water content at field capacity (θfc) and at the permanent wilting
point (θwp), calculated as follows:

θaw = θfc − θwp (1)

The watering volume was estimated to replenish the soil profile to field capacity at a depth of
0.25 m. The volumetric soil water content (m3 water/m3 soil; m3·m−3) was determined just before the
water application.

To control soil water along the soil profile, the irrigation frequency, and the water amount, the pots
were weighed every day. The soil water content was monitored periodically, gravimetrically measured
for a depth of 0.00–0.25 m.

The plants were harvested destructively (26 April), washed in water, and dried with paper
towels. Then, the fresh weight (FW) was measured. The fresh samples were dried in a forced drought
oven at 70 ◦C for 48 h, and the dry weight (DW) was measured. Plant materials were collected for
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chemical analyses. The electrical conductivity (ECs) and pH of soil were measured before and after
the experiment.

2.2. Growth and Chemical Analysis

During the vegetation period, the stem length was measured, as well as the number of nodes and
number of leaves of T. tetragonioides every seven days.

The plants’ leaves were analyzed on total growth and mineral compositions (Na, Cl, N, K, P, Ca,
and Mg). Dried leaves and stems were finally grounded and analyzed using the dry-ash method.
The levels of Na and K were determined using a flame photometer, and the remaining cations (Na, K,
Ca and Mg) were assessed by atomic absorption spectrometry. Chloride ions were determined in
the aqueous extract by titration with silver nitrate according to the method of Reference [21]. Plant
nitrogen (N) content was determined using the Kjeldhal method. Phosphorus was determined using
the colorimetric method according to the vanadate–molybdate method. All mineral analyses were
only performed on the leaves.

The analysis of pigments was done with a disc size of 0.66 cm and a total area of 1.37 cm2.
For sugars. there were ten discs, with a disc size of 0.66 cm and a total area of 3.42 cm2. The amount of
photosynthetic pigments (chlorophyll a (Chla), b (Chlb), total (ChlT), and carotenoids) was determined
according to the method of Reference [22]. Shoot samples (0.25 g) were homogenized in acetone
(80%). The extract was centrifuged at 3000× g, and absorbance was recorded at wavelengths of 646.8
and 663.2 nm for the chlorophyll assay and at 470 nm for the carotenoid assay using a Varian Cary
50 ultraviolet–visible light (UV–Vis) spectrophotometer. The levels of Chla, Chlb, ChlT, and carotenoids
were calculated. Soluble sugars (glucose) in leaves were extracted as described by Reference [23].
The change in absorbance was continuously followed at 340 nm using an Anthos hat II microtiter-plate
reader (AnthosLabtec Instrument, Hanau, Germany).

2.3. Statistical Analyses

Data (n = 4) were examined by one-way ANOVA. Multiple comparisons of the means of data
between different salinity treatments within the plants were performed using Duncan’s test at the
p < 0.05 significance level (all tests were performed with the SPSS program version 17.0 for Windows).

2.4. Soil

Table 1 shows the soil texture and soil parameters before the experiment. According to the FAO,
based on the United States Department of Agriculture (USDA) particle-size classification, the soil
texture was sandy clay loam. The soil parameters show that the range in the soil’s pH value was
slightly alkaline and that the electrical conductivity (ECs) was 1.1 dS·m−1 (non-saline soil) at 25 ◦C.

Table 1. Soil parameters before the experiment.

Soil Texture Soil Parameters

Sand (%) 58.9 Field capacity θfc (m3·m−3) 0.22 pH (H2O) 7.7
Silt (%) 18 Wilting point θwp (m3·m−3) 0.12 ECe* (dS·m−1) 1.1

Clay (%) 24.1 Available soil water θaw (m3·m−3) 0.12
Classification: Sandy clay loam Bulk density (g·cm−3) 1.41

ECe*—Electrical conductivity of the extract of a saturated soil paste (dS·m−1).

Table 2 shows the volumetric soil water content (m3 water/m3 soil; m3·m−3) just before the water
application. The volumetric soil water content in soil ranged between 0.20 and 0.15 m3·m−3.
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Table 2. Volumetric soil water content (m3 water/m3 soil; m3·m−3) just before the water application.

Treatment Determination Θ (m3·m−3)

T1 θwp + 0.70 × θaw Θ1 = 0.20
T2 θwp + 0.50 × θaw Θ2 = 0.17
T3 θwp + 0.30 × θaw Θ3 = 0.15

2.5. Climate Condition in Greenhouse

The average climatic data during the experimental period in the greenhouse were as follows:
maximal relative humidity, 88.4%; minimal relative humidity, 11.3%; maximal temperature, 45.8 ◦C;
minimal temperature, 11.4 ◦C.

During the experimental period, the relative humidity of the greenhouse was increased, and the
maximal temperature decreased.

3. Results and Discussion

3.1. Effect of Irrigation Water Regimes on Plant Growth

Table 3 shows the irrigation water regimes’ effects on the T. tetragonioides growth (stem length,
number of nodes, and number of leaves). A significant effect on the stem length can be seen. In the
beginning of the experiment, the stem length of the crop showed very low variations between T1
and T2 treatments. During the last three weeks of the experimental period, the stem length increased
showing equal differences between each treatment—T1 and T2, and T2 and T3 (Δ stem length ~0.5 cm).
The number of nodes and number of leaves were also higher in treatment T1.

Table 3. Effect of irrigation water regimes on stem length, number nodes, and number of leaves of the
species. Different letters within a column represent significant differences (p ≤ 0.05).

Treatment
Tetragonia tetragonioides

Stem Length (cm) Number of Nodes Number of Leaves

T1 38.8 ± 1.9 a 22.5 ± 0.6 a 9.9 ± 0.58 a
T2 34.2 ± 0.5 b 18.1 ± 0.6 b 8.1 ± 0.37 b
T3 29.3 ± 1.5 c 19.2 ± 0.8 b 9.5 ± 0.22 b

3.2. Fresh (FW) and Dry (DW) Weight of Crop

The fresh weight (FW) of T. tetragonioides species showed low variation among treatments (Figure 1).
There was a low increase of the fresh weight of stem, leaves, and seeds in treatment T1. Surprisingly,
the obtained results in treatment T3 were slightly higher than in treatment T2.

The obtained results of dry matter show that the stem, leaves, and seeds of treatment T1 were
slightly higher than other treatments. There was very low variation of dry matter between T2 and T3
treatments (Figure 2).

99



Agriculture 2019, 9, 22

0

100

200

300

400

500

600

Figure 1. Fresh weight response of Tetragonia tetragonioides to the different irrigation treatments.

Figure 2. Dry weight response of Tetragonia tetragonioides to the different irrigation treatments.

3.3. Effect of Irrigation Water Regimes on Mineral Composition in Plant Leaves

Table 4 shows the effects of water application treatments on the mineral composition of
T. tetragonioides leaves. In summary, the total nitrogen leaf content of the species showed low variation
among treatments. There was an enhancement of chloride and sodium concentration with the
decrease in water content. There was a general decrease in phosphorus, calcium, potassium, iron,
and magnesium in the leaf content under drought conditions.

Table 4. Effect of irrigation water regimes on the leaf mineral composition.

Treatment
Leaf Mineral Composition (%)

Na Cl Mg Ca

T1 3.4 ± 0.19 1.3 ± 0.07 0.43 ± 0.03 0.0006 ± 0.04
T2 4.3 ± 0.25 3.0 ± 0.22 0.36 ± 0.02 0.0004 ± 0.02
T3 4.4 ± 0.42 3.5 ± 0.09 0.35 ± 0.01 0.0004 ± 0.03

N K P Fe

T1 0.34 ± 0.02 4.2 ± 0.23 3.1 ± 0.02 0.0001 ± 0.02
T2 0.34 ± 0.01 3.7 ± 0.17 2.7 ± 0.04 0.0002 ± 0.03
T3 0.37 ± 0.01 4.1 ± 0.14 2.7 ± 0.02 0.0001 ± 0.01
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3.4. Effect of Irrigation Water Regimes on Chlorophyll Content

The reaction of chlorophyll content of leaves of T. tetragonioides to the different water regimes is
shown in Table 5. The results show that the chlorophyll content was higher in treatment T2 and lower
in treatments T1 and T3. These results are in agreement with the findings obtained by Reference [24],
where the minimum amounts of chlorophyll a, chlorophyll b, and total chlorophyll were obtained
from the wettest and driest treatment in Matricariachamomilla L. potted plants. Similar results were
obtained by References [25,26].

Table 5. Leaf chlorophyll content in leaf. DM—dry matter.

Treatment

Chlorophyll Content

Ca

(mg·m−2)
Cb

(mg·m−2)
Ca+b

(mg·m−2)
Ca

(mg·g−1; DM)
Cb

(mg·g−1; DM)
Ca+b

(mg·g−1; DM)

T1 232 ± 12.1 81 ± 5.8 313 ± 17.6 27 ± 1.4 9.2 ± 0.7 36 ± 1.9
T2 289 ± 7.3 110 ± 4.5 400 ± 11.4 32 ± 1.3 12.2 ± 0.5 45 ± 1.7
T3 254 ± 13 92 ± 5.6 346 ± 18 30 ± 2 10.7 ± 0.6 41 ± 2.1

3.5. Effect of Irrigation Water Regimes on Carotenoid Content in Leaves

Carotenoids which exist in all higher plants are synthesized and located in the chloroplast along
with the chlorophyll. Table 6 shows the carotenoid content of the leaves of T. tetragonioides under
different irrigation water regimes. The maximum leaf carotenoid content was 8.44 mg·g−1 DW in
treatment T2. In wetter and drier treatments (T1 and T3), the carotenoid content was lower, with values
of 7.2 and 7.9 mg·g−1 DW, respectively. Lower carotenoid content was also obtained for stress water
regimes of some fenugreek varieties [27]. Moreover, the leaf carotenoid levels of green beans decreased,
which was attributed to water stress; the vegetation index (NDVI) then showed the highest correlations
with the chlorophyll (a, b, and total) and carotene content of leaves [28].

Table 6. Carotenoid leaf content of the species.

Treatment
Leaf Carotenoid Content

Car (mg·m−2) Car (mg·g−1; DW)

T1 62.9 ± 3.2 7.2 ± 0.3
T2 75.8 ± 2.2 8.4 ± 0.4
T3 67.6 ± 4.1 7.9 ± 0.5

3.6. Effect of Irrigation Water Regimes on Soluble Carbohydrates Content

The irrigation water regimes had a slight effect on the soluble carbohydrate content on leaves of
the species T. tetragonioides. The glucose and soluble carbohydrate content in leaves increased in the
wet (T1) and dry (T3) treatments: glucose, 0.58 and 0.57 mg·mL−1, respectively; soluble carbohydrates,
1.71 and 1.67 mg, respectively. These results are confirmed by Reference [29]. There was a decrease
in glucose (0.54 mg·mL−1) and soluble carbohydrate (1.59 g) content in leaves in the medium (T2)
treatment (Table 7).

Table 7. Soluble carbohydrates content of leaves.

Treatment

Soluble Carbohydrates

Glucose
(mg·mL−1)

Area (cm2)
Soluble

Carbohydrates (mg)
DW (cm2)

Soluble
Carbohydrates (g)

T1 0.57 ± 0.05 3.42 1.67 ± 0.14 0.001 1.9 ± 0.15
T2 0.54 ± 0.03 3.42 1.59 ± 0.08 0.001 1.8 ± 0.09
T3 0.58 ± 0.03 3.42 1.71 ± 0.09 0.001 2.0 ± 0.12
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3.7. Yield of Species

T. tetragonioides produced significant amounts of dry matter, which ranged from 82.7 to
66.1 g·plant−1. The partition of the plant dry matter to plant organs was changed by the effect
of the irrigation water regimes (Table 8). The fact that the species was irrigated during the vegetation
period T1 (70%, wet treatment) significantly increased the dry biomass of the species at the harvest
time, averaging 6616 kg·ha−1. The dry matter of the species decreased when the soil water decreased
in treatments T2 (50%, medium treatment) and T3 (30%, dry treatment). There was no significant
difference between treatments. The obtained results confirmed that the species T. tetragonioides is
tolerant to drought conditions. The yield of the crop shows that the drought had less effect than the
salinity (6616–5288 kg DM·ha−1). These results are confirmed by the previous study of Reference [3].

Table 8. Effect of irrigation water regimes on yield of the species. FW—fresh weight; DW—dry weight;
FM—fresh matter.

Treatment
Tetragonia tetragonioides

FW (g·plant−1) DW (g·plant−1) Yield (%) FM (kg·ha−1) DM (kg·ha−1)

T1 1041.2 ± 12 82.7 ± 4 7.8 ± 0.3 83,284 ± 967 6609 ± 329
T2 913.7 ± 23 66 ± 3 7.2 ± 0.5 73,094 ± 1805 5289 ± 248
T3 966.2 ± 22 67.3 ± 3 6.8 ± 0.3 77,300 ± 1787 5377 ± 242

4. Conclusions

The experimental results showed several effects of the water irrigation regimes on the growth,
mineral composition, and photosynthetic pigments of T. tetragonioides, as listed below.

- Plant growth (stem, leaves, and seeds) increased slightly with an enhancement of the water
level (near the field capacity), and the growth difference between the drier water regimes was very
low. This increase was probably due to the increase of stomatal conductance and, consequently,
transpiration and CO2 fixation were higher. Hence, it is not surprising that experimental results,
in which the only variable was water application, agree quite well with this supposed theory.

- Leaf mineral composition of chloride and sodium are the main responsible ions for soil
salinization and alkalization, respectively, in arid and semi-arid regions, enhanced by the decrease in
soil water content. The content was very high in relation to other plants, showing its high capacity as
a salt-removing species.

- There was a generally low decrease in phosphorus, calcium, potassium, iron, and magnesium in
leaf content under drought conditions, probably due to the chloride and potassium competition.

- The total nitrogen leaf content of species showed very low variation, probably due to the same
fertigation for all irrigation treatments.

-The minimum carotenoid amounts of chlorophyll a, chlorophyll b, and total chlorophyll were
obtained from the wettest and the driest treatment in T. tetragonioides plants, probably due to higher
plant senescence provoked by these regimes.

- The glucose and soluble carbohydrate contents of leaves increased in the driest treatments and
had enhanced tolerance to drought conditions.

- The yield of the species increased in the wettest and the driest treatments.
In conclusion, it can be suggested that T. tetragonioides is a species tolerant to drought conditions.

Its capacity as a halophyte and salt-removing species when the soil water content decreases was
shown, suggesting its use in arid and semi-arid regions. Moreover, growth and yield differences in
the various irrigation regimes were very low, which suggests another important advantage of these
species—its cultivation under dry conditions, when used as a leafy vegetable for human consumption
or for animal feeding. Nevertheless, more research is needed in order to test plant development under
drier conditions in arid and semi-arid climates.
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Abstract: The sprinkler irrigation method is widely applied in tea farms in the Yangtze River region,
China, which is the most famous tea production area. Knowledge of the optimal irrigation time
for the sprinkler irrigation system is vital for making the soil moisture range consistent with the
root boundary to attain higher yield and water use efficiency. In this study, we investigated the
characteristics of soil water infiltration and redistribution under the irrigation water applications rates
of 4 mm/h, 6 mm/h, and 8 mm/h, and the slope gradients of 0◦, 5◦, and 15◦. A new soil water infiltration
model was established based on water application rate and slope gradient. Infiltration experimental
results showed that soil water infiltration rate increased with the application rate when the slope
gradient remained constant. Meanwhile, it decreased with the increase in slope gradient at a constant
water application rate. In the process of water redistribution, the increment of volumetric water
content (VWC) increased at a depth of 10 cm as the water application rate increased, which affected
the ultimate infiltration depth. When the slope gradient was constant, a lower water application
rate extended the irrigation time, but increased the ultimate infiltration depth. At a constant water
application rate, the infiltration depth increased with the increase in slope gradient. As the results
showed in the infiltration model validation experiments, the infiltration depths measured were
38.8 cm and 41.1 cm. The relative errors between measured infiltration depth and expected value
were 3.1% and 2.7%, respectively, which met the requirement of the soil moisture range consistent
with the root boundary. Therefore, this model could be used to determine the optimal irrigation time
for developing a sprinkler irrigation control strategy for tea fields in the Yangtze River region.

Keywords: water application rate; slope gradient; infiltration depth; optimal irrigation time

1. Introduction

Tea (Camellia sinensis) is a subtropical plant, which grows well in a warm and wet climate under an
optimal growth temperature around 20 ◦C with annual rainfall of 1500 mm. The Yangtze River region
is the most famous tea production area. Climate abnormality in recent decades caused an uneven
spatial distribution of rainfall in this area. Inadequate rainfall cannot provide enough water for tea
growth, which seriously affects both the yield and quality of the tea plants [1,2]. Under water stress,
the photosynthetic and respiration rates of tea leaves decrease [3], as well as their chlorophyll content,
the water content of shoots, the root activity, and the root weight per unit volume [4]. Meanwhile,
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quality components such as amino acids, caffeine, and water extracts are also reduced, resulting in the
deterioration of the tea quality [5–8].

The sprinkler irrigation method is widely applied to save water and counter drought with great
improvement with regard to water use efficiency, irrigation uniformity, labor saving, and crop yields [9].
The traditional control strategy for sprinkler irrigation is usually based on the upper limit and lower
limit of soil moisture required for the growth of certain plants [10–12]. This kind of control strategy
partly provides the required water for tea plant growth and saves some applied water compared to
manual irrigation. However, it leads to the ultimate infiltration depth exceeding the boundary of the
tea plant root system, resulting in a waste of water resources. Thus, it is necessary to improve the
water use efficiency (WUE) of sprinkler irrigation systems, especially for tea fields in the Yangtze
River region.

Infiltration is the process of water entering the soil. The main goal of operating an irrigation system
is to apply the required infiltration depth for specific plants with high WUE [3,7,9,13,14]. Normally,
infiltration rate is determined by measuring, modeling, and predicting the surface runoff [15–17].
To avoid low-WUE problems, it is necessary to have a good understanding of soil infiltration
characteristics. Infiltration rate variation results from many causes such as soil property, water application
rate, and terrain [18–20]. Infiltration theories and models were developed by several researchers,
including the Green–Ampt model, Kostiakov model, modified Kostiakov model, and Smith and Parlange
model [21–23]. The suitability of an infiltration model for a particular region is subject to soil type
and field conditions. Different infiltration models were applied to certain soil types and certain site
conditions [24]. Over the years, several comparative analyses of various infiltration models were
conducted to assess the suitability of various models for different soil types under varying field
conditions to estimate the infiltration rates and infiltration potentials of soil [25]. Feng, Deng, Zhang,
and Guo [26] pointed out that the cumulative infiltration depth firstly decreased then increased with
the increase in slope gradient, and the turning point was the threshold of the slope gradient. Recent
researches focused on the effects of slope gradient and water application rate on soil water infiltration
and redistribution without any plants; however, they failed to reveal the situation with plants [27,28].
To some extent, the morphological, quantitative, depth, type, and distribution characteristics of plant
roots affect soil water moisture and its redistribution [29–32]. The infiltration characteristics of soil
change with the root length density and root surface area density [33,34]. With the increase in root
volume and dry weight of root, the infiltration rate shows an increasing trend [35]. Soil moisture
content is lower in soil layers with denser root density, while water content in soil layers without roots
is significantly increased [36]. If the moisture content range is not consistent with the root range of the
tea plant, it will result in inefficient irrigation or overirrigation. Therefore, an optimal irrigation time
and infiltration depth are vital for tea plants in the context of a water-saving irrigation control strategy.

Tea farms in the middle and lower Yangtze River regions are located in a hilly area, with a slope
gradient generally less than 15◦ [27]. Based on the topographic features of tea farms, the specific goals
of this study were to (1) investigate the effects of slope gradient and water application rate on soil
water infiltration and redistribution, and (2) provide a new infiltration model for determining the
optimal stopping time for a tea plantation sprinkler irrigation control system. The model is based on
tea root length, water application rate, and slope gradient, and results in the infiltration depth being
consistent with tea plant’s root system, which validates the precision control for tea plant irrigation.

2. Materials and Methods

2.1. Materials

This study was conducted at a tea farm located in the middle–lower Yangtze River region, east
China, which has a moderate sub-tropical climate with a mean annual precipitation of 1029.1 mm
and an average annual temperature of 15.5 ◦C. The annual reference evapotranspiration (ET0) was
892.24 mm, which was observed over the last 55 years (1961–2015) [37]. The topography of the
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experimental site is a hilly ground with an average altitude of 18.5 m (latitude 32◦01′35” north (N),
longitude 119◦40′21” east (E)).

As shown in Figure 1, the box frame sprinkler irrigation system was composed of a box frame,
pump station, main pipe, distribution pipe, lateral pipe, standpipe, and sprinkler. The distance
between two sprinklers was 9.0 m. In order to reduce the pressure difference between sprinklers and
improve the uniformity of spraying water, lateral pipes with a length of 4.5 m were laid along the slope.
Four sprinklers were set up around the box frame with an effective radius of 7.0 m. The box frame was
4.5 m in length, 0.8 m in width, and 0.8 m in depth, and the adjustable range of the gradient is 0–15◦.
To ensure the box frame was well drained, drain holes (diameter 1.0 cm) were set up at the bottom of
the box. The exterior of the box was made of an acrylic plate (80.0 cm × 0.5 cm, transparency 99.0%) to
facilitate the measurement of infiltration depth. The sampled tea cultivar was Anji white tea, which
was five years old. Six tea plants were planted in the frame box with distances of 0.35, 1.05, 1.75, 2.75,
3.45, and 4.15 m (Figure 2). Three kinds of plastic impact-driven sprinklers were selected. Technical
parameters of the sprinklers are listed in Table 1. Three kinds of water application rates were set up
using the different types of sprinklers with flow rates of 0.4, 0.6, and 0.8 m3·h−1. A plastic shade was
set up above the experiment area on rainy days to avoid the influence of rainfall.

Figure 1. Box frame sprinkler irrigation system: 1—pump station; 2—main pipe; 3—distribution pipe;
4—lateral pipe; 5—standpipe; 6—box frame; 7—sprinkler.

 
Figure 2. Tea plant distribution in the box frame.

Table 1. Technical parameters of the sprinkler.

No.
Operating

Pressure (MPa)
Nozzle

Diameter (mm)
Flow Rate
(m3·h−1)

Pattern Radius
(m)

Rotation Cycle
(s)

1 0.3 3.0 0.4 7.0 18.0
2 0.3 3.5 0.6 7.0 18.0
3 0.3 4.0 0.8 7.0 18.0

The classification of soil texture was based on the World Reference Base (WRB) soil classification
system [38]. The soil was collected from the experimental site at depths of 0–10.0 cm, 10.0–20.0 cm,
20.0–30.0 cm, 30.0–40.0 cm, 40.0–50.0 cm, and 50.0–80.0 cm. Bulk density and saturated VWC were
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measured using the oven dry method. A laser diffraction particle size analyzer (Mastersizer 3000,
Malvern Panalytical, UK) was used to measure the particle composition. The soil texture at a depth
of 0–40 cm was sandy loam, and that under 40 cm was loam (Table 2). A soil moisture sensor
(TRIME PICO 64, IMKO, Ettlingen, Germany) was used to measure VWC, and the measuring accuracy
was ± 1%.

Table 2. Physical properties and the particle composition of the soil for experiment. VWC—volumetric
water content.

Sampling
Depth (cm)

Size Composition (%) Bulk Density
(g·cm−3)

Saturated
VWC (%)

Soil Texture
<0.002 mm 0.002–0.02 mm 0.02–2 mm

0–10.0 0 37.6 62.4 1.2 47.0

Sandy loam10.0–20.0 0 29.3 70.7 1.4 47.0
20.0–30.0 0 39.7 60.3 1.4 49.0
30.0–40.0 0 26.8 73.2 1.5 48.0
40.0–50.0 4.4 42.8 52.8 1.7 44.0

Loam50.0–80.0 8.6 40.6 50.8 1.6 43.0

2.2. Methods

2.2.1. Sensor Layout

The soil in the experimental box frame was taken from the sprinkler irrigation area in the
experimental tea farm. The sampling depths were 0–10.0 cm, 10.0–20.0 cm, 20.0–30.0 cm, 30.0–40.0 cm,
40.0–50.0 cm, and 50.0–80.0 cm (Figure 3). The sampled soil was air-dried, ground, and screened before
layering it into the experimental box frame. The surface of the filled soil was hacked to reduce the
influence of artificial compaction on soil water infiltration.

Figure 3. Sensor layout. TRIME PICO 64 soil moisture sensors were arranged along the roots of tea
plants. Numbers 1–5 represent the sensors located at depths of 10.0 cm, 20.0 cm, 30.0 cm, 40.0 cm,
and 50.0 cm, respectively. X1 represents the slope gradient, which could be adjusted from 0–15◦.

Infiltration depth and VWC were measured in this experiment. All soil moisture sensors were
calibrated using the oven dry method before set-up. The time interval of data acquisition was 1.0 min.

Soil type in the experimental site was homogeneous sandy loam. The location of the color gradient
of the soil was marked, and the depth of position was measured as the infiltration depth. The water
infiltration process started with the irrigation and stopped when the irrigation stopped, and then
the water continued to infiltrate. When the VWC of each layer no longer increased and showed a
decreasing trend, the process of water redistribution stopped.

2.2.2. Characteristics of Soil Water Infiltration

Characteristics of the soil water infiltration experiments were determined in the frame box from
1–26 August 2016 (Table 3). Nine treatments were selected with three typical kinds of slope gradients
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and water application rates. The irrigation was stopped when the infiltration depth was 20.0 cm
due to the average length of the tea plant roots. SPSS 17.0 was used to conduct the multivariate
regression analysis of the relationship between slope gradient, water application rate, and the ratio of
stopping irrigation depth to infiltration depth. The statistical tools root-mean-squared error (RMSE)
and coefficient of determination (R2) were employed to validate the accuracy of the models built in
this study. The calculations are presented below.

Table 3. Sprinkler irrigation schedule.

Treatment Slope Gradient (◦) Water Application Rate (mm·h−1)

T1 0 4.0
T2 0 6.0
T3 0 8.0
T4 5.0 4.0
T5 5.0 6.0
T6 5.0 8.0
T7 15.0 4.0
T8 15.0 6.0
T9 15.0 8.0

2.2.3. Infiltration Model Validation Experiments

The soil water infiltration model was established based on tea root depth, water application
rate, and slope gradient. The reliability of the model was evaluated in the box frame experiments
based on two cases which represented the most common terrains of tea farms in the Yangtze River
region: (1) gradient 0◦ and 8.0 mm·h−1 for water application rate; (2) gradient 8◦ and 4.0 mm·h−1 for
water application rate. The required irrigation time and expected infiltration depth were calculated.
The VWC at depths of 10.0 cm, 20.0 cm, 30.0 cm, and 40.0 cm was measured. The ultimate infiltration
depth was compared with the expected value to obtain the relative error between the measured and
expected value.

3. Results and Discussion

3.1. VWC at Different Slope Gradients and Water Application Rates

As the sprinkler irrigation stopped, under the action of gravity potential and matric potential,
water redistribution began. After 24 h, the VWC no longer increased and showed a downward trend,
signifying that the process of water redistribution stopped (Figure 4).

Compared with the VWC before irrigation, VWC at 20.0 cm increased at the time of stopping
irrigation, and the increment of VWC at 10 cm under different treatments was different. When the
slope gradient was 0◦, the increments of VWC at 10.0 cm were 11.1%, 10.0%, and 4.5%, respectively.
When the slope was 5◦, the increments were 6.1%, 9.1%, and 8.0%, respectively. When the slope was
15◦, the increments were 9.0%, 5.9%, and 4.0%, respectively (Figure 4b).

Twelve hours after irrigation, soil water at the soil layer depth of 0–20.0 cm started to redistribute
(Figure 4c). Compared with VWC at the time of stopping irrigation, VWC at 10.0 cm decreased by
1.1% for the T2 treatment. For the other eight treatments, the VWC at 10.0 cm increased by 2.3%, 5.0%,
9.7%, 4.1%, 4.3%, 1.3%, 4.3%, and 6.5%, respectively. VWC at 20.0 cm increased for all nine treatments,
whereas VWC at 30 cm, 40 cm, and 50 cm showed no change.

Infiltration depth showed an increasing trend under the processing of water redistribution
(Figure 4d). Compared with VWC at 12 h after the irrigation, VWC at 10.0 cm showed decreasing
trends for all nine treatments, while VWC at 20.0 cm continued increasing. This was probably because
the amount of water drawn from the upper soil at 10.0 cm was less than the water absorbed by the
lower soil layer, which resulted in a continuous decrease in VWC at 10.0 cm and a sustained increase
in VWC below 20.0 cm.
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Figure 4. Volumetric water content (VWC) before irrigation, at the time of stopping irrigation, and 12 h
and 24 h after sprinkler irrigation with different treatments, T1(�), T2(�), T3(+), T4(�), T5(×), T6(�),
T7(�), T8(�), and T9(–): (a) before irrigation; (b) at the time of stopping irrigation; (c) 12 h after
irrigation; (d) 24 h after irrigation.

3.2. Effect of Water Application Rate and Slope Gradient on the Infiltration Depth and Rate

When the water application rate was constant, the infiltration depth increased as the slope gradient
increased (Figure 5). This is because the pressure of the water perpendicular to the direction of the
slope decreased, which increased the infiltration depth (Table 4).

Figure 5. Infiltration rate under various water application rates and slope gradients.
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Table 4. The ratios of different slope gradients and water application rates.

Treatment
Slope

Gradient (◦)
Water Application

Rate (mm·h−1)

Infiltration
Depth (cm)

Ratio of Stopping Irrigation
Depth to Infiltration Depth (%)

T1 0 4.0 40.9 48.9
T2 0 6.0 34.9 57.4
T3 0 8.0 32.5 61.6
T4 5.0 4.0 42.6 46.9
T5 5.0 6.0 41.3 48.4
T6 5.0 8.0 35.8 55.9
T7 15.0 4.0 43.2 46.3
T8 15.0 6.0 42.5 47.0
T9 15.0 8.0 37.3 53.6

Through the multivariate regression analysis, it could be concluded that the relationship between
slope gradient, water application rate, and the ratio of stopping irrigation depth to infiltration depth
was as follows:

Y1 = −0.004X1 + 0.024X2 + 0.401, (1)

where Y1 is the ratio of stopping irrigation depth to infiltration depth (mm), X1 is the slope gradient
(◦), and X2 is the water application rate (mm·h−1). The R2 was 0.83 and the RMSE was 0.02 mm.

Using multivariate regression analysis, the linear regression equations for infiltration rate, slope
gradient, and water application rate were obtained. The R2 was 0.92 and the RMSE was 0.02 mm·h−1.
The linear regression equations were as follows:

Y2 = −0.012X1 + 0.058X2 + 1.181, (2)

L1 = L× (−0.04X1 + 0.24X2 + 4.01), (3)

T =
L1

Y2
=

(−0.04X1 + 0.24X2 + 4.01)L
−0.012X1 + 0.058X2 + 1.181

, (4)

where Y2 is the infiltration rate (mm·min−1), L1 is the required infiltration depth (cm), L is the root
depth of the tested tea plant (cm), and T is the required sprinkler irrigation time (min).

3.3. The Reliability of Infiltration Model Testing

The average root length of the tested tea plants was 40.0 cm. When the slope gradient was 0◦ and
the water application rate was 8.0 mm·h−1, the required irrigation time was 144 min. The expected
stopping irrigation depth and observed infiltration depth were 23.7 cm and 40.0 cm, respectively.

Before irrigation, the VWC of each layer was 11.4%, 18.1%, 22.1%, 28.9%, and 26.7%, respectively
(Figure 6). After 63 min of irrigation, the VWC at 10 cm was 11.6%; then, it increased gradually.
Additionally, 125 min after irrigation, the VWC for the 10-cm and 20-cm soil layers was 15.8%, 18.1%,
respectively, after which it increased gradually. The system stopped after 144 min of irrigation. At this
time, the VWC of each soil layer was 19.2%, 18.3%, 22.0%, 28.9%, and 26.6%, and the infiltration depth
was 23.2 cm. Then, 24 h after irrigation, the water infiltration stopped. The VWC of each layer was
20.8%, 19.0%, 23.2%, 29.1%, and 26.7%, and the infiltration depth measured was 38.75 cm. Compared
with the required irrigation time and infiltration depth, the measured infiltration depth was 23.2 cm,
giving an error between the measured and required value of 2.0%. The measured ultimate infiltration
depth was 38.8 cm, giving an error between the measured and expected value of 3.1%.

When the slope gradient was 8◦ and the water application rate was 4.0 mm·h−1, the required
irrigation time was 141 mins, and the expected infiltration depth and observed infiltration depth were
18.6 cm and 40.0 cm respectively. Before irrigation, the VWC of each layer was 15.0%, 19.1%, 23.1%,
28.5%, and 26.1%, respectively (Figure 7). After 141 min of irrigation, the sprinkler system stopped.
The VWC of each layer was 21.5%, 19.2%, 23.1%, 28.5%, and 26.2%, respectively, and the infiltration
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depth was 18.7 cm. Then, 24 h after irrigation, the water infiltration stopped. The VWC of each layer
was 20.0%, 21.1%, 24.7%, 28.7%, and 26.2%, and the ultimate infiltration depth measured was 41.1 cm.
The measured infiltration depth was 18.9 cm, and the relative error between the measured and expected
value was 1.4%. The measured ultimate infiltration depth was 41.1 cm, and the relative error between
the measured and expected value was 2.7%.

Figure 6. VWC at the slope gradient of 0◦ and the water application rate of 8.0 mm·h−1, with soil
depths of 10 cm (�), 20 cm (�) 30 cm (�), 40 cm (×), and 50 cm (�).

Figure 7. VWC at the slope gradient of 8◦ and the water application rate of 4.0 mm·h−1, with soil
depths of 10 cm (�), 20 cm (�) 30 cm (�), 40 cm (×), and 50 cm (�).

4. Discussion

With the increase in slope gradient, the required water application rate decreased (Figure 4).
When the water application rate was close to the required water application rate, the soil pores were
gradually filled with water. This reduced the infiltration capacity and led to a decrease in the increment
of VWC.

For a constant water application rate, the infiltration rate decreased as the slope gradient increased.
This is because a larger water application rate caused a larger kinetic energy of the sprayed water
droplets [39]. Therefore, as the infiltration rate and water application rate increased, the water pressure
of the soil surface and soil layers all increased over time. As the kinetic energy of water droplets
increased, more pressure was applied on the infiltration water, which resulted in an acceleration of
the infiltration rate. The infiltration rate also showed a decreasing trend with the increase in water
application rate. The reason was that the component force of the same thickness of the aquifer along
the slope direction increased with an increase in slope, and the pressure perpendicular to the slope
direction was reduced. Therefore, the pressure of infiltration water reduced, as did the infiltration
rate [20,40–42].
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At a constant slope gradient, the larger water application rate led to a lower infiltration depth.
This was caused by the water application rate being lower than its own infiltration capacity, resulting
in the water continuing to infiltrate over time [41]. With the increase in water application rate,
the kinetic energy of the water droplets sprayed from the nozzle increased correspondingly, resulting
in a reduction in infiltration capacity. A lower water application rate extended the irrigation time,
but it was conducive to the vertical movement of water, which deepened the infiltration depth.

As we all know, the infiltration characteristic has a strong relationship with the kinetic energy of
water drops and the change in physical properties of the soil surface, such as soil type, vegetation type,
and terrain [43–45]. We know our research is limited; however, the results were obvious in the two
selected experiments, where the ultimate infiltration was consistent with the boundary of the tea plant
root system. Based on the characteristics of irrigation water infiltration and redistribution, the new
infiltration model can be used to determine the required irrigation time for developing a sprinkler
irrigation control strategy.

5. Conclusions

The sprinkler irrigation method is widely used for tea plants in the Yangtze River region.
The traditional control strategy for sprinkler irrigation is based on the upper limit and lower limit of
the required soil moisture. However, this strategy always causes the ultimate infiltration depth to
exceed the boundary of the tea plant root system, leading to a waste of water. In this study, a new soil
water infiltration model was provided by investigating the characteristics of soil water infiltration and
redistribution under different water application rates and gradient slopes.

The infiltration characteristics showed that the infiltration rate changed with the water application
rate and slope gradient. Water redistribution processes showed that the increment of VWC at 10.0 cm
was different for various combinations of water application rate and slope gradient. Those differences
affected the ultimate infiltration depth of the soil. When the slope gradient was kept constant, a lower
water application rate led to a longer irrigation time, but it increased the ultimate infiltration depth.
When the water application rate was kept constant, the infiltration depth increased with the increase
in slope gradient. Based on the new soil water infiltration model, the ultimate infiltration depth
was basically consistent with the boundary of the tea plant roots. Therefore, the model established
in this paper can be generally applied to automatic sprinkler irrigation systems for tea fields in the
Yangtze River region.
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Abstract: The inefficient water use, and variable and low productivity in Kenyan public irrigation
schemes is a major concern. It is, therefore, necessary to periodically monitor and evaluate the
performance of public irrigation schemes. This prompted evaluation of performance of three rice
growing irrigation schemes in western Kenya using benchmarking and principal component analysis.
The aim of the study was to quantify and rank the performance of selected irrigation schemes.
The performance of the irrigation schemes was evaluated for the period from 2012 to 2016 using eleven
performance indicators under agricultural productivity, water supply and financial performance
categories. The performance indicators were weighted using principal component analysis and
combined to form a single performance score using linear aggregation method. The average
performance in the Ahero, West Kano and Bunyala irrigation schemes was 48%, 49% and 56%,
respectively. Based on performance score, the Bunyala irrigation scheme is the highest performing
rice irrigation scheme in western Kenya. The three irrigation schemes have an average performance.
Operation and management measures to improve the current performance of the irrigation schemes
are needed.

Keywords: benchmarking; evaluation of performance; performance indicator; principal
component analysis

1. Introduction

Irrigated agriculture occupies 4 percent of the total land area (2.9 million ha) under agriculture in
Kenya [1]. It accounts for 3 percent of the Kenya’s gross domestic product (GDP) and 18 percent of the
total value of all agricultural produce [1]. The main irrigated crops in Kenya are rice, wheat, maize,
vegetables, coffee, fruits, sugarcane, cotton and horticulture [2]. Rice is the third main cereal crop grown
in Kenya after maize and wheat [3]. It is mainly grown in government-established irrigation schemes
managed by National Irrigation Board (NIB). These are Ahero, Bunyala, West Kano irrigation schemes
located in Western Kenya and Mwea irrigation scheme in Central Kenya. The other NIB-managed
irrigation schemes are: Hola, Perkerra, Bura and, more, recently the Galana-Kulalu Food Security
Project [4]. The continuous flooding method of water application is used in rice farming in Ahero, West
Kano, Bunyala and Mwea. This system of rice farming utilises a lot of water, and production is highly
reduced during drought periods [5]. Rice production in Kenya is below demand, and the gap is filled
through imports. Currently, 54,000 metric tonnes of milled rice are produced in Kenya, whereas the
current national demand for rice is 693,000 metric tonnes [6]. Rice consumption is expected to increase

Agriculture 2018, 8, 162; doi:10.3390/agriculture8100162 www.mdpi.com/journal/agriculture116



Agriculture 2018, 8, 162

due to rising population, change in eating habits and urbanisation [3]. The population in Kenya has
been growing rapidly, with an increase from 28.7 million in 1999 to 38.6 million in 2009, and is expected
to reach 69.5 million by 2030 [4,7]. Increased demand for food and competition for water among
various sectors of the economy is therefore expected. Kenya is a water-scarce country with access to
647 cubic metres of freshwater per capita per annum. This is way below the international acceptable
levels of 1000 cubic metres per capita per annum [8]. Water scarcity limits water available for irrigation.
Efficient utilisation of water, land and other resources increases productivity and promotes sustainable
development in irrigated agriculture.

The inefficient water use, and the variable and low productivity of public irrigation schemes in
Kenya is a major concern. Heavy investment is channelled into these irrigation schemes, but their
productivity is below the expectation [2]. In addition, poor productivity of public irrigation schemes
in Kenya hinders their expansion [9]. There is therefore a need to improve productivity and increase
the efficiency of the utilisation of water and other resources. Comparative evaluation of performance
using the benchmarking tool can be applied. Benchmarking is a tool used for evaluating performance
of irrigation systems over time and comparing the performance with comparable irrigation systems or
own set goals [10]. Comparative performance evaluation of irrigation systems enables identification of
the performance gap between current and best practices [11]. The benchmarking tool was developed
by the International Programme for Technology and Research in Irrigation and Drainage (IPTRID) as a
management tool for improving productivity and efficiency in the irrigation and drainage sector [12].
The IPTRID, the Food and Agriculture Organisation (FAO), the World Bank, the International Water
Management Institute (IWMI) and the International Commission on Irrigation and Drainage (ICID)
have laid an emphasis on measuring performance in the irrigation and drainage sector as a way of
achieving sustainable development in agriculture. Evaluation of the performance of irrigation schemes
is based on standard performance indicators. A performance indicator is a description of actual
achievement in relation to one of the goals set in an irrigation system [10]. Performance indicators can
be categorised into either internal or external indicators.

External indicators examine inputs and outputs of an irrigation system [13]. The indicators
describe the overall performance of irrigation systems using ratios that compare inputs to outputs.
These indicators give an expression of various efficiencies related to water, budgets or yields. External
indicators do not provide an insight into what should be done to improve performance. They only give
an indication that improvement is needed [14]. IPTRID benchmarking indicators fall in the category of
external indicators [14]. External indicators are suitable for use in cross-comparison of the performance
of irrigation systems [15]. Internal indicators, on the other hand, examine the internal processes of
the system and the level of water delivery service provided by the project. The indicators look into
operations, hardware of the system, institutional and management set up, and water distribution and
delivery [13]. Internal indicators provide an insight into what should be done to improve performance.
This study was based on cross-comparison of the irrigation schemes and only external indicators
were used.

Evaluation of performance of western Kenyan rice irrigation schemes was done using
benchmarking indicators and principal component analysis (PCA). Comparison of performance
indicators does not provide a clear picture of the overall performance of one irrigation scheme relative
to others. Therefore, other tools are required when measuring the overall performance. The efficiency
of nine irrigation districts in Andalusia, Spain was evaluated using performance indicators and
multivariate data analysis (cluster analysis and principal component analysis) [16]. The study used
principal component analysis to develop quality index for detecting performance weakness of the
various irrigation districts. Also, [17] applied agglomerative hierarchical cluster analysis to group
water users association (WUAs) and compared the performance of drip and sprinkler irrigation
systems using performance indicators. Hierarchical cluster analysis (HCA) and data envelop analysis
(DEA) was used in evaluating efficiency of performance of seventeen small and three large irrigation
schemes along Senegal Valley, Mauritania [18]. The irrigation schemes were grouped into three groups
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using hierarchical cluster analysis and only four irrigation schemes with an average land productivity
of 4.75 ton/ha were found to be technically efficient.

Principal Component Analysis (PCA)

Principal component analysis is a statistical multivariate technique that uses orthogonal
transformation to convert several correlated observed variables into a smaller number of linearly
uncorrelated variables known as principal components [19]. The first principal component accounts
for the highest variation in data and the subsequent component has the highest variance possible,
as long as it is orthogonal to the preceding component. The number of p original features is reduced
into a few unobserved variables, k known as principal components. The principal components (k)
account for the maximum variance such that k ≤ p [20]. Original features p represents the original
number of observed variables for each of the case (1–n) before transformation. An example of original
data with n objects and p observed variables is presented in Table 1.

Table 1. Form of data for Principal component analysis with n cases each with p features.

Case X1 . Xp

1 X11 . X1p
2 X21 . X2p
. . . .
. . . .
n Xn1 . Xnp

The principal components (Z1, Z2, . . . , Zi) are generated through linear combination of
variables X’s.

Z = αTX (1)

where; Z = Z1, Z2, Zp—vector of principal components; αT-matrix of coefficients αij for i, j = 1, 2, . . . , p

Z1 = α11X1 + α12X2 + . . . + α1pXp (2)

Z1 is the largest combination of p features under the condition that

α2
11 + α2

12 + . . . + α2
1p = 1 (3)

The second principle component Z2 has the second-largest possible variance in X1, X2, . . . , Xp,
which is orthogonal and uncorrelated with Z1. The jth principal component with the largest possible
variance is defined similarly, provided it is uncorrelated with the ith principal component for i < j.
The principal components obtained are in decreasing order, i.e., variance (Z1) > variance (Z2) > . . . >
variance (Zp). If λi is the variance (eigenvalue) for Zi and αij is the eigenvector for Zi then the following
conditions hold:

λ1 ≥ λ2 ≥ λi ≥ 0 (4)

αT
1 αi = 1 (5)

αT
1 αh = 0 (6)

The eigenvalue represents the level of variation caused by the associated principal component.
The variance for the principal component for k-retained principle components is computed by

tk =
∑k

i=1 λi

∑
p
i=1 λi

(7)
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Principal components can be extracted using covariance or correlation matrix. Covariance matrix
is applied where the variables do not have gross variance. For such data, standardisation of data
should be done prior to using a covariance matrix. The correlation matrix, on the other hand, is applied
to data with a wide variance [19]. It is suitable for analysis of variables with different measurement
scales, and no prior transformation is needed. Use of the correlation matrix is not possible for data
with small variance [19]. The researcher chooses the appropriate transformation matrix based on
the data structure. When using the correlation matrix, only principal components with eigenvalues
greater than 1 are retained. Principal components with eigenvalues greater than the average of total
eigenvalues are retained when the covariance matrix is used [20]. PCA is objective and relies on the
underlying data structure to generate non-subjective weights [21].

The combination of benchmarking indicators and PCA in this study enabled the description of
performance using a single performance score. The performance score gives a measure of the level of
performance of an individual irrigation scheme relative to the others. This study provides information
to scheme managers on areas of weakness that require improvement. Furthermore, it sheds some light
for stakeholders and policy makers on areas that require policy interventions.

2. Materials and Methods

2.1. Description of Study Area

The study was carried out in the Ahero, West Kano and Bunyala irrigation schemes in western
Kenya managed by National Irrigation Board NIB (Figure 1). Rice is the main crop grown in these
schemes. In all the schemes, water is abstracted using electric-powered pumps, conveyed with open
earth canals and applied using basin irrigation method. Drain water is pumped back to Lake Victoria in
the West Kano irrigation scheme because the outlet is on lower ground than the lake. The schemes have
no gauging stations. Western Kenya is hot and humid, with a bimodal rainfall pattern. The schemes
are underlain by deep black cotton soils [22].

 

Figure 1. Study Area.
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A detailed description of the main features of three irrigation schemes studied is presented in
Table 2.

Table 2. Main characteristics of irrigation schemes benchmarked in western Kenya.

Description
Irrigation Scheme

Ahero West Kano Bunyala

Command area (ha) 900 980 728

Latitude 00◦10′ South Between 00◦04′ South and
00◦20′ South 00◦06′ North

Longitude 34◦58′ East Between 34◦48′ East and
35◦02′ East 34◦04′ East

Location Kano plains, Kisumu county Kano plains, Kisumu county Kisumu/Siaya county

Land ownership Government Government Government and private

Main crops Rice, Soybeans, maize,
Watermelon, sorghum Rice, sorghum, maize Rice, pulses and horticulture

Number of seasons
2 seasons
1st season-rice
2nd-other crop

2 seasons
1st season-rice
2nd-other crop

2 seasons
1st season-rice
2nd-other crop

Number of farmers 556 845 1934

Farm size (acres) 1–4 2–4 1–5

Water source Surface water
River Nyando

Surface water
Lake Victoria

Surface water
River Nzoia

Type of water distribution On demand On demand On demand

Method of water abstraction
Pumping using electricity
2 pumps each 1100 L/s
2 pumps each 650 L/s

Pumping using electricity
3 pumps each 750 L/s

Pumping using electricity
4 pumps each 300 L/s

Water delivery infrastructure Open earth canals Open earth canals Open earth canals

Type of water control
equipment None None None

Discharge measurement
facilities None None None

Irrigation system Surface-Basin Surface-Basin Surface-Basin

Water availability Sufficient-occasionally
not sufficient Abundant Abundant

Type of surface drain Open earth channel
by gravity

Pumped through open
earth channel.
Using four 500 L/s
outlet pumps.

Open earth channel

Type of revenue collection Charge on irrigated area Charge on irrigated area Charge on irrigated area

2.2. Data Collection

Secondary time series data for five years (2012–2016) was obtained from records kept by
management of the various irrigation schemes. The data collected was only for rice production.
Rice is grown in the first season, while the other crops are grown in the second season. The production
of the other crops has not been formalised, and their production is not documented. Data on total
yield per season, local crop price per season, cropped area, total command area, revenue collected,
expected revenue, cost of production, water supplied, pump speed, and pumping hours was collected
from records kept by the irrigation scheme offices and field survey. Meteorological data was obtained
from Ahero research station, West Kano weather station, the Kenya Meteorological Department (KMD)
and the NASA POWER Centre. Key informant interviews, observation, and focus group discussion
methods were used to collect data on farming practices, cropping pattern, status of the irrigation
systems and maintenance of the system.
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2.3. Data Analysis

Field data was first processed to obtain variables for calculating performance indicators.
The variables were computed as follows:

(a) Crop water requirement

Crop pattern, transplanting date and weather data was used in calculating rice crop water demand
and crop irrigation water requirement using CROPWAT 8.0 software (developed by FAO, Rome, Italy).
Computation of reference crop water demand (ETo) is based on the Penman Monteith equation.
The effective rainfall was computed using USDA-Soil Conservation Method, in-built in CROPWAT 8.
Number of sunshine hours, temperature, humidity, rainfall data, wind speed, soil type, transplanting
date and crop pattern were used as input for the model. The total annual volume of water consumed
by all crops in the irrigation schemes was computed using Equation (8) [10].

VEtc = ∑crops Etc × A (8)

VEtc = Total volume of crop water demand (m3); Etc = crop evapotranspiration from planting to
harvesting (m3); A = cropped area.

Total annual volume crop irrigation demand was then calculated using Equation (9) [10].

VEtNet = IRn A (9)

VEtNet = Total volume of water consumed by crops less effective rainfall (m3); IRn = net irrigation
water requirement (m3); A = cropped area

(b) Total annual volume of irrigation water supply (m3). This was obtained by summing the daily
volume of water pumped for the rice growing season in each year. Daily volume of water pumped
was obtained as the product of pump efficiency, pumping hours and the pump operating speed.

(c) Total annual volume of water supply (m3). This was obtained by summing the total volume
of water pumped for irrigation and total effective rainfall for the rice growing season in a year.
The effective rainfall was computed using the USDA-Soil Conservation Method, in-built in
CROPWAT 8. The effective rainfall in terms of depth was converted into volume by multiplying
by the total annual cropped area.

(d) Total annual cropped area (ha). This was calculated by summing up all the area under rice crop
in each year.

(e) Total command area of the system (ha). This is the net area serviced by the scheme less the right
of way for canals, drains, roads and villages. It was obtained from the design office of each
irrigation scheme.

The performance indicators used were obtained from the IPTRID benchmarking indicators
presented in Table 3 [10].

Table 3. Proposed key performance indicators.

Domain Performance Indicator Data Required

Service delivery
performance

Total annual volume of irrigation water
delivery (m3/year) Total daily measured water delivery to water users

Annual irrigation water delivery per unit
command area (m3/ha)

Total daily measured water inflow to the
irrigation system

Total command area serviced by the system

Annual irrigation water delivery per unit
irrigated area (m3/ha)

Total daily measured water inflow to the
irrigation system

Total annual irrigated crop area
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Table 3. Cont.

Domain Performance Indicator Data Required

Main system water delivery efficiency
Total daily measured water delivery to water users

Total daily measured water inflow to the
irrigation system

Annual relative water supply

Total daily measured water inflow to the
irrigation system

Total daily measured rainfall over irrigated area

Total daily/periodic volume of crop water demand,
including percolation losses for rice crops

Annual relative irrigation supply

Total daily measured water inflow to the
irrigation system

Total daily/periodic volume of irrigation water
demand (crop water demand excluding effective
rainfall), including percolation losses for rice

Water delivery capacity
Current main canal capacity

Peak month irrigation water demand

Security of entitlement supply
System water entitlement

10 years minimum water availability flow pattern

Financial performance

Cost recovery ratio
Total revenues collected from water users

Total management, operation and maintenance
(MOM) cost

Maintenance cost to revenue ratio
Total maintenance expenditure

Total revenue collected from water users

Total MOM cost per unit area (US$/ha)

Total management, operation and
maintenance expenditure

Total command area serviced by the system

Total cost per person employed on water
delivery (US$/person)

Total cost of MOM personnel

Total number of MOM personnel employed

Revenue collection performance
Total revenues collected from water users

Total service revenue due

Staffing numbers per unit area
(persons/ha)

Total number of MOM personnel employed

Total command area serviced by system

Average revenue per cubic meter of
irrigation water supplied (US$/m3)

Total revenues collected from water users

Total daily measured water delivery to water users

Agricultural
Productive efficiency

Total gross annual agricultural
production (tones) Total tonnage produced under each crop

Total annual value of agricultural
production (US$) Total annual tonnage of each crop

Output per unit serviced area (US$/ha)

Crop market price

Total annual tonnage of each crop

Crop market price

Total command area serviced by system

Output per unit irrigated area (US$/ha)

Total annual tonnage of each crop

Crop market price

Total annual irrigated crop area

Output per unit irrigation supply
(US$/m3)

Total annual tonnage of each crop

Crop market price

Total daily measured water inflow to the
irrigation system
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Table 3. Cont.

Domain Performance Indicator Data Required

Output per unit water consumed
(US$/m3)

Total annual tonnage of each crop

Crop market price

Total volume of water consumed by the crops (ETc)

Environmental
performance

Water quality: Salinity (mmhos/cm)

Total daily measured water inflow to the irrigation
system

Electrical conductivity of periodically collected
drainage water samples

Total daily measured drainage water outflow from
the irrigation system

Water quality: Biological (mg/litre)

Biological load of periodically collected irrigation
water samples

Total daily measured water inflow to the
irrigation system

Biological load of periodically collected drainage
water samples

Total daily measured drainage water outflow from
the irrigation system

Water quality: Chemical (mg/litre)

Chemical load of periodically collected irrigation
water samples

Total daily measured water inflow to the
irrigation system

Chemical load of periodically collected drainage
water samples

Total daily measured drainage water outflow from
the irrigation system

Average depth to water table (m) Periodic depth measurement to water table

Change in water table depth over time (m) Periodic depth measurement to water table over 5
year period

Salt balance (tones)

Periodic measurement of salt content of
irrigation water

Periodic measurement of salt content of
drainage water

The methodology adopted entails: (i) selection of suitable indicators to describe performance of
the irrigation schemes; (ii) combining the indicators into a single performance score using principal
component analysis. Some of the proposed key performance indicators (Table 3) were not computed
because of lack of data.

2.3.1. Performance Indicators

Fourteen performance indicators were computed as shown in Table 4. The indicator values were
compared among the three schemes in each year.

To allow for global comparison, the total value of agricultural production is converted into gross
value of production using Equation (10).

GVP =
⌊
∑ cropsAiYi

⌋
MU currency exchange rate (10)

GVP—gross value of production; Ai—area cropped with crop i; Yi—the yield of crop i; Pi—local
price of crop i; MU—currency exchange rate (US$ per unit local currency).
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Table 4. Computation of performance indicators.

Performance Indicator Definition/Calculation

Total annual volume irrigation supply Total annual volume of irrigation water pumped or diverted

Annual relative water supply
total annual volume of water supply

total annual volume of crop water demand

Annual relative irrigation supply
total annual volume of irrigation supply

total annual volume of crop irrigatio demand

Annual irrigation supply per unit irrigated area (m3/ha)
Total annual volume of irrigation supply

Total annual irrigated area

Annual irrigation supply per unit command area (m3/ha) Total annual volume of irrigation supply
Total annual command area

Total gross annual agricultural production (tones) Total annual tonnage of each crop

Total annual valueof agricultural production (US$) Total annual gross value of production (GVP) received by producers

Output per unit irrigated area (US$/ha)
Total annual value of agricultural production

Total annual irrigated area

Output per unit command area (US$/ha) Total annual value of agricultural production
Total command area

Output per unit water supply (US$/m3)
Total annual value of agricultural production

total annual volume of water suply

Output per unit irrigation supply (US$/m3)
Total annual value of agricultural production

total annual volume of irrigation suply

Output per unit crop water demand (US$/m3)
Total annual value of agricultural production
total annual volume of crop water demand

Water fee collection performance (%) Gross revenue collected
Gross revenue invoiced

× 100

Average revenue per unit irrigation supply (US$/m3)
total annual revenue collected

Total annual volume of irrigation supply

2.3.2. Calculation of Overall Irrigation Scheme Performance

The overall scheme performance was determined by computing a single performance score.
The total volume of irrigation water supply, total annual agricultural production and total annual value
of agricultural production indicators were excluded in the computation of overall performance score.
These indicators are based on extensive scale rather than relative scale and their inclusion might distort
the results. Indicators were first tested for statistical correlation using the Pearson correlation method.
Ten indicators with low correlation were selected. The indicators were weighted using principal
component analysis, then normalised using the reference to target method and finally aggregated into
a single performance score using the linear aggregation method. Weighting of indicators was done
using PCA.

Principal Component Analysis (PCA)

PCA was done using SPSS windows version16 software. Prior to PCA, the data was tested for
suitability using Kaiser-Meyer-Olklin (KMO) and Bartlett Test of Sphericity (BTS). The extracted
components were rotated using orthogonal varimax method to achieve significant components.
The indicator weights were computed using rotated factor loadings and eigenvalues, as shown
in Equation (11).

Wk =
j=n

∑
j=1

(Factor loadingkj)
2

eigenvaluej
×

eigenvaluej

∑
j=n
j=1 eigenvaluej

(11)

Factor loadingkj—factor loading of indicator k in the principal component j; eigenvaluej—eigenvalue

for jth principal component; j = 1, j = 2, . . . , j = n the extracted principal components with an eigenvalue
above 1.
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The indicators were normalised using reference to target using Equation (12).

It
qs =

xt
qs

xb
(12)

It
qs = normalised value of indicator q for scheme s at time t; xt

qs = indicator value for scheme s at time t;
xb= threshold value for indicator value.

The threshold values used for normalisation of indicators are shown in Table 5.

Table 5. Indicative threshold values.

Performance Indicator Threshold Values Reference

Relative water supply 2 [23]
Relative irrigation supply 2 [23]
Annual irrigation water delivery per unit irrigated area 450–700 mm [24]
Annual irrigation water delivery per unit command area 450–700 mm [24]
Output per unit irrigated area 3.8 ton/ha [25]
Output per unit command area 3.8 ton/ha [25]
Output per unit irrigation supply 2 kg/m3 [26]
Output per unit water supply 2 kg/m3 [26]
Output per water consumed 2 kg/m3 [26]
Water fee collection performance 100% [10]
Average revenue per unit irrigation supply 7.5 US dollar cents [27]

A single performance score was finally computed using Equation (13).

CIst = ∑k=n
k=1 Wk Iks (13)

where; Wk = indicator weight; Iks =normalised indicator k for scheme s; CIst = performance score for
irrigation scheme s at time t.

3. Results and Discussion

The results of comparative evaluation of performance using performance indicators are presented
as follows.

3.1. Water Supply Performance

The indicators under this category give a measure of water supply relative to demand. Water
abundance or scarcity of water can be deduced from these indicators [28]. The results of water supply
indicators are presented in Table 6. The command area and irrigated area used in computation of
various performance indicators for each scheme is also presented in Table 6.

The available irrigable area (command area) in all the schemes has not been fully exploited.
Some of the command area is not irrigated due to the inability of farmers to acquire farming inputs.
Irrigated area in Ahero and Bunyala irrigation schemes is close to command area. The low irrigated
area in West Kano in 2013 and 2014 can be attributed to lack of interest in irrigation by farmers
following the collapse of the revolving fund committee. The annual volume of irrigation supply for the
schemes ranges between 2.2 and 8.4 MCM. All the schemes divert water by pumping using electricity.
The amount of water abstracted at any given time depends on cropped area. The irrigation schemes
have a high fluctuation in the amount of water supplied due to frequent power outages experienced in
the region. The amount of water abstracted is estimated using pumping hours recorded, pump speed
and pumping efficiency. The amount of water delivered to irrigation blocks could not be computed.
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The relative irrigation supply (RIS) values varied from 0.68 to 3.38 during the study period.
RIS and RWS values should be above 1. This is because irrigation efficiency is always below 100%
due to unavoidable conveyance and application losses. Values below 1 indicate water deficit [26,27].
The average RIS in the Ahero, west Kano and Bunyala irrigation schemes was 1.17, 2.22 and 2.26,
respectively. A low RIS value of 0.4 was reported in Muda irrigation scheme, Malaysia [15]. The low
RIS was associated with the use of real-time monitoring of water depth in rice farms, which enabled
effective use of rainfall. The relative water supply (RWS) varied between 1.14 and 2.44 for all the
schemes. RWS above 2 shows that the amount of water supplied is adequate [15]. High RIS and RWS
values in the West Kano and Bunyala irrigation schemes show that there is adequate supply of water.
The Ahero irrigation scheme suffers from inadequate supply of water, which is evident from the low
RIS values, the majority of which are below 1. The Ahero irrigation scheme draws water from the river
Nyando, which is occasionally affected by drought and siltation. The Ahero irrigation scheme was in
drought, which lowered the amount of water available for irrigation in 2013. In 2016, one of the water
pumps, with a discharge capacity (100 L/s), broke down. This contributed to a very low RIS of 0.68.
The water shortage in all the irrigation schemes is due to frequent power outages.

The average RIS values obtained are comparable to the average RIS value of 2.31 recorded in
the large public rice irrigation schemes in the Senegal Valley in Mauritania [18]. An average RWS of
0.77 was obtained in Karacabey surface irrigation system, Turkey [29]. This irrigation scheme was
reported to have a water shortage. Elsewhere in Turkey, [30] obtained RWS values ranging between
0.37 and 1.97. In Malaysia, RWS varied between 0.4 and 4.3, while RIS ranged between 0.5 and 5.7.
The high values in Malaysia are attributed to extensive rice farming using open channels. An average
RIS value of 1.38 was obtained for sprinkler irrigation systems and 1.03 for drip irrigation systems
in Spain [17]. Sprinkler and drip irrigation systems have a high irrigation efficiency compared to the
surface irrigation method. That is why the RIS values are lower compared to the values obtained in
the Ahero, Bunyala and West Kano irrigation schemes.

The quantity of water supplied per unit area varies with the availability of water, climate, soil
type, cropping pattern, system conditions and system management [31]. The annual water delivery per
unit command area (WDCA) varied between 2269 m3/ha (West Kano in 2014/2015) to 11,089 m3/ha
(Bunyala in 2016/2017). The WDCA was 4389 m3/ha−7586 m3/ha in Ahero, 2269 m3/ha−8583 m3/ha
in West Kano and 6050 m3/ha−11,089 m3/ha in the Bunyala irrigation scheme. WDCA was highest
in Bunyala, and least in the Ahero irrigation scheme. The annual water delivery per unit irrigated
area (WDIA) varied from 5294 m3/ha to 7785 m3/ha in Ahero; 11,238 m3/ha to 12,310 m3/ha in West
Kano and 6285 m3/ha to 12,130 m3/ha in the Bunyala irrigation scheme. This is equivalent to supplied
depth of water of 529.4 mm–778.5 mm in Ahero, 1123.8 mm–1231 mm in West Kano, and 628.5 mm to
12,130 mm in the Bunyala irrigation scheme. According to the FAO, the average crop water needed
for paddy rice should be 450 mm–700 mm [32]. Considering low irrigation efficiencies associated
with surface irrigation schemes—usually 30–40% [32]—the WDIA is adequate in the West Kano and
Bunyala irrigation schemes. The Ahero irrigation scheme, on the other hand, supplies inadequate water,
which is not enough to meet crop water needs. WDIA values are relatively lower compared to the
22,029.43 m3/ha, 16,026.37 m3/ha, 11,289.10 m3/ha, and 9795.96 m3/ha obtained in MARIIS, Divisoria,
Lucban and Garab SWIPs, respectively, in the Cagayan river basin, Philippines [23]. In southern Italy,
high WDIA values ranging between 6500–14,900 m3/ha were reported by the Water Users’ Association
(WUA’s) of Calabria [33]. WDIA values of 5578 m3/ha were obtained in sprinkler irrigation systems
and 1084 m3/ha in drip irrigation systems in Castilla-La Mancha, Spain [17]. These values are much
lower than the values obtained in this study. Drip and sprinkler irrigation systems have high water
application efficiencies of 75% and 90%, respectively [34]. Surface irrigation systems, on the other
hand, have a low irrigation efficiency of 60%. Therefore, more water is supplied in surface irrigation
systems compared to sprinkler and drip irrigation systems. In the Susurluk river basin in Turkey,
WDCA values varying from 1465 m3/ha to 13,086 m3/ha and WDCA values ranging from 2169 m3/ha
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to 22,098 m3/ha were obtained [30]. A high amount of water is supplied to irrigation schemes in the
Sursurluk basin because rainfall is limited during the irrigation period.

3.2. Financial Performance

The financial performance indicators measure the efficiency with which irrigation systems use
resources to provide service to farmers [23]. The results are shown in Table 7.

Table 7. Financial performance indicators.

Gross Revenue
Collected (US$)

Gross Revenue
Invoiced (US$)

Revenue
Collection

Performance (%)

Average Revenue per Unit
Irrigation Water Supply
(US Dollar Cents /m3)

WKIS

2012/2013 24,979.50 55,510.00 45 0.36
2013/2014 8910.72 18,564.00 48 0.35
2014/2015 8966.41 17,581.20 51 0.40
2015/2016 31,547.88 58,422.00 54 0.44
2016/2017 35,375.34 62,062.00 57 0.42

Average 21,955.97 42,427.84 51 0.39

AIS

2012/2013 67,208.00 53,766.40 80 0.79
2013/2014 64,790.00 55,071.50 85 1.12
2014/2015 59,985.00 49,187.70 82 1.01
2015/2016 63,147.00 54,306.42 86 1.24
2016/2017 55,180.00 49,662.00 90 1.26

Average 62,062.00 52,398.80 85 1.08

BIS

2012/2013 69,280.00 63,737.60 92 1.45
2013/2014 69,280.00 65,123.20 94 1.05
2014/2015 69,280.00 64,430.40 93 1.19
2015/2016 61,770.00 58,681.50 95 1.09
2016/2017 65,820.00 63,811.20 97 0.79

Average 67,086.00 63,156.78 94 1.11

Currency exchange rate—1 US$ = 100 Kenya shilling (KES).

Water fee collection performance (WFC) values obtained are 80–90% in the Ahero irrigation
scheme, 45–57% in the West Kano irrigation scheme, and 92–97% in the Bunyala irrigation scheme.
According to [18], water fee collection values below 70% are considered unsatisfactory. Bunyala has
the highest average fee collection performance, at 94%, while West Kano has the lowest average value,
at 51%. The ideal desirable value should be close to 100% [10]. De Alwis and Wijesekara [35] obtained
an ideal WFC of 100% in the Beypazarı Başören irrigation system, Turkey. Similarly, a WFC of 103%
was recorded in the Karacabey irrigation scheme in Turkey. Values of WFC equal to or above 100%
show that water users are willing to pay for the cost of irrigation. WFC values above 100% are possible
to obtain due to payment of accumulated arrears. Low WFC values point out an unwillingness of
farmers to pay water fees, poor organisation of the Irrigation Water Users Association (IWUA), poor
collection programs, and financial problems within the schemes. Bunyala is able to sustain a value
above 90% because of the well-organised farmer groups that are mandated with the mobilisation of
the water fee. Also, in Bunyala, the policy of water fee payment prior to ploughing is strictly followed.

The average revenue per unit cubic meter varied from 0.79 to 1.26 US cents in the Ahero irrigation
scheme, 0.35 to 0.44 US cents in the West Kano irrigation scheme, and 0.79 to 1.45 US cents in the
Bunyala irrigation scheme. These values are below the economic value of irrigation water of 7.54 US
cents per cubic meter obtained by [27] in the Ahero irrigation scheme. Pricing of water is an economic
aid to improving water allocation and sustainable water utilisation [30]. The water fee charged is US$31,
US$36.40 and US$40 per acre in the Ahero, West Kano and Bunyala irrigation schemes, respectively.
The pricing is based on area cropped per farming season and not the quantity of water consumed.
There is no limit to the quantity of water that a farmer can use. This explains why the value of water
per cubic meter is below 1 US$. This is a weakness and is unsuitable in terms of efficiency of water
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use and water conservation. Bunyala is the best performing irrigation scheme under the financial
performance category.

3.3. Agricultural Productivity

Agricultural productivity gives the relationship between inputs and output. It gives an indication
of efficiency of crop production in terms of land used, amount of water used and the income
generated [36]. The indicators are presented in Table 8.

Table 8. Agricultural productivity indicators.

Irrigation
Scheme

Year
AGP

(Tones)
GVP
(US$)

OIA
(US$/ha)

OCA
(US$/ha)

OIS
(US$/m3)

OWS
(US$/m3)

OCWD
(US$/m3)

West Kano

2012/2013 2679 857,120 950 1389 0.12 0.09 0.21
2013/2014 1201 420,308 466 2036 0.17 0.13 0.26
2014/2015 1136 374,959 416 1918 0.17 0.12 0.27
2015/2016 3633 1,307,837 1450 2014 0.18 0.14 0.26
2016/2017 4083 1,551,707 1720 2249 0.18 0.15 0.28

Average 2546 902,386 1000 1921 0.17 0.13 0.26

Ahero

2012/2013 4179 1,677,200 1864 1912 0.25 0.14 0.28
2013/2014 4182 1,479,800 1644 1749 0.30 0.20 0.22
2014/2015 4551 1,683,870 1871 2151 0.35 0.20 0.29
2015/2016 4465 1,741,370 1935 2113 0.40 0.21 0.27
2016/2017 4058 1,663,780 1849 2311 0.42 0.22 0.28

Average 4287 1,649,204 1832 2047 0.34 0.20 0.27

Bunyala

2012/2013 3803 1,248,221 1714 1781 0.28 0.15 0.29
2013/2014 2146 714,678 981 1020 0.11 0.07 0.16
2014/2015 3380 1,132,300 1554 1615 0.21 0.13 0.26
2015/2016 3850 1,321,617 1814 2115 0.25 0.15 0.34
2016/2017 3633 1,214,772 1668 1824 0.15 0.11 0.28

Average 3362 1,126,318 1546 1671 0.20 0.12 0.27

AGP—annual gross agricultural production; GVP—gross value of agricultural production; OIA—output per unit
irrigated area; OCA—output per unit command area; OIS—output per unit irrigation supply; OCWD—output per
unit crop water demand; Currency exchange rate—1 US$ = 100 Kenya shilling (KES).

The output per unit irrigation supply (OIS) ranges between 0.11 US$/m3 and 0.42 US$/m3 in all
the schemes. The average, OIS is 0.34 US$/m3 in Ahero, 0.17 US$/m3 in West Kano, and 0.20 US$/m3

in the Bunyala irrigation scheme. Ahero irrigation scheme utilises water more efficiently compared to
the others. The output per unit water supply (OWS) puts into consideration the contribution of effective
rainfall. The values vary between 0.07 and 0.22 US$/m3. The highest OCWD value (0.34 US$/m3)
was obtained in the Bunyala irrigation scheme in 2015/2016, while the lowest value (0.16 US$/m3)
was recorded in Bunyala in 2013/2014. The Ahero and Bunyala irrigation schemes have the highest
average OCWD of 0.27 US$/m3, while West Kano irrigation scheme has the lowest average value of
0.26 US$/m3. The Ahero irrigation scheme is leading in terms of water productivity while West Kano
is the poorest. According to [15], if OCWD is greater than OIS, some of the irrigation water supplied is
unproductive. In both West Kano and Bunyala, OIS is greater than OCWD. This shows inefficient use
of water. The Ahero irrigation scheme is the most efficient water user, with all OIS values less than
OCWD except in 2012/2013. The difference in water productivity is brought about by differences in
yield and crop market price. In similar studies in Malaysia, [37] reported OWS values ranging between
0.01 US$/m3 and 0.2 US$/m3 and OCWD values varying from 0.01 US$/m3 to 0.4 US$/m3 for paddy
rice. Compared to this, the Ahero, West Kano and Bunyala irrigation schemes registered higher rice
water productivity. The difference is attributed to the yield and market price. Mchele [38] obtained
OIS values of 0.95 US$/m3 in Shina-Hamusit and 0.62 US$/m3 in the Selamko irrigation scheme, and
OCWD values of 1.46 US$/m3 in Shina-Hamusit and 1.15 US$/m3 in the Selamko irrigation scheme,
Ethiopia. These irrigation schemes do not grow rice. This shows that rice is a competitive crop in terms
of returns per water used. In Turkey, OCWD values varying between 0.191 US$/m3 and 1.262 US$/m3
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were obtained [30]. The highest values of rice water productivity of 1.77 kg/m3, 1.75 kg/m3 and
1.51 kg/m3 have been reported in the USA, Sri Lanka and Spain, respectively [26].

Land productivity indicators give a reflection of crop intensity [39]. The output per unit
command area (OCA) varies between 1020 US$/ha (Bunyala in 2013/2014) and 2311 US$/ha (Ahero
in 2016/2017). The average OCA computed was 2047 US$/ha in Ahero; 1921 US$/ha in West Kano
and 1671 US$/ha in the Bunyala irrigation scheme. A high value is an indication of intensive irrigation.
The sudden fall in output per command area in West Kano between 2012 and 2014 can be attributed to
the collapse of the Revolving Fund Committee. The committee was mandated with the responsibility
for production and marketing in the West Kano irrigation scheme. Consequently, there was a decline
in production activities during that period associated with governance issues. From 2015 each block in
the scheme established a production management structure which induced competition amongst the
blocks in terms of production activities. An increase in production was therefore realised in 2015/2016.
The Bunyala irrigation scheme experienced hail in 2013 which shattered mature rice crops in one of
the phases (Muluwa phase 1). This contributed to a low harvest, as depicted by the sudden decline in
the output per unit area in the scheme. The output per unit irrigated area (OIA) for all the schemes
varied from 981 US$/ha to 1841 US$/ha. The OIA values computed are comparable to the OIA values
of 1300 US$/ha and 1310 US$/ha obtained during the rainy season and dry season in rice farming in
Thailand [40]. OIA values ranging from 100 US$/ha to 800 US$/ha were reported in Malaysia [37].

3.4. Estimation of Overall Scheme Performance

Correlation analysis of the 11 selected indicators is presented in Table 9. RWS and RIS are
strongly positively correlated (r = 0.950). This means that the indicators measure similar elements.
To avoid double counting, only one of them can be used in the computation of the composite
indicator/performance score. RIS focuses on irrigation water supply alone and is therefore used
for computation of the performance score.

Table 9. Pearson correlation matrix (n).

Variables RWS RIS WDIA WDCA WFC RIWS OIA OCA OIS OCWD OWS

RWS 1 0.950 0.711 0.458 −0.168 −0.425 −0.185 −0.305 −0.801 0.278 −0.855
RIS 0.950 1 0.648 0.455 −0.259 −0.457 −0.273 −0.292 −0.778 0.189 −0.845
ISIA 0.711 0.648 1 0.283 −0.645 −0.873 0.092 −0.570 −0.870 0.060 −0.701
ISCA 0.458 0.455 0.283 1 0.284 −0.029 −0.312 0.475 −0.432 −0.047 −0.471
WFC −0.168 −0.259 −0.645 0.284 1 0.889 −0.180 0.696 0.469 0.125 0.278
ARIS −0.425 −0.457 −0.873 −0.029 0.889 1 −0.125 0.662 0.723 0.109 0.514
OIA −0.185 −0.273 0.092 −0.312 −0.180 −0.125 1 0.156 0.375 0.741 0.553
OCA −0.305 −0.292 −0.570 0.475 0.696 0.662 0.156 1 0.566 0.301 0.480
OIS −0.801 −0.778 −0.870 −0.432 0.469 0.723 0.375 0.566 1 0.217 0.936

OWC 0.278 0.189 0.060 −0.047 0.125 0.109 0.741 0.301 0.217 1 0.245
OWS −0.855 −0.845 −0.701 −0.471 0.278 0.514 0.553 0.480 0.936 0.245 1

RWS—relative water supply; RIS—relative irrigation supply; WDIA—Water delivery per unit irrigated area;
WDCA—water delivery per unit command area; WFC—water fee collection; RIWS—annual revenue per unit
irrigation water supply; OIA—output per unit irrigated area; OCA—output per unit command area; OIS—output
per unit irrigation supply; OCWD—output per unit crop water demand; OWS—output per unit water supply.

Principal Component Analysis

The extracted principal factors, Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy and
Bartlett’s sphericity test (BTS) results are presented in Table 10.

According to [41], if the KMO value is greater than 0.5 and the BTS less than 0.05, the data is
suitable for PCA. In this study, the KMO co-efficient of 0.510 is adequate and the Bartlett’s test is
significant at 99% (p < 0.0001). The principal components extracted with their factor loadings are
presented in Table 11. The indicator weights are also presented in this Table 11.

130



Agriculture 2018, 8, 162

Table 10. Kaiser-Meyer-Olkin (KMO) and Bartlett’s test.

KMO and Bartlett’s Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 0.510

Bartlett’s Test of Sphericity
Approx. Chi-Square 211.443

df 45
Sig. 0.000

Table 11. The extracted principal components.

Rotated Component Matrix (Factor Loading)
Indicator Weights

Principal Component

1 2 3
% of variance 34.959 34.918 19.930
Relative irrigation supply (RIS) −0.222 −0.876 0.044 0.091
Water delivery per unit irrigated area (WDIA) −0.673 −0.669 0.169 0.104
Water delivery per unit command area (WDCA) 0.447 −0.794 −0.047 0.093
Water fee collection performance (WFC) 0.924 0.064 −0.068 0.096
Average revenue per unit irrigation water supply (RIWS) 0.862 0.387 −0.086 0.100
Output per unit irrigated area (OIA) −0.161 0.317 0.912 0.107
Output per unit command area (OCA) 0.891 0.040 0.289 0.098
Output per unit irrigation supply (OIS) 0.505 0.815 0.229 0.108
Output per crop water demand (OCWD) 0.149 −0.081 0.925 0.098
output per unit water supply (OWS) 0.318 0.848 0.353 0.105

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalisation.

The first principal component (PC1) determines 34.9595% of the total variance in performance.
The first principal component is mainly linked to indicators with absolute factor loading greater than
0.673 (WDIA, WFC, RIWS, OCA). The second principal component (PC2) accounts for 34.918% of
the variance in performance. It is influenced by RIS, WDCA, OIS and OWS indicators (absolute
loadings > 0.794). The third principal component (PC3) factor loading accounts for 19.93% and is
linked with OIA and OCWD indicators.

The results of weighted indicators are presented in Table 12. The performance score for each
scheme in each year was obtained by summing up the weighted indicator values.

Table 12. Weighted performance score for each category.

Year IS RIS WSIA WSCA WFC ARIWS OIA OCA OIS OCWD OWS PS

2012/2013
AIS 0.10 0.07 0.06 0.08 0.01 0.06 0.05 0.03 0.03 0.02 0.52

WKIS 0.14 0.10 0.06 0.04 0.00 0.05 0.03 0.02 0.03 0.02 0.51
BIS 0.09 0.06 0.05 0.09 0.02 0.07 0.06 0.05 0.04 0.02 0.54

2013/2014
AIS 0.04 0.05 0.05 0.08 0.01 0.06 0.05 0.05 0.03 0.03 0.45

WKIS 0.07 0.11 0.02 0.05 0.00 0.07 0.01 0.03 0.04 0.02 0.43
BIS 0.10 0.08 0.07 0.09 0.01 0.04 0.03 0.02 0.02 0.01 0.48

2014/2015
AIS 0.06 0.06 0.04 0.08 0.01 0.07 0.06 0.05 0.04 0.03 0.49

WKIS 0.11 0.10 0.02 0.05 0.01 0.07 0.01 0.03 0.04 0.02 0.46
BIS 0.10 0.07 0.06 0.09 0.02 0.06 0.05 0.03 0.04 0.02 0.54

2015/2016
AIS 0.04 0.05 0.04 0.08 0.02 0.07 0.06 0.06 0.03 0.03 0.47

WKIS 0.09 0.10 0.07 0.05 0.01 0.07 0.04 0.03 0.04 0.02 0.51
BIS 0.11 0.08 0.06 0.09 0.01 0.07 0.06 0.04 0.05 0.02 0.60

2016/2017
AIS 0.04 0.05 0.04 0.09 0.02 0.07 0.05 0.06 0.03 0.03 0.47

WKIS 0.08 0.11 0.08 0.05 0.01 0.07 0.05 0.03 0.04 0.02 0.54
BIS 0.11 0.11 0.09 0.09 0.01 0.07 0.06 0.02 0.04 0.02 0.62

IS—Irrigation scheme; AIS—Ahero irrigation scheme; WKIS—WKano irrigation scheme; BIS—Bunyala irrigation
scheme; RIS—relative irrigation supply; WSIA—irrigation supply per unit irrigated area; WSCA—irrigation
supply per unit command area; WFC—water fee collection; ARIWS—annual revenue per unit irrigation supply;
OIA—output per unit irrigated area; OCA—output per unit command area; OIS—output per unit irrigation supply;
OCWD—output per unit water consumed; OWS—output per unit water supply.
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Comparison of the trend in irrigation scheme performance of each scheme is presented in Figure 2.

 

Figure 2. Comparison of performance score.

The overall performance score obtained was 45–52% in Ahero, 43–54% in West Kano and
48–62% in the Bunyala irrigation scheme. The average performance was 48%, 49% and 56% in
the Ahero, West Kano and Bunyala irrigation schemes, respectively. The performance in all of the
schemes was moderate. The performance in the West Kano and Bunyala irrigation schemes increased
with time. The performance in the Ahero irrigation scheme was seen to be decreasing with time.
The West Kano irrigation scheme experienced a fall in performance in 2014 due to the collapse of
the Revolving Fund Committee which was mandated with the responsibility of production and
marketing. The establishment of the production management structure, which created competition
among the blocks in terms of production, increased performance from 2015. The sudden decline
in performance in Bunyala in 2013 was due to hail stones that shattered mature rice crops in one
of the phases (Muluwa phase 1). The reduction in the amount of water available due to drought
led to a decrease in performance in the Ahero irrigation scheme in 2013. In 2013, there was strong
sensitisation in the System of Rice Intensification (SRI) technology in Ahero. SRI involves changes in
plants, water soil and nutrients management aimed at increasing productivity of rice under irrigation.
Most farmers in the Ahero irrigation scheme adopted SRI, which led to an increase in performance from
45% in 2013 to 49% in 2014. A high performance of 83% [12] was obtained in the Samrat Ashok Sagar
major irrigation project in India using a balanced score card method based on the Delphi technique.
Agricultural productivity in India is highly enhanced by the government through artificial fixing of the
minimum price of crops. The prices are therefore reasonably high, leading to the high economic value
of crops. This is not the case in Kenya, where the price of rice produce is governed by market forces.
In times of surplus, rice fetches low prices, reducing its economic value. This contributes greatly to low
agricultural productivity performance, leading to low overall performance of irrigation schemes. Zema
and Nicotra [42] used PCA to identify areas of weakness in seven Water Users’ Association (WUA’s) in
Calabra, Southern Italy. The Ionio Catanzarese (ICZ) WUA was ranked as the best performing with a
quality index of 4470, while the Basso Ionio Reggino (BIRC) was found to be the least performing with a
quality index of −1410. BIRC was found to have a weakness in both system operation performance and
financial management. Lowering water prices was found to be the solution to improving performance
of BRIC WUA’s in Calabra, Southern Italy [42].

4. Conclusions

The combination of benchmarking and Principal Component Analysis forms a powerful tool for
evaluating the efficiency of irrigation schemes. The quantitative evaluation of performance of three
rice irrigation schemes in western Kenya using a set of benchmarking indicators revealed the areas
that needed improvement. Analysis of water supply indicators shows that, the water supplied by the
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irrigation schemes is sufficient to meet crop water demands. The irrigation schemes have low water use
efficiency. In terms of financial performance, the irrigation schemes are not financially self-sufficient.
The water fee charged was not sufficient to pay for the cost of irrigation. Land and water productivity
in western Kenyan rice irrigation schemes was found to be generally good. Computation of a single
performance score using performance indicators and principal component analysis enabled ranking of
the irrigation schemes. The Bunyala irrigation scheme was found to be the best performing scheme,
whereas the Ahero irrigation scheme was the least performing in the region. The overall performance
of public rice irrigation schemes in western Kenya is average. Operation and management measures
should be put in place to improve performance. The schemes need to adopt a systematic routine data
collection and management to aid in the monitoring and evaluation of performance. Stakeholders
and scheme managers can use this information to reformulate policies and strategies to enhance
performance of public rice irrigation schemes in Kenya.
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Abstract: A three-year experiment evaluated the beneficial effects of independent and combined
practices on thermal conditions inside high tunnels (HTs), and further investigated the temperature
impacts on lettuce production. Specific practices included mulching (polyethylene and biodegradable
plastic films, and vegetative), row covers, cover crops, and irrigation with collected rainwater or
city water. The study conducted in eastern Tennessee was a randomized complete block split-split
plot design (RCBD) with three HTs used as replicates to determine fall lettuce weight (g/plant) and
lettuce survival (#/plot), and the changes in soil and air temperature. The black and clear plastic
mulches worked best for increasing plant weight, but when compared to the bare ground, the higher
soil temperature from the plastics may have caused a significant reduction in lettuce plants per plot.
Moreover, the biodegradable mulch did not generate as much soil warming as black polyethylene,
yet total lettuce marketable yield was statistically similar to that for the latter mulch treatment; while
the white spunbond reduced plant weight when compared with black plastic. Also, row covers
provided an increased nighttime air temperature that increased soil temperature, hence significantly
increased lettuce production. Cover crops reduced lettuce yield, but increased soil temperatures.
Additionally, irrigation using city water warmed the soil and provided more nutrients for increased
lettuce production over rainwater irrigation.

Keywords: cover crop; lettuce production; irrigation; mulch; row cover; temperature variations

1. Introduction

High tunnels (HTs) are simple, plastic covered, greenhouse-like structures that do not utilize
heaters or ventilation fans. Even without heaters or fans, HTs allow producers to lengthen the growing
season and protect plants from extreme weather conditions (e.g., hail, frost, or strong wind), hence
increasing the profitability and sustainability of organic farms [1]. Compared to crop production in
open fields, other advantages of HTs highlighted by Lamont et al. [2] also include: (1) preventing rainfall
from wetting and splashing soil onto fruit and foliage, thus creating cleaner products with less disease;
(2) increasing water-use efficiency; (3) improving crop environmental conditions; and (4) reducing soil
compaction and insect invasion. Additionally, the benefits of less electricity consumption, lower startup
costs, and fewer maintenance efforts make HT systems more competitive than standard greenhouses [3].
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High-valued crops, such as lettuce, tomatoes, and other leafy greens, produced inside HT systems
can also compensate for the increased cost of HT systems when compared to open field production.
Studies also show that the microclimates inside HTs can be modified so that the growing season can be
lengthen from 1 to 4 weeks in spring and 2 to 8 weeks in fall [4]. Therefore, HTs are currently being
adopted by small- and mid-scale producers in order to take advantages of market seasonality with
higher profits [5,6].

However, there are several limitations for the sustainability of HT systems. First, since HTs
block rainfall, ground/well or treated water needs to be used for crop irrigation. As well, lettuce is
considered moderately sensitive to irrigation salinity, since the salts in soil and water might cause the
retardation of crop growth, reduction of lettuce head formation, or even the necrotic lesions on the leaf
margins [7]. To combat this sensitivity, rainwater can be collected and reserved in black polyethylene
tanks, and then used inside HTs through drip irrigation. A rain harvesting system (RHS) is considered
beneficial in regions where treated water is inadequate and costly, and helps in reducing local flooding
in some low-lying areas. This study investigates additional benefits of RHS when black polyethylene
tanks are used; black tanks can capture solar energy and warm up enclosed rainwater, and this warmer
water can warm the soil during drip irrigation.

Secondly, the poor insulation properties of the plastic-covered HT structure do not provide
significant heat retention at night under cold climates. Without a favorable growth microclimate,
crop performances inside HTs might be inhibited or even terminated. Accordingly, surface mulch
and row covers are practices that could help retain heat while providing other advantages, such
as reducing weed competition, alleviating soil crusting, modifying the radiation budget of the soil
surface around the plants, and conserving water by inhibiting evaporation from the soil surface [8].
A two-year lettuce experiment in the open field found that colored polyethylene mulches (clear, white,
and black) significantly increased the overall lettuce production by 33%, 40%, and 39%, respectively,
compared to bare ground [9]. Additionally, for other high-value crops, a study showed that black
polyethylene mulch combined with an HT system significantly increased overall pepper production
in regard to crop height and leaf area, while in the same system, clear plastic mulch significantly
raised ground temperature, thus decreasing the number of days to the first flower when compared
with black polyethylene mulch and bare ground [10]. As well, biodegradable mulch can eliminate
plastic disposal issues, including the labor cost of disposal [11,12]. There is limited research on how
biodegradable mulches within HT systems affect soil temperature and crop productivity. But in open
field tests, outdoor use of biodegradable mulches had no significant effect on overall pepper yield and
quality in Australia; although, it raised soil temperature slightly compared with paper mulch [13].
A study from Moreno [14] also indicated that biodegradable mulches did not significantly increase
tomato production in Central Spain, but Miles et al. [15] observed improved tomato production
using biodegradable mulches when compared with bare ground in northwestern Washington, USA.
Since lettuce production could be limited from weed competition and seedling establishment problems,
appropriate polyethylene and biodegradable mulches might reduce the costs of weed management,
while minimizing root damage, also retaining favorable soil temperatures for lettuce growth and
development [16]. Similar to surface mulches, floating row covers are considered as additional thermal
protection for crops from wind and frost inside a HT. There have been many studies showing that
the combination of mulching and row covers under field conditions significantly increased soil and
air temperatures for favorable crop growth conditions [17]. However, some studies indicated that
although HT air temperature was slightly higher than outside, lettuce development was still slow, since
the air temperature around the plant’s full height was not optimal [18]. Therefore, more investigation
on the impacts of row cover and colored plastic/biodegradable mulches under HTs are needed to
maximize heat retention.

The last limitation is related to the decomposition of soil organic matter due to continuous cropping
in HTs, which may negatively influence nutrient/water holding capacity in soil. The common solution of
adding organic supplements to the soil requires energy at each step as long as the supplements need to
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be collected and delivered to HTs. Accordingly, an effective practice is to pre-plant a legume cover crop
which has the ability to fix nitrogen, supply crop nutrients and improve soil structure in HT systems.
This study investigated incorporating cover crop residues into the ground and leaving the residues on
the soil surface (vegetative mulch). Teasdale and Daughtry [19] found that cover-crops have positive
effects on weed control and Liebman and Davis [20] observed reduced maximum-soil-temperature
under vegetative mulches in the daytime, along with the benefit of increased summer production.
Even though cover crops provide many benefits, there is limited research on the effects of cover crop
residues incorporated into the ground in combination with polyethylene mulches covering the soil
surface, and their effects on thermal protection in HT systems.

Overall, this study aims to provide recommendations to small- and mid-scale producers on how
to improve thermal protection with low input sustainable practices to improve lettuce production
in HTs. Rain water, surface mulch, row covers, and cover crops have many benefits, but this study
will focus on the benefits to heat management. Zheng et al. [21]’s study showed how thermal energy
conservation benefited spring pepper production, while this study aims to assess the yield performance
of fall Romaine lettuce using the same thermal energy conservation practices.

2. Material and Methods

2.1. The Gothic Type High Tunnel

Three experimental high tunnels were used in the experiment, that were orientated N–S, and located
at the University of Tennessee’s Organic Crop Unit in Knoxville, TN in the United States (latitude 35.88◦
N, longitude 83.93◦ W, and elevation 252 m). These HTs have peaked roofs, vertical side walls and the
dimension of the structures are 9 m in width and 15 m in length (Figure 1). Each end door covers an
opening which is 2.45 m tall and 3.35 m wide, and side curtains run the entire length of the HT. The end
doors were opened almost every day to provide natural ventilation while the side-curtains were
only opened during warm weather when more air was need for proper ventilation. In cold periods,
doors and side curtains were closed at night to preserve thermal energy, and only the end doors were
opened in the daytime to reduce accumulated heat and humidity inside HTs. Rainwater was collected
and stored in black polyethylene tanks and was delivered using gravity pressure and solar power.
Rainwater storage tanks in the first HT were elevated with cinder blocks to provide gravity pressure
for irrigation with drip tubing, while the other two HTs utilized a solar powered pump to deliver
rainwater via drip tapes with 10 psi of pressure [21].

 
Figure 1. Isometric view of a high tunnel with the covering cut away for clarity) [21].

Romaine Lettuce (‘coastal star’) was grown during the fall seasons of 2011, 2013, and 2014.
Specifically, five different surface mulches with a bare soil control, and two sources of irrigation water
were applied in fall 2011. Thus, there were six beds in each HT, and these six different treatments
were randomly arranged in different beds. Figure 2a shows that mulch treatment was laid out in six
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rows, including: (1) white biodegradable spunbond (spun), (2) vegetative mulch from a leguminous
cover crop (veg), (3) bare ground (bare), (4) black polyethylene film (black), (5) biodegradable brown
paper (paper), and (6) black biodegradable biobag (biobag). The dimension of each bed was 12.19 m in
length and 0.91 m in width with double rows of lettuce planted in each bed. Double planting rows
were placed 0.3 m apart and 0.46 m apart between lettuce transplants. There were 48 plants per row
and rows were divided into four plots. Lettuce was transplanted on 30 September 2011 in half of each
house (snapdragon flowers were added to the other half of the HT for a different research project),
and then harvested on 7 December 2011. Next, in the fall of 2013, there were five surface mulches
and a bare control, with or without a row cover. Figure 2b shows that the mulch distribution was:
(1) black polyethylene film (black), (2) vegetative mulch from a cover crop (veg), (3) bare ground (bare),
(4) black polyethylene film with a cover crop (blackCC), (5) clear polyethylene film with a cover crop
(clearCC), and (6) clear polyethylene film (clear). Once inside temperature fell below approximately
7 ◦C, row covers were applied to half of the crop during the night. Lettuce was transplanted on
2 October 2013 and harvested on 4 December 2013. Finally, in the fall of 2014, a total of 12 treatments
were used, including two water resources (rainwater and city water), two surface mulches (black and
blackCC) and a bare ground control, with or without a row cover (Figure 2c). Lettuce was transplanted
in each half of the HT on 29 September 2014 and harvested on 5 December 2014.

a 

 
b 

 
Figure 2. Cont.
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c 

 
Figure 2. The lettuce production of high tunnels (HTs) in 2011, 2013, and 2014 followed a
split-split-plot design.

To determine statistical differences, the experiment was a randomized complete block design
(RCBD), based on a split-split-plot sub-design for lettuce production and temperature variations.
In addition, soil at the experimental site was a Dewey silt loam. Lettuce yield was determined by plant
weight (g/plant) and plants per plot (#/plot). Climatic analysis were divided into two time periods,
including early fall (EF) from planting through October and late fall (LF) from November to early
December, and statistical analyses of lettuce yield values and temperatures variations were performed
by SAS statistical software (SAS Institute Inc., Cary, NC, USA).

2.2. Climatic Monitoring and Instrumentation

Two meteorological stations were used to monitor conditions with one placed outside and another
placed inside the high tunnels [21]. The outside station was 6.0 m away from the middle HT and set
to 4.0 m above the ground. The inside station was located at 1.5 m above the ground at the center
of the middle experimental HT. The sensors used for each station included a pyranometer for solar
radiation, a cup anemometer and wind vane for wind speed and direction, along with a capacitive
chip and platinum resistance thermometer, for relative humidity and air temperature, respectively.
Additionally, there was a total of 15 thermistors applied to measure inside air temperature at 1.2 m
above the ground surface. An array of 12 thermistors to monitor air temperatures at the canopy level
were located 30 cm above the ground surface. Half of these thermistors were under the row cover and
half were outside the row cover. Moreover, soil temperature was measured in each combination for the
mulch, row cover, and water using 24 thermistors placed 10 cm into the ground. Additionally, the water
temperatures were measured at the bottom of polyethylene storage tanks and in the supply line of
city water. All the thermistors described above were potted in solar reflecting white epoxy and all
the sensors were measured every 15 s and recorded every hour by a CR1000 datalogger (Campbell
Scientific, Inc.: Logan, Utah, USA). The specifications for the sensors are listed in Table 1.
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Table 1. Environmental parameters measured during the experiments [21].

Measured Parameters Sensors Range and Accuracy Location

Solar radiation Qsolar (Wm−2)
LI200X Pyranometer
(LI-COR.INC) 0 to 3000 Wm−2 with ±5%

Inside and outside
weather station

Air temperature Ti (K)
Relative humidity HR (%)

HMP60 Probe
(Vaisala.INC)

−40 to 60 ◦C with ±0.6%
±3% RH over 0 to 90%, ±5%
RH over 90 to 100%

Inside and outside
weather station

Wind speed U (ms−1)
Wind direction (◦)

R.M.Young Wind Sentry
(Campbell Sci. Inc)

0 to 50ms−1 with ±1%
0 to 360◦ with ±5º

Outside weather station

Air temperature (◦C) Thermistor (PS104J2) † ±0.1 ◦C with 0.026 ◦C

An array of
15 thermistors all over
the inside of middle HT
located 1.5 m above the
ground

Canopy temperature (◦C) Thermistor (PS104J2) † ±0.1 ◦C with 0.026 ◦C
12 thermistors located
30 cm above the ground
between crop rows

Soil temperature (◦C) Thermistor (PS104J2) † ±0.1 ◦C with 0.026 ◦C
24 thermistors located
10.16 cm below the
ground

Water temperature (◦C) Thermistor (PS104J2) † ±0.1 ◦C with 0.026 ◦C
Polyethylene storage
tank bottom for
rainwater and supply
line of city water

† means the thermistors are made in our lab, which are non-linear sensors following a polynomial response to
temperature that is defined by the Steinhart–Hart equation.

3. Results and Discussion

The HT affected inside microclimate in terms of solar radiation, air and soil temperature, and relative
humidity and wind speed. There were 1380 observations of weather data measured over three falls of
2011, 2013, and 2014. Generally, 9% of total solar radiation was reflected by the HT’s polyethylene covering
(dataset in 2011 was disregarded due to sensor failure). During the EF (early fall) with the end-doors and
side-curtains fully opened, air temperatures inside the HT were consistently higher by 0.5–6.0 ◦C compared
to outside; while in LF (late fall) with the side curtains rolled down, the inside maximum air temperature
during the day was from 1 to 11 ◦C higher when compared to the outdoor conditions. Moreover, outside
and inside thermistor readings indicated that night time air temperatures inside the HT were 0.6–2.0 ◦C
higher than outdoor temperatures, and the average nighttime soil temperature inside the HT was 1–3 ◦C
higher than outside over the span of the three falls [21].

Statistically, mulch treatments were considered the main contributing factor to the lettuce
productivity in the falls of 2011, 2013, and 2014 (p < 0.001) (Figure 3). In 2013 and 2014, black
consistently produced a higher yield than bare, with an increase of 71% (2013) and 37% (2014) in
g/plant. However, no significant difference was found in lettuce yield between using black and bare
plots in 2011. Clear mulch provided the maximum production in g/plant in 2013 but with no significant
difference compared to the black mulch treatment. In addition, Table 2 shows that the increased crop
yield using black was related to its soil-warming ability when compared with bare. Although some
temperature values were missing due to sensor failures in LF 2011, black had a positive impact on
soil temperature, which was constantly higher than the bare treatment by 0.8–1.3 ◦C (2011), 0.6–0.9 ◦C
(2013), and 0.9–1.3 ◦C (2014). The soil temperature rise under black mulch can promote faster lettuce
growth and development, although the lettuce survival (#/plot) with black was reduced approximately
20% when compared to bare in 2013. The soil-warming ability underneath clear was even greater
than that under black, by as much as 1.0 ◦C, but the overall lettuce yield did not improve significantly
in spring 2013. After transplanting in EF, soil temperatures were warmer by 1.4 ◦C (day) and 2.1 ◦C
(night) for clear, and 0.6 ◦C and 0.9 ◦C for black when compared to the bare. The higher measured
soil temperatures under the mulches do not adequately reflect, the extremely hot air emitted from
the transplant holes or the high temperature of the mulch itself before the crop canopy can shade the
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plastic mulches. These higher temperatures seem beneficial to lettuce growth (lettuce weights per
plant) but they may not be beneficial to lettuce survival at transplant, since the plants per plot were
significantly reduced in clear (10%) and black (20%) plots compared with the bare.

 

Figure 3. Cont.
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Figure 3. Marketable lettuce weight per plant and lettuce numbers per plot under the effects of different
mulch over the falls of the years 2011 (a), 2013 (b), and 2014 (c) in HTs. Values followed by the same
letter are not significant different according to Fisher’s LSD (p = 0.1).

Table 2. Marketable lettuce weight per plant and lettuce numbers per plot, and average soil temperatures
at 10 cm depth under different mulch treatments during the day and night in the early and late falls of
2011, 2013, and 2014.

Year Mulch Lettuce Yield Soil Temp_Day Soil Temp_Night

Weight Count EF† LF† EF† LF†

2011

(g/plant) (#/plot) (◦C) (◦C)
Black 421.6 a 7.7 a 18.22 a - 14.42 a 15.39 a

Biobag 436.9 a 8.3 a 17.12 b - 13.26 c 14.17 c
paper 409.1 ab 8.7 a 16.68 bc - - -

Spunbond 355.7 bc 9.3 a 16.21 c - 13.01 d 13.99 d
Bare 424.2 a 9.2 a 17.06 b - 13.59 b 14.13 cd
Veg 327.5 c 9.2 a 17.06 b - 12.96 d 13.52 d

Sig.level 0.0311 0.73 0.0115 - <0.0001 <0.0001

2013

Black 419.4 a 4.4 b 19.97 c 14.12 b 19.74 c 14.31 e
BlackCC 361.4 a 7.0 a 20.08 c 14.18 b 20.52 b 14.66 b

Clear 425.8 a 4.9 b 20.80 b 14.20 b 20.86 b 14.66 b
ClearCC 285.6 b 6.3 a 21.47 a 14.69 a 21.81 a 15.02 a

Bare 244.9 bc 5.5 a 19.41 d 13.26 d 18.82 d 13.43 e
Veg 170.4 c 4.6 b 19.22 e 13.01 d 18.36 d 13.28 e

Sig.level <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

2014

Black 371.1 a 8.1 ab 18.38 a 13.07 a 19.48 a 13.86 a
BlackCC 290.0 b 9.8 a 18.24 b 12.97 a 19.32 a 13.76 a

Bare 271.2 b 7.6 b 17.30 c 12.12 b 18.16 b 12.86 b
Sig.level <0.0001 0.1765 <0.0001 <0.0001 <0.0001 <0.0001

* EF and LF were characterized by diurnal soil temperature in specific early and late spring. Temperature values are
daily means from 10:00 a.m. to 16:00 p.m. and nightly means from 21:00 p.m. to 8:00 a.m. Values followed by the
same letter are not significantly different according to Fisher’s LSD (p = 0.1).

Moreover, the application of the dark colored biobag and paper were not significantly different
when compared to black for lettuce yield in 2011. However, white spunbond produced less marketable
lettuce weight per plant by 13% than paper, but the difference in #/plot was not at a significant
level. All of the degradable mulch plots provided significantly lower soil temperatures than black by
1.0–1.2 ◦C (biobag), 1.4–2.0 ◦C (spunbond), and approximately 1.6 ◦C (paper). The greater reduction of
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soil temperatures produced by spunbond (1.4–2.0 ◦C) compared to those of biobag and paper mulch
may be the reason for significantly decreased lettuce production under spunbond when compared
to black.

In additional, polyethylene mulch with cover crops (blackCC and clearCC) had the potential to
save more lettuce heads in each plot by 21%–60% (#/plot). This may be because more air was able
to penetrate through the cover crop residues, thus the thermal stress from the plastic mulch surface
was able to be mitigated when the film edges contacted the lettuce transplants in the warm EF period.
But the plastic mulch with cover crops significantly reduced marketable lettuce weight per plant (18%
in blackCC and 33% in clearCC), when compared to non-cover crop treatments as an average for
2013 and 2014. Specifically, the average soil temperatures under blackCC in EF and LF of 2013 were
around 0.3–0.8 ◦C warmer compared with black at night, whereas the temperature differences between
clearCC and clear were 0.5–0.7 ◦C and 0.3–0.9 ◦C warmer during the day and night, respectively.
Thus, although the cover crops had a higher soil-warming ability and saved more lettuce in each plot,
limited nutrient availability caused by immobilization of nitrogen during the decomposition of cover
crop residues may have inhibited the growth of each lettuce head, as the incorporated cover crop and
residual soil nutrients served as the only fertilizer source. In comparison, veg always significantly
provided the lowest lettuce production. It appears that the vegetative mulch shielded the transfer of
solar energy to the soil and cooled the soil to a point where lettuce development was detrimentally
delayed. Results confirmed that veg had a significant decrease of soil temperature (0.6 ◦C in 2011 and
0.3 ◦C in 2013) than that in bare. Therefore, veg treatment with the coolest soil temperature was
working against a goal of making better use of solar energy to extend the growing season.

For the LF, additional thermal protection was provided by row covers for lettuce growth (Figure 4).
Row cover played a significant role in increasing g/plant for 2014 (p < 0.0001). The lettuce weight
per plant utilizing a row cover was improved approximately 36% as an average of all treatments
(black, blackCC, and bare) when compared to all treatments without row covers. Moreover, positive
interactions between the applications of mulches and row covers were found on yield (p < 0.1) in fall
2013. The black mulch with row cover provided the largest lettuce production and the row covers
increased lettuce weight by 28% over black mulch alone. While some of the lower yielding plots
had greater lettuce weight when a row cover was applied, bare and veg yielded significantly more
lettuce weight, approximately 45% and 73% more lettuce weight per plant respectively, under row
cover. Moreover, blackCC, clear, and clearCC with a row cover had the potential to improve the total
marketable production (g/plant) compared with those without using row covers in fall 2013, but the
improvement was not to a significant level. In addition, the row cover can significantly increase canopy
and soil temperature by 0.8–2.3 ◦C and 0.1–0.9 ◦C at night, respectively. Although soil temperature
increases from row covers interacted differently with the mulch treatments—0.4 ◦C in black, 0.6 ◦C in
blackCC, 0.1 ◦C in clear, 0.8 ◦C in clearCC, 0.7 ◦C in bare, and 0.2 ◦C in veg—the row covers had a
positive effect on lettuce production in all plots.
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Figure 4. Interactions of mulch and row cover on lettuce yield (weight/plant), and soil temperature
(◦C) inside high tunnels during the late fall (LF) of 2013 and 2014. ‘Y’ represents the mulch with a row
cover and ‘N’ means the mulch without a row cover.

Finally, lettuce yield was improved by using city water compared to rainwater applied with drip
irrigation (Figure 5). As an average of all mulches, city water potentially increased the total lettuce
weight per plant by 16% in 2011, 12% in 2013, and 8% in 2014, and also increased total lettuce numbers
per plot by 13% in 2013 (Table 3). Although the numeric values of lettuce number per plot were
potentially higher by using city water than rainwater, the differences were not at a significant level.
In 2011, the biobag mulch and bare irrigated using city water significantly improved lettuce weights by
23% and 36%, respectively, compared to rainwater (p < 0.0001), although in subsequent years, city
water did not significantly increase yield in the bare soil treatment. In 2013, black and veg mulch yield
was significantly increased when city water was used for irrigation by 36% and 20% in lettuce weight
per plant, respectively; and in 2014, black mulch with city water also significantly improved the lettuce
production approximately by 17% (g/plant) over rainwater. The differences of lettuce yield using two
water types were assumed to be explained by the impacts of water temperature on soil temperature.
Figure 6 shows that the rainwater temperature from the solar tank was consistently cooler than that in
gravity tanks. Additionally, in the EF of 2011, 2013, and 2014, the average temperature of rainwater
stored in the solar tank was significantly higher than the city water in all years by 2.4 ◦C; but during the
LF periods, the rainwater from solar tanks was significantly cooler than the city water by 2.2 ◦C in 2011,
1.3 ◦C in 2013 and 0.8 ◦C in 2014. Although water temperatures changed inconsistently between the EF
and LF, soil temperatures responded in a similar manner over different mulches. Table 3 shows that
city water generally produced warmer soil temperatures than rainwater during the entire fall seasons,
with several exceptions in 2011 (biobag, spunbond, and bare), but all these variations cannot change the
fact of greater lettuce production in city water plots (23% for biobag, 13% for spunbond, and 35% for
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bare). In summary, the temperature of city water was cooler than rainwater in EF and warmer during
LF. However, the overall effect was for city water to warm the soil on average during each time period.
As early fall progresses into late fall, rain water would be expected to cool in relation to city water,
because the above ground tanks are exposed to less daily solar radiation and longer cooler nights,
while soil temperature around the city water pipes lags behind the above ground heat loss of the rain
water tank; i.e., soil temperature decline lags air temperature decline in the fall. The comparison of
water temperature data does follow this expected pattern. However, the contradiction between EF
water temperature and soil temperature differences is less easily explained. Perhaps the rainwater
temperature was not representative of the water delivered for irrigation due to the sensor’s location
in the tank and temperature gradients within the tank caused by tank surface heating and cooling.
In addition, the temperature transition from warmer rainwater to warmer city water would not occur
precisely at the interface of EF to LF. There was most likely an intermixing of more and less heat
transfer from the irrigation sources to the soil, in combination with air temperature’s effects on soil
temperature. Overall. the response of different mulches to irrigation water type shows that lettuce yield
was improved by applying city water when compared to rainwater, and warmer soil temperatures
appear to be an important factor where city water was applied. Another reason for increased lettuce
production using city water may be related to water quality. Periodic water samples were analyzed
and revealed the pH of city water was consistently around 6.4, while the rain water changed over time,
but mainly was around at 6.7 to 7. Additionally, city water had more nutrients than rainwater: around
11 to 16 times higher levels of K, Mg, and Ca which may help promote lettuce growth and development.

Figure 5. Cont.
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Figure 5. Marketable weight of lettuce (mean ± SE) under the effects of different irrigation water (rain
and city) over three fall seasons of the years 2011 (a), 2013 (b), and 2014 (c) in high tunnels.

Figure 6. Fluctuations in average water temperature (mean ± SE) for three fall seasons of years 2011,
2013, and 2014. Gravity and Solar represent the rainwater inside the gravity and solar tanks, respectively,
and City represents the municipal water from the underground pipes.

Table 3. Interactions of mulch and water on the lettuce yield and soil temperature inside high tunnels
during all three falls of years 2011, 2013, and 2014.

Year Mulch Water

Lettuce Yield Soil Temp_Day Soil Temp_Night

Weight Count EF† LF† EF† LF†

(g/plant) (#/plot) (◦C) (◦C)

2011

Black
City 442.67 abc 10.00 a 18.37 a - 14.44 a 15.45 a
Rain 400.58 bcd 7.33 ab 18.07 ab - 14.40 a 15.34 a

Biobag City 482.52 ab 8.67 ab 16.94 bcd - 13.10 fg 13.83 e
Rain 391.33 cd 8.00 ab 17.30 abc - 13.42 def 14.52 bc

Paper City 388.67 cd 9.67 ab 16.80 bcd - 13.48 cde 14.53 bc
Rain 429.50 abc 9.00 ab 16.56 c - - -

Spunbond City 377.33 cde 8.33 ab 15.90 d - 12.87 g 13.77 e
Rain 334.00 de 10.00 a 16.53 c - 13.15 efg 14.21 d

Bare
City 487.33 a 8.33 ab 17.11 bc - 13.19 efg 13.79 e
Rain 361.04 cde 7.0 b 17.01 bc - 13.99 b 14.48 c

Veg City 357.69 cde 9.00 ab 17.34 abc - 13.61 cd 14.72 b
Rain 297.33 e 9.00 ab 16.78 bcd - 13.78 bc 14.55 bc

Mulch 0.0311 0.73 0.0115 - <0.0001 <0.0001
Water 0.0158 0.38 0.8917 - 0.0018 <0.0001

Mulch ×Water 0.3177 0.59 0.5621 - 0.0678 <0.0001
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Table 3. Cont.

Year Mulch Water

Lettuce Yield Soil Temp_Day Soil Temp_Night

Weight Count EF† LF† EF† LF†

(g/plant) (#/plot) (◦C) (◦C)

2013

Black
City 450.0 a 5.17 bcd 20.15 c 14.28 c 20.04 cd 14.57 d
Rain 400.0 a 3.67 d 19.79 d 13.97 d 19.43 ef 14.04 e

BlackCC
City 310.3 abc 8.00 a 20.09 c 14.16 c 20.48 c 14.64 cd
Rain 270.0 ab 6.00 cd 20.07 c 14.20 c 20.57 c 14.68 cd

Clear
City 437.0 a 5.00 bcd 20.83 b 14.24 c 21.23 b 14.74 c
Rain 414.7 a 4.8 bc 20.77 b 14.16 c 20.49 c 14.57 d

ClearCC
City 302.2 bcd 6.17 bc 21.54 a 14.80 a 21.78 ab 15.10 a
Rain 269.0 cd 6.33 bc 21.40 a 14.59 b 21.83 a 14.93 b

Bare
City 239.7 de 6.50 ab 19.46 ef 13.48 e 18.97 fg 13.57 g
Rain 250.1 cd 6.50 ab 19.35 f 13.03 g 18.68 g 13.29 h

Veg City 205.6 de 4.83 cd 19.63 de 13.86 d 19.62 de 13.88 f
Rain 135.0 e 4.33 d 18.81 g 13.28 f 19.33 ef 13.80 f

Mulch <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Water 0.3362 0.0576 0.0002 <0.0001 0.1511 <0.0001

Mulch ×Water 0.0718 0.4984 0.005 <0.0001 0.2181 0.0023

2014

Black
City 400.9 a 8.83 ab 18.51 a 13.17 a 19.62 a 13.98 a
Rain 341.3 b 7.33 ab 18.26 b 12.96 b 19.34 b 13.74 b

BlackCC
City 286.2 c 10.17 a 18.24 b 12.97 b 19.36 b 13.78 b
Rain 293.8 c 9.33 ab 18.24 b 12.98 b 19.27 b 13.74 b

Bare
City 281.0 c 6.00 b 17.49 c 12.25 c 18.18 c 12.89 c
Rain 261.4 c 5.6 ab 17.11 d 11.98 d 18.13 c 12.82 c

Mulch <0.0001 0.1765 <0.0001 <0.0001 <0.0001 <0.0001
Water 0.12 0.9542 0.0021 0.0072 0.0954 0.0192

Mulch ×Water 0.1956 0.2697 0.0587 0.0893 0.4201 0.217

For values within mulch, water followed by the same letter are not significantly different according to Fisher’s LSD
(p = 0.1). EF† and LF† were characterized by nighttime soil temperature in specific EF and LF.

4. Conclusions

The three-years of data demonstrated that high tunnels combined with the application of surface
mulches and the row cover, along with different irrigation water can be expected to have significant
impacts on soil temperature, which influenced lettuce growth and development. The mulches had
significant impacts on soil temperature, which was related to total lettuce yield over the falls of 2011,
2013, and 2014. Clear and black plastics all have good soil-warming ability, thus produced the highest
lettuce weights. However, the thermal stress with the higher soil temperatures produced in clear and
black plastics at transplanting may have caused a reduction of plants per plot when compared to the
bare. The biodegradable biobag, spunbond and paper mulches did not heat the soil as much as the
clear or black mulch, but the marketable lettuce yield produced by biobag and paper mulches were
not statistically different compared with the black polyethylene mulch. In addition, the cover crops
incorporated into the soil underneath the black and clear mulch had the potential to save more lettuces
in each plot, but overall lettuce weight per head was reduced significantly when compared to the
non-cover crop treatments. The reduction in yield from the cover crop may be due to less available
nitrogen for plant use, as the organic matter is being decomposed. Moreover, vegetative mulch
produced the coolest soil temperatures, and consistently generated the lowest lettuce yield, so is not
recommended to be applied in HTs. Additionally, during cold nights, row covers can add protection
in the LF, thus produced higher lettuce production when compared to groups without row covers.
Finally, the temperature of city water was generally higher than rainwater except in the EF, and it
could increase the soil temperature by 0.2–0.8 ◦C compared to the rainwater plots. Although there
were several exceptions when soil temperatures were warmer using rainwater than city water, overall
lettuce production was still increased by using city water. Additionally, city water generally provided
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more nutrients than rainwater in terms of K, Mg, and Ca which may promote lettuce growth and
development. Therefore, city water irrigation may not have just warmed the soil but also provided
more nutrients for increased lettuce production.
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Abstract: The study aimed at investigating eventual deviations from typical recommendations of
irrigation water application to crops in Cyprus given the undeniable changes in recent weather
conditions. It focused on the seasonal or monthly changes in crop evapotranspiration (ETc) and net
irrigation requirements (NIR) of a number of permanent and annual crops over two consecutive
overlapping periods (1976–2000 and 1990–2014). While the differences in the seasonal ETc and NIR
estimates were not statistically significant between the studied periods, differences were identified via
a month-by-month comparison. In March, the water demands of crops appeared to be significantly
greater during the recent past in relation to 1976–2000, while for NIR, March showed statistically
significant increases and September showed significant decreases. Consequently, the adjustment of
irrigation schedules to climate change by farmers should not rely on annual trends as an eventual
mismatch of monthly crop water needs with irrigation water supply might affect the critical growth
stages of crops with a disproportionately greater negative impact on yields and quality. The clear
increase in irrigation needs in March coincides with the most sensitive growth stage of irrigated
potato crops in Cyprus. Therefore, the results may serve as a useful tool for current and future
adaptation measures.

Keywords: climate change adaptation; irrigated crops; net irrigation requirements; crop
evapotranspiration; monthly changes

1. Introduction

Theoretical considerations, climate simulation models and empirical evidence indicate that global
warming is leading to increased water vapor and to increased land precipitation at higher latitudes,
notably over North America and Eurasia [1]. However, contrary to many mid-to-upper latitude regions
of the world, several regional studies have shown a dominant decreasing trend over the Mediterranean
Basin [2], although changes will not be equivalent across all Mediterranean regions or seasons [3].

In Cyprus, this change is already being manifested by a decrease in mean annual rainfall and an
increase in annual mean temperature. Model projections agree on its future warming and drying, with
a likely increase of heatwaves and dry spells; a prospect that will worsen the already existing water
scarcity [4,5].

The consequences of such temperature and precipitation changes on a number of aspects of
human life and agriculture might be considerable. In agriculture, increased temperatures or the
extension of dryness may have a negative impact on crop yields [6] and in turn on food security [7] and
may influence crops dynamics, e.g., the exclusion of some crops, or their replacement by others more
adapted to the new conditions [8]. Changes in climatic conditions might also affect the proliferation
and spread of invasive species, weeds, or diseases [9].
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Crop production in Cyprus is covered by annual (e.g., potatoes and vegetables) and permanent
(e.g., citrus, olives and grapevines) crops summing over 100 × 103 ha, of which 30% is irrigable land.
Citrus and potatoes are the most widely grown crops in the country and consume over 30% of the
total agricultural water (150 × 106 m3). Crop production is constrained by a highly variable climate,
limited precipitation and high temperatures from mid-May to mid-September [10]. However, crop
water needs may be fully or partly met by rainfall mainly from October to March. Given the projected
lower precipitation it can reasonably be assumed that irrigation water availability and crop yields will
be affected [11]. Nonetheless, previous work showed that, considering the changes over recent years
in mean rainfall and pan evaporation data, the total irrigation needs of crops in Cyprus have not been
modified, at least until now [12].

While extreme weather events, which are predicted to increase under future climate scenarios,
are already considered a significant challenge for producers [13], little work has been done so far on
the current seasonal or monthly changes of temperature or the distribution of precipitation throughout
the year and the consequences that these modifications may bring upon crops. Such changes may
have an impact on some critical stages of the biological cycle of plants and disproportionately affect
productivity and yields [14]. For example, irrigation experiments showed different effects on wheat
yield, quality, and water-use efficiencies depending on the plant-growth or phenological stage at
which water deficits were applied [15,16]. Therefore, an eventual mismatch of crop water needs with
irrigation water supply might be critical, and adaptation measures related to irrigation schedules or
the adjustment of planting/seeding dates might be necessary.

This study aims to investigate whether one of the characteristics of the ongoing climate change in
Cyprus is a significant modification of the seasonal or monthly water needs and irrigation demands
of crops, and discusses the consequences for agricultural production of an eventual deviation
of the prevailing irrigation schedules to the current climatic conditions. It also investigates the
possibilities for adaptation to climate change challenges using planting period shifts or irrigation
schedule modifications.

2. Materials and Methods

The analysis of water and irrigation needs in this study was applied to 35 irrigated crops cultivated
in Cyprus. Some of these crops require their water needs to be met fully or partially by irrigation,
while some require irrigation only occasionally.

Mean monthly precipitation (mm) and pan evaporation (screened USWB Class A pan) data from
16 weather stations provided by the Cyprus Meteorological Department were used. These stations
were situated in the main agricultural areas of Cyprus.

Crop evapotranspiration (ETc) was calculated from potential evapotranspiration (ETo) and pan
evaporation (Epan) data obtained from the weather stations using the methodology proposed by
the Food and Agriculture Organization of the United Nations (FAO) [17]. More precisely, Epan
measurements were converted to reference evapotranspiration (ETo) using the equation:

ETo = Kp × Epan (1)

where Kp is the pan coefficient, which takes into account the type of pan, its environment and climate.
Potential crop evapotranspiration (ETc) was calculated from ETo according to:

ETc = Kc × ETo (2)

where Kc is the crop coefficient, which depends on the kind of crop and its stage of development.
Combining the previous two equations, ETc can be expressed as:

ETc = Kc × Kp × Epan (3)

152



Agriculture 2019, 9, 4

Substituting Kc × Kp with a coefficient C equation, (3) becomes:

ETc = C × Epan (4)

i.e., crop evapotranspiration is calculated directly from pan evaporation using a single coefficient.
Values of the coefficients can be derived from the literature [18,19] but they were extensively studied
and adjusted to local conditions by the Agricultural Research Institute of Cyprus (e.g., [20,21]).

The net irrigation requirements (NIR) of the crops were calculated by subtracting from the actual
water requirements of crops (ETc values) the effective rainfall (Pe), i.e., rain water that is not percolated
below the root zone or run-off, but is stored in the root zone and can be used by the plants [17].

ETc and NIR values were estimated for the 35 crops cultivated in Cyprus under two overlapping
periods, 1976–2000 and 1990–2014, for each of the 16 weather stations. The mean values obtained for
these two periods for each season (winter: December–January–February, spring: March–April–May,
summer: June–July–August, and autumn: September–October–November) and each month were
compared for each crop.

Statistical Analysis

The mean seasonal or monthly ETc and NIR values for each studied crop and mean seasonal or
monthly precipitation and Epan values obtained from the 16 weather stations were compared between
the two studied periods (1976–2000 and 1990–2014) using a paired t-test (16 double samples for each
crop over the 16 weather stations). A p-value < 0.05 in these tests was considered as statistically
significant (GraphPad Software, Inc., San Diego, CA, USA).

3. Results

Differences of seasonal ETc and NIR estimates were not statistically significant between the
studied periods. The results of the comparison of seasonal NIR between the two studied periods
for selected crops cultivated in Cyprus are shown in Table 1. All crops showed decreased average
irrigation needs in all seasons apart from spring, where some crops appeared to have greater irrigation
water demands in the recent past. The p values for the NIR of many crops were close to statistical
significance in autumn.

Table 1. p-Values for the comparison of seasonal net irrigation requirements (NIR) between the two
periods (1976–2000 and 1990–2014) for selected crops cultivated in Cyprus. Months that are not
included in the irrigation period of a crop are indicated by n/a (non-applicable).

Winter Spring Summer Autumn

Fruit trees (mountains) n/a 0.7157 0.1989 0.0680
Green beans: greenhouse 0.1132 0.6404 n/a 0.1973

Haricot beans n/a n/a n/a 0.0728
Lettuce 0.6292 n/a n/a 0.1639

Marrows: outside grown n/a 0.6714 0.1924 n/a
Melons: outside grown n/a 0.6714 0.1879 n/a

Monkey nuts n/a 0.6080 0.1667 0.0680
Okra (lady´s fingers) n/a 0.9315 0.1750 n/a

Onions dried n/a 0.9814 0.5567 n/a
Peas general n/a 0.8110 n/a n/a

Peppers: outside grown n/a 0.6533 0.1773 0.0680
Pistachio n/a n/a 0.1903 0.0680

Potatoes (spring crop) n/a 0.8070 n/a n/a
Radish n/a 0.0054 n/a 0.0959
Spinach n/a n/a n/a 0.0959

Table grapes n/a 0.6484 0.5567 n/a
Table olives n/a 0.6271 0.1953 0.0712

Table 2, showing the results for only the most water-consuming crops, indicates that March was
the only month in which there was a statistically significant difference (increase) in ETc between the two
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periods (p < 0.05). The water demand of all crops in this month was significantly greater in recent years
than in the distant past. Void cells in Table 2 indicate months that are not included in the irrigation
period of crops in Cyprus. For NIR, apart from March, statistically significant differences between the
two periods were also found for September, as seen in Table 3. In March, the irrigation requirements
were greater for 1990–2014 than for 1976–2000, in contrast to what was found for September.

Table 2. Crop evapotranspiration (ETc) values in mm of the most water-consuming crops in Cyprus.
The upper number for each month indicates the average value for the 1976–2000 period and the lower
number indicates the average value for the period 1990–2014. Non-significant differences between
these two averages are indicated by n.s. (paired t-test) and significant differences (p < 0.05) by *. Months
that are not included in the irrigation period of a crop are indicated by n/a (non-applicable).

Bananas (Musa spp.) Citrus (Citrus spp.)
Taro

(Colocasia esculenta)
Potatoes

(Solanum tuberosum)

January n/a n/a n/a n/a
February n/a n/a n/a n/a

March
22.9

*
18.3

*
32.9

*
54.9

*23.9 19.1 34.4 57.4

April 70.0 n.s. 65.2 n.s. 157.3 n.s. 95.9 n.s.
69.3 64.6 155.7 94.9

May 116.4 n.s. 99.7 n.s. 186.3 n.s. 130.4 n.s.
115.9 99.2 185.5 129.8

June
174.1 n.s. 132.3 n.s. 378.0 n.s. n/a173.1 131.6 375.9

July 219.4 n.s. 138.3 n.s. 448.3 n.s. n/a214.6 135.3 438.5

August 231.8 n.s. 176.0 n.s. 452.0 n.s. n/a227.2 172.5 443.1

September 195.5 n.s. 119.4 n.s. 365.9 n.s. n/a189.0 115.5 353.8

October
123.5 n.s. 52.7 n.s. 153.2 n.s. n/a119.7 51.0 148.5

November
49.2 n.s. 9.6 n.s. 135.0 n.s. n/a47.9 9.4 131.5

December n/a n/a n/a n/a

Meteorological precipitation and evaporation data was analyzed to gain insight into the causes
of this change. Climate charts of the distribution of rainfall and Epan over the months of the year
(Figure 1a,b) illustrate the differences in these meteorological variables between the two 24-year
periods. The mean March Epan value for 1990–2014 was significantly increased in relation to the
1976–2000 interval. March and September were the only months that this statistically significant
difference was observed. An increase in Epan in March was recorded at 13 of 16 weather stations.

All 16 stations showed decreased average precipitation in more recent years, with an average
reduction of 36%. In all other months, the stations showed both increases and decreases in average
rainfall when the two periods were compared. The statistically strong tendency to decreased
precipitation during March was not followed by a respective decrease during the following two
months of spring. In May, for example, at 12 out of 16 stations a tendency towards an increase in
precipitation was noted. For September, which also showed a statistically significant change in the
irrigation needs of crops, the opposite trend was manifested, with only 1 station out of 16 recording a
decrease in rainfall.
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Figure 1. Monthly averages for (a) Class A pan evaporation (mm) and (b) effective rainfall over two
24-year periods (1976–2000 and 1990–2014) in Cyprus. Data from 16 meteorological weather stations.
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Table 3. Net irrigation requirements (NIR) values in mm of the most water-consuming crops in Cyprus.
The upper number for each month indicates the average value for the 1976–2000 period and the lower
number the average value for the period 1990–2014. Non-significant differences between these two
averages are indicated by n.s. (paired t-test) and significant differences (p < 0.05) by *. Months that are
not included in the irrigation period of a crop are indicated by n/a (non-applicable).

Bananas (Musa spp.) Citrus (Citrus spp.)
Taro

(Colocasia esculenta)
Potatoes

(Solanum tuberosum)

January n/a n/a n/a n/a
February n/a n/a n/a n/a

March
8.1

*
5.0

*
15.4

*
34.5

*13.2 8.1 21.3 39.9

April 64.7 n.s. 59.5 n.s. 157.7 n.s. 92.3 n.s.
64.5 59.4 156.6 91.8

May 119.5 n.s. 101.6 n.s. 194.0 n.s. 134.4 n.s.
117.9 100.0 192.0 132.7

June
182.1 n.s. 137.5 n.s. 399.6 n.s. n/a181.2 136.9 397.6

July 218.4 n.s. 137.3 n.s. 447.3 n.s. n/a213.0 133.7 436.9

August 231.5 n.s. 175.7 n.s. 451.7 n.s. n/a226.1 171.4 442.0

September 194.6
*

118.5
*

365.0
* n/a186.7 113.2 351.5

October
120.0 n.s. 44.4 n.s. 151.7 n.s. n/a118.2 45.0 148.9

November
20.1 n.s. n/a n.s. 107.9 n.s. n/a20.3 107.5

December n/a n/a n/a n/a

4. Discussion

The re-estimation of irrigation required two successive past periods in order to evaluate the effect
of the ongoing changes in precipitation and evaporative demand of the atmosphere on the water
demand of crops. The results revealed some interesting effects of ongoing climate change, which
usually do not receive the deserved attention, and which could prove to be a useful guide for farmers,
policy makers, government officers and agricultural advisors.

The trends in the change of mean annual precipitation and mean annual temperature in Cyprus
are not reflected equally or proportionally at different times of the year. Consequently, the adjustment
of irrigation schedules to climate change by farmers should not rely on annual trends as practiced
by local growers. Focusing on month-by-month changes revealed strong trends towards an increase
in evaporation during March at all meteorological stations, which in combination with a respective
decrease in precipitation attests that an adjustment of irrigation water provision to crops is needed.
Irrigation programs that are based on “old” meteorological data would result in water deficiencies,
which may affect critical growth stages of plants. Moreover, in many cases, farmers now need to
irrigate their crops during March, whereas previously, irrigation in March was negligible. In March,
the precipitation dropped by 36% and the amount of water that would be needed to compensate for
this reduction was estimated to be also 36% on average, as rainfall covered a large part of the total
water demand of crops. Climate change effects on irrigation scheduling parameters were also found
in Calabria, Italy. From an analysis of reference evapotranspiration (ETo) during the last decades, it
was shown that a positive trend in summer precipitation also caused an advance of the last watering,
resulting in a slight decrease of the length of the irrigation season [22].

The example of potatoes is probably indicative of the necessary adaptation measures. Potatoes
are one of the most exportable products of Cyprus and one of the most water-consuming crops. The
“spring crop” or the “main crop” is planted in November/February and harvested in March/June
mainly for export, but also for local consumption. Stolonization and tuber initiation are the stages
that are most sensitive to water shortage [23], mainly because they are the stages of the highest crop
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water demand. If water shortages occur during the mid-season stage, which in Cyprus coincides with
March, the negative effect on the yield will be pronounced. Karafyllidis et al. [24] showed that limited
soil moisture availability affected yield and the number and size of tubers. In the following year, seed
produced under conditions of moisture stress produced plants with 20% fewer stems, 24–33% less
yield, 18–22% fewer tubers and 19–22% fewer large tubers than plants from seed produced under
abundant water supply.

Hence, irrigation should be applied as an adaptation measure to safeguard yields if meteorological
trends continue as they are today. An earlier shift of plantation dates could alternatively also be
envisaged as an adaptation measure of potato cultivation, as crops would have completed their
water-sensitive stage before the less favorable conditions of March. An analysis of the optimum
adjustment of planting dates for corn and soybean was also suggested by Woznicki et al. [25] as one of
the best adaptation strategies to cope with future climate change scenarios.

However, in contrast, precipitation increased from 0.9 to 2.3 mm in September, affecting irrigation
water demand for this month by only 5%. This is because the contribution of rainfall to the total
amount of water that needed to be applied to crops in September was nevertheless very small. In this
case, following current irrigation guidelines would result in supplying crops with an excess of water.
This would not have a negative effect on productivity and yields but it would result in wasting
water. The results, therefore, support the notion that in changing climatic conditions, the irrigation
adaptation actions required are different in each case depending on specific conditions. Using a
modeling approach to simulate the impact of various climate change scenarios on crop water and
downscaling climatic parameters derived from global circulation models, Doria and Madramootoo [26]
similarly suggested that in order to sustain crop production in the future, efficient irrigation scheduling
for producers should be used as an adaptation measure.

The monthly changes in weather conditions that were highlighted in this study and their
significant effects on agricultural production constitute a very subtle aspect of climate change, as they
are not obvious even as seasonal changes. As a result, we advocate for further examination and
verification in other places with a similar climate. However, if the shown precipitation and evaporation
trends continue in the future, rainfed crops could also be affected and emphasis should be placed on
supplementary irrigation during March. The addition of small amounts of water in this month could
improve and stabilize yields, providing the missing moisture for normal plant growth.

5. Conclusions

Irrigation schedules that are based on the average evaporation and rainfall records of an area
have to be adjusted to recent changes of climatic parameters even if the year-round changes are not
significantly affected. Shifts in rainfall and temperature “allocation” across the months of the year call
for a corresponding adjustment of the irrigation water applied to crops, as an eventual mismatch with
plant needs could significantly affect some of their critical growth stages. The adjustment of irrigation
schedules should be based on more local studies, even if they are in opposition to trends found in
wider areas.
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