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Entropies and entropy-like quantities are playing an increasing role in modern non-linear data
analysis and beyond. Fields that benefit from their application reach from diagnostics in physiology, for
instance, electroencephalography (EEG), magnetoencephalography (MEG) and electrocardiography
(ECG), to econophysics and engineering. During the last few years, classical concepts as approximate
entropy and sample entropy have been supplemented by new entropy measures, like permutation
entropy and its variants. Recent developments are focused on multidimensional generalizations of the
concepts with a special emphasis on the quantification of coupling and the similarity between time
series and system components behind them. One of the main future challenges in the field include
finding a better understanding of the nature of the various entropy measures and their relationships,
with the aim of adequate application including good parameter choices. The utilization of entropy
measures as features in automatic learning and their application to large and complex data for such
tasks as classification, discrimination and finding structural changes requires fast and well-founded
algorithms. This issue is facing a different aspect of the use of entropy measures for data analysis in a
wide sense, including those described.

Papers 1-3 discuss the problem of parameter choice mentioned and aspects related to it. Ahmadi
et al. [1] investigate the sensitivity of sample entropy with respect to different parameters like,
for example, tolerance size and sampling rate for gait data. Cuesta-Frau et al. [2] study parameter
choice for permutation entropy, particularly embedding dimension and time series length, in the
context of a lot of synthetic and real data sets. Here special emphasis is put on practical aspects of
data analysis. In particular, the authors point out that in many cases permutation entropy can be used
for shorter data sets than reported by other authors. In a certain sense complementary to the paper
of Cuesta-Frau et al. [2], Piek and Keller [3] investigate parameter choice for permutation entropy
and, more generally, ordinal pattern-based entropies from a computational and theoretical viewpoint.
Fast algorithms are presented, possibilities and limits of the estimation of the Kolmogorov—Sinai
entropy are discussed. A further aspect of the paper is the generation of artificial data for testing
ordinal pattern methods.

The main objective of papers 4 and 5 is entropy-based feature extraction. Lu et al. [4] utilize
approximate entropy, sample entropy, composite multiscale entropy and fuzzy entropy for identifying
auditory object-specific attention from single-trial EEG signals by support vector machine (SVM)-based
learning. For circuit fault diagnosis, He et al. [5] propose a new feature extraction method, which
is mainly based on a measure called joint cross-wavelet singular entropy and a special dimension
reduction technique. The obtained features are entered into a support vector machine classifier in order
to locate faults. Besides feature extraction, direct applications of entropy for automatic learning is also
addressed in this issue. Bukovsky et al. [6] discuss and further develop the recently introduced concept
of learning entropy (LE) as a learning-based information measure, which is targeted at real-time
novelty detection based on unusual learning efforts. For assessing the quality of data transformations
in machine learning, Valverde-Albacete et al. [7] introduce an information-theoretic tool. They analyze
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performance of the tool for different types of data transformation, among them principal component
analysis and independent component analysis.

Papers 8-10 are devoted to the aspect of coupling and similarity analysis. For studying the
Chinese stock market around the 2015 crash, Wang and Hui [8] utilize effective transfer entropy (ETE),
which is an adaption of transfer entropy to limited and noisy data. From this base, they discuss and
compare dependencies of 10 Chinese stock sectors during four characteristic time periods near the
crash. In [9], Craciunescu et al. introduce a new measure for describing coupling in interconnected
dynamical systems and test it for different system interactions. Besides such in model systems,
real-life system interactions like between the El Nifio Southern Oscillation, the Indian Ocean Dipole,
and influenza pandemic occurrence are considered. Here, coupling strength is quantified by entropies
of adjacency matrices associated to networks constructed. Wang et al. [10] use entropy-based similarity
and synchronization indices for relating postural stability and lower-limb muscle activity. Their study
is based on two types of signals, one measuring the centre of pressure (COP) in dependence on time
and one being an electromyogram (EMG). The authors show high correlation of COP and the low
frequency EMG and that the cheaper COP contains much information on the EMG.

The other four papers touch further interesting aspects of entropy measure use. Selvachandran
etal. [11] consider complex vague soft sets (CCVS), defined as a hybrid model of vague soft sets and
complex fuzzy sets, which is, for example, useful for the description of images. Some distance and
entropy measures for CCVSs are axiomatically defined and relations between them are investigated.
The work [12] of Pan et al. focuses on Dempster—Shafer evidence theory, which can be considered as a
generalization of probability theory. A new belief entropy, measuring uncertainty in this framework,
and its performance are discussed on the base of numerical experiments. Garcia-Gutiérrez et al. [13]
introduce a new model for the particle size distribution (PSD) of granular media, which relates two
models known for a long time. For this purpose, a differential equation involving the information
entropy is used. The interesting point is that experimental data can be considered as an initial condition
for simulating a PSD. Last but not least, Liu et al. [14] demonstrate that entropy methods also can be
helpful in solving nonlinear and multimodal optimization problems. They develop an algorithm based
on the firefly algorithm and the cross-entropy method and report its good performance, especially
powerful global search capacity precision and robustness for numerical optimization problems.

Acknowledgments: I express my thanks to the authors of the above contributions, and to the journal Entropy and
MDPI for their support during this work.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Sample entropy (SampEn) has been used to quantify the regularity or predictability of human
gait signals. There are studies on the appropriate use of this measure for inter-stride spatio-temporal gait
variables. However, the sensitivity of this measure to preprocessing of the signal and to variant values
of template size (1), tolerance size (r), and sampling rate has not been studied when applied to “whole”
gait signals. Whole gait signals are the entire time series data obtained from force or inertial sensors.
This study systematically investigates the sensitivity of SampEn of the center of pressure displacement
in the mediolateral direction (ML COP-D) to variant parameter values and two pre-processing methods.
These two methods are filtering the high-frequency components and resampling the signals to have
the same average number of data points per stride. The discriminatory ability of SampEn is studied
by comparing treadmill walk only (WO) to dual-task (DT) condition. The results suggest that SampEn
maintains the directional difference between two walking conditions across variant parameter values,
showing a significant increase from WO to DT condition, especially when signals are low-pass filtered.
Moreover, when gait speed is different between test conditions, signals should be low-pass filtered and
resampled to have the same average number of data points per stride.

Keywords: sample entropy; treadmill walking; center of pressure displacement; dual-tasking

1. Introduction

Entropy measures quantify the regularity or predictability of a time series [1-5]. Larger entropy
values indicate less regularity or predictability in a time series. These measures have been used in
gait analysis, and have been shown to discriminate between fallers and non-fallers [6], older and
younger adults [7,8] and walk only (WO) and dual-task (DT) walking condition [7]. Various entropy
measures have been proposed based on Shannon’s entropy [9] and its successor method, Approximate
Entropy [10]. One of the most commonly methods used to study gait function is Sample Entropy
(SampEn) [3].

Earlier application of SampEn was used to examine various inter-stride spatio-temporal gait
variables, derived from endpoints of the gait cycle (heel strikes), for example, stride time and step
length signals [11]. It has also been shown that there may be temporal scales in changes that occur
in spatio-temporal gait variables [12]. However, these signals lack intra-stride information, which
represents important passive and active gait control process [7]. Recent gait studies have examined
“whole” gait signals (entire time series as opposed to stride-to-stride gait variables), such as trunk linear
acceleration [1,6,13,14], joint angular positions [15] and center of pressure of feet displacement [7,16].

Center of pressure displacement in the mediolateral direction (ML COP-D) has been
extensively used to examine the balance performance during standing conditions (base of support
stationary) [17-19]. However, its usage in gait analysis is limited to a few studies [1,7,16,20]. This might

Entropy 2018, 20, 579; doi:10.3390/e20080579 4 www.mdpi.com/journal/entropy
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be due to the limitation of the facilities that collect data on a treadmill or during overground walking.
ML COP-D is capable of representing both single and double support phases of the gait cycle.
It has also been shown that SampEn of ML COP-D better distinguishes between different treadmill
walking conditions as compared to the SampEn of other commonly used signals (e.g., trunk linear
acceleration) [7].

A few studies have investigated how variant template size (1), tolerance size (r), and data length
(N) would affect SampEn of short [11] and long [21] time series when using inter-stride spatio-temporal
gait variables. It was shown that SampEn values are dependent on the combination of m and r, and not
on N [11,21]. However, no study has investigated the effect of parameter selection on SampEn of the
human gait whole signals, such as ML COP-D or trunk linear acceleration, over an appropriate amount
of continuous strides. During continuous, steady-state gait, these signals are similar in nature with
a few dominant frequencies and have consistent fluctuations from stride to stride. Considering the
increasing use of SampEn in analyzing human gait whole signals, it is essential to investigate how
parameter selection would affect the outcomes. The importance of this investigation stems from the
fact that parameter selection for calculating SampEn of whole gait signals, in many studies, is based on
those that have analyzed inter-stride gait variables [8,13].

Most studies which have examined the effect of aging or dual-tasking on gait function,
use self-paced walking and do not control for gait speed. Self-paced walking results in different
walking speeds and, therefore, each walking condition will have a different average number of data
points per stride. It has been shown that gait speed is significantly reduced during dual-task walking
compared to walk only trials [22] and it has been reported that speed has a significant effect on measures
of dynamical systems, such as the largest Lyapunov exponent [23-25]. Moreover, researchers have
used different sampling frequencies when collecting target whole signals, which in turn have resulted
in a different average number of data points per stride. It is unknown whether a different average
number of data points per stride caused by varying walking speed or sampling rate would affect
SampEn. Furthermore, many researchers have opted to apply SampEn, or other entropy measures,
to raw unfiltered signals [8,16,26] to avoid losing or altering information due to filtering. While
others have filtered the high-frequency components of trunk linear acceleration signal using a cut-off
frequency of 20 Hz [14,27]. Therefore, investigating the effect of filtering would also be beneficial.

The first objective of this study is to systematically examine the sensitivity of SampEn of
ML COP-D signals, obtained during treadmill walking, to variant m, r, and sampling rate values.
The second objective is to determine the effect of the choice of low-pass filtering and data resampling,
to have the same average number of data points per stride, on the SampEn of ML COP-D signals.
Discriminatory ability of SampEn will be examined through comparing walk only condition to
dual-task walking, which has been shown to adversely affect gait performance [28,29].

2. Materials and Methods

2.1. Experimental Procedure

A convenience sample of 29 healthy young participants (eight females, 28.3 4 2.7 years,
173.4 £ 8.8 cm, 69.7 &= 14.2 kg, mean = standard deviation (SD)) was recruited. They were screened to
ensure that no participant had any illnesses, neuromuscular injuries or previous surgeries that might
affect their balance and gait. The University of Manitoba Human Research Ethics Committee approved
the study and all participants signed the informed consent form prior to the tests.

Participants were asked to walk on an instrumented Bertec treadmill (Bertec Corporation,
Columbus, OH, USA) under three different walking conditions:

(a) Walk only (WO) trial of 1 min at a speed of 1.0 m/s, and
(b) Dual-task (DT) walking trial of 1 min at a speed of 1.0 m/s, which is described below, and
(c) Walk only trial of 1 min at a speed of 1.3 m/s (WO-1.3).
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Center of pressure displacements in the mediolateral (ML COP-D) and anteroposterior
(AP COP-D) directions (Figure 1) were calculated from the force and moment components, which were
sampled at 1000 Hz. Forty seconds of each signal, which contained at least 30 strides [16], were used
after discarding approximately the first 4 strides.

. (A) . (B) R (©€)
15 wo 05 wo 03 wo
5 (a] o
O 154 &)
& = =
< = =
0.9 0.1 0.1
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<10
15 wo-ia 05 Wo-13 05 wo-is
- N = =
s = ;
(o) o) S
9] & )
%) — -
< = =
0.9 0.1 0.1
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10*
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2 2 2
) ) o]
~ =) -
< = =
0.9 0.1 0.1
0.1 ML COP-D (m) 0.5 0 Data Length 4 0 Data Length 6000

<10*

Figure 1. Trajectory of the center of pressure under WO, WO-1.3, and DT conditions: (A) The low-pass
filtered trajectory of center of pressure displayed as AP COP-D vs. ML COP-D, (B) Filtered ML COP-D,
(C) Several strides of unfiltered ML COP-D.

During all walking trials, participants viewed an 80 cm computer monitor positioned 1 meter
away at eye level. During the WO trials, participants watched a scenery video to maintain gaze and
head position relative to the monitor. For the purpose of hands-free interaction with game activities,
a commercial inertial-based wireless mouse (Elite mouse, SMK Electronics, Chula Vista, CA, USA)
was mounted on a plastic headband worn by each participant. Therefore, during walking, the head
rotation was used to control the motion of the computer cursor. The goal of the game was to move a
game paddle horizontally to interact with moving game objects. The game objects were categorized
as designated targets or designated distractors, with the shape of a soccer ball and dotted sphere,
respectively. They appeared at random locations at the top of the display every 2 s and moved
diagonally toward the bottom of the display. In response to each “game event” (target appearance),
the participant produced a head rotation (i.e., rotation of the motion-sense mouse) to move the game
paddle (left/right) to catch the target objects and avoid the distractors. For a full description of the
interactive cognitive computer game, see Szturm et al. [29].

2.2. Sample Entropy

SampEn (m, r, N) [3] of a dataset of length N is the negative natural logarithm of the conditional
probability of two successive counts of similar pairs (Chebyshev distance less than a tolerance size
of r) of template size m and m + 1 without allowing self-matches. SampEn is calculated as follows [7];
consider a time series of length N given below:
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u=u(1l),u(2),...,u(N)oru={u(j):1<j<N} 1)
First, m value is chosen to construct series of pairs, size m as:
Xm(i) ={u(i+k):0<k<m—1},1<i<N-—-m+1 2)

Next, matching templates are found by comparing their chebyshev distance to a pre-determined r
value while excluding self-comparison. Next, a variable called B; is built which is the number of pairs
satisfying the aforementioned criteria:

B'(r) = Nom=1 (#of d| X (i) — X (j)| <1, wherej=1:N—m&i#j) 3)
A\ X (i) = X (j)| = max{|u(i+k) —u(j+k)|:0<k<m—1} 4)
Next, B"(r) is defined as:

B"l 1 N B?’ﬂ 5
") =N=m Z; i'(r) ©®)

This process is repeated for m + 1 and r to form A™ (r):

1 . . . .
Al'(r) = Nom=1 (#of d|Xpy1(i) = Xppy1(j)| <1, wherej=1:N—m&i #j) (6)
m l N m

A" = g L AT @

Lastly, SampEn is calculated based on B" (r) and A™(r) as

A" (r)
B (r)

SampEn (m,r,N) = —In (8)

2.3. Data Analysis

This study consists of two parts. In the first part, the sensitivity of SampEn to changing m,
r, and sampling rate was investigated when comparing WO to DT. Two methods were used to
downsample signals from 1000 Hz to lower sampling rates (Table 1). The goal was to downsample
signals by factors of 1, 2, 4, 8, 16 and 32. The first method, decimation (D) by a factor of f, used an
eighth-order low-pass Chebyshev Type I filter, which filtered the signal in forward and reverse
directions to remove phase distortions and then selected every fth point (MATLAB command decimate).
The filter had a normalized cut-off frequency of 0.8/f. This method was chosen to avoid aliasing
distortion that might occur by simply downsampling a signal.

Table 1. Summary of downsampling factors (f), sampling rates and cut-off frequency for decimation
and filtering-and-downsampling methods.

Cut-Off Frequency (Hz)

f Sampling Rate (Hz)
Decimation Filtering-and-Downsampling

1 1000 800 30

2 500 400 30

4 250 200 30

8 125 100 30

16 62 50 30
32 31 25 30
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The second method, filtering-and-downsampling (FD) by a factor of f, used a second-order
Butterworth low-pass filter with a cut-off frequency of 30 Hz, and then downsampled the signal
by a factor of f (MATLAB command downsample). Butterworth low-pass filter is the most common
filter used in the literature to reduce the effect of noise [30] along with maintaining the variability in
the lower range frequencies where the musculoskeletal motion occurs [31]. A nonparametric PSD
estimator, Welch'’s algorithm, was used to obtain the cut-off frequency. The dominant peak was at
0.89 4 0.06 Hz (mean =+ SD) for WO, 0.91 & 0.06 for DT, and 0.99 £ 0.06 for WO-1.3. The last peak
before noise floor occurred in the 8-15 Hz frequency range. Therefore, 15 Hz was considered as the
highest frequency component and 30 Hz was used as the cut-off frequency.

The two methods yielded approximately the same results with respect to the low-pass filtering
for f = 32. Therefore, the first five f values could shed light on the effect of low-pass filtering prior to
the calculation of SampEn.

SampEn was calculated using all combinations of parameter values, m = 2, 4, 6, 8, 10 and
r=0.2 and 0.3 x standard deviation (SD) of all the time series, and for all downsampling factors
f=1,2, 4,8, 16, 32, and for both decimated and filtered-and-downsampled signals of WO and
DT condition. The present investigation was based on more m and f values in the selected ranges.
However, the necessity for statistical analysis with the purpose of studying the discriminatory ability
of SampEn, led to choosing fewer parameter values (levels within a factor); e.g., five levels versus
nine levels for template size (m = 2~10). In a previous study [11], m = 2, 3, 4 were tested when
SampEn was applied to the inter-stride spatio-temporal gait variables. The present work included
more m values to study the SampEn of the entire gait signals and not just times at heel strike or step
distances. It was hypothesized that larger m values could better discern changes when there is a much
greater number of data points per gait cycle or stride. Additionally, unlike ApEn, SampEn decreases
almost monotonically with increasing r value [3,11] and 0.1-0.3 times the standard deviation has
been suggested for inter-stride spatio-temporal gait variables [11]. The current analysis was based
onr = 0.1 xSD,r =0.2xSDandr = 0.3 x SD. However, when the parameter value r = 0.1 x SD
was used, many SampEn values converged to infinity. Therefore this level was not included in the
results. Large r values were not included because they result in much smaller SampEn values for each
condition, i.e., more matched templates, which diminish the discriminatory ability of SampEn.

In the second part, the effect of low-pass filtering and resampling, to have the same average
number of data points per stride, was investigated. SampEn of ML COP-D signal of WO, DT,
and WO-1.3 was calculated using m = 4, r = 0.2 x SD, and f = 8 (based on the results of the
first part). Four methods of preprocessing were used for each condition;

e  decimation (D),

e  decimation-and-resampling (D-R),

e filtering-and-downsampling (FD) and,

e filtering-and-downsampling-and-resampling (FD-R).

The average number of data points per stride for WO, DT and WO-1.3 were 142, 140 and 128,
respectively. Therefore, 30 strides of each time series were resampled (MATLAB command resample) so
that all of the signals would have an average of 142 data points per stride.

2.4. Statistical Analysis

In the first part of this study, there were 4 factors of within-subject repeated measures, which
are 2 levels of walking condition (WO and DT), 2 levels of r, 6 levels of f, and 5 levels of m.
The following steps were taken to perform the statistical analysis separately for both decimated
and filtered-and-downsampled signals.
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i A two-factor repeated measure ANOVA (walking condition*) was performed at each f level
while considering the first tolerance level.

ii. A two-factor repeated measure ANOVA (walking condition*) was performed at each f level
while considering the second tolerance level.

iii. A two-factor repeate