
Stochastic 
Processes
Theory and Applications

Printed Edition of the Special Issue Published in Mathematics

www.mdpi.com/journal/mathematics

Alexander Zeifman, Victor Korolev and Alexander Sipin
Edited by

Stochastic Processes    •   Alexander Zeifm
an, Victor Korolev and Alexander Sipin



Stochastic Processes





Stochastic Processes

Theory and Applications

Special Issue Editors

Alexander Zeifman

Victor Korolev

Alexander Sipin

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade



Special Issue Editors

Alexander Zeifman

Vologda State University

Russia

Victor Korolev

Lomonosov Moscow State University

Russia

Alexander Sipin

Vologda State University

Russia

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Mathematics (ISSN 2227-7390) in 2019 (available at: https://www.mdpi.com/journal/mathematics/

special issues/Stochastic Processes Theory Applications).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number,

Page Range.

ISBN 978-3-03921-962-9 (Pbk)

ISBN 978-3-03921-963-6 (PDF)

c© 2019 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.



Contents

About the Special Issue Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Preface to ”Stochastic Processes” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Jiechang Ruan, Wenguang Yu, Ke Song, Yihan Sun, Yujuan Huang and Xinliang Yu

A Note on a Generalized Gerber–Shiu Discounted Penalty Function for a Compound Poisson
Risk Model
Reprinted from: Mathematics 2019, 7, 891, doi:10.3390/math7100891 . . . . . . . . . . . . . . . . . 1

Wenguang Yu, Yaodi Yong, Guofeng Guan, Yujuan Huang, Wen Su and Chaoran Cui

Valuing Guaranteed Minimum Death Benefits by Cosine Series Expansion
Reprinted from: Mathematics 2019, 7, 835, doi:10.3390/math7090835 . . . . . . . . . . . . . . . . . 13

Valeriy A. Naumov, Yuliya V. Gaidamaka and Konstantin E. Samouylov

On Two Interacting Markovian Queueing Systems
Reprinted from: Mathematics 2019, 7, 799, doi:10.3390/math7090799 . . . . . . . . . . . . . . . . . 28

Valeriy A. Naumov, Yuliya V. Gaidamaka and Konstantin E. Samouylov

On Truncation of the Matrix-Geometric Stationary Distributions
Reprinted from: Mathematics 2019, 7, 798, doi:10.3390/math7090798 . . . . . . . . . . . . . . . . . 40

Olga Dudina and Alexander Dudin

Optimization of Queueing Model with Server Heating and Cooling
Reprinted from: Mathematics 2019, 7, 768, doi:10.3390/math7090768 . . . . . . . . . . . . . . . . . 50

Sergey Ermakov and Svetlana Leora

Monte Carlo Methods and the Koksma-Hlawka Inequality
Reprinted from: Mathematics 2019, 7, 725, doi:10.3390/math7080725 . . . . . . . . . . . . . . . . . 64

Jung Woo Baek and Yun Han Bae

Exact Time-Dependent Queue-Length Solution to a Discrete-Time Geo/D/1 Queue
Reprinted from: Mathematics 2019, 7, 717, doi:10.3390/math7080717 . . . . . . . . . . . . . . . . . 71

Chesoong Kim, Sergey Dudin, Alexander Dudin and Konstantin Samouylov

Analysis of a Semi-Open Queuing Network with a State Dependent Marked Markovian Arrival
Process, Customers Retrials and Impatience
Reprinted from: Mathematics 2019, 7, 715, doi:10.3390/math7080715 . . . . . . . . . . . . . . . . . 79

Yacov Satin, Alexander Zeifman, Anastasia Kryukova

On the Rate of Convergence and Limiting Characteristics for a Nonstationary Queueing Model
Reprinted from: Mathematics 2019, 7, 678, doi:10.3390/math7080678 . . . . . . . . . . . . . . . . . 98

Victor Korolev, Andrey Gorshenin and Konstatin Belyaev

Statistical Tests for Extreme Precipitation Volumes
Reprinted from: Mathematics 2019, 7, 648, doi:10.3390/math7070648 . . . . . . . . . . . . . . . . . 109

Honglong You and Yuan Gao

Non-Parametric Threshold Estimation for the Wiener–Poisson Risk Model
Reprinted from: Mathematics 2019, 7, 506, doi:10.3390/math7060506 . . . . . . . . . . . . . . . . . 129

Alexander Zeifman, Yacov Satin, Ksenia Kiseleva, Victor Korolev

On the Rate of Convergence for a Characteristic of Multidimensional Birth-Death Process
Reprinted from: Mathematics 2019, 7, 477, doi:10.3390/math7050477 . . . . . . . . . . . . . . . . . 140

v



Yunyun Wang, Wenguang Yu, Yujuan Huang, Xinliang Yu and Hongli Fan

Estimating the Expected Discounted Penalty Function in a Compound Poisson Insurance Risk
Model with Mixed Premium Income
Reprinted from: Mathematics 2019, 7, 305, doi:0.3390/math7030305 . . . . . . . . . . . . . . . . . . 150

Alexander Sipin

Monte Carlo Algorithms for the Parabolic Cauchy Problem
Reprinted from: Mathematics 2019, 7, 177, doi:10.3390/math7020177 . . . . . . . . . . . . . . . . . 175

Maryam Eskandarzadeh, Antonio Di Crescenzo and Saeid Tahmasebi

Cumulative Measure of Inaccuracy and Mutual Information in k-th Lower Record Values
Reprinted from: Mathematics 2019, 7, 175, doi:10.3390/math7020175 . . . . . . . . . . . . . . . . . 185

vi



About the Special Issue Editors

Alexander I. Zeifman—Professor, Head of Department of Applied Mathematics, Vologda State

University, Vologda, Russia; Senior Researcher, Institute of Informatics Problems, Federal Research

Center “Computer Sciences and Control” of the Russian Academy of Sciences, Russia; Chief

Researcher, Vologda Research Center of the Russian Academy of Sciences, Russia. Graduate of

Vologda State Pedagogical Institute, 1976. Candidate of Science in Physics and Mathematics (PhD),

1981. Doctor of Science in Physics and Mathematics (1994, Institute of Control Sciences, Russian

Academy of Sciences). Main research interests: stochastic models, continuous-time Markov chains,

bounds on the rate of convergence, perturbation bounds, queueing models, biological models,

queueing theory.

Victor Yu. Korolev—Professor, Head of Department of Mathematical Statistics, Faculty of

Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow, Russia;

Leading researcher, Institute of Informatics Problems, Federal Research Center “Computer Sciences

and Control” of the Russian Academy of Sciences, Moscow, Russia; Professor, Hangzhou Dianzi

University, Hangzhou, China. Graduate of Faculty of Computational Mathematics, Lomonosov

Moscow State University, 1977. Candidate of Science in Physics and Mathematics (PhD), 1981.

Doctor of Science in Physics and Mathematics (1994, Lomonosov Moscow State University). Main

research interests: Limit theorems of probability theory and their applications in distribution theory,

statistics, risk theory, reliability theory. Probability models of real processes in physics, meteorology,

financial mathematics and other fields.

Alexander S. Sipin—Professor at the Department of Applied Mathematics, Vologda State University,

Institute of Mathematics, Natural and Computer Sciences, Russia. Graduate of Faculty of

Mathematics and Mechanics, Leningrad State University, now St.Petersburg State University, Russia

in 1975. Candidate of Science in Physics and Mathematics (PhD), 1979. Doctor of Science in Physics

and Mathematics (2016, St. Petersburg State University, Russia). Research interests: Monte Carlo

and quasi-Monte Carlo methods, Markov chains, meshless numerical methods for solving boundary

value problems.

vii





Preface to ”Stochastic Processes”

The aim of this Special Issue was to publish original research articles that cover recent advances

in the theory and application of stochastic processes. There is particular focus on applications of

stochastic processes as models of dynamic phenomena in various research areas, such as queuing

theory, physics, biology, economics, medicine, reliability theory, and financial mathematics.

After a thorough review of the submitted papers, 15 works were selected and included in the

final collection. These papers were written by scientists representing Belorussia, China, Finland, Iran,

Italy, Korea and Russia.

Most papers concern queueing theory and Markov processes. There are also papers dealing with

problems of risk theory, Monte Carlo methods and probability models of meteorological phenomena.

The Editors hope that this Special issue will be of interest to specialists in probability theory and

its applications, as well as to specialists in related fields of science.

Alexander Zeifman, Victor Korolev, Alexander Sipin

Special Issue Editors
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Abstract: In this paper, we propose a new generalized Gerber–Shiu discounted penalty function
for a compound Poisson risk model, which can be used to study the moments of the ruin time.
First, by taking derivatives with respect to the original Gerber–Shiu discounted penalty function,
we construct a relation between the original Gerber–Shiu discounted penalty function and our new
generalized Gerber–Shiu discounted penalty function. Next, we use Laplace transform to derive a
defective renewal equation for the generalized Gerber–Shiu discounted penalty function, and give a
recursive method for solving the equation. Finally, when the claim amounts obey the exponential
distribution, we give some explicit expressions for the generalized Gerber–Shiu discounted penalty
function. Numerical illustrations are also given to study the effect of the parameters on the generalized
Gerber–Shiu discounted penalty function.

Keywords: compound Poisson risk model; generalized Gerber–Shiu discounted penalty function;
Laplace transform; Dickson–Hipp operator; recursive formula

MSC: 91B30; 91B70; 60G55

1. Introduction

The classical compound Poisson risk process {U(t)}t≥0 is defined by

U(t) = u + ct −
N(t)

∑
i=1

Xi, t ≥ 0, (1)

where u is the non-negative amount of initial reserves, and c > 0 denotes the constant premium rate
per unit time. The counting process {N(t)}t≥0, representing the total claim numbers up to time t , is a
homogeneous Poisson processes with intensity λ. {Xi}i≥1 is a sequence of independent and identically
distributed non-negative random variables, where Xi is the i-th claim amount. Let f (x) denote the

density function of X, and let E[X] and f̂ (s) =
∫ ∞

0
e−sx f (x)dx denote the expectation and Laplace

transform of X, respectively. To avoid ruin from being a certain event, we assume c > λE[X].
We say that ruin occurs whenever U(t) becomes negative. The time to ruin of the insurance

company is defined as

τ = inf{t : U(t) < 0}, (2)

Mathematics 2019, 7, 891; doi:10.3390/math7100891 www.mdpi.com/journal/mathematics1
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where τ = ∞ if for all t ≥ 0, U(t) ≥ 0. For the initial reserves U(0) = u, the probability of ruin is
defined as

ψ(u) = P(τ < ∞|U(0) = u), u ≥ 0. (3)

The probability of ruin is an important risk measure in the study of ruin in risk theory. It has been
widely studied in actuarial science. In 1998, famous actuarial scholars Hans Gerber and Elias Shiu
first proposed an expected discounted penalty function, which is also called Gerber–Shiu discounted
penalty function, to study ruin related problems. Recently, it has become a powerful risk measurement
tool in ruin theory. Given the initial surplus U(0) = u, we define the classical Gerber–Shiu discounted
penalty function as follows:

Φ(u, δ) = E[e−δτW(U(τ−), |U(τ)|)I(τ < ∞)|U(0) = u], u ≥ 0, (4)

where δ ≥ 0 is the force of interest, W(x, y) is a non-negative measurable penalty function, and I(·)
is the indicator function. It is clear that the Gerber–Shiu discounted penalty function becomes the
probability of ruin when δ = 0, W(x, y) = 1. For the recent literature on the Gerber–Shiu discounted
penalty function, we can refer to work by Lin et al. [1], Zhang et al. [2], Yu [3,4], Wang et al. [5],
Avram et al. [6], Zhang [7], Chi [8], Peng and Wang [9], Li et al. [10], Huang et al. [11], Preischl and
Thonhauser [12], Zeng et al. [13,14], Yu et al. [15], Dickson and Qazvini [16], Zhang and Su [17,18],
Li et al. [19], and Zhao and Yin [20], among others.

In recent years, Gerber–Shiu discounted penalty function has been extended by many actuarial
scholars, so that the new risk measures can be used to study more related quantities. For example,
Cai et al. [21] studied the ruin-related Gerber–Shiu discounted penalty risk measures by bringing in the
conception of path consumption. Cheung [22] extended the Gerber–Shiu discounted penalty function
by introducing the penultimate claim before ruin under a Sparre–Andersen renewal risk model.
Chueng [23], Cheung and Woo [24] proposed a new Gerber–Shiu type function by incorporating
the total claims up to ruin. Chueng and Feng [25] studied a new kind of generalized Gerber–Shiu
discounted penalty function under the Markov arrival process. Wang and Li [26] extended the discount
rate from constant to a random variable for the Gerber–Shiu discounted penalty function in the classical
risk model. Wang and Zhang [27] provided a smooth extension of the Gerber–Shiu discounted penalty
function by introducing an auxiliary function. As is known to all, the ruin time is also an important
random variable in the study of risk theory. We can study the Laplace transform of the ruin time by
the Gerber–Shiu discounted penalty function, while other mathematical characteristics associated with
the ruin time cannot be directly studied through Gerber–Shiu discounted penalty function. In recent
years, many actuarial scholars have paid attention to the moment of the ruin time. For instance,
Egidio dos Reis [28], Lin and Willmot [29] and Drekic and Willmot [30] studied the moment of the
ruin time under the compound Poisson risk model. Pitts and Politis [31] proposed an approximation
approach of the moment of ruin time. Yu et al. [32] studied the moment of ruin time under the Markov
arrival risk model. The moment of ruin time was introduced in the Gerber–Shiu discounted penalty
function by Lee and Willmot [33]; then, they studied this new Gerber–Shiu discounted penalty function
Sparre-Andersen risk model [34]. Schmidli [35] considered a new Gerber–Shiu discounted penalty
function, which is modified with an additional penalty for reaching a level above the initial capital.
Deng et al. [36] studied a generalized Gerber–Shiu discounted penalty function, in which the interest
rates follow a Markov chain with finite state space. Li and Lu [37] studied the generalized expected
discounted penalty function in a risk process with credit and debit interests.

In this paper, we introduce a new generalized Gerber–Shiu type function. For non-negative
integer n, define

Φn(u, δ) = E[τne−δτW(U(τ−), |U(τ)|)I(τ < ∞)|U(0) = u], u ≥ 0. (5)

2
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We call Φn(u, δ) a generalized Gerber–Shiu discounted penalty function. It is obvious that
Φ0(u, δ) = Φ(u, δ). When W(x, y) = 1, Φn(u, δ) is the discounted nth moment of ruin time, then we
can use it to study the expectation and variance of ruin time. Note that the generalized Gerber–Shiu
discounted penalty function defined by formula (5) is different from the function studied in Lee and
Willmot [34] since we bring in the surplus before ruin.

In this paper, we mainly discuss the calculation method of the generalized Gerber–Shiu discounted
penalty function Φn(u, δ). In Section 2, we propose a recursion method by Laplace transform to
calculate Φn(u, δ). In Section 3, we present an exact expression of Φn(u, δ) when claim amounts are
exponentially distributed. Numerical examples are also given to explain the effect of the related
parameters. Finally, conclusions are given in Section 4.

2. Recursion Calculation of Φn(u, δ)

First, we define the Laplace transform of Φn(u, δ) by

Φ̂n(u, δ) =
∫ ∞

0
e−suΦn(u, δ)du, Re(s) ≥ 0.

For convenience, we introduce the Dickson–Hipp operator Ts, which, for any integral function h
on (0,+∞), is defined as

Tsh(x) =
∫ ∞

x
e−s(y−x)h(y)dy =

∫ ∞

0
e−syh(x + y)dy, x ≥ 0.

It is easily seen that Tsh(0) =
∫ ∞

0
e−syh(y)dy = ĥ(s). The Dickson–Hipp operator has

interchangeability, that is to say, for s �= r,

TsTrh(x) = TrTsh(x) =
Tsh(x)− Trh(x)

r − s
.

For for more properties of the Dickson–Hipp operator, we refer interested readers to Dickson and
Hipp [38] and Li and Garrido [39].

When n = 0, it follows from Gerber and Shiu [35] and Laplace transform that Φ̂0(s, δ) satisfies
the following equation:

{cs − λ(1 − f̂ (s))− δ}Φ̂0(s, δ) = λ{ω̂(ρ(δ))− ω̂(s)}, (6)

where

ω(u) =
∫ ∞

u
W(u, x − u) f (x)dx,

ω̂(s) =
∫ ∞

0
e−suω(u)du,

and ρ(δ) is the positive root of the following equation

cs − λ(1 − f̂ (s))− δ = 0. (7)

By Equation (6), we can obtain the renewal equation satisfied by Gerber–Shiu discounted penalty
function Φ0(u, δ), and we can further derive the analytic expression of Φ0(u, δ). Now, we consider the
case n ≥ 1. The derivative of Φn(u, δ) with respect to δ is given by

Φn(u, δ) = (−1)n dn

dδn Φ0(u, δ). (8)

3
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Applying Laplace transform on both sides of Equation (8) gives

Φ̂n(s, δ) = (−1)n dn

dδn Φ̂0(s, δ). (9)

Then, taking a derivative on both sides of Equation (6) with respect to δ yields

{cs − λ(1 − f̂ (s))− δ} dn

dδn Φ̂0(s, δ)− n
dn−1

dδn−1 Φ̂0(s, δ) = λ
dn

dδn ω̂(ρ(δ)).

In addition, by Equation(9), we have

{cs − λ(1 − f̂ (s))− δ}Φ̂n(s, δ) + nΦ̂n−1(s, δ) = (−1)nλ
dn

dδn ω̂(ρ(δ)). (10)

Setting s = ρ(δ) in Equation (10) yields

(−1)nλ
dn

dδn ω̂(ρ(δ)) = nΦ̂n−1(ρ(δ), δ).

Substituting the above result back into Equation (10) gives

{cs − λ(1 − f̂ (s))− δ}Φ̂n(s, δ) = nΦ̂n−1(ρ(δ), δ)− nΦ̂n−1(s, δ). (11)

Since ρ(δ) is the root of Equation (7), we have

cs − λ(1 − f̂ (s))− δ = cs − λ(1 − f̂ (s))− δ − {cρ(δ)− λ[1 − f̂ (ρ(δ))]− δ}
= c(s − ρ(δ)) + λ[ f̂ (s)− f̂ (ρ(δ))]

= (s − ρ(δ))

[
c + λ

f̂ (s)− f̂ (ρ(δ))
s − ρ(δ)

]
= (s − ρ(δ))[c − λTsTρ(δ) f (0)]. (12)

Plugging Equation (12) back into Equation (11) gives

(s − ρ(δ))[c − λTsTρ(δ) f (0)]Φ̂n(s, δ) = nΦ̂n−1(ρ(δ), δ)− nΦ̂n−1(s, δ).

We can rewrite the above equation to obtain[
1 − λ

c
TsTρ(δ) f (0)

]
Φ̂n(s, δ) =

n
c

Φ̂n−1(ρ(δ), δ)− Φ̂n−1(s, δ)

s − ρ(δ)
=

n
c

TsTρ(δ)Φ̂n−1(0, δ). (13)

Applying Laplace transform on both sides of Equation (13) gives

Φn(u, δ) =
∫ ∞

0

λ

c
Tρ(δ) f (x)Φn(u − x, δ)dx +

n
c

Tρ(δ)Φn−1(u, δ), (14)

where g(x) =
λ

c
Tρ(δ) f (x), x ≥ 0. Since by Gerber and Shiu [40] we have

∫ ∞

0
g(x)dx < 1,

then Equation (14) is a defective renewal equation.
Define

H(u) =
∞

∑
n=1

g∗n(u), u ≥ 0,

where g∗n denotes the nth convolution of g. Then, we can express the solution of Equation (14)
as follows:

4
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Φn(u, δ) =
n
c

Tρ(δ)Φn−1(u, δ) +
n
c

∫ u

0
H(u − x)Tρ(δ)Φn−1(x, δ)dx. (15)

The above equation gives a recursion algorithm for computing Φn(u, δ), where the initial value is
given by Φ0(u, δ).

3. Explicit Expressions for Exponential Claim Distribution and Numerical Examples

In this section, we suppose that the claim amounts are exponentially distributed, and the density
function is given by

f (x) = αe−αx, α, x > 0.

To obtain some explicit results, we assume the penalty function W(x, y) = W1(y). Then, we have

ω(u) =
∫ ∞

u
W1(x − u)αe−αxdx = βe−αu, (16)

where β =
∫ ∞

0
W1(x)αe−αxdx. Solving Equation (7), we obtain

ρ(δ) =
λ + δ − cα +

√
(λ + δ − cα)2 + 4cαδ

2c
. (17)

We denote the other root of Equation (7) by −R(δ); then, it is easy to obtain

R(δ) = −λ + δ − cα −√(λ + δ − cα)2 + 4cαδ

2c
. (18)

Now, we derive an expression for Φn(u, δ) by Laplace inverse transform. First, by Equation (6),
we have

c
s + α

(s − ρ(δ))(s + R(δ))Φ̂0(s, δ) =
λβ

α + ρ(δ)
− λβ

α + s
.

Then, we obtain

Φ̂0(s, δ) =
λβ

c(α + ρ(δ))(s + R(δ))
.

Applying Laplace inverse transform in the above equation gives

Φ0(u, δ) =
λβ

c(α + ρ(δ))
e−R(δ)u, u ≥ 0. (19)

Next, we consider n ≥ 1. Combining the derivative of formula (19) w.r.t δ and Equation (8), we
find that Φn(u, δ) has the following expression:

Φn(u, δ) =
n

∑
k=0

An,k
uk

k!
e−R(δ)u, u ≥ 0. (20)

Finally, we discuss how to determine the coefficients An,k in formula (20).
When n = 0, comparing Equations (19) and (20), we obtain

A0,0 =
λβ

c[α + ρ(δ)]
. (21)

Taking the Laplace transform of formula (20) yields

5
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Φ̂n(s, δ) =
n

∑
k=0

An,k

[s + R(δ)]k+1 . (22)

By formulas (21) and (22), we have

Φ̂n(s, δ) =
n[Φ̂n−1(ρ(δ), δ)− Φ̂n−1(s, δ)]

cs − λ(1 − f̂ (s))− δ

=
n(s + α)

c(s − ρ(δ))(s + R(δ))

n−1

∑
k=0

An−1,k ·
[

1
(ρ(δ) + R(δ))k+1 − 1

(s + R(δ))k+1

]
=

Ln(s)
[s + R(δ)]n+1 , (23)

where

Ln(s) =
n(s + α)

c(s − ρ(δ))

n−1

∑
k=0

An−1,k · [s + R(δ)]n−k−1 [s + R(δ)]k+1 − [ρ(δ) + R(δ)]k+1

[ρ(δ) + R(δ)]k+1 (24)

is an n-order polynomial.
By partial fraction expansion of formula (23), we obtain

An,k =
1

(n − k)!
dn−k

dsn−k Ln(s)|s=−R(δ), k = 0, 1, 2, ......, n. (25)

Noting that the polynomial Ln(s) only depends on An−1,k, we can calculate An,k recursively
from A0,k.

Without losing generality, we give the explicit expressions of Φn(u, δ) for n = 1, 2.
For n = 1, from formula (20), we have

Φ1(u, δ) = A1,0 · e−R(δ)u + A1,1 · ue−R(δ)u, u ≥ 0. (26)

From formula (24), we have

L1(s) =
A0,0 · (s + α)

c[ρ(δ) + R(δ)]
. (27)

By formulas (25) and (27), we have

A1,0 =
d
ds

L1(s)|s=−R(δ) =
A0,0

c[ρ(δ) + R(δ)]
,

A1,1 = L1(−R(δ)) =
A0,0 · (α − R(δ))
c[ρ(δ) + R(δ)]

.

Then, by formula (26), we get

Φ1(u, δ) =
A0,0

c[ρ(δ) + R(δ)]
e−R(δ)u +

A0,0 · (α − R(δ))
c[ρ(δ) + R(δ)]

e−R(δ)u, u ≥ 0. (28)

For n = 2, from formula (20), we have

Φ2(u, δ) = A2,0 · e−R(δ)u + A2,1 · ue−R(δ)u +
1
2

A2,2 · u2e−R(δ)u, u ≥ 0. (29)

From formula (24), we have

6
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L2(s) =
2A1,0

c[ρ(δ) + R(δ)]
(s + α)(s + R(δ)) +

2A1,1

c[ρ(δ) + R(δ)]2
(s + α)(s + ρ(δ) + R(δ)), (30)

L′
2(s) =

2A1,0 · [2s + R(δ) + α]

c[ρ(δ) + R(δ)]
+

2A1,1 · [2s + 2R(δ) + α + ρ(δ)]

c[ρ(δ) + R(δ)]2
, (31)

L′′
2 (s) =

4A1,0

c[ρ(δ) + R(δ)]
+

4A1,1

c[ρ(δ) + R(δ)]2
. (32)

By formulas (25) and (30)–(32), we have

A2,0 =
1
2

d2

ds2 L2(s)|s=−R(δ) =
2A1,0

c[ρ(δ) + R(δ)]
+

2A1,1

c[ρ(δ) + R(δ)]2
,

A2,1 =
d
ds

L2(s)|s=−R(δ) =
2A1,0 · [α − R(δ)]

c[ρ(δ) + R(δ)]
+

2A1,1 · [α + ρ(δ)]

c[ρ(δ) + R(δ)]2
,

A2,2 = L2(s)|s=−R(δ) =
2A1,1 · [α − R(δ)]

c[ρ(δ) + R(δ)]
.

Then, by formula (29), we get

Φ2(u, δ) = { 2A1,0

c[ρ(δ) + R(δ)]
+

2A1,1

c[ρ(δ) + R(δ)]2
}e−R(δ)u

+
2A1,0 · [α − R(δ)]

c[ρ(δ) + R(δ)]
+

2A1,1 · [α + ρ(δ)]

c[ρ(δ) + R(δ)]2
ue−R(δ)u

+
A1,1 · [α − R(δ)]
c[ρ(δ) + R(δ)]

u2e−R(δ)u, u ≥ 0. (33)

Next, we give the numerical simulation of Φ0(u, δ), Φ1(u, δ) and Φ2(u, δ) to illustrate the effect
of the related parameters on the generalized Gerber–Shiu discounted penalty function by Matlab
(Version: matlab2016a; Manufacturer: The MathWorks, Inc.; Natick, Massachusetts 01760 USA)

Example 1. Suppose W(x, y) = 1, then β = 1. We give the influence of the relevant parameters on the
function Φ0(u, δ), Φ1(u, δ) and Φ2(u, δ). See Figures 1–4.

It is easy to see that the images we get from Figures 1–4 are the opposite of the images some
scholars get from the traditional classical risk model. For example, in Figure 1, Φ0(u, δ) is the Laplace
transform of the ruin time. Φ0(u, δ) goes down as c increases. This means that the higher the premium
income rate c is, the smaller the function Φ0(u, δ) is. The reason is that e−δτ is a decreasing function
of τ. Increased premiums mean greater ruin time τ, which in turn leads to smaller functions e−δτ .
Similarly, τe−δτ and τ2e−δτ are also a subtractive function of τ when τ is large. Thus, Φ1(u, δ) and
Φ2(u, δ) go down as c increases. The same conclusion appears in Figures 2–4. We are not explain it one
more time in the following Figures 5–8.
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Φ
δ

(a)

Φ
δ

(b)

Φ
δ

(c)

Figure 1. Set λ = 0.6, α = 0.8, δ = 0.05. (a) The influence of the parameter c on the function Φ0(u, δ).
(b) The influence of the parameter c on the function Φ1(u, δ). (c) The influence of the parameter c on
the function Φ2(u, δ).

Φ
δ

λ

λ

λ

(a)

Φ
δ

λ

λ

λ

(b)

Φ
δ

λ

λ

λ

(c)

Figure 2. Set c = 1, α = 0.8, δ = 0.05. (a) The influence of the parameter λ on the function Φ0(u, δ).
(b) The influence of the parameter λ on the function Φ1(u, δ). (c) The influence of the parameter λ on
the function Φ2(u, δ).

Φ
δ

α

α

α

(a)

Φ
δ

α

α

α

(b)

Φ
δ

α

α

α

(c)

Figure 3. Set c = 1, λ = 0.6, δ = 0.05. (a) The influence of the parameter α on the function Φ0(u, δ).
(b) The influence of the parameter α on the function Φ1(u, δ). (c) The influence of the parameter α on
the function Φ2(u, δ).
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δ

δ
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Φ
δ

δ

δ

δ

(b)

Φ
δ

δ

δ

δ

(c)

Figure 4. Set c = 1, λ = 0.6, α = 0.8. (a) The influence of the parameter δ on the function Φ0(u, δ). (b)
The influence of the parameter δ on the function Φ1(u, δ). (c) The influence of the parameter δ on the
function Φ2(u, δ).

Example 2. Suppose W(x, y) = y, then β =
1
α

. We give the influence of the relevant parameters on the

function Φ0(u, δ), Φ1(u, δ) and Φ2(u, δ). See Figures 5–8.

Φ
δ

(a)

Φ
δ

(b)

Φ
δ

(c)

Figure 5. Set λ = 0.6, α = 0.8, δ = 0.05. (a) The influence of the parameter c on the function Φ0(u, δ).
(b) The influence of the parameter c on the function Φ1(u, δ). (c) The influence of the parameter c on
the function Φ2(u, δ).
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λ

λ

(a)

Φ
δ
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λ

λ

(b)

Φ
δ

λ

λ

λ

(c)

Figure 6. Set c = 1, α = 0.8, δ = 0.05. (a) The influence of the parameter λ on the function Φ0(u, δ).
(b) The influence of the parameter λ on the function Φ1(u, δ). (c) The influence of the parameter λ on
the function Φ2(u, δ).
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δ
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Figure 7. Set c = 1, λ = 0.6, δ = 0.05. (a) The influence of the parameter α on the function Φ0(u, δ).
(b) The influence of the parameter α on the function Φ1(u, δ). (c) The influence of the parameter α on
the function Φ2(u, δ).
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Φ
δ
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(b)

Φ
δ

δ
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Figure 8. Set c = 1, λ = 0.6, α = 0.8. (a) The influence of the parameter δ on the function Φ0(u, δ).
(b) The influence of the parameter δ on the function Φ1(u, δ). (c) The influence of the parameter δ on
the function Φ2(u, δ).

4. Conclusions

In this paper, we discuss a generalized Gerber–Shiu discounted penalty function, which relies
on the moment of the time to ruin under the compound Poisson risk model. We present a recursion
algorithm for calculating the generalized Gerber–Shiu discounted penalty function by Laplace
transform and renewal theory when the claim amounts are subject to an exponential distribution.
Furthermore, we derive some explicit expressions of the generalized Gerber–Shiu discounted penalty
function for n = 0, 1, 2. In addition, we also give numerical examples to explain the effects of
parameters c, λ, α and δ on the generalized Gerber–Shiu discounted penalty function Φ0(u, δ), Φ1(u, δ)

and Φ2(u, δ). It is very easy to see the effects of these parameters on the generalized Gerber–Shiu
discounted penalty function from Figures 1–8. The insurance company can bring the real claim data
into the model for numerical simulation and obtain relevant parameters, so that the ruin probability,
the Laplace transform of the ruin time and the discounted expected time to ruin can be calculated.
The acquisition of these actuarial quantities will effectively improve the operating level of the insurance
company.

Author Contributions: Data curation, W.Y., Y.S., Y.H. and X.Y.; Methodology, J.R. and W.Y.; Software, W.Y., K.S.
and Y.S.; Writing—original draft, J.R. and W.Y.
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Abstract: Recently, the valuation of variable annuity products has become a hot topic in actuarial
science. In this paper, we use the Fourier cosine series expansion (COS) method to value the
guaranteed minimum death benefit (GMDB) products. We first express the value of GMDB by the
discounted density function approach, then we use the COS method to approximate the valuation
Equations. When the distribution of the time-until-death random variable is approximated by a
combination of exponential distributions and the price of the fund is modeled by an exponential Lévy
process, explicit equations for the cosine coefficients are given. Some numerical experiments are also
made to illustrate the efficiency of our method.
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benefit; option; valuation; Lévy process
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1. Introduction

The guaranteed minimum death benefit (GMDB) is a common rider embedded in variable annuity
products that promises a minimum payout upon the death of the insured. In this product, policyholders
first pay premiums to the insurance company, and then, investment accounts are established for capital
investment. When the insured dies, a payment shall be given to the designated beneficiary, and the
payout amount depends on the performance of the policyholder’s account. This mechanism not
only provides insurance guarantee for policyholders, but also has the opportunity to benefit from the
financial market, which appeals to customers.

For t ≥ 0, let S(t) = S(0)eX(t) denote the price of a stock fund or mutual fund at time t. For a
person currently aged x, let Tx denote the remaining lifetime, called the time-until-death random
variable hereafter. Moreover, we assume Tx is independent with the asset price process S(t) throughout
this paper. Consider a GMDB rider that guarantees a payment of b(S(Tx)) to the beneficiary when
the insured dies, where b(·) is an equity-linked death benefit function. For a constant force of interest
δ ≥ 0, we are interested in valuing the following expectation:

Vx := E[e−δTx b(S(Tx))], (1)

Mathematics 2019, 7, 835; doi:10.3390/math7090835 www.mdpi.com/journal/mathematics13
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which represents a fair price for an equity-linked life-contingent payment at Tx. Since most contracts
have a finite expiry date, we can modify (1) by introducing an expiry date T and consider:

Vx,T := E[e−δTx b(S(Tx))I(Tx ≤ T)], (2)

where I(A) denotes the indicator function of event A.
We are also interested in the case when the death benefit amount depends on two stocks

(or stock funds). Let {S1(t), S2(t)}t≥0 denote the price process of two stocks, and let:

Xi(t) = ln(Si(t)/Si(0)), i = 1, 2, t ≥ 0.

In the sequel, it is also assumed that Tx is independent with both S1(t) and S2(t). Accordingly,
we are interested in evaluating the following expectations:

Vx := E[e−δTx b(S1(Tx), S2(Tx))], Vx,T := E[e−δTx b(S1(Tx), S2(Tx))I(Tx ≤ T)].

Recently, the valuation of the GMDB product has drawn many researchers’ attention.
Under an exponential mortality law, Milevsky and Posner [1] proposed a risk-neutral framework
to derive valuation equations for GMDB contracts. Besides, they conducted a numerical study under
the Gompertz-Makeham law. Later, in Bauer et al. [2], they supposed that the death should only
occur at the policy anniversary date, which facilitates a discrete numerical valuation approach for
fairly valuing varieties of guaranteed riders, including GMDB. Gerber et al. [3] proposed a discounted
density approach to value GMDB in a Brownian motion risk model, and their results were extended
by Gerber et al. [4] and Siu et al. [5] to the jump diffusion model and the regime-switching jump
diffusion model, respectively. Based on the fact that the combination of exponential distributions is
weakly dense on the set of probability functions defined on [0, ∞) (see Dufresne [6] and Ko and Ng [7]),
we notice that the density function of the time-until-death random variable was approximated by a
linear combination of exponential distributions in Gerber et al. [3,4] and Siu et al. [5]. More recently,
Zhang and Yong [8] and Zhang et al. [9] used two different methods to value GMDB products.
Recent related literature can be found in Dai et al. [10], Bélanger et al. [11], Kang and Ziveyi [12],
Asmussen et al. [13], and Zhou and Wu [14].

When the density function of the time-until-death random variable is approximated by a linear
sum of exponential distributions, Gerber et al. [3,4,15] derived explicit valuation equations for GMDB
contracts under various payoffs. The simplicity of using a combination of exponential distributions is
excellent, but they are not representative of reality. A direct way to calibrate this is to use life table
data. In Ulm [16,17], he emphasized the valuation of GMDB products under mortality laws, such as
the De Moivre law of mortality and the Makeham law of mortality. A similar consideration could
be found in Liang et al. [18]. They novelly introduced the piecewise constant forces of the mortality
assumption to describe the time-until-death variable, then decomposed the valuation problem and
presented explicit valuation equations for GMDB.

Except the aforementioned assumptions on the time-until-death random variable, the modeling
of the asset process has attracted the attention of scholars. Brownian motion was widely used to
model the log-asset price process, which was adopted in Milevsky and Posner [1], Bauer et al. [2]
(Section 4), Gerber et al. [3], and Liang et al. [18]. In the field of financial markets, this case is basically
a Black-Scholes framework. However, more processes could be also implemented. In Gerber et al. [4],
Kou’s jump model was used as the log-asset process. A counterpart study of Gerber et al. [3] was
referred to by Gerber et al. [15], in which a random walk exponentially generates the price process.
To study the valuation issue in a different perspective, scholars turned to the regime-switching model,
which was used to investigate the performance of an object subject to the economic changes in financial
markets. In the literature, interest readers can refer to Fan et al. [19], Siu et al. [5], Ignatieva et al. [20],
and Hieber [21].
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In Fang and Oosterlee [22], a highly-efficient option pricing method was proposed to price European
options. The method was based on the Fourier cosine series expansions, and it is now called the cosine
series expansion (COS) method in the literature. The COS method is quite easy to implement to
approximate an integrable function as long as the objective function has a closed-form Fourier transform.
The one-dimensional COS (1D COS) method in [22] was extended to the two-dimensional COS method
(2D COS) by Ruijter and Oosterlee [23] to price financial options in two-dimensional asset price processes.
Leitao et al. [24] proposed a data-driven COS method. Except for option pricing, this method has been
adopted in insurance ruin theory. For example, Chau et al. [25,26] used the 1D COS method to compute
the ruin probability and the expected discounted penalty function; Zhang [27] approximated the density
function of the time to ruin by both 1D and 2D COS methods; Yang et al. [28] proposed a nonparametric
estimator for the deficit at ruin by the 2D COS method; Wang et al. [29] and Huang et al. [30] used the
1D COS method to estimate the expected discounted penalty function under some risk models with
stochastic premium income. The COS method has also been used by some authors to value variable
annuities. For example, Deng et al. [31] used the 1D COS method for equity-indexed annuity products
under general exponential Lévy models; Alonso-García et al. [32] extended the 1D COS method to the
pricing and hedging of variable annuities embedded with guaranteed minimum withdraw benefit riders.
The latest research on Fourier transform was given by Zhang et al. [33], Chan [34], Zhang and Liu [35],
Have and Oosterlee [36], Shimizu and Zhang [37], Tour [38], Zhang [39], and Wang et al. [40].

The discounted density method proposed by Gerber et al. [3,4] can be successfully used to
value GMDB products when the log-return process is the Brownian motion or Kou’s jump diffusion
model. Under these two models, the density functions have some closed-form expressions. However,
in practice, we cannot obtain the closed-from expression for the discounted density function. In this
paper, we use the COS method to approximate the discounted density function, which is applicable
since most of the widely-used Lévy processes have explicit characteristic functions. To the best of our
knowledge, this is the first paper exploring the COS method on numerical valuation of the GMDB
product under the general exponential Lévy models. In particular, there are few papers on GMDB
valuation dependent on two stock prices in the literature, and this is the first paper dealing with
this problem.

This paper aims to value the GMDB contracts in a risk-neutral framework, mainly by numerically
solving Equations (1) and (2). In subsequent sections, we first briefly recall the COS method in Fang and
Oosterlee [22], then adopt the method to approximate Vx and Vx,T in the one-dimensional framework.
We define auxiliary functions to simplify deductions and display equations under different payoffs in
Section 2. Motivated by Gerber et al. [3], we consider the situation where the density function of Tx is
approximated by a linear combination of exponential distributions, and calculate cosine coefficients
in Section 4.1. Under the multi-dimensional case, we shed light on a two-dimensional framework
in Section 3. Finally, numerical examples are presented in Section 4, in which we display tables and
figures to illustrate the performance of our proposed approach.

2. 1D COS Approximation

In the section, we shall use the 1D COS method to compute Vx and Vx,T . The idea of the 1D COS
method is that every absolutely integrable function f can be approximated on a truncated domain
[a1, a2] by a truncated Fourier cosine series with N terms,

f (y) ≈
N−1

∑
k=0

′Ak( f , a1, a2) cos
(

kπ
y − a1

a2 − a1

)
, (3)

where ∑ ′ means that the first term in the summation has half weight, and the cosine coefficients are
given by:

Ak( f , a1, a2) =
2

a2 − a1
Re
{
F f
(

kπ

a2 − a1

)
exp
(
−i

ka1π

a2 − a1

)}
. (4)

15
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Here, F f (s) =
∫

eisy f (y)dy, s ∈ R, is the Fourier transform of f , and Re(·) means taking the real
part.

Let fTx (·) denote the probability density function of Tx, and for t > 0, let fX(t)(·) be the probability
density function of X(t). By changing the order of integrals, we can obtain:

Vx =
∫ ∞

0
E[e−δtb(S(t))] fTx (t)dt

=
∫ ∞

0
e−δt

∫ ∞

−∞
b(S(0)ey) fX(t)(y)dy fTx (t)dt

=
∫ ∞

−∞
b(S(0)ey) f δ

X(Tx)
(y)dy, (5)

where:
f δ
X(Tx)

(y) =
∫ ∞

0
e−δt fX(t)(y) fTx (t)dt (6)

is the discounted density function of the random variable X(Tx). Similarly, for the T-year
life-contingent option, we have:

Vx,T =
∫ ∞

−∞
b(S(0)ey) f δ

X(Tx),T(y)dy, (7)

where:

f δ
X(Tx),T(y) =

∫ T

0
e−δt fX(t)(y) fTx (t)dt. (8)

We shall implement the 1D COS method to compute the integrals in (5) and (7). Instead of
expanding the discounted densities f δ

X(Tx)
and f δ

X(Tx),T
via Fourier cosine series, we shall consider the

following auxiliary functions:

gδ
n(y) = eny f δ

X(Tx)
(y), gδ

n,T(y) = eny f δ
X(Tx),T(y), n ≥ 0.

Suppose that both gδ
n and gδ

n,T belong to L1(R), then by Equations (3) and (4), we have:

gδ
n(y) ≈

N−1

∑
k=0

′Ak(gδ
n, a1, a2) cos

(
kπ

y − a1

a2 − a1

)
(9)

and:

gδ
n,T(y) ≈

N−1

∑
k=0

′Ak(gδ
n,T , a1, a2) cos

(
kπ

y − a1

a2 − a1

)
. (10)

Remark 1. The cosine coefficients Ak(gδ
n, a1, a2) and Ak(gδ

n,T , a1, a2) can be explicitly computed when
{X(t)}t≥0 is a Lévy process and fTx is a combination of exponential density function. To this end, it suffices
to specify the Fourier transforms Fgδ

n and Fgδ
n,T. Suppose that {X(t)}t≥0 (with X(0) = 0) is a Lévy process

with characteristic function:
φX(t)(s) = E[eisX(t)] = etΨX(s), s ∈ R, (11)

where ΨX(s) = ln(E[eisX(1)]) is called the characteristic exponent. Furthermore, suppose that:

fTx (t) =
m

∑
j=1

Ajαje
−αj t, t > 0, (12)

where αj > 0 and ∑m
j=1 Aj = 1. Under these assumptions, one easily obtains:

Fgδ
n(s) =

m

∑
j=1

Ajαj

δ + αj − ΨX(s − in)
(13)

16
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and:

Fgδ
n,T(s) =

m

∑
j=1

Ajαj
1 − e−(δ+αj−ΨX(s−in))T

δ + αj − ΨX(s − in)
. (14)

In the sequel, we shall consider three payoff functions.

Case 1. b(s) = s.

In this case, Equations (5) and (7) become:

Vx = S(0)
∫ ∞

−∞
gδ

1(y)dy, Vx,T = S(0)
∫ ∞

−∞
gδ

1,T(y)dy.

For small number c1 and large number c2, using Equation (9), we can approximate Vx as follows,

Vx ≈ S(0)
∫ c2

c1

gδ
1(y)dy

≈ S(0)
∫ c2

c1

N−1

∑
k=0

′Ak(gδ
1, a1, a2)cos

(
kπ

y − a1

a2 − a1

)
dy

= S(0)
N−1

∑
k=0

′Ak(gδ
1, a1, a2) · χk(a1, a2, c1, c2), (15)

where:

χk(a1, a2, c1, c2) =

⎧⎨⎩
a2 − a1

kπ

[
sin
(

kπ
c2 − a1

a2 − a1

)
− sin

(
kπ

c1 − a1

a2 − a1

)]
, k �= 0,

c2 − c1, k = 0.

Similarly, Vx,T can be approximated as follows,

Vx,T ≈ S(0)
N−1

∑
k=0

′Ak(gδ
1,T , a1, a2) · χk(a1, a2, c1, c2). (16)

Case 2. b(s) = snI(s>K) with n ≥ 0 and K > 0.

Here, the positive constant K denotes the strike price. Put κ = ln(K/S(0)). It follows from
Equation (5) that:

Vx =
∫ ∞

κ
[S(0)]neny f δ

X(Tx)
(y)dy =

∫ ∞

κ
[S(0)]ngδ

n(y)dy.

Then, using the 1D COS method, we obtain for large number c2,

Vx ≈ [S(0)]n
N−1

∑
k=0

′Ak(gδ
n, a1, a2) · χk(a1, a2, κ, c2). (17)

Similarly, for Vx,T , we have:

Vx,T ≈ [S(0)]n
N−1

∑
k=0

′Ak(gδ
n,T , a1, a2) · χk(a1, a2, κ, c2). (18)

Remark 2. For the call option, the payoff is given by:

b(s) = (s − K)+ = sI(s>K) − KI(s>K).

17



Mathematics 2019, 7, 835

By applying Equations (5) and (17), we obtain:

Vx =
∫ ∞

κ
S(0)ey f δ

X(Tx)
(y)dy −

∫ ∞

κ
K f δ

X(Tx)
(y)dy

= S(0)
∫ ∞

κ
gδ

1(y)dy − K
∫ ∞

κ
gδ

0(y)dy

≈ S(0)
N−1

∑
k=0

′Ak(gδ
1, a1, a2) · χk(a1, a2, κ, c2)− K

N−1

∑
k=0

′Ak(gδ
0, a1, a2) · χk(a1, a2, κ, c2). (19)

For the T-year life-contingent option, we have:

Vx,T ≈ S(0)
N−1

∑
k=0

′Ak(gδ
1,T , a1, a2) · χk(a1, a2, κ, c2)− K

N−1

∑
k=0

′Ak(gδ
0,T , a1, a2) · χk(a1, a2, κ, c2). (20)

Case 3. b(s) = snI(s<K) with n ≥ 0 and K > 0.

By Equation (5) and the 1D COS method, we have for small number c1,

Vx =
∫ κ

∞
[S(0)]ngδ

n(y)dy ≈ [S(0)]n
∫ κ

c1

gδ
n(y)dy

≈ [S(0)]n
N−1

∑
k=0

′Ak(gδ
n, a1, a2) · χk(a1, a2, c1, κ). (21)

Similarly, for Vx,T , we have:

Vx,T ≈ [S(0)]n
N−1

∑
k=0

′Ak(gδ
n,T , a1, a2) · χk(a1, a2, c1, κ). (22)

Remark 3. For the put option, the payoff function is given by:

b(s) = (K − s)+ = KI(s<K) − sI(s<K),

which together with Equations (21) and (22) gives:

Vx ≈ K
N−1

∑
k=0

′Ak(gδ
0, a1, a2) · χk(a1, a2, c1, κ)− S(0)

N−1

∑
k=0

′Ak(gδ
1, a1, a2) · χk(a1, a2, c1, κ) (23)

and:

Vx,T ≈ K
N−1

∑
k=0

′A(gδ
0,T , a1, a2) · χk(a1, a2, c1, κ)− S(0)

N−1

∑
k=0

′A(gδ
1,T , a1, a2) · χk(a1, a2, c1, κ). (24)

3. 2D COS Approximation

In this section, we use the 2D COS method to compute Vx and Vx,T . For a bivariate integrable
function f , we denote its Fourier transform by:

F f (s1, s2) =
∫ ∫

eis1y+is2z f (y, z)dydz, s1, s2 ∈ R.

18
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It follows from Ruijter and Oosterlee [23] that f can be approximated on a truncated domain
[a1, a2]× [b1, b2] by truncated Fourier cosine series expansions with N1 × N2 terms,

f (y, z) ≈
N1−1

∑
k1=0

′
N2−1

∑
k2=0

′Bk1,k2( f ) cos
(

k1π
y − a1

a2 − a1

)
cos
(

k2π
z − b1

b2 − b1

)
, (25)

where the cosine coefficients are given by:

Bk1,k2( f ) =
1
2

(
B+

k1,k2
( f ) + B−

k1,k2
( f )
)

with:
B±

k1,k2
( f ) = 2

a2−a1
2

b2−b1
Re
{
F f
(

k1π
a2−a1

,± k2π
b2−b1

)
exp
(
−ik1π a1

a2−a1
∓ ik2π b1

b2−b1

)}
. (26)

For t > 0, we denote the joint probability density function of (X1(t), X2(t)) by fX1(t),X2(t)(y, z),
and for δ ≥ 0, define the following discounted density functions:

f δ
X1(Tx),X2(Tx)

(y, z) =
∫ ∞

0
e−δt fX1(t),X2(t)(y, z) fTx (t)dt,

f δ
X1(Tx),X2(Tx),T(y, z) =

∫ T

0
e−δt fX1(t),X2(t)(y, z) fTx (t)dt.

For Vx, by changing the order of integrals, we have:

Vx =
∫ ∞

0 E[e−δtb(S1(t), S2(t))] fTx(t)dt
=
∫ ∞

0 e−δt ∫ ∞
−∞

∫ ∞
−∞ b(S1(0)ey, S2(0)ez) fX1(t),X2(t)(y, z)dydz fTx(t)dt

=
∫ ∞
−∞

∫ ∞
−∞ b(S1(0)ey, S2(0)ez) f δ

X1(Tx),X2(Tx)
(y, z)dydz.

(27)

For Vx,T , we have:

Vx,T =
∫ ∞

−∞

∫ ∞

−∞
b(S1(0)ey, S2(0)ez) f δ

X1(Tx),X2(Tx),T(y, z)dydz. (28)

As in Section 2, we shall pay attention to the following auxiliary functions,

gδ
m,n(y, z) = emy+nz f δ

X1(Tx),X2(Tx)
(y, z), gδ

m,n,T(y, z) = emy+nz f δ
X1(Tx),X2(Tx),T(y, z).

Suppose that both gδ
m,n and gδ

m,n,T are absolutely integrable. Then, by Equation (25), we obtain:

gδ
m,n(y, z) ≈

N1−1

∑
k1=0

′
N2−1

∑
k2=0

′Bk1,k2(gδ
m,n) cos

(
k1π

y − a1

a2 − a1

)
cos
(

k2π
z − b1

b2 − b1

)
(29)

and:

gδ
m,n,T(y, z) ≈

N1−1

∑
k1=0

′
N2−1

∑
k2=0

′Bk1,k2(gδ
m,n,T) cos

(
k1π

y − a1

a2 − a1

)
cos
(

k2π
z − b1

b2 − b1

)
. (30)

To calculate cosine coefficients in Equations (29) and (30), we suppose (X1(t), X2(t)) is a
two-dimensional Lévy process with X1(0) = X2(0) = 0. The characteristic exponent is defined by:

ΨX1,X2(s1, s2) = ln(E[eis1X1(1)+is2X2(1)]).
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Furthermore, suppose that fTx is a combination of the exponential density function given by
Equation (12). By Fubini theorem, we have:

Fgδ
m,n(s1, s2) =

∫ ∫
eis1y+is2zemy+nz f δ

X1(Tx),X2(Tx)
(y, z)dydz

=
∫ ∫

e(is1+m)y+(is2+n)z ∫ ∞
0 e−δt fX1(t),X2(t)(y, z) fTx (t)dtdydz

=
∫ ∞

0 e−(δ−ΨX1,X2 (s1−mi,s2−ni))t fTx (t)dt

= ∑m
j=1

Ajαj
δ+αj−ΨX1,X2 (s1−mi,s2−ni)

(31)

and:

Fgδ
m,n,T(s1, s2) =

∫ T

0
e−(δ−ΨX1,X2 (s1−mi,s2−ni))t fTx (t)dt

=
m

∑
j=1

Ajαj
1 − e−(δ+αj−ΨX1,X2 (s1−mi,s2−ni))T

δ + αj − ΨX1,X2(s1 − mi, s2 − ni)
. (32)

In the sequel, we study the numerical approximation of the value of life-contingent two-asset
options. We shall consider the Margrabe option, maximum/minimum option, and geometric option.
First, the contingent Margrabe option, also called the exchange option, is considered. Note that its
payoff function is:

[S1(Tx)− S2(Tx)]+ .

Then, we have:

E[e−δTx [S1(Tx)− S2(Tx)]+ |S1(0) < S2(0)]
=
∫ ∞

0

∫ ∞
−∞

∫ ∞
−∞ e−δt[S1(0)ey − S2(0)ez]+ · fX1(t),X2(t)(y, z) fTx (t)dydzdt

=
∫ ∞
−∞

∫ ∞
−∞[S1(0)ey − S2(0)ez]+ · f δ

X1(Tx),X2(Tx)
(y, z)dydz

=
∫ ∫

(y,z)∈D1
(S1(0)ey − S2(0)ez) f δ

X1(Tx),X2(Tx)
(y, z)dydz

= S1(0)
∫ ∫

(y,z)∈D1
ey f δ

X1(Tx),X2(Tx)
(y, z)dydz − S2(0)

∫ ∫
(y,z)∈D1

ez f δ
X1(Tx),X2(Tx)

(y, z)dydz
= S1(0)

∫ ∫
(y,z)∈D1

gδ
1,0(y, z)dydz − S2(0)

∫ ∫
(y,z)∈D1

gδ
0,1(y, z)dydz,

(33)

where D1 denotes the region {(y, z) : y − z > ln S2(0)
S1(0)

}. Set D′
1 = D1 ∩ ([a1, a2]× [b1, b2]). Utilizing

Equation (29), we obtain the following approximation formula:

E[e−δTx [S1(Tx)− S2(Tx)]+ |S1(0) < S2(0)]

≈ S1(0)
N1−1

∑
k1=0

′
N2−1

∑
k2=0

′Bk1,k2(gδ
1,0)

∫ ∫
(y,z)∈D′

1

cos
(

k1π
y − a1

a2 − a1

)
cos
(

k2π
z − b1

b2 − b1

)
dydz

− S2(0)
N1−1

∑
k1=0

′
N2−1

∑
k2=0

′Bk1,k2(gδ
0,1)

∫ ∫
(y,z)∈D′

1

cos
(

k1π
y − a1

a2 − a1

)
cos
(

k2π
z − b1

b2 − b1

)
dydz,

where the double integrals in both summations can be analytically computed.
What follows next are the approximation procedures for maximum/minimum options. The payoff

functions for maximum and minimum options are given by:

max{S1(Tx), S2(Tx)}, min{S1(Tx), S2(Tx)}.

With a trivial mathematical change, we can turn them into the following forms:

max{S1(Tx), S2(Tx)} = S2(Tx) + [S1(Tx)− S2(Tx)]+,

min{S1(Tx), S2(Tx)} = S1(Tx)− [S1(Tx)− S2(Tx)]+.
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Hence, the valuation equations can be obtained by taking discounted expectations on both sides
of the above equations,

E[e−δTx max{S1(Tx), S2(Tx)}] = E[e−δTx S2(Tx)] + E[e−δTx [S1(Tx)− S2(Tx)]+],

E[e−δTx min{S1(Tx), S2(Tx)}] = E[e−δTx S1(Tx)]− E[e−δTx [S1(Tx)− S2(Tx)]+],

which imply that we can take advantage of the deductions of exchange option and basic option taking
the form b(s) = s to compute the above expectations.

Finally, we pay attention to the geometric option. The payoff function with strike price K is
given by: [√

S1(Tx)S2(Tx)− K
]
+

.

When condition
√

S1(0)S2(0) < K holds, we can develop the following approximation.

E[e−δTx [
√

S1(Tx)S2(Tx)− K]+ |√S1(0)S2(0) < K]
=
∫ +∞
−∞

∫ +∞
−∞ [

√
S1(Tx)S2(Tx)− K]+ · f δ

X1(Tx),X2(Tx)
(y, z)dydz

=
√

S1(0)S2(0)
∫ ∫

(y,z)∈D2
e

1
2 (y+z) f δ

X1(Tx),X2(Tx)
(y, z)dydz − K

∫ ∫
(y,z)∈D2

f δ
X1(Tx),X2(Tx)

(y, z)dydz

=
√

S1(0)S2(0)
∫ ∫

(y,z)∈D2
gδ

1
2 , 1

2
(y, z)dydz − K

∫ ∫
(y,z)∈D2

gδ
0,0(y, z)dydz,

(34)

where D2 denotes the region {(y, z) : y + z > ln K2

S1(0)S2(0)
}. Set D′

2 = D2 ∩ ([a1, a2] × [b1, b2]).
Then, Equation (34) can be approximated by:

E[e−δTx [
√

S1(Tx)S2(Tx)− K]+ |
√

S1(0)S2(0) < K]

≈
√

S1(0)S2(0)
N1−1

∑
k1=0

′
N2−1

∑
k2=0

′Bk1,k2(gδ
1
2 , 1

2
)
∫ ∫

(y,z)∈D′
2

cos
(

k1π
y − a1

a2 − a1

)
cos
(

k2π
z − b1

b2 − b1

)
dydz

− K
N1−1

∑
k1=0

′
N2−1

∑
k2=0

′Bk1,k2(gδ
0,0)

∫ ∫
(y,z)∈D′

2

cos
(

k1π
y − a1

a2 − a1

)
cos
(

k2π
z − b1

b2 − b1

)
dydz,

where analytical expressions of the double integrals in both summations exist.

Remark 4. When we study Vx,T, the approximation Equations are similar to those of Vx, and the only
modification is replacing Fgδ

m,n by Fgδ
m,n,T.

4. Numerical Illustrations

In this section, we present some numerical examples to show the performance of the proposed
approach. For the linear combination of exponential distributions, which is used to approximate the
density function of Tx, we use the case considered in Gerber et al. [3], which is given by:

fTx (t) = 3 × 0.08e−0.08t − 2 × 0.12e−0.12t, t > 0. (35)

In the following subsections, we shall show that the COS method is very efficient for
valuing GMDB.

4.1. The 1D COS Results

In this subsection, we use some Lévy processes to model the log asset process X(t) (see Remark 1).
Note that the probability law of the Lévy process X(t) is determined by its characteristic exponent
ΨX(s). In this section, all computations were performed in MATLAB 2016b with Intel Core i7 at
3.4 GHz and RAM of 8 GB. We shall consider the following five models.
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• Black-Scholes model (BS): ΨX(s) = iμs − σ2

2
s2;

• Kou’s jump diffusion model (Kou): ΨX(s) = iμs − σ2

2
s2 + λK

(
(1 − p)η2

η2 + is
+

pη1

η1 − is
− 1
)

;

• Merton’s jump diffusion model (MJD): ΨX(s) = iμs − σ2

2
s2 + λJ

(
eisμJ−

σ2
J
2 s2 − 1

)
;

• Variance Gammamodel (VG): ΨX(s) = iμs − σ2

2
s2 − 1

ν
ln
(

1 − iνμνs + ν
σ2

ν

2
s2
)

;

• Normal inverse Gaussian model (NIG): ΨX(s) = iμs − δNIG

(√
α2 − (β + is)2 −√α2 − β2

)
.

In the sequel, let δ = 0.05 and μ be chosen to satisfy the risk-neutral requirement. Here, we need
to assume that Tx is still independent with the stock price process even under the risk-neutral measure.
Thus, μ is set such that ΨX(−i) = δ. The values of other parameters are listed in Table 1. Furthermore,
set a1 = −100, a2 = 100. For the death benefit function b, we consider the following two cases:

call option : b(s) = (s − K)+; put option : b(s) = (K − s)+.

Table 1. Parameter setting for the log-asset process X.

Model Abbreviation Parameter Sets

Black-Scholes model BS σ = 0.25, S(0) = 100;
Kou’s jump diffusion model Kou σ = 0.25, S(0) = 100, λK = 0.6, η1 = 4, η2 = 1, p = 0.5;

Merton’s jump diffusion model Merton σ = 0.25, S(0) = 100, λJ = 0.6, μJ = 0.01, σJ = 0.13;
Variance Gamma model VG σ = 0.25, S(0) = 100, ν = 2, μν = 0.01, σν = 0.05;

Normal inverse Gaussian model NIG S(0) = 100, α = 2, β = 0.5, δNIG = 0.05.

First, in Tables 2 and 3, we display some results when X is the Black-Scholes model and Kou’s jump
diffusion model where the strike price K = 80, 90, 110, 120, respectively. Note that if X is Black-Scholes
or Kou’s jump diffusion, reference values can be obtained from Gerber et al. [3,4]. In Tables 2 and 3,
we calculate the relative errors and average running time to show the performance of our method,
where the average running time (in seconds) is reported based on 1000 operations. From a horizontal
perspective of Tables 2 and 3, our approximation results performed better as the expansion term N
increased. When N = 212, relative errors were around 10−8. Furthermore, we present Monte Carlo
simulation results with sample size 107. We found that the COS method can result in smaller relative
errors for each case, and this method requires less time than MC. When X is Merton’s jump diffusion,
VG, and NIG, true reference values are not available. In these cases, we present MC simulation results
with sample size 107. From the simulation results given in Table 4, we see that the differences between
approximation results and simulation results were small and our method required less time than MC.

Next, we consider valuation with a finite expiry date. In Tables 5 and 6, we assume T = 20 and
display some GMDB valuation results. In finite-time cases, reference values are available only when
X is BS. For Kou’s jump diffusion, we display MC results with sample size 107. With the call payoff
function, it is observed that as K increases, the results decrease, which is opposite those with put
payoff. Compared with MC, again, we found that the COS method required less time. Now, we further
display the valuation results in Table 7 under different expiry dates in the BS model. As T grew from
five to infinity, which denotes a whole life insurance type, valuation results increased as expected.
If the expiry date is too far from the present, the probability that the insured dies becomes larger; hence,
the insurance company is likely to make a payment. Besides, the dynamics of the asset is driven by a
Brownian motion, with a positive drift; hence, the account accumulates from present to future. From a
vertical perspective, it is also observed that relative errors decrease obviously as N increases.

Finally, to illustrate the accuracy of the proposed method, denary logarithms of relative errors are
displayed in Figures 1 and 2 with different expansion terms and strike prices. For a fixed K, the curve
tended to descend as expansion term N increased.
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Table 2. Approximation results for guaranteed minimum death benefit (GMDB), where X is BS,
b(s) = (K − s)+.

K
Reference

Value

BS MC

N = 24 N = 28 N = 212

Relative
Errors

Time Std
Relative
Errors

Time
Relative
Errors

Time
Relative
Errors

Time

80 3.6161 6.37 0.1009 3.10 × 10−3 0.1010 1.41 × 10−8 0.0977 1.02 × 10−3 1215.7831 7.5637
90 4.9871 4.59 0.0986 1.24 × 10−2 0.1002 4.54 × 10−8 0.1021 8.96 × 10−4 1215.2156 9.4440
110 8.4402 2.72 0.0970 1.54 × 10−2 0.1041 3.13 × 10−8 0.0987 7.48 × 10−4 1215.4682 13.5673
120 10.4920 2.21 0.0973 1.37 × 10−2 0.0999 1.66 × 10−8 0.1018 7.31 × 10−4 1215.6826 15.7678

Table 3. Approximation results for GMDB, where X is Kou, b(s) = (K − s)+.

K
Reference

Value

Kou MC

N = 24 N = 28 N = 212

Relative
Errors

Time Std
Relative
Errors

Time
Relative
Errors

Time
Relative
Errors

Time

80 18.0238 1.06 0.1106 3.34 × 10−4 0.1217 3.45 × 10−9 0.1184 4.81 × 10−4 1043.5026 16.7433
90 20.9370 9.43 × 10−1 0.1208 4.60 × 10−4 0.1173 1.04 × 10−8 0.1166 5.18 × 10−4 1043.4856 18.9326

110 27.0526 7.74 × 10−1 0.1157 1.31 × 10−3 0.1208 9.50 × 10−9 0.1139 5.89 × 10−4 1043.8940 23.2865
120 30.2424 7.13 × 10−1 0.1222 1.48 × 10−3 0.1151 5.28 × 10−9 0.1205 6.17 × 10−4 1043.7561 25.4520

Table 4. Approximation results for GMDB, where X is Merton’s jump diffusion model (MJD),
the Variance Gamma model (VG), or the normal inverse Gaussian model (NIG), b(s) = (K − s)+.

K
Merton (Time)

MC (Time)
VG (Time)

MC (Time)
NIG (Time)

MC (Time)
N = 28 N = 212 N = 28 N = 212 N = 28 N = 212

80 4.4349 4.4514 4.4508 3.8263 3.8395 3.8412 6.1072 6.1399 6.1435
(0.0877) (0.0863) (1027.4452) (0.0870) (0.0886) (1237.0955) (0.0891) (0.0879) (1695.8358)

90 5.9255 5.9823 5.9822 5.1947 5.2556 5.2574 7.9234 7.9881 7.9932
(0.0866) (0.0884) (1027.4338) (0.0853) (0.0890) (1237.0935) (0.0870) (0.0901) (1695.8093)

110 9.6156 9.7228 9.7250 8.6668 8.7901 8.7909 12.2390 12.3349 12.3326
(0.0854) (0.0861) (1027.4386) (0.0852) (0.0856) (1237.0956) (0.0876) (0.0879) (1695.8200)

120 11.7834 11.8986 11.9015 10.7420 10.8770 10.8771 14.6968 14.7924 14.8006
(0.0879) (0.0872) (1027.4401) (0.0863) (0.0885) (1237.1015) (0.0881) (0.0894) (1695.8699)

Table 5. Approximation results for finite GMDB, where X is BS or Kou, b(s) = (s − K)+, T = 20.

K
BS (Relative Errors) Kou (Time)

MC(Time)
N = 24 N = 28 N = 212 N = 24 N = 28 N = 212

80 19.1403 32.6564 32.6676 27.4259 42.7130 42.7070 42.7070
(0.414) (3.43 × 10−4) (1.56 × 10−9) (0.1194) (0.1173) (0.1173) (1090.9950)

90 17.0844 30.2620 30.3241 25.7974 41.4205 41.4301 41.4293
(0.436) (2.04 × 10−3) (7.46 × 10−9) (0.1194) (0.1175) (0.1183) (1091.1883)

110 13.2010 26.1378 26.2680 22.7491 39.1093 39.1448 39.1418
(0.497) (4.95 × 10−3) (1.00 × 10−8) (0.1183) (0.1174) (0.1197) (1091.1751)

120 11.3513 24.3848 24.5286 21.3090 38.0807 38.1253 38.1210
(0.537) (5.86 × 10−3) (7.08 × 10−9) (0.1176) (0.1172) (0.1184) (1091.1742)
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Table 6. Approximation results for finite GMDB, where X is Merton, VG, or NIG, b(s) = (s − K)+ and
T = 20.

K
Merton (Time)

MC (Time)
VG (Time)

MC (Time)
NIG (Time)

MC (Time)
N = 28 N = 212 N = 28 N = 212 N = 28 N = 212

80 33.2207 33.2371 33.2582 32.8072 32.8204 32.8216 34.3088 34.3415 34.3638
(0.1128) (0.1112) (1033.1533) (0.1109) (0.1105) (1242.9794) (0.1145) (0.1140) (1701.5796)

90 30.9514 31.0082 31.0310 30.4485 30.5094 30.5123 32.2714 32.3360 32.3611
(0.1121) (0.1111) (1033.2315) (0.1126) (0.1104) (1242.8595) (0.1167) (0.1140) (1701.3483)

110 27.0436 27.1508 27.1778 26.3865 26.5099 26.5150 28.8046 28.9006 28.9307
(0.1103) (0.1133) (1033.0862) (0.1090) (0.1139) (1242.7859) (0.1141) (0.1160) (1701.5626)

120 25.3774 25.4925 25.5214 24.6586 24.7936 24.7996 27.3386 27.4342 27.4663
(0.1104) (0.1122) (1033.0618) (0.1095) (0.1129) (1242.9656) (0.1139) (0.1182) (1701.6632)

Table 7. Approximation results for finite GMDB, where X is BS, b(s) = (s − K)+ and K = 120.

T 5 10 30 60 ∞

N = 28 1.2988 7.0082 39.2337 55.9713 58.2215
(8.60 × 10−2) (2.01 × 10−2) (3.65 × 10−3) (2.56 × 10−3) (2.46 × 10−3)

N = 212 1.4211 7.1521 39.3774 56.1150 58.3653
(1.22 × 10−7) (2.42 × 10−8) (4.41 × 10−9) (3.09 × 10−9) (2.97 × 10−9)

(a) (b)
Figure 1. Relative errors with payoff b(s) = (s − K)+: (a) BS model; (b) Kou model.

Figure 2. Relative errors for BS model with payoff b(s) = (K − s)+ and finite expiry time T = 20.
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4.2. The 2D COS Results

In this subsection, the valuation results involving two assets in a GMDB contract are presented.
For illustrative purpose, we assumed that the density function of Tx is represented by the combination
of exponential distribution Equation (35). Besides, we considered a bivariate normal distribution.
In addition, suppose that (S1(t), S2(t)) is a bivariate geometric Brownian motion, where the log-asset
price at time t is bivariate normally distributed:

(X1(t), X2(t)) ∼ N (μ, Σt),

where:
μ = [0.02,−0.005], Σ = [0.04, 0.015; 0.015, 0.09].

Set (S1(0), S2(0)) = (90, 110), and the strike price K = 100. We considered the cosine expansion
over a symmetric interval [−100, 100]× [−100, 100].

In Gerber et al. [3], the valuation equations for GMDB with the exchange option type were
explicitly obtained by the Esscher transform, from which we can compute reference values and relative
errors. Motivated by the idea in Gerber et al. [3], we further considered some other option types.
Approximation results are given in Table 8, and the relative errors confirmed the accuracy of the
proposed procedure. It was observed that as N increased, the relative errors decreased.

Table 8. Approximation results for 2D GMDB.

Option Type N = 26 N = 28 N = 210 N = 212

Exchange Option 140.8768 153.5866 153.6412 153.6411
(8.31 × 10−2) (3.55 × 10−4) (6.38 × 10−7) (6.74 × 10−10)

Geometric Option 111.4024 114.0135 114.0281 114.0281
(2.30 × 10−2) (1.29 × 10−4) (1.54 × 10−7) (1.27 × 10−10)

Maximum Option 470.8768 483.5866 483.6412 483.6411
(2.64 × 10−2) (1.12 × 10−4) (2.03 × 10−7) (2.14 × 10−10)

Minimum Option 129.1232 116.4134 116.3588 116.3589
(1.10 × 10−1) (4.68 × 10−4) (8.43 × 10−7) (8.90 × 10−10)

5. Conclusions

In this paper, we used the COS method to value GMDB products under a general Lévy framework.
When the death benefit payment depended on only one stock fund, we used the 1D COS method to
value the products; when it depended on two stock funds, the 2D COS method was used for valuation.
Various numerical results illustrated the accuracy and efficiency of the proposed method.

Our COS method can only be used to value GMDB contracts that depend on the terminal value of
the stock price; however, we note that some products are also dependent on the running maximum or
minimum of the stock price; for example, life-contingent lookback options and barrier options. Hence,
we have to develop the COS method or search for another numerical method to solve this problem.
We leave this for future research.
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Abstract: In this paper, we study a Markovian queuing system consisting of two subsystems of an
arbitrary structure. Each subsystem generates a multi-class Markovian arrival process of customers
arriving to the other subsystem. We derive the necessary and sufficient conditions for the stationary
distribution to be of product form and consider some particular cases of the subsystem interaction for
which these conditions can be easily verified.

Keywords: Markovian arrival process; multi-class arrival processes; product form

1. Introduction

The product form of the stationary distribution greatly simplifies the analysis of complex queueing
systems. In such systems, the stationary distribution of the network can be written as the product of the
distributions of its nodes with the arrival rates modified to reflect the routing of customers in the network.
Jackson [1] showed that a specific class of open queueing networks has a product-form stationary
distribution. Gordon and Newell [2] introduced product-form Markovian models for closed queueing
networks. Kobayashi [3] and Towsley [4] developed forms of state-dependent routing in a queueing
network, allowing a product-form solution. Baskett et al. [5] found product-form solutions for open,
closed or mixed queueing networks with multiple classes of customers and various service disciplines
and service time distributions. Surveys by Disney and König [6], Nelson [7] and Balsamo [8], as well
as books by Kelly [9], Ross [10], Whittle [11] and Walrand [12] cover various aspects of product-form
solutions for conventional queueing networks.

Gelenbe [13,14] proposed models of a queueing network with positive and negative customers:
the G-networks. These models, which include G-networks with signals [15], resets [16], and multiple
customer classes [17], radically extend the class of Markovian queueing systems with the product-form
stationary distributions. The complexity of such systems continues to increase, with the introduction
of new extensions of G-networks being an essential area of research [18,19].

In conventional queueing networks, each node in isolation can be represented by a birth and death
process. Nodes in a Markov network [20] are Markovian queueing systems whose behavior can be
represented by general discrete-state Markov processes. The details of the nodes’ internal structure can
be ignored. Each node of a Markov network can have three types of state changes: arrival, departure
and internal transitions, which are distinguished only by the rates or probabilities at which they occur.
A transition of the network as a whole involves changes at only one or two nodes. The former case
corresponds to a network transition consisting of an internal change at one node. The latter consists of
a departure transition at one node that triggers an arrival transition at another node determined by a
routing probability.

Mathematics 2019, 7, 799; doi:10.3390/math7090799 www.mdpi.com/journal/mathematics28
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Naumov [21] obtained the necessary and sufficient conditions for a product-form solution for a
Markov network consisting of two nodes, the first of which generates a Markovian arrival process
(MAP) of customers arriving to the second node. Chao et al. [20] obtained the necessary and sufficient
conditions for a general Markov network to be of product form. Chao and Miyazawa [22] extended the
notion of quasi-reversibility to Markov networks and applied it to the study of networks with triggered
movements and positive and negative signals. In [23], Chao provided an overview of product-form
Markov networks.

The procedure for establishing the existence of a product-form stationary distribution for Markov
networks includes a solution of a system of nonlinear equations [20]. The objective of this paper
is to simplify this procedure for some Markov networks so that it can be easily applied in practice.
We consider two-node Markov networks and multi-class Markovian arrival processes (MMAP). In
Section 2, we formulate the basic properties of MMAP. In Section 3, we derive a matrix formulation of
the product-form conditions and develop a simple procedure to check whether a Markov network with
two customer classes is of product form. Examples given in Section 4 illustrate the theory developed in
the paper.

The following notation conventions are used throughout the article. Bold lowercase letters denote
vectors and bold capitalized letters denote matrices. Inequality x ≤ y represents xm ≤ ym for all vectors
x and y; δ(i, j) = 1 if i = j and δ(i, j) = 0 otherwise; I = [δ(i, j)] denotes the identity matrix; u is the
column vector of all ones; the i-th component of vector ei is equal to one, and the others are equal
to zero.

2. Multi-Class Markovian Arrival Process

Consider a multi-class arrival process T = ((τn, σn), n = 1, 2, . . .), where 0 ≤ τ1 ≤ τ2 ≤ . . . are the
arrival times and σn ∈ {1, 2, . . . , k} is the class of the n-th customer. Denote Nv(t) =

∑
τn≤ t

δ(v, σn) the

number of class v customers arrived during time t and N(t) = (N1(t), N2(t), . . . , Nk(t)). The process T
is a MMAP if for some random process X(t) with a finite set of states X the process (X(t), N(t)) is a
homogeneous Markov process and the following conditions are satisfied:

P{X(t + ε) = j,
k∑

v=1
Nv(t + ε) >

k∑
v=1

nv + 1|X(t) = i, N(t) = n} = o(ε),

P{X(t + ε) = j, N(t + ε) = n|X(t) = i, N(t) = n} = δ(i, j) + A0(i, j) + o(ε),
P{X(t + ε) = j, N(t + ε) = n + ev|X(t) = i, N(t) = n} = Av(i, j) + o(ε), v = 1, 2, . . . , k,

(1)

for all i, j ∈ X, t, ε > 0, and for all nonnegative integer vectors n of length k [24]. In this case, the
probability of more than one arrival in the interval of length ε is o(ε) and the process (X(t), N(t)) is
a Markov process that is homogeneous in time and in the second component [25]. That is, for all
0 ≤ k ≤ n, i, j ∈ X and s, t ≥ 0 we have:

P{X(s + t) = j, N(s + t) = n|X(s) = i, N(s) = k} = pi, j(n− k, t).

The phase process X(t) is a time-homogeneous Markov chain with a matrix of transition
probabilities:

P(t) =
∑
n≥0

P(n, t),

where P(n, t) =
[
pi, j(n, t)

]
[25]. It follows from (1) that matrices Av = [Av(i, j)], i, j ∈ X, v = 0, 1, . . . , k,

which characterize MMAP, have the following properties [26,27]:

1. Matrix A0 has non-negative off-diagonal elements.
2. Matrices Av, v = 1, 2, . . . , k, are non-negative.
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3. The matrix

A =
k∑

v=0

Av (2)

is the generator of the phase process.

Transition probability matrices P(n, t) can be calculated by the recursion [27]

P(0, t) = eA0t, P(n, t) =
k∑

v = 1
nv > 0

t∫
0

P(0, t− x)AvP(n− ev, x)dx, n � 0.

If matrices P(n, t) are known, the joint probability distribution of the number of arrivals in disjoint
intervals can be calculated as:

P{N(
r∑

j=0
tj) −N(

r−1∑
j=0

tj) = kr, r = 1, 2, . . . , m} =qP(t0)P(k1, t1)P(k2, t2) . . .P(km, tm)u,

k1, k2, . . . , km ≥ 0,t0, t1, . . . , tm > 0,m = 1, 2, . . .

where q = [qi] is a row vector of the initial probability distribution of the phase process, qi = P{X(0) = i}.
Consider the MAP of class v customers. It is characterized by transition probability matrices

Pv,m(t) =
∑

n ≥ 0
nv = m

P(n, t), k = 0, 1, . . . ,

which satisfy the following recursion:

Pv,0(t) = e(A−Av)t, Pv,n(t) =

t∫
0

Pv,0(t− x)AvPv,n−1(x)dx, n > 0. (3)

The joint probability distribution of the number of class v arrivals in disjoint intervals can be
calculated as:

P{Nv(
r∑

j=0
tj) −Nv(

r−1∑
j=0

tj) = kr, r = 1, 2, . . . , m} =qP(t0)Pv,k1(t1)Pv,k2(t2) . . .Pv,km(tm))u,

k1, k2, . . . , km ≥ 0,t0, t1, . . . , tm > 0,m = 1, 2, . . . .
(4)

If q is the stationary vector of A and satisfies qAv = avq, it follows from (3) that

qPv,n(t) = e−avt (avt)n

n!
q, n ≥ 0.

It follows from (4) that, in this case, the arrival process of class v customers is Poisson with rate
av = qAvu. Similarly, if matrix Av satisfies Avu = avu, it follows from (3) that

Pv,n(t)u = e−avt (avt)n

n!
u, n ≥ 0,

and the arrival process of class v customers is Poisson with rate av = qAvu (see also [28]). We next
show that the property qAv = avq is important for the existence of product-form distribution, in
contrast to the property Avu = avu, although in both cases the arrival processes are Poisson.
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3. Interacting Markovian Queueing Systems

We consider a Markov network with two nodes having state spaces X and Y. The first node
generates MMAP defined by non-zero matrices Λv = [Λv(i, j)], i, j ∈ X, v = 0, 1, . . . , n, and the second
node generates MMAP defined by non-zero matrices Mw = [Mw(k, r)], k, r ∈ Y, w = 0, 1, . . . , m. If the
nodes are operated in isolation, the first node could be represented by a homogeneous Markov process
with a generator:

Λ =
n∑

v=0

Λv. (5)

Also, the second could be represented by a homogeneous Markov process with a generator:

M =
m∑

w=0

Mw. (6)

When a class v customer arrives from the first node to the second, the state of the second node
changes according to a stochastic matrix Qv = [Qv(k, r)], k, r ∈ Y, v = 1, 2, . . . , n. When a class w
customer arrives from the second node to the first, the state of the first node changes according to a
stochastic matrix Pw = [Pw(i, j)], i, j ∈ X, w = 1, 2, . . . , m. The behavior of the system can be represented
by a homogeneous Markov process Z(t) = (X(t), Y(t)), with the finite state space Z = X×Y and
the generator

Θ = Λ0 ⊗ I +
n∑

v=1

Λv ⊗Qv +
m∑

w=1

Pw ⊗Mw + I⊗M0, (7)

where ⊗ denotes the Kronecker product.
Further, we assume that the generator Θ is irreducible. Therefore, the stationary distribution

π(i, k), i ∈ X, k ∈ Y, of the process Z(t) is the unique solution to the system of the following steady-state
equations:

∑
i∈X

π(i, r)Λ0(i, j) +
n∑

v=1

∑
i∈X

∑
k∈Y

π(i, k)Λv(i, j)Qv(k, r)+

+
m∑

w=1

∑
i∈X

∑
k∈Y

π(i, k)Pw(i, j)Mw(k, r) +
∑

k∈Y
π( j, k)M0(k, r) = 0, j ∈ X, r ∈ Y

(8)

which satisfy the normalizing condition:
∑
i∈X

∑
k∈Y

π(i, k) = 1. (9)

We next derive the conditions under which the stationary distribution has the product form:

π(i, k) = p(i)q(k), r ∈ X, k ∈ Y (10)

First, however, we need the following auxiliary result.

Theorem 1. The generators

L = Λ +
m∑

w=1

μw(Pw − I), (11)

M = M +
n∑

v=1

λv(Qv − I) (12)

are irreducible for any λv > 0, v = 1, 2, . . . , n, and μw > 0, w = 1, 2, . . . , m.
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Note that matrix L is the generator of a Markov process representing the behavior of the first node
with a multi-class Poisson arrival process with rates μw, w = 1, 2, . . . , m. Matrix M is the generator of
a Markov process representing the behavior of the second node with a multi-class Poisson arrival
process with rates λv, v = 1, 2, . . . , n. Therefore, Theorem 1 states that if the MMAP arriving to each
network node is replaced by a multi-class Poisson arrival process, then the generators of the Markov
processes representing each node in isolation are irreducible.

Theorem 2. For the stationary distribution of the process Z(t) to have the product form (10), it is necessary and
sufficient that vectors p = [p(i)] and q = [q(k)] satisfy the following equations:

p(Λ +
m∑

w=1

μw(Pw − I)) = 0, pu = 1, (13)

q(M +
n∑

v=1

λv(Qv − I)) = 0, qu = 1, (14)

n∑
v=1

p(Λv − λvI) ⊗ q(Qv − I) +
m∑

w=1

p(Pw − I) ⊗ q(Mw − μwI) = 0, (15)

λv = pΛvu, v = 1, 2, . . . , n, μw = qMwu, w = 1, 2, . . . , m. (16)

Hence, components p and q of the product form (10) can be found as the stationary distributions
of the nodes with Poisson arrival processes. However, this is not an easy task because the systems of
Equations (13) and (14) must be solved together with the conditions (16), and therefore the problem of
finding vectors p and q that satisfy the conditions of the theorem is nonlinear. In the next section, we
consider particular cases for which this problem can be simplified. The proofs of Theorems 1 and 2 are
provided in Appendix A.

Corollary 1. Let n = 1, m = 0, vector p be the solution of equations pΛ = 0, pu = 1, and vector q be the
solution of equations q(M + λ1(Q1 − I)) = 0, qu = 1, where λ1 = pΛ1u. Then, for the product form of the
stationary distribution of the process Z(t), it is necessary and sufficient that either pΛ1 = λ1p or qQ1 = q.

Proof. Indeed, according to Theorem 2, for the product-form stationary distribution π = (π(i, k)), it is
required that for any j ∈ X, r ∈ Y

⎛⎜⎜⎜⎜⎜⎝
∑
i∈X

p(i)Λ1(i, j) − λ1p( j)

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝
∑
k∈Y

q(k)Q1(k, r) − q(r)

⎞⎟⎟⎟⎟⎟⎟⎠ = 0,

which is equivalent to either pΛ1 = λ1p or qQ1 = q.
It was shown in Section 2 that if the condition pΛ1 = λ1p is fulfilled, then, in the stationary mode,

the MAP generated by the first node is Poisson with rate λ1 (see also [9,23]). Because of the PASTA
property (Poisson Arrivals See Time Averages) of the Poisson process, the stationary distribution of
the second node is equal to the stationary distribution of the Markov chain embedded at times before
the customer arrivals. However, then vector qQ1 is the stationary distribution of the Markov chain
embedded at times after the customer arrivals. Thus, the condition qQ1 = q implies that, for the
second node with Poisson arrivals, the Markov chains embedded before and after customer arrivals
have the same stationary distributions. �

Corollary 2. Let n = 1, m = 1, vector p be the solution of equations p(Λ + μ1(P1 − I)) = 0, pu = 1, where
μ1 = qM1u, and vector q be the solution of equations q(M + λ1(Q1 − I)) = 0, qu = 1, where λ1 = pΛ1u.
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Then for the product-form stationary distribution of the process Z(t), it is necessary and sufficient that at least
one of the following conditions is satisfied:

pΛ1 = λ1p and pP1 = p, (17)

pΛ1 = λ1p and qM1 = μ1q, (18)

qQ1 = q and pP1 = p, (19)

qQ1 = q and qM1 = μ1q. (20)

There exists a constant ψ � 0 such that
∑
i∈X

p(i)Λ1(i, j) − λ1p( j) = ψ (
∑
i∈X

p(i)P1(i, j) − p( j)) (21)

for all j ∈ X, with
∑
i∈X

p(i)P1(i, j) � p( j), and

∑
k∈Y

q(k)M1(k, r) − μ1q(r) = ψ (q(r) −
∑
k∈Y

q(k)Q1(k, r)) (22)

for all r ∈ Y with
∑

k∈Y
q(k)Q1(k, r) � q(r).

Proof. According to Theorem 2, for the product-form stationary distribution π = (π(i, k)), it is required
that for any j ∈ §, r ∈ Y the following holds:

( ∑
i∈X

p(i)Λ1(i, j) − λ1p( j)
)( ∑

k∈Y
q(k)Q1(k, r) − q(r)

)
+

+

( ∑
i∈X

p(i)P1(i, j) − p( j)
)( ∑

k∈Y
q(k)M1(k, r) − μ1q(r)

)
= 0.

(23)

The sufficiency of each of the five conditions given above for the product-form stationary
distribution π(i, k) is obvious. Let us prove that at least one of them is necessary for the stationary
distribution to be of product form.

Suppose that the stationary distribution π(i, k) has the product form. From (23), it follows that if
one of the vectors pΛ1 − λ1p, qM1 − μ1q, pP1 − p, qQ1 − q is a zero vector then there is another zero
vector in this group such that one of the conditions (17)–(20) is fulfilled. It remains to consider the case
when all these vectors are non-zero. Let X∗ be a set of j ∈ X such that p( j) �

∑
i∈X

p(i)P1(i, j), and let Y∗

be a set of r ∈ Y such that q(r) �
∑

k∈Y
q(k)Q1(k, r). Then, the following holds for all j ∈ X∗ and r ∈ Y∗:

∑
i∈X

p(i)Λ1(i, j) − λ1p( j)
∑
i∈X

p(i)P1(i, j) − p( j)
=

∑
k∈Y

q(k)M1(k, r) − μ1q(r)

q(r) −
∑

k∈Y
q(k)Q1(k, r)

. (24)

Since the left-hand side of this equation does not depend on r, and the right-hand side does not
depend on j, then for j ∈ X∗ and r ∈ Y∗ they are both equal to some constant ψ and therefore (21) and
(22) are satisfied. Since vectors qM1 − μ1q and qQ1 − q are non-zero, it follows from (24) that for each
j ∈ X the relationships

∑
i∈X

p(i)Λ1(i, j) = λ1p( j) and
∑
i∈X

p(i)P1(i, j) = p( j) are both true or both false.

Then,
∑
i∈X

p(i)Λ1(i, j) � λ1p( j) for all j ∈ X∗ in (21), and therefore ψ � 0.�

The proof of the following Corollary 3 is similar to the proof of Corollary 2.
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Corollary 3. Let n = 2, m = 0, vector p be the solution of the linear system pΛ = 0, pu = 1, and vector
q be the solution of the linear system q(M + λ1(Q1 − I) + λ2(Q2 − I)) = 0, qu = 1, where λ1 = pΛ1u,
λ2 = pΛ2u. Then for the product-form stationary distribution of the process Z(t), it is necessary and sufficient
that at least one of the following conditions is satisfied:

pΛ1 = λ1p and pΛ2 = λ2p, (25)

pΛ1 = λ1p and qQ2 = q, (26)

qQ1 = q and pΛ2 = λ2p, (27)

qQ1 = q and qQ2 = q. (28)

There exists a constant ϕ � 0 such that
∑
i∈X

p(i)Λ1(i, j) − λ1p( j) = ϕ (
∑
i∈X

p(i)Λ2(i, j) − λ2p( j)) (29)

for all j ∈ X with
∑
i∈X

p(i)Λ2(i, j) � λ2p( j), and

∑
k∈Y

q(k)Q2(k, r) − q(r) = ϕ (q(r) −
∑
k∈Y

q(k)Q1(k, r)) (30)

for all r ∈ Y with
∑

k∈Y
q(k)Q1(k, r) � q(r).

4. Examples

To demonstrate the applicability of the results obtained, let us consider several examples. Examples
1 and 2 illustrate the product-form conditions for n = 1 and m = 0.

Example 1. Consider a system with the first node consisting of a bunker with waiting space for one customer
and one server (Figure 1). There are always customers in the bunker. They arrive to the first node’s server,
bypassing the queue, only when the server and the waiting space are empty. In addition to the customers from
the bunker, there are customers from an external source forming a Poisson process with rate γ. An external
customer waits if, at the time of the customer’s arrival, the server is busy. If the waiting space is occupied, the
arriving customer is lost. All customers served by the first node arrive to the second node, consisting of one
server, without waiting space. The service times are exponentially distributed with parameters α and β for the
first and second servers, respectively. Because the first server is always busy, the departure process of the first
node is Poisson with rate α. The state of the first node can be represented by the number of customers in the
queue, and the state of the second node by the number of customers in service.

  
 

Figure 1. A non-product-form system with a Poisson flow of customers arriving at the second server.

We here show that the stationary probability distribution of the network is not of product form.
This system is characterized by matrices

Λ =

[
−γ γ
α −α

]
, Λ1 =

[
α 0
α 0

]
, Q1 =

[
0 1
0 1

]
, M =

[
0 0
β −β

]
,
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and the solutions of the linear systems (13) and (14) are given by

p(0) =
α

α+ γ
, p(1) =

γ

α+ γ
, q(0) =

β

λ1 + β
, q(1) =

α
λ1 + β

.

where λ1 = pΛ1u = α. The steady-state equations for the stationary distribution of the process Z(t)
are as follows:

(α+ γ)π(0, 0) = βπ(0, 1), (β+ γ)π(0, 1) = α r(0, 0) + α π(1, 0) + α π(1, 1),
α π(1, 0) = γ π(0, 0) + β π(1, 1), (α+ β)π(1, 1) = γ π(0, 1).

It is easy to verify that the normalized solution of these equations is given by

π(0, 0) = αβ

αβ+(α+γ)2 , π(0, 1) = α(α+γ)

αβ+(α+γ)2 ,

π(1, 0) = γβ(α+γ)

(α+β)(αβ+(α+γ)2)
, π(1, 1) = γα(α+γ)

(α+β)(αβ+(α+γ)2)
.

It is clear that π(i, k) � p(i)q(k). Thus, although the second node has a Poisson arrival process,
this is not enough for the stationary distribution π(i, k) to have the product form. The product-form
condition of Corollary 1 does not hold since neither pΛ1 = λ1p nor qQ1 = q.

Example 2. Let the second node have w > 0 waiting spaces and no servers. An arriving customer takes one
of the free waiting spaces, if there are any. If all waiting spaces are occupied at the instant of arrival, then the
arriving customer and all those in the queue are considered served and leave the system.

Such a system with a Poisson arrival process can be represented by a Markov process with the state
setY = {0, 1, . . . , w}. This process has a uniform stationary distribution q(k) = 1/(w+ 1), k = 0, 1, . . .w,
and obviously satisfies the condition qQ1 = q. According to Corollary 1, the stationary distribution
π(i, k) has the product form.

Example 3. Now, to illustrate Corollary 2, consider a system with positive and negative customers. Each node
consists of one server without waiting space (Figure 2).

  
 

 

Figure 2. A system with positive and negative customers.

The service times at the first and second servers are exponentially distributed with parameters α and β,
respectively. External Poisson processes of positive customers arrive to the servers with rates γ and δ, respectively.
A customer departing from the first server arrives to the second server as a positive customer. Arriving positive
customers are lost if the servers are busy. A customer leaving the second server comes to the first server as a
negative customer and—if the first server is busy—deletes the customer in service.

The matrices that specify the interaction of the nodes are as follows:

Λ =

[
−γ γ
α −α

]
, Λ1 =

[
0 0
α 0

]
, Q1 =

[
0 1
0 1

]
, M =

[
−δ δ
β −β

]
, M1 =

[
0 0
β 0

]
, P1 =

[
1 0
1 0

]
,
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and the solutions of the system of Equations (13) and (14) are given by the formulae

p(0) =
α+ μ1

α+ γ+ μ1
, p(1) =

γ

α+ γ+ μ1
, q(0) =

β

λ1 + δ+ β
, q(1) =

λ1 + δ
λ1 + δ+ β

, (31)

where
λ1 = αp(1), μ1 = βq(1). (32)

To check the conditions of Corollary 2, we first calculate the vectors that appear in them:

pΛ1 − λ1p = αp2(1)(1,−1), pP1 − p = p(1)(1,−1),
qM1 − μ1q = βq2(1)(1,−1), qQ1 − q = q(0)(−1, 1).

It is clear that the first four conditions of Corollary 2 are not satisfied for any positive parameters
α, β,γ, δ.

In the particular case of α = β = 2, δ = 1, γ = 3, the system of Equations (31) and (32) has the
unique solution λ1 = 1, μ1 = 1 and the parameter ψ from the fifth condition of Corollary 2 is ψ = 1.
Thus, in this case, the stationary distribution π(i, k) has the product form.

5. Conclusions

In this paper, we have studied a Markov network consisting of two nodes of arbitrary structure,
where each node generates a MMAP of customers arriving to the other node. We have derived the
necessary and sufficient conditions for the product-form stationary distribution of the network. Simple
criteria to check whether a Markov network with one and two customer classes is of product form have
been developed. Unlike the existing product-form criteria for Markov networks, the criteria obtained
in this article are readily applicable to establish the existence of a product-form stationary distribution
for specific Markovian queueing systems. The extension of the developed theory to networks with
more than two classes of customers is the subject of our future research.
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Appendix A

In order to prove Theorem 1, we use a criterion based on the existence of a non-negative vector
with positive and zero components, which we call semi-positive.

Lemma A1. A matrix B with non-negative off-diagonal elements is reducible if and only if there is a semi-positive
vector x such that Bx(i) = 0 for all indices i for which x(i) = 0.

Proof. If matrix B of order n is reducible, then there exists a partitionY, Z of the set X = {1, 2, . . . , n}
such that B(k, j) = 0 for all k ∈ Y, j ∈ Z. We define a semi-positive vector as follows: x( j) = 0 for
j ∈ Y, x( j) = 1 for j ∈ Z. If x(k) = 0, then k ∈ Y and we have

Bx(k) =
∑
j∈Y

B(k, j)x( j) +
∑
j∈Z

B(k, j)x( j) = 0,

since x( j) = 0 for j ∈ Y and B(k, j) = 0 for j ∈ Z.
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Let x be a semi-positive vector and Bx(k) = 0 for all k for which x(k) = 0. Let Y = {i|x(i) = 0}
andZ = {i|x(i) > 0}. Then the setsY and Z form a partition of the set X, and for every i ∈ Y we have

0 = Bx(i) =
∑
j∈Y

B(i, j)x( j) +
∑
j∈Z

B(i, j)x( j) =
∑
j∈Z

B(i, j)x( j).

Since all terms of the latter sum are non-negative and x( j) > 0 for j ∈ Z, it follows that B(i, j) = 0
for all j ∈ Y, j ∈ Z. Thus, matrix B is reducible. �

Proof of Theorem 1. Suppose that matrix L is reducible. Then, according to the lemma, there exists a
semi-positive vector x such that Lx(i) = 0 for all indices i for which x(i) = 0. Since the off-diagonal
elements of matrices Λ and Pw are non-negative, it follows that Λx(i) = 0 and Pwx(i) = 0 for all
w = 1, 2, . . . , m and all i for which x(i) = 0.

Vector y = x⊗ u is semi-positive and the following relationships hold:

Θy = Λ0x⊗ u +
n∑

v=1
Λvx⊗Qvu +

m∑
w=1

Pwx⊗Mwu + x⊗M0u =

= Λ0x⊗ u +
n∑

v=1
Λvx⊗ u +

m∑
w=1

Pwx⊗Mwu + x⊗ (M−
m∑

w=1
Mw)u

= Λx⊗ u +
m∑

w=1
(Pw − I)x⊗Mwu.

(A1)

Since y(i, k) = 0 if and only if x(i) = 0, it follows that

(Θy)(i, k) = (Λx⊗ u +
m∑

w=1
(Pw − I)x⊗Mwu)(i, k) =

= (Λx)(i) +
m∑

w=1
((Pw − I)x)(i))(Mwu)(k) = 0

for all indices (i, k) for which y(i, k) = 0. Hence, matrix Θ is reducible. The obtained contradiction
proves the irreducibility of matrix L. The irreducibility of matrix M can be proved in a similar fashion.
�

Proof of Theorem 2. Note that if a stationary distribution π = (π(i, k)), i ∈ X, k ∈ Y has the product
form π = p⊗ q, the system of steady-state equations πΘ = 0 can be rewritten as

pΛ0 ⊗ q +
n∑

v=1

pΛv ⊗ qQv +
m∑

w=1

pPw ⊗ qMw + p⊗ qM0 = 0. (A2)

First, we show that if the vectors p = (p(i)), i ∈ X, and q = (q(k)), k ∈ Y, satisfy Equations (13)
and (14), then the left-hand sides of (15) and (A2) coincide. We rewrite (13) and (14) as follows:

pΛ0 = μ p−
m∑

w=1

μwpPw −
n∑

v=1

pΛv, (A3)

qM0 = λq−
n∑

v=1

λvqQv −
n∑

w=1

qMw. (A4)
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Using these expressions, the following relationships can be derived:

pΛ0 ⊗ q +
n∑

v=1
pΛv ⊗ qQv +

m∑
w=1

pPw ⊗ qMw + p⊗ qM0 =

= (μ p−
m∑

w=1
μwpPw −

n∑
v=1

pΛv) ⊗ q +
n∑

v=1
pΛv ⊗ qQv+

+
m∑

w=1
pPw ⊗ qMw + p⊗ (λq−

n∑
v=1

λvqQv −
n∑

w=1
qMw) =

=
n∑

v=1
p(Λv − λvI) ⊗ qQv +

m∑
w=1

pPw ⊗ q(Mw − μwI)−

−
n∑

v=1
p(Λv − λvI) ⊗ q−

m∑
w=1

p⊗ q(Mw − μwI) =

=
n∑

v=1
p(Λv − λvI) ⊗ q(Qv − I) +

m∑
w=1

p(Pw − I) ⊗ q(Mw − μwI).

(A5)

Now we prove the necessity of conditions (13)–(15). Let the vector of the stationary probabilities
be represented as π = p ⊗ q. By post-multiplying (15) by matrix I ⊗ u, we obtain (13), and by
post-multiplying (15) by matrix u ⊗ I, we obtain (14). As it was proved previously, the systems
of Equations (14) and (A2) are equivalent. Therefore, conditions (13)–(15) are necessary for the
product-form stationary distribution. Let us now prove the sufficiency of these conditions.

If the stochastic vectors p = (p(i)), i ∈ X, and q = (q(k)), k ∈ Y, satisfy conditions (13)–(15),
then due to (A5), vector π = p ⊗ q is a solution of the system of steady-state Equation (A2). Since
the generator Θ of process Z(t) is irreducible, the normalized solution of this system is unique and
therefore vector π = p⊗ q is the stationary distribution of the process. �
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Abstract: In this paper, we study queueing systems with an infinite and finite number of waiting
places that can be modeled by a Quasi-Birth-and-Death process. We derive the conditions under
which the stationary distribution for a loss system is a truncation of the stationary distribution of the
Quasi-Birth-and-Death process and obtain the stationary distributions of both processes. We apply
the obtained results to the analysis of a semi-open network in which a customer from an external
queue replaces a customer leaving the system at the node from which the latter departed.

Keywords: Quasi-Birth-and-Death process; matrix-geometric solution; truncated distribution

1. Introduction

Consider a queueing system with an infinite number of waiting places which may be modeled by
a Quasi-Birth-and-Death (QBD) process X(t) on a state space ∪∞l=0Xl, where X0 =

{
(i, 0), 1 ≤ i ≤ n + m

}
and Xl =

{
(i, l), 1 ≤ i ≤ m

}
, l ≥ 1. Here l represents the number of customers in the queue and i represents

the internal state of the system. The generator of the process X(t) has the block tri-diagonal form

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N0 Λ0 0 0 0 · · ·
M1 N1 Λ 0 0 · · ·
0 M N Λ 0 · · ·
0 0 M N Λ · · ·
· · · · · · · · · · · · · · · · · ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1)

where N0 is a square matrix of order n, the matrices Λ, N, M and N1 are square of order m, and
the matrices Λ0 and M1 are rectangular of appropriate dimensions. We denote by x the stationary
probability vector associated with Q and we partition it as x = (p, q0, q1, . . .), where p is an n-vector,
and ql, l ≥ 0, are m-vectors. We also define the generator A = Λ + N + M.

According to [1], the positive recurrent Markov chain X(t) has a modified matrix-geometric
stationary probability vector,

ql = q1Rl, l ≥ 0, (2)

where R, which is called the rate matrix, has the spectral radius ρ < 1 and is the minimal nonnegative
solution of the matrix equation

R2M + RN + Λ = 0. (3)

Once R is known, vectors p and q0 are obtained by solving the linear system

pN0 + q0M1 = 0 (4)
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pΛ0 + q0(N1 + RM) = 0 (5)

with the normalizing condition
pu + q0(I−R)−1u = 1, (6)

where u is the column vector of all ones of appropriate size.
The rate matrix R is usually computed via iterative algorithms [1–4] among which the fastest is

the logarithmic reduction algorithm [2]. Available methods for computation of the rate matrix are
effective only for relatively small values of m. Exceptions are processes with off-diagonal blocks of a
special type. If matrices Λ or M have rank one [5,6], or matrix A is triangular [7,8], it is possible to find
an explicit solution of Equation (3).

Now, consider a queueing system with L ≥ 0 waiting places, that can be modeled by a Markov
chain XL(t) on a state space ∪L

l=0Xl with a generator of the block tri-diagonal form

QL =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N0 Λ0 0 0 · · · 0
M1 N1 Λ 0 · · · 0

0 M N
. . . . . .

...

0 0
. . . . . . Λ 0

...
...

. . . M N Λ

0 0 · · · 0 M N + Λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

The change in the lower diagonal block is due to the fact that if an arriving customer finds all
waiting places occupied it is lost, but the internal state of the system changes in the same manner as if
the customer were not lost.

We partition the stationary probability vector xL associated with QL as xL = (pL, qL,0, qL,1, . . . , qL,L),
where pL is an n-vector, and qL,l, 0 ≤ l ≤ L, are m-vectors. Solving finite QBD processes is
more complicated than solving infinite processes [9–11]. If for some number s matrices Λ, N, M

satisfy det(s2M + sN + Λ) � 0 then the stationary probability vector xL can be expressed using two
matrix-geometric terms as [12]

qL,l = aLRl + bLSL−l, 0 ≤ l ≤ L,

which require computation of the minimal nonnegative solutions of two matrix equations

R2M + RN + Λ = 0, M + SN + S2Λ = 0.

The vectors aL, bL and pL can be found by solving the linear system

pLN0 + (aL + bLSL)M1 = 0 (8)

pLΛ0 + (aL + bLSL)N1 + (aLR + bLSL−1)M = 0 (9)

(aLRL−1 + bLS)Λ + (aLRL + bL)(N + Λ) = 0 (10)

and normalizing vector xL. The condition det(s2M + sN + Λ) � 0 holds, for example, if the generator
A = Λ + N + M is irreducible and πΛu � πMu, where π is the stationary probability vector of A [13].

The stationary probability vector x = (p, q0, q1, . . .) of the generator (Equation (1)) satisfies
the equation

ql+1M + qlN + ql−1Λ = 0

for all l ≥ 0. In the finite case the stationary probability vector xL = (pL, qL,0, qL,1, . . . , qL,L) also satisfies
the equation

qL,l+1M + qL,lN + qL,l−1Λ = 0
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for all 0 ≤ l < L, but the boundary equation is different

qL,L(N + Λ) + qL,L−1Λ = 0.

It is clear that if the rate matrix R satisfies RL+1M = RLΛ then the stationary distribution of XL(t)
can be obtained by the truncation of the matrix-geometric stationary distribution (Equation (2)) of X(t)
at the level of l = L. In turn, this is enough to fulfill the condition Rl+1M = RlΛ for some l ≤ L. In
this paper we study the properties of QBD processes with rate matrix R satisfying RM = Λ. If it is so,
then for any L the stationary distribution of the process XL(t) can be obtained by truncation of the
stationary distribution of X(t).

In the next section we show when the rate matrix R satisfies RM = Λ. In Section 3, we analyze the
stationary distributions of infinite and finite QBD processes. In Section 4, we use the obtained results for
solving a semi-open network in which customers from an external queue may only arrive to the node
from which a departed customer left the system. We assume the process X(t) to be positive recurrent.

The following notation conventions are used throughout the article. Bold lowercase letters denote
vectors, and bold capitalized letters denote matrices, δ(i, j) = 1 if i = j and δ(i, j) = 0 otherwise;
I = [δ(i, j)] is the identity matrix; the ith component of vector ei is equal to one and the others are zero.

2. Rate Matrices Satisfying RM =ΛΛΛ

Here we derive the explicit solution of matrix Equation (3) obtained for a rate matrix satisfying
RM = Λ.

Theorem 1. Let A be an irreducible generator with stationary probability vector π, and let R be the minimal
nonnegative solution of Equation (3). Then the matrix R satisfies the relation RM = Λ if and only if

Λ =
1
πμ

λπM, (11)

where λ = Λu and μ = Mu. Moreover, the matrix R and its spectral radius η are given by

R =
1
πμ

λπ, (12)

η =
πλ

πμ
. (13)

Proof. Let matrix R satisfy the relation RM = Λ. Then, Equation (3) can be rewritten as

RA = RΛ + RN + Λ = R2M + RN + Λ = 0. (14)

Since the generator A is irreducible, each column of the matrix R is proportional to the vector π.
Therefore R has the form R = wπ, where w is a row vector satisfying

wπM = Λ. (15)

By postmultiplying Equation (15) by vector u we obtain wπμ = λ, which implies Equations (11)
and (12).

Let matrix Λ be given by Equation (11). Since the process X(t) is positive recurrent, the matrix
N + RM is nonsingular [1] and we have

R = −Λ(N + RM)−1.
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This relation implies that the rate matrix is of the form R = λξ, where ξ is the unique solution of
the equation

ξ = − 1
πμ

πM(N + ξλM)−1. (16)

It is easy to check that the vector

ξ =
1
πμ

π

satisfies Equation (16). Therefore, the rate matrix and its maximum eigenvalue are given by Equations
(12) and (13). This completes the proof of the theorem. �

Corollary 1. Let matrices Λ, M, N have the block-diagonal form

Λ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λ1 0 · · · 0

0 Λ2
. . .

...
...

. . . . . . 0
0 · · · 0 Λk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, N =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1 0 · · · 0

0 N2
. . .

...
...

. . . . . . 0
0 · · · 0 Nk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1 0 · · · 0

0 M2
. . .

...
...

. . . . . . 0
0 · · · 0 Mk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (17)

and suppose that Ai = Λi + Ni + Mi is an irreducible generator with a stationary probability vector πi. Then
the minimal nonnegative solution

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1 0 · · · 0

0 R2
. . .

...
...

. . . . . . 0
0 · · · 0 Rk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(18)

of Equation (3) satisfies the relation RM = Λ, if and only if

Λi =
1

πiμi
λiπiMi, 1 ≤ i ≤ k, (19)

where λi = Λiu and μi = Miu. The matrices Ri and their spectral radii ηi are given by

Ri =
1

πiμi
λiπi, (20)

ηi =
πiλi
πiμi

. (21)

This Corollary 1 follows directly from Theorem 1 applied to each diagonal block of the matrices
(17) and (18).

3. Truncation of the Stationary Distribution

Consider a queueing system with L ≥ 0 waiting places that can be modeled by a Markov chain
XL(t) with a generator of the form (7) with the block-diagonal matrices Λ, M, N as in Equation (17).
We partition the stationary probability vector xL corresponding to QL as xL = (p, q0, . . . , qL), where p

is an n-vector, and ql is partitioned as ql = (ql,1, ql,2, . . . , ql,k), with mi-vectors ql,i, 1 ≤ i ≤ k,0 ≤ l ≤ L.

Theorem 2. Let a generator QL be irreducible, matrices Λ, M, N have the block-diagonal form (Equation (17)),
Ai = Λi + Ni + Mi be an irreducible generator with the stationary probability vector πi, the matrices Λi,Ri be
given by Equations (19) and (20) respectively, and vectors a and b = (b1, b2, . . . , bk) satisfy the linear system

aN0 + bM1 = 0, (22)
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aΛ0 + b(N1 + Λ) = 0, (23)

au + bu = 1. (24)

Then the stationary probability vector of QL is given by

p = cLa, q0,i = cLbi, ql,i = cLρ
l−1
i

biλi
πiμi

πi, 1 ≤ l ≤ L, 1 ≤ i ≤ k, (25)

where cL is the normalization constant,

cL = (1 +
k∑

i=1

sL,i)

−1

, sL,i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
biλi(1−ρL

i )

πiμi(1−ρi)
, ρi � 1,

L biλi
πiμi

, ρi = 1.
(26)

Proof. Since the matrices Λi and Ri are given by Equations (19) and (20), under the Corollary 1 of
Theorem 1, matrix (18) is the solution of Equation (3) and satisfies RM = Λ. It implies that vectors p

and ql = (ql,1, ql,2, . . . , ql,k) given by Equation (25) satisfy the following relations:

pN0 + q0M1 = cL(aN0 + bM1) = 0,

pΛ0 + q0N1 + q1M = cL(aΛ0 + bN1 + bRM) = cL(aΛ0 + bN1 + bΛ) = 0,

ql+1M + qlN + ql−1Λ = ql−1(R
2M + RN + Λ) = 0, 0 < l < L,

qL(Λ + N) + qL−1Λ = qL−1(RΛ + RN + Λ) = qL−1(R
2M + RN + Λ) = 0.

It follows that xL = (p, q0, . . . , qL) is the stationary probability vector of the generator QL. Power
Rl

i of the matrix Ri is given by

Rl
i = ηl−1

i
λiπi
πiμi

.

Using this formula and equality (Equation (24)) we obtain the normalization constant (Equation (26)).
This completes the proof of the theorem. �

Note that the vector (a, b) in Equations (22)–(24) gives the stationary distribution of the Markov
chain X0(t) which models a queueing system without waiting places, and the stationary distribution
xL of the Markov chain XL(t) depends on the number of waiting places L only via the normalizing
constant cL. Similar results are valid for the infinite QBD process X(t) with generator Q of the form (1).

Theorem 3. Let generator Q be irreducible, matrices Λ, M, N have the block-diagonal form (17), Ai =

Λi + Ni + Mi be an irreducible generator with stationary probability vector πi, matrices Λi, Ri be given by (19)
and (20) respectively, and vectors a and b = (b1, b2, . . . , bk) satisfy the linear system (22)–(24). Then process
X(t) is positive recurrent if and only if πiλi < πiμi for all 1 ≤ i ≤ k. In this case the stationary probability
vector of Q is given by

p = ca, q0,i = cbi, ql,i = cηl−1
i

biλi
πiμi

πi, l ≥ 1,1 ≤ i ≤ k, (27)

where c is the normalization constant,

c =

⎛⎜⎜⎜⎜⎜⎝1 +
k∑

i=1

biλi
πiμi −πiλi

⎞⎟⎟⎟⎟⎟⎠
−1

. (28)
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Proof. The proof of Equations (27) and (28) is similar to the proof of Equations (25) and (26). The
spectral radius of the rate matrix R is the maximum of the spectral radii if its diagonal blocks are given
by Equation (21). Therefore, the process X(t) is positive recurrent if and only if πiλi < πiμi for all
1 ≤ i ≤ k. �

The following result is a direct consequence of Equation (25) for the stationary distribution of the
processes XL(t) and of Equation (27) for the stationary distribution of the process X(t).

Corollary 2. If the conditions of Theorem 2 hold and πiλi < πiμi for all 1 ≤ i ≤ k then the stationary
distributions of the processes XL(t) can be obtained by truncation of the stationary distribution of the process
X(t).

4. Semi-Open Networks with Replacement

Since the first papers [14,15] on semi-open networks appeared, the use of these models has become
increasingly widespread [16–18]. However, the exact analysis even of the simplest network, with two
exponential single-server nodes, Poisson arrival process, and an infinite queue, remains a difficult
task [15]. The semi-open networks with external queue are mainly analyzed by approximate methods
and the matrix-geometric method [19–23].

Consider a semi-open network consisting of an internal network with v nodes and an external
queue. The number of customers in the internal network cannot exceed N. If an arriving customer
finds the internal network busy it waits in the external queue or is lost if the number of customers in
the queue has reached its maximum value L. Such a network can be considered as a queuing system
with N resource units. If all N resource units are occupied, the arriving customer waits in the external
queue until a resource unit becomes available. Upon completion of its service in the internal network,
the customer releases the occupied resource unit.

We consider semi-open networks in which the customers waiting in the external queue select a
node for entering the internal network according to the following rule, which we call the replacement.
If a customer leaves the system upon completing service at node i, then a customer from the external
queue will start service also at node i, thus “replacing” the leaving customer. As a result, the number
of customers in the external queue will decrease by one, but the number of customers at each node of
the internal network remains unchanged. An example of a system in which only the replacement of
customers leaving the system is possible is shown in Figure 1. It is a semi-open network with only
one node where customers can complete service and through which waiting customers can enter the
internal network.

Figure 1. Internal network with a single node in which customers start and finish servicing.
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Let the arrival process be Poisson with rate λ. The service rate μki,i at node i depends on the
number ki of customers at this node: μ0,i = 0 and μki,i > 0 for 1 ≤ ki ≤ N. A customer entering the
internal network is sent to node i with probability ai,

∑n
i=1 ai = 1. A customer completing service at

node i will either require service at node j with a probability qi, j or leave the system with probability
qi,0 = 1−

∑n
j=1 qi, j. The visit ratios qi, i = 1, 2, . . . , v, can be found as a solution of the linear system

qj = aj +
n∑

i=1

qiqi, j, j = 1, 2, . . . , v, (29)

and the nodes’ throughputs are given by λi = λqi, i = 1, 2, . . . , v. Summing both sides of Equation (1)
over j, we obtain a useful relation

n∑
i=1

qiqi,0 = 1. (30)

A semi-open network can be modeled by a Markov chain YL(t) = (y0(t), y1(t), . . . , yn(t)), where
y0(t) represents the number of customers in the system at time t, and yj(t), 1 ≤ j ≤ n, represent the
number of customers at node j of the internal network. The process YL(t) has a state space ∪L

l=0Yl with

Y0 =
{
(l, k)
∣∣∣k ∈ Zl, 0 ≤ l ≤ N

}
, Yl =

{
(l + N, k)

∣∣∣k ∈ ZN
}
, 1 ≤ l ≤ L,

where
Zl =
{
(k1, . . . , kv)

∣∣∣kj ≥ 0, j = 1, . . . , v, k1 + . . .+ kv = l
}
, 0 ≤ l ≤ N.

We assume that all states of the process Y(t) communicate and denote its stationary distribution
as θl = (θl(k)), (l, k) ∈ Yl, 0 ≤ l ≤ N + L.

The generator of the process Y(t) has the block tri-diagonal form (Equation (18)) with the following
nonzero transition rates

γ((l, k), (l + 1, k + ei)) = λai, k ∈ Zl, 0 ≤ l < N,

γ((l, k), (l + 1, k)) = λ, k ∈ ZN, N ≤ l < N + L,

γ((l, k), (l− 1, k− ei)) = μki qi,0, k ∈ Zl, 1 ≤ l ≤ N,

γ((l, k), (l− 1, k)) = μ(k), k ∈ ZN, N < l ≤ N + L,

γ((l, k), (l, k + e j − ei)) = μkiqi, j, k ∈ Zl, 1 ≤ l ≤ N,

where

μ(k) =
v∑

i=1

μki,iqi,0.

In Equation (8) the matrices Λ, M, N are diagonal with elements γ((l, k), (l + 1, n)) = λδ(k, n),
γ((l, k), (l − 1, n)) = μ(k)δ(k, n), γ((l, k), (l, n)) = −(λ+ μ(k))δ(k, n) respectively. Therefore, the
stationary distributions for the finite and infinite semi-open networks with replacement can be found
using Theorems 2 and 3.

For a semi-open network without an external queue the closed form solution can be easily derived
because there exists an equivalent closed network of capacity N. The equivalent network can be
obtained by adding a single-server node 0 with an infinite queue and exponentially distributed service
times with parameter λ to the original network. Node 0 plays the role of the external environment
of the original network. When a customer arrives to or departs from the original network, it departs
from or arrives to node 0 in the equivalent network. The stationary distribution xl = (xl(k)), k ∈ Zl,
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l = 0, 1, . . . , N of closed queueing networks with state-dependent service rates have a product form [24]
and the solution a = (x0, x1, . . . , xN−1) and b = xN of the linear system (Equations (19)–(21)) is given by

xl(k) =
1

G(N)

n∏
i=1

λki
i

μ1,iμ2,i · · ·μki,i
,k ∈ Zl, l = 0, 1, . . . , N, (31)

G(N) = 1 +
N∑

l=1

∑
k∈Xl

v∏
i=1

λki
i

μ1,iμ2,i · · ·μki,i
. (32)

For closed queueing networks, there are several effective methods for computation of the
normalization constant G(N) [25].

By virtue of Theorem 2 for semi-open network with replacement and a finite external queue, the
stationary distribution of the process YL(t) is given by

θl(k) = cLxl(k),k ∈ Zl, 0 ≤ l ≤ N, (33)

θl(k) = cLxN(k)ρ(k)
l−N, k ∈ ZN, N < l ≤ N + L, (34)

cL = (1 +
∑

k∈ZN

sL(k))
−1

, sL(k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xN(k)ρ(k)

1−ρ(k)L

1−ρ(k) , ρ(k) � 1,

xN(k)L, ρ(k) = 1,
(35)

where
ρ(k) =

λ
v∑

i=1
μki,iqi,0

.

It follows from Theorem 3 that a semi-open network with replacement and an infinite external
queue is stable if and only if ρ(k) < 1 for all states k ∈ ZN. In this case, the stationary distribution of
Y(t) is given by

θl(k) = cLxl(k),k ∈ Zl, 0 ≤ l ≤ N,

θl(k) = cLxN(k)ρ(k)
l−N, k ∈ ZN, l > N, (36)

cL =

⎛⎜⎜⎜⎜⎜⎜⎝1 +
∑

k∈ZN

xN(k)ρ(k)

1− ρ(k)

⎞⎟⎟⎟⎟⎟⎟⎠
−1

. (37)

Similarly, it is possible to analyze semi-open queuing networks partitioned into subnetworks.
Each such subnetwork consists of a subset of nodes of the internal network. If a customer leaves the
system, then a customer from the external queue will proceed with a certain probability to a node in
the same subnetwork in which the customer leaving the system was served. The generator of the
related QBD process has the matrices Λ of the form of Equation (17). The results of this paper can be
used if the diagonal blocks of Λ satisfy relation (19).

5. Conclusions

We have studied the properties of QBD processes with the rate matrix R satisfying RM = Λ,
which guarantees that the stationary distribution of the finite QBD process is a truncation of the
stationary distribution of the infinite QBD process. We have obtained the necessary and sufficient
condition for the fulfillment of the equality RM = Λ and have derived the formulae for the rate matrix
and for the superdiagonal blocks of the process generator. These matrices have rank one, and therefore
the stationary distribution and the performance parameters of QBD processes can be easily found.
The results obtained have been applied to a semi-open network in which customers from the external
queue can enter the internal network only through the node from which the departing customer left
the system.
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Abstract: The operation of many real-world systems, e.g., servers of data centers, is accompanied by
the heating of a server. Correspondingly, certain cooling mechanisms are used. If the server becomes
overheated, it interrupts processing of customers and needs to be cooled. A customer is lost when its
service is interrupted. To prevent overheating and reduce the customer loss probability, we suggest
temporal termination of service of new customers when the temperature of the server reaches the
predefined threshold value. Service is resumed after the temperature drops below another threshold
value. The problem of optimal choice of the thresholds (with respect to the chosen economical
criterion) is numerically solved under quite general assumptions about the parameters of the system
(Markovian arrival process, phase-type distribution of service time, and accounting for customers
impatience). Numerical examples are presented.

Keywords: processor heating and cooling; markovian arrival process; phase-type service time
distribution; impatience

1. Introduction

The goal of operation of many real-world systems is to obtain profit via providing service to
some customers. For example, in data centers, the profit is obtained via storing and retrieving the
information for users on demand. The operation of such systems is possible only under fulfillment
of various limitations. An important problem in organization of the operation of data centers is the
effective cooling of servers. High performance servers generate a lot of heat and it is necessary to
effectively cool the central processing unit, memory modules, power supplies, graphics processing
units and other devices to avoid system overheating and premature failures (see, e.g., [1]).

It is clear that, to maximize the profit, it is necessary to use the power of the available server to
a maximum extent. However, this may cause overheating of the server, the loss of a customer who
was using the service during the overheating moment and a temporal termination of the service for
cooling the server. To prevent overheating of the server during service, it sounds reasonable to stop
new services if the temperature of the server reaches some level (threshold). Definitely, this threshold
should be less than the critical level but more or less close to this level. Otherwise, a certain part of the
server capacity is not utilized and this may lead to the loss of some profit. If service can be postponed
or interrupted, it is necessary to specify when service will be resumed. This can be done by means of
introducing one more threshold. Service is resumed when the temperature of the server is dropped to
this threshold. It is obvious that this threshold should be less than the first threshold. The difference
between the thresholds should not be too large. Otherwise, again, the server capacity is under-utilized.
However, if the difference is too small, the bans and permissions to start new services can occur too
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frequently and this can be charged by a decision-maker. Therefore, the problem of optimal choice of
the two thresholds is not trivial and challenging.

In this paper, we numerically solve this problem in the following way. Under any fixed pair
of thresholds, the behavior of the system is described by a Markov chain. This Markov chain is
multi-dimensional because it has to include the components defining the number of customers in the
system, the current state of the server (idle, operating, or cooling) and its temperature, underlying
processes of customer arrival and service processes. Due to the existence of periods when service is not
provided, in our model, we account for the possible impatience of the customers waiting in the queue.
Due to considering impatience, this Markov chain does not belong to the class of level-independent
quasi-birth-and-death processes and its analysis is non-trivial. We use results from [2,3] for computation
of the stationary probabilities of the states of the chain. Having the stationary probabilities computed,
we derive formulas for computation of the main performance indicators of the system and the cost
criterion for any fixed pair of the thresholds defining behavior of the system. This allows us to
numerically solve the problem of choosing the optimal values of the thresholds.

The considered model is very close to the models in which some additional resource is required
to provide service to a customer. These models include, in particular, so-called queueing/inventory
models (see, e.g., [4]), queueing systems with energy harvesting (see, e.g., [5]), queueing models
with paired customers (see [6]), assembly-like queue (see [7]), passenger-taxi or double-ended queues
(see [8]), coupled queues (see [9]), etc. In our model, the role of the additional resource is played by the
lag between the critical and current value of the server’s temperature. The essential difference between
our model and the above mentioned models consists of the following. Usually, the additional resource
has the influence on the behavior of the queueing system only at the potential service beginning
moments. If the resource is available, the known required for service amount of the resource is
reserved. Service starts and, then, successfully finishes. Otherwise, if the resource is not available at
the potential service beginning moment, service is cancelled or postponed until the required amount
of the additional resource becomes available. In our model, we have a more complicated situation: the
“additional resource” has a permanent influence on the behavior of the queueing system. Required for
a customer service amount of resource is uncertain. It cannot be reserved and, as a consequence,
the started service (with available resource at the service beginning moment) can be terminated ahead
of the schedule and the customer is lost if the resource becomes unavailable already during service of
this customer. Namely, due to uncertainty of the amount of the required resource, it is necessary to
ban starting new service when the resource is still available but the number of available units of the
resource is less than the threshold value.

The structure of the paper is the following. Section 2 contains the description of the mathematical
model of the considered system. The stationary distribution of the multi-dimensional Markov chain
describing the number of customers, current operation mode, excess of heating and underlying process
of the MAP arrival processes of customers and PH distributed service time is analyzed in Section 3.
The generator of this Markov chain is derived. Formulas for computing the key performance measures
of the system, including the probabilities of a customer loss (due to the server overheating and due to
the customer impatience) are given in Section 4. The results of numerical experiments that illustrate the
dependence of the key performance measures of the system on the thresholds are described in Section 5.
An optimization problem is considered in brief. Section 6 contains the conclusion of the paper.

2. Description of the Model

We consider a single-server queueing system that has an input buffer of an infinite capacity.
Figure 1 illustrates the structure of the system under study.
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Figure 1. Structure of the system.

Customer arrival is defined as the Markovian Arrival Process (MAP). Arrivals are governed by
the underlying Markov chain νt, t ≥ 0, with the finite state space {0, 1, ..., W}. The residence time of
this chain in the state ν has an exponential distribution with the parameter λν, ν = 0, W. Here and
in what follows, the notation ν = 0, W means that the integer parameter ν takes values from the set
{0, 1, . . . , W}. When the residence time in the state ν expires, with probability pν,ν′(0), the process
νt makes a transition to the state ν′ without generation of a customer, ν′ = 0, W ν �= ν′, and, with
probability pν,ν′(1), the process νt makes a transition to the state ν′ with a generation of a customer,
ν, ν′ = 0, W. The behavior of this arrival process is completely defined by the matrices D0 and D1

consisting of the entries (D1)ν,ν′ = λν pν,ν′(1), ν, ν′ = 0, W, and (D0)ν,ν = −λν, ν = 0, W, (D0)ν,ν′ =

λν pν,ν′(0), ν, ν′ = 0, W, ν �= ν′. The matrix D(1) = D0 + D1 is assumed to be irreducible and is the
generator of the process νt, t ≥ 0.

The mean arrival rate λ is computes as λ = θD1e where θ is the unique solution to the equations
θD(1) = 0, θe = 1. Hereinafter, e denotes a column vector consisting of 1’s, and 0 is a zero row vector.

For more information about the MAP and its properties, see [10–12].
The service time of a customer has a PH distribution defined by the stochastic row vector β and

sub-generator S. This time has the following interpretation. Let mt, t ≥ 0, be the continuous-time
Markov process having a finite state space {1, . . . , M, M + 1}. The states {1, . . . , M} are transient
and M + 1 is the absorbing state. The initial state of this process at the moment of beginning of
PH distributed time is randomly selected among the transient states {1, . . . , M} according to the
distribution defined by the entries of the row vector β = (β1, . . . , βM). Then, the process mt makes
transitions within the set {1, . . . , M} of the transient states with intensities defined by the entries of the
sub-generator S or to the absorbing state. The intensities of the transition to the absorbing state are
given by the entries of the column vector S0 = −Se. Transition to the absorbing state implies the end
of PH distributed time.

The Laplace–Stieltjes transform of the PH distribution is defined as β(sI − S)−1S0, Re s > 0.
The mean service time is equal to b1 = β(−S)−1e. For more detailed information about the PH
distribution, see [13]. Its applicability for good approximation of an arbitrary distribution is mentioned,
e.g., in [14]. When the server becomes idle, the underlying process mt, t ≥ 0, does not make
any transitions.

The problem of constructing the vector β and the matrices D0 and D1, S based on available
statistics regarding the real arrival and service processes is extensively addressed in the existing
literature and may be solved following the results from, e.g., the papers [15–17].

During service, the server generates the heat and the temperature of the server is permanently
monitored. Without essential loss of generality, we suppose that the temperature of the server is
graded in some discrete units, e.g. degrees Celsius. The server can operate when this temperature
is in the interval from K′ to K′′. According to the 2011 version of recommendations of the American
Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE), for class A1 systems the
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temperature of the server has to be in the range from 15 C◦ to 32 C◦. To simplify notations, we do not
keep track of the absolute temperature of the server, but the excess of the temperature over the lower
temperature level. This means that we assume that the (relative) temperature of the server has to be in
the range from 0 to K where K = K′′ − K′. When the temperature of the server reaches the upper level
K, service of customers becomes impossible. We say that this server becomes overheated. The server
temporarily stops its work, is considered blocked and has to be cooled. A customer using the service
when overheating occurs is assumed to be lost. We suggest that the server does not generate the heat
when it does not work (is idle or blocked). When the server is working, the rate of the server heating
is assumed to be equal to α degrees during unit of time, α > 0. In parallel to heating of the server,
it is permanently cooled. We assume that the cooling rate is equal to γk, γk ≥ 0, when the current
temperature of the server is equal to k, k = 0, K.

When the server becomes overheated, it stops generation of the heat and only is cooled. We assume
that the server remains blocked until its temperature drops to the level (threshold) K1, K1 < K.
After that, the server becomes unblocked and can start service. We assume that the customers residing
in the buffer are impatient. Each of these customers departs from the buffer without receiving
service (is lost) independently of other waiting customers after a “patience time” expires. This time is
exponentially distributed with the parameter φ.

The overheating of the server implies the loss of the potential profit gained by customers’ service.
This loss is related to the loss of customers, during service of which the overheating occurs, and the
loss of a capacity (throughput) of the server spent on service of such customers. The overheating
may require server recovery, not only cooling. Therefore, it is desirable to avoid the overheating.
To prevent the overheating occurrence, it is reasonable to stop new services when the temperature of
the server becomes pretty high. We assume that the threshold K2 is fixed such that K1 < K2 ≤ K. The
server cannot start new services if its temperature is equal or greater than K2. However, the ongoing
service continues. It cannot be interrupted unless the server becomes overheated, i.e., its temperature
becomes equal to K. If this service is successfully finished while the server does not become overheated,
the server remains blocked and does not start new services until its temperature drops to K1.

It is obvious that the values of performance indicators of the system depend on the choice of the
pair of thresholds (K1, K2) and our first goal is to provide a way for computing the values of these
measures for any fixed values of thresholds. To this end, we elaborate the algorithm for computation
of the stationary distribution of the system states.

3. Process of System States and Its Analysis

Let the critical temperature K and thresholds K1 and K2 be fixed, 0 ≤ K1 < K2 ≤ K.
It is easy to see that the behavior of the considered system can be described by the following

regular irreducible continuous-time Markov chain

ξt = {nt, rt, kt, νt, mt}, t ≥ 0,

where, during the epoch t, t ≥ 0,

• nt is the number of customers in the buffer, nt ≥ 0.
• rt, rt = 0, 2, is the server state: rt = 0 if the server is idle, rt = 1 if the server is busy, and rt = 2 if

the server is blocked.
• kt is the temperature of the server, kt = 0, K.
• νt is the state of the underlying process of the MAP, νt = 0, W.
• mt is the state of the underlying process of the PH service process, mt = 1, M.
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The Markov chain ξt, t ≥ 0, has the following state space:(
{0, 0, k, ν}, k = 0, K2 − 1

)⋃({n, 1, k, ν, m}, n ≥ 0, k = 0, K − 1, m = 1, M

)⋃
(
{n, 2, k, ν}, n ≥ 0, k = K1 + 1, K

)
, ν = 0, W.

To formally define the Markov chain ξt, we need to specify its transition rates within this state
space. Since this chain has five components when the server is not idle or blocked and four components
when the server is idle or blocked, to avoid operations with multi-dimensional arrays, it is necessary
to enumerate the states in some order. We assume the lexicographic ordering. This means that
firstly the states of the Markov chain ξt are numbered in the increasing order of the component
nt. Within the set of the states having the same value, say n, n ≥ 0, of this component, the states
are numbered in the increasing order of the component rt. Within the set of the states having the
same values, say (n, r), n ≥ 0, r = 0, 1, 2, of these components, the states are numbered in the
increasing order of the component kt. Within the set of the states having the same values, say (n, r, k),
n ≥ 0, r = 0, 1, 2, k = 0, K, of the three components, the states are numbered in the increasing order of
the component νt, νt = 0, W. Finally, the states from the sets (n, 1, k, ν) are numbered in the increasing
order of the component mt, mt = 1, M.

Let us denote by G the generator of the Markov chain ξt. It follows from the introduced
enumeration of the components of the chain that G is the matrix consisting of the blocks Gn,n′ , n, n′ ≥ 0,
|n − n′| ≤ 1, defining the intensities of transitions from the states having the value n of the component
nt to the states having the value n′ of this component.

Theorem 1. The infinitesimal generator G of the Markov chain ξt, t ≥ 0, has the following
block-tridiagonal structure:

G =

⎛⎜⎜⎜⎜⎝
G0,0 G0,1 O O O . . .
G1,0 G1,1 G1,2 O O . . .
O G2,1 G2,2 G2,3 O . . .
...

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎠ .

Here, the blocks (Gr,r′
0,0 )r,r′=0,2 of the matrix G0,0, whose diagonal entries are negative and define, up to

the sign, the intensities of the exit of the Markov chain ξt from the corresponding states and the non-diagonal
entries define the intensities of transitions that do not imply customers appearance in the empty buffer, have the
following form:

G0,0
0,0 = IK2 ⊗ D0 + (E−

K2
− CK2)⊗ IW̄ ,

G0,1
0,0 = IK2,K ⊗ D1 ⊗ β,

G0,2
0,0 = OK2W̄,(K−K1)W̄ ,

G1,0
0,0 = IK,K2 ⊗ IW̄ ⊗ S0,

G1,1
0,0 = IK ⊗ D0 ⊕ S + (E−

K − CK + α(E+ − IK))⊗ IW̄M,

G1,2
0,0 = ĪK,K−K1 ⊗ IW̄ ⊗ S0 + α Î ⊗ IW̄ ⊗ eM,

G2,0
0,0 = γK1+1 ĨK−K1,K2 ⊗ IW̄ ,

G2,1
0,0 = O(K−K1)W̄,KW̄M,
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G2,2
0,0 = IK−K1 ⊗ D0 + (Ẽ − C̃)⊗ IW̄ .

The matrix G0,1, whose entries define the intensities of transitions when a customer arrives to the empty
buffer, has the form

G0,1 =

⎛⎜⎝ OK2W̄,KW̄M OK2W̄,(K−K1)W̄

G1,1
0,1 OKW̄M,(K−K1)W̄

O(K−K1)W̄,KW̄M G2,2
0,1

⎞⎟⎠
where

G1,1
0,1 = IK ⊗ D1 ⊗ IM,

G2,2
0,1 = IK−K1 ⊗ D1.

The matrix G1,0, whose entries define the intensities of transitions when the single customer staying in the
buffer, departs from the buffer (due to the impatience or service beginning), has the form

G1,0 =

(
OKW̄M,K2W̄ G1,1

1,0 O(K−K1)W̄,K2W̄

O(K−K1)W̄,K2W̄ G2,1
1,0 G2,2

1,0

)
,

where
G1,1

1,0 = φIKW̄M + B ⊗ IW̄ ⊗ S0β,

G2,1
1,0 = γK1+1 ĨK−K1,K ⊗ IW̄ ⊗ β,

G2,2
1,0 = φI(K−K1)W̄ .

The blocks (Gr,r′
n,n)r,r′=1,2 of the matrix Gn,n, n ≥ 1, whose diagonal entries are negative and define, up to

the sign, the intensities of the exit of the Markov chain ξt from the corresponding states when the number of
customers in the buffer is equal to n, n ≥ 1, and the non-diagonal entries define the intensities of transitions
that do not imply the change of the number of customers in the buffer, have the following form:

G1,1
n,n = IK ⊗ D0 ⊕ S + (E−

K − CK + α(E+ − IK)− nφIK)⊗ IW̄M,

G1,2
n,n = ĪK,K−K1 ⊗ IW̄ ⊗ S0 + α Î ⊗ IW̄ ⊗ eM,

G2,1
n,n = O(K−K1)W̄,KW̄M,

G2,2
n,n = IK−K1 ⊗ D0 + (Ẽ − C̃)⊗ IW̄ − nφI(K−K1)W̄ , n ≥ 1.

The blocks (Gr,r′
n,n+1)r,r′=1,2 of the matrix Gn,n+1, n ≥ 1, whose entries define the intensities of increasing

the number of customers in the buffer from n to n + 1, have the following form:

G1,1
n,n+1 = IK ⊗ D1 ⊗ IM,

G1,2
n,n+1 = OKW̄M,(K−K1)W̄ ,

G2,1
n,n+1 = O(K−K1)W̄,KW̄M,

G2,2
n,n+1 = IK−K1 ⊗ D1, n ≥ 1.

The non-zero blocks (Gr,r′
n,n−1)r,r′=1,2 of the matrix Gn,n−1, n ≥ 2, whose entries define the intensities of

decreasing the number of customers in the buffer from n to n − 1, have the following form:

G1,1
n,n−1 = nφIKW̄M + B ⊗ IW̄ ⊗ S0β,

G2,1
n,n−1 = γK1+1 ĨK−K1,K ⊗ IW̄ ⊗ β,
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G2,2
n,n−1 = nφI(K−K1)W̄ , n ≥ 2.

Here,

• I is the identity matrix, and O is a zero matrix of an appropriate dimension.
• W̄ = W + 1;
• ⊗ and ⊕ are the symbols of the Kronecker product and the sum of matrices, respectively.
• E−

l is a square matrix of size l with all zero entries except the entries (E−
l )k,k−1 = γk, k = 1, l − 1.

• Cl is a square matrix of size l with all zero entries except the entries (Cl)k,k = γk, k = 1, l − 1.
• IK2,K is a matrix of size K2 × K with all zero entries except the entries (IK2,K)n,n, n = 0, K2 − 1, which

are equal to 1.
• IK,K2 is a matrix of size K × K2 with all zero entries except the entries (IK,K2)n,n, n = 0, K2 − 1, which

are equal to 1.
• E+ is a square matrix of size K with all zero entries except the entries (E+)k,k+1, k = 0, K − 2, which are

equal to 1.
• ĪK,K−K1 is a matrix of size K × (K − K1) with all zero entries except the entries ( ĪK,K−K1)n,n−K1−1, n =

K2, K − 1, which are equal to 1.
• Î is a matrix of size K × (K − K1) with all zero entries except the entry ( Î)K−1,K−K1−1, which is equal to 1.
• ĨK−K1,K2 is a matrix of size (K − K1)× K2 with all zero entries except the entry ( ĨK−K1,K2)0,K1 , which is

equal to 1.
• Ẽ is a square matrix of size K − K1 with all zero entries except the entries (Ẽ)k,k−1 = γK1+k+1, k =

1, K − K1 − 1.
• C̃ is a square matrix of size K − K1 with all zero entries except the entries (C̃)k,k = γK1+k+1, k =

0, K − K1 − 1.
• B is a square matrix of size K with all zero entries except the entries (B)k,k = 1, k = 0, K2 − 1.
• ĨK−K1,K is a matrix of size (K − K1)× K with all zero entries except the entry ( ĨK−K1,K)0,K1 = 1.

The proof of the theorem is implemented via the careful analysis of various scenarios of the
system behavior at the moments of changing the states of the underlying processes of arrivals and
service, changing the temperature of the server due to heating and cooling, customers departure due
to impatience. The symbols of Kronecker product and sum of matrices are very helpful for description
of transition intensities of several independent Markov processes.

It can be easily shown that the Markov chain ξt belongs to the class of Asymptotically
Quasi–Toeplitz Markov Chains (AQTMC) (see [2]).

Theorem 2. The stationary distribution of the Markov chain ξt exists for any values of the system parameters.

The assertion of the theorem stems from the fact that the customers staying in the buffer are
assumed to be impatient (φ > 0). The strict proof of Theorem 2 can be done by using the results
from [2]. This proof is straightforward and rather routine, thus it is omitted here.

Let us denote by π(n, r, k) the row vector of stationary probabilities of the states of the chain
having the value (n, r, k) of the first three components listed in the described above order.

In addition, denote
π(0, 0) = (π(0, 0, 0), . . . , π(0, 0, K2 − 1)),

π(n, 1) = (π(n, 1, 0), . . . , π(n, 1, K − 1)),

π(n, 2) = (π(n, 2, K1 + 1), . . . , π(n, 2, K)), n ≥ 0,

π(0) = (π(0, 0), π(0, 1), π(0, 2)), π(n) = (π(n, 1), π(n, 2)), n ≥ 1.

Because the state space of the Markov chain ξt is infinite and the generator G of this chain does
not have Toeplitz-like structure, the problem of computation of the vectors π(n), n ≥ 0, is not easy.
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Fortunately, the chains with the generator of such a type were analysed in [2,3] and the algorithms
developed in those papers allow computing these vectors.

4. Performance Indicators

Once the vectors π(n), n ≥ 0, have been computed, we can calculate various performance
indicators of the system.

The mean number N of customers in the buffer is computed by

N =
∞

∑
n=1

nπ(n)e.

The average temperature T of the server is computed by

T =
K2−1

∑
k=1

kπ(0, 0, k)e +
∞

∑
n=0

K−1

∑
k=1

kπ(n, 1, k)e +
∞

∑
n=0

K

∑
k=K1+1

kπ(n, 2, k)e.

The variance of the temperature of the server is equal to

K2−1

∑
k=1

k2π(0, 0, k)e +
∞

∑
n=0

K−1

∑
k=1

k2π(n, 1, k)e +
∞

∑
n=0

K

∑
k=K1+1

k2π(n, 2, k)e − T2.

The probability Pidle that the server is idle at an arbitrary moment is

Pidle = π(0, 0)e.

The probability Pimm that the server is idle at the moment of an arbitrary customer arrival (and
this customer immediately starts service) is

Pimm =
1
λ

π(0, 0)(IK2 ⊗ D1)e.

The probability Pbusy that the server is busy at an arbitrary moment is

Pbusy =
∞

∑
n=0

π(n, 1)e.

The average number Nsystem of customers in the system is computed by Nsystem = N + Pbusy.
The probability Pblock that the server is blocked at an arbitrary moment is

Pblock =
∞

∑
n=0

π(n, 2)e.

The probability Pimp of an arbitrary customer loss due to impatience is

Pimp =
φN
λ

.

The intensity λout of the flow of served customers is

λout =
∞

∑
n=0

π(n, 1)(eKW̄ ⊗ S0).
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The probability Poverheating of an arbitrary customer loss due to the server overheating is

Poverheating = αλ−1
∞

∑
n=0

π(n, 1, K − 1)e.

The intensity lvacation of the transition after the service completion to the vacation regime (the
server is overheated or is preventively switched-off for cooling) is

lvacation =
∞

∑
n=0

π(n, 1)( ĪK,K−K1 ⊗ IW̄ ⊗ S0)e.

The probability Ploss of an arbitrary customer loss is computed as

Ploss = Pimp + Poverheating = 1 − λout

λ
.

5. Numerical Example

Let the MAP arrival flow be defined by the matrices

D0 =

(
−0.3379101412 0

0 −0.0109675577

)
, D1 =

(
0.3356635104 0.0022466308
0.0061087109 0.0048588468

)
.

The mean arrival rate is λ = 5, the coefficient of correlation of two successive intervals between
arrivals ccor = 0.2, and the squared coefficient of variation of these intervals cvar = 12.4.

Let the maximum value of the temperature be K = 50, and the rate of the heat generation be α = 1.
The rate of the server cooling when its temperature is equal to k is γk =

0.3k
K , k = 1, K − 1, γK = 0.01.

The rate of a customer departure from the buffer due to impatience is φ = 0.0015.
The service time of a customer has the PH distribution with the irreducible representation (β, S)

where β = (0.9, 0.1), S =

(
−6 0
0 −0.2

)
. The average service time is equal to 0.65 and the squared

coefficient of variation of the service time is equal to 10.95.
Let us vary the threshold K1 over the interval [0, K) and the parameter K2 over the interval

[K1 + 1, K].
Figures 2–4 illustrate the dependence of the average number N of customers in the buffer,

the average intensity λout of the flow of served customers and the average temperature T of the
server on the values of K1 and K2.
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Figure 2. Dependence of the average number N of customers in the buffer on the values of K1 and K2.
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Figure 3. Dependence of the average average intensity λout of the flow of served customers on the
values of K1 and K2.
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Figure 4. Dependence of the average temperature T of the server on the values of K1 and K2.

It can be observed in Figure 2 that the average number N of customers in the buffer increases
when the threshold K2 grows. This is easily explained by the fact that the probability of overheating
occurrence increases when the threshold K2 becomes close to the critical temperature. It is assumed that
the rate of the server cooling is small after overheating occurrence, the blocking period of the server
becomes large and a lot of customers stay in the buffer. It should be noted that, for any fixed value of
K2 there exists a value of K1, which minimizes the average number N. The average intensity λout of
the flow of served customers is small when both thresholds K1 and K2 are small (low temperature of
the server is guaranteed at expense of managing too long blocking periods) and when both thresholds
K1 and K2 are large (the server is quite often overheated, which causes the corresponding loss of
customers). This intensity λout is much higher for intermediate values of the thresholds K1 and K2.
Figure 4 well matches to the just given explanation of the surface in Figure 3.

Figures 5–7 illustrate the dependence of the probability Pidle that the server is idle, the probability
Pbusy that the server is busy, and the probability Pblock that the server is blocked at an arbitrary moment
on the values of K1 and K2.

The probability Pidle that the server is idle and the probability Pbusy that the server is busy also are
maximal for intermediate values of thresholds K1 and K2. As expected, the probability Pblock that the
server is blocked decreases when the threshold K1 grows.

Figures 8–10 illustrate the dependence of the probability Pimp that an arbitrary customer is lost
due to impatience, the loss probability Poverheating that an arbitrary customer is lost due to server
overheating, and the probability Ploss that an arbitrary customer is lost on the values of K1 and K2.
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Figure 5. Dependence of the probability Pidle that the server is idle on the values of K1 and K2.
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Figure 6. Dependence of the probability Pbusy that the server is busy on the values of K1 and K2.
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Figure 7. Dependence of the probability Pblock that the server is blocked on the values of K1 and K2.
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Figure 8. Dependence of the probability Pimp that an arbitrary customer is lost due to impatience on
the values of K1 and K2.
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Figure 9. Dependence of the probability Poverheating that an arbitrary customer is lost due to server
overheating on the values of K1 and K2.
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Figure 10. Dependence of the probability Ploss of an arbitrary customer loss on the values of K1 and K2.

Figure 9 evidently shows that the loss probability Poverheating that an arbitrary customer is lost due
to server overheating sharply increases when the thresholds K1 and K2 grow. Therefore, the proposed
mechanism for preventing overheating is highly effective. It can be observed in Figures 8–10 that
there exists a pair of the thresholds that minimizes the loss probability Ploss. The minimal value of the
probability Ploss in this example is equal to 0.065255 and is achieved under the following values of the
thresholds: K1 = 36 and K2 = 37.

Customers loss in the considered system occurs due to overheating of the server during ongoing
service and due to impatience of customers. The charges paid for these types of losses may be different.
The charge paid for the loss due to overheating can be much higher because the loss due to impatience
is just the loss of potential profit, while the loss due to overheating means the real loss of a customer,
violation of service level agreement and possible expenditures to return the overheated server to the
operable mode. Therefore, various other optimization problems can be formulated.

In this paper, we consider the following economical criterion of the quality of the system operation:

E = aλPimp + (b + c)λPoverheating + clvacation.

This economical criterion indicates the charge paid by the system per unit of time, where a is the
charge paid by the system for each customer loss due to impatience, b is the charge paid by the system
for customer loss due to overheating, and c is the charge paid by the system for managing operation of
the system via each transition to the blocking regime.

Let us fix the following values of the cost coefficients: a = 1, b = 10, c = 2.
Figure 11 illustrates the dependence of the economical criterion E on the values of K1 and K2.
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Figure 11. Dependence of the economical criterion E on the values of K1 and K2.

The minimal value of the economical criterion E here is equal to E∗ = 0.0308509 and is achieved
when K1 = 29 and K2 = 42. Note that, for the same system but without control, when no prevention
of overheating is assumed (i.e., K2 = 50, indicating the server is switched-off only when it becomes
overheated, and K1 = 49), the value of the economical criterion is more than ten times higher:
E(49, 50) = 0.309677.

6. Conclusions

In this paper, a novel in the literature queueing model is considered. This model considers the
possible heating of a server during the service process that causes the necessity of its permanent
cooling. Such a model can be applied, e.g., for optimization of operation of servers of data centers
that generate a lot of heat during their operation and the proper cooling mechanisms have to be used
to avoid a collapse of the server. We offer the discipline for control by the system operation aiming
to prevent premature overheating of a server and the loss of customers. This discipline is defined
by two thresholds. One threshold is used to define the temperature of a server that when exceeded
causes the stop of new services and to block the server when its temperature becomes close to the
critical temperature. One more threshold is used to define the temperature when the blocking of
the server can be finished and service can be resumed. The system is analyzed under quite general
assumptions about the arrival and service processes. The generator of the multi-dimensional Markov
chain, which describes the behavior of the system under any values of thresholds, is derived. This
allows computing the stationary distribution of the states of the Markov chain and the key performance
indicators of the system. Usefulness of the proposed strategy of preventive control is demonstrated
via numerical experiments.

The obtained results can be used for managerial goals. In fact, the results can be used for the choice
of the proper equipment for service provisioning (accounting for the different speeds of operation
and heat generation by the different servers), its cooling and optimal management by periodical
switching-off the server via the optimal choice of the thresholds.

As directions for future research, systems with the Batch Markov Arrival Process, phase-type
distribution of heating and cooling times, several possible modes of the server operation (with various
service and heating rates), etc., can be considered.
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Abstract: The solution of a wide class of applied problems can be represented as an integral over
the trajectories of a random process. The process is usually modeled with the Monte Carlo method
and the integral is estimated as the average value of a certain function on the trajectories of this
process. Solving this problem with acceptable accuracy usually requires modeling a very large
number of trajectories; therefore development of methods to improve the accuracy of such algorithms
is extremely important. The paper discusses Monte Carlo method modifications that use some
classical results of the theory of cubature formulas (quasi-random methods). A new approach to the
derivation of the well known Koksma-Hlawka inequality is pointed out. It is shown that for high
(s > 5) dimensions of the integral, the asymptotic decrease of the error comparable to the asymptotic
behavior of the Monte Carlo method, can be achieved only for a very large number of nodes N.
It is shown that a special criterion can serve as a correct characteristic of the error decrease (average
order of the error decrease). Using this criterion, it is possible to analyze the error for reasonable
values of N and to compare various quasi-random sequences. Several numerical examples are
given. Obtained results make it possible to formulate recommendations on the correct use of the
quasi-random numbers when calculating integrals over the trajectories of random processes.

Keywords: Monte Carlo method; quasi-Monte Carlo method; Koksma-Hlawka inequality;
quasi-random sequences; stochastic processes

1. Introduction

Let ξ(t, ω) be a random process, t1 < t2 < . . . < tn are given time moments, and
Fn(t1, x1, . . . , tn, xn) = P(ξ(t1, ω) ≤ x1; . . . ; ξ(tn, ω) ≤ xn) are finite-dimensional distributions of
the process. The Monte Carlo method of modeling a process ξ(t, ω) usually consists of modeling its
finite-dimensional distributions. Extensive literature is devoted to the algorithms of such modeling
(for example, [1] and some cited sources). The methods developed in these papers allow us to express
realizations of a random vector Ξ = P(ξ(t1, ω); . . . ; ξ(tn, ω)) through a certain set of randomizations of
a random variable (α1, . . . , αM) uniformly distributed on [0, 1], where M ≥ n and, generally speaking,
these can be random.

Ultimately, the problem solution Φ is represented as the expectation of a certain function Ψ of a
random vector Ξ for selected finite values n and M. That means Φ = EΨ(Ξ), and the computational
process consists in multiple (N times) calculations of the independent realizations Ξj of the vector Ξ and
in estimation of Φ using the arithmetic mean EΨ(Ξ) ≈ 1/N ∑N

j=1 Ψ(Ξj). Let us notice that the value
M = Mj may depend on the number of the realization j. The maximum value M = m

j
axMj is called a

constructive dimension of the algorithm. Finally, recall that Ξj is expressed in terms of realizations of
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uniformly distributed numbers, i.e., Φ, the integral over the M-dimensional unit hypercube, has the
following form

Φ = EΨ(Ξ(α1, . . . , αM)) =
∫ 1

0
dα1 . . .

∫ 1

0
dαM.

Further, it is convenient to change the designations and talk about the calculation of the integral
J =

∫
Ds

f (X)dX using the s-dimensional unit hypercube, X = (x1, . . . , xs), Ds = {X : 0 ≤ xi ≤ 1;
i = 1, . . . , s}. The problem of calculating this integral using the Monte Carlo method is well known.
If it is estimated using the sum J ≈ 1/N ∑N

j=1 f (αj
1, . . . , α

j
s) , where α

j
i are independent realizations

of a random variable uniformly distributed on [0, 1], and f is a quadratically integrable function, then
for the error it is possible to construct a confidence interval of width O(N−1/2). At the same time,
a number of articles [2–4] based on the theory of numbers considerations, pointed out sequences
of s-dimensional vectors Y1, . . . , YN , for which the error J − 1/N ∑N

j=1 f (Yj) decreased as lnsN/N,
for functions that have the first partial derivative with respect to each variable. This result is obviously
almost

√
N times better than the Monte Carlo method. The sequences Y1, . . . , YN , possessing the

property mentioned above, are called quasi-random . Extensive literature is devoted to their properties
and applications (see, for example, [5] and the bibliography available there).

As a rule, the authors consider that quasi-random sequences are significantly better than the
pseudo-random sequences used in the Monte Carlo method. The legitimacy of such comparisons
is studied in detail below.

2. Koksma-Hlawka Inequality and Random Quadrature Formulas

One of the well-known approaches to constructing the sum

KN [ f ] =
N

∑
j=1

Aj f (Xj), (1)

where Aj are constants, Xj = (x(j)
1 , . . . , x(j)

s ) ∈ D ⊂ Rs, which is used in the integral
∫

D f (X)dX
calculation, is as follows. It is assumed that f ⊂ F belongs to a linear normed space of functions, the
error of the integration formula

RN [ f ] =
∫

D
f (X)dX − KN [ f ] (2)

is considered as a functional in this space and parameters of the formula (1) are Aj and Xj, j = 1, . . . , N
are chosen so as to minimize the norm of the functional [6].

This task is usually very difficult. It is enough to note that it is possible to obtain the explicit
expression of the above-mentioned functional norm only in a few particular cases. One of these cases
is Aj = 1/N, j = 1, . . . , N, D is a unit hypercube Ds = {X : 0 ≤ xl ≤ 1, l = 1, . . . , s} and F is
a space of functions of bounded variation in the Hardy-Krause sense. In this case one can use the
Koksma-Hlawka inequality [7,8] ∣∣RN [ f ]

∣∣ ≤ V( f ) · D∗(X1, . . . , XN), (3)

where V( f ) is the variation mentioned above, and D∗(X1, . . . , XN) is the error norm, which is called a
discrepancy in the non-Russian literature or a deviation in the Russian one. Sometimes it is also called
a star discrepancy. In the number-theoretical sense, this quantity characterizes the uniformity of the
sequences distribution and equals to

sup
X

∣∣S(X)− 1
N

A(X1, . . . , XN)
∣∣, (4)
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where S(X) is the volume of the multidimensional box Δ(X) = {Y : yl ≤ xl , l = 1, . . . , s}, and
A(X1, . . . , XN) is a number of points of sequences belonging to Δ(X).

Similar explanations regarding the value V( f ) can be found in Appendix A for this article. For
our purposes, it suffices to note that for N → ∞, one knows the upper bound for the asymptotic
behavior of D∗(X1, . . . , XN) [9], namely

D∗(X1, . . . , XN) ≤ O(
lnsN

N
). (5)

The authors of [2–4] indicate of the algorithms for constructing sequences X1, . . . , XN for which
equality is achieved in (5). These sequences are called quasi-random due to the formal similarity
of algorithms of quasi-random numerical integration with the Monte Carlo method of calculating
multiple integrals. As we have already said, the authors of numerous articles devoted to the study
and use of quasi-random numbers usually note that the Monte-Carlo method has an asymptotic error
decrease of the same order as O(N−1/2), while from (5) we can conclude that quasi-random methods
provide an error decrease as O(N−1), more precisely O(N−1+ε) for any arbitrarily small ε.

The proof of Inequality (3) given in the literature is quite large and complex. As we have already
noted, it can easily be obtained by means of functional analysis. For s = 2 we showed it in the
application. The general case simply requires more complex definitions. It can be noted that using the
theory of cubature formulas [1], one can obtain analogs of Inequality (3) for Sobolev functions and many
other classes of functions and specify sequences for these classes that have faster order of the error
decrease. However, at the same time, computational algorithms are usually significantly complicated.

Other important applications of classical computational mathematics arise while estimating the
error of quasi-random methods. The construction of the confidence interval in the Monte Carlo method
automatically gives an estimate of the error, but for the quasi-Monte Carlo in its pure form there is
only the Inequality (3), which is of little use when solving a specific problem. This difficulty can be
overcome by randomizing quasi-random points.

Suppose Y1, . . . , YN are quasi-random vectors of dimension s, and
−→
β1, . . . ,

−→
βm are realizations

of vectors of the same dimension, uniformly distributed in Ds. The sum Sm,N( f ) =

1/m ∑m
l=1 1/N ∑N

k=1 f ({Yk +
−→
βl }) is an unbiased estimate of the integral

ESm,N( f ) =
∫

Ds
f (X)dX. (6)

The curly brackets denote the operation of taking the fractional part performed on the components
of the vector. The error for this randomized sum can be approximated using the central limit theorem.
The following statement is trivial

J ≈ 1
N

N

∑
k=1

f ({Yk +
−→
β }), (7)

where
−→
β is a vector uniformly distributed in Ds, is a random quadrature formula with one free node.

The theory of such formulas is given in detail in [1]. With the help of this theory, one can establish
for which class of functions the formula is exact. A number of papers consider other methods for
randomizing quasi-random numbers, known as scrambling methods.

3. Numerical Error Estimation Experiment: Monte Carlo and Quasi-Monte Carlo

In this paper we show that references to Inequality (3) when evaluating a computational algorithm
are not completely correct, at least for s > 5, and we suggest some correct approaches to determining
the asymptotical error decrease of the quasi-random methods. It can be immediately noted that in the
case of the Monte Carlo (MC) method, we are talking about the width of the confidence interval and
the asymptotic behavior in the central limit theorem is already seen for small N (N > 5, for example).
The situation is different for the expression (5). The multiplier lnsN plays a significant role already for
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s ≥ 4. The asymptotics of order O(N−1+ε) can be reached when N → ∞, but as follows from Table 1,
for s = 5 the rate of error decrease of the two methods becomes approximately equal with N12, for
s = 10, with N40, for s = 15 with N = 1065.

Table 1. Asymptotical error decrease.

s 5 10 15

N 106 1012 1014 106 1018 1040 106 1030 1065

lns N
N 0.5 10−5 10−8 105 10−2 10−21 1011 10−3 10−33

1√
N

10−3 10−6 10−8 10−3 10−9 10−20 10−3 10−15 10−33

The data given in Table 1 clearly confirm the unsuitability of Inequality (5) to show the advantages
of the quasi-Monte Carlo (QMC) method for calculating integrals of large multiplicity and, with
increasing multiplicity of the integral, this situation worsens. Many authors (for example, [10]) confirm
that the real error decrease for different values of N for s > 5 does not obey inequality (5), but behaves
like N−1+ε with 0 ≤ ε ≤ 1/2. Thus, one should speak about the quality of a particular quasi-random
sequence only for reasonable values of N, when the asymptotic behavior indicated by equality (3)
hasn’t been fulfilled yet and one should introduce a reasonable quality criterion only from empirical
considerations. First, we discuss the behavior of the integration error in some numerical examples.
Let f (X) be defined and integrable in the s-dimensional unit cube Ds and the integral

∫
Ds

f (X)dX is
calculated using the cubature formula (1).

Consider the integrals:

I1 =
∫

Ds
2ses/(e − 1)s

s

∏
i=1

xie−x2
i dX, I2 =

∫
Ds
(8/π)s

( s

∏
i=1

xi(1 − xi)
)1/2

dX. (8)

I3 =
∫

Ds

s

∏
i=1

|4xi − 2|+ i
i + 1

dX, I4 =
∫

Ds

√
1/|

s

∑
i=1

(xi − 1/2)2 − 1/4|dX. (9)

The exact value of the integrals I1, I2, I3 are known, they are equal to 1 for all s. Table 2 shows the
absolute error of the QMC method, calculated for N = 106 and for the quasi-random Sobol (ErrS) and
Halton (ErrH) sequences.

Table 2. The absolute error of the quasi-Monte Carlo (QMC) method.

Ii I1 I2 I3

s 10 15 20 10 15 20 10 15 20

ErrS 10−4 10−4 10−3 10−6 10−4 10−4 10−7 10−6 10−6

ErrH 10−4 10−3 10−3 10−6 10−4 10−4 10−7 10−7 10−7

lns N
N 105 1011 1016 105 1011 1016 105 1011 1016

The obtained calculations lead to the following conclusions. The error values differ by no more
than one order of magnitude for the considered sequences. The well-known estimate lnsN/N cannot
serve as a reasonable estimate of the error in this case (see the last line in the Table 2). As already noted,
the practical application of quasi-Monte Carlo for large s is limited. The calculations of integrals by the
QMC method, the exact value of which is unknown, do not allow us to compare the accuracy of the
various quasi-sequences used among themselves.
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4. The Criterion of Decreasing Residual

We show that the use of the randomized quasi-Monte Carlo (RQMC) procedure allows us to
effectively estimate the error of the quasi-Monte Carlo method. Consider a new criterion, that will
allow us to judge about the error decrease depending on N, and will provide an opportunity to
compare the quality of various quasi-random integration methods.

As a quality criterion, we will use the average order of the error decrease.
Consider the error change interval [N1, N2] for some randomized quasi-random quadrature

formula. The average value for a given number of realizations N, N ∈ [N1, N2] is denoted α and we
will approximate R f (N) using the least squares method with the function y = a + b · N−α. The value
of α is called the average order of the error decrease. In the case when the exact value of the integral is
unknown we use the error estimate obtained by randomization.

Let us estimate the average order of the error decrease of the numerical integration for integrals
I4. The exact value of these integrals is not known. The calculations were carried out for n = 105

(the number of nodes) and M = 10 (the number of randomizations) for quasi-random sequences
of the Sobol and Halton method. Moreover, the total number of nodes is N = 106. The value
of random error R f (N) is approximated on the following intervals: Δr1 = [99, 700, 99, 800], Δr2 =

[99, 800, 99, 900], Δr3 = [99, 900, 100, 000]. The results of the calculations are given in Tables 3 and 4,
where δ is the average order of the error decrease value on a given interval.

Table 3. The average decreasing order of the error α = α(Δ) for the integral I4. Randomized
quasi-Monte Carlo (RQMC).

s = 15 s = 20

Method Δr1 Δr2 Δr3 δ Δr1 Δr2 Δr3 δ

RQMC, Sobol 0.84 0.85 0.87 0.85 0.95 1.0 1.0 0.98

RQMC, Halton 0.70 0.64 0.61 0.65 0.85 0.92 0.98 0.92

Table 4. The average decreasing order of the error α = α(Δ) for the integral I1.

s = 15 s = 20

Method Δr1 Δr2 Δr3 δ Δr1 Δr2 Δr3 δ

RQMC, Sobol 0.59 0.61 0.61 0.61 0.65 0.63 0.52 0.47

RQMC, Halton 0.61 0.61 0.60 0.61 0.53 0.52 0.52 0.60

Conducted calculations show the relative stability of the estimate of α for changing N1 and N2.

5. Conclusions

Error analysis of numerical methods plays a major role in the choice of algorithms for solving
a problem. The main goals of this article are to propose a new quality criterion for algorithms for
calculating multidimensional integrals; point out the incorrect use of the Koksma-Hlawka inequality
when comparing the asymptotic error behavior of the Monte Carlo and the quasi-Monte Carlo methods
for calculating integrals; and propose a new quality criterion for calculation algorithm integrals with
large multiplicity.

This will allow, in particular, to choose the ratio between the number of random and quasi-random
components of the nodes used in quadrature formulas, when their number (constructive dimension) is
very large. The results obtained are confirmed by numerical examples. It makes possible to judge the
comparative quality of various quasi-random sequences in some cases.

The results obtained, can be useful in solving other problems (for example, optimization problems).
However, this requires separate studies that are beyond the scope of this work.
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Appendix A

For the reader’s convenience a brief proof of the inequality Koksma-Hlawki in the
two-dimensional case is given.

Let f (x, y) have integrable derivatives ∂ f (x, 1)/∂x, ∂ f (1, y)/∂y and ∂2 f (x, y)/∂x∂y in unit square
D2 = {0 ≤ x ≤ 1; 0 ≤ y ≤ 1}. Then we have

f (x, y) = f (1, 1) +
∫ 1

x
f ′x(u, 1)du +

∫ 1

y
f ′y(1, v)dv −

∫ 1

x

∫ 1

y
f ′′xy(u, v)dudv.

Elementary transformations allow to obtain from

RN [ f ] =
∫

D2

f (x, y)dxdy − 1
N

N

∑
j=1

f (xj, yj)

the expression

RN [ f ] =
∫ 1

0
f ′x(u, 1)[−u +

1
N ∑ Θ(xj − u)]du

+
∫ 1

0
f ′y(1, v)[−v +

1
N ∑ Θ(yj − v)]dv

+
∫ 1

0

∫ 1

0
f ′′xy(u, v)[uv − 1

N ∑ Θ(xj − u)Θ(yj − v)]dudv, (A1)

where

Θ(z) =

⎧⎪⎨⎪⎩
1 z < 0
0 z > 0
1/2 z = 0.

If we denote

V( f ) =
∫ 1

0
| f ′x(u, 1)|du +

∫ 1

0
| f ′y(1, v)|dv +

∫ 1

0

∫ 1

0
| f ′′xy(u, v)|dudv,

that we have∣∣RN [ f ]
∣∣ ≤ V( f ) · max(K1(x1, . . . , xN), K1(y1, . . . , yN), K2(x1, y1; . . . ; xN , yN),

where
K1(xj, . . . , xN) = sup

u
|u − 1

N ∑ Θ(xj − u)|,

K1(yj, . . . , yN) = sup
v
|v − 1

N ∑ Θ(yj − u)|,

K2 = sup
uv

|uv − 1
N ∑ Θ(xj − u)Θ(yj − v)|.

However, as you can see,

K1(x1, . . . , xN) ≤ K2(x1, y1; . . . ; xN , yN), K1(y1, . . . , yN) ≤ K2(x1, y1; . . . ; xN , yN)
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and
∣∣RN [ f ]

∣∣ ≤ V( f ) · K2(x1, y1; . . . ; xN , yN), K2(x1, y1; . . . ; xN , yN) and there is discrepance of a
sequence of points.

In general, D∗(X1, . . . , XN) and V( f ) are defined as follows

D∗[ f ] = sup
x1,··· ,xs

∣∣ s

∏
l=1

xl − 1
N

A(X1, . . . , XN)]
∣∣,

here
s

∏
l=1

xl is the volume of the hyperparallelepiped Γ = {Y : 0 ≤ yl ≤ xl , l = 1, . . . , s}, and

A(X1, . . . , XN) is the number of sequence points X1, · · · , XN , belonging to this parallelepiped.
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Abstract: Time-dependent solutions to queuing models are beneficial for evaluating the performance
of real-world systems such as communication, transportation, and service systems. However,
restricted results have been reported due to mathematical complexity. In this study, we present
a time-dependent queue-length formula for a discrete-time Geo/D/1 queue starting with a positive
number of initial customers. We derive the time-dependent formula in closed form.

Keywords: time-dependent queue-length probability; discrete-time Geo/D/1 queue; closed-form solution

1. Introduction

Queuing models have been widely used for performance evaluation of practical systems such
as communication, transportation, and service systems. For the most part, the previous studies
have addressed stationary solutions of queuing models for the optimal control of long-term system
performance. However, time-dependent solutions to queuing systems are more meaningful for
practical systems; a good example was presented in Griffiths et al. [1], where the authors applied the
transient solution of an M/Ek/1 queue to model and analyze a 24-hour traffic profile on the Severn
Bridge in England.

The pioneering results on the transient results were presented by Luchak [2] and Saaty [3]. Using
a modified Bessel function, they presented the transient queue-length distribution of an M/M/1
queue starting with a positive number of initial customers. Later, computationally efficient solutions
were presented in many other studies [4–8]. For M/Ek/1 queues, several results have been presented.
Griffiths et al. [1,9] and Leonenko [10] derived transient solutions for M/Ek/1 queues starting with a
positive number of initial customers, and Baek et al. [11] extended their results to be applied to analysis
in a single busy period. Furthermore, Kapodistria et al. [12] presented the time-dependent solutions to
a linear birth/immigration-death process with binomial catastrophes. They presented general results
that include a background random environment.

The first study on queues with deterministic service times was conducted by Garcia et al. [13].
Using the matrix-analytic method, they derived the transient queue-length distribution of an
M/D/1/N queue in a computationally efficient form. Later, the queue-length formula was extended
to an M/D/c queue by Franx [14]. Recently, extensive results on the transient solution of the M/D/1
queue were presented by Baek et al. [15]. They derived not only the queue-length probability but also
the waiting time distribution in closed form.

The aforementioned studies focused only on the queues in a continuous-time domain.
Time-dependent solutions to queues in a discrete-time domain are even scarcer. Parthasarathy and
Sudhesh [16] were the first to derive the transient queue-length solution to a discrete-time Geo/Geo/1
queue. Employing a generating function and continued fractions, they obtained a computationally
efficient solution. Kim [17] studied the same model and presented the solution in a formal form.

Mathematics 2019, 7, 717; doi:10.3390/math7080717 www.mdpi.com/journal/mathematics71
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However, we failed to find any result related to the time-dependent solution to the discrete-time
queue with a constant service time. From this perspective, we present a time-dependent queue-length
solution to a Geo/D/1 queue. To the best of our knowledge, our proposed results have not been noted
in existing literature.

2. Main Results

In this section, we present the main results. Consider a discrete-time Geo/D/1 queuing system
with an infinite buffer in which the timeline is divided into intervals of equal length called time slots.
Customers arrive into the system according to the Bernoulli process at a rate of p, and the service times
are assumed to be a constant of D. We assume that arrivals and service completion can occur only at
the slot boundaries. More specifically, we consider the late-arrival model [18]. Therefore, we assume
that customer arrivals can occur only in (n−, n) and services can be completed only in (n, n+).

Let N0 be the number of new initial customers at time slot 0. We define N(n) as the number of
customers at the end of the time slot n and with the following probability:

Q(j)
k (n) = Pr[N(n) = k|N0 = j], (k ≥ 0, j ≥ 0), (n > 0).

Because Q(j)
0 (n) plays a major role in deriving Q(j)

k (n), we first derive the probability Q(j)
0 (n) in

the following theorem.

Theorem 1. We have

Q(j)
0 (n) =

� n
D �−j

∑
r=0

(
n
r

)
pr(1 − p)n−r

(
1 − r

n
D
)

. (1)

Proof. Let us define A(n) as the number of arrivals during the time interval (0, n] and τi(r)(n) as the
i-th arrival epoch under the condition that A(n) = r. We note that the service time is a constant D and
the system starts with j initial customers. Therefore, conditioning on A(n), we have

Q(j)
0 (n) =

∞

∑
r=0

Pr
(

τ1(r)(n) < τ2(r)(n) < · · · < τr(r)(n), (2)

τ1(r)(n) ≤ n − rD, τ2(r)(n) ≤ n − (r − 1)D, . . . , τr(r)(n) ≤ n − D|A(n) = r
)

× Pr(A(n) = r)U (n ≥ (j + r)D)

=
� n

D �−j

∑
r=0

Pr
(

τ1(r)(n) ≤ n − rD, τ2(r)(n) ≤ n − (r − 1)D, . . . , τr(r)(n) ≤ n − D|A(n) = r
)

Pr(A(n) = r),

where U(A) is an indicator function which takes 1, if A is true, or 0, and the second equality holds
because it is obvious that τ1(r)(n) < τ2(r)(n) < · · · < τr(r)(n).

Equation (2) means that the system can be empty at time slot n only when the i-th customer
among r customers arrives before

[
n − (r − (i − 1))D

]
-th time slot (1 ≤ i ≤ r) under the condition

that A(n) = r. Since the arrival process is Bernoulli process with rate p, we have Pr(A(n) = r) =

(n
r)pr(1 − p)n−r. Next, to complete Equation (2), we need to derive Pr(τ1(r)(n) ≤ n − rD, τ2(r)(n) ≤

n − (r − 1)D, . . . , τr(r)(n) ≤ n − D|A(n) = r). For 1 ≤ n1 < n2 < · · · < nr ≤ n, it is not difficult
to have

Pr
(

τ1(r)(n) = n1, τ2(r)(n) = n2, · · · , τr(r)(n) = nr|A(n) = r
)

(3)

=
Pr(τ1(r)(n) = n1, τ2(r)(n) = n2, · · · , τr(r)(n) = nr, A(n) = r)

Pr(A(n) = r)
=

pr(1 − p)n−r

(n
r)pr(1 − p)n−r =

1
(n

r)
.
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Therefore, we have

Pr
(

τ1(r)(n) ≤ n − rD, τ2(r)(n) ≤ n − (r − 1)D, . . . , τr(r)(n) ≤ n − D|A(n) = r
)

(4)

=
n−rD

∑
n1=1

n−(r−1)D

∑
n2=n1+1

· · ·
n−D

∑
nr=nr−1+1

Pr
(

τ1(r)(n) = n1, τ2(r)(n) = n2, · · · , τr(r)(n) = nr|A(n) = r
)

=
n−rD

∑
n1=1

n−(r−1)D

∑
n2=n1+1

· · ·
n−D

∑
nr=nr−1+1

1
(n

r)
.

Using Equation (4) in Equation (2), we obtain

Q(j)
0 (n) =

� n
D �−j

∑
r=0

[
n−rD

∑
n1=1

n−(r−1)D

∑
n2=n1+1

· · ·
n−D

∑
nr=nr−1+1

1
(n

r)

](
n
r

)
pr(1 − p)n−r. (5)

Now, to obtain Equation (1), it is sufficient to prove that

n−rD

∑
n1=1

n−(r−1)D

∑
n2=n1+1

· · ·
n−D

∑
nr=nr−1+1

1
(n

r)
= 1 − r

n
D. (6)

We use mathematical induction for the proof of Equation (6). For r = 1, we trivially have
∑n−D

n1=1
1
(n

1)
= 1 − 1

n D. We now assume that Equation (6) holds for r = l. Then, for r = l + 1, we have

n−(l+1)D

∑
n1=1

n−lD

∑
n2=n1+1

· · ·
n−D

∑
nl+1=nl+1

1
( n

l+1)
(7)

=
n−(l+1)D

∑
n1=1

[
n−n1−lD

∑
i1=1

· · ·
n−n1D

∑
il=il−1+1

1
(n−n1

l )

]
(n−n1

l )

( n
l+1)

=
n−(l+1)D

∑
n1=1

[
1 − lD

n − n1

]
(n−n1

l )

( n
l+1)

,

where we use ik = nk+1 − n1 for k ≥ 1.
We now have

n−(l+1)D

∑
n1=1

[
1 − lD

n − n1

]
(n−n1

l )

( n
l+1)

=
n−(l+1)D

∑
n1=1

n − n1 − lD
n − n1

· (n − n1)! · (n − l − 1)!
n! · (n − n1 − l)!

· (l + 1) (8)

=
n − 1 − lD

n − 1
· (n − 1)! · (n − l − 1)!

n! · (n − 1 − l)!
· (l + 1) +

n − 2 − lD
n − 2

· (n − 2)! · (n − l − 1)!
n! · (n − 2 − l)!

· (l + 1)

+ · · ·+ (l + 1)D − lD
(l + 1)D

· ((l + 1)D)! · (n − l − 1)!
n! · ((l + 1)D − l)!

· (l + 1)

=
n−1

∑
m=(l+1)D

m − lD
m

· m! · (n − l − 1)!
n! · (m − l)!

· (l + 1)

=

(
1 − (l + 1)D

n

)
· (n − l − 1)!

(n − 1)!
· l + 1

n − (l + 1)D

n−1

∑
m=(l+1)D

(m − lD) · (m − 1)!
(m − l)!

.

73



Mathematics 2019, 7, 717

In Equation (8), we have

n−1

∑
m=(l+1)D

(m − lD) · (m − 1)!
(m − l)!

(9)

=
n−1

∑
m=0

[
m!

(m − l)!
− lD

(m − 1)!
(m − l)!

]
−

(l+1)D−1

∑
m=0

[
m!

(m − l)!
− lD

(m − 1)!
(m − l)!

]

= l!

[
·

n−1

∑
m=0

(
m
l

)
− D ·

n−1

∑
m=0

(
m − 1
l − 1

)
−

(l+1)D−1

∑
m=0

(
m
l

)
+ D ·

(l+1)D−1

∑
m=0

(
m − 1
l − 1

)]

= l!
[(

n
l + 1

)
− D ·

(
n − 1

l

)
−
(
(l + 1)D

l + 1

)
+ D ·

(
(l + 1)D − 1

l

)]
= l! ·

(
n

l + 1

)
− l! · D ·

(
n − 1

l

)
=

(n − 1)!
(n − l − 1)!

· n − (l + 1)D
l + 1

,

where we use ∑n
j=0 (

j
m) = (n+1

m+1) for the third equality.
Using Equations (8) and (9) in Equation (7), we obtain

n−(l+1)D

∑
n1=1

n−lD

∑
n2=n1+1

· · ·
n−D

∑
nl+1=nl+1

1
( n

l+1)
= 1 − l + 1

n
D.

Therefore, we prove that Equation (6) holds for r = 1, 2, 3, · · · .

Next, we derive Q(j)
k (n), (k ≥ 1). We have the following theorem.

Theorem 2. We have

Q(j)
k (n) =

(
n

k + � n
D � − j

)
pk+� n

D �−j(1 − p)n−(k+� n
D �−j) (10)

+
� n

D �−j−1

∑
r=0

� n
D �−j−1−r

∑
m=0

(
n − (r + 1)D

m

)
pm(1 − p)n−(r+1)D−m

×
(
(k + r + 1)− p − p[(r + 1)D]

(1 − p)(k + r + 1)

)(
1 − m

n
D − r − 1

)(
(r + 1)D

k + r

)
pk+r(1 − p)(r+1)D−(k+r).

Proof. Let us define Alast and τlast as the number of arrivals during the last busy period and the time
slot at which the last busy period starts, respectively. We then have

Q(j)
k (n) = Pr[N(n) = k|N0 = j] (11)

= Pr
[

N(n) = k, 0 ≤ τlast ≤ n −
(
� n

D
� − j

)
D|N0 = j

]
+

� n
D �−j−1

∑
r=0

Pr[N(n) = k, n − (r + 1)D < τlast ≤ n − rD|N0 = j].

To complete Equation (11), we first derive the first term in the second equality. We again note
that the system starts with j customers, and the service time is a constant D. Therefore, if the last
busy period starts before the n − (� n

D � − j
)

D-th time slot, � n
D � − j customers among newly arrived
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customers should be served during the last busy period. Then, to become N(n) = k under this
situation, k + � n

D � − j customers should arrive in the system, and we have

Pr
[

N(n) = k, 0 ≤ τlast ≤ n −
(
� n

D
� − j

)
D|N0 = j

]
(12)

= Pr
[

N(n) = k, 0 ≤ τlast ≤ n −
(
� n

D
� − j

)
D, Alast = k + � n

D
� − j|N0 = j

]
.

Next, we have

Pr
[

N(n) = k, 0 ≤ τlast ≤ n −
(
� n

D
� − j

)
D, Alast = k + � n

D
� − j|N0 = j

]
(13)

= Pr
[

N(n) = k, 0 ≤ τlast ≤ n, Alast = k + � n
D
� − j|N0 = j

]
− Pr

[
N(n) = k, n −

(
� n

D
� − j

)
D < τlast ≤ n, Alast = k + � n

D
� − j|N0 = j

]
= Pr

[
k ≤ N(n) ≤ k + � n

D
� − j, 0 ≤ τlast ≤ n, Alast = k + � n

D
� − j|N0 = j

]
− Pr

[
k + 1 ≤ N(n) ≤ k + � n

D
� − j, 0 ≤ τlast ≤ n, Alast = k + � n

D
� − j|N0 = j

]
− Pr

[
k ≤ N(n) ≤ k + � n

D
� − j, n −

(
� n

D
� − j

)
D < τlast ≤ n, Alast = k + � n

D
� − j|N0 = j

]
+ Pr

[
k + 1 ≤ N(n) ≤ k + � n

D
� − j, n −

(
� n

D
� − j

)
D < τlast ≤ n, Alast = k + � n

D
� − j|N0 = j

]
= Pr

[
k ≤ N(n) ≤ k + � n

D
� − j, 0 ≤ τlast ≤ n, Alast = k + � n

D
� − j|N0 = j

]
− Pr

[
k ≤ N(n) ≤ k + � n

D
� − j, n −

(
� n

D
� − j

)
D < τlast ≤ n, Alast = k + � n

D
� − j|N0 = j

]
− Pr

[
k + 1 ≤ N(n) ≤ k + � n

D
� − j, 0 ≤ τlast ≤ n −

(
� n

D
� − j

)
D, Alast = k + � n

D
� − j|N0 = j

]
.

In Equation (13), we have

Pr
[
k + 1 ≤ N(n) ≤ k + � n

D � − j, 0 ≤ τlast ≤ n − (� n
D � − j

)
D, Alast = k + � n

D � − j|N0 = j
]
= 0 (14)

because � n
D � − j customers among the newly arrived customers should be served during the last busy

period, if the busy period starts in the time interval
[
0, n − (� n

D � − j
)

D
]
.

Furthermore, we note that

Pr[N(n) = k, n −
(
� n

D
� − j

)
D < τlast ≤ n, Alast = k + � n

D
� − j|N0 = j] = 0. (15)

We then have

Pr
[

N(n) = k, 0 ≤ τlast ≤ n −
(
� n

D
� − j

)
D, Alast = k + � n

D
� − j|N0 = j

]
(16)

= Pr
[
k ≤ N(n) ≤ k + � n

D
� − j, 0 ≤ τlast ≤ n, Alast = k + � n

D
� − j|N0 = j

]
− Pr

[
k + 1 ≤ N(n) ≤ k + � n

D
� − j, n −

(
� n

D
� − j

)
D < τlast ≤ n, Alast = k + � n

D
� − j|N0 = j

]
=

(
n

k + � n
D � − j

)
· pk+� n

D �−j · (1 − p)n−(k+� n
D �−j)

− Q(j)
0

[
n −

(
� n

D
� − j

)
D
]
·
(
(� n

D � − j)D
k + � n

D � − j

)
· pk+� n

D �−j · (1 − p)(�
n
D �−j)D−(k+� n

D �−j).
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Next, we need to derive Pr[N(n) = k, n − (r + 1)D < τlast ≤ n − rD|N0 = j], (0 ≤ r ≤
� n

D � − j − 1) in Equation (11). When r = 0, it is not difficult to have

Pr[N(n) = k, n − D < τlast ≤ n|N0 = j] = Q(j)
0 (n − D)

[(
D
k

)
· pk · (1 − p)D−k

]
(17)

because no service can be completed during the time interval (n − D, n].
In Equation (17), we assume that (D

k ) = 0, if k > D. Next, we consider the case with 1 ≤ r ≤
� n

D � − j − 1. Applying a similar approach used in Equations (12)–(16), we have

Pr[N(n) = k, n − (r + 1)D < τlast ≤ n − rD|N0 = j] (18)

= Pr
[

N(n) = k, n − (r + 1)D < τlast ≤ n − rD, Alast = k + r|N0 = j
]

= Pr
[
k ≤ N(n) ≤ k + r, n − (r + 1)D < τlast ≤ n, Alast = k + r|N0 = j

]
− Pr

[
k + 1 ≤ N(n) ≤ k + r, n − rD < τlast ≤ n, Alast = k + r|N0 = j

]
= Q(j)

0 (n − (r + 1)D) ·
(
(r + 1)D

k + r

)
· pk+r · (1 − p)(r+1)D−(k+r)

− Q(j)
0 (n − rD) ·

(
rD

k + r

)
· pk+r · (1 − p)rD−(k+r),

(
1 ≤ r ≤ � n

D
� − j − 1

)
.

Using Equations (12) and (16)–(18) in Equation (11), we can obtain the simplified form as

Q(j)
k (n) =

(
n

k + � n
D � − j

)
· pk+� n

D �−j · (1 − p)n−(k+� n
D �−j) (19)

+
� n

D �−j−1

∑
r=0

Q(j)
0 (n − (r + 1)D) ·

(
(r + 1)D

k + r

)
· pk+r · (1 − p)(r+1)D−(k+r)

−
� n

D �−j−1

∑
r=0

Q(j)
0 (n − (r + 1)D) ·

(
(r + 1)D
k + r + 1

)
· pk+r+1 · (1 − p)(r+1)D−(k+r+1).

From Equation (1), we have

Q(j)
0 [(n − (r + 1)D)] =

� n
D �−(r+1)−j

∑
m=0

(
n − (r + 1)D

m

)
pm(1 − p)n−(r+1)D−m

(
1 − mD

n − (r + 1)D

)
. (20)

Then, using the above equation in Equation (19), we have

Q(j)
k (n) (21)

=

(
n

k + � n
D � − j

)
pk+� n

D �−j(1 − p)n−(k+� n
D �−j)

+
� n

D �−j−1

∑
r=0

� n
D �−j−1−r

∑
m=0

(
n − (r + 1)D

m

)(
(r + 1)D

k + r

)(
1 − m

n
D − r − 1

)
pm+k+r(1 − p)n−(m+k+r)

−
� n

D �−j−1

∑
r=0

� n
D �−j−1−r

∑
m=0

(
n − (r + 1)D

m

)(
(r + 1)D
k + r + 1

)(
1 − m

n
D − r − 1

)
pm+k+r+1(1 − p)n−(m+k+r+1).
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We then have the following simplified form:

Q(j)
k (n) =

(
n

k + � n
D � − j

)
pk+� n

D �−j(1 − p)n−(k+� n
D �−j) (22)

+
� n

D �−j−1

∑
r=0

� n
D �−j−1−r

∑
m=0

(
n − (r + 1)D

m

)
pm(1 − p)n−(r+1)D−m

×
(
(r + 1)D

k + r

)
pk+r(1 − p)(r+1)D−(k+r)

(
1 − m

n
D − r − 1

)

−
� n

D �−j−1

∑
r=0

� n
D �−j−1−r

∑
m=0

(
n − (r + 1)D

m

)
pm(1 − p)n−(r+1)D−m

×
(
(r + 1)D

k + r

)
pk+r(1 − p)(r+1)D−(k+r)

(
1 − m

n
D − r − 1

)
p[(r + 1)D − (k + r)]
(1 − p)(k + r + 1)

.

Using algebra, we can now obtain Equation (10) to complete the proof.

3. Numerical Examples

In this section, we show the numerical results. We use Equations (1) and (10) to compute the
transient probabilities Q(2)

0 (n), Q(2)
1 (n), Q(2)

2 (n) and Q(2)
3 (n). Figure 1 shows the computation results

of the probabilities.

(a) p = 1/6, D = 3, (ρ = pD = 1/2) (b) p = 4/6, D = 3, (ρ = pD = 2)

Figure 1. Probabilities Q(2)
0 (n), Q(2)

1 (n), Q(2)
2 (n) and Q(2)

3 (n).

Figure 1a shows the transient probabilities under the condition that p = 1/6 and D = 3 (i.e.,
ρ = 0.5). Let Pn be the stationary probability of the Geo/D/1 queue. If ρ < 1, we can use the result in
Gravey et al. [19] to compute the stationary probability and obtain P0 = 0.5, P1 = 0.364, P2 = 0.11059,
and P3 = 0.02107. Then, in Figure 1a, we can confirm that each transient queue-length probability
converges to the stationary value. Figure 1b shows the transient probabilities under the condition that
p = 4/6 and D = 3 (i.e., ρ = 2). When ρ > 1, all the probabilities should be 0 as n increases; we can
confirm this in Figure 1b.
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Abstract: We consider a queuing network with single-server nodes and heterogeneous customers.
The number of customers, which can obtain service simultaneously, is restricted. Customers that
cannot be admitted to the network upon arrival make repeated attempts to obtain service. The service
time at the nodes is exponentially distributed. After service completion at a node, the serviced
customer can transit to another node or leave the network forever. The main features of the model
are the mutual dependence of processes of customer arrivals and retrials and the impatience and
non-persistence of customers. Dynamics of the network are described by a multidimensional Markov
chain with infinite state space, state inhomogeneous behavior and special structure of the infinitesimal
generator. The explicit form of the generator is derived. An effective algorithm for computing the
stationary distribution of this chain is recommended. The expressions for computation of the key
performance measures of the network are given. Numerical results illustrating the importance of the
account of the mentioned features of the model are presented. The model can be useful for capacity
planning, performance evaluation and optimization of various wireless telecommunication networks,
transportation and manufacturing systems.

Keywords: queuing network; retrials; state-dependent marked Markovian arrival process;
wireless telecommunication networks

1. Introduction

The theory of queuing networks has a wide range of applications for modeling various real-world
systems including telecommunication and logistic networks, health care, public transportation,
production and manufacturing systems, see, for example, References [1–4] and so forth.

The queuing networks with homogeneous customers are usually classified (see, e.g., Reference [5])
into three categories: open networks where customers arrive from the outside and depart from the
network after receiving service; closed networks where the number of customers circulating in the
network is constant; and semi-open networks where customers arrive from the outside and depart
from the network but only the finite number of customers can stay inside the network at any time.

In our paper, we deal with a queuing network which belongs to a relatively new category
of semi-open queuing networks that recently were applied for the analysis of various real-world
systems. For the review of the state of the art and the references see, for example, References [5–11].

Salient features of the considered in our paper model are the following:

Mathematics 2019, 7, 715; doi:10.3390/math7080715 www.mdpi.com/journal/mathematics79
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• Account of retrial phenomenon. We assume that at most N customers can receive service
in the network simultaneously. If a primary customer (customer arriving from the outside)
arrives when N customers receive service, the customer joins the so-called orbit having an infinite
capacity from which he/she retries to obtain access to the network after a random amount of time.
A customer from the orbit can enter the network if the number of customers receiving service at
the retrial moment is less than N. The theory of retrial queues is essentially less developed than
the theory of queues with losses or buffers due to the higher complexity of the processes defining
the behavior of the system, for references see, for example, References [12,13]. To the best of our
knowledge, the results devoted to the exact analysis of the retrial queuing networks, which are
more general than the tandem queues, are absent in the existing literature except the recent paper,
Reference [14], which is briefly cited below. Here and thereafter, we only occasionally cite the
papers where the corresponding networks are analyzed by means of approximations rather than
exact solutions, see, for example, Reference [15].

• More complex customers arrival process. We consider a more general and realistic arrival
process than those known in the literature. The overwhelming majority of the existing queuing
networks consider the input as a stationary Poisson process. However, in most real-world
systems, the input rate is time dependent. It is already well-recognized in the literature that
the flows in modern telecommunication systems and networks are bursty and inadequately
modelled by a stationary Poisson process. Instead, the so-called Markovian arrival process (MAP),
see, for example, References [16,17], is a much better choice for description of real-world arrival
processes which exhibit variation of the instantaneous arrival rate and correlation of inter-arrival
times. Surveys on queuing systems with the MAP can be found in References [16,18]. Concerning
the queuing networks, there are only a few papers on this topic, see, for example, Reference [19].
This paper deals with an approximation of the queuing networks with the MAP and phase-type
distribution of service times. Exact results are known only for a specific kind of queuing networks,
namely, the tandem queues, with the MAP, see, for example, in References [20–23]. Note that
tandem queues considered in References [22,23] take into account retrials of customers. In this
paper, we consider more general than the MAP-marked Markovian arrival process (MMAP),
see, for example, Reference [24]. This flow is heterogeneous and has several types of customers.
Type defines the node of the network at which the customer arrives.

• More complex process of customers retrials and dependence of arrivals of primary customers

and retrials. Traditionally, it is assumed in the literature that the processes of customers
arrivals and retrials are independent. More, it is usually assumed (except the special case when
it is suggested that only one customer from the orbit can make retrials) that, under a fixed
number of customers in orbit, the inter-retrial times have the exponential distribution with
a fixed parameter. We can refer only to Reference [25] where the BMAP/SM/1 retrial queue
is studied under the assumption that the intensities of the individual retrials are modulated by
a continuous-time Markov chain. This Markov chain is independent of the underlying Markov
chain of the BMAP arrival process of primary customers. Such independence is not very realistic
in real-world systems because when the arrival rate of primary customers fluctuates depending
on the time of a day or a night or due to some external factors, it is very likely that the rate
of retrials also depends on the time and the same external factors. In our paper, we consider
the model with dependent processes of the arrival of primary customers and customers from
the orbit.

• Account of possible impatience of customers during staying in the orbit and waiting times

in the nodes as well as non-persistence of customers staying in the orbit. Impatience
of customers, that is, a possibility of abandonment during the waiting time after some period
of waiting and non-persistence of customers staying in the orbit, that is, a possibility to renege
from the orbit after any unsuccessful retrial, are typical for many real-world systems and networks.
Therefore, they should be taken into account during performance evaluation and capacity planning.
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Semi-open queuing networks with MAP arrival process are analysed in References [7,10].
However, the retrial phenomenon is not taken into account in those papers. The model considered in
Reference [7] is simpler than the one studied in Reference [10] because it is assumed in Reference [7]
that the arrival flow is described by the MMPP (Markov Modulated Poisson Process), which is
a particular case of the MAP considered in Reference [10] and the network has a linear topology,
that is, a type of network topology in which each node is connected one after the other in a sequential
chain. An arbitrary topology is supposed in Reference [10]. Exact algorithmic results are obtained in
Reference [7] only for the case of a tandem consisting of two stations. In the case of a larger number of
stations, approximate results are obtained. The analysis presented in Reference [10] is exact algorithmic
for an arbitrary finite number of nodes, network topology and customer routing. In the recent paper,
Reference [14], the model from Reference [10] is generalized to the case when there is no input buffer
in the network and a customer arriving to the network when N customers receive service moves to the
orbit and makes the retrials to obtain service. A classical retrial strategy is applied. This strategy
assumes that the total retrial rate is proportional to the number of customers staying in the orbit.

In the model considered in this paper, we significantly extend the results of References [10,14]
to the networks with state dependent processes of arrival of primary customers and retrials, account
of impatience and non-persistence of customers in the orbit and customers impatience in the buffers
of the nodes of the network. Considered mutual dependence of the flows of primary customers and
retrials is typical for many real-world systems but is not studied in the existing literature even for
simple queuing systems, not to mention queuing networks.

Examples of potential applications of the obtained results to the analysis of real-world systems
can be found, for example, in References [7,10].

The rest of the paper has the following structure. The mathematical model of the queuing network
is completely described in Section 2. The multidimensional stochastic process describing the dynamics
of the orbit and nodes of the network is presented in Section 3. This process is a Markov chain with
one denumerable and several finite space components. It belongs to the class of level-dependent
Quasi-Birth-and-Death processes. The generator of this Markov chain is presented. The problem
of computing the stationary distribution of the chain is discussed in this section. In Section 4,
expressions for the main performance indicators of the network are presented. Illustrative numerical
examples giving insights into behavior of the network are provided in Section 5. Section 6 contains
some concluding remarks.

2. Mathematical Model

A semi-open queuing network consists of L nodes which are single-server queuing systems with
finite buffers. The structure of the network is presented on Figure 1. We assume that the capacity of the
buffer at the lth node is equal to Nl − 1, 1 ≤ Nl ≤ ∞. The capacity of the network, that is, the maximum
number of customers, which can be processed in the network at the same time, is N, 1 ≤ N < ∞.
We assume that N ≤ min

l∈{1,2,...,L}
Nl . This guarantees that customers admitted to the network are not lost

during processing in the network due to a buffer overflow.
The admission of arriving (primary) customers to the network is implemented as follows.

If the capacity of the network is not exhausted on customer’s arrival, that is, the number of customers
in the network is less than N, the customer enters the service. Otherwise, the customer moves
to the orbit and retries for service later. The capacity of the orbit is assumed to be infinite. The process
of generation of primary customers and retrials of customers from the orbit is defined by the underlying
process ψt, t ≥ 0, with a finite state space {0, 1, . . . , W}. The intensities of transitions of the process ψt

depend on the current number it of customers in the orbit, it ≥ 0.
When it = 0, that is, the orbit is empty, the intensities of transitions are given by the set of square

matrices Dl , l = 1, L, of size W̄ = W + 1 and by the non-diagonal entries of the matrix D0. Here and
thereafter, the notation l = 1, L means that the parameter l admits the values from the set {1, 2, . . . , L}.
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The diagonal entries of the matrix D0 are negative such as the relation
L
∑

l=0
Dle = 0T holds true where

e = (1, 1, . . . , 1)T , 0 = (0, 0, . . . , 0) and T is the vector transpose symbol. Transitions, the intensities
of which are given by the non-diagonal entries of the matrix D0, do not cause the generation of primary
customers. Transitions, the intensities of which are given by the entries of the matrix Dl , cause the
generation of a type-l customer, l = 1, L. If the capacity of the network is not exhausted at the moment
of type-l customer generation, this customer enters the lth node of the network. If the server of this
node is idle, the customer starts service. Otherwise, the customer enters the buffer of this node.
By comparing the presented description of the arrival process when the orbit is idle with the definition
given in Reference [24] we can conclude that this process coincides with the MMAP.
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Figure 1. Retrial queuing network under study.

Under any fixed number i, i > 0, of customers in the orbit, the transitions of the process ψt

can cause either the arrival of a primary customer or a retrial from the orbit. These transitions are
given by a set of the same matrices Dl , l = 0, L, and the matrix D(i). As above, the intensities
of transitions, which are given by the entries of the matrix Dl , cause the generation of a primary
type-l, l = 1, L, customer. Transitions, the intensities of which are given by the entries of the matrix
D(i), cause the generation of a repeated attempt from the orbit. The non-diagonal entries of the
matrix D(i)

0 = D0 − diag{D(i)e} define the intensities of transitions which do not cause the generation
of primary customers or customers from the orbit. Here, diag{b} denotes the diagonal matrix

with the diagonal entries given by the entries of the vector b. The matrix
L
∑

l=1
Dl + D(i) + D(i)

0

is the generator. Let us denote by θ(i) the left stochastic eigenvector of this matrix. Conditional
on the fact that i customers are staying in the orbit, the arrival rate of type l primary customers
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is equal to λ
(i)
l = θ(i)Dle, l = 1, L. The conditional arrival rate of customers from the orbit is equal

to λ(i) = θ(i)D(i)e, i > 0.
We assume that customers staying in the orbit are impatient and non-persistent. Impatience

means that after a time interval, whose duration is exponentially distributed with parameter γ, γ > 0,
the customer from the orbit leaves the network without service and is lost. The non-persistence means
that after unsuccessful retrial attempts, the customer leaves the network forever with probability
h, 0 ≤ h ≤ 1, and returns to the orbit with the complementary probability. Analogously, the customers
waiting in the buffers of the network are impatient. After the time interval, whose duration
is exponentially distributed with the parameter βl , a customer waiting in the buffer of the l-th node
leaves the node and departs from the network without service.

A retrial customer, which is admitted for service, moves to the l-th node with probability pl ,

l = 1, L,
L
∑

l=1
pl = 1.

We assume that the service time at the node l has an exponential distribution with parameter
μl , 0 < μl < ∞, l = 1, L. When this time expires, the serviced customer can move to another node
or leave the network forever. The probability of the transition of the serviced customer from the l-th
node to the l′-th node is defined as ql,l′ , l′ = 1, L, l′ �= l. The probability of leaving the network after

service in the l-th node is ql,0, ql,0 = 1 − L
∑

l′=1,l′ �=l
ql,l′ .

3. Process of System States

It is easy to see that the dynamics of the considered network is described by the continuous-time
Markov chain

ξt = {it, nt, ψt, n(1)
t , . . . , n(L)

t }, t ≥ 0,

where, at the moment t, t ≥ 0,

• it is the number of customers in the orbit, it ≥ 0;
• nt is the total number of customers in the network, nt = 0, N;
• ψt is the state of the underlying process of the arrival process of primary and retrial customers,

ψt = 0, W;

• n(l)
t is the number of customers in the l-th node, l = 1, L, n(l)

t = 0, nt,
L
∑

l=1
n(l)

t = nt.

To compute the stationary distribution of the states of the Markov chain ξt, t ≥ 0, we need to
derive the generator of this chain. To this end, we use the matrix-analytic methods. Therefore,
to simplify derivation of the generator it is useful to deal not with separate states of the chain
but with whole groups of the states having the same value of the two first components of the Markov
chain. We call such a group having the value (i, n) of these components a macro-state (i, n). There are
many possibilities to enumerate the states of the Markov chain that belong to a fixed macro-state.
Here, we assume that the states are numerated in the reverse lexicographic order of the components
n(1)

t , . . . , n(L)
t and the direct lexicographic order of the component ψt. We call the set of macro-states

{(i, 0), (i, 1), . . . , (i, N)} as the level i, i ≥ 0.
To simplify derivations, in what follows, we use the following notation:

• I is the identity matrix and O is a zero matrix of an appropriate dimension;
• ⊗ and ⊕ are the symbols of Kronecker product and sum of matrices, respectively, see

Reference [26];
• diag{. . . } is the diagonal matrix with the diagonal entries listed or defined by the entries

of the vector in the brackets;
• diag+{. . . } is the updiagonal matrix with the updiagonal entries listed in the brackets;
• diag−{. . . } is the subdiagonal matrix with the subdiagonal entries listed in the brackets;
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• β is the column vector defined as β = (β1, . . . , βL)
T ;

• p is the row vector defined as p = (p1, . . . , pL);
• al is the row vector of size L that has all zero components except the lth component which

is equal to 1;
• q is the column vector defined as q = (q1, q2, . . . , qL)

T = (q1,0μ1, q2,0μ2, . . . , qL,0μL)
T ;

• Tn = (n+L−1
L−1 ) = (n+L−1)!

n!(L−1)! is the number of states of the process (n(1)
t , . . . , n(L)

t ) when
L
∑

l=1
n(l)

t = n, n = 0, N.

Because we will operate with macro-states, we need to analyse the vector process
nt = {n(1)

t , . . . , n(L)
t }, t ≥ 0, that defines the dynamics of the number of customers in the nodes

of the network. The following events can change this number:

(1) An admission to the network of a customer from the orbit. Let us denote as Pn(p), n = 0, N − 1,
the matrix consisting of probabilities of the transitions of the process nt during the epoch when
n, n < N, customers are obtaining service in the network and a customer from the orbit makes
a retrial attempt;

(2) An admission to the network of an arriving type-l customer. Let us denote as Pn(al), n = 0, N − 1,
the matrix consisting of the transitions probabilities of the process nt during the epoch when
n, n < N, customers are obtaining service in the network and a type-l customer arrives
to the system;

(3) A customer finishes the service in one of the nodes and transits to some another one. Let us denote
as Bn, n = 1, N, the matrix which components define the intensities of the process nt transitions
in this case, conditioned on the fact that n customers are in the network;

(4) A customer finishes the service in some node and leaves the network. Let us denote
as Sn(q), n = 0, N − 1, the matrix which components define the intensities of the process nt

transitions in this case, conditioned on the fact that there are N − n customers in the network;
(5) A customer leaves some node due to impatience. The matrix Zn(β), n = 1, N, defines the

intensities of the process nt transitions in the considered case when there are n customers
in the network.

It is worth noting that the matrices Pn, Sn(q), n = 0, N − 1, and Bn, n = 1, N, can be computed
based on the use of the corresponding results from Reference [10]. Derivation of matrices Zn(β) is
novel because the impatience of the customers staying in the buffers of the network nodes was not
considered in the related literature previously. This derivation can be performed as follows.

Step (1) We compute the matrices Z(k)
n (β) using the recursive formulas:

Z(0)
n (β) = (n − 1)βL, n = 1, N,

Z(k)
n (β) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(n − 1)βL−k I O · · · O
Z(k−1)

1 (β) (n − 2)βL−k I · · · O
O Z(k−1)

2 (β) · · · O
...

...
. . .

...
O O · · · 0βL−k I
O O · · · Z(k−1)

n (β)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, k = 1, L − 1, n = 1, N.

Step (2) Compute the matrices Zn(β) as Zn(β) = Z(L−1)
n (β), n = 0, N − 1.

Also, let us introduce the matrix Γn. It is the diagonal matrix the diagonal entries of which define
the intensities of exit of the process nt from its states when n customers obtain service in the network.
The matrices Γn are defined as follows:

Γ0 = 0, Γn = −diag{Bne + SN−n(q)e + Zn(β)e}, n = 1, N.
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We denote as G the infinitesimal generator of the Markov chain ξt, t ≥ 0. The matrix G has an infinite
size. It consists of the blocks Gi,j, i, j ≥ 0, defining transition intensities from the level i to the level j.

In turn, each matrix Gi,j consists of sub-blocks G
(n,n′)
i,j of transition intensities from the macro-state (i, n)

to the macro-state (j, n′). The diagonal entries of the blocks G
(n,n)
i,i are negative and are equal, up to the

sign, to the rates of the exit of the Markov chain ξt from the corresponding states.

Lemma 1. The infinitesimal generator G of the Markov chain ξt, t ≥ 0, has a block-tridiagonal structure:

G = diag{Gi,i, i ≥ 0}+ diag+{Gi,i+1, i ≥ 0}+ diag−{Gi,i−1, i ≥ 1}. (1)

The non-zero blocks Gi,j, i, j ≥ 0, have the following form:

Gi,i = diag{G
(n,n)
i,i , n = 0, N}+ diag+{G

(n,n+1)
i,i , n = 0, N − 1}+ diag−{G

(n,n−1)
i,i , n = 1, N}, i ≥ 0, (2)

Gi,i−1 = diag{G
(n,n)
i,i−1 , n = 0, N}+ diag+{G

(n,n+1)
i,i−1 , n = 0, N − 1}, i ≥ 1, (3)

Gi,i+1 = diag{O, . . . , O,
L

∑
k=1

Dk ⊗ ITN}, i ≥ 0, (4)

where
G

(0,0)
i,i = D(i)

0 − iγIW̄ , (5)

G
(n,n)
i,i = (D(i)

0 − iγIW̄)⊕ (Bn + Γn), n = 1, N − 1, (6)

G
(N,N)
i,i = (D(i)

0 + (1 − h)D(i) − iγIW̄)⊕ (BN + ΓN), (7)

G
(n,n+1)
i,i =

L

∑
k=1

Dk ⊗ Pn(ak), n = 0, N − 1, (8)

G
(n,n−1)
i,i = IW̄ ⊗ (SN−n(q) + Zn(β)), n = 1, N, (9)

G
(n,n+1)
i,i−1 = D(i) ⊗ Pn(p), n = 0, N − 1, (10)

G
(n,n)
i,i−1 = iγIW̄Tn

, n = 0, N − 1, (11)

G
(N,N)
i,i−1 = iγIW̄TN

+ hD(i) ⊗ ITN . (12)

A brief proof of the Lemma is as follows. Block tridiagonal structure (1) of the generator G

is explained by the fact that the probability of two or more customers arrival or departure from the orbit
during the interval of the infinitesimal length is negligible. The matrices Gi,i, Gi,i−1, Gi,i+1 have block
structures (2)–(4) were the blocks define the intensities of transitions that lead to the corresponding
change of the number of customers presenting in the network.

The most simple form (4) has the matrix Gi,i+1 defining the intensities of customers arriving
at the orbit. Because a customer joins the orbit only when the capacity of the server is exhausted
(the number of customers in the network is equal to N), only one block of the matrix Gi,i+1, namely,

G
(N,N)
i,i+1 , is not equal to zero. This matrix block corresponds to the arrival of a primary customer of any

type when the number of customers in the network is equal to N. This customer moves to the orbit
and the number of customers in the network does not change.

The matrix Gi,i−1 defining the intensities of customers departure from the orbit is the block
two-diagonal matrix of form (3). It has the non-zero diagonal blocks corresponding to the case when
the customer departing from the orbit does not enter the network but is lost. Such a departure occurs
due to the impatience of the customers in the orbit when the number of customers in the network
is equal to n, n < N, or the impatience and non-persistence of the customers staying in the orbit when
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this number is equal to N. The corresponding intensities of the departure are given by the matrices
of form (11) and (12), respectively. The matrix Gi,i−1 has also the up-diagonal blocks corresponding
to the case when a customer from the orbit makes a retrial when the number of customers in the network
is equal to n, n < N, and enters the network. After entering the network, this customer joins some
of the network nodes. The intensities of occurrence of these events are given by the matrices of form (10).

The matrix Gi,i has block tridiagonal structure (2). The diagonal entries of its diagonal blocks

G
(n,n)
i,i are negative. Their values with the opposite sign define the rate of the exit of the Markov

chain ξt from the corresponding states. These diagonal entries are the corresponding entries
of the matrices of form (5), if n = 0, (6), if n = 1, N − 1, and (7) if n = N. The non-diagonal
entries of the diagonal blocks G

(n,n)
i,i are non-negative and define the intensities of the transitions

of the Markov chain ξt that do not cause the change of the number of customers neither in the orbit
and in the network. These entries are given by the corresponding entries of the matrices of form (5),
if n = 0, (6), if n = 1, N − 1, and (7) if n = N. The up-diagonal blocks G

(n,n+1)
i,i correspond to the arrival

of a primary customer of any type when the number of the customers in the network is less than
N and its entering the corresponding node of the network. These blocks are defined by formula (8).
The sub-diagonal blocks G

(n,n−1)
i,i correspond to a customer departure from the network due to the

service completion or due to impatience and have the form (9). Lemma is proven.
It can be shown that the Markov chain ξt, t ≥ 0, belongs to the class of Asymptotically

Quasi-Toeplitz Markov chains, see Reference [27]. Using the results from Reference [27], it is easily
verified that because the customers in orbit are impatient, that is, γ > 0, the Markov chain ξt, t ≥ 0,
is ergodic. Then, the following limits (stationary probabilities) exist for any set of the network
parameters:

π(i, n, ψ, n(1), . . . , n(L)) = lim
t→∞

P{it = i, nt = n, ψt = ψ, n(1)
t = n(1), . . . , n(L)

t = n(L)},

i ≥ 0, n = 0, N, ψ = 0, W, n(l) = 0, n, l = 1, L,
L

∑
l=1

n(l) = n.

Let us denote by π(i, n) the row vectors of the stationary probabilities that belong to the macro-state
(i, n) and by πi the row vectors of the stationary probabilities that belong to the level i, i ≥ 0.

It is well known that the probability vectors πi, i ≥ 0, satisfy the following system of linear
algebraic equations:

(π0, π1, . . . )G = 0, (π0, π1, . . . )e = 1. (13)

Comparing this system with the corresponding system for the probability vectors πi, i ≥ 0,
for the analogous queuing network with the buffer considered in Reference [10], we see the following.
The size of the vectors πi (and the size of the corresponding square blocks of the generator) in
Reference [10] is equal to W̄Ti if i = 0, N, and W̄TN if i > N. The size of all vectors πi, i ≥ 0, in the

considered in our paper model of the queuing network with retrials is equal to W̄
N
∑

n=0
Tn. Therefore,

the blocks of generator (1) are much larger than the blocks of the generator in Reference [10]. Thus,
the algorithm from Reference [28], which was used for numerical work in Reference [10], is not
very effective for solving system (13). To solve this system, we recommend to use a more effective
numerically stable algorithm recently developed in Reference [29].

4. Performance Measures

The average number Norbit of customers in the orbit is computed by

Norbit =
∞

∑
i=1

iπie.

86



Mathematics 2019, 7, 715

The average number Nnetwork of customers in the network at an arbitrary moment is computed by

Nnetwork =
∞

∑
i=0

N

∑
n=1

nπ(i, n)e.

The probability Pimm that an arbitrary customer is admitted to the network immediately upon
arrival is computed by

Pimm =

∞
∑

i=0

N−1
∑

n=0
π(i, n)(D̂ ⊗ ITn)e

λ̂

where the average arrival rate of primary customers λ̂ is computed by

λ̂ =
∞

∑
i=0

N

∑
n=0

π(i, n)(D̂ ⊗ ITn)e

and D̂ =
L
∑

r=1
Dr.

Remark 1. If all the matrices D(i) are the diagonal, that is, the underlying process ψt of arrivals cannot make
the jumps into other states at the moments of retrials, then the average arrival rate of primary customers λ̂

is equal to the arrival rate λ of the MMAP that arrives at time intervals when the orbit is empty. The value
λ is given by λ = θD̂e where the row vector θ is the unique solution of the system θ(D0 + D̂) = 0, θe = 1.
If some of the matrices D(i) are non-diagonal, then generally speaking λ̂ �= λ.

The average intensity λ
(l)
out−serve of flow of customers who leave the network after successful

service from the l-th node is computed by

λ
(l)
out−serve =

∞

∑
i=0

N

∑
n=1

π(i, n)(IW̄ ⊗ SN−n(q
(l)))e, l = 1, L,

where q(l) is a column vector of size L with all zero components except the component (q(l))l = ql .
The average intensity λout−serve of flow of customers who leave the network after successful

service is computed by

λout−serve =
∞

∑
i=0

N

∑
n=1

π(i, n)(IW̄ ⊗ SN−n(q))e.

The average intensity λ
(l)
out−imp of flow of customers who leave the network due to impatience

from the l-th node is computed by

λ
(l)
out−imp =

∞

∑
i=0

N

∑
n=2

π(i, n)(IW̄ ⊗ Zn(β(l)))e, l = 1, L,

where β(l) is a column vector of size L with all zero components except the component (β(l))l = βl .
The average intensity λout−imp of flow of customers who leave the network due to impatience

is computed by

λout−imp =
∞

∑
i=0

N

∑
n=2

π(i, n)(IW̄ ⊗ Zn(β))e.

The probability of an arbitrary customer loss due to impatience from the orbit is computed by

Pimp−orbit
loss = λ̂−1γNorbit.
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The probability of an arbitrary customer loss due to non-persistence from the orbit is computed by

Pnonpersist−orbit
loss = λ̂−1h

∞

∑
i=1

π(i, N)(D(i) ⊗ ITN )e.

The probability of an arbitrary customer loss due to impatience from the network is computed by

Pimp−net
loss = λ̂−1λout−imp.

The probability of an arbitrary customer loss due to impatience from the lth node of the network
is computed by

Pimp−net,l
loss = λ̂−1λ

(l)
out−imp, l = 1, L.

The probability of an arbitrary customer loss is computed by

Ploss = 1 − λout−serve

λ̂
= Pimp−orbit

loss + Pimp−net
loss + Pnonpersist−orbit

loss .

The average intensity μ
(l)
out of output flow of successfully served customers from the l-th node

is computed by

μ
(l)
out =

∞

∑
i=0

N

∑
n=1

π(i, n)(IW̄ ⊗ SN−n(m
(l)))e, l = 1, L,

where m(l) is the column vector of size L with all zero components except the component (m(l))l = μl .
The load of the l-th node ρl can be found as follows:

ρl =
μ
(l)
out

μl(1 − Pimp−net,l
loss )

, l = 1, L.

This characteristic of the node operation is very important because knowledge of its value
is helpful to recognize the so-called bottlenecks in the network and to make certain managerial updates.

5. Numerical Examples

We present the results of three numerical experiments. In the first experiment, we illustrate the
importance on account of possible dependence of arrival processes of primary and retrial customers.
The aim of the second experiment is the numerical investigation of the dependence of the main
performance measures of the system on the threshold N and illustration of the importance of account
the impatience of customers staying in the network. In the third experiment, we show how our results
can be used for localization of the bottlenecks of the network and improvement of the performance of
the network via upgrading the bottleneck node.

Remark 2. The importance of correlation in the arrival process for a similar queuing network without retrials
was shown in Reference [10]. In this paper, we do not present the results illustrating the importance of the
correlation. We mention only that the correlation in the arrival process of primary customers has an essential
impact on the networks with retrials as well.

Example 1. Let us consider a queuing network consisting of L = 3 nodes. The mean service rates at these
nodes are μ1 = 2, μ2 = 1.5, μ3 = 2, respectively.

The transition probabilities of the customers in the network ql,k, l = 1, L, k = 0, L, k �= l,
are defined as the corresponding entries of Table 1.
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The probabilities defining the choice of the node at the moment of admission of a customer from
the orbit are chosen as: p1 = 0.2, p2 = 0.3, and p3 = 0.5. The intensity of impatience of a customer
from the orbit is assumed to be γ = 0.02. The probability of a customer departure from the orbit after
an unsuccessful retrial is h = 0.3. The intensities of impatience of customers from the nodes are given
as follows: β1 = 0.05, β2 = 0.01, β2 = 0.03.

Table 1. Transition probabilities ql,k.

ql,k k = 0 k = 1 k = 2 k = 3

l = 1 1
2 - 1

4
1
4

l = 2 1
3

2
15 - 8

15

l = 3 1
2

1
4

1
4 -

We assume that the MMAP arrival flow of primary customers when the orbit is empty is defined
by the following matrices:

D0 =

(
−1.764 0.014

0.07 −0.42

)
, D1 =

(
0.07 0.007

0 0.14

)
,

D2 =

(
0.028 0.035

0.0042 0.203

)
, D3 =

(
1.603 0.007

0.0021 0.0007

)
.

The retrial rates of customers from the orbit when i customers are staying in the orbit are defined
by the entries of the matrix

D(i) = iD̃,

where

D̃ =

(
0.2 0
0 0.02

)
.

Remark 3. We intentionally choose the matrix D(i) in the simple diagonal form. This allows us to calculate
the average individual retrial rate α of a customer from the orbit as

α = σD̃e,

where σ is the unique solution of the following system

σ(D0 +
L

∑
l=1

Dl − diag{D̃e}) = 0, σe = 1.

In this example, α is equal to 0.1185929648.

In the considered model, the arrival flows of primary and retrials customers are dependent.
In the existing literature, such dependence was not analyzed. In this example, we clarify whether
or not this dependence is essential. To this end, we also consider the case when customers in the orbit
retry to obtain access to the network independently on primary customers as assumed in the existing
literature. We suppose that each customer from the orbit makes repeated attempts with the intensity
α = 0.1185929648.
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It is easy to see that the results for the model with independent flows of primary and retrial
customers are obtained as the particular case of our results if we assume that the matrix D̃
has the following form:

D̃ =

(
α 0
0 α

)
.

Let us vary the number N of customers, which can be serviced in the network simultaneously,
over the interval [1, 15]. The computations were performed on a PC with an Intel Core i7-8700 CPU
and 16 GB RAM. The computation time for all N from 1 to 15 is about 4 min and 50 s.

Figures 2–4 illustrate the dependence on N of the probability of an arbitrary customer loss due
to non-persistence from the orbit Pnonpersist−orbit

loss , due to impatience from the orbit Pimp−orbit
loss and the loss

probability of an arbitrary customer Ploss for the systems with dependent and independent arrivals
of primary and retrial customers.

As it is seen from these figures, an account of the dependence of arrivals of primary and
retrial customers is important for the precious prediction of the system performance measures.
Under the chosen values of the network parameters, this dependence deteriorates the performance
of the network. All loss probabilities are greater when the flows are dependent. In this example,
the error in the estimation the loss probabilities can be up to 20% on their real values.
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Figure 2. Dependence of the probability Pnonpersist−orbit
loss on the number N.
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Figure 3. Dependence of the probability Pimp−orbit
loss on the number N.
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Figure 4. Dependence of the probability Ploss on the number N.

Example 2. In this example, we numerically investigate the dependence of the main performance measures
of the system on the threshold N. We also investigate the importance of accounting the impatience of customers
in the nodes of the network. Let us assume that all system parameters are the same as in the previous example
except for the matrix

D̃ =

(
0.2 0.002

0.001 0.02

)
.

In the previous example, we chose relatively small intensities of impatience of customers from the nodes:
β1 = 0.05, β2 = 0.01, β2 = 0.03. The question arises, whether or not it is possible to ignore such small
intensities of impatience and assume that the customers are patient, that is, βl = 0, l = 1, L.

Figures 5–7 illustrate the dependence on N of the average number Norbit of customers in the orbit,
the probability Pimm that an arbitrary customer is admitted to the network immediately upon arrival
and the probability of an arbitrary customer loss due to impatience from the network Pimp−net

loss for the
cases of the patient and impatient customers in the nodes of the network.

The probability of an arbitrary customer loss due to impatience from the network Pimp−net
loss is equal

to 0 when the customers in the nodes are patient and essentially increases with the growth of N when
the customers are impatient. It is worth to note that the loss of the customers due to impatience
in the nodes causes the reduction of the average number of customers in the orbit and the increase
of the probability Pimm.

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14

N
o

r
b

it

N

Patient

Impatient

Figure 5. Dependence of the average number Norbit on the number N.
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Figure 6. Dependence of the probability Pimm on the number N.
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Figure 7. Dependence of the probability Pimp−net
loss on the number N.

Analogously, Figures 8–10 illustrate the dependence on N of the probability of an arbitrary
customer loss due to impatience from the orbit Pimp−orbit

loss , the probability of an arbitrary customer loss

due to non-persistence from the orbit Pnonpersist−orbit
loss , and the loss probability of an arbitrary customer

Ploss for the case of the patient and impatient customers in the network.
It can be seen that the impatience in the nodes reduced the probabilities of customers loss from

the orbit (due to impatience or non-persistence). However, the total loss probability Ploss is essentially
higher when the customers in the nodes are impatient. With the growth of N, the difference of values
of this probability for the cases of the impatient and patient customers becomes more significant.
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Figure 8. Dependence of the probability Pimp−orbit
loss on the number N.
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Figure 9. Dependence of the probability Pnonpersist−orbit
loss on the number N.
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Figure 10. Dependence of the probability Ploss on the number N.

Let us introduce the following economical criterion of the quality of the network operation:

E(N) = λ̂(a(Pimp−orbit
loss + Pnonpersist−orbit

loss ) + bPimp−net
loss ),

where a is a charge paid for the loss of one customer from the orbit and b is a charge paid for the loss
of one customer from the network per unit time. It is evident that the loss of a customer from the network
is more painful than the loss of a customer from the orbit because the lost from the network customer
possibly have already been serviced in some nodes, that is, the system has spent some resources
for providing service to such a customer. Thus, in this example, we assume that a = 1 and b = 3.

Figure 11 illustrates the dependence of the economic criterion E(N) on N for the cases
of the patient and impatient customers in the network.
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Figure 11. Dependence of the economical criterion E(N) on the number N.
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The optimal value for the case of patient customers is E(N) = 0.0184 when N = 15. This means
that in the case of patient customers it is reasonable to accept as many customers as possible.
The optimal value for the case of impatient in the network customers is E(N) = 0.171865 when
N = 5. Presented in this paper results can be helpful for the optimal choice of the limit N imposed
on the number of customers that can be admitted to the network simultaneously.

Example 3. In this experiment, we show how our results can be used for identification of the bottleneck
of the network and further improving the performance of the network via the proper upgrade of the bottleneck
node. Let us choose the parameters of the network the same as in the previous example in the case of impatient
customers. One can see that the loss probability of customers is quite high even for a large value of N (N = 15).
About 7.2% of customers are lost due to different reasons. To understand the reason for such not very good
operation of the network, let us compute the average load of each network’s node.

Figure 12 illustrates the dependence of loads of the nodes on the parameter N.
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Figure 12. Dependence of the load of the nodes on the parameter N.

As it is seen from this Figure, the load of the third node is much higher than loads of other nodes.
Let us make an upgrade of the third node in such a way that after upgrade the service rate in this node
increases from 2 to 4 and compute the main performance measures of the network.

Figures 13 and 14 illustrate the dependence of the probability Pimm that an arbitrary customer
is admitted to the network immediately upon arrival and the loss probability of an arbitrary customer
Ploss on the parameter N before and after upgrade.
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Figure 13. Dependence of the probability Pimm on the number N.
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Figure 14. Dependence of the probability Ploss on the number N.

One can see from these Figures that after upgrade the loss probability Ploss essentially decreases
and the probability Pimm of immediate access essentially increases. Figure 15 illustrates the dependence
of the economic criterion E(N) on N before and after the upgrade.
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Figure 15. Dependence of the economic criterion E(N) on the number N before and after upgrade.

The optimal value E(N) after upgrade is E(N) = 0.0448422 when N = 7 what is almost four
times smaller than the optimal value E(N) = 0.171865 before the upgrade (that was achieved when
N = 5). Definitely, the increase of the service rate in the third node can cost some money. However,
it allows increasing the optimal number of the limit N from 5 to 7 with the essential improvement
of the quality of operation of the network.

It is worth to note that the improvement of the quality of operation of the network via the account
of loads of the nodes can be achieved also via the modification of the routing of the customers
in the node and the choices of the target node by the primary and retrial customers.

6. Conclusions

In this paper, we analyzed a semi-open queuing network with customers retrial. The number
of customers in the network must not exceed the fixed threshold (capacity of the network). An arriving
primary customer is admitted to the network and starts processing only if the current number
of customers in the network is less than the network capacity. Otherwise, the customer moves
to the orbit having an infinite capacity and tries to enter the network after random time intervals.
The arrivals of primary customers and retrials of customers from the orbit depend on the same
underlying process. This allows more adequately model real-world arrival processes than it can be done
using known in the literature models of the arrival and retrial processes. Customers are impatient both
in the orbit and infinite buffers of the nodes of the network. The behavior of the network is described
by a multidimensional Markov chain. The generator of this chain is derived. The problem of computing
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the stationary state distribution is discussed. The expressions for computing the main performance
measures of the network are derived. Numerical results illustrate the importance of the account
of the dependency of arrivals of the primary and retrial customers as well as the importance of account
of impatience of customers. Possibilities of optimization of the quality of the network operation
by means of the optimal choice of the network capacity and identification and elimination of bottlenecks
in the network are demonstrated.
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Abstract: Consideration is given to the nonstationary analogue of M/M/1 queueing model in
which the service happens only in batches of size 2, with the arrival rate λ(t) and the service
rate μ(t). One proposes a new and simple method for the study of the queue-length process.
The main probability characteristics of the queue-length process are computed. A numerical example
is provided.
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1. Introduction

Non-stationary Markovian queueing models have been the subject of extensive research for the
past few decades. It is well-known that the direct computation of time-dependent characteristics for
arbitrary (in)homogeneous continuous-time Markov chains, which show up in the analysis of various
queueing models, is a difficult problem. Thus, usually the alternative way is taken: one resorts to
different types of approximations. One can find an overview of the approaches for the performance
evaluation of time-dependent queueing systems up to 2016 in [1]. The papers [2–4] are devoted to
the construction of the main performance characteristics and papers [5–8] deal with the estimation of
the convergence rate and approximations. The general framework for the study of time-dependent
queueing system systems is described in detail in the recent paper [8]. It consists of several steps,
among which the most important one is the estimation of the upper bounds for the rate of convergence
to the limiting regime. Having such bound allows one to find (compute) the time instant, say t∗,
starting from which probabilistic properties of X(t) do not depend on the value of X(0) (assuming
that the process starts at time t = 0). Thus, for example, if the transition intensities are periodic
(say, 1-time-periodic), one can truncate the process on the interval [t∗, t∗ + 1] and solve the forward
Kolmogorov system of differential equations on this interval with X(0) = 0. In such a way, one
may build approximations for any limiting probability characteristics of X(t) and estimate stability
(perturbation) bounds. For the details regarding the stability bounds, one can refer to [9–15] and
references therein. If the reduced intensity matrix of a Markov chain (see the next section for the
definition) is essentially positive, then the approach for the computation of the upper bounds on the
rate of convergence l1 metric is available: one may use the method of logarithmic norm of a linear
operator function and use the bounds for the Cauchy operator of the (reduced) forward Kolmogorov
system (see [6,7]). Note that such bounds may be sharp if the difference between the two initial
conditions is nonnegative.

However, the method of the logarithmic norm is not always applicable, i.e., there are Markov
chains with such transition intensities, for which it does not yield upper bounds for the rate

Mathematics 2019, 7, 678; doi:10.3390/math7080678 www.mdpi.com/journal/mathematics98



Mathematics 2019, 7, 678

of convergence. Such a Markov chain is the topic of this paper. Specifically, one considers an
inhomogeneous analogue of the classical M/M/1 queue, in which the service happens only in
batches of size 2. For this queue, we propose the simple new method, based on the direct application
of differential inequalities, for the estimation of the queue-size probability characteristics.

2. Model Description and Basic Transformations

Consideration is given to the Markov chain X(t) being the queue-length (including a customer
in server) at time t in the Mt/Mt/1 queuing system with batch service (only). It is assumed that
customers enter the system only by one and the arrival intensity does not depend on the number of
customers in the system, but depends on time, and is equal to λ(t). Customers can be served only in
batches of size 2 and the service intensity does not depend on the number of customers in the system,
but depends on time, and is equal to μ(t). The transition diagram for X(t) is given in Figure 1.

0 1 2 3 4

λ(t) λ(t) λ(t) λ(t)

μ(t) μ(t) μ(t)

Figure 1. Transition diagram for the Markov chain X(t).

Denote by pij(s, t) = Pr
{

X(t) = j
/

X(s) = i
}

, i, j ≥ 0, 0 ≤ s ≤ t the transition probabilities
and by pi(t) = P {X(t) = i}—the probability that X(t) is in state i at time t. Let p(t) =

(p0(t), p1(t), . . . , pS(t))
T be probability distribution vector at instant t. Throughout the paper, it is

assumed that

Pr (X (t + h) = j|X (t) = i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

λ (t) h + αij (t, h) if j = i + 1, i ≥ 0,

μ (t) h + αij (t, h) if j = i − 2, i ≥ 2,

1 − λ(t)h + αi (t, h) if j = i, 0 ≤ i ≤ 1,

1 − (λ(t) + μ(t))h + αi (t, h) if j = i, i ≥ 2,

αij (t, h) otherwise,

(1)

where all αij(t, h) are o(h) and αi(t, h) are o(h) uniformly in i for any t ≥ 0. In addition, it is assumed
that the intensity functions λ(t) and μ(t) are nonnegative, continuous and bounded on the interval
[0, ∞), λ(t) + μ(t) ≤ L < ∞ for any t ≥ 0. Then, the probabilistic dynamics of the process is
represented by the forward Kolmogorov system of differential equations:

d
dt

p(t) = A(t)p(t), (2)

where A(t) is the transposed intensity matrix of the process, having the following form:

A(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ(t) 0 μ(t) 0 0 · · ·
λ(t) −λ(t) 0 μ(t) 0 · · ·

0 λ(t) − (λ(t) + μ(t)) 0 μ(t) · · ·
0 0 λ(t) − (λ(t) + μ(t)) 0 · · ·
. . . . . . . . . . . . . . . . . .

0 0 0 0 0 · · ·
· · · · · · · · · · · · · · · · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3)

Throughout the paper, by ‖ · ‖, we denote the l1-norm, i.e., ‖p(t)‖ = ∑k≥0 |pk(t)|, and ‖A(t)‖ =

supj≥1 ∑i≥1 |aij|. Let Ω be a set all stochastic vectors, i.e., l1 vectors with non-negative coordinates and
unit norm. Hence, we have ‖A(t)‖ = 2 supk≥1 |qkk(t)| ≤ 2L for almost all t ≥ 0. Hence, the operator
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function A(t) from l1 into itself is bounded and continuous for all t ≥ 0 and thus Label (2) is a
differential equation in the space l1 with bounded operator, which has a unique solution for any
arbitrary initial condition (see [16]).

The method that is being proposed in this paper relies on the following transformation (referring
to [6]) of the intensity matrix A(t). Since p0(t) = 1 − ∑i≥1 pi(t) due to the normalization condition,
one can rewrite the system (2) as follows:

d
dt

z(t) = B(t)z(t) + f(t), (4)

where
f(t) = (λ(t), 0, 0, . . . )T , z(t) = (p1(t), p2(t), . . . )T ,

B(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 · λ(t) −λ(t) μ(t)− λ(t) −λ(t) · · ·
λ(t) − (λ(t) + μ(t)) 0 μ(t) · · ·

0 λ(t) − (λ(t) + μ(t)) 0 · · ·
. . . . . . . . . . . . . . .

0 0 0 0 · · ·
· · · · · · · · · · · · · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5)

Note that the bounds on the rate of convergence of the solutions of the system of differential
equations

d
dt

y(t) = B(t)y(t) (6)

correspond to the same bounds of X(t).
Denote by T the upper triangular matrix of ones i.e., tij = 1 for j ≥ i and 0, otherwise. Then,

T−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0 . . .

0 1 −1 0 . . .

0 0 1 −1 . . .

0 0 0 1 . . .
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Put u(t) = Ty(t). Then, we have

d
dt

u(t) = B∗(t)u(t), (7)

where

B∗(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ(t) −μ(t) μ(t) 0 0 0 · · ·
λ(t) − (λ(t) + μ(t)) 0 μ(t) 0 0 · · ·

0 λ(t) − (λ(t) + μ(t)) 0 μ(t) 0 · · ·
0 0 λ(t) − (λ(t) + μ(t)) 0 μ(t) · · ·
0 0 0 λ(t) − (λ(t) + μ(t)) 0 · · ·
. . . . . . . . . . . . . . . . . . . . .

· · · · · · · · · · · · · · · · · · · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Such transformation has been applied in a series of papers for general Markovian queueing
models (see, for example, [7]). As it was mentioned above, the analysis of the rate of convergence
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to the limiting regime (a detailed description of this approach and its generalization can be found,
for example, in [8,17,18]) was based on the logarithmic norm of an operator function from l1 to itself,
which can be computed by the simple formula:

γ(B(t)) = sup
j≥1

(
bjj(t) + ∑

i≥1,i �=j
|bij(t)|

)
. (8)

For the considered Markov chain X(t), the method based on the logarithmic norm no longer
applied. This is due to the fact that all column sums in B∗(t) are equal to zero. In the next section, one
outlines another approach, which is based on the direct applications of the differential inequalities. It
was firstly considered for a finite Markovian queueing model in [19].

3. Bounds on the Rate of Convergence

Let {di, i ≥ 0} be a sequence such that infi≥0 |di| = d > 0. Denote by D = diag (d0, d1, d2, . . . ) the
diagonal matrix. By putting w(t) = Du(t) from (7), one obtains

d
dt

w(t) = B∗∗(t)w(t), (9)

where the matrix B∗∗(t) = (b∗∗(t))∞
i,j=1 = DB∗(t)D−1 has the following form:

B∗∗(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ(t) −μ(t) · d1
d2

μ(t) · d1
d3

0 0 · · ·
λ(t) · d2

d1
− (λ(t) + μ(t)) 0 μ(t) · d2

d4
0 · · ·

0 λ(t) · d3
d2

− (λ(t) + μ(t)) 0 μ(t) · d3
d5

· · ·
0 0 λ(t) · d4

d3
− (λ(t) + μ(t)) 0 · · ·

. . . . . . . . . . . . . . . . . .

· · · · · · · · · · · · · · · · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let u(t) be an arbitrary solution of (7). Consider an interval (t1, t2) with fixed signs of coordinates
of u(t). Let now signs of the entries di coincide with signs of the corresponding coordinates ui(t) of
u(t). Then, diui(t) > 0 for all i ≥ 1 on the time interval (t1, t2) and hence ∑∞

k=1 dkuk(t) = ‖w(t)‖ can
be considered as the corresponding norm. Put αj(t) = −∑i b∗∗ij (t) and assume that

αj(t) ≥ αD(t), j ≥ 1. (10)

Consider now the system (9) on the interval (t1, t2). Then, the following bound holds:

d
dt
‖w(t)‖ =

d
dt

(
∑
k≥1

wk(t)

)
= ∑

j≥1
∑
i≥1

b∗∗ij (t)wj(t) ≤ −αD(t)‖w(t)‖. (11)

If one puts α∗(t) = inf αD(t), where the infimum is taken over all intervals with different
combinations of coordinate signs of the solution, then for any such interval one has in the own

corresponding norm, the inequality ‖w(t)‖ ≤ e−
∫ t

s α∗(τ) dτ‖w(s)‖.
Let firstly all coordinates of u(t) be positive. Put d1 = 1, d2 = 1/δ, d3 = δ and dk+1 = δdk,

for k ≥ 3, where δ > 1. Then, one has:

α1
1(t) = λ(t)

(
1 − δ−1

)
,

α1
2(t) = μ(t) (1 + δ)− λ(t)

(
δ2 − 1

)
,
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α1
3(t) = μ(t)

(
1 − δ−1

)
− λ(t) (δ − 1) ,

α1
4(t) = μ(t)

(
1 − δ−3

)
− λ(t) (δ − 1) ,

α1
k(t) = μ(t)

(
1 − δ−2

)
− λ(t) (δ − 1) , k ≥ 5.

Therefore, one can take on the corresponding interval α1
D(t) = min1≤i≤4 α1

i (t) and d1 = infi |di| =
δ−1.

Let now u1(t) < 0 and uk(t) > 0 for k ≥ 1. In this case, we put d1 = −1, d2 = δ and dk+1 = δdk,
for k ≥ 2, for the same δ > 1. Then, one has:

α2
1(t) = λ(t) (1 + δ) ,

α2
2(t) = μ(t)

(
1 − δ−1

)
− λ(t) (δ − 1) ,

α2
3(t) = μ(t)

(
1 + δ−2

)
− λ(t) (δ − 1) ,

α2
k(t) = μ(t)

(
1 − δ−2

)
− λ(t) (δ − 1) , k ≥ 4.

Therefore, one can take on the corresponding interval α2
D(t) = min1≤i≤3 α2

i (t) and d2 = infi |di| =
1. Moreover, it can be noted that, in any other case, a number of negative elements will be added to the
column sums in (10). Hence, all values of αk(t) in the other situations can only increase, and therefore
the corresponding values of αD(t) for the same dk will be even greater.

Finally, if one takes α∗(t) = inf αD(t), where the infimum is taken over all intervals with different
combinations of coordinate signs of the solution, then the following bounds hold:

α∗(t) ≥ min
[
λ(t)

(
1 − δ−1

)
, μ(t) (1 + δ)−

λ(t)
(

δ2 − 1
)

, μ(t)
(

1 − δ−1
)
− λ(t) (δ − 1)

]
, (12)

and the corresponding ‘absolute infimum’

d∗ = min
(

d1, d2
)
= δ−1. (13)

By applying the comparison of norms, as it was done in [7], one obtains the following theorem.

Theorem 1. Let ∫ ∞

0
α∗(t) dt = +∞ (14)

for some δ > 1. Then, X(t) is weakly ergodic and the following bounds on the rate of convergence hold:

‖u(t)‖ ≤ δe−
∫ t

0 α∗(τ) dτ‖w(0)‖, (15)

‖p∗(t)− p∗∗(t)‖ ≤ 4δe−
∫ t

0 α∗(τ) dτ‖w(0)‖, (16)

for any initial conditions.

Note that the inequality W = infk≥1
dk
k > 0 holds for both sequences. It implies an existence

of the limiting mean for the process and the corresponding bounds on the rate of convergence
(see, for example, [6,7]).
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Let the process X(t) be homogeneous i.e., let λ(t) = λ and μ(t) = μ be positive numbers.

Then, (14) is equivalent to α∗ > 0 and this is equivalent to 0 < λ < μ. Put δ =
√

μ
λ . Hence,

α∗0 = min

[(√
μ −

√
λ
)2

, λ

(
1 −
√

λ

μ

)]
, (17)

and the following is the corollary to Theorem 1.

Corollary 1. Let X(t) be the queue-length process in M/M/1 queue with service in batches of size 2. Let 0 <

λ < μ. Then, X(t) is ergodic and the following bounds hold:

‖u(t)‖ ≤ δe−α∗0 t‖w(0)‖, (18)

and
‖p∗(t)− π‖ ≤ 4δe−α∗t‖w(0)‖, (19)

for any initial condition X(0).

Note that the inequality W = infk≥1
dk
k > 0 implies an existence of the constant limiting mean for

the process and the corresponding bounds on the rate of convergence.

4. Numerical Example

There exists a number of investigations of queueing models with service in batches (or group
services) (see, for example, [20,21]). Consider one example of such a queueing model with periodic
arrival and service rates. We will be interested in the following quantities: pi(t) the probability that the
total number of customers in the system at time t is i and the mean number E(t, k) = E(X(t)|X(0) = k)
of customers in the system at time t, provided that initially (at instant t = 0), there were k customers in
the system.

Let λ(t) = 2 + sin 2πt and μ(t) = 4 − cos 2πt. Put δ = 11
10 . Then,

∫ 1
0 α∗(t) dt ≥ 1

22 > 0
and the assumptions of Theorem 1 are fulfilled. Hence, X(t) is exponentially weakly ergodic ( i.e.,
limt→∞ ‖p∗(t)− p∗∗(t)‖ → 0 for any initial conditions p∗(0) and p∗∗(0), where p∗(t) and p∗∗(t) are
the solutions of (2).) and has the 1-periodic limiting mean (A Markov chain has the limiting mean
m(t), if limt→∞ (m(t)− E(t, k)) = 0 for any k.) m(t). Now, applying the known truncation technique
(See the detailed discussion and bounds in [22]), one can compute all probability characteristics
of the queue-length process X(t). The corresponding graphs are shown in Figures 2–9. To ensure
that the truncation error is less than 10−3, one can truncate the process X(t) at the level N = 100.
Then, one can compute any probability characteristic using the “extreme” initial conditions X(0) = 0
and X(0) = N = 100. Inequality (16) gives the corresponding (very rough) upper bounds on the
rate of convergence for the state probabilities and for the mean number of customers in the system.
Therefore, one can compute all characteristics on the intervals [0, t∗] and [t∗, t∗ + 1], and obtain the
limiting state probabilities and the limiting mean with error less 2 × 10−3. In Figures 2–9 below, it can
be seen that in fact it suffices to set t∗ = 28. Figures 2, 4, 6 and 8 show the mean number of customers
in the system and the probabilities p0(t), p1(t) and p2(t) converge to their limiting values. One can
explicitly see how they approach the time t∗, starting from which the characteristics do not longer
depend on the initial conditions. Other figures show their approximate limiting values.

103



Mathematics 2019, 7, 678

Figure 2. Example. The mean E(t, 0) and E(t, 100) for t ∈ [0, 28], this figure shows the rate
of convergence.

Figure 3. Example. The mean E(t, 0) and E(t, 100) for t ∈ [28, 29], this figure shows approximation of
the limiting mean.

Figure 4. Example. Probability of the empty queue p0(t) for t ∈ [0, 28] and initial conditions X(0) = 0
and X(0) = 100, this figure shows the rate of convergence.
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Figure 5. Example. Probability of the empty queue p0(t) for t ∈ [28, 29] and initial conditions X(0) = 0
and X(0) = 100, this figure shows approximation of the limiting probability p0(t).

Figure 6. Example. Probability p1(t) for t ∈ [0, 28] and initial conditions X(0) = 0 and X(0) = 100,
this figure shows the rate of convergence.

Figure 7. Example. Probability p1(t) for t ∈ [28, 29] and initial conditions X(0) = 0 and X(0) = 100,
this figure shows approximation of the limiting probability p1(t).
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Figure 8. Example. Probability p2(t) for t ∈ [0, 28] and initial conditions X(0) = 0 and X(0) = 100,
this figure shows the rate of convergence.

Figure 9. Example. Probability p2(t) for t ∈ [28, 29] and initial conditions X(0) = 0 and X(0) = 100,
this figure shows approximation of the limiting probability p2(t).

5. Conclusions

In the paper, some estimates of the rate of convergence and the corresponding approach were
discussed for an inhomogeneous countable state continuous-time Markov chain. This chain is
considered as the queue-length process of a simple nonstationary model of a queue with single
arrivals and batch service (only in batches of size 2). The applied approach allows for studying new
classes of the continuous-time Markov chain such that the corresponding reduced intensity matrix is
not essentially nonnegative.
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Abstract: The analysis of the real observations of precipitation based on the novel statistical approach
using the negative binomial distribution as a model for describing the random duration of a wet
period is considered and discussed. The study shows that this distribution fits very well to the real
observations and generalized standard methods used in meteorology to detect an extreme volume of
precipitation. It also provides a theoretical base for the determination of asymptotic approximations
to the distributions of the maximum daily precipitation volume within a wet period, as well as the
total precipitation volume over a wet period. The paper demonstrates that the relation of the unique
precipitation volume, having the gamma distribution, divided by the total precipitation volume
taken over the wet period is given by the Snedecor–Fisher or beta distributions. It allows us to
construct statistical tests to determine the extreme precipitations. Within this approach, it is possible
to introduce the notions of relatively and absolutely extreme precipitation volumes. An alternative
method to determine an extreme daily precipitation volume based on a certain quantile of the
tempered Snedecor–Fisher distribution is also suggested. The results of the application of these
methods to real data are presented.

Keywords: wet periods; total precipitation volume; asymptotic approximation; extreme order
statistics; random sample size; testing statistical hypotheses

MSC: 62G30; 62E20; 62P12; 65C20

1. Introduction

Estimates of regularities and trends in heavy and extreme daily precipitation are important for
understanding climate variability and change at relatively small or medium time horizons [1–3].
However, such estimates are much more uncertain compared to those derived for mean precipitation
or total precipitation during a wet period [4]. This uncertainty is due to the fact that, first, estimates
of heavy precipitation depend closely on the accuracy of the daily records; they are more sensitive
to missing values. Second, uncertainties in the estimates of heavy and extreme precipitation are
caused by the inadequacy of the mathematical models used for the corresponding calculations. Third,
these uncertainties are boosted by the lack of reasonable means for the unambiguous (algorithmic)
determination of extreme or anomalously heavy precipitation amplified by some statistical significance
problems owing to the low occurrence of such events. As a consequence, continental-scale estimates of
the variability and trends in heavy precipitation based on daily precipitation might generally agree
qualitatively but may exhibit significant quantitative differences. In Reference [5] a detailed review
of this phenomenon is presented where it is noted that for the European continent, most results hint
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at a growing intensity of heavy precipitation over the last five decades. The changes in extreme
precipitation volumes are also among the relevant problems of such areas as climate [6,7], shallow
landslides [8], debris flows [9], and so forth. Therefore, tools for analyzing such observations are being
improved, including precipitation reanalysis [10].

There are several schemes on how to detect the extreme precipitation volume and what can be
understood as the extreme precipitation. It can be selected from the total precipitation as unique
heavy rain or show, for instance, which contains the precipitation volume more then 95% or more
volume among total precipitation for given period independently of whether rain was observed or not.
Alternatively, the precipitation and its volume can be considered only during the wet period ignoring
all dry spells. In this case the concept of extreme precipitation and its statistics will differ from its
counterpart in the first case. The details are discussed for instance in Reference [11]. The classical
extreme value approach based on Pickands-Balkema-de Haan theorem [12,13] (the POT method) is
used for solving such problems for precipitation data in References [14–16]. But sometimes it can lead
to less accurate estimates of extreme values [17] than the methods proposed in the present paper (one
possible alternative for estimating precipitation extremes based on the log-histospline was considered
in Reference [18]). In the present paper, a rather reasonable approach to the unambiguous (algorithmic)
determination of extreme or abnormally heavy daily and total precipitation within a wet period
is proposed.

It is traditionally assumed that the duration of a wet period (the number of subsequent wet
days) follows the geometric distribution (for example, see Reference [5]). But the sequence of dry
and wet days is not only independent, it is also devoid of the Markov property [19]. Our approach
introduces the negative binomial model for the duration of wet periods measured in days. This model
demonstrates excellent fiting the numbers of successive wet days with the negative binomial
distribution with shape parameter less than one, see References [20,21]. Numerous examples for
dry and wet periods for different stations in Europe and Russia have been presented in Reference [22].
It provides a theoretical base for the determination of asymptotic approximations to the distributions
of the maximum daily precipitation volume within a wet period and of the total precipitation volume
for a wet period. The asymptotic distribution of the maximum daily precipitation volume within a wet
period turns out to be a tempered Snedecor-Fisher distribution (i.e., the distribution of a positive power
of a random variable with the Snedecor-Fisher distribution) whereas the total precipitation volume for
a wet period turns out to be the gamma distribution. Both approximations appear to be very accurate.
These asymptotic approximations are deduced using limit theorems for statistics constructed from
samples with random sizes.

In this paper, two approaches are proposed to the definition of anomalously extremal precipitation.
The first approach to the definition (and determination) of abnormally heavy daily precipitation is
based on the tempered Snedecor-Fisher distribution (some methods of statistical estimation of its
parameters will also be discussed). The second approach is based on the assumption that the total
precipitation volume over a wet period has the gamma distribution. This assumption is theoretically
justified by a version of the law of large numbers for sums of a random number of random variables in
which the number of summands has the negative binomial distribution and is empirically substantiated
by the statistical analysis of real data. Hence, the hypothesis that the total precipitation volume during
a certain wet period is anomalously large can be formulated as the homogeneity hypothesis of a
sample from the gamma distribution. Two equivalent tests are proposed for testing this hypothesis.
One of them is based on the beta distribution whereas the second is based on the Snedecor–Fisher
distribution. Both of these tests deal with the relative contribution of the total precipitation volume for
a wet period to the considered set (sample) of successive wet periods. Within the second approach
it is possible to introduce the notions of relatively abnormal and absolutely anomalous precipitation
volumes. The results of the application of these tests to real data are presented yielding the conclusion
that the intensity of wet periods with anomalously large precipitation volume increases.
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The proposed approaches have several important benefits First, estimates of total precipitation
are weakly affected by the accuracy of the daily records and are less sensitive to missing values.
Second, they are based on limit theorems of probability theorems that yield unambiguous asymptotic
approximations which are used as adequate mathematical models. Third, these approaches provide
unambiguous algorithms for the determination of extreme or anomalously heavy daily or total
precipitation that do not involve statistical significance problems owing to the low occurrence of such
(relatively rare) events.

Suggested methods improve the approach described in Reference [11], where an estimate of the
fractional contribution from the wettest days to the total was developed which is less hampered by the
limited number of wet days. This paper demonstrates that the proposed methods have a theoretical
background and at the same time they are perfectly consistent with the real data. Our methods are
also compared with previously suggested in Reference [11] on the same database. The comparison
clearly showed that in many case the new approach gives more precise assessment for extremes and
allows distinguishing the ordinary and extreme volume for precipitation more detailed. It is worth
noting that all algorithms have been implemented as MATLAB software tools.

The paper is organized as follows. In Section 2 mathematical models to derive statistical tests
for the extreme precipitation events are introduced. The tempered Snedecor-Fisher distribution as an
asymptotic approximation to the maximum daily precipitation volume within a wet period and some
corresponding analytic properties are presented. Two equivalent statistical tests for a total precipitation
volume over a wet period to be abnormally large based on testing the homogeneity hypothesis of
a sample from the gamma distribution are introduced. Section 3 describes the application of the
proposed models and algorithms to real data using precipitation observations in Potsdam and Elista in
about 60 years. Section 4 is devoted to the main conclusions of the work.

2. Mathematical Models to Derive Statistical Tests for Precipitation Volume to Be Anomalous Large

At the beginning of this section some notations that will be used below are introduced. All the
random variables under consideration are defined on the same probability space (Ω, F, P). The results

are expounded in terms of random variables with the corresponding distributions. The symbol d
=

denotes the coincidence of distributions.
Let Gr,λ be a random variable having the gamma distribution with shape parameter r > 0 and

scale parameter λ > 0:

P(Gr,λ < x) =
x∫

0

λr

Γ(r)
zr−1e−λzdz, x � 0,

Let Wγ be a random variable with the Weibull distribution with the distribution function[
1 − e−xγ]

1(x � 0) (1(A) is the indicator function of a set A). The distribution of the random variable
|X|, where X is a random variable with the standard normal distribution function, is a folded normal
(x � 0):

P(|X| < x) = 2Φ(x)− 1. (1)

Let Sα,1 and S′
α,1 (0 < α < 1) be independent and identically-distributed random variables with

the same strictly stable distribution [23]. So, the density vα(x) of the random variable Rα = Sα,1/S′
α,1

can be represented [24] as follows (x > 0):

vα(x) =
sin(πα)xα−1

π[1 + x2α + 2xα cos(πα)]
. (2)
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2.1. The Tempered Snedecor–Fisher Distribution as an Asymptotic Approximation to the Maximum Daily
Precipitation Volume Within a Wet Period

As it has been demonstrated in Reference [25], the asymptotic probability distribution of extremal
daily precipitation within a wet period can be represented as follows (here r > 0, λ > 0, and γ > 0):

F(x; r, λ, γ) =

(
λxγ

1 + λxγ

)r

, x � 0. (3)

Moreover, the theoretical conditions of limit theorems correspond with the real data (in sense of
fitting Pareto distribution, see Reference [26]). The function (3) is a scale mixture of the Fréchet (inverse
Weibull) distribution. It can be demonstrated for a random variable Mr,γ,λ with a distribution function
F(x; r, λ, γ) that

Mr,γ,λ
d
=
(Qr,1

λr

)1/γ
.

that is, the distribution of the random variable Mr,γ,λ up to a non-random scale factor coincides with
that of the positive power of a random variable with the Snedecor–Fisher distribution. In other words,
the distribution function F(x; r, λ, γ) (3) up to a power transformation of the argument x coincides with
the Snedecor–Fisher distribution function. In statistics, distributions with arguments subjected to the
power transformation are conventionally called tempered. Therefore, the distribution F(x; r, λ, γ) can
be called tempered Snedecor–Fisher distribution. Some properties of the distribution of the random
value Mr,γ,λ were discussed in [26]. In particular, it was shown that the limit distribution (3) can be
represented as a scale mixture of exponential or stable or Weibull or Pareto or folded normal laws
(r ∈ (0, 1], γ ∈ (0, 1], λ > 0):

Mr,γ,λ
d
=

G1/γ
r,λ Sγ,1

W1

d
=

Wγ

W ′
γ
· 1

Z1/γ
r,λ

d
= W1 · Rγ

W ′
1Z1/γ

r,λ

d
=

ΠRγ

Z1/γ
r,λ

d
=

|X|√2W1Rγ

W ′
1Z1/γ

r,λ

,

where Wγ
d
= W ′

γ, W1
d
= W ′

1, the random variable Rγ has the density (2), the random variable Π has the
Pareto distribution (P(Π > x) = (x + 1)−1, x � 0), and in each term the involved random variables
are independent.

It should be mentioned that the same mathematical reasoning can be used for the determination
of the asymptotic distribution of the maximum daily precipitation within m wet periods with arbitrary
finite m ∈ N. Indeed, fix arbitrary positive r1, . . . , rm and p ∈ (0, 1). Let N(1)

r1,p, . . . , N(m)
rm ,p be independent

random variables having the negative binomial distributions with parameters rj, p, j = 1, . . . , m,
respectively. By the consideration of characteristic functions it can be easily verified that

N(1)
r1,p + . . . + N(m)

rm ,p
d
= Nr,p, (4)

where r = r1 + . . . + rm. If all rj coincide, then r = mr1 and in accordance with relation (4),
the asymptotic distribution of the maximum daily precipitation within m wet periods has the form
(x � 0)

F(m)(x; r, λ, γ) = F(x; mr1, λ, γ) =

(
λxγ

1 + λxγ

)mr1

.

And if now m infinitely increases and simultaneously λ changes as λ = cm, c ∈ (0, ∞),
then, obviously,

lim
m→∞

F(m)(x; r, λ, γ) = lim
m→∞

F(x; mr1, cm, γ) = e−μx−γ

with μ = (cr1)
−1, that is, the distribution function

F(m)(x; r, λ, γ) of the maximum daily precipitation within m wet periods turns into the classical
Fréchet distribution.
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This model makes it possible to propose the following approach to the definition
(and determination) of an anomalously heavy daily precipitation volume. The grounds for this
approach is an obvious observation that if X1, X2, . . . , XN is a sample of N positive observations, then
with finite (possibly, random) N, among Xi’s there is always an extreme observation, say, X1, such that
X1 � Xi, i = 1, 2, . . . , N. Two cases are possible: X1 is a ‘typical’ observation and its extreme character
is conditioned by purely stochastic circumstances (there must be an extreme observation within a finite
homogeneous sample) and X1 is abnormally large so that it is an outlier and its extreme character is
due to some exogenous factors. It follows from (3) that the distribution of X1 in the first case is the
tempered Snedecor–Fisher distribution. Therefore, if X1 exceeds a certain (pre-defined) quantile of this
distribution, then it is regarded as suspicious to be an outlier. The examples will be demonstrated in
Section 3.2.

2.2. The Algorithms of Statistical Fitting of the Tempered Snedecor-Fisher Distribution Model

In this section the algorithms and corresponding formulas for a statistical estimation of the
parameters r, λ and γ of the tempered Snedecor–Fisher distribution (3) are briefly given (for details,
see Reference [26]).

Let {Xi,j}, i = 1, . . . , m, j = 1, . . . , mi, be the precipitation volumes on the jth day of the ith
wet sequence. Let X∗

(1), . . . , X∗
(m) be order statistics constructed from the sample X∗

1 , . . . , X∗
m, where

X∗
k = max{Xk,1, . . . , Xk,mk

}. The unknown parameters r, λ and γ can be found as a solution of a
following system of equations (for fixed values p1, p2 and p3, 0 < p1 < p2 < p3 < 1):

X∗
([mpk ])

=

(
p1/r

k

λ − λp1/r
k

)1/γ

, k = 1, 2, 3 (5)

(here the symbol [a] denotes the integer part of a number a).

Proposition 1. The values of parameters γ and λ can be estimated as follows:

γ̃q =
1
r (log p1 − log p3) + log(1 − p

1
r
3 )− log(1 − p

1
r
1 )

log X∗
([mp1])

− log X∗
([mp3])

, (6)

λ̃q =
p

1
r
2

(1 − p
1
r
2 )(X∗

([mp2])
)γ

. (7)

The expressions (6) and (7) are obtained as solutions to the system of Equation (5) while the
parameter r is determined numerically.

Proposition 2. If the value of parameter r is estimated as a corresponding parameter of the negative binomial
distribution, least squares estimates of parameters γ and λ are as follows:

γ̂LS =
m−1

∑
j=1

log X∗
(j)

⎛⎝(log
j1/r

m1/r − j1/r

)m−1

−
m−1

∑
k=1

log
k1/r

m1/r − k1/r

⎞⎠×

×
⎛⎝(m − 1)

m−1

∑
j=1

(
log X∗

(j)

)2 −
(

m−1

∑
j=1

log X∗
(j)

)2
⎞⎠−1

, (8)

λ̂LS = exp

{
1

m − 1

( m−1

∑
j=1

log
j1/r

m1/r − j1/r − γ̂LS ∑m−1
j=1 log X∗

(j)

)}
. (9)
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The derivation of the Formulas (8) and (9) is based on a minimization of the discrepancy between
the empirical and model distribution functions using the least squares techniques.

The examples of fitting tempered Snedecor–Fisher distribution to the real data will be discussed
in Section 3.1. The examples of determining an extreme daily precipitation volume based on quantiles
of this distribution will be demonstrated in Section 3.2 using precipitation observations in Potsdam
and Elista from 1950 to 2007.

2.3. The Tests for a Total Precipitation Volume to Be Anomalously Extremal Based on the Homogeneity Test of a
Sample From the Gamma Distribution

Here some algorithms of testing the hypotheses that a total precipitation volume during a wet
period is anomalously extremal within a certain time horizon are proposed. Moreover, this approach
makes it possible to consider relatively anomalously extremal volumes and absolutely anomalously
extremal volumes for a given time horizon.

Let m ∈ N and G(1)
r,μ , G(2)

r,μ , . . . , G(m)
r,μ —be independent random variables having the same gamma

distribution with shape parameter r > 0 and scale parameter μ > 0. In Reference [11] it was suggested
to use the distribution of the ratio

R∗ =
G(1)

r,μ

G(1)
r,μ + G(2)

r,μ + . . . + G(m)
r,μ

d
=

G(1)
r,1

G(1)
r,1 + G(2)

r,1 + . . . + G(m)
r,1

as a heuristic model of the distribution of the extremely large precipitation volume based on the
assumption that fluctuations of daily precipitation follow the gamma distribution. The gamma model
for the distribution of daily precipitation volume is less adequate than the Pareto one [26]. Here we
will modify the technique proposed in Reference [11] and make it more adequate and justified.

Let X1, X2, . . . be daily precipitation volumes on wet days. For k ∈ N denote Sk = X1 + . . . + Xk.
The statistical analysis of the observed data shows that the average daily precipitation volume on wet
days is finite:

1
n

n

∑
j=1

Xj =⇒ a ∈ (0, ∞). (10)

Here the symbol =⇒ denotes the convergence in distribution.
Figure 1 illustrates the stabilization of the cumulative averages of daily precipitation volumes

as n grows in Potsdam (continuous line) and Elista (dash line), and thus, the practical validity of
assumption (10). It should be emphasized that X1, X2, . . . can be dependent.

Figure 1. Stabilization of the cumulative averages of daily precipitation volumes as n grows in Potsdam
(continuous line) and Elista (dash line).
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Let r > 0, μ > 0, q ∈ (0, 1), n ∈ N. Let the random variable Nr,pn have the negative binomial
distribution with parameters r and pn = min{q, μ/n}. Using the properties of characteristic functions
it is easy to make sure that

n−1Nr,pn =⇒ Gr,μ
d
= 1

μ Gr,1 (11)

as n → ∞. So, the following analog of the law of large numbers for negative binomial random sums
can be obtained. It can be actually regarded as a generalization of the Rényi theorem concerning the
rarefaction of renewal processes.

Theorem 1. Assume that the daily precipitation volumes on wet days X1, X2, ... satisfy condition (10). Let the
numbers r > 0, q ∈ (0, 1) and μ > 0 be arbitrary. For each n ∈ N, let the random variable Nr,pn have the
negative binomial distribution with parameters r and pn = min{q, μ/n}. Assume that the random variables
Nr,pn are independent of the sequence X1, X2, ... Then

n−1
Nr,pn

∑
j=1

Xj =⇒ aGr,μ
d
= a

μ Gr,1 as n → ∞. (12)

Proof. Consider a sequence of random variables
{

Wn = ∑n
j=1 Xj

}
, n ∈ N. Let us introduce the

following notations:

bn = dn = n, Nn = Nr,pn , W = a, N =
1
μ

Gr,1,

where for every n ∈ N the random variable Nn is independent of the sequence {Wn}. Then,
the expressions

b−1
n Wn =⇒ W, d−1

n bNn =⇒ N

take place as n → ∞ (see (10) and (11), respectively). As all the conditions of the theorem for random
sequences with independent random indices [27,28] are satisfied, we obtain the following expression:

d−1
n WNn =⇒ W · N as n → ∞.

Taking into account above-mentioned notations, one can conclude that relation (12) holds.

Therefore, with the account of the excellent fit of the negative binomial model for the duration of
a wet period [26] with rather small pn, the gamma distribution can be regarded as an adequate and
theoretically well-based model for the total precipitation volume during a (long enough) wet period.
This theoretical conclusion based on the negative binomial model for the distribution of duration of
a wet period is vividly illustrated by the empirical data as shown on Figure 2 where the histograms
of total precipitation volumes in Potsdam and Elista and the fitted gamma distributions are shown.
For comparison, the densities of the best generalized Pareto distributions are also presented. It can be
seen that even the best fitted Pareto distributions demonstrate worse fit than the gamma distribution.

Let m ∈ N and G(1)
r,μ , G(2)

r,μ , . . . , G(m)
r,μ be independent random variables having the same gamma

distribution with parameters r > 0 and μ > 0. Consider the relative contribution of the random
variable G(1)

r,μ to the sum G(1)
r,μ + G(2)

r,μ + . . . + G(m)
r,μ :

R =
G(1)

r,μ

G(1)
r,μ + G(2)

r,μ + . . . + G(m)
r,μ

d
=

G(1)
r,1

G(1)
r,1 + G(2)

r,1 + . . . + G(m)
r,1

d
=

d
=

(
1 +

1

G(1)
r,1

(G(2)
r,1 + . . . + G(m)

r,1 )

)−1
d
=

(
1 +

G(m−1)r,1

Gr,1

)−1

, (13)
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where the gamma-distributed random variables on the right hand side are independent. So, the random
variable R characterizes the relative precipitation volume for one (long enough) wet period with respect
to the total precipitation volume registered for m wet periods.

(a)

(b)

Figure 2. The histograms of total precipitation volumes in Potsdam (a) and Elista (b) and the fitted
gamma and generalized Pareto distributions.

The distribution of the random variable R is completely determined by the distribution of the
ratio of two independent gamma-distributed random variables. To find the latter, denote k = (m − 1)r
and obtain

Gk,1

Gr,1
=

k
r
·
(

r
k
· Gk,1

Gr,1

)
d
=

k
r
· Qk,r,

where Qk,r is the random variable having the Snedecor–Fisher distribution determined for k > 0, r > 0
by the Lebesgue density

fk,r(x) =
Γ(k + r)
Γ(k)Γ(r)

( k
r

)k xk−1

(1 + k
r x)k+r

, x � 0, (14)

(as is known, Qk,r
d
= rGk, 1(kGr, 1)

−1, where the random variables Gk, 1 and Gr, 1 are independent
(see, e.g., Reference [29], p. 32)). It is worth noting that the particular value of the scale parameter is
insignificant. For convenience, it is assumed equal to one.

So, R d
=
(
1 + k

r Qk,r
)−1, and, as is easily made sure by standard calculation using (14),

the distribution of the random variable R is determined by the density

p(x; k, r) =
Γ(k + r)
Γ(r)Γ(k)

(1 − x)k−1xr−1, 0 � x � 1,
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that is, it is the beta distribution with parameters k = (m − 1)r and r.
Then the test for the homogeneity of an independent sample of size m consisting of the

gamma-distributed observations of total precipitation volumes during m wet periods with known γ

based on the random variable R looks as follows. Let V1, . . . , Vm be the total precipitation volumes
during m wet periods and, moreover, V1 � Vj for all j � 2. Calculate the quantity

SR =
V1

V1 + . . . + Vm

(SR means “Sample R”). From what was said above it follows that under the hypothesis H0:
“the precipitation volume V1 under consideration is not anomalously large” the random variable
SR has the beta distribution with parameters k = (m − 1)r and r. Let α ∈ (0, 1) be a small number,
βk,r(1 − α) be the (1 − α)-quantile of the beta distribution with parameters k = (m − 1)r and r.
If SR > βk,r(1 − α), then the hypothesis H0 must be rejected, that is, the volume V1 of precipitation
during one wet period must be regarded as anomalously large. Moreover, the probability of erroneous
rejection of H0 is equal to α.

Instead of R (13), the quantity

R0 =
(m − 1)G(1)

r,μ

G(2)
r,μ + . . . + G(m)

r,μ

d
=

k
r

Gr,μ

Gk,μ

d
=

k
r

Gr,1

Gk,1

d
= Qr,k

can be considered. Then, as is easily seen, the random variables R and R0 are related by the
one-to-one correspondence

R =
R0

m − 1 + R0
or R0 =

(m − 1)R
1 − R

,

so that the homogeneity test for a sample from the gamma distribution equivalent to the one described
above and, correspondingly, the test for a precipitation volume during a wet period to be anomalously
large, can be based on the random variable R0 which has the Snedecor-Fisher distribution with
parameters r and k = (m − 1)r.

Namely, again let V1, . . . , Vm be the total precipitation volumes during m wet periods and,
moreover, V1 � Vj for all j � 2. Calculate the quantity

SR0 =
(m − 1)V1

V2 + . . . + Vm
(15)

(SR0 means “Sample R0”). From what was said above it follows that under the hypothesis H0:
“the precipitation volume V1 under consideration is not anomalously large” the random variable SR
has the Snedecor–Fisher distribution with parameters r and k = (m − 1)r. Let α ∈ (0, 1) be a small
number, qr,k(1 − α) be the (1 − α)-quantile of the Snedecor–Fisher distribution with parameters r and
k = (m − 1)r. If SR0 > qr,k(1 − α), then the hypothesis H0 must be rejected, that is, the volume V1 of
precipitation during one wet period must be regarded as anomalously large. Moreover, the probability
of erroneous rejection of H0 is equal to α.

Let l be a natural number, 1 � l < m. It is worth noting that, unlike the test based on the statistic
R, the test based on R0 can be modified for testing the hypothesis H′

0: “the precipitation volumes
Vi1 , Vi2 , . . . , Vil do not make an anomalously large cumulative contribution to the total precipitation
volume V1 + . . . + Vm”. For this purpose denote

Tl = Vi1 + Vi2 + . . . + Vil , T = V1 + V2 + . . . + Vm

and consider the quantity

SR′
0 =

(m − l)Tl
l(T − Tl)

.
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In the same way as it was done above, it is easy to make sure that

SR′
0

d
=

(m − l)Glr,l

lG(m−l)r,1

d
= Qlr,(m−l)r.

Let α ∈ (0, 1) be a small number, qlr,(m−1)r(1 − α) be the (1 − α)-quantile of the Snedecor-Fisher
distribution with parameters lr and k = (m − l)r. If SR′

0 > qlr,(m−l)r(1 − α), then the hypothesis H′
0

must be rejected, that is, the cumulative contribution of the precipitation volumes Vi1 , Vi2 , . . . , Vil into
the total precipitation volume V1 + . . . + Vm must be regarded as anomalously large. Moreover, the
probability of erroneous rejection of H′

0 is equal to α.
The examples of application of the test for a total precipitation volume within a wet period to be

anomalously large will be discussed in Section 3.4 using precipitation observations in Potsdam and
Elista from 1950 to 2007.

3. The Results of the Analysis of Real Data

3.1. Statistical Fitting of the Tempered Snedecor-Fisher Distribution Model to Real Data

The numerical results of estimation of the parameters of daily precipitation in Potsdam and
Elista from 1950 to 2009 using both algorithms described in Propositions 1 and 2 (see Section 2.2) are
presented in Tables 1 and 2. The first column indicates the censoring threshold: since the tempered
Snedecor–Fisher distribution is an asymptotic model which is assumed to be more adequate with
small “success probability,” the estimates were constructed from differently censored samples which
contain only those wet periods whose duration is no less than the specified threshold.

Table 1. Estimation of the parameters of daily precipitation in Potsdam (r = 0.847).

Minimum Duration Sample Size Dq DLS λ̃q λ̂q γ̃LS γ̂LS

1 3323 0.09 0.092 0.169 0.212 1.18 1.29
2 2066 0.045 0.065 0.0383 0.054 1.755 1.71
3 1282 0.031 0.041 0.01 0.013 2.261 2.183
4 862 0.026 0.027 0.0049 0.0045 2.449 2.524
6 384 0.025 0.026 0.0015 0.0012 2.822 2.949
8 163 0.04 0.045 0.0007 0.0005 3.174 3.255

10 73 0.041 0.042 0.0003 0.0003 3.385 3.352
15 12 0.13 0.09 0.0014 0.0009 2.667 2.973

Table 2. Estimation of the parameters of daily precipitation in Elista (r = 0.876).

Minimum Duration Sample Size Dq DLS λ̃q λ̂q γ̃LS γ̂LS

1 2937 0.06 0.06 0.361 0.349 1.053 1.263
2 1374 0.049 0.055 0.108 0.101 1.424 1.574
3 656 0.041 0.045 0.0454 0.0376 1.707 1.9
4 319 0.051 0.06 0.0234 0.0273 1.891 1.94
6 77 0.07 0.075 0.0181 0.0144 2.011 2.186
7 42 0.15 0.01 0.0197 0.0207 1.983 2.179
8 22 0.12 0.14 0.014 0.0358 2.01 1.764

10 10 0.17 0.16 0.0136 0.0375 2.163 1.802

The second column contains the correspondingly censored sample size. The third and
fourth columns contain the sup-norm discrepancies Dq and DLS between the empirical F̂(x) and
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fitted tempered Snedecor–Fisher distributions F(q)
SF (x) and F(LS)

SF (x) for two types of estimators
(quantile (6), (7) and least squares (8), (9)) described above. The quantities Dq and DLS are as follows:

Dq = max
x∈X

∣∣∣F̂(x)− F(q)
SF (x)

∣∣∣, DLS = max
x∈X

∣∣∣F̂(x)− F(LS)
SF (x)

∣∣∣,
where X = (X1, . . . , Xn) is a sample. The rest columns contain the corresponding values of the
parameters estimated by these two methods.

According to Tables 1 and 2, the best accuracy is attained when the censoring threshold equals
3 days for Elista and 5–6 days for Potsdam. The least squares method leads to the more accurate
estimates. Figures 3 and 4 demonstrate examples of fitted tempered Snedecor–Fisher distribution to
precipitation in Potsdam and Elista, respectively.

Figure 3. Fitted tempered Snedecor–Fisher distribution to precipitation in Potsdam.

Figure 4. Fitted tempered Snedecor–Fisher distribution to precipitation in Elista.

3.2. Determining an Extreme Daily Precipitation Volume Based on Quantiles of the Tempered
Snedecor-Fisher Distribution

In applied problems dealing with extreme values there is a common tradition which, possibly, has
already become a prejudice, that statistical regularities in the behavior of extreme values necessarily
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obey one of well-known three types of extreme value distributions. In general, this is certainly
so, if the sample size is very large, that is, the time horizon under consideration is very wide.
In other words, the models based on the extreme value distributions have asymptotic character.
However, in real practice, when the sample size is finite and the extreme values of the process under
consideration are studied on the time horizon of a moderate length, the classical extreme value
distributions may turn out to be inadequate models. In these situations a more thorough analysis
may generate other models which appear to be considerably more adequate. This is exactly the case
discussed in the present paper. Methodically, this approach is similar to the classical techniques of
dealing with extreme observations [30]. The novelty of the proposed method is in a more accurate
specification of the distribution of extreme daily precipitation which turned out to be the tempered
Snedecor-Fisher distribution. Figure 5 demonstrates the algorithm of determination of an anomalously
heavy daily precipitation.

Figure 5. The algorithm of determination of an anomalously heavy daily precipitation.

It is easy to see that the the probability of the error of the first kind (occurring in the case where a
regularly large maximum value is erroneously recognized as an anomalously large outlier) for this test
is approximately equal to α, it is a small fixed positive number.

The application of this test to real data is illustrated by Figures 6 and 7. On these figures the lower
horizontal line corresponds to the threshold equal to the quantile of the fitted tempered Snedecor-Fisher
distribution of order 0.9. The middle and upper lines correspond to the quantiles of orders 0.95 and
0.99, respectively. Figure 6 contains all data. For the sake of vividness, on Figure 7 only one, maximum,
daily precipitation is exposed for each wet period.

From Figure 7 it is seen that during 58 years (from 1950 to 2007) in Potsdam there were 13 wet
periods containing anomalously heavy maximum daily precipitation volumes (at 99% threshold)
and 69 wet periods containing anomalously heavy maximum daily precipitation volumes (at 95%
threshold). Other maxima were ‘regular.’
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(a)

(b)

Figure 6. Testing daily precipitation within a wet period for abnormal heaviness: (a) Potsdam; (b) Elista,
all data.

(a)

(b)

Figure 7. Testing maximum daily precipitation within a wet period for abnormal heaviness:
(a) Potsdam; (b) Elista, data containing only maximum daily precipitation for every wet period.

During the same period in Elista there were only 2 wet periods containing anomalously heavy
maximum daily precipitation volumes (at 99% threshold) and 40 wet periods containing anomalously
heavy maximum daily precipitation volumes (at 95% threshold). Other maxima were ‘regular.’
The proportion of abnormal maxima exceeding 99% and 95% thresholds in Potsdam is quite adequate
(the latter is approximately five times greater than the former) whereas in Elista this proportion
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is noticeably different. Perhaps, this can be explained by the fact that, for Elista, heavy rains are
rare events.

3.3. Comparison With the Extreme Precipitation Detected by the Beta-Distributed Tests

At this section we present the results of comparison of the precipitation events from two samples
both having the length 20 rains over the selected time-period (Elista and Potsdam). The extreme rain is
detected as it passes the 95% quantile in the corresponding statistics. The first approach exploits the
Beta distribution and it is based on the ratio between the selected precipitation and total precipitation
sum over the sample. This test has been previously suggested in the paper [11]. It leads to the
threshold THbeta where all necessary parameters of the Beta distribution have been estimated directly
from the samples. The second threshold THSF is determined using the tempered Snedecor–Fisher
distribution (3) (see Section 2.1). The results of the comparison are presented in Table 3 where only
two maximum rains are accounted. The column Decision indicates whether the corresponding volume
is considered to be extreme according to the threshold values.

Table 3. An example of comparing the results with the previously proposed test.

City Volume Ratio THbeta THSF Decision

Potsdam 28.7 0.45 0.25 28.66 Yes/Yes
16 0.25 0.25 28.66 Yes/No

Elista 21.9 0.59 0.23 21.19 Yes/Yes
5.2 0.14 0.23 21.19 No/No

It is clearly seen that the Snedecor-Fisher test detects the extremal rains more accurately. Unlike
the beta test, it selects only the rains that substantially extend the average or other heavy rains but
which, however, are not extremely heavy. This means that the supposed scheme really can be applied
to detect and forecast the potentially dangerous phenomena and to separate them from the substantial
but not extremally big precipitations.

3.4. Determination Of Abnormalities Types Based on the Results of the Statistical Analysis

This section demonstrates the application of the statistical methodology based on the test (15)
to determine extremeness of the precipitation volumes within wet periods. This method allows
us to improve the quality of detecting events of such type in comparison with approaches based
on thresholds.

It should be emphasized that the parameter m of the Snedecor-Fisher distribution of the test
statistic SR0 (15) is tightly connected with the time horizon, the abnormality of precipitation within
which is studied. Indeed, the average duration of a wet/dry period (or the average distance between
the first days of successive wet periods) in Potsdam turns out to be 5.804 ≈ 6 days. So, one observation
of a total precipitation during a wet period, on the average, corresponds to approximately 6 days.
This means, that, for example, the value m = 5 corresponds to approximately one month on the time
axis, the value m = 15 corresponds to approximately 3 months, the value m = 60 corresponds to
approximately one year. Figure 8 presents a flowchart illustrating the proposed algorithm.

It is important that the test for whether a total precipitation volume during one wet period is
anomalously large can be applied to the observed time series in a moving mode. For this purpose,
a window (a set of successive observations) should be determined. The number of observations in
this set, say, m, is called the window width. The observations within a window constitute the sample
to be analyzed. After the test has been performed for a given position of the window, the window
moves rightward by one observation so that the leftmost observation at the previous position of the
window is excluded from the sample and the observation next to the rightmost observation is added
to the sample. The test is performed once more and so on. It is clear that each fixed observation falls in
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exactly m successive windows (from mth to N − m + 1, where N denotes the number of wet periods).
Two cases are possible: (i) the fixed observation is recognized as anomalously large within each of
m windows containing this observation and (ii) the fixed observation is recognized as anomalously
large within at least one of m windows containing this observation. In the case (i) the observation will
be called absolutely anomalously large with respect to a given time horizon (approximately equal
to m · 5.804 ≈ 6m days). In the case (ii) the observation will be called relatively anomalously large
with respect to a given time horizon. Of course, these definitions admit intermediate cases where the
observation is recognized as anomalously large for q · m windows with q ∈ [ 1

m , 1].

Figure 8. The algorithm of determination of extremeness of the precipitation volumes.

The results of the application of the test for a total precipitation volume during one wet period
to be anomalously large based on SR0 in the moving mode are shown on Figures 9–11 (Potsdam)
and Figures 12–14 (Elista) for different time horizons (30, 90 and 360 days). The notation Extrint
corresponds to the intermediate extremes (the fixed observation is recognized as anomalously large
within at least �m/2� windows containing this observation, here the symbol �·� denotes the next larger
integer). They are marked by circles on the figures. The absolutely extreme volumes are shown as
triangles, and the relatively ones are marked by squares.

It is seen that at relatively small time horizons, the test yields non-trivial and unobvious
conclusions. However, as the time horizon increases, the results of the test become more expected.
At small time horizons there are some big precipitation volumes that are not recognized as abnormal.
At large time horizons there are almost no regular big precipitation volumes at significance level
α = 0.05 whereas at the smaller significance level α = 0.01 there are some regular big precipitation
volumes which are thus not recognized as abnormal.
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(a)

(b)

Figure 9. Abnormal precipitation volumes, Potsdam, time horizon = 30 days, significance levels
α = 0.05 (a) and α = 0.01 (b).

(a)

(b)

Figure 10. Abnormal precipitation volumes, Potsdam, time horizon = 90 days, significance levels
α = 0.05 (a) and α = 0.01 (b).
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(a)

(b)

Figure 11. Abnormal precipitation volumes, Potsdam, time horizon = 360 days, significance levels
α = 0.05 (a) and α = 0.01 (b).

(a)

(b)

Figure 12. Abnormal precipitation volumes, Elista, time horizon = 30 days, significance levels
α = 0.05 (a) and α = 0.01 (b).
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(a)

(b)

Figure 13. Abnormal precipitation volumes, Elista, time horizon = 90 days, significance levels
α = 0.05 (a) and α = 0.01 (b).

(a)

(b)

Figure 14. Abnormal precipitation volumes, Elista, time horizon = 360 days, significance levels
α = 0.05 (a) and α = 0.01 (b).

4. Conclusions and Discussion

In this paper, it is shown that the negative binomial distribution can be fruitful for the description
of the statistical regularities in the duration of wet periods observed in practice and can be used as a
base for obtaining the model for the extreme precipitation per wet period and, consequently, for testing
the hypothesis that the specific precipitation volume considered over a given wet period is anomalously
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extreme. Several approaches to the definition of an anomalously extreme precipitation are proposed.
This is an important issue, since up until now there has not been a single-valued criterion for which
precipitation volume should be regarded as anomalous and which is not. Obviously, one and the same
volume can be regarded normal in a region where precipitations are quite frequent, for instance in
tropical zones and at the time it can be considered absolutely anomalous in a dry region, say, in a
desert. The proposed tests consider the relative part of precipitation and the time scale and, therefore,
are free from the aforementioned disadvantage. Moreover, the proposed techniques of testing the
corresponding hypotheses can be easily numerically implemented.

The models and methods described in the paper can be applied to various time series in order
to detect anomalously extreme values. For example, the considered algorithms can be used for other
geophysical time series such as wind speed, heat fluxes and so forth, both univariate or multivariate.
This can be important for global climate prediction models, for forecasting and evaluation of dangerous
phenomena and processes. One more possible useful application of these models is filling the gaps in
precipitation time series due to missing observations. Indeed, the statistically estimated parameters of
the proposed models can be used as additional attributes in training samples when machine learning
techniques or Artificial Intelligence systems are used for the simulation of missing data without actual
extension of available information.
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Abstract: In this paper, we consider the Wiener–Poisson risk model, which consists of a Wiener
process and a compound Poisson process. Given the discrete record of observations, we use a
threshold method and a regularized Laplace inversion technique to estimate the survival probability.
In addition, we also construct an estimator for the distribution function of jump size and study its
consistency and asymptotic normality. Finally, we give some simulations to verify our results.

Keywords: Wiener–Poisson risk model; survival probability; Nonparametric threshold estimation

1. Introduction

Let S = {St}t≥0 with S0 = 0 be a compound Poisson process defined as

St =
Nt

∑
i=1

γi, t ≥ 0,

where {Nt}t≥0 is a Poisson process with unknown intensity λ > 0, and γ1, γ2, γ3, ... are independent
and identically distributed positive sequence of random variables with unknown distribution function
F supported on (0, ∞).

The Wiener–Poisson risk process is defined by

Xt = x + ct + σWt −
Nt

∑
i=1

γi, t ≥ 0, (1)

where x is a given positive constant, σ > 0 is an unknown constant, the corresponding process
{Nt, t ≥ 0} is called the claim number process, {γi}i=1,2,... is a sequence of claims, and {Wt}t≥0

is a standard Brownian motion. Suppose that {Nt}t≥0, {Wt}t≥0 and {γi}i=1,2,... are independent
of each other, and the mean and variance of claim are finite, i.e., μγ =

∫ ∞
0 xF(dx) < ∞, σ2

γ =∫ ∞
0 x2F(dx)− μ2

γ < ∞. Further, we assume that the risk model in Equation (1) has a relative safety
loading ω = c

λμγ
− 1 > 0. Let τ(x) = inf{t > 0; Xt ≤ 0, X0 = x}. The survival probability of the risk

model in Equation (1) is defined by:

Φ(x) = P (τ(x) = ∞) , (2)

and Ψ(x) = 1 − Φ(x), the probability of ruin.
In the last few decades, many works have been contributed to the survival probability for the

risk model in Equation (1) and its extended risk model. In [1], the author first introduced the risk
model in Equation (1) and established an asymptotic estimate for Ψ(x). In [2], the authors showed that
Φ(x) satisfies a defective renewal equation. By renewal theory, they obtained the Pollaczeck–Khinchin
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formula of Φ(x). Accurate calculation and approximation for Ψ(x) has always been an inspiration
and an important source of technological development for actuarial mathematics (see, e.g., [3–9]).
Although various approximations to the probability of ruin (e.g., importance sampling or saddle-point
approximations) are now available, developing alternative approximations of different nature is still
an interesting and practical problem.

In recent years, many authors studied the ruin probability by using statistical methods (see,
e.g., [10–18]). In [17], the author assumed that {Xtn

i
|tn

i = ihn; i = 0, 1, 2, ..., n} and {γ1, γ2, ..., γNtnn
} are

observed, where hn = tn
i − tn

i−1 is the sampling interval and the time of claims are known. The author
constructed an estimator for Gerber–Shiu function and obtained its asymptotic property. Please refer
to Equation (1.2) in [17] for the details of Gerber–Shiu function.

In our work, we suppose that a sample {Xtn
1
, Xtn

2
, Xtn

3
, ..., Xtn

n} can be observed, where hn = tn
i −

tn
i−1 is the sampling interval. However, we cannot observe the exact time and size of claims. To estimate

Φ(x), we have to estimate F, λ, λμγ and σ2. Given the discrete record of observations, we need to judge
whether a claim occurs in the interval (tn

i−1, tn
i ]. The threshold method from [19–22] is to determine

that a single jump has occurred within (tn
i−1, tn

i ] if and only if the increment |ΔiX| = |Xtn
i
− Xtn

i−1
| is

larger than a suitable threshold function. By the threshold method and the work in [21,22], we can
estimate F, λ, μγ and σ2.

In [14,17], the authors estimated the ruin probability and Gerber–Shiu function by a regularized
Laplace inversion technique. Using the threshold method and the work in [23], it is easy to obtain
an estimator for the Laplace transform of Φ(x). To estimate Φ(x), the regularized Laplace inversion
technique is used. Finally, we also obtain a rate of convergence for the estimator of Φ(x) in a sense of
the integrated squared error (ISE).

This paper is organized as follows. In Section 2, we give some estimators for σ2, λμγ, λ, F and its
Laplace–Stieltjes transform. In Section 3, we study the asymptotic properties for the estimators. Finally,
we give some conclusions in Section 5. All the technical proofs are presented in Appendix A.

2. Estimation of Survival Probability

To give the estimators for σ2, λμγ, λ, F and the Laplace transform of F, we introduce the
following filter:

Cn
i (ϑ(hn)) = {ω ∈ Ω; |ΔiX(ω)| > ϑ(hn)}, (3)

where ϑ(hn) is a threshold function and Dn
i (ϑ(hn)) is a complement of Cn

i (ϑ(hn)). In [19,20],

the threshold function ϑ(hn) satisfies limhn→0 ϑ(hn) = 0 and limhn→0

√
hn log( 1

hn
)

ϑ(hn)
= 0. In [21], the author

gave an expression of threshold function ϑ(hn) = Lhb
n, where L > 0 is a constant and b ∈ (0, 1

2 ).
Obviously, the expression of ϑ(hn) from [21] satisfies the two conditions. In our work, the expression
of ϑ(hn) is similar to that in [21].

We first estimate F. Using {|ΔiX|; 0 ≤ i ≤ n, ICn
i (ϑ(hn)) = 1} and empirical distribution function,

we can try to construct an estimator of F as follows:

F̂n(u) =
1

∑n
i=1 ICn

i (ϑ(hn))

n

∑
i=1

I{|ΔiX|≤u}ICn
i (ϑ(hn)), u ≥ 0. (4)

By Equations (3.4) and (3.6) in [21], the estimators of σ2 and λ are

σ̃2n =
∑n

i=1 |ΔiX − chn|2IDn
i (ϑ(hn))

Tn
, λ̃n =

∑n
i=1 ICn

i (ϑ(hn))

Tn
.
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By Equation (3.10) in [21], an estimator of λμγ is given by

λ̃μγn =
∑n

i=1 |ΔiX|ICn
i (ϑ(hn))

Tn
.

Let ρ =
λμγ

c . Obviously, the estimator of ρ is given by

ρ̃n =
1
c

∑n
i=1 |ΔiX|ICn

i (ϑ(hn))

Tn
.

The Laplace transform of F is defined by lF = E[e−sγ1 ] =
∫ ∞

0 e−suF(du). An estimator of lF is
given by

l̃Fn(s) =
∑n

i=1 e−s|ΔiX|ICn
i (ϑ(hn))

∑n
i=1 ICn

i (ϑ(hn))
,

where s ∈ E and E is a compact subset of (0, ∞).
By the work in [23], the Laplace transform of Φ(x) can be obtained as follows:

LΦ(s) =
∫ ∞

0
e−sxΦ(x)dx

=
1 − ρ

D(s)
, s > 0 (5)

where ρ = λμ
c and D(s) = s + σ2

2c s2 − λ
c (1 − lF(s)).

Let us define an estimator of LΦ(s) as follows:

L̃Φ(s) =
1 − ρ̃n

D̃(s)
, D̃(s) = s +

σ̃2n

2c
s2 − λ̃n

c
(1 − l̃Fn(s)), s > 0. (6)

To estimate Φ(x), we use the L2-inversion method proposed from [24]. Now, we give the
L2-inversion method by Definition 1. We say that f ∈ L2(0, ∞) if (

∫ ∞
0 | f (t)|2dt)

1
2 < ∞.

Definition 1. Let m > 0 be a constant. The regularized Laplace inversion L−1
m : L2(0, ∞) → L2(0, ∞) is

given by

L−1
m g(t) =

1
π2

∫ ∞

0

∫ ∞

0
Ψm(y)y−

1
2 e−tvyg(v)dvdy (7)

for a function g ∈ L2(0, ∞) and t ∈ (0, ∞), where

Ψm(y) =
∫ am

0
cosh(πx) cos(x log y)dx

and am = π−1 cosh−1(πm) > 0.

For further information, and details of L−1
m , please refer to [24].

To use Definition 1, it requires to verify L̃Φ(s) ∈ L2(0, ∞). As n is sufficiently large, for P-almost
all ω ∈ Ω and s > 0, we have

P({ω ∈ Ω; (1 − ρ̃n)s ≤ D̃(s) ≤ s +
σ̃2n

2c
s2}) = 1. (8)

From Equations (6) and (8), it is obvious that L̃Φ(s) /∈ L2(0, ∞). The L2-inversion method in
Definition 1 cannot be applied at once.
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Therefore, to use Definition 1, we have to amend L̃Φ(s).
Let

Φθ(x) = e−θxΦ(x), x > 0

for arbitrary fixed θ > 0. It is obvious that

LΦθ
(s) = LΦ(s + θ), s > 0.

An estimator of LΦθ
is given by

L̃Φθ
(s) = L̃Φ(s + θ), s > 0.

Obviously, L̃Φθ
∈ L2(0, ∞).

Finally, an estimator of Φ(x) is given by

Φ̃m(n)(x) = eθx ˜Φθ,m(n)(x), x > 0, (9)

where ˜Φθ,m(n)(x) = L−1
m(n) L̃Φθ

(s) and m(n) > 0.

3. Asymptotic Properties

According to Theorem 3.1 in [19], the author assumed that σ < Q and γi ≥ Γ with Q > 0, Γ > 0.
In our work, Assumption 1 is used to prove the asymptotic properties of estimators.

Assumption 1. There exist two positive constants Q and Γ such that σ < Q and P({ω ∈ Ω; γi ≥ Γ}) = 1
for i = 1, 2, ....

Let F̄ = 1 − F. With Equation (4), an estimator of F̄ is given by

¯̂Fn(u) =
1

∑n
i=1 ICn

i (ϑ(hn))

n

∑
i=1

I{|ΔiX|>u}ICn
i (ϑ(hn)). (10)

Let N (m, n) be a normal distribution with expectation m and variance n. Theorem 1 gives the
asymptotic properties of F̂n(u).

Theorem 1. Suppose that Tn = nhn → ∞, nh2
n → 0, hn → 0 as n → ∞ and Assumption 1 is satisfied, then

√
Tn

(
¯̂Fn(u)− F̄(u)

)
D−→ N (0,

F(u)(1 − F(u))
λ

). (11)

Obviously,
√

Tn
(

F̂n(u)− F(u)
) D−→ N (0,

F(u)(1 − F(u))
λ

).

Remark 1. By Dvoretzky–Kiefer–Wolfowitz inequality, we have

P( sup
u∈[0,∞)

|F̂n(u)− F(u)| > x) ≤ Ce−2λTnx2
, x > 0,

where C is a positive constant, not depending on F. Note that this inequality may be expression in the form :

P(
√

Tn sup
u∈[0,∞)

|F̂n(u)− F(u)| > x) ≤ Ce−2λx2
, x > 0,
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which clearly demonstrate that

√
Tn sup

u∈[0,∞)

|F̂n(u)− F(u)| = OP(1).

The asymptotic properties of σ̃2n are given by the following Lemma 1.

Lemma 1. Suppose that Tn = nhn → ∞, nh2
n → 0 and hn → 0 as n → ∞, then

σ̃2n
P−→ σ2, n → ∞. (12)

√
n(σ̃2n − σ2)

D−→ N (0, 2σ4), n → ∞. (13)

Lemma 2. Suppose that Tn = nhn → ∞, nhβ
n → 0 for some β ∈ (1, 2] , hn → 0 as n → ∞ and Assumption 1

is satisfied. Then,

λ̃n
P−→ λ, sup

{s|s∈E}
|λ̃nl̃Fn(s)− λlF(s)| P−→ 0, (14)

√
Tn(λ̃n − λ)

D−→ N (0, λ), (15)

ρ̃n
P−→ ρ (16)

and √
n(ρ̃n − ρ)

D−→ N (0,
λσ2

c2 ), (17)

as n → ∞.

Let ‖ f ‖2
B =

∫ B
0 | f (t)|2dt for any function f and B > 0. Theorem 2 gives a rate of convergence for

Φ̃m(n)(x) in a sense of ISE.

Theorem 2. Suppose that there exists a constant K > 0 such that 0 ≤ Φ′(x) = g(x) ≤ K < ∞ and the
conditions in Lemma 2 are satisfied. Then, for m(n) =

√
Tn

log Tn
and for any constant B > 0, we have

‖Φ̃m(n) − Φ‖2
B = OP((log Tn)

−1), n → ∞.

Remark 2. The explicit expression for Φ̃m(n)(x) is

Φ̃m(n)(x) =
exθ

π2

∫ ∞

0

∫ ∞

0
e−xsy L̃Φθ

(s)Ψm(n)(y)y
− 1

2 dsdy

where Ψm(n)(y) =
∫ am(n)

0 cosh(πx) cos(x log(y))dx and am(n) = π−1 cosh−1(πm(n)) > 0 and

m(n) =
√

Tn
log Tn

.

When c, λ, σ, F, θ, ϑ(hn) and sample size n are known, Φ̃m(n)(x) can be evaluated with the command
integral2( f ; 0; ∞; 0; ∞) of Matlab.

4. Simulation

If F(x) = 1 − e−
1

μγ
x, the survival probability is given by

Φ(x) = 1 −
r1 +

1
μγ

+
2λμγ

σ2

r1 − r2
er1x −

r2 +
1

μγ
+

2λμγ

σ2

r2 − r1
er2x, x ≥ 0, (18)

133



Mathematics 2019, 7, 506

where r2 < r1 < 0 are negative roots of the following equation

1
2

σ2s + c − λ

s + 1
μγ

= 0.

By the work in [25], Equation (18) is obtained easily.
Let c = λ = 10, μγ = 1

2 , σ = 5, θ = 0.075, ϑ(hn) = hb
n, b = 1

4 and hn = n− 4
5 .

Firstly, we computed L̃Φθ
(s). In Figure 1, we plot the mean points with sample sizes n =5000,

10,000, 30,000, 50,000, 80,000, which were computed based on 5000 simulation experiments.

3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

s

La
pl

ac
e 

tr
an

sf
or

m

 

 

true value
estimators with n=5000
estimators with n=10000
estimators with n=30000
estimators with n=50000
estimators with n=80000

Figure 1. The estimator of LΦθ
with sample sizes n =5000, 10,000, 30,000, 50,000, 80,000.

In Remark 2, Φ̃m(n)(u) is a double complex integrals. Using Matlab to compute Φ̃m(n)(u) would
take a long time. As shown in Figure 1, L̂Φθ

is very close to LΦθ
as n ≥ 30,000. To improve

computational efficiency, let

Φp(x) =
exθ

π2

∫ ∞

0

∫ ∞

0
e−xsy[L̂Φθ

(s)]n=30000Ψp(y)y−
1
2 dsdy,

where [L̂Φθ
(s)]n=30000 =

1− 1

c30000(30000)
− 4

5
∑30000

k=1 (c(30000)−
4
5 −Zk)ID30000

k
1

c(30000)
− 4

5
( 1

30000 ∑30000
k=1 esZk−1)

, Ψp(y) =
∫ ap

0 cosh(πx) cos(x log(y))dx

and ap = π−1 cosh−1(πp) > 0.
In Figure 2, we plot the mean points with sample sizes n = 30,000 and p = 100, 500, 800, 1000, 3000,

which were computed based on 5000 simulation experiments.
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Figure 2. Φp(x) with sample size n = 30,000 and p = 100, 500, 800, 1000, 3000
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5. Conclusions

In this paper, we use the threshold estimation technique and regularized Laplace inversion
technique to constructed an estimator of survival probability for the Wiener–Poisson risk model.
The rate of convergence for the estimator is a logarithmic rate. We adopt a method proposed by
Cai et al. [26] to improve the speed in simulated calculation. The further work is to improve the speed
of convergence for the estimator. We will combine the threshold estimation technique with Fourier
transform (inversion) technique to construct an estimator of survival probability. We hope some further
studies will be done when the risk model is the compound Poisson model with the barrier dividend
strategy and investment. The Gerber–Shiu function and dividend function will be estimated by some
statistical methods.
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Appendix A. Proofs of Theorems

Proof of Lemma 1. The proof of Lemma 1 is easily obtained by Theorem 3.1 in [21].

Proof of Lemma 2. The proof of Equation (14) is given as Theorem 3.2 in [21]. By Theorem 3.1 in [19],
we can get Equation (15). It is easy to get Equations (16) and (17) by Proposition 3.4 in [19] and
Theorem 3 in [20].

To prove Theorem 1, we need the following Proposition, which can be easily obtained in
Section 3.2 of [19].

Proposition A1. Following from the condition of Theorem 1, for any ε > 0,

lim
n→∞

P
(∣∣∣|ΔiX|ICn

i (ϑ(hn)) − γτ(i) I{Δi N≥1}
∣∣∣ > ε

)
= 0, (A1)

where γτ(i) is the size of the eventual jump in time interval (tn
i−1, tn

i ].

Proof of Theorem 1. By Equation (10),

√
Tn

(
¯̂Fn(u)− F̄(u)

)
=

J
λ̃n

, (A2)

where

J =
∑n

i=1

(
I{|ΔiX|>u} − F̄(u)

)
ICn

i (ϑ(hn))√
Tn

.

As n → ∞, the expectation of J is

lim
n→∞

E[J] = lim
n→∞

n√
Tn

E
[
(I{|ΔiX|>u} − F̄(u))ICn

i (ϑ(hn))

]
= lim

n→∞

n√
Tn

[
P(|ΔiX|ICn

i (ϑ(hn)) > u)− F̄(u)P(|ΔiX| > ϑ(hn))
]

.
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By Proposition A1, we have

lim
n→∞

P(|ΔiX|ICn
i (ϑ(hn)) > u) = lim

n→∞
P(γτ(i) I{Δi N≥1} > u) = F̄(u)(λhn + o(hn)). (A3)

By the work in [19], it is obvious that

lim
n→∞

P(|ΔiX| > ϑ(hn)) = λhn + o(hn). (A4)

Therefore,
lim

n→∞
E[J] = 0.

As n → ∞, the variance of J is

lim
n→∞

Var[J] = lim
n→∞

n
Tn

Var
[
(I{|ΔiX|>u} − F̄(u))ICn

i (ϑ(hn))

]
= lim

n→∞

n
Tn

E[I{|ΔiX|ICn
i (ϑ(hn))>u}] + lim

n→∞

n
Tn

E[(F̄(u))2ICn
i (ϑ(hn))].

− lim
n→∞

n
Tn

E[2F̄(u)I{|ΔiX|ICn
i (ϑ(hn))>u}].

By Equations (A3) and (A4),

lim
n→∞

Var[J] = λF̄(u)(1 − F̄(u)).

With the central limit theorem, Slutsky’s theorem and Lemma 2, we have

√
Tn

(
¯̂Fn(u)− F̄(u)

)
D−→ N (0,

F̄(u)(1 − F̄(u))
λ

), n → ∞.

To prove Theorem 2, we need the following Lemma A1.

Lemma A1. Suppose that
∫ ∞

0 [t(t
1
2 f (t))′]2t−1dt < ∞ for a function f ∈ L2(0, ∞) with the derivative f ′.

Then,
‖L−1

n L f − f ‖ = O
(
(log n)−

1
2

)
, n → ∞.

By Theorem 3.2 in [24], the proof of Lemma A1 can be found.

Proof of Theorem 2. By Equation (9),

‖Φ̃m(n) − Φ‖2
B ≤ e2θB‖Φ̃θ,m(n) − Φθ‖2

B

≤ 2e2θB{‖L−1
m(n) L̃Φθ

− L−1
m(n)LΦθ

‖2 + ‖Φθ,m(n) − Φθ‖2}. (A5)
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Let Φ′
θ = gθ . Now, we show that Φθ,m(n) satisfies the condition of Lemma A1.

∫ ∞

0
[x(

√
xΦθ(x))′]2 1

x
dx =

∫ ∞

0
[x(

1
2
√

x
Φθ(x) + x

√
xgθ(x))]2

1
x

dx

≤
∫ ∞

0
2

1
x
[x

1
2
√

x
Φθ(x)]2 +

∫ ∞

0
2

1
x
[x
√

xgθ(x)]2dx

=
∫ ∞

0

1
2

Φ2
θ(x)dx + 2

∫ ∞

0
x2g2

θ(x)dx

≤
∫ ∞

0

1
2

e−2θxdx + 2
∫ ∞

0
x2[g(x)e−θx − θΦ(x)e−θx]2dx

≤ 1
4θ

+ 4
∫ ∞

0
x2g2(x)e−2θxdx + 4θ2

∫ ∞

0
Φ2(x)x2e−2θxdx

≤ 1
4θ

+ 4(K2 + θ2)
∫ ∞

0
x2e−2θxdx < ∞.

Therefore, by Lemma A1, we have

‖Φθ,m(n) − Φθ‖2 = O(
1

log m(n)
), n → ∞. (A6)

By Equations (5) and (6),

‖L̃Φθ
− Lθ‖2 =

∫ ∞

0

(
(1 − ρ)(D̃(s + θ)− D(s + θ))

D̃(s + θ)D(s + θ)
+

(ρ̃n − ρ)

D̃(s + θ)

)2

ds. (A7)

Exploiting Equation (8) and P({ω ∈ Ω; ρ̃n = 1}) = 0, the right-hand side of Equation (A7) is
bounded by

2
∫ ∞

0

(D̃(s + θ)− D(s + θ))2

(s + θ)4(1 − ρ̃n)2 ds + 2
∫ ∞

0
(

ρ̃n − ρ

1 − ρ̃n
)2 1
(s + θ)2 ds. (A8)

By Lemmas 1 and 2, the term

D̃n(s + θ)− D(s + θ) =
(s + θ)2

2c
(σ̃2n − σ2) +

1
c

(
(λ − λ̃n) + (λ̃nl̃Fn(s + θ)− λlF(s + θ))

)
= OP(T

− 1
2

n ) +
1
c

NTn

Tn

(∫ ∞

0
e−(s+θ)x(F̂n(dx)− F(dx))

)
= OP(T

− 1
2

n ) +
1
c

NTn

Tn

(∫ ∞

0
(s + θ)e−(s+θ)x(F̂n(x)− F(x))dx

)
≤ OP(T

− 1
2

n ) +
1
c

NTn

Tn
sup

x∈[0,∞)

|F̂n(x)− F(x)|

= OP(T
− 1

2
n ) (A9)

The last equality is obtained from Remark 1.
By Equation (A9) and Lemma 2, we have

2
∫ ∞

0

(D̃(s + θ)− D(s + θ))2

(s + θ)4(1 − ρ̃n)2 ds = OP(T−1
n )

and

2
∫ ∞

0
(

ρ̃n − ρ

1 − ρ̃n
)2 1
(s + θ)2 ds = oP(T−1

n ).
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Recall that ‖L−1
m(n)‖2 ≤ πm2(n) (see [24]), so

‖L−1
m(n)‖2‖L̃Φθ

− LΦθ
‖2 = OP(

m2(n)
Tn

). (A10)

Combining Equations (A6) and (A10), we have

‖Φ̃m(n) − Φ‖2
B = OP(

m2(n)
Tn

) + OP(
1

log m(n)
). (A11)

with an optimal m(n) =
√

Tn
log Tn

balancing the the two right-hand terms in Equation (A11), the order

becomes OP((log Tn)−1).
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Abstract: We consider a multidimensional inhomogeneous birth-death process. In this paper,
a general situation is studied in which the intensity of birth and death for each coordinate (“each type
of particle”) depends on the state vector of the whole process. A one-dimensional projection of
this process on one of the coordinate axes is considered. In this case, a non-Markov process
is obtained, in which the transitions to neighboring states are possible in small periods of time.
For this one-dimensional process, by modifying the method previously developed by the authors of
the note, estimates of the rate of convergence in weakly ergodic and null-ergodic cases are obtained.
The simplest example of a two-dimensional process of this type is considered.

Keywords: multidimensional birth-death process; inhomogeneous continuous-time Markov chain;
rate of convergence; one dimensional projection

1. Introduction and Preliminaries

Multidimensional birth-death processes (BDP) were objects of a number of studies in queueing
theory and other applied fields. The authors of these papers studied different special classes of
homogeneous multidimensional BDPs under some restrictions and considered fluid approximations [1],
simulations [2–6], large deviations [7], stability [8,9], and other features. The problem of the product
from solutions for such models was considered, for instance, in [10,11] (also, see the references
therein). If the process is inhomogeneous and the transition intensities have a more general form,
then the problem of computation of any probabilistic characteristics of the queueing model is much
more difficult.

In the general case, it is impossible to obtain explicit solutions and their characteristics, as well
as to construct any significant characteristics of the processes, as can be seen from the above list of
works. This paper fills this gap and proposes a method of research and evaluation allowing one to
estimate the rate of convergence for a one-dimensional projection of the multidimensional birth-death
process. The approach also makes it possible to evaluate the main characteristics of the projection, as is
demonstrated by the simplest example of an inhomogeneous two-dimensional process.

The background of our approach is the method of investigation of inhomogeneous BDP, see the
detailed discussion and some preliminary results in [12–15]. Estimates for the state probabilities of
one-dimensional projections of a multidimensional BDP were studied in [16,17]. However, within that
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methodology, it was impossible to obtain estimates of the rate of convergence, since the logarithmic
norm of the operator cannot be applied to the corresponding nonlinear systems.

Here, we substantially modify that approach so that it can be used for estimation and
construction of some explicit bounds on the rate of convergence for one-dimensional projection
of a multidimensional BDP. Namely, in Section 2, we develop a simple but efficient method for
bounding the rate of convergence for an arbitrary (which may be nonlinear, depending on the number
of parameters and so on) differential equation in the space of sequences l1, and in Section 3, we apply
this method to bounding the rate of convergence for one-dimensional projections of BDP.

Let X(t) = (X1(t), ..., Xd(t)) be a d-dimensional BDP such that in the interval (t, t + h),
the following transitions are possible with order h: birth of a particle of type j, death of a particle of
type j.

Let λj,m(t) be the corresponding birth rate (from the state m = (m1, ..., md) = ∑d
i=1 miei to the

state m + ej) and let μj,m(t) be the corresponding death intensity (from the state m = (m1, ..., md) =

∑d
i=1 miei to the state m − ej). Denote pm(t) = Pr (X(t) = m).

To consider the existence and uniqueness, we renumber the states (only in this section),
transforming the process into a one-dimensional one. Now, let the (finite or countable) state space
of the vector process under consideration be arranged in a special order, say 0, 1, . . . . Denote by
pi(t), the corresponding state probabilities, and by p(t), the corresponding column vector of state
probabilities. Applying our standard approach (see details in [12,14,15]), we suppose in addition that all
intensities are nonnegative functions locally integrable on [0, ∞), and, moreover, in new enumeration,

Pr (X(t + h) = j/X(t) = i) =

⎧⎪⎨⎪⎩
qij(t)h + αij(t, h), j �= i,

1 − ∑
k �=i

qik(t)h + αi(t, h), j = i,
(1)

where qij(t) are the corresponding transition intensities and all αi(t, h) are o(h) uniformly in i, that is,
limh→0

1
h supi |αi(t, h)| = 0, for any t ≥ 0.

We suppose that λj,m(t) ≤ L < ∞, μj,m(t) ≤ M < ∞, for any j, m and almost all t ≥ 0.
The probabilistic dynamics of the process is represented by the forward Kolmogorov system:

dp

dt
= A(t)p(t), (2)

where A(t) is the corresponding infinitesimal (intensity) matrix.
Throughout the paper, we denote the l1-norm by ‖ · ‖, i.e., ‖x‖ = ∑ |xi|, and ‖B‖ = supj ∑i |bij|

for B = (bij)
∞
i,j=0.

Let Ω be the set all stochastic vectors, i.e., l1-vectors with nonnegative coordinates and unit norm.
We have the inequality ‖A(t)‖ ≤ 2d (L + M) < ∞, for almost all t ≥ 0. Hence, the operator function
A(t) from l1 into itself is bounded for almost all t ≥ 0 and is locally integrable on [0; ∞). Therefore, we
can consider (2) as a differential equation in the space l1 with bounded operator.

It is well known, see [18], that the Cauchy problem for differential Equation (2) has unique
solution for an arbitrary initial condition, and p(s) ∈ Ω implies p(t) ∈ Ω for t ≥ s ≥ 0.

We recall that a Markov chain X(t) is called null-ergodic, if all pi(t) → 0 as t → ∞ for any initial
condition, and it is called weakly ergodic, if ‖p∗(t)− p∗∗(t)‖ → 0 as t → ∞ for any initial condition
p∗(0), p∗∗(0), see for instance [12,14].

2. Bounds on the Rate of Convergence for a Differential Equation

Consider a general (linear or nonlinear) differential equation

dy

dt
= Hy(t), (3)
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in the space of sequences l1 under the assumption of existence and uniqueness of a solution for any
initial condition y(0).

Let H = (hij), where all hij depend on some parameters (for instance, on y, t, . . .).
We have

dyi
dt

= hiiyi + ∑
j �=i

hijyj.

Now, if yi > 0, then

d|yi|
dt

=
dyi
dt

= hii|yi|+ ∑
j �=i

hijyj ≤ hii|yi|+ ∑
j �=i

|hij||yj|,

and if yi < 0, then we also have

d|yi|
dt

= −dyi
dt

= −hiiyi − ∑
j �=i

hijyj ≤ hii|yi|+ ∑
j �=i

|hij||yj|.

Finally, using the continuity of all coordinates of the solution and the absolute convergence of all
series, we obtain the estimate

d‖y‖
dt

= ∑
i

d|yi|
dt

≤ ∑
i

(
hii|yi|+ ∑

j �=i
|hij||yj|

)
≤ β∗‖y‖, (4)

where

β∗ = sup
i

(
hii + ∑

j �=i
|hji|
)

. (5)

Remark 1. One can see that inequality (4) implies the bound

‖y(t)‖ ≤ e
∫ t

0 β∗ du‖y(0)‖. (6)

Moreover, if H is bounded for any t linear operator function from l1 to itself, then β∗(t) = γ(H(t)) is the
corresponding logarithmic norm of H(t), see [12–15].

On the other hand, in a nonlinear situation, β∗(t) yields a generalization of this notion.

3. Bounds on the Rate of Convergence for a Projection of Multidimensional BDP

Again, consider the forward Kolmogorov system (2) in the original vector form. Then, we have

dpm

dt
= ∑

l
λl,m−el

(t)pm−el
+ (7)

∑
l

μl,m+el
(t)pm+el

− ∑
l
(λl,m + μl,m) (t)pm,

for any m.

In this section, we consider the one-dimensional process Xj(t) for a fixed j. Denote
xk(t) = Pr

(
Xj(t) = k

)
. Then, xk(t) = ∑m,mj=k pm(t). The process Xj(t) has nonzero jump rates only

for unit jumps (±1), namely, if Xj(t) = k, then for small positive h only the jumps Xj(t + h) = k ± 1
are possible with positive intensities, say λ̃k and μ̃k, respectively. Moreover, (7) implies the equalities

λ̃kxk(t) = ∑
m,mj=k

λj,m(t)pm(t), (8)
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μ̃kxk(t) = ∑
m,mj=k

μj,m(t)pm(t), (9)

and hence

λ̃k =
∑m,mj=k λj,m(t)pm(t)

∑m,mj=k pm(t)
, (10)

and

μ̃k =
∑m,mj=k μj,m(t)pm(t)

∑m,mj=k pm(t)
. (11)

Then, Xj(t) is a (in general, non-Markovian) birth and death process with birth and death
intensities λ̃k and μ̃k, respectively, (that is, it is a process with possible infinitesimal jumps ±1,
the intensities of which depend on t and on the initial condition for the original multidimensional
process X(t).)

For any fixed initial distribution p(0) and any t > 0, the probability distribution p(t) is unique.
Hence, λ̃k = λk (p(0), t) and μ̃k = μk (p(0), t) uniquely define the system

dx

dt
= Ãx(t), (12)

for the vector x(t) of state probabilities of the projection Xj(t) under the given initial condition.
Obviously, different initial conditions specify different systems.

Here, Ã is the corresponding three-diagonal “birth-death” transposed intensity matrix such that
all off-diagonal elements are nonnegative and all column-wise sums are equal to zero.

Let for all m and any t ≥ 0

lj ≤ λj,m(t) ≤ Lj, mj ≤ μj,m(t) ≤ Mj. (13)

Then, from (10) and (11), we obtain the two-sided bounds

lj ≤ λ̃k ≤ Lj, mj ≤ μ̃k ≤ Mj, (14)

for any k, any t, and any initial conditions.

1. Let the state space of Xj(t) be countable and

Mj < lj. (15)

Put σ =
√

Mj/lj < 1, δn = σn, n ≥ 0, x̃n = δnxn, and x̃ = (x̃0, x̃1, . . . ). Let Λ be a diagonal

matrix, Λ = diag (δ0, δ1, . . . ).
Note that in this situation, ‖x̃(t)‖ = ∑∞

i=0 δkxk(t), and ‖x̃(t)‖ → 0 as t → ∞ implying null
ergodicity of Xj(t), that is pk(t) = Pr

(
Xj(t) = k

)→ 0 as t → ∞ for any k.
Then,

dx̃

dt
= ΛÃΛ−1x̃(t). (16)

Then, we have

λ̃k + μ̃k − δk+1
δk

λ̃k − δk−1
δk

μ̃k ≥ λ̃k (1 − σ)− μ̃k (1/σ − 1) ≥ (17)

lj (1 − σ)− Mj (1/σ − 1) =
(√

lj −
√

Mj

)2
= α∗,
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implying the estimate

d‖x̃‖
dt

≤ sup
k

(
δk+1

δk
λ̃k +

δk−1
δk

μ̃k − λ̃k − μ̃k

)
‖x̃‖ =

− inf
k

(
λ̃k + μ̃k − δk+1

δk
λ̃k − δk−1

δk
μ̃k

)
‖x̃‖ ≤ −α∗‖x̃‖, (18)

and the following statement.

Theorem 1. Let (15) hold for some j. Then, Xj(t) is null-ergodic and the following bounds hold:

‖x̃(t)‖ ≤ e−α∗t‖x̃(0)‖, (19)

and
Pr
(
Xj(t) ≤ n/Xj(0) = k

) ≤ σk−n · e−α∗t. (20)

Hence,
Pr
(
Xj(t) > n/Xj(0) = k

)
> 1 − σk−n · e−α∗t, (21)

and Pr
(
Xj(t) > n/Xj(0) = k

)→ 1 as t → ∞, for any n, k.

Remark 2. It should be noted that the above requirements are imposed only on this one coordinate.

2. Let
Lj < mj, α∗ = lj + mj − 2

√
Lj Mj > 0. (22)

We have x(t) ∈ Ω for any t ≥ 0. Set x0(t) = 1 − ∑i≥1 xi(t). Then, from (12), we obtain the system

dz

dt
= B̃z + f̃, (23)

where z = (x1, x2, . . . )�, f̃ =
(
λ̃0, 0, 0, . . .

)�, and the corresponding matrix B̃ =
(
b̃ij
)∞

i,j=1, where

b̃ij = ãij − ãi0 for the corresponding elements of the matrix Ã.
For the solutions of system (23), the rate of convergence is determined by the system

dw

dt
= B̃w, (24)

where all elements of B̃ depend on t and the initial condition of the original process.

Now, let β =

√
Mj
Lj

> 1 in accordance with (22). Let dk+1 = βk, k ≥ 0. Denote by D, the upper

triangular matrix

D =

⎛⎜⎜⎜⎜⎝
d1 d1 d1 · · ·
0 d2 d2 · · ·
0 0 d3 · · ·

. . . . . . . . .

⎞⎟⎟⎟⎟⎠ . (25)

Let w̃ = Dw. Then, the following bound holds:

d‖w̃‖
dt

≤ sup
i≥0

(
di+1

di
λ̃i+1 +

di−1

di
μ̃i −

(
λ̃i + μ̃i+1

)) ‖w̃‖ =

− inf
i≥0

((
λ̃i + μ̃i+1 − βλ̃i+1 − μ̃i/β

)) ‖w̃‖ ≤ −α∗‖w̃‖. (26)
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Note that ‖w̃‖ = ‖Dw‖ ≥ 1
2‖w‖, see detailed discussion in [15], therefore, if ‖w̃(t)‖ → 0 as

t → ∞, then Xj(t) is weakly ergodic.
Thus, we obtain the following statement.

Theorem 2. Let (22) hold for some j. Then, Xj(t) is weakly ergodic and the following bound holds:

‖Dw(t)‖ ≤ e−α∗t‖Dw(0)‖, (27)

for any t ≥ 0 and any corresponding initial conditions.

4. Example

Consider a simple two-dimensional BDP with finite state space {i, j}, 0 ≤ i ≤ 10, 0 ≤ j ≤ 10 and
the following transition intensities:

(i) λ1,i,0(t) = i+1
11 λ1(t) from (i, 0) to (i + 1, 0);

(ii) λ1,i,j(t) = λ1(t) from (i, j) to (i + 1, j) if j �= 0;
(iii) λ2,i,j(t) = λ2(t) from (i, j) to (i + 1, j);
(iv) μ1,i,j(t) = μ1(t) from (i, j) to (i − 1, j);
(v) μ2,i,j(t) = μ2(t) from (i, j) to (i, j − 1);

where λ1(t) = 1 + cos(2πt), λ2(t) = 5 + sin(2πt), μ1(t) = 11 + sin(2πt), μ2 = 3.

Then, β =
√

M1
L1

=
√

6, and Theorem 2 gives bound (27) with α∗ = 10 − 4
√

6.
We computed some important characteristics for the original process and its projection

X1(t), namely:
Figures 1–3 show the behaviour of the state probabilities for X1(t), namely Pr(X1(t) = 0),

Pr(X1(t) = 1), and Pr(X1(t) = 2) under two initial conditions for the original BDP:

(i) pi,j(0) = 1
121 , for any i, j (blue); and

(i) p0,0(0) = 109
121 , pi,j(0) = 1

1210 , for any i, j such that i + j > 0 (green).

Note that the corresponding initial conditions for the projection are x(0) =
(

1
11 , . . . , 1

11

)T
,

and x(0) = (10/11, 1/110, . . . , 1/110)T .
These Figures illustrate the rate of convergence in a weak ergodic situation.
Figures 4 and 5 show the ’birth intensities’ λ̃0 and λ̃1 for X1(t) under the same initial conditions.
Note that all the quantities are found by numerically solving the Cauchy problem for the

forward Kolmogorov system (2) and the corresponding system (12) for its projection on the
corresponding interval.

As can be seen from Theorem 2 and the figures below, to construct all the characteristics of interest
with good accuracy, it suffices to carry out the numerical solution on the interval [0, 5].

As was already noted, the projection of the original process is not a Markov process, and all
probabilistic characteristics depend on the initial conditions of the original process.
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Figure 1. Pr(X1(t) = 0) under initial conditions (i) and (ii).

Figure 2. Pr(X1(t) = 1) under initial conditions (i) and (ii).
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Figure 3. Pr(X1(t) = 2) under initial conditions (i) and (ii).

Figure 4. λ̃0 under initial conditions (i) and (ii).
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Figure 5. λ̃1 under initial conditions (i) and (ii).

It can be seen that these characteristics present comprehensive information concerning the
behavior of the projection of the original process.

5. Conclusions

In the paper, some estimates of the rate of convergence were discussed for one-dimensional
projections of multidimensional inhomogeneous birth and death processes. Some specific queueing
models were considered. The applied approach allows one to use an analogue of the logarithmic norm
of an operator function for a nonlinear system of differential equations, as was shown in Section 2.
In addition, similar estimates can be obtained for other one-dimensional processes related to the
original one. For example, the total number of “particles” of all types can be studied. Moreover, it is
possible to study multidimensional processes with possible transformations of particles from one
type to another. Such processes play a very important role in stochastic models of epidemics, see,
for example, References [19,20] and the references therein.
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Abstract: In this paper, we consider an insurance risk model with mixed premium income, in which
both constant premium income and stochastic premium income are considered. We assume that the
stochastic premium income process follows a compound Poisson process and the premium sizes are
exponentially distributed. A new method for estimating the expected discounted penalty function by
Fourier-cosine series expansion is proposed. We show that the estimation is easily computed, and it
has a fast convergence rate. Some numerical examples are also provided to show the good properties
of the estimation when the sample size is finite.

Keywords: compound poisson insurance risk model; expected discounted penalty function;
estimation; Fourier transform; Fourier-cosine series

1. Introduction

In this paper, we consider an insurance risk model with mixed premium income defined by

U(t) = u + ct +
M(t)

∑
i=1

Yi −
N(t)

∑
j=1

Xj, t ≥ 0, (1)

where u ≥ 0 is the initial surplus, c ≥ 0 is the constant premium rate, and U(t) denotes the surplus
level of an insurance company at time t. The premium number process M(t) and the claim number
process N(t) are homogenous Poisson processes with intensity μ > 0 and λ > 0, respectively.
The individual claim sizes, X1, X2, . . ., are positive independent and identically distributed (i.i.d)
continuous random variables with density function f . The premium sizes, Y1, Y2, . . . are positive i.i.d.
continuous random variables with exponential distribution function g(y) = βe−βy, y, β > 0, where β

is unknown. Throughout this paper, we assume that {M(t)}t≥0, {N(t)}t≥0, {Xi}i≥1 and {Yj}j≥1 are
mutually independent.

Whenever the surplus process becomes negative, we say that ruin occurs. The ruin time is
defined by

τ = inf{t ≥ 0 : U(t) < 0},

if for all t ≥ 0, U(t) > 0, we denote τ = ∞. To avoid that ruin is a certain event, suppose that the
following condition holds throughout this paper.

Net profit condition

c +
μ

β
− λE[X] > 0.
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The above condition guarantees that the expectation of the surplus process will always be positive
at any time t > 0.

Let δ ≥ 0 be the interest force, defining the expected discounted penalty function by

Φ(u) = E[e−δτw(U(τ−), |U(τ)|)1(τ<∞)|U(0) = u], u ≥ 0, (2)

where, w : [0, ∞)× [0, ∞) → [0, ∞) is a measurable penalty function of the surplus before ruin and the
deficit at ruin, and 1A is an indicator function of the event A. This function was first introduced by
Gerber and Shiu [1], and is called Gerber-Shiu function in the literature. It has become an important
and standard risk measure in ruin theory since various quantities of interests in ruin theory can be
obtained for different values of the discount factor δ and different penalty functions w. For recent
research progress on the Gerber-Shiu function, we can refer to work by Lin et al. [2], Yuen et al. [3,4],
Zhao and Yin [5], Chi [6], Yin and Wang [7], Chi and Lin [8], Shen et al. [9], Yin and Yuen [10], Zhao
and Yao [11], Li et al. [12,13], Dong et al. [14], and Wang and Zhang [15], among others.

For the classical insurance risk model, the premium rate is usually set to a constant.
Extensive research has been done on the ruin measures of the model and its extension under the
constant premium rate, such as ruin probability, Gerber-Shiu function (see, e.g., Gerber and Shiu [1],
Willmot and Dickson [16], Wang et al. [17], Yin and Yuen [18], Dong and Yin [19], Yu [20], Yin et al. [21],
Zeng et al. [22], Zhao et al. [23] and Yu et al. [24]). However, in the actual insurance business,
the premium income of an insurance company, especially a small one, is sometimes volatile and
random. In view of this situation, Boucherie et al. [25] first extended the classical risk model to
the risk model with stochastic premium income by replacing the constant premium income with a
compound Poisson process. Since then, the risk model with stochastic premium income has been
widely studied by many scholars. The non-ruin probability and ruin probability were, respectively,
studied by Boikov [26] and Temnov [27]. Bao [28], Bao and Ye [29] and Yang and Zhang [30] studied
the Gerber-Shiu function in the classical risk model, delayed renewal risk model and Sparre Andersen
risk model by assuming the premium process are Poisson process, respectively. Supposing premium
and claim process follow compound Poisson processes, a defective renewal equation satisfied by the
Gerber-Shiu function was established by Labbé and Sendova [31]. Yang and Zhang [32] further studied
the above model by assuming that there exists a specific dependence structure among the claim sizes,
inter-claim times and premium sizes and the individual premium sizes are exponentially distributed.
Zhao and Yin [33] considered a renewal risk model where the premiums follow a compound Poisson
risk process and the claims follow a generalized Erlang(n) process. The Laplace transform and a
defective renewal equation for the Gerber-Shiu function are derived when the premium sizes are
exponentially distributed. For more study on the risk model with stochastic premium income, the
interested readers are referred to the work by Xu et al. [34], Yu [35,36], Zhou et al. [37], Gao and
Wu [38], Zhou et al. [39], Deng et al. [40] and Zeng et al. [41] and the references therein.

The above-mentioned papers assume that some probability characteristics of the surplus process
are known, however, which are usually unknown for an insurance company. Actually, some data
information on the surplus process, such as surplus levels, claim and premium numbers, and claim and
premium sizes, can be obtained. Thus, some semi-parametric and parametric estimations of the ruin
probability and Gerber-Shiu function for different risk models are presented in recent literature (e.g.,
Politis [42], Wang and Yin [43], Yuen and Yin [44], Zhang et al. [45], Wang et al. [46], Zhang [47], Zhang
and Yang [48,49] and Shimizu and Zhang [50], Peng and Wang [51,52], Yang et al. [53,54]). Besides,
some effective methods, such as Laplace transform, Fourier-Sinc series expansion and Laguerre series
expansion, have been applied in estimating the ruin probability and Gerber-Shiu function based on
the observed data information. We refer the interested readers to Shimizu [55], Zhang [56], Zhang and
Su [57,58] and Su et al. [59], among others.

In recent years, Fang and Oosterlee [60] proposed a novel method for pricing European options
by Fourier-cosine series expansion, which is also called the COS method in the literature. It can be
easily applied to approximate an integrable function as long as the corresponding Fourier transform
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has closed-form expression. Now, the COS method has been widely used for pricing options and
other financial derivatives (see, e.g., Fang and Oosterlee [61] and Zhang and Oosterlee [62]). Recently,
the COS method has also been used in risk theory to compute and estimate some risk measures by
some actuarial researchers. For example, Chau et al. [63,64] used the COS method to compute the
ruin probability and Gerber-Shiu function in the Lévy risk models. Zhang [65] applied the COS
method to compute the density of the time to ruin in the classical risk model. Yang et al. [66] used a
two-dimensional COS method to estimate the discounted density function of the deficit at ruin in the
classical risk model with stochastic income where the premiums are only described by a compound
Poisson process and the premium sizes are exponential distributed. Inspired by Yang et al. [66], in
this paper, we extend the risk model of Yang et al. [66] by considering that there is also constant rate
premium income process. Then, we use the COS method to estimate the expected discounted penalty
function in this risk model with mixed premiums income process. The remainder of this paper is
organized as follows. In Section 2, we first briefly introduce the Fourier-cosine series expansion method,
and then derive the Fourier transform of the expected discounted penalty function. In Section 3, an
estimator of the expected discounted penalty function is proposed by the observed sample of the
surplus process. The consistent property is studied in Section 4 under large sample size setting. Finally,
in Section 5, we present some simulation results to show that the estimator behaves well under finite
sample size setting.

2. Preliminaries on Expected Discounted Penalty Function

2.1. Fourier-Cosine Series Expansion

In this subsection, we present some known results on the Fourier-cosine series expansion method.
Let L1(R+) denote the class of integrable functions on the positive axis, and let F f and L f denote the
Fourier transform and Laplace transform of a f ∈ L1(R+), respectively. For any complex number z,
we denote its real part and imaginary part by Re(z) and Im(z), respectively.

It is known that an integrable function f defined on [a1, a2] has the following cosine
series expansion,

f (x) =
∞

∑
k=0

′
{

2
a2 − a1

∫ a2

a1

f (x) cos
(

kπ
x − a1

a2 − a1

)
dx
}

cos
(

kπ
x − a1

a2 − a1

)
, (3)

where ∑′ means the first term of the summation has half weight. For a function f ∈ L1(R+), we
introduce an auxiliary function

fa(x) = f (x) · 1(0≤x≤a), a > 0,

then fa has a finite domain [0, a] and f (x) = fa(x) when x ∈ [0, a]. By Equation (3), we have

f (x) = fa(x) =
∞

∑
k=0

′
{

2
a

∫ a

0
f (x) cos

(
kπ

x
a

)
dx
}

cos
(

kπ
x
a

)
, 0 ≤ x ≤ a. (4)

For large a, we have

2
a

∫ a

0
f (x) cos

(
kπ

x
a

)
dx =

2
a

Re
{∫ a

0
f (x)ei kπ

a xdx
}

≈ 2
a

Re
{
F f
(

kπ

a

)}
,

thus

f (x) ≈
∞

∑
k=0

′ 2
a

Re
{
F f
(

kπ

a

)}
cos
(

kπ
x
a

)
, 0 ≤ x ≤ a.
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Furthermore, for a large integer K, the above summation can be truncated as follows:

f (x) ≈
K−1

∑
k=0

′ 2
a

Re
{
F f
(

kπ

a

)}
cos
(

kπ
x
a

)
, 0 ≤ x ≤ a. (5)

As for the expected discounted penalty function, it follows from Equation (5) that for 0 ≤ u ≤ a,

Φ(u) ≈ ΦK,a(u) :=
K−1

∑
k=0

′ 2
a

Re
{
FΦ

(
kπ

a

)}
cos
(

kπ
x
a

)
. (6)

It can be easily seen that the key of approximating the expected discounted penalty function
by Fourier-cosine series expansion method is to calculate the Fourier transform FΦ(s) for s ∈ { kπ

a :
k = 0, 1, . . . , K − 1}. Therefore, we derive a specific expression of Fourier transform FΦ(·) in the
next section.

2.2. The Fourier Transform of Expected Discounted Penalty Function

In this subsection, we derive the Fourier transform of the expected discounted penalty function.
For convenience, we introduce the Dickson-Hipp operator Ts (see, e.g., Dickson and Hipp [67] and
Li and Garrido [68]), which for any integrable function f on (0, ∞) and any complex number s with
Re(s) ≥ 0 is defined as

Ts f (y) =
∫ ∞

y
e−s(x−y) f (x)dx =

∫ ∞

0
e−sx f (x + y)dx, y ≥ 0.

The Dickson-Hipp operator has been widely used in ruin theory to simplify the expression of ruin
related functions. For properties on this operator, we refer the interested readers to Li and Garrido [68].

We call the following equation (with respect to s) the Lundberg’s fundamental equation for the
risk model defined in Equation (1),

(β − s)
[

s − δ + μ + λ

c
+

μ

c
· β

β − s
+

λ

c
L f (s)

]
= 0. (7)

By Lemma 2.1 in Zhao and Yin [33], we known that for δ ≥ 0 and c > 0, the above equation has
exactly two nonnegative roots, denoted as ρ1, ρ2 in this literature, and one of the roots ρ1 equals 0
when δ = 0.

Remark 1. Let

χ(s) = δ + μ + λ − cs − λL f (s) +
μβ

s − β
, s ≥ 0.

It is obvious that χ(s) = 0 also has exactly two nonnegative roots ρ1, ρ2. Under net profit condition,
we have

χ
′
(s) = −c + λ

∫ ∞

0
xe−sx f (x)dx − μβ

(s − β)2

≤ −c − λE[X]− μ

β
< 0, 0 ≤ s < β,

which implies that χ(s) is decreasing on [0, β). In addition, χ(s) is continuous on [0, β), χ(0) = δ ≥ 0 and
χ(β − 0) = −∞. Therefore, we conclude that the root ρ1 of equation χ(s) = 0 is located in the interval [0, β),
and, in particular, ρ1 = 0 when δ = 0; then, ρ2 is located in the interval (β, ∞).
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By Theorem 3.1 in Zhao and Yin [33], when stochastic premium income follows a compound
Poisson process, we known that the expected discounted penalty function satisfies the following
renewal equation

Φ(u) =
∫ u

0
Φ(u − x)H(x)dx + K(u), (8)

where

H(x) =
λ

c

[
β − ρ1

ρ1 − ρ2
Tρ1 f (x) +

β − ρ2

ρ2 − ρ1
Tρ2 f (x)

]
,

K(u) =
λ

c

[
β − ρ1

ρ1 − ρ2
Tρ1 ω(u) +

β − ρ2

ρ2 − ρ1
Tρ2 ω(u)

]
,

ω(u) =
∫ ∞

u
w(u, x − u) f (x)dx.

To derive the Fourier transform of Φ(u), we assume the following condition holds true.
Condition 1. The penalty function w satisfies∫ ∞

0

∫ ∞

0
(1 + x)w(x, y) f (x + y)dydx < ∞.

This condition guarantees Φ ∈ L1(R+).
Now, we compute the Fourier transform of the expected discounted penalty function.

Applying the Fourier transform on both sides of Equation (8) gives

FΦ(s) =
∫ ∞

0
eisuΦ(u)du

=
∫ ∞

0
eisu

∫ u

0
Φ(u − x)H(x)dxdu +

∫ ∞

0
eisuK(u)du

=
∫ ∞

0

∫ ∞

0
eis(z+x)Φ(z)dzdx +FK(s)

= FΦ(s)FH(s) +FK(s),

leading to

FΦ(s) =
FK(s)

1 −FH(s)
. (9)

For the Fourier transform FH(s), we have

FH(s) =
∫ ∞

0
eisuH(x)dx =

λ

c

[
β − ρ1

ρ1 − ρ2

∫ ∞

0
eisxTρ1 f (x)dx +

β − ρ2

ρ2 − ρ1

∫ ∞

0
eisxTρ2 f (x)dx

]
,

where ∫ ∞

0
eisuTρj f (x)dx =

∫ ∞

0
eisx
∫ ∞

x
e−ρj(y−x) f (y)dydx

=
∫ ∞

0

∫ ∞

x
e(is+ρj)x · e−ρjy f (y)dydx

=
1

ρj + is

[∫ ∞

0
eisy f (y)dy −

∫ ∞

0
e−ρiy f (y)dy

]
=

1
ρj + is

[F f (s)−L f (ρj)], j = 1, 2.
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Then, we obtain

FH(s) =
λ

c(ρ1 − ρ2)

[
(β − ρ2)[F f (s)−L f (ρ2)]

ρ2 + is
− (β − ρ1)[F f (s)−L f (ρ1)]

ρ1 + is

]
. (10)

Similarly, for FK(s), we obtain

FK(s) =
λ

c(ρ1 − ρ2)

[
(β − ρ2)[Fω(s)−Lω(ρ2)]

ρ2 + is
− (β − ρ1)[Fω(s)−Lω(ρ1)]

ρ1 + is

]
. (11)

3. Estimation Procedure

In this section, we study how to estimate the expected discounted penalty function by
Fourier-cosine series expansion based on the discretely observed information of the surplus process,
the aggregate claims and premiums processes. According to Equation (6), we know that the key is to
construct an estimation of FΦ(s) based on these discrete information.

Assume that we can observe the surplus process over a long time interval [0, T]. Let Δ > 0 be a
fixed inter-observation interval. Furthermore, without loss of generality, we assume T/Δ is an integer
denoted as n.

Suppose that the insurer can get the following datasets.

(1) Dataset of surplus levels:
{UjΔ : j = 0, 1, 2, . . . , n},

where UjΔ is the observed surplus level at time t = jΔ.
(2) Dataset of claim numbers and claim sizes:

{NjΔ, X1, X2, . . . , XNjΔ}, j = 1, . . . , n,

where NjΔ is the total claim number up to time t = jΔ.
(3) Dataset of premium numbers and claim sizes:

{MjΔ, Y1, Y2, . . . , YNjΔ}, j = 1, . . . , n,

where MjΔ is the total premium number up to time t = jΔ.

Next, we study how to estimate the Fourier transform FΦ(s) based on the above datasets.
To estimate FΦ(s) by Equations (9)–(11), we should first estimate the following characteristics:

λ, μ, β, F f , Fω, ρj, L f (ρj), Lω(ρj), j = 1, 2.

First, we can estimate F f (s) by the empirical characteristic function

F̂ f (s) =
1

NT

NT

∑
j=1

eisXj .

Similarly, L f (s) can be estimated by

L̂ f (s) =
1

NT

NT

∑
j=1

e−sXj .
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Next, for the function ω(u), we have

Fω(s) = E
(∫ X

0
eisuw(u, X − u)du

)
,

Lω(s) = E
(∫ X

0
e−suw(u, X − u)du

)
.

Then, Fω(s) and Lω(s) can be respectively estimated by

F̂ω(s) =
1

NT

NT

∑
j=1

∫ Xj

0
eisuw(u, Xj − u)du,

L̂ω(s) =
1

NT

NT

∑
j=1

∫ Xj

0
e−suw(u, Xj − u)du.

According to the property of Poisson distribution, λ and μ can be estimated by

λ̂ =
1
T

NT , μ̂ =
1
T

MT .

It is easily seen that
λ̂ − λ = Op(T− 1

2 ), μ̂ − μ = Op(T− 1
2 ).

Since the premium size Y follows exponential distribution with parameter β, we have E[Y] =
1
β

;

then, we can estimate β by

β̂ =
1

1
MT

MT

∑
i=1

Yi

.

It is also easily seen that β̂ − β = Op(T− 1
2 ). The estimation of ρj, j = 1, 2, denoted as ρ̂j, j = 1, 2,

are defined to be the nonnegative roots of the following equation (in s),

δ + μ̂ + λ̂ − cs − λ̂L̂ f (s) +
μ̂β̂

s − β̂
= 0.

Furthermore, we can, respectively, estimate L f (ρj), Lω(ρj), j = 1, 2 by L̂ f (ρ̂j), L̂ω(ρ̂j), j = 1, 2.

Remark 2. Let

χ̂(s) = δ + μ̂ + λ̂ − cs − λ̂L̂ f (s) +
μ̂β̂

s − β̂
, s ≥ 0.

By the similar arguments of the Lunderg’s fundamental equation in Zhao and Yin [33], we can obtain
that equation χ̂(s) = 0 has exactly two nonnegative roots, denoted as ρ̂1, ρ̂2 in this literature. It is clear that
χ̂(0) = δ ≥ 0 and χ̂(β̂ − 0) = −∞. Under net profit condition, we have

χ̂
′
(s) = −c + λ̂

1
NT

NT

∑
j=1

Xje
−sXj − μ̂β̂

(s − β̂)2

≤ −c + λ̂
1

NT

NT

∑
j=1

Xj − μ̂

β̂

a.s.−→ −c + λE[X]− μ

β
< 0, 0 ≤ s < β̂.
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Therefore, we obtain that the probability that χ̂(s) = 0 has unique root ρ̂1 on [0, β̂) tends to one as T → ∞.
We set ρ̂1 = 0 when δ = 0 since ρ1 = 0 in this case. Then, the other root ρ̂2 is located in the interval (β̂, ∞)

with probability tends to one as T → ∞.

Proposition 1. Suppose that net profit condition holds true, then we have ρ̂1
p−→ ρ1 and ρ̂2

p−→ ρ2.

Proof of Proposition 1. By Remark 2, when 0 ≤ s < β̂, χ̂(s) is continuous and the probability that
χ̂(s) = 0 has unique nonnegative root tends to one as T → ∞; and when s > β̂, χ̂(s) is continuous and
the probability that χ̂(s) = 0 has unique positive root tends to one as T → ∞. By Remark 1, it is easily
seen that, for every ε > 0, χ(ρ1 − ε) > 0 > χ(ρ1 + ε) and χ(ρ2 − ε) > 0 > χ(ρ2 + ε). Besides, we find

that for any s > 0, χ̂(s)
p−→ χ(s). Thus, it follows from Lemma 5.10 in Van Der Vaart [69] that ρ̂1

p−→ ρ1

and ρ̂2
p−→ ρ2.

Once we have obtained the estimation of the above characteristics, by Equations (9)–(11), the
estimation of Fourier transform FΦ(s), denoted as F̂Φ(s), can be defined as

F̂Φ(s) =
F̂K(s)

1 − F̂H(s)
, (12)

where

F̂K(s) =
λ̂

c(ρ̂1 − ρ̂2)

[
(β̂ − ρ̂2)[F̂ω(s)− L̂ω(ρ̂2)]

ρ̂2 + is
− (β̂ − ρ̂1)[F̂ω(s)− L̂ω(ρ̂1)]

ρ̂1 + is

]
,

F̂H(s) =
λ̂

c(ρ̂1 − ρ̂2)

[
(β̂ − ρ̂2)[F̂ f (s)− L̂ f (ρ̂2)]

ρ̂2 + is
− (β̂ − ρ̂1)[F̂ f (s)− L̂ f (ρ̂1)]

ρ̂1 + is

]
.

Finally, replacing FΦ(·) in Equation (6) by the estimation F̂Φ(·), the expected discounted penalty
function can be estimated by

Φ̂K,a(u) :=
K−1

∑
k=0

′ 2
a

Re
{
F̂Φ

(
kπ

a

)}
cos
(

kπ
x
a

)
, 0 ≤ u ≤ a. (13)

4. Consistency Properties

In this section, we study the asymptotic properties of the estimation Φ̂K,a. Let L2(R+) denote the
class of square integrable functions on the positive axis. For any function f ∈ L2(R+), its L2-norm is

defined by ‖ f ‖ =

(∫ ∞

0
f 2(x)dx

) 1
2
. Throughout this section, C represents a positive generic constant

that may take different values at different steps. In addition, we define

Hj(x) =
∫ x

0
ujw(u, x − u)du, j = 0, 1, 2.

It is easy to see that ∫ ∞

0
ujω(u)du = E

[
Hj(X)

]
.

For reader’s convenience, we introduce some definitions in empirical process theory, which are
used to study the asymptotic properties. For any measurable function f , its Lr(P)-norm is defined by

‖ f ‖P,r =

(∫
| f (ω)|rdP(ω)

) 1
r
. Given two functions l and u, the bracket [l, u] is the set of all functions

f with l ≤ f ≤ u. An ε-bracket in Lr(P) is a bracket [l, u] with ‖u − l‖P,r < ε. For a class G ⊂ Lr(P),
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the bracketing number N�(ε, G, Lr(P)) is the minimum number of ε-brackets needed to cover G. For

β > 0, the bracketing integral is defined by J� (β,G, Lr(P)) =
∫ β

0

√
N�(ε, G, Lr(P))dε.

We use the L2-norm to study the asymptotic properties of the estimator. The following condition
is useful in our discussion, which ensures Φ ∈ L2(R+).
Condition 2. For the penalty function w, there exist some integers α1, α2 and constant C such that

w(x, y) ≤ C(1 + x)α1(1 + y)α2 .

Put ΦK,a = Φ̂K,a = 0 when u > a. By triangle inequality, we have

‖Φ − Φ̂K,a‖ ≤ ‖Φ − ΦK,a‖+ ‖ΦK,a − Φ̂K,a‖, (14)

where the first term ‖Φ − ΦK,a‖ is the bias caused by Fourier cosine series approximation, and the
second term ‖ΦK,a − Φ̂K,a‖ is the bias caused by statistical estimation.

For the bias ‖Φ − ΦK,a‖, by similar arguments to those of Zhang [65], we obtain the
following result.

Theorem 1. Suppose that
∫ ∞

0
|Φ′(u)|du < ∞ and for some integer m, Φ(u) ≤ Cu−(m+1); then, under net

profit condition, Conditions 1 and 2, we have

‖Φ − ΦK,a‖ ≤ C
{

K + 1
a2m+1 +

a
K − 1

}
.

Next, we study the error ‖ΦK,a − Φ̂K,a‖. For ρ̂1 and ρ̂2, we derive the following result.

Theorem 2. Supposing that net profit condition holds, we have ρ̂1 − ρ1 = Op(T− 1
2 ). Supposing that

c > λE[X], we have ρ̂2 − ρ2 = Op(T− 1
2 ).

Proof of Theorem 2. By the mean value theorem,

χ̂(ρj) = χ̂(ρ̂j) + χ̂
′
(ρ∗j )(ρj − ρ̂j) = χ̂

′
(ρ∗j )(ρj − ρ̂j), j = 1, 2,

where ρ∗j (j = 1, 2) is a random number between ρj (j = 1, 2) and ρ̂j (j = 1, 2). Since χ(ρj) = 0, j = 1, 2,
we obtain

ρ̂j − ρj =
χ(ρj)− χ̂(ρj)

χ̂
′(ρ∗j )

, j = 1, 2.

It is easily seen that χ(ρj)− χ̂(ρj) = Op(T− 1
2 ), j = 1, 2 for λ̂ − λ = Op(T− 1

2 ), μ̂ − μ = Op(T− 1
2 ),

and β̂ − β = Op(T− 1
2 ).

For ρ1, under net profit condition, we introduce the following set:

AT,1 =

{
|χ̂′

(ρ∗1)| >
1
2

(
c +

μ

β
− λE[X]

)}
.
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Since c +
μ̂

β̂
− λ̂

1
NT

NT

∑
j=1

Xj
p−→ c +

μ

β
− λE[X] and |χ̂′

(ρ∗1)| ≥ c +
μ̂

β̂
− λ̂

1
NT

NT

∑
j=1

Xj, we have

P(AT,1) ≥ P

(
c +

μ̂

β̂
− λ̂

1
NT

NT

∑
j=1

Xj ≥ 1
2
(c +

μ

β
− λE[X])

)

=1 − P

(
c +

μ̂

β̂
− λ̂

1
NT

NT

∑
j=1

Xj <
1
2
(c +

μ

β
− λE[X])

)

=1 − P

(
c +

μ

β
− λE[X]− c − μ̂

β̂
+ λ̂

1
NT

NT

∑
j=1

Xj ≥ 1
2
(c +

μ

β
− λE[X])

)
→ 1, as T → ∞.

For ρ2, we have

|χ̂′(ρ∗2)| ≥ c +
μ̂β̂

(s − β̂)2
− λ̂

1
NT

NT

∑
j=1

Xj ≥ c − λ̂
1

NT

NT

∑
j=1

Xj.

Under condition c > λE[X], we introduce the following set:

AT,2 =

{
|χ̂′

(ρ∗2)| >
1
2
(c − λE[X])

}
.

Similarly, we obtain that P(AT,2) → 1 as T → ∞ in that c − λ̂
1

NT

NT

∑
j=1

Xj
p−→ c − λE[X].

Furthermore,

P

(
|ρ̂j − ρj| > CT− 1

2

)
= P

(
|χ(ρj)− χ̂(ρj)|

|χ̂′(ρ∗j )|
> CT− 1

2

)

≤ P

({
|χ(ρj)− χ̂(ρj)|

|χ̂′(ρ∗j )|
> CT− 1

2

}⋂
AT,j

)
+ P(Ac

T,j)

= P

(
|χ(ρj)− χ̂(ρj)| > CT− 1

2

)
+ P(Ac

T,j), j = 1, 2.

As a result, since P(Ac
T,1) → 0 under net profit condition, P(Ac

T,2) → 0 under c > λE[X], and

χ(ρj)− χ̂(ρj) = Op(T− 1
2 ), j = 1, 2, we derive desired results.

The following two theorems give the uniform convergence rates of FH and FK.

Theorem 3. Suppose that c > λE[X], ‖Hj(X)‖P,1 < ∞, j = 0, 1, and ‖Hj(X)‖P,2 < ∞, j = 1, 2. Then, for
large a, K and T, we have

sup
s∈[0,Kπ/a]

∣∣∣FK(s)− F̂K(s)
∣∣∣ = Op

(√
log
(

K
a

)
/T

)
.

Proof of Theorem 3. By Equations (11) and (12),

F̂K(s)−FK(s) =
λ̂

c(ρ̂1 − ρ̂2)

β̂ − ρ̂2

ρ̂2 + is

[
F̂ω(s)− L̂ω(ρ̂2)

]
− λ

c(ρ1 − ρ2)

β − ρ2

ρ2 + is
[Fω(s)−Lω(ρ2)]

+
λ̂

c(ρ̂1 − ρ̂2)

β̂ − ρ̂1

ρ̂1 + is

[
F̂ω(s)− L̂ω(ρ̂1)

]
− λ

c(ρ1 − ρ2)

β − ρ1

ρ1 + is
[Fω(s)−Lω(ρ1)]

:=I1 + I2,

(15)
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Since I1 and I2 have similar formations, we only study I1 in detail.

I1 =
λ̂

c(ρ̂1 − ρ̂2)

β̂ − ρ̂2

ρ̂2 + is

[
F̂ω(s)− L̂ω(ρ̂2)

]
− λ

c(ρ1 − ρ2)

β − ρ2

ρ2 + is
[Fω(s)−Lω(ρ2)]

=
λ̂

c(ρ̂1 − ρ̂2)

β̂ − ρ̂2

ρ̂2 + is
1

NT

NT

∑
j=1

∫ Xj

0
(eisu − e−ρ̂2u)w(u, Xj − u)du

− λ

c(ρ1 − ρ2)

β − ρ2

ρ2 + is
E

[∫ X

0
(eisu − e−ρ2u)w(u, X − u)du

]
=

λ̂

c(ρ̂1 − ρ̂2)

β̂ − ρ̂2

ρ̂2 + is
1

NT

NT

∑
j=1

∫ Xj

0
(e−ρ2u − e−ρ̂2u)w(u, Xj − u)du

+
λ̂

c(ρ̂1 − ρ̂2)

β̂ − ρ̂2

ρ̂2 + is
1

NT

NT

∑
j=1

∫ Xj

0
(eisu − e−ρ̂2u)w(u, Xj − u)du

− λ

c(ρ1 − ρ2)

β − ρ2

ρ2 + is
E

[∫ X

0
(eisu − e−ρ2u)w(u, X − u)du

]
=I I1 + I I2.

where

I I1 =
λ̂

c(ρ̂1 − ρ̂2)

β̂ − ρ̂2

ρ̂2 + is
1

NT

NT

∑
j=1

∫ Xj

0
(e−ρ2u − e−ρ̂2u)w(u, Xj − u)du,

I I2 =
λ̂

c(ρ̂1 − ρ̂2)

β̂ − ρ̂2

ρ̂2 + is
1

NT

NT

∑
j=1

∫ Xj

0
(eisu − e−ρ̂2u)w(u, Xj − u)du

− λ

c(ρ1 − ρ2)

β − ρ2

ρ2 + is
E

[∫ X

0
(eisu − e−ρ2u)w(u, X − u)du

]
.

For I I1, we have

|I I1| ≤ λ̂

c(ρ̂1 − ρ̂2)

β̂ − ρ̂2

ρ̂2 + is
1

NT

NT

∑
j=1

∫ Xj

0
u|ρ2 − ρ̂2|w(u, Xj − u)du

=
λ̂

c(ρ̂1 − ρ̂2)

β̂ − ρ̂2

ρ̂2 + is
|ρ2 − ρ̂2| 1

NT

NT

∑
j=1

H1(Xj).

Since
1

NT

NT

∑
j=1

H1(Xj)
p−→ ‖H1(X)‖P,1 < ∞, ρ2 − ρ̂2 = Op(T− 1

2 ), we have

|I I1| = Op(T− 1
2 ). (16)

160



Mathematics 2019, 7, 305

For I I2 we derive

I I2 =
λ̂(β̂ − ρ̂2)

c(ρ̂1 − ρ̂2)

ρ2 + is
ρ̂2 + is

1
NT

NT

∑
j=1

∫ Xj

0

eisu − e−ρ̂2u

ρ2 + is
w(u, Xj − u)du

− λ(β − ρ2)

c(ρ1 − ρ2)
E

[∫ X

0

eisu − e−ρ2u

ρ2 + is
w(u, X − u)du

]
=

λ̂(β̂ − ρ̂2)

c(ρ̂1 − ρ̂2)

ρ2 + is
ρ̂2 + is

1
NT

NT

∑
j=1

[
g1,s(Xj)−E[g1,s(X)]

]
+ (ρ2 + is)

(
λ̂

c(ρ̂1 − ρ̂2)

β̂ − ρ̂2

ρ̂2 + is
− λ

c(ρ1 − ρ2)

(β − ρ2)

ρ2 + is

)
E[g1,s(X)],

where

g1,s(x) =
∫ x

0

eisu − e−ρ2u

ρ2 + is
w(u, x − u)du

=
∫ x

0

∫ u

0
eis(u−y)−ρ2ydyw(u, x − u)du, x ≥ 0.

For g1,s(x), we have

sup
s∈[0,Kπ/a]

|E [g1,s(X)]| ≤
∫ ∞

0

∫ x

0

∫ u

0
e−ρ2ydyw(u, x − u)du f (x)dx

≤
∫ ∞

0

∫ x

0
uw(u, x − u)du f (x)dx = ‖H1(X)‖P,1 < ∞,

then

sup
s∈[0,Kπ/a]

∣∣∣∣∣(ρ2 + is)

(
λ̂

c(ρ̂1 − ρ̂2)

β̂ − ρ̂2

ρ̂2 + is
− λ

c(ρ1 − ρ2)

(β − ρ2)

ρ2 + is

)
E[g1,s(X)]

∣∣∣∣∣
≤
∣∣∣∣∣(ρ2 + is)

(
λ̂

c(ρ̂1 − ρ̂2)

β̂ − ρ̂2

ρ̂2 + is
− λ

c(ρ1 − ρ2)

(β − ρ2)

ρ2 + is

)∣∣∣∣∣ · ‖H1(X)‖P,1 = Op(T− 1
2 ) (17)

for λ̂ − λ = Op(T− 1
2 ), μ̂ − μ = Op(T− 1

2 ), ρ̂1 − ρ1 = Op(T− 1
2 ) and ρ̂2 − ρ2 = Op(T− 1

2 ).
Let us introduce the following two types of real-valued functions,

GK,R = {g : g = Re(g1,s), s ∈ [0, Kπ/a]} ,

GK,I = {g : g = Im(g1,s), s ∈ [0, Kπ/a]} .

Then, we have

sup
s∈[0,Kπ/a]

∣∣∣∣∣ 1
NT

NT

∑
j=1

[
g1,s(Xj)−E (g1,s(X))

]∣∣∣∣∣
≤ sup

g∈GK,R

∣∣∣∣∣ 1
NT

NT

∑
j=1

[
g1,s(Xj)−E (g1,s(X))

]∣∣∣∣∣+ sup
g∈GK,I

∣∣∣∣∣ 1
NT

NT

∑
j=1

[
g1,s(Xj)−E (g1,s(X))

]∣∣∣∣∣ . (18)

We only study the convergence rate of the first term supg∈GK,R

∣∣∣∣∣ 1
NT

NT

∑
j=1

[
g1,s(Xj)−E (g1,s(X))

]∣∣∣∣∣,
since the second term follows similarly.
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For any real-valued function g ∈ GK,R, we have

|g(x)| ≤ sup
s∈[0,Kπ/a]

∣∣∣∣∫ x

0

∫ u

0
eis(u−y)−ρ2ydyw(u, x − u)du

∣∣∣∣
≤
∫ x

0

∫ u

0
e−ρ2ydyw(u, x − u)du ≤

∫ x

0
uw(u, x − u)du = H1(x),

which implies that GK,R is contained in the single bracket [−H1, H1]. For two functions g1,s1 , g1,s2 ,
where sj ∈ [0, Kπ/a], j = 1, 2, the mean value theorem gives

∣∣Re(g1,s1)− Re(g1,s2)
∣∣ = ∣∣∣∣∫ x

0

∫ u

0
(cos(s1(u − y))− cos(s2(u − y)))e−ρ2ydyw(u, x − u)du

∣∣∣∣
=

∣∣∣∣− ∫ x

0

∫ u

0
sin(s∗(u − y)) · (u − y) · (s1 − s2)e−ρ2ydyw(u, x − u)du

∣∣∣∣
≤
∫ x

0

∫ u

0
(u − y)e−ρ2ydyw(u, x − u)du · |s1 − s2| ≤ H2(x)|s1 − s2|,

where s∗ is a number between s1 and s2. Under the condition ‖H2(X)‖P,2 < ∞, it follows from
Example 19.7 in Van Der Vaart [69] that, for any 0 < ε < Kπ/a, there exists a constant C such that the
bracket number for GK,R satisfies

N�(ε,GK,R, L2(P)) ≤ C
Kπ

εa
‖H2(x)‖P,2.

As a result, for every δ > 0, the bracketing integral

J�(δ,GK,R, L2(P)) ≤
∫ δ

0

√
log
(

C
Kπ

εa
‖H2(x)‖P,2

)
dε �

√
log
(

K
a

)
.

Furthermore, by Corollary 19.35 in Van Der Vaart [69], we have

E

(
1√
NT

sup
g∈GK,R

∣∣∣∣∣NT

∑
j=1

[
g(Xj)−E (g(X))

]∣∣∣∣∣ ∣∣NT

)

≤J�(δ,GK,R, L2(P)) ≤
∫ δ

0

√
log
(

C
Kπ

εa
‖H2(x)‖P,2

)
dε �

√
log
(

K
a

)
,

then

E

(
1

NT
sup

g∈GK,R

∣∣∣∣∣NT

∑
j=1

[
g(Xj)−E (g(X))

]∣∣∣∣∣
)

=E

(
1√
NT

E

(
1√
NT

sup
g∈GK,R

∣∣∣∣∣NT

∑
j=1

[
g(Xj)−E (g(X))

]∣∣∣∣∣ ∣∣NT

))

�
√

log
(

K
a

)
/E[
√

NT ] ≤
√

log
(

K
a

)
/
√
E[NT ] =

√
log
(

K
a

)
/λT.

Therefore,

sup
g∈GK,R

∣∣∣∣∣ 1
NT

NT

∑
j=1

[
g(Xj)−E (g(X))

]∣∣∣∣∣ = Op

(√
log
(

K
a

)
/T

)
. (19)
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Similarly,

sup
g∈GK,I

∣∣∣∣∣ 1
NT

NT

∑
j=1

[
g(Xj)−E (g(X))

]∣∣∣∣∣ = Op

(√
log
(

K
a

)
/T

)
. (20)

Combining Equations (18)–(20), we obtain

sup
s∈[0,Kπ/a]

∣∣∣∣∣ 1
NT

NT

∑
j=1

[
g1,s(Xj)−E (g1,s(X))

]∣∣∣∣∣ = Op

(√
log
(

K
a

)
/T

)
. (21)

As a result, Equations (17) and (21) give

sup
s∈[0,Kπ/a]

|I I2| = Op

(√
log
(

K
a

)
/T

)
. (22)

By Equations (16) and (22), we have

sup
s∈[0,Kπ/a]

|I1| = Op

(√
log
(

K
a

)
/T

)
; (23)

then by the similar arguments of I1, we have

sup
s∈[0,Kπ/a]

|I2| = Op

(√
log
(

K
a

)
/T

)
. (24)

Finally, we can derive the desired result by Equations (23) and (24).

Theorem 4. Suppose that c > λE[X], E[Xk] < ∞, k = 1, 2. Then, for large a, K and T, we have

sup
s∈[0,Kπ/a]

∣∣∣FH(s)− F̂H(s)
∣∣∣ = Op

(√
log
(

K
a

)
/T

)
.

Proof of Theorem 4. By Equations (11) and (12),

F̂H(s)−FH(s) =
λ̂

c(ρ̂1 − ρ̂2)

β̂ − ρ̂2

ρ̂2 + is

[
F̂ f (s)− L̂ f (ρ̂2)

]
− λ

c(ρ1 − ρ2)

β − ρ2

ρ2 + is
[F f (s)−L f (ρ2)]

+
λ̂

c(ρ̂1 − ρ̂2)

β̂ − ρ̂1

ρ̂1 + is

[
F̂ f (s)− L̂ f (ρ̂1)

]
− λ

c(ρ1 − ρ2)

β − ρ1

ρ1 + is
[F f (s)−L f (ρ1)]

:=l1 + l2,

(25)

Since l1 and l2 have similar formations, we only study l1 in detail. For l1, we have

l1 =
λ̂

c(ρ̂1 − ρ̂2)

β̂ − ρ̂2

ρ̂2 + is
1

NT

NT

∑
j=1

[
eisXj − e−ρ̂2Xj

]
− λ

c(ρ1 − ρ2)

β − ρ2

ρ2 + is
E

[
eisX − e−ρ2X

]

=
λ̂

c(ρ̂1 − ρ̂2)

β̂ − ρ̂2

ρ̂2 + is
1

NT

NT

∑
j=1

[
e−ρ2Xj − e−ρ̂2Xj

]
+

λ̂

c(ρ̂1 − ρ̂2)

β̂ − ρ̂2

ρ̂2 + is
1

NT

NT

∑
j=1

[
eisXj − e−ρ2Xj

]
− λ

c(ρ1 − ρ2)

β − ρ2

ρ2 + is
E

[
eisX − e−ρ2X

]
:=ll1 + ll2,
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where

ll1 =
λ̂

c(ρ̂1 − ρ̂2)

β̂ − ρ̂2

ρ̂2 + is
1

NT

NT

∑
j=1

[
e−ρ2Xj − e−ρ̂2Xj

]
,

ll2 =
λ̂

c(ρ̂1 − ρ̂2)

β̂ − ρ̂2

ρ̂2 + is
1

NT

NT

∑
j=1

[
eisXj − e−ρ2Xj

]
− λ

c(ρ1 − ρ2)

β − ρ2

ρ2 + is
E

[
eisX − e−ρ2X

]
.

For ll1, we have

|ll1| ≤ λ̂

c(ρ̂1 − ρ̂2)

β̂ − ρ̂2

ρ̂2 + is
|ρ2 − ρ̂2| 1

NT

NT

∑
j=1

Xj.

Since
1

NT

NT

∑
j=1

Xj
p−→ E[X] < ∞, ρ2 − ρ̂2 = Op(T− 1

2 ), we have

|ll1| = Op(T− 1
2 ). (26)

For ll2, we obtain

ll2 =
λ̂(β̂ − ρ̂2)

c(ρ̂1 − ρ̂2)

ρ2 + is
ρ̂2 + is

1
NT

NT

∑
j=1

[
g2,s(Xj)−E[g2,s(X)]

]
+ (ρ2 + is)

(
λ̂

c(ρ̂1 − ρ̂2)

β̂ − ρ̂2

ρ̂2 + is
− λ

c(ρ1 − ρ2)

(β − ρ2)

ρ2 + is

)
E[g2,s(X)],

where
g2,s(x) = eisx, x ≥ 0.

For g2,s(x), we have

sup
s∈[0,Kπ/a]

|E[g2,s(X)]| = sup
s∈[0,Kπ/a]

∣∣∣∣∫ ∞

0
eisx f (x)dx

∣∣∣∣ ≤ 1 < ∞,

Under condition E[Xk] < ∞, k = 1, 2, by similar arguments of g1,s, we conclude that

sup
s∈[0,Kπ/a]

∣∣∣∣∣ 1
NT

NT

∑
j=1

[
g2,s(Xj)−E (g2,s(X))

]∣∣∣∣∣ = Op

(√
log
(

K
a

)
/T

)
. (27)

In addition, it follows from a similar analysis of I I2 in the proof of Theorem 3 that

sup
s∈[0,Kπ/a]

|ll2| = Op

(√
log
(

K
a

)
/T

)
. (28)

Then, Equations (26) and (28) give

sup
s∈[0,Kπ/a]

|l1| ≤ sup
s∈[0,Kπ/a]

|ll2|+ sup
s∈[0,Kπ/a]

|ll2| = Op

(√
log
(

K
a

)
/T

)
. (29)
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Similarly, we derive

sup
s∈[0,Kπ/a]

|l2| = Op

(√
log
(

K
a

)
/T

)
. (30)

Finally, we can derive the desired result by Equations (29) and (30).

Based on the above conclusions, we have the following result.

Theorem 5. Suppose that c > λE[X], E[Xk] < ∞, k = 1, 2, ‖Hj(X)‖P,1 < ∞, j = 0, 1, and ‖Hj(X)‖P,2 <

∞, j = 1, 2. Then, for large a, K and T, we have

‖ΦK,a − Φ̂K,a‖2 = Op

(
K
a

log
(

K
a

)
/T
)

.

Proof of Theorem 5. First, we have∥∥∥ΦK,a − Φ̂K,a

∥∥∥2
=
∫ a

0

∣∣∣ΦK,a(u)− Φ̂K,a(u)
∣∣∣2du

≤
K−1

∑
k=0

4
a2

(
Re
{
FΦ

(
kπ

a

)
− F̂Φ

(
kπ

a

)})2 ∫ a

0

(
cos
(

kπ

a
u
))2

du

=
2
a

K−1

∑
k=0

∣∣∣∣FΦ
(

kπ

a

)
− F̂Φ

(
kπ

a

)∣∣∣∣2
≤2K

a
sup

s∈[0,Kπ/a]

∣∣∣FΦ (s)− F̂Φ (s)
∣∣∣2.

(31)

Then, by Equations (9) and (12), we obtain

sup
s∈[0,Kπ/a]

∣∣∣FΦ(s)− F̂Φ(s)
∣∣∣

= sup
s∈[0,Kπ/a]

∣∣∣∣∣ FK(s)
1 −FH(s)

− F̂K(s)

1 − F̂H(s)

∣∣∣∣∣
= sup

s∈[0,Kπ/a]

∣∣∣∣∣∣
(1 −FH(s))

(
FK(s)− F̂K(s)

)
+FK(s)

(
FH(s)− F̂H(s)

)
(1 −FH(s))

(
1 − F̂H(s)

)
∣∣∣∣∣∣ .

(32)

Combining Theorems 3 and 4 gives

sup
s∈[0,Kπ/a]

|FΦ(s)− F̂Φ(s)| = Op

(√
log
(

K
a

)
/T

)
.

Finally, by Equation (31), we derive that

‖ΦK,a − Φ̂K,a‖2 ≤ 2K
a

sup
s∈[0,Kπ/a]

|FΦ(s)− F̂Φ(s)|2 = Op

(
K
a

log
(

K
a

)
/T
)

.

This completes the proof.

Combing Theorems 1 and 5, we finally obtain the following convergence rate:

‖Φ − Φ̂K,a‖2 = O
(

K + 1
a2m+1

)
+ O

(
a

K − 1

)
+ Op

(
K
a

log
(

K
a

)
/T
)

. (33)
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We first find the optimal truncation parameter a∗ = O
(

K−(n+1)
)

to minimize the convergence

rate O
(

K + 1
a2m+1

)
+ O

(
a

K − 1

)
. Replacing a by a∗ in Equation (33) gives

‖Φ − Φ̂K,a‖2 = O
(

K− m
m+1

)
+ Op

(
K

m
m+1 log (K) /T

)
. (34)

In addition, we find the optimal truncation K∗ = O
(

T
m+1
2m

)
. Thus, we obtain the smallest

convergence rate ‖Φ − Φ̂K,a‖2 = Op

(
T
− 2m2

(m+1)2

)
.

5. Simulation Studies

In this section, we present some numerical examples to explain the excellent properties of our
estimator when the observed sample is finite. We mainly studied the following three kinds of special
expected discounted penalty function:

(1) Ruin probability (RP: w ≡ 1, δ = 0);
(2) Laplace transform of ruin time (LT: w ≡ 1, δ = 0.1);
(3) Expected discounted deficit at ruin (EDD) when ruin is due to a claim (w(x, y) = y, δ = 0.1).
Some simulation examples of the above functions are presented for different distributions of

claim sizes:
(1) Exponential distribution: f (x) = e−x, x > 0;
(2) Erlang(2) distribution: f (x) = 4xe−2x, x > 0;
(3) Combined exponential distribution: f (x) = 3e−1.5x − 3e−3x, x > 0;
(4) Mixed exponential distribution: f (x) = 2

3 e−2x + 2
3 e−x, x > 0.

We set Δ = 1, λ = 2, and μ = 5, where Δ = 1 can be explained as one week. That is to say, in a long
time interval, the insurer will observe the data once a week, the expected claim number is 2 times per
week, and the expected premium number is 5 times per week. Furthermore, since there are 52 business

weeks every year, we assumed that T =
1
4
× 52× Δ, T =

1
2
× 52× Δ, T = 1× 52× Δ, T = 5× 52× Δ,

which means that we observed the surplus process for one quarter, half a year, one year and five years.
Then, we used Equation (13) to estimate the above Gerber-Shiu functions, and the corresponding true
value obtained by Laplace inversion. In all simulations, we set c = 5, a = 30, K = 213, and we carried
out the relevant analysis based on 300 simulation experiments. We first introduce several concepts
used in this section. The mean value and the mean relative error, which are, respectively, defined by

1
300

300

∑
j=1

Φ̂K,a,j(u),
1

300

300

∑
j=1

∣∣∣∣∣ Φ̂K,a,j(u)
Φ(u)

− 1

∣∣∣∣∣ ,
and the integrated mean square error (IMSE), which is defined by

1
300

300

∑
j=1

∫ ∞

0
(Φ̂K,a,j(u)− Φ(u))2du ≈ 1

300

300

∑
j=1

∫ 30

0
(Φ̂K,a,j(u)− Φ(u))2du,

where Φ̂K,a,j(u) is the estimate of expected discounted penalty function in the jth experiment. For
IMSE, we computed the integral on the finite domain [0, 30], as both the true value and the estimator
will be very small when u ≥ 30. In reality, both the true value and the estimated value are very close
to zero when u > 20, thus we present all images for u ∈ [0, 20] to illustrate the performance of our
estimators better.

First, we plot the mean curves of the estimated expected discounted penalty functions and
compare them with the corresponding true curves. For the above-mentioned four distributions
of claim sizes, we show the mean curves and the true curves of RP, LT, EDD due to a claim in
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Figures 1–3, respectively. It is easily observed that, even though we used the quarter book data, the
performance of the estimation for each claim distribution was still good. We could hardly distinguish
the true curves from the mean curves when we used the five-year book data. Since it is difficult
to distinguish the mean curves for different T values when u becomes large, we further show the
mean relative error curves of the estimated expected discounted penalty functions for different claim
distributions in Figures 4–6, respectively. We observed that the mean relative errors became small
as T increased, and they were very small when T = 260. Besides, we found that the mean relative
errors were small when u was small, but became very large when u was large. This is because the
true values of the expected discounted penalty functions were very small when u was large. All of
the above results illustrate the performance of our estimations by images. Finally, we present some
values of IMSE for the estimators of RP, LT, and EDD in Tables 1 and 2 to further show that our
estimators perform well. Combining all of the simulation results, we conclude that our estimators
could effectively approximate the true values, and they performed well for the large T.

(a) (b)

(c) (d)
Figure 1. Estimation of the ruin probability for different claim sizes. Mean curves: (a) exponential
claim sizes; (b) Erlang claim sizes; (c) combined-exponential claim sizes; and (d) mixed-exponential
claim sizes.
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(a) (b)

(c) (d)
Figure 2. Estimation of the Laplace transform of ruin time for different claim sizes. Mean curves:
(a) exponential claim sizes; (b) Erlang claim sizes; (c) combined-exponential claim sizes; and (d)
mixed-exponential claim sizes.

Table 1. IMSE of Φ̂K,a.

T
Exp Erlang(2)

RP LT EDD RP LT EDD

13 0.00717 0.00644 0.01586 0.00351 0.00414 0.00412
26 0.00352 0.00316 0.00846 0.00186 0.00200 0.00214
52 0.00177 0.00199 0.00537 0.00108 0.00099 0.00095

260 0.00032 0.00034 0.00092 0.00018 0.00020 0.00019
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Table 2. IMSE of Φ̂K,a.

T
Com-Exp Mix-Exp

RP LT EDD RP LT EDD

13 0.00719 0.00431 0.00527 0.00474 0.00511 0.01176
26 0.00271 0.00195 0.00277 0.00267 0.00233 0.00602
52 0.00160 0.00114 0.00124 0.00117 0.00107 0.00257

260 0.00046 0.00021 0.00024 0.00025 0.00018 0.00053

(a) (b)

(a) (d)
Figure 3. Estimation of the expected discounted deficit at ruin due to a claim for different claim sizes.
Mean curves: (a) exponential claim sizes; (b) Erlang claim sizes; (c) combined-exponential claim sizes;
and (d) mixed-exponential claim sizes.
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(a) (b)

(c) (d)
Figure 4. Estimation of the ruin probability for different claim sizes. Mean relative error curves:
(a) exponential claim sizes; (b) Erlang claim sizes; (c) combined-exponential claim sizes; and
(d) mixed-exponential claim sizes.

(a) (b)
Figure 5. Cont.
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(c) (d)
Figure 5. Estimation of the Laplace transform of ruin time for different claim sizes. Mean relative error
curves: (a) exponential claim sizes; (b) Erlang claim sizes; (c) combined-exponential claim sizes; and
(d) mixed-exponential claim sizes.

(a) (b)

(c) (d)
Figure 6. Estimation of the expected discounted deficit at ruin due to a claim for different claim sizes.
Mean relative error curves: (a) exponential claim sizes; (b) Erlang claim sizes; (c) combined-exponential
claim sizes; and (d) mixed-exponential claim sizes.
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1. Introduction

Consider the parabolic operator

L = L(x, t, ∂/∂x, ∂/∂t)

=
∂

∂t
−

n

∑
i,j=1

aij(x, t)
∂2

∂xi∂xj
+

n

∑
i=1

ai(x, t)
∂

∂xi
+ a0(x, t) (1)

Let all coefficients of the operator L be defined in the domain D(T)
n+1 = Rn × (0, T). Denote by A(x, t)

the coefficient matrix of the highest derivatives of the operator L and suppose that A(x, t) is symmetric
matrix. Suppose that all eigenvalues of the matrix A(x, t) belong to the fixed interval [ν, μ], where ν > 0.

Consider the Cauchy problem in the domain D(T)
n+1

L(x, t, ∂/∂x, ∂/∂t)u(x, t) = f (x, t),

u|t=0 = ϕ(x). (2)

A Random variable ξ(x, t) is called an unbiased estimator for a function u(x, t) if mathematical
expectation Eξ(x, t) is equal to u(x, t). Every unbiased estimator gives a stochastic numerical method
for evaluation of the function u(x, t). Now we briefly discuss some known stochastic methods for
solving the Cauchy problem.

Let 0 < α < 1 and the coefficients of the parabolic operator are elements of the Hölder class

Hα, α
2 (D(T)

n+1), then Equation (2) has a fundamental solution Z(x, y, t, τ) [1]. Let the function f (x, t) satisfy
the Hölder condition with respect to all of its arguments, and let the function ϕ(x) be continuous
function. Let in addition f (x, t) and ϕ(x) grow no faster than ea|x|2 , as |x| → ∞. Then, the solution of
the Cauchy problem can be written in the following form

u(x, t) =
∫ t

0
dτ
∫

Rn
Z(x, y, t, τ) f (y, τ)dy +

∫
Rn

Z(x, y, t, 0)ϕ(y)dy. (3)

If a0(x, t) ≡ 0 then the fundamental solution Z(x, y, t, τ) is a probability density (as a function of
y). So, if the fundamental solution is known one can construct the corresponding unbiased estimator.
Particularly, if the coefficients of the equation are constant, it is enought to generate a normally
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distributed random vector in Rn for the evaluation of u(x, t). In the general case, Z(x, y, t, τ) is a
transition density of a stochastic process Xt, which started from a point x at time τ = 0. Hence,

u(x, t) = E
∫ t

0
f (Xs, t − s)ds + Eϕ(Xt), (4)

and random variable η = t f (Xtθ , t(1 − θ)) + ϕ(Xt) is an unbiased estimator for u(x, t), where the
variable θ is uniformly distributed in [0, 1]. Then we can use this estimator in the Monte Carlo
procedure if we can generate the process Xt. The process Xt is a solution of the respective stochastic
differential equation, and we can approximate it by another process Yt, using, for example, the Euler
scheme. Let 0 = t0 < t1 < . . . < tm = t, and Yt0 = x, Yt1 , . . . , Ytm be the Euler approximation for
the corresponding values of Xs, s ∈ [0, t]. After replacing X by Y, the estimator η became the biased
one. Let pX(y1, . . . , ym) and pY(y1, . . . , ym) be the densities of m−dimentional distributions for the X
and Y processes, respectively. The estimator pX(Yt1 , . . . , Ytm)ϕ(Ytm)/pY(Yt1 , . . . , Ytm) is an unbiased
estimator for Eϕ(Xt). Finally, if random variable ζ is an unbiased estimator for pX(Yt1 , . . . , Ytm), then

Eζϕ(Ytm)/pY(Yt1 , . . . , Ytm) = Eϕ(Xt). (5)

The first factor ζ in the formula (5) was constructed by W. Wagner in his papers [2]. It was shown
that the fundamental solution is a functional of the solution of some integral Volterra equation.
The von-Neumann–Ulam scheme [3] was applied for estimation of the fundamental solution. Monte
Carlo algorithms for evaluation of some other functionals can be found in the works [4–6].

In paper [7], the von-Neumann–Ulam scheme was used for constructing another class of
estimators for u(x, t) without using a grid. A conjugate (dual) scheme of construction of unbiased
estimators for functionals of the solutions of an integral equation, which is equivalent to the Cauchy
problem, was considered in [8]. This scheme simplifies the modeling procedure, because boundaries
of the spectrum for the matrix A(x, t) are not required to be known.

Finally, if the operator L has differentiable coefficients, then we can obtain an integral equation
for u(x, t) by using the Green formula and solve this equation via the Monte Carlo method.
Such algorithms were considered in [9,10] for equations whose principal part one is the Laplace
operator. We obtain a Volterra equation for the Cauchy problem solution u(x, t) in the general case.
In this paper we investigate the von-Neumann–Ulam scheme for regular and conjugate cases.

It is necessary to note that the Multilevel Monte Carlo Method [11,12] is often used for evaluation
of the functional Eϕ(Xt), where process Xt is a solution of the respective stochastic differential equation.
This approach is not covered in this paper.

This paper does not contain any results of numerical experiments. Numerical experiments and
the efficiency of various stochastic algorithms for solving the Cauchy problem will be the subject of
the separate paper.

2. Integral Representation

Let all coefficients of the operator L be elements of the Hölder class and let there exist continuous
and bounded derivatives

∂2aij(x, t)/∂xi∂xj, ∂aij(x, t)/∂xj, ∂ai(x, t)/∂xi

for i, j = 1, 2, . . . , n.
We also suppose that the Cauchy problem solution is continuous and bounded. We define ‖u‖

by equality
‖u‖ = sup

(x,t)∈D(T)
n+1

|u(x, t)|.
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Take a point (x, t). Let A(i,j)(x, t) be the elements of the inverse matrix A−1(x, t). Let us define a
function σ(y, x, t) by equality

σ(y, x, t) =

(
n

∑
i,j=1

A(i,j)(x, t)(yi − xi)(yj − xj)

) 1
2

. (6)

Define the function Z0 for t > τ by equality

Z0(x, y, t, τ) =
1

[4π(t − τ)]
n
2 (det A(x, t))

1
2
· exp

(
−σ2(y, x, t)

4(t − τ)

)
. (7)

For t < τ we set Z0(x, y, t, τ) = 0. We denote Z0(x, y, t, τ) by v0(y, τ) if the point (x, t) is fixed.
For ρ > 0, we define a function v(y, τ) by equality

v(y, τ) =
1

[4π(t − τ)]
n
2 (det A(x, t))

1
2

×
(

exp
(
−σ2(y, x, t)

4(t − τ)

)
− exp

(
− ρ2

4(t − τ)

))
.

Using a Green formula, it is easy to prove that

u(x, t) =
∫ t

0

∫
Dρ

[v(y, τ)Lu(y, τ)− u(y, τ)Mv(y, τ)] dydτ

+
∫

Dρ

u(y, 0)v(y, 0)dy

+
∫ t

0

∫
∂Dρ

[(y − x)T A−1(x, t)A(y, τ)A−1(x, t)(y − x)]
2(t − τ)‖A−1(x, t)(y − x)‖

×Z0(x, y, t, τ)u(y, τ)dySdτ, (8)

where the inner integral in the third term is a surface integral on the boundary of the domain
Dρ ⊂ Rn, which is defined by Dρ = {y ∈ Rn|σ(y, x, t) < ρ}. Let M be a conjugate operator for
L = L(y, τ, ∂/∂y, ∂/∂τ) :

Mv(y, τ) = −∂v(y, τ)

∂τ
−

n

∑
i,j=1

∂2

∂yi∂yj

(
aij(y, τ)v(y, τ)

)
−

n

∑
i=1

∂

∂yi
(ai(y, τ)v(y, τ)) + a0(y, τ)v(y, τ). (9)

Using the Cauchy inequality we have

[(y − x)T A−1(x, t)A(y, τ)A−1(x, t)(y − x)] ≤ ‖A(y, τ)‖ · ‖A−1(x, t)(y − x)‖2.

Define a new scalar product [v, w] by equality [v, w] = vT A−1(x, t)w. Then

[y − x, y − x] = σ2(x, y, t), [w, w] ≤ ‖A−1(x, t)‖‖w‖2.

Using the Cauchy inequality we have

‖A−1(x, t)(y − x)‖4 = [(y − x), A−1(x, t)(y − x)]2,
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‖A−1(x, t)(y − x)‖4 ≤ [A−1(x, t)(y − x), A−1(x, t)(y − x)] · σ2(x, y, t).

Hence,
‖A−1(x, t)(y − x)‖2 ≤ ‖A−1(x, t)‖ · σ2(x, y, t).

Now, we can evaluate the last integral in formula (8):

∫ t

0

∫
∂Dρ

[(y − x)T A−1(x, t)A(y, τ)A−1(x, t)(y − x)]
2(t − τ)‖A−1(x, t)(y − x)‖

×Z0(x, y, t, τ)u(y, τ)dySdτ

≤ μ

ν

∫ t

0

∫
∂Dρ

ρ

2(t − τ)

1

[4π(t − τ)]
n
2 (det A(x, t))

1
2

× exp
(
− ρ2

4(t − τ)

)
u(y, τ)dySdτ

≤ ‖u‖
Γ( n

2 )

μ

ν

∫ t

0

ρn

(t − τ)

1

[4(t − τ)]
n
2
· exp

(
− ρ2

4(t − τ)

)
dτ

≤ ‖u‖
Γ( n

2 )

μ

ν

∫ ∞

ρ2
4t

s
n
2 −1 · exp (−s) ds.

Hence, the last integral in formula (8) converges to zero as ρ → ∞. For the function v we have
inequality v(y, τ) ≤ v0(y, τ). Moreover, v(y, τ) → v0(y, τ) as ρ → ∞. So, using the equality∫

Rn
v0(y, τ)dy = 1,

we have ∫
Dρ

u(y, 0)v(y, 0)dy →
∫

Rn
u(y, 0)v0(y, 0)dy

and ∫ t

0

∫
Dρ

v(y, τ)Lu(y, τ)dydτ →
∫ t

0

∫
Rn

v0(y, τ)Lu(y, τ)dydτ.

It is easy to see that
Mv(y, τ)− Mv0(y, τ) =

= (
∂

∂τ
− d0)

(
1

[4π(t − τ)]
n
2 (det A(x, t))

1
2

exp
(
− ρ2

4(t − τ)

))

=

(
n

2(t − τ)
− ρ2

4(t − τ)2 − d0

)
1

[4π(t − τ)]
n
2 (det A(x, t))

1
2

exp
(
− ρ2

4(t − τ)

)
,

where

d0 = −
n

∑
i,j=1

∂2aij(y, τ)

∂yi∂yj
−

n

∑
j=1

∂aj(y, τ)

∂yj
+ a0(y, τ)

is a coefficient of the function u in the operator Mu. The inequalities

∫ t

0

∫
Dρ

|u(y, τ)Mv(y, τ)− u(y, τ)Mv0(y, τ)| dydτ

≤ const · ‖u‖
∫ t

0

(
n

2(t − τ)
+

ρ2

4(t − τ)2 + ‖d0‖
)
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× ρn

Γ( n+1
2 ) [4(t − τ)]

n
2

exp
(
− ρ2

4(t − τ)

)
dτ

≤ const · ‖u‖
(

1 +
2t‖d0‖

n

)
1

Γ
( n

2
) ∫ ∞

ρ2
4t

s
n
2 −1 · exp (−s) ds

+const · ‖u‖ 1

Γ
(

n+1
2

) ∫ ∞

ρ2
4t

s
n
2 · exp (−s) ds

show that ∫ t

0

∫
Dρ

u(y, τ)Mv(y, τ)dydτ →
∫ t

0

∫
Rn

u(y, τ)Mv0(y, τ)dydτ.

Putting ρ → ∞ in the formula (8), we have the following integral representation of the Cauchy
problem (2)

u(x, t) =
∫ t

0

∫
Rn

[v0(y, τ) f (y, τ)− u(y, τ)Mv0(y, τ)] dydτ

+
∫

Rn
ϕ(y)v0(y, 0)dy. (10)

3. Von-Neumann–Ulam Scheme

Now we investigate some properties of the integral operator

Ku(x, t) = −
∫ t

0

∫
Rn

u(y, τ)Mv0(y, τ)dydτ (11)

in Equation (10). The matrix A(x, t) of the coefficients of higher derivatives is symmetric.
So, from the equation

n

∑
i,j=1

aij(x, t)
∂2

∂yi∂yj
v0(y, τ) = −∂v0(y, τ)

∂τ
,

we have

Mv0(y, τ) =
n

∑
i,j=1

[aij(x, t)− aij(y, τ)]
∂2

∂yi∂yj
v0(y, τ)

+
n

∑
i=1

di(y, τ)
∂

∂yi
v0(y, τ) + d0(y, τ)v0(y, τ), (12)

where di(y, τ) = −2 ∑n
j=1 ∂aij(y, τ)/∂yj − ai(y, τ) are bounded.

The expression (12) has the same structure and properties as the kernel K(x, y, t, λ) in formula
(11.12) in ([1], Sec. IV). It follows from inequalities (11.3) and (11.17) in ([1], Sec. IV) that there exist
positive constants C and c, such that

|Mv0(y, τ)| ≤ c(t − τ)−
n+2−α

2 exp
(
−C

|y − x|2
t − τ

)
, (13)

for 0 ≤ τ < t.
Examples of constants c, C and further discussion can be found in [7]. In particular, it is shown

in [7] that the inequality (13) implies uniform convergence of the von-Neumann series for Equation (10),
if f (x, t) and ϕ(x) are bounded functions. We have

u(x, t) =
∞

∑
i=0

KiF(x, t), (14)
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F(x, t) = F1(x, t) + F2(x, t)

=
∫ t

0

∫
Rn

v0(y, τ) f (y, τ)dydτ +
∫

Rn
ϕ(y)v0(y, 0)dy. (15)

We can apply methods of [7] for constructing unbiased estimators for u(x, t). To realize the
von-Neumann–Ulam scheme, it is sufficient to choose a transition probability density for a Markov
chain consistent with the kernel K1(x, y, t, τ) of the operator K. For instance, we can take a density in
the form

p((x, t) → (y, τ)) =
α(1 − q)

2t
α
2

(t − τ)
α
2 −1Z1(x − y, t − τ), (16)

where 0 < q < 1 is the probability of absorption at a current step and

Z1(x − y, t − τ) =

(
C

π(t − τ)

) n
2

exp
(
−C

|x − y|2
t − τ

)
(17)

for 0 ≤ τ < t and Z1(x − y, t − τ) = 0 for τ > t.
The constant C in these formulas is the same as in inequality (13). We can take any constant such

that 4μC < 1. Hence, we have the compatibility of the density and the kernel of the integral equation.
The probability of absorption at each step is a constant. Therefore, the time of the absorption (N) has
a geometric probability distribution with a parameter q: P(N = m) = q(1 − q)m for m = 0, 1, 2, . . . .
Random variable N and the trajectory are independent random elements and EN = q−1. We can
use procedure described in [7] for generating a Markov chain {(xm, tm)}∞

m=1 which starts at the point
(x0, t0) = (x, t).

For constructing unbiased estimators for the solution of Equation (10), we use the formulas

η(x, t) =
N

∑
m=0

W(m)F(xm, tm), (18)

ζ(x, t) =
W(N)F(xN , tN)

q
(19)

We define weight functions as W(0) = 1,

W(m) = W(m−1) K1(xm−1, xm, tm−1, tm)

p((xm−1, tm−1) → (xm, tm))
, (20)

for m = 1, 2, . . .. Final unbiased estimators for u(x, t) are obtained after replacement of F(xm, tm) by
their unbiased estimators

F̂m = tm f (xm +
√

2tm(1 − θ)Y, tmθ) + ϕ(xm +
√

2tmY),

where the random variable θ is uniformly distributed on the interval [0, 1], and a random vector Y has
a normal distribution with mean 0 and covariance matrix A(xm, tm). They are independent.

It is proved in [7] that the estimators have finite variances.

Numerical Algorithm

The numerical algorithm is based on the Monte Carlo method for calculating the mathematical
expectation of a random variable.

Consider as an example the following unbiased estimator ζ̂(x, t) = W(N) F̂N/q for u(x, t).
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Let ζ̂1, ζ̂2, . . . , ζ̂k, be independent realizations of the estimator ζ̂(x, t). Then we can approximate
u(x, t) by the sample average ζ̄ = (ζ̂1 + ζ̂2 + . . . + ζ̂k)/k. The approximation error is calculated as
3
√

S2/k, where S2 = (ζ̂2
1 + ζ̂2

2 + . . . + ζ̂2
k)/k − ζ̄2 is the sample variance.

For simulating a Markov chain {(xm, tm)}N
m=0, we can use the formulas

x0 = x, t0 = t, xm+1 = xm +
√

tmϑm/(2C)Ym, tm+1 = tm(1 − ϑm) (21)

where the random variables {ϑ}∞
m=0 and the random vectors {Ym}∞

m=0 are stochastically independent.
The variables ϑm are distributed on the interval (0, 1) and have a distribution density (α/2)sα/2−1.
All the components of the vector Ym are stochastically independent and have a standard
normal distribution.

4. Conjugate Scheme

Now we apply the technique developed in [8] to Equation (10). Fix a number q (0 < q < 1) and
generate a random variable N having a geometric distribution (P(N = m) = q(1 − q)m, m = 0, 1, . . .).
The random variables

ξ1(x, t) =
KN F(x, t)
q(1 − q)N , ξ2(x, t) =

N

∑
m=0

KmF(x, t)
(1 − q)m

are unbiased estimators for u(x, t). We execute m times the procedure of evaluation of the integral in
(11) to determine the unbiased estimator for KmF(x, t). This procedure is similar to the procedure of
evaluation of the integral (3.8) in [8]. Namely, let S0

1(x, t) =
{

ω ∈ Rn|ω′A−1(x, t)ω = 1
}

be an ellipsoid
centered at zero, and let σn = 2π

n
2 /Γ( n

2 ) be an area of the sphere of radius 1 in Rn. The random vector
Ω is distributed on S0

1(x, t) with density

p(x, t, ω) =
1

σn
√

det(A(x, t))|A−1(x, t)ω| . (22)

After the calculation of the kernel K1(x, y, t, τ) = −Mv0(y, τ), we have

Ku(x, t) = −
∫ t

0
dτ
∫ ∞

0
drE

n − Tr
(

A(x + rΩ, τ)A−1(x, t)
)

(t − τ)Γ( n
2 )(4(t − τ))

n
2

× exp
(
− r2

4(t − τ)

)
rn−1u(x + rΩ, τ)

+
∫ t

0
dτ
∫ ∞

0
drE

2r2 [Ω′A−1(x, t)A(x + rΩ, τ)A−1(x, t)Ω − 1
]

4(t − τ)2Γ( n
2 )(4(t − τ))

n
2

× exp
(
− r2

4(t − τ)

)
rn−1u(x + rΩ, τ)

+
∫ t

0
dτ
∫ ∞

0
drE(

rd′(x + rΩ, τ)A−1(x, t)Ω
(t − τ)Γ( n

2 )(4(t − τ))
n
2

× exp
(
− r2

4(t − τ)

)
rn−1u(x + rΩ, τ)−

∫ t

0
dτ
∫ ∞

0
drEd0(x + rΩ, τ)

×u(x + rΩ, τ)
2rn−1

Γ( n
2 )(4(t − τ))

n
2

exp
(
− r2

4(t − τ)

)
, (23)

where d′ denotes the transposed vector d� = (d1, d2, . . . , dn) and Tr(A) denotes the trace of the matrix
A. E is the mathematical expectation of the function of random variable Ω.

All coefficients in the Equation (2) belong to the Hölder class. Hence, we can simplify the
expressions in (23):
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n − Tr
(

A(x + rΩ, τ)A−1(x, t)
)

= Tr
(
[A(x, t)− A(x + rΩ, t)] A−1(x, t)

)
+Tr

(
[A(x + rΩ, t)− A(x + rΩ, τ)] A−1(x, t)

)
= g̃1(x + rΩ, x, t)rα + g̃2(x + rΩ, x, τ, t)(t − τ)

α
2 , (24)

[
Ω′A−1(x, t)A(x + rΩ, τ)A−1(x, t)Ω − 1

]
= Ω′A−1(x, t) [A(x + rΩ, t)− A(x, t)] A−1(x, t)Ω

+Ω′A−1(x, t) [A(x + rΩ, τ)− A(x + rΩ, t)] A−1(x, t)Ω

= h̃1(x + rΩ, x, t)rα + h̃2(x + rΩ, x, τ, t)(t − τ)
α
2 , (25)

where g̃1, g̃2, h̃1, h̃2 are bounded functions.
Substituting these expressions into (23) and putting s = r2/4(t − τ), we obtain the following

representation for Ku(x, t) :

Ku(x, t) =
∫ t

0
dτ(t − τ)

α
2 −1

∫ ∞

0
ds

2α

2Γ( n
2 )

s
n+α

2 −1 exp(−s)

×E
(

g̃1(x + 2
√

s(t − τ)Ω, x, t)u(x + 2
√

s(t − τ)Ω, τ)

)
+
∫ t

0
dτ(t − τ)

α
2 −1

∫ ∞

0
ds

1
2Γ( n

2 )
s

n
2 −1 exp(−s)

×E
(

g̃2(x + 2
√

s(t − τ)Ω, x, τ, t)u(x + 2
√

s(t − τ)Ω, τ)

)
+
∫ t

0
dτ(t − τ)

α
2 −1

∫ ∞

0
ds

2α

Γ( n
2 )

s
n+2+α

2 −1 exp(−s)

×E
(

h̃1(x + 2
√

s(t − τ)Ω, x, t)u(x + 2
√

s(t − τ)Ω, τ)

)
+
∫ t

0
dτ(t − τ)

α
2 −1

∫ ∞

0
ds

1
Γ( n

2 )
s

n+2
2 −1 exp(−s)

×E
(

h̃2(x + 2
√

s(t − τ)Ω, x, τ, t)u(x + 2
√

s(t − τ)Ω, τ)

)
+
∫ t

0
dτ(t − τ)−

1
2

∫ ∞

0
ds

1
Γ( n

2 )
s

n+1
2 −1 exp(−s)

×E
(

d′(x + 2
√

s(t − τ)Ω, τ)A−1(x, t)Ωu(x + 2
√

s(t − τ)Ω, τ)

)
−
∫ t

0
dτ
∫ ∞

0
ds

1
Γ( n

2 )
s

n
2 −1 exp(−s)

×E
(

d0(x + 2
√

s(t − τ)Ω, τ)u(x + 2
√

s(t − τ)Ω, τ)

)
. (26)
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The unbiased estimator η̃(x, t) for Ku(x, t) has the form:

η̃(x, t) = t
α
2

2αΓ( n+α
2 )

αΓ( n
2 )

g̃1

(
x + 2

√
γ

(
n + α

2

)
tϑΩ, x, t

)

×u

(
x + 2

√
γ

(
n + α

2

)
tϑΩ, t − tϑ

)

+t
α
2

1
α

g̃2

(
x + 2

√
γ
(n

2

)
tϑΩ, x, t − tϑ, t

)
×u
(

x + 2
√

γ
(n

2

)
tϑΩ, t − tϑ

)
+t

α
2

2α+1Γ( n+2+α
2 )

αΓ( n
2 )

h̃1

(
x + 2

√
γ

(
n + 2 + α

2

)
tϑΩ, x, t

)

×u

(
x + 2

√
γ

(
n + 2 + α

2

)
tϑΩ, t − tϑ

)

+t
α
2

n
α
× h̃2

(
x + 2

√
γ

(
n + 2

2

)
tϑΩ, x, t − tϑ, t

)

×u

(
x + 2

√
γ

(
n + 2

2

)
tϑΩ, t − tϑ

)

+t
1
2

2Γ( n+1
2 )

Γ( n
2 )

d′
(

x + 2

√
γ

(
n + 1

2

)
tδΩ, t − tδ

)
A−1(x, t)Ω

×u

(
x + 2

√
γ

(
n + 1

2

)
tδΩ, t − tδ

)

−td0

(
x + 2

√
γ
(n

2

)
tθΩ, t − tθ

)
u
(

x + 2
√

γ
(n

2

)
tθΩ, t − tθ

)
, (27)

where the random variables ϑ, δ, θ are distributed on the interval [0, 1]. The variables ϑ and δ have
densities (α/2)sα/2−1 and 1/(2

√
s), respectively, and θ is distributed uniformly. The variable γ(m) has

a gamma distribution with a density sm−1e−s/Γ(m).
Choosing one of the summands in (27) with probability 1

6 and multiplying it by 6, we obtain the
final unbiased estimator ζ̃(x, t) for Ku(x, t).

The unbiased estimators ψm for KmF(x, t) can be constructed on trajectories of the inhomogeneous
Markov chain {(xk, tk)}∞

k=0 with initial point (x, t). Consider stochastically independent random
elements {ϑk}∞

k=0, {δk}∞
k=0, {θk}∞

k=0, {Ωk}∞
k=0. The initial value of the variable ψm is 1. At step k we

consider ζ̃(xk−1, tk−1) and multiply the variable ψm by the corresponding weight factor. The arguments
of the function u determine the next state of the Markov chain. For example, if the first summand of
the estimator (27) was chosen at step k, then we multiply variable ψm by

6t
α
2
k−1

2αΓ( n+α
2 )

αΓ( n
2 )

g̃1

(
xk−1 + 2

√
γk−1

(
n + α

2

)
tk−1ϑk−1Ωk−1, xk−1, tk−1

)

and define the next point (xk, tk) by formulas:

xk = xk−1 + 2

√
γk−1

(
n + α

2

)
tk−1ϑk−1Ωk−1,

tk = tk−1 − tk−1ϑk−1.
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After m steps, we multiply the variable ψm by an estimator for F(xm, tm) which is equal to

tm f
(

xm + 2
√

γm

(n
2

)
tmθmΩm, tm − tmθm

)
+ ϕ

(
xm + 2

√
γm

(n
2

)
tmΩm

)
.

So, the random variables

ξ̃1(x, t) =
ψN

q(1 − q)N , ξ̃2(x, t) =
N

∑
m=0

ψm

(1 − q)m

are unbiased estimators for u(x, t). Repeating the arguments of the proof of Theorem 1 in [8], it is easy
to prove that constructed estimators have finite variances.

Remark 1. The unbiased estimators constructed above and the algorithm for calculating them can be used in
the Monte Carlo method to find u(x, t). This computational algorithm is more complex than the algorithm in
Section 3. On the other hand this algorithm does not require an estimate of spectrum of matrix A(x, t).
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Abstract: In this paper, we discuss the cumulative measure of inaccuracy in k-lower record values
and study characterization results of dynamic cumulative inaccuracy. We also present some properties
of the proposed measures, and the empirical cumulative measure of inaccuracy in k-lower record
values. We prove a central limit theorem for the empirical cumulative measure of inaccuracy under
exponentially distributed populations. Finally, we analyze the mutual information for measuring the
degree of dependency between lower record values, and we show that it is distribution-free.
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1. Introduction and Background

The Information Theory provides various concepts of broad use in Probability and Statistics
which are finalized to measure the information content of stochastic models. Apart from the classical
differential entropy, which constitutes a useful tool for the analysis of absolutely continuous random
variables, some information measures based on cumulative notions have been attracting an increasing
amount of attention in the recent literature. Among such measures, in this paper we focus on the
cumulative (past) inaccuracy of bivariate random lifetimes, which is a suitable extension of the
cumulative entropy. We also deal with the mutual information, which is strictly related to the Shannon
entropy, and is one of the most commonly adopted notions for bivariate random variables. Indeed,
the mutual information is a measure of the mutual dependence of two random variables, and can be
evaluated by means of the joint (and marginal) distributions.

We recall some recent papers dealing with stochastic models and information measures of interest
in the reliability theory. Navarro et al. [1] presented some stochastic ordering and properties of aging
classes of dynamic cumulative residual entropy, where Psarrakos and Navarro [2] generalized the
concept of cumulative residual entropy by relating this concept to the mean time between record
values, and also considered the dynamic version of this new measure. Moreover, Tahmasebi and
Eskandarzadeh [3] proposed a new extension of the cumulative entropy based on k-th lower record
values. Sordo and Psarrakos [4] provided comparison results for the cumulative residual entropy of
systems and their dynamic versions.

Motivated by some of the articles mentioned above, in this paper we aim to investigate some
applications of the previously mentioned information measures to the k-lower record values. Record
values are widely studied in the literature as a suitable tool to convey essential information in
stochastic models. More recently, they have also been attracting attention in applied contexts related to
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Mathematics 2019, 7, 175

high-dimensional data, where it is computationally more convenient to determine the rank rather than
the specific values of the observations under investigation.

More specifically, within the scope of this paper, we propose to study the cumulative measure of
inaccuracy in k-lower record values and the parent random variable of a random sample. The context
of dynamic observations will be also considered by analyzing the dynamic cumulative inaccuracy and
related characterization results. We present some properties of the proposed measures, as well as the
empirical cumulative measure of inaccuracy in k-lower record values. Moreover, the investigation
focuses also on the mutual information measure, finalized to measure the degree of dependency
between lower record values.

In the remaining part of this section, we recall the relevant notions that will be used in the
following, and provide the plan of the paper. Specifically, we discuss the basic definitions and
properties of the information measures mentioned above, i.e., the cumulative inaccuracy and the
mutual information. Then, we mention the essential results on the lower record values and recall
certain useful stochastic orders. We shall look into nonnegative random variables, with the case of
truncated support being treatable in a similar way.

Throughout the paper, “log” means natural logarithm, prime denotes derivative, and the terms
“increasing” and “decreasing” are used in a non-strict sense. Finally, as is customary, we assume that
0 log 0 is vanishing.

1.1. Notions of Information Theory

Consider an absolutely continuous random vector (X, Y) having nonnegative components.
We denote by f (x, y) the joint probability density function (PDF) by f (x) and g(x), the marginal
PDFs, and by F(x) and G(x), the cumulative distribution functions (CDFs) of X and Y, respectively.

Bearing in mind the applications in the reliability theory, we assume that X and Y denote random
lifetimes of suitable systems having support (0, ∞). Let

H(X) = −E[log( f (X))] = −
∫ ∞

0
f (x) log( f (x)) dx (1)

be the (Shannon) differential entropy of X. H(Y) is defined similarly, and the bivariate entropy
of (X, Y) is given by H(X, Y) = −E[log( f (X, Y))] = − ∫ ∞

0 dx
∫ ∞

0 f (x, y) log( f (x, y)) dy. Moreover,
the conditional entropy of Y given by X is expressed by:

H(Y|X) = −
∫ ∞

0
dx
∫ ∞

0
f (x, y) log

(
f (x, y)
f (x)

)
dy, (2)

whereas the mutual information of (X, Y) is defined as:

MX,Y =
∫ ∞

0
dx
∫ ∞

0
f (x, y) log

(
f (x, y)

f (x) g(y)

)
dy. (3)

We recall that MX,Y is a measure of dependence between X and Y, with MX,Y = 0 if, and only
if X and Y are independent. Furthermore, MX,Y is largely adopted to assess the information
content in a variety of applied fields, such as signal processing and pattern recognition. Due to (3),
the mutual information can be expressed in terms of suitable entropies as follows (see, for example,
Ebrahimi et al. [5]):

MX,Y = H(X) + H(Y)− H(X, Y) = H(Y)− H(Y|X). (4)

See also Ebrahimi et al. [6] and Ahmadi et al. [7] for various results of interest in the reliability
theory involving dynamic measures for multivariate distributions based on the mutual information.
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Among the notions involving cumulative versions of information measures, we now recall the
cumulative (past) inaccuracy of (X, Y), given by:

I(X, Y) = −
∫ ∞

0
F(x) log(G(x)) dx. (5)

As specified in Section 1 of Kundu et al. [8], the measure given in (5) can be viewed as
the cumulative analogue of the Kerridge inaccuracy measure of X and Y, which is expressed as
− ∫ ∞

0 f (x) log(g(x)) dx (cf. Kerridge [9]). The relevant difference is that Equation (5) involves the
CDFs instead of the PDFs. In many real situations, it is more convenient to deal with distribution
functions which carry information about the fact that an event occurs prior or after the current
time. Moreover, the measure given in (5) provides information content when using G(x), the CDF
asserted by the experimenter due to missing or incorrect information in experiments, instead of the
true distribution F(x). Clearly, if F and G are identical, then I(X, Y) identifies with the cumulative
entropy studied by Di Crescenzo and Longobardi [10] and by Navarro et al. [1]. See Section 5 of
Kumar and Taneja [11] for various results involving (5) and the related dynamic version, i.e., the
dynamic cumulative past inaccuracy measure. We finally recall that the cumulative inaccuracy (5)
and the cumulative entropy are also involved in the definition of other information measures of
interest (see, for instance, Park et al. [12], and Di Crescenzo and Longobardi [13] for the cumulative
Kullback-Leibler information).

1.2. Lower Record Values

Record values are often studied in various fields due to their relevance in specific applications.
If statistical observations are difficult to obtain, or when experimental observations are destroyed and
access to them is not available, then the researchers are forced to make inference about the distribution
of the observations of used record amounts. Suppose, for example, that it is required to estimate the
water level of a river solely based on the available records of previous flooding. Similarly, consider
variables such as record rainfall, record temperature, wind speed record, and other quantities of
interest in meteorology. In such cases, the analysis of statistical observations, if performed by resorting
to lower or upper record values.

Let us now recall some basic notions about lower record values that will be used in this paper.
Let X be an absolutely continuous nonnegative random variable with CDF F(x) and PDF f (x),
and let {Xn, n ≥ 1} be a sequence of independent random variables, distributed identically as X.
An observation Xj, j ≥ 1, will be called a lower record value if its value is less than the values of all
previous observations. Thus, Xj is a lower record value if Xj < Xi for every i < j. For a fixed positive
integer k, similarly to Dziubdziela and Kopociński [14], we define the sequence {Tn(k), n ≥ 1} of k-th
lower record times for the sequence {Xn, n ≥ 1} as follows:

T1(k) = 1, Tn+1(k) = min
{

j > Tn(k) : Xk:Tn(k)+k−1 > Xk:k+j−1

}
, (6)

where Xj:m denotes the j-th order statistic in a sample of size m (see also Malinowska and
Szynal [15]). Then,

Ln(k) := Xk:Tn(k)+k−1,

is called a sequence of k-th lower record values of {Xn, n ≥ 1}. Since the ordinary record values are
contained in the k-records, the results for usual records can be obtained as a special case by setting
k = 1. The PDF of Ln(k), for n ≥ 1 and k ≥ 1, is given by:

fn(k)(x) =
kn

(n − 1)!
[F(x)]k−1[Λ̃(x)]n−1 f (x), (7)
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and the joint PDF of (Lm(k), Ln(k)), for 1 ≤ m < n, k ≥ 1, is:

fm(k),n(k)(x, y) =
kn

(m − 1)!(n − m − 1)!
[Λ̃(y)− Λ̃(x)]n−m−1

× [Λ̃(x)]m−1h(x)[F(y)]k−1 f (y), x > y,
(8)

where

Λ̃(x) = − log F(x) and h(x) = −Λ̃′(x) =
f (x)
F(x)

, x > 0, (9)

are the cumulative reversed hazard rate and the reversed hazard rate of X, respectively. Hence,
the conditional PDF of Ln(k) given Lm(k), 1 ≤ m < n, is given by:

fn|m(y|x) =
kn[Λ̃(y)− Λ̃(x)]n−m−1 f (y)[F(y)]k−1

km(n − m − 1)![F(x)]k
, x > y. (10)

By using the well-known relation

∫ ∞

z

λn

(n − 1)!
xn−1e−λxdx =

n−1

∑
i=0

[λz]i

i!
e−λz,

we see that the CDF corresponding to Equation (7) can be obtained as:

Fn(k)(x) =
∫ x

0
kn

(n − 1)!
[F(y)]k−1[Λ̃(y)]n−1 f (y)dy

= [F(x)]k ∑n−1
i=0

[kΛ̃(x)]i

i!
.

(11)

We note that the sequence of k-th upper record times is denoted as {Un(k), n ≥ 1}. It is
defined similarly to Tn(k) by reverting the last inequality in (6) (see, for instance, Dziubdziela and
Kopociński [14] or Tahmasebi et al. [16]). Record values apply in problems such as industrial stress
testing, meteorological analysis, hydrology, sport, and economics. In reliability theory, record values
are used to study things such as technical systems which are subject to shocks, e.g., peaks of voltages.
For more details about records and their applications, one may refer to Arnold et al. [17]. Several
authors investigated measures of inaccuracy for ordered random variables. Thapliyal and Taneja [18]
proposed the measure of inaccuracy between the i-th order statistic and the parent random variable.
Moreover, Thapliyal and Taneja [19] developed measures of dynamic cumulative residual and past
inaccuracy. They studied characterization results of these dynamic measures under a proportional
hazard model and proportional reversed hazard model. The same authors introduced the measure
of residual inaccuracy of order statistics and proved a related characterization result (cf. Thapliyal
and Taneja [20]). Equality of Rényi entropies of upper and lower k-records is also known to provide a
characteristic property of symmetric distributions (see Fashandi and Ahmadi [21]). Furthermore, it is
worth mentioning that the analysis of lower record values is related to the generalized cumulative
entropy. For instance, its role in the study of a new measure of association based on the log-odds rate
has recently been pinpointed by Asadi [22]. Finally, recent contributions on a measure of past entropy
for nth upper k-record values can be found in Goel et al. [23].

1.3. Stochastic Orders and Related Notions

Aiming to use stochastic orders to perform suitable comparisons, here we recall some relevant
definitions. Let X and Y be random variables, where X is said to be smaller than Y, according to the

- usual stochastic ordering (denoted by X ≤st Y) if P(X ≥ x) ≤ P(Y ≥ x) for all x ∈ R; it is known
that X ≤st Y ⇔ E(φ(X)) ≤ E(φ(Y)) for all increasing functions φ;
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- likelihood ratio ordering (denoted by X ≤lr Y) if
g(x)
f (x)

is increasing in x;

- decreasing convex order, denoted by X ≤dcx Y, if E(φ(X)) ≤ E(φ(Y)) for all decreasing convex
functions φ, such that the expectations exist.

Moreover, we say that X has a decreasing reversed hazard rate (DRHR) if h(x) =
f (x)
F(x)

is decreasing

in x. For specific details on these notions, see, for instance, Shaked and Shanthikumar [24], and for
applications of the decreasing convex order, see Ma [25].

1.4. Plan of the Paper

In this investigation, we propose the cumulative measure of inaccuracy and study characterization
results of a dynamic cumulative inaccuracy measure. Also, we study the degree of dependency among
the sequence of k-th lower record values through the mutual information of record values.

The paper is organized as follows: In Section 2, we consider a measure of inaccuracy associated
with Ln(k) and X. We provide some results and properties of such a measure, including an application
to the proportional reversed hazards model. In Section 3, we propose the dynamic version of inaccuracy
associated with Ln(k) and X, and provide a characterization result. In Section 4, we study the problem
of estimating the cumulative measure of inaccuracy by means of the empirical cumulative inaccuracy
in k-lower record values. The rest of the section is devoted to a simple application to real data, with the
discussion of some special cases, and a central limit theorem for the empirical cumulative measure of
inaccuracy in the case of exponentially distributed random samples. Finally, in Section 5 we investigate
the mutual information between sequences of lower record values, aiming to measure their degree of
dependency. Specifically, we show that this measure is distribution-free and can be computed by using
the distribution of the k-th lower record values of the sequence from the uniform distribution.

2. Cumulative Measure of Inaccuracy

Let us now consider the cumulative measure of inaccuracy between Ln(k) and the parent
non-negative random variable, say X. Recalling (5) and (11), we have:

I(Ln(k), X) = − ∫ ∞
0 Fn(k)(x) log (F(x)) dx

= ∑n−1
i=0

ki

i!
∫ ∞

0 [F(x)]k[Λ̃(x)]i+1dx,
(12)

with Λ̃(x) given in (9). According to the comments given in Section 1.1, I(Ln(k), X) can be used to
gain information concerning an experiment for which the distribution of the k-lower record values is
compared with the parent distribution. Noting that, due to (7), Li+2(k) being a random variable with
density function

fi+2(k)(x) =
ki+2

(i + 1)!
[F(x)]k−1[Λ̃(x)]i+1 f (x),

and recalling that h(x) is the reversed hazard rate of X (see (9)), from (12) we obtain:

I(Ln(k), X) = ∑n−1
i=0

i + 1
k2

∫ ∞
0

ki+2

(i + 1)!
[F(x)]k[Λ̃(x)]i+1dx

= ∑n−1
i=0

i + 1
k2 E

[
1

h(Li+2(k))

]
.

(13)
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Remark 1. Making use of the generalized cumulative entropy introduced in Definition 1.1 of Tahmasebi and
Eskandarzadeh [3], given by:

CE i+1,k(X) =
∫ ∞

0

ki+2

(i + 1)!
[F(x)]k[Λ̃(x)]i+1dx ≡ E

[
1

h(Li+2(k))

]
, (14)

from (13) one has that the cumulative measure of inaccuracy between Ln(k) and X can be expressed: as a
size-biased combination of generalized cumulative entropies through the following weighted sum with linearly
increasing weights:

I(Ln(k), X) =
1
k2

n

∑
i=1

i CE i,k(X). (15)

Furthermore, from (11) and (12) we obtain an alternative expression, that is:

I(Ln(k), X) =
n−1

∑
i=0

∫ ∞

0
Λ̃(x)[Fi+1(k)(x)− Fi(k)(x)]dx.

In the following proposition we provide another form of I(Ln(k), X).

Proposition 1. Let X be a nonnegative random variable with cdf F; for the cumulative measure of inaccuracy
between Ln(k) and X, we have:

I(Ln(k), X) =
n−1

∑
i=0

ki

i!

∫ +∞

0
h(z)

{∫ z

0
[F(x)]k[Λ̃(x)]idx

}
dz. (16)

Proof. By (12) and the relation − log F(x) =
∫ ∞

x h(z)dz, we have:

I(Ln(k), X) =
n−1

∑
i=0

ki

i!

∫ +∞

0

∫ ∞

x
h(z)[F(x)]k[Λ̃(x)]idzdx.

By using Fubini’s theorem, we get:

I(Ln(k), X) =
n−1

∑
i=0

ki

i!

∫ +∞

0

∫ z

0
h(z)[F(x)]k[Λ̃(x)]idxdz,

and the result thus follows.

Hereafter, we present some examples and properties of I(Ln(k), X).

Example 1.

(i) If X is uniformly distributed in [0, θ], then:

I(Ln(k), X) =
θ

k2

n−1

∑
i=0

(i + 1)
(

k
k + 1

)i+2
.

(ii) If X is exponentially distributed with mean
1
λ

, then:

I(Ln(k), X) =
1
λ

n−1

∑
i=0

(i + 1)ki
∞

∑
j=0

( 1
j + k + 1

)i+2
.
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(iii) If X has an inverse Weibull distribution with cdf F(x) = exp{−(
α

x
)β}, x > 0, with α > 0 and

β > 1, then:

I(Ln(k), X) =
α

β
k

1
β
−1 n−1

∑
i=0

1
i!

Γ
(
(i + 1)β − 1

β

)
.

For suitable choices of n and k, such inaccuracy measures are plotted in Figure 1, where the parameters
are chosen so that the considered distributions have a unity mean, i.e., (i) θ = 2, (ii) λ = 1, and (iii)
α = 1/Γ(1 − β−1), recalling that the mean of an inverse Weibull distribution is E(X) = αΓ(1 − β−1) (see de
Gusmão et al. [26]). In all cases, I(Ln(k), X) is decreasing in k and increasing in n.

Figure 1. The values of I(Ln(k), X) related to Example 1; (a) for 1 ≤ k ≤ 30 and n = 10, from
top to bottom near the origin: cases (i), (ii), (iii) with (α, β) = (0.816049, 4), and (iii) with (α, β) =

(0.935779, 10); (b) for 1 ≤ n ≤ 60 and k = 10, from top to bottom for large n in the same cases as (a).

Let us now discuss the effect of identical linear transformations on I(Ln(k), X).

Proposition 2. Let a > 0 and b ≥ 0; for n ∈ N, it holds that:

I(aLn(k) + b, aX + b) = aI(Ln(k), X). (17)

Proof. From (15), we have:

I(aLn(k) + b, aX + b) =
1
k2

n

∑
i=1

i CE i,k(aX + b).

Recalling (14), it is not hard to see that: CE i,k(aX + b) = a CE i,k(X), so that the proof
immediately follows.

Remark 2. Let X be a symmetric random variable with respect to the finite mean μ = E(X), i.e., F(x + μ) =

1 − F(μ − x) for all x ∈ R. Then the following relation holds:

I(Ln(k), X) = I(Rn(k), X) := −
∫ ∞

0
Fn(k)(x) log

(
F(x)

)
dx,

where, similarly to (12), the latter term defines the cumulative residual measure of inaccuracy between the k-th
upper record value and X. Here, as usual, F(x) = 1 − F(x) denotes the survival function of X, and Fn(k)(x)
denotes the survival function of the k-th upper record value Rn(k).

Hereafter, we obtain an upper bound for I(Ln(k), X).
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Proposition 3. Let X be an absolutely continuous non-negative random variable with a cumulative reversed
hazard rate Λ̃(x), such that the following function is finite:

h�i+1(t) =
∫ ∞

t
[Λ̃(x)]i+1dx, t > 0. (18)

Then, for n ∈ N we have:

I(Ln(k), X) ≤
n−1

∑
i=0

ki

i!
E
[
h�i+1(X)

]
.

Proof. By (12), from [F(x)]k ≤ F(x)] and Fubini’s theorem, we obtain:

I(Ln(k), X) ≤
n−1

∑
i=0

ki

i!

∫ ∞

0
[Λ̃(x)]i+1

∫ x

0
f (t)dtdx

=
n−1

∑
i=0

ki

i!

∫ ∞

0
f (t)

∫ ∞

t
[Λ̃(x)]i+1dxdt

=
n−1

∑
i=0

ki

i!
E
[
h∗i+1(X)

]
,

thus completing the proof.

Now we can prove a property of the considered inaccuracy measure by means of stochastic
orderings. For that, we use the notions recalled in Section 1.3.

Theorem 1. Suppose that the non-negative random variable X is DRHR. Then, for n ∈ N, one has:

I(Ln+1(k), X)− I(Ln(k), X) ≤ 1
k2

n+1

∑
m=1

E

[
1

h(Lm(k))

]
. (19)

Proof. Recalling that fn(k)(x) is the PDF of Ln(k), provided in Equation (7), then the ratio
fn(k)(x)

fn+1(k)(x)
=

−n
k log F(x)

is increasing in x. Therefore, Ln+1(k) ≤lr Ln(k), and this implies that Ln+1(k) ≤st Ln(k), i.e.,

E[φ(Ln+1(k))] ≤ E[φ(Ln(k))] for all increasing functions φ such that these expectations exist. (For more
details, see Shaked and Shanthikumar [24]). Thus, since X is DRHR and h(x) is its reversed hazard

rate, then
1

h(x)
is increasing in x. As a consequence, from (13) we have:

I(Ln+1(k), X) =
n

∑
i=0

i + 1
k2 E

[
1

h(Li+2(k))

]

≤
n

∑
i=0

i + 1
k2 E

[
1

h(Li+1(k))

]

=
n−1

∑
j=−1

j + 2
k2 E

[
1

h(Lj+2(k))

]

=
n−1

∑
j=0

j + 2
k2 E

[
1

h(Lj+2(k))

]
+

1
k2 E

[
1

h(L1(k))

]

= I(Ln(k), X) +
1
k2

n+1

∑
i=1

E

[
1

h(Li(k))

]
,

where I(Ln(k), X) is expressed in (13). The proof is thus completed.

192



Mathematics 2019, 7, 175

Theorem 2. Let X and Y be two non-negative random variables, such that X ≤dcx Y; then we have:

I(Ln(k), X) ≤ I(LG
n(k), Y) := −

∫ ∞

0
Gn(k)(y) log(G(y))dy.

Here, similarly to (6), LG
n(k) denotes the k-th lower record times for the sequence {Yn, n ≥ 1} with

distribution function Gn(k)(y), and G(y) is the distribution function of Y.

Proof. Due to (18), h�j+1(x) is a decreasing convex function in x. The proof then immediately follows
from Proposition 3.

Let us now investigate the cumulative measure of inaccuracy within the proportional reversed
hazards model (PRHM). We recall that two random variables X and X∗

θ satisfy the PRHM if their
distribution functions are related by the following identity, for θ > 0:

F∗
θ (x) = [F(x)]θ , x ∈ R. (20)

For some properties of such a model associated with aging notions and the reversed relevation
transform, see Gupta and Gupta [27] and Di Crescenzo and Toomaj [28], respectively.

In this case, we assume that X and X∗
θ are non-negative, absolutely continuous random variables.

Due to Equation (20) and making use of (5) and (11), and noting that Λ̃∗
θ (x) = θΛ̃(x), we obtain the

cumulative measure of inaccuracy between L∗
n(k) and X∗

θ as follows, for θ > 0:

I(L∗
n(k), X∗

θ ) = − ∫ +∞
0 F∗

n(k)(x) log
(

F∗
θ (x)

)
dx

= ∑n−1
i=0 kiθi+1

∫ +∞
0

[Λ̃(x)]i+1

i!
[F(x)]kθdx,

(21)

with Λ̃(x) expressed in (9). Moreover, if θ is a positive integer, then the last expression can be rewritten
in terms of the generalized cumulative entropy (14) as follows:

I(L∗
n(k), X∗

θ ) =
1

k2θ

n−1

∑
i=0

(i + 1) CE i+1,kθ(X).

We recall that in this case, i.e., when θ ∈ N, the PRHM expresses that X∗
θ is distributed as the

first-order statistics of a random sample having size θ and taken from the distribution of X.
Let us now obtain suitable bounds under the PRHM.

Proposition 4. Let X and X∗
θ be non-negative, absolutely continuous random variables satisfying the PRHM

as specified in (20), with θ > 0. If θ ≥ (≤)1, then for any n ∈ N we have:

I(L∗
n(k), X∗

θ ) ≤ (≥)
θi+1

k2

n−1

∑
i=0

(i + 1) CE i+1,k(X).

Proof. Clearly, for θ ≥ (≤)1 it is [F(x)]kθ ≤ (≥)[F(x)]k for all x ≥ 0, and then the thesis immediately
follows from (14) and (21).

We conclude this section with a remark on the cumulative measure of inaccuracy for bivariate
first lower record values.
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Remark 3. Consider two identically distributed sequences of random variables {Xn, n ≥ 1} and {Ym, m ≥ 1},
and denote by Ln,X = Ln(1),X and Lm,Y = Lm(1),Y the corresponding first lower record times. Then, for k = 1
and making use of (11) it is not hard to see that the cumulative measure of inaccuracy between Ln,X and Lm,Y is
given by:

I(Ln,X, Lm,Y) = −
∫ +∞

0
Fn(x) log(Fm(x))

=
n−1

∑
i=0

(i + 1)E
(

1
h(Li+1(x))

)
−

n−1

∑
i=0

∫ +∞

0

F(x)[Λ̃(x)]i

i!
log

(
m−1

∑
i=0

[Λ̃(x)]i

i!

)
,

where h(x) is the reversed hazard rate of the underlying distribution.

3. Dynamic Cumulative Measure of Inaccuracy

In this section, we study the dynamic version of the inaccuracy measure I(Ln(k), X). Let X be
the random lifetime of a brand new system that begins to work at time 0 and is observed only at
deterministic inspection times. Clearly, if the system is found failed at time t, then the conditional

distribution function of [X|X ≤ t], known as the past lifetime, is given by
F(x)
F(t)

, 0 ≤ x ≤ t. In a

sequence of i.i.d. failure times having the same distribution as X, if the information about the k-th

lower failure times is available, then
Fn(k)(x)
Fn(k)(t)

is the conditional probability that the k-th lower failure

time is smaller that x, given that it is smaller than t, for 0 ≤ x ≤ t, where Fn(k)(x) is the CDF given in
(11). Hence, the dynamic cumulative measure of inaccuracy between Ln(k) and X is expressed by the
inaccuracy measure between the corresponding past lifetimes, i.e.,:

I(Ln(k), X; t) = − ∫ t
0

Fn(k)(x)
Fn(k)(t)

log
(

F(x)
F(t)

)
dx

= μn(k)(t) log(F(t))− 1
Fn(k)(t)

∫ t
0 Fn(k)(x) log(F(x))dx

= μn(k)(t) log(F(t)) +
1

Fn(k)(t)
∑n−1

i=0

∫ t
0

ki

i!
[F(x)]k[Λ̃(x)]i+1dx,

(22)

where

μn(k)(t) =
∫ t

0

Fn(k)(x)
Fn(k)(t)

dx

is the mean inactivity time of the random variable [t − Ln(k) | Ln(k) < t]. Clearly, recalling (12) and
assuming that X is a bona fide random variable, from (22) we have limt→∞ I(Ln(k), X; t) = I(Ln(k), X).
Moreover, if F(t) > 0 for all t > 0, since log F(t) ≤ 0, we immediately have:

I(Ln(k), X; t) ≤ I(Ln(k), X)

Fn(k)(t)
.

We can now obtain a characterization result for I(Ln(k), X; t).

Theorem 3. Let X be a non-negative, absolutely continuous random variable with distribution function F(x).
If the dynamic cumulative inaccuracy (22) is finite for all t > 0, then I(Ln(k), X; t) characterizes the distribution
function of X.
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Proof. Differentiating both sides of (22) with respect to t, we obtain:

d
dt

I(Ln(k), X; t) = h(t)μn(k)(t)− hn(k)(t)I(Ln(k), X; t)

= h(t)
[
μn(k)(t)− c(t)I(Ln(k), X; t)

]
,

where h(t) =
f (t)
F(t)

and hn(k)(t) =
fn(k)(t)
Fn(k)(t)

are the reversed hazard rates, and where we have set

c(t) =
kn[Λ̃(t)]n−1

(n − 1)! ∑n−1
i=0

ki

i!
[Λ̃(t)]i

.

Taking again the derivative with respect to t, we get:

h′(t) =
(h(t))2

[
c′(t)I(Ln(k), X; t) + c(t)

d
dt

I(Ln(k), X; t)− 1 + c(t)h(t)μn(k)(t)
]

d
dt

I(Ln(k), X; t)
. (23)

Suppose that there are two CDFs, F and F̂, such that for all t,

I(Ln(k), X; t) = I(L̂n(k), X̂; t) = z(t),

and having reversed hazard rates h(t) and hF̂(t), respectively. Then, from (23) we get, for all t:

h′(t) = ϕ(t, h(t)), h′F̂(t) = ϕ(t, hF̂(t)),

where

ϕ(t, y) :=
y2 [c′(t)z(t) + c(t)z′(t)− 1 + c(t)yw(t)]

z′(t) ,

for w(t) := μn(k)(t) and y := h(t). By using Theorem 2.1 and Lemma 2.2 of Gupta and Kirmani [29],
we obtain h(t) = hF̂(t), for all t. Since the reversed hazard rate function characterizes the distribution
function uniquely, the proof is completed.

4. Empirical Cumulative Measure of Inaccuracy

In this section, we address the problem of estimating the cumulative measure of inaccuracy by
means of the empirical cumulative inaccuracy in lower record values. Let X1, X2, . . . , Xm be a random
sample of size m from an absolutely continuous CDF F(x). Then, according to (12), the empirical
cumulative measure of inaccuracy is defined as:

Î(Ln(k), X) =
n−1

∑
i=0

ki

i!

∫ ∞

0
[F̂m(x)]k

[
− log

(
F̂m(x)

)]i+1
dx, (24)

where

F̂m(x) =
1
m

m

∑
i=1

1{Xi≤x}, x ∈ R.

is the empirical distribution of the sample, 1{·} being the indicator function. Let X(1) ≤ X(2) ≤ . . . ≤
X(m) denote the order statistics of the sample. Then, (24) can be written as:

Î(Ln(k), X) =
n−1

∑
i=0

ki

i!

m−1

∑
j=1

∫ X(j+1)

X(j)

[F̂m(x)]k
[
− log

(
F̂m(x)

)]i+1
dx. (25)
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Finally, recalling that:

F̂m(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, x < X(1),
j

m
, X(j) ≤ x < X(j+1), j = 1, 2, . . . , m − 1

1, x ≥ X(m),

from Equation (25) we see that the empirical cumulative measure of inaccuracy can be expressed as:

Î(Ln(k), X) =
n−1

∑
i=0

ki

i!

m−1

∑
j=1

Uj+1

(
j

m

)k [
− log

(
j

m

)]i+1
, (26)

where
Uj+1 = X(j+1) − X(j), j = 1, 2, . . . , m − 1 (27)

are the sample spacings.
The following example provides an application of the empirical cumulative measure of inaccuracy

to real data.

Example 2. Consider the sample data by Abouammoh and Abdulghani [30] concerning the lifetimes (in days)
of m = 40 patients suffering from blood cancer. The evaluation of the corresponding empirical cumulative
measure of inaccuracy, obtained by means of Equation (26), shows that the values of Î(Ln(k), X) are decreasing
in k and increasing in n (see Figure 2).

Figure 2. The values of Î(Ln(k), X) concerning Example 2, (a) for 1 ≤ k ≤ 15 and n = 1, 2, 3, 4, 5
(from bottom to top), and (b) for 1 ≤ n ≤ 15 and k = 1, 2, 3, 4, 5 (from top to bottom).

Let us now discuss two special cases concerning populations from the uniform distribution and
the exponential distribution.

Example 3. Consider the random sample X1, X2, . . . , Xm from a population uniformly distributed in [0, 1].
In this case, the sample spacings (27) are independent and follow the beta distribution with parameters 1 and
m (for more details, see Pyke [31]). Hence, making use of (26), the mean and the variance of the empirical
cumulative measure of inaccuracy are, respectively:

E

[
Î(Ln(k), X)

]
=

n−1

∑
i=0

m−1

∑
j=1

ki

i!(m + 1)

(
j

m

)k [
− log

(
j

m

)]i+1
, (28)

and

Var
[

Î(Ln(k), X)
]
=

n−1

∑
i=0

m−1

∑
j=1

m
m + 2

[
ki

i!(m + 1)

(
j

m

)k [
− log

(
j

m

)](i+1)
]2

. (29)
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Table 1 shows the values of the mean (28) and the variance (29) for k = 2, and for sample sizes
m = 10, 15, 20, with n = 2, 3, 4, 5. We note that E[ Î(Ln(2), X)] is increasing in m and n.

Table 1. Computed values of E[ Î(Ln(2), X)] and Var[ Î(Ln(2), X)] for the uniform distribution.

E[ Î(Ln(2), X)] Var[ Î(Ln(2), X)]

m n = 2 n = 3 n = 4 n = 5 n = 2 n = 3 n = 4 n = 5

10 0.23 0.37 0.48 0.57 0.003 0.006 0.008 0.010
15 0.24 0.38 0.50 0.59 0.002 0.004 0.006 0.008
20 0.25 0.39 0.51 0.61 0.002 0.003 0.005 0.006

Example 4. Let X1, X2, . . . , Xm be a random sample drawn from the exponential distribution with parameter
λ. Then, from (26) we see that the empirical cumulative measure of inaccuracy can be expressed as the following
sum of independent and exponentially distributed random variables:

Î(Ln(k), X) =
m−1

∑
j=1

Yj, where Yj := Uj+1

n−1

∑
i=0

ki

i!

(
j

m

)k [
− log

(
j

m

)]i+1
. (30)

Indeed, in this case, the sample spacings Uj+1 defined in (27) are independent and exponentially distributed with

mean
1

λ(m − j)
(for more details, see Pyke [31]), so that the mean and the variance of Î(Ln(k), X) are given by:

E

[
Î(Ln(k), X)

]
=

m−1

∑
j=1

μj, Var
[

Î(Ln(k), X)
]
=

m−1

∑
j=1

s2
j , (31)

where

μj := E[Yj] =
1
λ

n−1

∑
i=0

ki

i!(m − j)

(
j

m

)k [
− log

(
j

m

)]i+1
,

and

s2
j := Var

[
Yj
]
=

1
λ2

n−1

∑
i=0

{
ki

i!(m − j)

(
j

m

)k [
− log

(
j

m

)]i+1
}2

.

In Table 2, for k = 2, we show the values of the mean and the variance (31) for sample sizes m = 10, 15, 20,
with λ = 0.5, 1, 2 and n = 2, 3, 4, 5. One can easily see that E[ Î(Ln(2), X)] is increasing in m, whereas
Var[ Î(Ln(2), X)] is decreasing in m.

Table 2. Computed values of E[ Î(Ln(2), X)] and Var[ Î(Ln(2), X)] for the exponential distribution.

E[ Î(Ln(2), X)]

λ 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

m n = 2 n = 3 n = 4 n = 5

10 1.30 0.65 0.33 1.77 0.89 0.44 2.12 1.063 0.53 2.37 1.19 0.59
15 1.33 0.67 0.33 1.81 0.91 0.45 2.17 1.086 0.54 2.43 1.22 0.61
20 1.35 0.68 0.34 1.83 0.92 0.46 2.19 1.096 0.55 2.46 1.23 0.62

Var[ Î(Ln(2), X)]

λ 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

m n = 2 n = 3 n = 4 n = 5

10 0.13 0.032 0.008 0.16 0.04 0.009 0.18 0.046 0.011 0.20 0.050 0.012
15 0.09 0.022 0.005 0.11 0.028 0.007 0.12 0.031 0.008 0.14 0.035 0.008
20 0.07 0.017 0.004 0.08 0.021 0.005 0.09 0.024 0.006 0.11 0.026 0.007
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Hereafter, we show a central limit theorem for the empirical cumulative measure of inaccuracy in
the same case as Example 4.

Theorem 4. If X1, X2, . . . , Xm is a random sample drawn from the exponential distribution with parameter
λ, then:

Î(Ln(k), X)−E[ Î(Ln(k), X)]

(Var[ Î(Ln(k), X)])1/2
≡ ∑m−1

j=1 (Yj − μj)

(∑m−1
j=1 s2

j )
1/2

d→ N (0, 1).

Proof. With reference to the notation adopted in Example 4, by setting αj,r = E[|Yj −E(Yj)|r], r = 2, 3,
for large m, we have:

m−1

∑
j=1

αj,2 =
m−1

∑
j=1

s2
j =

1
λ2

n−1

∑
i=0

(
ki

i!

)2 1
m2

m−1

∑
j=1

{
1

(1 − j/m)

(
j

m

)k [
− log

(
j

m

)]i+1
}2

≈ 1
λ2m

n−1

∑
i=0

(
ki

i!

)2

c(i,k)2

and recalling that E[|Yj −E(Yj)|3] = 2(6 − e)[E(Yj)]
3/e for the exponential distribution:

m−1

∑
j=1

αj,3 =
2(6 − e)

e

m−1

∑
j=1

μ3
j =

2(6 − e)
e

m−1

∑
j=1

{
1
λ

n−1

∑
i=0

ki

i!(m − j)

(
j

m

)k [
− log

(
j

m

)]i+1
}3

≈ 2(6 − e)
eλ3m2

{
n−1

∑
i=0

ki

i!
c(i,k)1

}3

,

where

c(i,k)h :=
∫ 1

0

[
xk

1 − x
(− log x)i+1

]h

dx, h = 1, 2.

Hence, for a suitable function C(λ, i, k), for large m, it holds that:(
∑m−1

j=1 αj,3

)1/3

(
∑m−1

j=1 αj,2

)1/2 ≈ C(λ, i, k)m−1/6 → 0 as m → ∞.

The Lyapunov’s condition of the central limit theorem is thus fulfilled, this giving the proof.

5. Mutual Information of Lower Record Values

In this section, we study the degree of dependency between the sequences of lower record values
by means of the mutual information. Recall the basic relations given in Equations (3) and (4).

First, with reference to (1), in the following theorem we obtain the entropy of k-th lower
record values.

Theorem 5. Let {Xn, n ≥ 1} be a sequence of IID random variables having finite entropy. The entropy of Ln(k)
for all n ≥ 2 is given by:

H(Ln(k)) = − log k − (n − 1)ψ(n) + log((n − 1)!) + n
(

1 − 1
k

)
− kn ϕ f (n − 1), (32)
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where ψ(n) = Γ′(n)/Γ(n) is the digamma function, and:

ϕ f (n − 1) :=
∫ +∞

0

zn−1

(n − 1)!
e−zk log( f (F−1(e−z)))dz. (33)

Proof. As customary, we denote by f (x) and F(x) the PDF and CDF of X1. By (7), we have:

H(Ln(k)) = −
∫ +∞

−∞
fn(k)(x) log( fn(k)(x))dx

= −
∫ +∞

−∞

kn

(n − 1)!
[F(x)]k−1[Λ̃(x)]n−1 f (x) log

(
kn

(n − 1)!
[F(x)]k−1[Λ̃(x)]n−1 f (x)

)
dx

= − kn

(n − 1)!

∫ +∞

−∞

{
n[Λ̃(x)]n−1[F(x)]k−1 f (x) log k + (n − 1)[Λ̃(x)]n−1[F(x)]k−1 f (x) log(Λ̃(x))

+ (k − 1)[Λ̃(x)]n−1[F(x)]k−1 f (x) log(F(x)) + [Λ̃(x)]n−1[F(x)]k−1 f (x) log( f (x))

− [Λ̃(x)]n−1[F(x)]k−1 f (x) log((n − 1)!)
}

dx.

By taking z = Λ̃(x), we get:

H(Ln(k)) = −kn
∫ +∞

0

[
n

zn−1

(n − 1)!
e−zk log k +

zn−1

(n − 2)!
e−zk log z

− (k − 1)
zn

(n − 1)!
e−zk +

zn−1

(n − 1)!
e−zk log( f (F−1(e−z)))− zn−1

(n − 1)!
e−zk log((n − 1)!)

]
dz.

Hence, making use of Equation (A.8) of Zahedi and Shakil [32], after some calculations we finally
get: Equation (32).

It is worth noting the analogies between Equation (33) and the function φ f (n) considered by
Baratpour et al. [33] for the analysis of the upper record values.

In the following lemma we express the mutual information between Zm(k) and Zn(k) in terms of
the digamma function.

Lemma 1. Let Zn(k) be the k-th lower record values from the uniform distribution over interval (0, 1). Then,
the mutual information between Zm(k) and Zn(k), for n > m, is given by:

M(Zm(k), Zn(k)) = m + log((n − 1)!)− log((n − m − 1)!)

+ (n − m − 1)ψ(n − m)− (n − 1)ψ(n).

Proof. In this case, recalling (9), we have Λ̃(x) = − log x, 0 < x < 1. Hence, making use of
Equations (2), (4), (8) and (10), for n > m we get:

H(Zn(k)|Zm(k)) = −
∫ 1

0

∫ x

0

kn[− log(y) + log(x)]n−m−1[− log(x)]m−1yk−1

(m − 1)!(n − m − 1)!x

× log

[
knyk−1

kmxk
[− log(y) + log(x)]n−m−1

(n − m − 1)!

]
dydx

=
5

∑
r=1

Ir,

(34)
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where

I1 := −(n − m) log(k)
∫ 1

0

∫ x

0
fm(k),n(k)(x, y)dydx = (n − m) log(k),

I2 := log[(n − m − 1)!]
∫ 1

0

∫ x

0
fm(k),n(k)(x, y)dydx = log[(n − m − 1)!],

I3 :=
∫ 1

0

∫ x

0

kn+1[− log(y) + log(x)]n−m−1[− log(x)]m−1yk−1

(m − 1)!(n − m − 1)!x
log(x)dydx = −m,

I4 := −
∫ 1

0

∫ x

0

kn[− log(y) + log(x)]n−m−1[− log(x)]m−1yk−1

(m − 1)!(n − m − 1)!x
log[− log(y) + log(x)]n−m−1dydx

= −(n − m − 1)[ψ(n − m)− log(k)],

I5 := −
∫ 1

0

∫ x

0

(k − 1)kn[− log(y) + log(x)]n−m−1[− log(x)]m−1yk−1

(m − 1)!(n − m − 1)!x
log(y)dydx = n

(
1 − 1

k

)
.

Hence, by straightforward calculations we obtain:

H(Zn(k)|Zm(k)) = log((n − m − 1)!)− (n − m) log(k)− (n − m − 1)[ψ(n − m)− log k] +
k − 1

k
(n − 2m)− m, (35)

where ψ(n − m) =
∫ +∞

0 tn−me−t log(t) dt. Similarly, by (32) we have

H(Zn(k)) = − log k − (n − 1)ψ(n) + log((n − 1)!) + n
(

1 − 1
k

)
. (36)

Recalling (4), the thesis thus follows from (35) and (36).

Let us now come to the main result of this section. Recall that the mutual information of (X, Y) is
defined in (3).

Theorem 6. Under the assumptions of Theorem 5, the following result holds:

(i) The mutual information between the m-th and the n-th k-lower records is distribution-free, and is given by:

M(Lm(k), Ln(k)) = m + log((n − 1)!)− log((n − m − 1)!)

+ (n − m − 1)ψ(n − m)− (n − 1)ψ(n).
(37)

(ii) The mutual information M(Lm(k), Lm+1(k)) is increasing in m.

Proof.

(i) Let Zm(k) = F−1(Lm(k)) and Zn(k) = F−1(Ln(k)), where F−1 denotes the pseudo-inverse function
of F, i.e., the quantile function of X. Then, Zm(k) and Zn(k) are the m-th and n-th k-lower records
of the uniform distribution over the interval (0, 1). By the invariance property of mutual
information, we have: M(Lm(k), Ln(k)) = M(Zm(k), Zn(k)), thus the result follows from Lemma 1.

(ii) By taking n = m + 1 in (37), we get:

M(Lm(k), Lm+1(k)) = m + log(m!)− mψ(m + 1),

so that

M(Lm+1(k), Lm+2(k))− M(Lm(k), Lm+1(k)) = log((m + 1)!)− log(m!)

+ mψ(m + 1)− (m + 1)ψ(m + 2) + 1.
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It is not hard to see that the right-hand-side is positive, and the proof thus follows.

It is useful to assess the mutual information between the k-th lower record values, such as when
such values correspond to successive failures of a repairable system. Hence, the information provided
in Theorem 6 is useful for constructing suitable replacement criteria of components, in order to avoid
failures and to improve system availability.

The mutual information between the m-th and the n-th k-lower records, determined in
Equation (37), is shown in Figure 3 for different choices of m and n. For fixed values of m, such
an information measure is decreasing in n, whereas for fixed n, it is increasing in m.

Finally, Figure 4 shows that M(Lm(k), Lm+1(k)) is increasing in m, in agreement with the point (ii)
of Theorem 6.

Figure 3. The values of M(Lm(k), Ln(k)) are shown (a) for m = 1, 2, 3, 4, 5 (from bottom to top) and
m < n ≤ 20, and (b) for n = 20, 25, 30, 35, 40 (from top to bottom, near the origin) and 1 ≤ m < n.

Figure 4. Values of M(Lm(k), Lm+1(k)) for 1 ≤ m ≤ 200.

6. Conclusions

In this paper, we discussed the concept of inaccuracy between Ln(k) and X in a random
sample generated by X. We proposed a dynamic version of cumulative inaccuracy and studied
a related characterization result. We also proved that I(Ln(k), X; t) can uniquely determine the parent
distribution F. Moreover, we constructed bounds for characterization results of I(Ln(k), X). Also, we
estimated the cumulative measure of inaccuracy by means of the empirical cumulative inaccuracy
in lower record values. These concepts can be applied in measuring the inaccuracy contained in the
associated past lifetime. Finally, we studied the degree of dependency among the sequence of k-th lower
record values in terms of mutual information. We showed that M(Lm(k), Ln(k)) is distribution-free and
can be computed by using the distribution of the k-th lower record values of the sequence from the
uniform distribution.
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