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Preface to "Mixed Matrix Membranes”

This Special Issue was motivated by the gap between a growing interest in developing novel
mixed matrix membranes by various research groups and the lack of large-scale implementation.
It contains six publications dealing with actual opportunities that materials science development
offers to overcome the challenges of mixed matrix membrane fabrication for their application as

solutions in environmental and health issues of the society of 21st century.
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Abstract: In recent decades, mixed matrix membranes (MMMs) have attracted considerable interest
in research laboratories worldwide, motivated by the gap between the growing interest in developing
novel mixed matrix membranes by various research groups and the lack of large-scale implementation.
This Special Issue contains six publications dealing with the current opportunities and challenges
of mixed matrix membranes development and applications as solutions for the environmental and
health challenges of 21st century society.

Keywords: membrane fabrication; membrane modification; flat-sheet membrane, characterization
techniques; hollow fiber membrane; filler dispersion; compatibility; gas separation; ion exchange
capacity; water vapor

1. Introduction

This Special Issue, entitled “Mixed Matrix Membranes”, was motivated by the observed gap
between the growing interest of research laboratories in developing novel mixed matrix membranes
(MMMs) and the lack of large-scale implementation. MMMs, consisting of the mixing of innovative
fillers and processable polymer matrices, may fill in this gap for conventional membranes to address
industrial process intensifications challenges [1]. The papers compiled within this Special issue can
be read as single chapters of a global story orientated toward the advancement of mixed matrix
membranes and novel materials in membrane technology in response to some technical challenges
faced by chemical industries and society, from CO, capture and utilization to tissue engineering
applications in biomedicine. They are all connected through important issues regarding fabrication,
such as compatibility and adhesion, the effect of porous and non-porous fillers on the polymer matrices,
types of additives/fillers (zeolites, ionic liquids, ion-exchange materials, layered porous materials,
metal organic frameworks (MOFs), etc.), and characterization (e.g., chemical, structural, morphological,
electrical, compositional, mechanical and topographical properties, as well as membrane transport
and separation).

2. Highlights of the Special Issue

The papers included in this special issue direct the developments in MMMs to some of the major
challenges faced by society in the 21st century, mainly CO, separation from other gases as a way in
which to tackle climate change, and biomedical applications. One of the most important aspects is
thus the selection of the appropriate material for both the matrix and dispersed phases to eliminate
non-ideal morphologies created at their interfaces [1]. With these aims, several kinds of membranes
have been addressed, as will be presented in the following paragraphs.

2.1. Mixed Matrix Membranes with Porous Fillers

The Special Issue opens with a review presenting a complete synopsis of the inherent capacities
of several porous nanofillers, distinguishing between two-dimensional (2D) and three-dimensional
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(3D) shaped fillers [2] for CO, separation from other gases. Gas permeation performances of selected
hybrids with 3D fillers and porous nanosheets have been summarized and discussed with respect to
each type and the effects of their embedment in polymers to make mixed matrix membranes for the
separation of CO, from other gases [3]. The particular challenge of achieving an intimate adhesion
between fillers and polymer matrices to avoid the presence of defects and assure a correct synergy
of the new MMM material is addressed by the studies of metal organic frameworks (MOFs) [4], and
porous organic frameworks (POFs) [5,6], in consideration of their organic nature and high CO, uptake
properties. The oldest studied MMMs with porous fillers and glassy polymers for gas separation
are zeolite—polymer membranes. The additional porosity provide additional transport mechanisms
that account for their non-ideal performance [7]. The prediction of the mixed matrix membrane
permeability and selectivity has been explored by different morphological models that have been
thoroughly reviewed [8]. The feature paper contained in this Special Issue compares several of those
models regarding the effect of filler type and topology on CO; and N permeability using zeolites of
different topologies (CHA, RHO, and LTA) and identical Si/Al compositional ratio, embedded in a high
permeability glassy polymer, poly(trimethylsilyl-1-propyne) (PTMSP), as a function of temperature,
zeolite loading, and topology [9]. The evolution of temperature and its influence on non-idealities, such
as membrane rigidification, zeolite-polymer compatibility, and sieve pore blockage, allow prediction
of the structure-performance relationship for further membrane development for the first time [10].

The recent advances in the synthesis and improvements of 2D and 3D porous nanophases
have driven continuous research within the development of MMM s for gas separation purposes. In
particular, the possibility of tuning the pore diameter to a gas-sieving level and the CO,-philicity of the
pore cavity has the potential to facilitate the simultaneous enhancement of the solubility and diffusivity
coefficient of carbon dioxide and reduced CO, plasticization when high pressures are necessary [11,12].
Therefore, CO, permeability and selectivity can be expected to benefit from these features, leading to a
shift in the separation performance towards the upper right corner of the Robeson plot as a function
also of the rubbery or glassy nature of the polymer matrix [13].

2D porous fillers offer a high surface area to volume ratio that provides higher contact between
the filler and the polymer matrix in comparison with other filler morphologies [14]. This may result
in the development of new applications, such as those explored by Sanchez-Gonzalez et al. [15] in
this Special Issue. Their paper aims at elucidating the applicability of poly(caprolactone) (PCL) and
reduced graphene oxide (rGO) MMMs as scaffolds for in vitro neural regeneration, by correlating
the morphological, chemical, and differential scanning calorimetry (DSC) results with the membrane
performance under simulated in vitro culture conditions (phosphate buffer solution (PBS) at 37 °C)
for 1 year. The high internal porosity of the membranes facilitated water permeation and resulted
in an accelerated hydrolytic degradation and molecular weight reduction. The presence of the rGO
nanoplatelets caused the pH to be barely affected, while accelerating the loss of mechanical stability of
the membranes. However, it is envisioned that the gradual degradation of the PCL/rGO membranes
could facilitate cells infiltration, interconnectivity, and tissue formation. The relationship between
structure and function seems again highly important in the opening up of novel applications for MMMs.

2.2. Mixed Matrix Membranes Filled with Nonporous Fillers

Membranes must offer a high CO, permeability in order to compete with conventional
membranes or other separation processes in CO; capture and climate change mitigation processes [16].
Organic—inorganic nanocomposite membranes resulting from the in situ generation of inorganic
nanoparticles in the polymer matrix can offer much higher gas permeabilities with similar selectivities
than MMMs prepared by dispersion of inorganic fillers in the polymer matrix [17]. In this Special
Issue, Guerrero et al. [18] present two differently functionalized types of polyhedral oligomeric
silsesquioxanes (POSS®) nanoparticles as additives for nanocomposite membranes for CO, separation.
Composite membranes were produced by casting a polyvinyl alcohol (PVA) layer, containing the
functionalized POSS® nanoparticles, on a polysulfone (PSf) porous support. The compatibility between
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the nanoparticles and the polymer was observed by FTIR. Differential scanning calorimetry (DSC)
and dynamic mechanical analysis (DMA) show an increment of the crystalline regions affected by
the conformation of the polymer chains, decreasing the gas separation performance. Moreover, these
nanocomposite membranes did not show separation according to a facilitated transport mechanism, as
might be expected based on their functionalized amino-groups; thus, solution-diffusion was the main
mechanism responsible for the transport phenomena [19].

Tuning the polymer free volume available for transport by disrupting the polymer chain
packing with nanosized particles also has an effect on the gas permeation and stability of highly
permeable rigid polymers [20]. Khan et al. [21] proposed here yet another nanofiller, potassium
dodecahydrododecaborate (K;Bj2Hjz)—a polynuclear borane with potential in materials science and
biomedicine—as a new filler to be added to the rigid structure of PIM-1 in order to improve its gas
permeation properties and robustness [22]. Although the permeability performance of the prepared
MMMs mainly depended on the addition of nanofillers rather than the effect of interfacial zone and the
O,/N; separation factor was almost constant for all the membranes, overall increases in permeability
and diffusivity were observed for all tested gases coupled with the reduction in gas pair selectivity.

2.3. Mixed Matrix Membranes Filled with lonic Liquids

The search for a good adhesion between polymers and fillers has also been directed to ionic
liquids (ILs). ILs have been thoroughly explored in the last few decades as an alternative form of
solvent to amines in CO, separation processes in supported ionic liquid membranes because of several
advantages, such as negligible vapor pressure [16]. The combination of ionic liquids into a polymer
matrix is an approach to enhance the mechanical stability of the separation process by avoiding working
with a fluid phase [23,24]. This Special Issue presents an experimental study exploring the potential of
supported ionic liquid membranes (SILMs) prepared by infiltration of protic imidazolium ionic liquids
(ILs) into randomly nanoporous polybenzimidazole (PBI) membranes for CHy/N; separation [25]. The
polymerization, monitored by Fourier transform infrared (FTIR) spectroscopy, and the concentration of
the protic entities in the membranes evaluated by thermogravimetric analysis (TGA) were correlated to
the gas permeability values of N, and CHy at 313 K, 333 K, and 363 K in terms of the preferential cavity
formation and favorable solvation of methane in the apolar domains of the protic ionic network. The
transport mechanism of the as-prepared SILMs is solubility-dominated at high temperature, which can
be compared with MMMs of similar components [26].

3. Final Remarks

Opverall, the editor is convinced that mixed matrix membranes have a lot more to contribute than
what has already been demonstrated worldwide. It is hoped that readers enjoy this Special Issue and
gain inspiration from it for their own work. In the end, technological changes are the fruit of ideas
planted as seeds in researchers’ minds: the more that individual minds are connected to each other, the
higher the probability of creating originality. In this sense, this Special Issue represents a small attempt
to increase the connectivity among interested minds, regarding the contributions to solve technological
challenges in mixed matrix membrane development, and it shows the possibilities of synergies that the
combination of compatible fillers and polymers can offer to environmental and health issues faced by
society in the 21st century.

Funding: Financial support by the Spanish Ministry for Science and Universities under project grant no.
CTQ2016-76231-C2-1-R at the Universidad de Cantabria is gratefully acknowledged.
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Conflicts of Interest: The editor declares no conflict of interest. The funders had no role in the design of the study;
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Abstract: Application of conventional polymeric membranes in CO, separation processes are limited
by the existing trade-off between permeability and selectivity represented by the renowned upper
bound. Addition of porous nanofillers in polymeric membranes is a promising approach to transcend
the upper bound, owing to their superior separation capabilities. Porous nanofillers entice increased
attention over nonporous counterparts due to their inherent CO, uptake capacities and secondary
transport pathways when added to polymer matrices. Infinite possibilities of tuning the porous
architecture of these nanofillers also facilitate simultaneous enhancement of permeability, selectivity
and stability features of the membrane conveniently heading in the direction towards industrial
realization. This review focuses on presenting a complete synopsis of inherent capacities of several
porous nanofillers, like metal organic frameworks (MOFs), Zeolites, and porous organic frameworks
(POFs) and the effects on their addition to polymeric membranes. Gas permeation performances of
select hybrids with these three-dimensional (3D) fillers and porous nanosheets have been summarized
and discussed with respect to each type. Consequently, the benefits and shortcomings of each class of
materials have been outlined and future research directions concerning the hybrids with 3D fillers
have been suggested.

Keywords: mixed matrix membranes; CO, separation; porous nanoparticles

1. Introduction

An wide scientific consensus is nowadays established in the international community over
the anthropogenic climate change and global warming due to a drastic increase of atmospheric
level of CO; [1]. Anthropogenic activities within transportation, energy supply from fossil fuels [2],
and raw materials (e.g., cement, steel) production [3] have significantly contributed to increase in
levels of CO, emissions over the last century, raising the CO, concentration in the atmosphere [4].
The primary strategy to mitigate CO, emission in the short term is carbon capture and sequestration
(CCS), which mainly includes post-combustion (capture downstream to the combustion), oxy-fuel
(purified O, used for the combustion), and pre-combustion (capture upstream to the combustion)
processes [2]. Furthermore, CO, separation is relevant also for other applications, such as Natural Gas
sweetening, where acid components in the presence of water can corrode pipelines and equipment,
thus lowering the value of the natural gas [3,5]. Therefore, the development of efficient technologies to
separate and capture CO; is of primary interest.

Physical and chemical adsorption/absorption technologies have been widely applied to industrial
plants to separate CO, from gaseous streams. These conventional methods exploit pressure and

Membranes 2018, 8, 50; doi:10.3390 / membranes8030050 6 www.mdpi.com/journal/membranes
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temperature swing absorption/adsorption, which are typically energy-intensive and are not preferred
from an environmental and economic standpoint [6]. The most mature technology for post combustion
application is absorption using amine-base solvents, but, despite the efforts that are made, the increase
in the cost of electricity would be still above the limit of 35%, which is identified as viable solution
from a market perspective [7]. When compared to traditional technologies, membrane-based gas
separation technology offers several advantages: lower energy consumption (no need for regeneration),
no use of harmful chemicals, modularity and easier scalability. Additionally, membrane gas separation
offers lower capital and operating costs. Depending on their base material, membranes used for CO,
separation can be separated in inorganic or polymeric. Even though inorganic membranes offer good
separation abilities, polymeric materials are preferred for the application that requires large separation
area, due to the lower production costs and easier processability. However, constant research is ongoing
in order to improve the state-of-the-art separation for polymeric membranes, aiming at improving
their competitiveness to traditional technologies.

Gas transport through a nonporous polymeric membrane is typically based on the
“solution-diffusion” mechanism. Conceptually, the gas molecules is absorbed on the upstream side
of the membrane layer, it diffuses across the thickness, and is finally desorbed on the downstream
side. The permeation is therefore described as contribution of a thermodynamic parameter (solubility)
and a kinetic factor (diffusivity), which affect the transport of gas molecules across the membrane
matrix. The two most important features characterizing gas permeation membranes are permeability
and selectivity [8]. Permeability of a given gaseous species (A) is as an intrinsic property of the
material and is defined as the specific flux (J4) normalized on the membrane thickness (¢) and partial
pressure difference between the upstream and downstream side of the membrane (Ap,), as showed in
Equation (1):

Ja-t

Py = Apa (1)

Permeability is frequently reported in Barrer (1 Barrer = 1071% cm3 (STP) em~! s™! emHg ™! =
3.346 x 1071 mol m~1 Pa—1 s~1). For the implementation of membranes in real process operations,
membranenologists have to focus on the fabrication of thin composite membranes, aiming at
maximizing the transmembrane flux of permeants [9]. In this perspective, the capacity of a membrane
to allow for a specific gas to permeate through the selective layer is described by means of permeance,
often reported in GPU (gas permeation unit, 1 GPU = 107 cm® (STP) em 2 57! emHg ™! = 3.346 x
1071 mol m~2 Pa~! s~ 1. Unlike permeability, permeance is not an intrinsic property of the polymeric
material, but it directly quantifies the actual transmembrane flux achievable for a given driving force.
For this reason, the gas permeance is described as the ratio of the flux (J4) and the driving force (Apa).
The other key membrane feature is the separation factor (or selectivity), which is defined as the molar
ratio of gases A and B in the permeate (y) and in the feed side (x), with A being the most permeable
gaseous species:

ya/ys
C 7 xa @

When single gas tests are performed, the membrane “ideal” selectivity can be estimated as the
ratio between the permeability of the two penetrants [10].

The analysis of the performance of a larger amount of polymers for gas permeation allowed
for Robeson [11,12] to highlight the existence of a trade-off between permeability and selectivity for
materials governed by the solution-diffusion mechanism. This relation between permeability and
selectivity reveals that for polymer membranes, an increase in permeability happens typically at the
expense of selectivity, and vice versa. In the attempt to provide a more fundamental explanation, of an
empirical relationship between permeability and selectivity was established [13,14], and it was shown
that in the determination of the upper bound slope, the diffusion coefficient plays a dominant role as
compared to the solubility coefficient.
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Among the different strategies to overcome the upper bound (fabrication of highly permeable
polymers, such as thermally rearranged polymers [15], high free volume glassy polymers [16];
facilitated transport membranes [17]), a promising approach is the embedment of different phases
(inorganic or liquid) within the membrane matrix, fabricating so-called hybrid membranes. Inorganic
membranes that are made of non-polymeric materials, such as carbon molecular sieves, zeolites,
or metal organic frameworks (MOFs) are typically characterized by performance exceeding the
upper bound [18], but their cost and poor mechanical stability limit their applicability at large
scale. Nevertheless, the dispersion of high performance nano-phases within a polymer matrix can
significantly improve the neat polymer separation properties. In recent years, extensive efforts have
been made in order to fabricated hybrid materials containing dispersed inorganic phases within
polymeric matrices [8,19-21].

Based on the type of the embedded phase, hybrid membranes are classified in two main groups,
known as mixed matrix membranes and nanocomposite membranes [10]. Nanocomposite membranes
contain nano-sized impermeable nanoparticles that can contribute to the overall transport via surface
adsorption or due to the presence of moieties with a specific affinity towards a specific penetrant.
In our previous review, a broad overview of the performance of nanocomposite membranes has been
presented [22]. On the opposite side, in mixed matrix membranes, the embedded phase contributes to
a secondary transport mechanism. The fillers are typically porous and the pore architecture confers a
larger CO, solubility and/or diffusivity selectivity to the hybrid when compared to the neat polymer.
Based on the nature of the embedded phase, the secondary transport mechanism can be described by
molecular sieving, surface diffusion, or Knudsen diffusion. Nevertheless, the effect of the fillers on the
overall transport through the hybrid membrane is inherently related to the type of polymer-particle
interface that is achieved [10]. Ideal adhesion between the two phases would allow for achieving the
largest enhancement, whereas poor interface morphology would result in the formation of unselective
voids, frequently reflected by deteriorated separation performances.

We previously categorized [22] inorganic fillers in different categories based on their
morphology (zero- to three-dimensional morphology), specifying which type constitutes the class
of nanocomposite (zero-dimensional (0D) to two-dimensional (2D) nanofillers) or mixed matrix
membranes (three-dimensional (3D) nanoparticles). Silica, metal oxide, nanotubes, nanofibers, and
graphene derivate are categorized within the nanoparticles used for the fabrication of nanocomposite
membranes, whereas zeolites, metal organic frameworks (MOFs), and porous organic frameworks
(POFs) are listed as nano-phases that are used for the fabrication of mixed matrix membranes.

The current report mainly focuses on the latest advances in hybrid membranes containing phases
that are able to add secondary transport mechanisms of gas permeation in the polymer matrix, such
as 3D nanofillers and porous nanosheets. Differently from other reviews recently reported [23-27],
a systematical assessment of the impact of different porous nanomaterials on the CO, separation
performance of polymeric matrices is proposed, limiting the analysis mainly to the results reported
in the last five years. The benefits that are related to the addition of the different porous nanofillers
are discussed, categorizing the hybrid membranes according to the nature of the dispersed phases.
The performances that are achieved by each dispersed phase are analyzed and compared among
different polymeric matrices and loadings. This systematical analysis allows to identify the benefits
and issues of each nanofiller type, offering an interesting tool to shape the direction of future research.
The CO, separation performance are analyzed for the gas pairs of interest for carbon capture (CO,
vs. N and CO; vs. Hj) and for natural gas and biogas purification (CO; vs. CHy). If no numerical
values were reported in the original manuscript to describe the performance, relevant information
were carefully extracted via plots” digitalization (WebPlotDigitizer, Version 4.1).

2. Metal Organic Frameworks (MOFs)

MOFs represent a heterogeneous class of hybrid materials constructed from organic bridging
ligands and inorganic metal nods [28]. When compared to traditional porous materials, such as zeolites,
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MOFs have drawn considerable attention thanks to their porous structure, large pore volume, fine
tunable chemistry, and high surface area. MOFs are used in a large variety of applications, such as
catalysis, sensing and electronic devices, drug delivery, energy storage, and gas separation [29-31].
In gas separation applications, recently, several efforts have been dedicated to the incorporation
of MOFs in polymeric matrixes to produce hybrid membranes [20]. When compared to fully
inorganic materials, such as Zeolites, the presence of organic ligands in the MOFs’ structure leads
to better affinity and adhesion with polymers and organic materials [6], making MOFs extremely
promising for the achievement of proper interface morphology, and thus, improved separation
performance. Hydrothermal, solvothermal or sonication-assisted methods, microwave-assisted, and
room temperature reaction are the synthesis procedures that are frequently reported for MOFs [32].
Surface porosity, pore volume, and particle size of MOFs can be finely tuned by controlling the effective
synthesis parameters, such as temperature, concentration, time, and pH. Theoretically, the unlimited
number of ligands and metal ions provide infinite MOFs combinations.

MOFs frameworks can be either rigid or flexible. Rigid MOFs with tuned pore diameter could
be a promising alternative to molecular sieves. The sieving behavior in rigid MOFs gives rise to
considerably enhanced diffusion selectivity of gas pairs with different kinetic diameters, such as
CO,/Nj or CO,/CHy. On the other hand, flexible structures undergo a considerable framework
relaxation in the presence of external stimuli, such as host-gas interaction, pressure, temperature,
or light [33-35]. Typically, this temporary structural transformability is a non-desirable effect, as it
alters the initial sieving ability of the MOF structure [36]. The main structural rearrangements are
typically referred as “gate opening” and “breathing” [33]. The former phenomenon is described as
a transition from a closed and nonporous to a porous with open gates configuration upon the effect
of external stimuli. As an example, ZIF-8 shows the swing in the imidazole linker and opening the
narrow window at low to high pressure [37]. On the other side, the breathing effect is described as
the abrupt expansion or compression of the unit cell. This is typically observed in MILs, where the
structural transformation is referred as open pore, closed pore (cp), narrow pore (np), and large pore
(Ip) [34]. Linker rotation is another possible structural change, which is typically observed for UiO-66,
where the benzene ring present on the organic ligand shows a rotational barrier that can be overcome
at higher temperature [38,39]. Other important parameters that affect the transport properties of MOF
nanoparticles are the pore volume and the surface area, as they mainly affect the gas sorption capacity
of the MOF nanoparticles. In the case of CO,, for example, it has been reported that the presence
of unsaturated open metal sites can greatly enhance the CO, sorption capacity due to considerable
polarizability and quadrupole moment. Open metal cations play as Lewis acidic nodes that strongly
favors CO, [40,41]. The occurrence of breathing is reported to significantly affect the pore volume, and,
therefore, the gas sorption ability. For example, in the case of MIL-53, an expansion of the unit cell
volume from 1012.8 A3 to 1522.5 A3 when the CO, pressure is increased from 5 bar to 15 bar has been
observed [36].

In the following sections, common MOFs that are used in fabricating mixed matrix membranes
(MMMs) for CO, separation have been grouped according to their type of metal ion constituting
the MOFs’ architecture. Individual analyses of gas permeation have been dedicated to the MMMs
containing Zeolitic Imidazolate Frameworks (translational metal ions), UiO-66 (Zr-based), CO,-philic
MOFs (Cu-based) and Materials Institute Lavoisier MOFs (trivalent metal ions). Other new and
emerging MOFs have also been listed together in a separate section.

2.1. Zeolitic Imidazolate Frameworks (ZIFs)

Zeolitic imidazolate frameworks, known as ZIFs, have received great attention due to their
exceptional transport properties [42]. Generally, ZIFs are a subclass of metal organic frameworks
with a zeolite, like topology, consisting of large cavities linked by narrow apertures [1]. ZIFs are
composed of M-Im-M, where M stands for transitional metal ions (such as Zn, Cr) and Im is the organic
linker (imidazolate and its derivatives), respectively. M-Im-M forms a 145° angle, which is similar to
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Si-O-Si angle in conventional aluminosilicate zeolites and makes structures analogous to zeolites with
topologies of sod, rho, gme, Ita, and ana [30,43]. Among the different ZIFs that are available [42], ZIF-7,
ZIF-8, ZIF-11, ZIF-71, and ZIF-90 (Figure 1) are the most common MOFs incorporated in polymer
matrix to produce hybrid membranes for carbon capture applications.

Z1

Zn(‘bim)z. AR, vy \ ! ZIF-71

ZIF-8 A

. Zn(dclm),
Fnfmb), ZIF-90
ZIF-11 s,
Zn(‘bim)Z

Figure 1. Zeolitic Imidazolate Frameworks (ZIF) structures with building blocks, topology, and
accessible surface area for a probe diameter of 2 A Adapted from [42], with copyright permission from
© 2012, Royal Society of Chemistry.

2.1.1. ZIF-8

ZIF-8 with sod-type topology and tetrahedral structure is the most frequently investigated MOF
among the ZIFs family, which exhibits good thermal and exceptional chemical stability [44,45].
ZIF-8 has large pores of 11.8 A and the pore limiting diameter of 3.4 A, which represents a perfect
sieving range for gas separation, such as CO, /N, and CO,/CHy4 [43]. However, the ZIF-8 framework
is rather flexible, owing to the swing effect of organic linker that significantly affects the sieving
ability [37,46]. This swing effect, which is supported experimentally and theoretically, was described
by the rotation of imidazolate linker oscillating between two configurations of open window and close
window [47]. The separation properties of ZIFs have been examined and researchers have explored
their potential in the use of composite membranes for gas separation.

Matrimid® is a commercial glassy polyimide, which is widely used as polymer basis for
comparison of MOFs’ separation performance. Ordonez et al. [48] fabricated ZIF-8/Matrimid® mixed
matrix membranes with nanoparticles loading up to 80 wt.% and investigated their transport properties
for CO,/N; and CO,/CHy separation at 2.6 bar and 35 °C. ZIF-8 with a size range within 50-150
nm were dispersed in chloroform together with the polymer and self-standing membranes were
obtained via solvent casting and dried at 240 °C under vacuum. While increasing the ZIF-8 loading,
the tensile strength of the hybrid matrix dropped significantly and samples with 80 wt.% loading
were found too brittle to be tested. Interestingly, the analysis of the transport properties showed a
double behavior of the hybrids. Up to 40 wt.%, the disruption of the chain packing that is produced
by the presence of the nanoparticles resulted in an increase in free volume, and consequently, in
gas permeability. A 158% increase in CO, permeability (Table 1) was observed, even though the
variation took place independent from the gas nature. On the contrary, at 50 and 60 wt.% loading
the gas permeability dropped significantly, showing a considerable increase in the selective feature
(CO,/CHy). The authors suggested a transition from a polymer-based to a ZIF-8-regulated transport,
with the sieving effect of the fillers becoming dominant above a certain inorganic content. Interestingly,
despite the CO,-philic nature of ZIF-8, the hybrid samples maintained the Hj-selective features of
the neat polymer (Table 1), but the low selectivity values (Hy/CO; < 5) are not of interest for the
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industrial applications. The CO, separation performances of ZIF-8/Matrimid hybrid membranes
have also been investigated by Basu et al. [49], limiting the loading up to 30 wt.%. SEM imaging
showed the formation of a proper interface morphology between the particles and the polymer phase.
Similar to the previous case, the CO, permeability increased proportionally to the loading, reaching a
209% enhancement when compared to the neat polymer at the maximum loading. Possibly, the larger
enhancement compared to the previous case may be attributed to the larger ZIF-8 size (250-500 nm).
However, the separation factor appeared to be hardly affected by the presence of nanoparticles, with a
maximum enhancement of 15%. Interestingly, the authors also compared the performance of other
two MOFs (MIL-53 and Cu3(BTC),), observing that the enhancement in CO, permeability is mainly
dependent on the loading, whereas the nanoparticles nature and size play a minor role in affecting the
transport properties. Song et al. [50] synthesized ZIF-8 with particle size of about 60 nm, and fabricated
mixed matrix membranes by embedding them into Matrimid. Morphological analysis showed a proper
polymer/particle interface up to the maximum loading investigated (30 wt.%). Notably, the smaller
ZIF-8 size determined a 250% enhancement in CO, permeability at the highest loading, even though
a negative effect on selectivity was observed (25% decrease at 30 wt.% loading) for both CO, /N,
and C02 / CH4.

Sonication has also been reported to be an important factor affecting the performance of
ZIF-8-based mixed matrix membranes [51]. ZIF-8 nanoparticles were dispersed into Matrimid,
exposing the casting solution to direct (sonication horn) or indirect (sonication bath) ultrasound wave
(Figure 2). The study showed that different sonication intensities produced a significant change in the
morphology of the nanoparticles, with limited influence on crystallinity and microporosity. When
higher sonication intensity was applied to the casting solution, a proper interfacial morphology was
achieved, with a simultaneous increase of permeability and selectivity (Table 1) and full consistency
with the Maxwell model. When indirect sonication was employed, nanoparticles agglomeration
was observed, affecting the efficiency of the hybrid membranes. ZIF-8 modification using mixed
organic ligand (2-aminobenzimidazole as a substitution linker) has also been reported [52], leading
to differences in pore size distribution and porosity when compared to pristine ZIF-8. When hybrid
membranes were prepared while using Matrimid as polymer phase, no gate opening effect or structural
flexibility was observed, and the ideal selectivity improved (Table 1). An interesting approach to
improve the interface morphology has been proposed by Casado Coterillo et al. [53], who fabricated a
ternary system, embedding ZIF-8 in a polymer matrix composed of Chitosan and [Emim][Ac]. At low
ZIF-8 loading (5 wt.%), they achieved the best CO, /N, separation performance and attributed the
effect to a better adhesion between the Chitosan and the ZIF-8 phase that is offered by the presence of
the ionic liquid at the interface.

Carter et al. [54] loaded 10% ZIF-8 with particle size of 95 nm in Matrimid and prepared two
different dense membrane films with aggregated ZIF-8 nanoparticles and with a homogeneous
dispersion. As expected, the single gas permeation tests showed improved selectivity and permeability
for the well-dispersed membrane and the lower drop observed for the N, permeability, with respect to
CH,4 permeability, was explained in terms of surface diffusion mechanism and framework flexibility of
ZIF-8. Again, the addition of ZIF-8 nanoparticles enhanced the Hy-selective properties of the hybrids,
with the aggregated samples showing even better performance (68% increase in H, permeability)
when compared to the one with homogeneous dispersion (Table 1). However, the selectivity remained
too low (H,/CO, < 5) to become valuable for real H, purification. Interestingly, the reported analysis
of hybrid membranes based on Matrimid and ZIF-8 clearly showed that synthesis protocol, particle
size, and possible modification play a major role in the determination of the membrane performance.
Guo et al. [55] recently investigated the effect of ZIF-8 nanoparticles on another commercial polyimide,
P84. As reported for Matrimid, the CO, permeability increased proportionally to the MOF content.
Also, the CO,/CHy selectivity increased remarkably, but at the highest loading (31 wt.%), a drop
(Table 1) was observed. A drop in the diffusion selectivity was measured (Figure 3), clearly suggesting
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that the formation of interfacial voids that are associated to MOFs aggregation is responsible for the
observed phenomenon.

Figure 2. Dispersion of ZIF-8 by direct (a,b) and indirect (c,d) sonication of 10 wt.% (a,c) and 25 wt.%
(b,d) loading in Matrimid [51], with copyright permission from © 2012 Elsevier.
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Figure 3. Effect of ZIF-8 loading on the solubility and the diffusivity selectivity when embedded in P84
polyimide [55], with copyright permission from © 2018 Elsevier.

6FDA is another glassy polyimide that has been largely investigated for the fabrication of
ZIF-based mixed matrix membranes. The higher free volume when compared to Matrimid allows
for the 6FDA polymer family to achieve larger gas permeation, offering a more suitable option for
industrial applications. Jusoh et al. [56] reported significant improvement in CO, permeability of
6FDA-durene by embedding up to 20 wt.% ZIF-8 in the polymer matrix. An optimum loading
of 10 wt.% was identified (Table 1), as a further increase of the inorganic content led to negligible
enhancement of CO, permeability, but a significant decrease of CO,/CHy selectivity. Furthermore,
the gas separation enhancement of ZIF-8/6FDA-durene was attributed to the influence of pore limiting
diameter and quadrupole interaction of CO, with the ligand in ZIF-8 framework. Wijenayake et al. [57]
proposed surface crosslinking as possible approach to improve the performance of 6FDA-based hybrid
membranes containing ZIF-8 nanoparticles. The addition of 33 wt.% ZIF-8 in the polymer matrix
enhanced significantly the CO, permeability (~400%, Table 1), reaching up to ~1500 Barrer, similar
to the one that was observed in the previous study. The effect on the selectivity was limited. Even
though post-synthetic modification of ZIF-8 using ethylenediamine showed enhanced CO; adsorption
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capacity [58], the use of ethylenediamine vapors to crosslink the surface of the hybrid membrane led to
a limited improvement on the CO; selectivity along with a drastic drop in CO, permeability. As in the
case of Matrimid, the addition of ZIF-8 to 6FDA polyimide improved the Hj-selective feature, and a
H,/CO; selectivity of 12 has been achieved upon surface modification. Askari and Chung [59] studied
the effect of annealing temperature on the performance of 20 wt.% ZIF-8 containing 6FDA-durene
mixed matrix membrane by heating to different temperature (200, 350, and 400 °C) below glass
transition temperature (Tg > 400 °C). The highest gas permeability was obtained for 20 wt.% loaded
membrane annealed at 400 °C (from 487 Barrer at 200 °C to 1090 Barrer at 400 °C) and the contribution
of the inorganic phase was enhanced at higher annealing temperatures. When the cross-linkable
co-polyimide (6FDA-durene/DABA) was used in the place of the homopolymer, higher selectivity
values could be achieved, but the improvement took place to the detriment of CO, permeability.
Nafisi and Hagg investigated the gas separation performance of ZIF-8 containing membrane prepared
using 6FDA-durene [60] and PEBAX 2533 [61] (a commercial polyether-block-amide) as polymer phase.
In both cases, the CO, permeability increased along with the inorganic content, but the influence
of ZIF-8 nanoparticles appeared to be more effective for PEBAX 2533. At 30 wt.% loading, a 50%
enhancement of CO, permeability (2186 Barrer) was observed for 6FDA-durene whereas a ZIF-8
loading of 35 wt.% in PEBAX 2533 corresponded to a 3.6-fold improvement of the CO, permeability
(1287 Barrer). Furthermore, at high inorganic loading, the polyimide showed reduced CO, selectivity,
whereas negligible effect on the separation performance was observed for PEBAX.

Recently, Sanchez-Lainez et al. [62] reported the fabrication of mixed matrix membranes based on
polybenzimidazole (PBI), obtained via phase inversion method for H, /CO, separation. At 180 °C,
the presence of the ZIF-8 nanoparticles improved the Hy /CO, selectivity as well as the H, permeance.
At higher temperature (250 °C), the presence of defects resulted in a drop in the selective characteristic,
but higher feed pressure (3 bar vs 6 bar) restored the H, /CO, selectivity to a value close to 20.

Recent publications showed an increasing research also on the fabrication of thin composite
membranes containing ZIF-8 nanoparticles. Dai et al. [63] fabricated asymmetric hollow fiber
mixed matrix membranes using dry jet-wet quench method. In particular, they dispersed 13 wt.%
ZIF-8 nanoparticles (size ~200 nm) into a polyetherimide (Ultem 1000) matrix. CO, /N, separation
performance for the HF membranes were tested at 35 °C and 100 psi. For both pure and mixed gas,
the separation performance was improved. The permeance and selectivity of the ZIF-8 containing
hollow fibers improved by 85% and 20%, respectively, when compared to the unloaded hollow
fibers. Higher selective feature were observed for mixed gas conditions using 20 vol.% CO, in the
feed. A comprehensive review on progresses and trends on hollow fiber mixed matrix membranes
has been recently reported by Mubashir et al. [64]. The review includes a comparison between the
results obtained for flat sheet and hollow fiber mixed matrix membranes at similar filler loading and
operating conditions. It was concluded that hollow fiber mixed matrix membranes that are loaded
with ZIF-8, ZIF-93, and amine functionalized MILs show higher separation performance for CO,/N;
and CO,/CHy.

Thin film can be obtained also by coating on porous support. Thin film composite membranes
and thin film nanocomposite membrane containing MOFs have been developed for nanofiltration and
organic solvent separation [65-68]. However, only few studies can be found in literature investigating
the gas transport properties of thin hybrid selective layers. Sdnchez-Lainez et al. [69] reported a novel
ultra-permeable thin film nanocomposite (TEN) containing ZIF-8 for H, /CO; separation. The selective
layer (50-100 nm) was formed on a polyimide P84 asymmetric support. The nanoparticles were
dispersed in different loadings (0.2, 0.4, and 0.8% w/v) in a polyamide matrix. The incorporation of
ZIF-8 nanoparticles enhanced the gas separation performance. At 35 °C and 0.4% w/v ZIF content,
a 3-fold increase in selectivity was observed compared to the pristine polymer. An increase in the
temperature had a positive impact on the performance, especially in terms of Hy permeance (up to
988 GPU at 250 °C for the pristine polymer). At 180 °C, TFN membranes containing 0.2 and 0.4%
(w/v) of ZIF-8 exhibited a marked selectivity increase of 42% and 64%, respectively. At higher loading
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(0.8% w/v), the presence of micro voids and defects determined a significant drop in both permeance
and selectivity. A further increase in temperature led to higher H, permeance of TFN membranes with
negligible influence on the selective features.

2.1.2. ZIF-7

ZIF-7 is another promising candidate of the ZIFs family for gas separation applications.
1H-benzimidazole is the bridging ligand, which is connected to the Zn metal clusters and creates a
3D sodalite topological framework (Figure 2). Its pore diameter ranges between 3 and 4.3 A [44,70].
The narrow pore size makes ZIF-7 suitable for H, purification from CO,. Nevertheless, due to the
flexibility of the benzimidazole linker, ZIF-7 also shows the “gate opening effect”, undergoing a
reversible transition of the pores (from narrow to large framework flexibility of ZIF-7 that allows for
gas molecules with a molecular diameter as large as 5.2 A to access the pores and cavities). This gate
opening effect of ZIF-7 was observed in adsorption isotherms (CO,, ethane, and ethylene) [71].

Li et al. [72] evaluated the separation performance of ultrathin hybrid membrane composed by a
poly(amide-b-ethylene oxide) (Pebax 1657) and ZIF-7 nanoparticles. ZIF-7 particles with a size between
40 and 50 nm were synthesized and embedded up to 34 wt.% within the polymer matrix. Subsequently,
thin composite membranes were prepared by coating the casting solution on a porous PAN support
(PTMSP gutter layer was used to prevent pore penetration of the selective layer). Increasing the ZIF-7
loading up to 22 wt.% showed a remarkable increase (Table 1) in both CO, permeability and CO,/CHy
and CO; /N, ideal selectivity. However, at higher loading (34 wt.%) polymer rigidification around
the nanoparticles took place, positively affecting the selectivity (214% and 208% enhancement for
CO,/CHy and CO, /Ny, respectively), while the CO;, permeability was considerably lower when
compared to that of the neat polymer. Post synthesis modification of nanosized (40-70 nm) ZIE-7
was implemented by Al-Maythalony et al. [73], aiming at tuning the pore size by exchanging the
organic ligand, benzimidazolate with benzotriazolate. The synthesized nZIF-7 and PSM-nZIF-7 were
embedded in a polyetherimide (PEI) matrix. The post synthesis modification resulted in an increase of
CO; permeability of all the examined gases (N, CHy, and CO, by 737%, 470%, and 198%, respectively).
Nevertheless, the bigger enhancement of gases with larger kinetic diameters reduced the CO,-selective
feature of the hybrids when compared to the pristine PEL

2.1.3. ZIF-11, ZIF-71, and ZIF-90

ZIF-11, ZIF-71, and ZIF-90 are the other three structures from the ZIFs library that are of interest
for gas separation applications and are characterized by rho (for both ZIF-11 and ZIF-71), and sod type
topology with apertures of 3 A, 4.2 A, and 3.5 A, respectively [45,74]. ZIF-90 is an attractive MOF
for CO, capture owing to its covalent carbonyl bond in the imidazole linker favoring CO, and the
0.35 nm of pore size, which is suitable for CO,/CHj separation. Alternatively, ZIF-71 is selected due
to its large cavity pore diameter (16.5 A) when compared to that of ZIF-8, ZIF-90, and ZIF-11 (cavity
pore diameter 11.6, 11.2, and 14.6 A, respectively) that has the potential to enhance the gas separation
performance of hybrid membranes [75,76].

Ehsani and Pakizeh [77] examined the performance of hybrid membranes with a ZIF-11 loading
range of 10-70 wt.% incorporated into PEBAX 2533. Morphological characterization of MMMs revealed
an excellent adhesion between the polymer matrix and the nanoparticles. Even at 50 to 70 wt.% ZIF-11
loading, no significant agglomeration could be observed, even though poorer interfacial morphology
appeared. At lower MOF loading, the presence of polymer chain rigidification and pore blockage
resulted in a gas permeability reduction (~20%). At higher loading (>50 wt.%), the CO, permeability
increased when compared to pristine polymeric membrane, reaching a value of 403 Barrer at 70 wt.%
(Table 1). Different effects were observed for selectivity: the CO,/CHy, selectivity increased from
8 to 12.5 at increasing the MOF content, but a negative trend was observed in the case of CO,/N,
selectivity. ZIF-11 has also been embedded in 6FDA-DAM polyimide [78]. SEM micrographs showed
no apparent agglomeration for loading up to 30 wt.%. An optimum was observed incorporating
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20 wt.% ZIF-11, leading to a 12-fold enhancement of CO, permeability (Table 1), with limited effect
on the ideal selectivity. The CO, permeability improvement was associated to the achievement of
particles alignment, and subsequently, an increase in fractional free volume of the hybrid matrix, which
is confirmed by d-spacing analysis. The lack of selectivity improvement for 20 wt.% loading was
related to the much higher gas permeability of ZIF-11 as compared to 6FDA-DAM, as predicted by the
Maxwell model. Further increase in ZIF-11 loading did not show any improvement of the separation
performance, owing to polymer chain rigidification and pore blockage.

Hybrid membranes based on PIM-1 and ZIF-71 with various loading were fabricated by
Hao etal. [79]. The addition of ZIF-71 into PIM-1 considerably improved the gas transport, and
in the case of CO,, the permeability value increased from 3295 to 8377 Barrer (Table 1). Photo
oxidation obtained via UV treatment of the neat polymeric matrix increased the ideal selectivity to the
detriment of gas permeability. As expected, the presence of the nanofillers helped in minimizing the
gas permeability drop, showing impressive membrane performance (CO, permeability of 3459 Barrer,
CO,/CHy4 and CO,/Nj selectivity of 35.6 and 26.9, respectively) [79]. The effect of particle size (30, 200,
and 600 nm, as seen in Figure 4) has also been investigated, using a fixed amount of nanoparticles
in 6FDA-durene (Table 1) [76]. The permeability enhancement associated to the presence of the
nanoparticles did not scale with the particle size, but it showed an optimum when the 200 nm particles
size were used. In addition, the negligible effect on the ideal gas selectivity suggested the existence of a
trade-off between the particle size and the gas separation performance, giving an important indication
for the further development of nano-hybrid membranes.

Figure 4. Cross-sectional morphology of 6FDA-Durene containing ZIF71 particles with average size
of 30 nm (a); 200 nm (b); and 600 nm (c) [76], with copyright permission from © 2016, American
Chemical Society.

Bae et al. [80] studied the CO, separation performance of MMMs containing a fixed amount
of ZIF-90 (15 wt.%), coupled with three different polyimides (6FDA-DAM, Matrimid and Ultem),
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aiming at determining the effect of the nanofillers on different polymer phases. In the case of Matrimid
and Ultem, the CO, permeability increased (~100%, Table 1). As previously reported, the negligible
selectivity variation observed is related to the higher gas permeability of the nanoparticles, as predicted
by the Maxwell model. When a more permeable matrix was used (6FDA-DAM), the CO, permeability
improvement was followed by an increase of the CO,-selective features of the hybrid matrix. Mixed
gas permeation tests showed separation performances well above the CO,/CH,4 and CO, /N, upper
bounds. Zhang et al. [81] utilized ZIF-90 as the filler in triptycene-based polymer and prepared hybrid
membranes for CO, /N, and CO,/CHy separation. Cross-sectional SEM images revealed homogenous
dispersion of the nanofillers and membranes with defect-free interfacial morphology, even at high
loadings. The membrane containing 50 wt.% ZIF-90 showed a 215% increase of the CO, permeability
value (Table 1), without sacrificing the gas selectivity. The ability of ZIF-90 to disrupt the polymer
chain packing, and consequently, increase in free volume, was also suggested as source of additional
permeability enhancement.

Table 1. Gas separation performance of ZIFs-b ased mixed matrix membranes (operating conditions
ranging within 1-5 bar, 20-35 °C, unless differently specified).

. Loadin; P
Filler Polymer (Wt%)g (Bacl-?ezr) XCO2/N2 X CO2/CH4 & CO2/H2 Ref.
ZIF-8
N 0 95 30.7 39.8 034 [48]
ZIF-8 Matrimid 5218 20 9.0 30.1 51.1 0.29
50-150 nm 30 142 241 38.2 031
40 245 234 27.8 035
50 47 262 1249 035
60 8.1 184 80.7 026
Matrimid 9725 0 0212 28.0 [49]
ZIF-8 10 0312 295
250-500 nm 20 0422 31.0
30 072 315
Matrimid 5218 0 8.1 224 35.2 [50]
ZIF-8 5 10.1 212 39.1
60 nm 10 137 21.6 30.6
20 16.6 19.0 35.8
30 28.7 17.1 249
ZIF-8 Matrimid 0 10.7 33.9 [51]
Dir. Son. 10 219 36.0
25 47.0 39.0
Indir. Son. 10 132 31.0
25 232 31.9
Matrimid 5218 0 9.0 35.0 [52]
ZIF-8 15 113 35.0
ZIF-8-ambz 15 104 36.5
30 102 38.0
Matrimid 5218 0 95 13.6 29.8 031 [54]
ZIF-8 10 13.1 205 026
95 nm 10 15.5 26.7 34.4 0.34
P84 0 27¢ 54.1 [55]
ZIF-8 8 32¢ 635
30 nm 17 63°¢ 93.6
27 11.0¢ 923
31 20.0°¢ 458
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Table 1. Cont.

Filler Polymer L&?S :/:1;5 (];)acr(r):r) X CouN2 X CO2/CHE & CO2/H2 Ref.
6FDA-durene 0 468 7 [56]
ZIF-8 5 694 16.5
50 nm 10 1427 28.7
15 1466 11.3
20 1463 8.97
6FDA-durene 0 469 13.4 15.6 091 [57]
ZIF-8 33 1553 11.3 11.1 0.71
334 237 11.8 16.9 0.08
6FDA-durene 0 352 16.6 [59]
ZIF-8 T=200°C 20 487 17.9
80 nm T=350°C 0 432 13.8
20 857 13.1
T =400°C 0 541 131
20 1090 13.0
6FDA-durene 0 1468 254 22.6 [60]
ZIF-8 3 1593 257 219
100-200 nm 5 1695 227 20.1
7 1774 221 194
10 1882 20.5 19
15 1940 18.6 18.1
20 2027 17.5 16.9
30 2186 17 17.1
PEBAX 2533 0 351 351 8.3 [61]
ZIF-8 5 305 254 6.8
10 427 30.5 8.5
15 574 30.2 104
20 854 28.5 9.2
25 1082 30.9 8.5
30 1176 31.8 8.7
35 1287 322 9
Ultem 1000 0 14¢ 30 [63]
ZIF-8 13 26 ¢ 36
ZIF-7
PEBAX 1657 0 72 34 14 [72]
ZIF-7 8 145 68 23
40-50 nm 22 111 97 30
34 41 105 44
PEI 0 82.5 3.8 44 [73]
ZIE-7 5 64.7 17 129
PSM-ZIF-7 & 5 246 1.3 2.3
ZIF-11
PEBAX 2533 0 232 41.3 8 [77]
ZIF-11 10 212 53 9.7
500-5000 nm 30 186 479 114
50 233 46.9 11.2
70 402 29 12.4
6FDA-DAM 0 214 327 [78]
ZIF-11 10 107 31.3
200-2000 nm 20 273 31
30 76.7 30.4
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Table 1. Cont.

Loading Pco2

Filler Polymer (WE%) (Barrer) o CO2/N2 o CO2/CH4 o cO2/H2 Ref.
ZIF-71
PIM-1 0 3265 20.1 10.2 [79]
ZIF-71 10 271 19.4 11.3
<1000 nm 20 5942 20 11.9
30 8377 18.3 112
UV-PIM-1 0 1233 29.8 34.1
UV-ZIF-71 10 1909 29.1 35.5
<1000 nm 20 2546 27.2 353
30 3459 26.9 35.6
ZIF-71 6FDA-Durene 0 805 14.7 17 [76]
30 nm 20 2560 13.8 14.2
200 nm 20 2744 13.2 13.9
600 nm 20 1656 13.5 14.7
ZIF-90
6FDA-DAM 0 402 17.5 [80]
ZIF-90 15 808 27.2
810 nm Ultem®1000 0 14 37.9
ZIF-90 15 29 389
Matrimid 0 7.7 349
ZIF-90 15 12.1 34.8
6FDA-DAM I 0 390 24
15 720 37
6FDA-TP ! 0 20 20 37 [81]
ZIF-90 10 26 24 9
60-105 nm 20 29 22 38
40 45 20 36
50 63 20 36

@ Permeance (GPU), membrane thickness 40-65 um; ° ZIF-8 synthesized using the solution collected from
freshly-synthesized ZIF-8 dope after centrifugation; ¢ equimolar CO,/CH, mixture; d membrane surface
cross-linked using ethylenediamine vapour; ¢ Permeance (GPU), membrane thickness ~60 um; f Permeance (GPU),
membrane thickness 50-100 nm; 8 PSM: post-synthetic modification; ! gaseous mixture as feed gas; ' TP: triptycene,
10 atm feed pressure.

According to the analysis of different ZIFs in different polymeric materials, it appears that it is
possible to achieve relatively high loading of isotropic ZIFs particles in the polymer matrix (up to
60 wt.%). However, the optimum concentration of inorganic nanofillers appeared to be in the range of
30 to 40 wt.%; at higher loading, no significant benefits for CO, permeability can be obtained, but a
decrease in selectivity can be expected. The use of ZIFs has been demonstrated to also be successful for
highly permeable polymer (6FDA-based polymides, PIM-1, PEBAX), and typically the introduction of
nanoparticles has the main function of disrupting the polymer chain packing and increasing the free
volume in the hybrid matrix. However, despite the achievement of suitable interface morphology, the
addition of ZIFs to polymer matrix seldom is reported to have a significant impact on the selective
feature of the mixed matrix membrane. Among the investigated ZIFs, it is not possible to identify one
type that is able to stand out, but the efficiency of each type also depends on the chosen polymeric
phase and the synthetic procedures. Furthermore, ZIF nanoparticles with smaller size appears to
be more effective when compared to inorganic phases with bigger average size. Finally, despite the
CO,-philic nature of the nanofillers, the incorporation of ZIFs in polymeric matrix typically enhances
the Hy-selective feature of the pristine polymeric matrix.
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2.2. Zirconium 1,4-Dicarboxybenzene (UiO-66)

UiO-66 is a zirconium-based metal-organic framework that is built from zirconium oxide
(ZrsO4(OH)4) nodes linked together by 1,4-benzendicarboxylate as a bridging ligand [82]. UiO-66 is
the first member of zirconium based MOFs family with fcu-topology introduced by Cavka et al. [83].
It owns a Langmuir surface area of 1187 m? /g and the narrow triangular windows that are present
in the UiO-66 framework have different sizes (Figure 5): 6 A is the window connected to the two
octahedral cages, with the size of 11 A, and the tetrahedral cage, which has an opening of 8 A (Figure 5).
UiO-66 showed exceptional mechanical and chemical stability on exposure to high temperature, up
to 500 °C, and chemicals, making this MOF a promising candidate for many applications [82,84].
The benzene ring has been found to be characterized by the rotational barrier as compared to other
MOFs, leading to changes in the pore opening size (Figure 5C), and this effect showed a temperature
dependency behavior [85].

gate-closing gate-opening

=

Figure 5. Three-dimensional (3D) structure of UiO-66 (A) visualizing the octahedral cage (orange) and
the tetrahedral cage (green). Triangular windows (B) between the octahedral and tetrahedral cages.
Pore opening changes upon rotation of the benzene ligands (C) [84], with copyright permission from ©
2017, American Chemical Society.

Hybrid membranes embedding 5 to 20 wt.% pristine UiO-66 and amine functionalized
UiO-66-NH; (average size 60-80 nm) in PEBAX 1657 have been prepared [86]. For both types of
nanoparticles, the CO, permeability increased proportionally to the amount of inorganic phase,
reaching a ~2.5-fold enhancement of the pristine polymer value (Table 2). These results suggested
that UiO-66 showed a strong affinity towards CO, due to the presence of OH coordinated bond
connected to Zr cluster. Different trends were observed for the CO, /N, selectivity, which showed
an optimum between 7.5 and 10 wt.% loading. The better affinity of the UiO-66-NH, with the
polymer phase allowed for reaching better selectivity improvement (88%) as compared to the pristine
MOF (42%). Interestingly, the mixed matrix membranes prepared with UiO-66-NHy, retained stable
performances even in the presence of humidity. Similar nanoparticles (UiO-66 and UiO-66-NH,) have
been embedded also into Matrimid 9725 [87]. The use of two modulators (benzoic acid, BA, and
4-aminobenzoic acid, ABA) was reported to allow for the linkage of the amine groups in different
positions in the UiO-66 structure. The presence of the ABA modulator increased the CO,/CHy
selectivity up to 55% (from 31.2 to 47.4), together with a six-folds improvement of the CO, permeability
for the amine-modified UiO-66 (Table 2). Surface modification of the UiO-66 has also been proposed
as a possible approach to improve the nanoscale morphology at the organic/inorganic interface [88].
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The surface modification was performed using phenyl acetyl (PA), decanoyl acetyl (DA), and succinic
acid (SA) in order to enhance the interaction between nanoparticles and Matrimid 5218 was used as
polymer phase. A good adhesion and interaction between surface functionalized UiO-66-NH, and
polymer matrix was observed, leading to improved mechanical and chemical properties of and the
hybrid membranes. 23 wt.% loading of PA-modified UiO-66-NH, enhanced the CO, permeability by
229% (from 8.5 Barrer to 28 Barrer), with a simultaneous improvement of CO,/Nj selectivity by 25%.
The permeability and selectivity increased due to the strong interactions between the CO, and the
NH, groups that are present in the MOF, together with interaction of imide group in Matrimid and
aromatic ring in PA through -7t bonds. The poor interaction between fillers and Matrimid in DA and
SA-modified UiO-66-NH, resulted in a reduction in permeability and selectivity when compared to
PA-modified UiO-66-NH, particles.

The influence of amino and carboxylic group functionalization of UiO-66 have been investigated
using PIM-1 as polymer phase [89]. The investigation considered “as-cast” and “solvent exchanged”
PIM-1 membrane: the latter showed higher CO, permeability (8210 Barrer) compared to the pristine
membrane (4770 Barrer), and the difference is attributed to the excess free volume that is generated
by the solvent removal. The addition of pristine UiO-66 to the matrix generated an enhancement
in CO, permeability (up to 59% for the “as cast” membrane and 32% for the “solvent exchanged
sample, Table 2) when compared to the pristine polymeric sample. In the case of UiO-66-NH, and
UiO-66-(COOH)j,, the CO, permeability also showed an increase, but with a lower extent as compared
to the pristine nanoparticles. In the case of the selectivity, the parameter showed a limited variation
for both CO, /N, (decrease up to 10%) and CO,/CHy (decrease up to 20%) upon the addition of
the nanoparticles, both pristine and functionalized. Performance for CO,/H; separation were also
reported. The pristine polymer showed a CO,-philic behavior, which was slightly enhanced in presence
of the nanoparticles (particularly in the case of UiO-66-(COOH),;). However, the selectivity value
remains too low to be attractive for industrial separations.

In another study [90], water modulation was employed to reduce the particle size of UiO-66
(from 100-200 to around 20-30 nm) and the water modulated nanoparticles (UiO-66-H) were
further surface-modified using amine (UiO-66-NH,) and bromide (UiO-66-Br) functional groups.
The reduction in particle size improved the dispersion of UiO-66 into polymer matrix by minimizing
the formation of non-selective microvoids. The decrease in the CO, selective feature of the hybrids
observed with increasing the content of unmodified UiO-66 was therefore prevented (Figure 6), and a
selectivity enhancement was observed for all of the modified nanoparticles (up to 71% and 95% in the
case of CO,/Nj and CO,/CHy selectivity for 10 wt.% UiO-66-NH; loading). This effect was mainly
associated to the increased rigidity of interphase. However, the improved interactions between the
functionalized nanoparticles and the polymer chains led to a negligible effect on CO, permeability,
which instead was significantly enhanced (~100%) in the case of unmodified UiO-66. Despite the
differences that were observed with respect to the previous study in terms of pristine PIM-1 transport
properties, the performance achieved by embedding UiO-66 and UiO-66-NH,; are similar, supporting
the consistency of the results.
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Figure 6. Gas permeability (a) and gas selectivity (b) of UiO-66-NH, (filled symbols) and pristine
UiO-66 (open symbols) embedded in PIM-1. Comparison with literature results (c) and Robeson plot
(d) for CO, /N, separation [90], with copyright permission from © 2017, Springer Nature.

The influence of UiO-66 on the gas separation performance of 6FDA-based polyimides were
also evaluated for mixed gas feed CO,/CHy,4 (50/50 v/v) [91]. Different 6FDA-based polymers were
investigated (6FDA-BisP, 6FDA-ODA, and 6FDA-DAM). CO, permeability was found to increase
proportionally to the inorganic content for all of the different polymer phases, even though a larger
enhancement was observed for the low permeable ones. In the case of 6FDA-Bisp and 6FDA-ODA,
CO; permeability improved by 357% and 178%, whereas for 6FDA-DAM, the enhancement was limited
to 136%. The permeability improvement was associated to a FFV increase upon the incorporation of
the inorganic phase, and the benefits was more pronounced for the polymer phase with an initially
lower FFV. Improvement in terms of selectivity was observed for 6FDA-BisP and 6FDA-ODA up
to 17 wt.% loading, but at higher loadings, poor nanoparticles dispersion determined a drop in
the selective feature of the hybrids. Interestingly, a negligible effect was observed for the more
permeable 6FDA-DAM. The authors also investigated the effect of surface functionalization of UiO-66
when embedded in 6FDA-DAM [92]. The amino-functionalized UiO-66-NH; was prepared via the
direct synthesis method, and UiO-66-NH-COCHj3 was synthesized via post-synthetic modification
of UiO-66-NH, using acetamide-ligand. When compared to the results that were obtained with
the pristine UiO-66, the surface modification helped in achieving a better polymer-MOF interface,
reducing the free volume of the hybrid matrix at a given loading. At low pressure, negligible effects
were observed on the transport properties when the modified MOFs were used, but at higher feed
pressure, the post-synthetic modification showed better results in terms of CO, /CHy selectivity.
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Table 2. Gas separation performance of UiO-66-based mixed matrix membranes (operating conditions

ranging within 1-5 bar, 20-35 °C, unless differently specified).

Filler Polymer L((::S :/z\)g (licr?:r) XCcoz/N2 X CO2/CH4 X COz/H2 Ref.
PEBAX 1657 0 51.5 421 [86]
UiO-66 5 75.0 56.0
60-80 nm 7.5 90.0 60.0
10 96.3 56.6
125 110.5 40.0
15 115.0 27.0
20 134.0 21.0
UiO-66-NH, 5 71.0 68.0
60-80 nm 75 78.0 76.0
10 87.0 79.2
12.5 96.0 45.0
15 100.0 375
20 122 26
Matrimid 9725 @ 0 59 31.2 [87]
UiO-66 30 15.0 35.8
UiO-66-BA 30 17.8 429
UiO-66-ABA 30 13.6 451
UiO-66-NH; 30 17.8 37.3
UiO-66-NH;,-BA 30 17.4 39.3
UiO-66-NH,-ABA 30 38.0 47.4
Matrimid 5218 ® 0 8.5 29 [88]
UiO-66 -NH; 12 18.5 33
200 nm 23 24 36
40 28 275
UiO-66-NH,-PA 12 20.5 325
23 28 36.5
40 31 28
UiO-66-NH,-C10 23 225 28
UiO-66-NH,-SA 23 20 30.5
PIM-1 0 4770 21.8 16.7 1.76 [89]
UiO-66 as cast 9.1 5940 232 16. 1.93
200 nm 16.6 7610 20.7 144 1.67
231 7610 20.7 144 1.67
28.6 4940 13.6 11.2 0.66
Ui0-66-(COOH), 9.1 4600 20.9 14.1 222
200 nm 16.6 5190 204 13.2 2.19
23.1 5300 19.9 129 222
28.6 6090 20.6 15.2 1.63
UiO-66-NH; 9.1 4810 222 16.5 1.62
200 nm 16.6 6340 209 149 2.03
231 5070 20.1 14.7 1.58
28.6 6310 215 13.3 2.10
PIM-1 0 8210 21.2 15.7 1.63
UiO-66 exchanged solvent 16.6 9980 21.6 17 1.23
200 nm 23.1 9980 21.6 17 1.23
28.6 10,900 15.2 13.2 1.74
UiO-66-(COOH), 16.6 9720 189 11.7 2.28
200 nm 23.1 8770 18.1 11 2.05
28.6 9020 22.1 13.5 1.02
UiO-66-NHj, 9.1 8740 22 14.7 1.84
200 nm 16.6 10,700 214 13.7 1.88
23.1 9570 234 13.8 1.43
28.6 9030 19.5 13 1.70

22



Membranes 2018, 8, 50

Table 2. Cont.

Filler Polymer L((v)::_i :/‘r,l)g (;;Cr(r):r) X CO2/N2 X CO2/CH4 & CO2/H2 Ref.
PIM-1 0 3054 16.1 145 1.67 [90]
UiO-66 5 4620 16.2 15.1 1.90
100-200 nm 10 5210 16.5 13.7 2.04
20 6981 13 9.3 2.60
UiO-66-H 5 2765 229 18.2 0.88
20-30 nm 10 2631 23.5 18.8 0.88
20 2606 24.6 20.1 0.89
30 1880 183 16.1 1.55
40 1023 214 15.8 1.67
UiO-66-NH; 5 2952 26.9 27.3 1.11
20-30 nm 10 2869 27.5 28.3 1.09
20 2210 23.7 25.1 0.99
30 2005 22 23.8 0.99
40 1727 24 21.8 0.86
UiO-66-Br 5 2890 20.1 18.1 1.49
20-30 nm 10 2846 21.6 171 1.25
20 2416 19.3 16.3 153
30 2294 19 171 1.57
40 1441 23.6 20.8 1.03
6FDA-BisP 0 339 275 191]
UiO-66 6 56.7 33.6
50-100 nm 14 83.9 36.2
17 108 41.9
21 155 24.6
6FDA-ODA 0 259 20.6
UiO-66 4 30.1 38
50-100 nm 8 37.4 51.5
17 43.3 57
23 72 21.5
6FDA-DAM 0 997 29.2
UiO-66 4 1283 29.6
50-100 nm 8 1728 32
14 1912 30.9
21 2358 12.7
6FDA-DAM 0 1010 € 29.2 [92]
UiO-66 4 1290 ¢ 29.6
8 1730 € 32.1
14 1915 ¢ 31.2
21 2365 ¢ 12.6
UiO-66-NH, 4 1295 ¢ 29.2
8 1300 © 30.3
14 1345 ¢ 29.9
21 1585 ¢ 20.7
UiO-66-NH-COCH3; 4 1081 © 30.3
8 1171 ¢ 32.5
14 1266 © 33.1
21 1417 ¢ 24.1

2 feed pressure = 9 bar; ° feed pressure = 10 bar; ¢ equimolar CO,/CHy gas mixture.

In view of the reported data, UiO-66 appeared to be a promising inorganic phase to fabricate
CO,-selective hybrid membranes. Unlike the case of ZIF, the loading for UiO-66-based mixed matrix
membranes has been limited to 40 wt.%, as agglomeration and poor polymer-fillers interface was
observed at high loadings. In the case of unmodified particles, the CO, permeability was found to
increase proportionally to the inorganic content for all of the investigated studies, but when considering
the selective feature, an optimum is observed for a loading range between 10 and 20 wt.%. Amine
modified UiO-66 (UiO-66-NH;) showed typically better performance as compared to the pristine
nanoparticles, which is mainly due to the enhanced CO;-philicity. In general, surface modification led
to improved polymer-particle interface, but for highly permeable polymers, this led to limited effect in
terms of both selectivity and permeability.
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2.3. Copper-Based MOFs

When compared to other metal organic frameworks, Cu-based MOFs offer an exceptional CO,
uptake due to their high affinity with polar molecules. The presence of unsaturated open metal
sites in Cu-based MOFs after activation is reported as an assisted mechanism in CO, sorption [93].
Comparison of the CO, adsorption capacity of two well-known MOFs containing the same ligand in
their framework (Cu-BTC and Fe-BTC) showed that the Cu-BTC is characterized by a much larger CO,
uptake (73.2 cm? g1, at room temperature and atmospheric pressure) when compared to the Fe-BTC
(15.9 cm® g™!) [94]. The results clearly pointed out the higher CO, affinity and interaction of Cu ions
together with open metal sites, making Cu-based MOFs interesting for the fabrication of mixed matrix
membranes for CO, separation.

Basu et al. [49] investigated the effect of Cuz(BTC), when embedded in Matrimid 9725 polymer
phase. Upon the incorporation of the nanofiller, both CO, permeability (196%) and CO,/CHy
separation factor increased along with the inorganic content (Table 3). The overall increase of the
separation performance was ascribed to the interactions between polymer and MOF and electrostatic
interaction between the MOF and gas molecules, which leads to the existence of a competitive
behavior. Cuz(BTC), was dispersed also in poly(2,6-dimethyl-1,4-phenylene oxide) (PPO), reducing
the particles size via sonication from 50 to 6 um [95]. Sonication was also reported to be able to
improve the micropore volume of the nanoparticles and their dispersability within the polymeric
matrix. By embedding 10 wt.% of Cuz(BTC); filler, the CO, permeability increased proportionally
to the filler content, and the maximum enhancement was achieved for the smallest particles (26%,
Table 3). The reduction of particles size showed a positive impact on the membrane selectivity: the
improved compatibility with the polymer matrix prevented the selectivity drop observed as in the
case of bigger particles. Abedini et al. [96] embedded Cu3(BTC), with a particle size of 100 nm in
poly(4-methyl-1-pentyne) (PMP). By increasing the loading to 20 wt.%, they observed a simultaneous
increase in CO, permeability (90%, Table 3) and selectivity (between 40 and 60% for the investigated gas
pairs, Table 3). The observed variation was mainly attributed to a free volume increase. Interestingly,
they also observed a reduction of the physical aging influence. Amine modification of Cuz(BTC); has
also been reported as a possible approach to improve the CO, separation performance of a PEBAX
1657 [97]. In view of the H-bonding between the -NH; group and the polymeric chain, the modified
nanoparticles showed better compatibility with the polymer phase. The CO, permeability increased
proportionally to the loading (up to 100% increment, Table 3) similarly for both of the fillers, but
better improvement of the CO,/CHj selectivity was achieved upon amine-modification of the fillers.
Interactions between the amine groups and the CO, have also been suggested to be responsible for the
improved CO,-philicity of the hybrid matrices.

Metal-organic polyhedral 18 (MOP-18) was also used to fabricate the hybrid membrane using
Matrimid as polymer phase [98]. The inorganic content was increased up to 80 wt.%, but above 44 wt.%
the samples’ brittleness did not allow for the investigation of the transport properties via permeability
testing. The CO, permeability increased along with MOP-18 content, even though a reduction in
ideal selectivity was observed for both CO, /N, and CO,/CHjy. The permeability enhancement was
attributed to increasing the number of alkyl chains, which improved the CO; solubility within the
hybrid matrix. Hp permeability was also measured and the addition of the nanoparticles increased the
CO,-philicity of the mixed matrix (Table 3).

Ahmadi et al. [6] synthesized a new class of Cu-based microporous metal-imidazolate framework
(MMIF) and explored the separation performance of the mixed matrix membranes with 10 wt.% and
20 wt.% loading in Matrimid 5218 polymer matrix. The gas permeability showed a moderate increase
(26%) along with the MOF content with limited effect on CO,/CH,4 and CO,/N; selectivity. The
single gas permeation results revealed a flexible structure of MMIF, with the consequent formation
of interfacial defects and voids. Interestingly, a significant enhancement of the separation factor was
measured for mixed gas experiments (Table 3), which was mainly attributed to CO, competitive
sorption within the hybrid matrix. Molecular simulation revealed that gas sorption was the dominant
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mechanism in the hybrid membrane, and the preferential CO, uptake into the MMIF pores limited the
transport of other gases (CHy and Nj) through the MMIF’s framework.

Zhang et al. [99] fabricated a Cu-based microporous metal-organic framework (Cu-BPY-HFS) and
dispersed it in Matrimid 5218 up to 40 wt.% loading. The SEM images proved the good adhesion
between MOF and Matrimid for loading up to 30%, but a higher amount of MOFs generated the
formation of a poor particle-polymer interface. The CO, permeability increased along with the
Cu-BPY-HFS content, and the variation was attributed to the 0.8 A pore diameter and the presence
of interfacial voids. Interestingly, the MOF was shown to have better affinity with CH, than CO,,
and enhanced CHy transport was observed in both pure and mixed gas tests. On the other hand, the
CO;, /N selectivity was negligibly affected by the presence of the MOF. As for the previous case, the
addition of Cu-based MOF nanoparticles increased the CO;-philicity, thus reducing the ability of the
hybrid membranes to separate H, from CO,.

Table 3. Gas separation performance of Cu-based MOFs used to prepared mixed matrix membranes
(operating conditions ranging within 1-5 bar, 20-35 °C, unless differently specified).

Loading Pco2

Filler Polymer (Wt.%) (Barrer) & CO2/N2 & CO2/CH4 & cO2/H2 Ref.
Matrimid 9725 0 0212 28.0 [49]
Cuz(BTC), 10 032 30.0
10 um 20 0412 31.0
30 0.642 325
Cuj3(BTC), PPO 0 68.9 16.1 16.2 0.92 [95]
6 um 10 87.2 23.8 28.2 0.94
PMP 0 76.1 20.5 15.2 75 [96]
Cu3(BTC), 5 88.3 222 17.1 8.1
100 nm 10 103 237 19.2 9.2
15 124 25.4 227 10.7
20 144 28.6 243 12.2
PEBAX 1657 0 84.2 16.4 [97]
Cuz(BTC), 5 91.4 17.7
10 102.7 19
15 128.8 20.5
20 167.3 19.5
NH,-Cus(BTC), 5 93 18.4
10 108.8 21
15 135.2 23.6
20 170.1 26.2
Matrimid 5218 0 7.3 30.5 32.8 0.43 [98]
MOP-18 23 9.4 27.6 232 0.53
33 14 229 21.8 0.63
44 15.6 26.0 16.4 0.70
MMIF Matrimid 5218 0 6.8 26.2 35.9 [6]
50 nm 10 8.1 27.3 36.9
200 nm 20 8.6 27 346
Matrimid 5218 0 8.0 38.3
50 nm 10 9.7b 81
200 nm 20 10.1P 88
Matrimid 5218 0 7.1¢ 323
50 nm 10 8.2°¢ 389
200 nm 20 11.7¢ 58
CU-BPY-HFS9  Matrimid 5218 0 7.3 33.1 34.7 0.42 [99]
200-300 nm 10 7.81 325 319 0.46
20 9.88 31.9 27.6 0.59
30 10.36 33.4 27.4 0.51
40 15.06 30.7 255 0.56

2 Permeance (GPU); membrane thickness 4065 um; ® Equimolar CO,-CHj gas mixture; ¢ Equimolar CO,-N, gas
mixture; 9 Cu-BPY-HFS: Cu—4,4 -bipyridine-hexafluorosilicate.
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According to the results that were obtained from hybrid membranes containing different Cu-based
MOFs, the high CO, uptake capacity leads to high CO, permeability. Although the increase in the
gas transport is proportionally to the MOF content, a limited impact is observed on the selective
feature of the hybrid membranes. Interestingly, this effect is more evident when the performance
are evaluated through mixed gas permeation, which is presumably due to competitive sorption
phenomena. In addition, amine modification appears to be a promising approach to improve the
CO,-philic nature of the mixed matrix membranes.

2.4. Materials Institute Lavoisier MOFs (MILs)

Material Institute Lavoisier (MILs) is a sub-family of MOFs that is based on trivalent
metals strongly bonded to oxygen-anion-terminated linkers.  MIL-53 (chemical formula:
M(OH)(O,C—C¢H;—CO,, M = AI%*, Cr®*) is made of dicarboxylate ligand interconnected by
octahedral chains of MO4(OH), and has a 3D porous structure with one-dimensional (1D)
diamond-shaped channels [100]. Furthermore, it is characterized by a pore limiting diameter of
~8.5 A and surface area (Langmuir) of 1500 m? /g [100,101]. Porous terephthalate MIL-53 showed a
promising potential for H, storage and CO, capture [101-107]. CO, adsorption experiments showed
that MIL-53 exhibited a two-step sorption isotherm, behavior that was associated to gate opening
phenomena. Notably, even though this type of phenomena is typically observed in MOFs at low
pressure, in the case of MIL-53, this happened for pressure above 5 bar, determining the two-step shape
of the sorption isotherm [100]. Depending on the metal coordinate, different breathing mechanisms
have been observed: upon dehydration, for example, MIL-53(Cr) and MIL-53(Fe) have open-pore and
closed-pore structures, respectively.

Dorosti et al. [108] incorporated MIL-53 in Matrimid 5218 up to 20 wt.% loading. Strong
interactions of CO, molecule with the oxygen atom of hydroxyl groups present in the MIL-53 structure
and the breathing effect resulted in an enhancement of CO, permeability proportional to the MOF
loading (Table 4). The CO, /CHy selectivity showed a significant enhancement from 31 to 51.8 between
the 10 and 15 wt.% loading. However, the formation of unselective voids at higher MIL-53 content
led to a significant drop of the separation performance. In view of the breathing mechanism that is
affecting the MOF framework, for pressure below 3 bar MIL-53 was found to be in its close-form,
whereas at higher pressure an open-framework configuration was suggested. Higher MIL-53 contents
(33.3 and 37.5 wt.%) in Matrimid were investigated by Hsieh et al. [109]. They investigated the
effect of the reversible structure (closed or open form) on the transport properties. In this regard,
MOF dehydrated with high temperature treatment (MIL-53-ht) and characterized by an open-pore
structure was compared with as synthesized nanoparticles (MIL-53-as), which presented a closed-pore
configuration. At a given loading (37.5 wt.%) MIL-53-ht showed a higher permeability when compared
to the as synthesized MIL, but the selective features were significantly compromised in the open-pore
configuration. CO, /CHy selectivity as high as 90.1 for CO,/CHy was reported for MIL-53-as (Table 4).
The significant enhancement was due to the sieving effect produced by the partial blockage of the
pores by the BDC linkers, which prevents the permeation of molecules with larger kinetic diameter
(CH4 and Ny). To further prove the effect of the pore structure, MMMs containing MIL-53-1t (activated
at 50 °C) were shown as a framework transition from close pore form to open pore.

Abedini et al. [110] loaded amine-functionalized MIL-53 (Al) (100 nm size) in
Poly(4-methyl-1-pentyne) (PMP) and prepared mixed matrix membranes with loading up to
30 wt.%. Addition of NH,-MIL-53 into polymer matrix enhanced both CO, permeability and
CO,/CHy selectivity (Table 4), which is mainly due to improved CO; solubility in the hybrid
matrix. At higher loading, the membrane performance overcame the Robeson upper bound for
CO,/CHy separation. In mixed gas, the same trend was observed for selectivity and permeability.
However, lower separation performance (10% lower permeability and 30% lower selectivity) were
observed when mixed gas conditions were investigated, which is possibly due to competitive sorption
phenomena. Interestingly, it was observed that the addition of the porous nanoparticles increased the
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CO,-philicity of the hybrid membranes, decreasing the Hy /CO; selectivity that was observed for the
pristine polymer. MIL-53 and amine functionalized NH,-MIL-53 (Al) have also been dispersed in
Poly(vinylidene fluoride) (PVDF) [111] and modified PVDEF [112]. The modification of PVDF by means
of KOH and KMNOj appeared to enhance the effect of the nanoparticle to a significant extent (Table 4).
The CO; permeability doubled and the CO,/CHy selectivity showed a notable enhancement (+50%)
at 10 wt.% loading, with a minor effect being observed for modified and unmodified nanoparticles.
In the case of pristine PVDEF, a 50% enhancement of the CO, permeability was associated with small
influence on the selective feature of the hybrid membranes.

Aiming at improving the interfacial interaction between MIL-53 and the polymer matrix,
Tien-Binh et al. [113] introduced hydroxyl group into 6FDA-DAM polyimide backbone.
6FDA-(DAM)-(HAB) x:y copolymer (x and y denoted the copolymer ratio) containing hydroxyl
groups facilitated the dispersion of MIL-53 (Al) and NH,-MIL-53(Al). Single gas and mixed gas
(CO,/CHy4 50:50) separation performances were investigated for the mixed matrix membranes varying
the copolymer ratio. Gas permeation characterization showed that the incorporation of pristine
MIL-53 resulted in an increase in CO, permeability for both homopolymer and copolymers with
increasing the MIL loading, with the effect becoming more influential for the low permeable samples
(i.e., increasing the DAM/HAB ratio, Table 4). The formation of interfacial voids is suggested to
be responsible for the observed variations. On the other hand, when modified MIL-53 was used
a different behavior is observed: a minimum was observed for the CO, permeability at 15 wt.%
loading, whereas the CO,/CHy selectivity was optimized at 10 wt.% loading. In view of the favorable
interactions between the hydroxyl and the amine group, the increase in selectivity became more
significant at a higher DAM/HAB ratio, also reducing the negative effect on the CO, transport across
the hybrid membranes. SEM images supported this observation. Zhu et al. [114] investigated the
performance of thin film hollow fiber mixed matrix membranes filled with post-modified MIL-53
(P-MIL-53). Asymmetric hollow fibers (Ultem) coated were used as support and PDMS containing
different MIL-53 content was used as selective layer. The obtained results showed that the membranes
containing 15% P-MIL-53 showed the best performance: the CO, permeance was improved from
30 GPU to 40 GPU when compared to hollow fiber membranes coated with only pure PDMS. At 15%
loading, the ideal selectivity increased from 23.3 to 28.1 for CO,/N; and from 27 to 32 for CO,/CHy.
This was mainly attributed to the strong affinity with CO, due to dipole-quadrupole interaction
of CO, molecules with NH; groups in the MOF. At 20 wt.% loading, a decrease in CO,/N; and
CO,/CHy ideal selectivity was observed, which is mainly ascribed to particle agglomeration.

MIL-101 is another MOF from the MILs’ family, widely studied for gas separation application [115].
The MIL-101 framework is composed of chromium atoms making an octahedral framework with
oxygen atoms and 1.4-benzene dicarboxilate (BDC) ligands. The rigid terephthalate ligand together
with trimeric chromium octahedral clusters provides window aperture of 8.5 A and accessible large
cages. The gas sorption analysis showed that a Langmuir surface area of 5900 m? /g [115]. Similar to
MIL-53, the removal of water molecules from the structure leaves unsaturated open metal sites in the
MIL-101 structure [101].

Naseri et al. [116] recently reported the gas separation performance of hybrid Matrimid
membranes containing MIL-101 (Cr) up to 30 wt.% loading (10 bar and 35 °C). The presence of
MIL-101 in the polymer matrix enhanced the CO; permeability (Table 4), with the main contribution
coming from the increase in CO; solubility within the hybrid matrices. The ideal CO,/CHy and
CO,/Nj selectivity showed a maximum at low loading (10 wt.%) and the drop of selective features at
higher loading is mainly attributed to the presence of non-selective voids at the polymer/particles
interface. The effect of addition of MIL-101(Cr) on the separation performance of a blend of Matrimid
and PVDF was investigated by Rajati et al. [117]. 3 wt.% PVDF in Matrimid was selected as the most
suitable blend composition for CO,/CHy, separation, which showed higher CO, permeability (28%)
and selectivity (22%) when compared to pristine Matrimid. The embedment of 10 wt.% MIL-101
showed a similar effect on both the pristine polymer matrix and the polymer blend, with about 60%
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increase in CO, permeability and 40% higher selective features. The simultaneous enhancement of
permeability and selectivity suggested the presence of a proper interface morphology. Additionally,
the electrostatic interaction of functional groups in MIL-101 with CO; resulted in better affinity and
higher solubility.

MOFs-derived porous carbons (PC) based on MIL-101(Cr) and MIL-53(Al) were prepared by
soaking the MOFs into NH4;OH and carbamide, followed by calcination at 800 °C [118]. The carbonized
MOFs were embedded into PPO-PEG at a loading range between 5 and 25 wt.%. For both
nanoparticles, limited changes in CO, permeability were observed up to 20 wt.% loading, but a marked
improvement was observed at 25 wt.% loading, achieving promising permeability values (Table 4).
MIL-101(Cr)-PC showed a better performance (1896 Barrer) when compared to MIL-53(Al)-PC (1266
Barrer). The selectivity showed also an improvement, and the optimum at 20 wt.% MIL content
clearly suggested that higher loading probably generated interfacial voids and particle agglomeration.
However, unlike the effect on permeability, MIL-53(Al)-PC showed higher selective feature when
compared to MIL-101(Cr)-PC.

An interesting approach to optimize the performance of mixed matrix membranes is represented
by the use of mixed MOFs [119]. A mixture of MIL-101/ZIF-8 was homogenously dispersed in
PSF and no agglomeration was observed. The MMMs performance showed an enhancement in
CO, permeability as a function of filler loading, and the simultaneous presence of both MIL and
ZIF nanoparticles showed a synergetic effect. At 35 wt.% MOF loading, the CO, permeability was
significantly increased (six-fold) when compared to the pristine PSF, from 5 Barrer to 30 Barrer. This was
explained as increasing free volume of polymer associated to a disruption of the polymeric chains,
together with the larger pore size of MIL-101. At an intermediate loading, 16 wt.%, the CO,/CH,
separation factor was increased from 23 to 40 as compared to pristine PSF. Higher loading, 35 wt.%,
led to a selectivity drop, due to poor interface morphology. The authors suggested that the coexistence
of ZIF-8 and MIL-101 improved the dispersion and avoided agglomeration at low particles loading.

Finally, an interesting use of MILs as MOF scaffold (MS) has been proposed by Xie et al. [120],
where the separation performance of membranes obtained from MOFs and PEG (MSP) were
investigated for post combustion CO, capture (CO,/N; 10/90). Firstly, the MS membranes were
fabricated on a support; then, coatings with different PEG concentration were applied to prepare the
MSP membranes. The MS membranes showed extremely high CO, permeance (85000 GPU), but no
selective feature. Upon the application of PEG coating (PEG concentration > 0.6 mmol/5mL aqueous
solution) suitable selectivity value (>30) were achieved, maintaining high CO, permeability (>2700
Barrer). It was suggested that the coated polymer provides a defect free membrane and a shorter path
for CO; transport.

Table 4. Gas separation performance of MIL-based mixed matrix membranes (operating conditions
ranging within 1-5 bar, 20-35 °C, unless differently specified).

Filler Polymer L(t::t(.i,}/:‘)g (]::Sr)ezr) & CO2/N2 & CO2/CH4 o CO2/H2 Ref.
Matrimid 5218 0 6.2 282 [108]
MIL-53 (Al) 5 6.8 29.6
123-466 nm 10 7.45 31
15 12.43 51.8
20 14.52 15.1
Matrimid 5218 0 84 33.6 394 0.33 [109]
MIL-53-as @ 375 40 95.2 90.1 0.55
MIL-53-ht @ 333 26.6 429 45.7 0.50
50-100 nm 375 51 283 47.0 0.60
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Table 4. Cont.

. Loadin; P,

Filler Polymer (Wt.%)g (B;?:r) QCozN2 X CO2CHE & CO2H2 Ref.
PMP 0 98.74 8.72 [110]

NH,-MIL-53 (Al) 5 107.32 11.85

110 nm 10 118.74 12.59

15 139.56 15.72

20 164.78 18.46

25 203.44 20.18

30 226.37 20.36
PVDF 0 0.92 16.3 21.3 [111]

MIL-53 5 1.21 16.3 21.2

100 nm 10 1.55 16.2 21.0

NH,-MIL-53(Al) 5 1.11 17.3 23.1

100 nm 10 1.41 19.5 26.0
m-PVDF P 0 12 27.9 [112]

MIL-53 5 1.75 35.8

100 nm 10 245 39.6

NH,-MIL-53 5 1.69 37.6

100 nm 10 224 432
6FDA~(DAM) 0 316.6 € 9.76 [113]

MIL-53 (Al) 10 3319¢ 10.19

190-340 nm 15 354.0°¢ 11.46

6FDA'(D$_;\/I)'(HAB) 0 115.7¢ 21.65

10 124.2¢ 24.62

15 134.5¢ 26.96

6FDA'(DﬁVD'(HAB) 0 46.8¢ 34.39

10 55.3 ¢ 37.15

15 63.0¢ 40.76

6FDA’(D§/I)’(HAB) 0 19.6 € 43.1

10 332°¢ 47.13

15 26¢ 48.83

6FDA—(DAM) 0 3162 °¢ 9.77

NH,-MIL-53 (Al) 10 308.9 13.63

100-200 nm 15 290.7 € 14.77

20 299.8 ¢ 8.86

6FDA’(D§¥)’(HAB) 0 115.7 21.81

10 112.1¢ 43.63

15 105.7 € 36.13

20 122.1°¢ 29.31

6FDA'(D{§?4)'(HAB) 0 47.4°¢ 34.54

10 437°¢ 77.72

15 446°¢ 64.54

20 547 ¢ 35.68

GFDA'(D@VD'(HAB) 0 246°¢ 53.86

10 20.0 ¢ 86.81

15 21.9¢ 96.36

20 31.9¢ 55.9
PDMS 0 30 233 27.0 0.22 [114]

P-MIL-53 5 33.3 245 28.8

500 nm 10 36.0 25.8 30.5 0.24
15 40.3 28.1 32.1
20 423 27.5 28.4
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Table 4. Cont.

Filler Polymer L(::::/:‘)g (BI:\(;?:r) & CO2/N2 o CO2/CH4 o CO2/H2 Ref.
Matrimid 5218 ¢ 0 4.44 34 35 [116]
MIL-101(Cr) 10 6.95 52 56
~1000 nm 15 5.7 44 47
20 5.85 42 37
30 7.99 47 44
Matrimid 5218 f 0 7.33 34.9 [117]
MIL-101(Cr) 10 12.01 5221
Matrimid/PVDF f 0 9.42 42,81
MIL-101(Cr) 10 14.87 62
PPO-PEG ¢ 0 657 18.42 [118]
MIL-53(Al)-PC 5 684 25,51
200-250 nm 10 723.6 29.23
15 763 35.78
20 789 40.39
25 1266 31.53
MIL-101(Cr)-PC PPO-PEG “¢ 0 657 19.26
50-100 nm 5 771 2293
10 874 26.61
15 952 30.46
20 1056 34.66
25 1896 29.24
PSF 0 5 23 [119]
MIL-101 8 8 21
110-400 nm 16 8.9 24
24 18.1 28
ZIF-8 0 5 23
75-100 nm 8 10 35
16 14 22
24 24 24
MIL-101/ZIF-8 0 47 23
8 10.6 36
16 14.2 40
24 24 26
35 29.6 24

2 as = as synthesized, “ht” = high temperature treated (300 °C); ® m-PVDF = modified poly(vinylidene fluoride);
¢ mixed gas conditions; d feed side pressure = 10 bar; ¢ PPO-PEG = polyphenylene oxide-polyethylene glycol; f feed
pressure = 7 bar; & Permeance (GPU); h MSxPy: MOFs Scaffold.

Similar to the previous MOFs, the MILs’ family also represents a group of nanoporous particles
that is suitable for the development of mixed matrix membranes for CO; capture. The CO, permeability
is frequently found to increase along with the loading, but a loading range between 10 and 15 wt.%
appears to be the one that is able to optimize the selective feature of the hybrid membranes. Favorable
interactions with the polymeric matrix act in the direction of enhancing the CO,-philicity of the mixed
matrix membranes. The closed-pore structure appears to be the most suitable one for the achievement
of improved separation performance; whereas, the open-pore structure is expected to enhance the gas
transport through the hybrid matrix, thus possibly compromising the selectivity.

2.5. Other MOFs

Fe-BTC is reported to be a low cost and water stable MOF type that exhibits a pore size between
5.5 and 8.6 A and a relatively higher surface area when compared to its Cu counterpart. Despite the
lower uptake capacity when compared to Cu-BTC, the presence of a large number of coordinatively
unsaturated sites and high water stability make the MOF a suitable candidate for the fabrication of
mixed matrix membranes for CO; separation. Fine Fe-BTC particles were dispersed in Matrimid 5218
matrix to prepare hybrid membranes, and the effect of the fillers on the gas transport properties and
plasticization behaviour were investigated [121]. While limited effects were observed in single gas tests
(Table 5), under mixed gas and high pressure (~40 bar) conditions, the CO, permeability increased
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by 30% and CO,/CHy selectivity by 62% when compared to the neat polymer. The chain rigidity
of the MOF also contributed to enhance the plasticization resistance of the hybrid membrane up to
20 bar. The effect of Fe-BTC filler on the transport properties of Matrimid has also been studied by Rita
etal. [122]. The study revealed that gas diffusivity changes with increasing temperature dominated
the drop in solubility, leading to an overall increase in CO, permeability from 94.2 Barrer at 303 K to
217.9 Barrer at 353 K with a 30 wt.% MOF loading. Interestingly, the CO, /Ny selectivity of the matrix
increased on a similar scale with temperature increase. The effect of Fe-BTC on rubbery PEBAX 1657
for gas permeation was studied by Dorosti and Alizadehdakhel [123]. Both single gas and mixed
gas (CO,/CHy) tests revealed a four-time increase in CO, permeability when compared to the neat
polymer (Table 5). The gas selective feature of the hybrids showed a minor increase as compared to
the pristine polymer, but a significant drop is observed at 40 wt.% loading due to the formation of
non-selective voids. Differently from what has been observed for the glassy polyimide, the increase in
feed pressure led to plasticization phenomena, and consequently to a drop in selectivity.

A new sorption selective, chemically stable, fluorinated MOF NbOFFIVE-1-Ni (KAUST-7) was
developed by Cadiau et al. [124]. KAUST-7 showed an apparent pore size of 4.75 A and a CO, sorption
capacity of 2.2 mmol/g at 25 °C and 1 bar. Recently, Chen et al. [125] synthesized nanosized KAUST-7
crystals by novel co-solvent synthesis method (Figure 7) and dispersed them in 6FDA-Durene matrix.
The CO; permeability increased along with the loading from 750 (pristine polymer) to 1038 (33 wt.%
loading) Barrer (Table 5). The selectivity marginally increased due to both increase in solubility
selectivity and diffusivity selectivity. Additionally, interactions between the organic ligand and the
groups of 6FDA increased compatibility, leading to enhanced plasticization resistance up to 10 bar,
with a minor reduction in CO, /CHy selectivity of 33% MOF loaded matrix.

Bimetallic MOFs, like Mg, (dobdc), contain many open metal sites along the pore walls facilitating
a selective adsorption and transport of CO;. Bae and Long [126] developed a facile synthesis method to
produce 100 nm primary crystals of Mgy(dodbc) and successfully incorporated them in three different
polymer matrices: PDMS, crosslinked-PEO, and 6FDA-TMPDA (polyimide). The study revealed
that the MOF had a negative effect on the gas transport through the rubbery polymers (Table 5),
possibly due to the plugging of the MOF pores by the rubbery polymer chains. On the other hand,
a simultaneous enhancement of both CO, permeability and CO,/N; selectivity was observed for the
glassy polyimide (Table 5). It was shown that the variation was mainly associated to the increase in
CO; solubility, with minor effects on the gas diffusion through the selective layer. A similar study by
Smith et al. [127] proved that the addition of Mg,(dobdc) to 6FDA-Durene increased the permeability
of CO,, Ny, Hp, and CH4 due to the increase in diffusivity of the penetrants. It was observed that
the MOF particles further increased the brittleness of the films due to densification. By changing the
coordination site, Nip(dodbc) was fabricated and it was found to improve the mechanical robustness,
owing to smaller primary particle size. Both bimetallic MOFs were found to improve the performance
in separations governed by diffusivity differentials, like H, /CHy4 and H, /N, when compared to
CO,/CHjy and CO, /N, separations that require both solubility and diffusivity enhancement.

Table 5. Gas separation performance of different MOFs (Fe(BTC), KAUST-7, Mg,(dobdc)) used to
prepared mixed matrix membranes (operating conditions ranging within 1-5 bar, 20-35 °C, unless

differently specified).
. Loadin P
Filler Polymer (W% )g (B;r(::r) X CO2/N2 X CO2/CH4 O CO2/H2 Ref.
Matrimid 5218 0 9 25 [121]
Fe(BTC) 10 9.5 27.5
20 10.8 28
30 13.1 29.5
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Table 5. Cont.

Filler Polymer ]1(::3 :/Zl)g “;Cr(r)ezr) XCozN2 X CO2/CH4 & CO2/H2 Ref.
Matrimid 5218 @ 0 14.6 44 [122]
Fe(BTC) 10 84.9 435
10-20 um 20 91.2 15.4
30 217.9 23.1
Pebax 1657 0 70.67 18.4 [123]
Fe(BTC) 5 80.79 19.3
10 82.32 19.4
15 89.63 20.8
20 98.32 222
25 148.44 21.9
30 402.69 215
40 4255 123
0 60.35 P 16.9
10 70.11° 17.6
20 85.28 b 19.3
30 329.7b 20.5
40 3454 13.1
6FDA Durene 0 759.7 b 347 [125]
KAUST-7 11 895.7b 36.2
80 nm 22 966.9 P 37.0
33 1038.1° 37.6
PDMS 0 3100.0 9.5 [126]
Mg, (dobdc) 20 2100.0 12
100 nm XLPEO 0 380.0 22
10 250.0 25
6FDA-TMPDA 0 650.0 14
10 850.0 23

2 Temperature = 80 °C; ® Mixed gas CO,/CH, 10/90.

<

2% « w

. < e %5 : ’
— 300 nm jj(h) Ratio: 6 (i) Pure ethanol ==300 nm

Figure 7. Fine-tuning crystal size of KAUST-7 by varying ethanol-water (solvent) ratios in synthesis
solution: (a) pure water, ethanol /water ratio of (b) 0.46, (c) 0.82, (d) 1.2, (e) 1.5, (f) 2.2, (g) 2.7, (h) 6.3,
and (i) pure ethanol [125], with copyright permission from © 2018 Elsevier.
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3. Porous Organic Frameworks (POFs)

Metal-organic frameworks have drawn considerable attention for their tunable chemistry and
gas separation and storage performance, many MOFs suffer from the lack of chemical and physical
stability. In addition, their limited sorption capacity and the presence of heavy metal ions in their
framework have posed obstacles for their prospective applications [128]. Recently, a new class of
porous materials known as porous organic frameworks (POFs) has attracted great attention as an
alternative to MOFs. POFs can be either crystalline, such as covalent organic frameworks (COFs),
or amorphous with uniform pore diameter, such as porous aromatic frameworks (PAFs) [129,130].
Due to the entirely organic structure, POFs ensure good adhesion with organic polymer phase and
display better chemical compatibility [129]. PAF-1 (Figure 8) was synthesized and characterized
for the first time in 2009, with the scope of exploring its potential as adsorbent [131]. PAFs have a
local diamond-shape with tetrahedral bonding of tetraphenylene methane in their main building
block. The exceptional surface area (Langmuir surface area of 7100 m?/g) of PAFs has shown
excellent sorption capacity for hydrogen and carbon dioxide (i.e. 1300 mg/g CO, uptake at 25 °C and
40 bar). Furthermore, they are characterized by super hydrophobicity, enhanced adsorption enthalpies,
and delocalized charged surface [128,131]. Thermal analysis of PAFs exhibited that the structural
integrity remained intact up to 520 °C in air and after water boiling point for seven days [131].
The pore size distribution of PAF-1 displays a pore diameter of 1.4 nm, which can be tuned via
activated carbonization to 0.79, 0.93, 0.64, and 0.6 nm while using KOH, NaOH, CO;, and N; as an
activation agent, respectively [132]. Furthermore, a Monte Carlo simulation study suggested that a
nitrogen-doped PAF (NPAF-11) containing imidazolic group improves the CO, uptake more than
130% when compared to PAF-1 [133].

Figure 8. Structure model of synthesized and simulated porous aromatic frameworks. Atom colors:
C = purple, N = blue, Si = yellow, O = green, Ge = brown [134], with copyright permission from © 2012,
Royal Society of Chemistry.
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The non-equilibrium nature of glassy polymers makes them subject to physical aging, which
tends to reduce their fractional free volume over time, and thus, the gas permeability coefficient.
Porous organic frameworks have been reported to have the ability to play as an anti-aging filler,
as they can freeze the nanostructural morphology, slowing down the aging process to a significant
extent. Lau et al. [135] embedded PAF-1 (10 wt.% loading) into three high free volume glassy polymers
including PTMSP, PIM-1, and PMP in order to explore the influence of porous organic fillers on
aging process of these polymers. Over a period of eight months (240 days), the CO, permeability
of pristine PTMSP dropped from 20,000 Barrer to a value of 12,500 Barrer (37% drop). The hybrid
membrane containing 10 wt.% PAF-1 showed a higher CO, permeability (approximately 25,000 Barrer),
which dropped of only 7% over the investigated period. Similar effects were observed for PIM-1
and PMP (Table 6). Interestingly, the CO, /N, selectivity improved with aging, similarly to the
pristine matrix. Following a similar goal, Volkov et al. [136] embedded PAF-11 in PTMSP membrane
(1-10 wt.% loading) and monitored the variation of the transport properties over time through single
gas permeation experiments. Initially, the addition of PAF-11 nanoparticles corresponded to an increase
of the gas permeability of PTMSP, with a negligible effect on the selective features of the membranes.
Long-term exposure to high temperature showed that the presence of the PAF nanoparticles helped
in improving the mechanical stability of the PTMSP matrix: pristine PTMSP could not withstand
more than 200 h exposure at high temperature, whereas the hybrid matrixes were tested up to 510 h,
showing good mechanical properties. Furthermore, the membrane with 10% PAF-11 loading showed a
limited drop of the CO, permeability (30%), with stable performance over a period of more than 300 h.

Functionalization of PAF-1 has been reported as an effective method to improve the CO,
permeability in hybrid membranes [137]. The presence of functional groups (NH;, SO3H, Cg
nanoparticles, and LicCgy composites) added to PAF-1 affected the CO, sorption capacity, mainly
due to the affinity of polar functional groups with CO,. Particularly promising is the introduction of
LigCgp functionality, which is able to provide additional CO, sorption sites that are associated to the
lithium, also increasing the PAF-1 surface area (from 3760 to 7360 m? g'!). The CO, permeability of
PTMSP increased from 30,000 to 55,000 Barrer, and the effect of aging was limited to a 10% decrease
over a period of 365 days for a 10 wt.% of PAF-1-LisCgg loaded in PTMSP. CO,/Nj, and CO,/CH,
selectivity were affected by the addition of the nanoparticles and by the physical aging to a limited
extent (Table 6). Mitra et al. [138] studied the influence of a hypercrosslinked (HPC) nanofillers on
the performance of PIM-1. PIM-1 membrane, prepared using dichloromethane as solvent, showed a
CO, permeability of 2258 Barrer, which dropped to a value of 1109 Barrer after 150 days. A similar
trend was also observed when chloroform was used as solvent (Table 6). The addition of HCP into
PIM-1 reduced the effect of physical aging for the samples prepared with different solvents, but at high
loadings, the selectivity was negatively affected by the presence of the nanoparticles. Interestingly, the
addition of HCP was found to prevent membrane swelling in the presence of ethanol.

Table 6. Gas separation performance of porous organic frameworks (POFs)-based mixed matrix
membranes (operating conditions ranging within 1-5 bar, 20-35 °C, unless differently specified).

Filler Polymer L((::S ;Sg (];Jacr(r)ezr) & CO2/N2 & CO2/CH4 & cO2/H2 Ref.
PTMSP-0d 0 20,000 8.7 [135]
PAF-1 10 25,000 8.1
PTMSP -240 d 0 12,400 9.8
PAF-1 10 23,200 9.6
PIM-1-0d 0 4000 15
PAF-1 10 15,000 12
PIM-1-240d 0 1700 19
PAF-1 10 15,000 19
PMP-0d 0 6500 10.5
PAF-1 10 11,500 9.4
PMP -240d 0 3500 11
PAF-1 10 10,500 9.4
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Table 6. Cont.

Filler Polymer L((::S :/Sg (BPaCr(r):r) X CoyN2 X CO2/CHE & CO2/H2 Ref.
PTMSP 0 30,000 5.6 [136]
PAF-11 1 38,000 59
5 37,000 5.8
10 34,000 5.6
510 hours 1 20,000 7
5 19,500 6.8
10 23,500 6.3
PTMSP 0 30,000 59 2.3 [137]
PAF-1 10 35,500 5.7 2.3
PAF-1-NH; 10 43,000 59 22
PAF-1-SOsH 10 32,500 5.7 2.3
PAF-1-Cyg 10 33,000 5 21
PAF-1-LisCp 10 55,000 54 2
Aged 0 8000 8.8 5.3
PAF-1 10 28,000 74 3.1
PAF-1-NH, 10 29,000 7.5 3.6
PAF-1-SOsH 10 23,500 6 2.6
PAE-1-Cgo 10 15,000 83 5
PAF-1-LigCqo 10 50,600 9 39
PIM-1 - CH,Cl, 0 2258 24 [138]
HCP 5.7 4690 17.6
16.67 5103 13.1
21.3 6331 141
150d 0 1109 4.2
HCP 5.7 3616 19.7
21.3 5060 16
PIM-1 - CHCl3 0 2660 223
HCP 4.6 4313 19.8
9.1 4700 19.3
16.67 10,040 17.1
150 d 0 1225 215
HCP 4.6 1857 224
9.1 2043 222
16.67 4165 21.8

Despite the limited amount of investigations, POFs appeared to be promising materials for the
fabrication of CO; separation applications. The main advantage they add to polymeric materials
is the significantly reduced physical aging phenomena; therefore, they are of interest for high free
volume polymers. However, even though they are characterized by high CO, uptake, their addition
can increase the CO, permeability (even in high free volume polymers), but has a limited or negligible
effect on the selective feature of the hybrids. Interestingly, the young modulus has been reported to
benefit from the addition of PAFs [136].

4. Zeolites

Zeolite molecular sieves are a class of aluminosilicate crystals that have been studied extensively
and are one of the most widely reported porous materials for CO;, capture because of their
physiochemical properties [139,140]. The pore size of zeolites varies from 4 A to 1.2 nm and their
frameworks are formed by interconnecting channels. The molecular sieving nature coupled with the
strong dipole-quadrupole interaction with carbon dioxide make zeolites promising candidates for
carbon capture. Si and Al derived from silicate compounds are the main building block of zeolites
nanoparticles. The morphology is controllable by varying the Si and Al content, as changes in the
Si/ Al ratio lead to the electrostatic charge variation, resulting in different pore sizes distribution
and adsorption capacities [139]. The thermal and chemical stability of zeolites can be improved by
increasing the Si content [139], even though the zeolites do not provide the level of tenability offered
by MOFs [129,140]. Zeolites of interest for CO, capture applications are classified into three main
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categories: zeolites with small pore size (Linde Type A, LTA), medium pore size (Mordenite Framework
Inverted, MFI), such as ZSM-5, and large pore size (Faujasite, FAU). Extensive studies have been
dedicated to ensure the good adhesion between zeolites and polymer phases, as interfacial defects and
voids between the organic and inorganic phases frequently resulted in the poor separation performance
of the hybrids [141]. Unlike MOFs, zeolites structure is rigid and the pore dimensions are generally
fixed. However, their activation by calcination may have detrimental impact on their framework
integrity. The absence of accessible open metal sites (hidden by oxygen ions in the zeolite structure) is
responsible for a lower CO, uptake when compared to MOFs [141]. The mechanism typically used to
describe the transport of light penetrants through zeolites is solution-diffusion [142]. Extensive studies
have been dedicated to the incorporation of zeolites in hybrid membranes for CO, separation [142].
Nevertheless, the research is still extremely active, and many studies on hybrid membranes for CO,
applications employing zeolites have been reported in recent years.

Hoseinzadeh Beiragh et al. [143] investigated the effect of ZSM-5 loading on the CO,/CH,
separation performance of PEBAX-based membranes. The single gas permeation results revealed that
an optimum for CO, permeability is achieved at low zeolite content (5 wt.%, Table 7), whereas the
CO,/CHy selectivity increased proportionally to the zeolite loading, achieving a 67% enhancement
when compared to the pristine polymer. The sieving effect of zeolite (pore diameter 5.4 A) has been
suggested to be the main reason for the enhancement of the separation performance, and the decrease
in fractional free volume was identified as explanation of the permeability drop at high zeolite contents.
Interestingly, at higher feed pressure (up to 5 bar) the beneficial influence of zeolites on the mixed
matrix performance is significantly reduced. Contrasting results were obtained when ZSM-5 have
been embedded in a glassy polyimide (Matrimid 5218) [144]. In this case, the permeance increased
along with the particle loadings (from 5 to 21 GPU), whereas the selectivity showed a 75% decrease.
The results have been mainly associated to poor compatibility between ZSM-5 and Matrimid, which
resulted in particles agglomeration and the presence of interfacial voids already at low loadings.

Zeolite 13X have been used by Bryan et al. [145] to prepare hybrid membranes based on PEBAX
1657. When compared to ZSM-5, X zeolites are characterized by a larger pore size, between 11 and
14 A [146]. The addition of 15 wt.% nanoparticles in the polymer matrix led to the improvement of
both CO; permeability (from 81 to 114 Barrer) and CO, /Ny selectivity (from 41 to 47), suggesting
the achievement of proper interface morphology between the particles and the polymer matrix.
Surya Murali et al. [147] have also prepared mixed matrix membrane using PEBAX 1675 as polymer
phase. Zeolite 4A was embedded up to 30 wt.% in the polymeric matrix, showing agglomeration
at higher loading. A 3-fold enhancement of the CO, permeability was observed with increase in
inorganic loading, but the selective feature showed an optimum between 5 and 10 wt.%, which is
possibly due to the interfacial voids formation. Zhao et al. [148] fabricated mixed matrix embedding
up to 50 wt.% SAPO-34 zeolite (pore diameter 3.8 A) in PEBAX 1657. The CO, permeability increased
proportionally to the inorganic content, achieving three-fold enhancement when compared to the
pristine polymer. The consistency with the Maxwell model prediction also suggested the achievement
of a proper polymer-filler interface. However, the CO,-selective feature of the hybrids were negligibly
affected (Table 7). Interestingly, even though SAPO-34 inorganic membranes own impressive CO,/Hj
selectivity [149], the performance of the pristine PEBAX 1675 were negligibly affected for the entire
loading range investigated. Rezakazemi et al. [150] investigated the influence of 4A zeolite on the
transport properties of polydimethylsiloxane (PDMS). The hybrid membranes showed a proper
polymer-fillers interface up to 50 wt.% loading. Interestingly, a significant Hy-sieving effect was
observed for the fabricated membranes: H, permeability increased along with the inorganic content,
whereas both CO; and CHy transport was hindered. The pristine PDMS was found to be CO,-selective
for Hy separation, but at 20 wt.% 4A loading, the hybrid material showed Hy—selective feature,
suggesting that the membrane shifted from being solubility-driven to a condition where the diffusion
coefficient dominates the gas transport.

36



Membranes 2018, 8, 50

Recently, Atalay-Oral et al. [151] proposed a comparative study about the effect of different
zeolites on the transport properties of polyvinylacetate (PVAc). They compared four different zeolites:
4A (pore size 4.2 A), Ferrierite (pore size 4.2 A), 5A (pore size 5.2 A), and Silicalite-1 (pore size
55 A). For all of the different fillers, the CO;-selective features of the mixed matrix membranes were
increased. Ferrierite showed the better improvement in terms of performance: the selective feature
(both CO,/CH,4 and CO,/Ny) increased proportionally to the inorganic content (Table 7), whereas the
permeability increased at 20 wt.% loading, but negligible differences were observed at higher inorganic
content. The authors suggest the strong interactions between Ferrierite cations and CO, molecules to
be the main reason the superior performance of the Ferrierite-based hybrid membranes. Another study
compared the performance of Zeolite A (5i/Al = 1) and zeolite ITQ-29 (Si/ Al = c0) when embedded in
PTMSP [152]. Surprisingly, when single gas tests were performed on a hybrid membrane containing
20 wt.% Zeolite A loading, a 35% drop in CO, permeability was observed being combined with a
70-fold enhancement of the CO,/N; selectivity (Table 7), surpassing the Robeson’s upper bound.
The extraordinary performance was attributed to the molecular sieving ability of the nanoparticles and
to the achievement of a proper interface morphology. A much lower improvement was observed in the
case of ITQ-29 zeolite, which is mainly due to the poor polymer-zeolite interactions and consequently
interfacial voids formation. These results highlighted that choosing the proper Si/ Al ratio is extremely
important in the design of hybrid membranes, as it directly affects the organic/inorganic interfacial
morphology. Nevertheless, the same authors reported that under mixed gas conditions, the separation
factor of the Zeolite A/PTMSP membranes appeared to be lower (5) when compared to the ideal
selectivity (63) [153]. The authors concluded that the influence of the diffusivity selectivity dominates
the transport, rather than the preferential sorption capacity in the mixed matrix.

As previously reported for MOFs and POFs, surface functionalization of zeolites is reported
as a successful approach to improve the polymer-particles compatibility, and, thus, the membrane
performance. The presence of unselective interfacial voids at the interface between zeolite 4A and PSF
determined a significant drop of the CO,/CHj separation efficiency (Table 7), without enhancing the
CO, permeability to a significant extent [154]. However, the functionalization of the zeolites particles
with MgCl, and NH4OH resulted in increased selectivity up to 30 wt.% loading, with a limited effect
on the CO, permeability. Similarly, zeolite 5A have also been modified with Mg-based moieties to
improve the adhesion with the polymer chain in Matrimid-based membranes [155]. Surface treatment
of zeolite with Mg(OH), improved both CO, permeability (10.2 to 22.4 Barrer) and CO, /CHy selectivity
(33.6 to 36.4). As shown in Figure 9, the modification of the nanoparticles allowed for significantly
improving the interface morphology between the nanoparticles and the polymer phase, preventing
the formation of interfacial voids. Effect of surface modification was investigated also for zeolite NaY.
Mixed matrix membrane were fabricated embedding the pristine and modified nanoparticles (loading
range: 0-25 wt.%) in cellulose acetate [156]. Surface modification of zeolite with NH functional
groups was performed in order to improve the CO, separation performances. However, in this
case, the functionalization showed minor improvement when compared to the pristine nanoparticles
(Table 7).
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Figure 9. Cross section FESEM images of mixed-matrix membranes: (a,b) Matrimid with embedded
pristine zeolite 5A; and, (c,d) Matrimid with embedded surface modified zeolite 5A [155], with
copyright permission from © 2016 Elsevier.

Table 7. Gas separation performance of zeolites-based mixed matrix membranes (operating conditions
ranging within 1-5 bar, 20-35 °C, unless differently specified).

Filler Polymer I](;:: ;Sg (;’;?:r) X CO2/N2 X CO2/CH4 & CO2/H2 Ref.
PEBAX 1675 0 120 20.3 [143]
ZSM-5 5 230 21
10 191 32.5
15 170 33.9
Matrimid 5218 0 512 14.8 [144]
ZSM-5 6 6.62 15.6
15 11.12 7.2
24 1452 4.8
30 212 3.6
PEBAX 1675 0 81.4 41 [145]
13X 10 104 39
15 114 47
PEBAX 1675 0 55.8 39.9 18.0 [147]
4A 5 71.4 51.0 32.5
10 97 53.9 26.2
20 113.7 39.2 17.5
30 155.8 13.0 79
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Table 7. Cont.

Filler Polymer L((;::l :/on)g (BPaCrcr)le) X CoyN2 X CO2/CH4E & CO2/H2 Ref.
PEBAX 1675 0 110 54 16 8.99 [148]
SAPO-34 9 100 53 16.5 8.29
23 130 56 219 6.58
33 250 55.7 16.4 8.96
50 340 55.5 16.5 8.40
PDMS 0 4796 3.0 4.21 [150]
4A 10 4226 2.7 1.55
20 3691 2.6 0.61
30 3323 29 0.40
40 2972 2.8 0.30
50 2886 29 0.27
PVAc 0 2.74 28 53 [151]
Ferrierite 20 3.93 61 54
40 3.93 82 57
4A 20 2.55 52
40 2.73 74
5A 20 2.77 46
40 1.70 33
Silicalite-1 20 3.38 42
40 3.52 50
PTMSP 0 17430 0.9 [152]
Zeolite A 5 13029 9.7
20 11403 76.4
1TQ-29 5 16501 44
20 14546 1.1
PSF 0 49 185 [154]
4A 20 5 12.5
25 6.9 7.6
30 7 2
35 7.12 1.44
treated 4A 20 4.75 235
25 4.73 28
30 4.7 31
35 3.7 29
Matrimid 0 10.2 33.6 [155]
5A 10 26.7 31.3
20 31 30.8
5A-Mg(OH)2 10 19.6 354
20 224 36.4
Cellulose Acetate 0 22 26 [156]
Na-Y 5 25 225
10 2.6 22
15 34 21
20 4.95 225
25 35 15
Na-Y-NH2 5 32 25
10 3.5 23
15 3.65 22
20 4.1 26
25 4.3 17

2 Permeance (GPU); membrane thickness 3-5 pm.

According to the data reviewed, the fabrication of hybrid membranes containing zeolites can be
promising for CO, capture applications. Loading up to 50 wt.% have been investigated, and rubbery
materials (e.g.,, PEBAX or PDMS) showed good compatibility with the pristine nanoparticles,
independently from their nature. Similar to MOFs, increasing the loading of pristine zeolites within
polymeric phases enhances the CO, permeability of the hybrid membranes. However, this effect
is mainly observed for low permeable polymers, since when high free volume polymers are used
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the hybrid membranes showed lower permeability when compared to the polymeric precursor. The
effect on the selective features depends on the organic-inorganic interface, but a sieving effect for CO,
is rarely observed. As observed for MOFs, surface modification is a suitable approach to improve
the polymer-particles interface, but typically, the better compatibility mainly improves the selective
features, and CO, permeability appears to be negligibly affected by the presence of the inorganic phase.

5. Porous Nanosheets

Two-dimensional nanoporous nanomaterials have been of great interest owing to their layered
structure, which can significantly improve the sieving effect of nanoporous materials to gas transport.
Inorganic membranes that are made of 2D metal organic frameworks have been reported in literature,
showing promising separation performance [157,158]. 2D structures have also been reported for
zeolites [159], and inorganic membranes have been fabricated [160,161], even though their potential
for gas separation remains unexplored. The high aspect ratio of two-dimensional nanoporous particles
makes them extremely attractive for the fabrication of mixed matrix membranes. Layered fillers
perpendicular to the concentration gradient of the gas species in the membranes can give rise to
outstanding separation performance because of a significant increase in tortuosity, hence in diffusive
pathways, of the penetrants that cannot permeate through the nanoporous structure (Figure 10).
A comparison in the water /ethanol separation performance of ZIF-8 and its 2D derivate (ZIF-L) showed
a simultaneous improvement of both permeability and selectivity at even lower MOF loading [162].
Next generation of hybrid membranes containing porous nanosheets that are incorporated in polymer
matrix will provide a solution in order to enhance the separation performance of membranes for
CO; separation.

Porous layered and delaminated materials, with an intermediate structure between clay-like
morphology and porous frameworks, represent an interesting class of porous 2D nanofillers.
These materials can be exfoliated from bulk crystals, giving rise to high aspect ratio structures
containing a porous architecture that can be of interest for gas separation applications. Layered
aluminophospates (AIPO), layered silicates (AMH-3), layered titanosilicates JDF-L1, and layered COFs
(NUS-2/3) are some examples that have been used for the fabrication of mixed matrix membranes.
Nevertheless, very few studies have been dedicated to CO, separation, since selective sieving of Hp
from bigger molecules like CH4 have been investigated to a bigger extent.

A pioneering work was developed by Kim et al. [163], where nanoporous layered silicate AMH-3
(pore size 3.4 A) was first exfoliated and subsequently embedded in cellulose acetate, achieving a
loading up to 6 wt.%. The CO, permeability increased along with the inorganic loading, and this
enhancement was attributed to the competing effects of transport through the nanopores, the interlayer
spaces, and through a lower-density cellulose acetate phase. Negligible influence was observed on the
selective features. Kang et al. [164] reported novel synthesis of NUS-2 and NUS-3 layered materials that
are based on COFs with excellent water and acid stability. Both of the COFs exhibit hexagonal channels
with diameters of 0.8 nm and 1.8 nm for NUS-2 and NUS-3, respectively. The flower-like nanofillers
contain leafs of 1-2 um length and 50-100 nm width. The synthesized nanofillers were dispersed in
two different polymer matrices Ultem (PEI) and polybenzimidazole (PBI) and separation performances
for Hy /CO; and CO,/CHy4 were studied. For CO,/CHy separation with Ultem, both of the nanofillers
increased CO, permeability and selectivity at 10 and 20 wt.% loading moving the pristine polymers
closer to the upper bound. However, when the filler content was increased to 30 wt.%, the selective
features of the membrane dropped, possibly due to void formation at the polymer/filler interface.
On the other hand, for H, separation from CO;, the PBI sample containing 20 wt.% NUS-2 surpassed
the upper bound thanks to an impressive enhancement of the H, /CO; selectivity. Alternatively, NUS-3
increased the permeability while maintaining or decreasing the selectivity. The highest H, permeability
was obtained at 30 wt.% loading, which is 17 times the permeability of pristine PBI, which is followed
by a 50% reduction in selectivity.
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a b

Figure 10. Schematic representation of the effect of isotropic particles (a) and nanoporous sheets (b) on
the transport through mixed matrix membranes. Reprinted from [163], with copyright permission from
© 2013 Elsevier.

Rodenas et al. [165], in 2014, synthesized and compared CuBDC MOFs with three different
morphologies: isotropic nanocrystals (nc-CuBDC), bulk-type crystals (b-CuBDC), and nanosheets
(ns-CuBDC). The different nanoparticles were embedded within a polyimide-based (Matrimid 5218)
polymeric matrix. It was shown that the CuBDC offered large surface area, which was about five-fold
higher than the one that was obtained for the b-CuBDC. Mixed gas permeation tests showed that
the addition of both nc-CuBDC and b-CuBDC (8 wt.% loading) determined a drop in the CO,/CHy
selectivity when compared to the pristine polymer. However, when a similar loading of ns-CuBDC
was embedded in the polymeric matrix, a 30% enhancement in the separation factor was observed.
This effect was even more evident when the feed pressure was increased from 3 to 7.5 bar, where the
selectivity improvement reached a 80% higher value as compared to the pristine polymer. At 3 bar
feed pressure, the CO, permeability gradually increased from 5.78 to 9.91 Barrer (at 3.7 wt.% loading)
and then decreased to 4.09 Barrer (at 8.3 wt.%, Table 8). At a similar loading of bulk and nanocrystals,
a minor reduction in CO, permeability was observed. Interestingly, the embedment of ns-CuBDC
was also reported to limit the effect of CO,-induced plasticization characteristic of polyimides at high
partial pressure of CO,. The authors attributed this effect to the depletion of MOF-free permeation
pathways, sustaining the selective features of the membrane under high CO, concentration within the
hybrid matrix. A similar work has also been recently reported by Shete et al. [166], who embedded
Cu-based MOF nanosheets (lateral size 2.5 um, thickness 25 nm) in Matrimid 5218. Results that
were obtained by the two studies are quite similar, with a decrease in CO, permeability at increasing
the nanosheets loading with improved selectivity (Table 8), strengthening the consistency of the
influence of nanosheets on the transport properties of polyimides. The main difference is related to the
influence of the feed pressure: in the latter case, the mixed matrix membranes selectivity decreased
with increasing the operating pressure, whereas an opposite trend was observed in the other study.

The CO,/CHy gas separation performance of ultrathin layer that was obtained by dispersing
2D MOFs in PIM-1 was investigated by Cheng et al. [167]. CuBDC nanosheets with a thickness of
15 to 40 nm and ~100 aspect ratio were successfully embedded into PIM-1 up to 5 wt.% loading.
Thin films (200 to 2200 nm) were then coated on a porous Al,O3 support via spin-coating technique.
At 10% loading, the enhancement in CO; selectivity from 4.4 to 16 (~300% increase) was observed.
Nevertheless, the selectivity improvement with an increase in MOF loading was at significant expense
of the CO, permeance, which dropped from 1750 to 500 GPU with a 2 wt.% loading. Interestingly,
no significant differences in permeance have been observed between 2, 5, 10, and 15 wt.% loading,
suggesting that the transport is dominated by the embedded phase already in the low loadings (Table 8).
The gas selectivity enhancement was attributed to the tortuosity and the pathway created by centrifugal
force, which helped to align nanosheets horizontally. At higher loading up to 15 wt.%, the selectivity
reduction was observed mainly due to the presence of nonselective voids and agglomeration.
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Yang et al. [168] recently reported the influence of CuBDC nanosheets on the performance of
high free volume polymers, such as PIM-1 and 6FDA-DAM. Nanosheets with a lateral dimension of
1-8 um and a thickness of 40 nm were synthesized and embedded in the polymer phase via sonication.
As observed previously for PIM-1, the incorporation of nanosheets resulted in a decrease of CO,
permeability at the low loadings for both PIM-1 and 6FDA-DAM (Table 8). Notably, in the case of
PIM-1 small differences were observed between the two different filler loadings, whereas in the case of
6FDA-DAM, the permeability decrease was more evident between the 2 and 4 wt.% loading. In both
cases, the presence of the porous nanosheets led to a significant increase (20-40%) in the selective
feature of the hybrid membranes.

In another study, Kang et al. [169] prepared MMMs with a newly synthesized 2D MOF
(10 x 100 nm?2), [Cuy(ndc)y(dabco)ln, (ndc = 1,4-naphthalene dicarboxylate, dabco = 1,4-
diazabicyclo[2.2.2]octane), and incorporated into PBI (polybenzimidazole) matrix for pre-combustion
CO; separation. MOF loading from 10 to 20 wt.% provided highly selective MMMs, with about
100% increment in Hy /CO; ideal selectivity. The authors attributed the high selective features to fast
H, permeation through the MOF, whereas CO, follows slower diffusive pathways in view of the
larger kinetic diameter. Higher MOF loadings (> 20 wt.%) resulted in a selectivity drop in selectivity,
which is possibly due to void formation. Comparison of different morphologies showed that MOF
nanosheets offered better selectivity and permeability of the hybrid membranes because of the shape,
orientation, and interfacial adhesion inside the matrix. As in the previous case, similar loadings of bulk
or nanocrystals (20 wt.%) showed lower selectivity values compared to the nanosheet morphology.

Table 8. Gas separation performance of mixed matrix membranes containing MOFs
nanosheets (operating conditions ranging within 1-5 bar, 20-35 °C, mixed gas conditions unless
differently specified).

Filler Polymer ]](xs :/on)g (;);Sezr) @ COo2/N2 X CO2/CH4 & H2/CO2 Ref.
Cellulose Acetate 0 7.55 29.61 [163]
AMH-3 2 9.65 29.24
4 10.36 30.03
6 11.59 29.71
Ultem 02 222 20.2 2.88 [164]
NUS-2 102 3.75 25 3.39
204 492 224 461
302 8.70 12.7 1.89
NUS-3 102 5.89 227 246
202 15 28.3 223
302 8.11 10.7 245
Matrimid 5218 0 5.78 59.8 [165]
ns-CuBDC P 1.7 5.38 61.6
3.7 9.91 59.5
43 474 63.5
8.2 4.09 78.7
b-CuBDC P 7.9 5.21 45
nc-CuBDC P 8.3 5.03 49.4
Matrimid 5218 0 72¢ 23.7 [166]
CuBDC 4 6.4°¢ 420
8 40¢ 48.1
0 15.2 25.3
12 6.6 403
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Table 8. Cont.

Filler Polymer Ifx: :/3g (]f:r?:r) X CozN2  XCO2CH4 X H2/CO2 Ref.
PIM-1 0 1750 d 4.4 [167]
CuBDC-ns 2 500 4 10.2
5 4904 12.9
10 4004 16.0
15 490 4 11.7
0 1614 12.2
10 196 4 10.8
10 4074 15.5
PIM-1 0 3100 17 [168]
CuBDC-ns 2 2030 24
4 2300 22
6FDA-DAM 0 590 30
CuBDC-ns 2 570 37
4 430 43
PBI 0 3.62 9.3 [169]
ns-Cuy(ndc)(dabeo) P 10 4.86 18.7
20 6.15 22.8
30 11.9 12.3
50 66.4 4.8
be-Cus(ndc), (dabeo) P 20 5.18 12.6
nc-Cup(ndc)y(dabeo) b 20 5.29 17.6

c

2 Operating pressure of 2 bar, ® ns = nanosheets; bc = bulk crystals; nc = nano crystals; © single gas tests;

d permeance (GPU).

Despite the early stage of the research, the analysis of the performance achieved while using 2D
nanoporous materials for the fabrication of mixed matrix membranes clearly showed a promising
potential within CO, capture. Systematically, the 2D shape was demonstrated to be able to
achieve better performance when compared to the isotropic particles, independently from their
size. Interestingly, compared to isotropic nanoparticles, the effect of nanosheets is already visible in
the low loading range, similar to what has been observed for graphene [22]. The use of 2D porous
nanoparticles can be of particular interest for the enhancement of the selective feature of high free
volume polymers, where a partial loss in CO, permeability can be tolerated if being counterbalanced
by a significant enhancement of the separation factor. A notable increase of studies that are dedicated
to this topic is expected in the near future.

6. Conclusions and Perspective

The recent advances in the synthesis and improvements of 2D and 3D porous nanophases has
driven a continuous research within the development of mixed matrix membranes for gas separation
purposes. In particular, the possibility of tuning the pore diameter to a gas-sieving level and the
CO,-philicity of the pore cavity has the potential to facilitate the simultaneous enhancement of the
solubility and diffusivity coefficient of carbon dioxide. Therefore, CO, permeability and selectivity can
be expected to benefit from these features, leading to a shift in the separation performance towards the
upper right corner of the Robeson plot.

Notable attention has been given to MOF nanoparticles and MOFs nanosheets. The pore opening
size falling within the gas kinetic diameters and the presence of unsaturated open metal sites makes
them of particular interest for CO, separation. Analysis of adding ZIF nanoparticles into highly or
moderately permeable polymeric membrane materials reveals a clear tendency to improve the CO,
permeability when the nanofiller loading is increased to 30—40 wt.%. The incorporation of ZIFs has
been frequently reported to be associated to the disruption the polymer chain packing, leading to an
increase of the MMM s free volume. However, selectivity enhancement was seldom reported despite the
expected sieving effect and the observed suitable interface morphology. The ZIFs flexible framework is
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expected to be among the main reasons for this phenomenon. Also, in the case of other analyzed MOFs
(UiO-66, MILs and various metallic-based MOFs), the CO, permeability enhancement was frequently
observed, with the enhancement being proportional to the MOF content. However, the increase in
selective feature was typically reported only at low particles loading (especially for UiO-66) and mild
operative conditions, suggesting that the sieving ability of the pore opening is not extremely effective
for gas separation purpose. Structural flexibility and poor interface interactions were frequently
mentioned as the possible causes. Therefore, the achievement of a more rigid structure of the MOFs
cage and more effect functionalization are desirable to improve the efficiency of the embedded phase.
Interestingly, particles with smaller size have shown to be more effective compared to inorganic phases
with bigger size. In addition, particles with reduced size can facilitate the fabrication of thin (<1 pum)
selective layers.

Porous nanosheets showed a promising potential for the fabrication of mixed matrix membranes
for CO; separation. When compared to 3D porous materials, the impact of 2D nonoporous materials
is demonstrated even at low loading range (<10 wt.%). The use of 2D shape was systematically
demonstrated to obtain better performance compared to isotropic particles. Higher selectivity can
be achieved using MOF nanosheets, even when they are incorporated in high free volume polymers,
but the variation typically takes place to the expense of the gas transport through the selective layer.
The intrinsic nature of these 2D nanoparticles has the potential to be a successful strategy to efficiently
fabricate mixed matrix membranes with superior separation performance in the form of thin composite
membranes. Therefore, future work has to focus on the reduction of the thickness of these 2D porous
layers, allowing for achieving membrane thickness in the order of 100-200 nm.

Porous organic frameworks (POFs) have also been recently investigated for CO, separation.
Their fully-organic nature facilitates their dispersion in polymer phases, but their more rigid structure
confers interesting feature to the hybrid membranes. Experimental results gave evidence of an
unprecedented capacity of stopping physical aging in high free volume polymers. Even though CO,
permeability is frequently enhanced using PAFs, negligible influence on selectivity of the hybrids was
observed. Nevertheless, their promising performance has been disclosed only for thick self-standing
membranes, and more investigation on their efficiency for thin films are needed to fully understand
their potential.

Zeolites, as one of the most common fillers, attracted great interest in MMMs fabrication and
have been investigated for last two decades. When compared to MOFs, the absence of organic ligand
in the lattice, the control of zeolite /polymer interface is more difficult than MOF/polymer interface.
Therefore, many efforts have been spent to ensure the achievement of proper interface morphology to
reduce the negative effects that are associated to interfacial voids. Loading of up to 50 wt.% has been
reported, and rubbery polymers (e.g., PDMS) showed good compatibility and adhesion with pristine
nanoparticles. Increase in zeolite content led to higher permeability and effect of pristine zeolites on
CO, permeability was more pronounced for low permeable polymers when compared to high free
volume polymers. Surface modification of zeolites have shown better compatibility and improved
selectivity with negligible effect in CO, permeability.

The following focuses may be of appreciable impact in the future development of MMMs with
superior transport properties:

e  toreduce primary particle size of existing MOFs and expedite their incorporation in thin composite
polymeric membranes;

e to increase the CO, affinity and the polymer/particle interactions by novel surface
functionalization procedures on the nanoparticle or by post-functionalization after membrane
preparation, aiming at improving the CO, separation performance and simplifying their
dispersion in the polymeric phases;

e to tune the structure and morphology of POFs with the aim of enhancing the selectivity of hybrid
matrix when used in high free volume polymers;

44
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to design and fabricate novel 2D MOF frameworks with improved sieving ability that do not
sacrifice the gas transport through the selective layer; and,

to systematically investigate the potential of hybrid membranes in H; separation, exploiting the
exceptional H, sieving ability of some MOFs.
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Abstract: In the present work, the effect of zeolite type and topology on CO, and N, permeability
using zeolites of different topology (CHA, RHO, and LTA) in the same Si/Al = 5, embedded in
poly(trimethylsilyl-1-propyne) (PTMSP) is evaluated with temperature. Several models are compared
on the prediction of CO,/N; separation performance and then the modified Maxwell models
are selected. The CO, and N; permeabilities through these membranes are predicted with an
average absolute relative error (AARE) lower than 0.6% taking into account the temperature and
zeolite loading and topology on non-idealities such as membrane rigidification, zeolite-polymer
compatibility and sieve pore blockage. The evolution of this structure-performance relationship with
temperature has also been predicted.

Keywords: mixed matrix membranes; Poly(trimethylsilyl-1-propyne) (PTMSP); small-pore zeolites
(CHA, RHO, LTA); temperature; modeling

1. Introduction

Carbon capture strategies are still envisaged as one of the major challenges for preventing CO,
emissions to the atmosphere from anthropogenic sources. Membrane separation technology is often
presented as an energy efficient and economical alternative to conventional capture technologies
although not yet passing through the stage of pilot plant scale [1]. Polymer membranes for
CO, separation are especially constrained by a performance ‘upper bound’ trade-off between gas
permeability and selectivity, which becomes especially significant for treating large volumes of flue
gas. The simultaneous improvement on membrane permeability and selectivity is very attractive
for industrial applications. Mixed matrix membranes (MMMs), which consist of the introduction of
small amounts, usually below 30 wt %, of a special filler providing properties such as a molecular
sieve, ion-exchange and robustness in a processable polymer matrix [2], are surpassing this upper
bound [3-7]. More than homogenous distribution, the main challenge of MMM fabrication is achieving
a good adhesion and compatibility between the inorganic filler and the polymer, avoiding the voids
and defects that deteriorate separation performance [8].

Polyimide materials have been, firstly, studied for gas separation because of their stability and
selectivity. However, permeability is usually low for CO, separation [9]. The first and most widely used
fillers are zeolites since the pioneering work of Zimmermann et al. [10]. Recently, zeolite 5A was introduced
in Matrimid to prepare MMM for CO, /CHy separation, after particle surface modification to obtain a
defect-free membrane [11]. Amooghin et al. [12] reported the ion exchange effect of Ag* in zeolite Y-filled
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Matrimid MMMs led to a CO, permeability increase of 123% from 8.64 Barrer in pure Matrimid to 18
Barrer in 15% AgY-filled MMM, where 1 Barrer is defined as 1071 cm3(STP) cm cm 2 s~! cmHg 1.

A simple approach to produce high permeability and selectivity membranes without the
use of modifiers that complicate the synthesis procedures is the variation of the inorganic
particles composition themselves to influence the polarity in comparison with the selected polymer
matrix. In the case of zeolites, this is represented by the Si/Al ratio and determines many
properties of the material, including ion exchange capacity [13]. Thus, for the development of high
perm-selective membrane materials for CO, separation, we focused on the most permeable polymer,
poly(trimethylsilyl-1-propyne), PTMSP, and observed that the adhesion with LTA fillers and therefore
CO,/N; separation properties were best with a low Si/ Al ratio even upon increasing temperature [14].
The strong influence of zeolite topology on CO, adsorption has also been acknowledged [15], giving the
possibility to locally tune the energy interactions, promoting size and shape selectivity and clustering.
However, this effect is not always straightforward because most zeolites cannot be synthesized in pure
silica form or at similar Si/ Al compositions. Exceptions to this rule are LTA (ITQ-29) [16] and CHA [17].
To avoid this and to see that the lower Si/Al favored the compatibility with glassy hydrophobic
PTMSP [14], we fixed an intermediate value of the Si/Al ratio to 5, in order to study the influence
of the zeolite filler topology using different small pore zeolites (LTA, CHA, RHO) in the CO,/N,
separation of PTMSP-based MMM s in the temperature range 298-333 K [18]. These MMM surpassed
the Robeson’s upper bound at 5 wt % loading even at increasing temperature, but the separation of
CO;, /N, mixtures with a 12.5 wt % CO, content resulted in a real separation factor much lower than
the intrinsic selectivity of the membrane material.

Besides the large number of research and publications devoted to new MMM material
combinations for gas separation, there is also a growing literature on the development of systematic
approaches to describe gas transport through MMMs [19-21]. The MMM performance has been
evaluated as a function of the membrane morphology imposed by the filler loading and several
models have been compared lately [22-25]. They all present several limitations such as not being
valid but at low filler loadings, a large number of adjustable parameters, or not being able to predict
the non-idealities common in MMM morphologies that influence their gas separation performance.
The most accurate models reported so far are those proposed by Moore et al. [26] and Li et al. [27],
accounting for the void interphase, which describes the compatibility between the zeolite filler and the
polymer continuous matrix, and the polymer chain rigidification caused by the effect of the inorganic
particles embedded in the polymer matrix, in the first case. The second one distinguishes the transport
of fast and slow gas molecules, respectively, and introduces the effect of pore blockage that may
become important when the dispersed phase is a porous particle as zeolites are [25]. In fact, partial
pore blockage has been recently proven to be the dominant effect when porous zeolites are used as
fillers in Matrimid, impeding the increase of permeability with increasing dispersed phase loading [28],
in agreement with most studies dealing with low permeability polyimides like Matrimid, polysulfone
(PSf), and polyethersulfone (PES). The effect of temperature in the performance of those models is
seldom reported [29,30].

Thus, in this work the gas permeation through MMMs prepared from small pore zeolites of different
topology and constant Si/Al = 5 in PTMSP is evaluated by modified Maxwell models including the void
thickness, chain immobilization and pore-blockage effects, and their variation with temperature.

2. Materials and Methods

The MMMs were prepared by a solution-casting method from PTMSP (ABCR, Gelest) previously
dissolved in toluene, and CHA, RHO and LTA zeolites of Si/Al = 5 prepared at the Instituto de
Tecnologia Quimica (UPV-CSIC) as reported in our previous work [18]. The characteristics of the
zeolite fillers used in this work are summarized in Table 1. The membranes were stored in plastic Petri
dishes and they were immersed in methanol for a few minutes before gas permeation experiments to
remove the effect of aging [31]. The density of the PTMSP pure membranes is 0.75 g/cm®.
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Table 1. Properties of the zeolite fillers with Si/ Al = 5 used in this work.

Filler Crystal Size (um) Density (g/cm®) Pore Size ! (nm) Structure 2

LTA 0.5 1.498 [32] 0.41
CHA 1.0 2.090 0.38
RHO 1.5 1.442 [33] 0.36

! From [18]. 2 The crystallographic structures have been taken from the International Zeolite Database (http:
/ /www.iza-structure.org/databases/): View of the planes 100 for LTA and 001 for CHA and RHO, respectively.

Figure 1 shows the high magnification scanning electron microscope (SEM) images of 5 wt %
CHA, LTA, and RHO/PTMSP MMMs. As reported in a previous work [18], the smaller LTA particles
are dispersed throughout the whole membrane thickness, of which a small glimpse can be seen in
Figure 1a, while the larger CHA and RHO zeolites form a bottom layer of particles bound together by
the polymer, as observed in Figure 1b for a CHA/PTMSP MMM. In the case of RHO, this adhesion is
so strong that individual crystals are not easily discerned in Figure 1c. In this work, we want to focus
on the compatibility and adhesion between the filler and the polymer, as the main challenge in MMM
fabrication [34,35], thus it is important to notice in Figure 1 that even the largest particles at the bottom
of the membrane are apparently well adhered with the polymer continuous matrix.

Figure 1. Cont.
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()

Figure 1. Scanning electron microscope (SEM) images of the detailed contact between LTA (a); CHA
(b); RHO (c) and poly(trimethylsilyl-1-propyne) (PTMSP) in 5 wt % loaded mixed matrix membranes
(MMMs). Bars correspond to 6 pm.

The thickness of every MMM is measured experimentally at 5 points over the membrane surface
for each membrane sample using a IP-65 Mitutoyo digital micrometer (Kawasaki, Japan) with a
precision of 0.001 mm. The average thickness for all the MMMs tested in this work was 75 & 14 pm.

The single gas permeation of N, and CO, was measured in that order, using a home-made
constant volume set-up described elsewhere [14,18], in the temperature range 298 to 333 K and a feed
pressure of 3—4 bar and atmospheric permeate pressure. The average values of the permeabilities and
selectivities obtained previously and used in this work are collected in Table A1 in Appendix A.

3. Results and Discussion

3.1. Comparison of Known Mixed-Matrix Membrane Model Predictions

First, well-known models for predicting MMM permeation (Appendix B) have been compared in
terms of the percentage average absolute relative error (AARE) with the permeability of CO, and N,
through MMMs, as

100 ¥

AARE(%) =~

Picalc o Pi‘fxl’
pop

1

M

i=1
where N is the number of experimental data points [23].

A Maxwell model often represents the ideal case with no defects and no distortion of separation
properties. Table 2 summarizes the AARE values obtained with the models most commonly
encountered in the literature, averaged for the whole range of temperature studied in our laboratory
to allow comparison.

Table 2. Percentage of average absolute relative error (AARE) for CO, and N, permeation (first and
second values in every entry) prediction, highlighting those AARE values lower than 20%.

MMM Series Parallel Maxwell Higuchi Felske Lewis-Nielsen
5CHA/PTMSP 17.32/370 108/2026 106/2006 146/2609 118/32.4 249/2.14
10CHA /PTMSP 24.2/143 102/2966 ~ 99.7/2909  96.8/2854 80/936 10~4/10~°

5LTA/PTMSP 20.6/33.3 11.8/516 11.4/498 26.3/708 2.54/1073 0.46/0.01
10LTA /PTMSP 40.9/50.0 14.5/631 4.79/214 14.6/560 67.4/9.04 3.98/10~5
20LTA/PTMSP 45.0/50.0 7.11/212 8.28/198 10.4/194 3.00/10~* 4.37/10~°
5RHO/PTMSP 8.62/126 12.7/362 12.4/357 16.7/395 0.85/6-10—* 1.84/0.6:10~°
10RHO/PTMSP 24.0/216 57.0/1030  54.5/1003  49.3/947  0.03/2-10—3 4.32/0.02
20RHO/PTMSP 45.3/52.4 72.2/947 63.8/892 44.2/756 22.0/5-10~% 12.3/10~%
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According to Table 2, N, permeability values cannot be predicted by the series, parallel,
Maxwell and Higuchi models with acceptable error in all the range of temperature under study.
The prediction accuracy of CO, permeability varies as a function of the zeolite topology. Regarding
CO; permeability, the series and parallel model approaches fit the 5 wt % CHA/PTMSP MMM
performance at 323 K, with a lower average AARE for this membrane. The CO, permeability of
LTA/PTMSP MMMs can be described by parallel, Maxwell and Higuchi models in the whole range
of operating temperatures and LTA loadings, while the series model only fits the experimental data
at low loading. As for the RHO/PTMSP MMM, this is only valid up to 10 wt % RHO loading in the
PTMSP matrix. This agrees with the data reported for other MMM s prepared with dispersed fillers of
RHO topology [36] where the Maxwell equation only describes the CO, permeability at low loading,
as observed for the ZIF-20/Matrimid MMM, being ZIF-20 a zeolite imidazolate framework of RHO
topology as well [36]. In the case of our RHO/PTMSP MMM, all previous models overestimate the
experimental permeabilities.

Only the model predictions with AARE lower than 20% are represented in Figure 2, for clarification
purposes. The original Maxwell equation overestimates the experimental value for the permeability
of all gases and membranes, especially for N, permeability. This overestimation is more significant
at lower operation temperatures, as reported by Clarizia et al. [14]. In this work, this is true for
CHA/PTMSP MMMs with the series model, Figure 2a, and the parallel and Maxwell model for
LTA /PTMSP MMM, Figure 2c. These are simplifications of the general Maxwell equation expressed
by Equation (B1) to predict the overall steady-state permeability through an ideal defect-free MMM [26].
Those models provide a simple, quantitative framework to predict the transport properties of MMM
when the transport properties of the constituent phases are known, especially at low dispersed
phase loading. Only more advanced modifications of this Maxwell equation, such as Felske and
Lewis-Nielsen, provide enough accuracy for the description of MMM performance, especially in the
case of the slow permeating gas, Ny, as reflected in Figure 2b,d f.
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Figure 2. Cont.
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Figure 2. Comparison of CO, (left) and N, permeabilities through CHA (a,b), LTA (c,d) and RHO
(e,f)/PTMSP MMM s with the predictions by the series (dashed lines), parallel (dotted lines), original
Maxwell (dash-dot), Higuchi (dash dot dot), Felske (thin continuous line) and Lewis—Nielsen (thick
continuous line) models, as a function of temperature. Zeolite loading: 5 wt % (black), 10 wt % (red),
20 wt % (green).

3.2. Reduced Mobility Modified Maxwell Model

In order to account for the non-idealities in the membrane morphology accounting for the
compatibility that influence the membrane performance [30], polymer chain rigidification and
interphase void thickness, the Maxwell model is applied twice to predict the permeability of
a pseudo-interphase induced by the interfacial contact between filler and polymer matrix [25],
as schematized in Figure 3a.

_______ > Interphase boundary P, = R/ﬁ

-
P,
Py
—_— P

Reduced permeability region within sieve (model pseudo-insert)

(a)

5> Pore-blockage affected zone Py = P/’

By N
N P=P/B

Extended modified lhaxv\vcl] model
Se—e o >Rifidified region  Pryg = Py /f’

.—-—> mM

Figure 3. Schemes of the modified Maxwell model proposed by Moore et al. [26] (a) and the extended
modified Maxwell model proposed by Li et al. [27] (b), both adapted for this work.

According to the reduced mobility modified Maxwell model, the effective permeability through
the pseudo-insert in Figure 3a, Py, is calculated first by

Pd -+ ZP[ — Z(PS(PC — Pd)
Py +2P + q)s(Pc — Pd)

Pt =Py (2)

where ¢g is the filler volume fraction in the polymer matrix, Py is the permeability through the
rigidified continuous matrix, calculated as the ratio between the experimental permeability through
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a pure PTMSP membrane [18] and an adjustable parameter, B, as described in Figure 3a, and Py is
the permeability through the zeolite. In this work, this value has been taken from literature data
on CO, and N, permeation through pure zeolite membranes of similar Si/Al ratio and topology
(Table 3) to avoid the usual dispersion on this parameter when calculated from experimental solubility
isotherms [23].

Table 3. Permeability data of the pure zeolite dispersed phase, Py, used for the model predictions.

Zeolite Dispersed Phase P4(COy) (Barrer)  P4(N») (Barrer) T (K) Reference

CHA (Si/Al=5)1 88 0.59 293 [37]
CHA (pure silica) 539 55 313 [38]
LTA (Si/Al=1) 139 0.048 298 [25]
RHO 2 623 260 298 [33]

1Gi/Al = 5 as the zeolites used in this work. 2 The CO, permeabilities reported for ZIF-8 composite values are
considered as the Rho here, given the similar sodalite topology.

In Equation (2), P acts as the permeability of the continuous phase, considering as such the
interphase, assuming the bulk of the zeolite as the dispersed phase and the affected zeolite interphase
with reduced permeability as the continuous phase [39], as represented in the scheme in Figure 3a.
@s is the volume fraction of the dispersed sieve phase in combined sieve and interphase, given by

g0 _ 13

= = 3
Ps Pat o1 (Td+ll)3 ®3)

where ¢ is the volume fraction of the interface, and Ij is the thickness of the ‘interface void’.
The permeability of the whole MMM is thus estimated by applying the Maxwell equation again, as

Pegt + 2P — 295 (Pc — Pegr)
Peff+2pc+§9s(Pc _Peff)

Pymm = Pe (4)

As @4 + ¢ increases to one, the interphases of neighboring dispersed particles overlap and the
overall mixed matrix is rigidified. This occurs preferentially as the zeolite particle loading is increased
or the interphase void distance is increased, i.e., voids appear because embedding in the polymer
chains becomes more difficult.

Equations (2)-(4) predict the overall performance of MMMs taking into account the case
morphologies identified by Moore et al. [26], adapted to distinguish the performance of the fast
and slow gas in CO, /Ny separation, and including the influence of temperature. This model is thus
based on three adjustable parameters, the interphase thickness, I, and the chain immobilization factor,
B, which depends on the permeating gas molecule [39], whose values are presented in Tables 4—6 for
the CHA/PTMSP, LTA /PTMSP and RHO/PTMSP MMM, respectively.

Table 4. Parameters estimated by the reduced mobility modified Maxwell model for the

CHA/PTMSP MMM:s.
5wt % 10 wt %

T (K) Iy (um) =1.39 Iy (um) = 0.98

B (COy) B (N2) B (COy) B (N2)
298 7.42 61.2 4.90 86.61
303 4.56 53.28 3.48 64.0
313 2.25 42.8 2.87 70.5
323 1.01 31.41 1.97 50.4
333 0.73 20.5 1.00 10.2
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Table 5. Parameters estimated by the reduced mobility modified Maxwell model for the

LTA/PTMSP MMMs.
5wt % 10 wt % 20 wt %
T (K) Iy (um) = 0.60 Iy (um) = 0.56 + 0.08 Iy (um) = 0.27
B (COy) B (N2) B (COy) B (N2) B (COy) B (N2)
298 2.35 21.9 1.83 174 1.39 8.82
303 0.93 27.1 1.00 12.0 0.86 5.84
313 1.01 189 0.80 11.0 0.85 5.37
323 1.00 10.2 0.72 8.34 0.92 2.72
333 1.29 3.38 1.06 2.49 0.93 2.08

Table 6. Parameters estimated by the reduced mobility modified Maxwell model for the

RHO/PTMSP MMMs.
5wt % 10 wt % 20 wt %
T (K) I; (um) =1.76 I1 (um) =1.23 Iy (um) =0.79
B (COy) B (N2) B (COy) 3 (N2) B (COy) B (N2)
298 2.06 0.31 10.62 1.95 3.36 1.46
303 1.57 0.35 2.10 2.98 1.28 1.54
313 1.07 0.30 1.33 1.29 143 1.33
323 091 0.28 1.17 0.93 1.12 0.93
333 0.87 0.17 1.01 0.45 1.08 0.58

As expected, the chain immobilization factor, f, is smaller for CO; than N,. This confirms that
the polymer chain rigidification normally results in a larger resistance to the transport of the gas with
larger molecular diameter [27]. The RHO/PTMSP MMM revealed a different trend, although only
at 298 K, which may be attributed to the agglomeration of these larger crystal size and smaller pore
size particles at the bottom of the MMM. Interestingly, B(CO;) and B(Ny) of the three types of MMMs
converge to similar values upon increasing temperature. This may be attributed to the compensating
effects of polymer flexibility and chain rigidification of the polymer matrix, which are accentuated for
the larger size of the RHO particles than LTA and CHA. This agrees with the current statement that in
gas separation through MMMs there is not only an optimum in zeolite loading but also in operating
temperature [40].

The thickness of the interphase between the zeolite and the polymer matrix, /; (um), accounts
for the compatibility between the zeolite and polymer phases, as well as the defects or voids due to
poor compatibility between zeolites and polymer [25]. In this work, the void thickness decreases with
increasing zeolite loading and is independent of the type of gas and temperature. It can also be observed
that this parameter Iy is influenced by the zeolite topology, in the following order: I; (LTA/PTMSP) < I;
(CHA/PTMSP) < I} (RHO/PTMSP). This is attributed to the different interaction with the polymer
matrix, and the decreasing particle size, in agreement with results obtained for zeolite-APTES/PES
MMMs [27]. Those authors obtained as thickness of the rigidified region /; = 0.30 um for a cubic
zeolite A (Si/Al = 1) dispersed phase in PES, and values of the chain immobilization factor () of 3
and 4, for O, and Ny, respectively. A rigidified thickness of 1.4 pm and chain immobilization factor
was reported for ZIF-20/polysulfone MMM, estimating a Py4 = 45 Barrer, in agreement with pore
ZIF membranes of similar pore size and topology [41]. Therefore, the magnitude of the adjustable
parameters obtained in this work are in the same order of magnitude.

These parameters allow a prediction of the permeability through these MMMs by this model with
an error of up to a global AARE below 6 + 1%, where the maximum errors lie on 10CHA /PTMSP and
10RHO/PTMSP membranes at 298 K.
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3.3. Extended Pore-Blockage Reduced Mobility Modified Maxwell Model

Although in this work the channel opening of the zeolites (0.38, 0.41 and 0.36 nm for CHA, LTA
and RHO topologies, respectively) lie in the same range as the gas pair molecules to be separated,
we have included the analysis of the partial pore blockage effect [25,35] as Li et al. [27] for zeolite
A-APTES/PES MMM, adapted in the Scheme shown in Figure 3b. This approach consists in applying
the Maxwell equation not just twice, but three times, and requires not just three, but six adjustable
parameters, in order to define the dispersed phase volume fraction in the pore-blockage and the
rigidified region, as well as the immobilization factor for the pair of gases in both sections.

Firstly, the permeability in the pore-blockage affected zone near the zeolite particle surface as
represented in Figure 3b, is calculated by

©)

P = o [ L RE) 2l (R R

Py +2(Pa/B') + ¢3((Pa/P') — Pa)

Secondly, the P34 permeability calculated by Equation (5) is entered as the new dispersed phase,
and the permeability of the rigidified region, P,ig, is taken as the continuous phase, to calculate the
new Pegt, Pong:

(6)

Pong = Prig {P3rd +2(Pc/B) —2¢2((Pc/B) — PSrd):|

Psra +2(Pe/B) + ¢2((Pe/B) — Para)
Thirdly and lastly, the permeability through the bulk of the MMM is calculated using Ppnq as the
new permeability for the dispersed phase, turning the previous equations into

@)

Pvivim = Pe

P2nd +2Pc - 2(‘Pd + Pblo + q)rig)(Pc - Pan)
Prng + 2P + ((Pd + Polo + (Prig) (Pe — Pona)
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Now, the adjustable parameters are @p, and ¢rg, the calculated volume fraction of the
pore-blockage affected region, and the rigidified region, respectively, as well as ' and B, whose
values depend on the permeating gas, and identify the partial pore blockage affected and rigidified
polymer region, respectively, as given in Figure 3b. Note that B is similar to the chain immobilization
factor introduced by the previous reduced mobility modified Maxwell model, discussed in the
previous section.

Figures 4-6 show the comparison of the prediction of CO, and N, permeability using both
modified Maxwell models. The experimental results are well described for the Si/ Al = 5 zeolites,
indicating a good compatibility between intermediate Si/Al zeolites and the glassy PTMSP [14].
The optimized § value is higher for N, than CO,, for CHA and RHO/PTMSP MMMs. B(N,) values
of 0.92 are obtained for the CHA /PTMSP MMMs, independently of zeolite loading, where as they
increase from 0.66 to 1.40 for the RHO/PTMSP MMMs. B(CO,) gives smaller values than B(N3),
as expected for smaller molecules. B(CO;) follows similar trends as B(N3), being constant for CHA
and LTA/PTMSP MMMs, at values of 0.3 and 0.2, respectively, and increasing from 0.26 to 0.94
with increasing loading for RHO/PTMSP MMMs. These values are smaller than 1.6, the value
recently published for Sigma-1/Matrimid MMMs, considering also the partial pore blockage effect [28].
The values of B/(CO,) are 0.06 for CHA and RHO/PTMSP MMMs, and below 0.03 for LTA /PTMSP
MMMs. The B'(N;) are 70% higher in the LTA and RHO/PTMSP MMM, and 30% higher than g/(CO,)
in the case of CHA/PTMSP MMMs. These results reveal that, although the partial pore blockage is
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low in small-pore zeolites, it is more significant for the smaller pore size zeolite fillers as CHA or RHO,
than LTA.
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Figure 4. Effect of temperature and zeolite loading on the CO; (a) and N (b) permeability through
CHA/PTMSP MMM s: Thin lines correspond to the reduced mobility modified Maxwell model and
thick lines to the extended modified Maxwell model. Dash, dot and continuous patterns, and void,
half-filled and full symbols, refer to 5 wt %, 10 wt % and 20 wt % zeolite loading, respectively.
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the extended modified Maxwell model. Dash, dot and continuous patterns, and void, half-filled and

full symbols, refer to 5 wt %, 10 wt % and 20 wt % zeolite loading, respectively.

14000 1800
5 — 1600
£ 12000 B
& 2 1400
—_ 4 ©
i~ 10000 8 1200]
% 8000 2 1000
© =
g 6000 2 800 =
5 g o0 -
& 40004 ¥ E 1 ®im
~ " $ 400 )
8 20004 n.N
=" 200
0 S o e
205 300 305 310 315 320 325 330 335 295 300 305 310 315 320 325 330 335

Temperature [K]

(a)

Temperature [K]

(b)

Figure 6. Effect of temperature and zeolite loading on the CO; (a) and N (b) permeability through
RHO/PTMSP MMMs: Thin lines correspond to the reduced mobility modified model and thick lines
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The models describe well the CO, and N, permeability through the Si/Al = 5 zeolite/PTMSP
MMMs as a function of zeolite loading, topology and temperature. The CO, permeability increases
with temperature while the N, permeability slightly increases for CHA and RHO/PTMSP MMMs,
behavior similar to pure zeolite membranes, as reflected by the activation energies derived from
the Arrhenius equation in the previous work [18], in agreement with other works in literature [42].
The LTA/PTMSP MMMs show a maximum performance at 10 wt % zeolite loading and 323 K, losing
permselectivity at higher loading and temperature. The worst AARE for the prediction of experimental
permeabilities through the extended partial pore blockage reduced mobility model is 0.6%, for the
5wt % CHA/MMM at 313 K, which were in some of the best agreement with the first modified
Maxwell model. Partial pore blockage may be affecting permeability even with small-pore zeolite
fillers in a glassy polymer matrix [28].

4. Conclusions

The experimental CO, and N; permeabilities of Si/Al = 5 small-pore zeolites/PTMSP MMM has
been compared with modified Maxwell model predictions as a function of zeolite topology (CHA,
LTA, RHO), loading (0-20 wt %) and temperature (298-333 K). Three adjustable parameters accounting
for the membrane rigidification, void interphase and partial pore-blockage have been optimized at
values lower than reported in literature. They reveal the compatibility between Si/Al = 5 zeolites
dispersed in the glassy polymer PTMSP, as well as a small influence of partial pore blockage in the case
of the smaller pore size CHA and RHO. The CO; and N, permeabilities through these membranes
are predicted with an AARE lower than 0.6% taking into account zeolite loading and topology on
non-idealities such as membrane rigidification and sieve pore blockage and their influence on MMM
performance. The evolution of this structure-performance relationship with temperature has also
been predicted. The implementation of the Arrhenius dependency of the MMM permeability and
the prediction studied in this work constitute a step further towards the understanding of the MMM
performance in order to develop new membrane materials and module configurations with potential
application in CO; separation, which will be addressed in a future work.
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Appendix A

The experimental permeation data obtained in a previous work [18] are collected in Table Al.

Table Al. Experimental data of the different MMMs with increasing order of particle size (LTA, 0.5 pm;
CHA, 1 um; RHO, 1.5 um).

Filler and Loading [18] T (K) P(CO;) (Barrer) P(N3) (Barrer) a(CO2/Ny)
298 7150 794 9
303 13,881 637 22
5wt % LTA 313 12,448 816 15
323 11,770 1208 10
333 9026 3044 3

64



Membranes 2018, 8, 32

Table A1. Cont.

Filler and Loading [18] T (K) P(CO;) (Barrer) P(N;) (Barrer) a(CO,/Ny)
298 8813 951 9
303 12,921 865 15
10wt % LTA 313 15,802 892 18
323 16,648 1078 15
333 11,029 4520 2.5
298 10,587 1720 6
303 13,178 2585 5
20 wt % LTA 313 12,980 2519 5
323 11,175 3966 3
333 10,964 4316 2.5
298 2274 292 8
303 3575 329 11
5wt % CHA 313 5651 372 15
323 11,772 409 29
333 16,145 511 32
298 3363 211 16
303 3620 262 14
10 wt % CHA 313 4351 216 20
323 5892 241 24
333 6485 330 20
298 8205 1325 6
303 8383 1227 7
5wt % RHO 313 11,722 1214 10
323 12,726 1089 12
333 13,324 1368 10
298 3262 592 6
303 5996 509 12
10 wt % RHO 313 9111 712 13
323 10,304 761 14
333 11,114 1166 10
298 4479 1229 4
303 8883 1173 8
20 wt % RHO 313 7784 1210 6
323 9293 1341 7
333 9498 1704 6
Appendix B

The MMM performance has been evaluated as a function of the membrane morphology imposed
by the filler loading using several models that have been compared lately [20,23-25]. Equation (A1)
was derived by Maxwell for semi-conductors and is widely accepted as an easy tool for a quick
estimation of the performance of MMMs from phase-separated blends [3,30]:

Pd+2Pc_2(Pd(Pc_Pd)

Al
Py +2Pc + @q(Pc — Py) (al)

Prmm = I
where ¢4 is the dispersed phase volume fraction, calculated from the nominal weight fraction of the

zeolite in the MMM, using the density of the PTMSP polymer and the corresponding zeolite density
(Table 1).
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The minimum value of effective permeability of a given penetrant in a MMM is given
by considering a series mechanism of transport through the dispersed and continuous phases
(Equation (A2)):

PPy
(1= @a)Pa + @ale
and the maximum value is taken when both phases are assumed to contribute in parallel to the flow
direction (Equation (A3)):

(A2)

Pomm =

Pmmm = ¢qPq + (1 — ¢q)Pe (A3)

Other important models used for the description of gas permeation in MMMs are the Higuchi,
Felske and Lewis—Nielsen, Bruggemann and Pal models [20]. The last two are not presented in this
work because they are implicit equations derived from Maxwell and Lewis—-Nielsen that have to be
solved numerically.

The Higuchi model is applied for a random dispersion of spherical filler particles but lacks
mathematical rigor [24]. The main equation for porous zeolite particle fillers is given by:

_ 394
Prnmn = Pe | 1+ Py+2P K| (=9a)(Pa—Fc) (B4)
Pi—P.  Pd— Py+2P; ]

where K is an empirical constant containing shape description, with no physical meaning. In this
work, it only adjusts the accepted value of 0.78 for 5 wt % CHA, 5-10 wt % LTA5/PTMSP. 10 wt %
CHA/PTMSP is adjusted to K = 0.999 and for the rest of the membranes K varies randomly between
0.0001 and 0.03 at different temperatures.

The Felske model was originally used for the description of the thermal conductivity of
composites of core-shell particles (core particle covered with interfacial layer) and also for permeability
measurement. It gives almost the same predictions as the modified Maxwell model and it can be
reduced to Maxwell’s when the interfacial layer is absent [25]. It is described by Equations (A5)—(A7), as

201 = @q) + (1+2¢4)(B/7)
Pmmm—pc|: 2+ 94) + (1 — @a)(B/7) } >
with 3 3
b (2+5)Pd;C2(175)P1:<2+(53)%¢:72(1753>% (A6)
and

Py
Pe
where 6 =r1/r4. This model also needs three adjustable parameters, as in the reduced mobility modified
Maxwell model.

The Lewis—Nielsen model was originally proposed for describing an elastic modulus of particulate
composites, and the following equation can be used to predict the effective permeability in MMMs:

y=1+28°— (1—53) (A7)

B 1+2(pd(1x—1)/(0¢+2)}
R = B[+ "
where
p=1+ (%) (A9)

This model might represent a correct definition of the permeability over the range of 0 < ¢4 < @m.
The solution diverges when ¢4 = ¢ and it should be noted that when ¢, — 1, the Lewis—Nielsen
model reduces to the Maxwell equation (Equation (Al)).
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Abstract: The present work studies the functional behavior of novel poly(e-caprolactone) (PCL)
membranes functionalized with reduced graphene oxide (rGO) nanoplatelets under simulated in vitro
culture conditions (phosphate buffer solution (PBS) at 37 °C) during 1 year, in order to elucidate their
applicability as scaffolds for in vitro neural regeneration. The morphological, chemical, and DSC
results demonstrated that high internal porosity of the membranes facilitated water permeation and
procured an accelerated hydrolytic degradation throughout the bulk pathway. Therefore, similar
molecular weight reduction, from 80 kDa to 33 kDa for the control PCL, and to 27 kDa for PCL/rGO
membranes, at the end of the study, was observed. After 1 year of hydrolytic degradation, though
monomers coming from the hydrolytic cleavage of PCL diffused towards the PBS medium, the pH
was barely affected, and the rGO nanoplatelets mainly remained in the membranes which envisaged
low cytotoxic effect. On the other hand, the presence of rGO nanomaterials accelerated the loss of
mechanical stability of the membranes. However, it is envisioned that the gradual degradation of the
PCL/rGO membranes could facilitate cells infiltration, interconnectivity, and tissue formation.

Keywords: hydrolytic bulk degradation mechanism; in vitro human neural models; neural tissue
regeneration; poly (e-caprolactone); reduced graphene oxide

1. Introduction

In the recent years, there has been an increased interest in the functionalization of
biocompatible polymers traditionally used for biomedical applications and FDA approved, such as
poly(e-caprolactone) (PCL), in order to incorporate different chemical, mechanical, or electrical stimuli,
and therefore converting these polymers from plain cell supports to tissue regenerative inductive
materials [1,2]. Different strategies have been used to introduce functional cues into polymers: loading
with protein and growth factors [3,4], polymer blending or copolymerization [5,6], and the formation
of composites with different types of nanomaterials [7-9] are among the most popular approaches.
Particularly, while under the shadow of certain controversy, graphene and graphene derivatives, as
graphene oxide (GO), have been studied to exploit their peculiar properties: capacity to interact with
biomolecules, cells, and tissues, and to enhance the mechanical, electrical, and/or magnetic properties
of polymer—graphene composite materials [10,11]. Moreover, graphene has demonstrated the potential
to direct differentiation into neural cell lineages of numerous stem cell types, such as embryonic stem
cells (ESCs), neural stem cells (NSCs), mesenchymal stem cells (MSCs), and induced pluripotent stem
cells (iPSCs) [12].

PCL is a semi-crystalline and hydrophobic aliphatic polyester, biocompatible and bioresorbable.
It has received a great attention for biomedical applications as an implantable biomaterial for sutures,
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wound dressing, and scaffolds for tissue repair [13,14]. In our previous works [15,16], flat membranes
of plain PCL, PCL/GO, and PCL/partially reduced graphene oxide (rGO) were developed by a facile
phase inversion fabrication method using nontoxic reagents. The membranes showed high porous
morphology that provided favorable nutrient transport properties, as well as suitable cell adhesion
and proliferation, particularly, PCL with graphene based nanoplatelets. Furthermore, the introduction
of rGO into the PCL matrix enhanced the nutrient transport properties, which suggested the
increased water wettability of the membranes. Therefore, the PCL/rGO membranes were considered
to have great potential to act as scaffolds for neural cells in perfusion bioreactors, in particular,
for the regeneration of neural tissue from stem cells from human origin to fabricate in vitro human
neural models.

After figuring out the promising properties exhibited by the PCL/rGO membranes and
accounting for their use in neural models, the study of the in vitro hydrolytic degradation route
and stability behavior of these innovative membranes, as a non-permanent scaffolding material,
is crucial. Ideal scaffolds should maintain their properties for sufficient time to complete their
function [17]. PCL is a long-term stable polymer when subjected to hydrolytic degradation
conditions, and therefore requires 2—4 years for its complete degradation, depending on the starting
molecular weight of the PCL [14]. However, it has been widely observed that the incorporation
of carbon based nanomaterials into the polymer matrix on the hydrolytic degradation alters the
degradability of the polymeric matrix. For instance, Duan et al. [18] observed the enhancement of the
wettability of a poly(L-lactide)(PLLA)-GO composite, a behavior that was ascribed to the presence
of oxygen-containing groups on the surface of the GO nanoplatelets, facilitated the scission of the
polymer macromolecular chains, and consequently, the scaffolds experienced a faster hydrolytic
degradation. Similar behavior was observed by Zhao et al. [19], who developed nanocomposites
of PLLA with multiwalled carbon nanotubes (MWNTs). Nevertheless, the literature also provides
studies showing that the incorporation of graphene nanoplatelets into the polymer matrix produced
the opposite effect, i.e., a reduction of the biodegradation rate of the material, due to the hydrophobic
constitution of graphene [20,21]. Recently, Murray et al. [21] reported the enzymatic degradation of
PCL/rGO mixtures and composites. On the one hand, the presence of rGO below 5 w/w % did not
significantly influence the enzymatic degradation kinetics. On the other hand, rGO incorporation above
5 w/w % in the PCL/rGO composites caused a deceleration of the enzymatic degradation. This was
attributed to the higher hydrophobicity of the composite PCL/rGO materials. While enzymatic
degradation facilitates the analysis of the degradation changes on the non-permanent polymer devices
under acceptable timeframes, long-term hydrolytic studies simulate physiological conditions more
adequately. However, it has been demonstrated that accelerated enzymatic studies of PCL scaffolds
led to very different degradation mechanisms, and consequently functional properties, than long-term
hydrolytic degradation [22]. To the best of our knowledge, the long-term hydrolytic degradation of
PCL/graphene composites or blends has not been reported so far.

The aim of this work consisted in the study of the long-term hydrolytic degradation of mixed
matrix membranes of PCL/rGO [16]. Also, plain PCL membranes under hydrolytic degradation were
evaluated and compared. In vitro conditions were simulated by immersion of the membranes in a
phosphate buffer solution (PBS, pH 7.4) at 37 °C. The evolution of the functional, morphological,
chemical, and thermal characteristics of the PCL/rGO membranes was evaluated during a period
of 1 year. A degradation kinetics and hydrolytic pathway of the membranes were proposed and
their structural stability was analyzed. Additionally, the degradation products during the study were
monitored in order to elucidate potential effects on cell cytotoxicity.
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2. Materials and Methods

2.1. Membrane Preparation

PCL pellets (average molecular weight, 80 kDa; Sigma-Aldrich, Madrid, Spain) were used to
fabricate PCL/rGO membranes using a phase inversion technique. The synthesis of rGO particles
adapted from Ribao et al. [23], as well as the fabrication of the membranes, was described in detail
in our previous work [16]. Control PCL membranes without rGO nanoplatelets were also prepared
for comparison.

Hydrolytic degradation experiments were performed on PCL/rGO and PCL membranes working
under simulated in vitro bioreactor conditions. A sufficient number of membranes were submerged
in a phosphate buffer solution (PBS, pH 7.4) and placed in an incubator at 37 °C. Separate solutions
were used for testing PCL/rGO and PCL membranes. Samples were taken out of the solution for
characterization at predetermined degradation time intervals: 0, 2, 4, 6, 9, and 12 months. PBS was
prepared as follows: 8 g of NaCl, 0.2 g of KCl, 1.44 g of NayHPOy, and 0.24 g of KH,PO, were
solubilized in 800 mL of distilled water. Then, the pH was adjusted to 7.4 with HCI (0.1 mol/L) and
made up to 1 L with distilled water. PBS was autoclaved for sterilization. The membranes were
sterilized by immersion in ethanol/water 70/30 v/v % and subsequent exposure to UV light for 20 min
in a laminar cabinet.

2.2. Characterization

2.2.1. Functional Properties

Axial tensile tests of the membranes were done using a servo-hydraulic testing universal
machine (ME-400, SERVOSIS, Madrid, Spain) following the ISO standard for thin plastic membranes
(ASTM D882-12). The specimens had an area of 40 x 6 mm?, and the tests were carried out using a
load cell of 1.25 kN at a constant elongation speed of 8§ mm/s.

A tangential flow filtration system was used to characterize the flux of nutrients across the
membranes. The cross-flow filtration set up was already defined in our previous work [16].
A model feed solution was prepared, consisting of protein bovine serum albumin (BSA, >96% purity,
Sigma-Aldrich) at 0.4 g/L in PBS (pH 7.4). The membrane was previously stabilized with ultrapure
(UP) water at 0.1 bar for 1 h. Afterwards, the BSA model solution was circulated throughout the feed
compartment of the membrane cell, and a transmembrane pressure of 0.1 bar was applied during 4 h
of operation. The permeate solution was collected and weighed while the retentate was recirculated to
the feed tank. The change with time (t) of total BSA solution flux (J7 (L-m~2-h~!)) was determined as

Jr= <WT/permeated X pPBS,37°C> /(At X Ae) (1)

where Wr ,ermeated (8) is the mass of permeate collected in the time interval At (h) and using an effective
surface area A, (m?), and 0PBS,37°C (g~L_1) the PBS density at 37 °C. At least two membrane replicates
were analyzed for each degradation time.

2.2.2. Physical-Chemical Properties

The average molecular weight of the membranes was determined by gel permeation
chromatography (GPC model 510, Waters, Madrid, Spain). Three size exclusion chromatography
columns of styrene divinyl benzene copolymer were placed in series (model Styragel HR 5E, Waters)
and a refractometer (model 410, Waters) was used for detection. The columns were thermostatized
at 40 °C, and the measurements were carried out using 1 mL/min of tetrahydrofuran (THF 99.9%,
Panreac, Barcelona, Spain) as carrier. Membrane samples were solubilized in THF at a concentration of
0.5 mg/mL. PCL/rGO in THF samples were centrifuged for 1 h and filtered through a 0.45 pm filter
before GPC injection, in order to avoid rGO contamination of the GPC columns. The values of molecular
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weight distribution were obtained by the Empower 2 software (Waters). The molecular weights were
determined using a universal calibration curve related to polystyrene standards (Shodex, Waters,
Cerdanyola del Valles, Spain) corrected by the Mark-Houwink-Sakura equation and the corresponding
PCL coefficients. Measurements were done in duplicate.

Thermal properties of the samples at 0 and 12 months of degradation were evaluated by
differential scanning calorimetry (DSC, DSC-131, SETARAM Instrumentation, Caluire, France) at
a scan rate of 10 °C/min. Samples (5-10 mg) were heated from room temperature to 100 °C (first
heating run). After 10 min stabilization at 100 °C, the samples were cooled down to 0 °C (cooling
run) and finally heated up again to 100 °C (second heating run) after stabilization. The degree of
crystallinity, ¢ (%) was calculated using Equation (2) [24], where AHY, (J-g ') is the melting enthalpy
calculated from the second heating ramp, AHY, is the melting enthalpy for a 100% crystalline PCL
(139.5 ]-g’1 [24]) and is the mass fraction of rGO in the PCL membrane.

xc = AHy/ [(1 — B) x AH®, 2)

The concentration of 6-hydroxycaproic acid (6-HCA), typically found as monomer degradation
product of PCL, was analyzed in the PBS medium where the membranes were submerged.
The UV-vis spectrophotometer (UV-1800 model, Shimadzu, Duisburg, Germany) was set at a 210 nm
wavelength [25]. Measurements of 6-HCA were carried out after 6 and 12 months of degradation time.
The presence of rGO nanoplatelets on the PBS medium and in the membrane matrix after 12 months
of degradation was analyzed (see Supplementary Materials).

Microscopic images of the membranes were obtained using a scanning electron microscope (SEM,
EVO MA 15, Carl Zeiss, Madrid, Spain) at a voltage of 20 kV, in order to determine the structure and
morphology of the surface and cross section of the membranes. Samples for the cross-section images
were frozen in liquid nitrogen to be fractured. All the samples were kept overnight at 30 °C under
vacuum, and were gold sputtered before examination. Moreover, visual inspection of the membrane
was recorded by taking photographs of the same membrane specimen periodically.

Before any testing, membranes were cleaned with UP water to remove any possible salt deposit.
Results are expressed as average =+ standard deviation.

3. Results

3.1. Functional Properties

Figure 1 shows the mechanical properties of PCL and PCL/rGO membranes during the
degradation study. Figure 1A-D shows the Young modulus, yield point, ultimate tensile strength,
and ultimate strain, respectively. Mechanical tests were not feasible beyond 4 months, due to the
loss of mechanical stability. Specifically, the PCL membranes could be handled until 6 months, while
the PCL/rGO membranes could not be manipulated after 4 months. Videos confirming the poor
stability of the PCL and PCL/rGO membranes after 12 months of immersion in PBS are included in
the Supplementary Materials (Videos S1 and S2). During the hydrolytic degradation study, a gradual
reduction in the mechanical properties of both membranes was observed in the values of mechanical
parameters (Figure 1). Overall, at time 0, the presence of rGO in the polymer matrix significantly
reduced the mechanical properties in comparison to the plain PCL membranes. After 2 months, PCL
and PCL/rGO membranes showed homogeneous reduction of mechanical properties. For instance,
PCL membranes showed a reduction of mechanical properties in the range 57-62%, in a narrow
range for all the properties evaluated. The reduction of properties for PCL/rGO membranes was also
encountered, mainly around 63-68%, with the exception of the Young Modulus that suffered a 41%
drop. After 4 months, PCL/rGO still suffered similar reduction of mechanical properties as in previous
degradation times, while PCL membranes presented more disordered behavior: for instance, the yield
point barely changed while the Young modulus showed a 60% reduction.
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Figure 1. Mechanical properties of poly(e-caprolactone) (PCL) and PCL/reduced graphene oxide (rGO)
membranes. (A) ultimate tensile stress; (B) Young modulus; (C) ultimate strain; and (D) yield point for
PCL and PCL/rGO membranes at 0, 2, and 4 months of degradation. (% values represent the reduction
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Figure 2 plots the change with the filtration time of the volumetric flux of BSA model solution
through the PCL membranes for specimens that had been submerged in the hydrolytic bath for 0, 2, 4,
and 6 months, and PCL/rGO only at t = 0 months. BSA permeation tests for PCL/rGO membranes
after in vitro degradation (t > 0 months) could not be performed because they could not withstand the
transmembrane pressure of the filtration device. The membranes experienced a sharp flux drop during
the first 2 h of filtration, with a reduction of 88.1 4= 2.9% in each point of degradation. Afterwards,
it could be assumed that the flux reached a pseudo steady state (Inset of Figure 2). The BSA solution
fluxes at this steady state were as follows: 143 4= 66 > 108 = 5 > 103 +3 > 80 £ 7 Lm2htato,2,
4, and 6 months of degradation, respectively. Similarly, the BSA solution flux through PCL/rGO
membranes at 0 months decayed from the initial value of 3620 & 356 L-m~2-h~! to a stable flux of

190 + 68 L-m~2-h~! (drop of 94.5 4 2.4%).
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Figure 2. Total flux decay of BSA model solution of average values of PCL membranes during 240 min
at different times of degradation. Flux data for PCL/rGO membrane at t = 0 months were also included
(deviation bars not shown for the shake of clarity). Inset shows the values of BSA solution flux at
steady state for PCL and PCL/rGO membranes at 0, 2, 4, and 6 months of degradation.

3.2. Physical-Chemical Properties Characterization

Figure 3A shows the hydrolysis degradation pathway of the PCL polymer. The cleavage of the
ester bonds of PCL is produced upon the reaction with water, forming carboxyl end-groups, and
the progressive reduction of the average molecular size to give water-soluble degradation products,
including oligomers and monomer (6-HCA), that diffused out of the membrane matrix and solubilized
in the PBS medium [26].

The progress of the number average molecular weight (M) with the degradation time is presented
in Figure 3B. Both PCL and PCL/rGO membranes showed a progressive decrease in M,,. After two
months of degradation, the M, of the membranes suffered a significant reduction from the initial value
of 75 & 6 kDa to 61 + 7 kDa for PCL membranes (drop of 19%), and to 49 kDa for PCL/rGO membranes
(drop of 35%). At 12 months, M,, decreased further to 33 %+ 0.04 kDa (56%) for PCL membranes, and
to 27 £ 0.75 kDa (65%) for PCL/rGO membranes. The polydispersity index (PDI) of the molecular
weight distribution remained almost constant during the degradation period, i.e., PDI values of 1.42 at
t = 0 months and 1.47 at f = 12 months for PCL films, and 1.34 at f = 12 months for PCL/rGO films
were obtained (Figure 3B). Regarding the hydrolysis kinetics of polymers, it usually follows second
order reaction kinetics, that is, the rate of the reaction is proportional to the concentration of water and
the concentration of chemical bonds susceptible of hydrolysis, i.e., carboxylic bonds for polyesters [27]
(see Equations (S1) and (S2) in Supplementary Materials). Figure S1 (Supplementary Materials) shows
good agreement of the fitting of the experimental data to 1/M,, vs t, which indicates that the hydrolysis
of our membranes proceeded according to second order kinetics. Moreover, in Figure S1, it was shown
that the hydrolysis kinetics of PCL/rGO membranes was only slightly faster (approximately 1.4 times)
than the hydrolytic kinetics of PCL membranes.
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Figure 3. (A) Scheme of the PCL hydrolytic degradation process, adapted from Woodruff et al. [14];
(B) Change of the number average molecular weight (M, filled symbols) and polydispersity index
(PDI, empty symbols); and (C) mass of degradation product 6-HCA in the PBS formed during
degradation process of PCL and PCL/rGO membranes.

Figure 3C illustrates the concentration of 6-HCA per unit mass of membrane released to the PBS
medium after 6 and 12 months of hydrolytic degradation. The concentration of the 6-HCA in the PBS
increased significantly with the degradation time, as expected. The 6-HCA concentration in the PBS
medium was higher for PCL/rGO than for PCL membranes, in good agreement with the evolution
of the molecular size observed in Figure 3B. The presence of 6-HCA in the buffer solutions barely
affected the pH (data not shown). During the degradation test, an attempt to evaluate what happened
with the rGO nanoplatelets of the PCL/rGO membranes was done. After re-dissolving the PCL/rGO
membranes in THEF, the presence of rGO nanoplatelets in the membranes was visually confirmed at 0
months and after 12 months of degradation (see Figure S2 of the Supplementary Materials). It can also
be appreciated that the precipitated rGO was qualitatively more abundant (higher mass concentration)
in the samples corresponding to 12 months of degradation than in the PCL/rGO membranes at ¢ = 0.
Moreover, the UV-vis spectrum of the PBS that contained the PCL/rGO membranes during 12 months
of degradation did not show the rGO representative peak around 270 nm [28]. These qualitative results
led us to think that rGO mainly remained in the solid material of the PCL/rGO membranes.

Furthermore, Figure 4 represents the DSC thermograms of the PCL (A) and PCL/rGO membranes
(B) at 0 and 12 months. The initial value of the melting temperature (T),) (0 months) was 62.10 °C
for PCL membranes and 60.36 °C for PCL/rGO membranes. After 12 months of degradation time,
Ty, increased to 64.54 °C for PCL and to 64.72 °C for PCL/rGO membranes. The crystallization
temperature, T, increased as well during the degradation period in both types of membranes, from
31.75 °C to 32.63 °C for PCL, and from 32.45 °C to 35.00 °C for PCL/rGO. The initial x¢ of PCL/rGO
was 41%, and increased to 46% after 12 months. Meanwhile, PCL membranes crystallinity varied from
35% to 44%. The higher crystallinity of the degraded samples pointed to the preferential hydrolytic
attack of the amorphous polymer phase.
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Figure 4.

DSC thermogram of PCL (A) and PCL/rGO (B); membranes at 0 and 12 months
of degradation.

The membranes did not suffer any significant reduction in dimensions (width, length, and
thickness) during the degradation time (Figure S3, Supplementary Materials).

Regarding the
microscopic morphology, SEM images of the surface and cross section of the PCL and PCL/rGO
membranes at 0, 2, and 12 months of hydrolytic degradation are illustrated in Figure 5. Overall, a
noticeable change in the morphology of the membranes can be observed. The surface of both PCL
and PCL/rGO membranes eroded slightly from 0 to 2 months, and then very notably after 12 months

of degradation. The morphological degradation of the internal structure of the membranes was also
evident, as shown in the SEM cross section images.
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Figure 5. SEM images of PCL and PCL/rGO membranes at 0, 2, and 12 months of hydrolytic
degradation. The scale bars represent 10 um.

4. Discussion

PCL/rGO and control PCL membranes fabricated in this work degraded continuously under the
presence of PBS simulating in vitro culture conditions. The molecular weight presented a progressive
reduction (Figure 3B), produced by the hydrolytic chain scission of the ester group due to water
penetration. The degradation kinetics of our membranes corresponded to second order kinetics,
in agreement with typical hydrolysis of large molecular weight polyesters [27]. Also, the maintenance
of PDI values (Figure 3B) during the degradation period indicated that all the carboxylic bonds of the
polymer chain had equal reactivity, in agreement with the obtained second order kinetics. In spite of
the hydrophobic character of the rGO nanoplatelets [10], a slight, though not significant, acceleration
of the hydrolytic degradation for PCL/rGO membrane was observed in comparison to the plain
PCL membranes in terms of molecular weight change. The monomer 6-HCA, as the main indicator
of degradation products, was released and diffused into the buffer media (Figure 3C). Therefore,
its concentration progressively increased with the degradation period, and showed slightly higher
values for buffer media containing PCL/rGO membranes than for PCL membranes, in agreement with
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the results of the molecular weight degradation kinetics. Moreover, the higher degree of crystallinity,
as well as the increase on the thermal properties after 12 months of degradation, pointed to the
preferential hydrolytic attack of the polymer amorphous region in both membranes [17]. Finally,
the internal morphology of the membranes suffered a clear change (Figure 5), while the dimensions
of the membranes remained constant during the degradation process (Figure S3). According to the
aforementioned results, in the present work, degradation of the membranes proceeded via bulk
degradation mechanism [29]. Bulk degradation mechanism of PCL networks was also reported
by [22] under similar hydrolytic degradation conditions. The similar tendencies observed in the
present work on the molecular weight reduction for PCL and PCL/rGO membranes, points to the
high porosity of the fabricated membranes as the main cause for the bulk hydrolysis mechanism.
The porous internal morphology favored the water penetration and the outward diffusion of the
degradation products [30]. In comparison to other reported works with similar molecular weight
(PCL 80 kDa) [31,32], our fabricated membranes demonstrated an accelerated degradation rate.

All mid- and end-point degradation products must be thoroughly investigated for possible
immunogenic reactions [33]. During the progress of the polymer degradation, it was observed
that the rGO nanoplatelets remained mainly in the membrane. This was consistent with the
results of Murray et al. [21]. They also reported that PCL/rGO blended materials increased the relative
concentration of rGO during enzymatic degradation from 5 w/w % to 19 w/w %, and did not observe
cytotoxicity on L-929 fibroblast cells growing for short periods. In our previous work [16], we also
observed a positive biocompatibility on glioblastoma cells of the PCL membranes containing rGO
nanomaterials after 14 days of culture. These null cytotoxic results are also in agreement with the low
pH acidification of the buffer solution observed in our system (results not shown) that would not likely
turn into a negative cellular response [34].

The presence of rGO nanoplatelets in the polymer matrix significantly reduced the mechanical
integrity of the membranes at any degradation time. This effect was attributed to a restriction of the
mobility of the polymer chains [24], and to defects and gaps created by the presence of rGO in the
polymer matrix [35]. Also, the presence of rGO caused a faster and more intense loss of mechanical
properties and structural stability for PCL/rGO membranes in contrast to PCL membranes (Figure 1
and Videos S1 and S2) that could also be explained by the same causes that decreased the initial
mechanical properties of PCL/rGO in contrast to PCL membranes, as previously explained. Despite
the fast loss of mechanical properties of the PCL/rGO membranes, after 4 months of degradation,
these materials still comply sufficiently with the mechanical properties required for materials to sustain
neural tissues. Actually, the mechanical stiffness of the 4-month degraded membranes are closer to
the values of the hydrogels typically employed as scaffold materials for neural tissue regeneration,
i.e., Matrigel [36], modified gelatin [37], polyethylene glycol, or alginate hydrogels [38,39]. For instance,
a broad range of Young modulus values, i.e., in the order of 0.2-20 kPa for alginate hydrogel 40 and
0.1-1.2 MPa for modified gelatin [37], can be found for these materials. Nevertheless, although Matrigel
is one of the most employed materials for scaffolds in neural adhesion and proliferation, its relatively
weak mechanical strength and significant degradation over long-term culture has been considered a
drawback for its use in in vitro neural models [40]. Apart from the effect of the membrane stiffness
on the induction of mechanical cues over the cells, it is envisaged that the mechanical properties loss
of the material could be substituted by the tissue mechanical stability if there is an equivalent rate of
membrane structural disintegration and tissue regeneration. In the field of neural tissue regeneration,
in vitro models of cerebral organoids require only 8-10 days for the appearance of neural identity
and 20-30 days for the formation of defined brain regions [36]. Mahoney and Anseth [39] confirmed
the suitable use of polyethylene glycol hydrogels to act as cell carriers for transplantation into the
central nervous system (CNS), with an accelerated loss of mechanical properties in 12 days. In general,
an adequate scaffold material should lose mechanical properties at an approximate rate of 8%/week
during in vivo degradation [41], and neural scaffold materials would ideally degrade over a period of
2-8 weeks via hydrolysis, ion exchange, or through enzymatic reactions [33]. All the previous works
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support the idea that the rate of neural tissue regeneration could be comparable to the degradation
rate behavior of our PCL and mainly to PCL/rGO membranes. Actually, preliminary experiments
on neural progenitor cells (NPC) differentiation and maturation have been performed for 20 days on
PCL and PCL/rGO membranes, showing promising cell coverage (unpublished data) and adequate
structural integrity for the manipulation.

Regarding the behavior of the BSA solution flux through the membranes, the initial pronounced
reduction of the flux (Figure 2) was associated with the internal fouling due to BSA protein adhesion
to the pore walls [16]. The progressive decrease of the steady-state BSA fluxes for PCL membranes
during the degradation time could be attributed to the gradual loss of structural integrity under
hydrodynamic pressure, causing the membrane compaction, and therefore, the pore size reduction
during filtration assays [30]. Regardless, the significant reduction of the nutrient flux at steady state,
PCL and PCL/rGO membranes still displayed a comparable total BSA solution flux to that reported
by Bettahalli et al. [42] for commercial poly(ether-sulfone) hollow fibers, theoretically sufficient to
supply the needs of glucose consumption to more than three layers of cells under confluence in a
perfusion bioreactor.

5. Conclusions

The present work reports on the evaluation of the hydrolytic degradation of novel PCL/rGO
porous membranes fabricated by phase inversion technique. The hydrolytic degradation during a long
term period of 12 months of these PCL/rGO membranes was evaluated in this work, in order to study
the membrane capacity to act as scaffold for in in vitro bioreactors for neural tissue regeneration and
its further use as in vitro human neural models.

Both, PLC/rGO membranes and PCL membranes (control membranes) exhibited a fast
degradation rate. This work demonstrates that the high porous membrane structure obtained as
a result of the phase inversion manufacturing technique was the main factor on the acceleration of
the degradation, as it could promote water penetration, and therefore facilitate the bulk hydrolytic
mechanism of the membranes. The molecular weight decreased, following second order kinetic rate,
characteristic of these types of polyesters of large molecular weight. As a result, there was a loss
of the membrane’s mechanical resistance, an enhancement of the crystallinity, and the formation of
PCL degradation products, such as the monomer 6-hydroxycaproic acid, released to the hydrolytic
media. Besides the aforementioned alterations, the changes in the porous morphology without any
observable modification of the sample dimensions led to the conclusion that degradation proceeded
via bulk hydrolysis mechanism. The introduction of rGO nanoplatelets into the PCL matrix only
slightly accelerated the degradation rate. Particularly, the presence of rGO reduced significantly the
mechanical stability of the membranes at all degradation times. However, PCL/rGO membranes
still procured sufficient mechanical properties to theoretically comply with the specifications of the
neural tissue regeneration. Besides, the degradation rate of the membranes herein reported would
perfectly fit the rate of neural tissue regeneration that would need around 1 month to be completed.
The rGO nanoplatelets remained preferentially in the polymer matrix of the membrane during the
degradation process and, according to previous works, the degradation products of similar PCL/rGO
blended materials should not alter the cytotoxicity of the buffer solution. The high porosity that
induces exceptional BSA solution flux let us deem that PCL/rGO membranes would be promising
candidates to be used as scaffolds for neural tissue regeneration in perfusion bioreactors. Finally, it has
to be remarked that experiments to evaluate the performance of the PCL/rGO membranes on dynamic
neural cell culture, as well as the assessment of the potential of PCL/rGO membranes to induce stem
cell differentiation into neural tissue, are currently under progress.
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Supplementary Materials: The following are available online at www.mdpi.com/2077-0375/8/12/s1, Video S1:
Mechanical behavior of PCL membranes after 12 months of hydrolytic degradation; Video S2: Mechanical behavior
of PCL/rGO membranes after 12 months of hydrolytic degradation; Equations (S1) and (S2) demonstrating
simplifications and fitting of the experimental data of change of the polymer molecular weight with degradation
time to a 2nd order hydrolysis kinetics and Figure S1: Kinetics of the hydrolysis of PCL and PCL/rGO membranes.
Fitting of the molecular weight to the second order hydrolysis kinetics (Equation (S2)) is depicted (dotted lines).
Figure S2: Photographs showing the rGO content at 0 and 12 months of degradation of the PCL/rGO membranes.
Figure S3: Photographs showing the visual aspect of the wet PCL and PCL/rGO membranes at 0 and 12 months
of degradation.
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Abstract: In this article, we studied two different types of polyhedral oligomeric silsesquioxanes
(POSS®) functionalized nanoparticles as additives for nanocomposite membranes for CO, separation.
One with amidine functionalization (Amidino POSS®) and the second with amine and lactamide
groups functionalization (Lactamide POSS®). Composite membranes were produced by casting
a polyvinyl alcohol (PVA) layer, containing either amidine or lactamide functionalized POSS®
nanoparticles, on a polysulfone (PSf) porous support. FTIR characterization shows a good
compatibility between the nanoparticles and the polymer. Differential scanning calorimetry (DSC)
and the dynamic mechanical analysis (DMA) show an increment of the crystalline regions. Both
the degree of crystallinity (X.) and the alpha star transition, associated with the slippage between
crystallites, increase with the content of nanoparticles in the PVA selective layer. These crystalline
regions were affected by the conformation of the polymer chains, decreasing the gas separation
performance. Moreover, lactamide POSS® shows a higher interaction with PVA, inducing lower
values in the CO; flux. We have concluded that the interaction of the POSS® nanoparticles increased
the crystallinity of the composite membranes, thereby playing an important role in the gas separation
performance. Moreover, these nanocomposite membranes did not show separation according to
a facilitated transport mechanism as expected, based on their functionalized amino-groups, thus,
solution-diffusion was the main mechanism responsible for the transport phenomena.

Keywords: POSS®; nanocomposite membranes; CO, separation; PVA

1. Introduction

Global warming is one of the major problems that face humanity. Global warming is caused by the
emission of greenhouse gases, of which the main component is carbon dioxide (CO;). CO, emissions
have dramatically increased in the last 50 years, and are still continually increasing each year [1].
The burning of fossil fuels contributes to most of the CO, emissions, and hence, there is a significant
interest in developing technologies to reduce CO, emissions. Carbon capture and storage (CCS) has
become an important instrument to reach the goals agreed on the 2015 Paris international convention [2].
Membrane technologies have seen an important growth in this market [3-6]. However, its application
in large CO; capture processes in the power and industrial sector has not yet matured. Key challenges
are related to the low partial pressure of CO, and the large scale required for flue gas treatment.
For membranes to be cost-effective, further innovations in process design and membrane materials
are thus needed. In this respect, the use of hybrid composite membranes that benefit from both an
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organic and inorganic part to further improve the gas separation performance have been widely studied.
Membrane-based separation processes are not only cost effective and environmentally friendly, but also
offer much more versatility and simplicity for customizing system designs with many novel polymeric
materials now available. Moreover, membrane modularity and easy scale-up opens for retrofitting
existing plants, as well as flexibility with respect to the CO, capture rate. The technology has, as well,
a near instantaneous response, and a high turndown is possible that preserves plant operability.

The ability to selectively remove one component in a mixture while rejecting others describes
the perfect separation device [7]. Various materials and methods are being developed for capture
and storage, and in some cases, conversion, to mitigate the effect of global warming. Emerging and
already established concepts for CO, capture encounter the challenge of finding an economically
feasible and efficient separation technology from effluent gas streams [8,9]. The study of advanced
materials and modern manufacturing methods have helped to obtain new and improved membranes
that have better separation performances, thus contributing to obtain environmental friendly gas
membrane separation processes which demand less energy. In this way, due to the low cost and
easy processability of polymeric membranes, they have, so far, been a promising alternative for
the non-condensable gas separation. Today, only a few polymer membrane materials are being
used in industrial applications. However, in research, various polymers are being studied and
reported to be potential candidates for use on commercial scale, due to good results achieved on
lab scale [10]. Membranes require a high gas permeation rate combined with a high selectivity for
process applications. Incrementing the performance of the membrane by increasing the permeance,
will result in requiring less membrane area, which will help to reduce the costs and environmental
imprint. Variables, such as mechanical and thermal stability of the material at the operating conditions,
should also be considered when selecting the membrane material. The proper selection of a highly
stable material, with high performance, has made the effort complex, and the research for an optimum
material is continuously in progress [11-15].

The recognized trade-off between gas permeability and selectivity has resulted in a rather slow
development of new polymeric membranes [16]. Nevertheless, both parameters need to be considered
to have a promising membrane for industrial processes. In this case, the use of novel hybrid materials
for making membranes that incorporate both an organic and an inorganic part, have opened new
opportunities to develop new materials, and hence, bypass the limits that exist today. Both, the organic
part and the inorganic part will, in different ways, contribute to the transport of gases through
the hybrid membrane, while additionally, the inorganic part may contribute to mechanical and
thermal strength. A lot of research has been published on the addition of zeolites to polymers for gas
separation as mixed matrix membranes (MMMs) [17-19]. For instance, ZIF-71 nanoparticles, embedded
into PEOT/PBT copolymer, have shown capability for dehumidification and CO; separation [20] in
industrial use, and polymers of intrinsic microporosity (PIMs) are used to obtain membranes with
high gas permeability [21].

On the other hand, facilitated transport membranes (FTMs) use a carrier to increase the
transport of the desired gas through a membrane, without having a negative effect on the selectivity.
Many researchers have studied this type of membrane [5,22-25].

In this study, facilitated transport was expected for CO, based on the selected nanoparticles.
The manufactured membranes involve the addition of carriers that are expected to improve the gas
separation properties. Nanosized particles, such as polyhedral oligomeric silsesquioxanes (POSS®)
embedded in a polymer matrix, are reported here. POSS® nanoparticles have a rigid cage-like
structure which is an intermediate between silica and siloxane. POSS® materials are well-defined,
three-dimensional nano building blocks that can contribute to create unique hybrid materials, with a
precise control of nanostructure and properties [26]. POSS® chemical reagents are nanostructured,
with sizes of 1-3 nm. However, unlike silica or silicones, POSS® can be produced with nonreactive
substituents, to make them more or less compatible with different monomers or polymers, depending
on the way they are obtained [27]. The amino and amidino groups of the chosen POSS® were expected
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to provide the suitable carriers for CO; when humidity is present. This feature makes POSS® an
attractive candidate for the fabrication of hybrid materials. POSS® has been used in several gas
separation studies in recent years [28-31].

In our previous work [32], we have tested amino POSS® without achieving any improvement in
CO; separation. In our effort to increase the performance of the membranes, we have modified these
amino nanoparticles into the amidino and lactamide particles reported here. The aim of the current
work reported here is to investigate the effect on the gas separation performance of the membranes by
the addition of two different functionalized POSS® nanoparticles; one with amidine groups (Amidino
POSS®) and the other with amino and lactamide functional groups (Lactamide POSS®). Amino groups
are versatile and can undergo different chemical reactions. The functionalization of POSS® can thus be
tailor-made, depending on the aimed properties. Amidino POSS® has been specially developed to
enhance CO; capture capacity. Amidino POSS® and Lactamide POSS® would be expected to exhibit
different mechanisms toward CO, capture. While Lactamide POSS® would catch CO, through forming
a competition between carbonate and carbamate, Amidino POSS® would only form carbonate which is
beneficial in term of cyclic capacity [32]. Moreover, functionalization of aminopropyl POSS® with lactic
moieties is believed to improve compatibility of Lactamide POSS® with PVA, as it contains secondary
hydroxyl groups.

2. Materials and Methods

2.1. Materials

Polyvinyl alcohol (PVA) was provided by Sigma-Aldrich, the molecular weight of 85,000-124,000,
87-89% hydrolyzed. Polysulfone (PSf) porous support flat sheet membranes with a molecular
weight cut-off 50,000 Da were purchased from Alfa Laval (Denmark). The PSf support was washed.
Two different types of nanoparticles belonging to the class of the polyhedral oligomeric silsesquioxane
(POSS®) were synthesized. Figure 1 shows the synthesis of the two different types and their
functionalization. The aminopropyl POSS® was synthesized by classical sol-gel synthesis from the
3-(aminopropyl)-triethoxysilane. Aminopropyl POSS® particles were subsequently functionalized in
solvent-free reactions with N,N-dimethylacetamide dimethyl acetal to obtain Amidino POSS® and
with ethyl lactate to prepare Lactamide POSS®. Amidino POSS® and Lactamide POSS® are obtained
in n-propanol with a solid content of 42% for Amidino POSS® and 32% for Lactamide POSS®.

Amidino POSS

Lactamide POSS

Figure 1. Synthesis of Amidino POSS® and Lactamide POSS®, respectively.

2.2. Membrane Preparation

PVA (3.0 g) was added to distilled water (97 g). The mixture was refluxed for two hours to dissolve
the polymer under stirring at 500 rpm at 90 °C. Then, the PVA solution was cooled down to room
temperature. Amidino POSS® and Lactamide POSS® solutions were stabilized separately, by stirring
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at 500 rpm for at least 15 min, before being mixed with the PVA solution. These nanoparticle solutions
were then added dropwise to the PVA solution by filtering through a PTFE 5 pm syringe filter according
to the required POSS® /PVA ratio. Afterwards, the solution was filtered again through a 5 um PTFE
syringe filter, and subsequently stirred for at least 30 min. Five centimeter diameter membranes of PSf
were cut. The flat sheet composite membranes were prepared by casting 1 mL of the solution over the
PSf disc. They were air dried overnight at 45 °C, and further air dried at 100 °C for one hour before a
natural cooling, until the oven had reached 40 °C. These flat sheet composite membranes were used for
SEM morphology characterization and gas permeation performance evaluation. The self-supported
membrane samples for DSC, DMA, and FTIR characterization were prepared following the same
temperature profile by using 5 mL of the POSS®/PVA solution in a glass petri dish.

2.3. Membrane Characterization

2.3.1. Scanning Electron Microscopy (SEM)

The thickness and surface of the composite membranes were studied using a Hitachi TM3030
and a Nova NanoSEM650 (FEI corp., Tokyo, Japan) field emission gun scanning electron microscope
(FEG-SEM, Tokyo, Japan). The cross-section of the samples was prepared by freeze-fracturing/cutting
in liquid nitrogen. The samples were sputter coated with a thin gold layer (90 s) to provide electronic
conductivity to the samples.

2.3.2. Differential Scanning Calorimetry (DSC)

The thermal properties of the membrane materials were investigated using a differential scanning
calorimeter (DSC 214, Netzsch, Selb, Germany). A sample of about 10-12 mg was placed in an
aluminum pan covered with a proper lid, together with a standard empty pan, into the DSC sample
holder. To eliminate the thermal history and remove any residual solvent, the samples were first
heated from room temperature to 110 °C at 10 K/min, kept at this temperature for 10 min, and cooled
to —50 °C at a rate of 10 K/min. The samples were then heated up from room temperature to 300 °C
at a heating rate of 10 K/min, under an N, atmosphere. The analysis was then carried out from the
second heating scan.

2.3.3. Thermogravimetric Analysis (TGA)

The thermal stability of the membranes was investigated with a thermogravimetric analyzer
(TG209 F1, Netzsch, Selb, Germany). Around 10-12 mg of sample was placed in the sample pan
and heated from 30 °C to 800 °C (10 K/min). Nitrogen was used as both the balance and sweep gas,
with flow rates of 20 mL/min.

2.3.4. Fourier Transform Infrared Spectroscopy (FTIR)

FTIR was used to investigate the possible interaction between POSS® nanoparticles with the
composite membranes. The IR spectroscopy experiments were carried out with a FTIR spectrometer
(iS50 FT-IR, Nicolet, Thermo Fisher Scientific, Waltham, MA, USA) with a smart endurance
reflection cell.

2.3.5. Dynamic Mechanical Analysis (DMA)

Dynamic mechanical analysis was conducted on a DMA 242 E Artemis (Netzsch, Selb, Germany)
in tension mode under the following conditions: frequency 1 Hz, a proportional factor of 1.1, absolute
target amplitude of 40 pm, a maximum dynamic force of 2.182 N, and no additional static force.
To eliminate the thermal history, the samples were first heated from room temperature to 80 °C at
5 K/min, kept at this temperature for 10 min, and then cooled afterwards to —50 °C at a rate of
2 K/min, to be heated up again to 350 °C at a rate of 2 K/min. The samples were cut with 10 mm
length and 5 mm width, with a thickness between 0.020-0.060 mm. With DMA, various transition
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temperatures can be determined while the mechanical properties are measured under an oscillatory
strain, which supplies information about major transitions, as well as secondary and tertiary transitions
not identifiable by other methods [33].

2.3.6. Gas Permeation Performance Evaluation

The membrane performance was measured in a feed gas mixture at a pressure of 1.3, 2, and 3 bars
with a mixed gas permeation test rig, described elsewhere [34]. The experimental specifications, such as
flow set parameters, temperature, and gas composition in feed and sweep streams, can be found in
our previous work [32]. The CO, flux and CO,/Nj selectivity were calculated from the measured
permeate CO, and N; concentration in the sweep flow gas.

The mixed gas permeability of CO, and N, was calculated assuming perfect mixing through
Equation (1).

Ja -t
TR o
where P4 represents the permeability (Barrer) of component A (CO; or Nj), J4 is the flux
(m3(STP)/m?2-h), xf4 and xp4, represent molar fraction of the component on feed and permeate
side respectively, Pr and P, (bar) are the absolute pressure on feed and permeate side, and £ (um) is
the selective measured layer thickness.

The CO, /N selectivity a 4 /5, which corresponds to the ratio of the permeabilities for gases A

(COy) and B (Ny), is given as follows: v
A

By @)

N =
B

3. Result and Discussion
3.1. Morphology of the Membranes

3.1.1. SEM

The composite dense layer deposited on the porous support can be seen in Figures 2 and 3,
where examples are given for PVA, Amidino POSS®/PVA: 5%, and Lactamide POSS®/PVA: 5%.
The dense composite membranes have an average thickness of 1-4 um. The correct thickness of
each membrane has been taken into account when the permeability is calculated. After scanning
several membranes and places of the membrane, we conclude that a continuous composite PVA layer
is formed on the support, and no evidence of pores or defects was observed. The white points in
Figure 3A-C are most likely dust coming from the preparation of the SEM sample.

@ x25k  30pm TM3030Plus

wm
PVA AMIDPVAS% PVALACT 5%

Figure 2. SEM-SE cross section pictures from the PSf support flat sheet membranes (A) PVA; (B)
Amidino POSS® /PVA:5%; (C) Lactamide POSS® /PVA: 5%.
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Figure 3. SEM-SE surface pictures from the PSf support flat sheet membranes (A) PVA; (B) Amidino
POSS®/PVA: 5%, Lactamide POSS® /PVA: (C) 5%.

3.1.2. FTIR

Figures 4 and 5 show the FTIR spectra for the Amidino POSS®/PVA and Lactamide POSS® /PVA
systems, respectively. The main IR peaks are given in Table 1. The characteristic peaks of PVA are seen
at 1142, 1720, 2850, and 3260 cm ™}, the peaks for residual acetyl groups 1740, 1265 cm ! decrease with
addition of nanoparticles, since ratio PVA /nanoparticle loading is increasing, and thus, less PVA is
present, and the residual acetyl peak decreases. The other peaks can be ascribed to either Amidino or
Lactamide POSS® functionalities. The peak in the range of 1080 cm ™~ corresponds to the asymmetric
(Si—O-Si) stretching vibration band, belonging to the silica cage of POSS®. Its intensity increases with
the nanoparticle loading [35].

Table 1. Main infrared peaks of the nanocomposite membranes [36-42].

Frequency (cm~1) Bond Type

3260 O-H stretching (PVA)
2910-2942 CH, asymmetric/symmetric stretching (PVA)
1740, 1265 Residual acetyl group

1615 NH; scissoring

1656 N-H bending from amidine-lactamide

1400 N=N bending (amidine)

1142 PVA crystallites

1100 C-O stretching

1080 Si-O-5i asymmetric stretch

1020 Aliphatic C-N stretching (lactamide)

The absorption peak at approximately 1142 cm™~! corresponds to the PVA crystallites [36],
increasing with the nanoparticle concentration. This is due to the interaction of the nanoparticles
that work as a nucleating agent, which is more deeply explained in Section 3.2.2. The range at
about 1400 cm ™! belongs to the azo compound N=N stretching of the Amidino POSS® nanoparticles,
and shows a visible increment for the spectra of 25 and 50% ratio of nanoparticles. Finally, the range
between 1550-1650 cm ™! belongs to the secondary amides bending, that also increases with the
addition of nanoparticles. The Lactamide POSS®/PVA system shows the aliphatic stretch for C-N at
1020 cm ™!, the presence of POSS® at 1080 cm ™!, and the secondary amines bending, that increases
with the addition of nanoparticles between 1550-1650 cm~!. These spectra confirm the interaction
between POSS® nanoparticles with the polymer in the composite membranes, which is influenced by
the loading concentration of nanoparticles.
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Figure 4. FTIR reflectance of (A) pure PVA, Amidino POSS® /PVA: (B) 5%; (C) 10%; (D) 25%; (E) 50%.
The curves are shifted vertically for clarity.
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The curves are shifted vertically for clarity.
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3.2. Thermomechanical Properties

3.2.1. Thermogravimetric Analysis (TGA)

The thermal stability of the nanocomposite membranes with various nanoparticle loadings was
studied by comparing the decomposition onset temperatures presented in Figures 6 and 7 for the
Amidino POSS®/PVA and Lactamide POSS®/PVA systems, respectively. The pure PVA sample shows
a major weight loss around 280 °C, attributed to the start of decomposition of the main polymer chain
ending around 500 °C. The Amidino POSS® /PVA system shows two different major weight losses.
The first one lies between 220 and 250 °C, attributed to the decomposition of the NH, groups and the
start of the decomposition of the polymer chain, continuing with a second step at 400-450 °C, due to the
byproducts generated by PVA during degradation [43,44]. The addition of the nanoparticles decreases
this first step, however, the second weight loss, between 400-410 °C, increases with the addition of the
nanoparticles. These weight losses correspond to the degradation of the polymer main chain, and the
generated byproducts of the PVA. The systems end with different residuals for every sample, increasing
with the nanoparticle loading. On the other hand, membranes prepared with Lactamide POSS®
nanoparticles present a similar thermal stability as two major weight losses are observed in the range
between 400-420 °C. The lactamide groups increase, slightly, the degradation of the polymer chain
in this step, to reach a different final residual as well, depending on the concentration of the loading.
The number corresponds initially to the residual of the PVA, and then to the increase of residual silicon
content by the addition of nanoparticles. The weight loss between 100-200 °C in the samples containing
nanoparticles could be due to either condensation of open POSS structures generating water, or due
to the release of CO, already reacted with the amine and amidine groups from Amidino POSS® and
Lactamide POSS® [45]. These decreased thermal stabilities can be explained by the increase in mobility
of the PVA chains in the nanocomposite membranes. The chain transfer reaction will then be promoted,
and consequently, the degradation process will be faster with the decomposition taking place at lower
temperatures. However, the final complete degradation takes place at higher temperatures by the
addition of the nanoparticles, which also change depending on the functionalization, corresponding to
the Lactamide POSS® having the highest final degradation temperature.

Amidino POSS®
100

1

Water open
structures. CO,
releaseand
reacted amidine

Decomposition

—  oftheNH,

Degradation

/ polymer chain

60 T

Residual =
Silicon content

a0 L

24% E)
18% D)
14% = )
1% - B)
s% _ A

20 1+

50 150 250 350 450 550 650 750
—PVA ——AMIDINO/PVA:5% ——AMIDINO/PVA:10% ——AMIDINO/PVA:25% ——AMIDINO/PVA:50%

Figure 6. Thermogravimetric analysis of (A) PVA, Amidino POSS® /PVA: (B) 5%; (C) 10%; (D) 25%;
(E) 50%.
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Figure 7. Thermogravimetric analysis of (A) PVA, Lactamide POSS®/PVA: (B) 5%; (C) 10%; (D) 25%;
(E) 50%.

3.2.2. Differential Scanning Calorimetry (DSC)

Figure 8 shows the DSC thermograms for the melting enthalpies for the Amidino POSS®/PVA
and Lactamide POSS®/PVA. The degree of crystallinity (X.) is calculated from the ratio
X, = (AH f/ AH f°)' where AH r is the melting enthalpy measured, and AH s the 100% crystalline
melting enthalpy, respectively. The melting enthalpy (AH f“) of a 100% crystalline PVA, is taken as

138.6]/g [39].

0.00 0.00
-1.00 T %-1.00
E E
= £
E 200 1 %-2.00 1
S o
& 3.00 4 & 3.00 -
-4.00 t t t -4.00 } } | !
160 180 200 220 240 160 180 200 220 240
Temperature (°C) Temperature (°C)
PVA AMID/PVA:5% AMID/PVA:10% m— P\/A LACT/PVA:5% LACT/PVA:10%

LACT/PVA:50%

AMID/PVA:50% e | ACT/PVA:25%

(A) (B)

AMID/PVA:25%

Figure 8. DSC analysis of Amidino POSS®/PVA (A); Lactamide POSS®/PVA (B). PVA (black),
5% (blue), 10% (gray), 25% (green), 50% (red).

Table 2 lists the values for the glass transition temperatures Tg, enthalpy and melting temperature,
and degree of crystallinity (X.) of the different nanocomposite membranes for the system Amidino
POSS®/PVA and Lactamide POSS® /PVA, respectively. The glass transition increases for a loading
of 5%, due to the rigidification of the polymer chain by the addition of the nanoparticles. However,
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when reaching 10%, the glass transition starts to decrease, due to the increment on the degree of the
crystallinity. When reaching 25%, the Ty increases further, and at this point, the disturbance of the
crystalline regions is higher as more crystalline segments are found—this is detectable by the increment
in the degree of crystallinity. The interaction of the nanoparticles with the polymer is visible by the
way the polymer chains packed, changing the type of lamella formation, and by the decrease in the
melting temperature (Tr,). The melting point (Tr,) of the composite membranes is lower than the
virgin PVA polymer membrane. Thus, the melting point of the composite material decreases because
of the addition of the POSS® nanoparticles. The decrease in Tp, with the addition of POSS® indicates
that incorporation of POSS® encourages the crystallization process, and results in crystallites with
lower thermal stability. This is explained as POSS® acting as a nucleating agent, increasing the degree
of crystallinity [31,46]. The obtained numerical values are higher than 100%, because the degree of
crystallinity is calculated, dividing the melting enthalpy measured by the 100% crystalline melting
enthalpy. More energy is required to melt the crystalline segments formed by the addition of the
nanoparticles, thus, the melting enthalpy measured by the addition of the nanoparticles is higher than
the pure 100% crystalline polymer.

Table 2. Glass transition temperatures, enthalpy and melting temperature, and degree of crystallinity
of the different nanocomposite membranes.

Sample Loading (POSS®/PVA Ratio) ~ Tg (°C) AH; (J/g) T O X (%)
PVA 0 705 517 2034 373

5 76.9 81.6 205.8 58.9

B o 10 63.2 106.5 205.7 76.8
Amidino POSS 25 53.9 125.8 198.6 90.8
50 67.0 151.6 1955 109.4

5 77.8 744 2113 53.7

) o 10 66.9 98.9 203.4 713
Lactamide POSS 25 55.7 134.0 201.0 96.7
50 724 1783 185.0 128.6

3.2.3. Dynamic Mechanical Analysis (DMA)

Storage Modulus (E’)

Table 3 shows the values of the storage modulus for the two types of nanocomposite membranes.
The storage modulus (E’) is equivalent to Young’s modulus of elasticity, which could be an indication
of the hardness of the material. This is the response of the sample after receiving the strain, giving the
amount of energy required to do so, expressed as modulus [33].

The composite membrane shows a typical thermoplastic behavior. The storage modulus is higher
for the pure polymer, and it decreases slightly with the increase of nanoparticle loading, corresponding
to the primary relaxation associated with the glass-rubber transition of amorphous PVA. Then,
when the loading reaches 50%, the E” modulus increases as compared to the virgin PVA. In this
case, this increment can be explained by the crystallization occurring by the addition of POSS® acting
as nucleating agent. The difference in the values between the Amidino and Lactamide POSS® can be
due to the lactic moieties that are believed to improve compatibility of Lactamide POSS® with PVA,
as it contains secondary hydroxyl groups.

Table 3. Storage modulus (E’) for the different nanocomposite membranes.

% Loading

PVA Amidino POSS® Lactamide POSS®
5% 10% 25% 50% 5% 10% 25%  50%
Value (GPa) 8.2 67 80 69 83 80 73 74 101

Storage Modulus () 5\ ot Temperature (°C) 61 51 61 48 46 59 59 46 53
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Tan Delta (Tand)

Figure 9 shows the change in tan delta by the change in the percentage of loading for the two
types of nanoparticles, Amidino POSS®/PVA, and Lactamide POSS®/PVA, respectively.

Amidino POSS°/PVA A

Lactamide POSS°/PVA A
»

o % loading

»
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0.6 E
Tg

0.4
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1/
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(A) (B)

Figure 9. DMA analysis of Amidino POSS®/PVA (A); Lactamide POSS®/PVA (B). PVA (black),
5% (blue), 10% (gray), 25% (green), 50% (red). The curves are shifted vertically for clarity.

The addition of the Amidino POSS® and Lactamide POSS® nanoparticles show that the tan delta
gradually decreases by the loading of the nanoparticles. A second peak is found in the region above
the T,. This peak is also known to be the alpha star transition (T«"). In semi-crystalline polymers,
this transition is associated with the slippage between crystallites [33,47]. When increasing the loading
of POSS® nanoparticles, these materials produce a different type of crystalline segment, thus inducing
a modification of the tan delta (Tand T) values, and then, an increase of the alpha start transition is
visible induced by the movement (slippage) of the crystalline segments. These changes are confirmed in
the DSC measurements, where the melting temperature (Tr,) is decreasing as an indication of forming
different lamellar conformation. The alpha star transition also increased with the nanoparticles loading,
see Table 4. A similar behavior is also observed for the storage modulus (E’), see Table 3. On the other
hand, the Lactamide POSS® /PVA system shows that the addition of these nanoparticles has a higher
effect of interaction since the Tand Tg and the alpha star transition (T") are higher in comparison with
those obtained in the Amidino POSS®/PVA system. Moreover, these interactions are also visible in the
degree of crystallinity (X.) obtained by DSC, where these values are higher at higher Lactamide POSS®
loadings. This improved compatibility was expected as the Lactamide groups can interact better with
the PVA polymer chain. Similar behavior is observed for the storage modulus (E’).

Table 4. T (alpha star transition) & Tand Ty, for the different nanocomposite membranes.

% Loading

PVA Amidino POSS® Lactamide POSS®

5% 10% 25% 50% 5% 10% 25%  50%

To' Absolute Value 017 014 016 020 026 016 017 023 027
Absolute Value 042 054 056 054 050 040 040 034 030

Tand Ty set Temperature°C) 794 718 786 713 641 801 792 741 787

3.3. Gas Separation Performance of the Nanocomposite Membranes

3.3.1. Effect of Pressure

The effect of the feed pressure could have an important significance on the gas separation for
facilitated transport membranes. The facilitated transport is based on a reversible reaction of CO,,
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H,O, and the fixed carrier. As a general trend, with increasing feed pressure, the concentration of
CO; dissolved into the membrane, increases. As the CO, concentration increases, some carriers may
be saturated, and fewer sites are available to facilitate the CO, transport, resulting in a decrease of
CO, permeance [48,49]. In other words, the CO, permeance may decrease due to a high CO, partial
pressure on the feed side saturating the carriers [22,34]. To investigate this behavior of the membranes
in the lower feed pressure region, tests were carried out by varying the feed pressure between 1.3
and 3 bars as shown in Figure 10. The performance of the membranes shows a slight decrease in CO,
permeability, while the selectivity increases with the pressure, whereas a bigger change is visible in
the loading for lactamide 25% between the pressure range 1.3 to 2 bar; this is possibly due to some
inaccuracy during measurement. Unlike CO, permeance, N, permeance decreases with increasing
feed pressure, which is consistent with the characteristic of “solution-diffusion” mechanism [50],
resulting in the little increment in selectivity. The virgin PVA membrane shows the best performance
in term of both permeability and selectivity, which is in accordance with our previous research [32].
This trend clearly shows that the membranes do not follow a facilitated transport mechanism, instead,
the gas transport is dominated by the solution-diffusion mechanism, and the nanoparticle loading is
not contributing with additional CO; transport to the gas separation in the tested pressure range.
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Figure 10. Effect of gas separation performance of nanocomposite membranes by the increment of
pressure. Permeability (A); Selectivity (B). Amidino POSS®/PVA (straight line), Lactamide POSS® /PVA
(dash line), PVA (black), 5% (blue), 10% (gray), 25% (green), 50% (red).

3.3.2. Effect of Nanoparticles Structure

By changing the length and the chemical structure of the substituents, POSS® can give different
properties to the polymer, like thermal and chemical stability, and acts as a nucleating agent [51-54].
Figure 11 presents the CO, permeability as function of the degree of crystallinity (X.), induced by
the addition of the POSS® nanoparticles. The CO, permeability clearly decreases as the degree of
crystallinity increases. Moreover, the permeability is always lower when Lactamide POSS® is added to
the system. In other words, the higher the degree of crystallinity obtained with the lactamide groups,
the lower the gas separation performance. The formation of crystalline segments makes the composite
membrane less permeable. It is visible that the structure of the nanoparticle affects the permeance.
Both membranes showed lower performance compared to the pure polymer. It seems that the addition
of the nanoparticles hindered the CO, gas transport through the membrane. The most significant effect
was observed at high Lactamide POSS® loading of nanoparticles. At high loading, more crystalline
segments are obtained, as they are gas impermeable, reducing the performance of the membrane.
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Figure 11. CO, permeability (1.3 bar) of nanocomposite membranes versus degree of crystallinity (Xc)
DSC measurement. Amidino POSS® /PVA (black), Lactamide POSS® /PVA (red).

3.3.3. Effect of Loading Concentration

Figure 12 shows the CO, permeability and the degree of crystallinity (X) follow when increasing
the nanoparticle loading. The crystalline regions on the PVA are impermeable to the penetrating
molecules [55]. The addition of nanoparticles clearly shows an increment of the degree of crystallinity
as the POSS® nanoparticles act as nucleating agent. The Lactamide POSS® group has a stronger
interaction with the PVA, enhancing the chain packing order, increasing the degree of crystallinity.
On the other hand, the CO, permeability has an opposite behavior, decreasing when increasing
the nanoparticles loading. This decrease is reasonable, since these segments are less permeable.
The addition of the nanoparticles does not contribute to any facilitated transport mechanism, moreover,
it seems to obstruct the space the CO; can use to pass through the composite membrane, resulting in
a decrease in CO; permeance. These changes in the gas separation properties could be also due to a
decrease in the fractional free volume (FFV), and more research about this is needed.

140% AMIDPVA 160.00 140% — 160.00
120% & 140005 120% M 14000 5
100% 1 120005 g0, J: 12000
560% 60.00 fé " 60% 60,00 é
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Figure 12. Effect of CO, permeability, dotted line, and degree of crystallinity (X,), solid line, versus
nanoparticle loading. Amidino POSS®/PVA (A), Lactamide POSS®/PVA (B).

4. Conclusions

Two different types of POSS® nanoparticles (Amidino POSS® and Lactamide POSS®) were used
to understand the effect of the functional groups on the interaction with the polymer, and the gas
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separation performance. SEM pictures showed that a continuous composite PVA layer was formed
on the support, and no evidence for pores or defects was observed. The FTIR spectra confirmed the
structure of the resultant membranes, by showing the change by the addition of the nanoparticles.
DSC studies indicated that the glass transition (Tg) decreased by the addition of the nanoparticle
loading. It indicated an increase of the enthalpy of melting within the increase of the degree of
crystallinity (X). The melting temperatures showed a decreasing trend, indicating a different lamellar
conformation in the polymer chain. The change in Ty was also confirmed by the Tand Ty by DMA
analysis. The addition of the nanoparticles has an effect on the storage modulus, however, it was not
possible to observe any clear trend. A second peak Ty " (alpha star transition) was found using DMA
technique. This alpha transition is known to be the transition where the crystallites slip past one another.
The value of this alpha transition increased when increasing the loading. In this sense, the Lactamide
POSS® system showed a higher interaction with the polymer, as expected, by having a higher alpha
star transition To". The gas separation performance showed a decrease for the CO, permeability,
while the selectivity slightly increased with the pressure. This trend shows that the membranes
did not follow a facilitated transport mechanism, and the nanoparticle loading did not induce extra
CO, transport to the gas separation. The system is primarily dominated by the solution-diffusion
mechanism. The degree of crystallinity indicated a strong effect in the gas separation performance
of the composite membranes. Finally, the permeability was lower when the Lactamide POSS® group
was added to the system. This is due to the higher interaction with the polymer, which increases the
degree of crystallinity and reduces the composite membrane permeability.
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Abstract: This work reports on the preparation and gas transport performance of mixed matrix
membranes (MMMs) based on the polymer of intrinsic microporosity (PIM-1) and potassium
dodecahydrododecaborate (K;B12Hiy) as inorganic particles (IPs). The effect of IP loading on the gas
separation performance of these MMMs was investigated by varying the IP content (2.5, 5, 10 and
20 wt %) in a PIM-1 polymer matrix. The derived MMMs were characterized by scanning electron
microscopy (SEM), thermogravimetric analysis (TGA), single gas permeation tests and sorption
measurement. The PIM1/K;B1,H1 MMMs show good dispersion of the IPs (from 2.5 to 10 wt %)
in the polymer matrix. The gas permeability of PIM1/K;B12,Hi MMMs increases as the loading of
IPs increases (up to 10 wt %) without sacrificing permselectivity. The sorption isotherm in PIM-1
and PIM1/K;B1,Hij» MMMs demonstrate typical dual-mode sorption behaviors for the gases CO,
and CHy.

Keywords: mixed matrix membranes; polymer of intrinsic microporosity; borane; gas separation
membrane

1. Introduction

Membrane technology can potentially provide environmental and economic advantages to
virtually any process dependent on gas separation. However, the ability to produce durable, large-area
membranes at relatively low cost and the wider application of polymeric membranes is hindered
by their intrinsic permeability and selectivity limitations. These limitations were first reported by
Robeson as an upper bound trade-off between permeability and selectivity and later by Freeman [1,2].
Based on the need for a more efficient membrane than purely polymeric membranes, a new concept
of mixed-matrix membranes (MMMs) has been proposed. MMM s are hybrid membranes containing
solid, liquid, or both solid and liquid inorganic fillers embedded in a polymer matrix [3,4]. MMMs
have the potential to achieve higher selectivity with equal or higher permeability compared to
existing polymer membranes while maintaining their advantages of mechanical stability and the
possibility of large-scale production. Compared to pure polymer membranes, many polymer-inorganic
nanocomposite membranes containing silica, carbon nanotubes, zeolite, metal organic framework
(MOF), titania, etc., as IPs show higher permeability without sacrificing gas selectivity [5,6]. However,
there are still many issues that need to be addressed for the large-scale industrial production of
MMMs. Attempts to enhance the compatibility between the inorganic and polymeric components by
introducing mutually interactive functional groups to the polymer and the molecular sieve have led to
partial blockage of the sieve pores, thus hindering separation performance.

Polynuclear boranes, another class of inorganic particles, have been extensively studied for the
past fifty years and their chemistry is well-established and designated with the general formula
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B.H,2~ (where n = 6-12) [7,8]. Figure 1 shows an example of polynuclear boranes, i.e., the [B1oH1p %
is a dianion and bicapped square antiprism closo structure and BjyHj»?~ dianion has icosahedral closo
geometry. Geometrically, polynuclear borane anions have trigonal faces. For example, icosahedral
closo-B1yHq»2~ consists of 12 boron atoms each bonded to five neighboring boron atoms within the
icosahedron and to an external atom such as hydrogen. One or more BH vertices can be exchanged for
isoelectronic CH* vertices, giving rise to a variety of carborane structures. Diverse functionalizations
at the resulting CH vertices provide novel structures with unique applications in material science and
biomedicine [9-12].

N\

Figure 1. Polynuclear borane structure and numbering of atoms in the [BjyHj»]?>~ anion.

Tailoring free volume cavities by controlling the molecular weight and the structure of glassy
polymers directly influences the gas transport properties [13]. In particular, a class of high free volume
polymers were potential candidates for gas separation applications with the capability to optimize gas
permeability and selectivity by changing the polymer chain packing. McKeown and Budd first reported
anew class of rigid ladder-type polymers containing highly contorted chains and named them polymers
of intrinsic microporosity (PIM) [14]. Among these materials, PIM-1 (Figure 2), containing the contorted
angled spirobisindane unit and rigid polymer backbone and high free volume, which attracted the most
attention due to the combination of outstanding permeability with relatively moderate but technically
attractive permselectivity, especially for O, /N, and CO,/CHy pairs [15-17].

(o}
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o 0} o}
O O
n
CN

Figure 2. PIM-1 polymer structure.

In the present work, MMMSs were fabricated by the incorporation of K;B,Hj; (as inorganic
particles) into a PIM-1 matrix (as a polymer matrix). Pure gas permeability data (Hp, Np, Op, CO; and
CHy, gases) were reported for pristine PIM-1 and their MMMs. Physical properties such as the thermal
analysis and morphology of the IPs were investigated. The prepared MMMs were characterized by
scanning electron microscopy (SEM), thermogravimetric analysis (TGA), single gas permeation tests
and gas sorption measurement. To the best of our knowledge, so far there is no MMM publication
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available on using boron icosahedron B,H,?~ (as an IP) combined with PIM-1 (as a polymer matrix)
for a gas separation membrane.

2. Theory and Background

2.1. Gas Sorption

In order to understand the gas transport properties of MMMs, two aspects need to be considered.
First, static sorption experiments can reveal the maximum sorption capacity of a polymer for certain
gas, which helps us to understand why IPs can enhance the performance of MMMSs compared to
pristine polymer membranes. Second, dynamic sorption experiments reveal information on the kinetics
of the gas sorption from which diffusion coefficients can be determined.

2.1.1. Static Gas Sorption

Gas sorption in glassy polymeric membranes described by the dual-mode sorption model. In this
model, penetrant molecules are viewed as being partitioned between the dense equilibrium structure
of the polymer (dissolved mode) and the non-equilibrium excess volume of the glassy polymer
(the so-called hole filling or Langmuir mode) [18]. The dual mode model is described by Equation (1):

C=Cp+ Cqy 1)

where C is the total concentration of penetrant in the polymer (mol/g), Cp is the dissolved mode
penetrant concentration, and Cpy is the penetrant concentration in the hole filling of Langmuir mode.
Cp is written as a linear function of pressure and C is expressed by a Langmuir isotherm to give:

Clbp
C—kDP+<1+bP> ()

where kp is Henry's law /dissolved mode sorption constant [mol/(g-bar)], p the pressure (bar), C'y
is the Langmuir/hole filling capacity constant (mol/g) and b is the Langmuir affinity parameter
(1/bar). The parameter kp shows the penetrant dissolved in the polymer matrix at equilibrium
and b characterizes the sorption affinity for a specific gas—polymer system. These parameters can
be determined from the measured sorption data. C'y is often used to measure the amount of
non-equilibrium excess free volume in the glassy state [19].

2.1.2. Dynamic Gas Sorption
Diffusion coefficients can be accurately determined from the mass uptake curves (M;/Me) by

data-fitting Fick’s second law for the sorption of penetrant in the film as described by Crank [20]:

Mti 7§°°
Mo mk

©)

12

_D@2n+1)>n?t
(2n+ 1
where M; and Mo, represent the amount of gas absorbed by the membrane film at time ¢ and the
equilibrium sorption after infinite time, respectively. D is the kinetic (transport) diffusion coefficient,
t is the time required to attain M; and [ is the thickness of the sample.

2.2. Gas Permeation

Gas permeation through a dense membrane takes place according to the well-known
solution—diffusion mechanism [21]:
PZ' = Si X Di (4)
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where the permeability coefficient (P;) in Barrer (1Barrer = 10710 ¢m3(STP)-cm/ (cmz-s-cmHg)) is the
product of the solubility coefficient (S;) (cm3(STP)/(cm?-cmHg)) and the diffusion coefficient (D;)
(cm?/s) of component i. The ideal selectivity for a gas pair is the ratio of their permeability coefficients:

V-2 (5)-(2)
] ] ] ] ]

where D;/D; is the diffusion selectivity and S;/S; is the solubility selectivity of components i and
j, respectively. Diffusion coefficients increase with a decrease in the penetrant size, increasing the
polymer fractional free volume, increasing polymer chain flexibility, increasing the temperature and
decreasing polymer—penetrant interactions [22]. On the other hand, solubility coefficients increase with

increasing polymer—penetrant interactions, decreasing temperature and the increasing condensability
of the penetrant.

3. Materials

The monomer 5,5 ,6,6'-tetrahydroxy-3,3,3',3"-tetramethyl-1,1’-spirobisindane (TTSBI, 97%) was
supplied by ABCR, Karlsruhe, Germany and 2,3,5,6-tetrafluoroterephthalonitrile (TFTPN, 99%) was
kindly donated by Lanxess (Cologne, Germany). TFTPN was sublimated twice under vacuum prior
to use. Potassium carbonate (K,CO3 > 99.5%) was dried overnight under vacuum at 120 °C in
order to ensure no moisture is trapped in it and then milled in a ball mill for 15 min. Potassium
dodecahydrododecaborate hydrate (KyBi2Hjo-XH,O > 98%) was obtained from Strem chemicals Inc.
(Kehl, Germany) and bis-tetrabutylammonium closo-dodecahydrododecaborate [N(C4Hg)4]2B1,H12 was
supplied by Technical University Darmstadt, Inorganic solid state chemistry department. Diethylbenzene
(isomeric mixture) was purchased from Sigma-Aldrich (Steinheim, Germany), dimethylacetamide
(DMACc > 99%), tetrahydrofuran (THF > 99.9%), methanol (MeOH > 99.9%), chloroform (CHCl3 > 99.99%),
dioxane (>99%), from Merck (Darmstadt, Germany) were used as received.

4. Experimental Section

4.1. Pristine PIM-1 Synthesis and Mixed Matrix Membranes Preparation

PIM-1 was synthesized by using the method described elsewhere [23-27]. PIM-1 and K;B12H1»
were dried in a vacuum oven at 120 °C overnight before use. The pristine PIM-1 membrane was
prepared by mixing 2% (w/w) polymer in chloroform as a solvent. MMMSs were prepared with
KyB1oHypp with different weight ratios (2.5 wt %; 5 wt %; 10 wt %; 20 wt %) as determined by
Equation (6).

wt. IP y
wt. I[P + wt polymer

IPs loading = (6)

Considering a PIM-1 and K;B1,H1, density and assuming volumes are additive, the IPs volume
fraction (¢;p) were calculated according to Equation (7).

wip

_ Pip
(PIP — wp T wWip (7)
ep Prp

where wip and wp denote the weight of IPs and polymer, respectively, and p;p and pp are the density of
IPs and polymer, respectively. For the MMMs fabrication, the K,B1,Hj, was dispersed in chloroform
by sonication using an ultrasonic bath (Bendelin, SONOREX Super, Bendelin Electronic GmbH &
Co., KG, Berlin, Germany) for 15 min. PIM-1 was dissolved in chloroform and added to a K;B1oHi»
suspension. The resulting solution was stirred with a magnetic bar for a minimum of 15 h, and up to
60 h for a higher loading of IPs. The solution was poured into a leveled circular Teflon® dish, which
was covered with glass lead to reduce the chloroform evaporation rate. The slow evaporation of
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chloroform was ensured by 10 mL/min nitrogen flow through the closed space above the Teflon dish.
After solvent evaporation, the prepared membranes were delaminated from the Teflon® surface and
conditioned by soaking in methanol for approximately 4 h. Immersing the membranes in methanol
reverses prior to film formation history, in a manner similar to protocols previously developed for high
free volume polyacetylenes and PIM-1 [28,29]. The methanol-treated membranes were dried in high
vacuum for 16 h at 120 °C. The thickness of the membranes was measured by a digital micrometer
(Deltascopes MP2C, Helmut Fischer GmbH, Sindelfingen, Germany), ranged between 95 to 101 um.

4.2. Thermal Gravimetric Analysis (TGA)

Investigation of the thermal stability of the pristine PIM-1, K,B12H;, and PIM1/K;B1,Hi» MMMs
were performed by thermogravimetrical analysis (TGA) on a TG209 F1-Iris instrument from the
Netzsch Company (Gerdtebau GmbH, Selb, Germany). At least 10 mg of each sample was placed into
a sample holder. The experiments were conducted under argon flow (20 mL/min) from 30 to 900 °C
with at heating rate 10 K/min.

4.3. Scanning Electron Microscopy (SEM)

A LEO 1550VP instrument (Carl Zeiss AG, Oberkochen, Germany) was used to study the
morphology of pure PIM-1 and PIM1/K;B;,H;, MMMs, which was equipped with a field emission
cathode operated at 1-1.5 kV. Samples for scanning electron microscopy (SEM, Carl Zeiss AG,
Oberkochen, Germany) were prepared by freezing the prepared membranes in liquid nitrogen and
then breaking them to investigate the homogeneity of the IPs throughout the MMMs and compatibility
between the IPs and the polymer phase. The samples were dried overnight in a vacuum oven at 30 °C
and then coated with a thin Pt layer using a sputtering device under argon flow.

4.4. Density Measurements

The density of the membranes was determined by the buoyancy method following Equation (8)

_ Wa
P—'(M%47MQ>PL ®)

where p and p; are the densities of the membranes and perfluorinated liquid (Fluorinert FC 77),
respectively, W4 and W are the weight of membranes in the air and in perfluorinated liquid,
respectively. All the density measurements were done at 26 °C.

4.5. Gas Transport Properties

The permeability of single gases (H, Oy, Np, CHy, and CO,) were measured using a constant
volume variable pressure time lag apparatus at 30 °C. The permeability (P), diffusivity (D), solubility
(S) and selectivity (x) for gases i and j were determined under steady state by the following
Equations [30-32]:

Vol (P2 — pp1)

P=DxS= ©)
ARTAt [p = (Pt P /z)}
12
D= (10)
7 P,' o Si x Dj
ajj = F] = 5% D, (11)

where Vp is the constant permeate volume, R the gas constant, / the film thickness, A is the effective
area of the membrane, At is the time for the permeate pressure increase from py1 to pp2, py is the feed
pressure, and 6 is the time-lag. The solution—diffusion transport model [21] was applied to discuss the
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gas transport properties of PIM-1 and PIM-1 MMM, and the selectivities of membranes for gas “i

iz

relative to another one “j”, which is the ratio of their permeabilities determined using Equation (6).

4.6. Gas Sorption

Static and dynamic sorption measurements were performed on a magnetic suspension balance
(MSB) (Rubotherm GmbH, Bochum, Germany). Static sorption measurements allow the determination
of the sorption isotherms, Langmuir hole affinity parameter (b) and the capacity parameter (C'p)
for pristine PIM-1 and PIM1/K;B;2H;, MMMs according to Equation (2) [19]. Dynamic sorption
measurements can be used to determine the diffusion coefficient of gas in pristine PIM-1 and
PIM1/K;B12H12 MMMs by means of Equation (3) [33].

4.6.1. Static Sorption Experiments

The amount of pure gases adsorbed 14 pg in the samples (PIM1/K;B1,H1» MMMs) was calculated
from the volume of the samples (calculated from the density of the samples as determined from the
standard buoyancy technique explained in the above section),the gas mass uptake of the samples,
and the molar volume and molecular weight of the gas probe. A minimum of 50 mg of sample was
used. For each measurement, the samples were evacuated at 353 K for 18 h at P < 10~ millibar.
All tubing and chambers were also degassed by applying vacuum (P < 10~° millibar).The evacuated
samples were then cooled down to the specified temperature (303 K) with a ramping rate of 1 K/min.
The different used gases have a purity of 99.99% in this measurement. The gravimetric sorption studies
in this research were conducted at a temperature of 303 + 0.1 K and a pressure range of 0.01-8 bar.

4.6.2. Dynamic Sorption Experiments

The diffusion coefficient of gas was calculated using a dynamic sorption experiment for PIM-1
and PIM1/K;B,Hi, MMMs. Before the start of each experiment, the thickness of the membrane
samples was measured. Prior to pressurization at 1 bar, the sample was evacuated for 18 h. The mass
uptake of the sample (M;) was calculated according to Equation (12):

M; = wy — [wo — (vt X Pgas) ] (12)

where wy (g) is the weight of the sample at zero sorption, v; (cm®) is the volume of the sample at time #(s)
and pggs is the density of the gas (g/ cm?). To correct the recorded weight (w; (g)) for buoyancy effects,
the Archimedes principle was used. Subsequently, the ratio of M;/Me was obtained as a function of
time(s). Since in the case of membranes, complete equilibrium could not be established within the time
scale of the experiment, in that case, the pseudo-infinite mass uptake after 14 h was used. The obtained
data were fitted using Equation (3) to obtain the diffusion coefficients for the membrane samples.

5. Results and Discussion

5.1. Inorganic Particle Characterization

The thermal stability of IPs was investigated by means of TGA. Figure 3 illustrates that no weight
loss occurred below 100 °C for both IPs [K;B1,H1, and N(C4Hg)4B12H1o], which indicates the absence
of residual solvents. K;B1,Hj, shows no weight loss and remains stable up to the final temperature
of 700 °C. For comparison, sample [N(C4Hg)4]B12H1, shows a large weight loss (~45%) between
200-500 °C. In this temperature range, [N(C4Hg)4]B12H12 decomposes into gaseous products. From
these results, we conclude that the K;B1,Hj, are thermally stable up to 700 °C. This is relevant for the
preparation of MMM, since heating the polymer matrix above the Ty or T, can reduce the formation
of non-selective voids [34].

Figure 4a shows the SEM image of K;B1,H;, with a distinct crystalline structure. The chemical
composition of the IPs was analyzed by EDX spectrometer (Carl Zeiss AG, Oberkochen, Germany),
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which was attached to the SEM image (Figure 4b). The EDX spectra clearly shows the strong signal of
potassium (K) and boron (B) in the crystalline structure of K;B1,Hjs.
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Figure 3. TGA analysis of potassium dodecahydrododecaborate (K;B1,Hj;) and bis-tetrabutyl
ammonium closo-dodecahydrododecaborate [N(C4Hg)4]2B12Hiz.

(@ (b)

Figure 4. SEM image (a) and EDX spectra (b) of K;B1pHjp.

5.2. Mixed Matrix Membranes (MMMs) Characterization

The effect of temperature on the degradation of pristine PIM-1 and PIM1/K;B,Hi, MMMs at
a various loading of K;B1oHj» is shown in Figure 5. TGA analysis suggests that no residual solvent
was present in the films. The PIM1/K;B;,Hj; MMMs with 5, 10 and 20 wt % loading of K;Bi,H;,
show similar decomposition stages compared to pure PIM-1 and the onset degradation temperature of
these samples was observed at 501 4= 2 °C. The higher magnification TGA results of PIM1/K;B1,Hj,
MMMs from 550 to 600 °C were shown the inset Figure 5. Due to the lack of rotational mobility in the
backbone of the rigid ladder polymer, it is difficult to observe a glass transition before the degradation
of pristine PIM-1 and its MMMs [16].
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Figure 5. TGA analysis of the pure PIM-1 and PIM1/K;B1,H;, MMMs.

Table 1 shows the density and weight loss of various wt % of K;BjoHy, in PIM1/K;B1,Hi, MMMs
up to a temperature 650 °C. During TGA analysis, the initial weight loss of the samples was affected by
buoyancy, which means that the samples and ceramic pan appeared to gain weight before significant
decomposition occurred due to the difference in thermal conductivity, density and heat capacity for
the purging gas and the sample [35]. However, the buoyancy effect was less apparent at a higher
temperature. Thus, the initial wt % of all the samples was set at 100 °C. The K,B1,H;, concentration in
the polymer was considered as the volume fraction (¢;p), which appears slightly higher than the weight
fraction term due to the density difference between K;B1,H;j, and polymer. PIM-1 and PIM1/K;B1,Hj,
MMMs began weight loss at approximately 501 4= 2 °C. The weight loss up to 700 °C (W7qo) increased
slightly with the addition of K;B1,Hj,.

Table 1. Physical and thermal properties of K;B1,Hjp, PIM-1, and PIM1/K;B1,Hi, MMMs.

Membrane Volume Fraction ¢p (%) K;B12H12 Loading (%) wygo (%) P (g/cm3)
PIM-1 0 0 32.17 1.066
PIM-2.5 K,B1,H1p 2.58 2.5 32.46 1.078
PIM-5 K;B1,H1» 5.16 5 33.10 1.077
PIM-10 K,B1,H1p 10.21 10 33.20 1.072
PIM-20 K,B1,H1s 20.53 20 34.43 1.067
K,B12Hin - - 0.6 1.031 *

* determined from Micromeritics AccuPyc 1330 pycnometer. wygo: weight loss up to 700 °C. p: density of membrane.

The optical transparencies of PIM-1 and PIM1/K;B1,H» MMMs are shown in Figure 6. These
images confirm the improved dispersion of the inorganic particles up to 10 wt % loading. At higher
filler content (20 wt %), there is greater agglomeration of inorganic particles in the polymer matrix
(see PIM-20 K;B,Hyp MMMs film in Figure 6). PIM-1 and PIM1/K;B;,H;, MMMs films were more
flexible and mechanically stable. The mechanical stability deteriorated beyond 20 wt % filler content in
the polymer.

Figure 7 shows the cross-sectional SEM images of PIM-1 and PIM1/K;B1,H;» MMMs at different
K;B1oHyp loadings. K;Bi,Hj, tend to be well-distributed throughout the membrane surface with
a5 and 10 wt % K;B1pHjp loading. (Figure 7b,c). As the K;BjoHj, loadings were further increased to
20 wt %, the K;B1,Hj, started to agglomerate throughout the PIM-1 matrix (see Figure 6). Figure 7a—d
shows highly-magnified images of the PIM-1 and PIM1/K;B1,H;, MMMs incorporated with 5, 10
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and 20 wt % of K;Bj2H;j, (showed by a yellow circle). From this observation and optical images
(see Figure 6), we can conclude that the threshold limit for the addition of K;B;,Hj; into the polymer
matrix to prevent agglomeration is typically around 20 wt % and the optimum for the addition of
KyB1,Hy; is lower than 20 wt %.

PIM-1 PIM1-2.5K;B1,H4, PIM1-5K;B,H;, PIM1-10K;B;,H;, PIM1-20K;,B;,H,
ssss

Figure 7. Cross section SEM images of (a,a’) PIM-1, PIM1/K;B1,H1, MMMs incorporated with (b,b’)
5wt %, (c,c’) 10 wt % and (d,d”) 20 wt % of K;BioHys.

5.3. Gas Permeation Properties

5.3.1. Effects of K;B1,Hj, Content on PIM1/K;B1,Hi, MMM Gas Separation Performance

In order to systematically study the effect of KyB1pHj, loading on the PIM1/K;B1,Hj, MMM
gas separation performance, MMMs were fabricated with different wt % incorporation of KB12Hj».
The permeability results of PIM1/K;B1,Hj2 MMMs for Hy, O,, Np, CO, and CHy gases are shown in
Table 2. The order of gas permeability was observed as CO, > Hy > O, > CHy > Nj. The addition of
2.5 wt % of K;BoHj; loading to the polymer matrix resulted in a 3% increase in the permeability of
Hy;, while the permeability of Ny, Oy, CO, and CHy increased 16%, 10%, 17%, and 23%, respectively.
Furthermore, a significant enhancement in permeability as a function of K;B,Hj; loading in the
polymer matrix was observed between 5 to 10 wt %. From the previous report on the permeation
enhancement of MMM s [5], these results suggest that the interaction between polymer-chain segments
and IPs may disrupt the polymer-chain packing and thus enhance the gas diffusion due to more free
volume introduced among the polymer chains and defects at the polymer/IP interface. The permeability
of gas molecules such as Hy, N, O,, CO, and CHy decreases as K;B1oHj, loading increased from
10 to 20 wt % in the polymer matrix. Some agglomerates form in the polymer matrix at high loading
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(20 wt %), which may decrease the total free volume and tortuosity around the agglomerated K;B12Hj,
domains, leading to a slight deterioration of the permeation.

Table 2. Gas permeabilities of various gases in pure PIM-1 and PIM1/K;B;,H;, MMMs.

Permeability (Barrer)
Membrane
H; N> O, CO, CH,4
PIM-1 3274 £5 483 £ 10 1396 + 13 9896 + 28 789 £15

PIM1-2.5 KyBipHyp MMM 3347 + 8 (3%) 562 + 11 (16%) 1539 & 12 (10%) 11598 £ 20 (17%) 974 + 18 (23%)
PIM1-5 KoBioHi, MMM 3707 +9 (13%) 641 +10 (33%) 1675 + 11 (20%) 12036 & 21 (22%) 1148 =+ 16 (45%)
PIM1-10 KpB1pHpp MMM 4025 4 8 (22%) 772+ 9 (60%) 1831+ 14 (31%) 12954 £ 23 (31%) 1436 + 16 (82%)
PIM1-20 KoBioHyp MMM 3436 +7 (5%) 607 + 12 (25%) 1600 & 14 (14%) 11729 423 (18%) 1123 + 14 (42%)

(% increment from pure polymer).

In addition, the gas permeabilities of PIM-1 containing K,B1,H1, were higher than pure PIM-1
and increasing up to the optimum limit. This trend is clearly depicted in Figure 8, which presents the
normalized permeability of PIM1/K;B1,Hi2 MMMs for O,, Np, CHy, and CO, gases as a function of
K;B1oHjip volume fraction (¢yp).

Relative Permeability (P/Pg)

1
0 5 10 15 20
K,B;,H;, volume fraction (¢;)

Figure 8. Relative permeability (i.e., ratio of permeability of PIM1/K;B;,H;, with pure polymer
PIM-1) of PIM1/K;B1,Hj2 MMMs to a variety of gas penetrates as a function of K;B1,Hjp volume
fraction (¢yp).

Table 3 shows the ideal separation factors for pure PIM-1 and PIM1/K;Bi;Hi, MMMs.
At 2.5-10 wt % K;B1,Hy; loading, the permselectivity was found to be decreased compared to the pure
PIM-1. However, the selectivity increased at 20 wt % K;B1,Hj; loading due to a significant decrease
in permeability. It is shown in Table 3 that the CH4 /N, separation factor increased as the amount
of K;B12Hj; increased due to the higher adsorption capacity for CHy over Nj. Despite increases in
the permeability of O, and Ny, the O,/Nj separation factor remained virtually unchanged because
K;B1pHi, were not selective for either O, or Ny. In addition, the constant O, /N, separation factor in
PIM1/K;B12Hi; MMMs suggests that the prepared membranes do not have any unselective voids at
the polymer/K;B;,Hj; interface.

Recently, various trends of MMM in terms of relative trade-off in permeability and permselectivity
have been noted. Many permselectivity increments were seen with the addition of activated
carbon, fused silica and metal organic frameworks (MOF) [36]. The gas separation performance
of PIM1/K;B1,H12 MMMs was plotted on a Robeson upper bound plot in order to compare the results
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with the literature data. The Figure 9 shows the Robeson upper bound 2008 [37] for CO, /N, gas pairs
and the results of these MMMs with different filler content. The incorporation of fillers in the PIM-1
polymer increases the efficiency of this membrane type in the separation of CO, gas over N,.

Table 3. Selectivity of various gas pairs for pure PIM-1 and PIM1/K;B1,H;; MMMs.

Permselectivity
Membrane
H,/N, H,/CH4 CH4/N, 0,/N, CO,/N,  CO,/CHy
PIM-1 6.8 42 1.6 2.9 20.5 125
PIM1-2.5 K;B1,Hy; MMM 6.0 34 1.7 2.7 20.7 119
PIM1-5 K;B1,H1, MMM 5.8 3.2 1.8 2.6 18.8 10.5
PIM1-10 K;B1,H1, MMM 52 2.8 1.9 2.4 16.8 9.0
PIM1-20 K;,B1,Hi, MMM 5.6 3.0 1.8 2.6 19.3 10.4
100 T
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Figure 9. Trade-off between CO, permeability and CO, /N, permselectivity of PIM-1 and PIM1/K;B1,Hp»
MMM relative to Robeson upper bound plot.

5.3.2. Influence of Temperature on the Gas Separation Performance of PIM1/K;B1,Hi, MMMs

Temperature effects on PIM1/K;B1,Hijp MMMs were studied over a temperature range of
283-343 K (10, 30, 50 and 70 °C) for single gas at one bar feed pressure. Figure 10 shows the permeability
of Np, CHy, CO,, and O; for PIM-1 and PIM1/K;B1,H1, MMMs as a function of the inverse absolute
temperature. From Figure 10, it can be seen that the permeability of N, and CHy increased with
increasing temperature, while for CO, and O,, the permeability decreased with increasing temperature.
This result indicates that highly sorbed gases like CO, do not affect the permeation rate of lighter gases
in subsequent runs [15,38]. However, a careful examination shows that the permeability of all gases
is higher in 2.5-10 wt % than 20 wt % PIM1/K;B1,H1» MMMs and the pristine PIM-1 membrane at
each temperature.

Figure 11 shows the O,/N;, CO;/N, and CO,/CHj, selectivity of the pure PIM-1 and
PIM1/K;B1,Hi; MMMs as a function of the inverse of absolute temperature. It was observed that
the selectivity for a given gas pair decreases with an increase in the temperature of pure PIM-1 and
PIM1/K;B12H12 MMMs. Hence, the incorporation of K;B1,Hjz does not change any selectivity pattern
at a higher temperature. However, a significant difference in selectivity at a lower temperature was
observed for PIM-1. It shows that the O, /Nj selectivity at 333 K is nearly 2.7; at 283 K it reaches 4.6,
while for CO,/Nj selectivity is around 30.9 at low temperature and 14.1 at elevated temperature 343 K
(70 °Q).
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a function of reciprocal temperature ((l-black) PIM-1, (4-olive) 2.5 wt % PIM1/K;B1,Hj; MMM,
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Figure 11. Selectivity of Op/Nj, CO,/N, and CO,/CHjy in PIM-1 and PIM1/K;B1,H;; MMMs as
a function of reciprocal temperature ((M-black) PIM-1, (4-olive) 2.5 wt % PIM1/K;Bi,Hj; MMM,
(V-pink) 5 wt % PIM1/K;B;,H;, MMM, (@-red) 10 wt % PIM1/K,B1,Hi, MMM, (A-blue) 20 wt %
PIM1/K;By,H;, MMM).
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In order to understand the temperature dependence of Ny, O, CO, and CHy permeabilities in
PIM1/K;B1,Hi; MMM, the data were correlated with the Arrhenius equation and the activation
energy of permeation (Ep) was determined using the following relationship:

P=P exp(%—?) 13)

where P is the gas permeability, P is the pre-exponential factor, (Ep) is the activation energy of
permeation (J/mol), R is the gas constant (8.314 ]/ (mol-K)) and T is the absolute temperature. The given
equation was valid in a temperature range that does not cause significant thermal transitions in the
polymer. Table 4 shows the activation energy of permeation (Ep) of PIM-1 and PIM1/K;B1,H;, MMM,
which were determined from the slope of the Arrhenius plot.

According to the literature, the activation energy of permeation was the sum of the activation
energy of diffusion (Ep), and the enthalpy of sorption (AHs),

Ep = Ep + AHg (14)

Table 4. Activation energy of permeation for pristine PIM-1 and PIM1/K;B,Hj; MMMs.

Ep (kJ/mol)
Membrane

N, Co,

PIM-1 185 -33

PIM1-2.5 K»B1,Hip MMM 13.7 —4.0
PIM1-5 K»By,H;» MMM 6.4 —46

PIM1-10 K»B1,Hip MMM 55 ~5.0
PIM1-20 K»B1,Hip MMM 24 -3.1

Generally, the gas permeability of all conventional glassy polymers increases with increased
temperature, because Ep + Hs >0and |Epl/I1Hg!| >1. An exception to this rule is the temperature
dependence of gas permeability in high free volume polymers such as PIM-1, i.e., gas permeabilities
decrease with increase temperature for condensable gas (e.g., CO;), where |Epl/IHgl < 1 [15].
Therefore, the negative activation energies of permeation in PIM-1 and PIM1/K;B1,H1» MMMs result
from very small activation energies of diffusion, which indicates that the dependence of permeability
on temperature is much weaker. In addition, the negative value of Ep is characteristic of the decrease of
CO, permeability with the increase of temperature, which was clearly observed in Figure 10. Another
case, the N, permeability of PIM-1 and PIM1/K;B1,Hi, MMMs, was strongly temperature-dependent
and Ep values were the same order of magnitude as those of conventional glassy polymers. Moreover,
negative Ep was observed for microporous solids in which the pore dimensions were relatively larger
than the diffusing gas molecules [39].

5.4. Gas Sorption

5.4.1. Static Gas Sorption

Static gas sorption measurements were performed to characterize the sorption behavior of pure
PIM-1 and PIM1/K;B1,H1 MMMs. Figure 12 represents N, O,, and CHy sorption isotherms in PIM-1
and PIM-1 containing 2.5, 5, 10 and 20 wt % K;B;2Hj; at 303 K. From Figure 12, the sorption of N, and
O, was much less than that of other gases, such as CO, and CHy, owing to their lower condensability
and weak interaction with the PIM-1 polymer. On the other hand, the sorption curve concave to
the pressure axis was observed for CO, and CHy, this was a general trend for glassy polymers and
can be described by the so-called dual-mode sorption model [40,41]. The amount of gas absorbed in
PIM1/K;B1,H1» MMMs films for each gas depends on the K;B1,Hj, content, as shown in Figure 12.
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The relative increase in gas absorption was small at 20 wt % of K;B,Hy, loading (showing more
discrepancy in sorption measurement—see Figure 12) in comparison to the increases seen at 2.5, 5 and
10 wt % of K;B1oHjs loading. Therefore, the presence of K;B1,Hj; increases the relative sorption of
gases in the membrane, at higher K;B1,H;j, contents; this increase could be constrained polymer chain
packing at the K;B1oHy, /polymer interface.
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Figure 12. (a) Ny; (b) Oy; (¢) CO,; and (d) CHy adsorption isotherm in PIM-1 and PIM1/K;B1,Hjp
MMMs (dashed lines represent the fitting curve).

When both sorption isotherms of CO, and CHy were fitted with the dual-mode sorption model
(Equation (2)), Henry's constants (kp), the Langmuir capacity constants (C'fy) and the Langmuir affinity
constants (b) can be obtained using a non-linear regression method and these were shown in Table 5.
The low Henry constants for both CO, and CH, indicate that the major sorption mechanism inside
PIM-1 was Langmuir sorption, which takes place in the non-equilibrium excess volume occurring in
glassy polymers [42]. The addition of IPs to the polymer matrix could affect and possibly disturb or
alter this excess volume. When the dual mode sorption parameters for different wt % of KyB1oHi»
are compared in Table 5, an increase with increasing K;B1,H1; loading was visible for all parameters
for both CO, and CHy. This implies that the addition of K;B1,Hj; increases the maximum sorption
capacity and the affinity towards CO, and CHy, but does not provide any additional sorption selectivity,
since the ideal sorption selectivity does not increase.

The maximum sorption capacity, C'y, in 20 wt % PIM1/K;B1,Hi, MMMs was decreased by 5%
and 2% for CO, and CHy, respectively, compared to 10 wt % PIM1/K;B1,H» MMMs. This difference
can be explained by sorption limitations in the K,B;2H;, particles due to the surrounding polymer.
From the SEM images in Figure 7c,c/, there was large area of agglomeration between the polymer
matrix and the K;B1oH; at 20 wt % loading, which might reduce the sorption capacity on the outside
of the K;B1,Hjp, where interaction with the polymer takes place, or limits the diffusion into K;B1,Hjs.
Moreover, the addition of K;B1,Hj; particles might have an influence on the diffusion coefficient,
which is discussed in the next paragraph.
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Table 5. Fitted dual-mode sorption parameters in PIM-1 and PIM1/K;B1,Hj2 MMMs of CO, and CHy
sorption isotherm.

Dual Mode Sorption Model Parameter

Feed Gas  K;Bi2Hip Loading (wt %)

kp C'y b

0 2.330 104.630 0415

25 2.440 105.830 0.422

CO, 5 2,530 113.750 0.440
10 2.600 120.105 0.491

20 2.58 115.81 0.444

0 0.581 62.097 0.135

25 0.59 63.957 0.141

CH, 5 0.604 65.042 0.154
10 0.627 66.741 0.167

20 0.611 65.412 0.151

Units of kp = cm3(STP)/ (cm3»atm)p(,1ymcr, C'yy = em3(STP)/em? polymer, b = atm~ 1.

5.4.2. Dynamic Gas Sorption

Dynamic sorption experiments were performed to determine the kinetic diffusion coefficients
of the PIM-1 and PIM1/K;B1,H;, MMMs with various wt % of K;B1,Hj. It was important to verify
whether all fitting parameters can be accurately obtained with the given film thickness. Figure 13
depicts the CO, kinetic sorption fractional uptake curves in PIM-1 and PIM-1 containing 5 wt %,
10 wt % and 20 wt % K;B1pHjp. From Figure 13, CO, uptake kinetics was normalized to account
for differences in film thickness, and the sorption equilibrium was attained much more rapidly in
PIM1/K;B1,Hi; MMMs than pure PIM-1. This result implies faster diffusion in PIM1/K;B1,Hjp
MMMs, which is qualitatively consistent with the concentration-averaged diffusion coefficients.
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ﬁ 0.6
=
04 F
——PIM-1
el ——PIM1-5K,B H,,
: ——PIM1-10K,B H,,
00 ——PIM1-20K,B H,,
0.0 0.1 0.2 0.3 0.4 0.5

(time)"/ (film thickness), (sec)"?/(um)

Figure 13. CO; kinetic uptake curves in PIM-1 and PIM1/K;B1,H1; MMMs at 303 K and 1 bar.

In addition to the diffusion coefficient (D) that was calculated from steady-state transport data,
diffusion coefficients may also be estimated from the dynamic sorption. Kinetic or transient diffusion
coefficients, D, were extracted from the data in Figure 13 by application of the one-dimensional form
of following Equation (15), which was modified from Equation (3) for Fick’s diffusion law:

M Dt \/?
M ﬂ(m) (15

where M; was the mass gain (by the polymer film) at time ¢, M, is the maximum mass gain, D was the
diffusivity gas penetrant and / was the thickness of the film.
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Figure 14 shows CO, diffusion coefficients in PIM-1 and PIM1/K;B,Hi, MMMs determined
from the kinetic sorption studies (using Equation (15)). The diffusion coefficients were calculated from
the time-lag method, included as well in Figure 14 for comparison.
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Figure 14. CO, diffusion coefficient in PIM-1 and PIM1/K;B1,H;, MMMs.

Although the absolute values of the diffusion coefficients obtained by the time-lag and kinetic
sorption methods were different [43], qualitatively the changes were consistent. Typically, the kinetic
diffusion coefficients measured by gravimetric sorption were lower than those obtained by the time-lag.
This discrepancy in results was observed because kinetic (transient) uptake experiments involve
additional diffusion into the dead-end pores, while transport through dead-end pores does not play
a role in steady-state permeation (time-lag) experiments [44].

6. Conclusions

Mixed matrix membranes were prepared successfully adding different amounts of K;B1,Hjp
as IPs into a PIM-1 as a polymer matrix. The prepared PIM1/K;B1,H;, MMMs were characterized
by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), single gas permeation
tests and sorption measurement. K;B1,Hj, were well-dispersed in the polymer matrix at a loading
of 2.5, 5, and 10 wt %, while at 20 wt % the K;B,Hj, forms agglomeration and phase separation in
the polymer matrix, which was confirmed by SEM and optical images. The permeability performance
of the prepared PIM1/K;B,Hi, MMMs mainly depends on the addition of IPs rather than the effect
of the interfacial zone because the O,/N; gas pair selectivity was constant for all MMMs. Overall
increases in gas permeability and diffusivity were observed for all tested gases, suggesting that IPs
could disrupt more polymer chain packing. The sorption isotherms in PIM-1 and PIM1/K;B1,Hj»
MMMs exhibited typical dual-mode sorption behaviors for the gases CO, and CHy. The CO, diffusion
coefficient calculated by the dynamic sorption method was lower than the time-lag method for PIM-1
and PIM1/K;B12H1; MMMs. This is the first report of the gas transport performance of MMMs using
K;B1pHyp and a PIM-1 polymer. It is clear that the addition of K;B,Hj; to a polymer matrix can
improve certain gas pair selectivities, as well as the permeability of small gas molecules.
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Abstract: This experimental study explores the potential of supported ionic liquid membranes (SILMs)
based on protic imidazolium ionic liquids (ILs) and randomly nanoporous polybenzimidazole (PBI)
supports for CHy/Nj separation. In particular, three classes of SILMs have been prepared by the
infiltration of porous PBI membranes with different protic moieties: 1-H-3-methylimidazolium
bis (trifluoromethane sulfonyl)imide; 1-H-3-vinylimidazolium bis(trifluoromethane sulfonyl)imide
followed by in situ ultraviolet (UV) polymerization to poly[1-(3H-imidazolium)ethylene]
bis(trifluoromethanesulfonyl)imide. The polymerization process has been monitored by Fourier
transform infrared (FTIR) spectroscopy and the concentration of the protic entities in the SILMs
has been evaluated by thermogravimetric analysis (TGA). Single gas permeability values of N, and
CH,4 at 313 K, 333 K and 363 K were obtained from a series of experiments conducted in a batch gas
permeance system. The results obtained were assessed in terms of the preferential cavity formation
and favorable solvation of methane in the apolar domains of the protic ionic network. The most
attractive behavior exhibited poly[1-(3H-imidazolium)ethylene]bis(trifluoromethanesulfonyl)imide
polymeric ionic liquid (PIL) cross-linked with 1% divinylbenzene supported membranes, showing
stable performance when increasing the upstream pressure. The CH4/N, permselectivity value
of 2.1 with CHy permeability of 156 Barrer at 363 K suggests that the transport mechanism of the
as-prepared SILMs is solubility-dominated.

Keywords: protic imidazolium ionic liquids; CHy solubility; nanoporous polybenzimidazole membranes;
supported ionic liquid membranes; photo-assisted polymerization; CHy selective membranes

1. Introduction

The demand for natural gas (NG) is growing worldwide and there is a rising need to develop
methods for upgrading sub-quality gas reserves, which exist in relatively low quantities in remote
zones. The global utilization of NG is above 3.1 trillion cubic meters (110 trillion standard cubic feet)

Membranes 2018, 8, 75; doi:10.3390 / membranes8030075 118 www.mdpi.com/journal/membranes



Membranes 2018, 8, 75

each year. NG upgrading is certainly one of the most challenging industrial applications for gas
separation membranes. In fact, 14% of U.S. NG resources comprise Ny in significant amounts and
cannot be shipped to the national pipeline without preliminary treatment. Hence, removal of this N
could allow access to an estimated 10 trillion scf (standard cubic feet per day) additional NG in the
USA alone [1-3].

So far, only a few studies on N removal from methane mixtures have been published.
Membrane-based N, separation has a promising market in small natural gas operations,
where cryo-genic distillation is uneconomical. In general, glassy polymers are permeable to Ny,
while the rubbery ones are to CHy [2]. For a gas mixture containing 10% Ny in CHy, a membrane
with a N, /CHy selectivity of at least 17 is required to achieve attractive separation in a single stage.
However, the best Nj-selective membrane currently known has a selectivity of 12.5 and permeability of
0.8 Barrer [4]; i.e., far below the attractive values. Hence, this is why the CHy-selective membranes are
usually preferred. A process involving a CHy selective membranes process remains the most feasible.
Although considerable recompression of the permeate gas is required for gas delivery to the pipeline [2],
its cost does not significantly impact on the process economics [1]. For a gas mixture containing 10% N
in CH4, membrane-based separation becomes cost-effective for CHy /N, selectivity values above 6 [3].
However, the best CHy-selective membrane (Polyamide-polyether copolymer-PEBAX 2533) currently
known has a CH4/Nj selectivity of 4.2 and relatively low CHy permeability values, i.e., 20 Barrer.

Typically, supported ionic liquid membranes (SILMs) have been extensively studied for CO,
separation [5-8], thanks to their good CO, solubility and negligible vapor pressure; although few
studies have also focused on NG upgrading [9]. In general, the possible displacement of the
liquid phase in SILMs is strongly diminished and more stable membranes are obtained due to both
high ionic liquids (ILs) viscosity and strong capillary forces between the IL and the supporting
membrane [8,10]. The most commonly used ILs are composed of imidazolium (IM) or pyridinium
(Py) cations containing one or more alkyl groups, because of their low melting points and stability
under a wide range of experimental conditions. Commonly used anions include halogen atoms [11],
such as tetrafluoroborate [BF,4]~, hexafluorophosphate [PFs] ~, and bis(trifluoromethylsulfonyl)imide
[TFSI]~. Previous publications on SILMs confirm that the selectivity is solubility-dominated instead
of diffusion-dominated [9]. The solubilities of CO,, CHy, C;Hg, N and O, in several aprotic ILs
have been studied extensively [12-15]. On the contrary, the thermodynamic properties of protic ionic
liquids, i.e., those comprising proton-donor and proton-acceptor centers in their molecules, have been
investigated in lower extent [16-19].

Supported poly-ionic liquids (PILs) membranes based on protic imidazolium moieties have attracted
great attention over the last decade as solid state flexible electrolytes because of their proton conductivity
and superior thermal and chemical stability [20-24]. The main objective of this work is the exploration
of the SILMs based on protic imidazolium ILs for potential CHy separation applications. Among the
large diversity of ILs, those based on the TFSI anion with imidazolium cation typically confer high CH,
permeability [25,26]. So far, all the reported SILMs for gas permeation studies have been prepared from
aprotic ILs [7,27-29]. Unlike in the literature, our approach relies on the use of protic ILs i.e., imidazolium
cation without any alkyl group at position 1 (R-N) but with acidic “H” (H-N).

Herein, we report for the first time usage of SILMs based on protic imidazolium ILs supported
on/in randomly nanoporous polybenzimidazole (PBI) for gas separation of apolar compounds,
ie, CHy and Nj;. The porous PBI employed for membrane fabrication as the mechanical
support provides outstanding thermal and chemical stability [30]. In general, PBI exhibits very
low gas permeability because of the carbon chain rigidity and strong intermolecular hydrogen
bonding leading to dense packing structures [31,32]. More specifically, three classes of SILMs
containing: (i) 1-H-3-methylimidazolium bis(trifluoromethane sulfonyl)imide (denoted as RPBI-IL);
(ii) 1-H-3-vinylimidazolium bis(trifluoromethane sulfonyl)imide (denoted as RPBI-MIL); and (iii)
poly[1-(3H-imidazolium)ethylene] bis(trifluoromethanesulfonyl)imide (denoted as RPBI-PIL) have
been prepared. The RPBI-PIL family, obtained by the ultraviolet (UV) polymerization of the RPBI-MIL
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set, has been studied to improve the membrane’s long-term performance [33]. Indeed, IL leaching from
the pores at either high temperatures or transmembrane pressures might clearly inhibit the practical
use of such membranes in gas separation processes. In addition, the polymerization phase transition
from liquid to solid state effectively improves the stability of the IL-based membranes [10,33,34]. Thus,
a comprehensive physicochemical and single gas permeation characterization of such SILMs has been
accomplished in this work. Particular emphasis is devoted to the analysis of methane solubility and to
the influence of the protic cationic moieties on the gas permeability values.

2. Methods

2.1. Chemicals

All chemical reagents and solvents were used as received: Poly[2,2-(m-phenylene)-
5,5bibenzimidazole] (PBI Fumion APH Ionomer, Mw = 59,000-62,000, Fumatech), LiCl (99 wt%,
Sigma-Aldrich), Poly(vinylpyrrolidone) K30 (PVP K30 Mw = 40,000, Fluka), Poly(vinylpyrrolidone)
K90 (PVP K90 Mw = 360,000, Fluka), 1-H-3-methylimidazolium bis(trifluoromethane sulfonyl)imide
(99.5 wt%, Solvionic), 1-H-3-vinylimidazolium bis(trifluoromethane sulfonyl)imide (99.5 wt%,
Solvionic), Divinylbenzene (80.0 wt%, Sigma-Aldrich), 2-hidroxy-2-methylpropiophenone (97.0 wt%,
Sigma-Aldrich), N-methyl-2pyrrolidone (NMP anhydrous, 99.5 wt%, Sigma-Aldrich).

2.2. Polymer Solution Preparation

PBI was used as a polymer for the fabrication of membrane support. Polymer solutions were
prepared according to a recipe previously developed in our group [21]. 11.5 g of PBI powder, 1.5 g of
LiCl, 1.5 g of PVP K30, 1.5 g of PVP K90 and 84 g NMP were mixed at 448 K for 24 h to obtain 16 wt%
of solids in homogeneous polymer solution. The polymer solution was then degassed under moderate
vacuum for two hours to ensure that all air bubbles were removed from the solution. Addition of
PVP controls macrovoids formation upon phase separation process and LiCl stabilizes the polymer
solution. Before use, the PBI solution was filtered by pressurized air through metal filter (25 m in pore
size) to remove insoluble solids from the starting PBI powder.

2.3. Preparation of the Randomly Porous Polybenzimidazole (RPBI) Supports by Phase Inversion

A schematic overview of the phase inversion process is depicted in Figure S2 (supplementary
materials). The polymer solution consisting of PBI, PVP, LiCl and NMP was poured onto a clean glass
plate (Figure S2A) and cast using a casting knife with a thickness of 0.25 mm. After casting, the glass
plate with deposited polymer layer was immersed in a coagulation bath (Figure S2B) containing
a mixture of NMP /water (50/50) for 30 min at room temperature (RT ~298 K). Then the plate was
transferred into a non-solvent bath (pure water) at room temperature (RT) to wash out any NMP traces
(Figure S2C), the exchange of solvent by water was effective after 30 min at RT. The polymer film was
then peeled off from the plate. Subsequently solidified RPBI support was immersed in ethanol for
30 min, followed by an immersion in hexane for 30 min, to ensure complete water removal. Finally,
remaining volatiles were evacuated at 423 K in an oven. For this thermal treatment, the polymer film
was sandwiched between two glass plates.

2.4. Fabrication of Supported lonic Liquid Membranes (SILMs)

The RPBI supports were infiltrated with ionic liquids using a protocol previously developed
by the authors [21]. A schematic illustration of the infiltration protocol is shown in Figure 1. Firstly,
the RPBI support was dried at 393 K under 100 mbar of vacuum to remove any water and organics.
Three types of SILMs have been fabricated:

(i) RPBI-IL: the protic ionic liquid (IL) 1-H-3-methylimidazolium bis(trifluoromethane
sulfonyl)imide (H-MIM TFSI) was heated up to 328 K to melt the salt. Subsequently, the RPBI
support was placed under vacuum for 1h to remove air from the pores and guarantee an efficient
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and uniform (in)filtration of the IL through the RPBI support. The infiltration process was conducted
by pouring the IL on the RPBI support surface at 443 K and applying 160 mbar vacuum. After the
filtration step, the membrane was removed from the filter holder and the excess of IL on the membrane
surface was wiped off with a tissue.

(ii) RPBI-MIL: the monomeric ionic liquid (MIL) 1-vinyl-3H-imidazolium bis(trifluoromethane
sulfonyl)imide (H-VIM TFSI) was heated up to 323 K to melt the salt, and the above (in)filtration
protocol was applied.

(iii) RPBI-PIL: the monomeric ionic liquid (MIL) 1-vinyl-3H-limidazolium bis(trifluoromethane
sulfonyl)imide was heated up to 323 K to melt the salt; afterwards 1 mol% (referred to
the MIL) of divinylbenzene (crosslinker-CL) was added and the mixture was thoroughly
mixed.  Subsequently, the above (in)filtration protocol was applied.  Finally, a photo
initiator (2-hydroxy-2-methylpropiophenone) was added on the membrane top-surface to initiate
photo-polymerization. In order to obtain the crosslinked RPBI/PIL composite membranes, each side
of the membrane surface was exposed for 2 h under a 365 nm UV lamp (Vilber Lourmat, Collégien,
France) with intensity of 2.4 mW cm~2). After IL polymerization, the membrane surface was gently
wiped from any residuals with a lab paper.
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Figure 1. Schematic illustration of polybenzimidazole (PBI) support pore filling and chemical
structures of the used ionic liquids: (i) 1-H-3-methylimidazolium bis(trifluoromethane sulfonyl)imide
(H-MIM TEFSI); (ii) 1-vinyl-3H-imidazolium bis(trifluoromethane sulfonyl)imide (H-VIM TFSI);
(iii) H-VIM TFSI with divinylbenzene followed by polymerization with UV light.

RPBI-IL RPBI-MIL

2.5. Characterization Methods

Porosity: The porosity of the as prepared RPBI support was determined by using a helium
displacement pycnometer (Micromeritics AccuPyc 1330, Micromeritics Instrument Corp., Norcross,
GA, USA) equipped with 1 cm® sample module. The reported porosity values were obtained for RPBI
supports with more than 50 cm? surface area. Porosity was calculated using following equation:

1k — 1
Porosity (@) = W % 100% (1)
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where Vbulk is directly estimated from surface area and thickness of the RPBI sample and Vskeleton is
obtained from the instrument.

For all samples, measurement reproducibility was typically within +0.01% of the nominal
porosity value.

Scanning electron microscopy (SEM) characterization: the morphology, thickness, porous
structure and pore size of the as-prepared RPBI supports were observed by scanning electron
microscopy (SEM) (FEI INSPECT 50), acceleration voltage 15 keV. Prior to observation, the samples
were coated with a Pd layer of ca. 2 nm by sputtering (LEICA EM ACE200).

Transmission electron microscopy (TEM): membranes were embedded in epoxy resin,
and ultrathin slices (about 50 nm thick) were cut with an ultramicrotome (Leica EM UC7) at room
temperature. These slices were placed on TEM copper grids with carbon film, and analyzed by TEM in
a Tecnai T20 (FEI Company), at a working voltage of 200 KV. TEM bright field images were acquired
with a side-mounted Veleta CCD Camera.

Atomic force microscopy (AFM): AFM measurements have been carried out by tapping
mode using NSG30 ND-MDT tip (Multimode 8 system, Veeco/Bruker) with force constant around
22-100 N/m. Roughness average (Ra) and root mean square (RMS) values are both representations of
surface roughness, although calculated differently from microscopic peaks and valleys on the surface
using the following equations:

1 &,

Ri= & ¥ o
1 & .

RMS = N;yz 3)

The roughness profile contains N ordered, equally spaced points along the trace, and yi is the
vertical distance, expressed in nm, from the mean line to the ith data point.

Infrared spectra measurements: attenuated total reflection-Fourier transform infrared
(ATR-FTIR) analyses (Bruker VERTEX 70 equipped with Golden Gate ATR from 4000 to 600 cm™!,
256 scans and resolution of 4 cm™!) were performed at room temperature to assess about the
photo-polymerization evolution in RPBI/PIL SILMs, and to investigate any possible interactions
between the benzimidazole from the RPBI support and the poly[1-(3H-imidazolium)ethylene]
bis(trifluoromethane sulfonyl)imide.

Thermogravimetric studies: thermogravimetric analyses (TGA) were carried out using a Q500
IR TA instrument to evaluate the composition and thermal behavior of the as-prepared SILMs. Studies
were conducted using 4-5 mg samples, in the temperature range from room temperature up to 1173 K
at a controlled heating rate of 2 K/min under an inert atmosphere (Nj).

Methane solubility in the protic ionic liquid: the CHy gas solubility in the H-VIM TFSI was
calculated by using the experimental vapour pressure equilibrium. The vapor pressure of the protic ionic
liquid mixture with methane was measured at 333 K at five compositions (from 0.0056 to 0.0165 methane
molar fraction) in the experimental set-up described by Coronas et al. [35] using a static isochoric method.

Single gas permeation experiments: single gas permeation measurements through the membranes
were carried out by using the constant-volume and variable-pressure technique at controlled temperature,
as described in the standard ASTM D 1434-82 protocol (procedure V). A schematic of the experimental
set-up (home-made) is shown in Figure S3. The two compartments of the permeation cell are separated
by the tested membrane. The permeability was obtained by measuring the pressure increase in the
downstream compartment (with a constant volume of 5.25 107> m3) and using different MKS Baratron
pressure transducers (range from 0.0 to 1 x 10° Pa). The membrane and downstream cell walls
were initially outgassed in situ during 15 h at high vacuum using a turbomolecular pump (Leybold,
Turbovac 50). Permeability values were measured in the temperature range from 313 K to 363 K,
using classically up to 1.5 x 10° Pa of upstream pressure gauge (unless otherwise indicated). The pressure
increase in the downstream compartment was continuously measured during 4 h. For each temperature
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change, the whole set-up was stabilized during at least 12 h. For a given temperature, the order of gas
permeance measurements was as follows: Ny, CHy. Between each measurement, both the membrane and
the cell were outgassed in situ during 12 h under high vacuum.

Both N; and CHy were provided by Linde Gas as single gases with 99.95% purity, and were used
without any further purification. A complete description of the experimental system and measurement
protocol was reported elsewhere [36]. For permeability calculations, a mathematical treatment relevant
for thin films and based on the second Fick’s law was used:

VL (dp,
P= ARTP, (W) @)

where P (mol m~! s~ Pa~1) is the gas permeability; V (m?) is the volume of the downstream
compartment; L (m) is the membrane thickness; A (m?) is the membrane surface area; R is the
universal gas constant (Pa m® mol~! K~1); T is the permeation temperature (K); P (Pa) is the applied
feed side pressure; and P (Pa) is the recorded pressure at the permeate side.

3. Results and Discussion

3.1. Fabrication of the Randomly Porous Polybenzimidazole (RPBI) Supports: Morphological Characterization

The RPBI supports, 120 to 175 um thick, were prepared successfully by a phase separation method
already reported in our previous work [21]. The porosity measured by pycnometry was 63.7 & 2.7%.
SEM pictures of the prepared RPBI supports are shown in Figure 2, where the analysis of airside, glass
side and cross-section are displayed. Pore sizes in the range 50-250 nm were measured on the air side
and 30-50 nm on the glass side. The cross-section view reveals a sponge-like structure.

Figure 2. Scanning electron microscope (SEM) observation of a RPBI support prepared by phase
separation method from 16 wt% of solid in the polymer solution: (A) air (top) side; (B) glass (bottom)
side; (C) cross-section; (D) detail of cross-section area.
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To better understand the pore connectivity, the microstructure of RPBI support was observed
by TEM. A typical image of the cross-section is shown in Figure 3A. The clear regions correspond to
the pores and interconnections between random pores can be observed over the whole membrane
thickness. In order to examine the surface roughness of the RPBI support, AFM surface images of both
glass and air side (bottom and top side, respectively) were analyzed (Figure 3B,C). The minor changes
in roughness parameters (roughness average and root mean squared roughness values reported on the
AFM images) from top to bottom are attributed to the change in the size of interconnected open pores.

RMS = 46.8

Figure 3. (A) Transmission electron microscope (TEM) observation of randomly porous PBI (RPBI)
support and AFM surface images of (B) RPBI-glass (bottom) side and RPBI-air (top) side (C). The values
of roughness average (Ra) and root mean squared (RMS) roughness, expressed in nm, are reported on
the atomic force microscope (AFM) images.

3.2. Fabrication of SILMs Based on Protic Imidazolium lonic Liquids: Physico-Chemical Characterization

SILMs were prepared by infiltration of RPBI support with the protic ionic liquids,
1-H-3-methylimidazolium bis(trifluoromethane sulfonyl)imide monomeric ionic liquid (H-MIM TESI)
and 1-H-3-vinylimidazolium bis(trifluoromethane sulfonyl)imide (H-VIM TESI), respectively,
as described in the experimental section. Due to the viscosity of H-MIM TFSI (i.e., 80 cP at 298 K) [22]
and H-VIM TFSI (14.3 cP at 323 K), the use of both vacuum and high temperature was required to
ensure efficient IL embedding within the pores of the RPBI support. A schematic illustration of the
infiltration protocol is shown in Figure 1A.
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FTIR analyses were used to evidence the successful polymerization of vinyl-polymerizable
groups. Accordingly, ATR-FTIR spectra of the composite membranes before (RPBI-MIL), and after
2 h UV irradiation (RPBI-PIL) are compared in Figure 4. The intense absorption bands in the range
1400-1000 cm ™!, observed for both RPBI-MIL and RPBI-PIL membranes, are characteristic of the
-50,- and —SNS- vibrational modes of the bis(trifluoromethanesulfonyl)imide [TFSI] anion [37].
Two characteristic infrared absorbance bands in RPBI-MIL were selected to examine the disappearance
of the vinyl-monomer: 1665-1630 cm ! (stretching vibration in -CH=CH;) and 995-920 cm ! (out of
plane bending of -CH=CH, groups). The disappearance of these characteristic peaks in RPBI-PIL upon
2 h UV light exposure confirmed a successful polymerization, above 97%, as already demonstrated in
our previous studies [20,21,23,24]. Figure S1 (supplementary material) shows photos of the prepared
SILMs, as free-standing films. The SILMs based on IL (i.e., RPBI-IL) were extremely brittle and hard to
handle, due to the IL crystallinity at room temperature (melting point ~328 K) whereas the RPBI-MIL
was only slightly brittle when handling (melting point ~313-318 K). Contrary, the SILMs based on
polymeric IL (i.e., RPBI-PIL) were very easy to manipulate.
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Figure 4. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectra of the resulting
SILM membrane before and after UV irradiation.

Table 1 summarizes the characteristics of the as prepared SILMs. The experimental IL/MIL/PIL
loadings calculated from simple weight increase measurements reasonably match those evaluated
from TGA (accounting from the registered weight loss within the 473-778 K temperature range),
but overpass theoretical values due to the difficulty in wiping the excess of IL/MIL/PIL from the
membrane surface. Therefore, the infiltration process herein performed ensures complete pore filling
of the PBI supports.
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Table 1. Main characteristics of SILMs based on protic imidazolium moieties specifically prepared for

this work.

Tonic liquid (IL) Loading (wt%)

SILM
Theoretical ! Experimental> TGA
RPBI-IL 73.5 82.4 70.4
RPBI-MIL 77.0 86.0 83.1
RPBI-PIL 82.5 86.5 78.6

1 Theoretical calculations based on both IL/MIL/PIL density and membrane porosity; 2 Experimental estimation
from weight measurements.

Figure 5 shows the TGA and derived DTG curves of all the prepared SILMs. A one stage
thermal decomposition process (663 K) was observed for both RPBI-IL and RPBI-MIL samples
due to the decomposition of H-MIM TFSI and H-VIM TFSI, respectively. Whereas in the case of
RPBI-PIL membrane a two-stage decomposition was observed: the first weight loss corresponds to
PIL decomposition and the shoulder at ~753 K is attributed to interactions between PIL and RPBI
support [21]. Very low weight loss (0.7-1.5%) were measured for all SILMs within the 423-473 K
temperature range, suggesting a good thermal stability of SILMs up to 583 K under N; atmosphere.
The measured Young’s modulus and tensile strength values of RPBI-PIL were 0.2 GPa and 1.3 MPa,
respectively (refer to our previous work [23] for more details). The RPBI-IL and RPBI-MIL samples
were not considered for mechanical tests due to handling difficulties at room temperature.
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Figure 5. (A) Thermogravimetric analysis (TGA) curves and (B) derived differential (DTG) curves of
the prepared supported ionic liquid membranes.
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3.3. Permeation Properties of the SILMs Based on Protic Imidazolium lonic Liquids

To the best of our knowledge, the permeation properties of SILMs based on protic imidazolium
ionic liquids have been scarcely investigated in the literature. In this work, the single gas permeances
of Np, CHy were measured in order to evaluate the membrane permselectivity (PermSel CH4/Ny) for
CHy /N, separation which is an important parameter for possible upgrading of natural gas.

In parallel, solubility data of gases in ionic liquids are required for designing the separation
processes and provide the basis for tuning the ionic liquids properties. The potential of ionic liquids
for the separation of CH, /N, gas mixture can be evaluated by the ideal selectivity (Ideal Sel CH4/Ny)
which is defined by the ratio of Henry’s constant values (H N, /H CHy).

Table 2 compares the Henry’s constant values for CHy and N, at different temperatures in
the range 298-343 K, in common aprotic ionic liquids based on methylimidazolium cations and
[TESI] anion. CHy is the most soluble (lowest Henry’s constant), while the solubility of N, is lower
(higher Henry’s constants) for all the tested conditions. Regular solution theory has been extensively
used as a method to model the behavior of gases in aprotic ILs. The widely investigated CO;, +
IL system could be accurately modeled as a function of the sorbent molar volume, with smaller
molar volumes and lower temperatures yielding both increasingly higher CO, solubilities and ideal
CO,/gas selectivities.

Table 2. Values of Henry’s law constant for N, and CHy in different aprotic ILs and derived calculated
ideal selectivities.

Aprotic Ionic Liquids T (K) H N, (atm) H CHy (atm) Ideal Sel CH4/N, Ref.
298 1000 + 8 350 +£1 2.8

1-hexyl-3-methylimidazolium 313 830+ 6 350 +2 24 [14]
bis(trifluoromethanesulfonyl)imide ~ 328 720 + 11 340 + 4 2.1
343 660 + 12 340 £ 0.4 1.9

1-butyl-3-methylimidazolium

bis(trifluoromethanesulfonyl)imide 333 970 £ 30 420 £10 23 [38]
298 1400 + 17 580 + 4 29

1-ethyl-3-methylimidazolium 313 1200 £ 27 560 + 3 21 [14]
bis(trifluoromethanesulfonyl)imide 328 1000 + 19 540 +1 1.85
343 910 £ 0.3 530 + 0.4 1.7

Table 2 displays the solubility selectivity trend for CH; and Nj pairs as a function of
temperature. The same solubility selectivity trends exist for all the aprotic ionic liquids tested.
With increasing temperature, the solubility selectivity slightly decreases, i.e. from 2.9 at 298 K
to 1.7 at 343 K. This behavior was expected when considering the observed evolution trend
of solubility vs. temperature. Unlike the CO, + ILs equilibria behaviors, the solubility
of N increases (decreasing Henry’s constant) when temperature increases for all the aprotic
ionic liquids. On the other hand, the CHj solubility remains almost constant, indicating
that the change in partial molar enthalpy and entropy of the system must be zero (based on
thermodynamic equations). Additionally, the Henry’s constant value for CHy decreases when
the molar volume of the aprotic IL increases, i.e., from 580 atm to 350 atm at 298 K for
1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide and -hexyl-3-methylimidazolium
bis(trifluoromethanesulfonyl)imide, respectively. When comparing the ideal selectivity values obtained
from solubility measurements (Sel CHy/Nj) with those corresponding to membrane permselectivity
(Perm Sel CHy/Njy), a solubility dominated transport was confirmed for aprotic ionic liquids [9].

Table 3 compares the Henry s constant values for CHy and Nj in the temperature range 303-333 K,
in protic ionic liquids, i.e., those containing proton-donor and proton-acceptor centers in their
molecules. Protic ionic liquids are described as structurally heterogeneous compounds consisting
of both polar and apolar domains. Charged and uncharged groups tend to segregate resulting
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in sponge-like nanostructures. In general, the thermodynamic properties of ionic liquids with
dissociable protons are significantly less investigated than those of aprotic analogues. An inert-gas
stripping method has been described in the literature [16] for measuring solubilities of moderately
and sparingly soluble gases, i.e., Ny, O, air, CoHys, CoHg in low viscosity protic ionic liquids
such as 1-butyl, 3-H-imidazolium acetate. In protic ionic liquids, CHy is the most soluble
(lowest Henry’s constant) while the solubility of N lower (higher Henry’s constant) than in their
aprotic imidazolium counterparts. The CHy Henry’s constant for the 1-H-3-vinylimidazolium
bis(trifluoromethanesulfonyl)imide ionic liquid used in this work is 172 £ 16 atm at 333 K,
i.e., three fold lower than the values measured for the aprotic 1-ethyl-3-methylimidazolium
bis(trifluoromethanesulfonyl)imide. At a first glance, the intermolecular hydrogen bonds in protic
molecular solvents seem to yield a significant drop of solubility for apolar species. However, here we
do observe a tendency of higher CHy solubility in comparison with similar aprotic ionic liquids.
Sedov et al. [17] explain this behaviour by a preferential cavity formation and favorable solvation of
hydrocarbons in the apolar domain of nanostructured protic ionic liquids. Consequently, the higher
CH4 permeability values measured for SILMg prepared from protic ionic liquids would be expected.

Table 3. Values of Henry’s law constant for N, and CHy in different imidazolium based protic ILs and
derived ideal selectivity values.

Protic Ionic Liquids T (K) HN, (atm) H CH4 (atm) Ideal Sel CH4/N, Ref.
- . 90 +4.5% 204 *
1-butyl-3-H-imidazolium acetate 308 1840 + 147 85 + 3.4 % 21.6 [16]

1-H-3-vinylimidazolium

bis(trifluoromethanesulfonyl)imide 333 na 172 +16 na. This work

* evaluated for C,Hg; ** evaluated for CoHy.

In this work, the single gas permeability results were assumed to reflect gas transport through protic
ionic liquid moieties while the contribution of the parallel RPBI transport pathway was considered as
negligible due to the extremely low permeabilities of gases in dense PBI [39], i.e., 0.009 Barrer for CHy.
The influence of temperature on both gas permeability (Figure 6) and CH4/N, permselectivity (Figure 7)
was studied for the three different SILMs in the temperatures range 313-363 K and measured in the initial
pressure range of 1.5 barg. Since H-MIM TFSI is a crystalline solid at room temperature and its melting
point is ~328 K [40], the experiments with RPBI-IL were carried out at 333 K and above.
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Figure 6. Influence of temperature on single gas permeability values for: Nj (a), CHy (b).
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The measured permeability values of the prepared SILMs are in the range 49-178 Barrer
for N and 178-725 Barrer for CHy. In the tested temperature range, i.e., 333-363 K, the CHy
permeability of RPBI-MIL membranes is always higher than for RPBI-IL membranes. Hence, the effect
of vinyl substitution on imidazolium group seems to increase the CHy solubility. According to
Scovazzo et al. [9], in addition to the consideration of IL viscosity and molar volume, the IL ability to
accept hydrogen to form a hydrogen bond contributes to a better correlation of the permeance trends
for N, CH4 and CXHy through SILMs. In our previous work [20] on the use of protic ionic liquids
for the preparation of all solid state ion conductive films, the proton transport properties of HVIM
TFSI were found to be superior to those of the HMIM TFSI counterpart. Hence, proton conduction
properties seem to be in line with observed CHy4 permeation values.

All solid-state gas permeable membranes, denoted as RPBI-PIL, were also prepared by UV
photo-assisted polymerization of supported HVIM TFSI membrane to provide SILMs with adequate
physical stability for gas separation applications involving moderate to high trans-membrane pressures.
As expected, the cationic moieties polymerization strongly impacts the membrane permeation
properties. In fact, gas permeability values of RPBI-PIL membranes were three times lower than
those measured for RPBI-MIL membranes (Table 4). Above all, when compared with the RPBI-IL
counterparts, the CHy permeance through RPBI-PIL resembles the same at the expense of a remarkable
improvement of endurance properties.

Table 4. Single gas permeability values measured for the SILMs prepared in this work and derived
permselectivity values.

Tonic Liquid Support Temperature (K)  Nj (Barrer)  CHy (Barrer)  PermSel CH4/N,
1-H-3-methylimidazolium
bis(trifluoromethane sulfonyl)imide RPBI 333 12 285 25
1-H-3-vinylimidazolium
bis(trifluoromethanesulfonyl)imide RPBI 333 169 725 43
poly [1-(3H-imidazolium) ethylene]
bis (trifluoromethanesulfonyl)imide RPBI 333 50 235 47
1-ethyl-3-methylimidazolium PVDE * 303 17 3 1.9

bis(trifluoromethanesulfonyl)imide

* Data from Reference [9]: commercial PVDF 125 um thick, 70% porosity, 0.1 m pore diameter.
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In this study, the N, permeability values tend to increase moderately within the tested temperature
window; whereas CHy is less temperature dependent (Figure 6), which is in a good agreement with
the gas solubility data reported in Table 2.

The calculated CH, /N, PermSel values, corresponding to the ratio of single gas permeabilities,
are reported in Table 4. As observed in Figure 7, the SILMs developed in this work exhibit relatively
high PermSel values, up to 4.7 for RPBI-PIL at 333 K. Although this value is below 6, i.e., the target
estimated by Baker [3] for cost-effective NG processing with membranes, the methane permeability
through RPBI-PIL remains always above 60 Barrer for the tested temperature window.

The key difference between IL-based and polymer-based membranes is the impact of gas
diffusivity on membrane selectivity. In IL-based membranes, the gas diffusivity selectivity is constant
for a given gas pair, whereas the solubility selectivity controls membrane selectivity [21]. In most
polymeric membranes, the opposite behavior is observed: solubility selectivity is usually constant
for gas pairs and it is the diffusivity selectivity which determines the membrane selectivity [26,41].
The CH4/N; permselectivity values for all the herein studied SILMs are plotted in Figure 8 as a function
of CHy permeability.
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Figure 8. Comparison of permselectivity vs. permeability values for the membranes prepared in this
work and for series of SILMs and polymer membranes reported in the literature.

It is evident that the performance of the SILMs developed in this work are highly promising in
comparison with literature data for either polymeric membranes (adapted from both Lokhandwala
etal. [1] and Scholes et al. [2]) or other SILMs (based on aprotic imidazolium cation and TFSI anion
on/in different supports) [7,25-29,42,43].

Among all the prepared SILMs, the RPBI-PIL family stands for the most adequate in terms
of CHy/Njy transport properties. In a step further, these membranes were subjected to gas
permeance experiments using an initial up-stream pressure up to 4 x 10° Pa for durability evaluation.
Figure 9 summarizes the results obtained for both single gases at 313 K and 363 K, respectively. A slight
decline in the measured CHy and N, permeability values was observed when the initial upstream
pressure increased from 1.5 barg to 2.5 barg at 363 K. Apart from this observation, the permeation
properties remain constant whatever the pressure applied in the feed side: 32 to 72 Barrer for N, and
61 to 156 Barrer for CHy at 313 K and 363 K, respectively. These results confirm the expected endurance
provided by the polymerization of the cationic moieties in the RPBI support.
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The polymerized IL, nanoconfined in the RPBI support, have been shown to provide
stable performance with both relatively high CH,; permeability (>60 Barrer) and stable CHy /N,
permselectivity (in the range 2.0-4.7) up to 363 K and 4.0 barg, and attractive performance is also
expected for the separation of gas mixtures with the RPBI-PIL membrane family upon long-term
operation. This will be the subject of our future investigations, focusing in more details on the gas
permeation and separation measurements for a long period of time.
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Figure 9. Influence of initial feed side pressure on single gas permeability values as a function of
temperature: 313 K (a) and 363 K (b) for RPBI-PIL membranes.

4. Conclusions

In this work we presented for the first time an experimental study of N, and CHy4 permeation
properties of supported ionic liquid membranes (SILMs) based on protic imidazolium [TFSI] ionic
liquids supported in randomly nanoporous PBI (RPBI). So far, only limited studies can be found in
the literature on the separation performance of bulky protic ionic liquids focusing essentially on the
evaluation of the ideal CHy /N, selectivity calculated from Henry’s constant values. Unexpectedly,
the CHy solubility in the 1-H-3-vinylimidazolium bis(trifluoromethanesulfonyl)imide ionic liquid
used in this work is three times higher than the values measured for its similar aprotic counterparts.
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This observation is attributed to the favorable solvation of hydrocarbons in the apolar domains of
nanostructured protic ionic liquids.

The measured permeability values of the prepared SILMs based on 1-H-3-methylimidazolium
[TFSI], 1-H-3-vinylimidazolium [TFSI] and poly[1-(3H-imidazolium)ethylene] [TFSI] were found
to be in the range 49-178 Barrer for N, and 178-725 Barrer for CHy at temperatures varying from
313 to 363 K. Among the studied SILMs, those based on poly[1-(3H-imidazolium)ethylene] [TFSI] are
clearly superior with CH /N, permeation properties comparable or higher than the state of the art
membranes, i.e.,, a CHy/N; permselectivity of 4.7 with a CHy permeability reaching 235 Barrer at 333 K.
The membrane permeability is above the target and particularly attractive for industrial applications.

In addition, such solid-state gas selective poly-ionic liquid-based membranes exhibit stable
performance at moderate trans-membrane pressures, i.e., 4 barg, thanks to the in situ polymerization
and confinement of the cationic moieties within the pores of the RPBI support. This work is a strong
motivation for future investigations of poly[1-(3H-imidazolium)ethylene] [TFSI] supported membranes
in a long-term performance operation with gas mixtures relevant for natural gas upgrading.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0375/8/3/75/
s1, Figure S1: Photos of the prepared SILMs: A) IL-based SILM (RPBI-IL); B) MIL-based SILM (RPBI-MIL);
C) PIL-based SILM (RPBI-PIL), Figure S2: Schematic of the phase inversion steps: (A) polymer solution casting on
clean glass plate; (B) System immersed in a coagulation bath with solvent mixture 50:50% of NMP: water; (C) Glass
plate with the formed PBI support immersed in pure water, Figure S3: Schematic of the lab-scale experimental
set-up used for single gas permeation measurements.
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