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A Few Iterative Methods by Using [1, n]-Order Padé
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Abstract: In this paper, a few single-step iterative methods, including classical Newton’s method
and Halley’s method, are suggested by applying [1, n]-order Padé approximation of function for
finding the roots of nonlinear equations at first. In order to avoid the operation of high-order
derivatives of function, we modify the presented methods with fourth-order convergence by using
the approximants of the second derivative and third derivative, respectively. Thus, several modified
two-step iterative methods are obtained for solving nonlinear equations, and the convergence of the
variants is then analyzed that they are of the fourth-order convergence. Finally, numerical experiments
are given to illustrate the practicability of the suggested variants. Henceforth, the variants with
fourth-order convergence have been considered as the imperative improvements to find the roots of
nonlinear equations.

Keywords: nonlinear equations; Padé approximation; iterative method; order of convergence;
numerical experiment

1. Introduction

It is well known that a variety of problems in different fields of science and engineering require
to find the solution of the nonlinear equation f (x) = 0 where f : I → D, for an interval I ⊆ R and
D ⊆ R, is a scalar function. In general, iterative methods, such as Newton’s method, Halley’s method,
Cauchy’s method, and so on, are the most used techniques. Hence, iterative algorithms based on these
iterative methods for finding the roots of nonlinear equations are becoming one of the most important
aspects in current researches. We can see the works, for example, [1–22] and references therein. In the
last few years, some iterative methods with high-order convergence have been introduced to solve
a single nonlinear equation. By using various techniques, such as Taylor series, quadrature formulae,
decomposition techniques, continued fraction, Padé approximation, homotopy methods, Hermite
interpolation, and clipping techniques, these iterative methods can be constructed. For instance,
there are many ways of introducing Newton’s method. Among these ways, using Taylor polynomials to
derive Newton’s method is probably the most widely known technique [1,2]. By considering different
quadrature formulae for the computation of the integral, Weerakoon and Fernando derive an implicit
iterative scheme with cubic convergence by the trapezoidal quadrature formulae [4], while Cordero
and Torregrosa develope some variants of Newton’s method based in rules of quadrature of fifth
order [5]. In 2005, Chun [6] have presented a sequence of iterative methods improving Newton’s
method for solving nonlinear equations by applying the Adomian decomposition method. Based
on Thiele’s continued fraction of the function, Li et al. [7] give a fourth-order convergent iterative
method. Using Padé approximation of the function, Li et al. [8] rederive the Halley’s method and
by the divided differences to approximate the derivatives, they arrive at some modifications with
third-order convergence. In [9], Abbasbandy et al. present an efficient numerical algorithm for

Mathematics 2019, 7, 55; doi:10.3390/math7010055 www.mdpi.com/journal/mathematics1
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solving nonlinear algebraic equations based on Newton–Raphson method and homotopy analysis
method. Noor and Khan suggest and analyze a new class of iterative methods by using the homotopy
perturbation method in [10]. In 2015, Wang et al. [11] deduce a general family of n-point Newton type
iterative methods for solving nonlinear equations by using direct Hermite interpolation. Moreover, for
a particular class of functions, for instance, if f is a polynomial, there exist some efficient univariate
root-finding algorithms to compute all solutions of the polynomial equation (see [12,13]). In the
literature [13], Barton̆ et al. present an algorithm for computing all roots of univariate polynomial
based on degree reduction, which has the higher convergence rate than Newton’s method. In this
article, we will mainly solve more general nonlinear algebraic equations.

Newton’s method is probably the best known and most widely used iterative algorithm for
root-finding problems. By applying Taylor’s formula for the function f (x), let us recall briefly how to
derive Newton iterative method. Suppose that f (x) ∈ Cn[I], n = 1, 2, 3, . . ., and η ∈ I is a single root
of the nonlinear equation f (x) = 0. For a given guess value x0 ∈ I and a δ ∈ R, assume that f ′(x) �= 0
for each x belongs to the neighborhood (x0 − δ, x0 + δ). For any x ∈ (x0 − δ, x0 + δ), we expand f (x)
into the following Taylor’s formula about x0:

f (x) = f (x0) + f ′(x0)(x− x0) +
1
2!

f ′′(x0)(x− x0)
2 + · · ·+ 1

k!
(x− x0)

k f (k)(x0) + · · · ,

where k = 0, 1, 2, · · · . Let |η− x0| be sufficiently small. Then the terms involving (η− x0)
k, k = 2, 3, . . . ,

are much smaller. Hence, we think the fact that the first Taylor polynomial is a good approximation to
the function near the point x0 and give that

f (x0) + f ′(x0)(η − x0) ≈ 0.

Notice the fact f ′(x0) �= 0, and solving the above equation for η yields

η ≈ x0 − f (x0)

f ′(x0)
,

which follows that we can construct the Newton iterative scheme as below

xk+1 = xk − f (xk)

f ′(xk)
, k = 0, 1, 2, . . . .

It has been known that Newton iterative method is a celebrated one-step iterative method.
The order of convergence of Newton’s method is quadratic for a simple zero and linear for multiple root.

Motivated by the idea of the above technique, in this paper, we start with using Padé
approximation of a function to construct a few one-step iterative schemes which includes classical
Newton’s method and Halley’s method to find roots of nonlinear equations. In order to avoid
calculating the high-order derivatives of the function, then we employ the approximants of the higher
derivatives to improve the presented iterative method. As a result, we build several two-step iterative
formulae, and some of them do not require the operation of high-order derivatives. Furthermore, it is
shown that these modified iterative methods are all fouth-order convergent for a simple root of the
equation. Finally, we give some numerical experiments and comparison to illustrate the efficiency and
performance of the presented methods.

The rest of this paper is organized as follows. we introduce some basic preliminaries about Padé
approximation and iteration theory for root-finding problem in Section 2. In Section 3, we firstly
construct several one-step iterative schemes based on Padé approximation. Then, we modify the
presented iterative method to obtain a few iterative formulae without calculating the high-order
derivatives. In Section 4, we show that the modified methods have fourth-order convergence at least
for a simple root of the equation. In Section 5 we give numerical examples to show the performance of

2
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the presented methods and compare them with other high-order methods. At last, we draw conclusions
from the experiment results in Section 6.

2. Preliminaries

In this section, we briefly review some basic definitions and results for Padé approximation of
function and iteration theory for root-finding problem. Some surveys and complete literatures about
iteration theory and Padé approximation could be found in Alfio [1], Burden et al. [2], Wuytack [23],
and Xu et al. [24].

Definition 1. Assume that f (x) is a function whose (n + 1)-st derivative f (n+1)(x), n = 0, 1, 2, . . . , exists
for any x in an interval I. Then for each x ∈ I, we have

f (x) = f (x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)

2 + · · ·+ f (n)(x0)

n!
(x− x0)

n + o[(x− x0)
n], (1)

which is called the Taylor’s formula with Peano remainder term of order n based at x0, and the error o[(x− x0)
n]

is called the Peano remainder term or the Peano truncation error.

Definition 2. If P(x) is a polynomial, the accurate degree of the polynomial is ∂(P), and the order of the
polynomial is ω(P), which is the degree of the first non-zero term of the polynomial.

Definition 3. If it can be found two ploynomials

P(x) =
m

∑
i=0

ai(x− x0)
i and Q(x) =

n

∑
i=0

bi(x− x0)
i

such that
∂(P(x)) ≤ m, ∂(Q(x)) ≤ n, ω( f (x)Q(x)− P(x)) ≥ m + n + 1,

then we have the following incommensurable form of the rational fraction P(x)
Q(x) :

Rm,n(x) =
P0(x)
Q0(x)

=
P(x)
Q(x)

,

which is called [m, n]-order Padé approximation of function f (x).

We give the computational formula of Padé approximation of function f (x) by the use of
determinant, as shown in the following lemma [23,24].

Lemma 1. Assume that Rm,n(x) = P0(x)
Q0(x) is Padé approximation of function f (x). If the matrix

Am,n =

⎛⎜⎜⎜⎜⎝
am am−1 · · · am+1−n

am+1 am · · · am+2−n
...

...
. . .

...
am+n−1 am+n−2 · · · am

⎞⎟⎟⎟⎟⎠
is nonsingular, that is the determinant |Am,n| = d �= 0, then P0(x), Q0(x) can be written by the following
determinants

3
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P0(x) =
1
d

∣∣∣∣∣∣∣∣∣∣
Tm(x) (x− x0)Tm−1(x) · · · (x− x0)

nTm+1−n(x)
am+1 am · · · am+1−n

...
...

. . .
...

am+n am+n−1 · · · am

∣∣∣∣∣∣∣∣∣∣
and

Q0(x) =
1
d

∣∣∣∣∣∣∣∣∣∣
1 (x− x0) · · · (x− x0)

n

am+1 am · · · am+1−n
...

...
. . .

...
am+n am+n−1 · · · am

∣∣∣∣∣∣∣∣∣∣
,

where an = f (n)(x0)
n! , n = 0, 1, 2, . . ., and we appoint that

Tk(x) =

⎧⎨⎩
k
∑

i=0
ai(x− x0)

i, f or k ≥ 0,

0, f or k < 0.

Next, we recall the speed of convergence of an iterative scheme. Thus, we give the following
definition and lemma.

Definition 4. Assume that a sequence {xi}∞
i=0 converges to η, with xi �= η for all i, i = 0, 1, 2, . . .. Let the

error be ei = xi − η. If there exist two positive constants α and β such that

lim
i→∞

|ei+1|
|ei|α = β,

then {xi}∞
i=0 converges to the constant η of order α. When α = 1, the sequence {xi}∞

i=0 is linearly convergent.
When α > 1, the sequence {xi}∞

i=0 is said to be of higher-order convergence.

For a single-step iterative method, sometimes it is convenient to use the following lemma to judge
the order of convergence of the iterative method.

Lemma 2. Assume that the equation f (x) = 0, x ∈ I, can be rewritten as x = ϕ(x), where f (x) ∈ C[I] and
ϕ(x) ∈ Cγ[I], γ ∈ N+. Let η be a root of the equation f (x) = 0. If the iterative function ϕ(x) satisfies

ϕ(j)(η) = 0, j = 1, 2, . . . , γ− 1, ϕ(γ)(η) �= 0,

then the order of convergence of the iterative scheme xi+1 = ϕ(xi), i = 0, 1, 2, . . ., is γ.

3. Some Iterative Methods

Let η be a simple real root of the equation f (x) = 0, where f : I → D, I ⊆ R, D ⊆ R. Suppose
that x0 ∈ I is an initial guess value sufficiently close to η, and the function f (x) has n-th derivative
f (n)(x), n = 1, 2, 3, . . . , in the interval I. According to Lemma 1, [m, n]-order Padé approximation of
function f (x) is denoted by the following rational fraction:

4
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f (x) ≈ Rm,n(x) =

∣∣∣∣∣∣∣∣∣∣
Tm(x) (x− x0)Tm−1(x) · · · (x− x0)

nTm+1−n(x)
am+1 am · · · am+1−n

...
...

. . .
...

am+n am+n−1 · · · am

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 (x− x0) · · · (x− x0)

n

am+1 am · · · am+1−n
...

...
. . .

...
am+n am+n−1 · · · am

∣∣∣∣∣∣∣∣∣∣

. (2)

Recall Newton iterative method derived by Taylor’s series in Section 1. The first Taylor polynomial
is regarded as a good approximation to the function f (x) near the point x0. Solving the linear equation
denoted by f (x0) + f ′(x0)(η − x0) ≈ 0 for η gives us the stage for Newton’s method. Then, we think
whether or not a novel or better linear function is selected to approximate the function f (x) near the
point x0. Maybe Padé approximation can solve this question. In the process of obtaining new iterative
methods based on Padé approximation of function, on the one hand, we consider that the degree of the
numerator of Equation (2) is always taken as 1, which guarantees to obtain the different linear function.
On the other hand, we discuss the equations are mainly nonlinear algebraic equations, which differ
rational equations and have not the poles. Clearly, as n grows, the poles of the denominator of
Equation (2) do not affect the linear functions that we need. These novel linear functions may be able
to set the stage for new methods. Next, let us start to introduce a few iterative methods by using
[1, n]-order Padé approximation of function.

3.1. Iterative Method Based on [1, 0]-Order Padé Approximation

Firstly, when m = 1, n = 0, we consider [1, 0]-order Padé approximation of function f (x).
It follows from the expression (2) that

f (x) ≈ R1,0(x) = T1(x) = a0 + a1(x− x0).

Let R1,0(x) = 0, then we have
a0 + a1(x− x0) = 0. (3)

Due to the determinant |A1,0| �= 0, i.e., f ′(x0) �= 0, we obtain the following equation from
Equation (3).

x = x0 − a0

a1
.

In view of a0 = f (x0), a1 = f ′(x0), we reconstruct the Newton iterative method as below.

Method 1. Assume that the function f : I → D has its first derivative at the point x0 ∈ I. Then we obtain the
following iterative method based on [1, 0]-order Padé approximation of function f (x):

xk+1 = xk − f (xk)

f ′(xk)
, k = 0, 1, 2, . . . . (4)

Starting with an initial approximation x0 that is sufficiently close to the root η and using the above
scheme (4), we can get the iterative sequence {xi}∞

i=0.

Remark 1. Method 1 is the well-known Newton’s method for solving nonlinear equation [1,2].
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3.2. Iterative Method Based on [1, 1]-Order Padé Approximation

Secondly, when m = 1, n = 1, we think about [1, 1]-order Padé approximation of function f (x).
Similarly, it follows from the expression (2) that

f (x) ≈ R1,1(x) =

∣∣∣∣∣ T1(x) (x− x0)T0(x)
a2 a1

∣∣∣∣∣∣∣∣∣∣ 1 (x− x0)

a2 a1

∣∣∣∣∣
.

Let R1,1(x) = 0, then we get

a0a1 + a2
1(x− x0)− a0a2(x− x0) = 0. (5)

Due to the determinant |A1,1| �= 0, that is,∣∣∣∣∣ a1 a0

a2 a1

∣∣∣∣∣ =
∣∣∣∣∣ f ′(x0) f (x0)

f ′′(x0)
2 f ′(x0)

∣∣∣∣∣ = f ′2(x0)− f (x0)
f ′′(x0)

2
�= 0.

Thus, we obtain the following equality from Equation (5):

x = x0 − a0a1

a2
1 − a0a2

.

Combining a0 = f (x0), a1 = f ′(x0), a2 = 1
2 f ′′(x0), gives Halley iterative method as follows.

Method 2. Assume that the function f : I → D has its second derivative at the point x0 ∈ I. Then we obtain
the following iterative method based on [1, 1]-order Padé approximation of function f (x):

xk+1 = xk − 2 f (xk) f ′(xk)

2 f ′2(xk)− f (xk) f ′′(xk)
, k = 0, 1, 2, . . . . (6)

Starting with an initial approximation x0 that is sufficiently close to the root η and applying the above
scheme (6), we can obtain the iterative sequence {xi}∞

i=0.

Remark 2. Method 2 is the classical Halley’s method for finding roots of nonlinear equation [1,2],
which converges cubically.

3.3. Iterative Method Based on [1, 2]-Order Padé Approximation

Thirdly, when m = 1, n = 2, we take into account [1, 2]-order Padé approximation of function
f (x). By the same manner, it follows from the expression (2) that

f (x) ≈ R1,2(x) =

∣∣∣∣∣∣∣
T1(x) (x− x0)T0(x) 0

a2 a1 a0

a3 a2 a1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 x− x0 (x− x0)

2

a2 a1 a0

a3 a2 a1

∣∣∣∣∣∣∣
.

Let R1,2(x) = 0, then one has

a0a2
1 + a2

0a2 + (a3
1 − 2a0a1a2 + a2

0a3)(x− x0) = 0. (7)

6
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Due to the determinant |A1,2| �= 0, that is,∣∣∣∣∣∣∣
a1 a0 0
a2 a1 a0

a3 a2 a1

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

f ′(x0) f (x0) 0
f ′′(x0)

2 f ′(x0) f (x0)
f ′′′(x0)

6
f ′′(x0)

2 f ′(x0)

∣∣∣∣∣∣∣ = f ′3(x0)− f (x0) f ′(x0) f ′′(x0) +
f 2(x0) f ′′′(x0)

6
�= 0.

Thus, we gain the following equality from Equation (7):

x = x0 − a0a2
1 − a2

0a2

a3
1 − 2a0a1a2 + a2

0a3
.

Substituting a0 = f (x0), a1 = f ′(x0), a2 = 1
2 f ′′(x0), and a3 = 1

6 f ′′′(x0) into the above equation
gives a single-step iterative method as follows.

Method 3. Assume that the function f : I → D has its third derivative at the point x0 ∈ I. Then we obtain
the following iterative method based on [1, 2]-order Padé approximation of function f (x):

xk+1 = xk −
3 f (xk)

(
2 f ′2(xk)− f (xk) f ′′(xk)

)
6 f ′3(xk)− 6 f (xk) f ′(xk) f ′′(xk) + f 2(xk) f ′′′(xk)

, k = 0, 1, 2, . . . . (8)

Starting with an initial approximation x0 that is sufficiently close to the root η and applying the above
scheme (8), we can receive the iterative sequence {xi}∞

i=0.

Remark 3. Method 3 could be used to find roots of nonlinear equation. Clearly, for the sake of applying this
iterative method, we must compute the second derivative and the third derivative of the function f (x), which may
generate inconvenience. In order to overcome the drawback, we suggest approximants of the second derivative
and the third derivative, which is a very important idea and plays a significant part in developing some iterative
methods free from calculating the higher derivatives.

3.4. Modified Iterative Method Based on Approximant of the Third Derivative

In fact, we let zk = xk − f (xk)
f ′(xk)

. Then expanding f (zk) into third Taylor’s series about the point
xk yields

f (zk) ≈ f (xk) + f ′(xk)(zk − xk) +
1
2!

f ′′(xk)(zk − xk)
2 +

1
3!

f ′′′(xk)(zk − xk)
3,

which follows that

f ′′′(xk) ≈ 3 f 2(xk) f ′(xk) f ′′(xk)− 6 f (zk) f ′3(xk)

f 3(xk)
. (9)

Substituting (9) into (8), we can have the following iterative method.

Method 4. Assume that the function f : I → D has its second derivative about the point x0 ∈ I. Then we
possess a modified iterative method as below:⎧⎨⎩ zk = xk − f (xk)

f ′(xk)
,

xk+1 = xk − xk−zk
1+2 f (zk) f ′2(xk)L−1(xk)

, k = 0, 1, 2, . . . ,
(10)

where L(xk) = f (xk)
(

f (xk) f ′′(xk)− 2 f ′2(xk)
)
. Starting with an initial approximation x0 that is sufficiently

close to the root η and using the above scheme (10), we can have the iterative sequence {xi}∞
i=0.

Remark 4. Methods 4 is a two-step iterative method free from third derivative of the function.

7
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3.5. Modified Iterative Method Based on Approximant of the Second Derivative

It is obvious that the iterative method (10) requires the operation of the second derivative of the
function f (x). In order to avoid computing the second derivative, we introduce an approximant of the
second derivative by using Taylor’s series.

Similarly, expanding f (zk) into second Taylor’s series about the point xk yields

f (zk) ≈ f (xk) + (zk − xk) f ′(xk) +
1
2!
(zk − xk)

2 f ′′(xk),

which means

f ′′(xk) ≈ 2 f (zk) f ′2(xk)

f 2(xk)
. (11)

Using (11) in (10), we can get the following modified iterative method without computing second
derivative.

Method 5. Assume that the function f : I → D has its first derivative about the point x0 ∈ I. Then we have
a modified iterative method as below:⎧⎨⎩ zk = xk − f (xk)

f ′(xk)
,

xk+1 = xk − f (xk)− f (zk)
f (xk)−2 f (zk)

(xk − zk), k = 0, 1, 2, . . . .
(12)

Starting with an initial approximation x0 that is sufficiently close to the root η and using the above
scheme (12), we can obtain the iterative sequence {xi}∞

i=0.

Remark 5. Method 5 is another two-step iterative method. It is clear that Method 5 does not require to calculate
the high-order derivative. But more importantly, the characteristic of Method 5 is that per iteration it requires
two evaluations of the function and one of its first-order derivative. The efficiency of this method is better than
that of the well-known other methods involving the second-order derivative of the function.

4. Convergence Analysis of Iterative Methods

Theorem 1. Suppose that f (x) is a function whose n-th derivative f (n)(x), n = 1, 2, 3, . . ., exists in
a neighborhood of its root η with f ′(η) �= 0. If the initial approximation x0 is sufficiently close to η, then the
Method 3 defined by (8) is fourth-order convergent.

Proof of Theorem 1. By the hypothesis f (η) = 0 and f ′(η) �= 0, we know that η is an unique single
root of the equation f (x) = 0. So, for each positive integer n ≥ 1, we have that the derivatives of high
orders f (n)(η) �= 0. Considering the iterative scheme (8) in Method 3, we denote its corresponding
iterative function as shown below:

ϕ(x) = x− 3 f (x)
(
2 f ′2(x)− f (x) f ′′(x)

)
6 f ′3(x)− 6 f (x) f ′(x) f ′′(x) + f 2(x) f ′′′(x)

. (13)

By calculating the first and high-order derivatives of the iterative function ϕ(x) with respect to x
at the point η, we verify that

ϕ′(η) = 0, ϕ′′(η) = 0, ϕ′′′(η) = 0

and

ϕ(4)(η) =
3 f ′′3(η)− 4 f ′(η) f ′′(η) f ′′′(η) + f ′2(η) f (4)(η)

f ′3(η)
�= 0.

8
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Thus, it follows from Lemma 2 that Method 3 defined by (8) is fourth-order convergent.
This completes the proof.

Theorem 2. Suppose that f (x) is a function whose n-th derivative f (n)(x), n = 1, 2, 3, . . ., exists in
a neighborhood of its root η with f ′(η) �= 0. If the initial approximation x0 is sufficiently close to η, then the
Method 4 defined by (10) is at least fourth-order convergent with the following error equation

ek+1 = (b3
2 − 2b2b3)e4

k + O(e5
k),

where ek = xk − η, k = 1, 2, 3, . . ., and the constants bn = an
f ′(η) , an = f (n)(η)

n! , n = 1, 2, 3, . . ..

Proof of Theorem 2. By the hypothesis, it is clear to see that η is an unique single root of the equation
f (x) = 0. By expanding f (xk), f ′(xk) and f ′′(xk) into Taylor’s series about η, we obtain

f (xk) = ek f ′(η) + e2
k

2! f ′′(η) + e3
k

3! f ′′′(η) + e4
k

4! f (4)(η) + e5
k

5! f (5)(η) + e6
k

6! f (6)(η) + O(e7
k)

= f ′(η)
(
b1ek + b2e2

k + b3e3
k + b4e4

k + b5e5
k + b6e6

k + O(e7
k)
)

,
(14)

f ′(xk) = f ′(η)
(

b1 + 2b2ek + 3b3e2
k + 4b4e3

k + 5b5e4
k + 6b6e5

k + O(e6
k)
)

(15)

and
f ′′(xk) = f ′(η)

(
2b2 + 6b3ek + 12b4e2

k + 20b5e3
k + 30b6e4

k + O(e5
k)
)

, (16)

where bn = 1
n!

f (n)(η)
f ′(η) , n = 1, 2, · · · . Clearly, b1 = 1. Dividing (14) by (15) directly, gives us

f (xk)
f ′(xk)

= xk − zk = ek − b2e2
k − 2(b3 − b2

2)e
3
k − (4b3

2 + 3b4 − 7b2b3)e4
k

−2(10b2
2b3 − 2b5 + 5b2b4 + 4b4

2 + 3b2
3)e

5
k

−(16b5
2 + 28b2

2b4 + 33b2b2
3 + 5b6 − 52b3

2b3 − 17b3b4 − 13b2b5)e6
k + O(e7

k).

(17)

By substituting (17) into (10) in Method 4, one has

zk = η + b2e2
k + 2(b3 − b2

2)e
3
k + (4b3

2 + 3b4 − 7b2b3)e4
k

+2(10b2
2b3 − 2b5 + 5b2b4 + 4b4

2 + 3b2
3)e

5
k

+(16b5
2 + 28b2

2b4 + 33b2b2
3 + 5b6 − 52b3

2b3 − 17b3b4 − 13b2b5)e6
k + O(e7

k).

(18)

Again, expanding f (zk) by Taylor’s series about η, we have

f (zk) = f ′(η)
(
b2e2

k − 2(b2
2 − b3)e3

k − (7b2b3 − 5b3
2 − 3b4)e4

k

−2(5b2b4 + 6b4
2 + 3b2

3 − 12b2
2b3 − 2b5)e5

k

+ (28b5
2 + 34b2

2b4 + 37b2b2
3 + 5b6 − 73b3

2b3 − 17b3b4 − 13b2b5)e6
k + O(e7

k)
)

.

(19)

Hence, from (15) and (19), we have

f (zk) f ′2(xk) = f ′3(η)
(
b2e2

k + 2(b2
2 + b3)e3

k + (7b2b3 + b3
2 + 3b4)e4

k + 2(5b2b4 + 2b2
2b3 + 3b2

3 + 2b5)e5
k

+ (4b2b2
3 + 6b2

2b4 + b3
2b3 + 13b2b5 + 17b3b4 + 5b6)e6

k + O(e7
k)
)

.
(20)

9
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Also, from (14), (15), and (16), one has

L(xk) = −2 f ′3(η)
(
ek + 4b2e2

k + 2(3b2
2 + 2b3)e3

k + (14b2b3 + 3b3
2 + 3b4)e4

k

+(14b2b4 + 11b2
2b3 + 9b2

3 + b5)e5
k

+ 2(7b2b2
3 + 6b2

2b4 + 6b2b5 + 10b3b4 + b6)e6
k + O(e7

k)
)

.

(21)

Therefore, combining (20) and (21), one can have

2 f (zk) f ′2(xk)
L(xk)

= −b2ek − 2(b3 − b2
2)e

2
k − (3b3

2 + 3b4 − 5b2b3)e3
k

−(6b2
2b3 + 4b5 − 5b2b4 − 3b4

2 − 2b2
3)e

4
k + O(e5

k).
(22)

Furthermore, from (17) and (22), we get

xk − yk
1 + 2 f (zk) f ′2(xk)L−1(xk)

= ek − (b3
2 − 2b2b3)e4

k − (12b2
2b3 − 5b2b4 − 4b4

2 − 4b2
3)e

5
k + O(e6

k). (23)

So, substituting (23) into (10) in Method 4, one obtains

xk+1 = η + (b3
2 − 2b2b3)e4

k + O(e5
k). (24)

Noticing that the (k + 1)-st error ek+1 = xk+1 − η, from (24) we have the following error equation

ek+1 = (b3
2 − 2b2b3)e4

k + O(e5
k), (25)

which shows that Method 4 defined by (10) is at least fourth-order convergent according to Definition 4.
We have shown Theorem 2.

Theorem 3. Suppose that f (x) is a function whose n-th derivative f (n)(x), n = 1, 2, 3, . . ., exists in
a neighborhood of its root η with f ′(η) �= 0. If the initial approximation x0 is sufficiently close to η, then the
Method 5 defined by (12) is also at least fourth-order convergent with the following error equation

ek+1 = (b3
2 − b2b3)e4

k + O(e5
k),

where ek = xk − η, k = 1, 2, 3, . . ., and the constants bn = an
f ′(η) , an = f (n)(η)

n! , n = 1, 2, 3, . . ..

Proof of Theorem 3. Referring to (14) and (19) in the proof of Theorem 2, then, dividing f (zk) by
f (xk)− f (zk) we see that

f (zk)
f (xk)− f (zk)

= b2ek − 2(b2
2 − b3)e2

k − 3(2b2b3 − b3
2 − b4)e3

k − (3b4
2 + 4b2

3 + 8b2b4 − 11b2
2b3 − 4b5)e4

k

−(10b3
2b3 + 10b3b4 + 10b2b5 − 11b2b2

3 − 14b2
2b4 − 5b6)e5

k

−(221b4
2b3 + 16b3

3 + 78b2b3b4 + 27b2
2b5 − 73b6

2

−158b2
2b2

3 − 91b3
2b4 − 6b2

4 − 10b3b5 − 4b2b6)e6
k + O(e7

k).

(26)

From (26), we obtain

f (xk)− f (zk)
f (xk)−2 f (zk)

= 1
1− f (zk)

f (xk)− f (zk)

= 1 + b2ek + (2b3 − b2
2)e

2
k + (3b4 − 2b2b3)e3

k

+(2b4
2 + 4b5 − 3b2

2b3 − 2b2b4)e4
k + (14b3

2b3 + 2b3b4 + 5b6 − 5b5
2

−9b2b2
3 − 5b2

2b4 − 2b2b5)e5
k + (77b6

2 + 192b2
2b2

3 + 121b3
2b4 + 15b2

4

+26b3b5 + 14b2b6 − 240b4
2b3 − 24b3

3 − 130b2b3b4 − 51b2
2b5)e6

k + O(e7
k).

(27)

10
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Multiplying (27) by (17) yields that

f (xk)− f (yk)

f (xk)− 2 f (yk)
(xk − zk) = ek − (b3

2 − b2b3)e4
k + 2(2b4

2 − 4b2
2b3 + b2

3 + b2b4)e5
k + O(e6

k). (28)

Consequently, from (12) and the above Equation (28), and noticing the error ek+1 = xk+1 − η,
we get the error equation as below:

ek+1 = (b3
2 − b2b3)e4

k + O(e5
k). (29)

Thus, according to Definition 4, we have shown that Method 5 defined by (12) has fourth-order
convergence at least. This completes the proof of Theorem 3.

Remark 6. Per iteration, Method 5 requires two evaluations of the function and one of its first-order derivative.
If we consider the definition of efficiency index [3] as τ

√
λ, where λ is the order of convergence of the method

and τ is the total number of new function evaluations (i.e., the values of f and its derivatives) per iteration,
then Method 5 has the efficiency index equal to 3

√
4 ≈ 1.5874, which is better than the ones of Halley iterative

method 3
√

3 ≈ 1.4423 and Newton iterative method
√

2 ≈ 1.4142.

5. Numerical Results

In this section, we present the results of numerical calculations to compare the efficiency of
the proposed iterative methods (Methods 3–5) with Newton iterative method (Method 1, NIM for
short), Halley iterative method (Method 2, HIM for short) and a few classical variants defined in
literatures [19–22], such as the next iterative schemes with fourth-order convergence:

(i) Kou iterative method (KIM for short) [19].

xk+1 = xk − 2

1 +
√

1− 2L̄ f (xk)

f (xk)

f ′(xk)
, k = 0, 1, 2, . . . ,

where L̄ f (xk) is defined by the equation as follows:

L̄ f (xk) =
f ′′ (xk − f (xk)/ (3 f ′(xk))) f (xk)

f ′2(xk)
.

(ii) Double-Newton iterative method (DNIM for short) [20].⎧⎨⎩ zk = xk − f (xk)
f ′(xk)

,

xk+1 = xk − f (xk)
f ′(xk)

− f (zk)
f ′(zk)

, k = 0, 1, 2, . . . .

(iii) Chun iterative method (CIM for short) [21].⎧⎨⎩ zk = xk − f (xk)
f ′(xk)

,

xk+1 = xk − f (xk)
f ′(xk)

−
(

1 + 2 f (zk)
f (xk)

+ f 2(zk)
f 2(xk)

)
f (zk)
f ′(xk)

, k = 0, 1, 2, . . . .

(iv) Jarratt-type iterative method (JIM for short) [22].⎧⎪⎨⎪⎩
zk = xk − 2

3
f (xk)
f ′(xk)

,

xk+1 = xk − 4 f (xk)
f ′(xk)+3 f ′(zk)

(
1 + 9

16

(
f ′(zk)
f ′(xk)

− 1
)2
)

, k = 0, 1, 2, . . . .

11
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In iterative process, we use the following stopping criteria for computer programs:

|xk+1 − xk| < ε and | f (xk+1)| < ε,

where the fixed tolerance ε is taken as 10−14. When the stopping criteria are satisfied, xk+1 can be
regarded as the exact root η of the equation. Numerical experiments are performed in Mathematica
10 environment with 64 digit floating point arithmetics (Digits: =64). Different test equations fi = 0,
i = 1, 2, . . . , 5, the initial guess value x0, the number of iterations k + 1, the approximate root xk+1,
the values of |xk+1 − xk| and | f (xk+1)| are given in Table 1. The following test equations are used in
the numerical results:

f1(x) = x3 − 11 = 0,

f2(x) = cos x− x = 0,

f3(x) = x3 + 4x2 − 25 = 0,

f4(x) = x2 − ex − 3x + 2 = 0,

f5(x) = (x + 2)ex − 1 = 0.

Table 1. Numerical results and comparison of various iterative methods.

Methods Equation x0 k + 1 xk+1 |xk+1 − xk| | f (xk+1)|
NIM f1 = 0 1.5 7 2.22398009056931552116536337672215719652 1.1× 10−25 4.1× 10−47

HIM f1 = 0 1.5 5 2.22398009056931552116536337672215719652 1.7× 10−41 1.0× 10−46

Method 3 f1 = 0 1.5 4 2.22398009056931552116536337672215719652 8.3× 10−40 1.6× 10−48

Method 4 f1 = 0 1.5 4 2.22398009056931552116536337672215719652 8.3× 10−22 1.9× 10−47

Method 5 f1 = 0 1.5 4 2.22398009056931552116536337672215719652 7.5× 10−30 7.4× 10−45

KIM f1 = 0 1.5 4 2.22398009056931552116536337672215719652 8.5× 10−38 3.9× 10−48

DNIM f1 = 0 1.5 4 2.22398009056931552116536337672215719652 1.1× 10−25 1.1× 10−47

CIM f1 = 0 1.5 5 2.22398009056931552116536337672215719652 1.5× 10−41 6.6× 10−45

JIM f1 = 0 1.5 5 2.22398009056931552116536337672215719652 1.2× 10−45 4.3× 10−47

NIM f2 = 0 1 5 0.73908513321516064165531208767387340401 6.4× 10−21 1.5× 10−41

HIM f2 = 0 1 4 0.73908513321516064165531208767387340401 3.4× 10−29 5.1× 10−49

Method 3 f2 = 0 1 3 0.73908513321516064165531208767387340401 8.2× 10−19 7.5× 10−49

Method 4 f2 = 0 1 3 0.73908513321516064165531208767387340401 1.4× 10−17 9.4× 10−48

Method 5 f2 = 0 1 3 0.73908513321516064165531208767387340401 1.1× 10−18 7.5× 10−47

KIM f2 = 0 1 3 0.73908513321516064165531208767387340401 1.5× 10−20 8.3× 10−49

DNIM f2 = 0 1 3 0.73908513321516064165531208767387340401 6.4× 10−21 9.5× 10−48

CIM f2 = 0 1 3 0.73908513321516064165531208767387340401 2.2× 10−17 9.4× 10−48

JIM f2 = 0 1 3 0.73908513321516064165531208767387340401 7.4× 10−18 8.3× 10−49

NIM f3 = 0 3.5 7 2.03526848118195915354755041547361249916 6.4× 10−28 2.9× 10−47

HIM f3 = 0 3.5 5 2.03526848118195915354755041547361249916 2.0× 10−39 5.8× 10−47

Method 3 f3 = 0 3.5 4 2.03526848118195915354755041547361249916 2.0× 10−33 6.0× 10−47

Method 4 f3 = 0 3.5 4 2.03526848118195915354755041547361249916 2.0× 10−33 8.0× 10−46

Method 5 f3 = 0 3.5 4 2.03526848118195915354755041547361249916 3.4× 10−30 3.1× 10−45

KIM f3 = 0 3.5 4 2.03526848118195915354755041547361249916 4.3× 10−33 8.6× 10−47

DNIM f3 = 0 3.5 4 2.03526848118195915354755041547361249916 6.4× 10−28 9.9× 10−46

CIM f3 = 0 3.5 4 2.03526848118195915354755041547361249916 1.1× 10−20 9.6× 10−46

JIM f3 = 0 3.5 4 2.03526848118195915354755041547361249916 1.9× 10−22 1.1× 10−49

12



Mathematics 2019, 7, 55

Table 1. Cont.

Methods Equation x0 k + 1 xk+1 |xk+1 − xk| | f (xk+1)|
NIM f4 = 0 3.6 8 0.25753028543986076045536730493724178138 6.5× 10−29 3.5× 10−46

HIM f4 = 0 3.6 6 0.25753028543986076045536730493724178138 4.8× 10−37 1.6× 10−46

Method 3 f4 = 0 3.6 4 0.25753028543986076045536730493724178138 9.6× 10−14 2.7× 10−46

Method 4 f4 = 0 3.6 5 0.25753028543986076045536730493724178138 1.1× 10−36 3.3× 10−44

Method 5 f4 = 0 3.6 4 0.25753028543986076045536730493724178138 2.5× 10−19 4.9× 10−44

KIM f4 = 0 3.6 5 0.25753028543986076045536730493724178138 2.1× 10−14 8.9× 10−44

DNIM f4 = 0 3.6 4 0.25753028543986076045536730493724178138 2.6× 10−14 3.5× 10−46

CIM f4 = 0 3.6 4 0.25753028543986076045536730493724178138 2.8× 10−12 2.8× 10−46

JIM f4 = 0 3.6 5 0.25753028543986076045536730493724178138 9.7× 10−38 9.7× 10−46

NIM f5 = 0 3.5 11 −0.44285440100238858314132799999933681972 8.2× 10−22 7.7× 10−43

HIM f5 = 0 3.5 7 −0.44285440100238858314132799999933681972 2.2× 10−37 6.1× 10−45

Method 3 f5 = 0 3.5 5 −0.44285440100238858314132799999933681972 1.8× 10−24 3.4× 10−45

Method 4 f5 = 0 3.5 5 −0.44285440100238858314132799999933681972 5.3× 10−37 7.9× 10−44

Method 5 f5 = 0 3.5 6 −0.44285440100238858314132799999933681972 2.0× 10−42 3.9× 10−42

KIM f5 = 0 3.5 7 −0.44285440100238858314132799999933681972 3.6× 10−23 2.7× 10−42

DNIM f5 = 0 3.5 6 −0.44285440100238858314132799999933681972 8.2× 10−22 4.9× 10−45

CIM f5 = 0 3.5 7 −0.44285440100238858314132799999933681972 3.3× 10−37 8.6× 10−44

JIM f5 = 0 3.5 6 −0.44285440100238858314132799999933681972 9.3× 10−13 6.6× 10−46

6. Conclusions

In Section 3 of the paper, it is evident that we have obtained a few single-step iterative methods
including classical Newton’s method and Halley’s method, based on [1, n]-order Padé approximation
of a function for finding a simple root of nonlinear equations. In order to avoid calculating the higher
derivatives of the function, we have tried to improve the proposed iterative method by applying
approximants of the second derivative and the third derivative. Hence, we have gotten a few modified
two-step iterative methods free from the higher derivatives of the function. In Section 4, we have
given theoretical proofs of the several methods. It is seen that any modified iterative method reaches
the convergence order 4. However, it is worth mentioning that Method 5 is free from second order
derivative and its efficiency index is 1.5874. Furthermore, in Section 5, numerical examples are
employed to illustrate the practicability of the suggested variants for finding the approximate roots of
some nonlinear scalar equations. The computational results presented in Table 1 show that in almost
all of the cases the presented variants converge more rapidly than Newton iterative method and Halley
iterative method, so that they can compete with Newton iterative method and Halley iterative method.
Finally, for more nonlinear equations we tested, the presented variants have at least equal performance
compared to the other existing iterative methods that are of the same order.
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Abstract: Steffensen-type methods with memory were originally designed to solve nonlinear
equations without the use of additional functional evaluations per computing step. In this paper,
a variant of Steffensen’s method is proposed which is derivative-free and with memory. In fact, using
an acceleration technique via interpolation polynomials of appropriate degrees, the computational
efficiency index of this scheme is improved. It is discussed that the new scheme is quite fast and
has a high efficiency index. Finally, numerical investigations are brought forward to uphold the
theoretical discussions.

Keywords: iterative methods; Steffensen’s method; R-order; with memory; computational efficiency

1. Introduction

One of the commonly encountered topics in computational mathematics is to tackle solving
a nonlinear algebraic equation. The equation can be presented as in the scalar case f (x) = 0, or more
complicated as a system of nonlinear algebraic equations. The procedure of finding the solutions (if it
exists) cannot be done analytically. In some cases, the analytic techniques only give the real result
while its complex zeros should be found and reported. As such, numerical techniques are a viable
choice for solving such nonlinear problems. Each of the existing computational procedures has their
own domain of validity with some pros and cons [1,2].

Two classes of methods with the use of derivatives and without the use of derivatives are known to
be useful depending on the application dealing with [3]. In the derivative-involved methods, a larger
attraction basin along with a simple coding effort for higher dimensional problems is at hand which,
in derivative-free methods, the area of choosing the initial approximations is smaller and extending to
higher dimensional problems is via the application of a divided difference operator matrix, which is
basically a dense matrix. However, the ease in not computing the derivative and, subsequently,
the Jacobians, make the application of derivative-free methods more practical in several problems [4–7].

Here, an attempt is made at developing a computational method which is not only efficient in
terms of the computational efficiency index, but also in terms of larger domains for the choice of the
initial guesses/approximations for starting the proposed numerical method.

The Steffensen’s method [8] for solving nonlinear scalar equations has quadratic convergence for
simple zeros and given by: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

xk+1 = xk − f (xk)

f
[xk, wk]

,

wk = xk + β f (xk), β ∈ R\{0}, k ≥ 0,

(1)
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where the two-point divided difference is defined by:

f [xk, wk] =
f (xk)− f (wx)

xk − wk
,

This scheme needs two function evaluations per cycle. Scheme (1) shows an excellent tool for
constructing efficient iterative methods for nonlinear equations. This is because it is derivative-free
with a free parameter. This parameter can, first of all, enlarge the attraction basins of Equation (1)
or any of its subsequent methods and, second, can directly affect the improvement of the R-order of
convergence and the efficiency index.

Recalling that Kung and Traub conjectured that the iterative method without memory based on m
functions evaluation per iteration attain the optimal convergence of order 2m−1 [9,10].

The term “with memory” means that the values of the function associated with the computed
approximations of the roots are used in subsequent iterations. This is unlike the term “without memory”
in which the method only uses the current values to find the next estimate. As such, in a method with
memory, the calculated results up to the desired numbers of iterations should be stored and then called
to proceed.

Before proceeding the given idea to improve the speed of convergence, efficiency index, and the
attraction basins, we provide a short literature by reviewing some of the existing methods with
accelerated convergence order. Traub [11] proposed the following two-point method with memory of
order 2.414: ⎧⎪⎪⎨⎪⎪⎩

xk+1 = xk − f (xk)

f [xk, xk + βk f (xk)]
,

βk =
−1

f [xk, zk−1]
,

(2)

where zk−1 = xk−1 + βk−1 f (xk−1), and β0 = −sign( f ′(x0)) or − 1
f [x0, x0 + f (x0)]

. This is one of the

pioneering and fundamental methods with memory for solving nonlinear equations.

Džunić in [12] suggested an effective bi-parametric iterative method with memory of
1
2

(
3 +

√
17
)

R-order of convergence as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
wk = xk + βk f (xk),

βk = − 1
N′2(xk)

, ζk = −
N′′

3 (wk)

2N′3(wk)
, k ≥ 1,

xk+1 = xk − f (xk)

f [xk, wk] + ζk f (wk)
k ≥ 0.

(3)

Moreover, Džunić and Petković [13] derived the following cubically convergent Steffensen-like
method with memory: ⎧⎪⎪⎨⎪⎪⎩

xk+1 = xk − f (xk)

f [xk, xk + βk f (xk)]
,

βk =
−1

f [xk, zk−1]+ f [xk, xk−1]+ f [xk−1, zk−1]
,

(4)

where zk−1 = xk−1 + βk−1 f (xk−1) depending on the second-order Newton interpolation polynomial.
Various Steffensen-type methods are proposed in [14–17].
In fact, it is possible to improve the performance of the aforementioned method by considering

several more sub-steps and improve the computational efficiency index via multi-step iterative
methods. However, this procedure is more computational burdensome. Thus, the motivation here
is to know that is it possible to improve the performance of numerical methods in terms of the
computational efficiency index, basins of attraction, and the rate of convergence without adding more
sub-steps and propose a numerical method as a one-step solver.
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Hence, the aim of this paper is to design a one-step method with memory which is quite
fast and has an improved efficiency index, based on the modification of the one-step method of
Steffensen (Equation (1)) and increase the convergence order to 3.90057 without any additional
functional evaluations.

The rest of this paper is ordered as follows: In Section 2, we develop the one-point Steffensen-type
iterative scheme (Equation (1)) with memory which was proposed by [18]. We present the main
goal in Section 3 by approximating the acceleration parameters involved in our contributed scheme
by Newton’s interpolating polynomial and, thus, improve the convergence R-order. The numerical
reports are suggested in Section 4 to confirm the theoretical results. Some discussions are given in
Section 5.

2. An Iterative Method

The following iterative method without memory was proposed by [18]:⎧⎨⎩ wk = xk − β f (xk),

xk+1 = xk − f (xk)

f [xk, wk]

(
1 + ζ

f (wk)

f [xk, wk]

)
, ζ ∈ R,

(5)

with the following error equation to improve the performance of (1) in terms of having more
free parameters:

ek+1 = −(−1 + β f ′(α)
)
(c2 − ζ)e2

k + O
(

e3
k

)
, (6)

where ci =
1
i!

f (i)(α)
f ′(α) . Using the error Equation (6), to derive Steffensen-type iterative methods with

memory, we calculate the following parameters: β = βk, ζ = ζk, by the formula:⎧⎨⎩ βk =
1

f ′(xα)
,

ζk = c2,
(7)

for k = 1, 2, 3, · · · , while f ′(xα), c2 are approximations to f (α) and c2, respectively; where α is a simple
zero of f (x). In fact, Equation (7) shows a way to minimize the asymptotic error constant of Equation (6)
by making this coefficient closer and closer to zero when the iterative method is converging to the
true solution.

The initial estimates β0 and ζ0 must be chosen before starting the process of iterations. We state
the Newton’s interpolating polynomial of fourth and fifth-degree passing through the saved points
as follows: {

N4(t) = N4(t; xk, wk−1, xk−1, wk−2, xk−2),
N5(t) = N5(t; wk, xk, wk−1, xk−1, wk−2, xk−2).

(8)

Recalling that N(t) is an interpolation polynomial for a given set of data points also known as the
Newton’s divided differences interpolation polynomial because the coefficients of the polynomial are
calculated using Newton’s divided differences method. For instance, here the set of data points for
N4(t) are {{xk, f (xk)}, {wk−1, f (wk−1)}, {xk−1, f (xk−1)}, {wk−2, f (wk−2)} , {xk−2, f (xk−2)}}.

Now, using some modification on Equation (5) we present the following scheme:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
wk = xk − βk f (xk),

βk =
1

N′4(xk)
, ζk =

N′′
5 (wk)

2N′5(wk)
, k ≥ 2,

xk+1 = xk − f (xk)

f [xk, wk]

(
1 + ζk

f (wk)

f [xk, wk]

)
, k ≥ 0.

(9)
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Noting that the accelerator parameters βk, ζk are getting updated and then used in the iterative
method right after the second iterations, viz, k ≥ 2. This means that the third line of Equation (9) is
imposed at the beginning and after that the computed values are stored and used in the subsequent
iterates. For k = 1, the degree of Newton interpolation polynomials would be two and three. However,
for k ≥ 2, interpolations of degrees four and five as given in Equation (8) can be used to increase the
convergence order.

Additionally speaking, this acceleration of convergence would be attained without the use any
more functional evaluations as well as imposing more steps. Thus, the proposed scheme with memory
(Equation (9)) can be attractive for solving nonlinear equations.

3. Convergence Analysis

In this section, we show the convergence criteria of Equation (9) using Taylor’s series expansion
and several extensive symbolic computations.

Theorem 1. Let the function f (x) be sufficiently differentiable in a neighborhood of its simple zero α. If an initial
approximation x0 is necessarily close to α. Then, R-order of convergence for the one-step method (Equation (9))
with memory is 3.90057.

Proof. The proof is done using the definition of the error equation as the difference between the
k-estimate and the exact zero along with symbolic computations. Let the sequence {xk} and {wk}
have convergence orders r and p, respectively. Namely,

ek+1 ∼ er
k, (10)

and:
ew,k ∼ ep

k , (11)

Therefore, using Equations (10) and (11), we have:

ek+1 ∼ er
k ∼ er2

k−1 ∼ er3

k−2, (12)

and:
ew,k ∼ ep

k ∼ (er
k−1)

p ∼ epr2

k−2. (13)

The associated error equations to the accelerating parameters βk and ζk for Equation (9) can now
be written as follows:

ew,k ∼ (−1 + βk f ′(α))ek , (14)

and:
ek+1 ∼ −(−1 + βk f ′(α))(c2 − ζk)e2

k . (15)

On the other hand, by using a symbolic language and extensive computations one can find the
following error terms for the involved terms existing in the fundamental error Equation (6):

−1 + βk f ′(α) ∼ c5ek−2ek−1ew,k−1ew,k−2, (16)

c2 − ζk ∼ c6ek−2ek−1ew,k−1ew,k−2 (17)

Combining Equations (14)–(17), we get that:

ew,k ∼ er2+pr+r+p+1
k−2 , (18)

ek+1 ∼ e2(r2+pr+r+p+1)
k−2 . (19)
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We now compare the left and right hand side of Equations (12)–(19) and Equations (13)–(18),
respectively. Thus, we have the following nonlinear system of equations in order to find the final
R-orders: {

r2 p− (r2 + pr + r + p + 1
)
= 0,

r3 − 2
(
r2 + pr + r + p + 1

)
= 0.

(20)

The positive real solution of (20) is r = 3.90057 and p = 1.9502. Therefore, the convergence
R-order for Equation (9) is 3.90057. �

Since improving the convergence R-order is useless if the whole computational method is
expensive, basically researcher judge on a new scheme based upon its computational efficiency
index which is a tool in order to provide a trade-off between the whole computational cost and the
attained R-order. Assuming the cost of calculating each functional evaluation is one, we can use the
definition of efficiency index as EI = p1/θ , θ is the whole computational cost [19].

The computational efficiency index of Equation (9) is 3.90057
1
2 ≈ 1.97499 ≈ 2, which is clearly

higher than efficiency index 2
1
2 ≈ 1.4142 of Newton’s and Steffensen’s methods, 3.56155

1
2 ≈ 1.8872 of

(3) 31/2 ≈ 1.73205 of Equation (4).
However, this improved computational efficiency is reported by ignoring the number of

multiplication and division per computing cycle. By imposing a slight weight for such calculations
one may once again obtain the improved computational efficiency of (9) in contrast to the existing
schemes of the same type.

4. Numerical Computations

In this section, we compare the convergence performance of Equation (9), with three well-known
iterative methods for solving four test problems numerically carried out in Mathematica 11.1. [20].

We denote Equations (1), (3), (5) and (9) with SM, DZ, PM, M4, respectively. We compare the
our method with different methods, using β0 = 0.1 and ζ0 = 0.1. Here, the computational order of
convergence (coc) has been computed by the following formula [21]:

coc =
ln|( f (xk)/ f (xk−1)|

ln|( f (xk−1)/ f (xk−2)| (21)

Recalling that using a complex initial approximation, one is able to find the complex roots of the
nonlinear equations using (9).

Experiment 1. Let us consider the following nonlinear test function:

f1(x) = (x− 2 tan(x))
(

x3 − 8
)
, (22)

where α = 2 and x0 = 1.7.

Experiment 2. We take into account the following nonlinear test function:

f2(x) = (x− 1)
(

x10 + x3 + 1
)

sin(x), (23)

where α = 1 and x0 = 0.7.

Experiment 3. We consider the following test problem now:

f3(x) = −x3

2 + 2 tan−1(x) + 1, (24)

where α ≈ 1.8467200 and x0 = 4.
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Experiment 4. The last test problem is taken into consideration as follows:

f4(x) = tan−1(exp(x + 2) + 1) + tanh(exp(−x cos(x)))− sin(πx), (25)

where α ≈ −3.6323572··· and x0 = −4.1.

Tables 1–4 show that the proposed Equation (9) is of order 3.90057 and it is obviously believed to
be of more advantageous than the other methods listed due to its fast speed and better accuracy.

For better comparisons, we present absolute residual errors | f (x)|, for each test function which
are displayed in Tables 1–4. Additionally, we compute the computational order of convergence.
Noting that we have used multiple precision arithmetic considering 2000 significant digits to observe
and the asymptotic error constant and the coc as obviously as possible.

The results obtained by our proposed Equation (M4) are efficient and show better performance
than other existing methods.

A significant challenge of executing high-order nonlinear solvers is in finding initial approximation
to start the iterations when high accuracy calculating is needed.

Table 1. Result of comparisons for the function f1.

Methods |f1(x3)| |f1(x4)| |f1(x5)| |f1(x6)| coc

SM 4.1583 3.0743 1.4436 0.25430 2.00
DZ 0.13132 2.0026× 10−7 1.0181× 10−27 7.1731× 10−99 3.57
PM 1.8921× 10−6 4.5864× 10−24 1.0569× 10−88 7.5269× 10−318 3.55
M4 9.1741× 10−6 3.3242× 10−26 4.4181× 10−103 1.1147× 10−404 3.92

Table 2. Result of comparisons for the function f2.

Methods |f2(x5)| |f2(x6)| |f2(x7)| |f2(x8)| coc

SM − − − − −
DZ 0.14774 0.0016019. 1.3204× 10−10 1.5335× 10−35 3.56
PM 2.1191× 10−10 8.0792× 10−35 1.9037× 10−121 3.7062× 10−430 3.56
M4 5.9738× 10−15 4.1615× 10−57 1.7309× 10−220 1.8231× 10−857 3.90

Table 3. Result of comparisons for the function f3.

Methods |f3(x3)| |f3(x4)| |f3(x5)| |f3(x6)| coc

SM 0.042162 0.00012627 1.1589× 10−9 9.7638× 10−20 2.00
DZ 1.0219× 10−11 4.4086× 10−44 1.6412× 10−157 1.5347× 10−562 3.57
PM 7.9792× 10−8 3.712× 10−30 4.9556× 10−108 2.9954× 10−386 3.57
M4 4.4718× 10−6 2.9187× 10−25 4.7057× 10−101 1.0495× 10−395 3.89

To discuss further, mostly based on interval mathematics, one can find a close enough guess to
start the process. There are some other ways to determine the real initial approximation to start the
process. An idea of finding such initial guesses given in [22] is based on the useful commands in
Mathematica 11.1 NDSolve [] for the nonlinear function on the interval D = [a, b].

Following this the following piece of Mathematica code could give a list of initial approximations
in the working interval for Experiment 4:
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ClearAll[“Global`*”] 
 
(*Defining the nonlinear function.*) 
f[x_]:=ArcTan[Exp[x+2]+1]+Tanh[Exp[ x Cos[x]]] Sin[Pi x]; 
 
(*Defining the interval.*) 
a= 4.; b=4.; 
 
(*Find the list of initial estimates.*) 
Zeros = Quiet@Reap[soln=y[x]/.First[NDSolve[{y’[x] 
==Evaluate[D[f[x],x]],y[b]==(f[b])},y[x],{x,a,b}, 
Method->{“EventLocator”,”Event”->y[x], “EventAction”:>Sow[{x,y[x]}]}]]][[2,1]]; 
initialPoints = Sort[Flatten[Take[zeros,Length[zeros],1]]] 

To check the position of the zero and the graph of the function, we can use the following code to
obtain Figure 1.

Length[initialPoints] 
Plot[f[x],{x,a,b}, Epilog->{PointSize[Medium], Red, Point[zeros]},PlotRange->All,  PerformanceGoal-
>“Quality”, PlotStyle->{Thick, Blue}] 

Table 4. Result of comparisons for the function f4.

Methods |f4(x3)| |f4(x4)| |f4(x5)| |f4(x6)| coc

SM 0.00001166 3.7123× 10−10 3.7616× 10−19 3.8622× 10−37 2.00
DZ 1.6× 10−13 6.9981× 10−47 1.0583× 10−164 7.0664× 10−585 3.57
PM 3.0531× 10−11 3.2196× 10−38 3.7357× 10−134 6.5771× 10−476 3.56
M4 2.5268× 10−13 1.5972× 10−49 2.8738× 10−191 1.6018× 10−744 3.90

 
Figure 1. The plot of the nonlinear function in Experiment 4 along with its roots colored in red.

As a harder test problem, for the nonlinear function g(x) = 2x + 0.5 sin(20π x) − x2, we can
simply find a list of estimates as initial guesses using the above piece of codes as follows: {−0.185014,
−0.162392, −0.0935912, −0.0535277, 6.73675 × 10−9, 0.0533287, 0.0941576, 0.160021, 0.188066, 0.269075,
0.279428, 1.76552, 1.78616, 1.8588, 1.89339,1.95294, 2., 2.04692, 2.10748, 2.13979, 2.2228, 2.22471}. The plot
of the function in this case is brought forward in Figure 2.

We observe that the two self-accelerating parameters β0 and ζ0 have to be selected before the
iterative procedure is started. That is, they are calculated by using information existing from the
present and previous iterations (see, e.g., [23]). The initial estimates β0 and ζ0 should be preserved as
precise small positive values. We use β0 = ζ0 = 0.1 whenever required.
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After a number of iterates, the (nonzero) free parameters start converging to a particular value
which makes the coefficient of Equation (6) zero as well as make the numerical scheme to converge
with high R-order.

 

Figure 2. The behavior of the function g and the position of its roots (the red dots show the location of
the zeros of the nonlinear functions).

5. Ending Comments

In this paper, we have constructed a one-step method with memory to solve nonlinear
equations. By using two self-accelerator parameters our scheme equipped with Newton’s interpolation
polynomial without any additional functional calculation possesses the high computational efficiency
index 1.97499, which is higher than many of the existing methods.

The efficacy of our scheme is confirmed by some of numerical examples. The results in Tables 1–4
shows that our method (Equation (M4)) is valuable to find an adequate estimate of the exact solution
of nonlinear equations.
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Abstract: The principal objective of this work is to propose a fourth, eighth and sixteenth order
scheme for solving a nonlinear equation. In terms of computational cost, per iteration, the fourth
order method uses two evaluations of the function and one evaluation of the first derivative; the
eighth order method uses three evaluations of the function and one evaluation of the first derivative;
and sixteenth order method uses four evaluations of the function and one evaluation of the first
derivative. So these all the methods have satisfied the Kung-Traub optimality conjecture. In addition,
the theoretical convergence properties of our schemes are fully explored with the help of the main
theorem that demonstrates the convergence order. The performance and effectiveness of our optimal
iteration functions are compared with the existing competitors on some standard academic problems.
The conjugacy maps of the presented method and other existing eighth order methods are discussed,
and their basins of attraction are also given to demonstrate their dynamical behavior in the complex
plane. We apply the new scheme to find the optimal launch angle in a projectile motion problem and
Planck’s radiation law problem as an application.

Keywords: non-linear equation; basins of attraction; optimal order; higher order method; computational
order of convergence

MSC: 65H05, 65D05, 41A25

1. Introduction

One of the most frequent problems in engineering, scientific computing and applied mathematics,
in general, is the problem of solving a nonlinear equation f (x) = 0. In most of the cases, whenever
real problems are faced, such as weather forecasting, accurate positioning of satellite systems in the
desired orbit, measurement of earthquake magnitudes and other high-level engineering problems,
only approximate solutions may get resolved. However, only in rare cases, it is possible to solve the
governing equations exactly. The most familiar method of solving non linear equation is Newton’s
iteration method. The local order of convergence of Newton’s method is two and it is an optimal
method with two function evaluations per iterative step.

In the past decade, several higher order iterative methods have been developed and analyzed for
solving nonlinear equations that improve classical methods such as Newton’s method, Chebyshev
method, Halley’s iteration method, etc. As the order of convergence increases, so does the number
of function evaluations per step. Hence, a new index to determine the efficiency called the efficiency
index is introduced in [1] to measure the balance between these quantities. Kung-Traub [2] conjectured
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that the order of convergence of any multi-point without memory method with d function evaluations
cannot exceed the bound 2d−1, the optimal order. Thus the optimal order for three evaluations per
iteration would be four, four evaluations per iteration would be eight, and so on. Recently, some fourth
and eighth order optimal iterative methods have been developed (see [3–14] and references therein).
A more extensive list of references as well as a survey on the progress made in the class of multi-point
methods is found in the recent book by Petkovic et al. [11].

This paper is organized as follows. An optimal fourth, eighth and sixteenth order methods are
developed by using divided difference techniques in Section 2. In Section 3, convergence order is
analyzed. In Section 4, tested numerical examples to compare the proposed methods with other
known optimal methods. The problem of Projectile motion is discussed in Section 5 where the
presented methods are applied on this problem with some existing ones. In Section 6, we obtain the
conjugacy maps of these methods to make a comparison from dynamical point of view. In Section
7, the proposed methods are studied in the complex plane using basins of attraction. Section 8 gives
concluding remarks.

2. Design of an Optimal Fourth, Eighth and Sixteenth Order Methods

Definition 1 ([15]). If the sequence {xn} tends to a limit x∗ in such a way that

lim
n→∞

xn+1 − x∗

(xn − x∗)p = C

for p ≥ 1, then the order of convergence of the sequence is said to be p, and C is known as the asymptotic error
constant. If p = 1, p = 2 or p = 3, the convergence is said to be linear, quadratic or cubic, respectively.
Let en = xn − x∗, then the relation

en+1 = C ep
n + O

(
ep+1

n

)
= O

(
ep

n

)
. (1)

is called the error equation. The value of p is called the order of convergence of the method.

Definition 2 ([1]). The Efficiency Index is given by

EI = p
1
d , (2)

where d is the total number of new function evaluations (the values of f and its derivatives) per iteration.

Let xn+1 = ψ(xn) define an Iterative Function (IF). Let xn+1 be determined by new information at
xn, φ1(xn), ..., φi(xn), i ≥ 1. No old information is reused. Thus,

xn+1 = ψ(xn, φ1(xn), ..., φi(xn)). (3)

Then ψ is called a multipoint IF without memory.
The Newton (also called Newton-Raphson) IF (2ndNR) is given by

ψ2nd NR(x) = x− f (x)
f ′(x)

. (4)

The 2ndNR IF is one-point IF with two function evaluations and it satisfies the Kung-Traub
conjecture with d = 2. Further, EI2nd NR = 1.414.
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2.1. An Optimal Fourth Order Method

We attempt to get a new optimal fourth order IF as follows, let us consider two step Newton’s
method

ψ4th NR(x) = ψ2nd NR(x)− f (ψ2nd NR(x))
f ′(ψ2nd NR(x))

. (5)

The above one is having fourth order convergence with four function evaluations. But, this is not
an optimal method. To get an optimal, need to reduce a function and preserve the same convergence
order, and so we estimate f ′(ψ2nd NR(x)) by the following polynomial

q(t) = a0 + a1(t− x) + a2(t− x)2, (6)

which satisfies
q(x) = f (x), q′(x) = f ′(x), q(ψ2nd NR(x)) = f (ψ2nd NR(x)).

On implementing the above conditions on Equation (6), we obtain three unknowns a0, a1 and a2.
Let us define the divided differences

f [y, x] =
f (y)− f (x)

y− x
, f [y, x, x] =

f [y, x]− f ′(x)
y− x

.

From conditions, we get a0 = f (x), a1 = f ′(x) and a2 = f [ψ2nd NR(x), x, x], respectively, by using
divided difference techniques. Now, we have the estimation

f ′(ψ2nd NR(x)) ≈ q′(ψ2nd NR(x)) = a1 + 2a2(ψ2th NR(x)− x).

Finally, we propose a new optimal fourth order method as

ψ4thYM(x) = ψ2nd NR(x)− f (ψ2nd NR(x))
f ′(x) + 2 f [ψ2nd NR(x), x, x](ψ2th NR(x)− x)

. (7)

The efficiency of the method (7) is EI4thYM = 1.587.

2.2. An Optimal Eighth Order Method

Next, we attempt to get a new optimal eighth order IF as following way

ψ8thYM(x) = ψ4thYM(x)− f (ψ4thYM(x))
f ′(ψ4thYM(x))

.

The above one is having eighth order convergence with five function evaluations. But, this is not
an optimal method. To get an optimal, need to reduce a function and preserve the same convergence
order, and so we estimate f ′(ψ4thYM(x)) by the following polynomial

q(t) = b0 + b1(t− x) + b2(t− x)2 + b3(t− x)3, (8)

which satisfies

q(x) = f (x), q′(x) = f ′(x), q(ψ2nd NR(x)) = f (ψ2nd NR(x)), q(ψ4thYM(x)) = f (ψ4thYM(x)).

On implementing the above conditions on (8), we obtain four linear equations with four unknowns
b0, b1, b2 and b3. From conditions, we get b0 = f (x) and b1 = f ′(x). To find b2 and b3, we solve the
following equations:

f (ψ2nd NR(x)) = f (x) + f ′(x)(ψ2nd NR(x)− x) + b2(ψ2nd NR(x)− x)2 + b3(ψ2nd NR(x)− x)3

f (ψ4thYM(x)) = f (x) + f ′(x)(ψ4thYM(x)− x) + b2(ψ4thYM(x)− x)2 + b3(ψ4thYM(x)− x)3.
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Thus by applying divided differences, the above equations simplifies to

b2 + b3(ψ2nd NR(x)− x) = f [ψ2nd NR(x), x, x] (9)

b2 + b3(ψ4thYM(x)− x) = f [ψ4thYM(x), x, x] (10)

Solving Equations (9) and (14), we have

b2 =
f [ψ2nd NR(x), x, x](ψ4thPM(x)− x)− f [ψ4thYM(x), x, x](ψ2nd NR(x)− x)

ψ4thYM(x)− ψ2nd NR(x)
,

b3 =
f [ψ4thYM(x), x, x]− f [ψ2nd NR(x), x, x]

ψ4thYM(x)− ψ2nd NR(x)
.

(11)

Further, using Equation (11), we have the estimation

f ′(ψ4thYM(x)) ≈ q′(ψ4thYM(x)) = b1 + 2b2(ψ4thYM(x)− x) + 3b3(ψ4thYM(x)− x)2.

Finally, we propose a new optimal eighth order method as

ψ8thYM(x) = ψ4thYM(x)− f (ψ4thYM(x))
f ′(x) + 2b2(ψ4thYM(x)− x) + 3b3(ψ4thYM(x)− x)2 . (12)

The efficiency of the method (12) is EI8thYM = 1.682. Remark that the method is seems a particular
case of the method of Khan et al. [16], they used weight function to develop their methods. Whereas
we used finite difference scheme to develop proposed methods. We can say the methods 4thYM and
8thYM are reconstructed of Khan et al. [16] methods.

2.3. An Optimal Sixteenth Order Method

Next, we attempt to get a new optimal sixteenth order IF as following way

ψ16thYM(x) = ψ8thYM(x)− f (ψ8thYM(x))
f ′(ψ8thYM(x))

.

The above one is having eighth order convergence with five function evaluations. However,
this is not an optimal method. To get an optimal, need to reduce a function and preserve the same
convergence order, and so we estimate f ′(ψ8thYM(x)) by the following polynomial

q(t) = c0 + c1(t− x) + c2(t− x)2 + c3(t− x)3 + c4(t− x)4, (13)

which satisfies

q(x) = f (x), q′(x) = f ′(x), q(ψ2nd NR(x)) = f (ψ2nd NR(x)),

q(ψ4thYM(x)) = f (ψ4thYM(x)), q(ψ8thYM(x)) = f (ψ8thYM(x)).

On implementing the above conditions on (13), we obtain four linear equations with four
unknowns c0, c1, c2 and c3. From conditions, we get c0 = f (x) and c1 = f ′(x). To find c2, c3 and c4, we
solve the following equations:

f (ψ2nd NR(x)) = f (x) + f ′(x)(ψ2nd NR(x)− x) + c2(ψ2nd NR(x)− x)2 + c3(ψ2nd NR(x)− x)3 + c4(ψ2nd NR(x)− x)4

f (ψ4thYM(x)) = f (x) + f ′(x)(ψ4thYM(x)− x) + c2(ψ4thYM(x)− x)2 + c3(ψ4thYM(x)− x)3 + c4(ψ4thYM(x)− x)4

f (ψ8thYM(x)) = f (x) + f ′(x)(ψ8thYM(x)− x) + c2(ψ8thYM(x)− x)2 + c3(ψ8thYM(x)− x)3 + c4(ψ8thYM(x)− x)4.
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Thus by applying divided differences, the above equations simplifies to

c2 + c3(ψ2nd NR(x)− x) + c4(ψ2nd NR(x)− x)2 = f [ψ2nd NR(x), x, x]

c2 + c3(ψ4thYM(x)− x) + c4(ψ4thYM(x)− x)2 = f [ψ4thYM(x), x, x] (14)

c2 + c3(ψ8thYM(x)− x) + c4(ψ8thYM(x)− x)2 = f [ψ8thYM(x), x, x]

Solving Equation (14), we have

c2 =

(
f [ψ2nd NR(x), x, x]

(
− S2

2S3 + S2S2
3

)
+ f [ψ4thYM(x), x, x]

(
S2

1S3 − S1S2
3

)
+ f [ψ8thYM(x), x, x]

(
− S2

1S2 + S1S2
2

))
−S2

1S2 + S1S2
2 + S2

1S3 − S2
2S3 − S1S2

3 + S2S2
3

,

c3 =

(
f [ψ2nd NR(x), x, x]

(
S2

2 − S2
3

)
+ f [ψ4thYM(x), x, x]

(
− S2

1 + S2
3

)
+ f [ψ8thYM(x), x, x]

(
S2

1 − S2
2

))
−S2

1S2 + S1S2
2 + S2

1S3 − S2
2S3 − S1S2

3 + S2S2
3

,

c4 =

(
f [ψ2nd NR(x), x, x]

(
− S2 + S3

)
+ f [ψ4thYM(x), x, x]

(
S1 − S3

)
+ f [ψ8thYM(x), x, x]

(
− S1 + S2

))
−S2

1S2 + S1S2
2 + S2

1S3 − S2
2S3 − S1S2

3 + S2S2
3

,

S1 = ψ2nd NR(x)− x, S2 = ψ4thYM(x)− x, S3 = ψ8thYM(x)− x.

(15)

Further, using Equation (15), we have the estimation

f ′(ψ8thYM(x)) ≈ q′(ψ8thYM(x)) = c1 + 2c2(ψ8thYM(x)− x) + 3c3(ψ8thYM(x)− x)2 + 4c4(ψ8thYM(x)− x)3.

Finally, we propose a new optimal sixteenth order method as

ψ16thYM(x) = ψ8thYM(x)− f (ψ8thYM(x))
f ′(x) + 2c2(ψ8thYM(x)− x) + 3c3(ψ8thYM(x)− x)2 + 4c4(ψ8thYM(x)− x)3 . (16)

The efficiency of the method (16) is EI16thYM = 1.741.

3. Convergence Analysis

In this section, we prove the convergence analysis of proposed IFs with help of Mathematica
software.

Theorem 1. Let f : D ⊂ R→ R be a sufficiently smooth function having continuous derivatives. If f (x) has
a simple root x∗ in the open interval D and x0 chosen in sufficiently small neighborhood of x∗, then the method
4thYM IFs (7) is of local fourth order convergence, and the 8thYM IFs (12) is of local eighth order convergence.

Proof. Let e = x− x∗ and c[j] =
f (j)(x∗)
j! f ′(x∗) , j = 2, 3, 4, .... Expanding f (x) and f ′(x) about x∗ by Taylor’s

method, we have

f (x) = f ′(x∗)
(

e + e2c[2] + e3c[3] + e4c[4] + e5c[5] + e6c[6] + e7c[7] + e8c[8] + . . .
)

(17)

and

f ′(x) = f ′(x∗)
(

1 + 2e c[2] + 3e2c[3] + 4e3c[4] + 5e4c[5] + 6e5c[6] + 7e6c[7] + 8e7c[8] + 9e8c[9] + . . .
)

(18)
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Thus,

ψ2nd NR(x) = x∗ + c[2]e2 +
(
− 2c[2]2 + 2c[3]

)
e3 +

(
4c[2]3 − 7c[2]c[3] + 3c[4]

)
e4 +

(
− 8c[2]4

+ 20c[2]2c[3]− 6c[3]2 − 10c[2]c[4] + 4c[5]
)

e5 +
(

16c[2]5 − 52c[2]3c[3] + 28c[2]2c[4]− 17c[3]c[4]

+ c[2](33c[3]2 − 13c[5]) + 5c[6]
)

e6 − 2
(

16c[2]6 − 64c[2]4c[3]− 9c[3]3 + 36c[2]3c[4] + 6c[4]2 + 9c[2]2(7c[3]2

− 2c[5]) + 11c[3]c[5] + c[2](−46c[3]c[4] + 8c[6])− 3c[7]
)

e7 +
(

64c[2]7 − 304c[2]5c[3]

+ 176c[2]4c[4] + 75c[3]2c[4] + c[2]3(408c[3]2 − 92c[5])− 31c[4]c[5]− 27c[3]c[6]

+ c[2]2(−348c[3]c[4] + 44c[6]) + c[2](−135c[3]3 + 64c[4]2 + 118c[3]c[5]− 19c[7]) + 7c[8]
)

e8 + . . . .

(19)

Expanding f (ψ2nd NR(x)) about x∗ by Taylor’s method, we have

f (ψ2nd NR(x)) = f ′(x∗)
(

c[2]e2 +
(
− 2c[2]2 + 2c[3]

)
e3 +

(
5c[2]3 − 7c[2]c[3] + 3c[4]

)
e4 − 2

(
6c[2]4

− 12c[2]2c[3] + 3c[3]2 + 5c[2]c[4]− 2c[5]
)

e5 +
(

28c[2]5 − 73c[2]3c[3] + 34c[2]2c[4]− 17c[3]c[4]

+ c[2](37c[3]2 − 13c[5]) + 5c[6]
)

e6 − 2
(

32c[2]6 − 103c[2]4c[3]− 9c[3]3 + 52c[2]3c[4] + 6c[4]2

+ c[2]2(80c[3]2 − 22c[5]) + 11c[3]c[5] + c[2](−52c[3]c[4] + 8c[6])− 3c[7]
)

e7

+
(

144c[2]7 − 552c[2]5c[3] + 297c[2]4c[4] + 75c[3]2c[4] + 2c[2]3(291c[3]2 − 67c[5])

− 31c[4]c[5]− 27c[3]c[6] + c[2]2(−455c[3]c[4] + 54c[6]) + c[2](−147c[3]3 + 73c[4]2

+ 134c[3]c[5]− 19c[7]) + 7c[8]
)

e8 + . . . .
)

(20)

Using Equations (17)–(20) in divided difference techniques. We have

f [ψ2nd NR(x), x, x] = f ′(x∗)
(

c[2] + 2c[3]e +
(

c[2]c[3] + 3c[4]
)

e2 + 2
(
− c[2]2c[3] + c[3]2

+ c[2]c[4] + 2c[5]
)

e3 +
(

4c[2]3c[3]− 3c[2]2c[4] + 7c[3]c[4] + c[2](−7c[3]2 + 3c[5]) + 5c[6]
)

e4

+
(
− 8c[2]4c[3]− 6c[3]3 + 4c[2]3c[4] + 4c[2]2(5c[3]2 − c[5]) + 10c[3]c[5]

+ 4c[2](−5c[3]c[4] + c[6]) + 6(c[4]2 + c[7])
)

e5 +
(

16c[2]5c[3]− 4c[2]4c[4]

− 25c[3]2c[4] + 17c[4]c[5] + c[2]3(−52c[3]2 + 5c[5]) + c[2]2(46c[3]c[4]− 5c[6])

+ 13c[3]c[6] + c[2](33c[3]3 − 14c[4]2 − 26c[3]c[5] + 5c[7]) + 7c[8]
)

e6 + . . . .
)

(21)

Substituting Equations (18)–(21) into Equation (7), we obtain, after simplifications,

ψ4thYM(x) = x∗ +
(

c[2]3 − c[2]c[3]
)

e4 − 2
(

2c[2]4 − 4c[2]2c[3] + c[3]2 + c[2]c[4]
)

e5 +
(

10c[2]5 − 30c[2]3c[3]

+ 12c[2]2c[4]− 7c[3]c[4] + 3c[2](6c[3]2 − c[5])
)

e6 − 2
(

10c[2]6 − 40c[2]4c[3]− 6c[3]3

+ 20c[2]3c[4] + 3c[4]2 + 8c[2]2(5c[3]2 − c[5]) + 5c[3]c[5] + c[2](−26c[3]c[4] + 2c[6])
)

e7 +
(

36c[2]7

− 178c[2]5c[3] + 101c[2]4c[4] + 50c[3]2c[4] + 3c[2]3(84c[3]2 − 17c[5])− 17c[4]c[5]− 13c[3]c[6]

+ c[2]2(−209c[3]c[4] + 20c[6]) + c[2](−91c[3]3 + 37c[4]2 + 68c[3]c[5]− 5c[7])
)

e8 + . . . .

(22)
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Expanding f (ψ4thYM(x)) about x∗ by Taylor’s method, we have

f (ψ4thYM(x)) = f ′(x∗)
((

c[2]3 − c[2]c[3]
)

e4 − 2
(

2c[2]4 − 4c[2]2c[3] + c[3]2 + c[2]c[4]
)

e5 +
(

10c[2]5

− 30c[2]3c[3] + 12c[2]2c[4]− 7c[3]c[4] + 3c[2](6c[3]2 − c[5])
)

e6 − 2
(

10c[2]6 − 40c[2]4c[3]

− 6c[3]3 + 20c[2]3c[4] + 3c[4]2 + 8c[2]2(5c[3]2 − c[5]) + 5c[3]c[5] + c[2](−26c[3]c[4] + 2c[6])
)

e7

+
(

37c[2]7 − 180c[2]5c[3] + 101c[2]4c[4] + 50c[3]2c[4] + c[2]3(253c[3]2 − 51c[5])− 17c[4]c[5]

− 13c[3]c[6] + c[2]2(−209c[3]c[4] + 20c[6]) + c[2](−91c[3]3 + 37c[4]2 + 68c[3]c[5]− 5c[7])
)

e8 + . . . .
)

(23)

Now,

f [ψ4thYM(x), x, x] = f ′(x∗)
(

c[2] + 2c[3]e + 3c[4]e2 + 4c[5]e3 +
(

c[2]3c[3]− c[2]c[3]2 + 5c[6]
)

e4

+
(
− 4c[2]4c[3] + 8c[2]2c[3]2 − 2c[3]3 + 2c[2]3c[4]− 4c[2]c[3]c[4] + 6c[7]

)
e5

+
(

10c[2]5c[3]− 8c[2]4c[4] + 28c[2]2c[3]c[4]− 11c[3]2c[4] + c[2]3(−30c[3]2 + 3c[5])+

2c[2](9c[3]3 − 2c[4]2 − 3c[3]c[5]) + 7c[8]
)

e6 + . . . .
)

(24)

Substituting Equations (19)–(21), (23) and (24) into Equation (12), we obtain, after simplifications,

ψ8thYM(x)− x∗ = c[2]2
(

c[2]2 − c[3]
)(

c[2]3 − c[2]c[3] + c[4]
)

e8 + O(e9) (25)

Hence from Equations (22) and (25), we concluded that the convergence order of the 4thYM and
8thYM are four and eight respectively.

The following theorem is given without proof, which can be worked out with the help of Mathematica.

Theorem 2. Let f : D ⊂ R → R be a sufficiently smooth function having continuous derivatives. If f (x)
has a simple root x∗ in the open interval D and x0 chosen in sufficiently small neighborhood of x∗, then the
method (16) is of local sixteenth order convergence and and it satisfies the error equation

ψ16thYM(x)− x∗ =
(
(c[2]4)((c[2]2 − c[3])2)(c[2]3 − c[2]c[3] + c[4])(c[2]4 − c[2]2c[3] + c[2]c[4]− c[5])

)
e16 + O(e17).

4. Numerical Examples

In this section, numerical results on some test functions are compared for the new methods
4thYM, 8thYM and 16thYM with some existing eighth order methods and Newton’s method. Numerical
computations have been carried out in the MATLAB software with 500 significant digits. We have used
the stopping criteria for the iterative process satisfying error = |xN − xN−1| < ε, where ε = 10−50 and
N is the number of iterations required for convergence. The computational order of convergence is
given by ([17])

ρ =
ln |(xN − xN−1)/(xN−1 − xN−2)|

ln |(xN−1 − xN−2)/(xN−2 − xN−3)| .

We consider the following iterative methods for solving nonlinear equations for the purpose of
comparison: ψ4thSB, a method proposed by Sharma et al. [18]:

y = x− 2 f (x)
3 f ′(x)

, ψ4thSB(x) = x−
(
− 1

2
+

9
8

f ′(x)
f ′(y) +

3
8

f ′(y)
f ′(x)

) f (x)
f ′(x)

. (26)

ψ4thCLND, a method proposed by Chun et al. [19]:

y = x− 2 f (x)
3 f ′(x)

, ψ4thCLND(x) = x− 16 f (x) f ′(x)
−5 f ′(x)2 + 30 f ′(x) f ′(y)− 9 f ′(y)2 . (27)
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ψ4thSJ , a method proposed by Singh et al. [20]:

y = x− 2
3

f (x)
f ′(x)

, ψ4thSJ(x) = x−
(

17
8
− 9

4
f ′(y)
f ′(x)

+
9
8

( f ′(y)
f ′(x)

)2
)(

7
4
− 3

4
f ′(y)

f ′(xn)

)
f (x)
f ′(x)

. (28)

ψ8thKT , a method proposed by Kung-Traub [2]:

y = x− f (x)
f ′(x)

, z = y− f (y) ∗ f (x)
( f (x)− f (y))2

f (x)
f ′(x)

,

ψ8thKT(x) = z− f (x)
f ′(x)

f (x) f (y) f (z)
( f (x)− f (y))2

f (x)2 + f (y)( f (y)− f (z))
( f (x)− f (z))2( f (y)− f (z))

.
(29)

ψ8th LW , a method proposed by Liu et al. [8]

y = x− f (x)
f ′(x)

, z = y− f (x)
f (x)− 2 f (y)

f (y)
f ′(x)

,

ψ8th LW(x) = z− f (z)
f ′(x)

(( f (x)− f (y)
f (x)− 2 f (y)

)2
+

f (z)
f (y)− f (z)

+
4 f (z)

f (x) + f (z)

)
.

(30)

ψ8thPNPD, a method proposed by Petkovic et al. [11]

y = x− f (x)
f ′(x)

, z = x−
(( f (y)

f (x)

)2 − f (x)
f (y)− f (x)

)
f (x)
f ′(x)

, ψ8thPNPD(x) = z− f (z)
f ′(x)

(
ϕ(t) +

f (z)
f (y)− f (z)

+
4 f (z)
f (x)

)
,

where ϕ(t) = 1 + 2t + 2t2 − t3 and t =
f (y)
f (x)

.

(31)

ψ8thSA1, a method proposed by Sharma et al. [12]

y = x− f (x)
f ′(x)

, z = y−
(

3− 2
f [y, x]
f ′(x)

)
f (y)
f ′(x)

, ψ8thSA1(x) = z− f (z)
f ′(x)

(
f ′(x)− f [y, x] + f [z, y]

2 f [z, y]− f [z, x]

)
. (32)

ψ8thSA2, a method proposed by Sharma et al. [13]

y = x− f (x)
f ′(x)

, z = y− f (y)
2 f [y, x]− f ′(x)

, ψ8thSA2(x) = z− f [z, y]
f [z, x]

f (z)
2 f [z, y]− f [z, x]

(33)

ψ8thCFGT , a method proposed by Cordero et al. [6]

y = x− f (x)
f ′(x)

, z = y− f (y)
f ′(x)

1
1− 2t + t2 − t3/2

, ψ8thCFGT(x) =

z− 1 + 3r
1 + r

f (z)
f [z, y] + f [z, x, x](z− y)

, r =
f (z)
f (x)

.
(34)

ψ8thCTV , a method proposed by Cordero et al. [7]

y = x− f (x)
f ′(x)

, z = x− 1− t
1− 2t

f (x)
f ′(x)

, ψ8thCTV(x) = z−
( 1− t

1− 2t
− v

)2 1
1− 3v

f (z)
f ′(x)

, v =
f (z)
f (y)

. (35)

Table 1 shows the efficiency indices of the new methods with some known methods.
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Table 1. Comparison of Efficiency Indices.

Methods p d EI

2ndNR 2 2 1.414
4thSB 4 3 1.587

4thCLND 4 3 1.587
4thSJ 4 3 1.587

4thYM 4 3 1.587
8thKT 8 4 1.682
8thLW 8 4 1.682

8thPNPD 8 4 1.682
8thSA1 8 4 1.682
8thSA2 8 4 1.682

8thCFGT 8 4 1.682
8thCTV 8 4 1.682
8thYM 8 4 1.682
16thYM 16 5 1.741

The following test functions and their simple zeros for our study are given below [10]:

f1(x) = sin(2 cos x)− 1− x2 + esin(x3), x∗ = −0.7848959876612125352...

f2(x) = xex2 − sin2x + 3 cos x + 5, x∗ = −1.2076478271309189270...

f3(x) = x3 + 4x2 − 10, x∗ = 1.3652300134140968457...

f4(x) = sin(x) + cos(x) + x, x∗ = −0.4566247045676308244...

f5(x) =
x
2
− sin x, x∗ = 1.8954942670339809471...

f6(x) = x2 + sin(
x
5
)− 1

4
, x∗ = 0.4099920179891371316...

Table 2, shows that corresponding results for f1 − f6. We observe that proposed method 4thYM is
converge in a lesser or equal number of iterations and with least error when compare to compared
methods. Note that 4thSB and 4thSJ methods are getting diverge in f5 function. Hence, the proposed
method 4thYM can be considered competent enough to existing other compared equivalent methods.

Also, from Tables 3–5 are shows the corresponding results for f1 − f6. The computational order of
convergence agrees with the theoretical order of convergence in all the functions. Note that 8thPNPD
method is getting diverge in f5 function and all other compared methods are converges with least error.
Also, function f1 having least error in 8thCFGT, function f2 having least error in 8thCTV, functions f3

and f4 having least error in 8thYM, function f5 having least error in 8thSA2, function f6 having least
error in 8thCFGT. The proposed 16thYM method converges less number of iteration with least error
in all the tested functions. Hence, the 16thYM can be considered competent enough to existing other
compared equivalent methods.
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Table 2. Numerical results for nonlinear equations.

Methods f1(x), x0 = −0.9 f2(x), x0 = −1.6

N |x1 − x0| |xN − xN−1| ρ N |x1 − x0| |xN − xN−1| ρ

2nd NR (4) 7 0.1080 7.7326 × 10−74 1.99 9 0.2044 9.2727 × 10−74 1.99
4thSB (26) 4 0.1150 9.7275 × 10−64 3.99 5 0.3343 1.4237 × 10−65 3.99

4thCLND (27) 4 0.1150 1.4296 × 10−64 3.99 5 0.3801 1.1080 × 10−72 3.99
4thSJ (28) 4 0.1150 3.0653 × 10−62 3.99 5 0.3190 9.9781 × 10−56 3.99
4thYM (7) 4 0.1150 6.0046 × 10−67 3.99 5 0.3737 7.2910 × 10−120 4.00

Methods f3(x), x0 = 0.9 f4(x), x0 = −1.9

2nd NR (4) 8 0.6263 1.3514 × 10−72 2.00 8 1.9529 1.6092 × 10−72 1.99
4thSB (26) 5 0.5018 4.5722 × 10−106 3.99 5 1.5940 6.0381 × 10−92 3.99

4thCLND (27) 5 0.5012 4.7331 × 10−108 3.99 5 1.5894 2.7352 × 10−93 3.99
4thSJ (28) 5 0.4767 3.0351 × 10−135 3.99 5 1.5776 9.5025 × 10−95 3.99
4thYM (7) 5 0.4735 2.6396 × 10−156 3.99 5 1.5519 1.4400 × 10−102 3.99

Methods f5(x), x0 = 1.2 f6(x), x0 = 0.8

2nd NR (4) 9 2.4123 1.3564 × 10−83 1.99 8 0.3056 3.2094 × 10−72 1.99
4thSB (26) Diverge 5 0.3801 2.8269 × 10−122 3.99

4thCLND (27) 14 0.0566 6.8760 × 10−134 3.99 5 0.3812 7.8638 × 10−127 3.99
4thSJ (28) Diverge 5 0.3780 1.4355 × 10−114 3.99
4thYM (7) 6 1.2887 2.3155 × 10−149 3.99 5 0.3840 1.1319 × 10−143 3.99

Table 3. Numerical results for nonlinear equations.

Methods f1(x), x0 = −0.9 f2(x), x0 = −1.6

N |x1 − x0| |xN − xN−1| ρ N |x1 − x0| |xN − xN−1| ρ

8thKT (29) 3 0.1151 1.6238 × 10−61 7.91 4 0.3876 7.2890 × 10−137 7.99
8thLW (30) 3 0.1151 4.5242 × 10−59 7.91 4 0.3904 1.1195 × 10−170 8.00

8thPNPD (31) 3 0.1151 8.8549 × 10−56 7.87 4 0.3734 2.3461 × 10−85 7.99
8thSA1 (32) 3 0.1151 3.4432 × 10−60 7.88 4 0.3983 8.4343 × 10−121 8.00
8thSA2 (33) 3 0.1151 6.9371 × 10−67 7.99 4 0.3927 5.9247 × 10−225 7.99

8thCFGT (34) 3 0.1151 1.1715 × 10−82 7.77 5 0.1532 2.0650 × 10−183 7.99
8thCTV (35) 3 0.1151 4.4923 × 10−61 7.94 4 0.3925 2.3865 × 10−252 7.99
8thYM (12) 3 0.1151 1.1416 × 10−70 7.96 4 0.3896 8.9301 × 10−163 8.00
16thYM (16) 3 0.1151 0 15.99 3 0.3923 3.5535 × 10−85 16.20

Table 4. Numerical results for nonlinear equations.

Methods f3(x), x0 = 0.9 f4(x), x0 = −1.9

N |x1 − x0| |xN − xN−1| ρ N |x1 − x0| |xN − xN−1| ρ

8thKT (29) 4 0.4659 5.0765 × 10−216 7.99 4 1.4461 5.5095 × 10−204 8.00
8thLW (30) 4 0.4660 2.7346 × 10−213 7.99 4 1.4620 3.7210 × 10−146 8.00

8thPNPD (31) 4 0.3821 9.9119 × 10−71 8.02 4 1.3858 2.0603 × 10−116 7.98
8thSA1 (32) 4 0.4492 1.5396 × 10−122 8.00 4 1.4170 2.2735 × 10−136 7.99
8thSA2 (33) 4 0.4652 4.1445 × 10−254 7.98 4 1.4339 2.5430 × 10−166 7.99

8thCFGT (34) 4 0.4654 2.4091 × 10−260 7.99 4 1.4417 4.7007 × 10−224 7.99
8thCTV (35) 4 0.4652 3.8782 × 10−288 8.00 4 1.3957 3.7790 × 10−117 7.99
8thYM (12) 4 0.4653 3.5460 × 10−309 7.99 4 1.4417 2.9317 × 10−229 7.99
16thYM (16) 3 0.4652 3.6310 × 10−154 16.13 3 1.4434 1.8489 × 10−110 16.36
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Table 5. Numerical results for nonlinear equations.

Methods f5(x), x0 = 1.2 f6(x), x0 = 0.8

N |x1 − x0| |xN − xN−1| ρ N |x1 − x0| |xN − xN−1| ρ

8thKT (29) 5 1.8787 2.6836 × 10−182 7.99 4 0.3898 6.0701 × 10−234 7.99
8thLW (30) 6 40.5156 4.6640 × 10−161 7.99 4 0.3898 6.1410 × 10−228 7.99

8thPNPD (31) Diverge 4 0.3894 3.6051 × 10−190 7.99
8thSA1 (32) 7 891.9802 2.1076 × 10−215 9.00 4 0.3901 5.9608 × 10−245 8.00
8thSA2 (33) 4 0.7161 5.3670 × 10−128 7.99 4 0.3900 8.3398 × 10−251 8.61

8thCFGT (34) 5 2.8541 0 7.99 4 0.3900 0 7.99
8thCTV (35) 5 0.6192 1.6474 × 10−219 9.00 4 0.3901 1.0314 × 10−274 8.00
8thYM (12) 4 0.7733 1.3183 × 10−87 7.98 4 0.3900 1.2160 × 10−286 7.99
16thYM (16) 4 0.6985 0 16.10 3 0.3900 1.1066 × 10−143 15.73

5. Applications to Some Real World Problems

5.1. Projectile Motion Problem

We consider the classical projectile problem [21,22] in which a projectile is launched from a tower
of height h > 0, with initial speed v and at an angle θ with respect to the horizontal onto a hill, which
is defined by the function ω, called the impact function which is dependent on the horizontal distance,
x. We wish to find the optimal launch angle θm which maximizes the horizontal distance. In our
calculations, we neglect air resistances.

The path function y = P(x) that describes the motion of the projectile is given by

P(x) = h + x tan θ − gx2

2v2 sec2 θ (36)

When the projectile hits the hill, there is a value of x for which P(x) = ω(x) for each value of x.
We wish to find the value of θ that maximize x.

ω(x) = P(x) = h + x tan θ − gx2

2v2 sec2 θ (37)

Differentiating Equation (37) implicitly w.r.t. θ, we have

ω′(x)
dx
dθ

= x sec2 θ +
dx
dθ

tan θ − g
v2

(
x2 sec2 θ tan θ + x

dx
dθ

sec2 θ

)
(38)

Setting
dx
dθ

= 0 in Equation (38), we have

xm =
v2

g
cot θm (39)

or

θm = arctan
(

v2

g xm

)
(40)

An enveloping parabola is a path that encloses and intersects all possible paths. Henelsmith [23]
derived an enveloping parabola by maximizing the height of the projectile fora given horizontal distance
x, which will give the path that encloses all possible paths. Let w = tan θ, then Equation (36) becomes

y = P(x) = h + xw− gx2

2v2 (1 + w2) (41)
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Differentiating Equation (41) w.r.t. w and setting y′ = 0, Henelsmith obtained

y′ = x− xg2

v2 (w) = 0

w =
v2

g x

(42)

so that the enveloping parabola defined by

ym = ρ(x) = h +
v2

2g
− gx2

2v2 (43)

The solution to the projectile problem requires first finding xm which satisfies ρ(x) = ω(x) and
solving for θm in Equation (40) because we want to find the point at which the enveloping parabola
ρ intersects the impact function ω, and then find θ that corresponds to this point on the enveloping
parabola. We choose a linear impact function ω(x) = 0.4x with h = 10 and v = 20. We let g = 9.8.
Then we apply our IFs starting from x0 = 30 to solve the non-linear equation

f (x) = ρ(x)−ω(x) = h +
v2

2g
− gx2

2v2 − 0.4x

whose root is given by xm = 36.102990117..... and

θm = arctan
(

v2

g xm

)
= 48.5◦.

Figure 1 shows the intersection of the path function, the enveloping parabola and the linear impact
function for this application. The approximate solutions are calculated correct to 500 significant figures.
The stopping criterion |xN − xN−1| < ε, where ε = 10−50 is used. Table 6 shows that proposed method
16thYM is converging better than other compared methods. Also, we observe that the computational
order of convergence agrees with the theoretical order of convergence.
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Figure 1. The enveloping parabola with linear impact function.
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Table 6. Results of projectile problem.

IF N Error cpu Time(s) ρ

2ndNR 7 4.3980 × 10−76 1.074036 1.99
4thYM 4 4.3980 × 10−76 0.902015 3.99
8thKT 3 1.5610 × 10−66 0.658235 8.03
8thLW 3 7.8416 × 10−66 0.672524 8.03

8thPNPD 3 4.2702 × 10−57 0.672042 8.05
8thSA1 3 1.2092 × 10−61 0.654623 8.06
8thCTV 3 3.5871 × 10−73 0.689627 8.02
8thYM 3 4.3980 × 10−76 0.618145 8.02
16thYM 3 0 0.512152 16.01

5.2. Planck’s Radiation Law Problem

We consider the following Planck’s radiation law problem found in [24]:

ϕ(λ) =
8πchλ−5

ech/λkT − 1
, (44)

which calculates the energy density within an isothermal blackbody. Here, λ is the wavelength of
the radiation, T is the absolute temperature of the blackbody, k is Boltzmann’s constant, h is the
Planck’s constant and c is the speed of light. Suppose, we would like to determine wavelength λ which
corresponds to maximum energy density ϕ(λ). From (44), we get

ϕ′(λ) =
( 8πchλ−6

ech/λkT − 1

)( (ch/λkT)ech/λkT

ech/λkT − 1
− 5

)
= A · B.

It can be checked that a maxima for ϕ occurs when B = 0, that is, when

( (ch/λkT)ech/λkT

ech/λkT − 1

)
= 5.

Here putting x = ch/λkT, the above equation becomes

1− x
5
= e−x. (45)

Define
f (x) = e−x − 1 +

x
5

. (46)

The aim is to find a root of the equation f (x) = 0. Obviously, one of the root x = 0 is not taken for
discussion. As argued in [24], the left-hand side of (45) is zero for x = 5 and e−5 ≈ 6.74× 10−3. Hence,
it is expected that another root of the equation f (x) = 0 might occur near x = 5. The approximate
root of the Equation (46) is given by x∗ ≈ 4.96511423174427630369 with x0 = 3. Consequently, the
wavelength of radiation (λ) corresponding to which the energy density is maximum is approximated as

λ ≈ ch
(kT)4.96511423174427630369

.

Table 7 shows that proposed method 16thYM is converging better than other compared methods.
Also, we observe that the computational order of convergence agrees with the theoretical order
of convergence.
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Table 7. Results of Planck’s radiation law problem.

IF N Error cpu Time(s) ρ

2ndNR 7 1.8205 × 10−70 0.991020 2.00
4thYM 5 1.4688 × 10−181 0.842220 4.00
8thKT 4 4.0810 × 10−288 0.808787 7.99
8thLW 4 3.1188 × 10−268 0.801304 7.99

8thPNPD 4 8.0615 × 10−260 0.800895 7.99
8thSA1 4 1.9335 × 10−298 0.791706 8.00
8thCTV 4 5.8673 × 10−282 0.831006 8.00
8thYM 4 2.5197 × 10−322 0.855137 8.00

16thYM 3 8.3176 × 10−153 0.828053 16.52

Hereafter, we will study the optimal fourth and eighth order methods along with Newton’s method.

6. Corresponding Conjugacy Maps for Quadratic Polynomials

In this section, we discuss the rational map Rp arising from 2ndNR, proposed methods 4thYM
and 8thYM applied to a generic polynomial with simple roots.

Theorem 3. (2ndNR) [18] For a rational map Rp(z) arising from Newton’s method (4) applied to p(z) =

(z− a)(z− b), a �= b, Rp(z) is conjugate via the a Möbius transformation given by M(z) = (z− a)/(z− b) to

S(z) = z2.

Theorem 4. (4thYM) For a rational map Rp(z) arising from Proposed Method (7) applied to p(z) = (z−
a)(z− b), a �= b, Rp(z) is conjugate via the a Möbius transformation given by M(z) = (z− a)/(z− b) to

S(z) = z4.

Proof. Let p(z) = (z − a)(z − b), a �= b, and let M be Möbius transformation given by M(z) =

(z− a)/(z− b) with its inverse M−1(z) = (zb−a)
(z−1) , which may be considered as map from C ∪ {∞}.

We then have
S(z) = M ◦ Rp ◦M−1(z) = M

(
Rp

( zb− a
z− 1

))
= z4.

Theorem 5. (8thYM) For a rational map Rp(z) arising from Proposed Method (12) applied to p(z) = (z−
a)(z− b), a �= b, Rp(z) is conjugate via the a Möbius transformation given by M(z) = (z− a)/(z− b) to

S(z) = z8.

Proof. Let p(z) = (z − a)(z − b), a �= b, and let M be Möbius transformation given by M(z) =

(z− a)/(z− b) with its inverse M−1(z) = (zb−a)
(z−1) , which may be considered as map from C ∪ {∞}.

We then have
S(z) = M ◦ Rp ◦M−1(z) = M

(
Rp

( zb− a
z− 1

))
= z8.

Remark 1. The methods (29)–(35) are given without proof, which can be worked out with the help of Mathematica.

Remark 2. All the maps obtained above are of the form S(z) = zpR(z), where R(z) is either unity or a rational
function and p is the order of the method.
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7. Basins of Attraction

The study of dynamical behavior of the rational function associated to an iterative method gives
important information about convergence and stability of the method. The basic definitions and
dynamical concepts of rational function which can found in [4,25].

We take a square R×R = [−2, 2]× [−2, 2] of 256× 256 points and we apply our iterative methods
starting in every z(0) in the square. If the sequence generated by the iterative method attempts a zero
z∗j of the polynomial with a tolerance | f (z(k))| < ×10−4 and a maximum of 100 iterations, we decide

that z(0) is in the basin of attraction of this zero. If the iterative method starting in z(0) reaches a zero in
N iterations (N ≤ 100), then we mark this point z(0) with colors if |z(N) − z∗j | < ×10−4. If N > 50, we
conclude that the starting point has diverged and we assign a dark blue color. Let ND be a number
of diverging points and we count the number of starting points which converge in 1, 2, 3, 4, 5 or
above 5 iterations. In the following, we describe the basins of attraction for Newton’s method and
some higher order Newton type methods for finding complex roots of polynomials p1(z) = z2 − 1,
p2(z) = z3 − 1 and p3(z) = z5 − 1.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

p1(z) = z2 − 1 p2(z) = z3 − 1 p3(z) = z5 − 1

Figure 2. Basins of attraction for 2nd NR for the polynomial p1(z), p2(z), p3(z).

Figures 2 and 3 shows the polynomiographs of the methods for the polynomial p1(z). We can
see that the methods 2ndNR, 4thYM, 8thSA2 and 8thYM performed very nicely. The methods 4thSB,
4thSJ, 8thKT, 8thLW, 8thPNPD, 8thSA1, 8thCFGT and 8thCTV are shows some chaotic behavior near the
boundary points. The method 4thCLND have sensitive to the choice of initial guess in this case.

Figures 2 and 4 shows the polynomiographs of the methods for the polynomial p2(z). We can see
that the methods 2ndNR, 4thYM, 8thSA2 and 8thYM performed very nicely. The methods 4thSB, 8thKT,
8thLW and 8thCTV are shows some chaotic behavior near the boundary points. The methods 4thCLND,
4thSJ, 8thPNPD, 8thSA1, and 8thCFGT have sensitive to the choice of initial guess in this case.

Figures 2 and 5 shows the polynomiographs of the methods for the polynomial p3(z). We can
see that the methods 4thYM, 8thSA2 and 8thYM are shows some chaotic behavior near the boundary
points. The methods 2ndNR, 4thSB, 4thCLND, 4thSJ, 8thKT, 8thLW, 8thPNPD, 8thSA1, 8thCFGT and
8thCTV have sensitive to the choice of initial guess in this case. In Tables 8–10, we classify the number
of converging and diverging grid points for each iterative method.
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Figure 3. Basins of attraction for p1(z) = z2 − 1.
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Figure 4. Basins of attraction for p2(z) = z3 − 1.
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Figure 5. Basins of attraction for p3(z) = z5 − 1.
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Table 8. Results of the polynomials p1(z) = z2 − 1.

IF N = 1 N = 2 N = 3 N = 4 N = 5 N > 5 ND

2ndNR 4 516 7828 23,272 20,548 13,368 0
4thSB 340 22,784 29,056 6836 2928 3592 0

4thCLND 372 24,600 29,140 6512 2224 2688 1076
4thSJ 300 19,816 28,008 5844 2968 8600 0

4thYM 520 31,100 27,520 4828 1208 360 0
8thKT 4684 44,528 9840 3820 1408 1256 24
8thLW 4452 43,236 11,408 3520 1540 1380 0

8thPNPD 2732 39,768 13,112 3480 1568 4876 16
8thSA1 4328 45,824 8136 2564 1484 3200 0
8thSA2 15,680 45,784 3696 376 0 0 0

8thCFGT 9616 43,716 7744 2916 980 564 64
8thCTV 7124 48,232 7464 1892 632 192 0
8thYM 8348 50,792 5572 824 0 0 0

Table 9. Results of the polynomials p2(z) = z3 − 1.

IF N = 1 N = 2 N = 3 N = 4 N = 5 N > 5 ND

2ndNR 0 224 2908 11,302 19,170 31,932 0
4thSB 160 9816 27,438 9346 5452 13,324 6

4thCLND 170 11,242 28,610 9984 4202 11,328 7176
4thSJ 138 7760 25,092 8260 5058 19,228 1576

4thYM 270 18,064 30,374 9862 3688 3278 0
8thKT 2066 34,248 11,752 6130 4478 6862 0
8thLW 2092 33,968 12,180 4830 3030 9436 0

8thPNPD 1106 25,712 11,258 3854 1906 21,700 10,452
8thSA1 1608 36,488 12,486 3718 1780 9456 872
8thSA2 6432 46,850 9120 2230 640 264 0

8thCFGT 3688 40,740 13,696 4278 1390 1744 7395
8thCTV 3530 43,554 11,724 3220 1412 2096 0
8thYM 3816 43,596 12,464 3636 1302 722 0

Table 10. Results of the polynomials p3(z) = z5 − 1.

IF N = 1 N = 2 N = 3 N = 4 N = 5 N > 5 ND

2ndNR 2 100 1222 4106 7918 52,188 638
4thSB 76 3850 15,458 18,026 5532 22,594 5324

4thCLND 86 4476 18,150 17,774 5434 19,616 12,208
4thSJ 62 3094 11,716 16,840 5682 28,142 19,900

4thYM 142 7956 27,428 15,850 5726 8434 0
8thKT 950 17,884 20,892 5675 4024 16,111 217
8thLW 1032 18,764 20,622 5056 3446 16,616 1684

8thPNPD 496 12,770 21,472 6576 2434 21,788 14,236
8thSA1 692 26,212 15,024 4060 1834 17,714 8814
8thSA2 2662 41,400 12,914 4364 1892 2304 0

8thCFGT 2008 21,194 23,734 6180 3958 8462 1953
8thCTV 1802 36,630 13,222 4112 2096 7674 350
8thYM 1736 27,808 21,136 5804 2704 6348 0

We note that a point z0 belongs to the Julia set if and only if the dynamics in a neighborhood of
z0 displays sensitive dependence on the initial conditions, so that nearby initial conditions lead to
wildly different behavior after a number of iterations. For this reason, some of the methods are getting
divergent points. The common boundaries of these basins of attraction constitute the Julia set of the
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iteration function. It is clear that one has to use quantitative measures to distinguish between the
methods, since we have a different conclusion when just viewing the basins of attraction.

In order to summarize the results, we have compared mean number of iteration and total number
of functional evaluations (TNFE) for each polynomials and each methods in Table 11. The best method
based on the comparison in Table 11 is 8thSA2. The method with the fewest number of functional
evaluations per point is 8thSA2 followed closely by 4thYM. The fastest method is 8thSA2 followed
closely by 8thYM. The method with highest number of functional evaluation and slowest method
is 8thPNPD.

Table 11. Mean number of iteration (Nμ) and TNFE for each polynomials and each methods.

IF Nμ f or p1(z) Nμ f or p2(z) Nμ f or p3(z) Average TNFE

2ndNR 4.7767 6.4317 9.8531 7.0205 14.0410
4thSB 3.0701 4.5733 9.2701 5.6378 16.9135

4thCLND 3.6644 8.6354 12.8612 8.3870 25.1610
4thSJ 3.7002 7.0909 14.5650 8.4520 25.3561

4thYM 2.6366 3.1733 4.0183 3.2760 9.8282
8thKT 2.3647 3.1270 4.4501 3.3139 13.2557
8thLW 2.3879 3.5209 6.3296 4.0794 16.3178

8thPNPD 2.9959 10.5024 12.3360 8.6114 34.4457
8thSA1 2.5097 4.5787 9.7899 5.6262 22.5044
8thSA2 1.8286 2.1559 2.5732 2.1859 8.7436

8thCFGT 2.1683 2.8029 3.4959 2.8223 11.2894
8thCTV 2.1047 2.4708 3.9573 2.8442 11.3770
8thYM 1.9828 2.3532 3.3617 2.5659 10.2636

8. Concluding Remarks and Future Work

In this work, we have developed optimal fourth, eighth and sixteenth order iterative methods
for solving nonlinear equations using the divided difference approximation. The methods require
the computations of three functions evaluations reaching order of convergence is four, four functions
evaluations reaching order of convergence is eight and five functions evaluations reaching order of
convergence is sixteen. In the sense of convergence analysis and numerical examples, the Kung-Traub’s
conjecture is satisfied. We have tested some examples using the proposed schemes and some known
schemes, which illustrate the superiority of the proposed method 16thYM. Also, proposed methods
and some existing methods have been applied on the Projectile motion problem and Planck’s radiation
law problem. The results obtained are interesting and encouraging for the new method 16thYM.
The numerical experiments suggests that the new methods would be valuable alternative for solving
nonlinear equations. Finally, we have also compared the basins of attraction of various fourth and
eighth order methods in the complex plane.

Future work includes:

• Now we are investigating the proposed scheme to develop optimal methods of arbitrarily high
order with Newton’s method, as in [26].

• Also, we are investigating to develop derivative free methods to study dynamical behavior and
local convergence, as in [27,28].
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Abstract: In this paper, using the idea of weight functions on the Potra–Pták method, an optimal
fourth order method, a non optimal sixth order method, and a family of optimal eighth order methods
are proposed. These methods are tested on some numerical examples, and the results are compared
with some known methods of the corresponding order. It is proved that the results obtained from the
proposed methods are compatible with other methods. The proposed methods are tested on some
problems related to engineering and science. Furthermore, applying these methods on quadratic and
cubic polynomials, their stability is analyzed by means of their basins of attraction.

Keywords: nonlinear equations; Potra–Pták method; optimal methods; weight function; basin of
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1. Introduction

For solving nonlinear equations iteratively, the Newton’s method given by

xn+1 = xn − f (xn)

f ′(xn)

is one of the most commonly used methods. The efficiency index as defined by Ostroswki in [1],
which relates the order of convergence of a method p with the number of function evaluations per
iteration d, is given by the expression p1/d. Newton’s method is quadratically convergent and requires
two function evaluations per iteration and, thereby, has the efficiency index value of 21/2 ≈ 1.414.
Numerous methods have appeared giving higher order of convergence or better efficiency. One of
the recent strategies to increase the order of the methods is the use of weight functions [2–5]. In this
regard, Sharma and Behl [6] presented the fourth order method:

yn = xn − 2
3

f (xn)
f ′(xn)

,

xn+1 = xn −
(
− 1

2 + 3
8

f ′(yn)
f ′(xn)

+ 9
8

f ′(xn)
f ′(yn)

)
f (xn)
f ′(xn)

.
(1)
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Similarly, Sharifi et al. [7] used weight functions on the third order Heun’s method and proposed the
fourth order method

yn = xn − 2
3

f (xn)
f ′(xn)

,

xn+1 = xn − f (xn)
4

(
1

f ′(xn)
+ 3

f ′(yn)

)(
1 + 3

8

(
f ′(yn)
f ′(xn)

− 1
)2 − 69

64

(
f ′(yn)
f ′(xn)

− 1
)3

+ f (xn)
f ′(yn)

)
.

(2)

According to Kung and Traub [8], an iterative method is said to be optimal if its order is 2d−1, where d
is the number of function evaluations per iteration. Notice that Newton’s method as well as (1) and (2)
are all optimal.

Potra and Pták [9], as an attempt to improve Newton’s method, gave the method

yn = xn − f (xn)
f ′(xn)

,

xn+1 = xn − f (xn)+ f (yn)
f ′(xn)

.
(3)

This method is cubically convergent but is not optimal, as it requires three function evaluations
per iteration.

The aim, in the present paper, is to further investigate the method (3). Precisely, we use weight
functions and improve the order of convergence of (3). We do it in three ways which correspond to the
methods of orders 4, 6 and 8. Out of these, the methods with orders 4 and 8 are optimal.

Dynamics of a rational operator give important information about the convergence, efficiency
and stability of the iterative methods. During the last few decades, many researchers, e.g., [10–16]
and references therein, study the dynamical behavior of rational operators associated with iterative
methods. Furthermore, there is an extensive literature [17–21] to understand and implement further
results on the dynamics of rational functions. In this paper, we also analyze the dynamical behavior
of the methods that we have developed in this paper. Furthermore, at the end of this work, the
basins of attraction are also presented and compared among the proposed and other methods of the
corresponding order.

The remaining part of the paper is organized as follows. In Section 2, the development of the
methods and their convergence analysis are given. In Section 3, the proposed methods are tested on
some functions, and the results are compared with other methods in the head of Numerical Examples.
In Section 4, the proposed methods are tested on some engineering and science related designs.
Section 5 is devoted to analyze the stability of the introduced methods by means of complex dynamics.
In this sense, the study of the rational function resulting from the application of the methods to several
nonlinear functions is developed, and their basins of attraction are represented. Finally, Section 6
covers the conclusions of the research.

2. Development of Methods and Their Convergence Analysis

In this section, the methods of order four, six and eight are introduced, and its convergence
is analyzed.

2.1. Optimal Fourth Order Method

Based on the Potra–Pták method (3), we propose the following two-step method using a weight
function, whose iterative expression is

yn = xn − f (xn)
f ′(xn)

,

xn+1 = xn − w(tn)
f (xn)+ f (yn)

f ′(xn)
,

(4)

where w(tn) = a1 + a2tn + a3t2
n and tn = f (yn)

f (xn)
. The convergence of (4) is proved in the

following theorem.

47



Mathematics 2019, 7, 942

Theorem 1. Let f be a real or complex valued function defined in the interval I having a sufficient number of
smooth derivatives. Let α be a simple root of the equation f (x) = 0 and the initial point x0 is close enough to α.
Then, the method (4) is fourth order of convergence if a1 = 1, a2 = 0 and a3 = 2.

Proof. We denote cj =
f (j)(α)
j! f ′(α) . Let en = xn − α be the error in xn. Then, Taylor’s series expansion of

f (xn) and f ′(xn) about α gives

f (xn) = f ′(α)
(

en + c2e2
n + c3e3

n + c4e4
n + c5e5

n + c6e6
n + c7e7

n + c8e8
n + O(e9

n)
)

(5)

and
f ′(xn) = f ′(α)

(
1 + 2c2en + 3c3e2

n + 4c4e3
n + 5c5e4

n + 6c6e5
n + 7c7e6

n + 8c8e7
n + O(e8

n)
)

. (6)

Let dn = yn − α, then, from the first equation of (4), we get

dn = c2e2
n − 2

(
c2

2 − c3
)

e3
n +

(
4c3

2 − 7c2c3 + 3c4
)

e4
n +

(−8c4
2 + 20c3c2

2 − 10c4c2 − 6c2
3 + 4c5

)
e5

n
+
(
16c5

2 − 52c3c3
2 + 28c4c2

2 +
(
33c2

3 − 13c5
)

c2 − 17c3c4 + 5c6
)

e6
n

−2
(

16c6
2 − 64c3c4

2 + 36c4c3
2 + 9

(
7c2

3 − 2c5
)

c2
2 + (8c6 − 46c3c4) c2 − 9c3

3 + 6c2
4 + 11c3c5 − 3c7

)
e7

n

+

(
64c7

2 − 304c3c5
2 + 176c4c4

2 +
(
408c2

3 − 92c5
)

c3
2 + (44c6 − 348c3c4) c2

2

+75c2
3c4 − 31c4c5 − 27c3c6 + c2

(−135c3
3 + 118c5c3 + 64c2

4 − 19c7
)
+ 7c8

)
e8

n + O(e9
n)

so that, using Taylor’s series expansion of f (yn) about α, we get

f (yn) = f (dn + α)

= f ′(α)
[

c2e2
n − 2(c2

2 − c3)e3
n +

(
5c3

2 − 7c2c3 + 3c4
)

e4
n − 2

(
6c4

2 − 12c3c2
2 + 5c4c2 + 3c2

3 − 2c5
)

e5
n

+
(

28c5
2 − 73c3c3

2 + 34c4c2
2 +

(
37c2

3 − 13c5
)

c2 − 17c3c4 + 5c6

)
e6

n

−2
(

32c6
2 − 103c3c4

2 + 52c4c3
2 +

(
80c2

3 − 22c5
)

c2
2 + (8c6 − 52c3c4) c2

−9c3
3 + 6c2

4 + 11c3c5 − 3c7

)
e7

n +

(
144c7

2 − 552c3c5
2 + 297c4c4

2 + 2
(
291c2

3 − 67c5
)

c3
2

+ (54c6 − 455c3c4) c2
2 + 75c2

3c4 − 31c4c5 − 27c3c6 + c2
(−147c3

3 + 134c5c3 + 73c2
4 − 19c7

)
+7c8

)
e8

n + O(e9
n)
]
.

(7)

Now, from (5) and (7), we get

tn =
f (yn)
f (xn)

= c2en + (−3c2
2 + 2c3)e2

n + (8c3
2 − 10c2c3 + 3c4)e3

n +
(−20c4

2 + 37c2
2c3 − 14c2c4 − 8c2

3 + 4c5
)

e4
n

+
(
48c5

2 − 118c3
2c3 + 51c2

2c4 + 55c2c2
3 − 18c2c5 − 22c3c4 + 5c6

)
e5

n

+

(
− 112c6

2 + 344c3c4
2 − 163c4c3

2 +
(
65c5 − 252c2

3
)

c2
2 + 2 (75c3c4 − 11c6) c2

+26c3
3 − 15c2

4 − 28c3c5 + 6c7

)
e6

n + O(e7
n).

(8)

Therefore, using the results obtained above in the second equation of (4), we get

en+1 = (1− a1) en − a2c2e2
n +

(
2a1c2

2 + 3a2c2
2 − 2a2c3 − a3c2

2
)

e3
n

+
(−9a1c3

2 + 7a1c2c3 − 6a2c3
2 + 10a2c2c3 − 3a2c4 + 6a3c3

2 − 4a3c2c3
)

e4
n + O(e5

n).
(9)
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In order to obtain fourth order of convergence, in view of (9), we must have

1− a1 = 0,
a2 = 0,

2a1c2
2 + 3a2c2

2 − 2a2c3 − a3c2
2 = 0,

which gives a1 = 1, a2 = 0 and a3 = 2. Therefore, from (9), the error equation of the method (4) becomes

en+1 = (3c3
2 − c2c3)e4

n +O
(

e5
n

)
,

and the assertion follows.

In view of Theorem 1, the proposed fourth order method is

yn = xn − f (xn)
f ′(xn)

,

xn+1 = xn −
(

1 + 2
(

f (yn)
f (xn)

)2
)

f (xn)+ f (yn)
f ′(xn)

,
(10)

which requires three function evaluations per iteration and consequently is optimal. In addition, the
efficiency index of (10) is 1.5874, which is higher than that of (3) having an efficiency index of 1.442.

2.2. Sixth Order Method

Using the results obtained in (10), we propose a new method defined by

yn = xn − f (xn)
f ′(xn)

,

zn = xn −
(

1 + 2
(

f (yn)
f (xn)

)2
)

f (xn)+ f (yn)
f ′(xn)

,

xn+1 = zn − w1(tn)
f (zn)
f ′(xn)

,

(11)

where w1(tn) = b1 + b2tn is a new weight function and tn is as in (4). The order of convergence is
shown in the following result.

Theorem 2. Let f be a real or complex valued function defined in an interval I having a sufficient number of
smooth derivatives. Let α be a simple root of the equation f (x) = 0 and the initial point x0 is close enough to α.
Then, (11) has a sixth order of convergence if b1 = 1 and b2 = 2.

Proof. Let θn = zn − α. Then, from second equation of (11), we obtain

θn = (3c3
2 − c2c3)e4

n − 2
(
8c4

2 − 10c2
2c3 + c2

3 + c2c4
)

e5
n

+(46c5
2 − 114c3

2c3 + 30c2
2c4 + 42c2c2

3 − 3c2c5 − 7c3c4)e6
n + O(e7

n).
(12)

Now, by expanding f (zn) about α using Equation (12), we obtain

f (zn) = f (θn + α)

= f ′(α)[
(
3c3

2 − c2c3
)

e4
n − 2

(
8c4

2 − 10c2
2c3 + c2

3 + c2c4
)

e5
n

+
(
46c5

2 − 114c3
2c3 + 30c2

2c4 + 42c2c2
3 − 3c2c5 − 7c3c4

)
e6

n + O(e7
n)].

(13)

Therefore, using (6), (8) and (13) in the third equation of (11), we obtain

en+1 = (1− b1)c2(3c2
2 − c3)e4

n
+
(
c4

2(22b1 − 3b2 − 16) + c2
2c3(−22b1 + b2 + 20) + 2(b1 − 1)c2c4 + 2(b1 − 1)c2

3
)

e5
n

+
(
c5

2(−90b1 + 31b2 + 46) + c3
2c3(167b1 − 31b2 − 114) + 2c2

2c4(−17b1 + b2 + 15)
+c2(c2

3(−49b1 + 4b2 + 42) + 3(b1 − 1)c5) + 7(b1 − 1)c3c4
)
e6

n + O(e7
n).

(14)
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In order to obtain sixth order of convergence, the coefficients of e4
n and e5

n must vanish in (14), i.e.,
b1 = 1 and b2 = 2. Therefore, the error equation of the method (11) becomes

en+1 = c2

(
18c4

2 − 9c2
2c3 + c2

3

)
e6

n +O
(

e7
n

)
,

and the assertion follows.

In view of Theorem 2, the following is the sixth order method

yn = xn − f (xn)
f ′(xn)

,

zn = xn −
(

1 + 2
(

f (yn)
f (xn)

)2
)

f (xn)+ f (yn)
f ′(xn)

,

xn+1 = zn −
(

1 + 2 f (yn)
f (xn)

)
f (zn)
f ′(xn)

.

(15)

2.3. Optimal Eighth Order Method

Notice that the method (15) is not optimal as it requires four function evaluation per iteration to
achieve sixth order of convergence. Its efficiency index is 1.5651, which is less than that of the fourth
order method (10). However, an eighth order method is obtained by (10) using an additional Newton
step. The resulting iterative scheme is

yn = xn − f (xn)
f ′(xn)

,

zn = xn −
(

1 + 2
(

f (yn)
f (xn)

)2
)

f (xn)+ f (yn)
f ′(xn)

,

xn+1 = zn − f (zn)
f ′(zn)

.

(16)

Nevertheless, this method requires five function evaluation per iteration, so that its efficiency index
reduces to 1.5157, and, moreover, it is not optimal. Towards making the method (16) more efficient
and optimal, we approximate f ′(z) as

f ′(zn) ≈ f ′(xn)

J(tn, un) · G(sn)
, (17)

where

tn =
f (yn)

f (xn)
, un =

f (zn)

f (xn)
, sn =

f (zn)

f (yn)
.

Here, J and G are some appropriate weight functions of two variables and one variable, respectively.
This type of approximations was done by Matthies et al. in [22]. Accordingly, we propose the
following method:

yn = xn − f (xn)
f ′(xn)

,

zn = xn −
(

1 + 2
(

f (yn)
f (xn)

)2
)

f (xn)+ f (yn)
f ′(xn)

,

xn+1 = zn − f (zn)
f ′(xn)

· J(tn, un) · G(sn),

(18)

where tn, un, and sn, are as in (17). For the method (18), we take the functions J and G as

J(tn, un) =
1 + 2tn + (β + 2)un + 3t2

n
1 + βun

(19)

and
G(sn) =

1 + λsn

1 + (λ− 1)sn
, (20)

where β and λ belong to C. We prove the following result.
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Theorem 3. Let f be a real or complex valued function defined on some interval I having a sufficient number of
smooth derivatives. Let α be a simple root of the equation f (x) = 0 and the initial point x0 is close enough to α.
Then, (18) is an eighth order of convergence for the functions J and G given by (19) and (20), respectively.

Proof. In view of (5) and (13), we obtain

un = f (zn)
f (xn)

=
(
3c3

2 − c2c3
)

e3
n +

(−19c4
2 + 21c2

2c3 − 2c2c4 − 2c2
3
)

e4
n

+
(
65c5

2 − 138c3
2c3 + 32c2

2c4 + 45c2c2
3 − 3c2c5 − 7c3c4

)
e5

n + O(e6
n).

Similarly, (7) and (13) yield

sn = f (zn)
f (yn)

=
(
3c2

2 − c3
)

e2
n − 2

(
5c3

2 − 6c2c3 + c4
)

e3
n +

(
11c4

2 − 44c2
2c3 + 17c2c4 + 11c2

3 − 3c5
)

e4
n

+
(
56c5

2 + 28c3
2c3 − 56c2

2c4 − 60c2c2
3 + 22c2c5 + 30c3c4 − 4c6

)
e5

n + O(e6
n).

Consequently, (19) gives

J(tn, un) = 1 + 2c2en +
(
4c3 − 3c2

2
)

e2
n +

(
4c3

2 − 10c2c3 + 6c4
)

e3
n

+
(−3(2β + 1)c4

2 + 2(β + 10)c2
2c3 − 14c2c4 − 8c2

3 + 8c5
)

e4
n

+

(
(47β− 38)c5

2 − (57β + 14)c3
2c3 + 4(β + 7)c2

2c4

+2c2
(
4(β + 4)c2

3 − 9c5
)− 22c3c4 + 10c6

)
e5

n + O(e6
n),

(21)

and (20) gives

G(sn) = 1 +
(
3c2

2 − c3
)

e2
n − 2

(
5c3

2 − 6c2c3 + c4
)

e3
n

+
(
(20− 9λ)c4

2 + 2(3λ− 25)c2
2c3 − (λ− 12)c2

3 + 17c2c4 − 3c5
)

e4
n

+2
(
(30λ− 2)c5

2 + (60− 46λ)c3
2c3 + 2(3λ− 17)c2

2c4 + c2
(
6(2λ− 7)c2

3 + 11c5
)

+(17− 2λ)c3c4 − 2c6

)
e5

n + O(e6
n).

(22)

Now, using the values from (6), (12), (13), (21), and (22) in (18), the error equation of the method is

en+1 = c2

(
3c2

2 − c3

) (
c4

2(6β + 9λ + 9)− 2c2
2c3(β + 3λ + 4) + c2c4 + c2

3λ
)

e8
n +O

(
e9

n

)
,

which gives the eighth order of convergence.

3. Numerical Examples

In this section, we test the performance of the methods proposed in Section 2 with the help of some
numerical examples. We compare the results obtained with the known methods of the corresponding
order. We consider the following nonlinear equations and initial guesses:

• f1(x) = sin2 x− x2 + 1, x0 = 2,
• f2(x) = ln(1 + x2) + exp(x2 − 3x) sin x, x0 = 2,
• f3(x) = x2 − (1− x)5, x0 = 1,
• f4(x) = x2 − exp(x)− 3x + 2, x0 = 1,
• f5(x) =

√
x2 + 2x + 5− 2 sin x− x2 + 3, x0 = 2.

In the previous section, we have proved the theoretical order of convergence of various methods.
For practical purposes, we can test numerically the order of convergence of these methods by using
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Approximated Computational Order of Convergence (or ACOC), defined by Cordero and Torregrosa [23].
They defined the ACOC of a sequence {xk}, k ≥ 0 as

ACOC =
log (|xk+1 − xk| / |xk − xk−1|)

log (|xk − xk−1| / |xk−1 − xk−2|) . (23)

The use of ACOC, given by (23), serves as a practical check on the theoretical error calculations.
We apply our proposed methods and other existing methods as discussed in the following

subsections on each of the test functions. Various results of up to four iterations are observed, and
we compare the results obtained at the 4th iteration among different methods of the corresponding
order and shown in Tables 1–3. For a particular test function, we take the same initial guess x0

for each of the methods under consideration. We compare the approximate error Δxn ≡ |xn −
xn−1|, the approximate solution xn, the absolute value of corresponding functional value | f (xn)|, and
approximated computational order of convergence (ACOC) at n = 4. In the tables, “NC” stands for
no convergence of the method. We use Mathematica 9.0 for the calculations.

3.1. Comparison of the Fourth Order Method

Let us denote our method (10) by M41. We shall compare this method with

• Sharma and Behl method (1), denoted by M42,
• Sharifi et al. method (2), denoted by M43,
• Jarratt’s method [24], denoted by M44 and given by

yn = xn − 2
3

f (xn)
f ′(xn)

,

xn+1 = xn −
(

3 f ′(yn)+ f ′(xn)
6 f ′(yn)−2 f ′(xn)

)
f (xn)
f ′(xn)

,

• Kung–Traub [8] method, denoted by M45, and given by

yn = xn − f (xn)
f ′(xn)

,

xn+1 = yn −
(

f (xn)· f (yn)
( f (xn)− f (yn))2

)
f (xn)
f ′(xn)

.

All the methods M4i, i = 1, 2, 3, 4, 5 are optimal. Table 1 records the performance of all
these methods.

Table 1. Comparison of numerical results of fourth order methods at the 4th iteration.

f1 f2 f3 f4 f5

M41 8.7309 × 10−26 2.7730 × 10−55 9.9454 × 10−30 1.2399 × 10−65 9.2139 × 10−82

M42 1.1188 × 10−27 2.9815 × 10−28 1.0915 × 10−24 7.7434 × 10−72 3.5851 × 10−101

Δxn M43 1.1523 × 10−23 NC 6.1887 × 10−13 1.3049 × 10−15 3.6376 × 10−49

M44 2.0493 × 10−32 2.0594 × 10−31 1.1971 × 10−20 1.5448 × 10−71 1.1488 × 10−97

M45 4.0043 × 10−28 2.8464 × 10−57 2.4018 × 10−30 4.7295 × 10−65 2.8215 × 10−81

M41 1.4045 −7.8835 × 10−218 0.3460 0.2575 2.3320
M42 1.4045 −6.9805 × 10−110 0.3460 0.2575 2.3320

xn M43 1.4045 NC 0.3460 0.2575 2.3320
M44 1.4045 3.2977 × 10−123 0.3460 0.2575 2.3320
M45 1.4045 −3.5010 × 10−226 0.3460 0.2575 2.3320

M41 1.9828 × 10−100 7.8835 × 10−218 1.9230 × 10−116 2.5756 × 10−262 1.1861 × 10−326

M42 4.0436 × 10−108 6.9805 × 10−110 1.1758 × 10−96 6.8107 × 10−287 1.9034 × 10−404

| f (xn)| M43 3.6237 × 10−93 NC 6.4877 × 10−49 7.5782 × 10−62 2.9990 × 10−196

M44 1.7439 × 10−127 3.2977 × 10−123 4.4608 × 10−80 1.3131 × 10−285 2.5652 × 10−390

M45 5.7027 × 10−110 3.5010 × 10−226 9.4841 × 10−120 6.9959 × 10−260 1.1952 × 10−324

M41 3.9919 4.0000 4.0184 4.0000 4.0000
M42 3.9935 3.9953 4.0646 4.0000 4.0000

ACOC M43 4.1336 NC 3.5972 4.6265 4.0214
M44 3.9978 4.0069 3.9838 4.0000 4.0000
M45 3.9946 4.0001 3.9878 4.0000 4.0000
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3.2. Comparison of Sixth Order Methods

We denote our sixth order method (15) by M61. We shall compare this method with

• M62 : Method of Neta [25] with a = 1, given by

yn = xn − f (xn)
f ′(xn)

,

zn = yn − f (xn)+a f (yn)
f (xn)+(a−2) f (yn)

f (yn)
f ′(xn)

,

xn+1 = zn − f (xn)− f (yn)
f (xn)−3 f (yn)

f (zn)
f ′(xn)

,

• M63 : Method of Grau et al. [26] given by

yn = xn − f (xn)
f ′(xn)

,

zn = yn − f (yn)
f ′(xn)

f (xn)
f (xn)−2 f (yn)

,

xn+1 = zn − f (zn)
f ′(xn)

f (xn)
f (xn)−2 f (yn)

.

• M64 : Method of Sharma and Guha [27] with a = 2, given by

yn = xn − f (xn)
f ′(xn)

,

zn = yn − f (yn)
f ′(xn)

f (xn)
f (xn)−2 f (yn)

,

xn+1 = zn − f (zn)
f ′(xn)

f (xn)+a f (yn)
f (xn)+(a−2) f (yn)

,

• M65 : Method of Chun and Neta [28] given by

yn = xn − f (xn)
f ′(xn)

,

zn = yn − f (yn)
f ′(xn)

1(
1− f (yn)

f (xn)

)2 ,

xn+1 = zn − f (yn)
f ′(xn)

1(
1− f (yn)

f (xn)
− f (zn)

f (xn)

)2 .

The comparison of the methods M6i, i = 1, 2, 3, 4, 5 is tabulated in Table 2. From the table, we
observe that the proposed method M61 is compatible with the other existing methods. We can see that
method M63 gives different results for the test functions f2 and f5 with given initial guesses.

Table 2. Comparison of numerical results of sixth order methods at the 4th iteration.

f1 f2 f3 f4 f5

M61 1.8933 × 10−73 1.8896 × 10−148 5.1627 × 10−90 1.3377 × 10−199 9.5891 × 10−261

M62 1.6801 × 10−106 2.9382 × 10−152 2.4137 × 10−64 1.7893 × 10−191 3.75383 × 10−255

Δxn M63 2.9803 × 10−95 2.9803 × 10−95 2.9815 × 10−82 2.9815 × 10−82 2.9803 × 10−95

M64 5.0012 × 10−85 2.4246 × 10−153 4.9788 × 10−69 4.6397 × 10−198 4.0268 × 10−259

M65 9.9516 × 10−88 2.1737 × 10−154 3.3993 × 10−86 2.7764 × 10−193 3.4903 × 10−256

M61 1.4045 −1.1331 × 10−884 0.3460 0.2575 2.3320
M62 1.4045 4.5753 × 10−908 0.3460 0.2575 2.3320

xn M63 1.4045 1.4045 0.3460 0.2575 1.4045
M64 1.4045 1.0114 × 10−914 0.3460 0.2575 2.3320
M65 1.4045 −3.7511 × 10−921 0.3460 0.2575 2.3320
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Table 2. Cont.

f1 f2 f3 f4 f5

M61 5.6523 × 10−436 1.1331 × 10−884 1.8046 × 10−535 0.0 0.0
M62 6.7308 × 10−636 4.5753 × 10−908 1.0347 × 10−381 0.0 0.0

| f (xn)| M63 8.1802 × 10−568 8.1802 × 10−568 8.2004 × 10−490 8.2004 × 10−490 8.1802 × 10−568

M64 5.7605 × 10−506 1.0114 × 10−914 1.8726 × 10−409 0.0 0.0
M65 3.7794 × 10−522 3.7511 × 10−921 4.8072 × 10−514 0.0 0.0

M61 5.9980 6.0000 5.9980 6.0000 6.0000
M62 5.9992 6.0000 5.9854 6.0000 6.000

ACOC M63 5.9997 5.9997 5.9992 5.9992 5.9997
M64 5.9991 6.0000 5.9984 6.0000 6.0000
M65 5.9993 6.0000 6.0088 6.0000 6.0000

3.3. Comparison of Eighth Order Methods

Consider the eighth order method (18), which involves the parameter pair (β, λ). We denote

• M81 the case where (β, λ) = (0, 0), whose iterative expression results in

yn = xn − f (xn)
f ′(xn)

,

zn = xn − f (xn)+ f (yn)
f ′(xn)

(
1 + 2

(
f (yn)
f (xn)

)2
)

,

xn+1 = zn − f (zn)
f ′(xn)

(
1+2tn+2un+3t2

n
1−sn

)
,

• M82 for (β, λ) = (1, 1), resulting in the iterative scheme given by M81 :

yn = xn − f (xn)
f ′(xn)

,

zn = xn − f (xn)+ f (yn)
f ′(xn)

(
1 + 2

(
f (yn)
f (xn)

)2
)

,

xn+1 = zn − f (zn)
f ′(xn)

(
1+2tn+3un+3t2

n
1+un

(1 + sn)
)

,

• M83 for (β, λ) = (0, 1), whose iterative method is

yn = xn − f (xn)
f ′(xn)

,

zn = xn − f (xn)+ f (yn)
f ′(xn)

(
1 + 2

(
f (yn)
f (xn)

)2
)

,

xn+1 = zn − f (zn)
f ′(xn)

(
(1 + 2tn + 2un + 3t2

n)(1 + sn)
)

.

Along with these, we take the following methods for the comparison of numerical results:

• Matthies et al. in [22] presented an optimal class of 8th order method from the Kung–Traub
method [8]. For some particular values of the parameters, one of the methods denoted by M84 is
given by

yn = xn − f (xn)
f ′(xn)

,

zn = yn −
(

f (xn) f (yn)
( f (xn)− f (yn))2

)
f (xn)
f ′(xn)

,

xn+1 = zn − f (zn)
f ′(xn)

(
2+tn+5un+4t2

n+4t3
n

2−3tn+un+2t2
n
· 2+sn

2−sn

)
.
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• Babajee et al. in [11] presented a family of eighth order methods. For some fixed values of
parameters, the method denoted by M85 is given by

yn = xn − f (xn)
f ′(xn)

(
1 + ( f (xn)

f ′(xn)
)5
)

,

zn = yn − f (yn)
f ′(xn)

(
1− f (yn)

f (xn)

)−2
,

xn+1 = zn − f (zn)
f ′(xn)

(
(1+t2

n+5t4
n+sn

(1−tn−un)
2

)
.

• Chun and Lee in [29] presented a family of optimal eighth order methods. For some particular
values of parameters, the method denoted by M86 is given by

yn = xn − f (xn)
f ′(xn)

,

zn = yn − f (yn)
f ′(xn)

1(
1− f (yn)

f (xn)

)2 ,

xn+1 = zn − f (zn)
f ′(xn)

1(
1−tn− t2n

2 +
t3n
2 − un

2 − sn
2

)2 .

In all the above methods, tn, un and sn are as given in (17). The performance of the methods M8i,
i = 1, 2, 3, 4, 5, 6 are recorded in Table 3.

Table 3. Comparison of numerical results of eighth order methods at the 4th iteration.

f1 f2 f3 f4 f5

Δxn

M81 5.8768 × 10−187 1.5404 × 10−393 2.5345 × 10−165 6.1099 × 10−495 4.4344 × 10−658

M82 2.0563 × 10−165 9.0158 × 10−321 1.1101 × 10−167 5.4494 × 10−421 4.0437 × 10−598

M83 4.5429 × 10−170 1.5139 × 10−324 2.9710 × 10−168 2.8838 × 10−421 2.9107 × 10−604

M84 2.4469 × 10−187 4.9438 × 10−351 4.3825 × 10−171 1.8592 × 10−438 4.3404 × 10−614

M85 2.6744 × 10−204 NC 1.7766 × 10−177 6.5231 × 10−192 9.8976 × 10−553

M86 4.1482 × 10−235 1.3271 × 10−380 5.6991 × 10−175 2.5934 × 10−455 7.1011 × 10−617

xn

M81 1.4045 0.0 0.3460 0.2575 2.3320
M82 1.4045 0.0 0.3460 0.2575 2.3320
M83 1.4045 0.0 0.3460 0.2575 2.3320
M84 1.4045 0.0 0.3460 0.2575 2.3320
M85 1.4045 NC 0.3460 0.2575 2.3320
M86 1.4045 0.0 0.3460 0.2575 2.3320

| f (xn)|

M81 0.0 0.0 0.0 0.0 0.0
M82 0.0 0.0 0.0 0.0 0.0
M83 0.0 0.0 0.0 0.0 0.0
M84 0.0 0.0 0.0 0.0 0.0
M85 0.0 0.0 0.0 0.0 0.0
M86 0.0 0.0 0.0 0.0 0.0

ACOC

M81 7.9999 8.0000 7.9993 8.0000 8.0000
M82 7.9996 8.0000 8.0000 8.0000 8.0000
M83 7.9997 8.0000 7.9996 8.0000 8.0000
M84 7.9998 8.0000 8.0047 8.0000 8.0000
M85 7.9995 NC 8.0020 8.0004 8.0000
M86 8.0000 8.0000 8.0023 8.0000 8.0000

From Tables 1–3, we observe that the proposed methods are compatible with other existing
methods (and sometimes perform better than other methods) of the corresponding order. Not any
particular method is superior to others for all examples. Among the family of eighth order methods (18),
from Table 3, we observe that the method M81 performs better than other two. For more understanding
about the iterative methods, we study the dynamics of these methods in the next section.
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4. Applications

The applications discussed in Sections 4.1–4.3 are based on standard engineering examples, and
we refer to [30]. We use the proposed methods M41, M61, and M8i, i = 1, 2, 3 to obtain the various
results from the first three iterations of these examples. In particular, we compute the value of the
unknowns xn−1 and xn, absolute value of the function f (xn) and absolute value of the difference d of
unknown in two consecutive iterations, i.e., d = |xn − xn−1|, n = 1, 2, 3.

4.1. Pipe Friction Problem

Determining fluid flow through pipes and tubes has great relevance in many areas of engineering
and science. In engineering, typical applications include the flow of liquids and gases through
pipelines and cooling systems. Scientists are interested in topics ranging from flow in blood vessels
to nutrient transmission through a plant’s vascular system. The resistance to flow in such conduits
is parameterized by a dimensionless number called the friction factor f . For a flow with turbulence,
the Colebrook equation [31] provides a means to calculate the friction factor:

0 =
1√

f
+ 2.0 log

(
ε

3.7D
+

2.51
Re
√

f

)
, (24)

where ε is the roughness (m), D is the diameter (m) and Re is the Reynolds number

Re =
ρvD

μ
.

Here, ρ denotes the fluid density (kg/m3), v the velocity of the fluid (m/s) and μ the dynamical
viscosity (N·s/m2). A flow is said to be turbulent if Re > 4000.

To determine f for air flow through a smooth and thin tube, the parameters are taken to be
ρ = 1.23 kg/m3, μ = 1.79× 10−5 N·s/m2, D = 0.005 m, V = 40 m/s and ε = 0.0000015 m. Since the
friction factors range from about 0.008 to 0.08, we choose initial guess f0 = 0.023. To determine the
approximate value of f , we use the function

g( f ) =
1√

f
+ 2.0 log

(
ε

3.7D
+

2.51
Re
√

f

)
. (25)

The results obtained by the various methods are presented in Table 4.

Table 4. Results of pipe friction problem.

# Iter Value M41 M61 M81 M82 M83

f 0.0169 0.0170 0.0170 0.0170 0.0170
1 g( f ) 0.0240 0.0104 0.0009 0.0005 0.0008

d 0.0061 0.0060 0.0060 0.0060 0.0060

f 0.0170 0.0170 0.0170 0.0170 0.0170
2 g( f ) 3.0954 × 10−9 2.6645 × 10−15 8.8818 × 10−16 8.8818 × 10−16 8.8818 × 10−16

d 0.0001 4.1700 × 10−5 3.7223 × 10−6 2.0962 × 10−6 3.3172 × 10−6

f 0.0170 0.0170 0.0170 0.0170 0.0170
3 g( f ) 8.8818 × 10−16 8.8818 × 10−16 8.8818 × 10−16 8.8818 × 10−16 8.8818 × 10−16

d 1.2442 × 10−11 1.0408 × 10−17 6.9389 × 10−18 0.0 0.0

4.2. Open-Channel Flow

An open problem in civil engineering is to relate the flow of water with other factors affecting the
flow in open channels such as rivers or canals. The flow rate is determined as the volume of water
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passing a particular point in a channel per unit time. A further concern is related to what happens
when the channel is slopping.

Under uniform flow conditions, the flow of water in an open channel is given by
Manning’s equation

Q =

√
S

n
AR2/3, (26)

where S is the slope of the channel, A is the cross-sectional area of the channel, R is the hydraulic
radius of the channel and n is the Manning’s roughness coefficient. For a rectangular channel having
the width B and the defth of water in the channel y, it is known that

A = By

and
R =

By
B + 2y

.

With these values, (26) becomes

Q =

√
S

n
By
(

By
B + 2y

)2/3
. (27)

Now, if it is required to determine the depth of water in the channel for a given quantity of water, (27)
can be rearranged as

f (y) =
√

S
n

By
(

By
B + 2y

)2/3
−Q. (28)

In our work, we estimate y when the remaining parameters are assumed to be given as Q = 14.15 m3/s,
B = 4.572 m, n = 0.017 and S = 0.0015. We choose as an initial guess y0 = 4.5 m. The results obtained
by the various methods are presented in Table 5.

Table 5. Results of an open channel problem.

# Iter Value M41 M61 M81 M82 M83

y 1.4804 1.4666 1.4652 1.4653 1.4653
1 f (y) 0.2088 0.0204 0.0016 0.0029 0.0028

d 3.0200 3.0334 3.0348 3.0347 3.0347

y 1.4651 1.4651 1.4651 1.4651 1.4651
2 f (y) 4.5027 × 10−9 1.7764 × 10−15 × 10−15 3.5527 × 10−15 3.5527 × 10−15

d 0.0154 0.0015 0.0001 0.0002 0.0002

y 1.4651 1.4651 1.4651 1.4651 1.4651
3 f (y) 3.5527 × 10−15 7.1054 × 10−14 6.5725 × 10−14 5.3291 × 10−15 1.7764 × 10−15

d 3.3152 × 10−10 5.1070 × 10−15 5.1070 × 10−15 6.6613 × 10−16 2.2204 × 10−16

4.3. Ideal and Non-Ideal Gas Laws

The ideal gas law is
PV = nRT,

where P is the absolute pressure, V is the volume, n is the number of moles, R is the universal gas
constant and T is the absolute temperature. Due to its limited use in engineering, an alternative
equation of state for gases is the given van der Waals equation [32–35](

P +
a

v2

)
(v− b) = RT,
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where v = V
n is the molal volume and a, b are empirical constants that depend on the particular gas.

The computation of the molal volume is done by solving

f (v) =
(

P +
a

v2

)
(v− b)− RT. (29)

We take the remaining parameters as R = 0.082054 L atm/(mol K), for carbon dioxide a = 3.592,
b = 0.04267, T = 300 K, p = 1 atm, and the initial guess for the molal volume is taken as v0 = 3.
The results obtained by the various methods are presented in Table 6. In this table, IND stands for
indeterminate form.

Table 6. Numerical results of ideal and non-ideal gas law.

# Iter Value M41 M61 M81 M82 M83

v 26.4881 27.0049 23.9583 24.1631 24.0274
1 f (v) 1.9647 2.4788 0.5509 0.3474 0.4823

d 23.4881 24.0049 20.9583 21.1631 21.0274

v 24.5126 24.5126 24.5126 24.5126 24.5126
2 f (v) 2.7340 × 10−8 3.3573 × 10−12 0.0 0.0 0.0

d 1.9756 2.4923 0.5543 0.3495 0.4852

v 24.5126 24.5126 IND IND IND
3 f (v) 0.0 0.0 IND IND IND

d 2.7503 × 10−8 3.3786 × 10−12 IND IND IND

5. Dynamical Analysis

The stability analysis of the methods M41, M61 and M8i, i = 1, 2, 3, is performed in this section.
The dynamics of the proposed methods on a generic quadratic polynomial will be studied, analyzing
the associated rational operator for each method. This analysis shows their performance depending
on the initial estimations. In addition, method M41 is analyzed for cubic polynomials. First, we recall
some basics on complex dynamics.

5.1. Basics on Complex Dynamics

Let R : Ĉ −→ Ĉ be a rational function defined on the Riemann sphere. Let us recall that every
holomorphic function from the Riemann sphere to itself is in fact a rational function R(z) = P(z)

Q(z) ,
where P and Q are complex polynomials (see [36]). For older work on dynamics on the Riemann
sphere, see, e.g., [37].

The orbit of a point z0 ∈ Ĉ is composed by the set of its images by R, i.e.,

{z0, R(z0), R2(z0), . . . , Rn(z0), . . .}.

A point zF ∈ Ĉ is a fixed point if R(zF) = zF. Note that the roots z∗ of an equation f (z) = 0 are fixed
points of the associated operator of the iterative method. Fixed points that do not agree with a root of
f (x) = 0 are strange fixed points.

The asymptotical behavior of a fixed point zF is determined by the value of its multiplier
μ = |R′(zF)|. Then, zF is attracting, repelling or neutral if μ is lower, greater or equal to 1, respectively.
In addition, it is superattracting when μ = 0.

For an attracting fixed point zF, its basin of attraction is defined as the set of its pre-images of
any order:

A(zF) = {z0 ∈ Ĉ : Rn(z0) −→ zF, n → ∞}.

The dynamical plane represents the basins of attraction of a method. By iterating a set of initial
guesses, their convergence is analyzed and represented. The points zC ∈ Ĉ that satisfy R′(zC) = 0 are
called critical points of R. When a critical point does not agree with a solution of f (x) = 0, it is a free
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critical point. A classical result [21] establishes that there is at least one critical point associated with
each immediate invariant Fatou component.

5.2. Rational Operators

Let p(z) be a polynomial defined on Ĉ. Corresponding to the methods developed in this paper,
i.e., methods (10), (15) and family (18), we define the operators R4(z), R6(z) and R8(z), respectively,
in Ĉ as follows:

R4(z) = z−
(

1 + 2
(

p(y(z))
p(z)

)2
)

p(z) + p(y(z))
p′(z) , (30)

R6(z) = R4(z)−
(

1 + 2
p(y(z))

p(z)

)
p(R4(z))

p′(z) ,

R8(z) = R4(z)− p(R4(z))
p′(z) J(z)G(z),

where y(z) = z− p(z)
p′(z) and

J(z) =
1+2 p(y(z))

p(z) +(β+2) p(R4(z))
p(z) +3

(
p(y(z))

p(z)

)2

1+β
p(R4(z))

p(z)

,

G(z) =
1+λ

p(R4(z))
p(y(z))

1+(λ−1) p(R4(z))
p(y(z))

.

First, we recall the following result for the generalization of the dynamics of M41.

Theorem 4 (Scaling Theorem for method M41). Let f (z) be an analytic function in the Riemann sphere and
let A(z) = ηz + σ, with η �= 0, be an affine map. Let h(z) = μ( f ◦ A)(z) with μ �= 0. Then, the fixed point
operator R f

4 is affine conjugated to Rh
4 by A, i.e.,

(A ◦ Rh
4 ◦ A−1)(z) = R f

4(z).

Proof. From (30), let the fixed point operators associated with f and h be, respectively,

R f
4(z) = z−

(
1 + 2

(
f (y(z))

f (z)

)2
)

f (z)+ f (y(z))
f ′(z) ,

Rh
4(z) = z−

(
1 + 2

(
h(y(z))

h(z)

)2
)

h(z)+h(y(z))
h′(z) .

Thus, we have

(R f
4 ◦ A)(z) = A(z)−

(
1 + 2

f 2(A(y))
f 2(A(z))

)
f (A(z)) + f (A(y))

f ′(A(z))
. (31)

Being h′(z) = ημ f ′(A(z)), we obtain

Rh
4(z) = z−

(
1 + 2 μ2 f 2(A(y))

μ2 f 2(A(z))

)
μ f (A(z))+μ f (A(y))

ημ f ′(A(z))

= z−
(

1 + 2 f 2(A(y))
f 2(A(z))

)
f (A(z))+ f (A(y))

η f ′(A(z)) .
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The affine map A satisfies A(z1 − z2) = A(z1)− A(z2) + σ, ∀z1, z2. Then, from (32), we have

(A ◦ Rh
4)(z) = A(z)− A

((
1 + 2 f 2(A(y))

f 2(A(z))

)
f (A(z))+ f (A(y))

η f ′(A(z))

)
+ σ

= A(z)−
(

η
(

1 + 2 f 2(A(y))
f 2(A(z))

)
f (A(z))+ f (A(y))

η f ′(A(z)) + σ
)
+ σ

= A(z)−
(

1 + 2 f 2(A(y))
f 2(A(z))

)
f (A(z))+ f (A(y))

f ′(A(z)) .

Thus, it proves that (R f
4 ◦ A)(z) = (A ◦ Rh

4)(z) and then method M41 satisfies the Scaling Theorem.

Theorem 4 allows for generalizing the dynamical study of a specific polynomial to a generic
family of polynomials by using an affine map. Analogous to the way we proved the Scaling Theorem
for the operator R4, it also follows that the fixed point operators R6 and R8 obey the Scaling Theorem.

5.3. Dynamics on Quadratic Polynomials

The application of the rational functions on a generic quadratic polynomial p(z) = (z− a)(z− b),
a, b ∈ Ĉ is studied below. Let R4,a,b be the rational operator associated with method M41 on p(z).
When the Möbius transformation h(u) = a−u

b−u is applied to R4,a,b, we obtain

S4(z) = (h ◦ R4,a,b ◦ h−1)(z) =
z4 (z4 + 6z3 + 14z2 + 14z + 3

)
3z4 + 14z3 + 14z2 + 6z + 1

. (32)

The rational operator associated with M41 on p(z) does not depend on a and b. Then, the dynamical
analysis of the method on all quadratic polynomials can be studied through the analysis of (32).
In addition, the Möbius transformation h maps its roots a and b to z∗1 = 0 and z∗2 = ∞, respectively.

The fixed point operator S4(z) has nine fixed points: zF
1 = 0 and zF

2 = ∞, which are superattracting,

and zF
3 = 1, zF

4,5 = 1
2 (−3±√5), zF

6−7 = −2+
√

2
2 ± i

√
3
2 −

√
2, zF

8−9 = −2−√2
2 ± i

√
3
2 +

√
2, all of them

being repelling. Computing S′4(z) = 0, 5 critical points can be found. zC
1,2 = z∗1,2 and the free critical

points zC
3 = −1 and zC

4,5 = 1
6 (−13±√133).

Following the same procedure, when Möbius transformation is applied to methods M6 and M8i,
i = 1, 2, 3, on polynomial p(z), the respective fixed point operators turn into

S6(z) =
z6(z12+16z11+119z10+544z9+1700z8+3808z7+6206z6+7288z5+5973z4+3248z3+1111z2+216z+18)

18z12+216z11+1111z10+3248z9+5973z8+7288z7+6206z6+3808z5+1700z4+544z3+119z2+16z+1 ,

S81(z) =
P30(z)
P22(z)

, S82(z) =
P42(z)
P34(z)

, S83(z) =
Q42(z)
Q34(z)

,

where Pk and Qk denote polynomials of degree k.
The fixed point operator S6 has 19 fixed points: the two superattracting fixed points zF

1,2 = z∗1,2,
the repelling fixed point zF

3 = 1 and the repelling fixed points zF
4 , . . . , zF

19, which are the roots of a
sixteenth-degree polynomial.

Regarding the critical points of S6, the roots of p(z) are critical points, and S6 has the free critical
points zC

3 = −1 and the roots of a tenth-degree polynomial, zC
4 , . . . , zC

11.
The dynamical planes are a useful tool in order to analyze the stability of an iterative method.

Taking each point of the plane as initial estimation to start the iterative process, they represent the
convergence of the method depending on the initial guess. In this sense, the dynamical planes show
the basins of attraction of the attracting points.

Figure 1 represents the dynamical planes of the methods S4 and S6. The generation of the
dynamical planes follows the guidelines established in [38]. A mesh of 500× 500 complex values has
been set as initial guesses in the intervals −5 < �{z} < 5, −5 < �{z} < 5. The roots z∗1 = 0 and
z∗2 = ∞ are mapped with orange and blue colors, respectively. The regions where the colors are darker
represent that more iterations are necessary to converge than with the lighter colors, with a maximum
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of 40 iterations of the methods and a stopping criteria of a difference between two consecutive iterations
lower than 10−6.

As Figure 1 illustrates, there is convergence to the roots for every initial guess. Let us remark that,
when the order of the method increases, the basin of attraction of z∗1 = 0 becomes more intricate.

Finally, for the fixed point operators associated with family M8, the solutions of S8i(z) = z
for i = 1, 2, 3 give the superattracting fixed points zF

1,2 = z∗1,2 and the repelling point zF
3 = 1. In

addition, S81 has 28 repelling points. S82 and S83 have 38 repelling points, corresponding to the roots
of polynomials of 28 and 38 degree, respectively, and the strange fixed points zF

4,5 = 1
2 (−1±√5).
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(b) S6

Figure 1. Dynamical planes of methods S4 and S6.

The number of critical points of the fixed point operators S8i are collected in Table 7. In addition,
the number of strange fixed points and free critical points are also included in the table for all of
the methods.

Table 7. Number of strange fixed points (SFP) and free critical points (FCP) for the methods on
quadratic polynomials.

S4 S6 S81 S82 S83

Strange fixed points 7 17 29 41 41
Free critical points 3 29 29 43 29

Figure 2 represents the dynamical planes of the methods S81, S82 and S83. Since the original
methods satisfy the Scaling Theorem, the generation of one dynamical plane involves the study of
every quadratic polynomial.
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Figure 2. Dynamical planes of methods S8i, i = 1, 2, 3.
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There is an intricate region around z = −1 in Figure 2a, becoming wider in Figure 2b,c around
z = −1.5. However, for every initial guess in the three dynamical planes of Figure 2, there is
convergence to the roots.

5.4. Dynamics on Cubic Polynomials

The stability of method M41 on cubic polynomials is analyzed below. As stated by the authors
in [39], the Scaling Theorem reduces the dynamical analysis on cubic polynomials to the study of
dynamics on the cubic polynomials p0(z) = z3, p+(z) = z3 + z, p−(z) = z3 − z and the family of
polynomials pγ(z) = z3 + γz + 1. Let us recall that the first one only has the root z∗1 = 0, while p+(z)
and p−(z) have three simple roots: z∗1 = 0 and z∗2,3 = ∓i or z∗2,3 = ∓1, respectively. For each γ ∈ C,
the polynomial pγ(z) also has three simple roots that depend on the value of γ. They will be denoted
by z∗1,2,3(γ).

By applying method M41 to polynomials p0(z), p+(z) and p−(z), the fixed point operators
obtained are, respectively,

S4,0(z) = 46z
81 , S4,+(z) = 6z5+36z7+46z9

(1+3z2)4 , S4,−(z) = 6z5−36z7+46z9

(1−3z2)4 .

The only fixed point of S4,0(z) agrees with the root of the polynomial, so it is superattracting, and the
operator does not have critical points.

The rest of the fixed point operators have six repelling fixed points, in addition to the roots of the

corresponding polynomials: zF
4,5 = ± i

√
5

5 and zF
6−9 = ±i

√
1
7 (3±

√
2) for S4,+(z), and zF

4,5 = ±
√

5
5 and

zF
6−9 = ±

√
1
7 (3±

√
2) for S4,−(z).

Regarding the critical points of S4,+(z) and S4,−(z), they match with the roots of the polynomials.

Moreover, there is the presence of free critical points with values zC
4,5 = ±i

√
5
23 for S4,+(z) and

zC
4,5 = ±

√
5

23 for S4,−(z).
As for quadratic polynomials, the dynamical planes of method M41 when it is applied to the

cubic polynomials have been represented in Figure 3. Depending on the roots of each polynomial, the
convergence to z∗1 = 0 is represented in orange, while the convergence to z∗2 and z∗3 is represented in
blue and green, respectively. It can be see in Figure 3 that there is full convergence to a root in the three
cases. However, there are regions with darker colors that indicate a higher number of iterations until
the convergence is achieved.
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Figure 3. Dynamical planes of method M41 on polynomials p0(z), p+(z) and p−(z).

When method M41 is applied on pγ(z), the fixed point function turns into

S4,γ(z) = −γ3 − 46z9 − 36γz7 + 42z6 − 6γ2z5 + 45γz4 + 6z3 + 12γ2z2 − 1

(γ + 3z2)
4 .
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The fixed points of S4,γ(z) are the roots of the polynomial z∗1,2,3(γ), being superattracting, and the
strange fixed points zF

4−9(γ) that are the roots of the sixth-degree polynomial q(z, γ) = 35z6 + 37γz4 +

7z3 + 11γ2z2 + γz + γ3 − 1.
As the asymptotical behavior of zF

4 (γ), . . . , zF
9 (γ) depends on the value of γ, the stability planes

corresponding to these points are represented in Figure 4. For each strange fixed point, a mesh
of 100 × 100 points covers the values of �(γ) ∈ [−5, 5] and �(γ) ∈ [−5, 5]. The stability plane
shows the values for the parameter where |S′4,γ(z

F)| is lower or greater than 1, represented in red or
green, respectively.

-5 0 5
{ }

-5

0

5

{
}

Figure 4. Stability planes of zF
4−9(γ).

From Figure 4, the strange fixed points are always repelling for (�(γ),�(γ)) ∈ [−5, 5]× [−5, 5].
Then, the only attracting fixed points are the roots of the polynomial. This fact guarantees a better
stability of the method.

The solutions of S′4,γ(z) = 0 are the critical points zC
1,2,3(γ) = z∗1,2,3(γ) and the free critical points

zC
4 = 0 and

zC
5 (γ) =

(√
69
√

125γ3+2484+414
)2/3−5 3√69γ

692/3 3
√√

69
√

125γ3+2484+414
,

zC
6,7(γ) =

(−1±i
√

3)
(√

69
√

125γ3+2484+414
)2/3

+5 3√69(1±i
√

3)γ

2 692/3 3
√√

69
√

125γ3+2484+414
.

When the fixed point function has dependence on a parameter, another useful representation is the
parameters’ plane. This plot is generated in a similar way to the dynamical planes, but, in this case,
by iterating the method taking as an initial guess a free critical point and varying the value of γ in a
complex mesh of values, so each point in the plane represents a method of the family. The parameters’
plane helps to select the values for the parameter that give rise to the methods of the family with
more stability.

The parameters’ planes of the four free critical points are shown in Figure 5. Parameter γ takes the
values of 500× 500 points in a complex mesh in the square [−5, 5]× [−5, 5]. Each point is represented
in orange, green or blue when the corresponding method converges to an attracting fixed point. The
iterative process ends when the maximum number of 40 iterations is reached, in which case the point
is represented in black, or when the method converges as soon as, by the stopping criteria, a difference
between two consecutive iterations lower than 10−6 is reached.

For the parameters’ planes in Figure 5, there is not any black region. This guarantees that the
corresponding iterative schemes converge to a root of pγ(z) for all the values of γ.

In order to visualize the basins of attraction of the fixed points, several values of γ have been
chosen to perform the dynamical planes of method M41. These values have been selected from the
different regions of convergence observed in the parameters planes. Figure 6, following the same code
of colours and stopping criteria as in the other representations, shows the dynamical planes obtained
when these values of γ are fixed.
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Figure 5. Parameter planes of the critical points of method M41 on pγ(z).

As Figure 6 shows, there is not any initial guess that tends to a point different than the roots. This
fact guarantees the stability of these methods on the specific case of any cubic polynomial.
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Figure 6. Dynamical planes for method M41 on pγ(z) for different values of γ.

6. Conclusions

Two iterative schemes of orders of convergence four and six, and a family of methods of order
eight have been introduced. The method of order four and the family of order eight are optimal
in the sense of Kung–Traub’s conjecture. The development of the order of convergence of every
method has been performed. For every method, we have made a numerical experiment, over both test
functions and real engineering problems. In order to analyze the stability of the introduced methods,
the dynamical behavior of them has been studied. The results confirm that the methods have wide
basins of attraction, guaranteeing the stability over some nonlinear problems.
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Abstract: Based on the Steffensen-type method, we develop fourth-, eighth-, and sixteenth-order
algorithms for solving one-variable equations. The new methods are fourth-, eighth-,
and sixteenth-order converging and require at each iteration three, four, and five function evaluations,
respectively. Therefore, all these algorithms are optimal in the sense of Kung–Traub conjecture;
the new schemes have an efficiency index of 1.587, 1.682, and 1.741, respectively. We have given
convergence analyses of the proposed methods and also given comparisons with already established
known schemes having the same convergence order, demonstrating the efficiency of the present
techniques numerically. We also studied basins of attraction to demonstrate their dynamical behavior
in the complex plane.
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1. Introduction

Finding faster and exact roots of scalar nonlinear equations is the most important problem
in engineering, scientific computing, and applied mathematics. In general, this is the problem of
solving a nonlinear equation f (x) = 0. Analytical methods for finding solutions of such problems
are almost nonavailable, so the only way to get appropriate solutions by numerical methods is
based on iterative algorithms. Newton’s method is one of the well-known and famous methods for
finding solutions of nonlinear equations or local minima in problems of optimization. Despite its nice
properties, it will often not work efficiently in some real-life practical applications. Ill conditioning
of the problems, the computational expense of functional derivative, accurate initial guesses, and a
late convergence rate generally lead to difficulties in its use. Nevertheless, many advantages in all
of these drawbacks have been found and led to efficient algorithms or codes that can be easily used
(see References [1,2] and references therein). Hence, Steffensen developed a derivative-free iterative
method (SM2) (see References [3]):

w(n) = x(n) + f (x(n)), x(n+1) = x(n) − f (x(n))
f [x(n), w(n)]

, (1)

where f [x(n), w(n)] = f (x(n))− f (w(n))

x(n)−w(n) , which preserves the convergence order and efficiency index of
Newton’s method.
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The main motivation of this work is to implement efficient derivative-free algorithms for finding
the solution of nonlinear equations. We obtained an optimal iterative method that will support the
conjecture [4]. Kung–Traub conjectured that multipoint iteration methods without memory based on d
functional evaluations could achieve an optimal convergence order 2d−1. Furthermore, we studied the
behavior of iterative schemes in the complex plane.

Let us start a short review of the literature with some of the existing methods with or without
memory before proceeding to the proposed idea. Behl et al. [5] presented an optimal scheme that
does not need any derivative evaluations. In addition, the given scheme is capable of generating new
optimal eighth-order methods from the earlier optimal fourth-order schemes in which the first sub-step
employs Steffensen’s or a Steffensen-type method. Salimi et al. [6] proposed a three-point iterative
method for solving nonlinear equations. The purpose of this work is to upgrade a fourth-order iterative
method by adding one Newton step and by using a proportional approximation for the last derivative.
Salimi et al. [7] constructed two optimal Newton–Secant-like iterative methods for finding solutions
of nonlinear equations. The classes have convergence orders of four and eight and cost only three
and four function evaluations per iteration, respectively. Matthies et al. [8] proposed a three-point
iterative method without memory for solving nonlinear equations with one variable. The method
provides a convergence order of eight with four function evaluations per iteration. Sharifi et al. [9]
presented an iterative method with memory based on the family of King’s methods to solve nonlinear
equations. The method has eighth-order convergence and costs only four function evaluations per
iteration. An acceleration of the convergence speed is achieved by an appropriate variation of a free
parameter in each step. This self-accelerator parameter is estimated using Newton’s interpolation
fourth degree polynomial. The order of convergence is increased from eight to 12 without any extra
function evaluation. Khdhr et al. [10] suggested a variant of Steffensen’s iterative method with
a convergence order of 3.90057 for solving nonlinear equations that are derivative-free and have
memory. Soleymani et al. [11] presented derivative-free iterative methods without memory with
convergence orders of eight and sixteen for solving nonlinear equations. Soleimani et al. [12] proposed
a optimal family of three-step iterative methods with a convergence order of eight by using a weight
function alongside an approximation for the first derivative. Soleymani et al. [13] gave a class of
four-step iterative schemes for finding solutions of one-variable equations. The produced methods
have better order of convergence and efficiency index in comparison with optimal eighth-order
methods. Soleymani et al. [14] constructed a class of three-step eighth order iterative methods by
using an interpolatory rational function in the third step. Each method of the class reaches the optimal
efficiency index according to the Kung–Traub conjecture concerning multipoint iterative methods
without memory. Kanwar et al. [15] suggested two new eighth-order classes of Steffensen–King-type
methods for finding solutions of nonlinear equations numerically. Cordero et al. [1] proposed a general
procedure to obtain derivative-free iterative methods for finding solutions of nonlinear equations
by polynomial interpolation. In addition, many authors have worked with these ideas on different
iterative schemes [16–24], describing the basin of attraction of some well-known iterative scheme.
In this work, we developed a novel fourth-order iterative scheme, eighth-order iterative scheme,
and sixteenth-order iterative scheme, that are without memory, are derivative-free, and are optimal.

The rest of this paper is ordered as follows. In Section 2, we present the proposed fourth-, eighth-,
and sixteenth-order methods that are free from derivatives. Section 3 presents the convergence order
of the proposed scheme. In Section 4, we discuss some well-known iterative methods for the numerical
and effectiveness comparison of the proposed schemes. In Section 5, we display the performance of
proposed methods and other compared algorithms described by problems. The respective graphical
fractal pictures obtained from each iteration scheme for test problems are given in Section 6 to show
the consistency of the proposed methods. Finally, Section 7 gives concluding remarks.
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2. Development of Derivative-Free Scheme

2.1. Optimal Fourth-Order Method

Let us start from Steffensen’s method and explain the procedure to get optimal methods of
increasing order. The idea is to compose a Steffensen’s iteration with Newton’s step as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

w(n) = x(n) + f (x(n))3,

y(n) = x(n) − f (x(n))4

f (w(n))− f (x(n))
,

z(n) = y(n) − f (y(n))
f ′(y(n)) .

(2)

The resulting iteration has convergence order four, with the composition of two second-order
methods, but the method is not optimal because it uses four function evaluations. In order to get
an optimality, we need to reduce a function and to preserve the same convergence order, and so,
we estimate f ′(y(n)) by the following polynomial:

N2(t) = f (y(n)) + (t− y(n)) f [y(n), w(n)] + (t− y(n))(t− w(n)) f [y(n), w(n), x(n)], (3)

where

f [x(0), x(1), x(2), ..., x(k−1), x(k)] =
f [x(1), x(2), ..., x(k−1), x(k)]− f [x(0), x(1), x(2), ..., x(k−1)]

x(k) − x(0)
, x(k) �= x(0),

is the generalized divided differences of kth order at x(0) ≤ x(1) ≤ x(2) ≤ ... ≤ x(k−1) ≤ x(k). It is noted
that N2(y(n)) = f (y(n)). Differentiating Equation (3) and putting t = y(n), we get

N ′
2(y

(n)) = f [y(n), w(n)] + (y(n) − w(n)) f [y(n), w(n), x(n)]. (4)

Now, approximating f ′(y(n)) ≈ N ′
2(y

(n)) in Equation (2), we get a new derivative-free optimal
fourth-order method (PM4) given by⎧⎪⎪⎪⎨⎪⎪⎪⎩

w(n) = x(n) + f (x(n))3,

y(n) = x(n) − f (x(n))4

f (w(n))− f (x(n))
,

z(n) = y(n) − f (y(n))
f [y(n) ,w(n)]+(y(n)−w(n)) f [y(n) ,w(n) ,x(n)]

.

(5)

2.2. Optimal Eighth-Order Method

Next, we attempt to get a new optimal eighth-order method in the following way:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

w(n) = x(n) + f (x(n))3,

y(n) = x(n) − f (x(n))4

f (w(n))− f (x(n))
,

z(n) = y(n) − f (y(n))
f [y(n) ,w(n)]+(y(n)−w(n)) f [y(n) ,w(n) ,x(n)]

,

p(n) = z(n) − f (z(n))
f ′(z(n)) .

(6)

The above has eighth-order convergence with five function evaluations, but this is not an optimal
method. To get an optimal, we need to reduce a function and to preserve the same convergence order,
and so, we estimate f ′(z(n)) by the following polynomial:

N3(t) = f (z(n)) + (t− z(n)) f [z(n), y(n)] + (t− z(n))(t− y(n)) f [z(n), y(n), w(n)]

+ (t− z(n))(t− y(n))(t− w(n)) f [z(n), y(n), w(n), x(n)].
(7)
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It is clear that N3(z(n)) = f (z(n)). Differentiating Equation (7) and setting t = z(n), we get

N ′
3(z

(n)) = f [z(n), y(n)] + (z(n) − y(n)) f [z(n), y(n), w(n)] + (z(n) − y(n))(z(n) − w(n)) f [z(n), y(n), w(n), x(n)]. (8)

Now, approximating f ′(z(n)) ≈ N ′
3(z

(n)) in (6), we get a new derivative-free optimal eighth-order
method (PM8) given by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

w(n) = x(n) + f (x(n))3,

y(n) = x(n) − f (x(n))4

f (w(n))− f (x(n))
,

z(n) = y(n) − f (y(n))
f [y(n) ,w(n)]+(y(n)−w(n)) f [y(n) ,w(n) ,x(n)]

,

p(n) = z(n) − f (z(n))
f [z(n) ,y(n)]+(z(n)−y(n)) f [z(n) ,y(n) ,w(n)]+(z(n)−y(n))(z(n)−w(n)) f [z(n) ,y(n) ,w(n) ,x(n)]

.

(9)

2.3. Optimal Sixteenth-Order Method

Next, we attempt to get a new optimal sixteenth-order method in the following way:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(n) = x(n) + f (x(n))3,

y(n) = x(n) − f (x(n))4

f (w(n))− f (x(n))
,

z(n) = y(n) − f (y(n))
f [y(n) ,w(n)]+(y(n)−w(n)) f [y(n) ,w(n) ,x(n)]

,

p(n) = z(n) − f (z(n))
f [z(n) ,y(n)]+(z(n)−y(n)) f [z(n) ,y(n) ,w(n)]+(z(n)−y(n))(z(n)−w(n)) f [z(n) ,y(n) ,w(n) ,x(n)]

,

x(n+1) = p(n) − f (p(n))
f ′(p(n))

.

(10)

The above has sixteenth-order convergence with six function evaluations, but this is not an optimal
method. To get an optimal, we need to reduce a function and to preserve the same convergence order,
and so, we estimate f ′(p(n)) by the following polynomial:

N4(t) = f (p(n)) + (t− p(n)) f [p(n), z(n)] + (t− p(n))(t− z(n)) f [p(n), z(n), y(n)]

+ (t− p(n))(t− z(n))(t− y(n)) f [p(n), z(n), y(n), w(n)]

+ (t− p(n))(t− z(n))(t− y(n))(t− w(n)) f [p(n), z(n), y(n), w(n), x(n)].

(11)

It is clear that N4(p(n)) = f (p(n)). Differentiating Equation (11) and setting t = p(n), we get

N ′
4(p(n)) = f [p(n), z(n)] + (p(n) − z(n)) f [p(n), z(n), y(n)] + (p(n) − z(n))(p(n) − y(n)) f [p(n), z(n), y(n), w(n)]

+ (p(n) − z(n))(p(n) − y(n))(p(n) − w(n)) f [p(n), z(n), y(n), w(n), x(n)].
(12)

Now, approximating f ′(p(n)) ≈ N ′
4(p(n)) in Equation (10), we get a new derivative-free optimal

sixteenth-order iterative method (PM16) given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(n) = x(n) + f (x(n))3,

y(n) = x(n) − f (x(n))4

f (w(n))− f (x(n))
,

z(n) = y(n) − f (y(n))
f [y(n) ,w(n)]+(y(n)−w(n)) f [y(n) ,w(n) ,x(n)]

,

p(n) = z(n) − f (z(n))
f [z(n) ,y(n)]+(z(n)−y(n)) f [z(n) ,y(n) ,w(n)]+(z(n)−y(n))(z(n)−w(n)) f [z(n) ,y(n) ,w(n) ,x(n)]

,

x(n+1) = p(n) − f (p(n))
N ′

4(p(n))
,

(13)

where N ′
4(p(n)) given in Equation (12).
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3. Convergence Analysis

In this part, we will derive the convergence analysis of the proposed schemes in Equations (5), (9),
and (13) with the help of MATHEMATICA software.

Theorem 1. Let f : D ⊂ R→ R be a sufficiently smooth function having continuous derivatives. If f (x) has
a simple root x∗ in the open interval D and x(0) is chosen in a sufficiently small neighborhood of x∗, then the
method of Equation (5) is of local fourth-order convergence and and it satisfies the error equation

en+1 = (c[2]3 − c[2]c[3])e4
n + O(e5

n).

Proof. Let en = x(n) − x∗ and c[j] = f (j)(x∗)
j! f ′(x∗) , j = 2, 3, 4, .... Expanding f (x(n)) and f (w(n)) about x∗ by

Taylor’s method, we have

f (x(n)) = f ′(x∗)[en + c[2]e2
n + c[3]e3

n + c[4]e4
n + . . .], (14)

w(n) = en + f ′(x∗)3[en + c[2]e2
n + c[3]e3

n + c[4]e4
n + . . .]3, (15)

f (w(n)) = f ′(x∗)[en + c[2]e2
n + ( f ′(x∗)3 + c[3])e3

n + (5 f ′(x∗)3c[2] + c[4])e4
n + . . .]. (16)

Then, we have

y(n) = x∗ + c[2]e2
n + (−2c[2]2 + 2c[3])e3

n + (4c[2]3 − 7c[2]c[3] + 3c[4] + f ′(x∗)3c[2])e4
n + . . . . (17)

Expanding f (y(n)) about x∗, we have

f (y(n)) = f ′(x∗)[c[2]e2
n − 2(c[2]2 − c[3])e3

n + (5c[2]3 − 7c[2]c[3] + 3c[4] + f ′(x∗)3c[2])e4
n + . . .]. (18)

Now, we get the Taylor’s expansion of f [y(n), w(n)] = f (y(n))− f (w(n))

y(n)−w(n) by replacing

Equation (15)–(18).

f [y(n), w(n)] = f ′(x∗)[1 + c[2]en + (c[2]2 + c[3])e2
n + ( f ′(x∗)3c[2]− 2c[2]3 + c[2]c[3] + c[4])e3

n + . . .]. (19)

Also, we have

f [y(n), w(n), x(n)] = f ′(x∗)[c[2] + 2c[3]en + (c[2]c[3] + c[4])e2
n + . . .] (20)

Using Equations (14)–(20) in the scheme of Equation (5), we obtain the following error equation:

en+1 = (c[2]3 − c[2]c[3])e4
n + . . . . (21)

This reveals that the proposed method PM4 attains fourth-order convergence.

Theorem 2. Let f : D ⊂ R→ R be a sufficiently smooth function having continuous derivatives. If f (x) has
a simple root x∗ in the open interval D and x(0) is chosen in a sufficiently small neighborhood of x∗, then the
method of Equation (9) is of local eighth-order convergence and and it satisfies the error equation

en+1 = c[2]2(c[2]2 − c[3])(c[2]3 − c[2]c[3] + c[4])e8
n + O(e9

n).
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Theorem 3. Let f : D ⊂ R→ R be a sufficiently smooth function having continuous derivatives. If f (x) has
a simple root x∗ in the open interval D and x(0) is chosen in a sufficiently small neighborhood of x∗, then the
method of Equation (13) is of local sixteenth-order convergence and and it satisfies the error equation

en+1 = c[2]4
(

c[2]2 − c[3]
)2(

c[2]3 − c[2]c[3] + c[4]
)(

c[2]4 − c[2]2c[3] + c[2]c[4]− c[5]
)

e16
n + O(e17

n ).

4. Some Known Derivative-Free Methods

Let us consider the following schemes for the purpose of comparison. Derivative-free
Kung–Traub’s two-step method (KTM4) [4] is as follows:

y(n) = x(n) − f (x(n))
f [x(n), w(n)]

, w(n) = x(n) + f (x(n)), x(n+1) = y(n) − f (y(n)) f (w(n))

[ f (w(n))− f (y(n))] f [x(n), y(n)]
. (22)

Derivative-free Argyros et al. two-step method (AKKB4) [25] is as follows:

y(n) = x(n) − f (x(n))
f [x(n), w(n)]

, w(n) = x(n) + f (x(n)), x(n+1) = y(n) − f (y(n))
[ f (x(n))− 2 f (y(n))]

f (x(n))
f [y(n), w(n)]

(
1− f (y(n))

f (x(n))

)
. (23)

Derivative-free Zheng et al. two-step method (ZLM4) [26] is as follows:

y(n) = x(n) − f (x(n))
f [x(n), w(n)]

, w(n) = x(n) + f (x(n)), x(n+1) = y(n) − f (y(n))
f [x(n), y(n)] + (y(n) − x(n)) f [x(n), w(n), y(n)]

. (24)

Derivative-free Argyros et al. three-step method (AKKB8) [25] is as follows:

⎧⎨⎩ y(n) = x(n) − f (x(n))
f [x(n) ,w(n)]

, w(n) = x(n) + f (x(n)), z(n) = y(n) − f (y(n))
[ f (x(n))−2 f (y(n))]

f (x(n))
f [y(n) ,w(n)]

(
1− f (y(n))

f (x(n))

)
,

x(n+1) = z(n) − f (z(n))
f [z(n) ,y(n)]+(z(n)−y(n)) f [z(n) ,y(n) ,x(n)]+(z(n)−y(n))(z(n)−x(n)) f [z(n) ,y(n) ,x(n) ,w(n)]

.
(25)

Derivative-free Kanwar et al. three-step method (KBK8) [15] is as follows:⎧⎪⎨⎪⎩
y(n) = x(n) − f (x(n))

f [x(n) ,w(n)]
, w(n) = x(n) + f (x(n))3, z(n) = y(n) − f (y(n))

2 f [y(n) ,x(n)]− f [x(n) ,w(n)]
,

x(n+1) = z(n) − f (z(n))
f [y(n) ,z(n)]+ f [w(n) ,y(n) ,z(n)](z(n)−y(n))

(
1−

(
f (y(n))
f (x(n))

)3 − 8 f (y(n)) f (z(n))
f (x(n))2 + f (z(n))

f (x(n))
+ 5

(
f (z(n))
f (y(n))

)2)
.

(26)

Derivative-free Soleymani three-step method (SM8) [2] is as follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
w(n) = x(n) + f (x(n)), y(n) = x(n) − f (x(n))

f [x(n) ,w(n)]
, z(n) = y(n) − f (y(n))

f [x(n) ,w(n)]
φn,

x(n+1) = z(n) − f (z(n))
f [x(n) ,w(n)]

φnψn, where φn = 1
1− f (y(n))/ f (x(n))− f (y(n))/ f (w(n))

,

ψn = 1 + 1
1+ f [x(n) ,w(n)]

(
f (y(n))
f (x(n))

)2
+
(
(1 + f [x(n), w(n)])(2 + f [x(n), w(n)])

)(
f (y(n))
f (w(n))

)3
+ f (z(n))

f (y(n))
+ f (z(n))

f (x(n))
+ f (z(n))

f (w(n))
.

(27)

Derivative-free Zheng et al. four-step method (ZLM16) [26] is as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(n) = x(n) − f (x(n))2

f (w(n))− f (x(n))
, w(n) = x(n) + f (x(n)), z(n) = y(n) − f (y(n))

f [y(n) ,w(n)]+(y(n)−w(n)) f [y(n) ,w(n) ,x(n)]
,

p(n) = z(n) − f (z(n))
f [z(n) ,y(n)]+(z(n)−y(n)) f [z(n) ,y(n) ,w(n)]+(z(n)−y(n))(z(n)−w(n)) f [z(n) ,y(n) ,w(n) ,x(n)]

,

x(n+1) = p(n) − f (p(n))
f ′(p(n))

,

where f ′(p(n)) ≈ f [p(n), z(n)] + (p(n) − z(n)) f [p(n), z(n), y(n)] + (p(n) − z(n))(p(n) − y(n)) f [p(n), z(n), y(n), w(n)]

+(p(n) − z(n))(p(n) − y(n))(p(n) − w(n)) f [p(n), z(n), y(n), w(n), x(n)].

(28)

5. Test Problems

We compare the performance of the proposed methods along with some existing methods for
test problems by using MATLAB. We use the conditions for stopping criteria for | f (x(N))| < ε where
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ε = 10−50 and N is the number of iterations needed for convergence. The computational order of
convergence (coc) is given by

ρ =
ln |(x(N) − x(N−1))/(x(N−1) − x(N−2))|

ln |(x(N−1) − x(N−2))/(x(N−2) − x(N−3))| .

The test problems and their roots are given below:

f1(x) = sin(2 cos x)− 1− x2 + esin(x3), x∗ = −0.7848959876612125352...

f2(x) = x3 + 4x2 − 10, x∗ = 1.3652300134140968457...

f3(x) =
√

x2 + 2x + 5− 2 sin x− x2 + 3, x∗ = 2.3319676558839640103...

f4(x) = e−x sin x + log (1 + x2)− 2, x∗ = 2.4477482864524245021...

f5(x) = sin(x) + cos(x) + x, x∗ = −0.4566247045676308244...

Tables 1–5 show the results of all the test functions with a given initial point. The computational
order of convergence conforms with theoretical order of convergence. If the initial points are close to
the zero, then we obtain less number of iterations with least error. If the initial points are away from
the zero, then we will not obtained the least error. We observe that the new methods in all the test
function have better efficiency as compared to other existing methods of the equivalent methods.

Table 1. Comparisons between different methods for f1(x) at x(0) = −0.9.

Methods N |x(1) − x(0)| |x(2) − x(1)| |x(3) − x(2)| |x(N) − x(N−1)| coc

SM2 (1) 8 0.0996 0.0149 6.1109 ×10−4 1.0372×10−89 1.99
KTM4 (22) 5 0.1144 6.7948×10−4 3.4668×10−12 5.1591×10−178 4.00
AKKB4 (23) 4 0.1147 3.6299×10−4 9.5806×10−14 4.6824×10−52 3.99
ZLM4 (24) 5 0.1145 6.1744×10−4 1.5392×10−12 1.3561×10−184 4.00

PM4 (5) 4 0.1150 1.3758×10−4 2.6164×10−16 3.4237×10−63 3.99
AKKB8 (25) 3 0.1151 1.2852×10−8 3.7394×10−62 3.7394×10−62 7.70
KBK8 (26) 3 0.1151 8.1491×10−8 1.5121×10−56 1.5121×10−56 7.92
SM8 (27) 4 0.1151 1.8511×10−6 1.0266×10−43 0 7.99
PM8 (9) 3 0.1151 7.1154×10−9 9.3865×10−67 9.3865×10−67 8.02

ZLM16 (28) 3 0.1151 5.6508×10−15 1.4548×10−225 1.4548×10−225 15.82
PM16 (13) 3 0.1151 5.3284×10−17 1.2610×10−262 1.2610×10−262 16.01

Table 2. Comparisons between different methods for f2(x) at x(0) = 1.6.

Methods N |x(1) − x(0)| |x(2) − x(1)| |x(3) − x(2)| |x(N) − x(N−1)| coc

SM2 (1) 12 0.0560 0.0558 0.0520 1.7507×10−83 1.99
KTM4 (22) 5 0.2184 0.0163 3.4822×10−6 4.7027×10−79 3.99
AKKB4 (23) 33 0.0336 0.0268 0.0171 2.4368×10−52 0.99
ZLM4 (24) 5 0.2230 0.0117 4.4907×10−7 3.9499×10−95 3.99

PM4 (5) 5 0.2123 0.0224 2.3433×10−7 4.3969×10−112 4.00
AKKB8 (25) 4 0.2175 0.0173 1.2720×10−9 1.0905×10−66 8.00
KBK8 (26) D D D D D D
SM8 (27) 4 0.2344 4.1548×10−4 9.5789×10−24 7.7650×10−181 7.89
PM8 (9) 4 0.2345 2.4307×10−4 4.6428×10−32 8.2233×10−254 8.00

ZLM16 (28) 3 0.2348 2.2048×10−7 1.9633×10−124 1.9633×10−124 15.57
PM16 (13) 3 0.2348 2.8960×10−8 1.7409×10−126 1.7409×10−126 17.11
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Table 3. Comparisons between different methods for f3(x) at x(0) = 2.7.

Methods N |x(1) − x(0)| |x(2) − x(1)| |x(3) − x(2)| |x(N) − x(N−1)| coc

SM2 (1) 7 0.3861 0.0180 4.6738×10−05 1.0220×10−82 1.99
KTM4 (22) 4 0.3683 2.8791×10−4 1.0873×10−16 2.2112×10−66 3.99
AKKB4 (23) 4 0.3683 2.5241×10−4 5.2544×10−17 9.8687×10−68 3.99
ZLM4 (24) 4 0.3683 3.1466×10−4 1.7488×10−16 1.6686×10−65 4.00

PM4 (5) 4 0.3683 2.2816×10−4 2.3732×10−17 2.7789×10−69 3.99
AKKB8 (25) 3 0.3680 1.7343×10−8 3.8447×10−67 3.8447×10−67 8.00
KBK8 (26) 4 0.3680 4.2864×10−5 1.8700×10−38 2.4555×10−305 7.99
SM8 (27) 3 0.3680 7.8469×10−8 2.9581×10−61 2.9581×10−61 8.00
PM8 (9) 3 0.3680 9.7434×10−9 1.0977×10−69 1.0977×10−69 8.04

ZLM16 (28) 3 0.3680 1.4143×10−16 6.3422×10−240 6.3422×10−240 16.03
PM16 (13) 3 0.3680 3.6568×10−17 7.4439×10−274 7.4439×10−274 16.04

Table 4. Comparisons between different methods for f4(x) at x(0) = 1.9.

Methods N |x(1) − x(0)| |x(2) − x(1)| |x(3) − x(2)| |x(N) − x(N−1)| coc

SM2 (1) 7 0.4975 0.0500 2.5378×10−4 1.9405×10−73 2.00
KTM4 (22) 4 0.2522 1.7586×10−6 1.5651×10−26 9.8198×10−107 3.99
AKKB4 (23) 4 0.5489 0.0011 3.8305×10−15 5.5011×10−61 3.99
ZLM4 (24) 4 0.5487 9.0366×10−4 1.4751×10−15 1.0504×10−62 3.99

PM4 (5) 4 0.5481 3.0864×10−4 8.0745×10−18 3.7852×10−72 3.99
AKKB8 (25) 3 0.5477 5.4938×10−7 4.9628×10−56 4.9628×10−56 8.17
KBK8 (26) 3 0.5477 4.1748×10−7 5.8518×10−59 5.8518×10−59 8.47
SM8 (27) 3 0.5477 5.4298×10−7 4.1081×10−56 4.1081×10−56 8.18
PM8 (9) 3 0.5477 5.8222×10−8 1.1144×10−64 1.1144×10−64 8.13

ZLM16 (28) 3 0.5477 2.7363×10−14 7.2982×10−229 7.2982×10−229 16.13
PM16 (13) 3 0.5477 5.6240×10−16 1.9216×10−257 1.9216×10−257 16.11

Table 5. Comparisons between different methods for f5(x) at x(0) = −0.2.

Methods N |x(1) − x(0)| |x(2) − x(1)| |x(3) − x(2)| |x(N) − x(N−1)| coc

SM2 (1) 7 0.3072 0.0499 6.4255×10−4 4.1197×10−59 2.00
KTM4 (22) 5 0.2585 0.0019 1.5538×10−12 3.4601×10−194 4.00
AKKB4 (23) 4 0.2571 4.4142×10−4 3.4097×10−15 1.2154×10−59 3.99
ZLM4 (24) 4 0.2580 0.0013 3.5840×10−13 1.8839×10−51 3.99

PM4 (5) 4 0.2569 2.8004×10−4 6.2960×10−17 1.6097×10−67 3.99
AKKB8 (25) 3 0.2566 4.1915×10−8 6.3444×10−65 6.3444×10−65 8.37
KBK8 (26) 4 0.2566 4.0069×10−6 5.1459×10−47 0 7.99
SM8 (27) 4 0.2566 2.9339×10−6 1.0924×10−46 0 7.99
PM8 (9) 3 0.2566 3.7923×10−11 9.0207×10−90 9.0207×10−90 7.99

ZLM16 (28) 3 0.2566 5.3695×10−16 7.0920×10−252 7.0920×10−252 16.06
PM16 (13) 3 0.2566 1.1732×10−19 1.2394×10−314 1.2394×10−314 16.08
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6. Basins of Attraction

The iterative scheme gives information about convergence and stability by studying basins of
attraction of the rational function. The basic definitions and dynamical concepts of rational function can
found in References [17,27,28]. Let us consider a region R×R = [−2, 2]× [−2, 2] with 256× 256 grids.
We test iterative methods in all the grid point z(0) in the square. The iterative algorithms attempt roots
z∗j of the equation with condition | f (z(k))| < ×10−4 and a maximum of 100 iterations; we conclude

that z(0) is in the basin of attraction of this zero. If the iterative method starting in z(0) reaches a zero in
N iterations, then we mark this point z(0) with colors if |z(N) − z∗j | < ×10−4. If N > 50, then we assign
a dark blue color for diverging grid points. We describe the basins of attraction for finding complex
roots of p1(z) = z2 − 1, p2(z) = z3 − 1, p3(z) = (z2 + 1)(z2 − 1), and p4(z) = z5 − 1 for proposed
methods and some higher-order iterative methods.

In Figures 1–5, we have given the basins of attraction for new methods with some existing
methods. We confirm that a point z0 containing the Julia set whenever the dynamics of point shows
sensitivity to the conditions. The neighbourhood of initial points leads to the slight variation in
behavior after some iterations. Therefore, some of the compared algorithms obtain more divergent
initial conditions.
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Figure 1. Basins of attraction for SM2 for the polynomial.
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Figure 2. Polynomiographs of p1(z): (a) KTM4; (b) AKKB4; (c) ZLM4; (d) PM4; (e) AKKB8; (f) KBK8;
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Figure 3. Polynomiographs of p2(z): (a) KTM4; (b) AKKB4; (c) ZLM4; (d) PM4; (e) AKKB8; (f) KBK8;
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Figure 4. Polynomiographs of p3(z): (a) KTM4; (b) AKKB4; (c)ZLM4; (d) PM4; (e) AKKB8; (f) KBK8;
(g) SM8; (h) PM8; (i) ZLM16; and (j) PM16.
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Figure 5. Polynomiographs of p4(z): (a) KTM4; (b) AKKB4; (c)ZLM4; (d) PM4; (e) AKKB8; (f) KBK8;
(g) SM8; (h) PM8; (i) ZLM16; and (j) PM16.
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7. Concluding Remarks

We have proposed fourth-, eighth-, and sixteenth-order methods using finite difference
approximations. Our proposed new methods requires 3 functions to get the 4th-order method,
4 functions to obtain the 8th-order method, and 5 functions to get the 16th-order one. We have
increased the convergence order of the proposed method, respectively, to four, eight, and sixteen
with efficiency indices 1.587, 1.565, and 1.644 respectively. Our new proposed schemes are better
than the Steffensen method in terms of efficiency index (1.414). Numerical solutions are tested to
show the performance of the proposed algorithms. Also, we have analyzed on the complex region for
iterative methods to study their basins of attraction. Hence, we conclude that the proposed methods
are comparable to other well-known existing equivalent methods.
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Abstract: A generic family of optimal sixteenth-order multiple-root finders are theoretically
developed from general settings of weight functions under the known multiplicity. Special cases of
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aspects on the convergence of such schemes are explored with tabulated computational results and
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1. Introduction

Many nonlinear equations governing real-world natural phenomena cannot be solved exactly by
virtue of their intrinsic complexities. It would be certainly an important matter to discuss methods
for approximating such solutions of the nonlinear equations. The most widely accepted method
under general circumstances is Newton’s method, which has quadratic convergence for a simple-root
and linear convergence for a multiple-root. Other higher-order root-finders have been developed by
many researchers [1–9] with optimal convergence satisfying Kung–Traub’s conjecture [10]. Several
authors [10–14] have proposed optimal sixteenth-order simple-root finders, although their applications
to real-life problems are limited due to the high degree of their algebraic complexities. Optimal
sixteenth-order multiple-root finders are hardly found in the literature to the best of our knowledge at
the time of writing this paper. It is not too much to emphasize the theoretical importance of developing
optimal sixteenth-order multiple root-finders as well as to apply them to numerically solve real-world
nonlinear problems.

In order to develop an optimal sixteenth-order multiple-root finders, we pursue a family of
iterative methods equipped with generic weight functions of the form:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

yn = xn −m f (xn)
f ′(xn)

,

zn = yn −mQ f (s)
f (yn)
f ′(xn)

= xn −m
[
1 + sQ f (s)

] f (xn)
f ′(xn)

,

wn = zn −mK f (s, u) f (zn)
f ′(xn)

= xn −m
[
1 + sQ f (s) + suK f (s, u)

] f (xn)
f ′(xn)

,

xn+1 = wn −mJf (s, u, v) f (wn)
f ′(xn)

= xn −m
[
1 + sQ f (s) + suK f (s, u) + suvJ f (s, u, v)

] f (xn)
f ′(xn)

,

(1)
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where s =
( f (yn)

f (xn)

)1/m, u =
( f (zn)

f (yn)

)1/m, v =
( f (wn)

f (zn)

)1/m; Q f : C→ C is analytic [15] in a neighborhood

of 0, K f : C2 → C holomorphic [16,17] in a neighborhood of (0, 0), and J f : C3 → C holomorphic
in a neighborhood of (0, 0, 0). Since s, u and v are respectively one-to-m multiple-valued functions,
their principal analytic branches [15] are considered. Hence, for instance, it is convenient to treat s
as a principal root given by s = exp[ 1

m Log( f (yn)
f (xn)

)], with Log( f (yn)
f (xn)

) = Log
∣∣ f (yn)

f (xn)

∣∣+ i Arg( f (yn)
f (xn)

) for

−π < Arg( f (yn)
f (xn)

) ≤ π; this convention of Arg(z) for z ∈ C agrees with that of Log[z] command of
Mathematica [18] to be employed later in numerical experiments.

The case for m = 1 has been recently developed by Geum–Kim–Neta [19]. Many other existing
cases for m = 1 are special cases of (1) with appropriate forms of weight functions Q f , K f , and J f ;
for example, the case developed in [10] uses the following weight functions:⎧⎪⎪⎨⎪⎪⎩

Q f (s) = 1
(1−s)2 ,

K f (s, u) = 1+(1−u)s2

(1−s)2(1−u)(1−su)2 ,

J f (s, u, v) = −1+2su2(v−1)+s4(u−1)u2(v−1)(uv−1)+s2[uv−1−u3(v2−1)]
(1−s)2(u−1)(su−1)2(v−1)(uv−1)(suv−1)2 .

(2)

One goal of this paper is to construct a family of optimal sixteenth-order multiple-root finders by
characterizing the generic forms of weight functions Q f (s), K f (s, u), and J f (s, u, v). The other goal is
to investigate the convergence behavior by exploring their numerical behavior and dynamics through
basins of attractions [20] underlying the extraneous fixed points [21] when f (z) = (z− a)m(z− b)m is
applied. In view of the right side of final substep of (1), we can conveniently locate extraneous fixed
points from the roots of the weight function m[1 + sQ f (s) + suK f (s, u) + suvJ f (s, u, v)].

A motivation undertaking this research is to investigate the local and global characters on the
convergence of proposed family of methods (1). The local convergence of an iterative method for
solving nonlinear equations is usually guaranteed with an initial guess taken in a sufficiently close
neighborhood of the sought zero. On the other hand, effective information on its global convergence
is hardly achieved under general circumstances. We can obtain useful information on the global
convergence from attractor basins through which relevant dynamics is worth exploring. Especially
the dynamics underlying the extraneous fixed points (to be described in Section 3) would influence
the dynamical behavior of the iterative methods by the presence of possible attractive, indifferent,
repulsive, and other chaotic orbits. One way of reducing such influence is to control the location of the
extraneous fixed points. We prefer the location to be the imaginary axis that divides the entire complex
plane into two symmetrical half-planes. The dynamics underlying the extraneous fixed points on the
imaginary axis would be less influenced by the presence of the possible periodic or chaotic attractors.

The main theorem is presented in Section 2 with required constraints on weight functions, Q f ,
K f , and J f to achieve the convergence order of 16. Section 2 discusses special cases of rational
weight functions. Section 3 extensively investigates the purely imaginary extraneous fixed points and
investigates their stabilities. Section 4 presents numerical experiments as well as the relevant dynamics,
while Section 5 states the overall conclusions along with the short description of future work.

2. Methods and Special Cases

A main theorem on the convergence of (1) is established here with the error equation and
relationships among generic weight functions Q f (s), K f (s, u), and J f (s, u, v):

Theorem 1. Suppose that f : C → C has a multiple root α of multiplicity m ≥ 1 and is analytic in a

neighborhood of α. Let cj = m!
(m−1+j)!

f (m−1+j)(α)
f (m)(α)

for j = 2, 3, · · · . Let x0 be an initial guess selected in
a sufficiently small region containing α. Assume L f : C → C is analytic in a neighborhood of 0. Let

Qi = 1
i!

di

dsi Q f (s)
∣∣
(s=0) for 0 ≤ i ≤ 6. Let K f : C2 → C be holomorphic in a neighborhood of (0, 0).

Let J f : C3 → C be holomorphic in a neighborhood of (0, 0, 0). Let Kij = 1
i!j!

∂i+j

∂si∂uj K f (s, u)
∣∣
(s=0,u=0) for
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0 ≤ i ≤ 12 and 0 ≤ j ≤ 6. Let Jijk = 1
i!j!k!

∂i+j+k

∂si∂uj∂vj J f (s, u, v)
∣∣
(s=0,u=0,v=0) for 0 ≤ i ≤ 8, 0 ≤ j ≤ 4 and

0 ≤ k ≤ 2. If Q0 = 1, Q1 = 2, K00 = 1, K10 = 2, K01 = 1, K20 = 1 + Q2, K11 = 4, K30 = −4 + 2Q2 + Q3,
J000 = 1, J100 = 2, J200 = 1 + Q2, J010 = 1, J110 = 4, J300 = −4 + 2Q2 + Q3, J001 = 1, J020 = K02, J210 =

1 + K21, J400 = K40, J101 = 2, J120 = 2 + K12, J310 = −4 + K31 + 2Q2, J500 = K50, J011 = 2, J201 =

1 + Q2, J030 = −1 + K02 + K03, J220 = 1 + K21 + K22 − Q2, J410 = −3 + K40 + K41 + Q2 − Q4, J600 =

K60, J111 = 8, J301 = −4 + 2Q2 + Q3, J130 = −4 + 2K02 + K12 + K13, J320 = −6 + 2K21 + K31 + K32 −
2Q2 − Q3, J510 = 6 + 2K40 + K50 + K51 − 3Q3 − 2Q4 − Q5, J700 = K70 are fulfilled, then Scheme (1)
leads to an optimal class of sixteenth-order multiple-root finders possessing the following error equation: with
en = xn − α for n = 0, 1, 2, · · · ,

en+1 =
1

3456m15 c2(ρc2
2 − 2mc3)

[
β0c4

2 + β1c2
2c3 + 12m2(K02 − 1)c2

3 − 12m2c2c4
]
Ψ e16

n + O(e17
n ), (3)

where ρ = 9+m− 2Q2, β0 = (−431+ 12K40− 7m2 + 6m(−17+Q2)+ 102Q2− 24Q3− 12Q4 + 6K21ρ+

3K02ρ2), β1 = −12m(−17+ K21− 2m + Q2 + K02ρ), Ψ = Δ1c8
2 + Δ2c6

2c3 + Δ3c5
2c4 + Δ4c3

2c3c4 + Δ5c4
2 +

Δ6c2
2 + Δ7c4

3 + Δ8c2c2
3c4,

Δ1 = (−255124 + 144J800 − 144K80 − 122577m− 23941m2 − 2199m3 − 79m4 + 24K40(472 + 93m +

5m2)− 72(17 + m)Q3
2 − 576Q2

3 + Q3(48(−566 + 6K40 − 117m− 7m2)− 576Q4) + 24(−485 + 6K40 −
108m − 7m2)Q4 − 144Q2

4 + Q2
2(36(−87 + 14m + m2) + 288Q3 + 144Q4) + Q2(18(5300 + 1529m +

172m2 + 7m3 − 8K40(18 + m)) + 144(35 + m)Q3 + 72(29 + m)Q4) + 18ρ3σ + 6ρ(12J610 − 12(2K50 +

K60 + K61 − 2Q5 − Q6) + J211(−12K40 + σ2) + 2K21(−J002σ2 + σ3 + 6η0)) + ρ2(36J420 − 36J211K21 +

36J002K2
21 − 72K31 − 36J021K40 − 36K41 − 36K42 + 3J021σ2 + 6K02(−6J401 + 12J002K40 − J002σ2 + σ3)) +

12J401σ7 + J002σ2
7 + 9ρ4τ),

Δ2 = m(144(Q3
2 − 2Q5 − Q6) + 288Q3(−K21 + (39 + 4m) − K02ρ) + 144Q2

2(−2K21 − (7 +

m) − K02ρ) + 144Q4(−K21 + 4(9 + m) − K02ρ) + Q2(144K21(58 + 5m) − 36(1529 − 8K40 + m(302 +

17m))− 288Q3 − 144Q4 + 144K02(38 + 3m)ρ)− 108ρ2σ + 6(40859− 24J610 + 48K50 + 24K60 + 24K61 +

24K40(−31 + J211 − 3m) + m(14864 + m(1933 + 88m)) − 2J211σ8) − 72ρ3τ − 24ρ2(J002σ2 − 6η0) −
24K21(1309 + m(267 + 14m) − J002σ8 + 6η0) + ρ(144J211K21 − 144J002K2

21 + 12(−12J420 + 12(2K31 +

J021K40 + K41 + K42)− J021σ4)− 12K02(1781 + m(360 + 19m)− 2J002σ4 + 12η0))),
Δ3 = 12m2(6(63 + 5m)Q2 − 48Q3− 24Q4 + 6(J211 + K21− 2J002K21)ρ− (1645− 12J401 + 12(−1 +

2J002)K40 + 372m + 23m2 − 2J002σ2) + 3ρ2σ5),
Δ4 = 144m3(−3Q2 + (53− J211 + (−1 + 2J002)K21 + 6m− 2J002ρ2)− ρσ5),
Δ5 = 72ρm3c5 + 12m2c2

3((−12K21(J211 − 4(10 + m)) + K02(4778 − 12J401 + m(990 + 52m)) +

3(−1929 + 4J401 + 4J420 − 8K31 + 8K40 − 4K41 − 4K42 − 476m − 31m2 + 2J211(43 + 5m) + J021(115 +

22m+m2)))− 6(−88+ 121J021 + 4J211 + 232K02 + 8K21 +(−10+ 13J021 + 22K02)m+ 2J002(51− 4K21 +

5m))Q2 + 12(1 + J002 + 3J021 + 6K02)Q2
2 + 18ρσ + 18ρ2τ + Q4(12(−2 + K02) + 12η1) + Q3(24(−2 +

K02) + 24η1)− J021η2 + η1((2165− 12K40 + m(510 + 31m)) + η2)),
Δ6 = 72m3(2(−1 + J002)mc2

4 − 2mc3c5 + c3
3(2Q2(−1 + 6K02)− 2K02(49− J211 + 5m + 2J002ρ3) +

(85− 2J211 − 2J230 + 4K12 − 4K21 + 4J002(K21 − ρ2) + 2K22 + 2K23 + 11m + 2J021ρ3)− 4ρτ)),
Δ7 = 144m4(−1 + J002 + J021 + J040− K03− K04 + (2− η1)K02 + J002K2

02), Δ8 = 144m4(−3 + η1 +

(1− 2J002)K02),
τ = J040 − J021K02 + J002K2

02 − K03 − K04, ρ2 = 17 + 2m−Q2, ρ3 = −26 + K21 − 3m + 3Q2, σ =

J230− J211K02− 2K12− J021K21 + 2J002K02K21−K22−K23, σ2 = 431+ 7m2− 6m(−17+ Q2)− 102Q2 +

24Q3 + 12Q4, σ3 = 472 + 5m2 + m(93− 6Q2)− 108Q2 + 12Q3 + 6Q4, σ4 = 890 + 13m2 − 231Q2 +

6Q2
2 − 3m(−69 + 7Q2) + 24Q3 + 12Q4, σ5 = J021 + K02 − 2J002K02, σ6 = −1255 + 6K40 − 288m −

17m2 + 363Q2 + 39mQ2 − 18Q2
2 − 12Q3 − 6Q4, σ7 = 431− 12K40 + 7m2 − 6m(−17 + Q2)− 102Q2 +

24Q3 + 12Q4, σ8 = 1349 + 19m2 + m(312− 36Q2) − 360Q2 + 12Q2
2 + 24Q3 + 12Q4, η0 = −J401 +

2J002K40, η1 = 2J002 + J021, η2 = 6K2
21 − 6K21(43 + 5m) + 2σ6K02.
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Proof. Since Scheme (1) employs five functional evaluations, namely, f ′(xn), f (xn), f (yn), f (zn),
and f (wn), optimality can be achieved if the corresponding convergence order is 16. In order to induce
the desired order of convergence, we begin by the 16th-order Taylor series expansion of f (xn) about α:

f (xn) =
f ′(α)
m!

em
n {1 +

17

∑
i=2

ci ei−1
n + O(e17

n )}. (4)

It follows that

f ′(xn) =
f ′(α)

(m− 1)!
em−1

n {1 +
16

∑
i=2

i
m + i− 1

m
ci ei−1

n + O(e16
n )}. (5)

For brevity of notation, we abbreviate en as e. Using Mathematica [18], we find:

yn = xn −m
f (xn)

f ′(xn)
= α +

c2

m
e2 +

(−(m + 1)c2
2 + 2mc3)

m2 e3 +
Y4

m3 e4 +
16

∑
i=5

Yi

mi−1 ei
n + O(e17), (6)

where Y4 = (1 + m)2c3
2 −m(4 + 3m)c2c3 + 3m2c4 and Yi = Yi(c2, c3, · · · , c16) for 5 ≤ i ≤ 16.

After a lengthy computation using the fact that f (yn) = f (xn)|en→(yn−α), we get:

s =
(

f (yn)

f (xn)

)1/m

=
c2

m
e +

(−(m + 2)c2
2 + 2mc3)

m2 e2 +
γ3

2m3 e3 +
15

∑
i=4

Ei ei + O(e16), (7)

where γ3 = (7 + 7m + 2m2)c3
2 − 2m(7 + 3m)c2c3 + 6m2c4, Ei = Ei(c2, c3, · · · , c16) for 4 ≤ i ≤ 15.

In the third substep of Scheme (1), wn = O(e8) can be achieved based on Kung–Traub’s conjecture.
To reflect the effect on wn from zn in the second substep, we need to expand zn up to eighth-order
terms; hence, we carry out a sixth-order Taylor expansion of Q f (s) about 0 by noting that s = O(e)

and f (yn)
f ′(xn)

= O(e2):

Q f (s) = Q0 + Q1s + Q2s2 + Q3s3 + Q4s4 + Q5s5 + Q6s6 + O(e7), (8)

where Qj =
1
j!

dj

dsj Q f (s) for 0 ≤ j ≤ 6. As a result, we come up with:

zn = xn −mQ f (s)
f (yn)

f ′(xn)
= α +

(1−Q0)

m
e2 +

μ3

m2 e3 +
16

∑
i=4

Wi ei + O(e17),

where μ3 = (−1+ m(Q0− 1) + 3Q0−Q1)c2
2− 2m(Q0− 1)c3 and Wi = Wi(c2, c3, · · · , c16, Q0, · · · , Q6)

for 4 ≤ i ≤ 16. Selecting Q0 = 1 and Q1 = 2 leads us to an expression:

zn = α +
c2(ρc2

2 − 2mc3)

m2 e4 +
16

∑
i=5

Wi ei + O(e17). (9)

By a lengthy computation using the fact that f (zn) = f (xn)|en→(zn−α), we deduce:

u =

(
f (zn)

f (yn)

)1/m

=
(ρc2

2 − 2mc3)

2m2 e2 +
δ3

3m3 e3 +
16

∑
i=4

Gi ei + O(e17), (10)

where δ3 = (49 + 2m2 + m(27 − 6Q2) − 18Q2 + 3Q3)c3
2 − 6mρc2c3 + 6m2c4 and Gi =

Gi(c2, c3, · · · , c16, Q2, · · · , Q6) for 4 ≤ i ≤ 16.
In the last substep of Scheme (1), xn+1 = O(e16) can be achieved based on Kung-Traub’s conjecture.

To reflect the effect on xn+1 from wn in the third substep, we need to expand wn up to sixteenth-order
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terms; hence, we carry out a 12th-order Taylor expansion of K f (s, u) about (0, 0) by noting that:

s = O(e), u = O(e2) and f (zn)
f ′(xn)

= O(e4) with Kij = 0 satisfying i + 2j > 12 for all 0 ≤ i ≤ 12, 0 ≤ j ≤ 6:

K f (s, u) = K00 + K10s + K20s2 + K30s3 + K40s4 + K50s5 + K60s6 + K70s7 + K80s8 + K90s9 + K100s10 + K110s11+

K120s12 + (K01 + K11s + K21s2 + K31s3 + K41s4 + K51s5 + K61s6 + K71s7 + K81s8 + K91s9 + K101s10)u+
(K02 + K12s + K22s2 + K32s3 + K42s4 + K52s5 + K62s6 + K72s7 + K82s8)u2+

(K03 + K13s + K23s2 + K33s3 + K43s4 + K53s5 + K63s6)u3+

(K04 + K14s + K24s2 + K34s3 + K44s4)u4 + (K05 + K15s + K25s2)u5 + K06u6 + O(e13).

(11)

Substituting zn, f (xn), f (yn), f (zn), f ′(xn), and K f (s, u) into the third substep of (1) leads us to:

wn = zn −mK f (s, u) · f (zn)

f ′(xn)
= α +

(1− K00)c2(ρc2
2 − 2mc3)

2m3 e4 +
16

∑
i=5

Γi ei + O(e17), (12)

where Γi = Γi(c2, c3, · · · , c16, Q2, · · · , Q6, Kj�), for 5 ≤ i ≤ 16, 0 ≤ j ≤ 12 and 0 ≤ � ≤ 6. Thus K00 = 1
immediately annihilates the fourth-order term. Substituting K00 = 1 into Γ5 = 0 and solving for K10,
we find:

K10 = 2. (13)

Continuing the algebraic operations in this manner at the i-th (6 ≤ i ≤ 7) stage with known
values of Kj�, we solve Γi = 0 for remaining Kj� to find:

K20 = 1 + Q2, K01 = 1. (14)

Substituting K00 = 1, K10 = 2, K20 = 1 + Q2, K01 = 1 into (12) and simplifying we find:

v =

(
f (wn)

f (zn)

)1/m

= −
[
β0c4

2 + β1c2
2c3 + 12m2(K02 − 1)c2

3 − 12m2c2c4
]

12m4 e4 +
16

∑
i=5

Ti ei + O(e17), (15)

where β0 and β1 are described in (3) and Ti = Ti(c2, c3, · · · , c16, Q2, · · · , Q6) for 5 ≤ i ≤ 16.
To compute the last substep of Scheme (1), it is necessary to have an eighth-order Taylor expansion

of J f (s, u, v) about (0, 0, 0) due to the fact that f (wn)
f ′(xn)

= O(e8). It suffices to expand J f up to eighth-,

fourth-, and second-order terms in s, u, v in order, by noting that s = O(e), u = O(e2), v = O(e4) with
Jijk = 0 satisfying i + 2j + 4k > 8 for all 0 ≤ i ≤ 8, 0 ≤ j ≤ 4, 0 ≤ k ≤ 2:

J f (s, u, v) = J000 + J100s + J200s2 + J300s3 + J400s4 + J500s5 + J600s6 + J700s7 + J800s8 + (J010 + J110s + J210s2+

J310s3 + J410s4 + J510s5 + J610s6)u + (J020 + J120s + J220s2 + J320s3 + J420s4)u2 + (J030 + J130s + J230s2)u3+

J040u4 + (J001 + J101s + J201s2 + J301s3 + J401s4 + (J011 + J111s + J211s2)u + J021u2)v + J002v2.
(16)

Substituting wn, f (xn), f (yn), f (zn), f (wn), f ′(xn) and J f (s, u, v) in (1), we arrive at:

xn+1 = wn −mJf (s, u, v) · f (wn)

f ′(xn)
= α + φe8 +

16

∑
i=9

Ωi ei + O(e17), (17)

where φ = 1
24m7 (1 − J000)c2(ρc2

2 − 2mc3)
[
β0c4

2 + β1c2
2c3 + 12m2(K02 − 1)c2

3 − 12m2c2c4
]

and
Ωi =Ωi(c2, c3, · · · , c16, Q2, · · · , Q6, Kδθ , Jjk�), for 9 ≤ i ≤ 16, 0 ≤ δ ≤ 12, 0 ≤ θ ≤ 6, 0 ≤ j ≤ 8,
0 ≤ k ≤ 4, 0 ≤ � ≤ 2.

Since J000 = 1 makes φ = 0, we substitute J000 = 1 into Ω9 = 0 and solve for J100 to find:

J100 = 2. (18)
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Continuing the algebraic operations in the same manner at the i-th (10 ≤ i ≤ 15) stage with
known values of Jjk�, we solve Ωi = 0 for remaining Jjk� to find:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

J200 = 1 + Q2, J010 = 1, J110 = 4, J300 = −4 + 2Q2 + Q3, J001 = 1, J020 = K02, J210 = 1 + K21,
J400 = K40, J101 = 2, J120 = 2 + K12, J310 = −4 + K31 + 2Q2, J500 = K50, J011 = 2, J201 = 1 + Q2,
J111 = 8, J030 = −1 + K02 + K03, J220 = 1 + K21 + K22 −Q2, J410 = −3 + K40 + K41 + Q2 −Q4,
J301 = −4 + 2Q2 + Q3, J130 = −4 + 2K02 + K12 + K13, J320 = −6 + 2K21 + K31 + K32 − 2Q2 −Q3,
J600 = K60, J510 = 6 + 2K40 + K50 + K51 − 3Q3 − 2Q4 −Q5, J700 = K70.

(19)

Upon substituting Relation (19) into Ω16, we finally obtain:

Ω16 =
1

3456m15 c2(ρc2
2 − 2mc3)

[
β0c4

2 + β1c2
2c3 + 12m2(K02 − 1)c2

3 − 12m2c2c4
]
Ψ, (20)

where ρ, β0, β1, and Ψ as described in (3). This completes the proof.

Remark 1. Theorem 1 clearly reflects the case for m = 1 with the same constraints on weight functions
Q f , K f , J f studied in [19].

Special Cases of Weight Functions

Theorem 1 enables us to obtain Q f (s), K f (s, u), and J f (s, u, v) by means of Taylor polynomials:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q f (s) = 1 + 2s + Q2s2 + Q3s3 + Q4s4 + Q5s5 + Q6s6 + O(e7),

K f (s, u) = 1 + 2s + (1 + Q2)s2 + (2Q2 + Q3 − 4)s3 + K40s4 + K50s5 + K60s6 + K70s7 + K80s8

+K90s9 + K100s10 + K110s11 + K120s12 + (1 + 4s + K21s2 + K31s3 + K41s4 + K51s5 + K61s6

+K71s7 + K81s8 + K91s9 + K101s10)u + (K02 + K12s + K22s2 + K32s3 + K42s4 + K52s5

+K6s6 + K72s7 + K82s8)u2 + (K03 + K13s + K23s2 + K33s3 + K43s4 + K53s5 + K63s6)u3

+(K04 + K14s + K24s2 + K34s3 + K44s4)u4 + (K05 + K15s + K25s2)u5 + K06u6 + O(e13),

J f (s, u, v) = 1 + 2s + (1 + Q2)s2 + (2Q2 + Q3 − 4)s3 + K40s4 + K50s5 + K60s6 + K70s7 + J800s8

+(1 + 4s + (1 + K21)s2 + (K31 + 2Q2 − 4)s3 + (K40 + K41 − 3 + Q2 −Q4)s4 + (2K40 + K50 + K51 + 6
−3Q3 − 2Q4 −Q5)s5 + J610s6)u + (K02 + (2 + K12)s + (K21 + K22 −Q2 + 1)s2 + (2K21 + K31 + K32 − 6
−2Q2 −Q3)s3 + J420s4)u2 + (K02 + K03 − 1 + (2K02 + K12 + K13 − 4)s + J230s2)u3 + J040u4

+(1 + 2s + (1 + Q2)s2 + (2Q2 + Q3 − 4)s3 + J401s4 + (2 + 8s + J211s2)u + J021u2)v + J002v2 + O(e9),

(21)

where parameters Q2–Q6, K40, K50, K60, K70, K80, K90, K100, K110, K120, K21, K31, K41, K51, K61, K71, K81,
K91, K101, K02, K12, K22, K32, K42, K52, K62, K72, K82, K03, K13, K23, K33, K43, K53, K63, K04, K14, K24, K34, K44,
K05, K15, K25, K06 and J040, J002, J021, J211, J230, J401, J420, J610, J800 may be free.

Although various forms of weight functions Q f (s), K f (s, u) and J f (s, u, v) are available, in the
current study we limit ourselves to all three weight functions in the form of rational functions, leading
us to possible purely imaginary extraneous fixed points when f (z) = (z2 − 1)m is employed. In the
current study, we will consider two special cases described below:

The first case below will represent the best scheme, W3G7, studied in [19] only for m = 1.
Case 1: ⎧⎪⎪⎨⎪⎪⎩

Q f (s) = 1
1−2s ,

K f (s, u) = Q f (s) · (s−1)2

1−2s−u+2s2u ,

J f (s, u, v) = K f (s, u) · 1+∑3
i=1 qisi+u ∑8

i=4 qisi−4+u2 ∑14
i=9 qisi−9+u3 ∑21

i=15 qisi−15

A1(s,u)+v·(∑25
i=22 risi−22+u(r26+r27s+λs2)

,

(22)
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where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q9 = q12 = q13 = q17 = q18 = q19 = q20 = r9 = r10 = r19 = r20 = 0,
q1 = −3055820263252−76497245λ

142682111242 , q2 = 56884034112404+44614515451λ
285364222484 ,

q3 = −45802209949332−44308526471λ
142682111242 , q4 = − 3(17778426888128+67929066997λ)

1426821112420 ,
q5 = 2(21034820227211+132665343294λ)

356705278105 , q6 = −1589080655012451+134087681464λ
142682111242 ,

q7 = 2(−780300304419180+71852971399λ)
71341055621 , q8 = 12288(−727219117761+128167952λ)

71341055621 ,
q10 = 2, q11 = 2(−741727036224277+126275739062λ)

71341055621 ,
q14 = − 8192(−3964538065856+615849113λ)

71341055621 , q15 = 8(−226231159891830+34083208621λ)
71341055621 ,

q16 = − 24(−908116719056544+136634733499λ)
356705278105 , q21 = 131072(−918470889768+136352293λ)

356705278105 ,
r1 = q1, r2 = q2, r3 = q3, r4 = q4, r5 = q5, r6 = q6 − 1, r7 = q7 − q1 − 2, r8 = q8 +

q3
2 ,

r11 = −29558910226378916+5256346708371λ
1426821112420 , r12 = −55018830261476−109759858153λ

142682111242 ,
r13 = 25(−75694849962572+11301475999λ)

71341055621 , r14 = − 4096(−1500792372416+228734011λ)
15508925135 ,

r15 = q15, r16 = 43641510974266076−6354680006961λ
713410556210 , r17 = − 2(−1060205894022116+202907726307λ)

71341055621 ,
r18 = 2(−2870055173156756+475573395275λ)

71341055621 , r21 = q21
2 , r22 = −1, r23 = −q1, r24 = −q2,

r25 = −q3, r26 = −1− q4, r27 = −2− q1 − q5, λ = 1353974063793787
212746858830 ,

(23)

and A1(s, u) = 1 + ∑3
i=1 risi + u ∑8

i=4 risi−4 + u2 ∑14
i=9 risi−9 + u3 ∑21

i=15 risi−15.
As a second case, we will consider the following set of weight functions:

Case 2: ⎧⎪⎪⎨⎪⎪⎩
Q f (s) = 1

1−2s ,

K f (s, u) = Q f (s) · (s−1)2

1−2s−u+2s2u ,

J f (s, u, v) =
1+∑3

i=1 qisi+u ∑8
i=4 qisi−4+u2 ∑14

i=9 qisi−9+u3 ∑19
i=15 qisi−15

A0(s,u)+v·(∑23
i=20 risi−20+u ∑28

i=24 risi−24+r29u2)
,

(24)

where A0(s, u) = 1 + ∑3
i=1 risi + u ∑8

i=4 risi−4 + u2 ∑14
i=9 risi−9 + u3 ∑19

i=15 risi−15 and determination of the 48
coefficients qi, ri of J f is described below. Relationships were sought among all free parameters
of J f (s, u, v), giving us a simple governing equation for extraneous fixed points of the proposed family
of methods (1).

To this end, we first express s, u and v for f (z) = (z2 − 1)m as follows with t = z2:

s =
1
4
(1− 1

t
), u =

1
4
· (t− 1)2

(t + 1)2 , v =
(t− 1)4

4(1 + 6t + t2)2 . (25)

In order to obtain a simple form of J f (s, u, v), we needed to closely inspect how it is connected
with K f (s, u). When applying to f (z) = (z2 − 1)m, we find K f (s, u) with t = z2 as shown below:

K f (s, u) =
4t(1 + t)

t2 + 6t + 1
. (26)

Using the two selected weight functions Q f , K f , we continue to determine coefficients qi, ri of
J f yielding a simple governing equation for extraneous fixed points of the proposed methods when
f (z) = (z2 − 1)m is applied. As a result of tedious algebraic operations reflecting the 25 constraints
(with possible rank deficiency) given by (18) and (19), we find only 23 effective relations, as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q1 = 1
4 (−8− r23), q2 = −3− 2q1, q3 = 2 + q1, q4 = −r24, q5 = 2q4 − r25,

q6 = 5 + 7q3
4 + 13q4

4 + 9q5
8 − 5q9

4 − 25q10
8 + 5q12

8 + r8
4 − 5r11

4 − 5r12
8 ,

q7 = − 4q3
5 + 4q4

5 + q5
5 − 2q6

5 − 2r8
5 , q8 = q4 +

q5
2 − q7

2 , q9 = q15 − r15,
q10 = −2q4 − 2q15 + q16 − r16, q11 = −6 + q5

2 − 5q7
2 + q9 + 2q10 − r8 + r11,

r1 = −2 + q1, r2 = 2(1 + q2), r3 = 4q3, r4 = −1 + q4, r5 = 2− q3 − 2q4 + q5,
r6 = 1 + 2q3 − q4 − 2q5 + q6, r7 = −2 + 5q3 − 4q4 − 2q5 + 6q7 + 2r8, r9 = −q4 + q9,
r10 = −2− q5 − 2q9 + q10, r20 = −1, r21 = 4− q3, r22 = −4(1− q3).

(27)
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The three relations, J500 = K50, J600 = K60, and J700 = K70 give one relation r22 = −4(1− q3).

Due to 23 constraints in Relation (27), we find that 18 free parameters among 48 coefficients of
J f in (24) are available. We seek relationships among the free parameters yielding purely imaginary
extraneous fixed points of the proposed family of methods when f (z) = (z2 − 1)m is applied.

To this end, after substituting the 23 effective relations given by (27) into J f in (24) and by applying
to f (z) = (z2 − 1)m, we can construct H(z) = 1 + sQ f (s) + suK f (s, u) + suvJ f (s, u, v) in (1) and seek
its roots for extraneous fixed points with t = z2:

H(z) =
A · G(t)

t(1 + t)2(1 + 6t + t2) ·W(t)
, (28)

whereA is a constant factor, G(t) = ∑20
i=0 giti, with g0 = −q14, g1 = −16− 2q12− 4q13− 8q14− 16q15 +

10q16 − 4r8 + 4r11 + 2r12 − 1614 − 4r15 − 10r16 + 3r20 + 60r21 + 10r22, gi = gi(q12, r12, · · · , r25), for 2 ≤
i ≤ 20 and W(t) = ∑15

i=0 witi, with w0 = −r14, w1 = 16r8 + 4r13 − 5r14 + 4r25, wi =

wi(q12, r12, · · · , r25), for 2 ≤ i ≤ 15. The coefficients of both polynomials, G(t) and W(t), contain
at most 18 free parameters.

We first observe that partial expressions of H(z) with t = z2, namely, 1 + sQ f (s) = 1+3t
2(1+t) , 1 +

sQ f (s)+ suK f (s, u) = 1+21t+35t2+7t3

4(1+t)(1+6t+t2)
and the denominator of (28) contain factors t, (1+ 3t), (1+ t), (1+

6t + t2), (1 + 21t + 35t2 + 7t3) when f (z) = (z2 − 1)m is applied. With an observation of presence of
such factors, we seek a special subcase in which G(t) may contain all the interested factors as follows:

G(t) = t(1 + 3t)(1 + t)λ(1 + 6t + t2)β(1 + 21t + 35t2 + 7t3) · (1 + 10t + 5t2)(1 + 92t + 134t2 + 28t3 + t4) ·Φ(t), (29)

where Φ(t) is a polynomial of degree (9− (λ+ 2β)), with λ ∈ {0, 1, 2}, β ∈ {1, 2, 3} and 1 ≤ λ+ β ≤ 3;
two polynomial factors (1 + 10t + 5t2) and (1 + 92t + 134t2 + 28t3 + t4) were found in Case 3G of the
previous study done by Geum–Kim–Neta [19]. Notice that factors (1 + 6t + t2), (1 + 21t + 35t2 + 7t3),
(1 + 10t + 5t2) and (1 + 92t + 134t2 + 28t3 + t4) of G(t) are all negative, i.e., the corresponding
extraneous fixed points are all purely imaginary.

In fact, the degree of Φ(t) will be decreased by annihilating the relevant coefficients
containing free parameters to make all its roots negative. We take the 6 pairs of (λ, β) ∈
{(0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (2, 1)} to form 6 subcases named as Case 2A–2F in order. The lengthy
algebraic process eventually leads us to additional constraints to each subcase described below:
Case 2A: (λ, β) = (0, 1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q12

q15

r8

r11

r12

r13

r14

r15

r16

r18

r23

r24

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3 9 9 13
2

7
2 −13 0 0 −12 − 23

2 −13 −134
0 − 1

2 − 1
4 − 1

8 − 1
16 0 0 0 0 0 0 0

− 7
4

17
4 5 59

16 2 − 1
4

1
16 − 181

28 − 699
112 − 99

16 − 1807
224 − 1163

16
− 11

4 34 171
4

125
4

159
8 −3 3

4 − 291
7 − 274

7 − 75
2 − 629

14 −454
− 11

2 14 23
2

35
4

9
2 1 − 1

4 − 255
14 − 425

28 −14 − 821
56 − 693

4
7 −30−33− 49

2 − 29
2 1 − 1

2
297

7
537
14 37 1199

28
937
2

0 1 1 3
4

1
2 0 0 − 9

7 − 15
14 −1 − 27

28 − 27
2

1
2 − 21

4 − 23
4 − 67

16 − 21
8

1
4 − 1

16
165
28

599
112

79
16

1291
224

967
16

− 3
2 16 35

2
51
4 8 −1 1

4 − 241
14 − 439

28 − 29
2 − 947

56 − 707
4

2 −21−23− 67
4 − 21

2 0 −1 152
7

279
14

37
2

603
28

447
2

0 0 0 0 0 0 0 − 2
7 − 4

7 −1 − 12
7 0

0 0 0 0 0 0 0 − 2
7 − 1

14 0 1
28 − 1

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q13

q16

q17

q18

q19

r17

r19

r25

r26

r27

r28

r29

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−74
0

− 2207
56

− 1900
7

− 1355
14

1929
7
− 61

7
1987

56
− 1453

14
919
7
16
7
2
7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(30)

and q14 = 0. These 12 additional constraints q12, q15, r8, r11, r12, r13, r14, r15, r16, r18, r23, r24 are expressed
in terms of 12 parameters q13, q16, q17, q18, q19, r17, r19, r25, r26, r27, r28, r29 that are arbitrarily free for
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the purely imaginary extraneous fixed points. Those 12 free parameters are chosen at our disposal.
Then, using Relations (27) and (30), the desired form of J f (s, u, v) in (24) can be constructed.
Case 2B: (λ, β) = (0, 2)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q12

q15

r8

r11

r12

r13

r14

r15

r16

r18

r23

r24

r25

r26

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3 9 9 13
2

7
2 0 0 1

6 − 1
3 − 178

3
0 − 1

2 − 1
4 − 1

8 − 1
16 0 0 0 0 0

− 7
4

17
4 5 59

16 2 − 1
4

1
16 − 1

48 − 161
96 − 917

24
− 11

4 34 171
4

125
4

159
8 −3 3

4
5
6 − 25

6 − 668
3

− 11
2 14 23

2
35
4

9
2 1 − 1

4
1
6

61
24 − 317

6
7 −30 −33 − 49

2 − 29
2 1 − 1

2 0 7
4 217

0 1 1 3
4

1
2 0 0 0 1

4 −5
1
2 − 21

4 − 23
4 − 67

16 − 21
8

1
4 − 1

16 − 11
48

5
96

617
24

− 3
2 16 35

2
51
4 8 −1 1

4
2
3 − 5

24 − 455
6

2 −21 −23 − 67
4 − 21

2 0 −1 − 5
6

5
12

293
3

0 0 0 0 0 0 0 − 1
3 − 4

3 − 4
3

0 0 0 0 0 0 0 0 1
4 3

0 0 0 0 0 0 0 1
3 − 2

3 − 44
3

0 0 0 0 0 0 0 − 4
3 − 1

3
29
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q13

q16

q17

q18

q19

r17

r19

r27

r28

r29

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−10
0
− 87

8
−76

25
2

57
−1
43
8
− 33

2
23
0
4
−16
12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(31)

and q14 = 0. These 14 additional constraints are expressed in terms of 10 parameters
q13, q16, q17, q18, q19, r17, r19,r27, r28, r29 that are arbitrarily free for the purely imaginary extraneous
fixed points. Those 10 free parameters are chosen at our disposal. Then, using Relations (27) and (31),
the desired form of J f (s, u, v) in (24) can be constructed.
Case 2C: (λ, β) = (0, 3)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q12

q15

q16

r8

r11

r12

r13

r14

r15

r16

r18

r23

r24

r25

r26

r27

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3 0 − 1
4 −1 0 0 − 23

16 − 29
4

0 1
4

1
4

3
16 0 0 1

32 − 21
8

0 −1 − 3
4 − 1

2 0 0 − 1
16

21
4

− 7
4

3
4

1
2 − 1

8 − 1
4

1
16 − 15

8 − 33
2

− 11
4

35
4

23
4

23
8 −3 3

4 −9 −20
− 11

2 − 5
2 − 7

4 − 5
2 1 − 1

4
9
8

51
2

7 −3 −2 1
2 1 − 1

2
29
8

119
2

0 0 0 0 0 0 3
16

1
4

1
2 − 1

2 − 1
4 0 1

4 − 1
16

9
8 − 17

2
− 3

2
3
2

3
4 0 −1 1

4 − 27
8

55
2

2 −2 −1 0 0 −1 71
16 − 147

4
0 0 0 0 0 0 − 1

4 −11
0 0 0 0 0 0 1

4 3
0 0 0 0 0 0 − 7

4 −5
0 0 0 0 0 0 4 −29
0 0 0 0 0 0 − 13

4 29

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q13

q17

q18

q19

r17

r19

r28

r29

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 57
4

− 1
8

1
4
−9
−100

19
2

99
2
− 3

4
13
− 77

2
201
4

13
4
−29
64
−39

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(32)

and q14 = 0. These 16 additional constraints are expressed in terms of 8 parameters
q17, q18, q19, r17, r18, r19, r28, r29 that are arbitrarily free for the purely imaginary extraneous fixed points.
Those 8 free parameters are chosen at our disposal. Then, using Relations (27) and (32), the desired
form of J f (s, u, v) in (24) can be constructed.
Case 2D: (λ, β) = (1, 1), being identical with Case 2A.
Case 2E: (λ, β) = (1, 2), being identical with Case 2B.
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Case 2F: (λ, β) = (2, 1),⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q12

q15

q16

r8

r11

r12

r13

r14

r15

r16

r18

r23

r24

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3 0 − 1
4 −1 0 0 −13 −12 − 23

2 −13 −134
0 1

4
1
4

3
16 0 0 0 0 0 0 0

0 −1 − 3
4 − 1

2 0 0 0 0 0 0 0
− 7

4
3
4

1
2 − 1

8 − 1
4

1
16 − 181

28 − 699
112 − 99

16 − 1807
224 − 1163

16
− 11

4
35
4

23
4

23
8 −3 3

4 − 291
7 − 274

7 − 75
2 − 629

14 −454
− 11

2 − 5
2 − 7

4 − 5
2 1 − 1

4 − 255
14 − 425

28 −14 − 821
56 − 693

4
7 −3 −2 1

2 1 − 1
2

297
7

537
14 37 1199

28
937

2
0 0 0 0 0 0 − 9

7 − 15
14 −1 − 27

28 − 27
2

1
2 − 1

2 − 1
4 0 1

4 − 1
16

165
28

599
112

79
16

1291
224

967
16

− 3
2

3
2

3
4 0 −1 1

4 − 241
14 − 439

28 − 29
2 − 947

56 − 707
4

2 −2 −1 0 0 −1 152
7

279
14

37
2

603
28

447
2

0 0 0 0 0 0 − 2
7 − 4

7 −1 − 12
7 0

0 0 0 0 0 0 − 2
7 − 1

14 0 1
28 − 1

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q13

q17

q18

q19

r17

r19

r25

r26

r27

r28

r29

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−74
0
0

− 2207
56

− 1900
7

− 1355
14

1929
7
− 61

7
1987
56

− 1453
14

919
7
16
7
2
7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(33)

and q14 = 0. These 13 additional constraints are expressed in terms of 11 parameters q13,q17, q18, q19,
r17, r19, r25, r26, r27, r28, r29 that are arbitrarily free for the purely imaginary extraneous fixed points.
Those 11 free parameters are chosen at our disposal. Then, using Relations (27) and (33), the desired
form of J f (s, u, v) in (24) can be constructed. After a process of careful factorization, we find the
expression for H(z) in (28) stated in the following lemma.

Proposition 1. The expression H(z) in (28) is identical in each subcase of 2A–2F and given by a unique
relation below:

H(z) = (1+3t)(1+10t+5t2)(1+92t+134t2+28t3+t4)
8(1+t)(1+6t+t2)(1+28t+70t2+28t3+t4)

, t = z2, (34)

despite the possibility of different coefficients in each subcase.

Proof. Let us write G(t) in (28) as G(t) = t(1 + 3t) · ψ1(t) · ψ2(t) ·Φ(t) · (1 + t)λ(1 + 6t + t2)β−1 with
ψ1(t) = (1 + 6t + t2)(1 + 21t + 35t2 + 7t3) and ψ2(t) = (1 + 10t + 5t2)(1 + 92t + 134t2 + 28t3 + t4).
Then after a lengthy process of a series of factorizations with the aid of Mathematica symbolic ability,
we find Φ(t) and W(t) in each subcase as follows.

(1) Case 2A: with λ = 0 and β = 1, we get{
Φ(t) = − 2

7 (1 + t) · Γ1(t),
W(t) = − 16

7 ψ1(t)(1 + 28t + 70t2 + 28t3 + t4)Γ1(t),
(35)

where Γ1(t) = −244 + 28q16 + 28q17 + 21q18 + 14q19 − 36r25 − 30r26 − 28r27 − 27r28 − 378r29 +

14t(−72+ 4q16 + 4q17 + 3q18 + 2q19− 4r25 + 2r27 + 4r28− 72r29)+ t2(1692− 476q16− 476q17− 357q18−
238q19 + 548r25 + 578r26 + 672r27 + 957r28 + 6006r29)+ 4t3(−2288+ 196q16 + 196q17 + 147q18 + 98q19−
148r25 − 100r26 − 42r27 − 6r28 − 1540r29)− 7t4(1636 + 68q16 + 68q17 + 51q18 + 34q19 + 4r25 + 22r26 +

36r27 + 55r28 + 386r29) + t5(−4176+ 56q16 + 56q17 + 42q18 + 28q19 + 648r25 + 400r26 + 140r27− 32r28 +

7168r29) + t6(−4332 + 28q16 + 28q17 + 21q18 + 14q19 − 484r25 − 394r26 − 392r27 − 545r28 − 2926r29).

(2) Case 2B: with λ = 0 and β = 2, we get{
Φ(t) = − 2

3 (1 + t) · Γ2(t),
W(t) = − 16

3 (1 + 6t + t2)ψ1(t)(1 + 28t + 70t2 + 28t3 + t4)Γ2(t),
(36)

where Γ2(t) = (1 + 6t + t2)(3(−4 + 4q16 + 4q17 + 3q18 + 2q19 + r28 − 20r29) + t(24− 48q16 − 48q17 −
36q18− 24q19 + 4r27 + 22r28 + 280r29) + 6t2(−32+ 12q16 + 12q17 + 9q18 + 6q19 + 2r27 + 6r28− 16r29)−
2t3(396 + 24q16 + 24q17 + 18q18 + 12q19 + 2r27 + 11r28 + 140r29) + 3t4(−188 + 4q16 + 4q17 + 3q18 +

2q19 − 4r27 − 13r28 + 52r29)).
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(3) Case 2C: with λ = 0 and β = 3, we get{
Φ(t) = 1

2 (1 + t) · Γ3(t),
W(t) = 4(1 + 6t + t2)2ψ1(t)(1 + 28t + 70t2 + 28t3 + t4)Γ3(t),

(37)

where Γ3(t) = (1 + 6t + t2)2(12− 3r28 + 2t(60 + r28 − 84r29)− 4r29 + t2(124 + r28 + 172r29)).

(4) Case 2D: with λ = 1 and β = 1, we get{
Φ(t) = − 2

7 · Γ1(t),
W(t) = − 16

7 ψ1(t)(1 + 28t + 70t2 + 28t3 + t4)Γ1(t).
(38)

(5) Case 2E: with λ = 1 and β = 2, we get{
Φ(t) = − 2

3 · Γ2(t),
W(t) = − 16

3 (1 + 6t + t2)ψ1(t)(1 + 28t + 70t2 + 28t3 + t4)Γ2(t),
(39)

(6) Case 2F: with λ = 2 and β = 1, we get{
Φ(t) = 2

7 · Γ4(t),
W(t) = 2

7 (1 + t)ψ1(t)(1 + 28t + 70t2 + 28t3 + t4)Γ4(t),
(40)

where Γ4(t) = 244 + 36r25 + 30r26 + 28r27 + 27r28 + 378r29 + t(764 + 20r25 − 30r26 − 56r27 − 83r28 +

630r29) − 2t2(1228 + 284r25 + 274r26 + 308r27 + 437r28 + 3318r29) + 2t3(5804 + 580r25 + 474r26 +

392r27 + 449r28 + 6398r29) − t4(156 + 1132r25 + 794r26 + 532r27 + 513r28 + 10094r29) + t5(4332 +

484r25 + 394r26 + 392r27 + 545r28 + 2926r29).
Substituting each pair of (Φ(t), W(t)) into (28) yields an identical Relation (34) as desired.

Remark 2. The factorization process in the above proposition yields the additional constraints given by (30)–(33)
for subcases 2A–2F, after a lengthy computation. Case 2D and Case 2E are found to be identical with Case 2A
and Case 2B, respectively, by direct computation.

In Table 1, we list free parameters selected for typical subcases of 2A–2F. Combining these selected
free parameters with Relations (27) and (30)–(33), we can construct special iterative schemes named
as W2A1, W2A2, · · · , W2F3, W2F4. Such schemes together with W3G7 for Case 1 shall be used in
Section 4 to display results on their numerical and dynamical aspects.

Table 1. Free parameters selected for typical subcases of 2A1–2F4.

SCN q13 q16 q17 q18 q19 r17 r19 r25 r26 r27 r28 r29

2A1 0 0 0 0 0 0 0 0 0 0 0 0
2A2 20 0 0 0 0 0 1012 4 2 -8 0 0
2A3 − 89

26 0 0 0 0 0 0 − 149
26 0 0 0 0

2A4 0 0 711
26 − 622

13
222
13 0 0 − 149

26 0 0 0 0
2B1 0 0 0 0 0 0 0 - - 0 0 0
2B2 0 0 0 0 0 0 96 - - −31 −1 − 1

4
2B3 −19 0 0 0 0 0 0 - - −18 0 0
2B4 0 0 45 −52 −12 0 0 - - −18 0 0
2C1 0 - 0 0 0 0 0 - - - 0 0
2C2 −34 - 0 0 0 174 0 - - - 4 0
2C3 0 - 0 0 0 0 280 - - - 4 0
2C4 − 39

4 - 375
4 − 627

4 0 0 0 - - - 0 0
2F1 0 - 0 0 0 −40 0 − 122

3
290
3 − 184

3 0 0
2F2 16 - 0 0 0 0 0 1 0 -10 0 0
2F3 138

7 - − 356
7

3963
14 0 0 0 0 0 0 0 0

2F4 0 - 0 0 0 −32 0 −33 78 −46 −4 0
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3. The Dynamics behind the Extraneous Fixed Points

The dynamics behind the extraneous fixed points [21] of iterative map (1) have been investigated
by Stewart [20], Amat et al. [22], Argyros–Magreñan [23], Chun et al. [24], Chicharro et al. [25],
Chun–Neta [26], Cordero et al. [27], Geum et al. [14,19,28–30], Rhee at al. [9], Magreñan [31],
Neta et al. [32,33], and Scott et al. [34].

We locate a root α of a given function f (x) as a fixed point ξ of the iterative map R f :

xn+1 = R f (xn), n = 0, 1, · · · , (41)

where R f is the iteration function associated with f . Typically, R f is written in the form: R f (xn) =

xn − f (xn)
f ′(xn)

Hf (xn), where Hf is a weight function whose zeros are other fixed points ξ �= α called
extraneous fixed points of R f . The dynamics of R f might be influenced by presence of possible
attractive, indifferent, or repulsive, and other periodic or chaotic orbits underlying the extraneous
fixed points. For ease of analysis, we rewrite the iterative map (41) in a more specific form:

xn+1 = R f (xn) = xn −m
f (xn)

f ′(xn)
Hf (xn), (42)

where Hf (xn) = 1 + sQ f (s) + suK f (s, u) + suvJ f (s, u, v) can be regarded as a weight function in the
classical modified Newton’s method for a multiple root of integer multiplicity m. Notice that α is a
fixed point of R f , while ξ �= α for which Hf (ξ) = 0 are extraneous fixed points of R f .

The influence of extraneous fixed points on the convergence behavior was well demonstrated
for simple zeros via König functions and Schröder functions [21] applied to a class of functions
{ fk(x) = xk − 1, k ≥ 2}. The basins of attraction may be altered due to the trapped sequence {xn}
by the attractive extraneous fixed points of R f . An initial guess x0 chosen near a desired root may
converge to another unwanted remote root when repulsive or indifferent extraneous fixed points are
present. These aspects of the Schröder functions were observed when applied to the same class of
functions { fk(x) = xk − 1, k ≥ 2}.

To simply treat dynamics underlying the extraneous fixed points of iterative map (42), we select a
member f (z) = (z2 − 1)m. By a similar approach made by Chun et al. [35] and Neta et al. [33,36], we
construct Hf (xn) = s ·Q f (s) + s · u · K f (s, u) + s · u · v · J f (s, u, v) in (42). Applying f (z) = (z2 − 1)m

to Hf , we find a rational function H(z) with t = z2:

H(z) =
N (t)
D(t)

, (43)

where both D(t) and N (t) are co-prime polynomial functions of t. The underlying dynamics of the
iterative map (42) can be favorably investigated on the Riemann sphere [37] with possible fixed points
“0(zero)” and “∞”. As can be seen in Section 5, the relevant dynamics will be illustrated in a 6× 6
square region centered at the origin.

Indeed, the roots t ofN (t) provide the extraneous fixed points ξ of R f in Map (42) by the relation:

ξ =

{
t

1
2 , if t �= 0,

0(double root), if t = 0.
(44)

Extraneous Fixed Points and their Stability

The following proposition describes the stability of the extraneous fixed points of (42).
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Proposition 2. Let f (z) = (z2 − 1)m. Then the extraneous fixed points ξ for Case 2 discussed earlier are all
found to be repulsive.

Proof. By direct computation of R′f (z) with f (z) = (z2 − 1)m, we write it as with t = z2:

R′f (z) =
Ψn(t)
Ψd(t)

,

where Ψn(t) = (−1 + t)15 and Ψd(t) = 16t(1 + t)2(1 + 6t + t2)2(1 + 28t + 70t2 + 28t3 + t4)2.
With the help of Mathematica, we are able to express Ψn(t) = 1

61509375 (1 + 3t)(1 + 10t + 5t2)(1 +

92t + 134t2 + 28t3 + t4) ·Qn(t)− 2097152 · Rn(t) and Ψd(t) = − 1
61509375 16(1 + 3t)(1 + 10t + 5t2)(1 +

92t + 134t2 + 28t3 + t4) · Qd(t) − 131072 · Rd(t), with Qn(t) and Qd(t) as six- and eight-degree
polynomials, while Rn(t) = (327, 923, 929, 643 + 34, 417, 198, 067, 010t + 446, 061, 306, 116, 505t2 +

1621107643125740t3 + 2, 036, 953, 856, 667, 405t4 + 892, 731, 761, 917, 554t5 + 108, 873, 731, 877, 775t6)

and Rd(t) = (327, 923, 929, 643 + 34417198067010t + 446, 061, 306, 116, 505t2 + 1621107643125740t3 +

2, 036, 953, 856, 667, 405t4 + 892, 731, 761, 917, 554t5 + 108, 873, 731, 877, 775t6). Further, we express
Rn(t) = (1 + 10t + 5t2)Qν(t) + Rν(t) and Rd(t) = (1 + 10t + 5t2)Qδ(t) + Rδ(t), with Rν(t) =

− 10,077,696
25 (36 + 341t) = Rδ(t). Now let t = ξ2, then

R′f (ξ) = 16

using the fact that (1 + 3t)(1 + 10t + 5t2)(1 + 92t + 134t2 + 28t3 + t4) = 0. Hence ξ for Case 2 are all
found to be repulsive.

Remark 3. Although not described here in detail due to limited space, by means of a similar proof as shown in
Proposition 2, extraneous fixed points ξ for Case 1 was found to be indifferent in [19].

If f (z) = p(z) is a generic polynomial other than (z2− 1)m, then theoretical analysis of the relevant
dynamics may not be feasible as a result of the highly increased algebraic complexity. Nevertheless,
we explore the dynamics of the iterative map (42) applied to f (z) = p(z), which is denoted by Rp as
follows:

zn+1 = Rp(zn) = zn −m
p(zn)

p′(zn)
Hp(zn). (45)

Basins of attraction for various polynomials are illustrated in Section 5 to observe the complicated
dynamics behind the fixed points or the extraneous fixed points. The letter W was conveniently
prefixed to each case number in Table 1 to symbolize a way of designating the numerical and dynamical
aspects of iterative map (42) .

4. Results and Discussion on Numerical and Dynamical Aspects

We first investigate numerical aspects of the local convergence of (1) with schemes W3G7 and
W2A1–W2F4 for various test functions; then we explore the dynamical aspects underlying extraneous
fixed points based on iterative map (45) applied to f (z) = (z2− 1)m, whose attractor basins give useful
information on the global convergence.

Results of numerical experiments are tabulated for all selected methods in Tables 2–4.
Computational experiments on dynamical aspects have been illustrated through attractor basins in
Figures 1–7. Both numerical and dynamical aspects have strongly confirmed the desired convergence.

Throughout the computational experiments with the aid of Mathematica, $MinPrecision = 400
has been assigned to maintain 400 digits of minimum number of precision. If α is not exact, then it is
given by an approximate value with 416 digits of precision higher than $MinPrecision.

Limited paper space allows us to list xn and α with up to 15 significant digits. We set error bound
ε = 1

2 × 10−360 to meet |xn − α| < ε. Due to the high-order of convergence and root multiplicity, close
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initial guesses have been selected to achieve a moderate number of accurate digits of the asymptotic
error constants.

Methods W3G7, W2A1, W2C2 and W2F2 successfully located desired zeros of test functions
F1 − F4: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

W3G7 : F1(x) = [cos (πx
2 ) + 2x2 − 3π]4, α ≈ 2.27312045629419, m = 4,

W2A1 : F2(x) = [cos (x2 + 1)− x log (x2 − π + 2) + 1]4 · (x2 + 1− π), α =
√

π − 1, m = 5,
W2C2 : F3(x) = [sin−1 (x2 − 1) + 3ex − 2x− 3]2, α ≈ 0.477696831914490, m = 2,
W2F2 : F4(x) = (x2 + 1)4 + log[1 + (x2 + 1)3], α = i, m = 3,
where log z(z ∈ C) is a principal analytic branch with − π < Im(log z) ≤ π.

(46)

We find that Table 2 ensures sixteenth-order convergence. The computational asymptotic
error constant |en|/|en−1|16 is in agreement with the theoretical one η = limn→∞ |en|/|en−1|16

up to 4 significant digits. The computational convergence order pn = log |en/η|/log |en−1| well
approaches 16.

Additional test functions in Table 3 confirm the convergence of Scheme (1). The errors |xn − α|
are listed in Table 4 for comparison among the listed methods W3G7 and W2A1–W2F4. In the current
experiments, W3G7 has slightly better convergence for f5 and slightly poor convergence for all other
test functions than the rest of the listed methods. No specific method performs better than the other
among methods W2A1–W2F4 of Case 2.

According to the definition of the asymptotic error constant η(ci, Qf , Kf , J f ) = limn→∞ |Rf (xn)− α|/
|xn − α|16, the convergence is dependent on iterative map R f (xn), f (x), x0, α and the weight functions
Q f , K f and J f . It is clear that no particular method always achieves better convergence than the others
for any test functions.

Table 2. Convergence of methods W3G7, W2A1, W2C2, W2F2 for test functions F1(x)− F4(x).

Method F n xn |F(xn)| |xn − α| |en/e16
n−1| η pn

0 2.2735 1.873 × 10−10 0.000379544
W3G7 F1 1 2.27312045629419 1.927× 10−233 6.798 × 10−60 0.00003666355445 0.00003666729357

2 2.27312045629419 0.0× 10−400 1.004× 10−237 16.00000

0 1.4634 1.93× 10−21 0.0000181404
W2A1 F2 1 1.46341814037882 3.487× 10−366 2.040 × 10−74 148.4148965 148.4575003

2 1.46341814037882 0.0× 10−400 0.0× 10−399 16.00000

0 0.4777 1.890 × 10−10 3.168 × 10−6

W2C2 F3 1 0.477696831914490 6.116 × 10−183 1.802 × 10−92 0.0001750002063 0.0001749999826
2 0.477696831914490 0.0 × 10−400 8.522 × 10−367 16.00000

0 0.99995i 1.000 × 10−12 0.00005
W2F2 F4 1 1.00000000000000 i 4.820× 10−215 1.391× 10−72 0.001037838436 0.001041219259

2 1.00000000000000 i 0.0 × 10−400 0.0× 10−400 16.00030

i =
√−1, η = limn→∞

|en |
|en−1 |16 , pn =

log |en/η|
log |en−1 | .

Table 3. Additional test functions fi(x) with zeros α and initial values x0 and multiplicities.

i fi(x) α x0 m

1 [4 + 3 sin x− 2x2]4 ≈ 1.85471014256339 1.86 4
2 [2x− Pi + x cos x]5 π

2 1.5707 5
3 [2x3 + 3e−x + 4 sin (x2)− 5]2 ≈ −0.402282449584416 −0.403 2
4 [

√
3x2 · cos πx

6 + 1
x3+1 − 1

28 ] · (x− 3)3 3 3.0005 4

5 (x− 1)2 + 1
12 − log[ 25

12 − 2x + x2] 1− i
√

3
6 0.99995− 0.28i 2

6 [x log x−√x + x3]3 1 1.0001 3

Here, log z (z ∈ C) represents a principal analytic branch with − π ≤ Im(log z) < π.

The proposed family of methods (1) has efficiency index EI [38], which is 161/5 ≈ 1.741101 and
larger than that of Newton’s method. In general, the local convergence of iterative methods (45) is
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guaranteed with good initial values x0 that are close to α. Selection of good initial values is a difficult
task, depending on precision digits, error bound, and the given function f (x).

Table 4. Comparison of |xn − α| among selected methods applied to various test functions.

Method |xn − α| f (x)
f1 f2 f3 f4 f5 f6

W3G7
|x1 − α| 1.77 × 10−40 * 1.62 × 10−57 4.89 × 10−51 1.50 × 10−61 5.76 × 10−7 1.19 × 10−62

|x2 − α| 1.02 × 10−159 1.13 × 10−225 1.24 × 10−201 3.27 × 10−245 1.08 × 10−95 2.40 × 10−247

W2A1
|x1 − α| 2.83 × 10−42 1.05 × 10−58 1.92 × 10−52 1.23 × 10−62 1.29 × 10−6 1.11 × 10−63

|x2 − α| 0.0 × 10−399 4.24 × 10−230 0.0 × 10−400 0.0 × 10−399 6.62 × 10−90 3.61 × 10−251

W2A2
|x1 − α| 1.63 × 10−41 2.33 × 10−58 1.45 × 10−51 1.05 × 10−61 1.32 × 10−6 2.34 × 10−63

|x2 − α| 0.0 × 10−399 1.11 × 10−228 0.0 × 10−400 0.0 × 10−399 2.53 × 10−89 7.39 × 10−250

W2A3
|x1 − α| 2.53 × 10−43 1.82 × 10−60 4.56 × 10−54 1.20 × 10−63 4.43 × 10−6 3.85 × 10−65

|x2 − α| 0.0 × 10−399 1.40 × 10−236 8.40 × 10−213 0.0 × 10−399 3.03 × 10−83 1.53 × 10−256

W2A4
|x1 − α| 1.24 × 10−42 1.35 × 10−59 1.53 × 10−52 8.38 × 10−63 1.58 × 10−4 1.12 × 10−64

|x2 − α| 1.70 × 10−125 5.96 × 10−424 5.22 × 10−155 8.16 × 10−187 3.34 × 10−57 2.79 × 10−424

W2B1
|x1 − α| 2.39 × 10−42 2.28 × 10−59 1.30 × 10−52 7.80 × 10−63 2.14 × 10−6 2.81 × 10−64

|x2 − α| 0.0 × 10−399 1.57 × 10−232 0.0 × 10−400 0.0 × 10−399 6.04 × 10−87 2.23 × 10−253

W2B2
|x1 − α| 4.44 × 10−42 2.73 × 10−59 3.03 × 10−52 1.79 × 10−62 4.30 × 10−6 3.29 × 10−64

|x2 − α| 0.0 × 10−399 6.69 × 10−232 0.0 × 10−400 0.0 × 10−399 6.01 × 10−82 7.78 × 10e−253

W2B3
|x1 − α| 9.85 × 10−43 3.11 × 10−61 4.26 × 10−53 3.01 × 10−63 4.46 × 10−6 3.26 × 10−65

|x2 − α| 0.0 × 10−399 1.17 × 10−239 0.0 × 10−400 0.0 × 10−399 3.06 × 10−83 7.91 × 10−257

W2B4
|x1 − α| 1.04 × 10−42 1.92 × 10−59 1.77 × 10−52 1.12 × 10−62 1.77 × 10−4 1.53 × 10−64

|x2 − α| 1.12 × 10−125 4.68 × 10−405 9.06 × 10−155 2.23 × 10−186 2.32 × 10−56 0.0 × 10−400

W2C1
|x1 − α| 4.87 × 10−42 4.27 × 10−59 2.95 × 10−52 1.50 × 10−62 1.08 × 10−6 5.14 × 10−64

|x2 − α| 0.0 × 10−399 0.0 × 10−399 0.0 × 10−400 0.0 × 10−399 2.41 × 10−91 2.22 × 10−191

W2C2
|x1 − α| 9.31 × 10−42 1.01 × 10−58 5.94 × 10−52 2.61 × 10−62 1.47 × 10−6 1.18 × 10−63

|x2 − α| 0.0 × 10−399 4.23 × 10−230 0.0 × 10−400 0.0 × 10−399 7.11 × 10−89 4.95 × 10−251

W2C3
|x1 − α| 9.17 × 10−42 8.88 × 10−59 6.85 × 10−52 4.30 × 10−62 4.36 × 10−6 9.66 × 10−64

|x2 − α| 0.0 × 10−399 7.84 × 10−230 0.0 × 10−400 0.0 × 10−399 2.11 × 10−81 6.05 × 10−251

W2C4
|x1 − α| 5.36 × 10−42 6.72 × 10−59 6.55 × 10−52 4.38 × 10−62 1.02 × 10−4 6.13 × 10−64

|x2 − α| 9.92 × 10−124 5.96 × 10−424 2.97 × 10−153 8.55 × 10−185 1.30 × 10−59 0.0 × 10−400

W2F1
|x1 − α| 4.36 × 10−42 8.67 × 10−60 2.55 × 10−52 1.29 × 10−62 4.34 × 10−6 1.60 × 10−64

|x2 − α| 0.0 × 10−399 7.12 × 10−234 0.0 × 10−400 0.0 × 10−399 4.57 × 10−82 4.61 × 10−254

W2F2
|x1 − α| 1.20 × 10−42 1.74 × 10−60 5.52 × 10−53 3.67 × 10−63 4.08 × 10−6 5.06 × 10−65

|x2 − α| 0.0 × 10−399 1.16 × 10−236 0.0 × 10−400 0.0 × 10−399 2.33 × 10−83 4.56 × 10−256

W2F3
|x1 − α| 1.08 × 10−41 1.54 × 10−58 1.55 × 10−51 1.14 × 10−61 8.67 × 10−5 1.396 × 10−63

|x2 − α| 1.41 × 10−424 5.27 × 10−172 8.47 × 10−424 0.0 × 10−399 1.66 × 10−60 5.22 × 10−188

W2F4
|x1 − α| 3.80 × 10−42 5.01 × 10−60 2.15 × 10−52 1.07 × 10−62 4.35 × 10−6 1.18 × 10−64

|x2 − α| 0.0 × 10−399 1.16 × 10−235 0.0 × 10−400 0.0 × 10−399 3.65 × 10−82 1.38 × 10−254

The global convergence with appropriate initial values x0 is effectively described by means of
a basin of attraction that is the set of initial values leading to long-time behavior approaching the
attractors under the iterative action of R f . Basins of attraction contain information about the region of
convergence. A method occupying a larger region of convergence is likely to be a more robust method.
A quantitative analysis will play the important role for measuring the region of convergence.

The basins of attraction, as well as the relevant statistical data, are constructed in a similar
manner shown in the work of Geum–Kim–Neta [19]. Because of the high order, we take a smaller
square [−1.5, 1.5]2 and use 601 × 601 initial points uniformly distributed in the domain. Maple
software has been used to perform the desired dynamics with convergence stopping criteria satisfying
|xn+1 − xn| < 10−6 within the maximum number of 40 iterations. An initial point is painted with a
color whose intensity measures the number of iterations converging to a root. The brighter color implies
the faster convergence. The black point means that its orbit did not converge within 40 iterations.

Despite the limited space, we will explore the dynamics of all listed maps W3G7 and W2A1–W2F4,
with applications to pk(z), (1 ≤ k ≤ 7) through the following seven examples. In each example,
we have shown dynamical planes for the convergence behavior of iterative map xn+1 = R f (xn) (42)
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with f (z) = pk(z) by illustrating the relevant basins of attraction through Figures 1–7 and displaying
relevant statistical data in Tables 5–7 with colored fonts indicating best results.

Example 1. As a first example, we have taken a quadratic polynomial raised to the power of two with all real
roots:

p1(z) = (z2 − 1)2. (47)

Clearly the roots are ±1. Basins of attraction for W3G7, W2A1–W2F4 are given in Figure 1. Consulting
Tables 5–7, we find that the methods W2B2 and W2F4 use the least number (2.71) of iterations per point on
average (ANIP) followed by W2F1 with 2.72 ANIP, W2C3 with 2.73 and W2B1 with 2.74. The fastest method
is W2A2 with 969.374 s followed closely by W2A3 with 990.341 s. The slowest is W2A4 with 4446.528 s.
Method W2C4 has the lowest number of black points (601) and W2A4 has the highest number (78843). We will
not include W2A4 in the coming examples.

Table 5. Average number of iterations per point for each example (1–7).

Map
Example

1: m = 2 2: m = 3 3: m = 3 4: m = 4 5: m = 3 6: m = 3 7: m = 3 Average

W3G7 2.94 3.48 3.83 3.93 3.95 3.97 6.77 4.12
W2A1 2.84 3.50 3.70 4.04 6.84 3.74 5.49 4.31
W2A2 2.76 3.15 3.52 3.84 3.62 3.66 4.84 3.63
W2A3 2.78 3.21 3.61 3.89 3.70 3.74 4.98 3.70
W2A4 11.40 - - - - - - -
W2B1 2.74 3.25 3.70 3.88 3.67 3.72 5.01 3.71
W2B2 2.95 3.42 3.66 4.01 3.75 3.77 5.15 3.82
W2B3 2.78 3.28 3.64 3.89 3.69 4.65 5.13 3.86
W2B4 3.29 3.91 4.99 - - - - -
W2C1 2.88 3.66 3.87 4.08 3.89 5.45 6.25 4.30
W2C2 2.93 3.68 3.95 4.15 6.70 4.67 5.75 4.55
W2C3 2.73 3.22 3.53 3.98 3.60 3.62 4.94 3.66
W2C4 3.14 3.81 4.96 - - - - -
W2F1 2.72 3.24 3.55 3.84 3.49 3.57 5.41 3.69
W2F2 2.81 3.28 3.80 4.06 5.02 4.50 5.29 4.10
W2F3 2.91 3.54 4.36 4.41 - - - -
W2F4 2.71 3.19 3.50 3.86 3.42 3.53 5.52 3.68

Example 2. As a second example, we have taken the same quadratic polynomial now raised to the power of
three:

p2(z) = (z2 − 1)3. (48)

The basins for the best methods are plotted in Figure 2. This is an example to demonstrate the effect of
raising the multiplicity from two to three. In one case, namely W3G7, we also have m = 5 with CPU time of
4128.379 s. Based on the figure we see that W2B4, W2C4 and W2F3 were chaotic. The worst are W2B4, W2C4
and W2F3. In terms of ANIP, the best was W2A2 (3.15) followed by W2F4 (3.19) and the worst was W2B4
(3.91). The fastest was W2B3 using (2397.111 s) followed by W2F1 using 2407.158 s and the slowest was W2C4
(4690.295 s) preceded by W3G7 (2983.035 s). Four methods have the highest number of black points (617).
Those were W2A1, W2B4, W2C1 and W2F2. The lowest number was 601 for W2A2, W2C2, W2C4 and W2F1.

Comparing the CPU time for the cases m = 2 and m = 3 of W3G7, we find it is about doubled. But when
increasing from three to five, we only needed about 50% more.
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(1) W3G7 (2) W2A1 (3) W2A2 (4) W2A3

(5) W2A4 (6) W2B1 (7) W2B2 (8) W2B3

(9) W2B4 (10) W2C1 (11) W2C2 (12) W2C3

(13) W2C4 (14) W2F1 (15) W2F2 (16) W2F3

(17) W2F4

Figure 1. The top row for W3G7 (left), W2A1 (center left), W2A2 (center right) and W2A3 (right).
The second row for W2A4 (left), W2B1 (center left), W2B2 (center right) and W2B3 (right). The third
row for W2B4 (left), W2C1 (center left), W2C2 (center right) and W2C3 (right). The third row for W2C4
(left), W2F1 (center left), W2F2 (center right), and W2F3 (right). The bottom row for W2F4 (center),
for the roots of the polynomial equation (z2 − 1)2.
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(1) W3G7 (2) W2A1 (3) W2A2 (4) W2A3

(5) W2B1 (6) W2B2 (7) W2B3 (8) W2B4

(9) W2C1 (10) W2C2 (11) W2C3 (12) W2C4

(13) W2F1 (14) W2F2 (15) W2F3 (16) W2F4

(17) W3G7m5

Figure 2. The top row for W3G7 (left), W2A1 (center left), W2A2 (center right) and W2A3 (right).
The second row for W2B1 (left), W2B2 (center left), W2B3 (center right) and W2B4 (right). The third
row for W2C1 (left), W2C2 (center left), W2C3 (center right) and W2C4 (right). The fourth row for
W2F1 (left), W2F2 (center left), W2F3 (center right), and W2F4 (right). The bottom row for W3G7m5
(center), for the roots of the polynomial equation (z2 − 1)k, k ∈ {3, 5}.

Example 3. In our third example, we have taken a cubic polynomial raised to the power of three:

p3(z) = (3z3 + 4z2 − 10)3. (49)
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Basins of attraction are given in Figure 3. It is clear that W2B4, W2C4 and W2F3 were too chaotic and
they should be eliminated from further consideration. In terms of ANIP, the best was W2F4 (3.50) followed by
W2A2 (3.52), W2C3 (3.53) and W2F1 (3.55) and the worst were W2B4 and W2C4 with 4.99 and 4.96 ANIP,
respectively. The fastest was W2C3 using 2768.362 s and the slowest was W2B3 (7193.034 s). There were 13
methods with only one black point and one with two points. The highest number of black points was 101 for
W2F2.

Table 6. CPU time (in seconds) required for each example(1–7) using a Dell Multiplex-990.

Map
Example

1: m = 2 2: m = 3 3: m = 3 4: m = 4 5: m = 3 6: m = 3 7: m = 3 Average

W3G7 1254.077 2983.035 3677.848 3720.670 3944.937 3901.679 4087.102 3367.050
W2A1 1079.667 2694.537 3528.149 3119.911 5896.635 2938.747 3526.840 3254.927
W2A2 969.374 2471.727 3287.081 2956.702 3218.223 2891.478 2981.179 2682.252
W2A3 990.341 2843.789 2859.093 2999.712 3002.146 3074.811 3155.307 2703.600
W2A4 4446.528 - - - - - - -
W2B1 1084.752 2634.826 3295.162 3051.941 2835.755 3238.363 3272.667 2773.352
W2B2 1075.393 2429.996 3130.223 3051.192 2929.106 3581.456 3155.619 2764.712
W2B3 1180.366 2397.111 7193.034 3000.383 2970.711 3739.766 3139.084 3374.351
W2B4 1274.653 2932.008 4872.972 - - - - -
W2C1 1132.069 2685.355 3242.637 3287.066 3147.663 4080.019 4802.662 3196.782
W2C2 1112.162 2881.697 3189.706 3873.037 5211.619 3665.773 3950.896 3412.127
W2C3 1052.570 2421.026 2768.362 3014.033 2778.518 2914.941 3953.346 2700.399
W2C4 2051.710 4690.295 7193.034 - - - - -
W2F1 1071.540 2407.158 2909.965 3472.317 2832.230 3490.896 3246.584 2775.813
W2F2 1015.051 2438.483 3031.802 3061.270 3703.152 3737.394 3324.537 2901.670
W2F3 1272.188 2596.200 3603.655 4130.158 - - - -
W2F4 1216.839 2620.052 3589.177 3233.168 3534.312 3521.660 3934.845 3092.865

Table 7. Number of points requiring 40 iterations for each example (1–7).

Map
Example

1: m = 2 2: m = 3 3: m = 3 4: m = 4 5: m = 3 6: m = 3 7: m = 3 Average

W3G7 677 605 1 250 40 1265 33,072 5130.000
W2A1 657 617 1 166 34,396 1201 18,939 7996.714
W2A2 697 601 1 162 1 1201 15,385 2578.286
W2A3 675 605 55 152 9 1221 14,711 2489.714
W2A4 78,843 - - - - - - -
W2B1 679 613 1 204 9 1201 13,946 2379.000
W2B2 635 609 1 116 1 1217 15,995 2653.429
W2B3 679 613 1 146 3 10,645 16,342 4061.286
W2B4 659 617 2 - - - - -
W2C1 689 617 1 400 20 18,157 24,239 6303.286
W2C2 669 601 1 174 17,843 1265 18,382 5562.143
W2C3 659 609 1 184 1 1201 14,863 2502.571
W2C4 601 601 1 - - - - -
W2F1 681 601 1 126 10 1225 18,772 3059.429
W2F2 679 617 101 614 3515 1593 17,469 3512.571
W2F3 663 605 1 78 - - - -
W2F4 645 605 1 130 12 1217 20,020 3232.857
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(1) W3G7 (2) W2A1 (3) W2A2 (4) W2A3

(5) W2B1 (6) W2B2 (7) W2B3 (8) W2B4

(9) W2C1 (10) W2C2 (11) W2C3 (12) W2C4

(13) W2F1 (14) W2F2 (15) W2F3 (16) W2F4

Figure 3. The top row for W3G7 (left), W2A1 (center left), W2A2 (center right) and W2A3 (right).
The second row for W2B1 (left), W2B2 (center left), W2B3 (center right) and W2B4 (right). The third
row for W2C1 (left), W2C2 (center left), W2C3 (center right) and W2C4 (right). The bottom row for
W2F1 (left), W2F2 (center left), W2F3 (center right), and W2F4 (right), for the roots of the polynomial
equation (3z3 + 4z2 − 10)3.

Example 4. As a fourth example, we have taken a different cubic polynomial raised to the power of four:

p4(z) = (z3 − z)4. (50)

The basins are given in Figure 4. We now see that W2F3 is the worst. In terms of ANIP, W2A2 and W2F1
were the best (3.84 each) and the worst was W2F3 (4.41). The fastest was W2A2 (2956.702 s) and the slowest
was W2F3 (4130.158 s). The lowest number of black points (78) was for method W2F3 and the highest number
(614) for W2F2. We did not include W2F3 in the rest of the experiments.
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(1) W3G7 (2) W2A1 (3) W2A2 (4) W2A3

(5) W2B1 (6) W2B2 (7) W2B3 (8) W2C1

(9) W2C2 (10) W2C3 (11) W2F1 (12) W2F2

(13) W2F3 (14) W2F4

Figure 4. The top row for W3G7 (left), W2A1 (center left), W2A2 (center right) and W2A3 (right).
The second row for W2B1 (left), W2B2 (center left), W2B3 (center right) and W2C1 (right). The third
row for W2C2 (left), W2C3 (center left), W2F1 (center right) and W2F2 (right). The bottom row for
W2F3 (left) and W2F4 (right), for the roots of the polynomial equation (z3 − z)4.

Example 5. As a fifth example, we have taken a quintic polynomial raised to the power of three:

p3(z) = (z5 − 1)3. (51)

The basins for the best methods left are plotted in Figure 5. The worst were W2A1 and W2C2. In terms of
ANIP, the best was W2F4 (3.42) followed by W2F1 (3.49) and the worst were W2A1 (6.84) and W2C2 (6.70).
The fastest was W2C3 using 2778.518 s followed by W2F1 using 2832.23 s and W2B1 using 2835.755 s.
The slowest was W2A1 using 5896.635 s. There were three methods with one black point (W2A2, W2B2 and
W2C3) and four others with 10 or less such points, namely W2B3 (3), W2A3 and W2B1 (9) and W2F1 (10).
The highest number was for W2A1 (34,396) preceded by W2C2 with 17,843 black points.
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(1) W3G7 (2) W2A1 (3) W2A2 (4) W2A3

(5) W2B1 (6) W2B2 (7) W2B3 (8) W2C1

(9) W2C2 (10) W2C3 (11) W2F1 (12) W2F2

(13) W2F4

Figure 5. The top row for W3G7 (left), W2A1 (center left), W2A2 (center right) and W2A3 (right).
The second row for W2B1 (left), W2B2 (center left), W2B3 (center right) and W2C1 (right). The third
row for W2C2 (left), W2C3 (center left), W2F1 (center right) and W2F2 (right). The bottom row for
W2F4 (center), for the roots of the polynomial equation (z5 − 1)3.

Example 6. As a sixth example, we have taken a quartic polynomial raised to the power of three:

p6(z) = (z4 − 1)3. (52)

The basins for the best methods left are plotted in Figure 6. It seems that most of the methods left were good
except W2B3 and W2C1. Based on Table 5 we find that W2F4 has the lowest ANIP (3.53) followed by W2F1
(3.57). The fastest method was W2A2 (2891.478 s) followed by W2C3 (2914.941 s). The slowest was W2C1
(4080.019 s) preceded by W3G7 using 3901.679 s. The lowest number of black points was for W2A1, W2A2,
W2B1 and W2C3 (1201) and the highest number was for W2C1 with 18,157 black points.
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(1) W3G7 (2) W2A1 (3) W2A2 (4) W2A3

(5) W2B1 (6) W2B2 (7) W2B3 (8) W2C1

(9) W2C2 (10) W2C3 (11) W2F1 (12) W2F2

(13) W2F4

Figure 6. The top row for W3G7 (left), W2A1 (center left), W2A2 (center right) and W2A3 (right).
The second row for W2B1 (left), W2B2 (center left), W2B3 (center right) and W2C1 (right). The third
row for W2C2 (left), W2C3 (center left), W2F1 (center right) and W2F2 (right). The bottom row for
W2F4 (center), for the roots of the polynomial equation (z4 − 1)3.

Example 7. As a seventh example, we have taken a non-polynomial equation having ±i as its triple roots:

p6(z) = (z + i)3(ez−i − 1)3, with i =
√−1. (53)

The basins for the best methods left are plotted in Figure 7. It seems that most of the methods left have a
larger basin for the root −i, i.e., the boundary does not match the real line exactly. Based on Table 5 we find that
W2A2 has the lowest ANIP (4.84) followed by W2C3 (4.94) and W2A3 (4.98). The fastest method was W2A2
(2981.179 seconds) followed by W2B3 (3139.084 s), W2A3 (3155.307 s) and W2B2 (3155.619 s). The slowest
was W2C1 (4802.662 s). The lowest number of black points was for W2B1 (13,946) and the highest number was
for W3G7 with 33,072 black points. In general all methods had higher number of black points compared to the
polynomial examples.
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We now average all these results across the seven examples to try and pick the best method.
W2A2 had the lowest ANIP (3.63), followed by W2C3 with 3.66, W2F4 with 3.68 and W2F1 with 3.69.
The fastest method was W2A2 (2682.252 seconds), followed by W2C3 (2700.399 s) and W2A3 using
2703.600 s of CPU. W2B1 has the lowest number of black points on average (2379), followed by W2A3
(2490 black points). The highest number of black points was for W2A1.

Based on these seven examples we see that W2F4 has four examples with the lowest ANIP, W2A2
had three examples and W2F1 has one example. On average, though, W2A2 had the lowest ANIP.
W2A2 was the fastest in four examples and on average. W2C3 was the fastest in two examples and
W2B3 in one example. In terms of black points, W2A2, W2B1 and W2B3 had the lowest number in
three examples and W2F1 in two examples. On average W2B1 has the lowest number. Thus, we
recommend W2A2, since it is in the top in all categories.

(1) W3G7 (2) W2A1 (3) W2A2 (4) W2A3

(5) W2B1 (6) W2B2 (7) W2B3 (8) W2C1

(9) W2C2 (10) W2C3 (11) W2F1 (12) W2F2

(13) W2F4

Figure 7. The top row for W3G7 (left), W2A1 (center left), W2A2 (center right) and W2A3 (right).
The second row for W2B1 (left), W2B2 (center left), W2B3 (center right) and W2C1 (right). The third
row for W2C2 (left), W2C3 (center left), W2F1 (center right) and W2F2 (right). The bottom row for
W2F4 (center), for the roots of the non-polynomial equation (z + i)3(ez−i − 1)3.
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5. Conclusions

Both numerical and dynamical aspects of iterative map (1) support the main theorem well through
a number of test equations and examples. The W2C2 and W2B3 methods were observed to occupy
relatively slower CPU time. Such dynamical aspects would be greatly strengthened if we could include
a study of parameter planes with reference to appropriate parameters in Table 1.

The proposed family of methods (1) employing generic weight functions favorably cover most of
optimal sixteenth-order multiple-root finders with a number of feasible weight functions. The dynamics
behind the purely imaginary extraneous fixed points will choose best members of the family with
improved convergence behavior. However, due to the high order of convergence, the algebraic
difficulty might arise resolving its increased complexity. The current work is limited to univariate
nonlinear equations; its extension to multivariate ones becomes another task.
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Abstract: Finding a repeated zero for a nonlinear equation f (x) = 0, f : I ⊆ R → R has always been of
much interest and attention due to its wide applications in many fields of science and engineering.
Modified Newton’s method is usually applied to solve this kind of problems. Keeping in view
that very few optimal higher-order convergent methods exist for multiple roots, we present a
new family of optimal eighth-order convergent iterative methods for multiple roots with known
multiplicity involving a multivariate weight function. The numerical performance of the proposed
methods is analyzed extensively along with the basins of attractions. Real life models from life science,
engineering, and physics are considered for the sake of comparison. The numerical experiments and
dynamical analysis show that our proposed methods are efficient for determining multiple roots of
nonlinear equations.

Keywords: nonlinear equations; multiple zeros; optimal iterative methods; higher order of convergence

1. Introduction

It is well-known that Newton’s method converges linearly for non-simple roots of a nonlinear
equation. For obtaining multiple roots of a univariate nonlinear equation with a quadratic order of
convergence, Schröder [1] modified Newton’s method with prior knowledge of the multiplicity
m ≥ 1 of the root as follows:

xn+1 = xn −m
f (xn)

f ′(xn)
. (1)

Scheme (1) can determine the desired multiple root with quadratic convergence and is optimal in
the sense of Kung-Traub’s conjecture [2] that any multipoint method without memory can reach its
convergence order of at most 2p−1 for p functional evaluations.

In the last few decades, many researchers have worked to develop iterative methods for finding
multiple roots with greater efficiency and higher order of convergence. Among them, Li et al. [3]
in 2009, Sharma and Sharma [4] and Li et al. [5] in 2010, Zhou et al. [6] in 2011, Sharifi et al. [7]
in 2012, Soleymani et al. [8], Soleymani and Babajee [9], Liu and Zhou [10] and Zhou et al. [11] in
2013, Thukral [12] in 2014, Behl et al. [13] and Hueso et al. [14] in 2015, and Behl et al. [15] in 2016
presented optimal fourth-order methods for multiple zeros. Additionally, Li et al. [5] (among other
optimal methods) and Neta [16] presented non-optimal fourth-order iterative methods. In recent
years, efforts have been made to obtain an optimal scheme with a convergence order greater than
four for multiple zeros with multiplicity m ≥ 1 of univariate function. Some of them only succeeded
in developing iterative schemes of a maximum of sixth-order convergence, in the case of multiple
zeros; for example, see [17,18]. However, there are only few multipoint iterative schemes with optimal
eighth-order convergence for multiple zeros which have been proposed very recently.
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Behl et al. [19] proposed a family of optimal eighth-order iterative methods for multiple roots
involving univariate and bivariate weight functions given as:

yn = xn −m
f (xn)

f ′(xn)
, m ≥ 1,

zn = yn − unQ(hn)
f (xn)

f ′(xn)
, (2)

xn+1 = zn − untnG(hn, tn)
f (xn)

f ′(xn)
,

where weight functions Q : C→ C and G : C2 → C are analytical in neighborhoods of (0) and (0, 0),

respectively, with un =
(

f (yn)
f (xn)

) 1
m , hn = un

a1+a2un
and tn =

(
f (zn)
f (yn)

) 1
m , being a1 and a2 complex nonzero

free parameters.
A second optimal eighth-order scheme involving parameters has been proposed by

Zafar et al. [20], which is given as follows:

yn = xn −m
f (xn)

f ′(xn)
, m ≥ 1,

zn = yn −mun H(un)
f (xn)

f ′(xn)
, (3)

xn+1 = zn − untn(B1 + B2un)P(tn)G(wn)
f (xn)

f ′(xn)
,

where B1,B2 ∈ R are free parameters and the weight functions H : C→ C, P : C→ C and G : C→ C

are analytic in the neighborhood of 0 with un =
(

f (yn)
f (xn)

) 1
m , tn =

(
f (zn)
f (yn)

) 1
m and wn =

(
f (zn)
f (xn)

) 1
m .

Recently, Geum et al. [21] presented another optimal eighth-order method for multiple roots:

yn = xn −m
f (xn)

f ′(xn)
, n ≥ 0

wn = xn −mL f (s)
f (xn)

f ′(xn)
, (4)

xn+1 = xn −m
[

L f (s) + K f (s, u)
] f (xn)

f ′(xn)
,

where L f : C → C is analytic in the neighborhood of 0 and K f : C2 → C is holomorphic in the

neighborhood of (0, 0) with s =
(

f (yn)
f (xn)

) 1
m , u =

(
f (wn)
f (yn)

) 1
m .

Behl et al. [22] also developed another optimal eighth-order method involving free parameters
and a univariate weight function as follows:

yn = xn −m
f (xn)

f ′(xn)
,

zn = yn −mu
f (xn)

f ′(xn)

1 + βu
1 + (β− 2)u

, β ∈ R (5)

xn+1 = zn − uv
f (xn)

f ′(xn)

(
α1 + (1 + α2v)Pf (u)

)
,

where α1, α2 ∈ R are two free disposable parameters and the weight function Pf : C→ C is an analytic

function in a neighborhood of 0 with u =
(

f (yn)
f (xn)

) 1
m , v =

(
f (zn)
f (yn)

) 1
m .
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Most recently, Behl at al. [23] presented an optimal eighth-order method involving univariate
weight functions given as:

yn = xn −m
f (xn)

f ′(xn)
, m ≥ 1,

zn = yn −munGf (un)
f (xn)

f ′(xn)
, (6)

xn+1 = zn +
unwn

1− wn

f (xn)

f ′(xn)

(
Hf (un) + K f (vn)

)
,

where B1, B2 ∈ R are free parameters and the weight functions Gf , Hf , K f : C→ C are analytic in the

neighborhood of 0 with un =
(

f (yn)
f (xn)

) 1
m , vn =

(
f (zn)
f (xn)

) 1
m and wn =

(
f (zn)
f (yn)

) 1
m .

Motivated by the research going on in this direction and with a need to give more stable
optimal higher-order methods, we propose a new family of optimal eighth-order iterative methods for
finding simple as well as multiple zeros of a univariate nonlinear function with multiplicity m ≥ 1.
The derivation of the proposed class is based on a univariate and trivariate weight function approach.
In addition, our proposed methods not only give the faster convergence but also have smaller residual
error. We have demonstrated the efficiency and robustness of the proposed methods by performing
several applied science problems for numerical tests and observed that our methods have better
numerical results than those obtained by the existing methods. Further, the dynamical performance of
these methods on the above mentioned problems supports the theoretical aspects, showing a good
behavior in terms of dependence on initial estimations.

The rest of the paper is organized as follows: Section 2 provides the construction of the
new family of iterative methods and the analysis of convergence to prove the eighth order of
convergence. In Section 3, some special cases of the new family are defined. In Section 4, the numerical
performance and comparison of some special cases of the new family with the existing ones are given.
The numerical comparisons is carried out using the nonlinear equations that appear in the modeling of
the predator–prey model, beam designing model, electric circuit modeling, and eigenvalue problem.
Additionally, some dynamical planes are provided to compare their stability with that of known
methods. Finally, some conclusions are stated in Section 5.

2. Construction of the Family

This section is devoted to the main contribution of this study, the design and convergence
analysis of the proposed scheme. We consider the following optimal eighth-order class for finding
multiple zeros with multiplicity m ≥ 1:

yn = xn −m
f (xn)

f ′(xn)
, n ≥ 0,

zn = yn −munG (un)
f (xn)

f ′(xn)
,

xn+1 = zn −mun H(un, tn, wn)
f (xn)

f ′(xn)
,

(7)

where G : C → C and H : C3 → C are analytical functions in a neighborhood of (0) and (0, 0, 0),

respectively being un =
(

f (yn)
f (xn)

) 1
m , tn =

(
f (zn)
f (yn)

) 1
m and wn =

(
f (zn)
f (xn)

) 1
m .

In the next result, we demonstrate that the order of convergence of the proposed family reaches
optimal order eight.
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Theorem 1. Let us consider x = ξ (say) is a zero with multiplicity m ≥ 1 of the involved function f .
In addition, we assume that f : C → C is an analytical function in the region enclosing the multiple zero ξ.
The proposed class defined by Equation (7) has an optimal eighth order of convergence, when the following
conditions are satisfied:

G(0) = 1, G1 = G′(0) = 2, G2 = G′′(0) = 4− G3

6
, G3 = G

′′′
(0)

H000 = 0, H100 = 0, H010 = 1, H101 = 3− G3

12
, H110 = 2− H001,

H011 = 4, H020 = 1, |G3| < ∞, |H001| < ∞,

(8)

where Hijk =
1

i!j!k!
∂i+j+k

∂uj
n∂tj

n∂wk
n

H(un, tn, wn)|(un=0,tn=0,wn=0) for 0 ≤ i, k ≤ 1, 0 ≤ j ≤ 2.

Proof. Let us assume that en = xn − ξ is the error at nth step. By expanding f (xn) and f ′(xn) about
x = ξ using Taylor series expansion, we have:

f (xn) =
f (m)(ξ)

m!
em

n

(
1 + c1en + c2e2

n + c3e3
n + c4e4

n + c5e5
n + c6e6

n + c7e7
n + c8e8

n + O(e9
n)
)

(9)

and:

f ′(xn) =
f (m)(ξ)

m!
em−1

n

(
m + c1(m + 1)en + c2(m + 2)e2

n + c3(m + 3)e3
n + c4(m + 4)e4

n + c5(m + 5)e5
n

+c6(m + 6)e6
n + c7(m + 7)e7

n + c8(m + 8)e8
n + O(e9

n)
)

,
(10)

respectively, where ck =
m!

(m + k)!
f (m+k)(ξ)

f (m)(ξ)
, k = 1, 2, 3, . . . 8.

By inserting the above Equations (9) and (10), in the first substep of Equation (7), we obtain:

yn − ξ =
c1e2

n
m

+

(
2mc2 − (m + 1)c2

1

)
e3

n

m2 +
4

∑
k=0

Akek+4
n + O(e9

n), (11)

where Ak = Ak(m, c1, c2, . . . , c8) are given in terms of m, c1, c2, c3, . . . , c8 with two explicitly

written coefficients A0 = 1
m3

{
3c3m2 + c3

1(m + 1)2 − c1c2m(3m + 4)
}

and A1 = − 1
m4

{
c4

1(m + 1)3 −
2c2c2

1m(2m2 + 5m + 3) + 2c3c1m2(2m + 3) + 2m2(c2
2(m + 2)− 2c4m

)}
, etc.

With the help of Taylor series expansion and Equation (11), we get:

f (yn) = f (m)(ξ)e2m
n

⎡⎢⎣ ( c1
m )m

m!
+

(
2mc2 − (m + 1)c2

1

)
( c1

m )men

m!c1
+

6

∑
k=0

Ākek+2
n + O(e9

n)

⎤⎥⎦ . (12)

Using Equations (9) and (12), we have:

un =

(
f (yn)

f (xn)

) 1
m
=

c1en

m
+

(
2mc2 − (m + 2)c2

1

)
e2

n

m2 + τ1e3
n + τ2e4

n + τ3e5
n + O(e6

n), (13)

where τ1 = 1
2m3

[
c3

1(2m2 + 7m + 7) + 6c3m2 − 2c1c2m(3m + 7)
]
, τ2 = − 1

6m4

[
c4

1(6m3 + 29m2 +

51m + 34) − 6c2c2
1m(4m2 + 16m + 17) + 12c1c3m2(2m + 5) + 12m2(c2

2(m + 3) − 2c4m)
]

and τ3 =
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1
24m5

[
− 24m3(c2c3(5m+ 17)− 5c5m

)
+ 12c3c2

1m2(10m2 + 43m+ 49) + 12c1m2
{

c2
2(10m2 + 47m+ 53)−

2c4m(5m + 13)
}
− 4c2c3

1m(30m3 + 163m2 + 306m + 209) + c5
1(24m4 + 146m3 + 355m2 + 418m + 209)

]
.

It is clear from Equation (13) that un is of order one. Therefore, we can expand the weight function
G(un) in the neighborhood of origin by Taylor series expansion up to third-order terms for eighth-order
convergence as follows:

G(un) ≈ G(0) + unG′(0) + u2
n

2!
G′′(0) + u3

n
3!

G′′′(0). (14)

Now, by inserting Equations (11)–(14) in the second substep of the proposed class (Equation (7)),
we obtain:

zn − ξ = − (G(0)− 1)c1

m
e2

n −
((1 + G′(0) + m− G(0)(m + 3))c2

1 + 2mc2(G(0)− 1))
m2 e3

n

+
5

∑
j=1

Bje
j+3
n + O(e9

n),
(15)

where Bj = Bj(G(0), G′(0), G′′(0), G′′′(0), m, c1, c2, . . . , c7), j = 1, 2, 3, 4, 5.
In order to obtain fourth-order convergence, the coefficients of e2

n and e3
n must be simultaneously

equal to zero. Thus, from Equation (15), we obtain the following values of G(0) and G′(0) :

G(0) = 1, G′(0) = 2. (16)

Using Equation (16), we have:

zn − ξ = − ((9− G′′(0) + m)c2
1 − 2mc1c2)

2m3 e4
n +

4

∑
j=1

Pje
j+4
n + O(e9

n), (17)

where Pj = Pj(G′′(0), G′′′(0), m, c1, c2, . . . , c7), j = 1, 2, 3, 4.
With the help of Equation (17) and Taylor series expansion, we have:

f (zn) = f (m)(ξ)e4m
n

⎡⎢⎢⎢⎢⎣
2−m

(
(9−G′′(0)+m)c3

1−2mc1c2
m3

)m

m!
−

(
2−m

(
(9−G′′(0)+m)c3

1−2mc1c2
m3

)m−1
η0

)
3(m3m!)

en

+
7

∑
j=1

Pje
j+1
n + O(e9

n)

]
,

(18)

where:

η0 =
(

124 + G′′′ (0)− 3G′′(0)(7 + 3m)c4
1 − 6m(−3G′′(0) + 4(7 + m)c2

1c2 + 12m2c2
2 + 12m2c1c3)

)
and Pj = Pj(G′′(0), G′′′(0), m, c1, c2, . . . , c7), j = 1, 2, . . . 7.

Using Equations (9), (12) and (18), we further obtain:

tn =

(
f (zn)

f (yn)

) 1
m
=

c2
1(9− G′′(0) + m)− 2mc2

2m2 e2
n +

4

∑
j=1

Qje
j+2
n + O(e7

n), (19)
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where Qj = Qj(G′′(0), G′′′(0), m, c1, c2, . . . , c6), j = 1, 2, 3, 4 and:

wn =

(
f (zn)

f (xn)

) 1
m
=

c3
1(9− G′′(0) + m)− 2mc1c2

2m3 e3
n +

4

∑
j=1

Qje
j+3
n + O(e8

n), (20)

where Qj = Qj(G′′(0), G′′′(0), m, c1, c2, . . . , c6), j = 1, 2, 3, 4.
Hence, it is clear from Equation (13) that tn and wn are of order 2 and 3, respectively. Therefore, we

can expand weight function H(un, tn, wn) in the neighborhood of (0, 0, 0) by Taylor series expansion
up to second-order terms as follows:

H(un, tn, wn) ≈ H000 + un H100 + tn H010 +wn H001 + untn H110 + unwn H101 +wntnH110 + t2
nH020, (21)

where Hijk =
1

i!j!k!
∂i+j+k

∂uj
n∂tj

n∂wk
n

H(un, tn, wn)|(0,0,0), for 0 ≤ i, k ≤ 1, 0 ≤ j ≤ 2.

Using Equations (9)–(21) in the last substep of proposed scheme (Equation (7)), we have:

en+1 = −H000c1

m
e2

n +
5

∑
i=1

Eiei+2
n + O(e8

n), (22)

where Ei = Ei(m, G′′(0), G′′′(0), H000, H100, H010, H001, H101, H110, H020, c1, c2, . . . , c6), i = 1, 2, 3, 4.
From Equation (22), it is clear that we can easily obtain at least cubic order of convergence, for:

H000 = 0. (23)

Moreover, E1 = 0 for H100 = 0, we also have:

E2 =
(−1 + H010) c1(−9 + G′′ (0) c2

1 + 2mc2)

2m3 .

Thus, we take:
− 1 + H010 = 0, (24)

Thus, by inserting Equation (24), it results that E2 = 0 and:

E3 =
(−2 + H001 + H110) c2

1(−9 + G′′ (0) c2
1 + 2mc2)

2m4 . (25)

Therefore, by taking:
H110 = 2− H001, (26)

we have at least a sixth-order convergence. Additionally, for H020 = 1:

E4 =
(−2 + 2H101 − G′′ (0)) c3

1(−9 + G′′ (0) c2
1 + 2mc2)

4m5 , (27)

which further yields:

H101 = 1 +
G′′ (0)

2
. (28)

Finally, we take:

H011 = 4, G′′ (0) = 4− G3

6
.

where G3 = G
′′′
(0) .
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Then, by substituting Equations (23), (24), (26) and (28) in Equation (22), we obtain the following
optimal asymptotical error constant term:

en+1 =
c1

288m7 (G3 + 6(5 + m))c2
1 − 12mc2)((G3(25 + m) + 2(227 + 90m + 7m2))c4

1

− 2m(180 + G3 + 24m)c2
1c2 + 24m2c2

2 + 24m2c1c3)e8
n + O(e9

n).
(29)

Equation (29) reveals that the proposed scheme (Equation (7)) reaches optimal eighth-order
convergence using only four functional evaluations (i.e., f (xn), f ′(xn), f (yn) and f (zn)) per iteration.
This completes the proof.

3. Some Special Cases of Weight Function

In this section, we discuss some special cases of our proposed class (7) by assigning different
kinds of weight functions. In this regard, please see the following cases, where we have mentioned
some different members of the proposed family.

Case 1: Let us describe the following polynomial weight functions directly from the hypothesis of
Theorem 1:

G(un) = 1 + 2un +

(
2− G3

12

)
u2

n +
1
6

G3u3
n,

H(un, tn, wn) = tn +

(
H001 +

(
3− G3

12

)
un

)
wn + ((2− H001) un + 4wn + tn) tn,

(30)

where H001 and G3 are free parameters.
Case 1A: When H001 = 2, G3 = 0, we obtain the corresponding optimal eighth-order iterative

method as follows:

yn = xn −m
f (xn)

f ′(xn)
, n ≥ 0,

zn = yn −mun(1 + 2un + 2u2
n)

f (xn)

f ′(xn)
,

xn+1 = zn −mun(t2
n + wn(2 + 3un + 4tn) + tn)

f (xn)

f ′(xn)
.

(31)

Case 2: Now, we suggest a mixture of rational and polynomial weight functions satisfying
condition Equation (8) as follows:

G(un) =
1 + a0un

1 + (a0 − 2) un + a3u2
n

,

H(un, tn, wn) = tn +

(
H001 +

(
3− G3

12

)
un

)
wn + ((2− H001) un + 4wn + tn) tn,

(32)

where a3 = −2 (a0 − 1) + G3
12 and a0, G3 and H001 are free parameters.

Case 2A: When a0 = 2, H001 = 2, G3 = 12, the corresponding optimal eighth-order iterative
scheme is given by:

yn = xn −m
f (xn)

f ′(xn)
, n ≥ 0,

zn = yn −mun

(
1 + 2un

1− u2
n

)
f (xn)

f ′(xn)
,

xn+1 = zn −mun(tn + 2 (1 + un)wn + (tn + 4wn) tn)
f (xn)

f ′(xn)
.

(33)
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Case 3: Now, we suggest another rational and polynomial weight function satisfying Equation (8)
as follows:

G(un) =
1 + a0un

1 + (a0 − 2) un + a3u2
n + a4u3

n
,

H(un, tn, wn) = tn +

(
H001 +

(
3− G3

12

)
un

)
wn + ((2− H001) un + 4wn + tn) tn,

(34)

where a3 = −2(a0 − 1) + G3
12 , a4 = 2a0 + (a0 − 6) G3

12 and a0, H001 and G3 are free.
Case 3A: By choosing a0 = 4, a3 = −5, a4 = 6, H001 = 2, G3 = 12, the corresponding optimal

eighth-order iterative scheme is given by:

yn = xn −m
f (xn)

f ′(xn)
, n ≥ 0,

zn = yn −mun

(
1 + 4un

1 + 2un − 5u2
n + 6u3

n

)
f (xn)

f ′(xn)

xn+1 = zn −mun(tn + 2 (1 + un)wn + (tn + 4wn) tn)
f (xn)

f ′(xn)
.

(35)

In a similar way, we can develop several new and interesting optimal schemes with eighth-order
convergence for multiple zeros by considering new weight functions which satisfy the conditions of
Theorem 1.

4. Numerical Experiments

This section is devoted to demonstrating the efficiency, effectiveness, and convergence behavior of
the presented family. In this regard, we consider some of the special cases of the proposed class,
namely, Equations (31), (33) and (35), denoted by NS1, NS2, and NS3, respectively. In addition, we
choose a total number of four test problems for comparison: The first is a predator–prey model, the
second is a beam designing problem, the third is an electric circuit modeling for simple zeros, and the
last is an eigenvalue problem.

Now, we want to compare our methods with other existing robust schemes of the same order on
the basis of the difference between two consecutive iterations, the residual errors in the function,
the computational order of convergence ρ, and asymptotic error constant η. We have chosen
eighth-order iterative methods for multiple zeros given by Behl et al. [19,23]. We take the following
particular case (Equation (27)) for (a1 = 1, a2 = −2, G02 = 2m) of the family by Behl et al. [19] and
denote it by BM1 as follows:

yn = xn −m
f (xn)

f ′(xn)
,

zn = yn −m (1 + 2hn)
f (xn)

f ′(xn)
un, (36)

xn+1 = zn −m
(

1 + tn + t2
n + 3h2

n + hn(2 + 4tn − 2hn)
) f (xn)

f ′(xn)
untn.
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From the eighth-order family of Behl et al. [23], we consider the following special case denoted
by BM2:

yn = xn −m
f (xn)

f ′(xn)
,

zn = yn −mun (1 + 2un)
f (xn)

f ′(xn)
, (37)

xn+1 = zn + m
unwn

1− wn

f (xn)

f ′(xn)

(
−1− 2un − u2

n + 4u3
n − 2vn

)
.

Tables 1–4 display the number of iteration indices (n), the error in the consecutive iterations
|xn+1 − xn|, the computational order of convergence ρ ≈ log| f (xn+1)/ f (xn)|

log|( f (xn)/ f (xn−1))| , n ≥ 1, (the formula by
Jay [24]), the absolute residual error of the corresponding function (| f (xn)|), and the asymptotical error

constant η ≈
∣∣∣∣ en

e8
n−1

∣∣∣∣. We did our calculations with 1000 significant digits to minimize the round-off

error. We display all the numerical values in Tables 1–4 up to 7 significant digits with exponent. Finally,
we display the values of approximated zeros up to 30 significant digits in Examples 1–4, although a
minimum of 1000 significant digits are available with us.

For computer programming, all computations have been performed using the programming
package Maple 16 with multiple precision arithmetics. Further, the meaning of a(±b) is a× 10(±b) in
Tables 1–4.

Now, we explain the real life problems chosen for the sake of comparing the schemes as follows:

Example 1 (Predator-Prey Model). Let us consider a predator-prey model with ladybugs as predators and
aphids as preys [25]. Let x be the number of aphids eaten by a ladybug per unit time per unit area, called the
predation rate, denoted by P(x). The predation rate usually depends on prey density and is given as:

P (x) = K
x3

a3 + x3 , a, K > 0.

Let the growth of aphids obey the Malthusian model; therefore, the growth rate of aphids G per hour is:

G (x) = rx, r > 0.

The problem is to find the aphid density x for which:

P (x) = G (x) .

This gives:
rx3 − Kx2 + ra3 = 0.

Let K = 30 aphids eaten per hour, a = 20 aphids and r = 2− 1
3 per hour. Thus, we are required to find the

zero of:
f1 (x) = 0.7937005260x3 − 30x2 + 6349.604208

The desired zero of f1 is 25.198420997897463295344212145564 with m = 2. We choose x0 = 20.
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Table 1. Comparison of different multiple root finding methods for f1(x).

BM1 BM2 NS1 NS2 NS3

|x1 − x0| 2.064550(1) 4.789445 1.219414(1) 1.214342(1) 1.213887(1)
| f (x1)| 1.008384(4) 4.963523 1.739946(3) 1.712863(3) 1.710446(3)
|x2 − x1| 1.544682(1) 4.088744(−1) 6.995715 6.944984 6.940438
| f (x2)| 1.967429(−6) 3.035927(−7) 3.672323(−9) 6.792230(−9) 4.951247(−9)
|x3 − x2| 2.560869(−4) 1.005971(−4) 1.106393(−5) 1.504684(−5) 1.284684(−5)
| f (x3)| 5.685107(−81) 6.093227(−29) 1.223217(−100) 5.427728(−98) 2.522949(−99)

η 7.900841 0.1287852 1.928645(−12) 2.780193(−12) 2.386168(−12)
ρ 7.676751 3.0078946 7.834927 7.814388 7.825421

Example 2 (Beam Designing Model). We consider a beam positioning problem (see [26]) where an r meter
long beam is leaning against the edge of the cubical box with sides of length 1 m each, such that one of its ends
touches the wall and the other touches the floor, as shown in Figure 1.

Figure 1. Beam positioning problem.

What should be the distance along the floor from the base of the wall to the bottom of the beam? Let y be the
distance in meters along the beam from the floor to the edge of the box and let x be the distance in meters from the
bottom of the box to the bottom of the beam. Then, for a given value of r, we have:

f2 (x) = x4 + 4x3 − 24x2 + 16x + 16 = 0.

The positive solution of the equation is a double root x = 2. We consider the initial guess x0 = 1.7.

Table 2. Comparison of different multiple root finding methods for f2(x).

BM1 BM2 NS1 NS2 NS3

|x1 − x0| 1.288477 2.734437(−1) 7.427026(−1) 7.391615(−1) 7.388023(−1)
| f (x1)| 35.99479 1.670143(−2) 5.783224 5.682280 5.672098
|x2 − x1| 9.884394(−1) 2.654643(−2) 4.427007(−1) 4.391589(−1) 4.388001(−1)
| f (x2)| 3.566062(−8) 2.333107(−9) 8.652078(−11) 1.664205(−10) 1.1624462(−10)
|x3 − x2| 3.854647(−5) 9.859679(−6) 1.898691(−6) 2.633282(−7) 2.200800(−6)
| f (x3)| 7.225712(−77) 5.512446(−30) 2.306147(−95) 1.620443(−92) 4.8729521(−94)

e η 4.230427(−1) 3.997726(7) 1.286982(−3) 1.903372(−3) 1.601202(−3)
ρ 7.629155 3.0090640 7.812826 7.7859217 7.800775

Example 3 (The Shockley Diode Equation and Electric Circuit). Let us consider an electric circuit
consisting of a diode and a resistor. By Kirchoff’s voltage law, the source voltage drop VS is equal to the
sum of the voltage drops across the diode VD and resistor VR :

Vs = VR + VD. (38)
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Let the source voltage be VS = 0.5 V and from Ohm’s law:

VR = RI. (39)

Additionally, the voltage drop across the diode is given by the Shockley diode equation as follows:

I = IS

(
e

VD
nVT − 1

)
, (40)

where I is the diode current in amperes, IS is saturation current (amperes), n is the emission or ideality constant
(1 ≤ n ≤ 2 for silicon diode), and VD is the voltage applied across the diode. Solving Equation (40) for VD and
using all the values in Equation (38), we obtain:

−0.5 + RI + nVT ln
(

I
IS

+ 1
)
= 0

Now, for the given values of n, VT, R and IS, we have the following equation [27]:

−0.5 + 0.1I + 1.4 ln (I + 1) = 0.

Replacing I with x, we have

f3 (x) = −0.5 + 0.1x + 1.4 ln (x + 1) .

The true root of the equation is 0.389977198390077586586453532646. We take x0 = 0.5.

Table 3. Comparison of different multiple root finding methods for f3(x).

BM1 BM2 NS1 NS2 NS3

|x1 − x0| 1.100228(−1) 1.100228(−1) 1.100228(−1) 1.100228(−1) 1.100228(−1)
| f (x1)| 3.213611(−12) 1.902432(−10) 7.591378(−11) 4.728795(−10) 1.626799(−10)
|x2 − x1| 2.902439(−12) 1.718220(−10) 6.856308(−11) 4.270907(−10) 1.469276(−10)
| f (x2)| 9.512092(−97) 6.797214(−81) 2.215753(−84) 2.393956(−77) 1.758525(−81)
|x3 − x2| 8.591040(−97) 6.139043(−81) 2.001202(−84) 2.162151(−77) 1.588247(−81)
| f (x3)| 5.604505(−773) 1.805114(−644) 1.1671510(−672) 1.032863(−615) 3.278426(−649)

η 1.705849(−4) 8.081072(−3) 4.097965(−3) 1.953099(−2) 7.312887(−3)
ρ 7.999999 7.999999 7.999999 7.999999 7.999999

Example 4 (Eigenvalue Problem). One of the challenging task of linear algebra is to calculate the eigenvalues of
a large square matrix, especially when the required eigenvalues are the zeros of the characteristic polynomial
obtained from the determinant of a square matrix of order greater than 4. Let us consider the following
9 × 9 matrix:

A =
1
8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−12 0 0 19 −19 76 −19 18 437
−64 24 0 −24 24 64 −8 32 376
−16 0 24 4 −4 16 −4 8 92
−40 0 0 −10 50 40 2 20 242
−4 0 0 −1 41 4 1 2 25
−40 0 0 18 −18 104 −18 20 462
−84 0 0 −29 29 84 21 42 501
16 0 0 −4 4 −16 4 16 −92
0 0 0 0 0 0 0 0 24

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The corresponding characteristic polynomial of matrix A is given as follows:

f4(x) = x9 − 29x8 + 349x7 − 2261x6 + 8455x5 − 17663x4 + 15927x3 + 6993x2 − 24732x + 12960. (41)

118



Mathematics 2018, 6, 310

The above function has one multiple zero at ξ = 3 of multiplicity 4 with initial approximation x0 = 3.1.

Table 4. Comparison of different multiple root finding methods for f4(x).

BM1 BM2 NS1 NS2 NS3

|x1 − x0| 1.577283(−1) 9.9275251(−2) 1283418(−1) 1.283182(−1) 1.283180(−1)
| f (x1)| 9.361198(−4) 2.205656(−11) 5.299339(−5) 5.281568(−5) 5.281425(−5)
|x2 − x1| 5.772837(−2) 7.247474(−4) 2.834188(−2) 2.831824(−2) 2.831805(−2)
| f (x2)| 9.059481(−49) 7.0590148(−38) 2.755794(−55) 8.779457(−55) 5.772523(−55)
|x3 − x2| 3.262145(−13) 2.278878(−10) 7.661066(−15) 1.023515(−14) 9.216561(−15)
| f (x3)| 4.543117(−408) 2.278878(−117) 4.807225(−457) 1.869778(−452) 4.077620(−454)

η 2.644775(−3) 2.264227(15) 1.840177(−2) 2.474935(−2) 2.228752(−2)
ρ 7.981915 3.000250 7.989789 7.988696 7.989189

In Tables 1–4, we show the numerical results obtained by applying the different methods for
approximating the multiple roots of f1(x)− f4(x). The obtained values confirm the theoretical results.
From the tables, it can be observed that our proposed schemes NS1, NS2, and NS3 exhibit a better
performance in approximating the multiple root of f1, f2 and f4 among other similar methods. Only in
the case of the example for simple zeros Behl’s scheme BM1 is performing slightly better than the other
methods.

Dynamical Planes

The dynamical behavior of the test functions is presented in Figures 2–9. The dynamical planes
have been generated using the routines published in Reference [28]. We used a mesh of 400× 400
points in the region of the complex plane [−100, 100]× [−100, 100]. We painted in orange the points
whose orbit converged to the multiple root and in black those points whose orbit either diverged or
converged to a strange fixed point or a cycle. We worked out with a tolerance of 10−3 and a maximum
number of 80 iterations. The multiple root is represented in the different figures by a white star.
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Figure 2. Dynamical planes of the methods NS1 (Left), NS2 (Center), and NS3 (Right) for f1(x).
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Figure 3. Dynamical planes of the methods BM1 (Left) and BM2 (Right) for f1(x).
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Figure 4. Dynamical planes of the methods NS1 (Left), NS2 (Center), and NS3 (Right) for f2(x).
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Figure 5. Dynamical planes of the methods BM1 (Left) and BM2 (Right) on f2(x).
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Figure 6. Dynamical planes of the methods NS1 (Left), NS2 (Center), and NS3 (Right) for f3(x).
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Figure 7. Dynamical planes of the methods BM1 (Left) and BM2 (Right) for f3(x).
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Figure 8. Dynamical planes of the methods NS1 (Left), NS2 (Center), and NS3 (Right) on f4(x).
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Figure 9. Dynamical planes of the methods BM1 (Left) and BM2 (Right) for f4(x).

Figures 2–9 study the convergence and divergence regions of the new schemes NS1, NS2, and NS3
in comparison with the other schemes of the same order. In the case of f1(x) and f2(x), we observed
that the new schemes are more stable than BM1 and BM2 as they are almost divergence-free and
also converge faster than BM1 and BM2 in their common regions of convergence. In the case of
f3(x), BM1 performs better; however, NS1, NS2, and NS3 have an edge over BM2 for the region
in spite of the analogous behavior to BM2, as the new schemes show more robustness. Similarly,
in the case of f4(x), it can be clearly observed that the divergence region for BM1 is bigger than that for
NS1, NS2, and NS3. Additionally, these schemes perform better than BM2 where they are convergent.
The same behavior can be observed through the numerical comparison of these methods in Tables 1–4.
As a future extension, we shall be trying to construct a new optimal eighth-order method whose
stability analysis can allow to choose the optimal weight function for the best possible results.

5. Conclusions

In this manuscript, a new general class of optimal eighth-order methods for solving nonlinear
equations with multiple roots was presented. This family was obtained using the procedure of weight
functions with two functions: One univariate and another depending on three variables. To reach
this optimal order, some conditions on the functions and their derivatives must be imposed. Several
special cases were selected and applied to different real problems, comparing their performance with
that of other known methods of the same order of convergence. Finally, their dependence on initial
estimations was analyzed from their basins of attraction.
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Abstract: The aim of this paper is to introduce new high order iterative methods for multiple roots of
the nonlinear scalar equation; this is a demanding task in the area of computational mathematics and
numerical analysis. Specifically, we present a new Chebyshev–Halley-type iteration function having
at least sixth-order convergence and eighth-order convergence for a particular value in the case of
multiple roots. With regard to computational cost, each member of our scheme needs four functional
evaluations each step. Therefore, the maximum efficiency index of our scheme is 1.6818 for α = 2,
which corresponds to an optimal method in the sense of Kung and Traub’s conjecture. We obtain
the theoretical convergence order by using Taylor developments. Finally, we consider some real-life
situations for establishing some numerical experiments to corroborate the theoretical results.

Keywords: nonlinear equations; multiple roots; Chebyshev–Halley-type; optimal iterative methods;
efficiency index

1. Introduction

One important field in the area of computational methods and numerical analysis is to find
approximations to the solutions of nonlinear equations of the form:

f (x) = 0, (1)

where f : D ⊂ C→ C is the analytic function in the enclosed region D, enclosing the required solution.
It is almost impossible to obtain the exact solution in an analytic way for such problems. Therefore,
we concentrate on obtaining approximations of the solution up to any specific degree of accuracy by
means of an iterative procedure, of course doing it also with the maximum efficiency. In [1], Kung and
Traub conjectured that a method without memory that uses n + 1 functional evaluations per iteration
can have at most convergence order p = 2n. If this bound is reached, the method is said to be optimal.

For solving nonlinear Equation (1) by means of iterations, we have the well-known
cubically-convergent family of Chebyshev–Halley methods [2], which is given by:

xn+1 = xn −
[

1 +
1
2

L f (xn)

1− αL f (xn)

]
f (xn)

f ′(xn)
, α ∈ R, (2)
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where L f (xn) =
f ′′(xn) f (xn)
{ f ′(xn)}2 . A great variety of iterative methods can be reported in particular cases.

For example, the classical Chebyshev’s method [1,3], Halley’s method [1,3], and the super-Halley
method [1,3] can be obtained if α = 0, α = 1

2 , and α = 1, respectively. Despite the third-order
convergence, the scheme (2) is considered less practical from a computational point of view because of
the computation of the second-order derivative.

For this reason, several variants of Chebyshev–Halley’s methods free from the second-order
derivative have been presented in [4–7]. It has been shown that these methods are comparable to
the classical third-order methods of the Chebyshev–Halley-type in their performance and can also
compete with Newton’s method. One family of these methods is given as follows:

yn = xn − f (xn)

f ′(xn)
,

xn+1 = xn −
(

1 +
f (yn)

f (xn)− α f (yn)

)
f (xn)

f ′(xn)
, α ∈ R

(3)

We can easily obtain some well-known third-order methods proposed by Potra and Pták [4]
and Sharma [5] (the Newton-secant method (NSM)) for α = 0 and α = 1. In addition, we have
Ostrowski’s method [8] having optimal fourth-order convergence, which is also a special case for
α = 2. This family is important and interesting not only because of not using a second- or higher order
derivative. However, this scheme also converges at least cubically and has better results in comparison
to the existing ones. Moreover, we have several higher order modifications of the Chebyshev–Halley
methods available in the literature, and some of them can be seen in [9–12].

In this study, we focus on the case of the multiple roots of nonlinear equations. We have some
fourth-order optimal and non-optimal modifications or improvements of Newton’s iteration function
for multiple roots in the research articles [13–17]. Furthermore, we can find some higher order methods
for this case, but some of them do not reach maximum efficiency [18–23]; so, this topic is of interest in
the current literature.

We propose a new Chebyshev–Halley-type iteration function for multiple roots, which reaches a
high order of convergence. Specifically, we get a family of iterative methods with a free parameter α,
with sixth-order convergence. Therefore, the efficiency index is 61/4, and for α = 2, this index is 81/4,
which is the maximum value that one can get with four functional evaluations, reaching optimality in
the sense of Kung and Traub’s conjecture. Additionally, an extensive analysis of the convergence order
is presented in the main theorem.

We recall that ξ ∈ C is a multiple root of the equation f (x) = 0, if it is verified that:

f (ξ) = 0, f ′(ξ) = 0, · · · , f (m−1)(ξ) = 0 and f (m)(ξ) �= 0,

the positive integer (m ≥ 1) being the multiplicity of the root.
We deal with iterative methods in which the multiplicity must be known in advance, because

this value, m, is used in the iterative expression. However, we point out that these methods also work
when one uses an estimation of the multiplicity, as was proposed in the classical study carried out
in [24].

Finally, we consider some real-life situations that start from some given conditions to investigate
and some standard academic test problems for numerical experiments. Our iteration functions here
are found to be more comparable and effective than the existing methods for multiple roots in terms
of residual errors and errors among two consecutive iterations, and also, we obtain a more stable
computational order of convergence. That is, the proposed methods are competitive.
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2. Construction of the Higher Order Scheme

In this section, we present the new Chebyshev–Halley-type methods for multiple roots of
nonlinear equations, for the first time. In order to construct the new scheme, we consider the
following scheme:

yn = xn −m
f (xn)

f ′(xn)
,

zn = xn −m
(

1 +
η

1− αη

)
f (xn)

f ′(xn)
,

xn+1 = zn − H(η, τ)
f (xn)

f ′(xn)
,

(4)

where the function:

H(η, τ) =
ητ
(

β− (α− 2)2η2(η + 1) + τ3 + τ2)
(η + 1)(τ + 1)

with:

η =

(
f (yn)

f (xn)

) 1
m ,

τ =

(
f (zn)

f (yn)

) 1
m ,

β = m
(
(α(α + 2) + 9)η3 + η2(α(α + 3)− 6τ − 3) + η(α + 8τ + 1) + 2τ + 1

)
,

where α ∈ R is a free disposable variable. For m = 1, we can easily obtain the scheme (3) from the first
two steps of the scheme (4).

In Theorem 1, we illustrate that the constructed scheme attains at least sixth-order convergence
and for α = 2, it goes to eighth-order without using any extra functional evaluation. It is interesting to
observe that H(η, τ) plays a significant role in the construction of the presented scheme (for details,
please see Theorem 1).

Theorem 1. Let us consider x = ξ to be a multiple zero with multiplicity m ≥ 1 of an analytic function f : C→
C in the region containing the multiple zero ξ of f (x). Then, the present scheme (4) attains at least sixth-order
convergence for each α, but for a particular value of α = 2, it reaches the optimal eighth-order convergence.

Proof. We expand the functions f (xn) and f ′(xn) about x = ξ with the help of a Taylor’s series
expansion, which leads us to:

f (xn) =
f (m)(ξ)

m!
em

n

(
1 + c1en + c2e2

n + c3e3
n + c4e4

n + c5e5
n + c6e6

n + c7e7
n + c8e8

n + O(e9
n)

)
, (5)

and:

f ′(xn) =
f m(ξ)

m!
em−1

n

(
m + (m + 1)c1en + (m + 2)c2e2

n + (m + 3)c3e3
n + (m + 4)c4e4

n + (m + 5)c5e5
n

+ (m + 6)c6e6
n + (m + 7)c7e7

n + (m + 8)c8e8
n + O(e9

n)

)
,

(6)

respectively, where ck = m!
(m−1+k)!

f m−1+k(ξ)
f m(ξ)

, k = 2, 3, 4 . . . , 8 and en = xn − ξ is the error in the

nth iteration.
Inserting the above expressions (5) and (6) into the first substep of scheme (4) yields:

yn − ξ =
c1

m
e2

n +
5

∑
i=0

φiei+3
n + O(e9

n), (7)
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where φi = φi(m, c1, c2, . . . , c8) are given in terms of m, c2, c3, . . . , c8, for example φ0 = 1
m2

(
2mc2 − (m +

1)c2
1
)

and φ1 = 1
m3

[
3m2c3 + (m + 1)2c3

1 −m(3m + 4)c1c2

]
, etc.

Using the Taylor series expansion and the expression (7), we have:

f (yn) = f (m)(ξ)e2m
n

[( c1
m
) m

m!
+

(2mc2 − (m + 1)c2
1)
( c1

m
)m en

m!c1
+
( c1

m

)1+m 1
2m!c3

1

{
(3 + 3m + 3m2 + m3)c4

1

− 2m(2 + 3m + 2m2)c2
1c2 + 4(m− 1)m2c2

2 + 6m2c1c3
}

e2
n +

5

∑
i=0

φ̄iei+3
n + O(e9

n)

]
.

(8)

We obtain the following expression by using (5) and (8):

η =
c1en

m
+

2mc2 − (m + 2)c2
1

m2 e2
n + θ0e3

n + θ1e4
n + θ2e5

n + O(e6
n), (9)

where θ0 =
(2m2+7m+7)c3

1+6m2c3−2m(3m+7)c1c2
2m3 , θ1 = − 1

6m4

[
12m2(2m + 5)c1c3 + 12m2((m + 3)c2

2 −
2mc4)− 6m(4m2 + 16m + 17)c2

1c2 + (6m3 + 29m2 + 51m + 34)c4
1

]
and θ2 =

1
24m5

[
12m2(10m2 + 43m +

49)c2
1c3− 24m3((5m+ 17)c2c3− 5mc5)+ 12m2

(
(10m2 + 47m+ 53)c2

2− 2m(5m+ 13)c4

)
c1− 4m(30m3 +

163m2 + 306m + 209)c3
1c2 + (24m4 + 146m3 + 355m2 + 418m + 209)c5

1

]
.

With the help of Expressions (5)–(9), we obtain:

zn − ξ = − (α− 2)c2
1

m2 e3
n +

4

∑
i=0

ψiei+4
n + O(e9

n), (10)

where ψi = ψi(α, m, c1, c2, . . . , c8) are given in terms of α, m, c2, c3, . . . , c8 with the first two coefficients

explicitly written as ψ0 = − 1
2m3

[(
2α2− 10α + (7− 4α)m + 11

)
c3

1 + 2m(4α− 7)c1c2

]
and ψ1 = 1

6m4

[(−
6α3 + 42α2− 96α+ (29− 18α)m2 + 6(3α2− 14α+ 14)m+ 67

)
c4

1 + 12m2(5− 3α)c1c3 + 12m2(3− 2α)c2
2 +

12m
(− 3α2 + 14α + (5α− 8)m− 14

)
c2

1c2

]
.

By using the Taylor series expansion and (10), we have:

f (zn) = f (m)(ξ)e3m
n

⎡⎢⎢⎣
(
− (α−2)c2

1
m2

)m

m!
+

5

∑
i=1

ψ̄iei
n + O(e6

n)

⎤⎥⎥⎦ . (11)

From Expressions (8) and (11), we further have:

τ =− (α− 2)c1

m
en +

((− 2α2 + 8α + (2α− 3)m− 7
)
c2

1 + 2m(3− 2α)c2
)

2m2 e2
n + γ1e3

n + γ2e4
n + O(e5

n), (12)

where γ1 = 1
3m3

[(− 3α3 + 18α2 − 30α + (4− 3α)m2 + 3(2α2 − 7α + 5)m + 11
)
c3

1 + 3m2(4− 3α)c3 +

3m(−4α2 + 14α + 3αm− 4m− 10)c1c2

]
and γ2 = 1

24m4

[
24m2(− 6α2 + 20α + (4α− 5)m− 14

)
c1c3 +

12m2((−8α2 + 24α + 4αm− 5m− 13)c2
2 + 2m(5− 4α)c4

)− 12m
(
12α3 − 66α2 + 100α + 2(4α− 5)m2 +

(−20α2 + 64α− 41)m− 33
)
c2

1c2 +
(− 24α4 + 192α3 − 492α2 + 392α + 6(4α− 5)m3 + (−72α2 + 232α−

151)m2 + 6(12α3 − 66α2 + 100α− 33)m + 19
)
c4

1

]
.

By using Expressions (9) and (12), we obtain:

H(η, τ) = − (α− 2)c2
1

m2 e2
n + λ1e3

n + λ2e4
n + O(e5

n) (13)
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where λ1 = c1
2m3

[
c2

1
(−2α2 + 8α + (4α− 7)m− 7

)
+ 2(7 − 4α)c2m

]
and λ2 = 1

6m3

[
c4

1
( − 6α3 +

36α2 − 66α + (29 − 18α)m2 + 3(6α2 − 22α + 17)m + 34
)
+ 12(5 − 3α)c3c1m2 + 12(3 − 2α)c2

2m2 +

6c2c2
1m

(−6α2 + 22α + 2(5α− 8)m− 17
) ]

.
Now, we use the expressions (5)–(13) in the last substep of Scheme (4), and we get:

en+1 =
3

∑
i=1

Liei+5
n + O(e9

n), (14)

where L1 =
(α−2)2c3

1
m6

[
c2

1
(
α2 − α + m2 − (α2 + 4α− 17

)
m− 3

) − 2c2(m − 1)m
]
, L2 = (α − 2)c2

1
[ −

12c2c2
1m
{

10α3 − 24α2 − 39α + (16α− 27)m2 − (10α3 + 27α2 − 262α + 301)m + 91
}
+ 12c3c1m2(−4α +

(4α − 7)m + 8) + 12c2
2m2(−12α + 4(3α − 5)m + 21) + c4

1
{ − 24α4 + 168α3 − 156α2 − 662α + (52α −

88)m3 − (60α3 + 162α2 − 1616α + 1885)m2 + 2(18α4 − 12α3 − 711α2 + 2539α− 2089)m + 979
}]

and

L3 = c1
24m8

[
− 24c2c3c1m3((42α2 − 146α + 125)m − 6(7α2 − 26α + 24)

) − 24c3
2m3( − 24α2 + 84α +

(24α2 − 80α + 66)m− 73
)
+ 12c3c3

1m2{2(15α4 − 63α3 − 5α2 + 290α− 296) + (54α2 − 190α + 165)m2 +

(−30α4 − 28α3 + 968α2 − 2432α + 1697)m
}
+ 12c2

1m2
{

c2
2

(
80α4 − 304α3 − 226α2 + 1920α + 2(81α2 −

277α + 234)m2 + (−80α4 − 112α3 + 2712α2 − 6410α + 4209)m − 1787
)
− 4(α − 2)c4m(−3α + (3α −

5)m + 6)
}
− 2c2c4

1m
{
− 3(96α5 − 804α4 + 1504α3 + 2676α2 − 10612α + 8283) + 4(177α2 − 611α +

521)m3 − 3(220α4 + 280α3 − 7556α2 + 18400α− 12463)m2 + 4(108α5 − 234α4 − 4302α3 + 22902α2 −
38593α + 20488)m

}
+ c6

1

{
48α6 − 480α5 + 996α4 + 5472α3 − 29810α2 + 50792α + (276α2 − 956α +

818)m4 + (−360α4 − 448α3 + 12434α2 − 30518α + 20837)m3 + (432α5 − 1236α4 − 16044α3 + 92306α2 −
161292α + 88497)m2 + (−168α6 + 888α5 + 5352α4 − 55580α3 + 173290α2 − 224554α + 97939)m −
29771

}]
.

It is noteworthy that we reached at least sixth-order convergence for all α. In addition, we can
easily obtain L1 = L2 = 0 by using α = 2.

Now, by adopting α = 2 in Expression (14), we obtain:

en+1 =
A0
(
12c3c1m3 − 12c2c2

1m(3m2 + 30m− 1) + 12c2
2m2(2m− 1) + c4

1(10m3 + 183m2 + 650m− 3)
)

24m8 e8
n + O(e9

n), (15)

where A0 = (c3
1(m + 1) − 2c1c2m). The above Expression (15) demonstrates that our proposed

Scheme (4) reaches eighth-order convergence for α = 2 by using only four functional evaluations
per full iteration. Hence, it is an optimal scheme for a particular value of α = 2 according to the
Kung–Traub conjecture, completing the proof.

3. Numerical Experiments

In this section, we illustrate the efficiency and convergence behavior of our iteration functions
for particular values α = 0, α = 1, α = 1.9, and α = 2 in Expression (4), called OM1, OM2, OM3,
and OM4, respectively. In this regards, we choose five real problems having multiple and simple zeros.
The details are outlined in the examples (1)–(3).

For better comparison of our iterative methods, we consider several existing methods of order six
and the optimal order eight. Firstly, we compare our methods with the two-point family of sixth-order
methods proposed by Geum et al. in [18], and out of them, we pick Case 4c, which is mentioned
as follows:

yn = xn −m
f (xn)

f ′(xn)
, m > 1,

xn+1 = yn −
[

m + a1un

1 + b1un + b2un2 ×
1

1 + c1sn

]
f (yn)

f ′(yn)
,

(16)

where:
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a1 =
2m

(
4m4 − 16m3 + 31m2 − 30m + 13

)
(m− 1) (4m2 − 8m + 7)

, b1 =
4
(
2m2 − 4m + 3

)
(m− 1) (4m2 − 8m + 7)

,

b2 = −4m2 − 8m + 3
4m2 − 8m + 7

, c1 = 2(m− 1),

un =

(
f (yn)

f (xn)

) 1
m , sn =

(
f ′(yn)

f ′(xn)

) 1
m− 1 ,

called GM1.
In addition, we also compare them with one more non-optimal family of sixth-order iteration

functions given by the same authors of [19], and out of them, we choose Case 5YD, which is given by:

yn = xn −m
f (xn)

f ′(xn)
, m ≥ 1,

wn = xn −m
[
(un − 2) (2un − 1)
(un − 1) (5un − 2)

]
f (xn)

f ′(xn)
,

xn+1 = xn −m
[

(un − 2) (2un − 1)
(5un − 2) (un + vn − 1)

]
f (xn)

f ′(xn)
,

(17)

where un =
(

f (yn)
f (xn)

) 1
m and vn =

(
f (wn)
f (xn)

) 1
m , and this method is denoted as GM2.

Moreover, we compare our methods with the optimal eighth-order iterative methods proposed
by Zafar et al. [21]. We choose the following two schemes out of them:

yn = xn −m
f (xn)

f ′(xn)
,

wn = yn −mun
(
6u3

n − u2
n + 2un + 1

) f (xn)

f ′(xn)
,

xn+1 = wn −munvn(1 + 2un)(1 + vn)

(
2wn + 1

A2P0

)
f (xn)

f ′(xn)

(18)

and:

yn = xn −m
f (xn)

f ′(xn)
,

wn = yn −mun

(
1− 5u2

n + 8u3
n

1− 2un

)
f (xn)

f ′(xn)
,

xn+1 = wn −munvn(1 + 2un)(1 + vn)

(
3wn + 1

A2P0(1 + wn)

)
f (xn)

f ′(xn)
,

(19)

where un =
(

f (yn)
f (xn)

) 1
m , vn =

(
f (wn)
f (yn)

) 1
m , wn =

(
f (wn)
f (xn)

) 1
m , and these iterative methods are denoted in

our tables as ZM1 and ZM2, respectively.
Finally, we demonstrate their comparison with another optimal eighth-order iteration function

given by Behl et al. [22]. However, we consider the following the best schemes (which was claimed
by them):

yn = xn −m
f (xn)

f ′(xn)
,

zn = yn −m
f (xn)

f ′(xn)
hn(1 + 2hn),

xn+1 = zn + m
f (xn)

f ′(xn)

tnhn

1− tn

[
− 1− 2hn − h2

n + 4h3
n − 2kn

] (20)
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and:

yn = xn −m
f (xn)

f ′(xn)
,

zn = yn −m
f (xn)

f ′(xn)
hn(1 + 2hn),

xn+1 = zn −m
f (xn)

f ′(xn)

tnhn

1− tn

[1 + 9h2
n + 2kn + hn(6 + 8kn)

1 + 4hn

]
,

(21)

with hn =
(

f (yn)
f (xn)

) 1
m , kn =

(
f (zn)
f (xn)

) 1
m tn =

(
f (zn)
f (yn)

) 1
m , which are denoted BM1 and BM2, respectively.

In order to compare these schemes, we perform a numerical experience, and in Tables 1 and 2,
we display the difference between two consecutive iterations |xn+1 − xn|, the residual error in the
corresponding function | f (xn)|, and the computational order of convergence (ρ) (we used the formula
given by Cordero and Torregrosa [25]:

ρ ≈ ln(| xk+1 − xk | / | xk − xk−1 |)
ln(| xk − xk−1 | / | xk−1 − xk−2 |) (22)

We make our calculations with several significant digits (a minimum of 3000 significant digits) to
minimize the round-off error. Moreover, the computational order of convergence is provided up to
five significant digits. Finally, we display the initial guess and approximated zeros up to 25 significant
digits in the corresponding example where an exact solution is not available.

All computations have been performed using the programming package Mathematica 11 with
multiple precision arithmetic. Further, the meaning of a(±b) is shorthand for a × 10(±b) in the
numerical results.

Example 1. Population growth problem:
The law of population growth is defined as follows:

dN(t)
dt

= γN(t) + η,

where N(t) = the population at time t, η = the fixed/constant immigration rate, and γ = the fixed/constant birth
rate of the population. We can easily obtain the following solution of the above differential equation:

N(t) = N0eγt +
η

γ
(eγt−1),

where N0 is the initial population.
For a particular case study, the problem is given as follows: Suppose a certain population contains 1,000,000

individuals initially, that 300,000 individuals immigrate into the community in the first year, and that 1,365,000
individuals are present at the end of one year. Find the birth rate (γ) of this population.

To determine the birth rate, we must solve the equation:

f1(x) = 1365− 1000ex − 300
x

(ex − 1). (23)

wherein x = γ and our desired zero of the above function f1 is 0.05504622451335177827483421. The reason
for considering the simple zero problem is to confirm that our methods also work for simple zeros. We choose the
starting point as x0 = 0.5.

130



Mathematics 2019, 7, 339

Example 2. The van der Waals equation of state:(
P +

a1n2

V2

)
(V − na2) = nRT,

explains the behavior of a real gas by introducing in the ideal gas equations two parameters, a1 and a2, specific
for each gas. The determination of the volume V of the gas in terms of the remaining parameters requires the
solution of a nonlinear equation in V,

PV3 − (na2P + nRT)V2 + a1n2V − a1a2n2 = 0.

Given the constants a1 and a2 of a particular gas, one can find values for n, P, and T, such that this
equation has three simple roots. By using the particular values, we obtain the following nonlinear function:

f2(x) = x3 − 5.22x2 + 9.0825x− 5.2675. (24)

which has three zeros; out of them, one is the multiple zero α = 1.75 of multiplicity two, and the other is the
simple zero α = 1.72. Our desired root is α = 1.75, and we chose x0 = 1.8 as the initial guess.

Example 3. Eigenvalue problem:
For this, we choose the following 8× 8 matrix:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−12 −12 36 −12 0 0 12 8
148 129 −397 147 −12 6 −109 −74
72 62 −186 66 −8 4 −54 −36
−32 −24 88 −36 0 0 24 16
20 13 −45 19 8 6 −13 −10

120 98 −330 134 −8 24 −90 −60
−132 −109 333 −115 12 −6 105 66

0 0 0 0 0 0 0 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The corresponding characteristic polynomial of this matrix is as follows:

f3(x) = (x− 4)3(x + 4)(x− 8)(x− 20)(x− 12)(x + 12).

The above function has one multiple zero at α = 4 of multiplicity three. In addition, we consider x0 = 2.7
as the starting point.

Example 4. Let us consider the following polynomial equation:

f4(z) =
(
(x− 1)3 − 1

)50
. (25)

The desired zero of the above function f4 is α = 2 with multiplicity of order 50, and we choose initial guess
x0 = 2.1 for this problem.

131



Mathematics 2019, 7, 339

T
a

b
le

1
.

C
om

pa
ri

so
n

on
th

e
ba

si
s

of
th

e
di

ff
er

en
ce

be
tw

ee
n

tw
o

co
ns

ec
ut

iv
e

it
er

at
io

ns
|x n

+
1
−

x n
|fo

r
th

e
fu

nc
ti

on
s

f 1
–

f 4
.

f
n

O
M

1
O

M
2

O
M

3
O

M
4

G
M

1
G

M
2

Z
M

1
Z

M
2

B
M

1
B

M
2

f 1

1
2.

3
(−

3)
8.

4
(−

4)
9.

3
(−

5)
3.

5
(−

5)
*

3.
6

(−
5)

1.
6

(−
4)

2.
3

(−
4)

7.
6

(−
5)

3.
7

(−
5)

2
2.

0
( −

16
)

9.
0

(−
20

)
8.

8
(−

28
)

2.
0

(−
37

)
*

1.
4

(−
29

)
4.

2
(−

31
)

8.
9

(−
30

)
2.

6
(−

34
)

5.
0

(−
37

)
3

9.
7

( −
95

)
1.

3
(−

11
5)

6.
4

(−
16

6)
2.

5
(−

29
5)

*
5.

4
(−

17
3)

1.
0

(−
24

3)
5.

5
(−

23
3)

5.
4

(−
27

0)
5.

7
(−

29
2)

ρ
5.

99
97

6.
00

00
6.

00
01

8.
00

00
*

6.
00

00
8.

00
00

8.
00

00
8.

00
00

8.
00

00

f 2

1
1.

3
(−

3)
8.

2
(−

4)
4.

0
(−

3)
3.

5
(−

4)
9.

5
(−

4)
3.

9
(−

4)
3.

9
(−

4)
4.

1
(−

3)
2.

7
(−

4)
2.

6
(−

4)
2

2.
5

(−
10

)
4.

2
(−

12
)

6.
4

(−
16

)
8.

7
(−

18
)

2.
7

(−
11

)
1.

0
(−

14
)

5.
2

(−
17

)
9.

8
(−

17
)

1.
1

(−
18

)
1.

4
(−

19
)

3
2.

0
( −

50
)

8.
7

(−
62

)
6.

5
(−

87
)

1.
5

(−
12

6)
2.

0
(−

56
)

3.
9

(−
78

)
5.

9
(−

12
0)

1.
2

(−
11

7)
6.

3
(−

13
4)

1.
0

(−
14

1)
ρ

5.
97

57
5.

99
28

6.
02

14
7.

99
63

5.
98

36
5.

99
75

7.
99

45
7.

99
41

7.
99

71
8.

00
26

f 3

1
9.

1
(−

5)
3.

6
(−

5)
8.

0
(−

6)
6.

0
(−

6)
8.

5
(−

5)
4.

8
(−

5)
4.

9
(−

6)
5.

2
(−

6)
2.

0
(−

6)
1.

8
(−

6)
2

1.
8

( −
28

)
1.

4
(−

31
)

9.
8

(−
38

)
2.

0
(−

47
)

1.
0

(−
28

)
5.

0
(−

31
)

6.
0

(−
48

)
1.

0
(−

47
)

1.
5

(−
51

)
2.

8
(−

52
)

3
1.

2
( −

17
0)

4.
4

(−
19

0)
3.

3
(−

22
9)

2.
5

(−
37

9)
3.

1
(−

17
2)

5.
8

(−
18

7)
2.

7
(−

38
3)

2.
3

(−
38

1)
1.

4
(−

41
2)

1.
3

(−
41

8)
ρ

6.
00

00
6.

00
00

6.
00

00
8.

00
00

6.
00

00
6.

00
00

8.
00

00
8.

00
00

8.
00

00
8.

00
00

f 4

1
2.

4
(−

5)
7.

1
(−

6)
4.

2
(−

7)
1.

4
(−

7)
1.

8
(−

5)
2.

0
(−

7)
4.

8
(−

7)
6.

5
(−

7)
1.

9
(−

7)
6.

3
(−

8)
2

1.
5

( −
26

)
1.

7
(−

30
)

3.
9

(−
40

)
6.

7
(−

54
)

1.
1

(−
26

)
1.

8
(−

41
)

5.
7

(−
49

)
8.

4
(−

48
)

8.
0

(−
53

)
4.

2
(−

57
)

3
7.

5
( −

15
4)

3.
2

(−
17

8)
2.

6
(−

43
8)

1.
7

(−
42

4)
6.

6
(−

15
4)

1.
0

(−
24

5)
2.

2
(−

38
4)

6.
6

(−
37

5)
9.

6
(−

41
6)

5.
9

(−
16

9)
ρ

6.
00

00
6.

00
00

6.
00

00
8.

00
00

6.
00

00
6.

00
00

8.
00

00
8.

00
00

8.
00

00
2.

27
45

*
m

ea
ns

th
at

th
e

co
rr

es
po

nd
in

g
m

et
ho

d
do

es
no

tw
or

k.

T
a

b
le

2
.

C
om

pa
ri

so
n

on
th

e
ba

si
s

of
re

si
du

al
er

ro
rs
|f(

x n
)|

fo
r

th
e

fu
nc

ti
on

s
f 1

–
f 4

.

f
n

O
M

1
O

M
2

O
M

3
O

M
4

G
M

1
G

M
2

Z
M

1
Z

M
2

B
M

1
B

M
2

f 1

1
2.

7
1.

0
1.

1
(−

1)
4.

2
(−

2)
*

4.
4

(−
2)

1.
9

(−
1)

2.
7

(−
1)

9.
2

(−
2)

4.
4

(−
2)

2
2.

4
( −

13
)

1.
1

(−
16

)
1.

1
(−

24
)

2.
4

(−
34

)
*

1.
7

(−
26

)
5.

1
(−

28
)

1.
1

(−
26

)
3.

2
(−

31
)

6.
0

(−
34

)
3

1.
2

( −
91

)
1.

6
(−

11
2)

7.
8

(−
16

3)
3.

0
(−

29
2)

*
5.

4
(−

17
3)

1.
2

(−
24

0)
6.

7
(−

23
0)

6.
5

(−
26

7)
7.

0
(−

28
9)

f 2

1
5.

0
(−

8)
2.

1
(−

8)
4.

8
(−

9)
3.

6
(−

9)
2.

8
(−

8)
4.

6
(−

9)
4.

6
(−

9)
5.

1
(−

9)
2.

3
(−

9)
2.

0
(−

9)
2

1.
8

( −
21

)
5.

3
(−

25
)

1.
2

(−
32

)
2.

3
(−

36
)

2.
2

(−
23

)
3.

2
(−

30
)

8.
0

(−
35

)
2.

9
(−

34
)

3.
4

(−
38

)
5.

9
(−

40
)

3
1.

2
( −

10
1)

2.
2

(−
12

4)
1.

3
(−

17
4)

6.
9

(−
25

4)
1.

2
(−

11
3)

4.
6

(−
15

7)
1.

1
(−

24
0)

4.
3

(−
23

6)
1.

2
(−

26
8)

3.
1

(−
28

4)

f 3

1
4.

9
(−

8)
3.

1
(−

9)
3.

1
(−

11
)

1.
4

(−
11

)
4.

1
(−

8)
7.

4
(−

9)
7.

8
(−

12
)

9.
1

(−
12

)
5.

2
(−

13
)

3.
6

(−
13

)
2

3.
9

( −
79

)
1.

8
(−

88
)

6.
1

(−
10

7)
4.

9
(−

13
6)

7.
1

(−
80

)
8.

0
(−

87
)

1.
4

(−
13

7)
6.

9
(−

13
7)

2.
1

(−
14

8)
1.

5
(−

15
0)

3
1.

0
( −

50
5)

5.
6

(−
56

4)
2.

4
(−

68
1)

1.
1

(−
11

31
)

1.
9

(−
51

0)
1.

2
(−

55
4)

1.
3

(−
11

43
)

7.
5

(−
11

38
)

1.
9

(−
12

31
)

1.
3

(−
12

49
)

f 4

1
1.

2
(−

20
7)

2.
7

(−
23

4)
1.

1
(−

29
5)

3.
3

(−
31

9)
3.

5
(−

21
4)

1.
0

(−
31

1)
6.

6
(−

29
3)

2.
3

(−
28

6)
1.

8
(−

31
3)

6.
2

(−
33

7)
2

1.
9

( −
12

68
)

2.
6

(−
14

65
)

3.
8

(−
19

47
)

1.
6

(−
26

35
)

1.
9

(−
12

74
)

9.
8

(−
20

14
)

3.
4

(−
23

89
)

9.
4

(−
23

31
)

9.
8

(−
25

82
)

1.
1

(−
27

95
)

3
4.

2
( −

76
33

)
2.

3
(−

88
51

)
7.

5
(−

11
85

6)
6.

1
(−

21
16

6)
6.

0
(−

76
36

)
7.

3
(−

12
22

6)
1.

6
(−

19
15

9)
7.

1
(−

18
68

6)
8.

8
(−

20
72

8)
3.

4
(−

83
88

)

132



Mathematics 2019, 7, 339

4. Conclusions

We presented an eighth-order modification of the Chebyshev–Halley-type iteration scheme having
optimal convergence to obtain the multiple solutions of the scalar equation. The proposed scheme is
optimal in the sense of the classical Kung–Traub conjecture. Thus, the efficiency index of the present
methods is E = 4

√
8 ≈ 1.682, which is better than the classical Newton’s method E = 2

√
2 ≈ 1.414.

Finally, the numerical experience corroborates the theoretical results about the convergence order,
and moreover, it can be concluded that our proposed methods are highly efficient and competitive.
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Abstract: In this paper, we introduce a new family of efficient and optimal iterative methods for
finding multiple roots of nonlinear equations with known multiplicity (m ≥ 1). We use the weight
function approach involving one and two parameters to develop the new family. A comprehensive
convergence analysis is studied to demonstrate the optimal eighth-order convergence of the suggested
scheme. Finally, numerical and dynamical tests are presented, which validates the theoretical results
formulated in this paper and illustrates that the suggested family is efficient among the domain of
multiple root finding methods.
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1. Introduction

The problem of solving nonlinear equation is recognized to be very old in history as many
practical problems which arise are nonlinear in nature . Various one-point and multi-point methods
are presented to solve nonlinear equations or systems of nonlinear equations [1–3]. The above-cited
methods are designed for the simple root of nonlinear equations but the behavior of these methods
is not similar when dealing with multiple roots of nonlinear equations. The well known Newton’s
method with quadratic convergence for simple roots of nonlinear equations decays to first order when
dealing with multiple roots of nonlinear equations. These problems lead to minor troubles such as
greater computational cost and severe troubles such as no convergence at all. The prior knowledge of
multiplicity of roots make it simpler to manage these troubles. The strange behavior of the iterative
methods while dealing with multiple roots has been well known since 19th century in the least when
Schröder [4] developed a modification of classical Newton’s method to conserve its second order of
convergence for multiple roots. The nonlinear equations with multiple roots commonly arise from
different topics such as complex variables, fractional diffusion or image processing, applications to
economics and statistics (Lēvy distributions), etc. By knowing the practical nature of multiple root
finders, various one-point and multi-point root solvers have been developed in recent past [5–18]
but most of them are not optimal as defined by Kung and Traub [19], who stated that an optimal
without memory method can achieve its convergence order at the most 2n requiring n + 1 evaluations
of functions or derivatives. As stated by Ostrowski [1], if an iterative method possess order of
convergence as O and total number of functional evaluations is n per iterative step, then the index
defined by E = O1/n is recognized as efficiency index of an iterative method.

Sharma and Sharma [17] proposed the following optimal fourth-order multiple root finder with
known multiplicity m as follows:

yn = xn − 2m
m+2 · f (xn)

f ′(xn)
, m > 1

xn+1 = xn − m
8 Φ(xn)

f (xn)
f ′(xn)

,
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where Φ(xn) =
{
(m3 − 4m + 8)− (m + 2)2( m

m+2 )
m f ′(xn)

f ′(yn)
× 2(m− 1)(m + 2)( m

m+2 )
m f ′(xn)

f ′(yn)

}
.

A two-step sixth-order non-optimal family for multiple roots presented by Geum et al. [9] is
given by:

yn = xn −m · f (xn)

f ′(xn)
, m > 1,

xn+1 = yn −Q(rn, sn) · f (yn)

f ′(yn)
, (1)

where, rn = m

√
f (yn)
f (xn)

, sn = m−1

√
f ′(yn)
f ′(xn)

and Q : C2 → C is holomorphic in a neighborhood of (0, 0).

The following is a special case of their family:

yn = xn −m · f (xn)

f ′(xn)
, n ≥ 0, m > 1,

xn+1 = yn −m
[
1 + 2(m− 1)(rn − sn)− 4rnsn + s2

n

]
· f (yn)

f ′(yn)
. (2)

Another non-optimal family of three-point sixth-order methods for multiple roots by
Geum et al. [10] is given as follows:

yn = xn −m · f (xn)

f ′(xn)
, m ≥ 1,

wn = yn −m · G(pn) · f (xn)

f ′(xn)
, (3)

xn+1 = wn −m · K(pn, vn, ) · f (xn)

f ′(xn)
,

where pn = m

√
f (yn)
f (xn)

and vn = m

√
f (wn)
f (xn)

. The weight functions G : C→ C is analytic in a neighborhood

of 0 and K : C2 → C is holomorphic in a neighborhood of (0, 0). The following is a special case of the
family in Equation (3):

yn = xn −m · f (xn)

f ′(xn)
, m ≥ 1,

wn = yn −m ·
[
1 + pn + 2p2

n

]
· f (xn)

f ′(xn)
, (4)

xn+1 = wn −m ·
[
1 + pn + 2p2

n + (1 + 2pn)vn

]
· f (xn)

f ′(xn)
.

The families in Equations (1) and (3) require four evaluations of function to produce convergence
of order six having efficiency index 6

1
4 = 1.5650 and therefore are not optimal in the sense of the

Kung–Traub conjecture [19].
Recently, Behl et al. [20] presented a multiple root finding family of iterative methods possessing

convergence order eight given as:

yn = xn −m
f (xn)

f ′(xn)
, m ≥ 1,

zn = yn − unQ(hn)
f (xn)

f ′(xn)
, (5)

xn+1 = zn − untnG(hn, tn)
f (xn)

f ′(xn)
,
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where the functions Q : C→ C and G : C2 → C are restricted to be analytic functions in the regions

nearby (0) and (0, 0), respectively, with un =
(

f (yn)
f (xn)

) 1
m , hn = un

a1+a2un
and tn =

(
f (zn)
f (yn)

) 1
m , being a1

and a2 complex non-zero free parameters.
We take Case (27) for (a1 = 1, a2 = 1, G02 = 0) from the family of Behl et al. [20] and represent it

by BM given by:

yn = xn −m
f (xn)

f ′(xn)
,

zn = yn −
(

m + 2hnm +
1
2

h2
n(4m + 2m)

)
f (xn)

f ′(xn)
un (6)

xn+1 = zn −
(

m + mtn + 3mh2
n + mhn(2 + 4tn + hn)

) f (xn)

f ′(xn)
untn.

Most recently, another optimal eighth-order scheme presented by Zafar et al. [21] is given as:

yn = xn −m
f (xn)

f ′(xn)
, m ≥ 1,

zn = yn −mun H(un)
f (xn)

f ′(xn)
, (7)

xn+1 = zn − untn(B1 + B2un)P(tn)G(wn)
f (xn)

f ′(xn)
,

where B1,B2 ∈ R are suppose to be free parameters and weight functions H : C→ C, P : C→ C and

G : C → C are restricted to be analytic in the regions nearby 0 with un =
(

f (yn)
f (xn)

) 1
m , tn =

(
f (zn)
f (yn)

) 1
m

and wn =
(

f (zn)
f (xn)

) 1
m .

From the eighth-order family of Zafar et al. [21], we consider the following special case denoted
by ZM:

yn = xn −m
f (xn)

f ′(xn)
,

zn = yn −mun

(
6u3

n − u2
n + 2un + 1

) f (xn)

f ′(xn)
,

xn+1 = zn −muntn (1 + 2un) (1 + tn)(1 + 2wn)
f (xn)

f ′(xn)
. (8)

The class of iterative methods referred as optimal is significant as compared to non-optimal
methods due to their speed of convergence and efficiency index. Therefore, there was a need to
develop optimal eighth-order schemes for finding multiple zeros (m > 1) and simple zeros (m = 1)
due to their competitive efficiencies and order of convergence [1]; in addition, fewer iterations are
needed to get desired accuracy as compared to iterative methods having order four and six given by
Sharma and Geum [9,10,17], respectively. In this paper, our main concern is to find the optimal iterative
methods for multiple root μ with known multiplicity m ∈ N of an adequately differentiable nonlinear
function f : I ⊆ R→ R, where I represents an open interval. We develop an optimal eighth-order zero
finder for multiple roots with known multiplicity m ≥ 1. The beauty of the method lies in the fact that
developed scheme is simple to implement with minimum possible number of functional evaluations.
Four evaluations of the function are needed to obtain a family of convergence order eighth having
efficiency index 8

1
4 = 1.6817.

The rest of the paper is organized as follows. In Section 2, we present the newly developed
optimal iterative family of order eight for multiple roots of nonlinear equations. The discussion of
analysis of convergence is also given in this section. In Section 3, some special cases of newly developed
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eighth-order schemes are presented. In Section 4, numerical results and comparison of the presented
schemes with existing schemes of its domain is discussed. Concluding remarks are given in Section 5.

2. Development of the Scheme and Convergence Analysis

In this section, we suggest a new family of eighth-order method with known multiplicity m ≥ 1
of the required multiple root as follows:

yn = xn −m · f (xn)

f ′(xn)
, n ≥ 0,

zn = yn −m · t · H(t) · f (xn)

f ′(xn)
, (9)

xn+1 = zn −m · t · L(s, u) · f (xn)

f ′(xn)
,

where t = m

√
f (yn)

f (xn)
, s = m

√
f (zn)

f (yn)
, u = m

√
f (zn)

f (xn)
.

where the function H : C → C is restricted to be analytic function in the regions nearby 0 and
weight function L : C2 → C is holomorphic in the regions nearby (0, 0) and t, s and u are one-to-m
multiple-valued functions.

In the next theorem, it is demonstrated that the proposed scheme in Equation (9) achieves the
optimal eighth order of convergence without increasing the number of functional evaluations.

Theorem 1. Suppose x = μ (say) is a multiple root having multiplicity m ≥ 1 of an analytic function
f : C→ C in the region enclosing a multiple zero μ of f (x). Which implies that the family of iterative methods
defined by Equation (9) has convergence of order eighth when the following conditions are fulfilled:

H0 = 1, H1 = 2, H2 = −2, H3 = 36, L00 = 0, L10 = 1, L01 = 2, L11 = 4, L20 = 2. (10)

Then, the proposed scheme in Equation (9) satisfies the following error equation:

en+1 =
1

24m7 {c1(c2
1(11 + m)− 2mc2)((677 + 108m + 7m2)c4

1

−24m(9 + m)c2
1c2 + 12m2c2

2 + 12m2c1c3)e8
n}+ O(e9

n), (11)

where en = xn − μ and ck =
m!

(m+k)!
f (m+k)(μ)

f (m)(μ)
, k = 1, 2, 3, · · ·.

Proof. Suppose x = μ is a multiple root of f (x). We expand f (xn) and f ′(xn) by Taylor’s series
expansion about x = μ using Mathematica (Computer based algebra software), to get

f (xn) =
f (m)(μ)

m!
em

n

(
1 + c1en + c2e2

n + c3e3
n + c4e4

n + c5e5
n + c6e6

n + c7e7
n + c8e8

n + O(e9
n)
)

, (12)

and

f ′(xn) = f (m)(μ)
m! em−1

n m + c1(m + 1)en + c2(m + 2)e2
n + c3(m + 3)e3

n + c4(m + 4)e4
n

+c5(m + 5)e5
n + c6(m + 6)e6

n + c7(m + 7)e7
n + c8(m + 8)e8

n + O(e9
n),

respectively. By utilizing the above Equations (11) and (12) in the first substep of Equation (9), we obtain

yn − μ =
c1e2

n
m

+
(2c2m− c2

1(m + 1))e3
n

m2 + ∑
4

lim
k=0

Gkek+4
n + O(e9

n), (13)
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where Gk = Gk(m, c1, c2, . . . , c8) are expressed in terms of m, c1, c2, c3, . . . , c8 and the two coefficients
G0and G1 can be explicitly written as G0 = 1

m3 {3c3m2 + c3
1(m + 1)2 − c1c2m(3m + 4)} and G1 =

− 1
m4 {c4

1(m + 1)3 − 2c2c2
1m(2m2 + 5m + 3) + 2c3c1m2(2m + 3) + 2m2(c2

2(m + 2)− 2c4m)}. By Taylor’s
expansion, we get

f (yn) = f (m)(μ)e2m
n

[
( c1

m )m

m!
+

(2mc2 − (m + 1)c2
1)(

c1
m )men

c1m!
+

6

∑
k=0

Gkek+2
n + O(e9

n)

]
. (14)

By using Equations (12) and (14), we get

u =
c1en

m
+

(2mc2 − (m + 2)c2
1)e

2
n

m2 + ψ1e3
n + ψ2e4

n + ψ3e5
n + O(e6

n), (15)

where ψ1 = 1
2m3 [c3

1(2m2 + 7m + 7) + 6c3m2 − 2c1c2m(3m + 7)], ψ2 = − 1
6m4 [c4

1(6m3 + 29m2 +

51m + 34) − 6c2c2
1m(4m2 + 16m + 17) + 12c1c3m2(2m + 5) + 12m2(c2

2(m + 3) − 2c4m)], ψ3 =
1

24m5 [−24m3(c2c3(5m + 17)− 5c5m) + 12c3c2
1m2(10m2 + 43m + 49) + 12c1m2{c2

2(10m2 + 47m + 53)−
2c4m(5m + 13)} − 4c2c3

1m(30m3 + 163m2 + 306m + 209) + c5
1(24m4 + 146m3 + 355m2 + 418m + 209)].

Taylor series of H(t) about 0 is given by:

H(t) = H0 + H1t +
H2

2!
t2 +

H3

3!
t3 + O(e4

n) (16)

where Hj = Hj(0) for 0 ≤ j ≤ 3. Inserting Equations (13)–(16) in the second substep of the scheme in
Equation (9), we get

zn = μ +
−(1 + H0)c1e2

n
m

− (1 + H1 + m− H0(3 + m)c2
1) + 2(−1 + H0)mc2)e3

n
m2

+
1

2m3

[
(2 + 10H1 − H2 + 4m + 4H1m + 2m2 − H0(13 + 11m + 2m2))c3

1

+2m(−4− 4H1 − 3m + H0(11 + 3m)c1c2 − 6(−1 + H0)m2c3)e4
n

]
+ z5e5

n

+z6e6
n + z7e7

n + O(e8
n).

By selecting H0 = 1 and H1 = 2, we obtain

zn = μ +
(c3

1(9− H2 + m)− 2mc1c2)

2m3 e4
n + z5e5

n + z6e6
n + z7e7

n + O(e8
n), (17)

where z5 = − 1
6m4 {c4

1(125 + H3 + 84m + 7m2 − 3H2(7 + 3m) + 6m(−3H2 + 4(7 + m))c2
1c2 + 12c2

2m2 +

12c2c1m) , z6 = 1
24m5 {1507 + 1850m + 677m2 + 46m3 + 4H3(9 + 4m)− 6H2(59 + 53m + 12m2))c5

1 −
4m(925 + 8H3 + 594m + 53m2 − 3H2(53 + 21m)c3

1c2 +12m2(83 − 9H2 + 13m)c2
1c3 − 168m3c2c3 +

12m2c1(115− 12H2 + 17m)c2
2 − 6mc4) and z7 = −{12c2

1c3m2(36β + 13m + 11) + (37− 168c2c3m3 +

4c3
1c2m(96β2 + 252β + 53m2 + 18(14β + 5)m) + 12c1m2(c2

2(48β + 17m + 19)− 6c4m)}.
Again, we use the Taylor’s expansion for Equation (17) to get:

f (zn) = f (m)(μ)e4m
n

2−m
(

c3
1(9−H2+m)−2mc1c2

m3

)m

m! −

(
2−m

(
c3
1(9−H2+m)−2mc1c2

m3

)m−1

ρ0

)
3(m3m!) en

+∑ lim7
j=0 Hje

j+1
n + O(e9

n),
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where ρ0 = c4
1(125 + H3 + 84m + 7m2 − 3H2(7 + 3m))c4

1 − 6m(−3H2 + 4(7 + m))c2
1c2 + 12m2c2

2 +

12c3c1m2). With the help of Equations (12) and (18), we have

s =
c2

1(9− H2 + m)− 2mc2

2m2 e2
n + ρ1e3

n + ρ2e4
n + ρ3e5

n + O(e6
n), (18)

where

ρ1 = − 1
6m3 {c3

1(98 + H3 + 4m2 + 54m− 6H2(3 + m)− 12m(9− H2 + m)c1c2 + 12m2c3},

ρ2 =
1

24m4 899 + 1002m + 313m2 + 18m3 + 4H3(8 + 3m)− 6H2(43 + 33m + 6m2))c4
1−

12m(167 + 2H3 + 87m + 6m2 − H2(33 + 10m)c2
1c2 + 24m2(26− 3H2 + 3m)c1c3+

12m2(c2
2(35− 4H2 + 3m)− 6mc4)

and ρ3 = − 1
60m5 [−4257− 7270m − 4455m2 − 101m3 − 48m4 − 10H3(37 + 30m + 6m2) + 30H2(60 +

75m + 31m2 + 4m3)c5
1 + 10m(1454 + 60H3 + 1548m + 21H3m + 454m2 + 24m3 − 18H2(25 + 18m +

3m2)c3
1c2 − 30m2(234 + 3H3 + 118m + 8m2 − 2H2(24 + 7m)c2

1c3 − 60m2c1(141 + 2H3 + 67m +

4m2 − 2H2(15 + 4m)c2
2 + 2(−17 + 2H2 − 2m)mc4) − 120m3(−25 + 3H2 − 2m)c2c3 + 2mc5} +

( 1
720m6 )((102047+ 180H2

2 + 204435m + 187055m2 + 81525m3 + 14738m4 + 600m5 + 40H3(389+ 498m +

214m2 + 30m3)− 45H2(1223+ 2030m+ 1353m2 + 394m3 + 40m4))− 30m(13629+ 22190m+ 12915m2 +

2746m3 + 120m4 + 16H3(83 + 64m + 12m2)− 6H2(1015 + 1209m + 470m2 + 56m3)) + 120m2(2063 +

2088m + 589m2 + 30m3 + H3(88+ 30m)− 18H2 + (36+ 25m + 4m2)) + 80m2(2323+ 2348m + 635m2 +

30m3 + 4H3(28+ 9m)− 3H2(259+ 173m + 26m2))− 2m(303+ 4H3 + 149m + 10m2− 9H2(7+ 2m))−
720m3((393+ 6H3 + 178m+ 10m2−H2(87+ 22m))] + (−42+ 5H2− 5m)mc5) + 20m3((−473− 8H3−
195m− 10m2 + 12H2(9 + 2m))c2c3 + 6m(65− 8H2 + 5m)c2 + 3m(71− 9H2 + 5m)c10mc6.

Since it is obvious from Equation (15) that u possess order en, the expansion of weight function
L f (s, u) by Taylor’s series is possible in the regions nearby origin given as follows:

L(s, u) = L00 + sL10 + uL01 + suL11 +
s2

2!
L20 (19)

where Li,j =
1

i!j!
∂i+j

∂sj∂uj L(s, u)
∣∣∣
(0,0)

. By using Equations (12)–(19) in the proposed scheme in Equation (9),

we have
en+1 = M2e2

n + M3e3
n + M4e4

n + M5e5
n + M6e6

n + M7e7
n + O(e8

n), (20)

where the coefficients Mi(2 ≤ i ≤ 7) depend generally on m and the parameters Li,j. To obtain at least
fifth-order convergence, we have to choose L00 = 0, L10 = 1 and get

en+1 =
((−2 + L01)c2

1((−9 + H2 −m)c2
1 + 2mc2)

2m4 e5
n + M̄6e6

n + M̄7e7
n + O(e8

n).

where the coefficients M̄i(6 ≤ i ≤ 7) depend generally on m and the parameters Li,j. To obtain
eighth-order convergence, we are restricted to choosing the values of parameters given by:

H2 = −2, H3 = 36, L00 = 0, L10 = 1, L01 = 2, L20 = 2, L11 = 4. (21)

This leads us to the following error equation:

en+1 =
1

24m7 [c1(c2
1(11 + m)− 2mc2)((677 + 108m + 7m2)c4

1 − 24m(9 + m)c2
1c2

+12m2c2
2 + 12m2c1c3)]e8

n + O(e9
n). (22)
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The above error equation (Equation (22)) confirms that the presented scheme in Equation (9)
achieves optimal order of convergence eight by utilizing only four functional evaluations (using
f (xn), f ′(xn), f (yn) and f (zn)) per iteration.

3. Special Cases of Weight Functions

From Theorem 1, several choices of weight functions can be obtained. We have considered
the following:

Case 1: The polynomial form of the weight function satisfying the conditions in Equation (10) can be
represented as:

H(t) = 1 + 2t− t2 + 6t3

L(s, u) = s + 2u + 4su + s2 (23)

The particular iterative method related to Equation (23) is given by:
SM-1:

yn = xn −m · f (xn)

f ′(xn)
, n ≥ 0,

zn = yn −m · t · (1 + 2t− t2 + 6t3)
f (xn)

f ′(xn)
,

xn+1 = zn −m · t · (s + s2 + 2u + 4su) · f (xn)

f ′(xn)

where t = m

√
f (yn)

f (xn)
, s = m

√
f (zn)

f (yn)
, u = m

√
f (zn)

f (xn)
(24)

Case 2: The second suggested form of the weight functions in which H(t) is constructed using
rational weight function satisfying the conditions in Equation (10) is given by:

H(t) =
1 + 8t + 11t2

1 + 6t
L(s, u) = s + 2u + 4su + s2 (25)

The corresponding iterative method in Equation (25) can be presented as:
SM-2:

yn = xn −m · f (xn)

f ′(xn)
, n ≥ 0,

zn = yn −m · t · (1 + 8t + 11t2

1 + 6t
)

f (xn)

f ′(xn)
,

xn+1 = zn −m · t · (s + s2 + 2u + 4su) · f (xn)

f ′(xn)

where t = m

√
f (yn)

f (xn)
, s = m

√
f (zn)

f (yn)
, u = m

√
f (zn)

f (xn)
(26)

Case 3: The third suggested form of the weight function in which H(t) is constructed using
trigonometric weight satisfying the conditions in Equation (10) is given by:

H(t) =
5 + 18t

5 + 8t− 11t2

L(s, u) = s + 2u + 4su + s2 (27)
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The corresponding iterative method obtained using Equation (27) is given by:
SM-3:

yn = xn −m · f (xn)

f ′(xn)
, n ≥ 0,

zn = yn −m · t · ( 5 + 18t
5 + 8t− 11t2 )

f (xn)

f ′(xn)
,

xn+1 = zn −m · t · (s + s2 + 2u + 4su) · f (xn)

f ′(xn)

where t = m

√
f (yn)

f (xn)
, s = m

√
f (zn)

f (yn)
, u = m

√
f (zn)

f (xn)
. (28)

4. Numerical Tests

In this section, we show the performance of the presented iterative family in Equation (9) by
carrying out some numerical tests and comparing the results with existing method for multiple roots.
All numerical computations were performed in Maple 16 programming package using 1000 significant
digits of precision. When μ was not exact, we preferred to take the accurate value which has larger
number of significant digits rather than the assigned precision. The test functions along with their
roots μ and multiplicity m are listed in Table 1 [22]. The proposed methods SM-1 (Equation (24)), SM-2
(Equation (26)) and SM-3 (Equation (28)) are compared with the methods of Geum et al. given in
Equations (2) and (4) denoted by GKM-1 and GKM-2 and with method of Bhel given in Equation (6)
denoted by BM and Zafar et al. method given in Equation (8) denoted by ZM. In Tables 1–8, the error
in first three iterations with reference to the sought zeros (|xn − μ|) is considered for different methods.
The notation E(−i) can be considered as E× 10−i. The test function along with their initial estimates
x0 and computational order of convergence (COC) is also included in these tables, which is computed
by the following expression [23]:

COC ≈ log |(xk+1 − μ)/(xk − μ)|
log |(xk − μ)/(xk−1 − μ)| .

Table 1. Test functions.

Test Functions Exact Root μ Multiplicity m

f1(x) = (cos(πx
2 ) + x2 − π)5 2.034724896... 5

f2(x) = (ex + x− 20)2 2.842438953... 2
f3(x) = (ln x +

√
(x4 + 1)− 2)9 1.222813963... 9

f4(x) = (cosx− x)3 0.7390851332... 3
f5(x) = ((x− 1)3 − 1)50 2.0 50
f6(x) = (x3 + 4x2 − 10)6 1.365230013... 6

f7(x) = (8xe−x2 − 2x− 3)8 −1.7903531791... 8

Table 2. Comparison of different methods for multiple roots.

f1(x), x0 = 2.5

GKM-1 GKM-2 SM-1 SM-2 SM-3 ZM BM

|x1 − μ| 6.83(−4) 1.11(−3) 2.15(−4) 1.87(−4) 2.03(−4) 1.52(−4) 1.84(−4)
|x2 − μ| 3.42(−14) 2.53(−18) 2.37(−29) 3.53(−30) 1.25(−29) 9.69(−31) 2.89(−30)
|x3 − μ| 2.13(−55) 3.58(−106) 5.28(−229) 5.71(−236) 2.53(−231) 2.56(−240) 1.05(−236)

COC 4.00 6.00 8.00 8.00 8.00 8.00 8.00

142



Mathematics 2019, 7, 672

Table 3. Comparison of different methods for multiple roots.

f2(x), x0 = 3.0

GKM-1 GKM-2 SM-1 SM-2 SM-3 ZM BM

|x1 − μ| 1.18(−7) 5.27(−6) 2.33(−7) 1.21(−7) 1.90(−7) 1.40(−7) 1.16(−7)
|x2 − μ| 2.62(−37) 1.15(−32) 1.30(−53) 2.21(−56) 1.99(−54) 1.30(−55) 1.57(−56)
|x3 − μ| 3.07(−221) 1.25(−192) 1.19(−423) 2.67(−446) 2.87(−430) 7.37(−440) 1.73(−447)

COC 6.00 6.00 8.00 8.00 8.00 8.00 8.00

Table 4. Comparison of different methods for multiple roots.

f3(x), x0 = 3.0

GKM-1 GKM-2 SM-1 SM-2 SM-3 ZM BM

|x1 − μ| 5.50(−1) 4.29(−2) 1.81(−2) 1.75(−2) 1.79(−2) D * D
|x2 − μ| 3.99(−7) 8.77(−10) 2.82(−15) 9.58(−16) 2.04(−15) D D
|x3 − μ| 1.13(−27) 7.51(−56) 2.06(−117) 8.21(−122) 6.49(−119) D D

COC 4.00 6.00 8.00 8.00 8.00 D D

* D stands for divergence.

Table 5. Comparison of different methods for multiple roots.

f4(x), x0 = 1.0

GKM-1 GKM-2 SM-1 SM-2 SM-3 ZM BM
|x1 − μ| 2.77(−4) 2.55(−5) 6.78(−8) 5.45(−8) 6.29(−8) 4.90(−8) 5.15(−8)
|x2 − μ| 3.28(−14) 6.83(−36) 7.95(−60) 8.55(−61) 3.83(−60) 4.06(−61) 4.91(−61)
|x3 − μ| 5.86(−49) 2.51(−213) 2.82(−475) 3.11(−483) 7.18(−478) 8.99(−486) 3.36(−485)

COC 3.50 6.00 8.00 8.00 8.00 7.99 7.99

Table 6. Comparison of different methods for multiple roots.

f5(x), x0 = 2.1

GKM-1 GKM-2 SM-1 SM-2 SM-3 ZM BM
|x1 − μ| 7.68(−5) 1.12(−5) 7.58(−7) 4.85(−7) 6.52(−7) 4.77(−7) 4.65(−7)
|x2 − μ| 3.49(−17) 5.33(−29) 3.70(−47) 4.10(−49) 8.82(−48) 5.66(−49) 2.72(−49)
|x3 − μ| 1.46(−66) 6.11(−169) 1.19(−369) 1.06(−385) 9.93(−375) 2.22(−384) 3.79(−387)

COC 3.99 6.00 8.00 8.00 8.00 7.99 7.99

Table 7. Comparison of different methods for multiple roots.

f6(x), x0 = 3.0

GKM-1 GKM-2 SM-1 SM-2 SM-3 ZM BM
|x1 − μ| 5.44(−2) 1.01(−1) 5.40(−2) 5.30(−2) 5.36(−2) 4.36(−2) 5.39(−2)
|x2 − μ| 7.40(−7) 5.37(−7) 1.10(−10) 4.72(−11) 8.60(−11) 1.36(−11) 4.92(−11)
|x3 − μ| 3.54(−26) 1.86(−38) 5.28(−80) 2.43(−83) 5.76(−81) 1.80(−87) 3.14(−83)

COC 3.97 5.96 8.00 7.98 7.97 7.97 7.97

Table 8. Comparison of different methods for multiple roots.

f7(x), x0 = −1.2

GKM-1 GKM-2 SM-1 SM-2 SM-3 ZM BM

|x1 − μ| 2.65(−3) 2.15(−3) 4.38(−4) 4.24(−4) 4.32(−4) 3.41(−4) 4.26(−4)
|x2 − μ| 7.24(−12) 9.63(−17) 4.44(−27) 1.11(−27) 3.11(−27) 3.58(−28) 1.14(−27)
|x3 − μ| 4.05(−46) 7.81(−97) 4.97(−211) 2.55(−216) 2.28(−212) 5.27(−220) 3.06(−216)

COC 4.00 6.00 8.00 8.00 8.00 7.99 7.99
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It is observed that the performance of the new method SM-2 is the same as BM for the function f1

and better than ZM for the function f2. The newly developed schemes SM-1, SM-2 and SM-3 are not
only convergent but also their speed of convergence is better than GKM-1 and GKM-2 while ZM and
BM show divergence for the function f3. For functions f4, f5, f6 and f7, the newly developed schemes
SM-1, SM-2 and SM-3 are comparable with ZM and BM. Hence, we conclude that the proposed family
is comparable and robust among existing methods for multiple roots.

5. Dynamical Analysis

For the sake of stability comparison, we plot the dynamical planes corresponding to each scheme
(SM-1, SM-2, SM-3, BM and ZM) for the nonlinear functions f1, f2, f3, f4, f5, f6, f7 by using the procedure
described in [24]. We draw a mesh of 400 × 400 points such that each point of the mesh is an
initial-approximation of the required root of corresponding nonlinear function. The point is orange if
the sequence of iteration method converges to the multiple root (with tolerance 10−3) in fewer than 80
iterations and the point is black if the sequence does not converges to the multiple root. The multiple
zero is represented by a white star in the figures. Figures 1–14 show that the basin of attraction drawn
in orange is of the multiple zero only (i.e., a set of initial guesses converging to the multiple roots fills
all the plotted regions of the complex plane). In general, convergence to other zeros or divergence
can appear (referred to as strange stationary points). SM-1 has wider regions of convergence for f1 as
compared to ZM and BM in Figures 1 and 2; SM-1 and SM-3 have wider regions of convergence for
f2 as compared to ZM and BM in Figures 3 and 4. The convergence region of SM-2 for functions f3,
f4 and f6 is comparable with ZM and BM, as shown in Figures 5–8, 11 and 12. For function f5 in
Figures 9 and 10, the convergence region of SM-3 is better than ZM and BM. For function f7, SM-1 and
SM-3 have better convergence regions than ZM and BM, as shown in Figures 13 and 14. Figures 1–14
show that the region in orange is comparable or bigger for the presented methods SM-1, SM-2 and
SM-3 than the regions obtained by schemes BM and ZM, which confirms the fast convergence and
stability of the proposed schemes.

Figure 1. Basins of attraction of SM1 (Left), SM2 (Middle) and SM3 (Right) for f1(x).

Figure 2. Basins of attraction of BM (Left) and ZM (Right) for f1(x).
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Figure 3. Basins of attraction of SM1 (Left), SM2 (Middle) and SM3 (Right) for f2(x).

Figure 4. Basins of attraction of BM (Left) and ZM (Right) for f2(x).

Figure 5. Basins of attraction of SM1 (Left), SM2 (Middle) and SM3 (Right) for f3(x).

Figure 6. Basins of attraction of BM (Left) and ZM (Right) for f3(x).

Figure 7. Basins of attraction of SM1 (Left), SM2 (Middle) and SM3 (Right) for f4(x).
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Figure 8. Basins of attraction of BM (Left) and ZM (Right) for f4(x).

Figure 9. Basins of attraction of SM1 (Left), SM2 (Middle) and SM3 (Right) for f5(x).

Figure 10. Basins of attraction of BM (Left) and ZM (Right) for f5(x).

Figure 11. Basins of attraction of SM1 (Left), SM2 (Middle) and SM3 (Right) for f6(x).

Figure 12. Basins of attraction of BM (Left) and ZM (Right) for f6(x).
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Figure 13. Basins of attraction of SM1 (Left), SM2 (Middle) and SM3 (Right) for f7(x).

Figure 14. Basins of attraction of BM (Left) and ZM (Right) for f7(x).

6. Conclusions

In this paper, we present a new family of optimal eighth-order schemes to find multiple roots of
nonlinear equations. An extensive convergence analysis is done, which verifies that the new family
is optimal eighth-order convergent. The presented family required four functional evaluations to
get optimal eighth-order convergence, having efficiency index 8

1
4 = 1.6817, which is higher than the

efficiency index of the methods for multiple roots and of the families of Geum et al. [9,10]. Finally,
numerical and dynamical tests confirmed the theoretical results and showed that the three members
SM-1, SM-2 and SM-3 of the new family are better than existing methods for multiple roots. Hence,
the proposed family is efficient among the domain of multiple root finding methods.
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Abstract: This research paper proposes a derivative-free method for solving systems of nonlinear
equations with closed and convex constraints, where the functions under consideration are continuous
and monotone. Given an initial iterate, the process first generates a specific direction and then employs
a line search strategy along the direction to calculate a new iterate. If the new iterate solves the
problem, the process will stop. Otherwise, the projection of the new iterate onto the closed convex set
(constraint set) determines the next iterate. In addition, the direction satisfies the sufficient descent
condition and the global convergence of the method is established under suitable assumptions.
Finally, some numerical experiments were presented to show the performance of the proposed
method in solving nonlinear equations and its application in image recovery problems.

Keywords: nonlinear monotone equations; conjugate gradient method; projection method;
signal processing
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1. Introduction

In this paper, we consider the following constrained nonlinear equation

F(x) = 0, subject to x ∈ Ψ, (1)

where F : Rn → Rn is continuous and monotone. The constraint set Ψ ⊂ Rn is nonempty, closed
and convex.

Monotone equations appear in many applications [1–3], for example, the subproblems in
the generalized proximal algorithms with Bregman distance [4], reformulation of some �1-norm
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regularized problems arising in compressive sensing [5] and variational inequality problems are
also converted into nonlinear monotone equations via fixed point maps or normal maps [6],
(see References [7–9] for more examples). Among earliest methods for the case Ψ = Rn is
the hyperplane projection Newton method proposed by Solodov and Svaiter in Reference [10].
Subsequently, many methods were proposed by different authors. Among the popular methods
are spectral gradient methods [11,12], quasi-Newton methods [13–15] and conjugate gradient methods
(CG) [16,17].

To solve the constrained case (1), the work of Solodov and Svaiter was extended by Wang et al. [18]
which also involves solving a linear system in each iteration but it was shown later by some authors
that the computation of the linear system is not necessary. For examples, Xiao and Zhu [19] presented a
CG method, which is a combination the well known CG-DESCENT method in Reference [20] with the
projection strategy by Solodov and Svaiter. Liu et al. [21] presented two CG method with sufficiently
descent directions. In Reference [22], a modified version of the method in Reference [19] was presented
by Liu and Li. The modification improves the numerical performance of the method in Reference [19].
Another extension of the Dai and Kou (DK) CG method combined with the projection method to
solve (1) was proposed by Ding et al. in Reference [23]. Just recently, to popularize the Dai-Yuan (DY)
CG method, Liu and Feng [24] modified the DY such that the direction will be sufficiently descent.
A new hybrid spectral gradient projection method for solving convex constraints nonlinear monotone
equations was proposed by Awwal et al. in Reference [25]. The method is a convex combination of two
different positive spectral parameters together with the projection strategy. In addition, Abubakar et al.
extended the method in Reference [17] to solve (1) and also solve some sparse signal recovery problems.

Inspired by some the above methods, we propose a descent conjugate gradient method to solve
problem (1). Under appropriate assumptions, the global convergence is established. Preliminary
numerical experiments were given to compare the proposed method with existing methods to solve
nonlinear monotone equations and some signal and image reconstruction problems arising from
compressive sensing.

The remaining part of this paper is organized as follows. In Section 2, we state the proposed
algorithm as well as its convergence analysis. Finally, Section 3 reports some numerical results to show
the performance of the proposed method in solving Equation (1), signal recovery problems and image
restoration problems.

2. Algorithm: Motivation and Convergence Result

This section starts by defining the projection map together with some of its properties.

Definition 1. Let Ψ ⊂ Rn be a nonempty closed convex set. Then for any x ∈ Rn, its projection onto Ψ,
denoted by PΨ(x), is defined by

PΨ(x) = arg min{‖x− y‖ : y ∈ Ψ}.

Moreover, PΨ is nonexpansive, That is,

‖PΨ(x)− PΨ(y)‖ ≤ ‖x− y‖, ∀x, y ∈ R
n. (2)

All through this article, we assume the followings

(G1) The mapping F is monotone, that is,

(F(x)− F(y))T(x− y) ≥ 0, ∀x, y ∈ R
n.
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(G2) The mapping F is Lipschitz continuous, that is there exists a positive constant L such that

‖F(x)− F(y)‖ ≤ L‖x− y‖, ∀x, y ∈ R
n.

(G3) The solution set of (1), denoted by Ψ
′
, is nonempty.

An important property that methods for solving Equation (1) must possess is that the direction
dk satisfy

F(xk)
Tdk ≤ −c‖F(xk)‖2, (3)

where c > 0 is a constant. The inequality (3) is called sufficient descent property if F(x) is the gradient
vector of a real valued function f : Rn → R.

In this paper, we propose the following search direction

dk =

{
−F(xk), if k = 0,

−F(xk) + βkdk−1 − θkF(xk), if k ≥ 1,
(4)

where

βk =
‖F(xk)‖
‖dk−1‖ (5)

and θk is determined such that Equation (3) is satisfied. It is easy to see that for k = 0, the equation
holds with c = 1. Now for k ≥ 1,

F(xk)
Tdk = −F(xk)

T F(xk) + F(xk)
T ‖F(xk)‖
‖dk−1‖ dk−1 − θkF(xk)

T F(xk)

= −‖F(xk)‖2 +
‖F(xk)‖
‖dk−1‖ F(xk)

Tdk−1 − θk‖F(xk)‖2

=
−‖F(xk)‖2‖dk−1‖2 + ‖F(xk)‖‖dk−1‖F(xk)

Tdk−1 − θk‖F(xk)‖2‖dk−1‖2

‖dk−1‖2 .

(6)

Taking θk = 1 we have
F(xk)

Tdk ≤ −‖F(xk)‖2. (7)

Thus, the direction defined by (4) satisfy condition (3) ∀k where c = 1.
To prove the global convergence of Algorithm 1, the following lemmas are needed.

Algorithm 1: (DCG)
Step 0. Given an arbitrary initial point x0 ∈ Rn, parameters σ > 0, 0 < β < 1, Tol > 0 and set

k := 0.
Step 1. If ‖F(xk)‖ ≤ Tol, stop, otherwise go to Step 2.
Step 2. Compute dk using Equation (4).
Step 3. Compute the step size αk = max{βi : i = 0, 1, 2, · · · } such that

− F(xk + αkdk)
Tdk ≥ σαk‖F(xk + αkdk)‖‖dk‖2. (8)

Step 4. Set zk = xk + αkdk. If zk ∈ Ψ and ‖F(zk)‖ ≤ Tol, stop. Else compute

xk+1 = PΨ[xk − ζkF(zk)]

where

ζk =
F(zk)

T(xk − zk)

‖F(zk)‖2 .

Step 5. Let k = k + 1 and go to Step 1.
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Lemma 1. The direction defined by Equation (4) satisfies the sufficient descent property, that is, there exist
constants c > 0 such that (3) holds.

Lemma 2. Suppose that assumptions (G1)–(G3) holds, then the sequences {xk} and {zk} generated by
Algorithm 1 (CGD) are bounded. Moreover, we have

lim
k→∞

‖xk − zk‖ = 0 (9)

and
lim
k→∞

‖xk+1 − xk‖ = 0. (10)

Proof. We will start by showing that the sequences {xk} and {zk} are bounded. Suppose x̄ ∈ Ψ
′
,

then by monotonicity of F, we get

F(zk)
T(xk − x̄) ≥ F(zk)

T(xk − zk). (11)

Also by definition of zk and the line search (8), we have

F(zk)
T(xk − zk) ≥ σα2

k‖F(zk)‖‖dk‖2 ≥ 0. (12)

So, we have

‖xk+1 − x̄‖2 = ‖PΨ[xk − ζkF(zk)]− x̄‖2 ≤ ‖xk − ζkF(zk)− x̄‖2

= ‖xk − x̄‖2 − 2ζkF(zk)
T(xk − x̄) + ‖ζF(zk)‖2

≤ ‖xk − x̄‖2 − 2ζkF(zk)
T(xk − zk) + ‖ζF(zk)‖2

= ‖xk − x̄‖2 −
(

F(zk)
T(xk − zk)

‖F(zk)‖
)2

≤ ‖xk − x̄‖2

(13)

Thus the sequence {‖xk − x̄‖} is non increasing and convergent and hence {xk} is bounded.
Furthermore, from Equation (13), we have

‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2, (14)

and we can deduce recursively that

‖xk − x̄‖2 ≤ ‖x0 − x̄‖2, ∀k ≥ 0.

Then from Assumption (G2), we obtain

‖F(xk)‖ = ‖F(xk)− F(x̄)‖ ≤ L‖xk − x̄‖ ≤ L‖x0 − x̄‖.

If we let L‖x0 − x̄‖ = κ, then the sequence {F(xk)} is bounded, that is,

‖F(xk)‖ ≤ κ, ∀k ≥ 0. (15)
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By the definition of zk, Equation (12), monotonicity of F and the Cauchy-Schwatz inequality,
we get

σ‖xk − zk‖ = σ‖αkdk‖2

‖xk − zk‖ ≤
F(zk)

T(xk − zk)

‖xk − zk‖ ≤ F(zk)
T(xk − zk)

‖xk − zk‖ ≤ ‖F(xk)‖. (16)

The boundedness of the sequence {xk} together with Equations (15) and (16), implies the sequence
{zk} is bounded.

Since {zk} is bounded, then for any x̄ ∈ Ψ, the sequence {zk − x̄} is also bounded, that is, there
exists a positive constant ν > 0 such that

‖zk − x̄‖ ≤ ν.

This together with Assumption (G2) yields

‖F(zk)‖ = ‖F(zk)− F(x̄)‖ ≤ L‖zk − x̄‖ ≤ Lν.

Therefore, using Equation (13), we have

σ2

(Lν)2 ‖xk − zk‖4 ≤ ‖xk − x̄‖2 − ‖xk+1 − x̄‖2,

which implies

σ2

(Lν)2

∞

∑
k=0
‖xk − zk‖4 ≤

∞

∑
k=0

(‖xk − x̄‖2 − ‖xk+1 − x̄‖2) ≤ ‖x0 − x̄‖ < ∞. (17)

Equation (17) implies
lim
k→∞

‖xk − zk‖ = 0.

However, using Equation (2), the definition of ζk and the Cauchy-Schwartz inequality, we have

‖xk+1 − xk‖ = ‖PΨ[xk − ζkF(zk)]− xk‖

≤ ‖xk − ζkF(zk)− xk‖

= ‖ζkF(zk)‖

= ‖xk − zk‖,

(18)

which yields
lim
k→∞

‖xk+1 − xk‖ = 0.

Equation (9) and definition of zk implies that

lim
k→∞

αk‖dk‖ = 0. (19)

Lemma 3. Suppose dk is generated by Algorithm 1 (CGD), then there exist M > 0 such the ‖dk‖ ≤ M
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Proof. By definition of dk and Equation (15)

‖dk‖ = ‖ − 2F(xk) +
‖F(xk)‖
‖dk−1‖ dk−1‖

≤ 2‖F(xk)‖+ ‖F(xk)‖
‖dk−1‖ ‖dk−1‖

≤ 3‖F(xk)‖

≤ 3κ.

(20)

Letting M = 3κ, we have the desired result.

Theorem 1. Suppose that assumptions (G1)–(G3) hold and let the sequence {xk} be generated by Algorithm 1,
then

lim inf
k→∞

‖F(xk)‖ = 0, (21)

Proof. To prove the Theorem, we consider two cases;
Case 1

Suppose lim inf
k→∞

‖dk‖ = 0, we have lim inf
k→∞

‖F(xk)‖ = 0. Then by continuity of F, the sequence {xk} has

some accumulation point x̄ such that F(x̄) = 0. Because {‖xk− x̄‖} converges and x̄ is an accumulation
point of {xk}, therefore {xk} converges to x̄.
Case 2

Suppose lim inf
k→∞

‖dk‖ > 0, we have lim inf
k→∞

‖F(xk)‖ > 0. Then by (19), it holds that lim
k→∞

αk = 0.

Also from Equation (8),

−F(xk + βi−1dk)
Tdk < σβi−1‖F(xk + βi−1dk)‖‖dk‖2

and the boundedness of {xk}, {dk}, we can choose a sub-sequence such that allowing k to go to infinity
in the above inequality results

F(x̄)Td̄ > 0. (22)

On the other hand, allowing k to approach ∞ in (7), implies

F(x̄)Td̄ ≤ 0. (23)

(22) and (23) imply contradiction. Hence, lim inf
k→∞

‖F(xk)‖ > 0 is not true and the proof is complete.

3. Numerical Examples

This section gives the performance of the proposed method with existing methods such as PCG
and PDY proposed in References [22,24], respectively, to solve monotone nonlinear equations using 9
benchmark test problems. Furthermore Algorithm 1 is applied to restore a blurred image. All codes
were written in MATLAB R2018b and run on a PC with intel COREi5 processor with 4 GB of RAM and
CPU 2.3 GHZ. All runs were stopped whenever ‖F(xk)‖ < 10−5.
The parameters chosen for the existing algorithm are as follows:

PCG method: All parameters are chosen as in Reference [22].
PDY method: All parameters are chosen as in Reference [24].
Algorithm 1: We have tested several values of β ∈ (0, 1) and found that β = 0.7 gives the best

result. In addition, to implement most of the optimization algorithms, the parameter σ is chosen as
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a very small number. Therefore, we chose β = 0.7 and σ = 0.0001 for the implementation of the
proposed algorithm.

We test 9 different problems with dimensions ranging from n = 1000, 5000, 10, 000, 50, 000, 100, 000
and 6 initial points: x1 = (0.1, 0.1, · · · , 1)T , x2 = (0.2, 0.2, · · · , 0.2)T , x3 = (0.5, 0.5, · · · , 0.5)T , x4 =

(1.2, 1.2, · · · , 1.2)T , x5 = (1.5, 1.5, · · · , 1.5)T , x6 = (2, 2, · · · , 2)T . In Tables 1–9, the number of iterations
(ITER), number of function evaluations (FVAL), CPU time in seconds (TIME) and the norm at the
approximate solution (NORM) were reported. The symbol ‘−’ is used when the number of iterations
exceeds 1000 and/or the number of function evaluations exceeds 2000.

The test problems are listed below, where the function F is taken as F(x) =

( f1(x), f2(x), . . . , fn(x))T .

Problem 1 ([26]). Exponential Function.

f1(x) = ex1 − 1,

fi(x) = exi + xi − 1, for i = 2, 3, ..., n,

and Ψ = R
n
+.

Problem 2 ([26]). Modified Logarithmic Function.

fi(x) = ln(xi + 1)− xi
n

, for i = 2, 3, ..., n,

and Ψ = {x ∈ R
n :

n

∑
i=1

xi ≤ n, xi > −1, i = 1, 2, . . . , n}.

Problem 3 ([13]). Nonsmooth Function.

fi(x) = 2xi − sin |xi|, i = 1, 2, 3, ..., n,

and Ψ = {x ∈ R
n :

n

∑
i=1

xi ≤ n, xi ≥ 0, i = 1, 2, . . . , n}.

It is clear that Problem 3 is nonsmooth at x = 0.

Problem 4 ([26]). Strictly Convex Function I.

fi(x) = exi − 1, for i = 1, 2, ..., n,

and Ψ = R
n
+.

Problem 5 ([26]). Strictly Convex Function II.

fi(x) =
i
n

exi − 1, for i = 1, 2, ..., n,

and Ψ = R
n
+.

Problem 6 ([27]). Tridiagonal Exponential Function

f1(x) = x1 − ecos(h(x1+x2)),

fi(x) = xi − ecos(h(xi−1+xi+xi+1)), for i = 2, ..., n− 1,

fn(x) = xn − ecos(h(xn−1+xn)),

h =
1

n + 1
and Ψ = R

n
+.
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Problem 7 ([28]). Nonsmooth Function

fi(x) = xi − sin |xi − 1|, i = 1, 2, 3, ..., n.

and Ψ = {x ∈ R
n :

n

∑
i=1

xi ≤ n, xi ≥ −1, i = 1, 2, . . . , n}.

Problem 8 ([23]). Penalty 1

ti =
n

∑
i=1

x2
i , c = 10−5

fi(x) = 2c(xi − 1) + 4(ti − 0.25)xi, i = 1, 2, 3, ..., n.

and Ψ = R
n
+.

Problem 9 ([29]). Semismooth Function

f1(x) = x1 + x3
1 − 10,

f2(x) = x2 − x3 + x3
2 + 1,

f3(x) = x2 + x3 + 2x3
3 − 3,

f4(x) = 2x3
4,

and Ψ = {x ∈ R
4 :

4

∑
i=1

xi ≤ 3, xi ≥ 0, i = 1, 2, 3, 4}.

In addition, we employ the performance profile developed in Reference [30] to obtain Figures 1–3,
which is a helpful process of standardizing the comparison of methods. The measure of the
performance profile considered are; number of iterations, CPU time (in seconds) and number of
function evaluations. Figure 1 reveals that Algorithm 1 most performs better in terms of number of
iterations, as it solves and wins 90 percent of the problems with less number of iterations, while PCG
and PDY solves and wins less than 10 percent. In Figure 2, Algorithm 1 performed a little less by
solving and winning over 80 percent of the problems with less CPU time as against PCG and PDY with
similar performance of less than 10 percent of the problems considered. The translation of Figure 3 is
identical to Figure 1. Figure 4 is the plot of the decrease in residual norm against number of iterations
on problem 9 with x4 as initial point. It shows the speed of the convergence of each algorithm using the
convergence tolerance 10−5, it can be observed that Algorithm 1 converges faster than PCG and PDY.
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Figure 2. Performance profiles for the CPU time (in seconds).
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Figure 3. Performance profiles for the number of function evaluations.

10 15 20 25 30 35 40 45 50 55 60 65

ITERATION

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
E

S
ID

U
A

LS
 N

O
R

M

Algorithm2.2
PCG
PDY

Figure 4. Convergence histories of Algorithm 1, PCG and PDY on Problem 9.
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Applications in Compressive Sensing

There are many problems in signal processing and statistical inference involving finding sparse
solutions to ill-conditioned linear systems of equations. Among popular approach is minimizing
an objective function which contains quadratic (�2) error term and a sparse �1−regularization term,
that is,

min
x

1
2
‖y− Bx‖2

2 + η‖x‖1, (24)

where x ∈ Rn, y ∈ Rk is an observation, B ∈ Rk×n (k << n) is a linear operator, η is a non-negative
parameter, ‖x‖2 denotes the Euclidean norm of x and ‖x‖1 = ∑n

i=1 |xi| is the �1−norm of x. It is easy
to see that problem (24) is a convex unconstrained minimization problem. Due to the fact that if the
original signal is sparse or approximately sparse in some orthogonal basis, problem (24) frequently
appears in compressive sensing and hence an exact restoration can be produced by solving (24).

Iterative methods for solving (24) have been presented in many papers (see References [5,31–35]).
The most popular method among these methods is the gradient based method and the earliest gradient
projection method for sparse reconstruction (GPRS) was proposed by Figueiredo et al. [5]. The first step
of the GPRS method is to express (24) as a quadratic problem using the following process. Let x ∈ Rn

and splitting it into its positive and negative parts. Then x can be formulated as

x = u− v, u ≥ 0, v ≥ 0,

where ui = (xi)+, vi = (−xi)+ for all i = 1, 2, ..., n and (.)+ = max{0, .}. By definition of �1-norm, we
have ‖x‖1 = eT

n u + eT
n v, where en = (1, 1, ..., 1)T ∈ Rn. Now (24) can be written as

min
u,v

1
2
‖y− B(u− v)‖2

2 + ηeT
n u + ηeT

n v, u ≥ 0, v ≥ 0, (25)

which is a bound-constrained quadratic program. However, from Reference [5], Equation (25) can be
written in standard form as

min
z

1
2

zT Dz + cTz, such that z ≥ 0, (26)

where z =

(
u
v

)
, c = ωe2n +

(
−b
b

)
, b = BTy, D =

(
BT B −BT B
−BT B BT B

)
.

Clearly, D is a positive semi-definite matrix, which implies that Equation (26) is a convex
quadratic problem.

Xiao et al. [19] translated (26) into a linear variable inequality problem which is equivalent
to a linear complementarity problem. Furthermore, it was noted that z is a solution of the linear
complementarity problem if and only if it is a solution of the nonlinear equation:

F(z) = min{z, Dz + c} = 0. (27)

The function F is a vector-valued function and the “min” is interpreted as component-wise minimum.
It was proved in References [36,37] that F(z) is continuous and monotone. Therefore problem (24) can
be translated into problem (1) and thus Algorithm 1 (DCG) can be applied to solve it.

In this experiment, we consider a simple compressive sensing possible situation, where our goal
is to restore a blurred image. We use the following well-known gray test images; (P1) Cameraman,
(P2) Lena, (P3) House and (P4) Peppers for the experiments. We use 4 different Gaussian blur kernals
with standard deviation σ to compare the robustness of DCG method with CGD method proposed
in Reference [19]. CGD method is an extension of the well-known conjugate gradient method for
unconstrained optimization CG-DESCENT [20] to solve the �1-norm regularized problems.
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To access the performance of each algorithm tested with respect to metrics that indicate a better
quality of restoration, in Table 10 we reported the number of iterations, the objective function (ObjFun)
value at the approximate solution, the mean of squared error (MSE) to the original image x̃,

MSE =
1
n
‖x̃− x∗‖2,

where x∗ is the reconstructed image and the signal-to-noise-ratio (SNR) which is defined as

SNR = 20× log10
( ‖x̄‖
‖x− x̄‖

)
.

We also reported the structural similarity (SSIM) index that measure the similarity between the original
image and the restored image [38]. The MATLAB implementation of the SSIM index can be obtained
at http://www.cns.nyu.edu/~lcv/ssim/.

Table 10. Efficiency comparison based on the value of the number of iterations (Iter), objective function
(ObjFun) value, mean-square-error (MSE) and signal-to-noise-ratio (SNR) under different Pi (σ).

Image Iter ObjFun MSE SNR

DCG CGD DCG CGD DCG CGD DCG CGD
P1(1E-8) 8 9 4.397 × 103 4.398 × 103 3.136 × 10−2 3.157 × 10−2 9.42 9.39
P1(1E-1) 8 9 4.399 × 103 4.401 × 103 3.147 × 10−2 3.163 × 10−2 9.40 9.38
P1(0.11) 11 8 4.428 × 103 4.432 × 103 3.229 × 10−2 3.232 × 10−2 9.29 9.29
P1(0.25) 12 8 4.468 × 103 4.473 × 103 3.365 × 10−2 3.289 × 10−2 9.11 9.21

P1(1E-8) 9 9 4.555 × 103 4.556 × 103 3.287 × 10−2 3.3412 × 10−2 9.14 9.07
P1(1E-1) 9 9 4.558 × 103 4.559 × 103 3.298 × 10−2 3.348 × 10−2 9.12 9.06
P1(0.11) 12 12 4.588 × 103 4.591 × 103 3.416 × 10−2 3.446 × 10−2 8.97 8.93
P1(0.25) 7 8 4.628 × 103 4.630 × 103 3.621 × 10−2 3.500 × 10−2 8.72 8.86

P1(1E-8) 9 9 5.179 × 103 5.179 × 103 3.209 × 10−2 3.3259 × 10−2 10.03 9.96
P1(1E-1) 9 9 5.182 × 103 5.182 × 103 3.231 × 10−2 3.267 × 10−2 10.00 9.95
P1(0.11) 7 9 5.209 × 103 5.209 × 103 3.436 × 10−2 3.344 × 10−2 9.73 9.85
P1(0.25) 10 8 5.250 × 103 5.254 × 103 3.557 × 10−2 3.438 × 10−2 9.58 9.73

P1(1E-8) 9 9 4.388 × 103 4.389 × 103 3.299 × 10−2 3.335 × 10−2 9.03 8.99
P1(1E-1) 9 9 4.391 × 103 4.393 × 103 3.308 × 10−2 3.340 × 10−2 9.02 8.98
P1(0.11) 12 8 4.421 × 103 4.424 × 103 3.425 × 10−2 3.411 × 10−2 8.87 8.89
P1(0.25) 7 8 4.461 × 103 4.463 × 103 3.621 × 10−2 3.483 × 10−2 8.63 8.80

The original, blurred and restored images by each of the algorithm are given in Figures 5–8.
The figures demonstrate that both the two tested algorithm can restored the blurred images. It can be
observed from Table 10 and Figures 5–8 that Algorithm 1 (DCG) compete with the CGD algorithm,
therefore, it can be used as an alternative to CGD for restoring blurred image.
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Original Blurred

Recovered by CGD Recovered by DCG

Figure 5. The original image (top left), the blurred image (top right), the restored image by CGD
(bottom left) with SNR = 20.05, SSIM = 0.83 and by DCG (bottom right) with SNR = 20.12, SSIM = 0.83.

Original Blurred

Recovered by CGD Recovered by DCG

Figure 6. The original image (top left), the blurred image (top right), the restored image by CGD
(bottom left) with SNR = 22.93, SSIM = 0.87 and by DCG (bottom right) with SNR = 24.36, SSIM = 0.90.
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Original Blurred

Recovered by CGD Recovered by DCG

Figure 7. The original image (top left), the blurred image (top right), the restored image by CGD
(bottom left) with SNR = 25.65, SSIM = 0.86 and by DCG (bottom right) with SNR = 26.37, SSIM = 0.87.

Original Blurred

Recovered by CGD Recovered by DCG

Figure 8. The original image (top left), the blurred image (top right), the restored image by CGD
(bottom left) with SNR = 21.50, SSIM = 0.84 and by DCG (bottom right) with SNR = 21.81, SSIM = 0.85.
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4. Conclusions

In this research article, we present a CG method which possesses the sufficient descent property
for solving constrained nonlinear monotone equations. The proposed method has the ability to
solve non-smooth equations as it does not require matrix storage and Jacobian information of the
nonlinear equation under consideration. The sequence of iterates generated converge the solution
under appropriate assumptions. Finally, we give some numerical examples to display the efficiency of
the proposed method in terms of number of iterations, CPU time and number of function evaluations
compared with some related methods for solving convex constrained nonlinear monotone equations
and its application in image restoration problems.
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Abstract: The aim of this paper is to present a new semi-local convergence analysis for Newton’s
method in a Banach space setting. The novelty of this paper is that by using more precise Lipschitz
constants than in earlier studies and our new idea of restricted convergence domains, we extend
the applicability of Newton’s method as follows: The convergence domain is extended; the error
estimates are tighter and the information on the location of the solution is at least as precise as before.
These advantages are obtained using the same information as before, since new Lipschitz constant
are tighter and special cases of the ones used before. Numerical examples and applications are used
to test favorable the theoretical results to earlier ones.

Keywords: Banach space; Newton’s method; semi-local convergence; Kantorovich hypothesis

1. Introduction

In this study we are concerned with the problem of approximating a locally unique solution z∗

of equation
G(x) = 0, (1)

where G is a Fréchet-differentiable operator defined on a nonempty, open convex subset D of a Banach
space E1 with values in a Banach space E2.

Many problems in Computational disciplines such us Applied Mathematics, Optimization,
Mathematical Biology, Chemistry, Economics, Medicine, Physics, Engineering and other disciplines can
be solved by means of finding the solutions of equations in a form like Equation (1) using Mathematical
Modelling [1–7]. The solutions of this kind of equations are rarely found in closed form. That is why
most solutions of these equations are given using iterative methods. A very important problem in the
study of iterative procedures is the convergence region. In general this convergence region is small.
Therefore, it is important to enlarge the convergence region without additional hypotheses.

The study of convergence of iterative algorithms is usually centered into two categories: Semi-local
and local convergence analysis. The semi-local convergence is based on the information around an
initial point, to obtain conditions ensuring the convergence of theses algorithms while the local
convergence is based on the information around a solution to find estimates of the computed radii of
the convergence balls.

Newton’s method defined for all n = 0, 1, 2, . . . by

zn+1 = zn − G′(zn)
−1G(zn), (2)

Mathematics 2019, 7, 299; doi:10.3390/math7030299 www.mdpi.com/journal/mathematics174
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is undoubtedly the most popular method for generating a sequence {zn} approximating z∗, where z0 is
an initial point. There is a plethora of convergence results for Newton’s method [1–4,6,8–14]. We shall
increase the convergence region by finding a more precise domain where the iterates {zn} lie leading to
smaller Lipschitz constants which in turn lead to a tighter convergence analysis for Newton’s method
than before. This technique can apply to improve the convergence domain of other iterative methods
in an analogous way.

Let us consider the conditions:
There exist z0 ∈ Ω and η ≥ 0 such that

G′(z0)
−1 ∈ L(E2, E1) and ‖G′(z0)

−1G(z0)‖ ≤ η;

There exists T ≥ 0 such that the Lipschitz condition

‖G′(z0)
−1(G′(x)− G′(y))‖ ≤ T‖x− y‖

holds for all x, y ∈ Ω.
Then, the sufficient convergence condition for Newton’s method is given by the famous for its

simplicity and clarity Kantorovich sufficient convergence criterion for Newton’s method

hK = 2Tη ≤ 1. (3)

Let us consider a motivational and academic example to show that this condition is not satisfied.
Choose E1 = E2 = R, z0 = 1, p ∈ [0, 0.5), D = S(z0, 1− p) and define function G on D by

G(x) = z3 − p.

Then, we have T = 2(2− p). Then, the Kantorovich condition is not satisfied, since hK > 1 for all
p ∈ (0, 0.5). We set IK = ∅ to be the set of point satisfying Equation (3). Hence, there is no guarantee
that Newton’s sequence starting at z0 converges to z∗ = 3

√
p.

The rest of the paper is structured as follows: In Section 2 we present the semi-local convergence
analysis of Newton’s method Equation (2). The numerical examples and applications are presented in
Section 3 and the concluding Section 4.

2. Semi-Local Convergence Analysis

We need an auxiliary result on majorizing sequences for Newton’s method.

Lemma 1. Let H > 0, K > 0, L > 0, L0 > 0 and η > 0 be parameters. Suppose that:

h4 = L4η ≤ 1, (4)

where

L−1
4 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
L0 + H

, if b = LK + 2δL0(K− 2H) = 0

2
−δ(L0 + H) +

√
δ2(L0 + H)2 + δ(LK + 2δL0(K− 2H))

LK + 2δL0(K− 2H)
, if b > 0

−2
δ(L0 + H) +

√
δ2(L0 + H)2 + δ(LK + 2δL0(K− 2H))

LK + 2δL0(K− 2H)
, if b < 0

and
δ =

2L

L +
√

L2 + 8L0L
.
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holds. Then, scalar sequence {tn} given by

t0 = 0, t1 = η, t2 = t1 +
K (t1−t0)

2

2 (1−H t1)
,

tn+2 = tn+1 +
L (tn+1 − tn)2

2 (1− L0 tn+1)
f or all n = 1, 2, · · · ,

(5)

is well defined, increasing, bounded from above by

t∗∗ = η +

(
1 +

δ0

1− δ

)
K η2

2 (1− H η)
(6)

and converges to its unique least upper bound t∗ which satisfies

t2 ≤ t∗ ≤ t∗∗, (7)

where δ0 =
L(t2 − t1)

2(1− L0t2)
. Moreover, the following estimates hold:

0 < tn+2 − tn+1 ≤ δ0 δn−1 K η2

2 (1− H η)
f or all n = 1, 2, · · · (8)

and

t∗ − tn ≤ δ0 (t2 − t1)

1− δ
δn−2 f or all n = 2, 3, · · · . (9)

Proof. By induction, we show that

0 <
L (tk+1 − tk)

2 (1− L0 tk+1)
≤ δ (10)

holds for all k = 1, 2, · · · . Estimate Equation (10) is true for k = 1 by Equation (4). Then, we have by
Equation (5)

0 < t3 − t2 ≤ δ0 (t2 − t1) =⇒ t3 ≤ t2 + δ0 (t2 − t1)

=⇒ t3 ≤ t2 + (1 + δ0) (t2 − t1)− (t2 − t1)

=⇒ t3 ≤ t1 +
1−δ2

0
1−δ0

(t2 − t1) < t∗∗

and for m = 2, 3, · · ·

tm+2 ≤ tm+1 + δ0 δm−1 (t2 − t1)

≤ tm + δ0 δm−2 (t2 − t1) + δ0 δm−1 (t2 − t1)

≤ t1 + (1 + δ0 (1 + δ + · · ·+ δm−1)) (t2 − t1)

= t1 + (1 + δ0
1−δm

1−δ ) (t2 − t1) ≤ t∗∗.
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Assume that Equation (10) holds for all natural integers n ≤ m. Then, we get by
Equations (5) and (10) that

0 < tm+2 − tm+1 ≤ δ0 δm−1 (t2 − t1) ≤ δm (t2 − t1)

and

tm+2 ≤ t1 + (1 + δ0
1− δm

1− δ
) (t2 − t1) ≤ t1 +

1− δm+1

1− δ
(t2 − t1) < t∗∗.

Evidently estimate Equation (10) is true, if m is replaced by m + 1 provided that

L
2
(tm+2 − tm+1) ≤ δ (1− L0 tm+2)

or
L
2
(tm+2 − tm+1) + δ L0 tm+2 − δ ≤ 0

or
L
2

δm (t2 − t1) + δ L0

(
t1 +

1− δm+1

1− δ
(t2 − t1)

)
− δ ≤ 0. (11)

Estimate Equation (11) motivates us to define recurrent functions {ψk} on [0, 1) by

ψm(s) =
L
2
(t2 − t1) tm+1 + s L0 (1 + s + t2 + · · ·+ tm) (t2 − t1)− (1− L0 t1) s.

We need a relationship between two consecutive functions ψk. We get that

ψm+1(s) = L
2 (t2 − t1) tm+2 + s L0 (1 + s + t2 + · · ·+ tm+1) (t2 − t1)

−(1− L0 t1) s

= L
2 (t2 − t1) tm+2 + s L0 (1 + s + t2 + · · ·+ tm+1) (t2 − t1)

−(1− L0 t1) s− L
2 (t2 − t1) tm

−s L0 (1 + s + t2 + · · ·+ tm) (t2 − t1) + (1− L0 t1) s + ψk(s).

Therefore, we deduce that

ψm+1(s) = ψm(s) +
1
2
(2 L0 t2 + L s− L) tm (t2 − t1). (12)

Estimate Equation (11) is satisfied, if

ψm(δ) ≤ 0 holds for all m = 1, 2, · · · . (13)

Using Equation (12) we obtain that

ψm+1(δ) = ψm(δ) for all m = 1, 2, · · · .

Let us now define function ψ∞ on [0, 1) by

ψ∞(s) = lim
m→∞

ψm(s). (14)
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Then, we have by Equation (14) and the choice of δ that

ψ∞(δ) = ψm(δ) for all m = 1, 2, · · · .

Hence, Equation (13) is satisfied, if
ψ∞(δ) ≤ 0. (15)

Using Equation (11) we get that

ψ∞(δ) =

(
L0

1− δ
(t2 − t1) + L0 t1 − 1

)
δ. (16)

It then, follows from Equations (2.1) and (2.13) that Equation (15) is satisfied. The induction is
now completed. Hence, sequence {tn} is increasing, bounded from above by t∗∗ given by Equation (6),
and as such it converges to its unique least upper bound t∗ which satisfies Equation (7).

Let S(z, �) , S̄(z, �) stand, respectively for the open and closed ball in E1 with center z ∈ E1 and of
radius � > 0.

The conditions (A) for the semi-local convergence are:

(A1) G : D ⊂ E1 → E2 is Fréchet differentiable and there exist z0 ∈ D, η ≥ 0 such that G′(z0)
−1 ∈

Ł(E2, E1) and
‖G′(z0)

−1G(z0)‖ ≤ η.

(A2) There exists L0 > 0 such that for all x ∈ D

‖G′(z0)
−1(G′(x)− G′(z0))‖ ≤ L0‖x− z0‖.

(A3) L0η < 1 and there exists L > 0 such that

‖G′(z0)
−1(G′(x)− G′(y))‖ ≤ L‖x− y‖.

for all x, y ∈ D0 := S(z1,
1
L0
− ‖G′(z0)

−1G(z0)‖) ∩ D.

(A4) There exists H > 0 such that

‖G′(z0)
−1(G′(z1)− G′(z0))‖ ≤ H‖z1 − z0‖,

where z1 = z0 − G′(z0)
−1G(z0).

(A5) There exists K > 0 such that for all θ ∈ [0, 1]

‖G′(z0)
−1(G′(z0 + θ(z1 − z0))− G′(z0))‖ ≤ Kθ‖z1 − z0‖.

Notice that (A2) =⇒ (A3) =⇒ (A5) =⇒ (A4). Clearly, we have that

H ≤ K ≤ L0 (17)

and L
L0

can be arbitrarily large [9]. It is worth noticing that (A3)–(A5) are not additional to (A2)

hypotheses, since in practice the computation of Lipschitz constant T requires the computation of the
other constants as special cases.

Next, first we present a semi-local convergence result relating majorizing sequence {tn} with
Newton’s method and hypotheses (A).
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Theorem 1. Suppose that hypotheses (A), hypotheses of Lemma 1 and S(z0, t∗) ⊆ D hold, where t∗ is given
in Lemma 1. Then, sequence {zn} generated by Newton’s method is well defined, remains in S(z0, t∗) and
converges to a solution z∗ ∈ S(z0, t∗) of equation G(x) = 0. Moreover, the following estimates hold

‖zn+1 − zn‖ ≤ tn+1 − tn (18)

and
‖zn − z∗‖ ≤ t∗ − tn f or all n = 0, 1, 2, · · · , (19)

where sequence {tn} is given in Lemma 1. Furthermore, if there exists R ≥ t∗ such that

S(z0, R) ⊆ D and L0 (t∗ + R) < 2,

then, the solution z∗ of equation G(x) = 0 is unique in S(z0, R).

Proof. We use mathematical induction to prove that

‖zk+1 − xk‖ ≤ tk+1 − tk (20)

and
S(zk+1, t∗ − tk+1) ⊆ S(zk, t∗ − tk) for all k = 1, 2, · · · . (21)

Let z ∈ S(z1, t∗ − t1).
Then, we obtain that

‖z− z0‖ ≤ ‖z− z1‖+ ‖z1 − z0‖ ≤ t∗ − t1 + t1 − t0 = t∗ − t0,

which implies z ∈ S(z0, t∗ − t0). Note also that

‖z1 − z0‖ = ‖G′(z0)
−1 G(z0)‖ ≤ η = t1 − t0.

Hence, estimates Equations (20) and (21) hold for k = 0. Suppose these estimates hold for n ≤ k.
Then, we have that

‖zk+1 − z0‖ ≤
k+1

∑
i=1
‖zi − zi−1‖ ≤

k+1

∑
i=1

(ti − ti−1) = tk+1 − t0 = tk+1

and
‖zk + θ (zk+1 − zk)− z0‖ ≤ tk + θ (tk+1 − tk) ≤ t∗

for all θ ∈ (0, 1). Using Lemma 1 and the induction hypotheses, we get in turn that

‖G′(z0)
−1(G′(zk+1)− G′(z0))‖ ≤ M‖xk+1 − z0‖ ≤ M(tk+1 − t0) ≤ Mtk+1 < 1, (22)

where

M =

{
H if k = 0
L0 if k = 1, 2, · · · .

It follows from Equation (22) and the Banach lemma on invertible operators that G′(zm+1)
−1

exists and
‖G′(zk+1)

−1 G′(z0)‖ ≤ (1− M ‖zk+1 − z0‖)−1 ≤ (1−M tk+1)
−1. (23)

Using iteration of Newton’s method, we obtain the approximation
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G(zk+1) = G(zk+1)− G(zk)− G′(zk) (zk+1 − zk)

=
∫ 1

0
(G′(zk + θ (zk+1 − zk))− G′(zm)) (zk+1 − zk) dθ.

(24)

Then, by Equation (24) we get in turn

‖G′(z0)
−1 G(zk+1)‖

≤
∫ 1

0
‖G′(z0)

−1 (G′(zk + θ (zk+1 − zk))− G′(zk))‖ ‖zk+1 − zk‖ dθ

≤ M1

∫ 1

0
‖θ (zk+1 − zk)‖ ‖zk+1 − zk‖ dθ ≤ M1

2
(tk+1 − tk))

2,

(25)

where

M1 =

{
K if k = 0
L if k = 1, 2, · · · .

Moreover, by iteration of Newton’s method, Equations (23) and (25) and the induction hypotheses
we get that

‖zk+2 − zk+1‖ = ‖(G′(zk+1)
−1 G′(z0)) (G′(z0)

−1 G(zk+1))‖

≤ ‖G′(zk+1)
−1 G′(z0)‖ ‖G′(z0)

−1 G(zk+1)‖

≤
M1
2 (tk+1−tk)

2

1−M tk+1
= tk+2 − tk+1.

That is, we showed Equation (20) holds for all k ≥ 0. Furthermore, let z ∈ S(zk+2, t∗ − tk+2).
Then, we have that

‖z− xk+1‖ ≤ ‖z− zk+2‖+ ‖zk+2 − zk+1‖

≤ t∗ − tk+2 + tk+2 − tk+1 = t∗ − tk+1.

That is, z ∈ S(zk+1, t∗ − tk+1). The induction for Equations (20) and (21) is now completed. Lemma
1 implies that sequence {sn} is a complete sequence. It follows from Equations (20) and (21) that {zn}
is also a complete sequence in a Banach space E1 and as such it converges to some z∗ ∈ S(z0, t∗) (since
S(z0, t∗) is a closed set). By letting k −→ ∞ in Equation (25) we get G(∗) = 0. Estimate Equation (19) is
obtained from Equation (18) (cf. [4,6,12]) by using standard majorization techniques. The proof for the
uniqueness part has been given in [9].

The sufficient convergence criteria for Newton’s method using the conditions (A), constants L, L0

and η given in affine invariant form are:

• Kantorovich [6]
hK = 2Tη ≤ 1. (26)

• Argyros [9]
h1 = (L0 + T)η ≤ 1. (27)

• Argyros [3]

h2 =
1
4

(
T + 4L0 +

√
T2 + 8L0T

)
η ≤ 1 (28)

• Argyros [11]

h3 =
1
4

(
4L0 +

√
L0T + 8L2

0 +
√

L0T
)

η ≤ 1 (29)
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• Argyros [12]
h4 = L̃4η ≤ 1,
L̃4 = L4(T), δ = δ(T).

(30)

If H = K = L0 = L, then Equations (27)–(30) coincide with Equations (26). If L0 < T, then L < T

hK ≤ 1 ⇒ h1 ≤ 1 ⇒ h2 ≤ 1 ⇒ h3 ≤ 1 ⇒ h4 ≤ 1 ⇒ h5 ≤ 1,

but not vice versa. We also have that for
L0

T
→ 0 :

h1

hK
→ 1

2
,

h2

hK
→ 1

4
,

h2

h1
→ 1

2

h3

hK
→ 0,

h3

h1
→ 0,

h3

h2
→ 0

(31)

Conditions Equations (31) show by how many times (at most) the better condition improves the
less better condition.

Remark 1. (a) The majorizing sequence {tn}, t∗, t∗∗ given in [12] under conditions (A) and Equation (29)
is defined by

t0 = 0, t1 = η, t2 = t1 +
L0(t1 − t0)

2

2(1− L0t1)

tn+2 = tn+1 +
T(tn+1 − tn)2

2(1− L0tn+1)
, n = 1, 2, . . .

t∗ = lim
n→∞

tn ≤ t∗∗ = η +
L0η2

2(1− δ)(1− L0η)
.

(32)

Using a simple inductive argument and Equation (32) we get for L1 < L that

tn < tn−1, n = 3, 4, . . . , (33)

tn+1 − tn < tn − tn−1, n = 2, 3, . . . , (34)

and
t∗ ≤ t∗∗ (35)

Estimates for Equations (5)–(7) show the new error bounds are more precise than the old ones and the
information on the location of the solution z∗ is at least as precise as already claimed in the abstract of this
study (see also the numerical examples). Clearly the new majorizing sequence {tn} is more precise than
the corresponding ones associated with other conditions.

(b) Condition S̄(z0, t∗) ⊆ D can be replaced by S(z0, 1
L0
) (or D0). In this case condition (A2)

′ holds for all
x, y ∈ S(z0, 1

L0
) (or D0).

(c) If L0η ≤ 1, then, we have that z0 ∈ S̄(z1,
1
L0
− ‖G′(z0)

−1G(z0)‖), since S̄(z1,
1
L0
−

‖G′(z0)
−1G(z0)‖) ⊆ S(z0,

1
L0

).

3. Numerical Examples

Example 1. Returning back to the motivational example, we have L0 = 3− p.
Conditions Equations (27)–(29) are satisfied, respectively for

p ∈ I1 := [0.494816242, 0.5),
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p ∈ I2 := [0.450339002, 0.5)

and
p ∈ I3 := [0.4271907643, 0.5).

We are now going to consider such an initial point which previous conditions cannot be satisfied but our
new criteria are satisfied. That is, the improvement that we get with our new weaker criteria.

We get that

H =
5 + p

3
,

K = 2,

L =
2

3(3− p)
(−2p2 + 5p + 6).

Using this values we obtain that condition Equation (4) is satisfied for p ∈ [0.0984119, 0.5), However,
must also have that

L0η < 1

which is satisfied for p ∈ I4 := (0, 0.5]. That is, we must have p ∈ I4, so there exist numerous values of p for
which the previous conditions cannot guarantee the convergence but our new ones can. Notice that we have

IK ⊆ I1 ⊆ I2 ⊆ I3 ⊆ I4

Hence, the interval of convergence cannot be improved further under these conditions. Notice that the
convergence criterion is even weaker than the corresponding one for the modified Newton’s method given in [11]
by L0(η) < 0.5.

For example, we choose different values of p and we see in Table 1.

Table 1. Convergence of Newton’s method choosing z0 = 1, for different values of p.

p 0.41 0.43 0.45

z1 0.803333 0.810000 0.816667
z2 0.747329 0.758463 0.769351
z3 0.742922 0.754802 0.766321
z4 0.742896 0.754784 0.766309
z5 0.742896 0.754784 0.766309

Example 2. Consider E1 = E2 = A[0, 1]. Let D∗ = {x ∈ A[0, 1]; ‖x‖ ≤ R}, such that R > 0 and G defined
on D∗ as

G(x)(u1) = x(u1)− f (u1)− λ
∫ 1

0
μ(u1, u2)x(u2)

3 du2, x ∈ C[0, 1], u1 ∈ [0, 1],

where f ∈ A[0, 1] is a given function, λ is a real constant and the kernel μ is the Green function. In this case,
for all x ∈ D∗, G′(x) is a linear operator defined on D∗ by the following expression:

[G′(x)(v)](u1) = v(u2)− 3λ
∫ 1

0
μ(u1, u2)x(u2)

2v(u2) du2, v ∈ C[0, 1], u1 ∈ [0, 1].

If we choose z0(u1) = f (u1) = 1, it follows

‖I − G′(z0)‖ ≤ 3|λ|/8.
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Hence, if
|λ| < 8/3,

G′(z0)
−1 is defined and

‖G′(z0)
−1‖ ≤ 8

8− 3|λ| ,

‖G(z0)‖ ≤ |λ|
8

,

η = ‖G′(z0)
−1G(z0)‖ ≤ |λ|

8− 3|λ| .

Consider λ = 1.00, we get
η = 0.2,

T = 3.8,

L0 = 2.6,

K = 2.28,

H = 1.28

and
L = 1.38154 . . . .

By these values we conclude that conditions (26)–(29) are not satisfied, since

hK = 1.52 > 1,

h1 = 1.28 > 1,

h2 = 1.19343 . . . > 1,

h3 > 1.07704 . . . > 1,

but condition (2.27) and condition (4) are satisfied, since

h4 = 0.985779 . . . < 1

and
h5 = 0.97017 . . . < 1.

Hence, Newton’s method converges by Theorem 1.

4. Application: Planck’s Radiation Law Problem

We consider the following problem [15] :

ϕ(λ) =
8πcPλ−5

e
cP

λBT−1
(36)

which calculates the energy density within an isothermal blackbody. The maxima for ϕ occurs when
density ϕ(λ). From (36), we get

ϕ′(λ) =
(

8πcPλ−6

e
cP

λBT−1

)(
( cP

λBT )e
cP

λBT−1

e
cP

λkT−1
− 5

)
= 0, (37)
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that is when
( cP

λBT )e
cP

λBT−1

e
cP

λBT−1
= 5. (38)

After using the change of variable x = cP
λBT and reordering terms, we obtain

f (x) = e−x − 1 +
x
5

. (39)

As a consequence, we need to find the roots of Equation (39).
We consider Ω = E(5, 1) ⊂ R and we obtain

η = 0.0348643 . . . ,

L0 = 0.0599067 . . . ,

K = 0.0354792 . . . ,

H = 0.0354792 . . .

and
L = 0.094771 . . . .

So (A) are satisfied. Moreover, as b = 0.000906015 > 0, then

L4 = 10.0672 . . . ,

which satisfies
L4η = 0.350988 . . . < 1

and that means that conditions of Lemmal 1 are also satisfied. Finally, we obtain that

t∗ = 0.0348859 . . . .

Hence, Newton’s method converges to the solution x∗ = 4.965114231744276 . . . by Theorem 1.
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Abstract: In this paper, we design a new third order Newton-like method and establish its
convergence theory for finding the approximate solutions of nonlinear operator equations in the
setting of Banach spaces. First, we discuss the convergence analysis of our third order Newton-like
method under the ω-continuity condition. Then we apply our approach to solve nonlinear fixed point
problems and Fredholm integral equations, where the first derivative of an involved operator does
not necessarily satisfy the Hölder and Lipschitz continuity conditions. Several numerical examples
are given, which compare the applicability of our convergence theory with the ones in the literature.

Keywords: nonlinear operator equation; Fréchet derivative; ω-continuity condition; Newton-like
method; Frédholm integral equation

1. Introduction

Our purpose of this paper is to compute solution of nonlinear operator equation of the form

F(x) = 0, (1)

where F : D ⊂ X → Y is a nonlinear operator defined on an open convex subset D of a Banach space
X with values into a Banach space Y.

A lot of challenging problems in physics, numerical analysis, engineering, and applied
mathematics are formulated in terms of finding roots of the equation of the form Equation (1).
In order to solve such problems, we often use iterative methods. There are many iterative methods
available in literature. One of the central method for solving such problems is the Newton method [1,2]
defined by

xn+1 = xn − (F′xn)
−1F(xn) (2)

for each n ≥ 0, where F′x denotes the Fréchet derivative of F at point x ∈ D.
The Newton method and the Newton-like method are attractive because it converges rapidly

from any sufficient initial guess. A number of researchers [3–20] have generalized and established
local as well as semilocal convergence analysis of the Newton method Equation (2) under the
following conditions:

(a) Lipschitz condition: ‖F′x − F′y‖ ≤ K‖x− y‖ for all x, y ∈ D and for some K > 0;
(b) Hölder Lipschitz condition: ‖F′x − F′y‖ ≤ K‖x − y‖p for all x, y ∈ D and for some p ∈ (0, 1]

and K > 0;

Mathematics 2019, 7, 31; doi:10.3390/math7010031 www.mdpi.com/journal/mathematics186
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(c) ω-continuity condition: ‖F′x − F′y‖ ≤ ω(‖x − y‖) for all x, y ∈ D,where ω : [0, ∞) → [0, ∞) is a
nondecreasing and continuous function.

One can observe that the condition (c) is more general than the conditions (a) and (b). One can
find numerical examples where the Lipschitz condition (a) and the Hölder continuity condition (b) on
the first Fréchet derivative do not hold, but the ω-continuity condition (c) on first Fréchet derivative
holds (see Example 1, [21]).

On the other hand, many mathematical problems such as differential equations, integral equations,
economics theory, game theory, variational inequalities, and optimization theory ([22,23]) can be
formulated into the fixed point problem:

Find x ∈ C such that x = G(x), (3)

where G : C → X is an operator defined on a nonempty subset C of a metric space X. The easiest
iterative method for constructing a sequence is Picard iterative method [24] which is given by

xn+1 = G(xn) (4)

for each n ≥ 0. The Banach contraction principle (see [1,22,23,25]) provides sufficient conditions for
the convergence of the iterative method Equation (4) to the fixed point of G. Banach spaces have more
geometrical stricture with respect to metric spaces. For study fixed points of nonlinear smooth operators,
Banach space structure is required. More details of Banach space theory and fixed point theory of
nonlinear operators can be found in [1,22,23,26–28].

The Newton method and its variant [29,30] are also used to solve the fixed point problem of
the form:

(I − G)(x) = 0, (5)

where I is the identity operator defined on X and G : D ⊂ X → X is a nonlinear Fréchet differentiable
operator defined on an open convex subset D of a Banach space X. For finding approximate solution
of the Equation (5), Bartle [31] used the Newton-like iterative method of the form

xn+1 = xn − (I − G′yn)
−1

(I − G(xn)) (6)

for each n ≥ 0, where G′x is Fréchet derivative of G at point x ∈ D and {yn} is the sequence of arbitrary
points in D which are sufficiently closed to the desired solution of the Equation (5). Bartle [31] has
discussed the convergence analysis of the form Equation (6) under the assumption that G is Fréchet
differentiable at least at desired points and a modulus of continuity is known for G′ as a function of x.
The Newton method Equation (2) and the modified Newton method are the special cases of the form
Equation (6).

Following the idea of Bartle [31], Rall [32] introduced the following Stirling method for finding a
solution of the fixed point problem Equation (5):{

yn = G(xn),
xn+1 = xn − (I − G′yn)

−1(xn − G(xn))
(7)

for each n ≥ 0. Many researchers [33–35] have studied the Stirling method Equation (7) and established
local as well as semilocal convergence analysis of the Stirling-like method.

Recently, Parhi and Gupta [21,36] have discussed the semilocal convergence analysis of the
following Stirling-like iterative method for computing a solution of operator Equation (5):⎧⎪⎨⎪⎩

zn = G(xn),
yn = xn − (I − G′zn)

−1(xn − G(xn)),
xn+1 = yn − (I − G′zn)

−1(yn − G(yn))

(8)
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for each n ≥ 0. More precisely, Parhi and Gupta [21] have studied the semilocal convergence analysis
of Equation (8) for computing a solution of the operator Equation (5), where G : D ⊂ X → X is a
nonlinear Fréchet differentiable operator defined on an open convex subset D under the condition:

(Ω) ‖G′x‖ ≤ k for all x ∈ D and for some k ∈ (0, 1
3 ].

There are some nonlinear Fréchet differentiable operators G : D ⊂ X → X defined on an open
convex subset D which fail to satisfy the condition (Ω) (see Example 1). Therefore, ref. [21] (Theorem 1)
is not applicable for such operators. So, there is the following natural question:

Problem 1. Is it possible to develop the Stirling-like iterative method for computing a solution of the operator
Equation (5), where the condition (Ω) does not hold?

The main purpose of this paper is to design a new Newton-like method for solving the operator
Equation (1) and provide an affirmative answer of the Problem 1. We prove our proposed Newton-like
method has R-order of convergence at least 2p + 1 under the ω-continuity condition and it covers a
wide variety of iterative methods. We derive the Stirling-like iterative method for computing a solution
of the fixed point problem Equation (5), where (Ω) does not hold and hence it gives an affirmative
answer to Question 1 and generalizes the results of Parhi and Gupta [21,36] in the context of the
condition (Ω).

In Section 2, we summarize some known concepts and results. In Section 3, we introduce a new
Newton-like method for solving the operator Equation (1) and establish convergence theory of the
proposed Newton-like method. In Section 4, we derive the Stirling-like iterative method from the
proposed Newton-like method and establish a convergence theorem for computing a solution of the
fixed point problem. Applications to Fredholm integral equations are also presented in Section 5,
together with several numerical examples, which compare the applicability of our iterative technique
with the ones in the literature.

2. Preliminary

In this section, we discuss some technical results. Throughout the paper, we denote B(X, Y)
a collection of bounded linear operators from a Banach space X into a Banach space Y and
B(X) = B(X, X). For some r > 0, Br[x] and Br(x) are the closed and open balls with center x and
radius r, respectively, N0 = N ∪ {0} and Φ denote the collection of nonnegative, nondecreasing,
continuous real valued functions defined on [0, ∞).

Lemma 1. (Rall [37] (p. 50)) Let L be a bounded linear operator on a Banach space X. Then L−1 exists if and
only if there is a bounded linear operator M in X such that M−1 exists and

‖M−L‖ <
1

‖M−1‖ .

If L−1 exists, then we have

∥∥∥L−1
∥∥∥ ≤ ∥∥M−1

∥∥
1− ‖1−M−1L‖ ≤

∥∥M−1
∥∥

1− ‖M−1‖ ‖M−L‖ .

Lemma 2. Let 0 < k ≤ 1
3 be a real number. Assume that q = 1

p+1 + kp for any p ∈ (0, 1] and the
scalar equation

(1− kp(1 + qt)pt)p+1 −
(

qptp

p + 1
+ kp

)p
qpt2p = 0

has a minimum positive root α. Then we have the following:
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(1) q > k for all p ∈ (0, 1].
(2) α ∈ (0, 1).

Proof. (1) This part is obvious. Indeed, we have

1
p + 1

+ kp − 1
3
=

2− p
3(1 + p)

+ kp > 0

for all p ∈ (0, 1] and 0 < k ≤ 1
3 .

(2) Set

g(t) = (1− kp(1 + qt)pt)p+1 −
(

qptp

p + 1
+ kp

)p
qpt2p. (9)

It is clear from the definition of g(t) that g(0) > 0, g(1) < 0 and g′(t) < 0 in (0, 1). Therefore, g(t)
is decreasing in (0, 1) and hence the Equation (9) has a minimum positive root α ∈ (0, 1). This completes
the proof.

Lemma 3. Let b0 ∈ (0, α) be a number such that kp(1 + qb0)
pb0 < 1, where k, p, α and q are same as in

Lemma 2. Define the real sequences {bn}, {θn} and {γn} by

bn+1 =

(
qpbp

n
p+1 + kp

)p
qpb2p

n

(1− kp(1 + qbn)pbn)
p+1 bn, (10)

θn =

(
qpbp

n
p+1 + kp

)
qb2

n

1− kp(1 + qbn)pbn
, γn =

1
1− kp(1 + qbn)pbn

(11)

for each n ∈ N0. Then we have the following:

(1)

(
qpbp

0
p+1 +kp

)p

qpb2p
0

(1−kp(1+qb0)pb0)
p+1 < 1.

(2) The sequence {bn} is decreasing, that is bn+1 ≤ bn for all n ∈ N0.
(3) kp(1 + qbn)pbn < 1 for all n ∈ N0.
(4) bn+1 ≤ ξ(2p+1)n

bn for all n ∈ N0.

(5) θn ≤ ξ
(2p+1)n−1

p θ for all n ∈ N0, where θ0 = θ and ξ = γ0θp.

Proof. (1) Since the scalar equation g(t) = 0 defined by Equation (9) has a minimum positive root
α ∈ (0, 1) and g(t) is decreasing in (0, 1) with g(0) > 0 and g(1) < 0. Therefore, g(t) > 0 in the
interval (0, α) and hence (

qpbp
0

p+1 + kp
)p

qpb2p
0

(1− kp(1 + qb0)pb0)
p+1 < 1.

(2) From (1) and Equation (10), we have b1 ≤ b0. This shows that (2) is true for n = 0. Let j ≥ 0 be
a fixed positive integer. Assume that (2) is true for n = 0, 1, 2, · · · , j. Now, using Equation (10),
we have

bj+2 =

(
qpbp

j+1
p+1 + kp

)p

qpb2p
j+1(

1− kp(1 + qbj+1)pbj+1
)p+1 bj+1 ≤

(
qpbp

j
p+1 + kp

)p

qpb2p
j(

1− kp(1 + qbj)pbn
)p+1 bj = bj+1.

Thus (2) holds for n = j + 1. Therefore, by induction, (2) holds for all n ∈ N0.
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(3) Since bn < bn−1 for each n = 1, 2, 3, · · · and kp(1 + qb0)
pb0 < 1 for all p ∈ (0, 1], it follows that

kp(1 + qbn)
pbn < kp(1 + qb0)

pb0 < 1.

(4) From (3), one can easily prove that the sequences {γn} and {θn} are well defined. Using Equations
(10) and (11), one can easily observe that

bn+1 = γnθ
p
nbn (12)

for each n ∈ N0. Put n = 0 and n = 1 in Equation (12), we have

b1 = γ0θpb0 = ξ(2p+1)0
b0

and

b2 =

(
qpbp

1
p+1 + kp

)p
qpb2p

1

(1− kp(1 + qb1)pb1)
p+1 b1

≤

(
qpbp

0
p+1 + kp

)p
qp(ξb0)

2p

(1− kp(1 + qb0)pb0)
p+1 b1

≤ ξ2p

(
qpbp

0
p+1 + kp

)p
qpb2p

0

(1− kp(1 + qb0)pb0)
p+1 b1

= ξ2pγ0θpb1 = ξ2p+1b1.

Hence (4) holds for n = 0 and n = 1. Let j > 1 be a fixed integer. Assume that (4) holds for each
n = 0, 1, 2 · · · , j. From Equations (11) and (12), we have

bj+2 =

(
qpbp

j+1
p+1 + kp

)p

qpb2p
j+1(

1− kp(1 + qbj+1)pbj+1
)p+1 bj+1

≤

(
qpbp

j+1
p+1 + kp

)p

qp(ξ(2p+1)j
bj)

2p

(
1− kp(1 + qbj+1)pbj+1

)p+1 bj+1

≤ (ξ2p(2p+1)j
)

(
qpbp

j
p+1 + kp

)p

qpb2p
j(

1− kp(1 + qbj)pbj
)p+1 bj+1

≤ ξ2p(2p+1)j
ξ2p(2p+1)j−1 · · · ξ2p(2p+1)ξ(2p+1)bj+1

= ξ(2p+1)j+1
bj+1.

Thus (4) holds for n = j + 1. Therefore, by induction, (4) holds for all n ∈ N0.
(5) From Equation (11) and (4), one can easily observe that

θ1 =

(
qpbp

1
p+1 + kp

)
qb2

1

1− kp(1 + qb1)pb1
≤

(
qpbp

0
p+1 + kp

)
q(ξb0)

2

1− kp(1 + qb0)pb0
≤ ξ

(2p+1)1−1
p θ.

190



Mathematics 2019, 7, 31

Hence (5) holds for n = 1. Let j > 1 be a fixed integer. Assume that (5) holds for each
n = 0, 1, 2 · · · , j. From Equation (11), we have

θj+1 =

(
qpbp

j+1
p+1 + kp

)
qb2

j+1

1− kp(1 + qbj+1)pbj+1

≤

(
qpbp

0
p+1 + kp

)
q

(
ξ

(2p+1)j+1−1
2p b0

)2

1− kp(1 + qb0)pb0

= ξ
(2p+1)j+1−1

p θ.

Thus (5) holds for n = j + 1. Therefore, by induction, (v) holds for all n ∈ N0. This completes
the proof.

3. Computation of a Solution of the Operator Equation (1)

Let X and Y be Banach spaces and D be a nonempty open convex subset of X. Let F : D ⊂ X → Y
be a nonlinear operator such that F is Fréchet differentiable at each point of D and let L ∈ B(Y, X) such
that (I − LF)(D) ⊆ D. To solve the operator Equation (1), we introduce the Newton-like algorithm
as follows:

Starting with x0 ∈ D and after xn ∈ D is defined, we define the next iterate xn+1 as follows:⎧⎪⎨⎪⎩
zn = (I − LF)(xn),
yn = (I − F′−1

zn F)(xn),
xn+1 = (I − F′−1

zn F)(yn)

(13)

for each n ∈ N0.

If we take X = Y, F = I − G and L = I ∈ B(X) in Equation (13), then the iteration process
Equation (13) reduces to the Stirling-like iteration process Equation (8).

Before proving the main result of the paper, we establish the following:

Proposition 1. Let D be a nonempty open convex subset of a Banach space X, F : D ⊂ X → Y be a Fréchet
differentiable at each point of D with values in a Banach space Y and L ∈ B(Y, X) such that (I − LF)(D) ⊆ D.
Let ω : [0, ∞)→ [0, ∞) be a nondecreasing and continuous real-valued function. Assume that F satisfies the
following conditions:

(1) ‖F′x − F′y‖ ≤ ω(‖x− y‖) for all x, y ∈ D;
(2) ‖I − LF′x‖ ≤ c for all x ∈ D and for some c ∈ (0, ∞).

Define a mapping T : D → D by
T(x) = (I − LF)(x) (14)

for all x ∈ D. Then we have
‖I − F′−1

Tx F′Ty‖ ≤ ‖F′−1
Tx ‖ω(c‖x− y‖)

for all x, y ∈ D.

Proof. For any x, y ∈ D, we have
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‖I − F′−1
Tx F′Ty‖ ≤ ‖F′−1

Tx ‖‖F′Tx − F′Ty‖
≤ ‖F′−1

Tx ‖ω(‖Tx− Ty‖)
= ‖F′−1

Tx ‖ω(‖x− y− L(F(x)− F(y))‖)
= ‖F′−1

Tx ‖ω

(
‖x− y− L

∫ 1

0
F′y+t(x−y)(x− y)dt‖

)
≤ ‖F′−1

Tx ‖ω

(∫ 1

0
‖I − LF′y+t(x−y)‖dt‖x− y‖

)
≤ ‖F′−1

Tx ‖ω(c‖x− y‖).

This completes the proof.

Now, we are ready to prove our main results for solving the problem Equation (1) in the framework
of Banach spaces.

Theorem 1. Let D be a nonempty open convex subset of a Banach space X, F : D ⊂ X → Y a Fréchet
differentiable at each point of D with values in a Banach space Y and L ∈ B(Y, X) such that (I − LF)(D) ⊆ D.
Let x0 ∈ D be such that z0 = x0 − LF(x0) and F′−1

z0
∈ B(Y, X) exist. Let ω ∈ Φ and let α be the solution of

the Equation (9). Assume that the following conditions hold:

(C1) ‖F′x − F′y‖ ≤ ω(‖x− y‖) for all x, y ∈ D;

(C2) ‖I − LF′x‖ ≤ k for all x ∈ D and for some k ∈ (0, 1
3 ];

(C3) ‖F′−1
z0
‖ ≤ β for some β > 0;

(C4) ‖F′−1
z0

F(x0)‖ ≤ η for some η > 0;

(C5) ω(ts) ≤ tpω(s), s ∈ [0, ∞), t ∈ [0, 1] and p ∈ (0, 1];

(C6) b0 = βω(η) < α, q = 1
p+1 + kp, θ =

(
qpbp

0
p+1 +kp

)
qb2

0

1−kp(1+qb0)
pb0

and Br[x0] ⊂ D, where r = 1+q
1−θ η.

Then we have the following:

(1) The sequence {xn} generated by Equation (13) is well defined, remains in Br[x0] and satisfies the
following estimates: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

‖yn−1 − zn−1‖ ≤ k‖yn−1 − xn−1‖,
‖xn − yn−1‖ ≤ qbn−1‖yn−1 − xn−1‖,
‖xn − xn−1‖ ≤ (1 + qbn−1)‖yn−1 − xn−1‖,
F′−1

zn exists and ‖F′−1
zn ‖ ≤ γn−1‖F′−1

zn−1
‖,

‖yn − xn‖ ≤ θn−1‖yn−1 − xn−1‖ ≤ θn‖y0 − x0‖,
‖F′−1

zn ‖ω(‖yn − xn‖) ≤ bn

(15)

for all n ∈ N, where zn, yn ∈ Br[x0], the sequences {bn}, {θn}, and {γn} are defined by Equations (10)
and (11), respectively.

(2) The sequence {xn} converges to the solution x∗ ∈ Br[x0] of the Equation (1).
(3) The priory error bounds on x∗ is given by:

‖xn − x∗‖ ≤ (1 + qb0)η

ξ1/2p2
(

1− ξ
(2p+1)n

p γ
− 1

p
0

)
γ

n/p
0

(
ξ1/2p2

)(2p+1)n

for each n ∈ N0.
(4) The sequence {xn} has R-order of convergence at least 2p + 1.
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Proof. (1) First, we show that Equation (15) is true for n = 1. Since x0 ∈ D, y0 = x0 − F′−1
z0

F(x0) is
well defined. Note that

‖y0 − x0‖ = ‖F′−1
z0

F(x0)‖ ≤ η < r.

Hence y0 ∈ Br[x0]. Using Equation (13), we have

‖y0 − z0‖ = ‖ − F′−1
z0

F(x0) + LF(x0)‖
= ‖y0 − x0 − LF′z0

(y0 − x0)‖
≤ ‖I − LF′z0

‖‖y0 − x0‖
≤ k‖y0 − x0‖.

By Proposition 1 and (C2), we have

‖x1 − y0‖ = ‖F′−1
z0

(F(y0)− F(x0)− F′z0
(y0 − x0))‖

≤
∫ 1

0
‖F′−1

z0
(F′x0+t(y0−x0)

− F′y0
+ F′y0

− F′z0
)‖‖y0 − x0‖dt

≤ β

[∫ 1

0
‖(F′x0+t(y0−x0)

− F′y0
)‖dt + ‖F′y0

− F′z0
‖
]
‖y0 − x0‖

= β

[∫ 1

0
ω((1− t)‖y0 − x0‖)dt + ω(‖y0 − z0‖)

]
‖y0 − x0‖

= β

[∫ 1

0
(1− t)pω(‖y0 − x0‖)dt + ω(k‖y0 − x0‖)

]
‖y0 − x0‖

= β

[∫ 1

0
(1− t)pω(‖y0 − x0‖)dt + kpω(‖y0 − x0‖)

]
‖y0 − x0‖

≤ β

[
1

p + 1
+ kp

]
ω(‖y0 − x0‖)‖y0 − x0‖

≤ qβω(η)‖y0 − x0‖ ≤ qb0‖y0 − x0‖.

Thus we have

‖x1 − x0‖ ≤ ‖x1 − y0‖+ ‖y0 − x0‖ ≤ qb0‖y0 − x0‖+ ‖y0 − x0‖
≤ (1 + qb0)‖y0 − x0‖ < r,

(16)

which shows that x1 ∈ Br[x0]. Note that z1 = (I − LF)(x1) ∈ D. Using Proposition 1 and (C3)–(C5),
we have

‖I − F′−1
z0

F′z1
‖ ≤ ‖F′−1

z0
‖ω(k‖x1 − x0‖)

≤ βω(k(1 + qb0)‖y0 − x0‖)
≤ βkp(1 + qb0)

pω(‖y0 − x0‖)
≤ kp(1 + qb0)

pβω(η)

≤ (k(1 + qb0))
pb0 < 1.

Therefore, by Lemma 1, F′−1
z1

exists and

‖F′−1
z1
‖ ≤ ‖F′−1

z0
‖

1− (k(1 + qb0))pb0
= γ0‖F′−1

z0
‖. (17)

Subsequently, we have
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‖y1 − x1‖ = ‖F′−1
z1

F(x1)‖
= ‖F′−1

z1
(F(x1)− F(y0)− F′z0

(x1 − y0))‖
≤ ‖F′−1

z1
‖
[∫ 1

0 ‖(F′y0+t(x1−y0)
− F′y0

)‖dt + ‖F′y0
− F′z0

‖
]
‖x1 − y0‖

≤ ‖F′−1
z1
‖
[

1
p+1 ω(‖x1 − y0‖) + ω(k‖y0 − x0‖)

]
‖x1 − y0‖

≤ ‖F′−1
z1
‖
[

1
p+1 ω(qb0‖x0 − y0‖) + kpω(‖y0 − x0‖)

]
qb0‖x0 − y0‖

≤ ‖F′−1
z1
‖
[

qpbp
0

p+1 ω(‖y0 − x0‖) + kpω(‖y0 − x0‖)
]

qb0‖y0 − x0‖

≤ γ0

[
qpbp

0
p+1 + kp

]
βω(η)qb0‖y0 − x0‖

≤

(
qpbp

0
p+1 +kp

)
qb2

0

1−(k(1+qb0))
pb0
‖y0 − x0‖

≤ θ‖y0 − x0‖.

(18)

From Equations (16) and (18), we have

‖y1 − x0‖ ≤ ‖y1 − x1‖+ ‖x1 − x0‖
≤ θ‖y0 − x0‖+ (1 + qb0)‖y0 − x0‖
≤ (1 + qb0)θ‖y0 − x0‖+ (1 + qb0)‖y0 − x0‖
≤ (1 + qb0)(1 + θ)η < r

and

‖z1 − x0| ≤ ‖z1 − y1‖+ ‖y1 − x1‖+ ‖x1 − x0‖
≤ (1 + k)‖y1 − x1‖+ (1 + qb0)‖y0 − x0‖
≤ (1 + q)θη + (1 + q)η

= (1 + q)(1 + θ)η < r.

This shows that z1, y1 ∈ Br[x0]. From Equations (17) and (18), we get

‖F′−1
z1
‖ω(‖y1 − x1‖) ≤ γ0‖F′−1

z0
‖ω(θ‖y0 − x0‖)

≤ γ0θpβω(η)

≤ γ0θpb0 = b1.

Thus we see that Equation (15) holds for n = 1.
Let j > 1 be a fixed integer. Assume that Equation (15) is true for n = 1, 2, · · · , j. Since xj ∈ Br[x0],

it follows zj = (I − LF)(xj) ∈ D. Using (C3), (C4), Equations (13) and (15), we have

‖yj − zj‖ = ‖LF(xj)− F′−1
zj

F(xj)‖ = ‖(L− F′−1
zj

)F(xj)‖
= ‖(L− F′−1

zj
)F′zj

(xj − yj)‖
≤ ‖I − LF′zj

‖‖yj − xj‖
≤ k‖yj − xj‖.

(19)

Using Equations (13) and (19), we have
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‖xj+1 − yj‖ = ‖F′−1
zj

F(yj)‖
≤ ‖F′−1

zj
‖‖F(yj)− F(xj)− F′zj

(yj − xj)‖
≤ ‖F′−1

zj
‖
[∫ 1

0 ‖F′xj+t(yj−xj)
− F′zj

‖dt
]
‖yj − xj‖

≤ ‖F′−1
zj
‖
[∫ 1

0 ‖F′xj+t(yj−xj)
− F′yj

‖dt + ‖F′yj
− F′zj

‖
]
‖yj − xj‖

= ‖F′−1
zj
‖
[∫ 1

0 ω(xj + t(yj − xj)− yj)dt + ω(‖yj − zj‖)
]
‖yj − xj‖

≤ ‖F′−1
zj
‖
[∫ 1

0 ω((1− t)‖yj − xj‖)dt + ω(k‖yj − xj‖)
]
‖yj − xj‖

≤ ‖F′−1
zj
‖
[∫ 1

0 ((1− t)p + kp)ω(‖yj − xj‖)dt
]
‖yj − xj‖

≤ ‖F′−1
zj
‖
[

1
p+1 + kp

]
ω(‖yj − xj‖)‖yj − xj‖

= q‖F′−1
zj
‖ω(‖yj − xj‖)‖yj − xj‖

= qbj‖yj − xj‖.

(20)

From Equation (20), we have

‖xj+1 − xj‖ ≤ ‖xj+1 − yj‖+ ‖yj − xj‖
≤ qbj‖yj − xj‖+ ‖yj − xj‖
≤ (1 + qbj)‖yj − xj‖.

(21)

Using Equations (20) and (21) and the triangular inequality, we have

‖xj+1 − x0‖ ≤
j

∑
s=0
‖xs+1 − xs‖

≤
j

∑
s=0

(1 + qbs)‖ys − xs‖

≤
j

∑
s=0

(1 + qb0)θ
s‖y0 − x0‖

≤ (1 + qb0)
1− θ j+1

1− θ
η

≤ (1 + q)η
1− θ

= r,

which implies that xk+1 ∈ Br[x0]. Again, by using Proposition 1, (C2), (C5), and Equation (21),
we have

‖I − F′−1
zj

F′zj+1
‖ ≤ ‖F′−1

zj
‖ω(k‖xj+1 − xj‖)

≤ ‖F′−1
zj
‖kp(1 + qbj)

pω(‖yj − xj‖)
≤ kp(1 + qbj)

pbj < 1.

Therefore, by Lemma 1, F′−1
zj+1

exists and

‖F′−1
zj+1
‖ ≤

‖F′−1
zj
‖

1− kp(1 + qbj)pbj
= γj‖F′−1

zj
‖.

Using Equations (13), (C2), and (21), we have
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‖yj+1 − xj+1‖ = ‖F′−1
zj+1

F(xj+1)‖
= ‖F′−1

zj+1
(F(xj+1)− F(yj)− F′zj

(xj+1 − yj))‖

≤ ‖F′−1
zj+1
‖
[∫ 1

0
‖F′yj+t(xj+1−yj)

− F′yj
‖dt + ‖F′yj

− F′zj
‖
]
‖xj+1 − yj‖

≤ ‖F′−1
zj+1
‖
[∫ 1

0
ω(t‖xj+1 − yj‖)dt + ω(‖yj − zj‖)

]
‖xj+1 − yj‖

≤ ‖F′−1
zj+1
‖
[∫ 1

0
ω(tqbj‖yj − xj‖)dt + ω(k‖yj − xj‖)

]
qbj‖yj − xj‖

≤ γj‖F′−1
zj
‖
[

qpbp
j

p + 1
ω(‖yj − xj‖) + kpω(‖yj − xj‖)

]
qbj‖yj − xj‖

= γj

[
qpbp

j

p + 1
+ kp

]
‖F′−1

zj
‖ω(‖yj − xj‖)qbj‖yj − xj‖

≤ γj

[
qpbp

j

p + 1
+ kp

]
qb2

j ‖yj − xj‖

≤ θj‖yj − xj‖ ≤ θ j+1‖y0 − x0‖,

‖yj+1 − x0‖ ≤ ‖yj+1 − xj+1‖+ ‖xj+1 − x0‖

≤ θ j+1‖y0 − x0‖+
j

∑
s=0
‖xs+1 − xs‖

≤ θ j+1‖y0 − x0‖+
j

∑
s=0

(1 + qb0)θ
s‖y0 − x0‖

≤ (1 + qb0)
j+1

∑
s=0

θsη

≤ (1 + q)η
1− θ

= r

and

‖zj+1 − x0‖ ≤ ‖zj+1 − yj+1‖+ ‖yj+1 − xj+1‖+ ‖xj+1 − x0‖

≤ (1 + k)‖yj+1 − xj+1‖+
j

∑
s=0

(1 + qb0)θ
sη

≤ (1 + q)θ j+1η +
j

∑
s=0

(1 + q)θsη

≤
j+1

∑
s=0

(1 + q)θsη < r

which implies that zj+1, yj+1 ∈ Br(x0). Also, we have

‖F′−1
zj+1
‖ω(‖yj+1 − xj+1‖) ≤ γj‖F′−1

zj
‖ω(θj‖yj − xj‖)

≤ γjθ
p
j ‖F′−1

zj
‖ω(‖yj − xj‖)

≤ γjθ
p
j bj = bj+1.

Hence we conclude that Equation (15) is true for n = j + 1. Therefore, by induction, Equation (15)
is true for all n ∈ N0.
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(2) First, we show that the sequence {xn} is a Cauchy sequence. For this, letting m, n ∈ N0 and
using Lemma 3, we have

‖xm+n − xn‖ ≤
m+n−1

∑
j=n

‖xj+1 − xj‖

≤
m+n−1

∑
j=n

(1 + qbj)‖yj − xj‖

≤ (1 + qb0)
m+n−1

∑
j=n

j−1

∏
i=0

θi‖y0 − x0‖

≤ (1 + qb0)
m+n−1

∑
j=n

j−1

∏
i=0

ξ
(2p+1)i−1

p θ‖y0 − x0‖

≤ (1 + qb0)
m+n−1

∑
j=n

j−1

∏
i=0

ξ
(2p+1)i

p γ
− 1

p
0 ‖y0 − x0‖

= (1 + qb0)
m+n−1

∑
j=n

ξ

j−1

∑
i=0

(2p + 1)i

p
γ
− 1

p
0 ‖y0 − x0‖

≤ (1 + qb0)

(
m+n−1

∑
j=n

ξ
(2p+1)j−1

2p2 γ
− j

p
0

)
‖y0 − x0‖.

By Bernoulli’s inequality, for each j ≥ 0 and y > −1, we have (1 + y)j ≥ 1 + jy. Hence we have

‖xm+n − xn‖
≤ (1 + qb0)ξ

− 1
2p2 γ

− n
p

0

(
ξ

(2p+1)n

2p2 + ξ
(2p+1)n(2p+1)

2p2 γ
− 1

p
0 + · · ·+ ξ

(2p+1)n(2p+1)m−1

2p2 γ
− (m−1)

p
0

)
η

≤ (1 + qb0)ξ
− 1

2p2 γ
− n

p
0

(
ξ

(2p+1)n

2p2 + ξ
(2p+1)n(1+2p)

2p2 γ
− 1

p
0 + · · ·+ ξ

(2p+1)n(1+2(m−1)p)
2p2 γ

− (m−1)
p

0

)
η

= (1 + qb0)ξ
− 1

2p2 γ
− n

p
0

⎛⎝ξ
(2p+1)n

2p2 + ξ
(2p+1)n

(
1

2p2 +
1
p

)
γ
− 1

p
0 + · · ·+ ξ

(2p+1)n
(

1
2p2 +

m−1
p

)
γ
− (m−1)

p
0

⎞⎠ η

= (1 + qb0)ξ
(2p+1)n−1

2p2 γ
− n

p
0

(
1 +

(
ξ(2p+1)n

γ−1
0

) 1
p
+ · · ·+

(
ξ(2p+1)n

γ−1
0

)m−1
p
)

η

= (1 + qb0)ξ
(2p+1)n−1

2p2 γ
− n

p
0

⎛⎝ 1−
(

ξ(2p+1)n γ−1
0

)m
p

1−(ξ(2p+1)n γ−1
0 )

1
p

⎞⎠ η.

(22)

Since the sequence {xn} is a Cauchy sequence and hence it converges to some point x∗ ∈ Br[x0].
From Equations (13), (C2), and (15), we have

‖LF(xn)‖ ≤ ‖zn − yn‖+ ‖yn − xn‖
≤ k‖yn − xn‖+ ‖yn − xn‖
≤ (1 + k)θnη.
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Taking the limit as n → ∞ and using the continuity of F and the linearity of L, we have

F(x∗) = 0.

(3) Taking the limit as m → ∞ in Equation (22), we have

‖x∗ − xn‖ ≤ (1 + qb0)η

ξ1/2p2
(

1− ξ
(2p+1)n

p γ
− 1

p
0

)
γ

n/p
0

(
ξ1/2p2

)(2p+1)n

(23)

for each n ∈ N0.
(4) Here we prove

‖xn+1 − x∗‖
‖xn − x∗‖2p+1 ≤ K

for all n ∈ N0 and for some K > 0. One can easily observe that there exists n0 > 0 such that

‖xn − x∗‖ < 1 (24)

whenever n ≥ n0. Using Equations (13) and (24), we have

‖zn − x∗‖ = ‖xn − x∗ − LF(xn)‖
= ‖xn − x∗ − L(F(xn)− F(x∗))‖
= ‖xn − x∗ − L

∫ 1

0
F′x∗+t(xn−x∗)(xn − x∗)dt‖

≤
∫ 1

0
‖I − LF′x∗+t(xn−x∗)‖‖xn − x∗‖dt

≤ k‖xn − x∗‖

and
‖yn − x∗‖ = ‖xn − x∗ − F′−1

zn F(xn)‖
= ‖F′−1

zn [F′zn(xn − x∗)− F(xn)]‖
≤ ‖F′−1

zn ‖‖F(xn)− x∗ − F′zn(xn − x∗)‖
= ‖F′−1

zn ‖‖ ∫ 1
0 (F′x∗+t(xn−x∗) − F′zn)(xn − x∗)‖dt

≤ ‖F′−1
zn ‖ ∫ 1

0 ‖F′x∗+t(xn−x∗) − F′zn‖‖xn − x∗‖dt

≤ ‖F′−1
zn ‖ ∫ 1

0 (‖F′x∗+t(xn−x∗) − F′x∗‖+ ‖F′x∗ − F′zn‖)‖xn − x∗‖dt

≤ ‖F′−1
zn ‖ ∫ 1

0 (ω(t‖xn − x∗‖) + ω(‖zn − x∗‖))‖xn − x∗‖dt

≤ ‖F′−1
zn ‖ ∫ 1

0 (t
p‖xn − x∗‖pω(1) + ω(k‖xn − x∗‖))‖xn − x∗‖dt

≤ ‖F′−1
zn ‖

(
1

p+1 + kp
)

ω(1)‖xn − x∗‖p+1

= ‖F′−1
zn ‖qω(1)‖xn − x∗‖p+1.

(25)

Using Equations (13), (24) and (25), we have
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‖xn+1 − x∗‖
= ‖yn − F′−1

zn F(yn)− x∗‖
≤ ‖F′−1

zn ‖‖F(yn)− F(x∗)− F′zn(yn − x∗)‖
= ‖F′−1

zn ‖‖
∫ 1

0
(F′x∗+t(yn−x∗) − F′zn)(yn − x∗)‖dt

≤ ‖F′−1
zn ‖

∫ 1

0
‖F′x∗+t(yn−x∗) − F′zn‖‖yn − x∗‖dt

= ‖F′−1
zn ‖

∫ 1

0
(‖F′x∗+t(yn−x∗) − F′x∗‖+ ‖F′x∗ − F′zn‖)‖yn − x∗‖dt

≤ ‖F′−1
zn ‖

∫ 1

0
(ω(t‖yn − x∗‖) + ω(k‖xn − x∗‖))‖yn − x∗‖dt

= ‖F′−1
zn ‖

∫ 1

0

(
tpω

(
‖F′−1

zn ‖qω(1)‖xn − x∗‖p+1
)
+ ω(k‖xn − x∗‖)

)
dt

×‖F′−1
zn ‖qω(1)‖xn − x∗‖p+1

≤ ‖F′−1
zn ‖2

∫ 1

0

(
tp‖xn − x∗‖p(p+1)ω

(
‖F′−1

zn ‖qω(1)
)
+ kp‖xn − x∗‖pω(1)

)
dt

×qω(1)‖xn − x∗‖p+1

= ‖F′−1
zn ‖2

(‖xn − x∗‖p2
ω
(‖F′−1

zn ‖qω(1)
)

p + 1
+ kp

)
qω(1)‖xn − x∗‖2p+1

= Kn‖xn − x∗‖2p+1,

where

Kn = ‖F′−1
zn ‖2

(‖xn − x∗‖p2
ω
(‖F′−1

zn ‖qω(1)
)

p + 1
+ kp

)
qω(1).

Let ‖F′−1
x∗ ‖ ≤ d and 0 < d < ω(σ)−1, where σ > 0. Then, for all x ∈ Bσ(x∗), we have

‖I − F′−1
x∗ F′x‖ ≤ ‖F′−1

x∗ ‖‖F′x∗ − F′x‖ ≤ dω(σ) < 1

and so, by Lemma 1, we have

‖F′−1
x ‖ ≤ d

1− dω(σ)
:= λ.

Since xn → x∗ and zn → x∗ as n → ∞, there exists a positive integer N0 such that

‖F′−1
zn ‖ ≤ d

1− dω(σ)

for all n ≥ N0. Thus, for all n ≥ N0, one can easily observe that

Kn ≤ λ2
(

σp2
ω (λqω(1))

p + 1
+ kp

)
qω(1) = K.

This shows that the R-order of convergence at least (2p + 1). This completes the proof.

4. Applications

4.1. Fixed Points of Smooth Operators

Let X be a Banach spaces and D be a nonempty open convex subset of X. Let G : D ⊂ X → X be
a nonlinear operator such that D is Fréchet differentiable at each point of D and let L ∈ B(X, X) such
that (I − L(I − G))(D) ⊆ D. For F = I − G, the Newton-like algorithm Equation (13) reduces to the
following Stirling-like method for computing fixed point of the operator G:
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Starting with x0 ∈ D and after xn ∈ D is defined, we define the next iterate xn+1 as follows:⎧⎪⎨⎪⎩
zn = (I − L(I − G))(xn),
yn = (I − (I − G′zn)

−1(I − G))(xn),
xn+1 = (I − (I − G′zn)

−1(I − G))(yn)

(26)

for each n ∈ N0.
For the choice of X = Y and F = I − G, Theorem 1 reduces to the following:

Theorem 2. Let D be a nonempty open convex subset of a Banach space X, G : D → X be a Fréchet
differentiable at each point of D with values into itself. Let L ∈ B(X) be such that (I − L(I − G))(D) ⊆ D.
Let x0 ∈ D be such that z0 = x0 − L(x0 − G(x0)) and let (I − G′z0

)−1 ∈ B(X) exist. Let ω ∈ Φ and α be a
solution of the Equation (9). Assume that the conditions (C5)–(C6) and the following conditions hold:

(C7) ‖(I − G′z0
)−1‖ ≤ β for some β > 0;

(C8) ‖(I − G′z0
)−1(x0 − G(x0))‖ ≤ η for some η > 0;

(C9) ‖G′x − G′y‖ ≤ ω(‖x− y‖) for all x, y ∈ D;

(C10) ‖I − L(I − G′x)‖ ≤ k for all x ∈ D and for some k ∈ (0, 1
3 ].

Then the sequence {xn} generated by Equation (26) is well defined, remains in Br[x0] and converges to the
fixed point x∗ ∈ Br[x0] of the operator G and the sequence {xn} has R-order of convergence at least 2p + 1.

We give an example to illustrate Theorem 2.

Example 1. Let X = Y = R and D = (−1, 1) ⊂ X. Define a mapping G : D → R by

G(x) =
1.1x3 − x

6
(27)

for all x ∈ D. Define L : R→ R by L(x) = 7.9
7 x for all x ∈ R. One can easily observe that

(I − L(I − G))(x) ∈ D

for all x ∈ D. Clearly, G is differentiable on D and its derivative at x ∈ D is G′x = 3.3x2−1
6 and G′x is bounded

with ‖G′x‖ ≤ 0.3833 for all x ∈ D and G′ satisfies the Lipschitz condition

‖G′x − G′y‖ ≤ K‖x− y‖

for all x, y ∈ D, where K = 1.1. For x0 = 0.3, we have

z0 = (I − L(I − G))(x0) = −0.0894135714, ‖(I − G′z0
)−1‖ ≤ 0.860385626 = β,

‖(I − G′z0
)−1(x0 − G(x0))‖ ≤ 0.29687606 = η.

For p = 1, q = 5
6 and ω(t) = Kt for all t ≥ 0, we have

b0 = βω(η) = 0.280970684 < 1,

θ =

(
qpbp

0
p+1 + kp

)
qb2

0

1− k(1 + qb0)b0
= 0.0335033167 < 1

and r = 0.563139828. Hence all the conditions of Theorem 2 are satisfied. Therefore, the sequence {xn} generated
by Equation (26) is in Br[x0] and it converges to the fixed point x∗ = 0 ∈ Br[x0] of G.
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Remark 1. In Example 1, ‖G′x‖ ≤ 0.38333 > 1
3 . Thus the condition (Ω) does not hold and so we can not

apply Parhi and Gupta [21] (Theorem 1) for finding fixed points of the operators like G defined by (27). Thus the
Stirling-like method defined by Equation (26) provides an affirmative answer of the Problem 1.

If the condition (Ω) holds, then Theorem 2 with L = I reduces to the main result of Parhi and
Gupta [21] as follows:

Corollary 1. [21] (Theorem 1) Let D be a nonempty open convex subset of a Banach space X and G : D → D
be a Fréchet differentiable operator and let x0 ∈ D with z0 = G(x0). Let (I − G′z0

)−1 ∈ B(X) exists and
ω ∈ Φ. Assume that the conditions (C5)–(C9) and the following condition holds:

(C11) ‖G′x‖ ≤ k for all x ∈ D and for some k ∈ (0, 1
3 ].

Then the sequence {xn} generated by Equation (8) is well defined, remains in Br[x0] and converges to the
fixed point x∗ ∈ Br[x0] of the operator G with R−order of the convergence at least 2p + 1.

Example 2. Let X = Y = R and D = (−6, 6) ⊂ X. Define a mapping G : D → R by

G(x) = 2 + e
sin x

5

for all x ∈ D. It is obvious that G is Fréchet differentiable on D and its Fréchet derivative at x ∈ D is
G′x = cos x

5 e
sin x

5 . Clearly, G′x is bounded with ‖G′x‖ ≤ 0.22 < 1
3 = k and

‖G′x − G′y‖ ≤ K‖x− y‖

for all x, y ∈ D, where K = 0.245. For x0 = 0, we have

z0 = G(x0) = 3, ‖(I − G′z0
)−1‖ ≤ 0.834725586524139 = β

and
‖(I − G′z0

)−1(x0 − G(x0))‖ ≤ 2.504176759572418 = η.

For p = 1, q = 5
6 and ω(t) = Kt for all t ≥ 0, we have

b0 = βKη = 0.512123601526580 < 1,

θ =

(
qpbp

0
p+1 + kp

)
qb2

0

1− k(1 + qb0)b0
= 0.073280601270728 < 1

and r = 5.147038576039456.
Hence all the conditions of Theorem 2 with L = I are satisfied. Therefore, the sequence {xn} generated by

Equation (26) is in Br[x0] and it converges to the fixed point x∗ = 3.023785446275295 ∈ Br[x0] of G (Table 1).

Table 1. A priori error bounds.

n ‖xn − x∗‖
0 3.0237854462752
1 1.7795738211156 × 10−2

2 6.216484249588206 × 10−6

3 2.335501569916687 × 10−9

4 8.775202786637237 × 10−13

5 4.440892098500626 × 10−16
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4.2. Fredholm Integral Equations

Let X be a Banach space over the field F (R or C) with the norm ‖ · ‖ and D be an open convex
subset of X. Further, let B(X) be the Banach space of bounded linear operators from X into itself.
Let S ∈ B(X), u ∈ X and λ ∈ F. We investigate a solution x ∈ X of the nonlinear Fredholm-type
operator equation:

x− λSQ(x) = u, (28)

where Q : D → X is continuously Fréchet differentiable on D. The operator Equation (28) has been
discussed in [10,38,39]. Define an operator F : D → X by

F(x) = x− λSQ(x)− u (29)

for all x ∈ D. Then solving the operator Equation (29) is equivalent to solving the operator Equation (1).
From Equation (29), we have

F′x(h) = h− λSQ′x(h) (30)

for all h ∈ X. Now, we apply Theorem 1 to solve the operator Equation (28).

Theorem 3. Let X be a Banach space and D an open convex subset of X. Let Q : D → X be a continuously
Fréchet differentiable mapping at each point of D. Let L, S ∈ B(X) and u ∈ X. Assume that, for any x0 ∈ D,
z0 = x0 − L(x0 − λSQ(x0)− u) and (I − λSQ′z0

)−1 exist. Assume that the condition (C6) and the following
conditions hold:

(C12) (I − L(I − λSQ))(x)− u ∈ D for all x ∈ D;
(C13) ‖(I − λSQ′z0

)−1‖ ≤ β for some β > 0;
(C14) ‖(I − λSQ′z0

)−1(x0 − λSQ(x0)− u)‖ ≤ η for some η > 0;
(C15) ‖Q′x −Q′y‖ ≤ ω0(‖x− y‖) for all x, y ∈ D, where ω0 ∈ Φ;
(C16) ω0(st) ≤ spω0(t), s ∈ [0, 1] and t ∈ [0, ∞);
(C17) ‖I − L(I − λSQ′x)‖ ≤ k, k ≤ 1

3 for all x ∈ D.

Then we have the following:
(1) The sequence {xn} generated by⎧⎪⎨⎪⎩

zn = xn − L(xn − λSQ(xn)− u),
yn = xn − (I − λSQ′zn)

−1(xn − λSQ(xn)− u),
xn+1 = yn − (I − λSQ′zn)

−1(yn − λSQ(yn)− u)
(31)

for each n ∈ N0 is well defined, remains in Br[x0] and converges to a solution x∗ of the Equation (28).
(2) The R-order convergence of sequence {xn} is at least 2p + 1.

Proof. Let F : D → X be an operator defined by Equation (29). Clearly, F is Fréchet differentiable
at each point of D and its Fréchet derivative at x ∈ D is given by Equation (30). Now, from (C13)
and Equation (30), we have ‖F′−1

z0
‖ ≤ β and so it follows that (C3) holds. From (C14), Equations (29)

and (30), we have ‖F′−1
z0

(F(x0))‖ ≤ η. Hence (C4) is satisfied. For all x, y ∈ D, using (C15), we have

‖F′x − F′y‖ = sup{‖(F′x − F′y)z‖ : z ∈ X, ‖z‖ = 1}
≤ |λ|‖S‖ sup{‖Q′x −Q′y‖‖z‖ : z ∈ X, ‖z‖ = 1}
≤ |λ|‖S‖ω0(‖x− y‖)
= ω(‖x− y‖),
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where ω(t) = |λ|‖S‖ω0(t). Clearly, ω ∈ Φ and, from (C16), we have

ω(st) ≤ spω(t)

for all s ∈ [0, 1] and t ∈ (0, ∞]. Thus (C1) and (C5) hold. (C2) follows from (C17) for c = k ∈ (0, 1
3 ].

Hence all the conditions of Theorem 1 are satisfied. Therefore, Theorem 3 follows from Theorem 1.
This completes the proof.

Let D = X = Y = C[a, b] be the space of all continuous real valued functions defined on [a, b] ⊂ R

with the norm ‖x‖ = sup
t∈[a,b]

|x(t)|. Consider, the following nonlinear integral equation:

x(s) = g(s) + λ
∫ b

a
K(s, t)(μ(x(t))1+p + ν(x(t))2)dt (32)

for all s ∈ [a, b] and p ∈ (0, 1], where g, x ∈ C[a, b] with g(s) ≥ 0 for all s ∈ [a, b], K : [a, b]× [a, b]→ R is
a continuous nonnegative real-valued function and μ, ν, λ ∈ R. Define two mappings S, Q : D → X by

Sx(s) =
∫ b

a
K(s, t)x(t)dt (33)

for all s ∈ [a, b] and
Qx(s) = μ(x(s))1+p + ν(x(s))2 (34)

for all μ, ν ∈ R and s ∈ [a, b].
One can easily observe that K is bounded on [a, b]× [a, b], that is, there exists a number M ≥ 0

such that |K(s, t)| ≤ M for all s, t ∈ [a, b]. Clearly, S is bounded linear operator with ‖S‖ ≤ M(b− a)
and Q is Fréchet differentiable and its Fréchet derivative at x ∈ D is given by

Q′xh(s) = (μ(1 + p)xp + 2νx)h(s) (35)

for all h ∈ C[a, b]. For all x, y ∈ D, we have

‖Q′x −Q′y‖ = sup{‖(Q′x −Q′y)h‖ : h ∈ C[a, b], ‖h‖ = 1}
≤ sup{‖(μ(1 + p)(xp − yp) + 2ν(x− y))h‖ : h ∈ C[a, b], ‖h‖ = 1}
≤ sup{(|μ|(1 + p)‖xp − yp‖+ 2|ν|‖x− y‖)‖h‖ : h ∈ C[a, b], ‖h‖ = 1}
≤ |μ|(1 + p)‖x− y‖p + 2|ν|‖x− y‖
= ω0(‖x− y‖),

(36)

where ω0(t) = |μ|(1 + p)tp + 2|ν|t, t ≥ 0 with

ω0(st) ≤ spω0(t) (37)

for all s ∈ [0, 1] and t ∈ [0, ∞). For any x ∈ D, using Equations (33) and (35), we have

‖SQ′x‖
= sup{‖SQ′xh‖ : h ∈ X, ‖h‖ = 1}
= sup

{
sups∈[a,b]

∣∣∣∫ b
a K(s, t)(μ(1 + p)(x(t))p + 2νx(t))h(t)dt

∣∣∣ : h ∈ X, ‖h‖ = 1
}

≤ sup
{∫ b

a |K(s, t)|(|μ|(1 + p)|x(t)|p + 2|ν||x(t)|)|h(t)|dt : h ∈ X, ‖h‖ = 1
}

≤ (|μ|(1 + p)‖x‖p + 2|ν|‖x‖)M(b− a) < 1.

(38)

We now apply Theorem 3 to solve the Fredholm integral Equation (32).
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Theorem 4. Let D = X = Y = C[a, b] and μ, ν, λ, M ∈ R. Let S, Q : D → X be operators defined by
Equations (33) and (34), respectively. Let L ∈ B(X) and x0 ∈ D be such that z0 = x0 − L(x0 − λSQ(x0)−
g) ∈ D. Assume that the condition (C6) and the following conditions hold:

(C18) 1
1−|λ|(|μ|(1+p)‖z0‖p+2|ν|‖z0‖)M(b−a) = β for some β > 0;

(C19) ‖x0−g‖+|λ|(|μ|‖x0‖p+1+2|ν|‖x0‖2)M(b−a)
1−|λ|(|μ|(1+p)‖z0‖p+2|ν|‖z0‖)M(b−a) = η for some η > 0;

(C20) ‖I − L‖+ |λ|‖L‖(|μ|(1 + p)‖x‖p + 2|ν|‖x‖)M(b− a) ≤ 1
3

for all x ∈ D.

Then the sequence generated by Equation (31) with u = g ∈ X is well defined, remains in Br[x0] and
converges to the solution x∗ ∈ Br[x0] of the Equation (32) with R-order convergence at least (2p + 1).

Proof. Note that D = X = Y = C[a, b]. Obviously, (C12) holds. Using Equations (C20), (33),
(35) and (38), we have

‖I − (I − λSQ′z0
)‖ ≤ |λ|(|μ|(1 + p)‖z0‖p + 2|ν|‖z0‖)M(b− a) < 1.

Therefore, by Lemma 1, (I − λSQ′z0
)−1 exists and

‖(I − λSQ′z0
)−1‖ ≤ 1

1− |λ|(|μ|(1 + p)‖z0‖p + 2|ν|‖z0‖)M(b− a)
. (39)

Hence Equations (C18) and (39) implies (C13) holds. Using Equations (C19), (38) and (39),
we have

‖(I − λSQ′z0
)−1(x0 − λSQ(x0)− g)‖

≤ ‖(I − λSQ′z0
)−1‖(‖x0 − g‖+ ‖λSQ(x0)‖)

≤ ‖x0 − g‖+ |λ|(|μ|‖x0‖p+1 + 2|ν|‖x0‖2)M(b− a)
1− |λ|(|μ|(1 + p)‖z0‖p + 2|ν|‖z0‖)M(b− a)

≤ η.

Thus the condition (C14) is satisfied. The conditions (C15) and (C16) follow from Equations (36)
and (37), respectively. Now, from Equation (C20) and (38), we have

‖I − L(I − λSQ′x)‖ ≤ ‖I − L‖+ ‖L‖‖λSQ′x‖
≤ ‖I − L‖+ ‖L‖|λ|(|μ|(1 + p)‖x‖p + 2|ν|‖x‖)M(b− a)

≤ 1
3

.

This implies that (C17) holds. Hence all the conditions of Theorem 3 are satisfied. Therefore,
Theorem 4 follows from Theorem 3. This completes the proof.

Now, we give one example to illustrate Theorem 3.

Example 3. Let X = Y = C[0, 1] be the space of all continuous real valued functions defined on [0, 1].
Let D = {x : x ∈ C[0, 1], ‖x‖ < 3

2} ⊂ C[0, 1]. Consider the following nonlinear integral equation:

x(s) = sin(πs) +
1
10

∫ 1

0
cos(πs) sin(πt)(x(t))p+1dt, p ∈ (0, 1]. (40)

Define two mappings S : X → X and Q : D → Y by

S(x)(s) =
∫ 1

0
K(s, t)x(t)dt, Q(x)(s) = (x(s))p+1,
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where K(s, t) = cos(πs) sin(πt). For u = sin(πs), the problem Equation (40) is equivalent to the problem
Equation (28). Here, one can easily observe that S is bounded linear operator with ‖S‖ ≤ 1 and Q is Fréchet
differentiable with Q′xh(s) = (p + 1)(x(s))ph(s) for all h ∈ X and s ∈ [0, 1]. For all x, y ∈ D, we have

‖Q′x −Q′y‖ ≤ (p + 1)‖x− y‖p = ω0(‖x− y‖),

where ω0(t) = (p + 1)tp for any t ≥ 0. Clearly, ω0 ∈ Φ. Define a mapping F : D → X by

F(x)(s) = x(s)− 1
10

SQ(x)(s)− sin(πs).

Clearly, F is Fréchet differentiable on D. We now show that (C12) holds for L = I ∈ B(X). Note that

‖(I − L(I − λSQ))(x)− u‖ =
∥∥∥∥ 1

10
SQ(x)(s) + sin(πs)

∥∥∥∥ ≤ 1
10

(
3
2

)p+1
+ 1 <

3
2

for all x ∈ D. Thus (I − L(I − λSQ))(x)− u ∈ D for all x ∈ D. For all x ∈ D, we have

‖I − F′x‖ ≤
p + 1

10
‖x‖p ≤ p + 1

10

(
3
2

)p
= k.

Therefore, by Lemma 1, F′−1
x exists and

F′−1
x U(s) = U(s) +

(p + 1) cos(πs)
∫ 1

0 sin(πt)(x(t))pU(t)dt

10− (p + 1)
∫ 1

0 sin(πt) cos(πt)(x(t))pdt
(41)

for all U ∈ Y.

Let x0(s) = sin(πs), ω(t) = ω0(t)
10 = p+1

10 tp . Then we have the following:

(a) x0 ∈ X, F(x0(s)) = − cos(πs)
10

∫ 1
0 (sin(πt))p+2dt;

(b) z0(s) = x0(s)− F(x0(s)) = sin(πs) + cos(πs)
10

∫ 1
0 (sin(πt))p+2dt;

(c) ‖F′−1
z0
‖ ≤ 10p+1

10p+1−(p+1)11p = β;

(d) ‖F′−1
z0

F(x0)‖ ≤ 10p

10p+1−(p+1)11p = η;

(e) b0 = βω(η) = (p+1)10p(p+1)

(10p+1−(p+1)11p)p+1 and q = 1
p+1 +

(
p+1
10

)p ( 3
2
)p2

.

One can easily observe that θ =

(
qb0

2 +k
)

qb0
2

1−k(1+q)b0
< 1 for all p ∈ (0, 1] and r = (1+qb0)η

1−θ . Hence all the
conditions of Theorem 3 are satisfied. Therefore, the sequence {xn} generated by Equation (31) is
well defined, remains in Br[x0] and converges to a solution of the integral Equation (40).

For p = 1, the convergence behavior of Newton-like method Equation (31) is given in Table 2.

Table 2. Iterates of Newton-like method Equation (31).

n xn(s) zn(s) yn(s)

0 sin(πs) sin(πs) + 0.0424413182 cos(πs) sin(πs) + 0.0425947671 cos(πs)
1 sin(πs) + 0.0424794035 cos(πs) sin(πs) + 0.0424791962 cos(πs) sin(πs) + 0.0424796116 cos(πs)
2 sin(πs) + 0.0424795616 cos(πs) sin(πs) + 0.042479611 cos(πs) sin(πs) + 0.0424796112 cos(πs)
3 sin(πs) + 0.0424796111 cos(πs) sin(πs) + 0.0424796109 cos(πs) sin(πs) + 0.0424796113 cos(πs)

5. Conclusions

The semilocal convergence of the third order Newton-like method for finding zeros of an operator
from a Banach space to another Banach space and the corresponding Stirling-like method for finding
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fixed points of an operator on a Banach space are established under the ω-continuity condition.
Our iterative technique is applied to nonlinear Fredholm-type operator equations. The R-order of our
methods are clearly shown to be equal to at least 2p + 1 for any p ∈ (0, 1]. Some numerical examples
are given in support of our work, where earlier work cannot apply. In future, our iterative techniques
can be applied in optimization problems.
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Abstract: We provide a ball comparison between some 4-order methods to solve nonlinear equations
involving Banach space valued operators. We only use hypotheses on the first derivative, as compared
to the earlier works where they considered conditions reaching up to 5-order derivative, although
these derivatives do not appear in the methods. Hence, we expand the applicability of them.
Numerical experiments are used to compare the radii of convergence of these methods.

Keywords: fourth order iterative methods; local convergence; banach space; radius of convergence

MSC: 65G99; 65H10; 47H17; 49M15

1. Introduction

Let E1, E2 be Banach spaces and D ⊂ E1 be a nonempty and open set. Set LB(E1, E2) = {M :
E1 → E2}, bounded and linear operators. A plethora of works from numerous disciplines can be
phrased in the following way:

λ(x) = 0, (1)

using mathematical modelling, where λ : D → E2 is a continuously differentiable operator in the
Fréchet sense. Introducing better iterative methods for approximating a solution s∗ of expression (1)
is a very challenging and difficult task in general. Notice that this task is extremely important, since
exact solutions of Equation (1) are available in some occasions.

We are motivated by four iterative methods given as⎧⎪⎨⎪⎩
yj =xj − 2

3
λ′(xj)

−1λ(xj)

xn+1 =xj − 1
2

[(
3λ′(yj)− λ′(xj)

)−1(
3λ′(yj) + λ′(xj)

)]
λ′(xj)

−1λ(xj),
(2)

⎧⎪⎨⎪⎩
yj =xj − 2

3
λ′(xj)

−1λ(xj)

xn+1 =xj −
[
− 1

2
I +

9
8

Bj +
3
8

Aj

]
λ′(xj)

−1λ(xj),
(3)

⎧⎪⎨⎪⎩
yj =xj − 2

3
λ′(xj)

−1λ(xj)

xn+1 =xj −
[

I +
1
4
(Aj − I) +

3
8
(Aj − I)2

]
λ′(yj)

−1λ(xj),
(4)
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and ⎧⎨⎩ yj =xj − Hjλ
′(xj)

−1λ(xj)

xn+1 =zj −
[
3I − Hjλ

′(xj)
−1[xj, zj; λ]

]
λ′(xj)

−1λ(zj),
(5)

where H0
j = H0(xj), x0, y0 ∈ D are initial points, H(x) = 2I + H0(x), Hj = H(Xj) ∈ LB(E1,E1),

Aj = λ′(xj)
−1λ′(yj), zj =

xj+yj
2 , Bj = λ′(yj)

−1λ′(xj), and [·, ·; λ] : D×D→ LB(E1,E1) is a first order
divided difference. These methods specialize to the corresponding ones (when E1 = E2 = Ri, i is
a natural number) studied by Nedzhibov [1], Hueso et al. [2], Junjua et al. [3], and Behl et al. [4],
respectively. The 4-order convergence of them was established by Taylor series and conditions on
the derivatives up to order five. Even though these derivatives of higher-order do not appear in the
methods (2)–(5). Hence, the usage of methods (2)–(5) is very restricted. Let us start with a simple
problem. Set E1 = E2 = R and D = [− 5

2 , 3
2 ]. We suggest a function λ : A→ R as

λ(t) =

{
0, t = 0
t5 + t3 ln t2 − t4, t �= 0

.

Then, s∗ = 1 is a zero of the above function and we have

λ′(t) = 5t4 + 3t2 ln t2 − 4t3 + 2t2,

λ′′(t) = 20t3 + 6t ln t2 − 12t2 + 10t,

and
λ′′′(t) = 60t2 + 6 ln t2 − 24t + 22.

Then, the third-order derivative of function λ′′′(x) is not bounded on D. The methods (2)–(5)
cannot be applicable to such problems or their special cases that require the hypotheses on the third or
higher-order derivatives of λ. Moreover, these works do not give a radius of convergence, estimations
on ‖xj − s∗‖, or knowledge about the location of s∗. The novelty of our work is that we provide this
information, but requiring only the derivative of order one, for these methods. This expands the
scope of utilization of them and similar methods. It is vital to note that the local convergence results
are very fruitful, since they give insight into the difficult operational task for choosing the starting
points/guesses.

Otherwise with the earlier approaches: (i) We use the Taylor series and high order derivative,
(ii) we do not have any clue for the choice of the starting point x0, (iii) we have no estimate in advance
about the number of iterations needed to obtain a predetermined accuracy, and (iv) we have no
knowledge of the uniqueness of the solution.

The work lays out as follows: We give the convergence of these iterative schemes (2)–(5) with
some main theorems in Section 2. Some numerical problems are discussed in the Section 3. The final
conclusions are summarized in Section 4.

2. Local Convergence Analysis

Let us consider that I = [0, ∞) and ϕ0 : I → I be a non-decreasing and continuous function with
ϕ0(0) = 0.

Assume that the following equation
ϕ0(t) = 1 (6)

has a minimal positive solution ρ0. Let I0 = [0, ρ0). Let ϕ : I0 → I and ϕ1 : I0 → I be continuous and
non-decreasing functions with ϕ(0) = 0. We consider functions on the interval I0 as

ψ1(t) =

∫ 1
0 ϕ

(
(1− τ)t

)
dτ + 1

3

∫ 1
0 ϕ1(τt)dτ

1− ϕ0(t)
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and
ψ̄1(t) = ψ1(t)− 1.

Suppose that
ϕ0(t) < 3. (7)

Then, by (7), ψ̄1(0) < 0 and ψ̄1(t) → ∞, as t → ρ−0 . On the basis of the classical intermediate
value theorem, the function ψ̄1(t) has a minimal solution R1 in (0, ρ0). In addition, we assume

q(t) = 1 (8)

has a minimal positive solution ρq, where

q(t) =
1
2

(
3ϕ0(ψ1(t)t) + ϕ0(t)

)
.

Set ρ = min{ρ0, ρq}.
Moreover, we consider two functions ψ2 and ψ̄2 on I1 = [0, ρ) as

ψ2(t) =

∫ 1
0 ϕ

(
(1− τ)t

)
dτ

1− ϕ0(t)
+

3
2

(
ϕ0
(
ψ1(t)t

)
+ ϕ0(t)

) ∫ 1
0 ϕ1(τt)dτ

(1− q(t))(1− ϕ0(t))

and
ψ̄2(t) = ψ2(t)− 1.

Then, ψ̄2(0) = −1, and ψ̄2(t) → ∞, with t → ρ−. We recall R2 as the minimal solution of
ψ̄2(t) = 0. Set

R = min{R1, R2}. (9)

It follows from (9) that for every t ∈ [0, R)

0 ≤ ϕ0(t) < 1, (10)

0 ≤ ψ1(t) < 1, (11)

0 ≤ q(t) < 1 (12)

and
0 ≤ ψ2(t) < 1 (13)

Define by S(s∗, r) =
{

y ∈ E1 : ‖s∗ − y‖ < r,
}

and denote by S̄(s∗, r) the closure of S(s∗, r).
The local convergence of method (2) uses the conditions (A):

(a1) λ : D→ E2 is a continuously differentiable operator in the Fréchet sense, and there exists s∗ ∈ D.
(a2) There exists a function ϕ0 : I → I non-decreasing and continuous with ϕ0(0) = 0 for all x ∈ D∥∥∥λ′(s∗)−1

(
λ′(x)− λ′(s∗)

)∥∥∥ ≤ ϕ0(‖x− s∗‖).

Set D0 = D∩ S(s∗, ρ0), where ρ0 is given in (6).
(a3) There exist functions ϕ : I0 → I, ϕ1 : I0 → I non-decreasing and continuous with ϕ(0) = 0 so

that for all x, y ∈ D0 ∥∥∥λ′(s∗)−1
(

λ′(y)− λ′(x)
)∥∥∥ ≤ ϕ(‖y− x‖)

and ∥∥∥λ′(s∗)−1λ′(x)
∥∥∥ ≤ ϕ1(‖y− x‖)
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(a4) S(s∗, R) ⊂ D, radii ρ0, ρq as given, respectively by (6), (8) exist; the condition (7) holds, where R
is defined in (9).

(a5) ∫ 1

0
ϕ0(τR∗)dτ < 1, for some R∗ ≥ R.

Set D1 = D ∩ S(s∗, R∗).

We can now proceed with the local convergence study of Equation (2) adopting the preceding
notations and the conditions (A).

Theorem 1. Under the conditions (A) sequence {xj} starting at x0 ∈ S(s∗, R) − {s∗} converges to s∗,
{xj} ⊂ S(x, R) so that

‖yj − s∗‖ ≤ ψ1(‖xj − s∗‖)‖xj − s∗‖ ≤ ‖xj − s∗‖ < R (14)

and
‖xn+1 − s∗‖ ≤ ψ2(‖xj − s∗‖)‖xj − s∗‖ ≤ ‖xj − s∗‖, (15)

with ψ1 and ψ2 functions considered previously and R is given in (9). Moreover, s∗ is a unique solution in the
set D1.

Proof. We proof the estimates (14) and (15) by adopting mathematical induction. Therefore, we
consider x ∈ S(s∗, R)− {s∗}. By (a1), (a2), (9), and (10), we have

‖λ′(s∗)−1(λ′(s∗)− λ′(x))‖ ≤ ϕ0(‖s∗ − x0‖) < ϕ0(R) < 1, (16)

hence λ′(x)−1 ∈ LB(E2,E1) and

‖λ′(x)−1λ′(s∗)‖ ≤ 1
1− ϕ0(‖s∗ − x0‖) . (17)

The point y0 is also exists by (17) for n = 0. Now, by using (a1), we have

λ(x) = λ(x)− λ(s∗) =
∫ 1

0
λ′(s∗ + τ(x− s∗))dτ(x− s∗). (18)

From (a3) and (18), we yield∥∥∥λ′(s∗)−1λ(x)
∥∥∥ ≤ ∫ 1

0
ϕ1(τ‖x− s∗‖)dτ‖x− s∗‖. (19)

We can also write by method (2) for n = 0

y0 − s∗ =
(

x0 − s∗ − λ′(x0)
−1λ(x0)

)
+

1
3

λ′(x0)
−1λ(x0). (20)

By expressions (9), (11), (17), (19), and (20), we obtain in turn that

‖y0 − s∗‖ ≤
∥∥∥λ′(x0)

−1λ′(s∗)
∥∥∥ ∥∥∥∥∫ 1

0
λ′(s∗)−1

(
λ′
(
s∗ + τ(x0 − s∗)

)− λ′(x0)
)
(x0 − s∗)dτ

∥∥∥∥
+

1
3

∥∥∥λ′(x0)
−1λ′(s∗)

∥∥∥ ∥∥∥λ′(s∗)−1λ(x0)
∥∥∥

≤
∫ 1

0 ϕ
(
(1− τ)‖x0 − s∗‖

)
dτ + 1

3

∫ 1
0 ϕ(τ‖x0 − s∗‖)dτ

1− ϕ0(‖x0 − s∗‖)
= ψ1(‖x0 − s∗‖)‖x0 − s∗‖ ≤ ‖x0 − s∗‖ < R,

(21)
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which confirms y0 ∈ S(s∗, R) and (14) for n = 0. We need to show that
(

3λ′(y0)− 3λ′(x0)
)−1 ∈

LB(E2,E1).
In view of (a2), (12), and (21), we have∥∥∥(2λ′(s∗)

)−1
[
3λ′(y0)− λ′(x0)− 3λ′(s∗) + λ′(s∗)

]∥∥∥
≤ 1

2

[
3
∥∥∥λ′(s∗)−1(λ′(y0)− λ′(s∗)

)∥∥∥+ ∥∥∥λ′(s∗)−1(λ′(x0)− λ′(s∗)
)∥∥∥ ]

≤ 1
2

[
ϕ0(‖y0 − s∗‖) + ϕ0(‖x0 − s∗‖)

]
≤ 1

2

[
ϕ0
(
ψ1(‖x0 − s∗‖)‖x0 − s∗‖

)
+ ϕ0(‖x0 − s∗‖)

]
= q(‖x0 − s∗‖) < 1,

(22)

so ∥∥∥∥(3λ′(y0)− λ′(x0)
)−1

λ′(s∗)
∥∥∥∥ ≤ 1

1− q(‖x0 − s∗‖) . (23)

Using (9), (13), (17), (a3), (21), (23), and the second substep of method (2) (since x1 exists by (23)),
we can first write

x1 − s∗ = x0 − s∗ − λ′(x0)
−1λ(x0)

+
[

I − 1
2
(
3λ′(y0)− λ′(x0)

)−1(3λ′(y0) + λ′(x0)
)]

λ′(x0)
−1λ(x0)

(24)

so

‖x1 − s∗‖ ≤ ‖x0 − s∗ − λ′(x0)
−1λ(x0)‖+ 3

2
‖(3λ′(y0)− λ′(x0)

)−1
λ′(s∗)‖

×
[
‖λ′(s∗)−1(λ′(y0)− λ′(x0)

)‖+ ‖λ′(s∗)−1(λ′(x0)− λ′(s∗)
)−1‖

]
‖λ′(x0)

−1λ(s∗)‖‖λ′(x0)
−1λ(x0)‖

≤

⎡⎢⎣ ∫ 1
0 ϕ((1− τ)t)dτ

1− ϕ0(t)
+

3
2

(
ϕ0(‖y0 − s∗‖) + ϕ0(‖x0 − s∗‖)

) ∫ 1
0 ϕ1(τ‖x0 − s∗‖)dτ

(1− q(‖x0 − s∗‖))(1− ϕ0(‖x0 − s∗‖))

⎤⎥⎦ ‖x0 − s∗‖

≤ ψ2(‖x0 − s∗‖)‖x0 − s∗‖ ≤ ‖x0 − s∗‖.

(25)

So, (15) holds and x1 ∈ S(s∗, R).
To obtain estimate (25), we also used the estimate

I − 1
2
(
3λ′(y0)− λ′(x0)

)−1(3λ′(y0) + λ′(x0)
)

=
1
2
(
3λ′(y0)− λ′(x0)

)−1
[
2
(
3λ′(y0)− λ′(x0)

)− (3λ′(y0) + λ′(x0)
)]

=
3
2
(
3λ′(y0)− λ′(x0)

)−1
[(

λ′(y0)− λ′(s∗)
)
+
(
λ′(s∗)− λ′(x0)

)] (26)

The induction for (14) and (15) can be finished, if xm, ym, xm+1 replace x0, y0, x1 in the preceding
estimations. Then, from the estimate

‖xm+1 − s∗‖ ≤ μ‖xm − s∗‖ < R, μ = ϕ2(‖x0 − s∗‖) ∈ [0, 1), (27)

we arrive at lim
m→∞

xm = s∗ and xm+1 ∈ S(s∗, R). Let us consider that K =
∫ 1

0 λ′(y∗ + τ(s∗ − y∗))dτ for

y∗ ∈ D1 with K(y∗) = 0. From (a1) and (a5), we obtain

‖λ′(s∗)−1(λ′(s∗)− K)‖ ≤ ∫ 1
0 ϕ0(τ‖s∗ − y∗‖)dτ

≤ ∫ 1
0 ϕ0(τR)dτ < 1.

(28)
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So, K−1 ∈ LB(E1,E2), and s∗ = y∗ by the identity

0 = K(s∗)− K(y∗) = K(s∗ − y∗). (29)

Proof. Next, we deal with method (3) in an analogous way. We shall use the same notation as
previously. Let ϕ0, ϕ, ϕ1, ρ0, ψ1, R1, and ψ̄1, be as previously.

We assume
ϕ0
(
ψ1(t)t

)
= 1 (30)

has a minimal solution ρ1. Set ρ = min{ρ0, ρ1}. Define functions ψ2 and ψ̄2 on interval I2 = [0, ρ) by

ψ2(t) =

∫ 1
0 ϕ

(
(1− τ)t

)
dτ

1− ϕ0(t)
+

⎡⎢⎣2 +
3
(

ϕ0(ψ1(t)t) + ϕ0(t)
)

8(1− ϕ0(t))
+

9
(

ϕ0(ψ1(t)t) + ϕ0(t)
)

8(1− ϕ0(ψ1(t)t))

⎤⎥⎦ ∫ 1
0 ϕ1(τt)dτ

1− ϕ0(t)

and
ψ̄2(t) = ψ2(t)− 1.

Then, ψ̄2(0) = −1 and ψ̄2(t)→ ∞, with t → ρ−. R2 is known as the minimal solution of equation
ψ̄2(t) = 0 in (0, ρ), and set

R = min{R1, R2}. (31)

Replace ρq by ρ1 in the conditions (A) and call the resulting conditions (A)′.
Moreover, we use the estimate obtained for the second substep of method (3)

x1 − s∗ = x0 − s∗ − λ′(x0)
−1λ(x0) +

[3
2

I − 9
8

B0 − 9
16

A0

]
λ′(x0)

−1λ(x0)

= x0 − s∗ − λ′(x0)
−1λ(x0) +

[
− 2I +

3
8
(I − A0) +

9
8
(I − B0)

]
λ′(x0)

−1λ(x0)

= x0 − s∗ − λ′(x0)
−1λ(x0) +

[
− 2I +

3
8

λ′(x0)
−1
(

λ′(x0)− λ′(y0)
)

+
9
8

λ′(y0)
−1
(

λ′(y0)− λ′(x0)
)]

λ′(x0)
−1λ(x0).

(32)

Then, by replacing (24) by (32) in the proof of Theorem 1, we have instead of (25)

‖x1 − s∗‖ =
[∫ 1

0 ϕ((1− τ)‖s∗ − x0‖)dτ

1− ϕ(‖s∗ − x0‖) +

{
2 +

3
(

ϕ(‖y0 − s∗‖) + ϕ0(‖s∗ − x0‖)
)

8(1− ϕ0(‖s∗ − x0‖))

+
9
(

ϕ0(‖y0 − s∗‖) + ϕ0(‖s∗ − x0‖)
)

8(1− ϕ0(‖y0 − s∗‖))

}∫ 1
0 ϕ1(‖s∗ − x0‖)dτ

1− ϕ0(‖s∗ − x0‖)

]
‖s∗ − x0‖

≤ ψ2(‖s∗ − x0‖)‖s∗ − x0‖ ≤ ‖s∗ − x0‖.

(33)

The rest follows as in Theorem 1.

Hence, we arrived at the next Theorem.

Theorem 2. Under the conditions (A)′, the conclusions of Theorem 1 hold for method (3).
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Proof. Next, we deal with method (4) in the similar way. Let ϕ0, ϕ, ϕ1, ρ0, ρ1, ρ, ψ1, R1, and ψ̄1, be as in
the case of method (3). We consider functions ψ2 and ψ̄2 on I1 as

ψ2(t) =

∫ 1
0 ϕ((1− τ)t)dτ

1− ϕ0(t)
+

ϕ0(ψ1(t)t) + ϕ0(t)(
1− ϕ0(t)

)(
1− ϕ0(ψ1(t)t)

) + 1
4

(
ϕ0(ψ1(t)t) + ϕ0(t)

)(
1− ϕ0(t)

)
+

3
8

(
ϕ0(ψ1(t)t) + ϕ0(t)

1− ϕ0(t)

)2

and
ψ̄2(t) = ψ2(t)− 1.

The minimal zero of ψ̄2(t) = 0 is denoted by R2 in (0, ρ), and set

R = min{R1, R2}. (34)

Notice again that from the second substep of method (4), we have

x1 − s∗ = x0 − s∗ − λ′(x0)
−1λ(x0) +

[
λ′(x0)

−1 − λ′(y0)
−1 − 1

4
(A0 − I)− 3

8
(I − A0)

2
]
λ(x0)

= x0 − s∗ − λ′(x0)
−1λ(x0) +

{
λ′(x0)

−1
[(

λ′(y0)− λ′(s∗)
)
+
(
λ′(s∗)− λ′(x0)

)]
− 1

4
λ′(x0)

−1
[(

λ′(y0)− λ′(s∗)
)
+
(
λ′(s∗)− λ′(x0)

)]
− 3

8
λ′(x0)

−1
[(

λ′(y0)− λ′(s∗)
)
+
(
λ′(s∗)− λ′(x0)

)]2
}

λ(x0),

(35)

so

‖x1 − s∗‖ ≤
[∫ 1

0 ϕ((1− τ)‖s∗ − x0‖)dτ

1− ϕ(‖s∗ − x0‖) +
ϕ0
(
ψ(‖s∗ − x0‖)‖s∗ − x0‖

)
+ ϕ0(‖s∗ − x0‖)

(1− ϕ0(‖s∗ − x0‖))
(
1− ϕ0(ψ(‖s∗ − x0‖)‖s∗ − x0‖)

)
+

1
4

(
ϕ
(
ψ1(‖s∗ − x0‖)‖s∗ − x0‖

)
+ ϕ0(‖s∗ − x0‖)

)(
1− ϕ0(‖s∗ − x0‖)

)
+

3
8

(
ϕ
(
ψ1(‖s∗ − x0‖)‖s∗ − x0‖

)
+ ϕ0(‖s∗ − x0‖)(

1− ϕ0(‖s∗ − x0‖)
) )2 ]

‖s∗ − x0‖

≤ ψ2(‖s∗ − x0‖)‖s∗ − x0‖ ≤ ‖s∗ − x0‖.

(36)

The rest follows as in Theorem 1.

Hence, we arrived at the next following Theorem.

Theorem 3. Under the conditions (A)′, conclusions of Theorem 1 hold for scheme (4).

Proof. Finally, we deal with method (5). Let ϕ0, ϕ, ϕ1, ρ0, I0 be as in method (2). Let also ϕ2 : I0 → I,
ϕ3 : I0 → I, ϕ4 : I0 → I and ϕ5 : I0 × I0 → I be continuous and increasing functions with ϕ3(0) = 0.
We consider functions ψ1 and ψ̄1 on I0 as

ψ1(t) =

∫ 1
0 ϕ((1− τ)t)dτ + ϕ2(t)

∫ 1
0 ϕ1(τt)dτ

1− ϕ0(t)

and
ψ̄1(t) = ψ1(t)− 1.
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Suppose that
ϕ1(0)ϕ2(0) < 1. (37)

Then, by (6) and (37), we yield ψ̄1(0) < 0 and ψ̄1(t) → ∞ with t → ρ−0 . R1 is known as the
minimal zero of ψ̄1(t) = 0 in (0, ρ0). We assume

ϕ0
(

g(t)t
)
= 1, (38)

where g(t) = 1
2
(
1 + ψ1(t)

)
, has a minimal positive solution ρ1. Set I1 = [0, ρ), where ρ = min{ρ0, ρ1}.

We suggest functions ψ2 and ψ̄2 on I1 as

ψ2(t) =

[∫ 1
0 ϕ((1− τ)g(t)t)dτ

1− ϕ0(g(t)t)
+

(
ϕ0(g(t)t) + ϕ0(t)

) ∫ 1
0 ϕ1(τg(t)t)dτ

(1− ϕ0(g(t)))(1− ϕ0(t))

+ 2
ϕ3
( t

2 (1 + ψ1(t))
) ∫ 1

0 ϕ1(τg(t)t)dτ

(1− ϕ0(t))2 +
ϕ4(t)ϕ5(t, ψ1(t)t)

∫ 1
0 ϕ1(τg(t)t)dτ

(1− ϕ0(t))2

]
g(t)

and
ψ̄2(t) = ψ2(t)− 1.

Suppose that (
2ϕ3(0) + ϕ4(0)ϕ5(0, 0)

)
ϕ1(0) < 1. (39)

By (39) and the definition of I1, we have ψ̄2(0) < 0, ψ̄2(t) → ∞ with t → ρ−. We assume R2 as
the minimal solution of ψ̄2(t) = 0. Set

R = min{R1, R2}. (40)

The study of local convergence of scheme (5) is depend on the conditions (C):

(c1) = (a1).
(c2) = (a2).
(c3) There exist functions ϕ : I1 → I, ϕ1 : I0 → I, ϕ2 : I0 → I, ϕ3 : I0 → I, ϕ4 : I0 → I, and

ϕ5 : I0 × I0 → I, increasing and continuous functions with ϕ(0) = ϕ3(0) = 0 so for all x, y ∈ D0

‖λ′(s∗)−1(λ′(y)− λ′(x)
)‖ ≤ ϕ(‖y− x‖),

‖λ′(s∗)−1λ′(x)‖ ≤ ϕ1(‖x− s∗‖),
‖I − H(x)‖ ≤ ϕ2(‖x− s∗‖),
‖λ′(s∗)−1([x, y; λ]− λ′(x)

)‖ ≤ ϕ3(‖y− x‖),
‖H0(x)‖ ≤ ϕ4(‖x− s∗‖),

and
‖λ′(s∗)−1[x, y; λ]‖ ≤ ϕ5(‖x− s∗‖, ‖y− s∗‖),

(c4) S(s∗, R) ⊆ D, ρ0, ρ1 given, respectively by (6), (38) exist, (37) and (38) hold, and R is defined
in (40).

(c5) = (a5).
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Then, using the estimates

‖y0 − s∗‖ = ‖x0 − s∗ − λ′(x0)
−1λ(x0) + (I − H0)λ

′(x0)
−1λ(x0)‖

≤
∫ 1

0 ϕ((1− τ)‖x0 − s∗‖)dτ‖x0 − s∗‖
1− ϕ0(‖x0 − s∗‖) + ‖I − H0‖‖λ′(x0)

−1λ′(s∗)‖‖λ′(s∗)−1λ(x0)‖

≤
[∫ 1

0 ϕ((1− τ)‖x0 − s∗‖)dτ + ϕ2(‖x0 − s∗‖)
∫ 1

0 ϕ1(τ‖x0 − s∗‖)dτ

1− ϕ0(‖x0 − s∗‖)

]
‖x0 − s∗‖

≤ ψ1(‖x0 − s∗‖)‖x0 − s∗‖ ≤ ‖x0 − s∗‖ < R,

(41)

and

‖x1 − s∗‖ = ‖z0 − s∗ − λ′(z0)
−1λ(z0) + λ′(z0)

−1(λ′(x0)− λ′(z0))λ
′(x0)

−1λ(z0)‖
+ 2λ′(x0)

−1([x0, z0; λ]− λ′(x0))λ
′(x0)

−1λ(z0) + H0
j λ′(x0)

−1[x0, z0; λ]λ′(x0)
−1λ(z0)‖

≤
[∫ 1

0 ϕ((1− τ)g(‖x0 − s∗‖)‖x0 − s∗‖)dτ

1− ϕ0(g(‖x0 − s∗‖)‖x0 − s∗‖)

+

(
ϕ0(‖x0 − s∗‖) + ϕ0(g(‖x0 − s∗‖)‖x0 − s∗‖)

) ∫ 1
0 ϕ1(τg(‖x0 − s∗‖)‖x0 − s∗‖)dτ

(1− ϕ0(g(‖x0 − s∗‖)‖x0 − s∗‖))(1− ϕ0(‖x0 − s∗‖))

+ 2
ϕ3

((
1+ψ1(‖x0−s∗‖)

)
‖x0−s∗‖

2

) ∫ 1
0 ϕ1(τg(‖x0 − s∗‖)‖x0 − s∗‖)dτ

(1− ϕ0(‖x0 − s∗‖))2

+
ϕ4(‖x0 − s∗‖)ϕ5(‖x0 − s∗‖, ‖y0 − s∗‖)

∫ 1
0 ϕ1(τg(‖x0 − s∗‖)‖x0 − s∗‖)dτ

(1− ϕ0(‖x0 − s∗‖))2

]
‖z0 − s∗‖

≤ ψ2(‖x0 − s∗‖)‖x0 − s∗‖ ≤ ‖x0 − s∗‖.

(42)

Here, recalling that z0 = x0+y0
2 , we also used the estimates

‖z0 − s∗‖ =
∥∥∥∥ x0 + y0

2
− s∗

∥∥∥∥ ≤ 1
2
(‖x0 − s∗‖+ ‖y0 − s∗‖)

≤ 1
2
(1 + ψ1(‖x0 − s∗‖))‖x0 − s∗‖,

(43)

α = λ′(z0)
−1 − λ′(x0)

−1 = λ′(z0)
−1[(λ′(x0)− λ′(s∗)) + (λ′(s∗)− λ′(z0))

]
λ′(x0)

−1,

β = (−2I + H0λ′(x0)
−1[x0, z0; λ])λ′(x0)

−1,

and
γ = −2I + (2I + H0

0)λ
′(x0)

−1[x0, z0; λ]

= −2I + 2Iλ′(x0)
−1[x0, z0; λ] + 2H0

0 λ′(x0)
−1[x0, z0; λ]

= 2λ′(x0)
−1([x0, z0; λ]− λ′(x0)) + H0

0 λ′(x0)
−1[x0, z0; λ]

to obtain (41) and (42).

Hence, we arrived at the next following Theorem.

Theorem 4. Under the conditions (C), the conclusions of Theorem 1 hold for method (5).

3. Numerical Applications

We test the theoretical results on many examples. In addition, we use five examples and out of
them: The first one is a counter example where the earlier results are applicable; the next three are
real life problems, e.g., a chemical engineering problem, an electron trajectory in the air gap among
two parallel surfaces problem, and integral equation of Hammerstein problem, which are displayed in
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Examples 1–5. The last one compares favorably (5) to the other three methods. Moreover, the solution
to corresponding problem are also listed in the corresponding example which is correct up to 20
significant digits. However, the desired roots are available up to several number of significant digits
(minimum one thousand), but due to the page restriction only 30 significant digits are displayed.

We compare the four methods namely (2)–(5), denoted by NM, HM, JM, and BM, respectively
on the basis of radii of convergence ball and the approximated computational order of convergence

ρ =
log
[
‖x(j+1)−x(j)‖/‖x(j)−x(j−1)‖

]
log
[
‖x(j)−x(j−1)‖/‖x(j−1)−x(j−2)‖

] , j = 2, 3, 4, ... (for the details please see Cordero and Torregrosa [5])

(ACOC). We have included the radii of ball convergence in the following Tables 1–6 except, the Table 4
that belongs to the values of abscissas tj and weights wj. We use the Mathematica 9 programming
package with multiple precision arithmetic for computing work.

We choose in all examples H0(x) = 0 and H(x) = 2I, so ϕ2(t) = 1 and ϕ4(t) = 0. The divided
difference is [x, y; λ] =

∫ 1
0 λ′(y + θ(x− y))dθ. In addition, we choose the following stopping criteria

(i) ‖xj+1 − xj‖ < ε and (ii) ‖λ(xj)‖ < ε, where ε = 10−250.

Example 1. Set X = Y = R. We suggest a function λ on D = [− 1
π , 2

π ] as

λ(x) =

{
0, x = 0
x5 sin (1/x) + x3 log(π2x2), x �= 0

.

But, λ′′′(x) is unbounded on Ω at x = 0. The solution of this problem is s∗ = 1
π . The results in Nedzhibov [1],

Hueso et al. [2], Junjua et al. [3], and Behl et al. [4] cannot be utilized. In particular, conditions on the 5th
derivative of λ or may be even higher are considered there to obtain the convergence of these methods. But, we
need conditions on λ′ according to our results. In additon, we can choose

H =
80 + 16π + (π + 12 log 2)π2

2π + 1
, ϕ1(t) = 1 + Ht, ϕ0(t) = ϕ(t) = Ht,

ϕ5(s, t) =
1
2
(

ϕ1(s) + ϕ1(t)
)

and ϕ3(t) =
1
2

ϕ2(t).

The distinct radius of convergence, number of iterations n, and COC (ρ) are mentioned in Table 1.

Table 1. Comparison on the basis of different radius of convergence for Example 1.

Schemes R1 R2 R x0 n ρ

NM 0.011971 0.010253 0.010253 0.30831 4 4.0000
HM 0.011971 0.01329 0.011971 0.32321 4 4.0000
JM 0.011971 0.025483 0.011971 0.32521 4 4.0000
BM 0 0 0 - - -

Equation (39) is violated with these choices of ϕi . This is the reason that R is zero in the method BM. Therefore,
our results hold only, if x0 = s∗.

Example 2. The function

λ2(x) = x4 − 1.674− 7.79075x3 + 14.7445x2 + 2.511x. (44)

appears in the conversion to ammonia of hydrogen-nitrogen [6,7]. The function λ2 has 4 zeros, but we choose
s∗ ≈ 3.9485424455620457727 + 0.3161235708970163733i. Moreover, we have

ϕ0(t) = ϕ(t) = 40.6469t, ϕ1(t) = 1 + 40.6469t, ϕ3(t) =
1
2

ϕ2(t), and ϕ5(s, t) =
1
2
(

ϕ1(s) + ϕ1(t)
)
.

The distinct radius of convergence, number of iterations n, and COC (ρ) are mentioned in Table 2.
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Table 2. Comparison on the basis of different radius of convergence for Example 2.

Schemes R1 R2 R x0 n ρ

NM 0.0098841 0.0048774 0.0048774 3.953 + 0.3197i 4 4.0000
HM 0.0098841 0.016473 0.016473 3.9524 + 0.32i 4 4.0000
JM 0.0098841 0.0059094 0.0059094 3.9436 + 0.3112i 4 4.0000
BM 0 0 0 - - -

Equation (39) is violated with these choices of ϕi . This is the reason that R is zero in the method BM. Therefore,
our results hold only, if x0 = s∗.

Example 3. An electron trajectory in the air gap among two parallel surfaces is formulated given as

x(t) =x0 +

(
v0 + e

E0

mω
sin(ωt0 + α)

)
(t− t0) + e

E0

mω2

(
cos(ωt + α) + sin(ω + α)

)
, (45)

where e, m, x0, v0, and E0 sin(ωt + α) are the charge, the mass of the electron at rest, the position, velocity of
the electron at time t0, and the RF electric field among two surfaces, respectively. For particular values of these
parameters, the following simpler expression is provided:

f3(x) = x +
π

4
− 1

2
cos(x). (46)

The solution of function f3 is s∗ ≈ −0.309093271541794952741986808924. Moreover, we have

ϕ(t) = ϕ0(t) = 0.5869t, ϕ1(t) = 1 + 0.5869t, ϕ3(t) =
1
2

ϕ2(t) and ϕ5(s, t) =
1
2
(

ϕ1(s) + ϕ1(t)
)
.

The distinct radius of convergence, number of iterations n, and COC (ρ) are mentioned in Table 3.

Table 3. Comparison on the basis of different radius of convergence for Example 3.

Schemes R1 R2 R x0 n ρ

NM 0.678323 0.33473 0.33473 0.001 4 4.0000
HM 0.678323 1.13054 0.678323 −0.579 4 4.0000
JM 0.678323 0.40555 0.40555 0.091 5 4.0000
BM 0 7.60065× 10−18 0 - - -

Equation (39) is violated with these choices of ϕi . This is the reason that R is zero in the method BM. Therefore,
our results hold only, if x0 = s∗.

Example 4. Considering mixed Hammerstein integral equation Ortega and Rheinbolt [8], as

x(s) = 1 +
1
5

∫ 1

0
U(s, t)x(t)3dt, x ∈ C[0, 1], s, t ∈ [0, 1], (47)

where the kernel U is

U(s, t) =

{
s(1− t), s ≤ t,

(1− s)t, t ≤ s.

We phrase (47) by using the Gauss-Legendre quadrature formula with
∫ 1

0 φ(t)dt �
10

∑
k=1

wkφ(tk), where

tk and wk are the abscissas and weights respectively. Denoting the approximations of x(ti) with xi (i =

1, 2, 3, ..., 10), then we yield the following 8× 8 system of nonlinear equations

5xi − 5−
10

∑
k=1

aikx3
k = 0, i = 1, 2, 3..., 10,
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aik =

{
wktk(1− ti), k ≤ i,

wkti(1− tk), i < k.

The values of tk and wk can be easily obtained from Gauss-Legendre quadrature formula when k = 8
mentioned in Table 4.

Table 4. Values of abscissas tj and weights wj.

j tj wj

1 0.01304673574141413996101799 0.03333567215434406879678440
2 0.06746831665550774463395165 0.07472567457529029657288816
3 0.16029521585048779688283632 0.10954318125799102199776746
4 0.28330230293537640460036703 0.13463335965499817754561346
5 0.42556283050918439455758700 0.14776211235737643508694649
6 0.57443716949081560544241300 0.14776211235737643508694649
7 0.71669769706462359539963297 0.13463335965499817754561346
8 0.83970478414951220311716368 0.10954318125799102199776746
9 0.93253168334449225536604834 0.07472567457529029657288816
10 0.98695326425858586003898201 0.03333567215434406879678440

The required approximate root is s∗ ≈ (1.001377, . . . , 1.006756, . . . , 1.014515, . . . , 1.021982, . . . ,
1.026530, . . . , 1.026530, . . . , 1.021982, . . . , 1.014515, . . . , 1.006756, . . . , 1.001377, . . . )T. Moreover, we have

ϕ0(t) = ϕ(t) =
3
20

t, ϕ1(t) = 1 +
3
20

t, ϕ3(t) =
1
2

ϕ2(t) and ϕ5(s, t) =
1
2
(

ϕ1(s) + ϕ1(t)
)
.

The distinct radius of convergence, number of iterations n, and COC (ρ) are mentioned in Table 5.

Table 5. Comparison on the basis of different radius of convergence for Example 4.

Schemes R1 R2 R x0 n ρ

NM 2.6667 1.3159 1.3159 (1,1,...,1) 4 4.0000
HM 2.6667 4.4444 2.6667 (1.9,1.9,...,1.9) 5 4.0000
JM 2.6667 1.5943 1.5943 (2.1,2.1,...,2.1) 5 4.0000
BM 0 0 0 - - -

Equation (39) is violated with these choices of ϕi . This is the reason that R is zero in the method BM. Therefore,
our results hold only, if x0 = s∗.

Example 5. We consider a boundary value problem from [8], which is defined as follows:

t′′ = 1
2

t3 + 3t′ − 3
2− x

+
1
2

, t(0) = 0, t(1) = 1. (48)

We assume the following partition on [0, 1]

x0 = 0 < x1 < x2 < · · · < xj, where xj+1 = xj + h, h =
1
j
.

We discretize this BVP (48) by

t′i ≈
ti+1 − ti−1

2h
, t′′i ≈

ti−1 − 2ti + ti+1

h2 , i = 1, 2, . . . , j− 1.

Then, we obtain a (k− 1)× (k− 1) order nonlinear system, given by

ti+1 − 2ti + ti−1 − h2

2
t3
i −

3
2− xi

h2 − 3
ti+1 − ti−1

2
h− 1

h2 = 0, i = 1, 2, . . . , j− 1,
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where t0 = t(x0) = 0, t1 = t(x1), . . . , tj−1 = t(xj−1), tj = t(xj) = 1 and initial approximation

t(0)0 =
(

1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2

)T
. In particular, we choose k = 6 so that we can obtain a 5× 5 nonlinear system.

The required solution of this problem is

x̄ ≈ (
0.09029825 . . . , 0.1987214 . . . , 0.3314239 . . . , 0.4977132 . . . , 0.7123306 . . .

)T .

The distinct radius of convergence, number of iterations n, and COC (ρ) are mentioned in Table 6.

Table 6. Convergence behavior of distinct fourth-order methods for Example 5.

Methods j ‖F(x(j))‖ ‖x(j+1) − x(j)‖ ρ

MM
1 8.1 (−6) 2.0 (−4)
2 1.0 (−23) 3.1 (−23)
3 9.1 (−95) 2.4 (−94)
4 3.7 (−379) 9.0 (−379) 3.9996

HM
1 7.8 (−6) 1.9 (−5)
2 7.6 (−24) 2.4 (−23)
3 2.7 (−95) 7.2 (−95)
4 2.6 (−381) 6.3 (−381) 3.9997

JM
1 7.8 (−6) 1.9 (−5)
2 7.6 (−24) 2.4 (−23)
3 2.7 (−95) 7.2 (−95)
4 2.6 (−381) 6.3 (−381) 3.9997

BM
1 7.2 (−6) 1.7 (−5)
2 4.2 (−24) 1.3 (−23)
3 1.9 (−96) 5.2 (−96)
4 5.6 (−386) 1.4 (−385) 3.9997

4. Conclusions

The convergence order of iterative methods involves Taylor series, and the existence of high
order derivatives. Consequently, upper error bounds on ‖xj − s∗‖ and uniqueness results are not
reported with this technique. Hence, the applicability of these methods is limited to functions with
high order derivatives. To address these problems, we present local convergence results based on
the first derivative. Moreover, we compare methods (2)–(5). Notice that our convergence criteria are
sufficient but not necessary. Therefore, if e.g., the radius of convergence for the method (5) is zero,
that does not necessarily imply that the method does not converge for a particular numerical example.
Our method can be adopted in order to expand the applicability of other methods in an analogous
way.
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Abstract: We present a local convergence of the combined Newton-Kurchatov method for solving
Banach space valued equations. The convergence criteria involve derivatives until the second and
Lipschitz-type conditions are satisfied, as well as a new center-Lipschitz-type condition and the notion
of the restricted convergence region. These modifications of earlier conditions result in a tighter
convergence analysis and more precise information on the location of the solution. These advantages
are obtained under the same computational effort. Using illuminating examples, we further justify
the superiority of our new results over earlier ones.

Keywords: nonlinear equation; iterative process; non-differentiable operator; Lipschitz condition

MSC: 65H10; 65J15; 47H17

1. Introduction

Consider the nonlinear equation

F(x) + Q(x) = 0, (1)

where F is a Fréchet-differentiable nonlinear operator on an open convex subset D of a Banach space
E1 with values in a Banach space E2, and Q : D → E2 is a continuous nonlinear operator.

Let x, y be two points of D. A linear operator from E1 into E2, denoted Q(x, y), which satisfies
the condition

Q(x, y)(x− y) = Q(x)−Q(y) (2)

is called a divided difference of Q at points x and y.
Let x, y, z be three points of D. A operator Q(x, y, z) will be called a divided difference of the

second order of the operator Q at the points x, y and z, if it satisfies the condition

Q(x, y, z)(y− z) = Q(x, y)−Q(x, z). (3)

A well-known simple difference method for solving nonlinear equations F(x) = 0 is the
Secant method

xn+1 = xn − (F(xn−1, xn))−1F(xn), n = 0,1,2, . . . , (4)

where F(xn−1, xn) is a divided difference of the first order of F(x) and x0, x−1 are given.

Mathematics 2019, 7, 207; doi:10.3390/math7020207 www.mdpi.com/journal/mathematics222



Mathematics 2019, 7, 207

Secant method for solving nonlinear operator equations in a Banach space was explored by the
authors [1–6] under the condition that the divided differences of a nonlinear operator F satisfy the
Lipschitz (Hölder) condition with constant L of type

‖F(x, y)− F(u, v)‖ ≤ L(‖x− u‖+ ‖y− v‖).

In [7] a one-point iterative Secant-type method with memory was psoposed.
In [8,9] the Kurchatov method under the classical Lipschitz conditions for the divided differences

of the first and second order was explored and its quadratic convergence of it was determined.
The iterative formula of Kurchatov method has the form [1,8–11]

xn+1 = xn − (F(2xn − xn−1, xn−1))
−1F(xn), n = 0,1,2, . . . . (5)

Related articles but with stronger convergence criteria exist; see works of Argyros, Ezquerro,
Hernandez, Rubio, Gutierrez, Wang, Li [1,12–15] and references therein.

In [14] which dealt with the study of the Newton method, it was proposed that there
are generalized Lipschitz conditions for the nonlinear operator, in which instead of constant L,
some positive integrable function is used.

In our work [16], we introduced, for the first time, a similar generalized Lipschitz condition for
the operator of the first order divided difference, and under this condition, the convergence of the
Secant method was studied and it was found that its convergence order is (1 +

√
5)/2.

In [17], we introduced a generalized Lipschitz condition for the divided differences of the second
order, and we have studied the local convergence of the Kurchatov method (5).

Note that in many papers, such as [3,18–21], the authors investigated the Secant and Secant-type
methods under the generalized conditions for the first divided differences of the form

‖(F(x, y)− F(u, v)))‖ ≤ ω(‖x− y‖, ‖u− v‖) ∀x, y, u, v ∈ D, (6)

where ω : R+ × R+ −→ R+ is continuous nondecreasing function in their two arguments. Under
these same conditions, in the work of Argyros [10], it was proven that there is a semi-local convergence
of the Kurchatov method and in [22] of Ren and Argyros the semi-local convergence of a combined
Kurchatov method and Secant method was demonstrated. In both cases, only the linear convergence
of the methods is received.

We also refer the reader to the intersting paper by Donchev et al. [23], where several other relaxed
Lipschitz conditions are used in the setting of fixed points for these conditions. Clearly, our results can
be written in this setting too in an analogous way.

In [24], we first proposed and studied the local convergence of the combined
Newton-Kurchatov method

xn+1 = xn − (F′(xn) + Q(2xn − xn−1, xn−1))
−1(F(xn) + Q(xn)), n = 0,1,2, . . . , (7)

where F′(u) is a Fréchet derivative, Q(u, v) is a divided difference of the first order, x0, x−1 are given,
which is built on the basis of the mentioned Newton and Kurchatov methods. Semi-local convergence
of the method (7) under the classical Lipschitz conditions is studied in the mentioned article, but the
convergence only with the order (1 +

√
5)/2 has been determined.

In [25], we studied the method (7) under relatively weak, generalized Lipschitz conditions for the
derivatives and divided differences of nonlinear operators. Setting Q(x) ≡ 0, we receive the results for
the Newton method [14], and when F(x) ≡ 0 we got the known results for Kurchatov method [9,17].
We proved the quadratic order of convergence of the method (7), which is higher than the convergence
order (1 +

√
5)/2 for the Newton–Secant method [1,26–28]

xn+1 = xn − (F′(xn) + Q(xn−1, xn))−1(F(xn) + Q(xn)), n = 0,1,2, . . . , . (8)
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The results of the numerical study of the method (7) and other combined methods on the test
problems are provided in our works [24,28].

In this work, we continue to study a combined method (7) for solving nonlinear Equation (1),
but with optimization considerations resulting in a tighter analysis than in [25].

The rest of the article is structured as follows: In Section 2, we present the local convergence
analysis of the method (7) and the uniquness ball for solution of the equation. Section 3 contains the
Corollaries of Theorems from Section 2. In Section 4, we provide the numerical example. The article
ends with some conclusions.

2. Local Convergence of Newton-Kurchatov Method (7)

Let us denote B(x0, r) = {x : ‖x − x0‖ < r} an open ball of radius r > 0 with center at point
x0 ∈ D, B(x0, r) ⊂ D.

Condition on the divided difference operator Q(x, y)

‖Q(x, y)−Q(u, v)‖ ≤ L(‖x− u‖+ ‖y− v‖) ∀x, y, u, v ∈ D (9)

is called Lipschitz condition in domain D with constant L > 0. If the condition is being fulfilled

‖Q(x, y)−Q′(x0)‖ ≤ L(‖x− x0‖+ ‖y− x0‖) ∀x, y ∈ B(x0, r), (10)

then we call it the center Lipschitz condition in the ball B(x0, r) with constant L.
However, L in Lipschitz conditions can be not a constant, and can be a positive integrable function.

In this case, if for x∗ ∈ D inverse operator [F′(x∗)]−1 exists, then the conditions (9) and (10) for x0 = x∗
can be replaced respectively for

‖Q′(x∗)−1(Q(x, y)−Q(u, v)))‖ ≤
∫ ‖x−y‖+‖u−v‖

0
L(t)dt ∀x, y, u, v ∈ D (11)

and

‖Q′(x∗)−1(Q(x, y)−Q′(x∗))‖ ≤
∫ ‖x−x∗‖+‖y−x∗‖

0
L(t)dt ∀x, y ∈ B(x∗, r). (12)

Simultaneously
Lipschitz conditions (11) and (12) are called generalized Lipschitz conditions or Lipschitz

conditions with the L average.
Similarly, we introduce the generalized Lipschitz condition for the divided difference of the

second order

‖Q′(x∗)−1(Q(u, x, y)−Q(v, x, y))‖ ≤
∫ ‖u−v‖

0
N(t)dt ∀x, y, u, v ∈ B(x∗, r), (13)

where N is a positive integrable function.

Remark 1. Note than the operator F is Fréchet differentiable on D when the Lipschitz conditions (9) or (11) are
fulfilled ∀x, y, u, v ∈ D (the divided differences F(x, y) are Lipschitz continuous on D) and F(x, x) = F′(x)
∀x ∈ D [29].

Suppose that equation

∫ r

0
L0

1(u)du +
∫ 2r

0
L0

2(u)du + 2r
∫ 2r

0
N0(u)du = 1.

has at least one positive solution. Denote by r0 the smallest such solution. Set D0 = D ∩ B(x∗, r0)
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The radius of the convergence ball and the convergence order of the combined Newton–Kurchatov
method (7) are determined in next theorem.

Theorem 1. Let F and Q be continuous nonlinear operators defined in open convex domain D of a Banach
space E1 with values in the Banach space E2. Let us suppose, that: (1) H(x) ≡ F(x) + Q(x) = 0 has a solution
x∗ ∈ D, for which there exists a Fréchet derivative H′(x∗) and it is invertible; (2) F has the Fréchet derivative of
the first order, and Q has divided differences of the first and second order on B(x∗, 3r) ⊂ D, so that for each
x, y, u, v ∈ D

‖H′(x∗)−1(F′(x)− F′(x∗))‖ ≤
∫ ρ(x)

0
L0

1(u)du, (14)

‖H′(x∗)−1(Q(x, y)−Q(x∗, x∗))‖ ≤
∫ ‖x−x∗‖+‖y−x∗‖

0
L0

2(t)dt, (15)

‖H′(x∗)−1(Q(u, x, y)−Q(v, x, y))‖ ≤
∫ ‖u−v‖

0
N0(t)dt, (16)

and for each x, y, u, v ∈ D0

‖H′(x∗)−1(F′(x)− F′(xθ))‖ ≤
∫ ρ(x)

θρ(x)
L1(u)du, 0 ≤ τ ≤ 1, (17)

‖H′(x∗)−1(Q(x, y)−Q(u, v))‖ ≤
∫ ‖x−u‖+‖y−v‖

0
L2(t)dt, (18)

‖H′(x∗)−1(Q(u, x, y)−Q(v, x, y))‖ ≤
∫ ‖u−v‖

0
N(t)dt, (19)

where xθ = x∗ + θ(x− x∗), �(x) = ‖x− x∗‖, L0
1, L0

2, N0 L1, L2 and N are positive nondecreasing integrable
functions and r > 0 satisfies the equation

1
r
∫ r

0 L1(u)udu +
∫ r

0 L2(u)du + 2r
∫ 2r

0 N(u)du

1−
( ∫ r

0 L0
1(u)du +

∫ 2r
0 L0

2(u)du + 2r
∫ 2r

0 N0(u)du
) = 1. (20)

Then for all x0, x−1 ∈ B(x∗, r) the iterative method (7) is well defined and the generated by it sequence
{xn}n≥0, which belongs to B(x∗, r), converges to x∗ and satisfies the inequality

‖xn+1 − x∗‖ ≤ en :=
1

ρ(xn)

∫ ρ(xn)
0 L1(u)udu +

∫ ρ(xn)
0 L2(u)du +

∫ ‖xn−xn−1‖
0 N(u)du‖xn − xn−1‖

1−
( ∫ ρ(xn)

0 L0
1(u)du +

∫ 2ρ(xn)
0 L0

2(u)du +
∫ ‖xn−xn−1‖

0 N0(u)du‖xn − xn−1‖
)‖xn − x∗‖. (21)

Proof. First we show that f (t) =
1
t2

∫ t

0
L1(u)udu, g(t) =

1
t

∫ t

0
L2(u)du, h(t) =

1
t

∫ t

0
N(u)du, f0(t) =

1
t2

∫ t

0
L0

1(u)udu, g0(t) =
1
t

∫ t

0
L0

2(u)du, h0(t) =
1
t

∫ t

0
N0(u)du monotonically nondecreasing with

respect to t. Indeed, under the monotony of L1, L2, N we have( 1
t2
2

∫ t2

0
− 1

t2
1

∫ t1

0

)
L1(u)udu =

( 1
t2
2

∫ t2

t1

+
( 1

t2
2
− 1

t2
1

) ∫ t1

0

)
L1(u)udu ≥

≥ L(t1)
( 1

t2
2

∫ t2

t1

+
( 1

t2
2
− 1

t2
1

) ∫ t1

0

)
udu = L1(t1)

( 1
t2
2

∫ t2

0
− 1

t2
1

∫ t1

0

)
udu = 0,
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( 1
t2

∫ t2

0
− 1

t1

∫ t1

0

)
L2(u)du =

( 1
t2

∫ t2

t1

+
( 1

t2
− 1

t1

) ∫ t1

0

)
L2(u)du ≥

≥ L2(t1)
( 1

t2

∫ t2

t1

+
( 1

t2
− 1

t1

) ∫ t1

0

)
du = L2(t1)

( t2 − t1

t2
+ t1

( 1
t2
− 1

t1

))
= 0

for 0 < t1 < t2. So, f (t), g(t) are nondecreasing with respect to t. Similarly we get for h(t), f0(t), g0(t)
and h0(t).

We denote by An linear operator An = F′(xn)+Q(2xn− xn−1, xn−1). Easy to see that if xn, xn−1 ∈
B(x∗, r), then 2xn − xn−1, xn−1 ∈ B(x∗, 3r). Then An is invertible and the inequality holds

‖A−1
n H

′
(x∗)‖ = ‖[I − (I − H

′
(x∗)−1 An)]−1‖ ≤

≤
(

1−
( ∫ ρ(xn)

0
L0

1(u)du +
∫ 2ρ(xn)

0
L0

2(u)du +
∫ ‖xn−xn−1‖

0
N0(u)du‖xn − xn−1‖

))−1
.

(22)

Indeed from the formulas (14)–(16) we get

‖I − H
′
(x∗)−1 An‖ = ‖H

′
(x∗)−1(F′(x∗)− F′(xn) + Q(x∗, x∗)−Q(xn, xn)+

+Q(xn, xn)−Q(2xn − xn−1, xn−1)‖) ≤
∫ ρ(xn)

0
L0

1(u)du + ‖H
′
(x∗)−1(Q(x∗, x∗)−

−Q(xn, xn) + Q(xn, xn)−Q(xn, xn−1) + Q(xn, xn−1)−Q(2xn − xn−1, xn−1))‖ ≤

≤
∫ ρ(xn)

0
L0

1(u)du +
∫ 2ρ(xn)

0
L0

2(u)du+

+‖H
′
(x∗)−1(Q(xn, xn−1, xn)−Q(2xn − xn−1, xn−1, xn))(xn − xn−1)‖ ≤

≤
∫ ρ(xn)

0
L0

1(u)du +
∫ 2ρ(xn)

0
L0

2(u)du +
∫ ‖xn−xn−1‖

0
N0(u)du‖xn − xn−1‖.

From the definition r0 (20), we get

∫ r0

0
L1(u)du +

∫ 2r0

0
L2(u)du + 2r

∫ 2r0

0
N(u)du < 1, (23)

since r < r0.
Using the Banach theorem on inverse operator [30], we get formula (22). Then we can write

‖xn+1 − x∗‖ = ‖xn − x∗ − A−1
n (F(xn)− F(x∗) + Q(xn)−Q(x∗))‖ =

= ‖ − A−1
n (

∫ 1

0
(F′(xτ

n)− F′(xn))dτ + Q(xn, x∗)−Q(2xn − xn−1, xn−1))(xn − x∗)‖ ≤

≤ ‖A−1
n H

′
(x∗)‖(‖H

′
(x∗)−1

∫ 1

0

∫ ρ(xn)

τρ(xn)
L1(u)dudτ + ‖H

′
(x∗)−1(+Q(xn, x∗)−

−Q(2xn − xn−1, xn−1))‖)‖xn − x∗‖.

(24)
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According to the condition (17)–(19) of the theorem we get

‖H
′
(x∗)−1(

∫ 1

0

∫ ρ(xn)

τρ(xn)
L1(u)dudτ + Q(xn, x∗)− An)‖ =

=
1

ρ(xn)

∫ ρ(xn)

0
L1(u)udu + ‖H′(x∗)−1(Q(xn, x∗)−Q(xn, xn)+

+Q(xn, xn)−Q(xn, xn−1) + Q(xn, xn−1)−Q(2xn − xn−1, xn−1))‖ ≤

≤ 1
ρ(xn)

∫ ρ(xn)

0
L1(u)udu + ‖H′(x∗)−1(Q(xn, x∗)−Q(xn, xn))‖+

+‖H′(x∗)−1(Q(xn, xn−1, xn)−Q(2xn − xn−1, xn−1, xn))(xn − xn−1)‖ ≤

≤ 1
ρ(xn)

∫ ρ(xn)

0
L1(u)udu +

∫ ρ(xn)

0
L2(u)du +

∫ ‖xn−xn−1‖

0
N(u)du‖xn − xn−1‖.

From (22) and (24) shows that fulfills (21). Then from (21) and (20) we get

‖xn+1 − x∗‖ < ‖xn − x∗‖ < ... < max{‖x0 − x∗‖, ‖x−1 − x∗‖} < r.

Therefore, the iterative process (5) is correctly defined and the sequence that it generates belongs
to B(x∗, r). From the last inequality and estimates (21) we get lim

n→∞
‖xn − x∗‖ = 0. Since the sequence

{xn}n≥0 converges to x∗, then

‖xn − xn−1‖ ≤ ‖xn − x∗‖+ ‖xn−1 − x∗‖ ≤ 2‖xn−1 − x∗‖

and lim
n→∞

‖xn − xn−1‖ = 0.

Corollary 1. The order of convergence of the iterative procedure (7) is quadratic.

Proof. Let us denote ρmax = max{ρ(x0), ρ(x−1)}. Since g(t) and h(t) are monotonically
nondecreasing, then with taking into account the expressions

1
ρ(xn)

∫ ρ(xn)

0
L1(u)udu =

∫ ρ(xn)
0 L1(u)uduρ(xn))

(ρ(xn))2 ≤
∫ ρmax

0 L1(u)uduρ(xn)

(ρmax)2 =: A1ρ(xn),

∫ ρ(xn)

0
L2(u)du =

∫ ρ(xn)
0 L2(u)duρ(xn)

ρ(xn)
≤
∫ ρmax

0 L2(u)duρ(xn)

ρmax
=: A2ρ(xn),

∫ ‖xn−xn−1‖

0
N(u)du =

∫ ‖xn−xn−1‖
0 N(u)du‖xn − xn−1‖

‖xn − xn−1‖ <

<

∫ ‖x0−x−1‖
0 N(u)du‖xn − xn−1‖

‖x0 − x−1‖ =: A3‖xn − xn−1‖

and (
1−

( ∫ ρ(xn)

0
L0

1(u)du + 2
∫ ρ(xn)

0
L0

2(u)du +
∫ ‖xn−xn−1‖

0
N0(u)du‖xn − xn−1‖

))−1
<

<
(

1−
( ∫ ρmax

0
L0

1(u)du + 2
∫ ρmax

0
L0

2(u)du +
∫ ‖x0−x−1‖

0
N0(u)du‖x0 − x−1‖

))−1
=: A4,
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from the inequality (21) follows

‖xn+1 − x∗‖ ≤ A4(A1ρ(xn) + A2ρ(xn) + A3‖xn − xn−1‖2)‖xn − x∗‖.

or
‖xn+1 − x∗‖ ≤ C3‖xn − x∗‖2 + C4‖xn − xn−1‖2‖xn − x∗‖. (25)

Here Ak, k = 1, ..., 4, C3, C4 are some positive constants.
Assume that the order of convergence of the iterative process (7) is not lower 2, therefore there

exist C5 ≥ 0 and N > 0, that for all n ≥ N the inequality holds

‖xn − x∗‖ ≥ C5‖xn−1 − x∗‖2.

Since
‖xn − xn−1‖2 ≤ (‖xn − x∗‖+ ‖xn−1 − x∗‖)2 ≤ 4‖xn−1 − x∗‖2,

then from (44) we get

‖xn+1 − x∗‖ ≤ C3‖xn − x∗‖2 + 4C4‖xn−1 − x∗‖2‖xn − x∗‖

≤ (C3 + 4C4/C5)‖xn − x∗‖2 = C6‖xn − x∗‖2.
(26)

inequality (26) means that the order of convergence is not lower than 2. Thus, the convergence
rate of sequence {xn}n≥0 to x∗ is quadratic.

3. Uniqueness Ball of the Solution

The next theorem determines the ball of uniqueness of the solution x∗ of (1) in B(x∗, r).

Theorem 2. Let us assume that: (1) H(x) ≡ F(x) + Q(x) = 0 has a solution x∗ ∈ D, in which there exists a
Fréchet derivative H′(x∗) and it is invertible; (2) F has a continuous Frećhet derivative in B(x∗, r), F′ satisfies
the generalized Lipschitz condition

‖̆H′(x∗)−1(F′(x)− F′(x∗))‖ ≤
∫ ρ(x)

0
L0

1(u)du ∀x ∈ B(x∗, r),

the divided difference Q(x, y) satisfies the generalized Lipschitz condition

‖H′(x∗)−1(Q(x, x∗)− G′(x∗))‖ ≤
∫ ρ(x)

0
L0

2(u)du ∀x ∈ B(x∗, r),

where L1 and L2 are positive integrable functions. Let r > 0 satisfy

1
r

∫ r

0
(r− u)L0

1(u)du +
∫ r

0
L0

2(u)du ≤ 1.

Then the equation H(x) = 0 has a unique solution x∗ in B(x∗, r).

Proof analogous to [27,31].

4. Corollaries

In the study of iterative methods, the traditional assumption is that the derivatives and/or the
divided differences satisfy the classical Lipschitz conditions. Assuming that L1, L2 and N are constants,
we get from Theorems 1 and 2 important corollaries, which are of interest.
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Corollary 2. Let us assume that: (1) H(x) ≡ F(x) + Q(x) = 0 has a solution x∗ ∈ D, in which there exists
Fréchet derivative H′(x∗) and it is invertible; (2) F has a continuous Fréchet derivative and Q has divided
differences of the first and second order Q(x, y) and Q(x, y, z) in B(x∗, 3r) ⊂ D, which satisfy the Lipschitz
conditions for each x, y, u, v ∈ D

‖H′(x∗)−1(F′(x)− F′(x∗)‖ ≤ L0
1‖x− x∗‖,

‖H′(x∗)−1(Q(x, y)−Q(u, v))‖ ≤ L0
2(‖x− u‖+ ‖y− v‖),

for x, y, u, v ∈ D0

‖H′(x∗)−1(Q(u, x, y)−Q(v, x, y))‖ ≤ N0‖u− v‖,

‖H′(x∗)−1(F′(x)− F′(x∗ + τ(x− x∗))‖ ≤ (1− τ)L1‖x− x∗‖,

‖H′(x∗)−1(Q(x, y)−Q(u, v))‖ ≤ L2(‖x− u‖+ ‖y− v‖),
‖H′(x∗)−1(Q(u, x, y)−Q(v, x, y))‖ ≤ N‖u− v‖,

where L0
1, L0

2, N0, L1, L2 and N are positive numbers,

r0 =
2

L0
1 + 2L0

2 +
√
(L0

1 + 2L0
2)

2 + 16N0

,

and r is the positive root of the equation

L1r/2 + L2r + 4Nr2

1− L0
1r− 2L0

2r− 4N0r2
= 1.

Then Newton-Kurchatov method (5) converges for all x−1, x0 ∈ B(x∗, r) and there fulfills

‖xn+1 − x∗‖ ≤ (L1/2 + L2)‖xn − x∗‖+ N‖xn − xn−1‖2

1−
(

L0
1 + 2L0

2‖xn − x∗‖+ N0‖xn − xn−1‖2
) .

Moreover, r is the best of all possible.

Note that value of r =
2

3L
improves r̄ =

2
3L1

1
for Newton method for solving equation F(x) =

0 [14,32,33], and with r = 2/(3L2 +
√

9L2
2 + 32N) improves r̄ = 2/(3L1

2 +
√

9(L1
2)

2 + 32N1) for
Kurchatov method for solving the equation Q(x) = 0, as derived in [8].

Corollary 3. Suppose that: (1) H(x) ≡ F(x) + Q(x) = 0 has a solution x∗ ∈ D, in which there exists the
Fréchet derivative H′(x∗) and it is invertible; (2) F has continuous derivative and Q has divided difference
Q(x, x∗) in B(x∗, r) ⊂ D, which satisfy the Lipschitz conditions

‖H′(x∗)−1(F′(x)− F′(x∗))‖ ≤ L0
1‖x− x∗‖,

‖H′(x∗)−1(Q(x, x∗)− G′(x∗))‖ ≤ L0
2‖x− x∗‖

for all x ∈ B(x∗, r), where L0
1 and L0

2 are positive numbers and r =
2

L0
1 + 2L0

2
. Then x∗ is the only solution in

B(x∗, r) of H(x) = 0 , r does not depend on F and Q and is the best choice.
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Note that the resulting radius of the uniqueness ball of the solution r =
2
L1

improves r̄ =
2
L1

1
for

Newton method for solving the equation F(x) = 0 [14] and r =
1
L2

improves r̄ =
1
L1

2
for Kurchatov

method for solving the equation Q(x) = 0 [8]. (See also the numerical examples).

Remark 2. We compare the results in [25] with the new results in this article. In order to do this, let us consider
the conditions given in [25] corresponding to our conditions (15)–(17):

For each x, y, u, v ∈ D

‖H′(x∗)−1(F′(x)− F′(xθ))‖ ≤
∫ ρ(x)

θρ(x)
L1

1(u)du, 0 ≤ θ ≤ 1, (27)

‖H′(x∗)−1(Q(x, y)−Q(u, v))‖ ≤
∫ ‖x−u‖+‖y−v‖

0
L1

2(t)dt, (28)

‖H′(x∗)−1(Q(u, x, y)−Q(v, x, y))‖ ≤
∫ ‖u−v‖

0
N1(t)dt, (29)

1
r̄
∫ r̄

0 L1
1(u)udu +

∫ r̄
0 L1

2(u)du + 2r̄
∫ 2r̄

0 N1(u)du

1−
( ∫ r̄

0 L1
1(u)du +

∫ 2r̄
0 L1

2(u)du + 2r̄
∫ 2r̄

0 N11(u)du
) = 1, (30)

‖xn+1 − xn‖ ≤ ēn. (31)

It follows from (14)–(16), (17)–(19), (27)–(29), that

L0
1(t) ≤ L1

1(t), (32)

L1(t) ≤ L1
1(t), (33)

L0
2(t) ≤ L1

2(t), (34)

L2(t) ≤ L1
2(t), (35)

N0(t) ≤ N1(t), (36)

N(t) ≤ N1(t), (37)

leading to
r̄ ≤ r, (38)

en ≤ ēn, (39)

Al ≤ Āl , l = 1, 2, 3, 4, (40)

Cl ≤ C̄l , l = 1, 2, 3, 4, 6 (41)

and
C5 ≥ C̄5, (42)

ēn :=
1

ρ(xn)

∫ ρ(xn)
0 L1

1(u)udu +
∫ ρ(xn)

0 L1
2(u)du +

∫ ‖xn−xn−1‖
0 N1(u)du‖xn − xn−1‖

1−
( ∫ ρ(xn)

0 L1
1(u)du +

∫ 2ρ(xn)
0 L1

2(u)du +
∫ ‖xn−xn−1‖

0 N1(u)du‖xn − xn−1‖
)‖xn − x∗‖, (43)

‖xn+1 − x∗‖ ≤ Ā4(Ā1ρ(xn) + Ā2ρ(xn) + Ā3‖xn − xn−1‖2)‖xn − x∗‖,
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or

‖xn+1 − x∗‖ ≤ C̄3‖xn − x∗‖2 + C̄4‖xn − xn−1‖2‖xn − x∗‖, (44)

or

‖xn+1 − x∗‖ ≤ C̄6‖xn − x∗‖2

with

C̄6 = (C̄3 + 4C̄4/C̄5)

for some
‖xn − x∗‖ ≥ C̄5‖xn−1 − x∗‖2.

Hence, we obtain the impovements:

(1) At least as many initial choices x−1, x0 as before.
(2) At least as few iterations than before to obtain a predetermined error accuracy.
(3) At least as precice information on the location of the solution as before.

Moreover, if any of (32)–(37) holds as a strict inequality, then so do (38)–(42). Furthermore,
we notice that these improvements are found using the same information, since the functions L0

1, L0
2, N0,

L1, L2, N are special cases of functions L1
1, L1

2, N1 used in [25]. Finally, if G = 0 or F = 0, we obtain the
results for Newton’s method or the Kurchatov method as special cases. Clearly, the results for these
methods are also improved. Our technique can also be used to improve the results of other iterative
methods in an analogous way.

5. Numerical Examples

Example 1. Let E1 = E2 = R3 and Ω = S(x∗, 1). Define functions F and Q for v = (v1, v2, v3)
T on Ω by

F(v) =
(
ev1 − 1, e−1

2 v2
2 + v2, v3

)T ,
Q(v) =

(|v1|, |v2|, |v2|, | sin(v3)|
)T (45)

F′(v) = diag
(

ev1 , (e− 1)v2 + 1, 1
)

,

Q(v, v̄) = diag
( |v̄1|−|v1|

v̄1−v1
, |v̄2|−|v2|

v̄2−v2
, | sin(v̄3)|−| sin(v3)|

v̄3−v3

) (46)

Choose:

H(x) = F(x) + Q(x),

‖H′(x∗)−1‖ = 1, L0
1 = e− 1, L0

2 = 1, N0 =
1
2

,

L1 = e
1

e−1 , L2 = 1, N =
1
2

,

L1
1 = e, L1

2 = 1, N1 =
1
2

.

Then compute:
r using (20), r = 0.1599;
r̄ using (30), r̄ = 0.1315.
Also, r̄ < r.
Notice that L0

1 < L1 < L1
1, so the improve ments stated in Remark 1 hold.
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6. Conclusions

In [1,8,34], we studied the local convergence of Secant and Kurchatov methods in the case of
fulfilment of Lipschitz conditions for the divided differences, which hold for some Lipschitz constants.
In [14], the convergence of the Newton method is shown for the generalized Lipschitz conditions for
the Fréchet derivative of the first order. We explored the local convergence of the Newton-Kurchatov
method under the generalized Lipschitz conditions for Fréchet derivative of a differentiable part of the
operator and the divided differences of the nondifferentiable part. Our results contain known parts as
partial cases.

By using our idea of restricted convergence regions, we find tighter Lipschitz constants leading to
a finer local convergence analysis of method (7) and its special cases compared to in [25].

Author Contributions: All authors contributed equally and significantly to writing this article. All authors read
and approved the final manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to express their sincere gratitude to the referees for their valuable
comments which have significantly improved the presentation of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Argyros, I.K. Convergence and Applications of Newton-Type Iterations; Springer: New York, NY, USA, 2008.
2. Hernandez, M.A.; Rubio, M.J. The Secant method and divided differences Hölder continuous.

Appl. Math. Comput. 2001, 124, 139–149. [CrossRef]
3. Hernandez, M.A.; Rubio, M.J. The Secant method for nondifferentiable operators. Appl. Math. Lett. 2002, 15,

395–399. [CrossRef]
4. Ortega, J.M.; Rheinboldt, W.C. Iterative Solution of Nonlinear Equations in Several Variables; Academic Press:

New York, NY, USA, 1970.
5. Traub, J.F. Iterative Methods for the Solution of Equations; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1964.
6. Shakhno, S.M. Application of nonlinear majorants for intestigation of the secant method for solving nonlinear

equations. Matematychni Studii 2004, 22, 79–86.
7. Ezquerro, J.A.; Grau-Sánchez, M.; Hernández, M.A. Solving non-differentiable equations by a new one-point

iterative method with memory. J. Complex. 2012, 28, 48–58. [CrossRef]
8. Shakhno, S.M. On a Kurchatov’s method of linear interpolation for solving nonlinear equations. Proc. Appl.

Math. Mech. 2004, 4, 650–651. [CrossRef]
9. Shakhno, S.M. About the difference method with quadratic convergence for solving nonlinear operator

equations. Matematychni Studii 2006, 26, 105–110. (In Ukrainian)
10. Argyros, I.K. A Kantorovich-type analysis for a fast iterative method for solving nonlinear equations. J. Math.

Anal. Appl. 2007, 332, 97–108. [CrossRef]
11. Kurchatov, V.A. On a method of linear interpolation for the solution of functional equations. Dokl. Akad.

Nauk SSSR 1971, 198, 524–526. (In Russian); translation in Soviet Math. Dokl. 1971, 12, 835–838.
12. Ezquerro, J.A.; Hernández, M. Generalized differentiability conditions for Newton’s method. IMA J. Numer.

Anal. 2002, 22, 187–205. [CrossRef]
13. Gutiérrez, J.M.; Hernández, M.A. Newton’s method under weak Kantorovich conditions. IMA J. Numer. Anal.

2000, 20, 521–532. [CrossRef]
14. Wang, X.H. Convergence of Newton’s method and uniqueness of the solution of equations in Banach space.

IMA J. Numer. Anal. 2000, 20, 123–134. [CrossRef]
15. Wang, X.H.; Li, C. Local and global behavior for algorithms of solving equations. Chin. Sci. Bull. 2001, 46,

444–451. [CrossRef]
16. Shakhno, S.M. On the secant method under generalized Lipschitz conditions for the divided difference

operator. Proc. Appl. Math. Mech. 2007, 7, 2060083–2060084. [CrossRef]
17. Shakhno, S.M. Method of linear interpolation of Kurchatov under generalized Lipschitz conditions for divided

differences of first and second order. Visnyk Lviv. Univ. Ser. Mech. Math. 2012, 77, 235–242. (In Ukrainian)

232



Mathematics 2019, 7, 207

18. Amat, S. On the local convergence of Secant-type methods. Intern. J. Comput. Math. 2004, 81, 1153–1161.
[CrossRef]

19. Amat, S.; Busquier, S. On a higher order Secant method. Appl. Math. Comput. 2003, 141, 321–329. [CrossRef]
20. Argyros, I.K.; Ezquerro, J.A.; Gutiérrez, J.M.; Hernández, M.A.; Hilout, S. Chebyshev-Secant type methods for

non-differentiable operator. Milan J. Math. 2013, 81, 25–35.
21. Ren, H. New sufficient convergence conditions of the Secant method nondifferentiable operators.

Appl. Math. Comput. 2006, 182, 1255–1259. [CrossRef]
22. Ren, H.; Argyros, I.K. A new semilocal convergence theorem with nondifferentiable operators. J. Appl.

Math. Comput. 2010, 34, 39–46. [CrossRef]
23. Donchev, T.; Farkhi, E.; Reich, S. Fixed set iterations for relaxed Lipschitz multimaps. Nonlinear Anal. 2003, 53,

997–1015. [CrossRef]
24. Shakhno, S.M.; Yarmola, H.P. Two-point method for solving nonlinear equation with nondifferentiable

operator. Matematychni Studii. 2011, 36, 213–220. (In Ukrainian)
25. Shakhno, S.M. Combined Newton-Kurchatov method under the generalized Lipschitz conditions for the

derivatives and divided differences. J. Numer. Appl. Math. 2015, 2, 78–89.
26. Catinas, E. On some iterative methods for solving nonlinear equations. Revue d’Analyse Numérique et de Théorie

de l’Approximation 1994, 23, 47–53.
27. Shakhno, S. Convergence of combined Newton-Secant method and uniqueness of the solution of nonlinear

equations. Visnyk Ternopil Nat. Tech. Univ. 2013, 69, 242–252. (In Ukrainian)
28. Shakhno, S.M.; Mel’nyk, I.V.; Yarmola, H.P. Analysis of convergence of a combined method for the solution of

nonlinear equations. J. Math. Sci. 2014, 201, 32–43. [CrossRef]
29. Argyros, I. K. On the secant method. Publ. Math. Debr. 1993, 43, 233–238.
30. Kantorovich, L.V.; Akilov, G.P. Functional Analysis; Pergamon Press: Oxford, UK, 1982.
31. Shakhno, S.M. Convergence of the two-step combined method and uniqueness of the solution of nonlinear

operator equations. J. Comput. Appl. Math. 2014, 261, 378–386. [CrossRef]
32. Potra, F.A. On an iterative algorithm of order 1.839... for solving nonlinear operator equations. Numer. Funct.

Anal. Optim. 1985, 7, 75–106. [CrossRef]
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Abstract: The study of the dynamics and the analysis of local convergence of an iterative method,
when approximating a locally unique solution of a nonlinear equation, is presented in this article.
We obtain convergence using a center-Lipschitz condition where the ball radii are greater than
previous studies. We investigate the dynamics of the method. To validate the theoretical results
obtained, a real-world application related to chemistry is provided.
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1. Introduction

A well known problem is that of approximating a locally unique solution x∗ of equation

F(x) = 0, (1)

where F is a differentiable function defined on a nonempty convex subset D of S with values in Ω,
where Ω can be R or C. In this article, we are going to deal with it.

Mathematics is always changing and the way we teach it also changes as it is presented in [1,2].
In the literature [3–8], we can find many problems in engineering and applied sciences that can be
solved by finding solutions of equations in a way such as (1). Finding exact solutions for this type
of equation is not easy. Only in a few special cases can we find the solutions of these equations in
closed form. We must look for other ways to find solutions to these equations. Normally we resort
to iterative methods to be able to find solutions. Once we propose to find the solution iteratively,
it is mandatory to study the convergence of the method. This convergence is usually seen in two
different ways, which gives rise to two different categories, the semilocal convergence analysis and
the local convergence analysis. The first of these, the semilocal convergence analysis, is based on
information around an initial point, which will provide us with criteria that will ensure the convergence
of an iteration procedure. On the other hand, the local convergence analysis is generally based on
information about a solution to find values of the calculated radii of the convergence balls. The local
results obtained are fundamental since they provide the degree of difficulty to choose the initial points.

We must also deal with the domain of convergence in the study of iterative methods. Normally,
the convergence domain is very small and it is necessary to be able to extend this convergence domain
without adding any additional hypothesis. Another important problem is finding more accurate
estimates of error in distances. ‖xn+1 − xn‖, ‖xn − x∗‖. Therefore, to extend the domain without the
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need for additional hypotheses and to find more precise estimates of the error committed, in addition
to the study of dynamic behavior, will be our objectives in this work.

The iterative methods can be applied to polynomials, and the dynamic properties related to this
method will give us important information about its stability and reliability. Recently in some studies,
authors such as Amat et al. [9–11], Chun et al. [12], Gutiérrez et al. [13], Magreñán [14–16], and many
others [8,13,17–30] have studied interesting dynamic planes, including periodic behavior and other
anomalies detected. For all the above, in this article, we are going to study the parameter spaces
associated with a family of iterative methods, which will allow us to distinguish between bad and
good methods, always speaking in terms of their numerical properties.

We present the dynamics and the local convergence of the four step method defined for each
n = 0, 1, 2, . . . by

yn = xn − αF′(xn)−1F(xn)

zn = yn − C1(xn)F′(xn)−1F(yn)

vn = zn − C2(xn)F′(xn)−1F(zn)

xn+1 = zn − C3(xn)F′(xn)−1F(vn),

(2)

where α ∈ R is a parameter, x0 is an initial point and Ci : R → R, i = 1, 2, 3 are continuous
functions given. Numerous methods of more than one step are particular cases of the previous
method (2). For example, for certain values of the parameters this family can be reduced to:

• Artidiello et al. method [31]
• Petković et al. method [32]
• Kung-Traub method [29]
• Fourth order King family
• Fourth order method given by Zhao et al. in [33]
• Eighth order method studied by Dzunic et al. [34].

It should be noted that to demonstrate the convergence of all methods after the method (2),
in all cases Taylor expansions have been used as well as hypotheses involving derivatives of order
greater than one, usually the third derivative or greater. However, in these methods only the first
derivative appears. In this article we will perform the analysis of local convergence of the method (2)
using hypotheses that involve only the first derivative of the function F. In this way we save the
tedious calculation of the successive derivatives (in this case the second and third derivatives) in each
step. The order of convergence (COC) is found using and an approximation of the COC (ACOC) using
that do not require the usage of derivatives of order higher than one (see Remark 1). Our objective will
also be able to provide a computable radius of convergence and error estimates based on the Lipschitz
constants.

We must also realize that there are a lot of iterative methods to approximate solutions of nonlinear
equations defined in R or C [32,35–38]. These studies show that if the initial point x0 is close enough
to the solution x∗, the sequence {xn} converges to x∗. However, from the initial estimate, how close to
the solution x∗ should it be? In these cases, the local results do not provide us with information about
the radius of the convergence ball for the corresponding method. We will approach this question for
the method (2) in Section 2. Similarly, we can use the same technique with other different methods.

2. Method’s Local Convergence

Let us define, respectively, U(v, ρ) and Ū(v, ρ) as open and closed balls in S, of radius ρ > 0 and
with center v ∈ Ω.

To study the analysis of local convergence of the method (2), we are going to define a series of
conditions that we will name (C):

(C1) F : D ⊂ Ω → Ω is a differentiable function.
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We know that exist a constant x∗ ∈ D, L0 > 0, such that for each x ∈ D is fulfilled
(C2) F(x∗) = 0, F′(x∗) �= 0.
(C3) ‖F′(x∗)−1(F′(x)− F′(x∗))‖ ≤ L0‖x− x∗‖

Let D0 := D ∩U(x∗, 1
L0

). There exist constants L > 0, M ≥ 1 such that for each , y ∈ D0

(C4) ‖F′(x∗)−1(F′(x)− F′(y))‖ ≤ L‖x− y‖
(C5) ‖F′(x∗)−1F′(x)‖ ≤ M.

There exist parameters γi and continuous nondecreasing functions ψi : [0, γi) → R such that
i = 0, 1, 2, 3:

(C6) γi+1 ≤ γi ≤ 1
L0

and
(C7) ψi(t)→ a +∞ or a number greater than 0 as t → γ−1

i . For α ∈ R, consider the functions

qj : [0, γj)→ R j = 0, 1, 2, 3 by

qj(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M|1− α|, j = 0

Mi+j|1− α|
j

∏
i=0

ψ1(t) · · ·ψj(t), j = 1, 2, 3

(C8) pj := qj(0) < 1, j = 0, 1, 2, 3,
(C9) Ci : Ω → Ω are continuous functions such that for each x ∈ D0, ‖Ci(x)‖ ≤ ψi(‖x− x∗‖) and
(C10) Ū(x∗, r) ⊂ D for some r > 0 to be appointed subsequently.

We are going to introduce some parameters and some functions for the local convergence analysis
of the method (2). We define the function g0 on the interval [0, 1

L0
) by

g0(t) =
1

2(1− L0t)
(Lt + 2M|1− α|)

and parameters r0, �A by

r0 =
2(1−M|1− α|)

2L0 + L
, �A =

2
2L0 + L

.

Then, since p0 = M|1− α| < 1 by (C8), we have that 0 < r0 < �A, g0(r1) = 1 and for each
t ∈ [0, r1) 0 ≤ g0(t) < 1. Define functions gi, hi on the interval [0, γi) by

gi(t) = (1 +
Mψi(t)
1− L0t

)gi−1(t)

and
hi(t) = gi(t)− 1

for i = 1, 2, 3. We have by (C8) that hi(0) = pj − 1 < 0 and by (C6) and (C7) hi(t)→ a positive number
or +∞. Applying the intermediate value theorem, we know that functions hi have zeros in the interval
[0, γi). Denote by ri the smallest such zero. Set

r = min{rj}, j = 0, 1, 2, 3. (3)

Therefore, we can write that
0 ≤ r < rA (4)

moreover for each j = 0, 1, 2, 3, t ∈ [0, r)

0 ≤ gj(t) < 1. (5)
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Now, making use of the conditions (C) and the previous notation, we will show the results of
local convergence for the method (2).

Theorem 1. Let us assume that (C) conditions hold, if we take the radius r in (C10) that has been
defined previously. Then, the sequence {xn} generated by our method (2) and considering x0 ∈ U(x∗, r) \ {x∗}
is well defined, remains in the ball U(x∗, r) for each n ≥ 0 and converges to the solutionx∗. On the other hand,
we see that the estimates are true:

‖yn − x∗‖ ≤ g0(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖ < r, (6)

‖zn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖, (7)

‖vn − x∗‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖ (8)

and
‖xn+1 − x∗‖ ≤ g3(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖, (9)

where the “g” functions are defined previously. Furthermore, for

T ∈ [r,
2
L0

) (10)

the unique solution of equation F(x) = 0 in Ū(x∗, T) ∩ D is the bound point x∗.

Proof. Using mathematical induction we shall prove estimates (6) and (10). By hypothesis x0 ∈
U(x, r) \ {x∗}, the conditions (C1), (C3) and (3), we have that

‖F′(x∗)−1(F′(x0)− F′(x∗))‖ ≤ L0‖x0 − x∗‖ < L0r < 1. (11)

Taking into account the Banach lemma on invertible functions [5,7,39] we can write that F′(x0)
−1 ∈

L(S, S) and

‖F′(x0)
−1F′(x∗)‖ ≤ 1

1− L0‖x0 − x∗‖ . (12)

consequently, y0 is well defined by the first substep of the method (2) for n = 0. We can set using the
conditions (C1) and (C2) that

F(x0) = F(x0)− F(x∗) =
∫ 1

0
F′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ. (13)

Remark that ‖x∗ + θ(x0 − x∗) − x∗‖ = θ‖x0 − x∗‖ < r, so x∗ + θ(x0 − x∗) ∈ U(x∗, r). Then,
using (13) and condition (C5), we have that

‖F′(x∗)−1F(x0)‖ ≤ ‖
∫ 1

0
F′(x∗)−1F′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ‖ ≤ M‖x0 − x∗‖. (14)

In view of conditions (C2), (C4), (3) and (5) (for j = 0) and (12) and (14), we obtain that
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‖y0 − x∗‖ = ‖x0 − x∗ − F′(x0)
−1F(x0) + (1− α)F′(x0)

−1F(x0)

≤ ‖x0 − x∗ − F′(x0)
−1F(x0)‖+ |1− α|‖F(x0)

−1F′(x∗)‖‖F′(x∗)−1F(x0)‖

≤ ‖F(x0)
−1F′(x∗)‖‖ ∫ 1

0 F′(x∗)−1(F′(x∗ + θ(x0 − x∗))− F′(x0))(x0 − x∗)dθ

+
|1− α|M‖x0 − x∗‖

1− L0‖x0 − x∗‖

≤ L‖x0 − x∗‖2

2(1− L0‖x0 − x∗‖) +
|1− α|M‖x0 − x∗‖

1− L0‖x0 − x∗‖
= g0(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r,

(15)

which evidences (6) for n = 0 and y0 ∈ U(x∗, r). Then, applying (C9) condition, (3) and (5) (for j = 1),
(12) and (14) (for y0 = x0) and (15), we achieve that

‖z0 − x∗‖ ≤ g1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖, (16)

which displays (7) for n = 0 and z0 ∈ U(x∗, r). In the same way, we show estimates (8) and (9) for n = 0
and v0, x1 ∈ U(x∗, r). Just substituting x0, y0, z0, v0, x1 by xk, yk, zk, vk, xk+1 in the preceding estimates,
we deduct that (6)–(9). Using the estimates ‖xk+1 − x∗‖ ≤ c‖xk − x∗‖ < r, c = g3(‖x0 − x∗‖) ∈ [0, 1),
we arrive at lim

k→∞
xk = x∗ and xk+1 ∈ U(x∗, r). We have yet to see the uniqueness, let y∗ ∈ Ū(x∗, T)

be such that F(y∗) = 0. Define B =
∫ 1

0 F′(y∗ + θ(x∗ − y∗))dθ. Taking into account the condition (C2),
we obtain that

‖F′(x∗)−1(B− F′(x∗))‖ ≤ L0

2
‖y∗ − x∗‖ ≤ L0

2
T < 1. (17)

Hence, B �= 0. Using the identity 0 = F(y∗)− F(x∗) = B(y∗ − x∗), we can deduct that x∗ =

y∗.

Remark 1.

1. Considering (10) and the next value

‖F′(x∗)−1F′(x)‖ = ‖F′(x∗)−1(I + F′(x)− F′(x∗))‖

≤ ‖F′(x∗)−1(F′(x)− F′(x∗))‖+ 1

≤ L0‖x0 − x∗‖+ 1

we can clearly eliminate the condition (10) and M can be turned into

M(t) = 1 + L0t or what is the same M(t) = M = 2, because t ∈ [0,
1
L0

).

2. The results that we have seen, can also be applied for F operators that satisfy the autonomous differential
equation [5,7] of the form

F′(x) = P(F(x)),

where P is a known continuous operator. As F′(x∗) = P(F(x∗)) = P(0), we are able to use the previous
results without needing to know the solution x∗. Take for example F(x) = ex − 1. Now, we can take
P(x) = x + 1. However, we do not know the solution.
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3. In the articles [5,7] was shown that the radius �A has to be the convergence radius for Newton’s method
using (10) and (11) conditions. If we apply the definition of r1 and the estimates (8), the convergence
radius r of the method (2) it can no be bigger than the convergence radius �A of the second order Newton’s
method. The convergence ball given by Rheinboldt [8] is

�R = 2
3L1

. (18)

In particular, for L0 < L1 or L < L1 we have that

�R < �A

and
�R
�A
→ 1

3
as

L0

L1
→ 0.

That is our convergence ball r1 which is maximum three times bigger than Rheinboldt’s. The precise
amount given by Traub in [28] for �R.

4. We should note that family (3) stays the same if we use the conditions of Theorem 1 instead of the stronger
conditions given in [15,36]. Concerning, for the error bounds in practice we can use the approximate
computational order of convergence (ACOC) [36]

ξ =
ln ‖xn+2−xn+1‖

‖xn+1−xn‖
ln ‖xn+1−xn‖
‖xn−xn−1‖

, for each n = 1, 2, . . .

or the computational order of convergence (COC) [40]

ξ∗ =
ln ‖xn+2−x∗‖
‖xn+1−x∗‖

ln ‖xn+1−x∗‖
‖xn−x∗‖

, for each n = 0, 1, 2, . . .

And these order of convergence do not require higher estimates than the first Fréchet derivative used
in [19,23,32,33,41].

Remark 2. Let’s see how we can choose the functions in the case of the method (2). In this case we have that

C1(
F(yn)

F(xn)
) = C1(xn), C2(

F(yn)

F(xn)
,

F(zn)

F(yn)
) = C2(xn), C3(

F(yn)

F(xn)
,

F(zn)

F(yn)
,

F(vn)

F(zn)
) = C3(xn)

To begin, the condition (C3) can be eliminated because in this case we have α = 1. Then, if xn �= x∗, the
following inequality holds

‖(F′(x∗)(xn − x∗))−1 [F(xn)− F(x∗)− F′(x∗)(xn − x∗)] ‖

≤ ‖xn − x∗‖−1 L0

2
‖xn − x∗‖ = L0

2
‖xn − x∗‖ < L0

2
r < 1.

Hence, we have that

‖F′(xn)
−1F(x∗)‖ ≤ 1

‖xn − x∗‖(1− L0

2
‖xn − x∗‖)

.
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Consequently, we get that

‖ F(yn)

F(xn)
‖ = ‖F′(xn)−1F′(x∗)‖‖F′(x∗)−1F(yn)‖

≤ M‖yn − x∗‖
‖xn − x∗‖(1− L0

2
‖x0 − x∗‖)

≤ Mg0(‖xn − x∗‖)
1− L0‖xn − x∗‖ .

(19)

Similarly, we obtain

‖F(yn)
−1F′(x∗)‖ ≤ 1

‖yn − x∗‖(1− L0

2
‖yn − x∗‖)

,

‖ F(zn)

F(yn)
‖ ≤

M(1 +
Mψ1(‖xn − x∗‖)
1− L0‖xn − x∗‖ )

1− L0

2
g0(‖xn − x∗‖)‖xn − x∗‖

, (20)

‖F(zn)
−1F′(x∗)‖ ≤ 1

‖zn − x∗‖(1− L0

2
‖yn − x∗‖)

,

and

‖ F(zn)

F(yn)
‖ ≤

M(1 +
Mψ2(‖xn − x∗‖)
1− L0‖xn − x∗‖ )

1− L0

2
g0(‖xn − x∗‖)‖xn − x∗‖

, (21)

Let us choose Ci, i = 1, 2, 3, 4 as in [31]:

C1(a) = 1 + 2a + 4a3 − 3a4 (22)

C2(a, b) = 1 + 2a + b + a2 + 4ab + 3a2b + 4ab2 + 4a3b− 4a2b2 (23)

and
C3(a, b, c) = 1 + 2a + b + c + a2 + 4ab + 2ac + 4a2b + a2c + 6ab2 + 8abc− b3 + 2bc. (24)

As these functions, they fulfill the terms imposed in Theorem 1 in [31], So, we have that the order of
convergence of the method (2) has to reach at least order 16.

Set

a = a(t) =
Mg0(t)
1− L0t

, (25)

b = b(t) =
M(1 +

Mψ1(t)
1− L0t

)

1− L0

2
t

, (26)

c = c(t) =
M(1 +

Mψ2(t)
1− L0t

)

1− L0

2
t

, (27)

and
γi =

1
L0

, i = 0, 1, 2, 3.
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Then it follows from (19)–(24) that functions ψi can be defined by

ψ1(t) = 1 + 2a + 4a3 + 3a4 (28)

ψ2(t) = 1 + 2a + b + a2 + 4ab + 3a2b + 4ab2 + 4a3b + 4a2b2 (29)

and
ψ3(t) = 1 + 2a + b + c + a2 + 4ab + 2ac + 4a2b + a2c + 6ab2 + 8abc + b3 + 2bc. (30)

3. Dynamical Study of a Special Case of the Family (2)

In this article, the concepts of critical point, fixed point, strange fixed point, attraction basins,
parameter planes and convergence planes are going to be assumed. We refer the reader to see [5,7,16,38]
to recall the basic dynamical concepts.

In this third section we will study the complex dynamics of a particular case of the method (2),
which consists in select:

C1(xn) = F′(yn)
−1F′(xn),

C2(xn) = F′(zn)
−1F′(xn)

and
C3(xn) = F′(yn)

−1F′(xn).

Let be a polynomial of degree two with two roots, that they are not the same. If we apply this
operator on the previous polynomial and using the Möebius map h(z) = z−A

z−B , we obtain

G(z, α) =
z8(1− α + z)8

(−1− z + αz)8 . (31)

The fixed points of this operator are:

• 0
• ∞
• And 15 more, which are:

– 1 (related to original ∞).
– The roots of a 14 degree polynomial.

In Figure 1 the bifurcation diagram of all fixed points, extraneous or not, is presented.

Figure 1. Fixed points’s bifurcation diagram.
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Now, we are going to compute the critical points, i.e., the roots of

G′(z, α) = − 8(−1+α−z)7z7(−1+α−2z−z2+αz2)
(−1−z+αz)9

The free critical points are: cp1(α) = −1 + α, cp2(α) =
1−
√
−(−2+α)α
−1+α and cp3(α) =

1+
√
−(−2+α)α
−1+α .

We also have the following results.

Lemma 1.

(a) If α = 0

(i) cp1(α) = cp2(α) = cp3(α) = −1.

(b) If α = 2

(i) cp1(α) = cp2(α) = cp3(α) = 1.

You can easily verify that for every value of α we have to cp2(α) =
1

cp3(α)

It is easy to see that there is only one independent critical point. So, we assume that cp2(α) is the
only free critical point without loss of generality. Taking cp2(α), we perform the study of the parameter
space associated with the free critical point. This will allow us to find the some members of the family,
and we want to stay with the best members.

We are going to show different planes of parameters. In Figure 2 we show the parameter spaces
associated to critical point cp2(α). Now let us paint a point of cyan if the iteration of the method
starting in z0 = cp1(α) converges to the fixed point 0 (related to root A) or if it converges to ∞ (allied
to root B). That is, the points relative to the roots of the quadratic polynomial will be painted cyan and
a point is painted in yellow if the iteration converges to 1 (related to ∞). Therefore, all convergence
will be painted cyan. On the other hand, convergence to strange fixed points or cycles appears in
other colors. As an immediate consequence, all points of the plane that are not cyan are not a good
choice of α in terms of numerical behavior.

- -

-

-

Figure 2. Parameter space of the free critical point cp2(α).
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Once we have detected the anomalies, we can go on to describe the dynamic planes. To understand
the colors we have used in these dynamic planes, we have to indicate that if after a maximum of
1000 iterations and with a tolerance of 10−6 convergence has not been achieved to the roots, we have
painted in black. Conversely, we colored in magenta the convergence to 0 and colored in cyan the
convergence to ∞. Then, the cyan or magenta regions identify the convergence.

If we focus our attention on the region shown in Figure 2, it is clear that there are family members
with complicated behaviors. We will also show dynamic planes in Figures 3 and 4, of a family member
with convergence regions to any of the strange fixed points.

- - -
-
-

Figure 3. Attraction basins associated to α = −10.

-
-
-

Figure 4. Attraction basins associated toα = 4.25.

In the following figures, we will show the dynamic planes of family members with convergence
to different attracting n-cycles. For example, in the Figures 5 and 6, we see the dynamic planes to an
attracting 2-cycle and in the Figure 7 the dynamic plane of family members with convergence to an
attracting 3-cycle that was painted in green in the parameter planes.
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- - - -
-
-

Figure 5. Attraction basins associated to α = −2.5.

-
-
-

Figure 6. Attraction basins associated to α = 11.

- -

-
-
-

Figure 7. Attraction basins associated to α = 10− 13i.

Other particular cases are shown in Figures 8 and 9. The basins of attraction for different α values
in which we see the convergence to the roots of the method can be seen.
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- -

-
-

Figure 8. Attraction basins associated to α = 0.5.

- -
-
-

Figure 9. Attraction basins associated to α = −0.5i.

4. Example Applied

Next, we want to show the applicability of the theoretical part previously seen in a real problem.
Chemistry is a discipline in which many equations are handled. In this concrete case, let us consider
the quartic equation that can describe the fraction or amount of the nitrogen-hydrogen feed that is
turned into ammonia, which is known as fractional conversion and is shown in [42,43].

If the pressure is 250 atm. and the temperature reaches a value of 500 ◦C, the previous equation
reduces to: g(x) = x4 − 7.79075x3 + 14.7445x2 + 2.511x− 1.674. We define S as all real line, D as the
interval [0, 1] and ξ = 0. We consider the function F defined on D. If we now take the functions ψi(t)
with i = 1, 2, 3 and choosing the value of as α = 1.025, we obtain: L0 = 2.594 . . ., L = 3.282 . . .. It is
clear that in this case L0 < L, so we improve the results. Now, we compute M = 1.441 . . .. Additionally,
computing the zeros of the functions previously defined, we get: r0 = 0.227 . . ., �A = 0.236 . . .,
r1 = 0.082 . . ., r2 = 0.155 . . ., r3 = 0.245 . . ., and as a result of it we get r = r1 = 0.082 . . .. Then we
can guarantee that the method (2) converges for α = 1.025 due to Theorem 1. The applicability of our
family of methods is thus proven.
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1. Introduction

The problem of finding a solution of the nonlinear equation affects a large area of various fields.
For instance, kinetic theory of gases, elasticity, applied mathematics and also engineering dynamic
systems are mathematically modeled by difference or differential equations. Likewise, there are
numerous problems in the field of medical, science, applied mathematics and engineering that can
be reduced in the form of a nonlinear equation. Many of those problems cannot be solved directly
through any of the methods. For this, we opt for numerical procedure and are able to find at least
an approximate solution of the problem using various iterative methods. In this concern, Newton’s
method [1] is one of the best and most renowned quadratically convergent iterative methods in Banach
spaces, which is frequently used by the authors as it is an efficient method and has a smooth execution.
Now, consider a nonlinear equation having the form

L(m) = 0, (1)

where L is a nonlinear operator defined as L : B ⊆ ∇1 → ∇2, where B is a non-empty open convex
domain of a Banach space ∇1 with values in a Banach space ∇2 which is usually known as the
Newton–Kantorovich method that can be defined as{

m0 given in B,

mn = mn−1 − [L′(mn−1)]
−1L(mn−1), n ∈ N,

Mathematics 2019, 7, 540; doi:10.3390/math7060540 www.mdpi.com/journal/mathematics248
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where L′(mn−1) is the Fréchet derivative of L at mn−1. The results on semilocal convergence have been
originally studied by L.V. Kantorovich in [2]. In the early stages, he gave the method of recurrence
relations and afterwards described the method of majorant principle. Subsequently, Rall in [3] and
many researchers have studied the improvements of the results based on recurrence relations. A large
number of researchers studied iterative methods of various order to solve the nonlinear equations
extensively. The convergence of iterative methods generally relies on two types: semilocal and
local convergence analysis. In the former type, the convergence of iterative methods depends upon
the information available around the starting point, whereas, in the latter one, it depends on the
information around the given solution.

In the literature, researchers have developed various higher order schemes in order to get better
efficiency and also discussed their convergence. Various types of convergence analysis using different
types of continuity conditions viz. Lipschitz continuity condition has been studied by Wang et al.
in [4,5], Singh et al. in [6], and Jaiswal in [7], to name a few. Subsequently, many authors have studied
the weaker continuity condition than Lipschitz namely Hölder by Hernández in [8], Parida and
Gupta in [9,10], Wang and Kou in [11] are some of them. Usually, there are some nonlinear equations
that neither satisfy Lipschitz nor Hölder continuity conditions; then, we need a generalized form
of continuity condition such as ω-continuity, which has been studied by Ezquerro and Hernández
in [12,13], Parida and Gupta in [14,15], Prashanth and Gupta in [16,17], Wang and Kou in [18–20], etc.

The algorithms having higher order of convergence plays an important role where the quick
convergence is required like in the stiff system of equations. Thus, it is quite interesting to study
higher order methods. In this article, we target our study on the semilocal convergence analysis
using recurrence relations technique on the multi-point variant of Jarratt method when the third order
Fréchet derivative becomes unbounded in the given domain.

2. The Method and Some Preliminary Results

Throughout the paper, we use the below mentioned notations:
B ≡ non-empty open subset of ∇1; B0 ⊆ B is a non-empty convex subset; ∇1, ∇2 ≡ Banach

spaces, U(m, b) = {n ∈ ∇1 : ‖n−m‖ < b}, U(m, b) = {n ∈ ∇1 : ‖n−m‖ ≤ b}.
Here, we consider the multi-point variant of the Jarratt method suggested in [21]

nn = mn +
2
3 (pn −mn),

on = mn − ΥL(mn)℘nL(mn),
mn+1 = on −

[ 3
2 L′(nn)−1ΥL(mn) + ℘n

(
I − 3

2 ΥL(mn)
)]

L(on),
(2)

where ΥL(mn) = [6L′(nn)− 2L′(mn)]−1[3L′(nn)+ L′(mn)], ℘n = [L′(mn)]−1, pn = mn−℘nL(mn) and
I is the identity operator. In the same article for deriving semilocal convergence results, the researchers
have assumed the following hypotheses:

(A1)‖℘0L(m0)‖ ≤ κ,
(A2)‖℘0‖ ≤ λ,
(A3)‖L′′(m)‖ ≤ P, m ∈ B,
(A4)‖L′′′(m)‖ ≤ Q, m ∈ B,
(A5)‖L′′′(m)− L′′′(n)‖ ≤ ω(‖m− n‖), ∀ m, n ∈ B,

where ω : R+ → R+, is a continuous and non-decreasing function for m > 0 such that ω(m) ≥ 0 and
satisfying ω(εz) ≤ φ(ε)ω(z), ε ∈ [0, 1] and z ∈ [0,+∞) with φ : [0, 1] → R+, is also continuous and
non-decreasing. One can realize that, if ω(m) = Lm, then this condition is reduced into Lipschitz
and when ω(m) = Lmq, q ∈ (0, 1] to the Hölder. Furthermore, we found some nonlinear functions
which are unbounded in a given domain but seem to be bounded on a particular point of the domain.
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For a motivational example, consider a function h on (−2, 2) . We can verify the above fact by
considering the following example [22]

h(m) =

{
m3ln(m2)− 6m2 − 3m + 8 m ∈ (−2, 0) ∪ (0, 2),

0, m = 0.
(3)

Clearly, we can see this fact that h′′′(m) is unbounded in (−2, 2). Hence, for avoiding the
unboundedness of the function, we replace the condition (A4) by the milder condition since the given
example is bounded at m = 1. Thus, here we can assume that the norm of the third order Fréchet
derivative is bounded on the initial iterate as:

(B1)‖L′′′(m0)‖ ≤ A, m0 ∈ B0,
where m0 be an initial approximation. Moreover, we also assume
(B2)‖L′′′(m)− L′′′(n)‖ ≤ ω(‖m− n‖) ∀ m, n ∈ B(m0, ε),
where ε > 0. For now, we choose ε = κ

τ̃0
, where τ̃0 will be defined later and the rationality of this

choice of such ε will be proved. Moreover, some authors have considered partial convergence
conditions. The following nonlinear integral equation of mixed Hammerstein type [23]

m(s) = 1 +
∫ 1

0
G(s, t)

(
1
2

m(t)
5
2 +

7
16

m(t)3
)

dt, s ∈ [0, 1], (4)

where m ∈ [0, 1], t ∈ [0, 1], G(s, t) is the Green function defined by

G(s, t) =

{
(1− s)t t ≤ s,

s(1− t) s ≤ t,

is an example that justified this idea which will be proved later in the numerical application section.
In this study, on using recurrence relations, we first discuss the semilocal convergence of the
above-mentioned algorithm by just assuming that the second-order Fréchet derivative is bounded. In
addition, next, we restrict the domain of the nonlinear operator and consider the bound of the norm
of the third-order Fréchet derivative on an initial iterate only rather than supposing it on the given
domain of the nonlinear operator.

We start with a nonlinear operator L : B ⊆ ∇1 → ∇2 and let the Hypotheses (A1)–(A3) be
fulfilled. Consider the following auxiliary scalar functions out of which Δ and Λ function are taken
from the reference [21] and Γ and Θ have been recalculated:

Γ(θ) = 1 + 1
2

θ
1−θ +

[
1 + θ

1− 2
3 θ

(
1 + 1

2
θ

1−θ

) ]
× θ

2

[
1

1−θ +
(

1 + 1
2

θ
1−θ

)2
]

,
(5)

Δ(θ) =
1

1− θΓ(θ)
, (6)

Θ(θ) =

[
θ

1− 2
3 θ

(
1 + 1

2
θ

1−θ

)
+ θ

[
1 + θ

1− 2
3 θ

(
1 + 1

2
θ

1−θ

) ]
+ θ2

2(1−θ)

[
1 + θ

1− 2
3 θ

(
1 + 1

2
θ

1−θ

) ]
+ θ

2

[
1 + θ

1− 2
3 θ

(
1 + 1

2
θ

1−θ

) ]2

Λ(θ)

]
Λ(θ),

(7)
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where

Λ(θ) =
θ

2

[
1

1− θ
+

(
1 +

1
2

θ

1− θ

)2 ]
. (8)

Next, we study some of the properties of the above-stated functions. Let k(θ) = Γ(θ)θ − 1.
Since k(0) = −1 < 0 and k( 1

2 ) ≈ 1.379 > 0, then the function k(t) has at least one real root in (0, 1
2 ).

Suppose γ is the smallest positive root, then clearly γ < 1
2 . Now, we begin with the following lemmas

that will be used later in the main theorem(s).

Lemma 1. Let the functions Γ, Δ and Θ be given in Equations (5)–(7), respectively, and γ be the smallest
positive real root of Γ(θ)θ − 1. Then,

(a) Γ(θ) and Δ(θ) are increasing and Γ(θ) > 1, Δ(θ) > 1 for θ ∈ (0, γ),
(b) for θ ∈ (0, γ), Θ(θ) is an increasing function.

Proof. The proof is straightforward from the expressions of Γ, Δ and Θ given in Relations (5)–(7),
respectively.

Define κ0 = κ, λ0 = λ, τ0 = Pλκ and ζ0 = Δ(τ0)Θ(τ0). Furthermore, we designate the following
sequences as:

κn+1 = ζnκn, (9)

λn+1 = Δ(τn)λn, (10)

τn+1 = Pλn+1κn+1 = Δ(τn)ζnτn, (11)

ζn+1 = Δ(τn+1)Θ(τn+1), (12)

where n ≥ 0. Some important properties of the immediate sequences are given by the following lemma.

Lemma 2. If τ0 < γ and Δ(τ0)ζ0 < 1, where γ is the smallest positive root of Γ(θ)θ − 1 = 0, then we have

(a) Δ(τn) > 1 and ζn < 1 for n ≥ 0,
(b) the sequences {κn}, {τn} and {ζn} are decreasing,
(c) Γ(τn)τn < 1 and Δ(τn)ζn < 1 for n ≥ 0.

Proof. The proof can be done readily using mathematical induction.

Lemma 3. Let the functions Γ, Δ and Θ be given in the Relations (5)–(7), respectively. Assume that α ∈ (0, 1),
then Γ(αθ) < Γ(θ), Δ(αθ) < Δ(θ) and Θ(αθ) < α2Θ(θ), for θ ∈ (0, γ).

Proof. For α ∈ (0, 1), θ ∈ (0, γ) and by using the Equations (5)–(7), this lemma can be proved.

3. Recurrence Relations for the Method

Here, we characterized some norms which are already derived in the reference [21] for the
Method (2) and some are recalculated here.

For n = 0, the existence of ℘0 implies the existence of p0, n0 and further, we have

‖p0 −m0‖ ≤ κ0, ‖n0 −m0‖ ≤ 2
3

κ0, (13)
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i.e., p0 and n0 ∈ U(m0, ρκ), where ρ = Γ(τ0)
1−ζ0

. Let R(m0) = ℘0[L′(n0)− L′(m0)] also; since τ0 < 1, we have

‖R(m0)‖ ≤ 2
3

τ0 ,

∥∥∥∥∥
[

I +
3
2

R(m0)

]−1
∥∥∥∥∥ ≤ 1

1− τ0
. (14)

Moreover,

‖ΥL(m0)‖ =

∥∥∥∥∥I − 3
4

[
I + 3

2 R(m0)

]−1

R(m0)

∥∥∥∥∥
≤ 1 +

∥∥∥∥∥ 3
4

[
I + 3

2 R(m0)

]−1
∥∥∥∥∥ ‖R(m0)‖

≤ 1 + 1
2

τ0
1−τ0

.

(15)

From the second sub-step of the considered scheme, it is obvious that

‖o0 −m0‖ ≤
[

1 +
1
2

τ0

1− τ0

]
κ0. (16)

It is similar to obtain

‖o0 − p0‖ ≤
[

1
2

τ0

1− τ0

]
κ0. (17)

Using the Banach Lemma, we realize that L′(n0)
−1 exists and can be bounded as

‖L′(n0)
−1‖ ≤ λ0

1− 2
3 τ0

. (18)

From Taylor’s formula, we have

L(o0) = L(m0) + L′(m0)(o0 −m0)

+
∫ 1

0
[L′(m0 + θ(o0 −m0))− L′(m0)]dθ(o0 −m0). (19)

From the above relation, it follows that

‖L(o0)‖ ≤ Λ(τ0)
κ

λ
. (20)

Though in the considered reference [21] the norm ‖m1 − o0‖ has already been calculated, here
we are recalculating it in a more precise way such that the recalculated norm becomes finer than the
given in the reference [21] and its significance can be seen in the numerical section. The motivation for
recalculating this norm has been also discussed later. From the last sub-step of the Equation (2),

m1 − o0 = −
[

3
2

L′(n0)
−1ΥL(m0) + ℘n

(
I − 3

2
ΥL(m0)

)]
L(o0)

= −
[
℘0 +

3
2
[L′(n0)

−1 + L′(n0)
−1]

]
ΥL(m0)L(o0).

On taking the norm, we have

‖m1 − o0‖ ≤ κ0
2

[
1 + τ0

1− 2
3 τ0

(
1 + 1

2
τ0

1−τ0

) ]
×
[

τ0
1−τ0

+ τ0

(
1 + 1

2
τ0

1−τ0

)2
]

,
(21)

252



Mathematics 2019, 7, 540

and thus we obtain

‖m1 −m0‖ ≤ ‖m1 − o0‖+ ‖o0 −m0‖ ≤ Γ(τ0)κ0. (22)

Hence, m1 ∈ U(m0, ρκ). Now, since the assumption ζ0 < 1
Δ(τ0)

< 1, notice that τ0 < γ hence
Γ(τ0) < Γ(γ) and it can be written as

‖I − ℘0L′(m1)‖ ≤ τ0Λ(τ0) < 1. (23)

Thus, ℘1 = [L′(m1)]
−1 exists and, by virtue of Banach lemma, it may be written as

‖℘1‖ ≤ λ0

1− τ0Γ(τ0)
= λ1.

Again by Taylor’s expansion along on, we can write

L(mn+1) = L(on) + L′(pn)(mn+1 − on)

+
∫ 1

0 [L
′(on + θ(mn+1 − on))− L′(pn)]dθ(mn+1 − on),

(24)

and

L′(pn) = L′(mn) +
∫ 1

0
L′′(mn + θ(pn −mn))dθ(pn −mn). (25)

On using the above relation and, for n = 0, Equation (24) assumes the form

L(m1) = L(o0) + L′(m0)(m1 − o0)

+
∫ 1

0
L′′(m0 + θ(p0 −m0))dθ(p0 −m0)(m1 − o0)

+
∫ 1

0
[L′(o0 + θ(m1 − o0))− L′(p0)]dθ(m1 − o0).

Using the last sub-step of the Scheme given in the Equation (2), the above expression can be
rewritten as

L(m1) =
3
2
[L′(n0)− L′(m0)]L′(n0)

−1ΥL(m0)L(o0)

+
∫ 1

0
L′′(mn + θ(pn −mn))dθ(pn −mn)(mn+1 − on)

+
∫ 1

0
[L′(on + θ(mn+1 − on))− L′(pn)]dθ(mn+1 − on).

In addition, thus,

‖L(m1)‖ ≤ Θ(τ0)
κ

λ
. (26)

Hence,
‖p1 −m1‖ ≤ Δ(τ0)Θ(τ0)κ0 = κ1.

In addition, because Γ(τ0) > 1 and by triangle inequality, we find

‖p1 −m0‖ ≤ ρκ,

and

‖n1 −m0‖ ≤ ‖m1 −m0‖+
∥∥∥∥2

3
(p1 −m1)

∥∥∥∥ ≤ (Γ(τ0) + ζ0)κ0 < ρκ,
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which implies p1, n1 ∈ U(m0, ρκ). Furthermore, we have

P‖℘1‖‖℘1L(m1)‖ ≤ Δ2(τ0)Θ(τ0)τ0 = τ1. (27)

Moreover, we can state the following lemmas.

Lemma 4. Under the hypotheses of Lemma 2, let σ = Δ(τ0)ζ0 and ς = 1
Δ(τ0)

, we have

ζi ≤ ςσ3n
, (28)

n

∏
i=0

ζi ≤ ςn+1σ
3n+1−1

2 , (29)

κn ≤ κςnσ
3n−1

2 , (30)

n+m

∑
i=n

κi ≤ κςnσ
3n−1

2

⎛⎝1− ςm+1σ
3n(3m+1)

2

1− ςσ3n

⎞⎠ , (31)

where n ≥ 0 and m ≥ 1.

Proof. In order to prove this lemma, first, we need to derive

ζn ≤ ςσ3n
.

We will prove it by executing the induction. By Lemma 3 and since τ1 = στ0, hence for n = 1,

ζ1 = Δ(στ0)Θ(στ0) < σ2ζ0 < ςσ31
.

Let it be true for n = k, then

ζk ≤ ςσ3k
, k ≥ 1.

Now, we will prove it for n = k + 1. Thus,

ζk+1 < Δ(στk)Θ(στk) < ςσ3k+1
.

Therefore, ζn ≤ ςσ3n
is true for n ≥ 0. Making use of this inequality, we have

k

∏
i=0

ζi ≤
k

∏
i=0

ςσ3i
= ςk+1

k

∏
i=0

σ3i
= ςk+1σ

3k+1−1
2 , k ≥ 0.

By making use of the above-derived inequality in the Relation (9), we have

κn = ζn−1κn−1 = ζn−1ζn−2κn−2 = · · · = κ0

n−1

∏
i=0

ζi ≤ κςnσ
3n−1

2 , n ≥ 0.

With the evidence that 0 < ς < 1 and 0 < σ < 1, we can say that κn → 0 as n → ∞. Let us denote

� =
k+m

∑
i=k

ςiσ
3i
2 , k ≥ 0, m ≥ 1.
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The above equation may also be rewritten in the following form

� ≤ ςkσ
3k
2 + ςσ3k

k+m−1

∑
i=k

ςiσ
3i
2

= ςkσ
3k
2 + ςσ3k

(
�− ςk+mσ

3k+m
2

)
,

and then it becomes

� < ςkσ
3k
2

⎛⎝1− ςm+1σ
3k(3m+1)

2

1− ςσ3k

⎞⎠ .

Moreover,

k+m

∑
i=k

κi ≤
k+m

∑
i=k

κςiσ
3i−1

2 ≤ κςkσ
3k−1

2

⎛⎝1− ςm+1σ
3k(3m+1)

2

1− ςσ3k

⎞⎠ .

Lemma 5. Let the hypotheses of Lemma 2 and the conditions (A1)–(A3) hold; then, the following conditions
are true for all n ≥ 0:

(i)℘n = [L′(mn)]−1exists and ‖℘n‖ ≤ λn,
(ii)‖℘nL(mn)‖ ≤ κn,
(iii)P‖℘n‖‖℘nL(mn)‖ ≤ τn,
(iv)‖pn −mn‖ ≤ κn,
(v)‖mn+1 −mn‖ ≤ Γ(τn)κn,
(vi)‖mn+1 −m0‖ ≤ ρκ, where ρ = Γ(τ0)

1−ζ0
.

(32)

Proof. By using the mathematical induction of Lemma 4, we can prove (i)− (v) for n ≥ 0 . Now,
for n ≥ 1, by making use of Relation (31) and the above results, we get

‖mn+1 −m0‖ ≤
n

∑
i=0
‖mi+1 −mi‖ < ρκ.

Lastly, the following lemma can be proved in a similar way of the article by Wang and Kou [22].

Lemma 6. Let ρ = Γ(τ0)
1−ζ0

and Δ(τ0)ζ0 < 1 and τ0 < γ, where γ is the smallest positive root of Γ(θ)θ− 1 = 0;
then, ρ < 1

τ0
.

4. Semilocal Convergence When L′′′ Condition Is Omitted

In the ensuing section, our objective is to prove the convergence of the Algorithm mentioned in
the Equation(2) by assuming the Hypotheses (A1)–(A3) only. Furthermore, we will find a ball with
center m0 and of radius ρκ in which the solution exists and will be unique as well together with which
we will define its error bound.

Theorem 1. Suppose L : B ⊆ ∇1 → ∇2 is a continuously second-order Fréchet differentiable on B.
Suppose the hypotheses (A1)–(A3) are true and m0 ∈ B. Assume that τ0 = Pλκ and ζ0 = Δ(τ0)Θ(τ0)

satisfy τ0 < γ and Δ(τ0)ζ0 < 1, where γ is the smallest root of Γ(θ)θ − 1 = 0 and Γ, Δ and Θ are defined
by Equations (5)–(7), respectively. In addition, suppose U(m0, ρκ) ⊆ B, where ρ = Γ(τ0)

1−ζ0
. Then, initiating
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with m0, the iterative sequence {mn} creating from the Scheme given in the Equation (2) converges to a zero
m∗ of L(m) = 0 with mn, m∗ ∈ U(m0, ρκ) and m∗ is an exclusive zero of L(m) = 0 in U(m0, 2

Pλ − ρκ) ∩ B.
Furthermore, its error bound is given by

‖mn −m∗‖ ≤ Γ(τ0)κςnσ
3n−1

2

(
1

1− ςσ3n

)
, (33)

where σ = Δ(τ0)ζ0 and ς = 1
Δ(τ0)

.

Proof. Clearly, the sequence {mn} is well established in U(m0, ρκ). Now,

‖mk+l −mk‖ ≤ ∑k+l−1
i=k ‖mi+1 −mi‖

≤ Γ(τ0)κςkσ
3k−1

2

(
1−ςl σ

3k(3l−1+1)
2

1−ςσ3k

)
,

(34)

which shows that {mk} is a Cauchy sequence. Hence, there exists m∗ satisfying

lim
k→∞

mk = m∗.

Letting k = 0, l → ∞ in Equation (34), we obtain

‖m∗ −m0‖ ≤ ρκ,

which implies that m∗ ∈ U(m0, ρκ). Next, we will show that m∗ is a zero of L(m) = 0. Because

‖℘0‖ ‖L(mn)‖ ≤ ‖℘n‖ ‖L(mn)‖,

and in the above inequality by tending n → ∞ and using the continuity of L in B, we find that
L(m∗) = 0. Finally, for unicity of m∗ in U(m0, 2

Pλ − ρκ) ∩ B, let m∗∗ be another solution of L(m) in
U(m0, 2

Pλ − ρκ) ∩ B. Using Taylor’s theorem, we get

0 = L(m∗∗)− L(m∗) =
∫ 1

0
L′((1− tθ)m∗ + θm∗∗)dθ(m∗∗ −m∗).

In addition,

‖℘0‖
∥∥∥∥∫ 1

0
[L′((1− θ)m∗ + θm∗∗)− L′(m0)]dθ

∥∥∥∥
≤ Pλ

∫ 1

0
[(1− θ)‖m∗ −m0‖+ θ‖m∗∗ −m0‖]dθ

≤ Pλ

2

[
ρκ +

2
Pλ
− ρκ

]
= 1,

which implies
∫ 1

0 L′((1− θ)m∗ + θm∗∗)dθ is invertible and hence m∗∗ = m∗.

5. Semilocal Convergence When L′′′ Is Bounded on Initial Iterate

In the current section, we establish the existence and uniqueness theorem of the solution based on
the weaker conditions (A1)–(A3), (B1) and (B2). Define the sequences as

κ̃n+1 = ζ̃nκ̃n, (35)

λ̃n+1 = Δ(τ̃n)λ̃n, (36)
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τ̃n+1 = Pλ̃n+1κ̃n+1 = Δ(τ̃n)ζ̃nτ̃n, (37)

μ̃n+1 = Qλ̃n+1κ̃2
n+1 = Δ(τ̃n)ζ̃2

nμ̃n, (38)

ν̃n+1 = λ̃n+1κ̃2
n+1ω(κ̃n+1) ≤ Δ(τ̃n)φ(ζ̃n)ζ̃

2
nν̃n, (39)

ζ̃n+1 = Δ(τ̃n+1)Θ′(τ̃n+1, μ̃n+1, ν̃n+1), (40)

where n ≥ 0 and Q = A + ω
(

κ
τ̃0

)
. Here, we assign κ̃0 = κ, λ̃0 = λ, τ̃0 = Pλκ, μ̃0 = Qλκ2,

ν̃0 = λκ2ω(κ) and ζ̃0 = Δ(τ̃0)Θ′(τ̃0, μ̃0, ν̃0). From Lemma (5), it is known that

‖mn −m0‖ < ρκ <
κ

τ̃0
.

Therefore, mn ∈ U(m0, κ
τ̃0
). Similarly, for t ∈ [0, 1] and n ≥ 1 and using Lemma (6), we get

‖mn + st(pn −mn)−m0‖ ≤ ‖mn −m0‖+ ‖pn −mn‖

≤
n−1

∑
i=0
‖mi+1 −mi‖+ κ̃n

≤ Γ(τ̃0)
n

∑
i=0

κ̃i ≤ ρκ <
κ

τ̃0
.

Therefore, {mn + st(pn − mn)} ∈ U(m0, κ
τ̃0
). This shows that the choice for ε = κ

τ̃0
is relevant.

Assume that there exists a root τ̃0 ∈ (0, γ) of the equation

m =

[
A + ω

( κ

m

) ]
λκ2.

It is obvious that μ̃0 = Qλκ2, where Q = A + ω
(

κ
τ̃0

)
. Notice that here we don’t define τ̃0 as the

root of the following equation:

m =

[
A + ω

(
Γ(m)κ

1− Δ(m)Θ′(m, μ̃0, ν̃0)

) ]
λκ2.

It would be remembered that, for all m ∈ U(m0, κ
τ̃0
), we have

‖L′′′(m)‖ = ‖L′′′(m0)‖+ ‖L′′′(m)− L′′′(m0)‖
≤ A + ω(‖m−m0‖)
≤ A + ω

(
κ
τ̃0

)
= Q.

Here, we include two auxiliary scalar functions taken from the reference [21]

Θ′(θ, η, ξ) =

[
5
6 η + (3θ+η)(6θ+2η)

27−18θ + (2θ+η)(3θ+η)
6−4θ

+(2+2θ+η)(3θ+η)θ
(12−8θ)(1−θ)

]
Λ̃(θ, η, ξ)

+ 1
2

θ2

1−θ

[
9

6−4θ

(
1 + 1

2
θ

1−θ

)
+ 3θ

4(1−θ)
+ 1

2

]
Λ̃(θ, η, ξ)

+ θ
2

[
9

6−4θ

(
1 + 1

2
θ

1−θ

)
+ 3θ

4(1−θ)
+ 1

2

]2

Λ̃(θ, η, ξ)2,

(41)
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where

Λ̃(θ, η, ξ) =
1
8

θ3

(1− θ)2 +
1
12

θη

1− θ
+

(
D1 +

1
3

D2

)
ξ. (42)

D1 =
∫ 1

0

∫ 1
0 φ(sθ)θ(1− θ)dsdθ and D2 =

∫ 1
0

∫ 1
0 φ

( 2
3 sθ

)
θdsdθ.

Using the property of the induction and from the conditions (A1)–(A3), (B1) and (B2), the
following relations are true for all n ≥ 0 :

(i)℘n = [L′(mn)]−1exists and ‖℘n‖ ≤ λ̃n,
(ii)‖℘nL(mn)‖ ≤ κ̃n,
(iii)P‖℘n‖‖℘nL(mn)‖ ≤ τ̃n,
(iv)Q‖℘n‖‖℘nL(mn)‖ ≤ μ̃n,
(v)‖℘n‖‖℘nL(mn)‖2ω(‖℘nL(mn)‖) ≤ ν̃n,
(vi)‖mn+1 −mn‖ ≤ Γ(τ̃n)κ̃n,
(vii)‖mn+1 −m0‖ ≤ ρ̃κ, where ρ̃ = Γ(τ̃0)

1−ζ̃0
.

(43)

The second theorem of this article is based on the weaker assumptions, which is stated as:

Theorem 2. Suppose L : B ⊆ ∇1 → ∇2 is a continuously third-order Fréchet differentiable on a non-empty
open convex subset B0 ⊆ B. Suppose the hypotheses (A1)–(A3), (B1) and (B2) are true and m0 ∈ B0.
Assume that τ̃0 = Pλκ, μ̃0 = Qλκ2, ν̃0 = λκ2ω(κ) and ζ̃0 = Δ(τ̃0)Θ′(τ̃0, μ̃0, ν̃0) satisfy τ̃0 < γ

and Δ(τ̃0)ζ̃0 < 1, where γ is the smallest root of Γ(θ)θ − 1 = 0 and Γ, Δ and Θ′ are defined by
Equations (5), (6) and (41). In addition, suppose U(m0, ρ̃κ) ⊆ B0, where ρ̃ = Γ(τ̃0)

1−ζ̃0
. Then, initiating

with m0, the iterative sequence {mn} created from the Scheme given in the Equation (2) converges to a zero
m∗ of L(m) = 0 with mn, m∗ ∈ U(m0, ρ̃κ) and m∗ is an exclusive zero of L(m) = 0 in U(m0, 2

Pλ − ρ̃κ) ∩ B.
Furthermore, its error bound is given by

‖mn −m∗‖ ≤ Γ(τ̃0)κς̃nσ̃
5n−1

4

(
1

1− ς̃σ̃5n

)
, (44)

where σ̃ = Δ(τ̃0)ζ̃0 and ς̃ = 1
Δ(τ̃0)

.

Proof. Analogous to the proof of Theorem 1.

6. Numerical Example

Example 1. Consider nonlinear integral equation from the reference [23] already mentioned in the introduction
is given as

m(s) = 1 +
∫ 1

0
G(s, t)

(
1
2

m(t)
5
2 +

7
16

m(t)3
)

dt, s ∈ [0, 1], (45)

where m ∈ [0, 1], t ∈ [0, 1] and G is the Green’s function defined by

G(s, t) =

{
(1− s)t t ≤ s,

s(1− t) s ≤ t.

258



Mathematics 2019, 7, 540

Proof. Solving Equation (45) is equivalent to find the solution for L(m) = 0, where L : B ⊆ C[0, 1]→
C[0, 1] :

[L(m)](s) = m(s)− 1−
∫ 1

0
G(s, t)

(
1
2

m(t)
5
2 +

7
16

m(t)3
)

dt, s ∈ [0, 1].

The Fréchet derivatives of L are given by

L′(m)n(s) = n(s)−
∫ 1

0
G(s, t)

(
5
4

m(t)
3
2 +

21
16

m(t)2
)

n(t)dt, n ∈ B,

L′′(m)no(s) = −
∫ 1

0
G(s, t)

(
15
8

m(t)
1
2 +

21
8

m(t)
)

n(t)o(t)dt, n, o ∈ B.

Using the max-norm and taking into account that a solution m∗ of Equation (45) in C[0, 1] must satisfy

‖m∗‖ − 1
16
‖m∗‖ 5

2 − 7
128

‖m∗‖3 − 1 ≤ 0,

i.e., ‖m∗‖ ≤ s1 = 1.18771 and ‖m∗‖ ≥ s2 = 2.54173, where s1 and s2 are the positive roots of the

real equation t− t
5
2

16 − 7
128 t3 − 1 = 0. Consequently, if we look for a solution m∗ such that ‖m∗‖ ≤ s1,

we can consider U(0, s) ⊆ C[0, 1], where s ∈ (s1, s2), as a non-empty open convex domain. We choose,
for example, s = 2 and therefore B = U(0, 2). If m0 = 1, then

‖℘0‖ = 128
87

= λ, ‖℘0L(m0)‖ ≤ 15
87

= κ, ‖L′′(m)‖ ≤ 15
√

2
64

+
21
32

= P.

Thus, τ0 ≈ 0.2505. Hence, τ0Γ(τ0) = 0.4068 < 1 and Δ(τ0)ζ0 = 0.790 < 1 (It is noticeable that, if
we choose the function Γ(m) from the reference [21], then we get Δ(τ0)ζ0 = 1.280 > 1 which violates
one of the assumed hypotheses considered in Theorem 1 and hence this motivates us to recalculate
the function Γ(m)). In addition, U(m0, ρκ) = U(1, 0.5270) ⊆ U(0, 2) = B. Thus, the conditions of
Theorem 1 of Section 4 are satisfied and the nonlinear Equation (45) has the solution m∗ in the region
{u ∈ C[0, 1] : ‖u− 1‖ ≤ 0.5270}, which is unique in {u ∈ C[0, 1] : ‖u− 1‖ < 0.8492} ∩ B. Hence,
we can deduce that the existence ball of solution based on our result is superior to that of Wang and
Kou in [23], but our uniqueness ball is inferior.

Example 2. Now, consider another example discussed in [22] and also mentioned in the introduction, is given by

h(m) =

{
m3ln(m2)− 6m2 − 3m + 8, m ∈ (−2, 0) ∪ (0, 2),

0, m = 0.
(46)

Proof. Taking U(0, 2) = B. Let m0 = 1 be an initial approximation. The derivatives of h are given by

h′(m) = 3m2ln(m2) + 2m2 − 12m− 3,

h′′(m) = 6mln(m2) + 10m− 12,

h′′′(m) = 6ln(m2) + 22.

Clearly, h′′′ is unbounded in B and does not satisfy the condition (A4) but satisfies assumption
(B1), and we have

‖℘0‖ = 1
13

= λ, ‖℘0h(m0)‖ = 1
13

= κ, ‖h′′(m)‖ ≤ 12ln(4) + 32 = P.
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‖h′′′(m0)‖ = 22, ‖h′′′(m)− h′′′(n)‖ ≤ 12
1− 13

32+12log(4)
|m−n|, for all m, n ∈ U

(
1, 13

32+12ln(4)

)
. Here, ω(z) =

12
1− 13

32+12log(4)
z and φ(ε) = 1. Here, τ0 ≈ 0.2878 and since τ0Γ(τ0) = 0.51440 < 1, Δ(τ0)ζ0 = 0.01742 < 1.

Thus, the assumptions of Theorem 2 of Section 5 are satisfied. In addition, thus, the solution lies in the
ball m ∈ U(1, 0.13867), which is unique in U(1, 0.39592) ∩ B. Table 1 shows the comparison of error
bounds for the considered Algorithm mentioned in the Equation 2 but with two different values of
function Γ(m) (One is given in the reference [21] and the other is recalculated here). This table also
confirms that the value of the recalculated function is prominent.

Table 1. Comparison of the error bounds for Method 2.

n With Recalculated Γ(m) With Γ(m) Calculated in [21]

1 0.00085294 0.0019139
2 1.4091×10−13 2.7117×10−11

3 3.1182×10−61 2.0135×10−48

4 2.9759×10−298 5.9108×10−232

7. Conclusions

In this contribution, we have analyzed the semilocal convergence of a well defined multi-point
variant of the Jarratt method in Banach spaces. This iterative method can be used to solve various
kinds of nonlinear equations that satisfy the assumed set of hypotheses. The analysis of this method
has been examined using recurrence relations by relaxing the assumptions in two different approaches.
In the first approach, we have softened the classical convergence conditions to the prove convergence,
existence and uniqueness results together with a priori error bounds. In another way, we have assumed
the norm of the third order Fréchet derivative on an initial iterate, so that it never gets unbounded on
the given domain and, in addition, it satisfies the local ω-continuity condition as well. Two numerical
applications are mentioned that sustain our theoretical consideration.
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Abstract: Based on the very recent work by Shehu and Agbebaku in Comput. Appl. Math. 2017,
we introduce an extension of their iterative algorithm by combining it with inertial extrapolation
for solving split inclusion problems and fixed point problems. Under suitable conditions, we prove
that the proposed algorithm converges strongly to common elements of the solution set of the split
inclusion problems and fixed point problems.
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1. Introduction

The split monotone variational inclusion problem (SMVIP) was introduced by Moudafi [1].
This problem is as follows:

Find a point x∗ ∈ H1 such that 0 ∈ f̂ (x∗) + B1(x∗) (1)

and such that
y∗ = Ax∗ ∈ H2 solves 0 ∈ ĝ(y∗) + B2(y∗), (2)

where 0 is the zero vector, H1 and H2 are real Hilbert spaces, f̂ and ĝ are given single-valued operators
defined on H1 and H2, respectively, B1 and B2 are multi-valued maximal monotone mappings defined
on H1 and H2, respectively, and A is a bounded linear operator defined on H1 to H2.

Mathematics 2019, 7, 560; doi:10.3390/math7060560 www.mdpi.com/journal/mathematics262
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It is well known (see [1]) that

0 ∈ f̂ (x∗) + B1(x∗) ⇐⇒ x∗ = JB1
λ (x∗ − λ f̂ (x∗)),

and that
0 ∈ ĝ(y∗) + B2(y∗) ⇐⇒ y∗ = JB2

λ (y∗ − λĝ(y∗)), y∗ = Ax∗,

where JB1
λ := (I + λB1)

−1 and JB2
λ := (I + λB2)

−1 are the resolvent operators of B1 and B2, respectively,
with λ > 0. Note that JB1

λ and JB2
λ are nonexpansive and firmly nonexpansive.

Recently, Shehu and Agbebaku [2] proposed an algorithm involving a step-size selected
and proved strong convergence theorem for split inclusion problem and fixed point problem
for multi-valued quasi-nonexpansive mappings. In [1], Moudafi pointed out that the problem
(SMVIP) [3–5] includes, as special cases, the split variational inequality problem [6], the split zero
problem, the split common fixed point problem [7–9] and the split feasibility problem [10,11], which
have already been studied and used in image processing and recovery [12], sensor networks in
computerized tomography and data compression for models of inverse problems [13].

If f̂ ≡ 0 and ĝ ≡ 0 in the problem (SMVIP), then the problem reduces to the split variational
inclusion problem (SVIP) as follows:

Find a point x∗ ∈ H1 such that 0 ∈ B1(x∗) (3)

and such that
y∗ = Ax∗ ∈ H2 solves 0 ∈ B2(y∗). (4)

Note that the problem (SVIP) is equivalent to the following problem:

Find a point x∗ ∈ H1 such that x∗ = JB1
λ (x∗) and y∗ = JB2

λ (y∗), y∗ = Ax∗

for some λ > 0.

We denote the solution set of the problem (SVIP) by Ω, i.e.,

Ω = {x∗ ∈ H1 : 0 ∈ B1(x∗) and 0 ∈ B2(y∗), y∗ = Ax∗}.

Many works have been developed to solve the split variational inclusion problem (SVIP). In 2002,
Byrne et al. [7] introduced the iterative method {xn} as follows: For any x0 ∈ H1,

xn+1 = JB1
λ (xn + γA∗(JB2

λ − I)Axn) (5)

for each n ≥ 0, where A∗ is the adjoint of the bounded linear operator A, γ ∈ (0, 2/L), L = ‖A∗A‖
and λ > 0. They have shown the weak and strong convergence of the above iterative method for
solving the problem (SVIP).

Later, inspired by the above iterative algorithm, many authors have extended the algorithm {xn}
generated by (5). In particular, Kazmi and Rizvi [4] proposed an algorithm {xn} for approximating a
solution of the problem (SVIP) as follows:{

un = JB1
λ (xn + γn A∗(JB2

λ − I)Axn),

xn+1 = αn fn(xn) + (1− αn)Sun
(6)

for each n ≥ 0, where {αn} is a sequence in (0, 1), λ > 0, γ ∈ (0, 1/L), L is the spectral radius of the
operator A∗A, f : H1 → H1 is a contraction and S : H1 → H1 is a nonexpansive mapping. In 2015,
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Sitthithakerngkiet et al. [5] proposed an algorithm {xn} for solving the problem (SVIP) and the fixed
point problem (FPP) of a countable family of nonexpansive mappings as follows:{

yn = JB1
λ (xn + γn A∗(JB2

λ − I)Axn),

xn+1 = αn f (xn) + (1− αnD)Snyn
(7)

for each n ≥ 0, where {αn} is a sequence in (0, 1), λ > 0, γ ∈ (0, 1/L), L is the spectral radius of the
operator A∗A, f : H1 → H1 is a contraction, D : H1 → H2 is strongly positive bounded linear operator
and, for each n ≥ 1, Sn : H1 → H1 is a nonexpansive mapping.

In both their works, they obtained some strong convergence results by using their proposed
iterative methods (for some more results on algorithms, see [14,15]).

Recall that a point x∗ ∈ H1 is called a fixed point of a given multi-valued mapping S : H1 → 2H1

if
x∗ ∈ Sx∗ (8)

and the fixed point problem (FPP) for a multi-valued mapping S : H1 → 2H1 is as follows:

Find a point x∗ ∈ H1 such that x∗ ∈ Sx∗.

The set of fixed points of the multi-valued mapping S is denoted by F(S).

As applications, the fixed point theory for multi-valued mappings was applied to various fields,
especially mathematical economics and game theory (see [16–18]).

Recently, motivated by the results of Byrne et al. [7], Kazmi and Rizvi [4] and Sitthithakerngkiet [5],
Shehu and Agbebaku [2] introduced the split fixed point inclusion problem (SFPIP) from the problems
(SVIP) and (FPP) for a multi-valued quasi-nonexpansive mapping S : H1 → 2H1 as follows:

Find a point x∗ ∈ H1 such that 0 ∈ B1(x∗), x∗ ∈ Sx∗ (9)

and such that
y∗ = Ax∗ ∈ H2 solves 0 ∈ B2(y∗), (10)

where H1 and H2 are real Hilbert spaces, B1 and B2 are multi-valued maximal monotone mappings
defined on H1 and H2, respectively, and A is a bounded linear operator defined on H1 to H2.

Note that the problem (SFPIP) is equivalent to the following problem: for some λ > 0,

Find a point x∗ ∈ H1 such that x∗ = JB1
λ (x∗), x∗ ∈ Sx∗ and Ax∗ = JB2

λ (Ax∗).

The solution set of the problem (SFPIP) is denoted by F(S)
⋂

Ω, i.e.,

F(S)
⋂

Ω = {x∗ ∈ H1 : 0 ∈ B1(x∗), x∗ ∈ Sx∗ and 0 ∈ B2(Ax∗)}.

Notice that, if S is the identity operator, then the problem (SFPIP) reduces to the problem (SVIP).
Moreover, if JB1

λ = JB2
λ = A = I, then the problem (SFPIP) reduces to the problem (FPP) for a

multi-valued quasi-nonexpansive mapping.

Furthermore, Shehu and Agbebaku [2] introduced an algorithm {xn} for solving the problem
(SFPIP) for a multi-valued quai-nonexpasive mapping S as follows: For any x1 ∈ H1,{

un = JB1
λ (xn + γn A∗(JB2

λ − 1)Axn),

xn+1 = αn fn(xn) + βnxn + δn(σwn + (1− σ)un), wn ∈ Sxn,
(11)
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for each n ≥ 1, where {αn}, {βn} and {δn} are the real sequences in (0, 1) such that

αn + βn + δn = 1, σ ∈ (0, 1), γn := τn
‖(JB2

λ − I)Axn‖2

‖A∗(JB2
λ − I)‖2

,

where 0 < a ≤ τn ≤ b < 1, and { fn(x)} is the uniform convergence sequence for any x in a bounded
subset D of H1, and proved that the sequences {un} and {xn} generated by (11) both converge strongly
to p ∈ F(S) ∩Ω, where p = PF(S)∩Ω f (p).

In optimization theory, the second-order dynamical system, which is called the heavy ball method,
is used to accelerate the convergence rate of algorithms. This method is a two-step iterative method
for minimizing a smooth convex function which was firstly introduced by Polyak [19].

The following is a modified heavy ball method for the improvement of the convergence rate,
which was introduced by Nesterov [20]:{

yn = xn + θn(xn − xn−1),

xn+1 = yn − λn∇ f (yn)

for each n ≥ 1, where λn > 0, θn ∈ [0, 1) is an extrapolation factor. Here, the term θn(xn − xn−1) is the
inertia (for more recent results on the inertial algorithms, see [21,22]).

The following method is called the inertial proximal point algorithm, which was introduced by
Alvarez and Attouch [23]. This method combined the proximal point algorithm [24] with the inertial
extrapolation [25,26]: {

yn = xn + θn(xn − xn−1),

xn+1 = (I + λnT̂)−1(yn)
(12)

for each n ≥ 1, where I is identity operator and T̂ is a maximal monotone operator. It was proven that,
if a positive sequence λn is non-decreasing, θn ∈ [0, 1) and the following summability condition holds:

∞

∑
n=1

θn‖xn − xn−1‖2 < ∞, (13)

then {xn} generated by (12) converges to a zero point of T.

In fact, recently, some authors have pointed out some problems in this summability condition
(13) given in [27], that is, to satisfy this summability condition (13) of the sequence {xn}, one needs to
calculate {θn} at each step. Recently, Bot et al. [28] improved this condition, that is, they got rid of the
summability condition (13) and replaced the other conditions.

In this paper, inspired by the results of Shehu and Agbebaku [2], Nesterov [20] and Alvarez
and Attouch [23], we proposed a new algorithm by combining the iterative algorithm (11) with the
inertial extrapolation for solving the problem (SFPIP) and prove some strong convergence theorems
of the proposed algorithm to show the existence of a solution of the problem (SFPIP). Furthermore, as
applications, we consider our proposed algorithm for solving the variational inequality problem and
give some applications in game theory.

2. Preliminaries

In this section, we recall some definitions and results which will be used in the proof of the
main results.
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Let H1 and H2 be two real Hilbert spaces with the inner product 〈·, ·〉 and the norm ‖ · ‖. Let
C be a nonempty closed and convex subset of H1 and D be a nonempty bounded subset of H1. Let
A : H1 → H2 be a bounded linear operator and A∗ : H2 → H1 be the adjoint of A.

Let {xn} be a sequence in H, we denote the strong and weak convergence of a sequence {xn} by
xn → x and xn ⇀ x, respectively.

Recall that a mapping T : C → C is said to be:

(1) Lipschitz if there exists a positive constant α such that, for all x, y ∈ C,

‖Tx− Ty‖ ≤ α‖x− y‖.

If α ∈ (0, 1) and α = 1, then the mapping T is contractive and nonexpansive, respectively.
(2) firmly nonexpansive if

‖Tx− Ty‖2 ≤ 〈Tx− Ty, x− y〉
for all x, y ∈ C.

A mapping PC is said to be the metric projection of H1 onto C if, for all point x ∈ H1, there exists a
unique nearest point in C, denoted by PCx, such that

‖x− PCx‖ ≤ ‖x− y‖

for all y ∈ C.
It is well known that PC is nonexpansive mapping and satisfies

〈x− y, PCx− PCy〉 ≤ ‖PCx− PCy‖2

for all x, y ∈ H1. Moreover, PCx is characterized by the fact PCx ∈ C and

〈x− PCx, y− PCx〉 ≤ 0

for all y ∈ C and x ∈ H1 (see [6,22]).

A multi-valued mapping B1 : H1 → 2H1 is said to be monotone if, for all x, y ∈ H1, u ∈ B1(x) and
v ∈ B1(y),

〈x− y, u− v〉 ≥ 0.

A monotone mapping B1 : H1 → 2H1 is said to be maximal if the graph G(B1) of B1 is not properly
contained in the graph of any other monotone mapping. It is known that a monotone mapping B1 is
maximal if and only if, for all (x, u) ∈ H1 × H1,

〈x− y, u− v〉 ≥ 0

for all (y, v) ∈ G(B1) implies that u ∈ B1(x).

Let B1 : H1 → 2H1 be a multi-valued maximal monotone mapping. Then the resolvent mapping
JB1
λ : H1 → H1 associated with B1 is defined by

JB1
λ (x) := (I + λB1)

−1(x)

for all x ∈ H1 and for some λ > 0, where I is the identity operator on H1. It is well known that, for any
λ > 0, the resolvent operator JB1

λ is single-valued firmly nonexpansive (see [2,5,6,14]).
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Definition 1. Suppose that { fn(x)} is a sequence of functions defined on a bounded set D. Then fn(x)
converges uniformly to the function f (x) on D if, for all x ∈ D,

fn(x)→ f (x) as n → ∞.

Let fn : D → H1 be a uniformly convergent sequence of contraction mappings on D, i.e., there
exists μn ∈ (0, 1) such that

fn(x)− fn(y)‖ ≤ μn‖x− y‖
for all x, y ∈ D.

Let CB(H1) denote the family of nonempty closed and bounded subsets of H1. The Hausdorff
metric on CB(H1) is defined by

Ĥ(x, y) = max

{
sup
x∈A

inf
y∈B
‖x− y‖, sup

y∈B
inf
x∈A

‖x− y‖
}

for all A, B ∈ CB(H1) (see [18]).

Definition 2. [2] Let S : H1 → CB(H1) be a multi-valued mapping. Assume that p ∈ H1 is a fixed point of
S, that is, p ∈ Sp. The mapping S is said to be:

(1) nonexpansive if, for all x, y ∈ H1,
Ĥ(Sx, Sy) ≤ ‖x− y‖.

(2) quasi-nonexpansive if F(S) �= ∅ and, for all x ∈ H1 and p ∈ F(S),

Ĥ(Sx, Sp) ≤ ‖x− p‖

Definition 3. [2] A single-valued mapping S : H → H is said to be demiclosed at the origin if, for any
sequence {xn} ⊂ H with xn ⇀ x and Sxn → 0, we have Sx = 0.

Definition 4. [2] A multi-valued mapping S : H1 → CB(H1) is said to be demiclosed at the origin if, for
any sequence {xn} ⊂ H with xn ⇀ x and d(xn, Sxn)→ 0, we have x ∈ Sx.

Lemma 1. [29,30] Let H be a Hilbert space. Then, for any x, y, z ∈ X and α, β, γ ∈ [0, 1] with α + β + γ = 1,
we have

‖αx + βy + γz‖2 = α‖x‖2 + β‖y‖2 + γ‖z‖2 − αβ‖x− y‖2 − αγ‖x− z‖2 − βγ‖y− z‖2.

Lemma 2. [2,31] Let H be a real Hilbert space. Then the following results hold:

(1) ‖x− y‖2 = ‖x‖2 − 2〈x, y〉+ ‖y‖2.
(2) ‖x + y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2.
(3) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉 for all x, y ∈ H.

Lemma 3. [2,32,33] Let {an}, {cn} ⊂ R+, {σn} ⊂ (0, 1) and {bn} ⊂ R be sequences such that

an+1 ≤ (1− σn)an + bn + cn for all n ≥ 0.

Assume ∑∞
n=0 |cn| < ∞. Then the following results hold:

(1) If bn ≤ βσn for some β ≥ 0, then {an} is a bounded sequence.
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(2) If we have
∞

∑
n=0

σn = ∞ and lim sup
n→∞

bn

σn
≤ 0,

then limn→∞ an = 0.

Lemma 4. [32,33] Let {sn} be a sequence of non-negative real numbers such that

sn+1 ≤ (1− λn)sn + λntn + rn

for each n ≥ 1, where

(a) {λn} ⊂ [0, 1] and ∑∞
n=1 λn = ∞;

(b) lim sup tn ≤ 0;
(c) rn ≥ 0 and ∑∞

n=1 rn < ∞.

Then sn → 0 as n → ∞.

3. The Main Results

In this section, we prove some strong convergence theorems of the proposed algorithm for solving
the problem (SFPIP).

Theorem 1. Let H1, H2 be two real Hilbert spaces, A : H1 → H2 be bounded operator with adjoint operator A∗

and B1 : H1 → 2H1 , B2 : H2 → 2H2 be maximal monotone mappings. Let S : H1 → CB(H1) be a multi-valued
quasi-nonexpansive mapping and S be demiclosed at the origin. Let { fn} be a sequence of μn-contractions
fn : H1 → H1 with 0 < μ∗ ≤ μn ≤ μ∗ < 1 and { fn(x)} be uniformly convergent for any x in a bounded
subset D of H1. Suppose that F(S) ∩Ω �= ∅. For any x0, x1 ∈ H1, let the sequences {yn}, {un}, {zn} and
{xn} be generated by ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

yn = xn + θn(xn − xn−1),

un = JB1
λ (yn + γn A∗(JB2

λ − I)Ayn),

zn = ξvn + (1− ξ)un, vn ∈ Sxn,

xn+1 = αn fn(xn) + βnxn + δnzn

(14)

for each n ≥ 1, where ξ ∈ (0, 1), γn := τn
‖(JB2

λ −I)Ayn‖2

‖A∗(JB2
λ −I)Ayn‖2

with 0 < τ∗ ≤ τn ≤ τ∗ < 1, {θn} ⊂ [0, ω̄) for

some ω̄ > 0 and {αn}, {βn}, {δn} ∈ (0, 1) with αn + βn + δn = 1 satisfying the following conditions:

(C1) limn→∞ αn = 0;
(C2) ∑∞

n=1 αn = ∞;
(C3) 0 < ε1 ≤ βn and 0 < ε2 ≤ δn;
(C4) limn→∞

θn
αn
‖xn − xn−1‖ = 0.

Then {xn} generated by (14) converges strongly to p ∈ F(S) ∩Ω, where p = PF(S)∩Ω f (p).

Proof. First, we show that {xn} is bounded. Let p = PF(S)∩Ω f (p). Then p ∈ F(S)∩Ω and so JB1
λ p = p

and JB2
λ Ap = Ap. By the triangle inequality, we get

‖yn − p‖ = ‖xn + θn(xn − xn−1)− p‖
≤ ‖xn − p‖+ θn‖xn − xn−1‖. (15)
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By the Cauchy-Schwarz inequality and Lemma 2 (1) and (2), we get

‖yn − p‖2 = ‖xn + θn(xn − xn−1)− p‖2

= ‖xn − p‖2 + θ2
n‖xn − xn−1‖2 + 2θn〈xn − p, xn − xn−1〉

≤ ‖xn − p‖2 + θ2
n‖xn − xn−1‖2 + 2θn‖xn − xn−1‖‖xn − p‖. (16)

By using (15) and the fact that S is quasi-nonexpansive S, we get

‖zn − p‖ = ‖ξvn + (1− ξ)un − p‖
= ‖ξ(vn − p) + (1− ξ)(un − p)‖
≤ ξ‖vn − p‖+ (1− ξ)‖un − p‖
≤ ξd(vn, Sp) + (1− ξ)‖yn − p‖
≤ ξĤ(Sxn, Sp) + (1− ξ)[‖xn − p‖+ θn‖xn − xn−1‖]
≤ ξ‖xn − p‖+ (1− ξ)‖xn − p‖+ (1− ξ)θn‖xn − xn−1‖
≤ ‖xn − p‖+ θn‖xn − xn−1‖, (17)

which implies that

‖zn − p‖2 ≤ (‖xn − p‖+ θn‖xn − xn−1‖)2

= ‖xn − p‖2 + 2θn‖xn − xn−1‖‖xn − p‖+ θ2
n‖xn − xn−1‖2. (18)

Since JB1
λ is nonexpansive, by Lemma 2 (2), we get

‖un − p‖2 = ‖JBI
λ (yn + γn A∗(JB2

λ − I)Ayn)− p‖2

= ‖JB1
λ (yn + γn A∗(JB2

λ − I)Ayn)− JB1
λ p‖2

≤ ‖yn + γn A∗(JB2
λ − I)Ayn − p‖2

= ‖yn − p‖2 + γ2
n‖A∗(JB2

λ − I)Ayn‖2 + 2γn〈yn − p, A∗(JB2
λ − I)Ayn〉. (19)

Again, by Lemma 2 (2), we get

〈yn − p, A∗(JB2
λ − I)Ayn〉

= 〈A(yn − p), (JB2
λ − I)Ayn〉

= 〈JB2
λ Ayn − Ap− (JB2

λ − I)Ayn, (JB2
λ − I)Ayn〉

= 〈JB2
λ Ayn − Ap, (JB2

λ − I)Ayn〉 − 〈(JB2
λ − I)Ayn, (JB2

λ − I)Ayn〉
= 〈JB2

λ Ayn − Ap, (JB2
λ − I)Ayn〉 − ‖(JB2

λ − I)Ayn‖2

=
1
2
(‖JB2

λ Ayn − Ap‖2 + ‖(JB2
λ − I)Ayn‖2

− ‖JB2
λ Ayn − Ap− (JB2

λ − I)Ayn‖2)− ‖(JB2
λ − I)Ayn‖2

=
1
2
(‖JB2

λ Ayn − Ap‖2 + ‖(JB2
λ − I)Ayn‖2 − ‖JB2

λ Ayn − Ap− JB2
λ Ayn + Ayn‖2)

− ‖(JB2
λ − I)Ayn‖2

=
1
2
(‖JB2

λ Ayn − Ap‖2 + ‖(JB2
λ − I)Ayn‖2 − ‖Ayn − Ap‖2)− ‖(JB2

λ − I)Ayn‖2

=
1
2
(‖JB2

λ Ayn − Ap‖2 − ‖Ayn − Ap‖2 − ‖(JB2
λ − I)Ayn‖2)

≤ 1
2
(‖Ayn − Ap‖2 − ‖Ayn − Ap‖2 − ‖(JB2

λ − I)Ayn‖2)
= −1

2
‖(JB2

λ − I)Ayn‖2. (20)
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Using (20) into (19), we get

‖un − p‖2 ≤ ‖yn − p‖2 + γ2
n‖A∗(JB2

λ − I)Ayn‖2 − γn‖(JB2
λ − I)Ayn‖2

= ‖yn − p‖2 − γn
(‖(JB2

λ − I)Ayn‖2 − γn‖A∗(JB2
λ − I)Ayn‖2). (21)

By the definition of γn, (21) can then be written as follows:

‖un − p‖2 ≤ ‖yn − p‖2 − γn(1− τn)‖(JB2
λ − I)Ayn‖2 ≤ ‖yn − p‖2.

Thus we have
‖un − p‖ ≤ ‖yn − p‖. (22)

Using the condition (C3) and (17), we get

‖xn+1 − p‖ = ‖αn fn(xn) + βnxn + δnzn − p‖
= ‖αn( fn(xn)− fn(p)) + αn( fn(p)− p) + βn(xn − p) + δn(zn − p)‖
≤ αn‖ fn(xn)− fn(p)‖+ αn‖ fn(p)− p‖+ βn‖xn − p‖+ δn‖zn − p‖
≤ αnμn‖xn − p‖+ αn‖ fn(p)− p‖+ βn‖xn − p‖+ δn(‖xn − p‖
+ (1− ξ)θn‖xn − xn−1‖)

≤ (αnμ∗ + (βn + δn))‖xn − p‖+ (1− ξ)δnθn‖xn − xn−1‖+ αn‖ fn(p)− p‖
= (1− αn(1− μ∗)‖xn − p‖+ (1− ξ)δnαn

θn

αn
‖xn − xn−1‖+ αn‖ fn(p)− p‖.

Since { fn} is the uniform convergence on D, there exists a constant M > 0 such that

‖ fn(p)− p‖ ≤ M

for each n ≥ 1. So we can choose β :=
M

1− μ∗ and set

an := ‖xn − p‖, bn := αn‖ fn(p)− p‖,

cn := (1− ξ)δnαn
θn

αn
‖xn − xn−1‖, σn := αn(1− μ∗).

By Lemma 3 (1) and our assumptions, it follows that {xn} is bounded. Moreover, {un} and {yn} are
also bounded.
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Now, by Lemma 2, we get

‖xn+1 − p‖2

= ‖αn( fn(xn)− fn(p)) + αn( fn(p)− p) + βn(xn − p) + δn(zn − p)‖2

≤ ‖αn( fn(xn)− fn(p)) + βn(xn − p) + δn(zn − p)‖2 + 2αn〈 fn(p)− p, xn+1 − p〉
= ‖βn(xn − p) + δn(zn − p)‖2 + α2

n‖ fn(xn)− fn(p)‖2

+ 2αn〈 fn(xn)− fn(p), βn(xn − p) + δn(zn − p)〉+ 2αn〈 fn(p)− p, xn+1 − p〉
≤ β2

n‖xn − p‖2 + δ2
n‖zn − p‖2 + 2βnδn〈xn − p, zn − p〉+ α2

nμ2
n‖xn − p‖2

+ 2αn〈 fn(p)− p, xn+1 − p〉+ 2αn‖ fn(xn)− fn(p)‖‖βn(xn − p) + δn(zn − p)‖
≤ β2

n‖xn − p‖2 + δ2
n‖zn − p‖2 + βnδn

(
‖xn − p‖2 + ‖zn − p‖2 − ‖xn − zn‖2

)
+ α2

nμ∗2‖xn − p‖2 + 2αnμn‖xn − p‖ (βn‖xn − p‖+ δn‖zn − p‖)
+ 2αn〈 fn(p)− p, xn+1 − p〉

≤ βn(βn + δn)‖xn − p‖2 + δn(βn + δn)‖zn − p‖2 − βnδn‖xn − zn‖2 + α2
nμ∗2‖xn − p‖2

+ 2μ∗αn(βn + δn)‖xn − p‖2 + 2μ∗αn(1− ξ)δnθn‖xn − xn−1‖‖xn − p‖
+ 2αn〈 fn(p)− p, xn+1 − p〉

≤ βn(βn + δn)‖xn − p‖2 + δn(βn + δn)
(‖xn − p‖2 + θ2

n‖xn − xn−1‖2

+ 2θn‖xn − xn−1‖‖xn − p‖)− βnδn‖xn − zn‖2 + α2
nμ∗2‖xn − p‖2

+ 2μ∗αn(βn + δn)‖xn − p‖2 + 2μ∗αn(1− ξ)δnθn‖xn − xn−1‖‖xn − p‖
+ 2αn〈 fn(p)− p, xn+1 − p〉

=
(
(1− αn)

2 + α2
nμ∗2 + 2μ∗αn(1− αn)

)‖xn − p‖2 − βnδn‖xn − zn‖2

+ 2
(
1− αn(1− μ∗(1− ξ))

)
δnθn‖xn − xn−1‖‖xn − p‖+ (1− αn)δnθ2

n‖xn − xn−1‖2

+ 2αn〈 fn(p)− p, xn+1 − p〉. (23)

Now, we consider two steps for the proof as follows:

Case 1. Suppose that there exists n0 ∈ N such that {‖xn − p‖}∞
n=n0

is non-increasing and then
{‖xn − p‖} converges. By Lemma 1, we get

‖xn+1 − p‖2 = ‖αn fn(xn) + βnxn + δnzn − p‖2

= αn‖ fn(xn)− p‖2 + βn‖xn − p‖2 + δn‖zn − p‖2 − αnβn‖ fn(xn)− xn‖2

− αnγn‖ fn(xn)− zn‖2 − βnγn‖xn − zn‖2

≤ αn‖ fn(xn)− p‖2 + βn‖xn − p‖2 + δn‖zn − p‖2

≤ αn‖ fn(xn)− p‖2 + βn‖xn − p‖2 + δn
(
ξ‖xn − p‖2 + (1− ξ)‖un − p‖2)

≤ αn‖ fn(xn)− p‖2 + (βn + ξδn)‖xn − p‖2 + (1− ξ)δn‖un − p‖2,

which implies that

−‖un − p‖2 ≤ 1
(1− ξ)δn

(
αn‖ fn(xn)− p‖2 + (βn + ξδn)‖xn − p‖2 − ‖xn+1 − p‖2). (24)
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Applying (16) and (24) to (21), we get

γn(‖(JB2
λ − I)Ayn‖2 − γn‖A∗(JB2

λ − I)Ayn‖2)

≤ ‖yn − p‖2 − ‖un − p‖2

≤ ‖xn − p‖2 + 2θn‖xn−1 − p‖‖xn − p‖+ θ2
n‖xn − xn−1‖2

+
1

(1− ξ)δn
(αn‖ fn(xn)− p‖2 + (βn + ξδn)‖xn − p‖2 − ‖xn+1 − p‖2)

=
βn + δn

(1− ξ)δn
‖xn − p‖2 +

αn

(1− ξ)δn
‖ fn(xn)− p‖2 − 1

(1− ξ)δn
‖xn+1 − p‖2

+ θn‖xn − xn−1‖ (2‖xn − p‖+ θn‖xn − xn−1‖)
≤ 1

(1− ξ)ε2
(‖xn − p‖2 − ‖xn+1 − p‖2) +

αn

(1− ξ)ε2

(
‖ fn(xn)− p‖2 − ‖xn − p‖2

+
θn

αn
‖xn − xn−1‖

(
2‖xn − p‖+ αn

θn

αn
‖xn − xn−1‖

))
.

Since {‖xn − p‖} is convergent, we have ‖xn − p‖ − ‖xn+1 − p‖ → 0 as n → ∞. By the conditions
(C2) and (C4), we get

γn(‖(JB2
λ − I)Ayn‖2 − γn‖A∗(JB2

λ − I)Ayn‖2)→ 0 as n → ∞.

From the definition of γn, we get

τn(1− τn)‖(JB2
λ − I)Ayn‖4

‖A∗(JB2
λ − I)Ayn‖2

→ 0 as n → ∞

or
‖(JB2

λ − I)Ayn‖2

‖A∗(JB2
λ − I)Ayn‖

→ 0 as n → ∞.

Since

‖A∗(JB2
λ − I)Ayn‖ ≤ ‖A∗‖‖(JB2

λ − I)Ayn‖ = ‖A‖‖(JB2
λ − I)Ayn‖,

it is easy to see that

‖(JB2
λ − I)Ayn‖ ≤ ‖A‖ ‖(JB2

λ − I)Ayn‖2

‖A∗(JB2
λ − I)Ayn‖

.

Consequently, we get

‖(JB2
λ − I)Ayn‖ → 0 as n → ∞ (25)

and also
‖A∗(JB2

λ − I)Ayn‖ → 0 as n → ∞. (26)
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Similarly, from (23) and our assumptions, we get

‖xn − zn‖2

=
1

βnδn

{‖xn − p‖2 − ‖xn+1 − p‖2 + (1− αn)δnθ2
n‖xn − xn−1‖2

+ 2
(
1− αn(1− μ∗(1− ξ))

)
δnθn‖xn − xn−1‖‖xn − p‖

+ αn
[(

αn(1 + μ∗2)− 2(1− μ∗(1− αn))
)‖xn − p‖2 + 2〈 fn(p)− p, xn+1 − p〉]}

≤ 1
ε1ε2

{‖xn − p‖2 − ‖xn+1 − p‖2 +
θn

αn
‖xn − xn−1‖

[
δn(1− αn)α

2
n

θn

αn
‖xn − xn−1‖

+ 2δn
(
1− αn(1− μ∗(1− ξ))

)
θn‖xn − p‖]+ αn

[
2〈 fn(p)− p, xn+1 − p〉

+
(
αn(1 + μ∗2)− 2(1− μ∗(1− αn))

)‖xn − p‖2]}→ 0 as n → ∞.

Therefore, we have

‖xn − zn‖ → 0 as n → ∞. (27)

By the condition (C2) and (27), we get

‖xn+1 − xn‖ = ‖αn fn(xn) + βnxn + δnzn − xn‖
≤ αn‖ fn(xn)− xn‖+ δn‖xn − zn‖ → 0 as n → ∞.

Thus we have

‖xn+1 − zn‖ ≤ ‖xn+1 − xn‖+ ‖xn − zn‖ → 0 as n → ∞.

Since JB1
λ is firmly nonexpansive, we have

‖un − p‖2

= ‖JB1
λ (yn + γn A∗(JB2

λ − I)Ayn)− JB1
λ p‖2

≤ 〈un − p, yn + γn A∗(JB2
λ − I)Ayn − p〉

=
1
2
(‖un − p‖2 + ‖yn + γn A∗(JB2

λ − I)Ayn − p‖2 − ‖un − yn − γn A∗(JB2
λ − I)Ayn‖2)

=
1
2
(‖un − p‖2 + ‖yn − p‖2 + γ2

n‖A∗(JB2
λ − I)Ayn‖2 + 2〈yn − p, γn A∗(JB2

λ − I)Ayn〉
− ‖un − yn‖2 − γ2

n‖A∗(JB2
λ − I)Ayn‖2 + 2〈un − yn, γn A∗(JB2

λ − I)Ayn〉
)

≤ 1
2
(‖yn − p‖2 + ‖yn − p‖2 − ‖un − yn‖2 + 2〈un − p, γn A∗(JB2

λ − I)Ayn〉
)

≤ 1
2
(
2‖yn − p‖2 − ‖un − yn‖2 + 2γn‖un − p‖‖A∗(JB2

λ − I)Ayn‖
)

≤ ‖yn − p‖2 − 1
2
‖un − yn‖2 + γn‖un − p‖‖A∗(JB2

λ − I)Ayn‖

or
‖un − yn‖2 ≤ 2

(‖yn − p‖2 − ‖un − p‖2 + γn‖un − p‖‖A∗(JB2
λ − 1)Ayn‖

)
. (28)
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From (28), (16), (24) and (26) and our assumptions, it follows that

‖un − yn‖2 ≤ 2
[‖xn − p‖2 + 2θn‖xn − xn−1‖‖xn − p‖+ θ2

n‖xn − xn−1‖2

+
1

(1− ξ)δn

(
αn‖ fn(xn)− p‖2 + (βn + ξδn)‖xn − p‖2 − ‖xn+1 − p‖2)

+ γn‖un − p‖‖A∗(JB2
λ − 1)Ayn‖

]
= 2

[ 1
(1− ξ)ε2

(‖xn − p‖2 − ‖xn+1 − p‖2)+ γn‖un − p‖‖A∗(JB2
λ − 1)Ayn‖

+
αn

(1− ξ)ε2

(‖ fn(xn)− p‖2 − ‖xn − p‖2

+
θn

αn
‖xn − xn−1‖

(
2‖xn − p‖+ αn

θn

αn
‖xn − xn−1‖

))]→ 0 as n → ∞,

that is, we have
‖un − yn‖ → 0 as n → ∞. (29)

From yn := xn + θn(xn − xn−1), we get

‖yn − xn‖ = ‖xn + θn(xn − xn−1)− xn‖ = αn
θn

αn
‖xn − xn−1‖,

which, with the condition (C4), implies that

‖yn − xn‖ → 0 as n → ∞. (30)

In addition, using (27), (29) and (30), we obtain

‖zn − un‖ ≤ ‖un − yn‖+ ‖yn − zn‖
≤ ‖un − yn‖+ ‖yn − xn‖+ ‖xn − zn‖ → 0 as n → ∞.

From zn := ξvn + (1− ξ)un, we get

‖vn − un‖ = 1
ξ
‖zn − un‖ → 0 as n → ∞. (31)

Thus, by (29)–(31), we also get

‖xn − vn‖ ≤ ‖xn − un‖+ ‖un − vn‖
≤ ‖xn − yn‖+ ‖yn − un‖+ ‖un − vn‖ → 0 as n → ∞.

Therefore, we have
d(xn, Sxn) ≤ ‖xn − vn‖ → 0 as n → ∞. (32)

Since {xn} is bounded, there exists a subsequence {xnk} of {xn} such that xnk ⇀ x∗ ∈ H1 and,
consequently, {unk} and {ynk} converge weakly to the point x∗.

From (32), Lemma 4 and the demiclosedness principle for a multi-valued mapping S at the origin,
we get x∗ ∈ Sx∗, which implies that

x∗ ∈ F(S).

Next, we show that x∗ ∈ Ω. Let (v, z) ∈ G(B1), that is, z ∈ B1(v). On the other hand,
unk = JB1

λ (ynk + γnk A∗(JB2
λ − I)Aynk ) can be written as

ynk + γnk A∗(JB1
λ − I)Aynk ∈ unk + λB1(unk ),
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or, equivalently,
(ynk − unK ) + γnk A∗(JB1

λ − I)Aynk

λ
∈ B1(unk ).

Since B1 is maximal monotone, we get

〈
v− unk , z− (ynk − unk ) + γnk A∗(JB2

λ − I)Aynk

λ

〉
≥ 0.

Therefore, we have

〈v− unk , z〉 ≥
〈

v− unk ,
(ynk − unk ) + γnk A∗(JB2

λ − I)Aynk

λ

〉
=
〈

v− unk ,
ynk − unk

λ

〉
+
〈

v− unk ,
γnk A∗(JB2

λ − I)Aynk

λ

〉
. (33)

Since unk ⇀ x∗, we have
lim
k→∞

〈v− unk , z〉 = 〈v− x∗, z〉.

By (26) and (29), it follows that (33) becomes 〈v− x∗, z〉 ≥ 0, which implies that

0 ∈ B1(x∗).

Moreover, from (29), we know that {Aynk} converges weakly to Ax∗ and, by (25), the fact that JB2
λ

is nonexpansive and the demiclosedness principle for a multi-valued mapping, we have

0 ∈ B2(Ax∗),

which implies that x∗ ∈ Ω. Thus x∗ ∈ F(S) ∩Ω. Since { fn(x)} is uniformly convergent on D, we get

lim sup
n→∞

〈 fn(p)− p, xn+1 − p〉 = lim sup
j→∞

〈 fnj(p)− p, xnj+1 − p〉

= 〈 f (p)− p, x∗ − p〉 ≤ 0.

From (23), we get

‖xn+1 − p‖2 ≤ (
1− 2αn(1− μ∗(1− αn)) + α2

n(1 + μ∗2)
)‖xn − p‖2 − βnδn‖xn − zn‖2

+ 2
(
1− αn(1− μ∗(1− ξ))

)
δnθn‖xn − xn−1‖‖xn − p‖

+ (1− αn)δnθ2
n‖xn − xn−1‖2 + 2αn〈 fn(p)− p, xn+1 − p〉

≤ (
1− 2αn(1− μ∗)

)‖xn − p‖2 + 2αn(1− μ∗) 〈 fn(p)− p, xn+1 − p〉
1− μ∗

+ αn
[
δn

θn

αn
‖xn − xn−1‖

(
2
(
1− αn(1− μ∗(1− ξ))

)‖xn − p‖

+
(
(1− αn)αn

θn

αn
‖xn − xn−1‖

)
+ αn(1 + μ∗2)‖xn − p‖2].

By Lemma 4, we obtain
lim

n→∞
xn = p.

Case 2. Suppose that {‖xn − p‖}∞
n=n0

is not a monotonically decreasing sequence for some n0 large
enough. Set Γn = ‖xn − p‖2 and let τ : B→ N be a mapping defined by

τ(n) := max{k ∈ N : k ≤ n, Γk ≤ Γk+1}
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for all n ≥ n0. Obviously, τ is a non-decreasing sequence. Thus we have

0 ≤ Γτ(n) ≤ Γτ(n)+1

for all n ≥ n0. That is, ‖xτ(n) − p‖ ≤ ‖xτ(n)+1 − p‖ for all n ≥ n0. Thus limn→∞ ‖xτ(n) − p‖ exists.
As in Case 1, we can show that

lim
n→∞

‖(JB2
λ − I)Ayτ(n)‖ = 0, lim

n→∞
‖A∗(JB2

λ − I)Ayτ(n)‖ = 0, (34)

lim
n→∞

‖xτ(n)+1 − xτ(n)‖ = 0, lim
n→∞

‖uτ(n) − xτ(n)‖ = 0, (35)

lim
n→∞

‖vτ(n) − uτ(n)‖ = 0, lim
n→∞

‖xτ(n) − vτ(n)‖ = 0. (36)

Therefore, we have
d(xτ(n), Sxτ(n)) ≤ ‖xτ(n) − vτ(n)‖ → 0 as n → ∞. (37)

Since {xτ(n)} is bounded, there exists a subsequence {uτ(n)} of {xτ(n)} that converges weakly to a
point x∗ ∈ H1. From ‖uτ(n) − xτ(n)‖ → 0, it follows that uτ(n) ⇀ x∗ ∈ H1.

Moreover, as in Case 1, we show that x∗ ∈ F(S) ∩Ω. Furthermore, since { fn(x)} is uniformly
convergent on D ⊂ H1, we obtain that

lim sup
n→∞

〈 fτ(n)(p)− p, xτ(n)+1 − p〉 ≤ 0.

From (23), we get

‖xτ(n)+1 − p‖2 ≤ (
1− 2ατ(n)(1− μ∗(1− ατ(n))) + α2

τ(n)(1 + μ∗2)
)‖xτ(n) − p‖2

− βτ(n)δτ(n)‖xτ(n) − zτ(n)‖2 + 2ατ(n)〈 fτ(n)(p)− p, xτ(n)+1 − p〉
+ 2

(
1− ατ(n)(1− μ∗(1− ξ))

)
δτ(n)θτ(n)‖xτ(n) − xτ(n)−1‖‖xτ(n) − p‖

+ (1− ατ(n))δτ(n)θ
2
τ(n)‖xτ(n) − xτ(n)−1‖2

≤ (
1− 2ατ(n)(1− μ∗)

)‖xτ(n) − p‖2 + α2
τ(n)(1 + μ∗2)‖xτ(n) − p‖2

+ δτ(n)θn‖xτ(n) − xτ(n)−1‖
(
2(1− ατ(n)(1− μ∗))‖xτ(n) − p‖

+ (1− ατ(n))θτ(n)‖xτ(n) − xτ(n)−1‖
)
+ 2ατ(n)〈 fτ(n)(p)− p, xτ(n)+1 − p〉,

which implies that

2ατ(n)(1− μ∗)‖xτ(n) − p‖2 ≤ ‖xτ(n) − p‖2 − ‖xτ(n)+1 − p‖2 + α2
τ(n)(1 + μ∗2)‖xτ(n) − p‖2

+ δτ(n)θn‖xτ(n) − xτ(n)−1‖
(
2(1− ατ(n)(1− μ∗))‖xτ(n) − p‖

+ (1− ατ(n))θτ(n)‖xτ(n) − xτ(n)−1‖
)

+ 2ατ(n)〈 fτ(n)(p)− p, xτ(n)+1 − p〉,

or

2(1− μ∗)‖xτ(n) − p‖2 ≤ ατ(n)(1 + μ∗2)‖xτ(n) − p‖2 + 2〈 fτ(n)(p)− p, xτ(n)+1 − p〉

+ δτ(n)
θτ(n)

ατ(n)
‖xτ(n) − xτ(n)−1‖

(
2(1− ατ(n)(1− μ∗))‖xτ(n) − p‖

+ (1− ατ(n))ατ(n)
θτ(n)

ατ(n)
‖xτ(n) − xτ(n)−1‖

)
.
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Thus we have
lim sup

n→∞
‖xτ(n) − p‖ ≤ 0

and so
lim

n→∞
‖xτ(n) − p‖ = 0. (38)

By (35) and (38), we get

‖xτ(n)+1 − p‖ ≤ ‖xτ(n)+1 − xτ(n)‖+ ‖xτ(n) − p‖ → 0, n → ∞.

Furthermore, for all n ≥ n0, it is easy to see that Γτ(n) ≤ Γτ(n)+1 if n �= τ(n) (that is, τ(n) < n)
because of Γj ≥ Γj+1 for τ(n) + 1 ≤ j ≤ n. Consequently, it follows that, for all n ≥ n0,

0 ≤ Γn ≤ max{Γτ(n), Γτ(n)+1} = Γτ(n)+1.

Therefore, lim Γn = 0, that is, {xn} converges strongly to the point x∗. This completes the proof.

Remark 1. [22] The condition (C4) is easily implemented in numerical results because the value of ‖xn− xn−1‖
is known before choosing θn. Indeed, we can choose the parameter θn such as

θn =

⎧⎨⎩min
{

ω̄, ωn
‖xn−xn−1‖

}
, if ‖xn − xn−1‖ �= 0,

ω̄, otherwise,

where {ωn} is a positive sequence such that ωn = o(αn). Moreover, in the condition (C4), we can take

αn =
1

n + 1
, ω̄ =

4
5

and

θn =

⎧⎨⎩min
{

ω̄, α2
n

‖xn−xn−1‖
}

, if ‖xn − xn−1‖ �= 0,

ω̄, otherwise,

or

θn =

⎧⎨⎩min
{

4
5 , 1

(n+1)2‖xn−xn−1‖
}

, if ‖xn − xn−1‖ �= 0,
4
5 , otherwise.

If the multi-valued quasi-nonexpansive mapping S in Theorem 1 is a single-valued
quasi-nonexpansive mapping, then we obtain the following:

Corollary 1. Let H1 and H2 be two real Hilbert spaces. Suppose that A : H1 → H2 is a bounded linear operator
with adjoint operator A∗. Let { fn} be a sequence of μn-contractions fn : H1 → H1 with 0 < μ∗ ≤ μn ≤ μ∗ <
1 and { fn(x)} be uniformly convergent for any x in a bounded subset D of H1. Suppose that S : H1 → H1 is
a single-valued quasi-nonexpansive mapping, I − S is demiclosed at the origin and F(S) ∩Ω �= ∅. For any
x0, x1 ∈ H1, let the sequences {yn}, {un}, {zn} and {xn} be generated by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

yn = xn + θn(xn − xn−1),

un = JB1
λ (yn + γn A∗(JB2

λ − I)Ayn),

zn = ξSxn + (1− ξ)un,

xn+1 = αn fn(xn) + βnxn + δnzn

(39)
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for each n ≥ 1, where ξ ∈ (0, 1), γn := τn
‖(JB2

λ −I)Ayn‖2

‖A∗(JB2
λ −I)Ayn‖2

with 0 < τ∗ ≤ τn ≤ τ∗ < 1, {θn} ⊂ [0, ω̄) for

some ω̄ > 0 and {αn}, {βn}, {δn} ∈ (0, 1) with αn + βn + δn = 1 satisfying the following conditions:

(C1) limn→∞ αn = 0;
(C2) ∑∞

n=1 αn = ∞;
(C3) 0 < ε1 ≤ βn and 0 < ε2 ≤ δn;
(C4) limn→∞

θn
αn
‖xn − xn−1‖ = 0.

Then the sequence {xn} generated by (39) converges strongly to a point p ∈ F(S)∩Ω, where p = PF(S)∩Ω f (p).

Remark 2. If θn = 0, then the iterative scheme (14) in Theorem 1 reduces to the iterative (11).

4. Applications

In this section, we give some applications of the problem (SFPIP) in the variational inequality
problem and game theory. First, we introduce variational inequality problem in [34] and game theory
(see [35]).

4.1. The Variational Inequality Problem

Let C be a nonempty closed and convex subset of a real Hilbert space H1. Suppose that an operator
F : H1 → H1 is monotone.

Now, we consider the following variational inequality problem (VIP):

Find a point x∗ ∈ C such that 〈Fx∗, y− x∗〉 ≥ 0 for all y ∈ C. (40)

The solution set of the problem (VIP) is denoted by Γ.
Moreover, it is well-known that x∗ is a solution of the problem (VIP) if and only if x∗ is a solution

of the problem (FPP) [34], that is, for any γ > 0,

x∗ = PC(x∗ − γFx∗).

The following lemma is extracted from [2,36]. This lemma is used for finding a solution of the
split inclusion problem and the variational inequality problem:

Lemma 5. Let H1 be a real Hilbert space, F : H1 → H1 be a monotone and L-Lipschitz operator on a nonempty
closed and convex subset C of H1. For any γ > 0, let T = PC(I − γF(PC(I − γF))). Then, for any y ∈ Γ and
Lγ < 1, we have

‖Tx− Ty‖ ≤ ‖x− y‖,

I − T is demiclosed at the origin and F(T) = Γ.

Now, we apply our Theorem 1, by combining with Lemma 5, to find a solution of the problem
(VIP), that is, a point in the set Γ.

let B1 : H1 → 2H1 and B2 : H2 → 2H2 be maximal monotone mappings defined on H1 and H2,
respectively, and A : H1 → H2 be a bounded linear operator with its adjoint A∗.

Now, we consider the split fixed point variational inclusion problem (SFPVIP) as follows:

Find a point x∗ ∈ H1 such that 0 ∈ B1(x∗), x∗ ∈ Γ (41)

and
y∗ = Ax∗ ∈ H2 such that 0 ∈ B2(y∗). (42)
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Theorem 2. Let H1 and H2 be two real Hilbert spaces, A : H1 → H2 be a bounded linear operator with
its adjoint A∗. Let { fn} be a sequence of μn-contractions fn : H1 → H1 with 0 < μ∗ ≤ μn ≤ μ∗ < 1
and { fn(x)} be uniformly convergent for any x in a bounded subset D of H1. For any λ > 0, let T =

PC(I − γF(PC(I − γF))) with Lγ < 1, where F : H1 → H1 is a L-Lipschitz and monotone operator on
C ⊂ H1 and F(T) ∩ Ω �= ∅. For any x0, x1 ∈ H1, let the sequences {yn}, {un}, {zn} and {xn} be
generated by ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

yn = xn + θn(xn − xn−1),

un = JB1
λ (yn + γn A∗(JB2

λ − I)Ayn),

zn = ξTxn + (1− ξ)un,

xn+1 = αn fn(xn) + βnxn + δnzn

(43)

for each n ≥ 1, where ξ ∈ (0, 1), γn := τn
‖(JB2

λ −I)Ayn‖2

‖A∗(JB2
λ −I)Ayn‖2

with 0 < τ∗ ≤ τn ≤ τ∗ < 1, {θn} ⊂ [0, ω̄) for

some ω̄ > 0 and {αn}, {βn}, {δn} ∈ (0, 1) with αn + βn + δn = 1 satisfying the following conditions:

(C1) limn→∞ αn = 0;
(C2) ∑∞

n=1 αn = ∞;
(C3) 0 < ε1 ≤ βn, 0 < ε2 ≤ δn;
(C4) limn→∞

θn
αn
‖xn − xn−1‖ = 0.

Then the sequence {xn} generated by (43) converges strongly to a point p ∈ F(T) ∩ Ω = Γ ∩ Ω, where
p = PΓ∩Ω f (p).

Proof. Since I − T is demiclosed at the origin and F(T) = Γ, by using Lemma (5) and Corollary (1),
the sequence {xn} converges strongly to a point p ∈ F(T) ∩Ω, that is, the sequence {xn} converges
strongly to a point p ∈ Γ.

4.2. Game Theory

Now, we consider a game of N players in strategic form

G = (pi, Si),

where i = 1, · · · , N, pi : S = S1 × S2 × · · · × SN → R is the pay-off function (continuous) of the ith
player and Si ∈ RMi is the set of strategy of the ith player such that Mi = |Si|.

Let Si be nonempty compact and convex set, si ∈ Si be the strategy of the ith player and
s = (s1, s2, · · · , sN) be the collective strategy of all players. For any s ∈ S and zi ∈ Si of the ith player
for each i, the symbols S−i, s−i and (zi, s−i) are defined by

• S−i := (S1 × · · · × Si−1 × Si+1 × · · · × SN) is the set of strategies of the remaining players when
si was chosen by ith player,

• s−i := (s1, · · · , si−1, si+1, · · · , sN) is the strategies of the remaining players when ith player has si
and

• (zi, s−i) := (s1, · · · , si−1, zi, si+1, · · · , sN) is the strategies of the situation that zi was chosen by ith
player when the rest of the remaining players have chosen s−i.

Moreover, s̄i is a special strategy of the ith player, supporting the player to maximize his pay-off,
which equivalent to the following:

pi(s̄i, s−i) = max
zi∈Si

pi(zi, s−i).
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Definition 5. [37,38] Given a game of N players in strategic form, the collective strategies s∗ ∈ S is said to be
a Nash equilibrium point if

pi(s∗) = max
zi∈Si

pi(zi, s∗i )

for all i = 1, · · · , N and s∗i ∈ S−i.

If no player can change his strategy to bring advantages, then the collective strategies s∗ = (s∗i , s∗−i)

is a Nash equilibrium point. Furthermore, a Nash equilibrium point is the collective strategies of all
players, i.e., s∗i (for each i ≥ 1) is the best response of ith player. There is a multi-valued mapping
Ti : S−i → 2Si such that

Ti(s−i) = arg max pi(zi, s−i)

= {si ∈ Si : pi(si, s−i) = max
zi∈Si

pi(zi, s−i)}

for all s−i ∈ S−i. Therefore, we can define the mapping T : S → 2S by

T := T1 × T2 × · · · × TN

such that the Nash equilibrium point is the collective strategies s∗, where s∗ ∈ F(T). Note that
s∗ ∈ F(T) is equivalent to s∗i ∈ T(s∗−i).

Let H1 and H2 be two real Hilbert spaces, B1 : H1 → 2H1 and B2 : H2 → 2H2 be multi-valued
mappings. Suppose S is nonempty compact and convex subset of H1 = RMN , H2 = R and the rest of
the players have made their best responses s∗−i. For each s ∈ S, define a mapping A : S → H2 by

As = pi(s)− pi(zi, s∗−i),

where pi is linear, bounded and convex. Indeed, A is also linear, bounded and convex.

The Nash equilibrium problem (NEP) is the following:

Find a point s∗ ∈ S such that As∗ > 0, 0 ∈ H2. (44)

However, the solution to the problem (NEP) may not be single-valued. Then the problem (NEP)

reduces to finding the fixed point problem (FPP) of a multi-valued mapping, i.e.,

Find a point s∗ ∈ S such that s∗ ∈ Ts∗, (45)

where T is multi-valued pay-off function.
Now, we apply our Theorem 1 to find a solution to the problem (FPP).

Let B1 : H1 → 2H1 and B2 : H2 → 2H2 be maximal monotone mappings defined on H1 and H2,
respectively, and A : H1 → H2 be a bounded linear operator with its adjoint A∗.

Now, we consider the following problem:

Find a point s∗ ∈ H1 such that 0 ∈ B1(s∗), s∗ ∈ Ts∗ (46)

and
y∗ = As∗ ∈ H2 such that 0 ∈ B2(y∗). (47)

Theorem 3. Assume that B1 and B2 are maximal monotone mappings defined on Hilbert spaces H1 and H2,
respectively. Let T : S → CB(S) be a multi-valued quasi-nonexpansive mapping such that T is demiclosed
at the origin. Let { fn} be a sequence of μn-contractions fn : H1 → H1 with 0 < μ∗ ≤ μn ≤ μ∗ < 1 and
{ fn(x)} be uniformly convergent for any x in a bounded subset D of H1. Suppose that the problem (NEP) has
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a nonempty solution and F(T) ∩Ω �= ∅. For arbitrarily chosen x0, x1 ∈ H1, let the sequences {yn}, {un},
{zn} and {xn} be generated by ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

yn = xn + θn(xn − xn−1),

un = JB1
λ (yn + γn A∗(JB2

λ − I)Ayn),

zn = ξvn + (1− ξ)un, vn ∈ Txn,

xn+1 = αn fn(xn) + βnxn + δnzn

(48)

for each n ≥ 1, where ξ ∈ (0, 1), γn := τn
‖(JB2

λ −I)Ayn‖2

‖A∗(JB2
λ −I)Ayn‖2

with 0 < τ∗ ≤ τn ≤ τ∗ < 1, {θn} ⊂ [0, ω̄) for

some ω̄ > 0 and {αn}, {βn}, {δn} ∈ (0, 1) with αn + βn + δn = 1 satisfying the following conditions:

(C1) limn→∞ αn = 0;
(C2) ∑∞

n=1 αn = ∞;
(C3) 0 < ε1 ≤ βn and 0 < ε2 ≤ δn;
(C4) limn→∞

θn
αn
‖xn − xn−1‖ = 0.

Then the sequence {xn} generated by Equation (48) converges strongly to Nash equilibrium point.

Proof. By Theorem 1, the sequence {xn} converges strongly to a point p ∈ F(T)∩Ω, then the sequence
{xn} converges strongly to a Nash equilibrium point.
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1. Introductory Notes

1.1. Background

There exist many works handling the approximate solution of linear and nonlinear integral equations.
However, tackling nonlinear integral equations would be more challenging due to the presence of
nonlinearity which might be expensive for different solvers [1,2].

Some authors discussed the asymptotic error expansion of collocation-type and Nystrom-type
methods for Volterra–Fredholm integral equations with nonlinearity, see [3] for a complete discussion on
this issue. One class of nonlinear internal equations is the mixed Hammerstein integral equations with
several application in engineering problems [2].

Since in the process of finding the solution of such integral equations, most of the time a system
of algebraic equation would occur that must be solved quickly and accurately, thus we here bring the
attention to develop and study a useful numerical solution scheme for solving nonlinear systems with
application in tackling nonlinear integral equations.

Clearly, there are some other nonlinear problems in literature which could yield in tackling nonlinear
system of equations, see e.g., [4,5].

Mathematics 2019, 7, 637; doi:10.3390/math7070637 www.mdpi.com/journal/mathematics

284



Mathematics 2019, 7, 637

1.2. Definition

Consider a nonlinear system of equations of algebraic type as follows [6]:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a1(x1, x2, . . . , xm) = 0,
a2(x1, x2, . . . , xm) = 0,
...

am(x1, x2, . . . , xm) = 0,

(1)

which contains m equations with m unknowns and A(x) = (a1(x), a2(x), . . . , am(x))T while a1(x), a2(x),
. . ., am(x) are the functions of coordinate. We can also write (1) using x = (x1, x2, . . . , xm) in a more
compact form as

A(x) = 0. (2)

The purpose of this work is to study finding the solution of system (1) via iteration process and
discuss its application in solving nonlinear integral equations. As such, now let us briefly review some of
the existing methods for finding its simple roots in the next subsection.

1.3. Existing Solvers

The Steffensen’s scheme for solving nonlinear systems is written as follows [7]:{
w(n) = x(n) + A(x(n)), x(0) ∈ Rm,
x(n+1) = x(n) − [x(n), w(n); A]−1 A(x(n)), n = 0, 1, 2, · · · ,

(3)

which is based upon the divided difference operator (DDO). The 1st order DDO of A for the
multidimensional nodes x and y is expressed by a component-to-component procedure as follows [8]:

[x, y; A]i,j =
Ai(x1, . . . , xj, yj+1, . . . , ym)− Ai(x1, . . . , xj−1, yj, . . . , ym)

xj − yj
, 1 ≤ i, j ≤ m. (4)

Recall that first-order divided difference of A on Rm is a mapping as follows:

[·, ·; A] : D ⊂ R
m ×R

m → L(Rm), (5)

that reads
[y, x; A](y− x) = A(y)− A(x), ∀x, y ∈ D. (6)

Here L(·) shows the set of bounded linear functions. By considering h = y− x, one we can also
express the first-order DDO as follows [8]:

[x + h, x; A] =
∫ 1

0
A′(x + th)dt, ∀(x, h) ∈ R

m ×R
m. (7)

Traub in [9] investigated another way based on the function J(x, H) for approximating the Jacobian
matrix of the Newton’s method and to obtain the Steffensen’s scheme based on a point-wise definition.

An improvement of (3) was given in [10,11] as follows:{
z(n) = x(n) − [x(n), w(n); A]−1 A(x(n)),
x(n+1) = z(n) − [x(n), w(n); A]−1 A(z(n)),

(8)
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wherein
w(n) = x(n) + βA(x(n)), β ∈ R. (9)

The point in (8) in contrast to (3) is that it applies two steps and of course two m-D functional
evaluations to reach a higher rate than quadratic. Here, the idea is to freeze the DDO per cycle and
then increase the sub steps so as to gain as much as possible of order improvement, as well as some
improvements in the computational efficiency index of the scheme.

Let us also recall some of the iteration schemes having the requirement of Jacobian computation now.
The Jarratt’s iteration having fourth rate of convergence for solving (1) is given by [12]:⎧⎪⎨⎪⎩

z(n) = x(n) − 2
3 A′(x(n))−1 A(x(n)),

x(n+1) = x(n) − 1
2 (3A′(z(n))− A′(x(n)))−1

×(3A′(z(n)) + A′(x(n)))A′(x(n))−1 A(x(n)).
(10)

This fourth-order iteration expression requires the computation of two matrix inverses (based on the
resolution of linear systems) to achieve its rate, which manifest that getting higher rate of convergence in
the form of a two-step method is costly.

1.4. Motivation

All methods discussed until now are without memory; some improvements over such schemes can
be done by considering additional memory terms.

Our motivation of pursuing this aim is not only limited at tackling nonlinear systems, but a motivation
is to apply such schemes for practical engineering problems such as the nonlinear mixed integral equations,
see e.g., [13–16].

The goal in our development is to reach a higher computational efficiency using as low as possible
number of linear systems of equations and the functional evaluations. This is directly interlinked with the
concept of scientific computing and numerical analysis which gives a meaning to the investigation and
proposing novel numerical procedures.

1.5. Achievement and Contribution

The objective of this work is to present a two-step higher order scheme to solve system of nonlinear
equations. As such, we present an iteration method with memory for finding both real and complex zeros.
Our scheme does not require computing the Fréchet derivatives of the function.

1.6. Organization

We unfold this article as follows. In Section 2, the derivation and contribution of an iteration expression
is furnished. Section 3 provides an error analysis for its convergence rate. The computational efficiency of
different solvers by including not only the number of functional evaluations, but also the number of system
of involved linear equations, the number of LU (Lower-Upper) factorizations as well as the other similar
operations will be discussed in Section 4 in detail. Section 5 discusses the application of the proposed
scheme. Concluding remarks are given in Section 6.

2. A Derivative-Free Scheme

Here our attempt is to increase the computational efficiency index of (8) without imposing several
more steps or further DDDs in each cycle. To complete such a task, we rely on the concept of methods with
memory which state that the convergence speed and efficiency of iterative methods could be improved by
saving and using the already computed values of the functions and nodes.
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In fact, the error equation of the uni-parametric family of methods (8) includes a term of the
form below:

I + βA′(α) = 0. (11)

The free nonzero parameter β in (11) can clearly affect not only on the domain of convergence
(attraction basins of the iterative method) but also to the improvement of the convergence order.
When tackling a nonlinear system of equations, and since α is not known, we can use an approximation
for A′(α) to make the whole relation (11) approximately zero. Therefore, we may write

β � −A′(ᾱ)−1, (12)

wherein ᾱ is an approximation of the solution (per cycle).
It is important to discuss how we approximate the matrix β := B(n)(n ≥ 1) by employing some

estimates to −A′(α) computed via the existing data.
To improve the performance of (8) using the notion of methods with memory, we consider the

following iteration expression:⎧⎪⎨⎪⎩
w(n) = x(n) + βA(x(n))
z(n) = x(n) − [x(n), w(n); A]−1 A(x(n)),

x(n+1) = z(n) − [x(n), w(n); A]−1 A(z(n)).
(13)

To ease up the implementation of the scheme with memory, let us first consider

β := B(n) = −[w(n−1), x(n−1); A]−1 = −M(n−1)−1 ≈ −A′(α)−1. (14)

and {
M(n−1)δ(n) = A(x(n)),
M(n−1)γ(n) = A(y(n)).

(15)

Thus, now we contribute the following scheme:⎧⎪⎪⎪⎨⎪⎪⎪⎩
B(n) = −[w(n−1), x(n−1); A]−1, n ≥ 1,
w(n) = x(n) + B(n)A(x(n)), n ≥ 1,
y(n) = x(n) + δ(n), n ≥ 0,
x(n+1) = y(n) + γ(n).

(16)

Lemma 1. Let D ⊂ Rm be a nonempty convex domain. Suppose that A is thrice Fréchet differentiable on D,
and that [u, v; A] ∈ L(D, D), for any u, v ∈ D(u �= v) and the initial value x(0) and the solution α are close
to each other. By considering B(n) = −[w(n−1), x(n−1); A]−1 and d(n) := I + B(n) A′(α), one obtains the error
relation below

d(n) ∼ e(n−1). (17)

Proof. See [17] for more details.

To implement (16), one needs to solve some linear systems of algebraic equations. This means that at
each new step, a new LU factorization is needed, and no information can be exploited from the previous
steps. However, there exists a body of literature about recycling this kind of information to obtain updated
preconditioner for iterative solvers, [18–20]. We leave future discussion about constructing and imposing
such a preconditioner for future works in this field.
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As long as the coefficient matrices are sparse or large and sparse, a Krylov subspace method can be
employed to speed up the process. However, the merit in (16) is that the two linear systems have one same
coefficient matrix. Hence, only one LU factorization would be enough and by saving the decomposition,
one can act it to two different right-hand-side vectors to get the solution vectors per sub cycles of (16).

A challenging part of the implementation using (16) is the incorporation of B(n). This is a not anymore
a constant and it should be defined as a matrix. In this paper, whenever required the initial matrix B(0) is
specified by:

B(0)−1
= diag

(
− 1

1000

)
. (18)

The choice of the initial matrix B(0) affects directly on the whole process in order to arrive in the
convergence phase as quickly as possible. Here, (18) is in agreement with the dynamical studies of
Steffensen-type methods with memory at which the basins of attractions are larger as long as the free
parameter is close to zero.

Noting also that updating B(n) per cycle is again based on the already computed LU factorization
while it should only act on the identity matrix to proceed.

3. Rate of Convergence

It is known that via the Taylor expansion of A′(x + th) in the node x and integrating, one obtains:

∫ 1

0
A′(x + th)dt = A′(x) +

1
2

A′′(x)h +
1
6

A′′′(x)h2 +
1

24
A(iv)(x)h3 +O(h4). (19)

It is here assumed that A′(α) is not singular and e(n) = x(n) − α is called the error at the n-th iterate
and [6,21]:

e(n+1) = He(n)
p
+O(e(n)

p+1
), (20)

(20) is the equation of error, whereas H is a p-linear function. This means that H ∈ L(Rm,Rm, . . . ,Rm).
Moreover, we consider:

e(n)
p
= (e(n), e(n), . . . , e(n)︸ ︷︷ ︸

p times

), (21)

which would be a matrix.
Before stating the main theorem, it is pointed out that if A be differentiable in terms of Fréchet concept

in D sufficiently. As in [22], the l-th differentiation of A at u ∈ Rm, l ≥ 1, is the following l-linear function

A(l)(u) : Rm × · · · ×R
m −→ R

m, (22)

so that A(l)(u)(v1, v2, . . . , vl) ∈ Rm. It is also famous that, for α + h ∈ Rm locating in a neighborhood of a
root α of (1), the Taylor expansion could be written and we have [22]:

A(α + h) = A′(α)
[

h +
p−1

∑
l=2

Clhl

]
+O(hp), (23)

wherein
Cl = (1/l!)[A′(α)]−1 A(l)(α), l ≥ 2. (24)
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One finds Clhl ∈ Rm, because A(l)(α) ∈ L(Rm × · · · ×Rm,Rm) and [A′(α)]−1 ∈ L(Rm). Moreover,
for A′ we have:

A′(α + h) = A′(α)
[

I +
p−1

∑
l=2

lClhl−1

]
+O(hp), (25)

where I is the unit matrix of appropriate size. Here, lClhl−1 ∈ L(Rm).

Theorem 1. Assume that in (1), A : D ⊆ Rm −→ Rm is Fréchet differentiable sufficiently at any points of D at
α ∈ Rm. Here we assume A(α) = 0 and det(A′(x)) �= 0. Then, (16) with a choice of suitable initial vector has 3.30
R-order of convergence.

Proof. For the iteration scheme (16) in the case without memory and using (23)–(25), we can obtain:

e(n+1) = (βA′(α) + I)(βA′(α) + 2I)C2
2e(n)

3
+O(e(n)

4
). (26)

Let us now re-write (26) in the asymptotical form as comes next:

e(n+1) ∼ d(n)1 e(n)
3
. (27)

Several symbolic calculations by taking into account that the coefficient of the error terms in our m-D
case are all matrices, Lemma 1, and their multiplications does not admit commutativity, one obtains that:

d(n)1 ∼ e(n−1), ∀n ≥ 1. (28)

Therefore, one attains:

d(n)1

2 ∼ e(n−1)2
, ∀n ≥ 0. (29)

Combining (28) and (29) into (27), we attain:

e(n+1) ∼ e(n−1)1
e(n)

3
. (30)

It shows that
1
p
+ 3 = p, (31)

wherein its convergence r-order is given by:

p =
1
2

(√
13 + 3

)
� 3.30278. (32)

The proof is ended.

4. Efficiency

Here we only need to compute one LU factorization per cycle and act it two times for different linear
systems with two different right hand sides and one time on an identity matrix for the acceleration matrix
B(n) to achieve a higher speed rate.

It is recalled that the classical index of efficiency is defined by [8]:

E = p
1
C , (33)
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wherein p is the convergence rate and C is the whole burden per cycle considering the number of
functional evaluations.

When dealing with nonlinear system of equations, the cost of functional evaluations per cycle can be
expressed as follows:

• To evaluate A, m evaluations of functions are required.
• To evaluate the associated Jacobian matrix A′ needs m2 evaluations of functions.
• To evaluate the first-order DDO, we need m2 −m evaluations of functions.
• In addition, the LU factorization cost is θ(2 m3

3 ) plus θ(2m2) in tackling the two involved
triangular systems.

wherein θ is a weight that connects the cost of 1 evaluation of function with one flops. Here it is assumed
that θ = 1. No preconditioning is imposed in each cycle of these methods for solving the linear systems.
This is done for all the compared methods.

To be more precise, we consider that the cost for computing each of the scalar functions is unit.
The cost for computing other involved calculations are all also a factor of this unity cost. This is the way to
give a flops-like efficiency index [23].

Considering only the consumed functional evaluations per cycle might not be a key element for
reporting the indices of efficiency when solving nonlinear systems of equations. The number of matrix
products, scalar products, decomposition of LU and the solution of the triangular systems of algebraic
linear equations are significant in estimating the real cost and superiority of a scheme in comparison to the
existing solvers in literature [23].

Hence, the results can be summarized as follows for large m:

2
1

2m3
3 +4m2

< 2
1

2m3
3 +3m2+m < 3

1
2m3

3 +6m2+m < 3.30
1

2m3
3 +6m2+m . (34)

In our comparisons, we applied the Newton’s quadratically convergent iteration expression (NM)
and also Steffensen’s method (SM), the third-order expression of Amat et al. (8) denoted by AM, and the
presented approach (16) showed by PM, for tackling our nonlinear systems of algebraic equations. This is
also plotted in Figure 1 showing the competitiveness of the scheme with memory (16).

Figure 1. The comparison of flops-like efficiency indices for various schemes with and without memory by
changing m.

5. Computational Tests

The aim of this section is to reveal the application of our proposed nonlinear solver for some practical
problems. The software Mathematica 11.0, [24,25] was used for doing all calculations regarding the
compared methods. We avoided computing any matrix inverse and the linear systems were solved
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applying the command LinearSolver[]. For the implementation of such schemes a possible stopping
criterion can be defined based on the residual norm and imposed as follows:

||A(x(k))||2 ≤ ε, (35)

wherein ε is the required accuracy. || · ||2 is the l2 norm.
To confirm the theoretical convergence speed in our numerical tests, we obtain the the numerical rate

of convergence by employing the following definition:

ρ ≈ ln(||A(x(k+1))||2/||A(x(k))||2)
ln(||A(x(k))||2/||A(x(k−1))||2) . (36)

5.1. An Academical Test

Example 1. Here a nonlinear system of equations A(x) = 0, having complex root is examined as comes next:

A(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5 exp (x1 − 2)x2 + 2x7
x10 + 8x3

x4 − 5x6
3 − x9,

5 tan (x1 + 2) + cos (x9
x10) + x2

3 + 7x3
4 − 2 sin3 (x6),

x1
2 − x10x5x6x7x8x9 + tan (x2) + 2x3

x4 − 5x6
3,

2 tan (x1
2) + 2x2 + x3

2 − 5x5
3 − x6 + x8

cos (x9),
10x1

2 − x10 + cos (x2) + x3
2 − 5x6

3 − 2x8 − 4x9 ,
cos−1(x1

2) sin (x2)− 2x10x5
4x6x9 + x3

2,
x1x2

x7 − x8
x10 + x3

5 − 5x5
3 + x7,

cos−1 (−10x10 + x8 + x9) + x4 sin (x2) + x3 − 15x5
2 + x7,

10x1 + x3
2 − 5x5

2 + 10x6
x8 − sin (x7) + 2x9,

x1 sin (x2)− 2x10
x8 + x10 − 5x6 − 10x9,

(37)

wherein the exact solution just shown up to 10 decimal places as follows:

α � (1.3273490437 + 0.3502924960i, 1.058599346− 1.748724664i,
1.0276186794− 0.0141308051i, 3.273950008 + 0.127828308i,
0.8318243937 + 0.0017551949i,−0.4853245912 + 0.6848776400i,
0.1693667630 + 0.1840917580i, 1.534419958− 0.321214766i,
2.086379651 + 0.426342755i,−1.989592331 + 1.478395393i)∗.

(38)

The numerical evidences and the computational order of convergence ρ for this experiment are
reported forward in Table 1 using 1000 fixed floating point arithmetic and the starting value x(0) = (1.2 +
0.3I, 1.1− 1.9I, 1.0− 0.1I, 2.5 + 0.5I, 0.8− 0.1I,−0.4 + 1.I, 0.1 + 0.1I, 1.3− 0.7I, 2.0 + 0.5I,−1.9 + 1.4I)∗.
Here, the residual norm ‖ · ‖2 is reported.

Table 1. Comparison evidences for Example 1.

Met. ‖A(x(3))‖ ‖A(x(4))‖ ‖A(x(5))‖ ‖A(x(6))‖ ‖A(x(7))‖ ‖A(x(8))‖ ‖A(x(9))‖ ρ

NM 8.19E− 1 2.73E− 2 1.79E− 5 1.28E− 11 2.52E− 23 8.28E− 47 2.50E− 94 2.02
SM 7.68E− 1 1.83E− 2 7.33E− 6 5.17E− 12 1.51E− 24 2.03E− 49 3.91E− 99 1.99
AM 8.50E− 2 6.50E− 6 4.98E− 17 3.68E− 50 1.26E− 149 4.83E− 448 3.00
PM 6.80E− 2 1.12E− 7 5.15E− 26 1.76E− 86 6.47E− 287 3.31
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5.2. An Integral Equation Using a Collocation Approach

Example 2. The purpose of this test was to examine the performance of the new derivative-free scheme with memory
for the following mixed Hammerstein integral equation [6]:

y(s) = 1 +
1
5

∫ 1

0
G(s, t)y(t)3dt, (39)

wherein y ∈ C[0, 1], s, t ∈ [0, 1] and the kernel G is defined as follows:

G(s, t) =

{
(1− s)t, t ≤ s,

s(1− t), t > s.
(40)

By employing the well-resulted Gauss-Legendre quadrature formula in discretization of integral
equations given in the following form, we will be able to tackle (39):

∫ 1

0
y(t)dt ≈

χ

∑
j=1

wjy(tj), (41)

where the abscissas tj and the weights wj were determined via the formula of Gauss–Legendre quadrature.
The lower limit of integration in standard Gauss–Legendre quadrature formula is −1. In order to

approximate the integral (41) over [0, 1], we should map the roots of Legendre polynomials tj on this
segment and scale the weights wj.

Showing the estimation y(ti) via xi (i = 1, 2, · · · , χ), one would be able to transfigure the process of
solving nonlinear mixed integral equations into a set of nonlinear algebraic equations as comes next:

5xi − 5−
χ

∑
j=1

cijx3
j = 0, i = 1, 2, · · · , χ, (42)

where

cij =

{
wjtj(1− ti), i f j ≤ i,
wjti(1− tj), i f i < j.

(43)

For this example, we employed 200 digits floating point in the computations with the stop termination
as the following residual norm (35) with ε = 10−100. The initial vector was selected as x(0) = (3, 3, . . . , 3)∗,
while the results are shown in Figure 2 using χ = 40 as a list log plot of the function values by performing
the cycle. It reveals a stable and fast performance of the new scheme with memory in solving integral
equations. Recalling that the Figure 2 can be interpreted only as an error of numerical solution of the
system (42) but not the error of solution of the source integral Equation (39).

Figure 2. Error history for solving the integral equation in Example 2 using PM (Performed by Mathematica).
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6. Summary

For derivative-involved iteration schemes in solving nonlinear systems, we use the m×m Jacobian
matrix, i.e., F′(x), with entries F′(x)jk = ∂xk fj(x). Higher order schemes, such as Chebyshev methods,
need higher multi dimensional derivatives which make them less practical. To be more precise, the first
Fréchet derivative is a matrix with m2 elements, while the 2nd order Fréchet differentiation has m3 entries
(ignoring the symmetric feature).

In this work, we have developed and introduced a variant of Steffensen’s method with memory for
tackling nonlinear problems. The scheme consists of two steps and requires the the computation of only
one LU factorization which makes its computational efficiency index higher than some of the existing
solvers in the literature.

The application of the iteration scheme for nonlinear integral equations via the collocation approach
was discussed and its application for other types of nonlinear discretized set of equations obtained from
practical problems such as the ones in [26,27] can be investigated similarly.

Author Contributions: All authors contributed equally in preparing and writing this work.

Funding: This work was supported by Hamedan Branch of Islamic Azad university.

Acknowledgments: We are grateful to three anonymous referees for several comments which improved the readability
of this work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Qasim, S.; Ali, Z.; Ahmad, F.; Serra-Capizzano, S.; Ullah, M.Z.; Mahmood, A. Solving systems of nonlinear
equations when the nonlinearity is expensive. Comput. Math. Appl. 2016, 71, 1464–1478. [CrossRef]

2. Wazwaz, A.-M. Linear and Nonlinear Integral Equations; Higher Education Press: Beijing, China;
Springer: Berlin/Heidelberg, Germany, 2011.

3. Mashayekhi, S.; Razzaghi, M.; Tripak, O. Solution of the nonlinear mixed Volterra-Fredholm integral equations
by hybrid of block-pulse functions and Bernoulli polynomials. Sci. World J. 2014, 2014. [CrossRef] [PubMed]

4. Alzahrani, E.O.; Al-Aidarous, E.S.; Younas, A.M.M.; Ahmad, F.; Ahmad, S.; Ahmad, S. A higher order frozen
Jacobian iterative method for solving Hamilton-Jacobi equations. J. Nonlinear Sci. Appl. 2016, 9, 6210–6227.
[CrossRef]

5. Soleymani, F. Pricing multi–asset option problems: A Chebyshev pseudo–spectral method. BIT Numer. Math.
2019, 59, 243–270. [CrossRef]

6. Ortega, J.M.; Rheinboldt, W.C. Iterative Solution of Nonlinear Equations in Several Variables; Academic Press:
New York, NY, USA, 1970.

7. Noda, T. The Steffensen iteration method for systems of nonlinear equations. Proc. Jpn. Acad. 1987, 63, 186–189.
[CrossRef]

8. Grau-Sánchez, M.; Grau, À.; Noguera, M. On the computational efficiency index and some iterative methods for
solving systems of nonlinear equations. J. Comput. Appl. Math. 2011, 236, 1259–1266. [CrossRef]

9. Traub, J.F. Iterative Methods for the Solution of Equations; Prentice Hall: New York, NY, USA, 1964.
10. Amat, S.; Busquier, S. Convergence and numerical analysis of a family of two-step Steffensen’s methods.

Comput. Math. Appl. 2005, 49, 13–22. [CrossRef]
11. Soleymani, F.; Sharifi, M.; Shateyi, S.; Haghani, F.K. A class of Steffensen-type iterative methods for nonlinear

systems. J. Appl. Math. 2014, 2014. [CrossRef]
12. Babajee, D.K.R.; Dauhoo, M.Z.; Darvishi, M.T.; Barati, A. A note on the local convergence of iterative methods

based on Adomian decomposition method and 3-node quadrature rule. Appl. Math. Comput. 2008, 200, 452–458.
[CrossRef]

293



Mathematics 2019, 7, 637

13. Alaidarous, E.S.; Ullah, M.Z.; Ahmad, F.; Al-Fhaid, A.S. An efficient higher-order quasilinearization method for
solving nonlinear BVPs. J. Appl. Math. 2013, 2013. [CrossRef]

14. Hanaç, E. The phase plane analysis of nonlinear equation. J. Math. Anal. 2018, 9, 89–97.
15. Hasan, P.M.A.; Sulaiman, N.A. Numerical treatment of mixed Volterra-Fredholm integral equations using

trigonometric functions and Laguerre polynomials. ZANCO J. Pure Appl. Sci. 2018, 30, 97–106.
16. Qasim, U.; Ali, Z.; Ahmad, F.; Serra-Capizzano, S.; Ullah, M.Z.; Asma, M. Constructing frozen Jacobian iterative

methods for solving systems of nonlinear equations, associated with ODEs and PDEs using the homotopy
method. Algorithms 2016, 9, 18. [CrossRef]

17. Ahmad, F.; Soleymani, F.; Khaksar Haghani, F.; Serra-Capizzano, S. Higher order derivative-free iterative
methods with and without memory for systems of nonlinear equations. Appl. Math. Comput. 2017, 314, 199–211.
[CrossRef]

18. Bellavia, S.; Bertaccini, D.; Morini, B. Nonsymmetric preconditioner updates in Newton-Krylov methods for
nonlinear systems. SIAM J. Sci. Comput. 2011, 33, 2595–2619. [CrossRef]

19. Bellavia, S.; Morini, B.; Porcelli, M. New updates of incomplete LU factorizations and applications to large
nonlinear systems. Optim. Methods Softw. 2014, 29, 321–340. [CrossRef]

20. Bertaccini, D.; Durastante, F. Interpolating preconditioners for the solution of sequence of linear systems.
Comput. Math. Appl. 2016, 72, 1118–1130. [CrossRef]

21. Sharma, J.R.; Kumar, D.; Argyros, I.K.; Magreñán, Á.A. On a bi-parametric family of fourth order composite
Newton-Jarratt methods for nonlinear systems. Mathematics 2019, 7, 492. [CrossRef]

22. Cordero, A.; Hueso, J.L.; Martínez, E.; Torregrosa, J.R. A modified Newton-Jarratt’s composition.
Numer. Algorithms 2010, 55, 87–99. [CrossRef]

23. Montazeri, H.; Soleymani, F.; Shateyi, S.; Motsa, S.S. On a new method for computing the numerical solution of
systems of nonlinear equations. J. Appl. Math. 2012, 2012, 1–15. [CrossRef]

24. Sánchez León, J.G. Mathematica Beyond Mathematics: The Wolfram Language in the Real World; Taylor & Francis
Group: Boca Raton, FL, USA, 2017.

25. Wagon, S. Mathematica in Action, 3rd ed.; Springer: Berlin, Germany, 2010.
26. Soheili, A.R.; Soleymani, F. Iterative methods for nonlinear systems associated with finite difference approach in

stochastic differential equations. Numer. Algorithms 2016, 71, 89–102. [CrossRef]
27. Soleymani, F.; Barfeie, M. Pricing options under stochastic volatility jump model: A stable adaptive scheme.

Appl. Numer. Math. 2019, 145, 69–89. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution (CC
BY) license (http://creativecommons.org/licenses/by/4.0/).

294



mathematics

Article

A Unified Convergence Analysis for Some Two-Point
Type Methods for Nonsmooth Operators

Sergio Amat 1,*,†, Ioannis Argyros 2,†, Sonia Busquier 1,†, Miguel Ángel Hernández-Verón 3,†

and María Jesús Rubio 3,†

1 Departamentode Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena,
11003 Cádiz, Spain

2 Department of Mathematical Sciences, Cameron University, Lawton, OK 73505, USA
3 Departamento de Matemáticas y Computación, Universidad de La Rioja, Calle Madre de Dios, 53,

26006 Logrono, Spain
* Correspondence: sergio.amat@upct.es; Tel.: +34-968-325-651
† These authors contributed equally to this work.

Received: 18 June 2019; Accepted: 31 July 2019; Published: 3 August 2019

Abstract: The aim of this paper is the approximation of nonlinear equations using iterative methods.
We present a unified convergence analysis for some two-point type methods. This way we compare
specializations of our method using not necessarily the same convergence criteria. We consider both
semilocal and local analysis. In the first one, the hypotheses are imposed on the initial guess and in
the second on the solution. The results can be applied for smooth and nonsmooth operators.
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1. Introduction

One of the most important techniques in order to approximate nonlinear equations are iterative
methods [1–6]. In this paper, we present a unified approach for two-point Newton-type methods for
smooth and nonsmooth operators [7–10]. We will consider two types of convergence. The semilocal
convergence is where the hypotheses are imposed on the initial guess; and local convergence is where
the hypotheses are imposed on the solution. Our family includes a great variety of methods. We are
interested also in the application of these methods in practice (nonlinear systems, boundary problems
and image processing).

For a greater generality, in this study, let X and Y be two Banach spaces and D a nonempty,
open, and convex set; let F1 : D ⊂ X → Y and F2 : D ⊂ X → Y be continuous operators. Moreover,
we assume that the operator F1 has a continuous Fréchet derivative and F2 is a continuous operator
whose differentiability is not assumed. We consider the equation

F(x) = F1(x) + F2(x) = 0. (1)

To solve this equation, we use the two-point Newton-type methods defined by

xk+1 = xk − L−1
k−1,k(F1(xk) + F2(xk)) (2)

for each k = 0, 1, 2, ..., where x−1, x0 ∈ D are the initial points, L(., .) : D× D → L(X, Y) and L(X, Y)
is the space of bounded linear operators from X into Y. We have denoted by Lk−1,k = L(xk−1, xk).

If F2(x) �= 0, we have that the operator F is not Fréchet differentiable. In general, to approximate
a solution of (1) in this situation, derivative-free iterative methods are used [11–14]. To obtain this

Mathematics 2019, 7, 701; doi:10.3390/math7080701 www.mdpi.com/journal/mathematics295
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type of iterative processes, it is common to approximate derivatives by difference divided. Remember
that, given an operator H : D ⊂ X → Y, we call [x, y; H] ∈ L(X, Y) a first order divided differences
operator for H on the points x and y (x �= y) in D if

[x, y; H](x− y) = H(x)− H(y). (3)

So, to solve (1) with iterative methods given from (2), we can consider at least two different procedures.
Firstly, we have the Zincenko method [15], given by the following algorithm:⎧⎨⎩ Given x−1, x0 ∈ D,

xk+1 = xk −
[
F′1(xk)

]−1F(xk), n ≥ 0,
(4)

where we directly eliminate the nondifferentiable part of F, i.e., F2. So, in this case, Lk−1,k = F′1(xk)

in (2). Secondly, we can consider an approximation of F′ by divided differences, the secant-type
methods [16,17]: ⎧⎪⎪⎨⎪⎪⎩

Given x−1, x0 ∈ D,

yk = λxk + (1− λ)xk−1, λ ∈ [0, 1),

xk+1 = xk − [yk, xk; F]−1F(xk), n ≥ 0,

(5)

where the secant method, for λ = 0, is obtained. So, in this case, Lk−1,k = [yk, xk; F] in (2). But, if we
consider a better approximation of the derivative of F, an approximation of second order, we have the
Kurchatov method [18]:⎧⎨⎩ Given x−1, x0 ∈ D,

xk+1 = xk − [xk−1, 2xk − xk−1; F]−1F(xn), n ≥ 0,
(6)

in this case, Lk−1,k = [xk−1, 2xk − xk−1; F] in (2).
By using this procedure of decomposition for operator F, we see that we can also consider the

application of iterative methods that use derivatives when F is nondifferentiable. So, if we consider
decomposition of F given in (1), we can use the Newton-secant-type algorithm:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Given x−1, x0 ∈ D,

yk = λxk + (1− λ)xk−1, λ ∈ [0, 1),

xk+1 = xk −
(

F′1(xk) + [yk, xk; F]
)−1F(xk), n ≥ 0,

(7)

where Lk−1,k = F′1(xk) + [yk, xk; F] in (2). The other possibility, from the decomposition method, is to
consider the Newton–Kurchatov [19] algorithm:⎧⎨⎩ Given x−1, x0 ∈ D,

xk+1 = xk −
(

F′1(xk) + [xk−1, 2xk − xk−1; F]
)−1F(xk), n ≥ 0,

(8)

where Lk−1,k = F′1(xk) + [xk−1, 2xk − xk−1; F] in (2). Another possibility is to consider Steffensen-type
methods, that is, the methods associated to divided differences like [xk, xk + F(xk); F].

As we can see, there are a lot of iterative methods that can be written as algorithms (2).
The main aim of this paper is to obtain a general study for the convergence, local and semilocal,

for these Newton-type of iterative methods given in (2).

296



Mathematics 2019, 7, 701

2. Convergence Analysis for Two-Point Newton-Type Methods

In this section, we present both semilocal and local convergence analysis. In the first one,
the hypotheses are imposed on the initial guess; and in the second, on the solution. The results
can be applied for smooth and nonsmooth operators.

2.1. Local Convergence Analysis

We start the local analysis of method (2). Let v0 : [0,+∞)× [0,+∞)→ [0,+∞) be a nondecreasing
continuous function. Assume that the equation

v0(t, t) = 1 (9)

has at least one positive root r0. Let also v : [0, r0)× [0, r0)→ [0,+∞) be a nondecreasing continuous
function. Define function v̄ on the interval [0, r0) by

v̄(t) =
v(t, t)

1− v0(t, t)
− 1. (10)

Assume that the equation
v̄(t) = 0 (11)

has a minimal positive solution r. It follows that for each t ∈ [0, r)

0 ≤ v0(t, t) < 1 (12)

and
0 ≤ v̄(t) < 1. (13)

Our analysis of method (2) will use the conditions (A):

• (a1) There exist a solution x∗ ∈ D of Equation (1), and B ∈ L(X, Y) such that B−1 ∈ L(Y, X).
• (a2) Condition (9) holds and for each x, u ∈ D

‖B−1(L(x, u)− B)‖ ≤ v0(‖x− x∗‖, ‖u− y∗‖),

where v0 is defined previously, and r0 is given in (9).

Set D0 = D ∩ Ū(x∗, r0).
• (a3) For each x, z ∈ D0, and any solution y ∈ D of Equation (1)

‖B−1(F1(x) + F2(x)− L(z, x)y)‖ ≤ v(‖z− y‖, ‖x− y‖)‖x− y‖,

where v is defined previously, and L(·, ·) : D0 × D0 → L(X, Y).
• (a4) Ū(x∗, r) ⊂ D, where r is given in (10).
• (a5)

ξ :=
v(r, r)

1− v0(r, r)
∈ [0, 1).

We are able to perform our local analysis of method (2) based on the aformentioned conditions (A).

Theorem 1. Assume that the conditions (A) hold. Then, sequence xk, defined by method (2) for x−1, x0 ∈
U(x∗, r)− x∗, is well defined in U(x∗, r); remains in U(x∗, r); and converges to x∗. Finally, the following
estimates hold.

‖xk+1 − x∗‖ ≤ v(‖xk−1 − x∗‖, ‖xk − x∗‖)
1− v0(‖xk−1 − x∗‖, ‖xk − x∗‖)‖xk − x∗‖ ≤ ‖xk − x∗‖ < r. (14)
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The vector x∗ is the only solution of Equation (1) in Ū(x∗, r).

Proof. We will use mathematical induction on k.
Let x, u ∈ U(x∗, r).
Using (2), (a1) and (a2), we obtain

‖B−1(L(x, u)− B)‖ ≤ v0(‖x− x∗‖, ‖u− x∗‖) ≤ v0(r, r) < 1. (15)

Using the Banach lemma on invertible operators [20] and (15), we deduce that L(x, u)−1 ∈
L(Y, X), and

‖L(x, u)−1B‖ ≤ 1
1− v0(‖x− x∗‖, ‖u− x∗‖) . (16)

In particular, estimate (16) holds for x = x0, so x1 is well defined by method (2) for k = 0.
Using the definition of the method (2) (for k = 0); (a1), (a3), (13), and (16) (for k = 0) that

‖x1 − x∗‖ = ‖x0 − x∗ − L(x−1, x0)
−1(x−1, x0)(F1(x0) + F2(x0))‖

= ‖[L(x−1, x0)
−1B][B−1(F1(x0) + F2(x0)− L(x−1, x0)(x0 − x∗))]‖

≤ ‖L(x−1, x0)
−1B‖‖B−1(F1(x0) + F2(x0)− L(x−1, x0)(x0 − x∗))‖

≤ v(‖x−1 − x∗‖, ‖x0 − x∗‖)
1− v0(‖x−1 − x∗‖, ‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r, (17)

which shows estimate (14) for k = 0 and x1 ∈ U(x∗, r).
Replace x0, x1 by xi, xi+1 in the preceding estimates to complete the induction for estimate (14).

Then, from the estimate

‖xi+1 − x∗‖ ≤ μ‖xi − x∗‖ < r, (18)

where

μ =
v(‖x−1 − x‖, ‖x0 − x∗‖)

1− v0(‖x−1 − x∗‖, ‖x0 − x∗‖) ∈ [0, 1),

thus, limi→+∞ xi = x∗ and xi+1 ∈ U(x∗, r). Moreover, for the uniqueness part, let y∗ ∈ Ū(x∗, r) with
F1(y∗) + F2(y∗) = 0. Using (a3), (a5), and estimate (17), we obtain in turn that

‖xi+1 − y∗‖ ≤ ‖L(xi−1, xi)
−1B‖‖B−1(F1(xi) + F2(xi)− L(xi−1, xi)(xi − y∗))‖

≤ v(‖xi−1 − y∗‖, ‖xi − y∗‖)
1− v0(‖xi−1 − y∗‖, ‖xi − y∗‖)‖xi − y∗‖

≤ μ‖xi − y∗‖ < μi+1‖x0 − y∗‖, (19)

which shows limi→+∞ xi = y∗—but, we showed limi→+∞ xi = x∗. Hence, we conclude that x∗ =

y∗.

Remark 1. • Condition (a3) can be replaced by the stronger: for each x, y ∈ D0

‖B−1(F1(x) + F2(x)− L(x)(x− y))‖ ≤ v1(‖x− y‖)‖x− y‖,

where function v1 is as v. However, for each t, t
′ ≥ 0

v(t, t
′
) ≤ v1(t, t

′
).

• Linear operator B does not necessarily depend on q, where q = x∗ or q = x0. It is used to determine the
invertibility of linear operator L(·, ·) appearing in the method. The invertibility of B can be assured by
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an additional condition of the form ||I − B|| < 1 or in some other way. A possible choice for B is B = B(q)
or B = F

′
1(q).

• It follows from the definition of r0 and r that r0 ≥ r.

2.2. Semilocal Convergence Analysis

For the semilocal case, we also define some functions and parameters. Let w0 : [0,+∞) ×
[0,+∞)→ [0,+∞) be a continuous and nondecreasing function.

Assume that the equation
w0(t, t) = 1, (20)

has one smallest positive root that we denote by ρ0. Let w : [0, ρ0)× [0, ρ0)× [0, ρ0) → [0,+∞) be
a nondecreasing continuous function. Moreover, for η, η̄ ≥ 0, define parameters C1 and C2 by

C1 =
w(η̄, η, 0)

1− w0(0, η)
,

C2 =
w(0, η

1−C1
, η)

1− w0(η, η
1−C1

)

and function C : [0, ρ0)→ [0,+∞) by C(t) = w(t,t,t)
1−w0(t,t)

. Assume that the equation

(
C1C2

1− C(t)
+ C1 + 1)η − t = 0 (21)

has one smallest positive root that we denote by ρ.
The semilocal convergence analysis of method (2) will be based on conditions (H):

• (h1) There exists x−1, x0 ∈ D, and B ∈ L(X, Y) such that B−1 ∈ L(Y, X).
• (h2) Condition (20) holds, and for each x ∈ D

‖B−1(L(z, x)− B)‖ ≤ w0(‖z− x0‖, ‖x− x0‖),

where w0 is defined previously and ρ0 is given in (20).

Set D1 = D
⋂

Ū(x0, ρ0).
• (h3) For L(·, ·) : D1 × D1 → L(X, Y), and each x, y, z ∈ D1

‖B−1(F1(y)− F1(x) + F2(y)− F2(x)− L(z, x)(y− x))‖
≤ w(‖z− x0‖, ‖y− x0‖, ‖x− x0‖)‖y− x‖,

where w is defined previously.
• (h4) Ū(x0, ρ) ⊆ D and condition (21) holds for ρ, where ‖x1 − x0‖ ≤ η and ‖x−1 − x0‖ ≤ η̄.
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Then, using the hypotheses (H), we obtain the estimates:

‖x2 − x1‖ ≤ w(‖x−1 − x0‖, ‖x1 − x0‖, ‖x0 − x0‖)‖x1 − x0‖
1− w0(‖x0 − x0‖, ‖x1 − x0‖) = C1‖x1 − x0‖,

‖x2 − x0‖ ≤ ‖x2 − x1‖+ ‖x1 − x0‖ ≤ (1 + C1)‖x1 − x0‖

=
1− C2

1
1− C1

‖x1 − x0‖

<
η

1− C1
< ρ,

‖x3 − x2‖ ≤ w(‖x0 − x0‖, ‖x2 − x0‖, ‖x1 − x0‖)
1− w0(‖x1 − x0‖, ‖x2 − x0‖) ‖x2 − x1‖

≤ w(0, η
1−C1

, η)

1− w0(η, η
1−C1

)
‖x2 − x1‖ = C2‖x2 − x1‖,

‖x3 − x0‖ ≤ ‖x3 − x2‖+ ‖x2 − x1‖+ ‖x1 − x0‖
≤ C2‖x2 − x1‖+ C1‖x1 − x0‖+ ‖x1 − x0‖
≤ (C2C1 + C1 + 1)‖x1 − x0‖,

‖x4 − x3‖ ≤ w(‖x1 − x0‖, ‖x3 − x0‖, ‖x2 − x0‖)
1− w0(‖x2 − x0‖, ‖x3 − x0‖) ‖x3 − x2‖

≤ C(ρ)‖x3 − x2‖ ≤ C(ρ)C2‖x2 − x1‖
≤ C(ρ)C2C1‖x1 − x0‖,

(22)

similarly for i = 3, 4, . . .

‖xi+1 − xi‖ ≤ C(ρ)‖xi − xi−1‖ ≤ C(ρ)i−2‖x3 − x2‖,

‖xi+1 − x0‖ ≤ ‖xi+1 − xi‖+ ... + ‖x4 − x3‖+ ‖x3 − x0‖
≤ C(ρ)‖xi − xi−1‖+ ... + C(ρ)‖x3 − x2‖

+(C2C1 + C1 + 1)‖x1 − x0‖
≤ C(ρ)i−2‖x3 − x2‖+ ... + C(ρ)‖x3 − x2‖

+(C2C1 + C1 + 1)‖x1 − x0‖
≤ (

1− C(ρ)i−1

1− C(ρ)
C2C1 + C1 + 1)‖x1 − x0‖

< (
C1C2

1− C(ρ)
+ C1 + 1)η ≤ ρ, (23)

‖xi+j − xi‖ ≤ ‖xi+j − xi+j−1‖+ ‖xi+j−1 − xi+j−2‖+ ... + ‖xi+1 − xi‖
≤ (C(ρ)i+j−3 + ... + C(ρ)i−2)‖x3 − x2‖
≤ C(ρ)i−2 1− C(ρ)j−1

1− C(ρ)
‖x3 − x2‖

≤ C(ρ)i−2 1− C(ρ)j−1

1− C(ρ)
C2C1‖x1 − x0‖

≤ C(ρ)i−2 1− C(ρ)j−1

1− C(ρ)
C2C1η. (24)
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It follows from (23) that xi ∈ U(x0, ρ); and from (24) that sequence xi is complete in a Banach
space X. In particular, it converges to some x∗ ∈ Ū(x0, ρ). By letting i → +∞ in the estimate

‖B−1(F1(xi) + F2(xi))‖ = ‖B−1(F1(xi) + F2(xi)− F1(xi−1)− F2(xi−1)− Li−2,i−1(xi − xi−1))‖

≤ w(‖xi−2 − x0‖, ‖xi − x0‖, ‖xi−1 − x0‖)‖xi − xi−1‖
1− w0(‖xi−1 − x0‖, ‖xi − x0‖) ≤ w(ρ, ρ, ρ)

1− w0(ρ, ρ)
‖xi − xi−1‖,

we obtain F1(x∗) + F2(x∗) = 0. The uniqueness part is omitted as analogous to the one in the local
convergence case.

Hence, we can present our semilocal convergence result associated to the method (2).

Theorem 2. Assume that the conditions (H) hold. Then, sequence xk, defined by the method (2) for x−1, x0 ∈ D,
is well defined in U(x0, ρ); remains in U(x0, ρ); and converges to a solution x∗ ∈ Ū(x0, ρ) of Equation (1).
On the other hand, the vector x∗ is the only solution of Equation (1) in Ū(x0, ρ).

The same comments given in the previous remark hold.

3. Numerical Experiment

Consider the nondifferentiable system of equations⎧⎨⎩ 3x2
1x2 + x2

2 − 1 + |x1 − 1|3/2 = 0,

x4
1 + x1x3

2 − 1 + |x2|3/2 = 0.
(25)

We therefore have an operator F : R2 → R2 such that F = F1 + F2, as in (1), with F1, F2 : R2 → R2,
F1 = (F1

1, F1
2), F2 = (F2

1, F2
2), being

F1
1 (x1, x2) = 3x2

1x2 + x2
2 − 1 and F2

1 (x1, x2) = x4
1 + x1x3

2 − 1,

F1
2 (x1, x2) = |x1 − 1|3/2 and F2

2 (x1, x2) = |x2|3/2,

where the operator F1 is continuously Fréchet-differentiable and F2 is continuous but is a Fréchet
nondifferentiable operator.

For u = (u1, uT
2 ), v = (v1, v2)

T ∈ R2, we consider the divided difference of first order defined by
[u, v; F] = ([u, v; F]ij)2

i,j=1 ∈ L(R2,R2), where

[u, v; F]i1 =

⎧⎨⎩
Fi(u1, u2, . . . , vm)− Fi(u1, v2, . . . , vm)

u1 − v1
, if u2 �= v2,

0, if u1 = v1,

[u, v; F]i2 =

⎧⎨⎩
Fi(u1, u2, . . . , vm)− Fi(u1, v2, . . . , vm)

u2 − v2
, if u2 �= v2,

0, if u2 = v2,

for i = 1, 2.
The iterative processes given by (1) allow us to consider direct iterative processes, such as

(5) and (6); as well as iterative processes that use the decomposition method, such as (7) and (8).
In this experiment, for the nondifferentiable system (25), we check that the application of the iterative
processes that use the decomposition method have better behavior than the direct methods.
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To carry out this study, we will consider as an approximate solution of system (25):

x∗ = (0.9383410452297656, 0.3312445136375143) ,

the starting points x−1 = (5, 5) and x0 = (1, 0), and use a tolerance ‖xn+1 − xn‖ ≤ 10−16. In these
conditions, in Tables 1 and 2 we can see the results of the application of the direct iterative processes,
the secant-type, and Kurchatov methods. Whereas in Tables 3 and 4 we can see the results of the
application of the iterative processes that use the decomposition method, Newton-secant-type and
Newton–Kuchatov methods. Observing the results obtained, it is evident that the best behavior of the
iterative processes is given by (2) using the decomposition method.

Table 1. ‖x∗ − xn‖ for secant-type methods (5) and different values of the parameter λ.

n λ = 0 λ = 0.5 λ = 0.99

1 3.18484× 10−1 2.965× 10−1 4.54388× 10−2

2 5.21264× 10−2 4.13083× 10−2 3.74494× 10−3

3 3.66108× 10−3 2.35344× 10−3 2.94716× 10−5

4 2.59348× 10−4 7.2935× 10−5 3.69966× 10−9

5 1.30031× 10−6 1.24012× 10−7 2.10942× 10−15

6 4.42187× 10−10 6.07747× 10−12

7 1.11022× 10−15 1.11022× 10−16

Table 2. Kurchatov method (6).

n ‖x∗ − xn‖
1 2.99754× 10−1

2 1.07269× 10−1

3 4.20963× 10−2

4 8.37098× 10−3

5 2.78931× 10−4

6 9.0784× 10−8

7 2.9826× 10−11

Table 3. ‖x∗ − xn‖ for Newton-secant-type methods (7) and different values of the parameter λ.

n λ = 0 λ = 0.5 λ = 0.99

1 2.3538× 10−1 1.00278× 10−1 4.29554× 10−2

2 3.48717× 10−1 2.88094× 10−2 2.53626× 10−3

3 1.47537× 10−1 1.90518× 10−3 9.06208× 10−6

4 3.4371× 10−2 8.39107× 10−6 1.9925× 10−10

5 3.08399× 10−3 4.78016× 10−9

6 4.63665× 10−5 7.38298× 10−15

7 4.05776× 10−8

8 2.96929× 10−13

Table 4. Newton–Kurchatov method (8).

n ‖x∗ − xn‖
1 6.1659× 10−1

2 4.75269× 10−3

3 6.29174× 10−5

4 3.37027× 10−9
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Remark 2. In the above example, we have selected the initial guess in a region where the operator is not smooth.
The methods can be applied to systems where the operator is not smooth at the solution.

For instance, for the system: { |x2
1 − 1|+ x2 − 1 = 0,

x1 + x2
2 − 1 = 0,

(26)

the solution is (1, 1). If we take as initial guess (0.5, 0.5), the Steffensen method gives as errors 3.12× 10−2,
5.48× 10−4, 1.92× 10−7, 2.15× 10−14, we observe its second order.

4. Boundary Value Problem: Discretization via the Multiple Shooting Method

We will use the multiple shooting method for the discretization of boundary problems of the type

y′′(t) = f (t, y(t), y′(t)), y(a) = α, y(b) = β. (27)

Thus, we should find the solution of the following nonlinear system of equations F(s) = 0, where
F : RN −→ RN and⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

F1(s0, s1, . . . , sN−1) = s1 − y′(t1; s0)

F2(s0, s1, . . . , sN−1) = s2 − y′(t2; s0, s1)
...

FN−1(s0, s1, . . . , sN−1) = sN−1 − y′(tN−1; s0, s1, . . . , sN−2)

FN(s0, s1, . . . , sN−1) = β− y(tN ; s0, s1, sN−2, sN−1).

for a discretization of [a, b] with N subintervals,

TN j, T = b− a, j = 0, 1, . . . , N.

We consider the secant-type method⎧⎪⎪⎨⎪⎪⎩
Given y−1, y0 ∈ D,

zn = λnyn + (1− λn)yn−1, λn ∈ [0, 1),

yn+1 = yn − [zn, yn; F]−1F(yn), n ≥ 0,

(28)

where λn is such that ||zn − xn|| ≤ Tol for a given tolerance, and Newton’s method⎧⎨⎩ Given y0 ∈ D,

yn+1 = yn − F(yn)
−1F(yn), n ≥ 0.

(29)

We perform a numerical comparison between both methods. As we can see, in the multiple
shooting method, the iterative schemes are used as black boxes.
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For the initial slope�s0 =
(
s0

0, s0
1, . . . , s0

N−1
)
, we propose⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s0
0 =

β− α

b− a
=

y(tN)− y(t0)

tN − t0
,

s0
1 =

y(tN)− y(t1; s0)

tN − t1
,

s0
2 =

y(tN)− y(t2; s0, s1)

tN − t2
,

...

s0
N−1 =

y(tN)− y(tN−1; s0, s1, . . . , sN−2)

tN − tN−1
.

We analyze this particular example ([21], p. 554):

y
′′
(t) = τ · sinh(τ · y(t)),

y(0) = 0, y(1) = 1.

We take τ = 2.5 and N = 4 subintervals.
This problem admits the solution:

y(t) =
2
τ

arg sinh
(

s
2
· sn (τt, 1− s2/4)

cn (τt, 1− s2/4)

)
,

where
s = y′(0) = 0.3713363932677645

and sn(·, ·) and cn(·, ·) are the Jacobi elliptic functions.

Newton’s method (29),

n ‖F(�sn)‖∞ ‖y(t)− yn‖∞ ‖y′(t)− y′n‖∞

0 100 10−1 100

1 10−1 10−1 10−1

2 10−2 10−2 10−2

3 10−4 10−4 10−4

4 10−7 10−7 10−7

5 10−15 10−15 10−14

Secant-type method (28),

n ‖F(�sn)‖∞ ‖y(t)− yn‖∞ ‖y′(t)− y′n‖∞ ‖F
′
(yn)− [yn, xn; F]‖∞

0 100 10−1 100 10−6

1 10−1 10−1 10−1 10−6

2 10−2 10−2 10−2 10−7

3 10−4 10−4 10−4 10−6

4 10−7 10−7 10−7 10−6

5 10−15 10−15 10−14 10−6
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The methods using Jacobians obtain their order of convergence. However, in this example, the
computation of the derivatives involves the approximation of a more complicated problem. For this
reason, the methods free of derivatives are preferred, see [21]. Of course, we need to compute a good
approximation to the Jacobian, this is the motivation of our parameters λn. For more similar examples
and conclusions, we refer [22].

Remark 3. In many cases, when we manipulate an image, some random noise appears. This noise makes the
later steps of processing the image difficult and inaccurate.

Let f : Ω → R be a noise signal or image.
Introducing the variable w:

w =
∇u√|∇u|2 ,

the Total-Variation model is equivalent to the nonlinear and nondifferentiable system:

−∇ · w + λ(u− f ) = 0,

w
√
|∇u|2 −∇u = 0.

This system should be discretized using finite differences and the associated nonlinear system of equations
can be approximated by our family (see [23] for more details).

5. Conclusions

This paper was devoted to the analysis of a general family of two-point Newton-type methods
for smooth and nonsmooth operators. We have considered two types of convergence—semilocal
and local. The family includes a great number of methods. We have applied the schemes to several
interesting problems, in particular to nonsmooth nonlinear systems, boundary problems, and image
denoising models.
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Abstract: One of the fastest growing and efficient methods for solving the unconstrained
minimization problem is the conjugate gradient method (CG). Recently, considerable efforts have
been made to extend the CG method for solving monotone nonlinear equations. In this research
article, we present a modification of the Fletcher–Reeves (FR) conjugate gradient projection method
for constrained monotone nonlinear equations. The method possesses sufficient descent property
and its global convergence was proved using some appropriate assumptions. Two sets of numerical
experiments were carried out to show the good performance of the proposed method compared with
some existing ones. The first experiment was for solving monotone constrained nonlinear equations
using some benchmark test problem while the second experiment was applying the method in signal
and image recovery problems arising from compressive sensing.
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1. Introduction

In this paper, we are considering a system of nonlinear monotone equations of the form

F(x) = 0, subject to x ∈ E, (1)

where E ⊆ Rn is closed and convex, F : Rn → Rm, (m ≥ n) is continuous and monotone, which means

〈F(x)− F(y), (x− y)〉 ≥ 0, ∀x, y ∈ Rn.

Mathematics 2019, 7, 745; doi:10.3390/math7080745 www.mdpi.com/journal/mathematics307
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A well-known fact is that under the above assumption, the solution set of (1) is convex unless
is empty. It is important to mention that nonlinear monotone equations arise in many practical
applications. These and other reasons motivate researchers to develop a large number of class
of Iterative methods for solving such systems, for example, see [1–7] among others. In addition,
convex constrained equations have application in many scientific fields, some of which are the
economic equilibrium problems [8], the chemical equilibrium systems [9], etc. Several algorithms
were developed to solve (1), among them, are the trust-region [10] and the Levenberg-Marquardt
method [11]. Moreover, the requirement to compute and store the matrix in every iteration makes
them ineffective for large-scale nonlinear equations.

Conjugate gradient (CG) methods are efficient for solving large-scale optimization and nonlinear
systems because of their low memory requirements. This forms part of the reason several Iterative
methods with CG-like directions are proposed in recent years [12,13]. Initially, CG methods and
their modified versions are proposed for unconstrained optimization problems [14–19]. Inspired by
them, in the last decade, many authors used the CG direction to solve nonlinear monotone equations
for both constrained and unconstrained cases. Since in this article, we are interested in solving
nonlinear monotone equations with convex constraints, we will only discuss existing methods with
such properties.

Many methods for solving nonlinear monotone equations with convex constraints have been
presented in the last decade. For examples, Xiao and Zhu [20] presented a CG method, which
combines the well-known CG-DESCENT method in [17] and the projection method by Solodov
and Svaiter [21]. Liu et al. [22] proposed two CG methods with projection strategy for solving (1).
In [23], a modification of the method in [20] was presented by Liu and Li. One of the reasons for the
modification was to improve the numerical performance of the method in [20]. Also, Sun and Liu [24]
presented derivative-free projection methods for solving nonlinear equations with convex constraints.
These methods are the combination of some existing CG methods and the well-known projection
method. In addition, a hybrid CG projection method for convex constrained equations was developed
in [25]. Ou and Li [26] proposed a combination of a scaled CG method and the projection strategy to
solve (1). Furthermore, Ding et al. [27] extended the Dai and Kou (DK) CG method to solve (1) by
also combining it with the projection method. Just recently, to popularize the Dai-Yuan (DY) method,
Liu and Feng [28] proposed a modified DY method for solving convex constraints monotone equation.
The global convergence was also obtained under certain assumptions and finally, some numerical
results were reported to show its efficiency.

Inspired by some the above proposals, we present a simple modification of the Fletcher–Reeves
(FR) conjugate gradient method [19] considered in [12] to solve nonlinear monotone equations with
convex constraints. The modification ensures that the direction is automatically descent, improves its
numerical performance and still inherits the nice convergence properties of the method. Under suitable
assumptions, we establish the global convergence of the proposed algorithm. Numerical experiments
presented show the good performance and competitiveness of the method. In addition, the proposed
method has the advantages of the direct methods [29] such as boundary control method by Belishev
and Kuryiev [30], the globally convergent method proposed by Beilina and Klibanov [31] and method
based on the multidimensional analogs of Gelfand–Levitan–Krein equations [32,33]. The proposed
method can be seen as a local method that looks for the closest root. However, there are several global
nonlinear solvers that guarantee finding all roots inside a domain and within a very fine double-float
accuracy. In some cases a combination of subdivision-based polynomial solver with a decomposition
algorithm are employed in order to handle large and complex systems (see for examples [34–36] and
references therein).

The remaining part of this article is organized as follows. In Section 2, we mention some
preliminaries and present the proposed method. The global convergence of the method is established
in Section 3. Finally, Section 4 reports some numerical results to show the performance of the method
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in solving monotone nonlinear equations with convex constraints, and also apply it to recover a noisy
signal and a blurred image.

2. Algorithm

In this section, we define the projection map together with its well-known properties, give some
useful assumptions and finally present the proposed algorithm. Throughout this article, ‖ · ‖ denotes
the Euclidean norm.

Definition 1. Let E ⊂ Rn be nonempty closed and convex set. Then for any x ∈ Rn, its projection onto E is
defined as

PE(x) = arg min{‖x− y‖ : y ∈ E.}

The following lemma gives some properties of the projection map.

Lemma 1 ([37]). Suppose E ⊂ Rn is nonempty, closed and convex set. Then the following statements are true:

1. 〈x− PE(x), PE(x)− z〉 ≥ 0, ∀x, z ∈ Rn.
2. ‖PE(x)− PE(y)‖ ≤ ‖x− y‖, ∀x, y ∈ Rn.
3. ‖PE(x)− z‖2 ≤ ‖x− z‖2 − ‖x− PE(x)‖2, ∀x, z ∈ Rn.

Throughout, we suppose the followings

(C1) The solution set of (1), denoted by E
′
, is nonempty.

(C2) The mapping F is monotone.
(C3) The mapping F is Lipschitz continuous, that is there exists a positive constant L such that

‖F(x)− F(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rn.

Our algorithm is motivated by the work of Papp and Rapajić in [12]. In the paper, they
modified the well known Fletcher–Reeves conjugate gradient method to solve unconstrained
nonlinear monotone equation. The modification was adding the term −θkF(xk) to the direction
of Fletcher–Reeves. The parameter θk was then determined in three different ways and three different
directions were proposed, namely, M3TFR1, M3TFR2 and M3TFR3. The direction we are interested in
is M3TFR1 and is defined as:

dk =

{
−F(xk), if k = 0,

−F(xk) + βFR
k wk−1 + θkF(xk), if k ≥ 1,

(2)

where,

βFR
k =

‖F(xk)‖2

‖F(xk−1)‖2 , θk = − F(xk)
Twk−1

‖F(xk−1)‖2 , wk−1 = zk−1 − xk−1, zk−1 = xk−1 + αk−1dk−1.

It follows that
F(xk)

Tdk = −‖F(xk)‖2.

Using same modification proposed in [3], we modify the direction (2) as follows

dk =

⎧⎨⎩−F(xk), if k = 0,

−F(xk) +
‖F(xk)‖2wk−1−F(xk)

Twk−1F(xk)
max{μ‖wk−1‖‖F(xk)‖,‖F(xk−1)‖2} , if k ≥ 1,

(3)

where μ > 0 is a positive constant. The difference between the M3TFR1 direction and the
direction proposed in this paper is the scaling term appearing in the denominator of Equation (3)
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i.e., max{μ‖wk−1‖‖F(xk)‖, ‖F(xk−1)‖2}. This modification was shown to have a very good numerical
performance in [3] and also helps in obtaining the boundedness of the direction easily.

Remark 1. Note the the parameter μ is chosen to be strictly positive because if μ ≤ 0 then

max{μ‖wk−1‖‖F(xk)‖, ‖F(xk−1)‖2} = ‖F(xk−1)‖2.

This means that the direction dk will always be M3TFR1 given by (2).

3. Convergence Analysis

To prove the global convergence of Algorithm 1, the following results are needed.

Algorithm 1: A modified descent Fletcher–Reeves CG method (MFRM).

Step 0. Select the initial point x0 ∈ Rn, parameters μ > 0, σ > 0, 0 < ρ < 1, Tol > 0, and set
k := 0.

Step 1. If ‖F(xk)‖ ≤ Tol, stop, otherwise go to Step 2.
Step 2. Find dk using (3).
Step 3. Find the step length αk = γρmk where mk is the smallest non-negative integer m such
that

− 〈F(xk + αkdk), dk〉 ≥ σαk‖F(xk + αkdk)‖‖dk‖2. (4)

Step 4. Set zk = xk + αkdk. If zk ∈ E and ‖F(zk)‖ ≤ Tol, stop. Else compute

xk+1 = PE[xk − ζkF(zk)]

where

ζk =
F(zk)

T(xk − zk)

‖F(zk)‖2 .

Step 5. Let k = k + 1 and go to Step 1.

Lemma 2. Let dk be defined by Equation (3), then

dT
k F(xk) = −‖F(xk)‖2 (5)

and

‖F(xk)‖ ≤ ‖dk‖ ≤
(

1 +
2
μ

)
‖F(xk)‖. (6)

Proof. By Equation (3), suppose k = 0,

dT
k F(xk) = −F(xk)

T F(xk) = −‖F(xk)‖2.

Now suppose k > 0,

dT
k F(xk) = −F(xk)

T F(xk) +
(‖F(xk)‖2wk−1)

T F(xk)− (F(xk)
Twk−1F(xk))

T F(xk)

max{μ‖wk−1‖‖F(xk)‖, ‖F(xk−1)‖2}

= −‖F(xk)‖2 +
‖F(xk)‖2wT

k−1F(xk)− F(xk)
T(wT

k−1F(xk))F(xk)

max{μ‖wk−1‖‖F(xk)‖, ‖F(xk−1)‖2}

= −‖F(xk)‖2 +
‖F(xk)‖2wT

k−1F(xk)− ‖F(xk)‖2wT
k−1F(xk)

max{μ‖wk−1‖‖F(xk)‖, ‖F(xk−1)‖2}
= −‖F(xk)‖2.

(7)
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Using Cauchy–Schwartz inequality, we get

‖F(xk)‖ ≤ ‖dk‖. (8)

Furthermore, since max{μ‖wk−1‖‖F(xk)‖, ‖F(xk−1)‖2} ≥ μ‖wk−1‖‖F(xk)‖, then,

‖dk‖ =
∥∥∥∥−F(xk) +

‖F(xk)‖2wk−1 − (F(xk)
Twk−1)F(xk)

max{μ‖wk−1‖‖F(xk)‖, ‖F(xk−1)‖2}
∥∥∥∥

≤ ‖− F(xk)‖+ ‖‖F(xk)‖2wk−1 − (F(xk)
Twk−1)F(xk)‖

max{μ‖wk−1‖‖F(xk)‖, ‖F(xk−1)‖2}
≤ ‖F(xk)‖+ ‖F(xk)‖2‖wk−1‖

μ‖wk−1‖‖F(xk)‖ +
‖F(xk)

Twk−1F(xk)‖
μ‖wk−1‖‖F(xk)‖

≤ ‖F(xk)‖+ ‖F(xk)‖2‖wk−1‖
μ‖wk−1‖‖F(xk)‖ +

‖F(xk)‖2‖wk−1‖
μ‖wk−1‖‖F(xk)‖

= ‖F(xk)‖+ 2‖F(xk)‖
μ

=

(
1 +

2
μ

)
‖F(xk)‖.

(9)

Combining (8) and (9), we get the desired result.

Lemma 3. Suppose that assumptions (C1)–(C3) hold and the sequences {xk} and {zk} are generated by
Algorithm 1. Then we have

αk ≥ ρ min

{
1,

‖F(xk)‖2

(L + σ)‖F(xk +
αk
ρ dk)‖‖dk‖2

}

Proof. Suppose αk �= ρ, then αk
ρ does not satisfy Equation (4), that is

− F
(

xk +
αk
ρ

dk

)
< σ

αk
ρ
‖F(xk +

αk
ρ

dk)‖‖dk‖2.

This combined with (7) and the fact that F is Lipschitz continuous yields

‖F(xk)‖2 = −F(xk)
Tdk

=

(
F(xk +

αk
ρ

dk)− F(xk)

)T
dk − FT

(
xk +

αk
ρ

dk

)
dk

≤ L
αk
ρ
‖F(xk +

αk
ρ

dk)‖‖dk‖2 + σ
αk
ρ
‖F(xk +

αk
ρ

dk)‖‖dk‖2

=
L + σ

ρ
αk‖F(xk +

αk
ρ

dk)‖‖dk‖2.

(10)

The above equation implies

αk ≥ ρ min
‖F(xk)‖2

(L + σ)‖F(xk +
αk
ρ dk)‖‖dk‖2 ,

which completes the proof.
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Lemma 4. Suppose that assumptions (C1)–(C3) holds, then the sequences {xk} and {zk} generated by
Algorithm 1 are bounded. Moreover, we have

lim
k→∞

‖xk − zk‖ = 0 (11)

and
lim
k→∞

‖xk+1 − xk‖ = 0. (12)

Proof. We will start by showing that the sequences {xk} and {zk} are bounded. Suppose x̄ ∈ E
′
,

then by monotonicity of F, we get

〈F(zk), xk − x̄〉 ≥ 〈F(zk), xk − zk〉. (13)

Also by definition of zk and the line search (4), we have

〈F(zk), xk − zk〉 ≥ σα2
k‖F(zk)‖‖dk‖2 ≥ 0. (14)

So, we have

‖xk+1 − x̄‖2 = ‖PE[xk − ζkF(zk)]− x̄‖2 ≤ ‖xk − ζkF(zk)− x̄‖2

= ‖xk − x̄‖2 − 2ζ〈F(zk), xk − x̄〉+ ‖ζF(zk)‖2

≤ ‖xk − x̄‖2 − 2ζk〈F(zk), xk − zk〉+ ‖ζF(zk)‖2

= ‖xk − x̄‖2 −
( 〈F(zk), xk − zk〉

‖F(zk)‖
)2

≤ ‖xk − x̄‖2.

(15)

Thus the sequence {‖xk − x̄‖} is non increasing and convergent, and hence {xk} is bounded.
Furthermore, from Equation (15), we have

‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2, (16)

and we can deduce recursively that

‖xk − x̄‖2 ≤ ‖x0 − x̄‖2, ∀k ≥ 0.

Then from assumption (C3), we obtain

‖F(xk)‖ = ‖F(xk)− F(x̄)‖ ≤ L‖xk − x̄‖ ≤ L‖x0 − x̄‖.

If we let L‖x0 − x̄‖ = κ, then the sequence {F(xk)} is bounded, that is,

‖F(xk)‖ ≤ κ, ∀k ≥ 0. (17)

By the definition of zk, Equation (14), monotonicity of F and the Cauchy–Schwatz inequality,
we get

σ‖xk − zk‖ = σ‖αkdk‖2

‖xk − zk‖ ≤
〈F(zk), xk − zk〉
‖xk − zk‖ ≤ 〈F(xk), xk − zk〉

‖xk − zk‖ ≤ ‖F(xk)‖. (18)
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The boundedness of the sequence {xk} together with Equations (17) and (18), implies the sequence
{zk} is bounded.

Now, as {zk} is bounded, then for any x̄ ∈ E
′
, the sequence {zk − x̄} is also bounded, that is,

there exists a positive constant ν > 0 such that

‖zk − x̄‖ ≤ ν.

This together with assumption (C3), this yields

‖F(zk)‖ = ‖F(zk)− F(x̄)‖ ≤ L‖zk − x̄‖ ≤ Lν.

Therefore, using Equation (15), we have

σ2

(Lν)2 ‖xk − zk‖4 ≤ ‖xk − x̄‖2 − ‖xk+1 − x̄‖2,

which implies

σ2

(Lν)2

∞

∑
k=0
‖xk − zk‖4 ≤

∞

∑
k=0

(‖xk − x̄‖2 − ‖xk+1 − x̄‖2) ≤ ‖x0 − x̄‖ < ∞. (19)

Equation (19) implies
lim
k→∞

‖xk − zk‖ = 0.

However, using statement 2 of Lemma 1, the definition of ζk and the Cauchy-Schwartz inequality,
we have

‖xk+1 − xk‖ = ‖PE[xk − ζkF(zk)]− xk‖

≤ ‖xk − ζkF(zk)− xk‖

= ‖ζkF(zk)‖

= ‖xk − zk‖,

(20)

which yields
lim
k→∞

‖xk+1 − xk‖ = 0.

Remark 2. By Equation (11) and definition of zk, then

lim
k→∞

αk‖dk‖ = 0. (21)

Theorem 1. Suppose that assumption (C1)–(C3) holds and let the sequence {xk} be generated by
Algorithm 1, then

lim inf
k→∞

‖F(xk)‖ = 0. (22)

Proof. Assume that Equation (22) is not true, then there exists a constant ε > 0 such that

‖F(xk)‖ ≥ ε, ∀k ≥ 0. (23)
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Combining (8) and (23), we have

‖dk‖ ≥ ‖F(xk)‖ ≥ ε, ∀k ≥ 0.

As wk = xk + αkdk and limk→∞ ‖xk − zk‖ = 0, we get limk→∞ αk‖dk‖ = 0 and

lim
k→∞

αk = 0. (24)

On the other side, if M =
(

1 + 2
μ

)
κ, Lemma 3 and Equation (9) implies αk‖dk‖ ≥ ρ ε2

(L+σ)MLν
,

which contradicts with (24). Therefore, (22) must hold.

4. Numerical Experiments

To test the performance of the proposed method, we compare it with accelerated conjugate
gradient descent (ACGD) and projected Dai-Yuan (PDY) methods in [27,28], respectively. In addition,
MFRM method is applied to solve signal and image recovery problems arising in compressive sensing.
All codes were written in MATLAB R2018b and run on a PC with intel COREi5 processor with 4GB of
RAM and CPU 2.3GHZ. All runs were stopped whenever ‖F(xk)‖ < 10−5. The parameters chosen for
each method are as follows:

MFRM method: γ = 1, ρ = 0.9, μ = 0.01, σ = 0.0001.
ACGD method: all parameters are chosen as in [27].
PDY method: all parameters are chosen as in [28].

We tested eight problems with dimensions of n = 1000, 5000, 10,000, 50,000, 100,000 and 6
initial points: x1 = (0.1, 0.1, · · · , 1)T , x2 = (0.2, 0.2, · · · , 0.2)T , x3 = (0.5, 0.5, · · · , 0.5)T , x4 =

(1.2, 1.2, · · · , 1.2)T , x5 = (1.5, 1.5, · · · , 1.5)T , x6 = (2, 2, · · · , 2)T . In Tables 1–8, the number of
Iterations (Iter), number of function evaluations (Fval), CPU time in seconds (time) and the norm at the
approximate solution (NORM) were reported. The symbol ‘−’ is used when the number of Iterations
exceeds 1000 and/or the number of function evaluations exceeds 2000.

The test problems are listed below, where the function F is taken as F(x) =

( f1(x), f2(x), . . . , fn(x))T .
Problem 1 [38] Exponential Function.

f1(x) = ex1 − 1,

fi(x) = exi + xi − 1, for i = 2, 3, ..., n,

and E = R
n
+.

Problem 2 [38] Modified Logarithmic Function.

fi(x) = ln(xi + 1)− xi
n

, for i = 2, 3, ..., n,

and E = {x ∈ R
n :

n

∑
i=1

xi ≤ n, xi > −1, i = 1, 2, . . . , n}.

Problem 3 [6] Nonsmooth Function.

fi(x) = 2xi − sin |xi|, i = 1, 2, 3, ..., n,

and E = {x ∈ R
n :

n

∑
i=1

xi ≤ n, xi ≥ 0, i = 1, 2, . . . , n}.

It is clear that problem 3 is nonsmooth at x = 0.
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Problem 4 [38] Strictly Convex Function I.

fi(x) = exi − 1, for i = 1, 2, ..., n,

and E = R
n
+.

Problem 5 [38] Strictly Convex Function II.

fi(x) =
i
n

exi − 1, for i = 1, 2, ..., n,

and E = R
n
+.

Problem 6 [39] Tridiagonal Exponential Function

f1(x) = x1 − ecos(h(x1+x2)),

fi(x) = xi − ecos(h(xi−1+xi+xi+1)), for i = 2, ..., n− 1,

fn(x) = xn − ecos(h(xn−1+xn)),

h =
1

n + 1
and E = R

n
+.

Problem 7 [40] Nonsmooth Function

fi(x) = xi − sin |xi − 1|, i = 1, 2, 3, ..., n.

and E = {x ∈ R
n :

n

∑
i=1

xi ≤ n, xi ≥ −1, i = 1, 2, . . . , n}.

Problem 8 [27] Penalty 1

ti =
n

∑
i=1

x2
i , c = 10−5

fi(x) = 2c(xi − 1) + 4(ti − 0.25)xi, i = 1, 2, 3, ..., n.

and E = R
n
+.

To show in detail the efficiency and robustness of all methods, we employ the performance
profile developed in [41], which is a helpful process of standardizing the comparison of methods.
Suppose that we have ns solvers and nl problems and we are interested in using either number of
Iterations, CPU time or number of function evaluations as our measure of performance; so we let kl,s
to be the number of iterations, CPU time or number of function evaluations required to solve problem
by solver s. To compare the performance on problem l by a solver s with the best performance by any
other solver on this problem, we use the performance ratio rl,s defined as

rl,s =
kl,s

min{kl,s : s ∈ S} ,

where S is the set of solvers.
The overall performance of the solver is obtained using the (cumulative) distribution function for

the performance ratio P. So if we let

P(t) =
1
nl

size{l ∈ L : rl,s ≤ t},

315



Mathematics 2019, 7, 745

then P(t) is the probability for solver s ∈ S that a performance ratio rl,s is within a factor t ∈ R of the
best possible ratio. If the set of problems L is large enough, then the solvers with the large probability
P(t) are considered as the best.

Table 1. Numerical results for modified Fletcher–Reeves (MFRM), accelerated conjugate gradient
descent (ACGD) and projected Dai-Yuan (PDY) for problem 1 with given initial points and dimensions.

MFRM ACGD PDY

Dimension Initial Point Iter Fval Time Norm Iter Fval Time Norm Iter Fval Time Norm

1000

x1 23 98 0.42639 9.01 × 10−6 8 34 0.21556 9.26 × 10−6 12 49 0.19349 9.18 × 10−6

x2 7 35 0.019885 8.82 × 10−6 9 39 0.086582 3.01 × 10−6 13 53 0.07318 6.35 × 10−6

x3 8 40 0.011238 9.74 × 10−6 9 38 0.034359 4.02 × 10−6 14 57 0.01405 5.59 × 10−6

x4 15 70 0.066659 6.01 × 10−6 16 67 0.017188 9.22 × 10−6 15 61 0.01421 4.07 × 10−6

x5 5 31 0.16103 0 18 75 0.11646 4.46 × 10−6 14 57 0.08690 9.91 × 10−6

x6 31 134 0.03232 7.65 × 10−6 25 104 0.042967 6.74 × 10−6 40 162 0.04060 9.70 × 10−6

5000

x1 8 38 0.053865 5.63 × 10−6 9 38 0.023729 3.89 × 10−6 13 53 0.02775 6.87 × 10−6

x2 8 40 0.036653 2.59 × 10−6 9 38 0.021951 6.65 × 10−6 14 57 0.02974 4.62 × 10−6

x3 8 40 0.030089 6.41 × 10−6 9 39 0.019317 8.01 × 10−6 15 61 0.04353 4.18 × 10−6

x4 16 74 0.081741 4.71 × 10−6 17 71 0.05235 8.12 × 10−6 15 61 0.03288 9.08 × 10−6

x5 5 31 0.030748 0 18 75 0.038894 8.14 × 10−6 15 61 0.03556 7.30 × 10−6

x6 31 134 0.087531 8.1 × 10−6 26 108 0.053473 7.96 × 10−6 39 158 0.10419 9.86 × 10−6

10,000

x1 5 26 0.03829 3.7 × 10−6 9 39 0.044961 5.5 × 10−6 13 53 0.05544 9.70 × 10−6

x2 8 40 0.055099 3.64 × 10−6 9 39 0.0358 9.39 × 10−6 14 57 0.06201 6.53 × 10−6

x3 8 40 0.049974 5.44 × 10−6 10 43 0.04176 2.12 × 10−6 15 61 0.08704 5.90 × 10−6

x4 16 74 0.125 6.61 × 10−6 18 75 0.066316 4.58 × 10−6 16 65 0.07797 4.28 × 10−6

x5 5 31 0.048751 0 18 75 0.11807 7.86 × 10−6 39 158 0.20751 7.97 × 10−6

x6 28 122 0.13649 7.18 × 10−6 27 112 0.10593 6.22 × 10−6 87 351 0.36678 9.93 × 10−6

50,000

x1 5 26 0.1584 3.58 × 10−6 10 43 0.15918 2.33 × 10−6 14 57 0.23129 7.12 × 10−6

x2 8 40 0.18044 8.1 × 10−6 10 43 0.16252 3.97 × 10−6 15 61 0.23975 4.91 × 10−6

x3 8 40 0.186 4.54 × 10−6 10 43 0.15707 4.67 × 10−6 16 65 0.24735 4.37 × 10−6

x4 17 78 0.31567 5.47 × 10−6 19 79 0.27474 4.1 × 10−6 38 154 0.55277 7.54 × 10−6

x5 5 31 0.18586 0 18 75 0.27118 5.06 × 10−6 177 712 2.29950 9.44 × 10−6

x6 20 90 0.39237 6.44 × 10−6 28 116 0.35197 7.69 × 10−6 361 1449 4.63780 9.74 × 10−6

100,000

x1 5 26 0.26116 4.59 × 10−6 10 42 0.28038 3.29 × 10−6 15 61 0.50090 3.39 × 10−6

x2 9 43 0.35288 1.59 × 10−6 10 42 0.28999 5.62 × 10−6 15 61 0.45876 6.94 × 10−6

x3 8 40 0.35809 4.96 × 10−6 10 42 0.29255 6.59 × 10−6 16 65 0.51380 6.18 × 10−6

x4 17 78 0.59347 7.73 × 10−6 19 79 0.51261 5.79 × 10−6 175 704 4.48920 9.47 × 10−6

x5 32 138 0.98463 7.09 × 10−6 18 75 0.46086 4.05 × 10−6 176 708 4.49410 9.91 × 10−6

x6 17 78 0.57701 9.31 × 10−6 29 120 0.71678 6.05 × 10−6 360 1445 9.10170 9.99 × 10−6

Table 2. Numerical results for MFRM, ACGD and PDY for problem 2 with given initial points
and dimensions.

MFRM ACGD PDY

Dimension Initial Point Iter Fval Time Norm Iter Fval Time Norm Iter Fval Time Norm

1000

x1 3 8 0.007092 5.17 × 10−7 3 8 0.036061 5.17 × 10−7 10 39 0.01053 6.96 × 10−6

x2 3 8 0.012401 6.04 × 10−6 3 8 0.006143 6.04 × 10−6 11 43 0.00937 9.23 × 10−6

x3 4 11 0.003993 4.37 × 10−7 4 11 0.006476 4.37 × 10−7 13 51 0.01111 6.26 × 10−6

x4 5 14 0.010363 1.52 × 10−7 5 14 0.005968 1.52 × 10−7 14 55 0.02154 9.46 × 10−6

x5 5 14 0.007234 1.1 × 10−6 5 14 0.02349 1.1 × 10−6 15 59 0.01850 4.60 × 10−6

x6 6 17 0.006496 1.74 × 10−8 6 17 0.00677 1.74 × 10−8 15 59 0.01938 7.71 × 10−6

5000

x1 3 8 0.011561 1.75 × 10−7 3 8 0.009794 1.75 × 10−7 11 43 0.03528 4.86 × 10−6

x2 3 8 0.010452 3.13 × 10−6 3 8 0.009591 3.13 × 10−6 12 47 0.04032 6.89 × 10−6

x3 4 11 0.01516 1.42 × 10−7 4 11 0.013767 1.42 × 10−7 14 55 0.04889 4.61 × 10−6

x4 5 14 0.019733 3.94 × 10−8 5 14 0.014274 3.94 × 10−8 15 59 0.04826 6.96 × 10−6

x5 5 14 0.018462 4.05 × 10−7 5 14 0.011728 4.05 × 10−7 16 63 0.05969 3.37 × 10−6

x6 6 17 0.028536 2.36 × 10−9 6 17 0.016345 2.36 × 10−9 16 63 0.06253 5.64 × 10−6

10,000

x1 3 8 0.019053 1.21 × 10−7 3 8 0.0135 1.21 × 10−7 11 43 0.06732 6.85 × 10−6

x2 3 8 0.01791 2.79 × 10−6 3 8 0.015807 2.79 × 10−6 12 47 0.12232 9.72 × 10−6

x3 4 11 0.033042 9.73 × 10−8 4 11 0.020752 9.73 × 10−8 14 55 0.08288 6.51 × 10−6

x4 5 14 0.031576 2.56 × 10−8 5 14 0.04483 2.56 × 10−8 15 59 0.08413 9.82 × 10−6

x5 5 14 0.032747 2.93 × 10−7 5 14 0.026975 2.93 × 10−7 16 63 0.09589 4.75 × 10−6

x6 6 17 0.036002 1.24 × 10−9 6 17 0.032445 1.24 × 10−9 16 64 0.11499 8.55 × 10−6

50,000

x1 3 8 0.0737 6.32 × 10−8 7 26 0.16925 2.94 × 10−6 12 47 0.27826 5.23 × 10−6

x2 3 8 0.06964 3.37 × 10−6 9 34 0.18801 2.78 × 10−6 13 51 0.29642 7.11 × 10−6

x3 4 11 0.093027 4.87 × 10−8 7 25 0.15375 9.11 × 10−6 15 59 0.35602 4.82 × 10−6

x4 5 14 0.11219 1.11 × 10−8 7 24 0.15382 9.18 × 10−6 35 141 0.69470 6.69 × 10−6

x5 5 14 0.1173 1.84 × 10−7 9 32 0.18164 6.71 × 10−6 35 141 0.68488 9.12 × 10−6

x6 6 17 0.13794 4.01 × 10−10 6 19 0.11216 5.2 × 10−6 35 141 0.70973 9.91 × 10−6

100,000

x1 3 8 0.13021 5.4 × 10−8 7 26 0.2609 4.14 × 10−6 12 47 0.44541 7.39 × 10−6

x2 3 8 0.13267 4.27 × 10−6 9 34 0.32666 3.93 × 10−6 14 55 0.53299 3.39 × 10−6

x3 4 11 0.17338 4.05 × 10−8 8 29 0.3113 3.33 × 10−6 15 60 0.58603 8.71 × 10−6

x4 5 14 0.20036 8.15 × 10−9 8 28 0.2997 3.34 × 10−6 72 290 2.70630 8.31 × 10−6

x5 5 14 0.25274 1.8 × 10−7 9 32 0.32098 9.46 × 10−6 72 290 2.72220 8.68 × 10−6

x6 6 17 0.24952 2.71 × 10−10 6 19 0.21972 7.01 × 10−6 72 290 2.75850 8.96 × 10−6

316
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Table 3. Numerical results for MFRM, ACGD and PDY for problem 3 with given initial points
and dimensions.

MFRM ACGD PDY

Dimension Initial Point Iter Fval Time Norm Iter Fval Time Norm Iter Fval Time Norm

1000

x1 6 24 0.024062 3.11 × 10−6 6 40 0.02951 4.44 × 10−6 12 48 0.01255 4.45 × 10−6

x2 6 24 0.005345 5.94 × 10−6 6 40 0.0077681 8.75 × 10−6 12 48 0.01311 9.02 × 10−6

x3 6 24 0.006109 9.94 × 10−6 6 44 0.0067049 5.09 × 10−6 13 52 0.01486 8.34 × 10−6

x4 8 33 0.006127 3.1 × 10−6 8 44 0.007142 5.04 × 10−6 14 56 0.01698 8.04 × 10−6

x5 11 46 0.010427 2.71 × 10−6 11 40 0.010411 3.12 × 10−6 14 56 0.01551 9.72 × 10−6

x6 16 68 0.010682 8.38 × 10−6 16 77 0.014759 5.98 × 10−6 14 56 0.01534 9.42 × 10−6

5000

x1 6 24 0.020455 6.96 × 10−6 6 40 0.020368 9.93 × 10−6 12 48 0.03660 9.94 × 10−6

x2 7 28 0.021552 1.33 × 10−6 7 44 0.029622 5.09 × 10−6 13 52 0.03616 6.85 × 10−6

x3 7 28 0.023056 2.22 × 10−6 7 48 0.030044 2.96 × 10−6 14 56 0.04594 6.14 × 10−6

x4 8 33 0.022984 6.92 × 10−6 8 48 0.022777 2.93 × 10−6 15 60 0.04342 6.01 × 10−6

x5 11 46 0.031466 6.06 × 10−6 11 40 0.019226 6.97 × 10−6 15 60 0.04296 7.25 × 10−6

x6 17 72 0.049308 7.67 × 10−6 17 81 0.036095 6.05 × 10−6 32 129 0.10081 8.85 × 10−6

10,000

x1 6 24 0.03064 9.85 × 10−6 6 44 0.03997 3.65 × 10−6 13 52 0.06192 4.77 × 10−6

x2 7 28 0.035806 1.88 × 10−6 7 44 0.037221 7.19 × 10−6 13 52 0.06442 9.68 × 10−6

x3 7 28 0.035795 3.14 × 10−6 7 48 0.053226 4.18 × 10−6 14 56 0.09499 8.69 × 10−6

x4 8 33 0.041017 9.79 × 10−6 8 48 0.057984 4.15 × 10−6 15 60 0.07696 8.5 × 10−6

x5 11 46 0.06448 8.58 × 10−6 11 40 0.047413 9.85 × 10−6 33 133 0.18625 6.45 × 10−6

x6 18 76 0.09651 4.44 × 10−6 18 81 0.085238 8.56 × 10−6 33 133 0.15548 7.51 × 10−6

50,000

x1 7 28 0.14323 2.2 × 10−6 7 44 0.17175 8.17 × 10−6 14 56 0.23642 3.51 × 10−6

x2 7 28 0.13625 4.2 × 10−6 7 48 0.18484 4.18 × 10−6 14 56 0.24813 7.12 × 10−6

x3 7 28 0.13246 7.03 × 10−6 7 48 0.1827 9.36 × 10−6 15 60 0.27049 6.53 × 10−6

x4 9 37 0.18261 4.16 × 10−6 9 48 0.18993 9.27 × 10−6 34 137 0.54545 7.13 × 10−6

x5 12 50 0.21743 5.2 × 10−6 12 44 0.17043 5.73 × 10−6 68 274 1.02330 9.99 × 10−6

x6 18 76 0.34645 9.93 × 10−6 18 85 0.32938 8.66 × 10−6 69 278 1.03810 8.05 × 10−6

100,000

x1 7 28 0.27078 3.11 × 10−6 7 48 0.36144 3 × 10−6 14 56 0.45475 4.96 × 10−6

x2 7 28 0.26974 5.94 × 10−6 7 48 0.37515 5.91 × 10−6 15 60 0.49018 3.39 × 10−6

x3 7 28 0.25475 9.94 × 10−6 7 52 0.39071 3.44 × 10−6 15 60 0.49016 9.24 × 10−6

x4 9 37 0.3089 5.88 × 10−6 9 52 0.35961 3.41 × 10−6 139 559 4.03110 9.01 × 10−6

x5 12 50 0.41839 7.35 × 10−6 12 44 0.33105 8.1 × 10−6 70 282 2.07100 8.54 × 10−6

x6 19 80 0.64773 5.75 × 10−6 19 89 0.61329 5.54 × 10−6 139 559 4.02440 9.38 × 10−6

Table 4. Numerical results for MFRM, ACGD and PDY for problem 4 with given initial points
and dimensions.

MFRM ACGD PDY

Dimension Initial Point Iter Fval Time Norm Iter Fval Time Norm Iter Fval Time Norm

1000

x1 6 24 0.00855 1.65 × 10−6 10 40 0.014662 3.65 × 10−6 12 48 0.00989 4.60 × 10−6

x2 5 20 0.004234 2.32 × 10−6 10 40 0.0064115 5.79 × 10−6 12 48 0.00966 9.57 × 10−6

x3 10 42 0.007426 6.42 × 10−6 10 40 0.0054818 3.29 × 10−6 13 52 0.00887 8.49 × 10−6

x4 21 90 0.011603 5.84 × 10−6 27 110 0.012854 8.97 × 10−6 12 48 0.01207 5.83 × 10−6

x5 16 71 0.010735 8.48 × 10−6 26 106 0.015603 5.97 × 10−6 29 117 0.05371 9.43 × 10−6

x6 1 15 0.005932 0 36 147 0.025039 9.56 × 10−6 29 117 0.02396 6.65 × 10−6

5000

x1 6 24 0.019995 3.68 × 10−6 10 40 0.018283 8.15 × 10−6 13 52 0.02503 3.49 × 10−6

x2 5 20 0.00934 5.2 × 10−6 11 44 0.016733 3.36 × 10−6 13 52 0.02626 7.24 × 10−6

x3 11 46 0.02156 3.89 × 10−6 10 40 0.017073 7.37 × 10−6 14 56 0.03349 6.29 × 10−6

x4 22 94 0.043325 6.81 × 10−6 29 118 0.047436 7.09 × 10−6 13 52 0.02258 4.25 × 10−6

x5 18 79 0.096692 6.15 × 10−6 27 110 0.058405 7.95 × 10−6 31 125 0.05471 7.59 × 10−6

x6 1 15 0.012199 0 39 159 0.059448 7.33 × 10−6 63 254 0.10064 8.54 × 10−6

10,000

x1 6 24 0.019264 5.2 × 10−6 11 44 0.026877 3 × 10−6 13 52 0.03761 4.93 × 10−6

x2 5 20 0.017891 7.35 × 10−6 11 44 0.03118 4.76 × 10−6 14 56 0.04100 3.37 × 10−6

x3 11 46 0.036079 5.5 × 10−6 11 44 0.034673 2.71 × 10−6 14 56 0.03919 8.90 × 10−6

x4 22 94 0.069778 9.63 × 10−6 30 122 0.069971 5.97 × 10−6 32 129 0.09613 6.02 × 10−6

x5 18 79 0.062821 8.69 × 10−6 28 114 0.066866 6.68 × 10−6 32 129 0.09177 6.44 × 10−6

x6 1 15 0.017237 0 40 163 0.093749 7.26 × 10−6 64 258 0.20791 9.39 × 10−6

50,000

x1 7 28 0.093473 1.16 × 10−6 11 44 0.16749 6.7 × 10−6 14 56 0.17193 3.63 × 10−6

x2 6 24 0.072206 1.64 × 10−6 12 48 0.11391 2.77 × 10−6 14 56 0.15237 7.54 × 10−6

x3 12 50 0.14285 3.33 × 10−6 11 44 0.11036 6.06 × 10−6 15 60 0.16549 6.66 × 10−6

x4 24 102 0.30313 5.86 × 10−6 31 126 0.30903 7.94 × 10−6 67 270 0.76283 7.81 × 10−6

x5 20 87 0.28955 6.31 × 10−6 29 118 0.30266 8.89 × 10−6 67 270 0.76157 8.80 × 10−6

x6 1 15 0.061327 0 42 171 0.41158 7.96 × 10−6 269 1080 2.92510 9.41 × 10−6

100,000

x1 7 28 0.15038 1.65 × 10−6 11 44 0.2434 9.48 × 10−6 14 56 0.30229 5.13 × 10−6

x2 6 24 0.13126 2.32 × 10−6 12 48 0.2614 3.91 × 10−6 15 60 0.31648 3.59 × 10−6

x3 12 50 0.31585 4.71 × 10−6 11 44 0.2161 8.57 × 10−6 32 129 0.72838 9.99 × 10−6

x4 24 102 0.58023 8.29 × 10−6 32 130 0.65289 6.68 × 10−6 135 543 2.86780 9.73 × 10−6

x5 20 87 0.5122 8.92 × 10−6 30 122 0.61637 7.48 × 10−6 272 1092 5.74140 9.91 × 10−6

x6 1 15 0.11696 0 43 175 0.82759 7.88 × 10−6 548 2197 11.44130 9.87 × 10−6

317
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Table 5. Numerical results for MFRM, ACGD and PDY for problem 5 with given initial points
and dimensions.

MFRM ACGD PDY

Dimension Initial Point Iter Fval Time Norm Iter Fval Time Norm Iter Fval Time Norm

1000

x1 26 98 0.023555 3.51 × 10−6 39 154 0.022285 9.7 × 10−6 16 63 0.07575 6.03 × 10−6

x2 40 154 0.024539 5.9 × 10−6 22 85 0.015671 5.03 × 10−6 16 63 0.01470 5.42 × 10−6

x3 37 144 0.021659 7.11 × 10−6 43 173 0.029569 7.96 × 10−6 33 132 0.02208 6.75 × 10−6

x4 49 206 0.030696 9.52 × 10−6 30 122 0.014942 6.05 × 10−6 30 121 0.01835 8.39 × 10−6

x5 46 194 0.11589 7.06 × 10−6 29 118 0.040406 6.5 × 10−6 32 129 0.02700 8.47 × 10−6

x6 43 182 0.027471 8.7 × 10−6 40 163 0.0311 9.83 × 10−6 30 121 0.01712 6.95 × 10−6

5000

x1 38 147 0.073315 4.96 × 10−6 30 117 0.060877 9.56 × 10−6 17 67 0.04394 5.64 × 10−6

x2 20 77 0.056225 4.98 × 10−6 16 60 0.027911 5.91 × 10−6 17 67 0.04635 5.07 × 10−6

x3 41 157 0.082151 8.92 × 10−6 78 315 0.12774 9.7 × 10−6 35 140 0.08311 9.74 × 10−6

x4 48 202 0.10166 9.19 × 10−6 31 126 0.067911 8.39 × 10−6 33 133 0.08075 6.02 × 10−6

x6 147 562 3.308158 8.44 × 10−7 31 126 0.067856 7.81 × 10−6 35 141 0.10091 7.51 × 10−6

x7 45 190 0.090276 7.14 × 10−6 44 179 0.09371 7.37 × 10−6 32 129 0.08054 8.55 × 10−6

10,000

x1 37 143 0.12665 9.28 × 10−6 77 308 0.28678 9.85 × 10−6 17 67 0.06816 8.81 × 10−6

x2 22 84 0.077288 9.78 × 10−6 16 60 0.071657 7.52 × 10−6 17 67 0.08833 7.80 × 10−6

x3 39 149 0.1297 6.74 × 10−6 105 424 0.34212 9.08 × 10−6 37 148 0.14732 6.36 × 10−6

x4 60 250 0.2175 7.56 × 10−6 32 130 0.11937 7.17 × 10−6 37 149 0.14293 8.25 × 10−6

x5 44 186 0.1727 7.68 × 10−6 32 130 0.11921 8.26 × 10−6 36 145 0.14719 8.23 × 10−6

x6 46 194 0.1728 8.62 × 10−6 45 183 0.15634 9.01 × 10−6 74 298 0.26456 7.79 × 10−6

50,000

x1 44 170 0.62202 1 × 10−5 90 539 31.75299 2.56 × 10−7 42 169 0.58113 7.78 × 10−6

x2 69 280 0.9662 6.87 × 10−6 31 122 0.33817 7.09 × 10−6 42 169 0.58456 7.13 × 10−6

x3 119 464 25.87657 9.34 × 10−7 260 1047 2.8824 9.67 × 10−6 41 165 0.58717 8.87 × 10−6

x4 50 210 0.71599 8.38 × 10−6 33 134 0.39039 9.98 × 10−6 40 161 0.56431 7.17 × 10−6

x5 46 194 0.65538 8.47 × 10−6 35 142 0.40807 7.19 × 10−6 82 330 1.08920 8.44 × 10−6

x6 50 210 0.69117 8.12 × 10−6 49 199 0.57702 8.97 × 10−6 80 322 1.06670 7.82 × 10−6

100,000

x1 31 121 0.84183 4.48 × 10−6 88 530 61.97806 5.53 × 10−7 43 173 1.09620 8.47 × 10−6

x2 135 518 59.19294 8.37 × 10−7 110 442 2.2661 9.55 × 10−6 43 173 1.10040 7.77 × 10−6

x3 46 178 1.1322 6.99 × 10−6 345 1388 7.1938 9.76 × 10−6 42 169 1.08330 9.66 × 10−6

x4 50 210 1.3737 8.85 × 10−6 34 138 0.74362 8.65 × 10−6 85 342 2.11880 9.22 × 10−6

x5 47 198 1.3879 8.31 × 10−6 36 146 0.79012 8.09 × 10−6 84 338 2.10640 9.78 × 10−6

x6 52 218 1.4318 7.37 × 10−6 51 207 1.1601 8.42 × 10−6 167 671 4.06200 9.90 × 10−6

Table 6. Numerical Results for MFRM, ACGD and PDY for problem 6 with given initial points
and dimensions.

MFRM ACGD PDY

Dimension Initial Point Iter Fval Time Norm Iter Fval Time Norm Iter Fval Time Norm

1000

x1 11 44 0.011156 8.32 × 10−6 12 48 0.02786 7.88 × 10−6 15 60 0.01671 4.35 × 10−6

x2 11 44 0.016092 7.32 × 10−6 12 48 0.01042 7.58 × 10−6 15 60 0.01346 4.18 × 10−6

x3 11 44 0.010446 8.83 × 10−6 12 48 0.0092 6.68 × 10−6 15 60 0.01630 3.68 × 10−6

x4 10 40 0.011233 7.38 × 10−6 12 48 0.013617 4.57 × 10−6 14 56 0.01339 7.48 × 10−6

x5 9 36 0.011325 8.29 × 10−6 12 48 0.011492 3.67 × 10−6 14 56 0.01267 6.01 × 10−6

x6 7 28 0.009452 8.25 × 10−6 11 44 0.016351 8.32 × 10−6 14 56 0.01685 3.54 × 10−6

5000

x1 8 32 0.026924 1.87 × 10−6 13 52 0.036025 4.59 × 10−6 15 60 0.05038 9.73 × 10−6

x2 8 32 0.043488 1.8 × 10−6 13 52 0.040897 4.42 × 10−6 15 60 0.04775 9.36 × 10−6

x3 8 32 0.02709 1.59 × 10−6 13 52 0.039937 3.89 × 10−6 15 60 0.04923 8.25 × 10−6

x4 8 32 0.026351 1.1 × 10−6 13 52 0.033013 2.66 × 10−6 15 60 0.05793 5.64 × 10−6

x5 7 28 0.023442 8.62 × 10−6 12 48 0.030462 8.22 × 10−6 15 60 0.04597 4.53 × 10−6

x6 7 28 0.022952 5.08 × 10−6 12 48 0.028786 4.85 × 10−6 14 56 0.05070 7.93 × 10−6

10,000

x1 8 32 0.061374 2.62 × 10−6 13 52 0.092372 6.5 × 10−6 68 274 0.40724 9.06 × 10−6

x2 8 32 0.06285 2.52 × 10−6 13 52 0.059778 6.25 × 10−6 68 274 0.41818 8.72 × 10−6

x3 8 32 0.059913 2.22 × 10−6 13 52 0.077326 5.5 × 10−6 34 137 0.21905 6.22 × 10−6

x4 8 32 0.057003 1.52 × 10−6 13 52 0.087745 3.77 × 10−6 15 60 0.10076 7.98 × 10−6

x5 8 32 0.070377 1.22 × 10−6 13 52 0.077217 3.02 × 10−6 15 60 0.12680 6.40 × 10−6

x6 7 28 0.052718 7.18 × 10−6 12 48 0.067375 6.85 × 10−6 15 60 0.11984 3.78 × 10−6

50,000

x1 8 32 0.21258 5.85 × 10−6 14 56 0.32965 3.78 × 10−6 143 575 3.09120 9.42 × 10−6

x2 8 32 0.21203 5.63 × 10−6 14 56 0.31297 3.63 × 10−6 143 575 3.06200 9.06 × 10−6

x3 8 32 0.20885 4.96 × 10−6 14 56 0.30089 3.2 × 10−6 142 571 3.04950 9.04 × 10−6

x4 8 32 0.20483 3.4 × 10−6 13 52 0.26855 8.42 × 10−6 69 278 1.53920 9.14 × 10−6

x5 8 32 0.21467 2.72 × 10−6 13 52 0.26304 6.76 × 10−6 68 274 1.49490 9.43 × 10−6

x6 8 32 0.20933 1.61 × 10−6 13 52 0.26143 3.99 × 10−6 15 60 0.38177 8.44 × 10−6

100,000

x1 8 32 0.41701 8.28 × 10−6 14 56 0.58853 5.34 × 10−6 292 1172 13.59530 9.53 × 10−6

x2 8 32 0.41511 7.96 × 10−6 14 56 0.58897 5.14 × 10−6 290 1164 13.30930 9.75 × 10−6

x3 8 32 0.44061 7.01 × 10−6 14 56 0.57318 4.53 × 10−6 144 579 6.68150 9.96 × 10−6

x4 8 32 0.43805 4.8 × 10−6 14 56 0.58712 3.1 × 10−6 141 567 6.50800 9.92 × 10−6

x5 8 32 0.41147 3.85 × 10−6 13 52 0.56384 9.56 × 10−6 70 282 3.30510 8.07 × 10−6

x6 8 32 0.43925 2.27 × 10−6 13 52 0.53343 5.64 × 10−6 34 137 1.64510 6.37 × 10−6

318



Mathematics 2019, 7, 745

Table 7. Numerical Results for MFRM, ACGD and PDY for problem 7 with given initial points
and dimensions.

MFRM ACGD PDY

Dimension Initial Point Iter Fval Time Norm Iter Fval Time Norm Iter Fval Time Norm

1000

x1 4 21 0.011834 3.24 × 10−7 10 42 0.008528 2.46 × 10−6 14 57 0.00953 5.28 × 10−6

x2 4 21 0.006228 1.43 × 10−7 9 38 0.008289 3.91 × 10−6 13 53 0.00896 9.05 × 10−6

x3 3 17 0.004096 5.81 × 10−8 8 34 0.006702 7.43 × 10−6 3 12 0.00426 8.47 × 10−6

x4 7 34 0.00585 3.89 × 10−6 11 46 0.009579 5.94 × 10−6 15 61 0.01169 6.73 × 10−6

x5 7 34 0.006133 6.36 × 10−6 11 46 0.015328 8.97 × 10−6 31 126 0.03646 9.03 × 10−6

x6 8 37 0.006106 1.9 × 10−6 12 49 0.01426 2.87 × 10−6 15 60 0.01082 3.99 × 10−6

5000

x1 4 21 0.015836 7.25 × 10−7 10 42 0.023953 5.49 × 10−6 15 61 0.03215 4.25 × 10−6

x2 4 21 0.014521 3.2 × 10−7 9 38 0.021065 8.74 × 10−6 14 57 0.02942 7.40 × 10−6

x3 3 17 0.014517 1.3 × 10−7 9 38 0.025437 4.01 × 10−6 4 16 0.01107 1.01 × 10−7

x4 7 34 0.028388 8.71 × 10−6 12 50 0.028607 3.21 × 10−6 16 65 0.04331 5.43 × 10−6

x5 8 38 0.02787 1.49 × 10−6 12 50 0.037806 4.84 × 10−6 33 134 0.09379 7.78 × 10−6

x6 8 37 0.027898 4.26 × 10−6 12 49 0.029226 6.43 × 10−6 15 60 0.04077 8.92 × 10−6

10,000

x1 4 21 0.028528 1.02 × 10−6 10 42 0.045585 7.77 × 10−6 15 61 0.06484 6.01 × 10−6

x2 4 21 0.033782 4.52 × 10−7 10 42 0.041715 2.98 × 10−6 15 61 0.07734 3.77 × 10−6

x3 3 17 0.029265 1.84 × 10−7 9 38 0.036422 5.67 × 10−6 4 16 0.02707 1.42 × 10−7

x4 8 38 0.043301 1.29 × 10−6 12 50 0.063527 4.53 × 10−6 16 65 0.07941 7.69 × 10−6

x5 8 38 0.043741 2.1 × 10−6 12 50 0.049604 6.85 × 10−6 34 138 0.14942 6.83 × 10−6

x6 8 37 0.053666 6.02 × 10−6 12 49 0.050153 9.09 × 10−6 34 138 0.15224 8.81 × 10−6

50,000

x1 4 21 0.10816 2.29 × 10−6 11 46 0.20624 4.19 × 10−6 16 65 0.25995 4.89 × 10−6

x2 4 21 0.11969 1.01 × 10−6 10 42 0.16364 6.67 × 10−6 15 61 0.24674 8.42 × 10−6

x3 3 17 0.068644 4.11 × 10−7 10 42 0.1539 3.06 × 10−6 4 16 0.09405 3.18 × 10−7

x4 8 38 0.16067 2.88 × 10−6 13 54 0.20728 2.45 × 10−6 36 146 0.55207 6.39 × 10−6

x5 8 38 0.14484 4.7 × 10−6 13 54 0.19421 3.69 × 10−6 35 142 0.54679 9.05 × 10−6

x6 9 41 0.161 1.41 × 10−6 13 53 0.19386 4.9 × 10−6 36 146 0.55764 7.59 × 10−6

100,000

x1 4 21 0.21825 3.24 × 10−6 11 46 0.32512 5.93 × 10−6 17 69 0.52595 5.68 × 10−6

x2 4 21 0.16435 1.43 × 10−6 10 42 0.30949 9.43 × 10−6 16 65 0.52102 4.34 × 10−6

x3 3 17 0.13072 5.81 × 10−7 10 42 0.31031 4.32 × 10−6 4 16 0.14864 4.50 × 10−7

x4 8 38 0.29012 4.07 × 10−6 13 54 0.38833 3.46 × 10−6 36 146 1.05360 9.04 × 10−6

x5 8 38 0.32821 6.65 × 10−6 13 54 0.3522 5.22 × 10−6 74 299 2.10730 8.55 × 10−6

x6 9 41 0.43649 1.99 × 10−6 13 53 0.3561 6.94 × 10−6 37 150 1.08240 6.66 × 10−6

Table 8. Numerical results for MFRM, ACGD and PDY for problem 8 with given initial points
and dimensions.

MFRM ACGD PDY

Dimension Initial Point Iter Fval Time Norm Iter Fval Time Norm Iter Fval Time Norm

1000

x1 8 27 0.1502 1.52 × 10−6 8 26 0.049826 6.09 × 10−6 69 279 0.05538 8.95 × 10−6

x2 8 27 0.042248 1.52 × 10−6 8 26 0.017594 6.09 × 10−6 270 1085 0.18798 9.72 × 10−6

x3 26 114 0.03877 7.85 × 10−6 8 26 0.010888 6.09 × 10−6 24 52 0.02439 6.57 × 10−6

x4 26 114 0.017542 7.85 × 10−6 8 26 0.007873 6.09 × 10−6 27 58 0.01520 7.59 × 10−6

x5 26 114 0.067692 7.85 × 10−6 8 26 0.060733 6.09 × 10−6 28 61 0.04330 9.21 × 10−6

x6 26 114 0.045173 7.85 × 10−6 8 26 0.006889 6.09 × 10−6 40 85 0.02116 8.45 × 10−6

5000

x1 6 28 0.023925 8.77 × 10−6 4 13 0.011005 5.76 × 10−6 658 2639 1.13030 9.98 × 10−6

x2 15 70 0.043512 7.94 × 10−6 4 13 0.009131 5.76 × 10−6 27 58 0.05101 7.59 × 10−6

x3 15 70 0.046458 7.94 × 10−6 4 13 0.011311 5.76 × 10−6 49 104 0.08035 8.11 × 10−6

x4 15 70 0.044788 7.94 × 10−6 4 13 0.010475 5.75 × 10−6 40 85 0.07979 8.45 × 10−6

x5 15 70 0.044639 7.94 × 10−6 4 13 0.011034 5.77 × 10−6 18 40 0.09128 9.14 × 10−6

x6 15 70 0.043974 7.94 × 10−6 4 13 0.00785 5.76 × 10−6 17 38 0.18528 8.98 × 10−6

10,000

x1 11 54 0.06595 6.15 × 10−6 5 20 0.024232 2.19 × 10−6 49 104 0.20443 7.62 × 10−6

x2 11 54 0.068125 6.15 × 10−6 5 20 0.023511 2.19 × 10−6 40 85 0.15801 8.45 × 10−6

x3 11 54 0.065486 6.15 × 10−6 5 20 0.023004 2.19 × 10−6 19 42 0.37880 7.66 × 10−6

x4 11 54 0.064515 6.15 × 10−6 5 20 0.030435 2.19 × 10−6 90 187 1.25802 9.7 × 10−6

x5 11 54 0.056261 6.15 × 10−6 5 20 0.021963 2.19 × 10−6 988 1988 12.68259 9.93 × 10−6

x6 11 54 0.067785 6.15 × 10−6 5 20 0.021889 2.21 × 10−6 27 58 0.32859 7.59 × 10−6

50,000

x1 7 38 0.17856 4.5 × 10−6 5 23 0.087544 2.45 × 10−6 19 42 0.52291 6.42 × 10−6

x2 7 38 0.17862 4.5 × 10−6 5 23 0.093227 2.45 × 10−6 148 304 3.93063 9.92 × 10−6

x3 7 38 0.17746 4.5 × 10−6 5 23 0.087484 2.45 × 10−6 937 1886 22.97097 9.87 × 10−6

x4 7 38 0.17392 4.5 × 10−6 5 23 0.086329 2.4 × 10−6 27 58 0.68467 7.59 × 10−6

x5 7 38 0.18035 4.5 × 10−6 5 23 0.08954 2.4 × 10−6 346 702 8.45043 9.79 × 10−6

x6 7 38 0.17504 4.5 × 10−6 5 23 0.093203 2.5 × 10−6 40 85 0.99230 8.45 × 10−6

100,000

x1 28 122 0.91448 8.61 × 10−6 4 20 0.14743 2.71 × 10−6 - - - -
x2 28 122 0.93662 8.61 × 10−6 4 20 0.14823 2.7 × 10−6 - - - -
x3 28 122 0.90604 8.61 × 10−6 4 20 0.1497 2.79 × 10−6 - - - -
x4 28 122 0.92351 8.61 × 10−6 4 20 0.14844 2.37 × 10−6 - - - -
x5 28 122 0.91896 8.61 × 10−6 4 20 0.12346 1.66 × 10−6 - - - -
x6 28 122 0.91294 8.61 × 10−6 4 20 0.12522 2.11 × 10−6 - - - -

Figure 1 reveals that MFRM performed better in terms of number of Iterations, as it solves and
wins over 70 percent of the problems with less number of Iterations, while ACGD and PDY solve and
win over 40 and almost 10 percent respectively. The story is a little bit different in Figure 2 as ACGD
method was very competitive. However, MFRM method performed a little bit better by solving and
winning over 50 percent of the problems with less CPU time as against ACGD method which solves
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and wins less than 50 percent of the problems considered. The PDY method had the least performance
with just 10 percent success. The interpretation of Figure 3 was similar to that of Figure 1. Finally,
in Table 11 we report numerical results for MFRM, ACGD and PDY for problem 2 with given initial
points and dimensions with double float (10−16) accuracy.

Figure 1. Performance profiles for the number of iterations.

Figure 2. Performance profiles for the CPU time (in seconds).
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Figure 3. Performance profiles for the number of function evaluations.

4.1. Experiments on Solving Sparse Signal Problems

There were many problems in signal processing and statistical inference involving finding sparse
solutions to ill-conditioned linear systems of equations. Among popular approaches was minimizing
an objective function which contains quadratic (�2) error term and a sparse �1−regularization term, i.e.,

min
x

1
2
‖y− Bx‖2

2 + η‖x‖1, (25)

where x ∈ Rn, y ∈ Rk is an observation, B ∈ Rk×n (k << n) is a linear operator, η is a non-negative
parameter, ‖x‖2 denotes the Euclidean norm of x and ‖x‖1 = ∑n

i=1 |xi| is the �1−norm of x. It is easy
to see that problem (25) is a convex unconstrained minimization problem. Due to the fact that if the
original signal is sparse or approximately sparse in some orthogonal basis, problem (25) frequently
appears in compressive sensing, and hence an exact restoration can be produced by solving (25).

Iterative methods for solving (25) have been presented in many papers (see [42–45]). The most
popular method among these methods is the gradient-based method and the earliest gradient projection
method for sparse reconstruction (GPRS) was proposed by Figueiredo et al. [44]. The first step of
the GPRS method is to express (25) as a quadratic problem using the following process. Consider
a point x ∈ Rn such that x = u − v, where u, v ≥ 0. u and v are chosen in such a way that x is
splitted into its positive and negative parts as follows ui = (xi)+, vi = (−xi)+ for all i = 1, 2, ..., n,
and (.)+ = max{0, .}. By definition of �1-norm, we have ‖x‖1 = eT

n u + eT
n v, where en = (1, 1, ..., 1)T ∈

Rn. Now (25) can be written as

min
u,v

1
2
‖y− B(u− v)‖2

2 + ηeT
n u + ηeT

n v, u ≥ 0, v ≥ 0, (26)

which is a bound-constrained quadratic program. However, from [44], Equation (26) can be written in
standard form as

min
z

1
2

zT Dz + cTz, such that z ≥ 0, (27)
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where z =

(
u
v

)
, c = ωe2n +

(
−b
b

)
, b = BTy, D =

(
BT B −BT B
−BT B BT B

)
. Clearly, D is a positive

semi-definite matrix, which implies that Equation (27) is a convex quadratic problem.
Xiao et al. [20] translated (27) into a linear variable inequality problem which is equivalent to a

linear complementarity problem. Moreover, z is a solution of the linear complementarity problem if
and only if it is a solution of the following nonlinear equation:

F(z) = min{z, Dz + c} = 0. (28)

The function F is a vector-valued function and the “min” was interpreted as component wise
minimum. Furthermore, F was proved to be continuous and monotone in [46]. Therefore problem (25)
can be translated into problem (1) and thus MFRM method can be applied to solve it.

In this experiment, we consider a simple compressive sensing possible situation, where our goal
is to reconstruct a sparse signal of length n from k observations. The quality of recovery is assessed by
mean of squared error (MSE) to the original signal x̃,

MSE =
1
n
‖x̃− x∗‖2,

where x∗ is the recovered signal. The signal size is chosen as n = 211, k = 29 and the original signal
contains 26 randomly nonzero elements. In addition, the measurement y is distributed with noise,
that is, y = Bx̃ + �, where B is a randomly generated Gaussian matrix and � is the Gaussian noise
distributed normally with mean 0 and variance 10−4.

To demonstrate the performance of the MFRM method in signal recovery problems, we
compare it with the conjugate gradient descent CGD [20] and projected conjugate gradient
PCG [23] methods. The parameters in PCG and CGD methods are chosen as γ = 10, σ = 10−4,
ρ = 0.5. However, we chose γ = 1, σ = 10−4, ρ = 0.9 and μ = 0.01 in MFRM method.
For fairness in comparison, each code was run from the same initial point, same continuation
technique on the parameter η, and observed only the behavior of the convergence of each method
to have a similar accurate solution. The experiment was initialized with x0 = BTy and terminates when

‖ f (xk)− f (xk−1)‖
‖ f (xk−1)‖ < 10−5,

where f (xk) =
1
2‖y− Bxk‖2

2 + η‖xk‖1.
In Figures 4 and 5, MFRM, CGD and PCG methods recovered the disturbed signal almost exactly.

The experiment was repeated for 20 different noise samples (see Table 9). It can be observed that
the MFRM is more efficient in terms of the number of Iterations and CPU time than CGD and PCG
methods in most cases. Furthermore, MFRM was able to achieve the least MSE in nine (9) out of the
twenty (20) experiments. To reveal visually the performance of both methods, two figures were plotted
to demonstrate their convergence behavior based on MSE, objective function values, the number
of Iterations and CPU time (see Figures 6 and 7). It can also be observed that MFRM requires less
computing time to achieve similar quality resolution. This can be seen graphically in Figures 6 and 7
which illustrate that the objective function values obtained by MFRM decrease faster throughout the
entire Iteration process.
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Figure 4. (top) to (bottom) The original image, the measurement, and the recovered signals by projected
conjugate gradient PCG and modified descent Fletcher–Reeves CG method (MFRM) methods.

Figure 5. (top) to (bottom) The original image, the measurement, and the recovered signals by
conjugate gradient descent (CGD) and MFRM methods.
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Figure 6. Comparison result of PCG and MFRM. The x-axis represent the number of Iterations
((top left) and (bottom left)) and CPU time in seconds ((top right) and (bottom right)). The y-axis
represent the MSE ((top left) and (top right)) and the objective function values ((bottom left) and
(bottom right)).

Table 9. Twenty experiment results of �1−norm regularization problem for CGD, PCG and
MFRM methods.

S/N Iter Time MSE

CGD PCG MFRM CGD PCG MFRM CGD PCG MFRM

1 248 138 98 2.28 1.28 1.33 6.16 × 10−5 6.32 × 10−5 1.97 × 10−5

2 234 138 117 3.37 1.26 1.19 4.08 × 10−5 3.36 × 10−5 5.40 × 10−5

3 224 152 104 1.90 1.29 0.97 2.78 × 10−5 1.78 × 10−5 1.02 × 10−5

4 230 143 117 3.21 2.48 1.17 4.08 × 10−5 3.36 × 10−5 5.40 × 10−5

5 152 119 114 1.65 1.03 1.15 1.23 × 10−5 2.07 × 10−5 5.49 × 10−5

6 223 127 110 1.89 2.56 1.83 3.33 × 10−5 6.08 × 10−5 6.50 × 10−6

7 156 120 125 1.37 1.01 1.20 4.25 × 10−5 3.26 × 10−5 1.46 × 10−5

8 213 89 10 1.90 0.78 1.12 1.86 × 10−5 3.77 × 10−4 1.31 × 10−5

9 227 152 118 2.14 1.53 1.45 2.75 × 10−5 1.54 × 10−5 8.11 × 10−6

10 201 142 101 2.22 1.64 1.01 6.75 × 10−5 1.86 × 10−5 1.17 × 10−5

11 200 151 90 1.70 1.42 0.90 2.36 × 10−5 1.29 × 10−5 3.81 × 10−5

12 202 153 91 1.75 1.34 0.84 6.94 × 10−5 2.99 × 10−5 9.21 × 10−5

13 208 128 125 1.89 1.12 1.26 1.71 × 10−5 1.42 × 10−5 9.20 × 10−6

14 161 145 122 1.47 1.28 1.26 1.15 × 10−5 8.75 × 10−6 4.36 × 10−6

15 227 160 100 1.97 1.42 1.00 3.41 × 10−5 2.40 × 10−5 1.54 × 10−5

16 269 172 88 2.51 1.67 0.98 3.90 × 10−5 6.59 × 10−5 2.08 × 10−4

17 210 129 105 1.84 1.19 1.11 2.11 × 10−5 1.89 × 10−5 6.22 × 10−5

18 225 132 96 1.93 1.15 1.00 3.87 × 10−5 7.78 × 10−5 9.49 × 10−5

19 152 120 92 1.37 1.09 0.87 2.12 × 10−5 1.32 × 10−5 4.03 × 10−5

20 151 128 113 1.31 1.15 1.06 4.48 × 10−5 1.85 × 10−5 1.71 × 10−5
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Figure 7. Comparison result of PCG and MFRM. The x-axis represent the number of Iterations
((top left) and (bottom left)) and CPU time in seconds ((top right) and (bottom right)). The y-axis
represent the MSE ((top left) and (top right)) and the objective function values ((bottom left) and
(bottom right)).

4.2. Experiments on Blurred Image Restoration

In this subsection, we test the performance of MFRM in restoring a blurred image. We use the
following well-known gray test images; (P1) Cameraman, (P2) Lena, (P3) House and (P4) Peppers for
the experiments. We use 4 different Gaussian blur kernels with a standard deviation υ to compare the
robustness of MFRM method with CGD method proposed in [20].

To assess the performance of each algorithm tested with respect to the metrics that indicate better
quality of restoration, in Table 10 we reported the objective function (ObjFun) at the approximate
solution, the MSE, the signal-to-noise-ratio (SNR) which is defined as

SNR = 20× log10
( ‖x̄‖
‖x− x̄‖

)
,

and the structural similarity (SSIM) index that measure the similarity between the original image and
the restored image [47] for each of the 16 experiments. The MATLAB implementation of the SSIM
index can be obtained at http://www.cns.nyu.edu/~lcv/ssim/.

The original, blurred and restored images by each of the algorithm are given in Figures 8–11.
The figures demonstrate that both the two algorithms can restore the blurred images. In contrast to
the CGD, the quality of the restored image by MFRM is superior in most cases. Table 11 reported
numerical results for MFRM, ACGD and PDY for problem 2.
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Table 10. Efficiency comparison based on the value of the objective function (ObjFun)
mean-square-error (MSE), SNR and the SSIM index under different Pi(υ).

Image ObjFun MSE SNR SSIM

MFRM CGD MFRM CGD MFRM CGD MFRM CGD

P1(1 × 10−4) 1.43 × 106 1.47 × 106 133.90 177.57 21.28 20.05 0.86 0.83
P1(1 × 10−1) 1.43 × 106 1.48 × 106 130.60 177.69 21.39 20.5 0.86 0.83

P1(0.25) 1.47 × 106 1.48 × 106 145.27 177.72 20.93 20.05 0.85 0.83
P1(6.25) 1.58 × 106 1.65 × 106 146.06 183.96 20.9 19.9 0.75 0.79

P2(1 × 10−4) 1.61 × 106 1.65 × 106 36.88 57.55 27.59 25.65 0.88 0.86
P2(1 × 10−1) 1.61 × 106 1.65 × 106 36.85 57.61 27.59 25.65 0.88 0.86

P2(0.25) 1.62 × 106 1.66 × 106 37.78 57.68 27.48 25.64 0.88 0.86
P2(6.25) 1.77 × 106 1.82 × 106 56.65 58.96 25.72 25.55 0.76 0.83

P3(1 × 10−4) 5.74 × 106 5.89 × 106 41.63 44.48 26.26 25.97 0.9 0.88
P3(1 × 10−1) 5.75 × 106 5.90 × 106 42.42 44.54 26.17 25.96 0.89 0.88

P3(0.25) 5.76 × 106 5.91 × 106 43.33 44.65 26.08 25.95 0.88 0.88
P3(6.25) 6.35 × 106 6.60 × 106 106.79 48.47 22.16 25.6 0.63 0.85

P4(1 × 10−4) 1.40 × 106 1.48 × 106 88.81 122.44 22.9 21.5 0.87 0.84
P4(1 × 10−1) 1.41 × 106 1.48 × 106 89.22 122.56 22.88 21.5 0.87 0.84

P4(0.25) 1.41 × 106 1.49 × 106 89.86 122.56 22.85 21.5 0.87 0.84
P4(6.25) 1.56 × 106 1.69 × 106 116.79 138.97 21.71 20.95 0.76 0.82

Table 11. Numerical results for modified Fletcher-Reeves method MFRM, accelerated conjugate
gradient descent (ACGD) and projected Dai-Yuan (PDY) methods for problem 2 with given initial
points and dimensions with double float (10−16) accuracy.

MFRM ACGD PDY

Dimension Initial Point Iter Fval Time Norm Iter Fval Time Norm Iter Fval Time Norm

1000

x1 8 27 0.14061 9.47 × 10−19 12 53 0.030479 3.32 × 10−18 30 119 0.04027 4.76 × 10−19

x2 8 36 0.010782 1.49 × 10−18 7 20 0.013503 1.08 × 10−18 36 153 0.034454 3.51 × 10−18

x3 7 20 0.008263 1.21 × 10−18 13 56 0.021302 3.26 × 10−18 38 161 0.038168 3.51 × 10−18

x4 8 23 0.015654 1.80 × 10−19 12 51 0.02056 3.31 × 10−18 39 165 0.057793 3.51 × 10−18

x5 11 38 0.018461 1.59 × 10−18 14 59 0.088858 3.34 × 10−18 41 173 0.069756 3.51 × 10−18

x6 10 34 0.016788 1.07 × 10−18 10 32 0.012069 5.83 × 10−19 40 169 0.03311 3.50 × 10−18

5000

x1 9 33 0.028658 7.22 × 10−19 12 54 0.041685 1.52 × 10−18 35 149 0.10692 1.57 × 10−18

x2 7 23 0.024046 2.18 × 10−19 9 41 0.049194 1.55 × 10−18 37 157 0.12219 1.57 × 10−18

x3 6 17 0.03436 3.89 × 10−19 14 61 0.094129 1.47 × 10−18 33 131 0.10635 1.06 × 10−19

x4 8 26 0.03133 7.17 × 10−19 14 60 0.065147 1.47 × 10−18 39 165 0.18361 1.57 × 10−18

x5 9 31 0.036727 5.84 × 10−19 10 43 0.1165 1.47 × 10−18 36 144 0.2178 7.43 × 10−20

x6 10 34 0.030168 6.41 × 10−19 12 51 0.038218 1.51 × 10−18 38 161 0.13144 1.57 × 10−18

10,000

x1 8 28 0.064617 1.89 × 10−19 11 50 0.068567 1.03 × 10−18 35 149 0.2253 1.11 × 10−18

x2 6 19 0.044204 1.90 × 10−19 14 62 0.15949 1.09 × 10−18 32 128 0.34325 8.21 × 10−20

x3 6 17 0.045192 1.45 × 10−19 18 78 0.10766 1.04 × 10−18 39 165 0.23899 1.11 × 10−18

x4 10 35 0.055408 4.99 × 10−19 12 52 0.061589 1.06 × 10−18 39 165 0.23162 1.11 × 10−18

x5 7 20 0.038439 2.06 × 10−19 14 60 0.087394 1.05 × 10−18 40 169 0.28998 1.11 × 10−18

x6 9 29 0.065318 5.27 × 10−19 16 68 0.09917 1.03 × 10−18 40 170 0.22564 1.11 × 10−18

50,000

x1 7 26 0.21017 1.93 × 10−19 23 100 0.51879 4.79 × 10−19 34 145 0.92896 4.96 × 10−19

x2 6 21 0.24752 2.09 × 10−19 25 108 0.64677 4.90 × 10−19 36 153 0.9954 4.96 × 10−19

x3 6 17 0.11243 6.27 × 10−20 23 99 0.50402 4.93 × 10−19 38 161 0.96768 4.96 × 10−19

x4 7 20 0.13442 1.02 × 10−19 24 102 0.63664 4.75 × 10−19 79 326 1.7542 4.96 × 10−19

x5 9 30 0.20288 7.25 × 10−20 25 106 0.51116 4.78 × 10−19 78 322 1.7246 4.96 × 10−19

x6 12 52 0.36526 2.28 × 10−19 23 97 0.56342 4.76 × 10−19 80 330 1.6812 4.96 × 10−19

100,000

x1 7 27 0.36065 6.53 × 10−20 23 100 0.88236 3.26 × 10−19 30 119 1.2102 9.26 × 10−21

x2 5 14 0.20041 3.91 × 10−20 25 108 0.90777 3.27 × 10−19 35 149 1.5699 3.51 × 10−19

x3 7 24 0.34075 1.47 × 10−19 25 107 0.95898 3.26 × 10−19 40 170 1.7126 3.51 × 10−19

x4 8 31 0.40444 2.09 × 10−20 24 102 0.83332 3.38 × 10−19 151 614 5.8306 3.51 × 10−19

x5 8 26 0.52598 5.03 × 10−20 25 106 1.0223 3.47 × 10−19 151 614 5.6777 3.50 × 10−19

x6 7 20 0.33434 1.45 × 10−19 23 97 0.87438 3.33 × 10−19 153 622 5.7906 3.51 × 10−19
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Figure 8. The original image (top left), the blurred image (top right), the restored image by CGD
(bottom left) with time = 3.70, signal-to-noise-ratio (SNR) = 20.05 and structural similarity (SSIM)
= 0.83, and by MFRM (bottom right) with time = 1.97, SNR = 21.28 and SSIM = 0.86.

Figure 9. The original image (top left), the blurred image (top right), the restored image by CGD
(bottom left) with Time = 1.95, SNR = 25.65 and SSIM = 0.86, and by MFRM (bottom right) with
Time = 3.59, SNR = 27.59 and SSIM = 0.88.
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Figure 10. The original image (top left), the blurred image (top right), the restored image by CGD
(bottom left) with time = 5.38, SNR = 25.97 and SSIM = 0.88, and by MFRM (bottom right) with time
= 38.77, SNR = 26.26 and SSIM = 0.90.

Figure 11. The original image (top left), the blurred image (top right), the restored image by CGD
(bottom left) with Time = 2.48, SNR = 21.50 and SSIM = 0.84, and by MFRM (bottom right) with
Time = 4.93, SNR = 22.90 and SSIM = 0.87.
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5. Conclusions

In this paper, a modified conjugate gradient method for solving monotone nonlinear equations
with convex constraints was presented which is similar to that in [3]. The proposed method is suitable
for non-smooth equations. Under some suitable assumptions, the global convergence of the proposed
method was demonstrated. Numerical results were presented to show the effectiveness of the MFRM
method compared to the ACGD and PDY methods for the given constrained monotone equation
problems. Finally, the MFRM was also shown to be effective in decoding sparse signals and restoration
of blurred images.
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Abstract: In this manuscript, a new family of Jacobian-free iterative methods for solving nonlinear
systems is presented. The fourth-order convergence for all the elements of the class is established,
proving, in addition, that one element of this family has order five. The proposed methods have
four steps and, in all of them, the same divided difference operator appears. Numerical problems,
including systems of academic interest and the system resulting from the discretization of the
boundary problem described by Fisher’s equation, are shown to compare the performance of
the proposed schemes with other known ones. The numerical tests are in concordance with the
theoretical results.

Keywords: nonlinear systems; multipoint iterative methods; divided difference operator; order of
convergence; Newton’s method; computational efficiency index

1. Introduction

The design of iterative processes for solving scalar equations, f (x) = 0, or nonlinear systems,
F(x) = 0, with n unknowns and equations, is an interesting challenge of numerical analysis. Many
problems in Science and Engineering need the solution of a nonlinear equation or system in any step
of the process. However, in general, both equations and nonlinear systems have no analytical solution,
so we must resort to approximate the solution using iterative techniques. There are different ways to
develop iterative schemes such as quadrature formulaes, Adomian polynomials, divided difference
operator, weight function procedure, etc. have been used by many researchers for designing iterative
schemes to solve nonlinear problems. For a good overview on the procedures and techniques as well
as the different schemes developed in the last half century, one refers to some standard texts [1–5].

In this paper, , we want to design Jacobian-free iterative schemes for approximating the solution
x̄ = (x1, x2, . . . , xn)T of a nonlinear system F(x) = 0, where F : D ⊆ Rn → Rn is a nonlinear
multivariate function defined in a convex set D. The best known method for finding a solution x̄ ∈ D
is Newton’s procedure,

x(k+1) = x(k) − [F′(x(k))]−1F(x(k)), k = 0, 1, 2, . . . ,

F′(x(k)) being the Jacobian of F evaluated in the kth iteration.
Based on Newton-type schemes and by using different techniques, several methods for

approximating a solution of F(x) = 0 have been published recently. The main objective of all these
processes is to speed the convergence or increase their computational efficiency. We are going to recall
some of them that we will use in the last section for comparison purposes.

Mathematics 2019, 7, 776; doi:10.3390/math7090776 www.mdpi.com/journal/mathematics332
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From a variant of Steffensen’s method for systems introduced by Samanskii in [6] that replaces
the Jacobian matrix F′(x) by the divided difference operator defined as

[x, y; F](x− y) = F(x)− F(y),

being x, y ∈ Rn, Wang and Fang in [7] designed a fourth-order scheme, denoted by WF4, whose
iterative expression is

r(k) = x(k) − [a(k), b(k); F]−1F(x(k)),

x(k+1) = r(k) −
(

3I − 2[a(k), b(k); F]−1[x(k), r(k); F]
)
[a(k), b(k); F]−1F(r(k)),

(1)

where I is the identity matrix of size n × n, a(k) = x(k) + F(x(k)) and b(k) = x(k) − F(x(k)). Let us
observe that this method uses two functional evaluations and two divided difference operators per
iteration. Let us remark that Samanskii in [6] defined also a third-order method with the same divided
differences operator at the two steps.

Sharma and Arora in [8] added a new step in the previous method obtaining a sixth-order scheme,
denoted by SA6, whose expression is

r(k) = x(k) − [a(k), b(k); F]−1F(x(k)),

s(k) = r(k) −
(

3I − 2[a(k), b(k); F]−1[x(k), r(k); F]
)
[a(k), b(k); F]−1F(r(k)),

x(k+1) = s(k) −
(

3I − 2[a(k), b(k); F]−1[x(k), r(k); F]
)
[a(k), b(k); F]−1F(s(k)),

(2)

where, as before, a(k) = x(k) + F(x(k)) and b(k) = x(k) − F(x(k)). In relation with WF4, a new functional
evaluation, per iteration, is needed.

By replacing the third step of equation (2), Narang et al. in [9] proposed the following
seventh-order scheme that uses two divided difference operators and three functional evaluations per
iteration, which is denoted by NM7,

r(k) = x(k) −Q−1F(x(k)),

s(k) = r(k) −Q−1F(r(k)),

x(k+1) = s(k) −
(

17
4

I −Q−1 P
(
−27

4
I + Q−1 P

(
19
4

I − 5
4

Q−1 P
)))

Q−1 F(s(k)),

(3)

where Q = [a(k), b(k); F], being again a(k) = x(k) + F(x(k)), b(k) = x(k) − F(x(k)) and P = [w(k), t(k); F],
with w(k) = s(k) + F(x(k)), t(k) = s(k) − F(x(k)).

In a similar way, Wang et al. (see [10]) designed a scheme of order 7 that we denote by S7,
modifying only the third step of expression (3). Its iterative expression is

r(k) = x(k) −Q−1F(x(k)),

s(k) = r(k) −
(

3I − 2Q−1[r(k), x(k); F]
)

Q−1F(r(k)),

x(k+1) = s(k) −
(

13
4

I −Q−1 [s(k), r(k); F]
(

7
2

I − 5
4

Q−1 [s(k), r(k); F]
))

Q−1 F(s(k)),

(4)

where, as in the previous schemes, Q = [a(k), b(k); F], with a(k) = x(k) + F(x(k)) and b(k) = x(k) − F(x(k)).
Different indices can be used to compare the efficiency of iterative processes. For example, in [11],

Ostrowski introduced the efficiency index EI = p1/d, where p is the convergence order and d is the
quantity of functional evaluations at each iteration. Moreover, the matrix inversions appearing in
the iterative expressions are in practice calculated by solving linear systems. Therefore, the amount
of quotients/products, denoted by op, employed in each iteration play an important role. This is
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the reason why we presented in [12] the computational efficiency index, CEI, combining EI and the
number of operations per iteration. This index is defined as CEI = p1/(d+op).

Our goal of this manuscript is to construct high-order Jacobian-free iterative schemes for solving
nonlinear systems involving low computational cost on large systems.

We recall, in Section 2, some basic concepts that we will use in the rest of the manuscript. Section 3
is devoted to describe our proposed iterative methods for solving nonlinear systems and to analyze their
convergence. The efficiency indices of our methods are studied in Section 4, as well as a comparative
analysis with the schemes presented in the Introduction. Several numerical tests are shown in Section 5,
for illustrating the performance of the new schemes. To get this aim, we use a discretized nonlinear
one-dimensional heat conduction equation by means of approximations of the derivatives and also
some systems of academic interest. We finish the manuscript with some conclusions.

2. Basic Concepts

If a sequence {x(k)}k≥0 in Rn converges to x̄, it is said to be of order of convergence p, being p ≥ 1,
if C > 0 (0 < C < 1 for p = 1) and k0 exist satisfying

‖x(k+1) − x̄‖ ≤ C‖x(k) − x̄‖p, ∀k ≥ k0,

or
‖e(k+1)‖ ≤ C‖e(k)‖p, ∀k ≥ k0,

being e(k) = x(k) − x̄.
Although this notation was presented by the authors in [12], we show it for the sake of

completeness. Let Φ : D ⊆ Rn −→ Rn be sufficiently Fréchet differentiable in D. The qth derivative
of Φ at x ∈ Rn, q ≥ 1, is the q-linear function Φ(q)(x) : Rn × · · · × Rn −→ Rn such that
Φ(q)(x)(y1, . . . , yq) ∈ Rn. Let us observe that

1. Φ(q)(x)(y1, . . . , yq−1, ·) ∈ L(Rn), where L(Rn) denotes the set of linear mappings defined from
(Rn) into (Rn).

2. Φ(q)(x)(yσ(1), . . . , yσ(q)) = Φ(q)(x)(y1, . . . , yq), for all permutation σ of {1, 2, . . . , q}.

From the above properties, we can use the following notation (let us observe that yp denotes
(y, . . . , y) p times):

(a) Φ(q)(x)(y1, . . . , yq) = Φ(q)(x)y1 . . . yq,

(b) Φ(q)(x)yq−1Φ(p)yp = Φ(q)(x)Φ(p)(x)yq+p−1.

Let us consider x̄ + ε ∈ Rn in a neighborhood of x̄. By applying Taylor series and considering that
Φ′(x̄) is nonsingular,

Φ(x̄ + ε) = Φ′(x̄)

[
ε +

p−1

∑
q=2

Cqεq

]
+O(εp), (5)

being Cq = (1/q!)[Φ′(x̄)]−1Φ(q)(x̄), q ≥ 2. Let us notice that Cqεq ∈ Rn as Φ(q)(x̄) ∈ L(Rn × · · · ×
Rn,Rn) and [Φ′(x̄)]−1 ∈ L(Rn).

Moreover, we express Φ′ as

Φ′(x̄ + ε) = Φ′(x̄)

[
I +

p−1

∑
q=2

qCqεq−1

]
+O(εp−1), (6)

the identity matrix being denoted by I. Then, qCqεq−1 ∈ L(Rn). From expression (6), we get

[Φ′(x̄ + ε)]−1 =
[

I + Y2ε + Y3ε2 + Y4ε4 + · · ·
]
[Φ′(x̄)]−1 +O(εp−1), (7)
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where
Y2 = −2C2,
Y3 = 4C2

2 − 3C3,
Y4 = −8C3

2 + 6C2C3 + 6C3C2 − 4C4.
...

The equation

e(k+1) = Ke(k)
p
+O(e(k)

p+1
),

where K is a p-linear operator K ∈ L(Rn × · · · ×Rn,Rn), known as error equation and p is the order
of convergence.In addition, we denote e(k)

p
by (e(k), e(k), · · · , e(k)).

Divided difference operator of function Φ (see, for example, [2]) is defined as a mapping [·, ·; Φ] :
D× D ⊆ Rn ×Rn → L(Rn) satisfying

[x, y; Φ](x− y) = Φ(x)−Φ(y), for all x, y ∈ D.

In addition, by using the formula of Gennochi-Hermite [13] and Taylor series expansions around
x, the divided difference operator is defined for all x, x + h ∈ Rn as follows:

[x + ε, x; Φ] =
∫ 1

0
Φ′(x + tε)dt = Φ′(x) +

1
2

Φ′′(x)ε +
1
6

Φ′′′(x)ε2 +
1

24
Φ(iv)(x)ε3 +O(ε4). (8)

Being a(k) = x(k) + Φ(x(k)) and b(k) = x(k) −Φ(x(k)), the divided difference operator for points
a(k) and b(k) is

[a(k), b(k); Φ] = Φ′(b(k)) + 1
2

Φ′′(b(k))(a(k) − b(k)) +
1
6

Φ′′′(b(k))(a(k) − b(k))2 +O((a(k) − b(k))3) (9)

= Φ′(x̄)[I + A1e(k) + A2e(k)
2
+ A3e(k)

3
] +O(e(k)

4
),

where

A1 = 2C2,

A2 = C3(3 + Φ′(x̄)2),

A3 = 4C4(1 + Φ′(x̄)2 + C3Φ′(x̄)2C2 + C3Φ′(x̄)C2Φ′(x̄)

are obtained by replacing the Taylor expansion of the different terms that appear in development (9) and doing
algebraic manipulations.

For computational purposes, the following expression (see [2]) is used

[y, x; F]i,j =
Fi(y1, . . . , yj−1, yj, xj+1, . . . , xn)− Fi(y1, . . . , yj−1, xj, xj+1, . . . , xn)

yj − xj
,

where x = (x1, . . . , xkj−1, xj, xj+1, . . . , xn) and y = (y1, . . . , yj−1, yj, yj+1, . . . , yn) and 1 ≤ i, j ≤ n.

3. Proposed Methods and Their Convergence

From a Samanskii-type method and by using the composition procedure “frozening” the divided difference
operator (we hold the same divided difference operator in all the steps of the method), we propose the following
four-steps iterative class with the aim of reaching order five:

y(k) = x(k) − μ[a(k), b(k); F]−1F(x(k)),

z(k) = y(k) − α [a(k), b(k); F]−1F(y(k)),

t(k) = z(k) − β [a(k), b(k); F]−1F(z(k)),

x(k+1) = t(k) − γ [a(k), b(k); F]−1F(t(k)),

(10)

where μ, α, β and γ are real parameters, a(k) = x(k) + F(x(k)) and b(k) = x(k) − F(x(k)).
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It is possible to prove that, under some assumptions, we can reach order five. We have used different
combinations of these steps trying to preserve order 5 and reducing the computational cost. The best result we
have been able to achieve is the following:

y(k) = x(k) − [a(k), b(k); F]−1F(x(k)),

z(k) = y(k) − α [a(k), b(k); F]−1F(y(k)),

t(k) = z(k) − β [a(k), b(k); F]−1F(y(k)),

x(k+1) = z(k) − γ [a(k), b(k); F]−1F(t(k)),

(11)

where α, β and γ are real parameters, a(k) = x(k) + F(x(k)) and b(k) = x(k) − F(x(k)). The convergence of class
(11) is presented in the following result.

Theorem 1. Let us assume F : D ⊆ Rn −→ Rn being a differentiable enough operator at each point of the open
neighborhood D of the solution x̄ of the system F(x) = 0. Let us suppose that F′(x) is continuous and nonsingular in x̄ and
the initial estimation x(0) is near enough to x̄. Therefore, sequence {x(k)}k≥0 calculated from expression (11) converges to x̄

with order 4 if α = 2− γ, β =
(γ− 1)2

γ
and for all γ ∈ R, the error equation being

e(k+1) =
(5 γ− 1

γ
C3

2

)
e(k)

4
+O(e(k)

5
).

In addition, if γ = 1
5 , the order of convergence is five and the error equation is

e(k+1) =
(

14C4
2 − 2C2C3C2 + 6C3C2

2 − 2C2C3F′(x̄)2C2 + 2C3F′(x̄)2C2
2

)
e(k)

5
+O(e(k)

6
),

where Cj =
1
j!
[F′(x̄)]−1F(j)(x̄), j = 2, 3, . . .

Proof. By using the Taylor expansion of F(x(k)) and its derivatives around x̄:

F(x(k)) = F′(x̄)
[
e(k) + C2e(k)

2
+ C3e(k)

3
+ C4e(k)

4
+ C5e(k)

5]
+O(e(k)

6
),

F′(x(k)) = F′(x̄)
[

I + 2C2e(k) + 3C3e(k)
2
+ 4C4e(k)

3
+ 5C5e(k)

4]
+O(e(k)

5
),

F′′(x(k)) = F′(x̄)
[
2C2 + 6C3e(k) + 12C4e(k)

2
+ 20C5e(k)

3]
+O(e(k)

4
),

F′′′(x(k)) = F′(x̄)
[
6C3 + 24C4e(k) + 60C5e(k)

2]
+O(e(k)

3
),

F(iv)(x(k)) = F′(x̄)
[
24C4 + 120C5e(k)

]
+O(e(k)

2
),

F(v)(x(k)) = F′(x̄)
[
120C5

]
+O(e(k)).

From the above expression, by replacing in the first order divided difference operator [a(k), b(k); F], the values
a(k) = x(k) + F(x(k)), b(k) = x(k) − F(x(k)), we obtain:[

a(k), b(k); F
]
= F′(x)

[
I + 2C2e(k) +

(
3C3 + C3F′(x)2

)
e(k)

2

+
(

4C4 + 4C4F′(x)2 + C3F′(x)2C2 + C3F′(x)C2F′(x)
)

e(k)
3

+
(

5C5 + C5F′(x)4 + 10C5F′(x)2 + 4C4F′(x)2C2 + 4C4F′(x)C2F′(x)

+ C3F′(x)2C3 + C3F′(x)C2F′(x)C2 + C3F′(x)C3F′(x)
)

e(k)
4]

+O(e(k)
5
).

From the above expression, we have[
a(k), b(k); F

]−1
=
[

I + X2e(k) + X3e(k)
2]
[F′(x)]−1 +O(e(k)

3
),
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where

X2 = −2C2,

X3 = −3C3 + 4C2
2 − C3F′(x)2,

X4 = −4C4 + 6C2C3 + 6C3C2 − 8C3
2 + C3F′(x)2C2 − C3F′(x)C2F′(x) + 2C2C3F′(x)2 − 4C4F′(x)2.

Then,[
a(k), b(k); F

]−1
F(x(k)) = e(k) − C2e(k)

2
+
(
− 2C3 + 2C2

2 − C3F′(x)2
)

e(k)
3

+
(
− 3C4 + 4C2C3 + 3C3C2 − 4C3

2 − C3F′(x)C2F′(x) + 2C2C3F′(x)2 − 4C4F′(x)2
)

e(k)
4
+O(e(k)

5
).

Thus,

y(k) − x̄ = C2e(k)
2
+
(

2C3 − 2C2
2 + C3F′(x)2

)
e(k)

3

+
(

3C4 − 4C2C3 − 3C3C2 + 4C3
2 + C3F′(x)C2F′(x)− 2C2C3F′(x)2 + 4C4F′(x)2

)
e(k)

4
+O(e(k)

5
),

(y(k) − x̄)2 = C2
2e(k)

4
+O(e(k)

5
),

and

F(y(k)) = F′(x̄)
[
(y(k) − x̄) + C2(y(k) − x̄)2

]
+O((y(k) − x̄)3)

= F′(x̄)
[
C2e(k)

2
+
(

2C3 − 2C2
2 + C3F′(x)2

)
e(k)

3

+
(

3C4 − 4C2C3 − 3C3C2 + 5C3
2 + C3F′(x)C2F′(x)− 2C2C3F′(x)2 + 4C4F′(x)2

)
e(k)

4]
+O(e(k)

5
).

From the values of z(k) and t(k) in expression (11), we have

t(k) = y(k) − (α + β) [a(k), b(k); F]−1F(y(k)).

Then,[
a(k), b(k); F

]−1
F(y(k)) = C2e(k)

2
+
(

2C3 − 4C2
2 + C3F′(x)2

)
e(k)

3

+
(

3C4 − 8C2C3 − 6C3C2 + 13C3
2

+C3F′(x)C2F′(x)− 4C2C3F′(x)2 + 4C4F′(x)2 − C3F′(x)2C2

)
e(k)

4
+O(e(k)

5
).

Similarly, we obtain

t(k) − x̄ =
(

1− (α + β)
)

C2e(k)
2
+
((

1− (α + β)
)(

2C3 − 2C2
2 + C3F′(x)2

)
+ 2(α + β)C2

2

)
e(k)

3

+
((

1− (α + β)
)(

3C4 − 4C2C3 − 3C3C2 + 4C3
2 + C3F′(x)C2F′(x)− 2C2C3F′(x)2 + 4C4F′(x)2

)
−(α + β)

(
− 4C2C3 − 3C3C2 + 9C3

2 − 2C2C3F′(x)2 − C3F′(x)2C2

)
e(k)

4
+O(e(k)

5
),

(t(k) − x̄)2 =
(

1− (α + β)
)2

C2
2e(k)

4
+O(e(k)

5
)

and

F(t(k)) = F′(x̄)
[(

1− (α + β)
)

C2e(k)
2
+
((

1− (α + β)
)(

2C3 − 2C2
2 + C3F′(x)2

)
+ 2(α + β)C2

2

)
e(k)

3

+
((

1− (α + β)
)(

3C4 − 4C2C3 − 3C3C2 + 4C3
2 + C3F′(x)C2F′(x)− 2C2C3F′(x)2 + 4C4F′(x)2

)
−(α + β)

(
− 4C2C3 − 3C3C2 + 9C3

2 − 2C2C3F′(x)2 − C3F′(x)2C2

)
+
(

1− (α + β)
)2

C3
2

)
e(k)

4]
+O(e(k)

5
).
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Thus,[
a(k), b(k); F

]−1
F(t(k)) =

(
1− (α + β)

)
C2e(k)

2

+
((

1− (α + β)
)(

2C3 − 4C2
2 + C3F′(x)2

)
+ 2(α + β)C2

2

)
e(k)

3

+
((

1− (α + β)
)(

3C4 − 8C2C3 − 6C3C2 + 12C3
2 + C3F′(x)C2F′(x)− 4C2C3F′(x)2

−C3F′(x)2C2 + 4C4F′(x)2
)
+
(

1− (α + β)
)2

C3
2

−(α + β)
(
− 4C2C3 − 3C3C2 + 13C3

2 − C3F′(x)2C2 − 2C2C3F′(x)2
))

e(k)
4
+O(e(k)

5
).

Therefore, we obtain

e(k+1) = e(k) −
[

a(k), b(k); F
]−1

F(x(k))− α
[

a(k), b(k); F
]−1

F(y(k))− γ
[

a(k), b(k); F
]−1

F(t(k))

=
(

1− α− γ
(

1− (α + β)
))

C2e(k)
2
+
[(

1− α− γ
(

1− (α + β)
))(

2C3 − 2C2
2 + C3F′(x)2

)
− 2

(
− α + γ(α + β)− γ

(
1− (α + β)

))
C2

2

]
e(k)

3

+
[(

1− α− γ
(

1− (α + β)
))(

3C4 − 4C2C3 − 3C3C2 + 4C3
2 + C3F′(x)C2F′(x)− 2C2C3F′(x)2 + 4C4F′(x)2

)
+
(
− α + γ(α + β)− γ

(
1− (α + β)

))(
− 4C2C3 − 3C3C2 + 8C3

2 − 2C2C3F′(x)2 − C3F′(x)2C2

)
(
− α + 5γ(α + β)− γ

(
1− (α + β)

)2)
C3

2

]
e(k)

4
+O(e(k)

5
).

Thus, by requiring that the coefficients of e(k)
2

and e(k)
3

are null, we get α = 2− γ and β =
(γ− 1)2

γ
for all

γ ∈ R, 4 being its order,

e(k+1) =
(5 γ− 1

γ
C3

2

)
e(k)

4
+O(e(k)

5
).

By adding the coefficient of e(k)
4

to the above system, we get γ = 1
5 , 5 being the order of convergence with

error equation in this case:

e(k+1) =
(

14C4
2 − 2C2C3C2 + 6C3C2

2 − 2C2C3F′(x)2C2 + 2C3F′(x)2C2
2

)
e(k)

5
+O(e(k)

6
).

4. Efficiency Indices

As we have mentioned in the Introduction, we use indices EI = p1/d and CEI to compare the different
iterative methods.

To evaluate function F, n scalar functions are calculated and n(n− 1) for the first order divided difference
[·, ·; F]. In addition, to calculate an inverse linear operator, an n× n linear system must be solved; then, we have to

do
1
3

n3 + n2 − 1
3

n quotients/products for getting LU decomposition and solving the corresponding triangular

linear systems. Moreover, for solving m linear systems with the same matrix of coefficients, we need to do
1
3

n3 + mn2 − 1
3

n products-quotients. In addition, we need n2 products for each matrix-vector multiplication and

n2 quotients for evaluating a divided difference operator.
According to the last considerations, we calculate the efficiency indices EI of methods CJST5, NM7, S7, SA6

and WF4. In case CJST5, for each iteration, we evaluate F three times and once [·, ·; F], so n2 + 2n functional

evaluations are needed. Therefore, EICJST5 = 5
1

n2+2n . The indices obtained for the mentioned methods are also
calculated and shown in Table 1.
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Table 1. Efficiency indices for different methods.

Method Order NFE EI

NM7 7 2n2 + n 7
1

2n2+n

S7 7 3n2 7
1

3n2

SA6 6 2n2 + n 6
1

2n2+n

WF4 4 2n2 4
1

2n2

CJST5 5 n2 + 2n 5
1

n2+2n

In Table 2, we present the indices CEI of schemes NM7, SA6, S7, WF4 and CJST5. In it, the amount of
functional evaluations is denoted by NFE, the number of linear systems with the same [·, ·; F] as the matrix
of coefficients is NLS1 and M× V represents the quantity of products matrix-vector. Then, in case CJST5, for
each iteration, n2 + 2n functional evaluations are needed, since we evaluate three times the function F and one
divided difference of first order [a(k), b(k), F]. In addition, we must solve three linear systems with [a(k), b(k), F] as

coefficients matrix (that is
1
3

n3 + 3n2 − 1
3

n). Thus, the value of CEI for CJST5 is

CEICJST5 = 5
1

1
3 n3+5n2+ 5

3 n .

Analogously, we obtain the indices CEI of the other methods. In Figure 1, we observe the computational
efficiency index of the different methods of size 5 to 80. The best index corresponds to our proposed scheme.
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Figure 1. CEI for several sizes of the system.

Table 2. Computational cost of the procedures.

Method Order NFE NLS1 M × V CEI

NM7 7 2n2 + 3n 4 3 7
1

1
3 n3+11n2+ 2

3 n

S7 7 3n2 6 3 7
1

1
3 n3+14n2− 1

3 n

SA6 6 2n2 + n 4 2 6
1

1
3 n3+11n2+ 2

3 n

WF4 4 2n2 3 1 4
1

1
3 n3+8n2− 1

3 n

CJST5 5 n2 + 2n 3 0 5
1

1
3 n3+5n2+ 5

3 n

5. Numerical Examples

We begin this section checking the performance of the new method on the resulting system obtained by
the discretization of Fisher’s partial differential equation. Thereafter, we compare its behavior with that of other
known methods on some academic problems. For the computations, we have used Matlab R2015a ( Natick,
Massachusetts, USA) with variable precision arithmetic, with 1000 digits of mantissa. The characteristics of the
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computer are, regarding the processor, Intel(R) Core(TM) i7-7700 CPU @ 3.6 GHz, 3.601 Mhz, four processors and
RAM 16 GB.

We use the estimation of the theoretical order of convergence p, called Computational Order of Convergence
(COC), introduced by Jay [14] with the following expression:

p ≈ COC =
ln
(
‖F(x(k+1))‖2/‖F(x(k))‖2

)
ln (‖F(x(k))‖2/‖F(x(k−1))‖2)

, k = 1, 2, . . .

and the Approximated Computational Order of Convergence (ACOC), defined by Cordero and Torregrosa in [15]

p ≈ ACOC =
ln (‖x(k+1) − x(k)‖2/‖x(k) − x(k−1)‖2)

ln (‖x(k) − x(k−1)‖2/‖x(k−1) − x(k−2)‖2)
.

Example 1. Fisher’s equation,

ut = Duxx + ru
(

1− u
p

)
, x ∈ [a, b] t ≥ 0, (12)

was proposed in [16] by Fisher to model the diffusion process in population dynamics. In it, D > 0 is the diffusion constant,
r is the level of growth of the species and p is the carrying capacity. Lately, this formulation has proven to be fruitful for
many other problems as wave genetics, economy or propagation.

Now, we study a particular case of this equation, when r = p = 1 and the spatial interval is [0, 1], u(x, 0) =
sech2(πx) and null boundary conditions.

We transform Example 1 in a set of nonlinear systems by applying an implicit method of finite differences,
providing the estimated solution in the instant tk from the estimated one in tk−1. The spacial step h = 1/nx is
selected and the temporal step is k = Tmax/nt, nx and nt being the quantity of subintervals in x and t, respectively,
and Tmax is the final instant. Therefore, a grid of domain [0, 1]× [0, Tmax] with points (xi, tj), is selected:

xi = 0 + ih, i = 0, 1, . . . , nx, tj = 0 + jk, j = 0, 1, . . . , nt.

Our purpose is to estimate the solution of problem (12) at these points, by solving many nonlinear systems,
as much as the number of temporal nodes tj. For it, we use the following finite differences of order O(k + h2):

ut(x, t) ≈ u(x, t)− u(x, t− k)
k

,

uxx(x, t) ≈ u(x + h, t)− 2u(x, t) + u(x− h, t)
h2 .

By denoting the approximation of the solution at (xi, tj) as ui,j, and, by replacing it in Example 1, we get
the system

kui+1,j + (kh2 − 2k− h2)ui,j − kh2u2
i,j + kui−1,j = −h2ui,j−1,

for i = 1, 2, . . . , nx − 1 and j = 1, 2, . . . , nt. The unknowns of this system are u1,j, u2,j, . . . , unx−1,j, that is,
the approximations of the solution in each spatial node for the fixed instant tj. Let us remark that, for solving this
system, the knowledge of solution in tj−1 is required.

Let us observe (Table 3) that the results improve when the temporal step is smaller. In this case, the COC is
not a good estimation of the theoretical error. In Figure 2, we show the approximated solution of the problem
when Tmax = 10, by taking nt = 50, nx = 10 and using method CJST5.

Table 3. Fisher results by CJST5 and different Tmax.

Tmax nx nt ‖F(x1)‖ ‖F(x2)‖ ‖F(x3)‖ COC

0.1 10 20 8.033 × 10−9 2.356 × 10−35 3.243 × 10−68 1.2385
0.1 10 200 8.679 × 10−13 3.203 × 10−44 7.623 × 10−77 1.0379

1 10 20 4.158 × 10−5 3.4 × 10−25 1.679 × 10−56 1.5585
1 10 200 8.033 × 10−9 2.356 × 10−35 3.243 × 10−68 1.2385

10 10 20 nc
10 10 50 0.01945 2.757 × 10−11 1.953 × 10−38 3.0683
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Figure 2. Approximated solution of Example 1.

In the rest of examples, we are going to compare the performance of the proposed method with the schemes
presented in the Introduction as well as with the Newton-type method replacing the Jacobian matrix by the
divided difference operator, that is, the Samanskii’s scheme (see [6]).

Example 2. Let us define the nonlinear system⎧⎪⎨⎪⎩
cos(x2)− sin(x1) = 0,
xx1

3 − 1/x2 = 0,
ex1 − x2

3 = 0.

We use, in this example, the starting estimation x(0) = (1.25, 1.25, 1.25)T , the solution being x̄ ≈
(0.9096, 0.6612, 1.576)T . Table 4 shows the residuals ‖x(k) − x(k−1)‖ and ‖F(x(k))‖ for k = 1, 2, 3 as well as
ACOC and COC. We observe that the COC index is better than the corresponding ACOC of the other methods.
In addition, the value ‖x3 − x2‖ is better or similar to that of S7 and NM7 methods, both of them of order 7.

Table 4. Numerical results for Example 2.

Samanskii CJST5 WF4 SA6 S7 NM7

‖x(1) − x(0)‖ 1.415 0.8848 0.8539 0.8934 0.9148 0.9355
‖x(2) − x(1)‖ 0.5427 0.247 0.2039 0.2689 0.2942 0.3098
‖x(3) − x(2)‖ 0.1738 0.01159 0.006249 0.005301 0.01069 0.02667

ACOC 1.1875 2.3976 2.433 3.2705 2.9221 4.25
‖F(x(1))‖ 0.1954 0.1282 0.1038 0.1385 0.1817 0.2098
‖F(x(2))‖ 0.02369 0.009956 0.004815 0.003584 0.006462 0.01669
‖F(x(3))‖ 0.00269 2.805 × 10−8 7.663 × 10−8 4.009 × 10−11 8.074 × 10−12 1.333 × 10−9

COC 1.0313 5.0015 3.5983 5.0104 6.1445 6.4561

Example 3. We consider now
n

∑
j=1

xj − xi − e−xi xi = 0, i = 1, 2, . . . , n.

The numerical results are displayed in Table 5. The initial estimation is x(0) = (0.25, 0.25, . . . , 0.25)T and
the size of the system is n = 10, the solution being x̄ = (0, 0, . . . , 0)T . We show the same information as in the
previous example.

Example 4. The third example is given by the system:

xi + 1− 2 log

⎛⎝1 +
n

∑
j=1

xj − xi

⎞⎠ = 0, i = 1, 2, . . . , n.
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Its solution is x̄ ≈ (9.376, 9.376, . . . , 9.376)T . By using the starting guess x(0) = (1, 1, . . . , 1)T with n = 10, we
obtain the results appearing in Table 6.

Table 5. Numerical results for Example 3.

Samanskii CJST5 WF4 SA6 S7 NM7

‖x(1) − x(0)‖ 1.036 0.8249 0.9116 0.8499 0.7847 0.7897
‖x(2) − x(1)‖ 0.2552 0.03432 0.121 0.05932 0.00583 0.0008995
‖x(3) − x(2)‖ 0,009667 1.487 × 10−11 9.264 × 10−6 5.367 × 10−10 2.529 × 10−21 1.048 × 10−28

ACOC 2.3361 6.7807 4.6937 6.9572 8.6247 4.25
‖F(x(1))‖ 1.944 0.2742 0.9634 0.4735 0.04665 0.007196
‖F(x(2))‖ 0.0773 1.19 × 10−10 7.411 × 10−5 4.293 × 10−9 2.023 × 10−20 8.381 × 10−28

‖F(x(3))‖ 2.65 × 10−5 2.839 × 10−59 9.644 × 10−22 1.3 × 10−57 9.093 × 10−149 2.621 × 10−202

COC 2.4743 5.1932 4.1045 6.0328 6.9895 6.9987

Table 6. Numerical results for Example 4.

Samanskii CJST5 WF4 SA6 S7 NM7

‖x(1) − x(0)‖ 6.013 40.68 67.88 73.31 34.3 39.23
‖x(2) − x(1)‖ 12.15 13.83 36.07 56.74 17.15 7.369
‖x(3) − x(2)‖ 10.11 0.0002872 0.06643 0.02688 0.0001485 5.422 × 10−8

ACOC - 9.9941 9.9587 29.874 16.819 4.25
‖F(x(1))‖ 10.84 11.03 30.43 48.74 13.42 5.842
‖F(x(2))‖ 6.084 0.0002263 0.05234 0.02117 0.000117 4.272 × 10−8

‖F(x(3))‖ 1.162 9.286 × 10−28 6.508 × 10−12 1.807 × 10−20 3.105 × 10−40 7.552 × 10−65

COC 2.8651 4.9888 3.583 5.3744 7.0313 6.9755

The different methods give us the expected results, according to their order of convergence.

Example 5. Finally, the last example that we consider is:

arctan (xi) + 1− 2

⎛⎝ n

∑
j=1

x2
j − x2

i

⎞⎠ = 0.

The solution of it is x̄ ≈ (0.1758, 0.1758, . . . , 0.1758)T . By using the initial estimation x(0) = (0.5, 0.5, . . . , 0.5)T

with n = 20, we obtain the numerical results displayed in Table 7.

Table 7. Numerical results for Example 5.

Samanskii CJST5 WF4 SA6 S7 NM7

‖x(1) − x(0)‖ 0.9503 1.323 1.272 1.368 1.394 1.393
‖x(2) − x(1)‖ 0.3912 0.1266 0.177 0.0821 0.05639 0.05732
‖x(3) − x(2)‖ 0.1013 4.988 × 10−5 0.0007407 6.903 × 10−7 7.214 × 10−9 6.655 × 10−9

ACOC 1.5229 3.3404 2.776 4.1543 4.9485 4.25
‖F(x(1))‖ 8.324 1.706 2.471 1.075 0.7257 0.7381
‖F(x(2))‖ 1.445 0.0006179 0.009181 8.552 × 10−6 8.937 × 10−8 8.245 × 10−8

‖F(x(3))‖ 0.0902 1.206 × 10−20 5.635 × 10−12 5.437 × 10−36 8.115 × 10−56 3.521 × 10−56

COC 1.5839 4.8559 3.791 5.9219 6.953 6.9577

It is observed in Tables 5–7 that, for the proposed academic problems, the introduced method (CJST5) shows
a good performance comparable with higher-order methods. Of course, the worst results are those obtained by
Samanskii’s method, but it has been included because it is the Jacobian-free version of Newton’s scheme and it
is also the first step of our proposed scheme. Let us also remark that, when only three iterations are calculated,
the index COC gives more reliable information than the ACOC one in all of the examples.
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6. Conclusions

In this paper, we design a family of iterative methods for solving nonlinear systems with fourth-order
convergence. This family does not use Jacobian matrices and one of its elements has order five. The relationship
between the proposed method and other known ones in terms of efficiency index and computational efficiency
index allows us to see that our method is more efficient than the other ones. In addition, its error bounds are
smaller with the same number of iterations in some cases. Thus, our proposal is competitive mostly for big
size systems.
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Abstract: In this paper, an iterative method for solving large, sparse systems of weakly nonlinear
equations is presented. This method is based on Hermitian/skew-Hermitian splitting (HSS) scheme.
Under suitable assumptions, we establish the convergence theorem for this method. In addition,
it is shown that any faster and less time-consuming two-stage splitting method that satisfies the
convergence theorem can be replaced instead of the HSS inner iterations. Numerical results, such as
CPU time, show the robustness of our new method. This method is easy, fast and convenient with an
accurate solution.

Keywords: system of nonlinear equations; Newton method; Newton-HSS method; nonlinear
HSS-like method; Picard-HSS method

1. Introduction

For G : D ⊆ Cm −→ Cm, we consider the following system of nonlinear equations:

G(x) = 0. (1)

One may encounter equations like (1) in some areas of scientific computing. In particular,
when the technique of finite elements or finite differences are used to discretize nonlinear boundary
problems, integral equations and certain nonlinear partial differential equations. Finding the roots of
systems like (1) has widespread applications in numerical and applied mathematics. There are many
iterative schemes to solve (1). The most common one is the second order classical Newton’s scheme,
which solves (1) iteratively as

x(n+1) = x(n) − G′(x(n))−1G(x(n)), n = 0, 1, . . . , (2)

where G′(x(n)) is the Jacobian matrix of G, evaluated in the nth iteration. To avoid computation of
inverse of the Jacobian matrix G′(x), Equation (2) is changed to

G′(x(n))(x(n+1) − x(n)) = −G(x(n)). (3)

Equation (3) is a system of linear equations. Hence, by s(n) = x(n+1) − x(n), we have to solve the
following system of equations:

G′(x(n))s(n) = −G(x(n)), (4)

Mathematics 2019, 7, 815; doi:10.3390/math7090815 www.mdpi.com/journal/mathematics344
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whence x(n+1) = x(n) + s(n). Thus, by using this approach, we have to solve a system of linear
equations such as

Ax = b, (5)

which we usually use an iterative scheme to solve it.
Furthermore, an inexact Newton method [1–4] is a generalization of Newton’s method for

solving (1), in which, at the nth iteration, the step-size s(n) from current approximate solution x(n)

must satisfy a condition such as

‖ G(x(n)) + G′(x(n))s(n) ‖≤ ηn ‖ G(x(n)) ‖,

for a “forcing term” ηn ∈ [0, 1). Let us consider system (1) in which G(x) can be separated into linear
and nonlinear terms, Ax and ϕ(x), respectively, that is

G(x) = ϕ(x)− Ax or Ax = ϕ(x). (6)

In (6), the m×m complex matrix A is a positive definite, large and sparse matrix. In addition,
vector-valued function ϕ : D ⊆ Cm −→ Cm is continuously differentiable. Furthermore, x is an
m-vector and D is an open set. When the norm of linear part Ax is strongly dominant over the norm
of nonlinear part ϕ(x) in a specific norm, system (6) is called a weakly nonlinear system [5,6]. Bai [5]
used the separability and strong dominance between the linear and the nonlinear parts and introduced
the following iterative scheme

Ax(n+1) = ϕ(x(n)). (7)

Equation (7) is a system of linear equations. When the matrix A is positive definite,
Axelsson et al. [7] solved it by a class of nested iteration methods. To solve linear positive definite
systems, Bai et al. [8] applied the Hermitian/skew-Hermitian splitting (HSS) iterative scheme.
For solving the large sparse, non-Hermitian positive definite linear systems, Li et al. [9] used
an asymmetric Hermitian/skew-Hermitian (AHSS) iterative scheme. Moreover, to improve the
robustness of the HSS method, some HSS-based iterative algorithms have been introduced. Bai and
Yang [10] presented Picard-HSS and HSS-like methods to solve (7), when matrix A is a positive definite
matrix. Based on the matrix multi-splitting technique, block and asynchronous two-stage methods are
introduced by Bai et al. [11]. The Picard circulant and skew-circulant splitting (Picard-CSCS) algorithm
and the nonlinear CSCS-like iterative algorithm are presented by Zhu and Zhang [12], when the
coefficient matrix A is a Teoplitz matrix. A class of lopsided Hermitian/skew-Hermitian splitting
(LHSS) algorithms and a class of nonlinear LHSS-like algorithms are used by Zhu [6] to solve the large
and sparse of weakly nonlinear systems.

It must be noted that system (6) is a special form of system (1). Generally, system (6) is nonlinear.
If we classify Picard-HSS and nonlinear HSS-like iterative methods as Jacobian-free schemes, in many
cases, they are not as successful as Jacobian dependent schemes such as the Newton method. Most of
the methods for solving nonlinear systems need to compute or approximate the Jacobian matrix in
the obtained points at each step of the iterative methods, which is a very time-consuming process,
especially when the Jacobian matrices ϕ′(x(n)) are dense. Therefore, introducing any scheme that does
not need to compute the Jacobian matrix and can solve a wider range of problems than the existing
ones is welcome. In fact, Jacobian-free methods to solve nonlinear systems are very important and
form an attractive area of research.

In this paper, we present a new iterative method to solve weakly nonlinear systems. Even though
the new algorithm uses some notions of mentioned algorithms, but differs from all of them because it
has three important characteristics. At the first, the new algorithm is a fully Jacobian-free one. At the
second, it is easy to use, and, finally, it is very successful to solve weakly nonlinear systems. The new
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iterative method is a synergistic combination of high order Newton-like methods and a special splitting
of the coefficient matrix A in (5).

The rest of this paper has organized as follows: in the following section, we present our new
algorithm. We prove convergence of our algorithm in Section 3. We apply our algorithm to solve some
problems in Section 4. In Section 5, we conclude our results and give some comments and discussions.

2. The New Algorithm

In linear system Ax = b, we suppose that A = H + S, where H = 1
2 (A + A∗), S = 1

2 (A− A∗),
and A∗ is the conjugate transpose of matrix A. Hence, H and S are, respectively, Hermitian and
skew-Hermitian parts of A. By an initial guess x0 ∈ Cn, and positive constants α and tol, in HSS
scheme [8], one computes xl for l = 1, 2, . . . as{

(αI + H)xl+ 1
2
= (αI − S)xl + b,

(αI + S)xl+1 = (αI − H)xl+ 1
2
+ b,

(8)

where I is the identity matrix. Stopping criterion for (8) is ‖b− Axl‖ ≤ tol‖b− Ax0‖, for known x0

and tol.
Bai and Guo [13] used an HSS scheme as inner iterations to generate an inexact version of

Newton’s method as:

(1) Consider the initial guess x(0), α, tol and the sequence {ln}∞
n=0 of positive integers.

(2) For n = 1, 2, ... until ‖G(x(n))‖ ≤ tol‖G(x(0))‖ do:

(2.1) Set s(n)0 = 0.
(2.2) For l = 1, 2, . . . , ln − 1, apply Algorithm HSS as⎧⎨⎩ (αI + H(x(n)))s(n)

l+ 1
2
= (αI − S(x(n)))s(n)l − G(x(n))

(αI + S(x(n)))s(n)l+1 = (αI − H(x(n)))s(n)
l+ 1

2
− G(x(n)),

and obtain s(n)ln
such that

‖ G(x(n)) + G′(x(n))s(n)ln
‖≤ ηn ‖ G(x(n)) ‖, for some ηn ∈ [0, 1).

(2.3) Set x(n+1) = x(n) + s(n)ln
.

In addition, to solve weakly nonlinear problems, one can use a Picard-HSS method as a simple
and Jacobian-free method, which is described as follows [10].

2.1. Picard-HSS Iteration Method

Suppose that ϕ : D ⊂ Cn → Cn is a continuous function and A ∈ Cn×n is a positive definite
matrix. For an initial guess x(0) and for a positive integer sequence {ln}∞

n=0, Picard-HSS iterative
method computes x(n+1) for n = 0, 1, 2, . . ., by using the following iterative scheme, until the stopping
criterion is satisfied [10],

(1) Set x(n)l := x(n);
(2) For l = 0, 1, 2, . . . , n− 1, obtain x(n+1) from solving the following:⎧⎨⎩ (αI + H)x(n)

l+ 1
2

= (αI − S)x(n)l + ϕ(x(n)),

(αI + S)x(n)l+1 = (αI − H)x(n)
l+ 1

2
+ ϕ(x(n)).
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(3) Set x(n+1) := x(n)ln
.

The numbers ln, n = 0, 1, 2, . . . depend on the problem, so practically they are difficult to be
determined in real computations. A modified form of Picard-HSS iteration scheme, called the nonlinear
HSS-like method, has been presented [10] to avoid using inner iterations as follows.

2.2. Nonlinear HSS-Like Iteration Method

Obtain x(n+1), n = 0, 1, 2, . . . from the following [10], for a given x(0) ∈ D ⊂ Cn, until the stopping
condition is satisfied{

(αI + H)x(n+
1
2 ) = (αI − S)x(n) + ϕ(x(n)),

(αI + S)x(n+1) = (αI − H)x(n+
1
2 ) + ϕ(x(n+

1
2 )).

However, in this method, it is necessary to evaluate the nonlinear term ϕ(x) at each step, which
for complicated nonlinear terms ϕ(x) is too costly.

2.3. Our Proposal Iterative Scheme

For solving (6) without computing Jacobian matrices, we present a new algorithm. This algorithm
is a strong tool for solving weakly nonlinear problems, as Picard and nonlinear Picard algorithms,
but, in comparison with Picard and nonlinear Picard algorithms, it solves a wider range of nonlinear
systems. First, we change (7) as

Ax(n+1) = Ax(n) − Ax(n) + ϕ(x(n)) (9)

and

Ax(n+1) − Ax(n) = −Ax(n) + ϕ(x(n)). (10)

After computing x(n), set b(n) = ϕ(x(n)), Gn(x) = b(n) − Ax. Then, by intermediate iterations,
obtain x(n+1) as:

• Let x(n)0 = x(n) and until ‖G(x(n)k ) ‖≤ toln‖G(x(n)0 )‖ do:

As(n)k = G(x(n)k ), (11)

where s(n)k = x(n)k+1 − x(n)k (k is the counter of the number of iterations (11)).
• For solving (11), one may use any inner solver; here, we use an HSS scheme. Next, for initial value

x(n)0 and k = 1, 2, . . . , kn − 1 until

‖Gn(x(n)k ) ‖≤ toln‖Gn(x(n)0 )‖, (12)

apply the HSS scheme as:

(1) Set s(n)k,0 = 0.
(2) For l = 0, 1, 2, . . . , lkn − 1, apply algorithm HSS (l is the counter of the number of HSS iterations):⎧⎨⎩ (αI + H)s(n)

k,l+ 1
2

= (αI − S)s(n)k,l + Gn(x(n)k ),

(αI + S)s(n)k,l+1 = (αI − H)s(n)
k,l+ 1

2
+ Gn(x(n)k )

(13)
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and obtain s(n)k,lkn
such that

‖ Gn(x(n)k )− As(n)k,lkn
‖≤ η

(n)
k ‖Gn(x(n)k )‖, η

(n)
k ∈ [0, 1). (14)

(3) Set x(n)k+1 = x(n)k + s(n)k,lkn
(lkn is the required number of HSS inner iterations for satisfying (14)).

• Finally, set x(n+1)
0 = x(n)kn

(kn is the required number of iterations (11) in the nth step, for

satisfying (12)), b(n+1) = ϕ(x(n+1)
0 ), Gn+1(x) = b(n+1) − Ax and again apply steps 3–14 in

Algorithm 1 until to achieve the following stopping criterion:

‖Ax(n) − ϕ(x(n))‖ ≤ tol ‖ Ax(0) − ϕ(x(0)) ‖ .

Algorithm 1: JFHSS Algorithm

Input: x(0), tol, α, n ← 1
Output: The root of Ax− ϕ(x) = 0

1 root ← x(0)

2 while ‖Ax(n) − ϕ(x(n))‖ > tol ‖ Ax(0) − ϕ(x(0)) ‖ do
Input: toln

Set: x(n)0 = x(n), b(n) = ϕ(x(n)) and Gn(x) = b(n) − Ax, k = 1.

3 while ‖Gn(x(n)k ) ‖> toln‖Gn(x(n)0 )‖ do

4 Set: l = 0, s(n)k,0 = 0.

5 while ‖ Gn(x(n)k )− As(n)k,lkn
‖> η

(n)
k ‖Gn(x(n)k )‖ do

6

(the HSS algorithm)

(αI + H)s(n)
k,l+ 1

2
= (αI − S)s(n)k,l + Gn(x(n)k ),

(αI + S)s(n)k,l+1 = (αI − H)s(n)
k,l+ 1

2
+ Gn(x(n)k ),

7 if ‖ Gn(x(n)k )− As(n)k,lkn
‖≤ η

(n)
k ‖Gn(x(n)k )‖ then

8 l ← lkn , x(n)k+1 = x(n)k + s(n)k,lkn

9 else
10 l ← l + 1

11 if ‖Gn(x(n)k ) ‖≤ toln‖Gn(x(n)0 )‖ then

12 k ← kn, x(n+1)
0 = x(n)kn

13 else
14 k ← k + 1

15 if ‖Ax(n) − ϕ(x(n))‖ ≤ tol ‖ Ax(0) − ϕ(x(0)) ‖ then

16 root ← x(n)

17 else

18 n ← n + 1, x(n) = x(n+1)
0 , b(n) = ϕ(x(n)), Gn(x) = b(n) − Ax

19 return root

We call this new method a JFHSS (Jacobian-free HSS) algorithm, and its steps are shown in
Algorithm 1.
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In addition, we call the intermediate iterations Newton-like iteration because this kind of iteration
uses the same procedure as an inexact Newton’s method, except, since the function we use here is
b(n) − Ax for n = 1, 2, · · · , we don’t need to compute any Jacobian and, in fact, the Jacobian is the
matrix A. For this reason, we also call this iterative method a "Jacobian-free method".

Since the JFHSS scheme uses many HSS inner iterations, one may use another splitting scheme
instead of the HSS method. In fact, if any faster and less time-consuming splitting method is available
that satisfies the convergence theorem, presented in the next section, then it can be used instead
of the HSS algorithm. One of these methods that is proposed in [14] is GPSS (generalized positive
definite and skew-Hermitian splitting) algorithm that uses a positive-definite and skew-Hermitian
splitting scheme instead of a Hermitian and skew-Hermitian one. Let H and S be the Hermitian and
skew-Hermitian parts of A; then, the GPSS algorithm splits A as A = P1 + P2 where P1 and P2 are,
respectively, positive definite and skew-Hermitian matrices. In fact, we have

P1 = D + 2LG , P2 = K+ L∗G − LG + S, (15)

or

P1 = D + 2L∗G , P2 = K+ LG − L∗G + S, (16)

where G and K are, respectively, Hermitian and Hermitian positive semidefinite matrices of H, that is,
H = G +K; in addition, D and LG are the diagonal matrix and the strictly lower triangular matrices of
G, respectively (see [14]).

Thus, to solve the system of linear Equation (5) for an initial guess x0 ∈ Cn, and positive
constants α and tol, the GPSS iteration scheme (until the stopping criterion is satisfied) computes xl for
l = 1, 2, . . . by {

(αI + P1)xl+ 1
2

= (αI − P2)xl + b,

(αI + P2)xl+1 = (αI − P1)xl+ 1
2
+ b,

(17)

where α is a given positive constant and I denotes the identity matrix. In addition, if, in Algorithm
1, we use a GPSS scheme instead of an HSS one, we denote the new method by JFGPSS (Jacobian
free GPSS).

3. Convergence of the New Method

As we mentioned in the first section, for solving a nonlinear system, if one can separate (1) into
linear and nonlinear terms, Ax and φ(x), when Ax is strongly dominant over the nonlinear term,
Picard-HSS and nonlinear HSS-like methods can solve the problem. However, in many cases, even for
weakly nonlinear ones, they may fail to solve the problems. Thus, to obtain a more useful method for
solving (6), based on some splitting methods, we presented a new iterative method. Now, we prove
that Algorithm 1 converges to the solution of a weakly nonlinear problem (6). In the following theorem,
we prove the convergence of the JFHSS scheme.

Theorem 1. Let x(0) ∈ Cn and ϕ : D ⊂ Cn → Cn be a G-differentiable function on an open set N0 ⊂ D
on which ϕ′(x) is continuous and max ‖A−1 ϕ′(x)‖ = L < 1. Let us suppose that H = 1

2 (A + A∗) and
S = 1

2 (A− A∗) are the Hermitian and skew-Hermitian parts of the positive definite matrix A and also that
M is an upper bound for ‖A−1G(x(0))‖, and lkn is the number of HSS inner iterations in which the stopping
criterion (14) is satisfied,

ln∗ >

⎢⎢⎢⎣ ln( (1−η)(1−ηkn−1 )
L − 1)

ln(θ)

⎥⎥⎥⎦ , (18)
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with ln∗ = lim inf
kn→ ∞

lkn for n = 1, 2, 3, . . ., η is the tolerance in Newton-like intermediate iterations with

L < (1− η)2 and θ = ‖T‖, where T is the HSS inner iteration matrix that can be written as

T = (αI + S)−1(αI − H)(αI + H)−1(αI − S).

Then, the sequence of iteration {x(k)}∞
k=0, which is generated by a JFHSS scheme in Algorithm 1,

is well-defined and converges to x∗, satisfying G(x∗) = 0, and also

‖x(n+1) − x(n)‖ ≤ δMρn, (19)

‖x(n+1) − x(0)‖ ≤ δM
1− ρ

, (20)

where δ = lim sup
n→∞

(1 + θln∗ )

1− η
and ρ = lim sup

n→∞
ρn for ρn =

(1 + θln∗ )

1− η
L + ηkn−1 .

Proof. Note that ‖T‖ ≤ max
λi∈λ(H)

∣∣∣∣α− λi
α + λi

∣∣∣∣ < 1 (see [8]), where λ(H) is the spectral radius of H and α is

a positive constant in HSS inner iterations of JFHSS scheme. Based on Algorithm 1, we can express
x(n+1) as

x(n+1) = x(n)kn
= x(n)kn−1 + (I − Tlkn )G′n(x(n)kn−1)

−1Gn(x(n)kn−1)

= x(n)kn−1 + (I − Tlkn )A−1Gn(x(n)kn−1)

= x(n)kn−2 + (I − Tlkn−1)A−1Gn(x(n)kn−2) + (I − Tlkn )A−1Gn(x(n)kn−1)

= x(n)kn−3 + (I − Tlkn−2)A−1G(n)(x(n)kn−3) + (I − Tlkn−1)A−1Gn(x(n)kn−2)

+(I − Tlkn )A−1Gn(x(n)kn−1)

= x(n)0 + (I − Tl1)A−1Gn(x(n)0 ) + (I − Tl2)A−1Gn(x(n)1 ) + · · ·
+(I − Tlkn−2)A−1Gn(x(n)kn−3) + (I − Tlkn−1)A−1Gn(x(n)kn−2)

+(I − Tlkn )A−1Gn(x(n)kn−1) = x(n) + ∑kn
j=1(I − Tlj)A−1Gn(x(n)j−1).

(21)

In the last equality, we used x(n)0 = x(n). If we set η′ = η

cond(A)
in (14) instead of η, where

cond(A) = ‖A‖‖A−1‖, then η′ ≤ 1. Because of (14), we have

‖Gn(x(n)kn
)‖ ≤ ‖Gn(x(n)kn

)− Gn(x(n)kn−1) + G′n(x(n)kn−1)(x(n)kn
− x(n)kn−1)‖

+‖Gn(x(n)kn−1)− G′n(x(n)kn−1)(x(n)kn
− x(n)kn−1)‖

= ‖Gn(x(n)kn−1)− A(x(n)kn
− x(n)kn−1)‖ ≤ η′‖Gn(x(n)kn−1)‖,

so

‖A−1Gn(x(n)kn
)‖ ≤ ‖A−1‖‖Gn(x(n)kn

)‖ ≤ η′‖A−1‖‖Gn(x(n)kn−1)‖
≤ η′‖A−1‖‖A‖‖A−1Gn(x(n)kn−1)‖ = η‖A−1Gn(x(n)kn−1)‖.

Therefore, by mathematical induction, we can obtain

‖A−1Gn(x(n)kn
)‖ ≤ ηkn‖A−1Gn(x(n)0 )‖. (22)

Then, from (21), and since ‖I − Tlj‖ < 1 + θlj ≤ 1 + θln∗ for j = 1, 2, . . . , kn, we have
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‖x(n+1) − x(n)‖ ≤ ∑kn
j=1 ‖I − Tlj‖‖A−1Gn(x(n)j−1)‖

≤ (‖I − Tl1‖+ η‖I − Tl2‖+ η2‖I − Tl3‖+ · · ·
+ηkn−2‖I − Tlkn−1‖+ ηkn−1‖I − Tlkn ‖)‖A−1Gn(x(n)0 )‖
= (1 + η + η2 + · · ·+ ηkn−2 + ηkn−1)(1 + θln∗ )‖A−1Gn(x(n)0 )‖
=

1− ηkn

1− η
(1 + θln∗ )‖A−1Gn(x(n)0 )‖.

(23)

Thus, from the last inequality, since Gn(x) = b(n) − Ax, b(n) = ϕ(x(n)), we have

‖x(n+1) − x(n)‖ ≤ 1− ηkn

1− η
(1 + θln∗ )‖A−1(b(n) − Ax(n))‖

=
1− ηkn

1− η
(1 + θln∗ )(‖A−1(ϕ(x(n))− ϕ(x(n−1)))‖+ ‖A−1(ϕ(x(n−1))− Ax(n))‖).

(24)

Then, by using the multivariable Mean Value Theorem (see [15]), we can write

‖A−1(ϕ(x(n))− ϕ(x(n−1)))‖ ≤ max
x∈S

‖A−1 ϕ′(x)‖‖x(n) − x(n−1)‖ = L‖x(n) − x(n−1)‖,

where S = {x : x = tx(n) + (1− t)x(n−1), 0 ≤ t ≤ 1}. Thus,

‖A−1(ϕ(x(n))− ϕ(x(n−1)))‖ ≤ L‖x(n) − x(n−1)‖. (25)

From the right-hand side of (24), using (22) for n− 1, and (25), we have

‖x(n+1) − x(n)‖ ≤
=

1− ηkn

1− η
(1 + θln∗ )(L‖x(n) − x(n−1)‖+ ‖A−1Gn−1(xn)‖) (26)

≤ 1− ηkn

1− η
(1 + θln∗ )(L‖x(n) − x(n−1)‖+ ηkn−1‖A−1Gn−1(x(n−1)

0 )‖).

If in the last inequality of (26), from (23), we use ‖x(n) − x(n−1)‖ ≤ 1− ηkn−1

1− η
(1 +

θln−1∗ )‖A−1Gn(x(n−1)
0 )‖, then

‖x(n+1) − x(n)‖ ≤
1− ηkn

1− η
(1 + θln∗ )(L

1− ηkn−1

1− η
(1 + θln−1∗ )‖A−1Gn−1(x(n−1)

0 )‖+ ηkn−1‖A−1Gn−1(x(n−1)
0 )‖)

≤ 1− ηkn

1− η
(1 + θln∗ )(L

1− ηkn−1

1− η
(1 + θln−1∗ ) + ηkn−1)‖A−1Gn−1(x(n−1)

0 )‖.

As 1− ηkn < 1, n = 1, 2, · · · and by the definition of ρ and δ, we have

‖x(n+1) − x(n)‖ ≤ δρ‖A−1Gn−1(x(n−1)
0 )‖. (27)

By mathematical induction and since ‖A−1G0(x(0)0 )‖ ≤ M,

‖x(n+1) − x(n)‖ ≤ δρn‖A−1G0(x(0)0 )‖ ≤ δMρn, (28)

which yields (19). By the stopping criterion (18), we must have ρ < 1 and then, using (19), it is easy
to deduce
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‖x(n+1) − x(0)‖ ≤ ‖x(n+1) − x(n)‖+ ‖x(n) − x(n−1)‖+ · · ·+ ‖x(1) − x(0)‖ ≤ δM
1− ρ

,

which is the relation (20).

Thus, the sequence {x(n)} is in a ball with center x(0) and radius r =
δM

1− ρ
. From (28),

sequence {x(n)} also converges to its limit point x∗. From the following iteration,

x(n)1 = x(n)0 + (I − Tl1)A−1Gn(x(n)0 ),

when n −→ ∞, ‖x(n)0 − x∗‖ −→ 0, ‖x(n)1 − x∗‖ −→ 0, l1 −→ ∞. Moreover, as ‖T‖ < 1, then Tl1 → 0
and we have

G(x∗) = 0,

which completes the proof.

Note that, in some applications, the stopping criterion (18) may be obtained as negative; this shows
that, for all l∗ � 1, we must have ρ < 1.

In addition, it is easy to deduce from the above theorem that any iterative method that its iteration
matrix satisfies in ‖T‖ < 1 can be used instead of the HSS method. For a JFGPSS case, the proof is
similar, except, in the inner iteration, the iterative matrix is

T = (αI + P2)
−1(αI − P1)(αI + P1)

−1(αI − P2).

The following result shows the convergence of a JFGPSS algorithm:

Theorem 2. Let x(0) ∈ Cn and ϕ : D ⊂ Cn → Cn be a G-differentiable function on an open set N0 ⊂ D,
on which ϕ′(x) is continuous and max ‖A−1 ϕ′(x)‖ = L < 1. Let us suppose that P1 and P2 are generalized
positive-definite and skew-Hermitian splitting parts of the positive definite matrix A as (15) and (16) and also
thatM is an upper bound for ‖A−1G(x(0))‖; lkn is the number of GPSS inner iterations in which the stopping
criterion (14) is satisfied,

ln∗ >

⎢⎢⎢⎣ ln( (1−η)(1−ηkn−1 )
L − 1)

ln(θ)

⎥⎥⎥⎦ ,

with ln∗ = lim inf
kn→ ∞

lkn for n = 1, 2, 3, . . ., η is the tolerance in Newton-like intermediate iterations with

L < (1− η)2 and θ = ‖T‖, where T is the GPSS inner iteration matrix that can be written as

T = (αI + P2)
−1(αI − P1)(αI + P1)

−1(αI − P2).

Then, the sequence of iteration {x(k)}∞
k=0, generated by JFGPSS scheme in Algorithm 1, is well-defined

and converges to x∗, satisfying G(x∗) = 0, and also

‖x(n+1) − x(n)‖ � δMρn,

‖x(n+1) − x(0)‖ � δM
1− ρ

,

where δ = lim sup
n→∞

(1 + θln∗ )

1− η
and ρ = lim sup

n→∞
ρn for ρn =

(1 + θln∗ )

1− η
L + ηkn−1 .

Proof. Let us note that, in this theorem, we also have ‖T‖ < 1 (for more details, see [16]). The rest of
the proof is similar to Theorem 1.
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In the next section, we apply our new iterative method on some weakly nonlinear systems
of equations.

4. Application

Now, we use JFHSS and JFGPSS algorithms for solving some nonlinear systems. These examples
show that JFHSS and JFGPSS methods perform better than nonlinear HSS-like and Picard-HSS methods.

Example 1. Consider the following two-dimensional nonlinear convection-diffusion equation

−(uxx + uyy) + q(ux + uy) = f (x, y), (x, y) ∈ Ω

u(x, y) = h(x, y), (x, y) ∈ ∂Ω

where Ω = (0, 1)× (0, 1), ∂Ω is its boundary and q is a positive constant for measuring the magnitude of the
convection term. We solve this problem for each of the following cases:

Case 1 f (x, y) = eu(x,y), h(x, y) = 0.
Case 2 f (x, y) = −eu(x,y) − sin(1 + ux(x, y) + uy(x, y)), h(x, y) = −ex+y.

To discretize this convection-diffusion equation, for the convective term, we use a central
difference method while, for the diffusion term, we use a five-point finite difference method. These
yield the following nonlinear system

H(u) = Mu + h2ψ(u), (29)

where h =
1

N + 1
is the equidistance step-size with N as a known natural number and M = AN ⊗

IN + AN ⊗ IN , B = CN × CN with tridiagonal matrices AN = tridiag(−1− qh/2, 2, 1 + qh/2), CN =

tridiag(−1/h, 0, 1/h) and IN is N × N identity matrix. For case 1, we have ψ(u) = −ϕ(u) and, for
case 2, ψ(u) = sin(1 + Bu) + ϕ(u), where ϕ(u) = (eu1 , eu2 , ..., eun)T ; moreover, ⊗ is the Kronecker
product symbol, n = N × N and sin(u) means (sin(u1), sin(u2), · · · , sin(un))

T . To apply Picard-HSS,
nonlinear HSS-like, JFHSS and JFGPSS methods for solving (29), the stopping criterion for the outer
iteration in all methods is chosen as

‖ Mu(n) + h2ψ(u(n)) ‖
‖ Mu(0) + h2ψ(u(0)) ‖ ≤ 10−12. (30)

Meanwhile, the Newton-like iteration (in JFHSS and JFGPSS methods) is

‖ Gn(u
(n)
kn

) ‖
‖ Gn(u

(n)
0 ) ‖

≤ 10−1, (31)

and also the stopping criterion for HSS and GPSS processes in each Newton-like inner iteration is

‖ Gn(u
(n)
k )− As(n)k,lkn

‖≤ η‖Gn(u
(n)
k )‖, (32)

where {u(n)} is the sequence generated by the JFHSS method. kn and lkn are, respectively, the number
of Newton-like inner iterations and HSS and GPSS inner iterations, required for satisfying Relations (31)
and (32).

Moreover, to avoid computing the Jacobian in Picard-HSS method, we propose the following
stopping criterion for inner iterations

‖ G(u(n)) + As(n)ln
‖≤ η‖G(u(n))‖. (33)
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In order to use a JFGPSS method, we apply the following decomposition on matrix M in Equation (29),

P1 = D + 2LG , P2 = L∗G − LG + S. (34)

In addition,K = 0, so G = H is the Hermitian part of M and S =
1
2
(M−M∗) is the skew Hermitian

part of M.
Numerical results for q = 1000, q = 2000 and initial points u(0) = 1̄, u(0) = 4× 1̄ for both cases

and u(0) = 12× 1̄ for case 1 and u(0) = 13× 1̄ for case 2 and different values of N for JFHSS, JFGPSS,
nonlinear HSS-like and Picard-HSS schemes are reported in Tables 1 and 2. Other numerical results
such as CPU-time (total CPU time), the number of outer and inner iteration steps (denoted as ITout

and ITinn, respectively), and the norm-2 of the function at the last step (denoted by ‖F(u(n))‖) are also
presented in these tables. For JFHSS and JFGPSS algorithms, the values of ITint and ITinn are reported.
The former is the obtained number when total inner HSS or GPSS iteration is used in Newton-like
iterations, divided by the sum of total Newton-like iterations, while the latter is the total number of
intermediate iterations of the Newton-like method.

Except for u(0) = 1̄, which is relatively close to the solution (in case 1, the real solution u is
near zero and, in case 2, almost for all coordinates of the solution, ui, i = 1, 2, · · · , n, 0 ≤ ui ≤ 1),
the nonlinear HSS-like method for other initial points of Tables 1 and 2 could not perform the iterations
at all, but JFHSS and JFGPSS methods for all points in both cases could easily solve the problem.
Picard-HSS for these three initial points could not solve the problem and, in all cases, fails to solve the
problem, especially for q > 500.

Numerical results show that the inner iterations for both JFHSS and nonlinear HSS-like are almost
the same but for JFGPSS is less than these two methods. For example, in Table 1, for u(0) = 1̄, q = 1000
and N = 40, the number of inner iterations for JFHSS and JFGPSS methods are, respectively, 133 and
96 and this number for total iterations in the nonlinear HSS-like method (consider that there is only one
kind of iteration in a nonlinear HSS-like method) is 127. However, the nonlinear HSS-like method needs
to evaluate a greater number of the nonlinear term ψ(u) than the JFHSS method (for the JFHSS method,
only 12 function evaluations are required compared to 254 function evaluations for the nonlinear
HSS-like method). Thus, JFHSS and JFGPSS methods can significantly reduce the computational
cost of evaluation of the nonlinear term, especially when the nonlinear part is so complicated, e.g.,
in Example 2, the difference between the computational cost of the nonlinear HSS-like method and the
JFHSS method has increased, since the problem has a more complicated nonlinear term.

It must be noted that, in the inner iteration, for solving the linear systems related to the Hermitian
part (in HSS scheme) and the skew-Hermitian part (in both HSS and GPSS schemes), we have employed
respectively the conjugate gradient (CG) method and the Lanczos method (for more details, see [17]).

In this example, η = tol was used for all steps; in most cases, we obtained equal Newton-like
and outer iterations at each step; however, in general, choosing equal η and tol does not always
lead to equal Newton-like and outer iterations. For example, in cases that nonlinearity increases
(e.g., when we choose initial value u(0) = 12× 1̄, in the first steps, the nonlinear term h2ψ(u) is so big)
result in a different number of Newton-like and outer iterations. In all tables of this paper, a, b denote
the number a · 10b.
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Table 1. Results for JFHSS, JFGPSS, nonlinear HSS-like and Picard-HSS methods of Example 1, Case 1
(η = tol = 0.1).

N 30 40 60 70 80 100

q = 1000, JFHSS CPU 0.65 1.81 7.46 13.21 24.45 59.32
u(0) = 1̄ ITout 12 12 12 12 12 12

ITint 12 12 12 12 12 12
ITinn 9 11.08 10.75 10.75 10.41 10.91

‖F(u(n))‖ 1.86, −11 3.35, −11 1.70, −11 3.41, −11 3.54, −11 2.43, −11
JFGPSS CPU 0.63 1.46 5.79 9.84 17.28 44.50

ITout 12 12 11 11 11 11
ITint 14 12 11 11 11 11
ITinn 8.78 8 7.64 7.45 7.90 8.73

‖F(u(n))‖ 5.45, −11 1.89, −11 7.69, −11 1.02, −10 9.63, −11 5.09, −11
Nonlinear HSS-like CPU 0.82 2.03 8.26 14.60 24.65 61.35

IT 129 127 123 124 128 126
‖F(u(n))‖ 1.45, −10 1.53, −10 1.25, −10 1.10, −10 8.60, −11 8.91, −11

Picard-HSS - - - - - - -

q = 2000, JFHSS CPU 1.04 2.71 11.32 19.87 31.48 76.13
u(0) = 1̄ ITout 12 12 12 12 12 12

ITint 12 12 12 12 12 12
ITinn 16.08 14.67 14.25 14.17 14 14.08

‖F(u(n))‖ 1.47, −10 9.30, −11 7.92, −11 8.80, −11 9.56, −11 6.56, −11
JFGPSS CPU 0.85 2.20 8.57 14.26 23.50 54.90

ITout 12 12 12 12 12 12
ITint 12 12 12 12 12 12
ITinn 14.42 12.42 10.58 10 9.84 9.91

‖F(u(n))‖ 1.57, −10 8.49, −11 3.33, −11 2.80, −11 2.38, −11 4.23, −11
Nonlinear HSS-like CPU 1.32 2.94 12.11 20.51 33.88 80.97

IT 188 172 167 166 165 165
‖F(u(n))‖ 3.24, −10 2.50, −10 2.07, −10 2.32, −10 2.037, −10 1.81, −10

Picard-HSS - - - - - - -

q = 1000, JFHSS CPU 0.80 2.24 9.34 14.56 23.77 60.21
u(0) = 4× 1̄ ITout 12 12 12 12 12 12

ITint 12 12 12 12 12 12
ITinn 11.08 11 10.67 10.75 10.50 11.25

‖F(u(n))‖ 1.94, −10 1.70, −10 9.33, −11 9.94, −11 1.15, −10 8.77, −11
JFGPSS CPU 0.56 1.51 6.55 12.47 21.03 55.50

ITout 12 12 11 12 11 11
ITint 12 12 11 12 11 11
ITinn 8.92 8.34 8.72 8.75 9.55 10.63

‖F(u(n))‖ 9.76, −11 7.68, −11 4.60, −10 6.35, −11 3.73, −10 3.78, −10
Nonlinear HSS-like - - - - - - -

Picard-HSS - - - - - - -

q = 2000, JFHSS CPU 0.99 2.51 11.20 19.45 32.23 77.58
u(0) = 4× 1̄ ITout 12 12 12 12 12 12

ITint 12 12 12 12 12 12
ITinn 16.08 14.67 14.25 14.17 14 14.08

‖F(u(n))‖ 5.88, −10 3.71, −10 3.20, −10 3.57, −10 3.75, −10 2.69, −10
JFGPSS CPU 0.85 2.20 8.58 14.02 23.22 54.94

ITout 12 12 12 12 12 12
ITint 12 12 12 12 12 12
ITinn 14.42 12.41 10.58 9.92 9.84 9.84

‖F(u(n))‖ 6.26, −10 3.44, −10 1.31, −10 1.63, −10 1.08, −10 2.08, −10
Nonlinear HSS-like - - - - - - -

Picard-HSS - - - - - - -

q = 1000, JFHSS CPU 0.81 2.23 10.41 18.89 31.31 81.74
u(0) = 12× 1̄ ITout 12 12 12 12 12 12

ITint 14 14 14 14 14 14
ITinn 10.85 12.83 11.28 11.71 11.64 12.93

‖F(u(n))‖ 1.47, −8 1.05, −8 7.50, −9 4.55, −9 3.08, −9 3.29, −9
JFGPSS CPU 0.66 1.70 7.95 14.30 25.44 63.80

ITout 12 12 12 12 12 12
ITint 14 14 14 14 14 14
ITinn 8.78 8 7.86 8.64 9.07 9.92

‖F(u(n))‖ 8.02, −9 3.11, −8 3.40, −9 2.32, −9 1.61, −9 6.16, −10
Nonlinear HSS-like - - - - - - -

Picard-HSS - - - - - - -
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Table 1. Cont.

N 30 40 60 70 80 100

q = 2000, JFHSS CPU 1.06 2.90 13.55 21.72 38.94 87.18
u(0) = 12× 1̄ ITout 12 12 12 12 12 12

ITint 14 14 14 13 14 13
ITinn 14.93 14.36 14.86 14.62 14.57 15

‖F(u(n))‖ 2.06, −8 1.48, −8 9.76, −9 6.96, −9 6.58, −9 5.72, −9
JFGPSS CPU 0.95 2.45 10.03 17.81 29.06 69.57

ITout 12 12 12 12 12 12
ITint 14 14 14 14 14 13
ITinn 13.71 11.64 10.71 10.85 10.64 11.31

‖F(u(n))‖ 1.91, −8 1.30, −8 6.08, −9 3.26, −9 6.35, −9 3.23, −9
Nonlinear HSS-like - - - - - - -

Picard-HSS - - - - - - -

Table 2. Results for JFHSS, JFGPSS, nonlinear HSS-like and Picard-HSS methods of Example 1, Case 2
(η = tol = 0.1).

N 30 40 60 70 80 100

q = 1000, JFHSS CPU 0.73 2.03 9.54 16.99 27.27 65.47
u(0) = 1̄ ITout 11 11 11 12 12 12

ITint 12 12 12 13 13 13
ITinn 11.25 11.41 11.92 11.23 10.92 12

‖F(u(n))‖ 1.64, −10 1.18, −10 1.43, −11 1.32, −11 1.95, −11 1.56, −11
JFGPSS CPU 0.57 1.53 7.19 12.59 19.42 53.59

ITout 11 11 11 11 11 12
ITint 12 12 12 12 12 13
ITinn 9 8.25 8.75 8.92 8.25 9

‖F(u(n))‖ 5.45, −11 8.19, −11 8.56, −11 7.6, −11 5.27, −11 4.81, −12
Nonlinear HSS-like CPU 0.82 2.30 9.86 14.38 29.31 59.91

IT 128 128 123 124 121 126
‖F(u(n))‖ 1.81, −10 1.43, −10 1.25, −10 1.10, −10 1.15, −10 1.06, −10

Picard-HSS - - - - - - -

q = 2000, JFHSS CPU 0.98 2.63 11.73 20.51 36.07 77.20
u(0) = 1̄ ITout 11 11 11 11 12 12

ITint 12 12 12 12 13 13
ITinn 16 15 14.50 14.67 14.30 14.62

‖F(u(n))‖ 2.49, −10 2.26, −10 2.03, −10 2.30, −10 2.61, −11 1.74, −11
JFGPSS CPU 0.88 2.26 8.61 15.08 25.83 60.7

ITout 11 11 11 11 12 11
ITint 12 12 12 12 13 12
ITinn 14.33 12.08 10.58 10.66 9.69 11

‖F(u(n))‖ 2.04, −10 2.91, −10 1.91, −10 1.09, −10 1.64, −11 1.72, −10
Nonlinear HSS-like CPU 1.15 3.85 12.52 19.61 37.70 79.26

IT 187 171 166 166 164 164
‖F(u(n))‖ 3.68,-10 3.07, −10 2.48, −10 2.17, −10 2.42, −10 2.13, −10

Picard-HSS - - - - - - -

q = 1000, JFHSS CPU 0.72 2.28 9.39 16.62 28.53 67.23
u(0) = 4× 1̄ ITout 11 11 11 12 11 11

ITint 12 12 12 12 12 12
ITinn 11.41 11.33 11.41 11.75 12.08 12.34

‖F(u(n))‖ 1.62, −10 2.01, −10 1.64, −10 1.92, 10 2.89, −10 2.47, −10
JFGPSS CPU 0.69 1.97 8.85 16.53 26.53 70.80

ITout 11 11 11 11 12 11
ITint 12 12 12 12 13 12
ITinn 10.91 11.16 11 11.42 11.42 12.34

‖F(u(n))‖ 2.18, −10 1.22, −10 1.21, −10 8.35, −11 1.15, −10 1.17, −10
Nonlinear HSS-like - - - - - - -

Picard-HSS - - - - - - -
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Table 2. Cont.

N 30 40 60 70 80 100

q = 2000, JFHSS CPU 0.97 2.59 11.06 20.24 33.75 79.80
u(0) = 4× 1̄ ITout 11 11 11 11 11 11

ITint 12 12 12 12 12 12
ITinn 15.92 15.08 14.50 14.58 14.66 14.92

‖F(u(n))‖ 9.65, −10 4.15, −10 4.31, −10 4.40, −10 3.82, −10 3.39, −10
JFGPSS CPU 0.88 2.18 8.75 14.60 25.05 64.79

ITout 11 11 11 11 11 11
ITint 12 12 12 12 12 12
ITinn 14.50 12.42 10.66 10.42 10.58 11.08

‖F(u(n))‖ 5.06, −10 3.61, −10 2.53, −10 3.32, −10 2.95, −10 1.97, −10
Nonlinear HSS-like - - - - - - -

Picard-HSS - - - - - - -

q = 1000, JFHSS CPU 0.77 2.33 10.82 19.56 32.13 85.32
u(0) = 13× 1̄ ITout 12 12 12 12 12 12

ITint 14 14 14 14 14 14
ITinn 10.85 12.83 11.28 11.71 11.64 12.92

‖F(u(n))‖ 1.44, −8 1.36, −8 7.47, −9 4.56, −9 3.8, −9 3.54, −9
JFGPSS CPU 0.65 1.74 8.00 14.54 25.02 64.19

ITout 12 12 12 12 12 12
ITint 14 14 14 14 14 14
ITinn 8.78 8 8.28 8.64 9.07 9.86

‖F(u(n))‖ 8.03, −9 1.44, −8 3.35, −9 4.76, −9 1.69, −9 1.085, −9
Nonlinear HSS-like - - - - - - -

Picard-HSS - - - - - - -

q = 2000, JFHSS CPU 1.08 2.97 11.27 22.45 39.98 89.15
u(0) = 13× 1̄ ITout 12 12 12 12 12 12

ITint 14 14 14 14 14 14
ITinn 14.93 14.35 14.43 14.62 14.57 15

‖F(u(n))‖ 2.01, −8 1.49, −8 8.73, −9 6.97, −9 6.57, −9 5.72, −9
JFGPSS CPU 0.99 2.41 10.15 17.98 29.33 67.45

ITout 12 12 12 12 12 12
ITint 14 14 14 14 14 13
ITinn 13.78 11.64 10.71 10.86 10.64 11.31

‖F(u(n))‖ 1.70, −8 1.30,−8 6.02, −9 3.23, −9 6.34, −9 3.21, −9
Nonlinear HSS-like - - - - - - -

Picard-HSS - - - - - - -

The optimal value for parameter α that minimizes the boundary of spectral radius of the
iteration matrices is important because it also improves the convergence speed of Picard-HSS,
nonlinear HSS-like, JFHSS and JFGPSS methods. There are no general results to determine the
optimal α and α, so we need to obtain the optimal values of parameters α and α experimentally.
However, Bai and Golub [8] proved that spectral radius of HSS iterative matrix that is obtained from

the coefficient matrix M in (29) is bounded by ‖T‖ ≤ σ(α) ≡ max
λi∈λ(H)

∣∣∣∣α− λi
α + λi

∣∣∣∣ < 1, and the minimum

of this bound is obtained when
α = α∗ =

√
λmin(H)λmax(H),

where λmin(H) and λmax(H) are, respectively, the smallest and the largest eigenvalues of Hermitian
matrix H. Usually, in an HSS scheme, αopt �= α∗ ≡ argmin

α>0
{σ(α)} < 1 and ρ(T(α∗)) � ρ(T(αopt)).

When q or qh/2 is small, σ(α) is close to ρ(T(α)) and in this case α∗ is close to αopt and α∗ can be a
good estimation for αopt. However, when q or qh/2 is large (the skew-Hermitian part is dominant),
hence σ(α) deviates too much from ρ(T(α)), so using α∗ is not useful. In this case, ρ(T(α)) attains its
minimum at αopt that is far from α∗, but close to qh/2 (see [8]).

In the GPSS case, a spectral radius of T(α) is bounded by ‖V(α)‖, where V(α) = (αI − P1)(αI +
P1)

−1. Since ‖V(α)‖2 � 1 (see [18]), GPSS inner iterations unconditionally converge to the exact
solution in each inner iteration of a JFGPSS scheme. However, when P1 ∈ Cn×n is a general
positive-definite matrix, we do not have any formula to compute α∗ ≡ argmin

α>0
{‖V(α)‖} that is

357



Mathematics 2019, 7, 815

the value that minimizes the boundary of iteration matrix T(α), nor do we have a formula for αopt, the
value that minimizes ‖T(α)‖.

In Table 3, the optimal values of αopt and αopt have been written (tested and optimal α and αopt)
that are determined experimentally by using increments as 0.25. In addition, the corresponding
spectral radius of the iteration matrices T(α) and T(α) for HSS and GPSS algorithms that are used as
inner iterations to solve (29) are reported in this table. One can see that the spectral radius of GPSS
method in all cases is smaller than HSS scheme, which results in faster convergence.

Table 3. Optimal value of α for HSS and GPSS inner iterations for different values of N and q of
Example 1.

N 30 40 50 60 70 80 90 100

q = 1000 HSS αopt 18 15 10.5 9 8 6 5.75 5.75
ρ(T(αopt)) 0.7226 0.6930 0.6743 0.6613 0.6513 0.6485 0.6459 0.6467

α∗ 0.4047 0.3062 0.2462 0.2059 0.1769 0.1551 0.1381 0.1244
ρ(T(α∗)) 0.8971 0.9211 0.9360 0.9461 0.9535 0.9590 0.9634 0.9669

qh
2

16.1290 12.1951 9.8039 8.1967 7.0423 6.1728 5.4945 4.9505

ρ(T(
qh
2
)) 0.7236 0.6974 0.6783 0.6674 0.6608 0.6574 0.6562 0.6569

GPSS αopt 11.25 9.5 8.5 7.5 7 6.5 6 5.5
ρ(T(αopt)) 0.5428 0.5140 0.5076 0.4983 0.4959 0.4902 0.4982 0.4983

q = 2000 HSS αopt 26 22 16 13.5 12 10 8.75 8
ρ(T(αopt)) 0.7911 0.7663 0.6499 0.7399 0.0.7373 0.7302 0.7302 0.7242

α∗ 0.1638 0.0938 0.0606 0.0424 0.0313 0.0241 0.0191 0.0155
ρ(T(α∗)) 0.9579 0.9757 0.9842 0.9889 0.9918 0.9937 0.9950 0.9959

qh
2

32.2581 24.39 19.61 16.3934 14.0845 12.35 10.99 9.9010

ρ(T(
qh
2
)) 0.7953 0.77 0.7512 0.7439 0.7343 0.728 0.7282 0.7270

GPSS αopt 15 13 11 10 9 8 7.5 7
ρ(T(αopt)) 0.6424 0.6212 0.6144 0.6063 0.6036 0.6028 0.6090 0.6033

Example 2 ([10]). We consider the two-dimensional nonlinear convection-diffusion equation

−(uxx + uyy) + qex+y(xux + yuy) = ueu + sin(
√

1 + u2
x + u2

y), (x, y) ∈ Ω,

u(x, y) = 0, (x, y) ∈ ∂Ω,

where Ω = (0, 1)× (0, 1), ∂Ω is its boundary and q is a positive constant for measuring magnitude of the
convection term. By applying the upwind finite difference scheme on the equidistance discretization grid (stepsize

h =
1

N + 1
) with the central difference scheme to the convective term, we obtain a system of nonlinear equations

in the general form (for more details, see [10])

H(x) = Mx− h2ψ(x). (35)

We have selected zero vector u(0) = 0 = (0, 0, · · · , 0)T as the initial guess. In addition, again (31) and (32)
are used respectively as the stopping criteria for the inner iterations and Newton-like iterations in the JFHSS
method and (30) for outer iterations in JFHSS, Picard-HSS and nonlinear HSS-like methods. Moreover, to avoid
computing Jacobian in Picard-HSS and nonlinear HSS-like methods, we used (33). Similar to Example 1,
one can use other iterative methods instead of HSS in Algorithm 1, for which the spectral radius of its iteration
matrix is smaller and thus results in faster convergence.

Numerical results for N = 32, 48, 64, optimal α and different values of q for JFNHSS, Picard-HSS
and nonlinear HSS-like schemes are reported in Table 4. In addition, we adopted the experimentally optimal
parameters α to obtain the least CPU times for these iterative methods. One can see that JFHSS performs better
than nonlinear HSS-like and Picard-HSS methods in all cases.
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Table 4. Results of JFHSS, nonlinear HSS-like and Picard-HSS methods for Example 2 (η = tol = 0.1).

q 50 100 200 400 1200 2000

N = 32 αopt 1.4 1.6 2.5 8 21.5 34
JFHSS CPU 1.23 1.42 1.29 1.53 1.71 1.86

ITout 12 12 12 12 12 12
ITint 12 12 12 12 12 12
ITinn 11.34 11.67 12 12.75 16.25 20.34

‖F(u(n))‖ 1.54, −14 2.2, −14 1.47, −14 6.87, −15 8.22, −15 1.3, −14
Nonlinear HSS-like CPU 2.03 2.39 2.25 2.31 2.42 2.45

IT 129 137 140 146 160 167
‖F(u(n))‖ 1.1, −14 2.25, −14 2.31, −14 2.23, −14 2.4, −14 2.3, −14

Picard-HSS CPU 7.96 8.31 7.76 8 8.60 8.86
ITout 12 12 12 12 12 12
ITinn 121.1 131.91 126.75 145.34 146.34 147

‖F(u(n))‖ 1.1, −14 1.24, −14 1.57, −14 1.96, −14 1.84, −14 1.6, −14

N = 48 αopt 0.8 1.4 2.6 4.8 13 20.5
JFHSS CPU 5.25 5.31 5.5 5.93 6.21 6.28

ITout 12 12 12 12 12 12
ITint 12 12 12 12 12 12
ITinn 13.66 14.58 15.083 16.08 17.34 17.58

‖F(u(n))‖ 2.42, −14 6.04, −15 6.36, −15 1.96, −14 6.15, −15 8.60, −15
Nonlinear HSS-like CPU 8.87 11.828 10.02 10.31 11.28 11.85

IT 161 209 178 186 201 207
‖F(u(n))‖ 1.5, −14 1.59, −14 1.46, −14 1.57, −14 1.615, −14 1.46, −14

Picard-HSS CPU 50.81 50.01 51.85 53.34 56.32 59.95
ITout 12 12 12 12 12 12
ITinn 177.16 179.1 183.50 189.34 202.75 213.25

‖F(u(n))‖ 7.7, −15 9.67, −15 1.11, −14 1.23, −14 1.22, −14 1.26, −14

N = 64 αopt 0.7 1 1.8 3.3 8.9 14.2
JFHSS CPU 21.68 18.23 18.65 19.156 20.53 21.39

ITout 12 12 12 12 12 12
ITint 12 12 12 12 12 12
ITinn 21 17.39 18.17 18.75 19.91 20.84

‖F(u(n))‖ 1.61, −14 6.73, −15 9.15, −15 8.39, −15 7.7, −15 4.71, −15
Nonlinear HSS-like CPU 38.57 31.78 33.50 34.65 36.56 37.70

IT 246 206 213 221 235 242
‖F(u(n))‖ 1.17, −14 1.26, −14 1.26, −14 1.16, −14 1.19, −14 1.22, −14

Picard-HSS CPU 219.54 217.45 266.83 225.37 228.60 248.35
ITout 12 12 12 12 12 12
ITinn 219.54 248.58 230.75 252 258.75 264.50

‖F(u(n))‖ 6.12, −15 7.7, −15 8.9, −15 1.0, −14 1.1, −14 1.1, −14

5. Conclusions

In this paper, an iterative method based on two-stage splitting methods has been proposed to
solve weakly nonlinear systems and a convergence property of this method has been investigated.
This method is a combination of an inexact Newton method, Hermitian and skew-Hermitian splitting
(or generalized positive definite and skew-Hermitian splitting) scheme. The advantage of our new
method, Picard-HSS and nonlinear HSS-like over the methods like Newton method is that they don’t
need explicit construction and accurate computation of the Jacobian matrix. Hence, computation
works and computer memory may be saved in actual application; however, numerical results show
that JFHSS and JFGPSS methods perform better than the two other ones.

Numerical results show that JFHSS and JFGPSS iteration algorithms are effective, robust,
and feasible nonlinear solvers for a class of weakly nonlinear systems. Moreover, employing these
algorithms to solve nonlinear systems is found to be simple, accurate, fast, flexible, convenient and
have small computation cost. In addition, it must be noted that, even though our inner iteration
scheme in this paper are HSS and GPSS methods, another inner iteration solver can be used subject to
the condition that the iteration matrix satisfies in ‖T‖ < 1.
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Abstract: We present a three-step family of iterative methods to solve systems of nonlinear equations.
This family is a generalization of the well-known fourth-order King’s family to the multidimensional
case. The convergence analysis of the methods is provided under mild conditions. The analytical
discussion of the work is upheld by performing numerical experiments on some application oriented
problems. Finally, numerical results demonstrate the validity and reliability of the suggested methods.
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1. Introduction

System of nonlinear equations (SNEs) finds applications to numerous phenomena in many areas
of science and engineering. Given a nonlinear system, F(X) = 0, where F is a nonlinear map from
Rk → Rk, we are interested to compute a vector X∗ = (x∗1, x∗2, · · · , x∗k )

T such that F(X∗) = 0 , where
F(X) = ( f1(X), f2(X), . . . , fk(X))T is a Fréchet differentiable function and X = (x1, x2, . . . , xk)

T ∈ Rk.
The classical Newton’s method [1] is the most famous procedure to solve SNEs. It is given by

X(k+1) = X(k) − {F′(X(k))}−1F(X(k)), k = 0, 1, 2, . . . . (1)

It converges quadratically if the function F is continuously differentiable and the initial
approximation is close enough. In the literature, there are variety of higher-order methods that improve
the convergence order of Newton’s scheme. For example, several authors have proposed cubically
convergent methods [2–5] requiring computation of 2-F′ (2-F′ stand for F′ two times), 1-F (1-F stands for
F one time), and two matrix inversions per step. In [6], the authors developed another family of methods
of order three, one of which requires one 1-F and 3-F′, whereas the other requires 1-F and 4-F′ evaluations
and two matrix inversions per iteration. In [7], Darvishi and Barati utilized 2-F, 2-F′ and two matrix
inversions per step to propose a new third-order scheme. Similarly, several third-order methods have
been proposed in [8,9] that require 2-F, 1-F′, and one matrix inversion. Babajee et al. [10] presented a
method having convergence order four which consumes 1-F, 2-F′ and two matrix inversions per iteration.
Another fourth-order method is developed in [11] using two evaluations of the function and the Jacobian
and one matrix inversion, whereas the authors of [12] propose another fourth-order method, utilizing 3-F,
1-F′, and one matrix inversion per iteration. Another fifth-order method in [13] requires three evaluations
of the function and only one Jacobian evaluation, with the solution of three linear systems with the same
matrix of coefficients per iteration.
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In pursuit of faster algorithms, researchers have also developed fifth and sixth-order methods, for
example, in [6,14–16]. In [15], Narang et al. extended the existing Babajee’s fourth-order scheme [17] to
solve SNEs and developed a sixth-order convergent family of Chebyshev-Halley type methods. Their
scheme requires two F , two F′ evaluations, and the solution of two linear systems per iteration. One can
notice that although the researchers are making an attempt to improve the order of convergence of an
iterative method, it mostly leads to increase in the computational cost per iteration. The computational
cost is especially high if the method involves the use of second order Fréchet derivative F′′(X). This is a
major limitation of the higher-order methods. Thus, although developing new iterative methods, we
should try to keep the computational cost low. With this intention, we have made an attempt to develop
a family of three-step sixth-order family of methods requiring two F, two F′ and one matrix inversion per
iteration. This family of methods are compared to be more efficient than existing methods. These have
been found to be effective in solving particularly large-scale nonlinear systems.

The outline of the manuscript is as follows. In Section 2, a new class of new sixth-order scheme and
its convergence analysis is presented. In Section 3, we present numerous illustrative examples to validate
the theoretical results. Finally, Section 4 contains some conclusions.

2. Design of the King’s Family for Multidimensional Case

In this section, we proposed a new three-point extension of King’s method [18–21] having sixth-order
convergence. For this purpose, we consider the well-known fourth-order King’s method, which is
given by

yk = xk − f (xk)

f ′(xk)
,

xk+1 = yk − 1 + αuk
1 + (α− 2)uk

f (yk)

f ′(xk)
,

(2)

where α is a real parameter and uk = f (yk)
f (xk)

. For α = 0, one can obtain the well-known
Ostrowski’s method [22–24].

Let us now modify the method (2) for SNEs by rewriting the scheme as follows,

uk =
f (yk)− f (xk) + f (xk)

f (xk)

=
f (yk)− f (xk)

f (xk)
+ 1

= 1− f (yk)− f (xk)

(yk − xk) f ′(xk)

= 1− f ′(xk)
−1[yk, xk; f ],

where [yk, xk; f ] = f (yk)− f (xk)
yk−xk

. Finally, we can rewrite the above scheme (2) for SNEs with one additional
sub-step in the following manner,

y(k) = x(k) − F′(x(k))−1F(x(k)),

z(k) = y(k) − (I + (α− 2)U(k))−1(I + αU(k))F′(x(k))−1F(y(k)),

x(k+1) = z(k) −
(
[y(k), z(k); F]

)−1
F(z(k)),

(3)

where [·, ·; F] is a finite difference of order one and α is a free disposable parameter with U(k) = I −
[x(k), y(k); F]F′(x(k))−1. In addition, F[Yn, Xn] is a finite difference of order one.
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Now, it is necessary to analyze the convergence conditions of this modified King’s class of methods.
In Theorem 1, we demonstrate the convergence order of the above scheme (3). We have used the following
procedures [25] to prove the convergence results.

Let F : Ω ⊆ Rk −→ Rk be sufficiently differentiable in Ω. Now, we define the qth derivative of
F at ω ∈ Ω, q ≥ 1. It can be viewed as a q-linear function F(q)(ω) : Rk × · · · × Rk −→ Rk, such that
F(q)(ω)(v1, . . . , vq) ∈ Rk. It is easy to observe that

1. F(q)(ω)(v1, . . . , vq−1, ·) ∈ L(Rk).
2. F(q)(ω)(vσ(1), . . . , vσ(q)) = F(q)(ω)(v1, . . . , vq), for all permutation σ of {1, 2, . . . , q}.

Using the above relations, we can introduce the following notation,

(a) F(q)(ω)(v1, . . . , vq) = F(q)(ω)v1 . . . vq.
(b) F(q)(ω)vq−1F(p)vp = F(q)(ω)F(p)(ω)vq+p−1.

Now, applying Taylor’s expansion for ξ∗ + h ∈ Rk in the neighborhood of a solution ξ∗ of the given
linear system, one can get

F(ξ∗ + h) = F′(ξ∗)
[

h +
p−1

∑
q=2

Cqhq

]
+ O(hp), (4)

where Cq = (1/q!)[F′(ξ∗)]−1F(q)(ξ∗), q ≥ 2. We note that Cqhq ∈ Rk as F(q)(ξ∗) ∈ L(Rk × · · · ×Rk,Rk),
and [F′(x̄)]−1 ∈ L(Rk).

Similarly, we can express F′ as

F′(ξ∗ + h) = F′(ξ∗)
[

I +
p−1

∑
q=2

qCqhq−1

]
+ O(hp−1), (5)

where I denotes the identity matrix. Therefore, qCqhq−1 ∈ L(Rk). From Equation (5), we obtain

[F′(ξ∗ + h)]−1 =
[

I + X2h + X3h2 + X4h4 + · · ·
]
[F′(ξ∗)]−1 + O(hp), (6)

where
X2 = −2C2,
X3 = 4C2

2 − 3C3,
X4 = −8C3

2 + 6C2C3 + 6C3C2 − 4C4,
...

Let us denote e(k) = x(k) − ξ∗ as the error at the kth iteration. Then, the error equation is given as follows,

e(k+1) = M(e(k))p + O((e(k))p+1),

where, M is a p-linear function M ∈ L(Rk × · · · ×Rk,Rk). Here, p is the order of convergence and (e(k))p

is a column vector (

p︷ ︸︸ ︷
e(k), e(k), · · · , e(k))T .

Theorem 1. Let F : Ω ⊆ Rk → Rk be a sufficiently differentiable function defined on a convex set Ω containing
the zero ξ∗. Let us assume that F′(x) is continuous and non-vanishing at ξ∗. If the initial guess x(0) is close
enough to ξ∗, the iterative scheme (3) attains sixth-order convergence for each α.
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Proof. Let e(k) = x(k) − ξ∗ be the error at the kth-iteration. Now, expanding F(x(k)) and F′(x(k)) using
Taylor’s expansion in a neighborhood of ξ∗, we get

F(x(k)) = F′(ξ∗)
[
e(k) + C2(e(k))2 + C3(e(k))3 + C4(e(k))4 + C5(e(k))5 + C6(e(k))6

]
+ O((e(k))7) (7)

and

F′(x(k)) = F′(ξ∗)
[

I + 2C2e(k) + 3C3(e(k))2 + 4C4(e(k))3 + 5C5(e(k))4 + 6C6(e(k))5
]
+ O((e(k))6), (8)

where I is the identity matrix of size n× n and Ck =
1
k! F′(ξ∗)−1F(k)(ξ∗), k ≥ 2.

With the help of above expression (8), we have

F′(x(k))−1 =
[

I − 2C2e(k) + Δ0(e(k))2 + Δ1(e(k))3 + Δ2(e(k))4 + Δ3(e(k))5 + Δ4(e(k))6 + O((e(k))7
]

F′(ξ∗)−1 (9)

where Δi = Δi(C2, C3, . . . , C6), for example, Δ0 = 4C2
2 − 3C3, Δ1 = −(8C3

2 − 6C2C3 − 6C3C2 +

4C4), Δ2 = 8C2C4 + 9C2
3 + 8C4C2 − 12C2

2C3 − 12C2C3C2 − 12C3C2
2 + 16C4

2 − 5C5, Δ3 = 10C2C5 +

12C3C4 + 12C4C3 + 10C5C2− 16C2
2C4− 18C2C2

3 − 16C2C4C2− 18C3C2C3− 18C2
3C2− 16C4C2

2 + 24C3
2C3 +

24C2
2C3C2 + 24C2C3C2

2 + 24C3C3
2 − 32C5

2 − 6C6, etc.
From expressions (7) and (9), we yield

F′(x(k))−1F(x(k)) =e(k) + Θ0(e(k))2 + Θ1(e(k))3 + Θ2(e(k))4 + Θ3(e(k))5 + Θ4(e(k))6 + O((e(k))7). (10)

where Θj = Θj(C2, C3, . . . , C6), for example, Θ0 = −C2, Θ1 = 2C2
2 − 2C3, Θ2 = −(4C3

2 − 4C2C3 −
3C3C2 + 3C4), Θ3 = 6C2C4 + 6C2

3 + 4C4C2 − 8C2
2C3 − 6C2C3C2 − 6C3C2

2 + 8C4
2 − 4C5, Θ4 = 8C2C5 +

9C3C4 + 8C4C3 + 5C5C2 − 12C2
2C4 − 12C2C2

3 − 8C2C4C2 − 12C3C2C3 − 9C2
3C2 − 8C4C2

2 + 16C3
2C3 +

12C2
2C3C2 + 12C2C3C2

2 + 12C3C3
2 − 16C5

2 − 5C6, etc.
By inserting the expression (10) in the first substep of (3), we obtain

y(k) − ξ∗ = −Θ0(e(k))2 −Θ1(e(k))3 −Θ2(e(k))4 −Θ3(e(k))5 −Θ4(e(k))6 + O((e(k))7). (11)

which further produces

F(y(k)) =F′(ξ∗)
[
−Θ0(e(k))2 −Θ1(e(k))3 + (C2Θ2

0 −Θ2)(e(k))4 + (2C2Θ0Θ1 −Θ3)(e(k))5+

−
(

C3Θ3
0 − C2(Θ2

1 + 2Θ0Θ2) + Θ4

)
(e(k))6 + O((e(k))7)

] (12)

and

U(k) = I − F′(x(k))−1[x(k), y(k); F] = C2e(k) + (C2Θ0 − 2C2
2 + 2C3)(e(k))2 +

(
− 2C2

2Θ0 + C2(Θ1 − 7C3) + C3Θ0 + 4C3
2

+ 3C4

)
(e(k))3 +

(
4C3

2Θ0 + C2
2(20C3 − 2Θ1) + C2(−5C3Θ0 − 10C4 + Θ2) + C4Θ0

+ C3(Θ1 −Θ2
0)− 8C4

2 − 6C2
3 + 4C5

)
(e(k))4 +

[
− 8C4

2Θ0 + C3
2(4Θ1 − 52C3)

+ 2C2
2(8C3Θ0 + 14C4 −Θ2) + C2

(
C3(2Θ2

0 − 5Θ1)− 6C4Θ0 + 33C2
3 − 13C5 + Θ3

)
− C4Θ2

0 − 3C2
3Θ0 + C5Θ0 + C4Θ1 + C3(−17C4 − 2Θ0Θ1 + Θ2) + 16C5

2 + 5C6

]
(e(k))5

+ O((e(k))6).

(13)

By using expressions (9), (12), and (13), we obtain(
I + (α− 2)U(k)

)−1(
I + αU(k)

)
F′(x(k))−1F(y(k)) = −Θ0(e(k))2 −Θ1(e(k))3 + (2αC2

2Θ0 − C2Θ2
0

− C3Θ0 −Θ2)(e(k))4 + O
(
(e(k))5) (14)
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By adopting expressions (11)–(14) in the scheme (3), we have

z(k) − ξ∗ = τ1(e(k))4 + τ2(e(k))5 + τ3(e(k))6 + O
(
(e(k))7). (15)

where τj = τj(Θ0, Θ1, . . . , Θ4, C2, C3, . . . , C6, α), j = 1, 2, 3, for example, τ1 = Θ0(−2αC2
2 + C2Θ0 + C3).

Now, expanding the F(z(k)) in a neighborhood of ξ∗, we have

F(z(k)) = F′(ξ∗)
[
τ1(e(k))4 + τ2(e(k))5 + τ3(e(k))6 + O((e(k))7)

]
, (16)

which further produces with the help of expression (12)[
z(k), y(k); F

]−1F(z(k)) = τ1(e(k))4 + τ2(e(k))5 + (C2Θ0τ1 + τ3) (e(k))6 + O((e(k))7). (17)

By using equation (17) in the final substep of (3), we have

e(j+1) =
(

τ1(e(k))4 + τ2(e(k))5 + τ3(e(k))6
)
−
(

τ1(e(k))4 + τ2(e(k))5 + (C2Θ0τ1 + τ3)(e(k))6
)
+ O((e(k))7)

= −(C2Θ0τ1)(e(k))6 + O((e(k))7)

= C3
2
(
(2α + 1)c2

2 − c3
)
(e(k))6 + O((e(k))7).

(18)

Therefore, the scheme (3) has sixth-order convergence.

3. Numerical Experiments

Here, we checked the efficiency and effectiveness of our scheme on real-life and standard academic
test problems. Therefore, we consider five number of the examples’ details, as seen in the examples (1)–(5).
Further, we also depicted the starting points and zeros of the considered nonlinear system in the
examples (1)–(5). Now, we employ our sixth-order scheme (3), called (PM), to verify the computational
performance of them with existing methods considered in the previous section.

Now, we compare (3) with a sixth-order family proposed by Abbasbandy et al. [26] and
Hueso et al. [27]. We choose their best expressions (8) and (14–15)

(
for t1 = − 9

4 and s2 = 9
8
)
, respectively

denoted by (AM6) and (HM6). Moreover, a comparison of a newly proposed scheme has been done
with the sixth-order family of iterative method proposed by Sharma and Arora [28] and Wang and Li [29],
out these works we choose two methods, namely, (13) and (6), respectively, called (SM6) and (WM6).
Finally, we compare (3) with sixth-order methods suggested by Mona et al. [15] and Lotfi et al. [16], we
consider methods (3.1)

(
for λ = 1, β = 2, p = 1 and q = 3

2
)

and (5), respectively, called by (MM6) and
(LM6). All the iterative expressions are mentioned below.

Method AM6:

y(k) = x(k) − 2
3

F′(x(k))−1F(x(k)),

z(k) = x(k) −
[

I +
21
8

F′(x(k))−1F′(y(k))− 9
2
(

F′(x(k))−1F′(y(k))
)2

+
15
8
(

F′(x(k))−1F′(y(k))
)3
]

F′(x(k))−1F(x(k)),

x(k+1) = z(k) −
[
3I − 5

2
F′(x(k))−1F′(y(k)) + 1

2
(

F′(x(k))−1F′(y(k))
)2
]

F′(x(k))−1F(z(k)).

(19)

Method HM6:
y(k) = x(k) − F′(x(k))−1F(x(k)),

H(x(k), y(k)) = F′(x(k))−1F(y(k)),

Gs(x(k), y(k)) = s1 I + s2H(y(k), x(k)) + s3H(x(k), y(k)) + s4H(y(k), x(k))2,

z(k) = x(k) − Gs(x(k), y(k))F′(x(k))−1F(x(k)),

x(k+1) = z(k).

(20)
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where s1 s2, s3, and s4 are real numbers.

Method SM6:

y(k) = x(k) − 2
3

F′(x(k))−1F(x(k)),

z(k) = φ
(4)
4 (xk, yk),

x(k+1) = z(k) −
[
sI + tF′(x(k))−1F′(y(k))

]
F′(x(k))−1F(z(k)),

(21)

where s and t are real parameters.

Method WM6:
y(k) = x(k) − F′(x(k))−1F(x(k)),

z(k) = y(k) −
[
2I − F′(x(k))−1F′(y(k))

]
F′(x(k))−1F(y(k)),

x(k+1) = z(k) −
[
2I − F′(x(k))−1F′(y(k))

]
F′(x(k))−1F(z(k)).

(22)

Method MM6:

y(k) = x(k) − 2
3

F′(x(k))−1F(x(k)),

z(k) = x(k) −
[

I +
1

2β

(
I − λ

β
G(x(k))

)
H(G(x(k)))u(x(k))

]
,

x(k+1) = z(k) −
[

pI + qG(x(k))
]

F′(x(k))−1F(z(k)),

(23)

where λ, β, p, and q are real numbers.

Method LM6:

y(k) = x(k) − F′(x(k))−1F(x(k)),

z(k) = x(k) − 2(F′(x(k) + F′(y(k))−1F(x(k)),

x(k+1) = z(k) −
[7

2
I − 4F′(x(k))−1F′(y(k) + 3

2
F′(x(k))−1F′(y(k))2

]
F′(x(k))−1F(z(k)).

(24)

The abscissas tj and the weights wj are known and depicted in the Table 1 when t = 8(for the
more details please have a look at Example 1). In Tables 2–6, we mention the number of iteration
indexes (n), residual errors (‖F(x(k))‖), error ‖x(k+1) − x(k)‖ and computational convergence order

ρ∗ ≈ log
[
‖x(k+1)−x(k)‖/‖x(k)−x(k−1)‖

]
log
[
‖x(k)−x(k−1)‖/‖x(k−1)−x(k−2)‖

] . In addition, the value of η is the last calculated value of ‖x(k+1)−x(k)‖
‖x(k)−x(k−1)‖6 .

Finally, the comparison on the basis of number of iterations taken by different methods on numerical
Examples 1–5 is also depicted in Table 7.

All the computations have been done with multiple precision arithmetic with 1000 digits of mantissa,
which minimize round-off errors in Mathematica-9. Here, a (±b) is a × 10(±b) in all the tables. The
stopping criteria for the programming is defined as follows,

(i) ‖F(x(k))‖ < 10−100 and (ii) ‖x(k+1) − x(k)‖ < 10−100.

Example 1. Let us consider the Hammerstein integral equation (see [1], pp. 19–20) given as follows,

y(s) = 1 +
1
5

∫ 1

0
F(s, t)y(t)3dt,

where y ∈ C[0, 1], s, t ∈ [0, 1], and the kernel F is

F(s, t) =

{
(1− s)t, t ≤ s,

s(1− t), s ≤ t.
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Now, using the Gauss Legendre formula, we transform the above equation into a finite-dimensional problem, which

is given as
∫ 1

0 f (t)dt �
8

∑
j=1

wj f (tj), where tj and wj denote abscissas and weights, respectively. Now t′sj and w′sj

are determined for t = 8 by Gauss Legendre quadrature formula. Let us call y(ti) by yi(i = 1, 2, . . . , 8), then we
get the following nonlinear system,

5yi − 5−
8

∑
j=1

aijy3
j = 0, where i = 1, 2, . . . , 8,

where aij =

{
wjtj(1− ti), j ≤ i,

wjti(1− tj), i < j.

Here, the abscissas tj and the weights wj are known and depicted in the Table 1 when t = 8.
The convergence of the methods towards the root

ξ∗ = (1.00209 . . . , 1.00990 . . . , 1.01972 . . . , 1.02643 . . . , 1.02643 . . . , 1.01972 . . . , 1.00990 . . . , 1.00209 . . . )T ,

is tested in the Table 2 on the choice of the initial guess x(0) =
(

1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2

)T
. The numerical results

show that the proposed methods PM16 and PM26 have better residual errors in comparison with the existing ones.
In addition, smaller asymptotic error constants also belong to our methods PM16 and PM26.

Table 1. t′sj and w′sj of Gauss–Legendre formula for t = 8.

j tj wj

1 0.01985507175123188415821957 . . . 0.05061426814518812957626567 . . .
2 0.10166676129318663020422303 . . . 0.11119051722668723527217800 . . .
3 0.23723379504183550709113047 . . . 0.15685332293894364366898110 . . .
4 0.40828267875217509753026193 . . . 0.18134189168918099148257522 . . .
5 0.59171732124782490246973807 . . . 0.18134189168918099148257522 . . .
6 0.76276620495816449290886952 . . . 0.15685332293894364366898110 . . .
7 0.89833323870681336979577696 . . . 0.11119051722668723527217800 . . .
8 0.98014492824876811584178043 . . . 0.05061426814518812957626567 . . .

Table 2. Comparison of methods on Hammerstein integral equation in Example 1.

Methods k ‖F(x(k))‖ ‖x(k+1) − x(k)‖ ρ∗ ‖x(k+1)−x(k)‖
‖x(k)−x(k−1)‖6

AM6

1 1.1(−5) 2.4(−6)
2 5.4(−39) 1.2(−39) 6.596956919(−6)
3 8.0(−239) 1.7(−239) 5.9991 7.072478176(−6)

HM6

1 3.0(−5) 6.5(−6)
2 6.9(−31) 1.5(−31) 1.994799598
3 4.4(−159) 9.4(−160) 4.9991 9.220736175(+25)

SM6

1 9.4(−6) 2.0(−6)
2 1.5(−39) 3.2(−40) 4.964844066(−6)
3 2.7(−242) 5.7(−243) 5.9991 5.324312398(−6)
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Table 2. Cont.

Methods k ‖F(x(k))‖ ‖x(k+1) − x(k)‖ ρ∗ ‖x(k+1)−x(k)‖
‖x(k)−x(k−1)‖6

WM6

1 1.6(−6) 3.3(−7)
2 9.0(−45) 1.9(−45) 1.377597868(−6)
3 3.3(−274) 7.1(−275) 5.9996 1.431074607(−6)

MM6

1 3.9(−6) 8.2(−7)
2 5.8(−36) 1.2(−36) 3.943508142
3 4.6(−185) 9.9(−186) 4.9992 2.773373608(+30)

LM6

1 8.6(−6) 1.8(−6)
2 8.4(−37) 1.7(−37) 4.445532921(−3)
3 1.4(−189) 3.0(−190) 4.9224 1.232404905(+31)

PM16

1 1.7(−7) 1.5(−7)
2 1.9(−47) 4.1(−48) 3.291248720(−7)
3 7.6(−291) 1.6(−291) 5.9998 3.358306951(−7)

PM26

1 6.6(−7) 1.4(−7)
2 1.1(−47) 2.3(−48) 2.820724919(−7)
3 2.0(−292) 4.3(−293) 5.9998 2.880288646(−7)

Example 2. Let us consider the Van der Pol equation [30], which governs the flow of current in a vacuum tube,
defined as follows,

y′′ − μ(y2 − 1)y′ + y = 0, μ > 0. (25)

Here, boundary conditions are given by y(0) = 0, y(2) = 1. Further, we divide the given interval [0, 2] as follows,

x0 = 0 < x1 < x2 < x3 < · · · < xn, where xi = x0 + ih, h =
2
n

.

Moreover, we assume that
yi = y(xi), i = 0, 1, . . . , n.

Now, if we discretize the above problem (25) by using the finite-difference formula for the first and second derivatives,
which are given by

y′k =
yk+1 − yk−1

2h
, y′′k =

yk−1 − 2yk + yk+1

h2 , k = 1, 2, . . . , n− 1,

then, we obtain a SNEs of order (n− 1)× (n− 1).

2h2yk − hμ
(

y2
k − 1

)
(yk+1 − yk−1) + 2 (yk−1 + yk+1 − 2yk) = 0, k = 1, 2, . . . , n− 1.

Let us consider μ = 1
2 and initial approximation y(0)k = log

(
1
k2

)
, k = 1, 2, . . . , n − 1. In this example,

we solve 9× 9 SNEs by taking n = 10. The solution of this problem is

ξ∗ =
(− 0.4795 . . . ,−0.9050 . . . ,−1.287 . . . ,−1.641 . . . ,−1.990 . . . ,−2.366 . . . ,−2.845 . . . ,−3.673 . . . ,−6.867 . . . ,

)T .

The numerical results are displayed in Table 3. It is found that the newly proposed methods perform better in all
aspects, whereas the existing methods show larger residual errors.
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Table 3. Comparisons of methods on Van der Pol equation in Example 2.

Methods k ‖F(x(k))‖ ‖x(k+1) − x(k)‖ ρ∗ ‖x(k+1)−x(k)‖
‖x(k)−x(k−1)‖6

AM6

1 9.8(+16) 1.2(+6)
2 9.3(+15) 5.3(+5) 2.207185393(−31)
3 8.9(+14) 2.4(+5) 1.0000 1.115653208(−29)

HM6

1 2.0(+2) 3.4(+1)
2 2.6(+0) 1.4(+3) 8.575063031(−7)
3 6.9(+7) 8.5(+2) 0.13787 1.044481693(−16)

SM6

1 4.7(+10) 9.4(+3)
2 3.9(+9) 4.1(+3) 6.141757152(−21)
3 3.3(+8) 1.8(+3) 0.99993 3.757585542(−19)

WM6

1 3.8(+10) 8.7(+3)
2 3.3(+9) 3.9(+3) 8.901990983(−21)
3 2.9(+8) 1.7(+3) 0.99992 5.216543771(−19)

MM6

1 1.8(+9) 3.2(+3)
2 1.4(+8) 1.4(+3) 1.233926627(−18)
3 1.1(+7) 6.0(+2) 0.99947 8.435924608(−17)

LM6

1 7.8(+3) 5.1(+1)
2 6.0(+2) 1.9(+1) 1.090110495(−9)
3 3.9(+1) 5.0(0) 1.3904 9.718708834(−8)

PM16

1 2.6(0) 7.2(−1)
2 1.5(−4) 2.8(−5) 2.099986524(−4)
3 6.7(−27) 1.6(−27) 5.0546 3.049589936

PM26

1 2.6(−1) 1.2(−1)
2 8.3(−9) 1.5(−9) 4.804752944(−4)
3 2.8(−48) 7.4(−49) 4.9654 7.413843150(+4)

Example 3. The 2D Bratu problem [31,32] is defined as

uxx + utt + Ceu = 0, on

Ω : (x, t) ∈ 0 ≤ x ≤ 1, 0 ≤ t ≤ 1,

with boundary conditions u = 0 on Ω.

(26)

Using finite difference discretization, a given nonlinear PDE can be reduced to a SNEs. Let Θi,j = u(xi, tj) be the
numerical solution at the grid points of the mesh. Let M1 and M2 be the number of steps in x and t directions,
respectively, and h and k be the respective step sizes. To solve the given PDE, we apply the central difference formula
to uxx and utt in the following way,

uxx(xi, tj) =
Θi+1,j − 2Θi,j + Θi−1,j

h2 , C = 0.1, t ∈ [0, 1] (27)

By using expression (27) in (26) and after some simplification, we have

Θi,j+1 + Θi,j−1 −Θi,j + Θi+1,j + Θi−1,j + h2C exp
(

Θi,j

)
i = 1, 2, 3, . . . , M1, j = 1, 2, 3, . . . , M2 (28)

By choosing M1 = M2 = 11, C = 0.1, and h = 1
11 , we obtain a system of nonlinear equations of size 10× 10,

with the initial guess x0 = 0.1(sin(πh)sin(πk), sin(2πh)sin(2πk), . . . , sin(10πh)sin(10πk))T. Numerical
estimations are given in Table 4. Numerical results demonstrate that the new methods have much improved error
estimations and computational order of convergence in comparison to its competitors.
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Table 4. Comparisons of different methods on 2D Bratu problem in Example 3.

Methods k ‖F(x(k))‖ ‖x(k+1) − x(k)‖ ρ∗ ‖x(k+1)−x(k)‖
‖x(k)−x(k−1)‖6

AM6

1 4.4(−15) 2.4(−14)
2 6.9(−95) 3.5(−94) 1.428095547(−12)
3 7.9(−574) 3.9(−573) 5.9994 1.973434769(−12)

HM6

1 2.1(−13) 1.2(−12)
2 2.1(−71) 1.2(−70) 7.368055345(−11)
3 1.7(−361) 9.3(−361) 4.9997 3.495510769(+1)

SM6

1 4.4(−15) 2.4(−14)
2 7.1(−95) 3.6(−94) 1.433541371(−12)
3 9.2(−574) 4.5(−573) 5.9994 1.433541371(−12)

WM6

1 8.1(−2) 5.0(−1)
2 5.0(−19) 2.9(−18) 1.754949400(−16)
3 1.7(−122) 1.0(−121) 5.9999 1.666475363(−16)

MM6

1 7.5(−15) 4.1(−14)
2 1.2(−80) 6.4(−80) 1.375781477(+1)
3 1.2(−409) 6.3(−409) 4.9997 9.148606524(+66)

LM6

1 6.4(−16) 2.5(−15)
2 2.9(−87) 5.3(−87) 1.447342836(−13)
3 9.1(−445) 3.3(−444) 4.9853 2.808772449(+1)

PM16

1 5.7(−18) 7.0(−18)
2 4.9(−117) 5.9(−117) 5.229619528(−14)
3 1.9(−711) 2.3(−711) 5.9999 5.367043263(−14)

PM26

1 5.7(−18) 6.9(−18)
2 4.7(−117) 5.6(−117) 1.698178527(−6)
3 1.4(−711) 1.6(−711) 5.9999 1.854013522(−6)

Example 4. Consider another typical nonlinear problem, that is, Fisher’s equation [33] with homogeneous
Neumann’s BC’s, the diffusion coefficient H is

ut = Huxx + u(1− u) = 0,

u(x, 0) = 1.5 + 0.5cos(πx), 0 ≤ x ≤ 1,

ux(0, t) = 0, ∀ t ≥ 0,

ux(1, t) = 0, ∀ t ≥ 0.

(29)

Again using finite difference discretization, the equation (29) reduces to a SNEs. Consider Θi,j = u(xi, tj) be its
approximate solution at the grid points of the mesh. Let M1 and M2 be the number of steps in x and t directions,
and h and k be the respective step size. Applying central difference formula to uxx, backward difference for ut(xi, tj),
and forward difference for ux(xi, tj), respectively, in the following way,

uxx(xi, tj) =
Θi+1,j − 2Θi,j + Θi−1,j

h2 ,

ut(xi, tj) =
Θi,j −Θi,j−1

k
and

ux(xi, tj) =
Θi+1,j −Θi,j

h
,

(30)

where h = 1
M1

, k = 1
M2

, t ∈ [0, 1].
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By adopting expression (30) in (29), after some simplification, we get

Θ1,j −Θi,j−1

k
−Θi,j

(
1−Θi,j

)
− H

Θi+1,j − 2Θi,j + Θi−1,j

h2 , i = 1, 2, 3, . . . , M1, j = 1, 2, 3, . . . , M2 (31)

For the system of nonlinear equations, we considered M1 = M2 = 5, h = 1
5 , k = 1

5 and H = 1, which reduces to

nonlinear system of size 5× 5, with the initial guess x0 =
(
1 + i

25
)T , i = 1, 2, . . . , 25. All the numerical results

are shown in Table 5. Numerical results show that our methods have better computational efficiency than the
already existing schemes, in terms of residual errors and difference between consecutive approximations.

Table 5. Comparisons of different methods on Fisher’s equation in Example 4.

Methods k ‖F(x(k))‖ ‖x(k+1) − x(k)‖ ρ∗ ‖x(k+1)−x(k)‖
‖x(k)−x(k−1)‖6

AM6

1 6.9(−3) 1.5(−3)
2 4.2(−21) 6.5(−22) 7.021836209(−5)
3 4.5(−131) 7.0(−132) 5.9941 9.022505886(−5)

HM6

1 6.0(−3) 1.3(−3)
2 1.3(−18) 2.0(−19) 5.236602433(−2)
3 1.8(−97) 2.8(−98) 4.9940 4.016099735(+14)

SM6

1 4.8(−3) 1.0(−3)
2 2.9(−22) 4.5(−23) 4.391559871(−5)
3 3.0(−138) 4.7(−139) 5.9945 5.610610203(−5)

WM6

1 4.8(−3) 1.0(−3)
2 2.9(−22) 4.5(−23) 4.391559871(−5)
3 3.0(−138) 4.7(−139) 5.9945 5.610610203(−5)

MM6

1 2.7(−3) 5.5(−4)
2 9.5(−21) 1.5(−21) 5.507288873(−2)
3 1.6(−108) 2.5(−109) 4.9964 2.350947999(+16)

LM6

1 4.4(−3) 1.0(−3)
2 4.6(−20) 7.4(−21) 5.815894917(−3)
3 2.2(−107) 1.2(−108) 5.1204 7.024389352(+12)

PM16

1 5.7(−18) 7.0(−18)
2 4.9(−117) 5.9(−117) 5.229619528(−14)
3 1.9(−711) 2.3(−711) 5.9999 5.367043263(−14)

PM26

1 5.7(−18) 6.9(−18)
2 4.7(−117) 5.6(−117) 5.194329469(−14)
3 1.4(−711) 1.6(−711) 5.9999 5.331099808(−14)

Example 5. Let us consider the following nonlinear system,

F(X) =

{
x2

j xj+1 − 1 = 0, 1 ≤ j ≤ n− 1,

x2
nx1 − 1 = 0.

(32)

To obtain a large SNEs 200 × 200, we choose n = 200 and the initial approximation x(0) =

(1.25, 1.25, 1.25, · · · , 1.25(200times))T for this problem. The required solution of this problem is
ξ∗ = (1, 1, 1, · · · , 1(200times))T. The obtained results can be observed in Table 6. It can be easily seen
that the proposed scheme performs well; in this case, in terms of error estimates as compared to the available methods
of the same nature.
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Table 6. Comparisons of different methods on Example 5.

Methods k ‖F(x(k))‖ ‖x(k+1) − x(k)‖ ρ∗ ‖x(k+1)−x(k)‖
‖x(k)−x(k−1)‖6

AM6

1 5.5(−2) 1.8(−2)
2 8.2(−15) 2.7(−15) 7.599151595(−5)
3 9.5(−92) 3.2(−92) 5.9993 7.695242316(−5)

HM6

1 3.0(−2) 1.0(−2)
2 2.0(−14) 6.7(−15) 6.625126396(−3)
3 2.7(−75) 8.9(−76) 4.9997 9.962407479(+9)

SM6

1 3.9(−2) 1.3(−2)
2 6.4(−16) 2.1(−16) 4.636076578(−5)
3 1.3(−98) 4.3(−99) 6.0000 4.674761498(−5)

WM
1 4.2(−2) 1.4(−2)
2 1.2(−15) 3.9(−16) 5.254428593(−5)
3 5.7(−97) 1.9(−97) 5.9995 5.303300859(−5)

MM6

1 2.7(−2) 8.9(−3)
2 5.3(−15) 1.8(−15) 3.463613165(−3)
3 1.6(−78) 5.4(−79) 4.9993 1.781568229(+10)

LM6

1 3.4(−2) 1.1(−2)
2 2.3(−16) 7.7(−17) 3.721130070(−5)
3 2.3(−101) 7.6(−102) 5.9996 3.746683848(−5)

PM16

1 5.5(−3) 1.8(−3)
2 3.4(−22) 1.1(−22) 2.944381059(−6)
3 1.8(−137) 5.9(−138) 6.0000 2.946278255(−6)

PM26

1 2.8(−3) 9.5(−4)
2 2.5(−24) 8.5(−25) 1.178221976(−6)
3 1.3(−150) 4.4(−151) 6.0000 1.178511302(−6)

Table 7. Number of iterations taken by different methods on Examples 1–5.

Methods Ex.1 Ex.2 Ex.3 Ex.4 Ex. 5 Total Average

AM6 3 20 3 3 4 33 6.6
HM6 3 D 3 3 4 13 * 3.25 *
SM6 3 13 3 3 4 26 5.2
WM6 3 13 2 3 4 25 5
MM6 3 12 3 3 4 25 5
LM6 3 7 3 3 3 19 3.8

PM16 3 4 2 2 3 14 2.8
PM26 3 4 2 2 3 14 2.8

* means, the total number of iteration calculated on all examples except Example 2, because HM6 is
divergent in Example 2.

4. Conclusions

In this work, we have developed new family of sixth-order iterative methods for solving SNEs,
numerically. To check their effectiveness, the proposed scheme is applied on some large-scale systems
arising from various academic problems. Further, the numerical results show that the proposed methods
perform better than already existing schemes in the scientific literature.
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Abstract: One of the most important generalized inverses is the Drazin inverse, which is defined
for square matrices having an index. The objective of this work is to investigate and present a
computational tool in the form of an iterative method for computing this task. This scheme reaches
the seventh rate of convergence as long as a suitable initial matrix is chosen and by employing only
five matrix products per cycle. After some analytical discussions, several tests are provided to show
the efficiency of the presented formulation.
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1. Introduction

Drazin, in the pioneering work in [1], proposed and generalized a different type of outer inverse
in associative rings and semigroups that does not possess the reflexivity feature but commutes with
the element. The significance of this type of inverse and its calculation was then discussed wholly
in [2]. Accordingly, several authors attempted to propose procedures for the calculation of generalized
inverses. See, e.g., [3–5].

It is recalled that the smallest non-negative integer k such that [6]

rank(Ak) = rank(Ak+1), (1)

is named as the matrix A’s index and is shown by ind(A). Furthermore, assume that A is an N × N
matrix with complex entries. The Drazin inverse of A, shown by AD, is the unique matrix X reading
the following identities [7]:

1. AkXA = Ak,
2. XAX = X,
3. AX = XA.

Throughout the paper, with A∗, R(A), N (A), and rank(A), we show the conjugate transpose,
the range, the null space, and the rank of A ∈ CN×N , respectively [8]. It is remarked that if ind(A) = 1,
X is named as the g-inverse or group inverse of A. In addition, if A is nonsingular, then it is easily
seen that

indA = 0, and AD = A−1. (2)

Mathematics 2019, 7, 622; doi:10.3390/math7070622 www.mdpi.com/journal/mathematics375
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For the square system Ax = b, the general solution can be represented using the concept of the
Drazin inverse as follows [7]:

x = ADb + (I − AAD)z, (3)

wherein z ∈ R(Ak−1) +N (A).
Methods in the category of iteration schemes for computing generalized inverses like the Drazin

inverse are quite sensitive to the choice of the initial approximation. In fact, the convergence of the
Schulz-type method can only be observed if the initial value is chosen correctly [9,10]. This selection
can be done under special care on some criteria, as already discussed, and given in the literature for
different types of outer inverses. For some in-depth discussions about this, one may refer to [11].

Authors in [12] showed that iterative Schulz-type schemes can be used for finding the Drazin
inverse of square matrices both possessing real or complex spectra. Actually, the authors investigated
the initial matrix below:

X0 = αAl , l ≥ ind(A) = k, (4)

wherein the parameter α should be selected such that the criterion ‖I − AX0‖ < 1 is read. Employing
the starting value (4) yields an iterative scheme for computing the famous Drazin inverse with
second-order convergence.

It is in fact necessary to apply an appropriate initial matrix when calculating the Drazin inverse.
One way is as follows [12,13]:

X0 =
2

Tr(Ak+1)
Ak, (5)

wherein Tr(·) stands for the trace of an arbitrary square matrix. Another fruitful initial matrix which
could lead in converging sequence of matrices for computing the generalized Drazin inverse can be
written as

X0 =
1

2‖A‖k+1
2

Ak. (6)

The Schulz method of the quadratic convergence rate for doing this task can be defined by [14]

Xn+1 = Xn(2I − AXn), n = 0, 1, 2, · · · , (7)

where I is the identity matrix and requires only two matrix products to achieve this rate per cycle.
Authors in [15] re-studied Chebyshev’s method for calculating A†

MN using a suitable initial value
as follows:

Xn+1 = Xn(3I − AXn(3I − AXn)), n = 0, 1, 2, · · · , (8)

with a third-order of convergence having three matrix products per cycle. Another scheme, having a
cubic rate of convergence and a greater number of matrix products, was given by the same authors
as follows:

Xn+1 = Xn

[
I +

1
2
(I − AXn)(I + (2I − AXn)

2)

]
, n = 0, 1, 2, · · · . (9)

A general procedure for having p-order methods with a p number of matrix–matrix products was
given in [16] (Chapter 5). For instance, the authors presented the following fourth-order scheme:

Xn+1 = Xn(I + Bn(I + Bn(I + Bn))), n = 0, 1, 2, · · · , (10)

in which Bn = I − AXn.
The main goal and motivation for investigating novel or useful matrix schemes for computing the

Drazin inverse is not only because of the applications of such solvers in different kinds of mathematical
problems [17,18] but also to improve the computational efficiency index. In fact, the hyperpower
structure as given for a sample case in (10) requires a p number of matrix–matrix products to achieve a
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p rate of convergence. This leads to more and more inefficient methods from this class of methods,
particularly when the order increases.

As such, motivated by extending efficient methods of higher orders for calculating generalized
inverses, here we focus on a seventh-order scheme and discuss how we can reach this higher rate
by employing only five matrix by matrix products. This will reveal a higher efficiency index for the
discussed scheme in computing the Drazin inverse. For more studies and investigations in this field
and related issues of generalized matrix inverses, interested readers are guided to [19–22].

The organization of this paper is as follows. In Section 1, we quickly review the definition,
literature, and the need for development of higher order schemes. Section 2 is devoted to extending
and proposing an efficient iterative expression for the Drazin inverse. It is derived that the scheme
requires only five matrix–matrix products to achieve this rate.

Theoretical discussions with some concrete proofs are provided in Section 3, while Section 4 is
oriented on the application of this scheme for computing the Drazin inverses. Results will reveal the
effectiveness of this scheme for calculating the Drazin inverse. Lastly, some concluding comments are
given in Section 5.

2. Derivation of an Efficient Formulation

Here, the aim is to present a competitive formulation for a member of the hyperpower family
of iterations, so as to not only gain a high rate of convergence but also improve the computational
efficiency index. In fact, we must factorize the formulation so as to gain the same high convergence
rate but a lower number of matrix products.

Toward this objective, let us take into account the following seventh-order method from the family
of hyperpower iteration schemes [23]:

Xn+1 = Xn(I + Bn + B2
n + B3

n + B4
n + B5

n + B6
n). (11)

It is necessary to emphasize that we are looking for a seventh-order scheme and not a
higher-order one, since we wish to hit several targets at the same time. First, the derived scheme for
the Drazin inverse must be efficient, viz., it must improve the computational efficiency index of the
existing solvers, as will be shown at the end of this section. Second, very high-order schemes might
occasionally become hard for coding purposes, and this limits their application, so we aim to have
this order be high but not so high. Besides, higher-order schemes mean that fewer stopping criteria
(the computation of matrix norms) should be calculated per cycle, which is useful in terms of the
elapsed time.

Now, to improve the performance of (11), we factorize (11) in what follows:

Xn+1 = Xn

(
I + Bn(I + Bn)(I − Bn + B2

n)(I + Bn + B2
n)
)

. (12)

However, the formulation (12) needs six matrix–matrix multiplications, which is still not that
useful for improving the computational index of efficiency theoretically. As such, doing more
factorization would yield the following scheme:

Xn+1 = Xn

(
I + (Bn + B2

n)(I − Bn + B2
n)(I + Bn + B2

n)
)

. (13)

The scheme (13) requires five matrix products per cycle to achieve the seventh order of
convergence. Noting that one reason for the need to propose and have an efficient higher scheme in
the category of matrix Schulz-type methods is also in the fact that Schulz-type schemes of lower orders
are quite slow at the initial stage of iterates, and this could yield a greater computational burden for
finding the Drazin inverse [24]. In fact, it sometimes takes several iterates for the scheme to arrive at
its convergence phase, and due to imposing some stopping termination based on matrix norms, this
might add some more elapsed time for the application of lower-order schemes.

377



Mathematics 2019, 7, 622

It is recalled that the definition of index of efficiency is given by [25]:

EI = ρ
1
κ , (14)

wherein ρ and κ are the convergence rate and the total cost per cycle, respectively.
Hence, the efficiency indexes of different methods are reported by

EI(7) = 2
1
2 � 1.41421, EI(8) = 3

1
3 � 1.44225, (15)

EI(9) = 4
1
4 � 1.41421, EI(12) = 7

1
6 � 1.38309, EI(13) = 7

1
5 � 1.47577. (16)

This shows that we have achieved our motivation by improving the efficiency index for calculating
the Drazin inverse via a competitive formulation.

3. Seventh Rate of Convergence

Let us now recall some of the well-known lemmas we need in the rest of this section.

Proposition 1 ([26]). Assume that M ∈ Cn×n and ε > 0 are given. There is at least one matrix norm ‖ · ‖
such that

ρ(M) ≤ ‖M‖ ≤ ρ(M) + ε, (17)

wherein ρ(M) shows the collection of all of M’s eigenvalues (in the maximum of absolute value sense).

Proposition 2 ([26]). If PL,M shows the projector on a space L on space M, then
(i) PL,MQ = Q if and only ifR(Q) ⊆ L,
(ii) QPL,M = Q if and only if N (Q) ⊇ M.

The proof of the main theorem concerning the convergence as well as its rate of (13) for calculating
the generalized Drazin inverse is now addressed as follows.

Theorem 1. Consider that A ∈ CN×N is a square singular matrix. In addition, let the initial value X0 be
selected via (4) or (5). Thence, the matrices {Xn}n=∞

n=0 generated via (13) satisfy the following error estimate for
calculating the Drazin inverse:

‖AD − Xn‖ ≤ ‖AD‖‖I − AX0‖7n
. (18)

In addition, the convergence order is seven.

Proof. To prove that the sequence is converging, we first take into consideration that

Rn+1 = I − AXn+1

= I − A(Xn

(
I + (Bn + B2

n)(I − Bn + B2
n)(I + Bn + B2

n)
)
)

= I − A(Xn

(
I + Bn(I + Bn)(I − Bn + B2

n)(I + Bn + B2
n)
)
)

= I − A(Xn

(
I + Bn + B2

n + B3
n + B4

n + B5
n + B6

n

)
)

= (I − AXn)
7

= R7
n,

(19)

wherein Rn = I − AXn. Employing a matrix norm on (19), we obtain that

‖Rn+1‖ ≤ ‖Rn‖7. (20)
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Since X0 is selected as in (4) or (5), we have

R(X0) ⊆ R(Ak). (21)

This could now be stated as
R(Xn) ⊆ R(Xn−1). (22)

Thus, we can conclude that
R(Xn) ⊆ R(Ak), n ≥ 0. (23)

In a similar way, by defining the scheme by the left-multiplying of Xn, we can state that

N (Xn) ⊇ N (Ak), n ≥ 0. (24)

Now, an application of the definition of the Drazin inverse yields

AAD = AD A = PR(Ak),N (Ak). (25)

Proposition 2, along with (23), (24), and (25) could lead to

Xn AAD = Xn = AD AXn, n ≥ 0. (26)

To complete the proof, we proceed in what follows. The error matrix δn = AD − Xn satisfies

δn = AD − Xn

= AD − AD AXn

= AD (I − AXn)

= ADRn.

(27)

Using (20), we obtain the following inequality

‖δn‖ = ‖AD‖‖Rn‖ ≤ ‖AD‖‖R0‖7n
, (28)

which is an affirmation of (18). Employing (28) and Proposition 2, one gets that

Aδn+1 = AAD − AXn+1

= AAD − I + I − AXn+1

= AAD − I + Rn+1.

(29)

Note that the idempotent matrix AAD is the projector on R(Ak) along N (Ak), where R(Ak)

denotes the range of Ak, and N (Ak) is the null space of Ak. Considering (19) and applying several
simplifications, one obtains

Aδn+1 = AAD − I + R7
n. (30)

Now, by taking into account the following feature,

(I − AAD)t = (I − AAD), t ≥ 1, (31)

we can get that
(I − AAD)Aδn = (I − AAD)A(AD − Xn)

= Xn − AADVn

= 0.

(32)
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We obtain, for each t ≥ 1, that (here we use (32) in simplifications)

(Rn)
t + AAD − I = (I − AVn)

t + AAD − I

= (I − AAD + AAD − AVn)
t + AAD − I

=
(
(I − AAD) + Aδn

)t
+ AAD − I

= I − AAD + (Aδn)
t + AAD − I

= (Aδn)
t.

(33)

From (33) and (30), we have
Aδn+1 = (Aδn)

7. (34)

Taking matrix norms from both sides yields

‖Aδn+1‖ ≤ ‖Aδn‖7. (35)

Considering (35) and the second criterion of (1), we obtain that

‖δn+1‖ = ‖Xn+1 − AD‖
= ‖AD AVn+1 − AD AAD‖
= ‖AD(AVn+1 − AAD)‖
≤ ‖AD‖‖Aδn+1‖
≤ ‖AD‖‖δn‖7.

(36)

The relations in (36) yield the point that Xn → AD as n → +∞ with the seventh order of
convergence. The proof is complete.

4. Computational Tests

The purpose of this section is to investigate the efficiency of our competitive formulation for
computing the Drazin inverse, both theoretically and numerically. For such a task, we employ the
challenging schemes (7), (8), and (13).

Here, we have simulated the tests in Mathematica 11.0, [27,28] and the time shown is in seconds.
Noting that the compared methods are programmed in the same environment using the hardware
CPU Intel Core i5 2430–M, 16 GB RAM in Windows 7 Ultimate with an SSD hard disk.

Test Problem 1. The aim of this test is to testify the computation of the Drazin inverse for the following
input [12]:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0.4 0 0 0 0 0 0 0 0 0 0
−2 0.4 0 0 0 0 0 0 0 0 0 0
−1 −1 1 −1 0 0 0 0 −1 0 0 0
−1 −1 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 −1 −1 0 0 −1 0
0 0 0 0 1 1 −1 −1 0 0 0 0
0 0 0 −1 −2 0.4 0 0 0 0 0 0
0 0 0 0 2 0.4 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 1 −1 −1 −1
0 0 0 0 0 0 0 0 −1 1 −1 −1
0 0 0 0 0 0 0 0 0 0 0.4 −2
0 0 0 0 0 0 0 0 0 0 0.4 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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at which k = ind(A) = 3. Here, the Drazin inverse is expressed by

AD =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.25 −0.25 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
1.25 1.25 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

−1.66406 −0.992187 0.25 −0.25 0. 0. 0. 0. −0.0625 −0.0625 0. 0.15625
−1.19531 −0.679687 −0.25 0.25 0. 0. 0. 0. −0.0625 0.1875 0.6875 1.34375
−2.76367 −1.04492 −1.875 −1.25 −1.25 1.25 1.25 1.25 1.48438 2.57813 3.32031 6.64063
−2.76367 −1.04492 −1.875 −1.25 −1.25 1.25 1.25 1.25 1.48438 2.57813 4.57031 8.51563
14.1094 6.30078 6.625 3.375 5. −3. −5. −5. −4.1875 −8.5 −10.5078 −22.4609
−19.3242 −8.50781 −9.75 −5.25 −7.5 4.5 7.5 7.5 6.375 12.5625 15.9766 33.7891
−0.625 −0.3125 0. 0. 0. 0. 0. 0. 0.25 −0.25 −0.875 −1.625
−1.25 −0.9375 0. 0. 0. 0. 0. 0. −0.25 0.25 −0.875 −1.625

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.25 1.25
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. −0.25 0.25

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The results are obtained by applying the stop termination

||Xn+1 − Xn||1 ≤ 10−6, (37)

and now by employing the definition in Section 1, we have for (13),

‖Ak+1Xn+1 − Ak‖∞ � 3.69638× 10−12,

‖Xn+1 AXn+1 − Xn+1‖∞ � 8.43992× 10−10,

‖AXn+1 − Xn+1 A‖∞ � 3.75205× 10−10.

(38)

It is also necessary to mention that the domain of validity for the proposed formulation (13)
is not only limited to the Drazin inverse, and if a suitable initial approximation is used, under
some assumptions we can construct a converging sequence of matrix iterates for other types of
generalized inverses.

Test Problem 2. In this test, we compare the results of various schemes for computing the regular inverse using
the initial matrix

X0 =
1

‖A‖F
A∗, (39)

the stopping condition (37), and the following complex matrices constructed in Mathematica:

N = 5000; no = 25;

ParallelTable[

A[j] = SparseArray[

{Band[{-100, 1100}] -> RandomReal[20], Band[{1, 1}] -> 2.,

Band[{1000, -50}, {N - 20, N - 25}] -> {2.8, RandomReal[] + I},

Band[{600, 150}, {N - 100, N - 400}] -> {-RandomReal[3], 3. + 3 I}

},

{N, N}, 0.],

{j, no}

];

The plot of the large sparse matrices in Test Problem 2 is plotted in Figure 1, showing the sparsity
pattern of these matrices, while the pattern of sparsity for the inverse matrix is provided in Figure 2.
Figure 3 shows the clear superiority of the proposed formulation in computing the inverse of large
sparse matrices.

Here, we give a simple Mathematica implementation of (13) in solving Test Problem 2:
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For[j = 1, j <= number, j++,

{

X = A[j]/(Norm[A[j], "Frobenius"]^2);

k = 1;

X1 = 20 X;

Time[j] = Part[

While[k <= 75 && N[Norm[X - X1, 1]] >= 10^(-6),

X1 = SparseArray[X];

XX = Id - A[j].X1;

X2 = XX.XX;

X =

Chop@

SparseArray[

X1.(Id + (XX + X2).(Id - XX + X2).(Id + XX + X2))];

k++]; // AbsoluteTiming,

1];

}];

To apply our scheme in modern applications of numerical linear algebra getting involved with
sparse large matrices, one may use some commands such as SparseArray[] for tackling matrices in
sparse forms and subsequently reduce the computational effort and time for preserving the sparsity
pattern and finding an approximate inverse. Such applications may occur in various types of problems
like the ones in [29,30].

Figure 1. The sparsity pattern of matrices in Test Problem 2.

Figure 2. The sparsity pattern of the inverse matrix X = A−1
25 in Test Problem 2.

382



Mathematics 2019, 7, 622

Figure 3. The CPU time required for different matrices in Test Problem 2.

5. Conclusions

Following the motivation of proposing and extending efficient iteration schemes for computing
generalized inverses, and particularly for Drazin inverses, in this work we have extended and discussed
theoretically how we could achieve a seventh rate in a hyperpower structure for an iterative method.
The scheme is a matrix product method and employs only five products to reach this rate. Clearly, the
efficiency index will hit the bound 71/5 � 1.47577.

Several computational tests for calculating the Drazin inverses of several randomly generated
matrices were provided to show the superiority and stability of the scheme in doing this task. Other
computational problems of different sizes for different matrices were also done and showed similar
behavior and the superiority of (13) for the Drazin inverse.
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1. Introduction

1.1. Background

Constructing and discussing different features of iterative schemes for the calculation of outer
inverses is an active topic of current research in Applied Mathematics (for more details, refer to [1–3]).
Many papers have been published in the field of outer inverses over the past few decades, each having
their own domain of validity and usefulness. In fact, in 1920, Moore was a pioneer of this field and
published seminal works about the outer inverse [4,5]. However, several deep works were published
during the 1950s (as reviewed and observed in [4]). It is also noted that pseudo-inverse operator was
first introduced by Fredholm in [6].

The method of partitioning (due to Greville) was a pioneering work in computing generalized
inverses, which was re-introduced and re-investigated in [4,7]. This scheme requires a lot of operations
and is subject to cancelation and rounding errors. Among the generalized inverses, the weighted
Moore–Penrose (WMP) inverse is important, as it can be simplified to a pseudo-inverse, as well as
a regular inverse. Several applications of computing the WMP inverse can be observed, with some
discussion, in the recent literature [8,9]; including applications to the solution of matrix equations.
See [10–13] for further discussions and applications.

Furthermore, for large matrices, or as long as the weight matrices in the process of computing the
WMP inverse are ill-conditioned, symbolic computation of the current algorithms may not properly
work due to several reasons, such as time consumption, requiring higher memory space, or instability.
On the other hand, several numerical methods for the weighted Moore–Penrose (WMP) inverse are
not stabie or possess slow convergence rates. Hence, it is necessary to investigate and extend novel
and useful iterative matrix methods for such an objective; see, also, the discussions in [14,15].

Mathematics 2019, 7, 731; doi:10.3390/math7080731 www.mdpi.com/journal/mathematics385
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1.2. Definition

Let us consider that M and N are two square Hermitian positive definite (HPD) matrices of
sizes m and n (m ≤ n) and A ∈ Cm×n. Then, there is a unique matrix X satisfying the following
identities [16]:

1. AXA = A,
2. XAX = X,
3. (MAX)∗ = MAX,
4. (NXA)∗ = NXA.

Then, X ∈ Cn×m is called the WMP inverse of A, and is shown by A†
MN . Noting that, as long as

M = Im×m and N = In×n, then X is the Moore–Penrose (MP) inverse, or simply the pseudo-inverse of
A, and we show it by A† [17]. Furthermore, when the matrix A is non-singular, then the pseudo-inverse
will be simplified to the regular inverse.

The weighted singular value decomposition (WSVD), first introduced in [18], is normally applied
to define this generalized inverse. Consider that the rank of A is r. Then, we have U ∈ Cm×m and
V ∈ Cn×n, satisfying the following relations:

U∗MU = Im×m, (1)

and
V∗N−1V = In×n, (2)

such that

A = U

(
D 0
0 0

)
V∗. (3)

Thus, A†
MN is furnished as follows:

A†
MN = N−1V

(
D−1 0

0 0

)
U∗M, (4)

where we have a diagonal matrix D = diag(σ1, σ2, . . . , σr), for σ1 ≥ σ2 ≥ . . . ≥ σr > 0, while σ2
i is the

non-zero eigenvalue of N−1 A∗MA. In addition,

‖A‖MN = σ1, ‖A†
MN‖NM =

1
σr

. (5)

In this work, A# = N−1 A∗M is used as the weighted matrix of the conjugate transpose of A.
See [19] for more details.

1.3. Literature

Schulz-type methods for the calculation of the WMP inverse are sensitive to the choice of the
initial value; that is, the initial choice of matrix must be close enough to the generalized inverse so as
to guarantee the scheme to converge [20]. More precisely, convergence can only be observed if the
starting matrix is chosen carefully. However, this starting value can be chosen simply for the case of
the WMP inverse. The pioneering work in [21] gave several suggestions, along with deep discussions,
about how to make such a choice quickly.

Let us, now, briefly provide some of the pioneering and most important matrix iterative methods
for computing the WMP inverse.
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The second–order Schulz scheme for finding the WMP inverse, requiring only two matrix products
per computing cycle, is given by [22]:

Xk+1 = Xk(2I − AXk), k = 0, 1, 2, · · · . (6)

Throughout the work, I stands for the identity matrix, unless clearly stated otherwise.
An improvement of (6) with third-order convergence, known as Chebyshev’s method, was

discussed in [23] for computing A†
MN as follows:

Xk+1 = Xk(3I − AXk(3I − AXk)), k = 0, 1, 2, · · · . (7)

The authors in [23] proposed another third-order iterative formulation, having one more matrix
multiplication, as follows:

Xk+1 = Xk

[
I +

1
2
(I − AXk)(I + (2I − AXk)

2)

]
, k = 0, 1, 2, · · · . (8)

It is necessary to recall that a general class of iteration schemes for computing the WMP
inverse and some other kinds of other generalized inverses was discussed and investigated in [24]
(Chapter 5) to have p-th order using a total of p matrix products. An example could be the following
fourth-order iteration:

Xk+1 = Xk(I + Bk(I + Bk(I + Bk))), k = 0, 1, 2, · · · , (9)

where Bk = I − AXk. As another instance, a tenth-order matrix method could be furnished as
follows [25]:

Xk+1 = Xk(I + Bk(I + Bk(I + Bk(I + Bk(I + Bk(I
+Bk(I + Bk(I + Bk(I + Bk))))))))), k = 0, 1, 2, · · · .

(10)

1.4. Motivation and Organization

The main motivation behind proposing and extending new iterative methods for the WMP
inverse is to apply them in practical large scale problems [26], as well as to improve the computational
efficiency, which is directly linked to the concept of numerical analysis for designing new iterative
expressions which are economically useful, in being able to reduce computational complexity and
time requirements.

Hence, with this motivation at hand, to increase the computational efficiency index as well as to
contribute in this field, the main focus of this work is to investigate a tenth-order method requiring
only six matrix multiplications per cycle. We prove that this can provide an improvement of the
computational efficiency index in calculating the WMP inverse.

The paper is organized as follows. Section 1 discusses the preliminaries and literature of this topic
very briefly, to prepare the reader for the analytical discussions of Section 2, in which we describe an
effective iteration formulation for the WMP inverse. It is investigated that the method needs only six
matrix multiplications to reach its tenth order of convergence.

Concrete proofs of convergence are furnished in Section 3. Section 4 discusses the application of
our formulation to the WMP inverses of many randomly generated matrices of various dimensions.
Numerical evidence demonstrates the usefulness of this method for computing the WMP inverse, in
terms of the elapsed computation time. Finally, several concluding remarks and comments are given
in Section 5.
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2. A High Order Scheme for the WMP Inverse

For the use of iterative methods, such as the ones described in Section 1, it is required to employ
a starting value when computing the WMP inverse. As in [27], one general procedure to find this
starting matrix is of the following form:

X0 = λA#, (11)

where A# = N−1 A∗M is the matrix of weighted conjugate transpose (WCT) for the input matrix A and

λ =
1
σ2

1
. (12)

Recall that, in (12), σ1 is the the largest eigenvalue of N−1 A∗MA.

2.1. Derivation

Another reason for proposing a higher order method is that methods based on improvements of
the Schulz iteration scheme are slow in the initial phase of iteration. This means that the convergence
order cannot be observed at the beginning, it can be seen only after performing several iterates. On the
other hand, by incorporating a stop condition using matrix norms, we can increase the elapsed time of
executing the written programs for finding the WMP inverse.

Accordingly, to contribute and extend a high order matrix iteration scheme in this context, we first
take into account a tenth-order scheme having ten matrix multiplications per cycle, as follows:

Xk+1 = Xk(I + Bk + B2
k + · · ·+ B9

k). (13)

Now, to develop the performance of (13), we factorize (13) to reduce the number of products. So,
we can write

Xk+1 = Xk (I + Bk) [(I − Bk + B2
k − B3

k + B4
k)(I + Bk + B2

k + B3
k + B4

k)]. (14)

This formulation for the matrix iteration requires seven matrix products. However, it is possible
to reduce this number of products by considering a more tight formulation for (14). Hence, we write

Xk+1 = Xk (I + Bk) Mk, (15)

where
Mk = [(I + χB2

k + B4
k)(I + κB2

k + B4
k)]. (16)

To find the unknown weighting coefficients in (15) and, more specifically, in (16), we need to solve
a symbolic problem. As such, a Mathematica code [28] was employed to do such a task, as follows:

ClearAll["Global‘*"];

fact1 = (1 + a B^2 + B^4);

fact2 = (1 + b B^2 + B^4);

sol = fact1*fact2 + (c B^2) // Expand

S = Table[

s[i] = Coefficient[sol, B^i], {i, 2, 6, 2}

] // Simplify

Solve[

s[2] == 1 && s[4] == 1 && s[6] == 1, {a, b, c}

] // Simplify

{a, b, c} = {a, b, c} /. %[[1]] // Simplify

Chop@sol // Simplify
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This was given only to ease understanding of the procedure of obtaining the coefficient. Now,
we obtain:

χ =
1
2

(
1−

√
5
)

, κ =
1
2

(
1 +

√
5
)

. (17)

This means that (15) requires only six matrix products per cycle to hit a convergence speed of ten.

2.2. Several Lemmas

Before providing the main results concerning the convergence analysis of the proposed scheme,
we furnish the following lemmas, inspired by [29], which reveal how the iterates generated by (15)
have some specific important relations and, then, show a relation between (4) and (15).

Lemma 1. For {Xk}k=∞
k=0 produced by (15) using the starting matrix (11), for any k ≥ 0, it holds that

(MAXk)
∗ = MAXk,

(NXk A)∗ = NXk A,
Xk AA†

MN = Xk,
A†

MN AXk = Xk.

(18)

Proof. The proof can be done by employing mathematical induction. When k = 0 and X0 is the
suitable initial matrix, the first two relations in (18) are straightforward. Hence, we discuss the last two
relations by applying the following identities:

(AA†
MN)

# = AA†
MN , (19)

and
(A†

MN A)# = A†
MN A. (20)

Accordingly, we have:
X0 AA†

MN = λA# AA†
MN

= λA#(AA†
MN)

#

= λA#(A†
MN)

# A#

= λ(AA†
MN A)#

= λA#

= X0,

(21)

and also
A†

MN AX0 = λA†
MN AA#

= λ(A†
MN A)# A#

= λ(A#(A†
MN)

# A#)

= λ(A(A†
MN A)#

= λA#

= X0.

(22)

Subsequently, now the relation is valid for k > 0, then we discuss that it will still be true for k + 1.
Taking our matrix iteration (15) into consideration, we have:

(MAXk+1)
∗ = (MA(Xk (I + Bk) [(I + χB2

k + B4
k)(I + κB2

k + B4
k)]))

∗

= [MAXk
(

I + Bk + B2
k + B3

k + B4
k + B5

k + B6
k + B7

k + B8
k + B9

k
)
]∗

= MA[Xk
(

I + Bk + B2
k + B3

k + B4
k + B5

k + B6
k + B7

k + B8
k + B9

k
)
]

= MAXk+1,

using that
(M(AXk))

∗ = MAXk, (23)
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M is a Hermitian positive definite matrix (M∗ = M), and similar facts, such as:

(M(AXk)
2)∗ = (M(AXk)(AXk))

∗

= (AXk)
∗(M(AXk))

∗

= (AXk)
∗(M(AXk))

= (AXk)
∗M∗(AXk)

= (M(AXk))
∗(AXk)

= M(AXk)(AXk)

= M(AXk)
2.

(24)

Hence, the first relation in (18) is true for k + 1, and the 2nd relation could be investigated similarly.
For the other relation in (18), by employing the assumption that

Xk AA†
MN = Xk, (25)

and (15), we have:

Xk+1 AA†
MN = (Xk (I + Bk) [(I + χB2

k + B4
k)(I + κB2

k + B4
k)])AA†

MN
= (Xk + XkBk + XkB2

k + XkB3
k + XkB4

k + XkB5
k + XkB6

k
+XkB7

k + XkB8
k + XkB9

k)AA†
MN

= Xk AA†
MN + XkBk AA†

MN + XkB2
k AA†

MN + XkB3
k AA†

MN + XkB4
k AA†

MN
+XkB5

k AA†
MN + XkB6

k AA†
MN + XkB7

k AA†
MN + XkB8

k AA†
MN + XkB9

k AA†
MN

= (Xk + XkBk + XkB2
k + XkB3

k + XkB4
k + XkB5

k
+XkB6

k + XkB7
k + XkB8

k + XkB9
k)

= Xk+1.

Therefore, the third relation in (18) is valid for k + 1. The final relation could be investigated in a
similar way, and the result follows. The proof is, thus, complete.

Lemma 2. Employing the assumptions of Lemma 1 and (3), then for (15) we have:

(V−1N)Xk(M−1(U∗)−1) = diag(Tk, 0), (26)

where Tk is a diagonal matrix, V∗N−1V = In×n, U∗MU = Im×m, V ∈ Cn×n, U ∈ Cm×m, and A = UΣV∗.

Proof. Assume that T0 = λD and that σ2
i are the non-zero eigenvalues of the matrix N−1 A∗MA, while

D = diag(σ1, σ2, . . . , σr), σi > 0 for any i. Thus, we can write that:

Tk+1 := ϕ(Tk) = Tk (I + (I − DTk)) [(I + χ(I − DTk)
2 + (I − DTk)

4)

×(I + κ(I − DTk)
2 + (I − DTk)

4)].
(27)

Applying mathematical induction, one can write that

(V−1N)X0(M−1(U∗)−1) = λ(V−1N)A#(M−1(U∗)−1)

= λ(V−1N)N−1 A∗(MM−1(U∗)−1)

= λ(V−1N)N−1Vdiag(D, 0)U∗(MM−1(U∗)−1)

= diag(λD, 0).

(28)
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In addition, when (31) is satisfied, then using (15), one can get that:

(V−1N)Xk+1(M−1(U∗)−1) = (V−1N)Xk(M−1(U∗)−1)

× (2I − (V−1N)AXk(M−1(U∗)−1)
)

×[(I + χ(V−1N)(I − AXk)
2(M−1(U∗)−1)

+(V−1N)(I − AXk)
4(M−1(U∗)−1))

×(I + κ(V−1N)(I − AXk)
2(M−1(U∗)−1)

+(V−1N)(I − AXk)
4)(M−1(U∗)−1)].

(29)

Using the fact that A = U∗MUdiag(D, 0) = V∗NV, one attains

(V−1N)Xk+1(M−1(U∗)−1) = diag(ϕ(Tk), 0), (30)

which shows that (27) is a diagonal matrix. This completes the proof.

3. Error Analysis

The objective of this section is to provide a matrix analysis for the convergence of the iteration
scheme (15).

Theorem 1. Let us consider that A is an m× n matrix whose WSVD is provided by (4). Furthermore, assume
that the starting value is given by (11). Thus, the matrix sequence from (15) tends to A†

MN.

Proof. In light of (4), to prove our convergence for the WMP inverse, we now just need to prove that

lim
k→∞

(V−1N)Xk(M−1(U∗)−1) = diag(D−1, 0). (31)

It is obtained, using Lemmas 1 and 2, that

Tk = diag(τ(k)
1 , τ

(k)
2 , . . . , τ

(k)
r ), (32)

where
τ
(0)
i = λσi (33)

and
τ
(k+1)
i = τ

(k)
i

(
2I + σiτ

(k)
i

)
[(I

+χ(σiτ
(k)
i )2 + (σiτ

(k)
i )4)(I

+κ(σiτ
(k)
i )2 + (σiτ

(k)
i )4)].

(34)

The sequence produced by (34) is the result of employing (15) in calculating the zero σ−1
i of

the function
φ(τ) = σi − τ−1, (35)

using the starting condition τ
(0)
i .

We observe that convergence to σ−1
i can be achieved, as long as

0 < τ
(0)
i <

2
σi

, (36)

which results in a criterion on λ (the selection in formula (12) has now been shown). Hence,
{Tk} → Σ−1, and (31) is satisfied. It is now clear that {Xk}k=∞

k=0 → A†
MN when k → ∞. This concludes

the proof.

391



Mathematics 2019, 7, 731

4. Computational Tests

In this section, our aim is to study the efficiency of the proposed approach for calculating the
WMP inverse computationally and analytically. To do this, we considered several competitors from
the literature in our comparisons, such as those from (6), (7), (10), and (15), denoted by “SM2”, “CM3”,
“KMS10”, and “PM10”, respectively.

Note that all computations were done in Mathematica 11.0 [30] and the time is reported in seconds.
The hardware used was a CPU Intel Core i5 2430-M with 16 GB of RAM.

We know that the efficiency index is expressed by [31]:

EI = ρ
1
κ , (37)

where ρ and κ stand for the speed and the whole cost in each cycle, respectively.
As such, the efficiency index of different methods (6–10) and (15) are reported by: 2

1
2 � 1.414,

3
1
3 � 1.442, 3

1
4 � 1.316, 4

1
4 � 1.414, 10

1
10 � 1.258, and 10

1
6 � 1.467, respectively. Clearly, our

investigated iterative expression has better a index and can be more useful in finding the WMP inverse.

Example 1. [29] The purpose of this experiment was to examine the calculation of WMP inverses for 10 uniform
randomly provided m1× n1 = 200× 210 matrices, as follows:

SeedRandom[12]; no = 10; m1 = 200; n1 = 210;

ParallelTable[A[k] = RandomReal[{1}, {m1, n1}];, {k, no}];

where the ten various HPD matrices M and N were given by:

ParallelTable[MM[k] = RandomReal[{2}, {m1, m1}];, {k, no}];

ParallelTable[MM[k] = Transpose[MM[k]].MM[k];, {k, no}];

ParallelTable[NN[k] = RandomReal[{3}, {n1, n1}];, {k, no}];

ParallelTable[NN[k] = Transpose[NN[k]].NN[k];, {k, no}];

The results by applying the stop termination

||Xk+1 − Xk||2 ≤ 10−10, (38)

are reported in Tables 1 and 2, based on the number of iterations, elapsed CPU time (in seconds), and
X0 = 1

σ2
1

A#. As can be observed from the results, the best scheme in terms of number of iterations and

time was (15).

Table 1. Comparison based on the number of iterations and the required mean in Experiment 1.

Methods SM2 CM3 KMS10 PM10

A1 68 43 22 22
A2 69 44 22 22
A3 67 43 21 21
A4 71 46 23 23
A5 72 46 23 23
A6 72 46 23 23
A7 66 42 21 21
A8 78 50 25 25
A9 63 41 20 20
A10 69 44 22 22

Mean 69.5 44.5 22.2 22.2
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Table 2. Comparison based on the elapsed CPU time and its mean in Experiment 1.

Methods SM2 CM3 KMS10 PM10

A1 1.4954 1.04826 0.996155 0.755317
A2 1.4563 1.08006 0.984057 0.767785
A3 1.37301 1.03847 0.967427 0.720294
A4 1.53201 1.10927 1.0365 0.789994
A5 1.50908 1.10164 0.998853 0.794098
A6 1.51215 1.11421 1.03361 0.823177
A7 1.39481 1.00116 0.915244 0.743779
A8 1.62742 1.24438 1.12434 0.87007
A9 1.32916 0.999683 0.903072 0.709523
A10 1.49738 1.05736 0.985084 0.764156

Mean 1.47267 1.07945 0.994434 0.773819

Example 2. The iterative methods were compared for five randomly generated dense m1× n1 = 500× 500
matrices produced in Mathematica environment by the following piece of code:

m1 = 500; n1 = 500; no = 5; SeedRandom[12];

ParallelTable[A[k] = RandomReal[{0, 1}, {m1, n1}];, {k, no}];

ParallelTable[MM[k] = RandomReal[{0, 1}, {m1, m1}];, {k, no}];

ParallelTable[MM[k] = Transpose[MM[k]].MM[k];, {k, no}];

ParallelTable[NN[k] = RandomReal[{0, 1}, {n1, n1}];, {k, no}];

ParallelTable[NN[k] = Transpose[NN[k]].NN[k];, {k, no}];

Here, we applied the stopping condition

||Xk+1 − Xk||∞ ≤ 10−10, (39)

with a change in the initial approximation as X0 = 1.5
σ2

1
A#. Noting that the weights M and N were very

ill-conditioned, as we had produced them to be. We report the results in Tables 3 and 4, which reveal
that the novel approach was superior to the existing solvers.

Table 3. Comparison based on the number of iterations and the required mean in Experiment 2.

Methods SM2 CM3 KMS10 PM10

A1 98 61 30 30
A2 86 55 27 27
A3 83 53 26 26
A4 85 54 27 27
A5 81 52 26 26

Mean 86.6 55. 27.2 27.2

Table 4. Comparison based on the elapsed time and its mean in Experiment 2.

Methods SM2 CM3 KMS10 PM10

A1 7.89745 7.20885 12.1801 7.11963
A2 6.90346 6.6397 10.933 6.50042
A3 2.34013 2.23622 3.75341 2.20977
A4 2.23133 2.15679 3.78848 2.23819
A5 2.44316 2.26733 3.79153 2.2391

Mean 4.36311 4.10178 6.88929 4.06142

One other application of (15), aside from computing the WMP inverse, is in finding good
approximate inverse pre-conditioners for Krylov methods when tackling large sparse linear system of

393



Mathematics 2019, 7, 731

equations (see, e.g., [29]). In fact, to apply our scheme in such environments, we can employ several
commands, such as SparseArray[] for handling sparse matrices.

The main advantage of the proposed method is the improvement of convergence order obtained
by improving the computational efficiency index. Although this computational efficiency index
improvement was not observed to be drastic, in solving practical problems in higher dimensions it
leads to a clear reduction of computation time.

5. Ending Notes

We have investigated a tenth order iterative method for computing the WMP inverse requiring
only six matrix products. The WMP inverse has many applications, from the numerical solution of
non-linear equations (those involving singular linear systems [32]) to direct engineering applications.
Clearly, the efficiency index will reach 101/6 � 1.46, which is better than the Newton–Schulz and
Chebyshev methods for calculating the WMP inverse. The convergence order of the scheme was
supported and upheld analytically. The extension of this improved version of the hyperpower family
for computing other types generalized inverses, such as outer and inner inverses, under special criteria
and initial matrices provides a direction for future works in this active topic of research.
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Medical Colleges”, Deanship of Scientific Research, King Saud University.
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Abstract: Point orthogonal projection onto planar algebraic curve plays an important role in computer
graphics, computer aided design, computer aided geometric design and other fields. For the case
where the test point p is very far from the planar algebraic curve, we propose an improved curvature
circle algorithm to find the footpoint. Concretely, the first step is to repeatedly iterate algorithm
(the Newton’s steepest gradient descent method) until the iterated point could fall on the planar
algebraic curve. Then seek footpoint by using the algorithm (computing footpoint q) where the
core technology is the curvature circle method. And the next step is to orthogonally project the
footpoint q onto the planar algebraic curve by using the algorithm (the hybrid tangent vertical foot
algorithm). Repeatedly run the algorithm (computing footpoint q) and the algorithm (the hybrid
tangent vertical foot algorithm) until the distance between the current footpoint and the previous
footpoint is near 0. Furthermore, we propose Second Remedial Algorithm based on Comprehensive
Algorithm B. In particular, its robustness is greatly improved than that of Comprehensive Algorithm
B and it achieves our expected result. Numerical examples demonstrate that Second Remedial
Algorithm could converge accurately and efficiently no matter how far the test point is from the plane
algebraic curve and where the initial iteration point is.

Keywords: point projection; intersection; planar algebraic curve; Newton’s iterative method;
the improved curvature circle algorithm

1. Introduction

Reconstructing curve/surface is an important work in the field of computer aided geometric
design, especially in geometric modeling and processing where it is crucial to fit curve/surface in
high accuracy and reduce the error of representation curve/surface. The representation of the four
curve types are the explicit-type, implicit-type, parametric-type and subdivision-type. Because implicit
representation has unique advantage in the process of computer aided geometric design, it has wide
and far-reaching applications. From scattered and unorganized three-dimensional data, Bajaj et al. [1]
reconstructed surface and functions on surfaces. They [2,3] have constructed the algebraic B-spline
surfaces with least-squares fitting feature using tensor product technique. Schulz et al. [4] constructed
an enveloping algebraic surface using gradually approximate algebraization method. Kanatani et al. [5]
applied the algebraic curve to construct geometric ellipse fitting using unified strict maximum
likelihood estimation method. Mullen et al. [6] reconstructed robust and accurate algebraic surface
functions to sign the unsigned from scattered and unorganized three-dimensional data point sets.
Upreti et al. [7] used a technique to sign algebraic level sets on NURBS surface and algebraic Boolean
level sets on NURBS surfaces. Rouhani et al. [8] applied the algebraic function for polynomial
representation system. And L.G. Zagorchev et al. [9] applied the algebraic function for general
algebraic surface.

Mathematics 2019, 7, 912; doi:10.3390/math7100912 www.mdpi.com/journal/mathematics396
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Up to now, there are three main types of methods to solve the problem of point orthogonal
projection onto planar algebraic curve: local method, global method and compromise method between
these two methods. Here are three typical approaches.

According to the most basic geometric characteristic, orthogonal projection of test point p onto
the planar algebraic curve is actually the point x on the curve such that cross product of vectors −→xp and
∇ f (x) is 0.

∇ f (x)× (p− x) = 0. (1)

Equation (1) can be transformed into Newton’s iteration formula (3). Furthermore, Sullivan et al. [10]
adopted a hybrid method with Lagrange multiplier and Newton’s iterative method to compute the
closest point on the planar algebraic curve for each test point. Some orthogonal projection problems can
be transformed into solving system of nonlinear equations. The common characteristic of methods [10,11]
is that they converge locally and fast, while methods [10,11] are dependent on the initial points.

The first global method of solving system of nonlinear equations is the Homotopy
continuous method [12,13]. They constructed Homotopy continuous formula.

H(x, t) = (1− t)P(x) + tQ(x), t ∈ [0, 1] (2)

where t is a parameter of continuous transformation from 0 to 1, P(x) = 0 is the original system of
nonlinear equations to be solved, Q(x) is the objective solution of system of nonlinear equations
P(x) = 0. All isolated solutions of system of nonlinear equations P(x) = 0 can be computed
by the numerical continuous Homotopy methods [12,13]. So the Homotopy methods [12,13]
are global convergence. The Homotopy methods’ robustness is proved by [14] and their high
time-consuming property is verified in [15]. Of course, the Homotopy methods [12,13] are ideal
in theory, but it is difficult to find or construct the objective system of nonlinear equations Q(x) = 0 in
practical engineering applications.

The second global resultant methods convert system of nonlinear equations into the expression
of the resultants and then solve the resultants [16–19]. According to classical elimination theory,
system of two nonlinear equations with two variables can be turned into a resultant polynomial with
one variable, which is equivalent to the two simultaneous equations. The Sylvester’s resultant and
Cayley’s statement of Bézout’s method are the most famous resultant methods [16–19]. Because the
resultant methods [16–19] can solve all roots if the degree of the planar algebraic curve is less than 4,
they are good global methods. However, if the degree of the planar algebraic curve is more than
quintic, it becomes harder and harder with increasing degree to solve two-polynomial system with the
resultant methods.

The third global method is the adoption of the Bézier clipping technique [20–22]. In the first step,
solving the nonlinear system of Equation (1) is transformed into solving all roots of Bernstein-Bézier
representation with convex hull property. In the second step, if the parts of the domains do not
include the solution, we clip the parts of the domains by using convex hull box with Bernstein-Bézier
form such that the discarded parts of the region has no solution and all the solutions are in the
retained parts of the region. In the third step, the de Casteljau subdivision rule is used to segment
the remaining part of the curve obtained by elimination in step 2. Repeat steps 2 and 3 until we
can find all the solutions to Equation (1). The advantage of this method is that all solutions of
Equation (1) can be found. But this global clipping method has one difficulty: sometimes Equation (1)
is difficult or even impossible to convert into Bernstein-Bézier form. For example, specific Equation (1)
∇ f (x) × (p− x) = −36p1y17 + 36xy17 + 6p2x5 − 6x5y − 4p1x + 4p2y + 4x2 − 4y2 is impossible to
convert into Bernstein-Bézier form where f (x) = x6 + 4xy + 2y18 − 1 = 0.

The compromise method is between local and global methods. Consisting of the geometric
property with computing the nearest point is proposed by Hartmann [23,24] named as the first
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compromise method. Repeatedly run the Newton’s steepest gradient descent method (3) until the
iterative point falls on the planar algebraic curve, where the initial iterative point is unrestricted.

xn+1 = xn − ( f (xn)/ 〈∇ f (xn),∇ f (xn)〉)∇ f (xn). (3)

q = p− (〈p− yn,∇ f (yn)〉 / 〈∇ f (yn),∇ f (yn)〉)∇ f (yn). (4)

Running the iterative formula (4) one time, the method [23,24] can obtain the vertical foot point
q where the iterative point yn of the formula (4) is the final iterative point obtained by formula (3).
Continuously iterate the above two steps until the vertical foot point q is on the planar algebraic
curve f (x). Unluckily, progressive geometric tangent approximation iteration method with computing
vertical foot point q fails for some planar algebraic curves f (x).

The second compromise method is developed by Nicholas [25] who adopted the osculating
circle technique to realize orthogonal projection onto the planar algebraic curve. Calculate the
corresponding curvature at one point on the planar algebraic curve, and then the radius and center of
the curvature circle. The line segment formed by the test point and the center of the curvature circle
intersects the curvature circle at footpoint q. Approximately take the footpoint q as a point on the
planar algebraic curve. For the new point on the planar algebraic curve, repeat the above procedure
to get a new footpoint and corresponding new approximate point on the planar algebraic curve.
Repeat the above behavior until the footpoint q is the orthogonal projection point pΓ. Because the
planar algebraic curve does not have parametric control like parametric curve, taking the footpoint
as an approximate point on the planar algebraic curve will bring about large errors. So it makes the
operation of the whole algorithm unstable.

The third compromise method is the circle shrinking technique [26]. Repeatedly run the iterative
formula (3) such that the final iterative point pc falls on the planar algebraic curve as far as possible,
where the selection of initial iterative point is arbitrary. The next iterative point on the planar algebraic
curve is obtained through a series of combined operations of circle and the planar algebraic curve,
where the center and radius of the circle are test point p and ‖p− pc‖, respectively. A series of
combined operations include the two most important steps: Find a point p+ on the circle by means of
the mean value theorem; Seek the intersection of the line segment pp+ and the circle where we call
this intersection as the current intersection point pc. Repeatedly run this series of combined operations
until the distance between the current point pc and the previous point pc is 0. The circle shrinking
technique [26] takes a lot of time to seek point p+ each time. The algorithm has one difficulty: if the
degree of the planar algebraic curve is higher than 5, the intersection point pc of line segment pp+ and
the planar algebraic curve cannot be solved directly by formula or the iterative methods to find the
intersection pc will lead to instability.

The four compromise method is a circle double-and-bisect algorithm [27]. The circle doubling
algorithm begins with a very small circle where the center is the test point p and the radius is very
small r1. Keep the same center of the circle, take the radius r2 twice of r1 to draw a new circle. If there
is no intersection between the new circle and the curve, draw a new circle with radius twice of r2.
Continuously repeat the above process until new circle can intersect with the planar algebraic curve
and the former circle does not. Naturally, the former circle and the current circle are called interior
circle and exterior circle, respectively. Moreover, the bisecting technology implements the rest of
the process. Continue to draw a new circle with new radius r = (r1 + r2)/2. If the new current circle
whose radius is r intersects with the curve, substitute r for r2, else for r1. Repeatedly run the above
progress until the difference between the two radii is approximate zero(|r1 − r2| < ε). But this method
is very difficult to judge whether the exterior circle intersects the planar algebraic curve or not [27].

The fifth compromise method is the integrated hybrid second order algorithm [28]. It includes two
sub-algorithms: the hybrid second order algorithm and the initial iterative value estimation algorithm.
They mainly exploint three ideas: (1) the tangent orthogonal vertical foot method coupled with
calibration method; (2) Newton’s steepest gradient descent iterative method to impel the iteration point
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to be on the planar implicit curve; (3) Newton’s iterative method to speed up the whole iteration process.
Before running the hybrid second order algorithm, the initial iterative value estimation algorithm is
used to force the initial iterative value of the formula (17) of the hybrid second order algorithm and
the orthogonal projection point pΓ as close as possible. After a lot of tests, if the distance between
the test point p and the curve is not very far, the advantages of this algorithm are obvious in term of
robustness and efficiency. But when the test point is very far from the curve, the integrated hybrid
second order algorithm is invalid.

2. The Improved Curvature Circle Algorithm

In Reference [28], when the test point p is not particularly far away, the integrated hybrid
algorithm can have ideal result. But if the test point p is very far from the curve, the algorithm is
invalid where the test point p can not be robustly and effectively orthogonally projected onto the
planar algebraic curve. In order to overcome this difficulty, we propose an improved curvature circle
algorithm to ensure robustness and effective convergence with the test point p being arbitrarily far
away. No matter how far the test point p is from the planar algebraic curve, if the initial iteration point
x0 is very close to the orthogonal projection point of the test point p, the preconceived algorithm can
converge well. So we attempt to construct an algorithm to find an initial iterative point very close to
the orthogonal projection point pΓ of the test point p. The general idea is the following. Repeatedly
iterate the formula (3) by utilizing the Newton’s steepest gradient descent method until the iteration
point fall on the planar algebraic curve as far as possible, written as pc. This time, the distance between
the iteration point pc and the orthogonal projection point pΓ is much smaller than that between the
original iteration point x0 and the orthogonal projection point pΓ. The iteration point pc is closer to the
orthogonal projection point pΓ. In order to further promote the iteration point pc and the orthogonal
projection point pΓ to be closer, we introduce a key step with curvature circle algorithm. Draw a
curvature circle through point pc on the planar algebraic curve with the radius R determined by the
curvature k and the center m being a normal direction point of point pc on the planar algebraic curve.
Line segment mp determined by the test point p and the center m intersects curvature circle at point
q. We take the intersection point q as the next iteration point for the iteration point pc. Of course,
the distance between the intersection point q and the orthogonal projection point pΓ is much smaller
than the previous one. We use the intersection point q as the new test point, and run the hybrid
algorithm again where the initial iterative point at this moment can be set as q− (0.1, 0.1). Repeatedly
iterate until the iteration point falls on the planar algebraic curve f (x), written as pc. We repeat the
last two key steps in this procedure until the iteration point pc and the orthogonal projection point pΓ
overlap (See Figure 1).

p

pΓ

f x( )

Figure 1. Test point p orthogonal projection onto planar algebraic curve f (x).

Let’s elaborate on the general idea. Let p be a test point on the plane. There is an planar algebraic
curve Γ on the plane.

f (x, y) = 0. (5)
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The plane algebraic curve (5) can be simply written as

f (x) = 0, (6)

where x = (x, y). The goal of this paper is to find a point pΓ on the planar algebraic curve f (x) to
satisfy the basic relationship

‖p− pΓ‖ = min
x∈Γ

‖p− x‖ . (7)

The above problem can be written as⎧⎪⎨⎪⎩
f (pΓ) = 0,
∇ f (pΓ)× (p− pΓ) = 0,
‖p− pΓ‖ = min

x∈Γ
‖p− x‖ ,

(8)

where ∇ f =

[
∂ f
∂x

,
∂ f
∂y

]
is Hamiltonian operator and symbol × is cross product. We take s as the arc

length parameter of the planar algebraic curve f (x) and t =

[
dx
ds

,
dy
ds

]
is unit tangent vector along the

planar algebraic curve f (x). Take derivative of Equation (6) with respect to arc length parameter s and
combine with unit tangent vector condition ‖t‖ = 1, we obtain the following simultaneous system of
nonlinear equations, {

〈t,∇ f 〉 = 0,
‖t‖ = 1.

(9)

It is easy to get the solution of Equation (9).

t =

[
−∂ f

∂y
,

∂ f
∂x

]
/ ‖∇ f ‖ . (10)

Repeatedly iterate Equation (3) called as the Newton’s steepest gradient descent method until until
the iterative termination criteria | f (xn+1)| < ε, where the initial iterative point is x0 = p− (0.1, 0.1)
and refer to the iterative point xn+1 as pc. The first advantage of the Newton’s steepest gradient descent
method (3) is to make the iteration point fall on the planar algebraic curve f (x) as far as possible. Its
second advantage of the Newton’s steepest gradient descent method (3) is that the iteration point
fallen on the planar algebraic curve is relatively close to the orthogonal projection point pΓ, and it
brings great convenience to implementation of the subsequent sub-algorithms. The Newton’s steepest
gradient descent method (Algorithm 1) can be specifically described as (See Figure 2).

Algorithm 1: The Newton’s steepest gradient descent method.
Input: The test point p and the planar algebraic curve f (x) = 0
Output: The iterative point pc fallen on planar algebraic curve f (x) = 0
Description:

Step 1:

xn+1 = p− (0.1, 0.1);
Do {

xn = xn+1 ;
Update xn+1 according to the iterative Equation (3);

}while (| f (xn+1)| > ε&& ‖xn+1 − xn‖ > ε);
Step 2:

pc = xn+1 ;
Return pc;
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pΓ
f x( )

pc

(b)

Figure 2. The entire graphic demonstration of Algorithm 1. (a) The whole iterative process of the
Newton’s steepest gradient descent method; (b) The last step of the iterative point pc fallen on the
planar algebraic curve f (x) through the Newton’s steepest gradient descent method.

In this case, if the iterative point pc fallen on the planar algebraic curve f (x) is taken as the initial
iterative point of the hybrid algorithm, convergence or divergence may occur where divergence can not
improve the algorithm. As for divergence, it can not achieve the purpose of improving the algorithm.
From another point of view, the distance between iteration point pc and orthogonal projection point
pΓ of the test point p should be closer. It lays a good foundation for the implementation of subsequent
sub-algorithms. In order to get the iteration point and the orthogonal projection point pΓ closer,
we adopt curvature circle way to promote the iteration point and the orthogonal projection point pΓ
being closer. Because the iterative point is on the planar algebraic curve, the curvature k at the iterative
point pc fallen on the planar algebraic curve f (x) is defined as [29],

k = k(x, y) =

[− fy, fx
]

G
[− fy, fx

]T

‖∇ f ‖3 , (11)

where G =

(
fxx fxy

fyx fyy

)
. The radius R and the center m of the curvature circle © directed by the

curvature k are
R = |1/k| , (12)

and

m = pc +
−→n
k

, (13)

where the unit normal vector −→n is −→n =
∇ f
‖∇ f ‖ . The line segment mp determined by the test point p

and the center m of the curvature circle© intersects the curvature circle© at point q which is named
as footpoint q. From elementary geometric knowledge, the parametric equation of the line segment
mp can be expressed as

x = p + (m− p)w, (14)

where parametric 0 ≤ w ≤ 1 is undetermined. In addition, the equation of the curvature circle© can
be written as

‖m− x‖ = R. (15)
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By solving Equation (14) and Equation (15) together, the analytic expression of the intersection q

is obtained
q = p + (m− p)w, (16)

where the undetermined parameter w is accurately identified as w = 1− R
‖m− p‖ . The computation

of the footpoint q can be realized through Algorithm 2 (See Figure 3).

Algorithm 2: Computing footpoint q via the curvature circle© and the line segment mp.
Input: The test point p, the planar algebraic curve f (x) = 0 and the iterative point pc on the
planar algebraic curve f (x) = 0.

Output: The footpoint q.
Description:

Step 1:

Compute the curvature k of the iterative point pc fallen on the planar algebraic curve
f (x) = 0 by the curvature calculation formula (11).

Step 2:

Calculate the radius R and the center m of the curvature circle© through the formulas
(12) and (13), respectively.

Step 3:

Compute the footpoint q by the formula (16).
Return q;

Remark 1. The important formula for computing the curvature k is the formula (11). If the denominator of
the curvature k with the formula (11) is 0, the whole iteration process will degenerate. In order to solve this
special degeneration, we adopt a small perturbation of the curvature k of the formula (11) in programming
implementation of Algorithm 2. Namely, the denominator of the curvature k with the formula (11) could be
incremented by a small positive constant ε, the denominator of the curvature k is the denominator of the curvature
k +ε, and Algorithm 2 continues to calculate the center and the radius of the curvature circle corresponding
to the curvature after disturbance. Of course, in all subsequent formulas or iterative formulas, we also do
the same denominators perturbation treatment for the case of the zero denominators of the formulas or the
iterative formulas.

p

pΓ

f x( )

pc

m

q

Figure 3. Graphic demonstration for Algorithm 2.

Under this circumstance, if the footpoint point q at this moment is taken as the initial iteration
point of the hybrid algorithm, the convergence probability of the hybrid algorithm is much greater than
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that of using the point pc in Algorithm 1 as the initial iterative point of the hybrid algorithm. The reason
is that the distance ‖q− pΓ‖ is smaller than the distance ‖pc − pΓ‖. But divergence may happen in
this case. In order to further guarantee the robustness,we orthogonally project the footpoint q onto the
planar algebraic curve f (x) by using the hybrid algorithm, instead of directly using the footpoint q

as the initial iterative point. At this time we still call the orthogonal projection point of the footpoint
q as the point pc which is just fallen on the planar algebraic curve f (x). Because at this time the
footpoint q is close to the planar algebraic curve f (x), the algorithm can ensure complete convergence.
The distance between the iterative point pc and the orthogonal projection point pΓ of the test point p

becomes smaller again. The core iterative formula (17) of the hybrid algorithm is as follows (See [28]).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn = xn − ( f (xn)/ 〈∇ f (xn),∇ f (xn)〉)∇ f (xn),
zn = yn − (F(yn)/ 〈∇F(yn),∇F(yn)〉)∇F(yn),
Q = q− (〈(q− zn),∇ f (zn)〉 / 〈∇ f (zn),∇ f (z n)〉)∇ f (zn),
un = zn+sign(〈q− zn, t0〉)t0Δs,
vn = un − (F(un)/ 〈∇F(un),∇F(un)〉)∇F(un),

xn+1= vn + [−Δe, 0]
[
∇ f T , (Δvn)

T
]−1

(i f
∣∣[∇ f T , (Δvn)T]∣∣ = 0, xn+1 = vn),

(17)

where F0(x) = [(q− x)×∇ f (x)] = 0, F(x) =
F0(x)√

〈∇ f (x),∇ f (x)〉
, t0 =

[− fy, fx
]

‖Δ f ‖ , Δs = ‖Q− zn‖,

f (vn) = Δe, Δvn = −(F(un)/ 〈∇F(un),∇F(un)〉)∇F(un).
The iterative formula (17) mainly contains four techniques. The core technology is the tangent

foot vertical method with the third step and the fourth step of the iterative formula (17). Draw a
tangent line L from a point on a plane algebraic curve f (x). Through the footpoint q (The footpoint q

at this time is as the test point of iterative formula (17)), make a vertical line of the tangent L and get its
corresponding vertical foot point Q, which is equivalent to the third step in the formula (17). From the
fourth step of the iterative formula (17), we get the next iteration point of particular importance for the
initial iteration point. When the next iteration point is not very close to the planar algebraic curve f (x),
we adopt the second important technique with the iteration point correction method, equivalent to
the sixth step of the iterative formula (17). The iteration point is to move to the plane algebra curve
as close as possible such that the distance between the correction point of the iteration point and the
plane algebra curve f (x) is as close as possible. These two techniques are pure geometric techniques.
When the distance between the test point and the planar algebraic curve is very close, the effect of
convergence is obvious. Of course, when the distance between the test point and the planar algebraic
curve is relatively long, sometimes there will be non-convergence. In order to improve the robustness
of convergence, we add the Newton’s steepest gradient descent method before the first technique with
the third step and the fourth step of the iterative formula (17). Its first aim is to bring the initial iteration
point closer to the planar algebraic curve f (x). Its second aim is to promote the accuracy of subsequent
iterations. In order to accelerate the whole iteration process of the iterative formula (17), we once
again incorporate the fourth technology of Newton’s iterative method which is closely related to the
footpoint q. This technique not only accelerates the convergence rate of the whole iteration process but
also improves the iteration robustness. Furthermore, the accuracy of the whole iteration process can be
improved by the fourth technique. So we add Newton’s iterative method after the first step with the
second technique, and then add it again before the last step with the third technique. Based on the
above explanation and illustration, we get the following the hybrid tangent vertical foot algorithm
(Algorithm 3).

403



Mathematics 2019, 7, 912

Algorithm 3: The hybrid tangent vertical foot algorithm (See Figure 4).
Input: The footpoint q and the planar algebraic curve f (x) = 0.
Output: The point pc fallen on the planar algebraic curve f (x) = 0.
Description:

Step 1:

xn+1 = q− (0.1, 0.1);
Do {

xn = xn+1;
Execute xn+1 according to the iterative Equation (17);

}while (‖xn+1 − xn‖2 > ε&&| f (xn+1)| > ε)

Step 2:

pc = xn+1;
Return pc;

With the description of the above three algorithms, we propose a comprehensive and complete
algorithm (Algorithm 4) closely related to Algorithm 2 (See Figure 4).

Algorithm 4: The first improved curvature circle algorithm (Comprehensive Algorithm A).
Input: Test point p and the planar algebraic curve f (x).
Output: Orthogonal projection point pΓ of the test point p which orthogonally projects the test
point p onto a planar algebraic curve f (x).

Description:

Step 1: Starting from the neighbor point of the test point p, calculate the point pc fallen on the
f (x) via Algorithm 1.

Do{
Step 2: Compute the footpoint q via Algorithm 2.
Step 3: Project footpoint q onto the planar algebraic curve f (x) via Algorithm 3, then get

the new iterative point pc fallen on the f (x).
}while (distance (the current pc, the previous pc)> ε).
pΓ = pc;
Return pΓ;

Through a series of rigorous deductions, Comprehensive Algorithm A is the important algorithm
of our paper. No matter how far the test point p is from the planar algebraic curve f (x), test point
p could very robustly orthogonally projects onto the planar algebraic curve f (x). This has achieved
our desired result. After a lot of testing and observation, when the point on the curve is close to the
orthogonal projection point, we find that Comprehensive Algorithm A presents two characteristics:
(1) difference between the first distance and the second distance decreases slower and slower, where the
first distance and the second distance are the one between the previous iterative point pc on the planar
algebraic curve and the orthogonal projection point pΓ, and the one between the current iterative point
pc on the planar algebraic curve and the orthogonal projection point pΓ, respectively; (2) the rate goes
even slower at which the absolute value of the inner product gradually approaches zero. These two
characteristics are what we don’t want to obtain because they are contrary to the efficiency of computer
systems. On the premise of ensuring robustness, we try our best to improve and excavate a certain
degree of efficiency for the problem of point orthogonal projection onto planar algebraic curve.
We have an ingenious discovery. After each running of Algorithm 3, we run the Newton’s iterative
method associated with the original test point p, which can improve the convergence and ensure
the orthogonality. Namely, that is to add this step after the last step of the formula (17). Thus the
iterative formula (18) is obtained.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn = xn − ( f (xn)/ 〈∇ f (xn),∇ f (xn)〉)∇ f (xn),
zn = yn − (F(yn)/ 〈∇F(yn),∇F(yn)〉)∇F(yn),
Q = q− (〈(q− zn),∇ f (zn)〉 / 〈∇ f (zn),∇ f (z n)〉)∇ f (zn),
un = zn+sign(〈q− zn, t0〉)t0Δs,
vn = un − (F(un)/ 〈∇F(un),∇F(un)〉)∇F(un),

wn= vn + [−Δe, 0]
[
∇ f T , (Δvn)

T
]−1

(i f
∣∣[∇ f T , (Δvn)T]∣∣ = 0, then wn = vn),

xn+1 = wn − (G(wn)/ 〈∇G(wn),∇G(wn)〉)∇G(wn),

(18)

where F0(x) = [(q− x)×∇ f (x)] = 0, F(x) =
F0(x)√

〈∇ f (x),∇ f (x)〉
, t0 =

[− fy, fx
]

‖Δ f ‖ , Δs = ‖Q− zn‖,

f (vn) = Δe, Δvn = −(F(un)/ 〈∇F(un),∇F(un)〉)∇F(un), G0(x) = [(p− x)×∇ f (x)] = 0, G(x) =
G0(x)√

〈∇ f (x),∇ f (x)〉
. Because the iterative formula (17) of Algorithm 3 naturally becomes the iterative

formula (18), so Algorithm 3 naturally becomes the following Algorithm 5.

Algorithm 5: The hybrid tangent vertical foot algorithm.
Input: The footpoint q and the planar algebraic curve f (x) = 0.
Output: The point pc fallen on planar algebraic curve f (x) = 0.
Description:

Step 1:

xn+1 = q− (0.1, 0.1);
Do {

xn = xn+1;
Execute xn+1 according to the iterative Equation (18);

}while (‖xn+1 − xn‖2 > ε&&| f (xn+1)| > ε)

Step 2:

pc = xn+1;
Return pc;

Now let’s replace Algorithm 3 of Comprehensive Algorithms A with Algorithm 5. We get the
following Comprehensive Algorithm B (Algorithm 6).

Algorithm 6: The second improved curvature circle algorithm (Comprehensive Algorithm B).
Input: Test point p and the planar algebraic curve f (x).
Output: Orthogonal projection point pΓ of the test point p which orthogonally projects the test
point p onto the planar algebraic curve f (x).

Description:

Step 1: Starting from the neighbor point of the test point p, calculate the point pc fallen on the
f (x) via Algorithm 1.

Do{
Step 2: Compute the footpoint q via Algorithm 2.
Step 3: Project footpoint q onto the planar algebraic curve f (x) via Algorithm 5, then get

new point pc fallen on the f (x).
}while(distance(the current pc, the previous pc)> ε).
pΓ = pc;
Return pΓ;
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Figure 4. Graphic interpretation of the whole iteration process in Algorithm 3. (a) Newton’s steepest
gradient descent method in the first step; (b) The Newton’s iteration method related to the test point in
the second step; (c) The vertical foot point Q being the footpoint q orthogonal projection onto tangent
line induced by the iterative point zn on the planar algebraic curve in the third step; (d) Calculating line
incremental iterative value in the fourth step; (e) Once again running the Newton’s iteration method
related to the test point in the fifth step; (f) Correcting the previous iteration value to improve the
robustness of iteration in the last step.

Comprehensive Algorithm A and Comprehensive Algorithm B share common advantage:
the robustness of the two algorithms is substantially improved than that of the existing algorithms
because our algorithms are not subject to any restrictions on test points and initial iteration points.
By comparison, Comprehensive Algorithm B has four advantages over Comprehensive Algorithm A.
(1) The last step of the iterative formula (18) in Comprehensive Algorithm B can make corrections
continuously; (2) The last step of the iterative formula (18) in Comprehensive Algorithm B accelerates
the whole Comprehensive Algorithm B; (3) The last step of the iterative formula (18) in Comprehensive
Algorithm B accelerates the inner product of two vectors to 0, where the first vector refers to the
vector connecting the test point p and the iteration point zn+1 of Comprehensive Algorithm B and
the second vector

[
− ∂ f

∂y , ∂ f
∂x

]
|x=xn+1

is the tangent vector derived from the iteration point xn+1 on the

planar algebraic curve, respectively; (4) Comprehensive Algorithm B overcomes two shortcomings of
Comprehensive Algorithm A.

Of course, when the test point is not too far from the plane algebra curve, Comprehensive
Algorithm is also convergent for any initial iterative point. However, Comprehensive Algorithm A
takes more time than directly using the hybrid second order algorithm. In practical applications such
as computer graphics, it’s hard to know if the test point p is close to or far from a planar algebraic
curve. Because the main reason is that the degree and the type of the planar algebraic curve restrict the
relative distance between the test point p and the planar algebraic curve. In order to optimize time
efficiency, we take advantage of Comprehensive Algorithm A and the hybrid second order algorithm
such that no matter where the test point p is located, it can be orthogonally projected onto the planar
algebraic curve efficiently and robustly. First, the hybrid second order algorithm is iterated. If it does
not converge after 100 iterations, it will be changed to Comprehensive Algorithm A to iterate until the
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iteration point reaches the orthogonal projection point pΓ. Specific algorithm implementation is the
following Comprehensive Integrated Algorithm A (Algorithm 7).

Algorithm 7: The first comprehensive integrated improved curvature circle algorithm
(Comprehensive Integrated Algorithm A).

Input: Test point p and the planar algebraic curve f (x).
Output: Orthogonal projection point pΓ of the test point p.
Description:

Step 1:

xn+1 = p− (0.1, 0.1);
for(i = 0; i < N; i ++) {

xn = xn+1;

xn+1=Hybrid second order algorithm( f , p, xn);
if(‖xn+1 − xn‖ < ε) break ;

}
Step 2:

if(i ≥ N&&d ≥ 1e− 15) {
xn = xn+1 ;

xn+1=Comprehensive Algorithm A( f , p, xn);
}
pΓ = xn+1;
Return pΓ;

Number N is an empirical value of the iterative times where the value N is specified as 5 or 6.
Similar to Comprehensive Algorithm A, by replacing Algorithm 3 with Algorithm 5, the following

Comprehensive Integrated Algorithm B (Algorithm 8) can be obtained naturally.

Algorithm 8: The second comprehensive integrated improved curvature circle algorithm
(Comprehensive Integrated Algorithm B).

Input: The test point p and the planar algebraic curve f (x).
Output: Orthogonal projection point pΓ of the test point p.
Description:

Step 1:

xn+1 = p− (0.1, 0.1);
for(i = 0; i < N; i ++) {

xn = xn+1;

xn+1=Hybrid second order algorithm( f , p, xn);
if(‖xn+1 − xn‖ < ε) break ;

}
Step 2:

if(i ≥ N&&d ≥ 1e− 15) {
xn = xn+1 ;

xn+1=Comprehensive Algorithm B( f , p, xn);
}
pΓ = xn+1;
Return pΓ;

Number N is an empirical value of the iterative times where the value N is specified as 5 or 6.

407



Mathematics 2019, 7, 912

To sum up, we have presented four synthesis algorithms altogether. After analysis and judgment,
Comprehensive Algorithm B and Comprehensive Integrated Algorithm B are the most robust
and efficient. On the problem of orthogonal projection of point onto planar algebraic curve, if the
distance between the test point and the planar algebraic curve is close, we recommend the hybrid
second order algorithm, if the distance between the test point and the planar algebraic curve is not
close, we recommend Comprehensive Algorithm B. Of course, if the distance between the test point
and the planar algebraic curve cannot be known to be very far or close, Comprehensive Integrated
Algorithm B is the best choice.

Remark 2. In sum, Comprehensive Algorithm B has strong superiority over existing algorithms [10–28].
If the distance between the test point and the planar algebraic curve is very far away, the test point can
be ideally orthogonally projected onto the planar algebraic curve. But when there are singular points
∂ f
∂x
· ∂ f

∂x
+

∂ f
∂y
· ∂ f

∂y
= 0 in the planar algebraic curve, this case will seriously hinder the correct execution

and implementation of Comprehensive Algorithm B. In order to solve the problem in the case of singularities in
the planar algebraic curves, we propose a remedy to Comprehensive Algorithm B (Algorithm 9). The specific
description is as follows (See Figure 5).

Algorithm 9: The first remedial algorithm of Comprehensive Algorithm B.
Input: Test point p and the planar algebraic curve f (x).
Output: Orthogonal projection point pΓ of the test point p.
Description:

Step 1.

Starting from the neighbor point of the test point p, calculate the iterative point pc fallen
on the planar algebraic curve f (x) via Algorithm 1.

Step 2.

Judge whether to use curvature circle method or tangent method in the next step.
Step 3.

Find the left endpoint L0 on the other side of f (x) relative to the test point p. According
to the result of step 2, if use curvature circle method, then the left endpoint L0 is equal to the
intersection point q which is computed by the curvature circle method with the formula (16).
If not, then the left endpoint L0 is equal to the vertical foot Q which is computed by the
tangent method with the third step of the formula (17).

Step 4.

Calculate the intersection point pc of the line segment L0p connecting the current left
endpoint L0 and the test point p and the planar algebraic curve f (x) by the hybrid method of
combining Newton’s iterative method and binary search method. The intersection point pc is
called as the current iterative point pc;

Step 5.
Repeat Step 2,Step 3 and Step 4 until the distance between the current iterative point pc

and the previous iterative point pc is near zero;
Step 6.

pΓ= pc;
Return pΓ;

Now let’s describe the hybrid method of combining Newton’s iterative method and binary search
method in detail. The parameter equation of the line segment L0p can be expressed as{

x = L1 + (p1 − L1)w,
y = L2 + (p2 − L2)w,

(19)
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where L0 = (L1, L2), p = (p1, p2), and 0 ≤ w ≤ 1 is a parameter of Equation (19). Substitute
Equation (19) into Equation (6) of the planar algebraic curve to get a equation on the parameter w,

K(w) = f (x, y) = 0, (20)

where the x and y of Equation (20) are completely determined by the x and y of Equation (19). So the
most basic Newton’s iterative formula corresponding to Equation (20) is not difficult to write as,

wn+1 = wn − K(wn)

DK(wn)
, (21)

where DK(w) is the first derivative of K(w) about the parameter w. Now we start to iterate the
Newton’s iterative formula (21) with the initial iterative value w0 = 0.0. Based on the actual situation,
the intersection of the line segment L0p and the planar algebraic curve is much closer to the left
endpoint L0 and much farther from the original test point p, therefore, the initial interval of the binary
search method can be specified as [a, b] = [0.0, 0.5]. The detailed description of the hybrid method of
combining Newton’s iterative method and binary search method is as following Algorithm 10.

Algorithm 10: The hybrid method of combining Newton’s iterative method and binary
search method.

Input: The planar algebraic curve f (x), the original test point p = (p1, p2), the iterative point
pc via Algorithm 1.

Output: The intersection pc between the line segment L0p and the planar algebraic curve f (x).
Description:

Step 1:

The initial interval of the binary search method [a, b] = [0.0, 0.5], the initial iterative
value w = 0.0;
Step 2:

w = w− K (w) /DK (w);
kmin=min(K(a),K(b));
kmax=max(K(a),K(b));
if (K(w) < kmin or K(w) > kmax)

w = (a + b) /2;
sa=sign(K(a));
sw=sign(K(w));
if(sa == sw)

a = w;
else

b = w;
Step 3:

Repeatedly iterate Step 2 until |a− b| < ε;
Step 4:

pc = L0 + (p− L0)w;
Return pc;
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Figure 5. Graphical interpretation for the first remedial algorithm of Comprehensive Algorithm B.
(a) The intersection point q between the line segment mp and the curvature circle and the test point p

on the opposite side of the planar algebraic curve f (x); (b)The vertical foot Q of the tangential line L

and the test point p on the opposite side of the planar algebraic curve f (x).

The robustness of the first remedial algorithm of Comprehensive Algorithm B is much better than
that of Comprehensive Algorithm B while the first remedial algorithm of Comprehensive Algorithm B
takes much more time than Comprehensive Algorithm B. The hybrid method of combining Newton’s
iterative method and binary search method is a hybrid method which binary search method ensures global
convergence and the Newton’s iterative method plays an accelerating role. In order to ensure robustness
and improve efficiency, we have fully excavated Comprehensive Algorithm B. We have developed Second
Remedial Algorithm (Algorithm 11). The specific description is as follows (See Figure 6).

pΓ

f( )x m

q

pc L

p

pc

Figure 6. Graphic demonstration for Second Remedial Algorithm.

Algorithm 11: Second Remedial Algorithm.
Input: Test point p and the planar algebraic curve f (x).
Output: Orthogonal projection point pΓ of the test point p which orthogonally projects the test
point p onto the planar algebraic curve f (x)

Description:

Step 1: Starting from a certain percentage of the test point p, calculate the point pc fallen on the
f (x) via Algorithm 1.

Do{
Step 2: Compute the footpoint q via Algorithm 2.
Step 3: Starting from the footpoint q, compute the iterative point pc fallen on the f (x) via

Algorithm 1.
}while(distance(the current pc, the previous pc)> ε).
Step 4: Compute the orthogonal projection point pΓ of the test point p via Algorithm 12.

Return pΓ;
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Algorithm 12: The hybrid Newton-type iterative algorithm.
Input: The current iterative point pc fallen on the planar algebraic curve f (x) and the planar
algebraic curve f (x).

Output: Orthogonal projection point pΓ of the test point p which orthogonally projects the test
point p onto the planar algebraic curve f (x).

Description:

Step 1:

xn+1 = pc;
Do {

xn = xn+1;
Compute xn+1 according to the iterative formula (22);

}while (‖xn+1 − xn‖2 > ε&&| f (xn+1)| > ε)

Step 2:

pΓ = xn+1;
Return pΓ;

The expression of the iterative formula (22) is as follow,⎧⎪⎪⎨⎪⎪⎩
yn = xn − ( f (xn)/ 〈∇ f (xn),∇ f (xn)〉)∇ f (xn),
zn = yn − (F(yn)/ 〈∇F(yn),∇F(yn)〉)∇F(yn),

xn+1 = zn + [−Δe, 0]
[
∇ f T , (Δzn)

T
]−1

(i f
∣∣[∇ f T , (Δzn)T]∣∣ = 0, then xn+1 = zn),

(22)

where F0(x) = [(p− x)×∇ f (x)] = 0, F(x) =
F0(x)√

〈∇ f (x),∇ f (x)〉
, f (zn) = Δe, Δzn =

−(F(yn)/ 〈∇F(yn),∇F(yn)〉)∇F(yn).

Remark 3. In this remark, we present the geometric interpretation of Second Remedial Algorithm. The purpose
of the first step is to make the iterative point pc fall on the planar algebraic curve as much as possible through
Newton’s steepest gradient descent method of Algorithm 1, where the coordinates of the initial iterative
point take proportional value of that of the test point p to ensure that Algorithm 1 converges successfully.
Otherwise, the distance between the initial iterative point and the planar algebraic curve is very large, which
easily leads to the divergence of Algorithm 1. The purpose of Do . . . While cycle body in Second Remedial
Algorithm is to continuously and gradually move the iterative point pc to fall on the planar algebraic curve to
the orthogonal projection point pΓ. The second step in Do. . . While cycle body in Second Remedial Algorithm
has two characteristics. Since the footpoint q is the unique intersection point of the curvature circle and the
straight line segment mp connecting the centre m of the curvature circle and the test point q, the footpoint
q is always closely related to the iterative point pc fallen on the planar algebraic curve and the test point p.
The first characteristic is that the footpoint q can guarantee the global convergence of the whole algorithm
(Second Remedial Algorithm). The second characteristic is that the distance between the footpoint q and the
planar algebraic curve is much smaller than the distance between the test point p and the planar algebraic curve.
So the third step with Algorithm 1 in Do . . . While cycle body can very robustly iterate the footpoint q onto
the planar algebraic curve. The core thought of Do . . . While cycle body in Second Remedial Algorithm is to
keep the iterative point pc to fall on the planar algebraic curve and to move towards the orthogonal projection
point pΓ such that the distance ‖pc − pΓ‖ between the iterative point pc and the orthogonal projection point
pΓ becomes smaller and smaller. As the distance ‖pc − pΓ‖ gets smaller and smaller, we have found that there
is a defect in Do . . . While cycle body in Second Remedial Algorithm. The decreasing speed of the distance
‖pc − pΓ‖ is getting slower and slower. Especially the second formula of the formula (8) is very difficult
to be satisfied. Namely, it is difficult to orthogonalize the vector −→ppc and the vector ∇ f (pc). In order to
overcome the difficulty, we add Algorithm 12 behind Do . . . While cycle body in Second Remedial Algorithm.
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Algorithm 12 includes three components: (1) The Newton’s steepest gradient descent method in the first step;
(2) The Newton’s iterative method closely associated with the test point p in the second step; (3) Correcting
method in the third step. Algorithm 12 has four advantages and important roles: (1) Algorithm 12 plays a role
for accelerating the whole algorithm (Second Remedial Algorithm); (2) The first step plays a role for making the
iteration point fall on the planar algebraic curve as far as possible; (3) The second step plays a role for accelerating
orthogonalization between the vector −→ppc and the vector ∇ f (pc); (4) The third step plays a dual role for the
accelerating orthogonalization and the promoting the iterative point to fall on the planar algebraic curve. The
numerical tests of Second Remedial Algorithm achieve our expected results. No matter how far the test point p is
from the planar algebraic curve f (x), Second Remedial Algorithm can converge very robustly and efficiently.
Second Remedial Algorithm is the best one in our paper. Of course, the robustness and the efficiency of Second
Remedial Algorithm are better than that of the existing algorithms. We are very happy about that.

Remark 4. In order to further improve the efficiency of the test point p orthogonal projecting onto plane algebraic
curve f (x), we construct a Comprehensive Integrated Algorithm C which includes two parts: the hybrid second
order algorithm in [28] and Second Remedial Algorithm. Firstly run the hybrid second order algorithm in [28].
If the hybrid second order algorithm converges, then it means that Comprehensive Integrated Algorithm C
is finished. Otherwise, Second Remedial Algorithm runs until it converges successfully. That is the end of
Comprehensive Integrated Algorithm C. The specific description of Comprehensive Integrated Algorithm C
is similar to that of Comprehensive Integrated Algorithm B. Here, we are not giving a detailed description of
Comprehensive Integrated Algorithm C. When the distance between the test point p and the planar algebraic
curve f (x) is not far, the hybrid second order algorithm in [28] has very high robustness and efficiency.
When the distance between the test point p and the planar algebraic curve f (x) is particularly far, the hybrid
second order algorithm does not converge and fails, while Second Remedial Algorithm converges particularly
robustly and successfully. To sum up, Comprehensive Integrated Algorithm C absorbs the advantages of two
sub-algorithms and overcomes their respective shortcomings such that the robustness and the efficiency of
Comprehensive Integrated Algorithm C are maximized.

3. Convergence Analysis

This section proves that several Comprehensive Algorithms do not depend on the initial
iteration points.

Theorem 1. Comprehensive Algorithm A is independent of the initial iterative point.

Proof. Firstly, we state the whole operation process of Comprehensive Algorithm A. Comprehensive
Algorithm A contains three sub-algorithms (Algorithms 1–3). The role of Algorithm 1 is to repeatedly
iterate the iterative formula (3) through Newton’s steepest gradient descent method such that the
final iteration point xn+1 could fall on the planar algebraic curve where the final iteration point xn+1

is denoted as pc. The function of Algorithm 2 is to seek the footpoint q. The curvature circle ©
determined by the point pc is obtained from the iterative point pc on the planar algebraic curve f (x)
of Algorithm 1, where the curvature k, the radius R and the center m are determined by formulas
(11)–(13), respectively. The intersection of the line segment mp connecting the center m and the test
point p and the curvature circle © is foot point q. The footpoint q could be orthogonally projected
onto the planar algebraic curve f (x) by repeated iteration of Algorithm 3 where at this moment the
test point is not the original test point p but the footpoint point q solved by Algorithm 2. Repeatedly
run Algorithm 2 and Algorithm 3 bound together until the distance between the current footpoint q

and the previous footpoint q is near zero.
Secondly, the Comprehensive Algorithm A is independent of the initial iterative point. No matter

how far the original test point p is from the planar algebraic curve f (x), no matter where the initial
iterative point x0 is located, Algorithms 1 can ensure that the final iterative point xn+1 or pc of the initial
iterative point can fall on the planar algebraic curve f (x). It is obvious that the distance ‖pc − pΓ‖
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between the iteration point pc and the orthogonal projection point pΓ is much smaller than the distance
‖p− pΓ‖ between the orthogonal projection point pΓ and the original test point p. From the iterative
point pc fallen on the planar algebraic curve f (x), we can calculate the corresponding curvature k and
its center m and radius R. The intersection point q of the curvature circle© and the line segment mp

connecting the original test point p and the center m of the curvature circle© is just the footpoint q.
That is to say, the footpoint q is directly generated by the curvature circle © and the line segment
mp, and the curvature circle © is controlled by the iterative point pc fallen on the planar algebraic
curve f (x). So the footpoint q is directly controlled by the original test point p and the iterative
point pc, while the current footpoint q is between the orthogonal projection point pΓ and the current
iterative point pc. It also shows that Algorithm 2 plays a decisive role in the convergence robustness of
Comprehensive Algorithm. In addition, we can also know that the distance between the footpoint
point q and the planar algebraic curve f (x) is much smaller than the distance between the original
test point p and the planar algebra curve f (x). At this point, we keep running Algorithm 3 with the
footpoint point q as the current test point until the current test point can be orthogonally projected
onto the plane algebraic curve f (x) with guaranteed convergence of Algorithm 3. And now we can
call the orthogonal projection point of the footpoint point q as also the iterative point pc fallen on
the planar algebraic curve f (x). The first reason is the distance between the current iterative point
pc and the orthogonal projection point pΓ of the original test point point p is smaller than the one
between the previous iterative point pc and the orthogonal projection point pΓ of the original test
point p. The second reason is that it establishes a solid foundation for the convergence robustness of the
subsequent sub-algorithms implementation. Then according to the requirements of Comprehensive
Algorithm A, the second step and third step of Comprehensive Algorithm A are executed once per
cycle, the distance ‖pc − pΓ‖ between the current iterative point pc on the planar algebraic curve and
the orthogonal projection point pΓ of the original test point p of the execution result is smaller than
that between the previous iterative point pc on the planar algebraic curve f (x) and the orthogonal
projection point pΓ of the original test point p. The distance ‖pc − pΓ‖ between the current iterative
point pc and the orthogonal projection point pΓ of the original test point p is becoming smaller. So
repeatedly iterate the second step and the third step of Comprehensive Algorithm A until the distance
‖pc − pΓ‖ between the current iterative point pc and the orthogonal projection point pΓ of the original
test point p is becoming smaller and smaller. Ultimately, the distance ‖pc − pΓ‖ between the current
iterative point pc and the orthogonal projection point pΓ of the original test point p is becoming zero. It
also demonstrates that Comprehensive Algorithm A is completely convergent. This further proves that
Comprehensive Algorithm A can completely converge no matter how far away the original test point p

is from the planar algebraic curve and no matter where the initial iterative point x0 of Comprehensive
Algorithm A is on the plane. This means Comprehensive Algorithm A is independent of the initial
iterative point.

Theorem 2. Comprehensive Algorithm B is independent of the initial iterative point.

Proof. In the last step of the iterative formula (18) in Algorithm 5, Newton’s iteration method, which is
closely related to the original test point p, is added. In this way, the iterative formula (17) is transformed
into the iterative formula (18) in Algorithm 5. Algorithm 5 has several advantages over Algorithm 3.
It can speed up the iteration, improve its accuracy and promote the orthogonalization of the tangent
vector derived from the iteration point on the planar algebraic curve and the tangent vector connecting
the test point and the iterative point. Replace Algorithm 3 of Comprehensive Algorithm A with
Algorithm 5 to get Comprehensive Algorithm B. Since Comprehensive Algorithm A is independent
of the initial iterative point, so Comprehensive Algorithm B is naturally independent of the initial
iterative point.

Theorem 3. Comprehensive Integrated Algorithm A is independent of the initial iterative point.
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Proof. Comprehensive Integrated Algorithm A consists of two parts: the hybrid second order
algorithm and Comprehensive Algorithm A. Whether the test point is very far or very close to the
planar algebraic curve, the hybrid second order algorithm is executed several times. If this algorithm
converges, then it represents that the execution of Comprehensive integrated Algorithm A is over.
So Comprehensive Integrated Algorithm A is independent of the initial iterative point. If the hybrid
second order algorithm does not converge, then run Comprehensive Algorithm A of the second step
of Comprehensive Integrated Algorithm A. Because whether the test point is very far from or very
close to the planar algebraic curve, we know from Theorem 1 that Comprehensive Algorithm A is
independent of the initial iterative point. To sum up, Comprehensive Integrated Algorithm A is
independent of the initial iterative point.

In a similar way to the proof of Theorem 3, we can state the following result.

Theorem 4. Comprehensive Integrated Algorithm B is independent of the initial iterative point.

Theorem 5. The first remedial algorithm of Comprehensive Algorithm B is independent of the initial
iterative point.

Proof. From the Figure 5, for any initial iterative point, the final iterative point pc of Algorithm 1 in the
first step of the first remedial algorithm of Comprehensive Algorithm B can ensure that it falls on the
planar algebraic curve f (x). The left endpoint L0 is the only one that can be determined through third
step of the first remedial algorithm of Comprehensive Algorithm B. Graphic display shows that the
left endpoint L0 and the original test point p are on both sides of the planar algebraic curve. Namely,
there is only one intersection point (also written as pc) between the line segment L0p and the planar
algebraic curve f (x). Because the hybrid method of combining Newton’s iterative method and binary
search method is global convergence method, the intersection pc of the line segment L0p and the
planar algebraic curve f (x) can be accurately and uniquely solved by this method. Then repeatedly
iterate and run Step 2, Step 3 and Step 4, the distance ‖pc − pΓ‖ between the current intersection point
pc and the orthogonal projection point pΓ of the original test point p continues to shrink to zero. So we
have this conclusion that the first remedial algorithm of Comprehensive Algorithm B is independent
of the initial iterative point.

Theorem 6. Second Remedial Algorithm is independent of the initial iterative point.

Proof. In Remark 3, we give a detailed description of the geometric interpretation of Second Remedial
Algorithm. In this proof, we only elaborate on the most important geometric significance of Second
Remedial Algorithm. The first step of Second Remedial Algorithm is to let the initial iteration point fall
on the planar algebraic curve as much as possible through Newton’s steepest gradient descent method
of Algorithm 1. Moreover, there is few restriction on the selection of the initial iterative point. The
purpose of Do . . . While cycle body in Second Remedial Algorithm is to continuously and gradually
move the iterative point pc to fall on the planar algebraic curve to the orthogonal projection point
pΓ. The second step in Do. . . While cycle body in Second Remedial Algorithm has two characteristics.
Since the footpoint q is the unique intersection point of the curvature circle and the straight line
segment mp connecting the centre m of the curvature circle and the test point p, the footpoint q is
always closely related to the iterative point pc fallen on the planar algebraic curve and the test point
p. The first characteristic is that the footpoint q can guarantee the global convergence of the whole
algorithm (Second Remedial Algorithm). The second characteristic is that the distance between the
footpoint q and the planar algebraic curve is much smaller than the distance between the test point
p and the planar algebraic curve. So the third step with Algorithm 1 in Do . . . While cycle body
can very robustly iterate the footpoint q onto the planar algebraic curve. The core thought of Do

. . . While cycle body in Second Remedial Algorithm is to keep the iterative point pc fallen on the planar
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algebraic curve moving towards the orthogonal projection point pΓ such that the distance ‖pc − pΓ‖
between the iterative point pc and the orthogonal projection point pΓ becomes smaller and smaller.
If the distance ‖pc − pΓ‖ gets smaller and smaller, we have found that the decreasing speed of the
distance ‖pc − pΓ‖ is getting slower and slower. Especially the second formula of the formula (8) is
very difficult to be satisfied. Algorithm 12 behind the loop body has four advantages and important
roles: (1) Algorithm 12 plays a role for accelerating the whole algorithm (Second Remedial Algorithm);
(2) The first step plays a role for making the iteration point fall on the planar algebraic curve as far
as possible; (3) The second step plays a role for accelerating orthogonalization between the vector−→ppc and the vector ∇ f (pc); (4) The third step plays a dual role for the accelerating orthogonalization
and the promoting the iterative point to fall on the planar algebraic curve. No matter how far the test
point is from the planar algebraic curve, Second Remedial Algorithm converges very robustly and
efficiently. By adding this step, the efficiency and the robustness for Algorithm 12 of Second Remedial
Algorithm is further improved. Then the robustness and the efficiency of Second Remedial Algorithm
is also further improved. So Second Remedial Algorithm is independent of the initial iterative point.
In addition, in a similar way to the proof of Theorem 3, it is not difficult to know that Comprehensive
Integrated Algorithm C is also independent of the initial iterative point.

4. Numerical Comparison Results

We now present some examples to illustrate the efficiency and the comparison of the newly
developed method of Comprehensive Algorithm B and Second Remedial Algorithm to show the two
algorithms’ high robustness and efficiency for very remote test points. We have three examples to
represent closed planar algebraic curve, two sub-closed planar algebraic curves, two branches but
not closed planar algebra curves and a single branch not closed the planar algebra curve, respectively.
All computations were done using VC++6.0. We used ε = 10−16. The following stopping criteria
is used for Comprehensive Algorithm B and Second Remedial Algorithm . In Tables 1–3, the four
symbols p, pΓ, | f (pΓ)| and |〈V1, V2〉| are the original test point, the orthogonal projection point of the
original test point, the deviation degree of the orthogonal projection point on the planar algebraic
curve and the absolute value of the inner product of two vectors V1 and V2, respectively, where V1

is −→ppΓ and V2 is the tangent vector
[
− ∂ f

∂y , ∂ f
∂x

]
of the orthogonal projection point pΓ on the planar

algebraic curve f (x). Thanks to the suggestions by the reviewers, the fourth quadrant result values of
the three tables are implemented by Second Remedial Algorithm in Maple 18 environment.

Example 1 (Reference to [28]). Suppose a planar algebraic curve
f (x, y) = x6 + 2x5y− 2x3y2 + x4 − y3 + 2y8 − 4 = 0 (See Figure 7). In each of the four quadrants,
randomly select four distant test points. We calculate the corresponding orthogonal projection point for each test
point via computation by Comprehensive Algorithm B and Second Remedial Algorithm. The specific results are
shown in Table 1).

Example 2. Suppose a planar algebraic curve f (x, y) = x10 + 6xy + 2y18 − 2 = 0(See Figure 8). In each of
the four quadrants, randomly select four distant test points. We calculate the corresponding orthogonal projection
point for each test point via computation by Comprehensive Algorithm B and Second Remedial Algorithm. The
specific results are shown in Table 2.

Example 3. Suppose a planar algebraic curve f (x, y) = x10 + 6xy + 2y16 + 2 = 0(See Figure 9). In each of
the four quadrants, randomly select four distant test points. We calculate the corresponding orthogonal projection
point for each test point via computation by Comprehensive Algorithm B and Second Remedial Algorithm. The
specific results are shown in Table 3.
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Figure 7. Graphical representation of the planar algebraic curve for Example 1.

Figure 8. Graphical representation of the planar algebraic curve for Example 2.

Figure 9. Graphical representation of the planar algebraic curve for Example 3.
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Remark 5. Besides all test points of the three examples mentioned above are tested by Comprehensive Algorithm
B, we have tested them again with the Second Remedial Algorithm. All the test results are consistent with those
of Comprehensive Algorithm B and convergent. In addition, in the region [−3000, 3000]× [−3000, 3000] of
each example, we randomly select a large number of test points, the probability of non-convergence is particularly
low by Second Remedial Algorithm. Further, we use Second Remedial Algorithm other examples with test points
in a very large area, and the probability of non-convergence is also very low. Second Remedial Algorithm is
verified to be the best one again in our paper. Of course, the robustness and the efficiency of Second Remedial
Algorithm is better than that of the existing algorithms.

5. Conclusions and Future Work

In this paper, we have constructed a Comprehensive Algorithm which is an improved curvature
circle algorithm for orthogonal projecting onto planar algebraic curve. Based on an integrated hybrid
second-order algorithm [28], the Comprehensive Algorithm (the improved curvature circle algorithm)
has also incorporated the curvature circle technique and Newton’s gradient steepest descent method
such that it can converge robustly and efficiently no matter how far the test point is from the planar
algebraic curve and no matter where the initial iterative point is located. Furthermore, we propose
Second Remedial Algorithm based on Comprehensive Algorithm B. In particular, its robustness
and efficiency is greatly improved than that of Comprehensive Algorithm B and it achieves our
expected result. The numerical examples show that the improved curvature circle algorithm is superior
to the existing ones. In future work, we try to refine the idea of Comprehensive Algorithm and Second
Remedy Algorithm. And the idea is applied to point orthogonal projecting onto spatial algebraic curve
and algebraic surface.
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Abstract: Splitting methods have received a lot of attention lately because many nonlinear problems
that arise in the areas used, such as signal processing and image restoration, are modeled in
mathematics as a nonlinear equation, and this operator is decomposed as the sum of two nonlinear
operators. Most investigations about the methods of separation are carried out in the Hilbert spaces.
This work develops an iterative scheme in Banach spaces. We prove the convergence theorem of our
iterative scheme, applications in common zeros of accretive operators, convexly constrained least
square problem, convex minimization problem and signal processing.

Keywords: convexity; least square problem; accretive operators; signal processing

1. Introduction

Let E be a real Banach space. The zero point problem is as follows:

find x ∈ E such that 0 ∈ Au +Bu, (1)

where A : E → E is an operator and B : E → 2E is a set-valued operator. This problem
includes, as special cases, convex programming, variational inequalities, split feasibility problem
and minimization problem [1–7]. To be more precise, some concrete problems in machine learning,
image processing [4,5], signal processing and linear inverse problem can be modeled mathematically
as the form in Equation (1).

Signal processing and numerical optimization are independent scientific fields that have always
been mutually influencing each other. Perhaps the most convincing example where the two fields
have met is compressed sensing (CS) [2]. Several surveys dedicated to these algorithms and their
applications in signal processing have appeared [3,6–8]

Fixed point iterations is an important tool for solving various problems and is known in a Banach
space E. Let K be a nonempty closed convex subset of E and S : K→ K is the operator with at least
one fixed point. Then, for u1 ∈ K :

1. The Picard iterative scheme [9] is defined by:

un+1 = Sun, ∀ n ∈ N.

2. The Mann iterative scheme [10] is defined by:

un+1 = (1− ηn)un + ηnSun, ∀ n ∈ N,

where {ηn} is a sequence in (0, 1).

Mathematics 2019, 7, 866; doi:10.3390/math7090866 www.mdpi.com/journal/mathematics420
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3. The Ishikawa iterative scheme [11] is defined by:

un+1 = (1− ηn)un + ηnS[(1− ϑn)un + ϑnSun], ∀ n ∈ N,

where {ηn} and {ϑn} are sequences in (0, 1).
4. The S-iterative scheme [12] is defined by:

un+1 = (1− ηn)Sun + ηnS[(1− ϑn)un + ϑnSun], ∀ n ∈ N,

where {ηn} and {ϑn} are sequences in (0, 1).

Recently, Sahu et al. [13] and Thakur et al. [14] introduced the following same iterative scheme for
nonexpansive mappings in uniformly convex Banach space:⎧⎪⎪⎨⎪⎪⎩

wn = (1− ξn)un + ξnSun,

zn = (1− ϑn)wn + ϑnSwn,

un+1 = (1− ηn)Swn + ηnSzn, ∀ n ∈ N,

where {ηn}, {ϑn} and {ξn} are sequences in (0, 1). The authors proved that this scheme converges to
a fixed point of contraction mapping, faster than all known iterative schemes. In addition, the authors
provided an example to support their claim.

In this paper, we first develop an iterative scheme for calculating common solutions and using
our results to solve the problem in Equation (1). Secondly, we find common solutions of convexly
constrained least square problems, convex minimization problems and applied to signal processing.

2. Preliminaries

Let E be a real Banach space with norm ‖ · ‖ and E∗ be its dual. The value of f ∈ E∗ at u ∈ E

ia denoted by 〈u, f 〉. A Banach space E is called strictly convex if ‖u+v‖
2 < 1, for all u, v ∈ E with

‖u‖ = ‖v‖ = 1. It is called uniformly convex if limn→∞ ‖un − vn‖ = 0 for any two sequences
{un}, {vn} in E such that ‖u‖ = ‖v‖ = 1 and limn→∞

‖u+v‖
2 = 1.

The (normalized) duality mapping J from E into the family of nonempty (by Hahn Banach
theorem) weak-star compact subsets of its dual E is defined by

J (u) = { f ∈ E∗ : 〈u, f 〉 = ‖u‖2 = ‖ f ‖2}

for each u ∈ E, where 〈·, ·〉 denotes the generalized duality pairing.
For an operator A : E→ 2E, we denote its domain, range and graph as follows:

D(A) = {u ∈ E : Au �= ∅}
R(A) = ∪{Ap : p ∈ D(A)},

and
G(A) = {(u, v) ∈ E× E : u ∈ D(A), v ∈ Au},

respectively. The inverse A−1 of A is defined by u ∈ A−1v, if and only if v ∈ Au. If ∀ui ∈ D(A) and
vi ∈ Aui (i = 1, 2), and there is j ∈ J (u1 − u2) such that 〈v1 − v2, j〉 ≥ 0, then A is called accretive.

An accretive operator A in a Banach space E is said to satisfy the range condition if
D(A) ⊂ R(I + μA) for all μ > 0, where D(A) denotes the closure of the domain of A. We know
that for an accretive operator A which satisfies the range condition, A−10 = Fix(JA

μ ) for all μ > 0.
A point u ∈ K is a fixed point of S provided Su = u. Denote by Fix(S) the set of fixed points of S,

i.e., Fix(S) = {u ∈ K : Su = u}.
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1. The mapping S is called L−Lipschitz, L > 0, if

‖Su− Sv‖ ≤ L‖u− v‖, ∀ u, v ∈ K.

2. The mapping S is called nonexpansive if

‖Su− Sv‖ ≤ ‖u− v‖, ∀ u, v ∈ K.

3. The mapping S is called quasi-nonexpansive if Fix(S) �= ∅ and

‖Su− v‖ ≤ ‖u− v‖, ∀ u ∈ K, v ∈ Fix(S).

In this case, H is a real Hilbert space. If A : E→ 2E is an m−accretive operator (see [15–17]), then
A is called maximal accretive operator [18], and for all μ > 0,R(I + μA) = H if and only if A is called
maximal monotone [19]. Denote by dom(h) the domain of a function h : H→ (−∞, ∞], i.e.,

dom(h) = {u ∈ H : h(u) < ∞}.

The subdifferential of h ∈ Γ0(H) at u ∈ H is the set

∂h(u) = {z ∈ H : h(u) ≤ h(v) + 〈z, u− v〉, ∀ v ∈ H},

where Γ0(H) denotes the class of all l.s.c. functions from H to (−∞, ∞] with nonempty domains.

Lemma 1 ([20]). Let h ∈ Γ0(H). Then, ∂h is maximal monotone.

We denote by Bλ[v] the closed ball with the center at v and radius λ :

Bλ[v] = {u ∈ E : ‖v− u‖ ≤ λ}.

Lemma 2 ([21]). Let E be a Banach space, and p > 1 and R > 0 be two fixed numbers. Then, E is uniformly
convex if and only if there exists a continuous, strictly increasing, and convex function ϕ : [0, ∞) → [0, ∞)

with ϕ(0) = 0 such that

‖αu + (1− α)v‖p ≤ ‖u‖p + (1− α)‖v‖p − α(1− α)ϕ(‖u− v‖),

for all u, v ∈ BR[0] and α ∈ [0, 1].

Definition 1 ([22]). A vector space H is said to satisfy Opial’s condition, if for each sequence {un} in H which
converges weakly to point u ∈ H,

lim inf
n→∞

‖un − u‖ < lim inf
n→∞

‖un − v‖, v ∈ H, v �= u.

Lemma 3 ([23]). Let K be a nonempty subset of a Banach space E, let S : K→ E be a uniformly continuous
mapping, and let {un} ⊂ K an approximating fixed point sequence of S. Then, {vn} is an approximating fixed
point sequence of S whenever {vn} is in K such that limn→∞ ‖un − vn‖ = 0.

Lemma 4 ([16]). Let K be a nonempty closed convex subset of a uniformly convex Banach space E. If S : K→ E

is a nonexpansive mapping, then I − S has the demiclosed property with respect to 0.

A subset K of Banach space E is called a retract of E if there is a continuous mapping Q from E

onto K such that Qu = u for all u ∈ K. We call such Q a retraction of E onto K. It follows that, if a
mapping Q is a retraction, then Qv = v for all v in the range of Q. A retraction Q is called a sunny if
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Q(Qu + λ(u− Qu)) = Qu for all u ∈ E and λ ≥ 0. If a sunny retraction Q is also nonexpansive, then K

is called a sunny nonexpansive retract of E [24].
Let E be a strictly convex reflexive Banach space and K be a nonempty closed convex subset of E.

Denote by PK the (metric) projection from E onto K, namely, for u ∈ E, PK(u) is the unique point in
K with the property

inf{‖u− v‖ : v ∈ K} = ‖u− PK(u)‖.

Let an inner product 〈·, ·〉 and the induced norm ‖ · ‖ are specified with a real Hilbert space H.
Let K is a nonempty subset of H, we have the nearest point projection PK : H → K is the unique
sunny nonexpansive retraction of H onto K. It is also known that PK(u) ∈ K and

〈u− PK(u),PK(u)− v〉 ≥ 0, ∀ u ∈ H, v ∈ K.

3. Main Results

Let K be a nonempty closed convex subset of a Banach space E with QK as a sunny nonexpansive
retraction. We denote by Ψ := Fix(S) ∩ Fix(T).

Lemma 5. Let K be a nonempty closed convex subset of a Banach space E with QK as the sunny nonexpansive
retraction, let S,T : K→ E be quasi-nonexpansive mappings which Ψ �= ∅, and let {ηn}, {ϑn} and {ξn} be
sequences in (0, 1) for all n ∈ N. Let {un} be defined by Algorithm 1. Then, for each ū ∈ Ψ, limn→∞ ‖un − ū‖
exists and

‖wn − ū|| ≤ ‖un − ū‖, and ‖zn − ū‖ ≤ ‖un − ū‖, ∀ n ∈ N. (2)

Algorithm 1: Three-step sunny nonexpansive retraction

initialization: ηn, ϑn, ξn ∈ (0, 1), u1 ∈ K and n = 1.
while stopping criterion not met do

wn = QK[(1− ξn)un + ξnSun],
zn = QK[(1− ϑn)wn + ϑnTwn],
un+1 = QK[(1− ηn)Swn + ηnTzn].

end

Proof. Let ū ∈ Ψ. Then, we have

‖wn − ū‖ = ‖QK[(1− ξn)un + ξnSun]− ū‖
≤ ‖(1− ξn)(un − ū) + ξn(Sun − ū)‖
≤ (1− ξn)‖un − ū‖+ ξn‖Sun − ū‖
≤ (1− ξn)‖un − ū‖+ ξn‖un − ū‖
= ‖un − ū‖,

(3)

‖zn − ū‖ = ‖QK[(1− ϑn)wn + ϑnTwn]− ū‖
≤ ‖(1− ϑn)(wn − ū) + ϑn(Twn − ū)‖
≤ (1− ϑn)‖wn − ū‖+ ϑn‖Twn − ū‖
≤ (1− ϑn)‖wn − ū‖+ ϑn‖wn − ū‖
= ‖wn − ū‖
≤ ‖un − ū‖,

(4)
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and
‖un+1 − ū‖ = ‖QK[(1− ηn)Swn + ηnTzn]− ū‖

≤ ‖(1− ηn)(Swn − ū) + ηn(Tzn − ū)‖
≤ (1− ηn)‖Swn − ū‖+ ηn‖Tzn − ū‖
≤ (1− ηn)‖wn − ū‖+ ηn‖zn − ū‖
≤ (1− ηn)‖un − ū‖+ ηn‖un − ū‖
= ‖un − ū‖.

(5)

Therefore,
‖un+1 − ū‖ ≤ ‖un − ū‖ ≤ · · · ≤ ‖u1 − ū‖, ∀ n ∈ N. (6)

Since {‖un − ū‖} is monotonically decreasing, we have that the sequence {‖un − ū‖}
is convergent.

From Lemma 5, we have results:

Theorem 1. Let K be a nonempty closed convex subset of a Banach space E with QK as the sunny nonexpansive
retraction, let S,T : K → E be quasi-nonexpansive mappings with Ψ �= ∅, and let {ηn}, {ϑn} and {ξn} be
sequences of real numbers, for which 0 < c1 ≤ ηn ≤ ĉ1 < 1, 0 < c2 ≤ ϑn ≤ ĉ2 < 1, 0 < c3 ≤ ξn ≤ ĉ3 < 1
for all n ∈ N. Let u1 ∈ K, PΨ(u1) = u∗ and {un} is defined by Algorithm 1. Then, we have the following:

(i) {un} is in a closed convex bounded set Bλ[u∗] ∩ K, where λ is a constant in (0, ∞) such that
‖u1 − u∗‖ ≤ λ.

(ii) If S is uniformly continuous, then limn→∞ ‖un − Sun‖ = 0 and limn→∞ ‖un − Tun‖ = 0.
(iii) If E fulfills the Opial’s condition and I − S and I − T are demiclosed at 0, then {un} converges weakly to an

element of Ψ ∩ Bλ[u∗].

Proof. (i) Since u∗ ∈ Ψ, from Equation (6), we obtain

‖un+1 − u∗‖ ≤ ‖un − u∗‖ ≤ · · · ≤ ‖u1 − u∗‖ ≤ λ, ∀ n ∈ N. (7)

Therefore, {un} is in the closed convex bounded set Bλ[u∗] ∩K.

(ii) Suppose that S is uniformly continuous. Using Lemma 5, we get that {un}, {zn} and {wn}
are in Bλ[u∗] ∩K, and hence, from Equation (2), we obtain

‖Twn − u∗‖ ≤ λ, ‖Swn − u∗‖ ≤ λ and ‖Sun − u∗‖ ≤ λ, ∀ n ∈ N.

Using Lemma 2 for p = 2 and R = λ, from Equation (5), we obtain

‖un+1 − u∗‖2 ≤ ‖(1− ηn)(Swn − u∗) + ηn(Tzn − u∗)‖2

≤ (1− ηn)‖Swn − u∗‖2 + ηn‖Tzn − u∗‖2

− ηn(1− ηn)ϕ(‖Swn − Tzn‖)
≤ (1− ηn)‖wn − u∗‖2 + ηn‖zn − u∗‖2

− ηn(1− ηn)ϕ(‖Swn − Tzn‖)
≤ (1− ηn)‖un − u∗‖2 + ηn‖un − u∗‖2

− ηn(1− ηn)ϕ(‖Swn − Tzn‖)
= ‖un − u∗‖2 − ηn(1− ηn)ϕ(‖Swn − Tzn‖),

(8)

which implies that

ηn(1− ηn)ϕ(‖Swn − Tzn‖) = ‖un − u∗‖ − ‖un+1 − u∗‖2. (9)
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Note that: c1(1− ĉ1) ≤ ηn(1− ηn). Thus,

c1(1− ĉ1)
n

∑
i=1

ϕ(‖Swi − Tzi‖) = ‖u1 − u∗‖ − ‖un+1 − u∗‖2, ∀ n ∈ N. (10)

In the same way, we obtain

c1(1− ĉ1)
∞

∑
n=1

ϕ(‖Swn − Tzn‖) ≤ ‖u1 − u∗‖ < ∞. (11)

Therefore, we have limn→∞ ‖Swn − Tzn‖ = 0. From the relations in Algorithm 1, we obtain

‖wn − u∗‖2 ≤ (1− ξn)‖un − u∗‖2 + ξn‖Sun − u∗‖2

− ξn(1− ξn)ϕ(‖un − Sun‖)
≤ (1− ξn)‖un − u∗‖2 + ξn‖un − u∗‖2

− ξn(1− ξn)ϕ(‖un − Sun‖)
= ‖un − u∗‖2 − ξn(1− ξn)ϕ(‖un − Sun‖)

(12)

and
‖zn − u∗‖2 ≤ ‖(1− ϑn)(wn − u∗) + ϑn(Twn − u∗)‖2

≤ (1− ϑn)‖wn − u∗‖2 + ϑn‖Twn − u∗‖2

− ϑn(1− ϑn)ϕ(‖wn − Twn‖)
≤ (1− ϑn)‖wn − u∗‖2 + ϑn‖wn − u∗‖2

= ‖wn − u∗‖2 − ϑn(1− ϑn)ϕ(‖wn − Twn‖)
≤ ‖un − u∗‖2 − ϑn(1− ϑn)ϕ(‖wn − Twn‖).

(13)

From Equations (8), (13) and (12), we obtain

‖un+1 − u∗‖2 ≤ ‖(1− ηn)(Swn − u∗) + ηn(Tzn − u∗)‖2

≤ (1− ηn)‖Swn − u∗‖2 + ηn‖Tzn − u∗‖2

− ηn(1− ηn)ϕ(‖Swn − Tzn‖)
≤ (1− ηn)‖wn − u∗‖2 + ηn‖zn − u∗‖2

− ηn(1− ηn)ϕ(‖Swn − Tzn‖)
≤ (1− ηn)[‖un − u∗‖2 − ξn(1− ξn)ϕ(‖un − Sun‖)]
+ ηn[‖un − u∗‖2 − ϑn(1− ϑn)ϕ(‖wn − Twn‖)]
− ηn(1− ηn)ϕ(‖Swn − Tzn‖)

= ‖un − u∗‖2 − (1− ηn)ξn(1− ξn)ϕ(‖un − Sun‖)
− ηnϑn(1− ϑn)ϕ(‖wn − Twn‖)
− ηn(1− ηn)ϕ(‖Swn − Tzn‖).

(14)

Note that: (1− ĉ1)c3(1− ĉ3) ≤ (1− ηn)ξn(1− ξn) and c1c2(1− ĉ2) ≤ ηnϑn(1− ϑn). Thus,

(1− ĉ1)c3(1− ĉ3)
n

∑
i=1

ϕ(‖ui − Sui‖) ≤ ‖u1 − u∗‖2 − ‖un+1 − u∗‖2, ∀ n ∈ N.

It follows that limn→∞ ‖un − Sun|| = 0. Note that:

‖wn − un‖ = ‖QK[(1− ξn)un + ξnSun]− QK[un]‖
≤ ‖Sun − un‖ → 0 as n → ∞.
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Since S is uniformly continuous, it follows from Lemma 3 that limn→∞ ‖wn − Swn‖ = 0.
Thus, from limn→∞ ‖Swn − Tzn‖ = 0, we obtain limn→∞ ‖un − Tun‖ = 0.

(iii) By assumption, E satisfies the Opial’s condition. Let w∗ ∈ Ψ such that w∗ ∈ Bλ[u∗] ∩K.
From Lemma 5, we have limn→∞ ‖un − w∗‖ exists. Suppose there are two subsequences {unq} and
{uml} which converge to two distinct points u∗ and v∗ in Bλ[u∗] ∩K, respectively. Then, since both
I − S and I − T have the demiclosed property at 0, we have Su∗ = Tu∗ = u∗ and Sv∗ = Tv∗ = v∗.
Moreover, using the Opial’s condition:

lim
n→∞

‖un − u∗‖ = lim
q→∞

‖unq − u∗‖ < lim
l→∞

‖uml − v∗‖ = lim
n→∞

‖un − v∗‖.

Similarly, we obtain
lim

n→∞
‖un − v∗‖ < lim

n→∞
‖un − u∗‖,

which is a contradiction. Therefore, u∗ = v∗. Hence, the sequence {un} converges weakly to an element
of Ψ ∩ Bλ[u∗] ∩K.

Theorem 2. Let K be a nonempty closed convex subset of a Banach space E with QK as the sunny nonexpansive
retraction, let S,T : K→ E be nonexpansive mappings with Ψ �= ∅, and let {ηn}, {ϑn} and {ξn} be sequences
of real numbers, for which 0 < c1 ≤ ηn ≤ ĉ1 < 1, 0 < c2 ≤ ϑn ≤ ĉ2 < 1, 0 < c3 ≤ ξn ≤ ĉ3 < 1 for all
n ∈ N. Let u1 ∈ K, PΨ(u1) = u∗ and {un} is defined by Algorithm 1. Then, we have the following:

(i) {un} is in a closed convex bounded set Bλ[u∗] ∩ K, where λ is a constant in (0, ∞) such that
‖u1 − u∗‖ ≤ λ.

(ii) limn→∞ ‖un − Sun‖ = 0 and limn→∞ ‖un − Tun‖ = 0.
(iii) If E fulfills the Opial’s condition, then {un} converges weakly to an element of Ψ ∩ Bλ[u∗].

Proof. It follows from Theorem 1.

Corollary 1. Let K be a nonempty closed convex subset of a real Hilbert space H, let S,T : K → E be
nonexpansive mappings with Ψ �= ∅, and let {ηn}, {ϑn} and {ξn} be sequences of real numbers, for which
0 < c1 ≤ ηn ≤ ĉ1 < 1, 0 < c2 ≤ ϑn ≤ ĉ2 < 1, 0 < c3 ≤ ξn ≤ ĉ3 < 1 for all n ∈ N. Let {un} be defined by⎧⎪⎪⎨⎪⎪⎩

wn = (1− ξn)un + ξnSun,

zn = (1− ϑn)wn + ϑnTwn,

un+1 = (1− ηn)Swn + ηnTzn, ∀ n ∈ N.

(15)

Then, {un} converges weakly to an element of Ψ.

Proof. It follows from Theorem 1.

4. Applications

4.1. Common Zeros of Accretive Operators

From Equation (15), we set S = JAμ and T = JB
μ , and inherit the convergence analysis for solving

Equation (1).

Theorem 3. Let K be a nonempty closed convex subset of a r.u.c. Banach space E satisfying the
Opial’s condition. Let A : D(A) ⊆ K → 2E, B : D(B) ⊆ K → 2E be accretive operators,
for which D(A) ⊆ K ⊆ ∩μ>0R(I + μA), D(B) ⊆ K ⊆ ∩μ>0R(I + μB) and A−1(0) ∩ B−1(0) �= ∅.
Let {ηn}, {ϑn} and {ξn} be sequences of real numbers, for which 0 < c1 ≤ ηn ≤ ĉ1 < 1, 0 < c2 ≤
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ϑn ≤ ĉ2 < 1, 0 < c3 ≤ ξn ≤ ĉ3 < 1 for all n ∈ N. Let μ > 0, u1 ∈ K and PA−1(0)∩B−1(0)(u1) = u∗. Let
{un} be defined by ⎧⎪⎪⎨⎪⎪⎩

wn = (1− ξn)un + ξn JAμ un,

zn = (1− ϑn)wn + ϑn JBμ wn,

un+1 = (1− ηn)JAμ wn + ηn JBμ zn, ∀ n ∈ N.

(16)

Then, we have the following:

(i) {un} is in a closed convex bounded set Bλ[u∗] ∩ K, where λ is a constant in (0, ∞) such that
‖u1 − u∗‖ ≤ λ.

(ii) limn→∞ ‖un − JAμ un‖ = 0 and limn→∞ ‖un − JBμ un‖ = 0.
(iii){un} converges weakly to an element of A−1(0) ∩B−1(0) ∩ Bλ[u∗].

Proof. By assumption D(A) ⊆ K ⊆ ∩μ>0R(I + μA), we known that JAμ , JBμ : K → K be
nonexpansive. Note that D(A) ∩D(B) ⊆ K and hence

u∗ ∈ A−1(0) ∩B−1(0)⇒ u∗ ∈ D(A) ∩D(B) with 0 ∈ Au∗ and 0 ∈ Bu∗
⇒ u∗ ∈ K with JAμ u∗ = u∗ and JBμ u∗ = u∗
⇒ u∗ ∈ Fix(JAμ , JBμ ) ∩K.

Next, set S = JAμ and T = JBμ . Hence, Theorem 3 is the same way as Theorem 2.

4.2. Convexly Constrained Least Square Problem

We provide applications of Theorem 2 for finding solutions to common problems with two
convexly constrained least square problems. We consider the following problem:

Let A,B ∈ B(H), and y, z ∈ H. Define ϕ, ψ : H→ R by

ϕ = ‖Au− y‖2 and ψ = ‖Bu− z‖2, ∀ u ∈ H,

where H is a real Hilbert space.
Let K be a nonempty closed convex subset of H. The objective is to find b ∈ K such that

b ∈ arg min
u∈K

ϕ(u) ∩ arg min
u∈K

ψ(u), (17)

where
arg min

u∈K
ϕ(u) := {ū ∈ K : ϕ(u∗) = inf

u∈K
ϕ(u)}.

Proposition 1 ([8]). Let H be a real Hilbert space, A ∈ B(H) with the adjoint A∗ and y ∈ H. Let K be a
nonempty closed convex subset of H. Let b ∈ H and δ ∈ (0, ∞). Then, the following statements are equivalent:

(i) b solves the following problem:
min
u∈K

‖Au− y‖2.

(ii) b = PK(b− δA∗(Ab− y)).
(iii) 〈Av−Ab, y−Ab〉 ≤ 0, for all v ∈ K.

Theorem 4. Let K be a nonempty closed convex subset of a real Hilbert space H, y, z ∈ H and A,B ∈ B(H),
for which the solution set of the problem in Equation (17) is nonempty. Let {ηn}, {ϑn} and {ξn} be sequences
of real numbers, for which 0 < c1 ≤ ηn ≤ ĉ1 < 1, 0 < c2 ≤ ϑn ≤ ĉ2 < 1, 0 < c3 ≤ ξn ≤ ĉ3 < 1 for all
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n ∈ N. Let u1 ∈ H, Parg minu∈K ϕ(u)∩ arg minu∈K ψ(u)(u1) = u∗, δ ∈ (0, 2 min{ 1
‖A‖2 , 1

‖B‖2 }), u1 ∈ K and
{un} is defined by ⎧⎪⎪⎨⎪⎪⎩

wn = (1− ξn)un + ξnSun,

zn = (1− ϑn)wn + ϑnTwn,

un+1 = (1− ηn)Swn + ηnTzn, ∀ n ∈ N.

(18)

where S,T : K → K defined by Su = PK(u − δA∗(Au − y)) and Tu = PK(u − δB∗(Bu − z)) for all
u ∈ K. Then, we have the following:

(i) {un} is in the closed ball Bλ[u∗], where λ is a constant in (0, ∞) such that ‖u1 − u∗‖ ≤ λ.
(ii) limn→∞ ‖un − Sun‖ = 0 and limn→∞ ‖un − Tun‖ = 0.
(iii){un} converges weakly to an element of arg minu∈K ϕ(u) ∩ arg minu∈K ψ(u) ∩ Bλ[u∗].

Proof. Note that: ∇ϕ(u) = A∗(Au− y), for all u ∈ H; we obtain that ‖∇ϕ(u)−∇ϕ(v)‖ = ‖A∗(Au−
y) − A∗(Av − y)‖ ≤ ‖A‖2‖u − v‖, for all u, v ∈ H. Thus, ∇ϕ is 1

‖A‖2 -ism and hence (I − δ∇ϕ) is

nonexpansive from K into H for σ ∈ (0, 2
‖A‖2 ). Therefore, S = PK(I − σ∇ϕ) and T = PK(I − τ∇ϕ)

are nonexpansive mappings from K into itself for σ ∈ (0, 2
‖A‖2 ) and τ ∈ (0, 2

‖B‖2 ), respectively. Hence,
Theorem 4 is the same way as Theorem 2.

4.3. Convex Minimization Problem

We give an application to common solutions to convex programming problems in a Hilbert space
H. We consider the following problem:

Let g1, g2 : H→ (−∞, ∞] be proper l.s.c. functions. The objective is to find x ∈ H such that:

x ∈ ∂g−1
1 (0) ∩ g−1

2 (0). (19)

Note that: J∂g1
μ = proxμg1 .

Theorem 5. Let K be a nonempty closed convex subset of a real Hilbert space H. Let g1, g2 ∈ Γ0(H), for
which the solution set of the problem in Equation (19) is nonempty. Let {ηn}, {ϑn} and {ξn} be sequences of
real numbers, for which 0 < c1 ≤ ηn ≤ ĉ1 < 1, 0 < c2 ≤ ϑn ≤ ĉ2 < 1, 0 < c3 ≤ ξn ≤ ĉ3 < 1 for all n ∈ N.
Let μ > 0, u1 ∈ H and P

∂g−1
1 (0)∩g−1

2 (0)(u1) = u∗. Let u1 ∈ K and {un} is defined by

⎧⎪⎪⎨⎪⎪⎩
wn = (1− ξn)un + ξn proxμg1(un),

zn = (1− ϑn)wn + ϑn proxμg2(wn),

un+1 = (1− ηn)proxμg1(wn) + ηn proxμg2(zn), ∀ n ∈ N.

(20)

Then, we have the following:

(i) {un} is in the closed ball Bλ[u∗], where λ is a constant in (0, ∞) such that ‖u1 − u∗‖ ≤ λ.
(ii) limn→∞ ‖un − proxμg1(un)‖ = 0 and limn→∞ ‖un − proxμg2(un)‖ = 0.
(iii){un} converges weakly to an element of ∂g−1

1 (0) ∩ g−1
2 (0) ∩ Bλ[u∗].

Proof. Using Lemma 1, we have that ∂g1 is maximal monotone. We know thatR(I + μ∂ f ) = H and
using the maximal monotonicity of ∂g1. Thus, J∂g1

μ = proxμg1 : H → H is nonexpansive. Similarly,

J∂g2
μ = proxμg2 : H→ H is nonexpansive. Hence, Theorem 5 is the same way as Theorem 2.

428



Mathematics 2019, 7, 866

4.4. Signal Processing

We consider some applications of our algorithm to inverse problems occurring from signal
processing. For example, we consider the following underdeterminated linear equation system:

y = Au + e, (21)

where u ∈ RN is recovered, y ∈ RM is observations or measured data with noisy e, and A : RN → RM

is a bounded linear observation operator. It determines a process with loss of information. For finding
solutions of the linear inverse problems in Equation (21), a successful one of some models is the convex
unconstrained minimization problem:

min
u∈RN

1
2
‖Au− y‖2 + d‖u‖1, (22)

where d > 0 and ‖ · ‖1 is the l1−norm. Thus, we can find solution to Equation (22) by applying our
method in the case g1(u) = 1

2‖Au− y‖2 and g2(u) = d‖u‖1. For any α ∈ (0, 2
L ], the corresponding

forward-backward operator Jg1,d‖·‖1
α as follows:

Jg1,d‖·‖1
α (u) = proxαd‖·‖1

(u− α∇g1(u)), (23)

where g1 is the squared loss function of the Lasso problem in Equation (22). The proximity operator
for l1−norm is defined as the shrinkage operator as follows:

proxαd‖·‖1
(u) = max(|ui| − αd, 0) · sgn(ui), (24)

where sgn(·) is the signum function. We apply the algorithm to the problem in Equation (22) follow as
Algorithm 2:

Algorithm 2: Three-step forward-backward operator

initialization: ηn, ϑn, ξn ∈ (0, 1), α, d ∈ (0, 1) u1 ∈ K and n = 1.
while stopping criterion not met do

wn = (1− ξn)un + ξn Jg1,d‖·‖1
α (un),

zn = (1− ϑn)wn + ϑn Jg1,d‖·‖1
α (wn),

un+1 = (1− ηn)Jg1,d‖·‖1
α (wn) + ηn Jg1,d‖·‖1

α (zn).
end

In our experiment, we set the hits of a signal u ∈ RN . The matrix A ∈ RM×N was generated
from a normal distribution with mean zero and one invariance. The observation y is generated by
Gaussian noise distributed normally with mean 0 and variance 10−4. We compared our Algorithm 2
with SPGA [12]. Let ηn = ϑn = ξn = 0.5, α = 0.1 and d = 0.01 in both Algorithm 2 and SPGA.
The experiment was initialized by u1 = A∗y and terminated when ‖un+1−un‖

‖un‖ < 10−4. The restoration

accuracy was measured by means of the mean squared error: MSE = ‖u∗−u‖2

N , where u∗ is an estimated
signal of u. All codes were written in Matlab 2016b and run on Dell i-5 Core laptop. We present the
numerical comparison of the results in Figures 1–6.
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Figure 1. From top to bottom: Original signal, observation data, recovered signal by Algorithm 2 and
SPGA with N = 4096, M = 1024 and 10 spikes, respectively.

Figure 2. Comparison MSE of two algorithms for recovered signal with N = 4096, M = 1024 and
10 spikes, respectively.
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Figure 3. From top to bottom: Original signal, observation data, recovered signal by Algorithm 2 and
SPGA with N = 4096, M = 1024 and 30 spikes, respectively.

Figure 4. Comparison MSE of two algorithms for recovered signal with N = 4096, M = 1024 and
30 spikes, respectively.
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Figure 5. From top to bottom: Original signal, observation data, recovered signal by Algorithm 2 and
SPGA with N = 4096, M = 1024 and 50 spikes, respectively.

Figure 6. Comparison MSE of two algorithms for recovered signal with N = 4096, M = 1024 and
50 spikes, respectively.

5. Conclusions

In this work, we introduce a modified iterative scheme in Banach spaces and solve common zeros
of accretive operators, convexly constrained least square problem, convex minimization problem and
signal processing. In the case of signal processing, all results are compared with the forward-backward
method in Algorithm 2 and SPGA, as proposed in [12]. The numerical results show that Algorithm 2
has a better convergence behavior than SPGA when using the same step sizes for both.
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The following abbreviations are used in this manuscript:

Symbols Display

l.s.c. lower semicontinuous, convex
B(H) the set of all bounded and linear operators from H into itself
r.u.c. real uniformly convex
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Abstract: Orthogonal projection a point onto a parametric curve, three classic first order algorithms
have been presented by Hartmann (1999), Hoschek, et al. (1993) and Hu, et al. (2000) (hereafter,
H-H-H method). In this research, we give a proof of the approach’s first order convergence and its
non-dependence on the initial value. For some special cases of divergence for the H-H-H method,
we combine it with Newton’s second order method (hereafter, Newton’s method) to create the hybrid
second order method for orthogonal projection onto parametric curve in an n-dimensional Euclidean
space (hereafter, our method). Our method essentially utilizes hybrid iteration, so it converges
faster than current methods with a second order convergence and remains independent from the
initial value. We provide some numerical examples to confirm robustness and high efficiency of
the method.

Keywords: point projection; intersection; parametric curve; n-dimensional Euclidean space; Newton’s
second order method; fixed point theorem

1. Introduction

In this research, we will discuss the minimum distance problem between a point and a parametric
curve in an n-dimensional Euclidean space, and how to gain the closest point (footpoint) on the curve
as well as its corresponding parameter, which is termed as the point projection or inversion problem of
a parametric curve in an n-dimensional Euclidean space. It is an important issue in the themes such as
geometric modeling, computer graphics, computer-aided geometry design (CAGD) and computer
vision [1,2]. Both projection and inversion are fundamental for a series of techniques, for instance, the
interactive selection of curves and surfaces [1,3], the curve fitting [1,3], reconstructing curves [2,4,5]
and projecting a space curve onto a surface [6]. This vital technique is also used in the ICP (iterative
closest point) method for shape registration [7].

The Newton-Raphson algorithm is deemed as the most classic one for orthogonal projection
onto parametric curve and surface. Searching the root of a polynomial by a Newton-Raphson
algorithm can be found in [8–12]. In order to solve the adaptive smoothing for the standard finite
unconstrained minimax problems, Polak et al. [13] have presented a extended Newton’s algorithm
where a new feedback precision-adjustment rule is used in their extended Newton’s algorithm.
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Once the Newton-Raphson method reaches its convergence, two advantages emerge and it converges
very fast with high precision. However, the result relies heavily on a good guess of initial value in the
neighborhood of the solution.

Meanwhile, the classic subdivision method consists of several procedures: Firstly, subdivide
NURBS curve or surface into a set of Bézier sub-curves or patches and eliminate redundancy or
unnecessary Bézier sub-curves or Bézier patches. Then, get the approximation candidate points. Finally,
get the closest point through comparing the distances between the test point and candidate points.
This technique is reflected in [1]. Using new exclusion criteria within the subdivision strategy,
the robustness for the projection of points on NURBS curves and surfaces in [14] has been
improved than that in [1], but this criterion is sometimes too critical. Zou et al. [15] use subdivision
minimization techniques which rely on the convex hull characteristic of the Bernstein basis to
impute the minimum distance between two point sets. They transform the problem into solving
of n-dimensional nonlinear equations, where n variables could be represented as the tensor product
Bernstein basis. Cohen et al. [16] develop a framework for implementing general successive subdivision
schemes for nonuniform B-splines to generate the new vertices and the new knot vectors which are
satisfied with derived polygon. Piegl et al. [17] repeatedly subdivide a NURBS surface into four
quadrilateral patches and then project the test point onto the closest quadrilateral until it can find
the parameter from the closest quadrilateral. Using multivariate rational functions, Elber et al. [11]
construct a solver for a set of geometric constraints represented by inequalities. When the dimension
of the solver is greater than zero, they subdivide the multivariate function(s) so as to bind the function
values within a specified domain. Derived from [11] but with more efficiency, a hybrid parallel
method in [18] exploits both the CPU and the GPU multi-core architectures to solve systems under
multivariate constraints. Those GPU-based subdivision methods essentially exploit the parallelism
inherent in the subdivision of multivariate polynomial. This geometric-based algorithm improves
in performance compared to the existing subdivision-based CPU. Two blending schemes in [19]
efficiently remove no-root domains, and hence greatly reduce the number of subdivisions. Through a
simple linear combination of functions for a given system of nonlinear equations, no-root domain
and searching out all control points for its Bernstein-Bézier basic with the same sign must be satisfied
with the seek function. During the subdivision process, it can continuously create these kinds of
functions to get rid of the no-root domain. As a result, van Sosin et al. [20] efficiently form various
complex piecewise polynomial systems with zero or inequality constraints in zero-dimensional or
one-dimensional solution spaces. Based on their own works [11,20], Bartoň et al. [21] propose a new
solver to solve a non-constrained (piecewise) polynomial system. Two termination criteria are applied
in the subdivision-based solver: the no-loop test and the single-component test. Once two termination
criteria are satisfied, it then can get the domains which have a single monotone univariate solution.
The advantage of these methods is that they can find all solutions, while their disadvantage is that
they are computationally expensive and may need many subdivision steps.

The third classic methods for orthogonal projection onto parametric curve and surface
are geometry methods. They are mainly classified into eight different types of geometry
methods: tangent method [22,23], torus patch approximating method [24], circular or spherical
clipping method [25,26], culling technique [27], root-finding problem with Bézier clipping [28,29],
curvature information method [6,30], repeated knot insertion method [31] and hybrid geometry
method [32]. Johnson et al. [22] use tangent cones to search for regions with satisfaction of distance
extrema conditions and then to solve the minimum distance between a point and a curve, but it
is not easy to construct tangent cones at any time. A torus patch approximatively approaches for
point projection on surfaces in [24]. For the pure geometry method of a torus patch, it is difficult to
achieve high precision of the final iterative parametric value. A circular clipping method can remove
the curve parts outside a circle with the test point being the circle’s center, and the radius of the
elimination circle will shrink until it satisfies the criteria to terminate [26]. Similar to the algorithm [26],
a spherical clipping technique for computing the minimum distance with clamped B-spline surface
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is provided by [25]. A culling technique to remove superfluous curves and surfaces containing no
projection from the given point is proposed in [27], which is in line with the idea in [1]. Using Newton’s
method for the last step [1,25–27], the special case of non-convergence may happen. In view of the
convex-hull property of Bernstein-Bézier representations, the problem to be solved can be formulated
as a univariate root-finding problem. Given a C1 parametric curve c(t) and a point p, the projection
constraint problem can be formulated as a univariate root-finding problem 〈c′(t), c(t)− p〉 = 0 with a
metric induced by the Euclidean scalar product in Rn. If the curve is parametrized by a (piece-wise)
polynomial, then the fast root-finding schemes as a Bézier clipping [28,29] can be used. The only issue
is the C1 discontinuities that can be checked in a post-process. One advantage of these methods is that
they do not need any initial guess on the parameter value. They adopt the key technology of degree
reduction via clipping to yield a strip bounded of two quadratic polynomials. Curvature information
is found for computing the minimum distance between a point and a parameter curve or surface
in [6,30]. However, it needs to consider the second order derivative and the method [30] is not fit for
n-dimensional Euclidean space. Hu et al. [6] have not proved the convergence of their two algorithms.
Li et al. [33] have strictly proved convergence analysis for orthogonal projection onto planar parametric
curve in [6]. Based on repeated knot insertion, Mørken et al. [31] exploit the relationship between a
spline and its control polygon and then present a simple and efficient method to compute zeros of
spline functions. Li et al. [32] present the hybrid second order algorithm which orthogonally projects
onto parametric surface; it actually utilizes the composite technology and hence converges nicely with
convergence order being 2. The geometric method can not only solve the problem of point orthogonal
projecting onto parametric curve and surface but also compute the minimum distance between
parametric curves and parametric surfaces. Li et al. [23] have used the tangent method to compute
the intersection between two spatial curves. Based on the methods in [34,35], they have extended to
compute the Hausdorff distance between two B-spline curves. Based on matching a surface patch
from one model to the other model which is the corresponding nearby surface patch, an algorithm
for solving the Hausdorff distance between two freeform surfaces is presented in Kim et al. [36],
where a hierarchy of Coons patches and bilinear surfaces that approximate the NURBS surfaces
with bounding volume is adopted. Of course, the common feature of geometric methods is that the
ultimate solution accuracy is not very high. To sum up, these algorithms have been proposed to exploit
diverse techniques such as Newton’s iterative method, solving polynomial equation roots methods,
subdividing methods, geometry methods. A review of previous algorithms on point projection and
inversion problem is obtained in [37].

More specifically, using the tangent line or tangent plane with first order geometric information,
a classical simple and efficient first order algorithm which orthogonally project onto parametric curve
and surface is proposed in [38–40] (H-H-H method). However, the proof of the convergence for the
H-H-H method can not be found in this literature. In this research, we try to give two contributions.
Firstly, we give proof that the algorithm is first order convergent and it does not depend on the
initial value. We then provide some numerical examples to show its high convergence rate. Secondly,
for several special cases where the H-H-H method is not convergent, there are two methods (Newton’s
method and the H-H-H method) to combine our method. If the H-H-H method’s iterative parametric
value is satisfied with the convergence condition of the Newton’s method, we then go to Newton’s
method to increase the convergence process. Otherwise, we go on the H-H-H method until its iterative
parametric value is satisfied with the convergence condition of the Newton’s method, and we then
turn to it as above. This algorithm not only ensures the robustness of convergence, but also improves
the convergence rate. Our hybrid method can go faster than the existing methods and ensures the
independence to the initial value. Some numerical examples verify our conclusion.

The rest of this paper is arranged as follows. In Section 2, convergence analysis of the H-H-H
method is presented. In Section 3, for several special cases where the H-H-H method is not convergent,
an improved our method is provided. Convergence analysis for our method is also provided in this
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section. In Section 4, some numerical examples for our method are verified. In Section 5, conclusions are
provided.

2. Convergence Analysis of the H-H-H Method

In this part, we will prove that the algorithm defined by Equations (2) or (3) is of first
order convergence and its convergence does not rely on the initial value. Suppose a C2 curve
c(t) = ( f1(t), f2(t), . . . , fn(t)) in an n-dimensional Euclidean space Rn(n ≥ 2) and a test point
p = (p1, p2, . . . , pn). The first order geometric method to compute the footpoint q of test point p
can be implemented as below. Projecting test point p onto the tangent line of the parametric curve c(t)
in an n-dimensional Euclidean space at t = tm gets a point q determined by c(tm) and its derivative
c′(tm). The footpoint can be approximated as

q = c(tm) + Δtc′(tm). (1)

Then,

Δt =
〈c′(tm), p− c(tm)〉
〈c′(tm), c′(tm)〉 , (2)

where 〈x, y〉 is the scalar product of vectors x, y ∈ Rn. Equation (2) can also be expressed as

K1(tm) = tm +
〈c′(tm), p− c(tm)〉
〈c′(tm), c′(tm)〉 . (3)

Let tm ← K1(tm), and repeatedly iterate the above process until |K1(tm)− tm| is less than an error
tolerance ε. This method is addressed as H-H-H method [38–40]. Furthermore, convergence of this
method will not depend on the choice of the initial value. According to many of our test experiments,
when the iterative parametric value approaches the target parametric value α, the iteration step size
becomes smaller and smaller, while the corresponding number of iterations becomes bigger and bigger.

Theorem 1. The convergence order of the method defined by Equations (2) or (3) is one, and its
convergence does not depend on the initial value.

Proof. We adopt the numerical analysis method which is equivalent to those in the literature [41,42].
Firstly, we deduce the expression of footpoint q. Suppose that parameter curve c(t) is a C2 curve in an
n-dimensional Euclidean space Rn(n ≥ 2), where the corresponding projecting point with parameter α

is orthogonal projecting of the test point p = (p1, p2, . . . , pn) onto the parametric curve c(t). It is easy
to indicate a relational expression

〈p− h, n〉 = 0, (4)

where h = c(α) and tangent vector n = c′(α). In order to solve the intersection (footpoint q) between
the tangent line, which goes through the parametric curve c(t) at t = tm, and the perpendicular line,
which is determined by the test point p, we try to express the equation of the tangent line as:

x = c(tm) + c′(tm) · s, (5)

where x = (x1, x2, . . . , xn) and s is a parameter. In addition, the vector of line segment both going
through the test point p and the point c(tm) will be

y = p− x, (6)

where y = (y1, y2, . . . , yn). Because the vector (6) and the tangent vector c′(tm) of Equation (5) are
orthogonal to each other, the current parameter value s of Equation (5) is
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s0 =
〈p− c(tm), c′(tm)〉
〈c′(tm), c′(tm)〉 . (7)

Substituting (7) into (5), we have

q = c(tm) + c′(tm) · s0. (8)

Thus, the footpoint q = (q1, q2, . . . , qn) is determined by Equation (8).
Secondly, we deduce that the convergence order of the method defined by (2) or (3) is first order

convergent. Our proof method absorbs the idea of [41,42]. Substituting (8) into (2), and simplifying,
we get the relationship,

Δt =
〈p− c(tm), c′(tm)〉
〈c′(tm), c′(tm)〉 . (9)

Using Taylor’s expansion, we get

c(tm) = B0 + B1em + B2e2
m + o(e3

m), (10)

c′(tm) = B1 + 2B2em + o(e2
m), (11)

where em = tm − α, and Bi = (1/i!)c(i)(α), i = 0, 1, 2, . . . From (10) and (11) and combining with (4),
the numerator of Equation (9) can be transformed into the following one:

〈p− c(tm), c′(tm)〉
= L1em + L2e2

m + o(e3
m),

(12)

where L1 = 2 〈p− B0, B2〉 − 〈B1, B1〉 , L2 = −3 〈B1, B2〉. By (11), the denominator of Equation (9) can
be changed as follows:

〈c′(tm), c′(tm)〉
= M1 + M2em + M3e2

m + o(e3
m),

(13)

where M1 = 〈B1,B1〉 , M2 = 4 〈B1,B2〉 , M3 = 4 〈B2,B2〉. Substituting Equations (12) and (13) into the
right-hand side of Equation (9), we get

Δt =
〈p− c(tm), c′(tm)〉
〈c′(tm), c′(tm)〉

=
L1em + L2e2

m + o(e3
m)

M1 + M2em + M3e2
m + o(e3

m)
.

(14)

Using Taylor’s expansion by Maple 18, and through simplification, we get

K1(tm) =α + (
L1

M1
+ 1)em +

L2M1 − L1M2

M2
1

e2
m + o(e3

m),

=α + (
L1

M1
+ 1)em + o(e2

m),

=α + C0em + o(e2
m),

(15)

where the symbol C0 is the coefficient of the first order error em of Equation (15). The result implies the
iterative Equations (2) or (3) is of first order convergence.

Now, we try to interpret that Equations (2) or (3) do not depend on the initial value.
Our proof method absorbs the idea of references [43,44]. Without loss of generality, we only prove

that convergence of Equations (2) or (3) does not depend on the initial value in two-dimensional case.
As to convergence of Equations (2) or (3) not being dependent on the initial value in general
n-dimensional Euclidean space case, it is completely equivalent to the two-dimensional case.
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Firstly, we interpret Figure 1. For a horizontal axis t, there are two points are on the planar
parametric curve c(t). For the first point c(tm) on the horizontal axis, the test point p orthogonal
projects it onto the planar parametric curve c(t) and yields the second point and its corresponding
parameter value α on the horizontal axis. Then, by the iterative methods (2) or (3), the line segment
connected by the point p and the point c(α) is perpendicular to the tangent line of the planar parametric
curve c(t) at t = α. The footpoint q is determined by the tangent line of the planar parametric curve
c(t) through the point c(tm). Evidently, the parametric value tm+1 of footpoint q can be used as the
next iterative value. M is the corresponding parametric value of the middle point of the point c(tm)

and the footpoint q.

c( )

c(t )
m

t
m

c(t)

tm+1

Figure 1. Geometric illustration for convergence analysis.

Secondly, we prove the argument whose convergence of Equations (2) or (3) does not depend on
the initial value. It is easy to know that t denotes the corresponding parameter for the first dimensional
of the planar parametric curve on the two-dimensional plane. When the iterative Equations (2)
or (3) start to run, we suppose that the iterative parameter value is satisfied with the inequality
relationship tm < α and the corresponding parameter of the footpoint q is tm+1, as shown in Figure 1.

The middle point of two points (tm+1, 0) and (tm, 0) is (M, 0), i.e., M =
tm + tm+1

2
, and, because of

0 < Δt = tm+1 − tm, then there exists an inequality tm < M < α. Equivalently, tm − α < tm+1 − α <

α − tm = −(tm − α), which can be expressed as |em+1| < |em|, where em = tm − α. If tm > α, we
can get the same result through the same method. Thus, an iterative error expression |em+1| < |em|
in a two-dimensional plane is demonstrated. Thus, it is known that convergence of the iterative
Equations (2) or (3) does not depend on the initial value in two-dimensional planes (see Figure 1).
Furthermore, we could get the argument that convergence of the iterative Equations (2) or (3) does not
depend on the initial value in an n-dimensional Euclidean space. The proof is completed.

3. The Improved Algorithm

3.1. Counterexamples

In Section 2, convergence of the H-H-H method does not depend on the initial value. For special
cases with non-convergence by the H-H-H method, we then enumerate nine counterexamples.
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Counterexample 1. There are a parametric curve c(t) = (t, 1 + t2) and a test point p = (0, 0).
The projection point and parametric value of the test point p are (0, 1) and α = 0, respectively.
As to many initial values, the H-H-H method fails to converge to α. When the initial values are t
= −3,−2,−1.5, 1.5, 2, 3, respectively, there repeatedly appear alternating oscillatory iteration values of
0.412415429665, −0.412415429665. Furthermore, for a parametric curve c(t) = (t, 1 + a1t2 + a2t4 + a3t6 +

a4t8 + a5t10), a1 �= 0, a2 �= 0, a3 �= 0, a4 �= 0, a5 �= 0, about p = (0, 0) and many initial values, the H-H-H
method fails to converge to α (see Figure 2).

Figure 2. Geometric illustration for counterexample 1.

Counterexample 2. There are a parametric curve c(t) = (t, t2, t4, t6, 1 + t2 + t4 + t6 + t8) and
a test point p = (0, 0, 0, 0, 0). The projection point and parametric value of the test point p are
(0, 0, 0, 0, 1) and α = 0, respectively. For any initial value, the H-H-H method fails to converge to
α. When the initial values are t = −5,−4,−3,−2,−1, 1, 2, 3, 4, 5, respectively, there repeatedly
appear alternating oscillatory iteration values of 0.304949569175, −0.304949569175. Furthermore,
for a parametric curve c(t) = (a0t, a1t2,a2t4,a3t6,1 + a4t2 + a5t4 + a6t6 + a7t8 + a8t10 + a9t28),
a0 �= 0, a1 �= 0, a2 �= 0, a3 �= 0, a4 �= 0, a5 �= 0, a6 �= 0, a7 �= 0, a8 �= 0, a9 �= 0, about point p = (0, 0, 0, 0, 0)
and any initial value, the H-H-H method fails to converge to α.

Counterexample 3. There are a parametric curve c(t) = (t, sin(t)), t ∈ [0, 3] and a test point
p = (4, 9). The projection point and parametric value of the test point p are (1.842576, 0.9632946) and
α = 1.842576, respectively. For point p and any initial value, the H-H-H method fails to converge to α.
When the initial values are t = −5,−4,−3,−2,−1, 1, 2, 3, 4, 5, respectively, there repeatedly appear alternating
oscillatory iteration values of 2.165320, 0.0778704, 6.505971, 9.609789. In addition, for a parametric curve
c(t) = (t, sin(at)), a �= 0, for any test point p and any initial value, the H-H-H method fails to converge to α

(see Figure 3).
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Figure 3. Geometric illustration of counterexample 3.

Counterexample 4. There are a parametric curve c(t) = (t, cos(t)), t ∈ [0, 3] and a test point p = (2, 6).
The projection point and parametric value of the test point p are (0.3354892, 0.9442493) and α = 0.3354892,
respectively. For test point p and any initial value, the H-H-H method fails to converge to α. When the initial
value is t = −5, alternating oscillatory iteration values of 5.18741299662, 3.59425803253, −0.507188248308,
1.6901041247, 3.82746208506 repeatedly appear. When the initial value is t = 2, very irregular oscillatory
iteration values of 0.652526561595, −0.720371663877, −2.39555359952, 0.365881194752, 2.06880954777,
3.18725085474, 1.71447110647, etc. appear In addition, for a parametric curve c(t) = (t, cos(at)), a �= 0,
for any test point p and any initial value, the H-H-H method fails to converge to α (see Figure 4).

Figure 4. Geometric illustration of counterexample 4.
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Counterexample 5. There are a parametric curve c(t) = (t, t, t, t, sin(t)), t ∈ [6, 9] and a test point
p = (3, 5, 7, 9, 11). The projection point and parametric value of the test point p are (7.310786, 7.310786,
7.310786, 7.310786, 0.8560612) and α = 7.310786, respectively. For point p and any initial value, the H-H-H
method fails to converge to α. When the initial values are t = −9,−7,−5, 6, 8, respectively, there repeatedly
appear alternating oscillatory iteration values of 7.24999006346, 6.37363460615. In addition, for a parametric
curve c(t) = (t, t, t, t, sin(at)), t ∈ [6, 9], a �= 0 with a test point p = (3, 5, 7, 9, 11), for any initial value,
the H-H-H method fails to converge to α.

Counterexample 6. There are a parametric curve c(t) = (t, t, t, t, cos(t)), t ∈ [4, 8] and a test
point p = (2, 4, 6, 8, 10). The projection point and parametric value of the test point p are (5.883406,
5.883406, 5.883406, 5.883406, 0.9211469) and α = 5.883406, respectively. For point p and any initial value,
the H-H-H method fails to converge to α. When the initial values are t =,−4,−3,−2, 4, 5, 6, 7, respectively,
there repeatedly appear alternating oscillatory iteration values of 4.17182145828, 7.80116702003. In addition,
about a parametric curve c(t) = (t, t, t, t, cos(at)), t ∈ [4, 8], a �= 0 with a point p = (2, 4, 6, 8, 10), for any
initial value, the H-H-H method fails to converge. The non-convergence explanation of the three counterexamples
below are similar to the preceding six ones and omitted to save space.

Counterexample 7. There are a parametric curve c(t) = (t4 + 2t2 + 1, t2 + 1, t4 + 2, t2, 3t6 + t4 + 2t2)

in five-dimensional Euclidean space and a test point p = (0, 0, 0, 0, 0). The projection point and parametric
value of the test point p are (1, 1, 2, 0, 0) and α = 0, respectively. For any initial value t0, the H-H-H method
fails to converge. We also test many other examples, such as when parametric curve is completely symmetrical
and the point is on the symmetrical axis of parametric curve. For any initial value t0, the same results remain.

Counterexample 8. There are a parametric curve c(t) = (t,sin(t), t,sin(t),sin(t)), t ∈ [−5, 5] in
five-dimensional Euclidean space and a test point p = (3, 4, 5, 6, 7). The corresponding orthogonal projection
parametric value α are −3.493548, −2.280571, 1.875969, 4.791677, respectively. For any initial value t0,
the H-H-H method fails to converge.

Counterexample 9. There is a parametric curve c(t) =(sin(t),cos(t), t, sin(t),cos(t)), t ∈ [−5, 5]
in five-dimensional Euclidean space and a test point p = (3, 4, 5, 6, 7). The corresponding orthogonal projection
parametric value α are −4.833375, −3.058735, 0.9730030, 3.738442, respectively. For any initial value t0,
the H-H-H method fails to converge.

3.2. The Improved Algorithm

Due to the H-H-H method’s non-convergence for some special cases, the improved algorithm
is presented to ensure the converge for any parametric curve, test point and initial value. The most
classic Newton’s method can be expressed as

tm+1 = tm − f (tm)

f ′(tm)
, (16)

where f (t) =< T1, V1 >= 0, T1 = c′(t), V1 = p− c(t). It converges faster than the H-H-H method.
However, the convergence of this depends on the chosen initial value. Only when the local convergence
condition for the Newton’s method is satisfied, the method can acquire high effectiveness. In order
to improve the robustness and rate of convergence, based on the the H-H-H method, our method is
proposed. Combining the respective advantage of their two methods, if the iterative parametric value
of the H-H-H method is satisfied with the convergence condition of the Newton’s method, we then go
to the method to increase the convergence process. Otherwise, we continue the H-H-H method until it
can generate iterative parametric value while satisfying the convergence condition by the Newton’s
method, and we then go to the iterative process mentioned above. Thus, we run to the end of the
whole process. The procedure not only ensures the robustness of convergence, but also improves the
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convergence rate. Using a hybrid strategy, our method is faster than current methods and independent
from the initial value. Some numerical examples verify our conclusion. Our method can be realized as
follows (see Figure 5).
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Figure 5. Geometric illustration for our method. (a) Running the H-H-H method; (b) Judging the
H-H-H method whether being satisfied the convergence condition of fixed point theorem for the
Newton’s iterative method; (c) Running the Newton’s iterative method.

Hybrid second order method

Input: Initial iterative value t0, test point p and parametric curve c(t) in an n-dimensional
Euclidean space.
Output: The corresponding parameter α determined by orthogonal projection point.
Step 1. Initial iterative parametric value t0 is input.
Step 2. Using the iterative Equation (3), calculate the parametric value K1(t0), and update K1(t0) to t1,

namely, t1 = K1(t0).
Step 3. Determine whether absolute value of difference between the current t0 and the new t1 is near 0.

If so, this algorithm is ended.
Step 4. Substitute the new t1 into

∣∣∣ f (t) f ′′(t)
f ′(t)2

∣∣∣, determine if
∣∣∣ f (t1) f ′′(t1)

f ′(t1)2

∣∣∣ < 1.

If (
∣∣∣ f (t1) f ′′(t1)

f ′(t1)2

∣∣∣ < 1) {

Using Newton’s iterative Equation (16), compute t0 = t1 − f (t1)
f ′(t1)

until absolute value of
difference between the current t1 and the new t0 is near 0; then, this algorithm ends.
}
Else {

turn to Step 2.

}

Remark 1. Firstly, a geometric illustration of our method in Figure 5 would be presented. Figure 5a illustrates
the second step of our method where the next iterative parameter value tm+1 = K1(tm) = tm + 〈c′(tm),p−c(tm)〉

〈c′(tm),c′(tm)〉
is determined by the iterative Equation (3). During the iterative process, the step Δt will become smaller and
smaller. Thus, the next iterative parameter value tm+1 comes close to parameter value tm but far from the
footpoint q. If the third step of our method is not over, then our method goes into the fourth step. Figure 5b
is judging condition of a fixed point theorem of the fourth step of our method. If T =

∣∣∣ f (t) f ′′(t)
f ′(t)2

∣∣∣ < 1, then it
turns to the Newton’s method in Figure 5c until it runs to the end of the whole process of Newton’s second order
iteration; otherwise, it goes to the second step in Figure 5a.

Secondly, we give an interpretation for the singularity case of the iterative Equation (16). As to some
special cases where the H-H-H method is not convergent in Section 3.1, our method still converges. We test
many examples for arbitrary initial value, arbitrary test point and arbitrary parametric curve and find that our
method remains more robust to converge than the H-H-H method. If the first order derivative f ′(tm) of the
iterative Equation (16) develops into 0, i.e., f ′(tm) = 0 about some non-negative integer m, we use a perturbed
method to solve the special problem, which adopts the idea in [23,45]. Namely, the function f ′(tm) = 0 could be
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increased by a very small positive number ε, i.e., f ′(tm) = f ′(tm) + ε, and then the iteration by Equation (16)
is continued in order to calculate the parameter value. On the other hand, if the curve can be parametrized by
a (piece-wise) polynomial, then the fast root-finding schemes such as Bézier clipping [28,29] are efficient ones.
The only issue is the C1 discontinuities that can be checked in a post-process. One then does not need any initial
guess on the parameter value.

Thirdly, if the curve is only C0 continuous, and the closest point can be exactly such a point, then the
derivative is not well defined and our method may fail to find such a point. Namely, there are singular points
on the parametric curve. We adopt the following technique to solve the problem of singularity. We use the
methods [46–48] to find all singular points on the parametric curve and the corresponding parametric value of
each singular point as many as possible. Then, the hybrid second order method comes into work. If the current
iterative parametric value tm is the corresponding parametric value of a singular point, we make a very small
perturbation ε to the current iterative parametric value tm, i.e., tm = tm + ε. The purpose of this behavior is to
enable the hybrid second order method to run normally. Then, from all candidate points (singular points and
orthogonal projection points), a corresponding point is selected so that the distance between the corresponding
point and the test point is the minimum one. When the entire program terminates, the minimum distance and its
corresponding parameter value are found.

3.3. Convergence Analysis of the Improved Algorithm

In this subsection, we prove the convergence analysis of our method.

Theorem 2. In Reference [49] (Fixed Point Theorem)

If φ(x) ∈ C[c, d], φ(x) ∈ [c, d] for all x ∈ [c, d]; furthermore, if φ′(x) exists on (c, d) and a positive
constant L < 1 exists with |φ′(x)| ≤ L for all x ∈ (c, d), then there exists exactly one fixed point in [c, d].

In addition, if φ(t) = t− f (t)
f ′(t) , the corresponding fixed point theorem of Newton’s method is

as follows:

Theorem 3. Let f : [c, d]→ [c, d] be a differentiable function, if for all t ∈ [c, d], there is∣∣∣∣ f (t) f ′′(t)
f ′2(t)

∣∣∣∣ < 1. (17)

Then, there is a fixed point l0 ∈ [c, d] in Newton’s iteration expression (16) such that

l0 = l0 − f (l0)
f ′(l0)

. Meanwhile, the iteration sequence {tm} been from expression (16) can converge to

the fixed point when ∀t0 ∈ [c, d].

Theorem 4. Our method is second order convergent.

Proof: Let α be a simple zero for a nonlinear function f (t) =< T1, V1 >= 0, where T1 = c′(t), V1 =

p− c(t). Using Taylor’s expansion, we have

f (tm) = f ′(α)[em + b2e2
m + b3e3

m + o(e4
m)], (18)

f ′(tm) = f ′(α)[2b2em + 3b3e2
m + o(e3

m)], (19)

where bk =
f (k)(α)
k! f ′(α) , k = 2, 3, . . . , and em = tm − α. Combining with (15), we then have

ym = φ(tm) = tm − f (tm)

f ′(tm)
= α + b2C2

0e2
m + o(e3

m). (20)
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This means that the convergence order of our method is 2. The proof is completed. �

Theorem 5. Convergence of our method does not depend on the initial value.

Proof. According to the description of our method, if the iterative parametric value of the H-H-H
method is satisfied with the convergence condition of the Newton’s method, we then go to the
Newton’s method. Otherwise, we steadily adopt the H-H-H method until its iterative parametric
value is satisfied with the convergence condition of the Newton’s method, and we go to Newton’s
method. Then, we run to the end of the whole process. Theorem 1 ensures that it does not depend on
the initial value. If our method goes to the fourth step and if it is appropriate to the condition of the
fixed point theorem (Theorem 3), Newton’s method is realized by our method. Then, the fourth step
of our method being also independent of the initial value can be confirmed by Theorem 3. In brief,
convergence of our method does not depend on the initial value via the whole algorithm execution
process. The proof is completed.

4. Numerical Experiments

In order to illustrate the superiority of our method to other algorithms, we provide five numerical
examples to confirm its robustness and high efficiency. From Tables 1–14, the iterative termination
criteria is satisfied such that |tm − α| < 10−17and |tm+1 − tn| < 10−17. All numerical results were
computed through g++ in a Fedora Linux 8 environment. The approximate zero α reached up to
the 17th decimal place is reflected. These results of our five examples are obtained from computer
hardware configuration with T2080 1.73 GHz CPU and 2.5 GB memory.

Example 1. There is a parametric curve c(t) = ( f1(t), f2(t), f3(t)) = (6t7 + t5, 5t8 + 3t6, 10t12 + 8t8 +

6t6 + 4t4 + 2t2 + 3), t ∈ [−2, 2] in three-dimensional Euclidean space and a test point p = (p1, p2, p3) =

(2.0, 4.0, 2.0). Using our method, the corresponding orthogonal projection parametric value is α = 0.0, the initial
values t0 are 0,2,4,5,6,8,9,10, respectively. For each initial value, the iteration process runs 10 times and then
10 different iteration times in nanoseconds, respectively. In Table 1, the average run time of our method for eight
different initial values are 536,142, 77,622, 101,481, 119,165, 126,502, 142,393, 150,801, 156,413 nanoseconds,
respectively. Finally, the overall average running time is 176,315 nanoseconds (see Figure 6). If test point
p is (2.0, 2.0, 2.0), the corresponding orthogonal projection parametric value is α = 0.0, we replicate the
procedure using our method and report the results in Table 2. In Table 2, the average running time of our
method for 8 different initial values are 627,996, 89,992, 119,241, 139,036, 148,269, 167,364, 167,364, 178,554
nanoseconds, respectively. Finally, the overall average running time is 205,228 nanoseconds (see Figure 7).
However, for the above two cases, the H-H-H method does not converge for any initial iterative value.

Because of a singular point on the parametric curve, we have also added some pre-processing steps
before our method. (1) Find the singular point (0,0,3) and the corresponding parametric value 0 by using
the methods [21,46–48]. (2) Using our method, the orthogonal projection points of test points (2,4,2) and
(2,2,2) and their corresponding parameter values 0 and 0 are calculated, respectively. (3) From all candidate
points(singular point and orthogonal projection point), corresponding point is selected so that the distance
between the corresponding point and the test point is the minimum one. In Figure 6, the blue point denotes
singular point (0,0,3), which is also the orthogonal projecting point of the test point (2,4,2). This is the same for
the blue point in Figure 7.
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Table 1. Running time for different initial values of Example 1 by our method with test point p = (2.0,
4.0, 2.0).

t0 0 2 4 5 6 8 9 10

α 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 498,454 75,487 105,563 116,470 123,031 134,941 154,253 156,872
2 555,709 81,629 108,064 117,762 125,946 140,940 153,468 155,830
3 509,173 82,824 100,744 111,206 134,367 141,705 150,013 158,715
4 564,222 77,465 96,721 114,757 129,128 173,027 150,320 158,580
5 502,986 81,028 97,142 118,535 120,668 132,856 155,335 149,437
6 553,198 79,520 104,307 120,795 129,351 150,085 151,073 143,065
7 576,814 74,268 100,231 115,002 132,322 139,919 154,754 159,014
8 524,848 81,982 99,604 115,263 122,401 139,345 143,568 175,169
9 528,848 71,228 103,186 140,023 122,040 135,006 145,434 154,016
10 547,161 70,789 99,247 121,834 125,766 136,103 149,790 153,435
Average 536,142 77,622 101,481 119,165 126,502 142,393 150,801 156,413

Total Average 176,315

Table 2. Running time for different initial values of Example 1 by our method with test point p = (2.0,
2.0, 2.0).

t0 0 2 4 5 6 8 9 10

α 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 595,515 92,371 119,904 135,660 148,751 162,758 171,535 177,355
2 648,825 91,746 119,348 135,284 148,531 162,541 171,333 176,431
3 595,772 91,633 119,248 135,322 148,222 162,240 171,095 176,501
4 648,472 91,565 119,139 135,355 148,165 191,884 171,366 176,395
5 595,856 91,556 119,168 135,406 148,144 162,224 171,417 176,507
6 648,305 91,532 119,018 135,316 148,169 183,342 171,413 176,473
7 647,406 91,587 119,069 135,283 148,197 162,291 171,282 176,397
8 595,423 91,617 119,247 135,140 14,8101 162,116 171,342 196,529
9 646,551 83,167 119,135 172,412 148,149 162,148 171,313 176,390
10 657,838 83,147 119,131 135,179 148,259 162,094 171,609 176,557
Average 627,996 89,992 119,241 139,036 148,269 167,364 171,371 178,554

Total Average 205,228

Figure 6. Geometric illustration for the test point p = (2.0, 4.0, 2.0) of Example 1.
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Figure 7. Geometric illustration for the test point p = (2.0, 2.0, 2.0) of Example 1.

Example 2. There is a spatial quartic quasi-rational Bézier curve c(t) = ( f1(t), f2(t), f3(t)) =

(
u(t)
a(t)

,
v(t)
a(t)

,
w(t)
a(t)

), where u(t) = 2t4 + 3t3 + 3t2 + 12t + 1, v(t) = 4t4 + 3t3 + 7t2 + 7t + 21, w(t) =

5t4 + t3 + 9t2 + 11t + 13, a(t) = 4t4 + 8t3 + 17t2 + 15t + 6, t ∈ [−2, 2] and a test point p = (p1, p2, p3) =

(1.0, 3.0, 5.0). The corresponding orthogonal projection parametric value α are −1.4118250062741212,
−0.61917136491841674, −0.059335038305820650, 1.8493434997820080, respectively. Using our method,
the initial values t0 are −2.4,−2.1,−2.0,−1.8,−1.6,−1.2,−1.0,−0.8, respectively. For each initial value, the
iteration process runs 10 times and then 10 different iteration times in nanoseconds, respectively. From Table 3,
the average running time of our method for eight different initial values are 85,344, 93,936, 79,424, 62,643,
54,482, 22,982, 25,654, 26,868 nanoseconds, respectively. Finally, the overall average running time is 56,417
nanoseconds (see Figure 8). If test point p is (2.0, 4.0, 8.0), the corresponding orthogonal projection parametric
value α are −1.2589948653798823, −0.62724968160147096,−0.14597283439336865, 1.8584532894110559,
respectively. We firstly replicate the procedure using our method and report the results in Table 4. From Table 4,
the average running time of our method for eight different initial iterative values are 101,436, 109,001, 95,061,
77,563, 62,366, 27,054, 29,587, 32,501 nanoseconds, respectively. Finally, the overall average running time
is 66,821 nanoseconds (see Figure 9). We then replicate the procedure using the algorithm [26] and report the
results in Table 5. From Table 5, the average running time of the algorithm [26] for eight different initial values
are 619,772, 654,281, 584,653, 467,856, 384,393, 163,225, 183,257, 195,013 nanoseconds, respectively. Finally,
the overall average running time is 406,556 nanoseconds. However, for the above two cases, the H-H-H method
does not converge for any initial value.
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Table 3. Running time for different initial values of Example 2 by our method with test point p = (1.0,
3.0, 5.0).

t0 −2.4 −2.1 −2 −1.8 −1.6 −1.2 −1 −0.8

α −1.4118 0.61917 −1.4118 0.61917 −0.059 −0.059 1.84934 1.84934
1 88,695 90,501 75,137 68,499 52,014 24,731 26,295 28,444
2 89,958 91,254 79,411 64,563 54,321 22,014 26,278 28,024
3 83,956 95,063 79,553 63,237 54,683 22,733 24,813 28,760
4 83,623 96,033 82,022 68,075 51,098 23,270 24,573 26,707
5 83,368 95,700 76,197 63,518 51,752 22,321 24,644 26,586
6 83,631 97,303 80,984 62,608 53,473 21,658 24,009 28,209
7 87,286 94,655 78,483 66,844 52,277 23,502 25,554 28,725
8 87,150 96,316 79,215 64,333 51,554 23,217 26,234 28,295
9 86,300 89,399 94,487 66,665 50,279 23,190 25,791 26,160
10 89,761 96,377 82,362 64,371 50,367 22,332 23,929 27,273
Average 85,344 93,936 79,424 62,643 54,482 22,982 25,654 26,868

Total Average 56,417

Table 4. Running time for different initial values of Example 2 by our method with test point p = (2.0,
4.0, 8.0).

t0 −2.4 −−2.1 −−2 −1.8 −1.6 −1.2 −1 −0.8

α −0.6272 −0.1459 −0.6272 −1.2589 −0.1459 1.858 −1.2589 1.858
1 101,366 109,667 92,799 77,983 62,865 29,460 29,755 32,649
2 102,027 108,844 92,709 77,477 62,269 27,177 29,555 32,458
3 101,526 109,010 92,709 77,587 62,284 26,885 29,619 32,538
4 101,266 108,909 92,724 77,441 62,374 26,785 29,557 32,478
5 101,346 108,944 92,714 77,386 62,214 26,691 29,559 32,505
6 101,315 108,990 92,764 77,557 62,334 26,731 29,564 32,497
7 101,415 108,834 92,614 77,582 62,415 26,720 29,573 32,512
8 101,306 108,945 92,528 77,461 62,309 26,715 29,548 32,493
9 101,562 108,954 116,107 77,542 62,284 26,684 29,549 32,429
10 101,235 108,910 92,939 77,616 62,314 26,690 29,595 32,451
Average 101,436 109,001 95,061 77,563 62,366 27,054 29,587 32,501

Total Average 66,821

Table 5. Running time for different initial values of Example 2 by the algorithm [26].

t0 −2.4 −2.1 −2.0 −1.8 −1.6 −1.2 −1.0 −0.8

α −0.6272 −0.1459 −0.6272 −1.2589 −0.1459 1.858 −1.2589 1.858
1 633,173 660,734 566,675 470,236 391,687 171,352 175,965 198,543
2 597,065 628,741 565,012 485,368 367,539 161,649 185,457 197,798
3 652,494 675,268 600,951 463,899 396,359 163,879 188,682 187,128
4 649,281 653,066 573,597 460,967 385,325 156,876 182,979 195,214
5 622,109 687,282 568,766 472,217 402,669 170,876 189,508 202,540
6 633,737 627,667 562,864 490,735 374,340 165,445 175,457 191,037
7 584,705 637,608 563,523 468,230 395,411 163,631 175,676 187,539
8 607,439 693,001 585,948 449,706 400,728 161,467 189,216 187,433
9 637,036 639,359 671,613 444,834 359,918 157,235 188,119 195,867
10 580,678 640,082 587,577 472,368 369,954 159,834 181,510 207,033
Average 619,772 654,281 584,653 467,856 384,393 163,225 183,257 195,013

Total Average 406,556
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Figure 8. Geometric illustration for the first case of Example 2.

Figure 9. Geometric illustration for the second case of Example 2.

Example 3. There is a parametric curve c(t) = ( f1(t), f2(t), f3(t), f4(t), f5(t)) =

(cos(t), sin(t), t, cos(t), sin(t)), t ∈ [−2, 2] in five-dimensional Euclidean space and a test point
p = (p1, p2, p3, p4, p5) = (3.0, 4.0, 5.0, 6.0, 7.0). Using our method, the corresponding orthogonal
projection parametric value is α = 1.1587403612284800, the initial values t0 are −10,−8,−6,−4, 4, 8, 12, 16,
respectively. For each initial value, the iteration process runs 10 times and then 10 different iteration times
in nanoseconds, respectively. In Table 6, the average running time of our method for eight different initial
values are 391,013, 424,444, 391,092, 249,376, 115,617, 170,212, 179,465, 196,912 nanoseconds, respectively.
Finally, the overall average running time is 264,766 nanoseconds. If test point p is (30.0, 40.0, 50.0, 60.0, 70.0),
the corresponding orthogonal projection parametric value α is 1.2352898417860202. We then replicate the
procedure using our method and report the results in Table 7. In Table 7, the average running time of our method
for eight different initial values are 577, 707, 485, 417, 460, 913, 289, 232, 133, 661, 199, 470, 211, 915, 229, 398
nanoseconds, respectively. Finally, the overall average running time is 323,464 nanoseconds. However, for the
above parametric curve and many test points, the H-H-H method does not converge for any initial value.
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Table 6. Running time for different initial values of Example 3 by our method with test point p = (3, 4,
5, 6, 7).

t0 −10 −8 −6 −4 4 8 12 16

α 1.15874 1.15874 1.15874 1.15874 1.15874 1.15874 1.15874 1.15874
1 407,427 425,388 387,337 306,115 110,887 161,079 187,144 184,119
2 417,729 446,171 398,801 341,895 121,148 169,115 169,954 194,671
3 420,894 390,507 383,308 260,183 115,033 165,103 171,989 198,884
4 383,836 421,365 427,391 242,641 109,521 161,121 179,152 195,714
5 373,696 421,551 373,171 266,584 120,844 187,930 179,184 186,309
6 374,791 445,114 373,974 242,889 119,449 183,082 180,269 201,487
7 381,353 408,011 402,073 216,762 109,054 162,402 172,013 188,206
8 398,662 442,008 373,328 194,821 119,236 192,990 180,472 197,299
9 364,491 417,139 396,843 230,070 110,243 164,273 204,410 196,163
10 387,246 427,188 394,694 191,799 120,759 155,029 170,059 226,270
Average 391,013 424,444 391,092 249,376 115,617 170,212 179,465 196,912

Total Average 264,766

Table 7. Running time for different initial values of Example 3 by our method with test point p = (30,
40, 50, 60, 70).

t0 −10 −8 −6 −4 4 8 12 16

α 1.235289 1.235289 1.235289 1.235289 1.235289 1.235289 1.235289 1.235289
1 1,190,730 475,499 453,879 369,551 133,651 191,093 208,202 223,695
2 1,031,760 500,975 486,534 380,881 133,638 190,959 208,490 236,637
3 482,018 475,395 450,480 297,272 133,674 199,528 208,292 223,312
4 428,081 475,588 475,100 277,356 133,635 186,919 208,438 223,802
5 455,282 475,033 448,776 296,510 133,535 220,570 208,139 223,471
6 428,321 499,776 448,617 277,353 133,590 220,625 208,046 223,213
7 428,246 474,978 474,667 247,245 133,620 192,326 208,101 230,791
8 453,374 502,500 448,503 235,415 133,594 220,635 208,087 223,183
9 426,949 474,816 474,167 275,526 133,546 198,204 245,226 223,213
10 452,306 499,605 448,409 235,207 134,128 173,843 208,127 262,661
Average 577,707 485,417 460,913 289,232 133,661 199,470 211,915 229,398

Total Average 323,464

Example 4. (Reference to [6]) There is a parametric curve c(t) = ( f1(t), f2(t)) = (t2, sin(t)), t ∈
[−3, 3] in two-dimensional Euclidean space and a test point p = (p1, p2) = (1.0, 2.0). The corresponding
orthogonal projection parametric value is α = 1.1063055095030472. Using our method, the initial values t0 are
−100,−4, 5, 7, 8, 10, 11, 100, respectively. For each initial value, the iteration process runs 10 times and then
10 different iteration times in nanoseconds, respectively. In Table 8, the average running time of our method
for eight different initial iterative values are 62,816, 35,042, 27,648, 43,122, 21,625, 38,654, 21,518, 72,917
nanoseconds, respectively. Finally, the overall average running time is 40,418 nanoseconds (see Figure 10).
Implementing the same procedure, the overall average running time given by the H-H-H method is 231,613
nanoseconds in Table 9, while the overall average running time given by the second order method [6] is 847,853
nanoseconds in Table 10. Thus, our method is faster than the H-H-H method [38–40] and the second order
method [6].

Figure 10. Geometric illustration for Example 4.
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Table 8. Running time for different initial values of Example 4 by our method.

t0 −100 −4 5 7 8 10 11 100

α 1.106305 1.106305 1.106305 1.106305 1.106305 1.106305 1.106305 1.106305
1 63,345 35,580 27,069 41,551 22,304 36,858 21,478 72,257
2 63,192 36,203 28,160 41,733 20,042 38,680 20,338 71,620
3 61,306 33,833 27,400 44,198 23,078 37,704 23,757 73,108
4 66,627 34,502 26,014 44,160 21,147 39,374 22,530 70,154
5 62,583 35,053 29,275 42,800 20,817 39,339 23,046 73,189
6 63,957 34,398 25,650 42,282 22,184 37,376 20,070 75,872
7 60,865 35,929 28,944 42,134 19,964 40,078 21,943 71,608
8 63,522 35,427 27,578 41,688 23,650 39,456 21,076 76,283
9 60,551 35,508 28,563 44,542 20,280 38,463 20,596 71,781
10 62,216 33,987 27,830 46,130 22,781 39,209 20,349 73,296
Average 62,816 35,042 27,648 43,122 21,625 38,654 21,518 72,917

Total Average 40,418

Table 9. Running time for different initial values of Example 4 by the H-H-H method.

t0 −100 −4 5 7 8 10 11 100

α 1.106305 1.106305 1.106305 1.106305 1.106305 1.106305 1.106305 1.106305
1 424,579 357,276 443,858 179,583 176,984 175,859 175,249 178,445
2 425,680 358,510 179,137 177,849 182,701 176,665 176,463 207,164
3 359,794 356,912 180,000 180,472 177,867 179,743 178,929 179,372
4 371,119 357,214 179,567 179,804 184,542 177,675 177,854 179,651
5 358,128 358,119 232,337 179,285 179,113 175,632 177,690 181,976
6 358,470 357,893 179,985 179,941 178,600 178,289 178,565 181,868
7 358,083 359,391 178,815 177,857 177,613 178,014 177,385 179,361
8 477,393 357,011 178,029 179,525 175,684 176,000 175,413 180,966
9 356,254 359,356 176,148 178,581 176,351 177,024 185,103 180,013
10 356,801 359,773 213,327 177,252 176,993 178,060 177,655 181,427
Average 384,630 358,146 214,120 179,015 178,645 177,296 178,031 183,024

Total Average 231,613

Table 10. Running time for different initial values of Example 4 by the Algorithm [6].

t0 −100 −4 5 7 8 10 11 100

α 1.106305 1.106305 1.106305 1.106305 1.106305 1.106305 1.106305 1.106305
1 681,353 107,102 119,083 120,328 122,504 115,181 113,566 542,116
2 725,571 124,514 136,810 121,111 116,824 111,116 117,466 5,250,481
3 669,249 111,052 122,151 125,261 124,865 116,105 120,309 5,523,805
4 713,982 112,146 131,494 118,104 121,099 111,410 118,658 5,407,166
5 699,433 111,347 118,830 121,003 118,694 115,182 124,917 5,259,412
6 693,396 113,323 116,046 109,176 108,194 111,420 117,342 5,508,049
7 691,375 114,667 115,748 123,330 127,812 118,635 119,208 5,348,517
8 663,125 107,484 127,493 120,134 116,818 111,717 117,079 5,446,703
9 731,148 128,918 122,897 120,947 120,985 113,777 125,463 5,251,580
10 676,286 128,567 130,775 118,031 116,725 111,095 108,275 5,356,125
Average 694,492 115,912 124,133 119,743 119,452 113,564 118,228 5,377,300

Total Average 847,853

Example 5. (Reference to [6]) There is a parametric curve c(t) = ( f1(t), f2(t)) = (t, sin(t)), t ∈ [−3, 3]
in two-dimensional Euclidean space and a test point p = (p1, p2) = (1.0, 2.0), the corresponding orthogonal
projection parametric value is α = 1.2890239979093887. Using our method, the initial values t0 are
−100,−4, 5, 7, 8, 10, 11, 100, respectively. For each initial value, the iteration process runs 10 times and
then 10 different iteration time in nanoseconds, respectively. In Table 11, the average running time of our
method for eight different initial values are 50, 579, 28, 238, 22, 687, 34, 974,17, 781, 31, 186, 17, 210, 59, 116
nanoseconds, respectively. Finally, the overall average running time is 32,721 nanoseconds (see Figure 11).
We then replicate the procedure using the second order method [6] and report the results in Table 12. In Table 12,
the average running time of the second order method [6] for 8 different initial values are 320, 035,182, 451,
147, 031, 235, 779, 112, 090, 200, 431, 113, 284, 369, 294 nanoseconds, respectively. Finally, the overall average
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running time is 210,049 nanoseconds. In addition, we compare the iterations by different methods where the NC
denotes non-convergence in Table 13.

Table 11. Running time for different initial values of Example 5 by our method.

t0 −100 −4 5 7 8 10 11 100

α 1.28902 1.28902 1.28902 1.28902 1.28902 1.28902 1.28902 1.28902
1 52,010 27,426 21,791 33,323 18,399 29,551 16,486 58,995
2 50,335 29,269 23,949 32,810 15,820 30,342 16,066 58,080
3 49,047 26,841 23,061 37,063 19,611 31,569 19,756 57,458
4 52,651 29,124 21,403 33,838 17,472 33,295 18,583 54,566
5 49,871 29,814 25,062 35,870 16,655 32,949 18,304 61,860
6 53,651 28,678 19,550 35,731 18,373 31,429 16,342 59,570
7 47,275 28,115 24,177 35,456 16,933 30,510 18,010 59,042
8 49,982 27,896 22,639 34,292 19,927 30,959 16,449 63,652
9 49,704 29,359 22,502 34,164 17,274 30,391 16,044 61,373
10 51,268 25,859 22,736 37,190 17,342 30,864 16,060 56,564
Average 50,579 28,238 22,687 34,974 17,781 31,186 17,210 59,116

Total Average 32,721

Table 12. Running time for different initial values of Example 5 by the Algorithm [6].

t0 −100 −4 5 7 8 10 11 100

α 1.28902 1.28902 1.28902 1.28902 1.28902 1.28902 1.28902 1.28902
1 308,942 191,002 152,199 235,287 114,568 199,404 110,512 379,771
2 348,554 175,800 146,728 232,260 102,698 190,860 101,754 352,834
3 311,680 190,863 148,384 242,131 118,602 207,376 125,517 408,978
4 332,421 166,849 145,131 234,536 102,795 198,956 113,523 370,826
5 319,660 185,059 160,358 235,072 108,557 211,429 119,911 350,188
6 329,882 177,252 132,242 233,702 120,945 199,978 107,366 363,299
7 304,977 200,038 151,398 229,166 102,315 220,162 122,013 354,466
8 326,645 171,624 137,588 228,181 113,627 195,782 108,512 369,899
9 291,369 191,878 156,871 247,614 108,418 189,534 112,319 363,905
10 326,221 174,148 139,415 239,836 128,377 190,831 111,411 378,781
Average 320,035 182,451 147,031 235,779 112,090 200,431 113,284 369,294

Total Average 210,049

Table 13. Comparison of iterations by different methods in Example 5.

t0 −100.0 −4.0 5.0 7.0 8.0 10.0 11.0 100.0

α 1.28902 1.28902 1.28902 1.28902 1.28902 1.28902 1.28902 1.28902
H-H-H method [38–40] NC NC NC NC NC NC NC NC
Second order method [6] 75 30 32 32 33 29 31 101
Newton’s method NC NC NC NC NC NC NC NC
Our method 15 19 17 17 15 17 15 23

Figure 11. Geometric illustration for Example 5.

Remark 2. From the results of five examples, the overall average running time of our method is 145.5 μs.
From the results of Table 9, the overall average running time of the H-H-H method is 231.6 μs. From results
of six examples in [26], the overall average running time of the algorithm [1] is 680.8 μs. From results of
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six examples in [26], the overall average running time of the algorithm [14] is 1270.8 μs. From results of
Table 5, the overall average running time of the algorithm [26] is 406.6 μs. From results of Tables 10 and 12,
the overall average running time of the algorithm [6] is 528.9 μs. Table 14 displays time comparison for these
algorithms. In short, the robustness and efficiency of our method are more superior to those of the existing
algorithms [1,6,14,26,38–40].

Table 14. Time comparison of various algorithms.

Algorithms Ours H-H-H Algorithm [1] Algorithm [14] Algorithm [6] Algorithm [26]

Time (μs) 145.5 231.6 680.8 1270.8 528.9 406.6

Remark 3. For general parametric curve containing the elementary functions, such as sin(t),cos(t), et,
ln t, arcsin t, arccos t, etc., it is very difficult to transform general parametric curve into Bézier-type curve.
In contrast, our method can deal with the general parametric curve containing the elementary functions.
Furthermore, the convergence of our method does not depend on the initial value. From Table 13, only the
H-H-H method or the Newton’s method can not ensure convergence, while our method can ensure convergence.
For multiple solutions of orthogonal projection, our approach works as follows:
(1) The parameter interval [a, b] of parametric curve c(t) is divided into M identical subintervals.
(2) An initial value is selected randomly in each interval.
(3) Using our method and using each initial parametric value, do iterations, respectively. Suppose that the
iterative parametric values are α1, α2, . . . , αM, respectively.
(4) Calculate the local minimum distances d1, d2, . . . , dM, where di = ‖p− c(αi)‖.
(5) Seek the global minimum distance d = ‖p− c(α)‖ from {‖p− c(a)‖ , d1, d2, . . . , dM, ‖p− c(b)‖}.

If we are to solve all solutions as far as possible, we urge the positive integer M to be as large as possible.

We use Example 2 to illustrate how the procedure works, where, for t ∈ [−2, 2], three parameter
values are −1.4118250062741212, −0.61917136491841674, 1.8493434997820080, respectively. It is easy
to find that the projection point with the parameter value −0.61917136491841674 will be the one with
minimum distance, whereas other projection points without these parameter values can not be the one
with minimum distance. Thus, only the orthogonal projection point with minimum distance remains
after the procedure to select multiple orthogonal projection points.

Remark 4. We have done many test examples including five test examples. In the light of these test results,
our method has good convergent properties for different initial values, namely, if initial value is t0, then the
corresponding orthogonal projection parametric value α for the orthogonal projection point of the test point p is
suitable for one inequality relationship ∣∣〈p− c(α), c′(α)

〉∣∣ < 10−17. (21)

This indicates that the inequality relationship satisfies requirements of Equation (4). This shows that
convergence of our method does not depend on the initial value. Furthermore, our method is robust and efficient,
which is satisfied with the previous two of ten challenges proposed by [50].

5. Conclusions

This paper discusses the problem related to a point orthogonal projection onto a parametric curve
in an n-dimensional Euclidean space on the basis of the H-H-H method, combining with a fixed point
theorem of Newton’s method. Firstly, we run the H-H-H method. If the current iterative parametric
value from the H-H-H method is satisfied with the convergence condition of the Newton’s method,
we then go to the method to increase the convergence rate. Otherwise, we continue the H-H-H method
to generate the iterative parametric value with satisfaction of the local convergence condition by
the Newton’s method, and we then go to the previous step. Then, we run to the end of the whole
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process. The presented procedures ensure the convergence of our method and it does not depend on
the initial value. Analysis of convergence demonstrates that our method is second order convergent.
Some numerical examples confirm that our method is more efficient and performs better than other
methods, such as the algorithms [1,6,14,26,38–40].

In this paper, our discussion focuses the algorithms in the parametric curve C2. For the parametric
curve being C0,C1, piecewise curve or having singular points, we only present a preliminary idea.
However, we have not completely implemented an algorithm for this kind of spline with low continuity.
In the future, we will try to construct several brand new algorithms to handle the kind of spline with
low continuity such that they can ensure very good robustness and efficiency. In addition, we also try
to extend this idea to handle point orthogonal projecting onto implicit curves and implicit surfaces
that include singularity points. Of course, the realization of these ideas is of great challenge. However,
it is of great value and significance in practical engineering applications.
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1. Introduction

Integral equations are very common in physics and engineering, since a lot of problems of these
disciplines can be reduced to solve an integral equation. In general, we cannot solve integral equations
exactly and are forced to obtain approximate solutions. For this, different numerical methods can
be used. So, for example, iterative schemes based on the homotopy analysis method in [1], adapted
Newton-Kantorovich schemes in [2] and schemes based on a combination of the Newton-Kantorovich
method and quadrature methods in [3]. Besides, techniques based on using iterative methods are
also interesting, since the theoretical significance of the methods allows drawing conclusions about
the existence and uniqueness of solution of the equations. The use of an iterative method allows
approximating a solution and, by analysing the convergence, proving the existence of solution, locating
a solution and even separating such solution from other possible solutions by means of results of
uniqueness. The theory of fixed point plays an important role in the development of iterative methods
for approximating, in general, a solution of an equation and, in particular, for approximating a solution
of an integral equation.

In this work, we pay attention to the study of nonlinear Fredholm integral equations with
nonlinear Nemytskii operators of type

x(s) = �(s) + λ
∫ b

a
K(s, t)H(x)(t) dt, s ∈ [a, b], λ ∈ R, (1)

where �(s) ∈ C[a, b], kernel K(s, t) of integral equation is a known function in [a, b] × [a, b], H is
a Nemytskii operator [4] given by H : Ω ⊆ C[a, b] → C[a, b], such that H(x)(t) = H(x(t)) and
H : R→ R is a derivable real function, and x(s) ∈ C[a, b] is the unknown function to find.

It is common to use the Banach Fixed Point Theorem [5–7] to prove the existence of a unique fixed
point of an operator and approximate it by the method of successive approximations. Moreover, global
convergence for the method is obtained in the full space. For this, we use that the operator involved is
a contraction.

Our main aim of this work is to do a study of integral Equation (1) from Newton’s method,

xn+1 = xn − [F′(xn)]
−1F(xn), n ≥ 0, with x0 given,
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that has quadratic convergence, superior to the convergence of the method of successive
approximations, which is linear. This study is similar to that of the Fixed Point Theorem for the
method of successive approximations. In addition, we obtain a domain of global convergence,
B(x̃, R) = {x ∈ C[a, b] : ‖x − x̃‖ < R}, with x̃ ∈ C[a, b], for Newton’s method. Also, we obtain
a result of uniqueness of solution that separate the approximate solution from other possible solutions.
To carry out this study, we develop a technique based on the use of auxiliary points, which allows
obtaining domains of global convergence, locating solutions of (1) and domains of uniqueness of
these solutions.

On the other hand, ifH(x) = x, integral Equation (1) is linear and well-known, it is a Fredholm
integral equation of the second kind, which is connected with the eigenvalue problem represented by
the homogeneous equation

x(s) = λ
∫ b

a
K(s, t)x(t) dt, s ∈ [a, b],

and has non-trivial solutions x(s) �≡ 0 for the characteristic values or eigenvalues λ (the latter term is
sometimes reserved to the reciprocals ν = 1/λ) of kernel K(s, t) and every non-trivial solution of (1) is
called characteristic function or eigenfunction corresponding to characteristic value λ. If Equation (1)
is nonlinear, our results allow doing a study of the equation based on the values of parameter λ, which
is another important aim of our work.

2. Global Convergence and Uniqueness of Solution

If we are interested in proving the convergence of an iteration, we can usually follow three
ways to do it: local convergence, semilocal convergence and global convergence. First, from some
conditions on the operator involved, if we require conditions to the solution x∗, we establish a local
analysis of convergence and obtain a ball of convergence of the iteration, which, from the initial
approximation x0 lying in the ball, shows the accessibility to x∗. Second, from some conditions on the
operator involved, if we require conditions to the initial iterate x0, we establish a semilocal analysis of
convergence and obtain a domain of parameters, which corresponds to the conditions required to the
initial iterate, so that the convergence of iteration is guaranteed to x∗. Third, from some conditions
on the operator involved, the convergence of iteration to x∗ in a domain, and independently of the
initial approximation x0, is established and global convergence is called. Observe that the three studies
require conditions on the operator involved and requirement of conditions to the solution, to the initial
approximation, or to none of these, is what determines the way of analysis.

The local analysis of the convergence has the disadvantage that it requires conditions on the
solution and this is unknown. The global analysis of convergence, as a consequence of the absence of
conditions on the initial approximations and the solution, is very specific for the operators involved.

In this paper, we focus our attention on the analysis of the global convergence of Newton’s method
and, as a consequence, we obtain domains of global convergence for nonlinear integral Equation (1)
and also locate a solution. For this, we obtain a ball of convergence, by using an auxiliary point, that
contains a solution and guarantees the convergence of Newton’s method from any point of the ball.

Solving Equation (1) is equivalent to solving the equation F (x) = 0, where F : Ω ⊆ C[a, b] −→
C[a, b] and

[F (x)](s) = x(s)− �(s)− λ
∫ b

a
K(s, t)H(x)(t) dt, s ∈ [a, b], λ ∈ R, n ∈ N. (2)

Then,

[F′(x)y](s) = y(s)− λ
∫ b

a
K(s, t)[H′(x)y](t) dt = λ

∫ b

a
K(s, t)H′(x(t))y(t) dt.
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As a consequence,
‖F′(x)−F′(y)‖ ≤ K‖x− y‖,

where K = |λ|SL, L is such that ‖H′(x)−H′(y)‖ ≤ L‖x− y‖, for all x, y ∈ Ω, and S =
∥∥∥∫ b

a K(s, t) dt
∥∥∥.

From the Banach lemma on invertible operators, it follows

‖Γ̃‖ = ‖[F′(x̃)]−1‖ ≤ 1
1− |λ|S‖H′(x̃)‖ = β, ‖Γ̃F (x̃)‖ ≤ ‖x̃− u‖+ |λ|S‖H(x̃)‖

1− |λ|S‖H′(x̃)‖ = η.

provided that
|λ|S‖H′(x̃)‖ < 1. (3)

Next, we give some properties that are used later.

Lemma 1. For operator (2), we have:

(a) Γ̃F (x) = Γ̃F (x̃) + (x− x̃) +
∫ 1

0 Γ̃ (F′(x̃ + t(x− x̃))−F′(x̃)) (x− x̃) dt, with x ∈ Ω.
(b) F (xn) =

∫ 1
0 (F′(xn−1 + t(xn − xn−1))−F′(xn−1)) (xn − xn−1) dt, with xn−1, xn ∈ Ω.

As a consequence of item (b) of Lemma 1, it follows, for xn−1, xn ∈ Ω,

‖F (xn)‖ ≤ K
2
‖xn − xn−1‖2.

From the last result, and taking into account the parameters obtained previously, we analyze the
first iteration of Newton’s method, what leads us to the convergence of the method.

If x0 ∈ B(x̃, R), then

‖Γ0‖ = ‖[F′(x0)]
−1‖ ≤ β

1− KβR
= α, ‖Γ0F′(x̃)‖ ≤ 1

1− KβR
.

provided that
KβR < 1. (4)

Moreover, from item (a) of Lemma 1, it follows

‖x1 − x0‖ ≤ ‖Γ0F′(x̃)‖‖Γ̃F (x0)‖ < η + R + KβR2/2
1− KβR

= δ,

and, from item (b) of Lemma 1, we have

‖x1 − x̃‖ = ∥∥−Γ0
(F (x0) +F′(x0)(x̃− x0)

)∥∥ ≤ ‖Γ0F′(x̃)‖‖Γ̃F (x̃)‖+ KβR2/2
1− KβR

≤ 2η + KβR2

2(1− KβR)
,

so that x1 ∈ B(x̃, R), provided that
2η + KβR2

2(1− KβR)
≤ R. (5)

Observe now that condition (5) holds if

Kβη ≤ 1/6 and R ∈ [R−, R+],

where R− =
1−√1−6Kβη

3Kβ and R+ =
1+
√

1−6Kβη

3Kβ are the two real positive roots of quadratic equation

2η − 2R + 3KβR2 = 0.
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After that, if we assume that

‖xn − xn−1‖ < γ2n−2‖xn−1 − xn−2‖, (6)

‖xn − x̃‖ < 2η + KβR2

2(1− KβR)
≤ R, (7)

where γ = Kαδ/2, for all n ≥ 2, and provided that condition (5) holds, it follows in the same way that

‖xn+1 − xn‖ < γ2n−1‖xn − xn−1‖, ‖xn+1 − x̃‖ < 2η + KβR2

2(1− KβR)
≤ R,

so that (6) and (7) are true for all positive integers n by mathematical induction.
In addition, γ < 1 if

3(KβR)2 − 10(KβR) + 2(2− Kβη) > 0, (8)

which is satisfied provided that

Kβη ≤ 1/6 and R <
5−√13 + 6Kβη

3Kβ
.

As a consequence, condition (4) holds. More precisely, we can establish the following result.

Lemma 2. There always exists R > 0, such that inequalities (4), (5) and (8) hold, if

(a) Kβη ≤ 0.1547 . . . and R ∈
[

R−,
5−√13+6Kβη

3Kβ

)
,

(b) Kβη ∈ [0.1547 . . . , 1/6) and R ∈ [R−, R+],

where R− =
1−√1−6Kβη

3Kβ and R+ =
1+
√

1−6Kβη

3Kβ .

Proof. First, we prove item (a) of Lemma 2. Observe that R− <
5−√13+6Kβη

3Kβ , since Kβη ≤ 0.1547 . . ., so

that
[

R−,
5−√13+6Kβη

3Kβ

)
�= ∅. Moreover, as Kβη ≤ 0.1547 . . ., we have 3(Kβη)2 + 6(Kβη)− 1 ≤ 0 and,

as a consequence, R+ >
5−√13+6Kβη

3Kβ and R ∈
[

R−,
5−√13+6Kβη

3Kβ

)
⊂ [R−, R+], so that (5) and (8) hold.

Second, if Kβη ∈ [0.1547 . . . , 1/6), then 3(Kβη)2 + 6(Kβη)− 1 ≥ 0 and R+ <
5−√13+6Kβη

3Kβ , so
that R ∈ [R−, R+]. Then, (5) and (8) hold.

Third, in both cases, KβR < 1 follows immediately, since R <
5−√13+6Kβη

3Kβ in items (a) and (b) of
Lemma 2.

2.1. Convergence

Now, we can establish the following result.

Theorem 1. Suppose that Kβη ≤ 1/6 and consider R > 0 satisfying item (a) or item (b) of Lemma 2 and such
that B(x̃, R) ⊂ Ω. If condition (3) holds, then Newtons’s method is well-defined and converges to a solution x∗

of F (x) = 0 in B(x̃, R) from every point x0 ∈ B(x̃, R).

Proof. From (6) and γ < 1, we have ‖xn+1 − xn‖ < ‖xn − xn−1‖, for all n ∈ N, so that sequence
{‖xn+1 − xn‖} is strictly decreasing for all n ∈ N and, therefore, sequence {xn} is convergent. If x∗ =
limn→∞ xn, then F (x∗) = 0, by the continuity of F and ‖F (xn)‖ → 0 when n → ∞.

From Theorem 1, the convergence of Newton’s method to a solution of equation F (x) = 0 is
guaranteed. Moreover, the best ball of location of the solution is B(x̃, R−) and the biggest ball of
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convergence is B(x̃, R+) or B
(

x̃,
5−√13+6Kβη

3Kβ

)
, depending on the value of Kβη is: Kβη ≤ 0.1547 . . .

for the former and Kβη ∈ [0.1547 . . . , 1/6) for the latter.

2.2. Uniqueness of Solution

For uniqueness of solution, we establish the following result, where uniqueness of solution is
proved in B(x̃, R).

Theorem 2. Under conditions of Theorem 1, solution x∗ of F (x) = 0 is unique in B(x̃, R).

Proof. Assume that w∗ is another solution of F (x) = 0 in B(x̃, R) such that w∗ �= x∗. If operator
Q =

∫ 1
0 F′(w∗ + t(x∗ − w∗)) dt is invertible, we have x∗ = w∗, since Q(w∗ − x∗) = F (w∗)−F (x∗).

Then, as

‖I − Γ̃Q‖ ≤ ‖Γ̃‖
∫ 1

0
‖F′(x̃)−F′(w∗ + t(x∗ − w∗))‖dt

≤ βK
∫ 1

0
‖x̃− (w∗ + t(x∗ − w∗))‖dt (9)

= βKR

< 1,

it follows that Q is invertible by the Banach lemma on invertible operators and uniqueness
follows immediately.

Notice that, from Theorems 1 and 3, the best ball of location of a solution of (1) is B(x̃, R−) and

the best ball of uniqueness of solution and the biggest ball of convergence is B
(

x̃,
5−√13+6Kβη

3Kβ

)
or

B(x̃, R+), depending on the value of Kβη lies.
Once given the uniqueness of solution in the domain of existence of solution B(x̃, R), we enlarge

such domain from the following theorem.

Theorem 3. Under conditions of Theorem 1, we have that the solution x∗ is unique in the domain B(x̃, �) ∩Ω,
where � = 2

Kβ − R.

Proof. Assume that w∗ is another solution of F (x) = 0 in B(x̃, �) ∩ Ω such that w∗ �= x∗. Then,
from (9), it follows

‖I − Γ̃Q‖ < βK
∫ 1

0
((1− t)� + tR)dt = 1.

and Q is again invertible by the Banach lemma on invertible operators.

Note that � > 0, since βKR < 1, and uniqueness of solution is obtained in the ball of global

convergence given in Theorem 1, since � = 2
Kβ − R ≥ 5−√13+6Kβη

3Kβ , R+.

3. Example

Now, we apply the last result to the following nonlinear integral equation:

x(s) = s3 +
18
25

∫ 1

0
s3t3x(t)2dt, s ∈ [0, 1]. (10)

For Equation (10), we have λ = 18/25 and S =
∥∥∥∫ 1

0 s3t3 dt
∥∥∥ = 1/4 with the max-norm. As

H(x̃)(t) = x̃(t)2, then L = 2. If we choose x̃(s) = s3, then condition (3) holds, since |λ|S‖H′(x̃)‖ =

9/25 < 1. Moreover, β = 25/16 and η = 9/32 and K = |λ|SL = 9/25, so that Kβη = 0.1582 . . . ∈
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[R−, R+], where R− = 0.4590 . . . and R+ = 0.7261 . . .. Therefore, from Theorem 1, the convergence
of Newton’s method to a solution of Equation (10) is guaranteed and the best ball of location of the
solution is B(s3, 0.4590 . . .) and the biggest ball of convergence is B(s3, 0.7261 . . .). Furthermore, from
Theorem 3, it follows that the domain of uniqueness of solution is B(s3, 3.0965 . . .).

Next, we approximate a solution of Equation (10) by Newton’s method. After four iterations with
stopping criterion ‖xn − xn−1‖∞ < 10−18, n ∈ N, we obtain solution shown in Table 1, where errors
‖x∗ − xn‖ and sequence ‖F (xn)‖ are also shown. Observe from the last sequence that solution shown
in Table 1 is a good approximation of the solution of Equation (10). Finally, we observe in Figure 1 that
solution shown in Table 1 lies within the domain of location of solution found above.

Table 1. Approximated solution x∗(s) of (10), absolute errors and {‖F (xn)‖}.

n xn(s) ‖x∗ − xn‖ ‖F (xn)‖
0 s3 8.4715 . . .× 10−2 7.2× 10−2

1 (1.0841121495327102 . . .)s3 6.0365 . . .× 10−4 5.0938 . . .× 10−4

2 (1.0847157717628998 . . .)s3 3.1090 . . .× 10−8 2.6233 . . .× 10−8

3 (1.0847158028530592 . . .)s3 8.2478 . . .× 10−17 6.9595 . . .× 10−17

4 (1.0847158028530593 . . .)s3

Figure 1. Approximated solution x∗(s) of (10) and domain of location of solution.

4. Study of the Integral Equation from Parameter λ

Next, we study the integral Equation (1) from the values of parameter λ.
First, we observe that Kβη ≤ 1/6 if

6|λ|SL (‖x̃− �‖+ |λ|S‖H(x̃)‖) ≤ (
1− |λ|S‖H′(x̃)‖)2 (11)

and condition (3) holds.
Now, we analyze condition (11). Observe that (11) is satisfied if

• ‖H′(x̃)‖2 < 6L‖H(x̃)‖ and |λ| ∈ [0, μ+], where

μ+ =
−(3L‖x̃− �‖+ ‖H′(x̃)‖) +√Δ
S(6L‖H(x̃)‖ − ‖H′(x̃)‖2)

and Δ = 3L(3L‖x̃− �‖2 + 2‖x̃− �‖‖H′(x̃)‖+ 2‖H(x̃)‖).
• ‖H′(x̃)‖2 > 6L‖H(x̃)‖ and |λ| ∈ [0, μ+] ∪ [μ−,+∞), where

μ− =
−(3L‖x̃− �‖+ ‖H′(x̃)‖)−√Δ
S(6L‖H(x̃)‖ − ‖H′(x̃)‖2)

.

• ‖H′(x̃)‖2 = 6L‖H(x̃)‖ and |λ| ≤ 1
2S(3L‖x̃− �‖+ ‖H′(x̃)‖) .

463



Mathematics 2019, 7, 553

Second, once x̃ is fixed, we have two chances: Kβη ≤ 0.1547 . . . or Kβη ∈ [0.1547 . . . , 1/6). If first

holds, then R ∈
[

R−,
5−√13+6Kβη

3Kβ

)
and, if second does, then R ∈ [R−, R+].

Finally, as condition (3) is satisfied, then Newtons’s method is well-defined and converges to a
solution x∗ of F (x) = 0 in B(x̃, R) from every point x0 ∈ B(x̃, R) by Theorem 1.

5. Application

Now, we apply the last study to the following particular Davis-type integral Equation [8]:

x(s) = s + λ
∫ 1

0
G(s, t)x(t)2dt, λ ∈ R, s ∈ [0, 1], (12)

where the kernel of (12) is a Green’s function defined as follows:

G(s, t) =

{
(1− s)t, t ≤ s,

s(1− t), s ≤ t.

One can show that the function x(s) that satisfied Equation (12) is any solution of the
differential equation

x′′(s) + λx(s)2 = 0,

that also satisfies the two-point boundary condition: x(0) = 0, x(1) = 1.
For Equation (12), we have S =

∥∥∥∫ 1
0 G(s, t) dt

∥∥∥ = 1/8 with the max-norm and H(x̃)(t) = x̃(t)2.
Therefore, L = 2 and condition (3) is reduced to |λ| < 4/‖x̃‖. In addition,

‖H′(x̃)‖2 = 4‖x̃‖2 < 12‖x̃‖2 = 6L‖H(x̃)‖

and, as a consequence,

|λ| ≤ μ+ =
−(6‖x̃− s‖+ 2‖x̃‖) +√

12 (3‖x̃− s‖2 + 2‖x̃− s‖‖x̃‖+ ‖x̃‖2)

‖x̃‖2 .

After that, we choose x̃(s) = s and hence μ+ = 2(−1 +
√

3) = 1.4641 . . ., so that |λ| ≤ 1.4641 . . .,
that satisfies condition (3). In this case, from Theorem 1, we can guarantee the convergence of Newton’s
method to a solution of Equation (12) with λ such that |λ| ≤ 1.4641 . . . Moreover, once λ is fixed,
depending on the value of Kβη, we can obtain the best ball of location of solution and the biggest ball
of convergence.

Observe that we cannot apply Newton’s method directly, since we do not know the inverse
operator that is involved in the algorithm of Newton’s method. Then, we use a process of discretization
to transform (12) into a finite dimensional problem. For this, we use a Gauss–Legendre quadrature
formula to approximate the integral of (12),

∫ 1

0
φ(t) dt �

m

∑
j=1

wjφ(tj),

where the m nodes tj and weights wj are known.
Next, we denote the approximations x(ti) by xi, with i = 1, 2, . . . , m, so that (12) is equivalent to

the nonlinear system given by

xj = tj + λ
m

∑
k=1

ajk x2
k , k = 1, 2, . . . , m, (13)
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where

ajk =

{
wk (1− tj)tk, k ≤ j,

wk (1− tk)tj, k > j.

After that, we write system (13) compactly in matrix form as

F(x) ≡ x− v− λA y = 0, F : Rm −→ R
m, (14)

where

x = (x1, x2, . . . , xm)
t , v = (t1, t2, . . . , tm)

t , A =
(

ajk

)m

j,k=1
, y =

(
x2

1, x2
2, . . . , x2

m

)t
.

Choose m = 8, λ = 7/5, x̃ = v and hence K = 0.2471 . . ., β = 1.2179 . . ., η = 0.0665 . . . and
Kβη = 0.0200 . . . As Kβη < 0.1547 . . ., it follows, from Theorem 1, that the best ball of location of
solution is B(v, 0.0686 . . .) and the biggest ball of convergence is B(v, 1.5259 . . .).

If the starting point for Newton’s method is x0 = v, the method converges to the solution
x∗ = (x∗1, x∗2, . . . , x∗8)t of system (14), which is shown in Table 2, after four iterations with stopping
criterion ‖xn − xn−1‖∞ < 10−18, n ∈ N.

Table 2. Numerical solution x∗ of system (14) with λ = 7/5.

i x∗i i x∗i
1 0.02267000. . . 5 0.65888692. . .
2 0.11607746. . . 6 0.82291926. . .
3 0.27057507. . . 7 0.93276524. . .
4 0.46275932. . . 8 0.98797444. . .

Moreover, errors ‖x∗ − xn‖ and sequence {‖F(xn)‖} are shown in Table 3. Observe then that
vector shown in Table 2 is a good approximation of a solution of (14).

Table 3. Absolute errors and {‖F(xn)‖}.

n ‖x∗ − xn‖ ‖F(xn)‖
0 6.7169 . . .× 10−2 9.6624 . . .× 10−1

1 6.4734 . . .× 10−4 5.3956 . . .× 10−4

2 6.0570 . . .× 10−8 5.0516 . . .× 10−8

3 5.4063 . . .× 10−16 4.5077 . . .× 10−16

Furthermore, as a solution of (12) satisfies x(0) = 0 and x(1) = 1, if values of Table 2 are
interpolated, an approximated solution is obtained, which is painted in Figure 2. Notice that this
approximated solution lies in the domain of location of solution B(v, 0.0686 . . .) which is obtained
from Theorem 1.
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Figure 2. Solution x∗ of system (14) and domain of location of solution.

6. Conclusions

Following the idea of the Fixed Point Theorem for the method of successive approximations,
we do an analysis for Newton’s method, use the theoretical significance of the method to prove the
existence and uniqueness of solution of a particular type of nonlinear integral equations of Fredholm
and, in addition, obtain a domain of global convergence for the method that allows locating a solution
and separating it from other possible solutions. For this, we use a technique based on using auxiliary
points. Moreover, we present a study of the nonlinear equations which is based on the real parameter
involved in the equation.
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Abstract: A new numerical method for tackling the three-dimensional Heston–Hull–White partial
differential equation (PDE) is proposed. This PDE has an application in pricing options when not
only the asset price and the volatility but also the risk-free rate of interest are coming from stochastic
nature. To solve this time-dependent three-dimensional PDE as efficiently as possible, high order
adaptive finite difference (FD) methods are applied for the application of method of lines. It is derived
that the new estimates have fourth order of convergence on non-uniform grids. In addition, it is
proved that the overall procedure is conditionally time-stable. The results are upheld via several
numerical tests.
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1. Introduction

To model different types of derivatives in finance, a common approach is to investigate
the connections of these factors to each other, formulated as a stochastic differential equation (SDEs).
The factors could be the underlying asset, the volatility, domestic and foreign interest rates, etc., [1,2].
As such, the important action of pricing option under different payoffs can be modeled and simulated
via the SDEs or their corresponding partial differential equation (PDE) formulation.

However, a frequently occurring issue is that whatever the model becomes complicated and more
realistic, the procedure of having and representing its exact solution becomes harder, see, e.g., [3–5].

To discuss more and from the beginning, the classical model of Black–Scholes in pricing contracts
does not cover and illustrate all the aspects of an option in a complete market, such as market risks,
stochastic volatility (SV), and asymmetries seen in data of market, [6]. Some remedies to this well-known
model are via non-lognormal hypothesis for a SDE, that indicates some modifications of the volatility
and the underlying asset. We recall that Heston in [7] extended and improved the behavior of the
Black–Scholes model by involving more risky factor into the model, i.e., by considering the volatility to
be stochastic as well. Further discussions can be found at [6,8].

On the other hand, as long as the foreign exchange (FX) products are involved and a trader
encounters a situation in which the interest rate is not anymore constant during the lifetime
of an option, then investigating and proposing an improved model, having stochastic rates of interest,
such as the power-reverse dual-currency and the Heston–Cox–Ingersoll–Ross (HCIR) problems
(refer to [9] and the references therein for more background).
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1.1. Problem Formulation

The option pricing problem under the 3D Heston–Hull–White (HHW) model as a PDE model
is defined by [10]:

∂u(s, v, r, t)
∂t

=
1
2

s2v
∂2u(s, v, r, t)

∂s2 +
1
2

σ2
1 v

∂2u(s, v, r, t)
∂v2 +

1
2

σ2
2

∂2u(s, v, r, t)
∂r2

+ ρ12σ1sv
∂2u(s, v, r, t)

∂s∂v
+ ρ13σ2s

√
v

∂2u(s, v, r, t)
∂s∂r

+ ρ23σ1σ2
√

v
∂2u(s, v, r, t)

∂v∂r

+ rs
∂u(s, v, r, t)

∂s
+ κ(η − v)

∂u(s, v, r, t)
∂v

+ a(b(T − t)− r)
∂u(s, v, r, t)

∂r
− ru(s, v, r, t).

(1)

Here κ > 0 shows the volatility adjustment speed to the analytical mean η > 0, while σ1, σ2, a are
some parameters. In addition, the correlation parameters are ρ12, ρ13, ρ23 ∈ [−1, 1], b is a time function.

In pricing under call options, the (terminal/)initial condition is given by [11,12]:

u(s, v, r, 0) = (s− E)+ , (2)

where the strike price is E. In a similar way, for a put option, it is given as follows:

u(s, v, r, 0) = (E− s)+ . (3)

As discussed in [13,14], the fair pricing procedure should be carried out by computational
schemes since the corresponding high-dimensional PDEs, constructed for such options, do not admit
any analytical or semi-analytical solutions, see [15,16] for further background.

1.2. Novelties and Motivation

The contribution of this article reads in proposing a solution method via an un-equally spaced grid
having a focus on the hot area in option pricing under the HHW PDE problem. Studying and coding
multi dimensional problems with discretization methods while the grid of points are non-uniform
is a challenging and intensive task, but could clearly increase the accuracy of the approximate solution
by applying fewer numbers of grid nodes in contrasts to the uniform discretization. This reduces
the size of the discretized problem and is useful in practice.

To this aim, (1) is tackled by employing high order fourth-order finite difference approximations.
We apply fourth order discretizations on a stencil having five and six non-equidistant nodes.
Derivation and construction of fourth-order compact FD method for HHW PDE is new and useful
in practice.

In fact, the method-of-lines technique is considered to build a set of ODEs with time-varying
system matrix. All the side conditions are imposed therein as well. Thence, a method to march along
time for the set of ODEs is provided in Section 3 and it is analytically illustrated that the presented
numerical procedure is conditionally time-stable when b is not changing by time.

Recalling that here adaptive FD formulas are constructed to hit some features simultaneously,
viz., to be effective, results in sparse operators and being able to handling non-uniform grids.

Motivated by recent works in this field (see e.g., [17]), we aim at proposing higher order schemes
for the HHW equation on non-uniform meshes so as to increase the accuracy of obtained option prices
without increasing the computational load so much. The novelties and contributions of our work are
given below:
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• We propose fourth-order adaptive discretizations for the spatial variables.
• The beauty of our scheme is the use of non-uniform grid of nodes with an adaptation

on the hotzone.
• We provide a new stability bound for the resulting fully discretized set of equations when

pricing under HHW PDE using high order discretization methods along the spatial as well as
the temporal variables.

1.3. Grid Generation

The option pricing problem (1) is considered in the unbounded area

(s, v, r, t) ∈ Ω× (0, T], (4)

wherein Ω = [0,+∞) ×[0,+∞)× [0,+∞). For tackling the financial model numerically, one can take
into account the following domain [18]:

Ω = [0, smax]× [0, vmax]× [−rmax, rmax], (5)

wherein smax, vmax, rmax are three positive real constants and assumed to be large enough.
Since the PDE model is coercive (sometimes called degenerate) at v = 0, its payoff is non-smooth

at s = E, and the working domain has large width, thus it is requisite to use non-uniform meshes,
at which the location of the nodes are not equally-spaced. This helps in producing results of higher
accuracy with adapting to the hotzone of the problem.

Let {si}m
i=1 be a set of non-uniform nodes along s as follows [13,19]:

si = ϕ(ξi), 1 ≤ i ≤ m, (6)

where m > 1 and ξmin = ξ1 < ξ2 < · · · < ξm = ξmax are m equi–distant points with the following
characteristics: ξmin = sinh−1

(
smin−sleft

d1

)
, ξint =

sright−sleft
d1

, ξmax = ξint + sinh−1
( smax−sright

d1

)
,

wherein smin = 0. Here d1 > 0 controls the density of the nodes around s = E. We also have:

ϕ(ξ) =

⎧⎪⎨⎪⎩
sleft + d1 sinh(ξ), ξmin ≤ ξ < 0,
sleft + d1ξ, 0 ≤ ξ ≤ ξint,
sright + d1 sinh(ξ − ξint), ξint < ξ ≤ ξmax.

(7)

Throughout this work, we used the same value for d1 = E
20 while sleft = max{0.5, exp{−0.25T}} × E,

[sleft, sright] ⊂ [0, smax], sright = E and smax = 14E.
The nodes along v, i.e., {vj}n

j=1 are defined by:

vj = d2 sinh(ς j), 1 ≤ j ≤ n, (8)

where d2 > 0 gives the concentration around v = 0. In this work, we used d2 = vmax
500 , where vmax = 10.

In addition, ς j are equally spaced points given by:

ς j = (j− 1)Δς, Δς =
1

n− 1
sinh−1

(
vmax

d2

)
, (9)

for any 1 ≤ j ≤ n. The non-uniform nodes along r are defined as follows:

rk = d3 sinh(ζk), 1 ≤ k ≤ o, (10)

whereas d3 = rmax
500 is a positive parameter and rmax = 1. We also have ζk = (k− 1)Δζ,

Δζ = 1
o−1 sinh−1

(
rmax

d3

)
. Note that denser mesh points in the important area could circumvent
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the problems happening in solving (1), like non-smoothness of payoffs (2) and (3) at s = E,
and the degeneracy at v = r = 0.

We state that a detailed study into possibly better choices for the involved parameters in mesh
generating may be interesting, but this is beyond the scope of the current research. Furthermore,
the non-smoothness arising in the payoff would ruin the convergence rate of most derivative
approximation particularly on uniform meshes and due to this, the application of non-uniform
nodes is indispensable for efficient numerical solution of (1).

1.4. Manuscript Organization

The remaining parts of this work are organized as follows. In Section 2, the weights of the FD
scheme over non-uniform grids (here we also call adaptive grids with special emphasis on the hot zone)
are derived to attain the higher rate of convergence four.

Section 3 is devoted to the application of a sixth order Runge–Kutta time stepping method
to advance along time when semi-discretize the HHW PDE. We prove that the new procedure
is time-stable conditionally based on the largest eigenvalue of the system matrix. Section 4 shows that
numerical performances are more useful than the earlier schemes with quicker convergence behavior.
Finally, some conclusions are drawn in Section 5.

2. Calculating the Weights of the High Order FD Scheme

In this section, by applying a methodology as in ([20], Chapters 3–4) or [21], but with more Taylor
expansion terms, we can construct fourth-order FD approximations on (non-uniform) grids.

Five points are required in estimating the first derivative as well as six points in approximating
the second derivative in order to obtain a consistent fourth-order scheme throughout the discretized
mesh of points.

Without losing the generality, let us construct the weights in the one dimensional case.
Then, the concept of tensors using Kronecker product may be applied easily to transfer the weights
to the appropriate dimensions. To this objective, consider a sufficiently smooth function g(s)
and a grid as follows:

{s1, s2, · · · , sm−1, sm}. (11)

Consider the following five adjacent nodes:

{{si−2, g(si−2)}, {si−1, g(si−1)}, {si, g(si)}, {si+1, g(si+1)}, {si+2, g(si+2)}}, (12)

and calculate the interpolation polynomial p(z) going via the nodes and then its first derivative p′(z).
At this moment, by employing a computer algebra system to do some symbolic computations

and setting z = si, we attain the FD estimate for the first derivative as follows:

g′(si) = αi−2g (si−2) + αi−1g (si−1) + αig (si) + αi+1g (si+1) + αi+2g (si+2) +O
(

h4
)

, (13)
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where the maximum local grid spacing is h and we have

αi−2 = − Γi−1,iΓi,i+1Γi,i+2

Γi−2,i−1Γi−2,iΓi−2,i+1Γi−2,i+2
,

αi−1 =
Γi−2,iΓi,i+1Γi,i+2

Γi−2,i−1Γi−1,iΓi−1,i+1Γi−1,i+2
,

αi =
1

Γi−2,iΓi,i−1Γi,i+1Γi,i+2
Ξ1,

αi+1 =
Γi−2,iΓi,i−1Γi,i+2

Γi−2,i+1Γi+1,i−1Γi+1,iΓi+1,i+2
,

αi+2 =
Γi−2,iΓi,i−1Γi,i+1

Γi−2,i+2Γi+2,i−1Γi+2,iΓi+2,i+1
,

(14)

using Γl,q = sl − sq and

Ξ1 =si−2(si−1(Γi+1,i + Γi+2,i)

+ 3s2
i − 2(si+1 + si+2)si + si+1si+2) + si(−4s2

i + 3(si+1 + si+2)si

− 2si+1si+2) + si−1(3s2
i − 2(si+1 + si+2)si + si+1si+2).

(15)

Recalling that the above procedure should be similarly done for the nodes {s1, s2, sm−1, sm},
viz, to find the weighting coefficients with fourth order of convergence for such nodes, we should
consider the five adjacent points and then calculate the interpolating polynomial at that specific point.
In this way, the sided FD formulas are constructed and used.

Similarly, FD estimates for the second derivative terms can be obtained applying a similar
methodology as above. To this objective, we consider a set of points as follows:

{{si−3, g(si−3)}, {si−2, g(si−2)}, {si−1, g(si−1)},

{si, g(si)}, {si+1, g(si+1)}, {si+2, g(si+2)}},
(16)

and compute the second-derivative interpolating polynomial p′′(z) based on z. Now by taking into
account z = si in Mathematica [22], one obtains that:

g′′(si) =βi−3g (si−3) + βi−2g (si−2) + βi−1g (si−1)

+ βig (si) + βi+1g (si+1) + βi+2g (si+2) +O
(

h4
)

,
(17)

where

βi−3 =
Ξ2

Γi−3,i−2Γi−3,i−1Γi−3,iΓi−3,i+1Γi−3,i+2
,

βi−2 =
Ξ3

Γi−3,i−2Γi−2,i−1Γi−2,iΓi−2,i+1Γi−2,i+2
,

βi−1 =
Ξ4

Γi−2,i−1Γi−1,i−3Γi−1,iΓi−1,i+1Γi−1,i+2
,

(18)

βi =
Ξ5

Γi−3,iΓi,i−2Γi,i−1Γi,i+1Γi,i+2
,

βi+1 =
Ξ6

Γi−3,i+1Γi+1,i−2Γi+1,i−1Γi+1,iΓi+1,i+2
,

βi+2 =
Ξ7

Γi−3,i+2Γi+2,i−2Γi+2,i−1Γi+2,iΓi+2,i+1
.
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Here, we have

Ξ2 =si−1(−6s2
i + 4(si+1 + si+2)si − 2si+1si+2) + 2si(4s2

i

− 3(si+1 + si+2)si + 2si+1si+2) + si−2(−6s2
i

+ 4(si+1 + si+2)si − 2si+1si+2 + si−1(4si − 2(si+1 + si+2))),

Ξ3 =2(si−3(si−1(Γi+1,i + Γi+2,i) + 3s2
i − 2(si+1

+ si+2)si + si+1si+2) + si(−4s2
i + 3(si+1 + si+2)si − 2si+1si+2)

+ si−1(3s2
i − 2(si+1 + si+2)si + si+1si+2)),

Ξ4 =2(si−3(si−2(Γi+1,i + Γi+2,i) + 3s2
i − 2(si+1

+ si+2)si + si+1si+2) + si(−4s2
i + 3(si+1 + si+2)si − 2si+1si+2)

+ si−2(3s2
i − 2(si+1 + si+2)si + si+1si+2)),

(19)

Ξ5 =2(si−2(si−1(Γi+1,i + Γi+2,i − si) + 6s2
i − 3(si+1 + si+2)si + si+1si+2) + si−3(si−1(Γi+1,i

+ Γi+2,i − si) + si−2(Γi+1,i + Γi+2,i + si−1 − si) + 6s2
i − 3si+1si − 3si+2si + si+1si+2)

+ si(2si(3si+1 − 5si) + si−1(6si − 3si+1)) + (3si(2si − si+1) + si−1(si+1 − 3si))si+2),

Ξ6 =2(si(si−1(2Γi,i+2 + si) + si(3si+2 − 4si)) + si−2(si(2Γi,i+2 + si)

+ si−1(Γi+2,i − si)) + si−3(2siΓi,i+2

+ si−1(Γi+2,i − si) + si−2(Γi−1,i + Γi+2,i) + s2
i )),

Ξ7 =2(si(si−1(2Γi,i+1 + si) + si(3si+1 − 4si)) + si−2(si(2Γi,i+1

+ si) + si−1(Γi+1,i − si)) + si−3(2siΓi,i+1

+ si−1(Γi+1,i − si) + si−2(Γi−1,i + Γi+1,i) + s2
i )).

Summarizing the following theorem has been established.

Theorem 1. As long as the function g is sufficiently smooth, the first and second derivative of the this
function can be approximated by five and six adjacent points respectively on non-uniform meshes,
via the formulas (13) and (17).

Proof. The proof can be investigated by Taylor expansions as in the derivation in this section.
It is hence omitted.

The procedure for obtaining the weights for the points {s1, s2, s3, sm−1, sm} to keep the fourth
convergence order should be investigated by the six adjacent points as described above but for that
specific node.

It is noted that the formulations derived in (13) and (17) can be used for both uniform
and nonuniform distribution of the discretization nodes, and can be simplified to more simpler
formulations if the nodes are equidistant.

3. Application to Option Pricing under 3D HHW PDE

Considering the non-uniform nodes discussed in Section 1 along with the high order FD
formulations calculated in Section 2, one is able to derive the differentiation matrices corresponding
to the first and second derivatives of the function. These derivative matrices contains the weights
of the fourth order approximations and are sparse in general since they are banded matrices whose
zero elements are much more than their non-zero elements. These feature would help us in solving
the financial model (1) as would be observed later.

For multi-dimensional derivatives, a matrix is constructed such that this is done on the flattened
data, and subsequently the Kronecker product of the matrices for the derivatives (in one-dimension)
are being considered.
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One way for imposing the impact of (13)–(17) is with matrices including the weights of (13)–(17),
i.e., the non-equidistant second-order FD weights, as their elements. A matrix which shows an estimation
to the differential operator is called as a matrix of differentiation [20]. Forming and implementing
the proposed scheme based on these matrices are invaluable aids for analysis.

Taking all the weights into consideration, the PDE (1) can be semi discretized to obtain:

∂U(t)
∂t

= A(t)U(t), 0 ≤ t ≤ T, (20)

at which U(t) = (u1,1,1(t), u1,1,2(t), . . . , um,n,o−1(t), um,n,o(t)︸ ︷︷ ︸
N elements

)∗, is the unknowns vector

and N = m× n× o. Noting that AN×N(t) is the coefficient of the problem (1) at which the boundaries
have not yet been imposed inside.

Here the boundaries along s are defined as follows [13]:

u(s, v, r, t) = 0, s = 0, (21)

us(s, v, r, t) = 1, s = smax. (22)

For v = vmax, the following Dirichlet condition is prescribed:

u(s, v, r, t) = s, v = vmax. (23)

Remarking that the nodes which are located on the boundary v = 0 are considered as interior
nodes and we take a fact into consideration that they must read the PDE model. That is to say,
we incorporate the semi-discretized equations at this boundary.

At last, for r = ±rmax, we impose:

ur(s, v, r, t) = 0, r = rmax, (24)

ur(s, v, r, t) = 0, r = −rmax. (25)

By incorporating the above mentioned conditions, we obtain the following system
of semi-discretized ODEs as follows:

U̇(t) = Ā(t)U(t), (26)

where Ā(t) is the coefficient matrix including the boundaries.

Integrator

For discretizing in temporal variable t, many schemes are existing, for example refer to [23].
Explicit methods are basically straightforward to implement, but suffer from stability problems.
Implicit schemes are unconditionally stable, but only exhibit low convergence or very time-consuming
because of solving nonlinear system of algebraic equations per step.

Consider uι to be the computational solution for the exact solution U(tι) and choose k+ 1 temporal
nodes with the step size Δt = T

k .
At the moment, we use the δ–stage Runge–Kutta scheme [23] at tι+1 = tι + Δt, (0 ≤ ι ≤ k) by:

gi = uι + Δt
δ

∑
j=1

kjai,j,

ki = f (Δtci + tι, gi) ,

uι+1 = uι + Δt
δ

∑
i=1

biki,

(27)
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wherein f is defined based on the right hand side of (26). It is generally assumed that the row-sum
conditions hold:

ci =
δ

∑
j=1

ai,j, i = 1, 2, . . . , δ. (28)

Now we consider a sixth-order explicit Runge–Kutta scheme (RK6) below [24]:

Λ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
1 0 0 0 0 0 0
3
8

1
8 0 0 0 0 0

8
27

2
27

8
27 0 0 0 0

3(3p1−7)
392

(p1−7)
49

−6(p1−7)
49

3(p1−21)
392 0 0 0

−3(17p1+77)
392

(−p1−7)
49 − (8p1)

49
3(121p1+21)

1960
(p1+6)

5 0 0
(7p1+22)

12
2
3

2(7p1−5)
9

−7(3p1−2)
20

−7(9p1+49)
90

−7(p1−7)
18 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (29)

with b = (9/180, 0, 64/180, 0, 49/180, 49/180, 9/180), C = (1, 1/2, 2/3, (7− p1)/14, (7 + p1)/14, 1),
and p1 = 211/2.

Notice that a consequence of explicitness is c1 = 0 in (28), so that the function is sampled
at the beginning of the current integration step. Here, the sixth-order time-stepping solver consists
of seven stages and reaches sixth order of convergence. The sixth order says that the error of local
truncation is on the order of O(Δt7), while the total accumulated error is on the order of O(Δt6).

In the sequel, we study that under what criteria the numerical discretized solution does
not blow up. The following theorem is one of the contributions of this work. This is given
for the time-independent case, i.e., when Ā(t) = Ā.

Theorem 2. If the system of ODEs (26) reads the condition of Lipschitz, then the time-stepping method (27)–(29)
has conditional stability.

Proof. To find a stability conditions, we proceed as follows. Incorporating the time-stepping solver (27)
on the system of ODEs (26) yields:

uι+1 =

(
I + ΔtĀ +

(ΔtĀ)2

2!

+
(ΔtĀ)3

3!
+

(ΔtĀ)4

4!

+
(ΔtĀ)5

5!
+

(ΔtĀ)6

6!

− (ΔtĀ)7

2160

)
uι.

(30)

Thus, the numerical stability is reduced to:∣∣∣∣1 + Δtωi +
(Δtωi)

2

2
+

(Δtωi)
3

6
+

(Δtωi)
4

24

+
(Δtωi)

5

120
+

(Δtωi)
6

720
− (Δtωi)

7

2126

∣∣∣∣ ≤ 1,
(31)
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which is due to (30) for any ωi as the eigenvalue of Ā. Now by considering: ωmax (Ā) , the stability
condition can now be represented as follows:∣∣∣∣1 + Δtωmax +

(Δtωmax)2

2
+

(Δtωmax)3

6
+

(Δtωmax)4

24

+
(Δtωmax)5

120
+

(Δtωmax)6

720
− (Δtωmax)7

2126

∣∣∣∣ ≤ 1.
(32)

Noting that the negative semi-definiteness of Ā makes all its eigenvalues to have negative real
parts. Thus, the proposed scheme has numerical stability if the temporal step size Δt satisfy (32).
Noting that this can be computed in the language Mathematica [22] via the command

Eigenvalues[matrix, 1]. (33)

The proof is ended.

4. Experiments

In this section, some tests were given for our proposed method showed via Adaptive Finite
Difference Method (AFDM) to price at the money call options, when T = 1 year and E = 100$.
A comparison was done by the standard uniform FD scheme [4], which by second order FD
approximations and the Euler’s scheme as a temporal solver shown by FDM. We also compare
with the method provided in [13] shown by Haentjens-In’t Method (HIM).

Mathematica 11.0 is used for the simulations [25]. Time is also reported in second while we employ
the following stopping condition:

Error =
∣∣∣∣uapprox(s, v, r, t)− uref(s, v, r, t)

uref(s, v, r, t)

∣∣∣∣ , (34)

wherein uref and uapprox are the exact and numerical results.
To increase the computational efficiency for very large scale semi-discrete systems that we are

dealing with, here we set AccuracyGoal→ 5, PrecisionGoal→ 5.
Here, we consider more number of discretization nodes along s rather than v and r,

since its working interval is larger than the others and the non-smoothness of the initial condition
occurs along this spatial variable.

The non-constant b is defined as follows:

b(τ) = c1 − c2 exp (−c3τ), τ ≥ 0, (35)

where c1, c2, c3 are constants, and τ = T − t. The following two test cases are considered:

1. κ = 3.0, η = 0.12, a = 0.20, σ1 = 0.80, σ2 = 0.03, ρ12 = 0.6, ρ13 = 0.2, ρ23 = 0.4, c1 = 0.05, c2 = 0,
c3 = 0, where the reference value is uref(100, 0.04, 0.1, 1) � 16.176.

2. κ = 0.5, η = 0.8, a = 0.16, σ1 = 0.90, σ2 = 0.03, ρ12 = −0.5, ρ13 = 0.2, ρ23 = 0.1, c1 = 0.055,
c2 = 0, c3 = 0, where the reference value is uref(100, 0.04, 0.1, 1) � 20.994.

The results are brought forward in Tables 1 and 2 showing the stable and efficient valuations
of options under HHW PDE via the new high-order procedure. Furthermore, to reveal the positivity
and stability of the numerical results, in Experiment 2, and by considering m = 30, n = 18 and o = 18
discretization nodes, the results based on AFDM are plotted in Figures 1 and 2.
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Table 1. Error results in Heston–Hull–White (HHW) Option 1.

Procedure m n o Size Δt Price Error CPU Timing

FDM

10 8 6 480 0.002 25.492 5.7× 10−1 0.39
14 10 10 1400 0.001 11.098 3.1× 10−1 0.62
18 12 12 2592 0.0005 17.203 6.3× 10−2 1.22
24 14 14 4704 0.00025 18.731 1.5× 10−1 3.39
28 16 16 7168 0.0002 13.329 1.7× 10−1 6.07
45 22 22 21,780 0.00005 14.636 9.4× 10−2 70.54

HIM

10 8 6 480 0.001 14.472 1.0× 10−1 0.44
14 10 10 1400 0.0005 15.300 5.3× 10−2 0.85
18 12 12 2592 0.00025 15.615 3.4× 10−2 2.09
24 14 14 4704 0.0001 15.806 2.2× 10−2 8.04
28 16 16 7168 0.0001 15.871 1.8× 10−2 11.84
50 22 22 24,200 0.000025 16.006 5.9× 10−3 186.77

AFDM

10 8 6 480 0.005 15.123 6.5× 10−2 0.41
14 10 10 1400 0.002 15.986 1.1× 10−2 0.82
18 12 12 2592 0.001 16.059 7.2× 10−3 1.99
24 14 14 4704 0.000625 16.136 2.4× 10−3 5.56
28 16 16 7168 0.0005 16.160 9.8× 10−4 9.02
50 22 22 24,200 0.0001 16.179 1.8× 10−4 103.26

Table 2. Error results in HHW option 2.

Procedure m n o Size Δt Price Error CPU Timing

FDM

20 10 10 2000 0.00025 22.022 4.9× 10−2 1.77
24 12 12 3456 0.0002 21.436 2.1× 10−2 3.14
26 14 14 5096 0.0001 19.678 6.1× 10−2 8.67
28 16 16 7168 0.0001 17.376 1.7× 10−1 11.72
30 18 18 9720 0.00005 17.404 1.7× 10−1 35.50
36 20 20 14,400 0.000025 20.510 2.2× 10−2 107.89
38 22 22 18,392 0.000025 20.275 3.3× 10−2 161.16
42 22 22 20,328 0.00002 18.370 1.2× 10−1 244.32

HIM

20 10 10 2000 0.00025 20.631 1.6× 10−2 1.69
24 12 12 3456 0.0002 20.709 1.2× 10−2 3.40
26 14 14 5096 0.0001 20.729 1.1× 10−2 8.64
28 16 16 7168 0.0001 20.748 1.0× 10−2 12.36
30 18 18 9720 0.00005 20.767 9.9× 10−3 36.54
36 20 20 14,400 0.000025 20.810 7.8× 10−3 108.92
38 22 22 18,392 0.000025 20.818 7.5× 10−3 166.08
42 22 22 20,328 0.00002 20.833 6.7× 10−3 250.67

AFDM

20 10 10 2000 0.0005 20.832 7.7× 10−3 0.89
24 12 12 3456 0.0004 20.899 4.5× 10−3 3.36
26 14 14 5096 0.00025 20.910 4.0× 10−3 6.62
28 16 16 7168 0.0002 20.926 3.2× 10−3 11.27
30 18 18 9720 0.0001 20.951 2.0× 10−3 34.55
36 20 20 14,400 0.0000625 20.972 1.0× 10−3 98.22
38 22 22 18,392 0.00005 20.980 6.6× 10−4 165.27
42 22 22 20,328 0.00004 20.999 2.3× 10−4 240.25
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Figure 1. A numerical solution based on AFDM in Heston–Hull–White (HHW) option 2.

Figure 2. A numerical solution based on AFDM in HHW option 2.

5. Ending Comments

In financial engineering, it is famous that the Black–Scholes PDE could not be useful in real
application due to several restrictions. Several ideas to observe the market’s reality are models based
upon the stochastic volatility and interest rate models. The resulted PDE problem in this way is hard
to be solved theoretically due to higher involved dimensions and so numerical methods are required.

In this paper, we have proposed a new discretized numerical method based on adaptive FD
methodology on non-uniform grids in order to tackle an important problem in computational finance
known as HHW PDE (1). It was proved that the new procedure has conditional stability and shown
to be efficient in practice.
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Further discussions can be investigated to extend the results of this work for other types of options
defined on HHW model such as digital (binary) options, at which the initial condition is not only
non-smooth at the strike but also discontinues.

Funding: This research received no external funding.

Acknowledgments: This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz
University, Jeddah, under grant No. (D-235-130-1439). The authors, therefore, gratefully acknowledge the DSR
technical and financial support.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Brigo, D.; Mercurio, F. Interest Rate Models-Theory and Practice: With Smile, Inflation and Credit, 2nd ed.;
Springer Finance: Berlin, Germany, 2007.

2. Cakici, N.; Chatterjee, S.; Chen, R.-R. Default risk and cross section of returns. J. Risk Financ. Manag. 2019,
12, 95. [CrossRef]

3. Ballestra, L.V.; Cecere, L. A numerical method to estimate the parameters of the CEV model implied
by American option prices: Evidence from NYSE. Chaos Solitons Fractals 2016, 88, 100–106. [CrossRef]

4. Duffy, D.J. Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach; Wiley:
Chichester, UK, 2006.

5. Magoulès, F.; Gbikpi-Benissan, G.; Zou, Q. Asynchronous iterations of parareal algorithm for option pricing
models. Mathematics 2018, 6, 45. [CrossRef]

6. Fouque, J.-P.; Papanicolaou, G.; Sircar, K.R. Derivatives in Financial Markets with Stochastic Volatility;
Cambridge Univ. Press: Cambridge, UK, 2000.

7. Heston, S.L. A closed-form solution for options with stochastic volatility with applications to bond
and currency options. Rev. Finan. Stud. 1993, 6, 327–343. [CrossRef]

8. Hull, J.; White, A. Using Hull-White interest rate trees. J. Deriv. 1996, 4, 26–36. [CrossRef]
9. Schöbel, R.; Zhu, J. Stochastic volatility with an Ornstein-Uhlenbeck process: An extension. Eur. Financ. Rev.

1999, 3, 23–46. [CrossRef]
10. Guo, S.; Grzelak, L.A.; Oosterlee, C.W. Analysis of an affine version of the Heston-Hull-White option pricing

partial differential equation. Appl. Numer. Math. 2013, 72, 143–159. [CrossRef]
11. Sargolzaei, P.; Soleymani, F. A new finite difference method for numerical solution of Black-Scholes PDE.

Adv. Diff. Equat. Control Process. 2010, 6, 49–55.
12. Soleymani, F.; Barfeie, M. Pricing options under stochastic volatility jump model: A stable adaptive scheme.

Appl. Numer. Math. 2019, 145, 69–89. [CrossRef]
13. Haentjens, T.; In’t Hout, K.J. Alternating direction implicit finite difference schemes

for the Heston-Hull-White partial differential equation. J. Comput. Fin. 2012, 16, 83–110. [CrossRef]
14. Soleymani, F.; Akgül, A. Asset pricing for an affine jump-diffusion model using an FD method of lines

on non-uniform meshes. Math. Meth. Appl. Sci. 2019, 42, 578–591. [CrossRef]
15. Itkin, A.; Carr, P. Jumps without tears: A new splitting technology for Barrier options. Int. J. Numer.

Anal. Model. 2011, 8, 667–704.
16. Sumei, Z.; Jieqiong, Z. Efficient simulation for pricing barrier options with two-factor stochastic volatility

and stochastic interest rate. Math. Prob. Eng. 2017, 2017, 3912036. [CrossRef]
17. Soleymani, F.; Saray, B.N. Pricing the financial Heston-Hull-White model with arbitrary correlation factors

via an adaptive FDM. Comput. Math. Appl. 2019, 77, 1107–1123. [CrossRef]
18. Kwok, Y.K. Mathematical Models of Financial Derivatives, 2nd ed.; Springer: Heidelberg, Germany, 2008.
19. Ballestra, L.V.; Sgarra, C. he evaluation of American options in a stochastic volatility model with jumps:

An efficient finite element approach. Comput. Math. Appl. 2010, 60, 1571–1590. [CrossRef]
20. Fornberg, B. A Practical Guide to Pseudospectral Methods; Cambridge University Press: Cambridge , UK, 1996.
21. Soleymani, F.; Barfeie, M.; Khaksar Haghani, F. Inverse multi-quadric RBF for computing the weights of FD

method: Application to American options. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 74–88. [CrossRef]
22. Wellin, P.R.; Gaylord, R.J.; Kamin, S.N. An Introduction to Programming with Mathematica, 3rd ed.;

Cambridge University Press: Cambridge, UK, 2005.

478



Mathematics 2019, 7, 704

23. Sofroniou, M.; Knapp, R. Advanced Numerical Differential Equation Solving in Mathematica, Wolfram Mathematica,
Tutorial Collection; Wolfram Research, Inc.: Champaign, IL, USA, 2008.

24. Luther, H.A. An explicit sixth-order Runge-Kutta formula. Math. Comput. 1967, 22, 434–436. [CrossRef]
25. Mangano, S. Mathematica Cookbook; O’Reilly Media: Sevastopol, CA, USA, 2010.

c© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

479





MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Mathematics Editorial Office
E-mail: mathematics@mdpi.com

www.mdpi.com/journal/mathematics





MDPI  
St. Alban-Anlage 66 
4052 Basel 
Switzerland

Tel: +41 61 683 77 34 
Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-03921-941-4 


	Blank Page

