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The field of brain–computer interfaces (BCIs) has grown rapidly in the last few decades, allowing
the development of ever faster and more reliable assistive technologies for converting brain activity
into control signals for external devices for people with severe disabilities. In recent years, however,
the scope of BCIs has been extended from assistive technologies to neuro-tools for human cognitive
augmentation for everyone. For instance, novel applications of BCIs have been proposed, enabling
people to go beyond human limitations in sensory, cognitive, and motor tasks [1–4]. These include
new and exciting paradigms, such as BCIs based on the brain activity of multiple people [5].

The aim of this special issue was to gather high-quality papers—including both reviews and
reports on novel research—representative of the ongoing research in the area of BCIs for human
cognitive augmentation. Twelve manuscripts were received through the open submission window,
which went through a rigorous selection, peer review, and revision process, resulting in five papers
being accepted for publication within the special issue. These papers are briefly described below.

One of the earliest BCI applications, the famous P300 matrix speller developed by Farwell and
Donchin over three decades ago [6], provided a simple and practical way for restoring communication
capabilities to the paralyzed. Since then, a large variety of spellers have been developed, which
explore different paradigms, graphical user interfaces, neuroimaging techniques, and signals from
the brain used to control the device. The paper by Rezeika et al. [7] in this special issue presents a
thorough overview of the main EEG-based spellers that have been developed in the current decade
(Jan 2010–Jan 2018). The authors propose a taxonomy based on the type of neural activity exploited:
P300, steady-state visual-evoked potentials (SSVEP), motor imagery (MI), or hybrid. They further
categorize the spellers based on operation, selection, stimuli modality, gaze dependency, and word
prediction, also highlighting the need of keeping the final users in the loop when testing new
BCIs. We hope this review will serve as a reference point for researchers interested in the area
of BCI-mediated communication.

Given the importance of spellers in BCI research, it is not surprising that another paper in this
special issue focuses on this. One of the most common limitations of BCI spellers is that they are
typically tested with able-bodied users, but then fail when tested with locked-in patients. Tonin and
colleagues [8] propose a novel BCI speller, that potentially enable patients in the complete locked-in
state to express their thoughts, needs, and desires. This speller does not rely on letter-by-letter spelling.
Instead, the speller is based on yes/no questions, aimed at gradually restricting possible interpretations
and eventually allowing guessing the sentence that the patient would like to spell. The binary answers
of the patient are decoded from his/her brain signals, recorded using functional neural infrared
spectroscopy (fNIRS). Thanks to an artificial neural network and a binary decoding together with a
sequence of questions, this BCI achieves higher accuracy than other BCI spellers.

Many BCI applications, starting from spellers, are based on event-related potentials (ERPs)
recorded with EEG. It is, therefore, vital to be able to identify those ERPs (e.g., the P300) from the
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raw EEG signal recorded from the user’s scalp. The third article of this special issue, by Ramele and
colleagues [9], reviews the main methods used for detecting patterns in the EEG activity that could be
used in a BCI. The authors compare different methods on both a pseudo-real dataset and the public
dataset BCI competition II, both based on (again) a P300-based BCI speller. The authors conclude that
fully-automated solutions for identifying such patterns are often suboptimal, and that hybrid systems,
using both machine-learning algorithms and the experience of clinicians, may allow BCIs to reach
higher accuracies.

The final two articles of this special issue focus on novel applications of BCIs for human
augmentation. Nayak and colleagues [10] explore the possibility of detecting changes in human
performance, as temperature changes in a work environment, from brain signals. In their study,
they have monitored EEG, skin temperature, and heart rate while users were undertaking some office
tasks of different difficulty level (i.e., arithmetic problem-solving and typing). They used the room
temperature as an independent variable to change the performance of the users in the task, as people
are more efficient when put in a comfortable environment. Then, they used neural and physiological
signals separately to predict the performance of the user. Weak correlation was found between either
the heart rate or the skin temperature and performance level. However, Nayak and colleagues found
that EEG features in the power spectrum make good predictors of the performance level of the user.
These findings could lead to the development of closed-loop, passive BCIs [11] able to monitor workers
and adjust in real time the environmental conditions to maximize their performance.

The last article of this special issue proposes a novel paradigm for integrating humans and
machines. In the future, it is very likely that many tasks will be performed by artificial intelligence
(AI), but it is also extremely likely that in many other complex tasks there will be a tight integration
between humans and AI devices. To achieve the latter, Marc Cavazza [12] proposes to use a BCI to
keep the human in the loop, using his/her brain signals to influence the internal heuristic searches
performed by the AI devices: the main computations are still performed by AI, with the human,
however, being able to supervise the task. The BCI measures the variations of prefrontal asymmetry
from a baseline and uses a mapping algorithm to translate such changes into weighting coefficients for
the AI device. This framework could potentially be applied to many human–AI problems.

We hope the readers will find the articles in this special issue interesting and useful. Finally,
we would like to thank all the authors who contributed to this special issue, the reviewers for dedicating
their time and providing constructive feedback to the submitted papers, and the editorial staff of
Brain Sciences for their support.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: A Brain–Computer Interface (BCI) provides a novel non-muscular communication method
via brain signals. A BCI-speller can be considered as one of the first published BCI applications and
has opened the gate for many advances in the field. Although many BCI-spellers have been developed
during the last few decades, to our knowledge, no reviews have described the different spellers
proposed and studied in this vital field. The presented speller systems are categorized according
to major BCI paradigms: P300, steady-state visual evoked potential (SSVEP), and motor imagery
(MI). Different BCI paradigms require specific electroencephalogram (EEG) signal features and lead
to the development of appropriate Graphical User Interfaces (GUIs). The purpose of this review is
to consolidate the most successful BCI-spellers published since 2010, while mentioning some other
older systems which were built explicitly for spelling purposes. We aim to assist researchers and
concerned individuals in the field by illustrating the highlights of different spellers and presenting
them in one review. It is almost impossible to carry out an objective comparison between different
spellers, as each has its variables, parameters, and conditions. However, the gathered information
and the provided taxonomy about different BCI-spellers can be helpful, as it could identify suitable
systems for first-hand users, as well as opportunities of development and learning from previous
studies for BCI researchers.

Keywords: Brain-Computer Interface (BCI); Speller; Graphical User Interface (GUI); Steady State
Visual Evoked Potential (SSVEP); P300; Motor Imagery (MI); hybrid

1. Introduction

In this review, we primarily focus on the recent advances in the field of Brain–Computer Interface
(BCI) spellers for different electroencephalogram (EEG) signals’ features. These speller systems
are usually a graphical representation of letters, numbers, and symbols which are controlled using
different BCI types for spelling and typing. Audio output can also be included by modern speech
synthesis/voice recognition systems.

The majority of research papers in the BCI field focus mainly on the development of the system’s
back-end to improve the signal processing algorithms and boost the performance of the system (see the
Research Methodology section). Our assumption is that, as the Graphical User Interface (GUI) of the
BCI speller is the front-end, it is the first parameter which the end-user would judge on a BCI-speller,
and, therefore, more attention should be given to it.

The goal of this paper is to describe and gather details about some unique and successful
BCI-speller systems (from our point of view), specifically those published during this decade. The older
state-of-the-art systems are discussed in this review as they are very well known and represent the
basis on which many of the newer developments were built on. These systems were mainly developed
with the objective of creating possible communication methods for patients suffering from motor

Brain Sci. 2018, 8, 57; doi:10.3390/brainsci8040057 www.mdpi.com/journal/brainsci4
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neuron disease (MND) or with the goal of providing an initial proof of concept through examining the
reliability of such systems by testing them with healthy subjects.

First of all, this review will benefit many researchers in the field as it provides a reference
point giving an overview of the most successful BCI spelling systems. Consequently, it makes
it easier and faster to go through many studies, facilitating the initial phase of a new research.
Additionally, this review lists the improvements of different BCI-spellers, while highlighting the
recent improvements and changes made with respect to the past and also presenting a taxonomy and
classification of different features of such systems. This uncovers new development opportunities for
further studies and underlines the relevant know-how for fresh researchers in the field.

Another group which could benefit from this paper are the MND patients, their families,
and caregivers, as they are the main targeted end-users for BCI spelling applications. As nowadays
internet research is a common skill, many patients’ family members conduct internet lookups to
find suitable rehabilitation systems or any new technology, which might help their afflicted relatives.
Finding a review paper listing different options and developments of BCIs for communication (spelling)
might be beneficial. It is difficult for healthy users and designers to anticipate the needs of an afflicted
person. This review might encourage more patients to be willing to contribute with their opinions
and testing for such systems. A BCI speller is characterized by features which attract the end-user.
These characteristics are presented in an “easy-to-understand” taxonomy chart. End-users with basic
or no prior understanding of the field could build a general knowledge about BCI spellers by reading
through this review. The expectation is that there are potential end-users who are interested to learn
about BCI. This review offers a smooth start from which MND patients (and patients with similar
symptoms) with no previous knowledge or naïve understanding of BCI could begin improving their
quality of life by using such systems for communication purposes. Publishing this review as an open
access article might also reach more potential users and introduce them to BCI for the first time.

The review is structured as follows: Section 2 “Brain–Computer Interface” is a brief introduction
and explanation of BCI in general, focusing on the relevant concepts in this review. Section 3, “Research
Methodology”, describes the construction methodology of this review. Section 4, “Review of BCI
Spellers”, presents the different types of BCI-speller GUIs, showing their features and characteristics
with a short discussion concerning the described systems in each subsection. In Sections 5 and 6,
“Discussion” and “Conclusions”, a general discussion about BCI and similar systems is presented,
while expressing our personal opinion about the upcoming development opportunities in the field.

2. Brain–Computer Interface

MNDs affect how the brain communicates with the other organs in the body by disrupting
neurological networks; they mostly affect the motor control of the muscles. They include
Amyotrophic Lateral Sclerosis (ALS). Similar symptoms are shown for Locked-in Syndrome (LIS),
brainstem stroke, brain or spinal cord injury, cerebral palsy, muscular dystrophies, and multiple
sclerosis, which eventually cause the afflicted patients to lose their ability to control voluntary muscles,
mostly consisting of the skeletal muscles and the tongue, thus causing functional and cognitive
disabilities. More details on MNDs can be found in [1]. As a result, these patients find it increasingly
difficult to communicate with their surroundings, as they cannot speak or even use their hands for
sign language.

To help patients to regain their social life, an alternative way of communication is needed.
An example of such communication systems, which has been around for years, are the eye-tracking
spelling systems, which depend on the movement of the eye that controls a cursor on a virtual keyboard
and selects the desired letters [2]. Also, a simple eye blinking can be used as a communication method.
Such and similar systems might not be suitable for some patients who have lost the ability to precisely
control fine ocular movements or who experience uncontrollable head movements [1,3].

A solution which would allow these patients to communicate is the utilization of modern BCI.
A BCI system allows people to communicate through brain signals without the need of any muscular
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movement. It provides an artificial output that is different from the usual natural output of the nervous
system, which is disabled in most MND patients.

There are many methods to monitor the brain’s activity. One of the most common methods for
measuring brain waves, and our focus during this review, is the electroencephalogram (EEG) [4].
EEG is a non-invasive measurement technique widely used in almost all modern BCI applications,
more practical than Electrocorticography (ECoG), which requires an opening through the skull to
directly access the brain tissue [4]. The main reasons why EEG is so common are: EEG equipment
is relatively inexpensive, portable, simple to set-up, and provides a signal with high time resolution
compared to other non-invasive methods for monitoring brain activity like Magnetic Resonance
Imaging (MRI) or Positron Emission Tomography (PET), just to mention a few [5]. Also, non-invasive
BCIs could become a useful tool to be utilized and tested by healthy individuals for research and
development of applications [4].

After measuring and recording the brain activity in a BCI system, specific features of the signal are
extracted and analyzed by the computer. This output has the potential to serve as a BCI application which
might replace, restore, enhance, supplement, or improve the function of the central nervous system [6].

Over the recent years, BCI researchers have been developing various applications which might
be useful for MND patients in particular. One of the most commonly studied applications is the
BCI-speller. Usually, a BCI-spelling application allows the users to communicate with the environment
using a GUI. The GUI displays letters, numbers, and special characters. With the aid of the brain
signal recorded and analyzed by the BCI system, the user selects the desired character and types it
on the screen or other output displays. Farwell and Donchin presented the first spelling application
in 1988 [7]. Promising accuracy levels and typing speeds have been presented in the literature
since then. Consequently, BCI spelling applications were further developed, allowing people to
communicate directly through the measurements and direct interpretation of brain activities. In general,
the loss of communication for such patients affects their quality of life negatively as presented in [8].
Subjects using a BCI-speller can be more independent and can even regain their social life to a relatively
high extent.

The measured brain activity from the BCI is interpreted with the intention of selecting the desired
key (letter, number, or symbol) shown on the screen. In contrast to standard physical keyboards used
traditionally in most computer systems, where the user selects the desired key by physically pressing
it, in a BCI system, the user selects a key by looking at it (or by other sensory modalities in some cases),
and the letter will be “pressed” by the computer according to the measured and classified brain signals.

The performance of BCI-spellers is commonly measured by calculating the accuracy and the
Information Transfer Rate (ITR) of the system. The accuracy is calculated by dividing the number of
correct commands by the total number of commands. The commonly used ITR was introduced by
Wolpaw in [9], originally presented much earlier, as discussed in [10]. The ITR combines the accuracy
and the system’s speed in one variable and it is expressed as the number of error-free bits per time unit.
It is important to note that the ITR may be calculated in different ways (e.g., on the level of commands
or of the letters) in different types of BCIs. It can only be used objectively to compare the performances
of systems of the same type.

This review focuses on the main EEG paradigms used by the vast majority of BCI spellers:
Event-Related Potentials (ERP) (mainly P300 and Steady-State Evoked Potential (SSEP)) and motor
imagery (MI, also called Event-Related Desynchronization/Synchronization (ERD/ERS)) [4,5].

2.1. Event-Related Potential (ERP)

ERPs are electrocortical signals which can be detected and measured using EEG, during or after
a sensory, motor, or psychological event. They usually have a fixed known time delay to a stimulus
and a different amplitude compared to the spontaneous EEG activity. ERPs are less frequent and more
localized than the normal EEG-measured signal. Different ERPs can be evoked using different types
of stimulus (events), and the evoked ERP is characterized by a specific time delay and/or location
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where it was generated. The two most common ERPs are the P300 and the Steady-State Visual Evoked
Potential [11].

The P300 wave is a type of event-related potential which occurs in the human brain as a positive
deflection with a time delay of around 300 ms after a specific event has occurred [12] (although the
timings may vary, as discussed in [13]). The P300 signal is usually intensified over the central parietal
region of the brain and can be detected using EEG. The event which stimulates the P300 is known as
“the oddball paradigm” [7]. Accordingly, this paradigm consists of three main prerequisites [6]:

• A subject is presented with a series of stimuli or events; each of them belongs to one of two classes
(e.g., a desired or an undesired event)

• One of the classes is less frequently presented than the other class (a rare event versus a usual event)
• The subject needs to pay attention to one of the stimuli when it occurs (e.g., counting how many

times a particular letter will flash, which is the rare event).

The rare events induce the P300 signal in the brain. Researchers have developed both visual
and auditory stimuli to induce a P300 signal for different systems and applications (Visual Evoked
Potential (VEP) and Auditory Evoked Potential (AEP)). One of the first BCIs using the P300 signal is
a speller developed by Farwell and Donchin in 1988 (Figure 1a) [7], which used visual stimulation for
the “the oddball paradigm”. Hill et al. in 2005 [14] introduced the first P300 BCI based on auditory
stimuli. In 2014, a novel auditory speller, named “charstreamer”, was presented by Höhne et al. [15].
As for other types of sensory stimulation, in [16], a tactile P300 BCI was developed by fixing vibration
motors at different locations around the participant’s waist. The user had to focus on the vibration at
the desired location and ignore all the others to elicit a P300 signal. More recently, researchers started
experimenting with placing motors on different parts of the body, such as the back or the hand of the
user, with the aim to improve the tactile P300 BCI performance [16,17].

P300
8 57 Hz

SSVEP
SMR

(a) (b) (c)

Figure 1. Schematic representation of three major Brain–Computer Interface (BCI) paradigms:
(a) P300 paradigm. The oddball paradigm causes a P300 signal in the brain of the user which is
then interpreted by the BCI system, resulting in the selection of the desired letter; (b) Steady-State
Visual Evoked Potential (SSVEP) paradigm. Five different frequencies are shown on the screen in
this example, as discussed later. When the user gazes at one of them, an SSVEP signal with the
same frequency (as well as its harmonics) is elicited in the visual cortex of the brain. The measured
electroencephalogram (EEG) data are analyzed by the BCI, and a command is sent to the computer to
select the target; (c) Motor imagery (MI) paradigm (with a schematic representation of a Hex-O-Spell
application, as discussed later). The imagination of the movement of limbs (in this picture an imaginary
movement of an arm) induces a sensorimotor rhythm (SMR) signal which is detected and analyzed by
the BCI system, and a feedback is sent to the computer to control the movement of the green arrow for
letter selection. In this case, the presence of an external stimulus is not required.

The Steady-State Evoked Potential (SSEP), specifically the Steady-State Visual Evoked Potential
(a type of VEP) (Figure 1b), is characterized by positive and negative fluctuations in the EEG
signal which are responses to a visual stimulus. For example, light is flashing, an image is
appearing/disappearing, or a pattern is presented with a certain frequency. SSVEP is recognizable in
the EEG recordings as voltage oscillations which are further processed to detect their unique features,
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such as frequency and amplitude. When the external visual stimulus is flickering at a specific constant
frequency, an SSVEP is elicited with a peak frequency matching the stimulus (as well as its harmonics),
mainly in the visual cortex, located in the occipital region of the brain, given that the subject’s eyes are
fixated on the stimulus. Usually, a frequency analysis technique, such as Fast Fourier Transform (FFT),
is used to detect the stimulation frequency [6].

In a standard SSVEP system, taking a spelling application as an example, the targets
can be individual letters or groups of characters or command boxes. Each target flickers with
a unique frequency. This is also known as frequency-modulated Visual Evoked Potential (f-VEP).
Another well-known type of VEP is the so-called code-modulated Visual Evoked Potential (c-VEP).
Instead of using a constant flickering frequency, the stimulus is a pseudorandom swapping of
orthogonal patterns [18]. It is worth adding that tactile stimuli were also used to elicit an SSEP
response in a BCI system [19].

Another type of VEP is the Motion-Onset Visual Evoked Potential (mVEP). The above mentioned
VEPs depend mainly on light flashes or patterns. In 2008, Fei Guo et al. [20] presented a different
approach, the first BCI system based on mVEP. In [20], visual responses from the dorsal pathway
of the visual system were utilized, which led to the use of more elegant visual stimuli. The mVEP
paradigm has been used for several years to investigate human brain motion processing [21]. It is
typically comprised of three main peaks: P1, N2, and P2. The N2 peak, with a latency of 160–200 ms,
is predominantly motion-specific, and the P2, with a delay of about 240 ms, is elicited with more
complex visual moving stimuli [22–24]. The mVEPs are usually elicited by a pre-defined simple motion
of the visual targets.

2.2. Movement Imagination

The sensorimotor rhythm (SMR) (Figure 1c) can be recorded over the motor cortex with the
contribution of some somatosensory areas. During movement, Motor Imagery (MI) and movement
preparation the SMR can be decreased or increased; these options are known as Event-Related
Desynchronization (ERD) and Event-Related Synchronization (ERS), respectively [11]. During ERD,
the signal drifts and becomes lower than a specific baseline, which might be due to the desynchronization
of the activities of specific areas of the brain [11]. On the other hand, during ERS, the signal measured
during movement is stronger when compared to a baseline. The signal location varies depending on
which limb is moving and on which side of the body the specific movement is taking place. It was also
discovered that the imagination of a movement without actually performing it elicits a similar EEG
signal [25]. Even though this signal is weak in comparison to ERP and VEP, leg and arm movements
can be distinguished, as well as the side of the upper limb (left or right) [6].

3. Research Methodology

Literature research was conducted according to the PRISMA guidelines [26] (PRISMA diagram
shown in Figure 2), using the IEEEXplore Digital Library (incl. conference proceedings) and further
online databases through Web of Science (WOS). In both, the search was conducted using the search
terms “BCI” AND “speller”, and the dates were restricted from 2010 to January 2018. First, the search
was done without constraining the years, as a test. WOS showed 316 results, and IEEE showed
213 results, giving a total of 529 (including duplicates if any). Later, the search was performed with
time restriction. WOS showed 287 results, and IEEE showed 173 results, giving a total of 460. From this
observation, we deduced that the steep growth of research during this decade deserved a deeper look,
taking into account the origin of these developments from earlier years.
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Figure 2. PRISMA chart.

Both lists (WOS time-restricted and IEEE time-restricted) were extracted for analysis. Duplicates were
detected, as some of the IEEE conference proceedings and journal papers were listed on the WOS database.
First, the duplicates were removed, resulting in a total of 412 papers and articles. Then, the papers
were checked and classified manually according to BCI type, output type, number of subjects,
type of subjects, and purpose of the research. The final step was to determine which papers were
relevant to the topic of our review. The filtration of 412 remarkable papers and articles according
to the below-mentioned classification criteria used in this review was a delicate process, which took
an extensive number of working hours:

• Non-invasive BCI = EEG-based BCIs
• Only visual stimuli or movement imagery
• The purpose of the research or the aim of the research is the development of a new Graphical

User Interface (GUI) for a BCI speller system OR a clear modification of an existing GUI
• Published between 2010 and January 2018 (with few exceptions).

BCI Spellers Taxonomy

All BCI speller systems can also be categorized according to the following characteristics:
dependent or independent, synchronous or asynchronous, with regard to the stimulus type and
gaze dependency.

The P300 and SSVEP depend on visual stimulation to induce a specific brain activity which can
be later interpreted by the BCI system. Thus, a stimulus must be physically present in the environment
to initiate the required signal. The P300 and VEP require a structured environment to present external
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stimuli. Such BCIs are usually implemented as dependent BCI. The MI-BCI, however, depends on
the imagination of the movement of any limb, whole-body activities, performing of specific cognitive
tasks, relaxation, etc. This imagination initiates a brain activity in the motor cortex region of the brain,
which can be detected and interpreted by the BCI system. In this case, only the subject is responsible for
creating and firing up the desired brain signal; MI-BCI systems are therefore classified as independent
BCIs, as no external (e.g., visual) stimuli are required.

A synchronous system limits the time intervals when the BCI will process the measured and
analyzed brain activity into actions [27]. It provides a starting point and measures a specific brain
signal which happens afterward. Thus, the system limits and specifies the time at which the BCI
can use the measured activity to produce a useful output. In the meantime, the protocol might
provide the user with cues to alert the user to get ready and prepare for the coming stimulation phase.
Usually, synchronous BCIs do not consider the possibility that, at a specific point in time, the user
has no intent to use the system. The commonly used P300 speller application based on [7] is a typical
dependent synchronous BCI. The P300 stimuli occur for a specific, pre-defined period in which the
user has to focus the attention on the displayed GUI for a meaningful output. In addition, some MI
applications specify the time slot where the user should imagine the movement, i.e., the user has to
wait for a cue to perform a movement imagination, otherwise an error would occur [6].

The asynchronous (or self-paced) protocol is simply the opposite. The user has the ultimate control
over the system, whenever they desire. Asynchronous BCIs result in a more natural and dynamic
interaction between the user and the system. The user does not have to wait for a cue to control the
system. The SSVEP-based BCI system can also be created as an asynchronous BCI, e.g., the user directs
his/her focus of attention on the flickering SSVEP stimuli (when the user shifts her/his gaze away
from the stimuli = no classification) [6].

Moreover, recent studies are investigating BCI-spellers according to the type of attention needed,
whether it is overt or covert. Overt attention occurs when eye movement is involved in paying
attention to a specific visual space or region. Covert attention is more of a mental attention and not
a specific visual attention. While the eyes are fixed, the attention is shifted mentally to the desired focus
point; this attention is not directly associated with eye movements. These two types of attention allow
another categorization of BCI spellers: gaze dependency (gaze-independent versus gaze-dependent).
Many studies are seeking to achieve a gaze-independent speller that requires minimum ocular muscles
movement. However, gaze-dependent spellers are most common.

Another characteristic of a BCI speller is the type of stimulus presented to the user. Most SSVEP
systems rely on flickering stimuli with constant frequencies (each stimulus has its own unique
frequency). P300 spellers, as mentioned before, are based on the oddball paradigm according to
which characters are flashed periodically in a predefined order (pseudorandom). A number of them
apply the oddball differently by animations, flashing faces, or movement.

Table 1 shows the taxonomy for the different BCI paradigms according to this categorization for
the studies listed in this review. The filtered data resulted in 69 papers which meet all the filtration
criteria. Of these papers, 45 are based on P300, 16 on SSVEP, and 4 each are based on MI and hybrid BCI.
At the top of Table 1, the contribution percentages, from the total number of PRISMA results, of each
BCI type are presented. The figure also categories the 69 systems according to the above-described
taxonomy. This table could assist our readers to select the speller which falls into the category of
interest or even find the appropriate speller on the basis of other characteristics. It also highlights some
development opportunities, for example, none of the 45 P300-based spellers is asynchronous. It also
underlines the features of each speller described in this review.
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Table 1. BCI spellers’ taxonomy. The table also classifies the papers presented in this review according
to the suggested taxonomy.

BCI Paradigm P300 45 Studies 65%
of Total

SSVEP 16 Studies
23% of Total

MI 4 Studies
6% of Total

Hybrid 4
Studies 6%

of Total

Operation Modality

Asynchronous 0.0% 68.8% 75.0% 25.0%
21.7% [28–38] [39–41] [42]

Synchronous 100.0% 31.3% 25.0% 75.0%
78.3% [7,43–88] [89–93] [94] [95–97]

Gaze Dependency

Gaze Independent 15.6% 6.3% 75.0% 0.0%
15.9% [74,78–80,82–84] [37] [39,40,94]

Gaze Dependent 84.4% 93.8% 25.0% 100.0%

84.1% [7,43–54,56–60,62–73,
75–77,81,85–88] [28–36,38,89–93] [41] [42,95–97]

Selection Modality

Direct Target Selection 100.0% 87.5% 25.0% 100.0%
92.8% [7,43–88] [29–36,38,89–93,98] [94] [42,95–97]

Moving Cursor 0.0% 12.5% 75.0% 0.0%
7.2% [28,37] [3–41]

Stimuli Modality

Constant Flashing 0.0% 100.0% 0.0% 50.0%
26.1% [28–38,89–93] [95,96]

Periodic Flashing 82.2% 0.0% 0.0% 75.0%

58.0% [7,43,44,46–49,57–60,
62–81,83–88] [42,95,97]

Moving/Animation 17.8% 6.3% 0.0% 0.0%
13.0% [45,50–54,56,82] [93]

No visual Stimuli 0.0% 0.0% 100.0% 0.0%
5.8% [39–41,94]

Word Prediction

Yes 13.3% 18.8% 25.0% 0.0%
14.5% [62–65,75,76] [28,37,38] [94]

No 86.7% 81.3% 75.0% 100.0%
85.5% [7,43–60,66–74,77–88] [29–36,89–93] [39–41] [42,95–97]

4. Review of BCI Spellers

Many types of BCI spellers have been developed over the years. This review primarily discusses
the work done since the beginning of this decade considering the development of novel Graphical User
Interfaces (GUI) of BCI spellers or improvements on the already existing and widely known GUIs.

As presented in the previous Section 3, over 400 publications were issued since 2010, with the aim
of developing BCI-spellers. The PRISMA guidelines analysis showed that only ~18% of these studies
directly targeted the improvement of the GUI design. Although other developmental aspects of a BCI
system are very important to achieve a high-performing BCI-speller, the GUI is the first thing the
end-user would encounter when dealing with such systems and it very often gets the least attention in
the development process. In our opinion, the user-friendliness and the performance of the system are
important factors. In addition, the design of the GUI might directly affect the performance parameters
(accuracy and ITR).

In total, 75 relevant papers are discussed in this section of the review. The section classifies the
spellers according to the type of BCI system used. This classification was presented for two main
reasons: (1) Different types of BCIs might perform differently for the same user. The end-user might be
interested in reading about a specific type of BCI, if from a previous experience he/she knows that this
is the most suitable for him/her.; (2) Usually, each research team is working on a specific type of BCI
paradigm. Categorizing these papers in this manner would also be beneficial for the readers.

4.1. P300 Spellers Based on the Matrix Speller

The first P300-based speller was introduced by Farwell and Donchin [7], and Figure 3a is
showing a similar design to their GUI. It was the first BCI application based on P300. It consisted
of a 6 × 6 matrix of flashing symbols displayed on a monitor. The items were organized in rows
and columns (row–column paradigm, RCP), which were intensified in a random order, constituting
an “oddball” paradigm. As this matrix consisted of six rows and six columns, at least 12 flashes were
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needed to flash each column and row once. The subject focused his/her attention on the target letter
and was asked to count the number of flashes to help focus. The flashing of the row and the column
which contained the desired target would produce a P300 wave in the EEG signals. The EEG signal
was then processed, and the P300 signal was correlated to the order of occurrence of the flashing of the
presented rows and columns. The analysis of these data resulted in the exact row and column which
induced the P300 signal, the intersection of which was the selected letter.

(a) (b) (c)

BCI  B

A B C D E F

G H I J K L

M N O P Q R

S T U V W X

Y Z  1 2 3 4

5 6 7 8 9 -

Screen Type: CRT Refresh rate: ? Resolution: ? CRT N/A N/A N/A  

BCI  B

A B C D E F

G H I J K L

M N O P Q R

S T U V W X

Y Z  1 2 3 4

5 6 7 8 9 -

Screen Type: 17" LCD Refresh rate: 50 Hz Resolution: 1280x1024 px 17" LCD 50 Hz 1280x1024 px 55 cm  Screen Type: ? Refresh rate: ? Resolution: ?

BCI  B

A B C D E F

G H I J K L

M N O P Q R

S T U V W X

Y Z  1 2 3 4

5 6 7 8 9 -

 N/A N/A N/A 90 cm  

Figure 3. Graphical User Interface (GUI) of a modern P300 speller: (a) Matrix Speller inspired by the
matrix developed by Farwell and Donchin in 1988 [7], shown during the intensification of the third row.
(b) The random intensification similar to the one discussed in Yeom et al., 2014 [43]. (c) A view of the
Edge Paradigm from Obeidat et al., 2015 [44] showing the intensification of the edge point next to the
third row. All the above figures show “BCI” as the target word during spelling and “B” as an already
selected character. Figures modified from the cited sources.

The maximum accuracy reached in this study was 95% at a speed of 12 bits/min. This means
a character can be selected from the matrix in approx. 26 s. This can be considered as very slow
compared to conventional typing systems for healthy people; however, it can mean a lot for a person
with no other means of communication.

The Matrix Speller is the base of most P300 BCIs. Researchers conducted many developments to
make it faster, to achieve better classification, accuracy, and user-friendliness. The first research
conducted by Farwell and Donchin had only four healthy subjects; however, over the years,
many subjects (healthy and with different disabilities) have been testing their concept.

Farwell and Donchin proved the concept that P300 can be used for selecting a specific choice
using the special arrangements of characters in the matrix, confirming that the P300 can be used for
a communication application.

4.1.1. Stimuli Variations

Many variations were proposed based on the GUI of the P300 Matrix Speller. One of the main
variations is the change of the flashing stimuli. In 2010, Liu et al. [45] tested and discussed different
types of intensification techniques for the Matrix Speller. Instead of just flashing individual symbols or
rows and columns, as the flashing can be uncomfortable for some subjects, they used graphical effects
like translations, rotations, zoom in/out, pattern rotation, and sharpening types. This stimulation
technique can be applied to bigger menus with the advantage of a lower number of flashes, for a faster
system. The different stimulation techniques suggested were a relative success. As a result, the best
intensification was not the same for all subjects. This means the speller can be personalized individually
for the best performance of each subject. Some types showed better results than typical flashing or
a simple color change.

In [46], the 6 × 6 matrix speller was divided into four 3 × 3 submatrices. Randomly, the character
was flashed from each submatrix once, so that, in total, only nine trials were produced. Another form
of a submatrix stimulation was discussed by Eom et al. [47], called Sub-Block paradigm.
Only a 2 × 3 submatrix of the 6 × 6 matrix speller was highlighted and not the entire row/column
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sequence. Further research showed that the change of the flashing patterns for individual characters
was possible.

In [48], only 7 or 9 flashes per trial were required, compared to the original matrix speller which
required 12 flashes (one for each row and column), making the application faster. The nine flashes
showed the highest accuracy and corresponding ITR, that were 92.9% and 14.8 bits/min, respectively,
while the 12 flashes showed 88.0% accuracy and 10.1 bits/min ITR and the seven flashes showed
68.8% accuracy and 5.3 bits/min for ITR. The highest ITR reached was 17.3 bits/min, but with slightly
lower accuracy. The aim was to achieve faster spelling speed and minimize the errors. A similar
approach was shown by Polprasert et al. [49]. Similarly, the Random Set Presentation (RSP) was
studied and tested by Yeom et al. in [43] to show the effect of a random intensification of characters,
by flashing the characters in a random order (Figure 3b).

Fazel-Rezai in [99] discussed the “adjacency problem”. Flashes next to the target seemed to
be distracting the user and sometimes resulted in the wrong feedback as well as in the increasing
of the problem of crowding, which refers to the difficulties in identifying a target if many similar
objects surround it. In [43,46,47], the main aim was to avoid the adjacency-distraction effect and
double-flashing errors. The system mentioned in [46] showed a higher performance than [47] with
a mean accuracy of 99.70% and ITR of 26.8 bits/min. Dividing the 6 × 6 matrix into smaller matrices
can be more comfortable for the users’ eyes, especially when only one character per submatrix was
flashed at a time as discussed in [46]. In addition, in [43], the adjacency-distraction error was avoided
by random-set representation, and, when flashing single characters randomly, no two adjacent letters
were intensified at the same time.

The edges paradigm (EP) was introduced by Obeidat et al. [44] to overcome the mentioned
challenges. The difference between the EP and the RCP presented in the Matrix Speller were the
flickering points, which were added to the left of each odd row, to the right of the even rows, below the
odd columns, and at the top of the even ones; the first step (row selection) is shown in Figure 3c.
These points were intensified by increasing the illumination rather than by normal flashing, and the
characters were fixed. For the selection of the desired letter, the subject first needed to focus on the
edge of the row which contained the target letter. Then, during the second stage, the subject needed to
focus on the edge point corresponding to the column which contained the target.

The edges paradigm was one of the most successful paradigms for solving the adjacency problem.
As only the edges of the rows and columns were flashing, and not the characters, the flashing of
characters was avoided, thus solving the adjacency problem and the double-flashing problem and
reducing the discomfort which might result from an extended use of a flashing RCP. Although the
mean ITR of the system was not as high as that of other presented systems, it still showed high accuracy.
A total of 14 participants answered a questionnaire rating the levels of fatigue and comfort comparing
the RCP and the EP. The results reported that the EP caused less fatigue and was more comfortable to
use than the RCP. The advantages of this system were notable, and, as for the relatively low ITR, it can
be adjusted by training, for example.

4.1.2. Familiar Faces and Symbols

Numerous studies in the field of human face processing have revealed that the visual perception of
familiar faces strongly involves several ERPs, which may be exploited for improving the classification.
In particular, using faces well known to everybody in a given culture should lead to high and relatively
stable effects across individuals. In [50], a 6 × 6 Matrix Speller was described; however, each character
was superimposed by a semitransparent picture of a familiar (famous) face. In this study, they used
faces of Albert Einstein or Ernesto ‘Che’ Guevara. The characters were intensified by the appearance
of the familiar face behind the stimulated row or column. The paradigm was compared with a classic
Matrix Speller where the new familiar face paradigm showed faster target selection and comparably
high accuracy due to the fact that the familiar faces induced a higher ERP response.
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The prototype in [51] was further studied in [52] by modifying the familiar face color to green.
The green colored faces showed even a higher ERP response. A similar spelling system was used in [53]
as a two-stimuli spelling system, utilizing familiar face and character flashing to increase the speed of
spelling. The speller proved to be two times faster than the classical Matrix Speller. In [54], a similar
approach was studied. A classical row/column paradigm and a random stimulus presentation of the
row/column paradigm were compared to two proposed paradigms. The first paradigm presented
random flashing of a self-face picture, while the second paradigm presented random flashing of
non-self-face pictures. Another similar study was done more recently in [55].

Almost all of the mentioned spellers which use familiar faces showed a relatively high
performance, higher accuracy, and faster ITR. The highest average ITR in this topic was
~80 bits/min reported in [53] with an accuracy of 81.25%. The highest mean ITR was reported
in [54] with a 90.7% accuracy (more details, also about the other studies, are shown in the
summary tables in the Discussion Section). The goal of using familiar faces was to have more
effective visual stimuli which would elicit a stronger ERP signal. This would result in a more
accurate classification. Also, combining the familiar face stimulus with another type of stimulus,
like random-set-representation, was a promising development. It combined both systems’ advantages,
avoiding main problems like adjacency-distraction and double-flashing errors.

In [56] a study by Kathner et al., rows and columns in a 5 × 5 matrix were flashed with the display
of a yellow smiley face in a Virtual Reality (VR) environment. Using VR headset, two screens were
tested: a full-view screen where the user could see the whole matrix and a second screen where the
user could only see the part of the matrix on which he/she was focusing on, and head movement was
required to visualize the rest of the matrix. It was tested on a patient with LIS, who showed adequate
control over the BCI system. The paradigm combined with the Virtual Reality resulted in a fast and
accurate BCI speller system. The system addressed one of the most challenging problems in the BCI
field, i.e., portability. Using a virtual reality headset as a display eliminated the use of big computer
monitors or other screens. The relatively decent performance was reported (see the summary tables in
the Discussion Section). This BCI speller was based on a stimulus different from flashing characters;
yellow smiley faces appeared over the characters for intensification. The mentioned stimulus type was
similar to the familiar faces stimulation, resulting in a stronger ERP signal. The system performance
was tested against the performance of the same interface on a 22” monitor, showing no significant
differences. However, the second view proposed in the system, where the user had to move his/her
head to see the rest of the matrix, can be impractical for some neuromuscular disease patients.

4.1.3. Variation of Letters Arrangement

Letters arrangement was tested as another parameter of the matrix speller. In [57], the arrangements
of letters were changed according to the feedback from a built-in dictionary, which arranged the letters
according to their usage frequencies. The more the user used a letter, the more accessible was the
position in which it was placed.

In [58], the letters were arranged in a 7 × 7 matrix according to the frequency of their usage in
the English language. Interestingly, for this system, the speller was tested with ten neuromuscular
disease patients, plus ten healthy subjects. It showed higher accuracy than a normally ordered
ABC interface, assuming less workload, but a lower ITR. From the questionnaires, most participants
preferred the proposed interface to the ABC. The patients’ results appeared to have higher accuracy in
the tested interface than in the ABC interface. The healthy participants had higher ITR in the ABC
interface; however, ITR was not significantly different for afflicted subjects in the ABC interface and
frequency-based interface.

Additionally, in Jin et al. [59], a laptop-keyboard-like matrix was suggested, where a 7 × 12 matrix
was presented, in which the letters were arranged according to alphabetical order. The performance
was remarkable (ITR 27.1 bits/min, accuracy 94.8% for 21 flash patterns); however, it was only tested
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on healthy subjects and it comprises many elements which might confuse some users who are not
familiar with keyboards.

Inter-character distances were discussed by Sakai and Yagi [60]. The inter-character spaces
in a matrix speller were changed and tested from 10 mm, to 25 mm, and to 40 mm. The results
showed that the smaller the inter-character spaces were, the higher the P300 signal was.
However, smaller inter-character spaces resulted in lower performance, as it was harder to classify the
specific letter which caused the P300 response.

4.1.4. Matrix Speller with Predictions

Another investigated approach to make the Matrix Speller faster and more efficient was the
addition of a module to the speller which predicted and displayed suggested words for the user to
select (for more information about integrating language models into BCIs, please refer to [61]). In 2011,
Ryan et al. [62] developed an 8 × 9 matrix which displayed characters, numbers, and other commands
on the screen, with the ability to predict the desired word and print suggestions from which the user
could choose. A year after, Kaufmann et al. [63] provided a 6 × 6 matrix with predicted words and
presented them as an extension of the matrix. The suggested words flashed within the matrix once
they were predicted. The user could select the desired word in the same way a target letter would
be selected. Later on, a modified matrix speller was added by Akram et al. [64,65], which included
a built-in dictionary that displayed suggested words on the side after the user selected a few characters.
Each word had a corresponding number. The second step of selection was via a 3 × 3 number matrix,
where each number corresponded to one of the suggested words.

The study in [62] was aiming for high ITR without affecting accuracy by adding prediction
words. However, the authors suspected that adding a predictive module to the speller might be
more cognitively demanding for users because of multi-tasking. This study showed lower accuracy
than the usual matrix speller paradigm, but higher ITR. It was indirectly deduced that a predictive
system increases the workload on users which can decrease the P300 signal amplitude. This can be
enhanced by the training of both, the users and the predictive dictionary. In [63], the solution to the
workload problem accompanied with a predictive speller was proposed by displaying the suggested
words as part of the matrix. This resulted in less workload on the BCI users, was more comfortable,
and also showed a better performance. The system can be modified further to recognize grammar
rules and fill in some words for the user. Overall, the spellers with predictions discussed in this review
showed promising results, higher ITR than most of the matrix spellers, and a reasonable accuracy
(further details in the summary tables in the Discussion Section).

4.1.5. Other Languages

Other P300 speller developments were made by including more interfaces for different languages
to allow a broader group of people to benefit from such BCI applications. Developing innovative
interfaces for languages based on script was also really important, as it might take a long time to
type one word using a BCI speller. Also, most of these non-English interfaces proved to achieve
a performance comparable to that of other English spellers.

• Chinese

The Chinese language has a logographic script comprising more than 11,000 characters which are
based on strokes. A P300-based BCI has been developed that allows users to input Chinese characters
stroke-by-stroke [100]. However, this was not very efficient, as a single Chinese character may consist
of 20 or more strokes, and took a long time. Minett et al. [66] showed how a P300 matrix could present
an efficient way to type Chinese characters. Also, refs. [67,68] have developed Chinese BCI spellers.
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• Arabic

In Kabbara et al. [69], a P300 Matrix Speller was presented in Arabic letters for the first time.
A 6 × 5 matrix displays all the Arabic letters in an RCP, where the intensification was the random
flashing of rows and columns.

• Korean

In 2011, the first Hangul (Korean script) P300 speller was developed [70]. Hangul has a hierarchical
structure entirely different from English; therefore, a two-stage speller was needed. Two-stage speller
means that there are two different screens displayed, dividing the symbols.

• Japanese

A conventional Japanese P300-based BCI spelling system consisted of a 6 × 10 matrix.
However, Yamamoto et al. [71] proposed a two-phase matrix system; each phase is a 6 × 5 matrix
with the option to move between them. This solved the crowding problem as well as decreased the
number of flashes needed per trial. A similar approach, another two-phase speller, was tested on ALS
patients in [72] and compared to the performance of the conventional system. The two-phase speller
was successful in producing higher accuracy rates when tested with ALS patients.

4.1.6. 3D Blocked Matrix Speller

In Noorzadeh et al., 2014 [73] a 3D virtual matrix was suggested. The characters were displayed
in 3D blocks instead of the usual 2D screen arrangement. Different flashing techniques were tested
for this new design. The study confirmed that this arrangement has the potential to be a more
user-friendly GUI.

The speed was proven to be higher in the proposed 3D interface compared to the classic 2D
interfaces, since it needed a smaller number of flashes. However, 3D interfaces might need higher
computational power. However, still, a 3D design is more attractive and user-friendly.

4.2. Other P300 Interfaces

In this section, other P300 interfaces, which were not a direct development of the original matrix
speller, are described and discussed.

4.2.1. Chroma Speller

The Chroma Speller, developed by Acqualagna et al. [74], worked via presenting six differently
colored stimuli on a black background, as shown in Figure 4a. A total of 30 characters and symbols
were grouped into the six colors for the first selection. When it started operating, the colors flickered in
a series manner. The subjects had to focus on the desired color to select it, and the ERP P300 signal was
detected and analyzed. After the first selection of a group of characters, the individual characters of
the selected group were presented separately on the second screen with row colors similar to the first
display, as shown in Figure 4b, with the option to go back to the primary group display if the white
box was selected.

The Chroma Speller aimed to achieve a gaze-independent speller system with a minimum
workload, as the user had only to focus on the required color (the color which contained the desired
character) and not on the individual letter. The proposed system was compared to the Centre Speller
(refer to Section 4.2.7.) during the study, showing a higher performance. Consequently, this speller
was undoubtedly suitable for patients in advanced stages of ALS, as they face a limited oculomotor
control. In addition, the system included an auditory feedback citing the selected letter, which can be
helpful for these patients as well. However, on the basis of our knowledge, such system has not been
tested yet by ALS patients.
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Figure 4. Chroma Speller in its two operating stages [74]. (a) The first-stage selection. (b) The second
stage to select an individual character. The target word here was suggested to be “BCI”, and “B” is the
target letter. Figures modified from [74].

4.2.2. T9

The first time a T9 (text on nine keys) paradigm was presented as a BCI speller, it was based on
auditory stimuli [101]. A modified, visual-based stimuli T9 speller system was introduced in 2015 [75]
and is shown in Figure 5, with an integrated dictionary to propose suggested words to save time.
T9 is the same approach used in early mobile phones for texting on the number keypad. In this study,
they used only eight keys for character input and one as a delete option in case of errors. The user
started by typing a few characters of the desired word, then selected one of the suggested words from
the same 3 × 3 matrix in the GUI. The targets were highlighted randomly. Figure 5a illustrates how
the selection of the letters group occurred, and Figure 5b the second stage, where the selection of
a number for the first screen corresponded to one of the suggested words in the list on the right-hand
side. This paradigm reduced the typing time significantly, especially compared to other multi-stage
spellers. The fast typing speed was credited to the word prediction module embedded in the interface,
which was not present in the traditional Matrix speller. Also, as a result of a lower number of stimuli
in a T9 interface, the speller was more user-friendly and might have caused less fatigue. As another
advantage of having only nine targets, the eye movement was minimized.
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Figure 5. The GUI discussed in [75]. (a) The first stage where a target letter was selected; (b) Suggested
words were displayed with the corresponding number. Figures modified from [75].

A similar T9 system was used in another study in [76] to test its performance with ALS patients
and to compare it with a modified Matrix Speller. The T9 showed a faster typing rate with ALS patient
compared to the Matrix Speller, revealing a promising performance.
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4.2.3. Checkerboard Paradigm

The “Checkerboard” paradigm (CBP) was proposed in [102]. As presented in Figure 6, it was
composed of a 9 × 8 matrix of characters and commands, and, to avoid the “adjacency-distraction
problem” and the “double flash” issues, the sets of nonadjacent elements were pseudo-randomly
flashed [102]. Also, the same paradigm conducted on ALS patients showed higher online accuracy
rates for the CBP.
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Y Z Sp 1 2 3 4 5

6 7 8 9 0 . Ret Bs

? , ; \ / + Alt
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Caps F5 Tab EC Esc email ! Sleep
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Figure 6. Checkerboard paradigm similar to the one studied in Townsend et al. [102]. Figure modified
from [102].

The half checkerboard paradigm (HCBP) [77] divided the matrix on the screen into two separate
regions: “left” and “right”. The authors also used electrooculography (EOG) to identify the eye
position, so that only the characters in the eye-gaze area would start flashing. This paradigm was
targeted to people who can voluntarily gaze at a target and to disabled people who still retain some
eye movement. When an area was selected by gazing, it flashed half of the presented 72 targets.
The performance of the HCBP was compared with that of the Checkerboard paradigm, resulting in
higher accuracy and faster information transfer rates.

The aim of the Checkerboard Paradigm [102] was to compare a new representation of a P300
speller with the RCP. Although the performance of both systems was almost the same, the CBP proved
to be less affected by the common errors faced when dealing with RCP. Also, the system was supported
by successful trials with ALS patients with better results than with the RCP. Moreover, the participants
shared their opinion about the CBP, stating that it was more comfortable and caused less fatigue.

4.2.4. Geospell

We can consider the GeoSpell (Geometrical Speller) as a rearrangement of the P300 Matrix Speller.
It was developed by Aloise et al. [78], focusing on covert attention speller. The main concept was
to use an N × N matrix, for example, a 6 × 6 matrix, where the total number of characters is N2

(62 = 36 characters). Then, the matrix layout was transformed into 2 × N sets of square frames,
each containing N characters. In addition, the rows and columns were re-arranged, so that each was
displayed in a separate box; Figure 7 shows the arrangement. Therefore, each character existed in two
sets: one corresponding to the row, and the other corresponding to the column. Each set appeared and
flashed on the screen at a fixed point in the center to help the subject to avoid eye movement (an eye
tracker was used to track gaze positioning). The identification of the target character was based on
the classification of the two sets in which the target character appeared. However, the system did
not show great performance to compete with typical BCI spellers. A similar approach was already
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discussed before in [79]; however, in this study, two different arrangements for the sets were tested
(without an eye tracker).
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Figure 7. The GeoSpell as discussed in Aloise et al. [78], showing the group organization concept.
The figure is modified from the original source [78].

This interface was declared to be a gaze-independent transformation of the matrix speller.
Even though the accuracy was similar to the RCP, the typing speed was low compared to other
spellers. This was mainly due to the number of different frames which were displayed in each trial.

The same team who presented the original Geospell system carried on further research on the same
speller a couple of years later to investigate the unexpected low performance obtained in 2012 [103].
They compared the performance of the Geospell during covert attention with that of the Matrix Speller
with overt attention. The aim of the study was to find an explanation, i.e., why the performance during
covert attention was lower than during overt attention. The authors concluded that the overt attention
modality was more accurate than the covert attention one, as it was cognitively more demanding.
However, they also mentioned that, with some compensations, the Geospell could be equally or more
accurate than the Matrix speller.

Modifications of the GeoSpell were developed and discussed in [82]: Motion-Covert GeoSpell
(MCGS) and Covert GeoSpell (CGS). The purpose of this study was to investigate the performance of
mVEPs for multi-objective gaze-independent BCIs. MCGS used motion-flash stimuli where characters
appeared and moved a fixed distance to the edge of the screen during the presentation, while CGS
only used the usual flash stimuli. Both systems were tested under the covert attention condition.
The offline results showed that a higher P300 was evoked by the CGS compared to MCGS. This study
concluded that mVEP could not enhance the performance of multi-objective gaze-independent BCIs
regarding ERP.

4.2.5. Gaze-Independent Block Speller (GIBS)

The paradigm in [80] targeted the problems of covert attention and it was based on P300 BCI.
The presented GUI had 30 characters, as shown in Figure 8. The symbols were grouped into four blocks
which were located at the corners of the screen. Group 1 = [A B C D E F G], Group 2 = [H I J K L M N],
Group 3 = [O P Q R S T U], Group 4 = [V W X Y Z 0 1]. The stimulation consisted in the flashing of the
different blocks. The selected block was then expanded in the middle of the screen in a diamond shape
(Figure 8). The second stage was presented by the flickering of the individual characters in the shape
of a diamond. When the symbols were expanded to the center, they were larger and far apart to avoid
crowding. The results showed that GIBS can be used without ocular movement. Moreover, by using
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bit rate analysis, the authors showed that GIBS could produce similar information transfer rates when
compared to the standard Row-Column (RC) speller.

A C

dlG

B

H

V

K

Y

N

1

I

W

L

Z

sp

sp

J

X

M

O

dl

dl

O

R

U

P

S

sp

Q

T

dl

E FD

sp

N/A N/A N/A 60 cm  

Figure 8. GIBS as discussed in [80]. Figure modified from [80].

GIBS was another gaze-independent P300-based speller, which also tried to avoid the matrix
layout that has been proved to face some challenges. Being a two-phase system, fewer targets flickered
per display.

4.2.6. Lateral Single Character Speller (LSC)

Pires et al. [81] proposed a lateral single character speller that was compared to other RC spellers;
the layout reduced the effect of the local and remote distractors. Furthermore, the paradigm was
expected to be more visually attractive and comfortable. The proposed Lateral Single Character
Speller (LSC) speller, shown in Figure 9, contained the 26 letters of the alphabet and the ‘spc’ and
‘del’ commands. The 28 symbols flashed alternately and pseudo-randomly between the left and right
fields in a lateral and symmetrical arrangement. The user had to focus only on one side of the screen,
looking at one half of the display at a time. The target word for the copy task and the selected letters
were shown in the middle of the arrangement, which required a short eye movement by the user.
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Figure 9. Lateral Single Character Speller, similar to [81]. Figure modified from [81].
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As the interface divided the targets into two separated groups, it avoided the crowdedness
problem as well as the adjacency-disturbance error, which occurred in the RCP because of the flashing
of many letters, which were located close to each other. The paradigm showed better performance than
the standard RC speller and it was effective with ALS patients and other patients with neuromuscular
diseases (ITR 26.11 bits/min and accuracy 89.90%). From the questionnaires, the test subjects reported
a preference towards the LSC, stating that it was more comfortable.

4.2.7. Hex-O-Spell as ERP

The Hex-O-Spell, a gaze-independent BCI speller that relies on imaginary movement, was first
developed in 2006 by Blankertz et al. [39] and also presented in [104] (described in details in
Section 4.4.1). This type of BCI has inspired many researchers to develop new BCI spellers.
Here, we discuss some variations of the original Hex-O-Spell [39]. These variations were mainly
developed to study the possibility of gaze-independent BCI speller systems which can be useful for
late-stage ALS patients.

The first variation of the Hex-O-Spell was mentioned in [105], to be used as an ERP P300 BCI
system, to test if there was a difference between the system’s performance during covert attention and
overt attention. In this study, a Hex-O-Spell, with minor changes with respect to its GUI, was compared
to an adapted Matrix Speller. The modified Hex-O-Spell had circles around a central invisible hexagon
instead of hexagons around a circle (similar to Figure 10a). The intensification was done with size
changes. The size of the characters in the circle and the circle itself increased in turn, one by one.
The Hex-O-Spell showed higher accuracy and a higher ERP response than the Matrix Speller in both
covert and overt attention conditions.
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Figure 10. Three variations of the Hex-O-Spell with ERP for gaze-independent BCI studies. (a) Hex-O-Spell;
(b) Cake Speller; (c) Center Speller. Figure modified from Treder et al., 2011 [83].

Other variations of the Hex-O-Spell utilizing ERP systems are the Cake Speller and Center
Speller [83]. These two GUIs were developed to be compared with the Hex-O-Spell ERP in [105] for
gaze-independent BCI spellers. During this study, a different intensification technique was used for the
Hex-O-Spell ERP (Figure 10a). Instead of only changing the character size for intensification, the fill-in
color of the circles was also changed, from the standard black background to one of six different colors
(each circle had its own color). The Cake Speller was composed of a central hexagon, which was
divided into six equal triangles, as shown in Figure 10b. Each triangle contained five characters,
and the triangles were intensified one by one, by changing the fill-in color, using the different colors
assigned to each triangle. Once one of the triangles was selected, the characters expanded and were
distributed to the six triangles for the second stage of the selection.

The Center Speller is shown in Figure 10c. In this BCI speller, each group of characters
(also five per group) was represented alone in the center of the screen, within a colored geometric
shape. The combinations of letters and symbols within the geometric shape were called “elements”.
Each element was presented individually in the middle of the monitor with a unique color and inside
a unique geometric shape. After the first stage of selection, the individual letters filled into the groups,
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in each element for the second-stage selection. To clarify, for each selection stage, six different displays
were presented. The character intensification, in this case, occurred simply by the appearance of the
element in the screen. A later study combined the Center Speller with the Hex-O-Spell, to create
a test- and error-detection approach [84]. This paradigm can also be considered as an RSVP, which is
discussed in the next section.

In [105], the Hex-O-Spell was transformed into an ERP system, to test whether ERP spellers
could also be gaze-independent or not, with the aim to check if BCI-spellers could substitute eye
tracker speller systems. Although the accuracy with covert attention was relatively low, it still
proved that the ERP speller could operate with covert attention only and that accuracy could be
improved in further studies. However, the Hex-O-Spell showed a higher performance during covert
attention than the Matrix Speller. This concluded that the change in the design could improve the
performance of the speller and grant a more effective control without the need for spatial attention.
However, it still has to be tested on ALS patients. Other variations mentioned in [83] were also
developed with the primary purpose of achieving gaze-independent spellers, such as the flashing in
different colors as an intensification technique to elicit a stronger ERP signal. Although the typing
rate was relatively slow, all the suggested interfaces showed high accuracy compared to other spellers
(especially gaze-independent spellers). This could be treated as a proof of concept that ERP spellers
can be effective without the need for gaze attention.

4.2.8. Rapid Serial Visual Presentation (RSVP)

RSVP was developed with the aim to form an efficient gaze-independent ERP speller.
The paradigm was quite simple: individual characters appeared in the center of the screen in
a randomized manner. The target letter evoked an ERP signal when it appeared. It was first presented
in 2010 by Acqualagna et al. [85]. In this study, two variations were presented, a monochrome one
and a colored one. A total of 30 characters (letters and punctuations) were presented. In the colored
version, the characters were divided into three different colored groups: red [A B C D F G H I J −],
green [K M N W E Q R S T +], blue [U V O X Y Z L P ! /]. To prevent symbols from clustering
together frequently, pseudo-randomization was applied on the order of presentation, and, to allow
for significant behavioral data to be obtained, the number of occurrences of the target symbol varied
before and after each trial. The user had to look at the screen and count the number of times the target
letter appeared in the middle of the display. The subjects showed better performance with the colored
letters than with the monochrome ones. The accuracy of the RSVP speller outperformed both that of
the Matrix speller and that of the Hex-O-Spell.

In 2011, Acqualagna and Blankertz [86] investigated three variants of the RSVP paradigm GUI,
with different colors and different speeds of character representation. The performance of this paradigm
was also tested online in 2013 [87].

Although the accuracy of the RSVP was very promising in all mentioned studies (around 94% on
average), the ITR was lower than expected. The reason was that the user had to wait for the target letter
to show up in between the rest of the 30 characters. This waiting wasted time and might have caused
the user to feel bored or to lose focus. However, the system worked as a gaze-independent speller.

In [88], a new visual ERP-speller using N100 in addition to P300 was proposed. N100 is a type
of visual evoked potential (VEP) which is induced by paying attention to the visual stimulus, and is
not related to the oddball paradigm, making it difficult to use N100 alone for BCI. The authors
in [88] claimed that this was the first time where N100 was used for BCI commands classification.
In the proposed system, P300 and N100 were used separately and independently to determine the
target character and to overcome the familiar challenges of an ERP speller. The GUI was similar
to the standard 6 × 6 P300 speller with 36 commands: 26 letters (A–Z) and 10 numbers (0–9).
However, the stimulus presentation was based on rapid visual presentation (RVP) to enable the
implementation of the N100 into the BCI. Two BCI systems were developed, 2 × 2 and 2 × 3 matrices,
which were presented as an RSVP stimulus. Each layout contained a group of the characters arranged
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in fixed positions. The assumption was that the user knew beforehand the position of the target letter.
In the case of the 2 × 2 matrix, one position was left blank for three of the 12 different stimulation
images in order to elicit the N100 signal. For the 2 × 3 matrix, nine stimulus images were used
with similar blank positions. The input speed was faster than that of the P300 speller, as only nine
stimulation sequences were required. The classification occurred by combining the P300 signal with
the corresponding N100 from the blank position.

Eleven healthy 22–24-year-old males participated in this experiment, and performance
comparisons between the two presented layouts and the P300 speller were carried out. For the
2 × 2, the average accuracy for the P300 was 63.1%, while the proposed speller in [88] showed
an average accuracy of 74.7%. The average ITRs were 0.53 bpm and 0.70 bpm for the P300 and the
proposed system, respectively. As for the 2 × 3 layout, the accuracies were 67.8% and 70.3%, and the
ITRs were 0.60 bpm and 0.85 bpm for the P300 and the proposed system, respectively. The introduction
of the N100 provided a one-stage selection and, as a result, it reduced user’s fatigue and improved
the accuracy of the system. However, it required the user to memorize the position of each letter
beforehand, which might be difficult for some potential users.

4.3. SSVEP Spellers

An advantage of the SSVEP approach is that it does not require calibration or subject training.
In addition, SSVEP spellers should be generally faster than P300 spellers, as no specific number of
trials are required for them. A target can be selected as long as the signal is strong and stable enough
to be detected by the software.

4.3.1. Bremen Speller

One of the earliest high-speed SSVEP-based BCI spellers is the Bremen-BCI speller [106]; a similar
GUI is shown in Figure 11. In this study, a virtual diamond-shaped keyboard containing 32 characters
was presented. The five boxes (four with arrows and one with the command “Select”) were used to
control the movement of a cursor which could move along the characters and select the desired target.
Each of these boxes flickered with a certain frequency to elicit an SSVEP response. The letters were
arranged according to their usage frequency in the English language. At the beginning of each trial and
after each selection, the cursor was located by default in the middle, over the letter “E”. The system
gave audio feedback to the user, i.e., the system announced the selected letter out loud, so that the
user or anyone nearby could hear it as a selection confirmation. Later in [28], a built-in dictionary was
added to predict the desired words, as well as another type of feedback to notify the user about the
selection, consisting in the size of the white boxes varying according to the power of the SSVEP signal,
e.g., when the SSVEP signal increased, the size of the box increased, to notify the user that a selection
was about to be made. Figure 12 shows the addition of the prediction module. It consisted of two
different stages (layouts). The first stage was similar to the previous Bremen-BCI Speller with an extra
sixth box with the command “Go” (Figure 12a). After the selection of at least two letters, a drop-down
list of six words suggested from a dictionary appeared next to the “Go” command. If one of these
choices was the desired word, the user had an option to select “Go”. This action would lead to the next
layout where each of the suggested words was presented in a flickering box (Figure 12b) and could be
selected by the user to be written.

The Bremen-BCI Speller had gathered over the years a remarkable number of subjects.
In addition to hundreds of tested healthy subjects, 37 participants were recruited during the RehaCare
rehabilitation fair, eight of them with different disabilities [106]. Each participant took part in five
different spelling tasks. The average ITR reported was 25.67 bits/min, with an accuracy of 93.27%,
which indicated a competitive performance, especially for patients with neural malfunctions. Of note
is that the experiments were carried out during a rehabilitation fair with a high level of noise
and surrounding distractions. As for the Bremen Speller with the built-in dictionary, it showed
a faster performance when compared to the original speller, with 32.71 bits/min and 29.98 bits/min,
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respectively. As another advantage, the dictionary implemented kept track of the most commonly used
words. This feature speeded up the spelling by proposing the most often used words first. Also, it is
worth mentioning that this speller was the first SSVEP-based speller with the option to predict words.
After further improvements in signal processing, an average ITR of 61.70 bits/min, with a peak of
109.02 bits/min, was achieved with the Bremen-BCI speller, in a test with seven participants [107].

Figure 11. A similar GUI to the Bremen-BCI Speller during the selection of the right arrow, as the box
size is increasing during selection [106]. Figure modified from [106].
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Figure 12. (a) The modification of the original Bremen-BCI speller when a build-in dictionary was
added to it [28]; (b) The second stage of the GUI, where suggested words were presented to the user to
choose the desired word.

4.3.2. Multi-Phase SSVEP Spellers

We presented a three-phase SSVEP speller in [29]. This study aimed to investigate the
performance’s differences of SSVEP-speller according to the subjects’ age. The GUI consisted of
four flashing white boxes with green characters or commands inside them, on a black background.
Only the white boxes flashed while the green text was fixed. One of the boxes showed the command
“delete”. The other three boxes contained the letters of the alphabet. On the first screen, nine characters
per box were displayed. When one box was selected, its content was spread over three boxes to form
three characters per box. During the last selection phase, when a box was selected, the three boxes
contained one letter each. In the second and the third stage, the “delete” box changed to “back” to
give the option to go back to a previous layer in case of error. Every selection gave an audio feedback,
naming the selected box. A similar approach was presented earlier in [30].
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In [29], all subjects from two groups, a young age group and an older group, achieved control
over the BCI system. The mean values of the young group were 98.49% accuracy with ITR of
27.36 bits/min, while the older group’s accuracy was 91.13% with ITR of 16.10 bits/min. Although there
was a significant difference between the performances of these two groups, the system was reliable
with relatively high performances.

In another study, Cao et al. [31] proposed an SSVEP-based speller system with two phases.
This speller would allow the input of 42 characters comprising of letters, digits, and symbols. Its user
interface had three pages and 16 targets on each. Page turning was done via two boxes (buttons) which
previewed the characters on hold on their corresponding page, aiding the user. Another two-phase
SSVEP speller was discussed in [98] and compared to the Bremen speller. In this study, we presented
a GUI with five boxes; each contained six alphabet characters and special symbols. Two other boxes
were present, one containing the commands “delete” during the first window and “back” in the second
window, and the other with the command “Clear”, where the user could delete the whole word.
When a box was selected, the content of this box was spread out to form one letter or symbol per box,
in the second window. Another recent multi-stage SSVEP speller was presented in [32].

The two-phase SSVEP spellers may have a higher performance than the three-phase spellers,
as fewer steps were needed for letter selection. In [98], comparing the two-stage SSVEP speller with
the Bremen-BCI Speller, most subjects stated that the two-phase speller was more user-friendly than
the Bremen Speller. However, the mean values for both spellers regarding ITR, accuracy, and time did
not show any substantial difference for any of the tasks.

All the rest of the SSVEP mentioned studies proved remarkable performances, with the highest
mean accuracy of 98.78% presented in [31] and mean ITR of 61.64 bits/min. However, none of the
mentioned studies, except the one about the Bremen Speller, included MND patients as subjects for
testing the system.

4.3.3. Multi-Target One-Phase SSVEP Spellers

Multi-Phase SSVEP spelling systems typically utilize a low number of distinct stimuli. The number
of stimuli is anti-correlated to the number of phases. A low number of stimuli results in a low spelling
speed, as classification and gaze-shifting phases of each phase are accumulated. Several groups,
therefore, developed spelling applications that employ multiple stimuli simultaneously. This allows
letter selection in a single step, resulting in much higher spelling speeds.

Wang et al. proposed a method to realize multiple SSVEP stimuli on computer screens [33].
The method was initially tested online with a virtual keypad consisting of 16 SSVEP target stimuli.
The three subjects achieved an ITR of 75.4 bits/min, with an average accuracy of 97.2%.

Meanwhile, the methods were further improved and led to the highest ITR values reported for
BCI spellers. As a result of refined classification methods and user-specific calibration data, Chen et al.
achieved average ITRs of 267 bits/min and accuracy of 89.76%, employing 40 SSVEP targets [34].
The stimuli were arranged as a 5 × 8 matrix containing characters, numbers, and additional symbols.

Recently, Nakanishi et al. reported an average ITR of 325.33 bits/min in a cue-guided task
using a 40-class speller, with an accuracy of 89.83% [89]. It was also stated that free spelling resulted
in a slightly lower ITR (198.67 bits/min) and that inexperienced users required longer gaze shifts.
In general, a higher number of targets in SSVEP-based BCI increases the spelling speed but also
increases eye fatigue and target misclassification.

Multi-target BCI spellers have also been realized using the c-VEP paradigm. Spüler et al. achieved
an average ITR of 143.95 bits/min with nine subjects [35]. The 32 target stimuli were arranged as
a 4 × 8 matrix and were used to select letters, numbers, and underscore. Wei et al. tested a 48-target
c-VEP system with four participants and achieved an ITR of 129 bits/min [36]. In c-VEP-based BCIs,
all stimuli share the same circular shifted code pattern. Thus, the spelling accuracy requires precise
timing between stimuli presentation and data acquisition.
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Recently, Nagel et al. investigated the effect of monitor raster latency [108]. By correcting the
raster latency, the distance between the most probable and the second most probable target was
increased by 18.23%, resulting in a more reliable system.

4.3.4. RC SSVEP Speller

A dynamically optimized SSVEP brain–computer interface speller was presented in [90],
which emulated the stimulation technique of a P300 Matrix Speller. A row/column (RC) paradigm
was introduced into the SSVEP BCI to create an SSVEP speller with 36 items, flickering with
only six frequencies, one for each element in a row or a column. A similar stimulation approach,
which combines the P300 with SSVEP, was previously discussed in [91,92] as well. In [93], a SSVEP
and P300 combination was also used; however, the P300 stimulus was different. The authors applied
changes in the color, size, and rotation of the characters for stimulation.

4.3.5. FlashTypeTM

The FlashTypeTM [37] is one of the newest c-VEP BCI spellers. This type of speller does not
rely on selecting individual letters like the previously discussed spellers. Instead, it controls the
movement of a cursor and selected letters or symbols from a static keyboard. In the center of
the displayed window, the keyboard had 28 visual targets; a row above showed the suggested
character to be selected, and another row at the top showed the suggested words to be typed.
The arrangement of the user interface was designed to utilize the majority of the screen and also
to maximize the inter-stimuli distance. In the four corners of the screen, the stimuli were presented in
four green/red 5 × 5 checkerboards with two patterns each. The shifting between the two patterns
was according to a special pseudorandom binary code, which resulted in an induced Coded Visual
Evoked Potential (c-VEP) signal. The four stimuli presented four different controls to the cursor: select,
horizontal movement, vertical movement, and reverse. The horizontal and vertical controls pointed
the movement of the cursor in the desired direction, while the select stimulus selected the target letter.
The reverse stimulus moved the cursor in the opposite direction relative to the default direction in
the horizontal or the vertical mode. The first character from the left on the Character Suggestions row
was the cursor’s default starting point. Then, the subject proceeded by moving the cursor vertically
to select the looked-for row. The active row was marked in a yellow frame. After row selection,
horizontal movement was required to select the wanted column; an active column was marked in
a purple frame. The selection of the column resulted in the selection of the target letter, which fell in
the intersection of the selected row and column.

Another mode of operation, which is still under further study, is the auto-scroll mode. This mode
was developed to give minimum to no gaze-dependency. During auto scroll, only one stimulus was
active, the select stimulus. The cursor moved automatically, stopping at each row and column in
a specific order. All that the subject needed to do was to “select” the target while the cursor was
pointing at it. Although that mode might be helpful for patients with no eye movement control, it is
extremely slow.

This study reported notable advantages. The experiment was conducted using only one electrode
to read the signal for the four stimuli which aided the system to be more user-friendly, as less
preparation was required. It also classified the system as being relatively more portable compared to
other BCIs which require eight or more electrodes. The performance results showed high accuracy and
relatively fast typing for all three subjects. Moreover, a significant advantage of the static keyboard
was that the characters could be substituted for characters of any language or even replaced by
communication symbols. The predictive words option made the speller faster and more user-friendly.
In addition, the speller did not require a lot of eye movements as the subject needed to only move
attention to the four stimuli controlling the cursor and not to each character. Plus, the added mode of
auto-scroll could be relatively slow, however, it would be beneficial for patients without oculomotor
control. On the other hand, the interface was only tested by three healthy subjects, which is a small
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number compared to other studies, especially modern studies. In addition, none of the participants
were NMD patients.

4.3.6. DTU BCI Speller (Technical University of Denmark)

DTU BCI is an SSVEP-based BCI developed by Vilic et al. [38]. The typing area divided the screen.
On the left-hand side, there were seven stimuli. Each of them corresponded to a group of symbols,
which was active during the first stage of spelling. During the second stage, the stimuli boxes on
the right-hand side started flickering. These boxes presented the suggested words from the built-in
language model dictionary. Another flickering box was situated at the bottom of the typing area.
This box was always active. It permitted the user to voluntarily choose to switch from the first spelling
stage to the next. Once a target was selected, it turned green for few seconds to give a feedback to the
user. When a word was chosen, space was added, and the stimulation was active on the left-hand side
again, starting automatically.

The users gave a positive feedback regarding the friendliness of the interface. As only three
electrodes were used, the setup time was minimal, and the portability of the system was realistic.
The added built-in dictionary for word prediction supported the users to reach faster typing speeds
using this BCI speller. The average overall performance of this system was reasonable compared to
other SSVEP spellers (ITR 21.94 bits/min and accuracy 90.81%).

4.4. MI Interfaces

In this section, we present different spellers which are based on MI. A unique feature of MI-based
systems is that they are not dependent on any kind of external stimuli.

4.4.1. Hex-O-Spell

The Hex-O-Spell, a gaze-independent BCI speller that relies on imaginary movement, was first
developed in 2006 by Blankertz et al. [39], also presented in [104]. It was inspired by a mobile
device, which relies on the change of the device orientation for typing. The aim was to develop
a working, synchronous BCI system, with the least number of controls possible (two) for 30 targets
(26 letters + punctuations). The two controls were based on two mental states: imagined right-hand
movement and imagined foot movement. As shown in Figure 13a, six hexagons were arranged
eccentrically around a circle containing an arrow pointing out from the center towards the hexagons.
The 30 characters were divided equally among the hexagons, five characters each. By imagining the
right-hand movement or foot movement, the subject could rotate the arrow or select the hexagon
that the arrow points to, which contains the target letter, respectively. In the second stage of selection
(Figure 13b), the characters from the selected group spread out in a way that each letter or symbol
occupied one of the hexagons. If an error was made during the first selection, the sixth (empty)
hexagon gave the user the option to return to the first stage. Then, this two-step process was repeated
to spell a complete word.

This was another gaze-independent speller, which might be appropriate for advanced-stage ALS
patients. As this was an MI-based speller, which means the user has the ultimate control over the
system (no external stimulation was necessary), the user had to practice using the system. As the
user had more control over the system, fewer errors were expected to occur. The system’s spelling
speed was also dependent to some extent on the speed at which the user was controlling the speller.
All in all, this was a state-of-the-art speller system with the advantages of using MI: no necessary
stimulations and gaze-independency. However, the typical disadvantages of an MI system were also
present, i.e., the extended training periods, the incurred fatigue, and the increased complexity of the
data analysis.
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Figure 13. The GUI similar to Berlin Hex-O-Spell GUI, as shown and discussed in Blankertz et al.,
2006 [39] (a) during the first stage of selection and (b) the second stage for selecting an individual letter.
Figures modified from [104].

4.4.2. Oct-O-Spell

Another recent MI-based speller, the Oct-O-Spell was introduced in [40]. The GUI is similar to
the Hex-O-Spell. The system was controlled asynchronously by a brain switch, which means that the
user can turn the speller on and off by a specific brain signal. In the first phase, the interface showed
an octagon divided equally into eight sections. These sections contained in total 26 letters, six letters,
digits, or symbols, each. The second phase was dependent on the first stage selection. The sector
selected during the first stage was unfolded across the eight sectors (there were only six characters
in each section to unfold, the commands “Back” and “Delt” were added to have eight sectors in the
second stage). For only two selections from the second stage, a third stage was implemented, to verify
whether the user really wants to quit (“Yes” or “No”), or, after selecting the command “F1”, to choose
which symbol (“∗”, “@”, “?”, “+”, “!”, “#”) should be written. Words suggestions appeared to the user
after selecting several characters, which were simply selected by entering the corresponding number.

This interface showed a similar performance to other BCI spellers, especially hybrid BCI
spellers. The interface was also tested without the predictive text. Although this case showed higher
performance than the mode with the suggested words option, there was no significant difference
between the two modes.

4.4.3. Other MI Spellers

D’albis et al. [94] presented a novel MI-based BCI speller. The GUI consisted of four rectangles at
the edges of the screen. Three boxes (upper, right, and left) contained English characters. The fourth
bottom box contained commands to help the user to control the speller, such as undo, delete,
switch from letters to numbers, and quit the interface. Specific imaginary movements could be
used to select each of the boxes. The left and right boxes could be selected by imagining the movement
of the left and right arm, respectively. The upper box was activated by the movement of both arms,
and the lower box by both legs. A predictive method was applied by them to lower the number of
steps necessary for selection. This was done by enabling/disabling each character according to their
probability to follow the already written text. When one of the boxes was selected, the enabled letters
inside were extended for a single-character selection step.

Only three healthy subjects tested this paradigm and showed a humble performance;
however, it proved the concept of the suggested interface. An additional advantage of this system was
the embedded prediction module, which displayed suggested words for the user to select.

The GUI presented in [41] (also previously mentioned in [106] as Bremen speller) is
a diamond-shaped interface divided into steps. The letters are arranged according to their usage
frequency and into two layers. The layer 2 contained mostly numbers, three letters with the least
usage frequency, and a delete symbol. By four different imaginary movements, the user could control
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a cursor and change between layers. The commands “up”, “down”, “left”, “right”, and “enter” were
shown on the screen to move the cursor and select the target character.

The point of using SMR, instead of visual evoked potentials, was to avoid the uncomfortable
stimulation technique. The system reported an average accuracy of 85% and proved the concept of
operating the speller by using MI instead of visual stimuli. This latter point can attract more late-stages
ALS patients to adopt this speller, as no eye movement was required.

4.5. Hybrid

To combine the advantages of two different systems, hybrid systems were developed to include
more than one type of BCI or Human Machine Interface (HMI) paradigm, in general [109].

4.5.1. SSVEP + P300

In [95], another approach was presented, which can be considered as a T9 speller, given that the
36 letters and numbers were divided into nine groups, requiring only nine stimulation frequencies.
It was a hybrid BCI system based on SSVEP and P300, with four different characters per group,
which were flickering periodically in a random order. The flickering stimulus elicited an SSVEP
while the “oddball paradigm” of random characters appearing in each group was responsible for
the P300. Each character appeared in different color and was placed to improve the P300 signal and
the performance of the system. The hybrid system showed superior performance when compared
to either the SSVEP or theP300. The individual SSVEP and P300 only systems resulted in 89% and
90% accuracies, respectively, while the accuracy of the hybrid system was 93%. As for the ITR, it was
13.0, 19.9, and 31.8 bits/min for the SSVEP, P300, and the hybrid, respectively.

4.5.2. 60 Target Hybrid SSVEP/EMG (Electromyogram)

Lin et al. [96] created a 6 × 10 speller matrix on an LCD monitor, containing 60 stimuli.
The 60 characters were divided into four equal groups, resulting in 15 characters per group flickering
at 15 different frequencies. To select one of the groups, the user had to make a fist movement. For each
group, a specific number of fist movements were required. Group 1, 2, 3, and 4 required zero, one, two,
and three movements, respectively. After selecting the desired group, the users needed to select the
target letter by gazing at it to elicit an SSVEP response.

This combination of SSVEP and EMG resulted in one of the highest mean ITR values of all the
systems mentioned in this review, i.e., 90.9 bits/min, with a reasonable average accuracy of 85.80%.
As neither SSVEP nor EMG requires training, the system was relatively easy to use for a wide group of
users. However, as EMG requires actual physical movement (in this case, wrist movement), it limits
the number of users who could profit from such a high-performing speller.

4.5.3. Consonant/Vowel Lists

In [97], a hybrid BCI speller system based on Motor Evoked Potential (MEP) (a type of MI) and
P300 was presented. The idea was to use the MEP when there was a low number of targets and the P300
when there were more of them. The speller consisted of two lists, one containing the consonants and
the other the vowels. The letters were arranged according to their probability of usage. By imaginary
left- and right-hand movements, the user chose between the lists. Once a list was selected, the letters
started flickering, and the user focused on the target letter for selection. After three spelled letters,
suggested words appeared on the screen and could be selected by the user. The word printed on the
screen was followed by a space. The system showed faster performance but reduced accuracy.

The reported results showed average ITR and accuracy levels compared to other studies
mentioned in this review. However, the idea of dividing the letters into consonant and vowel lists
might make it easier for users to spell and can achieve higher typing speed after a number of trials.
It was also proven that the hybrid system achieved better performance than the individual P300 or MI.
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This interface might be helpful for users who have difficulties focusing on the flashing Matrix speller.
However, this speller was only tested by two healthy participants.

4.5.4. MI + P300

In [42], a self-paced hybrid BCI speller was introduced. It was a matrix speller based on Farwell
and Donchin’s speller, but it was controlled by an MI switch. A matrix with the size of 6 × 7,
including 26 English letters, 10 numbers, comma “,”, dot “.”, “Del”, and “Exit”, was initially turned
OFF at the start of the experiment. The user had to intentionally change his/her state of mind
by MI to turn the system ON and start the flashing of the stimuli. The hybrid speller showed
exciting results, the average classification accuracy and the ITR were 92.93%, and 41.23 bits/min,
respectively. These results are relatively within the range of the commonly tested P300 matrix spellers,
but, for this experiment, the user could control when to start and when to stop spelling intentionally,
without affecting the performance of the speller.

5. Discussion

In addition to the developments presented in this review paper, various modalities have been
presented throughout the years with the primary aim to improve the quality of life of users with
disabilities. Eye tracking devices are a successful example, which are commercially available off the
shelf for users and also used for further development of new applications for MND patients [110].
Many studies have been carried out to compare and/or combine BCI systems with eye trackers. One of
the most recent studies is our study [111], which merges both systems to develop a hybrid speller
combining the advantages of both systems in a competent speller. More information about eye tracking
and the comparison between eye tracker spellers and BCIs can be found in [111].

Other systems have a special chin joystick, which could assist the user to manipulate an assistive
robot, as presented in [112]. To mention other control modes, in [113], computer and assistive devices
were controlled by the tongue, and, in [114], infrared sensors were used to detect head movement to
control a computer mouse. All these methodologies are very useful and can benefit many people with
disabilities. Although some of these methods can be faster and more accurate than BCI, when applied to
spelling applications, they restrict the number of potential users, as they are only beneficial for patients
who still maintain some motor control. BCIs usually require minimal or no muscular movement,
qualifying BCI systems to be suitable for a wider group of users.

Spelling applications are our key focus of this review. Nevertheless, it is worth mentioning that
BCIs are applied for a lot of other purposes, e.g., robot control [115–117], wheelchair control [118,119],
web browsing [120], general control of an operating system with a virtual keyboard, as presented
in [121], gaming [122], every-day electronic device control [123–125], and ADHD attention
training [126], just to mention a few. A lot of these applications are also useful for people with
neuromuscular malfunctions, and a number of them can be suitable for healthy users.

Although BCIs have a lot of advantages and benefits, there is room for improvements.
Usually, BCI systems require some time and help to be set up. It is tricky for a person with no
BCI experience to set up a commonly used BCI system. One of the reasons is the setup of the electrodes.
The used electrodes need to be fixed at specific positions, and it is also essential to apply electrolyte gel
correctly for EEG-based measurement. As an example, in [127,128], other types of electrodes and setup
methods were proposed. Another challenge is the portability. Researchers have been working lately to
overcome this barrier to achieve a more portable BCI system; just to mention some examples: [128–131].

In addition to working on the above-stated challenges, researchers always aim for BCI systems
with better performance. Here, we discuss the developments made towards this goal in the aspect
of GUI changes. Many articles have been published with respect to other properties, especially data
processing and analysis of a BCI. Much more papers were presented in this field (examples: [132–135]).

Back to the main topic of discussion, the BCI spellers, various interfaces and systems are
reported in various literature libraries. As each presented system had its own variables, parameters,
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and conditions, it is not possible to carry out an objective comparison between different GUI spellers.
However, we can still discuss some advantages and disadvantages of the systems described in the
previous section of this review. Tables 2–4 summarize the studies mentioned above, while stating the
main specifications of each system, such as accuracy, information transfer rate (ITR), and the number
and type of subjects who participated in the studies. Table 2 includes all the variations and studies
which were built on the original Matrix Speller. Table 3 presents a summary of the performance of
other P300-based spellers which were not directly inspired by the Matrix Speller, and, finally, Table 4
presents the performance of the above-mentioned SSVEP-based spellers, MI spellers, and hybrid
spellers. We can see from these tables that most of the developments made during the decade are
based on P300 BCIs, especially on the Matrix speller GUI.

Table 2. Summary of all spellers discussed in this review which are based on the P300 Matrix Speller.

Topic/Speller
Name

Reference Subjects
Mean ITR/Typing
Speed

Mean
Accuracy

Matrix Speller [7] Farwell and Donchin 1988 4 healthy 12 bits/min 95.0%

Stimuli
Variations

[43] Yeom et al. 2014a 4 healthy 66.3 bits/min 64.7%
[44] Obeidat et al. 2015 14 healthy 13.7 bits/min 93.3%
[45] Liu et al. 2010 4 healthy rotation stimuli: 35.8

bits/min
rotation stimuli:
89.06%

[46] Shi et al. 2012 7 healthy SBP433: 26.8 bits/min 99.7%
[47] Eom et al. 2013 5 healthy 13.5 s/char 79.2%
[48] Jin et al. 2010 8 healthy 14.8 bits/min 92.9%
[49] Polprasert et al. 2013 10 healthy 23.82 bits/min 84.0%

Familiar Faces
and symbols

[50] Kaufmann et al. 2011 20 healthy N/A Max 100%
[51] Li et al. 2015a 17 healthy N/A N/A
[52] Li et al. 2015b 12 healthy 39.0 bits/min 86.1%

[53] Kaufmann and Kübler
2014 8 healthy ~80 bits/min 81.25%

[54] Yeom et al. 2014b 15 healthy RASP-F: 53.7 bits/min
RASP: 32.8 bits/min

84.0%
90.7%

[56] Kathner et al. 2015 18 healthy + 1 LIS 15.5–16.2 bits/min 94–96%

Variation of
letters
arrangement

[57] Ahi et al. 2011 14 healthy 55.32 bits/min 87.14%

[58] Li et al. 2011 10 healthy + 10
NMD N/A 79.7–28.7%

[59] Jin et al. 2012 9 healthy 18-P: 29.9 bits/min
21-P: 27.1 bits/min

18-P: 93.3%
21-P: 94.8%

[60] Sakai and Yagi 2011 9 healthy N/A N/A

Matrix Speller
with
Prediction

[62] Ryan et al. 2011 24 healthy 17.71 bits/min 84.88%
[63] Kaufmann et al. 2012 20 healthy Max 25 bits/min >70%
[64] Akram et al. 2013 4 healthy 26.1 s/char 77.5%
[65] Akram et al. 2014 10 healthy 26.13 s/char 77.14%

Other
languages

[66] Minett et al. 2010 30 healthy 14.5 bits/min > 60%
[67] Minett et al. 2012 24 healthy 4.23 bits/min 82.8%
[68] Yu et al. 2016 10 healthy 39.2 bits/min 92.6%
[69] Kabbara et al. 2015 11 healthy N/A 88–95%
[70] Lee et al. 2011 3 healthy N/A 100% after

training
[71] Yamamoto et al. 2014 4 healthy N/A 93%

[72] Ikegami et al. 2014 7 ALS patients + 7
healthy N/A

ALS: 24%, 55%
healthy: 55%,
83%

3D Blocks
Matrix Speller

[73] Noorzadeh et al. 2014 16 healthy N/A ~90% with 5
repetitions

31



Brain Sci. 2018, 8, 57

Table 3. Summary of all other P300-based spellers which are not directly related to the Matrix Speller.

Topic/Speller
Name

Reference Subjects
Mean
ITR/Typing
Speed

Mean Accuracy

Chroma Speller [74] Acqualagna et al. 2013 9 healthy 1.4 char/min 88.4%

T9
[76] Ron-Angevin et al. 2015 11 healthy + 1

with ALS N/A N/A

[75] Akram et al. 2015 10 healthy 26.125 s/char N/A

Checkerboard
Paradigm

[77] Postelnicu and Talaba 2013 10 healthy 21.74 bits/min 90.63%

Geospell
[79] Liu et al. 2011 8 healthy 1.38 char/min RP: 87.8%

FP: 84.1%
[78] Aloise et al. 2012 10 healthy 1.86 char/min 78%
[82] Zhou et al. 2016 10 healthy N/A N/A

GIBS [80] Pires et al. 2011 4 healthy 16.67 bits/min 96.02%

LSC Speller [81] Pires et al. 2012
10 healthy + 7
ALS + 5CP + 1
DMD + 1 SCI

26.11 bits/min 89.9%

Hex-O-Spell with
ERP

[83] Treder et al. 2011 13 healthy 2 char/min
Hex-O-Spell: 90.4%
Cake Speller: 88.0%
Center Speller: 97.0%

[84] Schmidt et al. 2012 11 healthy 2.75 char/min 89.1%

Rapid serial
visual
presentation
RSVP

[87] Acqualagna and Blankertz 2013 12 healthy 1.43 char/min 94.8%
[85] Acqualagna et al. 2010 9 healthy N/A 90%
[86] Acqualagna and Blankertz 2011 12 healthy 2 char/min 94.8%

[88] Sato and Washizawa 2016 11 healthy 2 × 2: 0.70 bits/s
2 × 3: 0.85 bits/s

2 × 2: 74.4%
2 × 3: 70.3%

Table 4. Summary of the spellers discussed in this review which are based on SSVEP, MI, and
Hybrid system.

Topic/Speller Name Reference Subjects
Mean ITR/Typing
Speed

Mean Accuracy

Bremen Speller [28] Volosyak et al. 2011 7 healthy 32.71 bits/min Correct spelling only

Multi-Phase Spellers

[29] Volosyak et al. 2017 20 healthy group A: 27.36 bits/min
group B: 16.10 bits/min

group A: 98.49%
group B: 91.13%

[30] Cecotti 2010 8 healthy 37.62 bits/min 92.25%
[31] Cao et al. 2011 4 healthy 61.64 bits/min 98.78%
[32] Ansari and Singla 2016 20 healthy 13 chars/min 96.04%

Multi-Target
One-Phase Spellers

[33] Wang et al. 2010 3 healthy 75.4 bits/min 97.2%
[34] Chen et al. 2015 12 healthy 4.45 bits/min 91.04%
[89] Nakanishi et al. 2018 20 healthy 325.33 bits/min 89.83%
[35] Spüler et al. 2012 9 healthy 143.95 bits/min 96.18%
[36] Wei et al. 2017 4 healthy 129.58 bits/min 90.5%

RC SSVEP Speller

[90] Yin et al. 2015b 11 healthy 41.08 bits/min ~95%
[91] Yin et al. 2013 12 healthy 56.44 bits/min 93.85%

[92] Yin et al. 2014 14 healthy RC: 53.06 bits/min
SL: 44.7 bits/min N/A

[93] Yin et al. 2015a 13 healthy 50.41 bits/min 95.18%

Flash-Type Speller [37] Nezamfar et al. 2016 3 healthy 6.2–11 s/char 95.5–97%
DTU BCI Speller [38] Vilic et al. 2013 9 healthy 21.94 bits/min 90.81%

Hex-O-Spell [39] Blankertz et al. 2006 2 healthy max 7.6 char/min error free
measurements

Oct-O-Spell [40] Cao et al. 2017 3 healthy Non-PTE: 69.16 bits/min
PTE: 62.39 bits/min

Non-PTE: 98.3%
PTE: 96.6%

Other MI Speller
[94] D’Albis et al. 2012 3 healthy max 3 char/min average N/A
[41] Jingwei et al. 2011 5 healthy N/A 85.0%

SSVEP+P300 [95] Chang et al. 2016 10 healthy 31.8 bits/min 93%

SSVEP+EMG [96] Lin et al. 2016 10 healthy 90.9 bits/min 85.8%

Consonant/Vowels list [97] Roula et al. 2012 2 healthy 11 s/char 70%

MI+P300 [42] Yu et al. 2016 11 healthy 41.23 bits/min 92.93%

Another reason why the performance varies from one study to another is the use of different
resources. Different teams utilize different hardware. There are several available bioamplifiers on the
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market as well as a variety of EEG caps and electrodes. Additionally, researchers usually build the
software which is suitable for them. Some develop their own software and others would make use of
available tools on the market. These parameters affect the performance greatly. A first step to conduct
a subjective comparison between different BCI systems is to make sure that the same hardware and
software are being implemented.

It is also noticeable from the tables that there are performance variations between different
systems in the same category. A main reason behind this is that the ITR and accuracy are calculated
differently for different interfaces, which means that it is almost impossible to carry out an objective
evaluation or comparison between the systems. In some cases, it is obvious that the improvement in
the spelling speed affected the accuracy negatively or vice versa. For example, the Center Speller or
the RSVP spellers (see Table 2 for more details) were specifically designed to achieve high accuracy
and gaze-independent spelling. They successfully achieved their goals; however, the typing speed
was affected significantly.

In other cases, a typing mistake requires time for correction, affecting the spelling speed.
To eliminate this negative effects, researchers integrated Error-related Potentials (ErrPs) into BCI
spellers. The ErrP signal is generated 50–100 ms after an error is detected by the user. The error might
be due to a human error from the user’s side, or it can be that the machine behaved differently from
what the user expected. In [84,136,137], the ErrP was used to automatically detect and delete the
errors in a BCI speller. The merging of ErrP with P300 aimed to increase the accuracy of the speller,
while avoiding affecting the spelling speed, as the correction was done automatically. In our opinion,
accuracy is more important for the subjects. During many experiments, we observed that the subjects
were much more frustrated by typing mistakes than by a slow-performing system.

P300 is very popular among BCI researchers because of its relatively high ITR and the minimal user
training required (compared to MI). However, in general, P300 spellers have several disadvantages.
As the number of commands increases in a P300 speller, the number of trials increases as well,
leading to a slower performance. As the feature extraction mostly depends on identifying the point
of intersection of which row and column elicited the signal, at least two flashes are required for
each target, which, again, increases the classification times. Although scientists have been working
lately to develop gaze-independent P300 spellers, most of these systems require visual attention
or even gaze shifting. The gaze shift dependency might not be applicable for patients with severe
paralysis. It is worth noting that the modifications developed and applied to the original Matrix Speller
paradigm showed better performance than that of the traditional RCP, especially when tested with
MND patients. Some researchers worked on improving the performance of P300 spellers by developing
classification algorithms to build an asynchronous P300-based BCI. As an example, the team in [138]
combined a P300 speller similar to the Geospell (already mentioned in Section 4.2.4), which was
gaze-independent, with an asynchronous algorithm. However, these results were not significantly
different. Later, in [139], the group achieved promising results by embedding a self-calibration
module to the system. This improvement included an algorithm which automatically recalibrated
the parameters of the classifier and adjusted them according to the personal performance of the user.
Accordingly, the system could adjust the parameters to attain the optimum accuracy and typing speed.

Some of these challenges are overcome in other BCI paradigms. For example, SSVEP does not
require a minimum number of flashes to elicit a response. Thus, it can be used to achieve faster spellers.
It also requires no training at all on the user’s side. On the other hand, it has been observed that some
participants have a low SSVEP response, which is almost impossible to detect and use as a control
signal when a high number of stimuli is presented. As for MI, once the user receives the required
training, the system can achieve impressive results. However, the training might take a long time.

The recently developed mVEP paradigm overcomes several other challenges which were faced
during the development of other BCI systems. It is elicited entirely by the motion and the motion
behavior of the visual stimulus. Thus, such system is not sensitive to contrast, illumination, color,
or size of the stimulus. An mVEP-based paradigm does not require any previous training as well.
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Another approach to avoid the gaze dependency problem is to utilize other sensory modalities
than vision. As mentioned in the introduction, auditory and tactile ERP researches have been
published with promising results. In [140], the Farwell and Donchin P300 speller was modified
into a visual–auditory speller, which showed similar performance compared to the visual paradigm.
In [141], an auditory matrix speller was presented, where the authors used natural animal sounds as
stimuli. The system was tested by impaired subjects and resulted in a relatively high performance.
However, these systems still require a lot of training and familiarization.

An example of a tactile ERP system is the Braille-like system developed in [142] as a P300-based
tactile BCI system. Two or four different types of tactile stimuli were assigned to intentions, such as
“yes” and “no”, “right” and “left”, or “up” and “down.” The stimulation was a tactile stimulator using
a piezoelectric actuator, used with the braille system, consisting of eight cylindrical pins which could
be pressed lightly against the fingertips of the user. The number and the positions of the pins moving
up defined the stimulus. Another recent study [143] combined tactile and auditory stimuli to form
a hybrid BCI system. Although the performance of BCI spellers based on tactile and/or auditory
stimulus (a stimulus other than vision) is still not better than the visual stimuli-based BCI spellers,
specifically when used with healthy participants, they are of great importance when considering
patients with eyesight problems or in late stages of ALS.

It is evident from Tables 2–4, that most of the studies were conducted using the P300 paradigm.
This can be due to its popularity, its many advantages, and the fact that it has been studied for
many years. This can guide us to deduce that there are more development opportunities in the
other BCI paradigms. Overall, researchers have been working for many years to develop efficient
BCI communication applications, which are safe, affordable, reliable, easy to setup, easy to use,
and achieving a fast communication speed. From what we discussed above, BCI spellers can be
a suitable option for people who have no other means of communication with their surroundings.
However, BCI spellers are not fast enough, compared to other regular communication methods,
like typing or speaking, neither as fast as other systems, like spellers based on eye trackers.
Also, BCIs are relatively complicated to set up and require specific skills. A typical BCI system
is not considered to be very portable. Some of the spellers discussed above aimed to tackle these
challenges and gaps, but still more developments are required. Combining different BCI systems or
combining BCI with other non-BCI systems can also lead to promising results. As already discussed,
some spellers merged P300 with SSVEP, and some others combined them with other systems, like eye
trackers. The results achieved by the hybrid systems were usually faster and/or more accurate.
The general aim is to achieve a BCI speller which is as fast as other communication methods, easy to
carry around and set up, comfortable to use for short terms and on the long run, and suitable for the
broadest range of users.

6. Conclusions

All the systems discussed above were studied and presented with the aim to improve BCI spellers.
Throughout the years, scientists have worked on spelling systems to make them faster, more accurate,
more user-friendly, and, most of all, able to compete with traditional communication methods. On the
other hand, a lot of gaps are still to be closed to achieve efficient BCI spellers. More emphasis needs to
be given to GUI design to satisfy the needs of the end-users. In addition, more testing with patients
is required. From the summary tables, we can see that only five systems were tested by afflicted
subjects. BCI spellers provide a practical and efficient way for people who cannot communicate
through traditional methods to be able to participate in their social lives and careers. The different
GUIs described and discussed during this review, as well as the other different systems mentioned,
may provide an inspiring starting point for further studies and improvements.
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Abstract: Brain computer interfaces (BCIs) enables people with motor impairments to communicate
using their brain signals by selecting letters and words from a screen. However, these spellers
do not work for people in a complete locked-in state (CLIS). For these patients, a near infrared
spectroscopy-based BCI has been developed, allowing them to reply to “yes”/”no” questions with
a classification accuracy of 70%. Because of the non-optimal accuracy, a usual character-based speller
for selecting letters or words cannot be used. In this paper, a novel spelling interface based on the
popular 20-questions-game has been presented, which will allow patients to communicate using
only “yes”/”no” answers, even in the presence of poor classification accuracy. The communication
system is based on an artificial neural network (ANN) that estimates a statement thought by the
patient asking less than 20 questions. The ANN has been tested in a web-based version with healthy
participants and in offline simulations. Both results indicate that the proposed system can estimate
a patient’s imagined sentence with an accuracy that varies from 40%, in the case of a “yes”/”no”
classification accuracy of 70%, and up to 100% in the best case. These results show that the proposed
spelling interface could allow patients in CLIS to express their own thoughts, instead of only answer
to “yes”/”no” questions.

Keywords: brain computer interface; complete locked-in state; communication; Artificial Neural Network;
20-questions-game

1. Introduction

In the past decades, many alternative communication systems have been developed for people
with speech, language, or motor impairments. Brain computer interfaces (BCI) were developed
to provide a means of communication for people with severe motor disabilities (for review see
Chaudhary et al., 2016) [1–3]. The most commonly used non-invasive BCI spelling application is based
on the electroencephalography (EEG) based P300 event-related brain potential, where a patient can
select letters from a matrix in which each character is transiently illuminated [4]. Another BCI system
commonly used to select letters from a screen is based on steady state visually evoked potential
(SSEVP) [5,6]. Other BCI communication systems are based on slow cortical potential [7], and on the
sensorimotor rhythm of the EEG [8,9] to control cursors or keyboards on a screen. These systems,
even using different signals and different interfaces, are all based on the same general paradigm,
namely, that patients communicate by selecting letters or words from a screen. Different features and
classification techniques are used to decode the intention of patients [10–12]. Independently from
the signal type, all of these BCI systems are based on the control of a neuroelectric brain response,
and the learning process is based on feedback and reward. Despite the good results achievable using
these systems with patients suffering from disorders leading to loss of communication, none of these
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techniques were able to provide a means of communication to amyotrophic lateral sclerosis (ALS)
patients in a completely locked-in state (CLIS). An explanation of the non-applicability of the standard
BCI in complete paralysis with otherwise intact cognitive processing, Kübler and Birbaumer suggested
the theoretical psychophysiological notion of “extinction of goal directed cognition and thought” in
CLIS [13]. Following this idea, a BCI based on functional near-infrared spectroscopy (f NIRS) was
developed for ‘reflexive’ communication in CLIS. Unlike the other communication systems, it allows
the patient to answer short questions affirmatively (“yes”) and negatively (“no”), using the blood
oxygenation change of their fronto-central brain regions. The best accuracy reported for correctly
classified “yes”/”no” answers is 70% in CLIS [14,15]. The low classification accuracy and the only
binary “yes”/”no” answers do not allow the patients to express their own thoughts using a classic
character-selection-based speller, but only to answer prerecorded questions.

The limitations of the fNIRS-BCI, especially the restriction to a binary “yes”/”no” signal and
a substantial error rate, are common not only to all non-invasive BCI systems, but also to all the
telecommunication systems. Using telecommunication words, the BCI problem involves the correct
detection of a communication between two agents through a noisy channel. The communication, both in
the general case of telecommunication or in the particular case of the “yes”/”no”-BCI, is a binary message
sent from the sender (or the brain) to the receiver (the computer), whose information may be distorted in
the transmission due to the noise in the channel (wrong classification), and the task of the receiver is to
recover the message reconstructing the corrupted signal [16].

The BCI-spellers usually solve the problem of the wrong signal classification with a redundant
number of inputs (e.g., flashing each letter multiple times in order to be sure that the selection was
not due to a false positive). With the f NIRS-BCI, this technique is because of the characteristic of the
f NIRS signal; the f NIRS-BCI system is slow and allows the patient to answer approximately only one
question every 20 s. The solution for this kind of BCI would be a speller capable of correcting the
errors in the classification of the answers, allowing a patient to communicate using minimum number
of inputs.

A solution can be found in a popular game, the 20-questions-game. In this game, a player has
to guess what the other player is thinking within 20 “yes”/”no” questions. An electronic version of
the game, which has been played more than 88 millions times, can correctly guess what someone is
thinking with 80% precision, by asking 20 questions (95% of the time with 25 questions) [17]. The game
was mathematically formalized by Alfred Rényi [18] and it was later proposed in a different version by
Stanisław Ulam [19]. The Rényi¬–Ulam game and its variations have been used to solve many different
problems [20–22], in this paper we propose to use the game as a spelling interface for a binary BCI,
like the f NIRS-based BCI described in Chaudhary et al. (2017). This kind of communication system
may allow patients in CLIS to express their own thoughts and not just to reply to prerecorded questions.

The rest of the paper is structured as follows: in Section 2, the method used to design the
communication system is described, and in particular, in Sections 2.1 and 2.2 describe the algorithm
of the Rényi–Ulam game and its application to the popular 20-questions-game using an artificial
neural network, and in Section 2.3, the implementation as an interface for a BCI system is described.
In Section 3, the proposed algorithm is explained in detail. Then, in Section 4, we present the results of
the algorithm, both for an online version of the game played by real persons (Section 4.1) and for an
offline version with computer simulations (Section 4.2). The results are discussed and followed by the
conclusion in Section 5. While the databases used for the results are described in Appendix A.

2. Materials and Methods

2.1. Rényi–Ulam Game

The 20-questions-game is a popular game played by two players. The rules of the game are as
follows: the first player (player A, the Responder) imagines a famous person, while the second (player B,
the Questioner) must guess the person by asking twenty “yes”/”no” questions (e.g., “Is the person alive?”).
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The game has been mathematically described by Rényi and Ulam, as follows: the Responder
can imagine any target statement that is contained in a fixed search space (i.e., the topic, e.g., famous
people), while the Questioner has to guess the statement using less than n (e.g., 20) “yes”/”no”
questions. Moreover, the Responder is allowed to lie up to e times on the answers given to the
“yes”/”no” questions (i.e., they can give wrong answers). The lies are a formalization of the wrong
answer that a player can give if their knowledge about the statement is different from the knowledge
of the other player (e.g., the Responder thinks that a person is alive, but instead it is dead).

The complete description of the game is outlined below:

1. The game is played by two players: A (the Responder) and B (the Questioner).
2. A set S of target statements (the search space) is fixed.
3. A number n > 0 of questions is fixed.
4. An upper bound e ≥ 0 of number of lies is fixed.
5. B can ask questions in the form of “Is x in T?”, where T is a subset of S.
6. A must reply “yes” or “no”, and he can lie up to e times.
7. B wins if he can correctly guess x after n questions.

The number of questions n to solve the Rényi–Ulam game depends linearly on the cardinality of
S and on the maximum number of lies e, but for the general case of an arbitrary number of lies, there is
no general solution and only heuristic methods have been proposed [23].

2.2. Artificial Neural Network

A heuristic solution of the Rényi–Ulam game with arbitrary number of lies can be found using
an artificial neural network (ANN). This method was first developed by Robin Burgener [24] for 20q,
an electronic version of the 20-question-game. This version is slightly different from the Rényi–Ulam
game; for instance, the allowed answers are not only “yes” and “no”, but also “unknown”, “irrelevant”,
“sometimes”, “depends”, etc. Here, we propose an ANN for the original Rényi–Ulam game with
binary answers only.

The ANN will play the role of the Questioner, that is, it will ask questions, and it will estimate
a particular target statement (e.g., a person) imagined by a Responder. Therefore, in order to work,
the ANN needs two databases, one with the target statements belonging to the search space (e.g., all of
the possible famous people), and one with the possible “yes”/”no” questions (e.g., “Is it alive?”, “Is it
a woman?”, etc.).

The main core of the ANN is the relation between the statements and questions. Each target
statement is connected to each question, and the strength of this connection is indicated by a weight.
The weights can be negative if the statement and question are not related (i.e., the expected answer is
“no”) and positive if they are related (i.e., the expected answer is “yes”). All of the weights are stored
in a matrix called a weight matrix.

The ANN will present to the Responder the questions stored in the database. The choice of the
question is based on the weight table and on the previous questions.

The final estimation of the ANN is the statement that, based on the received answers, is the most
probable. In order to calculate this probability, after each question, the ANN will penalize or reward,
based on the answer, the target statements (e.g., if the answer to “Is she a woman?” is “yes”, all male
persons will be penalized).

Finally, after each correct final estimation, the weight matrix is updated based on the received
answer, allowing a learning process.

Using ANN has two advantages. First, if the Responder occasionally lies, the ANN will not
exclude any possible target statement, based on that single answer, but it will only change the
probability for the final estimation. Second, the estimation of the target statement will improve with
frequent usage of ANN, because the learning process improves the reliability of the weight table.
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2.3. 20-Questions-Based Interface for Communication Systems

2.3.1. Proposed BCI Implementation

We endeavor to use the 20-questions-game as a communication system for patients that do not
have a reliable means of communication, like patients in a complete locked-in state (CLIS). This system
is based on an ANN that interacts with the patient in a 20-questions-based paradigm, in order to
estimate their thoughts.

For this purpose, the ANN can be developed as part of a brain-computer interface; the computer
proposes auditorily the questions to the patient, and it records a brain signal (e.g., f NIRS). The BCI
classifies the brain signal in a binary answer (“yes” or “no”), which will be the answer required by
the ANN. In this implementation, the patient will play the role of the Responder, while the ANN will
be the Questioner. The patient can think of any word or sentence that is stored in the database of the
ANN, and the ANN will ask questions, also stored in the database, in order to estimate the patient’s
thought. The “yes”/“no” classification accuracy achieved using BCI systems with CLIS patients is
around 70% [14,15]. Using the 20-questions-based system, the errors on the “yes”/“no” classification
will be considered as the lies of the Rényi–Ulam game, therefore, they will not automatically lead to
a wrong estimation of the sentence.

The proposed 20-questions-based communication system is depicted in Figure 1. The system has
been tested as a communication system, independently from the brain signal records, with healthy
participants, using a web interface, and with computer simulations.

2.3.2. Web-Based Implementation

The web-based version of the algorithm (www.alsbci.eu) was written in Python and it has been
translated into three languages, English, German, and Italian.

In the website, the user is asked to put himself in a complete locked-in patient’s shoes, playing
the 20-questions-game by thinking a sentence that could be asked by a patient in such conditions.
The search space was intentionally left ambiguous and not bound to a specific topic, in order to check
the performance of the system in a not optimal scenario. The user had also the option to check the list
of target statements already stored in the database.

During the game, the ANN presented the questions to the user, who had the opportunity to reply
“yes”, “no”, or “unsure”. In the case of an “unsure” answer, the ANN ignored the answer and, instead,
it was asking a different question. At the end of each game, the ANN tried to estimate the thought
sentence three times, proposing to the users the three most probable targets (i.e., the three statements
with the highest current value). Finally, if none of the proposed target statements was the correct one,
the user could select (or, if not present, insert) the thought sentence directly from the database.

From the website, the users had also the opportunity to improve the databases of the ANN by
adding new statements and questions.

The web-based version was initialized with an initial database manually populated with a set
of 41 target statements and 25 questions. The website has been online, accessible to everyone since
November 2017. Since then, the game has been played 92 times, and 50 new statements and 113 new
questions have been added to the system, bringing the total number to 91 statements and 138 questions,
respectively (see Appendix A).
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Figure 1. Flow chart of the proposed 20-questions-based communication system.

2.3.3. Simulation

Using an offline version of the website, we tested the algorithm by changing the possible answers
and simulating a BCI with errors on the classification of the “yes” and “no” answers.

Regarding the possible answers, we considered three different cases, as follows:

1. “yes”, “no”, and “unsure” answers, with the questions answered as “unsure” excluded from the
total number of questions (same as the online system);

2. “yes”, “no”, and “unsure” answers, with the questions answered as “unsure” included in the
total number of questions; and

3. “yes” and “no” answers only.

As the expected answer is a direct expression of the target-question weight, we considered a “yes”
answer when the weight was positive, “no” when negative, and “unsure” when the weight was zero.
In the third case, considering the “yes” and “no” answers only, if the target-question weight was zero,
we chose “yes” or “no” randomly.

In order to emulate the non-optimal BCI classification, according to the simulated accuracy,
each answer had a certain probability of being wrong (if “unsure”, the answer was not changed).
The algorithm performance has been tested, varying the classification accuracy between 50%
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(i.e., random classification) and 100% (i.e., perfect classification). As for the online and the offline
analyses, we considered a statement as correctly estimated if, after 20 questions, it was among the
three most probable target statements.

3. Algorithm

3.1. Definitions

The two main agents of the ANN are the target statements (i.e., the possible final sentences) and
the questions (i.e., the descriptors of the sentences). Both of the target statements and sentences are
stored in a database, therefore, the only possible sentences and questions are the ones present in the
communication system.

As explained in Section 2.2, the core of the ANN is the weight matrix that puts in relation the
target statements and questions. The weight depends on the answer that each statement is required
from each question (i.e., if the expected answer is “yes”, the weight will be positive, if “no”, it will
be negative).

A value is assigned to each statement. This value indicates the probability of each statement
to be the final target; the higher the value assigned to one statement, the higher the probability
of that statement to be the thought one. The value is updated after each question, based on the
statement–question weight and on the received answer.

The elements of the ANN are shown in Figure 2, and are summarized below:

• N targets (Ti with i = 1:N) (i.e., sentences thought by the patient);
• Each target is described by M descriptors (Dj with j = 1:M) (i.e., “yes”/”no” questions);

• Strength of T–D connection is expressed by a weight (WTi,Dj with i = 1:N, j = 1:M); and

• Each target Ti is ranked using a current value (VTi with i = 1:N).

Figure 2. Structure of the artificial neural network. In particular, the structure of the databases of
statements and questions, of the table of current values, and of the weight table are shown.
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3.2. Current Value Adjustment

During each run, all of the target statements start with the same probability of being the final
sentence, therefore, all of the current values VT are initialized to 0. This probability (i.e., the current
value) changes after each presented question, based on the answer of the user. In particular, if Dj is the
n-th question presented to the user, for each target statement Ti, the current value VTi is updated using
the formula, as follows:

VTi (n) = VTi (n − 1) + WTi ,Dj if answer is “yes”

VTi (n) = VTi (n − 1)− WTi , Dj if answer is “no”

where n is the number of the question, and WTi,Dj is the weight between question Dj and statement Ti.
It is positive if the expected answer is “yes” and negative if the expected answer is “no”. Therefore,
the formula increases the current value if the given answer is the expected one, and decreases it otherwise.

In order to decrease the impact of the wrong answers, the adjustment of the current value has been
increased for those statements that receive many answers coherent with the expected ones. After each
question, every statement where the expected answer matches with the received one is marked as
a ‘priority target’. This priority is lost whenever the statement receives an answer that does not match
with the expected answer. The priority targets receive an adjustment for their current value, equal to
double the weight. This leads to the following modified formula for updating the current value:

VTi (n) = VTi (n − 1) + WTi ,Dj(×2 if Ti has priority) if answer is “yes”

VTi (n) = VTi (n − 1)− WTi , Dj(×2 if Ti has priority) if answer is “no”

where the variables are the same as described above.

3.3. Choice of the Question

One of the crucial points of the algorithm is the choice of the question. The best question is the
one whose answer will give more information about the most probable targets, or, in other words,
the one whose answer splits the most probable targets in two similar sets. Therefore, the best question
is the one that maximizes the entropy

H
(

Dj
)
= ∑

x∈X
−p(x) log2 p(x)

where X is the two classes of statements with positive and negative weights, with respect to the
question Dj; and p(x) is the proportion of the most probable statements that belong to the class x.

In the implementation, all of the targets with a positive current value were considered as the most
probable targets. It is possible to choose the most probable targets in a different way, using a more or
less strict definition (e.g., the targets with a current value greater than a certain threshold), and this
will obviously change the choice of the questions accordingly.

3.4. Estimate the Target

The goal of the ANN is to estimate the target statement that the patient is thinking. After 15 questions,
the ANN will check if there is only one target statement with a positive value; if this happens, it will
estimate that statement. If this condition never occurs, after 20 questions, the ANN will estimate the target
statement with the highest current value.

The lower threshold of 15 questions is based on the minimum number of questions needed
for an optimal solution of the Rényi–Ulam game; considering a search space of 91 statements and
a signal classification accuracy of 75%, the minimum number of questions for a deterministic optimal
solution is 23 (Table 2.3 from Cicalese, 2013, p. 28). We decided to check whether there was only one
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statement with a positive value after two thirds of the minimum number of questions for an optimal
solution. This condition is meant to speed up the communication process, avoiding asking unnecessary
questions when one statement is likely the correct target.

3.5. Learning Step

The last step of the algorithm is teaching the neural network. After each correct estimation,
the system will update the weight matrix. For each question that was asked during the run, it will
update the weight that associates that question to the correctly estimated statement, based on the
answer that the user gave; if the given answer is “yes”, it will increase the weight value, otherwise it
will decrease it. In order to avoid excessive values, the weights are upper and lower bounded.

4. Results

In the next paragraphs the online and offline results of the proposed algorithm will be presented.
The results are based on the web-based version and on the simulations descripted in Sections 2.3.2
and 2.3.3, respectively.

4.1. Online Results

The results of the games played online are reported in Table 1. Half of the time the game was
played with a statement that was not in the system; considering that only the games that played
with statements already in the system, the percentage of correct estimations is 65.95%, against 34.04%
of games where the ANN was not able to correctly estimate the thought sentence. Focusing on the
sentences correctly estimated, 67.74% of the time the sentence was estimated on the first attempt.

Table 1. Results of the game played online on the website. The table lists the total number of times of
the game play. The game was played for a total of 92 times, out of which it was played for 45 times
on new statements (not in the database) and 47 times on old statements (in the database). For the
statements already in the database, the table also lists the number of times that they were estimated
incorrectly and correctly. For the correctly estimated statements the table lists the number of times the
statements were the first, second, or third guess.

New Statements Old Statements

45 47

Incorrect Correct

16 31

1st Estimation 2nd Estimation 3rd Estimation

21 5 5

4.2. Offline Results

The offline results, reported in Figure 3, were obtained by simulating the performance of the
ANN in the cases mentioned in Section 2.3.3. For each of the three cases, the simulation was
performed by varying the signal classification accuracy between random (i.e., 50%) and perfect
(i.e., 100%). Figure 3a–c represents the percentage of statements correctly estimated by the ANN after
1000 simulations, with respect to the simulated BCI classification accuracy of “yes” and “no”. In each
figure, blue, green, and yellow represent the percentage of statements correctly estimated as the most,
second most, and third most probable statement, respectively.

In order to evaluate the time performance of the proposed communication system, we compared
the typing speed of the ANN to those of the classic P300-based matrix speller [25]. The f NIRS-based
BCI developed for CLIS patients is able to present one question every 20 s [15]. Therefore, a spelling
interface that uses this BCI has an information transfer rate (ITR) of 3 bits/min, while the matrix speller
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reaches 12 bits/min, which means a typing speed of approximately one character every 26 s. The target
statements in the database of the ANN (Table A1) have an average length of 23.625 characters. Hence,
as in the simulations, the statements were estimated in 20 questions, the f NIRS-BCI for the CLIS
patients using the 20-questions-based spelling interface will have an average typing speed of one
character every 17 s.

Figure 3. Results of the offline simulation in the three different cases. Blue, green, and yellow represent
the percentage of statements correctly estimated as most, second most, and third most probable
statement, respectively. (a) Simulated results using “yes”, “no”, and “unsure” answers, with the
questions answered as “unsure” excluded from the total number of questions; (b) simulated results
using “yes”, “no”, and “unsure” answers, with the questions answered as “unsure” included in the
total number of questions; and (c) simulated results using “yes” and “no” answers only.

5. Discussion and Conclusions

The results in the offline analyses show that the performances are very similar in the first two
analyzed cases, discarding and including “unsure” answers. Surprisingly, when giving random
answers instead of “unsure”, the results improve. We believe that this is due to the randomization of
the target statements and does not represent a real improvement in the results.

Figure 3a–c shows that considering a classification accuracy of 100%, the ANN is always able to
correctly estimate the target statement. This result means that, using a BCI that perfectly classifies
“yes” and “no” answers, a patient could communicate entire words, or even sentences, by answering
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only 20 questions. The result is very promising, considering that, under the condition of a perfect
signal classification, in order to select one character, a usual 6 × 6 grid-based speller needs at least
12 inputs [26].

However, we also notice that if the accuracy drops down to 80%, the correct rate decreases to 57%.
Nevertheless, we have to consider that we did not put any constraint on the possible target statements,
so in the same database, there were very different sentences like, “This movie is beautiful” and “I would
like to go more out from the bed”. This generality of the sentences put the program in a bad case
scenario. Although, it is important to notice that these results are still significant, as, considering
a random classification (accuracy of 50%), the correct rate is close to 0%.

Both in the online games and in the simulations, the system always asked 20 questions, therefore,
after 15 questions, there were always at least two statements with positive value. Hence, the ANN
always estimated the final target statement with a certain degree of uncertainty, probably because
the number of played games was not enough for an optimal training of the weight table. In order to
decrease the uncertainty, a possibility is to increase the number of questions from 20 to the optimal
solution number, which depends on the cardinality of the search space and on the signal classification
accuracy, as shown in Table 2.3, from Cicalese, 2013, p. 28. Nonetheless, we decided to keep the upper
limit of 20 questions in order to build a communication system that could be used in a reasonable time,
even using a f NIRS-based BCI (20 s for each question).

The comparison between the 20-questions-based system and the P300 matrix speller shows that,
despite a lower ITR, the average typing speed of the proposed spelling interface is higher. Even if this
result cannot be taken as a real typing speed comparison because the ANN can estimate only entire
sentences, it shows that the proposed system has time performance comparable to the usual spellers
and could allow communication in a reasonable time, even in presence of a slow signal like the f NIRS
(3 bits/min).

Correlating the online and the offline results, we can say that the users gave the expected answers
up to 85% of the time. Obviously, in that case, there were no errors in the signal classification, but we
could not expect a perfect result because the questions could have been very general, and with a not
unique answer (e.g., considering the sentence “I sleep a lot”, the question “Is it positive?” could be
answered “yes” or “no” depending on the positive or negative connotation that a person gives to
sleeping a lot).

The results show that the 20-questions-based system can be a valid interface for any BCI that
uses a slow signal and/or has a classification with a low accuracy rate. Even in presence of fast
signal (e.g., EEG), the proposed system can improve the typing speed performance, allowing the
formulation of entire sentences using only 20 binary inputs. The main drawback, already highlighted
in the previous sections, is that the only sentences that the ANN can estimate are the ones stored
in the database, therefore, a patient will not be free to formulate his own sentences. This limitation,
an intrinsic characteristic of a 20-questions-system, can be overcome by building an exhaustive database
personalized for each patient. Before initiating any BCI session, the patients will be provided an option
to choose between the proposed 20-questions-based system and a character-selection speller that gives
more freedom at the expense of the typing speed and the error handling.

In the future, we will test the system by narrowing the possible sentences to a more restricted
topic and personalizing the weight table for only one person, in order to adapt the weights to his
or her individual biography and personality. Moreover, the system will be improved to work with
multi-class BCIs, in order to have more possible answers and, therefore, better estimations. Finally,
the interface will be tested with a BCI to study the reaction of the patients to this different approach
of communication.

The results are promising and show that a communication system based on this algorithm could
replace the usual speller-based approach. The main limitation of the 20-questions-based interface is
that it does not allow the patient to create new sentences or new questions. Nevertheless, it could allow
patients in CLIS to express their own thoughts and desires, instead of only answering to “yes”/”no”
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questions chosen by someone else. For this reason, the communication system based on the proposed
algorithm could be applied to estimate the inner mental and thought process of patients in CLIS.
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Appendix

Reported here is the complete list of the statements and questions used both in the online and
offline results.

Table A1. List of statements and questions used for the online 20-questions-system and offline simulations.

Statements Questions

“I am pleased with life” “I want to travel” “Would you like to
be killed?”

“Is it related to a particular
time of day?”

“I am living
with pleasure” “I love my brothers” “Are you suffering?” “Is it related to a means

of transport?”

“I feel good right now” “I want to sleep” “Are you happy with your
life?” “Is it pleasant?”

“I feel bad right now” “I am thirsty” “Should I bring
you something?”

“Is it just something
about fantasy?”

“Most of the time I
feel good”

“How beautiful is
this movie!”

“Is it something about
everyday life?” “Is it intriguing?”

“Most of the time I
feel bad”

“I want to know what the
weather will be tomorrow”

“Is it about someone
you know?” “Is it funny?”

“I sleep mostly good” “I want a beer” “Is it a daily human need?” “Is it fun?”

“I sleep mostly bad” “I love my child” “It involves a difficult test?” “Is it exciting?”

“I sleep a lot” “I would like to go on
holiday in Sardinia” “It has to do with the sea?” “Is it an

entertainment activity?”

“I sleep less” “I would like to win
scientific recognition” “Is it a desire?” “Is it an activity that can be

associated with routine?”

“I also sleep during
the day” “I want an orange juice” “Is this something that needs

to be cooked?” “Is it about your hygiene?”

“I sleep only in
the night” “I want to play the guitar” “Is this something about

your career?” “Is it about the weather?”

“I can concentrate myself
on questions” “I want to have a shower” “Is there anyone able to do

the imagined action?” “Is it about the future?”

“I cannot concentrate
myself on questions” “I am happy” “Is the desire

for enjoyment?” “Is it about the bed?”

“I would like to go more
out from the bed” “The music” “Is it something you do

before you sleep?” “Is it about sex?”

“I like to stay in bed” “I want to read the
newspaper”

“Is it something that you
want to do often?”

“Is it about meeting
your dreams?”

“I feel very relaxed” “I had a nice dream” “Is it something that you do
in your house?” “Is it about human needs?”

“I feel very stressed” “Some people are
really idiots”

“Is it something that you can
do without?” “Is it about food?”

“I am stressed” “I am stupid” “Is it something related to
a specific season?” “Is it about an animal?”
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Table A1. Cont.

Statements Questions

“I am relaxed” “I want to drink a coffee” “Is it the result of
hard work?” “Is it a wish?”

“I would like to have
more visitors” “I want to play football” “Is it something you want to

do now?” “Is it a pastime?”

“I would like to have
less visitors”

“I wish the best for my
loved ones” “Is it something you eat?” “Is it a human behavior?”

“I wish more rest” “I want to go to the gym” “Is it something to
do indoor?” “Is it a feeling?”

“I am glad when
someone visits me” “My cats are beautiful” “Is it something to do in the

open air?” “Does it open your mind?”

“My life is good” “I want to go boating” “Is it something to
do alone?”

“Does it need many attempts
and failures?”

“My life is bad” “I want to eat chocolate” “Is it something to
do accompanied?”

“Does it involve
taking revenge?”

“I imagine I am walking” “I would like to go out
more often”

“Is it something that makes
you happy?” “Does it imply a shift?”

“I imagine I am running” “I am rarely depressed” “Is it something related to
your city?” “Does it have two eyes?”

“I imagine often I
am flying” “I am often depressed” “Is it something regarding

your loved ones?”
“Does it have to do

with music?”

“I imagine often I
am eating” “I laugh often inside myself” “Is it something positive?” “Does it have something to do

with drinking?”

“I dream a lot” “I laugh rarely
inside myself” “Is it something physical?” “Does it have something to do

with a candy?”

“I dream less” “I am hungry” “Is it something negative?” “Does it have anything to do
with you?”

“I often think soon I will
get better” “I want a cat” “Is it something emotional?” “Does it concern

your feelings?”

“Rarely I think I will get
better soon” “I want to have sex” “Is it something abstract?” “Does it concern nature?”

“I would like it if ... will
be more often by me” “I like to ride a bike” “Is it something about

your family?”
“Does it concern an

anatomical part of a person?”

“I am glad that ... is
by me” “I am sleepy” “Is it something about the

sense of hearing?” “Do you think about it often?”

“Is it something about
the drinks?” “Do you need company?”

“Is it something about
being free?” “Do you need an instrument?”

“Is it something about
a primary need?” “Do you need a ball?”

“Is it related with the body
(care, etc.)?” “Do you have a need?”

“Is it related to the present” “Do you do it for being in
the company?”

“Is it related to the night?” “Do you do it either alone or
in company?”

“Is it related to the day?” “Do you do because you
need it?”

“Is it related to sleep?” “Can you do it alone?”

“Is it related
to imagination?” “Are you sleepy?”

“Is it related to a sport?” “A tool is needed?”
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Abstract: The Electroencephalography (EEG) is not just a mere clinical tool anymore. It has become
the de-facto mobile, portable, non-invasive brain imaging sensor to harness brain information in real
time. It is now being used to translate or decode brain signals, to diagnose diseases or to implement
Brain Computer Interface (BCI) devices. The automatic decoding is mainly implemented by using
quantitative algorithms to detect the cloaked information buried in the signal. However, clinical EEG
is based intensively on waveforms and the structure of signal plots. Hence, the purpose of this work
is to establish a bridge to fill this gap by reviewing and describing the procedures that have been used
to detect patterns in the electroencephalographic waveforms, benchmarking them on a controlled
pseudo-real dataset of a P300-Based BCI Speller and verifying their performance on a public dataset
of a BCI Competition.

Keywords: electroencephalography; brain-computer interfaces; waveform; p300; SIFT; PE; MP; SHCC

1. Introduction

Current society is demanding technology to provide the means to realize the utopia of social
inclusion for people with disabilities [1]. Additionally, as societies are aging [2] the incidence
of neuromuscular atrophies, strokes and other invalidating diseases is increasing. Concurrently,
the digital revolution and the pervasiveness of digital gadgets have modified the way people interact
with the environment through these devices [3]. All this human computer interaction is based on
muscular movement [4], but these trends are pushing this boundary beyond the confines of the body
and beyond the limitation of human motion. A new form of human machine communication which
directly connects the Central Nervous System (CNS) to a machine or computer device is currently
being developed: Brain Machine Interfaces (BMI), Brain Computer Interfaces (BCI) or Brain-Neural
Computer Interfaces (BNCI).

At the center of all this hype, we can find a hundredth year old technology, rock-solid
as a diagnosis tool, which greatly benefited from the shrinkage of sensors, the increase in
computer power and the widespread development of wireless protocols and advanced electronics:
the Electroencephalogram (EEG) [5].

EEG sensors are wearable [6] non-invasive, portable and mobile [7], with excellent temporal
resolution, and acceptable spatial resolution [8]. This humble diagnosis device is been transformed
into currently the best approach to detect, out-of-the lab in an ambulatory context, information from
the Central Nervous System and to use that information to volitionally drive cars, steer drones,
write emails, control wheelchairs or to assess alcohol consumption [9–12].

The clinical and historical tactic to analyze EEG signals is based on detecting visual patterns
out of the EEG trace or polygraph [8]: multichannel signals are extracted and continuously plotted
over a piece of paper. Electroencephalographers or Electroencephalography technician decode and
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detect patterns along the signals by visually inspecting them [5]. Nowadays clinical EEG still remains
a visually interpreted test [8].

The need of quantitative procedures to automate the decoding of EEG signals has been
materialized in BCI where around 71.2% is based on noninvasive EEG [4]. However, methods of
decoding signals based on the detection of waveforms has been scarce. Hence, the traditional and
knowledgeable approach has been neglected particularly in BCI Research. We aim to help fix this gap
by providing a review of the methods which emphasize the waveform, the shape of the EEG signal
and which can decode them in a supervised and semi-automated procedure.

The aim of this study is threefold: first to review current literature of EEG processing techniques
which are based on analysis of the waveform. The second is to evaluate and study these methods
by analyzing its classification performance against a pseudo-real dataset. And third, to verify their
applicability to a real and public dataset.

This article unfolds as follows: Section 2 provides a brief introduction to EEG and the
particularities of the EEG waveform characterization. Section 3.1 explains the waveform-based
algorithms that are analyzed. In Section 3.6 the experimentation procedure is explained. Results
are presented in Section 4 and finally Discussion and Conclusions are expounded in the final sections.

2. Electroencephalography

The Electroencephalography consists on the measurement of small variations of electrical voltage
over the scalp. It is one of the most widespread used methods to capture brain signals and was initially
developed by Hans Berger in 1924 and has been extensively used for decades to diagnose neural
diseases and other medical conditions.

The first characterization that Dr. Berger detected was the Visual Cortical Alpha Wave, the Berger
Rythm [13]. He understood that the amplitude and shape of this rhythm was coherently associated
to a cognitive action (eyes closing). We should ask ourselves if the research advancement that came
after that discovery would have happened if it weren’t so evident that the shape alteration was due to
a very simple and verifiable cognitive process.

The EEG signal is a highly complex multi-channel time-series. It can be modeled as a linear
stochastic process with great similarities to noise [14]. It is measured in microvolts, and those slightly
variations are contaminated with heavy endogenous artifacts and exogenous spurious signals. Figure 1
shows 5 s of a sample 8-channel EEG signal.

Figure 1. Sample EEG signal obtained from g.Tec g.Nautilus. Time axis is in seconds and five seconds
are displayed. The eight channels provided by this device are shown.

The device that captures these small variations in potential differences over the scalp is called
the Electroencephalograph. Electrodes are located in predetermined positions over the head, usually
embedded in saline solutions to facilitate the electrophysiological interface and are connected to
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a differential amplifier with a high gain which allows the measurement of tiny signals. Although
initially analog devices were developed and used, nowadays digital versions connected directly to
a computer are pervasive. A detailed explanation on the particularities and modeling of EEG can be
obtained from [15], and a description of its electrophysiological aspects from [16].

Overall, EEG signals can be described by their phase, amplitude, frequency and waveform.
The following elements regularly characterize EEG signals:

• Artifacts: These are signal sources which are not generated from the CNS, but can be
detected from the EEG signal. They are called endogeneous or physiological when they are
generated from a biological source like face muscles, ocular movements, etc., and exogeneous or
non-physiological when they have an external electromagnetic source like line induced currents
or electromagnetic noise [17].

• Non-Stationarity: the statistical parameters that describe the EEG as a random process are not
conserved through time, i.e., its mean and variance, and any other higher-order moments are not
time-invariant [13].

• DC drift and trending: in EEG jargon, which is derived from concepts of electrical amplifiers
theory, Direct Current (DC) refers to very low frequency components of the EEG signal which
varies around a common center, usually the zero value. DC drift means that this center value
drifts in time. Although sometimes considered as a nuisance that needs to get rid of, it is known
that very important cognitive phenomena like Slow Cortical Potentials or Slow Activity Transients
in infants do affect the drift and can be used to understand some particular brain functioning [5].

• Basal EEG activity: the EEG is the compound summation of myriads of electrical sources from
the CNS. These sources generate a baseline EEG which shows continuous activity with a small or
null relation with any concurrent cognitive activity or task.

• Inter-subject and intra-subject variability: EEG can be affected by the person’s behavior
like sleep hygiene, caffeine intake, smoking habit or alcohol intake previously to the signal
measuring procedure [18].

Regarding how the EEG activity can be related to an external stimulus that is affecting the subject,
it can be considered as

• Spontaneous: generally treated as noise or basal EEG.
• Evoked: activity that can be detected synchronously after some specific amount of time after the

onset of the stimulus. This is usually referred as time-locked. In contrast to the previous one,
it is often called Induced activity.

Additionally, according to the existence of a repeated rhythm, the EEG activity can be understood as

• Rhythmic: EEG activity consisting in waves of approximately constant frequency. It is often
abbreviated RA (regular rythmic activity). They are loosely classified by their frequencies,
and their naming convention was derived from the original naming used by Hans Berger
himself, and after Alpha Waves (10 Hz), it came Delta (4 Hz), Theta (4–7 Hz), Sigma (12–16 Hz),
Beta (12–30 Hz) and Gamma (30–100 Hz).

• Arrhythmic: EEG activity in which no stable rhythms are present.
• Dysrhythmic: Rhythms and/or patterns of EEG activity that characteristically appear in patient

groups and rarely seen in healthy subjects.

The number of electrodes and their positions over the scalp determines a Spatial Structure:
signal elements can be generalized, focal or lateralized, depending on in which channel (i.e., electrode)
they are found.
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EEG Waveform Characterization

The shape of the signal, the waveform, can be defined as the graphed line that represents the
signal’s amplitude plotted against time. It can also be called EEG biomarker, EEG pattern, signal shape,
signal form and a morphological signal [13].

The signal context is crucial for waveform characterization, both in a spatial and in a temporal
domain [13]. Depending on the context, some specific waveform can be considered as noise while in
other cases is precisely the element which has a cognitive functional implication.

A waveform can have a characteristic shape, a rising or falling phase, a pronounced plateau or
it may be composed of ripples and wiggles. In order to describe them, they are characterized by its
amplitude, the arch, whether they have (non)sinusoidal shape, by the presence of an oscillation or
imitating a sawtooth (e.g., Motor Cortical Beta Oscillations). The characterization by their sharpness is
also common, particularly in Epilepsy, and they can also be identified by their resemblance to spikes
(e.g., Spike-wave discharge).

Depictions may include subjective definitions of sharper, arch comb or wicket shape, rectangular,
containing a decay phase or voltage rise, peaks and troughs, short term voltage change around each
extrema in the raw trace. Derived ratios and indexes can be used as well, like peak and trough
sharpness ratio, symmetry between rise and decay phase and slope ratio (steepness of the rise period
to that of the adjacent decay period). For instance, wording like “Central trough is sharper and more
negative that the adjacent troughs” [19] are common in the literature.

Other regular characterizations which are based on the waveform shape may encompass:

• Attenuation: Also called suppression or depression. Reduction of amplitude of EEG activity
resulting from decreased voltage. When activity is attenuated by stimulation, it is said to have
been “blocked” or to show “blocking”.

• Hypersynchrony: Seen as an increase in voltage and regularity of rhythmic activity, or within the
alpha, beta, or theta range. The term suggest an increase in the number of neural elements
contributing to the rhythm, or in the synchronization of different neurons with the same
discharge pattern [20].

• Paroxysmal: Activity that emerges from background with a rapid onset, reaching frequently high
voltage and ending with an abrupt return to lower voltage activity.

• Monomorphic: Activity appearing to be composed of one dominant waveform pattern.
• Polymorphic: Activity composed of multiple frequencies that combine to form a complex waveform.
• Transient/Component: An isolated wave or pattern that is distinctly different from

background activity.

The traditional clinical approach to study electroencephalographic signals consists in analyzing
the paper strip that is generated by the plot of the signal obtained from the device. Expert technician
and physicians analyze visually the plots looking for specific patterns that may give a hint of the
underlying cognitive process or pathology. Atlases and guidelines were created in order to help in the
recognition of these complex patterns. Video-electroencephalography scalp recordings are routinely
used as a diagnostic tools [21] . The clinical EEG research has also focused on temporal waveforms,
and a whole branch of electrophenomenology has arisen around EEG graphoelements [5].

Sleep Research has been studied in this way by performing Polysomnographic recordings
(PSG) [22,23]. The different sleep stages are evaluated by visually marking waveforms or
graphoelements in long-running electroencephalographic recordings, looking for patterns based on
standardized guidelines [24]. Visual characterization includes the identification or classification of
certain waveform components based on a subjective characterization (e.g., positive or negative peak
polarity) or the location within the strip. It is regular to establish an amplitude difference between
different waveforms from which a relation between them is reckoned and a structured index is
created (e.g., sleep K-Complex is well characterized based on rates between positive vs negative
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amplitude) [25]. Other relevant EEG patterns for sleep stage scoring are alpha, theta, and delta waves,
sleep spindles, polysplindles, vertex sharp waves (VSW), and sawtooth waves (REM Sleep).

Moreover, EEG data acquisition is a key procedure during the assessment of patients with
focal Epilepsy for potential seizure surgery, where the source of the seizure activity must be reliably
identified. The onset of the Epileptic Seizure is defined as the first electrical change seen in the
EEG rhythm which can be visually identified from the context and it is verified against any clinical
sign indicating seizure onset. The Interictal Epileptiform Discharges (IEDs) are visually identified
from the paper strip, and they are also named according to their shape: spike, spike and wave or
sharp-wave discharges [26].

Waveform characterization is the method in which analysis has been performed for Event Related
Potentials (ERP). These are transient signal elements that may arise as a brain response to an external
visual, tactile or auditory stimulus. ERPs are regularly used to assess auditory response in infants.
They are extensively used and studied in Cognitive Neuroscience [27]. ERPs are identified by their
components which are recognizable signal shapes assigned to the observed waveform, that can be
linked to some cognitive or measurable psychological process. One of the most studied ERP is the
P300, discovered in 1965 by Sutton, Braren, Zubin and John. This component is a positive deflection of
a subject’s EEG signal that arises when an unexpected and infrequent stimulus appears [1]. The P300
is widely utilized in BCI because it can be harnessed to implement a Speller application. Hence,
P300 ERPs are a target phenomena to study by automatic waveform recognition methods.

Table 1 summarizes a list of depictions used to describe waveforms in the surveyed literature.
Epilepsy has been described by the nature of oscillatory characterization of their waves, like ripples and
wiggles, imitating sawtooths or by their geometric shape. For ERPs on the other hand, more elaborate
indexes has been provided, establishing relations between amplitudes of signal components. Finally,
Sleep studies and ICU research are areas where the most complex indexes has been derived, particularly
the coupling of signal properties like phase, amplitude and frequency.

Table 1. EEG waveforms descriptions found in the surveyed literature.

Method Phenomena Reference

Positive Rounded Component α-Waves, Epilepsy [5,28]
Rising and Falling Phase Epilepsy [14,28]

Terminal plateau Epilepsy [14]
Ripples and Wiggles Epilepsy, ERP [14,26,29,30]

Sinusoidal Shape Epilepsy [19,28–31]
Sawtooth Motor Imagery, Sleep [22,26,28]

Sharpness or Spike-like Epilepsy [8,14,26,32]
Rectangular Epilepsy [14,19]
Line length Anomaly Detection [33]

Root Mean Square Anomaly Detection [33]
Wicket Shape Epilepsy [5,8,19,26,28,32]

Peak and Trough Sharpness Ratio Epilepsy [8,19,32,34]
Symmetry between rise and decay phase Epilepsy [8,19]

Slope Ratio Sleep [35]
Positive/Negative Peak Amplitude ERP [8,14,19,28,36,37]

Positive vs Negative Ratio Sleep K-Complex [26]
Base-to-Peak Amplitude ERP [19]
Peak-to-Peak Amplitude ERP [33,36]

Positive/Negative Peak Latency ERP [36]
Integrated Activity ERP, Epilepsy, ICU [25,33,38]
Cross-Correlation ERP, Epilepsy, Sleep [29,38]

Coupling
Cross Frequency, Phase-Amplitude, Phase-Phase Sleep [19]

Period Amplitude Analysis ERP, Epilepsy [25,29,38]
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3. Materials and Methods

The exploration of methods based on waveforms is conducted by following the PRISMA [39]
guidelines. Search is performed on Google Scholar, Semantic Web and IEEE Xplore search engines by
the terms “Waveforms” OR “Shape” OR “Morphology” OR “Visual inspection” + “EEG”.

The following criteria is proposed to identify methods which are based on the signal’s waveform:

1. The analysis considers the shape of the plot of the signal.
2. The pattern can be identified and verified by visual inspection.
3. The pattern matching is performed in time-domain.
4. The method encompass a feature extraction procedure.
5. The feature extraction procedure allows to create a template dictionary.

As described in [40] the Pattern Matching problem in Signal processing is finding a signal given
the region that best describes the structure of the prototype signal template. On the other hand, a feature
is a meaningful quantification, usually a multidimensional vector, that synthesize the information of
a given signal or signal segment [41].

3.1. EEG Waveform Analysis Algorithms

Shape or waveform analysis methods are considered as nonparametric methods. They explore
signal’s time-domain metrics or even derive more complex indexes or features from it [42].

One of the earliest approach to automatically process EEG data is the Peak Picking method.
Although of limited usability, peak picking has been used to determine latency of transient events in
EEG [43,44]. Straightforward in its implementation, it consists in assigning a component to a simple
waveform element based on the expected location of its more prominent deflection [31]. Of regular
use in ERP Research, the name of many of the EEG features reference directly a peak within the
component, e.g., P300 or P3a P3b or N100. This leads to a natural way to classify them visually
by selecting appropriate peaks and matching their positions and amplitudes in an orderly manner.
The letter provides the polarity (Positive or Negative) and the numbering shows the time referencing
the stimulus onset, or the ordinal position of each peak (first, second, etc).

A related method is used in [45] where the area under the curve of the EEG is sumarized to derive
a feature. This was even used in the seminal work of Farwell and Donchin on the P300 Speller [41,46].
Additionally, a logarithmic graph of the peak-to-peak amplitude which is called amplitude integrated
EEG (aEEG) [38] is used nowadays in Neonatal Intensive Care Units.

Other works on EEG explored the idea to extend human capacities analyzing EEG waveforms.
In [47] a feature derived from the amplitude and frequency of its signal and its derivative in
time-domain is used. Moreover, Yamaguchi et al. [48] explored the use of Mathematical Morphology,
where the time-domain structure of contractions and dilations were studied. Finally the proposals
of Burch, Fujimori, Uchida and the Period Amplitude Analysis (PAA) [49] algorithm are few of the
earliest depictions where the idea of capturing the shape of the signal were established.

According to the defined criteria, the algorithms that will be evaluated are as follows:

• Matching Pursuit
• Permutation Entropy
• Slope Horizontal Chain Code
• Scale Invariant Feature Transform

All these methods provide a feature f that can be used as a template. The notation f = { fi}n
1

or f = { fi}i∈J is used to describe the concatenation of scalar values to form a multidimensional
feature vector f = { f1, f2, ..., fn}. These algorithms are all based on metrics that are extracted from
the shape of the single channel digital EEG signal x(n), with n varying from 1 to the length N of the
EEG segment in sample points. These features are used to create dictionaries or template databases.
Finally, these templates provide the basis for the pattern matching algorithm and offline classification.
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Algorithms were implemented on MATLAB 2014a (Mathworks Inc., Natick, MA, USA). To maintain
reproducibility, the dataset described in Section 3.6.1 and the source code has been made available in
the online repository of the Code Ocean platform under the name EEGWave.

3.2. Matching Pursuit—MP 1 and MP 2

Pursuit algorithms refer, in their many variants, as blind source separation [50] techniques that
assume the EEG signal as a linear combination of different sparse sources extracted from a template’s
dictionaries. Matching Pursuit MP [51], the most representative of these algorithms, is a greedy variant
that decomposes a signal into a linear combination of waveforms, called atoms, that are well localized
in time and frequency [52]. Given a signal, this optimization technique, tries to find the indexes of m
atoms and their weights (contributions) that minimize,

ε =

∥∥∥∥∥x(n)−
m

∑
i=1

wigi(n)

∥∥∥∥∥ (1)

which is the error between the signal and its approximation constructed by the weighted wi atoms gi,
and calculating the euclidean norm ‖·‖2. The algorithm goes by first setting the approximating signal
x̃0 as the original signal itself,

x̃0(n) = x(n) (2)

and setting the iterative counter k as 1. Hence, it searches recurrently the best template out of the
dictionary that matches current approximation.

gk = arg max
gi

∣∣∣∣∣
N

∑
n=1

x̃k−1(n) gi(n)

∣∣∣∣∣ (3)

where gi are all the available scaled, translated and modulated atoms from the dictionary. The operation
|·| corresponds to the absolute value of the inner product. This step determines the atom selection
process, and their contribution is calculated based on

wk =
∑N

n=1 x̃k−1(n) gk(n)

‖gk‖2 (4)

with k representing the index of the selected atom gk and ‖·‖2 its euclidean norm. Finally the
contribution of each atom is subtracted from the next approximation [32,51,53]

x̃k(n) = x̃k−1(n)− wkgk(n) (5)

The stopping criteria can be established based on a limiting threshold on Equation (1) or based on
a predetermined number of steps and selected atoms. Two variants of this algorithm are evaluated.
In MP 1 the dictionary is constructed with the normalized templates directly extracted from the real
signal segments which is a straightforward implementation of the pattern matching technique. In MP
2 the coefficients of Daubechies least-asymetric wavelet with 2 vanishing moments atoms are used
to construct the dictionary [54]. For the first version, the matching against the template is evaluated
according to Equation (1) directly, whereas for the latter each feature is crafted by decomposing the
signal in its coefficients and building, an eventually sparse, vector with them:

f =

{
wi

}D

1
(6)

where D is the size of the dictionary.
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3.3. Permutation Entropy—PE

Bond and Pompe Permutation Entropy has been extensively used in EEG processing,
with applications on Anesthesia, Sleep Stage evaluation and increasingly for Epilepsy pre-ictal
detection [55]. This method generates a code based on the orderly arrangement of sequential samples,
and then derives a metric which is based on the number of times each sequence is found along the
signal. This numeric value can be calculated as information entropy [56]. Let’s consider a signal on
a window of length W represented by the sample points

(x1, x2, ..., xW) (7)

and resampled by τ intervals, starting from the sampling point n, doing

(xn, xn+τ , xn+2τ ..., xn+(m−1)τ). (8)

This sequence is of order m, which is the number of sample points used to derive the ordinal
element called π. There are m! ways in which this sequence can be orderly arranged, according to
the position that each sample point holds within the sequence in a decreasing order relationship [57].
For example if m = 3, and the first sample point is the bigger, the second is the smaller and the third
one is in the middle, the ordinal element π corresponds to (1, 3, 2). Thus, along the signal window
there can be at most k different ordinal (and overlapping) elements πs

(π1, π2, ..., πk) (9)

with k = W − (m − 1)τ. The probability density function pdf for all the available permutations of
order m should be p = (p1, p2, ..., pm!) with ∑m!

i=1 pi = 1.
Hence, the time series window is mapped to a new set of k ordinal elements, and the pdf can be

calculated by the empirical permutation entropy,

pi =
1
k

k

∑
s=1

[πs = πi] (10)

with 1 ≤ i ≤ m!. The Iverson Bracket [·] resolves to 1 when their logical proposition argument is true,
0 otherwise. Therefore, for each i only those ordinal elements πs that were effectively found along
the signal are counted to estimate pi, and zero elsewhere. The empirical permutation entropy can be
calculated from the histogram as,

H(p) =
m!

∑
i=1

pi log
1
pi

. (11)

The implemented code was derived from [58], and the model description from [59].
This procedure produces a scalar number for the given signal window of size W. To derive a feature,
a sliding window procedure must be implemented to cover an entire segment of length N. Thus,
the length of the feature is N − (W + τ(m − 1)).

f =

{
H(p)u

}N

W+τm
. (12)

with u varying on a sample by sample basis along the signal, starting from the specified index.

3.4. Slope Horizontal Chain Code—SHCC

This algorithm [45] proceeds by generating a coding scheme from a sequence of sample points.
This encoding is based on the angle between the horizontal line on a 2D-plane and any segment
produced by two consecutive sample points, regarding them as coordinates on that plane.
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A signal of length N, can be represented by a list of ordered-pairs e,

e = [(x, y)1, (x, y)2, ..., (x, y)N ] (13)

and it can be divided into G different blocks. These blocks are obtained by resampling the original
signal from the index

G = �n + (mΔ) + 0.5	 (14)

with n being the original sampling index on 1 ≤ n ≤ N and �·	 being the floor operation, i.e., rounding
of the number argument to the closest smaller integer number. On the other hand, Δ can be obtained by

Δ =

⌈
N

G + 1

⌉
(15)

with G < N and using instead 
·� as the ceil operation, the rounding to the closest bigger integer
number. Lastly, the value m can be derived from

m = sign
(

N − 1
Δ

)⌊ ∣∣∣∣N − 1
Δ

∣∣∣∣
⌋

. (16)

This resampling produces a new sequence of values,

e′ =
[
(x′, y′)1, ..., (x′, y′)s, ..., (x′, y′)G

]
. (17)

The next step is the normalization of each ordered-pair as vectors x’ = (x′1, ..., x′G) and y’ =

(y′1, ..., y′G) according to

x̂ =
x’ − min(x’)1

max(x’)− min(x’)
(18)

ŷ =
y’ − min(y’)1

max(y’)− min(y’)
(19)

with 1 being the vector of length G with all their components equal to 1. Hence, the scalar components
x̂s of x̂, and ŷs of ŷ, with s varying between 1 and G are effectively normalized to x̂s, ŷs ∈ [0, 1].

Finally, the feature is constructed by calculating the point-to-point slope against the
horizontal plane,

f =

{
ŷs − ŷs−1

x̂s − x̂s−1

}G

2
(20)

3.5. Scale Invariant Feature Transform—SIFT

SIFT [60] is a very successful feature extraction technique from Computer Vision. It has
a biomimetic inspiration on how the visual cortex analyze images based on orientations [61].
This method has been used in [62] to analyze EEG signals based on their plots on 2D images.

The first step of the algorithm is the plot generation based on single-channel EEG segments x(n).
Hence, this signal is normalized by the z-score [63]:

x̃(n) =
⌊

δ(x(n)− x̄)
σx

⌉
(21)

with δ being the signal magnification factor and x̄ and σx, the mean and standard deviation of x on the
signal segment. The width of the image is determined based on the 1-s length size of the segment in
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sample units. This corresponds to the sampling frequency Fs of the EEG signal segment. The width is
adjusted by multiplying by the magnification factor δ,

w = δ Fs (22)

whereas the height is calculated based on the peak-to-peak amplitude of the signal within the segment,

h = max
n

x̃(n)− min
n

x̃(n). (23)

Equation (24) determines the vertical position of the image where the signal’s zero value will
be located.

z =

⌊
h
2

⌋
−

⌊
maxn x̃(n) + minn x̃(n)

2

⌋
. (24)

Finally, a binary, black-and-white image plot is generated based on

I(z1, z2) =

{
255 if z1 = δ n; z2 = x̃(n) + z

0 otherwise
(25)

where z1 and z2 are the image coordinates values, 255 represents white and 0 is the background black
color of the plot. These points are interpolated using the Bresenham algorithm [62].

Once the plot is generated, its center is used to localize the center of the SIFT patch. This region of
the image, where the signal’s most important salient waveform should be located, is divided in a grid
of 4 × 4 block and the bidimensional gradient vectors are calculated on each one of them. Therefore,
for each block (i, j) within the patch, a histogram h(i, j, θ) of the gradient orientations, for 8 circular
orientations θ, are calculated. This histogram is concatenated for all the 16 blocks and a feature is
thus formed:

f =

{{{
h(i, j, θ)

}
i∈I

}
j∈I

}
θ∈Θ

(26)

with i and j belonging to I = {0, 1, 2, 3} and localizing the 16 blocks within the grid. The angles θ that
belong to Θ are the eight possible equidistant values between 0 and 315. This vector is normalized,
clamped to 0.2, and re-normalized again. Details of the method can be found on [60,62]. It was
implemented using the VLFeat [64] public Computer Vision libraries.

3.6. Experimental Protocol

The objective of the following experiments is to assess the performance of the algorithms
that aim to recognize the shape of the P300 waveform, obtained after averaging signal segments.
This performance is evaluated by processing a pseudo-real dataset with two modalities where
subtle alterations on the latency and amplitude of the P300 component are simulated in a controlled
environment. The experiments are performed by the offline evaluation of the character identification
rate of a Visual P300-Based BCI Speller application.

Farwell and Donchin P300 Speller [46,65] is one the most used BCI paradigms to implement
a thought translation device and to send commands to a computer in the form of selected letters,
similar to typing on a virtual keyboard. This procedure exploits a cognitive phenomena raised by
the oddball paradigm [27]: along the EEG trace of a person which is focusing on a sequence of two
different visual flashing stimulus, a particular and distinctive transient component is found each time
the expected stimulus flashes. This is cleverly utilized in the P300 Speller, where rows and columns of
a 6 × 6 matrix flashes randomly but only the flashing of a column or row where the letter that a user is
focusing will trigger concurrently the P300 ERP along the EEG trace.

A problem with the information produced by a P300 Speller is that the subjects that take part on
the experiment are within the closed loop of the BCI system and the human is not a static compliant
entity that always performs what the experimenter asks for in a precise and consistent way [66].
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Therefore, P300 experiments data is often mined with null-signals. These are EEG streams which
are marked as having the signal component but, because the subject was not particularly focused,
or concentrated, the expected signal element is not generated. This lack of certainty may be in
detriment of any conducted analysis and can be misleading or difficult to deal with. Previous works
have addressed this same issue, particularly when benchmarking different algorithms [31,43,67].

In order to tackle this problem, a pseudo-real dataset based on an EEG stream is generated under
two different modalities. A passive modality and an active modality.

3.6.1. EEG Stream Generation

Eight (8) healthy participants are recruited voluntarily and the experiment is conducted
anonymously in accordance with the Declaration of Helsinki published by the World Health
Organization. No monetary compensation is handed out and they agree and sign a written informed
consent. This study is approved by the Departamento de Investigación y Doctorado, Instituto Tecnológico
de Buenos Aires (ITBA). The participants are healthy and have normal or corrected-to-normal vision
and no history of neurological disorders. These voluntary subjects are aged between 20–40 years
old. EEG data is collected in a single recording session. Each subject is seated in a comfortable chair,
with her/his vision aligned to a computer screen located one meter in front of her/him. The handling
and processing of the data and stimuli is conducted by the OpenVibe platform [68]. Gel-based active
electrodes (g.LADYbird, g.Tec, Austria) are used on locations Fz, Cz, Pz, Oz, P3,P4, PO7 and PO8
according to the 10–20 international system. Reference is set to the right ear lobe and ground is preset
as the AFz position. Sampling frequency is set to 250 Hz.

The experimental protocol is composed of 35 trials to spell 7 words of 5 letters each. Each trial is
composed of 10 intensification sequences of the 6 columns and 6 rows of the Speller Matrix. This yields
exactly 120 intensifications of rows and columns per trial. The duration of each intensification as well
as the Inter-Stimulus Interval, the pause between stimulations, are set to 0.125 s. This provides a 4 Hz
frequency of flashes on the screen. The initial pause and the inter-trial pauses are set to 20 s. The whole
experiment lasts for around 1400 s. This produces an EEG stream which contains 4200 marked sections
where 3500 of them are labeled as True and the remaining 700 as False. The extracted EEG signals are
band-pass filtered using a 4th order Butterworth digital filter between 0.1 and 10 Hz and a 50 Hz notch
filter is applied to remove line AC noise. The EEG trace is finally downsampled to 16 Hz. Segments of
1-s length are extracted according to the markers information and those with variations larger than
70 μV are identified as artifacts and eliminated.

Four out of the eight participants are instructed to passively watch the flashing screen while not
focusing on any particular letter. They do not receive any extra information on the screen. None of them
have any experience with a BCI device. A questionnaire is handed out at the end of the experiment
with questions about how the participant felt during it, without giving more details.

The remaining four participants perform a copy-spelling task where the computer monitor
highlights the target letter, which is the one that the subject needs to focus. Across the duration of the
trial, the current target letter is informed at the bottom of the screen.

3.6.2. Passive Modality

First for a passive modality, real P300 ERP templates obtained from a public dataset,
are superimposed into the generated EEG stream of 4 subjects. A set of template ERPs is acquired from
the Subject Number 8 of the public dataset 008-2014 [69] published on the BNCI-Horizon website [70]
by IRCCS Fondazione Santa Lucia. The experimental protocol implemented to produce this dataset
is the same as the one described in Section 3.6.1. On the other hand, the EEG traces where these
templates are superimposed, are experimentally obtained by subjects which are observing the flashing
of the stimulus matrix during a P300 Speller procedure but they do not engage in focusing on any
letter in particular. Everything is there, except the P300 ERP component. Hence, along the EEG
stream, the markers information is used to localize the True segments where the P300 should be found,
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and those timing locations are used to superimpose the extracted ERP waveform. By implementing
this pseudo-real approach, it is possible to effectively control null-signals and to adjust the shape of
the evoked potential.

A sample P300 ERP obtained from the trial number 2 of Subject 8 can be seen in Figure 2.
These templates are selected due to their shapes more closely resembling the prototypical P300
waveform [71,72]. They are produced by extracting segments for this subject and by point-to-point
coherently average them.
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Figure 2. ERP Template obtained from the coherent point-to-point ensemble average from the signals
of Subject Number Eight of the BNCI Horizon public dataset 008-2014. The template is 1 s long which is
256 sample points, and the eight channels are superimposed with different colors. The P3b component
can be seen around the sample index 150 and 200.

3.6.3. Active Modality

Second, an active modality is also implemented, where a P300-Based BCI Speller experiment
is performed on four subjects. For this scenario, the signal segments are modified to guarantee the
inclusion of a P300 component. However, in this case the templates are extracted from the same subject.
Hence, the EEG signal is preprocessed and labeled segments are extracted. Segments labeled True are
coherently point-to-point averaged, and 70 templates are produced from the whole set of 35 trials.

Once templates are procured, a random False segment for the same subject is obtained. This is used
as a baseline signal and is added to the template, conforming a new segment which has a superimposed
P300 template. This procedure continues until the 700 segments marked as True are completed.

Figure 3 shows a 5 s sample of the EEG trace obtained with the MNE library [73]. Channel S
represents the twelve different stimulus markers (columns or rows) while channel L represent the
label (True vs False). Labels are represented by square signals. False segments are marked with single
amplitude square signals while True segments are identified by double-amplitude square signals.
Subfigure (a) shows the signals before the ERP template is superimposed while subfigure (b) shows
the same signals with the superimposed ERP template. At first-sight, differences are really hard to spot
visually. Subfigures (c) and (d) show only one second of channels Cz and L from the same segment.
The superimposed ERP can be devised enclosed by the vertical bars, around 31.5 s, where in (d) the
peak is slightly bigger. Figure 4 shows the obtained ensemble average ERPs as result of superimposing
the template signal into the EEG stream, time-locked to the stimulus onset. These 12 point-to-point
averaged segments correspond to the first trial of the EEG stream.

67



Brain Sci. 2018, 8, 199

(a) EEG trace of the original signal. The horizontal axis
represents 10 s of the EEG stream, from the 28th second
up to the 38th.

(b) The same 10-s eight-channel signal segment with
the superimposed template.

(c) EEG sample of Cz and L channel of the original EEG
trace. Only 1 second is shown here, at the 31th second.

(d) The same segment with the superimposed
template.

Figure 3. Eight-channel EEG signal for Subject Number 1 of the pseudo-real dataset without and with
the superimposed ERP Template. The channel L, the mark which identifies where to superimpose the
P300 ERP, is shown as well as the channel S which identifies the stimulus that was presented. On (c,d)
the small variation that was introduced by the superimposition of the ERP can be seen enclosed by the
vertical bars, where the slope of the bump on subfigure (d) is slightly bigger.
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Figure 4. Point-to-point averaged signals. These are extracted from the first letter identification trial
of the Subject 1 of the pseudo-real dataset. The ERP is superimposed on classes 3 and 9. Class 3 is
obtained while averaging the segments where the row of the speller matrix is intensified whereas class
9 is calculated from the intensification of the corresponding column.

3.6.4. Experiments

The experiments are as follows:

• Experiment 1—Letter Identification Performance: the letter identification performance of each
one of these methods on the artificially generated pseudo-real dataset. The pool of 70 P300 ERP
waveforms, either obtained from the same subject in the passive-modality or from each subject
in the active-modality are used to compose the artificial P300 wave in the pseudo-real dataset.
Templates are randomly selected.
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• Experiment 2—Latency Noise: Instead of superimposing the P300 ERPs over the EEG trace
at the exact locations where stimulus onsets are situated, an artificial latency lag is added.
The lagging value is picked from a uniform distribution U(0, 0.4) [s] ranging from 0 to 0.4
of the 1 s segment size [74].

• Experiment 3—Component Amplitude Noise: the amplitude of the main P3b component of the
ERP template is randomly altered. This component is defined to be located from the stimulus
onset between 148 ms up to 996 ms which is around 840 ms long. This waveform element,
multiplied by a gain factor, is subtracted from the original template. This gain factor between 0
and 1 is drawn from a uniform distribution U(0, 1). Additionally this subtracted waveform is
multiplied by a Gaussian window with a support of the same length [75]. This avoids adding any
discontinuity into the artificial generated signal.

All these experiments are executed using cross validation procedure dividing the letter to spell in
two sets, preserving the structure of the letter identification trials. Spelling letters are scrambled while
the order and group of each intensification sequence is preserved.

Finally the performance at letter identifications for these same methods is evaluated by running
an offline BCI Simulation on the Dataset IIb of the BCI Competition II (2003) [76]. The protocol of this
dataset is very similar to what was used to obtain the pseudo-real dataset. The sampling frequency
of this dataset is 240, the number of letters are 73 where the first 42 are used to create the template
dictionary for all the methods and the remaining 31 are used to test the character recognition rate
performance. Additionally, in this dataset the number of available intensification number sequences
is 15. The classification method Support Vector Machine SVM with a linear kernel, is added for
comparison as control using a feature f constructed by normalizing the signal on each channel [77].
This method has been proved efficient in decoding P300 in several BCI Competitions [78].

3.6.5. Classification

The same classification algorithm based on k-nearest neighbors is used for all the methods [79].
The experimental protocol used to generated the pseudo-real dataset used in the experiments 1 to 3 is
composed of 35 trials to spell 7 words of 5 letters each. Each trial is composed of 10 intensification
sequences of the 6 columns and 6 rows of the Speller Matrix. Fifteen trials are used to build the
dictionary of templates, extracting the averaged EEG segments for the row and column that already
contain the P300 ERP, hence shielding 30 different templates per channel. Figure 5 shows the set of
templates while using the first 15 trials of the dataset.

Described algorithms produce a feature f for each averaged EEG segment. The aim of the
classification procedure is to identify for the remaining 20 trials which of the 6 features f that
were obtained for row intensification, labeled by {1, ..., 6}, and which of the 6 features for column
intensification, named {7, ..., 12} are the ones that elicited the P300 response on the averaged EEG
segment. The row number of the matrix can be obtained by doing

ˆrow = arg min
u∈{1,...,6}

k

∑
i=1

‖ fu − qi‖2 (27)

with qi being the set of k-nearest neighbors of the feature fu with u varying from 1 to 6. The parameter
k represents the number of neighbors chosen from the dictionary of templates. The column can be
obtained in the same way,

ˆcol = arg min
u∈{7,...,12}

k

∑
i=1

‖ fu − qi‖2 . (28)

Thus, the letter identification performance can be obtained by measuring the accuracy
channel-by-channel at identifying the correct letter on the matrix, coordinated by ˆrow and ˆcol.
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Figure 5. Coherently averaged signals segments of 1-second length containing the superimposed ERP.
Vertical axis unit is μV. Each one is extracted from the EEG signal of the Subject 1 of the pseudo-real
dataset. These averaged signals correspond to the 15 first trials (2 averaged signals from each trial,
one belonging to the column flashing and the other to row flashing). These are the templates used
to build a dictionary per channel per subject and are used by the classification algorithm described
in Section 3.6.5.

4. Results

Results for the first experiment are shown in Figures 6 and 7. The performance while identifying
each letter of the standard P300 Speller Matrix, and the channels where the best and worst performance
are attained, are shown. Each one represents the percentage of letters that is actually predicted by
the algorithms using a cross-validation procedure. As previously described the data is continuously
divided in two sets, where the first 15 letters are used to derive the dictionary of templates while the
remaining 20 letters are used to measure the letter identification performance. This is repeated one
hundred times, and performances averaged. Figure 6 shows the results for the passive modality while
Figure 7 shows the results for the active modality.
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Figure 6. Passive Modality—Experiment 1: Speller performance curves obtained for each method for
the four subjects that performed the passive modality protocol. Y-axis shows performance accuracy
while X-axis shows the number of intensification sequences used to calculate the point-to-point signal
average. The two curves show the performance for the best and worst performing channel.

70



Brain Sci. 2018, 8, 199

0

0.5

1
MP 1

P4

Oz

MP 2

PO7

PO8

SIFT

PO7

PO8

PE

P4
PO8

SHCC

PO7

PO8

0

0.5

1

PO7

P4

P3
Fz

PO7

P4

PO7

P4

PO7

P4

0

0.5

1

P3
Oz

Cz
PO8

Fz

Oz

Pz

Oz

Fz

Oz

0 5 10
0

0.5

1

PO8

Cz

0 5 10

Cz
PO7

0 5 10

PO7

Cz

0 5 10

Fz

Cz

0 5 10
Intensifications

P
er

fo
rm

an
ce

PO8

Cz

Figure 7. Active Modality—Experiment 1:Speller performance curves obtained for each method for
the four subjects that performed the active modality protocol. Y-axis shows performance accuracy
while X-axis shows the number of intensification sequences used to calculate the point-to-point signal
average. The two curves show the performance for the best and worst performing channel.

Figures 8 and 9 shows the performance curves for five algorithms for the second experiment,
where a noisy latency lag is included. Best and worst channels are also shown.
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Figure 8. Passive Modality—Experiment 2: Performance curves for four subjects for the five algorithms
when a random latency is included when superimposing the P300 signal template.

Finally, Figures 10 and 11 represents the performance values obtained for the Experiment 3,
when the amplitude of the P3b component of the template is randomly attenuated.

Furthermore, results obtained for the dataset BCI Competition 2003 IIb are shown in Figure 12
and in Table 2. For this experiment the number of available intensification sequences is 15.
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Table 2. Speller classification performance obtained for the dataset IIb of the BCI Competition II (2003)
for each one of the algorithms using 15 repetitions of intensification sequences. The first 42 trials are
used for training to build the template dictionary and the remaining 31 for testing. The channel where
the best performance is attained, is also shown.

Method Channel Performance

MP 1 Cz 50%
MP 2 FC1 22%
SIFT FC1 67%
PE CP1 22%

SHCC Cz 61%
SVM C1 32%
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Figure 9. Active Modality—Experiment 2: Performance curves for the four subjects for the five
algorithms. A random latency is included while superimposing the P300 signal template.
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Figure 10. Passive Modality—Experiment 3:Performance curves for four subjects for the five algorithms
when the amplitude of the P3b component of the template is randomly attenuated.
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Figure 11. Active Modality—Experiment 3:Performance curves for four subjects for the five algorithms
when the amplitude of the P3b component of the template is randomly attenuated.
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Figure 12. Speller performance obtained for the Dataset IIb of the BCI Competition II (2003) for each
one of the algorithms. An offline BCI Simulation is performed using the first 42 trials as training and
the remaining 31 as testing. The horizontal axis show the number of intensification sequences, from 0
to 15 for this dataset, while the vertical axis show the performance rate.

5. Discussion

A significant reduction of performance was found when latency noise is added. The latency noise
reduces the information contained in the averaged signal, mainly due to the invalidation of the SNR
enhancement performed by the signal averaging procedure. This reduction alters the obtained shape
of the waveform of the ERP and impacts on the performances regardless of the method. On the other
hand, all the algorithms show some resistance to noise in peak amplitudes of the main component.
This is shown by the similarities of obtained results between the Experiment 1 and 3.

Using a straightforward dictionary of templates for MP-1 proved more beneficial in terms of
performance than the approach of using a Hilbert base of Wavelets atoms on MP-2. Either applying
latency noise or amplitude noise, the method based on the signal’s templates instead of using their
coefficients achieve much better character identification rates.
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Regarding results produced for the public and real dataset IIb of P300 ERP from the Berlin BCI
Competition II (2003), the obtained character identification rate is above theoretical chance level,
and for some algorithms close to the usable threshold of 70% [80,81]. When the character identification
rate reaches this level of performance, the usage of word predicting algorithms allows to implement
practical speller applications. Results for this competition have shown perfect classification with
tailored algorithms [82]. This level is also similar to the performance obtained for the Experiment 3,
which represents coincidentally the more realistic scenario for the pseudo-real dataset. It is important
to remark that the algorithms presented here analyze the waveform structure of a single-channel
signal [65,83].

6. Conclusions

The purpose of this work is threefold, (1) raise awareness about the utility of using automatic
waveform-based methods to study EEG signals, (2) to provide an overview of the state-of-the-art
of those methods, and (3) to compare those methods and verify if it is possible to obtain acceptable
classification performances based exclusively on the signal’s waveform.

The higher performance results are obtained for the methods SHCC and SIFT either on the
pseudo-real dataset and on the BCI Competition. We verified that it is possible to obtain discriminating
information from the underlying signal based exclusively on an automated method of processing the
waveforms. This brings the possibility to use these techniques to implement intelligible [84] automatic
detection procedures, i.e., systems that are able to emphasize clearly and noticeable what are the factors
that caused the system action, decision or classification. This is due to the fact that they are based on
metrics which can be visually verified.

Further work should be conducted in terms of a multichannel meaningful extension of these
waveform-based methods [83]. Moreover, the possibilities of finding overcomplete dictionaries for
matching pursuit sparse representation based on obtained signal templates, could also be considered
an area of future improvement.

We believe that the adoption of a hybrid methodology which can process the signal automatically,
but at the same time, maintains an inherent intelligible property that can be mapped to existing
procedures, and above all, can maintain the clinician trust on the system behavior is beneficial to
Clinical Practice, Neuroscience and BCI research. Additionally, this may foster collaboration in
a multidisciplinary environment and may ease the acceptance and translation of BCI technology [66].
The reason being, for caregivers and medical staff, particularly those with the expertise of the clinical
EEG which is based on waveforms, they may feel a natural understanding of how the system
is performing.

Another benefit of these methodologies is that they have a potential universal applicability.
As they are only analyzing waveforms, they can be explored in other disciplines where the structure
or shape of the waveform is of relevance. Analyzing signals by their waveforms is relative common
in chemical analysis [85], seismic analysis in Geology [86], and quantitative financial analysis.
Electrocardiogram EKG, on the other hand, has been extensively processed and studied analyzing the
waveform structure [87].
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Abbreviations

The following abbreviations are used in this manuscript:

EEG electroencephalography
BCI Brain Computer Interfaces
BMI Brain Machine Interfaces
BNCI Brain-Neural Computer Interfaces
SNR Signal to Noise Ratio
CNS Central Nervous System
AC Alternating Current
DC Direct Current
ERP Event-Related Potential
P300 Positive deflection at 300 ms
ITR Information Transfer Rate
BTR Bit Transfer Rate
SIFT Scale Invariant Feature Transform
SHCC Slope Horizontal Chain Code
PE Permutation Entropy
MP Matching Pursuit
ICU Intensive Care Unit
EKG Electrocardiogram
PAA Period Amplitude Analysis
SVM Support Vector Machine
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Abstract: Several researchers have proposed a new application for human augmentation, which is
to provide human supervision to autonomous artificial intelligence (AI) systems. In this paper,
we introduce a framework to implement this proposal, which consists of using Brain–Computer
Interfaces (BCI) to influence AI computation via some of their core algorithmic components, such as
heuristic search. Our framework is based on a joint analysis of philosophical proposals characterising
the behaviour of autonomous AI systems and recent research in cognitive neuroscience that support
the design of appropriate BCI. Our framework is defined as a motivational approach, which, on the
AI side, influences the shape of the solution produced by heuristic search using a BCI motivational
signal reflecting the user’s disposition towards the anticipated result. The actual mapping is based
on a measure of prefrontal asymmetry, which is translated into a non-admissible variant of the
heuristic function. Finally, we discuss results from a proof-of-concept experiment using functional
near-infrared spectroscopy (fNIRS) to capture prefrontal asymmetry and control the progression of
AI computation of traditional heuristic search problems.

Keywords: augmented cognition; brain–computer interfaces; superintelligence; heuristic search

1. Introduction and Rationale

Human augmentation aims at extending human cognitive abilities, often in a situated, task-specific
fashion. Previous research has demonstrated through various implemented prototypes and
experiments the feasibility of extending human perceptive abilities or information processing and
decision-making abilities [1,2]. In the latter case, Artificial Intelligence (AI) techniques are poised to
play a significant role in providing the task-specific information processing power supporting the
augmentation aspects. A constant feature, and a defining aspect of human augmentation, is that locus
of control remains strictly with the human, and the human task dynamics is left largely unchanged.
The information processing ability provided by the augmenting system is inserted into the natural
human activity, in a user-centred way, largely like augmented reality systems enhance world perception
through advanced imaging abilities. One such example is cortically coupled perception [3], in which
user active analysis of satellite images is augmented by the EEG-based detection of perceptive signals:
in this experimental system, the human analyst approach to image exploration is essentially unchanged.

Although human augmentation systems have been developed prior to the popularisation of
Brain–Computer Interfaces (BCI), these have taken a more prominent role in recent years, as they
offer a seamless mechanism to capture elements of human cognitive processes in a way that enables
the synchronisation of computations [1,2]. With the rise of autonomous intelligent systems, a new
application of human augmentation has been suggested in order to keep humans in control of
autonomous AI systems whose performance could potentially exceed even that of human experts.

After years of inflated expectations about AI, recent progress, primarily in machine learning,
has led to much-advertised successes [4,5] and renewed confidence in AI advances. Paradoxically,
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this situation has also fuelled the preoccupation that AI progress will eventually constitute a threat
to the well-being of humans. Researchers across a variety of disciplines have taken the stage to
forewarn of the potential adverse consequences of unregulated AI progress, amongst which the
automation of white-collar jobs [6], the development of AI-endowed autonomous warfare [7], or even
the rise of superintelligent AI entities [8,9]. Whether or not this superintelligence threat will materialise,
the shorter-term availability of advanced AI systems able to outperform human experts at an increasing
number of professional tasks is sufficient to justify research into hybrid cognitive systems.

The imbalance between humans and AI systems stems largely from the inability of humans
to engage with, even less control, the automatic reasoning mechanisms underpinning AI systems.
This stems largely from the scale and pace of data processing, which is not compatible with the timeline
of human decision making. It can also be noted that this lack of surveyability is not strictly attributable
to a representational issue (e.g., sub-symbolic versus symbolic), as complex search systems, including
statistical ones such as Monte Carlo tree search [5], remain based on the discrete step granularity
of search.

There is thus a case for additional research exploring a synergy between humans and AI systems,
which should aim at endowing humans with high-level control abilities sufficient to steer the flow
of AI computation, irrespective of its low-level details, while preserving an understanding of the
computation goal. Several authors have specifically suggested human augmentation as a potential
solution to the threat posed by superintelligence, augmentation being often achieved through BCI
implementations. Although most of these proposals remain largely underspecified, and some are
not always consistent with the state-of-the-art of BCI systems, it is worth briefly reviewing the
commonalities between them. Bostrom dedicates a section of his book [9] (p. 169) to the potential
of BCI for controlling superintelligence: however, his analysis is moderately optimistic, largely
because he equates BCI with its invasive implementations (depth electrodes or electrocorticography
(ECoG)), and raises legitimate concerns about acceptance, maturity of the technology, side effects,
and user safety. Kennedy [10] suggests BCI-based augmentation primarily as an alternative pathway
to autonomous superintelligence rather than as a control mechanism, and rightly identifies BCI
signal/information bandwidth as a major challenge. Skulimowski reviews several candidate scenarios
for superintelligence [11], one of which involves human control through BCI connection. Finally,
Barrett and Baum, in their review of pathways to (artificial) superintelligence [12], discuss several risk
reduction interventions, one of which includes human augmentation through BCI.

Despite being initially identified as human augmentation, it would actually imply a paradigm
shift, because the main information processing cycle would be driven by the autonomous AI rather
than by the human, as is customary in traditional cognitive augmentation systems; here, the human
user would be included in a supervisory capacity. To be successfully implemented, this framework
should not require a transformation of the AI technology to support user intervention (e.g., mixed
initiative), as it might compromise efficiency and the very advantage of autonomy. The challenge we
are addressing here consists precisely in providing minimally invasive supervision by the human user.
To summarise previous literature, the rationale for providing supervisory control can be described
from two complementary perspectives: (i) controlling the nature of the solution during its calculation
(in terms of optimality, solution parameters, or other application-related criteria), and (ii) ensuring
compliance with ethical standards.

In this paper, we introduce a candidate framework aimed at controlling the behaviour of
autonomous AI systems using a BCI. This unique combination of BCI and AI is meant to integrate
BCI input directly at the level of AI algorithmic computation so as to influence inner mechanisms in
a principled manner, being compatible with typical BCI information bandwidth and without imposing
additional restrictions on the nature of AI computation.

Although the current approach shares important aspects with augmented cognition, it differs
fundamentally by the fact that the main computation is actually determined by autonomous AI
mechanisms with the user supervising the computation rather than actually driving the task, as in
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cortically coupled vision or enhanced information retrieval [2]. The combination of the user and the AI
system forms a hybrid cognitive system in which some high-level executive control would be retained
by the human, while autonomous AI would form the main cognitive process. To account for the
complex spectrum of human–system integration, previous literature has used terminology such as
symbiotic systems [13] or human–computer confluence [14], and we should refer to our approach
as BCI-controlled heuristic search, categorising the type of system we are aiming for as a hybrid
cognitive system.

One of the main objectives is to achieve consistency between user intentions and the principles
that can affect the progression of AI computation: to that effect, we will review several principles that
reconcile active BCI, user cognitive mechanisms, and AI computation dynamics. In the next sections,
after introducing the issues emerging from autonomous AI systems and reviewing relevant BCI
augmentation systems, we discuss basic AI mechanisms (i.e., heuristic search) that can serve as a target
for BCI influence. We then explore cognitive processes that could be harnessed to provide control
over AI computation. We will emphasise cognitive mechanisms around motivation, which range from
reward expectation to risk propensity, trying to relate them to compatible concepts that characterise
the progress of AI computations in terms of result anticipation. Even before being fully fledged from
a theoretical perspective, this framework has been the object of early proof-of-concept testing through
a fully implemented prototype, whose results are briefly analysed as additional input into the proposed
framework. Finally, we take a system design perspective to review the conditions for a successful
implementation of the framework, as well as possible implementation variants.

2. A Motivational Model of AI Control

Theoretical research on superintelligence has suggested various approaches and mechanisms to
ensure it will stay under human control. In the first instance, we will consider that, from a technical
perspective, the human augmentation mechanisms proposed for superintelligent systems should not
fundamentally differ from those to be associated with shorter-term autonomous AI systems endowed
with advanced planning, decision making, or information analysis abilities. Bostrom has advocated
one specific control mechanism, which he characterises as motivation selection methods [9] (p. 169),
or methods that would shape the nature of the solution produced by the AI system. While his original
discussion is influenced by a rather anthropomorphic view of the AI’s goals and intentions, this
philosophy can be extended to more technical visions of AI systems to describe the type of solution
produced, whether this type is defined in terms of goal properties or solution properties (when the
shape of the solution, seen as a sequence of actions towards the goal, constitutes a desirable property
of the output). For instance, instead of indirect normativity [9] (p. 169) influencing the set of values
used by the AI in the pursuit of a solution, the nature of a solution could be shaped by the user
according to shared concepts characterising the nature of the solution. Candidate concepts would
include reward anticipation, risk taking, and solution optimality: we shall develop in the forthcoming
sections how these concepts can be related to cognitive motivational dimensions and how they can
be made accessible to BCI input. In the next section, we will first lay out some AI basic mechanisms
that rest at the heart of many AI systems and can constitute a target for the user-based influence of
AI computation.

In the above model, motivation has been defined primarily in relation to goal setting and goal
pursuit. Recent research in cognitive neuroscience [15] uses a compatible definition of motivation that
can be made interoperable with AI technology concepts. In addition, it identifies the involvement of
specific brain regions in a way that supports the design of appropriate BCI. From a cognitive perspective
as well, motivation is conceived of as being goal directed [16,17]. The relationship to the goal has
been further refined into planning and implementing stages [18], also suggesting that goal setting
is primarily motivational, while goal striving is best characterised in terms of volitional factors [18].
According to [16], the neural systems implicated in the internal representation of cognitive goals
overlap significantly with those dealing with the generation of motivated behaviours. In particular,
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the lateral prefrontal cortex (PFC) might serve as a convergence zone in which motivational and
cognitive variables are integrated [16].

The identification of specific brain regions whose activation may reflect motivational dimensions
is an essential step in designing appropriate BCI. In terms of activity measurement, there is a substantial
body of work associating PFC asymmetry with motivational direction [19], which originates with the
study of approach/withdrawal as a motivational dimension [20]. This research has pioneered the
measurement of prefrontal asymmetry using EEG signals [20], left asymmetry being associated with
the expression of approach.

The relationship of frontal EEG asymmetry with motivational variables has been recently reviewed
by Smith et al. [21] and Harmon-Jones and Gable [17], who have related resting left prefrontal
asymmetry to individual differences in self-reported trait approach motivation. In addition, they have
found this relationship to be stronger in the context of incentive anticipation. Moreover, there are
strong relations between motivation and reward anticipation: for instance, lateral PFC activation is
modulated by the level of reward offered [22,23]. Amodio et al. [24] have analysed the correlates of
PFC asymmetry from a regulatory perspective. More specifically, they found approach regulation to be
most relevant to “pre-goal states”, during which efforts are mobilised towards the goal. This needs to
be reanalysed from the prism of a hybrid cognitive system, which could involve a mix of goal setting
and goal pursuit depending on the information visible to the user from the AI computation but, in any
case, is compatible with a mediation from prefrontal asymmetry.

Prefrontal asymmetry as a marker of approach [17] has been extensively studied by EEG under
three different conditions: (i) at rest, (ii) as a dynamic response to a cognitive situation or an affective
stimulus, and (iii) under volitional control through neurofeedback (NF). To understand the dynamics
of prefrontal asymmetry, it is worth noting that its value is determined approximately for half by its
resting value (trait) and for another half by its dynamic value (state): this is in particular what makes it
amenable to volitional control through NF, although the trait component may introduce ceiling effects
rendering some subjects more prone to dynamic changes than others.

Functional Magnetic Resonance Imaging (fMRI) studies have been carried out to uncover
the anatomical basis of prefrontal asymmetry in the context of motivational phenomena [25,26].
In addition, real-time-fMRI (rt-fMRI) experiments have demonstrated the controllability of prefrontal
asymmetry [27] including comparisons to EEG-based NF. Functional Near Infrared Spectroscopy
(fNIRS) studies of the PFC have been dedicated to affective interaction [28] as well as executive
control. fNIRS is also amenable to NF implementation that supports BCI, and we have successfully
used it for BCI-based prefrontal symmetry in a context of distinguishing approach from valence [29].
Harmon-Jones et al. [19] have questioned the exclusive role of the dorsolateral prefrontal cortex
(DLPFC) in accounting for BCI signals for approach, on the basis that EEG and metabolic methods,
such as fMRI, measure different activities for different cellular populations [30], while noting that EEG
findings were still corroborated by experiments with transcranial stimulation (see for instance, [31]).
In their most recent review, Harmon-Jones and Gable [17] have considered that fMRI may actually
show more complex patterns of activation without this invalidating the central role of DLPFC and the
use of EEG to measure prefrontal asymmetry.

When placing the human user in a position of high-level arbitration of autonomous AI
computations, it is tempting to resort to a metaphor of executive control, even more so when resorting
to neural signals originating in the prefrontal cortex. A hybrid model of executive control could be
envisioned, by redefining executive control for a hybrid cognitive system comprised of the human and
the autonomous AI, in which human executive control would apply to the deliberative AI part instead
of the human part. One specific question arising when considering cognitive control in the context
of hybrid cognitive systems is the extent to which prefrontal cognitive control mechanisms that have
been described to operate on internal cognitive mechanisms would apply to hybrid control situations
where the generation of hypotheses, or anticipation of rewards, is actually not the result of the human
cognitive processes but of their appraisal of the AI calculation progress.
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Smith et al. [21] have actually related EEG prefrontal asymmetry not just to motivation but also
executive functions. Current integrative models of executive function control [32] distinguish between
hot (affective) and cold (deliberative) executive control and tend to associate the DLPFC with cold
control and the orbitofrontal cortex (OFC) with motivation and reward anticipation. This would be
consistent with source-localisation studies, which have suggested that frontal EEG asymmetry at rest
is mediated by left DLPFC and OFC activation [33].

Yet, Auperle et al. [22] (following, amongst others, [34,35]) have distinguished specific roles for
OFC and DLPFC. They suggest that OFC is involved in determining the value of rewards, while DLPFC
incorporates these values when planning for the execution of a decision or response. Compatible
findings had been reported by Tanaka et al. [36], with OFC involved in learning from the present state
and DLPFC in learning from predictable future states. The original work from Wallis and Miller [37],
based on a primate model, established that OFC encoded the reward value alone, while DLPFC
encoded both the reward value and the forthcoming response. Li et al. [38] have also suggested that
subjects could use the DLPFC to dynamically adjust outcome responses depending on the usefulness
of action-outcome information, implying that they could make use of instructed knowledge rather
than simply trial and error outcomes. The role of the left PFC has been described from a hierarchical
perspective alongside a rostro-caudal hierarchy as introduced by Coutlee and Huettel [39]. In that
context, the DLPFC, whose activity has the prominent role in PFC asymmetry, is considered to be
involved in “mid-level abstraction control”, which would be compatible with the goal-oriented role
discussed above.

Despite the overlap between motivational and cognitive factors in the PFC, it is difficult to
conclude that hybrid cognitive systems could implement executive control simply by transposing
human cognitive mechanisms and dissociating human executive control from other cognitive processes,
the latter being substituted with an AI system, without a better understanding of the actual control
signals and required information bandwidth. We should then entrust control of the hybrid system to
the motivational component, whose signal properties and cognitive activation are better understood,
without ruling out that in the context of observing the progression of AI computations, these may
still interfere in part with executive functions. While some details of the framework remain to
be refined—in particular, the exact balance between goal definition and goal pursuit—the above
discussion contains sufficient evidence of the appropriateness of a motivational framework to support
the interactive component of a hybrid cognitive system.

2.1. Heurisitc Search in AI Control

Implementing cognitive control over AI computation requires the identification of a target
computational element, which is generic enough to support one of more classes of AI systems
and would not require altering the nature of AI calculations themselves to deploy explicit control
mechanisms. One possible target mechanism would consist of the basic elements of AI computation,
such as search. The underlying hypothesis is that altering the basic component of heuristic search
offers significant leverage on the behaviour of the entire AI computation that derives from it. Of all
the algorithmic components underpinning the implementation of AI systems, heuristic search enjoys
a central position and also one that has persisted from the early days of AI problem solving to the most
recent successes of AI technology.

Heuristic search is in itself a problem-solving technique supporting direct resolution for puzzles
such as the Rubik’s cube [40] or spatialised optimisation problems such as the travelling salesman
problem or equivalent problems [41]. It has been embedded in a large range of real-world AI
applications, from speech recognition to sequence alignment in bioinformatics and many others [42].
However, its real power derives from its incorporation in complex problem-solving techniques
supporting more sophisticated knowledge representation, such as search-based planning, which has
become the dominant planning technique [43], or question answering systems [44] of the type
popularised by IBM’s Watson™. Within these systems, modifications of the basic search mechanisms
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are potentially able to affect the generation of solutions in the application’s semantic domain without
the requirement for domain control knowledge.

The most generic mechanism to influence heuristic search is to act upon the heuristic itself:
in particular, this mechanism can leverage on search progression in order to influence higher-level
AI computations, without requiring ad hoc or application knowledge. The formal properties of
heuristic functions have been extensively studied, and as a consequence, the effects of some heuristics’
modification are well understood, and their mathematical properties established. For instance,
the behaviour of the entire search process towards an optimal solution is determined by the admissible
nature of the heuristic function [45]. It has subsequently been demonstrated that heuristic functions
departing from admissibility could be used to trade solution optimality for computational speed
(Figure 1). More importantly, it has been established that this departure from optimality could be
limited while still showing beneficial effects on search performance: this is referred to as bounded
non-admissibility [45] or sometimes ε-admissibility. The main mechanisms to design non-admissible
heuristics include dynamic weighting of the heuristic function and focal search. Dynamic weighting
consists of allocating different weights to the cost function (g) and the heuristic estimate function (h),
generally increasing the latter’s weighting above 0.5. One early implementation of dynamic weighting
is Pohl’s depth-dependent dynamic weighting [46], whose rationale is to increase the role of the
heuristic component as search progresses towards the goal. This was one of the early demonstrations
that heuristics could be modified during the search process itself, such dynamic modifications entailing
interactive approaches without requiring the transformation of the baseline search algorithm into
a real-time version. The generic approach to dynamic weighting is defined without consideration
of search depth simply as a weighted formula for the evaluation function [47], where n is the node
considered, g the cost function, h the heuristic estimation function, and ω the weighting coefficient:

f (n) = (1 − ω) × g(n) + ω × h(n). (1)

It has been established that dynamic weighting results in the heuristic not being
admissible, such non-admissibility being, however, bounded as a function of the weighting
coefficient [48] (which makes dynamic weighting approaches ε-admissible).

Another major non-admissible search paradigm is known as focal search. It consists of applying
a secondary heuristic to refine the selection of the most promising nodes selected by the main heuristic
and one of its early descriptions is A*ε [45] (p. 89). The underlying mechanism consists of creating
a subset of the most promising nodes under consideration (the OPEN list), this subset being called
FOCAL. Instead of selecting the best node from OPEN, the search algorithm will select the best node
from FOCAL using the secondary heuristic function to that purpose. The canonical description of
FOCAL search has been demonstrated to be ε-admissible, as long as the size of FOCAL is limited,
and is actually referred to as A*ε. It should not be confused with methods for combining multiple
primary heuristics, which, unlike A*ε, still operate on the original node selection mechanism within
the OPEN list. The original description of A*ε made explicit reference to minimising computational
costs [45] (p. 89), hence again trading optimality for computational speed, and the secondary heuristic
was based on such a computational cost estimate. However, there is no a priori restriction on the
nature of the secondary heuristic. In particular, it can be used to incorporate application semantics into
the search process, for instance, through the evaluation of specific state configurations. Although these
mechanisms have been described as studies of the fundamental properties of heuristic search, they have
also generated real-world applications: for instance, a recent implementation of FOCAL search has
been used for Unmanned Aerial Vehicles (UAV) coordination through the enhanced conflict-based
search mechanism [49].

From a hybrid cognitive system perspective, the mechanisms underpinning non-admissibility
can constitute appropriate targets for intervention, provided the behaviour of non-admissible variants
can be attributed cognitive significance by the user within the motivational framework outlined above.
The first illustration of the latter point would be the concept of speed–accuracy trade-off, which is

85



Brain Sci. 2018, 8, 166

the cornerstone of ε-admissible search [45], and has also been explicitly identified in the cognitive
literature on motivation–cognition interaction [50].

An alternative cognitive interpretation would be to consider risk as a unifying concept. From the
AI perspective, departing from admissibility carries the risk of producing a solution whose cost is
higher than that of the optimal solution [51]. From a cognitive neuroscience perspective, this would be
based on several findings on the correlation of resting PFC asymmetry with sensation seeking and risk
acceptance [52] or the effect of transcranial direct current stimulation-induced right PFC suppression
on risk acceptance [31].

However, on the AI side, non-admissibility actually corresponds to bounded risks (i.e., somehow
acceptable by nature) and, in many cases, deviations from the optimal solution are actually rather
minimal. There is no proper quantification of risk in non-admissible heuristic search unlike the case
with explicit risk-based approaches to search such as Rδ* [45]. This algorithm bases node expansion
on the error probability distribution for the heuristic function, thereby formalising the risk of ignoring
a more promising direction in search than the one taken. Even so, insofar as such risk may not be
clearly visible to subjects during interaction, it is unlikely to redefine the motivational framework as
a risk-based approach because of the lack of conscious exposure to risk taking.

The basic mechanism we have chosen for influencing heuristic search progression through
bounded non-admissibility consists of dynamic weighting of the A* heuristic function. There is
significant background work on dynamic weighting from Pohl’s early work on depth-dependent
dynamic weighting [46] to recent anytime variants of A*, in which the same algorithm is run repeatedly
starting with the more suboptimal solution (highest weighting) [53].

We use a standard but complete A* implementation [45] (p. 75), which has been modified
to incorporate dynamic weighting of its evaluation function, resulting in a weighted A* (WA*)
implementation. In this version, dynamic weighting can take place from the onset of the search or be
triggered once a certain percentage of the search space has been explored (for pre-set configurations
such as the 8-puzzle). This version has supported both preliminary tests, which were dedicated to
study search progression so as to determine how best to influence it (Figures 1 and 2), and the actual
BCI hybrid search experiments reported below.

Although heuristic search algorithms can be applied to a wide range of problems, the actual
time dynamics of the search process differ significantly across problems, initial conditions, and search
methods. A given search problem can be characterised by the shape of its search space, and the extent
to which progression towards the solution is monotonic or requires extensive backtracking.

For preliminary tests characterising solution progression, we have run various search problems
from a database of previously resolved 8-puzzle configurations [54], which identify search problems
(8-puzzle initial and goal configuration) in terms of number of solutions or solution length. Figure 1a
shows the reduction in search space for various values of the WA* weighting coefficient, while Figure 1b
illustrates the influence of intervention timing: the actual variation in search space for a fixed weighting
coefficient depends on the stage of search progression at which dynamic weighting is applied.
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(a) (b) 

Figure 1. The speed–accuracy trade-off (impact of weighted A* (WA*) on heuristic search performance),
illustrated through the reduction in the number of nodes explored to reach a solution. (a) Reduction in
search space for the 8-puzzle depending on the variation of the weighting coefficient (x axis, arbitrary
units) (b) Restriction of impact depending on the stage of intervention for the 8-puzzle, for a weighting
coefficient (0.57) known to reduce the search space.

In addition, some search problems place greater emphasis on the shape of the solution than on
simply reaching the goal state. In this context, the impact of shifting to a non-admissible heuristic
search would depend on the nature of the search progression itself (i.e., reducing the amount of
backtracking or accelerating the monotonic progression towards the solution). It is thus necessary to
confirm the ability of the bounded non-admissible search to improve search progression for different
problem configurations.

Figure 2a shows the variation of the heuristic value during an 8-puzzle solution for a configuration
known to have a 30+ move solution [54], with significant oscillations of the heuristic value indicative
of extensive backtracking. Figure 2b shows the variation of the heuristic value for the same problem
when shifting to a non-admissible search with a weighting value of 0.55 for the heuristic function.

 
(a) (b) 

Figure 2. The impact of dynamic weighting on solution progression and backtracking. For the same
configuration of the 8-puzzle (a) shows significant backtracking with a default heuristic function (A*),
while in (b) WA* with fixed 0.575 weighting shows a more monotonic progression towards the goal
state (as well as a faster computation).

2.2. The Integration Challenge

Integrating control of AI computations assumes a number of conditions for the implementation
of the hybrid cognitive system framework. Firstly, the neural signal should be quantified, and its
variation range should support a mapping onto defined parameters of the AI calculation. Such
grounding can be found in the statistical correlations encountered in previous works, as well as the
known magnitudes of signal variations above a baseline. For instance, when considering prefrontal
asymmetry in a motivational framework, the situation should be differentiated between EEG and
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metabolic signals (fMRI, fNIRS), because the latter do not benefit from a fixed prefrontal asymmetry
baseline, unlike the trait property of EEG prefrontal asymmetry [17].

Secondly, the signal should be controllable by subjects, implicitly or through an explicit cognitive
strategy. The challenge here is to train subjects in developing cognitive strategies that are as specific to
the task considered as possible and do not use confounding signals. For instance, prefrontal asymmetry
is often influenced by valence in addition to approach, which explains that positively valenced
cognitive strategies, such as personal autobiographic memories, can be successful in sustaining the BCI
signal [27,55]. However, such cognitive strategies risk being distractive and are decorrelated from the
observation of AI computation progress: this could constitute a case for NF training, which is generally
reserved for clinical rather than user interface applications. The increase in NF performance, which is
generally observed after a few training sessions, could support implicit, non-distracting cognitive
strategies. Finally, the users should be responding to a real-time presentation of the progression of
AI calculation so that their intervention is relevant in terms of influencing it. Several visualisation
strategies will be introduced in the next sections.

Volitional control should be implemented through BCI input supported by specific user training
and cognitive strategies. Most literature using prefrontal asymmetry as an active BCI signal has
implemented a NF paradigm, most probably because it sought inspiration from the significant literature
on PFC asymmetry NF for clinical applications [27,56,57]. In this context, the user intervention can be
best described as a motivational response targeting the current evolution of the AI computation.

The integration process at the heart of BCI-controlled search relies on two main dimensions.
The first one is the nature of the feedback signal used to convey a sense of search progression and
direction: by giving the users a sense of how the search is progressing, it enables them to react
accordingly on either time progression or, when available, the nature of the solution most likely to
emerge. The second one is the temporal aspects of user intervention, which can be subdivided into
timing and frequency of intervention. Timing refers to the time relation between user intervention
and the overall duration of the AI computation: it is generally made possible by the extended nature
of AI computations. When the progression of the solution can be conveyed meaningfully to the
user, this may create the opportunity to guide the search process at various stages assuming again
that the duration of the computation is significantly longer than the BCI epochs required for input.
The repetition of interventions would then define a frequency of user interventions.

In the next section, we review several options for implementing the above dimensions and how
they can be combined to implement various BCI search paradigms.

2.3. Intervention and Search Dynamics

It may seem a paradox to suggest a mechanism for interacting with an offline heuristic search
algorithm, considering that there is no shortage of real-time variants of A*. However, there is a long
history of repeatedly running heuristic search algorithms with modified heuristics to speed up the
remainder of the computation, which was at the heart of various “anytime” variants of A* [48]. Making
the search process responsive at specific progression intervals differs from the real-time heuristic search
philosophy (e.g., RTA* [58]) in terms of heuristic value calculation (depth-bound lookahead versus
goal state estimate in traditional search) and backtracking opportunities. For standard A* variants,
the actual impact of overweighting the heuristic function towards non-admissibility varies greatly
according to the stage of search progression at which it is applied and suggests that the options for
intervention should take place over the early stage of the search progression, and this could be the
case across a range of search problems (Figure 1b).

This is the solution we have adopted in previous work, also owing to the response time of the
fNIRS signal: it could however still be of interest even when using EEG-based input frontal asymmetry
scores because of the signal dynamics and the need to stabilise it over the NF epoch. Moving towards
some interruptible, anytime-like approach could bring the further advantage of buffering the BCI input
rather than constraining the user input in terms of timing and dynamics. A particular implementation
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of the above consists of parameterising heuristic search from user profiling data prior to triggering
AI computation. An essential condition for this parameterisation is the availability of a framework
to unify search behaviour with user personality traits that would be readily accessible through BCI
measurements. One such example would make use of prefrontal asymmetry under its electrical
signal form (EEG), which has been shown to have trait properties [17], to characterise, in context,
user disposition towards gain, reward or, risk. On the AI side, the above user dispositions can be
interpreted as potential acceptance of various forms of suboptimal solutions. These dispositions
could be translated into non-admissible variants of heuristic search trading optimality for speed.
One more specific case would be the explicit use of a user’s risk propensity profile to be mapped onto
an interpretation of risk in a heuristic search. Another core element of the system design is the timing
and duration of BCI input. This design faces a number of constraints, from the user’s response time
in assessing the progression of the AI computation to the onset of BCI signals and any difficulty in
sustaining it. In addition, difficulties in controlling the magnitude of the BCI signal may be offset by
repeated interventions throughout AI computation, subject to constraints on the intervention window
for offline heuristic search.

The difficulty in sustaining the BCI input signal is amply discussed in the NF literature and is
one of the reasons for defining NF epochs of limited duration [59]. Moreover, even across defined NF
training sessions, many recent papers have noted a drop in user BCI performance towards the latter
epochs, which they have explicitly attributed to BCI fatigue. The difficulty for users to exert sustained
control over specific brain regions activation is at the heart of BCI usability limitations. Leaving
aside individual differences in ability, sometimes referred to as BCI illiteracy or non-responsiveness,
which can be generic or specific to some BCI configurations, even the performance of a responsive
subject tends to be inconsistent across trials. User task fatigue [60] has been particularly well
documented during NF training involving a fixed sequence of epochs, with the performance of
even good responders waning towards the last epochs of a training session. A practical consequence
for BCI-controlled search would be to limit the number of user interventions in the course of any
problem-solving session, as well as their duration.

2.4. Visualisation of Search Dynamics and User Response

There are a limited number of cases for which the problem being solved can be usefully visualised
to give the user access to search progression towards a solution. Among the determinants making
this possible are the spatial nature of the problem, the level of backtracking and monotonicity of
solution construction, and the ability to derive a semantic interpretation from the search visualisation.
One of the most straightforward examples is the use of heuristic search in path planning where the
search progression can be visualised in real-time on the discretisation grid that supports the search
process (see below, Figure 5). The overall progression can be made even more visible for complex
obstacle densities and high probability of backtracking by highlighting those nodes of the grid that
constitute the OPEN list. On the other hand, the tree-based visualisation of the search space of a puzzle
(e.g., n-puzzle, Rubik’s cube . . . ) is unlikely to offer sufficient insight to the user owing to the amount
of information, difficulty of interpretation, and speed of search space expansion that generally exceeds
human processing abilities in the absence of high-level detectable patterns. Such patterns are similar
to those which would be encountered in board games but may only be visible to experienced players:
in any case, we are not dealing here with adversarial heuristic search.

It is generally accepted that the feedback element of NF-based BCI helps the user in sustaining
the activation of the target region of interest, even more so that the target is not under direct volitional
control. This aspect has been discussed in the NF literature from multiple perspectives: the use
and type of cognitive strategies, the classification of subjects into responders and non-responders,
an ability to control the BCI signal that improves during training and the number of training sessions,
and the positive impact of realistic feedback channels (e.g., games, virtual reality) over abstract
visual indicators [61]. The ideal, long-term configuration, would be to use the visualisation of search
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progression itself as the NF signal: however, a major challenge to implement this approach would be
to align the temporal aspects and sampling rates of the input BCI signal and the feedback signal.

To a large extent, BCI-controlled search aims at influencing the exploration of the search space.
It would then appear logical to present the users with some representation of the search space itself so
that they would respond to the global shape of the search space from the initial to goal state. Assuming
primarily a tree-based expansion, the traditional representation of heuristic search space is triangular
(see for instance [45] (p. 152)). Moreover, the simple geometric shape and its natural interpretation in
terms of ‘focussing’ the search to reduce the search space and expand more directly towards the goal
can support a direct BCI feedback in the framework of a NF approach to BCI input, which has been
shown to be appropriate to signals such as prefrontal asymmetry (Figure 4).

Although less immediately visual than the above abstract representations, search progression
can also be represented through the time variation of the heuristic function values from the initial
state to the solution state. It is only meaningful in terms of prompting user intervention when the
heuristic shows a regular, ideally monotonic, trajectory towards the goal, such as on Figure 3b. On the
other hand, heuristic value oscillations such as the one observed on Figure 3a for a classical 8-puzzle
problem are not good candidates for such visualisation, because they do not converge until the very
latest stages of the search.

 
(a) (b) 

Figure 3. The variation of the heuristic function throughout the search process conditions the type of
intervention (a) For the 8-puzzle problem, the heuristic function (Manhattan distance for misplaced
tiles) oscillates significantly with search backtracking; (b) For a path planning problem, such as the one
used in our preliminary experiments, there is an overall trend for the heuristic function (straight-line
distance in arbitrary grid units) as the path progresses towards the goal node.

Influencing AI systems, as reported here, assumes a compatibility of timescales between AI
computations, user perception of solution progression, and time constraints of NF input (response time,
signal stability, and duration of an epoch). Despite progress made in AI techniques, typical search,
planning, and optimisation problems still often require minutes of intensive computations to reach
a result, as illustrated by standard benchmarks such as in the international planning competitions [62],
where a cut-off time of 1800 s is introduced [63,64]. These timescales are much more representative of
the target applications for our approach than examples such as the 8-puzzle used for proof-of-concept,
which tend to be solvable in a few seconds. However, it should still be noted that the A* algorithm still
today cannot scale up beyond simple problems [65], making non-admissible search and our overall
approach still relevant.

With NF epochs generally under 60 s, we would suggest that such timescales are close to
optimality when it comes to designing human intervention, in particular for those problems exhibiting
a heuristic progression profile such as the one of Figure 3b (which matches that of search-based
planning (e.g., in [66])).
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3. Proof-of-Concept Experiments: BCI Control of Heuristic Search

In order to validate our motivational model, we carried out proof-of-concept experiments in
which users could influence the course of heuristic search calculations using BCI input.

The motivational framework consists of trading solution optimality for speed of calculation: on the
AI side, it is implemented through ε-bound heuristic search, and on the BCI side, the motivational
element is captured through real-time variations of PFC asymmetry, measured using fNIRS NF.
There is ample evidence that subjects can alter prefrontal asymmetry in real-time under a NF paradigm,
using various cognitive strategies [27,56,67], some of which are clearly motivational (approach-based).
We have in previous work successfully used prefrontal asymmetry as a BCI paradigm using both EEG
with fMRI validation [68] and fNIRS [29,55].

Overall, the system comprises the AI component, which consists of a non-admissible A*
implementation in the form of weighted A* (WA*) [47] operating on a standard heuristic search problem
(8-puzzle or grid-based path planning), the fNIRS-based BCI interface that measures variations of
prefrontal asymmetry from a baseline under a neurofeedback paradigm, a visualisation environment
that supports the NF response and gives insight into the search space of WA*, and a mapping algorithm,
which determines which variations of WA* weighting coefficients should be applied for the current
variation of prefrontal asymmetry.

The main objective of these experiments was to validate the motivational framework by showing
that the BCI input can provide the necessary influence over the heuristic search computation in terms
of information, bandwidth, and timing. Although this demonstrator does not yet implement all of the
framework elements introduced in this paper (in particular, in terms of interaction timing and dynamics
in relation to heuristic search progression), one important objective is to demonstrate some quantitative
aspects of the mapping between BCI and heuristic search, namely that the magnitude of the user
input can actually drive the computation towards various trade-offs between optimality and speed.
We use one single integration paradigm, which is the precision–admissibility trade-off [45], also known
as the optimality–time trade-off in cognitive research [50], where it is considered a motivational,
approach-based implementation.

The common setting for the proof-of-concept experiments is based on a BCI NF paradigm,
where active biofeedback is meant to support the user in controlling his/her prefrontal asymmetry.
This is based on a large body of work that has demonstrated that prefrontal asymmetry could be
controlled through NF across various types of BCI, electric (EEG) [68] or metabolic, in particular
rt-fMRI [27]. In addition, previous research has established that the DLPFC, considered the main
region involved in motivation-based PFC asymmetry [25,27], is readily accessible through fNIRS [69],
including fNIRS NF [67,70]. Our NF protocol is primarily inspired by the rt-fMRI experiments on PFC
asymmetry of [27], which helped us in defining epoch durations, time delays, magnitude of signal
variation, and statistical validation. We have previously validated fNIRS PFC NF in a typical PFC
asymmetry context dissociating approach from valence, which detected the expression of anger [29].

The NF experiments are organised around specific sessions in which NF facilitates BCI input to
influence AI computation: each session is composed of various blocks that enable baseline activity
definition and BCI input itself. The details of block design and experiments can be found in [71] and
are only briefly described here (see also Figure 4). The generic principle consists of having a single
NF block compatible with the timing of fNIRS variations and serving as BCI input to control the AI
computation. fNIRS being a metabolic method, there is no absolute baseline for PFC asymmetry like
the one that exists in EEG measurements, imposing to recalculate a baseline asymmetry value before
each NF block. Depending on the experiment, the baseline involves rest or an unrelated cognitive
task (counting) not affecting PFC asymmetry. The asymmetry score computed during the baseline is
used as reference and considered “zero asymmetry” regardless of its actual value. The last 10 s of the
resting epoch (Figure 4) are used to measure that score with specific care taken not to induce variations
of asymmetry.
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Figure 4. The neurofeedback (NF) protocol used for the 8-puzzle experiment. Note that the last 10s
of a resting epoch are used to determine the prefrontal cortex (PFC) asymmetry baseline a priori to
the NF epoch. The 7-s delay is introduced to take into account the onset of haemodynamic response
in fNIRS. The NF epoch is followed by a non-motivational cognitive task facilitating the return to
a new baseline [71].

As with all NF installations, the feedback signal should be determined by the level of activation
of the region of interest (here, the difference in activation between left and right PFC calculated by
averaging oxy-haemoglobin (HbO) values over the four leftmost and four rightmost fNIRS channels,
then subtracting the average right from the average left).

The first experiment explored BCI control over heuristic search for solutions to the 8-puzzle
(Figure 5). The rationale for using a textbook example such as the 8-puzzle is that its complete solution
set is fully accessible [54], which considerably simplifies the experimental design by selecting 8-puzzle
configurations (starting state and goal state) whose properties are known.

For instance, when applying heuristic weighting modifications during the search itself, it is
possible to experiment with known solution lengths or configurations, admitting a large number of
solutions to minimise the impact of dynamic modifications. Because the range of solutions and impact
of ε-admissibility is documented, the mapping of BCI input to heuristic search is also easier to describe
and experiment with.

The mechanism by which a feedback signal is generated from the detection of BCI input is generally
referred to as mapping and plays an important role in NF design (Figure 5(4)). Here, the starting point
to determine the best mapping functions is to look at the outcome of non-admissible search experiments.
These determine the range of heuristic function modifications that have the most significant effect in terms
of performance–admissibility trade-off. Previous literature on non-admissible search [47,48] has established
a number of principles, such as the fact that the main impact of non-admissibility is to reduce the size of
the search space or that significant effects could be observed for even minor modifications of the heuristic
weighting. In our experiments, the BCI signal (level of asymmetry compared to the baseline) is mapped
linearly onto an abstract symbology for the search space taking the form of a two-dimensional (2D) beam
whose width represents the variable to be minimised. We have based the mapping on the statistical
significance of fNIRS signal variation with respect to the baseline using real-time t-tests and associated effect
size (Figure 5(3)). The post-hoc validation of each NF epoch has been confirmed using resampling methods,
in particular bootstrapping [72].

The intervention model for the 8-puzzle was to request a NF intervention soon after the start of
the search process, resulting in the heuristic weighting being altered after 0–25% of the search space
had been explored (this value being derived from the known solution configuration, see Figure 1).

In the case of the 8-puzzle, the main impact was on search space reduction, measured through
a reduction in the number of nodes expanded [48] and consistent with our preliminary tests of
non-admissible search (Figure 5(6)). It is worth noting that the optimality of the solution was actually
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often preserved, meaning that the users were actually successful in speeding up the AI computation
without compromising solution quality.

 

Figure 5. Brain–computer interfaces (BCI) interfacing to heuristic search on the 8-puzzle. The user’s
motivational dimension is obtained through fNIRS measurement of PFC asymmetry (1). The level of
change from the baseline, which is taken to measure approach, is determined with real-time statistical
testing (2,3). It is mapped linearly onto the WA* weighting parameter using the effect size to determine
the level of heuristic modification (4). The change in weighting parameter for WA* is applied during
the search (5), which results in search space reduction and computation speed-up (6). Note the abstract
representation of the search space as a two-dimensional (2D) beam (1), which serves as a visual feedback
for fNIRS NF (adapted from [71]).

The variations in prefrontal asymmetry across subjects resulted in differentiated effects on
heuristic weighting and associated search space reduction, compatible with the intended quantified use.
However, there was not enough data in our single-trial experiments to assess intrasubject variations
and validate how a single subject could fine-tune the behaviour of a given search progress. This raises
the issue of the controllability of the magnitude effect, which should be the object of further experiments
but could also be mitigated through multiple interventions during a given AI computation.

A second set of experiments was staged using grid-based path planning as a heuristic search
problem (Figure 6). The rationale for this second test case was that the search space could be visualised
in real time as the search progressed so that the visual feedback sent to the user about search progression
was no longer metaphorical. However, to avoid potential uncanny effects due to the shape of the node
frontiers progression (which with grid-based path planning also depends on obstacle density and
environment layout), the display superimposed the same triangular shape over the node progression
to be used as the NF channel. In this second experiment, the search space is comparatively smaller,
and the reduction in search space is less dramatic than with the 8-puzzle. However, non-admissible
search produces qualitative, as well as quantitative modifications of the solution path, which can be
readily observed on the chosen obstacle configuration: the solution path under user intervention is
more straightforward and travels through the centre of the environment.

Interestingly, the success rates did not differ significantly from the 8-puzzle experiments,
suggesting that a better visibility of the search space progression did not improve subjects’ performance
in that instance. However, this might depend on the actual obstacle density and layout, as the actual
shape of the front node progression and associated backtracking might actually be distracting to users.
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Figure 6. BCI interfacing to heuristic search on a path planning problem. The motivational dimension
is acquired through fNIRS-based prefrontal cortex asymmetry. In this experiment, the heuristic function
can be repeatedly modified as the search progresses, also taking advantage of the more visual feedback
provided by path progression. Because of the multiple updates, in this experiment the weighting factor
has only been allowed to increase through time to explore search speed-up. Note the change in the
qualitative nature of the solution (path geometry) from solution (1) to solution in (3). From [71].

The users’ perception of the task can be analysed through their narrative feedback on the
cognitive strategies they used to increase prefrontal asymmetry. Several users reported strategies
compatible with approach and result anticipation such as imagining running in a virtual race or
encouraging the progression of the search as one would encourage a racer. Prior to the experiment,
subjects were explained the goal of AI computation and the NF setting, although we refrained from
suggesting explicit cognitive strategies. However, a few others mentioned the recollection of positive
autobiographic memories, which is known to also induce left prefrontal asymmetry because of the
interplay between valence and approach in appetitive stimuli or recollections, as also reported by
Zotev et al. [27] in their fMRI prefrontal asymmetry NF experiments.

In these experiments, NF success is defined for each subject as having at least half of successful
blocks during a NF trial [72]: this high-level measure is meant to give an indication on the usability of
the interactive system.

It is interesting to compare current success scores to two other previous fNIRS experiments also
involving PFC asymmetry in two different affective contexts (engagement (Aranyi et al. [55]) and
anger (Aranyi et al. [29])). All these experiments have in common a minimal level of user training
which tends to be the same across experiments: the calculation of PFC asymmetry from haemodynamic
data is similar, based on the same optodes and the same formula. Previous affective BCI experiments
resulted in success scores of 73% [55] and 70% [29]. Our new 8-puzzle experiment achieved a similar
score of 73%, suggesting that significant NF success is possible in the absence of a clear affective
context, with a motivational-based approach for which there is no priming from the application or
visual environment. Paradoxically, the increased visual realism in the path planning setting did not
result in higher success scores, despite the reported positive impact of visual realism on NF [61]. Based
on debriefing and narrative feedback from the subjects, the lower success scores observed for path
planning (57%) were attributable to the extra cognitive load induced by the visual complexity. Another
potential explanation is that in the path planning experiment, the baseline was determined during the
counting epoch rather than during a post-counting resting epoch; although counting is considered
a neutral task for prefrontal asymmetry, it could in some cases affect it via mental workload for some
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subjects [73], thereby introducing a ceiling effect in PFC asymmetry variation with subsequent impact
on success scores.

Another important point to consider when analysing performance is that we are using NF as
an interaction paradigm rather than as a therapeutic approach. Of NF, we only retain the hypothesis
according to which the presence of the feedback signal helps the user activate brain regions not
directly accessible to volitional control. Unlike NF therapeutic systems we do not include multiple
training sessions, which are used to induce long-term behavioural changes (mediated by neural
plasticity) and are generally associated with an improvement in the ability to control the NF signal
throughout training. This induces an inherent limitation in our approach, which is that overall subject
performance will generally be lower in the absence of multiple training sessions. The minimal training
provided to our subjects can be counted in minutes, whilst it is generally considered that several hours
(up to 40, [74]) through repeated sessions are required for subjects to be confident with NF control.
In practice, subjects were allowed between one (path planning) and three (8-puzzle) blocks for training,
which, considering the maximum block length of 120 s, can safely be considered as mere familiarisation
rather than training across multiple sessions.

One objective of the proof-of-concept experiments was to demonstrate the users’ ability to control
prefrontal asymmetry in a generic motivational context related to the expectation of a computation
result, this expectation taking the shape of a trade-off between quality and performance. This objective
is highly specific to the possibility to control AI systems and differs from previous BCI use of PFC
asymmetry, which has been primarily involved with affective BCI [29,55]. This difference arises from
the generic motivational model associated with PFC asymmetry, which can be connected both to
reward expectation and to appetitive stimuli, the latter going as far on the affective spectrum as
to constitute a high-level dimensional aspect for empathy. In all our previous affective BCI work,
a strong context, both prior to the NF trials and during trials themselves, may have facilitated user
control. For instance, in eliciting anger against a virtual agent, subjects have been shown short videos
evidencing the bad character of the agent [29]; in eliciting empathy or support, they have followed
a narrative showing the character in trouble [68]. No such context is available when considering the
control of algorithmic AI progression: moreover, as we are using abstract benchmark examples that do
not even correspond to popular board games, it appears essential to assess how users can operate in
the absence of a direct sense of reward expectation, other than the one conveyed to them as part of the
experiment brief.

4. Conclusions and Further Work

We have introduced a framework inspired by human augmentation for the control of autonomous
AI systems, which opens the way to the development of new interaction technologies dedicated to
human–AI cooperation. This framework departs from previous research in that it seeks to adapt to
the imbalance between high-performance autonomous AI systems and users’ information processing
abilities and response times, which require the latter to operate at specific levels of abstraction.
The description of this framework has uncovered a number of important design issues, amongst
which are the synchronisation of BCI input and AI computations and the leverage effect that basic
AI mechanisms such as search will have on global computation. The former aspect will prescribe
under which conditions BCI-input delays provided by metabolic methods such as fNIRS can be
accommodated or whether the system should resort to EEG measurements of motivational parameters.
Our proof-of-concept experiments have only examined traditional search problems, without addressing
the potential leverage that the search will bring onto higher-level AI computations. One candidate
technique to further this aspect of the research would be to examine heuristic search planning
systems [43]. One notable element is that the heuristic function in some heuristic search planning
applications tends to follow a trend similar to that of Figure 3b [66].

Throughout our early work, we have opted for single NF sessions with a limited number of
epochs, supported by cognitive strategies. Although we have not been prescriptive about the type
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of cognitive strategies to be used, we have introduced subjects to the concept of cognitive strategy,
as “thought contents” that would lead to best performance in the NF task. The role played by cognitive
strategies can be explained in part by the fact that these experiments implemented single-session NF:
although the actual requirement for cognitive strategies in NF has been debated [75], repeated training
sessions may be required for subjects to perform without the help of a cognitive strategy.

It now appears that too much emphasis on cognitive strategies may actually distract users from
the observation of AI computation progress, which should be the primary driver of their BCI input.
In the future, this could be addressed through two complementary directions. One would consist
of a more comprehensive use of the AI computation progress as a visualisation feedback channel to
support BCI input: however, this approach would require non-trivial temporal alignment between AI
progression visualisation and the NF interface, which could require buffering, warping, or predictive
features to be incorporated. Another direction is to accept the need for extensive NF training to support
users’ performance: typical training times reported range from a few hours to up to 40 h [74].

Even restricting ourselves to a motivational model, it is not always possible to distinguish whether
variations in prefrontal asymmetry should be interpreted in terms of approach [17] or in terms of
risk taking [52]. This is part of a broader issue, well described in prefrontal asymmetry research,
known as the balance of activity variation across each hemisphere that accounts for the observed
increase in left asymmetry (because left asymmetry is the target in our experiments). During our
previous experiments on PFC asymmetry [29,55,68], most of the increase in prefrontal asymmetry
could be attributed to a proportionally greater increase in left-side rather than right-side activity. It has
proven elusive to observe a selective decrease of right PFC activity, even a relative one, as a mechanism
for left asymmetry, including in the experiments upon which we are commenting here, suggesting
that increased risk taking cannot be considered as a primary mechanism. However, recent EEG NF
work has evidenced such selective decrease in right prefrontal activity [57]. If this latter effect could
be reproduced in a hybrid cognitive scenario, it could open the way to a risk–acceptance paradigm,
as discussed above. A successful implementation of a risk paradigm would have significant interest in
terms of AI applications, provided it ensures that users have an appropriate perception of alternative
solutions in terms of risks.
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Abstract: Varying indoor environmental conditions is known to affect office worker’s performance;
wherein past research studies have reported the effects of unfavorable indoor temperature and air
quality causing sick building syndrome (SBS) among office workers. Thus, investigating factors
that can predict performance in changing indoor environments have become a highly important
research topic bearing significant impact in our society. While past research studies have attempted to
determine predictors for performance, they do not provide satisfactory prediction ability. Therefore,
in this preliminary study, we attempt to predict performance during office-work tasks triggered by
different indoor room temperatures (22.2 ◦C and 30 ◦C) from human brain signals recorded using
electroencephalography (EEG). Seven participants were recruited, from whom EEG, skin temperature,
heart rate and thermal survey questionnaires were collected. Regression analyses were carried out to
investigate the effectiveness of using EEG power spectral densities (PSD) as predictors of performance.
Our results indicate EEG PSDs as predictors provide the highest R2 (> 0.70), that is 17 times higher
than using other physiological signals as predictors and is more robust. Finally, the paper provides
insight on the selected predictors based on brain activity patterns for low- and high-performance
levels under different indoor-temperatures.

Keywords: human performance; performance prediction; indoor room temperature; office-work
tasks; electroencephalography (EEG)

1. Introduction

As U.S. citizens spend more than 90% of their time indoors, indoor thermal condition is a
key factor that impacts human productivity in the office [1–5]. Indoor environments and building
characteristics have been reported to impact occurrences of respiratory diseases, allergy and asthma
symptoms, sick building symptoms and office-work performance. It is estimated that improving
the indoor environment in U.S. office buildings would result in a 0.5 to 5% increase in productivity,
worth $12–$125 billion annually [6]. Thus, understanding how indoor environments affect human
performance, health and emotion and developing methods to predict human performance/health in
changing indoor environments have become highly important research topics that bear significant
economic and sociological impact.
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As our indoor daily work becomes increasingly mentally challenging, a significant aspect of
the thermal-driven performance is an individual’s cognitive performance, that is, the ability of an
individual to effectively comprehend and perform independent decisions during complex tasks and
events. Various field and laboratory studies have been conducted to investigate performance levels
and changes under different thermal conditions. A study investigated in Reference [7] showed an
8% fall in sewing work productivity as indoor temperature was increased from 23.9 ◦C to 32.2 ◦C.
A similar trend was observed in a case study by References [8,9] investigating the performance of
employees in telecommunication offices (call center) and a reported decline in work performance by
5–7% at higher indoor temperatures; work performance was evaluated by assessing average time
per call or average handling time. Similar studies were conducted to evaluate the performance of
school children in References [10,11]. In the former research study, students who reported changes
in thermal sensation scores from warm to neutral, performance of numerical and language task
improved significantly, while the latter concluded thermal stress produces mental arousal effects
thereby improving performance. In addition to these papers that studied the influence of indoor
environment on office work performance, researchers have investigated physiological mechanisms and
whether these mechanisms have consequences for human performance. At high temperatures, authors
in Reference [12] reported that the concentration of carbon-dioxide (CO2), by measuring end-tidal
partial CO2, is directly proportional to the increase in room temperature, which they hypothesize is the
result of increased metabolism by humans in turn leading to decreased air quality. Furthermore, they
observed a reduction in arterial blood oxygen saturation (SPO2), increasing sick building syndrome
(SBS) symptoms thereby elevating fatigue levels in participants. A brain imaging near-infrared
spectroscopy (NIRS) study by the authors in Reference [13] observed a reduction in task performance
as blood oxygen saturation levels decrease. Interestingly, while Reference [14] found decreased
concentrations of salivary alpha-amylase and cortisol with increased thermal discomfort—implying
an impact on performance—but performance did not change. On the other hand, they found carbon
dioxide concentrations to be similar at different indoor temperatures thereby suggesting no change in
metabolic rate, however subjects reported significant increase in workload and effort with increased
thermal discomfort. Other detailed research in Reference [15] studied the effects of cold temperature
on cognitive performance, wherein they observed three distinct performance patterns—negative,
positive and mixed, which were determined based on accuracy, response time and efficiency based
on a cognitive test battery. They concluded that skin temperature, thermal sensation, diastolic blood
pressure and heart rate were independent predictors of decreased accuracy and response time and
concluded that cold temperatures impact performance negatively due to mechanisms of distraction
and arousal. These past studies indicate performance trends change depending on the task and
environmental conditions, which is not always straightforward. More research evidence suggests that
human performance is a byproduct of psychological and physiological factors collectively, which we
theorize may be better explained by neurophysiological signals.

Taking into account the relationship between human performance and indoor thermal conditions
and the advantages of predicting performance by potential improvements on office-workers’ health
and productivity, we propose to use neurophysiological signals from electroencephalography (EEG)
as predictors of performance. Over time, EEG research has been extensively used and shown to be
effective in the detection and interpretation of brain mental states during the execution of cognitive
and physical tasks. Specifically, the association of cognitive functions with specific brain regions
and their temporal characteristics have been determined from imaging studies such as functional
magnetic resonance imaging (fMRI), evoked response potential (ERP) and time-frequency analyses
of EEG or EEG-MEG (magnetoencephalography) studies. Working memory studies have shown
theta band (4–8 Hz) power is correlated with cognitive performance; high-performing individuals
or individuals with working memory training exhibit increased theta power in the frontal-parietal
brain network [16]. Studies in References [17–21] have also reported the functional involvement
of the frontal-parietal network associated with working memory and executive functions and
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References [22,23] have reported the involvement of the frontal-temporal declarative and semantic
memory network associated with controlled retrieval of task-relevant facts or rules. Researchers have
also analyzed the temporal dynamics of these networks; time-frequency analysis in Reference [17]
during arithmetic problem-solving tasks shows the engagement of the frontal cortex at around 300 ms
from stimulus presentation for memory retrieval strategies reflected as enhanced theta power within
the frontal-temporal network. On the other hand, procedural strategies have higher execution
demands at later time points, reflected as alpha power event-related desynchronization (ERD) in
the frontal-parietal networks.

Analogous to arithmetic problem-solving tasks, brain dynamics have also been reported in tasks
involving motor movements where focused attention and somatosensory information processing
play a crucial role [24–26]. Tasks that involve motor movements are associated with the activation of
contralateral sensorimotor cortex, where findings by References [27–29] report an increase in theta
power localized at the fronto-midline during the onset or preset of a motor movement particularly
during high performance or by expert performers and increased theta power was additionally observed
during higher workloads. Beta (14–30 Hz) oscillations have been known to be associated with voluntary
movements, particularly, beta modulations post-movement synchronization over the sensorimotor
cortex has been linked to greater confidence in the execution of motor tasks suggesting reinforcement
of the current motor state and generation of the steady motor output [30–33]. Beta modulation has
additionally been linked to reaction time where a decrease in beta was observed upon committing an
error resulting in longer reaction times for upcoming trials due to increased cognitive load [34].

Based on the evidence stated above, establishing performance changes under varying
environmental conditions and linkage between behavioral changes/performance with underlying
brain activities, we propose to use EEG brain signals to predict performance. With this goal, we present
an experimental design wherein subjects perform mental tasks under varying thermal conditions and
develop linear regression models to predict performance using EEG power spectral densities (PSD) as
features/regressors. Specifically, we theorize the involvement of theta power from the frontal-temporal
or frontal-parietal network in arithmetic problem-solving and the involvement of theta and beta/alpha
power band from the fronto-midline and motor-cortex for typing tasks to vary at different performance
levels. Both office-work tasks in this study require crucial physiological factors such as sustained
attention, working memory, self-motivation and motor control specific to typing tasks. To achieve our
goal, we first compute the prediction strength of features such as thermal survey scores, heart rate and
skin temperature and then compare them to prediction accuracies using EEG power spectral densities
from linear regression models. Given the spatial-temporal brain dynamics to complete the task, we
implement least absolute shrinkage and selection operator (LASSO) as a feature selection technique
to select relevant power densities from brain regions contributing towards explaining performance.
Lastly, the robustness of these regressors is compared with other non-neurophysiological signals by
reporting least mean square errors (MSE).

2. Materials and Methods

2.1. Office-Work Task Simulation

All participants were required to complete two types of office work task—addition and typing—in
two different indoor room temperatures, 22.2 ◦C (72 F) or 30 ◦C (86 F). Each task lasted for 15 min
(30 min in total). The difficulty level of each task ranged from easy to average, designed with the
intention of simulating daily office responsibilities. All participants were provided with a training
session to familiarize themselves with the experiment setup, task instructions and software interface.

All participants attempted the addition task first, involving the addition of two three-digit
numbers, which were generated randomly online in MATLAB [35]. The task was designed to be
self-paced and participants were instructed to avoid errors while attempting as many questions as
possible in 15 min; thus, the total number of questions answered by each participant depends on their
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response time for each question. This was followed by 15 min of a typing task, in which all participants
were instructed to type the paragraph (4 sentences long) exactly as presented on the display monitor
and was self-paced. The writing paragraph for this task was selected from a journal and no limit was
posed on the number of paragraphs typed—that is, every time the participant finished typing the
current paragraph, a new paragraph was presented. Similar instructions were provided, that is, to
avoid any typing errors and to attempt typing as many paragraphs as possible. The typing software
continuously monitored the typed words for errors, in which case the participant had to correct them
before proceeding to the next word. Contrary to the typing task, wherein the participant is aware of
typing errors and must correct them, in the addition task the participant is unaware of their response
accuracy, that is, no feedback was provided.

MATLAB [35] was used to design and program the addition task presentation and the typing task
software was developed by the National Research Council of Canada [36].

2.2. Participants

Seven healthy male adult participants, all university students, were recruited for this study whose
age ranged between 18 and 25 years (mean age = 23.5 ± 0.8 years). All provided written consent to
participate in the study, which was approved by the Institution Review Board at the University of Texas,
San Antonio and stated that they were healthy, without any neurological issues and were not under
the influence of any drugs at the time of the experiment. All participants reported to have at least five
hours of sleep the night before the experiment and dressed in formal casuals (jeans with long sleeve
shirts) for the experiment. This clothing level was selected to keep the participants thermally neutral
at room temperature 22.2 ◦C (72 F), which is reported as a neutral temperature to achieve optimal
performance. The study was conducted in an experiment room simulating an office environment with
comfortable lighting. Each participant was exposed to two thermal conditions—22.2 ◦C (72 F) and
30 ◦C (86 F). A ventilation rate of 6 L/s per person was kept constant at both room temperatures and
the relative humidity in room was maintained within normal recommended limits. Lastly, before
beginning the experiment all participants were instructed to focus and not to move their head or talk
during the task.

2.3. Experimental Procedure

First, all participants were guided to a preparation room where a neutral temperature of 22.2 ◦C
was maintained. Here, participants were prepped for the experiment, that is, sensors for measuring
skin temperature, heart rate and the EEG cap were attached. After which, they were guided to the
experiment-room, the room temperature was randomly maintained at either 22.2 ◦C or 30 ◦C, see
Figure 1. All participants were seated on a comfortable chair 50 cm away, from the center of the
monitor to the participant’s eye. Before the start of the first office-work task under each exposure (or
session), 10 min of rest time was provided to adapt to the thermal settings and all participants were
alone in the experiment-room. Prior to the second exposure, a 45-min break was given to relax, drink
water, walk around and use the restroom. In the meantime, the temperature of the experiment-room
was increased or decreased depending on the temperature setting used in the first exposure. The order
of the indoor room temperature was randomized for each participant, wherein 4 participants were first
exposed to 22.2 ◦C and the remaining three participants to 30 ◦C. In the second session, all participants
repeated the office-work task for the next 30 min. Additionally, before and after each session and each
task, participants answered a short thermal survey. The entire experiment lasted for 155 min.
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Figure 1. Illustration of experiment timeline.

2.4. Measurements

2.4.1. Performance Metrics

All participants performed the addition and typing task for 15 min under each exposure. Response
time and accuracy are the performance metrics commonly used for the addition task. To assess the
overall performance in this task, the two metrics were integrated, that is, the time taken to complete
20 questions correctly, that is Equation (1):

Addition Per f ormance Index (API)
= Time taken (seconds) to answer 20 questions correctly

(1)

To increase the number of samples, a sliding window of 20 correct questions with a shift of one
question is applied, moving along the dimension of number of questions answered. For instance, if
the first 20 questions are all answered correctly, then the API for the first sample is calculated as the
sum of the response times for answering the first 20 questions. Now, if question number 21 is incorrect
but number 22 is correct, then the API of the second sample is calculated as the sum of the response
times for answering questions 2 to 22 including exactly 20 correctly answered questions. Thus, for
committing an error, a penalty in time is issued in the metric API. We chose 20 correct questions in the
metric because most participants take approximately one minute to answer 20 questions, thus making
API a stable metric to assess addition performance.

The metric used to evaluate the typing task performance is net characters per minute (CPM) [20],
which is calculated as Equation (2):

Net characters per minute (CPM)

= Total number of key
−(Total cursor keys pressed + 2 × Number of backspace keys pressed)

(2)

During the task, the user types the paragraph displayed on the screen. The text is confirmed
after each word and in the case of errors a strikethrough is notified on the screen from the point of
error occurrence. The user is unable to continue typing until the error has been rectified. The user
is unable to use the mouse, however can move around the screen using cursor keys and can delete
using BACKSPACE or DELETE keys. The typing performance metric is calculated as the net number
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of characters typed per minute as shown above. The backspace key is doubled as characters typed
are deleted and then retyped. Thus, as the typing errors increase, the number of characters typed per
minute (or typing performance) decreases. To calculate CPM samples, a sliding window of one minute
was applied with a shift of 30 s.

2.4.2. Physical Measurements

The temperature and relative humidity of the experiment-room were continuously maintained
and recorded with data loggers—temperature (range: 20 ◦C to 70 ◦C, accuracy: ±0.7 ◦C), humidity
(range: 0–95%, accuracy: ±5%) and CO2 (range: 0–2000 ppm, accuracy: ±50 ppm) sensors. All sensors
were calibrated before use.

Subjective measurements: A survey/questionnaire was provided to all participants before each
task to assess the room thermal conditions (comfort and sensation) and air-quality. The perceived
thermal comfort and sensation conditions were assessed using continuous scales describing
participants’ satisfaction in the thermal environment. In case of thermal comfort, participants reported
their comfort level in the room temperature under an exposure. A score of one-point indicates very
uncomfortable, 4-point indicates just right and seven-point indicates very comfortable. Likewise, for
thermal sensation, one-point indicates cold, 4-point indicates neutral and seven-point indicates hot
body sensation. In addition to these questions, participants also answered questions indicating their
general indoor thermal preference and if they preferred the current room temperature to be changed.

2.4.3. Physiological Measurements

The physiological measurements included: (1) skin temperature measured from eight sensors
located at forehead, right scapula, left upper chest, wrist, both upper arms, left hand, left-calf and
right anterior thigh according to ISO 9886 standards. Samples were recorded every second and for
analysis purposes a weighted average skin temperature was computed, recommended by ISO 9886
standards [37]; (2) Heart rate was measured by using Polar H7 Smart Chest Transmitter (Polar Electro
Oy, Kempele, Finland) and recorded on an iPad via Bluetooth every second.

2.4.4. EEG Measurement and Preprocessing

Brain activities were continuously recorded at a sampling rate of 512 Hz using 64-channel
EEG system (Biosemi, Inc. [38]) referenced to the right and left ear mastoids based on a modified
international 10–20 system. Before data acquisition, care was taken to ensure that the impedance
between EEG electrodes and cortex was less than 5 kΩ. From each participant, 30-min EEG signals
during each exposure were recorded and preprocessed prior to obtaining power spectral density (PSD)
values for further analysis. EEG preprocessing involved down-sampling the data to 128 Hz, bad
channel removal and interpolation using the software EEGLab [39], referencing each EEG electrode
using the average signal from left and right ear mastoid connections, bandpass filtered between 1 and
50 Hz to remove electrical noise, DC shift and artefact removal introduced by eye blinks and muscle
movements. EEG data from each participant from both exposures were normalized using z-scores.
Preprocessing was followed by average PSD value computation for each EEG electrode data epoch.
Length of the epochs depended on the type of office work task metric, for the addition task, the length
of epochs was based on the time taken to answer 20 questions correctly from its metric API and for the
typing task, an epoch length of one minute was extracted based on its metric net CPM. To increase
the sample size, a sliding window was applied, wherein for the addition task, a sliding window of
20 questions with one question shift was applied and for the typing task, a sliding window of one
minute with a 30-min shift was applied.

3. Results and Discussion

The goal of this paper is to assess the efficiency of using EEG signals in performance prediction
induced by varying indoor room temperatures. To do so, this paper is organized into three parts:

106



Brain Sci. 2018, 8, 74

first, we present statistical results to validate performance is effected by indoor temperatures;
second, we show the prediction results of office-work performance using features reported by past
research—thermal sensation, thermal comfort, skin temperature and heart rate in a linear regression
model; and third, we present the prediction ability and robustness of using EEG PSDs as predictors in
a linear regression model enhanced with LASSO.

3.1. Performance versus Room Temperatures

Tables 1 and 2 summarize the statistical test results of all seven subjects during each office-work
task to determine change in performance under different indoor temperatures. For each task, the
average performance of the corresponding task is reported under each temperature exposure along
with standard deviation in parentheses and respective p-values. Additionally, prior to and after
the experiment, all participants answered a thermal survey reporting their comfort levels at 22.2 ◦C
and 30 ◦C and most felt comfortable at 22.2 ◦C, which is considered the control exposure in our
study design.

Table 1. Kolmogorov-Smirnov (KS) test results on addition task performance under two indoor
temperatures. Columns 2 & 3 show the average task performance with standard deviation in
parenthesis. Column 4 shows the p-values from the statistical test.

Subject 22.2 ◦C (72 F) 30 ◦C (86 F) KS-Test (p-Value)

S1 86.9 (±8.5) 101.9 (±18.8) 7.2741 × 10−15

S2 75.9 (±5.5) 70.1 (±8.6) 3.8359 × 10−15

S3 85.9 (±13.3) 87.0 (±7.5) 0.0051
S4 69.5 (±7.8) 64.5 (±5.3) 3.7328 × 10−11

S5 99.7 (±9.9) 90.0 (±6.5) 1.2082 × 10−18

S6 73.5 (±8.5) 78.6 (±7.9) 6.4751 × 10−11

S7 90.1 (±11.9) 93.5 (±15.3) 0.0021

Table 2. KS test results on typing task performance under two indoor temperatures. Columns 2 & 3
show the average performance with standard deviation in parenthesis. Column 4 shows the p-values
from the statistical test.

Subject 22.2 ◦C (72 F) 30 ◦C (86 F) KS-Test (p-Value)

S1 185.25 (±27.3) 207.5 (±25.9) 0.0186
S2 121.5 (±18.8) 122.17 (±34.1) 0.1687
S3 240.6 (±22.8) 226.7 (±30.8) 0.0875
S4 199.7 (±26.2) 214.5 (±16.2) 0.0076
S5 104.5 (±27.9) 120.5 (±19.3) 0.0420
S6 178.3 (±37.3) 191.3 (±26.9) 0.1687
S7 228.0 (±28.1) 244.9 (±37.3) 0.0420

The Kolmogorov-Smirnov (KS) statistical test was used because performance values for both
office-work tasks did not follow a normal distribution. In the addition task, the samples used for the
KS-test were the time taken to answer 20 questions correctly with a sliding window with an overlap of
19 questions, thus low performance corresponds to a longer time taken to answer 20 questions. The
test revealed that all seven participants showed significant differences in performance between the
two exposures (p-value < 0.1). As expected, we observed that four out of seven participantsshowed
low performance at elevated temperature of 30 ◦C. In theseparticipants, an increase in response time
to answer the arithmetic problems could be attributed to fatigue thereby requiring higher cognitive
demand. In the typing task, KS-test samples used were the net characters typed per minute with a
sliding window of one minute with an overlap of 30 s, thus fewer characters per minute reflects low
performance. Five participantsout of seven showed significant differences in performance between
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the two exposures, among whom, interestingly, four subjects performed higher in the elevated room
temperature of 30 ◦C. Based on participantfeedback, this is attributed to discomfort at the elevated
temperature and thus wanting to finish the task quickly. Although we would expect to observe an
increase in typing errors with increased typing speed, this was perhaps not the case because the task
was self-paced. Based on these statistical results, we can conclude that indoor room temperature affects
office-work performance and increaseor decrease of performance under different room temperatures
is task dependent.

3.2. Performance versus Physiological Signals

Table 3 shows the correlations between office-work performance using features reported by
past research groups, that is, from thermal survey votes (thermal sensation, thermal comfort) and
physiological recordings (skin temperature and heart rate). Data samples used to compute correlations
(R2) between performance and physiological recordings during both tasks are as described in
Section 2.4, with the implementation of sliding window for all participants. To compute correlations
with thermal sensation and comfort, survey scores were collected at the end of each office-work
task (see Figure 1) and corresponding average task performance from all participants were used,
without sliding window. Empirical R2 results show that all predictors exhibit a correlation less than
0.5 ranging between 0.003 and 0.1, indicating that each individual regressor is unable to explain
variance in office-work performance and do not exhibit a linear trend. Past research studies have
reported correlations of heart-rate variability with mental effort due to its association with blood
pressure regulation [40,41]; however, linear correlation analysis in this case did not show significant R2

correlations. Due to the small and elusive nature of R2 values, we proceed to investigate the correlation
of office-work performance using brain signals obtained from EEG.

Table 3. Correlation R2 between simulated office-work performance and different physiological predictors.

R2 Thermal Sensation Thermal Comfort Skin Temperature Heart Rate

Addition Task 0.00369 0.018 0.0127 0.0089
Typing Task 0.0714 0.104 0.0201 0.052

3.3. Performance versus EEG

To investigate the efficiency of predicting performance using EEG power spectral densities in
linear regression analysis, we first present results using brain spectral densities as features (i.e., theta,
alpha, beta and combined brain bands) from each EEG electrode location separately and then present
prediction ability by using a variable selection technique—LASSO—that determines the most relevant
features across brain regions.

3.3.1. Band Powers of Raw EEG Data as Regressors

Based on the motivations mentioned above to use EEG brain PSDs as features, we investigate the
average spectral powers corresponding to these well-studied oscillations in theta band (4–8 Hz), alpha
band (8–14 Hz) and beta band (14–30 Hz).

To study the correlations between change in office-work task performance and EEG spectral bands,
a linear regression R2 analysis was used to determine the relationship between performance and each
EEG PSDs from each of the 64 EEG electrode locations from all participants. Figure 2 shows the
topoplots of R2 values obtained for each channel from the above-mentioned three frequency bands. In
both office-work tasks, we observed insufficient R2 ranging approximately between 0.10 and 0.25 when
brain power bands are used as regressors individually. Furthermore, we investigated the correlation
coefficients (ρ) between pairs of brain power bands corresponding to channels with maximum R2 in
the single regressor linear model. From Table 4, we observe that the correlation coefficients between
two regressors is insufficient (<0.9) demonstrating that they do not have a strong correlation, therefore
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denoting that each PSD contributes independently towards performance prediction. Based on this
finding, it is possible to achieve higher correlations R2 by combining all three brain power bands
within each EEG channel to generate a new multiple regressor linear model. In doing so, we observe a
maximum correlation of R2 = 0.2866 and R2 = 0.3216 in the addition and typing tasks, each of which is
an increase of 21.70% and 26.66% compared to the highest R2 using a single regressor linear model
from each EEG channel. The R2 topoplots show maximum correlation in the left parietal and occipital
brain regions in the addition task and in the right fronto-temporal brain regions in the typing task.

Figure 2. The topoplots represent the correlation R2 maps between the brain power spectral densities
and office task performance.

Table 4. Correlation coefficients (ρ) between brain band pairs corresponding to the EEG electrodes
with highest R2 single regressor linear models.

Single Regressors Correlation Coefficient (ρ) Addition Task Typing Task

Theta Band
Theta–Alpha 0.6978 0.4380
Theta–Beta 0.6663 0.5549

Alpha Band Alpha–Theta 0.6788 0.3862
Alpha–Beta 0.6303 0.6130

Beta Band
Beta–Theta 0.7048 0.3065
Beta–Alpha 0.6303 0.5176

To ensure the maximum correlation observed is not due to chance/noise permutation, the test
was performed by randomizing epochs across EEG channels. p-value = 0 (<0.05) was obtained for all
band power regressors, individually and combined, from EEG channel locations corresponding to its
maximum R2 from the linear regression models. Analysis thus far supports the notion that there are
multiple brain regions contributing towards an explanation of performance and helping to achieve
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higher prediction. With this motivation to achieve higher prediction power, we proceed to using
LASSO (least absolute shrinkage and selection operator) to select relevant brain bands from specific
EEG channels collectively in the next section.

3.3.2. LASSO with Brain Band Power in All Brain Regions as Regressors

To determine the subset of EEG spatial locations that collectively contribute to predicting
performance, the LASSO regression analysis method was implemented. This method fits a sparse
linear regression model that performs both feature selection to avoid multicollinearities and overfitting
regularization to improve prediction accuracies and interpretability of statistical models. Specifically,
let y ε �N×1 represent a vector of performance values from N epochs (N = 2546 for addition task and
330 for typing task) and X ε �N×M be a matrix of power values of a frequency band, whose nmth

element denotes the power of epoch n at channel m (note when all brain bands are combined M = 64 ×
3 = 192). LASSO fits a linear model between y and X given by Equations (3) and (4):

y = Xβ + βo + ε (3)

where β ε �M×1 and βo are model coefficients and ε is the N × 1 noise vector with zero mean and
constant variance. LASSO aims to find estimates of the coefficients β̂ by optimizing

min
βo , β

1
N
||y − Xβ − βo|| + λ|β| (4)

where |.| and ‖ . ‖ denote the l1-norm and l2-norm respectively and λ is the regularization
parameter [42]. The l1-norm constraint (2) forces the coefficients to be sparse, that is, only small
subsets of coefficients are nonzero. There are two advantages of using LASSO that generate sparse
constraints. First, as the dimension of the matrix X in (1) is M = 64 or 192, representing the number of
EEG channels when PSDs are used individually and combined and N = 2546 and 330 performance
samples from the addition and typing tasks, LASSO avoids overfitting. Secondly, the sparse coefficients
make the model more interpretable, as the model focuses only on the powers from channels with
nonzero coefficients. To further reduce the overfitting during model fitting, 20% of data samples
were set aside for testing—called holdout data—and the remaining was used for model training.
LASSO iteratively generates models with different regularization parameters on the training data, after
which holdout data is used to determine a model that gives the lowest mean square error between
the observed and predicted performance. To estimate the prediction ability of chosen model, R2 is
computed between the observed and estimated office-work performance.

Table 5 summarizes the correlation results between observed and estimated office-work
performance from the features selected by LASSO regression model for each office-work task, including
the number of EEG electrodes selected by LASSO and p-value corresponding to the statistical
significance of the model chosen. Overall, the resulting LASSO models are relatively sparse, exhibiting
R2 in the range of 0.64–0.89 and, as expected, is two times greater than the maximum R2 obtained
from the linear regressor model, that is, without combining spatial information, from both office-work
tasks. In the addition task, we observe that all PSD regressors, individual and combined, provide
correlations >0.5, with the highest R2 observed using alpha power as the regressor individually and
combined with other power bands, using LASSO, at 88.6% from 51 electrode locations and 83.4% from
174 electrode locations. On comparing both R2 values, using alpha power alone, the LASSO model
outperforms the latter by ~5% with contributions from fewer EEG channels (51 EEG channels), maybe
by removing channels involved in multicollinearities. In the typing task, R2 from the LASSO model
using a theta power band provides the best performance prediction at 74.6% with contributions from
48 EEG channels. Thus, we conclude that, for the addition task, we use alpha brain power from 51 EEG
channels, and for the typing task, we use theta brain power from 48 EEG channels as features for
performance predictions.
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Table 5. R2 obtained between observed and estimated performance for office tasks using LASSO
regression and the number of non-zero coefficients in the fitted LASSO model.

R2 Theta Band (4–8 Hz) Alpha Band (8–14 Hz) Beta Band (14–30 Hz) Combined Bands

Addition Task 0.681 0.886 0.67 0.834
(# non-zero
coefficients) (#64) (#51) (#62) (#174)

p-values on fitting 0 0 0 0

Typing Task 0.746 0.712 0.696 0.645
(# non-zero
coefficients) (#48) (#38) (#43) (#45)

p-values on fitting 3.5292 × 10−91 7.2004 × 10−86 1.054 × 10−84 1.6241 × 10−25

Furthermore, based on the LASSO models obtained for the two office-work tasks we statistically
determined the reliability of performance prediction induced by two indoor temperatures with alpha
power (i.e., addition task) and theta power (i.e., typing task). In other words, if the residual errors
between observed and predicted performance follow a random normal distribution, this indicates
that the LASSO model has considered all features in linear regression analyses towards predicting
performance. To do so, we use the t-test on the error values from both exposures for each task. The null
hypothesis for the t-test being performance errors induced by the two room temperatures are the same.
p-values of 0.7756 and 0.5605 were obtained for the addition and the typing task. At a significance level
α = 0.1, the tests failed to reject the null hypothesis of equal performance error means, implying that
changes in performance are sufficiently explained by the features selected by the LASSO technique.

3.3.3. Prediction of Performance

Finally, we investigated the power of using brain power bands as regressors for predicting
performance and compared them to other physiological signals, that is, skin temperature and heart
rate. For physiological signals, polynomial models of model orders 1–9, were fitted by using the same
data as used for LASSO. Table 6 shows the mean squared errors (MSE) of all biomarkers presented in
this paper. It is not surprising to find that the LASSO predictors using PSDs obtained much smaller
MSEs than those from skin temperature and heart rate (even with a higher order polynomial model).
Taken together, these results confirm that neurophysiological signals recorded using EEG are better
predictors of human performance induced by different indoor room temperatures.

Table 6. MSE obtained from LASSO model using brain PSDs & from polynomial curve fitting models
using physiological signals.

Brain Band
Mean Square Errors

Addition Tasks Typing Tasks

Theta (4–8 Hz) 79.97 600.42
Alpha (8–14 Hz) 27.55 682.48
Beta (14–30 Hz) 79.15 717.30

Combined Bands 40.15 1127.30
Skin temperature 2612.5 (6th order) 37002 (5th order)

Heart Rate 284.5460 (7th order) 33361 (4sh order)
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3.3.4. Brain Activity Pattern

To gain insight into the mental functions that are induced by varying thermal conditions during
these office-work tasks, we investigate the differences in brain activity patterns arising from change
in performance from all power bands. To do so we categorized participants’ performance (i.e., API
and net CPM) into two groups, low- and high-performance by defining cutoff values based on the
scatter plots obtained between observed and predicted performance using the LASSO model as seen
in Figure 3A,B. For the addition task’s performance cutoff values, samples less than 100 s were labeled
as high performance and values greater than 120 s were labeled as low performance. Likewise, for the
typing task, samples less than 100 net CPM were labeled as low performance and those greater than
150 CPM were labelled as high performance. Based on these cutoff values, we plot the average brain
activities on the scalp projected from EEG channel locations with non-zero coefficients obtained from
the LASSO model from each brain power band, shown in Figures 4 and 5.

 
(A) 

 
(B) 

Figure 3. (A) Addition task—scatter plot of observed versus predicted performance (seconds) by using
LASSO linear regression model with alpha power as a single regressor; (B) Typing task—scatter plot of
observed versus predicted performance (net CPM) by using LASSO linear regression model with theta
power as a single regressor.
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Figure 4. Scalp activities across EEG channels with non-zero LASSO coefficients from brain spectral
power for low- and high-addition task performance.

Figure 5. Scalp activities across EEG channels from non-zero LASSO coefficients from brain spectral
power for low- and high-typing task performance.

Brain activity patterns from both office-work tasks over low and high performance may be
interpreted as the average spatial temporal brain power density patterns over a time window
corresponding to the performance index of the specific task, that is, in the addition task, over the
time taken to answer 20 questions correctly and for the typing task, net characters typed per minute.
For the addition task, see Figure 4, congruent with the findings from References [16–21] we observe
high localized theta power over the right prefrontal and left parietal cortex during high performance
than compared to low performance. This is indicative of the frontal-parietal network being associated
with working memory and executive functions of arithmetic problem-solving. High theta activity at
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the right frontal cortex reflects arithmetic fact retrieval, while differential brain temporal dynamics
across the frontal-parietal cortex reflect higher cognitive demands for multistep procedural strategies.
Since frontal theta activity is common in retrieving basic arithmetic facts, LASSO was unable to pick
this feature as most discriminant. Also, bilateral beta activity, particularly during high performance,
is reported to be associated with the conceptual processing of numbers, that is, the identification of
operands in the addition task [43,44]. Although in this study design we are unable to conclusively
compare arithmetic problems between retrieval or multistep procedures based on the subjective
difficulty levels, we can infer that discomfort due to thermal conditions created demands of higher
cognitive load to either maintain the current performance level or to achieve high performance. Overall,
in agreement with the findings from Reference [16], desynchronization of alpha and beta power is lower
at the frontal and parietal region, with right frontal theta enhancement reflecting distinct cognitive
functions in multicomponent problem solving.

High performance in the typing task requires both motor control with sustained attention, a similar
psychological requirement to brain oscillations in sports activities. As theorized earlier in the typing
task, see Figure 5, theta power in the fronto-midline is found to be the most discriminant feature for
performance prediction wherein high theta is observed during low performance at the frontal-midline
and the second most discriminant feature is frontal alpha event-related desynchronization (ERD)
during high performance. Studies by References [27–29] have associated high frontal theta and high
parietal alpha power differentiating skilled sports players to novices, reflecting developed task solving
strategies, focused attention and an economic parietal sensory information processing. The results
found in this paper for the typing task observed an opposite trend in the theta band at different
performance levels, as the typing task involved reinforcement learning where subjects were required
to rectify typing errors in order to proceed, forcing subjects to refocus and retype. Thus, enhanced
frontal-midline theta power during low performance in our data possibly reflects error feedback
information processing and subsequently increasing response time to retype correctly reflected as
high beta power at the somatosensory cortex during low performance. Alpha activity amplitudes
have been shown to be inversely related to the amount of neuronal population activated during
cognitive-motor tasks. Studies by References [45–48] have related alpha and beta ERD for skilled
performers to be associated with fine cognitive-motor performance. This is consistent with our findings,
where during high performance alpha and beta ERD were observed over premotor and sensorimotor
areas reflecting confidence in typing correctly, which requires precise planning and regulation of
bilateral finger movements.

Overall, brain activity patterns presented in Figures 4 and 5 show that during high performance
there is lower activity than during low performance, which is almost in line with the “neural efficiency”
hypothesis. These brain activity patterns enable the creation of a unique EEG profile for varying degrees
of performance level, which are task-dependent. In this study, we use EEG sensor space features to
predict performance, which are limited by volume conductance, while it is possible that source space
estimates could provide better predictions. Additionally, it is possible that functional connectivity
estimates at source level could provide higher prediction ability as reported in Reference [49]. However,
these are the current two limitations of our study as we analyze data in EEG sensor space only and
treat changes in brain states as a continuous task rather than ‘event related.’ The main motivation to
conduct analyses in this fashion is to use this analysis technique in real-time brain computer interfaces
in a realistic office-work setting to predict environmental conditions based on performance predictions
from EEG power spectral densities.

4. Conclusions

To the best of our knowledge, we are the first to present preliminary results of using EEG power
spectral densities to predict performance changes due to change in indoor-room temperature. Our
analysis statistically validates that office-work performance is impacted by varying indoor temperature.
We present a comprehensive regression analysis for predicting performance in two different office-work

114



Brain Sci. 2018, 8, 74

tasks using features reported by past studies and neurophysiological EEG signals. We found that
EEG brain band power is the best predictor of performance, which was enhanced using the LASSO
regression technique. This method found alpha brain power to be the best feature corresponding to the
right frontal and left parietal cortex for the arithmetic problem-solving task (R2 = 88.6%) and theta brain
power as the best feature corresponding to the fronto-middle cortex for the typing task (R2 = 74.6%).
Lastly, the robustness of using EEG power spectral densities as features was reported by mean-square
errors. With LASSO, we were able to achieve performance prediction abilities five times greater than
using a single linear regression model and 17 times higher prediction ability than compared to using
thermal survey votes, skin temperature and heart-rate. While the results of this study are promising,
there are a few limitations. Currently, we are unable to confirm the behavioral trend, that is, whether
there is an increase or decrease in performance under different indoor temperatures due to insufficient
population size, which is why we report prediction strength using linear regression analysis and were
still able to achieve promising results. Also, it is possible that upon collection of data from more
subjects, the relationship between EEG power spectral densities and office-work performance under
different thermal conditions may not be linear, thereby a non-linear regression technique, or other
machine learning techniques may be needed for classifications. In the future, this research needs
to focus on more comprehensive investigations of performance under longer exposures and using
varying workloads and further methodological studies are needed to investigate prediction models
to classify cross-task performance. Ultimately, this domain of research aims to provide motivation
for future research to help achieve optimal productivity from office-workers by providing feedback
regarding their environmental conditions.
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