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Figure 5. Chemical structure formulae of small-molecule inhibitors of MERS-CoV described in
this review.

3.2. MERS-CoV Replication Inhibitors

3.2.1. MERS-CoV Inhibitors Targeting Papain-Like Protease

Papain-like protease is a cysteine protease that uses the thiol group of cysteine as a nucleophile
to attack the carbonyl group of the scissile peptide bond [38,39]. The genome of MERS-CoV encodes
two polyproteins, ppla and pplb, which are processed by papain-like protease (PLpyo) and 3C-like
protease (3CLpyo) [40]. MERS-CoV has only one papain-like protease, as does SARS-CoV, while other
coronaviruses have two enzymes [41,42]. MERS-PLyy, is a part of the nonstructural protein nsp3,
which includes three domains—namely, ubiquitin-like domain (UBL), a catalytic triad consisting
of C1594-H1761-D1776, and the ubiquitin-binding domain (UBD) at the zinc finger—according
to the homology model [40,43]. MERS-PLp,, is a multifunctional enzyme with delSGylating and
deubiquitinating (DUB) activities [43], but it can also block the interferon regulatory factor 3 (IRF3)
pathway [43,44].

Disulfiram, a drug used in alcohol aversion therapy, has been approved by the U.S. Food and
Drug Administration (FDA) since 1951 (Figure 5(10)). It can inhibit the activity of some enzymes, such
as urease [45], methyltransferase [46], and kinase [45], all by reacting with cysteine residues, suggesting
broad-spectrum characteristics [47]. Notably, disulfiram also acts as an allosteric inhibitor of MERS-CoV
papain-like protease [47]. Multiple inhibition assays also support a kinetic mechanism by which
disulfiram, together with 6TG (6-thioguanine) and/or MPA (mycophenolic acid), can synergistically
inhibit MERS-CoV papain-like protease [47]. Hence, the recombination of three clinically available
drugs could feasibly be used to treat MERS-CoV infection.

3.2.2. MERS-CoV Inhibitors Targeting 3C-Like Protease

The active site of MERS-3CLyyo can be divided into subsites S1-56 [48]. Subsite S1 consists of
vital catalytic residue Cys145 with His41 to process polyproteins at 11 conserved Gln sites, followed
by small amino acids like Ala, Ser, or Gly [49]. Another crucial component of the S1 subsite is the
oxyanion hole formed by the interaction of a carboxylate anion of conserved Gln with Gly143, Ser144,
and Cys145, which stabilizes the transition state during proteolysis [50,51]. Glu166 at the entrance of
the pocket interacts via H-bond with the Ne2 of the conserved GIn [50]. The S2 and 54 subsites contain
hydrophobic and bulky side chains such as Val, Leu, or Phe. Subsites S5 and S6 are near the surface of
the active site and have little participation in substrate binding [48].
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Polyproteins ppla and pplb are processed by 3CLyyo (11 cleavage sites) and PLyyo (3 cleavage
sites), resulting in 16 mature nonstructural proteins, including RNA-dependent RNA polymerase
(RdRp) and helicase, which play important roles in the transcription and replication of
coronaviruses [40,52]. Therefore, both proteases are essential for viral replication, making them
attractive targets for drug development [52].

The analogues of hits of neuraminidase (NA) inhibitors on MERS-CoV 3CL;y, have been
synthesized and showed average-to-good inhibition of MERS—BCLPm. The better one is the compound
3k with an ECsj of 5.8 uM (Table 2; Figure 5(11)) [48]. Another two are compounds 3h (Figure 5(12))
and 3i (Figure 5(13)) with EC5 values of 7.3 and 7.4 uM, repsectively (Table 2) [48]. Furthermore,
researchers have concluded that pharmacophores phenyl at R3 and carboxylate, either at R1 or R4,
are essential for the antiviral activity [48]. Since the modification of rings A and B is well tolerated,
these rings can be further altered to enhance the activity of the compounds. The SARS-CoV 3CLpro
inhibitor CE-5 can block the function of the MERS-CoV 3CLyy, (Figure 5(14)) [53]. Treatment with
CE-5 inhibited the activity of MERS-CoV 3CLyy, to 30% of that of DMSO-treated cells at a maximum
dose of 50 uM [53]. The endpoint evaluation of CE-5 indicated an ECsj of ~12.5 uM in cell culture
(Table 2) [53].

Peptidomimetic inhibitors of enterovirus (6b, 6¢, and 6d) inhibit MERS-CoV with ECs values
ranging from 1.7 to 4.7 uM, as shown by enzymatic assay (Figure 5(15), (16), (17)) [54]. As shown in
Table 1, compounds 6b, 6¢c, and 6d efficiently suppressed viral replication with EC5, values of 1.4, 1.2,
and 0.6 uM, respectively, after performing a cytopathic inhibition assay using MERS-CoV-infected
Huh-7 cells (Table 2) [54].

GC376, a dipeptidyl transition state 3CLpy, inhibitor, can substantially inhibit the activity of
MERS-CoV 3CLyy, with an ECsg of 1.6 uM by fluorescence resonance energy transfer (FRET) assay
(Table 2; Figure 5(18)) [55].

GC813 as well as its synthesizing extended compounds 10a and 10c¢ exhibit inhibition for
MERS-CoV with ECsg values of 0.5 uM, 0.5 uM, and 0.8 uM in cell culture (Table 2; Figure 5(18),
(19), (20), (21)) [52].

N3, a broad-spectrum anti-CoV inhibitor, can inhibit the proteolytic activity of MERS-CoV 3CLypyo
by binding with the interface of domain I and IT of MERS-CoV 3CLyy, with an ECsg of about 0.3 uM
(Table 2; Figure 5(22)) [56].

3.3. Other Small-Molecule Inhibitors with Defined or Undefined Mechanisms of Action

Silvestrol, an elF4A inhibitor, can inhibit MERS-CoV infection with an ECsy of 1.3 nM, as shown
by plaque assay in MRC-5 cells and CCsg of 400 nM by MTT assay in peripheral blood mononuclear
cells (PBMCs) (Table 2; Figure 5(23)) [57]. Silvestrol has broad-spectrum antiviral activity via the
inhibition of the expression of CoV structural and nonstructural proteins (N, nsp8) and the formation
of viral replication/transcription complexes [57].

The combination of interferon-a2b and ribavirin can effectively reduce MERS-CoV replication
in vitro and in vivo (Table 2; Figure 5(24)) [6]. Rhesus macaques treated with IFN-a2b and ribavirin
8 h after MERS-CoV infection showed improved clinical parameters with no or very mild radiographic
evidence of pneumonia compared with untreated macaques [6]. Moreover, treated macaques showed
lower levels of systemic (serum) and local (lung) proinflammatory markers in addition to fewer viral
genome copies, distinct gene expression, and less severe histopathological changes in the lungs [6].

GS-5734 (Remdesivir), the monophosphoramidate prodrug of the C-adenosine nucleoside
analogue GS-441524, can inhibit the replication of the model 3-coronavirus murine hepatitis virus
(MHV) and RNA synthesis in wild-type (WT) virus, while an nsp14 ExoN (-) mutant lacking
proofreading demonstrated increased susceptibility to GS-5734 (Figure 5(25)) [58]. GS-5734 also
inhibits MERS-CoV infection with an ECsy of 0.074 4+ 0.023 uM and a CCsg of >10 pM in human
amniotic epithelial (HAE) cells (Table 2) [58]. Furthermore, GS-5734 acts at the early post-infection
stage to decrease viral RNA levels, whereas delaying the addition of GS-5734 until 24 h post-infection
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resulted in decreased viral titer in HAE cell cultures at 48 and 72 h post-infection [58]. The nucleotide
analogue GS-441524 also inhibits the infection of MERS-CoV with an ECs of 0.9 uM and a CCs( of
>100 uM in HAE cells (Table 2; Figure 5(26)) [58].

Resveratrol was found to significantly inhibit MERS-CoV infection as well as prolong cellular
survival after virus infection (Figure 5. (27)) [66]. It was found that resveratrol could reduce RNA
levels and infection titers in Vero cells [66]. Although resveratrol has minimal cytotoxicity, even at the
high concentration of 250 uM, it can be ignored when compared to the much more severe toxicity of
MERS-CoV infection [66].

A series of FDA-approved compounds were screened against MERS-CoV (Table 2) by cell-based
ELISA assay (Figure 5(28-56)) [7]. Pharmaceuticals that inhibit MERS-CoV include neurotransmitter
inhibitors, estrogen receptor antagonists, kinase signaling inhibitors, inhibitors of lipid or sterol
metabolism, protein processing inhibitors, inhibitors of DNA synthesis/repair, as well as inhibitors of
ion transport, cytoskeleton (specifically tubulin), and apoptosis [7]. Antiparasitics and antibacterials
are two classes of pharmaceuticals, the functions of which are not obviously linked to coronaviruses,
or viruses in general, but nonetheless show antiviral activity against MERS-CoV.

Nocodazole, targeting the cytoskeleton, specifically interferes with microtubule polymerization.
It is an antimitotic drug developed for the treatment of cancer, but it was found to show high activity
against MERS-CoV (Figure 5(57)) [67,68]. Monensin and salinomycin sodium, two of the nine ion
channel inhibitors, have inhibitory activity against MERS-CoV, indicating that MERS-CoV may be
susceptible to ionophore activities (Figure 5 (58), (59)). Chlorpromazine and chloroquine appear to
target host factors, rather than viral proteins specifically, and the treatment of viral infections in patients
aimed at host factors could reconfigure overt manifestations of viral pathogenesis into a less virulent
subclinical infection and lower adverse disease outcome (Figure 5(60), (29)) [34,69].

Loperamide, an antidiarrheal opioid receptor agonist that reduces intestinal motility, also
inhibits the replication of MERS-CoV at low-micromolar concentrations (3.3-6.3 uM) in vitro (Table 2;
Figure 5(55)) [34]. Lopinavir, the HIV-1 protease inhibitor, inhibits MERS-CoV replication with an ECsg
of 8 uM (Table 2; Figure 5(56)) [34].

SSYA10-001 inhibits MERS-CoV replication with an ECsy of ~25 uM in Vero E6 cells (Table 2;
Figure 5(61)) [70]. Molecular modeling data suggest that SSYA10-001 can be docked with a comparable
“Glide” score [70].

ESI-09 can reduce virus yield by inhibiting cAMP signaling in a cell type-independent manner
(Figure 5(62)) [61]. The concentration of MERS-CoV inhibition by ESI-09 was found with an ECs of 5
to 10 uM and a CCsp > 50 uM for both Calu-3 and Vero E6 cells by using the lactate dehydrogenase
(LDH)-based cytotoxicity assay [62]. In addition, the undetectable cytopathic effect (CPE) and
minimal expression of viral antigen indicated that Calu-3 cells treated with ESI-09 were almost
fully protected [61].

Mycophenolic acid (MPA) can strongly reduce MERS-CoV replication by inhibiting inosine
monophosphate dehydrogenase (IMPDH) and guanine monophosphate synthesis with an ECsy of
2.87 uM by cell-based ELISA in Vero E6 cells (Table 2; Figure 5(63)) [60].

K22 is a spectrum inhibitor which can inhibit MERS-CoV replication by reducing the formation
of double membrane vesicles (DMVs) and by the near-complete inhibition of RNA synthesis
(Figure 5(64)) [25,71].

BCX4430, an adenosine analogue that acts as a non-obligate RNA chain terminator to inhibit viral
RNA polymerase function, can inhibit MERS-CoV infection with ECs of 68.4 uM in Vero E6 cells
by highly charged ions (HClIs)-based analysis and CCsy of >100 uM by neutral-red uptake (Table 2;
Figure 5(65)) [25,62].

Fleximer nucleoside analogues of acyclovir are doubly flexible nucleoside analogues based
on the acyclic sugar scaffold of acyclovir and the flex-base moiety in fleximers responsible for
inhibiting RNA-dependent RNA polymerase (RdRp) [25,63]. The target fleximer analogue 2 can
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inhibit MERS-CoV infection with ECs of 27 uM and CCs of 149 uM in Huh-7 cells, but ECsg of 23 pM
and CCsg of 71 uM in Vero cells (Table 2; Figure 5(66)) [63].

Interferon alphal (IFN-«1) and cyclosporine (CsA) have additive or synergistic effects in
limiting MERS-CoV replication in ex vivo cultures of human bronchus (Figure 5(67)) [72]. In
addition, the combined treatment of IFN-«1 and CsA has the most potent effect on inducing
interferon-stimulated genes (ISGs) in both lung (24 hpi) and bronchial (56 hpi) tissues [72].

Saracatinib, a potent inhibitor of the Src-family of tyrosine kinases (SFK), potently inhibits
MERS-CoV with an ECs of about 3 uM in Huh-7 cells (Table 2; Figure 5(68)) [64]. It possibly inhibits
MERS-CoV replication through the suppression of SFK signaling pathways at the early stages of
the viral life cycle [64]. In addition, another seven compounds, primarily classified as antiprotozoal,
anticancer, and antipsychotic, were also determined by complete dose-response analyses (Table 2;
Figure 5(69-75)) [64].

A spectrum-inhibitor, FA-613, can inhibit MERS-CoV with an ECsy of ~10 uM in the
interferon-competent cell line of Huh-7 cells, as shown by MTT assay (Table 2; Figure 5(76)) [65].

4. Strategies for Developing Small-Molecule MERS-CoV Inhibitors

The luciferase-based biosensor assay is a cell-based screening assay for selecting
MERS-CoV-specific or broad-spectrum coronavirus PLp, and 3CLypy, inhibitors [53]. HEK293T
cells were transfected by two artificial plasmids: protease expression plasmids and biosensor
expression plasmids [53]. Protease expression plasmids contain the sequence of MERS-CoV PLyy,
the nonstructural proteins nsp4 and nsp5, as well as the N-terminal 6 region. Biosensor expression
plasmids contain a circularly permuted Photuris pennsylvanica luciferase and the amino sequence of
cleavage site of PLpr or 3CLpro [53]. After cell transfection and coexpression of a MERS-CoV protease
domain with a cleavage-activated luciferase substrate, transfected live cells allow for both endpoint
evaluation and live cell imaging profiles of protease activity [53]. This novel method can be performed
in a biosafety level 2 research laboratory to evaluate the ability to inhibit the CoV protease activity of
existing and new drugs [53].

Pseudovirus-based screening assays have been developed for identifying antiviral compounds in
the MERS-CoV life cycle without using infectious viruses. The MERS-CoV pseudovirus allows for
single-cycle infection of a variety of cells expressing DPP4, and results are consistent with those from a
live MERS-CoV-based inhibition assay. More importantly, the pseudovirus assay can be carried out in
a BSL-2, rather than a BSL-3 facility [9]. VSV- and HIV-luciferase pseudotyped with the MERS-CoV S
protein are two more approaches [27].

Structure-Guided Design and Optimization of Small Molecules is a strategy that involves
embodying a piperidine moiety as a design element to attain optimal pharmacological activity and
protein kinase property [52]. This strategy permits the resultant hybrid inhibitor to participate in
favorable binding interactions with the S3 and 5S4 subsites of 3CLyy, by attaching the piperidine moiety
to a dipeptidyl component [52].

Ubiquitin-like domain 2 (Ubl2) is immediately adjacent to the N-terminus of the PLy, domain in
coronavirus polyproteins. In the past, the role of Ubl2 in PLyy, has remained undefined. However,
evidence indicates that removing the Ubl2 domain from MERS PLyy, has no effect on its ability to
process the viral polyprotein or act as an interferon antagonist, which involves deubiquitinating and
delSGylating cellular proteins [73].

Analyzing the transcriptome of hosts infected with MERS-CoV can provide insight into how
MERS-CoV infection influences and interacts with host cells. Josset et al. [74] infected a lung epithelial
cell line, Calu3, with MERS-CoV and analyzed the transcriptome to identify inhibitory compounds
resident in host factors that could be exploited as antiviral therapeutics. This approach can be used to
identify host factors beneficial for virus propagation, thus establishing appropriate targets for existing
or new antiviral inhibitors.
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5. Conclusions

As a positive-sense, single-stranded RNA virus, MERS-CoV utilizes host cellular components
to accomplish various physiological processes, including viral entry, genomic replication, and the
assembly and budding of virions, thereby resulting in pathological damage to the host. Therefore,
various stages of virus life cycle could be potential targets for developing small-molecule antiviral
inhibitors. Inhibitors blocking MERS-CoV entry into host cells, viral protease inhibitors, and inhibitors
targeting host cells and many other small-molecule inhibitors with defined or undefined mechanisms
of action are summarized in this review.

Any compounds that interfere with virus infection may be harmful to host cells. Therefore, the
establishment of a safety profile is essential. Furthermore, an antiviral inhibitor should effectively
inhibit the growth of the virus because a small amount of virion replication can lead to resistant
mutations. The advantages of small-molecule inhibitors include low price, stability, and the
convenience of oral administration. Three main approaches are currently used to develop MERS-CoV
small-molecule inhibitors. The first is the de novo synthesis of inhibitors targeting the unique structure
in the proteins of MERS-CoV appearing in its infection process. The second approach involves
screening inhibitors against MERS-CoV infection from an existing drug database by various chemical
synthesis strategies. The third approach involves changing the chemical group of a fully developed
drug to enhance its pharmacological activity against MERS-CoV. More novel strategies in improving
the efficacy of screening small-molecule inhibitors are anticipated to reduce the threat of future
MERS-CoV infections.
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